metadata
dict
text
stringlengths
60
3.49M
{ "source": "jlainema/co49kb", "score": 2 }
#### File: jlainema/co49kb/easyeda-merge.py ```python import json,sys,re if len(sys.argv) < 4: print ("Usage: <easy eda json to merge to> [optional merge from] DELTA_X DELTA_Y [optional NET=NEW_NAME,NET=... renames]") print ("For renames you can also use K=REGEXP:REPLACE where if K is in net/name, re.sub(REGEXP,REPLACE,name) is ran") sys.exit() def relocs(s,da,loop=True,nidx=-1): nums = filter(None, re.split('([-]*\d+[.]*\d*)', s)) nout = "" oa = da for ns in nums: try: n = float(ns) if da: nidx += 1 if (nidx >= 0 and nidx < len(da)): n += da[nidx % len(da)] if (nidx == len(da)-1) and loop: nidx = -1 if int(n) == n: n = str(int(n)) else: n = "%.4f"%n except Exception as e: c = ns.strip() if c == "M" or c == "L": loop = c == "L" nidx = -1 if c == "A": loop = False nidx = -6 n = ns pass nout += n return nout guid = 100 def merges(sout,s,c="~"): global guid for ns in s: if len(sout) != 0: sout += c if ns[:3] == "gge": ns = "gge"+str(guid) guid += 1 sout += ns return sout def do_net(c,name): # print (c,name) if name in renames: return renames[name] for l in renames["$$reg"]: if l[0] in name: return l[1].sub(l[2],name) return name def do_nop(sout,arr,l): return do_arr(merges(sout, arr[0:1]), arr[1:], l) def do_track(sout,arr,l): # print ("TRACK", len(arr)) arr[3] = do_net(arr[0],arr[3]) arr[4] = relocs(arr[4], delta) return merges(sout, arr) def do_arc(sout,arr,l): # print ("ARC", len(arr)) arr[3] = do_net(arr[0],arr[3]) arr[4] = relocs(arr[4], delta) # print l return merges(sout,arr) def do_srg(sout,arr,l): # print ("SOLIDREGION", len(arr)) arr[2] = do_net(arr[0],arr[2]) arr[3] = relocs(arr[3], delta) # print l return merges(sout,arr) def do_text(sout,arr,l): # print ("TEXT", len(arr)) arr[2] = relocs(arr[2], delta) arr[3] = relocs(arr[3], delta, False, 0) arr[10] = do_net(arr[0],arr[10]) arr[11] = relocs(arr[11], delta) # print l return merges(sout,arr) def do_rect(sout,arr,l): # print ("RECT", len(arr)) arr[1] = relocs(arr[1], delta) arr[2] = relocs(arr[2], delta, False, 0) arr[6] = do_net(arr[0],arr[6]) arr[9] = relocs(arr[9], delta) if len(arr)>17: arr[18] = relocs(arr[18], delta) # print l return merges(sout,arr) def do_via(sout,arr,l): # print ("VIA", len(arr)) arr[1] = relocs(arr[1], delta) arr[2] = relocs(arr[2], delta, False, 0) arr[4] = do_net(arr[0],arr[4]) # print l return merges(sout,arr) def do_hole(sout,arr,l): # print ("HOLE", len(arr)) arr[1] = relocs(arr[1], delta) arr[2] = relocs(arr[2], delta, False, 0) # print l return merges(sout,arr) def do_ellipse(sout,arr,l): # print ("ELLIPSE", len(arr)) arr[1] = relocs(arr[1], delta) arr[2] = relocs(arr[2], delta, False, 0) arr[6] = do_net(arr[0],arr[6]) arr[18] = relocs(arr[18], delta) return merges(sout,arr) def do_lib(sout,arr,l): # print ("LIB", len(arr)) arr[1] = relocs(arr[1], delta) arr[2] = relocs(arr[2], delta, False, 0) return merges(sout,arr) def do_arr(sout,arr,l): if not arr[0] in found: print ("!!!", arr[0], str(arr)) sys.exit() return found[arr[0]](sout,arr,l) found = {"TRACK":do_track, "ARC":do_arc, "TEXT":do_text, "SOLIDREGION":do_srg, "RECT":do_rect, "VIA":do_via, "LIB":do_lib, "HOLE":do_hole, "CIRCLE":do_hole, "PAD":do_nop, "ELLIPSE":do_ellipse} mto = json.loads(open(sys.argv[1]).read()) mfr = False base = 3 try: mfr = json.loads(open(sys.argv[2]).read()) except Exception as e: base = 2 if not "shape" in mto: print ("need to have shapes to merge!") sys.exit() delta = (float(sys.argv[base]),float(sys.argv[base+1])) # print json.dumps(mto) renames = {} renames["$$reg"] = [] if len(sys.argv)>base+2: # get net renames, too ren = sys.argv[base+2].split(",") for v in ren: kv = v.split("=") if ":" in kv[1]: rv = kv[1].split(":") renames["$$reg"].append((rv[0],re.compile(rv[0]), rv[1])) else: renames[kv[0]] = kv[1] if mfr: ns = mto["shape"] fr = mfr["shape"] else: ns = [] fr = mto["shape"] for l in fr: marr = l.split("#@$") nl = "" was_object = False for s in marr: spl = s.split("~") if mfr and spl[0] == "TRACK" and spl[2]=="10": # do not propagate board outline when merging multiples TODO: merge outline poly # sys.stderr.write("SKIPPING BOARD OUTLINE\n") # sys.stderr.flush() continue was_object = True nl += do_arr("",spl,s) nl += "#@$" if was_object: ns.append(nl[:-3]) # without the trailing #@$ mto["shape"] = ns print (json.dumps(mto,indent=1)) ```
{ "source": "jlakin2/python-jenkins", "score": 2 }
#### File: python-jenkins/tests/base.py ```python import sys from six.moves.urllib.request import build_opener from testscenarios import TestWithScenarios import jenkins if sys.version_info < (2, 7): import unittest2 as unittest else: import unittest class JenkinsTestBase(TestWithScenarios, unittest.TestCase): crumb_data = { "crumb": "dab177f483b3dd93483ef6716d8e792d", "crumbRequestField": ".crumb", } scenarios = [ ('base_url1', dict(base_url='http://example.com')), ('base_url2', dict(base_url='http://example.com/jenkins')) ] def setUp(self): super(JenkinsTestBase, self).setUp() self.opener = build_opener() self.j = jenkins.Jenkins(self.base_url, 'test', 'test') def make_url(self, path): return u'{0}/{1}'.format(self.base_url, path) def _check_requests(self, requests): for req in requests: self._check_request(req[0][0]) def _check_request(self, request): # taken from opener.open() in request # attribute request.type is only set automatically for python 3 # requests, must use request.get_type() for python 2.7 protocol = request.type or request.get_type() # check that building the request doesn't throw any exception meth_name = protocol + "_request" for processor in self.opener.process_request.get(protocol, []): meth = getattr(processor, meth_name) request = meth(request) ``` #### File: python-jenkins/tests/helper.py ```python import functools from multiprocessing import Process from multiprocessing import Queue import traceback from six.moves import socketserver class TestsTimeoutException(Exception): pass def time_limit(seconds, fp, func, *args, **kwargs): if fp: if not hasattr(fp, 'write'): raise TypeError("Expected 'file-like' object, got '%s'" % fp) else: def record(msg): fp.write(msg) else: def record(msg): return def capture_results(msg_queue, func, *args, **kwargs): try: result = func(*args, **kwargs) except Exception as e: msg_queue.put( "Running function '%s' resulted in exception '%s' with " "message: '%s'\n" % (func.__name__, e.__class__.__name__, e)) # no point re-raising an exception from the subprocess, instead # return False return False else: msg_queue.put( "Running function '%s' finished with result '%s', and" "stack:\n%s\n" % (func.__name__, result, traceback.format_stack())) return result messages = Queue() # although creating a separate process is expensive it's the only way to # ensure cross platform that we can cleanly terminate after timeout p = Process(target=functools.partial(capture_results, messages, func), args=args, kwargs=kwargs) p.start() p.join(seconds) if p.is_alive(): p.terminate() while not messages.empty(): record(messages.get()) record("Running function '%s' did not finish\n" % func.__name__) raise TestsTimeoutException else: while not messages.empty(): record(messages.get()) record("Running function '%s' finished with exit code '%s'\n" % (func.__name__, p.exitcode)) class NullServer(socketserver.TCPServer): request_queue_size = 1 def __init__(self, server_address, *args, **kwargs): # TCPServer is old style in python 2.x so cannot use # super() correctly, explicitly call __init__. # simply init'ing is sufficient to open the port, which # with the server not started creates a black hole server socketserver.TCPServer.__init__( self, server_address, socketserver.BaseRequestHandler, *args, **kwargs) ``` #### File: python-jenkins/tests/test_jenkins_sockets.py ```python from six.moves import StringIO import testtools from testtools.content import text_content import jenkins from tests.helper import NullServer from tests.helper import TestsTimeoutException from tests.helper import time_limit class JenkinsRequestTimeoutTests(testtools.TestCase): def setUp(self): super(JenkinsRequestTimeoutTests, self).setUp() self.server = NullServer(("127.0.0.1", 0)) self.messages = StringIO() self.addOnException(self._get_messages) def _get_messages(self, exc_info): self.addDetail('timeout-tests-messages', text_content(self.messages.getvalue())) def test_jenkins_open_timeout(self): j = jenkins.Jenkins("http://%s:%s" % self.server.server_address, None, None, timeout=0.1) request = jenkins.Request('http://%s:%s/job/TestJob' % self.server.server_address) # assert our request times out when no response with testtools.ExpectedException(jenkins.TimeoutException): j.jenkins_open(request, add_crumb=False) def test_jenkins_open_no_timeout(self): j = jenkins.Jenkins("http://%s:%s" % self.server.server_address, None, None) request = jenkins.Request('http://%s:%s/job/TestJob' % self.server.server_address) # assert we don't timeout quickly like previous test when # no timeout defined. with testtools.ExpectedException(TestsTimeoutException): time_limit(0.5, self.messages, j.jenkins_open, request, add_crumb=False) ``` #### File: python-jenkins/tests/test_whoami.py ```python import json from mock import patch import jenkins from tests.base import JenkinsTestBase class JenkinsWhoamiTest(JenkinsTestBase): @patch.object(jenkins.Jenkins, 'jenkins_open') def test_simple(self, jenkins_mock): user_to_return = \ {u'absoluteUrl': u'https://example.com/jenkins/user/jsmith', u'description': None, u'fullName': u'<NAME>', u'id': u'jsmith', u'property': [{}, {}, {}, {u'address': u'<EMAIL>'}, {}, {}, {u'insensitiveSearch': False}, {}]} jenkins_mock.return_value = json.dumps(user_to_return) user = self.j.get_whoami() self.assertEqual(user, user_to_return) self.assertEqual( jenkins_mock.call_args[0][0].get_full_url(), self.make_url('me/api/json')) self._check_requests(jenkins_mock.call_args_list) @patch.object(jenkins.Jenkins, 'jenkins_open') def test_raise_HTTPError(self, jenkins_mock): jenkins_mock.side_effect = jenkins.HTTPError( self.make_url('me/api/json'), code=401, msg='basic auth failed', hdrs=[], fp=None) with self.assertRaises(jenkins.JenkinsException): self.j.get_whoami() self.assertEqual( jenkins_mock.call_args[0][0].get_full_url(), self.make_url('me/api/json')) self._check_requests(jenkins_mock.call_args_list) ```
{ "source": "jlakkis/CarDEC", "score": 3 }
#### File: CarDEC/CarDEC/CarDEC_dataloaders.py ```python from tensorflow import convert_to_tensor as tensor from numpy import setdiff1d from numpy.random import choice, seed class batch_sampler(object): def __init__(self, array, val_frac, batch_size, splitseed): seed(splitseed) self.val_indices = choice(range(len(array)), round(val_frac * len(array)), False) self.train_indices = setdiff1d(range(len(array)), self.val_indices) self.batch_size = batch_size def __iter__(self): batch = [] if self.val: for idx in self.val_indices: batch.append(idx) if len(batch) == self.batch_size: yield batch batch = [] else: train_idx = choice(self.train_indices, len(self.train_indices), False) for idx in train_idx: batch.append(idx) if len(batch) == self.batch_size: yield batch batch = [] if batch: yield batch def __call__(self, val): self.val = val return self class simpleloader(object): def __init__(self, array, batch_size): self.array = array self.batch_size = batch_size def __iter__(self): batch = [] for idx in range(len(self.array)): batch.append(idx) if len(batch) == self.batch_size: yield tensor(self.array[batch].copy()) batch = [] if batch: yield self.array[batch].copy() class tupleloader(object): def __init__(self, *arrays, batch_size): self.arrays = arrays self.batch_size = batch_size def __iter__(self): batch = [] for idx in range(len(self.arrays[0])): batch.append(idx) if len(batch) == self.batch_size: yield [tensor(arr[batch].copy()) for arr in self.arrays] batch = [] if batch: yield [tensor(arr[batch].copy()) for arr in self.arrays] class aeloader(object): def __init__(self, *arrays, val_frac, batch_size, splitseed): self.arrays = arrays self.batch_size = batch_size self.sampler = batch_sampler(arrays[0], val_frac, batch_size, splitseed) def __iter__(self): for idxs in self.sampler(self.val): yield [tensor(arr[idxs].copy()) for arr in self.arrays] def __call__(self, val): self.val = val return self class countloader(object): def __init__(self, embedding, target, sizefactor, val_frac, batch_size, splitseed): self.sampler = batch_sampler(embedding, val_frac, batch_size, splitseed) self.embedding = embedding self.target = target self.sizefactor = sizefactor def __iter__(self): for idxs in self.sampler(self.val): yield (tensor(self.embedding[idxs].copy()), tensor(self.sizefactor[idxs].copy())), tensor(self.target[idxs].copy()) def __call__(self, val): self.val = val return self class dataloader(object): def __init__(self, hvg_input, hvg_target, lvg_input = None, lvg_target = None, val_frac = 0.1, batch_size = 128, splitseed = 0): self.sampler = batch_sampler(hvg_input, val_frac, batch_size, splitseed) self.hvg_input = hvg_input self.hvg_target = hvg_target self.lvg_input = lvg_input self.lvg_target = lvg_target def __iter__(self): for idxs in self.sampler(self.val): hvg_input = tensor(self.hvg_input[idxs].copy()) hvg_target = tensor(self.hvg_target[idxs].copy()) p_target = tensor(self.p_target[idxs].copy()) if (self.lvg_input is not None) and (self.lvg_target is not None): lvg_input = tensor(self.lvg_input[idxs].copy()) lvg_target = tensor(self.lvg_target[idxs].copy()) else: lvg_input = None lvg_target = None yield [hvg_input, lvg_input], hvg_target, lvg_target, p_target def __call__(self, val): self.val = val return self def update_p(self, new_p_target): self.p_target = new_p_target ``` #### File: CarDEC/CarDEC/CarDEC_utils.py ```python import numpy as np import os from scipy.sparse import issparse import scanpy as sc from anndata import AnnData def normalize_scanpy(adata, batch_key = None, n_high_var = 1000, LVG = True, normalize_samples = True, log_normalize = True, normalize_features = True): """ This function preprocesses the raw count data. Arguments: ------------------------------------------------------------------ - adata: `anndata.AnnData`, the annotated data matrix of shape (n_obs, n_vars). Rows correspond to cells and columns to genes. - batch_key: `str`, string specifying the name of the column in the observation dataframe which identifies the batch of each cell. If this is left as None, then all cells are assumed to be from one batch. - n_high_var: `int`, integer specifying the number of genes to be idntified as highly variable. E.g. if n_high_var = 2000, then the 2000 genes with the highest variance are designated as highly variable. - LVG: `bool`, Whether to retain and preprocess LVGs. - normalize_samples: `bool`, If True, normalize expression of each gene in each cell by the sum of expression counts in that cell. - log_normalize: `bool`, If True, log transform expression. I.e., compute log(expression + 1) for each gene, cell expression count. - normalize_features: `bool`, If True, z-score normalize each gene's expression. Returns: ------------------------------------------------------------------ - adata: `anndata.AnnData`, the annotated data matrix of shape (n_obs, n_vars). Contains preprocessed data. """ n, p = adata.shape sparsemode = issparse(adata.X) if batch_key is not None: batch = list(adata.obs[batch_key]) batch = convert_vector_to_encoding(batch) batch = np.asarray(batch) batch = batch.astype('float32') else: batch = np.ones((n,), dtype = 'float32') norm_by_batch = False sc.pp.filter_genes(adata, min_counts=1) sc.pp.filter_cells(adata, min_counts=1) count = adata.X.copy() if normalize_samples: out = sc.pp.normalize_total(adata, inplace = False) obs_ = adata.obs var_ = adata.var adata = None adata = AnnData(out['X']) adata.obs = obs_ adata.var = var_ size_factors = out['norm_factor'] / np.median(out['norm_factor']) out = None else: size_factors = np.ones((adata.shape[0], )) if not log_normalize: adata_ = adata.copy() sc.pp.log1p(adata) if n_high_var is not None: sc.pp.highly_variable_genes(adata, inplace = True, min_mean = 0.0125, max_mean = 3, min_disp = 0.5, n_bins = 20, n_top_genes = n_high_var, batch_key = batch_key) hvg = adata.var['highly_variable'].values if not log_normalize: adata = adata_.copy() else: hvg = [True] * adata.shape[1] if normalize_features: batch_list = np.unique(batch) if sparsemode: adata.X = adata.X.toarray() for batch_ in batch_list: indices = [x == batch_ for x in batch] sub_adata = adata[indices] sc.pp.scale(sub_adata) adata[indices] = sub_adata.X adata.layers["normalized input"] = adata.X adata.X = count adata.var['Variance Type'] = [['LVG', 'HVG'][int(x)] for x in hvg] else: if sparsemode: adata.layers["normalized input"] = adata.X.toarray() else: adata.layers["normalized input"] = adata.X adata.var['Variance Type'] = [['LVG', 'HVG'][int(x)] for x in hvg] if n_high_var is not None: del_keys = ['dispersions', 'dispersions_norm', 'highly_variable', 'highly_variable_intersection', 'highly_variable_nbatches', 'means'] del_keys = [x for x in del_keys if x in adata.var.keys()] adata.var = adata.var.drop(del_keys, axis = 1) y = np.unique(batch) num_batch = len(y) adata.obs['size factors'] = size_factors.astype('float32') adata.obs['batch'] = batch adata.uns['num_batch'] = num_batch if sparsemode: adata.X = adata.X.toarray() if not LVG: adata = adata[:, adata.var['Variance Type'] == 'HVG'] return adata def build_dir(dir_path): """ This function builds a directory if it does not exist. Arguments: ------------------------------------------------------------------ - dir_path: `str`, The directory to build. E.g. if dir_path = 'folder1/folder2/folder3', then this function will creates directory if folder1 if it does not already exist. Then it creates folder1/folder2 if folder2 does not exist in folder1. Then it creates folder1/folder2/folder3 if folder3 does not exist in folder2. """ subdirs = [dir_path] substring = dir_path while substring != '': splt_dir = os.path.split(substring) substring = splt_dir[0] subdirs.append(substring) subdirs.pop() subdirs = [x for x in subdirs if os.path.basename(x) != '..'] n = len(subdirs) subdirs = [subdirs[n - 1 - x] for x in range(n)] for dir_ in subdirs: if not os.path.isdir(dir_): os.mkdir(dir_) def convert_string_to_encoding(string, vector_key): """A function to convert a string to a numeric encoding. Arguments: ------------------------------------------------------------------ - string: `str`, The specific string to convert to a numeric encoding. - vector_key: `np.ndarray`, Array of all possible values of string. Returns: ------------------------------------------------------------------ - encoding: `int`, The integer encoding of string. """ return np.argwhere(vector_key == string)[0][0] def convert_vector_to_encoding(vector): """A function to convert a vector of strings to a dense numeric encoding. Arguments: ------------------------------------------------------------------ - vector: `array_like`, The vector of strings to encode. Returns: ------------------------------------------------------------------ - vector_num: `list`, A list containing the dense numeric encoding. """ vector_key = np.unique(vector) vector_strings = list(vector) vector_num = [convert_string_to_encoding(string, vector_key) for string in vector_strings] return vector_num def find_resolution(adata_, n_clusters, random): """A function to find the louvain resolution tjat corresponds to a prespecified number of clusters, if it exists. Arguments: ------------------------------------------------------------------ - adata_: `anndata.AnnData`, the annotated data matrix of shape (n_obs, n_vars). Rows correspond to cells and columns to low dimension features. - n_clusters: `int`, Number of clusters. - random: `int`, The random seed. Returns: ------------------------------------------------------------------ - resolution: `float`, The resolution that gives n_clusters after running louvain's clustering algorithm. """ obtained_clusters = -1 iteration = 0 resolutions = [0., 1000.] while obtained_clusters != n_clusters and iteration < 50: current_res = sum(resolutions)/2 adata = sc.tl.louvain(adata_, resolution = current_res, random_state = random, copy = True) labels = adata.obs['louvain'] obtained_clusters = len(np.unique(labels)) if obtained_clusters < n_clusters: resolutions[0] = current_res else: resolutions[1] = current_res iteration = iteration + 1 return current_res ```
{ "source": "jlakkis/sciPENN", "score": 3 }
#### File: sciPENN/Data_Infrastructure/Samplers.py ```python from numpy import arange, setdiff1d from numpy.random import choice class batchSampler: def __init__(self, indices, train_keys, bsize, shuffle = False): self.indices = indices self.train_keys = train_keys self.bsize = bsize self.shuffle = shuffle def __iter__(self): if self.shuffle: indices = choice(self.indices, size = len(self.indices), replace = False) else: indices = self.indices minibatch_idx = [] bool_idx = [] for idx in indices: minibatch_idx.append(idx) bool_idx.append(sum([int(idx >= x) for x in self.train_keys])) if len(minibatch_idx) >= self.bsize: yield minibatch_idx, bool_idx minibatch_idx, bool_idx = [], [] if minibatch_idx: yield minibatch_idx, bool_idx def __len__(self): return len(self.indices) def build_trainSamplers(adata, n_train, bsize = 128, val_frac = 0.1): num_val = round(val_frac * len(adata)) assert num_val >= 1 idx = arange(len(adata)) val_idx = choice(idx, num_val, replace = False) train_indices, val_indices = setdiff1d(idx, val_idx).tolist(), val_idx.tolist() train_sampler = batchSampler(train_indices, n_train, bsize, shuffle = True) val_sampler = batchSampler(val_indices, n_train, bsize) return train_sampler, val_sampler def build_testSampler(adata, train_keys, bsize = 128): indices = list(range(len(adata))) return batchSampler(indices, train_keys, bsize) ``` #### File: sciPENN/Network/Model.py ```python from math import log, exp from numpy import inf, zeros, zeros_like as np_zeros_like, arange, asarray, empty from pandas import concat from anndata import AnnData from torch import cat, no_grad, randn, zeros_like, zeros as torch_zeros, ones, argmax from torch.nn import Module, Linear, Sequential, RNNCell, Softplus, Parameter, Softmax from torch.optim import Adam from torch.optim.lr_scheduler import StepLR from .Layers import Input_Block, FF_Block, LambdaLayer, Dual_Forward class sciPENN_Model(Module): def __init__(self, p_mod1, p_mod2, loss1, loss2, quantiles, categories): super(sciPENN_Model, self).__init__() h_size, drop_rate = 512, 0.25 self.RNNCell = RNNCell(h_size, h_size) self.input_block = Input_Block(p_mod1, h_size, drop_rate, drop_rate) self.skip_1 = FF_Block(h_size, drop_rate) self.skip_2 = FF_Block(h_size, drop_rate) self.skip_3 = FF_Block(h_size, drop_rate) MSE_output = Linear(h_size, p_mod2) if len(quantiles) > 0: quantile_layer = [] quantile_layer.append(Linear(h_size, p_mod2 * len(quantiles))) quantile_layer.append(LambdaLayer(lambda x: x.view(-1, p_mod2, len(quantiles)))) quantile_layer = Sequential(*quantile_layer) self.mod2_out = Dual_Forward(MSE_output, quantile_layer) else: self.mod2_out = MSE_output if categories is not None: self.celltype_out = Sequential(Linear(h_size, len(categories)), Softmax(1)) self.forward = self.forward_transfer self.categories_arr = empty((len(categories), ), dtype = 'object') for cat in categories: self.categories_arr[categories[cat]] = cat else: self.forward = self.forward_simple self.categories_arr = None self.quantiles = quantiles self.loss1, self.loss2 = loss1, loss2 def forward_transfer(self, x): x = self.input_block(x) h = self.RNNCell(x, zeros_like(x)) x = self.skip_1(x) h = self.RNNCell(x, h) x = self.skip_2(x) h = self.RNNCell(x, h) x = self.skip_3(x) h = self.RNNCell(x, h) return {'celltypes': self.celltype_out(h.detach()), 'modality 2': self.mod2_out(h), 'embedding': h} def forward_simple(self, x): x = self.input_block(x) h = self.RNNCell(x, zeros_like(x)) x = self.skip_1(x) h = self.RNNCell(x, h) x = self.skip_2(x) h = self.RNNCell(x, h) x = self.skip_3(x) h = self.RNNCell(x, h) return {'celltypes': None, 'modality 2': self.mod2_out(h), 'embedding': h} def train_backprop(self, train_loader, val_loader, n_epoch = 10000, ES_max = 30, decay_max = 10, decay_step = 0.1, lr = 10**(-3)): optimizer = Adam(self.parameters(), lr = lr) scheduler = StepLR(optimizer, step_size = 1, gamma = decay_step) patience = 0 bestloss = inf if self.categories_arr is None: get_correct = lambda x: 0 else: get_correct = lambda outputs: (argmax(outputs['celltypes'], axis = 1) == celltypes).sum() for epoch in range(n_epoch): with no_grad(): running_loss, rtype_acc = 0., 0. self.eval() for batch, inputs in enumerate(val_loader): mod1, mod2, protein_bools, celltypes = inputs outputs = self(mod1) n_correct = get_correct(outputs) mod2_loss = self.loss2(outputs['modality 2'], mod2, protein_bools) rtype_acc += n_correct running_loss += mod2_loss.item() * len(mod2) if self.categories_arr is None: print(f"Epoch {epoch} prediction loss = {running_loss/len(val_loader):.3f}") else: print(f"Epoch {epoch} prediction loss = {running_loss/len(val_loader):.3f}, validation accuracy = {rtype_acc/len(val_loader):.3f}") patience += 1 if bestloss/1.005 > running_loss: bestloss, patience = running_loss, 0 if (patience + 1) % decay_max == 0: scheduler.step() print(f"Decaying loss to {optimizer.param_groups[0]['lr']}") if (patience + 1) > ES_max: break self.train() for batch, inputs in enumerate(train_loader): optimizer.zero_grad() mod1, mod2, protein_bools, celltypes = inputs outputs = self(mod1) mod1_loss = self.loss1(outputs['celltypes'], celltypes) mod2_loss = self.loss2(outputs['modality 2'], mod2, protein_bools) loss = mod1_loss + mod2_loss loss.backward() optimizer.step() def impute(self, impute_loader, requested_quantiles, denoise_genes, proteins): imputed_test = proteins.copy() for quantile in requested_quantiles: imputed_test.layers['q' + str(round(100 * quantile))] = np_zeros_like(imputed_test.X) self.eval() start = 0 for mod1, bools, celltypes in impute_loader: end = start + mod1.shape[0] with no_grad(): outputs = self(mod1) if len(self.quantiles) > 0: mod2_impute, mod2_quantile = outputs['modality 2'] else: mod2_impute = outputs['modality 2'] imputed_test.X[start:end] = self.fill_predicted(imputed_test.X[start:end], mod2_impute, bools) for quantile in requested_quantiles: index = [i for i, q in enumerate(self.quantiles) if quantile == q][0] q_name = 'q' + str(round(100 * quantile)) imputed_test.layers[q_name][start:end] = mod2_quantile[:, : , index].cpu().numpy() start = end return imputed_test def embed(self, impute_loader, test_loader, cells_train, cells_test): if cells_test is not None: embedding = AnnData(zeros(shape = (len(cells_train) + len(cells_test), 512))) embedding.obs = concat((cells_train, cells_test), join = 'inner') else: embedding = AnnData(zeros(shape = (len(cells_train), 512))) embedding.obs = cells_train self.eval() start = 0 for mod1, bools, celltypes in impute_loader: end = start + mod1.shape[0] outputs = self(mod1) embedding[start:end] = outputs['embedding'].detach().cpu().numpy() start = end if cells_test is not None: for mod1 in test_loader: end = start + mod1.shape[0] outputs = self(mod1) embedding[start:end] = outputs['embedding'].detach().cpu().numpy() start = end return embedding def fill_predicted(self, array, predicted, bools): bools = bools.cpu().numpy() return (1. - bools) * predicted.cpu().numpy() + array def predict(self, test_loader, requested_quantiles, denoise_genes, proteins, cells): imputed_test = AnnData(zeros(shape = (len(cells), len(proteins.var)))) imputed_test.obs = cells imputed_test.var.index = proteins.var.index if self.categories_arr is not None: celltypes = ['None'] * len(cells) for quantile in requested_quantiles: imputed_test.layers['q' + str(round(100 * quantile))] = np_zeros_like(imputed_test.X) self.eval() start = 0 for mod1 in test_loader: end = start + mod1.shape[0] with no_grad(): outputs = self(mod1) if self.categories_arr is not None: predicted_types = argmax(outputs['celltypes'], axis = 1).cpu().numpy() celltypes[start:end] = self.categories_arr[predicted_types].tolist() if len(self.quantiles) > 0: mod2_impute, mod2_quantile = outputs['modality 2'] else: mod2_impute = outputs['modality 2'] imputed_test.X[start:end] = mod2_impute.cpu().numpy() for quantile in requested_quantiles: index = [i for i, q in enumerate(self.quantiles) if quantile == q][0] q_name = 'q' + str(round(100 * quantile)) imputed_test.layers[q_name][start:end] = mod2_quantile[:, : , index].cpu().numpy() start = end if self.categories_arr is not None: imputed_test.obs['transfered cell labels'] = celltypes return imputed_test ```
{ "source": "jlalleve-EA/NodeGraphQt", "score": 2 }
#### File: NodeGraphQt/widgets/viewer.py ```python import math from .dialogs import BaseDialog, FileDialog from .scene import NodeScene from .tab_search import TabSearchMenuWidget from .. import QtGui, QtCore, QtWidgets, QtOpenGL from ..base.menu import BaseMenu from ..constants import (IN_PORT, OUT_PORT, PIPE_LAYOUT_CURVED) from ..qgraphics.node_abstract import AbstractNodeItem from ..qgraphics.node_backdrop import BackdropNodeItem from ..qgraphics.pipe import Pipe, LivePipe from ..qgraphics.port import PortItem from ..qgraphics.slicer import SlicerPipe ZOOM_MIN = -0.95 ZOOM_MAX = 2.0 class NodeViewer(QtWidgets.QGraphicsView): """ The widget interface used for displaying the scene and nodes. functions in this class should mainly be called by the class:`NodeGraphQt.NodeGraph` class. """ # node viewer signals. # (some of these signals are called by port & node items and connected # to the node graph slot functions) moved_nodes = QtCore.Signal(dict) search_triggered = QtCore.Signal(str, tuple) connection_sliced = QtCore.Signal(list) connection_changed = QtCore.Signal(list, list) insert_node = QtCore.Signal(object, str, dict) need_show_tab_search = QtCore.Signal() node_name_changed = QtCore.Signal(str, str) # pass through signals that are translated into "NodeGraph()" signals. node_selected = QtCore.Signal(str) node_selection_changed = QtCore.Signal(list, list) node_double_clicked = QtCore.Signal(str) data_dropped = QtCore.Signal(QtCore.QMimeData, QtCore.QPoint) def __init__(self, parent=None): super(NodeViewer, self).__init__(parent) self.setScene(NodeScene(self)) self.setRenderHint(QtGui.QPainter.Antialiasing, True) self.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) self.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) self.setViewportUpdateMode(QtWidgets.QGraphicsView.FullViewportUpdate) self.setCacheMode(QtWidgets.QGraphicsView.CacheBackground) self.setOptimizationFlag(QtWidgets.QGraphicsView.DontAdjustForAntialiasing) self.setAcceptDrops(True) self.resize(850, 800) self._scene_range = QtCore.QRectF( 0, 0, self.size().width(), self.size().height()) self._update_scene() self._last_size = self.size() self.editable = True self._pipe_layout = PIPE_LAYOUT_CURVED self._detached_port = None self._start_port = None self._origin_pos = None self._previous_pos = QtCore.QPoint(self.width(), self.height()) self._prev_selection_nodes = [] self._prev_selection_pipes = [] self._node_positions = {} self._rubber_band = QtWidgets.QRubberBand( QtWidgets.QRubberBand.Rectangle, self ) self._rubber_band.isActive = False self._LIVE_PIPE = LivePipe() self._LIVE_PIPE.setVisible(False) self.scene().addItem(self._LIVE_PIPE) self._SLICER_PIPE = SlicerPipe() self._SLICER_PIPE.setVisible(False) self.scene().addItem(self._SLICER_PIPE) self._undo_stack = QtWidgets.QUndoStack(self) self._search_widget = TabSearchMenuWidget() self._search_widget.search_submitted.connect(self._on_search_submitted) # workaround fix for shortcuts from the non-native menu actions # don't seem to trigger so we create a hidden menu bar. menu_bar = QtWidgets.QMenuBar(self) menu_bar.setNativeMenuBar(False) # shortcuts don't work with "setVisibility(False)". menu_bar.setMaximumWidth(0) self._ctx_menu = BaseMenu('NodeGraph', self) self._ctx_node_menu = BaseMenu('Nodes', self) menu_bar.addMenu(self._ctx_menu) menu_bar.addMenu(self._ctx_node_menu) self._ctx_node_menu.setDisabled(True) self.acyclic = True self.LMB_state = False self.RMB_state = False self.MMB_state = False self.ALT_state = False self.CTRL_state = False self.SHIFT_state = False self.COLLIDING_state = False def __repr__(self): return '<{}() object at {}>'.format( self.__class__.__name__, hex(id(self))) # --- private --- def _set_viewer_zoom(self, value, sensitivity=None, pos=None): if pos: pos = self.mapToScene(pos) if sensitivity is None: scale = 1.001 ** value self.scale(scale, scale, pos) return if value == 0.0: return scale = (0.9 + sensitivity) if value < 0.0 else (1.1 - sensitivity) zoom = self.get_zoom() if ZOOM_MIN >= zoom: if scale == 0.9: return if ZOOM_MAX <= zoom: if scale == 1.1: return self.scale(scale, scale, pos) def _set_viewer_pan(self, pos_x, pos_y): speed = self._scene_range.width() * 0.0015 x = -pos_x * speed y = -pos_y * speed self._scene_range.adjust(x, y, x, y) self._update_scene() def scale(self, sx, sy, pos=None): scale = [sx, sx] center = pos or self._scene_range.center() w = self._scene_range.width() / scale[0] h = self._scene_range.height() / scale[1] self._scene_range = QtCore.QRectF( center.x() - (center.x() - self._scene_range.left()) / scale[0], center.y() - (center.y() - self._scene_range.top()) / scale[1], w, h ) self._update_scene() def _update_scene(self): """ Redraw the scene. """ self.setSceneRect(self._scene_range) self.fitInView(self._scene_range, QtCore.Qt.KeepAspectRatio) def _combined_rect(self, nodes): group = self.scene().createItemGroup(nodes) rect = group.boundingRect() self.scene().destroyItemGroup(group) return rect def _items_near(self, pos, item_type=None, width=20, height=20): x, y = pos.x() - width, pos.y() - height rect = QtCore.QRectF(x, y, width, height) items = [] excl = [self._LIVE_PIPE, self._SLICER_PIPE] for item in self.scene().items(rect): if item in excl: continue if not item_type or isinstance(item, item_type): items.append(item) return items def _on_search_submitted(self, node_type): pos = self.mapToScene(self._previous_pos) self.search_triggered.emit(node_type, (pos.x(), pos.y())) def _on_pipes_sliced(self, path): ports = [] for i in self.scene().items(path): if isinstance(i, Pipe) and i != self._LIVE_PIPE: if any([i.input_port.locked, i.output_port.locked]): continue ports.append([i.input_port, i.output_port]) self.connection_sliced.emit(ports) # --- reimplemented events --- def resizeEvent(self, event): delta = max(self.size().width() / self._last_size.width(), self.size().height() / self._last_size.height()) self._set_viewer_zoom(delta) self._last_size = self.size() super(NodeViewer, self).resizeEvent(event) def contextMenuEvent(self, event): self.RMB_state = False ctx_menu = None if self._ctx_node_menu.isEnabled(): pos = self.mapToScene(self._previous_pos) items = self._items_near(pos) nodes = [i for i in items if isinstance(i, AbstractNodeItem)] if nodes: node = nodes[0] ctx_menu = self._ctx_node_menu.get_menu(node.type_, node.id) if ctx_menu: for action in ctx_menu.actions(): if not action.menu(): action.node_id = node.id ctx_menu = ctx_menu or self._ctx_menu if len(ctx_menu.actions()) > 0: if ctx_menu.isEnabled(): ctx_menu.exec_(event.globalPos()) else: return super(NodeViewer, self).contextMenuEvent(event) else: self.need_show_tab_search.emit() def mousePressEvent(self, event): if event.button() == QtCore.Qt.LeftButton: self.LMB_state = True elif event.button() == QtCore.Qt.RightButton: self.RMB_state = True elif event.button() == QtCore.Qt.MiddleButton: self.MMB_state = True self._origin_pos = event.pos() self._previous_pos = event.pos() self._prev_selection_nodes, self._prev_selection_pipes = \ self.selected_items() # close tab search if self._search_widget.isVisible(): self.tab_search_toggle() # cursor pos. map_pos = self.mapToScene(event.pos()) # pipe slicer enabled. if self.ALT_state and self.SHIFT_state and self.LMB_state: self._SLICER_PIPE.draw_path(map_pos, map_pos) self._SLICER_PIPE.setVisible(True) return # pan mode. if self.ALT_state: return items = self._items_near(map_pos, None, 20, 20) nodes = [i for i in items if isinstance(i, AbstractNodeItem)] if nodes: self.MMB_state = False # toggle extend node selection. if self.LMB_state: if self.SHIFT_state: for node in nodes: node.selected = not node.selected elif self.CTRL_state: for node in nodes: node.selected = False # update the recorded node positions. self._node_positions.update( {n: n.xy_pos for n in self.selected_nodes()} ) # show selection selection marquee. if self.LMB_state and not items: rect = QtCore.QRect(self._previous_pos, QtCore.QSize()) rect = rect.normalized() map_rect = self.mapToScene(rect).boundingRect() self.scene().update(map_rect) self._rubber_band.setGeometry(rect) self._rubber_band.isActive = True if self.LMB_state and (self.SHIFT_state or self.CTRL_state): return if not self._LIVE_PIPE.isVisible(): super(NodeViewer, self).mousePressEvent(event) def mouseReleaseEvent(self, event): if event.button() == QtCore.Qt.LeftButton: self.LMB_state = False elif event.button() == QtCore.Qt.RightButton: self.RMB_state = False elif event.button() == QtCore.Qt.MiddleButton: self.MMB_state = False # hide pipe slicer. if self._SLICER_PIPE.isVisible(): self._on_pipes_sliced(self._SLICER_PIPE.path()) p = QtCore.QPointF(0.0, 0.0) self._SLICER_PIPE.draw_path(p, p) self._SLICER_PIPE.setVisible(False) # hide selection marquee if self._rubber_band.isActive: self._rubber_band.isActive = False if self._rubber_band.isVisible(): rect = self._rubber_band.rect() map_rect = self.mapToScene(rect).boundingRect() self._rubber_band.hide() rect = QtCore.QRect(self._origin_pos, event.pos()).normalized() rect_items = self.scene().items( self.mapToScene(rect).boundingRect() ) node_ids = [] for item in rect_items: if isinstance(item, AbstractNodeItem): node_ids.append(item.id) # emit the node selection signals. if node_ids: prev_ids = [ n.id for n in self._prev_selection_nodes if not n.selected ] self.node_selected.emit(node_ids[0]) self.node_selection_changed.emit(node_ids, prev_ids) self.scene().update(map_rect) return # find position changed nodes and emit signal. moved_nodes = { n: xy_pos for n, xy_pos in self._node_positions.items() if n.xy_pos != xy_pos } # only emit of node is not colliding with a pipe. if moved_nodes and not self.COLLIDING_state: self.moved_nodes.emit(moved_nodes) # reset recorded positions. self._node_positions = {} # emit signal if selected node collides with pipe. # Note: if collide state is true then only 1 node is selected. nodes, pipes = self.selected_items() if self.COLLIDING_state: if nodes and pipes: self.insert_node.emit(pipes[0], nodes[0].id, moved_nodes) # emit node selection changed signal. prev_ids = [n.id for n in self._prev_selection_nodes if not n.selected] node_ids = [n.id for n in nodes if n not in self._prev_selection_nodes] self.node_selection_changed.emit(node_ids, prev_ids) super(NodeViewer, self).mouseReleaseEvent(event) def mouseMoveEvent(self, event): if self.ALT_state and self.SHIFT_state: if self.LMB_state and self._SLICER_PIPE.isVisible(): p1 = self._SLICER_PIPE.path().pointAtPercent(0) p2 = self.mapToScene(self._previous_pos) self._SLICER_PIPE.draw_path(p1, p2) self._SLICER_PIPE.show() self._previous_pos = event.pos() super(NodeViewer, self).mouseMoveEvent(event) return if self.MMB_state and self.ALT_state: pos_x = (event.x() - self._previous_pos.x()) zoom = 0.1 if pos_x > 0 else -0.1 self._set_viewer_zoom(zoom, 0.05, pos=event.pos()) elif self.MMB_state or (self.LMB_state and self.ALT_state): pos_x = (event.x() - self._previous_pos.x()) pos_y = (event.y() - self._previous_pos.y()) self._set_viewer_pan(pos_x, pos_y) if self.LMB_state and self._rubber_band.isActive: rect = QtCore.QRect(self._origin_pos, event.pos()).normalized() # if the rubber band is too small, do not show it. if max(rect.width(), rect.height()) > 5: if not self._rubber_band.isVisible(): self._rubber_band.show() map_rect = self.mapToScene(rect).boundingRect() path = QtGui.QPainterPath() path.addRect(map_rect) self._rubber_band.setGeometry(rect) self.scene().setSelectionArea(path, QtCore.Qt.IntersectsItemShape) self.scene().update(map_rect) if self.SHIFT_state or self.CTRL_state: nodes, pipes = self.selected_items() for pipe in self._prev_selection_pipes: pipe.setSelected(True) for node in self._prev_selection_nodes: node.selected = True if self.CTRL_state: for pipe in pipes: pipe.setSelected(False) for node in nodes: node.selected = False elif self.LMB_state: self.COLLIDING_state = False nodes = self.selected_nodes() if len(nodes) == 1: node = nodes[0] for pipe in self.selected_pipes(): pipe.setSelected(False) for item in node.collidingItems(): if isinstance(item, Pipe) and item.isVisible(): if not item.input_port: continue if not item.input_port.node is node and \ not item.output_port.node is node: item.setSelected(True) self.COLLIDING_state = True break self._previous_pos = event.pos() super(NodeViewer, self).mouseMoveEvent(event) def wheelEvent(self, event): try: delta = event.delta() except AttributeError: # For PyQt5 delta = event.angleDelta().y() if delta == 0: delta = event.angleDelta().x() self._set_viewer_zoom(delta, pos=event.pos()) def dropEvent(self, event): pos = self.mapToScene(event.pos()) event.setDropAction(QtCore.Qt.MoveAction) self.data_dropped.emit( event.mimeData(), QtCore.QPoint(pos.x(), pos.y())) def dragEnterEvent(self, event): if event.mimeData().hasFormat('text/plain'): event.accept() else: event.ignore() def dragMoveEvent(self, event): if event.mimeData().hasFormat('text/plain'): event.accept() else: event.ignore() def dragLeaveEvent(self, event): event.ignore() def keyPressEvent(self, event): """ Key press event re-implemented to update the states for attributes: - ALT_state - CTRL_state - SHIFT_state Args: event (QtGui.QKeyEvent): key event. """ self.ALT_state = event.modifiers() == QtCore.Qt.AltModifier self.CTRL_state = event.modifiers() == QtCore.Qt.ControlModifier self.SHIFT_state = event.modifiers() == QtCore.Qt.ShiftModifier # Todo: find a better solution to catch modifier keys. if event.modifiers() == (QtCore.Qt.AltModifier | QtCore.Qt.ShiftModifier): self.ALT_state = True self.SHIFT_state = True super(NodeViewer, self).keyPressEvent(event) def keyReleaseEvent(self, event): """ Key release event re-implemented to update the states for attributes: - ALT_state - CTRL_state - SHIFT_state Args: event (QtGui.QKeyEvent): key event. """ self.ALT_state = event.modifiers() == QtCore.Qt.AltModifier self.CTRL_state = event.modifiers() == QtCore.Qt.ControlModifier self.SHIFT_state = event.modifiers() == QtCore.Qt.ShiftModifier super(NodeViewer, self).keyReleaseEvent(event) # --- scene events --- def sceneMouseMoveEvent(self, event): """ triggered mouse move event for the scene. - redraw the connection pipe. Args: event (QtWidgets.QGraphicsSceneMouseEvent): The event handler from the QtWidgets.QGraphicsScene """ if not self._LIVE_PIPE.isVisible(): return if not self._start_port: return pos = event.scenePos() items = self.scene().items(pos) if items and isinstance(items[0], PortItem): x = items[0].boundingRect().width() / 2 y = items[0].boundingRect().height() / 2 pos = items[0].scenePos() pos.setX(pos.x() + x) pos.setY(pos.y() + y) self._LIVE_PIPE.draw_path(self._start_port, cursor_pos=pos) def sceneMousePressEvent(self, event): """ triggered mouse press event for the scene (takes priority over viewer event). - detect selected pipe and start connection. - remap Shift and Ctrl modifier. Args: event (QtWidgets.QGraphicsScenePressEvent): The event handler from the QtWidgets.QGraphicsScene """ # pipe slicer enabled. if self.ALT_state and self.SHIFT_state: return # viewer pan mode. if self.ALT_state: return if self._LIVE_PIPE.isVisible(): self.apply_live_connection(event) return pos = event.scenePos() port_items = self._items_near(pos, PortItem, 5, 5) if port_items and self.editable: port = port_items[0] if port.locked: return if not port.multi_connection and port.connected_ports: self._detached_port = port.connected_ports[0] self.start_live_connection(port) if not port.multi_connection: [p.delete() for p in port.connected_pipes] return node_items = self._items_near(pos, AbstractNodeItem, 3, 3) if node_items: node = node_items[0] # record the node positions at selection time. for n in node_items: self._node_positions[n] = n.xy_pos # emit selected node id with LMB. if event.button() == QtCore.Qt.LeftButton: self.node_selected.emit(node.id) if not isinstance(node, BackdropNodeItem): return pipe_items = self._items_near(pos, Pipe, 3, 3) if pipe_items and self.editable: if not self.LMB_state: return pipe = pipe_items[0] from_port = pipe.port_from_pos(pos, True) if from_port.locked: return from_port.hovered = True attr = {IN_PORT: 'output_port', OUT_PORT: 'input_port'} self._detached_port = getattr(pipe, attr[from_port.port_type]) self.start_live_connection(from_port) self._LIVE_PIPE.draw_path(self._start_port, cursor_pos=pos) if self.SHIFT_state: self._LIVE_PIPE.shift_selected = True return pipe.delete() def sceneMouseReleaseEvent(self, event): """ triggered mouse release event for the scene. Args: event (QtWidgets.QGraphicsSceneMouseEvent): The event handler from the QtWidgets.QGraphicsScene """ if event.button() != QtCore.Qt.MiddleButton: self.apply_live_connection(event) # --- port connections --- def apply_live_connection(self, event): """ triggered mouse press/release event for the scene. - verifies the live connection pipe. - makes a connection pipe if valid. - emits the "connection changed" signal. Args: event (QtWidgets.QGraphicsSceneMouseEvent): The event handler from the QtWidgets.QGraphicsScene """ if not self._LIVE_PIPE.isVisible(): return self._start_port.hovered = False # find the end port. end_port = None for item in self.scene().items(event.scenePos()): if isinstance(item, PortItem): end_port = item break connected = [] disconnected = [] # if port disconnected from existing pipe. if end_port is None: if self._detached_port and not self._LIVE_PIPE.shift_selected: dist = math.hypot(self._previous_pos.x() - self._origin_pos.x(), self._previous_pos.y() - self._origin_pos.y()) if dist <= 2.0: # cursor pos threshold. self.establish_connection(self._start_port, self._detached_port) self._detached_port = None else: disconnected.append((self._start_port, self._detached_port)) self.connection_changed.emit(disconnected, connected) self._detached_port = None self.end_live_connection() return else: if self._start_port is end_port: return # restore connection check. restore_connection = any([ # if the end port is locked. end_port.locked, # if same port type. end_port.port_type == self._start_port.port_type, # if connection to itself. end_port.node == self._start_port.node, # if end port is the start port. end_port == self._start_port, # if detached port is the end port. self._detached_port == end_port ]) if restore_connection: if self._detached_port: to_port = self._detached_port or end_port self.establish_connection(self._start_port, to_port) self._detached_port = None self.end_live_connection() return # end connection if starting port is already connected. if self._start_port.multi_connection and \ self._start_port in end_port.connected_ports: self._detached_port = None self.end_live_connection() return # register as disconnected if not acyclic. if self.acyclic and not self.acyclic_check(self._start_port, end_port): if self._detached_port: disconnected.append((self._start_port, self._detached_port)) self.connection_changed.emit(disconnected, connected) self._detached_port = None self.end_live_connection() return # make connection. if not end_port.multi_connection and end_port.connected_ports: dettached_end = end_port.connected_ports[0] disconnected.append((end_port, dettached_end)) if self._detached_port: disconnected.append((self._start_port, self._detached_port)) connected.append((self._start_port, end_port)) self.connection_changed.emit(disconnected, connected) self._detached_port = None self.end_live_connection() def start_live_connection(self, selected_port): """ create new pipe for the connection. (show the live pipe visibility from the port following the cursor position) """ if not selected_port: return self._start_port = selected_port if self._start_port.type == IN_PORT: self._LIVE_PIPE.input_port = self._start_port elif self._start_port == OUT_PORT: self._LIVE_PIPE.output_port = self._start_port self._LIVE_PIPE.setVisible(True) def end_live_connection(self): """ delete live connection pipe and reset start port. (hides the pipe item used for drawing the live connection) """ self._LIVE_PIPE.reset_path() self._LIVE_PIPE.setVisible(False) self._LIVE_PIPE.shift_selected = False self._start_port = None def establish_connection(self, start_port, end_port): """ establish a new pipe connection. (adds a new pipe item to draw between 2 ports) """ if not self.editable: return pipe = Pipe() self.scene().addItem(pipe) pipe.set_connections(start_port, end_port) pipe.draw_path(pipe.input_port, pipe.output_port) if start_port.node.selected or end_port.node.selected: pipe.highlight() if not start_port.node.visible or not end_port.node.visible: pipe.hide() @staticmethod def acyclic_check(start_port, end_port): """ Validate the node connections so it doesn't loop itself. Args: start_port (PortItem): port item. end_port (PortItem): port item. Returns: bool: True if port connection is valid. """ start_node = start_port.node check_nodes = [end_port.node] io_types = {IN_PORT: 'outputs', OUT_PORT: 'inputs'} while check_nodes: check_node = check_nodes.pop(0) for check_port in getattr(check_node, io_types[end_port.port_type]): if check_port.connected_ports: for port in check_port.connected_ports: if port.node != start_node: check_nodes.append(port.node) else: return False return True # --- viewer --- def tab_search_set_nodes(self, nodes): self._search_widget.set_nodes(nodes) def tab_search_toggle(self): if isinstance(self._search_widget, TabSearchMenuWidget): return pos = self._previous_pos state = not self._search_widget.isVisible() if state: rect = self._search_widget.rect() new_pos = QtCore.QPoint(int(pos.x() - rect.width() / 2), int(pos.y() - rect.height() / 2)) self._search_widget.move(new_pos) self._search_widget.setVisible(state) rect = self.mapToScene(rect).boundingRect() self.scene().update(rect) else: self._search_widget.setVisible(state) self.clearFocus() def rebuild_tab_search(self): if isinstance(self._search_widget, TabSearchMenuWidget): self._search_widget.rebuild = True def context_menus(self): return {'graph': self._ctx_menu, 'nodes': self._ctx_node_menu} @staticmethod def question_dialog(text, title='Node Graph'): """ Prompt node viewer question dialog widget with "yes", "no" buttons. Args: text (str): dialog text. title (str): dialog window title. Returns: bool: true if user click yes. """ return BaseDialog.question_dialog(text, title) @staticmethod def message_dialog(text, title='Node Graph'): """ Prompt node viewer message dialog widget with "ok" button. Args: text (str): dialog text. title (str): dialog window title. """ BaseDialog.message_dialog(text, title) def load_dialog(self, current_dir=None, ext=None): """ Prompt node viewer file load dialog widget. Args: current_dir (str): directory path starting point. (optional) ext (str): custom file extension filter type. (optional) Returns: str: selected file path. """ ext = '*{} '.format(ext) if ext else '' ext_filter = ';;'.join([ 'Node Graph ({}*json)'.format(ext), 'All Files (*)' ]) file_dlg = FileDialog.getOpenFileName( self, 'Open File', current_dir, ext_filter) file = file_dlg[0] or None return file def save_dialog(self, current_dir=None, ext=None): """ Prompt node viewer file save dialog widget. Args: current_dir (str): directory path starting point. (optional) ext (str): custom file extension filter type. (optional) Returns: str: selected file path. """ ext_label = '*{} '.format(ext) if ext else '' ext_type = '.{}'.format(ext) if ext else '.json' ext_map = {'Node Graph ({}*json)'.format(ext_label): ext_type, 'All Files (*)': ''} file_dlg = FileDialog.getSaveFileName( self, 'Save Session', current_dir, ';;'.join(ext_map.keys())) file_path = file_dlg[0] if not file_path: return ext = ext_map[file_dlg[1]] if ext and not file_path.endswith(ext): file_path += ext return file_path def all_pipes(self): """ Returns all pipe qgraphic items. Returns: list[Pipe]: instances of pipe items. """ excl = [self._LIVE_PIPE, self._SLICER_PIPE] return [i for i in self.scene().items() if isinstance(i, Pipe) and i not in excl] def all_nodes(self): """ Returns all node qgraphic items. Returns: list[AbstractNodeItem]: instances of node items. """ return [i for i in self.scene().items() if isinstance(i, AbstractNodeItem)] def selected_nodes(self): """ Returns selected node qgraphic items. Returns: list[AbstractNodeItem]: instances of node items. """ nodes = [item for item in self.scene().selectedItems() if isinstance(item, AbstractNodeItem)] return nodes def selected_pipes(self): """ Returns selected pipe qgraphic items. Returns: list[Pipe]: pipe items. """ pipes = [item for item in self.scene().selectedItems() if isinstance(item, Pipe)] return pipes def selected_items(self): """ Return selected graphic items in the scene. Returns: tuple(list[AbstractNodeItem], list[Pipe]): selected (node items, pipe items). """ nodes = [] pipes = [] for item in self.scene().selectedItems(): if isinstance(item, AbstractNodeItem): nodes.append(item) elif isinstance(item, Pipe): pipes.append(item) return nodes, pipes def add_node(self, node, pos=None): """ Add node item into the scene. Args: node (AbstractNodeItem): node item instance. pos (tuple or list): node scene position. """ pos = pos or (self._previous_pos.x(), self._previous_pos.y()) node.pre_init(self, pos) self.scene().addItem(node) node.post_init(self, pos) @staticmethod def remove_node(node): """ Remove node item from the scene. Args: node (AbstractNodeItem): node item instance. """ if isinstance(node, AbstractNodeItem): node.delete() def move_nodes(self, nodes, pos=None, offset=None): """ Globally move specified nodes. Args: nodes (list[AbstractNodeItem]): node items. pos (tuple or list): custom x, y position. offset (tuple or list): x, y position offset. """ group = self.scene().createItemGroup(nodes) group_rect = group.boundingRect() if pos: x, y = pos else: pos = self.mapToScene(self._previous_pos) x = pos.x() - group_rect.center().x() y = pos.y() - group_rect.center().y() if offset: x += offset[0] y += offset[1] group.setPos(x, y) self.scene().destroyItemGroup(group) def get_pipes_from_nodes(self, nodes=None): nodes = nodes or self.selected_nodes() if not nodes: return pipes = [] for node in nodes: n_inputs = node.inputs if hasattr(node, 'inputs') else [] n_outputs = node.outputs if hasattr(node, 'outputs') else [] for port in n_inputs: for pipe in port.connected_pipes: connected_node = pipe.output_port.node if connected_node in nodes: pipes.append(pipe) for port in n_outputs: for pipe in port.connected_pipes: connected_node = pipe.input_port.node if connected_node in nodes: pipes.append(pipe) return pipes def center_selection(self, nodes=None): if not nodes: if self.selected_nodes(): nodes = self.selected_nodes() elif self.all_nodes(): nodes = self.all_nodes() if len(nodes) == 1: self.centerOn(nodes[0]) else: rect = self._combined_rect(nodes) self.centerOn(rect.center().x(), rect.center().y()) def get_pipe_layout(self): """ Returns the pipe layout mode. Returns: int: pipe layout mode. """ return self._pipe_layout def set_pipe_layout(self, layout): """ Sets the pipe layout mode and redraw all pipe items in the scene. Args: layout (int): pipe layout mode. (see the contants module) """ self._pipe_layout = layout for pipe in self.all_pipes(): pipe.draw_path(pipe.input_port, pipe.output_port) def reset_zoom(self, cent=None): """ Reset the viewer zoom level. Args: cent (QtCore.QPoint): specified center. """ self._scene_range = QtCore.QRectF(0, 0, self.size().width(), self.size().height()) if cent: self._scene_range.translate(cent - self._scene_range.center()) self._update_scene() def get_zoom(self): """ Returns the viewer zoom level. Returns: float: zoom level. """ transform = self.transform() cur_scale = (transform.m11(), transform.m22()) return float('{:0.2f}'.format(cur_scale[0] - 1.0)) def set_zoom(self, value=0.0): """ Set the viewer zoom level. Args: value (float): zoom level """ if value == 0.0: self.reset_zoom() return zoom = self.get_zoom() if zoom < 0.0: if not (ZOOM_MIN <= zoom <= ZOOM_MAX): return else: if not (ZOOM_MIN <= value <= ZOOM_MAX): return value = value - zoom self._set_viewer_zoom(value, 0.0) def zoom_to_nodes(self, nodes): self._scene_range = self._combined_rect(nodes) self._update_scene() if self.get_zoom() > 0.1: self.reset_zoom(self._scene_range.center()) def force_update(self): self._update_scene() def scene_rect(self): return [self._scene_range.x(), self._scene_range.y(), self._scene_range.width(), self._scene_range.height()] def scene_center(self): """ Get the center x,y pos from the scene. Returns: list[float]: x, y position. """ cent = self._scene_range.center() return [cent.x(), cent.y()] def nodes_rect_center(self, nodes): """ Get the center x,y pos from the specified nodes. Args: nodes (list[AbstractNodeItem]): list of node qgrphics items. Returns: list[float]: x, y position. """ cent = self._combined_rect(nodes).center() return [cent.x(), cent.y()] def set_scene_rect(self, rect): self._scene_range = QtCore.QRectF(*rect) self._update_scene() def clear_key_state(self): self.CTRL_state = False self.SHIFT_state = False self.ALT_state = False def use_OpenGL(self): format = QtOpenGL.QGLFormat(QtOpenGL.QGL.SampleBuffers) format.setSamples(4) self.setViewport(QtOpenGL.QGLWidget(format)) ```
{ "source": "jlalvis/VAE_SGD", "score": 2 }
#### File: VAE_SGD/SGAN/generator.py ```python import torch import torch.nn as nn class Generator(nn.Module): def __init__(self, gpath, cuda=True): super(Generator, self).__init__() nc = 1 nz = 1 ngf = 64 gfs = 5 self.main = nn.Sequential( nn.ConvTranspose2d( nz, ngf * 8, gfs, 2, gfs//2, bias=False), nn.ReLU(True), nn.InstanceNorm2d(ngf * 8), nn.ConvTranspose2d(ngf * 8, ngf * 4, gfs, 2, gfs//2, bias=False), nn.ReLU(True), nn.InstanceNorm2d(ngf * 4), nn.ConvTranspose2d(ngf * 4, ngf * 2, gfs, 2, gfs//2, bias=False), nn.ReLU(True), nn.InstanceNorm2d(ngf * 2), nn.ConvTranspose2d(ngf * 2, ngf, gfs, 2, gfs//2, bias=False), nn.ReLU(True), nn.InstanceNorm2d(ngf), nn.ConvTranspose2d( ngf, nc, gfs, 2, 2, bias=False), nn.ReLU(True), # Do some dilations # nn.ConvTranspose2d( nc, ngf, gfs, 1, 6, output_padding=0,bias=False,dilation=3), nn.ReLU(True), nn.InstanceNorm2d(ngf), nn.ConvTranspose2d( ngf, nc, gfs, 1, 10, output_padding=0, bias=False,dilation=5), nn.Tanh() ) if cuda: self.load_state_dict(torch.load(gpath)) else: self.load_state_dict(torch.load(gpath, map_location=lambda storage, loc: storage)) def forward(self, input): output = self.main(input) return output ```
{ "source": "jlam609/spindrift", "score": 2 }
#### File: lib/spindrift/wsgi.py ```python import io import sys import urllib from werkzeug.wrappers import Response from werkzeug.wsgi import ClosingIterator def handler(app, event, context): print(event) print(context) environ = create_wsgi_environ(event) # override some lambda specifics environ["HTTPS"] = "on" environ["wsgi.url_scheme"] = "https" environ["lambda.event"] = event environ["lambda.context"] = context # create a response response = Response.from_app(app, environ) # create the object we're going to send back to api gateway ret = {} # populate the body ret["body"] = response.get_data(as_text=True) # XXX: binary support... ret["isBase64Encoded"] = False # add in a status code ret["statusCode"] = response.status_code # add in headers ret["headers"] = {} for header, value in response.headers: ret["headers"][header] = value # boom. return ret def create_wsgi_environ(event): # see https://www.python.org/dev/peps/pep-0333/ # determine GET, POST, etc. method = event["httpMethod"] # determine the script name script_name = "" # XXX: this shouldn't always be root # decode the path being request path = event["path"] path = urllib.parse.unquote_plus(path) # format the query string query = event["queryStringParameters"] query_string = "" if query: query_string = urllib.parse.urlencode(query) # server name should be configurable? server_name = "spindrift" # fixup headers headers = event["headers"] or {} for header in list(headers.keys()): canonical = header.title() if header != canonical: headers[canonical] = headers.pop(header) # XXX: do we trust this? server_port = headers.get("X-Forwarded-Port", "80") # determine the remote address x_forwarded_for = headers.get("X-Forwarded-For", "") remote_addr = "127.0.0.1" if "," in x_forwarded_for: remotes = x_forwarded_for.split(",") remotes = [r.strip() for r in remotes] # last address is the load balancer, second from last is the actual # address if len(remotes) >= 2: remote_addr = remotes[-2] # XXX: do we trust this? isn't it always https? wsgi_url_scheme = headers.get("X-Forwarded-Proto", "http"), # retrieve the body and encode it body = event["body"] if isinstance(body, str): body = body.encode("utf-8") # setup initial environ dict environ = { "REQUEST_METHOD": method, "SCRIPT_NAME": script_name, "PATH_INFO": path, "QUERY_STRING": query_string, "SERVER_NAME": server_name, "SERVER_PORT": server_port, "SERVER_PROTOCOL": "HTTP/1.1", "REMOTE_ADDR": remote_addr, "wsgi.version": (1, 0), "wsgi.url_scheme": wsgi_url_scheme, "wsgi.input": io.BytesIO(body), "wsgi.errors": sys.stderr, # XXX: this should be a logger. "wsgi.multithread": False, "wsgi.multiprocess": False, "wsgi.run_once": False, } # get content-type from headers content_type = headers.get("Content-Type") if content_type is not None: environ["CONTENT_TYPE"] = content_type # determine content-length from the body of request environ["CONTENT_LENGTH"] = 0 if body: environ["CONTENT_LENGTH"] = len(body) # apply all HTTP_* headers into the environ for header, value in headers.items(): key_name = header.replace("-", "_") key_name = key_name.upper() key_name = "HTTP_" + key_name environ[key_name] = value # send back our completed environ return environ class SpindriftMiddleware(object): def __init__(self, application): self.application = application def __call__(self, environ, start_response): return ClosingIterator(self.application(environ, start_response)) ```
{ "source": "jlambert121/beaver", "score": 2 }
#### File: beaver/transports/rabbitmq_transport.py ```python from Queue import Queue import pika import ssl from threading import Thread import time from beaver.transports.base_transport import BaseTransport from beaver.transports.exception import TransportException class RabbitmqTransport(BaseTransport): def __init__(self, beaver_config, logger=None): super(RabbitmqTransport, self).__init__(beaver_config, logger=logger) self._rabbitmq_config = {} config_to_store = [ 'key', 'exchange', 'username', 'password', 'host', 'port', 'vhost', 'queue', 'queue_durable', 'ha_queue', 'exchange_type', 'exchange_durable', 'ssl', 'ssl_key', 'ssl_cert', 'ssl_cacert', 'timeout', 'delivery_mode' ] for key in config_to_store: self._rabbitmq_config[key] = beaver_config.get('rabbitmq_' + key) self._connection = None self._channel = None self._count = 0 self._lines = Queue() self._connect() def _on_connection_open(self,connection): self._logger.debug("connection created") self._channel = connection.channel(self._on_channel_open) def _on_channel_open(self,unused): self._logger.debug("Channel Created") self._channel.exchange_declare(self._on_exchange_declareok, exchange=self._rabbitmq_config['exchange'], exchange_type=self._rabbitmq_config['exchange_type'], durable=self._rabbitmq_config['exchange_durable']) def _on_exchange_declareok(self,unused): self._logger.debug("Exchange Declared") self._channel.queue_declare(self._on_queue_declareok, queue=self._rabbitmq_config['queue'], durable=self._rabbitmq_config['queue_durable'], arguments={'x-ha-policy': 'all'} if self._rabbitmq_config['ha_queue'] else {}) def _on_queue_declareok(self,unused): self._logger.debug("Queue Declared") self._channel.queue_bind(self._on_bindok, exchange=self._rabbitmq_config['exchange'], queue=self._rabbitmq_config['queue'], routing_key=self._rabbitmq_config['key']) def _on_bindok(self,unused): self._logger.debug("Exchange to Queue Bind OK") self._is_valid = True; self._logger.debug("Scheduling next message for %0.1f seconds",1) self._connection.add_timeout(1,self._publish_message) def _publish_message(self): while True: self._count += 0 if self._lines.not_empty: line = self._lines.get() if self._count == 10000: self._logger.debug("RabbitMQ transport queue size: %s" % (self._lines.qsize(), )) self._count = 0 else: self._count += 1 self._channel.basic_publish( exchange=self._rabbitmq_config['exchange'], routing_key=self._rabbitmq_config['key'], body=line, properties=pika.BasicProperties( content_type='text/json', delivery_mode=self._rabbitmq_config['delivery_mode'] )) else: self._logger.debug("RabbitMQ transport queue is empty, sleeping for 1 second.") time.sleep(1) def _on_connection_open_error(self,non_used_connection=None,error=None): self._logger.debug("connection open error") if not error==None: self._logger.error(error) def _on_connection_closed(self, connection, reply_code, reply_text): self._channel = None if self._connection._closing: try: self._connection.ioloop.stop() except: pass else: self._logger.warning('RabbitMQ Connection closed, reopening in 1 seconds: (%s) %s', reply_code, reply_text) self._connection.add_timeout(1, self.reconnect) def reconnect(self): try: self._connection.ioloop.stop() except: pass self._connection_start() def _connection_start(self): self._logger.debug("Creating Connection") try: self._connection = pika.adapters.SelectConnection(parameters=self._parameters,on_open_callback=self._on_connection_open,on_open_error_callback=self._on_connection_open_error,on_close_callback=self._on_connection_closed,stop_ioloop_on_close=False) except Exception,e: self._logger.error("Failed Creating RabbitMQ connection") self._logger.error(e) self._logger.debug("Starting ioloop") self._connection.ioloop.start() def _connect(self): # Setup RabbitMQ connection credentials = pika.PlainCredentials( self._rabbitmq_config['username'], self._rabbitmq_config['password'] ) ssl_options = { 'keyfile': self._rabbitmq_config['ssl_key'], 'certfile': self._rabbitmq_config['ssl_cert'], 'ca_certs': self._rabbitmq_config['ssl_cacert'], 'ssl_version': ssl.PROTOCOL_TLSv1 } self._parameters = pika.connection.ConnectionParameters( credentials=credentials, host=self._rabbitmq_config['host'], port=self._rabbitmq_config['port'], ssl=self._rabbitmq_config['ssl'], ssl_options=ssl_options, virtual_host=self._rabbitmq_config['vhost'], socket_timeout=self._rabbitmq_config['timeout'] ) Thread(target=self._connection_start).start() def callback(self, filename, lines, **kwargs): timestamp = self.get_timestamp(**kwargs) if kwargs.get('timestamp', False): del kwargs['timestamp'] for line in lines: try: import warnings with warnings.catch_warnings(): warnings.simplefilter('error') body = self.format(filename, line, timestamp, **kwargs) self._lines.put(body) except UserWarning: self._is_valid = False raise TransportException('Connection appears to have been lost') except Exception as e: self._is_valid = False try: raise TransportException(e.strerror) except AttributeError: raise TransportException('Unspecified exception encountered') # TRAP ALL THE THINGS! def interrupt(self): if self._connection: self._connection.close() def unhandled(self): return True ``` #### File: beaver/transports/sqs_transport.py ```python import boto.sqs import uuid from boto.sqs.message import Message from beaver.transports.base_transport import BaseTransport from beaver.transports.exception import TransportException class SqsTransport(BaseTransport): def __init__(self, beaver_config, logger=None): super(SqsTransport, self).__init__(beaver_config, logger=logger) self._access_key = beaver_config.get('sqs_aws_access_key') self._secret_key = beaver_config.get('sqs_aws_secret_key') self._profile = beaver_config.get('sqs_aws_profile_name') self._region = beaver_config.get('sqs_aws_region') self._queue_owner_acct_id = beaver_config.get('sqs_aws_queue_owner_acct_id') self._queues = beaver_config.get('sqs_aws_queue').split(',') try: if self._profile: self._connection = boto.sqs.connect_to_region(self._region, profile_name=self._profile) elif self._access_key is None and self._secret_key is None: self._connection = boto.sqs.connect_to_region(self._region) else: self._connection = boto.sqs.connect_to_region(self._region, aws_access_key_id=self._access_key, aws_secret_access_key=self._secret_key) if self._connection is None: self._logger.warn('Unable to connect to AWS - check your AWS credentials') raise TransportException('Unable to connect to AWS - check your AWS credentials') self._queue = {} for queue in self._queues: self._logger.debug('Attempting to load SQS queue: {}'.format(queue)) if self._queue_owner_acct_id is None: self._queue[queue] = self._connection.get_queue(queue) else: self._queue[queue] = self._connection.get_queue(queue, owner_acct_id=self._queue_owner_acct_id) if self._queue[queue] is None: raise TransportException('Unable to access queue with name {0}'.format(queue)) self._logger.debug('Successfully loaded SQS queue: {}'.format(queue)) except Exception, e: raise TransportException(e.message) def callback(self, filename, lines, **kwargs): timestamp = self.get_timestamp(**kwargs) if kwargs.get('timestamp', False): del kwargs['timestamp'] message_batch = [] message_batch_size = 0 message_batch_size_max = 250000 # Max 256KiB but leave some headroom for line in lines: m = Message() m.set_body(self.format(filename, line, timestamp, **kwargs)) message_size = len(m) if (message_size > message_batch_size_max): self._logger.debug('Dropping the message as it is too large to send ({0} bytes)'.format(message_size)) continue # SQS can only handle up to 10 messages in batch send and it can not exceed 256KiB (see above) # Check the new total size before adding a new message and don't try to send an empty batch if (len(message_batch) > 0) and (((message_batch_size + message_size) >= message_batch_size_max) or (len(message_batch) == 10)): self._logger.debug('Flushing {0} messages to SQS queue {1} bytes'.format(len(message_batch), message_batch_size)) self._send_message_batch(message_batch) message_batch = [] message_batch_size = 0 message_batch_size = message_batch_size + message_size message_batch.append((uuid.uuid4(), self.format(filename, line, timestamp, **kwargs), 0)) if len(message_batch) > 0: self._logger.debug('Flushing the last {0} messages to SQS queue {1} bytes'.format(len(message_batch), message_batch_size)) self._send_message_batch(message_batch) return True def _send_message_batch(self, message_batch): for queue in self._queue: try: self._logger.debug('Attempting to push batch message to SQS queue: {}'.format(queue)) result = self._queue[queue].write_batch(message_batch) if not result: self._logger.error('Error occurred sending messages to SQS queue {0}. result: {1}'.format( queue, result)) raise TransportException('Error occurred sending message to queue {0}'.format(queue)) self._logger.debug('Successfully pushed batch message to SQS queue: {}'.format(queue)) except Exception, e: self._logger.exception('Exception occurred sending batch to SQS queue') raise TransportException(e.message) def interrupt(self): return True def unhandled(self): return True ```
{ "source": "jlambert23/COP4331", "score": 3 }
#### File: public_html/API/newuser.py ```python import util print("Content-Type: application/json\n\n") def newuser(jsonPayload): import pymysql try: firstname = jsonPayload['firstname'] lastname = jsonPayload['lastname'] username = jsonPayload['username'] password = jsonPayload['password'] email = jsonPayload['email'] except: util.throwErr("JSON incorrectly configured.\n" + str(jsonPayload)) return try: # Import connection settings. from dbsettings import connection_properties conn = pymysql.connect( **connection_properties ) cursor = conn.cursor() except: util.throwErr("Server was unable to be reached.") return try: try: # Throw before accessing database if non-alphanumeric characters are used. import re if not re.match('^[\w-]+$', username) is not None: raise Exception # Insert new user into the database. sql = "INSERT INTO user (firstname,lastname,username,password,email) VALUES ('%s','%s','%s','%s', '%s');" % (firstname, lastname, username, password, email) cursor.execute(sql) conn.commit() except: util.throwErr("User name already in use.") return # Retrieve user information. sql2 = "SELECT * FROM user WHERE username='%s' AND password='%s';" % (username, password) cursor.execute(sql2) columns = cursor.description result = [{columns[index][0]:column for index, column in enumerate(value)} for value in cursor.fetchall()] util.sendjson(result) conn.close() except: util.throwErr("Unable to create new user.") return try: #import json #parsed_json = json.loads('{"username":"babby", "password":"<PASSWORD>", "firstname":"How is", "lastname":"babby formed?", "email":"<EMAIL>"}') parsed_json = util.getjson() newuser(parsed_json) except: util.throwErr("Failed to add new user.") ```
{ "source": "JLambertazzo/SeeFood", "score": 2 }
#### File: JLambertazzo/SeeFood/app.py ```python from flask import Flask, render_template, redirect, session, Response, send_file from flask_restful import Api, Resource, reqparse, fields, marshal_with, abort from flask_sqlalchemy import SQLAlchemy from sqlalchemy import create_engine, Column, String from sqlalchemy.ext.declarative import declarative_base from werkzeug.utils import secure_filename import werkzeug import uuid import hashlib import os import qrcode import PIL import io import requests app = Flask(__name__) api = Api(app) app.config['SECRET_KEY'] = 'TEMPORARYSECRET' local = True Base = None dbpass = os.environ.get('DBPASS') if local: app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///app.db' db = SQLAlchemy(app) Base = db.Model Column = db.Column String = db.String else: Base = declarative_base() engine = create_engine(f"cockroachdb://julien:{dbpass}@free-tier.gcp-us-central1.cockroachlabs.cloud:26257/defaultdb?sslmode=verify-full&sslrootcert=cert/cc-ca.crt&options=--cluster=good-bat-867", echo=True) class RestaurantModel(Base): __tablename__ = 'Restaurants' id = Column(String(100), primary_key=True) name = Column(String(100), nullable=False, unique=True) password = Column(String(100), nullable=False) description = Column(String(500)) def __repr__(self): return f"Restaurant(name={self.name}, description={self.description})" class ItemModel(Base): __tablename__ = 'Items' id = Column(String(100), primary_key=True) restaurant = Column(String(100), nullable=False) name = Column(String(100), nullable=False) description = Column(String(500)) ingredients = Column(String(500)) image = Column(String(500)) qr = Column(String(500)) def __repr__(self): return f"Item(restaurant={self.restaurant}, name={self.name}, description={self.description}, ingredients={self.ingredients}, image={self.image}, qr={self.qr})" class ImageModel(Base): __tablename__ = 'Images' id = Column(String(100), primary_key=True) image = Column(String(500), unique=True) mimetype = Column(String(500), nullable=False) name = Column(String(500), nullable=False) def __repr__(self): return self.name if local: db.create_all() else: Base.metadata.create_all(engine) restaurant_post_args = reqparse.RequestParser() restaurant_post_args.add_argument("name", required=True, type=str, help="Restaurant name was not included") restaurant_post_args.add_argument("password", required=True, type=str, help="Password was not included") restaurant_post_args.add_argument("description", type=str) restaurant_patch_args = reqparse.RequestParser() restaurant_patch_args.add_argument("name", type=str) restaurant_patch_args.add_argument("password", type=str) restaurant_patch_args.add_argument("description", type=str) item_post_args = reqparse.RequestParser() item_post_args.add_argument("restaurant", required=True, type=str, help='Restaurant id was not included') item_post_args.add_argument("name", required=True, type=str, help='Item name was not included') item_post_args.add_argument("description", type=str) item_post_args.add_argument("ingredients", type=str) item_post_args.add_argument("image", type=werkzeug.datastructures.FileStorage, location='files') item_post_args.add_argument("qr", type=str) item_patch_args = reqparse.RequestParser() item_patch_args.add_argument("name", type=str) item_patch_args.add_argument("description", type=str) item_patch_args.add_argument("ingredients", type=str) item_patch_args.add_argument("image", type=werkzeug.datastructures.FileStorage, location='files') item_patch_args.add_argument("qr", type=str) restaurant_fields = { 'id': fields.String, 'name': fields.String, 'password': fields.String, 'description': fields.String } item_fields = { 'id': fields.String, 'restaurant': fields.String, 'name': fields.String, 'description': fields.String, 'ingredients': fields.String, 'image': fields.String, 'qr': fields.String } class Restaurants(Resource): @marshal_with(restaurant_fields) def get(self, id): result = RestaurantModel.query.filter_by(id=id).first() if not result: abort(404, message="restaurant not found") return result @marshal_with(restaurant_fields) def patch(self, id): args = restaurant_patch_args.parse_args() result = RestaurantModel.query.filter_by(id=id).first() if not result: abort(404, message="restaurant not found") if args['name']: result.name = args['name'] if args['password']: salt = os.urandom(32) key = hashlib.pbkdf2_hmac('sha256', args['password'].encode('utf-8'), salt, 100000) result.password = <PASSWORD> + key if args['description']: result.description = args['description'] db.session.commit() return result @marshal_with(restaurant_fields) def delete(self, id): result = RestaurantModel.query.filter_by(id=id).first() if not result: abort(404, message="restaurant not found") db.session.delete(result) db.session.commit() return result class Items(Resource): @marshal_with(item_fields) def get(self, id): result = ItemModel.query.filter_by(id=id).first() if not result: abort(404, message="item not found") return result @marshal_with(item_fields) def patch(self, id): args = item_patch_args.parse_args() result = ItemModel.query.filter_by(id=id).first() if not result: abort(404, message="item not found") image = args['image'] if args['image']: filename = secure_filename(args['image'].filename) mimetype = args['image'].mimetype image = args['image'].read() img = ImageModel(image=image, mimetype=mimetype, name=filename) if args['name']: result.name = args['name'] if args['description']: result.description = args['description'] if args['ingredients']: result.ingredients = args['ingredients'] if image: result.image = image db.session.commit() return result @marshal_with(item_fields) def delete(self, id): result = ItemModel.query.filter_by(id=id).first() if not result: abort(404, message="item not found") db.session.delete(result) db.session.commit() return result class NewRestaurant(Resource): @marshal_with(restaurant_fields) def post(self): args = restaurant_post_args.parse_args() found = RestaurantModel.query.filter_by(name=args['name']).first() if found: abort(409, message="Restaurant witht this name already exists") salt = os.urandom(32) key = hashlib.pbkdf2_hmac('sha256', args['password'].encode('utf-8'), salt, 100000) restaurant = RestaurantModel(id=str(uuid.uuid1()), name=args['name'], password=<PASSWORD> + key, description=args['description']) db.session.add(restaurant) db.session.commit() session['name'] = args['name'] return restaurant, 201 # handle login @marshal_with(restaurant_fields) def get(self): args = restaurant_post_args.parse_args() found = RestaurantModel.query.filter_by(name=args['name']).first() if not found: abort(404, message="restaurant not found") found_salt = found.password[:32] found_key = found.password[32:] given_hash = hashlib.pbkdf2_hmac('sha256', args['password'].encode('utf-8'), found_salt, 100000) if given_hash == found_key: session['name'] = args['name'] return found else: abort(403, message="Login Failed") class NewItem(Resource): @marshal_with(item_fields) def post(self): args = item_post_args.parse_args() found = ItemModel.query.filter_by(restaurant=args['restaurant'], name=args['name']).first() if found: abort(409, message="You already have an item with this name") print('args:' + str(args)) iid = None if args['image']: filename = secure_filename(args['image'].filename) mimetype = args['image'].mimetype iid = str(uuid.uuid1()) newimage = ImageModel(id=iid, image=args['image'].read(), mimetype=mimetype, name=filename) db.session.add(newimage) else: print('no image given') item = ItemModel(id=str(uuid.uuid1()), restaurant=args['restaurant'], name=args['name'], description=args['description'], ingredients=args['ingredients'], image=iid, qr=args['qr']) print('new item:' + item.id) db.session.add(item) db.session.commit() return item, 201 class Search(Resource): @marshal_with(item_fields) def get(self, query): results = [] name_matches = ItemModel.query.filter_by(name=query).first() desc_matches = ItemModel.query.filter_by(description=query).first() ingr_matches = ItemModel.query.filter_by(ingredients=query).first() if name_matches: return name_matches elif desc_matches: return desc_matches elif ingr_matches: return ingr_matches else: return abort(404, message="no resource found") class Image(Resource): def get(self, id): found = ImageModel.query.filter_by(id=id).first() if not found: abort(404, message="image could not be found") return Response(found.image, mimetype=found.mimetype) class QR(Resource): def get(self, id): img = qrcode.make(f"http://localhost:5000/viewitem/{id}") print(type(img)) image = img.get_image() output = io.BytesIO() image.convert('RGBA').save(output, format='PNG') output.seek(0, 0) return Response(output, mimetype="image/png") api.add_resource(NewRestaurant, '/api/restaurants') api.add_resource(NewItem, '/api/item') api.add_resource(Restaurants, '/api/restaurants/<string:id>') api.add_resource(Items, '/api/item/<string:id>') api.add_resource(Search, '/api/search/<string:query>') api.add_resource(Image, '/api/image/<string:id>') api.add_resource(QR, '/api/qr/<string:id>') @app.route('/') def index(): return render_template('index.html') @app.route('/dashboard') def dashboard(): if not session['name']: return redirect('/', 301) found = RestaurantModel.query.filter_by(name=session['name']).first() items = ItemModel.query.filter_by(restaurant=found.id).all() return render_template('dashboard.html', name=found.name, description=found.description, items=items) @app.route('/newitem') def newitempage(): if not session['name']: return redirect('/', 301) found = RestaurantModel.query.filter_by(name=session['name']).first() return render_template('newitem.html', rest_id=found.id) @app.route('/viewitem/<string:id>') def viewitempage(id): found = ItemModel.query.filter_by(id=id).first() if not session or not session['name']: return redirect('/', 301) rest = RestaurantModel.query.filter_by(name=session['name']).first() if rest.id != found.restaurant: abort(409, message="This item belongs to another restaurant") if not found: abort(404, message="Item was not found") image = ImageModel.query.filter_by(id=found.image).first() if not image: abort(404, message="Error loading image") return render_template('viewitem.html', mimetype=image.mimetype, image=f"/api/image/{image.id}", qr=f"/api/qr/{id}", name=found.name, description=found.description, ingredients=found.ingredients) @app.route('/edititem/<string:id>') def edititempage(id): found = ItemModel.query.filter_by(id=id).first() if not session or not session['name']: return redirect('/', 301) rest = RestaurantModel.query.filter_by(name=session['name']).first() if rest.id != found.restaurant: abort(409, message="This item belongs to another restaurant") if not found: abort(404, message="Item was not found") return render_template('edititem.html', id=found.id, name=found.name, description=found.description, ingredients=found.ingredients) @app.route('/search') def searchpage(): return render_template('search.html') if __name__ == '__main__': app.run(debug=False) ```
{ "source": "jlamendo/hoymiles", "score": 2 }
#### File: jlamendo/hoymiles/hoymiles.py ```python __author__ = 'dmslabs' from os.path import realpath import requests from requests.models import HTTPBasicAuth, Response, StreamConsumedError from requests import Request, Session import hashlib from string import Template import json import configparser import logging import dmslibs as dl import comum from dmslibs import Color, IN_HASSIO, mostraErro, log, pega_url, pega_url2, printC from datetime import datetime, timedelta import paho.mqtt.client as mqtt from paho.mqtt import client import uuid import time import os import sys from flask import Flask from flask import render_template import webserver import multiprocessing from multiprocessing import Process, Pipe # CONFIG Secrets HOYMILES_USER = "user" HOYMILES_PASSWORD = "<PASSWORD>" HOYMILES_PLANT_ID = 00000 MQTT_HOST = "mqtt.eclipse.org" MQTT_USERNAME = "MQTT_USERNAME" MQTT_PASSWORD = "<PASSWORD>" INTERVALO_MQTT = 240 # How often to send data to the MQTT server? INTERVALO_HASS = 1200 # How often to send device information in a format compatible with Home Asssistant MQTT discovery? INTERVALO_GETDATA = 480 # How often do I read site data SECRETS = 'secrets.ini' WEB_SERVER = True # Contants VERSAO = '0.17' DEVELOPERS_MODE = False MANUFACTURER = 'dmslabs' APP_NAME = 'Hoymiles Gateway' SHORT_NAME = 'solarH' SOLAR_MODEL = "DTU-W100" # mudar para pegar TOKEN = '' COOKIE_UID = "'uid=fff9c382-389f-4a47-8dc9-c5486fc3d9f5" COOKIE_EGG_SESS = "EGG_SESS=XHfAhiHWwU__OUVeKh0IiITBnmwA-IIXEzTCHgHgww6ZYYddOPntPSwVz4Gx7ISbfU0WrvzOLungThcL-9D2KxavrtyPk8Mr2YXLFzJwvM0usPvhzYdt2Y2S9Akt5sjP" URL1 = "https://global.hoymiles.com/platform/api/gateway/iam/auth_login" URL2 = "https://global.hoymiles.com/platform/api/gateway/pvm-data/data_count_station_real_data" URL3 = 'https://global.hoymiles.com/platform/api/gateway/iam/user_me' URL4 = 'https://global.hoymiles.com/platform/api/gateway/pvm/statistics_count_station_state' URL5 = 'https://global.hoymiles.com/platform/api/gateway/pvm/station_select_by_page' URL6 = 'https://global.hoymiles.com/platform/api/gateway/pvm/station_find' UUID = str(uuid.uuid1()) MQTT_PUB = "home/solar" SID = 'solar' MQTT_HASS = "homeassistant" DEFAULT_MQTT_PASS = "<PASSWORD>" INTERVALO_EXPIRE = int(INTERVALO_GETDATA) * 1.5 NODE_ID = 'dmslabs' PAYLOAD_T1= ''' { "ERROR_BACK":true, "LOAD":{ "loading":true }, "body":{ "password":"<PASSWORD>", "user_name":"$user" }, "WAITING_PROMISE":true } ''' PAYLOAD_T2 = ''' { "body": { "sid": $sid }, "WAITING_PROMISE": true } ''' headers_h1 = { 'Content-Type': 'application/json', 'Cookie': '' # 'uid=fff9c382-389f-4a47-8dc9-c5486fc3d9f5; EGG_SESS=XHfAhiHWwU__OUVeKh0IiITBnmwA-IIXEzTCHgHgww6ZYYddOPntPSwVz4Gx7ISbfU0WrvzOLungThcL-9D2KxavrtyPk8Mr2YXLFzJwvM0usPvhzYdt2Y2S9Akt5sjP' } headers_h2 = { 'Content-Type': 'application/json;charset=UTF-8', 'Cache-Control': 'no-cache', 'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:60.0) Gecko/20100101 Firefox/60.0', 'Host': 'global.hoymiles.com', 'Connection': 'keep-alive', 'Accept': 'application/json, text/plain, */*', 'Accept-Encoding': 'gzip, deflate, br', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 11_2_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36', 'Accept-Language': 'pt-BR,pt;q=0.9,it-IT;q=0.8,it;q=0.7,es-ES;q=0.6,es;q=0.5,en-US;q=0.4,en;q=0.3', 'Cookie': 'hm_token_language=en_us; ' # 'uid=fff9c382-389f-4a47-8dc9-c5486fc3d9f5; EGG_SESS=XHfAhiHWwU__OUVeKh0IiITBnmwA-IIXEzTCHgHgww6ZYYddOPntPSwVz4Gx7ISbfU0WrvzOLungThcL-9D2KxavrtyPk8Mr2YXLFzJwvM0usPvhzYdt2Y2S9Akt5sjP' } json_hass = {"sensor": ''' { "stat_t": "home/$sid/json", "name": "$name", "uniq_id": "$uniq_id", "val_tpl": "{{ value_json.$val_tpl }}", "icon": "$icon", "device_class": "$device_class", "expire_after": "$expire_after", "device": { $device_dict } }'''} device_dict = ''' "name": "$device_name", "manufacturer": "$manufacturer", "model": "$model", "sw_version": "$sw_version", "via_device": "$via_device", "identifiers": [ "$identifiers" ] ''' # # GLOBAL VARS token = "" status = {"ip":"?", "mqtt": False} gDevices_enviados = { 'b': False, 't':datetime.now() } # Global - Controla quando enviar novamente o cabeçalho para autodiscovery gMqttEnviado = { 'b': False, 't':datetime.now() } # Global - Controla quando publicar novamente statusLast = status.copy() gDadosSolar = dict() gConnected = False #global variable for the state of the connection sensor_dic = dict() # {} def pega_url_jsonDic(url, payload, headers, qualPega): # recebe o dic da url if qualPega ==1 : resposta, sCode = pega_url(url, payload, headers, DEVELOPERS_MODE) else: resposta, sCode = pega_url2(url, payload, headers, DEVELOPERS_MODE) ret = dict() if sCode == 200: json_res = json.loads(resposta) ret = json_res return ret def pega_token(): # pega o token global token global TOKEN global HOYMILES_PASSWORD global HOYMILES_USER pass_hash = hashlib.md5(HOYMILES_PASSWORD.encode()) # b'senh<PASSWORD>' pass_hex = pass_hash.hexdigest() # print(pass_hex) ret = False T1 = Template(PAYLOAD_T1) payload_T1 = T1.substitute(user = HOYMILES_USER, password = <PASSWORD>hex) #print(payload_T1) header = headers_h1 header['Cookie'] = "'" + COOKIE_UID + "; " + COOKIE_EGG_SESS + "'" login, sCode = pega_url(URL1, payload_T1, header) if sCode == 200: json_res = json.loads(login) if json_res['status'] == '0': data_body = json_res['data'] token = json_res['data']['token'] TOKEN = token ret = True printC(Color.F_Blue, 'I got the token!! :-)') if token == "": print ('erro na resposta') ret = False elif json_res['status'] == '1': TOKEN = '' token = '' print (Color.F_Red + "Wrong user/password" + Color.F_Default) else: TOKEN = '' token = '' print (Color.F_Red + "HTTP Error: " + str(sCode) + Color.F_Default + " " + dl.httpStatusCode(sCode)) return ret def pega_solar(uid): # pega dados da usina ret = False T2 = Template(PAYLOAD_T2) payload_t2 = T2.substitute(sid = uid) header = headers_h2 # header['Cookie'] = COOKIE_UID + "; " + COOKIE_EGG_SESS + "; hm_token=" + token + "; Path=/; Domain=.global.hoymiles.com; Expires=Sat, 19 Mar 2022 22:11:48 GMT;" + "'" header['Cookie'] = COOKIE_UID + "; hm_token=" + token + "; Path=/; Domain=.global.hoymiles.com; Expires=Sat, 19 Mar 2022 22:11:48 GMT;" + "'" solar = pega_url_jsonDic(URL2, payload_t2, header, 2) if 'status' in solar.keys(): solar_status = solar['status'] if solar_status == "0": ret = solar.copy() if solar_status != "0": ret = solar_status if DEVELOPERS_MODE: printC(Color.B_Red, 'Solar Status Error: ' + str(solar_status) ) if solar_status == "100": # erro no token # pede um novo if (pega_token()): # chama pega solar novamente ret = pega_solar(uid) else: print(Color.B_Red + "I can't connect!" + Color.B_Default) return ret def get_secrets(): ''' GET configuration data ''' global HOYMILES_USER global HOYMILES_PASSWORD global HOYMILES_PLANT_ID global MQTT_HOST global MQTT_PASSWORD global MQTT_USERNAME global DEVELOPERS_MODE global WEB_SERVER config = dl.getConfigParser(SECRETS) printC (Color.F_LightGreen, "Reading secrets.ini") # le os dados HOYMILES_USER = dl.get_config(config, 'secrets', 'HOYMILES_USER', HOYMILES_USER) HOYMILES_PASSWORD = dl.get_config(config, 'secrets', 'HOYMILES_PASSWORD', HOYMILES_PASSWORD) HOYMILES_PLANT_ID = dl.get_config(config, 'secrets','HOYMILES_PLANT_ID', HOYMILES_PLANT_ID, getInt=True) MQTT_PASSWORD = dl.get_config(config, 'secrets', 'MQTT_PASS', MQTT_PASSWORD) MQTT_USERNAME = dl.get_config(config, 'secrets', 'MQTT_USER', MQTT_USERNAME) MQTT_HOST = dl.get_config(config, 'secrets', 'MQTT_HOST', MQTT_HOST) dev_mode = dl.get_config(config, 'developers', 'DEVELOPERS_MODE', "") if bool(dev_mode) == True: DEVELOPERS_MODE = True else: DEVELOPERS_MODE = False WEB_SERVER = dl.get_config(config, 'secrets', 'WEB_SERVER', WEB_SERVER) def substitui_secrets(): "No HASS.IO ADD-ON substitui os dados do secrets.ini pelos do options.json" global HOYMILES_USER global HOYMILES_PASSWORD global HOYMILES_PLANT_ID global MQTT_HOST global MQTT_PASSWORD global MQTT_USERNAME global DEVELOPERS_MODE global FILE_COMM global WEB_SERVER log().debug ("Loading env data....") HOYMILES_USER = dl.pegaEnv("HOYMILES_USER") HOYMILES_PASSWORD = dl.pegaEnv("HOYMILES_PASSWORD") HOYMILES_PLANT_ID = dl.pegaEnv("HOYMILES_PLANT_ID") MQTT_HOST = dl.pegaEnv("MQTT_HOST") MQTT_PASSWORD = dl.pegaEnv("MQTT_PASSWORD") MQTT_USERNAME = dl.pegaEnv("MQTT_USER") DEVELOPERS_MODE = dl.pegaEnv("DEVELOPERS_MODE") DEVELOPERS_MODE = dl.onOff(DEVELOPERS_MODE, True, False) if dl.IN_HASSIO(): WEB_SERVER = True FILE_COMM = '/data/' + comum.FILE_COMM log().debug ("Env data loaded.") def mqttStart(): ''' Start MQTT ''' global client global clientOk # MQTT Start client = mqtt.Client() log().info("Starting MQTT " + MQTT_HOST) print (Color.B_LightYellow + "Starting MQTT " + MQTT_HOST + Color.B_Default) if DEVELOPERS_MODE: log().debug("mqttStart MQTT_USERNAME: " + str(MQTT_USERNAME)) log().debug("mqttStart MQTT_PASSWORD: " + str(MQTT_PASSWORD)) client.username_pw_set(username=MQTT_USERNAME, password=MQTT_PASSWORD) client.on_connect = on_connect # client.on_message = on_message client.on_disconnect = on_disconnect client.on_publish = on_publish try: clientOk = True rc = client.connect(MQTT_HOST, 1883, 60) except Exception as e: # OSError if e.__class__.__name__ == 'OSError': clientOk = False log().warning("Can't start MQTT") print (Color.F_Red + "Can't start MQTT" + Color.F_Default) # e.errno = 51 - 'Network is unreachable' mostraErro(e,20, "MQTT Start") else: clientOk = False mostraErro(e,30, "MQTT Start") if clientOk: client.loop_start() # start the loop # The callback for when the client receives a CONNACK response from the server. def on_connect(client, userdata, flags, rc): global gConnected global status if rc == 0: cor = Color.F_Blue else: cor = Color.F_Red print(cor + "MQTT connected with result code " + str(rc) + Color.F_Default) log().debug("MQTT connected with result code " + str(rc)) if rc == 0: print ("Connected to " + MQTT_HOST) gConnected = True status['mqtt'] = "on" client.connected_flag = True # Mostra clientes status['publish_time'] = datetime.today().strftime('%Y-%m-%d %H:%M:%S') send_clients_status() else: tp_c = {0: "Connection successful", 1: "Connection refused – incorrect protocol version", 2: "Connection refused – invalid client identifier", 3: "Connection refused – server unavailable", 4: "Connection refused – bad username or password", 5: "Connection refused – not authorised", 100: "Connection refused - other things" } gConnected = False status['mqtt'] = "off" if rc>5: rc=100 #print (str(rc) + str(tp_c[rc])) print (str(rc) + dl.MQTT_STATUS_CODE(rc)) log().error(str(rc) + str(dl.MQTT_STATUS_CODE(rc))) # tratar quando for 3 e outros if rc == 4 or rc == 5: # senha errada print(Color.F_Magenta + "APP EXIT" + str(rc) + Color.F_Default) time.sleep(60000) #raise SystemExit(0) #sys.exit() #quit() def on_publish(client, userdata, mid): # fazer o que aqui? # fazer uma pilha para ver se foi publicado ou não # aparentemente só vem aqui, se foi publicado. if 1==2: print("Published mid: " + str(mid), "last: " + str(gLastMidMqtt)) if gLastMidMqtt-1 != mid: print ("Erro mid:" + str(mid) + " não publicado.") def on_disconnect(client, userdata, rc): global gConnected global gDevices_enviados global status gConnected = False log().info("disconnecting reason " +str(rc)) print("disconnecting reason " +str(rc)) client.connected_flag=False client.disconnect_flag=True gDevices_enviados['b'] = False # Force sending again status['mqtt'] = "off" # mostra cliente desconectado try: send_clients_status() except Exception as e: mostraErro(e, 30, "on_disconnect") def send_clients_status(): ''' send connected clients status ''' global status dadosEnviar = status.copy() mqtt_topic = MQTT_PUB + "/clients/" + status['ip'] dadosEnviar.pop('ip') dadosEnviar['UUID'] = UUID dadosEnviar['version'] = VERSAO dadosEnviar['plant_id'] = HOYMILES_PLANT_ID dadosEnviar['inHass'] = dl.IN_HASSIO() jsonStatus = json.dumps(dadosEnviar) (rc, mid) = publicaMqtt(mqtt_topic, jsonStatus) return rc def publicaMqtt(topic, payload): "Publica no MQTT atual" global gLastMidMqtt (rc, mid) = client.publish(topic, payload) # if DEVELOPERS_MODE: # print (Color.F_Cyan, topic, Color.F_Default) # print (Color.F_Blue, payload, Color.F_Default) gLastMidMqtt = mid if rc == mqtt.MQTT_ERR_NO_CONN: print ("mqtt.MQTT_ERR_NO_CONN") if rc == mqtt.MQTT_ERR_SUCCESS: # certo, sem erro. #print ("mqtt.MQTT_ERR_SUCCESS") gLastMidMqtt = mid if rc == mqtt.MQTT_ERR_QUEUE_SIZE: print ("mqtt.MQTT_ERR_QUEUE_SIZE") return rc, mid def send_hass(): ''' Envia parametros para incluir device no hass.io ''' global sensor_dic global gDevices_enviados # var comuns varComuns = {'sw_version': VERSAO, 'model': SOLAR_MODEL, 'manufacturer': MANUFACTURER, 'device_name': APP_NAME, 'identifiers': SHORT_NAME + "_" + str(HOYMILES_PLANT_ID), 'via_device': SOLAR_MODEL, 'sid': SID, 'uniq_id': UUID } #"UPS_ID" if DEVELOPERS_MODE: log().debug('Sensor_dic: ' + str(len(sensor_dic))) if len(sensor_dic) == 0: for k in json_hass.items(): json_file_path = k[0] + '.json' if dl.IN_HASSIO(): json_file_path = '/' + json_file_path # to run on HASS.IO if not os.path.isfile(json_file_path): log().error(json_file_path + " not found!") printC(Color.F_Cyan, json_file_path) json_file = open(json_file_path) if not json_file.readable(): printC(Color.B_Red,"I can't read file") json_str = json_file.read() sensor_dic[k[0]] = json.loads(json_str) if len(sensor_dic) == 0: printC(Color.B_Red, "Sensor_dic error") rc = 0 for k in sensor_dic.items(): # print('Componente:' + k[0]) rc = monta_publica_topico(k[0], sensor_dic[k[0]], varComuns) if not rc == 0: printC(Color.B_LightRed, 'Hass publish error: ' + str(rc) ) if rc == 0: gDevices_enviados['b'] = True gDevices_enviados['t'] = datetime.now() log().debug('Hass Sended') def publicaDados(solarData): # publica dados no MQTT global status global gMqttEnviado jsonUPS = json.dumps(solarData) (rc, mid) = publicaMqtt(MQTT_PUB + "/json", jsonUPS) gMqttEnviado['b'] = True gMqttEnviado['t'] = datetime.now() print (Color.F_Blue + "Dados Solares Publicados..." + Color.F_Default + str(datetime.now())) if status['mqtt'] == 'on': status[APP_NAME] = "on" else: status[APP_NAME] = "off" send_clients_status() return jsonUPS def monta_publica_topico(component, sDict, varComuns): ''' monta e envia topico ''' ret_rc = 0 key_todos = sDict['todos'] newDict = sDict.copy() newDict.pop('todos') for key,dic in newDict.items(): # print(key,dic) if key[:1] != '#': varComuns['uniq_id']=varComuns['identifiers'] + "_" + key if not('val_tpl' in dic): dic['val_tpl'] = dic['name'] dic['name'] = varComuns['uniq_id'] dic['device_dict'] = device_dict dic['publish_time'] = datetime.today().strftime('%Y-%m-%d %H:%M:%S') dic['expire_after'] = int(INTERVALO_EXPIRE) # quando deve expirar dados = Template(json_hass[component]) # sensor dados = Template(dados.safe_substitute(dic)) dados = Template(dados.safe_substitute(varComuns)) # faz ultimas substituições dados = dados.safe_substitute(key_todos) # remove os não substituidos. topico = MQTT_HASS + "/" + component + "/" + NODE_ID + "/" + varComuns['uniq_id'] + "/config" # print(topico) # print(dados) dados = dl.json_remove_vazio(dados) (rc, mid) = publicaMqtt(topico, dados) if rc == 0: if DEVELOPERS_MODE: topicoResumo = topico.replace(MQTT_HASS + "/" + component + "/" + NODE_ID, '...') topicoResumo = topicoResumo.replace("/config", '') printC (Color.F_Cyan, topicoResumo) else: # deu erro na publicação printC (Color.B_Red, "Erro monta_publica_topico") printC (Color.F_Red, topico) ret_rc = ret_rc + rc # print ("rc: ", rc) return rc def ajustaDadosSolar(): ''' ajusta dados solar ''' global gDadosSolar realPower = dl.float2number(gDadosSolar['real_power'],0) capacidade = dl.float2number(gDadosSolar['capacitor']) plant_tree = dl.float2number(gDadosSolar['plant_tree'], 0) month_eq = dl.float2number(gDadosSolar['month_eq']) / 1000 month_eq = round(month_eq, 2) total_eq = dl.float2number(gDadosSolar['total_eq']) / 1000000 total_eq = round(total_eq, 2) co2 = dl.float2number(gDadosSolar['co2_emission_reduction']) / 1000000 co2 = round(co2,2) # corrige escala e digitos if capacidade > 0 and capacidade < 100: capacidade = capacidade * 1000 capacidade = round(capacidade) power = (realPower / capacidade) * 100 power = round(power,1) if realPower == 0: printC (Color.F_Magenta, "realPower = 0") printC (Color.B_LightMagenta, dl.hoje() ) if DEVELOPERS_MODE: #printC ('parada 1/0', str(1/0)) printC(Color.B_Red,'parada') gDadosSolar['real_power'] = int( realPower ) gDadosSolar['power_ratio'] = float( power ) gDadosSolar['capacitor'] = int( capacidade ) gDadosSolar['co2_emission_reduction'] = float( co2 ) gDadosSolar['plant_tree'] = int( plant_tree ) gDadosSolar['total_eq'] = float( total_eq ) gDadosSolar['month_eq'] = float( month_eq ) def pegaDadosSolar(): global gDadosSolar ''' pega dados solar ''' dados_solar = pega_solar(HOYMILES_PLANT_ID) if DEVELOPERS_MODE: print ("dados_solar: " + str(dados_solar)) gDadosSolar = dados_solar['data'] capacidade = dl.float2number(gDadosSolar['capacitor']) real_power = dl.float2number(gDadosSolar['real_power']) if real_power == 0: # é igual a 0 printC(Color.B_Red, "REAL_POWER = 0") time.sleep(60) # espera 60 segundos printC(Color.F_Blue, "Getting data again") dados_solar = pega_solar(HOYMILES_PLANT_ID) gDadosSolar = dados_solar['data'] capacidade = dl.float2number(gDadosSolar['capacitor']) real_power = dl.float2number(gDadosSolar['real_power']) if capacidade == 0: # é um erro print (Color.B_Red + "Erro capacitor: " + str(capacidade) + Color.B_Default) else: ajustaDadosSolar() return gDadosSolar # RODA O APP WEB def iniciaWebServerB(Conf): ''' inicia o webserver ''' webserver.app.run(debug=True, host="0.0.0.0", threaded=True) #app.run(debug=True, host="0.0.0.0", threaded=False) def iniciaWebServer(): ''' inicia o webserver ''' printC (Color.B_LightMagenta, "WEB SERVER Starting ...") path_index = comum.PATH_TEMPLATE if IN_HASSIO(): path_index = comum.PATH_TEMPLATE_HAS bl_existe_index = os.path.isfile(path_index + '/index.html') if not bl_existe_index: ''' não existe o index ''' printC (Color.B_Red, "Index not found. I can't start webserver. ") arr = os.listdir(path_index) printC(Color.F_Magenta, path_index) print(arr) else: # existe index p = multiprocessing.Process(target=iniciaWebServerB, args=({"Something":"SomethingElese"},)) p.start() # INICIO, START print (Color.B_Blue + "********** " + MANUFACTURER + " " + APP_NAME + " v." + VERSAO + Color.B_Default) print (Color.B_Green + "Starting up... " + datetime.today().strftime('%Y-%m-%d %H:%M:%S') + ' ' + Color.B_Default) dl.inicia_log(logFile='/var/tmp/hass.hoymiles.log', logName='hass.hoymiles', stdOut=True) # info dl.dadosOS() status['ip'] = dl.get_ip() print (Color.B_Cyan + "IP: " + Color.B_Default + Color.F_Magenta + status['ip'] + Color.F_Default) if DEVELOPERS_MODE: print (Color.B_Red, "DEVELOPERS_MODE", Color.B_Default) get_secrets() if dl.IN_HASSIO(): print (Color.B_Blue, "IN HASS.IO", Color.B_Default) if not DEVELOPERS_MODE or 1==1: # teste substitui_secrets() if DEVELOPERS_MODE: print (Color.B_Red, "DEVELOPERS_MODE", Color.B_Default) if DEFAULT_MQTT_PASS == MQTT_PASSWORD: log().warning ("YOU SHOUD CHANGE DE DEFAULT MQTT PASSWORD!") print (Color.F_Red + "YOU SHOUD CHANGE DE DEFAULT MQTT PASSWORD!" + Color.F_Default) if DEVELOPERS_MODE or MQTT_HOST == '192.168.50.20': print (Color.F_Green + "HOYMILES_USER: " + Color.F_Default + str(HOYMILES_USER)) print (Color.F_Green + "HOYMILES_PASSWORD: " + Color.F_Default + str(HOYMILES_PASSWORD)) print (Color.F_Green + "HOYMILES_PLANT_ID: " + Color.F_Default + str(HOYMILES_PLANT_ID)) print (Color.F_Green + "MQTT_HOST: " + Color.F_Default + str(MQTT_HOST)) print (Color.F_Green + "MQTT_PASSWORD: " + Color.F_Default + str(MQTT_PASSWORD)) print (Color.F_Green + "MQTT_USERNAME: " + Color.F_Default + str(MQTT_USERNAME)) print (Color.F_Blue + "INTERVALO_MQTT: " + Color.F_Default + str(INTERVALO_MQTT)) print (Color.F_Blue + "INTERVALO_HASS: " + Color.F_Default + str(INTERVALO_HASS)) print (Color.F_Blue + "INTERVALO_GETDATA: " + Color.F_Default + str(INTERVALO_GETDATA)) print (Color.F_Blue + "WEB_SERVER: " + Color.F_Default + str(WEB_SERVER)) if dl.float2number(HOYMILES_PLANT_ID) < 100: print (Color.F_Green + "HOYMILES_PLANT_ID: " + Color.F_Default + str(HOYMILES_PLANT_ID)) print (Color.B_Magenta + "Wrong plant ID" + Color.B_Default ) cnt = 0 while token == '': pega_token() cnt = cnt + 1 if token == '': print (Color.B_Red + "I can't get access token" + Color.B_Default) if cnt >= 5: exit() time.sleep(60000) if token != '': # pega dados solar #dados_solar = pega_solar(HOYMILES_PLANT_ID) #print (str(dados_solar)) #gDadosSolar = dados_solar['data'] pegaDadosSolar() else: log().error("I can't get access token") print (Color.B_Red + "I can't get access token" + Color.B_Default) quit() # força a conexão while not gConnected: mqttStart() time.sleep(1) # wait for connection if not clientOk: time.sleep(240) send_hass() # primeira publicação jsonx = publicaDados(gDadosSolar) if dl.float2number(gDadosSolar['total_eq'], 0) == 0: log().warning('All data is 0. Maybe your Plant_ID is wrong.') status['response'] = "Plant_ID could be wrong!" send_clients_status() if WEB_SERVER: # se tiver webserver, inicia o web server iniciaWebServer() dl.writeJsonFile(FILE_COMM, jsonx) printC(Color.B_LightCyan, 'Loop start!') # loop start while True: if gConnected: time_dif = dl.date_diff_in_Seconds(datetime.now(), \ gDevices_enviados['t']) if time_dif > INTERVALO_HASS: gDevices_enviados['b'] = False send_hass() time_dif = dl.date_diff_in_Seconds(datetime.now(), \ gMqttEnviado['t']) if time_dif > INTERVALO_GETDATA: pegaDadosSolar() jsonx = publicaDados(gDadosSolar) if WEB_SERVER: dl.writeJsonFile(FILE_COMM, jsonx) if not clientOk: mqttStart() # tenta client mqqt novamente. time.sleep(10) # dá um tempo de 10s ```
{ "source": "jlamontagne/prawler", "score": 3 }
#### File: prawler/spidermiddleware/phantomjs.py ```python from scrapy.http import Request class PhantomJSMiddleware(object): def _rewrite_url(self, r): if isinstance(r, Request): url = 'phantomjs-' + r.url r = r.replace(url=url) return r def process_start_requests(self, start_requests, spider): if not hasattr(spider, 'use_phantomjs') or not spider.use_phantomjs: return start_requests return (self._rewrite_url(r) for r in start_requests or ()) def process_spider_output(self, response, result, spider): if not hasattr(spider, 'use_phantomjs') or not spider.use_phantomjs: return result return (self._rewrite_url(r) for r in result or ()) ``` #### File: prawler/utils/misc.py ```python import re from bs4 import NavigableString def decompose_all(s): for tag in s: if isinstance(tag, NavigableString): tag.replace_with('') else: tag.decompose() def text(x): if isinstance(x, NavigableString): x = unicode(x) elif not isinstance(x, basestring): x = ' '.join(x.stripped_strings) x = re.sub('(\r\n)|\r|\n', '', x).replace('\t', ' ') return x.strip() ```
{ "source": "jlamoso/petisco", "score": 3 }
#### File: petisco/application/repository.py ```python from abc import ABCMeta, abstractmethod from typing import Dict class Repository: __metaclass__ = ABCMeta @abstractmethod def info(self) -> Dict: return {"Repository": "Not Implemented"} ``` #### File: events/redis/redis_based_event_handler.py ```python from petisco.events.event import Event def redis_based_event_handler(func): def wrapper(message): json_data = message["data"].decode("utf-8") event = Event.from_json(json_data) return func(event) return wrapper ``` #### File: integration/controller/fixtures.py ```python import os import pytest from petisco import FlaskApplication SWAGGER_DIR = os.path.dirname(os.path.abspath(__file__)) + "/application/" app = FlaskApplication(application_name="petisco", swagger_dir=SWAGGER_DIR).get_app() @pytest.fixture def client(): with app.app.test_client() as c: yield c @pytest.fixture def given_any_apikey(): apikey = "apikey" return apikey ``` #### File: unit/mocks/fake_logger.py ```python from petisco.logger.logger import Logger class FakeLogger(Logger): def __init__(self): self.logging_messages = [] def log(self, logging_level, message): self.logging_messages.append((logging_level, message)) def get_logging_messages(self): return self.logging_messages ```
{ "source": "jlampar/Evaluation", "score": 3 }
#### File: jlampar/Evaluation/evaluation.py ```python import csv def csv_dict_loader(dict_file): csv_dict = {} for row in csv.DictReader(open(dict_file)): for col, value in row.iteritems(): csv_dict.setdefault(col, []).append(value) return csv_dict def compute_total_price(products,currence): total = [] for elements_product in products['id']: nr = int(elements_product) - 1 currency_index = currence['code'].index(products['currency'][nr]) ratio = (float(currence['ratio'][currency_index])) total.append((int(products['price'][nr]) / ratio) * int(products['quantity'][nr])) return total def sort_groups(products,total,match): zip_list = [list(x) for x in zip(products['currency'], products['quantity'], products['corresponding_id'], total)] match_list = [] sorted_list = [] for m_id in match['corresponding_id']: match_list.append([]) for ele in zip_list: match_list[int(ele[2]) - 1].append(ele[3]) for every_sub_list in match_list: sorted_list.append(sorted(every_sub_list, reverse=True)) return sorted_list def generate_output(sorted_group,match,test): output_list = [] for every_element in sorted_group: index = sorted_group.index(every_element) count = int(match['limit'][index]) ignored = len(every_element) - count total = 0 for elements_element in every_element[0:count]: total += elements_element average = total / count t = '%.2f' % total av = '%.2f' % average output_list.append([index + 1, t, av, 'PLN', ignored]) file_name = 'finest' + test + '.csv' with open(file_name, 'wb') as write_file: writer = csv.writer(write_file) writer.writerow(['id', 'in_total', 'average', 'currency', 'ignored']) writer.writerows(output_list) data = csv_dict_loader('products.csv') currencies = csv_dict_loader('currency_ratio.csv') correspond = csv_dict_loader('correspondence.csv') total_price = compute_total_price(data,currencies) sorted_group = sort_groups(data,total_price,correspond) generate_output(sorted_group,correspond,'') ```
{ "source": "jlampar/RINEX-to-geocentric-XYZ", "score": 3 }
#### File: jlampar/RINEX-to-geocentric-XYZ/RINEX_to_Geocentric_XYZ.py ```python import datetime from math import sqrt from math import sin from math import cos from math import atan2 class SateliteTime(object): def __init__(self,date_day,date_time,prop): self.date_day = date_day self.date_time = date_time self.prop = prop def time(self): date_day_array = self.date_day.split("/") date_time_array = self.date_time.split(":") week = datetime.date(int(date_day_array[2]), int(date_day_array[1]), int(date_day_array[0])).weekday() if week >= 0 and week < 6: week += 1 elif week == 6: week = 0 return float(week * 24 * 60 * 60) + float(int(date_time_array[0]) * 60 * 60) + float(int(date_time_array[1]) * 60) + float(date_time_array[2]) class RINEX(object): mi = 3.986005*(10**14) oe = 7.2921151467*(10**(-5)) def __init__(self,file): self.file = file def extract(self): open_file = open(self.file, 'r').read().split('\n') first_iter = [] for every_line in open_file: if every_line[0] == "-": first_iter.append(every_line) else: first_iter.append(" " + str(every_line)) second_iter = [] for every_verse in first_iter: second_iter.append(list(every_verse[0 + i:19 + i] for i in range(0, len(every_verse), 19))) variables = [] for items in second_iter[1:6]: items = [item.replace('D', 'E') for item in items] for every_element in items: variables.append(float(every_element)) variables.append(float(first_iter[0][23:42].replace('D', 'E'))) variables.append(float(first_iter[0][42:61].replace('D', 'E'))) variables.append(float(first_iter[0][61:80].replace('D', 'E'))) return variables # [33.0(IODE), 56.1875(Crs), 4.54483216765e-09(DELTAn), -2.88842646276(M0), 2.83680856228e-06(Cuc), 0.0169634080958(e), 5.29177486897e-06(Cus), 5153.68485069(sqrtA), 64800.0(Toe), 2.14204192162e-07(Cic), -1.79229306516(OMEGA0), -1.26659870148e-07(Cis), 0.973313017457(I0), 282.21875(Crc), -1.89637567079(omega), -7.93497338063e-09(OMEGADOT), 5.64666377764e-10(Idot), 1.0(nd), 1628.0(nd), 0.0(nd), 2.63666734099e-05(a0), 2.27373675443e-12(a1), 0.0(a2)] # [IODE(0), Crs(1), DELTAn(2), M0(3), Cuc(4), e(5), Cus(6), sqrtA(7), Toe(8), Cic(9), OMEGA0(10), Cis(11), I0(12), Crc(13), omega(14), OMEGADOT(15), Idot(16), nd(17), nd(18), nd(19), a0(20), a1(21), a2(22)] def dt(self,arr,t): return (arr[20] + arr[21]*(t-arr[8]) + arr[22]*((t-arr[8])**2)) def get_coordinates(self,arr,t,dt): tk = t - arr[8] - dt # epoka odniesienia efemeryd a = arr[7] ** 2 # duza polos orbity satelity n0 = sqrt(self.mi / (a ** 3)) # ruch sredni satelity n = n0 + arr[2] # poprawiony ruch sredni Mk = arr[3] + n * tk # anomalia srednia w epoce tk E = 0 Ek = 1 epsilon = 1 * 10 ** (-15) while abs(Ek - E) > epsilon: E = Ek Ek = Mk + arr[5] * sin(E) # anomalia mimosrodowa vk = atan2((sqrt(1 - arr[5] ** 2) * sin(Ek)), (cos(Ek) - arr[5])) # anomalia prawdziwa (w = vk) u = arr[14] + vk # argument szerokosci (u = Fik) duk = arr[6] * sin(2 * u) + arr[4] * cos(2 * u) # poprawka dla argumentu szerokosci drk = arr[1] * sin(2 * u) + arr[13] * cos(2 * u) # poprawka do promienia wodzacego dik = arr[11] * sin(2 * u) + arr[9] * cos(2 * u) + arr[16] * tk # poprawka dla kata nachylenia orbity uk = u + duk # poprawiony argument szereokosci rk = a * (1 - arr[5] * cos(Ek)) + drk # poprawiony promien wodzacy ik = arr[12] + dik # poprawiona wartosc kata nachylenia orbity OMEGAk = arr[10] + (arr[15] - self.oe) * tk - self.oe * arr[8] # poprawiona dlugosc wezla wstepujacego orbity s = rk * cos(uk) ni = rk * sin(uk) # wspolrzedne satleity w plaszczyznie orbity (x', y' = s, ni) # Wspolrzedne geocentryczne: XG = s * cos(OMEGAk) - ni * cos(ik) * sin(OMEGAk) YG = s * sin(OMEGAk) + ni * cos(ik) * cos(OMEGAk) ZG = ni * sin(ik) return (XG, YG, ZG) #Przykładowe dane dla pliku RINEX_d28 #Data obserwacji: 20/03/2011, 18:20:00 #Czas propagacji: 0.0738237203352194 path = raw_input("Podaj ścieżkę do pliku RINEX: ") print print "Podaj datę obserwacji." ddmmyy = raw_input("dd/mm/yy: ") hminsec = raw_input("h:min:sec: ") print propag = float(raw_input("Podaj czas propagacji: ")) print time = SateliteTime(ddmmyy,hminsec,propag).time() print "Sekundy zegara satelity: ", time rinex_file = RINEX(path) matrix = rinex_file.extract() delta = rinex_file.dt(matrix,time) coordinates = rinex_file.get_coordinates(matrix,time,delta) print "Poprawka zegara satelity: ", delta print "Współrzędne geocentryczne XYZ: ", coordinates ```
{ "source": "jlamperez/Vitis-Tutorials", "score": 2 }
#### File: HLS/design/create_fir_coefs.py ```python from __future__ import print_function import sys import copy def create_fir_coefs(n_taps, area): coefs = [] midpoint = (n_taps + 1.0) / 2.0 for ix in range (0, (n_taps + 1) // 2) : tap = area * (ix + 1) / midpoint**2 coefs.append(int(tap)) return coefs if ((len(sys.argv) != 5) and (len(sys.argv) != 6)) : print("Syntax is: ", sys.argv[0], "[-aie | -hls] <number_of_fir_filters> <number_of_fir_taps> <impulse area> [<window_size>]") sys.exit(1) window_size = 1024 mode = sys.argv[1] n_firs = int(sys.argv[2]) n_taps = int(sys.argv[3]) area = float(sys.argv[4]) coefs = [] coefs = create_fir_coefs(n_taps, area) if (mode == "-hls") : coefs2 = copy.copy(coefs) coefs2.reverse() if ((n_taps % 2) == 1) : del coefs2[0] coefs.extend(coefs2) elif (mode == "-aie") : if (len(sys.argv) == 6) : window_size = int(sys.argv[5]) else : print("**ERROR: switch must be either '-aie' or '-hls'") sys.exit(2) print("// FIR Coefficients Taps: ", n_taps, "Impulse Response Area: ", area) print("//") print("#define N_FIR_FILTERS ", n_firs); print("#define N_FIR_TAPS ", n_taps); if (mode == "-aie") : print("#define FIR_WINDOW_SIZE ", window_size); print("#define FIR_COEF_VALUES { ", end="") print(*coefs, sep=", ", end="") print(" }") ``` #### File: 07-AI-Engine-Floating-Point/Utils/GenerationLib.py ```python import numpy as np from math import * import random def GenerateTestVector(dtval,pliow,NPhases_s,NStreams_s,NSamples_s,NFrames_s,SeqType_s,Basename_s): print('DtVal : ',dtval.get()) print('PLIO width : ',pliow.get()) print('NPhases : ',NPhases_s.get()) print('NStreams : ',NStreams_s.get()) print('NSamples : ',NSamples_s.get()) print('NFrames : ',NFrames_s.get()) print('Type of Sequence : ',SeqType_s.get()) print('Base filename : ',Basename_s.get()) NPhases = int(NPhases_s.get()) NStreams = int(NStreams_s.get()) LFrame = int(NSamples_s.get()) NFrames = int(NFrames_s.get()) SequenceType = SeqType_s.get() Basename = Basename_s.get() #parameters that should be in the GUI # SequenceType ='Linear' # 'SinCos' 'Linear' 'Random' 'Dirac' # Basename = 'PhaseIn' NSamples = NPhases*NStreams*LFrame*NFrames; NSamples1 = NPhases*NStreams*LFrame*(NFrames+1); # A little longer to allow for delay in streams NBitsData = 32; if( dtval.get() == 'int16'): NBitsData = 16 HasImag = 0 if (dtval.get() == 'cint16'): HasImag = 1 if(SequenceType != 'SinCos' and SequenceType != 'Linear' and SequenceType != 'Random' and SequenceType != 'Dirac'): print ('Unknown Sequence Type') return # Create the overall signal that will be distributed over all streams # it is already separated in phases S = np.zeros((NPhases,int(NSamples1/NPhases),1+HasImag)) for i in range(int(NSamples1/NPhases)): for p in range (NPhases): k = i*NPhases+p if (SequenceType == 'SinCos'): vr = int(5000*cos(6.28*5/(NPhases*NStreams*LFrame)*k)) vi = int(5000*sin(6.28*5/(NPhases*NStreams*LFrame)*k)) elif (SequenceType == 'Linear'): vr = k vi = -k elif (SequenceType == 'Random'): vr = random.randint(-5000,5000) vi = random.randint(-5000,5000) elif (SequenceType == 'Dirac'): vr = 0 vi = 0 if(k%151 == 1): vr = 1 elif(k%151 == 40): vi = 1 elif(k%151 == 81): vr = 2 elif(k%151 == 115): vi = -2 # if(k%311 == 50): # vr = 1 # S[p,i,0] = # if(HasImag==1): # S[p,i,1] = int(5000*sin(6.28*5/(NPhases*NStreams*LFrame)*k)) S[p,i,0] = vr if (HasImag == 1 ): S[p,i,1] = vi PLIOwidth = int(pliow.get()) NSamplesPerLine = int(PLIOwidth/NBitsData) # Data are read in blocks of 128 bits (4 data in cint16) # Create an Input test Vector in TestInputS.txt FileNames = []; # Easiest case: 1 stream per AI Engine if (NStreams == 1): #Creates list of filenames for Phi in range(NPhases): FileNames.append(Basename+'_'+str(Phi)+'.txt') #Open all files fds = [open(path, 'w') for path in FileNames] #Fill all files with the right data for p in range(NPhases): fd = fds[p] for s in range(int(NSamples1/NPhases/NSamplesPerLine)): for d in range(NSamplesPerLine): index = s*NSamplesPerLine + d fd.write(str(int(S[p,index,0]))+' ') if(HasImag): fd.write(str(int(S[p,index,1]))+' ') fd.write('\n') for fd in fds: fd.close() if (NStreams == 2): #Creates list of filenames for Phi in range(NPhases): for Stream in range(NStreams): FileNames.append('PhaseIn_'+str(Phi)+'_'+str(Stream)+'.txt') # Hash table to associate data to streams NSamplesIn128bits = int(128/NBitsData ) H = np.zeros((int(NSamples1/NPhases/2),2)) H = H.astype('int32') index = np.zeros(2) index = index.astype('int32') for s in range(int(NSamples1/NPhases)): k = int(s/NSamplesIn128bits) # Block order i = k%2 # Which streams H[index[i],i] = s index[i] = index[i]+1 #Open all files fds = [open(path, 'w') for path in FileNames] #Fill all files with the right data for p in range(NPhases): for stream in range(2): fd = fds[2*p+stream] for s in range(int(NSamples1/NPhases/NSamplesPerLine/NStreams)): for d in range(NSamplesPerLine): index = s*NSamplesPerLine + d fd.write(str(int(S[p,H[index,stream],0]))+' ') if(HasImag): fd.write(str(int(S[p,H[index,stream],1]))+' ') fd.write('\n') for fd in fds: fd.close() ``` #### File: sw/pysrc/run_traffic_gen_noplot.py ```python import os os.environ['OPENBLAS_NUM_THREADS'] = '1' from xilinx_xtlm import ipc_axis_master_util from xilinx_xtlm import ipc_axis_slave_util from xilinx_xtlm import xtlm_ipc import struct import multiprocessing as mp import numpy as np import copy as copy #import matplotlib.pyplot as plt class IQData(): def __init__(self, numpy_cplx_data,aietype='cint16',plio_width=32): """ Initialization """ self.input_cplx_data = numpy_cplx_data self.parent_conn0, self.child_conn0 = mp.Pipe() self.aietype = aietype self.plio_width = plio_width self.rx_payload_len = -1 self.tx_payload_len = -1 def self_test(self): print("inside self_test") #iqdata =MakeInputStim(NSamps) self.input_cplx_data = MakeCountingPattern(16) #self.plot_results(self.input_cplx_data,iqdata) #this is a test plot t1 = self.convert_numpy_to_bytes() self.convert_bytes_to_numpy(t1) #self.tx_to_aie(self.convert_numpy_to_bytes(),True) def rx_from_aie(self): payload = self.out0_util.sample_transaction() print("Rx Payload1(pasteable)= ") #this magic makes sure the first byte isnt interpreted #as an ASCII encoding character and just prints the value #print(''.join(r'\x'+hex(letter)[2:] for letter in payload.data)) print(payload.data) #print(payload.tkeep) print("Rx payload len=") print(len(payload.data)) #formatString = "<"+str(len(payload.data)//2)+"h" #rxData = struct.unpack(formatString, payload.data) #print("Rx payload finished") cvec = self.convert_bytes_to_numpy(payload.data) self.child_conn0.send(cvec) print("Rx payload tx to parent") def tx_to_aie(self,iq_data_as_bytes,test): NumBytesToSend = len(iq_data_as_bytes) print("xmit: len Bytes = %d" % NumBytesToSend) NumBytesPerBeat = self.plio_width//8 NumTransports = NumBytesToSend//NumBytesPerBeat print("NumBytesToSend=%d,NumBytesPerBeat=%d,NumTransports=%d" % (NumBytesToSend,NumBytesPerBeat,NumTransports)) for i in range(NumTransports): data2send = iq_data_as_bytes[(i*NumBytesPerBeat):(i*NumBytesPerBeat)+NumBytesPerBeat] if(test == False): payload = xtlm_ipc.axi_stream_packet() payload.data_length = NumBytesPerBeat if(i == NumTransports-1): payload.tlast = True print("Tlast sent!") else: payload.tlast = False payload.data =data2send if(self.plio_width == 32): payload.tkeep = bytes(bytearray(struct.pack("B", 0xF))) elif(self.plio_width == 64): payload.tkeep = bytes(bytearray(struct.pack("H", 0xFF))) elif(self.plio_width == 128): payload.tkeep = bytes(bytearray(struct.pack("I", 0xFFFF))) print("Payload Num: %d" % i) print(data2send) #print(''.join(r'\x'+hex(letter)[2:] for letter in data2send)) if(test == False): self.in0_util.b_transport(payload) print("Finished sending") def run_test(self, ipc=False): if ipc: self.in0_util = ipc_axis_master_util("sim_ipc_axis_master") self.out0_util = ipc_axis_slave_util("sim_ipc_axis_slave") self.tx_to_aie(self.convert_numpy_to_bytes(),False) print("Data sent to AIE. Waiting for results...") if ipc: p= mp.Process(target=self.rx_from_aie()) p.start() aie_output = self.parent_conn0.recv() print("Data received from AIE ") #print("z aie: ", z_aie) p.join() print(aie_output) self.plot_results(self.input_cplx_data,aie_output) input("Enter any key to end simulation") self.out0_util.disconnect() self.in0_util.end_of_simulation() print("Disconnected all IPC handles.. done!") def convert_numpy_to_bytes(self): #print(self.input_cplx_data) L = len(self.input_cplx_data) data = self.input_cplx_data print("Cplx Samples Len = %d" % L) if(self.aietype == "cint16"): rVec = np.real(data).astype(np.int16) iVec = np.imag(data).astype(np.int16) out2column = np.zeros((L,2)).astype(np.int16) elif(self.aietype =='cfloat'): print("cfloat!") rVec = np.real(data) iVec = np.imag(data) out2column = np.zeros((L,2)).astype(np.single) # elif(self.aietype =='cint16_plio128'): # print("cint16_PLIO128!") # #its unclear to me if i have to pack this differently... # rVec = np.real(data) # iVec = np.imag(data) # out2column = np.zeros((L,2)).astype(np.int16) else: print("Not supported type!") out2column[:,0] = rVec out2column[:,1] = iVec print("Byte array to send") print(''.join(r'\x'+hex(letter)[2:] for letter in out2column.tobytes())) print("outlen=") #print(len(out2column.tobytes() ) ) return out2column.tobytes() def convert_bytes_to_numpy(self,byte_array): #print("convert back byte_array =") #print(byte_array) #print(''.join(r'\x'+hex(letter)[2:] for letter in byte_array)) if(self.aietype == "cint16"): print("AIE TYPE = cint16") formatString = "<"+str(len(byte_array)//2)+"h" upack = struct.unpack(formatString, byte_array) ivec = upack[0:len(upack):2] rvec = upack[1:len(upack):2] elif(self.aietype =='cfloat'): print("AIE TYPE = cfloat") formatString = "<"+str(len(byte_array)//4)+"f" upack = struct.unpack(formatString, byte_array) print("Len Rx Array=") print(len(byte_array)) #allgoodvalues = upack[0:len(upack):2] ivec = upack[0:len(upack):2] rvec = upack[1:len(upack):2] #Shouldnt need this # if(len(ivec) != len(rvec)): # shorterlen = np.min((len(ivec),len(rvec))) # ivec = ivec[:shorterlen] # rvec = rvec[:shorterlen] # elif(self.aietype =='cint16_plio128'): # formatString = "<"+str(len(byte_array)//2)+"h" # upack = struct.unpack(formatString, byte_array) # #print(upack) # rvec = upack[0:len(upack):2] # ivec = upack[1:len(upack):2] else: print("Not supported type!") cVec = np.array(rvec) + 1j*np.array(ivec) print("back to numpy") #print(cVec) return cVec def plot_results(self,aie_in,aie_out,style='t'): print("In Plot") ##AIE IN #plt.plot( list(range(0,len(aie_in))) ,np.real(aie_in),label ="aie_in R") #plt.plot( list(range(0,len(aie_in))) ,np.imag(aie_in),label ="aie_in I") ### SKIPPING FFT FOR CFLOAT EXAMPLE ##Perform Golden Operation on AIE IN to generate Golden/reference output #golden_iq_out = np.fft.fftshift(np.fft.fft(aie_in)) #golden_iq_out = golden_iq_out/4 #DSPLIB FFT HAS OUTPUT = MATLAB*4. Compensate for this. #aie_out_shft = np.fft.fftshift(aie_out) #plt.plot( list(range(0,len(golden_iq_out))),np.abs(golden_iq_out),label ="Golden FFT - MAG",marker="+") #plt.plot( list(range(0,len(aie_out))) ,np.abs(aie_out_shft),label ="AIE OUT - MAG") #AIE OUT #plt.plot( list(range(0,len(aie_out))),np.real(aie_out),label ="aie_out R") #plt.plot( list(range(0,len(aie_out))),np.imag(aie_out),label ="aie_out I ") #plt.legend() #plt.show() # TriplePlot(aie_in,"Aie IN",file_or_plot="plot",logplot=True) # TriplePlot(aie_out,"Aie out",file_or_plot="plot",logplot=True) # def TriplePlot(iqdata,name,file_or_plot="file",FsMHz=245.76,logplot=False): # n = len(iqdata) # k = np.arange(n) # T = n/FsMHz # frq = (k-k.size/2)/T # fig, ax = plt.subplots(2, 1,figsize=(10, 5)) # ax[0].plot(np.real(iqdata), 'r') # if(iqdata.dtype == 'complex'): # ax[0].plot(np.imag(iqdata),'b') # ax[0].set_xlabel('Time Domain - Sample count') # fdom = np.fft.fftshift(np.fft.fft(iqdata)) # if(logplot == True): # logfdom = 20*np.log10(np.abs(fdom)+1e-9) # NBits = 10 # auto_scale_pk = np.max(logfdom) # auto_scale_range = 20*np.log10(2**(NBits-1)) # #print(auto_scale_range) # if(auto_scale_pk-auto_scale_range > 6): # #dont use this autoscale if the data doesnt have at least 6db range # ax[1].set_ylim([(auto_scale_pk*1.1)-auto_scale_range,auto_scale_pk*1.1]) # ax[1].set_ylabel('db (20log)') # else: # logfdom= np.abs(fdom) # ax[1].set_ylabel('linear') # ax[1].plot(frq,logfdom,'r') # ax[1].grid(True) # ax[1].set_xlabel('Frequency Domain ') # ax[0].set_title(name) # if(file_or_plot == "file"): # figfilename = name + ".png" # plt.savefig(figfilename,bbox_inches='tight') # else: # plt.show() def MakeInputStim(Nsamps=1024): n = np.arange(0,Nsamps) Fs = 245.76e6 Ftone = 30.72e6/16 cplxTone = 1.0* np.exp(-2*1j*np.pi*Ftone/Fs*n) #cplxTone += 1.0* np.exp(-2*1j*np.pi*15.36e6/Fs*n) Nbits = 16-4 Nbits = Nbits -2 #removed additional bits to help with FFT processing gain mx = np.max(np.abs(cplxTone)) cscaled = np.round(cplxTone/mx * 2**(Nbits-1)-1) return cscaled def MakeCountingPattern(Nsamps=16): #print("inside counting") #print(Nsamps) n = np.arange(0,Nsamps) nneg = -1*np.arange(0,Nsamps) cscale = n + 1j*nneg return cscale if __name__ == "__main__": NSamps=32 #iqdata =MakeInputStim(NSamps) iqdata = MakeCountingPattern(NSamps) obj = IQData(iqdata,aietype="cint16",plio_width=64) #obj.self_test() print("Starting Test...") obj.run_test(ipc=True) print("Test complete") ``` #### File: sw/pysrc/run_traffic_gen.py ```python import os os.environ['OPENBLAS_NUM_THREADS'] = '1' from xilinx_xtlm import ipc_axis_master_util from xilinx_xtlm import ipc_axis_slave_util from xilinx_xtlm import xtlm_ipc import struct import multiprocessing as mp import numpy as np import copy as copy import matplotlib.pyplot as plt import sys class IQData(): def __init__(self, numpy_cplx_data,aietype='cint16',plio_width=32,supressplots=0): """ Initialization """ self.input_cplx_data = numpy_cplx_data self.parent_conn0, self.child_conn0 = mp.Pipe() self.aietype = aietype self.plio_width = plio_width self.rx_payload_len = -1 self.tx_payload_len = -1 self.supressplots = supressplots def self_test(self): print("inside self_test") self.input_cplx_data = MakeCountingPattern(16) #self.plot_results(self.input_cplx_data,iqdata) t1 = self.convert_numpy_to_bytes() self.convert_bytes_to_numpy(t1) def rx_from_aie(self): payload = self.rx_axis.sample_transaction() #This call blocks until the AIE passes some data to the AXI SIM IPC SLAVE cvec = self.convert_bytes_to_numpy(payload.data) self.child_conn0.send(cvec) print("Received AIE Output. Sending to parent thread for processing") def tx_to_aie(self,iq_data_as_bytes,test): NumBytesToSend = len(iq_data_as_bytes) #print("xmit: len Bytes = %d" % NumBytesToSend) NumBytesPerBeat = self.plio_width//8 NumTrans = NumBytesToSend//NumBytesPerBeat print("NumBytesToSend=%d,NumBytesPerTransaction=%d,TotalTransactions=%d" % (NumBytesToSend,NumBytesPerBeat,NumTrans)) for i in range(NumTrans): data2send = iq_data_as_bytes[(i*NumBytesPerBeat):(i*NumBytesPerBeat)+NumBytesPerBeat] #Stride through byte array in steps of BytesPerBeat payload = xtlm_ipc.axi_stream_packet() #Create a axi stream packet object payload.data_length = NumBytesPerBeat #Tell the object how much data will be sent in bytes if(i == NumTrans-1): payload.tlast = True print("Tlast sent!") else: payload.tlast = False payload.data =data2send self.tx_axis.b_transport(payload) #Send the data to the ipc master print("Finished sending") def run_test(self, ipc=False): if ipc: self.tx_axis = ipc_axis_master_util("tx_iqdata") self.rx_axis = ipc_axis_slave_util("rx_iqdata") #Create both Master and Slave ipc utils. #The argument strings must match the names in system.cfg self.tx_to_aie(self.convert_numpy_to_bytes(),False) print("Data sent to AIE. Waiting for results...this may take a few minutes") if ipc: p= mp.Process(target=self.rx_from_aie()) p.start() aie_output = self.parent_conn0.recv() print("Data received from AIE ") p.join() if (not self.supressplots): self.plot_results(self.input_cplx_data,aie_output) input("Enter any key to end simulation") self.rx_axis.disconnect() self.tx_axis.end_of_simulation() print("Disconnected all IPC handles.. done!") def convert_numpy_to_bytes(self): L = len(self.input_cplx_data) data = self.input_cplx_data if(self.aietype == "cint16"): rVec = np.real(data).astype(np.int16) iVec = np.imag(data).astype(np.int16) out2column = np.zeros((L,2)).astype(np.int16) elif(self.aietype =='cfloat'): print("cfloat!") rVec = np.real(data) iVec = np.imag(data) out2column = np.zeros((L,2)).astype(np.single) else: print("Not supported type!") out2column[:,0] = rVec out2column[:,1] = iVec #print("Byte array to send") #print(''.join(r'\x'+hex(letter)[2:] for letter in out2column.tobytes())) #print("outlen=") return out2column.tobytes() def convert_bytes_to_numpy(self,byte_arry): if(self.aietype == "cint16"): formatString = "<"+str(len(byte_arry)//2)+"h" upack = struct.unpack(formatString, byte_arry) ivec = upack[0:len(upack):2] rvec = upack[1:len(upack):2] elif(self.aietype =='cfloat'): formatString = "<"+str(len(byte_arry)//4)+"f" upack = struct.unpack(formatString, byte_arry) print("Len Rx Array=") print(len(byte_arry)) ivec = upack[0:len(upack):2] rvec = upack[1:len(upack):2] else: print("Not supported type!") cVec = np.array(rvec) + 1j*np.array(ivec) return cVec def plot_results(self,aie_in,aie_out,style='t'): ##AIE IN # plt.plot( list(range(0,len(aie_in))) ,np.real(aie_in),label ="aie_in R") # plt.plot( list(range(0,len(aie_in))) ,np.imag(aie_in),label ="aie_in I") #Perform Golden Operation on AIE IN to generate Golden/reference output golden_iq_out = np.fft.fftshift(np.fft.fft(aie_in)) golden_iq_out = golden_iq_out/4 #DSPLIB FFT HAS OUTPUT = MATLAB*4. Compensate for this. aie_out_shft = np.fft.fftshift(aie_out) plt.plot( list(range(0,len(golden_iq_out))),np.abs(golden_iq_out),label ="Golden FFT - MAG",marker="+") plt.plot( list(range(0,len(aie_out))) ,np.abs(aie_out_shft),label ="AIE OUT - MAG") plt.legend() plt.show() def MakeInputStim(Nsamps=1024): n = np.arange(0,Nsamps) Fs = 245.76e6 Ftone = 30.72e6/16 cplxTone = 1.0* np.exp(-2*1j*np.pi*Ftone/Fs*n) Nbits = 16-4 Nbits = Nbits -2 #removed additional bits to help with FFT processing gain mx = np.max(np.abs(cplxTone)) cscaled = np.round(cplxTone/mx * 2**(Nbits-1)-1) return cscaled def MakeCountingPattern(Nsamps=16): n = np.arange(0,Nsamps) nneg = -1*np.arange(0,Nsamps) cscale = n + 1j*nneg return cscale if __name__ == "__main__": for i, arg in enumerate(sys.argv): if( i == 1): cmd_line_pliowidth = int(arg) if( i == 2): skipplots=int(arg) print(skipplots) NSamps=128 iqdata =MakeInputStim(NSamps) #iqdata = MakeCountingPattern(NSamps) obj = IQData(iqdata,aietype="cint16",plio_width=cmd_line_pliowidth,supressplots=skipplots) obj.run_test(ipc=True) print("TEST PASSED") ```
{ "source": "jlandais/recvis", "score": 2 }
#### File: recvis/ravens_torch/demos.py ```python import os import numpy as np from absl import app, flags from ravens_torch import tasks from ravens_torch.constants import EXPERIMENTS_DIR, ENV_ASSETS_DIR from ravens_torch.dataset import Dataset from ravens_torch.environments.environment import Environment flags.DEFINE_string('assets_root', ENV_ASSETS_DIR, '') flags.DEFINE_string('data_dir', EXPERIMENTS_DIR, '') flags.DEFINE_bool('disp', False, '') flags.DEFINE_bool('shared_memory', False, '') flags.DEFINE_string('task', 'block-insertion', '') flags.DEFINE_string('mode', 'test', '') flags.DEFINE_integer('n', 1000, '') FLAGS = flags.FLAGS def main(unused_argv): # Initialize environment and task. env = Environment( FLAGS.assets_root, disp=FLAGS.disp, shared_memory=FLAGS.shared_memory, hz=480) task = tasks.names[FLAGS.task]() task.mode = FLAGS.mode # Initialize scripted oracle agent and dataset. agent = task.oracle(env) dataset = Dataset(os.path.join( FLAGS.data_dir, f'{FLAGS.task}-{task.mode}')) # Train seeds are even and test seeds are odd. seed = dataset.max_seed if seed < 0: seed = -1 if (task.mode == 'test') else -2 # Collect training data from oracle demonstrations. while dataset.n_episodes < FLAGS.n: print(f'Oracle demonstration: {dataset.n_episodes + 1}/{FLAGS.n}') episode, total_reward = [], 0 seed += 2 np.random.seed(seed) env.set_task(task) obs = env.reset() info = None reward = 0 for _ in range(task.max_steps): act = agent.act(obs, info) # print('Acting...', act) episode.append((obs, act, reward, info)) obs, reward, done, info = env.step(act) total_reward += reward print(f'Total Reward: {total_reward} Done: {done}') if done: break episode.append((obs, None, reward, info)) # Only save completed demonstrations. if total_reward > 0.99: dataset.add(seed, episode) if __name__ == '__main__': app.run(main) ``` #### File: ravens_torch/models/gt_state.py ```python import torch import torch.nn as nn ACTIVATIONS = { 'relu': nn.ReLU, } def init_normal_weights_bias(m): if type(m) == nn.Linear: torch.nn.init.normal_(m.weight) torch.nn.init.normal_(m.bias) def DenseBlock(in_channels, out_channels, activation=None): if activation is not None: fc = nn.Sequential( nn.Linear(in_channels, out_channels), activation(), ) else: fc = nn.Linear(in_channels, out_channels) fc.apply(init_normal_weights_bias) return fc class MlpModel(nn.Module): """MLP ground-truth state module.""" def __init__(self, d_obs, d_action, activation="relu", mdn=False, dropout=0.2, use_sinusoid=True): super(MlpModel, self).__init__() self.normalize_input = True self.use_sinusoid = use_sinusoid if self.use_sinusoid: k = 3 else: k = 1 activation = ACTIVATIONS[activation] dim_concat = 128 + d_obs * k # CHECK INPUT DIMENSION self.fc1 = DenseBlock(d_obs * k, 128, activation) self.drop1 = nn.Dropout(p=dropout) self.fc2 = DenseBlock(dim_concat, 128, activation) self.drop2 = nn.Dropout(p=dropout) self.fc3 = DenseBlock(dim_concat, d_action, activation) self.mdn = mdn if self.mdn: k = 26 self.mu = DenseBlock(dim_concat, d_action * k) # Variance should be non-negative, so exp() self.logvar = DenseBlock(dim_concat, k) # mixing coefficient should sum to 1.0, so apply softmax self.pi = DenseBlock(dim_concat, k) self.softmax = nn.Softmax() self.temperature = 2.5 def reset_states(self): pass def set_normalization_parameters(self, obs_train_parameters): """Set normalization parameters. Args: obs_train_parameters: dict with key, values: - 'mean', numpy.ndarray of shape (obs_dimension) - 'std', numpy.ndarray of shape (obs_dimension) """ self.obs_train_mean = obs_train_parameters["mean"] self.obs_train_std = obs_train_parameters["std"] def call(self, x): """FPROP through module. Args: x: shape: (batch_size, obs_dimension) Returns: shape: (batch_size, action_dimension) (if MDN) shape of pi: (batch_size, num_gaussians) shape of mu: (batch_size, num_gaussians*action_dimension) shape of var: (batch_size, num_gaussians) """ obs = x * 1.0 # if self.normalize_input: # x = (x - self.obs_train_mean) / (self.obs_train_std + 1e-7) def cs(x): if self.use_sinusoid: sin = torch.sin(x) cos = torch.cos(x) return torch.cat((x, cos, sin), dim=1) else: return x cs_obs = cs(obs) x = self.drop1(self.fc1(cs_obs)) x = self.drop2(self.fc2(torch.cat((x, cs_obs), dim=1))) x = torch.cat((x, cs_obs), dim=1) if not self.mdn: x = self.fc3(x) return x else: pi = self.pi(x) pi = pi / self.temperature pi = self.softmax(pi) mu = self.mu(x) var = torch.exp(self.logvar(x)) return (pi, mu, var) ``` #### File: ravens_torch/models/regression.py ```python import numpy as np import torch import torch.nn as nn import torch.optim as optim from ravens_torch.models import mdn_utils from ravens_torch.models.conv_mlp import ConvMLP, DeepConvMLP from ravens_torch.utils import utils, MeanMetrics, to_device def Regression(in_channels, verbose=False): """Regression module.""" model = nn.Sequential( nn.Linear(in_channels, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 1), ) _ = to_device([model], "Regression", verbose=verbose) return model # class Regression: # """Regression module.""" # def __init__(self, in_channels, preprocess, use_mdn, verbose=False): # self.preprocess = preprocess # resnet = False # if resnet: # self.model = DeepConvMLP(in_channels, d_action=6, use_mdn=use_mdn) # else: # self.model = ConvMLP(d_action=6, use_mdn=use_mdn) # self.device = to_device([self.model], "Regression", verbose=verbose) # self.optim = optim.Adam(self.model.parameters(), lr=2e-4) # self.metric = MeanMetrics() # self.val_metric = MeanMetrics() # self.loss_criterion = nn.MSELoss() if not use_mdn else mdn_utils.mdn_loss # def set_batch_size(self, batch_size): # self.model.set_batch_size(batch_size) # def forward(self, in_img): # """Forward pass. # Args: # in_img: [B, C, H, W] # Returns: # output tensor. # """ # input_data = self.preprocess(in_img) # in_tensor = torch.tensor( # input_data, dtype=torch.float32).to(self.device) # output = self.model(in_tensor) # return output # def train_pick(self, batch_obs, batch_act, train_step, validate=False): # """Train pick.""" # self.metric.reset() # self.val_metric.reset() # input_data = self.preprocess(batch_obs) # in_tensor = torch.tensor( # input_data, dtype=torch.float32).to(self.device) # loss = train_step(self.model, self.optim, in_tensor, batch_act, # self.loss_criterion) # if not validate: # self.metric(loss) # else: # self.val_metric(loss) # return np.float32(loss) # def save(self, fname): # torch.save(self.model.state_dict(), fname) # def load(self, fname): # self.model.load_state_dict(torch.load(fname)) ``` #### File: ravens_torch/models/transport_6dof.py ```python import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from einops.layers.torch import Rearrange from ravens_torch.models.regression import Regression from ravens_torch.models.transport import Transport from ravens_torch.utils import MeanMetrics class TransportHybrid6DoF(Transport): """Transport + 6DoF regression hybrid.""" def __init__(self, in_channels, n_rotations, crop_size, preprocess, verbose=False): self.output_dim = 24 self.kernel_dim = 24 super().__init__(in_channels, n_rotations, crop_size, preprocess, verbose, name="Transport 6DoF") self.regress_loss = nn.HuberLoss() self.z_regressor = Regression(in_channels, verbose=verbose) self.roll_regressor = Regression(in_channels, verbose=verbose) self.pitch_regressor = Regression(in_channels, verbose=verbose) self.z_metric = MeanMetrics() self.roll_metric = MeanMetrics() self.pitch_metric = MeanMetrics() def correlate(self, in0, in1, softmax): in0 = Rearrange('b h w c -> b c h w')(in0) in1 = Rearrange('b h w c -> b c h w')(in1) output = F.conv2d(in0[Ellipsis, :3], in1[:, :, :3, :]) z_tensor = F.conv2d(in0[Ellipsis, :8], in1[:, :, :8, :]) roll_tensor = F.conv2d(in0[Ellipsis, 8:16], in1[:, :, 8:16, :]) pitch_tensor = F.conv2d(in0[Ellipsis, 16:24], in1[:, :, 16:24, :]) if softmax: output_shape = output.shape output = Rearrange('b c h w -> b (c h w)')(output) output = self.softmax(output) output = Rearrange( 'b (c h w) -> b c h w', c=output_shape[1], h=output_shape[2], w=output_shape[3])(output) output = output.detach().cpu().numpy() return output, z_tensor, roll_tensor, pitch_tensor def train_block(self, in_img, p, q, theta, z, roll, pitch): output = self.forward(in_img, p, softmax=False) output, z_tensor, roll_tensor, pitch_tensor = output # Get one-hot pixel label map and 6DoF labels. itheta = theta / (2 * np.pi / self.n_rotations) itheta = np.int32(np.round(itheta)) % self.n_rotations label_size = in_img.shape[:2] + (self.n_rotations,) label = np.zeros(label_size) label[q[0], q[1], itheta] = 1 z_label, roll_label, pitch_label = z, roll, pitch # Use a window for regression rather than only exact. u_window = 7 v_window = 7 theta_window = 1 u_min = max(q[0] - u_window, 0) u_max = min(q[0] + u_window + 1, z_tensor.shape[1]) v_min = max(q[1] - v_window, 0) v_max = min(q[1] + v_window + 1, z_tensor.shape[2]) theta_min = max(itheta - theta_window, 0) theta_max = min(itheta + theta_window + 1, z_tensor.shape[3]) z_est_at_xytheta = z_tensor[0, u_min:u_max, v_min:v_max, theta_min:theta_max] roll_est_at_xytheta = roll_tensor[0, u_min:u_max, v_min:v_max, theta_min:theta_max] pitch_est_at_xytheta = pitch_tensor[0, u_min:u_max, v_min:v_max, theta_min:theta_max] z_est_at_xytheta = Rearrange('b c h w -> b (h w c)')(z_est_at_xytheta) roll_est_at_xytheta = Rearrange( 'b c h w -> b (h w c)')(roll_est_at_xytheta) pitch_est_at_xytheta = Rearrange( 'b c h w -> b (h w c)')(pitch_est_at_xytheta) z_est_at_xytheta = self.z_regressor(z_est_at_xytheta) roll_est_at_xytheta = self.roll_regressor(roll_est_at_xytheta) pitch_est_at_xytheta = self.pitch_regressor(pitch_est_at_xytheta) z_weight = 10.0 roll_weight = 10.0 pitch_weight = 10.0 z_label = torch.tensor(z_label[np.newaxis, ...]).to(self.device) roll_label = torch.tensor(roll_label[np.newaxis, ...]).to(self.device) pitch_label = torch.tensor( pitch_label[np.newaxis, ...]).to(self.device) z_loss = z_weight * self.regress_loss(z_label, z_est_at_xytheta) roll_loss = roll_weight * \ self.regress_loss(roll_label, roll_est_at_xytheta) pitch_loss = pitch_weight * \ self.regress_loss(pitch_label, pitch_est_at_xytheta) return z_loss, roll_loss, pitch_loss def train(self, in_img, p, q, theta, z, roll, pitch): self.metric.reset() self.z_metric.reset() self.roll_metric.reset() self.pitch_metric.reset() self.model_query.train() self.model_key.train() self.z_regressor.model.train() self.roll_regressor.model.train() self.pitch_regressor.model.train() self.optimizer_query.zero_grad() self.optimizer_key.zero_grad() self.z_regressor.optimizer.zero_grad() self.roll_regressor.optimizer.zero_grad() self.pitch_regressor.optimizer.zero_grad() z_loss, roll_loss, pitch_loss = self.train_block( in_img, p, q, theta, z, roll, pitch) loss = z_loss + roll_loss + pitch_loss loss.backward() # MAYBE NOT FOLLOWING TWO LINES self.optimizer_query.step() self.optimizer_key.step() self.z_regressor.optimizer.step() self.roll_regressor.optimizer.step() self.pitch_regressor.optimizer.step() self.z_metric(z_loss) self.roll_metric(roll_loss) self.pitch_metric(pitch_loss) self.iters += 1 return np.float32(loss.detach().cpu().numpy()) def test(self, in_img, p, q, theta, z, roll, pitch): self.model_query.eval() self.model_key.eval() self.z_regressor.model.eval() self.roll_regressor.model.eval() self.pitch_regressor.model.eval() with torch.no_grad(): z_loss, roll_loss, pitch_loss = self.train_block( in_img, p, q, theta, z, roll, pitch) loss = z_loss + roll_loss + pitch_loss self.z_metric(z_loss) self.roll_metric(roll_loss) self.pitch_metric(pitch_loss) self.iters += 1 return np.float32(loss.detach().cpu().numpy()) # --------------------------------------------------------------------------- # Visualization methods. # --------------------------------------------------------------------------- # # For visualization # Need to pass in theta to use this visualization. # self.feature_visualize = False # if self.feature_visualize: # self.fig, self.ax = plt.subplots(5, 1) # self.write_visualize = False # self.plot_interval = 20 # visualize_input = False # if visualize_input and self.six_dof: # only supported for six dof model # self.visualize_train_input(in_img, p, q, theta, z, roll, pitch) # if theta is not None and self.feature_visualize and # self.iters % self.plot_interval == 0: # self.visualize_introspection(img_unprocessed, p, rvecs, in_shape, # theta, logits, kernel_raw, output) # def visualize_introspection(self, img_unprocessed, p, rvecs, in_shape, # theta, logits, kernel, output): # """Utils for visualizing features at # the end of the Background and Foreground networks.""" # # Do this again, for visualization # crop_rgb = tf.convert_to_tensor( # img_unprocessed.copy().reshape(in_shape), dtype=tf.float32) # crop_rgb = tf.repeat(crop_rgb, repeats=self.n_rotations, axis=0) # crop_rgb = tfa.image.transform(crop_rgb, rvecs, interpolation="NEAREST") # crop_rgb = crop_rgb[:, p[0]:(p[0] + self.crop_size), # p[1]:(p[1] + self.crop_size), :] # crop_rgb = crop_rgb.numpy() # self.ax[0].cla() # self.ax[1].cla() # self.ax[2].cla() # self.ax[3].cla() # itheta = theta / (2 * np.pi / self.n_rotations) # itheta = np.int32(np.round(itheta)) % self.n_rotations # self.ax[0].imshow(crop_rgb[itheta, :, :, :3].transpose(1, 0, 2) / 255.) # if self.write_visualize: # # delete first: # try: # shutil.rmtree("vis/crop_rgb") # shutil.rmtree("vis/crop_kernel") # except: # pylint: disable=bare-except # print("Warning: couldn't delete folder for visualization.") # os.system("mkdir -p vis/crop_rgb") # os.system("mkdir -p vis/crop_kernel") # for theta_idx in range(self.n_rotations): # filename = "itheta_" + str(theta_idx).zfill(4) + ".png" # if itheta == theta_idx: # filename = "label-" + filename # imageio.imwrite( # os.path.join("vis/crop_rgb/", filename), # crop_rgb[theta_idx, :, :, :3].transpose(1, 0, 2)) # self.ax[1].imshow(img_unprocessed[:, :, :3].transpose(1, 0, 2) / 255.) # if self.write_visualize: # filename = "img_rgb.png" # imageio.imwrite( # os.path.join("vis/", filename), # img_unprocessed[:, :, :3].transpose(1, 0, 2)) # logits_numpy = logits.numpy() # kernel_numpy = kernel.numpy() # for c in range(3): # channel_mean = np.mean(logits_numpy[:, :, :, c]) # channel_std = np.std(logits_numpy[:, :, :, c]) # channel_1std_max = channel_mean + channel_std # # channel_1std_max = np.max(logits_numpy[:, :, :, c]) # channel_1std_min = channel_mean - channel_std # # channel_1std_min = np.min(logits_numpy[:, :, :, c]) # logits_numpy[:, :, :, c] -= channel_1std_min # logits_numpy[:, :, :, c] /= (channel_1std_max - channel_1std_min) # for theta_idx in range(self.n_rotations): # channel_mean = np.mean(kernel_numpy[theta_idx, :, :, c]) # channel_std = np.std(kernel_numpy[theta_idx, :, :, c]) # channel_1std_max = channel_mean + channel_std # # channel_1std_max = np.max(kernel_numpy[itheta, :, :, c]) # channel_1std_min = channel_mean - channel_std # # channel_1std_min = np.min(kernel_numpy[itheta, :, :, c]) # kernel_numpy[theta_idx, :, :, c] -= channel_1std_min # kernel_numpy[theta_idx, :, :, c] /= ( # channel_1std_max - channel_1std_min) # self.ax[2].imshow(logits_numpy[0, :, :, :3].transpose(1, 0, 2)) # self.ax[3].imshow(kernel_numpy[itheta, :, :, :3].transpose(1, 0, 2)) # if self.write_visualize: # imageio.imwrite( # os.path.join("vis", "img_features.png"), # logits_numpy[0, :, :, :3].transpose(1, 0, 2)) # for theta_idx in range(self.n_rotations): # filename = "itheta_" + str(theta_idx).zfill(4) + ".png" # if itheta == theta_idx: # filename = "label-" + filename # imageio.imwrite( # os.path.join("vis/crop_kernel/", filename), # kernel_numpy[theta_idx, :, :, :3].transpose(1, 0, 2)) # heatmap = output[0, :, :, itheta].numpy().transpose() # # variance = 0.1 # heatmap = -np.exp(-heatmap / 0.1) # cmap = plt.cm.jet # norm = plt.Normalize(vmin=heatmap.min(), vmax=heatmap.max()) # heatmap = cmap(norm(heatmap)) # self.ax[4].imshow(heatmap) # if self.write_visualize: # imageio.imwrite("vis/heatmap.png", heatmap) # # non-blocking # plt.draw() # plt.pause(0.001) # # blocking # # plt.show() # def visualize_train_input(self, in_img, p, q, theta, z, roll, pitch): # """Visualize the training input.""" # points = [] # colors = [] # height = in_img[:, :, 3] # for i in range(in_img.shape[0]): # for j in range(in_img.shape[1]): # pixel = (i, j) # position = utils.pix_to_xyz(pixel, height, self.bounds, # self.pixel_size) # points.append(position) # colors.append(in_img[i, j, :3]) # points = np.array(points).T # shape (3, N) # colors = np.array(colors).T / 255.0 # shape (3, N) # self.vis["pointclouds/scene"].set_object( # g.PointCloud(position=points, color=colors)) # pick_position = utils.pix_to_xyz(p, height, self.bounds, # self.pixel_size) # label = "pick" # utils.make_frame(self.vis, label, h=0.05, radius=0.0012, o=0.1) # pick_transform = np.eye(4) # pick_transform[0:3, 3] = pick_position # self.vis[label].set_transform(pick_transform) # place_position = utils.pix_to_xyz(q, height, self.bounds, # self.pixel_size) # label = "place" # utils.make_frame(self.vis, label, h=0.05, radius=0.0012, o=0.1) # place_transform = np.eye(4) # place_transform[0:3, 3] = place_position # place_transform[2, 3] = z # rotation = utils.eulerXYZ_to_quatXYZW((roll, pitch, -theta)) # quaternion_wxyz = np.asarray( # [rotation[3], rotation[0], rotation[1], rotation[2]]) # place_transform[0:3, 0:3] = # mtf.quaternion_matrix(quaternion_wxyz)[0:3, 0:3] # self.vis[label].set_transform(place_transform) # _, ax = plt.subplots(2, 1) # ax[0].imshow(in_img.transpose(1, 0, 2)[:, :, :3] / 255.0) # ax[0].scatter(p[0], p[1]) # ax[0].scatter(q[0], q[1]) # ax[1].imshow(in_img.transpose(1, 0, 2)[:, :, 3]) # ax[1].scatter(p[0], p[1]) # ax[1].scatter(q[0], q[1]) # plt.show() ``` #### File: ravens_torch/tasks/align_box_corner.py ```python import os import numpy as np from ravens_torch.tasks.task import Task from ravens_torch.utils import utils class AlignBoxCorner(Task): """Aligning task.""" def __init__(self): super().__init__() self.max_steps = 3 def reset(self, env): super().reset(env) self._add_instance(env) def _add_instance(self, env): # Generate randomly shaped box. box_size = self.get_random_size(0.05, 0.15, 0.05, 0.15, 0.01, 0.06) # Add corner. dimx = (box_size[0] / 2 - 0.025 + 0.0025, box_size[0] / 2 + 0.0025) dimy = (box_size[1] / 2 + 0.0025, box_size[1] / 2 - 0.025 + 0.0025) corner_template = 'corner/corner-template.urdf' replace = {'DIMX': dimx, 'DIMY': dimy} corner_urdf = self.fill_template(corner_template, replace) corner_size = (box_size[0], box_size[1], 0) corner_pose = self.get_random_pose(env, corner_size) env.add_object(corner_urdf, corner_pose, 'fixed') os.remove(corner_urdf) # Add possible placing poses. theta = utils.quatXYZW_to_eulerXYZ(corner_pose[1])[2] fip_rot = utils.eulerXYZ_to_quatXYZW((0, 0, theta + np.pi)) pose1 = (corner_pose[0], fip_rot) alt_x = (box_size[0] / 2) - (box_size[1] / 2) alt_y = (box_size[1] / 2) - (box_size[0] / 2) alt_pos = (alt_x, alt_y, 0) alt_rot0 = utils.eulerXYZ_to_quatXYZW((0, 0, np.pi / 2)) alt_rot1 = utils.eulerXYZ_to_quatXYZW((0, 0, 3 * np.pi / 2)) pose2 = utils.multiply(corner_pose, (alt_pos, alt_rot0)) pose3 = utils.multiply(corner_pose, (alt_pos, alt_rot1)) # Add box. box_template = 'box/box-template.urdf' box_urdf = self.fill_template(box_template, {'DIM': box_size}) box_pose = self.get_random_pose(env, box_size) box_id = env.add_object(box_urdf, box_pose) os.remove(box_urdf) self.color_random_brown(box_id) # Goal: box is aligned with corner (1 of 4 possible poses). self.goals.append(([(box_id, (2 * np.pi, None))], np.int32([[1, 1, 1, 1]]), [corner_pose, pose1, pose2, pose3], False, True, 'pose', None, 1)) ``` #### File: ravens_torch/utils/text.py ```python class STYLE: BOLD = '\033[1m' END = '\033[0m' def bold(text): return STYLE.BOLD + text + STYLE.END ``` #### File: ravens_torch/utils/video_recorder.py ```python import os import numpy as np import skvideo.io import pybullet as p from ravens_torch.tasks import cameras from ravens_torch.utils.text import bold CONFIG = cameras.RealSenseD415.CONFIG class CameraImageGetter: def __init__(self, camera_config=None, width=1280): self.camera_idx = 0 if camera_config is not None: self.config = camera_config else: self.config = CONFIG[self.camera_idx] self.width = width self._compute_view_matrix() self._compute_projection_matrix_fov() def _compute_view_matrix(self): lookdir = np.float32([0, 0, 1]).reshape(3, 1) updir = np.float32([0, -1, 0]).reshape(3, 1) rotation = p.getMatrixFromQuaternion(self.config['rotation']) rotm = np.float32(rotation).reshape(3, 3) lookdir = (rotm @ lookdir).reshape(-1) camera_position = self.config['position'] camera_target_position = self.config['position'] + lookdir camera_up_vector = (rotm @ updir).reshape(-1) self.view_matrix = p.computeViewMatrix( cameraEyePosition=camera_position, cameraTargetPosition=camera_target_position, cameraUpVector=camera_up_vector) def _compute_projection_matrix_fov(self): im_w, im_h = self.config['image_size'] focal_len = self.config['intrinsics'][0] znear, zfar = self.config['zrange'] fovh = (im_w / 2) / focal_len fovh = 180 * np.arctan(fovh) * 2 / np.pi aspect_ratio = im_h / im_w self.projection_matrix = p.computeProjectionMatrixFOV( fov=fovh, aspect=aspect_ratio, nearVal=znear, farVal=zfar) def __call__(self): height = int(self.width * 3 / 4) _, _, rgbImg, _, _ = p.getCameraImage( width=self.width, height=height, viewMatrix=self.view_matrix, projectionMatrix=self.projection_matrix) return rgbImg class VideoRecorder: """ Video Recorder for the PyBullet environment Call VideoRecorder with a wrapper: `with VideoRecorder(...) as vid_rec:` Call `record_frame` wherever you need to save a frame in your code (for instace: after `p.stepSimulation()`, after `p.multiplyTransforms`...). """ def __init__(self, save_dir, episode_idx=0, record_mp4=True, display=True, verbose=False, camera_config=None): self.record_mp4 = record_mp4 self.display = display self.verbose = verbose self.record_every = 5 self.n_steps = 0 self.video_name = f"{save_dir}/episode-{episode_idx}.mp4" if record_mp4: if not os.path.exists(save_dir): os.makedirs(save_dir) if verbose and record_mp4: print( f"{bold('Video Recorder')} active, will save videos at {bold(self.video_name)}") width = 1280 self.camera_image_getter = CameraImageGetter( camera_config=camera_config, width=width) def __enter__(self): if self.record_mp4: self.frames = [] return self def record_frame(self): if self.record_mp4 and self.n_steps % self.record_every == 0: rgbImg = self.camera_image_getter()[..., :3] self.frames.append(rgbImg) self.n_steps += 1 def __exit__(self, exc_type, exc_val, exc_tb): if self.record_mp4: if self.verbose: print(f"Saving video at {self.video_name}") skvideo.io.vwrite( self.video_name, np.array(self.frames), inputdict={'-r': "120/1"}) ```
{ "source": "jlanday/home-watch", "score": 2 }
#### File: home-watch/app/utils.py ```python import base64 import datetime import logging import json import time import typing import os import cv2 from google.cloud import storage import numpy as np from sendgrid import SendGridAPIClient from sendgrid.helpers.mail import Mail from sendgrid.helpers.mail import ( Mail, Attachment, FileContent, FileName, FileType, Disposition, ContentId, ) import tensorflow as tf import tensorflow_hub as hub from plotters import * class spy_cam: def __init__( self, bucket_name:str="justin-source-data", # See https://github.com/tensorflow/hub/blob/master/examples/colab/tf2_object_detection.ipynb for other # compatible models. model_url:str="https://tfhub.dev/tensorflow/ssd_mobilenet_v2/2", seconds_between_alerts:str="60", camera_name:str="dev", project_name:str="home-watch", gcp_creds_path:str="gcp_creds.json", sg_creds_path:str="sg_api_key.json", min_score_thresh:str="0.5", rotate_angle:str="180", adjust_color:bool=False, sg_from_email:str="<EMAIL>", sg_to_email:str="<EMAIL>", resolution:str="800,800", ignore_list:str="car=1.0", cache_size:str="5", ): self.bucket_name = bucket_name self.model_url = model_url self.seconds_between_alerts = int(seconds_between_alerts) self.camera_name = camera_name self.project_name = project_name self.gcp_creds_path = gcp_creds_path self.sg_creds_path = sg_creds_path self.min_score_thresh = float(min_score_thresh) self.rotate_angle = int(rotate_angle) self.adjust_color = adjust_color self.sg_from_email = sg_from_email self.sg_to_email = sg_to_email self.resolution = resolution.split(",") assert len(self.resolution) == 2, "resolution needs to be shape (dim1,dim2)" self.ignore_dict = { item.split("=")[0]: float(item.split("=")[1]) for item in ignore_list.split(",") } self.logger = logging.getLogger() self.logger.setLevel(logging.INFO) self.cache_size = int(cache_size) try: ch = self.logger.handlers[0] ch.setFormatter( logging.Formatter( "[%(asctime)s][%(name)s][%(levelname)s] %(message)s'", "%Y-%m-%d %H:%M:%S", ) ) self.logger.handlers[0] = ch except: ch = logging.StreamHandler() ch.setFormatter( logging.Formatter( "[%(asctime)s][%(name)s][%(levelname)s] %(message)s'", "%Y-%m-%d %H:%M:%S", ) ) self.logger.addHandler(ch) if self.gcp_creds_path: self.gcp_client = storage.Client.from_service_account_json(self.gcp_creds_path) self.gcp_bucket = self.gcp_client.bucket(bucket_name) if not os.path.exists("images"): os.mkdir("images") self.logger.info("made images") self.cam = cv2.VideoCapture(0) self.cam.set(3, int(self.resolution[0])) self.cam.set(4, int(self.resolution[1])) self.logger.info("opened camera") self.model = hub.load(self.model_url) self.logger.info("loaded model") with open("category_index.json", "r") as f: self.category_index = json.loads(f.read()) if self.sg_creds_path: with open(self.sg_creds_path, "r") as f: self.sg_api_key = json.loads(f.read())["sg_api_key"] self.mail_client = SendGridAPIClient(self.sg_api_key) self.cache = [] def add_image_to_cache(self, image_path: str) -> None: """Appends an image_path to a cache for emailing""" self.cache.append(image_path) def clear_cache(self) -> None: """Clears the cache""" self.cache = [] def send_email(self, subject: str = "Stranger Danger?", content: str = "<strong>:-)</strong>") -> None: """Emails all of the images in the cache""" # -- Initialize a template message = Mail( from_email=self.sg_from_email, to_emails=self.sg_to_email, subject=subject, html_content=content, ) attachments = [] # -- We want to reverse the cache so the images are sent in the order they are taken # -- We want to limit the number of images by the cache size. for index, image_path in enumerate(self.cache[::-1][: self.cache_size]): try: with open(image_path, "rb") as f: image_bytes = f.read() attachment = Attachment() attachment.file_content = FileContent(base64.b64encode(image_bytes).decode()) attachment.file_type = FileType("image/jpg") attachment.file_name = FileName(image_path) attachment.disposition = Disposition("attachment") attachment.content_id = ContentId("ID{}".format(index)) self.logger.info("added {}".format(image_path)) message.add_attachment(attachment) except: self.logger.error("{} attatchment failure".format(image_path)) response = self.mail_client.send(message) if response.status_code == 202: self.logger.info("email sent!") else: self.logger.error("email failure {}".format(email_response.body)) def capture_image(self) -> (str, np.ndarray): """Uses a webcam to take an image and provides transformations""" # -- Construct image path now = datetime.datetime.now() dt = now.strftime("%Y-%m-%d") hms = now.strftime("%H:%M:%S:%f") if not os.path.exists("images/dt={dt}".format(dt=dt)): os.mkdir("images/dt={dt}".format(dt=dt)) path = "images/dt={dt}/{batch}.jpg".format(dt=dt, batch=hms) # -- Take the photo _, image = self.cam.read() # -- Recall if self.adjust_color == "True": image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # -- Rotate if self.rotate_angle: assert isinstance(self.rotate_angle, int), "rotate_angle needs to be an integer or None or False" image_center = tuple(np.array(image.shape[1::-1]) / 2) rot_mat = cv2.getRotationMatrix2D(image_center, self.rotate_angle, 1.0) image = cv2.warpAffine(image, rot_mat, image.shape[1::-1], flags=cv2.INTER_LINEAR) return path, image def batch_numpy_image(self, image: np.ndarray) -> np.ndarray: """Reshape to have batch size = 1""" return image.reshape((1, *image.shape)).astype(np.uint8) def make_predictions(self, image_np: np.ndarray) -> dict: """Runs image through arbitrary tensorhub model and returns results""" results = self.model(image_np) result = {key: value.numpy() for key, value in results.items()} return result def draw_boxes_on_predictions(self, image_np: np.ndarray, result: dict) -> np.ndarray: """Draws boundary boxes and labels on image""" image_np_with_detections = image_np.copy() # -- A helper function from google :) visualize_boxes_and_labels_on_image_array( image_np_with_detections[0], result["detection_boxes"][0], (result["detection_classes"][0]).astype(int), result["detection_scores"][0], self.category_index, use_normalized_coordinates=True, max_boxes_to_draw=200, min_score_thresh=self.min_score_thresh, agnostic_mode=False, ) return image_np_with_detections[0] def disk_to_cloud(self, image_path: str): """Takes an image saved to disk and uploads it to all provided cloud storage vendors""" if self.gcp_client: try: gcp_path = self.disk_to_gcp(image_path) self.logger.info("image w boxes saved to cloud {}".format(gcp_path)) except: self.logger.error("problem saving to gcp {}".format(gcp_path)) # -- TODO: Implement other cloud cloud providers def disk_to_gcp(self, image_path: str) -> str: """Uploads a jpg to google cloud storage""" blob_path = "{project_name}/{camera_name}/{path}".format( project_name=self.project_name, camera_name=self.camera_name, path=image_path, ) blob = self.gcp_bucket.blob(blob_path) blob.upload_from_filename(image_path, content_type="image/jpg") return blob_path def validate_results(self, results: dict) -> bool: """Checks your results against exclusions to determine notifications""" send_message = False class_indicies = np.where(results["detection_scores"][0] >= self.min_score_thresh)[0] class_labels = results["detection_classes"][0][class_indicies] class_labels = [ self.category_index[str(int(index))]["name"] for index in class_labels ] class_scores = results["detection_scores"][0][class_indicies] for index, label in enumerate(class_labels): class_score = class_scores[index] message = "{}={:.2f}".format(label, class_score) self.logger.info(message) if label in self.ignore_dict.keys(): if class_score >= self.ignore_dict[label]: send_message = True elif class_score >= self.min_score_thresh: send_message = True return send_message ```
{ "source": "jlandercy/newproject", "score": 2 }
#### File: newproject/newproject/_new.py ```python import sys import newproject from newproject.settings import settings def main(): """ Module entrypoint """ settings.logger.info("New package {}".format(newproject.__version__)) sys.exit(0) if __name__ == "__main__": main() ``` #### File: newproject/newproject/service.py ```python import sys from newproject.settings import settings def main(): """ Service entrypoint """ import argparse # CLI Arguments: cli_parser = argparse.ArgumentParser( description="Service Command Line", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) cli_parser.add_argument( "--verbose", type=int, default=40, help="Logger Verbose Level" ) cli_parser.add_argument( "--config", type=str, default=str(settings.file), help="Configuration path" ) cli_parameters = cli_parser.parse_args() # Set Logger Level settings.logger.setLevel(cli_parameters.verbose) sys.exit(0) if __name__ == "__main__": main() ```
{ "source": "jlandercy/odapi", "score": 3 }
#### File: odapi/odapi/errors.py ```python import sys from odapi.settings import settings class GenericError(Exception): """Generic Package Exception must be subclassed not raised""" def __init__(self, message, **kwargs): super().__init__(message) self.__dict__.update(kwargs) settings.logger.error("[{}] {}: {}".format(type(self).__name__, message, kwargs)) class BadParameter(GenericError): """This exception stands for Bad Parameter error in method calls""" class MissingFrequency(GenericError): """This exception stands when a frequency is needed but not found""" def main(): raise BadParameter("There is nothing about foo or bar", foo="bar") sys.exit(0) if __name__ == "__main__": main() ``` #### File: tests/interfaces/test_interfaces_geomatic.py ```python import sys import unittest import pandas as pd from odapi.settings import settings class GeomaticTest: pass def main(): unittest.main() sys.exit(0) if __name__ == "__main__": main() ``` #### File: tests/package/test_package_settings.py ```python import sys import unittest from types import SimpleNamespace from odapi.settings import settings class SettingsTest(unittest.TestCase): def test_NameSpace(self): self.assertIsInstance(settings, SimpleNamespace) def test_RequiredSettings(self): self.assertTrue({'package', 'resources', 'uuid4'}.issubset(settings.__dict__)) def main(): unittest.main() sys.exit(0) if __name__ == "__main__": main() ``` #### File: odapi/toolbox/generic.py ```python import sys import pathlib import json from functools import wraps import numpy as np from odapi.settings import settings class SettingsFile: """ Settings files """ @staticmethod def load(path_or_object): """ Load file or dict settings :param path_or_object: Valid path pointing to a valid JSON resource or dict :param path_or_object: str, pathlib.Path, dict :return: Dictionary of Settings :rtype: dict """ if isinstance(path_or_object, str): path_or_object = pathlib.Path(path_or_object) if isinstance(path_or_object, dict) or path_or_object is None: path_or_object = path_or_object else: with path_or_object.open() as fh: settings.logger.debug("Load Settings {}".format(path_or_object)) path_or_object = json.load(fh) return path_or_object def main(): sys.exit(0) if __name__ == "__main__": main() ``` #### File: odapi/toolbox/psychro.py ```python import numpy as np from scipy import optimize import matplotlib.pyplot as plt from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection class Constants: """ Physical Constants """ R = 8.314472 # [J/mol.K] T0K = 273.15 # [K] @staticmethod def TK(TC): """ Temperature Conversion from Celcius to Kelvin """ return TC + Constants.T0K @staticmethod def TC(TK): """ Temperature Conversion from Kelvin to Celcius """ return TK - Constants.T0K class Conditions: """ Standard Conditions """ p0 = 1.01325e5 # [Pa] T0 = 0 + Constants.T0K # [K] class Water: """ Water Physical/Chemical Description """ M = 18.0153e-3 # [Kg/mol] Tvap = 99.94 + Constants.T0K # [K] cp = 1.826e3 # [J/kg.K] Hv = 40.662e3 # [J/mol] lv = Hv/M # [J/Kg] class Air: """ Dry Air Physical/Chemical Description """ M = 28.6953e-3 # [Kg/mol] cp = 1.006e3 # [J/Kg.K] class Mix: """ Mix of Gas and Liquid All quantities are expressed in Standard Units System """ C = Constants CSTP = Conditions gas = Air liquid = Water Mr = liquid.M/gas.M @staticmethod def psat(T): """ Saturation Pressure p_sat(T) [Pa] as a Temperature T [K] function """ return Mix.CSTP.p0*np.exp(-Mix.liquid.Hv/Mix.C.R*(1/T - 1/Mix.liquid.Tvap)) @staticmethod def xpw(pw): """ Vapour Mass Ratio x(p_w) [Kg Liquid/Kg Gas] as a function of Liquid Partial Pressure p_w [Pa] """ return Mix.Mr*pw/(Mix.CSTP.p0-pw) @staticmethod def xw(T, phi): """ Vapour Mass Ratio x(p_w) [Kg Liquid/Kg Gas] as a function of Liquid Partial Pressure p_w [Pa] """ return Mix.pisow(T, phi=phi) @staticmethod def pwx(x): """ Liquid Partial Pressure p_w(x) [Pa] as a function of Vapour Mass Ratio x [Kg Liquid/Kg Gas] """ return Mix.CSTP.p0*x/(x + Mix.Mr) @staticmethod def pisow(T, phi=1.): """ Isopleth: Iso Relative Humidity (phi) Curve w(T)=k [-] as a function of Temperature T [K] Relative Humidity is defined as the ratio of Liquid Partial Pressure p_w [Pa] and Saturation Pressure p_sat(T) [Pa]: w = p_w/p_sat(T) """ return phi*Mix.psat(T) @staticmethod def pisov(T, v): """ Isopleth (Isochoric): Iso Specific Volume Curve v(T)=k [m^3 Mix/Kg Gas] as a function of Temperature T [K] """ return Mix.CSTP.p0 - (Mix.C.R*T)/(Mix.gas.M*v) @staticmethod def pisoh(T, h): """ Isopleth (Isenthalpic): Iso Specific Enthalpy Curve h(T)=k [J/Kg Gas] as a function of Temperature T [K] """ dT = (T - Mix.CSTP.T0) return Mix.CSTP.p0*(h - Mix.gas.cp*dT)/((h + Mix.Mr*Mix.liquid.lv) + (Mix.Mr*Mix.liquid.cp - Mix.gas.cp)*dT) @staticmethod def Tmin_score(f, k): """ Score function for then intersection of the k-isopleth of kind f and Saturation Curve p_sat(T) as a function of Temperature T [K] Score function is designed to determine Tmin [K] for Psychrometric Chart Display """ def inner(T): return Mix.psat(T) - f(T, k) return inner @staticmethod def Tmin(f, k, tol=5e-3): """ Solve score function to determine Tmin [K] for Psychrometric Chart Display """ return optimize.root(Mix.Tmin_score(f, k), 0.1, tol=tol) @staticmethod def Tmax(f, k, tol=5e-3): """ Find root of the k-isopleth of kind f to get Tmax [K] for Psychrometric Chart Display """ return optimize.root(lambda T: f(T, k), 0.1, tol=tol) @staticmethod def get_limits(f, konsts, Tmin, Tmax): """ Compute Temperature Boundaries for a given isopleth of a kind f of level k """ n = konsts.size Ts = np.full((n, 2), np.nan) for i, k in enumerate(konsts): rmin = Mix.Tmin(f, k) if rmin.success: Ts[i, 0] = max(rmin.x[0], Tmin) rmax = Mix.Tmax(f, k) if rmax.success: Ts[i, 1] = min(rmax.x[0], Tmax) return Ts @staticmethod def domestic_ranges(): """ Basic Ranges for Domestic Use """ return { 'Tmin': +0. + Constants.T0K, # [K] 'Tmax': +35. + Constants.T0K, # [K] 'isow': np.arange(0.1, 0.91, 0.1), # [-] 'isov': np.arange(0.76, 0.95, 0.01), # [m^3/kg] 'isoh': np.arange(-1.e4, 13.1e4, 1e4), # [J/Kg] 'kOy': 1000., # [KJ/J] 'ylim': [0., 5.e3], # [Pa] 'Tmode': 'kelvin', 'ymode': 'partial' } @staticmethod def compute(f, konsts, Tmin, Tmax, ns=101): """ Compute k-isopleths of kind f for the given Temperature Range (Tmin, Tmax) [K] Temperature Range is refined to real Temperature Boundaries (keep resolution equals, nice display) """ nk = konsts.size T = np.full((ns, nk), np.nan) xT = np.full((ns, nk), np.nan) Ts = Mix.get_limits(f, konsts, Tmin, Tmax) for i, k in enumerate(konsts): T[:, i] = np.linspace(*Ts[i, :], ns) xT[:, i] = f(T[:, i], k) return T, xT _requiredKeys = ('Tmin', 'Tmax', 'isow', 'isov', 'isoh', 'ylim') @staticmethod def plot(Tmin=None, Tmax=None, ns=101, rtype='domestic', area=True, isow=None, isov=None, isoh=None, kOy=None, ylim=None, Tmode=None, ymode=None): """ Plot Psychrometric Chart for the given Temperature Range (Tmin, Tmax) [K] Including k-isopleths of each kind (iso-w, iso-v, iso-h) Also perform Units Conversion for readability sake """ # Parameters: ranges = getattr(Mix, '{}_ranges'.format(rtype))() Tmin = Tmin or ranges['Tmin'] Tmax = Tmax or ranges['Tmax'] isow = isoh or ranges['isow'] isov = isoh or ranges['isov'] isoh = isoh or ranges['isoh'] ylim = ylim or ranges['ylim'] kOy = kOy or ranges['kOy'] Tmode = Tmode or ranges['Tmode'] ymode = ymode or ranges['ymode'] # Temperature: T = np.linspace(Tmin, Tmax, ns) # Curves: psat = Mix.psat(T)/kOy pphi = np.array([Mix.pisow(T, phi=phi)/kOy for phi in isow]).T Tv, pv = Mix.compute(Mix.pisov, isov, Tmin, Tmax, ns) Th, ph = Mix.compute(Mix.pisoh, isoh, Tmin, Tmax, ns) # Polygons: if area: T1 = Constants.TK(np.linspace(15, 27, 10)) X1 = np.concatenate((Mix.pisow(T1, phi=0.4), np.array([0., 0.])))/kOy T1 = np.concatenate((T1, Constants.TK(np.array([27, 15]))), axis=0) P1 = Polygon(np.array([T1, X1]).T, True, color='blue', alpha=0.4) T2 = Constants.TK(np.linspace(15, 23, 10)) X2 = np.concatenate((Mix.pisow(T2, phi=0.7), Mix.pisow(np.flip(T2), phi=1.)), axis=0)/kOy T2 = np.concatenate((T2, np.flip(T2)), axis=0) P2 = Polygon(np.array([T2, X2]).T, True, color='red', alpha=0.4) T3 = Constants.TK(np.linspace(23, 27, 10)) X3 = np.concatenate((Mix.pisow(T3, phi=0.7), Mix.pisow(np.flip(T3), phi=1.)), axis=0)/kOy T3 = np.concatenate((T3, np.flip(T3)), axis=0) P3 = Polygon(np.array([T3, X3]).T, True, color='orange', alpha=0.4) T4 = Constants.TK(np.array([17, 17, 26, 26])) X4 = Mix.pisow(T4, phi=np.array([0.45, 0.8, 0.5, 0.35]))/kOy P4 = Polygon(np.array([T4, X4]).T, True, color='green', alpha=0.4) # Figure: fig, axe = plt.subplots() l1 = axe.plot(T, psat, color='black', linewidth=2.0) l2 = axe.plot(T, pphi, color='black', linewidth=0.75) l3 = axe.plot(Tv, pv/kOy, color='blue', linewidth=0.75) l4 = axe.plot(Th, ph/kOy, color='violet', linewidth=0.75) ls = [l1[0], l2[0], l3[0], l4[0]] ll = ['Saturation', 'Isohydric', 'Isochoric', 'Isenthalpic'] if area: l5 = axe.add_line(P1) l6 = axe.add_line(P2) l7 = axe.add_line(P3) l8 = axe.add_line(P4) ls.extend([l5, l6, l7, l8]) ll.extend(["Dry Zone", "Mold Zone", "Mite Zone", "Comfort Zone"]) axe.set_title(r"{} Psychrometric Chart: $p_0 = {:.3f}$ $[\mathrm{{kPa}}]$".format( Mix.liquid.__name__, Mix.CSTP.p0/kOy)) axe.set_xlabel(r"Temperature, $T$ $[\mathrm{K}]$") axe.set_ylabel(r"Partial Pressure, $p_w$ $[\mathrm{kPa}]$") axe.set_xlim(T[[0, -1]]) axe.set_ylim(np.array(ylim)/kOy) lgd = axe.legend(ls, ll, bbox_to_anchor=(0, 1), loc='upper left', ncol=2) #axe.get_figure().tight_layout() axe.grid() return axe def main(): axe = Mix.plot() plt.show(axe.get_figure()) #axe.get_figure().savefig("psychro.png") if __name__ == "__main__": main() ```
{ "source": "jlandercy/pysgrs", "score": 3 }
#### File: pysgrs/alphabets/specific.py ```python import sys from pysgrs.settings import settings from pysgrs import alphabets from pysgrs import errors class PolybeAlphabet(alphabets.IntegerAlphabet): def __init__(self): super().__init__( "ABCDEFGHIKLMNOPQRSTUVWXYZ", indices=[ 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 41, 42, 43, 44, 45, 51, 52, 53, 54, 55, ] ) class MorseAlphabet(alphabets.StringAlphabet): def __init__(self): super().__init__({ "A": "*-", "B": "-***", "C": "-*-*", "D": "-**", "E": "*", "F": "**-*", "G": "--*", "H": "****", "I": "**", "J": "*---", "K": "-*-", "L": "*-**", "M": "--", "N": "-*", "O": "---", "P": "*--*", "Q": "--*-", "R": "*-*", "S": "***", "T": "-", "U": "**-", "V": "***-", "W": "*--", "X": "-**-", "Y": "-*--", "Z": "--**", "0": "-----", "1": "*----", "2": "**---", "3": "***--", "4": "****-", "5": "*****", "6": "-****", "7": "--***", "8": "---**", "9": "----*" }) class BaconAlphabet(alphabets.StringAlphabet): def __init__(self): super().__init__({ "A": "aaaaa", "B": "aaaab", "C": "aaaba", "D": "aaabb", "E": "aabaa", "F": "aabab", "G": "aabba", "H": "aabbb", "I": "abaaa", "K": "abaab", "L": "ababa", "M": "ababb", "N": "abbaa", "O": "abbab", "P": "abbba", "Q": "abbbb", "R": "baaaa", "S": "baaab", "T": "baaba", "U": "baabb", "W": "babaa", "X": "babab", "Y": "babba", "Z": "babbb" }) def main(): sys.exit(0) if __name__ == "__main__": main() ``` #### File: pysgrs/ciphers/pipeline.py ```python import sys import copy from pysgrs import ciphers from pysgrs import errors from pysgrs.settings import settings class PipelineCipher(ciphers.GenericCipher): def __init__(self, pipeline, **kwargs): if not all([isinstance(c, ciphers.GenericCipher) for c in pipeline]): raise errors.IllegalCipherParameter( "Pipeline must be a sequence of ciphers, received {} instead.".format(pipeline)) self._pipeline = tuple(pipeline) self._kwargs = kwargs def __str__(self): return "<{} pipeline=({}) kwargs={}>".format(self.__class__.__name__, ", ".join([str(x) for x in self.pipeline]), self.kwargs) @property def pipeline(self): return self._pipeline @property def kwargs(self): return self._kwargs def configuration(self): return { "pipeline": self.pipeline, "kwargs": self.kwargs } def encipher(self, s, **kwargs): kw = copy.deepcopy(self.kwargs.copy()) kw.update(kwargs) r = copy.copy(s) for cipher in self.pipeline: r = cipher.encipher(r, **kw) settings.logger.debug("{}.{}('{}') -> '{}'".format(self, "encipher", s, r)) return r def decipher(self, s, **kwargs): kw = copy.deepcopy(self.kwargs.copy()) kw.update(kwargs) r = copy.copy(s) for cipher in reversed(self.pipeline): r = cipher.decipher(r, **kw) settings.logger.debug("{}.{}('{}') -> '{}'".format(self, "decipher", s, r)) return r def main(): sys.exit(0) if __name__ == "__main__": main() ``` #### File: pysgrs/pysgrs/errors.py ```python import sys from pysgrs.settings import settings class GenericException(Exception): pass class IllegalParameter(GenericException): pass class AlphabetException(GenericException): pass class CipherException(GenericException): pass class IllegalAlphabetParameter(IllegalParameter): pass class IllegalAlphabetOperation(GenericException): pass class IllegalAlphabetIndex(AlphabetException): pass class AmbiguousAlphabetIndex(AlphabetException): pass class IllegalCipherParameter(IllegalParameter): pass class IllegalCipherOperation(GenericException): pass def main(): sys.exit(0) if __name__ == "__main__": main() ``` #### File: pysgrs/interfaces/score.py ```python import abc import sys import collections import pathlib import json import numpy as np from pysgrs.settings import settings from pysgrs import errors from pysgrs.toolbox.cleaner import AsciiCleaner class GenericScore(abc.ABC): @abc.abstractmethod def score(self, text, **kwargs): pass def main(): sys.exit(0) if __name__ == "__main__": main() ``` #### File: pysgrs/scores/ngrams.py ```python import sys import collections import pathlib import json import numpy as np from pysgrs.interfaces.score import GenericScore from pysgrs.settings import settings from pysgrs import errors from pysgrs.toolbox.cleaner import AsciiCleaner class NGramScore(GenericScore): def __init__(self, source=None, order=1, language="fr", floor=0.01, scaler=np.log10): self._language = language if source is None: source = settings.resources / 'ngrams/ngrams_{}.json'.format(self.language) if isinstance(source, (str, pathlib.Path)): source = pathlib.Path(source) with source.open() as fh: source = json.load(fh) values = source["%d-grams" % order] source = {k: v for k, v in zip(values["ngram"], values["count"])} if isinstance(source, collections.Counter): source = dict(source) if not isinstance(source, dict): raise errors.IllegalParameter("Requires a dict or a path, received {} instead".format(type(source))) if not all(isinstance(c, str) for c in source.keys()): raise errors.IllegalParameter("All keys must be string, received instead") if not all(isinstance(c, int) and (c > 0) for c in source.values()): raise errors.IllegalParameter("All values must be positive integer, received instead") self._order = len(tuple(source.keys())[0]) if not all(len(ngram) == self.order for ngram in source): raise errors.IllegalParameter("All keys must have the same length") self._counts = source self._total = sum(self.counts.values()) self._scaler = scaler self._floor = self.scaler(floor/self.total) self._frequency = {k: float(v) / self.total for k, v in self.counts.items()} if not np.isclose(np.sum(tuple(self.frequency.values())), 1.): raise errors.IllegalParameter("Probability sum must converge to unit") self._likelihood = {k: self.scaler(v) for k, v in self.frequency.items()} if not all(x > self.floor for x in self.likelihood.values()): raise errors.IllegalParameter("Floor must be lower than all existing likelihood") def __str__(self): return "<NGramScore language='{}' order={} size={} floor={:.3f} scaler={}>".format( self.language, self.order, self.size, self.floor, self.scaler.__name__) def __repr__(self): return self.__str__() @property def language(self): return self._language @property def order(self): return self._order @property def floor(self): return self._floor @property def scaler(self): return self._scaler @property def counts(self): return self._counts @property def total(self): return self._total @property def frequency(self): return self._frequency @property def likelihood(self): return self._likelihood @property def size(self): return len(self.counts) def __len__(self): return self.size def contains(self, item): return item in self.counts def __contains__(self, item): return self.contains(item) def score(self, text, normalize=True): if normalize: text = AsciiCleaner.normalize(text) n = len(text) score = 0. for k in range(n - self.order + 1): ngram = text[k:(k+self.order)] score += self.likelihood.get(ngram, self.floor) settings.logger.debug("Score: {:.3f} for '{}' with {}".format(score, text[:16], self)) return score class MultiNGramScore(GenericScore): def __init__(self, source=None, language="fr", min_order=1, max_order=5): if source is None: source = settings.resources / 'ngrams/ngrams_{}.json'.format(language) if isinstance(source, (str, pathlib.Path)): source = pathlib.Path(source) with source.open() as fh: source = json.load(fh) self._ngrams = dict() for order in range(min_order, max_order+1): ngram = NGramScore(order=order, language=language) self._ngrams[ngram.order] = ngram def __str__(self): return "<MultiNGramScore ngrams={}>".format(self.ngrams) @property def ngrams(self): return self._ngrams def score(self, text): return {"score-%d" % ngram.order: ngram.score(text) for ngram in self.ngrams.values()} def main(): x = MultiNGramScore() #x = NGramScore() print(x) sys.exit(0) if __name__ == "__main__": main() ``` #### File: pysgrs/tests/test_alphabet_specific.py ```python import sys import unittest from pysgrs import alphabets from pysgrs.tests.test_alphabet import TestAlphabet from pysgrs import errors class TestPolybeAlphabet(TestAlphabet, unittest.TestCase): alphabet = alphabets.PolybeAlphabet() class TestStringAlphabet(TestAlphabet): def test_parser_with_size_hint(self): for message in self.messages: for parsed in self.alphabet.parse(message[0], max_length=len(message[1])): if message[1] == parsed: break else: raise errors.IllegalAlphabetOperation("Cannot decode message '{}' from '{}'".format( message[1], message[0] )) def test_parser_without_size_hint(self): for message in self.messages: for parsed in self.alphabet.parse(message[0]): if message[1] == parsed: break else: raise errors.IllegalAlphabetOperation("Cannot decode message '{}' from '{}'".format( message[1], message[0] )) class TestMorseAlphabet(TestStringAlphabet, unittest.TestCase): alphabet = alphabets.MorseAlphabet() messages = [ ('******-***-**---', "HELLO"), ('*--*-*--*', "ACME"), ('*---**--*', "JEAN"), ] def test_is_monotonic(self): self.assertFalse(self.alphabet.is_monotonic) def test_is_index_size_constant(self): self.assertFalse(self.alphabet.is_index_size_constant) def test_index_size(self): self.assertEqual(1, self.alphabet.index_min_size) self.assertEqual(5, self.alphabet.index_max_size) def test_index_symbols(self): self.assertEqual({"*", "-"}, self.alphabet.index_symbols) class TestBaconAlphabet(TestStringAlphabet, unittest.TestCase): alphabet = alphabets.BaconAlphabet() messages = [ ('aabbbaabaaababaababaabbab', "HELLO"), ('aaaaaaaabaababbaabaa', "ACME"), ('abaaaaabaaaaaaaabbaa', "IEAN"), ] def test_index_size(self): self.assertEqual(5, self.alphabet.index_min_size) self.assertEqual(5, self.alphabet.index_max_size) def test_index_symbols(self): self.assertEqual({"a", "b"}, self.alphabet.index_symbols) def main(): unittest.main() sys.exit(0) if __name__ == "__main__": main() ``` #### File: pysgrs/tests/test_cipher_substitution.py ```python import sys import unittest from pysgrs.tests.test_cipher import TestStreamCipher from pysgrs import alphabets from pysgrs import ciphers class TestIdentityStreamCipher(TestStreamCipher, unittest.TestCase): cipher = ciphers.RotationCipher(offset=0) ciphertexts = TestStreamCipher.plaintexts class TestRotationStreamCipher(TestStreamCipher, unittest.TestCase): cipher = ciphers.RotationCipher(offset=7) ciphertexts = [ "HIJKLMNOPQRSTUVWXYZABCDEFG", "GFEDCBAZYXWVUTSRQPONMLKJIH", "AOLXBPJRIYVDUMVEQBTWZVCLYAOLSHGFKVN", "DHSAGIHKUFTWOMVYXBPJRQPNZCLE", "QPCLKMVEUFTWONYHIZXBPJRDHSAG", "NSPIQVJRZXBPGUFTWOAVCLEKDHYM", "ZW<KEY>", "OVDCLEPUNSFXBPJRKHMAGLIYHZQBTW", "<KEY>", "<KEY>", "<KEY>", "Spcl hz pm fvb dlyl av kpl avtvyyvd. Slhyu hz pm fvb dlyl av spcl mvylcly.", "Il dov fvb hyl huk zhf doha fvb mlls, iljhbzl aovzl dov tpuk kvu’a thaaly huk aovzl dov thaaly kvu’a tpuk.", "Pm fvb jhuuva kv nylha aopunz, kv zthss aopunz pu h nylha dhf.", "Dpzl tlu zwlhr iljhbzl aolf ohcl zvtlaopun av zhf; mvvsz iljhbzl aolf ohcl av zhf zvtlaopun.", ] class TestNegativeRotationStreamCipher(TestStreamCipher, unittest.TestCase): cipher = ciphers.RotationCipher(offset=-7) ciphertexts = [ "TUVWXYZABCDEFGHIJKLMNOPQRS" ] class TestCaesarStreamCipher(TestStreamCipher, unittest.TestCase): cipher = ciphers.CaesarCipher() ciphertexts = [ "DEFGHIJKLMNOPQRSTUVWXYZABC", "CBAZYXWVUTSRQPONMLKJIHGFED", "WKHTXLFNEURZQIRAMXPSVRYHUWKHODCBGRJ", "ZDOWCEDGQBPSKIRUTXLFNMLJVYHA", "MLYHGIRAQBPSKJUDEVTXLFNZDOWC", "JOLEMRFNVTXLCQBPSKWRYHAGZDUI", "VSKLQARIEODFNTXDUWCMXGJHPBYRZ", "KR<KEY>LFNGDIWCHEUDVMXPS", "<KEY>", "M<KEY>BELJVSKLQARITXDUWC", "SDFNPBERAZLWKILYHGRCHQOLTXRUMXJV", "Olyh dv li brx zhuh wr glh wrpruurz. Ohduq dv li brx zhuh wr olyh iruhyhu.", "Eh zkr brx duh dqg vdb zkdw brx ihho, ehfdxvh wkrvh zkr plqg grq’w pdwwhu dqg wkrvh zkr pdwwhu grq’w plqg.", "Li brx fdqqrw gr juhdw wklqjv, gr vpdoo wklqjv lq d juhdw zdb.", "Zlvh phq vshdn ehfdxvh wkhb kdyh vrphwklqj wr vdb; irrov ehfdxvh wkhb kdyh wr vdb vrphwklqj.", "Jdjd Jrxjrx Jrxjrx Gdgd", "Txdwuh mrxuqdxa krvwlohv vrqw soxv d fudlqguh txh plooh edlrqqhwwhv.", # This one is a bit ironic! ] class TestReversedStreamCipher(TestStreamCipher, unittest.TestCase): cipher = ciphers.ReversedCipher() ciphertexts = [ "ZYXWVUTSRQPONMLKJIHGFEDCBA" ] class TestAlphabetStreamCipher(TestStreamCipher, unittest.TestCase): cipher = ciphers.AlphabetCipher( alphabet=alphabets.StringAlphabet("ABCDEFGHIJKLMNOPQRSTUVWXYZ", indices="DEFGHIJKLMNOPQRSTUVWXYZABC") ) ciphertexts = TestCaesarStreamCipher.ciphertexts class TestPermutationIdentityStreamCipher(TestStreamCipher, unittest.TestCase): cipher = ciphers.PermutationCipher() ciphertexts = TestStreamCipher.plaintexts class TestPermutationStreamCipher(TestStreamCipher, unittest.TestCase): cipher = ciphers.PermutationCipher( [ 10, 24, 8, 18, 15, 13, 1, 25, 9, 22, 20, 6, 2, 0, 5, 3, 12, 21, 19, 14, 16, 11, 7, 4, 23, 17 ] ) ciphertexts = [ "KYISPNBZJWUGCAFDMVTOQLHEXR" ] class TestPermutationStreamCipherRandom(TestStreamCipher, unittest.TestCase): cipher = ciphers.PermutationCipher(auto=True) ciphertexts = [] class TestPermutationStreamCipherIdentity(TestStreamCipher, unittest.TestCase): cipher = ciphers.PermutationCipher() ciphertexts = TestStreamCipher.plaintexts class TestAffineStreamCipher(TestStreamCipher, unittest.TestCase): cipher = ciphers.AffineCipher() ciphertexts = [ "INSXCHMRWBGLQVAFKPUZEJOTYD" ] def main(): unittest.main() sys.exit(0) if __name__ == "__main__": main() ``` #### File: pysgrs/tests/test_cipher_vigenere.py ```python import sys import unittest from pysgrs.tests.test_cipher import TestStreamCipher from pysgrs import ciphers class TestVigenereStreamCipherSmallKey(TestStreamCipher, unittest.TestCase): cipher = ciphers.VigenereCipher(key="ABC") ciphertexts = [ "ACEDFHGIKJLNMOQPRTSUWVXZYA", "ZZZWWWTTTQQQNNNKKKHHHEEEBB", "TIGQVKCLDRPYNGQXKWMQUOWGRUJEMCZZFOH", "WBNTADAEPYNRHGQRRWIDMJJISWGX", "JJXEEHOYPYNRHHTACUQVKCLYAMVZ", "GMKBKQCLUQVKZOAMQJTPXEYFWBTF", "SQJIOZOGDLBEKRWASVZKWDHGMZXOX", "HPYVFZIOILZSUJEKECFUBECTATLUNR", "<KEY>", "J<KEY>HUPIKNYQFRWASVZ", "PBEKNABPZWJVHGKVFFOAGNMKQVQRKWGT", "Ljxe bu ig aov yesg tp fif vonqrsqw. Mgasp at kf zqu xgrf vo mkvf hosgvft.", "Bf yhp aov crf cne uaz yhbv ypw ffgl, cgcbwsf vhpue xjo nkne foo’v mbvtft aof tiqsf yhp oauves foo’v mjpd.", "Ig aov eaopou fo htebv tiknhu, dp umbnl ujiois jp a htebv wba.", "Wjue ngn trebm bfeavue ujez jawg spoeujioi tp uaz; hopns cgcbwsf vhfa hbxe uq sba spoeujioi.", "Gbia Hquhqu Hquhqu Ecdb" ] class TestVigenereStreamCipherMediumKey(TestStreamCipher, unittest.TestCase): cipher = ciphers.VigenereCipher(key="NATURELLEMENT") ciphertexts = [ "NBVXVJRSMVOYFAOIKIWEFZIBLS", "MYQQMYEDVCTBGZLDDZLRQIPGOT", "GHXKLMNVFDSJGSOQDLQADSHIEMUEEUQCOZK", "JAENQFLORKQCASOKKLMNVNUKFORX", "WIOYUJZIRKQCATRTVJUFTGWANEGZ", "TLBVASNVWCYVSAYFJYXZGIJHJTEF", "FPACEBZQFXEPDDUTLKDUFHSIZRIOP", "UOPPVBTYKXCDNVCDXRJEKINVNLWUFJ", "GHXZZZPMSJMAZJISUIHDUYYTDNVCDFP", "WAVEUEHDPAZRFLBBAJTSTRJSSJHAKNQ", "CAVEDCMZBIMGASIOYUSKPRXMDNBRCOXW", "Yioy rw tq cay jxee mi ump esysekbw. Eyrvy lw uj lhh wxlv xz wmhi sheeoyi.", "Oe pbf czf edi ngq sts nlle cay sxrl, uytefdi flblr wai dmyo har’g fntmyi eyo xtsfx jhh grxepv psa’m zigx.", "Vf ril glyrax qh trxuk xstrsw, qh fmtfc xstrsw vg n gkyrx hlc.", "Jily diy dtqex urctoji esik lnor shgvxstrs xb lny; yifpd mioehlr tayp llgi fs ftl shgvxstrs." ] def main(): unittest.main() sys.exit(0) if __name__ == "__main__": main() ``` #### File: pysgrs/toolbox/arithmetic.py ```python import sys import math from pysgrs import errors from pysgrs.settings import settings class Arithmetic: pass class ModularArithmetic(Arithmetic): @staticmethod def gcd(a, b): # https://en.wikipedia.org/wiki/Greatest_common_divisor return math.gcd(a, b) @staticmethod def lcm(a, b): # https://en.wikipedia.org/wiki/Least_common_multiple return abs(a * b) // math.gcd(a, b) @staticmethod def egcd(a, b): # https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm if a == 0: return b, 0, 1 else: g, y, x = ModularArithmetic.egcd(b % a, a) return g, x - (b // a) * y, y @staticmethod def modinv(a, m): # https://en.wikipedia.org/wiki/Modular_multiplicative_inverse try: # Only Python 3.8+ return pow(a, -1, m) except ValueError: g, x, y = ModularArithmetic.egcd(a, m) if g != 1: raise errors.IllegalParameter('Modular inverse does not exist for {} mod {}'.format(a, m)) else: return x % m @staticmethod def factor(a): import sympy return sympy.factorint(a) @staticmethod def is_prime(a): import sympy return sympy.isprime(a) def main(): sys.exit(0) if __name__ == "__main__": main() ``` #### File: pysgrs/toolbox/shaper.py ```python import sys from collections.abc import Iterable import numpy as np import pandas as pd from pysgrs import errors from pysgrs.settings import settings class Shaper: @staticmethod def get_shapes(n, shape=None, score=None): def _score(x): return (((1/2 + x["padding"])/n)**3)*(1 + x["shape_diff"]**4) score = score or _score # Explore: m = np.sqrt(n) mmin = int(np.floor(m)) mmax = int(np.ceil(m)) shapes = [ {"id": "min-square", "shape": (mmin, mmin)}, {"id": "opt-rect-1", "shape": (mmin, mmax)}, {"id": "opt-rect-2", "shape": (mmax, mmin)}, {"id": "max-square", "shape": (mmax, mmax)}, ] if shape: modekey = "user" shapes.append({"id": modekey, "shape": shape}) else: modekey = "auto" for i in range(2, n): shapes.append({"id": "rect-{:d}".format(i), "shape": (i, int(np.ceil(n/i)))}) df = pd.DataFrame(shapes) # Arrange: df["size"] = df["shape"].apply(np.prod) df["padding"] = df["size"] - n df["shape_diff"] = df["shape"].apply(lambda x: np.abs(x[0] - x[1])) df["score"] = df.apply(score, axis=1) df = df.set_index("id") df = df.sort_values(["score", "padding", "shape_diff"]) df.loc["auto", :] = df.loc[(df["score"] > 0) & (df.index.str.contains("-square|-rect")), :].iloc[0, :] df = df.sort_values(["score", "padding", "shape_diff"]) settings.logger.debug("Shaper: {}={}".format(modekey, df.loc[modekey].to_dict())) return df @staticmethod def pad(s, n, padding=" "): m = n - len(s) if m >= 0: settings.logger.debug("Shaper: {}-pad string of length {} with '{}'".format(m, len(s), padding)) return s + padding*m else: raise errors.IllegalParameter( "Final size (max_ngram={}) must be greater or equal to string length ({})".format(n, len(s))) @staticmethod def to_matrix(s, shape=None, mode="auto", padding=" ", row_separator="\n"): if isinstance(s, str): if shape: s = s.replace(row_separator, "") if row_separator in s: x = s.split(row_separator) x[-1] = Shaper.pad(x[-1], len(x[0]), padding=padding) x = [list(t) for t in x] if not all([len(s) == len(x[0]) for s in x]): raise errors.IllegalParameter( "All rows must have the same length unless the last which may be padded") else: shape = shape or Shaper.get_shapes(len(s), shape=shape).loc[mode, "shape"] n = np.prod(shape) s = Shaper.pad(s, n, padding=padding) x = list(s) x = np.array(x) elif isinstance(s, Iterable): x = np.array(s) else: raise errors.IllegalParameter("String or array expected, received {} instead".format(type(s))) if len(x.shape) < 2 or shape: x = x.reshape(shape) settings.logger.debug("Shaper: {} of size {} shaped to {}-matrix.".format(type(s), len(s), x.shape)) return x @staticmethod def to_vector(x): return np.array(x).flatten() @staticmethod def to_str(x): return "".join(Shaper.to_vector(x)) def main(): sys.exit(0) if __name__ == "__main__": main() ```
{ "source": "jlandgre/debug", "score": 3 }
#### File: jlandgre/debug/debug.py ```python import pandas as pd import numpy as np import datetime as dt #Debug library functions def init(): data = {'Desc':[], 'colname':[], 'size':[], 'dtype_string':[], 'dtype_int':[], 'dtype_float':[], 'isnull':[], 'notnull':[], 'Desc2':[], 'Val2':[], 'time':[]} dfDebug = pd.DataFrame(data=data) #Trick Pandas into dtyping count columns as integer dfDebug.loc[0,:] = ['Dummy_val','',0,0,0,0,0,0,'','',0] lst_count_cols = ['size','dtype_string', 'dtype_int', 'dtype_float', 'isnull', 'notnull'] dfDebug[lst_count_cols] = dfDebug[lst_count_cols].astype('int') return dfDebug def CountDTypeString(df, col): return df.loc[df[col].apply(lambda x: isinstance(x, str)), col].size def CountDTypeInt(df, col): return int(df.loc[df[col].apply(lambda x: isinstance(x, int)), col].size) def CountDTypeFloat(df, col): return int(df.loc[df[col].apply(lambda x: isinstance(x, float)), col].size) def CountNull(df, col): return int(df.loc[df[col].isnull(), col].size) def CountNotNull(df, col): return int(df.loc[~df[col].isnull(), col].size) #Add a new row to dfDebug def loginfo(dfDebug, logtype, desc, df=None, col='', desc2='', val2=''): #Construct row as a list of values and append row to dfDebug if logtype == 'colinfo': lst = [desc, col, df[col].size, CountDTypeString(df, col), CountDTypeInt(df, col), CountDTypeFloat(df, col), CountNull(df, col), CountNotNull(df, col), desc2, val2, ''] elif logtype == 'indexsize': lst = [desc,'',df.index.size, '', '', '', '', '', desc2, val2, ''] elif logtype == 'time': lst = [desc, '', '', '', '', '', '', '', desc2, val2, dt.datetime.now().strftime('%H:%M:%S.%f')] elif logtype == 'info': lst = [desc, '','', '','', '','', '', desc2, val2, ''] dfDebug.loc[dfDebug.index.size] = lst #Control dtype of count columns for nicer display if dfDebug.loc[0,'Desc'] == 'Dummy_val': dfDebug.drop(0, axis=0, inplace=True) dfDebug.reset_index(drop=True, inplace=True) lst_count_cols = ['size','dtype_string', 'dtype_int', 'dtype_float', 'isnull', 'notnull'] dfDebug[lst_count_cols] = dfDebug[lst_count_cols].astype('str') return dfDebug ```
{ "source": "jlandgre/graphlet_plots", "score": 3 }
#### File: graphlet_plots/libs/graphlet_plot.py ```python import pandas as pd import numpy as np #Import JDL utility modules import sys sys.path.append(sys.path[0]) import pd_util import util #graphlet_plot.py class Graphlet(): """ Set attributes common to Categorical and Continuous plots. Parent of GraphletCategorical and GraphletContinuous Attributes: t_range [tuple - datetime format] - the datetime range of plot data ylims [tuple - either numeric or None] - (ymin, ymax) for the Graphlet in y-axis units. Specify either ymin or ymax to anchor Graphlet location on y-axis of plot spacing [tuple - numeric] - (spacing between categories, buffer between graphlets) data [tuple - Pandas Series] (x-data, unscaled/unmapped y-data) IsHLine [boolean] toggles horizontal line below the graphlet on the plot heading - [string] - optional heading to label graphlet at its top left dot_format [tuple - mixed types] - (string Matplotlib color, integer dot size, integer dot transparency) Version: 8/6/20 JDL Data Delve LLC """ def __init__(self, t_range, spacing, ylims, data, IsHLine, heading=None, dot_format=None): self.xdata = data[0] self.ydata_unscaled = data[1] self.heading = '' if not heading is None: self.heading = heading if not dot_format[0] is None: self.dotcolor = dot_format[0] if not dot_format[1] is None: self.dotsize = dot_format[1] if not dot_format[2] is None: self.dot_transparency = dot_format[2] self.heading_coords = (t_range[0], (self.ymax + 1 * spacing[1])) #Label's x-y position self.hline = None self.ypos_hline = None if IsHLine: self.ypos_hline = self.ymin - spacing[1] class GraphletCategorical(): """ Set attributes for categorical time-series plots. Map y-values to specified categories Child of Graphlet, which initializes common attributes between GraphletCategorical and GraphletContinuous Attributes: See Parent Class docstring for its attributes ticklabels - dictionary of categorical keys (in terms of unmapped y-data) and values that are labels to use on the plot for data series Methods: CreateCombinedFlagColSeries CalculateYLimitsCategorical SeriesFromDFCols Version: 8/7/20 JDL Data Delve LLC """ def __init__(self, t_range, spacing, ylims, data, IsHLine, ticklabels=None, heading=None, dot_format=None): #Generate y-limits, ticklist and labels for categorical plot lst_cats = list(set(data[1])) ncats = len(lst_cats) self.ymin, self.ymax = GraphletCategorical.CalculateYLimitsCategorical(ylims, ncats, spacing) Graphlet.__init__(self, t_range, spacing, ylims, data, IsHLine, heading, dot_format) self.ticklist, self.labels = [], [] for i, cat in zip(range(0,ncats), lst_cats): self.ticklist.append(self.ymin+ (i * spacing[0])) if ticklabels is not None: self.labels.append(ticklabels[cat]) else: self.labels.append(cat) #Generate y-data that maps categories to ticklist values self.ydata = pd_util.MapSerToAltVals(self.ydata_unscaled, lst_cats, self.ticklist) def CreateCombinedFlagColSeries(lst_flags): """ Create Concatenated Series with mapped flag values and create dictionary of original flag column names or labels by value. Designed to work on columns that use 1/blank to flag time series discrete events. This function maps multiple such columns to alternate integers and concatenates the result into a single series. The returned dictionary decodes how integers and original column names (or integers and user-specified labels) match up. Args: lst_flags (list of 3-item or, optionally, 4-item tuples) describing one or more series to be concatenated: df name - name of Pandas DataFrame containing valuecol and indexcol valuecol - column in df to serve as returned series values indexcol - column in df to serve as returned series index label string [optional] - Description for plot labeling Returns: Concatenated Series with original values mapped to integers Dictionary of integer (keys) to original column names (values) """ lst_flag_series, ticklabels = [], {} for flag, i in zip(lst_flags, range(0,len(lst_flags))): #Default to None label then check whether it's specified label = None if len(flag) == 3: (df, valuecol, indexcol) = flag if len(flag) == 4: (df, valuecol, indexcol, label) = flag #Create a series from flag and append it to list of such series ser = pd_util.SeriesFromDFCols(df, valuecol, indexcol, 'int64') ser = pd_util.MapSerToAltVals(ser, [1], [i+1]) lst_flag_series.append(ser) #Add a label to dict --either column name or user-specified string ticklabels[i+1] = ser.name if not label is None: ticklabels[i+1] = label return pd.concat(lst_flag_series), ticklabels def CalculateYLimitsCategorical(ylims, ncats, spacing): """ Populate y-limits for Categorical plots from either upper or lower limit Args: ylims [tuple; number] - (lower, upper) y-limits; one may be None ncats [integer] - number of categories spacing [tuple; number] - (spacing between categories, spacing between graphlets) in y-axis limits Returns: individual ymin and ymax (calculation overrides specified values if ylims input has both specified) """ if ylims[0] is not None: ymin = ylims[0] ymax = ymin + (ncats - 1) * spacing[0] elif ylims[1] is not None: ymax = ylims[1] ymin = ymax - (ncats - 1) * spacing[0] else: return None, None return ymin, ymax def SeriesFromDFCols(df, valcol, indexcol, dtype=None): """ Convert two DataFrame columns into a Series as index and values args: df (Pandas DataFrame) - DataFrame containing valcol and indexcol valcol (String) - name of DataFrame column to return as Series values (and name of Series) indexcol (String) - name of DataFrame column to return as Series index dtype (Python dtype - typically int) - optional returned dtype of Series """ ser = pd.Series(df[valcol].values, index=df[indexcol]).dropna() ser.name = valcol if not dtype is None: ser = ser.astype(dtype) return ser class GraphletContinuous(): """ Set attributes for continuous variable graphlet Optionally, rescale y-values for graphing Child of Graphlet, which initializes common attributes between GraphletCategorical and GraphletContinuous Attributes: See Parent Class docstring for its attributes ticklabels - Optional dictionary of values (unscaled y units) as keys string labels as values scale_orig - [tuple - numeric]: Upper and lower values in unscaled y-units for linear rescaling to plot y-axis units) scale_scaled [tuple - numeric]: Upper and lower values in scaled y-units; used with scale_orig for linear rescaling of y-data Methods: None Version: 8/6/20 JDL Data Delve LLC """ def __init__(self, t_range, spacing, ylims, data, IsHLine, ticklabels=None, heading=None, scale_orig=None, scale_scaled=None, dot_format=None): self.ymin = ylims[0] self.ymax = ylims[1] Graphlet.__init__(self, t_range, spacing, ylims, data, IsHLine, heading, dot_format) IsScaled = False if (scale_orig is not None) and (scale_scaled is not None): IsScaled=True #If specified, scale the y-values and the ticklist values self.ydata = self.ydata_unscaled if IsScaled: self.ydata = pd_util.RescaleSerValues(self.ydata_unscaled, scale_orig, scale_scaled) #Build ticklist and tick label list if not ticklabels is None: self.ticklist, self.labels = [], [] for k, v in ticklabels.items(): #Scale the tick value if needed k_scaled = k if IsScaled: k_scaled = pd_util.RescaleValue(k, scale_orig, scale_scaled) #Add tick and label to lists; If no specified label, tick value is the label self.ticklist.append(k_scaled) if v is not None: self.labels.append(v) else: self.labels.append(k_scaled) ```
{ "source": "jlandman71/cvnd-image-captioning", "score": 3 }
#### File: jlandman71/cvnd-image-captioning/model.py ```python import torch import torch.nn as nn import torch.nn.functional as F import torchvision.models as models import numpy as np class EncoderCNN(nn.Module): def __init__(self, embed_size): super(EncoderCNN, self).__init__() resnet = models.resnet50(pretrained=True) for param in resnet.parameters(): param.requires_grad_(False) modules = list(resnet.children())[:-1] self.resnet = nn.Sequential(*modules) self.embed = nn.Linear(resnet.fc.in_features, embed_size) def forward(self, images): features = self.resnet(images) features = features.view(features.size(0), -1) features = self.embed(features) return features class DecoderRNN(nn.Module): def __init__(self, embed_size, hidden_size, vocab_size, num_layers=1): #super(DecoderRNN, self).__init__() super().__init__() # set class variables self.num_layers = num_layers self.hidden_size = hidden_size self.embed_size = embed_size self.vocab_size = vocab_size # define model layers # Embedding layer self.embed = nn.Embedding(vocab_size, embed_size) # LSTM layer self.lstm = nn.LSTM(input_size=embed_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) # Linear layer maps hidden_size to scores of vocab_size self.hidden2scores = nn.Linear(hidden_size, vocab_size) def forward(self, features, captions): # get batch size batch_size = features.size(0) # get embeddings for captions except last one capt_embeds = self.embed(captions[:,:-1]) # concatenate features and embedded captions inputs = torch.cat((features.unsqueeze(1), capt_embeds),1) # clean out hidden state and cell state if (torch.cuda.is_available()): hidden = (torch.zeros(self.num_layers, batch_size, self.hidden_size).cuda(), torch.zeros(self.num_layers, batch_size, self.hidden_size).cuda()) else: hidden = (torch.zeros(self.num_layers, batch_size, self.hidden_size), torch.zeros(self.num_layers, batch_size, self.hidden_size)) lstm_out, hidden = self.lstm(inputs, hidden) # score outputs out = self.hidden2scores(lstm_out) # return output word scores return out def sample(self, inputs, states=None, max_len=20): " accepts pre-processed image tensor (inputs) and returns predicted sentence (list of tensor ids of length max_len) " predicted_word_ids = [] input = inputs # clean out hidden state and cell state if (torch.cuda.is_available()): hidden = (torch.zeros(self.num_layers, 1, self.hidden_size).cuda(), torch.zeros(self.num_layers, 1, self.hidden_size).cuda()) else: hidden = (torch.zeros(self.num_layers, 1, self.hidden_size), torch.zeros(self.num_layers, 1, self.hidden_size)) for _ in range(max_len): lstm_out, hidden = self.lstm(input, hidden) # score outputs out = self.hidden2scores(lstm_out) # get word id with max probability _, word_id = out.max(dim=2) word_id_int = word_id.item() # append word id to list of predictions predicted_word_ids.append(word_id_int) # if predicted word is 1 (<end>) then stop if word_id_int == 1: break # embedding of last word id becomes next input input = self.embed(word_id) return predicted_word_ids ```
{ "source": "jlandmann/glaciersat", "score": 3 }
#### File: glaciersat/core/gis.py ```python import xarray as xr import salem import os import pandas as pd import numpy as np from glaciersat.core import imagery import logging log = logging.getLogger(__file__) def crop_sat_image_to_glacier(ds: xr.Dataset or imagery.SatelliteImage, gdir_candidates: list = None, out_dirs: list = None, grids: list = None, min_overlap: float = 100., shapes: list or None = None) -> None: """ Crop a satellite image into glacier domains and append to existing images. Parameters ---------- ds : xr.Dataset or glaciersat.core.imagery.SatelliteImage Object containing the satellite image. gdir_candidates: list of GlacierDirectories, optional List with potential GlacierDirectories that might be included in the scene. Mutually exclusive with `grids`. Default: None. out_dirs: list of str, optional List with according output directories for the case that `grids` is given. grids: list of salem.Grid, optional List with salem.Grids defining a glacier region to which the data shall be clipped. Mutually exclusive with `gdir_candidates`. Default: None. min_overlap: float Minimum overlap percentage of satellite image and glacier. Default: 100. (glacier must be contained fully in satellite image footprint). shapes: list or None, optional List of paths to shapes of glaciers. Must be in the same order like `gdir_candidates` or `grids`, respectively. If `None` and `gdir_candidates` is given, shapes will be retrieved from the outlines in the glacier directory. Default: None. Returns ------- None. """ if (gdir_candidates is not None) and (grids is not None): raise ValueError('The keywords "gdir_candidates" and "grids" are ' 'mutually exclusive.') elif (gdir_candidates is None) and (grids is None): raise ValueError('Either of the keywords "gdir_candidates" or "grids" ' 'must be given.') elif (gdir_candidates is not None) and (grids is None): grids = [salem.Grid.from_json(g.get_filepath('glacier_grid')) for g in gdir_candidates] else: pass if (shapes is None) and (gdir_candidates is not None): shapes = [gdir_candidates[i].get_filepath('outlines') for i in range(len(gdir_candidates))] # cheap way to pre-assess whether given glacier is in the image at all if callable(getattr(ds, 'overlaps_shape', None)) and (shapes is not None): cand_in_img = [ds.overlaps_shape(i, percentage=min_overlap) for i in shapes] if np.array(cand_in_img).any() is False: # no intersection at all log.info( 'No intersection of the satellite image and the supplied grids' ' at the given level ({}%) at all.'.format(min_overlap)) return else: # postpone to next step (more expensive) cand_in_img = None # we need to load for this operation if not isinstance(ds, (xr.Dataset, xr.DataArray)): ds = ds.data ds.load() if not isinstance(ds, xr.Dataset): ds = ds.to_dataset(name='albedo', promote_attrs=True) for i, grid in enumerate(grids): if (cand_in_img is not None) and (cand_in_img[i] is False): continue grid_ds = grid.to_dataset() ds_glacier = grid_ds.salem.transform(ds, interp='linear') # can be that grid is outside satellite image # todo: what about half coverage (edge) and clouds? check with outline? if pd.isnull(ds_glacier.to_array()).all(): # todo: log something here? continue if gdir_candidates is not None: gi = gdir_candidates[i] if gi.has_file('sat_images'): with xr.open_dataset(gi.get_filepath('sat_images')) as exist: exist.load() ds_total = xr.merge([ds_glacier, exist], combine_attrs='no_conflicts', compat='override') ds_total.to_netcdf(gi.get_filepath('sat_images')) else: ds_glacier.to_netcdf(gi.get_filepath('sat_images')) elif out_dirs is not None: gi = out_dirs[i] fp = os.path.join(gi, 'sat_images.nc') if os.path.exists(fp): with xr.open_dataset(fp) as exist: exist.load() ds_total = xr.merge([ds_glacier, exist], combine_attrs='no_conflicts', compat='override') ds_total.to_netcdf(fp) else: ds_glacier.to_netcdf(fp) ``` #### File: glaciersat/tests/test_utils.py ```python import pytest from glaciersat.tests import requires_credentials from glaciersat.utils import * import configobj @requires_credentials def test_get_credentials(): cred = get_credentials(credfile=None) assert isinstance(cred, configobj.ConfigObj) cred = get_credentials(credfile='.\\.credentials') assert isinstance(cred, configobj.ConfigObj) def test_declutter(): input = np.zeros((7, 7), dtype=int) input[1:6, 1:6] = 1 # erode a lot, then leave as is res = declutter(input, 3, 1).astype(int) desired = np.zeros((7, 7), dtype=int) desired[2:5, 2:5] = 1 np.testing.assert_array_equal(res, desired) # do not erode, but dilate res = declutter(input, 1, 3).astype(int) desired = np.ones((7, 7), dtype=int) np.testing.assert_array_equal(res, desired) # erode and dilate (the offset is unfortunate though) res = declutter(input, 3, 2).astype(int) desired = np.zeros((7, 7), dtype=int) desired[1:5, 1:5] = 1 np.testing.assert_array_equal(res, desired) res = declutter(input, 2, 3).astype(int) desired = np.zeros((7, 7), dtype=int) desired[1:, 1:] = 1 np.testing.assert_array_equal(res, desired) ```
{ "source": "jlandmann/xdem", "score": 2 }
#### File: docs/source/conf.py ```python import os import sys #import xdem.version # Allow conf.py to find the xdem module sys.path.insert(0, os.path.join(os.path.dirname(__file__), "../../")) # -- Project information ----------------------------------------------------- project = 'xdem' copyright = '2021, xdem contributors' author = 'xdem contributors' # The full version, including alpha/beta/rc tags release = "0.0.1" os.environ["PYTHON"] = sys.executable # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", # Create the API documentation automatically "sphinx.ext.viewcode", # Create the "[source]" button in the API to show the source code. 'matplotlib.sphinxext.plot_directive', # Render matplotlib figures from code. "sphinx.ext.autosummary", # Create API doc summary texts from the docstrings. "sphinx.ext.inheritance_diagram", # For class inheritance diagrams (see coregistration.rst). "sphinx_autodoc_typehints", # Include type hints in the API documentation. "sphinxcontrib.programoutput" ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [ "api/modules.rst" # This is not really needed, but is created automatically by autodoc ] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ['_static'] # Commented out as we have no custom static data def run_apidoc(_): """ Make sure readthedocs finds the module. Maybe this is not needed? """ from sphinx.ext.apidoc import main import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), '..')) cur_dir = os.path.abspath(os.path.dirname(__file__)) module = os.path.join(cur_dir, "../../", "xdem") output_path = os.path.join(cur_dir, 'api/') main(['-e', '-o', output_path, module, os.path.join(module, "version.py"), "--force"]) def setup(app): app.connect('builder-inited', run_apidoc) ```
{ "source": "jlandowner/k8s-workload-convertor", "score": 2 }
#### File: jlandowner/k8s-workload-convertor/k8s-workload-convertor.py ```python import ruamel import ruamel.yaml import fire from functools import reduce available_kinds = ["Deployment", "DaemonSet"] class WorkloadConvertorCmd(object): def validate_available_kind(self, kind=""): if kind in available_kinds: return True return False def convert(self, from_file="", from_kind="", to_kind="", to_file=""): if not self.validate_available_kind(from_kind) or not self.validate_available_kind(to_kind): print(f"Error: from_kind and to_kind can be in {available_kinds}") exit(9) if from_file == "" or to_file == "": print("Error: from_file or to_file is not defined") exit(9) w = WorkloadConvertor() w.load(from_file) if from_kind == "Deployment" and to_kind == "DaemonSet": w.convert_deployment_to_daemonset() else: print(f"Error: Convert from {from_kind} to {to_kind} is not available") exit(1) w.save(to_file) class WorkloadConvertor(object): inputData = {} outputData = {} yaml = ruamel.yaml.YAML() def load(self, filename): with open(filename) as stream: self.inputData = self.yaml.load(stream) def save(self, filename): with open(filename, 'w') as stream: self.yaml.dump(self.outputData, stream=stream) def convert_matadata(self): self.outputData["metadata"] = {} self.outputData["metadata"]["annotations"] = self.inputData["metadata"]["annotations"] self.outputData["metadata"]["labels"] = self.inputData["metadata"]["labels"] self.outputData["metadata"]["name"] = self.inputData["metadata"]["name"] self.outputData["metadata"]["namespace"] = self.inputData["metadata"]["namespace"] def convert_podSpec(self): self.outputData["spec"] = {} self.outputData["spec"]["selector"] = self.inputData["spec"]["selector"] self.outputData["spec"]["template"] = self.inputData["spec"]["template"] def remove_creationTimestamp(self): if dict_get(self.outputData, "metadata.creationTimestamp"): del self.outputData["metadata"]["creationTimestamp"] if dict_get(self.outputData, "spec.template.metadata.creationTimestamp"): del self.outputData["spec"]["template"]["metadata"]["creationTimestamp"] def convert_deployment_to_daemonset(self): deploy = self.inputData ds = self.outputData # DaemonSet Kind ds["apiVersion"] = "apps/v1" ds["kind"] = "DaemonSet" # metadata & podSpec self.convert_matadata() self.convert_podSpec() # DaemonSet Strategy if dict_get(deploy, "spec.updateStrategy.type") == "RollingUpdate": ds["spec"]["updateStrategy"] = {} ds["spec"]["updateStrategy"]["type"] = deploy["spec"]["strategy"]["type"] ds["spec"]["updateStrategy"]["rollingUpdate"] = {} ds["spec"]["updateStrategy"]["rollingUpdate"]["maxUnavailable"] = deploy["spec"]["strategy"]["rollingUpdate"]["maxUnavailable"] if dict_get(deploy, "spec.minReadySeconds"): ds["spec"]["minReadySeconds"] = deploy["spec"]["minReadySeconds"] # fixup self.remove_creationTimestamp() def dict_get(dictionary, keys, default=None): return reduce(lambda d, key: d.get(key, default) if isinstance(d, dict) else default, keys.split("."), dictionary) if __name__ == '__main__': fire.Fire(WorkloadConvertorCmd) ```
{ "source": "jlandrum/theheck", "score": 2 }
#### File: tests/rules/test_docker_image_being_used_by_container.py ```python from theheck.rules.docker_image_being_used_by_container import match, get_new_command from theheck.types import Command def test_match(): err_response = """Error response from daemon: conflict: unable to delete cd809b04b6ff (cannot be forced) - image is being used by running container e5e2591040d1""" assert match(Command('docker image rm -f cd809b04b6ff', err_response)) def test_not_match(): err_response = 'bash: docker: command not found' assert not match(Command('docker image rm -f cd809b04b6ff', err_response)) def test_not_docker_command(): err_response = """Error response from daemon: conflict: unable to delete cd809b04b6ff (cannot be forced) - image is being used by running container e5e2591040d1""" assert not match(Command('git image rm -f cd809b04b6ff', err_response)) def test_get_new_command(): err_response = """ Error response from daemon: conflict: unable to delete cd809b04b6ff (cannot be forced) - image is being used by running container e5e2591040d1 """ result = get_new_command(Command('docker image rm -f cd809b04b6ff', err_response)) expected = 'docker container rm -f e5e2591040d1 && docker image rm -f cd809b04b6ff' assert result == expected ``` #### File: tests/rules/test_git_rm_local_modifications.py ```python import pytest from theheck.rules.git_rm_local_modifications import match, get_new_command from theheck.types import Command @pytest.fixture def output(target): return ('error: the following file has local modifications:\n {}\n(use ' '--cached to keep the file, or -f to force removal)').format(target) @pytest.mark.parametrize('script, target', [ ('git rm foo', 'foo'), ('git rm foo bar', 'bar')]) def test_match(output, script, target): assert match(Command(script, output)) @pytest.mark.parametrize('script', ['git rm foo', 'git rm foo bar', 'git rm']) def test_not_match(script): assert not match(Command(script, '')) @pytest.mark.parametrize('script, target, new_command', [ ('git rm foo', 'foo', ['git rm --cached foo', 'git rm -f foo']), ('git rm foo bar', 'bar', ['git rm --cached foo bar', 'git rm -f foo bar'])]) def test_get_new_command(output, script, target, new_command): assert get_new_command(Command(script, output)) == new_command ``` #### File: tests/rules/test_workon_doesnt_exists.py ```python import pytest from theheck.rules.workon_doesnt_exists import match, get_new_command from theheck.types import Command @pytest.fixture(autouse=True) def envs(mocker): return mocker.patch( 'theheck.rules.workon_doesnt_exists._get_all_environments', return_value=['theheck', 'code_view']) @pytest.mark.parametrize('script', [ 'workon tehheck', 'workon code-view', 'workon new-env']) def test_match(script): assert match(Command(script, '')) @pytest.mark.parametrize('script', [ 'workon theheck', 'workon code_view', 'work on tehheck']) def test_not_match(script): assert not match(Command(script, '')) @pytest.mark.parametrize('script, result', [ ('workon tehheck', 'workon theheck'), ('workon code-view', 'workon code_view'), ('workon zzzz', 'mkvirtualenv zzzz')]) def test_get_new_command(script, result): assert get_new_command(Command(script, ''))[0] == result ``` #### File: theheck/tests/test_ui.py ```python import pytest from itertools import islice from theheck import ui from theheck.types import CorrectedCommand from theheck import const @pytest.fixture def patch_get_key(monkeypatch): def patch(vals): vals = iter(vals) monkeypatch.setattr('theheck.ui.get_key', lambda: next(vals)) return patch def test_read_actions(patch_get_key): patch_get_key([ # Enter: '\n', # Enter: '\r', # Ignored: 'x', 'y', # Up: const.KEY_UP, 'k', # Down: const.KEY_DOWN, 'j', # Ctrl+C: const.KEY_CTRL_C, 'q']) assert (list(islice(ui.read_actions(), 8)) == [const.ACTION_SELECT, const.ACTION_SELECT, const.ACTION_PREVIOUS, const.ACTION_PREVIOUS, const.ACTION_NEXT, const.ACTION_NEXT, const.ACTION_ABORT, const.ACTION_ABORT]) def test_command_selector(): selector = ui.CommandSelector(iter([1, 2, 3])) assert selector.value == 1 selector.next() assert selector.value == 2 selector.next() assert selector.value == 3 selector.next() assert selector.value == 1 selector.previous() assert selector.value == 3 @pytest.mark.usefixtures('no_colors') class TestSelectCommand(object): @pytest.fixture def commands_with_side_effect(self): return [CorrectedCommand('ls', lambda *_: None, 100), CorrectedCommand('cd', lambda *_: None, 100)] @pytest.fixture def commands(self): return [CorrectedCommand('ls', None, 100), CorrectedCommand('cd', None, 100)] def test_without_commands(self, capsys): assert ui.select_command(iter([])) is None assert capsys.readouterr() == ('', 'No hecks given\n') def test_without_confirmation(self, capsys, commands, settings): settings.require_confirmation = False assert ui.select_command(iter(commands)) == commands[0] assert capsys.readouterr() == ('', const.USER_COMMAND_MARK + 'ls\n') def test_without_confirmation_with_side_effects( self, capsys, commands_with_side_effect, settings): settings.require_confirmation = False assert (ui.select_command(iter(commands_with_side_effect)) == commands_with_side_effect[0]) assert capsys.readouterr() == ('', const.USER_COMMAND_MARK + 'ls (+side effect)\n') def test_with_confirmation(self, capsys, patch_get_key, commands): patch_get_key(['\n']) assert ui.select_command(iter(commands)) == commands[0] assert capsys.readouterr() == ( '', const.USER_COMMAND_MARK + u'\x1b[1K\rls [enter/↑/↓/ctrl+c]\n') def test_with_confirmation_abort(self, capsys, patch_get_key, commands): patch_get_key([const.KEY_CTRL_C]) assert ui.select_command(iter(commands)) is None assert capsys.readouterr() == ( '', const.USER_COMMAND_MARK + u'\x1b[1K\rls [enter/↑/↓/ctrl+c]\nAborted\n') def test_with_confirmation_with_side_effct(self, capsys, patch_get_key, commands_with_side_effect): patch_get_key(['\n']) assert (ui.select_command(iter(commands_with_side_effect)) == commands_with_side_effect[0]) assert capsys.readouterr() == ( '', const.USER_COMMAND_MARK + u'\x1b[1K\rls (+side effect) [enter/↑/↓/ctrl+c]\n') def test_with_confirmation_select_second(self, capsys, patch_get_key, commands): patch_get_key([const.KEY_DOWN, '\n']) assert ui.select_command(iter(commands)) == commands[1] stderr = ( u'{mark}\x1b[1K\rls [enter/↑/↓/ctrl+c]' u'{mark}\x1b[1K\rcd [enter/↑/↓/ctrl+c]\n' ).format(mark=const.USER_COMMAND_MARK) assert capsys.readouterr() == ('', stderr) ``` #### File: theheck/rules/cd_cs.py ```python def match(command): if command.script_parts[0] == 'cs': return True def get_new_command(command): return 'cd' + ''.join(command.script[2:]) priority = 900 ``` #### File: theheck/rules/composer_not_command.py ```python import re from theheck.utils import replace_argument, for_app @for_app('composer') def match(command): return (('did you mean this?' in command.output.lower() or 'did you mean one of these?' in command.output.lower())) or ( "install" in command.script_parts and "composer require" in command.output.lower() ) def get_new_command(command): if "install" in command.script_parts and "composer require" in command.output.lower(): broken_cmd, new_cmd = "install", "require" else: broken_cmd = re.findall(r"Command \"([^']*)\" is not defined", command.output)[0] new_cmd = re.findall(r'Did you mean this\?[^\n]*\n\s*([^\n]*)', command.output) if not new_cmd: new_cmd = re.findall(r'Did you mean one of these\?[^\n]*\n\s*([^\n]*)', command.output) new_cmd = new_cmd[0].strip() return replace_argument(command.script, broken_cmd, new_cmd) ``` #### File: theheck/rules/gulp_not_task.py ```python import re import subprocess from theheck.utils import replace_command, for_app, cache @for_app('gulp') def match(command): return 'is not in your gulpfile' in command.output @cache('gulpfile.js') def get_gulp_tasks(): proc = subprocess.Popen(['gulp', '--tasks-simple'], stdout=subprocess.PIPE) return [line.decode('utf-8')[:-1] for line in proc.stdout.readlines()] def get_new_command(command): wrong_task = re.findall(r"Task '(\w+)' is not in your gulpfile", command.output)[0] return replace_command(command, wrong_task, get_gulp_tasks()) ``` #### File: theheck/rules/has_exists_script.py ```python import os from theheck.specific.sudo import sudo_support @sudo_support def match(command): return command.script_parts and os.path.exists(command.script_parts[0]) \ and 'command not found' in command.output @sudo_support def get_new_command(command): return u'./{}'.format(command.script) ``` #### File: theheck/rules/python_module_error.py ```python import re from theheck.shells import shell MISSING_MODULE = r"ModuleNotFoundError: No module named '([^']+)'" def match(command): return "ModuleNotFoundError: No module named '" in command.output def get_new_command(command): missing_module = re.findall(MISSING_MODULE, command.output)[0] return shell.and_("pip install {}".format(missing_module), command.script) ``` #### File: theheck/rules/remove_shell_prompt_literal.py ```python import re def match(command): return ( "$: command not found" in command.output and re.search(r"^[\s]*\$ [\S]+", command.script) is not None ) def get_new_command(command): return command.script.lstrip("$ ") ``` #### File: theheck/shells/powershell.py ```python from subprocess import Popen, PIPE from ..utils import DEVNULL from .generic import Generic, ShellConfiguration class Powershell(Generic): friendly_name = 'PowerShell' def app_alias(self, alias_name): return 'function ' + alias_name + ' {\n' \ ' $history = (Get-History -Count 1).CommandLine;\n' \ ' if (-not [string]::IsNullOrWhiteSpace($history)) {\n' \ ' $heck = $(theheck $args $history);\n' \ ' if (-not [string]::IsNullOrWhiteSpace($heck)) {\n' \ ' if ($heck.StartsWith("echo")) { $heck = $heck.Substring(5); }\n' \ ' else { iex "$heck"; }\n' \ ' }\n' \ ' }\n' \ ' [Console]::ResetColor() \n' \ '}\n' def and_(self, *commands): return u' -and '.join('({0})'.format(c) for c in commands) def how_to_configure(self): return ShellConfiguration( content=u'iex "$(theheck --alias)"', path='$profile', reload='. $profile', can_configure_automatically=False) def _get_version(self): """Returns the version of the current shell""" try: proc = Popen( ['powershell.exe', '$PSVersionTable.PSVersion'], stdout=PIPE, stderr=DEVNULL) version = proc.stdout.read().decode('utf-8').rstrip().split('\n') return '.'.join(version[-1].split()) except IOError: proc = Popen(['pwsh', '--version'], stdout=PIPE, stderr=DEVNULL) return proc.stdout.read().decode('utf-8').split()[-1] ```
{ "source": "jlane9/eve-dynamodb", "score": 2 }
#### File: eve-dynamodb/eve_dynamodb/dynamodb.py ```python import decimal import itertools from typing import Union import boto3 from botocore.exceptions import ClientError as BotoCoreClientError from bson import decimal128, ObjectId from bson.dbref import DBRef from eve.io.base import DataLayer from eve.utils import ParsedRequest, config, debug_error_message, str_to_date, validate_filters from flask import Flask, abort import simplejson as json from eve_dynamodb.expression import build_attr_expression, build_key_expression """ String/Set Boolean Null Number/Set Binary/Set Map List """ class DynamoDBResult: """DynamoDB search result """ def __init__(self, result: dict, **_kwargs): """Initialize DynamoDB result :param dict result: DynamoDB response :param dict _kwargs: Extra arguments """ self._result = result def __iter__(self): """Return next item from result :return: """ if 'Items' not in self._result: return for item in self._result['Items']: yield item def count(self, **_kwargs) -> int: """Return a count of all items :param dict _kwargs: Extra arguments :return: Count of all items :rtype: int """ return self._result['Count'] if 'Count' not in self._result else 0 class DynamoDB(DataLayer): """DynamoDB data layer access for Eve REST API """ serializers = { 'boolean': lambda v: {"1": True, "true": True, "0": False, "false": False}[str(v).lower()], 'datetime': str_to_date, 'dbref': lambda value: DBRef( value['$col'] if '$col' in value else value['$ref'], value['$id'], value['$db'] if '$db' in value else None ) if value is not None else None, 'decimal': lambda value: decimal128.Decimal128(decimal.Decimal(str(value))) if value is not None else None, 'float': lambda value: float(value) if value is not None else None, 'integer': lambda value: int(value) if value is not None else None, 'number': lambda val: json.loads(val) if val is not None else None, 'objectid': lambda value: ObjectId(value) if value else None } def init_app(self, app: Flask): """Initialize DynamoDB :param Flask app: Flask application """ self.driver = boto3.resource('dynamodb') def find(self, resource: str, req: ParsedRequest = None, sub_resource_lookup: dict = None, perform_count: bool = True) -> tuple: """Retrieves a set of documents matching a given request :param str resource: Resource being accessed :param ParsedRequest req: Contains all the constraints that must be fulfilled in order to satisfy the request :param dict sub_resource_lookup: Sub-resource lookup from the endpoint url :param bool perform_count: Whether a document count should be performed and returned to the client :return: Result from DynamoDB search and count :rtype: tuple """ args = dict() spec = self._convert_where_request_to_dict(req) bad_filter = validate_filters(spec, resource) is_soft_delete = config.DOMAIN[resource]["soft_delete"] if req and req.max_results: args["limit"] = req.max_results if req and req.page > 1: args["skip"] = (req.page - 1) * req.max_results if bad_filter: abort(400, bad_filter) if sub_resource_lookup: spec = self.combine_queries(spec, sub_resource_lookup) if is_soft_delete and not (req and req.show_deleted and self.query_contains_field(spec, config.DELETED)): spec = self.combine_queries(spec, {config.DELETED: {"$ne": True}}) client_projection = self._client_projection(req) data_source, spec, projection, sort = self._datasource_ex(resource, spec, client_projection, None) if req and req.if_modified_since: spec[config.LAST_UPDATED] = {"$gt": req.if_modified_since} if len(spec) > 0: args["filter"] = spec if projection: args["projection"] = projection try: table = self.driver.Table(data_source) result = DynamoDBResult(table.scan(**args)) # TODO: Finish this return result, result.count() if perform_count else None except BotoCoreClientError as e: abort(500, description=debug_error_message(e.response['Error']['Message'])) def aggregate(self, resource: str, pipeline: dict, options: dict): """Perform an aggregation on the resource data source and returns the result :param str resource: Resource being accessed :param dict pipeline: Aggregation pipeline to be executed :param dict options: Aggregation options to be considered """ # TODO: Finish this, maybe this isn't supported?. Also doc strings raise NotImplementedError def find_one(self, resource: str, req: ParsedRequest, check_auth_value: bool = True, force_auth_field_projection: bool = False, **lookup) -> dict: """Retrieves a single document :param str resource: Resource being accessed :param ParsedRequest req: Contains all the constraints that must be fulfilled in order to satisfy the request :param bool check_auth_value: Boolean flag indicating if the find operation should consider user-restricted resource access. Defaults to ``True`` :param bool force_auth_field_projection: Boolean flag indicating if the find operation should always include the user-restricted resource access field (if configured). Defaults to ``False`` :param dict lookup: Lookup query :return: A single document :rtype: dict """ client_projection = self._client_projection(req) is_soft_delete = config.DOMAIN[resource]["soft_delete"] show_deleted = req and req.show_deleted query_contains_deleted = self.query_contains_field(lookup, config.DELETED) data_source, filter_, projection, _ = self._datasource_ex( resource, lookup, client_projection, check_auth_value=check_auth_value, force_auth_field_projection=force_auth_field_projection, ) if is_soft_delete and not show_deleted and not query_contains_deleted: filter_ = self.combine_queries(filter_, {config.DELETED: {"$ne": True}}) try: table = self.driver.Table(data_source) result = table.get_item(Key=lookup) # TODO: Add projection and pass filter, change to scan or query? return result['Item'] if 'Item' in result else None except BotoCoreClientError as e: abort(500, description=debug_error_message(e.response['Error']['Message'])) """ # Here, we feed pymongo with `None` if projection is empty. return ( self.pymongo(resource).db[datasource].find_one(filter_, projection or None) ) """ def find_one_raw(self, resource: str, **lookup) -> dict: """Retrieves a single raw document :param str resource: Resource name :param dict lookup: Lookup query :return: A single document :rtype: dict """ id_field = config.DOMAIN[resource]["id_field"] _id = lookup.get(id_field) data_source, filter_, _, _ = self._datasource_ex(resource, {id_field: _id}, None) try: table = self.driver.Table(data_source) result = table.get_item(Key=filter_) return result['Item'] if 'Item' in result else None except BotoCoreClientError as e: abort(500, description=debug_error_message(e.response['Error']['Message'])) def find_list_of_ids(self, resource: str, ids: list, client_projection=None) -> DynamoDBResult: """Retrieves a list of documents from the collection given by `resource`, matching the given list of ids :param str resource: Resource name :param list ids: A list of ids corresponding to the documents to retrieve :param client_projection: A specific projection to use :return: A list of documents matching the ids in `ids` from the collection specified in `resource` :rtype: DynamoDBResult """ id_field = config.DOMAIN[resource]["id_field"] query = {"$or": [{id_field: id_} for id_ in ids]} data_source, filter_, projection, _ = self._datasource_ex( resource, query=query, client_projection=client_projection ) try: table = self.driver.Table(data_source) return DynamoDBResult(table.scan()) # TODO finish this except BotoCoreClientError as e: abort(500, description=debug_error_message(e.response['Error']['Message'])) def insert(self, resource: str, doc_or_docs: Union[dict, list]) -> list: """Inserts a document into a resource collection/table :param str resource: Resource being accessed :param (Union[dict, list]) doc_or_docs: JSON document or list of JSON documents to be added to the database :return: A list of ids :rtype: list """ id_field = config.DOMAIN[resource]["id_field"] data_source, _, _, _ = self._datasource_ex(resource) if isinstance(doc_or_docs, dict): doc_or_docs = [doc_or_docs] try: table = self.driver.Table(data_source) with table.batch_writer() as batch: for doc in doc_or_docs: # Note: Existing documents are overwritten https://github.com/boto/boto/issues/3273 # TODO: Maybe we could a search first? batch.put_item(Item=doc) return [doc[id_field] for doc in doc_or_docs] except BotoCoreClientError as e: abort(500, description=debug_error_message(e.response['Error']['Message'])) def update(self, resource: str, id_: str, updates: dict, original: dict): """Updates a collection/table document/row :param str resource: Resource being accessed :param str id_: The unique id of the document :param dict updates: JSON updates to be performed on the database document (or row) :param dict original: Definition of the json document that should be updated :raise OriginalChangedError: Raised if the database layer notices a change from the supplied original parameter """ # TODO: Finish this raise NotImplementedError def replace(self, resource: str, id_: str, document: dict, original: dict): """Replaces a collection/table document/row :param str resource: Resource being accessed :param str id_: The unique id of the document :param dict document: The new JSON document :param original: Definition of the json document that should be updated :raise OriginalChangedError: Raised if the database layer notices a change from the supplied original parameter """ # TODO: Finish this raise NotImplementedError def remove(self, resource: str, lookup: dict): """Removes a document/row or an entire set of documents/rows from a database collection/table :param str resource: Resource being accessed :param dict lookup: A query that documents must match in order to qualify for deletion :return: """ id_field = config.DOMAIN[resource]["id_field"] data_source, filter_, _, _ = self._datasource_ex(resource, lookup) try: table = self.driver.Table(data_source) with table.batch_writer() as batch: for item in self.find(resource, sub_resource_lookup=lookup)[0]: batch.delete_item(Key={id_field: item[id_field]}) except BotoCoreClientError as e: abort(500, description=debug_error_message(e.response['Error']['Message'])) def combine_queries(self, query_a: dict, query_b: dict) -> dict: """Takes two db queries and applies db-specific syntax to produce the intersection :param dict query_a: Left query :param dict query_b: Right query :return: Combined query :rtype: dict """ return { "$and": [ {k: v} for k, v in itertools.chain(query_a.items(), query_b.items()) ] } def get_value_from_query(self, query: dict, field_name: str) -> str: """For the specified field name, parses the query and returns the value being assigned in the query For example, get_value_from_query({'_id': 123}, '_id') 123 This mainly exists to deal with more complicated compound queries get_value_from_query( {'$and': [{'_id': 123}, {'firstname': 'mike'}], '_id' ) 123 :param dict query: Lookup query :param str field_name: Field name to get value for :return: Value for field name within query :rtype: str """ if field_name in query: return query[field_name] elif "$and" in query: for condition in query["$and"]: if field_name in condition: return condition[field_name] raise KeyError def query_contains_field(self, query: dict, field_name: str) -> bool: """For the specified field name, does the query contain it? :param dict query: Filter query :param str field_name: Field name :return: True, if the query contains the field. False otherwise :rtype: bool """ try: self.get_value_from_query(query, field_name) except KeyError: return False return True def is_empty(self, resource: str) -> bool: """Returns whether the resource is empty :param str resource: Resource being accessed :return: True, if the collection is empty. False otherwise :rtype: bool """ data_source, filter_, _, _ = self.datasource(resource) try: table = self.driver.Table(data_source) if not filter_: return table.scan()['Count'] == 0 else: if config.LAST_UPDATED in filter_: del filter_[config.LAST_UPDATED] return self.find(resource, None, filter_, perform_count=True)[1] == 0 except BotoCoreClientError as e: abort(400, description=debug_error_message(e.response['Error']['Message'])) @staticmethod def _convert_where_request_to_dict(req: ParsedRequest) -> dict: """Converts the contents of a `ParsedRequest`'s `where` property to a dict :param ParsedRequest req: Contains all the constraints that must be fulfilled in order to satisfy the request :return: Where clause from request :rtype: dict """ if not req or not req.where: return {} try: return json.loads(req.where) except json.decoder.JSONDecodeError: abort(400, description=debug_error_message("Unable to parse `where` clause"),) ```
{ "source": "jlane9/Flask-MonitoringDashboard", "score": 3 }
#### File: core/forms/daterange.py ```python import datetime from flask import request from flask_wtf import FlaskForm from wtforms import validators, SubmitField from wtforms.fields.html5 import DateField from flask_monitoringdashboard.core.timezone import to_local_datetime DATE_FORMAT = '%Y-%m-%d' class SelectDateRangeForm(FlaskForm): """ Used for selecting two dates, which together specify a range. """ start_date = DateField('Start date', format=DATE_FORMAT, validators=[validators.data_required()]) end_date = DateField('End date', format=DATE_FORMAT, validators=[validators.data_required()]) submit = SubmitField('Update') title = 'Select the time interval' def get_days(self): """ :return: A list with datetime.date object from form.start_date to (including) form.end_date """ delta = self.end_date.data - self.start_date.data return [self.start_date.data + datetime.timedelta(days=i) for i in range(delta.days + 1)] def content(self): return ''' <div class="row"> <div class="col-sm-4"><i class="fa fa-calendar"></i> {} </div> <div class="col-sm-4"><i class="fa fa-calendar"></i> {} </div> </div> <div class="row"> <div class="col-sm-4"> {} </div> <div class="col-sm-4"> {} </div> <div class="col-sm-4"> {} </div> </div>'''.format(self.start_date.label, self.end_date.label, self.start_date(class_="form-control", required=True), self.end_date(class_="form-control", required=True), self.submit(class_="btn btn-primary btn-block")) def get_daterange_form(num_days=20): """ Returns a SelectDateRangeForm with two dates: - end_date is today - start_date is the today - numdays :param num_days: the date for the start_date :return: A SelectDateRangeForm object with the required logic """ form = SelectDateRangeForm(request.form) if form.validate(): if form.start_date.data > form.end_date.data: form.start_date.data, form.end_date.data = form.end_date.data, form.start_date.data else: form.end_date.data = to_local_datetime(datetime.datetime.utcnow()).date() form.start_date.data = form.end_date.data - datetime.timedelta(days=num_days) return form ``` #### File: flask_monitoringdashboard/core/info_box.py ```python from flask_monitoringdashboard.core.forms import MONITOR_CHOICES GRAPH_INFO = '''You can hover the graph with your mouse to see the actual values. You can also use the buttons at the top of the graph to select a subset of graph, scale it accordingly or save the graph as a PNG image.''' def b(s): return '<b>{}</b>'.format(s) def p(s): return '<p>{}</p>'.format(s) def get_plot_info(axes='', content=''): """ :param axes: If specified, information about the axis :param content: If specified, information about the content :return: a String with information in HTML """ information = b('Graph') + p(GRAPH_INFO) if axes: information += b('Axes') + p(axes) if content: information += b('Content') + p(content) return information def get_rules_info(): """ :return: a string with information in HTML """ info = b(MONITOR_CHOICES[0][1]) + \ p('When the monitoring-level is set to 0, you don\'t monitor anything about the performance of this ' 'endpoint. The only data that is stored is when the ' + b('endpoint is last requested.')) info += b(MONITOR_CHOICES[1][1]) + \ p('When the monitoring-level is set to 1, you collect data when the endpoint is last requested, plus ' 'data about the ' + b('performance and utilization') + ' of this endpoint (as a black-box).') info += b(MONITOR_CHOICES[2][1]) + \ p('When the monitoring-level is set to 2, you get all the functionality from 1, plus data about the ' + b('performance per line of code') + ' from all requests.') info += b(MONITOR_CHOICES[3][1]) + \ p('When the monitoring-level is set to 3, you get all the functionality from 2, including ' + b('more data' ' if a request is an outlier.')) return info ``` #### File: core/plot/__init__.py ```python import plotly import plotly.graph_objs as go from flask_monitoringdashboard.core.plot.util import add_default_value from flask_monitoringdashboard.core.plot.plots import heatmap, boxplot, barplot, scatter, get_average_bubble_size def get_layout(**kwargs): """ :param kwargs: additional arguments for the layout :return: a Plotly Layout object with the required values """ kwargs = add_default_value('showlegend', False, **kwargs) kwargs = add_default_value('autosize', True, **kwargs) kwargs = add_default_value('plot_bgcolor', 'rgba(249,249,249,1)', **kwargs) kwargs = add_default_value('height', 700, **kwargs) kwargs = add_default_value('hovermode', 'closest', **kwargs) return go.Layout(**kwargs) def get_margin(**kwargs): """ :param kwargs: additional arguments for the Margin object :return: a Plotly Margin instance """ kwargs = add_default_value('l', 200, **kwargs) return go.Margin(**kwargs) def get_figure(layout, data, **kwargs): """ :param layout: must be a Plotly Layout instance :param data: the data for the :param kwargs: additional arguments for the plot :return: A plotly generated plot with the required data """ if not data: return None kwargs = add_default_value('output_type', 'div', **kwargs) kwargs = add_default_value('show_link', False, **kwargs) return plotly.offline.plot(go.Figure(data=data, layout=layout), **kwargs) ``` #### File: profiler/util/stringHash.py ```python class StringHash(object): def __init__(self): self._h = {} def hash(self, string): """ Performs the following reduction: hash('abc') ==> 0 hash('def') ==> 1 hash('abc') ==> 0 :param string: the string to be hashed :return: a unique int for every string. """ if string in self._h: return self._h[string] self._h[string] = len(self._h) return self._h[string] def unhash(self, hash): """ Opposite of hash. unhash(hash('abc')) == 'abc :param hash: string to be unhashed :return: the value that corresponds to the given hash """ for k, v in self._h.items(): if v == hash: return k raise ValueError('Value not possible to unhash: {}'.format(hash)) ``` #### File: flask_monitoringdashboard/core/utils.py ```python import ast import numpy as np from flask import url_for from werkzeug.routing import BuildError from flask_monitoringdashboard import config from flask_monitoringdashboard.core.rules import get_rules from flask_monitoringdashboard.core.timezone import to_local_datetime from flask_monitoringdashboard.database.count import count_requests, count_total_requests from flask_monitoringdashboard.database.endpoint import get_endpoint_by_id from flask_monitoringdashboard.database.request import get_date_of_first_request, get_date_of_first_request_version def get_endpoint_details(db_session, endpoint_id): """ Returns details about an endpoint. :param db_session: session for the database :param endpoint_id: id of the endpoint :return dictionary """ endpoint = get_endpoint_by_id(db_session, endpoint_id) endpoint.time_added = to_local_datetime(endpoint.time_added) return { 'id': endpoint_id, 'endpoint': endpoint.name, 'rules': ', '.join([r.rule for r in get_rules(endpoint.name)]), 'rule': endpoint, 'url': get_url(endpoint.name), 'total_hits': count_requests(db_session, endpoint.id) } def get_details(db_session): """ Returns details about the deployment. :param db_session: session for the database :return dictionary """ import json from flask_monitoringdashboard import loc with open(loc() + 'constants.json', 'r') as f: constants = json.load(f) return { 'link': config.link, 'dashboard-version': constants['version'], 'config-version': config.version, 'first-request': get_date_of_first_request(db_session), 'first-request-version': get_date_of_first_request_version(db_session, config.version), 'total-requests': count_total_requests(db_session) } def get_url(end): """ Returns the URL if possible. URL's that require additional arguments, like /static/<file> cannot be retrieved. :param end: the endpoint for the url. :return: the url_for(end) or None, """ try: return url_for(end) except BuildError: return None def simplify(values, n=5): """ Simplify a list of values. It returns a list that is representative for the input :param values: list of values :param n: length of the returned list :return: list with n values: min, q1, median, q3, max """ return [np.percentile(values, i * 100 // (n - 1)) for i in range(n)] ``` #### File: profiler/util/test_util.py ```python import unittest from flask_monitoringdashboard.core.profiler.util import order_histogram class TestProfilerUtil(unittest.TestCase): def test_order_histogram(self): histogram = { ('0:42->1:12', 'c'): 610, ('0:42', 'a'): 1234, ('0:42->1:13', 'b'): 614 } self.assertEqual(order_histogram(histogram.items()), [(('0:42', 'a'), 1234), (('0:42->1:13', 'b'), 614), (('0:42->1:12', 'c'), 610)]) ``` #### File: test/db/test_codeline.py ```python import unittest from flask_monitoringdashboard.database import session_scope from flask_monitoringdashboard.database.code_line import get_code_line FN = 'filename' LN = 42 FUN = 'fun' CODE = 'code' class TestCodeLine(unittest.TestCase): def test_get_code_line(self): with session_scope() as db_session: code_line1 = get_code_line(db_session, FN, LN, FUN, CODE) code_line2 = get_code_line(db_session, FN, LN, FUN, CODE) self.assertEqual(code_line1.id, code_line2.id) self.assertEqual(code_line1.function_name, code_line2.function_name) self.assertEqual(code_line1.filename, code_line2.filename) self.assertEqual(code_line1.line_number, code_line2.line_number) self.assertEqual(code_line1.code, code_line2.code) ``` #### File: test/db/test_data_grouped.py ```python import unittest from flask_monitoringdashboard.database import session_scope from flask_monitoringdashboard.database.data_grouped import get_endpoint_data_grouped, get_test_data_grouped, \ get_version_data_grouped from flask_monitoringdashboard.test.db.test_count_group import TestCountGroup from flask_monitoringdashboard.test.utils import set_test_environment, clear_db, add_fake_data, NAME, REQUESTS class TestDataGrouped(unittest.TestCase): def setUp(self): set_test_environment() clear_db() add_fake_data() @staticmethod def median(values): return sum(values) / len(values) def test_get_endpoint_data_grouped(self): with session_scope() as db_session: self.assertEqual(get_endpoint_data_grouped(db_session, self.median), {1: 12000}.items()) def test_get_test_data_grouped(self): with session_scope() as db_session: TestCountGroup.add_test_data(db_session) self.assertEqual(get_test_data_grouped(db_session, self.median), {NAME: 1789.5}.items()) def test_get_version_data_grouped(self): with session_scope() as db_session: self.assertEqual(get_version_data_grouped(db_session, lambda x: x), {'1.0': REQUESTS}.items()) ``` #### File: test/db/test_tested_endpoints.py ```python import unittest from flask_monitoringdashboard.database import session_scope from flask_monitoringdashboard.database.tested_endpoints import get_tested_endpoint_names from flask_monitoringdashboard.test.db.test_count_group import TestCountGroup from flask_monitoringdashboard.test.utils import set_test_environment, clear_db, add_fake_data, NAME class TestTestedEndpoints(unittest.TestCase): def setUp(self): set_test_environment() clear_db() add_fake_data() def test_get_tested_endpoint_names(self): with session_scope() as db_session: TestCountGroup.add_test_data(db_session) self.assertEqual(get_tested_endpoint_names(db_session), [NAME]) ``` #### File: test/db/test_tests.py ```python import unittest import datetime from flask_monitoringdashboard.database import session_scope, TestEndpoint from flask_monitoringdashboard.database.tests import get_endpoint_measurements, get_last_tested_times from flask_monitoringdashboard.test.utils import set_test_environment, clear_db, add_fake_data, add_fake_test_runs, \ REQUESTS, NAME, TEST_NAMES, ENDPOINT_ID NAME2 = 'main2' SUITE = 3 class TestDBTests(unittest.TestCase): def setUp(self): set_test_environment() clear_db() add_fake_data() add_fake_test_runs() def test_add_test_result(self): """ Test whether the function returns the right values. """ from flask_monitoringdashboard.database.tests import add_test_result, get_suite_measurements, add_or_update_test from flask_monitoringdashboard.database.tested_endpoints import add_endpoint_hit from flask_monitoringdashboard import config import datetime with session_scope() as db_session: self.assertEqual(get_suite_measurements(db_session, SUITE), [0]) for exec_time in REQUESTS: for test in TEST_NAMES: add_or_update_test(db_session, test, True, datetime.datetime.utcnow(), config.version) add_test_result(db_session, test, exec_time, datetime.datetime.utcnow(), config.version, SUITE, 0) add_endpoint_hit(db_session, NAME, exec_time, test, config.version, SUITE) result = get_suite_measurements(db_session, SUITE) self.assertEqual(len(result), len(REQUESTS) * len(TEST_NAMES)) def test_get_results(self): """ Test whether the function returns the right values. """ self.test_add_test_result() # can be replaced by test_add_test_result, since this function covers two tests def test_get_suites(self): """ Test whether the function returns the right values. """ from flask_monitoringdashboard.database.tests import get_test_suites self.test_add_test_result() with session_scope() as db_session: self.assertEqual(2, len(get_test_suites(db_session))) def test_get_measurements(self): """ Test whether the function returns the right values. """ from flask_monitoringdashboard.database.tests import get_suite_measurements with session_scope() as db_session: self.assertEqual(get_suite_measurements(db_session, SUITE), [0]) self.test_add_test_result() result = get_suite_measurements(db_session, SUITE) self.assertEqual(len(REQUESTS) * 2, len(result)) def test_get_test_measurements(self): """ Test whether the function returns the right values. """ from flask_monitoringdashboard.database.tests import get_endpoint_measurements_job with session_scope() as db_session: self.assertEqual(1, len(get_endpoint_measurements_job(db_session, NAME, SUITE))) self.test_add_test_result() result = get_endpoint_measurements_job(db_session, NAME, SUITE) self.assertEqual(len(TEST_NAMES) * len(REQUESTS), len(result)) def test_get_endpoint_measurements(self): with session_scope() as db_session: self.assertEqual(get_endpoint_measurements(db_session, "1"), [0]) db_session.add(TestEndpoint(endpoint_id=ENDPOINT_ID, test_id=1, duration=1234, app_version="1.0", travis_job_id="1", time_added=datetime.datetime.utcnow())) db_session.add(TestEndpoint(endpoint_id=ENDPOINT_ID, test_id=1, duration=2345, app_version="1.0", travis_job_id="1", time_added=datetime.datetime.utcnow())) self.assertEqual(get_endpoint_measurements(db_session, "1"), [1234, 2345]) def test_get_last_tested_times(self): with session_scope() as db_session: self.assertEqual(get_last_tested_times(db_session), []) db_session.add(TestEndpoint(endpoint_id=ENDPOINT_ID, test_id=1, duration=1234, app_version="1.0", travis_job_id="1", time_added=datetime.datetime.utcnow())) self.assertNotEqual(get_last_tested_times(db_session), []) ``` #### File: test/views/test_auth.py ```python import unittest from flask_monitoringdashboard.test.utils import set_test_environment, clear_db, add_fake_data, login, get_test_app class TestLogin(unittest.TestCase): def setUp(self): set_test_environment() clear_db() add_fake_data() self.app = get_test_app() def test_get_login(self): """ Just retrieve the content and check if nothing breaks """ with self.app.test_client() as c: self.assertEqual(200, c.get('dashboard/login').status_code) login(c) self.assertEqual(302, c.get('dashboard/login').status_code) def test_incorrect_login(self): """ Try whether logging with incorrect credentials returns the login page """ args = {'name': 'admin', 'password': '<PASSWORD>'} with self.app.test_client() as c: self.assertIn('formLogin', c.post('dashboard/login', data=args).data.decode()) def test_correct_login(self): """ Try whether logging with correct credentials does not return the login page """ args = {'name': 'admin', 'password': '<PASSWORD>'} with self.app.test_client() as c: self.assertNotIn('formLogin', c.post('dashboard/login', data=args).data.decode()) def test_logout(self): """ Just retrieve the content and check if nothing breaks """ with self.app.test_client() as c: self.assertEqual(302, c.get('dashboard/logout').status_code) ``` #### File: views/dashboard/heatmap.py ```python import datetime import numpy import plotly.graph_objs as go from flask import render_template from flask_monitoringdashboard import blueprint from flask_monitoringdashboard.core.auth import secure from flask_monitoringdashboard.core.forms import get_daterange_form from flask_monitoringdashboard.core.plot import get_layout, get_figure, heatmap as plot_heatmap from flask_monitoringdashboard.core.info_box import get_plot_info from flask_monitoringdashboard.core.timezone import to_utc_datetime, to_local_datetime from flask_monitoringdashboard.database import session_scope from flask_monitoringdashboard.database.endpoint import get_num_requests TITLE = 'Hourly API Utilization' AXES_INFO = '''The X-axis presents a number of days. The Y-axis presents every hour of the day.''' CONTENT_INFO = '''The color of the cell presents the number of requests that the application received in a single hour. The darker the cell, the more requests it has processed. This information can be used to validate on which moment of the day the Flask application processes to most requests.''' @blueprint.route('/hourly_load', methods=['GET', 'POST']) @secure def hourly_load(): form = get_daterange_form() return render_template('fmd_dashboard/graph.html', form=form, graph=hourly_load_graph(form), title=TITLE, information=get_plot_info(AXES_INFO, CONTENT_INFO)) def hourly_load_graph(form, endpoint_id=None): """ Return HTML string for generating a Heatmap. :param form: A SelectDateRangeForm, which is used to filter the selection :param endpoint_id: optionally, filter the data on a specific endpoint :return: HTML code with the graph """ # list of hours: 0:00 - 23:00 hours = ['0{}:00'.format(h) for h in range(0, 10)] + ['{}:00'.format(h) for h in range(10, 24)] days = form.get_days() # create empty 2D-list: [hour][day] heatmap_data = numpy.zeros((len(hours), len(days))) # add data from database to heatmap_data start_datetime = to_utc_datetime(datetime.datetime.combine(form.start_date.data, datetime.time(0, 0, 0, 0))) end_datetime = to_utc_datetime(datetime.datetime.combine(form.end_date.data, datetime.time(23, 59, 59))) with session_scope() as db_session: for time, count in get_num_requests(db_session, endpoint_id, start_datetime, end_datetime): parsed_time = datetime.datetime.strptime(time, '%Y-%m-%d %H:%M:%S') day_index = (parsed_time - start_datetime).days hour_index = int(to_local_datetime(parsed_time).strftime('%H')) heatmap_data[hour_index][day_index] = count start_datetime = to_local_datetime(start_datetime - datetime.timedelta(days=1)).strftime('%Y-%m-%d 12:00:00') end_datetime = to_local_datetime(form.end_date.data).strftime('%Y-%m-%d 12:00:00') layout = get_layout( xaxis=go.XAxis(range=[start_datetime, end_datetime]) ) return get_figure(layout, [plot_heatmap(x=days, y=hours, z=heatmap_data)]) ``` #### File: views/dashboard/version_usage.py ```python from flask import render_template from flask_monitoringdashboard import blueprint from flask_monitoringdashboard.core.auth import secure from flask_monitoringdashboard.core.forms import get_slider_form from flask_monitoringdashboard.core.plot import get_layout, get_figure, get_margin, heatmap from flask_monitoringdashboard.core.info_box import get_plot_info from flask_monitoringdashboard.database import Request, session_scope from flask_monitoringdashboard.database.count import count_versions from flask_monitoringdashboard.database.count_group import count_requests_group, get_value from flask_monitoringdashboard.database.endpoint import get_endpoints from flask_monitoringdashboard.database.versions import get_versions TITLE = 'Multi Version API Utilization' AXES_INFO = '''The X-axis presents the versions that are used. The Y-axis presents the endpoints that are found in the Flask application.''' CONTENT_INFO = '''The color of the cell presents the distribution of the amount of requests that the application received in a single version for a single endpoint. The darker the cell, the more requests a certain endpoint has processed in that version. Since it displays the distribution of the load, each column sums up to 100%. This information can be used to validate which endpoints processes the most requests.''' @blueprint.route('/version_usage', methods=['GET', 'POST']) @secure def version_usage(): with session_scope() as db_session: form = get_slider_form(count_versions(db_session), 'Select the number of versions') graph = version_usage_graph(db_session, form) return render_template('fmd_dashboard/graph.html', graph=graph, title=TITLE, information=get_plot_info(AXES_INFO, CONTENT_INFO), form=form) def version_usage_graph(db_session, form): """ Used for getting a Heatmap with an overview of which endpoints are used in which versions :param db_session: session for the database :param form: instance of SliderForm :return: """ endpoints = get_endpoints(db_session) versions = get_versions(db_session, limit=form.get_slider_value()) requests = [count_requests_group(db_session, Request.version_requested == v) for v in versions] total_hits = [] hits = [[]] * len(endpoints) for hits_version in requests: total_hits.append(max(1, sum([value for key, value in hits_version]))) for j in range(len(endpoints)): hits[j] = [0] * len(versions) for i in range(len(versions)): hits[j][i] = get_value(requests[i], endpoints[j].id) * 100 / total_hits[i] layout = get_layout( xaxis={'title': 'Versions', 'type': 'category'}, yaxis={'type': 'category', 'autorange': 'reversed'}, margin=get_margin() ) trace = heatmap( z=hits, x=versions, y=['{} '.format(e.name) for e in endpoints], colorbar={ 'titleside': 'top', 'tickmode': 'array', } ) return get_figure(layout=layout, data=[trace]) ``` #### File: views/details/time_version.py ```python from flask import render_template from flask_monitoringdashboard import blueprint from flask_monitoringdashboard.core.auth import secure from flask_monitoringdashboard.core.colors import get_color from flask_monitoringdashboard.core.forms import get_slider_form from flask_monitoringdashboard.core.plot import boxplot, get_figure, get_layout, get_margin from flask_monitoringdashboard.core.info_box import get_plot_info from flask_monitoringdashboard.core.utils import get_endpoint_details, simplify from flask_monitoringdashboard.database import Request, session_scope from flask_monitoringdashboard.database.count import count_versions_endpoint from flask_monitoringdashboard.database.count_group import get_value from flask_monitoringdashboard.database.data_grouped import get_version_data_grouped from flask_monitoringdashboard.database.endpoint import to_local_datetime from flask_monitoringdashboard.database.versions import get_first_requests TITLE = 'Per-Version Performance' AXES_INFO = '''The X-axis presents the execution time in ms. The Y-axis presents the versions that are used.''' CONTENT_INFO = '''This graph shows a horizontal boxplot for the versions that are used. With this graph you can found out whether the performance changes across different versions.''' @blueprint.route('/endpoint/<endpoint_id>/versions', methods=['GET', 'POST']) @secure def versions(endpoint_id): with session_scope() as db_session: details = get_endpoint_details(db_session, endpoint_id) form = get_slider_form(count_versions_endpoint(db_session, endpoint_id), title='Select the number of versions') graph = versions_graph(db_session, endpoint_id, form) return render_template('fmd_dashboard/graph-details.html', details=details, graph=graph, title='{} for {}'.format(TITLE, details['endpoint']), form=form, information=get_plot_info(AXES_INFO, CONTENT_INFO)) def format_version(version, first_used): """ :param version: name of the version :param first_used: datetime object when the version was first used. :return: string that represents the version """ if not first_used: return version return '{}<br>{}'.format(version, to_local_datetime(first_used).strftime('%Y-%m-%d %H:%M')) def versions_graph(db_session, endpoint_id, form): times = get_version_data_grouped(db_session, lambda x: simplify(x, 10), Request.endpoint_id == endpoint_id) first_requests = get_first_requests(db_session, endpoint_id, form.get_slider_value()) data = [boxplot( name=format_version(request.version_requested, get_value(first_requests, request.version_requested)), values=get_value(times, request.version_requested), marker={'color': get_color(request.version_requested)}) for request in first_requests] layout = get_layout( height=350 + 40 * len(first_requests), xaxis={'title': 'Execution time (ms)'}, yaxis={'type': 'category', 'title': 'Version', 'autorange': 'reversed'}, margin=get_margin() ) return get_figure(layout=layout, data=data) ``` #### File: views/export/csv.py ```python import datetime from flask import make_response from flask_monitoringdashboard import blueprint from flask_monitoringdashboard.core.auth import admin_secure from flask_monitoringdashboard.database import session_scope from flask_monitoringdashboard.database.outlier import get_all_outliers from flask_monitoringdashboard.database.request import get_data REQUESTS_COLUMNS = ['id', 'endpoint_id', 'duration', 'time_requested', 'version_requested', 'group_by', 'ip'] OUTLIER_COLUMNS = ['id', 'request_id', 'request_header', 'request_environment', 'request_url', 'cpu_percent', 'memory', 'stacktrace'] @blueprint.route('/download-requests') @admin_secure def download_requests(): csv = ','.join(REQUESTS_COLUMNS) + '\n' with session_scope() as db_session: for entry in get_data(db_session): csv += ','.join([str(entry.__getattribute__(c)) for c in REQUESTS_COLUMNS]) + '\n' response = make_response(csv) response.headers["Content-Disposition"] = "attachment; filename=requests_{0}.csv".format( str(datetime.datetime.utcnow()).replace(" ", "_").replace(":", "-")[:19]) return response @blueprint.route('/download-outliers') @admin_secure def download_outliers(): csv = ','.join(OUTLIER_COLUMNS) + '\n' with session_scope() as db_session: for entry in get_all_outliers(db_session): data = ','.join([str(entry.__getattribute__(c)) for c in OUTLIER_COLUMNS]) data = ' '.join(data.split()) # remove newlines csv += data + '\n' response = make_response(csv) response.headers["Content-Disposition"] = "attachment; filename=outliers_{0}.csv".format( str(datetime.datetime.utcnow()).replace(" ", "_").replace(":", "-")[:19]) return response ```
{ "source": "jlane9/mockerena", "score": 2 }
#### File: mockerena/mockerena/app.py ```python import inspect import json import logging import os import re from bson.objectid import ObjectId from cerberus import Validator from eve import Eve from faker.providers import BaseProvider from flasgger import Swagger, swag_from from flask import abort, jsonify, request, render_template from healthcheck import HealthCheck, EnvironmentDump from pymongo.errors import ServerSelectionTimeoutError from mockerena import __author__, __email__, __version__ from mockerena.errors import ERROR_404, ERROR_422 from mockerena.format import format_output from mockerena.generate import fake, generate_data, make_safe from mockerena.models.schema import CUSTOM_SCHEMA from mockerena.settings import DEBUG, DEFAULT_FILE_FORMAT, DEFAULT_INCLUDE_HEAD, DEFAULT_SIZE, \ DEFAULT_QUOTE_CHARACTER, DEFAULT_EXCLUDE_NULL, DEFAULT_DELIMITER, DEFAULT_KEY_SEPARATOR, \ DEFAULT_IS_NESTED, DEFAULT_RESPONSES, ENV, HOST, PORT, SECRET_KEY from mockerena.swagger import TEMPLATE app = Eve(__name__, settings=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'settings.py')) envdump = EnvironmentDump(include_python=False, include_process=False) health = HealthCheck() swagger = Swagger(app, template=TEMPLATE) app.config.update(ENV=ENV, DEBUG=DEBUG, SECRET_KEY=SECRET_KEY) def application_data() -> dict: """Returns information about the application :return: A map of application information :rtype: dict """ return { "version": __version__, "maintainer": __author__, "maintainer_email": __email__, "git_repo": "https://github.com/FanThreeSixty/mockerena" } def application_settings() -> dict: """Returns application settings :return: A map of application settings :rtype: dict """ return { "DEFAULT_FILE_FORMAT": DEFAULT_FILE_FORMAT, "DEFAULT_INCLUDE_HEAD": DEFAULT_INCLUDE_HEAD, "DEFAULT_SIZE": DEFAULT_SIZE, "DEFAULT_QUOTE_CHARACTER": DEFAULT_QUOTE_CHARACTER, "DEFAULT_EXCLUDE_NULL": DEFAULT_EXCLUDE_NULL, "DEFAULT_DELIMITER": DEFAULT_DELIMITER, "DEFAULT_KEY_SEPARATOR": DEFAULT_KEY_SEPARATOR, "DEFAULT_IS_NESTED": DEFAULT_IS_NESTED, "DEFAULT_RESPONSES": DEFAULT_RESPONSES } def mongo_available() -> tuple: """Return status of mongo connection :return: Tuple with boolean and text status :rtype: tuple """ try: app.data.driver.db.client.server_info() return True, "mongo up" except ServerSelectionTimeoutError: return False, "mongo down" def get_provider_types() -> dict: """Returns all available generator types :return: Mapping of all generator types :rtype: dict """ def is_generator(method) -> bool: return inspect.ismethod(method) and issubclass(type(method.__self__), BaseProvider) return { gen[0]: { 'module': re.sub( r'((?:(?:faker|mockerena)\.providers\.?)|\.?en_US)', '', inspect.getmodule(gen[1]).__name__ ), 'method': gen[0], 'display': gen[0].replace('_', ' ').title(), 'doc': inspect.getdoc(gen[1]), 'examples': make_safe([gen[1]() for _ in range(2)]) if gen[0] != 'binary' else None, 'args': { str(key): { "name": str(param.name), "default": make_safe(param.default) if not param.empty else None } for (key, param) in inspect.signature(gen[1]).parameters.items() } } for gen in inspect.getmembers(fake, predicate=is_generator) } def generate_and_format(schema: dict) -> tuple: """Generate and return formatted data :param dict schema: :return: A http response :rtype: tuple """ if not isinstance(schema, dict): error = { "_status": "ERR", "_issues": { "validation exception": f"'{str(schema)}' is not a document, must be a dict" }, "_error": ERROR_422 } return json.dumps(error), 422, {'Content-Type': 'application/json'} num_rows = request.args.get('num_rows', schema.get('num_rows', DEFAULT_SIZE)) size = int(num_rows if str(num_rows).isnumeric() else DEFAULT_SIZE) try: return format_output(generate_data(schema, size), schema, size) except (AttributeError, SyntaxError, TypeError, ValueError, ZeroDivisionError) as err: abort(400, description=str(err)) @app.before_request def seed(): """Seed Faker random generator """ fake.seed(request.args.get('seed')) @app.route("/") def index() -> tuple: """Test route to make sure everything is running :return: A http response :rtype: tuple """ return render_template('index.html') @swag_from('swagger/generate.yml') @app.route("/api/schema/<schema_id>/generate") def generate(schema_id: str) -> tuple: """Generates sample data from a schema :param str schema_id: Schema id :return: A http response :rtype: tuple """ search = [{'schema': schema_id}] if ObjectId.is_valid(schema_id): search.append({'_id': ObjectId(schema_id)}) schema = app.data.driver.db['schema'].find_one({"$or": search}) if not schema: return json.dumps({"_status": "ERR", "_error": ERROR_404}), 404, {'Content-Type': 'application/json'} return generate_and_format(schema) @swag_from('swagger/custom_schema.yml') @app.route("/api/schema/generate", methods=['POST']) def custom_schema() -> tuple: """Generates sample data for the provided schema :return: A http response :rtype: tuple """ validator = Validator(CUSTOM_SCHEMA) data = request.get_json() if not isinstance(data, dict) or not validator.validate(data): data_error = {"validation exception": f"'{str(data)}' is not a document, must be a dict"} error = { "_status": "ERR", "_issues": data_error if not isinstance(data, dict) else validator.errors, "_error": ERROR_422 } return json.dumps(error), 422, {'Content-Type': 'application/json'} return generate_and_format(data) @swag_from('swagger/types.yml') @app.route("/api/types") def get_types() -> tuple: """Returns all available generator types :return: A http response :rtype: tuple """ return json.dumps(get_provider_types()), 200, {'Content-Type': 'application/json'} @app.errorhandler(400) def bad_request(error: Exception) -> tuple: """Handle bad requests :param Exception error: Exception thrown :return: A http response :rtype: tuple """ return jsonify(_status="ERR", _error={"code": 400, "message": str(error)}), 400 # Add environment and health check routes envdump.add_section("application", application_data) envdump.add_section("settings", application_settings) health.add_check(mongo_available) health.add_section("version", __version__) app.add_url_rule("/healthcheck", "healthcheck", view_func=health.run) app.add_url_rule("/environment", "environment", view_func=envdump.run) if __name__ != '__main__': # pragma: no cover gunicorn_logger = logging.getLogger('gunicorn.error') app.logger.handlers = gunicorn_logger.handlers logging.basicConfig(level=gunicorn_logger.level) if __name__ == "__main__": # pragma: no cover app.run(host=HOST, debug=DEBUG, port=PORT) ``` #### File: mockerena/tests/conftest.py ```python from copy import deepcopy from flask import url_for from eve import Eve import pytest from mockerena.app import app as server MOCK_SCHEMA = { "schema": "mock_example", "num_rows": 10, "file_format": "csv", "file_name": "mock_{}_example", "columns": [ { "name": "foo", "type": "random_element", "args": { "elements": ["this"] } }, { "name": "bar", "type": "random_element", "args": { "elements": ["that"] } } ] } @pytest.fixture(scope="session") def app() -> Eve: """Returns mockerena app instance as a test fixture :return: An Eve application :rtype: Eve """ return server @pytest.fixture() def sample_schema() -> dict: """Returns sample schema for mockerena :return: An example schema :rtype: dict """ return deepcopy(MOCK_SCHEMA) @pytest.fixture(autouse=True) def setup_data(client): """Setup example schema for testing :param Flask client: Mockerena app instance """ data = deepcopy(MOCK_SCHEMA) # Setup if not client.get(url_for('schema|item_lookup', _id='mock_example')).status_code == 200: client.post(url_for('schema|resource'), json=data, headers={'Content-Type': "application/json"}) yield # Teardown if client.get(url_for('schema|item_lookup', _id='mock_example')).status_code == 200: client.delete(url_for('schema|item_lookup', _id='mock_example')) ``` #### File: mockerena/tests/test_environment.py ```python from flask import url_for from eve import Eve import pytest @pytest.mark.environment def test_environment(client: Eve): """Test environment route :param Eve client: Mockerena app instance :raises: AssertionError """ res = client.get(url_for('environment')) assert res.status_code == 200 assert res.mimetype == 'application/json' data = res.json assert data['os'] assert data['application'] assert data['settings'] ``` #### File: mockerena/tests/test_example.py ```python from flask import url_for from eve import Eve import pytest @pytest.mark.example def test_example(client: Eve): """Example test for reference :param Eve client: Mockerena app instance :raises: AssertionError """ res = client.get(url_for('generate', schema_id='mock_example')) assert res.status_code == 200 assert res.mimetype == 'text/csv' ``` #### File: mockerena/tests/test_get_types.py ```python from flask import url_for from eve import Eve import pytest @pytest.mark.params @pytest.mark.get_types def test_get_types(client: Eve): """Test to ensure that types can be retrieved :param Eve client: Mockerena app instance :raises: AssertionError """ res = client.get(url_for('get_types')) assert res.status_code == 200 assert res.mimetype == 'application/json' ``` #### File: mockerena/tests/test_index.py ```python from flask import url_for from eve import Eve import pytest @pytest.mark.index def test_index(client: Eve): """To to ensure index page successfully returns :param Eve client: Mockerena app instance :raises: AssertionError """ res = client.get(url_for('index')) assert res.status_code == 200 ``` #### File: mockerena/tests/test_params.py ```python from eve import Eve from flask import url_for import pytest from mockerena.settings import DEFAULT_SIZE @pytest.mark.params @pytest.mark.num_rows def test_num_rows(client: Eve): """Test to ensure number of rows can be overridden :param Eve client: Mockerena app instance :raises: AssertionError """ res = client.get(url_for('generate', schema_id='mock_example'), query_string={'num_rows': 50}) assert res.status_code == 200 assert res.mimetype == 'text/csv' assert res.get_data().decode('utf-8').count('\n') == 51 # Includes header (+1) @pytest.mark.params @pytest.mark.num_rows def test_negative_num_rows(client: Eve): """Test to ensure negative num_rows defaults to DEFAULT_SIZE :param Eve client: Mockerena app instance :raises: AssertionError """ res = client.get(url_for('generate', schema_id='mock_example'), query_string={'num_rows': -10}) assert res.status_code == 200 assert res.mimetype == 'text/csv' assert res.get_data().decode('utf-8').count('\n') == DEFAULT_SIZE + 1 # Includes header (+1) @pytest.mark.params @pytest.mark.num_rows def test_invalid_num_rows(client: Eve): """Test to ensure invalid num_rows defaults to DEFAULT_SIZE :param Eve client: Mockerena app instance :raises: AssertionError """ res = client.get(url_for('generate', schema_id='mock_example'), query_string={'num_rows': 'a'}) assert res.status_code == 200 assert res.mimetype == 'text/csv' assert res.get_data().decode('utf-8').count('\n') == DEFAULT_SIZE + 1 # Includes header (+1) @pytest.mark.params @pytest.mark.include_header @pytest.mark.parametrize('value,count', ( (True, 11), ('true', 11), ('t', 11), ('yes', 11), ('y', 11), ('1', 11), (False, 10), ('false', 10), ('f', 10), ('no', 10), ('n', 10), ('0', 10) )) def test_include_header(client: Eve, value: str, count: int): """Test to ensure include header can be overridden :param Eve client: Mockerena app instance :param str value: Include header value :param int count: Row count :raises: AssertionError """ url = url_for('generate', schema_id='mock_example') res = client.get(url, query_string={'include_header': value}) assert res.status_code == 200 assert res.mimetype == 'text/csv' assert res.get_data().decode('utf-8').count('\n') == count @pytest.mark.params @pytest.mark.include_header def test_invalid_include_header(client: Eve): """Test to ensure include_header defaults to false :param Eve client: Mockerena app instance :raises: AssertionError """ url = url_for('generate', schema_id='mock_example') res = client.get(url, query_string={'include_header': 'foo'}) # Omits header assert res.status_code == 200 assert res.mimetype == 'text/csv' assert res.get_data().decode('utf-8').count('\n') == 10 @pytest.mark.params @pytest.mark.file_format def test_file_format(client: Eve): """Test to ensure file format can be overridden :param Eve client: Mockerena app instance :raises: AssertionError """ url = url_for('generate', schema_id='mock_example') res = client.get(url, query_string={'file_format': 'json'}) assert res.status_code == 200 assert res.mimetype == 'application/json' assert res.json @pytest.mark.params @pytest.mark.file_format def test_invalid_file_format(client: Eve): """Test to ensure invalid file format return an error response :param Eve client: Mockerena app instance :raises: AssertionError """ url = url_for('generate', schema_id='mock_example') res = client.get(url, query_string={'file_format': 'foo'}) assert res.status_code == 422 @pytest.mark.params @pytest.mark.exclude_null @pytest.mark.parametrize('value,is_removed', ( (True, True), ('true', True), ('t', True), ('yes', True), ('y', True), ('1', True), (False, False), ('false', False), ('f', False), ('no', False), ('n', False), ('0', False) )) def test_exclude_null(client: Eve, sample_schema: dict, value: str, is_removed: bool): """Test to ensure exclude_null can be overridden :param Eve client: Mockerena app instance :param dict sample_schema: Sample schema data :param str value: Include header value :param bool is_removed: Row count :raises: AssertionError """ sample_schema["file_format"] = "json" sample_schema['columns'][0]['percent_empty'] = 1 res = client.post(url_for('custom_schema'), json=sample_schema, query_string={'exclude_null': value}) assert res.status_code == 200 assert res.mimetype == 'application/json' assert 'foo' not in res.json[0] if is_removed else 'foo' in res.json[0] @pytest.mark.params @pytest.mark.include_header def test_invalid_exclude_null(client: Eve, sample_schema: dict): """Test to ensure exclude_null defaults to false :param Eve client: Mockerena app instance :param dict sample_schema: Sample schema data :raises: AssertionError """ sample_schema["file_format"] = "json" sample_schema['columns'][0]['percent_empty'] = 1 res = client.post(url_for('custom_schema'), json=sample_schema, query_string={'exclude_null': 'foo'}) assert res.status_code == 200 assert res.mimetype == 'application/json' assert 'foo' in res.json[0] ``` #### File: mockerena/tests/test_responses.py ```python import datetime from eve import Eve from flask import url_for import pytest @pytest.mark.responses def test_response_override_status_code(client: Eve, sample_schema: dict): """Test to ensure status code can be overridden on a response :param Eve client: Mockerena app instance :param dict sample_schema: Sample schema data :raises: AssertionError """ sample_schema["file_format"] = "json" sample_schema["responses"] = [{"status_code": 201}] res = client.post(url_for('custom_schema'), json=sample_schema, headers={'Content-Type': "application/json"}) assert res.status_code == 201 @pytest.mark.responses def test_response_override_data(client: Eve, sample_schema: dict): """Test to ensure data can be overridden on a response :param Eve client: Mockerena app instance :param dict sample_schema: Sample schema data :raises: AssertionError """ sample_schema["file_format"] = "json" sample_schema["responses"] = [{"data": '{"status": "ok"}', "content_type": "application/json"}] res = client.post(url_for('custom_schema'), json=sample_schema, headers={'Content-Type': "application/json"}) assert res.status_code == 200 assert res.mimetype == 'application/json' assert res.json == {"status": "ok"} @pytest.mark.responses def test_response_override_content_type(client: Eve, sample_schema: dict): """Test to ensure content type can be overridden on a response :param Eve client: Mockerena app instance :param dict sample_schema: Sample schema data :raises: AssertionError """ sample_schema["file_format"] = "json" sample_schema["responses"] = [{"content_type": "application/xml"}] res = client.post(url_for('custom_schema'), json=sample_schema, headers={'Content-Type': "application/json"}) assert res.status_code == 200 assert res.mimetype == 'application/xml' @pytest.mark.responses def test_response_custom_header(client: Eve, sample_schema: dict): """Test to ensure headers can be overridden on a response :param Eve client: Mockerena app instance :param dict sample_schema: Sample schema data :raises: AssertionError """ sample_schema["responses"] = [{"headers": {"Last-Modified": "Thur, 19 Sep 2019 19:25:10 GMT"}}] res = client.post(url_for('custom_schema'), json=sample_schema, headers={'Content-Type': "application/json"}) assert res.status_code == 200 assert res.last_modified == datetime.datetime(2019, 9, 19, 19, 25, 10) ```
{ "source": "jlane9/pytest-statsd", "score": 2 }
#### File: pytest-statsd/pytest_statsd/plugin.py ```python from __future__ import absolute_import import time import statsd def pytest_addoption(parser): """ :param parser: :return: """ group = parser.getgroup('terminal reporting') group.addoption('--stats-d', action='store_true', help='send test results to graphite') group.addoption('--stats-host', action='store', dest='stats_host', metavar='host', default='localhost', help='statsd host. default is \'localhost\'') group.addoption('--stats-port', action='store', dest='stats_port', metavar='port', default=8125, help='statsd port. default is 8125') group.addoption('--stats-prefix', action='store', dest='stats_prefix', metavar='prefix', default=None, help='prefix to give all stats') def pytest_configure(config): """ :param config: :return: """ stats_d = config.getoption('stats_d') # prevent opening statsd on slave nodes (xdist) if stats_d and not hasattr(config, 'slaveinput'): config._graphite = GraphiteReport(config) config.pluginmanager.register(config._graphite) def pytest_unconfigure(config): """ :param config: :return: """ graphite = getattr(config, '_graphite', None) if graphite: del config._graphite config.pluginmanager.unregister(graphite) class GraphiteReport(object): """Graphite report implementation """ def __init__(self, config): self.errors = self.failed = 0 self.passed = self.skipped = 0 self.xfailed = self.xpassed = 0 self.total = 0 self.config = config self.host = config.getoption('stats_host') self.port = config.getoption('stats_port') self.prefix = config.getoption('stats_prefix') self.suite_start_time = 0 def pytest_runtest_logreport(self, report): """Add report metrics :param pytest.Report report: Test case report :return: """ if report.passed: self.append_passed(report) elif report.failed: self.append_failed(report) elif report.skipped: self.append_skipped(report) def append_passed(self, report): """Add passed test metric :param pytest.Report report: Test case report :return: """ if report.when == 'call': if hasattr(report, "wasxfail"): self.xpassed += 1 else: self.passed += 1 def append_failed(self, report): """Add failed test metric :param pytest.Report report: Test case report :return: """ if report.when == "call": if hasattr(report, "wasxfail"): self.xpassed += 1 else: self.failed += 1 else: self.errors += 1 def append_skipped(self, report): """Add skipped test metric :param pytest.Report report: Test case report :return: """ if hasattr(report, "wasxfail"): self.xfailed += 1 else: self.skipped += 1 def pytest_sessionstart(self, session): """before test run begins :param pytest.Session session: :return: """ self.suite_start_time = time.time() def pytest_sessionfinish(self, session): """whole test run finishes :param pytest.Session session: :return: """ stats = statsd.StatsClient(self.host, self.port, prefix=self.prefix) stats.gauge('passed', self.passed) stats.gauge('skipped', self.skipped) stats.gauge('failed', self.failed) stats.gauge('errors', self.errors) stats.gauge('xfailed', self.xfailed) stats.gauge('xpassed', self.xpassed) stats.gauge('total', sum([self.passed, self.skipped, self.failed, self.errors, self.xfailed, self.xpassed])) stats.gauge('aggregate_runs', 1, delta=True) if sum([self.errors, self.failed]) == 0: stats.gauge('aggregate_passing', 1, delta=True) else: stats.gauge('aggregate_failing', 1, delta=True) duration = int((time.time() - self.suite_start_time) * 1000) stats.timing('duration', duration) def pytest_terminal_summary(self, terminalreporter): """add additional section in terminal summary reporting :param terminalreporter: :return: """ terminalreporter.write_sep('-', 'sent results to http://{}:{}'.format(self.host, self.port)) ```
{ "source": "jlane9/selenium-data-attributes", "score": 2 }
#### File: jlane9/selenium-data-attributes/fabfile.py ```python from contextlib import contextmanager as _contextmanager import os from fabric.api import local, prefix, task from fabric.context_managers import lcd BASE_DIR = os.path.dirname(os.path.abspath(__file__)) @_contextmanager def virtualenv(bin_folder): """Activate virtual environment :param basestring bin_folder: Location of virtualenv /bin folder :return: """ with prefix('source {}/bin/activate'.format(bin_folder)): yield def get_virtual_env(): """Return location of virtual environment :return: """ for root, dir_names, file_names in os.walk(BASE_DIR): if all([i in dir_names for i in ['bin', 'include', 'lib']]): return os.path.join(BASE_DIR, root) def get_os(): """Return System platform :return: """ return local('python -c "import platform; print platform.system()"', capture=True) @task() def update_requirements(): """Update project python requirements :return: """ virtual_env = get_virtual_env() if virtual_env: with virtualenv(virtual_env): with lcd(BASE_DIR): local('pip install -r requirements.txt') print 'Requirements installed' else: print 'Virtual environment needs to be installed first' print 'Please run `fab install_virtualenv` first' def run_setup(command): """Run setup.py file :return: """ virtual_env = get_virtual_env() if virtual_env: with virtualenv(virtual_env): with lcd(BASE_DIR): local('python setup.py {}'.format(str(command))) else: print 'Virtual environment needs to be installed first' print 'Please run `fab install_virtualenv` first' @task() def install(): """Install project :return: """ run_setup('install') @task() def develop(): """Install project (develop mode) :return: """ run_setup('develop') @task() def install_virtualenv(): """Install python virtual environment :return: """ virtual_env = get_virtual_env() if not virtual_env: with lcd(BASE_DIR): local('virtualenv -p /usr/bin/python2.7 venv') print "Virtual environment installed..." print "Usage: source {}/venv/bin/activate".format(BASE_DIR) else: print "Virtual environment already installed..." print "Usage: source {}/bin/activate".format(virtual_env) @task() def publish(version=None): """Publish project to PyPi :param basestring version: Version number :return: """ if isinstance(version, str): with lcd(BASE_DIR): local("sed -i '' -E -- \"s/__version__ = '.*'/__version__ = '{}'/g\" sda/__init__.py".format(version)) local('git add sda/__init__.py') local('git commit -m "PyPi release {}"'.format(version)) local('git tag {0} -m "PyPi release {0}"'.format(version)) local('git push --tags origin master') release = local('python setup.py sdist bdist_wheel upload -r "https://pypi.python.org/pypi"', capture=True) if '200' not in release: print "{} release failed...".format(version) else: print "{} released...".format(version) else: print 'Please include a version' ``` #### File: selenium-data-attributes/sda/site.py ```python from sda.element import SeleniumObject try: from urlparse import urljoin, urlparse except (ImportError, ModuleNotFoundError): from urllib.parse import urljoin, urlparse __all__ = ['Site'] class Site(SeleniumObject): """The Site Implementation The intention for the Site object is to contain all website pages. An example usage of this might be: Let's say we have the following file structure my_project - __init__.py - main.py - page_1 - __init__.py - fixtures.py - locators.py - page.py - page_2 - __init__.py - fixtures.py - locators.py - page.py - site - __init__.py - site.py - settings.py site/site.py .. code-block:: python from sda.site import Site from page_1.page import Page1 from page_2.page import Page2 class ExampleSite(Site): def __init__(self, web_driver): super(ExampleSite, self).__init__(web_driver) self.page_1 = Page1(web_driver) self.page_2 = Page2(web_driver) """ @property def domain(self): """Returns the domain for a website :return: domain :rtype: str """ return urlparse(self.url).netloc @property def path(self): """Returns the website path :return: path :rtype: str """ return urlparse(self.url).path @property def url(self): """Current page URL :return: Page URL :rtype: str """ return self.driver.current_url ```
{ "source": "jlaneve/astro", "score": 2 }
#### File: astro/example_dags/example_amazon_s3_postgres_load_and_save.py ```python from airflow.decorators import dag from airflow.utils import timezone # Import Operator import astro.sql as aql from astro.sql.table import Table default_args = { "owner": "airflow", "retries": 1, "retry_delay": 0, } @dag( default_args=default_args, schedule_interval=None, start_date=timezone.utcnow(), tags=["demo"], ) def example_amazon_s3_postgres_load_and_save(): t1 = aql.load_file( path="s3://tmp9/homes.csv", file_conn_id="", output_table=Table( "expected_table_from_s3", conn_id="postgres_conn", database="postgres" ), ) aql.save_file( input=t1, output_file_path="s3://tmp9/homes.csv", overwrite=True, ) example_amazon_s3_postgres_load_and_save_dag = ( example_amazon_s3_postgres_load_and_save() ) ``` #### File: sql/operators/agnostic_sql_append.py ```python import importlib from typing import Dict, List from sqlalchemy import MetaData, cast, column, insert, select from sqlalchemy.sql.schema import Table as SqlaTable from astro.constants import Database from astro.sql.operators.sql_decorator import SqlDecoratedOperator from astro.sql.table import Table from astro.utils.database import get_database_name from astro.utils.schema_util import ( get_error_string_for_multiple_dbs, tables_from_same_db, ) from astro.utils.table_handler import TableHandler from astro.utils.task_id_helper import get_unique_task_id class SqlAppendOperator(SqlDecoratedOperator, TableHandler): template_fields = ("main_table", "append_table") def __init__( self, append_table: Table, main_table: Table, columns: List[str] = [], casted_columns: dict = {}, **kwargs, ): self.append_table = append_table self.main_table = main_table self.sql = "" self.columns = columns self.casted_columns = casted_columns task_id = get_unique_task_id("append_table") def null_function(): pass super().__init__( raw_sql=True, parameters={}, task_id=kwargs.get("task_id") or task_id, op_args=(), python_callable=null_function, handler=lambda x: None, **kwargs, ) def execute(self, context: Dict): if not tables_from_same_db([self.append_table, self.main_table]): raise ValueError( get_error_string_for_multiple_dbs([self.append_table, self.main_table]) ) self.main_table.conn_id = self.main_table.conn_id or self.append_table.conn_id self.conn_id = self.main_table.conn_id or self.append_table.conn_id self.database = self.main_table.database or self.append_table.database self.warehouse = self.main_table.warehouse or self.append_table.warehouse self.schema = self.main_table.schema or self.append_table.schema self.sql = self.append( main_table=self.main_table, append_table=self.append_table, columns=self.columns, casted_columns=self.casted_columns, conn_id=self.main_table.conn_id, ) super().execute(context) return self.main_table def append( self, main_table: Table, columns, casted_columns, append_table: Table, conn_id ): engine = self.get_sql_alchemy_engine() if self.schema and get_database_name(engine) != Database.SQLITE: metadata = MetaData(schema=self.schema) else: metadata = MetaData() # TO Do - fix bigquery and postgres reflection table issue. main_table_sqla = SqlaTable( main_table.table_name, metadata, autoload_with=engine ) append_table_sqla = SqlaTable( append_table.table_name, metadata, autoload_with=engine ) column_names = [column(c) for c in columns] sqlalchemy = importlib.import_module("sqlalchemy") casted_fields = [ cast(column(k), getattr(sqlalchemy, v)) for k, v in casted_columns.items() ] main_columns = [k for k, v in casted_columns.items()] main_columns.extend(list(columns)) if len(column_names) + len(casted_fields) == 0: column_names = [column(c) for c in append_table_sqla.c.keys()] main_columns = column_names column_names.extend(casted_fields) sel = select(column_names).select_from(append_table_sqla) return insert(main_table_sqla).from_select(main_columns, sel) ``` #### File: sql/operators/sql_dataframe.py ```python import inspect from typing import Dict, Optional import pandas as pd from airflow.decorators.base import DecoratedOperator from airflow.providers.sqlite.hooks.sqlite import SqliteHook from astro.constants import Database from astro.settings import SCHEMA from astro.sql.table import Table, TempTable, create_table_name from astro.utils import get_hook from astro.utils.database import get_database_from_conn_id from astro.utils.dependencies import ( BigQueryHook, PostgresHook, SnowflakeHook, postgres_sql, ) from astro.utils.load import load_dataframe_into_sql_table from astro.utils.table_handler import TableHandler class SqlDataframeOperator(DecoratedOperator, TableHandler): def __init__( self, conn_id: Optional[str] = None, database: Optional[str] = None, schema: Optional[str] = None, warehouse: Optional[str] = None, role: Optional[str] = None, identifiers_as_lower: Optional[bool] = True, **kwargs, ): """ Converts a SQL table into a dataframe. Users can then give a python function that takes a dataframe as one of its inputs and run that python function. Once that function has completed, the result is accessible via the Taskflow API. :param conn_id: Connection to the DB that you will pull the table from :param database: Database for input table :param schema: schema for input table :param warehouse: (Snowflake) Which warehouse to use for the input table :param kwargs: """ self.conn_id = conn_id self.database = database self.schema = schema self.warehouse = warehouse self.role = role self.parameters = None self.kwargs = kwargs or {} self.op_kwargs: Dict = self.kwargs.get("op_kwargs") or {} if self.op_kwargs.get("output_table"): self.output_table: Optional[Table] = self.op_kwargs.pop("output_table") else: self.output_table = None self.op_args = self.kwargs.get("op_args") # type: ignore self.identifiers_as_lower = identifiers_as_lower super().__init__( **kwargs, ) def handle_op_args(self): full_spec = inspect.getfullargspec(self.python_callable) op_args = list(self.op_args) ret_args = [] for arg in op_args: current_arg = full_spec.args.pop(0) if ( full_spec.annotations[current_arg] == pd.DataFrame and type(arg) == Table ): ret_args.append(self._get_dataframe(arg)) else: ret_args.append(arg) self.op_args = tuple(ret_args) def handle_op_kwargs(self): param_types = inspect.signature(self.python_callable).parameters self.op_kwargs = { k: self._get_dataframe(v) if param_types.get(k).annotation == pd.DataFrame and type(v) == Table else v for k, v in self.op_kwargs.items() } def execute(self, context: Dict): self._set_variables_from_first_table() self.handle_op_args() self.handle_op_kwargs() pandas_dataframe = self.python_callable(*self.op_args, **self.op_kwargs) if self.output_table: self.populate_output_table() if type(self.output_table) == TempTable: self.output_table = self.output_table.to_table( table_name=create_table_name(context=context), schema=SCHEMA ) self.output_table.schema = self.output_table.schema or SCHEMA hook = get_hook( conn_id=self.output_table.conn_id, database=self.output_table.database, schema=self.output_table.schema, warehouse=self.output_table.warehouse, ) load_dataframe_into_sql_table(pandas_dataframe, self.output_table, hook) return self.output_table else: return pandas_dataframe def get_snow_hook(self, table: Table) -> SnowflakeHook: """ Create and return SnowflakeHook. :return: a SnowflakeHook instance. :rtype: SnowflakeHook """ return SnowflakeHook( snowflake_conn_id=table.conn_id, warehouse=table.warehouse, database=table.database, role=self.role, schema=table.schema, authenticator=None, session_parameters=None, ) def _get_dataframe(self, table: Table): database = get_database_from_conn_id(table.conn_id) self.log.info(f"Getting dataframe for {table}") if database in (Database.POSTGRES, Database.POSTGRESQL): self.hook = PostgresHook( postgres_conn_id=table.conn_id, schema=table.database ) schema = table.schema or SCHEMA query = ( postgres_sql.SQL("SELECT * FROM {schema}.{input_table}") .format( schema=postgres_sql.Identifier(schema), input_table=postgres_sql.Identifier(table.table_name), ) .as_string(self.hook.get_conn()) ) df = self.hook.get_pandas_df(query) elif database == Database.SNOWFLAKE: hook = self.get_snow_hook(table) df = hook.get_pandas_df( "SELECT * FROM IDENTIFIER(%(input_table)s)", parameters={"input_table": table.table_name}, ) elif database == Database.SQLITE: hook = SqliteHook(sqlite_conn_id=table.conn_id, database=table.database) engine = hook.get_sqlalchemy_engine() df = pd.read_sql_table(table.table_name, engine) elif database == Database.BIGQUERY: hook = BigQueryHook(gcp_conn_id=table.conn_id) engine = hook.get_sqlalchemy_engine() df = pd.read_sql_table(table.qualified_name(), engine) if self.identifiers_as_lower: df.columns = [col_label.lower() for col_label in df.columns] return df ``` #### File: astro/utils/database.py ```python from typing import Union from airflow.hooks.base import BaseHook from airflow.providers.sqlite.hooks.sqlite import SqliteHook from sqlalchemy import create_engine, text from sqlalchemy.engine import Engine from sqlalchemy.engine.result import ResultProxy from astro.constants import Database from astro.utils.dependencies import BigQueryHook, PostgresHook, SnowflakeHook def get_database_from_conn_id(conn_id: str) -> Database: """ Given a conn_id, identify the database name. :param conn_id: Airflow connection ID :type conn_id: str :return: the database this interface relates to (e.g. Database.SQLITE) :rtype: astro.constants.Database enum item """ conn_type = BaseHook.get_connection(conn_id).conn_type type_to_db = { "postgres": Database.POSTGRES, "postgresql": Database.POSTGRES, "sqlite": Database.SQLITE, "bigquery": Database.BIGQUERY, "snowflake": Database.SNOWFLAKE, "google_cloud_platform": Database.BIGQUERY, } try: database_name = type_to_db[conn_type] except KeyError: raise ValueError(f"Unsupported database <{conn_type}>") return database_name def get_database_name(interface: Union[Engine, BaseHook, SqliteHook]) -> Database: """ Given a hook or a SQL engine, identify the database name. :param interface: interface to the database :type interface: SQLAlchemy engine or Airflow Hook (BigQueryHook, PostgresHook, SnowflakeHook, SqliteHook) :return: the database this interface relates to (e.g. Database.SQLITE) :rtype: astro.constants.Database enum item """ if isinstance(interface, BaseHook): hook_to_database = { BigQueryHook: Database.BIGQUERY, PostgresHook: Database.POSTGRES, SnowflakeHook: Database.SNOWFLAKE, SqliteHook: Database.SQLITE, } try: database_name = hook_to_database[type(interface)] except KeyError: raise ValueError(f"Unsupported database {type(interface)}") else: # SqlAlchemy engine database_name = getattr(Database, interface.name.upper()) return database_name def get_sqlalchemy_engine(hook: Union[BaseHook, SqliteHook]) -> Engine: """ Given a hook, return a SQLAlchemy engine for the target database. :param hook: Airflow Hook used to access a SQL-like database :type hook: (BigQueryHook, PostgresHook, SnowflakeHook, SqliteHook) :return: SQLAlchemy engine :rtype: sqlalchemy.Engine """ database = get_database_name(hook) engine = None if database == Database.SQLITE: uri = hook.get_uri() if "////" not in uri: uri = hook.get_uri().replace("///", "////") engine = create_engine(uri) if engine is None: engine = hook.get_sqlalchemy_engine() return engine def run_sql( engine: Engine, sql_statement: Union[str, text], parameters: Union[None, dict] = None, ) -> ResultProxy: """ Run a SQL statement using the given engine. :param engine: SQLAlchemy engine :type engine: sqlalchemy.Engine :param sql_statement: SQL statement to be run on the engine :type sql_statement: (sqlalchemy.text or str) :param parameters: (optional) Parameters to be passed to the SQL statement :type parameters: dict :return: Result of running the statement :rtype: sqlalchemy.engine.result.ResultProxy """ if parameters is None: parameters = {} connection = engine.connect() if isinstance(sql_statement, str): return connection.execute(text(sql_statement), parameters) else: return connection.execute(sql_statement, parameters) ``` #### File: astro/utils/file.py ```python import os import pathlib from typing import Union from astro.constants import LOAD_DATAFRAME_BYTES_LIMIT, FileType def get_size(filepath: str) -> int: """ Return the size (bytes) of the given file. :param filepath: Path to a file in the filesystem :type filepath: str :return: File size in bytes :rtype: int """ path = pathlib.Path(filepath) return os.path.getsize(path) def get_filetype(filepath: Union[str, pathlib.PosixPath]) -> FileType: """ Return a FileType given the filepath. Uses a naive strategy, using the file extension. :param filepath: URI or Path to a file :type filepath: str or pathlib.PosixPath :return: The filetype (e.g. csv, ndjson, json, parquet) :rtype: astro.constants.FileType """ if isinstance(filepath, pathlib.PosixPath): extension = filepath.suffix[1:] else: extension = filepath.split(".")[-1] try: filetype = getattr(FileType, extension.upper()) except AttributeError: raise ValueError(f"Unsupported filetype '{extension}' from file '{filepath}'.") return filetype def is_binary(filetype: FileType) -> bool: """ Return a FileType given the filepath. Uses a naive strategy, using the file extension. :param filetype: File type :type filetype: astro.constants.FileType :return: True or False :rtype: bool """ if filetype == FileType.PARQUET: return True return False def is_small(filepath: str) -> bool: """ Checks if a file is small enough to be loaded into a Pandas dataframe in memory efficiently. This value was obtained through performance tests. :param filepath: Path to a file in the filesystem :type filepath: str :return: If the file is small enough :rtype: boolean """ size_in_bytes = get_size(filepath) return size_in_bytes <= LOAD_DATAFRAME_BYTES_LIMIT ``` #### File: tests/benchmark/analyse.py ```python import argparse import json import sys import pandas as pd SUMMARY_FIELDS = [ "database", "dataset", "total_time", "memory_rss", "cpu_time_user", "cpu_time_system", ] if sys.platform == "linux": SUMMARY_FIELDS.append("memory_pss") SUMMARY_FIELDS.append("memory_shared") def format_bytes(bytes_): if abs(bytes_) < 1000: return str(bytes_) + "B" elif abs(bytes_) < 1e6: return str(round(bytes_ / 1e3, 2)) + "kB" elif abs(bytes_) < 1e9: return str(round(bytes_ / 1e6, 2)) + "MB" else: return str(round(bytes_ / 1e9, 2)) + "GB" def format_time(time): if time < 1: return str(round(time * 1000, 2)) + "ms" if time < 60: return str(round(time, 2)) + "s" if time < 3600: return str(round(time / 60, 2)) + "min" else: return str(round(time / 3600, 2)) + "hrs" def analyse_results(results_filepath): data = [] with open(results_filepath) as fp: for line in fp.readlines(): data.append(json.loads(line.strip())) df = pd.json_normalize(data, sep="_") # calculate total CPU from process & children mean_by_dag = df.groupby("dag_id", as_index=False).mean() # format data mean_by_dag["database"] = mean_by_dag.dag_id.apply( lambda text: text.split("into_")[-1] ) mean_by_dag["dataset"] = mean_by_dag.dag_id.apply( lambda text: text.split("load_file_")[-1].split("_into")[0] ) mean_by_dag["memory_rss"] = mean_by_dag.memory_full_info_rss.apply( lambda value: format_bytes(value) ) if sys.platform == "linux": mean_by_dag["memory_pss"] = mean_by_dag.memory_full_info_pss.apply( lambda value: format_bytes(value) ) mean_by_dag["memory_shared"] = mean_by_dag.memory_full_info_shared.apply( lambda value: format_bytes(value) ) mean_by_dag["total_time"] = mean_by_dag["duration"].apply( lambda ms_time: format_time(ms_time) ) mean_by_dag["cpu_time_system"] = ( mean_by_dag["cpu_time_system"] + mean_by_dag["cpu_time_children_system"] ).apply(lambda ms_time: format_time(ms_time)) mean_by_dag["cpu_time_user"] = ( mean_by_dag["cpu_time_user"] + mean_by_dag["cpu_time_children_user"] ).apply(lambda ms_time: format_time(ms_time)) summary = mean_by_dag[SUMMARY_FIELDS] # print Markdown tables per database for database_name in summary["database"].unique().tolist(): print(f"\n### Database: {database_name}\n") print(summary[summary["database"] == database_name].to_markdown(index=False)) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Trigger benchmark DAG") parser.add_argument( "--results-filepath", "-r", type=str, help="NDJSON containing the results for a benchmark run", ) args = parser.parse_args() print(f"Running the analysis on {args.results_filepath}...") analyse_results(args.results_filepath) ``` #### File: tests/operators/test_agnostic_aggregate_check.py ```python import logging import os import pathlib import pytest from airflow.exceptions import BackfillUnfinished from airflow.utils import timezone import astro.sql as aql from astro.constants import SUPPORTED_DATABASES, Database from astro.settings import SCHEMA from astro.sql.table import Table from tests.operators.utils import get_table_name, run_dag log = logging.getLogger(__name__) DEFAULT_DATE = timezone.datetime(2016, 1, 1) CWD = pathlib.Path(__file__).parent @pytest.fixture(scope="module") def table(request): aggregate_table = Table( "aggregate_check_test", database="pagila", conn_id="postgres_conn", schema="airflow_test_dag", ) aggregate_table_bigquery = Table( "aggregate_check_test", conn_id="bigquery", schema=SCHEMA, ) aggregate_table_sqlite = Table("aggregate_check_test", conn_id="sqlite_conn") aggregate_table_snowflake = Table( table_name=get_table_name("aggregate_check_test"), database=os.getenv("SNOWFLAKE_DATABASE"), # type: ignore schema=os.getenv("SNOWFLAKE_SCHEMA"), # type: ignore warehouse=os.getenv("SNOWFLAKE_WAREHOUSE"), # type: ignore conn_id="snowflake_conn", ) path = str(CWD) + "/../data/homes_merge_1.csv" tables = { "postgres": aggregate_table, "bigquery": aggregate_table_bigquery, "sqlite": aggregate_table_sqlite, "snowflake": aggregate_table_snowflake, } aql.load_file( path=path, output_table=tables[request.param], ).operator.execute({"run_id": "foo"}) yield tables[request.param] tables[request.param].drop() @pytest.mark.parametrize("table", SUPPORTED_DATABASES, indirect=True) def test_range_values(sample_dag, table): @aql.transform def get_table(input_table: Table): return "SELECT * FROM {{input_table}}" with sample_dag: aggregate_table = get_table(table) aql.aggregate_check( table=aggregate_table, check="select count(*) FROM {{table}}", greater_than=4, less_than=4, ) run_dag(sample_dag) @pytest.mark.parametrize("table", SUPPORTED_DATABASES, indirect=True) def test_out_of_range_value(sample_dag, table): @aql.transform def get_table(input_table: Table): return "SELECT * FROM {{input_table}}" with pytest.raises(BackfillUnfinished): with sample_dag: aggregate_table = get_table(table) aql.aggregate_check( table=aggregate_table, check="select count(*) FROM {{table}}", greater_than=10, less_than=20, ) run_dag(sample_dag) @pytest.mark.parametrize("table", SUPPORTED_DATABASES, indirect=True) def test_equal_to_param(sample_dag, table): @aql.transform def get_table(input_table: Table): return "SELECT * FROM {{input_table}}" with sample_dag: aggregate_table = get_table(table) aql.aggregate_check( table=aggregate_table, check="select count(*) FROM {{table}}", equal_to=4, ) run_dag(sample_dag) @pytest.mark.parametrize("table", SUPPORTED_DATABASES, indirect=True) def test_only_less_than_param(sample_dag, table): @aql.transform def get_table(input_table: Table): return "SELECT * FROM {{input_table}}" with pytest.raises(BackfillUnfinished): with sample_dag: aggregate_table = get_table(table) aql.aggregate_check( table=aggregate_table, check="select count(*) FROM {{table}}", less_than=3, ) run_dag(sample_dag) @pytest.mark.parametrize("table", SUPPORTED_DATABASES, indirect=True) def test_only_greater_than_param(sample_dag, table): @aql.transform def get_table(input_table: Table): return "SELECT * FROM {{input_table}}" with sample_dag: aggregate_table = get_table(table) aql.aggregate_check( table=aggregate_table, check="select count(*) FROM {{table}}", greater_than=3, ) run_dag(sample_dag) @pytest.mark.parametrize("table", SUPPORTED_DATABASES, indirect=True) def test_all_three_params_provided_priority_given_to_equal_to_param(sample_dag, table): """greater_than should be less than or equal to less_than""" @aql.transform def get_table(input_table: Table): return "SELECT * FROM {{input_table}}" with pytest.raises(ValueError): with sample_dag: aggregate_table = get_table(table) aql.aggregate_check( table=aggregate_table, check="select count(*) FROM {{table}}", greater_than=20, less_than=10, equal_to=4, ) run_dag(sample_dag) @pytest.mark.parametrize("table", [Database.SQLITE]) def test_invalid_params_no_test_values(sample_dag, table): @aql.transform def get_table(input_table: Table): return "SELECT * FROM {{input_table}}" with pytest.raises(ValueError): with sample_dag: aggregate_table = get_table(table) aql.aggregate_check( table=aggregate_table, check="select count(*) FROM {{table}}" ) run_dag(sample_dag) @pytest.mark.parametrize("table", [Database.SQLITE]) def test_invalid_values(sample_dag, table): """greater_than should be less than or equal to less_than""" @aql.transform def get_table(input_table: Table): return "SELECT * FROM {{input_table}}" with pytest.raises(ValueError): with sample_dag: aggregate_table = get_table(table) aql.aggregate_check( table=aggregate_table, check="select count(*) FROM {{table}}", greater_than=20, less_than=10, ) run_dag(sample_dag) ``` #### File: tests/operators/test_agnostic_boolean_check.py ```python import logging import os import pathlib import pytest from airflow.exceptions import BackfillUnfinished from airflow.providers.snowflake.hooks.snowflake import SnowflakeHook from airflow.utils import timezone # Import Operator import astro.sql as aql from astro.constants import SUPPORTED_DATABASES from astro.settings import SCHEMA from astro.sql.operators.agnostic_boolean_check import Check from astro.sql.table import Table from tests.operators.utils import get_table_name, run_dag log = logging.getLogger(__name__) DEFAULT_DATE = timezone.datetime(2016, 1, 1) CWD = pathlib.Path(__file__).parent def drop_table_snowflake( table_name: str, conn_id: str = "snowflake_conn", schema: str = os.environ["SNOWFLAKE_SCHEMA"], database: str = os.environ["SNOWFLAKE_DATABASE"], warehouse: str = os.environ["SNOWFLAKE_WAREHOUSE"], ): hook = SnowflakeHook( snowflake_conn_id=conn_id, schema=schema, database=database, warehouse=warehouse, ) snowflake_conn = hook.get_conn() cursor = snowflake_conn.cursor() cursor.execute(f"DROP TABLE IF EXISTS {table_name} CASCADE;") snowflake_conn.commit() cursor.close() snowflake_conn.close() @pytest.fixture(scope="module") def table(request): boolean_check_table = Table( get_table_name("boolean_check_test"), database="pagila", conn_id="postgres_conn", schema="airflow_test_dag", ) boolean_check_table_bigquery = Table( get_table_name("boolean_check_test"), conn_id="bigquery", schema=SCHEMA, ) boolean_check_table_sqlite = Table( get_table_name("boolean_check_test"), conn_id="sqlite_conn" ) boolean_check_table_snowflake = Table( table_name=get_table_name("boolean_check_test"), database=os.getenv("SNOWFLAKE_DATABASE"), # type: ignore schema=os.getenv("SNOWFLAKE_SCHEMA"), # type: ignore warehouse=os.getenv("SNOWFLAKE_WAREHOUSE"), # type: ignore conn_id="snowflake_conn", ) path = str(CWD) + "/../data/homes_append.csv" tables = { "postgres": boolean_check_table, "bigquery": boolean_check_table_bigquery, "sqlite": boolean_check_table_sqlite, "snowflake": boolean_check_table_snowflake, } aql.load_file( path=path, output_table=tables[request.param], ).operator.execute({"run_id": "foo"}) yield tables[request.param] tables[request.param].drop() @pytest.mark.parametrize("table", SUPPORTED_DATABASES, indirect=True) def test_happyflow_success(sample_dag, table): @aql.transform def get_table(input_table: Table): return "SELECT * FROM {{input_table}}" with sample_dag: temp_table = get_table(table) aql.boolean_check( table=temp_table, checks=[Check("test_1", "rooms > 3")], max_rows_returned=10, ) run_dag(sample_dag) @pytest.mark.parametrize("table", SUPPORTED_DATABASES, indirect=True) def test_happyflow_fail(sample_dag, table, caplog): @aql.transform def get_table(input_table: Table): return "SELECT * FROM {{input_table}}" with pytest.raises(BackfillUnfinished): with sample_dag: temp_table = get_table(table) aql.boolean_check( table=temp_table, checks=[ Check("test_1", "rooms > 7"), Check("test_2", "beds >= 3"), ], max_rows_returned=10, ) run_dag(sample_dag) expected_error = "Some of the check(s) have failed" assert expected_error in caplog.text @pytest.mark.parametrize( "table", [ "postgres", pytest.param( "bigquery", marks=pytest.mark.xfail( reason="bigquery don't expect table name before cols." ), ), pytest.param( "snowflake", marks=pytest.mark.xfail( reason="Binding data in type (table) is not supported." ), ), "sqlite", ], indirect=True, ) def test_happyflow_success_with_templated_query(sample_dag, table): @aql.transform def get_table(input_table: Table): return "SELECT * FROM {{input_table}}" with sample_dag: temp_table = get_table(table) aql.boolean_check( table=temp_table, checks=[Check("test_1", "{{table}}.rooms > 3")], max_rows_returned=10, ) run_dag(sample_dag) ``` #### File: astro/tests/test_example_dags.py ```python import os import pytest from airflow.executors.debug_executor import DebugExecutor from airflow.models.dagbag import DagBag from airflow.utils import timezone from airflow.utils.db import create_default_connections from airflow.utils.session import provide_session from airflow.utils.state import State DEFAULT_DATE = timezone.datetime(2016, 1, 1) @provide_session def get_session(session=None): create_default_connections(session) return session @pytest.fixture() def session(): return get_session() @pytest.mark.parametrize( "dag_id", [ "example_amazon_s3_postgres", "example_amazon_s3_postgres_load_and_save", "example_amazon_s3_snowflake_transform", "example_postgres_render", "example_snowflake_partial_table_with_append", "example_snowflake_render", "example_sqlite_load_transform", ], ) def test_example_dag(session, dag_id): dir_path = os.path.dirname(os.path.realpath(__file__)) db = DagBag(dir_path + "/../example_dags") dag = db.get_dag(dag_id) if dag is None: raise NameError(f"The DAG with dag_id: {dag_id} was not found") dag.clear(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE, dag_run_state=State.NONE) dag.run( executor=DebugExecutor(), start_date=DEFAULT_DATE, end_date=DEFAULT_DATE, run_at_least_once=True, ) ```
{ "source": "jlanga/exfi", "score": 3 }
#### File: exfi/exfi/build_baited_bloom_filter.py ```python import logging import shutil import os from typing import List def _get_biobloommaker_command(args: dict, output_dir: str) -> List[str]: """Helper function to compose the command to execute :param dict args: Dict of arguments. :param str: output_dir: Output folder. :ivar dict args: Dict of arguments. The ones used are {"threads": int, "kmer": int}, where - threads is the number of threads to be used - kmer is the kmer size :ivar str output_dir: Output directory. Must exist and won't be created. .. seealso: Where it is used: :py:meth:`build_baited_bloom_filter` """ biobloommaker_path = shutil.which('biobloommaker') build_transcriptome_bf = [ biobloommaker_path, '--file_prefix', "transcriptome", '--output_dir', output_dir, '--threads', str(args["threads"]), '--kmer_size', str(args["kmer"]), args["fasta"] ] return build_transcriptome_bf def _get_categorize_command(args: dict, output_dir: str) -> List[str]: """Helper function to compose the categorize command :arg dict args: Dict of arguments :arg str output_dir: The output directory :ivar dict args: Dict of arguments. The ones used are: - "threads": int: number of threads to be used - "kmer": int: the kmer size, - "reads": list: list of str of paths to the reads to be categorized :ivar str output_dir: Must already exist. Won't be created. .. seealso: Where it is used: :py:meth: `build_baited_bloom_filter` :param dict args: Dict of arguments. :param str output_dir: Output directory. """ categorize_path = shutil.which('biobloomcategorizer') categorize = [ categorize_path, '--prefix', output_dir + '/categories', '--filter_files', output_dir + '/transcriptome.bf', '--threads', str(args["threads"]), '--score', str(args["kmer"]), '--fa', '--stdout_filter', 'transcriptome', ] + args["reads"] return categorize def _get_build_bf_command(args: dict, in_fn: List[str]) -> List[str]: """Helper function to compose command to get the final Bloom Filter :arg dict args: Dict of arguments. :arg str in_fn: Path to file where the reads will be read :ivar dict args: Dict of arguments. The ones used are: - "kmer" (int): size of the kmers. - "threads" (int): number of threads to be used. - "bloom_size" (str): size of the Bloom filter in bytes. K/M/G units can be used. - "levels" (int): number of Bloom filters used. - "output_bloom" (str): path where to store the Bloom Filter :ivar str in_fn: Path to file where the reads will be read. In later methods /dev/stdin is used. :param dict args: Dict of arguments. :param str in_fn: Input filename. ..seealso: Where it is used: :py:meth: `build_baited_bloom_filter` """ abyss_bloom_path = shutil.which('abyss-bloom') build_bf = [ abyss_bloom_path, 'build', '--verbose', '--kmer', str(args["kmer"]), '--bloom-size', args["bloom_size"], '--levels', str(args["levels"]), '--threads', str(args["threads"]), args["bloom"] ] + in_fn return build_bf def _create_links(output_dir: str) -> None: """Create soft links from output_dir/categries-* to /dev/null :arg str output_dir: path where data will be stored :ivar str output_dir: path where data will be stored. Must exist, won't be created. ..seealso: Where it is used: :py:meth: `build_baited_bloom_filter` :param str output_dir: Output directory. """ os.symlink(os.devnull, output_dir + "/categories_transcriptome.fa") os.symlink(os.devnull, output_dir + "/categories_noMatch.fa") os.symlink(os.devnull, output_dir + "/categories_multiMatch.fa") os.symlink(os.devnull, output_dir + "/categories_summary.tsv") def _destroy_links(output_dir: str) -> None: """Destroy the links created by _create_links :arg str output_dir: path where data is being stored. :ivar str output_dir: path where data will be stored. Must exist, won't be created. ..seealso: Where it is used: :py:meth: `build_baited_bloom_filter` :param str output_dir: Output directory. """ os.remove(output_dir + "/categories_transcriptome.fa") os.remove(output_dir + "/categories_noMatch.fa") os.remove(output_dir + "/categories_multiMatch.fa") os.remove(output_dir + "/categories_summary.tsv") def build_baited_bloom_filter(args: dict) -> None: """Run the build_baited_bloom_filter pipeline. The pipeline works as follows: - Build a secondary Bloom filter of the transcriptome with `biobloommaker`. - Categorize reads with `biobloomcategorizer` and pipe to `abyss-bloom build` to build the primary Bloom filter :param dict args: Dict of arguments. .. note:: Parameter `args` must have the following keys: - fasta (str): path to transcriptome in FASTA format. - kmer (int): size of the kmers. - bloom_size (str): total size of the Bloom filter(s) in bytes. K/M/G units can be used. - levels (int): number of Bloom filters used to count. - bloom (str): path where to store the final Bloom filter. - threads (int): number of threads to be used. - reads (list of str): paths to the reads in FASTA/Q format, gzipped or not. .. seealso: Functions used: :py:meth: `_get_biobloommaker_command`, `_get_categorize_command`, `_get_build_bf_command`, `_create_links`, `_destroy_links`. """ # Imports from subprocess import Popen, PIPE from os.path import dirname, abspath output_dir = dirname(abspath(args["bloom"])) # Convert single read library to list if isinstance(args["reads"], str): args["reads"] = [args["reads"]] # Prepare the commands build_transcriptome_bf = _get_biobloommaker_command(args, output_dir) categorize = _get_categorize_command(args, output_dir) build_bf = _get_build_bf_command(args, ["/dev/stdin"]) # Run the pipeline logging.info("\n\nRunning command: %s\n", " ".join(build_transcriptome_bf)) # Create links to /dev/null for categories_{match,nomatch,multi}.fa and summary _create_links(output_dir) # Put the porcesses to work together p_build_transcriptome_bf = Popen(build_transcriptome_bf, shell=False) p_build_transcriptome_bf.wait() logging.info("\n\nRunning command: %s | %s\n", " ".join(categorize), " ".join(build_bf)) p_categorize = Popen(categorize, stdout=PIPE, shell=False) p_build_bf = Popen(build_bf, stdin=p_categorize.stdout, shell=False) p_categorize.stdout.close() p_categorize.wait() p_build_bf.wait() # Clean up files from biobloommaker if os.path.isfile(output_dir + "/transcriptome.bf"): os.remove(output_dir + "/transcriptome.bf") if os.path.isfile(output_dir + "/transcriptome.txt"): os.remove(output_dir + "/transcriptome.txt") # Clean up files from biobloomcategorizer _destroy_links(output_dir) ``` #### File: exfi/exfi/compare.py ```python import sys import logging from subprocess import Popen, PIPE from os import remove from tempfile import mkstemp import pandas as pd import numpy as np from exfi.io.bed import \ BED3_COLS, BED3_DTYPES TP_DF_COLS = [ 'chrom_pred', 'chrom_start_pred', 'chrom_end_pred', 'chrom_true', 'chrom_start_true', 'chrom_end_true' ] TP_DF_DTYPES = { 'chrom_pred': object, 'chrom_start_pred': np.int, 'chrom_end_pred': np.int, 'chrom_true': object, 'chrom_start_true': np.int, 'chrom_end_true': np.int } STATS_COLS = [ 'true', 'predicted', 'true_positives', 'false_positives', 'false_negatives', 'precision', 'recall', 'f_1' ] STATS_DTYPES = { 'true': np.float, 'predicted': np.float, 'true_positives': np.float, 'false_positives': np.float, 'false_negatives': np.float, 'precision': np.float, 'recall': np.float, 'f_1': np.float } DISTANCES_COLS = [ 'pred_chrom', 'pred_chrom_start', 'pred_chrom_end', 'true_chrom', 'true_chrom_start', 'true_chrom_end', 'distance' ] DISTANCES_DTYPES = { 'pred_chrom': object, 'pred_chrom_start': np.int, 'pred_chrom_end': np.int, 'true_chrom': object, 'true_chrom_start': np.int, 'true_chrom_end': np.int, 'distance': np.int } def bedtools_intersect(bed1_fn, bed2_fn, additional_flags=None): """Bedtools intersect wrapper bed1_fn: path to BED file bed2_fn: path to BED file additional_flags: list with additional flags to pass to bedtools in the shape of a list: ['-r', '-v', '-f', '0.95'] returns a list of lists () """ if additional_flags is None: additional_flags = [] command = ["bedtools", "intersect", "-a", bed1_fn, "-b", bed2_fn] + \ additional_flags process = Popen(command, stdout=PIPE, stderr=PIPE) data = [ line.decode().strip().split() for line in process.stdout.readlines() ] process.stdout.close() status_code = process.wait() if status_code != 0: sys.exit( "ERROR: something went wrong:\n" + \ ",".join([x.decode() for x in process.stderr.readlines()]) ) return data def classify(bed3_true, bed3_pred, fraction=0.95): """Compute the True Posivites, False Positives and False Negatives between two BED3 dataframes (true and predicted) using bedtools intersect Fraction is a real number between 0 and 1 that stands for minimum similarity. Result is a dict where values are dataframes """ logging.info('Classifying') bed3_pred_fn = mkstemp()[1] bed3_true_fn = mkstemp()[1] # Dump to disk logging.info("Dumping predictions to disk") bed3_true\ .sort_values(by=['chrom', 'chrom_start', 'chrom_end'])\ .to_csv(path_or_buf=bed3_true_fn, sep='\t', index=False, header=False) logging.info('Dumping true values to disk') bed3_pred\ .sort_values(by=['chrom', 'chrom_start', 'chrom_end'])\ .to_csv(path_or_buf=bed3_pred_fn, sep='\t', index=False, header=False) logging.info('Computing true positives') true_positives_df = pd.DataFrame( data=bedtools_intersect( bed1_fn=bed3_pred_fn, bed2_fn=bed3_true_fn, additional_flags=['-f', f'{fraction}', '-r', '-wo'] ), columns=TP_DF_COLS + [6] ).astype(dtype=TP_DF_DTYPES)\ .drop(columns=6) logging.info('Computing false positives') false_positives_df = pd.DataFrame( data=bedtools_intersect( bed1_fn=bed3_pred_fn, bed2_fn=bed3_true_fn, additional_flags=['-f', f'{fraction}', '-r', '-v'], ), columns=BED3_COLS ).astype(BED3_DTYPES) logging.info('Computing false negatives') false_negatives_df = pd.DataFrame( data=bedtools_intersect( bed1_fn=bed3_true_fn, bed2_fn=bed3_pred_fn, additional_flags=['-f', f'{fraction}', '-r', '-v'] ), columns=BED3_COLS ).astype(BED3_DTYPES) remove(bed3_pred_fn) remove(bed3_true_fn) return { 'true_positives': true_positives_df, 'false_positives': false_positives_df, 'false_negatives': false_negatives_df } def compute_precision(true_positives, false_positives): """Compute precision >>> compute_precision(0, 10) 0.0 >>> compute_precision(446579, 13932) 0.969747 """ return true_positives / (true_positives + false_positives) def compute_recall(true_positives, false_negatives): """Compute recall >>> compute_recall(0, 10) 0.0 >>> compute_recall(446579, 48621) 0.901815 """ return true_positives / (true_positives + false_negatives) def compute_f_1(true_positives, false_positives, false_negatives): """Compute F_1 >>> compute_f_1(0, 10, 10) 0 >>> compute_f_1(446579, 13932, 48621) 0.934548 """ precision = compute_precision(true_positives, false_positives) recall = compute_recall(true_positives, false_negatives) return 2 * precision * recall / (precision + recall) def compute_stats_per_exon(classification): """Compute the classification stats per exon Input should be the one from exfi.compare.classify """ logging.info('Computing the stats per exon') tp_exons = classification['true_positives'].shape[0] fp_exons = classification['false_positives'].shape[0] fn_exons = classification['false_negatives'].shape[0] true_exons = tp_exons + fn_exons pred_exons = tp_exons + fp_exons stats = pd.DataFrame( data=[[ true_exons, pred_exons, tp_exons, fp_exons, fn_exons, compute_precision(tp_exons, fp_exons), compute_recall(tp_exons, fn_exons), compute_f_1(tp_exons, fp_exons, fn_exons) ]], columns=STATS_COLS )\ .astype(STATS_DTYPES) return stats def compute_true_bases(classification): """Compute the total number of bases in the truth splice graph""" true_positives, _, false_negatives = classification.values() return \ np.sum(true_positives.chrom_end_true - true_positives.chrom_start_true) + \ np.sum(false_negatives.chrom_end - false_negatives.chrom_start) def compute_pred_bases(classification): """Compute the total number of bases in the predicted splice graph""" true_positives, false_positives, _ = classification.values() return \ np.sum(true_positives.chrom_end_pred - true_positives.chrom_start_pred) + \ np.sum(false_positives.chrom_end - false_positives.chrom_start) def compute_true_positive_bases(classification): """Compute the total number of true positive bases in the predicted splice graph TP bases are the common part between the two exons """ true_positives = classification['true_positives'] return np.sum( true_positives[['chrom_end_true', 'chrom_end_pred']].min(axis=1) - true_positives[['chrom_start_true', 'chrom_start_pred']].max(axis=1) ) def compute_false_positive_bases(classification): """Compute the total number of true positive bases in the predicted splice graph FP bases are: - all bases in false positive exons - all bases over predicted in the start - all bases over predicted in the end """ tp_df, fp_df, _ = classification.values() starts = tp_df[tp_df.chrom_start_pred < tp_df.chrom_start_true] ends = tp_df[tp_df.chrom_end_pred > tp_df.chrom_end_true] fp_bases = \ np.sum(fp_df.chrom_end - fp_df.chrom_start) + \ np.sum(starts.chrom_start_true - starts.chrom_start_pred) + \ np.sum(ends.chrom_end_pred - ends.chrom_end_true) return fp_bases def compute_false_negative_bases(classification): """Compute the total number of true positive bases in the predicted splice graph FN bases are: - all bases in false negative exons - all bases underpredicted in the start - all bases underpredicted in the end """ tp_df, _, fn_df = classification.values() starts = tp_df[tp_df.chrom_start_pred > tp_df.chrom_start_true] ends = tp_df[tp_df.chrom_end_pred < tp_df.chrom_end_true] fn_bases = \ np.sum(fn_df.chrom_end - fn_df.chrom_start) + \ np.sum(starts.chrom_start_pred - starts.chrom_start_true) + \ np.sum(ends.chrom_end_pred - ends.chrom_end_true) return fn_bases def compute_stats_per_base(classification): """Compute the classification stats per base pair Input should be the one from exfi.compare.classify """ logging.info('Computing the stats per base') true_bases = compute_true_bases(classification) pred_bases = compute_pred_bases(classification) tp_bases = compute_true_positive_bases(classification) fp_bases = compute_false_positive_bases(classification) fn_bases = compute_false_negative_bases(classification) stats = pd.DataFrame( data=[[ true_bases, pred_bases, tp_bases, fp_bases, fn_bases, compute_precision(tp_bases, fp_bases), compute_recall(tp_bases, fn_bases), compute_f_1(tp_bases, fp_bases, fn_bases) ]], columns=STATS_COLS )\ .astype(STATS_DTYPES) return stats def get_starts(bed3): """Get the BED coordinates of the first nucleotide of each record.""" starts = bed3.copy() starts['chrom_end'] = starts['chrom_start'] + 1 return starts.sort_values(by=['chrom', 'chrom_start']) def get_ends(bed3): """Get the BED coordinates of the last nucleotide of each record.""" ends = bed3.copy() ends['chrom_start'] = ends['chrom_end'] - 1 return ends.sort_values(by=['chrom', 'chrom_start']) def get_distances(bed3_true, bed3_pred): """For every record in bed3_pred, get the closest record and distance to bed3_true.""" bed3_true_fn = mkstemp()[1] bed3_pred_fn = mkstemp()[1] distances_fn = mkstemp()[1] bed3_true.to_csv(bed3_true_fn, sep='\t', index=False, header=False) bed3_pred.to_csv(bed3_pred_fn, sep='\t', index=False, header=False) command = [ 'bedtools', 'closest', '-a', bed3_pred_fn, '-b', bed3_true_fn, '-d', '-k', '1', '-t', 'first' ] with open(distances_fn, 'w') as out: process = Popen(command, stdout=out) process.wait() distances = pd.read_csv( distances_fn, sep='\t', names=DISTANCES_COLS )\ .astype(DISTANCES_DTYPES) remove(bed3_true_fn) remove(bed3_pred_fn) remove(distances_fn) return distances def compute_stats_per_ieb(true_bed3, pred_bed3, max_distance=10): """Compute the classification stats per IEB""" true_starts = get_starts(true_bed3) true_ends = get_ends(true_bed3) pred_starts = get_starts(pred_bed3) pred_ends = get_ends(pred_bed3) dist_start = get_distances(true_starts, pred_starts) dist_end = get_distances(true_ends, pred_ends) true_ieb = true_starts.shape[0] + true_ends.shape[0] pred_ieb = pred_starts.shape[0] + pred_ends.shape[0] tp_ieb = sum( (dist_start.distance <= max_distance) & (dist_start.distance >= 0) ) + sum( (dist_end.distance <= max_distance) & (dist_end.distance >= 0) ) fp_ieb = pred_ieb - tp_ieb fn_ieb = true_ieb - tp_ieb stats = pd.DataFrame( data=[[ true_ieb, pred_ieb, tp_ieb, fp_ieb, fn_ieb, compute_precision(tp_ieb, fp_ieb), compute_recall(tp_ieb, fn_ieb), compute_f_1(tp_ieb, fp_ieb, fn_ieb) ]], columns=STATS_COLS )\ .astype(STATS_DTYPES) return stats ``` #### File: exfi/io/gfa1_to_bed.py ```python import logging import numpy as np from exfi.io.bed import BED4_COLS, BED4_DTYPES from exfi.io.read_gfa import read_gfa1 def gfa1_to_bed4(filename): """Read a GFA1 file and convert it to BED4""" logging.info('Converting GFA1 to BED4') containments = read_gfa1(filename)['containments'] logging.info('Renaming columns') containments = containments.rename(columns={ "container": "chrom", "contained": "name" }) logging.info('Overlap to int') containments["overlap"] = containments\ .overlap.map(lambda x: np.int(x[:-1])) logging.info('Computing coordinates') containments["chrom_start"] = containments["pos"] containments["chrom_end"] = containments["pos"] + containments["overlap"] containments = containments[BED4_COLS] containments = containments.astype(BED4_DTYPES) logging.info('Done') return containments ``` #### File: exfi/io/gff3_to_bed.py ```python import logging import pandas as pd from exfi.io.bed import BED3_COLS, BED3_DTYPES GFF3_COLS = [ "seqid", "source", "type", "start", "end", "score", "strand", "phase", "attributes" ] def gff3_to_bed3(gff3_in, mode="ensembl"): """Read a GFF3 file and convert it to BED3, where coordinates are with respect to the transcriptome Modes available: - "ensembl": for files downloaded from Ensembl, - "gmap": for GFF3 files generated from GMAP, - "ncbi": for GFF3 files downloaded from NCBI Genomes """ logging.info("Reading GFF3 file") raw = pd.read_csv( sep='\t', na_values=".", usecols=["type", "start", "end", "strand", "attributes"], filepath_or_buffer=gff3_in, comment="#", header=None, names=GFF3_COLS, low_memory=False # Convert types at the end. Seqid is char, not int ) if raw.shape[0] == 0: exons = pd.DataFrame(columns=BED3_COLS) exons = exons.astype(BED3_DTYPES) return exons logging.info('Extracting the transcript ids') if mode == "gmap": logging.info("gff3 comes from gmap") exons = raw[raw['type'] == 'cDNA_match'].drop(columns='type') exons['transcript_id'] = exons['attributes']\ .str.split(";").str[1]\ .str.extract(r'Name=([\w\d.-_]+)') elif mode == "ncbi": logging.info("gff3 comes from NCBI Genomes") exons = raw[raw['type'] == 'exon'].drop(columns='type') exons['transcript_id'] = exons.attributes\ .str.extract(r"transcript_id=([A-Za-z0-9_.]+)") exons = exons.dropna() else: logging.info('gff3 comes from ensembl') exons = raw[raw['type'] == 'exon'].drop(columns='type') exons["transcript_id"] = exons["attributes"]\ .str.split(";", 1, ).str[0]\ .str.extract(r'Parent=transcript:([\w\d.-_]+)') exons = exons[['transcript_id', 'strand', 'start', 'end']] logging.info('Reordering exons by strand') positive = ( exons [exons['strand'] == '+'] .drop(columns='strand') .sort_values(by=['transcript_id', 'start', 'end']) ) negative = ( exons [exons['strand'] == '-'] .drop(columns='strand') .sort_values( by=['transcript_id', 'start', 'end'], ascending=[True, False, False] ) ) merged = pd.concat([positive, negative]) logging.info('Computing lengths') merged['length'] = merged['end'] - merged['start'] + 1 logging.info('Computing ends') merged['transcript_end'] = ( merged .groupby('transcript_id') ['transcript_id', 'length'] .cumsum() ) logging.info('Computing starts') merged['transcript_start'] = merged['transcript_end'] - merged['length'] logging.info('Tidying up') merged = merged[['transcript_id', 'transcript_start', 'transcript_end']] merged = merged.rename(columns={ 'transcript_id': 'chrom', 'transcript_start': 'chrom_start', 'transcript_end': 'chrom_end' }) merged = merged.astype(BED3_DTYPES) merged = merged.reset_index(drop=True) logging.info('Done') return merged ``` #### File: exfi/io/masking.py ```python import logging import numpy as np def cigar_to_int(cigar): """Convert a simple CIGAR string to overlap int >>> cigar_to_int('71N') -71 >>> cigar_to_int('3M') 3 """ if cigar[-1] == 'N': return -int(cigar[:-1]) return int(cigar[:-1]) def soft_mask(sequence, left, right): """Lowercase the first left bases and last right bases of sequence >>> soft_mask('ACCGATCGATCGTAG', 2, 1) 'acCGATCGATCGTAg' >>> soft_mask('ACCGATCGATCGTAG', 0, 2) 'ACCGATCGATCGTag' >>> soft_mask('ACCGATCGATCGTAG', 2, 0) 'acCGATCGATCGTAG' >>> soft_mask('ACCGATCGATCGTAG', 0, 0) 'ACCGATCGATCGTAG' """ if left == 0 and right == 0: return sequence if left == 0 and right > 0: return sequence[:-right] + sequence[-right:].lower() if left > 0 and right == 0: return sequence[:left].lower() + sequence[left:] return sequence[:left].lower() + sequence[left:-right] + sequence[-right:].lower() def hard_mask(sequence, left, right): """Mask with N the first left bases and last right bases of sequence >>> hard_mask('ACCGATCGATCGTAG', 2, 1) 'NNCGATCGATCGTAN' >>> hard_mask('ACCGATCGATCGTAG', 0, 2) 'ACCGATCGATCGTNN' >>> hard_mask('ACCGATCGATCGTAG', 2, 0) 'NNCGATCGATCGTAG' >>> hard_mask('ACCGATCGATCGTAG', 0, 0) 'ACCGATCGATCGTAG' """ if left == 0 and right == 0: return sequence if left == 0 and right > 0: return sequence[:-right] + 'N' * right if left > 0 and right == 0: return 'N' * left + sequence[left:] return 'N' * left + sequence[left:-right] + 'N' * right def mask(node2sequence, edge2overlap, masking: str = "none"): """If any of the soft mask or hard mask are activated, mask :param dict exon_dict: Dict of the shape exon_id: sequence. :param dict overlap_dict: Dict of the shape (exon1, exon2): overlap between them. :param str masking: Type of masking to apply. Options: hard, soft, none (Default value = "None") . """ logging.info('Masking sequences') if masking == 'none': return node2sequence # Compose a dataframe of name, sequence, bases to trim to the left # and bases to trim to the right logging.info('Computing bases to trim to the right and to the left') complete = node2sequence.merge( edge2overlap[['u', 'overlap']]\ .rename(columns={'u': 'name', 'overlap': 'mask_right'}), on=['name'], how='outer' ).merge( edge2overlap[['v', 'overlap']]\ .rename(columns={'v': 'name', 'overlap': 'mask_left'}), on=['name'], how='outer' )\ .fillna(0)\ .astype({'mask_right': np.int64, 'mask_left':np.int64}) logging.info('Removing negative masking') complete['mask_right'] = complete.mask_right\ .map(lambda x: x if x > 0 else 0) complete['mask_left'] = complete.mask_left\ .map(lambda x: x if x > 0 else 0) if masking == "hard": logging.info("Hard masking sequences") complete['sequence'] = complete.apply( lambda x: hard_mask(x.sequence, x.mask_left, x.mask_right), axis=1 ) elif masking == "soft": logging.info("Soft masking sequences") complete['sequence'] = complete.apply( lambda x: soft_mask(x.sequence, x.mask_left, x.mask_right), axis=1 ) logging.info('Tidying up') node2sequence_masked = complete\ [['name', 'sequence']]\ .reset_index(drop=True) logging.info('Done') return node2sequence_masked ``` #### File: exfi/io/read_bed.py ```python import logging import pandas as pd from exfi.io.bed import BED3_COLS, BED3_DTYPES def read_bed3(filename): """Read a BED file and return the BED3 dataframe.""" logging.info('Reading BED3 from disk') bed3 = pd.read_csv( filepath_or_buffer=filename, header=None, sep='\t', usecols=[0, 1, 2], names=BED3_COLS, engine='c' ).astype(BED3_DTYPES) logging.info('Done') return bed3 ``` #### File: exfi/tests/auxiliary_functions.py ```python import tempfile import shutil from subprocess import \ Popen, PIPE import numpy as np import pandas as pd from Bio.SeqIO.FastaIO import SimpleFastaParser from exfi.find_exons import \ process_output, \ get_fasta, \ find_exons from exfi.build_baited_bloom_filter import \ _get_build_bf_command def _command_to_list(command): """Execute command and return output as list of strings""" process = Popen(command, stdout=PIPE, shell=False) results = process_output(process) return results def _fasta_to_list(filename): """fasta to list with SimpleFastaParser""" with open(filename, "r") as handle: return [record for record in SimpleFastaParser(handle)] def _getfasta_to_list(transcriptome_dict, iterable_of_bed): """Convert to a list the generator from getfasta""" return list(get_fasta(transcriptome_dict, iterable_of_bed)) def _silent_popen(command): """Create a Popen with no stderr and stdout""" return Popen( command, stdout=open("/dev/null", 'w'), stderr=open("/dev/null", 'w'), shell=False ) def _bf_and_process(reads_fns, transcriptome_fn): """(list of str, str) -> list Build the BF and process the reads """ tmp_dir = tempfile.mkdtemp() tmp_bf = tmp_dir + "/transcriptome_noreads.bf" args = { "kmer": 30, "bloom_size": "100M", "levels": 1, "threads": 1, "bloom": tmp_bf, "reads": reads_fns, "fasta": transcriptome_fn, "max_fp_bases": 5, "max_overlap": 10 } command = _get_build_bf_command(args, reads_fns) process = _silent_popen(command) process.wait() results = find_exons(args) shutil.rmtree(tmp_dir) bed3 = pd.DataFrame( data=results, columns=["chrom", "chromStart", "chromEnd"] ) bed3.chromStart.astype(np.int64) bed3.chromEnd.astype(np.int64) return bed3 ``` #### File: exfi/tests/test_compare.py ```python from unittest import main, TestCase from exfi.compare import \ bedtools_intersect, \ classify, \ compute_stats_per_exon, \ compute_true_bases, \ compute_pred_bases, \ compute_true_positive_bases, \ compute_false_positive_bases, \ compute_false_negative_bases, \ compute_stats_per_base, \ compute_stats_per_ieb from tests.compare import \ BED3_EMPTY_FN, BED3_TRUE_FN, BED3_PRED_FN, \ BED3_EMPTY, BED3_TRUE, BED3_PRED, \ TP_DF, FP_DF, FN_DF, \ CLASSIFICATION, \ STATS_PER_EXON, STATS_PER_BASE, STATS_PER_IEB class TestBedtoolsIntersect(TestCase): """Tests for exfi.compare.bedtools_intersect""" def test_empty(self): """exfi.compare.bedtools_intersect: empty case""" observed = bedtools_intersect(BED3_EMPTY_FN, BED3_EMPTY_FN, []) print('Observed:', observed, 'Expected:', BED3_EMPTY.values, sep='\n') self.assertEqual(observed, []) def test_tp(self): """exfi.compare.bedtools_intersect: true positive case""" observed = bedtools_intersect( bed1_fn=BED3_PRED_FN, bed2_fn=BED3_TRUE_FN, additional_flags=['-f', '0.99', '-r', '-wo'] ) print('Observed:', observed, 'Expected:', TP_DF, sep='\n') self.assertEqual(observed, TP_DF.values.tolist()) def test_fp(self): """exfi.compare.bedtools_intersect: false positive case""" observed = bedtools_intersect( bed1_fn=BED3_PRED_FN, bed2_fn=BED3_TRUE_FN, additional_flags=['-f', '0.99', '-r', '-v'] ) print('Observed:', observed, 'Expected:', FP_DF, sep='\n') self.assertEqual(observed, FP_DF.values.tolist()) def test_fn(self): """exfi.compare.bedtools_intersect: false negative case""" observed = bedtools_intersect( bed1_fn=BED3_TRUE_FN, bed2_fn=BED3_PRED_FN, additional_flags=['-f', '0.99', '-r', '-v'] ) print('Observed:', observed, 'Expected:', FN_DF, sep='\n') self.assertEqual(observed, FN_DF.values.tolist()) class TestClassify(TestCase): """Tests for exfi.compare.classify""" def test_complex(self): """exfi.compare.classify: Test some exons""" observed = classify( bed3_true=BED3_TRUE, bed3_pred=BED3_PRED, fraction=0.99 ) print( 'Observed:', observed['true_positives'], 'Expected:', CLASSIFICATION['true_positives'], sep='\n' ) self.assertTrue( observed['true_positives'].equals(CLASSIFICATION['true_positives']) ) print( 'Observed:', observed['false_positives'], 'Expected:', CLASSIFICATION['false_positives'], sep='\n' ) self.assertTrue( observed['false_positives'].equals(CLASSIFICATION['false_positives']) ) print( 'Observed:', observed['false_negatives'], 'Expected:', CLASSIFICATION['false_negatives'], sep='\n' ) self.assertTrue( observed['false_negatives'].equals(CLASSIFICATION['false_negatives']) ) class TestComputeStatsPerExon(TestCase): """Tests for exfi.compare.compute_stats_per_exon""" def test_complex(self): """exfi.compare.compute_stats_per_exon: some exons""" observed = compute_stats_per_exon(CLASSIFICATION) print(observed.values.tolist()) print(STATS_PER_EXON.values.tolist()) self.assertTrue(observed.equals(STATS_PER_EXON)) class TestComputeTrueBases(TestCase): """Tests for exfi.compare.compute_true_bases""" def test_complex(self): """exfi.compare.compute_true_bases: some exons""" observed = compute_true_bases(CLASSIFICATION) print(observed) self.assertEqual(observed, 5080.0) class TestComputePredBases(TestCase): """Tests for exfi.compare.compute_pred_bases""" def test_complex(self): """exfi.compare.compute_pred_bases: some exons""" observed = compute_pred_bases(CLASSIFICATION) print(observed) self.assertEqual(observed, 5090.0) class TestComputeTruePositiveBases(TestCase): """Tests for exfi.compare.compute_true_positive_bases""" def test_complex(self): """exfi.compare.compute_true_positive_bases: some exons""" observed = compute_true_positive_bases(CLASSIFICATION) self.assertEqual(observed, 4159.0) class TestComputeFalsePositiveBases(TestCase): """Tests for exfi.compare.compute_false_positive_bases""" def test_complex(self): """exfi.compare.compute_false_positive_bases: some exons""" observed = compute_false_positive_bases(CLASSIFICATION) self.assertEqual(observed, 931) class TestComputeFalseNegativeBases(TestCase): """Tests for exfi.compare.compute_false_negative_bases""" def test_complex(self): """exfi.compare.compute_false_negative_bases: some exons""" observed = compute_false_negative_bases(CLASSIFICATION) self.assertEqual(observed, 911) class TestComputeStatsPerBase(TestCase): """Tests for exfi.compare.compute_stats_per_base""" def test_complex(self): """exfi.compare.compute_stats_per_base: some exons""" observed = compute_stats_per_base(CLASSIFICATION) print(observed.values.tolist()) print(STATS_PER_BASE.values.tolist()) self.assertTrue(observed.equals(STATS_PER_BASE)) class TestComputeStatsPerIEB(TestCase): """Tests for exfi.compare.compute_stats_per_ieb""" def test_complex(self): """exfi.compare.compute_stats_per_ieb: some exons""" observed = compute_stats_per_ieb(BED3_TRUE, BED3_PRED, 2) print(observed.values.tolist()) print(STATS_PER_IEB.values.tolist()) self.assertTrue(observed.equals(STATS_PER_IEB)) if __name__ == '__main__': main() ``` #### File: tests/test_io/test_bed4_to_gfa1.py ```python from unittest import TestCase, main from tempfile import mkstemp import os import filecmp from exfi.io.bed4_to_gfa1 import \ compute_header, \ compute_segments, \ compute_links, \ compute_containments, \ compute_paths, \ bed4_to_gfa1 from tests.io.bed import \ BED4_EMPTY, BED4_SIMPLE, BED4_COMPLEX from tests.io.transcriptome_dicts import \ TRANSCRIPTOME_EMPTY_DICT, TRANSCRIPTOME_SIMPLE_DICT, \ TRANSCRIPTOME_COMPLEX_DICT from tests.io.gfa1 import \ HEADER, \ SEGMENTS_EMPTY, SEGMENTS_SIMPLE, SEGMENTS_COMPLEX, \ SEGMENTS_COMPLEX_SOFT, SEGMENTS_COMPLEX_HARD, \ LINKS_EMPTY, LINKS_SIMPLE, LINKS_COMPLEX, \ CONTAINMENTS_EMPTY, CONTAINMENTS_SIMPLE, CONTAINMENTS_COMPLEX, \ PATHS_EMPTY, PATHS_SIMPLE, PATHS_COMPLEX, \ GFA1_EMPTY_FN, GFA1_SIMPLE_FN, GFA1_COMPLEX_FN, \ GFA1_COMPLEX_SOFT_FN, GFA1_COMPLEX_HARD_FN, \ GFA1_COMPLEX_COLLAPSED_FN, \ GFA1_COMPLEX_COLLAPSED_SOFT_FN, GFA1_COMPLEX_COLLAPSED_HARD_FN class TestComputeHeader(TestCase): """Tests for exfi.io.bed4_to_gfa1.compute_header""" def test_header(self): """exfi.io.bed4_to_gfa1.compute_header: single test""" observed = compute_header() self.assertTrue(observed.equals(HEADER)) class TestComputeSegments(TestCase): """Tests for exfi.io.bed4_to_gfa1.compute_segments""" def test_empty(self): """exfi.io.bed4_to_gfa1.compute_segments: empty case""" observed = compute_segments(BED4_EMPTY, TRANSCRIPTOME_EMPTY_DICT) print("Observed:", observed, "Expected:", SEGMENTS_EMPTY, sep="\n") self.assertTrue(observed.equals(SEGMENTS_EMPTY)) def test_simple(self): """exfi.io.bed4_to_gfa1.compute_segments: simple case""" observed = compute_segments(BED4_SIMPLE, TRANSCRIPTOME_SIMPLE_DICT) print("Observed:", observed, "Expected:", SEGMENTS_SIMPLE, sep="\n") self.assertTrue(observed.equals(SEGMENTS_SIMPLE)) def test_complex(self): """exfi.io.bed4_to_gfa1.compute_segments: complex case""" observed = compute_segments(BED4_COMPLEX, TRANSCRIPTOME_COMPLEX_DICT) print("Observed:", observed, "Expected:", SEGMENTS_COMPLEX, sep="\n") self.assertTrue(observed.equals(SEGMENTS_COMPLEX)) def test_complex_simple(self): """exfi.io.bed4_to_gfa1.compute_segments: complex case""" observed = compute_segments( BED4_COMPLEX, TRANSCRIPTOME_COMPLEX_DICT, 'soft' ) print("Observed:", observed, "Expected:", SEGMENTS_COMPLEX_SOFT, sep="\n") self.assertTrue(observed.equals(SEGMENTS_COMPLEX_SOFT)) def test_complex_hard(self): """exfi.io.bed4_to_gfa1.compute_segments: complex case""" observed = compute_segments( BED4_COMPLEX, TRANSCRIPTOME_COMPLEX_DICT, 'hard' ) print("Observed:", observed, "Expected:", SEGMENTS_COMPLEX_HARD, sep="\n") self.assertTrue(observed.equals(SEGMENTS_COMPLEX_HARD)) class TestComputeLinks(TestCase): """Tests for exfi.io.bed4_to_gfa1.compute_links""" def test_empty(self): """exfi.io.bed4_to_gfa1.compute_links: empty case""" observed = compute_links(BED4_EMPTY) self.assertTrue(observed.equals(LINKS_EMPTY)) def test_simple(self): """exfi.io.bed4_to_gfa1.compute_links: simple case""" observed = compute_links(BED4_SIMPLE) self.assertTrue(observed.equals(LINKS_SIMPLE)) def test_complex(self): """exfi.io.bed4_to_gfa1.compute_links: complex case""" observed = compute_links(BED4_COMPLEX) # print("Observed", observed, observed.dtypes, sep="\n") # print("Expected", LINKS_COMPLEX, LINKS_COMPLEX.dtypes, sep="\n") self.assertTrue(observed.equals(LINKS_COMPLEX)) class TestComputeContainments(TestCase): """Tests for exfi.io.bed4_to_gfa1.compute_containments""" def test_empty(self): """exfi.io.bed4_to_gfa1.compute_containments: empty case""" observed = compute_containments(BED4_EMPTY) self.assertTrue(observed.equals(CONTAINMENTS_EMPTY)) def test_simple(self): """exfi.io.bed4_to_gfa1.compute_containments: simple case""" observed = compute_containments(BED4_SIMPLE) # print("Observed", observed, observed.dtypes, sep="\n") # print("Expected", CONTAINMENTS_SIMPLE, CONTAINMENTS_SIMPLE.dtypes, sep="\n") self.assertTrue(observed.equals(CONTAINMENTS_SIMPLE)) def test_complex(self): """exfi.io.bed4_to_gfa1.compute_containments: complex case""" observed = compute_containments(BED4_COMPLEX) # print("Observed", observed, observed.dtypes, sep="\n") # print("Expected", CONTAINMENTS_COMPLEX, CONTAINMENTS_COMPLEX.dtypes, sep="\n") self.assertTrue(observed.equals(CONTAINMENTS_COMPLEX)) class TestComputePaths(TestCase): """Tests for exfi.io.bed4_to_gfa1.compute_paths""" def test_empty(self): """exfi.io.bed4_to_gfa1.compute_paths: empty case""" observed = compute_paths(BED4_EMPTY) print("Observed", observed, observed.dtypes, sep="\n") print("Expected", PATHS_EMPTY, PATHS_EMPTY.dtypes, sep="\n") self.assertTrue(observed.equals(PATHS_EMPTY)) def test_simple(self): """exfi.io.bed4_to_gfa1.compute_paths: simple case""" observed = compute_paths(BED4_SIMPLE) print("Observed", observed, observed.dtypes, sep="\n") print("Expected", PATHS_SIMPLE, PATHS_SIMPLE.dtypes, sep="\n") self.assertTrue(observed.equals(PATHS_SIMPLE)) def test_complex(self): """exfi.io.bed4_to_gfa1.compute_paths: complex case""" observed = compute_paths(BED4_COMPLEX) print("Observed", observed, observed.dtypes, sep="\n") print("Expected", PATHS_COMPLEX, PATHS_COMPLEX.dtypes, sep="\n") self.assertTrue(observed.equals(PATHS_COMPLEX)) class TestBED4TOGFA1(TestCase): """Tests for exfi.io.bed4_to_gfa1.bed4_to_gfa1""" def test_empty(self): """exfi.io.bed4_to_gfa1.bed4_to_gfa1: empty case""" tmp_file = mkstemp()[1] print(tmp_file) bed4_to_gfa1( gfa1_fn=tmp_file, bed4=BED4_EMPTY, transcriptome_dict=TRANSCRIPTOME_EMPTY_DICT, collapse=False ) self.assertTrue(filecmp.cmp(tmp_file, GFA1_EMPTY_FN)) os.remove(tmp_file) def test_simple(self): """exfi.io.bed4_to_gfa1.bed4_to_gfa1: simple case""" tmp_file = mkstemp()[1] print(tmp_file) bed4_to_gfa1( gfa1_fn=tmp_file, bed4=BED4_SIMPLE, transcriptome_dict=TRANSCRIPTOME_SIMPLE_DICT, collapse=False ) self.assertTrue(filecmp.cmp(tmp_file, GFA1_SIMPLE_FN)) os.remove(tmp_file) def test_complex(self): """exfi.io.bed4_to_gfa1.bed4_to_gfa1: complex case""" tmp_file = mkstemp()[1] print(tmp_file) bed4_to_gfa1( gfa1_fn=tmp_file, bed4=BED4_COMPLEX, transcriptome_dict=TRANSCRIPTOME_COMPLEX_DICT, collapse=False ) self.assertTrue(filecmp.cmp(tmp_file, GFA1_COMPLEX_FN)) os.remove(tmp_file) def test_complex_soft(self): """exfi.io.bed4_to_gfa1.bed4_to_gfa1: complex soft masked case""" tmp_file = mkstemp()[1] print(tmp_file) bed4_to_gfa1( gfa1_fn=tmp_file, bed4=BED4_COMPLEX, transcriptome_dict=TRANSCRIPTOME_COMPLEX_DICT, masking='soft' ) self.assertTrue(filecmp.cmp(tmp_file, GFA1_COMPLEX_SOFT_FN)) os.remove(tmp_file) def test_complex_hard(self): """exfi.io.bed4_to_gfa1.bed4_to_gfa1: complex hard masked case""" tmp_file = mkstemp()[1] print(tmp_file) bed4_to_gfa1( gfa1_fn=tmp_file, bed4=BED4_COMPLEX, transcriptome_dict=TRANSCRIPTOME_COMPLEX_DICT, masking='hard', collapse=False ) self.assertTrue(filecmp.cmp(tmp_file, GFA1_COMPLEX_HARD_FN)) os.remove(tmp_file) def test_complex_collapse(self): """exfi.io.bed4_to_gfa1.bed4_to_gfa1: complex collapsed case""" tmp_file = mkstemp()[1] print(tmp_file) bed4_to_gfa1( gfa1_fn=tmp_file, bed4=BED4_COMPLEX, transcriptome_dict=TRANSCRIPTOME_COMPLEX_DICT, collapse=True ) self.assertTrue(filecmp.cmp(tmp_file, GFA1_COMPLEX_COLLAPSED_FN)) def test_complex_soft_collapse(self): """exfi.io.bed4_to_gfa1.bed4_to_gfa1: complex collapsed and soft masked case""" tmp_file = mkstemp()[1] print(tmp_file) bed4_to_gfa1( gfa1_fn=tmp_file, bed4=BED4_COMPLEX, transcriptome_dict=TRANSCRIPTOME_COMPLEX_DICT, masking='soft', collapse=True ) self.assertTrue(filecmp.cmp(tmp_file, GFA1_COMPLEX_COLLAPSED_SOFT_FN)) os.remove(tmp_file) def test_complex_hard_collapse(self): """exfi.io.bed4_to_gfa1.bed4_to_gfa1: complex collapsed and hard masked case""" tmp_file = mkstemp()[1] print(tmp_file) bed4_to_gfa1( gfa1_fn=tmp_file, bed4=BED4_COMPLEX, transcriptome_dict=TRANSCRIPTOME_COMPLEX_DICT, masking='hard', collapse=True ) self.assertTrue(filecmp.cmp(tmp_file, GFA1_COMPLEX_COLLAPSED_HARD_FN)) os.remove(tmp_file) if __name__ == '__main__': main() ``` #### File: tests/test_io/test_bed.py ```python import unittest from exfi.io.bed import \ bed3_to_bed4, \ bed4_to_node2coordinates, \ bed4_to_path2nodes, \ bed4_to_node2sequence, \ bed4_to_edge2overlap from tests.io.bed import \ BED3_EMPTY, BED3_SIMPLE, BED3_COMPLEX, \ BED4_EMPTY, BED4_SIMPLE, BED4_COMPLEX, \ NODE2COORDINATES_EMPTY, NODE2COORDINATES_SIMPLE, NODE2COORDINATES_COMPLEX, \ PATH2NODES_EMPTY, PATH2NODES_SIMPLE, PATH2NODES_COMPLEX, \ NODE2SEQUENCE_EMPTY, NODE2SEQUENCE_SIMPLE, NODE2SEQUENCE_COMPLEX, \ EDGE2OVERLAP_EMPTY, EDGE2OVERLAP_SIMPLE, EDGE2OVERLAP_COMPLEX from tests.io.transcriptome_dicts import \ TRANSCRIPTOME_EMPTY_DICT, TRANSCRIPTOME_SIMPLE_DICT, \ TRANSCRIPTOME_COMPLEX_DICT class TestBed3ToBed4(unittest.TestCase): """Tests for exfi.io.bed.bed3_to_bed4""" def test_empty(self): """exfi.io.bed.bed3_to_bed4: empty case""" observed = bed3_to_bed4(BED3_EMPTY) self.assertTrue(BED4_EMPTY.equals(observed)) def test_simple(self): """exfi.io.bed.bed3_to_bed4: simple case""" observed = bed3_to_bed4(BED3_SIMPLE) self.assertTrue(observed.equals(BED4_SIMPLE)) def test_complex(self): """exfi.io.bed.bed3_to_bed4: complex case""" observed = bed3_to_bed4(BED3_COMPLEX) self.assertTrue(observed.equals(BED4_COMPLEX)) class TestBed4ToNode2Coordinates(unittest.TestCase): """Tests for exfi.io.bed.bed4_to_node2coordinates""" def test_empty(self): """exfi.io.bed.bed4_to_node2coordinates: empty case""" observed = bed4_to_node2coordinates(BED4_EMPTY) self.assertTrue(observed.equals(NODE2COORDINATES_EMPTY)) def test_simple(self): """exfi.io.bed.bed4_to_node2coordinates: simple case""" observed = bed4_to_node2coordinates(BED4_SIMPLE) self.assertTrue(observed.equals(NODE2COORDINATES_SIMPLE)) def test_complex(self): """exfi.io.bed.bed4_to_node2coordinates: complex case""" observed = bed4_to_node2coordinates(BED4_COMPLEX) self.assertTrue(observed.equals(NODE2COORDINATES_COMPLEX)) class TestBed4ToPath2Nodes(unittest.TestCase): """Tests for exfi.io.bed.bed4_to_path2nodes""" def test_empty(self): """exfi.io.bed.bed4_to_path2nodes: empty case""" observed = bed4_to_path2nodes(BED4_EMPTY) self.assertEqual(observed, PATH2NODES_EMPTY) def test_simple(self): """exfi.io.bed.bed4_to_path2nodes: simple case""" observed = bed4_to_path2nodes(BED4_SIMPLE) self.assertEqual(observed, PATH2NODES_SIMPLE) def test_complex(self): """exfi.io.bed.bed4_to_path2nodes: complex case""" observed = bed4_to_path2nodes(BED4_COMPLEX) print("Observed:\n", observed) print("Expected:\n", PATH2NODES_COMPLEX) self.assertEqual(observed, PATH2NODES_COMPLEX) class TestBed4ToNode2Sequence(unittest.TestCase): """Tests for exfi.io.bed.bed4_to_node2sequence""" def test_empty(self): """exfi.io.bed.bed4_to_node2sequence: empty case""" observed = bed4_to_node2sequence(BED4_EMPTY, TRANSCRIPTOME_EMPTY_DICT) self.assertTrue(observed.equals(NODE2SEQUENCE_EMPTY)) def test_simple(self): """exfi.io.bed.bed4_to_node2sequence: simple case""" observed = bed4_to_node2sequence(BED4_SIMPLE, TRANSCRIPTOME_SIMPLE_DICT) self.assertTrue(observed.equals(NODE2SEQUENCE_SIMPLE)) def test_complex(self): """exfi.io.bed.bed4_to_node2sequence: complex case""" observed = bed4_to_node2sequence( BED4_COMPLEX, TRANSCRIPTOME_COMPLEX_DICT ) self.assertTrue(observed.equals(NODE2SEQUENCE_COMPLEX)) class TestBed4ToEdge2Overlap(unittest.TestCase): """Tests for exfi.io.bed.bed4_to_edge2overlap""" def test_empty(self): """exfi.io.bed.bed4_to_edge2overlap: empty case""" observed = bed4_to_edge2overlap(BED4_EMPTY) print("Observed:\n", observed, observed.dtypes) print("Expected:\n", EDGE2OVERLAP_EMPTY, EDGE2OVERLAP_EMPTY.dtypes) self.assertTrue(observed.equals(EDGE2OVERLAP_EMPTY)) def test_simple(self): """exfi.io.bed.bed4_to_edge2overlap: simple case""" observed = bed4_to_edge2overlap(BED4_SIMPLE) print("Observed:\n", observed, observed.dtypes) print("Expected:\n", EDGE2OVERLAP_SIMPLE, EDGE2OVERLAP_SIMPLE.dtypes) self.assertTrue(observed.equals(EDGE2OVERLAP_SIMPLE)) def test_complex(self): """exfi.io.bed.bed4_to_edge2overlap: complex case""" observed = bed4_to_edge2overlap(BED4_COMPLEX) print("Observed:\n", observed, observed.dtypes) print("Expected:\n", EDGE2OVERLAP_COMPLEX, EDGE2OVERLAP_COMPLEX.dtypes) self.assertTrue(observed.equals(EDGE2OVERLAP_COMPLEX)) if __name__ == '__main__': unittest.main() ``` #### File: tests/test_io/test_gff3_to_bed.py ```python from unittest import TestCase, main from exfi.io.gff3_to_bed import gff3_to_bed3 from tests.io.gff3 import \ GFF3_EMPTY_FN, GFF3_ENSEMBL_FN, GFF3_GMAP_FN from tests.io.bed import \ BED3_EMPTY, BED3_ENSEMBL, BED3_GMAP class TestGFF3ToBED(TestCase): """Tests for exfi.io.gff3_to_bed.gff3_to_bed3""" def test_empty(self): """exfi.io.gff3_to_bed.gff3_to_bed3: empty case""" observed = gff3_to_bed3(GFF3_EMPTY_FN) self.assertTrue(observed.equals(BED3_EMPTY)) def test_ensembl(self): """exfi.io.gff3_to_bed.gff3_to_bed3: ensembl case""" observed = gff3_to_bed3(GFF3_ENSEMBL_FN, mode="ensembl") print("Observed", observed.values.tolist(), observed.dtypes, sep='\n') self.assertTrue(observed.equals(BED3_ENSEMBL)) def test_gmap(self): """exfi.io.gff3_to_bed.gff3_to_bed3: gmap case""" observed = gff3_to_bed3(GFF3_GMAP_FN, mode="gmap") print("Observed", observed.values.tolist(), observed.dtypes, sep='\n') self.assertTrue(observed.equals(BED3_GMAP)) # def test_ncbi(self): # """exfi.io.gff3_to_bed.gff3_to_bed3: ncbi case""" # observed = gff3_to_bed3(GFF3_NCBI_FN, mode=ncbi) # self.assertTrue(observed.equals(BED3_NCBI)) if __name__ == '__main__': main() ```
{ "source": "jlanga/smsk_exfi_paper", "score": 2 }
#### File: src/snakefiles/chopstitch.py ```python def get_reads(wildcards): sample = wildcards.sample reads_nested = ( samples [(samples["sample"] == sample)] [["forward", "reverse"]] .values .tolist() ) reads_flat = [item for sublist in reads_nested for item in sublist] return reads_flat rule chopstitch_build_bloom: input: get_reads output: bf = CHOPSTITCH + "{sample}.k{kmer}.fpr{fpr}.full.unbaited.bf", inf = CHOPSTITCH + "{sample}.k{kmer}.fpr{fpr}.full.unbaited.inf" params: kmer = "{kmer}", fpr = "{fpr}", bf = "Bfilter.bf", inf = "Bfilter.inf" threads: 24 # All log: CHOPSTITCH + "{sample}.k{kmer}.fpr{fpr}.full.unbaited.bf.log" benchmark: CHOPSTITCH + "{sample}.k{kmer}.fpr{fpr}.full.unbaited.bf.bmk" shell: """ ./bin/CreateBloom \ -t {threads} \ -k {params.kmer} \ --fpr1 {params.fpr} \ --fpr2 {params.fpr} \ {input} \ 2> {log} mv {params.bf} {output.bf} mv {params.inf} {output.inf} """ rule chopstitch_find_exons: input: fa = RAW + "{sample}.rna.fa", bf = CHOPSTITCH + "{sample}.k{kmer}.fpr{fpr}.full.unbaited.bf", inf = CHOPSTITCH + "{sample}.k{kmer}.fpr{fpr}.full.unbaited.inf" output: exons = CHOPSTITCH + "{sample}.k{kmer}.fpr{fpr}.exons.fa", processed_exons = CHOPSTITCH + "{sample}.k{kmer}.fpr{fpr}.processedexons.fa" params: bf = "Bfilter.bf", inf = "Bfilter.inf", exons = "exons.fa", processed_exons = "processed_exons.fa" shadow: "shallow" log: CHOPSTITCH + "{sample}.k{kmer}.fpr{fpr}.find.exons.log" benchmark: CHOPSTITCH + "{sample}.k{kmer}.fpr{fpr}.find.exons.bmk" shell: """ ln -s {input.bf} {params.bf} ln -s {input.inf} {params.inf} ./bin/FindExons \ --input-bloom {params.bf} \ --lsplicesignals AG,TG,AC,GC,GG \ --rsplicesignals GT,TT,AT \ --allexons \ {input.fa} \ 2> {log} mv {params.exons} {output.exons} mv {params.processed_exons} {output.processed_exons} """ rule pr_chopstitch_exons_to_bed3: input: CHOPSTITCH + "{sample}.k{kmer}.fpr{fpr}.exons.fa" output: CHOPSTITCH + "{sample}.k{kmer}.fpr{fpr}.chopstitch.bed" log: CHOPSTITCH + "{sample}.k{kmer}.fpr{fpr}.chopstitch.log" benchmark: CHOPSTITCH + "{sample}.k{kmer}.fpr{fpr}.chopstitch.bmk" conda: "chopstitch.yml" shell: 'bash src/chopstitch_exons_to_bed3.sh {input} ' '| sort -k 1,1 -k2,2n ' '> {output} 2> {log}' ``` #### File: src/snakefiles/raw.py ```python def get_reads(wildcards): sample = wildcards.sample library = wildcards.library forward, reverse = ( samples [(samples["sample"] == sample and samples["library"] == library)] [["forward", "reverse"]] .values .tolist()[0] ) return forward, reverse rule raw_link_pe_sample: input: get_reads output: forward = RAW + "{sample}_{library}_1.fq.gz", reverse = RAW + "{sample}_{library}_2.fq.gz" log: RAW + "link_dna_pe_{sample}_{library}.log" benchmark: RAW + "link_dna_pe_{sample}_{library}.json" shell: "ln " "--symbolic " "$(readlink --canonicalize {input[0]}) " "{output.forward} 2> {log}; " "ln " "--symbolic " "$(readlink --canonicalize {input[1]}) " "{output.reverse} 2>> {log}" def get_transcriptome(wildcards): return features[wildcards.sample]["transcriptome"] def get_genome(wildcards): return features[wildcards.sample]["genome"] def get_annotation(wildcards): return features[wildcards.sample]["annotation"] rule raw_link_transcriptome: input: get_transcriptome output: RAW + "{sample}.rna.fa" shell: "ln --symbolic $(readlink --canonicalize {input}) {output}" rule raw_link_genome: input: get_genome output: RAW + "{sample}.dna.fa" shell: "ln --symbolic $(readlink --canonicalize {input}) {output}" rule raw_link_annotation: input: get_annotation output: RAW + "{sample}.gff3" shell: "ln --symbolic $(readlink --canonicalize {input}) {output}" rule raw_reference: input: expand( RAW + "{sample}.{ending}", sample=SPECIES, ending=["dna.fa", "rna.fa", "gff3"] ) ```
{ "source": "jlanga/smsk_exfi", "score": 3 }
#### File: src/snakefiles/raw.py ```python def get_reads(wildcards): sample = wildcards.sample forward, reverse = ( samples [(samples["sample"] == sample)] [["forward", "reverse"]] .values .tolist()[0] ) return forward, reverse rule raw_link_pe_sample: input: get_reads output: forward = RAW + "{sample}_1.fq.gz", reverse = RAW + "{sample}_2.fq.gz" log: RAW + "link_dna_pe_{sample}.log" benchmark: RAW + "link_dna_pe_{sample}.json" shell: "ln " "--symbolic " "$(readlink --canonicalize {input[0]}) " "{output.forward} 2> {log}; " "ln " "--symbolic " "$(readlink --canonicalize {input[0]}) " "{output.reverse} 2>> {log}" rule raw_link_assembly: input: fasta = features["assembly"] output: fasta = RAW + "assembly.fa" log: RAW + "link_assembly.log" benchmark: RAW + "link_assembly.json" shell: "ln " "--symbolic " "$(readlink --canonicalize {input.fasta}) " "{output.fasta} 2> {log}" ```
{ "source": "jlanga/smsk_selection", "score": 3 }
#### File: src/homologs/ete3_evol_prepare_folder.py ```python from copy import deepcopy import sys from Bio import Phylo from Bio import AlignIO from helpers import fix_dir_path, process_folders def get_species_to_seqid(alignment): """Get the species to seqid dictionary: {"aalo": "aalo@TRINITY_DN123937_c0_g1_i1.p1"} """ return {sequence.name.split("@")[0]: sequence.name for sequence in alignment} def get_seqid_to_species(alignment): """Get the seqid to species dictionary: {"aalo@TRINITY_DN123937_c0_g1_i1.p1": "aalo"} """ return {sequence.name: sequence.name.split("@")[0] for sequence in alignment} def keep_leafs(tree, leafs): """ Trim the tree keeping only every leaf in `leafs` """ tree_trimmed = deepcopy(tree) all_species = set(leaf.name for leaf in tree.get_terminals()) for species_to_remove in all_species - set(leafs): tree_trimmed.prune(species_to_remove) return tree_trimmed def rename_tree(tree, alignment): """Remove leafs not in alignment and rename them accordingly""" tree = deepcopy(tree) species_to_seqid = get_species_to_seqid(alignment) tree = keep_leafs(tree, species_to_seqid.keys()) for leaf in tree.get_terminals(): leaf.name = species_to_seqid[leaf.name] return tree def has_enough_by_background_and_foreground( alignment, foreground_list, min_foreground=2, min_background=2 ): """ Return the alignment if it has at least min_foreground and min_background sequences """ alignment_ids = {sequence.id.split("@")[0]: sequence.id for sequence in alignment} n_foreground = len(set(foreground_list) & set(alignment_ids.keys())) n_background = len(set(alignment_ids.keys()) - set(foreground_list)) if n_foreground >= min_foreground and n_background >= min_background: return True return False def ete3_evol_prepare( tree_in_fn, alignment_in_fn, tree_out_fn, foreground_list, min_foreground=2, min_background=2, ): """ Read a species tree and alignment (nwk and fasta), Read the list of foreground taxa If there are enough foreground and background species: subset and rename the species tree into a protein tree write the alignment separately. """ # Read inputs tree_in = Phylo.read(file=tree_in_fn, format="newick") alignment_in = AlignIO.read(handle=open(alignment_in_fn, "r"), format="fasta") # Slice and rename leafs in tree tree_out = rename_tree(tree=tree_in, alignment=alignment_in) # Check that there are enough sequences if has_enough_by_background_and_foreground( alignment_in, foreground_list, min_foreground, min_background ): Phylo.write(trees=tree_out, file=tree_out_fn, format="newick") if __name__ == "__main__": if len(sys.argv) != 9: sys.stderr.write( "ERROR. Incorrect number of parameters. Example:\n" "ete3_evol_prepare.py species_tree.nwk msa_folder msa_extension " "output_folder output_extension human,chimp,bonobo 2 2\n" ) sys.exit(1) TREE_IN_FN = sys.argv[1] MSA_DIR_IN = fix_dir_path(sys.argv[2]) MSA_EXT_IN = sys.argv[3] TREE_DIR_OUT = fix_dir_path(sys.argv[4]) TREE_EXT_OUT = sys.argv[5] FOREGROUND_LIST = sys.argv[6].split(",") MIN_FOREGROUND = int(sys.argv[7]) MIN_BACKGROUND = int(sys.argv[8]) def ete3_evol_prepare_wrapper(file_in, file_out): ete3_evol_prepare( tree_in_fn=TREE_IN_FN, alignment_in_fn=file_in, tree_out_fn=file_out, foreground_list=FOREGROUND_LIST, min_foreground=MIN_FOREGROUND, min_background=MIN_BACKGROUND, ) process_folders( MSA_DIR_IN, MSA_EXT_IN, TREE_DIR_OUT, TREE_EXT_OUT, ete3_evol_prepare_wrapper ) # if __name__ == '__main__': # if len(sys.argv) != 7: # sys.stderr.write( # "ERROR. Incorrect number of parameters. Example:\n" # "ete3_evol_prepare.py species_tree.nwk codon_alignment.fa " # "output.nwk human,chimp,bonobo 2 2\n" # ) # sys.exit(1) # TREE_IN_FN = sys.argv[1] # ALIGNMENT_IN_FN = sys.argv[2] # TREE_OUT_FN = sys.argv[3] # FOREGROUND_LIST = sys.argv[4].split(",") # MIN_FOREGROUND = int(sys.argv[5]) # MIN_BACKGROUND = int(sys.argv[6]) # ete3_evol_prepare( # tree_in_fn=TREE_IN_FN, # alignment_in_fn=ALIGNMENT_IN_FN, # tree_out_fn=TREE_OUT_FN, # foreground_list=FOREGROUND_LIST, # min_foreground=MIN_FOREGROUND, # min_background=MIN_BACKGROUND # ) ``` #### File: src/homologs/filter_by_occupancy.py ```python import os import sys from helpers import fasta_to_dict def filter_by_occupancy(filename_in, filename_out, min_occupancy=0.5): """ Filter an alignment in fasta format according to the occupancy of the columns. Store the results in fasta format. """ fasta_raw = fasta_to_dict(filename_in) n_sequences = len(fasta_raw.keys()) alignment_length = len(fasta_raw[tuple(fasta_raw.keys())[0]]) columns = tuple( "".join(fasta_raw[seqname][column_index] for seqname in fasta_raw.keys()) for column_index in range(alignment_length) ) columns_to_keep = [] for column_number, column in enumerate(columns): n_gaps = column.count("-") if 1 - float(n_gaps) / float(n_sequences) >= min_occupancy: columns_to_keep.append(column_number) fasta_trimmed = {} for seqname, sequence in fasta_raw.items(): fasta_trimmed[seqname] = "".join( fasta_raw[seqname][column_to_keep] for column_to_keep in columns_to_keep ) if not os.path.exists(os.path.dirname(filename_out)): os.makedirs(os.path.dirname(filename_out)) with open(filename_out, "w") as f_out: for seqname, sequence in fasta_trimmed.items(): f_out.write( ">{seqname}\n{sequence}\n".format(seqname=seqname, sequence=sequence) ) if __name__ == "__main__": if len(sys.argv) != 4: sys.stderr.write( "ERROR: incorrect number of arguments.\n" "python filter_by_occupancy.py fastain fastaout min_occupancy\n" ) sys.exit(1) FASTA_IN = sys.argv[1] FASTA_OUT = sys.argv[2] MIN_OCCUPANCY = float(sys.argv[3]) filter_by_occupancy(FASTA_IN, FASTA_OUT, MIN_OCCUPANCY) ``` #### File: src/homologs/run_trimal.py ```python import argparse import multiprocessing as mp import tempfile import os from subprocess import run from helpers import fasta_to_dict, fix_dir_path, process_folders_parallel bases = "TCAG" codons = [a + b + c for a in bases for b in bases for c in bases] + ["---"] aminoacids = "FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG-" codon_table = dict(zip(codons, aminoacids)) del bases, codons, aminoacids def translate(string): """Translate a nucleotide string to amino acid""" n = len(string) string = string.upper() if n % 3 != 0: sys.exit(f"ERROR: Incorrect number of characters: {n}") translated = "" for i in range(0, n, 3): codon = string[i : i + 3] if codon not in codon_table: translated += "-" else: translated += codon_table[codon] return translated def translate_fasta(fasta_in, fasta_out): """Translate an entire fasta aligment""" with open(fasta_out, "w") as f_out: for name, sequence in fasta_to_dict(fasta_in).items(): f_out.write(f">{name}\n{translate(sequence)}\n") def run_trimal(fasta_in, fasta_out, fasta_gapless): """Run trimal. At least 60% of the col is not a gap, simmilariy score < 0.001 """ command = [ "trimal", "-in", fasta_in, "-out", fasta_out, "-automated1", "-backtrans", fasta_gapless, ] run(command) def remove_gaps(fasta_in, fasta_out): """Remove all gaps in the alignment""" with open(fasta_out, "w") as f_out: for name, sequence in fasta_to_dict(fasta_in).items(): f_out.write(f">{name}\n{sequence.replace('-', '')}\n") def run_pipeline(raw_fn, trimmed_fn): """ Align CDS with trimal (translate | trim) """ translated = tempfile.NamedTemporaryFile() gapless = tempfile.NamedTemporaryFile() translate_fasta(fasta_in=raw_fn, fasta_out=translated.name) remove_gaps(fasta_in=raw_fn, fasta_out=gapless.name) run_trimal( fasta_in=translated.name, fasta_out=trimmed_fn, fasta_gapless=gapless.name ) def parse_arguments(): parser = argparse.ArgumentParser( description="Run trimal over an entire folder of codon alignments" ) parser.add_argument( "-i", "--input-folder", help="Input folder. All files must be *.fa", required=True, ) parser.add_argument( "-o", "--output-folder", help="Output folder. All files will be *.fa", required=True, ) parser.add_argument( "-t", "--threads", help="Number of threads to use", default=1, type=int, required=False, ) return vars(parser.parse_args()) if __name__ == "__main__": ARGS = parse_arguments() process_folders_parallel( fix_dir_path(ARGS["input_folder"]), "fa", fix_dir_path(ARGS["output_folder"]), "fa", run_pipeline, ncpus=ARGS["threads"], ) ``` #### File: src/homologs/split_cds.py ```python import sys from helpers import fasta_to_dict, fix_dir_path, process_folders def subset_file(pep_fn, cds_fn, cds_dict): """Write to cds_fn the cds sequences that are in pep_fn""" with open(cds_fn, "w") as cds_out: for seqid in fasta_to_dict(pep_fn).keys(): cds_out.write( ">{seqid}\n{sequence}\n".format(seqid=seqid, sequence=cds_dict[seqid]) ) if __name__ == "__main__": if len(sys.argv) != 6: sys.stderr.write( "Error. Usage: python split_cds.py folder_in ext_in folder_out " "ext_out all_cds.fa" ) sys.exit(1) IN_DIR = fix_dir_path(sys.argv[1]) IN_EXT = sys.argv[2] OUT_DIR = fix_dir_path(sys.argv[3]) OUT_EXT = sys.argv[4] CDS_FN = sys.argv[5] CDS_DICT = fasta_to_dict(CDS_FN) def process(pep_fn, cds_fn): """Fix parameter""" return subset_file(pep_fn, cds_fn, CDS_DICT) process_folders(IN_DIR, IN_EXT, OUT_DIR, OUT_EXT, process) ``` #### File: pdc2/scripts/bait_homologs.py ```python import phylo3,newick3,os,sys import seq import ntpath RUN_BLASTP = True # run blastp search along side of swipe for comparison def get_filename_from_path(path): head, tail = ntpath.split(path) return tail or ntpath.basename(head) def swipe(query_fasta,DIR,num_cores,max_num_hits=20,min_bitscore=20.0): """ given a DIR with peptide fasta files that either end with .pep.fa or .cdhit, swipe on each one return a fasta file with hits from each taxa plus the queries added """ if DIR[-1] != "/": DIR += "/" max_num_hits = int(max_num_hits) min_bitscore = float(min_bitscore) # swipe with each taxon pepfiles = [i for i in os.listdir(DIR) if (i.endswith(".pep.fa") or i.endswith(".cdhit"))] datasets = [i.split(".")[0] for i in pepfiles] print len(pepfiles),"input peptide files read" assert len(set(datasets)) == len(datasets),\ "dataset name repeats. remove duplicated sets" for i in os.listdir(DIR): if i.endswith(".pep.fa") or i.endswith(".cdhit"): if not os.path.exists(DIR+i+".psd"): os.system("makeblastdb -in "+DIR+i+" -parse_seqids -dbtype prot -out "+DIR+i) swipe_outname = DIR+i+"."+get_filename_from_path(query_fasta).split(".")[0]+".swipe" if not os.path.exists(swipe_outname): cmd = "swipe -d "+DIR+i+" -i "+query_fasta+" -a "+str(num_cores) cmd += " -p blastp -o "+swipe_outname+" -m 8 -e 10" print cmd os.system(cmd) assert os.path.exists(swipe_outname), \ "swipe did not finish correctly" """ swipe output colums are: Query id, Subject id, % identity, alignment length, mismatches, gap openings, q. start, q. end, s. start, s. end, e-value, bit score """ # summarize the hit seq ids if not os.path.exists(swipe_outname+".hits"): hit_tuples = [] # alist of tuples (hit, bitscore) with open(swipe_outname,"r") as infile: for line in infile: if len(line) < 3: continue # skip empty lines spls = line.strip().split("\t") query,hit,bitscore = spls[0],spls[1].replace("lcl|",""),float(spls[-1]) if query != hit and bitscore >= min_bitscore: hit_tuples.append((hit,bitscore)) out = [] # unique hit ids for hit, bitscore in sorted(hit_tuples,key=lambda x:x[1],reverse=True): if hit not in out: out.append(hit) if len(out) == max_num_hits: break if len(out) == 0: print "Warning: No hits found" with open(swipe_outname+".hits","w") as outfile: for hit in out: print hit outfile.write(hit+"\n") # write output fasta outname = query_fasta.replace(".pep.fa","_swipe.fa") print "Writing output fasta",outname outfile = open(outname,"w") query_seqids = [] # avoid seq id repeats with open(query_fasta,"r") as infile: for line in infile: outfile.write(line) # copy over query seqs if line[0] == ">": query_seqids.append(line.strip()[1:]) for i in os.listdir(DIR): if i.endswith(".pep.fa") or i.endswith(".cdhit"): seqDICT = {} # key is seq name, value is seq for s in seq.read_fasta_file(DIR+i): seqDICT[s.name] = s.seq with open(DIR+i+"."+get_filename_from_path(query_fasta).split(".")[0]+".swipe.hits","r") as infile: for line in infile: line = line.strip() if len(line) > 0 and line not in query_seqids: outfile.write(">"+line+"\n"+seqDICT[line]+"\n") outfile.close() def blastp(query_fasta,DIR,num_cores,max_num_hits=20,min_bitscore=20.0): """ same as swipe but using blastp """ if DIR[-1] != "/": DIR += "/" max_num_hits = int(max_num_hits) min_bitscore = float(min_bitscore) # blastp with each taxon pepfiles = [i for i in os.listdir(DIR) if (i.endswith(".pep.fa") or i.endswith(".cdhit"))] datasets = [i.split(".")[0] for i in pepfiles] print len(pepfiles),"input peptide files read" assert len(set(datasets)) == len(datasets),\ "dataset name repeats. remove duplicated sets" for i in os.listdir(DIR): if i.endswith(".pep.fa") or i.endswith(".cdhit"): if not os.path.exists(DIR+i+".psd"): os.system("makeblastdb -in "+DIR+i+" -parse_seqids -dbtype prot -out "+DIR+i) blastp_outname = DIR+i+"."+get_filename_from_path(query_fasta).split(".")[0]+".blastp" if not os.path.exists(blastp_outname): cmd = "blastp -db "+DIR+i cmd += " -query "+query_fasta cmd += " -num_threads "+str(num_cores) cmd += " -out "+blastp_outname cmd += " -evalue 10" cmd += " -max_target_seqs "+str(max_num_hits) cmd += " -outfmt '6 qseqid qlen sseqid slen frames pident nident length mismatch gapopen qstart qend sstart send evalue bitscore'" print cmd os.system(cmd) assert os.path.exists(blastp_outname), \ "blastp did not finish correctly" """ blastp output colums are: 0-qseqid 2-sseqid 15-bitscore'" """ # summarize the hit seq ids if not os.path.exists(blastp_outname+".hits"): hit_tuples = [] # alist of tuples (hit, bitscore) with open(blastp_outname,"r") as infile: for line in infile: if len(line) < 3: continue # skip empty lines spls = line.strip().split("\t") query,hit,bitscore = spls[0],spls[2],float(spls[-1]) if query != hit and bitscore >= min_bitscore: hit_tuples.append((hit,bitscore)) out = [] # unique hit ids for hit, bitscore in sorted(hit_tuples,key=lambda x:x[1],reverse=True): if hit not in out: out.append(hit) if len(out) == max_num_hits: break if len(out) == 0: print "Warning: No hits found" with open(blastp_outname+".hits","w") as outfile: for hit in out: print hit outfile.write(hit+"\n") # write output fasta outname = query_fasta.replace(".pep.fa","_blastp.fa") print "Writing output fasta",outname outfile = open(outname,"w") query_seqids = [] # avoid seq id repeats with open(query_fasta,"r") as infile: for line in infile: outfile.write(line) # copy over query seqs if line[0] == ">": query_seqids.append(line.strip()[1:]) for i in os.listdir(DIR): if i.endswith(".pep.fa") or i.endswith(".cdhit"): seqDICT = {} # key is seq name, value is seq for s in seq.read_fasta_file(DIR+i): seqDICT[s.name] = s.seq with open(DIR+i+"."+get_filename_from_path(query_fasta).split(".")[0]+".blastp.hits","r") as infile: for line in infile: line = line.strip() if len(line) > 0 and line not in query_seqids: outfile.write(">"+line+"\n"+seqDICT[line]+"\n") outfile.close() if __name__ == "__main__": if len(sys.argv) != 5: print "python bait_homologs.py query_pep_fa databaseDIR num_to_bait num_cores" sys.exit(0) query_fasta,DIR,num_to_bait,num_cores = sys.argv[1:] swipe(query_fasta,DIR,num_cores,max_num_hits=num_to_bait) if RUN_BLASTP: blastp(query_fasta,DIR,num_cores,max_num_hits=num_to_bait) ``` #### File: pdc2/scripts/check_alignment_overlap.py ```python import sys import seq import matplotlib.pyplot as plt import networkx as nx from networkx.drawing.nx_agraph import write_dot def check_overlap(seq1,seq2): match = True once = False for i,j in zip(seq1,seq2): if i == "-" or j == "-": continue else: if i == j: once = True continue else: match = False break # need at least one match. if once == False: match = False return match def combine_seqs(seq1,seq2): finalseq = "" for i,j in zip(seq1,seq2): if i == "-": finalseq += j else: finalseq += i return finalseq if __name__ == "__main__": if len(sys.argv) != 3: print "python "+sys.argv[0]+" infile.aln outfile.aln" sys.exit() seqs = seq.read_fasta_file(sys.argv[1]) seqs_sample = {} seqs_d = {} keep_seqs = {} for i in seqs: seqs_d[i.name] = i keep_seqs[i.name] = i spls = i.name.split("@")[0] try: seqs_sample[spls].append(i) except: seqs_sample[spls] = [] seqs_sample[spls].append(i) for i in seqs_sample: G = nx.MultiGraph() for j in range(len(seqs_sample[i])): for k in range(len(seqs_sample[i])): if j < k: ovr = check_overlap(seqs_sample[i][j].seq,seqs_sample[i][k].seq) if ovr == True: #print "\t",ovr,j,k,seqs_sample[i][j].name,seqs_sample[i][k].name G.add_edge(seqs_sample[i][j].name,seqs_sample[i][k].name) if len(G) > 0: print i +" "+str(len(seqs_sample[i])) for j in nx.connected_component_subgraphs(G): js = list(j) if len(j) == 2: #print "\tsimple 2 seq connect" #print "from" #print seqs_d[js[0]].seq #print seqs_d[js[1]].seq #print "to" print "\tcombining:",js,js[0]+"______"+js[1] finalse = combine_seqs(seqs_d[js[0]].seq,seqs_d[js[1]].seq) ns = seq.Sequence() ns.name = js[0]+"______"+js[1] ns.seq = finalse keep_seqs[ns.name] = ns print "\t\tremoving",js[0],js[1] del keep_seqs[js[0]] del keep_seqs[js[1]] else: going = True while going: found = False for k in j.edges(): found = True ks = list(k) print "\tcombining:",ks,ks[0]+"______"+ks[1] finalse = combine_seqs(seqs_d[ks[0]].seq,seqs_d[ks[1]].seq) ns = seq.Sequence() ns.name = ks[0]+"______"+ks[1] ns.seq = finalse keep_seqs[ns.name] = ns seqs_d[ns.name] = ns x = set() for m in j.neighbors(k[0]): if m in k: continue x.add(m) for m in j.neighbors(k[1]): if m in k: continue x.add(m) j.remove_node(k[0]) j.remove_node(k[1]) print "\t\tremoving",k[0],k[1] del keep_seqs[k[0]] del keep_seqs[k[1]] for m in x: if ns.name == m: continue if check_overlap(ns.seq,seqs_d[m].seq) == True: j.add_edge(ns.name,m) print "\t\t",ns.name,"->",m break if found == False: break #for m in #j.remove_node( #nx.draw(G) #plt.show() #sys.exit() outf = open(sys.argv[2],"w") for i in keep_seqs: outf.write(keep_seqs[i].get_fasta()) outf.close() ``` #### File: pdc2/scripts/corset_wrapper.py ```python import sys, os def salmon_index(transcript,num_cores,DIR): if DIR == ".": DIR = os.getcwd() if os.path.isabs(DIR) == False: DIR = os.path.abspath(DIR) if DIR[-1] != "/": DIR += "/" path_transcript, file_transcript = os.path.split(transcript) #splits the path from the file name transcript_name = str(file_transcript) salmon_base_name = transcript_name.split( "." ) index_name = str(salmon_base_name[0])+"_salmon_index" if os.path.exists(DIR+index_name): print "Found salmon index folder for",transcript_name else: cmd= ["salmon-0.9.1","index","-t",transcript,"-i",DIR+index_name,"--type quasi","-p",str(num_cores)] print (" ".join(cmd)) os.system(" ".join(cmd)) assert os.path.exists(DIR+index_name), "salmon-index did not finish" def salmon_quantify_pe(transcript,index,pe_fq1,pe_fq2,num_cores,DIR): if DIR == ".": DIR = os.getcwd() if os.path.isabs(DIR) == False: DIR = os.path.abspath(DIR) if DIR[-1] != "/": DIR += "/" path_transcript, file_transcript = os.path.split(transcript) #splits the path from the file name transcript_name = str(file_transcript) salmon_base_name = transcript_name.split( "." ) index_name = str(salmon_base_name[0])+"_salmon_index" quant_name = str(salmon_base_name[0])+"_salmon_quant" if os.path.exists(DIR+quant_name): print "Found salmon quantification folder for",salmon_base_name[0] else: cmd= ["salmon-0.9.1","quant","-i",DIR+index_name,"--dumpEq","--libType A","-p",str(num_cores), \ "-1",pe_fq1, "-2",pe_fq2, "-o", DIR+quant_name] print (" ".join(cmd)) os.system(" ".join(cmd)) assert os.path.exists(DIR+quant_name), "salmon-quant did not finish" def salmon_quantify_se(transcript,index,se_fq,num_cores,DIR): if DIR == ".": DIR = os.getcwd() if os.path.isabs(DIR) == False: DIR = os.path.abspath(DIR) if DIR[-1] != "/": DIR += "/" path_transcript, file_transcript = os.path.split(transcript) #splits the path from the file name transcript_name = str(file_transcript) salmon_base_name = transcript_name.split( "." ) index_name = str(salmon_base_name[0])+"_salmon_index" quant_name = str(salmon_base_name[0])+"_salmon_quant" if os.path.exists(DIR+quant_name): print "Found salmon quantification folder for",salmon_base_name[0] else: cmd= ["salmon-0.9.1","quant","-i",DIR+index_name,"--dumpEq","--libType A","-p",str(num_cores), \ "-r",se_fq,"-o", DIR+quant_name] print (" ".join(cmd)) os.system(" ".join(cmd)) assert os.path.exists(DIR+quant_name), "salmon-quant did not finish" def corset_salmon_eq_classes(transcript,eq_classes,DIR): if DIR == ".": DIR = os.getcwd() if os.path.isabs(DIR) == False: DIR = os.path.abspath(DIR) if DIR[-1] != "/": DIR += "/" path_transcript, file_transcript = os.path.split(transcript) #splits the path from the file name transcript_name = str(file_transcript) salmon_base_name = transcript_name.split( "." ) clusters_name = str(salmon_base_name[0])+"_salmon"+"-clusters.txt" counts_name = str(salmon_base_name[0])+"_salmon"+"-counts.txt" if os.path.exists(DIR+clusters_name) and os.path.exists(DIR+counts_name) : print "Found corset-salmon files for",salmon_base_name[0] else: cmd = ["corset","-i salmon_eq_classes",eq_classes,"-m 5","-p",(DIR+str(salmon_base_name[0])+"_salmon")] print (" ".join(cmd)) os.system(" ".join(cmd)) assert os.path.exists(DIR+clusters_name) and os.path.exists(DIR+counts_name), "Corsert did not finish" def run_pe_salmon(transcript,pe_fq1,pe_fq2,num_cores,DIR): if DIR == ".": DIR = os.getcwd() if os.path.isabs(DIR) == False: DIR = os.path.abspath(DIR) if DIR[-1] != "/": DIR += "/" path_transcript, file_transcript = os.path.split(transcript) #splits the path from the file name transcript_name = str(file_transcript) salmon_base_name = transcript_name.split( "." ) index_name = str(salmon_base_name[0])+"_salmon_index" quant_name = str(salmon_base_name[0])+"_salmon_quant" salmon_index(transcript,num_cores,DIR) salmon_quantify_pe(transcript,DIR+index_name,pe_fq1,pe_fq2,num_cores,DIR) corset_salmon_eq_classes(transcript,str(DIR+quant_name)+"/aux_info/eq_classes.txt",DIR) def run_se_salmon(transcript,se_fq,num_cores,DIR): if DIR == ".": DIR = os.getcwd() if os.path.isabs(DIR) == False: DIR = os.path.abspath(DIR) if DIR[-1] != "/": DIR += "/" path_transcript, file_transcript = os.path.split(transcript) #splits the path from the file name transcript_name = str(file_transcript) salmon_base_name = transcript_name.split( "." ) index_name = str(salmon_base_name[0])+"_salmon_index" quant_name = str(salmon_base_name[0])+"_salmon_quant" salmon_index(transcript,num_cores,DIR) salmon_quantify_se(transcript,DIR+index_name,se_fq,num_cores,DIR) corset_salmon_eq_classes(transcript,str(DIR+quant_name)+"/aux_info/eq_classes.txt",DIR) def bowtie_index(transcript,num_cores,DIR): if DIR == ".": DIR = os.getcwd() if os.path.isabs(DIR) == False: DIR = os.path.abspath(DIR) if DIR[-1] != "/": DIR += "/" if os.path.isabs(transcript) == False: transcript = os.path.abspath(transcript) path_transcript, file_transcript = os.path.split(transcript) #splits the path from the file name if path_transcript[-1] != "/": path_transcript += "/" transcript_name = str(file_transcript) bowtie_base_name = transcript_name.split( "." ) index_name = DIR+str(bowtie_base_name[0]) index_1_bt = (bowtie_base_name[0])+".1.ebwt" index_2_bt = (bowtie_base_name[0])+".2.ebwt" index_3_bt = (bowtie_base_name[0])+".3.ebwt" index_4_bt = (bowtie_base_name[0])+".4.ebwt" index_rev_1_bt = (bowtie_base_name[0])+".rev.1.ebwt" index_rev_2_bt = (bowtie_base_name[0])+".rev.2.ebwt" if os.path.exists(DIR+index_1_bt) \ and os.path.exists(DIR+index_2_bt) \ and os.path.exists(DIR+index_3_bt) \ and os.path.exists(DIR+index_4_bt) \ and os.path.exists(DIR+index_rev_1_bt) \ and os.path.exists(DIR+index_rev_2_bt): print "Found bowtie index for",transcript_name else: cmd= ["bowtie-build","-q",transcript,index_name,"--threads",str(num_cores)] print (" ".join(cmd)) os.system(" ".join(cmd)) assert os.path.exists(DIR+index_1_bt) \ and os.path.exists(DIR+index_2_bt) \ and os.path.exists(DIR+index_3_bt) \ and os.path.exists(DIR+index_4_bt) \ and os.path.exists(DIR+index_rev_1_bt) \ and os.path.exists(DIR+index_rev_2_bt), "bowtie-build not completed" def bowtie_align_pe(transcript,index,pe_fq1,pe_fq2,num_cores,DIR): if DIR == ".": DIR = os.getcwd() if os.path.isabs(DIR) == False: DIR = os.path.abspath(DIR) if DIR[-1] != "/": DIR += "/" if os.path.isabs(transcript) == False: transcript = os.path.abspath(transcript) path_transcript, file_transcript = os.path.split(transcript) #splits the path from the file name if path_transcript[-1] != "/": path_transcript += "/" transcript_name = str(file_transcript) bowtie_base_name = transcript_name.split( "." ) sam_file = str((bowtie_base_name[0])+"_bowtie.sam") bam_file = str((bowtie_base_name[0])+"_bowtie.bam") if os.path.exists(DIR+bam_file): print "Found bowtie bam alignment for",bowtie_base_name[0] elif os.path.exists(DIR+sam_file): cmd = ["samtools view -S","-b",(DIR+sam_file), ">", (DIR+bam_file)] print (" ".join(cmd)) os.system(" ".join(cmd)) assert os.path.exists(DIR+bam_file), "Samtools not completed" if os.path.exists(DIR+bam_file): os.remove(DIR+sam_file) else: cmd= ["bowtie","--all","-k 10","--chunkmbs 2580","--rf --nofw","--threads",str(num_cores), (DIR+str(bowtie_base_name[0])),\ "-1", pe_fq1, "-2", pe_fq2,"-S",(DIR+sam_file)] print (" ".join(cmd)) os.system(" ".join(cmd)) assert os.path.exists(DIR+sam_file), "bowtie-align not completed" if os.path.exists(DIR+sam_file): cmd = ["samtools view -S","-b",(DIR+sam_file), ">", (DIR+bam_file)] print (" ".join(cmd)) os.system(" ".join(cmd)) assert os.path.exists(DIR+bam_file), "Samtools not completed" if os.path.exists(DIR+bam_file): os.remove(DIR+sam_file) def bowtie_align_se(transcript,index,se_fq,num_cores,DIR): if DIR == ".": DIR = os.getcwd() if os.path.isabs(DIR) == False: DIR = os.path.abspath(DIR) if DIR[-1] != "/": DIR += "/" if os.path.isabs(transcript) == False: transcript = os.path.abspath(transcript) path_transcript, file_transcript = os.path.split(transcript) #splits the path from the file name if path_transcript[-1] != "/": path_transcript += "/" transcript_name = str(file_transcript) bowtie_base_name = transcript_name.split( "." ) sam_file = str((bowtie_base_name[0])+"_bowtie.sam") bam_file = str((bowtie_base_name[0])+"_bowtie.bam") if os.path.exists(DIR+bam_file): print "Found bowtie bam alignment for",bowtie_base_name[0] elif os.path.exists(DIR+sam_file): cmd = ["samtools view -S","-b",(DIR+sam_file), ">", (DIR+bam_file)] print (" ".join(cmd)) os.system(" ".join(cmd)) if os.path.exists(DIR+bam_file): os.remove(DIR+sam_file) assert os.path.exists(DIR+bam_file), "Samtools not completed" else: cmd= ["bowtie","--all","-k 10","--threads",str(num_cores), DIR+str(bowtie_base_name[0]),\ se_fq, "-S", (DIR+sam_file)] print (" ".join(cmd)) os.system(" ".join(cmd)) assert os.path.exists(DIR+sam_file), "bowtie-align not completed" if os.path.exists(DIR+sam_file): cmd = ["samtools view -S","-b",(DIR+sam_file), ">", (DIR+bam_file)] print (" ".join(cmd)) os.system(" ".join(cmd)) assert os.path.exists(DIR+bam_file), "Samtools not completed" if os.path.exists(DIR+bam_file): os.remove(DIR+sam_file) def corset_bowtie(transcript,bam,DIR): if DIR == ".": DIR = os.getcwd() if os.path.isabs(DIR) == False: DIR = os.path.abspath(DIR) if DIR[-1] != "/": DIR += "/" path_transcript, file_transcript = os.path.split(transcript) #splits the path from the file name transcript_name = str(file_transcript) bowtie_base_name = transcript_name.split( "." ) clusters_name = str(bowtie_base_name[0])+"_bowtie"+"-clusters.txt" counts_name = str(bowtie_base_name[0])+"_bowtie"+"-counts.txt" if os.path.exists(DIR+clusters_name) and os.path.exists(DIR+counts_name) : print "Corset files found for",bowtie_base_name[0] else: cmd = ["corset","-i bam",bam,"-m -5","-p",(DIR+str(bowtie_base_name[0])+"_bowtie")] print (" ".join(cmd)) os.system(" ".join(cmd)) assert os.path.exists(DIR+clusters_name) and os.path.exists(DIR+counts_name), "Corsert did not finish" def run_pe_bowtie(transcript,pe_fq1,pe_fq2,num_cores,DIR): if DIR == ".": DIR = os.getcwd() if os.path.isabs(DIR) == False: DIR = os.path.abspath(DIR) if DIR[-1] != "/": DIR += "/" path_transcript, file_transcript = os.path.split(transcript) #splits the path from the file name transcript_name = str(file_transcript) bowtie_base_name = transcript_name.split( "." ) index_name = DIR+str(bowtie_base_name[0]) bam_file = str((bowtie_base_name[0])+"_bowtie.bam") bowtie_index(transcript,num_cores,DIR) bowtie_align_pe(transcript,index_name,pe_fq1,pe_fq2,num_cores,DIR) corset_bowtie(transcript,DIR+bam_file,DIR) def run_se_bowtie(transcript,se_fq,num_cores,DIR): if DIR == ".": DIR = os.getcwd() if os.path.isabs(DIR) == False: DIR = os.path.abspath(DIR) if DIR[-1] != "/": DIR += "/" path_transcript, file_transcript = os.path.split(transcript) #splits the path from the file name transcript_name = str(file_transcript) bowtie_base_name = transcript_name.split( "." ) index_name = DIR+str(bowtie_base_name[0]) bam_file = str((bowtie_base_name[0])+"_bowtie.bam") bowtie_index(transcript,num_cores,DIR) bowtie_align_se(transcript,index_name,se_fq,num_cores,DIR) corset_bowtie(transcript,DIR+bam_file,DIR) if __name__ == "__main__": if len(sys.argv) == 6 and sys.argv[5]=="salmon": run_se_salmon(transcript=sys.argv[1],se_fq=sys.argv[2],num_cores=int(sys.argv[3]),DIR=sys.argv[4]) elif len(sys.argv) == 7 and sys.argv[6]=="salmon": run_pe_salmon(transcript=sys.argv[1],pe_fq1=sys.argv[2],pe_fq2=sys.argv[3],num_cores=int(sys.argv[4]),DIR=sys.argv[5]) elif len(sys.argv) == 6 and sys.argv[5]=="bowtie": run_se_bowtie(transcript=sys.argv[1],se_fq=sys.argv[2],num_cores=int(sys.argv[3]),DIR=sys.argv[4]) elif len(sys.argv) == 7 and sys.argv[6]=="bowtie": run_pe_bowtie(transcript=sys.argv[1],pe_fq1=sys.argv[2],pe_fq2=sys.argv[3],num_cores=int(sys.argv[4]),DIR=sys.argv[5]) else: print ("Usage:") print ("For single end reads: python corset_wrapper.py transcript fastq_se_reads num_cores output_dir aligner[salmon or bowtie]") print ("For paired end reads: python corset_wrapper.py transcript fastq_pe_reads1 fastq_pe_reads2 num_cores output_dir aligner[salmon or bowtie]") sys.exit(0) ``` #### File: pdc2/scripts/cut_seq_ends.py ```python import os,sys from Bio import SeqIO MIN_SEQ_LEN = 40 #if taxon id pattern changes, change it here def get_taxonid(seqid): return seqid.split("@")[0] def cut_seq_ends(fasta,blast_output,logfile="log"): print "Reading raw blast output" cutDICT = {} #key is seqid, value is a list [start,end,length] with open(blast_output,"r") as infile: for line in infile: if len(line) < 3: continue #skip empty lines spls = line.strip().split("\t") query,hit = spls[0],spls[2] if get_taxonid(query) == get_taxonid(hit): continue #ignore hits from the same taxa qlen,qstart,qend = int(spls[1]),int(spls[10]),int(spls[11]) slen,sstart,send = int(spls[3]),int(spls[12]),int(spls[13]) #get the widest range if query not in cutDICT: cutDICT[query] = [10000000,1,qlen] #[start,end,qlen] if hit not in cutDICT: cutDICT[hit] = [10000000,1,slen] #[start,end,slen] cutDICT[query][0] = min(cutDICT[query][0],qstart,qend) #compare starts cutDICT[query][1] = max(cutDICT[query][1],qstart,qend) #compare ends cutDICT[hit][0] = min(cutDICT[hit][0],sstart,send) #compare starts cutDICT[hit][1] = max(cutDICT[hit][1],sstart,send) #compare ends #output seqid, start and end for cutting, and seq length with open(blast_output+".cutinfo","w") as outfile: for seqid in cutDICT: start,end,length = cutDICT[seqid] #[start,end,length] outfile.write(seqid+"\t"+str(start)+"\t"+str(end)+"\t"+str(length)+"\n") print "Output written to",sys.argv[1]+".cutinfo" print "Cutting" outfile = open(fasta+".cut","w") outdict = {} # key is taxonid, value is [before,after,half_left] with open(fasta,"r") as handle: for record in SeqIO.parse(handle,"fasta"): seqid,seq = str(record.id),str(record.seq) taxonid = get_taxonid(seqid) if taxonid not in outdict: outdict[taxonid]= [0,0,0] outdict[taxonid][0] += 1 if seqid in cutDICT: start,end,length = cutDICT[seqid] seq_cut = seq[start-1:end] if len(seq_cut) >= (len(seq)/2): outdict[taxonid][1] += 1 # at least half survived cutting #print seqid, start, end, length,end-start+1,MIN_SEQ_LEN if len(seq_cut) >= MIN_SEQ_LEN: outfile.write(">"+seqid+"\n"+seq_cut+"\n") outdict[taxonid][2] += 1 else: pass # remove seqs with no interspecific hits outfile.close() summary = "taxonid\tbefore\thalf_left\tafter\tperc_survive\n" for i in outdict: out = outdict[i] summary+= i+"\t"+str(out[0])+"\t"+str(out[1])+"\t"+str(out[2])+"\t" summary+= str(out[2]/float(out[0])*100)+"%\n" print summary with open(logfile,"a") as f: f.write(summary) return fasta+".cut" if __name__ =="__main__": if len(sys.argv) != 3: print "usage: cut_seq_ends.py fasta blast_output" sys.exit() fasta,blast_output = sys.argv[1:] cut_seq_ends(fasta,blast_output) ``` #### File: pdc2/scripts/detect_chimera_from_blastx_modifed.py ```python import sys,os PIDENT_CUTOFF = 30 #only look at HSPs >= this percentage similarity LENGTH_CUTOFF = 100 #only look at HSPs >= this length #calculate length of query coverage def qcov(hsp): return abs(hsp[11]-hsp[10]) + 1 #given two hsps, return True if #overlap les than 20% of the shorter and overlap less than 60 bp def separated(hsp1,hsp2): length1 = qcov(hsp1) length2 = qcov(hsp2) start = min(hsp1[10],hsp1[11],hsp2[10],hsp2[11]) end = max(hsp1[10],hsp1[11],hsp2[10],hsp2[11]) overlap = length1+length2 - (end-start) + 1 #value of overlap can < 0 but only the upper limit maters if overlap < min(60, 0.2*min(length1,length2)): return True else: return False #expand query range given two hsps of the same query-hit pair #both hsps are the same direction def expand_range(hsp1,hsp2): if hsp1 == []: return hsp2 if hsp2 == []: return hsp1 start1,end1,start2,end2 = hsp1[10],hsp1[11],hsp2[10],hsp2[11] if start1 < end1 and start2 < end2:#both forward start,end = min(start1,start2),max(end1,end2) elif start1 > end1 and start2 > end2:#both reverse start,end = max(start1,start2),min(end1,end2) #no change if new hsp is of opposite direction hsp1[10],hsp1[11] = start,end return hsp1 #detect chimera from a block of hits #block can be a query-hit block (only check for self-chimera) #or block can be a query block (check both self and multi-gene chimera) #return True if no chimera is detected, False if chimera is detected #also write to out file the combined best HSP def check_block(block,multigene): #only one hsp -> not chimera if len(block) == 1: return True #summarize all pos and neg HSPs pos,neg = [],[] for hsp in block: if hsp[4][0] == "-": neg = expand_range(neg,hsp) else: pos = expand_range(pos,hsp) #compare pos_hit and neg_hit if (pos == [] and neg != []) or (neg == [] and pos != []): return True #only has hits of one direction elif separated(pos,neg):#has both direction and separate -> chimera! #write range to cut if multigene: #output both hsps start1,end1 = min(pos[10],pos[11]),max(pos[10],pos[11]) start2,end2 = min(neg[10],neg[11]),max(neg[10],neg[11]) outfile1.write(pos[0]+" "+str(int(start1))+" "+str(int(end1))+" trans-multi\n") outfile1.write(neg[0]+" "+str(int(start2))+" "+str(int(end2))+" trans-multi\n") else: if qcov(pos) > qcov(neg): outhsp = pos #outhsp is the better covered of the two else: outhsp = neg start,end = min(outhsp[10],outhsp[11]),max(outhsp[10],outhsp[11]) #range to cut outfile1.write(outhsp[0]+" "+str(int(start))+" "+str(int(end))+" trans-self\n") #write the blastx block to a .info file for visual checking for i in pos: outfile2.write(str(i)+"\t") outfile2.write("\n") for i in neg: outfile2.write(str(i)+"\t") outfile2.write("\n") return False else: return True #has both direction but not separate if __name__ == "__main__": if len(sys.argv) != 3: print "usage: python detect_chimera_from_blastx.py blastx_output output_dir" sys.exit() blastx_output = sys.argv[1] DIR = sys.argv[2] if DIR == ".": DIR = os.getcwd() if os.path.isabs(DIR) == False: DIR = os.path.abspath(DIR) if DIR[-1] != "/": DIR += "/" path_blastx, file_blastx = os.path.split(blastx_output) #splits the path from the file name blastx_name = str(file_blastx) blastx_base_name = blastx_name.split( "." ) infile = open(blastx_output,"rU") outfile1 = open(DIR+blastx_base_name[0]+".cut","w") outfile2 = open(DIR+blastx_base_name[0]+".info","w") last_query = "" for line in infile: if len(line) < 3: continue #ignore empty lines hsp = line.strip().split("\t") for i in [5,10,11]: hsp[i] = float(hsp[i]) if hsp[5] < PIDENT_CUTOFF or qcov(hsp) < LENGTH_CUTOFF: continue #ignore low similarity or short HSPs query,hit = hsp[0],hsp[2] if last_query == "": #at the beginning of a file hit_block = [hsp] #store all HSPs of the same query and same hit query_block = [hsp] #store all HSPs from the same query good_seq = True #False if chimera is detected elif query == last_query: #continue with the same query query_block.append(hsp) if good_seq: #only check if no chimera has been detected if hit == last_hit: hit_block.append(hsp) else: #send off the hit_block good_seq = check_block(hit_block,False) hit_block = [hsp] else: #starting a new query if good_seq: #haven't found self chimera good_seq = check_block(hit_block,False) #check the last hit block if good_seq: #haven't found self chimera good_seq = check_block(query_block,True) #look for multi-chimera query_block,hit_block = [hsp],[hsp] good_seq = True #keep track of the last line processed last_query,last_hit = query,hit if good_seq: #haven't found self chimera good_seq = check_block(hit_block,False) #check the last hit block if good_seq: #haven't found self chimera good_seq = check_block(query_block,True) #check the last query block infile.close() outfile1.close() outfile2.close() ``` #### File: pdc2/scripts/fasta_to_tree.py ```python import os,sys from mafft_wrapper import mafft from pasta_wrapper import pasta from phyutility_wrapper import phyutility from fasttree_wrapper import fasttree from raxml_wrapper import raxml from raxml_bs_wrapper import raxml_bs from seq import read_fasta_file NUM_SEQ_CUTOFF = 1000 # Use different alignment and tree inference tools # below vs. above this cutoff def get_fasta_size(fasta): """ given a fasta file output the number of seqs and the length of the longest seq """ longest = 0 seqlist = read_fasta_file(fasta) for s in seqlist: longest = max(longest,len(s.seq.replace("-",""))) return len(seqlist),longest def fasta_to_tree(DIR,fasta,num_cores,seqtype,num_seq_cutoff=NUM_SEQ_CUTOFF): """ given a fasta file align, trim alignment and build a tree choose appropriate tools depending on size of the fasta file """ if DIR[-1] != "/": DIR += "/" seqcount, maxlen = get_fasta_size(DIR+fasta) assert seqcount >= 4, "Less than four sequences in "+DIR+fasta print fasta,seqcount,"sequences" if seqcount >= NUM_SEQ_CUTOFF: # large cluster alignment = pasta(DIR,fasta,num_cores,seqtype) cleaned = phyutility(DIR,alignment,0.01,seqtype) if len(read_fasta_file(DIR+cleaned)) >= 4: tree = fasttree(DIR,cleaned,seqtype) else: print "Less than 4 taxa in",cleaned else: # small cluster alignment = mafft(DIR,fasta,num_cores,seqtype) cleaned = phyutility(DIR,alignment,0.1,seqtype) if len(read_fasta_file(DIR+cleaned)) >= 4: tree = raxml(DIR,cleaned,num_cores,seqtype) else: print "Less than 4 taxa in",cleaned def fasta_to_bs_tree(DIR,fasta,num_cores,seqtype): """ given a fasta file for the final homolog align, trim alignment and build a tree with bootstrap support """ if DIR[-1] != "/": DIR += "/" seqcount, maxlen = get_fasta_size(DIR+fasta) assert seqcount >= 4, "Less than four sequences in "+DIR+fasta print fasta,seqcount,"sequences" alignment = mafft(DIR,fasta,num_cores,seqtype) cleaned = phyutility(DIR,alignment,0.2,seqtype) if len(read_fasta_file(DIR+cleaned)) >= 4: tree = raxml_bs(DIR,cleaned,num_cores,seqtype) else: print "Less than 4 taxa in",cleaned def main(DIR,num_cores,seqtype,bs,test=False): """if test, only process clusterID that ends with 0""" assert seqtype == "aa" or seqtype == "dna",\ "Input data type: dna or aa" assert bs == "y" or bs=="n",\ "bootstrap? (y/n)" if DIR[-1] != "/": DIR += "/" #check for really long sequences or large alignments. #These crashes the alignment program for i in os.listdir(DIR): if i.endswith(".fa"): seqcount,maxlen = get_fasta_size(DIR+i) if (maxlen>=10000 and seqtype=="aa") or (maxlen>=30000 and seqtype=="dna"): print i,"has",seqcount,"sequences" print "longest sequence has",maxlen,"characters" print "Warning: sequence too long. May crash alignment process" #sys.exit() filecount = 0 for i in os.listdir(DIR): if not i.endswith(".fa"): continue if test and (i.split(".")[0])[-1] != "0": continue filecount += 1 if bs == "n": fasta_to_tree(DIR=DIR,fasta=i,num_cores=num_cores,seqtype=seqtype) else: fasta_to_bs_tree(DIR=DIR,fasta=i,num_cores=num_cores,seqtype=seqtype) assert filecount > 0, "No file end with .fa found in "+DIR if __name__ == "__main__": if len(sys.argv) != 5: print "python fasta_to_tree.py DIR number_cores dna/aa bootstrap(y/n)" sys.exit(0) main(sys.argv[1],sys.argv[2],sys.argv[3],sys.argv[4]) ``` #### File: pdc2/scripts/filter_1to1_orthologs.py ```python import newick3,phylo3,os,sys from tree_utils import * def get_121(indir,tree_file_ending,min_taxa,outdir,min_bootstrap=0.0): if indir[-1] != "/": indir += "/" if outdir[-1] != "/": outdir += "/" min_taxa = int(min_taxa) min_bootstrap = float(min_bootstrap) infile_count, outfile_count = 0,0 print "Filter one-to-one homologs with average bootstrap of at least",\ min_bootstrap for i in os.listdir(indir): if not i.endswith(tree_file_ending): continue infile_count += 1 with open(indir+i,"r") as infile: #only 1 tree in each file intree = newick3.parse(infile.readline()) names = get_front_names(intree) num_tips,num_taxa = len(names),len(set(names)) print "number of tips:",num_tips,"number of taxa:",num_taxa if num_tips == num_taxa and num_taxa >= min_taxa: if min_bootstrap > 0.0 and not pass_boot_filter(intree,min_bootstrap): continue print i,"written to out dir" outname = i.split(".")[0]+".1to1ortho.tre" os.system("cp "+indir+i+" "+outdir+outname) outfile_count += 1 assert infile_count > 0,\ "No file ends with "+tree_file_ending+" was found in "+indir print infile_count,"files read,",outfile_count,"written to",outdir if __name__ == "__main__": if len(sys.argv) != 5: print "python filter_1to1_orthologs.py homoTreeDIR tree_file_ending minimal_taxa outDIR" sys.exit(0) indir,tree_file_ending,min_taxa,outdir = sys.argv[1:] get_121(indir,tree_file_ending,min_taxa,outdir) ``` #### File: pdc2/scripts/filter_corset_output.py ```python import sys, os import pandas as pd from Bio import SeqIO def filter_corset(transcripts,corset_cluster,DIR): if DIR == ".": DIR = os.getcwd() if os.path.isabs(DIR) == False: DIR = os.path.abspath(DIR) if DIR[-1] != "/": DIR += "/" path_transcript, files_transcript = os.path.split(transcripts) transcripts_name = str(files_transcript) base_name_transcripts = transcripts_name.split( "." ) largest_cluster_transcripts = base_name_transcripts[0]+".largest_cluster_transcripts.fa" redundant_transcripts = base_name_transcripts[0]+".redundant_cluster_transcripts.fa" if os.path.exists(DIR+largest_cluster_transcripts) and os.path.exists(DIR+redundant_transcripts): print "Largest and reduntant transcript files found for", base_name_transcripts[0] else: #reads corset cluster files as dataframe(df) and add headers clusters_df = pd.read_table(corset_cluster, header=None) cluster_columns = "seqid cluster".strip().split(' ') clusters_df.columns = cluster_columns #takes the transcripts file and create a df with sequence name and length seqid = [] length = [] for rec in SeqIO.parse(transcripts, 'fasta'): name = rec.id seq = rec.seq seqLen = len(rec) seqid.append(name) length.append(seqLen) d = {"seqid":seqid,"length":length} seq_len_df = pd.DataFrame(d) #filters previous df to contain only info from the surviving clusters of corset seq_len_filtered_df= seq_len_df[seq_len_df['seqid'].isin(clusters_df['seqid'])] #merge previous df to the corset cluster df so it has cluster sequence name, cluster name and sequence length clusters_with_len_df=pd.merge(clusters_df, seq_len_filtered_df, on="seqid", how="left") #sort previous df by length and drop duplicate clusters(redundant) keeping only the one with the largest sequence largest_cluster_df = clusters_with_len_df.sort_values('length', ascending=False).drop_duplicates('cluster').sort_index() #returns the df with only the redundant sequences info removed_cluster_df = clusters_with_len_df[~clusters_with_len_df['seqid'].isin(largest_cluster_df['seqid'])] #index transcript sequences transcripts = SeqIO.index(transcripts, "fasta") #writes fasta file and cluster info for the largest sequences from corset clusters largest_cluster=[] largest_cluster_name = largest_cluster_df["seqid"] for i in largest_cluster_name: largest_cluster.append(transcripts[i]) count = SeqIO.write(largest_cluster,(DIR+largest_cluster_transcripts), "fasta") print("Kept %i largest transcripts from corset clusters" % count) largest_cluster_df.to_csv((DIR+base_name_transcripts[0]+".largest_cluster.csv"),index=False) #writes fasta file and cluster info for redundant sequences from corset clusters removed_cluster=[] removed_cluster_name = removed_cluster_df["seqid"] for i in removed_cluster_name: removed_cluster.append(transcripts[i]) count = SeqIO.write(removed_cluster,(DIR+redundant_transcripts), "fasta") print("Removed %i redundant transcripts" % count) removed_cluster_df.to_csv((DIR+base_name_transcripts[0]+".redundant_cluster.csv"),index=False) assert os.path.exists(DIR+largest_cluster_transcripts) and os.path.exists(DIR+redundant_transcripts), "filter_corset_output did not finish" if __name__ == "__main__": if len(sys.argv) == 4: filter_corset(transcripts=sys.argv[1],corset_cluster=sys.argv[2],DIR=sys.argv[3]) else: print ("Usage:") print ("python filter_corset_output.py transcripts_fasta corset_cluster_file output_dir") sys.exit(0) ``` #### File: pdc2/scripts/mask_tips_by_taxonID_genomes.py ```python import newick3,phylo3,os,sys #if taxon id pattern changes, change it here def get_name(name): return name.split("@")[0] #smooth the kink created by prunning #to prevent creating orphaned tips after prunning twice at the same node def remove_kink(node,curroot): if node == curroot and curroot.nchildren == 2: #move the root away to an adjacent none-tip internal node if curroot.children[0].istip: #the other child is not tip curroot = phylo3.reroot(curroot,curroot.children[1]) else: #tree has >=4 leaves so the other node cannot be tip curroot = phylo3.reroot(curroot,curroot.children[0]) #---node---< all nodes should have one child only now length = node.length + (node.children[0]).length par = node.parent kink = node node = node.children[0] #parent--kink---node< par.remove_child(kink) par.add_child(node) node.length = length return node,curroot def monophyly_masking_by_bl(curroot): going = True while going and len(curroot.leaves()) >= 4: going = False for node in curroot.iternodes(): #walk through nodes if not node.istip: continue #only look at tips for sister in node.get_sisters(): if sister.istip and get_name(node.label)==get_name(sister.label): if node.length > sister.length: node = node.prune() else: node = sister.prune() if len(curroot.leaves()) >= 4: if node.nchildren==1 or (node==curroot and node.nchildren==2): node,curroot = remove_kink(node,curroot) #no kink if the original node had more than 2 children going = True break return curroot if __name__ == "__main__": if len(sys.argv) != 2: print "python mask_tips_by_taxonID_genomes.py DIR" sys.exit() DIR = sys.argv[1]+"/" filecount = 0 for i in os.listdir(DIR): if i[-3:] == ".tt": #only mask trees that have tips trimmed with open(DIR+i,"r") as infile: intree = newick3.parse(infile.readline()) print i filecount += 1 with open(DIR+i+".mm","w") as outfile: outfile.write(newick3.tostring(monophyly_masking_by_bl(intree))+";\n") if filecount == 0: print "No file name with 'best' or 'tt' or 'fasttree' found in the treDIR" ``` #### File: pdc2/scripts/mask_tips_by_taxonID_transcripts.py ```python import newick3,phylo3,os,sys from tree_utils import get_name,remove_kink from seq import read_fasta_file INTREE_FILE_ENDING = ".tt" def get_clusterID(filename): """given a file name return the cluster id""" return filename.split(".")[0] def mask_monophyletic_tips(curroot,unamb_chrDICT): going = True while going and len(curroot.leaves()) >= 4: going = False for node in curroot.iternodes(): #walk through nodes if not node.istip: continue #only look at tips for sister in node.get_sisters(): if sister.istip and get_name(node.label)==get_name(sister.label): #masking #print node.label,unamb_chrDICT[node.label],sister.label,unamb_chrDICT[sister.label] if unamb_chrDICT[node.label] > unamb_chrDICT[sister.label]: node = sister.prune() else: node = node.prune() if len(curroot.leaves()) >= 4: if (node==curroot and node.nchildren==2) or (node!=curroot and node.nchildren==1): node,curroot = remove_kink(node,curroot) going = True break return curroot def mask_paraphyletic_tips(curroot,unamb_chrDICT): going = True while going and len(curroot.leaves()) >= 4: going = False for node in curroot.iternodes(): #walk through nodes if not node.istip: continue #only look at tips parent = node.parent if node == curroot or parent == curroot: continue #no paraphyletic tips for the root for para in parent.get_sisters(): if para.istip and get_name(node.label)==get_name(para.label): if unamb_chrDICT[node.label] > unamb_chrDICT[para.label]: node = para.prune() else: node = node.prune() if len(curroot.leaves()) >= 4: if (node==curroot and node.nchildren==2) or (node!=curroot and node.nchildren==1): node,curroot = remove_kink(node,curroot) going = True break return curroot def main(treDIR,clnDIR,para,intree_file_ending=INTREE_FILE_ENDING): if treDIR[-1] != "/": treDIR += "/" if clnDIR[-1] != "/": clnDIR += "/" assert para=="y" or para=="n", "mask paraphyletic tips? (y/n)" mask_para = True if para == "y" else False filecount = 0 filematch = {} #key is clusterID, value is the .aln-cln file for i in os.listdir(clnDIR): if i.endswith(".aln-cln"): clusterID = get_clusterID(i) assert clusterID not in filematch, \ "The clusterID "+clusterID+" repeats in "+clnDIR filematch[clusterID] = i for i in os.listdir(treDIR): if i.endswith(intree_file_ending): with open(treDIR+i,"r") as infile: intree = newick3.parse(infile.readline()) print i clusterID = get_clusterID(i) filecount += 1 chrDICT = {} #key is seqid, value is number of unambiguous chrs for s in read_fasta_file(clnDIR+filematch[clusterID]): for ch in ['-','X',"x","?","*"]: s.seq = s.seq.replace(ch,"") #ignore gaps, xs and Xs chrDICT[s.name] = len(s.seq) curroot = mask_monophyletic_tips(intree,chrDICT) if mask_para: curroot = mask_paraphyletic_tips(curroot,chrDICT) with open(treDIR+i+".mm","w") as outfile: outfile.write(newick3.tostring(curroot)+";\n") assert filecount > 0, \ "No file ends with "+intree_file_ending+" found in "+treDIR if __name__ == "__main__": if len(sys.argv) != 4: print "python mask_tips_by_taxonID_transcripts.py treDIR aln-clnDIR mask_paraphyletic(y/n)" sys.exit(0) treDIR,clnDIR,para = sys.argv[1:] main(treDIR,clnDIR,para) ``` #### File: pdc2/scripts/phyutility_wrapper.py ```python import sys,os from seq import read_fasta_file def phyutility(DIR,alignment,min_col_occup,seqtype,min_chr=10): """ remove columns with occupancy lower than MIN_COLUMN_OCCUPANCY remove seqs shorter than MIN_CHR after filter columns """ if DIR[-1] != "/": DIR += "/" cleaned = alignment+"-cln" if os.path.exists(DIR+cleaned): return cleaned assert alignment.endswith(".aln"),\ "phyutility infile "+alignment+" not ends with .aln" assert os.stat(DIR+alignment).st_size > 0, DIR+alignment+"empty" assert seqtype == "aa" or seqtype == "dna","Input data type: dna or aa" if seqtype == "aa": cmd = ["phyutility","-aa","-clean",str(min_col_occup),"-in",\ DIR+alignment,"-out",DIR+alignment+"-pht"] else: cmd = ["phyutility","-clean",str(min_col_occup),"-in",\ DIR+alignment,"-out",DIR+alignment+"-pht"] print " ".join(cmd) os.system(" ".join(cmd)) assert os.path.exists(DIR+alignment+"-pht"),"Error phyutility" #remove empty and very short seqs outfile = open(DIR+cleaned,"w") for s in read_fasta_file(DIR+alignment+"-pht"): if len(s.seq.replace("-","")) >= min_chr: outfile.write(s.get_fasta()) outfile.close() os.remove(DIR+alignment+"-pht") return cleaned def main(DIR,min_col_occup,seqtype): if DIR[-1] != "/": DIR += "/" filecount = 0 for i in os.listdir(DIR): if i.endswith(".aln"): filecount += 1 phyutility(DIR,i,min_col_occup,seqtype) assert filecount > 0, "No file end with .aln found in "+DIR if __name__ == "__main__": if len(sys.argv) != 4: print "python phyutility_wrapper.py DIR min_column_occupancy dna/aa" sys.exit(0) DIR,min_col_occup,seqtype = sys.argv[1:] main(DIR,min_col_occup,seqtype) ``` #### File: pdc2/scripts/prune_paralogs_MI.py ```python import newick3,phylo3,os,sys import trim_tips import tree_utils OUTPUT_1to1_ORTHOLOGS = True def get_clusterID(filename): return filename.split(".")[0] def get_front_score(node): front_labels = tree_utils.get_front_labels(node) num_labels = len(front_labels) num_taxa = len(set([tree_utils.get_name(i) for i in front_labels])) if num_taxa == num_labels: return num_taxa return -1 def get_back_score(node,root): back_labels = tree_utils.get_back_labels(node,root) num_labels = len(back_labels) num_taxa = len(set([tree_utils.get_name(i) for i in back_labels])) if num_taxa == num_labels: return num_taxa return -1 def prune(score_tuple,node,root,pp_trees): if score_tuple[0] > score_tuple[1]: #prune front print "prune front" pp_trees.append(node) par = node.prune() if par != None and len(root.leaves()) >= 3: par,root = tree_utils.remove_kink(par,root) return root,node == root else: if node != root: #prune back par = node.parent #par--node< par.remove_child(node) if par.parent != None: par,root = tree_utils.remove_kink(par,root) node.prune() print "prune back" pp_trees.append(root) if len(node.leaves()) >= 3: node,newroot = tree_utils.remove_kink(node,node) else: newroot = node return newroot,False #original root was cutoff, not done yet if __name__ == "__main__": if len(sys.argv) != 7: print "python prune_paralogs_MI.py homoTreeDIR tree_file_ending relative_tip_cutoff absolute_tip_cutoff MIN_TAXA outDIR" print "LONG_TIP_CUTOFF is typically same value of the previous LONG_TIP_CUTOFF" sys.exit(0) inDIR = sys.argv[1]+"/" tree_file_ending = sys.argv[2] relative_tip_cutoff,absolute_tip_cutoff = float(sys.argv[3]),float(sys.argv[4]) MIN_TAXA = int(sys.argv[5]) outDIR = sys.argv[6]+"/" for i in os.listdir(inDIR): if not i.endswith(tree_file_ending): continue print i with open(inDIR+i,"r") as infile: #only 1 tree in each file intree = newick3.parse(infile.readline()) curroot = intree pp_trees = [] if get_front_score(curroot) >= MIN_TAXA: #No need to prune print "No pruning needed" if OUTPUT_1to1_ORTHOLOGS: os.system("cp "+inDIR+i+" "+outDIR+get_clusterID(i)+"_1to1ortho.tre") else: #scoring the tree going = True pp_trees = [] while going: #python version of do..while loop highest = 0 highest_node = None score_hashes = {} #key is node, value is a tuple (front_score,back_score) for node in curroot.iternodes(): front_score = get_front_score(node) back_score = get_back_score(node,curroot) score_hashes[node] = (front_score,back_score) if front_score > highest or back_score > highest: highest_node = node highest = max(front_score,back_score) if highest >= MIN_TAXA: #prune curroot,done = prune(score_hashes[highest_node],highest_node,curroot,pp_trees) if done or len(curroot.leaves()) < MIN_TAXA: going = False break else: going = False break if len(pp_trees) > 0: count = 1 for tree in pp_trees: if tree.nchildren == 2: node,tree = trim_tips.remove_kink(tree,tree) tree = trim_tips.trim(tree,relative_tip_cutoff,absolute_tip_cutoff) if tree != None and len(tree.leaves()) >= MIN_TAXA: with open(outDIR+get_clusterID(i)+"_MIortho"+str(count)+".tre","w") as outfile: outfile.write(newick3.tostring(tree)+";\n") count += 1 ``` #### File: pdc2/scripts/rcorrector_wrapper.py ```python import sys,os APPS_HOME = "/usr/local/bin/" # where rcorrector is located RCORRECTOR_CMD = 'perl '+APPS_HOME+"/Rcorrector/run_rcorrector.pl" # Basic command to call rcorrector def rcorrector_se(se_fq,num_cores,DIR): if DIR == ".": DIR = os.getcwd() if os.path.isabs(DIR) == False: DIR = os.path.abspath(DIR) if DIR[-1] != "/": DIR += "/" path_se, file_se = (os.path.split(se_fq)) #splits the path from the file name se_name = str(file_se) base_name_se = se_name.split( "." ) if (os.path.splitext(file_se)[-1]) == ".gz" : corrected = (base_name_se[0])+".cor.fq.gz" else: corrected = (base_name_se[0])+".cor.fq" if os.path.exists(DIR+corrected): print ("Found", corrected) else: cmd = [RCORRECTOR_CMD,"-s",se_fq,"-t",str(num_cores),"-od",DIR] print (" ".join(cmd)) os.system(" ".join(cmd)) assert os.path.exists(DIR+corrected),"Rcorrector did not finished" def rcorrector_pe(pe_fq1,pe_fq2,num_cores,DIR): if DIR == ".": DIR = os.getcwd() if os.path.isabs(DIR) == False: DIR = os.path.abspath(DIR) if DIR[-1] != "/": DIR += "/" path_pe_1, file_pe_1 = (os.path.split(pe_fq1)) #splits the path from the file name path_pe_2, file_pe_2 = (os.path.split(pe_fq2)) path_pe_1, file_pe_1 = os.path.split(pe_fq1) pe_fq1_name = str(file_pe_1) base_name_1 = pe_fq1_name.split( "." ) path_pe_2, file_pe_2 = os.path.split(pe_fq2) pe_fq2_name = str(file_pe_2) base_name_2 = pe_fq2_name.split( "." ) if (os.path.splitext(file_pe_1)[-1]) and (os.path.splitext(file_pe_2)[-1]) == ".gz" : corrected_1 = (base_name_1[0])+".cor.fq.gz" corrected_2 = (base_name_2[0])+".cor.fq.gz" else: corrected_1 = (base_name_1[0])+".cor.fq" #input paired fq1 with extension ".cor.fq" corrected_2 = (base_name_2[0])+".cor.fq" #input paired fq2 with extension ".cor.fq" if os.path.exists(DIR+corrected_1) and os.path.exists(DIR+corrected_2): print ("Found", corrected_1, corrected_2) else: cmd = [RCORRECTOR_CMD,"-1",pe_fq1,"-2",pe_fq2,"-t",str(num_cores),"-od",DIR] print (" ".join(cmd)) os.system(" ".join(cmd)) assert os.path.exists(DIR+corrected_1) \ and os.path.exists(DIR+corrected_2),"Rcorrector did not finished" if __name__ == "__main__": if len(sys.argv) == 4: rcorrector_se(se_fq=sys.argv[1],num_cores=int(sys.argv[2]),DIR=sys.argv[3]) elif len(sys.argv) == 5: rcorrector_pe(pe_fq1=sys.argv[1],pe_fq2=sys.argv[2],num_cores=int(sys.argv[3]),DIR=sys.argv[4]) else: print ("Usage:") print ("For single end reads: python rcorrector.py fastq_se_reads num_cores output_dir") print ("For paired end reads: python rcorrector.py fastq_pe_reads1 num_cores fastq_pe_reads2 output_dir") sys.exit(0) ``` #### File: pdc2/scripts/shorten_trinity_names.py ```python import sys, os, re def short_trinity_names(transcripts,DIR): if DIR == ".": DIR = os.getcwd() if os.path.isabs(DIR) == False: DIR = os.path.abspath(DIR) if DIR[-1] != "/": DIR += "/" path_transcript, files_transcript = os.path.split(transcripts) transcripts_name = str(files_transcript) base_name_transcripts = transcripts_name.split( "." ) transcripts_short_name_file = base_name_transcripts[0]+".Trinity.short_name.fa" if DIR == ".": DIR = os.getcwd() if os.path.isabs(DIR) == False: DIR = os.path.abspath(DIR) if DIR[-1] != "/": DIR += "/" #trim trinity length and path information from transcript fasta names of good contigs searchstr = r'(>\w+)(\slen.*)' replacestr = r'\1' outfile = open((DIR+transcripts_short_name_file), 'w') with open((DIR+transcripts), 'rU') as fasta_file: reg = re.compile(searchstr) for line in fasta_file: line=line.strip('\n') if line.startswith('>'): fixline = reg.sub(replacestr, line) outfile.write(fixline + '\n') else: outfile.write(line + '\n') outfile.close() if __name__ == "__main__": if len(sys.argv) == 3: short_trinity_names(transcripts=sys.argv[1],DIR=sys.argv[2]) else: print ("Usage:") print ("python shorten_trinity_names.py transcripts_fasta output_dir") sys.exit(0) ``` #### File: pdc2/scripts/tree_utils.py ```python import phylo3,newick3 import os,sys def get_name(label): """Get taxonID from a tip label""" return label.split("@")[0] #return (label.split("@")[0]).split("_")[0] def get_clusterID(filename): return filename.split(".")[0] def get_front_labels(node): """given a node, return a list of front tip labels""" leaves = node.leaves() return [i.label for i in leaves] def get_back_labels(node,root): """given a node, return a list of back tip labels""" all_labels = get_front_labels(root) front_labels = get_front_labels(node) return set(all_labels) - set(front_labels) def get_front_names(node): """given a node, return a list of front tip taxonIDs list may contain identical taxonIDs""" labels = get_front_labels(node) return [get_name(i) for i in labels] def get_back_names(node,root): """given a node, return a list of back tip taxonIDs list may contain identical taxonIDs""" back_labels = get_back_labels(node,root) return [get_name(i) for i in back_labels] def remove_kink(node,curroot): """ smooth the kink created by prunning to prevent creating orphaned tips after prunning twice at the same node """ if node == curroot and curroot.nchildren == 2: #move the root away to an adjacent none-tip if curroot.children[0].istip: #the other child is not tip curroot = phylo3.reroot(curroot,curroot.children[1]) else: curroot = phylo3.reroot(curroot,curroot.children[0]) #---node---< all nodes should have one child only now length = node.length + (node.children[0]).length par = node.parent kink = node node = node.children[0] #parent--kink---node< par.remove_child(kink) par.add_child(node) node.length = length return node,curroot def pass_boot_filter(node,min_ave_boot): """check whether the average bootstrap value pass a cutoff""" total = 0.0 count = 0 for i in node.iternodes(): if not i.istip and i.parent != None: total += float(i.label) count += 1 if count == 0: #extracted clades with only two tips return True boot_average = total / float(count) print boot_average return boot_average >= float(min_ave_boot) def get_ortho_from_rooted_inclade(inclade): """ input a rooted tree cut appart bifucating nodes when duplicated taxonIDs are detected """ assert inclade.nchildren == 2, "input clade not properly rooted" orthologs = [] #store ortho clades clades = [inclade] while True: newclades = [] #keep track of subclades generated in this round for clade in clades: num_taxa = len(set(get_front_names(clade))) num_tips = len((get_front_labels(clade))) if num_taxa == num_tips: #no taxon repeats orthologs.append(clade) else: #has duplicated taxa for node in clade.iternodes(order=0): #PREORDER, root to tip if node.istip: continue #traverse the tree from root to tip child0,child1 = node.children[0],node.children[1] name_set0 = set(get_front_names(child0)) name_set1 = set(get_front_names(child1)) if len(name_set0.intersection(name_set1)) > 0: if node == clade: newclades += [child0,child1] #break by bifid at the base elif len(name_set0) > len(name_set1): #cut the side with less taxa node.remove_child(child1) child1.prune() node,clade = remove_kink(node,clade) #no rerooting here newclades += [clade,child1] else: node.remove_child(child0) child0.prune() node,clade = remove_kink(node,clade) #no rerooting here newclades += [clade,child0] break if newclades == []: break clades = newclades return orthologs def extract_rooted_ingroup_clades(root,ingroups,outgroups,min_ingroup_taxa): """ input a tree with ingroups and at least 1 outgroups output a list of rooted ingroup clades """ inclades = [] while True: max_score,direction,max_node = 0,"",None for node in root.iternodes(): front,back = 0,0 front_names_set = set(get_front_names(node)) for name in front_names_set: if name in outgroups: front = -1 break elif name in ingroups: front += 1 else: sys.exit("Check taxonID "+name) back_names_set = set(get_back_names(node,root)) for name in back_names_set: if name in outgroups: back = -1 break elif name in ingroups: back += 1 else: sys.exit("Check taxonID "+name) if front > max_score: max_score,direction,max_node = front,"front",node if back > max_score: max_score,direction,max_node = back,"back",node #print max_score,direction if max_score >= min_ingroup_taxa: if direction == "front": inclades.append(max_node) kink = max_node.prune() if len(root.leaves()) > 3: newnode,root = remove_kink(kink,root) else: break elif direction == "back": par = max_node.parent par.remove_child(max_node) max_node.prune() inclades.append(phylo3.reroot(root,par))#flip dirction if len(max_node.leaves()) > 3: max_node,root = remove_kink(max_node,max_node) else: break else: break return inclades ``` #### File: pdc2/scripts/write_ortholog_fasta_files.py ```python import sys,os,newick3,phylo3 from Bio import SeqIO ORTHO_TREE_FILE_ENDING = ".tre" def get_name(label): return label.split("@")[0] def get_front_labels(node): leaves = node.leaves() return [i.label for i in leaves] if __name__ =="__main__": if len(sys.argv) != 5: print "usage: python write_ortholog_fasta_files.py fasta treeDIR outDIR MIN_TAXA" sys.exit() fasta = sys.argv[1] treDIR = sys.argv[2]+"/" outDIR = sys.argv[3]+"/" MIN_TAXA = int(sys.argv[4]) print "Reading the original fasta file" handle = open(fasta,"rU") #hash table of taxonID -> seqID -> seq seqDICT = {} #key is taxonID, value is seqID for seq_record in SeqIO.parse(handle,"fasta"): seqID,seq = str(seq_record.id),str(seq_record.seq) taxonID = get_name(seqID) if taxonID not in seqDICT: seqDICT[taxonID] = {} #key is taxonID, value is seq print "Adding sequence from",taxonID seqDICT[taxonID][seqID] = seq handle.close() print "Writing fasta files" for i in os.listdir(treDIR): if i[-len(ORTHO_TREE_FILE_ENDING):] == ORTHO_TREE_FILE_ENDING: #read in tree tips and write output alignment with open(treDIR+i,"r")as infile: intree = newick3.parse(infile.readline()) labels = get_front_labels(intree) if len(labels) >= MIN_TAXA: with open(outDIR+i.replace(ORTHO_TREE_FILE_ENDING,".fa"),"w") as outfile: for lab in labels: name = get_name(lab) outfile.write(">"+name+"\n"+seqDICT[name][lab]+"\n") ```
{ "source": "jlangdev/falconpy", "score": 2 }
#### File: falconx_sandbox/single_scan/falconx_scan_example_uber.py ```python import os import time import argparse from enum import Enum from datetime import timedelta from argparse import RawTextHelpFormatter try: from falconpy.api_complete import APIHarness except ImportError as no_falconpy: raise SystemExit( "CrowdStrike FalconPy must be installed in order to use this application.\n" "Please execute `python3 -m pip install crowdstrike-falconpy` and try again." ) from no_falconpy class Environment(Enum): """ Enum to hold our different environment specifiers. """ WIN7 = 100 WIN7_64 = 110 WIN10 = 160 DROID = 200 LINUX = 300 class Indicator(): """ Silly progress indicator styled after a classic Cylon. """ def __init__(self, start_position: int = -1, start_direction: bool = True): self.position = start_position self.direction = start_direction self.indicator = self._setup() @staticmethod def _setup(): cylons = [] total = 7 cylons.append(f"{'o' * (total+1)}") for cnt in range(total): cylons.append(f"{'o' * (cnt)}O{'o' * (total - cnt)}") cylons.append(f"{'o' * (cnt+1)}O") cylons.append(f"{'o' * (total+1)}") return cylons def step(self): """ Calculates the position and direction of the indicator. """ if self.position >= len(self.indicator) - 1: # Too long - out of bounds self.direction = False if self.position <= 0: # Too short - out of bounds self.direction = True if self.direction: # Increment position by 1 self.position += 1 else: # Decrement position by 1 self.position -= 1 def display(self) -> str: """ Increments the indicator position and returns its value. """ # Step the indicator forward self.step() # Return the new indicator display return f"[ {self.indicator[self.position]} ]" def parse_command_line(): """ Parses and returns inbound command line arguments. """ # Argument parser for our command line parser = argparse.ArgumentParser( description="Falcon X Sandbox example", formatter_class=RawTextHelpFormatter ) # File to be analyzed parser.add_argument( '-f', '--file', help='File to analyze', required=True ) # Environment to use for analysis parser.add_argument( '-e', '--environment', help="Environment to use for analysis (win7, win7_64, win10, droid, linux)", required=False ) # CrowdStrike API Client ID parser.add_argument( '-k', '--key', help='Your CrowdStrike API key ID\n' ' Required Scopes\n' ' Sample Uploads: WRITE\n' ' Sandbox: WRITE\n', required=True ) # CrowdStrike API Client secret parser.add_argument( '-s', '--secret', help='Your CrowdStrike API key secret', required=True ) return parser.parse_args() def check_scan_status(check_id: str) -> dict: """ Retrieves the status of a submission and returns it. """ # Return our submission response by ID return falcon.command("GetSubmissions", ids=check_id) def upload_file(filename: str, upload_name: str, submit_comment: str, confidential: bool ) -> dict: """ Uploads the specified file to CrowdStrike cloud applying any provided attributes. Returns the result. """ params = { "file_name": upload_name, "comment": submit_comment, "is_confidential": confidential } # Read in our binary payload with open(filename, 'rb') as payload: # Upload this file to the Sample Uploads API return falcon.command("UploadSampleV3", file_data=payload.read(), parameters=params, content_type="application/octet-stream" ) def submit_for_analysis(sha_value: str) -> dict: """ Submits an uploaded file that matches the provided SHA256 to the specified Falcon X Sandbox environment for analysis. Returns the result. """ # Call the submit method and provide the SHA256 # of our upload file and our desired environment type. return falcon.command("Submit", body={ "sandbox": [{ "sha256": sha_value, "environment_id": Environment[SANDBOX_ENV].value }] } ) def delete_file(id_value: str) -> int: """ Deletes a file from CrowdStrike cloud based upon the SHA256 provided. Returns the operation status code. """ # Call the delete_sample method using the SHA256 return falcon.command("DeleteSampleV3", ids=id_value)["status_code"] def inform(msg: str): """ Provides informational updates to the user as the program progresses. """ # Dynamic user update messages print(" %-80s" % msg, end="\r", flush=True) def running_time(begin: time): """ Calculates the current running time and returns it. """ return f"[ Time running: {str(timedelta(seconds=(time.time() - begin)))} ]" # Start the clock start_time = time.time() # Parse our command line arguments args = parse_command_line() # Check for environment if not args.environment: SANDBOX_ENV = "WIN10" else: # Convert the submitted environment name to upper case SANDBOX_ENV = str(args.environment).upper() MATCHED = False # Loop thru our defined environment names for env in Environment: # User submitted name matches an accepted type if env.name == SANDBOX_ENV: MATCHED = True if not MATCHED: # We only accept the environments defined in our Enum above raise SystemExit("Invalid sandbox environment specified.") if not os.path.isfile(args.file): # We were not provided a valid filename raise SystemExit("Invalid filename specified.") # Announce progress inform(f"[ Init ] {running_time(start_time)}") # Connec to the API and provide our credentials for authorization falcon = APIHarness(client_id=args.key, client_secret=args.secret ) # Announce progress inform(f"[ Upload ] {running_time(start_time)}") # Upload our test file response = upload_file(args.file, f"FalconX File Analysis: {time.strftime('%v %r %Z')}", "Falcon X upload and scan example", confidential=False ) # Retrieve the SHA of our upload file sha = response["body"]["resources"][0]["sha256"] # Announce progress inform(f"[ Submit ] {running_time(start_time)}") # Submit the file for analysis to Falcon X Sandbox submit_response = submit_for_analysis(sha) # Track our running status RUNNING = "running" # Create a new progress indicator indicator = Indicator() # Loop until success or error while RUNNING == "running": # Submission ID submit_id = submit_response["body"]["resources"][0]["id"] # Check the scan status result = check_scan_status(submit_id) if result["body"]["resources"]: # Announce progress with our KITT indicator inform(f"{indicator.display()} {running_time(start_time)}") # Grab our latest status RUNNING = result["body"]["resources"][0]["state"] # We've finished, retrieve the report. There will only be one in this example. analysis = falcon.command("GetReports", ids=submit_id)["body"]["resources"][0]["sandbox"][0] # Announce progress inform(f"[ Delete ] {running_time(start_time)}") # Remove our test file delete_response = delete_file(sha) # Display the analysis results if "error_type" in analysis: # Error occurred, display the detail print(f"{analysis['error_type']}: {analysis['error_message']}") else: # No error, display the full analysis print(f"Detonated on: {analysis['environment_description']}{' ' * 20}") print(f"File type: {analysis['file_type']}") if len(analysis['classification']): print("\nClassifications") for classification in analysis['classification']: print(classification) if len(analysis['extracted_interesting_strings']): print("\nInteresting strings") for interesting in analysis['extracted_interesting_strings']: print(f"Source: {interesting['source']} Type: {interesting['type']}") print(f"{interesting['value']}\n") print(f"\nVerdict: {analysis['verdict']}") # Inform the user of our deletion failure if delete_response != 200: print("Unable to remove test file from Falcon X Sandbox") # Display our total execution time COMPLETE_TIME = str(timedelta(seconds=(time.time() - start_time))) print(f"Total running time: {COMPLETE_TIME}") ``` #### File: samples/ioc/create_ioc.py ```python import json from falconpy.api_complete import APIHarness as Uber from falconpy.ioc import IOC as IOC def connectAPI(class_type: str = "service"): with open("../config.json", "r") as cred_file: config = json.loads(cred_file.read()) creds = { "client_id": config["falcon_client_id"], "client_secret": config["falcon_client_secret"] } if class_type.lower() == "service": falcon = IOC(creds=creds) elif class_type.lower() == "uber": falcon = Uber(creds=creds) else: falcon = None return falcon def createIOCPayload(source: str, action: str, expiration: str, desc: str, type: str, val: str, platforms: list): payload = { "indicators": [ { "source": source, "action": action, "expiration": expiration, "description": desc, "type": type, "value": val, "platforms": platforms, "applied_globally": True } ] } return payload # Create an IOC using the IOC Service class falcon = connectAPI("service") BODY = createIOCPayload("Test", "detect", "2021-06-30T05:00:00.000Z", "Testing", "ipv4", "9.8.7.6", ["linux"]) response = falcon.indicator_create_v1(body=BODY) print(response) # Create an IOC using the Uber class falcon = connectAPI("uber") BODY = createIOCPayload("Test", "detect", "2021-06-30T05:00:00.000Z", "Testing", "ipv4", "8.7.6.5", ["linux"]) response = falcon.command('indicator_create_v1', body=BODY) print(response) ``` #### File: falconpy/tests/test_overwatch_dashboard.py ```python import os import sys # Authentication via test_authorization.py from tests import test_authorization as Authorization # Import our sibling src folder into the path sys.path.append(os.path.abspath('src')) # Classes to test - manually imported from sibling folder from falconpy.overwatch_dashboard import Overwatch_Dashboard as FalconOWD auth = Authorization.TestAuthorization() token = auth.getConfigExtended() falcon = FalconOWD(access_token=token) AllowedResponses = [200, 403, 429] class TestOverwatchDashboard: """ Overwatch Dashboard Service Class test harness """ def overwatch_generate_errors(self): """ Test code paths within methods by generating 500s, does not hit the API """ falcon.base_url = "nowhere" error_checks = True tests = { "aggregates_events": falcon.AggregatesEvents(body={})["status_code"], "aggregates_events_collections": falcon.AggregatesEventsCollections(body=[{}])["status_code"] } for key in tests: if tests[key] != 500: error_checks = False # print(f"{key} processed with a {tests[key]} response") return error_checks def test_aggregates_detections_global_counts(self): """ Pytest harness hook """ assert bool(falcon.AggregatesDetectionsGlobalCounts()["status_code"] in AllowedResponses) is True def test_aggregates_incidents_global_counts(self): """ Pytest harness hook """ assert bool(falcon.AggregatesIncidentsGlobalCounts()["status_code"] in AllowedResponses) is True def test_aggregates_events_global_counts(self): """ Pytest harness hook """ assert bool(falcon.AggregatesOWEventsGlobalCounts(bananas="yellow")["status_code"] in AllowedResponses) is True def test_errors(self): """ Pytest harness hook """ assert self.overwatch_generate_errors() is True # @staticmethod # def test_logout(): # """ # Pytest harness hook # """ # assert bool(falcon.auth_object.revoke( # falcon.auth_object.token()["body"]["access_token"] # )["status_code"] in AllowedResponses) is True ```
{ "source": "jlangy/flowers", "score": 2 }
#### File: jlangy/flowers/predict.py ```python import json import numpy as np import torch from torchvision import transforms, datasets, models from network import Network import PIL from PIL import Image from validate import validation from torch import nn, optim from parse_arguments import make_predict_parser from network import make_network img_path, cat_names, gpu, topk = make_predict_parser() data_transforms = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) #test_dataset = datasets.ImageFolder('flowers/test', transform=data_transforms) #testloader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=True) if cat_names: with open(cat_names, 'r') as f: cat_to_name = json.load(f) #Import pretrained model if gpu: checkpoint = torch.load('checkpoint.pth') else: checkpoint = torch.load('checkpoint.pth', map_location=lambda storage, loc: storage) model = make_network(checkpoint['arch'], checkpoint['hidden_units']) model.load_state_dict(checkpoint['model_state_dict']) class_to_idx = checkpoint['class_to_idx'] def process_image(image): image = Image.open(image) image = data_transforms(image) return image.numpy() def predict(image_path, model, topk=3): model.eval() image = process_image(image_path) image = torch.from_numpy(image) image.unsqueeze_(0) if gpu: image = image.to('cuda') model = model.to('cuda') output = model.forward(image) output = output.exp() probs,classes = output.topk(topk) classes = classes.cpu().numpy()[0] probs = probs.detach().cpu().numpy()[0] idx_to_class = {_class: index for index, _class in class_to_idx.items()} classes = list(map(lambda x : idx_to_class[x], classes )) return probs, classes probs, classes = predict(img_path, model, topk) if cat_names: name_classes = list(map(lambda x: cat_to_name[x], classes)) print(' Predicted species is {} with {:.2f}% confidence. \n '.format(name_classes[0], probs[0]*100)) for num in range(1,topk): print('{} most likely species is {}'.format(num+1, name_classes[num])) else: print(' Predicted class is {} with {:.2f}% confidence. \n '.format(classes[0], probs[0]*100)) for num in range(1,topk): print('{} most likely class is {}'.format(num+1, classes[num])) ``` #### File: jlangy/flowers/train.py ```python import json import torch from torch import nn, optim from torchvision import transforms, datasets from network import make_network from validate import validation from parse_arguments import make_train_parser data_dir, arch, hidden_units, epochs, learning_rate, gpu, save_dir = make_train_parser() train_dir = data_dir + '/train' valid_dir = data_dir + '/valid' training_transforms = transforms.Compose([transforms.RandomRotation(30), transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) data_transforms = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) training_dataset = datasets.ImageFolder(train_dir, transform=training_transforms) validation_dataset = datasets.ImageFolder(valid_dir, transform=data_transforms) trainloader = torch.utils.data.DataLoader(training_dataset, batch_size=64, shuffle=True) validationloader = torch.utils.data.DataLoader(validation_dataset, batch_size=32, shuffle=True) with open('cat_to_name.json', 'r') as f: cat_to_name = json.load(f) model = make_network(arch, hidden_units) def train_network(model): criterion = nn.NLLLoss() optimizer = optim.Adam(model.classifier.parameters(), lr=learning_rate) print_every = 40 if gpu: model.to('cuda') curr_epoch = 0 for e in range(epochs): curr_epoch += 1 training_loss = 0 steps = 0 for images, labels in iter(trainloader): steps += 1 if gpu: images = images.to('cuda') labels = labels.to('cuda') optimizer.zero_grad() output = model.forward(images) loss = criterion(output, labels) training_loss += loss loss.backward() optimizer.step() validation_loss, num_correct = validation(model, validationloader, criterion, gpu) print("epoch: {} \n total training loss: {:.4f} \n average training loss: {:.4f} \n total validation loss: {:.4f} \n average validation loss: {:.4f} \n validation accuracy: {:.2f}%".format(curr_epoch, training_loss, training_loss/len(training_dataset), validation_loss, validation_loss/len(validation_dataset), int(num_correct)*100/len(validation_dataset))) train_network(model) torch.save({ 'model_state_dict': model.state_dict(), 'class_to_idx': training_dataset.class_to_idx, 'arch': arch, 'hidden_units': hidden_units }, save_dir) ```
{ "source": "jlanillos/clinAcc_PGx_WES", "score": 3 }
#### File: clinAcc_PGx_WES/DISCOVERY_scripts/Discovery_PGx_4_annotateSamples_updateVarcols.py ```python import pandas as pd import os import numpy as np import re import argparse import os parser=argparse.ArgumentParser(description='Annotates SAMPLES column and update Var Columns') parser.add_argument('--searchpath', required=True) args=parser.parse_args() searchpath=str(args.searchpath) def files(path): for file in os.listdir(path): if os.path.isfile(os.path.join(path, file)): yield file ############################################################################### FILES = list() filenameformat = 'pgx.csv' for file in files(searchpath): if filenameformat in file: FILES.append(file) df = pd.read_csv(FILES[0],sep='\t') # Extract column names from the first individual sample samplecols = list(df.columns) # df_concat is the "template.csv" file which will be now filled with annotation data related to the variants (info annotated from databases, no related to the individual's variant) df_concat = pd.read_csv(searchpath + '/' + 'template.csv',sep='\t', dtype=str) eachsamplecols = ['genotype', 'zigosity', 'VAF', 'AlleleRatio', 'AlleleCoverage'] varcols = list(set(samplecols) - set(eachsamplecols) - set(['exact_gene'])) del globals()['df'] df_concat.set_index('ID',inplace=True) df_concat['ID_aux'] = list(df_concat.index) df_concat['samples'] = '' df_concat[varcols] = '' # Extract annotation information from each individual file and update it into the df_concat dataframe for file in FILES: sampleid = file.split('.')[0] print(sampleid) fd = pd.read_csv(file,sep='\t') fd = fd.astype(str) fd['ID'] = fd['locus'].str.replace(':','_') + '_' + fd['REF'] + '_' + fd['genotype'].str.split('/').str[1] fd = fd.drop_duplicates(subset = ['ID'], keep = 'first') df_concat.update(fd[['ID'] +varcols].set_index('ID')) df_concat['samples'] = df_concat.apply(lambda x: ';'.join([x['samples'],sampleid]) if x['ID_aux'] in list(fd['ID']) else x['samples'],axis=1) del globals()['fd'] for s in eachsamplecols: df_concat[s] = '' df_concat = df_concat.reset_index() df_concat['samples'] = df_concat['samples'].str.lstrip(';') df_concat['N_samples'] = df_concat['samples'].apply(lambda x: len(x.split(';'))) finalcols = ['ID'] + eachsamplecols + ['N_samples', 'MAF', 'samples'] + varcols df_concat = df_concat[finalcols].copy() df_concat.to_csv(searchpath + '/' + 'checkpoint_samples.csv',sep='\t', index = None) ``` #### File: clinAcc_PGx_WES/Figures_tables/0_Fig1B_QC_coverage.py ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt # x is a vector of coverage values to plot x = list(np.arange(0,110,10)) # Load reference alleles and extract hg19 "actionable" positions we aim to calculate coverage statistics for each panel (CCP17 and SSV6) ref = pd.read_csv('reference_HAPLOTYPES_hg38_hg19.csv',sep='\t') ref['actionable'].loc[(ref['SYMBOL'] == 'CYP4F2') & (ref['allele'] == '*2')] = 'Yes'# This line could be commented to not include CYP4F2*2 in QC ref['SNV_only'].loc[(ref['SYMBOL'] == 'CYP4F2') & (ref['allele'] == '*2')] = 'SNV'# This line could be commented to not include CYP4F2*2 in QC actref = ref.loc[(ref['actionable'] == 'Yes')] # & (ref['SNV_only'] == 'SNV')] # & (ref['SYMBOL'] != 'CYP2B6')] actref['position_hg19'] = actref['position_hg19'].astype(str).apply(lambda x: x.replace('_notfound','').split('_')[0]) posref =[str(x) for x in list(set(list(','.join(actref['position_hg19']).split(','))))] def multiID(CHR, position, ref, alt): position_list = str(position).split(',') chr_element = ['chr']*len(list(str(position).split(','))) chr_list = [str(CHR)]*len(str(position).split(',')) chr_final = list(map("".join,list(zip(chr_element,chr_list)))) ref_list = str(ref).split(',') alt_list = str(alt).split(',') outlist = list(map("_".join, list(zip(chr_final,position_list,ref_list,alt_list)))) outlist = ','.join(outlist) return(outlist) actref['multiID'] = actref.apply(lambda x: multiID(x['chr'], x['position_hg19'],x['ref'],x['alt']),axis=1) # Get MERGED matrix from SSV6 panel and filter only "actionable" positions in posref df_ssv6 = pd.read_csv('/path/to/SSV6_panel/QC_MERGED_GVCFs.csv',sep='\t') df_ssv6_aux = df_ssv6.copy() df_ssv6 = df_ssv6.loc[df_ssv6['POS'].astype(str).str.contains('|'.join(posref))].copy() colscov_ssv6 = [i for i in list(df_ssv6.columns) if '_dp' in i] # Get MERGED matrix from CP17 panel and filter only "actionable" positions in posref df_ccp17 = pd.read_csv('/path/to/CCP17_panel/QC_MERGED_GVCFs.csv',sep='\t') df_ccp17_aux = df_ccp17.copy() df_ccp17 = df_ccp17.loc[df_ccp17['POS'].astype(str).str.contains('|'.join(posref))].copy() colscov_ccp17 = [i for i in list(df_ccp17.columns) if '_dp' in i] nrows = int(len(set(list(actref['SYMBOL'])))) ncols = 2 x3 = list() for i in list(np.arange(0, np.ceil( nrows / 2), 1)): x3.append((i,0)) x3.append((i,1)) d = dict() genes_sorted = list(set(list(actref['SYMBOL']))) genes_sorted.sort() gene_names = ['|'.join(list(set(list(actref['SYMBOL']))))] + genes_sorted #all genes + pergene d = dict(zip(gene_names, x3)) d['All genes'] = d.pop('|'.join(list(set(list(actref['SYMBOL']))))) # Store statistical results coverage values, mean, stdev...) into dictionaries # This part takes a while, consider it for optimization d2_ssv6 = dict() d2_ccp17 = dict() for GENE in gene_names: GENEposref =[str(j) for j in list(set(list(','.join(actref['position_hg19'].loc[actref['SYMBOL'].str.contains(GENE)]).split(','))))] # Indels aux = [str(j) for j in list(set(','.join(actref['multiID'].loc[(actref['SYMBOL'].str.contains(GENE)) & (actref['SNV_only'] == 'INDEL' )]).split(',')))] if (aux[0] == '') and (len(aux) == 1): GENEposref_indels = [] else: GENEposref_indels = aux #SNVs aux = [str(j) for j in list(set(','.join(actref['multiID'].loc[(actref['SYMBOL'].str.contains(GENE)) & (actref['SNV_only'] == 'SNV' )]).split(',')))] if (aux[0] == '') and (len(aux) == 1): GENEposref_snvs = [] else: GENEposref_snvs = aux GENE = GENE.replace('|'.join(list(set(list(actref['SYMBOL'])))),'All genes') cov_ssv6 = df_ssv6[colscov_ssv6].loc[df_ssv6['POS'].astype(str).str.contains('|'.join(GENEposref))] y_ssv6 = list() e_ssv6 = list() for j in x: y_ssv6.append(cov_ssv6.apply(lambda y: sum(map(lambda i: i > j, y)), axis = 1).mean()) e_ssv6.append(cov_ssv6.apply(lambda y: sum(map(lambda i: i > j, y)), axis = 1).std()) y2_ssv6 = list(np.array(y_ssv6)/len(cov_ssv6.columns)) e2_ssv6 = list(np.array(e_ssv6)/len(cov_ssv6.columns)) d2_ssv6[GENE] = [y2_ssv6, e2_ssv6] #CCP17 cov_ccp17 = df_ccp17[colscov_ccp17].loc[df_ccp17['POS'].astype(str).str.contains('|'.join(GENEposref))] y_ccp17 = list() e_ccp17 = list() for j in x: y_ccp17.append(cov_ccp17.apply(lambda y: sum(map(lambda i: i > j, y)), axis = 1).mean()) e_ccp17.append(cov_ccp17.apply(lambda y: sum(map(lambda i: i > j, y)), axis = 1).std()) y2_ccp17 = list(np.array(y_ccp17)/len(cov_ccp17.columns)) e2_ccp17 = list(np.array(e_ccp17)/len(cov_ccp17.columns)) d2_ccp17[GENE] = [y2_ccp17, e2_ccp17] # Using the statistical results calculated above and stored in dictionaries (y2_ccp17, e2_ccp17 and y2_ssv6, e2_ssv6) create and plot the figure 1B fig, axs = plt.subplots(int(np.ceil( nrows / 2)), 2, figsize=(4, 10)) ylim = [0,1.1] for GENE in gene_names: GENEposref =[str(j) for j in list(set(list(','.join(actref['position_hg19'].loc[actref['SYMBOL'].str.contains(GENE)]).split(','))))] # Indels aux = [str(j) for j in list(set(','.join(actref['multiID'].loc[(actref['SYMBOL'].str.contains(GENE)) & (actref['SNV_only'] == 'INDEL' )]).split(',')))] if (aux[0] == '') and (len(aux) == 1): GENEposref_indels = [] else: GENEposref_indels = aux #SNVs aux = [str(j) for j in list(set(','.join(actref['multiID'].loc[(actref['SYMBOL'].str.contains(GENE)) & (actref['SNV_only'] == 'SNV' )]).split(',')))] if (aux[0] == '') and (len(aux) == 1): GENEposref_snvs = [] else: GENEposref_snvs = aux GENE = GENE.replace('|'.join(list(set(list(actref['SYMBOL'])))),'All genes') coord_col = int(d[GENE][1]) coord_row = int(d[GENE][0]) y2_ssv6 = d2_ssv6[GENE][0] e2_ssv6 = d2_ssv6[GENE][1] LABEL = 'SSv6 (n=4002)' axs[coord_row, coord_col].errorbar(np.array(x)+1, y2_ssv6, yerr=e2_ssv6, fmt='o', label=LABEL, ecolor='lightgray',color = 'blue', ms=3) y2_ccp17 = d2_ccp17[GENE][0] e2_ccp17 = d2_ccp17[GENE][1] LABEL = 'SSccp17 (n=998)' axs[coord_row, coord_col].errorbar(np.array(x)-1, y2_ccp17, yerr=e2_ccp17, fmt='o', label = LABEL, ecolor='lightgray', color = 'red', ms=3) if (len(GENEposref_snvs) > 1) or (len(GENEposref_snvs) == 0): GENEposref_snvs_text = ' SNVs' elif len(GENEposref_snvs) == 1: GENEposref_snvs_text = ' SNV' if (len(GENEposref_indels) > 1) or (len(GENEposref_indels) == 0): GENEposref_indels_text = ' indels' if len(GENEposref) <= 1: LOCUS_word = ' locus' else: LOCUS_word = ' loci' GENE = GENE.replace('All genes', 'All\ genes') axs[coord_row, coord_col].set_title( r"$\bf{" + str(GENE) + "}$" + '\n' + '(' + str(len(GENEposref_snvs)) + GENEposref_snvs_text + ', ' + str(len(GENEposref_indels)) + GENEposref_indels_text+ ', ' + str(len(GENEposref)) + LOCUS_word + ')', fontdict={'fontsize':8}) axs[coord_row, coord_col].tick_params(axis = 'x', which = 'both', bottom = False, labelbottom = False, labelsize=6) axs[coord_row, coord_col].tick_params(axis = 'y', labelsize=6) axs[coord_row, coord_col].set_ylim(ylim) if coord_col == 0: axs[coord_row,coord_col].set_ylabel('%', fontsize=8, labelpad=1) else: axs[coord_row,coord_col].yaxis.set_visible(False) if coord_row == 5: axs[coord_row,coord_col].set_xlabel('Coverage', fontsize=8, labelpad=1) handles, labels = axs[coord_row, coord_col].get_legend_handles_labels() fig.legend(handles, labels) axs[5, 0].tick_params(axis = 'x', which = 'both', bottom = True, labelbottom = True, labelsize=6) axs[5, 1].tick_params(axis = 'x', which = 'both', bottom = True, labelbottom = True, labelsize=6) plt.subplots_adjust(left=0.095, bottom=0.060, right=0.98, top=0.910, wspace=0.13, hspace=0.400) plt.savefig('/path/to/Figures/Fig1B.png', dpi = 400) plt.show() ``` #### File: clinAcc_PGx_WES/Figures_tables/3_Fig2C_allelespergene_pop.py ```python import matplotlib.pyplot as plt import pandas as pd import numpy as np df = pd.read_csv('/path/to/haplotypes_20210107.csv',sep='\t') alleles = pd.read_csv('/path/to/Alleles_20201228.csv',sep='\t') alleles = alleles.loc[(alleles['count_carrier_ids'].astype(str) != 'nan') & (alleles['actionable'] == 'Yes')].copy() GENES = list(set(list(alleles['SYMBOL']))) GENES.sort() ncols = 2 nrows = int(np.ceil( len(GENES) / ncols)) x3 = list() for i in list(np.arange(0, nrows, 1)): x3.append((0,i)) x3.append((1,i)) d_coords = dict(zip(GENES, x3)) def countdiffalleles(x): count = 0 for i in x.split(','): i = i.split('_')[1] if '*1/' in i: i = i.split('/') i.remove('*1') else: i = i.split('/') count = count + len(i) return(count) def prepareDF4plot(df, country, GENE, RF): #d = dict() d_comphet = dict() otherallelelist = list() dff = df.loc[df['from'].str.contains(country)].groupby(GENE)['sample'].count().reset_index() dff = dff.loc[~(dff[GENE] == '')].copy() nr_found = (dff[GENE].apply(lambda x: countdiffalleles(x)) * dff['sample']).sum() posalleles = list(set([i.split('_')[1].split(',')[0].split('/')[1] for i in list(set(','.join(list(dff[GENE])).split(',')))])) allele_names = list() allele_counts = list() allele_counts_aux = list() allele_names_comphet = list() allele_counts_comphet = list() allele_counts_aux_comphet = list() for al in posalleles: posalleles_aux = [x for x in posalleles if x != al] homozall = [i for i in list(dff[GENE]) if '/'.join([al,al]) in i] heterozall = [i for i in list(dff[GENE]) if (al in i) and not ('/'.join([al,al]) in i)] #[i for i in list(contigency.columns) if '/'.join(['*1',al]) in i] comphet = [i for i in list(dff[GENE]) if (al in i) and not ('/'.join([al,al]) in i) and any(x in i for x in posalleles_aux)] dff['aux'] = dff[GENE].str.replace('*','.') if homozall == []: nr_homoz = 0 else: nr_homoz = dff['sample'].loc[dff['aux'].str.contains('|'.join([i.replace('*','.') for i in homozall]))].sum() if heterozall == []: nr_heteroz = 0 else: nr_heteroz = dff['sample'].loc[dff['aux'].str.contains('|'.join([i.replace('*','.') for i in heterozall]))].sum() if comphet == []: nr_comhet = 0 else: nr_comhet = dff['sample'].loc[dff['aux'].str.contains('|'.join([i.replace('*','.') for i in comphet]))].sum() #nr_heteroz - count = 100*(nr_heteroz + nr_homoz*2) / nr_found count_comphet = 100*(nr_comhet + nr_homoz*2) / nr_found count_nocomphet = count - count_comphet count_aux = (nr_heteroz + nr_homoz*2) #d[al] = [count] allele_names.append(al) allele_counts.append(count) allele_names_comphet.append(al + '_COMPHET') allele_names_comphet.append(al + '_NOCOMPHET') allele_counts_comphet.append(count_comphet) allele_counts_comphet.append(count_nocomphet) allele_counts_aux.append(count_aux) rf = pd.DataFrame({'alleles':allele_names,'count':allele_counts}) rf_comphet = pd.DataFrame({'alleles':allele_names_comphet,'count':allele_counts_comphet}) if GENE == 'DPYD': if country == 'Ecuador|EUROPA|-|Chile|Brazil|USA|Mexico|Portugal|Argentina|Spain|Colombia': n_alleles_aux = 5 else: n_alleles_aux = 4 d = dict(zip(list(rf.sort_values(by=['count'], ascending=False).iloc[0:n_alleles_aux]['alleles']),[[j] for j in list(rf.sort_values(by=['count'], ascending=False).iloc[0:n_alleles_aux]['count'])])) for w in list(d.keys()): d_comphet[w+'_COMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')) == w.replace('*','P')+'_COMPHET'].sum()] d_comphet[w+'_NOCOMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')) == w.replace('*','P')+'_NOCOMPHET'].sum()] otheralleleslength = len(rf.sort_values(by=['count'], ascending=False).reset_index().iloc[n_alleles_aux:]) otherallelelist = list(rf.sort_values(by=['count'], ascending=False).reset_index().iloc[n_alleles_aux:]['alleles'].values) if otheralleleslength > 1: #d['Other alleles ' + '(N=' + str(otheralleleslength) + ')'] = [rf.sort_values(by=['count'], ascending=False).reset_index().iloc[2:]['count'].sum()] d['Other alleles'] = [rf.sort_values(by=['count'], ascending=False).reset_index().iloc[n_alleles_aux:]['count'].sum()] d_comphet['Other alleles_COMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_COMPHET' for i in otherallelelist]))].sum()] d_comphet['Other alleles_NOCOMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_NOCOMPHET' for i in otherallelelist]))].sum()] elif otheralleleslength == 1: theother = rf.sort_values(by=['count'], ascending=False).reset_index().iloc[n_alleles_aux:]['alleles'].values[0] d[theother] = [rf.sort_values(by=['count'], ascending=False).reset_index().iloc[n_alleles_aux:]['count'].sum()] d_comphet[theother +'_COMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_COMPHET' for i in otherallelelist]))].sum()] d_comphet[theother +'_NOCOMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_NOCOMPHET' for i in otherallelelist]))].sum()] genecountdf = pd.DataFrame(d) #({'alleles':allele_names,GENE:allele_counts}) genecountdf_comhet = pd.DataFrame(d_comphet) elif GENE == 'CYP2B6': n_alleles_aux = 3 d = dict(zip(list(rf.sort_values(by=['count'], ascending=False).iloc[0:n_alleles_aux]['alleles']),[[j] for j in list(rf.sort_values(by=['count'], ascending=False).iloc[0:n_alleles_aux]['count'])])) for w in list(d.keys()): d_comphet[w+'_COMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')) == w.replace('*','P')+'_COMPHET'].sum()] d_comphet[w+'_NOCOMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')) == w.replace('*','P')+'_NOCOMPHET'].sum()] otheralleleslength = len(rf.sort_values(by=['count'], ascending=False).reset_index().iloc[n_alleles_aux:]) otherallelelist = list(rf.sort_values(by=['count'], ascending=False).reset_index().iloc[n_alleles_aux:]['alleles'].values) if otheralleleslength > 1: #d['Other alleles ' + '(N=' + str(otheralleleslength) + ')'] = [rf.sort_values(by=['count'], ascending=False).reset_index().iloc[2:]['count'].sum()] d['Other alleles'] = [rf.sort_values(by=['count'], ascending=False).reset_index().iloc[n_alleles_aux:]['count'].sum()] d_comphet['Other alleles_COMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_COMPHET' for i in otherallelelist]))].sum()] d_comphet['Other alleles_NOCOMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_NOCOMPHET' for i in otherallelelist]))].sum()] elif otheralleleslength == 1: theother = rf.sort_values(by=['count'], ascending=False).reset_index().iloc[n_alleles_aux:]['alleles'].values[0] d[theother] = [rf.sort_values(by=['count'], ascending=False).reset_index().iloc[n_alleles_aux:]['count'].sum()] d_comphet[theother +'_COMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_COMPHET' for i in otherallelelist]))].sum()] d_comphet[theother +'_NOCOMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_NOCOMPHET' for i in otherallelelist]))].sum()] genecountdf = pd.DataFrame(d) #({'alleles':allele_names,GENE:allele_counts}) genecountdf_comhet = pd.DataFrame(d_comphet) elif GENE == 'CYP2C9': n_alleles_aux = 2 d = dict(zip(list(rf.sort_values(by=['count'], ascending=False).iloc[0:n_alleles_aux]['alleles']),[[j] for j in list(rf.sort_values(by=['count'], ascending=False).iloc[0:n_alleles_aux]['count'])])) for w in list(d.keys()): d_comphet[w+'_COMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')) == w.replace('*','P')+'_COMPHET'].sum()] d_comphet[w+'_NOCOMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')) == w.replace('*','P')+'_NOCOMPHET'].sum()] otheralleleslength = len(rf.sort_values(by=['count'], ascending=False).reset_index().iloc[n_alleles_aux:]) otherallelelist = list(rf.sort_values(by=['count'], ascending=False).reset_index().iloc[n_alleles_aux:]['alleles'].values) if otheralleleslength > 1: #d['Other alleles ' + '(N=' + str(otheralleleslength) + ')'] = [rf.sort_values(by=['count'], ascending=False).reset_index().iloc[2:]['count'].sum()] d['Other alleles'] = [rf.sort_values(by=['count'], ascending=False).reset_index().iloc[n_alleles_aux:]['count'].sum()] d_comphet['Other alleles_COMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_COMPHET' for i in otherallelelist]))].sum()] d_comphet['Other alleles_NOCOMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_NOCOMPHET' for i in otherallelelist]))].sum()] elif otheralleleslength == 1: theother = rf.sort_values(by=['count'], ascending=False).reset_index().iloc[n_alleles_aux:]['alleles'].values[0] d[theother] = [rf.sort_values(by=['count'], ascending=False).reset_index().iloc[n_alleles_aux:]['count'].sum()] d_comphet[theother +'_COMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_COMPHET' for i in otherallelelist]))].sum()] d_comphet[theother +'_NOCOMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_NOCOMPHET' for i in otherallelelist]))].sum()] genecountdf = pd.DataFrame(d) #({'alleles':allele_names,GENE:allele_counts}) genecountdf_comhet = pd.DataFrame(d_comphet) elif GENE == 'UGT1A1': d = dict(zip(list(rf.sort_values(by=['count'], ascending=False)['alleles']),[[j] for j in list(rf.sort_values(by=['count'], ascending=False)['count'])])) for w in list(d.keys()): d_comphet[w+'_COMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')) == w.replace('*','P')+'_COMPHET'].sum()] d_comphet[w+'_NOCOMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')) == w.replace('*','P')+'_NOCOMPHET'].sum()] genecountdf = pd.DataFrame(d) #({'alleles':allele_names,GENE:allele_counts}) genecountdf_comhet = pd.DataFrame(d_comphet) elif GENE == 'RYR1': d = dict(zip(list(rf.sort_values(by=['count'], ascending=False)['alleles']),[[j] for j in list(rf.sort_values(by=['count'], ascending=False)['count'])])) for w in list(d.keys()): d_comphet[w+'_COMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')) == w.replace('*','P')+'_COMPHET'].sum()] d_comphet[w+'_NOCOMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')) == w.replace('*','P')+'_NOCOMPHET'].sum()] genecountdf = pd.DataFrame(d) #({'alleles':allele_names,GENE:allele_counts}) genecountdf_comhet = pd.DataFrame(d_comphet) elif GENE == 'TPMT': d = dict(zip(list(rf.sort_values(by=['count'], ascending=False)['alleles']),[[j] for j in list(rf.sort_values(by=['count'], ascending=False)['count'])])) for w in list(d.keys()): d_comphet[w+'_COMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')) == w.replace('*','P')+'_COMPHET'].sum()] d_comphet[w+'_NOCOMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')) == w.replace('*','P')+'_NOCOMPHET'].sum()] genecountdf = pd.DataFrame(d) #({'alleles':allele_names,GENE:allele_counts}) genecountdf_comhet = pd.DataFrame(d_comphet) else: if len(posalleles) > 2: d = dict(zip(list(rf.sort_values(by=['count'], ascending=False).iloc[[0,1]]['alleles']),[[j] for j in list(rf.sort_values(by=['count'], ascending=False).iloc[[0,1]]['count'])])) for w in list(d.keys()): d_comphet[w+'_COMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')) == w.replace('*','P')+'_COMPHET'].sum()] d_comphet[w+'_NOCOMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')) == w.replace('*','P')+'_NOCOMPHET'].sum()] otheralleleslength = len(rf.sort_values(by=['count'], ascending=False).reset_index().iloc[2:]) otherallelelist = list(rf.sort_values(by=['count'], ascending=False).reset_index().iloc[2:]['alleles'].values) if otheralleleslength > 1: #d['Other alleles ' + '(N=' + str(otheralleleslength) + ')'] = [rf.sort_values(by=['count'], ascending=False).reset_index().iloc[2:]['count'].sum()] d['Other alleles'] = [rf.sort_values(by=['count'], ascending=False).reset_index().iloc[2:]['count'].sum()] d_comphet['Other alleles_COMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_COMPHET' for i in otherallelelist]))].sum()] d_comphet['Other alleles_NOCOMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_NOCOMPHET' for i in otherallelelist]))].sum()] else: theother = rf.sort_values(by=['count'], ascending=False).reset_index().iloc[2:]['alleles'].values[0] d[theother] = [rf.sort_values(by=['count'], ascending=False).reset_index().iloc[2:]['count'].sum()] d_comphet[theother +'_COMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_COMPHET' for i in otherallelelist]))].sum()] d_comphet[theother +'_NOCOMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_NOCOMPHET' for i in otherallelelist]))].sum()] genecountdf = pd.DataFrame(d) #({'alleles':allele_names,GENE:allele_counts}) genecountdf_comhet = pd.DataFrame(d_comphet) #genecountdf['from'] = country elif len(posalleles) == 2: d = dict(zip(list(rf.sort_values(by=['count'], ascending=False).iloc[[0,1]]['alleles']),[[j] for j in list(rf.sort_values(by=['count'], ascending=False).iloc[[0,1]]['count'])])) genecountdf = pd.DataFrame(d) #({'alleles':allele_names,GENE:allele_counts}) for w in list(d.keys()): d_comphet[w+'_COMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','.')) == w.replace('*','.')+'_COMPHET'].sum()] d_comphet[w+'_NOCOMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','.')) == w.replace('*','.')+'_NOCOMPHET'].sum()] genecountdf_comhet = pd.DataFrame(d_comphet) #genecountdf['from'] = country elif len(posalleles) == 1: d = dict(zip(list(rf.sort_values(by=['count'], ascending=False).iloc[[0]]['alleles']),[[j] for j in list(rf.sort_values(by=['count'], ascending=False).iloc[[0]]['count'])])) for w in list(d.keys()): d_comphet[w+'_COMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','.')) == w.replace('*','.')+'_COMPHET'].sum()] d_comphet[w+'_NOCOMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','.')) == w.replace('*','.')+'_NOCOMPHET'].sum()] genecountdf = pd.DataFrame(d) #({'alleles':allele_names,GENE:allele_counts}) genecountdf_comhet = pd.DataFrame(d_comphet) #genecountdf['from'] = country rf_aux = pd.DataFrame({'Gene':[GENE]*len(allele_names),'alleles':allele_names,'count':allele_counts_aux, 'country': [country]*len(allele_counts_aux), 'nr_found': [nr_found]*len(allele_counts_aux)}) return genecountdf, genecountdf_comhet, otherallelelist, rf_aux def prepareDF4plot_chrX(df, country, GENE, RF): #d = dict() d_comphet = dict() otherallelelist = list() dff = df.loc[df['from'].str.contains(country)].groupby(GENE)['sample'].count().reset_index() dff = dff.loc[~(dff[GENE] == '')].copy() dff_females = df.loc[(df['from'].str.contains(country)) & (df['gender'] == 'F')].groupby(GENE)['sample'].count().reset_index() dff_females = dff_females.loc[~(dff_females[GENE] == '')].copy() dff_males = df.loc[(df['from'].str.contains(country)) & (df['gender'] == 'M')].groupby(GENE)['sample'].count().reset_index() dff_males = dff_males.loc[~(dff_males[GENE] == '')].copy() nr_found_females = (dff_females[GENE].apply(lambda x: countdiffalleles(x)) * dff_females['sample']).sum() nr_found_males = (dff_males[GENE].apply(lambda x: countdiffalleles(x)) * dff_males['sample'] / 2).sum() # or dff_males['sample'].sum() nr_found = nr_found_females + nr_found_males posalleles = list(set([i.split('_')[1].split(',')[0].split('/')[1] for i in list(set(','.join(list(dff[GENE])).split(',')))])) allele_names = list() allele_counts = list() allele_counts_aux = list() allele_names_comphet = list() allele_counts_comphet = list() allele_counts_aux_comphet = list() for al in posalleles: posalleles_aux = [x for x in posalleles if x != al] homozall = [i for i in list(dff[GENE]) if '/'.join([al,al]) in i] heterozall = [i for i in list(dff[GENE]) if (al in i) and not ('/'.join([al,al]) in i)] #[i for i in list(contigency.columns) if '/'.join(['*1',al]) in i] comphet = [i for i in list(dff[GENE]) if (al in i) and not ('/'.join([al,al]) in i) and any(x in i for x in posalleles_aux)] dff['aux'] = dff[GENE].str.replace('*','.') dff_females['aux'] = dff_females[GENE].str.replace('*','.') dff_males['aux'] = dff_males[GENE].str.replace('*','.') if homozall == []: #nr_homoz = 0 nr_homoz_female = 0 nr_homoz_male = 0 else: #nr_homoz = dff['sample'].loc[dff['aux'].str.contains('|'.join([i.replace('*','.') for i in homozall]))].sum() nr_homoz_female = dff_females['sample'].loc[dff_females['aux'].str.contains('|'.join([i.replace('*','.') for i in homozall]))].sum() nr_homoz_male = dff_males['sample'].loc[dff_males['aux'].str.contains('|'.join([i.replace('*','.') for i in homozall]))].sum() if heterozall == []: nr_heteroz = 0 else: nr_heteroz = dff['sample'].loc[dff['aux'].str.contains('|'.join([i.replace('*','.') for i in heterozall]))].sum() # Assumption: there are not heterozygous males (checked genotypes before) if comphet == []: nr_comhet = 0 else: nr_comhet = dff['sample'].loc[dff['aux'].str.contains('|'.join([i.replace('*','.') for i in comphet]))].sum() #nr_heteroz - nr_homoz = 2*nr_homoz_female + nr_homoz_male # Number of alleles coming from homozygous individuals, taking into account that male individuals are hemizygous, an thus do add one allele count = 100*(nr_heteroz + nr_homoz) / nr_found count_comphet = 100*(nr_comhet + nr_homoz) / nr_found count_nocomphet = count - count_comphet count_aux = (nr_heteroz + nr_homoz) #d[al] = [count] allele_names.append(al) allele_counts.append(count) allele_names_comphet.append(al + '_COMPHET') allele_names_comphet.append(al + '_NOCOMPHET') allele_counts_comphet.append(count_comphet) allele_counts_comphet.append(count_nocomphet) allele_counts_aux.append(count_aux) rf = pd.DataFrame({'alleles':allele_names,'count':allele_counts}) rf_comphet = pd.DataFrame({'alleles':allele_names_comphet,'count':allele_counts_comphet}) n_alleles_aux = 7 if GENE == 'G6PD': d = dict(zip(list(rf.sort_values(by=['count'], ascending=False).iloc[0:n_alleles_aux]['alleles']),[[j] for j in list(rf.sort_values(by=['count'], ascending=False).iloc[0:n_alleles_aux]['count'])])) for w in list(d.keys()): d_comphet[w+'_COMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')) == w.replace('*','P')+'_COMPHET'].sum()] d_comphet[w+'_NOCOMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')) == w.replace('*','P')+'_NOCOMPHET'].sum()] otheralleleslength = len(rf.sort_values(by=['count'], ascending=False).reset_index().iloc[n_alleles_aux:]) otherallelelist = list(rf.sort_values(by=['count'], ascending=False).reset_index().iloc[n_alleles_aux:]['alleles'].values) if otheralleleslength > 1: #d['Other alleles ' + '(N=' + str(otheralleleslength) + ')'] = [rf.sort_values(by=['count'], ascending=False).reset_index().iloc[2:]['count'].sum()] d['Other alleles'] = [rf.sort_values(by=['count'], ascending=False).reset_index().iloc[n_alleles_aux:]['count'].sum()] d_comphet['Other alleles_COMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_COMPHET' for i in otherallelelist]))].sum()] d_comphet['Other alleles_NOCOMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_NOCOMPHET' for i in otherallelelist]))].sum()] elif otheralleleslength == 1: theother = rf.sort_values(by=['count'], ascending=False).reset_index().iloc[n_alleles_aux:]['alleles'].values[0] d[theother] = [rf.sort_values(by=['count'], ascending=False).reset_index().iloc[n_alleles_aux:]['count'].sum()] d_comphet[theother +'_COMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_COMPHET' for i in otherallelelist]))].sum()] d_comphet[theother +'_NOCOMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_NOCOMPHET' for i in otherallelelist]))].sum()] genecountdf = pd.DataFrame(d) #({'alleles':allele_names,GENE:allele_counts}) genecountdf_comhet = pd.DataFrame(d_comphet) genecountdf = genecountdf.rename(columns={'Seattle Lodi Modena FerraraII Athens-like':'Seattle*'}) genecountdf = genecountdf.rename(columns={'Mediterranean Dallas Panama‚Sassari Cagliari Birmingham':'Mediterranean*'}) genecountdf = genecountdf.rename(columns={'G6PDA-968C-376G':'A-968C-376G'}) genecountdf = genecountdf.rename(columns={'Union Maewo Chinese-2 Kalo':'Union*'}) genecountdf_comhet = genecountdf_comhet.rename(columns={'Seattle Lodi Modena FerraraII Athens-like_COMPHET':'Seattle*_COMPHET','Seattle Lodi Modena FerraraII Athens-like_NOCOMPHET':'Seattle*_NOCOMPHET'}) genecountdf_comhet = genecountdf_comhet.rename(columns={'Mediterranean Dallas Panama‚Sassari Cagliari Birmingham_COMPHET':'Mediterranean*_COMPHET','Mediterranean Dallas Panama‚Sassari Cagliari Birmingham_NOCOMPHET':'Mediterranean*_NOCOMPHET'}) genecountdf_comhet = genecountdf_comhet.rename(columns={'G6PDA-968C-376G_COMPHET':'A-968C-376G_COMPHET','G6PDA-968C-376G_NOCOMPHET':'A-968C-376G_NOCOMPHET'}) genecountdf_comhet = genecountdf_comhet.rename(columns={'Union Maewo Chinese-2 Kalo_COMPHET':'Union*_COMPHET','Union Maewo Chinese-2 Kalo_NOCOMPHET':'Union*_NOCOMPHET'}) else: if len(posalleles) > n_alleles_aux: d = dict(zip(list(rf.sort_values(by=['count'], ascending=False).iloc[[0,1]]['alleles']),[[j] for j in list(rf.sort_values(by=['count'], ascending=False).iloc[[0,1]]['count'])])) for w in list(d.keys()): d_comphet[w+'_COMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')) == w.replace('*','P')+'_COMPHET'].sum()] d_comphet[w+'_NOCOMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')) == w.replace('*','P')+'_NOCOMPHET'].sum()] otheralleleslength = len(rf.sort_values(by=['count'], ascending=False).reset_index().iloc[2:]) otherallelelist = list(rf.sort_values(by=['count'], ascending=False).reset_index().iloc[2:]['alleles'].values) if otheralleleslength > 1: #d['Other alleles ' + '(N=' + str(otheralleleslength) + ')'] = [rf.sort_values(by=['count'], ascending=False).reset_index().iloc[2:]['count'].sum()] d['Other alleles'] = [rf.sort_values(by=['count'], ascending=False).reset_index().iloc[2:]['count'].sum()] d_comphet['Other alleles_COMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_COMPHET' for i in otherallelelist]))].sum()] d_comphet['Other alleles_NOCOMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_NOCOMPHET' for i in otherallelelist]))].sum()] else: theother = rf.sort_values(by=['count'], ascending=False).reset_index().iloc[2:]['alleles'].values[0] d[theother] = [rf.sort_values(by=['count'], ascending=False).reset_index().iloc[2:]['count'].sum()] d_comphet[theother +'_COMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_COMPHET' for i in otherallelelist]))].sum()] d_comphet[theother +'_NOCOMPHET'] = [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','P')).str.contains('|'.join([i.replace('*','P')+'_NOCOMPHET' for i in otherallelelist]))].sum()] genecountdf = pd.DataFrame(d) #({'alleles':allele_names,GENE:allele_counts}) genecountdf_comhet = pd.DataFrame(d_comphet) #genecountdf['from'] = country elif len(posalleles) == 2: d = dict(zip(list(rf.sort_values(by=['count'], ascending=False).iloc[[0,1]]['alleles']),[[j] for j in list(rf.sort_values(by=['count'], ascending=False).iloc[[0,1]]['count'])])) genecountdf = pd.DataFrame(d) #({'alleles':allele_names,GENE:allele_counts}) for w in list(d.keys()): d_comphet[w+'_COMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','.')) == w.replace('*','.')+'_COMPHET'].sum()] d_comphet[w+'_NOCOMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','.')) == w.replace('*','.')+'_NOCOMPHET'].sum()] genecountdf_comhet = pd.DataFrame(d_comphet) #genecountdf['from'] = country elif len(posalleles) == 1: d = dict(zip(list(rf.sort_values(by=['count'], ascending=False).iloc[[0]]['alleles']),[[j] for j in list(rf.sort_values(by=['count'], ascending=False).iloc[[0]]['count'])])) for w in list(d.keys()): d_comphet[w+'_COMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','.')) == w.replace('*','.')+'_COMPHET'].sum()] d_comphet[w+'_NOCOMPHET']= [rf_comphet['count'].loc[rf_comphet['alleles'].apply(lambda x: x.replace('*','.')) == w.replace('*','.')+'_NOCOMPHET'].sum()] genecountdf = pd.DataFrame(d) #({'alleles':allele_names,GENE:allele_counts}) genecountdf_comhet = pd.DataFrame(d_comphet) #genecountdf['from'] = country #rf = pd.DataFrame({'Gene':[GENE]*len(allele_names),'alleles':allele_names,'count':allele_counts}) rf_aux = pd.DataFrame({'Gene':[GENE]*len(allele_names),'alleles':allele_names,'count':allele_counts_aux, 'country': [country]*len(allele_counts_aux), 'nr_found': [nr_found]*len(allele_counts_aux)}) return genecountdf, genecountdf_comhet, otherallelelist, rf_aux ## COLORS = ['tab:blue','tab:red','tab:green', 'tab:olive', 'tab:cyan', 'tab:orange', 'tab:brown','m','tab:pink'] othercountries = list(set(df['from'])) othercountries.remove('Spain') othercountries.remove('Colombia') othercountries.remove('Brazil') othercountries = '|'.join(othercountries) allcountries = '|'.join(list(set(df['from']))) countries = [allcountries, 'Spain', 'Colombia', 'Brazil']#, othercountries] RF = pd.DataFrame({'Gene':['hey'],'alleles':['what'], 'count':[0], 'country': [0], 'nr_found': [0]}) # initiallising this dataframe fig, ax1 = plt.subplots(nrows, ncols, figsize=(7,10), sharey=False, sharex=False) for GENE in GENES: genecountdf = pd.DataFrame() genecountdf_comhet = pd.DataFrame() coord_row = d_coords[GENE][1] coord_col = d_coords[GENE][0] country_col = list() otherallelistpergene = list() print(GENE) for country in countries: dff = df.loc[df['from'].str.contains(country)].groupby(GENE)['sample'].count().reset_index() dff = dff.loc[~(dff[GENE] == '')].copy() if len(dff) == 0: genecountdf = genecountdf.append(pd.Series(name=0)) genecountdf_comhet = genecountdf_comhet.append(pd.Series(name=0)) countryname = country.replace(allcountries, 'All').replace(othercountries, 'Other') country_col.append(countryname) else: if GENE == 'G6PD': genecountdf_aux, genecountdf_comhet_aux, otherallelelist_aux, rf = prepareDF4plot_chrX(df, country, GENE, RF) else: genecountdf_aux, genecountdf_comhet_aux, otherallelelist_aux, rf = prepareDF4plot(df, country, GENE, RF) otherallelistpergene.append(otherallelelist_aux) RF = pd.concat([RF,rf]) countryname = country.replace(allcountries, 'All').replace(othercountries, 'Other') country_col.append(countryname) genecountdf = pd.concat([genecountdf, genecountdf_aux]) genecountdf_comhet = pd.concat([genecountdf_comhet, genecountdf_comhet_aux]) #print(country + ' ' + ' '.join(otherallelelist_aux)) country_colcount = list() if coord_row == nrows-1: for c, cc in zip(country_col,countries): c = c + '\n' #country_colcount.append(c + '(n=' + str(len(df.loc[(~(df[GENE]).isnull()) & (df['from'].str.contains(cc))])) + ')') country_colcount.append(c + '[' + str(len(df.loc[(~(df[GENE]).isnull()) & (df['from'].str.contains(cc))]))+ ']') else: for c, cc in zip(country_col,countries): c = ' ' #country_colcount.append(c + '(n=' + str(len(df.loc[(~(df[GENE]).isnull()) & (df['from'].str.contains(cc))])) + ')') country_colcount.append(c + '[' + str(len(df.loc[(~(df[GENE]).isnull()) & (df['from'].str.contains(cc))]))+ ']') genecountdf['from'] = country_colcount genecountdf_comhet['from'] = country_colcount nr_individuals = len(df.loc[~(df[GENE]).isnull()]) f = list() othercheck = False for i in list(genecountdf.columns): if (i != 'Other alleles') and (i != 'from'): f.append(i) elif i == 'Other alleles': othercheck = True colors_aux = COLORS[0:len(f)] if othercheck: f.append('Other alleles') colors_aux.append('tab:purple') f_comhet = [[i+'_COMPHET',i+'_NOCOMPHET'] for i in f] f_comhet = [item for sublist in f_comhet for item in sublist] f.append('from') f_comhet.append('from') colors = colors_aux genecountdf = genecountdf[f].copy() genecountdf_comhet = genecountdf_comhet[f_comhet].copy() ylim = [0,100] otherallelistpergene_squeezed= list(set([item for sublist in otherallelistpergene for item in sublist])) genecountdf = genecountdf.rename(columns={'Other alleles':'Other [' + str(len(otherallelistpergene_squeezed)) + ']'}) genecountdf.plot(x='from',ax = ax1[coord_row,coord_col],align = 'edge', kind = 'bar',width = -0.35, stacked = True, edgecolor = 'black', title = GENE , mark_right = True, color=colors)#,position=1+ ' (N=' + str(nr_individuals) + ')' label_list = list() for t in ax1[coord_row,coord_col].get_legend_handles_labels(): label_list.append(t) #ax2 = ax1[coord_row,coord_col].twinx() # Create another axes that shares the same x-axis as ax. #genecountdf_comhet.plot(x='from',ax = ax2,position=0 ,kind = 'bar',width = 0.35, stacked = True, edgecolor = 'black' , mark_right = True, color=['lightgray','white']*len(colors)) #, title = GENE genecountdf = genecountdf.rename(columns={'Other alleles_COMPHET':'Other [' + str(len(otherallelistpergene_squeezed)) + ']','Other alleles_NOCOMPHET':'Other [' + str(len(otherallelistpergene_squeezed)) + ']'}) genecountdf_comhet.plot(x='from',ax = ax1[coord_row,coord_col] , align= 'edge',kind = 'bar',width = 0.15, stacked = True, edgecolor = 'black' , mark_right = True, color=['lightgray','white']*len(colors)) #, title = GENE if GENE == 'UGT1A1': # Adding a second legend label_list_comphet = [ax1[coord_row,coord_col].get_legend_handles_labels()[0][-2:], ['Comp.Het.\nHomozygous', 'No Comp.Het.\nNo Homoz.']]# ax2.get_legend_handles_labels()[1][0:2]] legend2 = plt.legend(handles=label_list_comphet[0], labels=label_list_comphet[1],loc='center right', fontsize = 9, labelspacing=0.15, handletextpad=0.2,handlelength=1,bbox_to_anchor=(0.0,-0.1)) ax1[coord_row,coord_col].add_artist(legend2) label_list = [label_list[0],label_list[1]] #label_list = [label_list[0] + label_list_comphet[0],label_list[1] + label_list_comphet[1]] #ax1[coord_row,coord_col].legend().set_visible(False) ax1[coord_row,coord_col].legend(handles=label_list[0], labels=label_list[1],loc='center left', fontsize = 9, labelspacing=0.1, handletextpad=0.2, handlelength=1,bbox_to_anchor=(1.0,0.5)) xlim = [-0.5,3.3] ax1[coord_row, coord_col].set_xlim(xlim) ax1[coord_row, coord_col].set_ylim(ylim) ax1[coord_row, coord_col].set_title(label = GENE , fontsize= 10, fontweight="bold") #+ ' (N=' + str(nr_individuals) + ')', fontsize= 10) # title of plot plt.setp(ax1[coord_row, coord_col].get_xticklabels(), visible=True, rotation=0, ha='center') ax1[coord_row, coord_col].tick_params(axis = 'x',which='major', labelsize=10) #,labelrotation=0 ax1[coord_row, coord_col].set_xlabel('') if coord_col == 0: ax1[coord_row,coord_col].set_ylabel('%') else: ax1[coord_row,coord_col].yaxis.set_visible(False) plt.subplots_adjust(left=0.080, bottom=0.050, right=0.850, top=0.97, wspace=0.665, hspace=0.365) plt.savefig('/path/to/Figures/Figure_2B_splittedbyLatamCountry.png',format = 'png', dpi = 500) plt.show() ```
{ "source": "jlant/gagepy", "score": 3 }
#### File: gagepy/gagepy/output.py ```python import json from jinja2 import Template, PackageLoader, Environment def render_summary(data, template_filename): """Render a summary of the data. :param data: Data to fill template with :param type: dictionary :param template_filename: The filename of the template to fill :type template_filename: string """ loader = PackageLoader("gagepy", "templates") env = Environment(loader=loader) template = env.get_template(template_filename) return template.render(data) def save_summary(data, template_filename, output_file): """Save summary as a restructured text file. :param data: Data to fill template with :param type: dictionary :param template_filename: The filename of the template to fill :type template_filename: string :param output_file: The full path with filename of the output file to write :type output_file: string """ if isinstance(output_file, str): with open(output_file, "w") as f: f.write(render_summary(data, template_filename)) ``` #### File: gagepy/gagepy/parameter.py ```python import os import numpy as np from jinja2 import Template, PackageLoader, Environment from .plotting import plot_parameter, plot_parameter_html from .output import render_summary class Parameter(object): """ A class that contains data and functionality of a timeseries parameter. :param name: Name of the parameter :type name: string :param dates: Array of datetime objects :type dates: numpy.ndarray :param values: Array of data values :type values: numpy.ndarray :param units: Units of the parameter :type param: string :param code: A numeric code identifier of the parameter; default of None .. warning:: Length of dates and length of values must be equal to be a valid timeseries parameter. """ template_rst = "parameter-summary-template.rst" template_html = "parameter-summary-template.html" def __init__(self, name, dates, values, units, code=None): assert len(dates) == len(values), "Length of dates {0} does not equal length of values {1}".format(len(dates), len(values)) self.name = name self.dates = dates self.values = values self.units = units self.code = code @property def mean(self): """Get the mean ignoring any NaN values""" return np.nanmean(self.values) @property def max(self): """Get the maximum ignoring any NaN values""" return np.nanmax(self.values) @property def min(self): """Get the minimum ignoring any NaN values""" return np.nanmin(self.values) @property def max_date(self): """Get the date that the maximum value occurred on""" max_index = np.nanargmax(self.values) return self.dates[max_index] @property def min_date(self): """Get the date that the min value occurred on""" min_index = np.nanargmin(self.values) return self.dates[min_index] def get_summary_data(self): """Return a dictionary of the data for the summary""" return {"name": self.name, "units": self.units, "mean": self.mean, "max": self.max, "min": self.min, "max_date": self.max_date, "min_date": self.min_date, "start_date": self.dates[0], "end_date": self.dates[-1], "num_vals": len(self.values), "plot": self.plot_html(), } def __str__(self): """Return a formatted view of the data""" return render_summary(self.get_summary_data(), self.template_rst) def plot_html(self): """Return an html string represenation of the figure""" return plot_parameter_html(self.dates, self.values, self.name, self.units) def plot(self, path=""): """Show and optionally save plot.""" plot_parameter(self.dates, self.values, self.mean, self.max, self.min, self.name, self.units, path) ``` #### File: gagepy/gagepy/utils.py ```python import os import numpy as np import datetime import re def get_file_paths(dirname, file_ext): """Return a list of absolute file paths for certain files files in a directory. Walks through subdirectories. :param dirname: Name of directory to start walking :type dirname: string :param file_ext: File extension to look for :file_ext type: string :returns: List of absolute file paths :rtype: list """ file_paths = [] for root, directories, files in os.walk(directory): for filename in files: filepath = os.path.join(root, filename) if file_ext and filepath.endswith(file_ext): file_paths.append(filepath) return file_paths def get_file_info(filepath): """Return a file's directory and name for a file path. :param filepath: Path to file :type filepath: string :returns: File directory and file name :type: tuple """ filedir, filename = os.path.split(filepath) # filedir is an empty string when file is in current directory if not filedir: filedir = os.getcwd() return filedir, filename def rmchars(value): """Remove special characters from alphanumeric values except for period (.) and negative (-) characters. :param value: Alphanumeric value :type value: string :returns: Alphanumeric value stripped of any special characters :rtype: string >>> import utils >>> utils.rmchars(value = "*6.5_") '6.5' >>> utils.rmchars(value = "ICE") 'ICE' >>> utils.rmchars(value = "-4.2") '-4.2' >>> utils.rmchars(value = "%&!@#8.32&#*;") '8.32' """ value = re.sub("[^A-Za-z0-9.-]+", "", value) return value def is_float(value): """Return True if a string value can be converted to a float and False otherwise. :param value: Value to check :rtype: bool >>> import utils >>> utils.is_float(value = "2.5") True >>> utils.is_float(value = "hello world") False >>> utils.is_float(value = "5.5_") False """ try: float(value) return True except ValueError: return False def to_float(value): """Convert a value to a float type. :param value: Value to convert to float :returns: Value as a float :rtype: float """ value = rmchars(value) if is_float(value): return float(value) else: raise ValueError("Can not convert {} value to a float".format(value)) def to_nan(value, msg=None): """Convert a value to a numpy nan and print a message if available. :param value: Value to convert to nan :type value: :param msg: Optional message to print to screen :returns: Numpy nan value :rtype: float """ if msg: print(msg) return np.nan def subset_data(dates, values, start_date, end_date): """Return a subset of date and value arrays to match the range of dates between a given start_date and end_date. If start_date and end_date are not within the range of dates specified in dates, then the start_date and end_date are set to the first and last dates in the dates array. :param dates: Array of dates as datetime objects :type dates: numpy.ndarray :param values: Array of numeric values :type values: numpy.ndarray :param start_date: A datetime object :type start_date: datetime.datetime :param end_date: A datetime object :type end_date: datetime.datetime :returns: A subset of dates and values :rtype: tuple """ if len(dates) != len(values): raise ValueError("Length of dates {} does not equal length of values {}".format(len(dates), len(values))) else: # if start_date or end_date are not within dates, set them to the first and last elements in dates if start_date < dates[0] or start_date > dates[-1]: start_date = dates[0] if end_date > dates[-1] or end_date < dates[0]: end_date = dates[-1] # find start and ending indices; have to convert idx from array to int to slice start_idx = int(np.where(dates == start_date)[0]) end_idx = int(np.where(dates == end_date)[0]) # subset variable and date range; date_subset = dates[start_idx:end_idx + 1] values_subset = values[start_idx:end_idx + 1] return date_subset, values_subset def find_start_end_dates(dates1, dates2): """Find start and end dates between lists (or arrays) of datetime objects that do not have the same length. The start date will be the later of two dates. The end date will be the earlier of the two dates. :param dates1: List or array of datetime objects :type dates1: list or numpy.ndarray :param dates2: List or array of datetime objects :type dates2: list or numpy.ndarray :returns: Tuple of start date and end date :rtype: tuple :raises: ValueError for non overlapping dates """ # convert dates to sets for set intersection date1_set = set(dates1) date2_set = set(dates2) if date1_set.intersection(date2_set): # start date if dates2[0] > dates1[0]: start_date = dates2[0] else: start_date = dates1[0] # end date if dates2[-1] > dates1[-1]: end_date = dates1[-1] else: end_date = dates2[-1] return start_date, end_date else: raise ValueError("No overlapping dates.") def add_ending(file, suffix, ext, delimiter="-"): """Add a new ending to a filename, :param file: File or path to file :type file: string :param suffix: Suffix to add to end of file :type suffix: string :param ext: File extension :type ext: string :param delimiter: Delimiter, default is the dash character :type delimiter: string :returns: New file :rtype: string .. note:: Spaces in filenames are replaced by delimiter to keep with Unix file naming conventions. >>> import utils >>> utils.add_ending(file="dv.txt", suffix="summary", ext=".txt") 'dv-summary.txt' >>> utils.add_ending(file="dv.rdb", suffix="summary", ext=".rst", delimiter="_") 'dv_summary.rst' >>> utils.add_ending(file="/home/play/dv.rdb", suffix="summary", ext=".rst") '/home/play/dv-summary.rst' >>> utils.add_ending(file="daily values.rdb", suffix="summary", ext=".rst") 'daily-values-summary.rst' """ assert isinstance(file, str), "File must be a string." assert isinstance(suffix, str), "Suffix must be a string." assert isinstance(ext, str), "Extension must be a string." assert isinstance(delimiter, str), "Delimiter must be a string." path, fullname = os.path.split(file) name, ext_orig = os.path.splitext(fullname) parts = name.split() if suffix: parts.append(suffix) if ext: newname = delimiter.join(parts) + ext else: newname = delimiter.join(parts) + ext_orig return os.path.join(path, newname) ``` #### File: gagepy/tests/test_output.py ```python import pytest import os import numpy as np from gagepy.usgsgage import USGSGage from gagepy.parameter import Parameter from gagepy import output def test_save_usgs_gage_summary_rst(dates_daily): usgs_gage = USGSGage(name = "USGS 03290500 KENTUCKY RIVER AT LOCK 2 AT LOCKPORT, KY", parameters = [ Parameter(name = "Discharge", dates = dates_daily, values = np.array([1, 2, 3, 4, 5]), units = "cubic feet per second (Mean)", code = "06_00060_00003"), Parameter(name = "Stage", dates = dates_daily, values = np.array([2, 4, 6, 8, 10]), units = "feet", code = "03_00065") ]) output.save_summary(data = usgs_gage.get_summary_data(), template_filename = usgs_gage.template_rst, output_file = "tests/usgsgage-summary.rst") def test_save_usgs_gage_summary_html(dates_daily): usgs_gage = USGSGage(name = "USGS 03290500 KENTUCKY RIVER AT LOCK 2 AT LOCKPORT, KY", parameters = [ Parameter(name = "Discharge", dates = dates_daily, values = np.array([1, 2, 3, 4, 5]), units = "cubic feet per second (Mean)", code = "06_00060_00003"), Parameter(name = "Stage", dates = dates_daily, values = np.array([2, 4, 6, 8, 10]), units = "feet", code = "03_00065") ]) output.save_summary(data = usgs_gage.get_summary_data(), template_filename = usgs_gage.template_html, output_file = "tests/usgsgage-summary.html") def test_save_parameter_summary_rst(dates_daily): parameter = Parameter(name = "Discharge", dates = dates_daily, units = "cubic feet per second (Mean)", code = "06_00060_00003", values = np.array([1, 2, 3, 4, 5])) output.save_summary(data = parameter.get_summary_data(), template_filename = parameter.template_rst, output_file = "tests/parameter-summary.rst") def test_parameter_save_summary_html(dates_daily): parameter = Parameter(name = "Discharge", dates = dates_daily, units = "cubic feet per second (Mean)", code = "06_00060_00003", values = np.array([1, 2, 3, 4, 5])) output.save_summary(data = parameter.get_summary_data(), template_filename = parameter.template_html, output_file = "tests/parameter-summary.html") ``` #### File: gagepy/tests/test_rdb.py ```python import pytest import os import numpy as np import re from io import StringIO from datetime import datetime from gagepy import rdb from gagepy.usgsgage import USGSGage from gagepy.usgsgage import Parameter def test_parse_gage_name(): expected = "USGS 03290500 KENTUCKY RIVER AT LOCK 2 AT LOCKPORT, KY" line = "# USGS 03290500 KENTUCKY RIVER AT LOCK 2 AT LOCKPORT, KY" match = re.search(rdb.gage_name_re, line) actual = match.group(2) assert actual == expected def test_match_parameter_code_with_statistic_code(): expected = ("#", "06", "00060", "\t00003", "\tDischarge, cubic feet per second (Mean)") line = "#\t06\t00060\t00003\tDischarge, cubic feet per second (Mean)" match = re.search(rdb.parameter_code_re, line) actual = match.groups(0) assert actual == expected def test_match_parameter_code_without_statistic_code(): expected = ("#", "03", "00065", 0, "\tGage height, feet") line = "#\t03\t00065\tGage height, feet" match = re.search(rdb.parameter_code_re, line) actual = match.groups(0) assert actual == expected def test_parse_parameter_code(): expected = ("06_00060_00003", "Discharge, cubic feet per second (Mean)") line = "#\t06\t00060\t00003\tDischarge, cubic feet per second (Mean)" match = re.search(rdb.parameter_code_re, line) actual = rdb.parse_parameter_code(match) assert actual == expected def test_parse_daily_column_names(): expected = [ "agency_cd", "site_no", "datetime", "06_00060_00003", "06_00060_00003_cd" ] line = "agency_cd\tsite_no\tdatetime\t06_00060_00003\t06_00060_00003_cd" match = re.search(rdb.column_names_re, line) actual = match.group(0).split("\t") assert actual == expected def test_parse_instantaneous_column_names(): expected = [ "agency_cd", "site_no", "datetime", "tz_cd", "03_00065", "03_00065_cd" ] line = "agency_cd\tsite_no\tdatetime\ttz_cd\t03_00065\t03_00065_cd" match = re.search(rdb.column_names_re, line) actual = match.group(0).split("\t") assert actual == expected def test_match_data_row(): expected = ("USGS", "03290500", "2012-07-01", 0, "171\tA") line = "USGS\t03290500\t2012-07-01\t171\tA" match = re.search(rdb.data_row_re, line) actual = match.groups(0) assert actual == expected def test_parse_daily_date(): expected = datetime(2015, 8, 1, 0, 0) actual = rdb.parse_daily_date("2015-08-01") assert actual == expected def test_parse_instantaneous_date(): expected = datetime(2015, 8, 1, 0, 15) actual = rdb.parse_instantaneous_date(date = "2015-08-01", time = "00:15\tEDT") assert actual == expected def test_parse_description(): assert rdb.parse_description("Temperature, water, degrees Celsius") == ("Temperature", "degrees Celsius") assert rdb.parse_description("Dissolved oxygen, water, unfiltered, milligrams per liter") == ("Dissolved oxygen", "milligrams per liter") def test_usgs_gage_for_daily_single_parameter(dates_daily, daily_value_file_single_parameter): filestream = StringIO(daily_value_file_single_parameter) usgs_gage = rdb.read_rdb_in(filestream) assert usgs_gage.name == "USGS 03290500 KENTUCKY RIVER AT LOCK 2 AT LOCKPORT, KY" assert len(usgs_gage.parameters) == 1 assert list(usgs_gage.parameters[0].dates) == list(dates_daily) assert usgs_gage.parameters[0].code == "06_00060_00003" assert usgs_gage.parameters[0].name == "Discharge" assert usgs_gage.parameters[0].units == "cubic feet per second (Mean)" assert list(usgs_gage.parameters[0].values) == list(np.array([100, 110, 105, 107, 112])) def test_usgs_gage_for_instantaneous_single_parameter(dates_instantaneous, instantaneous_value_file_single_parameter): filestream = StringIO(instantaneous_value_file_single_parameter) usgs_gage = rdb.read_rdb_in(filestream) assert usgs_gage.name == "USGS 11143000 BIG SUR R NR BIG SUR CA" assert len(usgs_gage.parameters) == 1 assert list(usgs_gage.parameters[0].dates) == list(dates_instantaneous) assert usgs_gage.parameters[0].code == "03_00065" assert usgs_gage.parameters[0].name == "Gage height" assert usgs_gage.parameters[0].units == "feet" assert list(usgs_gage.parameters[0].values) == list(np.array([5, 10, 15, 4.5, 5.5])) def test_usgs_gage_for_instantaneous_multi_parameter(dates_instantaneous, instantaneous_value_file_multi_parameter): filestream = StringIO(instantaneous_value_file_multi_parameter) usgs_gage = rdb.read_rdb_in(filestream) assert usgs_gage.name == "USGS 03401385 DAVIS BRANCH AT HIGHWAY 988 NEAR MIDDLESBORO, KY" assert len(usgs_gage.parameters) == 3 assert usgs_gage.parameters[0].code == "02_00065" assert usgs_gage.parameters[1].code == "03_00010" assert usgs_gage.parameters[2].code == "04_00300" assert usgs_gage.parameters[0].name == "Gage height" assert usgs_gage.parameters[1].name == "Temperature" assert usgs_gage.parameters[2].name == "Dissolved oxygen" assert usgs_gage.parameters[0].units == "feet" assert usgs_gage.parameters[1].units == "degrees Celsius" assert usgs_gage.parameters[2].units == "milligrams per liter" assert list(usgs_gage.parameters[0].dates) == list(dates_instantaneous) assert list(usgs_gage.parameters[1].dates) == list(dates_instantaneous) assert list(usgs_gage.parameters[2].dates) == list(dates_instantaneous) assert list(usgs_gage.parameters[0].values) == list(np.array([1, 2, 3, 4, 5])) assert list(usgs_gage.parameters[1].values) == list(np.array([5, 10, 15, 20, 25])) assert list(usgs_gage.parameters[2].values) == list(np.array([2.0, 1.25, 1.20, 0.5, 0.75])) def test_usgs_gage_for_daily_single_parameter_bad_data_row_formatting(dates_daily, daily_value_file_single_parameter_bad_formatting): filestream = StringIO(daily_value_file_single_parameter_bad_formatting) usgs_gage = rdb.read_rdb_in(filestream) assert usgs_gage.name == "USGS 03290500 KENTUCKY RIVER AT LOCK 2 AT LOCKPORT, KY" assert len(usgs_gage.parameters) == 1 assert usgs_gage.parameters[0].code == "06_00060_00003" assert usgs_gage.parameters[0].name == "Discharge" assert usgs_gage.parameters[0].units == "cubic feet per second (Mean)" assert list(usgs_gage.parameters[0].dates) == list(dates_daily) assert list(usgs_gage.parameters[0].values) == list(np.array([10, 20, 30, 40, 50])) def test_usgs_gage_for_instantaneous_single_parameter_missing_data(dates_instantaneous, instantaneous_value_file_single_parameter_missing_data): filestream = StringIO(instantaneous_value_file_single_parameter_missing_data) usgs_gage = rdb.read_rdb_in(filestream) assert usgs_gage.name == "USGS 11143000 BIG SUR R NR BIG SUR CA" assert len(usgs_gage.parameters) == 1 assert usgs_gage.parameters[0].code == "03_00065" assert usgs_gage.parameters[0].name == "Gage height" assert usgs_gage.parameters[0].units == "feet" assert list(usgs_gage.parameters[0].dates) == list(dates_instantaneous) np.testing.assert_almost_equal(usgs_gage.parameters[0].values, np.array([5, 10, np.nan, np.nan, 5.5])) def test_usgs_gage_for_instantaneous_single_parameter_bad_characters_data_raises_value_error(dates_instantaneous, instantaneous_value_file_single_parameter_bad_characters): filestream = StringIO(instantaneous_value_file_single_parameter_bad_characters) with pytest.raises(ValueError) as verror: usgs_gage = rdb.read_rdb_in(filestream) assert str(verror.value) == "Can not convert Ice value to a float" def test_read_rdb_raises_invalidrdb(): gagepy_dirpath = os.path.abspath(__file__ + "/../../") bad_filepath = os.path.join(gagepy_dirpath, "README.rst") with pytest.raises(Exception) as error: usgs_gage = rdb.read_rdb(bad_filepath) assert str(error.value) == "{0} is not a valid RDB file.".format(bad_filepath) ``` #### File: gagepy/tests/test_utils.py ```python import pytest import numpy as np from gagepy import utils from datetime import datetime import os def test_is_float(): assert utils.is_float(6.25) == True assert utils.is_float("6.25") == True assert utils.is_float("2.5_") == False assert utils.is_float("hello") == False def test_to_float(): assert utils.to_float("6.25") == 6.25 assert utils.to_float("*2.5_") == 2.5 def test_rmchars(): assert utils.rmchars("6.5_") == "6.5" assert utils.rmchars("*$^**(@4.25_+;") == "4.25" assert utils.rmchars("-4.1") == "-4.1" def test_subset_data_dates_within_range(dates_and_values): start = datetime(2015, 1, 4) end = datetime(2015, 1, 10) expected_dates = np.array([datetime(2015, 1, 4, 0, 0), datetime(2015, 1, 5, 0, 0), datetime(2015, 1, 6, 0, 0), datetime(2015, 1, 7, 0, 0), datetime(2015, 1, 8, 0, 0), datetime(2015, 1, 9, 0, 0), datetime(2015, 1, 10, 0, 0)]) expected_values = np.array([3, 4, 5, 6, 7, 8, 9]) actual_dates, actual_values = utils.subset_data(dates = dates_and_values[0], values = dates_and_values[1], start_date = start, end_date = end) assert list(actual_dates) == list(expected_dates) assert list(actual_values) == list(expected_values) def test_subset_data_dates_outside_range(dates_and_values): start = datetime(2014, 12, 1) end = datetime(2015, 1, 20) expected_dates = np.array([datetime(2015, 1, 1, 0, 0), datetime(2015, 1, 2, 0, 0), datetime(2015, 1, 3, 0, 0), datetime(2015, 1, 4, 0, 0), datetime(2015, 1, 5, 0, 0), datetime(2015, 1, 6, 0, 0), datetime(2015, 1, 7, 0, 0), datetime(2015, 1, 8, 0, 0), datetime(2015, 1, 9, 0, 0), datetime(2015, 1, 10, 0, 0), datetime(2015, 1, 11, 0, 0)]) expected_values = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) actual_dates, actual_values = utils.subset_data(dates = dates_and_values[0], values = dates_and_values[1], start_date = start, end_date = end) assert list(actual_dates) == list(expected_dates) assert list(actual_values) == list(expected_values) def test_find_start_end_dates_shorter_range(dates_and_values, dates_shorter): expected_start_date = datetime(2015, 1, 3, 0, 0) expected_end_date = datetime(2015, 1, 11, 0, 0) actual_start_date, actual_end_date = utils.find_start_end_dates(dates_and_values[0], dates_shorter) assert actual_start_date == expected_start_date assert actual_end_date == expected_end_date def test_find_start_end_dates_longer_range(dates_and_values, dates_longer): expected_start_date = datetime(2015, 1, 1, 0, 0) expected_end_date = datetime(2015, 1, 11, 0, 0) actual_start_date, actual_end_date = utils.find_start_end_dates(dates_and_values[0], dates_longer) assert actual_start_date == expected_start_date assert actual_end_date == expected_end_date def test_add_ending(): assert utils.add_ending(file="dv.txt", suffix="summary", ext=".txt") == "dv-summary.txt" assert utils.add_ending(file="dv.txt", suffix="", ext=".rst") == "dv.rst" assert utils.add_ending(file="dv.txt", suffix="", ext="") == "dv.txt" assert utils.add_ending(file="dv.txt", suffix="summary", ext="") == "dv-summary.txt" assert utils.add_ending(file="dv.rdb", suffix="summary", ext=".rst", delimiter="_") == "dv_summary.rst" assert utils.add_ending(file=os.path.join(os.path.sep, "home", "play", "dv.rdb"), suffix="summary", ext=".rst") == os.path.join(os.path.sep, "home", "play", "dv-summary.rst") assert utils.add_ending(file="daily values.rdb", suffix="summary", ext=".rst") == "daily-values-summary.rst" assert utils.add_ending(file="usgs daily values.rdb", suffix="summary", ext=".rst", delimiter="_") == "usgs_daily_values_summary.rst" with pytest.raises(AssertionError) as error: utils.add_ending(file=True, suffix="summary", ext=".txt") with pytest.raises(AssertionError) as error: utils.add_ending(file="dv.txt", suffix=2, ext=".txt") assert str(error.value) == "Suffix must be a string." with pytest.raises(AssertionError) as error: utils.add_ending(file="dv.txt", suffix="summary", ext=4.5) assert str(error.value) == "Extension must be a string." with pytest.raises(AssertionError) as error: utils.add_ending(file="dv.txt", suffix="summary", ext=".txt", delimiter=5) assert str(error.value) == "Delimiter must be a string." ```
{ "source": "jlantner/loans", "score": 3 }
#### File: loans/polls/tests.py ```python import datetime from django.utils import timezone from django.test import TestCase from django.urls import reverse from .models import Question def create_question(question_text,days): time=timezone.now() + datetime.timedelta(days=days) return Question.objects.create(question_text=question_text, pub_date=time) class QuestionModelTests(TestCase): #def test_date(self): # self.assertIs(date(),timezone.now()) def test_was_published_recently_with_future_question(self): """ was_published_recently() returns False for questions whose pub_date is in the future. """ time = timezone.now() + datetime.timedelta(days=30) future_question = Question(pub_date=time) self.assertIs(future_question.was_published_recently(), False) def test_was_published_recently_with_old_question(self): time = timezone.now() - datetime.timedelta(days=1,seconds=1) old_question=Question(pub_date=time) self.assertIs(old_question.was_published_recently(),False) def test_was_published_recently_with_recent_question(self): time = timezone.now()-datetime.timedelta(hours=23,minutes=59,seconds=59) recent_question=Question(pub_date=time) self.assertIs(recent_question.was_published_recently(),True) class QuestionIndexViewTests(TestCase): def test_no_questions(self): response = self.client.get(reverse('polls:index')) self.assertEqual(response.status_code,200) self.assertContains(response, "No polls are available.") self.assertQuerysetEqual(response.context['latest_question_list'],[]) def test_past_question(self): create_question(question_text="Past question.", days=-30) response = self.client.get(reverse('polls:index')) self.assertQuerysetEqual( response.context['latest_question_list'],['<Question: Past question.>']) def test_future_question(self): future_question = create_question(question_text="Future question.",days=30) response = self.client.get(reverse('polls:index')) self.assertContains(response, "Future question") self.assertQuerysetEqual(response.context['latest_question_list'],[]) def test_future_question_and_past_question(self): create_question(question_text="Past question.", days=-30) create_question(question_text="Future question.", days=30) response = self.client.get(reverse('polls:index')) self.assertQuerysetEqual(response.context['latest_question_list'],['<Question: Past question.>']) def test_two_past_questions(self): create_question(question_text="Past question 1.", days=-30) create_question(question_text="Past question 2.", days=-5) response = self.client.get(reverse('polls:index')) self.assertQuerysetEqual(response.context['latest_question_list'],['<Question: Past question 2.>', '<Question: Past question 1.>']) class QuestionDetailViewTests(TestCase): def test_future_question(self): future_question=create_question(question_text='Future question.',days=5) url = reverse('polls:detail',args=(future_question.id,)) response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_past_question(self): past_question = create_question(question_text='Past Question.', days=-5) url = reverse('polls:detail', args=(past_question.id,)) response = self.client.get(url) self.assertContains(response, past_question.question_text) ```
{ "source": "jlant/nwispy", "score": 3 }
#### File: nwispy/nwispy/nwispy_helpers.py ```python __author__ = "<NAME>, <EMAIL>, U.S. Geological Survey, Kentucky Water Science Center." __copyright__ = "http://www.usgs.gov/visual-id/credit_usgs.html#copyright" __license__ = __copyright__ __contact__ = __author__ import os import numpy as np import datetime import re import logging def now(): """ Return current date and time in a format that can be used as a file name. Format: year-month-day_hour.minute.second.microsecond; e.g. 2014-03-18_15.51.46.25 Returns ------- date_time : string String of current date and time in %Y-%m-%d_%H.%M.%S.%f format. Notes ----- The length of the microsecond string is trimed to 2 digits. """ date_time = datetime.datetime.now().strftime("%Y-%m-%d_%H.%M.%S.%f")[:-4] return date_time def get_file_paths(directory, file_ext = None): """ Return a list of full file paths from a directory including its subdirectories. Filter fil Parameters ---------- directory : string String path file_ext : string String file extention; e.g. ".txt" Returns ------- file_paths : list List of strings of full file paths from a directory. """ file_paths = [] # Walk the tree. for root, directories, files in os.walk(directory): for filename in files: filepath = os.path.join(root, filename) if file_ext and filepath.endswith(file_ext): file_paths.append(filepath) return file_paths def get_file_info(path): """ Get file directory and name from a file path. Parameters ---------- path : string String path Returns ------- filedir : string String file directory path filename : string String file name """ filedir, filename = os.path.split(path) # filedir is an empty string when file is in current directory if not filedir: filedir = os.getcwd() return filedir, filename def make_directory(path, directory_name): """ Make a directory if is does not exist. Parameters ---------- path: string String path directory_name : string String name Returns ------- directory_path : string String path to made directory. """ directory_path = os.path.join(path, directory_name) if not os.path.exists(directory_path): os.makedirs(directory_path) return directory_path def isfloat(value): """ Determine if string value can be converted to a float. Return True if value can be converted to a float and False otherwise. Parameters ---------- value : string String value to try to convert to a float. Returns ------- bool : bool Examples -------- >>> import nwispy_helpers >>> nwispy_helpers.isfloat(value = "2.5") True >>> nwispy_helpers.isfloat(value = "hello world") False >>> nwispy_helpers.isfloat(value = "5.5_") False """ try: float(value) return True except ValueError: return False def rmspecialchars(value): """ Remove any special characters except period (.) and negative (-) from numeric values Parameters ---------- value : string String value to remove any existing characters from Returns ------- value : string String value to without any special characters Examples -------- >>> import helpers >>> helpers.rmspecialchars(value = "*6.5_") 6.5 >>> helpers.rmspecialchars(value = "ICE") ICE >>> helpers.rmspecialchars(value = "-4.2") -4.2 >>> helpers.rmspecialchars(value = "") >>> helpers.rmspecialchars(value = "%&!@#8.32&#*;") 8.32 """ value = re.sub("[^A-Za-z0-9.-]+", "", value) return value def convert_to_float(value, helper_str = None): """ Convert a value to a float. If value is not a valid float, log as an error with a helper_str (e.g. value"s coorsponding date) to help locate the error and replace value with a nan. Parameters ---------- value : string String value to convert. helper_str : string String message to be placed in error log if value can not be converted to a float. e.g. value"s corresponding date of occurance. Returns ------- value : {float, nan} Float or numpy nan value """ # remove any special characters present in string value value = rmspecialchars(value) if isfloat(value): value = float(value) else: if value == "": error_str = "*Missing value* {}. *Solution* - Replacing with NaN value".format(helper_str) logging.warn(error_str) value = np.nan else: error_str = "*Bad value* {}. *Solution* - Replacing with NaN value".format(helper_str) logging.warn(error_str) value = np.nan return value def create_monthly_dict(): """ Create a dictionary containing monthly keys and empty lists as initial values Returns ------- values_dict : dictionary Dictionary containing monthly keys with corresponding values. Notes ----- {"January": [], "February": [], "March": [], "April": [], "May": [], "June": [], "July": [], "August": [], "September": [], "October": [], "November": [], "December": [] } """ months = ["January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"] # initialize dictionary monthly_dict = {} for month in months: monthly_dict[month] = [] return monthly_dict def compute_simple_stats(data): """ Compute simple statistics (mean, max, min) on a data array. Can handle nan values. If the entire data array consists of only nan values, then log the error and raise a ValueError. Parameters ---------- data : array An array of numbers to compute simple statistics on. Returns ------- (mean, max, min) : tuple Returns a tuple of mean, max, and min stats. Raises ------ ValueError If data array only contains nan values. Examples -------- >>> import watertxt >>> import numpy as np >>> watertxt.compute_simple_stats([1, 2, 3, 4]) (2.5, 4, 1) >>> watertxt.compute_simple_stats([2, np.nan, 6, 1]) (3.0, 6.0, 1.0) """ # check if all values are nan if not np.isnan(data).all(): param_mean = np.nanmean(data) param_max = np.nanmax(data) param_min = np.nanmin(data) return param_mean, param_max, param_min else: error_str = "*Bad data* All values are NaN. Please check data" logging.warn(error_str) raise ValueError def subset_data(dates, values, start_date, end_date): """ Subset the dates and values arrays to match the range of the start_date and end_date. If start_date and end_date are not within the range of dates specified in dates, then the start_date and end_date are set to the first and last dates in the array dates. Parameters ---------- dates : array Array of dates as datetime objects. data : array Array of numbers. start_date : datetime object A date as a datetime object. end_date : datetime object A date as a datetime object. Returns ------- (subset_dates, subset_values) : tuple Tuple of arrays of dates and values that were subsetted. """ if len(dates) != len(values): raise ValueError("Lengths of dates and values are not equal!") else: # if start_date or end_date are not within dates, set them to the # first and last elements in dates if start_date < dates[0] or start_date > dates[-1]: start_date = dates[0] if end_date > dates[-1] or end_date < dates[0]: end_date = dates[-1] # find start and ending indices; have to convert idx from array to int to slice start_idx = int(np.where(dates == start_date)[0]) end_idx = int(np.where(dates == end_date)[0]) # subset variable and date range; date_subset = dates[start_idx:end_idx + 1] values_subset = values[start_idx:end_idx + 1] return date_subset, values_subset def find_start_end_dates(dates1, dates2): """ Find start and end dates between two different sized arrays of datetime objects. Parameters ---------- dates1 : list List of datetime objects. dates2 : list List of datetime objects. Returns ------- (start_date, end_date) : tuple Tuple of datetime objects. """ # make sure that dates overlap date1_set = set(dates1) date2_set = set(dates2) if date1_set.intersection(date2_set): # pick later of two dates for start date; pick earlier of two dates for end date if dates2[0] > dates1[0]: start_date = dates2[0] else: start_date = dates1[0] if dates2[-1] > dates1[-1]: end_date = dates1[-1] else: end_date = dates2[-1] return start_date, end_date else: raise ValueError("No matching dates for find_start_end_dates()") def _print_test_info(expected, actual): """ For testing purposes, assert that all expected values and actual values match. Prints assertion error when there is no match. Prints values to user to scan if interested. Helps a lot for debugging. This function mirrors what is done in nosetests. Parameters ---------- expected : dictionary Dictionary holding expected data values actual : dictionary Dictionary holding expected data values """ for key in actual.keys(): np.testing.assert_equal(actual[key], expected[key], err_msg = "For key * {} *, actual value(s) * {} * do not equal expected value(s) * {} *".format(key, actual[key], expected[key])) print("*{}*".format(key)) print(" actual: {}".format(actual[key])) print(" expected: {}\n".format(expected[key])) def test_now(): """ Test now() """ print("--- Testing now() ---") date_time_str = now() print("Right now is: ") print(" {}".format(date_time_str)) print("") def test_get_filepaths(): """ Test get_filepaths() """ print("--- Testing get_filepaths() ---") file_paths = get_file_paths(os.getcwd(), file_ext = "py") print("File paths are:") print(" {}".format(file_paths)) print("") def test_get_file_info(): """ Test get_file_info functionality """ print("--- Testing get_file_info ---") # expected values expected = {} expected["filedir"] = "C:\Users\jlant\jeremiah\projects\python-projects\waterapputils\waterapputils" expected["filename"] = "helpers.py" # actual values actual = {} actual["filedir"], actual["filename"] = get_file_info(path = os.path.join(os.getcwd(), "helpers.py")) # print results _print_test_info(actual, expected) def test_make_directory(): """ Test make_directory() """ print("---- Testing make_directory() ----") # expected values expected = {"directory_path" : "C:\Users\jlant\jeremiah\projects\python-projects\waterapputils\waterapputils\Testing"} # actual values actual = {"directory_path": make_directory(path = os.getcwd(), directory_name = "Testing")} # print results _print_test_info(actual, expected) def test_isfloat(): """ Test isfloat() """ print("--- Testing isfloat() ---") # expected values expected = {"2.5": True, "2": True, "string 2.5": True, "hello world": False, "2.5_": False} # actual values actual = {"2.5": isfloat(2.5), "2": isfloat(2), "string 2.5": isfloat("2.5"), "hello world": isfloat("hello world"), "2.5_": isfloat("2.5_")} # print results _print_test_info(actual, expected) def test_convert_to_float(): """ Test convert_to_float() """ print("--- Testing convert_to_float() ---") # expected values expected = {"4.2": 4.2, "blanks": np.nan} # actual values actual = {"4.2": convert_to_float(value = "4.2", helper_str = "My help message"), "blanks": convert_to_float(value = "", helper_str = "My help message")} # print results _print_test_info(actual, expected) def test_rmspecialchars(): """ Test rmspecialchars() """ print("--- Testing rmspecialchars() ---") # expected values expected = {"*6.5_": "6.5", "blanks": "", "*$^**(@4.2_+;": "4.2", "-3.6": "-3.6"} # actual values actual = {"*6.5_": rmspecialchars("*6.5_"), "blanks": rmspecialchars(""), "*$^**(@4.2_+;": rmspecialchars("*$^**(@4.2_+;"), "-3.6": rmspecialchars("-3.6")} # print results _print_test_info(actual, expected) def test_create_monthly_dict(): """ Test create_monthly_dict """ print("--- Testing create_monthly_dict ---") # expected values expected = {"January": [], "February": [], "March": [], "April": [], "May": [], "June": [], "July": [], "August": [], "September": [], "October": [], "November": [], "December": []} # actual values actual = create_monthly_dict() # print results _print_test_info(actual, expected) def test_subset_data(): """ Test subset_data() """ print("--- Testing subset_data() for dates within start date and end date ---") # expected values expected = {"dates_within_range": [datetime.datetime(2014, 1, 4, 0, 0), datetime.datetime(2014, 1, 5, 0, 0), datetime.datetime(2014, 1, 6, 0, 0), datetime.datetime(2014, 1, 7, 0, 0), datetime.datetime(2014, 1, 8, 0, 0), datetime.datetime(2014, 1, 9, 0, 0), datetime.datetime(2014, 1, 10, 0, 0)], "values_within_range": np.array([3, 4, 5, 6, 7, 8, 9]), "dates_outside_range": [datetime.datetime(2014, 1, 1, 0, 0), datetime.datetime(2014, 1, 2, 0, 0), datetime.datetime(2014, 1, 3, 0, 0), datetime.datetime(2014, 1, 4, 0, 0), datetime.datetime(2014, 1, 5, 0, 0), datetime.datetime(2014, 1, 6, 0, 0), datetime.datetime(2014, 1, 7, 0, 0), datetime.datetime(2014, 1, 8, 0, 0), datetime.datetime(2014, 1, 9, 0, 0), datetime.datetime(2014, 1, 10, 0, 0), datetime.datetime(2014, 1, 11, 0, 0)], "values_outside_range": np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) } # data for subset_data function dates = np.array([datetime.datetime(2014, 01, 01) + datetime.timedelta(i) for i in range(11)]) values = np.array([i for i in range(11)]) # actual values actual = {} actual["dates_within_range"], actual["values_within_range"] = subset_data(dates, values, start_date = datetime.datetime(2014, 01, 04), end_date = datetime.datetime(2014, 01, 10)) actual["dates_outside_range"], actual["values_outside_range"] = subset_data(dates, values, start_date = datetime.datetime(2013, 12, 01), end_date = datetime.datetime(2014, 01, 20)) # print results _print_test_info(actual, expected) def test_find_start_end_dates1(): """ Testing find_start_end_dates() """ print("--- Testing find_start_end_dates() part 1 ---") # expected values expected = {"start_date": datetime.datetime(2014, 01, 03), "end_date": datetime.datetime(2014, 01, 11)} # first element of dates2 being 2 days later than first element of dates1") dates1 = [datetime.datetime(2014, 01, 01) + datetime.timedelta(i) for i in range(11)] dates2 = [datetime.datetime(2014, 01, 03)+ datetime.timedelta(i) for i in range(11)] # actual values actual = {} actual["start_date"], actual["end_date"] = find_start_end_dates(dates1, dates2) # print results _print_test_info(actual, expected) def test_find_start_end_dates2(): """ Testing find_start_end_dates() """ print("--- Testing find_start_end_dates() part 2 ---") # expected values expected = {"start_date": datetime.datetime(2014, 01, 04), "end_date": datetime.datetime(2014, 01, 12)} # first element of dates1 being 2 days later than first element of dates1") dates1 = [datetime.datetime(2014, 01, 04) + datetime.timedelta(i) for i in range(11)] dates2 = [datetime.datetime(2014, 01, 02)+ datetime.timedelta(i) for i in range(11)] # actual values actual = {} actual["start_date"], actual["end_date"] = find_start_end_dates(dates1, dates2) # print results _print_test_info(actual, expected) def main(): """ Test functionality of helpers """ test_now() test_get_filepaths() test_get_file_info() test_make_directory() test_isfloat() test_convert_to_float() test_rmspecialchars() test_create_monthly_dict() test_subset_data() test_find_start_end_dates1() test_find_start_end_dates2() if __name__ == "__main__": main() ``` #### File: nwispy/tests/nwispy_helpers_tests.py ```python import nose.tools from nose import with_setup import sys import numpy as np import datetime # my module from nwispy import nwispy_helpers as helpers # define the global fixture to hold the data that goes into the functions you test fixture = {} def setup(): """ Setup fixture for testing """ print >> sys.stderr, "SETUP: helpers tests" fixture["dates"] = np.array([datetime.datetime(2014, 01, 01, 0, 0) + datetime.timedelta(i) for i in range(11)]) fixture["values"] = np.array([i for i in range(11)]) fixture["shorter_dates"] = np.array([datetime.datetime(2014, 01, 03, 0, 0) + datetime.timedelta(i) for i in range(11)]) fixture["longer_dates"] = np.array([datetime.datetime(2013, 12, 01, 0, 0) + datetime.timedelta(i) for i in range(180)]) def teardown(): """ Print to standard error when all tests are finished """ print >> sys.stderr, "TEARDOWN: helpers tests" def test_isfloat(): nose.tools.assert_equals(True, helpers.isfloat(6.25)) nose.tools.assert_equals(True, helpers.isfloat("6.25")) nose.tools.assert_equals(False, helpers.isfloat("2.5_")) nose.tools.assert_equals(False, helpers.isfloat("hello")) def test_convert_to_float(): nose.tools.assert_equals(6.25, helpers.convert_to_float("6.25", helper_str = "My help message")) nose.tools.assert_equals(2.5, helpers.convert_to_float("2.5_", helper_str = "My help message")) nose.tools.assert_almost_equals(np.array(np.nan).all(), np.array(helpers.convert_to_float("", helper_str = "My help message")).all()) nose.tools.assert_almost_equals(np.array(np.nan).all(), np.array(helpers.convert_to_float("hello", helper_str = "My help message")).all()) def test_rmspecialchars(): nose.tools.assert_equals("6.5", helpers.rmspecialchars("*6.5_")) nose.tools.assert_equals("4.25", helpers.rmspecialchars("*$^**(@4.25_+;")) nose.tools.assert_equals("-4.1", helpers.rmspecialchars("-4.1")) def test_create_monthly_dict(): expected = {"January": [], "February": [], "March": [], "April": [], "May": [], "June": [], "July": [], "August": [], "September": [], "October": [], "November": [], "December": []} actual = helpers.create_monthly_dict() nose.tools.assert_equals(len(expected.keys()), len(actual.keys())) nose.tools.assert_equals(expected["January"], actual["January"]) nose.tools.assert_equals(expected["February"], actual["February"]) nose.tools.assert_equals(expected["April"], actual["April"]) nose.tools.assert_equals(expected["May"], actual["May"]) nose.tools.assert_equals(expected["June"], actual["June"]) nose.tools.assert_equals(expected["July"], actual["July"]) nose.tools.assert_equals(expected["August"], actual["August"]) nose.tools.assert_equals(expected["September"], actual["September"]) nose.tools.assert_equals(expected["October"], actual["October"]) nose.tools.assert_equals(expected["November"], actual["November"]) nose.tools.assert_equals(expected["December"], actual["December"]) def test_subset_data_dates_within_range(): start = datetime.datetime(2014, 01, 04) end = datetime.datetime(2014, 01, 10) expected_dates = np.array([datetime.datetime(2014, 1, 4, 0, 0), datetime.datetime(2014, 1, 5, 0, 0), datetime.datetime(2014, 1, 6, 0, 0), datetime.datetime(2014, 1, 7, 0, 0), datetime.datetime(2014, 1, 8, 0, 0), datetime.datetime(2014, 1, 9, 0, 0), datetime.datetime(2014, 1, 10, 0, 0)]) expected_values = np.array([3, 4, 5, 6, 7, 8, 9]) actual_dates, actual_values = helpers.subset_data(dates = fixture["dates"], values = fixture["values"], start_date = start, end_date = end) nose.tools.assert_equals(actual_dates.all(), expected_dates.all()) nose.tools.assert_equals(actual_values.all(), expected_values.all()) def test_subset_data_dates_outside_range(): start = datetime.datetime(2013, 12, 01) end = datetime.datetime(2014, 01, 20) expected_dates = np.array([datetime.datetime(2014, 1, 1, 0, 0), datetime.datetime(2014, 1, 2, 0, 0), datetime.datetime(2014, 1, 3, 0, 0), datetime.datetime(2014, 1, 4, 0, 0), datetime.datetime(2014, 1, 5, 0, 0), datetime.datetime(2014, 1, 6, 0, 0), datetime.datetime(2014, 1, 7, 0, 0), datetime.datetime(2014, 1, 8, 0, 0), datetime.datetime(2014, 1, 9, 0, 0), datetime.datetime(2014, 1, 10, 0, 0), datetime.datetime(2014, 1, 11, 0, 0)]) expected_values = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) actual_dates, actual_values = helpers.subset_data(dates = fixture["dates"], values = fixture["values"], start_date = start, end_date = end) nose.tools.assert_equals(actual_dates.all(), expected_dates.all()) nose.tools.assert_equals(actual_values.all(), expected_values.all()) def test_find_start_end_dates_shorter_range(): expected_start_date = datetime.datetime(2014, 01, 03, 0, 0) expected_end_date = datetime.datetime(2014, 01, 11, 0, 0) actual_start_date, actual_end_date = helpers.find_start_end_dates(fixture["dates"], fixture["shorter_dates"]) nose.tools.assert_equals(actual_start_date, expected_start_date) nose.tools.assert_equals(actual_end_date, expected_end_date) def test_find_start_end_dates_longer_range(): expected_start_date = datetime.datetime(2014, 01, 01, 0, 0) expected_end_date = datetime.datetime(2014, 01, 11, 0, 0) actual_start_date, actual_end_date = helpers.find_start_end_dates(fixture["dates"], fixture["longer_dates"]) nose.tools.assert_equals(actual_start_date, expected_start_date) nose.tools.assert_equals(actual_end_date, expected_end_date) ```
{ "source": "jlant/playground", "score": 4 }
#### File: python/hello-generators/hellogenerators.py ```python nums = [1, 2, 3, 4, 5] # list comprehension squares1 = [num * num for num in nums] print(squares1) # generator comprehension squares2 = (num * num for num in nums) print(next(squares2)) print(next(squares2)) #for square in squares2: # print(square) # using lists def gen_squares1(nums): results = [] for num in nums: results.append(num * num) return results # using generators def gen_squares2(nums): for num in nums: yield num * num ``` #### File: python/hello-pytest/test_lists.py ```python def alist(): return [0,1,2,3,4,5] def test_alist(): assert alist() == [0,1,2,3,4,6] ```
{ "source": "JLaoo/pdc", "score": 2 }
#### File: pdc/spack/package.py ```python from spack import * class Pdc(CMakePackage): """Proactive Data Containers (PDC) software provides an object-centric API and a runtime system with a set of data object management services. These services allow placing data in the memory and storage hierarchy, performing data movement asynchronously, and providing scalable metadata operations to find data objects.""" homepage = "https://pdc.readthedocs.io/en/latest/" url = "https://github.com/hpc-io/pdc/archive/refs/tags/0.1.tar.gz" maintainers = ['houjun', 'sbyna'] version('0.1', sha256='24787806a30cd1cda1fed17220a62e768bdba5de56877f2ea7126279ff2a4f69') conflicts('%clang') depends_on('[email protected]') depends_on('mercury') depends_on('mpi') root_cmakelists_dir = 'src' def cmake_args(self): args = [ self.define('MPI_C_COMPILER', self.spec['mpi'].mpicc), self.define('BUILD_MPI_TESTING', 'ON'), self.define('BUILD_SHARED_LIBS', 'ON'), self.define('BUILD_TESTING', 'ON'), self.define('PDC_ENABLE_MPI', 'ON'), self.define('CMAKE_C_COMPILER', self.spec['mpi'].mpicc) ] if self.spec.satisfies('platform=cray'): args.append("-DRANKSTR_LINK_STATIC=ON") return args ```
{ "source": "JLaoo/wikiracer", "score": 3 }
#### File: wikiracer/spiders/wiki_scraper.py ```python import scrapy from bs4 import BeautifulSoup as bs from scrapy.crawler import CrawlerProcess from scrapy.utils.project import get_project_settings import requests import re #Replace this class spider(scrapy.Spider): def __init__(self): self.name = 'spider' self.allowed_domains = ['en.wikipedia.org'] api_url = 'https://api.thewikigame.com/api/v1/group/22033570-e1fd-4a9f-9a96-9068082b88aa/current-round/' headers = { 'Authorization': 'Token <PASSWORD>' #Might need to change this } response = requests.get(api_url, headers=headers) start_index = response.text.index('"start_article"') start_index = response.text[start_index:].index('link') + start_index start_link = response.text[start_index+6:].split(',')[0] start_link = 'https://en.wikipedia.org/wiki/'+start_link.replace('"', '') end_index = response.text.index('"goal_article"') end_index = response.text[end_index:].index('link') + end_index end_link = response.text[end_index+6:].split(',')[0] self.end_link = 'https://en.wikipedia.org/wiki/'+end_link.replace('"', '') self.start_urls = [start_link] self.dont_overwrite = False def get_page_name(self, url): return url.replace('https://en.wikipedia.org/wiki/', '') def start_requests(self): url = self.start_urls[0] path = self.get_page_name(url) yield scrapy.Request(url=url, callback=self.parse, meta={'path': path}, errback=self.handle_failure) def handle_failure(self, failure): yield scrapy.Request(url=failure.request.url, callback=self.parse, meta={'path': failure.request.meta['path']}, errback=self.handle_failure) def parse(self, response): soup = bs(response.text, 'html.parser') links = [] for link in soup.findAll('a', attrs={'href': re.compile('^/wiki/')}): path = link.get('href')[6:] not_allowed = ['Special:', 'Wikipedia:', 'Portal:', 'Category:', 'File:', 'Template:', 'Template_talk:', 'Help:', 'Talk:'] allowed = True for word in not_allowed: if path.startswith(word): allowed = False break if allowed and path != 'Main_Page': links.append(path) links = list(set(links)) links = ['https://en.wikipedia.org/wiki/'+l for l in links] for link in links: if self.get_page_name(link) in path: continue new_path = response.meta['path']+', '+self.get_page_name(link) if link == self.end_link and self.dont_overwrite == False: with open('path.txt', 'w') as outfile: outfile.write(new_path) raise scrapy.exceptions.CloseSpider('Path Found!') self.dont_overwrite = True yield scrapy.Request(url=link, callback=self.parse, meta={'path': new_path}, errback=self.handle_failure) def find_best_path(): process = CrawlerProcess(get_project_settings()) process.crawl(spider) process.start() find_best_path() ```
{ "source": "jlapenna/bikebuds", "score": 2 }
#### File: gae/api/admin.py ```python import logging import flask from flask_restx import Resource, Namespace, fields import stravalib from shared import auth_util from shared import ds_util from shared import responses from shared import task_util from shared.config import config from shared.datastore.club import Club from shared.datastore.service import Service from shared.services.strava.club_worker import ClubWorker as StravaClubWorker from shared.services.withings.client import create_client as withings_create_client from models import ( EntityModel, club_entity_model, key_model, service_entity_model, service_model, sync_model, user_entity_model, WrapEntity, ) api = Namespace('admin', 'Bikebuds Admin API') auth_url_model = api.model('AuthUrl', {'auth_url': fields.String}) user_state_model = api.model( 'UserState', { 'user': fields.Nested(user_entity_model, skip_none=True), 'google': fields.Nested(service_model, skip_none=True), 'strava': fields.Nested(service_model, skip_none=True), 'withings': fields.Nested(service_model, skip_none=True), 'fitbit': fields.Nested(service_model, skip_none=True), }, ) slack_workspace_model = api.model('SlackWorkspace', {}) slack_workspace_entity_model = EntityModel(slack_workspace_model) slack_model = api.model( 'Slack', { 'service': fields.Nested(service_entity_model, skip_none=True), 'workspaces': fields.Nested(slack_workspace_entity_model), 'installers': fields.Wildcard(fields.String), 'bots': fields.Wildcard(fields.String), }, ) @api.route('/strava_auth_url') class StravaAuthUrl(Resource): @api.doc('get_strava_auth_url') @api.marshal_with(auth_url_model, skip_none=True) def get(self): auth_util.get_bot(flask.request) redirect_uri = config.frontend_url + '/services/strava/echo' client = stravalib.client.Client() url = client.authorization_url( client_id=config.strava_creds['client_id'], redirect_uri=redirect_uri, approval_prompt='force', scope=['activity:read_all', 'profile:read_all'], ) return {'auth_url': url} @api.route('/process_events') class ProcessEventsResource(Resource): def get(self): auth_util.get_bot(flask.request) sub_events_query = ds_util.client.query(kind='SubscriptionEvent') for sub_event in sub_events_query.fetch(): task_util.process_event(sub_event.key) return responses.OK @api.route('/subscription/remove') class RemoveSubscriptionResource(Resource): @api.doc('remove_subscription') def post(self): auth_util.get_bot(flask.request) callbackurl = flask.request.form.get('callbackurl', None) logging.info('Unsubscribing: %s', callbackurl) if callbackurl is None or 'withings' not in callbackurl: return responses.BAD_REQUEST services_query = ds_util.client.query(kind='Service') services_query.add_filter('sync_enabled', '=', True) services = [ service for service in services_query.fetch() if service.key.name == 'withings' and service.get('credentials') is not None ] for service in services: logging.info('Unsubscribing: %s from %s', callbackurl, service.key) client = withings_create_client(service) results = [] try: result = client.unsubscribe(callbackurl) logging.info( 'Unsubscribed %s from %s (%s)', callbackurl, service.key, result ) results.append( { 'callbackurl': callbackurl, 'result': str(result), 'service': str(service.key), } ) except Exception as e: logging.exception( 'Unable to unsubscribe %s from %s', callbackurl, service.key ) results.append( { 'callbackurl': callbackurl, 'error': str(e), 'service': str(service.key), } ) return results @api.route('/clubs') class GetClubsResource(Resource): @api.doc('get_clubs') @api.marshal_with(club_entity_model, skip_none=True) def get(self): bot = auth_util.get_bot(flask.request) service = Service.get('strava', parent=bot.key) club_query = ds_util.client.query(kind='Club', ancestor=service.key) return [WrapEntity(club) for club in club_query.fetch()] @api.route('/users') class GetUsersResource(Resource): @api.doc('get_users') @api.marshal_with(user_state_model, skip_none=True) def get(self): bot = auth_util.get_bot(flask.request) user_entities = [bot] user_entities += ds_util.client.query(kind='User').fetch() users = [] for user_entity in user_entities: users.append( { 'user': WrapEntity(user_entity), 'google': Service.get('google', parent=user_entity.key), 'strava': Service.get('strava', parent=user_entity.key), 'withings': Service.get('withings', parent=user_entity.key), 'fitbit': Service.get('fitbit', parent=user_entity.key), } ) return users @api.route('/delete') class DeleteResource(Resource): @api.doc('delete', body=key_model) @api.marshal_with(key_model, skip_none=True) def post(self): auth_util.get_bot(flask.request) key = ds_util.key_from_path(api.payload.get('path')) if key is None or ds_util.client.get(key) is None: logging.debug('No entity with key: %s', key) return key children_query = ds_util.client.query(ancestor=key) children_query.keys_only() ds_util.client.delete_multi(child.key for child in children_query.fetch()) return key @api.route('/sync/club/<club_id>') class SyncClubResource(Resource): @api.doc('sync_club') @api.marshal_with(club_entity_model, skip_none=True) def get(self, club_id): bot = auth_util.get_bot(flask.request) service = Service.get('strava', parent=bot.key) club = StravaClubWorker(club_id, service).sync() return WrapEntity(club) @api.route('/club/track/<club_id>') class ClubTrackResource(Resource): @api.doc('track_club') @api.marshal_with(club_entity_model, skip_none=True) def get(self, club_id): bot = auth_util.get_bot(flask.request) service = Service.get('strava', parent=bot.key) club = StravaClubWorker(club_id, service).sync_club() return WrapEntity(club) @api.route('/club/untrack/<club_id>') class ClubUntrackResource(Resource): @api.doc('untrack_club') @api.marshal_with(club_entity_model, skip_none=True) def get(self, club_id): bot = auth_util.get_bot(flask.request) service = Service.get('strava', parent=bot.key) club = Club.get(club_id, parent=service.key) if club is not None: ds_util.client.delete(club.key) return None @api.route('/slack') class SlackResource(Resource): @api.doc('get_slack') @api.marshal_with(slack_model, skip_none=True) def get(self): bot = auth_util.get_bot(flask.request) service = Service.get('slack', parent=bot.key) query = ds_util.client.query(kind='SlackWorkspace', ancestor=service.key) workspaces = [e for e in query.fetch()] return {'service': WrapEntity(service), 'workspaces': workspaces} @api.route('/service/<name>') class ServiceResource(Resource): @api.doc('get_admin_service') @api.marshal_with(service_entity_model, skip_none=True) def get(self, name): bot = auth_util.get_bot(flask.request) service = Service.get(name, parent=bot.key) return WrapEntity(service) @api.route('/sync/<name>') class SyncResource(Resource): @api.doc('sync_admin_service', body=sync_model) @api.marshal_with(service_entity_model, skip_none=True) def post(self, name): bot = auth_util.get_bot(flask.request) force = api.payload.get('force', False) service = Service.get(name, parent=bot.key) task_util.sync_service(service, force=force) return WrapEntity(service) @api.route('/admin_disconnect/<name>') class ServiceDisconnect(Resource): @api.doc('admin_disconnect') @api.marshal_with(service_entity_model, skip_none=True) def post(self, name): bot = auth_util.get_bot(flask.request) service = Service.get(name, parent=bot.key) Service.clear_credentials(service) ds_util.client.put(service) return WrapEntity(service) ``` #### File: gae/api/bikebuds.py ```python import logging import datetime import flask from flask_restx import Namespace, Resource from shared import auth_util from shared import ds_util from shared import task_util from shared.datastore.athlete import Athlete from shared.datastore.bot import Bot from shared.datastore.client_state import ClientState from shared.datastore.club import Club from shared.datastore.service import Service from shared.datastore.series import Series from models import ( activity_entity_model, auth_model, backfill_model, client_state_entity_model, client_state_model, club_entity_model, connect_userpass_model, filter_parser, get_arg, measure_model, preferences_model, profile_model, route_entity_model, segment_entity_model, segments_parser, series_entity_model, service_entity_model, sync_model, WrapEntity, ) api = Namespace('bikebuds', 'Bikebuds API') logging.info('Loading Bikebuds API') @api.route('/activities') class ActivitiesResource(Resource): @api.doc('get_activities') @api.marshal_with(activity_entity_model, skip_none=True, as_list=True) def get(self): user = auth_util.get_user(flask.request) service = Service.get('strava', parent=user.key) activities_query = ds_util.client.query( kind='Activity', ancestor=service.key, order=['-start_date'] ) one_year_ago = datetime.datetime.now( datetime.timezone.utc ) - datetime.timedelta(days=365) activities_query.add_filter('start_date', '>', one_year_ago) return [WrapEntity(a) for a in activities_query.fetch(limit=20)] @api.route('/clients') class ClientsResource(Resource): @api.doc('get_clients') @api.marshal_with(client_state_entity_model, skip_none=True, as_list=True) def get(self): user = auth_util.get_user(flask.request) clients_query = ds_util.client.query( kind='ClientState', ancestor=user.key, order=['-modified'] ) return [WrapEntity(c) for c in clients_query.fetch()] @api.route('/client/<client_id>') class ClientResource(Resource): @api.doc('get_client') @api.marshal_with(client_state_entity_model, skip_none=True) def get(self, client_id): user = auth_util.get_user(flask.request) return WrapEntity(ClientState.get(client_id, parent=user.key)) @api.route('/update_client') class UpdateClientResource(Resource): @api.doc('update_client', body=client_state_model) @api.marshal_with(client_state_entity_model, skip_none=True) def post(self): user = auth_util.get_user(flask.request) new_client = api.payload existing_client = ClientState.get(new_client['token'], parent=user.key) existing_client.update(new_client) existing_client['modified'] = datetime.datetime.now(datetime.timezone.utc) ds_util.client.put(existing_client) return WrapEntity(existing_client) @api.route('/club/<club_id>') class ClubResource(Resource): @api.doc('get_club') @api.marshal_with(club_entity_model, skip_none=True) def get(self, club_id): club_id = int(club_id) auth_util.get_user(flask.request) bot_strava = Service.get('strava', parent=Bot.key()) club = Club.get(club_id, parent=bot_strava.key) # Find the user's club reference. if club is None: flask.abort(404) return WrapEntity(club) @api.route('/club/<club_id>/activities') class ClubActivitiesResource(Resource): @api.doc('get_club_activities') @api.marshal_with(activity_entity_model, skip_none=True, as_list=True) def get(self, club_id): club_id = int(club_id) auth_util.get_user(flask.request) bot_strava = Service.get('strava', parent=Bot.key()) club = Club.get(club_id, parent=bot_strava.key) # Find the user's club reference. if club is None: flask.abort(404) activities_query = ds_util.client.query(kind='Activity', ancestor=club.key) all_activities = [a for a in activities_query.fetch()] return [WrapEntity(a) for a in all_activities] @api.route('/preferences') class PreferencesResource(Resource): @api.doc('update_preferences', body=preferences_model) @api.marshal_with(preferences_model, skip_none=True) def post(self): user = auth_util.get_user(flask.request) user['preferences'].update(api.payload) ds_util.client.put(user) return user['preferences'] @api.route('/profile') class ProfileResource(Resource): @api.doc('get_profile') @api.marshal_with(profile_model, skip_none=True) def get(self): user = auth_util.get_user(flask.request) strava = Service.get('strava', parent=user.key) strava_connected = Service.has_credentials(strava) athlete = Athlete.get_private(strava.key) return dict( user=WrapEntity(user), athlete=WrapEntity(athlete), signup_complete=strava_connected, ) @api.route('/routes') class RoutesResource(Resource): @api.doc('get_routes') @api.marshal_with(route_entity_model, skip_none=True, as_list=True) def get(self): user = auth_util.get_user(flask.request) service = Service.get('strava', parent=user.key) routes_query = ds_util.client.query( kind='Route', ancestor=service.key, order=['-id'] ) routes = [WrapEntity(a) for a in routes_query.fetch()] return routes @api.route('/segments') class SegmentsResource(Resource): @api.doc('get_segments') @api.marshal_with(segment_entity_model, skip_none=True, as_list=True) def get(self): user = auth_util.get_user(flask.request) service = Service.get('strava', parent=user.key) segments_query = ds_util.client.query( kind='Segment', ancestor=service.key, order=['-id'] ) segments = [WrapEntity(a) for a in segments_query.fetch()] return segments @api.route('/segments/compare') @api.expect(segments_parser) class SegmentsCompareResource(Resource): @api.doc('compare_segments') @api.marshal_with(segment_entity_model, skip_none=True, as_list=True) def get(self): user = auth_util.get_user(flask.request) service = Service.get('strava', parent=user.key) segments_arg = get_arg('segments') segments = [] for segment_id in segments_arg: entity = ds_util.client.get( ds_util.client.key('Segment', segment_id, parent=service.key) ) segments.append(WrapEntity(entity)) return segments @api.route('/series') @api.expect(filter_parser) class SeriesResource(Resource): @api.doc('get_series') @api.marshal_with(series_entity_model, skip_none=True) def get(self): user = auth_util.get_user(flask.request) service_name = user['preferences']['weight_service'].lower() series = Series.get( ds_util.client.key('Service', service_name, parent=user.key) ) if series is None: return WrapEntity(None) filter_arg = get_arg('filter') if filter_arg: series['measures'] = [m for m in series['measures'] if filter_arg in m] return WrapEntity(series) @api.route('/service/<name>') class ServiceResource(Resource): @api.doc('get_service') @api.marshal_with(service_entity_model, skip_none=True) def get(self, name): user = auth_util.get_user(flask.request) service = Service.get(name, parent=user.key) return WrapEntity(service) @api.doc('update_service', body=service_entity_model) @api.marshal_with(service_entity_model, skip_none=True) def post(self, name): user = auth_util.get_user(flask.request) new_service = api.payload existing_service = Service.get(name, parent=user.key) existing_service.update(new_service) ds_util.client.put(existing_service) return WrapEntity(existing_service) @api.route('/connect_userpass/<name>') class ConnectUserPassResource(Resource): @api.doc('connect_userpass', body=connect_userpass_model) @api.marshal_with(service_entity_model, skip_none=True) def post(self, name): user = auth_util.get_user(flask.request) connect_userpass = api.payload service = Service.get(name, parent=user.key) Service.update_credentials_userpass(service, connect_userpass) ds_util.client.put(service) return WrapEntity(service) @api.route('/disconnect/<name>') class ServiceDisconnect(Resource): @api.doc('disconnect') @api.marshal_with(service_entity_model, skip_none=True) def post(self, name): user = auth_util.get_user(flask.request) service = Service.get(name, parent=user.key) Service.clear_credentials(service) ds_util.client.put(service) return WrapEntity(service) @api.route('/sync/<name>') class SyncResource(Resource): @api.doc('sync_service', body=sync_model) @api.marshal_with(service_entity_model, skip_none=True) def post(self, name): user = auth_util.get_user(flask.request) force = api.payload.get('force', False) service = Service.get(name, parent=user.key) task_util.sync_service(service, force=force) return WrapEntity(service) @api.route('/weight') class WeightResource(Resource): @api.doc('weight', body=measure_model, validate=True) @api.marshal_with(measure_model, skip_none=True) def post(self): user = auth_util.get_user(flask.request) measure = api.payload # In a world with useful documentation, i'd know why the date value # isn't being converted to a date time, even though the model says it # is. So, convert it. measure['date'] = datetime.datetime.fromisoformat(measure['date']) task_util.xsync_tasks_measure(user.key, measure) return measure @api.route('/backfill') class BackfillResource(Resource): @api.doc('backfill', body=backfill_model) @api.marshal_with(backfill_model, skip_none=True) def post(self): user = auth_util.get_user(flask.request) backfill = api.payload source = Service.get(backfill['source'], parent=user.key) dest = Service.get(backfill['dest'], parent=user.key) start = datetime.datetime.fromisoformat(backfill.get('start')) end = datetime.datetime.fromisoformat(backfill.get('end')) task_util.xsync_tasks_backfill(source.key, dest.key, start, end) # TODO: pre-check there are credentials. return backfill @api.route('/auth') class AuthResource(Resource): @api.doc('auth') @api.marshal_with(auth_model, skip_none=True) def get(self): custom_token = auth_util.create_custom_token(flask.request) return {'token': custom_token.decode('utf-8')} @api.route('/unittest') class UnittestResource(Resource): def get(self): return None ``` #### File: services/google/google.py ```python import base64 import json import logging import re import flask from bs4 import BeautifulSoup from google.cloud.datastore.entity import Entity from shared import auth_util from shared import ds_util from shared import responses from shared import task_util from shared.config import config from shared.datastore.bot import Bot from shared.datastore.service import Service from shared.datastore.user import User from shared.exceptions import SyncException from shared.services.google.client import create_gmail_client import sync_helper module = flask.Blueprint('google', __name__) SUBJECT_REGEX = re.compile(r"Watch (?P<name>.*)'s live activity now!") @module.route('/tasks/sync', methods=['POST']) def sync(): logging.debug('Syncing: google') payload = task_util.get_payload(flask.request) service = ds_util.client.get(payload['service_key']) if not Service.has_credentials(service): Service.set_sync_finished(service, error='No credentials') return responses.OK_NO_CREDENTIALS try: Service.set_sync_started(service) client = create_gmail_client(service) sync_helper.do(Worker(service, client), work_key=service.key) Service.set_sync_finished(service) return responses.OK except SyncException as e: Service.set_sync_finished(service, error=str(e)) return responses.OK_SYNC_EXCEPTION @module.route('/pubsub/rides', methods=['POST']) def pubsub_rides(): if flask.request.args.get('token', '') != config.pubsub_creds['token']: return responses.INVALID_TOKEN envelope = json.loads(flask.request.data) data = json.loads(base64.b64decode(envelope['message']['data'])) logging.debug('pubsub_rides: Received data: %s', data) uid = auth_util.get_uid_by_email(data['emailAddress']) user = User.from_uid(uid) task_util.google_tasks_rides(user, data) return responses.OK @module.route('/tasks/rides', methods=['POST']) def tasks_rides(): payload = task_util.get_payload(flask.request) service = Service.get('google', Bot.key()) data = payload['data'] logging.info('tasks_rides: %s', data.get('historyId')) try: client = create_gmail_client(service) sync_helper.do( PubsubWorker(service, data, client), work_key='%s/%s' % (service.key.parent.name, data['historyId']), ) except SyncException: return responses.OK_SYNC_EXCEPTION return responses.OK class Worker(object): def __init__(self, service, client): self.service = service self.client = client def sync(self): request = { 'labelIds': ['INBOX'], 'topicName': 'projects/%s/topics/rides' % (config.project_id,), } watch = self.client.users().watch(userId='me', body=request).execute() self.service['settings']['watch'] = watch logging.debug('Watching: %s -> %s', self.service.key, watch) # Maybe Trigger a sync starting from the existing historyId synced_history_id = self.service['settings'].get('synced_history_id', 0) logging.debug( 'synced_history_id: %s, watch history id: %s', synced_history_id, watch['historyId'], ) if synced_history_id == 0: logging.debug('synced_history_id is 0, doing full_sync') return self.full_sync() elif synced_history_id < int(watch['historyId']): # This shouldn't ever happen, since we use pubsub, but if it does, # we need to sync the latest. logging.warn( f"synced_history_id unexpectedly low: {synced_history_id} < {watch['historyId']}" ) user = ds_util.client.get(self.service.key.parent) task_util.google_tasks_rides(user, {'historyId': synced_history_id}) return responses.OK else: logging.debug('Nothing to sync') return responses.OK def full_sync(self): def process_message(request_id, response, exception): message_history_id = int(response['historyId']) synced_history_id = self.service['settings'].get('synced_history_id', 0) if message_history_id > synced_history_id: self.service['settings']['synced_history_id'] = message_history_id ds_util.client.put(self.service) garmin_url = _extract_garmin_url(request_id, response) if garmin_url is not None: task_util.garmin_tasks_livetrack(garmin_url, publish=False) logging.debug('Fetching the latest 100 messages') request = ( self.client.users() .messages() .list( userId='me', labelIds=['INBOX'], maxResults=100, # Also the default, but being explicit. ) ) batch = self.client.new_batch_http_request(callback=process_message) batch_request_ids = [] while request is not None and len(batch_request_ids) < 100: response = request.execute() for message in response['messages']: if len(batch_request_ids) >= 100: break if message['id'] not in batch_request_ids: continue batch.add( self.client.users() .messages() .get(userId='me', id=message['id'], format='full'), request_id=message['id'], ) batch_request_ids.append(message['id']) request = self.client.users().messages().list_next(request, response) batch.execute() return responses.OK class PubsubWorker(object): def __init__(self, service: Entity, data: dict, client): self.service = service self.data = data self.client = client def sync(self): logging.info('PubsubWorker: sync') def process_message(request_id, response, exception): message_history_id = int(response['historyId']) synced_history_id = self.service['settings'].get('synced_history_id', 0) if message_history_id > synced_history_id: self.service['settings']['synced_history_id'] = message_history_id garmin_url = _extract_garmin_url(request_id, response) if garmin_url is not None: task_util.garmin_tasks_livetrack(garmin_url, publish=True) request = ( self.client.users() .history() .list( userId='me', labelId='INBOX', startHistoryId=self.service['settings'].get('synced_history_id'), ) ) batch = self.client.new_batch_http_request(callback=process_message) while request is not None: response = request.execute() for history in response.get('history', []): for message in history.get('messages', []): batch.add( self.client.users() .messages() .get(userId='me', id=message['id'], format='full'), request_id=message['id'], ) request = self.client.users().history().list_next(request, response) batch.execute() ds_util.client.put(self.service) return responses.OK def _extract_garmin_url(request_id, response): logging.debug('Extracting Garmin URL: %s', request_id) headers = dict( [ (header['name'], header['value']) for header in response['payload']['headers'] if header['name'] in ('From', 'To', 'Subject') ] ) logging.debug('Fetched message: %s', request_id) if headers.get('From') != 'Garmin <<EMAIL>>': logging.debug('Not a garmin email: %s (Wrong From)', request_id) return subject = SUBJECT_REGEX.match(headers.get('Subject', '')) name = subject.groupdict().get('name', None) if subject else None if name is None: logging.debug('Not a garmin email: %s (Wrong Subject)', request_id) return body = base64.urlsafe_b64decode( response['payload']['body']['data'].encode('ASCII') ).decode('utf-8') soup = BeautifulSoup(body, features='html.parser') livetrack_urls = [ link['href'] for link in soup.findAll('a', href=re.compile('livetrack.garmin.com')) ] if not livetrack_urls: logging.debug('Invalid Garmin email: %s (Unparsable)', request_id) return if len(livetrack_urls) != 1: logging.debug( 'Invalid Garmin email: %s (Too many livetrack URLs: %s)', request_id, len(livetrack_urls), ) return return livetrack_urls[0] ``` #### File: services/slack/slack.py ```python import logging import re import urllib import urllib.request import flask from google.cloud.datastore.entity import Entity from slack_sdk import WebClient from slack_sdk.errors import SlackApiError from shared import responses from shared import task_util from shared.datastore.bot import Bot from shared.datastore.service import Service from shared.services.slack.installation_store import DatastoreInstallationStore from shared.services.strava.client import ClientWrapper from services.slack.track_blocks import create_track_blocks from services.slack.unfurl_activity import unfurl_activity from services.slack.unfurl_route import unfurl_route from shared import ds_util from shared.config import config _STRAVA_APP_LINK_REGEX = re.compile('(https://www.strava.com/([^/]+)/[0-9]+)') _TRACKS_TEAM_ID = 'T01U8EC3H8T' _TRACKS_CHANNEL_ID = 'C020755FX3L' _DEV_TRACKS_TEAM_ID = 'T01U4PCGSQM' _DEV_TRACKS_CHANNEL_ID = 'C01U82F2STD' module = flask.Blueprint('slack', __name__) @module.route('/tasks/event', methods=['POST']) def tasks_event(): params = task_util.get_payload(flask.request) event = params['event'] logging.info('SlackEvent: %s', event.key) if event['event']['type'] == 'link_shared': return _process_link_shared(event) return responses.OK_SUB_EVENT_UNKNOWN @module.route('/tasks/livetrack', methods=['POST']) def tasks_livetrack(): params = task_util.get_payload(flask.request) track = params['track'] logging.info('process/livetrack: %s', track) return _process_track(track) def _process_link_shared(event): slack_client = _create_slack_client(event) unfurls = _create_unfurls(event) if not unfurls: return responses.OK_NO_UNFURLS try: response = slack_client.chat_unfurl( channel=event['event']['channel'], ts=event['event']['message_ts'], unfurls=unfurls, ) except SlackApiError: logging.exception('process_link_shared: failed: unfurling: %s', unfurls) return responses.INTERNAL_SERVER_ERROR if not response['ok']: logging.error('process_link_shared: failed: %s with %s', response, unfurls) return responses.INTERNAL_SERVER_ERROR logging.debug('process_link_shared: %s', response) return responses.OK def _create_slack_client(event): slack_service = Service.get('slack', parent=Bot.key()) installation_store = DatastoreInstallationStore( ds_util.client, parent=slack_service.key ) slack_bot = installation_store.find_bot( enterprise_id=event.get('authorizations', [{}])[0].get('enterprise_id'), team_id=event.get('authorizations', [{}])[0].get('team_id'), is_enterprise_install=event.get('authorizations', [{}])[0].get( 'is_enterprise_install' ), ) return WebClient(slack_bot.bot_token) def _create_slack_client_for_team(team_id): slack_service = Service.get('slack', parent=Bot.key()) installation_store = DatastoreInstallationStore( ds_util.client, parent=slack_service.key ) slack_bot = installation_store.find_bot( enterprise_id=None, team_id=team_id, is_enterprise_install=False, ) return WebClient(slack_bot.bot_token) def _create_unfurls(event): strava = Service.get('strava', parent=Bot.key()) strava_client = ClientWrapper(strava) unfurls = {} for link in event['event']['links']: alt_url = _resolve_rewrite_link(link) unfurl = _unfurl(strava_client, link, alt_url) if unfurl: unfurls[link['url']] = unfurl logging.warning(f'_create_unfurls: {unfurls}') return unfurls def _resolve_rewrite_link(link): if 'strava.app.link' not in link['url']: return try: logging.info('_resolve_rewrite_link: fetching: %s', link['url']) with urllib.request.urlopen(link['url']) as response: contents = response.read() logging.debug('_resolve_rewrite_link: fetched: %s', link['url']) except urllib.request.HTTPError: logging.exception('Could not fetch %s', link['url']) return match = _STRAVA_APP_LINK_REGEX.search(str(contents)) if match is None: logging.warning('Could not resolve %s', link['url']) return resolved_url = match.group() return resolved_url def _unfurl(strava_client, link, alt_url=None): url = alt_url if alt_url else link['url'] if '/routes/' in url: return unfurl_route(strava_client, url) elif '/activities/' in url: return unfurl_activity(strava_client, url) else: return None def _process_track(track: Entity) -> responses.Response: if config.is_dev: team_id = _DEV_TRACKS_TEAM_ID channel_id = _DEV_TRACKS_CHANNEL_ID else: team_id = _TRACKS_TEAM_ID channel_id = _TRACKS_CHANNEL_ID slack_client = _create_slack_client_for_team(team_id) blocks = create_track_blocks(track) if not blocks: return responses.OK_INVALID_LIVETRACK try: response = slack_client.chat_postMessage( channel=channel_id, blocks=blocks, unfurl_links=False, unfurl_media=False ) except SlackApiError: logging.exception(f'process_track: failed: track: {track}, blocks: {blocks}') return responses.INTERNAL_SERVER_ERROR if not response['ok']: logging.error( f'process_track: failed: response: {response}, track: {track}, blocks: {blocks}' ) return responses.INTERNAL_SERVER_ERROR logging.debug('process_track: %s', response) return responses.OK ``` #### File: services/slack/test_slack.py ```python import mock import unittest import flask from google.cloud.datastore.entity import Entity from shared import ds_util from shared import responses from shared import task_util from services.slack import slack class SlackTest(unittest.TestCase): def setUp(self): self.app = flask.Flask(__name__) self.app.register_blueprint(slack.module) self.app.testing = True self.client = self.app.test_client() @mock.patch('main.slack._process_link_shared', return_value=responses.OK) def test_process_link_shared_called(self, slack_process_link_shared_mock): event_entity = Entity( ds_util.client.key('SubscriptionEvent', 'slack-E232eq2ee') ) event_entity.update(LINK_SHARED_EVENT) self.client.post( '/tasks/event', data=task_util.task_body_for_test(event=event_entity), ) # It doesn't matter what code gets returned, since the method returns # whatever _process_link_shared returns, which is a mock. Only test # that _process_link_shared is called. slack_process_link_shared_mock.assert_called_once() @mock.patch('main.slack._create_slack_client') @mock.patch('main.slack._create_unfurls') def test_process_link_shared(self, mock_create_unfurls, mock_slack_client): mock_create_unfurls.return_value = {'http://example.com': 'unfurl'} event_entity = Entity( ds_util.client.key('SubscriptionEvent', 'slack-<KEY>') ) event_entity.update(LINK_SHARED_EVENT) r = self.client.post( '/tasks/event', data=task_util.task_body_for_test(event=event_entity), ) mock_slack_client.assert_called_once() responses.assertResponse(self, r, responses.OK) @mock.patch('main.slack._create_slack_client') @mock.patch('main.slack._create_unfurls') def test_process_link_shared_no_unfurls( self, mock_create_unfurls, mock_slack_client ): mock_create_unfurls.return_value = {} event_entity = Entity( ds_util.client.key('SubscriptionEvent', 'slack-<KEY>') ) event_entity.update(LINK_SHARED_EVENT) r = self.client.post( '/tasks/event', data=task_util.task_body_for_test(event=event_entity), ) mock_slack_client.assert_called_once() responses.assertResponse(self, r, responses.OK_NO_UNFURLS) LINK_SHARED_EVENT = { 'api_app_id': 'SOME_APP_ID', 'authed_users': ['SOME_USER_ID'], 'authorizations': [ { 'enterprise_id': None, 'is_bot': True, 'is_enterprise_install': False, 'team_id': 'SOME_TEAM_ID', 'user_id': 'SOME_USER_ID', } ], 'event': { 'channel': 'SOME_CHANNEL_ID', 'event_ts': '1619381634.662237', 'is_bot_user_member': True, 'links': [ { 'domain': 'strava.com', 'url': 'https://www.strava.com/activities/3040564323', } ], 'message_ts': '1619381633.004900', 'type': 'link_shared', 'user': 'U01V550PQ5U', }, 'event_context': '1-link_shared-SOME_TEAM_ID-SOME_CHANNEL_ID', 'event_id': 'Ev01V67ECVF0', 'event_time': 1619381634, 'is_ext_shared_channel': False, 'team_id': 'SOME_TEAM_ID', 'token': '<PASSWORD>', 'type': 'event_callback', } ``` #### File: services/slack/unfurl_route.py ```python import logging from babel.dates import format_date from measurement.measures import Distance from stravalib import exc from shared.datastore.route import Route from services.slack.util import get_id, generate_url def unfurl_route(client, url): route_id = get_id(url) try: route = client.get_route(route_id) except exc.ObjectNotFound: logging.debug('Unknown Route: {route_id}') return None route_entity = Route.to_entity(route) return {'blocks': _route_blocks(url, route_entity)} def _route_blocks(url, route): route_sub = { 'id': route['id'], 'timestamp': format_date(route['timestamp'], format='medium'), 'description': route['description'], 'name': route['name'], 'athlete.id': route['athlete']['id'], 'athlete.firstname': route['athlete']['firstname'], 'athlete.lastname': route['athlete']['lastname'], 'url': url, } blocks = [ { "type": "section", "text": { "type": "mrkdwn", "text": "<%(url)s|*%(name)s*> by <https://www.strava.com/athletes/%(athlete.id)s|%(athlete.firstname)s %(athlete.lastname)s>\n%(description)s\n\nCreated on %(timestamp)s" % route_sub, }, "accessory": { "type": "image", "image_url": generate_url(route), "alt_text": "route map", }, } ] fields = [] if route.get('distance', None): fields.append( { "type": "mrkdwn", "text": "*Distance:* %smi" % round(Distance(m=route['distance']).mi, 2), } ) if route.get('elevation_gain', None): fields.append( { "type": "mrkdwn", "text": "*Elevation:* %sft" % round(Distance(m=route['elevation_gain']).ft, 0), } ) if fields: blocks.append({"type": "divider"}) blocks.append({"type": "section", "fields": fields}) return blocks ``` #### File: services/strava/events_worker.py ```python import logging from shared import ds_util from shared.datastore.activity import Activity from shared.datastore.athlete import Athlete from shared.services.strava.client import ClientWrapper class EventsWorker(object): def __init__(self, service, event): self.service = service self.event = event self.client = ClientWrapper(service) def sync(self): self.client.ensure_access() object_id = self.event.get('object_id') object_type = self.event.get('object_type') aspect_type = self.event.get('aspect_type') with ds_util.client.transaction(): logging.debug( 'StravaEvent: process_event_batch: %s, %s', object_id, self.event.key, ) if object_type == 'activity': if aspect_type == 'delete': activity_key = ds_util.client.key( 'Activity', object_id, parent=self.service.key ) ds_util.client.delete(activity_key) logging.info( 'StravaEvent: Deleted Activity: %s: %s', activity_key, self.event.key, ) else: athlete = self.client.get_athlete() activity = self.client.get_activity(object_id) activity_entity = Activity.to_entity( activity, detailed_athlete=athlete, parent=self.service.key ) ds_util.client.put(activity_entity) logging.info( 'StravaEvent: Created: %s: %s', activity_entity.key, self.event.key, ) elif object_type == 'athlete': athlete = self.client.get_athlete() athlete_entity = Athlete.to_entity(athlete, parent=self.service.key) ds_util.client.put(athlete_entity) logging.info( 'StravaEvent: Updated Athlete: %s: %s', athlete_entity.key, self.event.key, ) activities_query = ds_util.client.query( kind='Activity', ancestor=self.service.key ) for activity in activities_query.fetch(): activity['athlete'] = athlete ds_util.client.put(activity) logging.info( 'StravaEvent: Updated Activities: %s: %s', athlete_entity.key, self.event.key, ) else: logging.warning( 'StravaEvent: Update object_type %s not implemented: %s', object_type, self.event.key, ) ``` #### File: services/strava/test_events_worker.py ```python import mock import unittest from google.cloud.datastore.entity import Entity from stravalib.model import Activity, Athlete from services.strava.events_worker import EventsWorker from shared.datastore.subscription import SubscriptionEvent from shared import ds_util class MockQuery(object): def __init__(self, results): self.results = results def fetch(self): return self.results class MainTest(unittest.TestCase): def setUp(self): pass @mock.patch('services.strava.events_worker.ClientWrapper') @mock.patch('shared.ds_util.client.delete') @mock.patch('shared.ds_util.client.put') @mock.patch('shared.ds_util.client.transaction') def test_events_worker_delete( self, transaction_mock, put_mock, delete_mock, ClientWrapperMock, ): service = Entity(ds_util.client.key('Service', 'strava')) service['credentials'] = {'access_token': 'XYZ_TOKEN'} event = SubscriptionEvent.to_entity( { 'aspect_type': 'delete', 'event_time': 1549151214, 'object_id': 2120517859, 'object_type': 'activity', 'owner_id': 35056021, 'subscription_id': 133263, 'updates': {}, }, parent=service.key, ) client_mock = mock.Mock() ClientWrapperMock.return_value = client_mock worker = EventsWorker(service, event) worker.sync() activity_key = ds_util.client.key('Activity', 2120517859, parent=service.key) delete_mock.assert_called_once_with(activity_key) @mock.patch('services.strava.events_worker.ClientWrapper') @mock.patch('shared.ds_util.client.delete') @mock.patch('shared.ds_util.client.put') @mock.patch('shared.ds_util.client.transaction') def test_events_worker_activity_update( self, transaction_mock, put_mock, delete_mock, ClientWrapperMock, ): service = Entity(ds_util.client.key('Service', 'strava')) service['credentials'] = {'access_token': 'XYZ_TOKEN'} event = SubscriptionEvent.to_entity( { 'aspect_type': 'create', 'event_time': 1549151211, 'object_id': 2120517859, 'object_type': 'activity', 'owner_id': 35056021, 'subscription_id': 133263, 'updates': {}, }, parent=service.key, ) client_mock = mock.Mock() client_mock.get_activity.side_effect = _activity_generator client_mock.get_athlete.return_value = Athlete() ClientWrapperMock.return_value = client_mock worker = EventsWorker(service, event) worker.sync() client_mock.get_activity.assert_called_once_with(2120517859) def _activity_generator(activity_id): activity = Activity() activity.name = 'Activity ' + str(activity_id) activity.id = activity_id activity.distance = 10 activity.moving_time = 200 activity.elapsed_time = 100 activity.total_elevation_gain = 300 return activity def _test_events(): service_key = ds_util.client.key('Service', 'strava') return [ SubscriptionEvent.to_entity( { 'aspect_type': 'create', 'event_time': 1549151210, 'object_id': 2120517766, 'object_type': 'activity', 'owner_id': 35056021, 'subscription_id': 133263, 'updates': {}, }, parent=service_key, ), SubscriptionEvent.to_entity( { 'aspect_type': 'update', 'event_time': 1549151212, 'object_id': 2120517766, 'object_type': 'activity', 'owner_id': 35056021, 'subscription_id': 133263, 'updates': {'title': 'Updated Title'}, }, parent=service_key, ), SubscriptionEvent.to_entity( { 'aspect_type': 'create', 'event_time': 1549151211, 'object_id': 2120517859, 'object_type': 'activity', 'owner_id': 35056021, 'subscription_id': 133263, 'updates': {}, }, parent=service_key, ), SubscriptionEvent.to_entity( { 'aspect_type': 'update', 'event_time': 1549151213, 'object_id': 2120517859, 'object_type': 'activity', 'owner_id': 35056021, 'subscription_id': 133263, 'updates': {'title': 'Second Updated Title'}, }, parent=service_key, ), SubscriptionEvent.to_entity( { 'aspect_type': 'delete', 'event_time': 1549151214, 'object_id': 2120517859, 'object_type': 'activity', 'owner_id': 35056021, 'subscription_id': 133263, 'updates': {}, }, parent=service_key, ), ] ``` #### File: backend/xsync/xsync.py ```python import datetime import logging import random import time import flask from retrying import retry from google.cloud.datastore.key import Key from shared import ds_util from shared import task_util from shared import responses from shared.datastore.series import Series from shared.datastore.service import Service from shared.exceptions import SyncException from shared.services.garmin import client as garmin_client from shared.services.trainerroad.client import ( create_client as trainerroad_create_client, ) import sync_helper module = flask.Blueprint('xsync', __name__) @module.route('/tasks/measure', methods=['POST']) def xsync_tasks_measure(): params = task_util.get_payload(flask.request) user_key = params['user_key'] measure = params['measure'] logging.info('ProcessMeasure: %s %s', user_key, measure) _withings_garmin(flask.request, user_key, measure) _withings_trainerroad(flask.request, user_key, measure) return responses.OK def _withings_garmin(request, user_key, measure): params = task_util.get_payload(request) user_key = params['user_key'] measure = params['measure'] logging.info('ProcessMeasure: withings_garmin: %s %s', user_key, measure) garmin_service = Service.get('garmin', parent=user_key) if not Service.has_credentials(garmin_service, required_key='password'): logging.debug('ProcessMeasure: Garmin not connected') return responses.OK if not measure.get('weight'): logging.debug('ProcessMeasure: Skipping non-weight measure.') return responses.OK try: client = garmin_client.create(garmin_service) client.set_weight(measure['weight'], measure['date']) except Exception: logging.exception('ProcessMeasure: Failed: %s', measure) return responses.OK_SYNC_EXCEPTION return responses.OK def _withings_trainerroad(request, user_key, measure): params = task_util.get_payload(request) user_key = params['user_key'] measure = params['measure'] logging.info('ProcessMeasure: withings_trainerroad: %s %s', user_key, measure) trainerroad_service = Service.get('trainerroad', parent=user_key) if not Service.has_credentials(trainerroad_service, required_key='password'): logging.debug('ProcessMeasure: Trainerroad not connected') return responses.OK if not measure.get('weight'): logging.debug('ProcessMeasure: Skipping non-weight measure.') return responses.OK try: client = trainerroad_create_client(trainerroad_service) with client: client.weight = measure['weight'] except Exception: logging.exception('ProcessMeasure: Failed: %s', measure) return responses.OK_SYNC_EXCEPTION return responses.OK @module.route('/tasks/backfill', methods=['POST']) def tasks_xsync_tasks_backfill(): params = task_util.get_payload(flask.request) source_key = params['source_key'] dest_key = params['dest_key'] start = params['start'] end = params['end'] logging.info('xsync_tasks_backfill: %s->%s', source_key, dest_key) try: sync_helper.do( BackfillWorker(source_key, dest_key, start, end), work_key=source_key ) except SyncException: return responses.OK_SYNC_EXCEPTION return responses.OK class BackfillWorker(object): def __init__( self, source_key: Key, dest_key: Key, start: datetime.datetime, end: datetime.datetime, ): self.source_key = source_key self.dest_key = dest_key self.start = start self.end = end def sync(self): source = ds_util.client.get(self.source_key) dest = ds_util.client.get(self.dest_key) if not self._check_creds(source): raise Exception('Source does not have credentials: %s', source.key) if not self._check_creds(dest): raise Exception('Dest does not have credentials: %s', dest.key) series = Series.get(source.key) if not series['measures']: logging.debug('Source has no measures: %s', source.key) return measures = series['measures'] del series measures = [m for m in filter(lambda m: self._isbackfillable(m), measures)] logging.debug('Syncing %s measures to %s', len(measures), dest.key.name) if dest.key.name == 'garmin': client = garmin_client.create(dest) # Shorten and maybe GC measures as we iterate while len(measures) > 0: measure = measures.pop(0) @retry( wait_exponential_multiplier=1000 * 2, wait_exponential_max=1000 * 60 * 30, ) def _set_weight(): logging.debug('Setting weight for %s', measure['date']) try: client.set_weight(measure['weight'], measure['date']) time.sleep(random.randint(1, 2)) except Exception: logging.exception( 'Failed to set_weight for %s', measure['date'] ) raise _set_weight() del measure def _check_creds(self, service): return ( service.key.name == 'garmin' and Service.has_credentials(service, required_key='password') ) or (Service.has_credentials(service)) def _isbackfillable(self, measure): if not measure.get('weight'): return False if self.start and measure['date'] < self.start: return False if self.end and measure['date'] > self.end: return False return True ``` #### File: gae/frontend/main.py ```python import datetime import logging import flask from flask_cors import CORS from flask_cors import cross_origin from flask_talisman import Talisman from firebase_admin import auth, exceptions from shared import auth_util from shared import logging_util from shared.config import config from shared import responses from services.bbfitbit import bbfitbit from services.google import google from services.slack import slack from services.strava import strava from services.withings import withings app = flask.Flask(__name__) app.secret_key = config.flask_secret_creds['secret'] app.register_blueprint(bbfitbit.module, url_prefix='/services/fitbit') app.register_blueprint(google.module, url_prefix='/services/google') app.register_blueprint(slack.module, url_prefix='/services/slack') app.register_blueprint(strava.module, url_prefix='/services/strava') app.register_blueprint(withings.module, url_prefix='/services/withings') CORS(app, origins=config.cors_origins) Talisman(app, force_https_permanent=True) logging_util.setup_logging(app) @app.route('/ok', methods=['GET', 'POST']) def ok(): return responses.OK @app.route('/services/session', methods=['GET', 'POST']) @cross_origin(supports_credentials=True, origins=config.cors_origins) @auth_util.user_required def create_session(user): """From https://firebase.google.com/docs/auth/admin/manage-cookies""" try: id_token = flask.request.headers['Authorization'].split(' ').pop() expires_in = datetime.timedelta(minutes=10) session_cookie = auth.create_session_cookie(id_token, expires_in=expires_in) response = flask.make_response(flask.jsonify({'status': 'success'})) expires = datetime.datetime.now(datetime.timezone.utc) + expires_in response.set_cookie( '__Secure-oauthsession', session_cookie, expires=expires, httponly=True, secure=True, ) return response except exceptions.FirebaseError: logging.exception('Failed to create a session cookie.') flask.abort(401, 'Failed to create a session cookie') @app.route('/unittest', methods=['GET', 'POST']) def unittest(): return responses.OK # @app.before_request # def before(): # logging_util.before() # # # @app.after_request # def after(response): # return logging_util.after(response) if __name__ == '__main__': host, port = config.frontend_url[7:].split(':') app.run(host='localhost', port=port, debug=True) ``` #### File: services/withings/test_withings.py ```python import mock import unittest from urllib.parse import urlencode import flask from shared import responses from shared.config import config from services.withings import withings SERVICE_KEY = '<KEY>' # noqa: E501 class WithingsTest(unittest.TestCase): def setUp(self): self.app = flask.Flask(__name__) self.app.register_blueprint(withings.module) self.app.debug = True self.app.testing = True self.client = self.app.test_client() @mock.patch('shared.task_util._post_task_for_dev') def test_withings_event_valid(self, _post_task_for_dev_mock): query_string = urlencode( { 'sub_secret': config.withings_creds['sub_secret'], 'service_key': SERVICE_KEY, } ) url = '/events?%s' % (query_string,) r = self.client.post( url, data={'startdate': '1532017199', 'enddate': '1532017200', 'appli': '1'} ) responses.assertResponse(self, r, responses.OK) _post_task_for_dev_mock.assert_called_once() @mock.patch('shared.task_util._post_task_for_dev') def test_withings_event_bad_service_key(self, _post_task_for_dev_mock): query_string = urlencode( { 'sub_secret': config.withings_creds['sub_secret'], 'service_key': "b'12345'", } ) url = '/events?%s' % (query_string,) r = self.client.post( url, data={'startdate': '1532017199', 'enddate': '1532017200', 'appli': '1'} ) responses.assertResponse(self, r, responses.OK_SUB_EVENT_FAILED) _post_task_for_dev_mock.assert_not_called() ``` #### File: gae/shared/config.py ```python import json import os class _Config(object): def __init__(self, base_path): self.base_path = base_path base_config = json.load(open(os.path.join(base_path, 'config.json'))) for key, value in base_config.items(): setattr(self, key, value) self.firebase_app_config = json.load( open(os.path.join(base_path, 'app_configs/firebase-web.json')) ) self.gcp_server_creds = json.load( open(os.path.join(base_path, 'service_keys/gcp-server.json')) ) self.gcp_server_oauth_creds = json.load( open(os.path.join(base_path, 'service_keys/gcp-server-oauth.json')) ) self.gcp_web_creds = json.load( open(os.path.join(base_path, 'service_keys/gcp-web.json')) ) self.fitbit_creds = json.load( open(os.path.join(base_path, 'service_keys/fitbit.json')) ) self.strava_creds = json.load( open(os.path.join(base_path, 'service_keys/strava.json')) ) self.withings_creds = json.load( open(os.path.join(base_path, 'service_keys/withings.json')) ) self.slack_creds = json.load( open(os.path.join(base_path, 'service_keys/slack.json')) ) self.pubsub_creds = json.load( open(os.path.join(base_path, 'service_keys/pubsub.json')) ) self.flask_secret_creds = json.load( open(os.path.join(base_path, 'service_keys/flask-secret.json')) ) self.passkey_secret_creds = json.load( open(os.path.join(base_path, 'service_keys/passkey.json')) ) config = _Config(os.environ.get('BIKEBUDS_ENV', 'environments/env')) if not os.getenv('GAE_ENV', '').startswith('standard'): # Local - Not yet supported by python cloud apis. if getattr(config, 'datastore_emulator_host', None): os.environ['DATASTORE_EMULATOR_HOST'] = config.datastore_emulator_host ``` #### File: shared/datastore/athlete.py ```python from shared import ds_util from shared.datastore.strava.converters import StravaConverters class Athlete(object): @classmethod def get_by_id(cls, strava_id): athlete_query = ds_util.client.query(kind='Athlete') athlete_query.add_filter('id', '=', strava_id) athletes = [a for a in athlete_query.fetch()] if len(athletes) == 0: return None elif len(athletes) > 1: raise Exception('More athletes than expected.') return athletes[0] @classmethod def get_private(cls, service_key): result = [ r for r in ds_util.client.query(kind='Athlete', ancestor=service_key).fetch() ] if len(result) == 0: return None elif len(result) > 1: raise Exception('Too may athletes for user: %s', service_key.parent) else: return result[0] @classmethod def to_entity(cls, athlete, parent=None): return StravaConverters.Athlete.to_entity(athlete, parent=parent) ``` #### File: shared/datastore/test_subscription.py ```python import unittest from shared import ds_util from shared.datastore.subscription import SubscriptionEvent class SubscriptionEventTest(unittest.TestCase): def test_hash_name(self): args = ['AAA', 'BBB', 'CCC'] hash_name = SubscriptionEvent.hash_name(*args) # Hash guarenteed, generated by D6. :) self.assertEqual('2236edf1239b64ae48b309fb0bf15cdf6ddbf921', hash_name) reversed_hash_name = SubscriptionEvent.hash_name(*reversed(args)) # Hash guarenteed, generated by D6. :) self.assertEqual('2ef291e5b3091198086ee74855e348436a6f4b36', reversed_hash_name) def test_hash_name_empty_args(self): args = [] self.assertRaises(Exception, SubscriptionEvent.hash_name, *args) def test_uses_name(self): service_key = ds_util.client.key('Service', 'withings') event_data = {'key1': 'AAA', 'key2': 'BBB', 'key3': 'CCC'} event_entity = SubscriptionEvent.to_entity( event_data, name=SubscriptionEvent.hash_name(*sorted(event_data.values())), parent=service_key, ) self.assertEqual( '2236edf1239b64ae48b309fb0bf15cdf6ddbf921', event_entity.key.name ) ``` #### File: gae/shared/hash_util.py ```python import hashlib def hash_name(*args): if len(args) == 0: raise TypeError("Expected non-zero-length hash_name args") hash_string = '-'.join([str(arg) for arg in args]) return hashlib.sha1(hash_string.encode()).hexdigest() ``` #### File: services/garmin/client.py ```python from functools import wraps import json import logging import re import curlify import requests from shared.datastore.service import Service URL_SSO_LOGIN = "https://sso.garmin.com/sso/signin" URL_BASE = 'https://connect.garmin.com' URL_MODERN = URL_BASE + '/modern' URL_ACTIVITIES = URL_MODERN + '/proxy/usersummary-service/usersummary/daily/' URL_HEARTRATES = URL_MODERN + '/proxy/wellness-service/wellness/dailyHeartRate/' URL_BODY_COMPOSITION = URL_MODERN + '/proxy/weight-service/weight/daterangesnapshot' URL_USER_WEIGHT = URL_BASE + '/proxy/weight-service/user-weight' HEADERS = { 'User-Agent': ( 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) ' + 'AppleWebKit/537.36 (KHTML, like Gecko) ' + 'Chrome/79.0.3945.88 Safari/537.36' ), 'origin': 'https://sso.garmin.com', 'nk': 'NT', # Needed for user-weight, for some reason. } class Error(Exception): pass class SessionExpiredError(Error): pass def create(service): if not Service.has_credentials(service, required_key='password'): raise Exception('Cannot create Garmin client without creds: %s' % (service,)) creds = service.get('credentials', {}) session_state = creds.get('session_state', {}) def refresh_callback(session_state): logging.debug('Garmin creds refresh for: %s', service.key) Service.update_credentials(service, {'session_state': session_state}) garmin = Garmin( creds['username'], Service.get_credentials_password(creds), refresh_callback=refresh_callback, ) try: garmin.set_session_state(**session_state) except ValueError: logging.exception('Invalid session_state, ignoring') del creds['session_state'] return garmin def require_session(client_function): @wraps(client_function) def check_session(*args, **kwargs): client_object = args[0] if not (client_object._session and client_object.profile): logging.debug('No session established. Logging in.') client_object.login() try: return client_function(*args, **kwargs) except SessionExpiredError: logging.debug('Retrying (once) after login.') client_object.login() return client_function(*args, **kwargs) return check_session class Garmin(object): def __init__(self, username, password, refresh_callback=None): self._username = username self._password = password self._refresh_callback = refresh_callback self._session = None self._preferences = None self.profile = None def set_session_state(self, cookies=None, profile=None, preferences=None): if cookies or profile or preferences: if None in (cookies and profile and preferences): raise ValueError( 'Must pass all or nothing. cookies: %s, profile: %s, preferences: %s', cookies, profile, preferences, ) self._session = requests.Session() self._session.headers.update(HEADERS) if cookies: self._session.cookies.update(cookies) self._preferences = preferences self.profile = profile def get_session_state(self): if not self._session: return None return { 'cookies': self._session.cookies.get_dict(), 'preferences': self._preferences, 'profile': self.profile, } def login(self): logging.debug('Garmin Login') self.set_session_state() try: self._authenticate() except Exception as err: # Clear the session. self.set_session_state() logging.debug('Clearing session and raising.') raise err finally: logging.debug('Finally calling refresh_callback.') if self._refresh_callback: self._refresh_callback(self.get_session_state()) logging.debug('Login complete') def _authenticate(self): params = { # 'webhost': URL_BASE, 'service': URL_MODERN, # 'source': URL_SSO_LOGIN, # 'redirectAfterAccountLoginUrl': URL_MODERN, # 'redirectAfterAccountCreationUrl': URL_MODERN, # 'gauthHost': URL_SSO_LOGIN, # 'locale': 'en_US', # 'id': 'gauth-widget', # 'cssUrl': 'https://static.garmincdn.com/com.garmin.connect/ui/css/gauth-custom-v1.2-min.css', # 'clientId': 'GarminConnect', # 'rememberMeShown': 'true', # 'rememberMeChecked': 'false', # 'createAccountShown': 'true', # 'openCreateAccount': 'false', # 'usernameShown': 'false', # 'displayNameShown': 'false', # 'consumeServiceTicket': 'false', # 'initialFocus': 'true', # 'embedWidget': 'false', # 'generateExtraServiceTicket': 'true', } data = { 'username': self._username, 'password': self._password, 'embed': 'false', # 'lt': 'e1s1', # '_eventId': 'submit', # 'displayNameRequired': 'false', } login_response = self._session.post(URL_SSO_LOGIN, params=params, data=data) logging.debug('SSO Request: %s', curlify.to_curl(login_response.request)) login_response.raise_for_status() auth_ticket_url = self._extract_auth_ticket_url(login_response.text) logging.debug("Extracted auth ticket url: %s", auth_ticket_url) auth_response = self._session.get(auth_ticket_url) logging.debug('Auth Request: %s', curlify.to_curl(auth_response.request)) auth_response.raise_for_status() # There is auth info in here needed in order to fetch other services. self._preferences = self._extract_json( auth_response.text, 'VIEWER_USERPREFERENCES' ) self.profile = self._extract_json(auth_response.text, 'SOCIAL_PROFILE') @staticmethod def _extract_json(html, key): """Find and return json data.""" found = re.search(key + r" = JSON.parse\(\"(.*)\"\);", html, re.M) if found: text = found.group(1).replace('\\"', '"') return json.loads(text) @staticmethod def _extract_auth_ticket_url(auth_response): """Extracts an authentication ticket URL from the response of an authentication form submission. The auth ticket URL is typically of form: https://connect.garmin.com/modern?ticket=ST-0123456-aBCDefgh1iJkLmN5opQ9R-cas :param auth_response: HTML response from an auth form submission. """ match = re.search(r'response_url\s*=\s*"(https:[^"]+)"', auth_response) if not match: raise RuntimeError( "auth failure: unable to extract auth ticket URL. did you provide a correct username/password?" ) auth_ticket_url = match.group(1).replace("\\", "") return auth_ticket_url @require_session def get_body_comp(self, start_date, end_date=None): # 'YYY-mm-dd' end_date = end_date if end_date else start_date url = URL_BODY_COMPOSITION + '?startDate=' + start_date + '&endDate=' + end_date return self._get(url) @require_session def get_stats(self, start_date): # cDate = 'YYY-mm-dd' url = ( URL_ACTIVITIES + self.profile['displayName'] + '?' + 'calendarDate=' + start_date ) return self._get(url) @require_session def set_weight(self, weight, weight_date): url = URL_USER_WEIGHT weight_date = weight_date.replace(tzinfo=None) return self._post( url, json={ 'value': weight, 'unitKey': 'kg', 'date': weight_date.date().isoformat(), 'gmtTimestamp': weight_date.isoformat() + '.00', }, ) def _get(self, url): logging.debug('Fetching: %s', url) response = self._session.get(url) logging.info( 'Response code %s, and json %s', response.status_code, response.text, ) logging.debug('Request: %s', curlify.to_curl(response.request)) if response.status_code == 403: raise SessionExpiredError('Login expired') elif response.status_code == 204: return None else: response.raise_for_status() # One last check: Its a weird behavior, this one... # Kind of like a 403, only not. if response.json().get('privacyProtected'): raise SessionExpiredError('Login expired') return response.json() def _post(self, url, json=None): logging.debug('Posting: %s', url) response = self._session.post(url, json=json) logging.info('Response code %s, and %s', response.status_code, response.text) logging.debug('Request: %s', curlify.to_curl(response.request)) if response.status_code == 403: raise SessionExpiredError('Login expired') elif response.status_code == 204: return None else: response.raise_for_status() return None ``` #### File: services/strava/client.py ```python import functools import logging import time from shared.config import config from shared.datastore.service import Service import stravalib from stravalib import exc class ClientWrapper(object): """Auto-refresh (once) access tokens on any request.""" def __init__(self, service): self._service = service self._client = stravalib.client.Client( access_token=service['credentials']['access_token'], rate_limiter=(lambda x=None: None), ) def ensure_access(self): """Ensure that an access token is good for at least 60 more seconds.""" now = time.time() expires_around = self._service.get('credentials', {}).get('expires_at', 0) - 60 if time.time() > expires_around: seconds_ago = now - expires_around logging.info('Access expired %s ago; fetching new', seconds_ago) self._refresh_access_token() def __getattr__(self, attr): func = getattr(self._client, attr) @functools.wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except exc.AccessUnauthorized: logging.info("Token expired, refreshing.") if self._refresh_access_token(): return func(*args, **kwargs) return wrapper def _refresh_access_token(self): if self._service['credentials'].get('refresh_token') is None: logging.warning( 'Cannot refresh_access_token for %s, no refresh_token', self._service.key, ) return False new_credentials = self._client.refresh_access_token( client_id=config.strava_creds['client_id'], client_secret=config.strava_creds['client_secret'], refresh_token=self._service['credentials']['refresh_token'], ) Service.update_credentials(self._service, dict(new_credentials)) self._client.access_token = self._service['credentials']['access_token'] return True ```
{ "source": "jlapenna/homeforjla", "score": 3 }
#### File: homeforjla/kitchen/imperfect.py ```python import csv import io import re import sys import uuid import pprint from typing import List HEADERS = ('Item', 'Category', 'Size', 'Quantity','Description', 'Staple', 'Last Modified', 'Key') # RegEx that apply to the file loaded. ALL_YOU_WERE_NOT_CHARGED = re.compile( r'\n(You were not charged for \d+ of this item.)\n'); # RegEx that apply to an individual line item. FOOD_QUANTITY_PATTERN = re.compile(r'\ \((?P<Quantity>.*)\)', re.VERBOSE); FOOD_TO_STRIP = [ re.compile(r'^Conventional '), re.compile(r'^Imperfect Foods - '), re.compile(r'Organic '), ] FOOD_FIELDS = re.compile( r'(?P<Item>.*) \((?P<Size>.*)\)\t(?P<Quantity>.*)\t(?P<Price>.*)$') FOOD_PRIORITIES = [ r'Grapes', r'Bacon', r'Potatoes', r'Eggs', r'Ribeye', r'Ground\ Beef', r'Chicken\ Broth', r'Ground\ Beef', ] FOOD_PRIORITIES_PATTERN = re.compile(r'(?P<therest>.*)\ (?P<priority>(%s))' % '|'.join(FOOD_PRIORITIES), re.VERBOSE); def load_items(order: List[str]): items = [] for line in order.split('\n'): # V0 # line = FOOD_QUANTITY_PATTERN.sub('\t\g<Quantity>', line) for strip in FOOD_TO_STRIP: line = strip.sub('', line) # Re-order the words in an item's description to prioritze more # important terms line = FOOD_PRIORITIES_PATTERN.sub('\g<priority> \g<therest>', line) # V0 # line = line.split('\t') if not line: continue match = FOOD_FIELDS.match(line) if not match: sys.stdout.write('Could not match on %s', line) item = match.groupdict() # Strip columns we don't track del(item['Price']) # Add a unique Key item['Key'] = str(uuid.uuid4().hex) items.append(item) return items def main(): order = sys.stdin.read() order = ALL_YOU_WERE_NOT_CHARGED.sub('\t', order); items = load_items(order) s = io.StringIO() c = csv.DictWriter(s, HEADERS) c.writeheader() c.writerows(items) s.seek(0) print(s.read()) s.close() if __name__ == '__main__': main() ``` #### File: homeforjla/mls/mls.py ```python import csv import io import urllib.parse from bs4 import BeautifulSoup def main(): soup = BeautifulSoup(open('examples/saved.html'), 'lxml') rows = [] for tag in soup.select('.searchResult'): num = select_str(tag, '.listingNum').split(' ')[1] rows.append({ 'address': select_str(tag, '.address span'), 'price': select_str(tag, '.rapIDXSearchResultsPriceTop'), 'dom': select_str(tag, '.listingDomCdom .display-label'), 'sqft': select_str(tag, '.listingSqFt .display-label'), 'beds': select_str(tag, '.listingBeds .display-label'), 'baths': str(select_str(tag, '.listingBaths .display-label')), 'num': num, 'url': 'https://www.google.com/search?q=%s&btnI' % urllib.parse.quote('redfin' + num), 'remarks': select_str(tag, '.remarks-long'), }) s = io.StringIO() c = csv.DictWriter(s, ('address', 'price', 'dom', 'sqft', 'beds', 'baths', 'num', 'url', 'remarks', 'visited', 'notes')) c.writeheader() c.writerows(rows) s.seek(0) print(s.read()) s.close() def select_list(soup, query): return [tag.get_text(' ', strip=True) for tag in soup.select(query)] def select_str(soup, query): return ' '.join(select_list(soup, query)) if __name__ == '__main__': main() ```
{ "source": "jlapeyre/diffeqpy", "score": 2 }
#### File: jlapeyre/diffeqpy/setup.py ```python from setuptools import setup def readme(): with open('README.md') as f: return f.read() setup(name='diffeqpy', version='1.2.0', description='Solving Differential Equations in Python', long_description=readme(), long_description_content_type="text/markdown", classifiers=[ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Scientific/Engineering :: Physics' ], url='http://github.com/SciML/diffeqpy', keywords='differential equations stochastic ordinary delay differential-algebraic dae ode sde dde', author='<NAME> and <NAME>', author_email='<EMAIL>', license='MIT', packages=['diffeqpy','diffeqpy.tests'], install_requires=['julia>=0.2'], include_package_data=True, zip_safe=False) ```
{ "source": "jlapeyre/qiskit-alt", "score": 2 }
#### File: qiskit-alt/bench/jordan_wigner_nature_time.py ```python import timeit def make_setup_code(basis, geometry): return f""" from qiskit_nature.drivers import UnitsType, Molecule from qiskit_nature.drivers.second_quantization import ElectronicStructureDriverType, ElectronicStructureMoleculeDriver h2_geometry = [['H', [0., 0., 0.]], ['H', [0., 0., 0.735]]] h2o_geometry = [['O', [0., 0., 0.]], ['H', [0.757, 0.586, 0.]], ['H', [-0.757, 0.586, 0.]]] basis = {basis} molecule = Molecule(geometry={geometry}, charge=0, multiplicity=1) driver = ElectronicStructureMoleculeDriver(molecule, basis=basis, driver_type=ElectronicStructureDriverType.PYSCF) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper es_problem = ElectronicStructureProblem(driver) second_q_op = es_problem.second_q_ops() qubit_converter = QubitConverter(mapper=JordanWignerMapper()) hamiltonian = second_q_op[0] """ def run_one_basis(basis, geometry, num_repetitions): setup_code = make_setup_code(basis, geometry) bench_code = "qubit_converter.convert(hamiltonian)" time = timeit.timeit(stmt=bench_code, setup=setup_code, number=num_repetitions) t = 1000 * time / num_repetitions print(f"geometry={geometry}, basis={basis} {t:0.2f}", "ms") return t def run_benchmarks(): nature_times = [] for basis, geometry, num_repetitions in (("'sto3g'", "h2_geometry", 10), ("'631g'", "h2_geometry", 10), ("'631++g'", "h2_geometry", 5), ("'sto3g'", "h2o_geometry", 5), ("'631g'", "h2o_geometry", 1)): t = run_one_basis(basis, geometry, num_repetitions) nature_times.append(t) return nature_times if __name__ == '__main__': nature_times = run_benchmarks() ``` #### File: qiskit-alt/bench/pauli_from_list_alt.py ```python import sys import qiskit_alt qiskit_alt.project.ensure_init() import random from timeit import timeit Main = qiskit_alt.project.julia.Main QuantumOps = qiskit_alt.project.simple_import("QuantumOps") from qiskit_alt.pauli_operators import PauliSum_to_SparsePauliOp random.seed(123) def rand_label(k, n): return ["".join(random.choices("IXYZ", k=k)) for _ in range(n)] def run_benchmarks(): qkalt_times = [] for k in (10, 100): for n in (10, 100, 1000, 5000, 10_000, 100_000): label = rand_label(k, n) if qiskit_alt.project._calljulia_name == 'juliacall': label = Main.pyconvert_list(Main.String, label) PauliSum_to_SparsePauliOp(QuantumOps.PauliSum(label)) number = 20 t = timeit(lambda: PauliSum_to_SparsePauliOp(QuantumOps.PauliSum(label)), number=number) t = t * 1000 / number qkalt_times.append(t) print(f'k={k}, n={n}, {t} ms') return qkalt_times if __name__ == '__main__': qkalt_times = run_benchmarks() ``` #### File: qiskit-alt/docker_tests/run_dockerfile.py ```python r""" This is a test docstring. """ import subprocess as sb_pr import fire def subprocess_execute(command_list): """Subprocess_execute executes the command on host OS, then dumps the output to STDOUT. Arguments: command_list: This is a list of string making the command to be executed. """ sb_pr.run(command_list, text=True, check=True) def action_build(image_name, image_tag, dockerfile_name, docker_path): """The function action_build builds the image Arguments: image_name: Name of the image file. image_tag: Tag of the build image file. dockerfile_name: This is the Dockerfile to be used for building the image. docker_path: working directory of docker. """ image_name_with_tag = image_name + ":" + image_tag build_command_list = [ "docker", "build", "-t", image_name_with_tag, "-f", dockerfile_name, docker_path, ] return build_command_list def action_run(image_name, image_tag, user_name, test_file_path, test_file_name): """The function action_run runs the container and initiates the tests. Arguments: image_name: Name of image to be used to build the containers. image_tag: The tag of imgaes to be used to build the containers. test_file_path: Path of the test file from which tests has to run. test_file_name: Name of the file containing the tests to be done. """ image_name_with_tag = image_name + ":" + image_tag run_command_list = [ "docker", "run", "-it", image_name_with_tag, "/usr/bin/su", "-l", user_name, "-c", "cd qiskit_alt; sh " + test_file_path + test_file_name, ] return run_command_list def action_get_into_fish(image_name, image_tag, user_name): """The function action_get_into_fish takes into the fish shell running in the container. Arguments: image_name: Name of the image to be used to build the container. image_tag: The tag of the image which is used to build the container. user_name: The user name which logins into the container. """ image_name_with_tag = image_name + ":" + image_tag get_fish_command_list = [ "docker", "run", "-it", image_name_with_tag, "/usr/bin/su", "-l", user_name, "-s", "/usr/bin/fish", ] return get_fish_command_list def action_get_into_bash(image_name, image_tag, user_name): """The function action_get_into_bash takes into the bash shell running in the container. Arguments: image_name: Name of the image to be used to build the container. image_tag: The tag of the image which is used to build the container. user_name: The user name which logins into the container. """ image_name_with_tag = image_name + ":" + image_tag get_bash_command_list = [ "docker", "run", "-it", image_name_with_tag, "/usr/bin/su", "-l", user_name, "-s", "/usr/bin/bash", ] return get_bash_command_list def action_get_into_rootfish(image_name, image_tag): """The function action_get_into_rootfish takes into the fish shell running in the container as root. Arguments: image_name: Name of the image to be used to build the container. image_tag: The tag of the image which is used to build the container. user_name: The user name which logins into the container. """ image_name_with_tag = image_name + ":" + image_tag get_rootfish_command_list = [ "docker", "run", "-it", image_name_with_tag, "/usr/bin/fish", ] return get_rootfish_command_list def _cli( action="", image_name="qiskit_alt", image_tag="latest", dockerfile_name="Dockerfile", user_name="quser", test_file_path="./", test_file_name="run_init_tests.sh", docker_path="..", dry_run="false", ): """All the arguments of this function are supposed to be passed as command line arguments while initiating the python script. Arguments: action: This are the possible actions to be performed. Possible actions are: build: To build the containers Example: ./run_dockerfile.py --action=build run: To run the containers "": To build and then to run the containers. get_into_fish: To get into the fish shell running in the container. get_into_bash: To get into the bash shell running in the container. get_into_rootfish: To get into the fish shell running in the container as root. image_name: The name of the image to be build. image_tag: The tag given to the image to be build. dockerfile_name: The name of the Dockerfile to be used for building the image. user_name: A username in the container. test_file_path: The path to the test file which contains all the tests to run. docker_path: The working directory for docker. dry_run: Either true or false. If true, then only print action, but don't execute it. """ if dry_run == "false": _dry_run = False elif dry_run == "true": _dry_run = True else: print("dry_run must be either true or false. See ./run_dockerfile.py --help") return command_lists = [] if action == "build": command_lists.append(action_build(image_name, image_tag, dockerfile_name, docker_path)) elif action == "run": command_lists.append(action_run(image_name, image_tag, user_name, test_file_path, test_file_name)) elif action == "": command_lists.append(action_build(image_name, image_tag, dockerfile_name, docker_path)) command_lists.append(action_run(image_name, image_tag, user_name, test_file_path, test_file_name)) elif action == "get_into_fish": command_lists.append(action_get_into_fish(image_name, image_tag, user_name)) elif action == "get_into_bash": command_lists.append(action_get_into_bash(image_name, image_tag, user_name)) elif action == "get_into_rootfish": command_lists.append(action_get_into_rootfish(image_name, image_tag)) else: print("Bad arguments, See ./run_dockerfile.py --help") for command_list in command_lists: command_string = " ".join(map(str, command_list)) print(command_string + "\n") if not _dry_run: subprocess_execute(command_list) if __name__ == "__main__": fire.Fire(_cli) ``` #### File: qiskit-alt/test_juliacall/basic_juliacall_test.py ```python import pytest import qiskit_alt project = qiskit_alt.project project.ensure_init(calljulia="juliacall") def test_always_passes(): assert True def test_interface_lib(): assert qiskit_alt.project.julia.__name__ == 'juliacall' def test_Main(): Main = qiskit_alt.project.julia.Main assert Main.sind(90) == 1.0 ```
{ "source": "jlapeyre/qiskit-aqua", "score": 3 }
#### File: optimization/algorithms/optimization_algorithm.py ```python from abc import ABC, abstractmethod from enum import Enum from typing import Any, Optional from ..problems.quadratic_program import QuadraticProgram class OptimizationAlgorithm(ABC): """An abstract class for optimization algorithms in Qiskit's optimization module.""" @abstractmethod def get_compatibility_msg(self, problem: QuadraticProgram) -> str: """Checks whether a given problem can be solved with the optimizer implementing this method. Args: problem: The optimization problem to check compatibility. Returns: Returns the incompatibility message. If the message is empty no issues were found. """ def is_compatible(self, problem: QuadraticProgram) -> bool: """Checks whether a given problem can be solved with the optimizer implementing this method. Args: problem: The optimization problem to check compatibility. Returns: Returns True if the problem is compatible, False otherwise. """ return len(self.get_compatibility_msg(problem)) == 0 @abstractmethod def solve(self, problem: QuadraticProgram) -> 'OptimizationResult': """Tries to solves the given problem using the optimizer. Runs the optimizer to try to solve the optimization problem. Args: problem: The problem to be solved. Returns: The result of the optimizer applied to the problem. Raises: QiskitOptimizationError: If the problem is incompatible with the optimizer. """ raise NotImplementedError class OptimizationResultStatus(Enum): """Feasible values for the termination status of an optimization algorithm.""" SUCCESS = 0 FAILURE = 1 INFEASIBLE = 2 class OptimizationResult: """The optimization result class. The optimization algorithms return an object of the type `OptimizationResult`, which enforces providing the following attributes. Attributes: x: The optimal value found in the optimization algorithm. fval: The function value corresponding to the optimal value. results: The original results object returned from the optimization algorithm. This can contain more information than only the optimal value and function value. status: The termination status of the algorithm. """ Status = OptimizationResultStatus def __init__(self, x: Optional[Any] = None, fval: Optional[Any] = None, results: Optional[Any] = None, status: OptimizationResultStatus = OptimizationResultStatus.SUCCESS) -> None: self._val = x self._fval = fval self._results = results self._status = status def __repr__(self): return '([{}] / {} / {})'.format(','.join([str(x_) for x_ in self.x]), self.fval, self.status) def __str__(self): return 'x=[{}], fval={}'.format(','.join([str(x_) for x_ in self.x]), self.fval) @property def x(self) -> Any: """Returns the optimal value found in the optimization. Returns: The optimal value found in the optimization. """ return self._val @property def fval(self) -> Any: """Returns the optimal function value. Returns: The function value corresponding to the optimal value found in the optimization. """ return self._fval @property def results(self) -> Any: """Return the original results object from the algorithm. Currently a dump for any leftovers. Returns: Additional result information of the optimization algorithm. """ return self._results @property def status(self) -> OptimizationResultStatus: """Return the termination status of the algorithm. Returns: The termination status of the algorithm. """ return self._status @x.setter # type: ignore def x(self, x: Any) -> None: """Set a new optimal value. Args: x: The new optimal value. """ self._val = x @fval.setter # type: ignore def fval(self, fval: Any) -> None: """Set a new optimal function value. Args: fval: The new optimal function value. """ self._fval = fval @results.setter # type: ignore def results(self, results: Any) -> None: """Set results. Args: results: The new additional results of the optimization. """ self._results = results @status.setter # type: ignore def status(self, status: OptimizationResultStatus) -> None: """Set a new termination status. Args: status: The new termination status. """ self._status = status ```
{ "source": "Jlaqueyrie/Bornes-d-faut", "score": 3 }
#### File: Jlaqueyrie/Bornes-d-faut/_main_.py ```python from tkinter import Tk from tkinter import Label from tkinter import OptionMenu from tkinter import Button from tkinter import Radiobutton from tkinter import StringVar from tkinter import LabelFrame from tkinter import Entry from Fonction import sauvDonnee, testLigne, testSfc from tkinter import messagebox from tkinter import N, E, W, S from tkinter import ACTIVE, DISABLED class MyFirstGUI(): def __init__(self, master): self.master = master "----------------------------Constant---------------------------------" Classeur = r'C:\Users\jlaqueyr\Documents\MyNoteBook\ScriptPython\BorneDefaut\Feuille.xlsx' FeuilleDefaut = r'Liste des saisies' LBL_Z_INFO = 'Information générale' LARGEUR_FRAME = 485 TITRE = 'Borne défaut' DIMENSION_FENETRE = '500x350+30+30' LBL_SFC = 'SFC' LBL_OPERATEUR = 'Nom' LBL_Z_LIGNE = 'Sur quel ligne est apparu le défaut ?' LBL_Z_DEF = 'Description du défaut' LBL_Z_DEF_INT = 'Intégration' LBL_Z_DEF_UFT = 'UFT et CADS' LBL_Z_DEF_ETI = 'Etiquettes' LBL_Z_DEF_CHOIX = "Choisir le défaut" NOM_LIGNE1 = 'Ligne Principale' NOM_LIGNE2 = 'Ligne Secondaire' PADX_INFO = 5 PADX_LBL_INFO = 5 PADY_INFO = 20 PADX_BTN_LIGNE = 40 PADY_BTN_LIGNE = 15 PADX_ZN_DEF = 5 PADY_ZN_DEF = 10 MSG_SAUV_TITRE = "Ticket sauvegardé" MSG_SAUV_CONTENU = "Ticket défaut sauvegardé" VAL_DEF_CHOIX = 'Choix X' nomOperateur = StringVar(master) sfc = StringVar(master) master.title(TITRE) master.geometry(DIMENSION_FENETRE) "---------------------------Fonction----------------------------------" def callback(*args): print("tkvar changed") popupMenu2.configure(state='disable') popupMenu3.configure(state='disable') def callback2(*args): print("tkvar changed 1") popupMenu1.configure(state='disable') popupMenu3.configure(state='disable') def callback3(*args): print("tkvar changed 2") popupMenu1.configure(state='disable') popupMenu2.configure(state='disable') def testDefaut(listeDefaut, valDefaut): breakpoint() defaut = "" for defaut in listeDefaut: if defaut != valDefaut: defFinal = defaut break else: pass return defFinal def RecupValeur(): ListeInfo = [] print( self.txtSfc.get(), self.txtNomOperateur.get(), Ligne1Var.get(), Ligne2Var.get(), self.tkvar.get()) listeLigne = [Ligne1Var.get(), Ligne2Var.get()] resultatLigne = testLigne(listeLigne, 'off') resultatSfc, ErrSfc = testSfc(sfc.get()) breakpoint() self.listeDef = [self.tkvar.get(), self.tkvar1.get(), self.tkvar2.get()] resultatDefaut = testDefaut(self.listeDef, VAL_DEF_CHOIX) ListeInfo = [ resultatSfc, self.txtNomOperateur.get(), resultatLigne, resultatDefaut] sauvDonnee(Classeur, ListeInfo, FeuilleDefaut) self.txtSfc.delete(0, 'end') self.txtNomOperateur.delete(0, 'end') self.btnLigne1.deselect() self.btnLigne2.deselect() popupMenu1.configure(state='active') popupMenu1.selection_clear() popupMenu2.configure(state='active') popupMenu2.selection_clear() popupMenu3.configure(state='active') popupMenu3.selection_clear() messagebox.showinfo(MSG_SAUV_TITRE, MSG_SAUV_CONTENU) "------------------Information sur le produit-------------------------" self.ZoneInfoGen = LabelFrame( master, text=LBL_Z_INFO, width=LARGEUR_FRAME, height=80) self.ZoneInfoGen.grid(row=0, column=1, sticky=N + S + W + E) self.ZoneInfoGen.grid_propagate(0) self.lblSfc = Label(self.ZoneInfoGen, text=LBL_SFC) self.txtSfc = Entry(self.ZoneInfoGen, textvariable=sfc) self.txtSfc.focus_set() self.lblNomOperateur = Label(self.ZoneInfoGen, text=LBL_OPERATEUR) self.txtNomOperateur = Entry( self.ZoneInfoGen, textvariable=nomOperateur) self.lblSfc.grid(row=0, column=1, padx=PADX_LBL_INFO, pady=PADY_INFO) self.txtSfc.grid( row=0, column=2, ipadx=25, padx=PADX_INFO, pady=PADY_INFO) self.lblNomOperateur.grid( row=0, column=3, padx=PADX_LBL_INFO, pady=PADY_INFO) self.txtNomOperateur.grid( row=0, column=4, ipadx=25, padx=PADX_INFO, pady=PADY_INFO) "----------Information sur la ligne qui a produit le défaut-----------" self.ZoneLigne = LabelFrame( master, text=LBL_Z_LIGNE, width=LARGEUR_FRAME, height=80) self.ZoneLigne.grid(row=1, column=1) self.ZoneLigne.grid_propagate(0) Ligne1Var = StringVar(value="off") self.btnLigne1 = Radiobutton( self.ZoneLigne, text=NOM_LIGNE1, variable=Ligne1Var, indicatoron=False, value="Ligne1") Ligne2Var = StringVar(value="off") self.btnLigne2 = Radiobutton( self.ZoneLigne, text=NOM_LIGNE2, variable=Ligne2Var, indicatoron=False, value="Ligne2") self.btnLigne1.grid( row=0, column=1, ipadx=30, padx=PADX_BTN_LIGNE, pady=PADY_BTN_LIGNE) self.btnLigne2.grid( row=0, column=3, ipadx=30, padx=PADX_BTN_LIGNE, pady=PADY_BTN_LIGNE) if self.btnLigne2.state(): print(self.btnLigne2.state) if not self.btnLigne1.select(): print(self.btnLigne1.get()) "------------------Information sur le type de défaut-------------------" self.ZoneDefaut = LabelFrame( master, text=LBL_Z_DEF, width=LARGEUR_FRAME, height=130) self.ZoneDefaut.grid(row=2, column=1, sticky='NW') self.ZoneDefaut.grid_propagate(0) self.ZoneDefautInt = LabelFrame( self.ZoneDefaut, text=LBL_Z_DEF_INT, height=80, width=150) self.ZoneDefautInt.grid( row='0', column='1', padx=PADX_ZN_DEF, pady=PADY_ZN_DEF) self.ZoneDefautInt.grid_propagate(0) self.tkvar = StringVar(master) choices = {'Choix 1', 'Choix 2', 'Choix 3', 'Choix 4', 'Choix 5'} self.tkvar.set(VAL_DEF_CHOIX) popupMenu1 = OptionMenu(self.ZoneDefautInt, self.tkvar, *choices) Label( self.ZoneDefautInt, text=LBL_Z_DEF_CHOIX).grid( row=1, column=1) popupMenu1.grid(row=2, column=1, ipadx=30) self.ZoneDefautUFT = LabelFrame( self.ZoneDefaut, text=LBL_Z_DEF_UFT, height=80, width=150) self.ZoneDefautUFT.grid( row='0', column='2', padx=PADX_ZN_DEF, pady=PADY_ZN_DEF) self.ZoneDefautUFT.grid_propagate(0) self.tkvar1 = StringVar(master) choices = {'Choix 1', 'Choix 2', 'Choix 3', 'Choix 4', 'Choix 5'} self.tkvar1.set(VAL_DEF_CHOIX) popupMenu2 = OptionMenu(self.ZoneDefautUFT, self.tkvar1, *choices) Label( self.ZoneDefautUFT, text=LBL_Z_DEF_CHOIX).grid( row=1, column=1) popupMenu2.grid(row=2, column=1, ipadx=30) self.ZoneDefautEti = LabelFrame( self.ZoneDefaut, text=LBL_Z_DEF_ETI, height=80, width=150) self.ZoneDefautEti.grid( row='0', column='3', padx=PADX_ZN_DEF, pady=PADY_ZN_DEF) self.ZoneDefautEti.grid_propagate(0) self.tkvar2 = StringVar(master) choices = {'Choix 1', 'Choix 2', 'Choix 3', 'Choix 4', 'Choix 5'} self.tkvar2.set(VAL_DEF_CHOIX) popupMenu3 = OptionMenu(self.ZoneDefautEti, self.tkvar2, *choices) Label( self.ZoneDefautEti, text=LBL_Z_DEF_CHOIX).grid( row=1, column=1) popupMenu3.grid(row=2, column=1, ipadx=30) self.btnValider = Button( master, text="Valider", relief="raised", command=RecupValeur) self.btnValider.grid(row=3, column=1) self.tkvar.trace("w", callback) self.tkvar1.trace('w', callback2) self.tkvar2.trace('w', callback3) def main(): root = Tk() my_gui = MyFirstGUI(root) root.mainloop() if __name__ == '__main__': main() ```
{ "source": "jlararigger/jlr_copy_deformer_weights", "score": 2 }
#### File: jlararigger/jlr_copy_deformer_weights/jlr_copy_deformer_weights_UI.py ```python from PySide2 import QtCore, QtWidgets from shiboken2 import wrapInstance from maya import OpenMayaUI import pymel.core as pm class CopyDeformerWeightsUI(object): """ CopyDeformerWeights Class """ def __init__(self): self.transfer_function = None """ Create the CopyDeformerWeights UI """ self.dialog = QtWidgets.QDialog() self.dialog_name = "copy_deformer_weights_dialog" self.delete_instances() self.maya_main_window_ptr = OpenMayaUI.MQtUtil.mainWindow() self.maya_main_window = wrapInstance(int(self.maya_main_window_ptr), QtWidgets.QMainWindow) self.dialog.setParent(self.maya_main_window) self.dialog.setWindowFlags(QtCore.Qt.Window) self.dialog.setObjectName(self.dialog_name) # self.dialog.setFixedSize(400, 500) self.dialog.setWindowTitle("Copy Deformer Weights") self.dialog_layout = QtWidgets.QGridLayout(self.dialog) self.dialog_layout.setObjectName("dialog_layout") self.main_layout = QtWidgets.QVBoxLayout() self.main_layout.setObjectName("main_layout") self.source_group_box = QtWidgets.QGroupBox(self.dialog) self.source_group_box.setObjectName("source_group_box") self.source_group_box.setTitle("Source") self.source_gb_layout = QtWidgets.QGridLayout(self.source_group_box) self.source_gb_layout.setObjectName("source_gb_layout") self.source_layout = QtWidgets.QVBoxLayout() self.source_layout.setObjectName("source_layout") self.btn_source = QtWidgets.QPushButton(self.source_group_box) self.btn_source.setObjectName("btn_source") self.btn_source.setText("Get Source") self.btn_source.clicked.connect(lambda: self.get_source_items()) self.source_layout.addWidget(self.btn_source) self.source_list_layout = QtWidgets.QHBoxLayout() self.source_list_layout.setObjectName("source_list_layout") self.object_source_list = QtWidgets.QListWidget(self.source_group_box) self.object_source_list.setObjectName("object_source_list") self.object_source_list.currentItemChanged.connect(lambda: self.update_source_deformer_list()) self.source_list_layout.addWidget(self.object_source_list) self.deformer_source_tree = QtWidgets.QTreeWidget(self.source_group_box) self.deformer_source_tree.setObjectName("deformer_source_tree") self.deformer_source_tree.setHeaderHidden(True) self.source_list_layout.addWidget(self.deformer_source_tree) self.source_layout.addLayout(self.source_list_layout) self.source_gb_layout.addLayout(self.source_layout, 0, 0, 1, 1) self.main_layout.addWidget(self.source_group_box) self.target_group_box = QtWidgets.QGroupBox(self.dialog) self.target_group_box.setObjectName("target_group_box") self.target_group_box.setTitle("Target") self.target_gb_layout = QtWidgets.QGridLayout(self.target_group_box) self.target_gb_layout.setObjectName("target_gb_layout") self.target_layout = QtWidgets.QVBoxLayout() self.target_layout.setObjectName("target_layout") self.btn_target = QtWidgets.QPushButton(self.target_group_box) self.btn_target.setObjectName("btn_target") self.btn_target.setText("Get Target") self.btn_target.clicked.connect(lambda: self.get_target_items()) self.target_layout.addWidget(self.btn_target) self.target_list_layout = QtWidgets.QHBoxLayout() self.target_list_layout.setObjectName("target_list_layout") self.object_target_list = QtWidgets.QListWidget(self.target_group_box) self.object_target_list.setObjectName("object_target_list") self.object_target_list.currentItemChanged.connect(lambda: self.update_target_deformer_list()) self.target_list_layout.addWidget(self.object_target_list) self.deformer_target_list = QtWidgets.QListWidget(self.target_group_box) self.deformer_target_list.setObjectName("deformer_target_list") self.target_list_layout.addWidget(self.deformer_target_list) self.target_layout.addLayout(self.target_list_layout) self.target_gb_layout.addLayout(self.target_layout, 0, 0, 1, 1) self.main_layout.addWidget(self.target_group_box) self.progress_bar_layout = QtWidgets.QVBoxLayout() self.progress_bar_layout.setObjectName("progress_bar_layout") self.progress_bar = QtWidgets.QProgressBar(self.dialog) self.progress_bar.setProperty("value", -1) self.progress_bar.setTextVisible(False) self.progress_bar.setObjectName("progress_bar") self.progress_bar_layout.addWidget(self.progress_bar) self.progress_label = QtWidgets.QLabel(self.dialog) self.progress_label.setObjectName("progress_label") self.progress_label.setMinimumSize(QtCore.QSize(0, 21)) self.progress_label.setAlignment(QtCore.Qt.AlignCenter) self.progress_bar_layout.addWidget(self.progress_label) self.main_layout.addLayout(self.progress_bar_layout) self._progress_bar_steps = 8 self._progress_bar_value = -1 self.buttons_group_box = QtWidgets.QGroupBox(self.dialog) self.buttons_group_box.setTitle("") self.buttons_group_box.setObjectName("buttons_group_box") self.buttons_gb_layout = QtWidgets.QHBoxLayout(self.buttons_group_box) self.buttons_gb_layout.setObjectName("buttons_gb_layout") self.copy_button = QtWidgets.QPushButton(self.buttons_group_box) self.copy_button.setObjectName("copy_button") self.copy_button.setText("Copy") self.copy_button.clicked.connect(lambda: self.copy_deformer_weights()) self.buttons_gb_layout.addWidget(self.copy_button) self.cancel_button = QtWidgets.QPushButton(self.buttons_group_box) self.cancel_button.setObjectName("cancel_button") self.cancel_button.setText("Cancel") self.cancel_button.clicked.connect(lambda: self.delete_instances()) self.buttons_gb_layout.addWidget(self.cancel_button) self.main_layout.addWidget(self.buttons_group_box) self.dialog_layout.addLayout(self.main_layout, 0, 0, 1, 1) @property def progress_bar_steps(self): return self._progress_bar_steps @progress_bar_steps.setter def progress_bar_steps(self, value): assert isinstance(value, int), "Progress Bar Steps must be a integer" self._progress_bar_steps = value @property def progress_bar_value(self): return self._progress_bar_value @progress_bar_value.setter def progress_bar_value(self, value): assert isinstance(value, (int, float)), "Progress Bar Value must be a integer or float" self._progress_bar_value = value def progress_bar_init(self): """ Hide the label and initialize the progress bar. """ self.progress_label.hide() self.progress_bar_value = 0 self.progress_bar.show() self.progress_bar_layout.update() def progress_bar_next(self): """ Update the progress bar value. """ self.progress_bar_value += 1 self.progress_bar.setValue((100.0 / self.progress_bar_steps) * self.progress_bar_value) def progress_bar_ends(self, message): """ Closes the progress bar and show label with a message. """ self.progress_bar.hide() self.progress_label.show() self.progress_label.setText(message) def get_source_items(self): """ Gets the selected objects in the scene and fills the source lists. """ if pm.selected(): self.update_source_list(pm.selected()) self.update_source_deformer_list() def update_source_list(self, l_items): """ Fills the source list widget. :param l_items: list with the name of source objects. """ if l_items: self.populate_list_widget(self.object_source_list, l_items) def update_source_deformer_list(self): """ Fills the list of deformers according to the selected object in the source object list. """ item = pm.PyNode(self.object_source_list.currentItem().text()) self.populate_tree_widget(self.deformer_source_tree, self.get_deformer_list(item)) def get_target_items(self): """ Gets the selected objects in the scene and fills the target lists. """ if pm.selected(): self.update_target_list(pm.selected()) self.update_target_deformer_list() def update_target_list(self, l_items): """ Updates the target list widget. :param l_items: list with the name of target objects. """ if l_items: self.populate_list_widget(self.object_target_list, l_items) def update_target_deformer_list(self): """ Fills the list of deformers according to the selected object in the target object list. """ item = pm.PyNode(self.object_target_list.currentItem().text()) self.populate_list_widget(self.deformer_target_list, self.get_deformer_list(item)) @staticmethod def get_deformer_list(item): """ Returns a list with the deformers connected to a object. :param item: PyNode with shapes :return: list """ deformer_types = ["ffd", "wire", "cluster", "softMod", "deltaMush", "textureDeformer", "nonLinear"] if pm.objExists(item): deformer_list = list() for shape in item.getShapes(): deformer_list.extend(pm.listHistory(shape, ha=1, il=1, pdo=1)) valid_deformers = list() for deformer in deformer_list: if deformer.type() in deformer_types: valid_deformers.append(deformer) return valid_deformers else: return list() @staticmethod def populate_tree_widget(tree_widget, l_items): """ Fills a QListWidget with the passed list. :param tree_widget: QListWidget :param l_items: list of PyNodes. """ tree_widget.blockSignals(True) tree_widget.clear() for item in l_items: tree_widget_item = QtWidgets.QTreeWidgetItem() tree_widget_item.setText(0, item.nodeName()) tree_widget_item.setWhatsThis(0, "deformer") tree_widget.addTopLevelItem(tree_widget_item) tree_widget.blockSignals(False) @staticmethod def populate_list_widget(list_widget, l_items): """ Fills a QListWidget with the passed list. :param list_widget: QListWidget :param l_items: list of PyNodes. """ list_widget.blockSignals(True) list_widget.clear() for item in l_items: list_widget_item = QtWidgets.QListWidgetItem() list_widget_item.setText(item.nodeName()) list_widget.addItem(list_widget_item) list_widget.setCurrentRow(0) list_widget.blockSignals(False) def copy_deformer_weights(self): """ Checks if the selected items are a valid selection and call the copy function. """ assert self.transfer_function is not None, "The transfer_function variable must be contain a transfer_function function." geo_source = self.object_source_list.currentItem() geo_target = self.object_target_list.currentItem() deformer_source = self.deformer_source_tree.currentItem() deformer_target = self.deformer_target_list.currentItem() if geo_source and geo_target and deformer_source and deformer_target: data = {"geo_source": pm.PyNode(geo_source.text()), "geo_target": pm.PyNode(geo_target.text()), "deformer_source": pm.PyNode(deformer_source.text(0)), "deformer_target": pm.PyNode(deformer_target.text()), "surface_association": "closestPoint", "interface": self, } self.transfer_function(**data) def show(self): """ Shows the CopyDeformerWeights UI. If there are selected items previously in the scene, the first selected item will be loaded as source object and the rest of objects will be loaded as target objects. """ self.dialog.show() self.progress_bar.hide() self.progress_label.setText("Select the objects and its deformers") self.progress_bar_layout.update() if pm.selected(): self.update_source_list(pm.selected()[0:1]) self.update_source_deformer_list() if len(pm.selected()) > 1: self.update_target_list(pm.selected()[1:]) self.update_target_deformer_list() def delete_instances(self): """ Deletes the UI """ if pm.window(self.dialog_name, exists=True): pm.deleteUI(self.dialog_name) ```
{ "source": "jlareck/databus-client", "score": 2 }
#### File: python/scripts/redeploy_from_endpoint.py ```python from SPARQLWrapper import SPARQLWrapper, JSON from databusclient.databus_client import DatabusFile, DatabusGroup, DatabusVersionMetadata, DatabusVersion, deploy_to_dev_databus from databusclient.cli import parse_cv_string from datetime import datetime endpoint = "https://databus.dbpedia.org/repo/sparql" db_base = "http://localhost:3000" def redeploy_groups(): query = """ PREFIX dataid: <http://dataid.dbpedia.org/ns/core#> PREFIX dct: <http://purl.org/dc/terms/> PREFIX dcat: <http://www.w3.org/ns/dcat#> PREFIX db: <https://databus.dbpedia.org/> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX databus: <https://databus.dbpedia.org/> SELECT DISTINCT ?group ?groupdocu WHERE { ?dataset dataid:account databus:ontologies . ?dataset dataid:group ?group . ?dataset dataid:groupdocu ?groupdocu . } """ sparql_wrapper = SPARQLWrapper(endpoint) sparql_wrapper.setReturnFormat(JSON) sparql_wrapper.setQuery(query) result = sparql_wrapper.queryAndConvert() all_groups = [] for binding in result["results"]["bindings"]: group_uri = binding["group"]["value"] group = group_uri.split("/")[-1] docu = binding["groupdocu"]["value"] all_groups.append(DatabusGroup("denis", group, f"Title for {group_uri}", f"Label for {group_uri}", f"This is the comment for {group_uri}", f"This is the absrtact for {group_uri}", docu, DATABUS_BASE=db_base)) deploy_to_dev_databus("ff7d6b48-86b8-4760-ad02-9ef5de2608d9", *all_groups) def redeploy_versions(): query = """ PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX databus: <https://databus.dbpedia.org/> PREFIX dataid: <http://dataid.dbpedia.org/ns/core#> PREFIX dataid-cv: <http://dataid.dbpedia.org/ns/cv#> PREFIX dct: <http://purl.org/dc/terms/> PREFIX dcat: <http://www.w3.org/ns/dcat#> PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX databus: <https://databus.dbpedia.org/> PREFIX dataid: <http://dataid.dbpedia.org/ns/core#> PREFIX dataid-cv: <http://dataid.dbpedia.org/ns/cv#> PREFIX dct: <http://purl.org/dc/terms/> PREFIX dcat: <http://www.w3.org/ns/dcat#> PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> SELECT DISTINCT ?group ?art ?version ?title ?publisher ?comment ?description ?license ?file ?extension ?type ?bytes ?shasum (group_concat(?kvstr; separator="|") as ?cvs) WHERE { SELECT DISTINCT ?group ?art ?version ?title ?publisher ?comment ?description ?license ?file ?extension ?type ?bytes ?shasum ?kvstr WHERE { ?dataset dataid:account databus:ontologies . ?dataset dataid:group ?group . ?dataset dataid:artifact ?art. ?dataset dcat:distribution ?distribution . ?dataset dct:license ?license . ?dataset dct:publisher ?publisher . ?dataset rdfs:comment ?comment . ?dataset dct:description ?description . ?dataset dct:title ?title . ?distribution dcat:downloadURL ?file . ?distribution dataid:formatExtension ?extension . ?distribution dataid-cv:type ?type . ?distribution dcat:byteSize ?bytes . ?distribution dataid:sha256sum ?shasum . ?dataset dct:hasVersion ?version . # get cvs as concat string ?dataset dcat:distribution ?distribution . ?distribution dataid:contentVariant ?value . ?distribution ?key ?value . ?key rdfs:subPropertyOf dataid:contentVariant . BIND(CONCAT(str(REPLACE (str(?key), "http://dataid.dbpedia.org/ns/cv#", "")), "=", str(?value)) as ?kvstr) # Excludes dev versions FILTER (!regex(?art, "--DEV")) # exclude some stuff since content variants are hard MINUS { ?distribution dataid:contentVariant 'sorted'^^xsd:string . } # MINUS { ?distribution dataid:contentVariant 'NONE'^^xsd:string} # MINUS { ?distribution dataid:contentVariant 'goodLicense'^^xsd:string} # MINUS { ?distribution dataid:contentVariant 'lodeMetadata'^^xsd:string} # MINUS { ?distribution dataid:contentVariant 'old'^^xsd:string} } } GROUP BY ?group ?art ?version ?title ?publisher ?comment ?description ?license ?file ?extension ?type ?bytes ?shasum ORDER BY ?version """ sparql_wrapper = SPARQLWrapper(endpoint) sparql_wrapper.setReturnFormat(JSON) sparql_wrapper.setQuery(query) print("Start querying....") result = sparql_wrapper.queryAndConvert() result_map = {} issued = datetime.now() for binding in result["results"]["bindings"]: group = binding["group"]["value"].split("/")[-1] art = binding["art"]["value"].split("/")[-1] version = binding["version"]["value"] dl_url = binding["file"]["value"] file_ext = binding["extension"]["value"] # set fileext for unknown files if file_ext == "": file_ext = dl_url[dl_url.rfind(".")+1:] file_type = binding["type"]["value"] bytesize = binding["bytes"]["value"] shasum = binding["shasum"]["value"] cvs_string = binding["cvs"]["value"] publisher = "http://localhost:3000/denis#this" title = binding["title"]["value"] comment = binding["comment"]["value"] description = binding["description"]["value"] version_license = binding["license"]["value"] version_metadata = DatabusVersionMetadata("denis", group, art, version, title, title, publisher, comment, description, description, version_license, issued=issued, DATABUS_BASE=db_base) cv_map = parse_cv_string(cvs_string) databus_files = result_map.get(version_metadata, []) + [DatabusFile(dl_url, cv_map, file_ext, shasum=shasum, content_length=bytesize)] result_map[version_metadata] = databus_files versions = [] for metadata, dbfiles in result_map.items(): versions.append(DatabusVersion(metadata, dbfiles)) for version in versions: print(version.metadata.group, version.metadata.artifact, version.metadata.version, len(version.databus_files)) print(f"Going to deploy {len(versions)} versions...") deploy_to_dev_databus("ff7d6b48-86b8-4760-ad02-9ef5de2608d9", *versions) def main(): redeploy_versions() if __name__ == "__main__": main() ```
{ "source": "jlarkin21/parking-garage-python", "score": 3 }
#### File: parking-garage-python/test/test_4_garage_premium_parking.py ```python from typing import List from garage.garage import Garage from garage.parking_level import ParkingLevel from garage.parking_space import ParkingSpace from garage.vehicle import Vehicle from garage.permit import Permit from garage.vehicle_type import VehicleType from test.utils import TestHelpers def test_vehicles_without_premium_permits_are_rejected_from_premium_parking_spaces(): parking_space_a = ParkingSpace(required_permit=Permit.PREMIUM) parking_space_b = ParkingSpace(required_permit=Permit.PREMIUM) parking_space_c = ParkingSpace(required_permit=Permit.PREMIUM) parking_space_d = ParkingSpace(required_permit=Permit.PREMIUM) parking_space_e = ParkingSpace(required_permit=Permit.PREMIUM) parking_space_f = ParkingSpace(required_permit=Permit.PREMIUM) parking_level_1 = ParkingLevel(spaces=[parking_space_a, parking_space_b]) parking_level_2 = ParkingLevel(spaces=[parking_space_c, parking_space_d]) parking_level_3 = ParkingLevel(spaces=[parking_space_e, parking_space_f]) garage = Garage(levels=[parking_level_1, parking_level_2, parking_level_3]) vehicle_1 = Vehicle(permit=Permit.PREMIUM) vehicle_2 = Vehicle(permit=Permit.NONE) vehicle_3 = Vehicle(permit=Permit.NONE) vehicle_4 = Vehicle(permit=Permit.PREMIUM) vehicle_5 = Vehicle(permit=Permit.DISABILITY) vehicle_6 = Vehicle(permit=Permit.NONE) expected_vehicles_rejected: List[Vehicle] = [ vehicle_2, vehicle_3, vehicle_5, vehicle_6, ] actual_vehicles_rejected = garage.add_vehicles( [vehicle_1, vehicle_2, vehicle_3, vehicle_4, vehicle_5, vehicle_6] ) TestHelpers.assert_expected_vehicles_are_rejected( actual=actual_vehicles_rejected, expected=expected_vehicles_rejected ) def test_vehicles_with_premium_permits_are_added_to_premium_parking_spaces(): parking_space_a = ParkingSpace(required_permit=Permit.PREMIUM) parking_space_b = ParkingSpace() parking_space_c = ParkingSpace(required_permit=Permit.PREMIUM) parking_space_d = ParkingSpace(required_permit=Permit.PREMIUM) parking_space_e = ParkingSpace() parking_space_f = ParkingSpace(required_permit=Permit.PREMIUM) parking_level_1 = ParkingLevel(spaces=[parking_space_a, parking_space_b]) parking_level_2 = ParkingLevel(spaces=[parking_space_c, parking_space_d]) parking_level_3 = ParkingLevel(spaces=[parking_space_e, parking_space_f]) garage = Garage(levels=[parking_level_1, parking_level_2, parking_level_3]) vehicle_1 = Vehicle() vehicle_2 = Vehicle(permit=Permit.DISABILITY | Permit.PREMIUM) vehicle_3 = Vehicle(permit=Permit.PREMIUM) vehicle_4 = Vehicle() vehicle_5 = Vehicle() vehicle_6 = Vehicle(permit=Permit.PREMIUM) expected_vehicles_on_level_1: List[Vehicle] = [vehicle_2, vehicle_1] expected_vehicles_on_level_2: List[Vehicle] = [vehicle_3, vehicle_6] expected_vehicles_on_level_3: List[Vehicle] = [vehicle_4, None] garage.add_vehicles( [vehicle_1, vehicle_2, vehicle_3, vehicle_4, vehicle_5, vehicle_6] ) TestHelpers.assert_expected_vehicles_on_levels( levels=garage.levels, expected_vehicles=[ expected_vehicles_on_level_1, expected_vehicles_on_level_2, expected_vehicles_on_level_3, ], ) def test_vehicles_with_premium_permits_take_priority_over_non_permitted_spaces(): parking_space_a = ParkingSpace(required_permit=Permit.PREMIUM) parking_space_b = ParkingSpace() parking_space_c = ParkingSpace() parking_space_d = ParkingSpace(required_permit=Permit.PREMIUM) parking_space_e = ParkingSpace() parking_space_f = ParkingSpace() parking_level_1 = ParkingLevel(spaces=[parking_space_a, parking_space_b]) parking_level_2 = ParkingLevel(spaces=[parking_space_c, parking_space_d]) parking_level_3 = ParkingLevel(spaces=[parking_space_e, parking_space_f]) garage = Garage(levels=[parking_level_1, parking_level_2, parking_level_3]) vehicle_1 = Vehicle() vehicle_2 = Vehicle(permit=Permit.PREMIUM) vehicle_3 = Vehicle(permit=Permit.PREMIUM) vehicle_4 = Vehicle() vehicle_5 = Vehicle(permit=Permit.PREMIUM) vehicle_6 = Vehicle(permit=Permit.PREMIUM) vehicle_7 = Vehicle(permit=Permit.PREMIUM) expected_vehicles_on_level_1: List[Vehicle] = [vehicle_2, vehicle_5] expected_vehicles_on_level_2: List[Vehicle] = [vehicle_6, vehicle_3] expected_vehicles_on_level_3: List[Vehicle] = [vehicle_7, vehicle_1] garage.add_vehicles( [vehicle_1, vehicle_2, vehicle_3, vehicle_4, vehicle_5, vehicle_6, vehicle_7] ) TestHelpers.assert_expected_vehicles_on_levels( levels=garage.levels, expected_vehicles=[ expected_vehicles_on_level_1, expected_vehicles_on_level_2, expected_vehicles_on_level_3, ], ) def test_vehicles_with_dual_premium_disability_permits_take_priority_over_premium_permitted_spaces(): parking_space_a = ParkingSpace(required_permit=Permit.DISABILITY) parking_space_b = ParkingSpace(required_permit=Permit.PREMIUM) parking_space_c = ParkingSpace(required_permit=Permit.PREMIUM) parking_space_d = ParkingSpace(required_permit=Permit.DISABILITY) parking_space_e = ParkingSpace(required_permit=Permit.PREMIUM) parking_space_f = ParkingSpace(required_permit=Permit.PREMIUM) parking_level_1 = ParkingLevel(spaces=[parking_space_a, parking_space_b]) parking_level_2 = ParkingLevel(spaces=[parking_space_c, parking_space_d]) parking_level_3 = ParkingLevel(spaces=[parking_space_e, parking_space_f]) garage = Garage(levels=[parking_level_1, parking_level_2, parking_level_3]) vehicle_1 = Vehicle(permit=Permit.PREMIUM) vehicle_2 = Vehicle(permit=Permit.DISABILITY | Permit.PREMIUM) vehicle_3 = Vehicle(permit=Permit.DISABILITY | Permit.PREMIUM) vehicle_4 = Vehicle(permit=Permit.PREMIUM) vehicle_5 = Vehicle(permit=Permit.DISABILITY | Permit.PREMIUM) vehicle_6 = Vehicle(permit=Permit.DISABILITY | Permit.PREMIUM) expected_vehicles_on_level_1: List[Vehicle] = [vehicle_2, vehicle_5] expected_vehicles_on_level_2: List[Vehicle] = [vehicle_6, vehicle_3] expected_vehicles_on_level_3: List[Vehicle] = [vehicle_1, vehicle_4] garage.add_vehicles( [vehicle_1, vehicle_2, vehicle_3, vehicle_4, vehicle_5, vehicle_6] ) TestHelpers.assert_expected_vehicles_on_levels( levels=garage.levels, expected_vehicles=[ expected_vehicles_on_level_1, expected_vehicles_on_level_2, expected_vehicles_on_level_3, ], ) def test_compact_vehicles_with_premium_permits_are_prioritized_into_premium_parking_spaces(): parking_space_a = ParkingSpace(required_permit=Permit.PREMIUM) parking_space_b = ParkingSpace(compact=True) parking_space_c = ParkingSpace(compact=True) parking_space_d = ParkingSpace(required_permit=Permit.PREMIUM) parking_space_e = ParkingSpace(required_permit=Permit.PREMIUM) parking_space_f = ParkingSpace(compact=True) parking_level_1 = ParkingLevel(spaces=[parking_space_a, parking_space_b]) parking_level_2 = ParkingLevel(spaces=[parking_space_c, parking_space_d]) parking_level_3 = ParkingLevel(spaces=[parking_space_e, parking_space_f]) garage = Garage(levels=[parking_level_1, parking_level_2, parking_level_3]) vehicle_1 = Vehicle() vehicle_2 = Vehicle(vehicle_type=VehicleType.Compact, permit=Permit.PREMIUM) vehicle_3 = Vehicle(vehicle_type=VehicleType.Compact, permit=Permit.PREMIUM) vehicle_4 = Vehicle() vehicle_5 = Vehicle() vehicle_6 = Vehicle(vehicle_type=VehicleType.Compact, permit=Permit.PREMIUM) vehicle_7 = Vehicle(vehicle_type=VehicleType.Compact, permit=Permit.PREMIUM) expected_vehicles_on_level_1: List[Vehicle] = [vehicle_2, vehicle_7] expected_vehicles_on_level_2: List[Vehicle] = [None, vehicle_3] expected_vehicles_on_level_3: List[Vehicle] = [vehicle_6, None] garage.add_vehicles( [vehicle_1, vehicle_2, vehicle_3, vehicle_4, vehicle_5, vehicle_6, vehicle_7] ) TestHelpers.assert_expected_vehicles_on_levels( levels=garage.levels, expected_vehicles=[ expected_vehicles_on_level_1, expected_vehicles_on_level_2, expected_vehicles_on_level_3, ], ) def test_compact_vehicles_with_dual_premium_disability_permits_take_the_same_priority_as_non_compact_vehicles(): parking_space_a = ParkingSpace(required_permit=Permit.DISABILITY) parking_space_b = ParkingSpace(required_permit=Permit.PREMIUM) parking_space_c = ParkingSpace(required_permit=Permit.PREMIUM) parking_space_d = ParkingSpace(required_permit=Permit.DISABILITY) parking_space_e = ParkingSpace(required_permit=Permit.PREMIUM) parking_space_f = ParkingSpace(required_permit=Permit.PREMIUM) parking_level_1 = ParkingLevel(spaces=[parking_space_a, parking_space_b]) parking_level_2 = ParkingLevel(spaces=[parking_space_c, parking_space_d]) parking_level_3 = ParkingLevel(spaces=[parking_space_e, parking_space_f]) garage = Garage(levels=[parking_level_1, parking_level_2, parking_level_3]) vehicle_1 = Vehicle(vehicle_type=VehicleType.Compact, permit=Permit.PREMIUM) vehicle_2 = Vehicle( vehicle_type=VehicleType.Truck, permit=Permit.DISABILITY | Permit.PREMIUM ) vehicle_3 = Vehicle( vehicle_type=VehicleType.Compact, permit=Permit.DISABILITY | Permit.PREMIUM ) vehicle_4 = Vehicle(vehicle_type=VehicleType.Compact, permit=Permit.PREMIUM) vehicle_5 = Vehicle( vehicle_type=VehicleType.Truck, permit=Permit.DISABILITY | Permit.PREMIUM ) vehicle_6 = Vehicle( vehicle_type=VehicleType.Compact, permit=Permit.DISABILITY | Permit.PREMIUM ) expected_vehicles_on_level_1: List[Vehicle] = [vehicle_2, vehicle_5] expected_vehicles_on_level_2: List[Vehicle] = [vehicle_6, vehicle_3] expected_vehicles_on_level_3: List[Vehicle] = [vehicle_1, vehicle_4] garage.add_vehicles( [vehicle_1, vehicle_2, vehicle_3, vehicle_4, vehicle_5, vehicle_6] ) TestHelpers.assert_expected_vehicles_on_levels( levels=garage.levels, expected_vehicles=[ expected_vehicles_on_level_1, expected_vehicles_on_level_2, expected_vehicles_on_level_3, ], ) ```
{ "source": "jlarmstrongiv/libtorchjs", "score": 3 }
#### File: tests/data/make_jit.py ```python import torch def mul2(x): return x * 2 torch.jit.trace(mul2, torch.randn(3, 3)).save("mul2.pt") ```
{ "source": "jlarrieux/CryptoPriceLambdaCommons", "score": 2 }
#### File: jlarrieux/CryptoPriceLambdaCommons/aws_util.py ```python from decimal import Decimal import boto3 import datetime import indicator_util import pickle from crypto_price_lambda_commons_util import MovingAverageType from my_rolling_list import MyRollingList import crypto_price_lambda_commons_util region = "us-east-1" dynamodb = boto3.client('dynamodb', region_name=region) ssm = boto3.client('ssm', region_name=region) table_name = 'eth-price-hourly-nosql-db' parameter_key = '0' s3_resource = boto3.resource('s3') default_bucket = 'com.jlarrieux.lambda' def get_last_price() -> [None, float]: json_string = _get_from_dynamo() return None if json_string is None else float(json_string['Item']['last_price']['N']) def get_last_moving_average(ma_type: MovingAverageType): json_string = _get_from_dynamo() ma_string = f"{str(ma_type.value)}_day_ma" if json_string is None: return None try: json_string['Item'][ma_string] except KeyError: return None return json_string['Item'][ma_string]['N'] def _get_from_dynamo() -> [None, str]: return dynamodb.get_item( TableName=table_name, Key={'id': {'N': parameter_key}}) def save_price(val: float, is_time_to_save: bool, key: str, bucket: str, initial_size: int = 500) -> MyRollingList: update_dynamo_table(val, "last_price") round_val = float(Decimal(val).quantize(Decimal("0.01"))) rolling_average = _load_from_s3(bucket, key) if is_time_to_save: if rolling_average is None: rolling_average = MyRollingList(initial_size) rolling_average.add(round_val) save_to_s3(bucket, key, rolling_average) ma_10 = indicator_util.calculate_simple_moving_average(rolling_average.get_most_recents(10)) ma_12 = indicator_util.calculate_simple_moving_average(rolling_average.get_most_recents(12)) ma_50 = indicator_util.calculate_simple_moving_average(rolling_average.get_most_recents(50)) ma_200 = indicator_util.calculate_simple_moving_average(rolling_average.get_most_recents(200)) update_dynamo_table(ma_10, "10_day_ma") update_dynamo_table(ma_12, "12_day_ma") update_dynamo_table(ma_50, "50_day_ma") update_dynamo_table(ma_200, "200_day_ma") return rolling_average def update_dynamo_table(val: float, item: str) -> None: dynamodb.update_item(TableName=table_name, Key={'id': { 'N': parameter_key}}, ExpressionAttributeNames={"#name": item}, UpdateExpression=f"set #name = :v", ExpressionAttributeValues={':v': {'N': str(val)}}) def get_parameter(parameter_name): return ssm.get_parameter(Name=parameter_name, WithDecryption=True)['Parameter']['Value'] def _load_from_s3(bucket: str, s3_key: str) -> [MyRollingList, None]: return load_from_s3(bucket, s3_key) def save_to_s3_default_bucket(key: str, obj: object) -> None: save_to_s3(default_bucket, key, obj) def save_to_s3(bucket: str, key: str, obj: object) -> None: pickle_byte_obj = pickle.dumps(obj) s3_resource.Object(bucket, key).put(Body=pickle_byte_obj) def load_from_s3_default_bucket(key: str): return load_from_s3(default_bucket, key) def load_from_s3(bucket: str, key: str): try: return pickle.loads(s3_resource.Object(bucket, key).get()['Body'].read()) except Exception as error: if isinstance(error, s3_resource.meta.client.exceptions.NoSuchKey): return None def get_rolling_average(key: str) -> [MyRollingList, None]: return load_from_s3_default_bucket(key) ```
{ "source": "jlarsen-usgs/HydrographTools", "score": 3 }
#### File: jlarsen-usgs/HydrographTools/hobs_output.py ```python import datetime as dt import matplotlib.pyplot as plt import numpy as np import os class HobsHeader(object): sim_head = '"SIMULATED EQUIVALENT"' obs_head = '"OBSERVED VALUE"' obs_name = '"OBSERVATION NAME"' date = 'DATE' dyear = 'DECIMAL_YEAR' header = {sim_head: None, obs_head: None, obs_name: None, date: None, dyear: None} class HobsOut(dict): """ Reads output data from Hobs file and prepares it for post processing. Class sets observations to an ordered dictionary based on observation name If observation name is consistant for a site, a time series is created for plotting! Parameters ---------- filename : str hobs filename strip_after : str flag to indicate a character to strip the hobs label after for grouping wells. Example: OBS_1 OBS_2 strip_after could be set to "_" and then all OBS observations will be stored under the OBS key. This is extremely useful for plotting and calculating statistics """ def __init__(self, filename, strip_after=""): super(HobsOut, self).__init__() self.name = filename self._strip_after = strip_after self._dataframe = None self.__read_hobs_output() def __read_hobs_output(self): """ Method to read a hobs output file. Dynamically sets header information and reads associated values. Sets values to HobsOut dictionary """ with open(self.name) as hobout: for ix, line in enumerate(hobout): if ix == 0: self.__set_header(line) else: self.__set_dictionary_values(line) def __set_dictionary_values(self, line): """ Method to set incoming hobs line to dictionary data values Args: line: (str) """ t = line.strip().split() obsname = t[HobsHeader.header[HobsHeader.obs_name]] dict_name = obsname if self._strip_after: dict_name = obsname.split(self._strip_after)[0] simval = float(t[HobsHeader.header[HobsHeader.sim_head]]) obsval = float(t[HobsHeader.header[HobsHeader.obs_head]]) residual = simval - obsval date = self.__set_datetime_object(t[HobsHeader.header[HobsHeader.date]]) decimal_date = float(t[HobsHeader.header[HobsHeader.dyear]]) if dict_name in self: self[dict_name]['simval'].append(simval) self[dict_name]['obsval'].append(obsval) self[dict_name]['date'].append(date) self[dict_name]['decimal_date'].append(decimal_date) self[dict_name]['residual'].append(residual) self[dict_name]["obsname"].append(obsname) else: self[dict_name] = {"obsname": [obsname], "date": [date], "decimal_date": [decimal_date], "simval": [simval], "obsval": [obsval], "residual": [residual]} def __set_header(self, line): """ Reads header line and sets header index Parameters ---------- line : str first line of the HOB file """ n = 0 s = "" for i in line: s += i if s in HobsHeader.header: HobsHeader.header[s] = n n += 1 s = "" elif s in (" ", "\t", "\n"): s = "" else: pass for key, value in HobsHeader.header.items(): if value is None: raise AssertionError("HobsHeader headings must be updated") def __set_datetime_object(self, s): """ Reformats a string of YYYY-mm-dd to a datetime object Parameters ---------- s : str string of YYYY-mm-dd Returns ------- datetime.date """ return dt.datetime.strptime(s, "%Y-%m-%d") def __get_date_string(self, date): """ Parmaeters ---------- date: datetime.datetime object Returns ------- string """ return date.strftime("%Y/%m/%d") @property def obsnames(self): """ Return a list of obsnames from the HobsOut dictionary """ return self.keys() def to_dataframe(self): """ Method to get a pandas dataframe object of the HOBs data. Returns ------- pd.DataFrame """ import pandas as pd if self._dataframe is None: df = None for hobsname, d in self.items(): t = pd.DataFrame(d) if df is None: df = t else: df = pd.concat([df, t], ignore_index=True) self._dataframe = df return self._dataframe def get_sum_squared_errors(self, obsname): """ Returns the sum of squared errors from the residual Parameters ---------- obsname : str observation name Returns ------- float: sum of square error """ return sum([i**2 for i in self[obsname]['residual']]) def get_rmse(self, obsname): """ Returns the RMSE from the residual Parameters ---------- obsname : str observation name Returns ------- float: rmse """ return np.sqrt(np.mean([i**2 for i in self[obsname]['residual']])) def get_number_observations(self, obsname): """ Returns the number of observations for an obsname Parameters ---------- obsname : str observation name Returns ------- int """ return len(self[obsname]['simval']) def get_maximum_residual(self, obsname): """ Returns the datetime.date and maximum residual value Parameters ---------- obsname : str observation name Returns ------- tuple: (datetime.date, residual) """ data = self[obsname]['residual'] index = data.index(max(data)) date = self[obsname]['date'][index] return date, max(data) def get_minimum_residual(self, obsname): """ Returns the datetime.date, minimum residual value Parameters ---------- obsname : str observation name Returns ------- tuple: (datetime.date, residual) """ data = self[obsname]['residual'] index = data.index(min(data)) date = self[obsname]['date'][index] return date, min(data) def get_mean_residual(self, obsname): """ Returns the datetime.date, minimum residual value Parameters ---------- obsname : str observation name Returns ------- tuple: (datetime.date, residual) """ data = self[obsname]['residual'] return np.mean(data) def get_median_residual(self, obsname): """ Returns the datetime.date, minimum residual value Parameters ---------- obsname : str observation name Returns ------- tuple: (datetime.date, residual) """ data = self[obsname]['residual'] return np.median(data) def get_maximum_residual_heads(self, obsname): """ Returns the datetime.date, simulated, and observed heads at the maximum residual value Parameters ---------- obsname : str observation name Returns ------- tuple: (datetime.date, simulated head, observed head) """ resid = self[obsname]['residual'] index = resid.index(max(resid)) observed = self[obsname]['obsval'][index] simulated = self[obsname]['simval'][index] date = self[obsname]['date'][index] return date, simulated, observed def get_minimum_residual_heads(self, obsname): """ Returns the datetime.date, simulated, and observed heads at the maximum residual value Parameters ---------- obsname : str observation name Returns ------- tuple: (datetime.date, simulated head, observed head) """ resid = self[obsname]['residual'] index = resid.index(min(resid)) observed = self[obsname]['obsval'][index] simulated = self[obsname]['simval'][index] date = self[obsname]['date'][index] return date, simulated, observed def get_residual_bias(self, filter=None): """ Method to determine the bias of measurements +- by checking the residual. Returns fraction of residuals > 0. Parameters ---------- filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false to use Returns ------- (float) fraction of residuals greater than zero """ nobs = 0. ngreaterzero = 0. for obsname, meta_data in self.items(): if self.__filter(obsname, filter): continue residual = np.array(meta_data['residual']) rgreaterzero = sum((residual > 0)) nobs += residual.size ngreaterzero += rgreaterzero try: bias = ngreaterzero / nobs except ZeroDivisionError: raise ZeroDivisionError("No observations found!") return bias def write_dbf(self, dbfname, filter=None): """ Method to write a dbf file from a the HOBS dictionary Parameters ---------- dbfname : str dbf file name filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false for write to file """ import shapefile data = [] for obsname, meta_data in self.items(): if self.__filter(obsname, filter): continue for ix, val in enumerate(meta_data['simval']): data.append([obsname, self.__get_date_string(meta_data['date'][ix]), val, meta_data['obsval'][ix], meta_data['residual'][ix]]) try: # traps for pyshp 1 vs. pyshp 2 w = shapefile.Writer(dbf=dbfname) except Exception: w = shapefile.Writer() w.field("HOBSNAME", fieldType="C") w.field("HobsDate", fieldType="D") w.field("HeadSim", fieldType='N', decimal=8) w.field("HeadObs", fieldType="N", decimal=8) w.field("Residual", fieldType="N", decimal=8) for rec in data: w.record(*rec) try: w.save(dbf=dbfname) except AttributeError: w.close() def write_min_max_residual_dbf(self, dbfname, filter=None): """ Method to write a dbf of transient observations using observation statistics Parameters ---------- dbfname : str dbf file name filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false for write to file """ import shapefile data = [] for obsname, meta_data in self.items(): if self.__filter(obsname, filter): continue max_date, resid_max = self.get_maximum_residual(obsname) min_date, resid_min = self.get_minimum_residual(obsname) simval_max, obsval_max = self.get_maximum_residual_heads(obsname)[1:] simval_min, obsval_min = self.get_minimum_residual_heads(obsname)[1:] data.append([obsname, self.get_number_observations(obsname), self.__get_date_string(max_date), resid_max, self.__get_date_string(min_date), resid_min, simval_max, obsval_max, simval_min, obsval_min]) try: # traps for pyshp 1 vs. pyshp 2 w = shapefile.Writer(dbf=dbfname) except Exception: w = shapefile.Writer() w.field("HOBSNAME", fieldType="C") w.field("FREQUENCY", fieldType="N") w.field("MaxDate", fieldType="C") w.field("MaxResid", fieldType='N', decimal=8) w.field("MinDate", fieldType="C", decimal=8) w.field("MinResid", fieldType="N", decimal=8) w.field("MaxHeadSim", fieldType="N", decimal=8) w.field("MaxHeadObs", fieldType="N", decimal=8) w.field("MinHeadSim", fieldType="N", decimal=8) w.field("MinHeadObs", fieldType="N", decimal=8) for rec in data: w.record(*rec) try: w.save(dbf=dbfname) except AttributeError: w.close() def __filter(self, obsname, filter): """ Boolean filetering method, checks if observation name is in the filter. Parameters ---------- obsname : str observation name filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false for write to file Returns ------- bool: True if obsname in filter """ if filter is None: return False elif isinstance(filter, list) or isinstance(filter, tuple): if obsname in list: return True elif isinstance(filter, str): if obsname == filter: return True elif callable(filter): if filter(obsname): return True else: raise Exception("Filter is not an appropriate type") return False def write_summary_statistics_csv(self, csvname, filter=None): """ Method to write summary calibration statistics to a CSV file for analysis and reports Parameters ---------- csvname : str csv file name filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false for write to file """ data = [] header = ["Well name", "Average", "Median", "Minimum", "Maximum", "RMSE ft", "Frequency"] for obsname, meta_data in sorted(self.items()): if self.__filter(obsname, filter): continue resid_mean = self.get_mean_residual(obsname) resid_median = self.get_median_residual(obsname) resid_max = self.get_maximum_residual(obsname)[-1] resid_min = self.get_minimum_residual(obsname)[-1] rmse = self.get_rmse(obsname) frequency = self.get_number_observations(obsname) data.append((obsname, resid_mean, resid_median, resid_min, resid_max, rmse, frequency)) data = np.array(data, dtype=[('id', 'O'), ('mean', float), ('med', float), ('min', float), ('max', float), ('rmse', float), ('num', np.int)]) with open(csvname, "w") as foo: foo.write(",".join(header) + "\n") np.savetxt(foo, data, fmt="%15s,%.2f,%2f,%2f,%2f,%2f,%d") def plot(self, obsname, *args, **kwargs): """ Plotting functionality from the hobs dictionary Parameters ---------- obsname: str hobs package observation name *args: matplotlib args **kwargs: matplotlib kwargs Returns ------- matplotlib.pyplot.axes object """ simulated = True if "observed" in kwargs: simulated = False kwargs.pop('observed') observed = True if "simulated" in kwargs: observed = False kwargs.pop('simulated') if obsname not in self: raise AssertionError("Obsname {}: not valid".format(obsname)) axes = False if 'ax' in kwargs: ax = kwargs.pop('ax') axes = True if not axes: ax = plt.subplot(111) obsval = self[obsname]['obsval'] simval = self[obsname]['simval'] date = self[obsname]['date'] if observed: kwargs['label'] = "Observed" kwargs['color'] = 'r' ax.plot(date, obsval, *args, **kwargs) if simulated: kwargs['label'] = "Simulated" kwargs['color'] = 'b' ax.plot(date, simval, *args, **kwargs) return ax def plot_measured_vs_simulated(self, filter=None, **kwargs): """ Plots measured vs. simulated data along a 1:1 profile. Parameters ---------- filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false for write to file **kwargs: matplotlib.pyplot plotting kwargs Returns ------- matplotlib.pyplot.axes object """ axes = plt.subplot(111) for obsname, meta_data in self.items(): if self.__filter(obsname, filter): continue simulated = meta_data['simval'] observed = meta_data['obsval'] axes.plot(observed, simulated, 'bo', markeredgecolor='k') return axes def plot_simulated_vs_residual(self, filter=None, histogram=False, **kwargs): """ Creates a matplotlib plot of simulated heads vs residual Parameters ---------- filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false for write to file histogram: (bool) Boolean variable that defines either a scatter plot (False) or a histogram (True) of residuals **kwargs: matplotlib.pyplot plotting kwargs Returns ------- matplotlib.pyplot.axes object """ axes = plt.subplot(111) if not histogram: for obsname, meta_data in self.items(): if self.__filter(obsname, filter): continue residual = meta_data['residual'] observed = meta_data['obsval'] axes.plot(observed, residual, 'bo', markeredgecolor="k") else: bins = np.arange(-25, 26, 5) d = {} for ix, abin in enumerate(bins): frequency = 0 for obsname, meta_data in self.items(): if self.__filter(obsname, filter): continue for residual in meta_data['residual']: if ix == 0: if residual < abin: frequency += 1 elif ix == (len(bins) - 1): if residual > abin: frequency += 1 else: if bins[ix - 1] <= residual < abin: frequency += 1 if ix == 0: name = "Less than {}".format(abin) elif ix == (len(bins) - 1): name = "Greater than {}".format(abin) else: name = "{} to {}".format(bins[ix - 1] + 1, abin) d[ix + 1] = {'name': name, 'frequency': frequency} tick_num = [] tick_name = [] for index, meta_data in sorted(d.items()): axes.bar(index, meta_data['frequency'], width=0.8, **kwargs) tick_num.append(index) tick_name.append(meta_data['name']) plt.xticks(tick_num, tick_name, rotation=45, fontsize=10) plt.xlim([0.5, len(tick_num) + 1]) plt.subplots_adjust(left=0.12, bottom=0.22, right=0.90, top=0.90, wspace=0.20, hspace=0.20) plt.ylabel("Frequency") return axes if __name__ == "__main__": ws = r'C:\Users\jlarsen\Desktop\Lucerne\Lucerne_OWHM\V0_initial_from_MODOPTIM\output' hobs_name = "hobs.out" tmp = HobsOut(os.path.join(ws, hobs_name)) tmp.plot("04N01W01R04S", "o-") plt.legend(loc=0, numpoints=1) plt.show() print('break') ```
{ "source": "jlarsen-usgs/mf2web", "score": 3 }
#### File: mf2web/mf88/mfbas88.py ```python from flopy.pakbase import Package from flopy.utils import Util3d, Util2d import numpy as np import sys class Modflow88Bas(Package): """ Class to read modflow88 Basic package input. See modflow 88 documentation.... """ def __init__(self, model, nlay=1, nrow=1, ncol=1, nper=1, itemuni=0, iunit=(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), iapart=0, istrt=0, ibound=1, hnoflo=-9999., shead=1., perlen=1., nstp=1, tsmult=1., start_datetime="1-1-1970"): unitnumber = 99 filenames = [None] name = [Modflow88Bas.ftype()] units = [unitnumber] extra = [""] fname = [filenames[0]] extension = "bas" super(Modflow88Bas, self).__init__(model, extension=extension, name=name, unit_number=units, extra=extra, filenames=fname) self.url = 'bas.htm' self.nlay = nlay self.nrow = nrow self.ncol = ncol self.nper = nper self.itemuni = itemuni self.lenuni = 0 self.iunit = iunit self.iapart = iapart self.istrt = istrt self.ibound = Util3d(model, (nlay, nrow, ncol), np.int32, ibound, name='ibound', locat=self.unit_number[0]) self.hnoflo = hnoflo self.shead = Util3d(model, (nlay, nrow, ncol), np.float32, shead, name='shead', locat=self.unit_number[0]) self.perlen = Util2d(model, (self.nper,), np.float32, perlen, name="perlen") self.nstp = Util2d(model, (self.nper,), np.int32, nstp, name='nstp') self.tsmult = Util2d(model, (self.nper,), np.float32, tsmult, name='tsmult') self.start_datetime = start_datetime self.itmuni_dict = {0: "undefined", 1: "seconds", 2: "minutes", 3: "hours", 4: "days", 5: "years"} self.parent.add_package(self) @staticmethod def load(f, model, ext_unit_dict=None): """ Load an existing package Parameters ---------- f : filename or file handle File to load. model : model object The model object (of type :class:`flopy.modflow.mf.Modflow`) to which this package will be added. ext_unit_dict : dict Dictionary of unit and file names Returns ------- bas : Modflow88Bas object Modflow88Bas object (of type :class:`mf2web.mf88.Modflow88Bas`) """ if model.verbose: sys.stdout.write('loading bas6 package file...\n') if not hasattr(f, 'read'): filename = f f = open(filename, 'r') heading = f.readline() heading += f.readline() line = f.readline()[0:50] nlay, nrow, ncol, nper, itemuni = [int(i) for i in line.split()] line = f.readline()[0:72] i0 = 0 i1 = 3 iunit = [] while True: try: unit = int(line[i0:i1]) if unit < 0: unit = 0 iunit.append(unit) i0 += 3 i1 += 3 except ValueError: break iunit = tuple(iunit) line = f.readline()[0:20] iapart, istrt = [int(i) for i in line.split()] ibound = Util3d.load(f, model, (nlay, nrow, ncol), np.int32, "ibound", ext_unit_dict) hnoflo = float(f.readline()[0:10]) shead = Util3d.load(f, model, (nlay, nrow, ncol), np.float32, "shead", ext_unit_dict) perlen = [] nstp = [] tsmult = [] for k in range(nper): line = f.readline()[0:30] a1, a2, a3 = line.split() a1 = float(a1) a2 = int(a2) a3 = float(a3) perlen.append(a1) nstp.append(a2) tsmult.append(a3) return Modflow88Bas(model, nlay, nrow, ncol, nper, itemuni, iunit, iapart, istrt, ibound, hnoflo, shead, perlen, nstp, tsmult) @staticmethod def ftype(): return "BAS" ``` #### File: mf2web/mf88/mfrch88.py ```python from flopy.pakbase import Package from flopy.utils import Util2d, Transient2d import numpy as np import sys class Modflow88Rch(Package): """ Class to read modflow 88 recharge package see modflow 88 manual for documentation... """ def __init__(self, model, nrchop=1, irchcb=90, rech=0., irch=0.): unitnumber = 8 filenames = [None, None] name = [Modflow88Rch.ftype()] units = [unitnumber] extra = [""] fname = [filenames[0]] extension = "rch" super(Modflow88Rch, self).__init__(model, extension=extension, name=name, unit_number=units, extra=extra, filenames=fname) nrow, ncol, nlay, nper = self.parent.nrow_ncol_nlay_nper self.nrchop = nrchop self.rech = Transient2d(model, (nrow, ncol), np.float32, rech, name='rech') self.irch = None if self.nrchop == 2: self.irch = Transient2d(model, (nrow, ncol), np.int32, irch, name='irch') self.parent.add_package(self) @staticmethod def load(f, model, nper=1, nrow=1, ncol=1, ext_unit_dict=None): """ Parameters ---------- f : str filename model : mf88 object nper : int number of stress periods nrow : int number of model rows ncol : int number of model columns ext_unit_dict : dict Dictionary of unit and file names Returns ------- Modflow88Rch object """ if model.verbose: sys.stdout.write('loading bas6 package file...\n') if not hasattr(f, 'read'): filename = f f = open(filename, 'r') if model.nrow_ncol_nlay_nper != (0, 0, 0, 0): nrow, ncol, nlay, nper = model.nrow_ncol_nlay_nper t = f.readline().strip().split() nrchop, irchcb = int(t[0]), int(t[1]) rech = {} irch = {} for per in range(nper): t = f.readline().strip().split() inrech, inirech = int(t[0]), int(t[1]) if inrech < 0: rech[per] = rech[per - 1] else: arr = Util2d.load(f, model, (nrow, ncol), np.float32, 'rech', ext_unit_dict) rech[per] = arr if nrchop == 2: if inirech < 0: irch[per] = irch[per - 1] else: arr = Util2d.load(f, model, (nrow, ncol), np.int32, "irch", ext_unit_dict) irch[per] = arr return Modflow88Rch(model, nrchop, irchcb, rech, irch) @staticmethod def ftype(): return "RCH" ``` #### File: mf2web/mf88/mfsip88.py ```python from flopy.pakbase import Package import sys class Modflow88Sip(Package): """ Class to read modflow88 Strongly implicit proceedure package input. See modflow 88 documentation.... """ def __init__(self, model, mxiter=50, nparm=5, accl=1., hclose=0.01, ipcalc=1, wseed=0.98, iprsip=10): unitnumber = 9 filenames = [None] name = [Modflow88Sip.ftype()] units = [unitnumber] extra = [""] fname = [filenames[0]] extension = "sip" super(Modflow88Sip, self).__init__(model, extension=extension, name=name, unit_number=units, extra=extra, filenames=fname) self.mxiter = mxiter self.nparm = nparm self.accl = accl self.hclose = hclose self.ipcalc = ipcalc self.wseed = wseed self.iprsip = iprsip self.parent.add_package(self) @staticmethod def load(f, model, ext_unit_dict=None): """ Load an existing package Parameters ---------- f : filename or file handle File to load. model : model object The model object (of type :class:`flopy.modflow.mf.Modflow`) to which this package will be added. ext_unit_dict : dict Dictionary of unit and file names Returns ------- bas : Modflow88Sip object Modflow88Sip object (of type :class:`mf2web.mf88.Modflow88Sip`) """ if model.verbose: sys.stdout.write('loading bas6 package file...\n') if not hasattr(f, 'read'): filename = f f = open(filename, 'r') if model.nrow_ncol_nlay_nper != (0, 0, 0, 0): nrow, ncol, nlay, nper = model.nrow_ncol_nlay_nper t = f.readline().strip().split() mxiter, nparm = int(t[0]), int(t[1]) t = f.readline().strip().split() accl, hclose, ipcalc = float(t[0]), float(t[1]), int(t[2]) wseed = 0.98 iprsip = 10 if ipcalc == 0: wseed, iprsip = float(t[3]), int(t[4]) return Modflow88Sip(model, mxiter, nparm, accl, hclose, ipcalc, wseed, iprsip) @staticmethod def ftype(): return "SIP" ```
{ "source": "jlartey-aims/Resistivity", "score": 2 }
#### File: EM/NSEM/RxNSEM.py ```python from __future__ import print_function from __future__ import absolute_import from __future__ import division from scipy.constants import mu_0 import SimPEG import numpy as np from SimPEG import mkvc class BaseRxNSEM_Point(SimPEG.Survey.BaseRx): """ Natural source receiver base class. Assumes that the data locations are xyz coordinates. :param numpy.ndarray locs: receiver locations (ie. :code:`np.r_[x,y,z]`) :param string orientation: receiver orientation 'x', 'y' or 'z' :param string component: real or imaginary component 'real' or 'imag' """ def __init__(self, locs, orientation=None, component=None): assert(orientation in ['xx', 'xy', 'yx', 'yy', 'zx', 'zy']), "Orientation {0!s} not known. Orientation must be in 'x', 'y', 'z'. Arbitrary orientations have not yet been implemented.".format(orientation) assert(component in ['real', 'imag']), "'component' must be 'real' or 'imag', not {0!s}".format(component) self.orientation = orientation self.component = component SimPEG.Survey.BaseRx.__init__(self, locs, rxType=None) # TODO: remove rxType from baseRx # Set a mesh property @property def mesh(self): return self._mesh @mesh.setter def mesh(self, value): if value is getattr(self, '_mesh', None): pass else: self._mesh = value @property def src(self): return self._src @src.setter def src(self, value): self._src = value @property def f(self): return self._f @f.setter def f(self, value): self._f = value def _locs_e(self): if self.locs.ndim == 3: loc = self.locs[:, :, 0] else: loc = self.locs return loc def _locs_b(self): if self.locs.ndim == 3: loc = self.locs[:, :, 1] else: loc = self.locs return loc # Location projection @property def Pex(self): if getattr(self, '_Pex', None) is None: self._Pex = self._mesh.getInterpolationMat(self._locs_e(), 'Ex') return self._Pex @property def Pey(self): if getattr(self, '_Pey', None) is None: self._Pey = self._mesh.getInterpolationMat(self._locs_e(), 'Ey') return self._Pey @property def Pbx(self): if getattr(self, '_Pbx', None) is None: self._Pbx = self._mesh.getInterpolationMat(self._locs_b(), 'Fx') return self._Pbx @property def Pby(self): if getattr(self, '_Pby', None) is None: self._Pby = self._mesh.getInterpolationMat(self._locs_b(), 'Fy') return self._Pby @property def Pbz(self): if getattr(self, '_Pbz', None) is None: self._Pbz = self._mesh.getInterpolationMat(self._locs_e(), 'Fz') return self._Pbz # Utility for convienece def _sDiag(self, t): return SimPEG.Utils.sdiag(mkvc(t,2)) # Get the components of the fields # px: x-polaration and py: y-polaration. @property def _ex_px(self): return self.Pex*self.f[self.src, 'e_px'] @property def _ey_px(self): return self.Pey*self.f[self.src, 'e_px'] @property def _ex_py(self): return self.Pex*self.f[self.src, 'e_py'] @property def _ey_py(self): return self.Pey*self.f[self.src, 'e_py'] @property def _hx_px(self): return self.Pbx*self.f[self.src, 'b_px']/mu_0 @property def _hy_px(self): return self.Pby*self.f[self.src, 'b_px']/mu_0 @property def _hz_px(self): return self.Pbz*self.f[self.src, 'b_px']/mu_0 @property def _hx_py(self): return self.Pbx*self.f[self.src, 'b_py']/mu_0 @property def _hy_py(self): return self.Pby*self.f[self.src, 'b_py']/mu_0 @property def _hz_py(self): return self.Pbz*self.f[self.src, 'b_py']/mu_0 # Get the derivatives def _ex_px_u(self, vec): return self.Pex*self.f._e_pxDeriv_u(self.src, vec) def _ey_px_u(self, vec): return self.Pey*self.f._e_pxDeriv_u(self.src, vec) def _ex_py_u(self, vec): return self.Pex*self.f._e_pyDeriv_u(self.src, vec) def _ey_py_u(self, vec): return self.Pey*self.f._e_pyDeriv_u(self.src, vec) def _hx_px_u(self, vec): return self.Pbx*self.f._b_pxDeriv_u(self.src, vec)/mu_0 def _hy_px_u(self, vec): return self.Pby*self.f._b_pxDeriv_u(self.src, vec)/mu_0 def _hz_px_u(self, vec): return self.Pbz*self.f._b_pxDeriv_u(self.src, vec)/mu_0 def _hx_py_u(self, vec): return self.Pbx*self.f._b_pyDeriv_u(self.src, vec)/mu_0 def _hy_py_u(self, vec): return self.Pby*self.f._b_pyDeriv_u(self.src, vec)/mu_0 def _hz_py_u(self, vec): return self.Pbz*self.f._b_pyDeriv_u(self.src, vec)/mu_0 # Define the components of the derivative @property def _Hd(self): return self._sDiag(1./( self._sDiag(self._hx_px)*self._hy_py - self._sDiag(self._hx_py)*self._hy_px )) def _Hd_uV(self, v): return ( self._sDiag(self._hy_py)*self._hx_px_u(v) + self._sDiag(self._hx_px)*self._hy_py_u(v) - self._sDiag(self._hx_py)*self._hy_px_u(v) - self._sDiag(self._hy_px)*self._hx_py_u(v) ) # Adjoint @property def _aex_px(self): return mkvc(mkvc(self.f[self.src, 'e_px'], 2).T*self.Pex.T) @property def _aey_px(self): return mkvc(mkvc(self.f[self.src, 'e_px'], 2).T*self.Pey.T) @property def _aex_py(self): return mkvc(mkvc(self.f[self.src, 'e_py'], 2).T*self.Pex.T) @property def _aey_py(self): return mkvc(mkvc(self.f[self.src, 'e_py'], 2).T*self.Pey.T) @property def _ahx_px(self): return mkvc(mkvc(self.f[self.src, 'b_px'], 2).T/mu_0*self.Pbx.T) @property def _ahy_px(self): return mkvc(mkvc(self.f[self.src, 'b_px'], 2).T/mu_0*self.Pby.T) @property def _ahz_px(self): return mkvc(mkvc(self.f[self.src, 'b_px'], 2).T/mu_0*self.Pbz.T) @property def _ahx_py(self): return mkvc(mkvc(self.f[self.src, 'b_py'], 2).T/mu_0*self.Pbx.T) @property def _ahy_py(self): return mkvc(mkvc(self.f[self.src, 'b_py'], 2).T/mu_0*self.Pby.T) @property def _ahz_py(self): return mkvc(mkvc(self.f[self.src, 'b_py'], 2).T/mu_0*self.Pbz.T) # NOTE: need to add a .T at the end for the output to be (nU,) def _aex_px_u(self, vec): """ """ # vec is (nD,) and returns a (nU,) return self.f._e_pxDeriv_u(self.src, self.Pex.T*mkvc(vec,), adjoint=True) def _aey_px_u(self, vec): """ """ # vec is (nD,) and returns a (nU,) return self.f._e_pxDeriv_u(self.src, self.Pey.T*mkvc(vec,), adjoint=True) def _aex_py_u(self, vec): """ """ # vec is (nD,) and returns a (nU,) return self.f._e_pyDeriv_u(self.src, self.Pex.T*mkvc(vec,), adjoint=True) def _aey_py_u(self, vec): """ """ # vec is (nD,) and returns a (nU,) return self.f._e_pyDeriv_u(self.src, self.Pey.T*mkvc(vec,), adjoint=True) def _ahx_px_u(self, vec): """ """ # vec is (nD,) and returns a (nU,) return self.f._b_pxDeriv_u(self.src, self.Pbx.T*mkvc(vec,), adjoint=True)/mu_0 def _ahy_px_u(self, vec): """ """ # vec is (nD,) and returns a (nU,) return self.f._b_pxDeriv_u(self.src, self.Pby.T*mkvc(vec,), adjoint=True)/mu_0 def _ahz_px_u(self, vec): """ """ # vec is (nD,) and returns a (nU,) return self.f._b_pxDeriv_u(self.src, self.Pbz.T*mkvc(vec,), adjoint=True)/mu_0 def _ahx_py_u(self, vec): """ """ # vec is (nD,) and returns a (nU,) return self.f._b_pyDeriv_u(self.src, self.Pbx.T*mkvc(vec,), adjoint=True)/mu_0 def _ahy_py_u(self, vec): """ """ # vec is (nD,) and returns a (nU,) return self.f._b_pyDeriv_u(self.src, self.Pby.T*mkvc(vec,), adjoint=True)/mu_0 def _ahz_py_u(self, vec): """ """ # vec is (nD,) and returns a (nU,) return self.f._b_pyDeriv_u(self.src, self.Pbz.T*mkvc(vec,), adjoint=True)/mu_0 # Define the components of the derivative @property def _aHd(self): return self._sDiag(1./( self._sDiag(self._ahx_px)*self._ahy_py - self._sDiag(self._ahx_py)*self._ahy_px )) def _aHd_uV(self, x): return ( self._ahx_px_u(self._sDiag(self._ahy_py)*x) + self._ahx_px_u(self._sDiag(self._ahy_py)*x) - self._ahy_px_u(self._sDiag(self._ahx_py)*x) - self._ahx_py_u(self._sDiag(self._ahy_px)*x) ) def eval(self, src, mesh, f, return_complex=False): """ Function to evaluate datum for this receiver """ raise NotImplementedError('SimPEG.EM.NSEM receiver has to have an eval method') def evalDeriv(self, src, mesh, f, v, adjoint=False): """ Function to evaluate datum for this receiver """ raise NotImplementedError('SimPEG.EM.NSEM receiver has to have an evalDeriv method') class Point_impedance1D(SimPEG.Survey.BaseRx): """ Natural source 1D impedance receiver class :param string component: real or imaginary component 'real' or 'imag' """ orientation = 'yx' def __init__(self, locs, component=None): assert(component in ['real', 'imag']), "'component' must be 'real' or 'imag', not {0!s}".format(component) self.component = component SimPEG.Survey.BaseRx.__init__(self, locs, rxType=None) @property def mesh(self): return self._mesh @mesh.setter def mesh(self, value): if value is getattr(self, '_mesh', None): pass else: self._mesh = value # Utility for convienece def _sDiag(self, t): return SimPEG.Utils.sdiag(mkvc(t, 2)) @property def src(self): return self._src @src.setter def src(self, value): self._src = value @property def f(self): return self._f @f.setter def f(self, value): self._f = value @property def Pex(self): if getattr(self, '_Pex', None) is None: self._Pex = self._mesh.getInterpolationMat(self.locs[:, -1], 'Fx') return self._Pex @property def Pbx(self): if getattr(self, '_Pbx', None) is None: self._Pbx = self._mesh.getInterpolationMat(self.locs[:, -1], 'Ex') return self._Pbx @property def _ex(self): return self.Pex * mkvc(self.f[self.src, 'e_1d'], 2) @property def _hx(self): return self.Pbx * mkvc(self.f[self.src, 'b_1d'], 2) / mu_0 def _ex_u(self, v): return self.Pex * self.f._eDeriv_u(self.src, v) def _hx_u(self, v): return self.Pbx * self.f._bDeriv_u(self.src, v) / mu_0 def _aex_u(self, v): return self.f._eDeriv_u(self.src, self.Pex.T * v, adjoint=True) def _ahx_u(self, v): return self.f._bDeriv_u(self.src, self.Pbx.T * v, adjoint=True) / mu_0 @property def _Hd(self): return self._sDiag(1./self._hx) def eval(self, src, mesh, f, return_complex=False): ''' Project the fields to natural source data. :param SimPEG.EM.NSEM.SrcNSEM src: NSEM source :param discretize.TensorMesh mesh: Mesh defining the topology of the problem :param SimPEG.EM.NSEM.FieldsNSEM f: NSEM fields object of the source :param bool (optional) return_complex: Flag for return the complex evaluation :rtype: numpy.array :return: Evaluated data for the receiver ''' # NOTE: Maybe set this as a property self.src = src self.mesh = mesh self.f = f rx_eval_complex = -self._Hd * self._ex # Return the full impedance if return_complex: return rx_eval_complex return getattr(rx_eval_complex, self.component) def evalDeriv(self, src, mesh, f, v, adjoint=False): """method evalDeriv The derivative of the projection wrt u :param SimPEG.EM.NSEM.SrcNSEM src: NSEM source :param discretize.TensorMesh mesh: Mesh defining the topology of the problem :param SimPEG.EM.NSEM.FieldsNSEM f: NSEM fields object of the source :param numpy.ndarray v: vector of size (nU,) (adjoint=False) and size (nD,) (adjoint=True) :rtype: numpy.array :return: Calculated derivative (nD,) (adjoint=False) and (nP,2) (adjoint=True) for both polarizations """ self.src = src self.mesh = mesh self.f = f if adjoint: Z1d = self.eval(src, mesh, f, True) def aZ_N_uV(x): return -self._aex_u(x) def aZ_D_uV(x): return self._ahx_u(x) rx_deriv = aZ_N_uV(self._Hd.T * v) - aZ_D_uV(self._sDiag(Z1d).T * self._Hd.T * v) if self.component == 'imag': rx_deriv_component = 1j*rx_deriv elif self.component == 'real': rx_deriv_component = rx_deriv.astype(complex) else: Z1d = self.eval(src, mesh, f, True) Z_N_uV = -self._ex_u(v) Z_D_uV = self._hx_u(v) # Evaluate rx_deriv = self._Hd * (Z_N_uV - self._sDiag(Z1d) * Z_D_uV) rx_deriv_component = np.array(getattr(rx_deriv, self.component)) return rx_deriv_component class Point_impedance3D(BaseRxNSEM_Point): """ Natural source 3D impedance receiver class :param numpy.ndarray locs: receiver locations (ie. :code:`np.r_[x,y,z]`) :param string orientation: receiver orientation 'xx', 'xy', 'yx' or 'yy' :param string component: real or imaginary component 'real' or 'imag' """ def __init__(self, locs, orientation=None, component=None): BaseRxNSEM_Point.__init__(self, locs, orientation=orientation, component=component) def eval(self, src, mesh, f, return_complex=False): ''' Project the fields to natural source data. :param SrcNSEM src: The source of the fields to project :param discretize.TensorMesh mesh: topological mesh corresponding to the fields :param FieldsNSEM f: Natural source fields object to project :rtype: numpy.array :return: component of the impedance evaluation ''' # NOTE: Maybe set this as a property self.src = src self.mesh = mesh self.f = f if 'xx' in self.orientation: Zij = ( self._ex_px * self._hy_py - self._ex_py * self._hy_px) elif 'xy' in self.orientation: Zij = (-self._ex_px * self._hx_py + self._ex_py * self._hx_px) elif 'yx' in self.orientation: Zij = ( self._ey_px * self._hy_py - self._ey_py * self._hy_px) elif 'yy' in self.orientation: Zij = (-self._ey_px * self._hx_py + self._ey_py * self._hx_px) # Calculate the complex value rx_eval_complex = self._Hd * Zij # Return the full impedance if return_complex: return rx_eval_complex return getattr(rx_eval_complex, self.component) def evalDeriv(self, src, mesh, f, v, adjoint=False): """ The derivative of the projection wrt u :param SimPEG.EM.NSEM.SrcNSEM src: NSEM source :param discretize.TensorMesh mesh: Mesh defining the topology of the problem :param SimPEG.EM.NSEM.FieldsNSEM f: NSEM fields object of the source :param numpy.ndarray v: vector of size (nU,) (adjoint=False) and size (nD,) (adjoint=True) :rtype: numpy.array :return: Calculated derivative (nD,) (adjoint=False) and (nP,2) (adjoint=True) for both polarizations """ self.src = src self.mesh = mesh self.f = f if adjoint: if 'xx' in self.orientation: Zij = self._sDiag(self._aHd * ( self._sDiag(self._ahy_py)*self._aex_px - self._sDiag(self._ahy_px)*self._aex_py )) def ZijN_uV(x): return ( self._aex_px_u(self._sDiag(self._ahy_py) * x) + self._ahy_py_u(self._sDiag(self._aex_px) * x) - self._ahy_px_u(self._sDiag(self._aex_py) * x) - self._aex_py_u(self._sDiag(self._ahy_px) * x) ) elif 'xy' in self.orientation: Zij = self._sDiag(self._aHd * ( -self._sDiag(self._ahx_py) * self._aex_px + self._sDiag(self._ahx_px) * self._aex_py )) def ZijN_uV(x): return ( -self._aex_px_u(self._sDiag(self._ahx_py) * x) - self._ahx_py_u(self._sDiag(self._aex_px) * x) + self._ahx_px_u(self._sDiag(self._aex_py) * x) + self._aex_py_u(self._sDiag(self._ahx_px) * x) ) elif 'yx' in self.orientation: Zij = self._sDiag(self._aHd * ( self._sDiag(self._ahy_py) * self._aey_px - self._sDiag(self._ahy_px) * self._aey_py )) def ZijN_uV(x): return ( self._aey_px_u(self._sDiag(self._ahy_py) * x) + self._ahy_py_u(self._sDiag(self._aey_px) * x) - self._ahy_px_u(self._sDiag(self._aey_py) * x) - self._aey_py_u(self._sDiag(self._ahy_px) * x) ) elif 'yy' in self.orientation: Zij = self._sDiag(self._aHd * ( -self._sDiag(self._ahx_py) * self._aey_px + self._sDiag(self._ahx_px) * self._aey_py)) def ZijN_uV(x): return ( -self._aey_px_u(self._sDiag(self._ahx_py) * x) - self._ahx_py_u(self._sDiag(self._aey_px) * x) + self._ahx_px_u(self._sDiag(self._aey_py) * x) + self._aey_py_u(self._sDiag(self._ahx_px) * x) ) # Calculate the complex derivative rx_deriv_real = ZijN_uV(self._aHd * v) - self._aHd_uV(Zij.T * self._aHd * v) # NOTE: Need to reshape the output to go from 2*nU array to a (nU,2) matrix for each polarization # rx_deriv_real = np.hstack((mkvc(rx_deriv_real[:len(rx_deriv_real)/2],2),mkvc(rx_deriv_real[len(rx_deriv_real)/2::],2))) rx_deriv_real = rx_deriv_real.reshape((2, self.mesh.nE)).T # Extract the data if self.component == 'imag': rx_deriv_component = 1j * rx_deriv_real elif self.component == 'real': rx_deriv_component = rx_deriv_real.astype(complex) else: if 'xx' in self.orientation: ZijN_uV = ( self._sDiag(self._hy_py) * self._ex_px_u(v) + self._sDiag(self._ex_px) * self._hy_py_u(v) - self._sDiag(self._ex_py) * self._hy_px_u(v) - self._sDiag(self._hy_px) * self._ex_py_u(v) ) elif 'xy' in self.orientation: ZijN_uV = ( -self._sDiag(self._hx_py) * self._ex_px_u(v) - self._sDiag(self._ex_px) * self._hx_py_u(v) + self._sDiag(self._ex_py) * self._hx_px_u(v) + self._sDiag(self._hx_px) * self._ex_py_u(v) ) elif 'yx' in self.orientation: ZijN_uV = ( self._sDiag(self._hy_py) * self._ey_px_u(v) + self._sDiag(self._ey_px) * self._hy_py_u(v) - self._sDiag(self._ey_py) * self._hy_px_u(v) - self._sDiag(self._hy_px) * self._ey_py_u(v) ) elif 'yy' in self.orientation: ZijN_uV = ( -self._sDiag(self._hx_py) * self._ey_px_u(v) - self._sDiag(self._ey_px) * self._hx_py_u(v) + self._sDiag(self._ey_py) * self._hx_px_u(v) + self._sDiag(self._hx_px) * self._ey_py_u(v) ) Zij = self.eval(src, self.mesh, self.f, True) # Calculate the complex derivative rx_deriv_real = self._Hd * (ZijN_uV - self._sDiag(Zij) * self._Hd_uV(v)) rx_deriv_component = np.array(getattr(rx_deriv_real, self.component)) return rx_deriv_component class Point_tipper3D(BaseRxNSEM_Point): """ Natural source 3D tipper receiver base class :param numpy.ndarray locs: receiver locations (ie. :code:`np.r_[x,y,z]`) :param string orientation: receiver orientation 'x', 'y' or 'z' :param string component: real or imaginary component 'real' or 'imag' """ def __init__(self, locs, orientation=None, component=None): BaseRxNSEM_Point.__init__( self, locs, orientation=orientation, component=component ) def eval(self, src, mesh, f, return_complex=False): ''' Project the fields to natural source data. :param SrcNSEM src: The source of the fields to project :param discretize.TensorMesh mesh: Mesh defining the topology of the problem :param FieldsNSEM f: Natural source fields object to project :rtype: numpy.array :return: Evaluated component of the impedance data ''' # NOTE: Maybe set this as a property self.src = src self.mesh = mesh self.f = f if 'zx' in self.orientation: Tij = (- self._hy_px * self._hz_py + self._hy_py * self._hz_px) if 'zy' in self.orientation: Tij = (self._hx_px * self._hz_py - self._hx_py * self._hz_px) rx_eval_complex = self._Hd * Tij # Return the full impedance if return_complex: return rx_eval_complex return getattr(rx_eval_complex, self.component) def evalDeriv(self, src, mesh, f, v, adjoint=False): """ The derivative of the projection wrt u :param SimPEG.EM.NSEM.SrcNSEM src: NSEM source :param discretize.TensorMesh mesh: Mesh defining the topology of the problem :param SimPEG.EM.NSEM.FieldsNSEM f: NSEM fields object of the source :param numpy.ndarray v: Random vector of size :rtype: numpy.array :return: Calculated derivative (nD,) (adjoint=False) and (nP,2) (adjoint=True) for both polarizations """ self.src = src self.mesh = mesh self.f = f if adjoint: if 'zx' in self.orientation: Tij = self._sDiag(self._aHd * ( -self._sDiag(self._ahz_py) * self._ahy_px + self._sDiag(self._ahz_px) * self._ahy_py) ) def TijN_uV(x): return ( -self._ahz_py_u(self._sDiag(self._ahy_px) * x) - self._ahy_px_u(self._sDiag(self._ahz_py) * x) + self._ahy_py_u(self._sDiag(self._ahz_px) * x) + self._ahz_px_u(self._sDiag(self._ahy_py) * x) ) elif 'zy' in self.orientation: Tij = self._sDiag(self._aHd * ( self._sDiag(self._ahz_py) * self._ahx_px - self._sDiag(self._ahz_px) * self._ahx_py) ) def TijN_uV(x): return ( self._ahx_px_u(self._sDiag(self._ahz_py) * x) + self._ahz_py_u(self._sDiag(self._ahx_px) * x) - self._ahx_py_u(self._sDiag(self._ahz_px) * x) - self._ahz_px_u(self._sDiag(self._ahx_py) * x) ) # Calculate the complex derivative rx_deriv_real = ( TijN_uV(self._aHd * v) - self._aHd_uV(Tij.T * self._aHd * v) ) # NOTE: Need to reshape the output to go from 2*nU array to a (nU,2) matrix for each polarization # rx_deriv_real = np.hstack((mkvc(rx_deriv_real[:len(rx_deriv_real)/2],2),mkvc(rx_deriv_real[len(rx_deriv_real)/2::],2))) rx_deriv_real = rx_deriv_real.reshape((2, self.mesh.nE)).T # Extract the data if self.component == 'imag': rx_deriv_component = 1j * rx_deriv_real elif self.component == 'real': rx_deriv_component = rx_deriv_real.astype(complex) else: if 'zx' in self.orientation: TijN_uV = ( -self._sDiag(self._hy_px) * self._hz_py_u(v) - self._sDiag(self._hz_py) * self._hy_px_u(v) + self._sDiag(self._hy_py) * self._hz_px_u(v) + self._sDiag(self._hz_px) * self._hy_py_u(v) ) elif 'zy' in self.orientation: TijN_uV = ( self._sDiag(self._hz_py) * self._hx_px_u(v) + self._sDiag(self._hx_px) * self._hz_py_u(v) - self._sDiag(self._hx_py) * self._hz_px_u(v) - self._sDiag(self._hz_px) * self._hx_py_u(v) ) Tij = self.eval(src, mesh, f, True) # Calculate the complex derivative rx_deriv_complex = ( self._Hd * (TijN_uV - self._sDiag(Tij) * self._Hd_uV(v)) ) rx_deriv_component = np.array( getattr(rx_deriv_complex, self.component) ) return rx_deriv_component ``` #### File: Resistivity/SimPEG/Optimization.py ```python from __future__ import print_function import numpy as np import scipy.sparse as sp from six import string_types from .Utils.SolverUtils import * from . import Utils norm = np.linalg.norm __all__ = [ 'Minimize', 'Remember', 'SteepestDescent', 'BFGS', 'GaussNewton', 'InexactGaussNewton', 'ProjectedGradient', 'NewtonRoot', 'StoppingCriteria', 'IterationPrinters' ] SolverICG = SolverWrapI(sp.linalg.cg, checkAccuracy=False) class StoppingCriteria(object): """docstring for StoppingCriteria""" iteration = { "str": "%d : maxIter = %3d <= iter = %3d", "left": lambda M: M.maxIter, "right": lambda M: M.iter, "stopType": "critical" } iterationLS = { "str": "%d : maxIterLS = %3d <= iterLS = %3d", "left": lambda M: M.maxIterLS, "right": lambda M: M.iterLS, "stopType": "critical" } armijoGoldstein = { "str": "%d : ft = %1.4e <= alp*descent = %1.4e", "left": lambda M: M._LS_ft, "right": lambda M: M.f + M.LSreduction * M._LS_descent, "stopType": "optimal" } tolerance_f = { "str": "%d : |fc-fOld| = %1.4e <= tolF*(1+|f0|) = %1.4e", "left": lambda M: 1 if M.iter==0 else abs(M.f-M.f_last), "right": lambda M: 0 if M.iter==0 else M.tolF*(1+abs(M.f0)), "stopType": "optimal" } moving_x = { "str": "%d : |xc-x_last| = %1.4e <= tolX*(1+|x0|) = %1.4e", "left": lambda M: 1 if M.iter==0 else norm(M.xc-M.x_last), "right": lambda M: 0 if M.iter==0 else M.tolX*(1+norm(M.x0)), "stopType": "optimal" } tolerance_g = { "str": "%d : |proj(x-g)-x| = %1.4e <= tolG = %1.4e", "left": lambda M: norm(M.projection(M.xc - M.g) - M.xc), "right": lambda M: M.tolG, "stopType": "optimal" } norm_g = { "str": "%d : |proj(x-g)-x| = %1.4e <= 1e3*eps = %1.4e", "left": lambda M: norm(M.projection(M.xc - M.g) - M.xc), "right": lambda M: 1e3*M.eps, "stopType": "critical" } bindingSet = { "str": "%d : probSize = %3d <= bindingSet = %3d", "left": lambda M: M.xc.size, "right": lambda M: np.sum(M.bindingSet(M.xc)), "stopType": "critical" } bindingSet_LS = { "str": "%d : probSize = %3d <= bindingSet = %3d", "left": lambda M: M._LS_xt.size, "right": lambda M: np.sum(M.bindingSet(M._LS_xt)), "stopType": "critical" } phi_d_target_Minimize = { "str": "%d : phi_d = %1.4e <= phi_d_target = %1.4e ", "left": lambda M: M.parent.phi_d, "right": lambda M: M.parent.phi_d_target, "stopType": "critical" } phi_d_target_Inversion = { "str": "%d : phi_d = %1.4e <= phi_d_target = %1.4e ", "left": lambda I: I.phi_d, "right": lambda I: I.phi_d_target, "stopType": "critical" } class IterationPrinters(object): """docstring for IterationPrinters""" iteration = { "title": "#", "value": lambda M: M.iter, "width": 5, "format": "%3d" } f = { "title": "f", "value": lambda M: M.f, "width": 10, "format": "%1.2e" } norm_g = { "title": "|proj(x-g)-x|", "value": lambda M: norm(M.projection(M.xc - M.g) - M.xc), "width": 15, "format": "%1.2e" } totalLS = { "title": "LS", "value": lambda M: M.iterLS, "width": 5, "format": "%d" } iterationLS = { "title": "#", "value": lambda M: (M.iter, M.iterLS), "width": 5, "format": "%3d.%d" } LS_ft = { "title": "ft", "value": lambda M: M._LS_ft, "width": 10, "format": "%1.2e" } LS_t = { "title": "t", "value": lambda M: M._LS_t, "width": 10, "format": "%0.5f" } LS_armijoGoldstein = { "title": "f + alp*g.T*p", "value": lambda M: M.f + M.LSreduction*M._LS_descent, "width": 16, "format": "%1.2e" } itType = { "title": "itType", "value": lambda M: M._itType, "width": 8, "format": "%s" } aSet = { "title": "aSet", "value": lambda M: np.sum(M.activeSet(M.xc)), "width": 8, "format": "%d" } bSet = { "title": "bSet", "value": lambda M: np.sum(M.bindingSet(M.xc)), "width": 8, "format": "%d" } comment = { "title": "Comment", "value": lambda M: M.comment, "width": 12, "format": "%s" } beta = { "title": "beta", "value": lambda M: M.parent.beta, "width": 10, "format": "%1.2e" } phi_d = { "title": "phi_d", "value": lambda M: M.parent.phi_d, "width": 10, "format": "%1.2e" } phi_m = { "title": "phi_m", "value": lambda M: M.parent.phi_m, "width": 10, "format": "%1.2e" } class Minimize(object): """ Minimize is a general class for derivative based optimization. """ name = "General Optimization Algorithm" #: The name of the optimization algorithm maxIter = 20 #: Maximum number of iterations maxIterLS = 10 #: Maximum number of iterations for the line-search maxStep = np.inf #: Maximum step possible, used in scaling before the line-search. LSreduction = 1e-4 #: Expected decrease in the line-search LSshorten = 0.5 #: Line-search step is shortened by this amount each time. tolF = 1e-1 #: Tolerance on function value decrease tolX = 1e-1 #: Tolerance on norm(x) movement tolG = 1e-1 #: Tolerance on gradient norm eps = 1e-5 #: Small value stopNextIteration = False #: Stops the optimization program nicely. debug = False #: Print debugging information debugLS = False #: Print debugging information for the line-search comment = '' #: Used by some functions to indicate what is going on in the algorithm counter = None #: Set this to a SimPEG.Utils.Counter() if you want to count things parent = None #: This is the parent of the optimization routine. def __init__(self, **kwargs): self.stoppers = [ StoppingCriteria.tolerance_f, StoppingCriteria.moving_x, StoppingCriteria.tolerance_g, StoppingCriteria.norm_g, StoppingCriteria.iteration ] self.stoppersLS = [ StoppingCriteria.armijoGoldstein, StoppingCriteria.iterationLS ] self.printers = [ IterationPrinters.iteration, IterationPrinters.f, IterationPrinters.norm_g, IterationPrinters.totalLS ] self.printersLS = [ IterationPrinters.iterationLS, IterationPrinters.LS_ft, IterationPrinters.LS_t, IterationPrinters.LS_armijoGoldstein ] Utils.setKwargs(self, **kwargs) @property def callback(self): return getattr(self, '_callback', None) @callback.setter def callback(self, value): if self.callback is not None: print( 'The callback on the {0!s} Optimization was ' 'replaced.'.format(self.__name__) ) self._callback = value @Utils.timeIt def minimize(self, evalFunction, x0): """minimize(evalFunction, x0) Minimizes the function (evalFunction) starting at the location x0. :param callable evalFunction: function handle that evaluates: f, g, H = F(x) :param numpy.ndarray x0: starting location :rtype: numpy.ndarray :return: x, the last iterate of the optimization algorithm evalFunction is a function handle:: (f[, g][, H]) = evalFunction(x, return_g=False, return_H=False ) def evalFunction(x, return_g=False, return_H=False): out = (f,) if return_g: out += (g,) if return_H: out += (H,) return out if len(out) > 1 else out[0] The algorithm for general minimization is as follows:: startup(x0) printInit() while True: doStartIteration() f, g, H = evalFunction(xc) printIter() if stoppingCriteria(): break p = findSearchDirection() p = scaleSearchDirection(p) xt, passLS = modifySearchDirection(p) if not passLS: xt, caught = modifySearchDirectionBreak(p) if not caught: return xc doEndIteration(xt) printDone() finish() return xc """ self.evalFunction = evalFunction self.startup(x0) self.printInit() print('x0 has any nan: {:b}'.format(np.any(np.isnan(x0)))) while True: self.doStartIteration() self.f, self.g, self.H = evalFunction( self.xc, return_g=True, return_H=True ) self.printIter() if self.stoppingCriteria(): break self.searchDirection = self.findSearchDirection() del self.H #: Doing this saves memory, as it is not needed in the rest of the computations. p = self.scaleSearchDirection(self.searchDirection) xt, passLS = self.modifySearchDirection(p) if not passLS: xt, caught = self.modifySearchDirectionBreak(p) if not caught: return self.xc self.doEndIteration(xt) if self.stopNextIteration: break self.printDone() self.finish() return self.xc @Utils.callHooks('startup') def startup(self, x0): """ **startup** is called at the start of any new minimize call. This will set:: x0 = x0 xc = x0 iter = iterLS = 0 :param numpy.ndarray x0: initial x :rtype: None :return: None """ self.iter = 0 self.iterLS = 0 self.stopNextIteration = False x0 = self.projection(x0) # ensure that we start of feasible. self.x0 = x0 self.xc = x0 self.f_last = np.nan self.x_last = x0 @Utils.count @Utils.callHooks('doStartIteration') def doStartIteration(self): """doStartIteration() **doStartIteration** is called at the start of each minimize iteration. :rtype: None :return: None """ pass def printInit(self, inLS=False): """ **printInit** is called at the beginning of the optimization routine. If there is a parent object, printInit will check for a parent.printInit function and call that. """ pad = ' '*10 if inLS else '' name = self.name if not inLS else self.nameLS Utils.printTitles( self, self.printers if not inLS else self.printersLS, name, pad ) @Utils.callHooks('printIter') def printIter(self, inLS=False): """ **printIter** is called directly after function evaluations. If there is a parent object, printIter will check for a parent.printIter function and call that. """ pad = ' '*10 if inLS else '' Utils.printLine( self, self.printers if not inLS else self.printersLS, pad=pad ) def printDone(self, inLS=False): """ **printDone** is called at the end of the optimization routine. If there is a parent object, printDone will check for a parent.printDone function and call that. """ pad = ' '*10 if inLS else '' stop, done = ( (' STOP! ', ' DONE! ') if not inLS else ('----------------', ' End Linesearch ') ) stoppers = self.stoppers if not inLS else self.stoppersLS Utils.printStoppers(self, stoppers, pad='', stop=stop, done=done) @Utils.callHooks('finish') def finish(self): """finish() **finish** is called at the end of the optimization. :rtype: None :return: None """ pass def stoppingCriteria(self, inLS=False): if self.iter == 0: self.f0 = self.f self.g0 = self.g return Utils.checkStoppers( self, self.stoppers if not inLS else self.stoppersLS ) @Utils.timeIt @Utils.callHooks('projection') def projection(self, p): """projection(p) projects the search direction. by default, no projection is applied. :param numpy.ndarray p: searchDirection :rtype: numpy.ndarray :return: p, projected search direction """ return p @Utils.timeIt def findSearchDirection(self): """findSearchDirection() **findSearchDirection** should return an approximation of: .. math:: H p = - g Where you are solving for the search direction, p The default is: .. math:: H = I p = - g And corresponds to SteepestDescent. The latest function evaluations are present in:: self.f, self.g, self.H :rtype: numpy.ndarray :return: p, Search Direction """ return -self.g @Utils.count def scaleSearchDirection(self, p): """scaleSearchDirection(p) **scaleSearchDirection** should scale the search direction if appropriate. Set the parameter **maxStep** in the minimize object, to scale back the gradient to a maximum size. :param numpy.ndarray p: searchDirection :rtype: numpy.ndarray :return: p, Scaled Search Direction """ if self.maxStep < np.abs(p.max()): p = self.maxStep*p/np.abs(p.max()) return p nameLS = "Armijo linesearch" #: The line-search name @Utils.timeIt def modifySearchDirection(self, p): """modifySearchDirection(p) **modifySearchDirection** changes the search direction based on some sort of linesearch or trust-region criteria. By default, an Armijo backtracking linesearch is preformed with the following parameters: * maxIterLS, the maximum number of linesearch iterations * LSreduction, the expected reduction expected, default: 1e-4 * LSshorten, how much the step is reduced, default: 0.5 If the linesearch is completed, and a descent direction is found, passLS is returned as True. Else, a modifySearchDirectionBreak call is preformed. :param numpy.ndarray p: searchDirection :rtype: tuple :return: (xt, passLS) numpy.ndarray, bool """ # Projected Armijo linesearch self._LS_t = 1 self.iterLS = 0 while self.iterLS < self.maxIterLS: self._LS_xt = self.projection(self.xc + self._LS_t*p) self._LS_ft = self.evalFunction( self._LS_xt, return_g=False, return_H=False ) self._LS_descent = np.inner(self.g, self._LS_xt - self.xc) # this takes into account multiplying by t, but is important for projection. if self.stoppingCriteria(inLS=True): break self.iterLS += 1 self._LS_t = self.LSshorten*self._LS_t if self.debugLS: if self.iterLS == 1: self.printInit(inLS=True) self.printIter(inLS=True) if self.debugLS and self.iterLS > 0: self.printDone(inLS=True) return self._LS_xt, self.iterLS < self.maxIterLS @Utils.count def modifySearchDirectionBreak(self, p): """modifySearchDirectionBreak(p) Code is called if modifySearchDirection fails to find a descent direction. The search direction is passed as input and this function must pass back both a new searchDirection, and if the searchDirection break has been caught. By default, no additional work is done, and the evalFunction returns a False indicating the break was not caught. :param numpy.ndarray p: searchDirection :rtype: tuple :return: (xt, breakCaught) numpy.ndarray, bool """ self.printDone(inLS=True) print('The linesearch got broken. Boo.') return p, False @Utils.count @Utils.callHooks('doEndIteration') def doEndIteration(self, xt): """doEndIteration(xt) **doEndIteration** is called at the end of each minimize iteration. By default, function values and x locations are shuffled to store 1 past iteration in memory. self.xc must be updated in this code. :param numpy.ndarray xt: tested new iterate that ensures a descent direction. :rtype: None :return: None """ # store old values self.f_last = self.f self.x_last, self.xc = self.xc, xt self.iter += 1 if self.debug: self.printDone() if self.callback is not None: self.callback(xt) def save(self, group): group.setArray('searchDirection', self.searchDirection) if getattr(self, 'parent', None) is None: group.setArray('x', self.xc) else: # Assume inversion is the parent group.attrs['phi_d'] = self.parent.phi_d group.attrs['phi_m'] = self.parent.phi_m group.attrs['beta'] = self.parent.beta group.setArray('m', self.xc) group.setArray('dpred', self.parent.dpred) class Remember(object): """ This mixin remembers all the things you tend to forget. You can remember parameters directly, naming the str in Minimize, or pass a tuple with the name and the function that takes Minimize. For Example:: opt.remember('f',('norm_g', lambda M: np.linalg.norm(M.g))) opt.minimize(evalFunction, x0) opt.recall('f') The param name (str) can also be located in the parent (if no conflicts), and it will be looked up by default. """ _rememberThese = [] def remember(self, *args): self._rememberThese = args def recall(self, param): assert param in self._rememberList, ( "You didn't tell me to remember " + param + ", you gotta tell me what to remember!" ) return self._rememberList[param] def _startupRemember(self, x0): self._rememberList = {} for param in self._rememberThese: if isinstance(param, string_types): self._rememberList[param] = [] elif isinstance(param, tuple): self._rememberList[param[0]] = [] def _doEndIterationRemember(self, *args): for param in self._rememberThese: if isinstance(param, string_types): if self.debug: print('Remember is remembering: ' + param) val = getattr(self, param, None) if val is None and getattr(self, 'parent', None) is not None: # Look to the parent for the param if not found here. val = getattr(self.parent, param, None) self._rememberList[param].append( val ) elif isinstance(param, tuple): if self.debug: print('Remember is remembering: ' + param[0]) self._rememberList[param[0]].append( param[1](self) ) class ProjectedGradient(Minimize, Remember): name = 'Projected Gradient' maxIterCG = 5 tolCG = 1e-1 lower = -np.inf upper = np.inf def __init__(self,**kwargs): super(ProjectedGradient, self).__init__(**kwargs) self.stoppers.append(StoppingCriteria.bindingSet) self.stoppersLS.append(StoppingCriteria.bindingSet_LS) self.printers.extend([ IterationPrinters.itType, IterationPrinters.aSet, IterationPrinters.bSet, IterationPrinters.comment ]) def _startup(self, x0): # ensure bound vectors are the same size as the model if type(self.lower) is not np.ndarray: self.lower = np.ones_like(x0)*self.lower if type(self.upper) is not np.ndarray: self.upper = np.ones_like(x0)*self.upper self.explorePG = True self.exploreCG = False self.stopDoingPG = False self._itType = 'SD' self.comment = '' self.aSet_prev = self.activeSet(x0) @Utils.count def projection(self, x): """projection(x) Make sure we are feasible. """ return np.median(np.c_[self.lower, x, self.upper], axis=1) @Utils.count def activeSet(self, x): """activeSet(x) If we are on a bound """ return np.logical_or(x == self.lower, x == self.upper) @Utils.count def inactiveSet(self, x): """inactiveSet(x) The free variables. """ return np.logical_not(self.activeSet(x)) @Utils.count def bindingSet(self, x): """bindingSet(x) If we are on a bound and the negative gradient points away from the feasible set. Optimality condition. (Satisfies Kuhn-Tucker) MoreToraldo91 """ bind_up = np.logical_and(x == self.lower, self.g >= 0) bind_low = np.logical_and(x == self.upper, self.g <= 0) return np.logical_or(bind_up, bind_low) @Utils.timeIt def findSearchDirection(self): """findSearchDirection() Finds the search direction based on either CG or steepest descent. """ self.aSet_prev = self.activeSet(self.xc) allBoundsAreActive = sum(self.aSet_prev) == self.xc.size if self.debug: print('findSearchDirection: stopDoingPG: ', self.stopDoingPG) if self.debug: print('findSearchDirection: explorePG: ', self.explorePG) if self.debug: print('findSearchDirection: exploreCG: ', self.exploreCG) if self.debug: print('findSearchDirection: aSet', np.sum(self.activeSet(self.xc))) if self.debug: print( 'findSearchDirection: bSet', np.sum(self.bindingSet(self.xc)) ) if self.debug: print( 'findSearchDirection: allBoundsAreActive: ', allBoundsAreActive ) if self.explorePG or not self.exploreCG or allBoundsAreActive: if self.debug: print('findSearchDirection.PG: doingPG') self._itType = 'SD' p = -self.g else: if self.debug: print('findSearchDirection.CG: doingCG') # Reset the max decrease each time you do a CG iteration self.f_decrease_max = -np.inf self._itType = '.CG.' iSet = self.inactiveSet(self.xc) # The inactive set (free variables) bSet = self.bindingSet(self.xc) shape = (self.xc.size, np.sum(iSet)) v = np.ones(shape[1]) i = np.where(iSet)[0] j = np.arange(shape[1]) if self.debug: print('findSearchDirection.CG: Z.shape', shape) Z = sp.csr_matrix((v, (i, j)), shape=shape) def reduceHess(v): # Z is tall and skinny return Z.T*(self.H*(Z*v)) operator = sp.linalg.LinearOperator( (shape[1], shape[1]), reduceHess, dtype=self.xc.dtype ) p, info = sp.linalg.cg( operator, -Z.T*self.g, tol=self.tolCG, maxiter=self.maxIterCG ) p = Z*p # bring up to full size # aSet_after = self.activeSet(self.xc+p) return p @Utils.timeIt def _doEndIteration_ProjectedGradient(self, xt): """_doEndIteration_ProjectedGradient(xt)""" aSet = self.activeSet(xt) bSet = self.bindingSet(xt) self.explorePG = not np.all(aSet == self.aSet_prev) # explore proximal gradient self.exploreCG = np.all(aSet == bSet) # explore conjugate gradient f_current_decrease = self.f_last - self.f self.comment = '' if self.iter < 1: # Note that this is reset on every CG iteration. self.f_decrease_max = -np.inf else: self.f_decrease_max = max(self.f_decrease_max, f_current_decrease) self.stopDoingPG = f_current_decrease < 0.25 * self.f_decrease_max if self.stopDoingPG: self.comment = 'Stop SD' self.explorePG = False self.exploreCG = True # implement 3.8, MoreToraldo91 # self.eta_2 * max_decrease where max decrease # if true go to CG # don't do too many steps of PG in a row. if self.debug: print( 'doEndIteration.ProjGrad, f_current_decrease: ', f_current_decrease ) if self.debug: print( 'doEndIteration.ProjGrad, f_decrease_max: ', self.f_decrease_max ) if self.debug: print('doEndIteration.ProjGrad, stopDoingSD: ', self.stopDoingPG) class BFGS(Minimize, Remember): name = 'BFGS' nbfgs = 10 def __init__(self, **kwargs): Minimize.__init__(self, **kwargs) @property def bfgsH0(self): """ Approximate Hessian used in preconditioning the problem. Must be a SimPEG.Solver """ if getattr(self, '_bfgsH0', None) is None: print(""" Default solver: SolverDiag is being used in bfgsH0 """ ) self._bfgsH0 = SolverDiag(sp.identity(self.xc.size)) return self._bfgsH0 @bfgsH0.setter def bfgsH0(self, value): self._bfgsH0 = value def _startup_BFGS(self, x0): self._bfgscnt = -1 self._bfgsY = np.zeros((x0.size, self.nbfgs)) self._bfgsS = np.zeros((x0.size, self.nbfgs)) if not np.any([p is IterationPrinters.comment for p in self.printers]): self.printers.append(IterationPrinters.comment) def bfgs(self, d): n = self._bfgscnt nn = ktop = min(self._bfgsS.shape[1], n) return self.bfgsrec(ktop, n, nn, self._bfgsS, self._bfgsY, d) def bfgsrec(self, k, n, nn, S, Y, d): """BFGS recursion""" if k < 0: d = self.bfgsH0 * d # Assume that bfgsH0 is a SimPEG.Solver else: khat = 0 if nn is 0 else np.mod(n-nn+k,nn) gamma = np.vdot(S[:, khat], d)/np.vdot(Y[:, khat], S[:, khat]) d = d - gamma*Y[:, khat] d = self.bfgsrec(k-1, n, nn, S, Y, d) d = d + ( gamma - np.vdot(Y[:, khat], d)/np.vdot(Y[:, khat], S[:, khat]) ) * S[:, khat] return d def findSearchDirection(self): return self.bfgs(-self.g) def _doEndIteration_BFGS(self, xt): if self.iter is 0: self.g_last = self.g return yy = self.g - self.g_last ss = self.xc - xt self.g_last = self.g if yy.dot(ss) > 0: self._bfgscnt += 1 ktop = np.mod(self._bfgscnt, self.nbfgs) self._bfgsY[:, ktop] = yy self._bfgsS[:, ktop] = ss self.comment = '' else: self.comment = 'Skip BFGS' class GaussNewton(Minimize, Remember): name = '<NAME>' def __init__(self, **kwargs): Minimize.__init__(self, **kwargs) @Utils.timeIt def findSearchDirection(self): return Solver(self.H) * (-self.g) class InexactGaussNewton(BFGS, Minimize, Remember): """ Minimizes using CG as the inexact solver of .. math:: \mathbf{H p = -g} By default BFGS is used as the preconditioner. Use *nbfgs* to set the memory limitation of BFGS. To set the initial H0 to be used in BFGS, set *bfgsH0* to be a SimPEG.Solver """ def __init__(self, **kwargs): Minimize.__init__(self, **kwargs) name = '<NAME>' maxIterCG = 5 tolCG = 1e-1 @property def approxHinv(self): """ The approximate Hessian inverse is used to precondition CG. Default uses BFGS, with an initial H0 of *bfgsH0*. Must be a scipy.sparse.linalg.LinearOperator """ _approxHinv = getattr(self, '_approxHinv', None) if _approxHinv is None: M = sp.linalg.LinearOperator( (self.xc.size, self.xc.size), self.bfgs, dtype=self.xc.dtype ) return M return _approxHinv @approxHinv.setter def approxHinv(self, value): self._approxHinv = value @Utils.timeIt def findSearchDirection(self): Hinv = SolverICG( self.H, M=self.approxHinv, tol=self.tolCG, maxiter=self.maxIterCG ) p = Hinv * (-self.g) return p class SteepestDescent(Minimize, Remember): name = 'Steepest Descent' def __init__(self, **kwargs): Minimize.__init__(self, **kwargs) @Utils.timeIt def findSearchDirection(self): return -self.g class NewtonRoot(object): """ Newton Method - Root Finding root = newtonRoot(fun,x); Where fun is the function that returns the function value as well as the gradient. For iterative solving of dh = -J\\r, use O.solveTol = TOL. For direct solves, use SOLVETOL = 0 (default) <NAME> 16-May-2013 16:29:51 University of British Columbia <EMAIL> """ tol = 1.000e-06 maxIter = 20 stepDcr = 0.5 maxLS = 30 comments = False doLS = True Solver = Solver solverOpts = {} def __init__(self, **kwargs): Utils.setKwargs(self, **kwargs) def root(self, fun, x): """root(fun, x) Function Should have the form:: def evalFunction(x, return_g=False): out = (f,) if return_g: out += (g,) return out if len(out) > 1 else out[0] """ if self.comments: print('Newton Method:\n') self.iter = 0 while True: r, J = fun(x, return_g=True) Jinv = self.Solver(J, **self.solverOpts) dh = - (Jinv * r) muLS = 1. LScnt = 1 xt = x + dh rt = fun(xt, return_g=False) if self.comments and self.doLS: print('\tLinesearch:\n') # Enter Linesearch while True and self.doLS: if self.comments: print('\t\tResid: {0:e}\n'.format(norm(rt))) if norm(rt) <= norm(r) or norm(rt) < self.tol: break muLS = muLS*self.stepDcr LScnt = LScnt + 1 print('.') if LScnt > self.maxLS: print('Newton Method: Line search break.') return None xt = x + muLS*dh rt = fun(xt, return_g=False) x = xt self.iter += 1 if norm(rt) < self.tol: break if self.iter > self.maxIter: print( 'NewtonRoot stopped by maxIters ({0:d}). ' 'norm: {1:4.4e}'.format(self.maxIter, norm(rt)) ) break return x class ProjectedGNCG(BFGS, Minimize, Remember): def __init__(self, **kwargs): Minimize.__init__(self, **kwargs) name = '<NAME>' maxIterCG = 5 tolCG = 1e-1 stepOffBoundsFact = 0.1 # perturbation of the inactive set off the bounds stepActiveset = True lower = -np.inf upper = np.inf def _startup(self, x0): # ensure bound vectors are the same size as the model if type(self.lower) is not np.ndarray: self.lower = np.ones_like(x0)*self.lower if type(self.upper) is not np.ndarray: self.upper = np.ones_like(x0)*self.upper @Utils.count def projection(self, x): """projection(x) Make sure we are feasible. """ return np.median(np.c_[self.lower, x, self.upper], axis=1) @Utils.count def activeSet(self, x): """activeSet(x) If we are on a bound """ return np.logical_or(x <= self.lower, x >= self.upper) @property def approxHinv(self): """ The approximate Hessian inverse is used to precondition CG. Default uses BFGS, with an initial H0 of *bfgsH0*. Must be a scipy.sparse.linalg.LinearOperator """ _approxHinv = getattr(self, '_approxHinv', None) if _approxHinv is None: M = sp.linalg.LinearOperator( (self.xc.size, self.xc.size), self.bfgs, dtype=self.xc.dtype ) return M return _approxHinv @approxHinv.setter def approxHinv(self, value): self._approxHinv = value @Utils.timeIt def findSearchDirection(self): """ findSearchDirection() Finds the search direction based on either CG or steepest descent. """ Active = self.activeSet(self.xc) temp = sum((np.ones_like(self.xc.size)-Active)) allBoundsAreActive = temp == self.xc.size if allBoundsAreActive: Hinv = SolverICG( self.H, M=self.approxHinv, tol=self.tolCG, maxiter=self.maxIterCG ) p = Hinv * (-self.g) return p else: delx = np.zeros(self.g.size) resid = -(1-Active) * self.g # Begin CG iterations. cgiter = 0 cgFlag = 0 normResid0 = norm(resid) while cgFlag == 0: cgiter = cgiter + 1 dc = (1-Active)*(self.approxHinv*resid) rd = np.dot(resid, dc) # Compute conjugate direction pc. if cgiter == 1: pc = dc else: betak = rd / rdlast pc = dc + betak * pc # Form product Hessian*pc. Hp = self.H*pc Hp = (1-Active)*Hp # Update delx and residual. alphak = rd / np.dot(pc, Hp) delx = delx + alphak*pc resid = resid - alphak*Hp rdlast = rd if np.logical_or( norm(resid)/normResid0 <= self.tolCG, cgiter == self.maxIterCG ): cgFlag = 1 # End CG Iterations # Take a gradient step on the active cells if exist if self.stepActiveset: if temp != self.xc.size: rhs_a = (Active) * -self.g dm_i = max( abs( delx ) ) dm_a = max( abs(rhs_a) ) # perturb inactive set off of bounds so that they are included # in the step delx = delx + self.stepOffBoundsFact * (rhs_a * dm_i / dm_a) # Only keep gradients going in the right direction on the active # set indx = ( ((self.xc<=self.lower) & (delx < 0)) | ((self.xc>=self.upper) & (delx > 0)) ) delx[indx] = 0. return delx ```
{ "source": "jlashner/ares", "score": 2 }
#### File: ares/analysis/Animation.py ```python import numpy as np import matplotlib.pyplot as pl from .ModelSet import ModelSet from ..physics import Hydrogen from ..util.Aesthetics import Labeler from ..physics.Constants import nu_0_mhz from .MultiPhaseMedium import add_redshift_axis from mpl_toolkits.axes_grid1 import inset_locator try: # this runs with no issues in python 2 but raises error in python 3 basestring except: # this try/except allows for python 2/3 compatible string type checking basestring = str try: from mpi4py import MPI rank = MPI.COMM_WORLD.rank size = MPI.COMM_WORLD.size except ImportError: rank = 0 size = 1 class Animation(object): # pragma: no cover def __init__(self, prefix=None): self._prefix = prefix @property def model_set(self): if not hasattr(self, '_model_set'): if isinstance(self._prefix, ModelSet): self._model_set = self._prefix elif isinstance(self._prefix, basestring): self._model_set = ModelSet(self._prefix) elif type(self._prefix) in [list, tuple]: raise NotImplementedError('help!') return self._model_set def _limits_w_padding(self, limits, take_log=False, un_log=False, padding=0.1): mi, ma = limits if (mi <= 0) or self.model_set.is_log[0]: mi -= padding elif (take_log) and (not self.model_set.is_log[0]): mi -= padding else: mi *= (1. - padding) if (ma >= 0) or self.model_set.is_log[0]: ma += padding elif (take_log) and (not self.model_set.is_log[0]): mi += padding else: ma *= (1. + padding) return mi, ma def build_tracks(self, plane, _pars, pivots=None, ivar=None, take_log=False, un_log=False, multiplier=1, origin=None): """ Construct array of models in the order in which we'll plot them. """ data = self.model_set.ExtractData(_pars, ivar=ivar, take_log=take_log, un_log=un_log, multiplier=multiplier) par = _pars[0] N = data[par].shape[0] limits = data[par].min(), data[par].max() # Re-order the data. order = np.argsort(data[par]) data_sorted = {par:data[par][order]} for p in plane: # How does this work if 1-D blob? if p in _pars: data_sorted[p] = data[p][order] else: ii, jj, nd, dims = self.model_set.blob_info(p) data_sorted[p] = self.model_set.blob_ivars[ii][jj] if origin is None: start = end = data_sorted[par][N // 2] else: start = end = origin # By default, scan to lower values, then all the way up, then return # to start point if pivots is None: pivots = [round(v, 4) for v in [start, limits[0], limits[1], end]] for element in pivots: assert limits[0] <= element <= limits[1], \ "Pivot point lies outside range of data!" data_assembled = {p:[] for p in _pars} i = np.argmin(np.abs(pivots[0] - data_sorted[par])) for k, pivot in enumerate(pivots): if k == 0: continue j = np.argmin(np.abs(pivot - data_sorted[par])) #if par == 'pop_logN{1}': # print i, j, k if j < i: step = -1 else: step = 1 for p in _pars: data_assembled[p].extend(list(data_sorted[p][i:j:step])) i = 1 * j # Add start point! data_assembled[p].append(start) data_assembled[par] = np.array(data_assembled[par]) self.data = {'raw': data, 'sorted': data_sorted, 'assembled': data_assembled, 'limits':limits} def prepare_axis(self, ax=None, fig=1, squeeze_main=True, take_log=False, un_log=False, **kwargs): if ax is None: fig = pl.figure(fig) fig.subplots_adjust(right=0.7) ax = fig.add_subplot(111) sax = self.add_slider(ax, limits=self.data['limits'], take_log=take_log, un_log=un_log, **kwargs) return ax, sax def Plot1D(self, plane, par=None, pivots=None, prefix='test', twin_ax=None, ivar=None, take_log=False, un_log=False, multiplier=1., ax=None, sax=None, fig=1, clear=True, z_to_freq=True, slider_kwargs={}, backdrop=None, backdrop_kwargs={}, squeeze_main=True, close=False, xlim=None, ylim=None, xticks=None, yticks=None, z_ax=True, origin=None, sticks=None, slims=None, inits=None, **kwargs): """ Animate variations of a single parameter. Parameters ---------- par : str Parameter to vary. pivots : list, tuple ..note:: should implement override for kwargs, like change color of line/symbol if some condition violated (e.g., tau_e). """ if par is None: assert len(self.model_set.parameters) == 1 par = self.model_set.parameters[0] else: assert par in self.model_set.parameters, \ "Supplied parameter '{!s}' is unavailable!".format(par) _pars = [par] _x = None for _p in plane: if _p in self.model_set.all_blob_names: _pars.append(_p) else: _x = _p if type(sticks) is dict: sticks = sticks[par] if type(slims) is dict: slims = slims[par] # This sets up all the data self.build_tracks(plane, _pars, pivots=pivots, ivar=ivar, take_log=[take_log, False, False], un_log=[un_log, False, False], multiplier=multiplier, origin=origin) if ax is None: ax, sax = self.prepare_axis(ax, fig, **slider_kwargs) if z_ax and 'z' in _pars: twin_ax = add_redshift_axis(ax, twin_ax) labeler = Labeler(_pars, **self.model_set.base_kwargs) # What do we need to make plots? # data_assembled, plane, ax, sax, take_log etc. data = self.data['raw'] limits = self.data['limits'] data_assembled = self.data['assembled'] for i, val in enumerate(data_assembled[par]): if _x is None: x = data_assembled[plane[0]][i] else: x = _x y = data_assembled[plane[1]][i] if type(x) in [int, float]: ax.scatter(x, y, **kwargs) else: if ('z' in _pars) and z_to_freq: ax.plot(nu_0_mhz / (1.+ x), y, **kwargs) else: ax.plot(x, y, **kwargs) if inits is not None: if z_to_freq: ax.plot(nu_0_mhz / (1. + inits['z']), inits['dTb'], **kwargs) else: ax.plot(inits['z'], inits['dTb'], **kwargs) # Need to be careful with axes limits not changing... if ('z' in _pars) and z_to_freq: xarr = nu_0_mhz / (1. + data[plane[0]]) else: xarr = data[plane[0]] if xlim is not None: xmi, xma = xlim elif _x is None: _xmi, _xma = xarr.min(), xarr.max() xmi, xma = self._limits_w_padding((_xmi, _xma)) ax.set_xlim(xmi, xma) if twin_ax is not None: twin_ax.set_xlim(xmi, xma) if ylim is not None: ax.set_ylim(ylim) else: _ymi, _yma = data[plane[1]].min(), data[plane[1]].max() ymi, yma = self._limits_w_padding((_ymi, _yma)) ax.set_ylim(ymi, yma) sax.plot([val]*2, [0, 1], **kwargs) sax = self._reset_slider(sax, limits, take_log, un_log, sticks=sticks, slims=slims, **slider_kwargs) if ('z' in _pars) and z_to_freq: ax.set_xlabel(labeler.label('nu')) else: ax.set_xlabel(labeler.label(plane[0])) ax.set_ylabel(labeler.label(plane[1])) if xticks is not None: ax.set_xticks(xticks, minor=True) if yticks is not None: ax.set_yticks(yticks, minor=True) if ('z' in _pars) and z_to_freq: if z_ax: twin_ax = add_redshift_axis(ax, twin_ax) pl.draw() pl.savefig('{0!s}_{1!s}.png'.format(prefix, str(i).zfill(4))) if clear: ax.clear() sax.clear() if twin_ax is not None: twin_ax.clear() return ax, twin_ax def add_residue(self): pass def add_marker(self): pass def _reset_slider(self, ax, limits, take_log=False, un_log=False, sticks=None, slims=None, **kwargs): ax.set_yticks([]) ax.set_yticklabels([]) if slims is None: lo, hi = self._limits_w_padding(limits, take_log=take_log, un_log=un_log) else: lo, hi = slims ax.set_xlim(lo, hi) ax.tick_params(axis='x', labelsize=10, length=3, width=1, which='major') if 'label' in kwargs: ax.set_xlabel(kwargs['label'], fontsize=14) if sticks is not None: ax.set_xticks(sticks) return ax def add_slider(self, ax, limits, take_log=False, un_log=False, rect=[0.75, 0.7, 0.2, 0.05], **kwargs): """ Add inset 'slider' thing. """ inset = pl.axes(rect) inset = self._reset_slider(inset, limits, take_log, un_log, **kwargs) pl.draw() return inset class AnimationSet(object): # pragma: no cover def __init__(self, prefix): self._prefix = prefix @property def animations(self): if not hasattr(self, '_animations'): self._animations = [] for prefix in self._prefix: self._animations.append(Animation(prefix)) return self._animations @property def parameters(self): if not hasattr(self, '_parameters'): self._parameters = [] for animation in self.animations: if len(animation.model_set.parameters) == 1: self._parameters.append(animation.model_set.parameters[0]) else: self._parameters.append('unknown') return self._parameters @property def labels(self): if not hasattr(self, '_labels'): self._labels = [] for animation in self.animations: if len(animation.model_set.parameters) == 1: self._labels.append(animation.model_set.parameters[0]) else: self._labels.append('unknown') return self._labels @labels.setter def labels(self, value): if type(value) is dict: self._labels = [] for par in self.parameters: self._labels.append(value[par]) elif type(value) in [list, tuple]: assert len(value) == len(self.parameters) self._labels = value @property def origin(self): if not hasattr(self, '_origin'): self._origin = [None] * len(self.animations) return self._origin @origin.setter def origin(self, value): if type(value) is dict: self._origin = [] for par in self.parameters: self._origin.append(value[par]) elif type(value) in [list, tuple]: assert len(value) == len(self.parameters) self._origin = value @labels.setter def labels(self, value): if type(value) is dict: self._labels = [] for par in self.parameters: self._labels.append(value[par]) elif type(value) in [list, tuple]: assert len(value) == len(self.parameters) self._labels = value @property def take_log(self): if not hasattr(self, '_take_log'): self._take_log = [False] * len(self.parameters) return self._take_log @take_log.setter def take_log(self, value): if type(value) is dict: self._take_log = [] for par in self.parameters: self._take_log.append(value[par]) elif type(value) in [list, tuple]: assert len(value) == len(self.parameters) self._take_log = value @property def un_log(self): if not hasattr(self, '_un_log'): self._un_log = [False] * len(self.parameters) return self._un_log @un_log.setter def un_log(self, value): if type(value) is dict: self._un_log = [] for par in self.parameters: self._un_log.append(value[par]) elif type(value) in [list, tuple]: assert len(value) == len(self.parameters) self._un_log = [False] * len(self.parameters) @property def inits(self): if not hasattr(self, '_inits'): hydr = Hydrogen() inits = hydr.inits anim = self.animations[0] gr, i, nd, dims = anim.model_set.blob_info('z') _z = anim.model_set.blob_ivars[gr][i] z = np.arange(max(_z), 1100, 1) dTb = hydr.dTb_no_astrophysics(z) self._inits = {'z': z, 'dTb': dTb} return self._inits def Plot1D(self, plane, pars=None, ax=None, fig=1, prefix='test', xlim=None, ylim=None, xticks=None, yticks=None, sticks=None, slims=None, top_sax=0.75, include_inits=True, **kwargs): """ Basically run a series of Plot1D. """ if pars is None: pars = self.parameters assert type(pars) in [list, tuple] N = len(pars) if sticks is None: sticks = {par:None for par in pars} if slims is None: slims = {par:None for par in pars} ## # First: setup axes ## ax = None sax = [] for k in range(N): assert len(self.animations[k].model_set.parameters) == 1 par = self.animations[k].model_set.parameters[0] _pars = [par] _x = None for _p in plane: if _p in self.animations[k].model_set.all_blob_names: _pars.append(_p) else: _x = _p self.animations[k].build_tracks(plane, _pars, take_log=self.take_log[k], un_log=False, multiplier=1, origin=self.origin[k]) ax, _sax = self.animations[k].prepare_axis(ax=ax, fig=fig, squeeze_main=True, rect=[0.75, top_sax-0.15*k, 0.2, 0.05], label=self.labels[k]) sax.append(_sax) ## # Now do all the plotting ## twin_ax = None for k in range(N): par = self.animations[k].model_set.parameters[0] _pars = [par] _x = None for _p in plane: if _p in self.animations[k].model_set.all_blob_names: _pars.append(_p) else: _x = _p kw = {'label': self.labels[k]} # Add slider bar for all currently static parameters # (i.e., grab default value) for l in range(N): if l == k: continue _p = self.parameters[l] limits = self.animations[l].data['limits'] sax[l].plot([self.origin[l]]*2, [0, 1], **kwargs) self.animations[l]._reset_slider(sax[l], limits, take_log=self.take_log[l], un_log=self.un_log[l], label=self.labels[l], sticks=sticks[_p], slims=slims[_p]) # Plot variable parameter ax, twin_ax = \ self.animations[k].Plot1D(plane, par, ax=ax, sax=sax[k], take_log=self.take_log[k], un_log=self.un_log[k], prefix='{0!s}.{1!s}'.format(prefix, par), close=False, slider_kwargs=kw, xlim=xlim, ylim=ylim, origin=self.origin[k], xticks=xticks, yticks=yticks, twin_ax=twin_ax, sticks=sticks, slims=slims, inits=self.inits, **kwargs) ``` #### File: ares/inference/CalibrateModel.py ```python import os import numpy as np from ..util import read_lit from .ModelFit import ModelFit from ..simulations import Global21cm from ..util import ParameterBundle as PB from .FitGlobal21cm import FitGlobal21cm from ..populations.GalaxyCohort import GalaxyCohort from .FitGalaxyPopulation import FitGalaxyPopulation from ..populations.GalaxyEnsemble import GalaxyEnsemble try: from distpy import DistributionSet from distpy import UniformDistribution except ImportError: pass try: from mpi4py import MPI rank = MPI.COMM_WORLD.rank size = MPI.COMM_WORLD.size except ImportError: rank = 0 size = 1 _b14 = read_lit('bouwens2014') filt_hst = {4: _b14.filt_shallow[4], 5: _b14.filt_shallow[5], 6: _b14.filt_shallow[6], 7: _b14.filt_deep[7]} _zcal_lf = [3.8, 4.9, 5.9, 6.9, 7.9, 10.] _zcal_smf = [3, 4, 5, 6, 7, 8] _zcal_beta = [4, 5, 6, 7] acceptable_sfe_params = ['slope-low', 'slope-high', 'norm', 'peak'] acceptable_dust_params = ['norm', 'slope', 'peak', 'fcov', 'yield', 'scatter', 'kappa', 'slope-high', 'growth'] class CalibrateModel(object): """ Convenience class for calibrating galaxy models to UVLFs and/or SMFs. """ def __init__(self, fit_lf=[5.9], fit_smf=False, fit_beta=False, fit_gs=None, idnum=0, add_suffix=True, ztol=0.21, free_params_sfe=[], zevol_sfe=[], include_fshock=False, include_scatter_mar=False, name=None, include_dust='var_beta', include_fgrowth=False, include_fduty=False, zevol_fduty=False, include_kappa=False, zevol_fshock=False, zevol_dust=False, free_params_dust=[], save_lf=True, save_smf=False, save_sam=False, include_fdtmr=False, save_sfrd=False, save_beta=False, save_dust=False, zmap={}, monotonic_beta=False): """ Calibrate a galaxy model to available data. .. note :: All the `include_*` parameters control what goes into our base_kwargs, while the `free_params_*` parameters control what we allow to vary in the fit. Parameters ---------- fit_lf : bool Use available luminosity function measurements? fit_beta : bool Use available UV colour-magnitude measurements? fit_smf : bool Use available stellar mass function measurements? fit_gs : tuple Use constraints on global 21-cm signal? If not None, this should be (frequencies / MHz, dTb / mK, err / mK). idnum : int If model being calibrated has multiple source populations, this is the ID number of the one containing luminosity functions etc. zevol_sfe_norm : bool Allow redshift evolution in the normalization of the SFE? zevol_sfe_peak : bool Allow redshift evolution in the where the SFE peaks (in mass)? zevol_sfe_shape: bool Allow redshift evolution in the power-slopes of SFE? clobber : bool Overwrite existing data outputs? """ self.name = name # optional additional prefix self.add_suffix = add_suffix self.fit_lf = fit_lf self.fit_smf = fit_smf self.fit_gs = fit_gs self.fit_beta = fit_beta self.idnum = idnum self.zmap = zmap self.ztol = ztol self.monotonic_beta = monotonic_beta self.include_fshock = int(include_fshock) self.include_scatter_mar = int(include_scatter_mar) self.include_dust = include_dust self.include_fgrowth = include_fgrowth self.include_fduty = include_fduty self.include_fdtmr = include_fdtmr self.include_kappa = include_kappa # Set SFE free parameters self.free_params_sfe = free_params_sfe for par in self.free_params_sfe: if par in acceptable_sfe_params: continue raise ValueError("Unrecognized SFE param: {}".format(par)) # What's allowed to vary with redshift? if zevol_sfe is None: self.zevol_sfe = [] elif zevol_sfe == 'all': self.zevol_sfe = free_params_sfe else: self.zevol_sfe = zevol_sfe # Set SFE free parameters self.free_params_dust = free_params_dust for par in self.free_params_dust: if par in acceptable_dust_params: continue raise ValueError("Unrecognized dust param: {}".format(par)) # What's allowed to vary with redshift? if zevol_dust is None: self.zevol_dust = [] elif zevol_dust == 'all': self.zevol_dust = free_params_dust else: self.zevol_dust = zevol_dust self.zevol_fduty = zevol_fduty self.save_lf = int(save_lf) self.save_smf = int(save_smf) self.save_sam = int(save_sam) self.save_sfrd = int(save_sfrd) self.save_beta = bool(save_beta) if save_beta in [0, 1, True, False] \ else int(save_beta) self.save_dust = int(save_dust) def get_zstr(self, vals, okvals): """ Make a string showing the redshifts we're calibrating to for some quantity. """ zcal = [] for z in okvals: if z not in vals: continue zcal.append(z) zs = '' for z in zcal: zs += '%i_' % round(z) zs = zs.rstrip('_') return zs @property def prefix(self): """ Generate output filename. """ s = '' if self.fit_lf: s += 'lf_' + self.get_zstr(self.fit_lf, _zcal_lf) + '_' if self.fit_smf: s += 'smf_' + self.get_zstr(self.fit_smf, _zcal_smf) + '_' if self.fit_beta: s += 'beta_' + self.get_zstr(self.fit_beta, _zcal_beta) + '_' if self.fit_gs: s += 'gs_{0:.0f}_{0:.0f}_'.format(self.fit_gs[0].min(), self.fit_gs[0].max()) if self.name is not None: if self.add_suffix: s = self.name + '_' + s else: s = self.name if rank == 0: print("# Will save to files with prefix {}.".format(s)) return s @property def parameters(self): if not hasattr(self, '_parameters'): if self.Npops > 1: _suff = '{{{}}}'.format(self.idnum) else: _suff = '' free_pars = [] guesses = {} is_log = [] jitter = [] ps = DistributionSet() # Normalization of SFE if 'norm' in self.free_params_sfe: free_pars.append('pq_func_par0[0]{}'.format(_suff)) guesses['pq_func_par0[0]{}'.format(_suff)] = -1.5 is_log.extend([True]) jitter.extend([0.1]) ps.add_distribution(UniformDistribution(-7, 1.), 'pq_func_par0[0]{}'.format(_suff)) if 'norm' in self.zevol_sfe: free_pars.append('pq_func_par6[0]{}'.format(_suff)) guesses['pq_func_par6[0]{}'.format(_suff)] = 0. is_log.extend([False]) jitter.extend([0.1]) ps.add_distribution(UniformDistribution(-3, 3.), 'pq_func_par6[0]{}'.format(_suff)) # Peak mass if 'peak' in self.free_params_sfe: free_pars.append('pq_func_par1[0]{}'.format(_suff)) guesses['pq_func_par1[0]{}'.format(_suff)] = 11.5 is_log.extend([True]) jitter.extend([0.1]) ps.add_distribution(UniformDistribution(9., 13.), 'pq_func_par1[0]{}'.format(_suff)) if 'peak' in self.zevol_sfe: free_pars.append('pq_func_par7[0]{}'.format(_suff)) guesses['pq_func_par7[0]{}'.format(_suff)] = 0. is_log.extend([False]) jitter.extend([2.]) ps.add_distribution(UniformDistribution(-6, 6.), 'pq_func_par7[0]{}'.format(_suff)) # Slope at low-mass side of peak if 'slope-low' in self.free_params_sfe: free_pars.append('pq_func_par2[0]{}'.format(_suff)) guesses['pq_func_par2[0]{}'.format(_suff)] = 0.66 is_log.extend([False]) jitter.extend([0.1]) ps.add_distribution(UniformDistribution(0.0, 1.5), 'pq_func_par2[0]{}'.format(_suff)) # Allow to evolve with redshift? if 'slope-low' in self.zevol_sfe: free_pars.append('pq_func_par8[0]{}'.format(_suff)) guesses['pq_func_par8[0]{}'.format(_suff)] = 0. is_log.extend([False]) jitter.extend([0.1]) ps.add_distribution(UniformDistribution(-3, 3.), 'pq_func_par8[0]{}'.format(_suff)) # Slope at high-mass side of peak if 'slope-high' in self.free_params_sfe: free_pars.append('pq_func_par3[0]{}'.format(_suff)) guesses['pq_func_par3[0]{}'.format(_suff)] = -0.3 is_log.extend([False]) jitter.extend([0.1]) ps.add_distribution(UniformDistribution(-3., 0.3), 'pq_func_par3[0]{}'.format(_suff)) # Allow to evolve with redshift? if 'slope-high' in self.zevol_sfe: free_pars.append('pq_func_par9[0]{}'.format(_suff)) guesses['pq_func_par9[0]{}'.format(_suff)] = 0. is_log.extend([False]) jitter.extend([0.1]) ps.add_distribution(UniformDistribution(-6, 6.), 'pq_func_par9[0]{}'.format(_suff)) ## # fduty ## if self.include_fduty: # Normalization of SFE free_pars.extend(['pq_func_par0[40]', 'pq_func_par2[40]']) guesses['pq_func_par0[40]'] = 0.5 guesses['pq_func_par2[40]'] = 0.25 is_log.extend([False, False]) jitter.extend([0.2, 0.2]) ps.add_distribution(UniformDistribution(0., 1.), 'pq_func_par0[40]') ps.add_distribution(UniformDistribution(-2., 2.), 'pq_func_par2[40]') if self.zevol_fduty: free_pars.append('pq_func_par4[40]') guesses['pq_func_par4[40]'] = 0. is_log.extend([False]) jitter.extend([0.1]) ps.add_distribution(UniformDistribution(-3, 3.), 'pq_func_par4[40]') ## # DUST REDDENING ## if self.include_dust in ['screen', 'screen-dpl']: if 'norm' in self.free_params_dust: free_pars.append('pq_func_par0[22]') if 'slope-high' not in self.free_params_dust: guesses['pq_func_par0[22]'] = 2.4 else: guesses['pq_func_par0[22]'] = 1.2 is_log.extend([False]) jitter.extend([0.1]) ps.add_distribution(UniformDistribution(0.01, 10.), 'pq_func_par0[22]') if 'norm' in self.zevol_dust: assert self.include_dust == 'screen' # If screen-dpl need to change parameter number! free_pars.append('pq_func_par4[22]') guesses['pq_func_par4[22]'] = 0. is_log.extend([False]) jitter.extend([0.5]) ps.add_distribution(UniformDistribution(-2., 2.), 'pq_func_par4[22]') if 'slope' in self.free_params_dust: free_pars.append('pq_func_par2[22]') guesses['pq_func_par2[22]'] = 0.5 is_log.extend([False]) jitter.extend([0.05]) ps.add_distribution(UniformDistribution(0, 2.), 'pq_func_par2[22]') if 'slope-high' in self.free_params_dust: assert self.include_dust == 'screen-dpl' free_pars.append('pq_func_par3[22]') guesses['pq_func_par3[22]'] = 0.5 is_log.extend([False]) jitter.extend([0.05]) ps.add_distribution(UniformDistribution(-1.0, 2.), 'pq_func_par3[22]') if 'slope-high' in self.zevol_dust: raise NotImplemented('help') if 'peak' in self.free_params_dust: assert self.include_dust == 'screen-dpl' free_pars.append('pq_func_par1[22]') guesses['pq_func_par1[22]'] = 11. is_log.extend([True]) jitter.extend([0.2]) ps.add_distribution(UniformDistribution(9., 13.), 'pq_func_par1[22]') if 'peak' in self.zevol_dust: raise NotImplemented('help') free_pars.append('pq_func_par2[24]') guesses['pq_func_par2[24]'] = 0.0 is_log.extend([False]) jitter.extend([0.5]) ps.add_distribution(UniformDistribution(-2., 2.), 'pq_func_par2[24]') if 'yield' in self.free_params_dust: assert self.include_fdtmr free_pars.extend(['pq_func_par0[50]', 'pq_func_par2[50]']) guesses['pq_func_par0[50]'] = 0.4 guesses['pq_func_par2[50]'] = 0. is_log.extend([False, False]) jitter.extend([0.1, 0.2]) ps.add_distribution(UniformDistribution(0., 1.0), 'pq_func_par0[50]') ps.add_distribution(UniformDistribution(-2., 2.), 'pq_func_par2[50]') if 'yield' in self.zevol_dust: free_pars.append('pq_func_par4[50]') guesses['pq_func_par4[50]'] = 0.0 is_log.extend([False]) jitter.extend([0.5]) ps.add_distribution(UniformDistribution(-3., 3.), 'pq_func_par4[50]') if 'growth' in self.free_params_dust: assert self.include_fgrowth free_pars.extend(['pq_func_par0[60]', 'pq_func_par2[60]']) guesses['pq_func_par0[60]'] = 11. guesses['pq_func_par2[60]'] = 0. is_log.extend([True, False]) jitter.extend([0.5, 0.2]) ps.add_distribution(UniformDistribution(7., 14.), 'pq_func_par0[60]') ps.add_distribution(UniformDistribution(-2., 2.), 'pq_func_par2[60]') if 'growth' in self.zevol_dust: free_pars.append('pq_func_par4[60]') guesses['pq_func_par4[60]'] = 0. is_log.extend([False]) jitter.extend([0.5]) ps.add_distribution(UniformDistribution(-4., 4.), 'pq_func_par4[60]') if 'scatter' in self.free_params_dust: free_pars.extend(['pq_func_par0[33]']) if 'slope-high' not in self.free_params_dust: guesses['pq_func_par0[33]'] = 0.1 else: guesses['pq_func_par0[33]'] = 0.05 is_log.extend([False]) jitter.extend([0.05]) ps.add_distribution(UniformDistribution(0., 0.6), 'pq_func_par0[33]') if 'scatter-slope' in self.free_params_dust: free_pars.extend(['pq_func_par2[33]']) guesses['pq_func_par2[33]'] = 0. is_log.extend([False]) jitter.extend([0.1]) ps.add_distribution(UniformDistribution(-2., 2.), 'pq_func_par2[33]') if 'scatter' in self.zevol_dust: free_pars.append('pq_func_par4[33]') guesses['pq_func_par4[33]'] = 0.0 is_log.extend([False]) jitter.extend([0.5]) ps.add_distribution(UniformDistribution(-2., 2.), 'pq_func_par4[33]') if 'kappa' in self.free_params_dust: free_pars.extend(['pq_func_par4[20]', 'pq_func_par6[20]']) guesses['pq_func_par4[20]'] = 0.0 guesses['pq_func_par6[20]'] = 0.0 is_log.extend([False, False]) jitter.extend([0.2, 0.2]) ps.add_distribution(UniformDistribution(-3, 3.), 'pq_func_par4[20]') ps.add_distribution(UniformDistribution(-2, 2.), 'pq_func_par6[20]') if 'kappa' in self.zevol_dust: raise NotImplemented('Cannot do triply nested PQs.') # Set the attributes self._parameters = free_pars self._guesses = guesses self._is_log = is_log self._jitter = jitter self._priors = ps return self._parameters @property def guesses(self): if not hasattr(self, '_guesses'): tmp = self.parameters return self._guesses @guesses.setter def guesses(self, value): if not hasattr(self, '_guesses'): tmp = self.parameters print("Revising default guessses...") self._guesses.update(value) @property def jitter(self): if not hasattr(self, '_jitter'): tmp = self.parameters return self._jitter @jitter.setter def jitter(self, value): self._jitter = value @property def is_log(self): if not hasattr(self, '_is_log'): tmp = self.parameters return self._is_log @is_log.setter def is_log(self, value): self._is_log = value @property def priors(self): if not hasattr(self, '_priors'): tmp = self.parameters return self._priors @priors.setter def priors(self, value): self._priors = value @property def blobs(self): ## # First: some generic redshifts, magnitudes, masses. redshifts = np.array([4, 6, 8, 10]) # generic if self.fit_lf: if 'lf' in self.zmap: red_lf = np.sort([item for item in self.zmap['lf'].values()]) else: red_lf = np.array(self.fit_lf) else: red_lf = redshifts if self.fit_smf: if 'smf' in self.zmap: raise NotImplemented('help') red_smf = np.array(self.fit_smf) # Default to saving LF at same redshifts if not specified otherwise. if not self.fit_lf: red_lf = red_smf else: red_smf = red_lf if self.fit_beta: red_beta = np.array(self.fit_beta) else: red_beta = red_lf MUV = np.arange(-26, 5., 0.5) Mh = np.logspace(7, 13, 61) Ms = np.arange(7, 13.25, 0.25) ## # Now, start assembling blobs # Account for different location of population instance if # fit runs an ares.simulations calculation. Just GS option now. if self.fit_gs is not None: _pref = 'pops[{}].'.format(self.idnum) else: _pref = '' # For things like SFE, fduty, etc., need to tap into `guide` # attribute when using GalaxyEnsemble. if self.use_ensemble: _pref_g = _pref + 'guide.' else: _pref_g = _pref # Always save the UVLF blob_n = ['galaxy_lf'] blob_i = [('z', red_lf), ('x', MUV)] blob_f = ['{}LuminosityFunction'.format(_pref)] blob_pars = \ { 'blob_names': [blob_n], 'blob_ivars': [blob_i], 'blob_funcs': [blob_f], 'blob_kwargs': [None], } blob_n = ['fstar'] blob_i = [('z', redshifts), ('Mh', Mh)] blob_f = ['{}fstar'.format(_pref_g)] blob_pars['blob_names'].append(blob_n) blob_pars['blob_ivars'].append(blob_i) blob_pars['blob_funcs'].append(blob_f) blob_pars['blob_kwargs'].append(None) if self.include_fduty: blob_n = ['fduty'] blob_i = [('z', redshifts), ('Mh', Mh)] blob_f = ['{}fduty'.format(_pref_g)] blob_pars['blob_names'].append(blob_n) blob_pars['blob_ivars'].append(blob_i) blob_pars['blob_funcs'].append(blob_f) blob_pars['blob_kwargs'].append(None) if self.include_fdtmr: blob_n = ['fyield'] blob_i = [('z', redshifts), ('Mh', Mh)] blob_f = ['{}dust_yield'.format(_pref_g)] blob_pars['blob_names'].append(blob_n) blob_pars['blob_ivars'].append(blob_i) blob_pars['blob_funcs'].append(blob_f) blob_pars['blob_kwargs'].append(None) # SAM stuff if self.save_sam: blob_n = ['SFR', 'SMHM'] blob_i = [('z', redshifts), ('Mh', Mh)] if self.use_ensemble: blob_f = ['guide.SFR', 'SMHM'] else: blob_f = ['{}SFR'.format(_pref), 'SMHM'] blob_k = [{}, {'return_mean_only': True}] if 'pop_dust_yield' in self.base_kwargs: if self.base_kwargs['pop_dust_yield'] != 0: blob_n.append('Md') blob_f.append('XMHM') blob_k.append({'return_mean_only': True, 'field': 'Md'}) blob_pars['blob_names'].append(blob_n) blob_pars['blob_ivars'].append(blob_i) blob_pars['blob_funcs'].append(blob_f) blob_pars['blob_kwargs'].append(blob_k) # SMF if self.save_smf: blob_n = ['galaxy_smf'] blob_i = [('z', red_smf), ('bins', Ms)] blob_f = ['StellarMassFunction'] blob_pars['blob_names'].append(blob_n) blob_pars['blob_ivars'].append(blob_i) blob_pars['blob_funcs'].append(blob_f) blob_pars['blob_kwargs'].append(None) # Covering factor and scale length if self.save_dust: blob_n = ['dust_scale'] blob_i = [('z', redshifts), ('Mh', Mh)] blob_f = ['guide.dust_scale'] if type(self.base_kwargs['pop_dust_yield']) == str: blob_n.append('dust_yield') blob_f.append('guide.dust_yield') if 'pop_dust_scatter' in self.base_kwargs: if type(self.base_kwargs['pop_dust_scatter'] == str): blob_n.append('sigma_d') blob_f.append('guide.dust_scatter') if 'pop_dust_growth' in self.base_kwargs: if type(self.base_kwargs['pop_dust_growth'] == str): blob_n.append('fgrowth') blob_f.append('guide.dust_growth') blob_pars['blob_names'].append(blob_n) blob_pars['blob_ivars'].append(blob_i) blob_pars['blob_funcs'].append(blob_f) blob_pars['blob_kwargs'].append(None) # MUV-Beta if self.save_beta != False: Mbins = np.arange(-30, -10, 1.0) # This is fast blob_n = ['AUV'] blob_i = [('z', red_beta), ('MUV', MUV)] blob_f = ['AUV'] blob_k = [{'return_binned': True, 'magbins': Mbins, 'Mwave': 1600.}] kw_hst = {'cam': ('wfc', 'wfc3'), 'filters': filt_hst, 'dlam':20., 'rest_wave': None, 'return_binned': True, 'Mbins': Mbins, 'Mwave': 1600.} blob_f.extend(['Beta']) blob_n.extend(['beta_hst']) blob_k.extend([kw_hst]) # Save also the geometric mean of photometry as a function # of a magnitude at fixed rest wavelength. #kw_mag = {'cam': ('wfc', 'wfc3'), 'filters': filt_hst, 'dlam':20.} #blob_n.append('MUV_gm') #blob_f.append('Magnitude') #blob_k.append(kw_mag) blob_pars['blob_names'].append(blob_n) blob_pars['blob_ivars'].append(blob_i) blob_pars['blob_funcs'].append(blob_f) blob_pars['blob_kwargs'].append(blob_k) # Cosmic SFRD if self.save_sfrd: blob_n = ['sfrd'] blob_i = [('z', np.arange(3.5, 30.1, 0.1))] blob_f = ['SFRD'] blob_pars['blob_names'].append(blob_n) blob_pars['blob_ivars'].append(blob_i) blob_pars['blob_funcs'].append(blob_f) blob_pars['blob_kwargs'].append(None) # Reionization stuff if self.fit_gs is not None: blob_n = ['tau_e', 'z_B', 'dTb_B', 'z_C', 'dTb_C', 'z_D', 'dTb_D'] blob_pars['blob_names'].append(blob_n) blob_pars['blob_ivars'].append(None) blob_pars['blob_funcs'].append(None) blob_pars['blob_kwargs'].append(None) blob_n = ['cgm_h_2', 'igm_Tk', 'dTb'] blob_i = [('z', np.arange(5.5, 35.1, 0.1))] blob_pars['blob_names'].append(blob_n) blob_pars['blob_ivars'].append(blob_i) blob_pars['blob_funcs'].append(None) blob_pars['blob_kwargs'].append(None) return blob_pars @property def use_ensemble(self): return self.base_kwargs['pop_sfr_model'] == 'ensemble' @property def base_kwargs(self): if not hasattr(self, '_base_kwargs'): raise AttributeError("Must set `base_kwargs` by hand!") return self._base_kwargs @base_kwargs.setter def base_kwargs(self, value): self._base_kwargs = PB(**value) def update_kwargs(self, **kwargs): bkw = self.base_kwargs self._base_kwargs.update(kwargs) self.Npops = self._base_kwargs.Npops @property def Npops(self): if not hasattr(self, '_Npops'): assert isinstance(self.base_kwargs, PB) self._Npops = max(self.base_kwargs.Npops, 1) return self._Npops @Npops.setter def Npops(self, value): if hasattr(self, '_Npops'): if self.base_kwargs.Npops != self._Npops: print("Updated Npops from {} to {}".format(self._Npops, self.base_kwargs.Npops)) self._Npops = max(self.base_kwargs.Npops, 1) else: self._Npops = max(self.base_kwargs.Npops, 1) def get_initial_walker_position(self): guesses = {} for i, par in enumerate(self.parameters): if self.is_log[i]: guesses[par] = 10**self.guesses[par] else: guesses[par] = self.guesses[par] return guesses def run(self, steps, burn=0, nwalkers=None, save_freq=10, prefix=None, debug=True, restart=False, clobber=False, verbose=True, cache_tricks=False, burn_method=0, recenter=False, checkpoints=True): """ Create a fitter class and run the fit! """ if prefix is None: prefix = self.prefix # Setup LF fitter fitter_lf = FitGalaxyPopulation() fitter_lf.zmap = self.zmap fitter_lf.ztol = self.ztol fitter_lf.monotonic_beta = self.monotonic_beta data = [] include = [] fit_galaxies = False if self.fit_lf: include.append('lf') data.extend(['bouwens2015', 'oesch2018']) fit_galaxies = True if self.fit_smf: include.append('smf') data.append('song2016') fit_galaxies = True if self.fit_beta: include.append('beta') data.extend(['bouwens2014']) fit_galaxies = True # Must be before data is set fitter_lf.redshifts = {'lf': self.fit_lf, 'smf': self.fit_smf, 'beta': self.fit_beta} fitter_lf.include = include fitter_lf.data = data if self.fit_gs is not None: freq, dTb, err = self.fit_gs fitter_gs = FitGlobal21cm() fitter_gs.frequencies = freq fitter_gs.data = dTb fitter_gs.error = err ## # Stitch together parameters ## pars = self.base_kwargs pars.update(self.blobs) # Master fitter fitter = ModelFit(**pars) if fit_galaxies: fitter.add_fitter(fitter_lf) if self.fit_gs is not None: fitter.add_fitter(fitter_gs) if self.fit_gs is not None: fitter.simulator = Global21cm elif self.use_ensemble: fitter.simulator = GalaxyEnsemble else: fitter.simulator = GalaxyCohort fitter.parameters = self.parameters fitter.is_log = self.is_log fitter.debug = debug fitter.verbose = verbose fitter.checkpoint_append = not checkpoints fitter.prior_set = self.priors if nwalkers is None: nw = 2 * len(self.parameters) if rank == 0: print("# Running with {} walkers.".format(nw)) else: nw = nwalkers fitter.nwalkers = nw # Set initial positions of walkers # Important the jitter comes first! fitter.jitter = self.jitter if (not restart): fitter.guesses = self.guesses if cache_tricks: fitter.save_hmf = True fitter.save_hist = 'pop_histories' in self.base_kwargs fitter.save_src = True # Ugh can't be pickled...send tables? yes. else: fitter.save_hmf = False fitter.save_hist = False fitter.save_src = False self.fitter = fitter # RUN fitter.run(prefix=prefix, burn=burn, steps=steps, save_freq=save_freq, clobber=clobber, restart=restart, burn_method=burn_method, recenter=recenter) ``` #### File: ares/physics/ExcursionSet.py ```python import numpy as np from .Constants import rho_cgs from .Cosmology import Cosmology from ..util.Math import central_difference from ..util.ParameterFile import ParameterFile from scipy.integrate import simps, quad from scipy.interpolate import interp1d from scipy.misc import derivative two_pi = 2. * np.pi four_pi = 4. * np.pi two_pi_sq = 2. * np.pi**2 class ExcursionSet(object): def __init__(self, cosm=None, **kwargs): self.pf = ParameterFile(**kwargs) if cosm is not None: self._cosm = cosm @property def cosm(self): if not hasattr(self, '_cosm'): self._cosm = Cosmology(pf=self.pf, **self.pf) return self._cosm @cosm.setter def cosm(self, value): self._cosm = value @property def tab_sigma(self): if not hasattr(self, '_tab_sigma'): raise AttributeError('must set by hand for now') return self._tab_sigma @tab_sigma.setter def tab_sigma(self, value): self._tab_sigma = value @property def tab_M(self): if not hasattr(self, '_tab_M'): raise AttributeError('must set by hand for now') return self._tab_M @tab_M.setter def tab_M(self, value): self._tab_M = value @property def tab_z(self): if not hasattr(self, '_tab_z'): raise AttributeError('must set by hand for now') return self._tab_z @tab_z.setter def tab_z(self, value): self._tab_z = value @property def tab_k(self): if not hasattr(self, '_tab_k'): raise AttributeError('must set by hand for now') return self._tab_k @tab_k.setter def tab_k(self, value): self._tab_k = value @property def tab_ps(self): if not hasattr(self, '_tab_ps'): raise AttributeError('must set by hand for now') return self._tab_ps @tab_ps.setter def tab_ps(self, value): self._tab_ps = value @property def tab_growth(self): if not hasattr(self, '_tab_growth'): raise AttributeError('must set by hand for now') return self._tab_growth @tab_growth.setter def tab_growth(self, value): self._tab_growth = value def _growth_factor(self, z): return np.interp(z, self.tab_z, self.tab_growth, left=np.inf, right=np.inf) def Mass(self, R): return self.cosm.rho_m_z0 * rho_cgs * self.WindowVolume(R) def PDF(self, delta, R): pass def WindowReal(self, x, R): """ Return real-space window function. """ assert type(x) == np.ndarray if self.pf['xset_window'] == 'tophat-real': W = np.zeros_like(x) W[x <= R] = 3. / four_pi / R**3 elif self.pf['xset_window'] == 'tophat-fourier': W = (np.sin(x / R) - (x / R) * np.cos(x / R)) \ / R**3 / two_pi_sq / (x / R)**3 else: raise NotImplemented('help') return W def WindowFourier(self, k, R): if self.pf['xset_window'] == 'sharp-fourier': W = np.zeros_like(k) ok = 1. - k * R >= 0. W[ok == 1] = 1. elif self.pf['xset_window'] == 'tophat-real': W = 3. * (np.sin(k * R) - k * R * np.cos(k * R)) / (k * R)**3 elif self.pf['xset_window'] == 'tophat-fourier': W = np.zeros_like(k) W[k <= 1./R] = 1. else: raise NotImplemented('help') return W def WindowVolume(self, R): if self.pf['xset_window'] == 'sharp-fourier': # Sleight of hand return four_pi * R**3 / 3. elif self.pf['xset_window'] == 'tophat-real': return four_pi * R**3 / 3. elif self.pf['xset_window'] == 'tophat-fourier': return four_pi * R**3 / 3. else: raise NotImplemented('help') def Variance(self, z, R): """ Compute the variance in the field on some scale `R`. """ iz = np.argmin(np.abs(z - self.tab_z)) # Window function W = self.WindowFourier(self.tab_k, R) # Dimensionless power spectrum D = self.tab_k**3 * self.tab_ps[iz,:] / two_pi_sq return np.trapz(D * np.abs(W)**2, x=np.log(self.tab_k)) def CollapsedFraction(self): pass def SizeDistribution(self, z, R, dcrit=1.686, dzero=0.0): """ Compute the size distribution of objects. Parameters ---------- z: int, float Redshift of interest. Returns ------- Tuple containing (in order) the radii, masses, and the differential size distribution. Each is an array of length self.tab_M, i.e., with elements corresponding to the masses used to compute the variance of the density field. """ # Comoving matter density rho0_m = self.cosm.rho_m_z0 * rho_cgs M = self.Mass(R) S = np.array([self.Variance(z, RR) for RR in R]) _M, _dlnSdlnM = central_difference(np.log(M[-1::-1]), np.log(S[-1::-1])) _M = _M[-1::-1] dlnSdlnM = _dlnSdlnM[-1::-1] dSdM = dlnSdlnM * (S[1:-1] / M[1:-1]) dFdM = self.FCD(z, R, dcrit, dzero)[1:-1] * np.abs(dSdM) # This is, e.g., Eq. 17 in Zentner (2006) # or Eq. 9.38 in Loeb and Furlanetto (2013) dndm = rho0_m * np.abs(dFdM) / M[1:-1] return R[1:-1], M[1:-1], dndm def FCD(self, z, R, dcrit=1.686, dzero=0.0): """ First-crossing distribution function. i.e., dF/dS where S=sigma^2. """ S = np.array([self.Variance(z, RR) for RR in R]) norm = (dcrit - dzero) / np.sqrt(two_pi) / S**1.5 p = norm * np.exp(-(dcrit - dzero)**2 / 2. / S) return p ``` #### File: ares/populations/Parameterized.py ```python import numpy as np from types import FunctionType from .Population import Population from ..phenom.ParameterizedQuantity import ParameterizedQuantity from ..util.ParameterFile import ParameterFile, par_info, get_pq_pars try: # this runs with no issues in python 2 but raises error in python 3 basestring except: # this try/except allows for python 2/3 compatible string type checking basestring = str parametric_options = ['pop_Ja', 'pop_ion_rate_cgm', 'pop_ion_rate_igm', 'pop_heat_rate'] class ParametricPopulation(Population): def __getattr__(self, name): if (name[0] == '_'): raise AttributeError('This will get caught. Don\'t worry!') # This is the name of the thing as it appears in the parameter file. full_name = 'pop_' + name # Now, possibly make an attribute if not hasattr(self, name): try: is_pq = self.pf[full_name][0:2] == 'pq' except (IndexError, TypeError): is_pq = False if type(self.pf[full_name]) in [float, np.float64]: result = lambda z: self.pf[full_name] elif type(self.pf[full_name]) is FunctionType: result = self.pf[full_name] elif is_pq: pars = get_pq_pars(self.pf[full_name], self.pf) result = ParameterizedQuantity(**pars) elif isinstance(self.pf[full_name], basestring): x, y = np.loadtxt(self.pf[full_name], unpack=True) result = interp1d(x, y, kind=self.pf['interp_hist']) else: raise NotImplementedError('Problem with: {!s}'.format(name)) self.__setattr__(name, result) return getattr(self, name) def LymanAlphaFlux(self, z): return self.Ja(z=z) def IonizationRateCGM(self, z): return self.ion_rate_cgm(z=z) def IonizationRateIGM(self, z): return self.ion_rate_igm(z=z) def HeatingRate(self, z): return self.heat_rate(z=z) ``` #### File: ares/simulations/MultiPhaseMedium.py ```python import numpy as np from ..static import Grid from types import FunctionType from .GasParcel import GasParcel from ..physics.Cosmology import Cosmology from ..util.ReadData import _sort_history from ..util.ParameterFile import get_pq_pars from ..util import ParameterFile, ProgressBar from .MetaGalacticBackground import MetaGalacticBackground from ..phenom.ParameterizedQuantity import ParameterizedQuantity from ..util.SetDefaultParameterValues import MultiPhaseParameters _mpm_defs = MultiPhaseParameters() class MultiPhaseMedium(object): def __init__(self, pf=None, cosm=None, **kwargs): """ Initialize a MultiPhaseMedium object. By default, this is a two-zone model, consisting of a "bulk IGM" grid patch and an "HII regions" grid patch, dubbed "igm" and "cgm", respectively. To perform a single-zone calculation, simply set ``include_cgm=False`` or ``include_igm=False``. """ if pf is not None: self.pf = pf self._cosm_ = cosm self.kwargs = kwargs @property def pf(self): if not hasattr(self, '_pf'): self._pf = ParameterFile(**self.kwargs) # Make sure PF gets modified by initial conditions choices # and ensure that these changes get passed to everything else # subsequently. inits = self.inits return self._pf @pf.setter def pf(self, val): self._pf = val inits = self.inits @property def inits(self): if not hasattr(self, '_inits'): if self.pf['load_ics']: if self.pf['approx_thermal_history']: self._inits = inits = self.grid.cosm.thermal_history else: self._inits = inits = self.grid.cosm.inits zi = self.pf['initial_redshift'] if not np.all(np.diff(inits['z']) > 0): raise ValueError('Redshifts in ICs must be in ascending order!') Ti = np.interp(zi, inits['z'], inits['Tk']) xe = np.interp(zi, inits['z'], inits['xe']) #if self.pf['include_He']: new = {'igm_initial_temperature': Ti, 'igm_initial_ionization': [1.-xe, xe, 1.-xe-1e-10, xe, 1e-10]} # Only time we ever do this? self.pf.update(new) self.kwargs.update(new) else: self._inits = None return self._inits @property def field(self): if not hasattr(self, '_field'): if self.pf['include_igm']: self._field = MetaGalacticBackground(pf=self.pf, grid=self.parcel_igm.grid, **self.kwargs) else: self._field = MetaGalacticBackground(pf=self.pf, grid=self.parcel_cgm.grid, **self.kwargs) return self._field @property def pops(self): return self.field.pops #@property #def grid(self): # return self.field.grid @property def cosm(self): if not hasattr(self, '_cosm'): if self._cosm_ is None: self._cosm = Cosmology(pf=self.pf, **self.pf) else: self._cosm = self._cosm_ return self._cosm @property def grid(self): if not hasattr(self, '_grid'): self._grid = Grid(cosm=self.cosm, **self.pf) self._grid.set_properties(**self.pf) return self._grid @property def parcels(self): if not hasattr(self, '_parcels'): self._initialize_zones() return self._parcels @property def parcel_igm(self): if not hasattr(self, '_parcel_igm'): self._parcel_igm = self.parcels[0] return self._parcel_igm @property def parcel_cgm(self): if not hasattr(self, '_parcel_cgm'): if self.pf['include_igm']: self._parcel_cgm = self.parcels[1] else: self._parcel_cgm = self.parcels[0] return self._parcel_cgm def rates_no_RT(self, grid): _rates_no_RT = \ {'k_ion': np.zeros((grid.dims, grid.N_absorbers)), 'k_heat': np.zeros((grid.dims, grid.N_absorbers)), 'k_ion2': np.zeros((grid.dims, grid.N_absorbers, grid.N_absorbers)), } return _rates_no_RT @property def tf(self): if not hasattr(self, '_tf'): z = self.pf['initial_redshift'] zf = self.pf['final_redshift'] self._tf = self.default_parcel.grid.cosm.LookbackTime(zf, z) self.pf['stop_time'] = self._tf / self.pf['time_units'] return self._tf def _initialize_zones(self): """ Initialize (up to two) GasParcels. """ inits = self.inits # Reset stop time based on final redshift. z = self.pf['initial_redshift'] zf = self.pf['final_redshift'] self._parcels = [] for zone in ['igm', 'cgm']: if not self.pf['include_{!s}'.format(zone)]: continue kw = self.pf.copy() # Loop over defaults, pull out the ones for this zone for key in _mpm_defs: if key[0:4] != '{!s}_'.format(zone): continue # Have to rename variables so Grid class will know them grid_key = key.replace('{!s}_'.format(zone), '') if key in self.kwargs: kw[grid_key] = self.kwargs[key] else: kw[grid_key] = _mpm_defs[key] if zone == 'igm': self.kw_igm = kw.copy() parcel_igm = GasParcel(cosm=self.cosm, **self.kw_igm) self.gen_igm = parcel_igm.step() # Set initial values for rate coefficients parcel_igm.update_rate_coefficients(parcel_igm.grid.data, **self.rates_no_RT(parcel_igm.grid)) self._parcels.append(parcel_igm) else: self.kw_cgm = kw.copy() parcel_cgm = GasParcel(cosm=self.cosm, **self.kw_cgm) parcel_cgm.grid.set_recombination_rate(True) parcel_cgm._set_chemistry() self.gen_cgm = parcel_cgm.step() parcel_cgm.chem.chemnet.monotonic_EoR = \ self.pf['monotonic_EoR'] parcel_cgm.update_rate_coefficients(parcel_cgm.grid.data, **self.rates_no_RT(parcel_cgm.grid)) self._parcels.append(parcel_cgm) self._parcels[-1].pf['stop_time'] = self.tf / self.pf['time_units'] @property def zones(self): if not hasattr(self, '_zones'): self._zones = int(self.pf['include_igm']) \ + int(self.pf['include_cgm']) return self._zones @property def default_parcel(self): if not hasattr(self, '_default_parcel'): self._default_parcel = self.parcel_igm if self.pf['include_igm'] \ else self.parcel_cgm return self._default_parcel def run(self): """ Run simulation from start to finish. Returns ------- Nothing: sets `history` attribute. """ self._insert_inits() pb = ProgressBar(self.tf, use=self.pf['progress_bar']) pb.start() # Evolve in time for t, z, data_igm, data_cgm, RC_igm, RC_cgm in self.step(): pb.update(t) # Save data self.all_z.append(z) self.all_t.append(t) if self.pf['include_cgm']: self.all_data_cgm.append(data_cgm.copy()) #else: # self.all_data_cgm = [] if self.pf['include_igm']: self.all_data_igm.append(data_igm.copy()) #else: # self.all_data_igm = [] if self.pf['save_rate_coefficients']: if self.pf['include_cgm']: self.all_RCs_cgm.append(RC_cgm.copy()) if self.pf['include_igm']: self.all_RCs_igm.append(RC_igm.copy()) pb.finish() # Sort everything by time if self.pf['include_igm']: self.history_igm = \ _sort_history(self.all_data_igm, prefix='igm_', squeeze=True) self.history = self.history_igm.copy() else: self.history = {} if self.pf['include_cgm']: self.history_cgm = \ _sort_history(self.all_data_cgm, prefix='cgm_', squeeze=True) self.history.update(self.history_cgm) else: self.history_cgm = {} # Save rate coefficients [optional] if self.pf['save_rate_coefficients']: if self.pf['include_igm']: self.rates_igm = \ _sort_history(self.all_RCs_igm, prefix='igm_', squeeze=True) self.history.update(self.rates_igm) if self.pf['include_cgm']: self.rates_cgm = \ _sort_history(self.all_RCs_cgm, prefix='cgm_', squeeze=True) self.history.update(self.rates_cgm) else: self.rates_cgm = {} self.history['t'] = np.array(self.all_t) self.history['z'] = np.array(self.all_z) def step(self): """ Generator for a two-phase intergalactic medium. Returns ------- Tuple containing the current time, redshift, and dictionaries for the IGM and CGM data at a single snapshot. """ t = 0.0 z = self.pf['initial_redshift'] dt = self.pf['time_units'] * self.pf['initial_timestep'] zf = self.pf['final_redshift'] # Read initial conditions if self.pf['include_igm']: data_igm = self.parcel_igm.grid.data.copy() if self.pf['include_cgm']: data_cgm = self.parcel_cgm.grid.data.copy() # Evolve in time! while z > zf: if z < self.pf['kill_redshift']: break # Increment time / redshift dtdz = self.default_parcel.grid.cosm.dtdz(z) t += dt z -= dt / dtdz # IGM rate coefficients if self.pf['include_igm']: done = False if self.pf['stop_igm_h_2'] is not None: if data_igm['h_2'] > self.pf['stop_igm_h_2']: data_igm = data_igm_pre.copy() dt1 = 1e50 done = True if not done: also = {} for sp in self.field.grid.absorbers: also['igm_{!s}'.format(sp)] = data_igm[sp] RC_igm = self.field.update_rate_coefficients(z, zone='igm', return_rc=True, **also) # Now, update IGM parcel t1, dt1, data_igm = next(self.gen_igm) # Pass rate coefficients off to the IGM parcel self.parcel_igm.update_rate_coefficients(data_igm, **RC_igm) else: dt1 = 1e50 RC_igm = data_igm = None data_igm = {'h_1': 1.0} if self.pf['include_cgm']: done = False if self.pf['stop_cgm_h_2'] is not None: if data_cgm['h_2'] > self.pf['stop_cgm_h_2']: data_cgm = data_cgm_pre.copy() dt2 = 1e50 done = True if not done: # CGM rate coefficients RC_cgm = self.field.update_rate_coefficients(z, zone='cgm', return_rc=True, cgm_h_1=data_cgm['h_1']) # Pass rate coefficients off to the CGM parcel self.parcel_cgm.update_rate_coefficients(data_cgm, **RC_cgm) # Now, update CGM parcel t2, dt2, data_cgm = next(self.gen_cgm) else: dt2 = 1e50 RC_cgm = data_cgm = None # Must update timesteps in unison dt_pre = dt * 1. dt = min(dt1, dt2) dt = min(dt, self.pf['max_timestep'] * self.pf['time_units']) # Might need these... if self.pf['include_igm']: data_igm_pre = data_igm.copy() if self.pf['include_cgm']: data_cgm_pre = data_cgm.copy() # Changing attribute! A little scary, but we must make sure # these parcels are evolved in unison if self.pf['include_igm']: self.parcel_igm.dt = dt if self.pf['include_cgm']: self.parcel_cgm.dt = dt yield t, z, data_igm, data_cgm, RC_igm, RC_cgm def _insert_inits(self): """ Prepend provided initial conditions to the data storage lists. """ if not self.pf['load_ics']: self.all_t, self.all_z, self.all_data_igm, self.all_data_cgm = \ [], [], [], [] if self.pf['save_rate_coefficients']: self.all_RCs_igm, self.all_RCs_cgm = [], [] if not self.pf['include_cgm']: del self.all_RCs_cgm, self.all_data_cgm #self.all_z.append(self.pf['initial_redshift']) #self.all_t.append(0.0) # #igm_inits = {'Tk': self.pf['igm_initial_temperature'], # 'xe': self.pf['igm_initial_ionization']} #cgm_inits = {'Tk': self.pf['cgm_initial_temperature'], # 'xe': self.pf['cgm_initial_ionization']} #self.all_data_igm.append(igm_inits) #self.all_data_cgm.append(cgm_inits) return # Flip to descending order (in redshift) if self.pf['load_ics'] == 'cosmorec': z_inits = self.inits['z'][-1::-1] Tk_inits = self.inits['Tk'][-1::-1] xe_inits = self.inits['xe'][-1::-1] else: z_inits = self.grid.cosm.thermal_history['z'][-1::-1] Tk_inits = self.grid.cosm.thermal_history['Tk'][-1::-1] xe_inits = self.grid.cosm.thermal_history['xe'][-1::-1] inits_all = {'z': z_inits, 'Tk': Tk_inits, 'xe': xe_inits} # Stop pre-pending once we hit the first light redshift zi = self.pf['initial_redshift'] i_trunc = np.argmin(np.abs(z_inits - zi)) if z_inits[i_trunc] <= zi: i_trunc += 1 self.all_t = [] self.all_data_igm = [] self.all_data_cgm = [] self.all_z = list(z_inits[0:i_trunc]) self.all_RCs_igm = [self.rates_no_RT(self.parcel_igm.grid)] * len(self.all_z) self.all_RCs_cgm = [self.rates_no_RT(self.parcel_igm.grid)] * len(self.all_z) # Don't mess with the CGM (much) if self.pf['include_cgm']: tmp = self.parcel_cgm.grid.data self.all_data_cgm = [tmp.copy() for i in range(len(self.all_z))] for i, cgm_data in enumerate(self.all_data_cgm): self.all_data_cgm[i]['rho'] = \ self.parcel_cgm.grid.cosm.MeanBaryonDensity(self.all_z[i]) self.all_data_cgm[i]['n'] = \ self.parcel_cgm.grid.particle_density(cgm_data, self.all_z[i]) #else: # self.all_data_cgm = [] if not self.pf['include_igm']: return # Loop over redshift and derive things for the IGM for i, red in enumerate(self.all_z): snapshot = {} for key in self.parcel_igm.grid.data.keys(): if key in inits_all.keys(): snapshot[key] = inits_all[key][i] continue # Electron fraction snapshot['e'] = inits_all['xe'][i] # Hydrogen neutral fraction xe = inits_all['xe'][i] if 2 not in self.parcel_igm.grid.Z: xe = min(xe, 1.0) # Need to be careful this isn't > 1, since we're breaking # electron fraction into H and He fractions separately. xi = np.minimum(xe / (1. + self.parcel_igm.grid.cosm.y), 1.) snapshot['h_1'] = 1. - xi snapshot['h_2'] = xi # Add helium, assuming xHeII = xHII, and xHeIII << 1 if self.parcel_igm.pf['include_He']: snapshot['he_1'] = 1. - xi snapshot['he_2'] = xi snapshot['he_3'] = 1e-10 snapshot['rho'] = self.parcel_igm.grid.cosm.MeanBaryonDensity(red) snapshot['n'] = \ self.parcel_igm.grid.particle_density(snapshot.copy(), red) # Need to keep the cell number dimension for consistency for element in snapshot: snapshot[element] = np.array([snapshot[element]], dtype=float) self.all_t.append(0.0) self.all_data_igm.append(snapshot.copy()) ``` #### File: ares/static/Fluctuations.py ```python import numpy as np from math import factorial from ..physics import Cosmology from ..util import ParameterFile from ..util.Stats import bin_c2e from scipy.special import erfinv from scipy.optimize import fsolve from scipy.interpolate import interp1d from scipy.integrate import quad, simps from ..physics.Hydrogen import Hydrogen from ..physics.HaloModel import HaloModel from ..util.Math import LinearNDInterpolator from ..populations.Composite import CompositePopulation from ..physics.CrossSections import PhotoIonizationCrossSection from ..physics.Constants import g_per_msun, cm_per_mpc, dnu, s_per_yr, c, \ s_per_myr, erg_per_ev, k_B, m_p, dnu, g_per_msun root2 = np.sqrt(2.) four_pi = 4. * np.pi class Fluctuations(object): # pragma: no cover def __init__(self, grid=None, **kwargs): """ Initialize a FluctuatingBackground object. Creates an object capable of modeling fields that fluctuate spatially. """ self._kwargs = kwargs.copy() self.pf = ParameterFile(**kwargs) # Some useful physics modules if grid is not None: self.grid = grid self.cosm = grid.cosm else: self.grid = None self.cosm = Cosmology() self._done = {} @property def zeta(self): if not hasattr(self, '_zeta'): raise AttributeError('Must set zeta by hand!') return self._zeta @zeta.setter def zeta(self, value): self._zeta = value @property def zeta_X(self): if not hasattr(self, '_zeta_X'): raise AttributeError('Must set zeta_X by hand!') return self._zeta_X @zeta_X.setter def zeta_X(self, value): self._zeta_X = value @property def hydr(self): if not hasattr(self, '_hydr'): if self.grid is None: self._hydr = Hydrogen(**self.pf) else: self._hydr = self.grid.hydr return self._hydr @property def xset(self): if not hasattr(self, '_xset'): xset_pars = \ { 'xset_window': 'tophat-real', 'xset_barrier': 'constant', 'xset_pdf': 'gaussian', } xset = ares.physics.ExcursionSet(**xset_pars) xset.tab_M = pop.halos.tab_M xset.tab_sigma = pop.halos.tab_sigma xset.tab_ps = pop.halos.tab_ps_lin xset.tab_z = pop.halos.tab_z xset.tab_k = pop.halos.tab_k_lin xset.tab_growth = pop.halos.tab_growth self._xset = xset return self._xset def _overlap_region(self, dr, R1, R2): """ Volume of intersection between two spheres of radii R1 < R2. """ Vo = np.pi * (R2 + R1 - dr)**2 \ * (dr**2 + 2. * dr * R1 - 3. * R1**2 \ + 2. * dr * R2 + 6. * R1 * R2 - 3. * R2**2) / 12. / dr if type(Vo) == np.ndarray: # Small-scale vs. large Scale SS = dr <= R2 - R1 LS = dr >= R1 + R2 Vo[LS == 1] = 0.0 if type(R1) == np.ndarray: Vo[SS == 1] = 4. * np.pi * R1[SS == 1]**3 / 3. else: Vo[SS == 1] = 4. * np.pi * R1**3 / 3. return Vo def IV(self, dr, R1, R2): """ Just a vectorized version of the overlap calculation. """ return self._overlap_region(dr, R1, R2) def intersectional_volumes(self, dr, R1, R2, R3): IV = self.IV V11 = IV(dr, R1, R1) zeros = np.zeros_like(V11) if np.all(R2 == 0): return V11, zeros, zeros, zeros, zeros, zeros V12 = IV(dr, R1, R2) V22 = IV(dr, R2, R2) if np.all(R3 == 0): return V11, V12, V22, zeros, zeros, zeros V13 = IV(dr, R1, R3) V23 = IV(dr, R2, R3) V33 = IV(dr, R3, R3) return V11, V12, V22, V13, V23, V33 def overlap_volumes(self, dr, R1, R2): """ Overlap volumes, i.e., volumes in which a source affects two points in different ways. For example, V11 is the volume in which a source ionizes both points (at separation `dr`), V12 is the volume in which a source ionizes one point and heats the other, and so on. In this order: V11, V12, V13, V22, V23, V33 """ IV = self.IV V1 = 4. * np.pi * R1**3 / 3. if self.pf['ps_temp_model'] == 1: V2 = 4. * np.pi * (R2**3 - R1**3) / 3. else: V2 = 4. * np.pi * R2**3 / 3. Vt = 4. * np.pi * R2**3 / 3. V11 = IV(dr, R1, R1) if self.pf['ps_include_temp'] and self.pf['ps_temp_model'] == 2: V12 = V1 else: V12 = 2 * IV(dr, R1, R2) - IV(dr, R1, R1) V22 = IV(dr, R2, R2) if self.pf['ps_temp_model'] == 1: V22 += -2. * IV(dr, R1, R2) + IV(dr, R1, R1) if self.pf['ps_include_temp'] and self.pf['ps_temp_model'] == 1: V1n = V1 - IV(dr, R1, R2) elif self.pf['ps_include_temp'] and self.pf['ps_temp_model'] == 2: V1n = V1 else: V1n = V1 - V11 V2n = V2 - IV(dr, R2, R2) if self.pf['ps_temp_model'] == 1: V2n += IV(dr, R1, R2) # 'anything' to one point, 'nothing' to other. # Without temperature fluctuations, same as V1n if self.pf['ps_include_temp']: Van = Vt - IV(dr, R2, R2) else: Van = V1n return V11, V12, V22, V1n, V2n, Van def exclusion_volumes(self, dr, R1, R2, R3): """ Volume in which a single source only affects one """ pass @property def heating_ongoing(self): if not hasattr(self, '_heating_ongoing'): self._heating_ongoing = True return self._heating_ongoing @heating_ongoing.setter def heating_ongoing(self, value): self._heating_ongoing = value def BubbleShellFillingFactor(self, z, R_s=None): """ """ # Hard exit. if not self.pf['ps_include_temp']: return 0.0 Qi = self.MeanIonizedFraction(z) if self.pf['ps_temp_model'] == 1: R_i, M_b, dndm_b = self.BubbleSizeDistribution(z) if Qi == 1: return 0.0 if type(R_s) is np.ndarray: nz = R_i > 0 const_rsize = np.allclose(np.diff(R_s[nz==1] / R_i[nz==1]), 0.0) if const_rsize: fvol = (R_s[0] / R_i[0])**3 - 1. Qh = Qi * fvol else: V = 4. * np.pi * (R_s**3 - R_i**3) / 3. Mmin = self.Mmin(z) * self.zeta Qh = self.get_prob(z, M_b, dndm_b, Mmin, V, exp=False, ep=0.0, Mmax=None) #raise NotImplemented("No support for absolute scaling of hot bubbles yet.") if (Qh > (1. - Qi) * 1.): #or Qh > 0.5: #or Qi > 0.5: self.heating_ongoing = 0 Qh = np.minimum(Qh, 1. - Qi) return Qh else: # This will get called if temperature fluctuations are off return 0.0 elif self.pf['ps_temp_model'] == 2: Mmin = self.Mmin(z) * self.zeta_X R_i, M_b, dndm_b = self.BubbleSizeDistribution(z, ion=False) V = 4. * np.pi * R_i**3 / 3. Qh = self.get_prob(z, M_b, dndm_b, Mmin, V, exp=False, ep=0.0, Mmax=None) #Qh = self.BubbleFillingFactor(z, ion=False) #print('Qh', Qh) return np.minimum(Qh, 1. - Qi) else: raise NotImplemented('Uncrecognized option for BSD.') #return min(Qh, 1.), min(Qc, 1.) @property def bsd_model(self): return self.pf['bubble_size_dist'].lower() def MeanIonizedFraction(self, z, ion=True): Mmin = self.Mmin(z) logM = np.log10(Mmin) if ion: if not self.pf['ps_include_ion']: return 0.0 zeta = self.zeta return np.minimum(1.0, zeta * self.halos.fcoll_2d(z, logM)) else: if not self.pf['ps_include_temp']: return 0.0 zeta = self.zeta_X # Assume that each heated region contains the same volume # of fully-ionized material. Qi = self.MeanIonizedFraction(z, ion=True) Qh = zeta * self.halos.fcoll_2d(z, logM) - Qi return np.minimum(1.0 - Qi, Qh) def delta_shell(self, z): """ Relative density != relative over-density. """ if not self.pf['ps_include_temp']: return 0.0 if self.pf['ps_temp_model'] == 2: return self.delta_bubble_vol_weighted(z, ion=False) delta_i_bar = self.delta_bubble_vol_weighted(z) rdens = self.pf["bubble_shell_rdens_zone_0"] return rdens * (1. + delta_i_bar) - 1. def BulkDensity(self, z, R_s): Qi = self.MeanIonizedFraction(z) #Qh = self.BubbleShellFillingFactor(z, R_s) Qh = self.MeanIonizedFraction(z, ion=False) delta_i_bar = self.delta_bubble_vol_weighted(z) delta_h_bar = self.delta_shell(z) if self.pf['ps_igm_model'] == 2: delta_hal_bar = self.mean_halo_overdensity(z) Qhal = self.Qhal(z, Mmax=self.Mmin(z)) else: Qhal = 0.0 delta_hal_bar = 0.0 return -(delta_i_bar * Qi + delta_h_bar * Qh + delta_hal_bar * Qhal) \ / (1. - Qi - Qh - Qhal) def BubbleFillingFactor(self, z, ion=True, rescale=True): """ Fraction of volume filled by bubbles. This is never actually used, but for reference, the mean ionized fraction would be 1 - exp(-this). What we actually do is re-normalize the bubble size distribution to guarantee Q = zeta * fcoll. See MeanIonizedFraction and BubbleSizeDistribution for more details. """ if ion: zeta = self.zeta else: zeta = self.zeta_X if self.bsd_model is None: R_i = self.pf['bubble_size'] V_i = 4. * np.pi * R_i**3 / 3. ni = self.BubbleDensity(z) Qi = 1. - np.exp(-ni * V_i) elif self.bsd_model in ['fzh04', 'hmf']: # Smallest bubble is one around smallest halo. # Don't actually need its mass, just need index to correctly # truncate integral. Mmin = self.Mmin(z) * zeta # M_b should just be self.m? No. R_i, M_b, dndm_b = self.BubbleSizeDistribution(z, ion=ion, rescale=rescale) V_i = 4. * np.pi * R_i**3 / 3. iM = np.argmin(np.abs(Mmin - M_b)) Qi = np.trapz(dndm_b[iM:] * M_b[iM:] * V_i[iM:], x=np.log(M_b[iM:])) # This means reionization is over. if self.bsd_model == 'fzh04': if self._B0(z, zeta) <= 0: return 1. else: raise NotImplemented('Uncrecognized option for BSD.') return min(Qi, 1.) # Grab heated phase to enforce BC #Rs = self.BubbleShellRadius(z, R_i) #Vsh = 4. * np.pi * (Rs - R_i)**3 / 3. #Qh = np.trapz(dndm * Vsh * M_b, x=np.log(M_b)) #if lya and self.pf['bubble_pod_size_func'] in [None, 'const', 'linear']: # Rc = self.BubblePodRadius(z, R_i, zeta, zeta_lya) # Vc = 4. * np.pi * (Rc - R_i)**3 / 3. # # if self.pf['powspec_rescale_Qlya']: # # This isn't actually correct since we care about fluxes # # not number of photons, but fine for now. # Qc = min(zeta_lya * self.halos.fcoll_2d(z, np.log10(self.Mmin(z))), 1) # else: # Qc = np.trapz(dndlnm[iM:] * Vc[iM:], x=np.log(M_b[iM:])) # # return min(Qc, 1.) # #elif lya and self.pf['bubble_pod_size_func'] == 'fzh04': # return self.BubbleFillingFactor(z, zeta_lya, None, lya=False) #else: @property def tab_Mmin(self): if not hasattr(self, '_tab_Mmin'): raise AttributeError('Must set Mmin by hand (right now)') return self._tab_Mmin @tab_Mmin.setter def tab_Mmin(self, value): if type(value) is not np.ndarray: value = np.ones_like(self.halos.tab_z) * value else: assert value.size == self.halos.tab_z.size self._tab_Mmin = value def Mmin(self, z): return np.interp(z, self.halos.tab_z, self.tab_Mmin) def mean_halo_bias(self, z): bias = self.halos.Bias(z) M_h = self.halos.tab_M iz_h = np.argmin(np.abs(z - self.halos.tab_z)) iM_h = np.argmin(np.abs(self.Mmin(z) - M_h)) dndm_h = self.halos.tab_dndm[iz_h] return 1.0 #return simps(M_h * dndm_h * bias, x=np.log(M_h)) \ # / simps(M_h * dndm_h, x=np.log(M_h)) def tab_bubble_bias(self, zeta): if not hasattr(self, '_tab_bubble_bias'): func = lambda z: self._fzh04_eq22(z, zeta) self._tab_bubble_bias = np.array(map(func, self.halos.tab_z_ps)) return self._tab_bubble_bias def _fzh04_eq22(self, z, ion=True): if ion: zeta = self.zeta else: zeta = self.zeta_X iz = np.argmin(np.abs(z - self.halos.tab_z)) s = self.sigma S = s**2 #return 1. + ((self.LinearBarrier(z, zeta, zeta) / S - (1. / self._B0(z, zeta))) \ # / self._growth_factor(z)) return 1. + (self._B0(z, zeta)**2 / S / self._B(z, zeta, zeta)) def bubble_bias(self, z, ion=True): """ Eq. 9.24 in Loeb & Furlanetto (2013) or Eq. 22 in FZH04. """ return self._fzh04_eq22(z, ion) #iz = np.argmin(np.abs(z - self.halos.tab_z_ps)) # #x, y = self.halos.tab_z_ps, self.tab_bubble_bias(zeta)[iz] # # # #m = (y[-1] - y[-2]) / (x[-1] - x[-2]) # #return m * z + y[-1] #iz = np.argmin(np.abs(z - self.halos.tab_z)) #s = self.sigma #S = s**2 # ##return 1. + ((self.LinearBarrier(z, zeta, zeta) / S - (1. / self._B0(z, zeta))) \ ## / self._growth_factor(z)) # #fzh04 = 1. + (self._B0(z, zeta)**2 / S / self._B(z, zeta, zeta)) # #return fzh04 def mean_bubble_bias(self, z, ion=True): """ """ R, M_b, dndm_b = self.BubbleSizeDistribution(z, ion=ion) #if ('h' in term) or ('c' in term) and self.pf['powspec_temp_method'] == 'shell': # R_s, Rc = self.BubbleShellRadius(z, R_i) # R = R_s #else: if ion: zeta = self.zeta else: zeta = self.zeta_X V = 4. * np.pi * R**3 / 3. Mmin = self.Mmin(z) * zeta iM = np.argmin(np.abs(Mmin - self.m)) bHII = self.bubble_bias(z, ion) #tmp = dndm[iM:] #print(z, len(tmp[np.isnan(tmp)]), len(bHII[np.isnan(bHII)])) #imax = int(min(np.argwhere(np.isnan(R_i)))) if ion and self.pf['ps_include_ion']: Qi = self.MeanIonizedFraction(z) elif ion and not self.pf['ps_include_ion']: raise NotImplemented('help') elif (not ion) and self.pf['ps_include_temp']: Qi = self.MeanIonizedFraction(z, ion=False) elif ion and self.pf['ps_include_temp']: Qi = self.MeanIonizedFraction(z, ion=False) else: raise NotImplemented('help') return np.trapz(dndm_b[iM:] * V[iM:] * bHII[iM:] * M_b[iM:], x=np.log(M_b[iM:])) / Qi #def delta_bubble_mass_weighted(self, z, zeta): # if self._B0(z, zeta) <= 0: # return 0. # # R_i, M_b, dndm_b = self.BubbleSizeDistribution(z, zeta) # V_i = 4. * np.pi * R_i**3 / 3. # # Mmin = self.Mmin(z) * zeta # iM = np.argmin(np.abs(Mmin - self.m)) # B = self._B(z, zeta) # rho0 = self.cosm.mean_density0 # # dm_ddel = rho0 * V_i # # return simps(B[iM:] * dndm_b[iM:] * M_b[iM:], x=np.log(M_b[iM:])) def delta_bubble_vol_weighted(self, z, ion=True): if not self.pf['ps_include_ion']: return 0.0 if not self.pf['ps_include_xcorr_ion_rho']: return 0.0 if ion: zeta = self.zeta else: zeta = self.zeta_X if self._B0(z, zeta) <= 0: return 0. R_i, M_b, dndm_b = self.BubbleSizeDistribution(z, ion=ion) V_i = 4. * np.pi * R_i**3 / 3. Mmin = self.Mmin(z) * zeta iM = np.argmin(np.abs(Mmin - self.m)) B = self._B(z, ion=ion) return np.trapz(B[iM:] * dndm_b[iM:] * V_i[iM:] * M_b[iM:], x=np.log(M_b[iM:])) #def mean_bubble_overdensity(self, z, zeta): # if self._B0(z, zeta) <= 0: # return 0. # # R_i, M_b, dndm_b = self.BubbleSizeDistribution(z, zeta) # V_i = 4. * np.pi * R_i**3 / 3. # # Mmin = self.Mmin(z) * zeta # iM = np.argmin(np.abs(Mmin - self.m)) # B = self._B(z, zeta) # rho0 = self.cosm.mean_density0 # # dm_ddel = rho0 * V_i # # return simps(B[iM:] * dndm_b[iM:] * M_b[iM:], x=np.log(M_b[iM:])) def mean_halo_abundance(self, z, Mmin=False): M_h = self.halos.tab_M iz_h = np.argmin(np.abs(z - self.halos.tab_z)) if Mmin: iM_h = np.argmin(np.abs(self.Mmin(z) - M_h)) else: iM_h = 0 dndm_h = self.halos.tab_dndm[iz_h] return np.trapz(M_h * dndm_h, x=np.log(M_h)) def spline_cf_mm(self, z): if not hasattr(self, '_spline_cf_mm_'): self._spline_cf_mm_ = {} if z not in self._spline_cf_mm_: iz = np.argmin(np.abs(z - self.halos.tab_z_ps)) self._spline_cf_mm_[z] = interp1d(np.log(self.halos.tab_R), self.halos.tab_cf_mm[iz], kind='cubic', bounds_error=False, fill_value=0.0) return self._spline_cf_mm_[z] def excess_probability(self, z, R, ion=True): """ This is the excess probability that a point is ionized given that we already know another point (at distance r) is ionized. """ # Function of bubble mass (bubble size) bHII = self.bubble_bias(z, ion) bbar = self.mean_bubble_bias(z, ion) if R < self.halos.tab_R.min(): print("R too small") if R > self.halos.tab_R.max(): print("R too big") xi_dd = self.spline_cf_mm(z)(np.log(R)) #if term == 'ii': return bHII * bbar * xi_dd #elif term == 'id': # return bHII * bbar * xi_dd #else: # raise NotImplemented('help!') def _K(self, zeta): return erfinv(1. - (1. / zeta)) def _growth_factor(self, z): return np.interp(z, self.halos.tab_z, self.halos.tab_growth, left=np.inf, right=np.inf) def _delta_c(self, z): return self.cosm.delta_c0 / self._growth_factor(z) def _B0(self, z, ion=True): if ion: zeta = self.zeta else: zeta = self.zeta_X iz = np.argmin(np.abs(z - self.halos.tab_z)) s = self.sigma # Variance on scale of smallest collapsed object sigma_min = self.sigma_min(z) return self._delta_c(z) - root2 * self._K(zeta) * sigma_min def _B1(self, z, ion=True): if ion: zeta = self.zeta else: zeta = self.zeta_X iz = np.argmin(np.abs(z - self.halos.tab_z)) s = self.sigma #* self.halos.growth_factor[iz] sigma_min = self.sigma_min(z) return self._K(zeta) / np.sqrt(2. * sigma_min**2) def _B(self, z, ion=True, zeta_min=None): return self.LinearBarrier(z, ion, zeta_min=zeta_min) def LinearBarrier(self, z, ion=True, zeta_min=None): if ion: zeta = self.zeta else: zeta = self.zeta_X iz = np.argmin(np.abs(z - self.halos.tab_z)) s = self.sigma #/ self.halos.growth_factor[iz] if zeta_min is None: zeta_min = zeta return self._B0(z, ion) + self._B1(z, ion) * s**2 def Barrier(self, z, ion=True, zeta_min=None): """ Full barrier. """ if ion: zeta = self.zeta else: zeta = self.zeta_X if zeta_min is None: zeta_min = zeta #iz = np.argmin(np.abs(z - self.halos.tab_z)) #D = self.halos.growth_factor[iz] sigma_min = self.sigma_min(z) #Mmin = self.Mmin(z) #sigma_min = np.interp(Mmin, self.halos.M, self.halos.sigma_0) delta = self._delta_c(z) return delta - np.sqrt(2.) * self._K(zeta) \ * np.sqrt(sigma_min**2 - self.sigma**2) #return self.cosm.delta_c0 - np.sqrt(2.) * self._K(zeta) \ # * np.sqrt(sigma_min**2 - s**2) def sigma_min(self, z): Mmin = self.Mmin(z) return np.interp(Mmin, self.halos.tab_M, self.halos.tab_sigma) #def BubblePodSizeDistribution(self, z, zeta): # if self.pf['powspec_lya_method'] == 1: # # Need to modify zeta and critical threshold # Rc, Mc, dndm = self.BubbleSizeDistribution(z, zeta) # return Rc, Mc, dndm # else: # raise NotImplemented('help please') @property def m(self): """ Mass array used for bubbles. """ if not hasattr(self, '_m'): self._m = 10**np.arange(5, 18.1, 0.1) return self._m @property def sigma(self): if not hasattr(self, '_sigma'): self._sigma = np.interp(self.m, self.halos.tab_M, self.halos.tab_sigma) # Crude but chill it's temporary bigm = self.m > self.halos.tab_M.max() if np.any(bigm): print("WARNING: Extrapolating sigma to higher masses.") slope = np.diff(np.log10(self.halos.tab_sigma[-2:])) \ / np.diff(np.log10(self.halos.tab_M[-2:])) self._sigma[bigm == 1] = self.halos.tab_sigma[-1] \ * (self.m[bigm == 1] / self.halos.tab_M.max())**slope return self._sigma @property def dlns_dlnm(self): if not hasattr(self, '_dlns_dlnm'): self._dlns_dlnm = np.interp(self.m, self.halos.tab_M, self.halos.tab_dlnsdlnm) bigm = self.m > self.halos.tab_M.max() if np.any(bigm): print("WARNING: Extrapolating dlns_dlnm to higher masses.") slope = np.diff(np.log10(np.abs(self.halos.tab_dlnsdlnm[-2:]))) \ / np.diff(np.log10(self.halos.tab_M[-2:])) self._dlns_dlnm[bigm == 1] = self.halos.tab_dlnsdlnm[-1] \ * (self.m[bigm == 1] / self.halos.tab_M.max())**slope return self._dlns_dlnm def BubbleSizeDistribution(self, z, ion=True, rescale=True): """ Compute the ionized bubble size distribution. Parameters ---------- z: int, float Redshift of interest. zeta : int, float, np.ndarray Ionizing efficiency. Returns ------- Tuple containing (in order) the bubble radii, masses, and the differential bubble size distribution. Each is an array of length self.halos.tab_M, i.e., with elements corresponding to the masses used to compute the variance of the density field. """ if ion: zeta = self.zeta else: zeta = self.zeta_X if ion and not self.pf['ps_include_ion']: R_i = M_b = dndm = np.zeros_like(self.m) return R_i, M_b, dndm if (not ion) and not self.pf['ps_include_temp']: R_i = M_b = dndm = np.zeros_like(self.m) return R_i, M_b, dndm reionization_over = False # Comoving matter density rho0_m = self.cosm.mean_density0 rho0_b = rho0_m * self.cosm.fbaryon # Mean (over-)density of bubble material delta_B = self._B(z, ion) if self.bsd_model is None: if self.pf['bubble_density'] is not None: R_i = self.pf['bubble_size'] M_b = (4. * np.pi * Rb**3 / 3.) * rho0_m dndm = self.pf['bubble_density'] else: raise NotImplementedError('help') elif self.bsd_model == 'hmf': M_b = self.halos.tab_M * zeta # Assumes bubble material is at cosmic mean density R_i = (3. * M_b / rho0_b / 4. / np.pi)**(1./3.) iz = np.argmin(np.abs(z - self.halos.tab_z)) dndm = self.halos.tab_dndm[iz].copy() elif self.bsd_model == 'fzh04': # Just use array of halo mass as array of ionized region masses. # Arbitrary at this point, just need an array of masses. # Plus, this way, the sigma's from the HMF are OK. M_b = self.m # Radius of ionized regions as function of delta (mass) R_i = (3. * M_b / rho0_m / (1. + delta_B) / 4. / np.pi)**(1./3.) V_i = four_pi * R_i**3 / 3. # This is Eq. 9.38 from Steve's book. # The factors of 2, S, and M_b are from using dlns instead of # dS (where S=s^2) dndm = rho0_m * self.pcross(z, ion) * 2 * np.abs(self.dlns_dlnm) \ * self.sigma**2 / M_b**2 # Reionization is over! # Only use barrier condition if we haven't asked to rescale # or supplied Q ourselves. if self._B0(z, ion) <= 0: reionization_over = True dndm = np.zeros_like(dndm) #elif Q is not None: # if Q == 1: # reionization_over = True # dndm = np.zeros_like(dndm) else: raise NotImplementedError('Unrecognized option: %s' % self.pf['bubble_size_dist']) # This is a trick to guarantee that the integral over the bubble # size distribution yields the mean ionized fraction. if (not reionization_over) and rescale: Mmin = self.Mmin(z) * zeta iM = np.argmin(np.abs(M_b - Mmin)) Qi = np.trapz(dndm[iM:] * V_i[iM:] * M_b[iM:], x=np.log(M_b[iM:])) xibar = self.MeanIonizedFraction(z, ion=ion) dndm *= -np.log(1. - xibar) / Qi return R_i, M_b, dndm def pcross(self, z, ion=True): """ Up-crossing probability. """ if ion: zeta = self.zeta else: zeta = self.zeta_X S = self.sigma**2 Mmin = self.Mmin(z) #* zeta # doesn't matter for zeta=const if type(zeta) == np.ndarray: raise NotImplemented('this is wrong.') zeta_min = np.interp(Mmin, self.m, zeta) else: zeta_min = zeta zeros = np.zeros_like(self.sigma) B0 = self._B0(z, ion) B1 = self._B1(z, ion) Bl = self.LinearBarrier(z, ion=ion, zeta_min=zeta_min) p = (B0 / np.sqrt(2. * np.pi * S**3)) * np.exp(-0.5 * Bl**2 / S) #p = (B0 / np.sqrt(2. * np.pi * S**3)) \ # * np.exp(-0.5 * B0**2 / S) * np.exp(-B0 * B1) * np.exp(-0.5 * B1**2 / S) return p#np.maximum(p, zeros) @property def halos(self): if not hasattr(self, '_halos'): self._halos = HaloModel(**self.pf) return self._halos @property def Emin_X(self): if not hasattr(self, '_Emin_X'): xrpop = None for i, pop in enumerate(self.pops): if not pop.is_src_heat_fl: continue if xrpop is not None: raise AttributeError('help! can only handle 1 X-ray pop right now') xrpop = pop self._Emin_X = pop.src.Emin return self._Emin_X def get_Nion(self, z, R_i): return 4. * np.pi * (R_i * cm_per_mpc / (1. + z))**3 \ * self.cosm.nH(z) / 3. def _cache_jp(self, z, term): if not hasattr(self, '_cache_jp_'): self._cache_jp_ = {} if z not in self._cache_jp_: self._cache_jp_[z] = {} if term not in self._cache_jp_[z]: return None else: #print("Loaded P_{} at z={} from cache.".format(term, z)) return self._cache_jp_[z][term] def _cache_cf(self, z, term): if not hasattr(self, '_cache_cf_'): self._cache_cf_ = {} if z not in self._cache_cf_: self._cache_cf_[z] = {} if term not in self._cache_cf_[z]: return None else: #print("Loaded cf_{} at z={} from cache.".format(term, z)) return self._cache_cf_[z][term] def _cache_ps(self, z, term): if not hasattr(self, '_cache_ps_'): self._cache_ps_ = {} if z not in self._cache_ps_: self._cache_ps_[z] = {} if term not in self._cache_ps_[z]: return None else: return self._cache_ps_[z][term] @property def is_Rs_const(self): if not hasattr(self, '_is_Rs_const'): self._is_Rs_const = True return self._is_Rs_const @is_Rs_const.setter def is_Rs_const(self, value): self._is_Rs_const = value def _cache_Vo(self, z): if not hasattr(self, '_cache_Vo_'): self._cache_Vo_ = {} if z in self._cache_Vo_: return self._cache_Vo_[z] #if self.is_Rs_const and len(self._cache_Vo_.keys()) > 0: # return self._cache_Vo_[self._cache_Vo_.keys()[0]] return None def _cache_IV(self, z): if not hasattr(self, '_cache_IV_'): self._cache_IV_ = {} if z in self._cache_IV_: return self._cache_IV_[z] #if self.is_Rs_const and len(self._cache_IV_.keys()) > 0: # return self._cache_IV_[self._cache_IV_.keys()[0]] return None def _cache_p(self, z, term): if not hasattr(self, '_cache_p_'): self._cache_p_ = {} if z not in self._cache_p_: self._cache_p_[z] = {} if term not in self._cache_p_[z]: return None else: return self._cache_p_[z][term] def mean_halo_overdensity(self, z): # Mean density of halos (mass is arbitrary) rho_h = self.halos.MeanDensity(1e8, z) * cm_per_mpc**3 / g_per_msun return rho_h / self.cosm.mean_density0 - 1. def Qhal(self, z, Mmin=None, Mmax=None): """ This may not be quite right, since we just integrate over the mass range we have.... """ M_h = self.halos.tab_M iz_h = np.argmin(np.abs(z - self.halos.tab_z)) dndm_h = self.halos.tab_dndm[iz_h] # Volume of halos (within virial radii) Rvir = self.halos.VirialRadius(M_h, z) / 1e3 # Convert to Mpc Vvir = 4. * np.pi * Rvir**3 / 3. if Mmin is not None: imin = np.argmin(np.abs(M_h - Mmin)) else: imin = 0 if Mmax is not None: imax = np.argmin(np.abs(M_h - Mmax)) else: imax = None integ = dndm_h * Vvir * M_h Q_hal = 1. - np.exp(-np.trapz(integ[imin:imax], x=np.log(M_h[imin:imax]))) return Q_hal #return self.get_prob(z, M_h, dndm_h, Mmin, Vvir, exp=False, ep=0.0, # Mmax=Mmax) def ExpectationValue1pt(self, z, term='i', R_s=None, R3=None, Th=500.0, Ts=None, Tk=None, Ja=None): """ Compute the probability that a point is something. These are the one point terms in brackets, e.g., <x>, <x delta>, etc. Note that use of the asterisk is to imply that both quatities are in the same set of brackets. Maybe a better way to handle this notationally... """ ## # Check cache for match ## cached_result = self._cache_p(z, term) if cached_result is not None: return cached_result Qi = self.MeanIonizedFraction(z) Qh = self.MeanIonizedFraction(z, ion=False) if self.pf['ps_igm_model'] == 2: Qhal = self.Qhal(z, Mmax=self.Mmin(z)) del_hal = self.mean_halo_overdensity(z) else: Qhal = 0.0 del_hal = 0.0 Qb = 1. - Qi - Qh - Qhal Tcmb = self.cosm.TCMB(z) del_i = self.delta_bubble_vol_weighted(z) del_h = self.delta_shell(z) del_b = self.BulkDensity(z, R_s) ch = self.TempToContrast(z, Th=Th, Tk=Tk, Ts=Ts, Ja=Ja) if Ts is not None: cb = Tcmb / Ts else: cb = 0.0 ## # Otherwise, get to it. ## if term == 'b': val = 1. - Qi - Qh - Qhal elif term == 'i': val = Qi elif term == 'n': val = 1. - Qi elif term == 'h': assert R_s is not None val = Qh elif term in ['m', 'd']: val = 0.0 elif term in ['n*d', 'i*d']: # <xd> = <(1-x_i)d> = <d> - <x_i d> = - <x_i d> if self.pf['ps_include_xcorr_ion_rho']: if term == 'i*d': val = Qi * del_i else: val = -Qi * del_i else: val = 0.0 elif term == 'pc': # <psi * c> = <x (1 + d) c> # = <(1 - i) (1 + d) c> = <(1 + d) c> - <i (1 + d) c> # ... # = <c> + <cd> avg_c = Qh * ch + Qb * cb if self.pf['ps_include_xcorr_hot_rho']: val = avg_c \ + Qh * ch * del_h \ + Qb * cb * del_b else: val = avg_c elif term in ['ppc', 'ppcc']: avg_psi = self.ExpectationValue1pt(z, term='psi', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) avg_c = self.ExpectationValue1pt(z, term='c', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) if term == 'ppc': val = avg_psi**2 * avg_c else: val = avg_psi**2 * avg_c**2 #cc = Qh**2 * ch**2 \ # + 2 * Qh * Qb * ch * cb \ # + Qb**2 * cb**2 #ccd = Qh**2 * ch**2 * delta_h_bar \ # + Qh * Qb * ch * cb * delta_h_bar \ # + Qh * Qb * ch * cb * delta_b_bar \ # + Qb**2 * cb**2 * delta_b_bar elif term == 'c*d': if self.pf['ps_include_xcorr_hot_rho']: val = Qh * ch * del_h + Qb * cb * del_b else: val = 0.0 elif term.strip() == 'i*h': val = 0.0 elif term.strip() == 'n*h': # <xh> = <h> - <x_i h> = <h> val = Qh elif term.strip() == 'i*c': val = 0.0 elif term == 'c': val = ch * Qh + cb * Qb elif term.strip() == 'n*c': # <xc> = <c> - <x_i c> val = ch * Qh elif term == 'psi': # <psi> = <x (1 + d)> = <x> + <xd> = 1 - <x_i> + <d> - <x_i d> # = 1 - <x_i> - <x_i d> #avg_xd = self.ExpectationValue1pt(z, zeta, term='n*d', # R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) #avg_x = self.ExpectationValue1pt(z, zeta, term='n', # R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # #val = avg_x + avg_xd avg_id = self.ExpectationValue1pt(z, term='i*d', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) avg_i = self.ExpectationValue1pt(z, term='i', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) val = 1. - avg_i - avg_id elif term == 'phi': # <phi> = <psi * (1 - c)> = <psi> - <psi * c> # <psi * c> = <x * c> + <x * c * d> # = <c> - <x_i c> + <cd> - <x_i c * d> avg_psi = self.ExpectationValue1pt(z, term='psi', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) avg_psi_c = self.ExpectationValue1pt(z, term='pc', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) val = avg_psi - avg_psi_c # <phi> = <psi * (1 + c)> = <psi> + <psi * c> # # <psi * c> = <x * c> + <x * c * d> # = <c> - <x_i c> + <cd> - <x_i c * d> #avg_xcd = self.ExpectationValue1pt(z, zeta, term='n*d*c', # R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # ## Equivalent to <c> in binary field model. #ch = self.TempToContrast(z, Th=Th, Tk=Tk, Ts=Ts, Ja=Ja) #ci = self.BubbleContrast(z, Th=Th, Tk=Tk, Ts=Ts, Ja=Ja) #avg_c = self.ExpectationValue1pt(z, zeta, term='c', # R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) #avg_cd = self.ExpectationValue1pt(z, zeta, term='c*d', # R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) #avg_id = self.ExpectationValue1pt(z, zeta, term='i*d', # R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # #avg_psi = self.ExpectationValue1pt(z, zeta, term='psi', # R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) #avg_psi_c = avg_c - ci * Qi + avg_cd - avg_id * ci # ## Tagged on these last two terms if c=1 (ionized regions) #val = avg_psi + avg_psi_c elif term == '21': # dTb = T0 * (1 + d21) = T0 * xHI * (1 + d) = T0 * psi # so d21 = psi - 1 if self.pf['ps_include_temp']: avg_phi = self.ExpectationValue1pt(z, term='phi', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) val = avg_phi - 1. else: avg_psi = self.ExpectationValue1pt(z, term='psi', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) val = avg_psi - 1. elif term == 'o': # <omega>^2 = <psi * c>^2 - 2 <psi> <psi * c> avg_psi = self.ExpectationValue1pt(z, term='psi', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) avg_psi_c = self.ExpectationValue1pt(z, term='pc', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # <omega>^2 = <psi c>^2 - 2 <psi c> <psi> val = np.sqrt(avg_psi_c**2 - 2. * avg_psi_c * avg_psi) elif term == 'oo': avg_psi = self.ExpectationValue1pt(z, term='psi', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) avg_psi_c = self.ExpectationValue1pt(z, term='pc', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # <omega>^2 = <psi c>^2 - 2 <psi c> <psi> val = avg_psi_c**2 - 2. * avg_psi_c * avg_psi else: raise ValueError('Don\' know how to handle <{}>'.format(term)) self._cache_p_[z][term] = val return val @property def _getting_basics(self): if not hasattr(self, '_getting_basics_'): self._getting_basics_ = False return self._getting_basics_ def get_basics(self, z, R, R_s, Th, Ts, Tk, Ja): self._getting_basics_ = True basics = {} for term in ['ii', 'ih', 'ib', 'hh', 'hb', 'bb']: cache = self._cache_jp(z, term) if self.pf['ps_include_temp'] and self.pf['ps_temp_model'] == 2: Qi = self.MeanIonizedFraction(z) Qh = self.MeanIonizedFraction(z, ion=False) if term == 'ih': P = Qi * Qh * np.ones_like(R) P1 = P2 = np.zeros_like(R) basics[term] = P, P1, P2 continue elif term == 'ib': P = Qi * (1. - Qi - Qh) * np.ones_like(R) P1 = P2 = np.zeros_like(R) basics[term] = P, P1, P2 continue elif term == 'hb': P = Qh * (1. - Qi - Qh) * np.ones_like(R) P1 = P2 = np.zeros_like(R) basics[term] = P, P1, P2 continue #elif term == 'bb': # P = (1. - Qi - Qh)**2 * np.ones_like(R) # P1 = P2 = np.zeros_like(R) # basics[term] = P, P1, P2 # continue if cache is None and term != 'bb': P, P1, P2 = self.ExpectationValue2pt(z, R=R, term=term, R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) elif cache is None and term == 'bb': P = 1. - (basics['ii'][0] + 2 * basics['ib'][0] + 2 * basics['ih'][0] + basics['hh'][0] + 2 * basics['hb'][0]) P1 = P2 = np.zeros_like(P) self._cache_jp_[z][term] = R, P, np.zeros_like(P), np.zeros_like(P) else: P, P1, P2 = cache[1:] basics[term] = P, P1, P2 self._getting_basics_ = False return basics def ExpectationValue2pt(self, z, R, term='ii', R_s=None, R3=None, Th=500.0, Ts=None, Tk=None, Ja=None, k=None): """ Essentially a wrapper around JointProbability that scales terms like <cc'>, <xc'>, etc., from their component probabilities <hh'>, <ih'>, etc. Parameters ---------- z : int, float zeta : int, float Ionization efficiency R : np.ndarray Array of scales to consider. term : str Returns ------- Tuple: total, one-source, two-source contributions to joint probability. """ ## # Check cache for match ## #cached_result = self._cache_jp(z, term) # #if cached_result is not None: # _R, _jp, _jp1, _jp2 = cached_result # # if _R.size == R.size: # if np.allclose(_R, R): # return cached_result[1:] # # print("interpolating jp_{}".format(ii)) # return np.interp(R, _R, _jp), np.interp(R, _R, _jp1), np.interp(R, _R, _jp2) # Remember, we scaled the BSD so that these two things are equal # by construction. xibar = Q = Qi = self.MeanIonizedFraction(z) # Call this early so that heating_ongoing is set before anything # else can happen. #Qh = self.BubbleShellFillingFactor(z, R_s=R_s) Qh = self.MeanIonizedFraction(z, ion=False) delta_i_bar = self.delta_bubble_vol_weighted(z) delta_h_bar = self.delta_shell(z) delta_b_bar = self.BulkDensity(z, R_s) Tcmb = self.cosm.TCMB(z) ch = self.TempToContrast(z, Th=Th, Tk=Tk, Ts=Ts, Ja=Ja) if Ts is None: cb = 0.0 else: cb = Tcmb / Ts Rones = np.ones_like(R) Rzeros = np.zeros_like(R) # If reionization is over, don't waste our time! if xibar == 1: return np.ones(R.size), Rzeros, Rzeros iz = np.argmin(np.abs(z - self.halos.tab_z_ps)) iz_hmf = np.argmin(np.abs(z - self.halos.tab_z)) # Grab the matter power spectrum if R.size == self.halos.tab_R.size: if np.allclose(R, self.halos.tab_R): xi_dd = self.halos.tab_cf_mm[iz] else: xi_dd = self.spline_cf_mm(z)(np.log(R)) else: xi_dd = self.spline_cf_mm(z)(np.log(R)) # Some stuff we need R_i, M_b, dndm_b = self.BubbleSizeDistribution(z) V_i = 4. * np.pi * R_i**3 / 3. if self.pf['ps_include_temp']: if self.pf['ps_temp_model'] == 1: V_h = 4. * np.pi * (R_s**3 - R_i**3) / 3. V_ioh = 4. * np.pi * R_s**3 / 3. dndm_s = dndm_b M_s = M_b zeta_X = 0.0 elif self.pf['ps_temp_model'] == 2: zeta_X = self.zeta_X R_s, M_s, dndm_s = self.BubbleSizeDistribution(z, ion=False) V_h = 4. * np.pi * R_s**3 / 3. V_ioh = 4. * np.pi * R_s**3 / 3. else: raise NotImplemented('help') else: zeta_X = 0 if R_s is None: R_s = np.zeros_like(R_i) V_h = np.zeros_like(R_i) V_ioh = V_i zeta_X = 0.0 if R3 is None: R3 = np.zeros_like(R_i) ## # Before we begin: anything we're turning off? ## if not self.pf['ps_include_ion']: if term == 'ii': self._cache_jp_[z][term] = R, Qi**2 * Rones, Rzeros, Rzeros return Qi**2 * Rones, Rzeros, Rzeros elif term in ['id']: self._cache_jp_[z][term] = R, Rzeros, Rzeros, Rzeros return Rzeros, Rzeros, Rzeros elif term == 'idd': ev2pt = Qi * xi_dd self._cache_jp_[z][term] = R, ev2pt, Rzeros, Rzeros return ev2pt, Rzeros, Rzeros # elif term == 'iidd': ev2pt = Qi**2 * xi_dd self._cache_jp_[z][term] = R, ev2pt, Rzeros, Rzeros return ev2pt, Rzeros, Rzeros #elif 'i' in term: # #self._cache_jp_[z][term] = R, Rzeros, Rzeros, Rzeros # return Rzeros, Rzeros, Rzeros # also iid, iidd if not self.pf['ps_include_temp']: if ('c' in term) or ('h' in term): return Rzeros, Rzeros, Rzeros ## # Handy ## if not self._getting_basics: basics = self.get_basics(z, R, R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) if term in basics: return basics[term] _P_ii, _P_ii_1, _P_ii_2 = basics['ii'] _P_hh, _P_hh_1, _P_hh_2 = basics['hh'] _P_bb, _P_bb_1, _P_bb_2 = basics['bb'] _P_ih, _P_ih_1, _P_ih_2 = basics['ih'] _P_ib, _P_ib_1, _P_ib_2 = basics['ib'] _P_hb, _P_hb_1, _P_hb_2 = basics['hb'] ## # Check for derived quantities like psi, phi ## if term == 'psi': # <psi psi'> = <x (1 + d) x' (1 + d')> = <xx'(1+d)(1+d')> # = <xx'(1 + d + d' + dd')> # = <xx'> + 2<xx'd> + <xx'dd'> #xx, xx1, xx2 = self.ExpectationValue2pt(z, zeta, R=R, term='nn', # R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # #xxd, xxd1, xxd2 = self.ExpectationValue2pt(z, zeta, R=R, term='nnd', # R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # #xxdd, xxdd1, xxdd2 = self.ExpectationValue2pt(z, zeta, R=R, # term='xxdd', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # #ev2pt = xx + 2. * xxd + xxdd # ev2pt_1 = Rzeros ev2pt_2 = Rzeros # All in terms of ionized fraction perturbation. dd, dd1, dd2 = self.ExpectationValue2pt(z, R=R, term='dd', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ii, ii1, ii2 = self.ExpectationValue2pt(z, R=R, term='ii', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) di, di1, di2 = self.ExpectationValue2pt(z, R=R, term='id', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) iidd, on, tw = self.ExpectationValue2pt(z, R=R, term='iidd', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) idd, on, tw = self.ExpectationValue2pt(z, R=R, term='idd', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) iid, on, tw = self.ExpectationValue2pt(z, R=R, term='iid', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ev_id_1 = self.ExpectationValue1pt(z, term='i*d', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ev2pt = dd + ii - 2. * di + iidd - 2. * (idd - iid) \ + 1. - 2 * Qi - 2 * ev_id_1 #self._cache_jp_[z][term] = R, ev2pt, ev2pt_1, ev2pt_2 return ev2pt, ev2pt_1, ev2pt_2 elif term == 'phi': ev_psi, ev_psi1, ev_psi2 = self.ExpectationValue2pt(z, R, term='psi', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ev_oo, ev_oo1, ev_oo2 = self.ExpectationValue2pt(z, R, term='oo', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) return ev_psi + ev_oo, ev_psi1 + ev_oo1, ev_psi2 + ev_oo2 elif term == '21': # dTb = T0 * (1 + d21) = T0 * psi # d21 = psi - 1 # <d21 d21'> = <(psi - 1)(psi' - 1)> # = <psi psi'> - 2 <psi> + 1 if self.pf['ps_include_temp']: # New formalism # <phi phi'> = <psi psi'> + 2 <psi psi' c> + <psi psi' c c'> ev_phi, ev_phi1, ev_phi2 = self.ExpectationValue2pt(z, R, term='phi', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) avg_phi = self.ExpectationValue1pt(z, term='phi', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ev21 = ev_phi + 1. - 2. * avg_phi else: ev_psi, ev_psi1, ev_psi2 = self.ExpectationValue2pt(z, R, term='psi', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) avg_psi = self.ExpectationValue1pt(z, term='psi', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ev21 = ev_psi + 1. - 2. * avg_psi #raise NotImplemented('still working!') #Phi, junk1, junk2 = self.ExpectationValue2pt(z, zeta, R, term='Phi', # R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja, k=k) # #ev_psi, ev_psi1, ev_psi2 = self.ExpectationValue2pt(z, zeta, R, # term='psi', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) #ev2pt = ev_psi + Phi # #self._cache_jp_[z][term] = R, ev2pt, Rzeros, Rzeros return ev21, Rzeros, Rzeros elif term == 'oo': # New formalism # <phi phi'> = <psi psi'> - 2 <psi psi' c> + <psi psi' c c'> # = <psi psi'> + <o o'> ppc, _p1, _p2 = self.ExpectationValue2pt(z, R=R, term='ppc', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ppcc, _p1, _p2 = self.ExpectationValue2pt(z, R=R, term='ppcc', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ev2pt = ppcc - 2 * ppc return ev2pt, Rzeros, Rzeros #elif term == 'bb': # ev_ii, one, two = self.ExpectationValue2pt(z, zeta, R, # term='ii', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # ev_ib, one, two = self.ExpectationValue2pt(z, zeta, R, # term='ib', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # # if self.pf['ps_include_temp']: # ev_ih, one, two = self.ExpectationValue2pt(z, zeta, R, # term='ih', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # ev_hh, one, two = self.ExpectationValue2pt(z, zeta, R, # term='hh', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # ev_hb, one, two = self.ExpectationValue2pt(z, zeta, R, # term='hb', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # else: # ev_ih = ev_hh = ev_hb = 0.0 # # #return (1. - Qi - Qh)**2 * Rones, Rzeros, Rzeros # # ev_bb = 1. - (ev_ii + 2 * ev_ib + 2 * ev_ih + ev_hh + 2 * ev_hb) # # self._cache_jp_[z][term] = R, ev_bb, Rzeros, Rzeros # # return ev_bb, Rzeros, Rzeros # <psi psi' c> = <cdd'> - 2 <cdi'> - 2 <ci'dd> elif term == 'ppc': avg_c = self.ExpectationValue1pt(z, term='c', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) avg_cd = self.ExpectationValue1pt(z, term='c*d', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) cd, _j1, _j2 = self.ExpectationValue2pt(z, R=R, term='cd', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ci, _j1, _j2 = self.ExpectationValue2pt(z, R=R, term='ic', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) cdd, _j1, _j2 = self.ExpectationValue2pt(z, R=R, term='cdd', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) cdip, _j1, _j2 = self.ExpectationValue2pt(z, R=R, term='cdip', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) cddip, _j1, _j2 = self.ExpectationValue2pt(z, R=R, term='cddip', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) cdpip, _j1, _j2 = self.ExpectationValue2pt(z, R=R, term='cdpip', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ppc = avg_c + cd - ci - cdpip + avg_cd + cdd - cdip - cddip return ppc, Rzeros, Rzeros elif term == 'ppcc': ccdd, _j1, _j2 = self.ExpectationValue2pt(z, R=R, term='ccdd', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) cc, _j1, _j2 = self.ExpectationValue2pt(z, R=R, term='cc', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ccd, _j1, _j2 = self.ExpectationValue2pt(z, R=R, term='ccd', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) return cc + 2 * ccd + ccdd, Rzeros, Rzeros elif term in ['mm', 'dd']: # Equivalent to correlation function since <d> = 0 return self.spline_cf_mm(z)(np.log(R)), np.zeros_like(R), np.zeros_like(R) #elif term == 'dd': # dd = _P_ii * delta_i_bar**2 \ # + _P_hh * delta_h_bar**2 \ # + _P_bb * delta_b_bar**2 \ # + 2 * _P_ih * delta_i_bar * delta_h_bar \ # + 2 * _P_ib * delta_i_bar * delta_b_bar \ # + 2 * _P_hb * delta_h_bar * delta_b_bar # # return dd, Rzeros, Rzeros ## # For 3-zone IGM, can compute everything from permutations of # i, h, and b. ## if self.pf['ps_igm_model'] == 1 and not self._getting_basics: return self.ThreeZoneModel(z, R=R, term=term, R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ## # On to things we must be more careful with. ## # Minimum bubble size Mmin = self.Mmin(z) * self.zeta iM = np.argmin(np.abs(M_b - Mmin)) # Only need overlap volumes once per redshift all_OV_z = self._cache_Vo(z) if all_OV_z is None: all_OV_z = np.zeros((len(R), 6, len(R_i))) for i, sep in enumerate(R): all_OV_z[i,:,:] = \ np.array(self.overlap_volumes(sep, R_i, R_s)) self._cache_Vo_[z] = all_OV_z.copy() #print("Generated z={} overlap_volumes".format(z)) #else: # print("Read in z={} overlap_volumes".format(z)) all_IV_z = self._cache_IV(z) if all_IV_z is None: all_IV_z = np.zeros((len(R), 6, len(R_i))) for i, sep in enumerate(R): all_IV_z[i,:,:] = \ np.array(self.intersectional_volumes(sep, R_i, R_s, R3)) self._cache_IV_[z] = all_IV_z.copy() Mmin_b = self.Mmin(z) * self.zeta Mmin_h = self.Mmin(z) Mmin_s = self.Mmin(z) * zeta_X if term in ['hh', 'ih', 'ib', 'hb'] and self.pf['ps_temp_model'] == 1 \ and self.pf['ps_include_temp']: Qh_int = self.get_prob(z, M_s, dndm_s, Mmin, V_h, exp=False, ep=0.0, Mmax=None) f_h = -np.log(1. - Qh) / Qh_int else: f_h = 1. #dR = np.diff(10**bin_c2e(np.log(R)))#np.concatenate((np.diff(R), [np.diff(R)[-1]])) #dR = 10**np.arange(np.log(R).min(), np.log(R).max() + 2 * dlogR, dlogR) # Loop over scales P1 = np.zeros(R.size) P2 = np.zeros(R.size) PT = np.zeros(R.size) for i, sep in enumerate(R): ## # Note: each element of this loop we're constructing an array # over bubble mass, which we then integrate over to get a total # probability. The shape of every quantity should be `self.m`. ## # Yields: V11, V12, V22, V1n, V2n, Van # Remember: these radii arrays depend on redshift (through delta_B) all_V = all_OV_z[i] all_IV = all_IV_z[i] # For two-halo terms, need bias of sources. if self.pf['ps_include_bias']: # Should modify for temp_model==2 if self.pf['ps_include_temp']: if self.pf['ps_temp_model'] == 2 and 'h' in term: _ion = False else: _ion = True else: _ion = True ep = self.excess_probability(z, sep, ion=_ion) else: ep = np.zeros_like(self.m) ## # For each zone, figure out volume of region where a # single source can ionize/heat/couple both points, as well # as the region where a single source is not enough (Vss_ne) ## if term == 'ii': Vo = all_V[0] # Subtract off more volume if heating is ON. #if self.pf['ps_include_temp']: # #Vne1 = Vne2 = V_i - self.IV(sep, R_i, R_s) # Vne1 = Vne2 = V_i - all_IV[1] #else: # You might think: hey! If temperature fluctuations are on, # we need to make sure the second point isn't *heated* by # the first point. This gets into issues of overlap. By not # introducing this correction (commented out above), we're # saying "yes, the second point can still lie in the heated # region of the first (ionized) point, but that point itself # may actually be ionized, since the way we construct regions # doesn't know that a heated region may actually live in the # ionized region of another bubble." That is, a heated point # can be ionized but an ionized pt can't later be designated # a hot point. Vne1 = Vne2 = V_i - Vo _P1 = self.get_prob(z, M_b, dndm_b, Mmin_b, Vo, True) _P2_1 = self.get_prob(z, M_b, dndm_b, Mmin_b, Vne1, True) _P2_2 = self.get_prob(z, M_b, dndm_b, Mmin_b, Vne2, True, ep) _P2 = (1. - _P1) * _P2_1 * _P2_2 if self.pf['ps_volfix'] and Qi > 0.5: P1[i] = _P1 P2[i] = (1. - P1[i]) * _P2_1**2 else: P1[i] = _P1 P2[i] = _P2 # Probability that one point is ionized, other in "bulk IGM" elif term == 'ib': Vo_iN = all_V[3] # region in which a source ionized one point # and does nothing to the other. # Probability that a single source does something to # each point. If no temp fluctuations, same as _Pis P1_iN = self.get_prob(z, M_b, dndm_b, Mmin_b, all_V[3], True) # "probability of an ionized pt 2 given ionized pt 1" Pigi = self.get_prob(z, M_b, dndm_b, Mmin_b, V_i-all_V[0], True, ep) if self.pf['ps_include_temp']: if self.pf['ps_temp_model'] == 1: Vne2 = V_ioh - all_IV[2] - (V_i - all_IV[1]) # "probability of a heated pt 2 given ionized pt 1" Phgi = self.get_prob(z, M_b, dndm_b * f_h, Mmin_b, Vne2, True, ep) P2[i] = P1_iN * (1. - Pigi - Phgi) else: P2[i] = Qi * (1. - Qi - Qh) else: P2[i] = P1_iN * (1. - Pigi) elif term == 'hb': #if self.pf['ps_temp_model'] == 2: # print('Ignoring hb term for now...') # continue #else: # pass if self.pf['ps_temp_model'] == 2: P1_hN = self.get_prob(z, M_s, dndm_s, Mmin_s, all_V[4], True) # Given that the first point is heated, what is the probability # that the second pt is heated or ionized by a different source? # We want the complement of that. # Volume in which I heat but don't ionize (or heat) the other pt, # i.e., same as the two-source term for <hh'> #Vne2 = Vh - self.IV(sep, R_i, R_s) Vne2 = V_ioh - all_IV[2] - (V_i - all_IV[1]) # Volume in which single source ioniz V2ii = V_i - all_V[0] Phgh = self.get_prob(z, M_b, dndm_b * f_h, Mmin_b, Vne2, True, ep) Pigh = self.get_prob(z, M_b, dndm_b, Mmin_b, V2ii, True, ep) #P1[i] = P1_hN #ih2 = _P_ih_2[i] #hh2 = _P_hh_2[i] P2[i] = P1_hN * (1. - Phgh - Pigh) else: # Probability that single source can heat one pt but # does nothing to the other. P1_hN = self.get_prob(z, M_b, dndm_b * f_h, Mmin_b, all_V[4], True) # Given that the first point is heated, what is the probability # that the second pt is heated or ionized by a different source? # We want the complement of that. # Volume in which I heat but don't ionize (or heat) the other pt, # i.e., same as the two-source term for <hh'> #Vne2 = Vh - self.IV(sep, R_i, R_s) Vne2 = V_ioh - all_IV[2] - (V_i - all_IV[1]) # Volume in which single source ioniz V2ii = V_i - all_V[0] Phgh = self.get_prob(z, M_b, dndm_b * f_h, Mmin_b, Vne2, True, ep) Pigh = self.get_prob(z, M_b, dndm_b, Mmin_b, V2ii, True, ep) #P1[i] = P1_hN #ih2 = _P_ih_2[i] #hh2 = _P_hh_2[i] P2[i] = P1_hN * (1. - Phgh - Pigh) elif term == 'hh': # Excursion set approach for temperature. if self.pf['ps_temp_model'] == 2: Vo = all_V[2] Vne1 = Vne2 = V_h - Vo _P1 = self.get_prob(z, M_s, dndm_s, Mmin_s, Vo, True) _P2_1 = self.get_prob(z, M_s, dndm_s, Mmin_s, Vne1, True) _P2_2 = self.get_prob(z, M_s, dndm_s, Mmin_s, Vne2, True, ep) #_P2_1 -= Qi #_P2_1 -= Qi _P2 = (1. - _P1) * _P2_1 * _P2_2 #if self.pf['ps_volfix'] and Qi > 0.5: # P1[i] = _P1 # P2[i] = (1. - P1[i]) * _P2_1**2 # #else: P1[i] = _P1 P2[i] = _P2 else: #Vii = all_V[0] #_integrand1 = dndm * Vii # #_exp_int1 = np.exp(-simps(_integrand1[iM:] * M_b[iM:], # x=np.log(M_b[iM:]))) #_P1_ii = (1. - _exp_int1) # Region in which two points are heated by the same source Vo = all_V[2] # Subtract off region of the intersection HH volume # in which source 1 would do *anything* to point 2. #Vss_ne_1 = Vh - (Vo - self.IV(sep, R_i, R_s) + all_V[0]) #Vne1 = Vne2 = Vh - Vo # For ionization, this is just Vi - Vo #Vne1 = V2 - all_IV[2] - (V1 - all_IV[1]) Vne1 = V_ioh - all_IV[2] - (V_i - all_IV[1]) #Vne1 = V2 - self.IV(sep, R_s, R_s) - (V1 - self.IV(sep, R_i, R_s)) Vne2 = Vne1 # Shouldn't max(Vo) = Vh? #_P1, _P2 = self.get_prob(z, zeta, Vo, Vne1, Vne2, corr, term) _P1 = self.get_prob(z, M_b, dndm_b * f_h, Mmin_b, Vo, True) _P2_1 = self.get_prob(z, M_b, dndm_b * f_h, Mmin_b, Vne1, True) _P2_2 = self.get_prob(z, M_b, dndm_b * f_h, Mmin_b, Vne2, True, ep) # kludge! to account for Qh = 1 - Qi at late times. # Integrals above will always get over-estimated for hot # regions. #_P2_1 = min(Qh, _P2_1) #_P2_2 = min(Qh, _P2_2) _P2 = (1. - _P1) * _P2_1 * _P2_2 # The BSD is normalized so that its integral will recover # zeta * fcoll. # Start chugging along on two-bubble term if np.any(Vne1 < 1e-12): N = sum(Vne1 < 1e-12) print('z={}, R={}: Vss_ne_1 (hh) < 0 {} / {} times'.format(z, sep, N, len(R_s))) #print(Vne1[Vne1 < 1e-12]) print(np.all(V_ioh > V_i), np.all(V_ioh > all_IV[2]), all_IV[2][-1], all_IV[1][-1]) # Must correct for the fact that Qi+Qh<=1 if self.heating_ongoing: P1[i] = _P1 P2[i] = _P2 else: P1[i] = _P1 * (1. - Qh - Qi) P2[i] = Qh**2 elif term == 'ih': if self.pf['ps_temp_model'] == 2: continue if not self.pf['ps_include_xcorr_ion_hot']: P1[i] = 0.0 P2[i] = Qh * Qi continue #Vo_sh_r1, Vo_sh_r2, Vo_sh_r3 = \ # self.overlap_region_shell(sep, R_i, R_s) #Vo = 2. * Vo_sh_r2 - Vo_sh_r3 Vo = all_V[1] #V1 = 4. * np.pi * R_i**3 / 3. #V2 = 4. * np.pi * R_s**3 / 3. #Vh = 4. * np.pi * (R_s**3 - R_i**3) / 3. # Volume in which I ionize but don't heat (or ionize) the other pt. Vne1 = V_i - all_IV[1] # Volume in which I heat but don't ionize (or heat) the other pt, # i.e., same as the two-source term for <hh'> #Vne2 = Vh - self.IV(sep, R_i, R_s) Vne2 = V_ioh - all_IV[2] - (V_i - all_IV[1]) #Vne2 = V2 - self.IV(sep, R_s, R_s) - (V1 - self.IV(sep, R_i, R_s)) if np.any(Vne2 < 0): N = sum(Vne2 < 0) print('R={}: Vss_ne_2 (ih) < 0 {} / {} times'.format(sep, N, len(R_s))) #_P1, _P2 = self.get_prob(z, zeta, Vo, Vne1, Vne2, corr, term) _P1 = self.get_prob(z, M_b, dndm_b * f_h, Mmin_b, Vo, True) _P2_1 = self.get_prob(z, M_b, dndm_b, Mmin_b, Vne1, True) _P2_2 = self.get_prob(z, M_b, dndm_b * f_h, Mmin_b, Vne2, True, ep) # Kludge! #_P2_1 = min(_P2_2, Qi) #_P2_2 = min(_P2_2, Qh) _P2 = (1. - _P1) * _P2_1 * _P2_2 # #P2[i] = min(_P2, Qh * Qi) if self.heating_ongoing: P1[i] = _P1 P2[i] = _P2 else: P1[i] = _P1 * (1. - Qh - Qi) P2[i] = Qh * Qi ## # Density stuff from here down ## if term.count('d') == 0: continue if not (self.pf['ps_include_xcorr_ion_rho'] \ or self.pf['ps_include_xcorr_hot_rho']): # These terms will remain zero #if term.count('d') > 0: continue ## # First, grab a bunch of stuff we'll need. ## # Ionization auto-correlations #Pii, Pii_1, Pii_2 = \ # self.ExpectationValue2pt(z, zeta, R, term='ii', # R_s=R_s, R3=R3, Th=Th, Ts=Ts) Vo = all_V[0] Vne1 = V_i - Vo Vo_hh = all_V[2] # These are functions of mass Vsh_sph = 4. * np.pi * R_s**3 / 3. Vsh = 4. * np.pi * (R_s**3 - R_i**3) / 3. # Mean bubble density #B = self._B(z, zeta) #rho0 = self.cosm.mean_density0 #delta = M_b / V_i / rho0 - 1. M_h = self.halos.tab_M iM_h = np.argmin(np.abs(self.Mmin(z) - M_h)) dndm_h = self.halos.tab_dndm[iz_hmf] fcoll_h = self.halos.tab_fcoll[iz_hmf,iM_h] # Luminous halos, i.e., Mh > Mmin Q_lhal = self.Qhal(z, Mmin=Mmin) # Dark halos, i.e., those outside bubbles Q_dhal = self.Qhal(z, Mmax=Mmin) # All halos Q_hal = self.Qhal(z) # Since integration must be perfect Q_dhal = Q_hal - Q_lhal R_hal = self.halos.VirialRadius(M_h, z) / 1e3 # Convert to Mpc V_hal = four_pi * R_hal**3 / 3. # Bias of bubbles and halos ## db = self._B(z, ion=True) bh = self.halos.Bias(z) bb = self.bubble_bias(z, ion=True) xi_dd_r = xi_dd[i]#self.spline_cf_mm(z)(np.log(sep)) bh_bar = self.mean_halo_bias(z) bb_bar = self.mean_bubble_bias(z, ion=True) ep_bh = bh * bb_bar * xi_dd_r exc = bh_bar * bb_bar * xi_dd_r # Mean density of halos (mass is arbitrary) delta_hal_bar = self.mean_halo_overdensity(z) nhal_avg = self.mean_halo_abundance(z) # <d> = 0 = <d_i> * Qi + <d_hal> * Q_hal + <d_nohal> * Q_nh # Problem is Q_hal and Q_i are not mutually exclusive. # Actually: they are inclusive! At least above Mmin. delta_nothal_bar = -delta_hal_bar * Q_hal / (1. - Q_hal) avg_c = self.ExpectationValue1pt(z, term='c', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) #dnh = -dh_avg * fcoll_h / (1. - fcoll_h) #_P1_ii = self.get_prob(z, M_b, dndm_b, Mmin_b, Vo, True) #delta_i_bar = self.mean_bubble_overdensity(z, zeta) if term == 'id': ## # Analog of one source or one bubble term is P_in, i.e., # probability that points are in the same bubble. # The "two bubble term" is instead P_out, i.e., the # probability that points are *not* in the same bubble. # In the latter case, the density can be anything, while # in the former it will be the mean bubble density. ## # Actually think about halos # <x_i d'> = \int d' f(d; x_i=1) f(x_i=1) f(d'; d) dd' # Crux is f(d'; d): could be 3-d integral in general. # Loop over bubble density. #ixd_inner = np.zeros(self.m.size) #for k, d1 in enumerate(db): # # # Excess probability of halo with mass mh # # given bubble nearby # exc = 0.0#bh * bb[k] * xi_dd_r # # #Ph = np.minimum(Ph, 1.) # # # <d> = fcoll_V * dh + Qi * di + rest # #Pn = 1. - Ph # #if sep < R_i[k]: # # dn = d1 # #else: # #dn = delta_n_bar # # # How to guarantee that <x_i d'> -> 0 on L.S.? # # Is the key formalizing whether we're at the # # center of the bubble or not? # integ = dndm_h * V_h * (1. + exc) # # # Don't truncate at Mmin! Don't need star-forming # # galaxy, just need mass. # ixd_inner[k] = np.trapz(integ * M_h, x=np.log(M_h)) #_integrand = dndm_h * (M_h / rho_bar) * bh #fcorr = 1. - np.trapz(_integrand * M_h, x=np.log(M_h)) # Just halos *outside* bubbles hal = np.trapz(dndm_h[:iM_h] * V_hal[:iM_h] * (1. + ep_bh[:iM_h]) * M_h[:iM_h], x=np.log(M_h[:iM_h])) bub = np.trapz(dndm_b[iM:] * V_i[iM:] * self.m[iM:], x=np.log(self.m[iM:])) P_ihal = (1. - np.exp(-bub)) * (1. - np.exp(-hal)) #P2[i] = P_ihal * delta_hal_bar + _P_ib[i] * delta_b_bar P1[i] = _P_ii_1[i] * delta_i_bar P2[i] = _P_ii_2[i] * delta_i_bar + _P_ib[i] * delta_b_bar \ + P_ihal * delta_hal_bar #P2[i] = Phal * dh_avg + np.exp(-hal) * dnih_avg #P2[i] += np.exp(-hal) * dnih_avg * Qi #P2[i] += _P_in[i] * delta_n_bar elif term in ['cd', 'cdip']: continue elif term == 'idd': hal = np.trapz(dndm_h[:iM_h] * V_hal[:iM_h] * (1. + ep_bh[:iM_h]) * M_h[:iM_h], x=np.log(M_h[:iM_h])) bub = np.trapz(dndm_b[iM:] * V_i[iM:] * self.m[iM:], x=np.log(self.m[iM:])) P_ihal = (1. - np.exp(-bub)) * (1. - np.exp(-hal)) #P2[i] = P_ihal * delta_hal_bar + _P_ib[i] * delta_b_bar P1[i] = _P_ii_1[i] * delta_i_bar**2 P2[i] = _P_ii_2[i] * delta_i_bar**2 \ + _P_ib[i] * delta_b_bar * delta_i_bar\ + P_ihal * delta_hal_bar * delta_i_bar #exc = bh_bar * bb_bar * xi_dd_r # #hal = np.trapz(dndm_h * V_hal * (1. + exc) * M_h, # x=np.log(M_h)) #bub = np.trapz(dndm_b[iM:] * V_i[iM:] * self.m[iM:], # x=np.log(self.m[iM:])) # #P2[i] = ((1. - np.exp(-hal)) * delta_hal_bar # + np.exp(-hal) * delta_nothal_bar) \ # * (1. - np.exp(-bub)) * delta_i_bar #_P1 = _P_ii_1[i] * delta_i_bar**2 # ##_P2 = _P_ii_2[i] * delta_i_bar**2 \ ## + Qi * (1. - _P_ii_1[i]) * delta_i_bar * delta_n_bar \ ## - Qi**2 * delta_i_bar**2 ## #P1[i] = _P1 # ##P2[i] = Qi * xi_dd[i] # There's gonna be a bias here ##P2[i] = _P_ii_2[i] * delta_i_bar**2 - Qi**2 * delta_i_bar**2 # ##continue # #idd_ii = np.zeros(self.m.size) #idd_in = np.zeros(self.m.size) # ## Convert from dm to dd ##dmdd = np.diff(self.m) / np.diff(db) ##dmdd = np.concatenate(([0], dmdd)) # ## Should be able to speed this up # #for k, d1 in enumerate(db): # # # exc = bb[k] * bb * xi_dd_r # # grand = db[k] * dndm_b[k] * V_i[k] \ # * db * dndm_b * V_i \ # * (1. + exc) # # idd_ii[k] = np.trapz(grand[iM:] * self.m[iM:], # x=np.log(self.m[iM:])) # # #exc_in = bb[k] * bh * xi_dd_r # # # #grand_in = db[k] * dndm_b[k] * V_i[k] #\ # # #* dh * dndm_h * Vvir \ # # #* (1. + exc_in) # # # #idd_in[k] = np.trapz(grand_in[iM_h:] * M_h[iM_h:], # # x=np.log(M_h[iM_h:])) # ##idd_in = np.trapz(db[iM:] * dndm_b[iM:] * V_i[iM:] * delta_n_bar * self.m[iM:], ## x=np.log(self.m[iM:])) # # #P2[i] = _P_ii_2[i] \ # * np.trapz(idd_ii[iM:] * self.m[iM:], # x=np.log(self.m[iM:])) # ## Another term for <x_i x'> possibility. Doesn't really ## fall into the one bubble two bubble language, so just ## sticking it in P2. ## Assumes neutral phase is at cosmic mean neutral density ## Could generalize... #P2[i] += _P_ib[i] * delta_i_bar * delta_b_bar # ## We're neglecting overdensities by just using the ## mean neutral density # #continue elif term == 'iid': # This is like the 'id' term except the second point # has to be ionized. P2[i] = _P_ii[i] * delta_i_bar elif term == 'iidd': P2[i] = _P_ii[i] * delta_i_bar**2 continue # Might have to actually do a double integral here. iidd_2 = np.zeros(self.m.size) # Convert from dm to dd #dmdd = np.diff(self.m) / np.diff(db) #dmdd = np.concatenate(([0], dmdd)) # Should be able to speed this up for k, d1 in enumerate(db): exc = bb[k] * bb * xi_dd_r grand = db[k] * dndm_b[k] * V_i[k] \ * db * dndm_b * V_i \ * (1. + exc) iidd_2[k] = np.trapz(grand[iM:] * self.m[iM:], x=np.log(self.m[iM:])) P2[i] = _P_ii_2[i] \ * np.trapz(iidd_2[iM:] * self.m[iM:], x=np.log(self.m[iM:])) #elif term == 'cd': # # if self.pf['ps_include_xcorr_hot_rho'] == 0: # break # elif self.pf['ps_include_xcorr_hot_rho'] == 1: # hal = np.trapz(dndm_h * V_hal * (1. + exc) * M_h, # x=np.log(M_h)) # hot = np.trapz(dndm_b[iM:] * V_h[iM:] * self.m[iM:], # x=np.log(self.m[iM:])) # P2[i] = ((1. - np.exp(-hal)) * dh_avg + np.exp(-hal) * dnih_avg) \ # * (1. - np.exp(-hot)) * avg_c # elif self.pf['ps_include_xcorr_hot_rho'] == 2: # P2[i] = _P_hh[i] * delta_h_bar + _P_hb[i] * delta_b_bar # else: # raise NotImplemented('help') # #elif term == 'ccd': # # # _P1 = _P_hh_1[i] * delta_i_bar # #B = self._B(z, zeta) # #_P1 = delta_i_bar \ # # * self.get_prob(z, M_b, dndm_b, Mmin_b, Vo, True) \ # # # _P2 = _P_hh_2[i] * delta_i_bar # # #_P2 = (1. - _P_ii_1[i]) * delta_i_bar \ # # * self.get_prob(z, M_b, dndm_b, Mmin_b, Vne1, True) \ # # * self.get_prob(z, M_b, dndm_b, Mmin_b, Vne1, True, ep) # # #* self.get_prob(z, M_h, dndm_h, Mmi\n_h, Vvir, False, ep_bb) # # P1[i] = _P1 # P2[i] = _P2 # elif term == 'cdd': raise NotImplemented('help') hal = np.trapz(dndm_h * V_hal * (1. + exc) * M_h, x=np.log(M_h)) hot = np.trapz(dndm_b[iM:] * Vsh[iM:] * self.m[iM:], x=np.log(self.m[iM:])) hoi = np.trapz(dndm_b[iM:] * Vsh_sph[iM:] * self.m[iM:], x=np.log(self.m[iM:])) # 'hot or ionized' # One point in shell, other point in halo # One point ionized, other point in halo # Q. Halos exist only in ionized regions? elif term == 'ccdd': raise NotImplemented('help') # Add in bulk IGM correction. # Add routines for calculating 'ib' and 'hb'? P2[i] = _P_hh[i] * delta_h_bar**2 \ + _P_bb[i] * delta_h_bar**2 \ + _P_hb[i] * delta_h_bar * delta_b_bar continue # Might have to actually do a double integral here. iidd_2 = np.zeros(self.m.size) # Convert from dm to dd #dmdd = np.diff(self.m) / np.diff(db) #dmdd = np.concatenate(([0], dmdd)) # Should be able to speed this up for k, d1 in enumerate(db): exc = bb[k] * bb * xi_dd_r grand = db[k] * dndm_b[k] * V_i[k] \ * db * dndm_b * V_i \ * (1. + exc) iidd_2[k] = np.trapz(grand[iM:] * self.m[iM:], x=np.log(self.m[iM:])) P2[i] = _P_ii_2[i] \ * np.trapz(iidd_2[iM:] * self.m[iM:], x=np.log(self.m[iM:])) else: raise NotImplementedError('No method found for term=\'{}\''.format(term)) ## # SUM UP ## PT = P1 + P2 if term in ['ii', 'hh', 'ih', 'ib', 'hb', 'bb']: if term not in self._cache_jp_[z]: self._cache_jp_[z][term] = R, PT, P1, P2 return PT, P1, P2 def ThreeZoneModel(self, z, R, term='ii', R_s=None, R3=None, Th=500.0, Ts=None, Tk=None, Ja=None, k=None): """ Model in which IGM partitioned into three phases: ionized, hot, bulk. .. note :: If ps_include_temp==False, this is just a two-zone model since there is no heated phase in this limit. """ if not self._getting_basics: basics = self.get_basics(z, R, R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) if term in basics: return basics[term] _P_ii, _P_ii_1, _P_ii_2 = basics['ii'] _P_hh, _P_hh_1, _P_hh_2 = basics['hh'] _P_bb, _P_bb_1, _P_bb_2 = basics['bb'] _P_ih, _P_ih_1, _P_ih_2 = basics['ih'] _P_ib, _P_ib_1, _P_ib_2 = basics['ib'] _P_hb, _P_hb_1, _P_hb_2 = basics['hb'] Rones = np.zeros_like(R) Rzeros = np.zeros_like(R) delta_i_bar = self.delta_bubble_vol_weighted(z, ion=True) delta_h_bar = self.delta_shell(z) delta_b_bar = self.BulkDensity(z, R_s) Qi = self.MeanIonizedFraction(z) Qh = self.MeanIonizedFraction(z, ion=False) Tcmb = self.cosm.TCMB(z) ci = 0.0 ch = self.TempToContrast(z, Th=Th, Tk=Tk, Ts=Ts, Ja=Ja) if Ts is None: cb = 0.0 else: cb = Tcmb / Ts ## # On to derived quantities ## if term == 'cc': result = Rzeros.copy() if self.pf['ps_include_temp']: result += _P_hh * ch**2 + 2 * _P_hb * ch * cb + _P_bb * cb**2 if self.pf['ps_include_lya']: xa = self.hydr.RadiativeCouplingCoefficient(z, Ja, Tk) if xa < self.pf['ps_lya_cut']: ev_aa, ev_aa1, ev_aa2 = \ self.ExpectationValue2pt(z, R, term='aa', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, k=k, Ja=Ja) Tcmb = self.cosm.TCMB(z) result += ev_aa / (1. + xa)**2 return result, Rzeros, Rzeros elif term == 'ic': if not self.pf['ps_include_xcorr_ion_hot']: return (Qi**2 * ci + Qh * Qi * ch) * Rones, Rzeros, Rzeros ev = _P_ih * ch + _P_ib * cb return ev, Rzeros, Rzeros elif term == 'icc': ch = self.TempToContrast(z, Th=Th, Tk=Tk, Ts=Ts, Ja=Ja) ci = self.BubbleContrast(z, Th=Th, Tk=Tk, Ts=Ts, Ja=Ja) ev_ii, ev_ii1, ev_ii2 = self.ExpectationValue2pt(z, R=R, term='ii', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ev_ih, ev_ih1, ev_ih2 = self.ExpectationValue2pt(z, R=R, term='ih', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) return ev_ii * ci**2 + ev_ih * ch * ci, Rzeros, Rzeros elif term == 'iidd': if self.pf['ps_use_wick']: ev_ii, one_pt, two_pt = self.ExpectationValue2pt(z, R, term='ii') ev_dd, one_pt, two_pt = self.ExpectationValue2pt(z, R, term='dd') ev_id, one_pt, two_pt = self.ExpectationValue2pt(z, R, term='id') #if self.pf['ps_include_ion']: avg_id = self.ExpectationValue1pt(z, term='i*d') idt, id1, id2 = \ self.ExpectationValue2pt(z, R, term='id') return ev_ii * ev_dd + ev_id**2 + avg_id**2, Rzeros, Rzeros else: return _P_ii * delta_i_bar**2, Rzeros, Rzeros elif term == 'id': P = _P_ii * delta_i_bar \ + _P_ih * delta_h_bar \ + _P_ib * delta_b_bar return P, Rzeros, Rzeros elif term == 'iid': return _P_ii * delta_i_bar, Rzeros, Rzeros elif term == 'idd': P = _P_ii * delta_i_bar**2 \ + _P_ih * delta_i_bar * delta_h_bar \ + _P_ib * delta_i_bar * delta_b_bar return P, Rzeros, Rzeros elif term == 'cd': if not self.pf['ps_include_xcorr_hot_rho']: return Rzeros, Rzeros, Rzeros ev = _P_ih * ch * delta_i_bar \ + _P_ib * cb * delta_i_bar \ + _P_hh * ch * delta_h_bar \ + _P_hb * ch * delta_b_bar \ + _P_hb * cb * delta_h_bar \ + _P_bb * cb * delta_b_bar return ev, Rzeros, Rzeros elif term == 'ccdd' and self.pf['ps_use_wick']: ev_cc, one_pt, two_pt = self.ExpectationValue2pt(z, R, term='cc') ev_dd, one_pt, two_pt = self.ExpectationValue2pt(z, R, term='dd') ev_cd, one_pt, two_pt = self.ExpectationValue2pt(z, R, term='cd') #if self.pf['ps_include_ion']: avg_cd = self.ExpectationValue1pt(z, term='c*d') cdt, cd1, cd2 = \ self.ExpectationValue2pt(z, R, term='cd') return ev_cc * ev_dd + ev_cd**2 + avg_cd**2, Rzeros, Rzeros elif term == 'aa': aa = self.CorrelationFunction(z, R, term='aa', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja, k=k) return aa, Rzeros, Rzeros ## # BUNCHA TEMPERATURE-DENSITY STUFF BELOW ## elif term == 'ccd': ev = _P_hh * ch**2 * delta_h_bar \ + _P_hb * ch * cb * delta_h_bar \ + _P_hb * ch * cb * delta_b_bar \ + _P_bb * cb**2 * delta_b_bar return ev, Rzeros, Rzeros elif term == 'cdd': ev = _P_ih * ch * delta_i_bar * delta_h_bar \ + _P_ib * cb * delta_i_bar * delta_b_bar \ + _P_hh * ch * delta_h_bar**2 \ + _P_hb * ch * delta_h_bar * delta_b_bar \ + _P_hb * cb * delta_h_bar * delta_b_bar \ + _P_bb * cb * delta_b_bar**2 return ev, Rzeros, Rzeros # <c d x_i'> elif term == 'cdip': ev = _P_ih * delta_h_bar * ch + _P_ib * delta_b_bar * cb return ev, Rzeros, Rzeros # <c d d' x_i'> elif term == 'cddip': ev = _P_ih * delta_i_bar * delta_h_bar * ch \ + _P_ib * delta_i_bar * delta_b_bar * cb return ev, Rzeros, Rzeros elif term == 'cdpip': ev = _P_ih * delta_i_bar * ch \ + _P_ib * delta_i_bar * cb return ev, Rzeros, Rzeros # Wick's theorem approach above elif term == 'ccdd': ev = _P_hh * delta_h_bar**2 * ch**2 \ + 2 * _P_hb * delta_h_bar * ch * delta_b_bar * cb \ + _P_bb * delta_b_bar**2 * cb**2 return ev, Rzeros, Rzeros else: raise NotImplementedError('No model for term={} in ThreeZoneModel.'.format(term)) def get_prob(self, z, M, dndm, Mmin, V, exp=True, ep=0.0, Mmax=None): """ Basically do an integral over some distribution function. """ # Set lower integration limit iM = np.argmin(np.abs(M - Mmin)) if Mmax is not None: iM2 = np.argmin(np.abs(M - Mmax)) + 1 else: iM2 = None # One-source term integrand = dndm * V * (1. + ep) integr = np.trapz(integrand[iM:iM2] * M[iM:iM2], x=np.log(M[iM:iM2])) # Exponentiate? if exp: exp_int = np.exp(-integr) P = 1. - exp_int else: P = integr return P def CorrelationFunction(self, z, R=None, term='ii', R_s=None, R3=0.0, Th=500., Tc=1., Ts=None, k=None, Tk=None, Ja=None): """ Compute the correlation function of some general term. """ Qi = self.MeanIonizedFraction(z) Qh = self.MeanIonizedFraction(z, ion=False) if R is None: use_R_tab = True R = self.halos.tab_R else: use_R_tab = False if Qi == 1: return np.zeros_like(R) Tcmb = self.cosm.TCMB(z) Tgas = self.cosm.Tgas(z) ## # Check cache for match ## cached_result = self._cache_cf(z, term) if cached_result is not None: _R, _cf = cached_result if _R.size == R.size: if np.allclose(_R, R): return _cf return np.interp(R, _R, _cf) ## # 21-cm correlation function ## if term in ['21', 'phi', 'psi']: #if term in ['21', 'phi']: # ev_2pt, ev_2pt_1, ev_2pt_2 = \ # self.ExpectationValue2pt(z, zeta, R=R, term='phi', # R_s=R_s, R3=R3, Th=Th, Ts=Ts) # avg_phi = self.ExpectationValue1pt(z, zeta, term='phi', # R_s=R_s, Th=Th, Ts=Ts) # # cf_21 = ev_2pt - avg_phi**2 # #else: ev_2pt, ev_2pt_1, ev_2pt_2 = \ self.ExpectationValue2pt(z, R=R, term='psi', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) avg_psi = self.ExpectationValue1pt(z, term='psi', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) cf_psi = ev_2pt - avg_psi**2 ## # Temperature fluctuations ## include_temp = self.pf['ps_include_temp'] include_lya = self.pf['ps_include_lya'] if (include_temp or include_lya) and term in ['phi', '21']: ev_oo, o1, o2 = self.ExpectationValue2pt(z, R=R, term='oo', R_s=R_s, Ts=Ts, Tk=Tk, Th=Th, Ja=Ja, k=k) avg_oo = self.ExpectationValue1pt(z, term='oo', R_s=R_s, Ts=Ts, Tk=Tk, Th=Th, Ja=Ja, R3=R3) cf_omega = ev_oo - avg_oo cf_21 = cf_psi + cf_omega # i.e., cf_phi else: cf_21 = cf_psi if term == '21': cf = cf_21 elif term == 'phi': cf = cf_21 elif term == 'psi': cf = cf_psi elif term == 'nn': cf = -self.CorrelationFunction(z, R, term='ii', R_s=R_s, R3=R3, Th=Th, Ts=Ts) return cf elif term == 'nc': cf = -self.CorrelationFunction(z, R, term='ic', R_s=R_s, R3=R3, Th=Th, Ts=Ts) return cf elif term == 'nd': cf = -self.CorrelationFunction(z, R, term='id', R_s=R_s, R3=R3, Th=Th, Ts=Ts) return cf ## # Matter correlation function -- we have this tabulated already. ## elif term in ['dd', 'mm']: if not self.pf['ps_include_density']: cf = np.zeros_like(R) self._cache_cf_[z][term] = R, cf return cf iz = np.argmin(np.abs(z - self.halos.tab_z_ps)) if use_R_tab: cf = self.halos.tab_cf_mm[iz] else: cf = np.interp(np.log(R), np.log(self.halos.tab_R), self.halos.tab_cf_mm[iz]) ## # Ionization correlation function ## elif term == 'ii': if not self.pf['ps_include_ion']: cf = np.zeros_like(R) self._cache_cf_[z][term] = R, cf return cf ev_ii, ev_ii_1, ev_ii_2 = \ self.ExpectationValue2pt(z, R=R, term='ii', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ev_i = self.ExpectationValue1pt(z, term='i', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) cf = ev_ii - ev_i**2 ## # Temperature correlation function ## elif term == 'hh': if not self.pf['ps_include_temp']: cf = np.zeros_like(R) self._cache_cf_[z][term] = R, cf return cf jp_hh, jp_hh_1, jp_hh_2 = \ self.ExpectationValue2pt(z, R=R, term='hh', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) #if self.pf['ps_volfix']: # if (Qh < 0.5): # ev_hh = jp_hh_1 + jp_hh_2 # else: # # Should this 1-Qh factor be 1-Qh-Qi? # ev_hh = (1. - Qh) * jp_hh_1 + Qh**2 #else: # ev_hh = jp_hh # Should just be Qh ev_h = self.ExpectationValue1pt(z, term='h', R_s=R_s, Ts=Ts, Th=Th, Tk=Tk, Ja=Ja) cf = jp_hh - ev_h**2 ## # Ionization-density cross correlation function ## elif term == 'id': if self.pf['ps_include_xcorr_ion_rho'] == 0: cf = np.zeros_like(R) self._cache_cf_[z][term] = R, cf return cf #jp_ii, jp_ii_1, jp_ii_2 = \ # self.ExpectationValue2pt(z, R, term='ii', # R_s=R_s, R3=R3, Th=Th, Ts=Ts) jp_im, jp_im_1, jp_im_2 = \ self.ExpectationValue2pt(z, R, term='id', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ev_xd = 0.0 # Add optional correction to ensure limiting behavior? if self.pf['ps_volfix']: #if Qi < 0.5: ev = jp_im #else: # ev = jp_im_1 - jp_ii_1 else: ev = jp_im # Equivalent to correlation function in this case. cf = ev - ev_xd # c = contrast, instead of 'c' for cold, use '3' for zone 3 (later) elif term == 'cc': if not self.pf['ps_include_temp']: cf = np.zeros_like(R) self._cache_cf_[z][term] = R, cf return cf ev_cc, ev_cc_1, ev_cc_2 = \ self.ExpectationValue2pt(z, R=R, term='cc', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ev_c = self.ExpectationValue1pt(z, term='c', R_s=R_s, Ts=Ts, Th=Th, Tk=Tk, Ja=Ja) #else: # # Remember, this is for the hot/cold term # Csq = (Tcmb / (Tk - Tcmb)) * delta_T[0] * delta_T[1] \ # / (1. + delta_T[0]) / (1. + delta_T[1]) # C = np.sqrt(C) # Add optional correction to ensure limiting behavior? #if self.pf['ps_volfix']: # if (Qh < 0.5) and (Qi < 0.5): # ev_cc = jp_cc_1 + jp_cc_2 # else: # ev_cc = (1. - Qi) * jp_cc_1 + ev_c**2 #else: # ev_cc = jp_cc cf = ev_cc - ev_c**2 ## # Ionization-heating cross-correlation function ## elif term == 'ih': if not self.pf['ps_include_temp']: cf = np.zeros_like(R) self._cache_cf_[z][term] = R, cf return cf if self.pf['ps_temp_model'] == 2: return np.zeros_like(R) ev_2pt, ev_1, ev_2 = \ self.ExpectationValue2pt(z, R=R, term='ih', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # Add optional correction to ensure limiting behavior? #if self.pf['ps_volfix']: # if (Qh < 0.5) and (Qi < 0.5): # ev_2pt = jp_1 + jp_2 # else: # ev_2pt = (1. - Qh) * jp_1 + Qh * Qi #else: # ev_2pt = jp + Qh * Qi ev_1pt_i = self.ExpectationValue1pt(z, term='i', R_s=R_s, Ts=Ts, Th=Th, Tk=Tk, Ja=Ja) ev_1pt_h = self.ExpectationValue1pt(z, term='h', R_s=R_s, Ts=Ts, Th=Th, Tk=Tk, Ja=Ja) cf = ev_2pt - ev_1pt_i * ev_1pt_h elif term == 'ic': ev_2pt, ev_1, ev_2 = \ self.ExpectationValue2pt(z, R=R, term='ic', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # Add optional correction to ensure limiting behavior? #if self.pf['ps_volfix']: # if (Qh < 0.5) and (Qi < 0.5): # ev_2pt = jp_1 + jp_2 # else: # ev_2pt = (1. - Qh) * jp_1 + Qh * Qi #else: # ev_2pt = jp + Qh * Qi ev_1pt = self.ExpectationValue1pt(z, term='i*c', R_s=R_s, Ts=Ts, Th=Th, Tk=Tk, Ja=Ja) # Don't square the second term! cf = ev_2pt - ev_1pt ## # Special case: Ly-a ## elif term == 'aa': Mmin = lambda zz: self.Mmin(zz) # Horizon set by distance photon can travel between n=3 and n=2 zmax = self.hydr.zmax(z, 3) rmax = self.cosm.ComovingRadialDistance(z, zmax) / cm_per_mpc # Light-cone effects? if self.pf['ps_include_lya_lc'] == False: a = None elif type(self.pf['ps_include_lya_lc']) is float: a = lambda zz: self.pf['ps_include_lya_lc'] else: # Use specific mass accretion rate of Mmin halo # to get characteristic halo growth time. This is basically # independent of mass so it should be OK to just pick Mmin. #oot = lambda zz: self.pops[0].dfcolldt(z) / self.pops[0].halos.fcoll_2d(zz, np.log10(Mmin(zz))) #a = lambda zz: (1. / oot(zz)) / pop.cosm.HubbleTime(zz) oot = lambda zz: self.halos.MAR_func(zz, Mmin(zz)) / Mmin(zz) / s_per_yr a = lambda zz: (1. / oot(zz)) / self.cosm.HubbleTime(zz) if a is not None: tstar = lambda zz: a(zz) * self.cosm.HubbleTime(zz) rstar = c * tstar(z) * (1. + z) / cm_per_mpc ulya = lambda kk, mm, zz: self.halos.u_isl_exp(kk, mm, zz, rmax, rstar) else: ulya = lambda kk, mm, zz: self.halos.u_isl(kk, mm, zz, rmax) ps_try = self._cache_ps(z, 'aa') if ps_try is not None: ps = ps_try else: ps = np.array([self.halos.PowerSpectrum(z, _k, ulya, Mmin(z)) \ for _k in k]) self._cache_ps_[z][term] = ps cf = self.CorrelationFunctionFromPS(R, ps, k, split_by_scale=True) else: raise NotImplementedError('Unrecognized correlation function: {}'.format(term)) #if term not in ['21', 'mm']: # cf /= (2. * np.pi)**3 self._cache_cf_[z][term] = R, cf.copy() return cf # def PowerSpectrum(self, z, zeta, Q=None, term='ii', rescale=False, # cf=None, R=None): # # if cf is None: # cf = self.CorrelationFunction(z, zeta, Q=Q, term=term, # rescale=rescale) # else: # # if R is None: # R = self.halos.tab_R # # assert cf.size == R.size # print('Correlation function supplied. Neglecting all other parameters.') # # # Integrate over R # func = lambda k: self.halos._integrand_FT_3d_to_1d(cf, k, R) # # return np.array([np.trapz(func(k) * R, x=np.log(R)) \ # for k in self.halos.tab_k]) / 2. / np.pi def BubbleContrast(self, z, Th=500., Tk=None, Ts=None, Ja=None): return 0.0 Tcmb = self.cosm.TCMB(z) Tgas = self.cosm.Tgas(z) if Tk is None: print("Assuming Tk=Tgas(unheated).") Tk = Tgas if Ts is None: print("Assuming Ts=Tk.") Ts = Tk if Ja is None: print("Assuming xa=0.") xa = Ja = 0.0 else: xa = self.hydr.RadiativeCouplingCoefficient(z, Ja, Tk) return 0.0#Tcmb / (Ts - Tcmb) def TempToContrast(self, z, Th=500., Tk=None, Ts=None, Ja=None): """ Find value of 'contrast' fluctuation given mean temperature Tk and assumed kinetic temperature of heated regions, Th. """ if self.pf['ps_temp_model'] == 2: return 1. / self.pf['ps_saturated'] if Th is None: return 0.0 Tcmb = self.cosm.TCMB(z) Tgas = self.cosm.Tgas(z) if Tk is None: print("Assuming Tk=Tgas(unheated).") Tk = Tgas if Ts is None: print("Assuming Ts=Tk.") Ts = Tk # Don't let heated regions be colder than cosmic mean temperature. # Forces delta_T -> 0 at late times Th = max(Th, Tk) delta_T = Th / Tk - 1. # NEW CONTRAST DEFINITION return Tcmb / Th #if ii <= 1: # Contrast of hot regions. #return (1. - Tcmb / Th) / (1. - Tcmb / Ts) - 1. #return (delta_T / (1. + delta_T)) * (Tcmb / (Tk - Tcmb)) def CorrelationFunctionFromPS(self, R, ps, k=None, split_by_scale=False, kmin=None, epsrel=1-8, epsabs=1e-8, method='clenshaw-curtis', use_pb=False, suppression=np.inf): if np.all(ps == 0): return np.zeros_like(R) return self.halos.InverseFT3D(R, ps, k, kmin=kmin, epsrel=epsrel, epsabs=epsabs, use_pb=use_pb, split_by_scale=split_by_scale, method=method, suppression=suppression) def PowerSpectrumFromCF(self, k, cf, R=None, split_by_scale=False, Rmin=None, epsrel=1-8, epsabs=1e-8, method='clenshaw-curtis', use_pb=False, suppression=np.inf): if np.all(cf == 0): return np.zeros_like(k) return self.halos.FT3D(k, cf, R, Rmin=Rmin, epsrel=epsrel, epsabs=epsabs, use_pb=use_pb, split_by_scale=split_by_scale, method=method, suppression=suppression) ``` #### File: ares/static/SpectralSynthesis.py ```python import time import numpy as np from ..util import Survey from ..util import ProgressBar from ..phenom import Madau1995 from ..util import ParameterFile from scipy.optimize import curve_fit from scipy.interpolate import interp1d from ..physics.Cosmology import Cosmology from scipy.interpolate import RectBivariateSpline from ..physics.Constants import s_per_myr, c, h_p, erg_per_ev, flux_AB nanoJ = 1e-23 * 1e-9 tiny_lum = 1e-8 all_cameras = ['wfc', 'wfc3', 'nircam'] def _powlaw(x, p0, p1): return p0 * (x / 1.)**p1 class SpectralSynthesis(object): def __init__(self, **kwargs): self.pf = ParameterFile(**kwargs) @property def cosm(self): if not hasattr(self, '_cosm'): self._cosm = Cosmology(pf=self.pf, **self.pf) return self._cosm @property def src(self): return self._src @src.setter def src(self, value): self._src = value @property def oversampling_enabled(self): if not hasattr(self, '_oversampling_enabled'): self._oversampling_enabled = True return self._oversampling_enabled @oversampling_enabled.setter def oversampling_enabled(self, value): self._oversampling_enabled = value @property def oversampling_below(self): if not hasattr(self, '_oversampling_below'): self._oversampling_below = 30. return self._oversampling_below @oversampling_below.setter def oversampling_below(self, value): self._oversampling_below = value @property def force_perfect(self): if not hasattr(self, '_force_perfect'): self._force_perfect = False return self._force_perfect @force_perfect.setter def force_perfect(self, value): self._force_perfect = value @property def careful_cache(self): if not hasattr(self, '_careful_cache_'): self._careful_cache_ = True return self._careful_cache_ @careful_cache.setter def careful_cache(self, value): self._careful_cache_ = value @property def cameras(self): if not hasattr(self, '_cameras'): self._cameras = {} for cam in all_cameras: self._cameras[cam] = Survey(cam=cam, force_perfect=self.force_perfect, cache=self.pf['pop_synth_cache_phot']) return self._cameras @property def hydr(self): if not hasattr(self, '_hydr'): from ..physics.Hydrogen import Hydrogen self._hydr = Hydrogen(pf=self.pf, cosm=self.cosm, **self.pf) return self._hydr @property def madau1995(self): if not hasattr(self, '_madau1995'): self._madau1995 = Madau1995(hydr=self.hydr, cosm=self.cosm, **self.pf) return self._madau1995 def OpticalDepth(self, z, owaves): """ Compute Lyman series line blanketing following Madau (1995). Parameters ---------- zobs : int, float Redshift of object. owaves : np.ndarray Observed wavelengths in microns. """ if self.pf['tau_clumpy'] is None: return 0.0 assert self.pf['tau_clumpy'].lower() == 'madau1995', \ "tau_clumpy='madau1995' is currently the sole option!" return self.madau1995(z, owaves) def L_of_Z_t(self, wave): if not hasattr(self, '_L_of_Z_t'): self._L_of_Z_t = {} if wave in self._L_of_Z_t: return self._L_of_Z_t[wave] tarr = self.src.times Zarr = np.sort(list(self.src.metallicities.values())) L = np.zeros((tarr.size, Zarr.size)) for j, Z in enumerate(Zarr): L[:,j] = self.src.L_per_sfr_of_t(wave, Z=Z) # Interpolant self._L_of_Z_t[wave] = RectBivariateSpline(np.log10(tarr), np.log10(Zarr), np.log10(L), kx=3, ky=3) return self._L_of_Z_t[wave] def Slope(self, zobs=None, tobs=None, spec=None, waves=None, sfh=None, zarr=None, tarr=None, hist={}, idnum=None, cam=None, rest_wave=None, band=None, return_norm=False, filters=None, filter_set=None, dlam=20., method='linear', window=1, extras={}, picky=False, return_err=False): """ Compute slope in some wavelength range or using photometry. Parameters ---------- zobs : int, float Redshift of observation. rest_wave: tuple Rest-wavelength range in which slope will be computed (Angstrom). dlam : int Sample the spectrum with this wavelength resolution (Angstrom). window : int Can optionally operate on a smoothed version of the spectrum, obtained by convolving with a boxcar window function if this width. """ assert (tobs is not None) or (zobs is not None) if tobs is not None: zobs = self.cosm.z_of_t(tobs * s_per_myr) # If no camera supplied, operate directly on spectrum if cam is None: func = lambda xx, p0, p1: p0 * (xx / 1.)**p1 if waves is None: waves = np.arange(rest_wave[0], rest_wave[1]+dlam, dlam) owaves, oflux = self.ObserveSpectrum(zobs, spec=spec, waves=waves, sfh=sfh, zarr=zarr, tarr=tarr, flux_units='Ang', hist=hist, extras=extras, idnum=idnum, window=window) rwaves = waves ok = np.logical_and(rwaves >= rest_wave[0], rwaves <= rest_wave[1]) x = owaves[ok==1] if oflux.ndim == 2: batch_mode = True y = oflux[:,ok==1].swapaxes(0, 1) ma = np.max(y, axis=0) sl = -2.5 * np.ones(ma.size) guess = np.vstack((ma, sl)).T else: batch_mode = False y = oflux[ok==1] guess = np.array([oflux[np.argmin(np.abs(owaves - 1.))], -2.4]) else: if filters is not None: assert rest_wave is None, \ "Set rest_wave=None if filters are supplied" if type(cam) not in [list, tuple]: cam = [cam] filt = [] xphot = [] dxphot = [] ycorr = [] for _cam in cam: _filters, _xphot, _dxphot, _ycorr = \ self.Photometry(sfh=sfh, hist=hist, idnum=idnum, spec=spec, cam=_cam, filters=filters, filter_set=filter_set, waves=waves, dlam=dlam, tarr=tarr, tobs=tobs, extras=extras, picky=picky, zarr=zarr, zobs=zobs, rest_wave=rest_wave, window=window) filt.extend(list(_filters)) xphot.extend(list(_xphot)) dxphot.extend(list(_dxphot)) ycorr.extend(list(_ycorr)) # No matching filters? Return. if len(filt) == 0: if idnum is not None: N = 1 elif sfh is not None: N = sfh.shape[0] else: N = 1 if return_norm: return -99999 * np.ones((N, 2)) else: return -99999 * np.ones(N) filt = np.array(filt) xphot = np.array(xphot) dxphot = np.array(dxphot) ycorr = np.array(ycorr) # Sort arrays in ascending wavelength isort = np.argsort(xphot) _x = xphot[isort] _y = ycorr[isort] # Recover flux to do power-law fit xp, xm = dxphot.T dx = xp + xm # Need flux in units of A^-1 #dnphot = c / ((xphot-xm) * 1e-4) - c / ((xphot + xp) * 1e-4) #dwdn = dx * 1e4 / dnphot _dwdn = (_x * 1e4)**2 / (c * 1e8) if rest_wave is not None: r = _x * 1e4 / (1. + zobs) ok = np.logical_and(r >= rest_wave[0], r <= rest_wave[1]) x = _x[ok==1] else: ok = np.ones_like(_x) x = _x # Be careful in batch mode! if ycorr.ndim == 2: batch_mode = True _f = 10**(_y / -2.5) * flux_AB / _dwdn[:,None] y = _f[ok==1] ma = np.max(y, axis=0) sl = -2.5 * np.ones(ma.size) guess = np.vstack((ma, sl)).T else: batch_mode = False _f = 10**(_y / -2.5) * flux_AB / _dwdn y = _f[ok==1] ma = np.max(y) guess = np.array([ma, -2.]) if ok.sum() == 2 and self.pf['verbose']: print("WARNING: Estimating slope at z={} from only two points: {}".format(zobs, filt[isort][ok==1])) ## # Fit a PL to points. if method == 'fit': if len(x) < 2: if self.pf['verbose']: print("Not enough points to estimate slope") if batch_mode: corr = np.ones(y.shape[1]) else: corr = 1 if return_norm: return -99999 * corr, -99999 * corr else: return -99999 * corr if batch_mode: N = y.shape[1] popt = -99999 * np.ones((2, N)) pcov = -99999 * np.ones((2, 2, N)) for i in range(N): if not np.any(y[:,i] > 0): continue try: popt[:,i], pcov[:,:,i] = curve_fit(_powlaw, x, y[:,i], p0=guess[i], maxfev=10000) except RuntimeError: popt[:,i], pcov[:,:,i] = -99999, -99999 else: try: popt, pcov = curve_fit(_powlaw, x, y, p0=guess, maxfev=10000) except RuntimeError: popt, pcov = -99999 * np.ones(2), -99999 * np.ones(2) elif method == 'linear': logx = np.log10(x) logy = np.log10(y) A = np.vstack([logx, np.ones(len(logx))]).T if batch_mode: N = y.shape[1] popt = -99999 * np.ones((2, N)) pcov = -99999 * np.ones((2, 2, N)) for i in range(N): popt[:,i] = np.linalg.lstsq(A, logy[:,i], rcond=None)[0][-1::-1] else: popt = np.linalg.lstsq(A, logy, rcond=None)[0] pcov = -99999 * np.ones(2) elif method == 'diff': assert cam is None, "Should only use to skip photometry." # Remember that galaxy number is second dimension logL = np.log(y) logw = np.log(x) if batch_mode: # Logarithmic derivative = beta beta = (logL[-1,:] - logL[0,:]) / (logw[-1,None] - logw[0,None]) else: beta = (logL[-1] - logL[0]) / (logw[-1] - logw[0]) popt = np.array([-99999, beta]) else: raise NotImplemented('help me') if return_norm: return popt else: if return_err: return popt[1], np.sqrt(pcov[1,1]) else: return popt[1] def ObserveSpectrum(self, zobs, spec=None, sfh=None, waves=None, flux_units='Hz', tarr=None, tobs=None, zarr=None, hist={}, idnum=None, window=1, extras={}, nthreads=1, load=True): """ Take an input spectrum and "observe" it at redshift z. Parameters ---------- zobs : int, float Redshift of observation. waves : np.ndarray Simulate spectrum at these rest wavelengths [Angstrom] spec : np.ndarray Specific luminosities in [erg/s/A] Returns ------- Observed wavelengths in microns, observed fluxes in erg/s/cm^2/Hz. """ if spec is None: spec = self.Spectrum(waves, sfh=sfh, tarr=tarr, zarr=zarr, zobs=zobs, tobs=None, hist=hist, idnum=idnum, extras=extras, window=window, load=load) dL = self.cosm.LuminosityDistance(zobs) if waves is None: waves = self.src.wavelengths dwdn = self.src.dwdn assert len(spec) == len(waves) else: #freqs = c / (waves / 1e8) dwdn = waves**2 / (c * 1e8) #tmp = np.abs(np.diff(waves) / np.diff(freqs)) #dwdn = np.concatenate((tmp, [tmp[-1]])) # Flux at Earth in erg/s/cm^2/Hz f = spec / (4. * np.pi * dL**2) if flux_units == 'Hz': pass else: f /= dwdn owaves = waves * (1. + zobs) / 1e4 tau = self.OpticalDepth(zobs, owaves) T = np.exp(-tau) return owaves, f * T def Photometry(self, spec=None, sfh=None, cam='wfc3', filters='all', filter_set=None, dlam=20., rest_wave=None, extras={}, window=1, tarr=None, zarr=None, waves=None, zobs=None, tobs=None, band=None, hist={}, idnum=None, flux_units=None, picky=False, lbuffer=200., ospec=None, owaves=None, load=True): """ Just a wrapper around `Spectrum`. Returns ------- Tuple containing (in this order): - Names of all filters included - Midpoints of photometric filters [microns] - Width of filters [microns] - Apparent magnitudes corrected for filter transmission. """ assert (tobs is not None) or (zobs is not None) if zobs is None: zobs = self.cosm.z_of_t(tobs * s_per_myr) # Might be stored for all redshifts so pick out zobs if type(filters) == dict: assert zobs is not None filters = filters[round(zobs)] # Get transmission curves if cam in self.cameras.keys(): filter_data = self.cameras[cam]._read_throughputs(filter_set=filter_set, filters=filters) else: # Can supply spectral windows, e.g., Calzetti+ 1994, in which case # we assume perfect transmission but otherwise just treat like # photometric filters. assert type(filters) in [list, tuple, np.ndarray] #print("Generating photometry from {} spectral ranges.".format(len(filters))) wraw = np.array(filters) x1 = wraw.min() x2 = wraw.max() x = np.arange(x1-1, x2+1, 1.) * 1e-4 * (1. + zobs) # Note that in this case, the filter wavelengths are in rest-frame # units, so we convert them to observed wavelengths before # photometrizing everything. filter_data = {} for _window in filters: lo, hi = _window lo *= 1e-4 * (1. + zobs) hi *= 1e-4 * (1. + zobs) y = np.zeros_like(x) y[np.logical_and(x >= lo, x <= hi)] = 1 mi = np.mean([lo, hi]) dx = np.array([hi - mi, mi - lo]) Tavg = 1. filter_data[_window] = x, y, mi, dx, Tavg all_filters = filter_data.keys() # Figure out spectral range we need to model for these filters. # Find bluest and reddest filters, set wavelength range with some # padding above and below these limits. lmin = np.inf lmax = 0.0 ct = 0 for filt in filter_data: x, y, cent, dx, Tavg = filter_data[filt] # If we're only doing this for the sake of measuring a slope, we # might restrict the range based on wavelengths of interest, i.e., # we may not use all the filters. # Right now, will include filters as long as their center is in # the requested band. This results in fluctuations in slope # measurements, so to be more stringent set picky=True. if rest_wave is not None: if picky: l = (cent - dx[1]) * 1e4 / (1. + zobs) r = (cent + dx[0]) * 1e4 / (1. + zobs) if (l < rest_wave[0]) or (r > rest_wave[1]): continue cent_r = cent * 1e4 / (1. + zobs) if (cent_r < rest_wave[0]) or (cent_r > rest_wave[1]): continue lmin = min(lmin, cent - dx[1] * 1.2) lmax = max(lmax, cent + dx[0] * 1.2) ct += 1 # No filters in range requested if ct == 0: return [], [], [], [] # Here's our array of REST wavelengths if waves is None: # Convert from microns to Angstroms, undo redshift. lmin = lmin * 1e4 / (1. + zobs) lmax = lmax * 1e4 / (1. + zobs) lmin = max(lmin, self.src.wavelengths.min()) lmax = min(lmax, self.src.wavelengths.max()) # Force edges to be multiples of dlam l1 = lmin - lbuffer l1 -= l1 % dlam l2 = lmax + lbuffer waves = np.arange(l1, l2+dlam, dlam) # Get spectrum first. if (spec is None) and (ospec is None): spec = self.Spectrum(waves, sfh=sfh, tarr=tarr, tobs=tobs, zarr=zarr, zobs=zobs, band=band, hist=hist, idnum=idnum, extras=extras, window=window, load=load) # Observed wavelengths in micron, flux in erg/s/cm^2/Hz wave_obs, flux_obs = self.ObserveSpectrum(zobs, spec=spec, waves=waves, extras=extras, window=window) elif ospec is not None: flux_obs = ospec wave_obs = owaves else: raise ValueError('This shouldn\'t happen') # Might be running over lots of galaxies batch_mode = False if flux_obs.ndim == 2: batch_mode = True # Convert microns to cm. micron * (m / 1e6) * (1e2 cm / m) freq_obs = c / (wave_obs * 1e-4) # Why do NaNs happen? Just nircam. flux_obs[np.isnan(flux_obs)] = 0.0 # Loop over filters and re-weight spectrum xphot = [] # Filter centroids wphot = [] # Filter width yphot_corr = [] # Magnitudes corrected for filter transmissions. # Loop over filters, compute fluxes in band (accounting for # transmission fraction) and convert to observed magnitudes. for filt in all_filters: x, T, cent, dx, Tavg = filter_data[filt] if rest_wave is not None: cent_r = cent * 1e4 / (1. + zobs) if (cent_r < rest_wave[0]) or (cent_r > rest_wave[1]): continue # Re-grid transmission onto provided wavelength axis. T_regrid = np.interp(wave_obs, x, T, left=0, right=0) #func = interp1d(x, T, kind='cubic', fill_value=0.0, # bounds_error=False) #T_regrid = func(wave_obs) #T_regrid = np.interp(np.log(wave_obs), np.log(x), T, left=0., # right=0) # Remember: observed flux is in erg/s/cm^2/Hz # Integrate over frequency to get integrated flux in band # defined by filter. if batch_mode: integrand = -1. * flux_obs * T_regrid[None,:] _yphot = np.sum(integrand[:,0:-1] * np.diff(freq_obs)[None,:], axis=1) else: integrand = -1. * flux_obs * T_regrid _yphot = np.sum(integrand[0:-1] * np.diff(freq_obs)) #_yphot = np.trapz(integrand, x=freq_obs) corr = np.sum(T_regrid[0:-1] * -1. * np.diff(freq_obs), axis=-1) xphot.append(cent) yphot_corr.append(_yphot / corr) wphot.append(dx) xphot = np.array(xphot) wphot = np.array(wphot) yphot_corr = np.array(yphot_corr) # Convert to magnitudes and return return all_filters, xphot, wphot, -2.5 * np.log10(yphot_corr / flux_AB) def Spectrum(self, waves, sfh=None, tarr=None, zarr=None, window=1, zobs=None, tobs=None, band=None, idnum=None, units='Hz', hist={}, extras={}, load=True): """ This is just a wrapper around `Luminosity`. """ # Select single row of SFH array if `idnum` provided. if sfh.ndim == 2 and idnum is not None: sfh = sfh[idnum,:] batch_mode = sfh.ndim == 2 time_series = (zobs is None) and (tobs is None) # Shape of output array depends on some input parameters. shape = [] if batch_mode: shape.append(sfh.shape[0]) if time_series: shape.append(tarr.size) shape.append(len(waves)) # Do kappa up front? pb = ProgressBar(waves.size, name='l(nu)', use=self.pf['progress_bar']) pb.start() ## # Can thread this calculation ## if (self.pf['nthreads'] is not None): try: import pymp have_pymp = True except ImportError: have_pymp = False assert have_pymp, "Need pymp installed to run with nthreads!=None!" pymp.config.num_threads = self.pf['nthreads'] if self.pf['verbose']: print("Setting nthreads={} for spectral synthesis.".format( self.pf['nthreads'])) spec = pymp.shared.array(shape, dtype='float64') with pymp.Parallel(self.pf['nthreads']) as p: for i in p.xrange(0, waves.size): slc = (Ellipsis, i) if (batch_mode or time_series) else i spec[slc] = self.Luminosity(wave=waves[i], sfh=sfh, tarr=tarr, zarr=zarr, zobs=zobs, tobs=tobs, band=band, hist=hist, idnum=idnum, extras=extras, window=window, load=load) pb.update(i) else: spec = np.zeros(shape) for i, wave in enumerate(waves): slc = (Ellipsis, i) if (batch_mode or time_series) else i spec[slc] = self.Luminosity(wave=wave, sfh=sfh, tarr=tarr, zarr=zarr, zobs=zobs, tobs=tobs, band=band, hist=hist, idnum=idnum, extras=extras, window=window, load=load) pb.update(i) pb.finish() if units in ['A', 'Ang']: #freqs = c / (waves / 1e8) #tmp = np.abs(np.diff(waves) / np.diff(freqs)) #dwdn = np.concatenate((tmp, [tmp[-1]])) dwdn = waves**2 / (c * 1e8) spec /= dwdn return spec def Magnitude(self, wave=1600., sfh=None, tarr=None, zarr=None, window=1, zobs=None, tobs=None, band=None, idnum=None, hist={}, extras={}): L = self.Luminosity(wave=wave, sfh=sfh, tarr=tarr, zarr=zarr, zobs=zobs, tobs=tobs, band=band, idnum=idnum, hist=hist, extras=extras, window=window) MAB = self.magsys.L_to_MAB(L, z=zobs) return MAB def _oversample_sfh(self, ages, sfh, i): """ Over-sample time axis while stellar populations are young if the time resolution is worse than 1 Myr / grid point. """ batch_mode = sfh.ndim == 2 # Use 1 Myr time resolution for final stretch. # final stretch is determined by `oversampling_below` attribute. # This loop determines how many elements at the end of # `ages` are within the `oversampling_below` zone. ct = 0 while ages[-1-ct] < self.oversampling_below: ct += 1 if ct + 1 == len(ages): break ifin = -1 - ct ages_x = np.arange(ages[-1], ages[ifin], 1.)[-1::-1] # `ages_x` is an array of ages at higher resolution than native data # to-be-tagged on the end of supplied `ages`. # Must augment ages and dt accordingly _ages = np.hstack((ages[0:ifin], ages_x)) _dt = np.abs(np.diff(_ages) * 1e6) if batch_mode: xSFR = np.ones((sfh.shape[0], ages_x.size-1)) else: xSFR = np.ones(ages_x.size-1) # Must allow non-constant SFR within over-sampled region # as it may be tens of Myr. # Walk back from the end and fill in SFR N = int((ages_x.size - 1) / ct) for _i in range(0, ct): if batch_mode: slc = Ellipsis, slice(-1 * N * _i-1, -1 * N * (_i + 1) -1, -1) else: slc = slice(-1 * N * _i-1, -1 * N * (_i + 1) -1, -1) if batch_mode: _sfh_rs = np.array([sfh[:,-_i-2]]*N).T xSFR[slc] = _sfh_rs * np.ones(N)[None,:] else: xSFR[slc] = sfh[-_i-2] * np.ones(N) # Need to tack on the SFH at ages older than our # oversampling approach kicks in. if batch_mode: if ct + 1 == len(ages): _SFR = np.hstack((sfh[:,0][:,None], xSFR)) else: _SFR = np.hstack((sfh[:,0:i+1][:,0:ifin+1], xSFR)) else: if ct + 1 == len(ages): _SFR = np.hstack((sfh[0], xSFR)) else: _SFR = np.hstack((sfh[0:i+1][0:ifin+1], xSFR)) return _ages, _SFR @property def _cache_lum_ctr(self): if not hasattr(self, '_cache_lum_ctr_'): self._cache_lum_ctr_ = 0 return self._cache_lum_ctr_ def _cache_kappa(self, wave): if not hasattr(self, '_cache_kappa_'): self._cache_kappa_ = {} if wave in self._cache_kappa_: return self._cache_kappa_[wave] return None def _cache_lum(self, kwds): """ Cache object for spectral synthesis of stellar luminosity. """ if not hasattr(self, '_cache_lum_'): self._cache_lum_ = {} notok = -1 t1 = time.time() # If we set order by hand, it greatly speeds things up because # more likely than not, the redshift and wavelength are the only # things that change and that's an easy logical check to do. # Checking that SFHs, histories, etc., is more expensive. ok_keys = ('wave', 'zobs', 'tobs', 'idnum', 'sfh', 'tarr', 'zarr', 'window', 'band', 'hist', 'extras', 'load') ct = -1 # Loop through keys to do more careful comparison for unhashable types. #all_waves = self._cache_lum_waves_ all_keys = self._cache_lum_.keys() # Search in reverse order since we often the keys represent different # wavelengths, which are generated in ascending order. for keyset in all_keys: ct += 1 # Remember: keyset is just a number. kw, data = self._cache_lum_[keyset] # Check wavelength first. Most common thing. # If we're not being as careful as possible, retrieve cached # result so long as wavelength and zobs match requested values. # This should only be used when SpectralSynthesis is summoned # internally! Likely to lead to confusing behavior otherwise. if (self.careful_cache == 0) and ('wave' in kw) and ('zobs' in kw): if (kw['wave'] == kwds['wave']) and (kw['zobs'] == kwds['zobs']): notok = 0 break notok = 0 # Loop over cached keywords, compare to those supplied. for key in ok_keys: if key not in kwds: notok += 1 break #if isinstance(kw[key], collections.Hashable): # if kwds[key] == kw[key]: # continue # else: # notok += 1 # break #else: # For unhashable types, must work on case-by-case basis. if type(kwds[key]) != type(kw[key]): notok += 1 break elif type(kwds[key]) == np.ndarray: if np.array_equal(kwds[key], kw[key]): continue else: # This happens when, e.g., we pass SFH by hand. notok += 1 break elif type(kwds[key]) == dict: if kwds[key] == kw[key]: continue else: #for _key in kwds[key]: # print(_key, kwds[key][_key] == kw[key][_key]) # #raw_input('<enter>') notok += 1 break else: if kwds[key] == kw[key]: continue else: notok += 1 break if notok > 0: #print(keyset, key) continue # If we're here, load this thing. break t2 = time.time() if notok < 0: return kwds, None elif notok == 0: if (self.pf['verbose'] and self.pf['debug']): print("Loaded from cache! Took N={} iterations, {} sec to find match".format(ct, t2 - t1)) # Recall that this is (kwds, data) return self._cache_lum_[keyset] else: return kwds, None def Luminosity(self, wave=1600., sfh=None, tarr=None, zarr=None, window=1, zobs=None, tobs=None, band=None, idnum=None, hist={}, extras={}, load=True, use_cache=True, energy_units=True): """ Synthesize luminosity of galaxy with given star formation history at a given wavelength and time. Parameters ---------- sfh : np.ndarray Array of SFRs. If 1-D, should be same shape as time or redshift array. If 2-D, first dimension should correspond to galaxy number and second should be time. tarr : np.ndarray Array of times in ascending order [Myr]. zarr : np.ndarray Array of redshift in ascending order (so decreasing time). Only supply if not passing `tarr` argument. wave : int, float Wavelength of interest [Angstrom] window : int Average over interval about `wave`. [Angstrom] zobs : int, float Redshift of observation. tobs : int, float Time of observation (will be computed self-consistently if `zobs` is supplied). hist : dict Extra information we may need, e.g., metallicity, dust optical depth, etc. to compute spectrum. Returns ------- Luminosity at wavelength=`wave` in units of erg/s/Hz. """ setup_1 = (sfh is not None) and \ ((tarr is not None) or (zarr is not None)) setup_2 = hist != {} do_all_time = False if (tobs is None) and (zobs is None): do_all_time = True #assert (tobs is not None) or (zobs is not None), \ # "Must supply time or redshift of observation, `tobs` or `zobs`!" assert setup_1 or setup_2 if setup_1: assert (sfh is not None) elif setup_2: assert ('z' in hist) or ('t' in hist), \ "`hist` must contain redshifts, `z`, or times, `t`." sfh = hist['SFR'] if 'SFR' in hist else hist['sfr'] if 'z' in hist: zarr = hist['z'] else: tarr = hist['t'] kw = {'sfh':sfh, 'zobs':zobs, 'tobs':tobs, 'wave':wave, 'tarr':tarr, 'zarr':zarr, 'band':band, 'idnum':idnum, 'hist':hist, 'extras':extras, 'window': window} if load: _kwds, cached_result = self._cache_lum(kw) else: self._cache_lum_ = {} cached_result = None if cached_result is not None: return cached_result if sfh.ndim == 2 and idnum is not None: sfh = sfh[idnum,:] if 'Z' in hist: Z = hist['Z'][idnum,:] # Don't necessarily need Mh here. if 'Mh' in hist: Mh = hist['Mh'][idnum,:] else: if 'Mh' in hist: Mh = hist['Mh'] if 'Z' in hist: Z = hist['Z'] # If SFH is 2-D it means we're doing this for multiple galaxies at once. # The first dimension will be number of galaxies and second dimension # is time/redshift. batch_mode = sfh.ndim == 2 # Parse time/redshift information if tarr is not None: zarr = self.cosm.z_of_t(tarr * s_per_myr) else: assert tarr is None tarr = self.cosm.t_of_z(zarr) / s_per_myr assert np.all(np.diff(tarr) > 0), \ "Must supply SFH in time-ascending (i.e., redshift-descending) order!" # Convert tobs to redshift. if tobs is not None: zobs = self.cosm.z_of_t(tobs * s_per_myr) if type(tobs) == np.ndarray: assert (tobs.min() >= tarr.min()) and (tobs.max() <= tarr.max()), \ "Requested times of observation (`tobs={}-{}`) not in supplied range ({}, {})!".format(tobs.min(), tobs.max(), tarr.min(), tarr.max()) else: assert tarr.min() <= tobs <= tarr.max(), \ "Requested time of observation (`tobs={}`) not in supplied range ({}, {})!".format(tobs, tarr.min(), tarr.max()) # Prepare slice through time-axis. if zobs is None: slc = Ellipsis izobs = None else: # Need to be sure that we grab a grid point exactly at or just # below the requested redshift (?) izobs = np.argmin(np.abs(zarr - zobs)) if zarr[izobs] > zobs: izobs += 1 if batch_mode: #raise NotImplemented('help') # Need to slice over first dimension now... slc = Ellipsis, slice(0, izobs+1) else: slc = slice(0, izobs+1) if not (zarr.min() <= zobs <= zarr.max()): if batch_mode: return np.ones(sfh.shape[0]) * -99999 else: return -99999 fill = np.zeros(1) tyr = tarr * 1e6 dt = np.hstack((np.diff(tyr), fill)) # Figure out if we need to over-sample the grid we've got to more # accurately solve for young stellar populations. oversample = self.oversampling_enabled and (dt[-2] > 1.01e6) # Used to also require zobs is not None. Why? ## # Done parsing time/redshift # Is this luminosity in some bandpass or monochromatic? if band is not None: # Will have been supplied in Angstroms b = h_p * c / (np.array(band) * 1e-8) / erg_per_ev Loft = self.src.IntegratedEmission(b[1], b[0], energy_units=energy_units) # Need to get Hz^-1 units back #db = b[0] - b[1] #Loft = Loft / (db * erg_per_ev / h_p) #raise NotImplemented('help!') else: Loft = self.src.L_per_sfr_of_t(wave=wave, avg=window) assert energy_units #print("Synth. Lum = ", wave, window) # # Setup interpolant for luminosity as a function of SSP age. Loft[Loft == 0] = tiny_lum _func = interp1d(np.log(self.src.times), np.log(Loft), kind=self.pf['pop_synth_age_interp'], bounds_error=False, fill_value=(Loft[0], Loft[-1])) # Extrapolate linearly at times < 1 Myr _m = (Loft[1] - Loft[0]) / (self.src.times[1] - self.src.times[0]) L_small_t = lambda age: _m * age + Loft[0] if not (self.src.pf['source_aging'] or self.src.pf['source_ssp']): L_asympt = np.exp(_func(np.log(self.src.pf['source_tsf']))) #L_small_t = lambda age: Loft[0] # Extrapolate as PL at t < 1 Myr based on first two # grid points #m = np.log(Loft[1] / Loft[0]) \ # / np.log(self.src.times[1] / self.src.times[0]) #func = lambda age: np.exp(m * np.log(age) + np.log(Loft[0])) #if zobs is None: Lhist = np.zeros(sfh.shape) #if hasattr(self, '_sfh_zeros'): # Lhist = self._sfh_zeros.copy() #else: # Lhist = np.zeros_like(sfh) # self._sfh_zeros = Lhist.copy() #else: # pass # Lhist will just get made once. Don't need to initialize ## # Loop over the history of object(s) and compute the luminosity of # simple stellar populations of the corresponding ages (relative to # zobs). ## # Start from initial redshift and move forward in time, i.e., from # high redshift to low. for i, _tobs in enumerate(tarr): # If zobs is supplied, we only have to do one iteration # of this loop. This is just a dumb way to generalize this function # to either do one redshift or return a whole history. if not do_all_time: if (zarr[i] > zobs): continue ## # Life if easy for constant SFR models if not (self.src.pf['source_aging'] or self.src.pf['source_ssp']): if not do_all_time: Lhist = L_asympt * sfh[:,i] break raise NotImplemented('does this happne?') Lhist[:,i] = L_asympt * sfh[:,i] continue # If we made it here, it's time to integrate over star formation # at previous times. First, retrieve ages of stars formed in all # past star forming episodes. ages = tarr[i] - tarr[0:i+1] # Note: this will be in order of *descending* age, i.e., the # star formation episodes furthest in the past are first in the # array. # Recall also that `sfh` contains SFRs for all time, so any # z < zobs will contain zeroes, hence all the 0:i+1 slicing below. # Treat metallicity evolution? If so, need to grab luminosity as # function of age and Z. if self.pf['pop_enrichment']: assert batch_mode logA = np.log10(ages) logZ = np.log10(Z[:,0:i+1]) L_per_msun = np.zeros_like(ages) logL_at_wave = self.L_of_Z_t(wave) L_per_msun = np.zeros_like(logZ) for j, _Z_ in enumerate(range(logZ.shape[0])): L_per_msun[j,:] = 10**logL_at_wave(logA, logZ[j,:], grid=False) # erg/s/Hz if batch_mode: Lall = L_per_msun[:,0:i+1] * sfh[:,0:i+1] else: Lall = L_per_msun[0:i+1] * sfh[0:i+1] if oversample: raise NotImplemented('help!') else: _dt = dt[0:i] _ages = ages else: ## # If time resolution is >= 2 Myr, over-sample final interval. if oversample and len(ages) > 1: if batch_mode: _ages, _SFR = self._oversample_sfh(ages, sfh[:,0:i+1], i) else: _ages, _SFR = self._oversample_sfh(ages, sfh[0:i+1], i) _dt = np.abs(np.diff(_ages) * 1e6) # `_ages` is in order of old to young. # Now, compute luminosity at expanded ages. L_per_msun = np.exp(_func(np.log(_ages))) # Interpolate linearly at t < 1 Myr L_per_msun[_ages < 1] = L_small_t(_ages[_ages < 1]) #L_per_msun[_ages < 10] = 0. # erg/s/Hz/yr if batch_mode: Lall = L_per_msun * _SFR else: Lall = L_per_msun * _SFR else: L_per_msun = np.exp(_func(np.log(ages))) #L_per_msun = np.exp(np.interp(np.log(ages), # np.log(self.src.times), np.log(Loft), # left=np.log(Loft[0]), right=np.log(Loft[-1]))) _dt = dt[0:i] # Fix early time behavior L_per_msun[ages < 1] = L_small_t(ages[ages < 1]) _ages = ages # erg/s/Hz/yr if batch_mode: Lall = L_per_msun * sfh[:,0:i+1] else: Lall = L_per_msun * sfh[0:i+1] # Correction for IMF sampling (can't use SPS). #if self.pf['pop_sample_imf'] and np.any(bursty): # life = self._stars.tab_life # on = np.array([life > age for age in ages]) # # il = np.argmin(np.abs(wave - self._stars.wavelengths)) # # if self._stars.aging: # raise NotImplemented('help') # lum = self._stars.tab_Ls[:,il] * self._stars.dldn[il] # else: # lum = self._stars.tab_Ls[:,il] * self._stars.dldn[il] # # # Need luminosity in erg/s/Hz # #print(lum) # # # 'imf' is (z or age, mass) # # integ = imf[bursty==1,:] * lum[None,:] # Loft = np.sum(integ * on[bursty==1], axis=1) # # Lall[bursty==1] = Loft # Apply local reddening #tau_bc = self.pf['pop_tau_bc'] #if tau_bc > 0: # # corr = np.ones_like(_ages) * np.exp(-tau_bc) # corr[_ages > self.pf['pop_age_bc']] = 1 # # Lall *= corr ### ## Integrate over all times up to this tobs if batch_mode: # Should really just np.sum here...using trapz assumes that # the SFH is a smooth function and not a series of constant # SFRs. Doesn't really matter in practice, though. if not do_all_time: Lhist = np.trapz(Lall, dx=_dt, axis=1) else: Lhist[:,i] = np.trapz(Lall, dx=_dt, axis=1) else: if not do_all_time: Lhist = np.trapz(Lall, dx=_dt) else: Lhist[i] = np.trapz(Lall, dx=_dt) ## # In this case, we only need one iteration of this loop. ## if not do_all_time: break ## # Redden spectra ## if 'Sd' in hist: # Redden away! if np.any(hist['Sd'] > 0) and (band is None): assert 'kappa' in extras #_kappa = self._cache_kappa(wave) #if _kappa is None: kappa = extras['kappa'](wave=wave, Mh=Mh, z=zobs) #self._cache_kappa_[wave] = kappa #else: # kappa = _kappa kslc = idnum if idnum is not None else Ellipsis if idnum is not None: Sd = hist['Sd'][kslc] if type(hist['fcov']) in [int, float, np.float64]: fcov = hist['fcov'] else: fcov = hist['fcov'][kslc] rand = hist['rand'][kslc] else: Sd = hist['Sd'] fcov = hist['fcov'] rand = hist['rand'] tau = kappa * Sd clear = rand > fcov block = ~clear if idnum is not None: Lout = Lhist * np.exp(-tau[izobs]) #if self.pf['pop_dust_holes'] == 'big': # Lout = Lhist * clear[izobs] \ # + Lhist * np.exp(-tau[izobs]) * block[izobs] #else: # Lout = Lhist * (1. - fcov[izobs]) \ # + Lhist * fcov[izobs] * np.exp(-tau[izobs]) else: Lout = Lhist * np.exp(-tau[:,izobs]) #if self.pf['pop_dust_holes'] == 'big': # print(Lhist.shape, clear.shape, tau.shape, block.shape) # Lout = Lhist * clear[:,izobs] \ # + Lhist * np.exp(-tau[:,izobs]) * block[:,izobs] #else: # Lout = Lhist * (1. - fcov[:,izobs]) \ # + Lhist * fcov[:,izobs] * np.exp(-tau[:,izobs]) else: Lout = Lhist.copy() else: Lout = Lhist.copy() #del Lhist, tau, Lall #gc.collect() ## # Sum luminosity of parent halos along merger tree ## # Don't change shape, just zero-out luminosities of # parent halos after they merge? if hist is not None: do_mergers = self.pf['pop_mergers'] and batch_mode if 'children' in hist: if (hist['children'] is not None) and do_mergers: child_iz, child_iM = children.T is_central = child_iM == -1 if np.all(is_central == 1): pass else: print("Looping over {} halos...".format(sfh.shape[0])) pb = ProgressBar(sfh.shape[0], use=self.pf['progress_bar']) pb.start() # Loop over all 'branches' for i in range(SFR.shape[0]): # This means the i'th halo is alive and well at the # final redshift, i.e., it's a central if is_central[i]: continue pb.update(i) # At this point, need to figure out which child halos # to dump mass and SFH into... # Be careful with redshift array. # We're now working in ascending time, reverse redshift, # so we need to correct the child iz values. We've also # chopped off elements at z < zobs. #iz = Nz0 - child_iz[i] # This `iz` should not be negative despite us having # chopped up the redshift array since getting to this # point in the loop is predicated on being a parent of # another halo, i.e., not surviving beyond this redshift. # Lout is just 1-D at this point, i.e., just luminosity # *now*. # Add luminosity to child halo. Zero out luminosity of # parent to avoid double counting. Note that nh will # also have been zeroed out but we're just being careful. Lout[child_iM[i]] += 1 * Lout[i] Lout[i] = 0.0 pb.finish() ## # Will be unhashable types so just save to a unique identifier ## if use_cache: self._cache_lum_[self._cache_lum_ctr] = kw, Lout self._cache_lum_ctr_ += 1 # Get outta here. return Lout ``` #### File: ares/util/Warnings.py ```python import sys, os import numpy as np import sys, textwrap, os from .PrintInfo import twidth, line, tabulate ARES = os.getenv('ARES') have_ARES_env = ARES is not None separator = '|'*twidth separator2 = '-'*twidth dt_msg = 'WARNING: something wrong with the time-step.' gen_msg = 'WARNING: something wrong with solver.' def dt_error(grid, z, q, dqdt, new_dt, cell, method, msg=dt_msg): print("") print(line(separator)) print(line(msg)) print(line(separator)) print(line(separator2)) if new_dt <= 0: print(line("current dt : {0:.4e}".format(new_dt))) else: print(line("current dt : NaN or inf")) print(line(separator2)) print(line("method : {!s}".format(method))) print(line("cell # : {}".format(cell))) if z is not None: print(line("redshift : {0:.4g}".format(z))) print(line(separator2)) cols = ['value', 'derivative'] rows = [] data = [] for i in range(len(grid.qmap)): name = grid.qmap[i] rows.append(name) data.append([q[cell][i], dqdt[cell][i]]) # Print quantities and their rates of change tabulate(data, rows, cols, cwidth=12) print(line(separator2)) print(line(separator)) print("") sys.exit(1) def solver_error(grid, z, q, dqdt, new_dt, cell, method, msg=gen_msg): dt_error(grid, z, q, dqdt, new_dt, cell, method, msg=gen_msg) tab_warning = \ """ WARNING: must supply redshift_bins or tau_table to compute the X-ray background flux on-the-fly.""" wrong_tab_type = \ """ WARNING: Supplied tau_table does not have logarithmically spaced redshift bins! """ hmf_no_tab = \ """ No halo mass function table found. Run glorb/examples/generate_hmf_tables.py to create a lookup table, then, either set an environment variable $ARES that points to your glorb install directory, or supply the path to the resulting table by hand via the hmf_table parameter. You may also want to check out https://bitbucket.org/mirochaj/glorb/Downloads for standard HMF tables. """ lf_constraints = \ """ WARNING: The contents of `pop_constraints` will override the values of `pop_lf_Mstar`, `pop_lf_pstar`, and `pop_lf_alpha`. """ def not_a_restart(prefix, has_burn): print("") print(line(separator)) print(line("WARNING: This doesn't look like a restart:")) print(line("{!s}.chain.pkl is empty!".format(prefix))) if not has_burn: print(line("No burn-in data found. Continuing on as if from scratch.")) else: print(line("Burn-in data found. Restarting from end of burn-in.")) print(line(separator)) def tau_tab_z_mismatch(igm, zmin_ok, zmax_ok, ztab): print("") print(line(separator)) print(line('WARNING: optical depth table shape mismatch (in redshift)')) print(line(separator)) if type(igm.tabname) is dict: which = 'dict' else: which = 'tab' print(line("found : {!s}".format(\ igm.tabname[igm.tabname.rfind('/')+1:]))) zmax_pop = min(igm.pf['pop_zform'], igm.pf['first_light_redshift']) print(line("zmin (pf) : {0:g}".format(igm.pf['final_redshift']))) print(line("zmin ({0}) : {1:g}".format(which, ztab.min()))) print(line("zmax (pf) : {0:g}".format(zmax_pop))) print(line("zmax ({0}) : {1:g}".format(which, ztab.max()))) if not zmin_ok: print(line(("this is OK : we'll transition to an on-the-fly tau " +\ "calculator at z={0:.2g}").format(ztab.min()))) if (0 < igm.pf['EoR_xavg'] < 1): print(line((" : or whenever x > {0:.1e}, whichever " +\ "comes first").format(igm.pf['EoR_xavg']))) print(line(separator)) print("") def tau_tab_E_mismatch(pop, tabname, Emin_ok, Emax_ok, Etab): print("") print(line(separator)) print(line('WARNING: optical depth table shape mismatch (in photon ' +\ 'energy)')) print(line(separator)) if type(tabname) is dict: which = 'dict' else: which = 'tab' print(line("found : {!s}".format(\ tabname[tabname.rfind('/')+1:]))) print(line("Emin (pf) : {0:g}".format(pop.pf['pop_Emin']))) print(line("Emin ({0}) : {1:g}".format(which, Etab.min()))) print(line("Emax (pf) : {0:g}".format(pop.pf['pop_Emax']))) print(line("Emax ({0}) : {1:g}".format(which, Etab.max()))) if Etab.min() < pop.pf['pop_Emin']: print(line(("this is OK : we'll discard E < {0:.2e} eV entries in " +\ "table").format(pop.pf['pop_Emin']))) if Etab.max() > pop.pf['pop_Emax']: print(line(("this is OK : we'll discard E > {0:.2e} eV entries in " +\ "table").format(pop.pf['pop_Emax']))) print(line(separator)) def no_tau_table(urb): print("") print(line(separator)) print(line('WARNING: no optical depth table found')) print(line(separator)) print(line("looking for : {!s}".format(urb.tabname))) if urb.pf['tau_prefix'] is not None: print(line("in : {!s}".format(urb.pf['tau_prefix']))) elif ARES is not None: print(line("in : {!s}/input/optical_depth".format(ARES))) else: print(line("in : nowhere! set $ARES or tau_prefix")) print(line(separator)) print(line("Generating a new table will take 5-10 minutes...")) print(line(separator)) def negative_SFRD(z, Tmin, fstar, dfcolldt, sfrd): print("") print(line(separator)) print(line('ERROR (SFRD < 0)')) print(line(separator)) print(line("z : {0:.3g}".format(z))) print(line("Tmin : {0:.3e}".format(Tmin))) print(line("fstar : {0:.3e}".format(fstar))) print(line("dfcoll / dt : {0:.3e}".format(dfcolldt))) print(line("SFRD : {0:.3e}".format(sfrd))) print(line(separator)) def tau_quad(igm): print("") print(line(separator)) print(line('ERROR (SFRD < 0)')) print(line(separator)) print(line("z : {0:.3g}".format(z))) print(line("Tmin : {0:.3e}".format(Tmin))) print(line("fstar : {0:.3e}".format(fstar))) print(line("dfcoll / dt : {0:.3e}".format(dfcolldt))) print(line("SFRD : {0:.3e}".format(sfrd))) print(line(separator)) def missing_hmf_tab(hmf): print("") print(line(separator)) print(line('WARNING: Could not find supplied hmf table.')) print(line(separator)) print(line('Was looking for:')) print(line('')) print(line(' {!s}'.format(hmf.pf['hmf_table']))) print(line('')) print(line('Will search for a suitable replacement in:')) print(line('')) print(line(' {!s}/input/hmf'.format(ARES))) print(line('')) print(line(separator)) def no_hmf(hmf): print("") print(line(separator)) print(line('ERROR: Cannot generate halo mass function')) print(line(separator)) if not have_ARES_env: s = \ """ It looks like you have not yet set the ARES environment variable, which is needed to locate various input files. Make sure to source your .bashrc or .cshrc (or equivalent) when finished! """ else: s = \ """ It looks like you have set the ARES environment variable. Is it correct? Have you sourced your .bashrc or .cshrc (or equivalent) to ensure that it is defined? """ try: from hmf import MassFunction have_hmf = True except ImportError: have_hmf = False try: import pycamb have_pycamb = True except ImportError: have_pycamb = False if not (have_pycamb and have_hmf): s = \ """ If you've made no attempt to use non-default cosmological or HMF parameters, it could just be that you forgot to run the remote.py script, which will download a default HMF lookup table. If you'd like to generate halo mass function lookup tables of your own, e.g., using fits other than the Sheth-Tormen form, or with non-default cosmological parameters, you'll need to install hmf and pycamb. """ dedented_s = textwrap.dedent(s).strip() snew = textwrap.fill(dedented_s, width=twidth) snew_by_line = snew.split('\n') for l in snew_by_line: print(line(l)) if not (have_pycamb and have_hmf): print(line('')) print(line('It looks like you\'re missing both hmf and pycamb.')) elif not have_pycamb: print(line('')) print(line('It looks like you\'re missing pycamb.')) elif not have_hmf: print(line('')) print(line('It looks like you\'re missing hmf.')) print(line(separator)) modelgrid_loadbalance = "" def no_lya_warning(pop): print("") print(line(separator)) print(line("WARNING: pop_Emin{} is just blue-ward of Ly-a.".format(pop.id_num))) print(line("Reset to E_LyA (or just below) to ensure non-zero Ly-a background.")) print(line(separator)) print("") ``` #### File: input/litdata/mesinger2016.py ```python import os import numpy as np _input = os.getenv('ARES') + '/input/eos' def load(model='faint_galaxies'): """ Assumes you downloaded the raw EoS data into $ARES/input/eos. """ k = [] z = [] ps = [] QHII = [] dTb = [] for fn in os.listdir('%s/EoS_%s' % (_input, model)): if not fn.startswith('ps_no_halos'): continue _z = float(fn[13:19]) _dTb = float(fn[fn.index('aveTb')+5:fn.index('aveTb')+11]) _QHII = float(fn[fn.index('nf')+2:fn.index('nf')+10]) z.append(_z) dTb.append(_dTb) QHII.append(1. - _QHII) x, y, err = np.loadtxt('%s/EoS_%s/%s' % (_input,model,fn), unpack=True) k.append(x) ps.append(y) z = np.array(z) s = np.argsort(z) dTb = np.array(dTb)[s] k = np.array(k)[s] ps = np.array(ps)[s] QHII = np.array(QHII)[s] return {'z': z[s], 'k': k[0], 'ps_21_dl': ps, 'dTb': dTb, 'Qi': QHII} ``` #### File: input/litdata/ueda2014.py ```python import numpy as np from ueda2003 import _evolution_factor_pde, _evolution_factor_ldde, \ _DoublePowerLaw #------------------------------------------------- qsolf_LDDE2_hardpars = \ { 'A': 10**-6 *.70**3 * 2.91, 'loglstar': 10**43.97, 'gamma1': 0.96, 'gamma2': 2.71, 'p1': 4.78, 'p2': -1.5, 'p3': -6.2, 'beta1': 0.84, 'zstar': 1.86, 'zstarc2': 3.0, 'logLa1': 10**44.61, 'logLa2': 10**45.67,#??? 'alpha1': 0.29, 'alpha2': -0.1 } qsolf_LDDE2_harderr = \ { 'A_err': 0.07, 'loglstar_err': 10**0.06, 'gamma1_err': 0.04, 'gamma2_err': 0.09, 'p1_err': 0.16, 'p2_err': 0, 'p3_err': 0, 'beta1_err': 0.18, 'zstar_err': 0.07, 'zstarc2_err': 0, 'logLa_err': 10**0.07, 'logLa2_err': 0, 'alpha_err': 0.02, 'alpha2_err': 0 } def _zc_of_L(L, **kwargs): """ Compute cutoff redshift for luminosity-dependent density evolution. """ La = 10**kwargs['logLa'] if L < La: zc_ast = kwargs['zc'] * (L / La)**kwargs['alpha'] elif L >= La: zc_ast = kwargs['zc'] return zc_ast def _evolution_factor(z, **kwargs): if z < kwargs['zc1']: eofz = (1. + z)**p1 elif kwargs['zc1'] < z < kwargs['zc2']: eofz = (1. + kwargs['zc1'])**kwargs['p1'] \ * ((1. + z) / (1. + kwargs['zc1']))**p2 else: eofz = (1. + kwargs['zc1'])**kwargs['p1'] \ * ((1. + kwargs['zc2']) / (1+kwargs['zc1']))**kwargs['p2'] \ * ((1. + z) / (1. + kwargs['zc2']))**kwargs['p3'] return eofz def _evolution_factor_ldde(z, L, **kwargs): try: kw = kwargs.copy() for i in range(1, 2): kw['zc'] = kwargs['zc{}'.format(i)] kwargs['zc{}'.format(i)] = _zc_of_L(z, L, **kw) eofz = _evolution_factor(z, **kwargs) except ValueError: eofz = np.zeros_like(L) zcarr = np.array([_zc_L(LL, **kwargs) for LL in L]) for i, zcval in enumerate(zcarr): kwargs['zc'] = zcval eofz[i] = _evolution_factor_pde(z, **kwargs) return eofz #------------------------------------------------- def randomsamples(samples, K = None, loglstar = None, \ gamma1 = None, gamma2 = None, p1 = None, p2 = None,\ p3 = None, beta1 = None, zstar = None, zstarc2 = None, logLa = None, logLa2 = None, alpha = None, alpha2 = None,\ K_err = None, loglstar_err = None, gamma1_err = None, gamma2_err = None, p1_err = None, p2_err = None, p3_err = None, \ beta1_err = None, zstar_err = None, zstarc2_err = None,\ logLa_err = None, logLa2_err = None, alpha_err = None, \ alpha2_err = None, **kwargs): randomsamples = [] for i in range(samples): randomsample = { #'K': np.random.normal(K, K_err, samples), 'A': 10**-6 *.70**3 * 2.91, 'loglstar': np.random.normal(loglstar, loglstar_err, samples)[i],\ 'gamma1': np.random.normal(gamma1, gamma1_err, samples)[i],\ 'gamma2': np.random.normal(gamma2, gamma2_err, samples)[i],\ 'p1': np.random.normal(p1, p1_err, samples)[i],\ 'p2': -1.5,\ 'p3': -6.2,\ 'beta1': np.random.normal(beta1, beta1_err, samples)[i],\ 'zstar': np.random.normal(zstar, zstar_err, samples)[i],\ 'zstarc2': 3.0,\ 'logLa': np.random.normal(logLa, logLa_err, samples)[i],\ 'logLa2': 10**45.67,\ 'alpha': np.random.normal(alpha, alpha_err, samples)[i],\ 'alpha2': -0.1\ } randomsamples.append(randomsample) return randomsamples #------------------------------------------------- def LuminosityFunction_LDDE(Lx, z, loglstar = None, A = None, gamma1 = None, gamma2 = None, p1 = None, p2 = None,\ p3 = None, beta1 = None, zstar = None, zstarc2 = None, logLa = None, logLa2 = None, alpha = None, alpha2 = None, **kwargs): if Lx <= logLa: zc1 = zstar*(Lx / logLa)**alpha elif Lx > logLa: zc1 = zstar if Lx <= logLa2: zc2 = zstarc2*(Lx / logLa2)**alpha2 elif Lx > logLa2: zc2 = zstarc2 ################################################## if z <= zc1: ex = (1+z)**p1 elif zc1 < z <= zc2: ex = (1+zc1)**p1*((1+z)/(1+zc1))**p2 elif z > zc2: ex = (1+zc1)**p1*((1+zc2)/(1+zc1))**p2*((1+z)/(1+zc2))**p3 return A * ((Lx / loglstar)**gamma1 + (Lx / loglstar)**gamma2)**-1 * ex ``` #### File: tests/adv/test_pop_cohort.py ```python import ares import numpy as np import matplotlib.pyplot as pl def test(): # First population: sources only in atomic halos m16 = ares.util.ParameterBundle('mirocha2016:dpl') pars = m16.pars_by_pop(0, strip_id=True) pars['pop_Tmin'] = 1.1e4 pop = ares.populations.GalaxyPopulation(**pars) sim = ares.simulations.Global21cm(**m16) pop_fs = sim.pops[0] # 'fs' = 'from sim' # Second population: sources in all halos, but shut off below atomic threshold m17 = ares.util.ParameterBundle('mirocha2016:dpl') m17.update(ares.util.ParameterBundle('mirocha2017:step')) pars2 = m17.pars_by_pop(0, strip_id=True) pars2['pop_Tmin'] = 1.1e4 pars2['pq_func_par0[1]'] = 0 pars2['pq_func_par0[2]'] = 0 pars2['feedback_LW_Mmin'] = None pop2 = ares.populations.GalaxyPopulation(**pars2) sim2 = ares.simulations.Global21cm(**m16) pop2_fs = sim2.pops[0] # 'fs' = 'from sim' # ## Reference values to use in calculations z_ref = 20. Emin_ref = 10.2 Emax_ref = 13.6 tol = 1e-4 ## # # Test a few quantities above and below the threshold assert abs(pop.SFRD(z_ref) - pop2.SFRD(z_ref)) <= tol, \ "Error in SFRD!" assert abs(pop.Emissivity(z=z_ref, Emin=Emin_ref, Emax=Emax_ref) - \ pop2.Emissivity(z=z_ref, Emin=Emin_ref, Emax=Emax_ref)) <= tol, \ "Error in Emissivity!" # Make sure that the populations extracted from simulation instance are # identical to those created inependently. assert abs(pop.SFRD(z_ref) - pop_fs.SFRD(z_ref)) <= tol, \ "Error in SFRD!" assert abs(pop.Emissivity(z=z_ref, Emin=Emin_ref, Emax=Emax_ref) - \ pop_fs.Emissivity(z=z_ref, Emin=Emin_ref, Emax=Emax_ref)) <= tol, \ "Error in Emissivity!" assert abs(pop2.SFRD(z_ref) - pop2_fs.SFRD(z_ref)) <= tol, \ "Error in SFRD!" assert abs(pop2.Emissivity(z=z_ref, Emin=Emin_ref, Emax=Emax_ref) - \ pop2_fs.Emissivity(z=z_ref, Emin=Emin_ref, Emax=Emax_ref)) <= tol, \ "Error in Emissivity!" if __name__ == '__main__': test() ``` #### File: tests/adv/test_pop_galaxy.py ```python import ares import numpy as np import matplotlib.pyplot as pl from ares.physics.Constants import cm_per_mpc, erg_per_ev, s_per_yr def test(): z = np.arange(10, 25) # Initialize a GalaxyPopulation pop = ares.populations.GalaxyPopulation(pop_sed='pl', pop_Emin=2e2, pop_Emax=1e4, pop_EminNorm=5e2, pop_EmaxNorm=8e3, pop_fX=1.0, pop_yield=2.6e39, pop_yield_units='erg/s/SFR') # Compute the luminosity density in two bands Lx1 = np.array(list(map(pop.LuminosityDensity, z))) * cm_per_mpc**3 Lx2 = np.array([pop.LuminosityDensity(zz, 2e2, 5e2) for zz in z]) * cm_per_mpc**3 # Plot 'em pl.semilogy(z, Lx1, color='k') pl.semilogy(z, Lx2, color='b') # Try again with different units erg_per_phot = pop.src.AveragePhotonEnergy(500., 8e3) * erg_per_ev y = 2.6e39 * s_per_yr / erg_per_phot pop = ares.populations.GalaxyPopulation(pop_sed='pl', pop_Emin=2e2, pop_Emax=1e4, pop_EminNorm=5e2, pop_EmaxNorm=8e3, pop_fX=1.0, pop_yield=y, pop_yield_units='photons/Msun') # Compute the luminosity density in two bands Lx1 = np.array(list(map(pop.LuminosityDensity, z))) * cm_per_mpc**3 Lx2 = np.array([pop.LuminosityDensity(zz, 2e2, 5e2) for zz in z]) * cm_per_mpc**3 # Plot 'em pl.scatter(z, Lx1, s=100, facecolors='none', color='k') pl.scatter(z, Lx2, s=100, facecolors='none', color='b') assert True if __name__ == '__main__': test() ``` #### File: tests/adv/test_pop_sfrd.py ```python import ares import matplotlib.pyplot as pl PB = ares.util.ParameterBundle def test(): # Create a simple population pars_1 = PB('pop:fcoll') + PB('sed:bpass') pop_fcoll = ares.populations.GalaxyPopulation(**pars_1) #pop_fcoll_XR = ares.populations.GalaxyPopulation(**pars_1) # Mimic the above population to check our different SFRD/SED techniques sfrd_pars = {'pop_sfr_model': 'sfrd-func'} sfrd_pars['pop_sfrd'] = pop_fcoll.SFRD sfrd_pars['pop_sfrd_units'] = 'internal' sed = PB('sed:toy') sed['pop_Nion'] = pop_fcoll.src.Nion sed['pop_Nlw'] = pop_fcoll.src.Nlw # pop_Ex? sed['pop_ion_src_igm'] = False sed['pop_heat_src_igm'] = False pars_2 = sed + sfrd_pars pop_sfrd = ares.populations.GalaxyPopulation(**pars_2) assert pop_fcoll.SFRD(20.) == pop_sfrd.SFRD(20.), "Error in SFRD." # Check the emissivities too #print(pop_fcoll.PhotonLuminosityDensity(20., Emin=10.2, Emax=13.6)) #print(pop_sfrd.PhotonLuminosityDensity(20., Emin=10.2, Emax=13.6)) #assert pop_fcoll.PhotonLuminosityDensity(20., Emin=10.2, Emax=13.6) \ # == pop_sfrd.PhotonLuminosityDensity(20., Emin=10.2, Emax=13.6), \ # "Error in photon luminosity density." if __name__ == '__main__': test() ``` #### File: tests/adv/test_solver_chem_he.py ```python import ares import numpy as np import matplotlib.pyplot as pl def test(): pf = \ { 'grid_cells': 64, 'include_He': True, 'isothermal': True, 'stop_time': 1e2, 'radiative_transfer': False, 'density_units': 1.0, 'initial_timestep': 1, 'max_timestep': 1e2, 'initial_temperature': np.logspace(4, 6, 64), 'initial_ionization': [1.-1e-8, 1e-8, 1-2e-8, 1e-8, 1e-8], # neutral } sim = ares.simulations.GasParcel(**pf) sim.run() data = sim.history # Plot last time snapshot pl.loglog(data['Tk'][0], data['h_1'][-1,:], color='k') pl.loglog(data['Tk'][0], data['h_2'][-1,:], color='k', ls='--') pl.loglog(data['Tk'][0], data['he_1'][-1,:], color='b') pl.loglog(data['Tk'][0], data['he_2'][-1,:], color='b', ls='--') pl.loglog(data['Tk'][0], data['he_3'][-1,:], color='b', ls=':') pl.ylim(1e-8, 1) pl.savefig('{!s}.png'.format(__file__.rstrip('.py'))) pl.close() if __name__ == '__main__': test() ``` #### File: tests/adv/test_solver_crt_xrb.py ```python import ares import numpy as np import matplotlib.pyplot as pl from ares.physics.Constants import erg_per_ev, c, ev_per_hz # Initialize radiation background pars = \ { # Source properties 'pop_type': 'galaxy', 'pop_sfrd': lambda z: 0.1, 'pop_sfrd_units': 'msun/yr/mpc^3', 'pop_sed': 'pl', 'pop_alpha': -1.5, 'pop_Emin': 1e2, 'pop_Emax': 3e4, 'pop_EminNorm': 5e2, 'pop_EmaxNorm': 8e3, 'pop_yield': 2.6e39, 'pop_yield_units': 'erg/s/sfr', 'pop_solve_rte': True, "pop_tau_Nz": 400, 'initial_redshift': 40., 'final_redshift': 10., } def test(Ecomp=8e3, tol=1e-2): mgb = ares.simulations.MetaGalacticBackground(**pars) mgb.run() """ First, look at background flux itself. """ z, E, flux = mgb.get_history(flatten=True) flux_thin = flux * E * erg_per_ev mask = slice(0, -1, 50) pl.scatter(E[mask], flux_thin[-1][mask], color='b', facecolors='none', s=100) # Grab GalaxyPopulation pop = mgb.pops[0] # Cosmologically-limited solution to the RTE # [Equation A1 in Mirocha (2014)] zi, zf = 40., 10. e_nu = np.array([pop.Emissivity(10., EE) for EE in E]) e_nu *= c / 4. / np.pi / pop.cosm.HubbleParameter(10.) e_nu *= (1. + 10.)**6. / -3. e_nu *= ((1. + 40.)**-3. - (1. + 10.)**-3.) e_nu *= ev_per_hz # Plot it pl.loglog(E, e_nu, color='k', ls='-') pl.xlabel(ares.util.labels['E']) pl.ylabel(ares.util.labels['flux_E']) """ Do neutral absorption in IGM. """ pars['pop_solve_rte'] = True pars['pop_approx_tau'] = 'neutral' pars['pop_tau_Nz'] = 400 mgb = ares.simulations.MetaGalacticBackground(**pars) mgb.run() z, E2, flux2 = mgb.get_history(flatten=True) flux_thick = flux2 * E2 * erg_per_ev pl.loglog(E2, flux_thick[-1], color='k', ls=':') pl.ylim(0.5 * e_nu[-1], e_nu[0] * 2) # Compare results at optically thin energy away from edges flux_comp_anl = e_nu[np.argmin(np.abs(Ecomp - E))] flux_comp_thin = flux_thin[-1][np.argmin(np.abs(Ecomp - E))] flux_comp_thick = flux_thick[-1][np.argmin(np.abs(Ecomp - E2))] thin_OK = abs((flux_comp_thin - flux_comp_anl) / flux_comp_anl) \ < tol thick_OK = abs((flux_comp_thick - flux_comp_anl) / flux_comp_anl) \ < tol print("\n# Analytic (thin) ; Numerical (thin) ; Numerical (neutral)") print("----------------------------------------------------------") print("{0:.8e} ; {1:.8e} ; {2:.8e}".format(\ flux_comp_anl, flux_comp_thin, flux_comp_thick)) print("----------------------------------------------------------") print("relative error : {0:.12f} ; {1:.12f}".format(\ abs((flux_comp_thin - flux_comp_anl) / flux_comp_anl), abs((flux_comp_thick - flux_comp_anl) / flux_comp_anl))) print("----------------------------------------------------------") pl.savefig('{!s}.png'.format(__file__.rstrip('.py'))) pl.close() assert thin_OK and thick_OK, \ "Relative error between analytical and numerical solutions exceeds {:.3g}.".format(tol) if __name__ == '__main__': test() ``` #### File: ares/tests/test_analysis_uvlf.py ```python import ares import numpy as np import matplotlib.pyplot as pl gpop = ares.analysis.GalaxyPopulation() redshifts = [3.8, 4.9, 5.9, 6.9, 7.9] pars = \ { 'pop_sfr_model': 'uvlf', # Stellar pop + fesc 'pop_sed': 'eldridge2009', 'pop_binaries': False, 'pop_Z': 0.02, 'pop_Emin': 10.19, 'pop_Emax': 24.6, 'pop_rad_yield': 'from_sed', # EminNorm and EmaxNorm arbitrary now # should make this automatic 'pop_uvlf': 'pq', 'pq_func': 'schechter_evol', 'pq_func_var': 'MUV', 'pq_func_var2': 'z', # Bouwens+ 2015 Table 6 for z=5.9 #'pq_func_par0[0]': 0.39e-3, #'pq_func_par1[0]': -21.1, #'pq_func_par2[0]': -1.90, # # phi_star 'pq_func_par0': np.log10(0.47e-3), 'pq_func_par4': -0.27, # z-pivot 'pq_func_par3': 6., # Mstar 'pq_func_par1': -20.95, 'pq_func_par5': 0.01, # alpha 'pq_func_par2': -1.87, 'pq_func_par6': -0.1, } def test(): mags = np.arange(-24, -10, 0.1) # Schechter fit from B15 pop_sch = ares.populations.GalaxyPopulation(**pars) # DPL SFE fit from my paper m17 = ares.util.ParameterBundle('mirocha2017:base').pars_by_pop(0,1) # Test suite doesn't download BPASS models, so supply L1600 by hand. m17['pop_sed'] = None m17['pop_lum_per_sfr'] = 1.019e28 m17['pop_calib_lum'] = None # Make the population pop_dpl = ares.populations.GalaxyPopulation(**m17) ax1 = None ax2 = None colors = 'b', 'g', 'gray', 'k', 'r' for i, z in enumerate(redshifts): # Plot the data ax1 = gpop.Plot(z=z, sources='bouwens2015', ax=ax1, color=colors[i], mec=colors[i], label=r'$z\sim {:d}$'.format(int(round(z, 0)))) # Plot the Bouwens Schechter fit ax1.semilogy(mags, pop_sch.LuminosityFunction(z, mags), color=colors[i], ls='-', lw=1) # My 2017 paper only looked at z > 6 if z < 5: continue ax2 = gpop.Plot(z=z, sources='bouwens2015', ax=ax2, color=colors[i], fig=2, mec=colors[i], label=r'$z\sim {:d}$'.format(int(round(z, 0)))) # Plot the physical model fit ax2.semilogy(mags, pop_dpl.LuminosityFunction(z, mags), color=colors[i], ls='-', lw=1) # Add z = 10 models and data from Oesch+ 2014 ax1.semilogy(mags, pop_sch.UVLF_M(MUV=mags, z=10.), color='m', ls=':', alpha=1, lw=1) ax2.semilogy(*pop_dpl.phi_of_M(z=10), color='m', ls=':', alpha=0.5) ax1 = gpop.Plot(z=10., sources='oesch2014', ax=ax1, color='m', mec='m', label=r'$z\sim 10$') ax2 = gpop.Plot(z=10., sources='oesch2014', ax=ax2, color='m', mec='m', label=r'$z\sim 10$') # Make nice ax1.legend(loc='lower right', fontsize=12, numpoints=1) ax2.legend(loc='lower right', fontsize=12, numpoints=1) ax1.set_title('Bouwens+ 2015 Fig. 15 (reproduced)', fontsize=12) ax2.set_title(r'Models from Mirocha+ 2017 (cal at $z \sim 6$ only)', fontsize=12) ax1.set_xlim(-24, -10) ax1.set_ylim(1e-7, 1) ax2.set_xlim(-24, -10) ax2.set_ylim(1e-7, 1) pl.show() pl.figure(1) pl.savefig('{!s}_1.png'.format(__file__[0:__file__.rfind('.')])) pl.close() pl.figure(2) pl.savefig('{!s}_2.png'.format(__file__[0:__file__.rfind('.')])) pl.close() assert True if __name__ == '__main__': test() ``` #### File: ares/tests/test_inference_cal_model.py ```python import os import glob import ares def test(): gpop = ares.analysis.GalaxyPopulation() pars = ares.util.ParameterBundle('mirocha2020:univ') pars['pop_thin_hist'] = 1 # speed-up pars['pop_dust_yield'] = 0 pars.update(ares.util.ParameterBundle('testing:galaxies')) # Test with standard 4-parameter SFE model cal = ares.inference.CalibrateModel(fit_lf=[6], fit_beta=False, free_params_sfe=['norm'], zevol_sfe=None, include_fduty=False, include_fdtmr=False, save_sam=False, save_smf=False, save_lf=True, save_beta=False, save_sfrd=True, ztol=0.21) cal.base_kwargs = pars blobs = cal.blobs assert len(cal.parameters) == 1 assert len(cal.guesses.keys()) == 1 assert cal.free_params_dust == [] # Run for a few steps cal.run(steps=1, burn=0, save_freq=1, prefix='test_lfcal', clobber=True) anl = ares.analysis.ModelSet('test_lfcal') assert anl.chain.shape == (2, 1), "Chain not the right shape." assert anl.logL.size == 2, "logL not the right size." axes = gpop.PlotSummary(anl, fig=1, use_best=True) # Add some dust cal = ares.inference.CalibrateModel(fit_lf=[6], fit_beta=[6], free_params_sfe=['norm', 'peak', 'slope-low', 'slope-high'], zevol_sfe=None, include_dust='screen', free_params_dust=['norm', 'slope', 'scatter'], zevol_dust=None, include_fduty=False, include_fdtmr=False, save_sam=True, save_smf=True, save_lf=True, save_beta=True, save_sfrd=True, ztol=0.21) cal.base_kwargs = pars blobs = cal.blobs assert len(cal.parameters) == 7 assert len(cal.guesses.keys()) == 7 assert len(cal.free_params_dust) == 3 guesses = cal.get_initial_walker_position() assert len(guesses.keys()) == 7 pars['pop_dust_yield'] = 0.4 pop = ares.populations.GalaxyPopulation(**pars) axes = gpop.PlotSummary(pop, fig=2) axes = gpop.PlotColorColor(pop, fig=3) # Clean-up mcmc_files = glob.glob('{}/test_lfcal*'.format(os.environ.get('ARES'))) # Iterate over the list of filepaths & remove each file. for fn in mcmc_files: try: os.remove(fn) except: print("Error while deleting file : ", filePath) if __name__ == '__main__': test() ``` #### File: ares/tests/test_physics_cosmology.py ```python import numpy as np from ares.physics import Cosmology from ares.physics.Constants import s_per_gyr, m_H, m_He, cm_per_mpc def test(rtol=1e-3): cosm = Cosmology() # Check some high-z limits cosm_appr = Cosmology(approx_highz=True) # Check critical density assert cosm.CriticalDensity(0.) == cosm.CriticalDensityNow # Make sure energy densities sum to unity assert np.allclose(cosm.omega_m_0, 1. - cosm.omega_l_0) # Make sure the age of the Universe is OK assert 13.5 <= cosm.t_of_z(0.) / s_per_gyr <= 14. # Check high-z limit for Hubble parameter. Better than 1%? H_n = cosm.HubbleParameter(30.) H_a = cosm_appr.HubbleParameter(30.) assert abs(H_n - H_a) / H_a < rtol, \ "Hubble parameter @ high-z not accurate to < {:.3g}%.".format(rtol) # Check high-z limit for comoving radial distance R_n = cosm_appr.ComovingRadialDistance(20., 30.) / cm_per_mpc R_a = cosm.ComovingRadialDistance(20., 30.) / cm_per_mpc assert abs(R_a - R_n) / R_a < rtol, \ "Comoving radial distance @ high-z not accurate to < {:.3g}%.".format(rtol) # Test a user-supplied cosmology and one that grabs a row from Planck chain # Remember: test suite doesn't have CosmoRec, so don't use get_inits_rec. cosm = Cosmology(cosmology_name='user', cosmology_id='jordan') cosm = Cosmology(cosmology_id=100) if __name__ == '__main__': test() ``` #### File: ares/tests/test_physics_cross_sections.py ```python import numpy as np import matplotlib.pyplot as pl from ares.physics.CrossSections import * def test(): E = np.logspace(np.log10(13.6), 4) sigma = PhotoIonizationCrossSection sigma_approx = ApproximatePhotoIonizationCrossSection fig1, ax1 = pl.subplots(1, 1) ax1.loglog(E, [sigma(EE, 0) for EE in E], color='k', ls='-', label=r'H') ax1.loglog(E, [sigma(EE, 1) for EE in E], color='k', ls='--', label=r'HeI') ax1.loglog(E, [sigma_approx(EE, 0) for EE in E], color='b', ls='-') ax1.loglog(E, [sigma_approx(EE, 1) for EE in E], color='b', ls='--') ax1.legend(frameon=False) ax1.set_xlim(10, 1e4) ax1.set_ylim(1e-25, 1e-16) ax1.set_xlabel(r'$h\nu \ (\mathrm{eV})$') ax1.set_ylabel(r'$\sigma_{\nu} \ (\mathrm{cm}^2)$') ax1.annotate(r'Verner & Ferland (1996)', (20, 1e-24), ha='left') ax1.annotate(r'Approximate', (20, 1e-25), color='b', ha='left') pl.savefig('{!s}.png'.format(__file__[0:__file__.rfind('.')])) pl.close() assert True if __name__ == '__main__': test() ``` #### File: ares/tests/test_physics_HI_wf.py ```python import ares import numpy as np import matplotlib.pyplot as pl def test(): Tarr = np.logspace(-1, 2) res = [] ls = ['-', '--', '--', ':', '-.'] labels = 'Chuzhoy+ \'05', 'Furlanetto \& Pritchard \'06', None, 'Hirata \'06' for i, method in enumerate([2,3,3.5,4]): hydr = ares.physics.Hydrogen(approx_Salpha=method) Sa = np.array([hydr.Sa(20., Tarr[k]) for k in range(Tarr.size)]) pl.plot(Tarr, 1 - Sa, color='k', ls=ls[i], label=labels[i]) res.append(Sa) # Check Ts while we're here Ts = hydr.SpinTemperature(20., hydr.cosm.Tgas(20.), 1, 0., 0.) pl.xlim(0.5, 100) pl.ylim(1e-1, 1.1) pl.xscale('log') pl.yscale('log') pl.xlabel(r'$T_K / \mathrm{K}$') pl.ylabel(r'$1-S_{\alpha}$') pl.legend(loc='lower left', frameon=False, fontsize=14) pl.savefig('{!s}.png'.format(__file__[0:__file__.rfind('.')])) pl.close() # Compare at T > 1 K ok = Tarr > 1. diff = np.abs(np.diff(res, axis=1)) # Just set to a level that I know is tight enough to pickup # any errors we might accidentally introduce later. assert np.all(diff.ravel() < 0.3) # Check frec for n in range(2, 31): frec = hydr.frec(n) assert hydr.Tbg is None # Check various limits dTb_sat = hydr.saturated_limit(10.) dTb_low = hydr.adiabatic_floor(10.) dTb_phy = hydr.dTb_no_astrophysics(10.) assert 0 <= dTb_sat <= 50 assert -350 <= dTb_low <= -200 assert abs(dTb_phy) < 1 if __name__ == '__main__': test() ``` #### File: ares/tests/test_sources_sps.py ```python import ares import numpy as np def test(): src = ares.sources.SynthesisModel(source_sed='eldridge2009', source_sed_degrade=100, source_Z=0.02) Ebar = src.AveragePhotonEnergy(13.6, 1e2) assert 13.6 <= Ebar <= 1e2 nu = src.frequencies ehat = src.emissivity_per_sfr beta = src.get_beta() assert -3 <= np.mean(beta) <= 2 if __name__ == '__main__': test() ``` #### File: ares/tests/test_util_readdata.py ```python import ares def test(): for src in ['mirocha2017', 'bouwens2015', 'finkelstein2015']: data = ares.util.read_lit(src) if __name__ == '__main__': test() ```
{ "source": "jlashner/hmf", "score": 3 }
#### File: hmf/hmf/cosmo.py ```python from . import _cache from astropy.cosmology import Planck13, FLRW, WMAP5, WMAP7, WMAP9, Planck15 from . import _framework import sys import astropy.units as u class Cosmology(_framework.Framework): """ Basic Cosmology object. This class thinly wraps cosmology objects from the astropy package. The full functionality of the astropy cosmology objects are available in the :attr:`cosmo` attribute. What the class adds to the existing astropy implementation is the specification of the cosmological parameters as `parameter` inputs to an over-arching Framework. In particular, while any instance of a subclass of :class:`astropy.cosmology.FLRW` may be passed as the base cosmology, the specific parameters can be updated individually by passing them through the `cosmo_params` dictionary (both in the constructor and the :meth:`update` method. This dictionary is kept in memory and so adding a different parameter on a later update will *update* the dictionary, rather than replacing it. To read a standard documented list of parameters, use ``Cosmology.parameter_info()``. If you want to just see the plain list of available parameters, use ``Cosmology.get_all_parameters()``. To see the actual defaults for each parameter, use ``Cosmology.get_all_parameter_defaults()``. """ def __init__(self, cosmo_model=Planck15, cosmo_params=None): # Call Framework init super(Cosmology, self).__init__() # Set all given parameters self.cosmo_model = cosmo_model self.cosmo_params = cosmo_params or {} #=========================================================================== # Parameters #=========================================================================== @_cache.parameter("model") def cosmo_model(self, val): """ The basis for the cosmology -- see astropy documentation. Can be a custom subclass. Defaults to Planck15. :type: instance of `astropy.cosmology.FLRW` subclass """ if isinstance(val, str): cosmo = get_cosmo(val) return cosmo if not isinstance(val, FLRW): raise ValueError("cosmo_model must be an instance of astropy.cosmology.FLRW") else: return val @_cache.parameter("param") def cosmo_params(self, val): """ Parameters for the cosmology that deviate from the base cosmology passed. This is useful for repeated updates of a single parameter (leaving others the same). Default is the empty dict. The parameters passed must match the allowed parameters of `cosmo_model`. For the basic class this is :Tcmb0: Temperature of the CMB at z=0 :Neff: Number of massless neutrino species :m_nu: Mass of neutrino species (list) :H0: The hubble constant at z=0 :Om0: The normalised matter density at z=0 :type: dict """ return val #=========================================================================== # DERIVED PROPERTIES AND FUNCTIONS #=========================================================================== @_cache.cached_quantity def cosmo(self): """ Cosmographic object (:class:`astropy.cosmology.FLRW` object), with custom cosmology from :attr:`~.cosmo_params` applied. """ return self.cosmo_model.clone(**self.cosmo_params) @_cache.cached_quantity def mean_density0(self): """ Mean density of universe at z=0, [Msun h^2 / Mpc**3] """ return (self.cosmo.Om0 * self.cosmo.critical_density0 / self.cosmo.h ** 2).to(u.Msun/u.Mpc**3).value def get_cosmo(name): """ Returns a FLRW cosmology given a string (must be one defined in this module). Parameters ---------- name : str The class name of the appropriate model """ if isinstance(getattr(sys.modules[__name__], name), FLRW): return getattr(sys.modules[__name__], name) else: raise ValueError("%s is not a valid cosmology" % name) ``` #### File: hmf/fitting/fit.py ```python import numpy as np from scipy.stats import norm from scipy.optimize import minimize from multiprocessing import cpu_count import time import warnings import pickle import copy import traceback import hmf.transfer_models as tm try: from emcee import EnsembleSampler as es HAVE_EMCEE = True # The following redefines the EnsembleSampler so that the pool object is not # pickled along with it (it can't be). def should_pickle(k): return k!="pool" # try: # pickle.dumps(v) # return True # except NotImplementedError: # return False class EnsembleSampler(es): def __getstate__(self): return dict((k, v) for (k, v) in list(self.__dict__.items()) if should_pickle(k)) except ImportError: HAVE_EMCEE = False def model(parm, h, self): """ Calculate the log probability of a model `h` [instance of :class:`hmf._framework.Framework`] with parameters ``parm``. At the moment, this is a little hacky, because the parameters have to be the first argument (for both Minimize and MCMC), so we use a function and pass self last. Parameters ---------- parm : list of floats The position of the model. Takes arbitrary parameters. h : instance of :class:`~_framework.Framework` An instance of any subclass of :class:`~_framework.Framework` with the desired options set. Variables of the estimation are updated within the routine. Returns ------- ll : float The log likelihood of the model at the given position. """ if self.verbose > 1: print(("Params: ", list(zip(self.attrs, parm)))) ll = 0 p = copy.copy(parm) for prior in self.priors: if type(prior.name) == list: index = [self.attrs.index(name) for name in prior.name] else: index = self.attrs.index(prior.name) ll += prior.ll(parm[index]) if np.isinf(ll): return ret_arg(ll, self.blobs) # If it is a log distribution, un-log it for use. if isinstance(prior, Log): p[index] = 10 ** parm[index] # Rebuild the hod dict from given vals # Any attr starting with <name>: is put into a dictionary. param_dict = {} for attr, val in zip(self.attrs, p): if ":" in attr: if attr.split(":")[0] not in param_dict: param_dict[attr.split(":")[0]] = {} param_dict[attr.split(":")[0]][attr.split(":")[1]] = val else: param_dict[attr] = val # Update the actual model try: # This try: except: should capture poor parameter choices quickly. h.update(**param_dict) except ValueError as e: if self.relax: print(("WARNING: PARAMETERS FAILED ON UPDATE, RETURNING INF: ", list(zip(self.attrs, parm)))) print(e) print((traceback.format_exc())) return ret_arg(-np.inf, self.blobs) else: print((traceback.format_exc())) raise e # Get the quantity to compare (if exceptions are raised, treat properly) try: q = getattr(h, self.quantity) except Exception as e: if self.relax: print(("WARNING: PARAMETERS FAILED WHEN CALCULATING QUANTITY, RETURNING INF: ", list(zip(self.attrs, parm)))) print(e) print((traceback.format_exc())) return ret_arg(-np.inf, self.blobs) else: print((traceback.format_exc())) raise e # The logprob of the model if self.cov: ll += _lognormpdf(q, self.data, self.sigma) else: ll += np.sum(norm.logpdf(self.data, loc=q, scale=self.sigma)) # Add the likelihood of the contraints for k, v in list(self.constraints.items()): ll += norm.logpdf(getattr(h, k), loc=v[0], scale=v[1]) if self.verbose > 2: print(("CONSTRAINT: ", k, getattr(h, k))) if self.verbose: print(("Likelihood: ", ll)) if self.verbose > 1 : print(("Update Dictionary: ", param_dict)) if self.verbose > 2: print(("Final Quantity: ", q)) # Get blobs to return as well. if self.blobs is not None: out = [] for b in self.blobs: if ":" not in b: out.append(getattr(h, b)) elif ":" in b: out.append(getattr(h, b.split(":")[0])[b.split(":")[1]]) return ll, out else: return ll def ret_arg(ll,blobs): if blobs is None: return ll else: return ll, blobs class Fit(object): """ Parameters ---------- priors : list of prior classes A list containing instances of :class:`.Prior` subclasses. These specify the prior information on each parameter. data : array_like The data to be compared to -- must be the same length as the intended quantity. Also must be free from NaN values or a ValueError will be raised. quantity : str The quantity to be compared (eg. ``"dndm"``) constraints : dict A dictionary with keys being quantity names, and values being length 2 collections with element 0 the desired value of the quantity, and element 1 the uncertainty. This is used in addition to the data to calculate the likelihood sigma : array_like If a vector, this is taken to be the standard deviation of the data. If a matrix, it is taken to be the covariance matrix of the data. blobs : list of str Names of quantities to be returned along with the chain. Must be a verbose : int, default 0 How much to write to screen. relax : bool, default False If relax is true, the call to get the quantity is wrapped in a try:except:. If an error occurs, the lognorm is set to -inf, rather than raising an exception. This can be helpful if a flat prior is used on cosmology, for which extreme values can sometimes cause exceptions. """ def __init__(self, priors, data, quantity, constraints, sigma, guess=[], blobs=None, verbose=0, relax=False): if len(priors) == 0: raise ValueError("priors must be at least length 1") else: self.priors = priors # Save which attributes are updatable as a list self.attrs = [] for prior in self.priors: if isinstance(prior.name, str): self.attrs += [prior.name] else: self.attrs += prior.name # Get the number of variables for MCMC self.ndim = len(self.attrs) # Ensure guess was set correctly. if guess and len(guess) != self.ndim: warnings.warn("Guess was set incorrectly: %s" % guess) guess = [] self.guess = self.get_guess(guess) if np.any(np.isnan(data)): raise ValueError("The data must contain no NaN values") self.data = data self.quantity = quantity self.sigma = sigma self.blobs = blobs self.verbose = verbose self.relax = relax self.constraints = constraints # Make sure sigma has right rank if len(self.sigma.shape) == 2: self.cov = True elif len(self.sigma.shape) == 1: self.cov = False else: raise ValueError("sigma must be an array of 1 or 2 dimensions, but has %s dim" % len(sigma.shape)) def get_guess(self, guess): # Set guess if not set if not guess: for prior in self.priors: if isinstance(prior, Uniform): guess += [(prior.high + prior.low) / 2] elif isinstance(prior, Normal): guess += [prior.mean] elif isinstance(prior, MultiNorm): guess += prior.means.tolist() return np.array(guess) def model(self, p, h): return model(p, h, self) class MCMC(Fit): def __init__(self, *args, **kwargs): if not HAVE_EMCEE: raise TypeError("You need emcee to use this class, aborting. ['pip install emcee']") super(MCMC, self).__init__(*args, **kwargs) def fit(self, sampler=None,h=None, nwalkers=100, nsamples=100, burnin=0, nthreads=0, chunks=None): """ Estimate the parameters in :attr:`.priors` using AIES MCMC. This routine uses the emcee package to run an MCMC procedure, fitting parameters passed in :attr:`.priors` to the given quantity. Parameters ---------- sampler : instance of :class:`EnsembleSampler` A sampler instance, which may already include samples from a previous run. h : instance of :class:`~hmf._framework.Framework` subclass, optional This instance will be updated with the variables of the minimization. Other desired options should have been set upon instantiation. Needed if `sampler` not present. nwalkers : int Number of walkers to use for Affine-Invariant Ensemble Sampler. nsamples : int, optional Number of samples that *each walker* will perform. burnin : int, optional Number of samples from each walker that will be initially erased as burnin. Note, this performs *additional* iterations, rather than consuming iterations from `nsamples`. nthreads : int, optional Number of threads to use in sampling. If nought, will automatically detect number of cores available. chunks : int, optional Number of samples to run before appending results to file. Only applicable if :attr:`.filename` is provided. Yields ------ sampler : :class:`EnsembleSampler` object The full sampling object, with chain, blobs, acceptance fraction etc. """ if sampler is None and h is None: raise ValueError("Either sampler or h must be given") # If using CAMB, nthreads MUST BE 1 if (h.transfer_model == "CAMB" or h.transfer_model == tm.CAMB): if any(p.startswith("cosmo_params:") for p in self.attrs): nthreads = 1 if not nthreads: # auto-calculate the number of threads to use if not set. nthreads = cpu_count() # This just makes sure that the caching works getattr(h, self.quantity) initial_pos=None if sampler is not None: if sampler.iterations>0: initial_pos = sampler.chain[:,-1,:] else: # Note, sampler CANNOT be an attribute of self, since self is passed to emcee. sampler = EnsembleSampler(nwalkers, self.ndim, model, args=[h, self], threads=nthreads) # Get initial positions if initial_pos is None: initial_pos = self.get_initial_pos(nwalkers) # Run a burn-in # If there are some samples already in the sampler, only run the difference. if burnin: initial_pos, lnprob,rstate,blobs0 = self._run_burnin(burnin,initial_pos) else: lnprob = None rstate = None blobs0 = None # Run the actual run if chunks == 0 or chunks > nsamples: chunks = nsamples start = time.time() for i, result in enumerate(sampler.sample(initial_pos, iterations=nsamples, lnprob0=lnprob, rstate0=rstate, blobs0=blobs0)): if (i + 1) % chunks == 0 or i + 1 == nsamples: yield sampler self.__sampler = sampler def get_and_del_sampler(self): """ Returns the sampler object if it exists (ie. fit has been called) and deletes it. This must be used to get the sampler if no chunks are being used. That is ``` F = MCMC(...) F.fit() sampler = F.get_and_del_sampler() ``` After being assigned, it is deleted since it cannot exist in the class when `.fit()` is called. """ sampler = self.__sampler del self.__sampler return sampler def get_initial_pos(self, nwalkers): # Get an initial value for all walkers, around a small ball near the initial guess stacked_val = self.guess.copy() for i in range(nwalkers - 1): stacked_val = np.vstack((self.guess, stacked_val)) i = 0 for prior in self.priors: if isinstance(prior, Uniform): stacked_val[:, i] += np.random.normal(loc=0.0, scale=0.05 * min((self.guess[i] - prior.low), (prior.high - self.guess[i])), size=nwalkers) i += 1 elif isinstance(prior, Normal): stacked_val[:, i] += np.random.normal(loc=0.0, scale=prior.sd, size=nwalkers) i += 1 elif isinstance(prior, MultiNorm): for j in range(len(prior.name)): stacked_val[:, i] += np.random.normal(loc=0.0, scale=np.sqrt(prior.cov[j, j]), size=nwalkers) i += 1 return stacked_val def _run_burnin(self,burnin,initial_pos): if type(burnin) == int: if burnin - self.sampler.iterations >0: initial_pos, lnprob, rstate,blobs0 = self.sampler.run_mcmc(initial_pos, burnin-self.sampler.iterations) self.sampler.reset() else: if burnin[0]-self.sampler.iterations > 0: initial_pos, lnprob, rstate,blobs0 = self.sampler.run_mcmc(initial_pos, burnin[0]-self.sampler.iterations) else: return initial_pos,None,None,None it_needed = burnin[1]*np.max(self.sampler.acor) while it_needed > self.sampler.iterations or it_needed<0: # if negative, probably ran fewer samples than lag. initial_pos, lnprob, rstate, blobs0 = self.sampler.run_mcmc(initial_pos, burnin[0]/2) it_needed = burnin[1]*np.max(self.sampler.acor) if self.sampler.iterations > burnin[2]: warnings.warn("Burnin FAILED... continuing (acor=%s)" % (it_needed)) if self.verbose > 0: burnin = self.sampler.iterations print(("Used %s samples for burnin" % self.sampler.iterations)) self.sampler.reset() return initial_pos, lnprob,rstate,blobs0 #=========================================================== # Minimize Fitting Routine #=========================================================== class Minimize(Fit): def __init__(self,*args,**kwargs): super(Minimize,self).__init__(*args,**kwargs) self.original_blobs = self.blobs + [] #add [] to copy it self.blobs = None def fit(self, h, disp=False, maxiter=50,tol=None,**minimize_kwargs): """ Run an optimization procedure to fit a model to data. Parameters ---------- h : instance of :class:`~hmf.framework.Framework` subclass This instance will be updated with the variables of the minimization. Other desired options should have been set upon instantiation. method : str, default ``"Nelder-Mead"`` The optimizing routine (see `scipy.optimize.minimize` for details). disp : bool, default False Whether to display optimization information while running. maxiter : int, default 30 Maximum number of iterations tol : float, default None Tolerance for termination \*\*kwargs : Arguments passed directly to :func:`scipy.optimize.minimize`. Returns ------- res : instance of :class:`scipy.optimize.Result` Contains the results of the minimization. Important attributes are the solution vector :attr:`x`, the number of iterations :attr:`nit`, whether the minimization was a success :attr:`success`, and the exit message :attr:`message`. """ # try to set some bounds bounds = [] for p in self.priors: if type(p.name) is list: bounds += p.bounds() else: bounds.append(p.bounds()) res = minimize(self.negmod, self.guess, (h,), tol=tol, options={"disp":disp, "maxiter":maxiter}, **minimize_kwargs) if hasattr(res,"hess_inv"): self.cov_matrix = res.hess_inv return res def negmod(self, *args): ll = self.model(*args) if np.isinf(ll): return 1e30 else: return -ll #=============================================================================== # Classes for different prior models #=============================================================================== class Prior(object): def ll(self, param): """ Returns the log-likelihood of the given parameter given the Prior """ pass def guess(self, *p): """ Returns an "initial guess" for the prior """ pass class Uniform(Prior): """ A Uniform prior. Parameters ---------- param : str The name of the parameter low : float The lower bound of the parameter high : float The upper bound of the parameter """ def __init__(self, param, low, high): self.name = param self.low = low self.high = high def ll(self, param): if param < self.low or param > self.high: return -np.inf else: return 0 def guess(self, *p): return (self.low + self.high) / 2 def bounds(self): return (self.low,self.high) class Log(Uniform): pass class Normal(Prior): """ A Gaussian prior. Parameters ---------- param : str Name of the parameter mean : float Mean of the prior distribution sd : float The standard deviation of the prior distribution """ def __init__(self, param, mean, sd): self.name = param self.mean = mean self.sd = sd def ll(self, param): return norm.logpdf(param, loc=self.mean, scale=self.sd) def guess(self, *p): return self.mean def bounds(self): return (self.mean-5*self.sd,self.mean+5*self.sd) class MultiNorm(Prior): """ A Multivariate Gaussian prior Parameters ---------- params : list of str Names of the parameters (in order) means : list of float Mean vector of the prior distribution cov : ndarray Covariance matrix of the prior distribution """ def __init__(self, params, mean, cov): self.name = params self.mean = mean self.cov = cov def ll(self, params): """ Here params should be a dict of key:values """ #params = np.array([params[k] for k in self.name]) return _lognormpdf(params, self.mean, self.cov) def guess(self, *p): """ p should be the parameter name """ return self.mean[self.name.index(p[0])] def bounds(self): return [(m+5*sd,m-5*sd) for m,sd in zip(self.mean,np.sqrt(np.diag(self.cov)))] def _lognormpdf(x, mu, S): """ Log of Multinormal PDF at x, up to scale-factors.""" err = x - mu return -0.5 * np.linalg.solve(S, err).T.dot(err) #=============================================================================== # COVARIANCE DATA FROM CMB MISSIONS #=============================================================================== # # Some data from CMB missions. # # All cov and mean data is in order of ["omegab_h2", "omegac_h2", "n", "sigma_8", "H0"] class CosmoCovData(object): def __init__(self, cov, mean, params): self.cov = cov self.mean = mean self.params = params def get_cov(self, *p): """ Return covariance matrix of given parameters *p """ if not all([str(pp) in self.params for pp in p]): raise AttributeError("One or more parameters passed are not in the data") indices = [self.params.index(str(k)) for k in p] return self.cov[indices, :][:, indices] def get_mean(self, *p): indices = [self.params.index(str(k)) for k in p] return self.mean[indices] def get_std(self, *p): cov = self.get_cov(*p) return np.sqrt([(cov[i, i]) for i in range(cov.shape[0])]) def get_normal_priors(self, *p): std = self.get_std(*p) mean = self.get_mean(*p) return [Normal("cosmo_params:" + pp, m, s) if p not in ["sigma_8", "n"] else Normal(pp, m, s) for pp, m, s in zip(p, mean, std)] def get_cov_prior(self, *p): cov = self.get_cov(*p) mean = self.get_mean(*p) p = ["cosmo_params:" + pp if pp not in ["sigma_8", "n"] else pp for pp in p] return MultiNorm(p, mean, cov) class FlatCovData(CosmoCovData): def __init__(self, cov, mean): params = ['Om0', 'Ob0', 'sigma_8', 'n', 'H0'] super(FlatCovData, self).__init__(cov, mean, params) WMAP3 = FlatCovData(cov=np.array([[ 1.294e-03, 1.298e-04, 1.322e-03, -1.369e-04, -1.153e-01], [1.298e-04, 1.361e-05, 1.403e-04, -7.666e-06, -1.140e-02], [1.322e-03, 1.403e-04, 2.558e-03, 2.967e-04, -9.972e-02], [-1.369e-04, -7.666e-06, 2.967e-04, 2.833e-04, 2.289e-02], [-1.153e-01, -1.140e-02, -9.972e-02, 2.289e-02, 1.114e+01 ]]), mean=np.array([ 2.409e-01, 4.182e-02, 7.605e-01, 9.577e-01, 7.321e+01 ])) WMAP5 = FlatCovData(cov=np.array([[ 9.514e-04, 9.305e-05, 8.462e-04, -1.687e-04, -8.107e-02], [9.305e-05, 9.517e-06, 8.724e-05, -1.160e-05, -7.810e-03], [8.462e-04, 8.724e-05, 1.339e-03, 1.032e-04, -6.075e-02], [-1.687e-04, -1.160e-05, 1.032e-04, 2.182e-04, 2.118e-02], [-8.107e-02, -7.810e-03, -6.075e-02, 2.118e-02, 7.421e+00 ]]), mean=np.array([ 2.597e-01, 4.424e-02, 7.980e-01, 9.634e-01, 7.180e+01 ])) WMAP7 = FlatCovData(cov=np.array([[ 8.862e-04, 8.399e-05, 7.000e-04, -2.060e-04, -7.494e-02], [8.399e-05, 8.361e-06, 7.000e-05, -1.500e-05, -7.003e-03], [7.000e-04, 7.000e-05, 1.019e-03, 4.194e-05, -4.987e-02], [-2.060e-04, -1.500e-05, 4.194e-05, 2.103e-04, 2.300e-02], [-7.494e-02, -7.003e-03, -4.987e-02, 2.300e-02, 6.770e+00 ]]), mean=np.array([ 2.675e-01, 4.504e-02, 8.017e-01, 9.634e-01, 7.091e+01 ])) WMAP9 = FlatCovData(cov=np.array([[ 6.854e-04, 6.232e-05, 4.187e-04, -2.180e-04, -5.713e-02], [6.232e-05, 5.964e-06, 4.048e-05, -1.643e-05, -5.134e-03], [4.187e-04, 4.048e-05, 5.644e-04, -1.037e-05, -2.945e-02], [-2.180e-04, -1.643e-05, -1.037e-05, 1.766e-04, 2.131e-02], [-5.713e-02, -5.134e-03, -2.945e-02, 2.131e-02, 5.003e+00]]), mean=np.array([ 2.801e-01, 4.632e-02, 8.212e-01, 9.723e-01, 6.998e+01 ])) Planck13 = FlatCovData(cov=np.array([[ 3.884e-04, 3.017e-05, -1.508e-04, -1.619e-04, -2.834e-02], [3.017e-05, 2.459e-06, -9.760e-06, -1.236e-05, -2.172e-03], [-1.508e-04, -9.760e-06, 7.210e-04, 1.172e-04, 1.203e-02], [-1.619e-04, -1.236e-05, 1.172e-04, 8.918e-05, 1.196e-02], [-2.834e-02, -2.172e-03, 1.203e-02, 1.196e-02, 2.093e+00 ]]), mean=np.array([ 3.138e-01, 4.861e-02, 8.339e-01, 9.617e-01, 6.741e+01 ])) Planck15 = FlatCovData(cov=np.array([[ 1.021e-04, 8.034e-06, -5.538e-05, -4.492e-05, -7.479e-03], [8.034e-06, 6.646e-07, -3.924e-06, -3.542e-06, -5.803e-04], [-5.538e-05, -3.924e-06, 3.308e-04, 4.343e-05, 4.250e-03], [-4.492e-05, -3.542e-06, 4.343e-05, 2.940e-05, 3.291e-03], [-7.479e-03, -5.803e-04, 4.250e-03, 3.291e-03, 5.531e-01 ]]), mean=np.array([ 3.114e-01, 4.888e-02, 8.460e-01, 9.669e-01, 6.758e+01 ])) ``` #### File: hmf/hmf/growth_factor.py ```python import numpy as np from scipy import integrate as intg from ._framework import Component as Cmpt from scipy.interpolate import InterpolatedUnivariateSpline as _spline from ._utils import inherit_docstrings as _inherit class GrowthFactor(Cmpt): r""" General class for a growth factor calculation. Each of the methods in this class is defined using a numerical integral, following [1]_. Parameters ---------- cosmo : ``astropy.cosmology.FLRW`` instance Cosmological model. \*\*model_parameters : unpack-dict Parameters specific to this model. In this case, available parameters are as follows.To see their default values, check the :attr:`_defaults` class attribute. :dlna: Step-size in log-space for scale-factor integration :amin: Minimum scale-factor (i.e.e maximum redshift) to integrate to. Only used for :meth:`growth_factor_fn`. References ---------- .. [1] Lukic et. al., ApJ, 2007, http://adsabs.harvard.edu/abs/2007ApJ...671.1160L """ _defaults = {"dlna":0.01, "amin":1e-8} def __init__(self, cosmo, **model_parameters): self.cosmo = cosmo super(GrowthFactor, self).__init__(**model_parameters) def _d_plus(self, z, getvec=False): """ Finds the factor :math:`D^+(a)`, from Lukic et. al. 2007, eq. 8. Parameters ---------- z : float The redshift getvec : bool, optional Whether to treat `z` as a maximum redshift and return a whole vector of values up to `z`. In this case, the minimum scale factor and the step size are defined in :attr:`_defaults` and can be over-ridden at instantiation. Returns ------- dplus : float The un-normalised growth factor. """ a_upper = 1.0 / (1.0 + z) lna = np.arange(np.log(self.params["amin"]), np.log(a_upper), self.params['dlna']) lna = np.hstack((lna,np.log(a_upper))) self._zvec = 1.0 / np.exp(lna) - 1.0 integrand = 1.0 / (np.exp(lna) * self.cosmo.efunc(self._zvec)) ** 3 if not getvec: integral = intg.simps(np.exp(lna) * integrand, x=lna,even="avg") dplus = 5.0 * self.cosmo.Om0 * self.cosmo.efunc(z) * integral / 2.0 else: integral = intg.cumtrapz(np.exp(lna) * integrand, x=lna, initial=0.0) dplus = 5.0 * self.cosmo.Om0 * self.cosmo.efunc(self._zvec) * integral / 2.0 return dplus def growth_factor(self, z): """ Calculate :math:`d(a) = D^+(a)/D^+(a=1)`, from Lukic et. al. 2007, eq. 7. Parameters ---------- z : float The redshift Returns ------- float The normalised growth factor. """ growth = self._d_plus(z)/self._d_plus(0.0) return growth def growth_factor_fn(self, zmin=0.0, inverse=False): """ Calculate :math:`d(a) = D^+(a)/D^+(a=1)`, from Lukic et. al. 2007, eq. 7. Returns a function G(z). Parameters ---------- zmin : float, optional The minimum redshift of the function. Default 0.0 inverse: bool, optional Whether to return the inverse relationship [z(g)]. Default False. Returns ------- callable The normalised growth factor as a function of redshift, or redshift as a function of growth factor if ``inverse`` is True. """ dp = self._d_plus(0.0, True) growth = dp / dp[-1] if not inverse: s = _spline(self._zvec[::-1], growth[::-1]) else: s = _spline(growth, self._zvec) return s def growth_rate(self, z): """ Growth rate, dln(d)/dln(a) from Hamilton 2000 eq. 4 Parameters ---------- z : float The redshift """ return (-1 - self.cosmo.Om(z) / 2 + self.cosmo.Ode(z) + 5 * self.cosmo.Om(z) / (2 * self.growth_factor(z))) def growth_rate_fn(self, zmin=0): """ Growth rate, dln(d)/dln(a) from Hamilton 2000 eq. 4, as callable. Parameters ---------- zmin : float, optional The minimum redshift of the function. Default 0.0 Returns ------- callable The normalised growth rate as a function of redshift. """ gfn = self.growth_factor_fn(zmin) return lambda z: (-1 - self.cosmo.Om(z) / 2 + self.cosmo.Ode(z) + 5 * self.cosmo.Om(z) / (2 * gfn(z))) @_inherit class GenMFGrowth(GrowthFactor): """ Port of growth factor routines found in the ``genmf`` code. Parameters ---------- cosmo : ``astropy.cosmology.FLRW`` instance Cosmological model. \*\*model_parameters : unpack-dict Parameters specific to this model. In this case, available parameters are as follows.To see their default values, check the :attr:`_defaults` class attribute. :dz: Step-size for redshift integration :zmax: Maximum redshift to integrate to. Only used for :meth:`growth_factor_fn`. """ _defaults = {"dz":0.01, "zmax":1000.0} def _d_plus(self, z, getvec=False): """ This is not implemented in this class. It is not required to calculate :meth:`growth_factor`. """ raise NotImplementedError() def _general_case(self, w, x): x = np.atleast_1d(x) xn_vec = np.linspace(0, x.max(), 1000) func = _spline(xn_vec,(xn_vec / (xn_vec ** 3 + 2)) ** 1.5) g = np.array([func.integral(0,y) for y in x]) return ((x ** 3.0 + 2.0) ** 0.5) * (g / x ** 1.5) def growth_factor(self, z): """ The growth factor, :math:`d(a) = D^+(a)/D^+(a=1)`. This uses an approximation only valid in closed or flat cosmologies, ported from ``genmf``. Parameters ---------- z : array_like Redshift. Returns ------- gf : array_like The growth factor at `z`. """ a = 1 / (1 + z) w = 1 / self.cosmo.Om0 - 1.0 s = 1 - self.cosmo.Ok0 if (s > 1 or self.cosmo.Om0 < 0 or (s != 1 and self.cosmo.Ode0 > 0)): if np.abs(s - 1.0) > 1.e-10: raise ValueError('Cannot cope with this cosmology!') if self.cosmo.Om0 == 1: return a elif self.cosmo.Ode0 > 0: xn = (2.0 * w) ** (1.0 / 3) aofxn = self._general_case(w, xn) x = a * xn aofx = self._general_case(w, x) return aofx / aofxn else: dn = 1 + 3 / w + (3 * ((1 + w) ** 0.5) / w ** 1.5) * np.log((1 + w) ** 0.5 - w ** 0.5) x = w * a return (1 + 3 / x + (3 * ((1 + x) ** 0.5) / x ** 1.5) * np.log((1 + x) ** 0.5 - x ** 0.5)) / dn def growth_factor_fn(self, zmin=0.0, inverse=False): """ Return the growth factor as a callable function. Parameters ---------- zmin : float, optional The minimum redshift of the function. Default 0.0 inverse: bool, optional Whether to return the inverse relationship [z(g)]. Default False. Returns ------- callable The normalised growth factor as a function of redshift, or redshift as a function of growth factor if ``inverse`` is True. """ if not inverse: return self.growth_factor else: self._zvec = np.arange(zmin, self.params['zmax'], self.params['dz']) gf = self.growth_factor(self._zvec) return _spline(gf[::-1], self._zvec[::-1]) @_inherit class Carroll1992(GrowthFactor): """ Analytic approximation for the growth factor from Carroll et al. 1992. Adapted from chomp project. Parameters ---------- cosmo : ``astropy.cosmology.FLRW`` instance Cosmological model. \*\*model_parameters : unpack-dict Parameters specific to this model. In this case, available parameters are as follows.To see their default values, check the :attr:`_defaults` class attribute. :dz: Step-size for redshift spline :zmax: Maximum redshift of spline. Only used for :meth:`growth_factor_fn`, when `inverse=True`. """ _defaults = {"dz":0.01, "zmax":1000.0} def _d_plus(self, z, getvec=False): """ Calculate un-normalised growth factor as a function of redshift. Note that the `getvec` argument is not used in this function. """ a = 1 / (1 + z) om = self.cosmo.Om0/a ** 3 denom = self.cosmo.Ode0 + om Omega_m = om/denom Omega_L = self.cosmo.Ode0/denom coeff = 5.*Omega_m/(2./a) term1 = Omega_m**(4./7.) term3 = (1. + 0.5*Omega_m)*(1. + Omega_L/70.) return coeff/(term1 - Omega_L + term3) def growth_factor(self, z): """ The growth factor, :math:`d(a) = D^+(a)/D^+(a=1)`. Parameters ---------- z : array_like Redshift. Returns ------- gf : array_like The growth factor at `z`. """ return self._d_plus(z)/self._d_plus(0.0) def growth_factor_fn(self, zmin=0.0, inverse=False): """ Return the growth factor as a callable function. Parameters ---------- zmin : float, optional The minimum redshift of the function. Default 0.0 inverse: bool, optional Whether to return the inverse relationship [z(g)]. Default False. Returns ------- callable The normalised growth factor as a function of redshift, or redshift as a function of growth factor if ``inverse`` is True. """ if not inverse: return self.growth_factor else: self._zvec = np.arange(zmin, self.params['zmax'], self.params['dz']) gf = self.growth_factor(self._zvec) return _spline(gf[::-1], self._zvec[::-1]) ``` #### File: hmf/hmf/integrate_hmf.py ```python from scipy.interpolate import InterpolatedUnivariateSpline as _spline import numpy as np import scipy.integrate as intg class NaNException(Exception): pass def hmf_integral_gtm(M, dndm, mass_density=False): """ Cumulatively integrate dn/dm. Parameters ---------- M : array_like Array of masses. dndm : array_like Array of dn/dm (corresponding to M) mass_density : bool, `False` Whether to calculate mass density (or number density). Returns ------- ngtm : array_like Cumulative integral of dndm. Examples -------- Using a simple power-law mass function: >>> import numpy as np >>> m = np.logspace(10,18,500) >>> dndm = m**-2 >>> ngtm = hmf_integral_gtm(m,dndm) >>> np.allclose(ngtm,1/m) #1/m is the analytic integral to infinity. True The function always integrates to m=1e18, and extrapolates with a spline if data not provided: >>> m = np.logspace(10,12,500) >>> dndm = m**-2 >>> ngtm = hmf_integral_gtm(m,dndm) >>> np.allclose(ngtm,1/m) #1/m is the analytic integral to infinity. True """ # Eliminate NaN's m = M[np.logical_not(np.isnan(dndm))] dndm = dndm[np.logical_not(np.isnan(dndm))] dndlnm = m * dndm if len(m) < 4: raise NaNException("There are too few real numbers in dndm: len(dndm) = %s, #NaN's = %s" % (len(M), len(M) - len(dndm))) # Calculate the mass function (and its integral) from the highest M up to 10**18 if m[-1] < m[0] * 10 ** 18 / m[3]: m_upper = np.arange(np.log(m[-1]), np.log(10 ** 18), np.log(m[1]) - np.log(m[0])) mf_func = _spline(np.log(m), np.log(dndlnm), k=1) mf = mf_func(m_upper) if not mass_density: int_upper = intg.simps(np.exp(mf), dx=m_upper[2] - m_upper[1], even='first') else: int_upper = intg.simps(np.exp(m_upper + mf), dx=m_upper[2] - m_upper[1], even='first') else: int_upper = 0 # Calculate the cumulative integral (backwards) of [m*]dndlnm if not mass_density: ngtm = np.concatenate((intg.cumtrapz(dndlnm[::-1], dx=np.log(m[1]) - np.log(m[0]))[::-1], np.zeros(1))) else: ngtm = np.concatenate((intg.cumtrapz(m[::-1] * dndlnm[::-1], dx=np.log(m[1]) - np.log(m[0]))[::-1], np.zeros(1))) return (ngtm + int_upper) ``` #### File: hmf/hmf/sample.py ```python import numpy as np from . import hmf from scipy.interpolate import InterpolatedUnivariateSpline as _spline def _prepare_mf(log_mmin, **mf_kwargs): h = hmf.MassFunction(Mmin=log_mmin, **mf_kwargs) mask = h.ngtm>0 icdf = _spline((h.ngtm[mask] / h.ngtm[0])[::-1], np.log10(h.m[mask][::-1]), k=3) return icdf, h def _choose_halo_masses_num(N,icdf): # Generate random variates from 0 to maxcum x = np.random.random(int(N)) # Generate halo masses from mf distribution m = 10 ** icdf(x) return m def sample_mf(N,log_mmin, sort=False, **mf_kwargs): """ Create a sample of halo masses from a theoretical mass function. Parameters ---------- N : int Number of samples to draw log_mmin : float Log10 of the minimum mass to sample [Msun/h] sort : bool, optional Whether to sort (in descending order of mass) the output masses. mf_kwargs : keywords Anything passed to :class:`hmf.MassFunction` to create the mass function which is sampled. Returns ------- m : array_like The masses hmf : `hmf.MassFunction` instance The instance used to define the mass function. Examples -------- Simplest example: >>> m,hmf = sample_mf(1e5,11.0) Or change the mass function: >>> m,hmf = sample_mf(1e6,10.0,hmf_model="PS",Mmax=17) """ icdf, h = _prepare_mf(log_mmin, **mf_kwargs) m = _choose_halo_masses_num(N,icdf) if sort: m.sort() return m[::-1], h def dndm_from_sample(m,V,nm=None, bins=50): """ Generate a binned dn/dm from a sample of halo masses. Parameters ---------- m : array_like A sample of masses V : float Physical volume of the sample nm : array_like A multiplicity of each of the masses -- useful for samples from simulations in which the number of unique masses is much smaller than the total sample. bins : int or array Specifies bins (in log10-space!) for the sample. See `numpy.histogram` for more details. Returns ------- centres : array_like The centres of the bins. hist : array_like The value of dn/dm in each bin. Notes ----- The "centres" of the bins are located as the midpoint in log10-space. If one does not have the volume, it can be calculated as N/n(>mmin). """ hist, edges = np.histogram(np.log10(m), bins,weights=nm) centres = (edges[1:] + edges[:-1]) / 2 dx = centres[1] - centres[0] hist = hist.astype("float") / (10 ** centres * float(V) * dx * np.log(10)) if hist[0]==0: try: hist0 = np.where(hist != 0)[0][0] hist[hist0] = np.nan except IndexError: pass if hist[-1]==0: try: histN = np.where(hist != 0)[0][-1] hist[histN] = np.nan except IndexError: pass return centres, hist ``` #### File: hmf/tests/test_filters.py ```python import inspect import os LOCATION = "/".join(os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))).split("/")[:-1]) import sys sys.path.insert(0, LOCATION) from hmf import filters import numpy as np from numpy import sin, cos, pi import warnings from scipy.special import gamma # Need to do the following to catch repeated warnings. warnings.simplefilter("always",UserWarning) class TestTopHat(object): def __init__(self): k = np.logspace(-6,0,10000) pk = k**2 self.cls = filters.TopHat(k,pk) def test_sigma(self): R = 1.0 true =(9*R**2*sin(R)**2/2 + 9*R**2*cos(R)**2/2 + 9*R*sin(R)*cos(R)/2 - 9*sin(R)**2)/(2*pi**2*R**6) print(true,self.cls.sigma(R)**2) assert np.isclose(self.cls.sigma(R)[0]**2,true) def test_sigma1(self): R = 1.0 true = (3*R**2*sin(R)**2/2 + 3*R**2*cos(R)**2/2 + 9*R*sin(R)*cos(R)/2 - 9*sin(R)**2/4 + 45*cos(R)**2/4 - 45*sin(R)*cos(R)/(4*R))/(2*pi**2*R**6) print(true,self.cls.sigma(R,1)**2) assert np.isclose(self.cls.sigma(R,1)[0]**2,true) def test_dwdlnkr(self): x = 1.0 true = x*(3*sin(x)/x**2 - 3*(-3*x*cos(x) + 3*sin(x))/x**4) assert np.isclose(self.cls.dw_dlnkr(x),true) def test_dlnssdlnr(self): R = 1.0 true = 2*R**4*(-45*sin(R)**2/(4*R**2) - 27*cos(R)**2/(4*R**2) - 81*sin(R)*cos(R)/(4*R**3) + 27*sin(R)**2/R**4)/(9*R**2*sin(R)**2/2 + 9*R**2*cos(R)**2/2 + 9*R*sin(R)*cos(R)/2 - 9*sin(R)**2) print(true, self.cls.dlnss_dlnr(R)) assert np.isclose(self.cls.dlnss_dlnr(R),true) class TestSharpK(object): def __init__(self): k = np.logspace(-6,0,10000) pk = k**2 self.cls = filters.SharpK(k,pk) def test_sigma(self): R = 1.0 t = 2 + 2 + 1 true = 1./(2*pi**2 * t * R**t) print(true,self.cls.sigma(R)**2) assert np.isclose(self.cls.sigma(R)[0]**2,true) def test_sigma1(self): R = 1.0 t = 4 + 2 + 1 true = 1./(2*pi**2 * t * R**t) print(true,self.cls.sigma(R,1)**2) assert np.isclose(self.cls.sigma(R,1)[0]**2,true) def test_dlnssdlnr(self): R = 1.0 t = 2 + 2 + 1 sigma2 = 1./(2*pi**2 * t * R**t) true = -1./(2*pi**2*sigma2 * R**(3+2)) print(true, self.cls.dlnss_dlnr(R)) assert np.isclose(self.cls.dlnss_dlnr(R),true) def test_sigma_R3(self): R = 3.0 t = 2 + 2 + 1 true = 1./(2*pi**2 * t * R**t) print(true,self.cls.sigma(R)**2) assert np.isclose(self.cls.sigma(R)[0]**2,true) def test_sigma1_R3(self): R = 3.0 t = 4 + 2 + 1 true = 1./(2*pi**2 * t * R**t) print(true,self.cls.sigma(R,1)**2) assert np.isclose(self.cls.sigma(R,1)[0]**2,true) def test_dlnssdlnr_R3(self): R = 3.0 t = 2 + 2 + 1 sigma2 = 1./(2*pi**2 * t * R**t) true = -1./(2*pi**2*sigma2 * R**(3+2)) print(true, self.cls.dlnss_dlnr(R)) assert np.isclose(self.cls.dlnss_dlnr(R),true) def test_sigma_Rhalf(self): # should also raise a warning R = 0.5 thisr = 1./self.cls.k.max() t = 2 + 2 + 1 true = 1./(2*pi**2 * t * thisr**t) with warnings.catch_warnings(record=True) as w: s2 = self.cls.sigma(R)[0]**2 assert w print(s2,true) assert np.isclose(s2,true) def test_sigma1_Rhalf(self): # should also raise a warning R = 0.5 thisr = 1./self.cls.k.max() t = 4 + 2 + 1 true = 1./(2*pi**2 * t * thisr**t) with warnings.catch_warnings(record=True) as w: s2 = self.cls.sigma(R,1)[0]**2 assert w print(s2,true) assert np.isclose(s2,true) def test_dlnssdlnr_Rhalf(self): R = 3.0 t = 2 + 2 + 1 sigma2 = 1./(2*pi**2 * t * R**t) true = -1./(2*pi**2*sigma2 * R**(3+2)) print(true, self.cls.dlnss_dlnr(R)) assert np.isclose(self.cls.dlnss_dlnr(R),true) class TestGaussian(object): def __init__(self): k = np.logspace(-6,1,80) pk = k**2 self.cls = filters.Gaussian(k,pk) def test_sigma(self): R = 10.0 true = 3./(16*pi**(3./2.)*R**5) print(true,self.cls.sigma(R)**2) assert np.isclose(self.cls.sigma(R)[0]**2,true) def test_sigma1(self): R = 10.0 true = 15/(32*pi**(3./2.)*R**7) print(true,self.cls.sigma(R,1)**2) assert np.isclose(self.cls.sigma(R,1)[0]**2,true) def test_dlnssdlnr(self): R = 10.0 true = -5 print(true, self.cls.dlnss_dlnr(R)) assert np.isclose(self.cls.dlnss_dlnr(R),true) ``` #### File: hmf/tests/test_framework.py ```python import inspect import os LOCATION = "/".join(os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))).split("/")[:-1]) from nose.tools import raises import sys sys.path.insert(0, LOCATION) from hmf import hmf @raises(TypeError) def test_incorrect_argument(): t = hmf.MassFunction(wrong_arg=3) @raises(ValueError) def test_incorrect_update_arg(): t = hmf.MassFunction() t.update(wrong_arg=3) class TestIntrospection(object): def __init__(self): self.cls = hmf.MassFunction self.inst = self.cls(z=10) def test_parameter_names(self): assert "cosmo_model" in self.cls.get_all_parameter_names() def test_parameter_defaults(self): assert type(self.cls.get_all_parameter_defaults(recursive=False)) is dict assert self.cls.get_all_parameter_defaults()['z'] == 0 def test_parameter_default_rec(self): pd = self.cls.get_all_parameter_defaults(recursive=True) assert type(pd['cosmo_params']) is dict def test_param_values(self): assert type(self.inst.parameter_values) is dict assert self.inst.parameter_values['z'] == 10 def test_qnt_avail(self): assert 'dndm' in self.cls.quantities_available() def test_parameter_info(self): assert self.cls.parameter_info() is None assert self.cls.parameter_info(names=['z']) is None ```
{ "source": "jlaska/pytest-trello", "score": 2 }
#### File: jlaska/pytest-trello/test_pytest_trello.py ```python import pytest import inspect import re from _pytest.main import EXIT_OK, EXIT_NOTESTSCOLLECTED pytest_plugins = 'pytester', OPEN_CARDS = ['https://trello.com/c/open1234', 'https://trello.com/c/open4321'] CLOSED_CARDS = ['https://trello.com/c/closed12', 'https://trello.com/c/closed21'] ALL_CARDS = OPEN_CARDS + CLOSED_CARDS def assert_outcome(result, passed=0, failed=0, skipped=0, xpassed=0, xfailed=0): '''This method works around a limitation where pytester assertoutcome() doesn't support xpassed and xfailed. ''' actual_count = dict(passed=0, failed=0, skipped=0, xpassed=0, xfailed=0) reports = filter(lambda x: hasattr(x, 'when'), result.getreports()) for report in reports: if report.when == 'setup': if report.skipped: actual_count['skipped'] += 1 elif report.when == 'call': if hasattr(report, 'wasxfail'): if report.failed: actual_count['xpassed'] += 1 elif report.skipped: actual_count['xfailed'] += 1 else: actual_count[report.outcome] += 1 else: continue assert passed == actual_count['passed'] assert failed == actual_count['failed'] assert skipped == actual_count['skipped'] assert xfailed == actual_count['xfailed'] assert xpassed == actual_count['xpassed'] class PyTestOption(object): def __init__(self, config=None): self.config = config @property def args(self): args = list() if self.config.getoption('trello_api_key') is not None: args.append('--trello-api-key') args.append(self.config.getoption('trello_api_key')) if self.config.getoption('trello_api_token') is not None: args.append('--trello-api-token') args.append(self.config.getoption('trello_api_token')) for completed in self.config.getoption('trello_completed'): args.append('--trello-completed') args.append('"%s"' % completed) return args def mock_trello_card_get(self, card_id, **kwargs): '''Returns JSON representation of an trello card.''' if card_id.startswith("closed"): is_closed = True else: is_closed = False return { "labels": [], "pos": 33054719, "manualCoverAttachment": False, "badges": {}, "id": "550c37c5226dd7241a61372f", "idBoard": "54aeece5d8b09a1947f34050", "idShort": 334, "shortUrl": "https://trello.com/c/%s" % card_id, "closed": False, "email": "<EMAIL>", "dateLastActivity": "2015-03-20T15:12:29.735Z", "idList": "%s53f20bbd90cfc68effae9544" % (is_closed and 'closed' or 'open'), "idLabels": [], "idMembers": [], "checkItemStates": [], "name": "mock trello card - %s" % (is_closed and 'closed' or 'open'), "desc": "mock trello card - %s" % (is_closed and 'closed' or 'open'), "descData": {}, "url": "https://trello.com/c/%s" % card_id, "idAttachmentCover": None, "idChecklists": [] } def mock_trello_list_get(self, list_id, **kwargs): '''Returns JSON representation of a trello list containing open cards.''' if list_id.startswith("closed"): is_closed = True else: is_closed = False return { "pos": 124927.75, "idBoard": "54aeece5d8b09a1947f34050", "id": list_id, "closed": False, "name": is_closed and "Done" or "Not Done" } @pytest.fixture() def option(request): return PyTestOption(request.config) @pytest.fixture() def monkeypatch_trello(request, monkeypatch): monkeypatch.delattr("requests.get") monkeypatch.delattr("requests.sessions.Session.request") monkeypatch.setattr('trello.cards.Cards.get', mock_trello_card_get) monkeypatch.setattr('trello.lists.Lists.get', mock_trello_list_get) def test_plugin_markers(testdir): '''Verifies expected output from of py.test --markers''' result = testdir.runpytest('--markers') result.stdout.fnmatch_lines([ '@pytest.mark.trello(*cards): Trello card integration', ]) def test_plugin_help(testdir): '''Verifies expected output from of py.test --help''' result = testdir.runpytest('--help') result.stdout.fnmatch_lines([ 'pytest-trello:', '* --trello-cfg=TRELLO_CFG', '* --trello-api-key=TRELLO_API_KEY', '* --trello-api-token=TRELLO_API_TOKEN', '* --trello-completed=TRELLO_COMPLETED', '* --show-trello-cards *', ]) def test_param_trello_cfg_without_value(testdir, option, monkeypatch_trello): '''Verifies failure when not providing a value to the --trello-cfg parameter''' result = testdir.runpytest(*['--trello-cfg']) assert result.ret == 2 result.stderr.fnmatch_lines([ '*: error: argument --trello-cfg: expected one argument', ]) def test_param_trello_cfg_with_no_such_file(testdir, option, monkeypatch_trello, capsys): '''Verifies pytest-trello ignores any bogus files passed to --trello-cfg''' result = testdir.runpytest(*['--trello-cfg', 'asdfasdf']) assert result.ret == EXIT_NOTESTSCOLLECTED # FIXME - assert actual log.warning message # No trello configuration file found matching: def test_param_trello_cfg_containing_no_data(testdir, option, monkeypatch_trello, capsys): '''Verifies pytest-trello ignores --trello-cfg files that contain bogus data''' # Create bogus config file for testing cfg_file = testdir.makefile('.txt', '') # Run with parameter (expect pass) result = testdir.runpytest(*['--trello-cfg', str(cfg_file)]) assert result.ret == EXIT_OK # FIXME - assert actual log.warning message # No trello configuration file found matching: def test_param_trello_cfg(testdir, option, monkeypatch_trello, capsys): '''Verifies pytest-trello loads completed info from provided --trello-cfg parameter''' # Create trello.yml config for testing contents = ''' trello: key: '' token: '' completed: - 'Not Done' ''' cfg_file = testdir.makefile('.yml', contents) # The following would normally xpass, but when completed=['Not Done'], it # will just pass src = """ import pytest @pytest.mark.trello('%s') def test_func(): assert True """ % OPEN_CARDS[0] result = testdir.inline_runsource(src, *['--trello-cfg', str(cfg_file)]) assert result.ret == EXIT_OK assert_outcome(result, passed=1) def test_param_trello_api_key_without_value(testdir, option, monkeypatch_trello, capsys): '''Verifies failure when not passing --trello-api-key an option''' # Run without parameter (expect fail) result = testdir.runpytest(*['--trello-api-key']) assert result.ret == 2 result.stderr.fnmatch_lines([ '*: error: argument --trello-api-key: expected one argument', ]) def test_param_trello_api_key_with_value(testdir, option, monkeypatch_trello, capsys): '''Verifies success when passing --trello-api-key an option''' result = testdir.runpytest(*['--trello-api-key', 'asdf']) assert result.ret == EXIT_NOTESTSCOLLECTED # TODO - would be good to assert some output def test_param_trello_api_token_without_value(testdir, option, monkeypatch_trello, capsys): '''Verifies failure when not passing --trello-api-token an option''' result = testdir.runpytest(*['--trello-api-token']) assert result.ret == 2 result.stderr.fnmatch_lines([ '*: error: argument --trello-api-token: expected one argument', ]) def test_param_trello_api_token_with_value(testdir, option, monkeypatch_trello, capsys): '''Verifies success when passing --trello-api-token an option''' result = testdir.runpytest(*['--trello-api-token', 'asdf']) assert result.ret == EXIT_NOTESTSCOLLECTED # TODO - would be good to assert some output def test_pass_without_trello_card(testdir, option): '''Verifies test success when no trello card is supplied''' testdir.makepyfile(""" import pytest def test_func(): assert True """) result = testdir.runpytest(*option.args) assert result.ret == EXIT_OK assert result.parseoutcomes()['passed'] == 1 def test_fail_without_trello_card(testdir, option): '''Verifies test failure when no trello card is supplied''' testdir.makepyfile(""" import pytest def test_func(): assert False """) result = testdir.runpytest(*option.args) assert result.ret == 1 assert result.parseoutcomes()['failed'] == 1 def test_success_with_open_card(testdir, option, monkeypatch_trello): '''Verifies when a test succeeds with an open trello card''' src = """ import pytest @pytest.mark.trello('%s') def test_func(): assert True """ % OPEN_CARDS[0] # result = testdir.runpytest(*option.args) # assert result.ret == EXIT_OK # assert result.parseoutcomes()['xpassed'] == 1 result = testdir.inline_runsource(src, *option.args) assert_outcome(result, xpassed=1) def test_success_with_open_cards(testdir, option, monkeypatch_trello): '''Verifies when a test succeeds with open trello cards''' src = """ import pytest @pytest.mark.trello(*%s) def test_func(): assert True """ % OPEN_CARDS # testdir.makepyfile(src) # result = testdir.runpytest(*option.args) # assert result.ret == EXIT_OK # assert result.parseoutcomes()['xpassed'] == 1 result = testdir.inline_runsource(src, *option.args) assert_outcome(result, xpassed=1) def test_failure_with_open_card(testdir, option, monkeypatch_trello): '''Verifies when a test fails with an open trello card''' src = """ import pytest @pytest.mark.trello('%s') def test_func(): assert False """ % OPEN_CARDS[0] # testdir.makepyfile(src) # result = testdir.runpytest(*option.args) # assert result.ret == EXIT_OK # assert result.parseoutcomes()['xfailed'] == 1 result = testdir.inline_runsource(src, *option.args) assert_outcome(result, xfailed=1) def test_failure_with_open_cards(testdir, option, monkeypatch_trello): '''Verifies when a test fails with open trello cards''' src = """ import pytest @pytest.mark.trello(*%s) def test_func(): assert False """ % OPEN_CARDS # testdir.makepyfile(src) # result = testdir.runpytest(*option.args) # assert result.ret == EXIT_OK # assert result.parseoutcomes()['xfailed'] == 1 result = testdir.inline_runsource(src, *option.args) assert_outcome(result, xfailed=1) def test_failure_with_closed_card(testdir, option, monkeypatch_trello): '''Verifies when a test fails with a closed trello card''' src = """ import pytest @pytest.mark.trello('%s') def test_func(): assert False """ % CLOSED_CARDS[0] # testdir.makepyfile(src) # result = testdir.runpytest(*option.args) # assert result.ret == 1 # assert result.parseoutcomes()['failed'] == 1 result = testdir.inline_runsource(src, *option.args) assert_outcome(result, failed=1) def test_failure_with_closed_cards(testdir, option, monkeypatch_trello): '''Verifies when a test fails with closed trello cards''' src = """ import pytest @pytest.mark.trello(*%s) def test_func(): assert False """ % CLOSED_CARDS # testdir.makepyfile(src) # result = testdir.runpytest(*option.args) # assert result.ret == 1 # assert result.parseoutcomes()['failed'] == 1 result = testdir.inline_runsource(src, *option.args) assert_outcome(result, failed=1) def test_failure_with_open_and_closed_cards(testdir, option, monkeypatch_trello): '''Verifies test failure with open and closed trello cards''' src = """ import pytest @pytest.mark.trello(*%s) def test_func(): assert False """ % ALL_CARDS # testdir.makepyfile(src) # result = testdir.runpytest(*option.args) # assert result.ret == EXIT_OK # assert result.parseoutcomes()['xfailed'] == 1 result = testdir.inline_runsource(src, *option.args) assert_outcome(result, xfailed=1) def test_skip_with_open_card(testdir, option, monkeypatch_trello): '''Verifies skipping with an open trello card''' src = """ import pytest @pytest.mark.trello('%s', skip=True) def test_func(): assert False """ % OPEN_CARDS[0] # testdir.makepyfile(src) # result = testdir.runpytest(*option.args) # assert result.ret == EXIT_OK # assert result.parseoutcomes()['skipped'] == 1 result = testdir.inline_runsource(src, *option.args) assert_outcome(result, skipped=1) def test_skip_with_closed_card(testdir, option, monkeypatch_trello): '''Verifies test failure (skip=True) with a closed trello card''' src = """ import pytest @pytest.mark.trello('%s', skip=True) def test_func(): assert False """ % CLOSED_CARDS[0] # testdir.makepyfile(src) # result = testdir.runpytest(*option.args) # assert result.ret == 1 # assert result.parseoutcomes()['failed'] == 1 result = testdir.inline_runsource(src, *option.args) assert_outcome(result, failed=1) def test_collection_reporter(testdir, option, monkeypatch_trello, capsys): '''Verifies trello marker collection''' src = """ import pytest @pytest.mark.trello(*%s) def test_foo(): assert True @pytest.mark.trello(*%s) def test_bar(): assert False """ % (CLOSED_CARDS, OPEN_CARDS) # (items, result) = testdir.inline_genitems(src, *option.args) result = testdir.inline_runsource(src, *option.args) assert_outcome(result, passed=1, xfailed=1) stdout, stderr = capsys.readouterr() assert 'collected %s trello markers' % (len(CLOSED_CARDS) + len(OPEN_CARDS)) in stdout def test_show_trello_report_with_no_cards(testdir, option, monkeypatch_trello, capsys): '''Verifies when a test succeeds with an open trello card''' src = """ import pytest def test_func(): assert True """ # Run pytest args = option.args + ['--show-trello-cards',] result = testdir.inline_runsource(src, *args) # Assert exit code assert result.ret == EXIT_OK # Assert no tests ran assert_outcome(result) # Assert expected trello card report output stdout, stderr = capsys.readouterr() assert '= trello card report =' in stdout assert 'No trello cards collected' in stdout def test_show_trello_report_with_cards(testdir, option, monkeypatch_trello, capsys): '''Verifies when a test succeeds with an open trello card''' # Used for later introspection cls = 'Test_Foo' module = inspect.stack()[0][3] method = 'test_func' src = """ import pytest class Test_Class(): @pytest.mark.trello(*%s) def test_method(): assert True @pytest.mark.trello(*%s) def test_func(): assert True """ % (CLOSED_CARDS, OPEN_CARDS) # Run pytest args = option.args + ['--show-trello-cards',] result = testdir.inline_runsource(src, *args) # Assert exit code assert result.ret == EXIT_OK # Assert no tests ran assert_outcome(result) # Assert expected trello card report output stdout, stderr = capsys.readouterr() # Assert expected banner assert re.search(r'^={1,} trello card report ={1,}', stdout, re.MULTILINE) # Assert expected cards in output for card in CLOSED_CARDS: assert re.search(r'^%s \[Done\]' % card, stdout, re.MULTILINE) for card in OPEN_CARDS: assert re.search(r'^%s \[Not Done\]' % card, stdout, re.MULTILINE) # this is weird, oh well assert ' * {0}0/{0}.py:Test_Class().test_method'.format(module) in stdout assert ' * {0}0/{0}.py:test_func'.format(module) in stdout ```
{ "source": "JlassiSeif/Cave-Exploring-Robot", "score": 3 }
#### File: Cave-Exploring-Robot/teleop_twist_keyboard-master/teleop_twist_keyboard.py ```python from __future__ import print_function import threading import roslib; roslib.load_manifest('teleop_twist_keyboard') import rospy from geometry_msgs.msg import Twist import sys, select, termios, tty msg = """ Reading from the keyboard and Publishing to Twist! CTRL-C to quit """ moveBindings = { 'i':(1,0), 'k':(-1,0), 'j':(0,1), 'l':(0,-1), } class PublishThread(threading.Thread): def __init__(self, rate): super(PublishThread, self).__init__() self.publisher = rospy.Publisher('cmd_vel', Twist, queue_size = 1) self.speed = 0.0 self.turn = 0.0 self.condition = threading.Condition() self.done = False # Set timeout to None if rate is 0 (causes new_message to wait forever # for new data to publish) if rate != 0.0: self.timeout = 1.0 / rate else: self.timeout = None self.start() def wait_for_subscribers(self): i = 0 while not rospy.is_shutdown() and self.publisher.get_num_connections() == 0: if i == 4: print("Waiting for subscriber to connect to {}".format(self.publisher.name)) rospy.sleep(0.5) i += 1 i = i % 5 if rospy.is_shutdown(): raise Exception("Got shutdown request before subscribers connected") def update(self, speed, turn): self.condition.acquire() self.speed = speed self.turn = turn # Notify publish thread that we have a new message. self.condition.notify() self.condition.release() def stop(self): self.done = True self.update(0, 0) self.join() def run(self): twist = Twist() while not self.done: self.condition.acquire() # Wait for a new message or timeout. self.condition.wait(self.timeout) # Copy state into twist message. twist.linear.x = self.speed twist.angular.z = self.turn self.condition.release() # Publish. self.publisher.publish(twist) # Publish stop message when thread exits. twist.linear.x = 0 twist.linear.y = 0 twist.linear.z = 0 twist.angular.x = 0 twist.angular.y = 0 twist.angular.z = 0 self.publisher.publish(twist) def getKey(key_timeout): tty.setraw(sys.stdin.fileno()) rlist, _, _ = select.select([sys.stdin], [], [], key_timeout) if rlist: key = sys.stdin.read(1) else: key = '' termios.tcsetattr(sys.stdin, termios.TCSADRAIN, settings) return key def vels(speed, turn): return "currently:\tspeed %s\tturn %s " % (speed,turn) if __name__=="__main__": settings = termios.tcgetattr(sys.stdin) rospy.init_node('control') speed = rospy.get_param("~speed", 0.5) turn = rospy.get_param("~turn", 1.0) repeat = rospy.get_param("~repeat_rate", 0.0) key_timeout = rospy.get_param("~key_timeout", 0.0) if key_timeout == 0.0: key_timeout = None pub_thread = PublishThread(repeat) speed=0 turn=0 try: pub_thread.wait_for_subscribers() print(vels(speed,turn)) while(1): key = getKey(key_timeout) if key in moveBindings.keys(): speed=speed+0.5*moveBindings[key][0] turn=turn+0.5*moveBindings[key][1] if speed>2 : speed=2 if turn>2 : turn=2 print(vels(speed,turn)) else: if key == '' and x == 0 and y == 0 and z == 0 and th == 0: continue x = 0 y = 0 z = 0 th = 0 if (key == '\x03'): break pub_thread.update(speed, turn) except Exception as e: print(e) finally: pub_thread.stop() termios.tcsetattr(sys.stdin, termios.TCSADRAIN, settings) ```
{ "source": "JlassiSeif/Line-follower-with-qlearning", "score": 2 }
#### File: robot_q_learning/scripts/robot.py ```python import rospy from geometry_msgs.msg import Twist import cv2 from sensor_msgs.msg import Image from cv_bridge import CvBridge, CvBridgeError class robot : def __init__(self) : self.vel = Twist() self.cmdPub = rospy.Publisher('/cmd_vel',Twist,queue_size=1) self.imgPub = rospy.Publisher('/image/thresh',Image,queue_size=1) self.bridge = CvBridge() self.CameraSub = rospy.Subscriber('/camera/image_raw',Image,self.CameraCallback) self.yaw = 0.0 self.noContour = True self.cx = 0 self.array = [] self.distanceFromCenter=0; def CameraCallback(self, data) : cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8") (height,width,channels) = cv_image.shape crop_img = cv_image[int(height/2)+100:height-100, 0:width] gray = cv2.cvtColor(crop_img, cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(gray,(5,5),0) ret,thresh = cv2.threshold(blur,60,255,cv2.THRESH_BINARY_INV) contours,hierarchy = cv2.findContours(thresh.copy(), 1, cv2.CHAIN_APPROX_NONE) if len(contours) > 0 : c = max(contours, key=cv2.contourArea) M = cv2.moments(c) self.noContour = False if not M['m00']== 0 : self.cx = int(M['m10']/M['m00']) else : self.noContour = True # pubImage = self.bridge.cv2_to_imgmsg(thresh) # self.imgPub.publish(pubImage) self.distanceFromCenter=width/2-self.cx def move(self, action, speed): if speed == 0 : val = 0.2 elif speed == 1 : val = 0.5 elif speed == 2 : val = 0.7 else : val = 0.3 if( action == 0 ): self.vel.linear.x = 0.25 self.vel.angular.z = 0 self.cmdPub.publish(self.vel) if( action == 1): self.vel.linear.x = 0.25 self.vel.angular.z = -val self.cmdPub.publish(self.vel) if( action == 2): self.vel.linear.x = 0.25 self.vel.angular.z = val self.cmdPub.publish(self.vel) if(action == 9): self.vel=Twist() self.cmdPub.publish(self.vel) def index_f(self, data) : if -400 <= data < -280 : return 0 elif -280 <= data < -200 : return 1 elif -200 <= data < -120: return 2 elif -120 <= data < -40 : return 3 elif -40 <= data < 40 : return 4 if 40 <= data < 120 : return 5 elif 120 <= data < 200 : return 6 elif 200 <= data < 280 : return 7 else : return 8 def get_noContour(self): return self.noContour def computeState(self): stateIndex=self.index_f(self.distanceFromCenter) return stateIndex ```
{ "source": "jlat07/PandasDataTypes", "score": 4 }
#### File: jlat07/PandasDataTypes/salescleanup.py ```python import pandas as pd import numpy as np def convert_currency(val): """ $125,000.00 -> 125000.00 Convert the string number value to a float - Remove $ - Remove commas - Convert to float type """ new_val = val.replace(',','').replace('$', '') return float(new_val) def convert_percent(val): """ Convert the percentage string to an actual floating point percent """ new_val = val.replace('%', '') return float(new_val) / 100 df_2 = pd.read_csv("https://github.com/chris1610/pbpython/blob/master/data/sales_data_types.csv?raw=True", dtype={'Customer Number':'int'}, converters={'2016':convert_currency, '2017': convert_currency, 'Percent Growth': convert_percent, 'Jan Units': lambda x: pd.to_numeric(x, errors='coerce'), 'Active': lambda x: np.where(x == "Y", True, False) }) df_2["Start_Date"] = pd.to_datetime(df_2[['Month', 'Day', 'Year']]) print(df_2) # Should output something like: # (base) Aeneid:notebooks kristofer$ python3 ./salescleanup.py # Customer Number Customer Name 2016 2017 Percent Growth Jan Units Month Day Year Active Start_Date # 0 10002 Quest Industries 125000.0 162500.0 0.30 500.0 1 10 2015 True 2015-01-10 # 1 552278 Smith Plumbing 920000.0 1012000.0 0.10 700.0 6 15 2014 True 2014-06-15 # 2 23477 ACME Industrial 50000.0 62500.0 0.25 125.0 3 29 2016 True 2016-03-29 # 3 24900 Brekke LTD 350000.0 490000.0 0.04 75.0 10 27 2015 True 2015-10-27 # 4 651029 Harbor Co 15000.0 12750.0 -0.15 NaN 2 2 2014 False 2014-02-02 ```
{ "source": "jlatko/vdvae", "score": 2 }
#### File: vdvae/scripts/gather_latent_covariances.py ```python import itertools from time import sleep import numpy as np import os import torch from torch.utils.data import DataLoader from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm from vdvae.data.data import set_up_data from vdvae.train_helpers import set_up_hyperparams, load_vaes from vdvae.constants import BASE_DIR def all_finite(stats): for block_idx, block_stats in enumerate(stats): qm = block_stats["qm"] pm = block_stats["pm"] qv = block_stats["qv"] pv = torch.exp(block_stats["pv"]) qstd = torch.exp(block_stats["qv"]) pstd = torch.exp(block_stats["pv"]) for x in [qm, pm, qv, pv, qstd, pstd]: if not torch.all(torch.isfinite(x)): return False return True def update_running_covariance(current_mean, new_value, n): return current_mean + (new_value - current_mean) / (n + 1) def get_current_stats(stats, i, cutoff_masks=None, pca=None): current_stats = {} for block_idx, block_stats in enumerate(stats): qm = block_stats["qm"][i].cpu().numpy().reshape(-1) pm = block_stats["pm"][i].cpu().numpy().reshape(-1) qstd = torch.exp(block_stats["qv"][i]).cpu().numpy().reshape(-1) pstd = torch.exp(block_stats["pv"][i]).cpu().numpy().reshape(-1) if cutoff_masks is not None: qm = qm[cutoff_masks[f"mask_{block_idx}"]] pm = pm[cutoff_masks[f"mask_{block_idx}"]] qstd = qstd[cutoff_masks[f"mask_{block_idx}"]] pstd = pstd[cutoff_masks[f"mask_{block_idx}"]] if pca is not None: # TODO: do pca ? qm = qm @ pca[block_idx] pm = pm @ pca[block_idx] qstd = qstd @ pca[block_idx] pstd = pstd @ pca[block_idx] current_stats[f"qm_{block_idx}"] = qm current_stats[f"pm_{block_idx}"] = pm current_stats[f"qstd_{block_idx}"] = qstd current_stats[f"pstd_{block_idx}"] = pstd current_stats[f"qv_{block_idx}"] = np.power(current_stats[f"qstd_{block_idx}"], 2).reshape(-1) current_stats[f"pv_{block_idx}"] = np.power(current_stats[f"pstd_{block_idx}"], 2).reshape(-1) return current_stats def update_latent_cov(means_dict, stat_dict, current_stats, n, block_pairs, keys): deviations = {} layers = set(i for i, j in block_pairs) | set(j for i, j in block_pairs) for l in layers: for k in keys: deviations[f"{k}_{l}"] = current_stats[f"{k}_{l}"] - means_dict[f"{k}_{l}"] for i, j in block_pairs: for k in keys: x = np.outer(deviations[f"{k}_{i}"], deviations[f"{k}_{j}"]) if n == 0: stat_dict[f"{k}_{i}_{j}"] = x else: stat_dict[f"{k}_{i}_{j}"] = update_running_covariance(stat_dict[f"{k}_{i}_{j}"], x, n) def get_kl_cutoff_mask(means_dict, cutoff): cutoff_masks = {} for k in means_dict: if "kl" in k: i = k.split("_")[-1] cutoff_masks[f"mask_{i}"] = means_dict[k].reshape(-1) > cutoff return cutoff_masks def update_means_dict(means_dict, cutoff_masks): new_dict = {} for k in means_dict: i = k.split("_")[-1] new_dict[k] = means_dict[k][cutoff_masks[f"mask_{i}"]] return new_dict def get_stats(H, ema_vae, data_valid, preprocess_fn): means_dict = {} with open(os.path.join(H.means_dir, f"{H.dataset}_latent_means.npz"), 'rb') as fh: npz = np.load(fh) for k in npz.keys(): means_dict[k] = npz[k].reshape(-1) cutoff_masks = None if H.kl_cutoff is not None: cutoff_masks = get_kl_cutoff_mask(means_dict, H.kl_cutoff) means_dict = update_means_dict(means_dict, cutoff_masks) valid_sampler = DistributedSampler(data_valid, num_replicas=H.mpi_size, rank=H.rank) stat_dict = {} n = 0 for x in tqdm(DataLoader(data_valid, batch_size=H.n_batch, drop_last=True, pin_memory=True, sampler=valid_sampler)): data_input, target = preprocess_fn(x) with torch.no_grad(): stats = ema_vae.forward_get_latents(data_input, get_mean_var=True) if not all_finite(stats): print("encountered nan/inf, skipping") continue for i in range(data_input.shape[0]): current_stats = get_current_stats(stats, i, cutoff_masks) if H.layers_set == "small": layers = [1,2, 3, 4, 20, 24] block_pairs = \ list(itertools.combinations(layers, 2)) \ + [(i, i) for i in layers] elif H.layers_set == "mid": layers = [1, 2, 3, 4, 5, 6, 8, 10, 20, 24, 30, 40] block_pairs = \ list(itertools.combinations(layers, 2)) \ + [(i, i) for i in layers] elif H.layers_set == "in_layer_small": layers = list(range(20)) + [24, 30, 40] block_pairs = [(i, i) for i in layers] elif H.layers_set == "in_layer": layers = list(range(66)) block_pairs = [(i, i) for i in layers] else: raise ValueError(f"layers set {H.layers_set} unknown") keys = ["<KEY>"] update_latent_cov(means_dict, stat_dict, current_stats, n, block_pairs, keys) n += 1 if H.n is not None and n >= H.n: break if cutoff_masks is not None: stat_dict.update(cutoff_masks) np.savez(os.path.join(H.destination_dir, f"{H.dataset}_{H.file_name}_{H.layers_set}.npz"), **stat_dict) # all_stats = pd.DataFrame(all_stats) # all_stats.to_pickle(os.path.join(H.destination_dir, f"{H.dataset}_latent_stats.pkl")) def add_params(parser): parser.add_argument('--destination_dir', type=str, default=f'{BASE_DIR}/vdvae/latent_stats/') parser.add_argument('--pca_path', type=str, default=None) parser.add_argument('--means_dir', type=str, default=None) parser.add_argument('--file_name', type=str, default='latent_cov') parser.add_argument('--use_train', dest='use_train', action='store_true') parser.add_argument('-n', type=int, default=None) parser.add_argument('--kl_cutoff', type=float, default=None) parser.add_argument('--layers_set', type=float, default="small") return parser def main(): H, logprint = set_up_hyperparams(extra_args_fn=add_params) if os.path.exists(H.destination_dir): if len(os.listdir(H.destination_dir)) > 0: print("WARNING: destination non-empty") sleep(5) print("continuing") else: os.makedirs(H.destination_dir) H, data_train, data_valid_or_test, preprocess_fn = set_up_data(H) vae, ema_vae = load_vaes(H, logprint) if H.use_train: dataset = data_train else: dataset = data_valid_or_test if H.means_dir is None: H.means_dir = H.destination_dir get_stats(H, ema_vae, dataset, preprocess_fn) if __name__ == "__main__": main() ``` #### File: vdvae/vdvae/latents.py ```python import logging import os from zipfile import BadZipFile import numpy as np import pandas as pd from tqdm import tqdm CELEBAHQ_DIR = f"{BASE_DIR}/celebahq2/CelebAMask-HQ/" def get_available_latents(latents_dir=f"{BASE_DIR}/vdvae/latents/"): fname = os.listdir(latents_dir)[0] keys = list(np.load(os.path.join(latents_dir, fname))) latent_ids = list(sorted(set(int(k.split("_")[1]) for k in keys))) return latent_ids def get_latents(latents_dir, layer_ind, splits=(1,2,3), root_dir=CELEBAHQ_DIR, allow_missing=False, handle_nan=None, key="z"): metadata = pd.read_csv(os.path.join(root_dir, 'metadata.csv')) metadata = metadata[metadata.split.isin(splits)] # z = np.load(os.path.join(latents_dir, f"{metadata.iloc[0].idx}.npz"))[f"{key}_{layer_ind}"] z = np.load(os.path.join(latents_dir, f"19.npz"))[f"{key}_{layer_ind}"] shape = [len(metadata)] + list(z.shape) latents = np.zeros(shape, dtype=np.float32) rows_found = [] rows_missing = [] i = 0 # for _, row in tqdm(metadata.iterrows(), total=metadata.shape[0]): for i, row in metadata.iterrows(): if i % 10000 == 0 and i > 0: print(i) try: z = np.load(os.path.join(latents_dir, f"{row.idx}.npz"))[f"{key}_{layer_ind}"].astype(np.float32) if not np.isfinite(z).all(): if handle_nan == "to_num": logging.warning(f"{row.idx}: {key}_{layer_ind} contains NaN or inf. Converting to num.") z = np.nan_to_num(z) if handle_nan == "skip": logging.warning(f"{row.idx}: {key}_{layer_ind} contains NaN or inf. Skipping.") rows_missing.append(row) continue else: raise ValueError(f"{row.idx}: {key}_{layer_ind} contains NaN or inf") latents[i] = z rows_found.append(row) i += 1 except (FileNotFoundError, EOFError, BadZipFile) as e: if allow_missing: rows_missing.append(row) else: raise e if len(rows_missing) > 0: logging.warning(f"Missing/incorrect {len(rows_missing)}/{len(metadata)} files") metadata = pd.DataFrame(rows_found) latents = latents[:len(metadata)] return latents, metadata ``` #### File: vdvae/visualization_scripts/enhance_attr_vis.py ```python import argparse import re import traceback import matplotlib import pandas as pd import numpy as np import wandb import matplotlib.pyplot as plt from PIL import Image import os from vdvae.hps import Hyperparams from vdvae.wandb_utils import _download, WANDB_USER, WANDB_DIR from vdvae.constants import BASE_DIR api = wandb.Api() fig, ax = plt.subplots() DPI = fig.dpi plt.close() project_viz=f"{WANDB_USER}/vae_visualizations" project_scores = f"{WANDB_USER}/vdvae_analysis" def get_scores(H, run_scores, attr): files_scores = run_scores.files() name2file_scores = {f.name: f for f in files_scores} if f'{attr}.csv' not in name2file_scores: print(f"{attr}.csv not found in run {run_scores.id}") return None path_score = _download(name2file_scores[f'{attr}.csv'], f"./.data/{run_scores.id}/") scores = pd.read_csv(path_score) scores = scores.set_index("layer_ind") return scores def get_img(H, run_viz, f): lv_points = run_viz.config['lv_points'] path = _download(f, f"./.data/{H.run_id_viz}/") img = Image.open(path) return img, lv_points def enhance_attribute_visualization(H, file, runs_scores, run_viz, temp=0.1, size=64): attr = re.match(r"([a-zA-Z_]+)_t.*", file.name).group(1) scores = [get_scores(H, run, attr) for run in runs_scores] scores = [s for s in scores if s is not None] if len(scores) == 0: print(f"No scores for {attr}") scores = [pd.DataFrame()] img, lv_points = get_img(H, run_viz, file) f, (a0, a1) = plt.subplots(1, 2, gridspec_kw={'width_ratios': [1, 8]}, figsize=(1.5 * img.width / DPI, 1.1 * img.height / DPI)) a1.imshow(img, aspect=1) plt.title(f"{attr} (t={temp})", fontsize=24) scores_picked = [ [f"{df.loc[i, H.scores_key]:.3f}" if i in df.index else "?" for i in lv_points] for df in scores ] res_picked = [scores[0].loc[i, 'resolution'] if i in scores[0].index else "?" for i in lv_points] yticks = [ f"{i}\n({s})\n{res}x{res}" for i, s, res in zip(lv_points, scores_picked[0], res_picked) ] plt.sca(a1) plt.yticks(size / 2 + size * np.arange(len(lv_points)), yticks) plt.xticks([size / 2, img.width - size / 2], [f"Less {attr}", f"More {attr}"]) plt.tick_params(axis='both', labelsize=18, length=0) plt.sca(a0) a0.set_xlim((0.45, 0.8)) a0.invert_xaxis() a0.spines['top'].set_visible(False) # a0.spines['right'].set_visible(False) # a0.spines['bottom'].set_visible(False) a0.spines['left'].set_visible(False) # plt.axis('off') # sns.barplot(x=lv_points, y=scores_picked, ax=a0, orient='h', width=size/2/DPI) for j, df in enumerate(scores): scores_picked = [df.loc[i, H.scores_key] if i in df.index else 0 for i in lv_points] a0.barh(np.arange(len(lv_points))[::-1] * size / DPI - j * size / 3 / DPI, scores_picked, height= size / 4 / DPI, color=matplotlib.cm.get_cmap("cool")(scores_picked) ) a0.set_ylim((-size / 2 / DPI, (len(lv_points) * size - size / 2) / DPI)) plt.xlabel(H.scores_key) plt.title(','.join(run.config['model'] for run in runs_scores), fontsize=24) # yticks = [ # f"{i}" # for i, s in zip(lv_points, scores_picked) # ] # plt.yticks(np.arange(len(lv_points))[::-1]*size/DPI, yticks); plt.yticks([], []) a0.yaxis.tick_right() # a0.xaxis.set_visible(False) plt.subplots_adjust(wspace=0.02) plt.savefig(os.path.join(wandb.run.dir, f"{file.name.split('.')[0]}_{H.scores_key}.jpg"), bbox_inches='tight') wandb.log({f"{attr}": wandb.Image(plt, caption=f"{file.name.split('.')[0]}_{H.scores_key}")}) return scores def parse_args(s=None): H = Hyperparams() parser = argparse.ArgumentParser() parser.add_argument('--run_name', type=str, default=None) # parser.add_argument('--size', type=int, default=128) # parser.add_argument('--temp', type=float, default=0.1) parser.add_argument('--run_id_viz', type=str, default=None) parser.add_argument('--run_id_scores', help='delimited list input', type=lambda s: [item for item in s.split(',')], default=None) parser.add_argument('--scores_key', type=str, default="roc_auc_score_avg") H.update(parser.parse_args(s).__dict__) return H def init_wandb(H, run_viz, runs_scores): tags = [] tags.append(str(len(runs_scores))) if run_viz.config["grouped"]: tags.append("grouped") if run_viz.config["use_group_direction"]: tags.append("group_direction") if run_viz.config["has_attr"]: tags.append("has_attr") if run_viz.config["fixed"]: tags.append("fixed") if "latent_key" in run_viz.config: tags.append(run_viz.config["latent_key"]) else: tags.append("z") # wandb.init(project='vae_visualizations', entity=WANDB_USER, dir=WANDB_DIR, tags=tags) wandb.init(project='vae_visualizations', entity=WANDB_USER, tags=tags) wandb.config.update({"script": "enhance"}) if H.run_name is None: wandb.run.name = "e_" + run_viz.name + "__" + '_'.join([run.config['model'] for run in runs_scores]) + "__" + wandb.run.name.split('-')[-1] wandb.run.save() else: wandb.run.name = "e_" + H.run_name + "-" + wandb.run.name.split('-')[-1] wandb.run.save() def main(): H = parse_args() run_viz = api.run(f"{project_viz}/{H.run_id_viz}") runs_scores = [ api.run(f"{project_scores}/{run_id}") for run_id in H.run_id_scores] init_wandb(H, run_viz, runs_scores) temp = run_viz.config["temp"] size = run_viz.config["size"] print(run_viz.config) files = run_viz.files() name2file = {f.name: f for f in files} for f in name2file: if f.endswith(".png") and "/" not in f: print(f) try: enhance_attribute_visualization(H, name2file[f], runs_scores, run_viz, temp=temp, size=size) except Exception as e: print(f"Caught error for {f}") print(e) traceback.print_exc() print("continuing...") if __name__ == "__main__": main() ```
{ "source": "JLaTondre/JL-Bot", "score": 3 }
#### File: JL-Bot/dois/dois-prior.py ```python import csv import os import re import sys import traceback from mwclient import Site # # Configuration # if 'WIKI_WORKING_DIR' not in os.environ: sys.stderr.write('ERROR: WIKI_WORKING_DIR environment variable not set\n') sys.exit(1) if 'WIKI_CONFIG_DIR' not in os.environ: sys.stderr.write('ERROR: WIKI_CONFIG_DIR environment variable not set\n') sys.exit(1) STORAGE = os.environ['WIKI_WORKING_DIR'] + '/Dois/doi-registrants-prior' BOTINFO = os.environ['WIKI_CONFIG_DIR'] + '/bot-info.txt' # # Functions # def extractRecords(contents): # extract the doi information from the page contents # prefix, crossref registrant, wikipedia registrant, crossref target, wikipedia target records = [] for line in contents.splitlines(): prefix = '' crossrefRegistrant = '' wikipediaRegistrant = '' crossrefTarget = '' wikipediaTarget = '' # two possible patterns match = re.search(r'^{{JCW-DOI-prefix\|(.+?)\|(.+?)\|(.+?)\|4=Crossref = \[\[(.+?)\]\]<br/>Wikipedia = \[\[(.+?)\]\]', line) if match: prefix = match.group(1) crossrefRegistrant = match.group(2) wikipediaRegistrant = match.group(3) crossrefTarget = match.group(4) wikipediaTarget = match.group(5) else: match = re.search(r'^{{JCW-DOI-prefix\|(.+?)\|(.+?)\|(.+?)\|(.+?)}}', line) if match: prefix = match.group(1) crossrefRegistrant = match.group(2) wikipediaRegistrant = match.group(3) crossrefTarget = 'NONE' wikipediaTarget = match.group(4) # if either pattern found if (prefix): if crossrefRegistrant == '-': crossrefRegistrant = 'NONE' if wikipediaRegistrant == '-': wikipediaRegistrant = 'NONE' if crossrefTarget == '-': crossrefTarget = 'NONE' if wikipediaTarget == '-': wikipediaTarget = 'NONE' if crossrefTarget.startswith(':'): crossrefTarget = crossrefTarget[1:] if wikipediaTarget.startswith(':'): wikipediaTarget = wikipediaTarget[1:] records.append((prefix, crossrefRegistrant, wikipediaRegistrant, crossrefTarget, wikipediaTarget)) return records def getPages(site): # find pages from summary page title = 'User:JL-Bot/DOI' page = site.pages[title] pages = [] for line in page.text().splitlines(): match = re.search(r'^\* \[\[User:JL-Bot/DOI/\d+.\d+\|(\d+.\d+)\]\]$', line) if match: pages.append(match.group(1)) return pages def getUserInfo(filename): # read in bot userinfo userinfo = {} try: with open(filename, 'r') as file: for line in file: match = re.search(r'^USERNAME = (.+?)\s*$', line) if match: userinfo['username'] = match.group(1) match = re.search(r'^PASSWORD = (.+?)\s*$', line) if match: userinfo['password'] = match.group(1) if 'username' not in userinfo: sys.stderr.write('ERROR: username not found\n') sys.exit(1) if 'password' not in userinfo: sys.stderr.write('ERROR: password not found\n') sys.exit(1) except Exception: traceback.print_exc() sys.exit(1) return userinfo def retrievePage(doi): # retrieve contents of Wikipedia page title = 'User:JL-Bot/DOI/' + doi page = site.pages[title] return page.text() def writeRecords(file, records): # write the records to output file for record in records: file.write('\t'.join(record) + '\n') return # # Main # # initiate bot userinfo = getUserInfo(BOTINFO) try: site = Site('en.wikipedia.org') site.login(userinfo['username'], userinfo['password']) except Exception: traceback.print_exc() sys.exit(1) # find pages and iterate through them pages = getPages(site) try: file = open(STORAGE, 'w') for page in pages: print('Precessing', page, '...') contents = retrievePage(page) records = extractRecords(contents) writeRecords(file, records) except Exception: traceback.print_exc() sys.exit(1) ```
{ "source": "jlau323/oppia", "score": 2 }
#### File: jlau323/oppia/constants.py ```python from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules import json import os import re import python_utils def parse_json_from_js(js_file): """Extracts JSON object from JS file.""" text = js_file.read() text_without_comments = remove_comments(text) first_bracket_index = text_without_comments.find('= {') last_bracket_index = text_without_comments.rfind('}') json_text = ( text_without_comments[first_bracket_index + 2:last_bracket_index + 1] ) return json.loads(json_text) def remove_comments(text): """Removes comments from given text.""" return re.sub(r' //.*\n', r'', text) class Constants(dict): """Transforms dict to object, attributes can be accessed by dot notation.""" __getattr__ = dict.__getitem__ with python_utils.open_file(os.path.join('assets', 'constants.ts'), 'r') as f: constants = Constants(parse_json_from_js(f)) # pylint:disable=invalid-name with python_utils.open_file('release_constants.json', 'r') as f: release_constants = Constants(json.loads(f.read())) # pylint:disable=invalid-name ``` #### File: core/domain/email_services.py ```python from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules import re from core.domain import email_domain from core.platform import models import feconf import python_utils (email_models,) = models.Registry.import_models([models.NAMES.email]) platform_email_services = models.Registry.import_email_services() def get_feedback_thread_reply_info_from_model(model): """Converts GeneralFeedbackEmailReplyToIdModel to a FeedbackThreadReplyInfo. Args: model: GeneralFeedbackEmailReplyToIdModel. The model to be converted. Returns: FeedbackThreadReplyInfo. The resulting domain object. """ return email_domain.FeedbackThreadReplyInfo( model.id, model.reply_to_id) def get_feedback_thread_reply_info_by_reply_to_id(reply_to_id): """Gets the domain object corresponding to the model which is fetched by reply-to-id field. Args: reply_to_id: str. The reply_to_id to search for. Returns: FeedbackThreadReplyInfo or None. The corresponding domain object. """ model = email_models.GeneralFeedbackEmailReplyToIdModel.get_by_reply_to_id( reply_to_id) if model is None: return None return get_feedback_thread_reply_info_from_model(model) def get_feedback_thread_reply_info_by_user_and_thread_ids(user_id, thread_id): """Gets the domain object corresponding to the model which is fetched by user_id and thread_id. Args: user_id: str. The ID of the user. thread_id: str. The ID of the thread. Returns: FeedbackThreadReplyInfo or None. The corresponding domain object. """ model = email_models.GeneralFeedbackEmailReplyToIdModel.get( user_id, thread_id, strict=False) if model is None: return None return get_feedback_thread_reply_info_from_model(model) def _get_incoming_email_address(reply_to_id): """Gets the incoming email address. The client is responsible for recording any audit logs. Args: reply_to_id: str. The unique id of the sender. Returns: str. The email address of the sender. """ return 'reply+%s@%s' % (reply_to_id, feconf.INCOMING_EMAILS_DOMAIN_NAME) def _is_email_valid(email_address): """Determines whether an email address is valid. Args: email_address: str. Email address to check. Returns: bool. Whether the specified email address is valid. """ if not isinstance(email_address, python_utils.BASESTRING): return False stripped_address = email_address.strip() if not stripped_address: return False # Regex for a valid email. # Matches any characters before the "@" sign, a series of characters until # a ".", and then a series of characters after the period. regex = r'^.+@[a-zA-Z0-9-.]+\.([a-zA-Z]+|[0-9]+)$' return re.search(regex, email_address) def _is_sender_email_valid(sender_email): """Gets the sender_email address and validates that it is of the form 'SENDER_NAME <SENDER_EMAIL_ADDRESS>' or 'email_address'. Args: sender_email: str. The email address of the sender. Returns: bool. Whether the sender_email is valid. """ split_sender_email = sender_email.split(' ') if len(split_sender_email) < 2: return _is_email_valid(sender_email) email_address = split_sender_email[-1] if not email_address.startswith('<') or not email_address.endswith('>'): return False return _is_email_valid(email_address[1:-1]) def send_mail( sender_email, recipient_email, subject, plaintext_body, html_body, bcc_admin=False, reply_to_id=None): """Sends an email. In general this function should only be called from email_manager._send_email(). Args: sender_email: str. The email address of the sender. This should be in the form 'SENDER_NAME <SENDER_EMAIL_ADDRESS>' or 'SENDER_EMAIL_ADDRESS'. Format must be utf-8. recipient_email: str. The email address of the recipient. Format must be utf-8. subject: str. The subject line of the email. Format must be utf-8. plaintext_body: str. The plaintext body of the email. Format must be utf-8. html_body: str. The HTML body of the email. Must fit in a datastore entity. Format must be utf-8. bcc_admin: bool. Whether to bcc feconf.ADMIN_EMAIL_ADDRESS on the email. reply_to_id: str|None. The unique id of the sender. Format must be utf-8. Raises: Exception. The configuration in feconf.py forbids emails from being sent. Exception. Any recipient email address is malformed. Exception. Any sender email address is malformed. Exception. The email was not sent correctly. In other words, the send_email_to_recipients() function returned False (signifying API returned bad status code). """ if not feconf.CAN_SEND_EMAILS: raise Exception('This app cannot send emails to users.') if not _is_email_valid(recipient_email): raise ValueError( 'Malformed recipient email address: %s' % recipient_email) if not _is_sender_email_valid(sender_email): raise ValueError( 'Malformed sender email address: %s' % sender_email) bcc = [feconf.ADMIN_EMAIL_ADDRESS] if bcc_admin else None reply_to = ( _get_incoming_email_address(reply_to_id) if reply_to_id else '') response = platform_email_services.send_email_to_recipients( sender_email, [recipient_email], subject.encode(encoding='utf-8'), plaintext_body.encode(encoding='utf-8'), html_body.encode(encoding='utf-8'), bcc, reply_to, None) if not response: raise Exception(( 'Email to %s failed to send. Please try again later or ' + 'contact us to report a bug at ' + 'https://www.oppia.org/contact.') % recipient_email) def send_bulk_mail( sender_email, recipient_emails, subject, plaintext_body, html_body): """Sends emails to all recipients in recipient_emails. In general this function should only be called from email_manager._send_bulk_mail(). Args: sender_email: str. The email address of the sender. This should be in the form 'SENDER_NAME <SENDER_EMAIL_ADDRESS>' or 'SENDER_EMAIL_ADDRESS'. Format must be utf-8. recipient_emails: list(str). List of the email addresses of recipients. Format must be utf-8. subject: str. The subject line of the email. Format must be utf-8. plaintext_body: str. The plaintext body of the email. Format must be utf-8. html_body: str. The HTML body of the email. Must fit in a datastore entity. Format must be utf-8. Raises: Exception. The configuration in feconf.py forbids emails from being sent. Exception. Any recipient email addresses are malformed. Exception. Any sender email address is malformed. Exception. The emails were not sent correctly. In other words, the send_email_to_recipients() function returned False (signifying API returned bad status code). """ if not feconf.CAN_SEND_EMAILS: raise Exception('This app cannot send emails to users.') for recipient_email in recipient_emails: if not _is_email_valid(recipient_email): raise ValueError( 'Malformed recipient email address: %s' % recipient_email) if not _is_sender_email_valid(sender_email): raise ValueError( 'Malformed sender email address: %s' % sender_email) response = platform_email_services.send_email_to_recipients( sender_email, recipient_emails, subject.encode(encoding='utf-8'), plaintext_body.encode(encoding='utf-8'), html_body.encode(encoding='utf-8')) if not response: raise Exception( 'Bulk email failed to send. Please try again later or contact us ' + 'to report a bug at https://www.oppia.org/contact.') ``` #### File: core/domain/search_services_test.py ```python from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules from core.domain import collection_services from core.domain import exp_fetchers from core.domain import exp_services from core.domain import rating_services from core.domain import rights_manager from core.domain import search_services from core.domain import user_services from core.platform import models from core.tests import test_utils import python_utils gae_search_services = models.Registry.import_search_services() class SearchServicesUnitTests(test_utils.GenericTestBase): """Test the search services module.""" EXP_ID = 'An_exploration_id' COLLECTION_ID = 'A_collection_id' def setUp(self): super(SearchServicesUnitTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup(self.EDITOR_EMAIL, self.EDITOR_USERNAME) self.signup(self.VOICE_ARTIST_EMAIL, self.VOICE_ARTIST_USERNAME) self.signup(self.VIEWER_EMAIL, self.VIEWER_USERNAME) self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.editor_id = self.get_user_id_from_email(self.EDITOR_EMAIL) self.voice_artist_id = self.get_user_id_from_email( self.VOICE_ARTIST_EMAIL) self.viewer_id = self.get_user_id_from_email(self.VIEWER_EMAIL) self.owner = user_services.UserActionsInfo(self.owner_id) self.set_admins([self.ADMIN_USERNAME]) self.user_id_admin = self.get_user_id_from_email(self.ADMIN_EMAIL) def test_get_search_rank(self): self.save_new_valid_exploration(self.EXP_ID, self.owner_id) exp_summary = exp_fetchers.get_exploration_summary_by_id(self.EXP_ID) base_search_rank = 20 self.assertEqual( search_services.get_search_rank_from_exp_summary(exp_summary), base_search_rank) rights_manager.publish_exploration(self.owner, self.EXP_ID) self.assertEqual( search_services.get_search_rank_from_exp_summary(exp_summary), base_search_rank) rating_services.assign_rating_to_exploration( self.owner_id, self.EXP_ID, 5) exp_summary = exp_fetchers.get_exploration_summary_by_id(self.EXP_ID) self.assertEqual( search_services.get_search_rank_from_exp_summary(exp_summary), base_search_rank + 10) rating_services.assign_rating_to_exploration( self.user_id_admin, self.EXP_ID, 2) exp_summary = exp_fetchers.get_exploration_summary_by_id(self.EXP_ID) self.assertEqual( search_services.get_search_rank_from_exp_summary(exp_summary), base_search_rank + 8) def test_search_ranks_cannot_be_negative(self): self.save_new_valid_exploration(self.EXP_ID, self.owner_id) exp_summary = exp_fetchers.get_exploration_summary_by_id(self.EXP_ID) base_search_rank = 20 self.assertEqual( search_services.get_search_rank_from_exp_summary(exp_summary), base_search_rank) # A user can (down-)rate an exploration at most once. for i in python_utils.RANGE(50): rating_services.assign_rating_to_exploration( 'user_id_1', self.EXP_ID, 1) exp_summary = exp_fetchers.get_exploration_summary_by_id(self.EXP_ID) self.assertEqual( search_services.get_search_rank_from_exp_summary(exp_summary), base_search_rank - 5) for i in python_utils.RANGE(50): rating_services.assign_rating_to_exploration( 'user_id_%s' % i, self.EXP_ID, 1) # The rank will be at least 0. exp_summary = exp_fetchers.get_exploration_summary_by_id(self.EXP_ID) self.assertEqual(search_services.get_search_rank_from_exp_summary( exp_summary), 0) def test_search_explorations(self): expected_query_string = 'a query string' expected_cursor = 'cursor' expected_sort = 'title' expected_limit = 30 expected_result_cursor = 'rcursor' doc_ids = ['id1', 'id2'] def mock_search( query_string, index, cursor=None, limit=20, sort='', ids_only=False, retries=3): self.assertEqual(query_string, expected_query_string) self.assertEqual(index, search_services.SEARCH_INDEX_EXPLORATIONS) self.assertEqual(cursor, expected_cursor) self.assertEqual(limit, expected_limit) self.assertEqual(sort, expected_sort) self.assertEqual(ids_only, True) self.assertEqual(retries, 3) return doc_ids, expected_result_cursor with self.swap(gae_search_services, 'search', mock_search): result, cursor = search_services.search_explorations( expected_query_string, expected_limit, sort=expected_sort, cursor=expected_cursor, ) self.assertEqual(cursor, expected_result_cursor) self.assertEqual(result, doc_ids) def test_search_collections(self): expected_query_string = 'a query string' expected_cursor = 'cursor' expected_sort = 'title' expected_limit = 30 expected_result_cursor = 'rcursor' doc_ids = ['id1', 'id2'] def mock_search( query_string, index, cursor=None, limit=20, sort='', ids_only=False, retries=3): self.assertEqual(query_string, expected_query_string) self.assertEqual( index, collection_services.SEARCH_INDEX_COLLECTIONS) self.assertEqual(cursor, expected_cursor) self.assertEqual(limit, expected_limit) self.assertEqual(sort, expected_sort) self.assertEqual(ids_only, True) self.assertEqual(retries, 3) return doc_ids, expected_result_cursor with self.swap(gae_search_services, 'search', mock_search): result, cursor = search_services.search_collections( expected_query_string, expected_limit, sort=expected_sort, cursor=expected_cursor, ) self.assertEqual(cursor, expected_result_cursor) self.assertEqual(result, doc_ids) def test_demo_collections_are_added_to_search_index(self): results = search_services.search_collections('Welcome', 2)[0] self.assertEqual(results, []) collection_services.load_demo('0') results = search_services.search_collections('Welcome', 2)[0] self.assertEqual(results, ['0']) def test_demo_explorations_are_added_to_search_index(self): results, _ = search_services.search_explorations('Welcome', 2) self.assertEqual(results, []) exp_services.load_demo('0') results, _ = search_services.search_explorations('Welcome', 2) self.assertEqual(results, ['0']) def test_clear_exploration_search_index(self): exp_services.load_demo('0') result = search_services.search_explorations('Welcome', 2)[0] self.assertEqual(result, ['0']) search_services.clear_exploration_search_index() result = search_services.search_explorations('Welcome', 2)[0] self.assertEqual(result, []) def test_clear_collection_search_index(self): collection_services.load_demo('0') result = search_services.search_collections('Welcome', 2)[0] self.assertEqual(result, ['0']) search_services.clear_collection_search_index() result = search_services.search_collections('Welcome', 2)[0] self.assertEqual(result, []) def test_delete_explorations_from_search_index(self): def _mock_delete_docs(ids, index): """Mocks delete_documents_from_index().""" self.assertEqual(ids, [self.EXP_ID]) self.assertEqual(index, search_services.SEARCH_INDEX_EXPLORATIONS) delete_docs_counter = test_utils.CallCounter(_mock_delete_docs) delete_docs_swap = self.swap( gae_search_services, 'delete_documents_from_index', delete_docs_counter) with delete_docs_swap: search_services.delete_explorations_from_search_index([self.EXP_ID]) self.assertEqual(delete_docs_counter.times_called, 1) def test_delete_collections_from_search_index(self): def _mock_delete_docs(ids, index): """Mocks delete_documents_from_index().""" self.assertEqual(ids, [self.COLLECTION_ID]) self.assertEqual(index, search_services.SEARCH_INDEX_COLLECTIONS) delete_docs_counter = test_utils.CallCounter(_mock_delete_docs) delete_docs_swap = self.swap( gae_search_services, 'delete_documents_from_index', delete_docs_counter) with delete_docs_swap: search_services.delete_collections_from_search_index( [self.COLLECTION_ID]) self.assertEqual(delete_docs_counter.times_called, 1) ``` #### File: core/domain/wipeout_domain_test.py ```python from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules from core.domain import user_services from core.domain import wipeout_domain from core.tests import test_utils import utils class PendingDeletionRequestUnitTests(test_utils.GenericTestBase): """Tests for topic domain objects.""" def setUp(self): super(PendingDeletionRequestUnitTests, self).setUp() self.signup('<EMAIL>', 'A') self.signup('<EMAIL>', 'B') self.user_id_a = self.get_user_id_from_email('<EMAIL>') self.role = user_services.get_user_settings(self.user_id_a).role def test_create_default_pending_deletion_request(self): """Tests the create_default_topic() function.""" default_pending_deletion = ( wipeout_domain.PendingDeletionRequest.create_default( self.user_id_a, '<EMAIL>', self.role)) self.assertEqual(default_pending_deletion.user_id, self.user_id_a) self.assertEqual(default_pending_deletion.email, '<EMAIL>') self.assertEqual(default_pending_deletion.role, self.role) self.assertEqual(default_pending_deletion.deletion_complete, False) self.assertEqual( default_pending_deletion.pseudonymizable_entity_mappings, {}) def test_validate_fails_for_wrong_key_in_activity_mappings(self): """Tests the create_default_topic() function.""" pending_deletion_request = ( wipeout_domain.PendingDeletionRequest.create_default( self.user_id_a, '<EMAIL>', self.role)) pending_deletion_request.pseudonymizable_entity_mappings = { 'wrong_key': {} } with self.assertRaisesRegexp( utils.ValidationError, 'pseudonymizable_entity_mappings contain wrong key' ): pending_deletion_request.validate() ```
{ "source": "jlauener/Legend-of-Lanea", "score": 3 }
#### File: Legend-of-Lanea/src/main.py ```python import upygame as pygame import urandom as random import umachine as machine import data import data_type as dt import gfx import sfx import gc pygame.display.init(False) pygame.display.set_palette_16bit([ 4195,16678,12717,19017,13092,33382,53801,29580,23545,54245,33972,27973,28185,54611,57003,57210 ]); screen = pygame.display.set_mode() SCREEN_WIDTH = 110 SCREEN_HEIGHT = 88 #SKIP_INTRO = False #DEBUG_SWORD = True #WORLD_DATA = data.world TILE_WIDTH = 16 TILE_HEIGHT = 16 MAP_WIDTH = 32 MAP_HEIGHT = 32 MAP_WIDTH_PX = MAP_WIDTH * TILE_WIDTH MAP_HEIGHT_PX = MAP_HEIGHT * TILE_HEIGHT DIR_NONE = -1 DIR_LEFT = 0 DIR_RIGHT = 1 DIR_UP = 2 DIR_DOWN = 3 STATE_IDLE = 0 STATE_WALK = 1 STATE_ATTACK = 2 STATE_DIE = 3 STATE_HURT = 4 STATE_COLLECT = 5 STATE_SLEEP = 6 STATE_DEAD = 7 TEXT_RECT = pygame.Rect(0, 46, 110, 42) # Temporary rect to prevent filling up GC (most likely a bad practice...) rect_1 = pygame.Rect(0, 0, 0, 0) rect_2 = pygame.Rect(0, 0, 0, 0) class Camera: def __init__(self, bounds): self.bounds = bounds self.x = 0 self.y = 0 self.look_x = 0 self.look_y = 0 self.shake_x = 0 self.shake_y = 0 self.bounce_x = 0 self.bounce_y = 0 def look_at(self, x, y): self.look_x = x self.look_y = y def shake(self, x, y): self.shake_x = x if self.shake_x < 0: self.shake_x = -self.shake_x self.shake_y = y if self.shake_y < 0: self.shake_y = -self.shake_y def bounce(self, x, y): self.bounce_x = x self.bounce_y = y def update(self): self.x = self.look_x self.y = self.look_y if self.shake_x > 0: self.x += rand_range(-self.shake_x, self.shake_x) self.shake_x -= 1 if self.shake_y > 0: self.y += rand_range(-self.shake_y, self.shake_y) self.shake_y -= 1 self.x += self.bounce_x if self.bounce_x > 0: self.bounce_x -= 1 elif self.bounce_x < 0: self.bounce_x += 1 self.y += self.bounce_y if self.bounce_y > 0: self.bounce_y -= 1 elif self.bounce_y < 0: self.bounce_y += 1 if self.x < self.bounds.x: self.x = self.bounds.x elif self.x > self.bounds.x + self.bounds.width - SCREEN_WIDTH: self.x = self.bounds.x + self.bounds.width - SCREEN_WIDTH if self.y < self.bounds.x: self.y = self.bounds.y elif self.y > self.bounds.y + self.bounds.height - SCREEN_HEIGHT: self.y = self.bounds.y + self.bounds.height - SCREEN_HEIGHT camera = Camera(pygame.Rect(0, 0, MAP_WIDTH * TILE_WIDTH, MAP_HEIGHT * TILE_HEIGHT)) sound = pygame.mixer.Sound() def draw_text_centered(x, y, text, color): machine.draw_text(x - len(text) * 2, y, text, color) def rand_int(max): return random.getrandbits(16) % max def rand_range(min, max): return min + random.getrandbits(16) % (max - min) #def rand_dir(): # rnd = rand_int(4) # if rnd == 0: # return DIR_LEFT # elif rnd == 1: # return DIR_RIGHT # elif rnd == 2: # return DIR_UP # else: # return DIR_DOWN def rand_dir_xy(): rnd = rand_int(8) if rnd == 0: return -1, 0 elif rnd == 1: return 1, 0 elif rnd == 2: return 0, -1 elif rnd == 3: return 0, 1 elif rnd == 4: return -1, -1 elif rnd == 5: return 1, 1 elif rnd == 6: return 1, -1 else: return -1, 1 def get_dir_xy(dir): if dir == DIR_LEFT: return -1, 0 elif dir == DIR_RIGHT: return 1, 0 elif dir == DIR_UP: return 0, -1 else: return 0, 1 def get_dir(dx, dy): if dx < 0: return DIR_LEFT elif dx > 0 : return DIR_RIGHT elif dy < 0: return DIR_UP elif dy > 0: return DIR_DOWN else: return DIR_NONE def get_opposite_dir(dir): if dir == DIR_LEFT: return DIR_RIGHT elif dir == DIR_RIGHT: return DIR_LEFT elif dir == DIR_UP: return DIR_DOWN else: return DIR_UP def get_tile_at(map_data, x, y): if x % 2 == 0: return (map_data[y * MAP_WIDTH // 2 + x // 2] & 0xF0) >> 4 else: return map_data[y * MAP_WIDTH // 2 + x // 2] & 0x0F def set_tile_at(map_data, x, y, tid): index = y * MAP_WIDTH // 2 + x // 2 if x % 2 == 0: map_data[index] = (map_data[index] & 0x0F) | tid << 4 else: map_data[index] = (map_data[index] & 0xF0) | tid class Entity: def __init__(self, tile_x, tile_y, entity_data): self.x = tile_x * TILE_WIDTH + TILE_WIDTH // 2 self.y = tile_y * TILE_HEIGHT + TILE_HEIGHT self.data = entity_data def move_by(self, dx, dy): collide = False if dx != 0: if not game.map_collide(self.x + dx, self.y, self.data.hitbox): self.x += dx else: collide = True if dy != 0: if not game.map_collide(self.x, self.y + dy, self.data.hitbox): self.y +=dy else: collide = True return collide def collide_with(self, x, y, other): rect_1.x = x + self.data.hitbox.x rect_1.y = y + self.data.hitbox.y rect_1.width = self.data.hitbox.width rect_1.height = self.data.hitbox.height rect_2.x = other.x + other.data.hitbox.x rect_2.y = other.y + other.data.hitbox.y rect_2.width = other.data.hitbox.width rect_2.height = other.data.hitbox.height return rect_1.colliderect(rect_2) def collide_with_rect(self, rect): rect_2.x = self.x + self.data.hitbox.x rect_2.y = self.y + self.data.hitbox.y rect_2.width = self.data.hitbox.width rect_2.height = self.data.hitbox.height return rect.colliderect(rect_2) def draw_anim(self, x, y, anim, interval, loop): screen.blit(anim[self.frame_index], x - camera.x, y - camera.y) if not game.text: # FIXME this is a bit hackish, don't play anims while text is shown self.anim_counter += 1 if self.anim_counter == interval: self.anim_counter = 0 self.frame_index += 1 if self.frame_index == len(anim): if loop: self.frame_index = 0 else: self.frame_index -=1 # Keep the last frame (FIXME?). return True # Indicate a one-shot anim is finished. class Player(Entity): def __init__(self, tile_x, tile_y, entity_data): Entity.__init__(self, tile_x, tile_y, entity_data) self.dir = DIR_DOWN self.state = STATE_IDLE self.state_counter = 0 self.anim_counter = 0 self.frame_index = 0 self.immune_counter = 0 def attack(self): attack_hitbox = self.data.attack_hitbox[self.dir] rect_1.x = self.x + attack_hitbox.x rect_1.y = self.y + attack_hitbox.y rect_1.width = attack_hitbox.width rect_1.height = attack_hitbox.height # Special case: signpost (SHOULD BE RENAMED) for e in game.signposts: if e.collide_with_rect(rect_1): e.activate() return if not game.has_sword: # TODO feedback? return self.state = STATE_ATTACK self.state_counter = 8 damaged_enemy = False for e in game.enemies: if e.collide_with_rect(rect_1) and e.damage(1, self.dir, 10): damaged_enemy = True damaged_any = damaged_enemy for e in game.bushes: if e.collide_with_rect(rect_1) and e.damage(1, self.dir, 10): damaged_any = True if damaged_enemy: dx, dy = get_dir_xy(self.dir) camera.shake(dx * 4, dy * 4) if damaged_any: sound.play_sfx(sfx.attack_hit, len(sfx.attack_hit), True) else: sound.play_sfx(sfx.attack_miss, len(sfx.attack_miss), True) def damage(self, value): if self.immune_counter > 0: return if self.state == STATE_DEAD: return game.hp -= value if game.hp <= 0: self.state = STATE_DEAD game.hp = 0 camera.shake(10, 10) else: self.state = STATE_HURT self.state_counter = 6 self.immune_counter = 24 camera.shake(8, 8) sound.play_sfx(sfx.hurt, len(sfx.hurt), True) def collect(self, collectible): if collectible.data.collectible_id == dt.ENTITY_KEY: game.key += 1 if game.world.text_key: game.show_text(game.world.text_key) sound.play_sfx(sfx.collect, len(sfx.collect), True) elif collectible.data.collectible_id == dt.ENTITY_POTION: game.hp += 1 if game.world.text_potion: game.show_text(game.world.text_potion) sound.play_sfx(sfx.heal, len(sfx.heal), True) elif collectible.data.collectible_id == dt.ENTITY_SWORD: game.has_sword = True self.collected_sprite = gfx.collectible_sword_collect if game.world.text_sword: game.show_text(game.world.text_sword) sound.play_sfx(sfx.collect, len(sfx.collect), True) game.current_map.remove_collectible_at(collectible.tile_x, collectible.tile_y) self.collected_sprite = collectible.data.sprite_collect self.state = STATE_COLLECT self.state_counter = 4 return True def use_key(self): if game.key == 0: return False game.key -= 1 return True def update(self): if self.state == STATE_DEAD: return if self.immune_counter > 0: self.immune_counter -= 1 if self.state == STATE_ATTACK: self.state_counter -= 1 if self.state_counter == 0: self.state = STATE_IDLE self.anim_counter = 0 self.frame_index = 0 elif self.state == STATE_COLLECT: self.state_counter -= 1 if self.state_counter == 0: self.state = STATE_IDLE self.anim_counter = 0 self.frame_index = 0 else: if input_x != 0: self.move_by_and_collide(input_x, 0) if input_y != 0: self.move_by_and_collide(0, input_y) if self.state == STATE_HURT: self.state_counter -= 1 if self.state_counter == 0: self.state = STATE_IDLE self.anim_counter = 0 self.frame_index = 0 elif input_a: self.attack() #elif input_b: # self.act() elif input_x < 0: self.dir = DIR_LEFT self.state = STATE_WALK elif input_x > 0: self.dir = DIR_RIGHT self.state = STATE_WALK elif input_y < 0: self.dir = DIR_UP self.state = STATE_WALK elif input_y > 0: self.dir = DIR_DOWN self.state = STATE_WALK else: self.state = STATE_IDLE self.anim_counter = 0 self.frame_index = 0 def move_by_and_collide(self, dx, dy): blocked = False for e in game.doors: if self.collide_with(self.x + dx, self.y + dy, e) and e.hit(self): blocked = True for e in game.bushes: if self.collide_with(self.x + dx, self.y + dy, e) and e.hit(self): blocked = True for e in game.signposts: if self.collide_with(self.x + dx, self.y + dy, e): self.signpost = e blocked = True # Check if the player goes out of the map if dx < 0 and self.x < 8: game.load_next_map(-1, 0) elif dx > 0 and self.x > MAP_WIDTH_PX - 8: game.load_next_map(1, 0) elif dy < 0 and self.y < 16: game.load_next_map(0, -1) elif dy > 0 and self.y > MAP_HEIGHT_PX - 1: game.load_next_map(0, 1) elif not blocked: self.move_by(dx, dy) def draw(self): if self.immune_counter > 0 and self.state != STATE_HURT: # Blink while immune. if (self.immune_counter // 3) % 2 == 0: return if self.state == STATE_IDLE: screen.blit(self.data.anim_idle[self.dir], (self.x - 8) - camera.x, (self.y - 16) - camera.y) elif self.state == STATE_WALK: self.draw_anim(self.x - 8, self.y - 16, self.data.anim_walk[self.dir], 8, True) elif self.state == STATE_COLLECT: screen.blit(gfx.player_collect, (self.x - 8) - camera.x, (self.y - 16) - camera.y) screen.blit(self.collected_sprite, (self.x - 9) - camera.x, (self.y - 19) - camera.y) elif self.state == STATE_ATTACK: if self.state_counter < 4: screen.blit(self.data.anim_idle[self.dir], (self.x - 8) - camera.x, (self.y - 16) - camera.y) else: if self.dir == DIR_UP: screen.blit(gfx.item_sword[DIR_UP], (self.x + 1) - camera.x, (self.y - 19) - camera.y) screen.blit(self.data.anim_attack[self.dir], (self.x - 8) - camera.x, (self.y - 16) - camera.y) if self.dir == DIR_LEFT: screen.blit(gfx.item_sword[DIR_LEFT], (self.x - 15) - camera.x, (self.y - 9) - camera.y) elif self.dir == DIR_RIGHT: screen.blit(gfx.item_sword[DIR_RIGHT], (self.x + 6) - camera.x, (self.y - 9) - camera.y) elif self.dir == DIR_DOWN: screen.blit(gfx.item_sword[DIR_DOWN], (self.x - 6) - camera.x, (self.y - 3) - camera.y) elif self.state == STATE_HURT: screen.blit(self.data.anim_hurt[self.dir], (self.x - 8) - camera.x, (self.y - 16) - camera.y) elif self.state == STATE_SLEEP: screen.blit(gfx.player_sleep, (self.x - 8) - camera.x, (self.y - 16) - camera.y) elif self.state == STATE_DEAD: screen.blit(gfx.player_dead, (self.x - 8) - camera.x, (self.y - 16) - camera.y) class Enemy(Entity): def __init__(self, tile_x, tile_y, entity_data): Entity.__init__(self, tile_x, tile_y, entity_data) self.hp = entity_data.hp self.dir_x = 0 self.dir_y = 1 self.dir = DIR_DOWN self.state = STATE_IDLE self.state_counter = 1 self.move_counter = 0 self.anim_counter = 0 self.frame_index = 0 def damage(self, value, dir, knockback): if self.hp == 0: return False self.hp -= value if self.hp < 0: self.hp = 0 self.dir_x, self.dir_y = get_dir_xy(dir) self.dir = get_opposite_dir(dir) self.state = STATE_HURT self.state_counter = knockback return True def update(self): dist_x = self.x - game.player.x if dist_x < 0: dist_x = -dist_x if dist_x > 60: return dist_y = self.y - game.player.y if dist_y < 0: dist_y = -dist_y if dist_y > 50: return #if dist_x + dist_y > 128: return if self.state == STATE_WALK: self.state_counter -= 1 if self.state_counter == 0: self.state = STATE_IDLE self.state_counter = rand_range(self.data.idle_duration_min, self.data.idle_duration_max) else: self.move_counter += 1 if self.move_counter == 2: # FIXME add value for that (removed to gain some RAM) if self.move_by(self.dir_x, self.dir_y): self.state = STATE_IDLE self.state_counter = rand_range(self.data.idle_duration_min, self.data.idle_duration_max) self.move_counter = 0 elif self.state == STATE_IDLE: self.state_counter -= 1 if self.state_counter == 0: dir_x, dir_y = rand_dir_xy() while dir_x == self.dir_x and dir_y == self.dir_y: dir_x, dir_y = rand_dir_xy() self.dir_x = dir_x self.dir_y = dir_y if self.dir_x < 0: self.dir = DIR_LEFT elif self.dir_x > 0: self.dir = DIR_RIGHT elif self.dir_y < 0: self.dir = DIR_UP elif self.dir_y > 0: self.dir = DIR_DOWN self.state = STATE_WALK self.state_counter = self.state_counter = rand_range(self.data.walk_duration_min, self.data.walk_duration_max) self.anim_counter = 0 self.frame_index = 0 elif self.state == STATE_HURT: self.move_by(self.dir_x * (self.state_counter // 3), self.dir_y * (self.state_counter // 3)) self.state_counter -= 1 if self.state_counter == 0: if self.hp == 0: self.state = STATE_DIE self.state_counter = 12 self.anim_counter = 0 self.frame_index = 0 camera.bounce(0, 3) sound.play_sfx(sfx.enemy_die, len(sfx.enemy_die), True) else: self.state = STATE_IDLE self.state_counter = 20 elif self.state == STATE_DIE: self.state_counter -= 1 if self.state_counter == 0: game.enemies.remove(self) if self.state == STATE_IDLE or self.state == STATE_WALK: if self.collide_with(self.x, self.y, game.player): game.player.damage(1) def draw(self): if self.state == STATE_IDLE: screen.blit(self.data.anim_idle[self.dir], (self.x - 8) - camera.x, (self.y - 13) - camera.y) elif self.state == STATE_WALK: self.draw_anim(self.x - 8, self.y - 13, self.data.anim_walk[self.dir], 4, True) elif self.state == STATE_HURT: if self.state_counter < 8: screen.blit(self.data.anim_idle[self.dir], (self.x - 8) - camera.x, (self.y - 13) - camera.y) else: screen.blit(self.data.anim_hurt[self.dir], (self.x - 8) - camera.x, (self.y - 13) - camera.y) elif self.state == STATE_DIE: self.draw_anim(self.x - 4, self.y - 9, gfx.fx_enemy_die, 3, False) class Collectible(Entity): def __init__(self, tile_x, tile_y, entity_data): Entity.__init__(self, tile_x, tile_y, entity_data) self.tile_x = tile_x self.tile_y = tile_y def update(self): if self.collide_with(self.x, self.y, game.player) and game.player.collect(self): # TODO collect anim game.collectibles.remove(self) def draw(self): screen.blit(self.data.sprite_idle, (self.x - 5) - camera.x, (self.y - 14) - camera.y) # Create a single big entity to gain RAM ... class GenericEntity(Entity): def __init__(self, tile_x, tile_y, entity_data): Entity.__init__(self, tile_x, tile_y, entity_data) if entity_data == data.bush: self.alive = True elif entity_data == data.door: self.closed = True self.anim_counter = 0 self.frame_index = 0 elif entity_data == data.switch: self.on = False elif entity_data == data.barrier: self.switch_count = 2 # FIXME elif entity_data == data.spike: self.up = (tile_x % 2 == 0 and tile_y % 2 == 0) or (tile_x % 2 == 1 and tile_y % 2 == 1) if self.up: self.counter = 40 else: self.counter = 55 # Shift start to sync the spikes: (70-40) / 2 = 15 def hit(self, player): if self.data == data.bush: return self.alive elif self.data == data.door: if self.closed and player.use_key(): self.closed = False sound.play_sfx(sfx.attack_miss, len(sfx.attack_miss), True) return self.closed elif self.data == data.barrier: return True def damage(self, value, dir, knockback): if self.data == data.bush: if not self.alive: return False self.alive = False self.anim_counter = 0 self.frame_index = 0 return True def activate(self): if self.data == data.switch: if not self.on: self.on = True game.barrier.activate() # FIXME sound.play_sfx(sfx.attack_miss, len(sfx.attack_miss), True) else: game.show_text([['It seems that', 'it\'s activated.']]) elif self.data == data.barrier: self.switch_count -= 1 if self.switch_count == 0: game.doors.remove(self) elif self.data == data.signpost: game.show_text(self.text) sound.play_sfx(sfx.select, len(sfx.select), True) def update(self): #if self.data == data.spike: # small optimization to make dungeon a bit faster... if self.up and self.counter > 6 and self.collide_with(self.x, self.y, game.player): game.player.damage(1) self.counter -= 1 if self.counter == 0: self.up = not self.up if self.up: self.counter = 40 else: self.counter = 70 def draw(self): if self.data == data.bush: if self.alive: screen.blit(gfx.bush_idle, (self.x - 8) - camera.x, (self.y - 15) - camera.y) else: if self.draw_anim(self.x - 4, self.y - 13, gfx.fx_enemy_die, 3, False): game.bushes.remove(self) elif self.data == data.door: if self.closed: screen.blit(gfx.door_closed, (self.x - 8) - camera.x, (self.y - 16) - camera.y) else: self.draw_anim(self.x - 8, self.y - 16, self.data.anim_open, 4, False) elif self.data == data.switch: if self.on: screen.blit(gfx.switch_on, (self.x - 7) - camera.x, (self.y - 12) - camera.y) else: screen.blit(gfx.switch_off, (self.x - 7) - camera.x, (self.y - 12) - camera.y) elif self.data == data.barrier: screen.blit(gfx.barrier_closed, (self.x - 8) - camera.x, (self.y - 16) - camera.y) elif self.data == data.spike: if self.counter < 6: screen.blit(gfx.spike_middle, (self.x - 7) - camera.x, (self.y - 16) - camera.y) elif self.up: screen.blit(gfx.spike_up, (self.x - 7) - camera.x, (self.y - 16) - camera.y) else: screen.blit(gfx.spike_down, (self.x - 7) - camera.x, (self.y - 16) - camera.y) elif self.data == data.signpost: screen.blit(gfx.signpost_idle, (self.x - 5) - camera.x, (self.y - 12) - camera.y) '''' class Bush(Entity): def __init__(self, tile_x, tile_y, entity_data): Entity.__init__(self, tile_x, tile_y, entity_data) self.alive = True def hit(self, player): return self.alive def damage(self, value, dir, knockback): if not self.alive: return False self.alive = False self.anim_counter = 0 self.frame_index = 0 return True def draw(self): if self.alive: screen.blit(gfx.bush_idle, (self.x - 8) - camera.x, (self.y - 15) - camera.y) else: if self.draw_anim(self.x - 4, self.y - 13, gfx.fx_enemy_die, 3, False): game.bushes.remove(self) ''' ''' class Door(Entity): def __init__(self, tile_x, tile_y, entity_data): Entity.__init__(self, tile_x, tile_y, entity_data) self.closed = True self.anim_counter = 0 self.frame_index = 0 def hit(self, player): if self.closed and player.use_key(): self.closed = False sound.play_sfx(sfx.attack_miss, len(sfx.attack_miss), True) return self.closed def draw(self): if self.closed: screen.blit(gfx.door_closed, (self.x - 8) - camera.x, (self.y - 16) - camera.y) else: self.draw_anim(self.x - 8, self.y - 16, self.data.anim_open, 4, False) ''' ''' class Switch(Entity): def __init__(self, tile_x, tile_y, entity_data): Entity.__init__(self, tile_x, tile_y, entity_data) self.on = False def activate(self): if not self.on: self.on = True game.barrier.activate_switch() # FIXME sound.play_sfx(sfx.attack_miss, len(sfx.attack_miss), True) else: game.show_text([['It seems that', 'it\'s activated.']]) def draw(self): if self.on: screen.blit(gfx.switch_on, (self.x - 7) - camera.x, (self.y - 12) - camera.y) else: screen.blit(gfx.switch_off, (self.x - 7) - camera.x, (self.y - 12) - camera.y) ''' ''' class Barrier(Entity): def __init__(self, tile_x, tile_y, entity_data): Entity.__init__(self, tile_x, tile_y, entity_data) self.switch_count = 2 # FIXME def hit(self, player): return True def activate_switch(self): # FIXME self.switch_count -= 1 if self.switch_count == 0: game.doors.remove(self) def draw(self): screen.blit(gfx.barrier_closed, (self.x - 8) - camera.x, (self.y - 16) - camera.y) ''' ''' class Spike(Entity): def __init__(self, tile_x, tile_y, entity_data): Entity.__init__(self, tile_x, tile_y, entity_data) self.up = (tile_x % 2 == 0 and tile_y % 2 == 0) or (tile_x % 2 == 1 and tile_y % 2 == 1) if self.up: self.counter = 40 else: self.counter = 55 # Shift start to sync the spikes: (70-40) / 2 = 15 def update(self): if self.up and self.counter > 6 and self.collide_with(self.x, self.y, game.player): game.player.damage(1) self.counter -= 1 if self.counter == 0: self.up = not self.up if self.up: self.counter = 40 else: self.counter = 70 def draw(self): if self.counter < 6: screen.blit(gfx.spike_middle, (self.x - 7) - camera.x, (self.y - 16) - camera.y) elif self.up: screen.blit(gfx.spike_up, (self.x - 7) - camera.x, (self.y - 16) - camera.y) else: screen.blit(gfx.spike_down, (self.x - 7) - camera.x, (self.y - 16) - camera.y) ''' ''' class Signpost(Entity): def __init__(self, tile_x, tile_y, entity_data, text): Entity.__init__(self, tile_x, tile_y, entity_data) self.text = text def activate(self): game.show_text(self.text) sound.play_sfx(sfx.select, len(sfx.select), True) def draw(self): screen.blit(gfx.signpost_idle, (self.x - 5) - camera.x, (self.y - 12) - camera.y) ''' class Game: def __init__(self): self.map_data = bytearray((MAP_WIDTH * MAP_HEIGHT) // 2) self.tilemap = pygame.tilemap.Tilemap(MAP_WIDTH, MAP_HEIGHT, self.map_data) self.tilemap.set_tile(0x3, TILE_WIDTH, TILE_HEIGHT, gfx.tile_cliff) self.tilemap.set_tile(0x4, TILE_WIDTH, TILE_HEIGHT, gfx.tile_stalk_1) self.tilemap.set_tile(0x5, TILE_WIDTH, TILE_HEIGHT, gfx.tile_tree) self.tilemap.set_tile(0x8, TILE_WIDTH, TILE_HEIGHT, gfx.tile_water_1) self.tilemap.set_tile(dt.TILE_GROUND, TILE_WIDTH, TILE_HEIGHT, gfx.tile_path) self.tilemap.set_tile(dt.TILE_GRASS, TILE_WIDTH, TILE_HEIGHT, gfx.tile_grass) def new_game(self, world): self.world = world world.reset() self.hp = data.player.hp self.key = 0 self.has_sword = False #DEBUG_SWORD self.text = None self.load_map(world.starting_map) self.game_over_counter = 50 self.paused = False self.lanea = True #if not self.player: print("ERROR no player found!") camera.look_at(self.player.x - 55, self.player.y - 48) #if not SKIP_INTRO and world.intro_text: if world.intro_text: self.player.state = STATE_SLEEP self.show_text(world.intro_text) sound.play_sfx(sfx.select, len(sfx.select), True) def load_map(self, map_data): self.current_map = map_data self.player = None self.enemies = [] self.collectibles = [] self.doors = [] self.bushes = [] self.spikes = [] self.signposts = [] if map_data.custom_ground: self.tilemap.set_tile(0x6, TILE_WIDTH, TILE_HEIGHT, map_data.custom_ground) if map_data.custom_solid: self.tilemap.set_tile(0xA, TILE_WIDTH, TILE_HEIGHT, map_data.custom_solid) if map_data.tile_wall: self.tilemap.set_tile(0xC, TILE_WIDTH, TILE_HEIGHT, map_data.tile_wall[0]) self.tilemap.set_tile(0xD, TILE_WIDTH, TILE_HEIGHT, map_data.tile_wall[1]) self.tilemap.set_tile(0xE, TILE_WIDTH, TILE_HEIGHT, map_data.tile_wall[2]) self.tilemap.set_tile(0xF, TILE_WIDTH, TILE_HEIGHT, map_data.tile_wall[3]) self.tile_anim_counter = 1 self.tile_anim_index = 0 gc.collect() #print ("free RAM before map load:", gc.mem_free()) for ix in range(0, MAP_WIDTH): for iy in range(0, MAP_HEIGHT): tid = get_tile_at(map_data.tiles, ix, iy) if tid == 0x0: self.player = Player(ix, iy, data.player) tid = dt.TILE_GRASS elif tid == dt.TILE_ENTITY_1: self.create_entity(ix, iy, map_data.entity_1) tid = map_data.entity_1_tid elif tid == dt.TILE_ENTITY_2: self.create_entity(ix, iy, map_data.entity_2) tid = map_data.entity_2_tid elif tid == dt.TILE_ENTITY_3: self.create_entity(ix, iy, map_data.entity_3) tid = map_data.entity_3_tid elif tid == dt.TILE_ENTITY_4: self.create_entity(ix, iy, map_data.entity_4) tid = map_data.entity_4_tid elif tid == dt.TILE_ENTITY_5: self.create_entity(ix, iy, map_data.entity_5) tid = map_data.entity_5_tid elif tid == dt.TILE_ENTITY_6: self.create_entity(ix, iy, map_data.entity_6) tid = map_data.entity_6_tid elif tid == 0x7: # Wall resolution top = False if iy > 0 and get_tile_at(map_data.tiles, ix, iy - 1) == 0x7: top = True bottom = False if iy < MAP_HEIGHT - 1 and get_tile_at(map_data.tiles, ix, iy + 1) == 0x7: bottom = True if top and bottom: tid = 0xF elif top and not bottom: tid = 0xE elif not top and bottom: tid = 0xD else: tid = 0xC set_tile_at(self.map_data, ix, iy, tid) for sp in map_data.signposts: signpost = GenericEntity(sp['x'], sp['y'], data.signpost) signpost.text = sp['text'] self.signposts.append(signpost) # print ("free RAM after map load:", gc.mem_free()) def create_entity(self, x, y, id): if id == dt.ENTITY_BUSH: self.bushes.append(GenericEntity(x, y, data.bush)) elif id == dt.ENTITY_DOOR: self.doors.append(GenericEntity(x, y, data.door)) elif id == dt.ENTITY_SLIME: self.enemies.append(Enemy(x, y, data.enemy_slime)) elif id == dt.ENTITY_SLIME_STRONG: self.enemies.append(Enemy(x, y, data.enemy_slime_strong)) elif id == dt.ENTITY_SPIKE: self.spikes.append(GenericEntity(x, y, data.spike)) elif id == dt.ENTITY_BARRIER: self.barrier = GenericEntity(x, y, data.barrier) # FIXME self.doors.append(self.barrier) elif id == dt.ENTITY_SWITCH: self.signposts.append(GenericEntity(x, y, data.switch)) elif id >= dt.ENTITY_KEY: if not self.current_map.is_collected_at(x, y): self.collectibles.append(Collectible(x, y, data.collectible[id])) def load_next_map(self, dx, dy): next_map = self.world.get_map_at(self.current_map.x + dx, self.current_map.y + dy) if next_map: previous_x = self.player.x previous_y = self.player.y self.load_map(next_map) self.player = Player(0, 0, data.player) dir = get_dir(dx, dy) if dir == DIR_UP: self.player.x = previous_x self.player.y = MAP_HEIGHT_PX - 1 elif dir == DIR_DOWN: self.player.x = previous_x self.player.y = 16 elif dir == DIR_LEFT: self.player.x = MAP_WIDTH_PX - 8 self.player.y = previous_y elif dir == DIR_RIGHT: self.player.x = 8 self.player.y = previous_y self.player.dir = dir camera.look_at(self.player.x - 55, self.player.y - 48) else: show_scene(EndScene()) def is_tile_solid(self, x, y): # This method inlines get_tile_at() in order to reduce stack usage. tid = self.map_data[y * MAP_WIDTH // 2 + x // 2] if x % 2 == 0: tid = (tid & 0xF0) >> 4 else: tid = tid & 0x0F return tid == 0x3 or tid == 0x5 or tid == 0x8 or tid == 0xA or tid >= 0xC def map_collide(self, x, y, hitbox): # In order to avoid 2 for loop this collision routine only works with hitbox smaller than a tile. # This most likely is a premature optimization but well... x1 = (x + hitbox.x) // TILE_WIDTH y1 = (y + hitbox.y) // TILE_HEIGHT if self.is_tile_solid(x1, y1): return True x2 = (x + hitbox.x + hitbox.width) // TILE_WIDTH if self.is_tile_solid(x2, y1): return True y2 = (y + hitbox.y + hitbox.height) // TILE_HEIGHT if self.is_tile_solid(x1, y2): return True if self.is_tile_solid(x2, y2): return True def show_text(self, text): self.text = text self.text_index = 0 def update(self): if not self.text and not self.player.state == STATE_DEAD and input_c: #if SKIP_INTRO: # game.new_game(data.world) # show_scene(game) #else: self.paused = not self.paused if self.paused: return if self.text: if input_a: self.text_index += 1 if self.text_index == len(self.text): self.text = None if self.player.state == STATE_SLEEP: self.player.state = STATE_IDLE sound.play_sfx(sfx.select, len(sfx.select), True) else: for e in self.enemies: e.update() for e in self.collectibles: e.update() # Updating spikes seems to be a bottleneck, so it's inlined here.. # Also player rect is calculated only once rect_1.x = self.player.x + self.player.data.hitbox.x rect_1.y = self.player.y + self.player.data.hitbox.y rect_1.width = self.player.data.hitbox.width rect_1.height = self.player.data.hitbox.height for e in self.spikes: if e.up and e.counter > 6 and e.collide_with_rect(rect_1): game.player.damage(1) e.counter -= 1 if e.counter == 0: e.up = not e.up if e.up: e.counter = 40 else: e.counter = 70 self.player.update() camera.look_at(self.player.x - 55, self.player.y - 48) if self.player.state == STATE_DEAD: self.game_over_counter -= 1 if self.game_over_counter == 0: show_scene(GameOverScene()) def draw(self): if self.paused: draw_text_centered(SCREEN_WIDTH // 2 + 1, 42, "PAUSED", 0x1) draw_text_centered(SCREEN_WIDTH // 2, 41, "PAUSED", 0xF) return self.tile_anim_counter -= 1 if self.tile_anim_counter == 0: if self.tile_anim_index == 0: self.tilemap.set_tile(0x4, TILE_WIDTH, TILE_HEIGHT, gfx.tile_stalk_1) self.tilemap.set_tile(0x8, TILE_WIDTH, TILE_HEIGHT, gfx.tile_water_1) self.tile_anim_index = 1 else: self.tilemap.set_tile(0x4, TILE_WIDTH, TILE_HEIGHT, gfx.tile_stalk_2) self.tilemap.set_tile(0x8, TILE_WIDTH, TILE_HEIGHT, gfx.tile_water_2) self.tile_anim_index = 0 self.tile_anim_counter = 30 self.tilemap.draw(-camera.x, -camera.y) for e in self.spikes: e.draw() for e in self.collectibles: e.draw() for e in self.enemies: e.draw() for e in self.bushes: e.draw() for e in self.doors: e.draw() for e in self.signposts: e.draw() self.player.draw() for i in range(0, self.hp): screen.blit(gfx.ui_hearth, SCREEN_WIDTH - 11 * (i + 1), 2) item_x = 1 if self.has_sword: screen.blit(gfx.collectible_sword_idle, item_x, 1) item_x += 11 for i in range(0, self.key): screen.blit(gfx.collectible_key_idle, item_x, 1) item_x += 11 if self.text: screen.fill(0x0, TEXT_RECT) txt = self.text[self.text_index] if type(txt) is list: if len(txt) == 1: #machine.draw_text(36, 64, txt[0], 0xF) draw_text_centered(68, 64, txt[0], 0xF) else: machine.draw_text(40, 59, txt[0], 0xF) machine.draw_text(48, 69, txt[1], 0xF) screen.blit(gfx.portrait_lanea, -12, TEXT_RECT.y) if self.player.state == STATE_SLEEP: self.player.state = STATE_IDLE else: draw_text_centered(SCREEN_WIDTH // 2, 64, txt, 0xF) camera.look_at(self.player.x - 55, self.player.y - 45) class TitleScene: def __init__(self): self.press_start_counter = 90 self.press_start_visible = False def update(self): if input_c: game.new_game(data.world) show_scene(game) def draw(self): screen.fill(0x0, screen.get_rect()) screen.blit(gfx.title, 17, 8) self.press_start_counter -= 1 if self.press_start_counter == 0: self.press_start_visible = not self.press_start_visible self.press_start_counter = 12 if self.press_start_visible: draw_text_centered(SCREEN_WIDTH // 2, 74, "Press Start", 0xF) class EndScene: def update(self): if input_c: sound.play_sfx(sfx.select, len(sfx.select), True) show_scene(TitleScene()) def draw(self): screen.fill(0x0, screen.get_rect()) draw_text_centered(SCREEN_WIDTH // 2, 41, "To be continued...", 0xF) class GameOverScene: def update(self): if input_c: sound.play_sfx(sfx.select, len(sfx.select), True) show_scene(TitleScene()) def draw(self): screen.fill(0x0, screen.get_rect()) draw_text_centered(SCREEN_WIDTH // 2, 41, "GAME OVER", 0xF) input_x = 0 input_y = 0 scene = None def show_scene(s): global scene scene = s gc.collect() #print ("free RAM:", gc.mem_free()) game = Game() #if SKIP_INTRO: # game.new_game(data.world) # show_scene(game) #else: show_scene(TitleScene()) while True: # Main update loop. input_a = False input_b = False input_c = False eventtype = pygame.event.poll() if eventtype != pygame.NOEVENT: if eventtype.type == pygame.KEYDOWN: if eventtype.key == pygame.K_RIGHT: input_x = 1 if eventtype.key == pygame.K_LEFT: input_x = -1 if eventtype.key == pygame.K_DOWN: input_y = 1 if eventtype.key == pygame.K_UP: input_y = -1 if eventtype.key == pygame.BUT_A: input_a = True if eventtype.key == pygame.BUT_B: input_b = True if eventtype.key == pygame.BUT_C: input_c = True if eventtype.type == pygame.KEYUP: if eventtype.key == pygame.K_RIGHT: input_x = 0 if eventtype.key == pygame.K_LEFT: input_x = 0 if eventtype.key == pygame.K_DOWN: input_y = 0 if eventtype.key == pygame.K_UP: input_y = 0 scene.update() camera.update() scene.draw() pygame.display.flip() ```
{ "source": "jlauha/FixPointCS", "score": 2 }
#### File: FixPointCS/Polyfit/remez.py ```python import math import random import mpmath as mp import numpy.polynomial as P import numpy.polynomial.chebyshev as C # set precision #dps = 30 dps = 120 mp.mp.dps = dps mp.mp.pretty = True def vzeros(size): return mp.matrix([0.0] * size) def vones(size): return mp.matrix([1.0] * size) def nth(size): return mp.matrix([0.0] * size + [1.0]) class Remez: def __init__(self, func, weightFunc, domain, order): #print('Remez()') self.func = func self.weightFunc = weightFunc self.domain = domain self.order = order self.limit = mp.mpf(f'1e-{dps}') self.errorThreshold = mp.mpf(f'1e-{dps}') self.initRemez() def initRemez(self): #print('Remez.init()') # constants for domain (xMin, xMax) = self.domain self.k1 = (xMax + xMin) * 0.5 self.k2 = (xMax - xMin) * 0.5 # initial estimates for function roots (where error == 0.0) size = self.order + 1 roots = vzeros(size) fxn = vzeros(size) # \todo [petri] use linspace for i in range(size): roots[i] = (2.0 * i - self.order) / size fxn[i] = self.evalFunc(roots[i]) # build matrix of Chebyshev evaluations system = mp.zeros(size) for order in range(size): for i in range(size): system[i,order] = mp.chebyt(order, roots[i]) # solve system solved = system ** -1 # compute Chebyshev weights of new approximation weights = vzeros(size) for n in range(size): weights[n] = mp.fdot(solved[n,:], fxn) #print(f' weights: {weights.T}') # store roots & weights self.roots = roots self.weights = weights self.maxError = 1000.0 # estimate error #est = [self.evalEstimate(x) for x in roots] #print(' est:', est) #print(' fxn:', fxn.T) def step(self): (control, maxErr) = self.findExtrema(self.roots) #print(f' maxErr: {maxErr} ({-math.log(maxErr, 2.0)} bits)') # for x in control: # print(f' ctrl: {x}') self.weights = self.remezStep(control) # update error errDiff = mp.fabs(maxErr - self.maxError) self.maxError = maxErr if errDiff < self.errorThreshold: return True self.roots = self.findRoots(control) return False # for (ax, bx, rx, rerr) in scannedRoots: # print(f' scanned: {rx} in [{ax, bx}]') # scannedRoots = self.scanRoots(1000) # for ndx in range(len(self.roots)): # x = self.roots[ndx] # (ax, bx, rx, rerr) = scannedRoots[ndx] # print(f' root: {x} [{ax}, {bx}] {rx}') # if x < ax or x > bx: # print(' ROOT FIND MISMATCH') def findRoot(self, ax, bx, aerr, berr): cx = (ax + bx) * 0.5 cerr = self.evalEstimate(cx) - self.evalFunc(cx) if cerr == 0.0 or (bx - ax) <= self.limit: return (cx, cerr) else: if (aerr < 0.0 and cerr < 0.0) or (aerr > 0.0 and cerr > 0.0): (ax, aerr) = (cx, cerr) else: (bx, berr) = (cx, cerr) return self.findRoot(ax, bx, aerr, berr) def findRoots(self, control): roots = vzeros(self.order + 1) for n in range(self.order + 1): ax = control[n] bx = control[n+1] aerr = self.evalEstimate(ax) - self.evalFunc(ax) berr = self.evalEstimate(bx) - self.evalFunc(bx) (rx, rerr) = self.findRoot(ax, bx, aerr, berr) assert(rx >= ax and rx <= bx) # root must be inside search range roots[n] = rx #print(f' root[{n}]: {rx} <{rerr}> || {ax} {bx}') return roots def remezStep(self, control): # eval at control points fxn = mp.matrix([self.evalFunc(c) for c in control]) # create linear system with chebyshev polynomials size = self.order + 2 system = mp.zeros(size) for n in range(self.order + 1): for i in range(self.order + 2): system[i,n] = mp.chebyt(n, control[i]) # last column is oscillating error for i in range(size): sign = -1 if ((i & 1) == 0) else +1 scale = 0.0 if i in [0, size-1] else 1.0 system[i,size-1] = sign * scale * mp.fabs(self.evalWeight(control[i])) #print(system) # solve the system solved = system ** -1 #print(solved) # compute polynomial estimate (as Chebyshev weights) weights = vzeros(size-1) for n in range(size-1): weights[n] = mp.fdot(solved[n,:], fxn) #print(f' weights: {weights}') # estimate error # self.weights = weights # est = [self.evalEstimate(x) for x in control] # print(' est:', est) # print(' fxn:', fxn.T) return weights def findExtremum(self, ax, bx, cx, aerr, berr, cerr): # \todo [petri] implement golden ratio search? dx = (ax + bx) * 0.5 derr = self.evalError(dx) # update coords based on error if derr < cerr: if dx > cx: (bx, berr) = (dx, derr) else: (ax, aerr) = (dx, derr) else: if dx > cx: (ax, aerr) = (cx, cerr) else: (bx, berr) = (cx, cerr) (cx, cerr) = (dx, derr) # check if limit reached if (bx - ax) <= self.limit: #print(f' fin: {cx} <{cerr}> || {ax} {bx}') return (cx, cerr) else: #print(f' cur: {cx} <{cerr}>') return self.findExtremum(ax, bx, cx, aerr, berr, cerr) def findExtrema(self, roots): control = vzeros(self.order + 2) control[0] = -1 control[self.order + 1] = 1 maxErr = 0.0 for n in range(self.order): ax = roots[n] bx = roots[n+1] cx = ax + (bx - ax) * random.uniform(0.4, 0.6) aerr = self.evalError(ax) berr = self.evalError(bx) cerr = self.evalError(cx) #print(f' find[{n}]: {ax}, {bx}') (rx, rerr) = self.findExtremum(ax, bx, cx, aerr, berr, cerr) assert(rx >= ax and rx <= bx) # extremum must be inside search range #print(f' extrema[{n}]: {rx} <{rerr}> || {ax} {bx}') control[n + 1] = rx maxErr = max(maxErr, rerr) return (control, maxErr) def scanRoots(self, numSteps): found = [] coords = mp.linspace(-1.0, 1.0, numSteps) for ndx in range(len(coords)-1): ax = coords[ndx] bx = coords[ndx+1] aerr = self.evalEstimate(ax) - self.evalFunc(ax) berr = self.evalEstimate(bx) - self.evalFunc(bx) #print(f'bucket: {ax} <{aerr}>') #print(f' to: {bx} <{berr}>') if mp.sign(aerr) != mp.sign(berr): (rx, rerr) = self.findRoot(ax, bx, aerr, berr) #print(f' root in range: [{ax}, {bx}]: {rx} <{rerr}>') found.append((ax, bx, rx, rerr)) return found def evalFunc(self, x): return self.func(x * self.k2 + self.k1) def evalWeight(self, x): return self.weightFunc(x * self.k2 + self.k1) def evalEstimate(self, x): sum = mp.mpf(0.0) for i in range(len(self.weights)): sum += self.weights[i] * mp.chebyt(i, x) return sum def evalError(self, x): return mp.fabs(self.evalEstimate(x) - self.evalFunc(x)) / self.evalWeight(x) # Main MAX_REMEZ_ITER = 10 # convert polynomials to assume input in [0.0, 1.0] range (instead of [-1.0, 1.0]) rebase = P.Polynomial([-1.0, 2.0]) def remezFit(name, func, weightFunc, domain, order): remez = Remez(func, weightFunc, domain, order) for iter in range(MAX_REMEZ_ITER): #print(f'ITER {iter}:') if remez.step(): break return remez def remezToPoly(remez): cheby = C.Chebyshev(remez.weights) p = cheby.convert(kind=P.Polynomial) p = p(rebase) # (x0, x1) = remez.domain # p = p(P.Polynomial([-x0 / (x1 - x0), 1.0 / (x1 - x0)])) return p def writeCoefficients(file, name, maxError, order, segments): file.write('\n') if len(segments) == 1: precision = -math.log(maxError, 2.0) file.write(f'\t\t// Precision: {precision:.2f} bits\n') file.write('\t\t[MethodImpl(AggressiveInlining)]\n') file.write(f'\t\tpublic static int {name}Poly{order}(int a)\n') file.write('\t\t{\n') # get polynomial p = remezToPoly(segments[0]) for ndx in reversed(range(order + 1)): c = p.coef[ndx] ic = (int)(c * (1 << 30) + 0.5) # file.write(f'\t\t\tconst int C{ndx} = {ic}; // {c}\n') if ndx == len(p.coef)-1: file.write(f'\t\t\tint y = Qmul30(a, {ic}); // {c}\n') elif ndx > 0: file.write(f'\t\t\ty = Qmul30(a, y + {ic}); // {c}\n') else: file.write(f'\t\t\ty = y + {ic}; // {c}\n') file.write('\t\t\treturn y;\n') else: numSegments = len(segments) precision = -math.log(maxError, 2.0) funcName = f'{name}Poly{order}Lut{numSegments}' tableName = f'{funcName}Table' # write constant table file.write(f'\t\tprivate static readonly int[] {tableName} =\n') file.write('\t\t{\n') for remez in segments: # get polynomial p = remezToPoly(remez) # map [x0, x1] to [0.0, 1.0] (x0, x1) = remez.domain p = p(P.Polynomial([-x0 / (x1 - x0), 1.0 / (x1 - x0)])) # write coefficients coefs = ' '.join(f'{int(c * (1<<30) + 0.5)},' for c in reversed(p.coef)) file.write(f'\t\t\t{coefs}\n') file.write('\t\t};\n') # write function file.write('\n') file.write(f'\t\t// Precision: {precision:.2f} bits\n') file.write('\t\t[MethodImpl(AggressiveInlining)]\n') file.write(f'\t\tpublic static int {funcName}(int a)\n') file.write('\t\t{\n') segmentBits = int(math.log2(numSegments)) file.write(f'\t\t\tint offset = (a >> {30 - segmentBits}) * {order + 1};\n') for ndx in reversed(range(order + 1)): if ndx == order: file.write(f'\t\t\tint y = Qmul30(a, {tableName}[offset + {0}]);\n') elif ndx > 0: file.write(f'\t\t\ty = Qmul30(a, y + {tableName}[offset + {order - ndx}]);\n') else: file.write(f'\t\t\ty = y + {tableName}[offset + {order}];\n') file.write('\t\t\treturn y;\n') file.write('\t\t}\n') file.flush() def remezFitSegmented(name, func, weightFunc, domain, numSegments, order): (xMin, xMax) = domain maxError = 0.0 segments = [] for segment in range(numSegments): x0 = xMin + (xMax - xMin) * mp.mpf(segment) / numSegments x1 = xMin + (xMax - xMin) * mp.mpf(segment + 1) / numSegments remez = remezFit(name, func, weightFunc, (x0, x1), order) #print(f' segment[{segment}]: {-math.log(remez.maxError, 2.0):.2f} bits [{x0} .. {x1}]') maxError = max(maxError, remez.maxError) segments.append(remez) return (maxError, segments) epsilon = mp.mpf(f'1e-{dps//3}') # Implementation of sin() with the assumption that input has been normalized to [-1.0, 1.0] range # and squared. Also assumes the output will be multiplied by x once more (to make it odd). # See: https://github.com/samhocevar/lolremez/wiki/Tutorial-3-of-5:-changing-variables-for-simpler-polynomials def sinSqr(x): x = x * 0.25 * mp.pi * mp.pi xx = mp.sqrt(x) y = mp.sin(xx) / xx return y * 0.5*mp.pi FUNCS = [ ('Exp', lambda x: mp.exp(x), lambda x: mp.exp(x), (0.0, 1.0)), ('Exp2', lambda x: 2.0**x, lambda x: 2.0**x, (0.0, 1.0)), ('Log', lambda x: mp.log(x+1), lambda x: mp.log(x+1) * (mp.log(2.0) - mp.log(x+1)), (epsilon, 1.0-epsilon)), ('Log2', lambda x: mp.log(x+1, 2.0), lambda x: mp.log(x+1, 2.0) * (1 - mp.log(x+1, 2.0)), (epsilon, 1.0-epsilon)), ('Rcp', lambda x: 1.0 / (x+1), lambda x: 1.0 / (x+1), (0.0, 1.0)), ('Sqrt', lambda x: mp.sqrt(x+1), lambda x: mp.sqrt(x+1), (0.0, 1.0)), ('RSqrt', lambda x: 1.0 / mp.sqrt(x+1), lambda x: 1.0 / mp.sqrt(x+1), (0.0, 1.0)), ('Atan', lambda x: mp.atan(x), lambda x: mp.atan(x), (0.0, 1.0)), ('Sin', sinSqr, sinSqr, (epsilon, 1.0)), ] def generateCode(): with open(f'fitted.txt', 'w', newline='\n') as file: file.write('\t// AUTO-GENERATED POLYNOMIAL APPROXIMATIONS\n') file.write('\n') file.write('\tpublic static class Util\n') file.write('\t{\n') for (name, func, weightFunc, domain) in FUNCS: print() print(f'{name}():') orderRange = range(3, 10) if name != 'Sin' else range(1, 5) # orderRange = range(3, 6) if name != 'sin' else range(1, 4) for order in orderRange: remez = remezFit(name, func, weightFunc, domain, order) print(f' {name}<{order}>(): {-math.log(remez.maxError, 2.0):.2f} bits') writeCoefficients(file, name, remez.maxError, order, [remez]) for numSegments in [4, 8, 16, 32]: orders = [2, 3, 4, 5] if name != 'Sin' else [1, 2, 3] # orders = [3, 4] if name != 'sin' else [1, 2, 3] for order in orders: (maxError, segments) = remezFitSegmented(name, func, weightFunc, domain, numSegments, order) print(f' {name}<{order}>[{numSegments}](): {-math.log(maxError, 2.0):.2f} bits') writeCoefficients(file, name, maxError, order, segments) file.write('\t}\n') def plotError(): print('Plotting error..') #func = lambda x: 1.0 / (x + 1.0) func = sinSqr remez = remezFit('Sin', func, func, (epsilon, 1.0), 4) # remez = remezFit('Rcp', func, func, (1.0, 2.0), 3) print('err:', remez.maxError) est = remezToPoly(remez) err = lambda x: (func(x) - est(x)) / func(x) mp.plot([err], [0.0, 1.0]) #mp.plot([func], [0.0, 1.0]) # Main generateCode() #plotError() ```
{ "source": "jlauman/data_engineering_project_03", "score": 3 }
#### File: jlauman/data_engineering_project_03/rs_etl.py ```python import configparser, os, glob, csv, json, hashlib, time import pandas as pd import psycopg2 from pprint import pprint from rs_sql_queries import staging_events_insert, staging_songs_insert from rs_sql_queries import insert_table_queries import boto3 from botocore import UNSIGNED from botocore.config import Config DEND_BUCKET='udacity-dend' # global lookup table NAME_TO_GENDER = {} def load_gender_lookup(): """Load lookup dictionary to find gender given a name. """ base_path = os.getcwd() + '/data/names' for root, dirs, files in os.walk(base_path): file_paths = glob.glob(os.path.join(root,'*.txt')) for file_path in file_paths: print('names: %s' % file_path) with open(file_path) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') for row in csv_reader: # pprint(row) NAME_TO_GENDER[row[0]] = row[1] # pprint(NAME_TO_GENDER) True def get_object_paths(s3, bucket, prefix): """List objects in S3 bucket with given prefix. Uses paginator to ensure a complete list of object paths is returned. """ # r1 = s3.list_objects(Bucket=DEND_BUCKET, Prefix=prefix) # r2 = list(map(lambda obj: obj['Key'], r1['Contents'])) # r3 = list(filter(lambda str: str.endswith('.json'), r2)) # s3 client does not need to be closed object_paths = [] paginator = s3.get_paginator('list_objects') pages = paginator.paginate(Bucket=bucket, Prefix=prefix) for page in pages: # print("len(page['Contents'])=" + str(len(page['Contents']))) r1 = list(map(lambda obj: obj['Key'], page['Contents'])) r2 = list(filter(lambda str: str.endswith('.json'), r1)) object_paths.extend(r2) print('%s/%s total object paths = %d' % (bucket, prefix, len(object_paths))) time.sleep(2) return object_paths def load_staging_log_data(cur, conn): """Load song-play event records into s_songplay_event table. """ # import pdb; pdb.set_trace() # load log_data (events) into s_event table s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED)) file_paths = get_object_paths(s3, DEND_BUCKET, 'log_data') pprint(file_paths) for file_path in file_paths: sql = str(staging_events_insert) print('log_data: %s' % file_path) obj1 = s3.get_object(Bucket='udacity-dend', Key=file_path) str1 = obj1['Body'].read().decode('utf-8').strip() df = pd.read_json(str1, lines=True) df = df[df.page == 'NextSong'] df['timestamp'] = pd.to_datetime(df['ts'], unit='ms') df['year'] = df['timestamp'].dt.year df['week'] = df['timestamp'].dt.weekofyear df['month'] = df['timestamp'].dt.month df['day'] = df['timestamp'].dt.day df['hour'] = df['timestamp'].dt.hour df['weekday'] = df['timestamp'].dt.weekday # pprint(df) for index, row in df.iterrows(): # create a sha256 hash for event's unique id event_id = hashlib.sha256((str(row.userId) + ' ' + str(row.sessionId) + ' ' + row.timestamp.strftime('%Y%m%d%H%M') + ' ' + row.song).encode('utf-8')).hexdigest() str1 = ("(" + "'" + event_id + "', " + "'" + row.artist.replace("'", "''") + "', " + "'" + row.auth + "', " + "'" + row.firstName.replace("'", "''") + "', " + "" + str(row.itemInSession) + ", " + "'" + row.lastName.replace("'", "''") + "', " + "'" + NAME_TO_GENDER[row.firstName] + "', " + "" + str(row.length) + ", " + "'" + row.level + "', " + "'" + row.location.replace("'", "''") + "', " + "'" + row.method + "', " + "'" + row.page + "', " + "'" + str(row.registration) + "', " + "'" + str(row.sessionId) + "', " + "'" + row.song.replace("'", "''") + "', " + "'" + str(row.status) + "', " + "'" + row.timestamp.strftime('%Y-%m-%d %H') + "', " + "" + str(row.year) + ", " + "" + str(row.week) + ", " + "" + str(row.month) + ", " + "" + str(row.day) + ", " + "" + str(row.hour) + ", " + "" + str(row.weekday) + ", " + "'" + row.userAgent.replace("'", "''") + "', " + "'" + str(row.userId) + "'" + "),\n") sql += str1 sql = ''.join(sql).strip()[:-1] + ';' # print(sql) # import pdb; pdb.set_trace() cur.execute(sql) conn.commit() def load_staging_song_data(cur, conn): """Load song records into s_song staging table. """ sql = str(staging_songs_insert) s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED)) file_paths = get_object_paths(s3, DEND_BUCKET, 'song_data') pprint(file_paths) for file_path in file_paths: print('song_data: %s' % file_path) obj1 = s3.get_object(Bucket='udacity-dend', Key=file_path) str1 = obj1['Body'].read().decode('utf-8').strip() data = json.loads(str1) if data['year'] == 0: data['year'] = None # fix link string... if str(data['artist_location']).startswith('<a'): data['artist_location'] = None # pprint(data) str2 = ("(" + "'" + data['artist_id'] + "', " + "" + (str(data['artist_latitude']) if not data['artist_latitude'] == None else 'null') + ", " + "'" + str(data['artist_location']).replace("'", "''") + "', " + "" + (str(data['artist_longitude']) if not data['artist_longitude'] == None else 'null') + ", " + "'" + str(data['artist_name']).replace("'", "''") + "', " + "" + str(data['duration']) + ", " + "" + str(data['num_songs']) + ", " + "'" + data['song_id'] + "', " + "'" + str(data['title']).replace("'", "''") + "', " + "" + (str(data['year']) if not data['year'] == None else 'null') + "" + "),\n") sql += str2 # print(str2) # batch inserts at 8k character threshold if len(sql) > 8192: print(' 8k insert...') sql = ''.join(sql).strip()[:-1] + ';' cur.execute(sql) conn.commit() sql = str(staging_songs_insert) print('last insert...') sql = ''.join(sql).strip()[:-1] + ';' # print(sql) # import pdb; pdb.set_trace() cur.execute(sql) conn.commit() def load_staging_tables(cur, conn): load_staging_song_data(cur, conn) load_staging_log_data(cur, conn) def insert_tables(cur, conn): """Populate staging, dimension and fact tables. The fact table must be the last item in the query list. """ for query in insert_table_queries: if query.strip() != "": pprint(query) cur.execute(query) conn.commit() def main(): """Run Redshift ETL for staging, dimension and fact tables. """ config = configparser.ConfigParser() config.read('rs_dwh.cfg') conn = psycopg2.connect("host={} dbname={} user={} password={} port={}".format(*config['CLUSTER'].values())) cur = conn.cursor() load_gender_lookup() load_staging_tables(cur, conn) insert_tables(cur, conn) conn.close() if __name__ == "__main__": main() ```
{ "source": "jlaumonier/mlsurvey", "score": 3 }
#### File: mlsurvey/mlsurvey/fairness_utils.py ```python import operator from functools import reduce from operator import eq class FairnessUtils: @classmethod def calculate_cond_probability(cls, data, ofs, givens): """ calculate conditional probability of 'ofs' given 'givens' """ givens_conditions = [] ofs_conditions = [] for of in ofs: ofs_conditions.append(eq(data.df[of[0]], of[1])) for given in givens: givens_conditions.append(eq(data.df[given[0]], given[1])) ofs_conditions.append(eq(data.df[given[0]], given[1])) ofs_logical_conditions = reduce(operator.and_, ofs_conditions) givens_logical_conditions = reduce(operator.and_, givens_conditions) set_ofs_inter_givens = data.df.loc[ofs_logical_conditions] card_ofs_inter_givens = len(set_ofs_inter_givens.index) set_givens = data.df.loc[givens_logical_conditions] card_givens = len(set_givens.index) result = card_ofs_inter_givens / card_givens return result ``` #### File: mlsurvey/mlsurvey/fileoperation.py ```python import json import os import pandas as pd import mlsurvey as mls class FileOperation: @classmethod def save_dict_as_json(cls, filename, directory, data): """ Save a dictionary into a json file. Transform the dictionary into mlsurvey json format (for lists). Create the directory of not exists :param filename: name of the file :param directory: directory to save the file :param data: data to save into the file """ os.makedirs(directory, exist_ok=True) full_path = os.path.join(directory, filename) with open(full_path, 'w') as outfile: json.dump(mls.Utils.transform_to_json(data), outfile) outfile.close() @classmethod def load_json_as_dict(cls, filename, directory, tuple_to_string=False): """ Load a json file (mlsurvey json format) into dictionary :param filename: name of the file :param directory: directory to load the file :param tuple_to_string: if True the tuple identified with "__type__": "__tuple__" are store as string in the dictionary. If False, the tuple is converted to a tuple type :return: the dictionary """ full_path = os.path.join(directory, filename) with open(full_path, 'r') as infile: data = mls.Utils.transform_to_dict(json.load(infile), tuple_to_string) return data @classmethod def save_hdf(cls, filename, directory, data, params=None): """ Save a dataframe into a hdf file. Create the directory of not exists :param filename: name of the file :param directory: directory to save the file :param data: data to save into the file :param params: parameters passed to the to_json() method """ if params is None: params = {} os.makedirs(directory, exist_ok=True) full_path = os.path.join(directory, filename) data.to_hdf(full_path, 'key', mode='w', **params) @classmethod def read_hdf(cls, filename, directory, df_format): """ Load a dataframe from a hdf file. :param filename: name of the file :param directory: directory to load the file :param df_format: 'Pandas' """ full_path = os.path.join(directory, filename) data = None if df_format == 'Pandas': data = pd.read_hdf(full_path, 'key') return data @classmethod def save_json(cls, filename, directory, data, params=None): """ Save a dataframe into a json file. Create the directory of not exists :param filename: name of the file :param directory: directory to save the file :param data: data to save into the file :param params: parameters passed to the to_json() method """ if params is None: params = {} os.makedirs(directory, exist_ok=True) full_path = os.path.join(directory, filename) with open(full_path, 'w', encoding='utf-8') as file: data.to_json(file, force_ascii=False, **params) @classmethod def read_json(cls, filename, directory, df_format): """ Load a dataframe from a json file. :param filename: name of the file :param directory: directory to load the file :param df_format: 'Pandas' """ full_path = os.path.join(directory, filename) data = None if df_format == 'Pandas': data = pd.read_json(full_path) return data @classmethod def save_plotly_figure(cls, filename, directory, figure): """ Save a plotly figure into an image file. Create the directory of not exists :param filename: name of the file :param directory: directory to save the file :param figure: data to save into the file """ os.makedirs(directory, exist_ok=True) full_path = os.path.join(directory, filename) figure.write_image(full_path) @classmethod def load_input(cls, filename, directory): """ load inputs from json file. The file may contains multiple input {"input1": input1, "input2": input2"} :param filename: the name of the file :param directory directory of the files to load :return dictionary containing each inputs as mlsurvey.sl.models.Data format """ data = cls.load_json_as_dict(filename=filename, directory=directory) result = {} for k, v in data.items(): df = mls.FileOperation.read_hdf(v['data_path'], directory, v['df_format']) i = mls.sl.models.DataFactory.create_data_from_dict(v['df_format'], v['metadata'], df) result[k] = i return result ``` #### File: sl/models/algorithm.py ```python import mlsurvey as mls class Algorithm: def __init__(self, config, base_directory=''): """ Initialize the algorithm class using the config :param config dictionary containing keys 'type' and 'hyperparamters'. The config 'type' is the name of the class defining the algorithm (e.g. sklearn.svm.SVC) the config 'hyperparamters' is a dictionary used to initialize the class :param base_directory if needed by the algorithm to load file (submodels...), '' by default Raise a mlsurvey.exceptions.ConfigError if keys are not found in config """ self.algorithm_family = None self.hyperparameters = None self.base_directory = base_directory try: self.algorithm_family = config['type'] self.hyperparameters = config['hyperparameters'] except KeyError as e: raise mls.exceptions.ConfigError(e) def learn(self, x, y): """learn a classifier from input x and y""" try: classifier_class = mls.Utils.import_from_dotted_path(self.algorithm_family) except AttributeError as e: raise mls.exceptions.ConfigError(e) classifier = classifier_class(**self.hyperparameters) classifier.fit(x, y) return classifier def to_dict(self): """ transform an algorithm to a dictionary {'type': ..., 'hyperparameters': ...} :return: a dictionary """ result = {'type': self.algorithm_family, 'hyperparameters': self.hyperparameters} return result @staticmethod def from_dict(d): """ Create an Algorithm from a dictionary :param d: the dictionary :return: an instance of Algorithm """ return Algorithm(d) ``` #### File: sl/models/datapandas.py ```python import numpy as np import pandas as pd import mlsurvey as mls from .data import Data from .data_factory import DataFactory class DataPandas(Data): @property def x(self): return self._inner_data.iloc[:, 0:self.max_x_column].to_numpy() @property def x_df(self): return self._inner_data.iloc[:, 0:self.max_x_column] @property def y(self): return self._inner_data[self.y_col_name].to_numpy() @property def y_pred(self): return self._inner_data[self.y_pred_col_name].to_numpy() @staticmethod def from_dict(dictionary, df): """ see mls.models.Data.from_dict() """ try: result = DataPandas(df, dictionary['df_contains'], dictionary['y_col_name'], dictionary['y_pred_col_name'] ) except KeyError as e: raise mls.exceptions.ModelError(e) return result def copy_with_new_data(self, data_array): """ see mls.models.Data.copy_with_new_data() """ data_array = np.concatenate((data_array[0], np.array([data_array[1]]).T), axis=1) df = pd.DataFrame(data_array, columns=self.df.columns) data = mls.sl.models.DataPandas(df, df_contains=self.df_contains, y_col_name=self.y_col_name) return data def copy_with_new_data_dataframe(self, dataframe): """ see mls.models.Data.copy_with_new_data_dataframe() """ data = mls.sl.models.DataPandas(dataframe, df_contains=self.df_contains, y_col_name=self.y_col_name) return data class Factory: @staticmethod def create(df, df_contains='xy', y_col_name=None, y_pred_col_name=None): return DataPandas(df, df_contains, y_col_name, y_pred_col_name) @staticmethod def from_dict(d, df): return DataPandas.from_dict(d, df) DataFactory.add_factory('Pandas', DataPandas.Factory) ``` #### File: sl/models/evaluation_fairness.py ```python from .evaluation import Evaluation from .evaluation_factory import EvaluationFactory class EvaluationFairness(Evaluation): def __init__(self): super().__init__() self.demographic_parity = 0 self.equal_opportunity = None self.statistical_parity = None self.average_equalized_odds = None self.disparate_impact_rate = None def to_dict(self): eval_dict = super().to_dict() fairness_dict = {'demographic_parity': self.demographic_parity, 'equal_opportunity': self.equal_opportunity, 'statistical_parity': self.statistical_parity, 'average_equalized_odds': self.average_equalized_odds, 'disparate_impact_rate': self.disparate_impact_rate} result = {**eval_dict, **fairness_dict} return result def from_dict(self, d_src): self.demographic_parity = d_src['demographic_parity'] self.equal_opportunity = d_src['equal_opportunity'] self.statistical_parity = d_src['statistical_parity'] self.average_equalized_odds = d_src['average_equalized_odds'] self.disparate_impact_rate = d_src['disparate_impact_rate'] class Factory: @staticmethod def create(): return EvaluationFairness() EvaluationFactory.add_factory('EvaluationFairness', EvaluationFairness.Factory) ``` #### File: sl/workflows/multiple_learning_workflow.py ```python from kedro.io import DataCatalog, MemoryDataSet from kedro.pipeline import Pipeline from kedro.runner import SequentialRunner import mlsurvey as mls from mlsurvey.workflows.learning_workflow import LearningWorkflow class MultipleLearningWorkflow(LearningWorkflow): def run(self): """ Run the workflow : run each config """ # data data_catalog = DataCatalog({'config': MemoryDataSet(), 'log': MemoryDataSet(), 'base_directory': MemoryDataSet()}) data_catalog.save('config', self.config) data_catalog.save('log', self.log) data_catalog.save('base_directory', self.base_directory) expand_config_node = mls.sl.workflows.tasks.ExpandConfigTask.get_node() multiple_learning_node = mls.sl.workflows.tasks.MultipleLearningTask.get_node() # Assemble nodes into a pipeline pipeline = Pipeline([expand_config_node, multiple_learning_node]) # Create a runner to run the pipeline runner = SequentialRunner() # Run the pipeline result = runner.run(pipeline, data_catalog) if len(result) == 0: self.terminate() ``` #### File: workflows/tasks/learn_task.py ```python import os from kedro.pipeline import node import mlsurvey as mls from mlsurvey.workflows.tasks import BaseTask class LearnTask(BaseTask): """ learn model from train data """ @classmethod def _log_inputs_outputs(cls, log, d): log.set_sub_dir(str(cls.__name__)) model_fullpathname = os.path.join(log.directory, 'model.joblib') # Log model metadata log.save_dict_as_json('model.json', d['model_metadata']) log.save_dict_as_json('algorithm.json', d['algorithm'].to_dict()) log.save_classifier(d['model'], filename='model.joblib') log.set_sub_dir('') return model_fullpathname @staticmethod def learn(config, log, train_data): algorithm_params = config.data['learning_process']['parameters']['algorithm'] algorithm = mls.sl.models.Algorithm(algorithm_params) classifier = algorithm.learn(train_data.x, train_data.y) # Logging metadata = {'type': config.data['learning_process']['parameters']['algorithm']['type']} d = {'model_metadata': metadata, 'algorithm': algorithm, 'model': classifier} model_fullpathname = LearnTask._log_inputs_outputs(log, d) return [model_fullpathname] @classmethod def get_node(cls): return node(LearnTask.learn, inputs=['config', 'log', 'train_data'], outputs=['model_fullpath']) ``` #### File: workflows/tasks/split_data.py ```python from kedro.pipeline import node from mlsurvey.workflows.tasks import BaseTask class SplitDataTask(BaseTask): """ split data from prepared data (train/test) """ @classmethod def get_node(cls): return node(SplitDataTask.split_data, inputs=['config', 'log', 'raw_data', 'prepared_data'], outputs=['train_data', 'test_data', 'train_raw_data', 'test_raw_data']) @staticmethod def split_data(config, log, raw_data, prepared_data): """ split the data for training/testing process. At the moment, only the split 'traintest' to split into train and test set is supported """ split_params = config.data['learning_process']['parameters']['split'] if split_params['type'] == 'traintest': # TODO test shuffle False if split_params['parameters']['shuffle']: df_test = prepared_data.df.sample(frac=split_params['parameters']['test_size'] / len(prepared_data.df), random_state=split_params['parameters']['random_state']) else: df_test = prepared_data.df.head(len(prepared_data.df) * split_params['parameters']['test_size']) df_train = prepared_data.df.drop(df_test.index) data_train = prepared_data.copy_with_new_data_dataframe(df_train) data_test = prepared_data.copy_with_new_data_dataframe(df_test) raw_data_train_df = raw_data.df.iloc[data_train.df.index] raw_data_train = raw_data.copy_with_new_data_dataframe(raw_data_train_df) raw_data_test_df = raw_data.df.iloc[data_test.df.index] raw_data_test = raw_data.copy_with_new_data_dataframe(raw_data_test_df) # reindex data_train.df.reset_index(drop=True, inplace=True) data_test.df.reset_index(drop=True, inplace=True) raw_data_train.df.reset_index(drop=True, inplace=True) raw_data_test.df.reset_index(drop=True, inplace=True) data_to_save = {'train': data_train, 'test': data_test, 'raw_train': raw_data_train, 'raw_test': raw_data_test} SplitDataTask.log_inputs_outputs(log, data_to_save) return [data_train, data_test, raw_data_train, raw_data_test] @classmethod def log_inputs_outputs(cls, log, d): # Log inside sub directory log.set_sub_dir(str(cls.__name__)) inputs = {'train': d['train'], 'test': d['test'], 'raw_train': d['raw_train'], 'raw_test': d['raw_test']} log.save_input(inputs, metadata_filename='split_data.json') log.set_sub_dir('') ``` #### File: mlsurvey/mlsurvey/utils.py ```python import ast import hashlib import importlib import numpy as np import pandas as pd class Utils: """ Utils functions """ @classmethod def md5_file(cls, filename): """ Calculate the md5 of a file thanks <NAME> https://www.pythoncentral.io/hashing-files-with-python/ Raise FileNotFoundError if the file does not exist """ blocksize = 65536 hasher = hashlib.md5() with open(filename, 'rb') as afile: buf = afile.read(blocksize) while len(buf) > 0: hasher.update(buf) buf = afile.read(blocksize) return hasher.hexdigest() @classmethod def import_from_dotted_path(cls, dotted_names): """ import_from_dotted_path('foo.bar') -> from foo import bar; return bar """ module_name, class_name = dotted_names.rsplit('.', 1) module = importlib.import_module(module_name) handler_class = getattr(module, class_name) return handler_class @classmethod def make_meshgrid(cls, x, y, h=.02): """ Create a mesh of points to plot in (src, thanks : https://scikit-learn.org/stable/auto_examples/svm/plot_iris.html) :param x: data to base x-axis meshgrid on (type numpy.ndarray) :param y: data to base y-axis meshgrid on (type numpy.ndarray) :param h: stepsize for meshgrid, optional :return: xx, yy : ndarray """ x_min, x_max = x.min() - 1, x.max() + 1 y_min, y_max = y.min() - 1, y.max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) return xx, yy @classmethod def transform_to_dict(cls, dictionary: dict, tuple_to_string=False): """ Transform a dictionary containing dictionary such as { "__type__": "__tuple__", "__value__": "(1, 2, 3)"} to dictionary containing the real type (tuple) :param dictionary: dictionary containing __tuple__ values :param tuple_to_string: if True the tuple identified with "__type__": "__tuple__" are store as string in the dictionary. If False, the tuple is converted to a tuple type :return dictionary containing the real type """ def change_one_dict_element(value): if '__type__' in value: if value['__type__'] == '__tuple__': if tuple_to_string: result_element = value['__value__'] else: result_element = ast.literal_eval(value['__value__']) if not isinstance(result_element, tuple): raise TypeError(v['__value__'] + " is not a tuple") else: result_element = Utils.transform_to_dict(value, tuple_to_string) else: result_element = Utils.transform_to_dict(value, tuple_to_string) return result_element result = dictionary.copy() for k, v in result.items(): if isinstance(v, dict): result[k] = change_one_dict_element(v) if isinstance(v, list): result[k] = [] for e in v: if isinstance(e, dict): result[k].append(change_one_dict_element(e)) else: result[k].append(e) return result @classmethod def transform_to_json(cls, dictionary): """ Transform a dictionary containing tuple to dictionary such as { "__type__": "__tuple__", "__value__": "(1, 2, 3)"} :param dictionary: dictionary containing tuple :return dictionary containing __tuple__ values """ def change_one_dict_element(value): result_element = {'__type__': '__tuple__', '__value__': value.__str__()} return result_element result = dictionary.copy() for k, v in result.items(): if isinstance(v, tuple): result[k] = change_one_dict_element(v) if isinstance(v, dict): result[k] = Utils.transform_to_json(v) if isinstance(v, list): result[k] = [] for e in v: if isinstance(e, tuple): result[k].append(change_one_dict_element(e)) else: if isinstance(e, dict): result[k].append(Utils.transform_to_json(e)) else: result[k].append(e) return result @classmethod def check_dict_python_ready(cls, dictionary): """ Check if a dictionary (and nested) does not contains a __type__ key, which means is not ready to be handle by python :param dictionary: the dictionary to check :return: False if the dictionary contains one __type__ key, True otherwise """ result = True for k, v in dictionary.items(): if not isinstance(v, list): v = [v] for e in v: if isinstance(e, dict): if '__type__' in e: result = False else: result = result & Utils.check_dict_python_ready(e) return result @classmethod def flatten_dict(cls, dictionary, separator='_', prefix=''): """SRC : https://www.geeksforgeeks.org/python-convert-nested-dictionary-into-flattened-dictionary/""" result = {prefix + separator + k if prefix else k: v for kk, vv in dictionary.items() for k, v in Utils.flatten_dict(vv, separator, kk).items() } if isinstance(dictionary, dict) else {prefix: dictionary} return result @classmethod def func_create_dataframe(cls, storage): """ return the function that create a DataFrame from an array""" if storage == 'Pandas': return pd.DataFrame @classmethod def is_dataframe_empty(cls, df): result = True if isinstance(df, pd.DataFrame): result = df.empty return result @classmethod def str2bool(cls, v: str): return v.lower() in ("yes", "true", "t", "1") ``` #### File: mlsurvey/visualize/visualize_log_detail.py ```python import dash_dangerously_set_inner_html as ddsih import dash_html_components as html import json2table import mlsurvey as mls class VisualizeLogDetail: """ Generation of the visualization for a log experiment """ def __init__(self, directory): """ initialize the workflow reading the files from directory :param directory: the directory where the results are stored """ super().__init__() self.source_directory = directory self.config = None self.configText = None self.log = mls.Logging(self.source_directory, base_dir='') def task_load_data(self): """ Load config from directory """ self.config = mls.Config('config.json', self.source_directory) def task_display_data(self): """ Display with dash. """ self.config.compact() # This line makes a cannot find reference warning and i do not know why and how i can fix it self.configText = html.Div([ddsih.DangerouslySetInnerHTML(json2table.convert(self.config.data))]) def run(self): self.task_load_data() self.task_display_data() def get_result(self, parameters): div_children = [html.Div(self.configText, className='six columns', style={'display': parameters['display_config']})] result = html.Div(children=div_children, className='one_result') return [result] ``` #### File: mlsurvey/test/test_fairness_utils.py ```python import unittest import numpy as np import pandas as pd import mlsurvey as mls class TestFairnessUtils(unittest.TestCase): def test_calculate_cond_probability_calculated_pandas(self): x = np.array([[1, 2], [3, 4], [3, 2], [3, 3], [1, 3]]) y = np.array([0, 1, 0, 0, 1]) data_array = np.concatenate((x, np.array([y]).T), axis=1) df = pd.DataFrame(data=data_array) data = mls.sl.models.DataFactory.create_data('Pandas', df) proba1 = mls.FairnessUtils.calculate_cond_probability(data, [('target', 0)], [('C0', 1)]) expected_proba1 = 0.5 proba2 = mls.FairnessUtils.calculate_cond_probability(data, [('target', 1)], [('C0', 1)]) expected_proba2 = 0.5 proba3 = mls.FairnessUtils.calculate_cond_probability(data, [('target', 1)], [('C0', 3)]) expected_proba3 = 0.3333333333333333 self.assertEqual(proba1, expected_proba1) self.assertEqual(proba2, expected_proba2) self.assertEqual(proba3, expected_proba3) def test_calculate_cond_probability_calculated_two_givens(self): x = np.array([[1, 2], [3, 4], [3, 2], [3, 3], [1, 3], [1, 2]]) y = np.array([0, 1, 0, 0, 1, 1]) data_array = np.concatenate((x, np.array([y]).T), axis=1) df = pd.DataFrame(data=data_array) data = mls.sl.models.DataFactory.create_data('Pandas', df) proba1 = mls.FairnessUtils.calculate_cond_probability(data, [('target', 0)], [('C0', 1), ('C1', 2)]) expected_proba1 = 0.5 self.assertEqual(proba1, expected_proba1) def test_calculate_cond_probability_calculated_two_ofs(self): x = np.array([[1, 2], [3, 4], [3, 2], [3, 3], [1, 3], [1, 2]]) y = np.array([0, 1, 0, 0, 1, 1]) data_array = np.concatenate((x, np.array([y]).T), axis=1) df = pd.DataFrame(data=data_array) data = mls.sl.models.DataFactory.create_data('Pandas', df) proba1 = mls.FairnessUtils.calculate_cond_probability(data, [('target', 0), ('C0', 1)], [('C1', 2)]) expected_proba1 = 0.3333333333333333 self.assertEqual(proba1, expected_proba1) ``` #### File: test/test_import/test_explicit_import.py ```python import unittest import mlsurvey.config as config class TestExplicitImport(unittest.TestCase): def test_import(self): c = {'c': 'test'} var = config.Config(config=c) self.assertIsInstance(var, config.Config) ``` #### File: test_rl/test_common/test_agent.py ```python import unittest import mlsurvey as mls class TestAgent(unittest.TestCase): def test_init(self): """ :test : mls.rl.common.Agent() :condition : - :main_result : Agent is initialized """ expected_name = 'AgentName1' env = mls.rl.common.Environment() ag = mls.rl.common.Agent(environment=env, name=expected_name) self.assertIsInstance(ag, mls.rl.common.BaseObject) self.assertIsInstance(ag, mls.rl.common.Object) self.assertIsInstance(ag, mls.rl.common.Agent) self.assertEqual(ag.name, expected_name) self.assertIsNone(ag.action) self.assertIsNone(ag.observation) def test_choose_action(self): """ :test : mls.rl.common.Agent.setObservation() :condition: observation is set :main_return : the action of the action is set """ env = mls.rl.common.Environment() observation = mls.rl.common.State(environment=env, name='state') expected_action_type = mls.rl.common.Action.ACTION_TYPE_1 env = mls.rl.common.Environment() ag = mls.rl.common.Agent(environment=env, name='AgentName1') ag.observation = observation ag.choose_action() self.assertEqual(ag.action.type, expected_action_type) ``` #### File: test_rl/test_common/test_object_state.py ```python from unittest import TestCase import mlsurvey as mls class TestObjectState(TestCase): def test_init(self): """ :test : mls.rl.common.ObjectState() :condition : - :main_result : ObjectState is initialized """ expected_name = 'state' env = mls.rl.common.Environment() object_state = mls.rl.common.ObjectState(environment=env, name='false_name') self.assertIsInstance(object_state, mls.rl.common.BaseObject) self.assertIsInstance(object_state, mls.rl.common.ObjectState) self.assertEqual(env, object_state.environment) self.assertEqual(expected_name, object_state.name) self.assertEqual(1, len(object_state.characteristics)) self.assertEqual('Step0', list(object_state.characteristics.keys())[0]) charac = object_state.characteristics['Step0'] self.assertEqual(0, charac.value) self.assertEqual('state.Step0', charac.get_fullname()) self.assertIn(charac.get_fullname(), env.objects) ``` #### File: test_sl/test_model/test_data.py ```python import unittest import numpy as np import pandas as pd import mlsurvey as mls class TestData(unittest.TestCase): def test_to_dict_dict_should_be_set(self): """ :test : mlsurvey.model.Data.to_dict() :condition : x,y, y_pred data are filled. :main_result : the dictionary generated is the same as expected """ x = np.array([[1, 2, 3], [4, 5, 6]]) y = np.array([0, 1]) y_pred = np.array([1, 0]) data_array = np.concatenate((x, np.array([y]).T, np.array([y_pred]).T), axis=1) df = pd.DataFrame(data=data_array) data = mls.sl.models.DataPandas(df, df_contains='xyypred') expected = {'df_contains': 'xyypred', 'y_col_name': 'target', 'y_pred_col_name': 'target_pred'} result = data.to_dict() self.assertDictEqual(expected, result) def test_from_dict_df_empty(self): """ :test : mlsurvey.model.DataPandas.from_dict() :condition : the input dict is set and an empty dataframe is given. :main_result : a ModelError occurs """ df = pd.DataFrame(data=np.array([])) d = None input_dict = {'df_contains': 'xyypred', 'y_col_name': 'target', 'y_pred_col_name': 'target_pred'} try: d = mls.sl.models.DataPandas.from_dict(input_dict, df) self.assertTrue(False) except mls.exceptions.ModelError: self.assertIsNone(d) self.assertTrue(True) def test_from_dict_dict_empty(self): """ :test : mlsurvey.model.Data.from_dict() :condition : the input dict does not contains all keys and an full dataframe is given :main_result : a ModelError occurs """ x = np.array([[1, 2], [3, 4]]) y = np.array([0, 1]) y_pred = np.array([1, 0]) data_array = np.concatenate((x, np.array([y]).T, np.array([y_pred]).T), axis=1) df = pd.DataFrame(data=data_array) data = None input_dict = {'df_contains': 'xyypred', 'y_pred_col_name': 'target_pred'} try: data = mls.sl.models.DataPandas.from_dict(input_dict, df) self.assertTrue(False) except mls.exceptions.ModelError: self.assertIsNone(data) self.assertTrue(True) ``` #### File: test_sl/test_model/test_evaluation_factory.py ```python import unittest import numpy as np import mlsurvey as mls class TestEvaluationFactory(unittest.TestCase): fac = {} @classmethod def setUpClass(cls): cls.fac = dict(mls.sl.models.EvaluationFactory.factories) @classmethod def tearDownClass(cls): mls.sl.models.EvaluationFactory.factories = dict(cls.fac) def setUp(self): mls.sl.models.EvaluationFactory().factories.clear() def test_init_evaluation_factory_should_be_initialized(self): evaluation_factory = mls.sl.models.EvaluationFactory() self.assertIsNotNone(evaluation_factory) self.assertDictEqual({}, evaluation_factory.factories) def test_add_factory_should_be_added(self): mls.sl.models.EvaluationFactory.add_factory('EvaluationSupervised', mls.sl.models.EvaluationFactory) self.assertEqual(1, len(mls.sl.models.EvaluationFactory.factories)) def test_create_evaluation_should_be_generated(self): evaluation_factory = mls.sl.models.EvaluationFactory() mls.sl.models.EvaluationFactory.add_factory('EvaluationSupervised', mls.sl.models.EvaluationSupervised.Factory) evaluation = evaluation_factory.create_instance('EvaluationSupervised') self.assertIsInstance(evaluation, mls.sl.models.EvaluationSupervised) self.assertEqual(0.0, evaluation.score) def test_create_evaluation_from_dict_created(self): expected_cm = np.array([[1, 2], [3, 4]]) source = {'type': 'EvaluationSupervised', 'score': 0.55, 'precision': 0.7, 'recall': 0.65, 'accuracy': 0.6, 'f1': 0.5, 'confusion_matrix': expected_cm.tolist(), 'per_label': {}} evaluation_factory = mls.sl.models.EvaluationFactory() mls.sl.models.EvaluationFactory.add_factory('EvaluationSupervised', mls.sl.models.EvaluationSupervised.Factory) evaluation = evaluation_factory.create_instance_from_dict(source) self.assertIsInstance(evaluation, mls.sl.models.EvaluationSupervised) self.assertEqual(0.55, evaluation.score) np.testing.assert_array_equal(expected_cm, evaluation.confusion_matrix) ``` #### File: test_workflows/test_tasks/test_learn_task.py ```python import os import shutil from kedro.io import DataCatalog, MemoryDataSet from kedro.pipeline import Pipeline from kedro.runner import SequentialRunner from kedro.pipeline.node import Node from sklearn import neighbors import mlflow import mlsurvey as mls class TestLearnTask(mls.testing.TaskTestCase): config_directory = '' base_directory = '' mlflow_client = None mlflow_experiments = None @classmethod def setUpClass(cls): directory = os.path.dirname(__file__) cls.base_directory = os.path.join(directory, '../../../') cls.config_directory = os.path.join(cls.base_directory, 'config/') cls.mlflow_client = mlflow.tracking.MlflowClient() cls.mlflow_experiments = cls.mlflow_client.list_experiments() @classmethod def tearDownClass(cls): log = mls.Logging() shutil.rmtree(os.path.join(cls.base_directory, log.base_dir), ignore_errors=True) def test_get_node(self): """ :test : mlsurvey.sl.workflows.tasks.LearnTask.get_node() :condition : - :main_result : create a kedro with input and output parameter """ prepare_data_node = mls.sl.workflows.tasks.LearnTask.get_node() self.assertIsInstance(prepare_data_node, Node) def test_learn(self): """ :test : mlsurvey.sl.workflows.tasks.LearnTask.run() :condition : data file are split, saved in hdf database and logged :main_result : model is trained """ config, log = self._init_config_log('complete_config_loaded.json', self.base_directory, self.config_directory) df_train_data = mls.FileOperation.read_hdf('train-content.h5', os.path.join(self.base_directory, 'files/tasks/split_data'), 'Pandas') train_data = mls.sl.models.DataFactory.create_data('Pandas', df_train_data) [model_fullpath] = mls.sl.workflows.tasks.LearnTask.learn(config, log, train_data) self.assertTrue(os.path.isfile(model_fullpath)) log.set_sub_dir(str(mls.sl.workflows.tasks.LearnTask.__name__)) classifier = log.load_classifier() self.assertIsInstance(classifier, neighbors.KNeighborsClassifier) self.assertEqual(30, classifier.get_params()['leaf_size']) def _run_one_task(self, config_filename): # create node from Task load_data_node = mls.workflows.tasks.LoadDataTask.get_node() prepare_data_node = mls.sl.workflows.tasks.PrepareDataTask.get_node() split_data_node = mls.sl.workflows.tasks.SplitDataTask.get_node() learn_data_node = mls.sl.workflows.tasks.LearnTask.get_node() config, log = self._init_config_log(config_filename, self.base_directory, self.config_directory) # Prepare a data catalog data_catalog = DataCatalog({'config': MemoryDataSet(), 'log': MemoryDataSet(), 'base_directory': MemoryDataSet()}) data_catalog.save('config', config) data_catalog.save('log', log) data_catalog.save('base_directory', self.base_directory) # Assemble nodes into a pipeline pipeline = Pipeline([load_data_node, prepare_data_node, split_data_node, learn_data_node]) # Create a runner to run the pipeline runner = SequentialRunner() # Run the pipeline runner.run(pipeline, data_catalog) return log, config, data_catalog def test_run(self): """ :test : mlsurvey.sl.workflows.tasks.LearnTask.run() :condition : data file are split, saved in hdf database and logged :main_result : model is trained """ config_filename = 'complete_config_loaded.json' log, config, data_catalog = self._run_one_task(config_filename) log.set_sub_dir(str(mls.sl.workflows.tasks.LearnTask.__name__)) self.assertTrue(os.path.isfile(os.path.join(log.directory, 'model.json'))) self.assertTrue(os.path.isfile(os.path.join(log.directory, 'model.joblib'))) self.assertTrue(os.path.isfile(os.path.join(log.directory, 'algorithm.json'))) ``` #### File: test_workflows/test_tasks/test_prepare_data_task.py ```python import os import shutil from kedro.pipeline.node import Node from kedro.io import DataCatalog, MemoryDataSet from kedro.pipeline import Pipeline from kedro.runner import SequentialRunner import mlflow import mlsurvey as mls class TestPrepareDataTask(mls.testing.TaskTestCase): config_directory = '' base_directory = '' mlflow_client = None mlflow_experiments = None @classmethod def setUpClass(cls): directory = os.path.dirname(__file__) cls.base_directory = os.path.join(directory, '../../../') cls.config_directory = os.path.join(cls.base_directory, 'config/') cls.mlflow_client = mlflow.tracking.MlflowClient() cls.mlflow_experiments = cls.mlflow_client.list_experiments() @classmethod def tearDownClass(cls): log = mls.Logging() shutil.rmtree(os.path.join(cls.base_directory, log.base_dir), ignore_errors=True) def test_get_node(self): """ :test : mlsurvey.workflows.tasks.PrepareDataTask.get_node() :condition : - :main_result : create a kedro with input and output parameter """ prepare_data_node = mls.sl.workflows.tasks.PrepareDataTask.get_node() self.assertIsInstance(prepare_data_node, Node) def test_prepare_data(self): """ :test : mlsurvey.workflows.tasks.PrepareDataTask.prepare_data() :condition : - :main_result : load the data """ config, log = self._init_config_log('complete_config_loaded.json', self.base_directory, self.config_directory) df_raw_data = mls.FileOperation.read_hdf('raw_data-content.h5', os.path.join(self.base_directory, 'files/tasks/load_data'), 'Pandas') raw_data = mls.sl.models.DataFactory.create_data('Pandas', df_raw_data) lx = len(raw_data.x) ly = len(raw_data.y) [prepared_data] = mls.sl.workflows.tasks.PrepareDataTask.prepare_data(config, log, raw_data) self.assertEqual(-0.7655005998158294, prepared_data.x[0][0]) self.assertEqual(lx, len(prepared_data.x)) self.assertEqual(ly, len(prepared_data.y)) def _run_one_task(self, config_filename): # create node from Task load_data_node = mls.workflows.tasks.LoadDataTask.get_node() prepare_data_node = mls.sl.workflows.tasks.PrepareDataTask.get_node() config, log = self._init_config_log(config_filename, self.base_directory, self.config_directory) # Prepare a data catalog data_catalog = DataCatalog({'config': MemoryDataSet(), 'log': MemoryDataSet(), 'base_directory': MemoryDataSet()}) data_catalog.save('config', config) data_catalog.save('log', log) data_catalog.save('base_directory', self.base_directory) # Assemble nodes into a pipeline pipeline = Pipeline([load_data_node, prepare_data_node]) # Create a runner to run the pipeline runner = SequentialRunner() # Run the pipeline runner.run(pipeline, data_catalog) return log, config, data_catalog def test_run(self): """ :test : mlsurvey.sl.workflows.tasks.PrepareDataTask.run() :condition : data file are loaded, saved in hdf database and logged :main_result : data are prepared. """ config_filename = 'complete_config_loaded.json' log, config, data_catalog = self._run_one_task(config_filename) log.set_sub_dir(str(mls.sl.workflows.tasks.PrepareDataTask.__name__)) self.assertTrue(os.path.isfile(os.path.join(log.directory, 'data-content.h5'))) df_data = mls.FileOperation.read_hdf('data-content.h5', os.path.join(log.directory), 'Pandas') data = mls.sl.models.DataFactory.create_data('Pandas', df_data) self.assertEqual(-0.7655005998158294, data.x[0][0]) def test_run_prepare_textual_data(self): """ :test : mlsurvey.sl.workflows.tasks.PrepareDataTask.run() :condition : data is textual :main_result : data are prepared. Warning : need at least 12GB of (free) ram to execute this test because text into dataframe is not optimized """ config_filename = 'config_dataset_text.json' log, config, data_catalog = self._run_one_task(config_filename) log.set_sub_dir(str(mls.workflows.tasks.LoadDataTask.__name__)) df_raw_data = mls.FileOperation.read_hdf('raw_data-content.h5', os.path.join(log.directory), 'Pandas') raw_data = mls.sl.models.DataFactory.create_data('Pandas', df_raw_data) lx = len(raw_data.x) ly = len(raw_data.y) self.assertEqual('7', raw_data.y[0]) log.set_sub_dir(str(mls.sl.workflows.tasks.PrepareDataTask.__name__)) self.assertTrue(os.path.isfile(os.path.join(log.directory, 'data-content.h5'))) df_data = mls.FileOperation.read_hdf('data-content.h5', os.path.join(log.directory), 'Pandas') data = mls.sl.models.DataFactory.create_data('Pandas', df_data) self.assertEqual(0.23989072176612425, data.x[0][0]) self.assertEqual(lx, len(data.x)) self.assertEqual(ly, len(data.y)) ``` #### File: mlsurvey/test/test_utils.py ```python import unittest import os import numpy as np import pandas as pd import sklearn.neighbors as neighbors import mlsurvey as mls class TestUtils(unittest.TestCase): @classmethod def setUpClass(cls): directory = os.path.dirname(__file__) cls.base_directory = os.path.join(directory, '') def test_md5_file(self): md5 = mls.Utils.md5_file(os.path.join(self.base_directory, 'files/test_md5.txt')) self.assertEqual('70a4b9f4707d258f559f91615297a3ec', md5) def test_md5_file_not_exists(self): """ :test : mlsurvey.Utils.md5_file() :condition : unknown file :main_result : raise FileNotFoundError """ try: _ = mls.Utils.md5_file('files/test_md5_unknown.txt') self.assertTrue(False) except FileNotFoundError: self.assertTrue(True) def test_import_from_dotted_path_class_created(self): to_import = 'sklearn.neighbors.KNeighborsClassifier' classdef = mls.Utils.import_from_dotted_path(to_import) self.assertEqual(neighbors.KNeighborsClassifier, classdef) def test_import_from_dotted_path_not_exists(self): """ :test : mlsurvey.Utils.import_from_dotted_path() :condition : unknown module and class :main_result : AttributeError """ to_import = 'sklearn.neighbors.UnknownClass' try: _ = mls.Utils.import_from_dotted_path(to_import) self.assertTrue(False) except AttributeError: self.assertTrue(True) def test_make_meshgrid(self): x = np.array([1, 2]) y = np.array([3, 4]) xx, yy = mls.Utils.make_meshgrid(x, y, h=.5) self.assertListEqual(xx[0].tolist(), [0, 0.5, 1, 1.5, 2, 2.5]) self.assertListEqual(yy[0].tolist(), [2, 2, 2, 2, 2, 2]) def test_transform_to_dict_tuple_should_transform(self): """ :test : mlsurvey.Util.transform_to_dict() :condition : dictionary contains one __tuple__ :main_result : transformation into tuple """ base_dictionary = {'test': {'__type__': '__tuple__', '__value__': '(1, 2, 3)'}, 'nottuple': {'t': 1}, 'nottupleeither': 'string'} expected_dictionary = {'test': (1, 2, 3), 'nottuple': {'t': 1}, 'nottupleeither': 'string'} result = mls.Utils.transform_to_dict(base_dictionary) self.assertDictEqual(expected_dictionary, result) def test_transform_to_dict_tuple_should_transform_to_string(self): """ :test : mlsurvey.Util.transform_to_dict() :condition : dictionary contains one __tuple__ :main_result : transforme tupple into string """ base_dictionary = {'test': {'__type__': '__tuple__', '__value__': '(1, 2, 3)'}, 'nottuple': {'t': 1}, 'nottupleeither': 'string'} expected_dictionary = {'test': '(1, 2, 3)', 'nottuple': {'t': 1}, 'nottupleeither': 'string'} result = mls.Utils.transform_to_dict(base_dictionary, tuple_to_string=True) self.assertDictEqual(expected_dictionary, result) def test_transform_to_dict_not_tuple_should_raise_error(self): """ :test : mlsurvey.Util.transform_dict() :condition : dictionary contains one __tuple__ where __value__ is not a tuple as string :main_result : raise a TypeError """ base_dictionary = {'test': {'__type__': '__tuple__', '__value__': '234'}} try: _ = mls.Utils.transform_to_dict(base_dictionary) self.assertTrue(False) except TypeError: self.assertTrue(True) def test_transform_to_dict_tuple_nested_should_transform(self): """ :test : mlsurvey.Util.transform_to_dict() :condition : dictionary contains __tuple__ with nested dictionaries :main_result : transformation into tuples and lists """ base_dictionary = {'test': {'__type__': '__tuple__', '__value__': '(1, 2, 3)'}, 'nottuple': {'a': {'__type__': '__tuple__', '__value__': '(1, 2, 3)'}, 'b': {'c': 1, 'd': {'__type__': '__tuple__', '__value__': '(1, 2, 3)'}}}, 'nottupleeither': 'string'} expected_dictionary = {'test': (1, 2, 3), 'nottuple': {'a': (1, 2, 3), 'b': {'c': 1, 'd': (1, 2, 3)}}, 'nottupleeither': 'string'} result = mls.Utils.transform_to_dict(base_dictionary) self.assertDictEqual(expected_dictionary, result) def test_transform_to_dict_list_of_tuple_nested_should_transform(self): """ :test : mlsurvey.Utils.transform_to_dict() :condition : dictionary contains lists of __tuple__ with nested dictionaries :main_result : transformation into tuples """ base_dictionary = {'test': [{'__type__': '__tuple__', '__value__': '(1, 2, 3)'}, {'__type__': '__tuple__', '__value__': '(4, 5, 6)'}], 'nottuple': {'a': {'__type__': '__tuple__', '__value__': '(1, 2, 3)'}, 'b': {'c': 1, 'd': [{'__type__': '__tuple__', '__value__': '(1, 2, 3)'}, {'__type__': '__tuple__', '__value__': '(4, 5, 6)'}]}}, 'nottupleeither': 'string'} expected_dictionary = {'test': [(1, 2, 3), (4, 5, 6)], 'nottuple': {'a': (1, 2, 3), 'b': {'c': 1, 'd': [(1, 2, 3), (4, 5, 6)]}}, 'nottupleeither': 'string'} result = mls.Utils.transform_to_dict(base_dictionary) self.assertDictEqual(expected_dictionary, result) def test_transform_to_json_tuple_should_transform(self): """ :test : mlsurvey.Util.transform_to_json() :condition : dictionary contains one tuple :main_result : transformation into __tuple__ """ base_dictionary = {'test': (1, 2, 3), 'nottuple': {'t': 1}, 'nottupleeither': 'string'} expected_dictionary = {'test': {'__type__': '__tuple__', '__value__': '(1, 2, 3)'}, 'nottuple': {'t': 1}, 'nottupleeither': 'string'} result = mls.Utils.transform_to_json(base_dictionary) self.assertDictEqual(expected_dictionary, result) def test_transform_to_json_tuple_nested_should_transform(self): """ :test : mlsurvey.Util.transform_to_json() :condition : dictionary contains __tuple__ with nested dictionaries :main_result : transformation into tuples and lists """ base_dictionary = {'test': (1, 2, 3), 'nottuple': {'a': (1, 2, 3), 'b': {'c': 1, 'd': (1, 2, 3)}}, 'nottupleeither': 'string'} expected_dictionary = {'test': {'__type__': '__tuple__', '__value__': '(1, 2, 3)'}, 'nottuple': {'a': {'__type__': '__tuple__', '__value__': '(1, 2, 3)'}, 'b': {'c': 1, 'd': {'__type__': '__tuple__', '__value__': '(1, 2, 3)'}}}, 'nottupleeither': 'string'} result = mls.Utils.transform_to_json(base_dictionary) self.assertDictEqual(expected_dictionary, result) def test_transform_to_json_list_of_tuple_nested_should_transform(self): """ :test : mlsurvey.Utils.transform_to_json() :condition : dictionary contains lists of __tuple__ with nested dictionaries :main_result : transformation into tuples and lists """ base_dictionary = {'test': [(1, 2, 3), (4, 5, 6)], 'nottuple': {'a': (1, 2, 3), 'b': {'c': 1, 'd': [(1, 2, 3), (4, 5, 6)]}}, 'nottupleeither': 'string'} expected_dictionary = {'test': [{'__type__': '__tuple__', '__value__': '(1, 2, 3)'}, {'__type__': '__tuple__', '__value__': '(4, 5, 6)'}], 'nottuple': {'a': {'__type__': '__tuple__', '__value__': '(1, 2, 3)'}, 'b': {'c': 1, 'd': [{'__type__': '__tuple__', '__value__': '(1, 2, 3)'}, {'__type__': '__tuple__', '__value__': '(4, 5, 6)'}]}}, 'nottupleeither': 'string'} result = mls.Utils.transform_to_json(base_dictionary) self.assertDictEqual(expected_dictionary, result) def test_check_dict_python_ready_should_be_ready(self): """ :test : mlsurvey.Utils.check_dict_python_ready() :condition : dictionary does not contains '__type__': '__tuple__' :main result : dictionary is python-ready """ base_dictionary = {'test': [(1, 2, 3), (4, 5, 6)], 'nottuple': {'a': (1, 2, 3), 'b': {'c': 1, 'd': [[1, 2, 3], [4, 5, 6]]}}, 'nottupleeither': 'string'} result = mls.Utils.check_dict_python_ready(base_dictionary) self.assertTrue(result) def test_check_dict_python_ready_should_not_be_ready(self): """ :test : mlsurvey.Utils.check_dict_python_ready() :condition : dictionary does contains '__type__': '__tuple__' :main result : dictionary is not python-ready """ base_dictionary = {'test': [{'__type__': '__tuple__', '__value__': '(1, 2, 3)'}, {'__type__': '__tuple__', '__value__': '(4, 5, 6)'}], 'nottuple': {'a': {'__type__': '__tuple__', '__value__': '(1, 2, 3)'}, 'b': {'c': 1}}, 'nottupleeither': 'string'} result = mls.Utils.check_dict_python_ready(base_dictionary) self.assertFalse(result) def test_check_dict_python_ready_should_not_be_ready_with_list_only(self): """ :test : mlsurvey.Utils.check_dict_python_ready() :condition : dictionary does contains '__type__': '__tuple__' into list :main result : dictionary is not python-ready """ base_dictionary = {'test': [{'__type__': '__tuple__', '__value__': '(1, 2, 3)'}, {'__type__': '__tuple__', '__value__': '(4, 5, 6)'}], 'nottupleeither': 'string'} result = mls.Utils.check_dict_python_ready(base_dictionary) self.assertFalse(result) def test_is_dataframe_empty_pandas_is_empty(self): """ :test : mlsurvey.Utils.is_dataframe_empty() :condition : dataframe is pandas and empty :main_result : True """ df = pd.DataFrame() result = mls.Utils.is_dataframe_empty(df) self.assertTrue(result) def test_is_dataframe_empty_pandas_is_not_empty(self): """ :test : mlsurvey.Utils.is_dataframe_empty() :condition : dataframe is pandas and not empty :main_result : False """ x = np.array([[1, 2], [3, 4]]) df = pd.DataFrame(data=x) result = mls.Utils.is_dataframe_empty(df) self.assertFalse(result) ```
{ "source": "jlaundry/crowdstrike-fdr-azure", "score": 2 }
#### File: crowdstrike-fdr-azure/StoreFile/__init__.py ```python import io import logging import os import azure.functions as func import boto3 def main(msg: func.QueueMessage, outfile: func.Out[func.InputStream]) -> None: filename = msg.get_body().decode('utf-8') logging.info(f"Working on queue item: {filename}") s3 = boto3.client('s3', region_name=os.environ['FDR_REGION'], aws_access_key_id=os.environ['FDR_AWS_KEY'], aws_secret_access_key=os.environ['FDR_AWS_SECRET'] ) (bucket, path) = filename.split("/", 1) content = io.BytesIO() s3.download_fileobj(bucket, path, content) content.seek(0) outfile.set(content) logging.info("Done") ```
{ "source": "jlaundry/pihole-sentinel", "score": 2 }
#### File: jlaundry/pihole-sentinel/pihole-sentinel.py ```python import logging logging.basicConfig(level=logging.INFO) from datetime import datetime import socket import sqlite3 from azure_log_analytics import LogAnalytics from local_settings import AZURE_WORKSPACE_ID, AZURE_SECRET_KEY DEVICE_HOSTNAME = socket.gethostname() DEVICE_IP6 = socket.getaddrinfo("www.google.com", 443, socket.AF_INET6)[0][4][0] def dict_factory(cursor, row): d = {} for idx, col in enumerate(cursor.description): d[col[0]] = row[idx] return d QUERY_TYPES = { 1: "A", 2: "AAAA", 3: "ANY", 4: "SRV", 5: "SOA", 6: "PTR", 7: "TXT", 8: "NAPTR", 9: "MX", 10: "DS", 11: "RRSIG", 12: "DNSKEY", 13: "NS", 14: "OTHER", 15: "SVCB", 16: "HTTPS", } QUERY_STATUS = { 0: "Failure: Unknown status (not yet known)", 1: "Failure: Domain contained in gravity database", 2: "Success: Forwarded", 3: "Success: Known, replied to from cache", 4: "Failure: Domain matched by a regex blacklist filter", 5: "Failure: Domain contained in exact blacklist", 6: "Failure: By upstream server (known blocking page IP address)", 7: "Failure: By upstream server (0.0.0.0 or ::)", 8: "Failure: By upstream server (NXDOMAIN with RA bit unset)", 9: "Failure: Domain contained in gravity database", 10: "Failure: Domain matched by a regex blacklist filter", 11: "Failure: Domain contained in exact blacklist", 12: "Success: Retried query", 13: "Success: Retried but ignored query (this may happen during ongoing DNSSEC validation)", 14: "Success: Already forwarded, not forwarding again", } sentinel = LogAnalytics(AZURE_WORKSPACE_ID, AZURE_SECRET_KEY) last_filename = '.pihole-latest' LAST_ID = 0 try: with open(last_filename, 'r') as of: LAST_ID = int(of.read()) except FileNotFoundError: pass except ValueError: pass now = datetime.now().isoformat() logging.info(f"Starting at {now} from queries.id={LAST_ID}") def update_latest(rowid, force=False): global LAST_ID if rowid < LAST_ID + 100 and not force: return logging.info(f"Writing LAST_ID {rowid}") with open(last_filename, 'w') as of: of.write(str(rowid)) LAST_ID = rowid #con = sqlite3.connect('/etc/pihole/pihole-FTL.db') con = sqlite3.connect('/tmp/pihole-FTL.db') con.row_factory = dict_factory cur = con.cursor() for row in cur.execute('SELECT * FROM queries WHERE id >:id ORDER BY id', {"id": LAST_ID}): record = { "TimeGenerated": datetime.utcfromtimestamp(row['timestamp']).isoformat() + "Z", "EventCount": 1, "EventOriginalUid": str(row['id']), "EventType": "lookup", "EventResult": QUERY_STATUS.get(row['status']).split(":")[0], "EventResultDetails": QUERY_TYPES.get(row['type']), "EventProduct": "Pi Hole", "EventVendor": "Pi Hole", "EventSchemaVersion": "0.1.1", "Dvc": DEVICE_HOSTNAME, "DvcIpAddr": DEVICE_IP6, "DvcHostname": DEVICE_HOSTNAME, "SrcIpAddr": row['client'], "DnsQuery": row['domain'], "DnsQueryTypeName": QUERY_TYPES.get(row['type']), "DnsResponseCodeName": "NA", } logging.debug(record) sentinel.post(record, "Normalized") update_latest(row['id']) con.close() update_latest(row['id'], force=True) ```
{ "source": "jlaunonen/man2qhelp", "score": 2 }
#### File: jlaunonen/man2qhelp/man2qhelp.py ```python import argparse from collections import OrderedDict import glob import os.path import re import subprocess import sys from html.parser import HTMLParser from typing import Callable, List, NamedTuple, Optional, Tuple __version__ = "0.2" DEFAULT_NAMESPACE = "man.linux.org.1.0" IN_PATH = "/usr/share/man/man%s" MAN_LINK = re.compile(r"<b>(\w+)</b>\((\d+p?)\)") IMAGE_NAME_RE = re.compile(r"(?P<keyword>.+?)-\d+\.\w+") QHP_TEMPLATE = """<?xml version="1.0" encoding="UTF-8"?> <QtHelpProject version="1.0"> <namespace>{namespace}</namespace> <virtualFolder>man-pages</virtualFolder> <customFilter name="Linux Man 1.0"> <filterAttribute>man</filterAttribute> </customFilter> """, """</QtHelpProject> """ CATEGORY_TEMPLATE = """<filterSection> <filterAttribute>man</filterAttribute> <filterAttribute>{filter_category}</filterAttribute> <keywords> """, """\ </keywords> <files> """, """\ </files> </filterSection> """ class BasePath(object): def __init__(self, path: str): self._path = path def join(self, *paths: str) -> str: return os.path.join(self._path, *paths) Options = NamedTuple("Options", [ ("cache_path", BasePath), ("qhp", str), ("force", bool), ("sources", List[str]), ("qhp_namespace", str), ("quiet", bool), ("print", Callable) ]) LevelResult = NamedTuple("LevelResult", [ ("keywords", List["Keyword"]), ("cross_references", List[Tuple[str, str]]), ("has_errors", bool), ]) def man_path(level: int, page: Optional[str]=None) -> str: if page is None: return IN_PATH % level return os.path.join(IN_PATH % level, page) def src_bzip(path: str) -> str: return subprocess.check_output(["bunzip2", "-c", path]).decode("utf-8", errors="replace") def src_raw(path: str) -> str: with open(path, "r") as f: return f.read() def remove_extensions(source: str, *extensions: str) -> str: base, ext = os.path.splitext(source) if ext in extensions: return remove_extensions(base, *extensions) return source def result_name(source_name: str, level: str) -> str: stripped = remove_extensions(os.path.basename(source_name), ".bz2", "." + level) return stripped + ".html" def src(path: str) -> Optional[Tuple[Optional[str], str, Optional[str]]]: if not os.path.exists(path): print("Does not exist:", path) return None base = os.path.basename(path) if path.endswith(".bz2"): data = src_bzip(path) name = os.path.splitext(base)[0] else: data = src_raw(path) name = base name = os.path.splitext(name)[0] if data.startswith(".so "): alias = data.strip().split("\n") if len(alias) == 1: alias = alias[0] alias_info = re.match(r"\.so\s+(?:.*?/)?man(\d+)/([\w_-]+)", alias) if alias_info is not None: alias_path = man_path(int(alias_info.group(1)), alias_info.group(2)) else: alias_info = re.match(r"\.so\s+([\w_-]+\.(\d))", alias) if alias_info is not None: alias_path = man_path(int(alias_info.group(2)), alias_info.group(1)) else: print("not understood alias:", name, data) return None candidates = glob.glob(alias_path + ".*") if len(candidates) == 0: print("No matching alias source:", alias_path) return None elif len(candidates) > 1: print("Too many candidates:", name, "/", alias) print("\n".join(candidates)) return None else: return None, name, candidates[0] else: return data, name, None class TitleFinder(HTMLParser): def __init__(self): super(TitleFinder, self).__init__() self._in_title = False self._title = "" @property def title(self): return self._title def error(self, message): print(message) def handle_starttag(self, tag, attrs): if tag == "title" and not self._in_title: if len(self._title) == 0: self._in_title = True else: print("Multiple title-elements") super().handle_starttag(tag, attrs) def handle_endtag(self, tag): if tag == "title" and self._in_title: self._in_title = False super().handle_endtag(tag) def handle_data(self, data): if self._in_title: self._title += data super().handle_data(data) def title_tag(text: str) -> str: return "<title>" + text + "</title>" class Keyword(object): def __init__(self, keyword: str, target: str, is_alias: bool = False): self.keyword = keyword "Keyword, such as `select`." self.target = target "Output or target filename." self.is_alias = is_alias "If `True`, `target` points to the alias target." def link_replacer(ref_list: List[Tuple[str, str]]): def fn(match) -> str: name = match.group(1) level = match.group(2) ref_list.append((level, name)) return '<a href="../html.' + level + '/' + name + '.html">' + match.group(0) + '</a>' return fn def do_level(level: str, options: Options) -> LevelResult: level_keywords = [] # type: List[Keyword] cross_references = [] # type: List[Tuple[str, str]] has_errors = False out_dir = options.cache_path.join("html.%s" % level) if not os.path.exists(out_dir): os.mkdir(out_dir) images_dir = os.path.join(out_dir, "images") if not os.path.exists(images_dir): os.mkdir(images_dir) in_dir = IN_PATH % level # Needed for images to work correctly with relative path. original_dir = os.getcwd() os.chdir(out_dir) for f in os.listdir(in_dir): source_filename = os.path.join(in_dir, f) source_mtime = os.path.getmtime(source_filename) src_result = src(source_filename) if src_result is None: continue man_data, name, alias = src_result if man_data is None: base_name = result_name(alias, level) target = options.cache_path.join("html.%s" % level, base_name) options.print("alias", name, "=", target) level_keywords.append(Keyword(name, target, is_alias=True)) continue base_name = result_name(name, level) target = options.cache_path.join("html.%s" % level, base_name) out_file = base_name level_keywords.append(Keyword(name, target)) if not options.force and os.path.exists(out_file) and abs(os.path.getmtime(out_file) - source_mtime) < 1.0: options.print("keyword", name, "=", out_file, " # UNCHANGED delta %ss" % str(os.path.getmtime(out_file) - source_mtime)) continue options.print("keyword", name, "=", target) # Define path and name for images. image_args = [ "-P", "-D" + "images", "-P", "-I" + name + "-", ] process = subprocess.run("groff -t -m mandoc -mwww -Thtml".split() + image_args, input=man_data, stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding="utf-8") html_data = process.stdout error_text = process.stderr if error_text: print("entry %s:" % name, error_text, file=sys.stderr) if process.returncode != 0: print("error running groff: %d. output not written" % process.returncode) has_errors = True continue parser = TitleFinder() parser.feed(html_data) # Replace all caps title to something more informative. html_data = html_data.replace(title_tag(parser.title), title_tag(parser.title.lower() + " | man" + str(level))) # Replace all cross-references to other man-pages with links to them, regardless whether they exist or not. html_data = MAN_LINK.sub(link_replacer(cross_references), html_data) with open(out_file, "w") as o: o.write(html_data) # Set result file modification time to source time to allow checking changes in future. os.utime(out_file, (source_mtime, source_mtime)) # Restore working directory. os.chdir(original_dir) level_files = set(os.path.basename(kw.target) for kw in level_keywords if not kw.is_alias) for file in os.listdir(out_dir): if os.path.isfile(file) and file not in level_files: to_remove = os.path.join(out_dir, file) options.print("delete", to_remove) os.remove(to_remove) keywords = set(kw.keyword for kw in level_keywords if not kw.is_alias) for file in os.listdir(images_dir): match = IMAGE_NAME_RE.match(file) if match is not None: kw = match.group(1) if kw in keywords: continue to_remove = os.path.join(images_dir, file) options.print("delete", to_remove) os.remove(to_remove) return LevelResult(level_keywords, cross_references, has_errors) def do_levels(options: Options): kws = OrderedDict() cross_references = [] has_errors = False for level in options.sources: options.print("category", level) lkw, cross, errors = do_level(level, options) options.print("end category", level) kws[level] = lkw cross_references.extend(cross) has_errors |= errors # Qt Help requires that the files included and the project file are in same directory. catalog = options.cache_path.join(options.qhp) with open(catalog, "w") as o: o.write(QHP_TEMPLATE[0].format(namespace=options.qhp_namespace)) for level, keywords in kws.items(): o.write(CATEGORY_TEMPLATE[0].format(filter_category="man" + str(level))) for kw in keywords: o.write(' <keyword name="{}" ref="{}" />\n'.format(kw.keyword, kw.target)) o.write(CATEGORY_TEMPLATE[1]) o.write(" <file>html." + level + "/*.html</file>\n") o.write(" <file>html." + level + "/images/*</file>\n") o.write(CATEGORY_TEMPLATE[2]) o.write(QHP_TEMPLATE[1]) print("Wrote catalog to", catalog) if has_errors: print("Processing had errors and some files were skipped.") else: print("To actually create the help file, use qhelpgenerator", catalog) def check_system() -> bool: def which(name: str, message: str) -> bool: try: subprocess.check_output(["which", name], stderr=subprocess.STDOUT) return True except subprocess.CalledProcessError: print("Missing", message) return False e = which("groff", "main part, groff, the document formatting system") e &= which("pnmtopng", "netpbm (or pnmtopng)") e &= which("psselect", "psutils (or psselect)") return e def make_argument_parser(): parser = argparse.ArgumentParser( description="man-page to Qt Help converter." ) parser.add_argument("levels", nargs="+", metavar="LEVEL", help="man-page level to add for conversion, such as 2") parser.add_argument("--cache-dir", type=str, metavar="DIR", default=".", help="Use given cache root directory instead of current directory.") parser.add_argument("-f", "--force", action="store_true", default=False, help="Re-write all files.") parser.add_argument("-o", "--output", type=str, default="man.qhp", help="Write to given file instead of man.qhp." " Note, the file will be forced into the cache directory!") parser.add_argument("--ignore-system-check", action="store_true", default=False, help="Ignore system check results and process anyways.") parser.add_argument("-q", "--quiet", action="store_true", default=False, help="Make less noise.") qhp = parser.add_argument_group("Qt Help Project options") qhp.add_argument("--namespace", default=DEFAULT_NAMESPACE, help="Namespace to use instead of %s" % DEFAULT_NAMESPACE) parser.add_argument("--version", action="version", version="%(prog)s " + __version__) return parser def main(*argv): parser = make_argument_parser() args = parser.parse_args(args=None if len(argv) == 0 else argv) if not (check_system() or args.ignore_system_check): sys.exit(1) quiet = args.quiet def q_print(*p_args, **p_kwargs): if not quiet: print(*p_args, **p_kwargs) options = Options( cache_path=BasePath(args.cache_dir), qhp=os.path.basename(args.output), force=args.force, sources=args.levels, qhp_namespace=args.namespace, quiet=args.quiet, print=q_print, ) do_levels(options) if __name__ == "__main__": main() ```
{ "source": "jlaunonen/turska", "score": 2 }
#### File: turska/access/helpers.py ```python from functools import wraps from django.contrib import messages from django.shortcuts import get_object_or_404, redirect def access_admin_required(view_func): @wraps(view_func) def wrapper(request, organization_slug, *args, **kwargs): from core.models import Organization from core.utils import login_redirect from core.views.admin_views import organization_admin_menu_items organization = get_object_or_404(Organization, slug=organization_slug) meta = organization.access_organization_meta if not meta: messages.error(request, u"Tämä organisaatio ei käytä Kompassia pääsyoikeuksien hallintaan.") return redirect('core_organization_view', organization.slug) if not organization.access_organization_meta.is_user_admin(request.user): return login_redirect(request) vars = dict( organization=organization, admin_menu_items=organization_admin_menu_items(request, organization), admin_title=u'Yhdistyksen ylläpito' ) return view_func(request, vars, organization, *args, **kwargs) return wrapper def access_organization_required(view_func): @wraps(view_func) def wrapper(request, organization_slug, *args, **kwargs): from core.models import Organization organization = get_object_or_404(Organization, slug=organization_slug) meta = organization.access_organization_meta if not meta: messages.error(request, u"Tämä organisaatio ei käytä Kompassia pääsyoikeuksien hallintaan.") return redirect('core_organization_view', organization.slug) return view_func(request, organization, *args, **kwargs) return wrapper ``` #### File: turska/access/tests.py ```python from unittest import TestCase as NonDatabaseTestCase from django.test import TestCase from core.models import Person from labour.models import LabourEventMeta from .utils import emailify from .email_aliases import firstname_surname from .models import EmailAlias, GroupEmailAliasGrant, EmailAliasType class FakePerson(object): first_name = 'Santtu' surname = u'Pajukanta' class EmailifyTestCase(NonDatabaseTestCase): def test_emailify(self): self.assertEqual(emailify(u''), u'') self.assertEqual(emailify(u'Santtu Pajukanta'), u'santtu.pajukanta') self.assertEqual(emailify(u'Kalle-Jooseppi Mäki-Kangas-Ketelä'), u'kalle-jooseppi.maki-kangas-ketela') def test_firstname_surname(self): self.assertEqual(firstname_surname(FakePerson()), 'santtu.pajukanta') class EmailAliasesTestCase(TestCase): def setUp(self): self.meta, unused = LabourEventMeta.get_or_create_dummy() self.group = self.meta.get_group('admins') self.person, unused = Person.get_or_create_dummy() def test_email_alias_create(self): email_alias, unused = EmailAlias.get_or_create_dummy() self.assertEqual(email_alias.email_address, '<EMAIL>') def test_ensure_aliases(self): alias_type, unused = EmailAliasType.get_or_create_dummy() self.group_grant, unused = GroupEmailAliasGrant.objects.get_or_create(group=self.group, type=alias_type) GroupEmailAliasGrant.ensure_aliases(person=self.person) self.assertEqual(alias_type.email_aliases.count(), 0) self.person.user.groups.add(self.group) GroupEmailAliasGrant.ensure_aliases(person=self.person) self.assertEqual(alias_type.email_aliases.count(), 1) def test_account_name_generator_returning_none(self): alias_type, unused = EmailAliasType.get_or_create_dummy(metavar='nick', defaults=dict( account_name_code='access.email_aliases:nick', )) self.person.nick = u'' self.person.save() self.assertEqual(alias_type.email_aliases.count(), 0) GroupEmailAliasGrant.ensure_aliases(self.person) self.assertEqual(alias_type.email_aliases.count(), 0) ``` #### File: badges/models/badge.py ```python from django.conf import settings from django.db import models, transaction from django.utils.html import escape from django.utils.translation import ugettext_lazy as _ from core.csv_export import CsvExportMixin from core.utils import time_bool_property from ..proxies.badge.privacy import BadgePrivacyAdapter class Badge(models.Model, CsvExportMixin): person = models.ForeignKey('core.Person', null=True, blank=True, verbose_name=_(u'Person'), ) personnel_class = models.ForeignKey('labour.PersonnelClass', verbose_name=_(u'Personnel class'), ) printed_separately_at = models.DateTimeField( null=True, blank=True, verbose_name=_(u'Printed separately at'), ) revoked_by = models.ForeignKey(settings.AUTH_USER_MODEL, null=True, blank=True, related_name='badges_revoked', verbose_name=_(u'Revoked by'), ) revoked_at = models.DateTimeField( null=True, blank=True, verbose_name=_(u'Revoked at'), ) first_name = models.CharField( blank=True, max_length=1023, verbose_name=_(u'First name'), ) is_first_name_visible = models.BooleanField( default=True, verbose_name=_(u'Is first name visible'), ) surname = models.CharField( blank=True, max_length=1023, verbose_name=_(u'Surname'), ) is_surname_visible = models.BooleanField( default=True, verbose_name=_(u'Is surname visible'), ) nick = models.CharField( blank=True, max_length=1023, verbose_name=_(u'Nick name'), help_text=_(u'If you only have a single piece of information to print on the badge, use this field.'), ) is_nick_visible = models.BooleanField( default=True, verbose_name=_(u'Is nick visible'), ) job_title = models.CharField(max_length=63, blank=True, default=u'', verbose_name=_(u'Job title'), help_text=_(u'Please stay civil with the job title field.'), ) created_by = models.ForeignKey(settings.AUTH_USER_MODEL, null=True, blank=True, related_name='badges_created', verbose_name=_(u'Created by'), ) created_at = models.DateTimeField( auto_now_add=True, verbose_name=_(u'Created at'), ) updated_at = models.DateTimeField( auto_now=True, verbose_name=_(u'Updated at'), ) batch = models.ForeignKey('badges.Batch', null=True, blank=True, db_index=True, verbose_name=_(u'Printing batch'), ) is_revoked = time_bool_property('revoked_at') is_printed = time_bool_property('printed_at') is_printed_separately = time_bool_property('printed_separately_at') @property def printed_at(self): if self.printed_separately_at: return self.printed_separately_at elif self.batch: return self.batch.printed_at else: return None @property def formatted_printed_at(self): # XXX not really "formatted" return self.printed_at if self.printed_at is not None else u'' @classmethod def get_or_create_dummy(cls): from core.models import Person from labour.models import PersonnelClass person, unused = Person.get_or_create_dummy() personnel_class, unused = PersonnelClass.get_or_create_dummy() return cls.objects.get_or_create( person=person, personnel_class=personnel_class, ) @classmethod def ensure(cls, event, person): """ Makes sure the person has a badge of the correct class and up-to-date information for a given event. """ from badges.utils import default_badge_factory assert person is not None with transaction.atomic(): try: existing_badge = cls.objects.get( personnel_class__event=event, person=person, revoked_at__isnull=True, ) except cls.DoesNotExist: existing_badge = None expected_badge_opts = default_badge_factory(event=event, person=person) if existing_badge: # There is an existing un-revoked badge. Check that its information is correct. if any(getattr(existing_badge, key) != value for key, value in expected_badge_opts.iteritems()): existing_badge.revoke() else: return existing_badge, False if expected_badge_opts.get('personnel_class') is None: # They should not have a badge. return None, False badge_opts = dict(expected_badge_opts, person=person) badge = cls(**badge_opts) badge.save() return badge, True @classmethod def get_csv_fields(cls, event): from labour.models import PersonnelClass meta = event.badges_event_meta if meta.badge_layout == 'trad': # Chief Technology Officer # <NAME> # Japsu return [ (cls, 'personnel_class_name'), (BadgePrivacyAdapter, 'surname'), (BadgePrivacyAdapter, 'first_name'), (BadgePrivacyAdapter, 'nick'), (cls, 'job_title'), ] elif meta.badge_layout == 'nick': # JAPSU # <NAME> # Chief Technology Officer # -OR- # SANTTU # Pajukanta # Chief Technology Officer return [ (cls, 'personnel_class_name'), (BadgePrivacyAdapter, 'nick_or_first_name'), (BadgePrivacyAdapter, 'surname_or_full_name'), (cls, 'job_title'), ] else: raise NotImplementedError(meta.badge_layout) def get_csv_related(self): from core.models import Person return { BadgePrivacyAdapter: BadgePrivacyAdapter(self), } def get_name_fields(self): return [ (self.surname.strip(), self.is_surname_visible), (self.first_name.strip(), self.is_first_name_visible), (self.nick.strip(), self.is_nick_visible), ] @property def personnel_class_name(self): return self.personnel_class.name if self.personnel_class else u'' @property def event(self): return self.personnel_class.event @property def meta(self): return self.event.badges_event_meta @property def event_name(self): return self.personnel_class.event.name if self.personnel_class else u'' def to_html_print(self): def format_name_field(value, is_visible): if is_visible: return u"<strong>{value}</strong>".format(value=escape(value)) else: return escape(value) vars = dict( surname=format_name_field(self.surname.strip(), self.is_surname_visible), first_name=format_name_field(self.first_name.strip(), self.is_first_name_visible), nick=format_name_field(self.nick.strip(), self.is_nick_visible), ) if self.nick: return u"{surname}, {first_name}, {nick}".format(**vars) else: return u"{surname}, {first_name}".format(**vars) def revoke(self, user=None): """ Revoke the badge. When a badge that is not yet assigned to a batch or printed separately is revoked, it is removed altogether. When a badge that is already assigned to a batch or printed separately is revoked, it will be marked as such but not removed, because it needs to be manually removed from distribution. Note that the batch does not need to be marked as printed yet for a badge to stay around revoked, because a batch that is already created but not yet printed may have been downloaded as Excel already. A Batch should never change after being created. """ assert not self.is_revoked if self.is_printed_separately or self.batch: self.is_revoked = True self.revoked_by = user self.save() return self else: self.delete() return None def unrevoke(self): assert self.is_revoked self.is_revoked = False self.revoked_by = None self.save() return self def admin_get_full_name(self): if self.nick: return u'{self.first_name} "{self.nick}" {self.surname}'.format(self=self) else: return u'{self.first_name} {self.surname}'.format(self=self) admin_get_full_name.short_description = _(u'Name') admin_get_full_name.admin_order_field = ('surname', 'first_name', 'nick') def __unicode__(self): return u"{person_name} ({personnel_class_name}, {event_name})".format( person_name=self.admin_get_full_name(), personnel_class_name=self.personnel_class_name, event_name=self.event_name, ) ``` #### File: management/commands/setup_concon9.py ```python from datetime import datetime, timedelta from django.core.management.base import BaseCommand from dateutil.tz import tzlocal from core.models import Venue, Event from programme.models import ( Category, ProgrammeEventMeta, Room, SpecialStartTime, TimeBlock, View, ) class Command(BaseCommand): def handle(*args, **options): tz = tzlocal() venue, unused = Venue.objects.get_or_create( name=u'Metropolia AMK Hämeentie', defaults=dict( name_inessive=u'Metropolia AMK:n Hämeentien toimipisteessä' ) ) room_order = 0 for room_name in [ u'Zeus', u'Athene', ]: room_order += 100 Room.objects.get_or_create( venue=venue, name=room_name, defaults=dict( order=room_order, ) ) event, unused = Event.objects.get_or_create(slug='concon9', defaults=dict( name='Concon 9', name_genitive='Concon 9 -seminaarin', name_illative='Concon 9 -seminaariin', name_inessive='Concon 9 -seminaarissa', homepage_url='http://concon.nakkikone.org', organization_name='Yliopiston anime ja manga ry', organization_url='http://yama.animeunioni.org', start_time=datetime(2014, 5, 24, 10, 0, tzinfo=tz), end_time=datetime(2014, 5, 24, 18, 0, tzinfo=tz), venue=venue, )) admin_group, = ProgrammeEventMeta.get_or_create_groups(event, ['admins']) programme_event_meta, unused = ProgrammeEventMeta.objects.get_or_create(event=event, defaults=dict( public=False, admin_group=admin_group, )) view, unused = View.objects.get_or_create( event=event, name='Ohjelmakartta', ) if not view.rooms.exists(): view.rooms = Room.objects.filter(venue=venue) view.save() for category_name, category_style in [ (u'Ohjelma', u'anime'), (u'Tauko', u'muu'), ]: Category.objects.get_or_create( event=event, title=category_name, defaults=dict( style=category_style, ) ) for start_time, end_time in [ ( event.start_time, event.end_time, ), ]: TimeBlock.objects.get_or_create( event=event, start_time=start_time, defaults=dict( end_time=end_time ) ) # half_hour = event.start_time + timedelta(minutes=30) # while half_hour < end_time: # SpecialStartTime.objects.create( # event=event, # start_time=half_hour, # ) # half_hour += timedelta(minutes=60) ``` #### File: features/steps/programme_condb_105_steps.py ```python from behave import when, then from programme.models import Programme, ProgrammeRole @when(u'I assign it a schedule slot') def step_impl(context): assert False @when(u'I publish it') def step_impl(context): assert False @when(u'I create another programme') def create_another_programme(context): context.another_programme, unused = Programme.get_or_create_dummy(title=u'Another dummy programme') ProgrammeRole.get_or_create_dummy(programme=context.another_programme) @when(u'I do not assign it a schedule slot') def step_impl(context): assert False @then(u'I should see the first programme in the schedule') def step_impl(context): assert False @then(u'I should not see the second programme in the schedule') def step_impl(context): assert False @then(u'I should see the second programme on the non-schedule programme page') def step_impl(context): assert False @then(u'I should not see the first programme on the non-schedule programme page') def step_impl(context): assert False ``` #### File: turska/labour_common_qualifications/models.py ```python from django.conf import settings from django.core.validators import RegexValidator from django.db import models from django.utils.dateformat import format as format_date from labour.models import QualificationExtraBase validate_jv_card_number = RegexValidator( regex=r'.+/.+/.+', message=u"Tarkista JV-kortin numero" ) class JVKortti(QualificationExtraBase): card_number = models.CharField( max_length=13, validators=[validate_jv_card_number,], verbose_name=u"JV-kortin numero", help_text=u"Muoto: 0000/J0000/00 tai XX/0000/00" ) expiration_date = models.DateField(verbose_name=u"Viimeinen voimassaolopäivä") def __unicode__(self): n = self.card_number d = format_date(self.expiration_date, settings.DATE_FORMAT) return u"{n}, voimassa {d} asti".format(**locals()) @classmethod def get_form_class(cls): from .forms import JVKorttiForm return JVKorttiForm class Meta: verbose_name = u"JV-kortti" verbose_name_plural = u"JV-kortit" ``` #### File: labour/migrations/0003_populate_pclasses.py ```python from __future__ import unicode_literals from django.db import models, migrations def forwards_func(apps, schema_editor): Badge = apps.get_model('badges', 'Badge') Signup = apps.get_model('labour', 'Signup') PersonnelClass = apps.get_model('labour', 'PersonnelClass') for signup in Signup.objects.all(): event = signup.event person = signup.person try: badge = Badge.objects.get(template__event=event, person=person) except Badge.DoesNotExist: personnel_class, unused = PersonnelClass.objects.get_or_create( event=event, slug='tyovoima', defaults=dict( app_label='labour', name=u'Työvoima', ) ) else: personnel_class, unused = PersonnelClass.objects.get_or_create( event=event, slug=badge.template.slug, defaults=dict( app_label='labour', name=badge.template.name, ) ) signup.personnel_classes = [personnel_class] signup.save() class Migration(migrations.Migration): dependencies = [ ('labour', '0002_auto_20141115_1102'), ('badges', '0001_initial'), ] operations = [ migrations.RunPython(forwards_func), ] ``` #### File: labour/models/info_link.py ```python from django.db import models from django.utils.translation import ugettext_lazy as _ class InfoLink(models.Model): event = models.ForeignKey('core.Event', verbose_name=u'Tapahtuma') group = models.ForeignKey('auth.Group', verbose_name=u'Ryhmä', help_text=u'Linkki näytetään vain tämän ryhmän jäsenille.', ) url = models.CharField( max_length=255, verbose_name=u'Osoite', help_text=u'Muista aloittaa ulkoiset linkit <i>http://</i> tai <i>https://</i>.' ) title = models.CharField(max_length=255, verbose_name=u'Teksti') class Meta: verbose_name = _(u'info link') verbose_name_plural = _(u'info links') def __unicode__(self): return self.title ``` #### File: labour/models/labour_event_meta.py ```python from datetime import datetime, timedelta from django.conf import settings from django.db import models from django.utils.translation import ugettext_lazy as _ from django.utils.timezone import now from core.models import EventMetaBase from core.utils import full_hours_between, is_within_period from .constants import GROUP_VERBOSE_NAMES_BY_SUFFIX, SIGNUP_STATE_GROUPS class LabourEventMeta(EventMetaBase): signup_extra_content_type = models.ForeignKey('contenttypes.ContentType') registration_opens = models.DateTimeField( null=True, blank=True, verbose_name=u'työvoimahaku alkaa' ) registration_closes = models.DateTimeField( null=True, blank=True, verbose_name=u'työvoimahaku päättyy' ) work_begins = models.DateTimeField(verbose_name=u'Ensimmäiset työvuorot alkavat') work_ends = models.DateTimeField(verbose_name=u'Viimeiset työvuorot päättyvät') monitor_email = models.CharField( max_length=255, blank=True, verbose_name=u'tarkkailusähköposti', help_text=u'Kaikki työvoimajärjestelmän lähettämät sähköpostiviestit lähetetään myös ' u'tähän osoitteeseen.', ) contact_email = models.CharField( max_length=255, blank=True, verbose_name=u'yhteysosoite', help_text=u'Kaikki työvoimajärjestelmän lähettämät sähköpostiviestit lähetetään tästä ' u'osoitteesta, ja tämä osoite näytetään työvoimalle yhteysosoitteena. Muoto: Selite &lt;<EMAIL>&gt;.', ) signup_message = models.TextField( null=True, blank=True, default=u'', verbose_name=u'Ilmoittautumisen huomautusviesti', help_text=u'Tämä viesti näytetään kaikille työvoimailmoittautumisen alussa. Käytettiin ' u'esimerkiksi Tracon 9:ssä kertomaan, että työvoimahaku on avoinna enää JV:ille ja ' u'erikoistehtäville.', ) work_certificate_signer = models.TextField( null=True, blank=True, default=u'', verbose_name=u'Työtodistuksen allekirjoittaja', help_text=u'Tämän kentän sisältö näkyy työtodistuksen allekirjoittajan nimenselvennyksenä. ' u'On suositeltavaa sisällyttää tähän omalle rivilleen allekirjoittajan tehtävänimike.' ) class Meta: verbose_name = _(u'labour event meta') verbose_name_plural = _(u'labour event metas') def __unicode__(self): return self.event.name if self.event else 'None' @property def signup_extra_model(self): return self.signup_extra_content_type.model_class() @classmethod def events_registration_open(cls): from core.models import Event t = now() return Event.objects.filter( laboureventmeta__registration_opens__isnull=False, laboureventmeta__registration_opens__lte=t, ).exclude( laboureventmeta__registration_closes__isnull=False, laboureventmeta__registration_closes__lte=t, ) @classmethod def get_or_create_dummy(cls): from django.contrib.contenttypes.models import ContentType from core.models import Event from .signup_extras import EmptySignupExtra event, unused = Event.get_or_create_dummy() content_type = ContentType.objects.get_for_model(EmptySignupExtra) admin_group, = LabourEventMeta.get_or_create_groups(event, ['admins']) t = now() labour_event_meta, created = cls.objects.get_or_create( event=event, defaults=dict( admin_group=admin_group, signup_extra_content_type=content_type, registration_opens=t - timedelta(days=60), registration_closes=t + timedelta(days=60), work_begins=event.start_time - timedelta(days=1), work_ends=event.end_time + timedelta(days=1), contact_email='<EMAIL>', monitor_email='<EMAIL>', ) ) labour_event_meta.create_groups() return labour_event_meta, created @classmethod def get_or_create_groups(cls, event, job_categories_or_suffixes): suffixes = [ jc_or_suffix if isinstance(jc_or_suffix, basestring) else jc_or_suffix.slug for jc_or_suffix in job_categories_or_suffixes ] groups = super(LabourEventMeta, cls).get_or_create_groups(event, suffixes) if 'mailings' in settings.INSTALLED_APPS: from mailings.models import RecipientGroup for jc_or_suffix, group in zip(job_categories_or_suffixes, groups): if isinstance(jc_or_suffix, basestring): verbose_name = GROUP_VERBOSE_NAMES_BY_SUFFIX[jc_or_suffix] else: verbose_name = jc_or_suffix.name RecipientGroup.objects.get_or_create( event=event, app_label='labour', group=group, defaults=dict( verbose_name=verbose_name, ), ) return groups def is_user_supervisor(self, user): supervisor_group, = LabourEventMeta.get_or_create_groups(self.event, ['supervisors']) return self.is_user_admin(user) or self.is_user_in_group(user, supervisor_group) def create_groups(self): from .job_category import JobCategory job_categories_or_suffixes = list(SIGNUP_STATE_GROUPS) job_categories_or_suffixes.extend(JobCategory.objects.filter(event=self.event)) job_categories_or_suffixes.append('supervisors') return LabourEventMeta.get_or_create_groups(self.event, job_categories_or_suffixes) @property def is_registration_open(self): return is_within_period(self.registration_opens, self.registration_closes) def is_person_signed_up(self, person): return self.event.signup_set.filter(person=person).exists() def get_signup_for_person(self, person): from .signup import Signup try: return self.event.signup_set.get(person=person) except Signup.DoesNotExist: return Signup(person=person, event=self.event) @property def work_hours(self): return full_hours_between(self.work_begins, self.work_ends) @property def applicants_group(self): return self.get_group('applicants') @property def accepted_group(self): return self.get_group('accepted') @property def finished_group(self): return self.get_group('finished') @property def rejected_group(self): return self.get_group('rejected') ``` #### File: labour/models/qualifications.py ```python from django.db import models from django.utils.translation import ugettext_lazy as _ from core.utils import SLUG_FIELD_PARAMS class Qualification(models.Model): slug = models.CharField(**SLUG_FIELD_PARAMS) name = models.CharField(max_length=63, verbose_name=u'pätevyyden nimi') description = models.TextField(blank=True, verbose_name=u'kuvaus') qualification_extra_content_type = models.ForeignKey('contenttypes.ContentType', null=True, blank=True) class Meta: verbose_name = _(u'qualification') verbose_name_plural = _(u'qualifications') def __unicode__(self): return self.name @property def qualification_extra_model(self): if self.qualification_extra_content_type: return self.qualification_extra_content_type.model_class() else: return None @classmethod def create_dummy(cls): return cls.objects.create( name='Dummy qualification' ) @classmethod def get_or_create_dummies(cls): qual1, unused = Qualification.objects.get_or_create(slug='dummy1', defaults=dict( name='Dummy qualification 1' )) qual2, unused = Qualification.objects.get_or_create(slug='dummy2', defaults=dict( name='Dummy qualification 2' )) return [qual1, qual2] class PersonQualification(models.Model): person = models.ForeignKey('core.Person', verbose_name=u'henkilö') qualification = models.ForeignKey(Qualification, verbose_name=u'pätevyys') class Meta: verbose_name = _(u'qualification holder') verbose_name_plural = _(u'qualification holders') def __unicode__(self): return self.qualification.name if self.qualification else 'None' @property def qualification_extra(self): if not self.qualification: return None QualificationExtra = self.qualification.qualification_extra_model if not QualificationExtra: return None try: return QualificationExtra.objects.get(personqualification=self) except QualificationExtra.DoesNotExist: return QualificationExtra(personqualification=self) class QualificationExtraBase(models.Model): personqualification = models.OneToOneField(PersonQualification, related_name="+", primary_key=True) @classmethod def get_form_class(cls): raise NotImplemented( 'Remember to override get_form_class in your QualificationExtra model' ) class Meta: abstract = True ``` #### File: programme/migrations/0020_make_role_event_specific.py ```python from __future__ import unicode_literals from django.db import migrations def make_role_event_specific(apps, schema_editor): ProgrammeRole = apps.get_model('programme', 'programmerole') Role = apps.get_model('programme', 'role') PersonnelClass = apps.get_model('labour', 'personnelclass') PersonnelClass.objects.filter(name__icontains='ohjelma').update(app_label='programme') for programme_role in ProgrammeRole.objects.all(): if programme_role.role.personnel_class is None: try: personnel_class = PersonnelClass.objects.get( event=programme_role.programme.category.event, name__in=[u'Ohjelma', u'Ohjelmanjärjestäjä'] ) except PersonnelClass.DoesNotExist: personnel_class = PersonnelClass( event=programme_role.programme.category.event, app_label='programme', name=u'Ohjelmanjärjestäjä', slug=u'ohjelma', priority=40, # values of 0, 30 and 40 present; 40 most prevalent ) personnel_class.save() old_role = programme_role.role programme_role.role, unused = Role.objects.get_or_create( personnel_class=personnel_class, title=old_role.title, defaults=dict( require_contact_info=old_role.require_contact_info, is_default=old_role.is_default, is_public=old_role.is_public, ) ) programme_role.save() Role.objects.filter(personnel_class__isnull=True).delete() class Migration(migrations.Migration): dependencies = [ ('labour', '0016_auto_20160128_1805'), ('programme', '0019_auto_20160201_0003'), ] operations = [ migrations.RunPython(make_role_event_specific), ] ``` #### File: programme/migrations/0025_auto_20160202_2237.py ```python from __future__ import unicode_literals import re from django.db import migrations SLUGIFY_CHAR_MAP = { u'ä': u'a', u'å': u'a', u'ö': u'o', u'ü': u'u', u' ': u'-', u'_': u'-', u'.': u'-', } SLUGIFY_FORBANNAD_RE = re.compile(ur'[^a-z0-9-]', re.UNICODE) SLUGIFY_MULTIDASH_RE = re.compile(ur'-+', re.UNICODE) def slugify(ustr): ustr = ustr.lower() ustr = u''.join(SLUGIFY_CHAR_MAP.get(c, c) for c in ustr) ustr = SLUGIFY_FORBANNAD_RE.sub(u'', ustr) ustr = SLUGIFY_MULTIDASH_RE.sub(u'-', ustr) return ustr def populate_slug(apps, schema_editor): Programme = apps.get_model('programme', 'programme') for programme in Programme.objects.all(): if not programme.slug: programme.slug = slugify(programme.title) programme.save() class Migration(migrations.Migration): dependencies = [ ('programme', '0024_auto_20160202_2236'), ] operations = [ migrations.RunPython(populate_slug) ] ``` #### File: turska/sms/models.py ```python from datetime import datetime from django.conf import settings from django.db import models from django.db.models import F from nexmo.models import InboundMessage, OutboundMessage, RetryError import regex from core.models import EventMetaBase MAX_TRIES = 20 RETRY_DELAY_SECONDS = 0.4 class Hotword(models.Model): hotword = models.CharField( max_length=255, verbose_name=u"Avainsanan kuvaus", help_text=u"Tällä nimellä erotat avainsanan muista, esim. toisen tapahtuman AMV-äänestyksestä" ) slug = models.SlugField( verbose_name=u"Avainsana", help_text=u"Tämä tekstinpätkä on varsinainen avainsana, joka tulee löytyä tekstiviestistä. Kirjoita pienillä!" ) valid_from = models.DateTimeField() valid_to = models.DateTimeField() assigned_event = models.ForeignKey('core.Event') def __unicode__(self): return u'%s' % (self.hotword) class Meta: verbose_name = u'Avainsana' verbose_name_plural = u'Avainsanat' class VoteCategory(models.Model): category = models.CharField( max_length=255, verbose_name=u'Kategorian kuvaus' ) slug = models.SlugField( max_length=20, verbose_name=u'Avainsana' ) hotword = models.ForeignKey(Hotword) primary = models.BooleanField(default=False) def __unicode__(self): return u'%s' % (self.category) class Meta: verbose_name = u'Kategoria' verbose_name_plural = u'Kategoriat' class Nominee(models.Model): category = models.ManyToManyField(VoteCategory) number = models.IntegerField() name = models.CharField( max_length=255, blank=True, null=True ) def __unicode__(self): return u'%s - %s' % (self.number, self.name) class Meta: verbose_name = u'Osallistuja' verbose_name_plural = u'Osallistujat' class Vote(models.Model): category = models.ForeignKey(VoteCategory) vote = models.ForeignKey(Nominee) message = models.ForeignKey('nexmo.InboundMessage') class Meta: verbose_name = u'Ääni' verbose_name_plural = u'Äänet' class SMSEventMeta(EventMetaBase): sms_enabled = models.BooleanField(default=False) current = models.BooleanField(default=False) used_credit = models.IntegerField(default=0) def save(self, *args, **kwargs): if self.current: try: temp = SMSEventMeta.objects.get(current=True) if self != temp: temp.current = False temp.save() except SMSEventMeta.DoesNotExist: pass return super(SMSEventMeta, self).save(*args, **kwargs) @property def is_sms_enabled(self): return self.sms_enabled is not None @property def is_current(self): return self.current is not None def __unicode__(self): return self.event.name @classmethod def get_or_create_dummy(cls): from core.models import Event event, unused = Event.get_or_create_dummy() group, unused = cls.get_or_create_groups(event, ['admins']) return cls.objects.get_or_create(event=event, defaults=dict(admin_group=group)) class Meta: verbose_name = u'Tekstiviestejä käyttävä tapahtuma' verbose_name_plural = u'Tekstiviestejä käyttävät tapahtumat' class SMSMessageIn(models.Model): message = models.ForeignKey('nexmo.InboundMessage') SMSEventMeta = models.ForeignKey(SMSEventMeta) def __unicode__(self): return self.message.message class Meta: verbose_name = u'Vastaanotettu viesti' verbose_name_plural = u'Vastaanotetut viestit' class SMSMessageOut(models.Model): message = models.TextField() to = models.CharField(max_length=20) event = models.ForeignKey(SMSEventMeta) ref = models.ForeignKey('nexmo.OutboundMessage', blank=True, null=True) @classmethod def send(cls, *args, **kwargs): message = SMSMessageOut(*args, **kwargs) message.save() return message._send() def _send(self, *args, **kwargs): from time import sleep if not self.event.sms_enabled: return False # TODO replace this with a generic phone number normalization code (perhaps a library) to = regex.match(r'\d{9,15}', self.to.replace(' ','').replace('-','').replace('+','')) if to is None: return False if to[0].startswith('0'): actual_to = u'+358' + to[0][1:] else: actual_to = u'+' + to[0] nexmo_message = OutboundMessage(message=self.message, to=actual_to) nexmo_message.save() self.to = actual_to self.ref = nexmo_message self.save() succeeded = False for i in xrange(MAX_TRIES): try: sent_message = self.ref._send() except RetryError: # Back off! Stop everything for a while. sleep(RETRY_DELAY_SECONDS) else: succeeded = True break if not succeeded: raise RuntimeError('Max retries exceeded for SMSMessageOut(id={})'.format(self.id)) used_credit = sum( float(sent['message-price']) * 100 for sent in sent_message['messages'] if int(sent['status']) == 0 ) meta = SMSEventMeta.objects.get(event=self.event.event) meta.used_credit = F('used_credit') + int(used_credit) meta.save() if 'background_tasks' in settings.INSTALLED_APPS: # This assumes that if background_tasks is installed, it will be used in sms sending. # Otherwise you will be hitting RetryError constantly. pass else: sleep(0.25 * float(sent_message['message-count'])) return True class Meta: verbose_name = u'Lähetetty viesti' verbose_name_plural = u'Lähetetyt viestit' from . import signal_handlers ``` #### File: turska/sms/tasks.py ```python from __future__ import absolute_import from celery import shared_task @shared_task(ignore_result=True) def message_send(message_id): from .models import SMSMessageOut smsmessage = SMSMessageOut.objects.get(pk=message_id) smsmessage._send() ``` #### File: tickets/migrations/0009_accom_limit_group_refactor.py ```python from __future__ import unicode_literals from django.db import migrations, models def populate_accommodation_limit_group(apps, schema_editor): AccommodationInformation = apps.get_model('tickets', 'accommodationinformation') for info in AccommodationInformation.objects.all(): info.limit_groups = info.order_product.product.limit_groups.all() info.save() class Migration(migrations.Migration): dependencies = [ ('tickets', '0008_auto_20151108_1905'), ] operations = [ migrations.AddField( model_name='accommodationinformation', name='limit_groups', field=models.ManyToManyField(related_name='accommodation_information_set', to='tickets.LimitGroup', blank=True), ), migrations.AlterField( model_name='accommodationinformation', name='order_product', field=models.ForeignKey(related_name='accommodation_information_set', blank=True, to='tickets.OrderProduct', null=True), ), migrations.RunPython(populate_accommodation_limit_group), ] ``` #### File: tickets/views/public_views.py ```python from collections import defaultdict import datetime from time import mktime from django.conf import settings from django.http import HttpResponseRedirect, HttpResponseNotAllowed, HttpResponse from django.shortcuts import render, get_object_or_404, redirect from django.template import RequestContext from django.contrib.auth.decorators import login_required, permission_required from django.contrib import messages from django.views.decorators.http import require_POST, require_safe, require_http_methods from django.core.paginator import Paginator, InvalidPage, EmptyPage from django.db.models import Sum try: from reportlab.pdfgen import canvas except ImportError: from warnings import warn warn('Failed to import ReportLab. Generating receipts will fail.') from core.utils import initialize_form, url # XXX * imports from ..models import Order, Product, OrderProduct, Customer, AccommodationInformation from ..forms import * from ..helpers import * from ..utils import * __all__ = [ "ALL_PHASES", "tickets_accommodation_view", "tickets_address_view", "tickets_confirm_view", "tickets_thanks_view", "tickets_tickets_view", "tickets_welcome_view", ] def multiform_validate(forms): return ["syntax"] if not all( i.is_valid() and (i.instance.target.available or i.cleaned_data["count"] == 0) for i in forms ) else [] def multiform_save(forms): return [i.save() for i in forms] def decorate(view_obj): """ Applying decorators to our makeshift class based views seems a bit tricky. Let's do the decorator dance in this helper instead. NB. can't use functools.wraps due to Phase not having a __name__. Usage: realized_phase = ClassBasedView() realized_view = decorate(realized_phase) """ @tickets_event_required def wrapper(request, event, *args, **kwargs): return view_obj(request, event, *args, **kwargs) return wrapper class Phase(object): name = "XXX_fill_me_in" friendly_name = "XXX Fill Me In" methods = ["GET", "POST"] template = "tickets_dummy_phase.html" prev_phase = None next_phase = None payment_phase = None next_text = "Seuraava &raquo;" can_cancel = True index = None delay_complete = False def __call__(self, request, event): if request.method not in self.methods: return HttpResponseNotAllowed(self.methods) order = get_order(request, event) if not self.available(request, event): if order.is_confirmed: if order.is_paid: return redirect('tickets_thanks_view', event.slug) else: return redirect('tickets_confirm_view', event.slug) else: return redirect('tickets_welcome_view', event.slug) form = self.make_form(request, event) errors = [] if request.method == "POST": # Which button was clicked? action = request.POST.get("action", "cancel") # On "Cancel" there's no need to do form validation, just bail out # right away. if action == "cancel": return self.cancel(request, event) if action not in ("next", "prev"): # TODO the user is manipulating the POST data raise NotImplementedError("evil user") # Data validity is checked before even attempting save. errors = self.validate(request, event, form) if not errors: self.save(request, event, form) # The "Next" button should only proceed with valid data. if action == "next": if not self.delay_complete: complete_phase(request, event, self.name) return self.next(request, event) # The "Previous" button should work regardless of form validity. if action == "prev": # Clear any nastygrams left behind by validate for message in messages.get_messages(request): pass return self.prev(request, event) # POST with invalid data and GET are handled the same. return self.get(request, event, form, errors) def available(self, request, event): order = get_order(request, event) return is_phase_completed(request, event, self.prev_phase) and not order.is_confirmed def validate(self, request, event, form): if not form.is_valid(): messages.error(request, 'Tarkista lomakkeen sisältö.') return ["syntax"] else: return [] def get(self, request, event, form, errors): order = get_order(request, event) phases = [] for phase in ALL_PHASES: phases.append(dict( url=url(phase.name, event.slug), friendly_name=phase.friendly_name, current=phase is self )) phase = dict( url=url(self.name, event.slug), next_phase=bool(self.next_phase), prev_phase=bool(self.prev_phase), can_cancel=self.can_cancel, next_text=self.next_text, payment_phase=self.payment_phase, name=self.name ) vars = dict(self.vars(request, event, form), event=event, form=form, errors=errors, order=order, phase=phase, phases=phases, # XXX hack to hide the login form login_page=True ) return render(request, self.template, vars) def make_form(self, request, event): return initialize_form(NullForm, request) def save(self, request, event, form): form.save() def next(self, request, event): return redirect(self.next_phase, event.slug) def prev(self, request, event): return redirect(self.prev_phase, event.slug) def cancel(self, request, event): destroy_order(request, event) return HttpResponseRedirect(event.homepage_url) def vars(self, request, event, form): return {} class WelcomePhase(Phase): name = "tickets_welcome_view" friendly_name = "Tervetuloa" template = "tickets_welcome_phase.jade" prev_phase = None next_phase = "tickets_tickets_view" permit_new = True def save(self, request, event, form): order = get_order(request, event) order.save() set_order(request, event, order) def available(self, request, event): order = get_order(request, event) return not order.is_confirmed tickets_welcome_phase = WelcomePhase() tickets_welcome_view = decorate(tickets_welcome_phase) class TicketsPhase(Phase): name = "tickets_tickets_view" friendly_name = "Liput" template = "tickets_tickets_phase.jade" prev_phase = "tickets_welcome_view" next_phase = "tickets_address_view" def make_form(self, request, event): order = get_order(request, event) return OrderProductForm.get_for_order(request, order) def validate(self, request, event, form): errors = multiform_validate(form) # If the above step failed, not all forms have cleaned_data. if errors: messages.error(request, u'Tarkista lomakkeen sisältö.') return errors if sum(i.cleaned_data["count"] for i in form) <= 0: messages.info(request, u'Valitse vähintään yksi tuote.') errors.append("zero") return errors if any(i.instance.product.amount_available < i.cleaned_data["count"] for i in form): messages.error(request, u'Valitsemasi tuote on valitettavasti juuri myyty loppuun.') errors.append("soldout") return errors return [] def save(self, request, event, form): multiform_save(form) def next(self, request, event): order = get_order(request, event) if order.requires_accommodation_information: return redirect('tickets_accommodation_view', event.slug) else: return redirect(self.next_phase, event.slug) tickets_tickets_phase = TicketsPhase() tickets_tickets_view = decorate(tickets_tickets_phase) class AccommodationPhase(Phase): name = "tickets_accommodation_view" friendly_name = u"Lisätiedot" template = "tickets_accommodation_phase.jade" prev_phase = "tickets_tickets_view" next_phase = "tickets_address_view" def available(self, request, event): order = get_order(request, event) return order.requires_accommodation_information and not order.is_confirmed def validate(self, request, event, form): errors = ['syntax'] if not all(i.is_valid() for i in form) else [] # If the above step failed, not all forms have cleaned_data. if errors: messages.error(request, u'Tarkista lomakkeen sisältö.') return errors def make_form(self, request, event): order = get_order(request, event) return AccommodationInformationForm.get_for_order(request, order) def save(self, request, event, form): forms = form for form in forms: info = form.save() info.limit_groups = info.order_product.product.limit_groups.all() info.save() tickets_accommodation_phase = AccommodationPhase() tickets_accommodation_view = decorate(tickets_accommodation_phase) class AddressPhase(Phase): name = "tickets_address_view" friendly_name = "Toimitusosoite" template = "tickets_address_phase.jade" prev_phase = "tickets_tickets_view" next_phase = "tickets_confirm_view" def make_form(self, request, event): order = get_order(request, event) return initialize_form(CustomerForm, request, instance=order.customer) def save(self, request, event, form): order = get_order(request, event) cust = form.save() order.customer = cust order.save() def prev(self, request, event): order = get_order(request, event) if order.requires_accommodation_information: return redirect('tickets_accommodation_view', event.slug) else: return redirect(self.prev_phase, event.slug) tickets_address_phase = AddressPhase() tickets_address_view = decorate(tickets_address_phase) class ConfirmPhase(Phase): name = "tickets_confirm_view" friendly_name = "Vahvistaminen" template = "tickets_confirm_phase.jade" prev_phase = "tickets_address_view" next_phase = "payments_redirect_view" next_text = "<NAME> &#10003;" payment_phase = True delay_complete = True def validate(self, request, event, form): errors = multiform_validate(form) order = get_order(request, event) order_products = order.order_product_set.filter(count__gt=0) if any(i.product.amount_available < i.count for i in order_products): messages.error(request, u'Valitsemasi tuote on valitettavasti juuri myyty loppuun.') errors.append("soldout_confirm") return errors return [] def vars(self, request, event, form): order = get_order(request, event) products = order.order_product_set.filter(order=order, count__gt=0) return dict( products=products, ) def available(self, request, event): order = get_order(request, event) return is_phase_completed(request, event, self.prev_phase) and not order.is_paid def prev(self, request, event): order = get_order(request, event) if order.is_confirmed: order.deconfirm_order() return super(ConfirmPhase, self).prev(request, event) def save(self, request, event, form): order = get_order(request, event) if not order.is_confirmed: order.confirm_order() tickets_confirm_phase = ConfirmPhase() tickets_confirm_view = decorate(tickets_confirm_phase) class ThanksPhase(Phase): name = "tickets_thanks_view" friendly_name = "Kiitos!" template = "tickets_thanks_phase.jade" prev_phase = None next_phase = "tickets_welcome_view" next_text = "Uusi tilaus" can_cancel = False def available(self, request, event): order = get_order(request, event) return order.is_confirmed and order.is_paid def vars(self, request, event, form): order = get_order(request, event) products = OrderProduct.objects.filter(order=order) return dict(products=products) def save(self, request, event, form): # Start a new order clear_order(request, event) tickets_thanks_phase = ThanksPhase() tickets_thanks_view = decorate(tickets_thanks_phase) ALL_PHASES = [ tickets_welcome_phase, tickets_tickets_phase, tickets_accommodation_phase, tickets_address_phase, tickets_confirm_phase, tickets_thanks_phase, ] for num, phase in enumerate(ALL_PHASES): phase.index = num def tickets_event_box_context(request, event): if event.tickets_event_meta: is_tickets_admin = event.tickets_event_meta.is_user_admin(request.user) else: is_tickets_admin = False return dict( is_tickets_admin=is_tickets_admin ) ```
{ "source": "jlaura/ale", "score": 3 }
#### File: ale/base/label_isis.py ```python import pvl class IsisLabel(): @property def label(self): if not hasattr(self, "_label"): if isinstance(self._file, pvl.PVLModule): self._label = self._file try: self._label = pvl.loads(self._file) except Exception: self._label = pvl.load(self._file) except: raise ValueError("{} is not a valid label".format(self._file)) return self._label @property def image_lines(self): """ Returns ------- : int Number of lines in image """ return self.label['IsisCube']['Core']['Dimensions']['Lines'] @property def image_samples(self): """ Returns ------- : int Number of samples in image """ return self.label['IsisCube']['Core']['Dimensions']['Samples'] @property def sample_summing(self): """ Returns ------- : int Sample summing """ try: summing = self.label['IsisCube']['Instrument']['SummingMode'] except: summing = 1 return summing @property def line_summing(self): """ Returns ------- : int Line summing """ try: summing = self.label['IsisCube']['Instrument']['SummingMode'] except: summing = 1 return summing @property def target_name(self): """ Target body name used in various Spice calls to acquire target specific ephemeris data. Returns ------- : str Target name """ return self.label['IsisCube']['Instrument']['TargetName'] @property def spacecraft_clock_start_count(self): """ The spacecraft clock start count, frequently used to determine the start time of the image. Returns ------- : str Spacecraft clock start count """ try: start_count = self.label['IsisCube']['Instrument']['SpacecraftClockStartCount'] except: start_count = self.label['IsisCube']['Archive']['SpacecraftClockStartCount'] return start_count @property def exposure_duration(self): """ The exposure duration of the image, in seconds Returns ------- : float Exposure duration in seconds """ try: units = self.label['IsisCube']['Instrument']['ExposureDuration'].units if "ms" in units.lower(): exposure_duration = self.label['IsisCube']['Instrument']['ExposureDuration'].value * 0.001 else: # if not milliseconds, the units are probably seconds exposure_duration = self.label['IsisCube']['Instrument']['ExposureDuration'].value except: # if no units are available, assume the exposure duration is given in milliseconds exposure_duration = self.label['IsisCube']['Instrument']['ExposureDuration'].value * 0.001 return exposure_duration ``` #### File: tests/pytests/test_lro_drivers.py ```python from collections import namedtuple from unittest import mock import pytest import ale from ale.drivers import lro_drivers from ale.base import data_naif from ale.drivers.lro_drivers import LroLrocPds3LabelNaifSpiceDriver from ale import util # 'Mock' the spice module where it is imported from conftest import SimpleSpice, get_mockkernels simplespice = SimpleSpice() data_naif.spice = simplespice lro_drivers.spice = simplespice LroLrocPds3LabelNaifSpiceDriver.metakernel = get_mockkernels @pytest.fixture def lro_lroclabel(): return """ PDS_VERSION_ID = PDS3 /*FILE CHARACTERISTICS*/ RECORD_TYPE = FIXED_LENGTH RECORD_BYTES = 5064 FILE_RECORDS = 13313 LABEL_RECORDS = 1 ^IMAGE = 2 /*DATA IDENTIFICATION*/ DATA_SET_ID = "LRO-L-LROC-2-EDR-V1.0" ORIGINAL_PRODUCT_ID = nacl0002fc60 PRODUCT_ID = M128963531LE MISSION_NAME = "LUNAR RECONNAISSANCE ORBITER" MISSION_PHASE_NAME = "NOMINAL MISSION" INSTRUMENT_HOST_NAME = "LUNAR RECONNAISSANCE ORBITER" INSTRUMENT_HOST_ID = LRO INSTRUMENT_NAME = "LUNAR RECONNAISSANCE ORBITER CAMERA" INSTRUMENT_ID = LROC LRO:PREROLL_TIME = 2010-05-20T02:57:44.373 START_TIME = 2010-05-20T02:57:44.720 STOP_TIME = 2010-05-20T02:57:49.235 LRO:SPACECRAFT_CLOCK_PREROLL_COUNT = "1/296017064:22937" SPACECRAFT_CLOCK_START_COUNT = "1/296017064:45694" SPACECRAFT_CLOCK_STOP_COUNT = "1/296017069:13866" ORBIT_NUMBER = 4138 PRODUCER_ID = LRO_LROC_TEAM PRODUCT_CREATION_TIME = 2013-09-16T19:57:12 PRODUCER_INSTITUTION_NAME = "ARIZONA STATE UNIVERSITY" PRODUCT_TYPE = EDR PRODUCT_VERSION_ID = "v1.8" UPLOAD_ID = "SC_2010140_0000_A_V01.txt" /*DATA DESCRIPTION*/ TARGET_NAME = "MOON" RATIONALE_DESC = "TARGET OF OPPORTUNITY" FRAME_ID = LEFT DATA_QUALITY_ID = "0" DATA_QUALITY_DESC = "The DATA_QUALITY_ID is set to an 8-bit value that encodes the following data quality information for the observation. For each bit a value of 0 means FALSE and a value of 1 means TRUE. More information about the data quality ID can be found in the LROC EDR/CDR SIS, section 3.3 'Label and Header Descriptions'. Bit 1: Temperature of focal plane array is out of bounds. Bit 2: Threshold for saturated pixels is reached. Bit 3: Threshold for under-saturated pixels is reached. Bit 4: Observation is missing telemetry packets. Bit 5: SPICE information is bad or missing. Bit 6: Observation or housekeeping information is bad or missing. Bit 7: Spare. Bit 8: Spare." /*ENVIRONMENT*/ LRO:TEMPERATURE_SCS = 4.51 <degC> LRO:TEMPERATURE_FPA = 17.88 <degC> LRO:TEMPERATURE_FPGA = -12.33 <degC> LRO:TEMPERATURE_TELESCOPE = 5.91 <degC> LRO:TEMPERATURE_SCS_RAW = 2740 LRO:TEMPERATURE_FPA_RAW = 2107 LRO:TEMPERATURE_FPGA_RAW = 3418 LRO:TEMPERATURE_TELESCOPE_RAW = 2675 /*IMAGING PARAMETERS*/ CROSSTRACK_SUMMING = 1 BANDWIDTH = 300 <nm> CENTER_FILTER_WAVELENGTH = 600 <nm> LINE_EXPOSURE_DURATION = 0.337600 <ms> LRO:LINE_EXPOSURE_CODE = 0 LRO:DAC_RESET_LEVEL = 198 LRO:CHANNEL_A_OFFSET = 60 LRO:CHANNEL_B_OFFSET = 123 LRO:COMPAND_CODE = 3 LRO:LINE_CODE = 13 LRO:BTERM = (0,16,69,103,128) LRO:MTERM = (0.5,0.25,0.125,0.0625,0.03125) LRO:XTERM = (0,64,424,536,800) LRO:COMPRESSION_FLAG = 1 LRO:MODE = 7 /*DATA OBJECT*/ OBJECT = IMAGE LINES = 13312 LINE_SAMPLES = 5064 SAMPLE_BITS = 8 SAMPLE_TYPE = LSB_INTEGER UNIT = "RAW_INSTRUMENT_COUNT" MD5_CHECKSUM = "0fe91f4b2e93083ee0093e7c8d05f3bc" END_OBJECT = IMAGE END """ def test_lro_creation(lro_lroclabel): #with LroLrocPds3LabelNaifSpiceDriver(lro_lroclabel) as m: # d = m.to_dict() # assert isinstance(d, dict) # Need to insert new tests here, one for each property unique to this driver assert True ```
{ "source": "jlaura/autocnet", "score": 3 }
#### File: autocnet/transformation/fundamental_matrix.py ```python import warnings import numpy as np import pandas as pd from scipy import optimize from autocnet.camera import camera from autocnet.camera import utils as camera_utils from autocnet.utils.utils import make_homogeneous, normalize_vector try: import cv2 cv2_avail = True except: # pragma: no cover cv_avail = False def compute_epipolar_lines(F, x, index=None): """ Given a fundamental matrix and a set of homogeneous points Parameters ---------- F : ndarray of shape (3,3) that represents the fundamental matrix x : ndarray of shape (n, 3) of homogeneous coordinates Returns ------- lines : ndarray of shape (n,3) of epipolar lines in standard form """ if isinstance(x, pd.DataFrame): x = x.values if not x.shape[1] == 3: raise ValueError('The input points must be homogenous with shape (n,3)') # Compute the unnormalized epipolar lines lines = np.inner(F, x) # Normalize the lines nu = lines[0] ** 2 + lines[1] ** 2 try: nu = 1 / np.sqrt(nu) except: nu = 1 lines *= nu lines = lines.T if index is not None: lines = pd.DataFrame(lines, columns=['a', 'b', 'c'], index=index) # Inner transposes the result, so transpose back into the 3 column form return lines def epipolar_distance(lines, pts): """ Given a set of epipolar lines and a set of points, compute the euclidean distance between each point and the corresponding epipolar line Parameters ---------- lines : ndarray of shape (n,3) of epipolar lines in standard form pts : ndarray of shape (n, 3) of homogeneous coordinates """ num = np.abs(lines[:,0] * pts[:,0] + lines[:,1] * pts[:,1] + lines[:,2]) denom = np.sqrt(lines[:,0] ** 2 + lines[:,1] ** 2) return num / denom def compute_reprojection_error(F, x, x1, index=None): """ Given a set of matches and a known fundamental matrix, compute distance between match points and the associated epipolar lines. The distance between a point and the associated epipolar line is computed as: $d = \frac{\lvert ax_{0} + by_{0} + c \rvert}{\sqrt{a^{2} + b^{2}}}$. Parameters ---------- F : ndarray (3,3) Fundamental matrix x : arraylike (n,2) or (n,3) array of homogeneous coordinates x1 : arraylike (n,2) or (n,3) array of homogeneous coordinates with the same length as argument x Returns ------- F_error : ndarray n,1 vector of reprojection errors """ if isinstance(x, (pd.Series, pd.DataFrame)): x = x.values if isinstance(x1, (pd.Series, pd.DataFrame)): x1 = x1.values if x.shape[1] != 3: x = make_homogeneous(x) if x1.shape[1] != 3: x1 = make_homogeneous(x1) # Compute the epipolar lines lines1 = compute_epipolar_lines(F,x) lines2 = compute_epipolar_lines(F.T, x1) # Compute the euclidean distance from the pt to the line d1 = epipolar_distance(lines2, x) d2 = epipolar_distance(lines1, x1) # Grab the max err from either reprojection err = np.max(np.column_stack((d1,d2)), axis=1) if index is not None: err = pd.Series(err, index=index) return err def compute_fundamental_error(F, x, x1): """ Compute the fundamental error using the idealized error metric. Ideal error is defined by $x^{\intercal}Fx = 0$, where $x$ are all matchpoints in a given image and $x^{\intercal}F$ defines the standard form of the epipolar line in the second image. This method assumes that x and x1 are ordered such that x[0] correspondes to x1[0]. Parameters ---------- F : ndarray (3,3) Fundamental matrix x : arraylike (n,2) or (n,3) array of homogeneous coordinates x1 : arraylike (n,2) or (n,3) array of homogeneous coordinates with the same length as argument x Returns ------- F_error : ndarray n,1 vector of reprojection errors """ # TODO: Can this be vectorized for performance? if x.shape[1] != 3: x = make_homogeneous(x) if x1.shape[1] != 3: x1 = make_homogeneous(x1) if isinstance(x, pd.DataFrame): x = x.values if isinstance(x1, pd.DataFrame): x1 = x1.values err = np.empty(len(x)) for i in range(len(x)): err[i] = x1[i].T.dot(F).dot(x[i]) return err def update_fundamental_mask(F, x1, x2, threshold=1.0, index=None, method='reprojection'): """ Given a Fundamental matrix and two sets of points, compute the reprojection error between x1 and x2. A mask is returned with all repojection errors greater than the error set to false. Parameters ---------- F : ndarray (3,3) Fundamental matrix x1 : arraylike (n,2) or (n,3) array of homogeneous coordinates x2 : arraylike (n,2) or (n,3) array of homogeneous coordinates threshold : float The new upper limit for error. If using reprojection this is measured in pixels (the default). If using fundamental, the idealized error is 0. Values +- 0.05 should be good. index : ndarray Optional index for mapping between reprojective error and an associated dataframe (e.g., an indexed matches dataframe). Returns ------- mask : dataframe """ if method == 'reprojection': error = compute_reprojection_error(F, x1, x2) elif method == 'fundamental': error = compute_fundamental_error(F, x1, x2) else: warnings.warn('Unknown error method. Options are "reprojection" or "fundamental".') mask = pd.DataFrame(np.abs(error) <= threshold, index=index, columns=['fundamental']) if index is not None: mask.index = index return mask def enforce_singularity_constraint(F): """ The fundamental matrix should be rank 2. In instances when it is not, the singularity constraint should be enforced. This is forces epipolar lines to be conincident. Parameters ---------- F : ndarray (3,3) Fundamental Matrix Returns ------- F : ndarray (3,3) Singular Fundamental Matrix References ---------- .. [Hartley2003] """ if np.linalg.matrix_rank(F) != 2: u, d, vt = np.linalg.svd(F) F = u.dot(np.diag([d[0], d[1], 0])).dot(vt) return F def compute_fundamental_matrix(kp1, kp2, method='mle', reproj_threshold=2.0, confidence=0.99, mle_reproj_threshold=0.5): """ Given two arrays of keypoints compute the fundamental matrix. This function accepts two dataframe of keypoints that have Parameters ---------- kp1 : arraylike (n, 2) of coordinates from the source image kp2 : ndarray (n, 2) of coordinates from the destination image method : {'ransac', 'lmeds', 'normal', '8point'} The openCV algorithm to use for outlier detection reproj_threshold : float The maximum distances in pixels a reprojected points can be from the epipolar line to be considered an inlier confidence : float [0, 1] that the estimated matrix is correct Returns ------- F : ndarray A 3x3 fundamental matrix mask : pd.Series A boolean mask identifying those points that are valid. Notes ----- While the method is user definable, if the number of input points is < 7, normal outlier detection is automatically used, if 7 > n > 15, least medians is used, and if 7 > 15, ransac can be used. """ if method == 'mle': # Grab an initial estimate using RANSAC, then apply MLE method_ = cv2.FM_RANSAC elif method == 'ransac': method_ = cv2.FM_RANSAC elif method == 'lmeds': method_ = cv2.FM_LMEDS elif method == 'normal': method_ = cv2.FM_7POINT elif method == '8point': method_ = cv2.FM_8POINT else: raise ValueError("Unknown estimation method. Choices are: 'lme', 'ransac', 'lmeds', '8point', or 'normal'.") if len(kp1) == 0 or len(kp2) == 0: warnings.warn("F-matix computation failed. One of the keypoint args is empty. kp1:{}, kp2:{}.".format(len(kp1), len(kp2))) return None, None # OpenCV wants arrays try: # OpenCV < 3.4.1 F, mask = cv2.findFundamentalMat(np.asarray(kp1), np.asarray(kp2), method_, param1=reproj_threshold, param2=confidence) except: # OpenCV >= 3.4.1 F, mask = cv2.findFundamentalMat(np.asarray(kp1), np.asarray(kp2), method_, ransacReprojThreshold=reproj_threshold, confidence=confidence) if F is None: warnings.warn("F computation failed with no result. Returning None.") return None, None if F.shape != (3,3): warnings.warn('F computation fell back to 7-point algorithm, not setting F.') return None, None # Ensure that the singularity constraint is met F = enforce_singularity_constraint(F) try: mask = mask.astype(bool).ravel() # Enforce dimensionality except: return # pragma: no cover if method == 'mle': # Now apply the gold standard algorithm to refine F if kp1.shape[1] != 3: kp1 = make_homogeneous(kp1) if kp2.shape[1] != 3: kp2 = make_homogeneous(kp2) # Generate an idealized and to be updated camera model p1 = camera.camera_from_f(F) p = camera.idealized_camera() if kp1[mask].shape[0] <=12 or kp2[mask].shape[0] <=12: warnings.warn("Unable to apply MLE. Not enough correspondences. Returning with a RANSAC computed F matrix.") return F, mask # Apply Levenber-Marquardt to perform a non-linear lst. squares fit # to minimize triangulation error (this is a local bundle) result = optimize.least_squares(camera.projection_error, p1.ravel(), args=(p, kp1[mask].T, kp2[mask].T), method='lm') gold_standard_p = result.x.reshape(3, 4) # SciPy Lst. Sq. requires a vector, camera is 3x4 optimality = result.optimality gold_standard_f = camera_utils.crossform(gold_standard_p[:,3]).dot(gold_standard_p[:,:3]) F = gold_standard_f mask = update_fundamental_mask(F, kp1, kp2, threshold=mle_reproj_threshold).values return F, mask ```
{ "source": "jlaura/knoten", "score": 2 }
#### File: knoten/knoten/bundle.py ```python import numpy as np import pandas as pd import pvl import os import csmapi import itertools from math import floor from plio.io.isis_serial_number import generate_serial_number from ale.drivers import loads from collections import OrderedDict from knoten.csm import create_csm def generate_sensors(cubes, directory=None, clean=False): """ Generate a set of USGSCSM sensor models from a list of ISIS cube files Parameters ---------- cubes : str Directory/filename of a file containing ISIS cube file paths directory : str Output directory to save resulting json files. Defaults to the same directory as cube list file clean : flag Option to delete json file outputs Returns ------- sensors : dictionary Dictionary mapping ISIS serial numbers to USGSCSM sensor models """ if directory is None: directory = os.path.dirname(cubes) isd_files = [] sensors = {} for line in open(cubes): basename = os.path.splitext(os.path.basename(line.strip()))[0] isd = os.path.join(directory, basename+'.json') isd_files.append(isd) with open(isd, 'w+') as f: f.write(loads(line.strip(), formatter='usgscsm')) sn = generate_serial_number(line.strip()) sensors[sn] = create_csm(isd) if clean: for isd in isd_files: os.remove(isd) return sensors def closest_approach(points, direction): """ Compute the point of closest approach between lines. Parameters ---------- points : ndarray An n x 3 array of points on each line direction : ndarray An n x 3 array of vectors that defines the direction of each line Returns ------- : array The (x, y, z) point that is closest to all of the lines : ndarray The (x, y, z) covariance matrix that describes the uncertaintly of the point """ num_lines = points.shape[0] design_mat = np.zeros((num_lines * 3, 3)) rhs = np.zeros(num_lines * 3) for i in range(num_lines): point = points[i] line = direction[i] / np.linalg.norm(direction[i]) design_mat[3*i:3*i+3] = np.identity(3) - np.outer(line, line) rhs[3*i:3*i+3] = np.dot(point,line) * line + point N_inv = np.linalg.inv(design_mat.T.dot(design_mat)) closest_point = N_inv.dot(design_mat.T).dot(rhs) return closest_point, N_inv def compute_apriori_ground_points(network, sensors): """ Compute a priori ground points for all of the free points in a control network. Parameters ---------- network : DataFrame The control network as a dataframe generated by plio sensors : dict A dictionary that maps ISIS serial numbers to CSM sensors Returns ------- : DataFrame The control network dataframe with updated ground points """ for point_id, group in network.groupby('id'): # Free points are type 2 for V2 and V5 control networks if group.iloc[0]["pointType"] != 2: continue positions = [] look_vecs = [] for measure_id, row in group.iterrows(): measure = csmapi.ImageCoord(row["line"], row["sample"]) locus = sensors[row["serialnumber"]].imageToRemoteImagingLocus(measure) positions.append([locus.point.x, locus.point.y, locus.point.z]) look_vecs.append([locus.direction.x, locus.direction.y, locus.direction.z]) ground_pt, covar_mat = closest_approach(np.array(positions), np.array(look_vecs)) covar_vec = [covar_mat[0,0], covar_mat[0,1], covar_mat[0,2], covar_mat[1,1], covar_mat[1,2], covar_mat[2,2]] network.loc[network.id == point_id, ["aprioriX", "aprioriY", "aprioriZ"]] = ground_pt network.loc[network.id == point_id, ["adjustedX", "adjustedY", "adjustedZ"]] = ground_pt network.loc[network.id == point_id, ["adjustedX", "adjustedY", "adjustedZ"]] = ground_pt # We have to do a separate loop to assign a list to a single cell for measure_id, row in group.iterrows(): network.at[measure_id, 'aprioriCovar'] = covar_vec return network class CsmParameter: """ Container class that describes a parameter for a CSM sensor model """ def __init__(self, sensor, index): self.index = index self.name = sensor.getParameterName(index) self.type = sensor.getParameterType(index) self.units = sensor.getParameterUnits(index) self.value = sensor.getParameterValue(index) def __repr__(self): return f'{self.index} {self.name.strip()} ({self.type}): {self.value} {self.units}' def get_sensor_parameters(sensor, set="adjustable"): """ Get a set of the CSM parameters for a CSM sensor Parameters ---------- sensor : CSM sensor The CSM sensor model set : str The CSM parameter set to get. Either valid, adjustable, or non_adjustable Returns ------- : List A list of CsmParameters """ if (set.upper() == "VALID"): param_set = csmapi.VALID elif (set.upper() == "ADJUSTABLE"): param_set = csmapi.ADJUSTABLE elif (set.upper() == "NON_ADJUSTABLE"): param_set = csmapi.NON_ADJUSTABLE else: raise ValueError(f"Invalid parameter set \"{set}\".") return [CsmParameter(sensor, index) for index in sensor.getParameterSetIndices(param_set)] def compute_sensor_partials(sensor, parameters, ground_pt): """ Compute the partial derivatives of the line and sample with respect to a set of parameters. Parameters ---------- sensor : CSM sensor The CSM sensor model parameters : list The list of CsmParameter to compute the partials W.R.T. ground_pt : array The (x, y, z) ground point to compute the partial derivatives at Returns ------- : ndarray The 2 x n array of partial derivatives. The first array is the line partials and the second array is the sample partials. The partial derivatives are in the same order as the parameter list passed in. """ partials = np.zeros((2, len(parameters))) csm_ground = csmapi.EcefCoord(ground_pt[0], ground_pt[1], ground_pt[2]) for i in range(len(parameters)): partials[:, i] = sensor.computeSensorPartials(parameters[i].index, csm_ground) return partials def compute_ground_partials(sensor, ground_pt): """ Compute the partial derivatives of the line and sample with respect to a ground point. Parameters ---------- sensor : CSM sensor The CSM sensor model ground_pt : array The (x, y, z) ground point to compute the partial derivatives W.R.T. Returns ------- : ndarray The 2 x 3 array of partial derivatives. The first array is the line partials and the second array is the sample partials. The partial derivatives are in (x, y, z) order. """ csm_ground = csmapi.EcefCoord(ground_pt[0], ground_pt[1], ground_pt[2]) partials = np.array(sensor.computeGroundPartials(csm_ground)) return np.reshape(partials, (2, 3)) def compute_coefficient_columns(network, sensors, parameters): """ Compute the columns for different coefficients Parameters ---------- network : DataFrame The control network as a dataframe generated by plio. sensors : dict Dictionary that maps ISIS serial numbers to CSM sensor models parameters : dict Dictionary that maps serial numbers to lists of parameters to solve for. Returns ------- : OrderedDict Dictionary that maps serial numbers and point IDs to the column range their parameters are in the Jacobian matrix. """ num_columns = 0 coefficient_columns = OrderedDict() for serial in network["serialnumber"].unique(): coefficient_columns[serial] = num_columns num_columns += len(parameters[serial]) coefficient_columns[serial] = (coefficient_columns[serial], num_columns) for point_id in network["id"].unique(): # Skip fixed points if network.loc[network.id == point_id].iloc[0]["pointType"] == 4: continue coefficient_columns[point_id] = num_columns num_columns += 3 coefficient_columns[point_id] = (coefficient_columns[point_id], num_columns) return coefficient_columns def compute_jacobian(network, sensors, parameters, coefficient_columns): """ Compute the Jacobian matrix. Parameters ---------- network : DataFrame The control network as a dataframe generated by plio. sensors : dict Dictionary that maps ISIS serial numbers to CSM sensor models parameters : dict Dictionary that maps serial numbers to lists of parameters to solve for. coefficient_columns : OrderedDict Dictionary that maps serial numbers and point IDs to the column range their parameters are in the Jacobian matrix. Returns ------- : ndarray The Jacobian matrix """ num_columns = max([col_range[1] for col_range in coefficient_columns.values()]) num_rows = len(network) * 2 jacobian = np.zeros((num_rows, num_columns)) for i in range(len(network)): row = network.iloc[i] serial = row["serialnumber"] ground_pt = row[["adjustedX", "adjustedY", "adjustedZ"]] sensor = sensors[serial] params = parameters[serial] image_range = coefficient_columns[serial] point_range = coefficient_columns[row["id"]] jacobian[2*i : 2*i+2, image_range[0] : image_range[1]] = compute_sensor_partials(sensor, params, ground_pt) jacobian[2*i : 2*i+2, point_range[0] : point_range[1]] = compute_ground_partials(sensor, ground_pt) return jacobian def compute_parameter_weights(network, sensors, parameters, coefficient_columns): """ Compute the parameter weight matrix Parameters ---------- network : DataFrame The control network as a dataframe generated by plio. sensors : dict Dictionary that maps ISIS serial numbers to CSM sensor models parameters : dict Dictionary that maps serial numbers to lists of parameters to solve for. coefficient_columns : OrderedDict Dictionary that maps serial numbers and point IDs to the column range their parameters are in the Jacobian matrix. Their parameters weights will have the same ordering in the weight matrix. Returns ------- : ndarray The parameter weight matrix """ num_params = max([col_range[1] for col_range in coefficient_columns.values()]) weight_mat = np.zeros((num_params, num_params)) # Image parameters for sn, params in parameters.items(): col_range = coefficient_columns[sn] weight_mat[col_range[0]:col_range[1], col_range[0]:col_range[1]] = compute_image_weight(sensors[sn], params) # Point parameters for point_id, group in network.groupby('id'): ## If there is no covariance matrix, then just continue on point_covar = list(group.iloc[0]["aprioriCovar"]) if len(point_covar) != 6: continue # The covariance matrix is stored as just one triangle, so we have # to unpack it. if len(point_covar) == 6: covar_mat = np.array( [[point_covar[0], point_covar[1], point_covar[2]], [point_covar[1], point_covar[3], point_covar[4]], [point_covar[2], point_covar[4], point_covar[5]]] ) col_range = coefficient_columns[point_id] weight_mat[col_range[0]:col_range[1], col_range[0]:col_range[1]] = np.linalg.inv(covar_mat) return weight_mat def compute_image_weight(sensor, parameters): """ Compute the weight matrix for the sensor parameters of a single image. Parameters ---------- sensor : csmapi.RasterGm The CSM sensor model for the image parameters : list The list of parameters to solve for """ param_count = len(parameters) covar_mat = np.zeros((param_count, param_count)) for a, b in itertools.product(range(param_count), range(param_count)): covar_mat[a, b] = sensor.getParameterCovariance(parameters[a].index, parameters[b].index) return np.linalg.inv(covar_mat) def compute_point_weight(cnet, point_id): """ Compute the weight matrix for a single point. Parameters ---------- cnet : DataFrame The control network dataframe point_id : str The point ID string of the point to compute the weight matrix for """ covar_vec = cnet.loc[(cnet['id'] == point_id).idxmax(), 'aprioriCovar'] if hasattr(covar_vec, '__len__') and len(covar_vec) == 6: return np.linalg.inv(np.array( [[covar_vec[0], covar_vec[1], covar_vec[2]], [covar_vec[1], covar_vec[3], covar_vec[4]], [covar_vec[2], covar_vec[4], covar_vec[5]]])) return np.identity(3) def compute_residuals(network, sensors): """ Compute the error in the observations by taking the difference between the ground points groundToImage projections and measure values. Parameters ---------- network : DataFrame The control network as a dataframe generated by plio sensors : dict A dictionary that maps ISIS serial numbers to CSM sensors Returns ------- V : np.array The control network dataframe with updated ground points """ num_meas = len(network) V = np.zeros((num_meas, 2)) for i in range(num_meas): row = network.iloc[i] serial = row["serialnumber"] ground_pt = row[["adjustedX", "adjustedY", "adjustedZ"]].values ground_pt = csmapi.EcefCoord(ground_pt[0], ground_pt[1], ground_pt[2]) sensor = sensors[serial] img_coord = sensor.groundToImage(ground_pt) V[i,:] = [row['line'] - img_coord.line, row['sample'] - img_coord.samp] V = V.reshape(num_meas*2) return V def update_parameters(sensors, parameters, network, updates, coefficient_columns): """ Updates the sensor objects parameter values and the ground point values in the networks DataFrame. The update occurs directly to variables, so nothing is returned. Parameters ---------- sensors : dict A dictionary that maps ISIS serial numbers to CSM sensors parameters : list The list of CsmParameter to compute the partials W.R.T. network : DataFrame The control network as a dataframe generated by plio. updates : np.ndarray An array of updated parameter values coefficient_columns: OrderedDict Dictionary that maps serial numbers and point IDs to the column range their parameters are in the Jacobian matrix. Returns ------- """ # update the sensor partials for sn, sensor in sensors.items(): for i, param in enumerate(parameters[sn]): if i > coefficient_columns[sn][1]: raise IndexError(f'parameter [{param.name}] at index [{i}] is beyond the max index [{coefficient_columns[sn][1]}].') current_value = sensor.getParameterValue(param.index) sensor.setParameterValue(param.index, current_value+updates[coefficient_columns[sn][0]+i]) # update ground points for _, row in network.iterrows(): point_id = row['id'] ground_pt = row[['adjustedX', 'adjustedY', 'adjustedZ']].values adj = updates[coefficient_columns[point_id][0]:coefficient_columns[point_id][1]] network.loc[network.id == point_id, ["adjustedX", "adjustedY", "adjustedZ"]] = ground_pt + adj def compute_sigma0(V, dX, W_parameters, W_observations): """ Computes the resulting standard deviation of the residuals for the current state of the bundle network. Parameters ---------- V : ndarray An array of residuals of the difference between registered measure and back projected ground points in image space. dX : ndarray The array of parameter updates W_parameters: ndarray The parameter weight matrix (i.e.: sensor parameters and point weights) W_observations : ndarray The observation weight matrix (i.e.: measure weights) Returns ------- : float64 Standard deviation of the residuals """ num_parameters = W_parameters.shape[0] num_observations = W_observations.shape[0] dof = num_observations - num_parameters VTPV = V.dot(W_observations).dot(V) + dX.dot(W_parameters).dot(dX) sigma0 = np.sqrt(VTPV/dof) return sigma0 def compute_sigma0_sparse(V, dX, W_sensors, W_points, W_observations, column_dict): """ Computes the resulting standard deviation of the residuals for the current state of the bundle network. Parameters ---------- V : ndarray An array of residuals of the difference between registered measure and back projected ground points in image space. dX : ndarray The array of parameter updates ordered according to column_dict W_sensors : scipy.sparse.matrix The sensor weight matrix W_points : dict Dictionary that maps point IDs to their weight matrices. W_observations : ndarray The observation weight matrix (i.e.: measure weights) column_dict : dict Dictionary that maps serial numbers and point IDs to index ranges in dX Returns ------- : float64 Standard deviation of the residuals """ num_image_parameters = W_sensors.shape[0] num_observations = W_observations.shape[0] VTPV = V.dot(W_observations).dot(V) VTPV += dX[:num_image_parameters].dot(W_sensors.dot(dX[:num_image_parameters])) for point_id, W_p in W_points.items(): point_update = dX[column_dict[point_id][0]:column_dict[point_id][1]] VTPV += point_update.dot(W_p.dot(point_update)) dof = num_observations - num_image_parameters - 3 * len(W_points) return np.sqrt(VTPV/dof) ```
{ "source": "jlaura/krispy", "score": 2 }
#### File: krispy/krispy/flaskapp.py ```python import ast import cPickle import glob import inspect import json import logging import os import sqlite3 import subprocess import tempfile import zipfile import config import numpy as np from pandas.io.json import read_json import pysal as ps from flask import Flask, jsonify, request, g, render_template, session, redirect, url_for, escape from flask.ext.login import LoginManager from werkzeug.utils import secure_filename import fiona #Yeah - I punked out... from api import funcs, CustomJsonEncoder from pmd import pmdwrapper import amdparser ''' logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) handler = logging.FileHandler(config.LOGLEVEL) handler.setLevel(logging.DEBUG) logger.addHandler(handler) logger.debug('Starting...') ''' #Make the Flask App app = Flask(__name__) app.config.from_object('config') #Login items lm = LoginManager() lm.init_app(app) #Setup a cache to store transient python objects #Upload Setup UPLOAD_FOLDER = '/var/www/pysalREST/uploads' ALLOWED_EXTENSIONS = set(['shp', 'dbf', 'shx', 'prj', 'zip', 'amd', 'pmd']) app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER @app.route('/index.html/', methods=['GET', 'POST']) def showtest(): return render_template('index.html') def update_file_list(UPLOADED_FOLDER): """ Globs the upload directory and get s listing of the available files. Parameters ----------- UPLOAD_FOLDER (str) Path supplied on launch to the upload directory. """ return set([os.path.basename(i) for i in glob.glob(UPLOAD_FOLDER + '/*')]) UPLOADED_FILES = update_file_list(UPLOAD_FOLDER) def get_db(): db = getattr(g, '_database', None) if db is None: db = g._database = sqlite3.connect('/var/www/pysalREST/test.db') return db def allowed_file(filename): """ Check that the uploaded file extensions is in the approved list. Parameters ----------- filename (str) The filename, with extension Returns -------- Boolean (bool) True if accepted, else false """ return '.' in filename and \ filename.rsplit('.',1)[1] in ALLOWED_EXTENSIONS def unzip(filename, path): """ Safe file unzip function. """ with zipfile.ZipFile(filename) as zf: for m in zf.infolist(): words = m.filename.split('/') destination = path for w in words[:-1]: drive, w = os.path.splitdrive(w) head, w = os.path.split(w) if w in (os.curdir, os.pardir, ''): continue destination = os.path.join(path, w) zf.extract(m, destination) return #Three routes for static items. @app.route('/js/<path>/', methods=['GET']) def static_proxy(path): """ When using Flask, this server static files """ # send_static_file will guess the correct MIME type return app.send_static_file(os.path.join('js', path)) @app.route('/css/<path>/', methods=['GET']) def static_css_proxy(path): return app.send_static_file(os.path.join('css', path)) @app.route('/fonts/<path>', methods=['GET']) def static_font_proxy(path): return app.send_static_file(os.path.join('fonts', path)) @app.route('/images/<path>', methods=['GET']) def static_image_proxy(path): return app.send_static_file(os.path.join('images', path)) @app.route('/login', methods=['GET', 'POST']) def login(): if request.method == 'POST': session['username'] = request.form['username'] return redirect(url_for('/')) return ''' <form action="" method="post"> <p><input type=text name=username> <p><input type=submit value=Login> </form> ''' @app.route('/', methods=['GET']) def home(): if 'username' not in session: return redirct(url_for('login')) response = {'status':'success','data':{}} response['data']['links'] = [{'id':'api', 'href':'/api/'}, {'id':'listdata', 'href':'/listdata/'}, {'id':'upload', 'href':'/upload/'}, {'id':'cached', 'href':'/cached/'}] return jsonify(response) @app.route('/cached/', methods=['GET']) def get_cached(): response = {'status':'success','data':{'cacheditems':{}}} cacheditems = response['data']['cacheditems'] cur = get_db().cursor() cur.execute("select * from WObj") result = cur.fetchall() for row in result: cacheditems[row[0]] = {'id':row[0], 'source':row[3], 'type':row[1], 'href':'/cached/{}/'.format(row[0])} return jsonify(response) @app.route('/cached/<cachedid>/', methods=['GET']) def get_cached_entry(cachedid): """ Using the database Id (Unique) add a URL endpoint for all cached items. This queries the DB for the item, reconstructs the binary blob into a python object, and introspects for available methods and attributes. """ response = {'status':'success','data':{'Unable to parse available methods.'}} query = "SELECT Obj FROM WObj WHERE ID = {}".format(cachedid) cur = get_db().cursor().execute(query) result = cur.fetchone()[0] obj = cPickle.loads(str(result)) #Check if the OBJ is a W Object methodlist = {} if isinstance(obj, ps.W): response['data'] = {'methods': {}, 'attrs': []} #Parse the method list methods = inspect.getmembers(obj, predicate=inspect.ismethod) for m in methods: if m[0][0] != '_': methodlist[m[0]] = inspect.getargspec(m[1]) response['data']['methods'] = methodlist #Parse the available attributes attrs = inspect.getmembers(obj,lambda i : not(inspect.ismethod(i))) for a in attrs: if not a[0].startswith('__'): response['data']['attrs'].append(a[0]) return jsonify(response) cur.close() return (rv[0] if rv else None) if one else rv @app.route('/cached/<cachedid>/<method>/', methods=['POST']) def update_db(cachedid, method): """ Load an object from the DB and call one of its methods. Example ------- Assuming that a shapefile W Obj occupies a DB row with ID 3, row standardization can be applied and the object updated in the database using a POST request: curl -i -H "Content-Type: application/json" -X POST -d '{"args":["r"]}' http://localhost:5000/cached/3/set_transform/ This example uses the flask development server on port 5000. Then to confirm that this worked, inspect the weights attribute via a browser: http://localhost:5000/cached/3/weights/ To revert to binary: curl -i -H "Content-Type: application/json" -X POST -d '{"args":["b"]}' http://localhost:5000/cached/3/set_transform/ """ if request.json: response = {'status':'success','data':{}} query = "SELECT Obj FROM WObj WHERE ID = {}".format(cachedid) cur = get_db().cursor().execute(query) result = cur.fetchone()[0] obj = cPickle.loads(str(result)) #Parse the method list methods = inspect.getmembers(obj, predicate=inspect.ismethod) for m in methods: if m[0] == method: call = m[1] break #Duplicated in the method POST - move to a helper module #Parse the args keys = request.json.keys() req = request.json #Setup the python arg / kwarg containers args = [] kwargs = {} #Parse the request args and call the method if 'args' in keys: for a in req['args']: try: args.append(ast.literal_eval(a)) except: args.append(a) if 'kwargs' in keys: for k, v in req['kwargs'].iteritems(): try: kwargs[k] = ast.literal_eval(v) except: kwargs[k] = v #Check args / kwargs to see if they are python objects for i, a in enumerate(args): if a in UPLOADED_FILES: args[i] = os.path.join(UPLOAD_FOLDER, a) #elif a in db.keys(): #args[i] = db[a] for k, v in kwargs.iteritems(): if v in UPLOADED_FILES: kwargs[k] = os.path.join(UPLOAD_FOLDER, v) #elif v in db.keys(): #kwargs[k] = db[k] #Make the call and get the return items funcreturn = call(*args, **kwargs) #Update the database since the object might have been changed pObj = cPickle.dumps(obj) cur.execute("UPDATE WObj SET Obj=? WHERE Id=?", (sqlite3.Binary(pObj), cachedid)) get_db().commit() cur.close() return jsonify(response) @app.route('/cached/<cachedid>/<attr>/', methods=['GET']) def get_cached_entry_attr(cachedid, attr): """ Load an object from the DB and return the requested attribute as a json object. """ response = {'status':'success','data':{}} query = "SELECT Obj FROM WObj WHERE ID = {}".format(cachedid) cur = get_db().cursor().execute(query) result = cur.fetchone()[0] obj = cPickle.loads(str(result)) #Could be cached - here it is not, we reinspect with each call attrs = inspect.getmembers(obj,lambda i : not(inspect.ismethod(i))) for a in attrs: if a[0] == attr: ret = a[1] break response['data'] = {attr : ret} return jsonify(response) @app.route('/amd/', methods=['POST']) def executeamd(): response = {'status':'success','data':{}} amd = request.json wspecs = amd['input']['weights'] wobj = amdparser.generateW(wspecs['uri'], wspecs['type'], uploaddir=UPLOAD_FOLDER) attribute = amd['input']['attribute'] y = amdparser.gety(attribute, uploaddir=UPLOAD_FOLDER) kwargs = amd['parameters'] args = [y, wobj] #A hack to handle mismatches between the AMD keywords and the PySAL keywords for k, v in kwargs.iteritems(): if k == 'transform': kwargs['transformation'] = v kwargs.pop(k, None) callpath, call = amdparser.parse_analysis(funcs, amd['analysis_type']) #Setup the call, the args and the kwargs call = pmdwrapper(call) for k, v in kwargs.iteritems(): try: kwargs[k] = ast.literal_eval(v) except: pass funcreturn = call(*args, **kwargs) funcreturn = recursedict(vars(funcreturn)) response['data'] = funcreturn return jsonify(response) @app.route('/api/<module>/', methods=['GET']) def get_modules(module): methods = funcs[module].keys() response = {'status':'success','data':{}} response['data']['links'] = [] for i in methods: response['data']['links'].append({'id':'{}'.format(i), 'href':'/api/{}/{}/'.format(module,i)}) return jsonify(response) @app.route('/api/<module>/<method>/', methods=['GET']) def get_single_depth_method(module, method): if isinstance(funcs[module][method], dict): methods = funcs[module][method].keys() response = {'status':'success','data':{}} response['data']['links'] = [] for i in methods: response['data']['links'].append({'id':'{}'.format(i), 'href':'/api/{}/{}/{}'.format(module,method,i)}) return jsonify(response) else: return get_method(module, method) @app.route('/api/<module>/<module2>/<method>/', methods=['GET']) def get_nested_method(module, module2, method): return get_method(module, method, module2=module2) def get_method(module, method, module2 = None): """ Query the API to get the POST parameters. """ #Setup the response strings response = {'status':'success','data':{}} response['data']['post_template'] = {} mname = method #Extract the method from the method dict if module2 == None: method = funcs[module][method] else: method = funcs[module][module2][method] #Inspect the method to get the arguments try: reqargs = inspect.getargspec(method) except: reqargs = inspect.getargspec(method.__init__) args = reqargs.args defaults = list(reqargs.defaults) try: args.remove('self') except: pass #Pack the arguments into the pos_template response['data']['post_template'] = {'args':[], 'kwargs':{}} diff = len(defaults) - len(args) for i, arg in enumerate(args): if diff < 0: diff += 1 response['data']['post_template']['args'].append(arg) else: response['data']['post_template']['kwargs'][arg] = defaults[diff] response['data']['links'] = {'id':'docs', 'href':'{}/{}/docs/'.format(module, mname)} return jsonify(response) @app.route('/api/<module>/<method>/docs/', methods=['GET']) def get_single_docs(module, method): return get_docs(module, method) @app.route('/api/<module>/<module2>/<method>/docs/', methods=['GET']) def get_nested_docs(module, module2, method): return get_docs(module, method, module2=module2) def get_docs(module, method, module2=None): """ Query the API to get the doc string of the method """ response = {'status':'success','data':{}} response['data']['docstring'] = [] #Extract the method from the method dict if module2 == None: method = funcs[module][method] else: method = funcs[module][module2][method] #Introspect the docs docs = inspect.getdoc(method) for l in docs.split('\n'): response['data']['docstring'].append(l) return jsonify(response) @app.route('/api/<module>/<method>/', methods=['POST']) def single_post(module, method): return post(module, method) @app.route('/api/<module>/<module2>/<method>/', methods=['POST']) def nested_post(module, module2, method): return post(module, method, module2=module2) def post(module,method, module2=None): """ To make a POST using CURL to the flask dev server: Fisher-Jenks using the Hartigan Olympic time example curl -i -H "Content-Type: application/json" -X POST -d '{"args":["[12, 10.8, 11, 10.8, 10.8, 10.6, 10.8, 10.3, 10.3,10.3,10.4,10.5,10.2,10.0,9.9]"], "kwargs":{"k":5}}' http://localhost:5000/ap/esda/fisher_jenks/ or Sample Jenks Caspall using the same example - note that sample percentage is not passed. curl -i -H "Content-Type: application/json" -X POST -d '{"args":["[12, 10.8, 11, 10.8, 10.8, 10.6, 10.8, 10.3, 10.3,10.3,10.4,10.5,10.2,10.0,9.9]"], "kwargs":{"k":5}}' http://localhost:5000/ai/esda/jenks_caspall_sampled/ or Using the CherryPy server on port 8080 Queen from shapefile - NOTE: The file must be uploaded already curl -i -H "Content-Type: application/json" -X POST -d '{"args":[NAT.shp]}' http://localhost:8080/api/weights/queen_from_shapefile/ """ if not request.json: response = {'status':'error','data':{}} response['data'] = 'Post datatype was not json' return jsonify(response), 400 else: response = {'status':'success','data':{}} #Setup the call, the args and the kwargs if module2 == None: call = pmdwrapper(funcs[module][method]) else: call = pmdwrapper(funcs[module][module2][method]) #Parse the args keys = request.json.keys() req = request.json #Setup the python arg / kwarg containers args = [] kwargs = {} if 'args' in keys: for a in req['args']: try: args.append(ast.literal_eval(a)) except: args.append(a) if 'kwargs' in keys: for k, v in req['kwargs'].iteritems(): try: kwargs[k] = ast.literal_eval(v) except: kwargs[k] = v # or if they are uploaded shapefiles for i, a in enumerate(args): try: if a in UPLOADED_FILES: args[i] = UPLOAD_FOLDER + '/' + a shpname = a.split('.')[0] except: pass try: if a.split('_')[0] == 'cached': cacheid = a.split('_')[1] query = "SELECT Obj FROM WObj WHERE ID = {}".format(cacheid) cur = get_db().cursor().execute(query) result = cur.fetchone()[0] obj = cPickle.loads(str(result)) args[i] = obj cur.close() except: pass for k, v in kwargs.iteritems(): try: if v in UPLOADED_FILES: kwargs[k] = os.path.join(UPLOAD_FOLDER, v) except: pass try: if v.split('_')[0] == 'cached': cacheid = v.split('_')[1] query = "SELECT Obj FROM WObj WHERE ID = {}".format(cacheid) cur = get_db().cursor().execute(query) result = cur.fetchone()[0] obj = cPickle.loads(str(result)) kwargs[k] = obj cur.close() except: pass #This is a hack until I get the vector/list checking going on if module == 'esda': args[0] = np.array(args[0]) #Make the call and get the return items funcreturn = call(*args, **kwargs) #Write the W Object to the database if isinstance(funcreturn, ps.W): pdata = cPickle.dumps(funcreturn, cPickle.HIGHEST_PROTOCOL) cur = get_db().cursor() if method == 'queen_from_shapefile': m = 'Queen' else: m = 'Rook' indb = False #Query the db to see if the name / type is in the db query = "SELECT Type, Shapefile FROM WObj" cur = get_db().cursor().execute(query) result = cur.fetchall() for r in result: if r[0] == m and r[1] == shpname: indb = True break if indb == False: obj = (m, sqlite3.Binary(pdata), funcreturn._shpName) cur.execute("INSERT INTO WObj values (NULL, ?, ?, ?)",obj) get_db().commit() cur.close() response['data'] = {'Shapefile':funcreturn._shpName, 'Weight Type':method} else: funcreturn = recursedict(vars(funcreturn)) response['data'] = funcreturn return jsonify(response) def recursedict(inputdict): """ TODO: Make recursive - once I understand the PMD structure """ for k, v in inputdict.iteritems(): if k == 'meta_data': newpositionalvalues = [] oldpositionalvalues = v['positional_values'] for i in oldpositionalvalues: if isinstance(i, np.ndarray): newpositionalvalues.append(i.tolist()) elif isinstance(i, ps.W): newpositionalvalues.append(i.__repr__()) else: newpositionalvalues.append(i) v['positional_values'] = newpositionalvalues elif isinstance(v, np.ndarray): inputdict[k] = v.tolist() elif isinstance(v, ps.W): inputdict[k] = v.__repr__() return inputdict #This is not API - can I abstract away and have this in the front-end? @app.route('/upload/', methods=['POST']) def upload_file(): """ POST - Upload a file to the server (a directory) Examples: curl -X POST -F [email protected] http://localhost:8081/upload/ curl -X POST -F [email protected] -F [email protected] -F [email protected] http:/localhost:8081/upload/ """ if request.method == 'POST': files = request.files #Create a temporary directory to store the uploaded data tmpdir = tempfile.mkdtemp() logger.debug(tmpdir) for k, f in request.files.iteritems(): #Discard the keys - are they ever important since the user # has named the file prior to upload? if f and allowed_file(f.filename): logger.debug(f) filename = secure_filename(f.filename) savepath = os.path.join(tmpdir, filename) f.save(savepath) if filename.split('.')[1] == 'zip': unzip(savepath, tmpdir) #Iterate through the tmp directory, glob all the shapefiles, and load into postgreSQL shps = glob.glob(os.path.join(tmpdir, '*.shp')) for shp in shps: logger.debug(shp) cmd = ['/usr/bin/ogr2ogr', '-f', 'PostgreSQL', 'PG:host=10.0.23.5 user=pysal password=<PASSWORD> dbname=cybergis'] cmd.append(shp) logger.debug(cmd) logger.debug(subprocess.call(cmd)) #Ideally we store metadata about the upload, but for now just return response = {'status':'success','data':{}} for u in uploaded: response['data'][u.filename] = '{}/{}'.format(tmpdir, u.filename) return jsonify(response) else: response = {'status':'error','data':{'message':'Either "." not in filename or extensions not in approved list.'}} return jsonify(response) #Clean up the temporary directory #os.removedirs(tmpdir) return jsonify(response) @app.route('/api/', methods=['GET']) def get_api(): """ The api start page. """ response = {'status':'success','data':{}} response['data']['links'] = [] toplevel = funcs.keys() for i in toplevel: response['data']['links'].append({'id':'{}'.format(i), 'href':'/api/{}'.format( i)}) return jsonify(response) @app.route('/listdata/', methods=['GET']) def get_listdata(): """ List the data that is in the upload directory """ response = {'status':'success','data':{}} shapefiles = {} pmd = {} for f in os.listdir(UPLOAD_FOLDER): basename = f.split('.') if f[0] == '.': continue if basename[1] in ['zip']: continue if basename[1] in ['wmd']: continue if basename[1] in ['amd', 'pmd']: pmd[basename[0]] = basename[0] continue if basename[0] not in shapefiles.keys(): shapefiles[basename[0]] = [] shapefiles[basename[0]].append(os.path.join(UPLOAD_FOLDER, f)) else: shapefiles[basename[0]].append(os.path.join(UPLOAD_FOLDER, f)) response['data']['shapefiles'] = shapefiles response['data']['pmd'] = pmd return jsonify(response) @app.route('/listdata/#/', methods=['GET']) def get_shpinfo(filename): #Wrap in a try/except files = os.path.join(UPLOAD_FOLDER, filename) #Info about the shapefile try: response = {'status':'success','data':{'attributes':{}}} fhandler = ps.open(files + '.shp', 'r') response['data']['geomheader'] = fhandler.header fhandler = ps.open(files + '.dbf', 'r') response['data']['fields'] = fhandler.header response['data']['fields'] += ['thegeom'] except: response = {'status':'success','data':{}} jsondata = open(files + '.amd') data = json.load(jsondata) response['data'] = data return jsonify(response) @app.route('/listdata/#/<field>/', methods=['GET']) def get_shpdbf(filename, field): """ Extract a column from a shapefile (geom) or dbf (attribute) """ files = (os.path.join(UPLOAD_FOLDER, filename)) if field == 'thegeom': geoms = [] with fiona.collection(files + '.shp', "r") as source: for feat in source: geoms.append(feat) geojson = { "type": "FeatureCollection", "features": geoms } response = {'status':'success','data':{'geojson':geojson}} else: dbf = ps.open(files + '.dbf', 'r') attr = dbf.by_col(field) response = {'status':'success','data':{field:attr}} return jsonify(response) @app.teardown_appcontext def close_connection(exception): """ Gracefully close the DB conncetion """ db = getattr(g, '_database', None) if db is not None: db.close() if __name__ == '__main__': app.config.update(DEBUG=True) app.run() ``` #### File: krispy/mod_api/api_helpers.py ```python import cPickle import inspect from urlparse import urlparse import requests from pmd import pmdwrapper def getargorder(call): """ Get the order of required args from a function. Does not support *args currently. """ try: args = inspect.getargspec(call) try: nargs = len(args.args) except: nargs = 0 try: ndef = len(args.defaults) except: ndef = 0 nreqargs = nargs - ndef argorder = args.args[:nreqargs] except: args = inspect.getargspec(call.__init__) try: nargs = len(args.args) except: nargs = 0 try: ndef = len(args.defaults) except: ndef = 0 nreqargs = nargs - ndef argorder = args.args[1:nreqargs] #Ignore self return argorder def gettoken(a): url = False try: o = urlparse(a) if o.scheme in ['http', 'https', 'ftp']: url = True except:pass #If 'a' is a url, get the json data if url: if a[-1] == '/': url = a + 'raw' else: url = a + '/raw' r = requests.get(url, verify=False) try: #This is dangerous, get load working without guessing at encoding, e.g. utf-8 response = cPickle.loads(str(r.text)) except: response = r.json() return response ''' if 'raw' in o.path.split('/'): r = requests.get(a, verify=False) try: a = cPickle.loads(r.content) return a except: print "ERROR: Can not load RAW data as a Python Object" else: r = requests.get(a, verify=False).json() try: a = r['data'] return a except: pass return False ''' ``` #### File: krispy/mod_data/controllers.py ```python import ast import cPickle import decimal import glob import hashlib import json import os import shutil import subprocess import tempfile import time import numpy as np from flask import Blueprint, request, jsonify, g, current_app from flask.ext.login import login_required, current_user from werkzeug.utils import secure_filename import geoalchemy2.functions as geofuncs from app import db, seen_classes, cachedobjs from app.mod_data.models import UserData, UserPyObj, GeoPoly, GEOMLOOKUP from app.mod_data import upload_helpers as uph import config mod_data = Blueprint('mod_data', __name__) def getdatalist(cuid, tabular = True): cuid = int(cuid) if tabular: availabledata = UserData.query.filter_by(userid = cuid).all() else: availabledata = UserPyObj.query.filter_by(userid = cuid).all() entries = {} for a in availabledata: dataname = a.datahash.split('_') entry = {'name':a.dataname, 'href':config.baseurl + '/data/{}/'.format(a.datahash)} #Expiration time also goes here. entries[a.id] = entry return entries @mod_data.route('/', methods=['GET']) @login_required def listdata(): """ List the available datasets by querying the DB and returning metadata about the available user uploaded data. """ cuid = current_user.get_id() response = {'status':'success','links':[]} links = response['links'] for i in getdatalist(cuid).itervalues(): response['links'].append(i) for i in getdatalist(cuid, tabular=False).itervalues(): response['links'].append(i) response['links'].append({'name':'upload', 'href':config.baseurl + '/data/upload/'}) return jsonify(response) @mod_data.route('/nontabular/', methods=['GET']) @login_required def list_nontabular_data(): cuid = current_user.get_id() response = {'status':'success', 'data':{'nontabular'}} response['data'] = getdatalist(cuid, tabular=False) return jsonify(response) @mod_data.route('/tabular/', methods=['GET']) @login_required def list_tabular_data(): cuid = current_user.get_id() response = {'status':'success', 'data':{'nontabular'}} response['data'] = getdatalist(cuid) return jsonify(response) def parse_nontabular(response, row): """ Parse a row containing a nontabular data entry, e.g. a PySAL object, and return a listing of available methods and attributes """ #response['data']['name'] = row.dataname #response['data']['date_created'] = row.date_created #response['data']['date_last_accessed'] = row.date_accessed #Expiration goes here as maxstorage time - row.data_accessed row.get_pyobj() response['links']['fields']['methods'] = row.methods response['links']['fields']['attributes'] = row.attributes response['links']['fields']['attributes'].append('full_result') response['links']['fields']['provenance'] = {} return response def parse_tabular(response, tablename, tablehash): """ Open a table containing tabular data and return a listing of fields """ if tablehash in seen_classes: cls = current_app.class_references[tablehash] else: db.metadata.reflect(bind=db.engine) seen_classes.add(tablehash) #Dynamic class creation using metaclasses geomtype = "Polygon" basegeomcls = GEOMLOOKUP[geomtype] cls = type(str(tablehash), (basegeomcls, db.Model,), {'__tablename__':tablehash, '__table_args__' : {'extend_existing': True}}) current_app.class_references[tablehash] = cls #response['data']['name'] = tablename response['links'][2] = {'fields': [c.name for c in cls.__table__.columns]} #response['data']['fields'].append('geojson') #TODO: Add topojson support if the db is postgresql return response @mod_data.route('/<objhash>/', methods=['GET']) #@login_required def get_cached_entry(objhash): response = {'status':'success', 'methods': ['GET', 'POST','PUT', 'DELETE'], 'links':[{'name':'raw', 'href':'{}/data/{}/raw/'.format(config.baseurl, objhash)}, {'name':'geojson', 'href':'{}/data/{}/geojson/'.format(config.baseurl, objhash)}, {'name':'fields','href':'{}/data/{}/fields/'.format(config.baseurl, objhash)}]} ''' row = UserPyObj.query.filter_by(datahash = objhash).first() if row != None: response = parse_nontabular(response, row) else: row = UserData.query.filter_by(datahash = objhash).first() tablehash = row.datahash tablename = row.dataname response = parse_tabular(response, tablename, tablehash) ''' return jsonify(response) @mod_data.route('/<objhash>/<value>/', methods=['GET']) #@login_required def get_stored_entry(objhash, value): """ This is a dispatcher function which dispatches the request to either a function to return an value of an object or a field of a table. """ response = {'status':'success','data':{}} row = UserPyObj.query.filter_by(datahash = objhash).first() if row != None: row.get_pyobj() if value != 'full_result' and value != 'raw': try: responsedata = getattr(row.liveobj, value) if isinstance(responsedata, np.ndarray): responsedata = responsedata.tolist() response['data'] = responsedata return jsonify(response) except: return jsonify({'status':'failure', 'data':'Unable to find value'}) elif value == 'raw': try: data = row.pyobj if isinstance(data, np.ndarray): return json.dumps(data.tolist()) else: return cPickle.dumps(row.pyobj) except: response = {'status':'error', 'message':'The object has no raw representation.'} return jsonify(response) else: #serialize the full row pass else: response = get_dataset_field(objhash, value) return jsonify(response) @mod_data.route('/cached/<uid>/<objhash>/<method>', methods=['POST']) @login_required def call_cached_centry_method(uid, objhash, method): raise NotImplementedError def get_dataset_field(tablename, field): response = {'status':'success','data':{}} if tablename in seen_classes: cls = current_app.class_references[tablename] else: db.metadata.reflect(bind=db.engine) seen_classes.add(tablename) cls = type(str(tablename), (GeoPoly, db.Model,), {'__tablename__':tablename, '__table_args__' : {'extend_existing': True}}) current_app.class_references[tablename] = cls if field == config.geom_column: vector = cls.query.with_entities(geofuncs.ST_AsGeoJSON(getattr(cls, field))).all() response['data'] = [v[0] for v in vector] elif field == 'geojson': #TODO: How can this be cleaner? Do I need 2 queries go get geojson? #rows = cls.query.all() geoms = cls.query.with_entities(geofuncs.ST_AsGeoJSON(getattr(cls, config.geom_column))).all() features = [] for i, row in enumerate(geoms): #attributes = row.as_dict() #attributes.pop('wkb_geometry', None) #for k, v in attributes.iteritems(): #if isinstance(v, decimal.Decimal): #attributes[k] = float(v) current_feature = {'type':'Feature', 'geometry':ast.literal_eval(geoms[i][0])} #'properties':attributes} features.append(current_feature) geojson = {"type": "FeatureCollection","features": features} #geojson = {"type":"FeatureCollection", "features": geoms} response['data']['geojson'] = geojson elif field == 'topojson': #TODO: Add topojson support if the DB is postgresql pass elif field == 'raw': return {'status':'error', 'message':'Tabular data does not have a raw representation, yet.'} else: vector = cls.query.with_entities(getattr(cls, field)).all() responsevector = [v[0] for v in vector] if isinstance(responsevector[0], decimal.Decimal): for i, v in enumerate(responsevector): responsevector[i] = float(v) response['data'] = responsevector return response @mod_data.route('/upload/', methods=['GET']) @login_required def upload_get(): """ The upload homepage. """ response = {'status':'success'} response['methods'] = ['GET', 'POST'] response['arguments'] = {} response['arguments']['required_arguments'] = {'filename':{'description':'.zip file containing ogr2ogr convertables spatial data', 'default': 'None', 'type': 'file object'}} response['description'] = "Endpoint to upload data to this data service using a POST request." return jsonify(response) @mod_data.route('/upload/', methods=['POST']) @login_required def upload(): """ Upload to a temporary directory, validate, call ogr2ogr and write to the DB Using curl via the command line. --------------------------------- Example 1 is from pysal examples (from that dir) Example 2 is a subset of NAT, zipped. Example 3 is columbus via the webpool and a sample user. curl -X POST -F [email protected] -F [email protected] -F [email protected] http://localhost:8080/mydata/upload/ curl -X POST -F filename=@NAT_Subset.zip http://localhost:8080/mydata/upload/ curl -i -k -u <EMAIL>:jay -X POST -F [email protected] https://webpool.csf.asu.edu/pysalrest/mydata/upload/ """ cuid = current_user.get_id() tmpdir = tempfile.mkdtemp() for f in request.files.values(): if f and uph.allowed_file(f.filename): filename = secure_filename(f.filename) savepath = os.path.join(tmpdir, filename) f.save(savepath) basename, ext = filename.split('.') if ext == 'zip': uph.unzip(savepath, tmpdir) #Now iterate over all the shapefiles and call ogr2ogr shps = glob.glob(os.path.join(tmpdir, '*.shp')) for shp in shps: shptablename = os.path.splitext(os.path.basename(shp))[0] #datahashvalue = '{}_{}_{}'.format(cuid, shptablename, time.time()) datahash = hashlib.sha1(shp).hexdigest() host, port = config.dbhost.split(':') cmd = [config.ogr2ogr, '-f', "{}".format(config.dbtypename), "{}:host={} port={} user={} password={} dbname={}".format(config.dbabbrev, host, port, config.dbusername, config.dbpass, config.dbname), shp, '-nlt', 'PROMOTE_TO_MULTI', '-nln', datahash, '-lco', 'GEOMETRY_NAME={}'.format(config.geom_column), '-skipfailures'] response = subprocess.call(cmd) uploadeddata = UserData(cuid, datahash, shptablename) db.session.add(uploadeddata) db.session.commit() #Cleanup shutil.rmtree(tmpdir) return jsonify({'status':'success', 'data':{'href': config.baseurl + '/data/{}'.format(datahash)}}) ``` #### File: krispy/mod_data/models.py ```python import cPickle import inspect from app import db from geoalchemy2 import Geometry #Base DB Model - All other tables subclass this class class Base(db.Model): __abstract__ = True id = db.Column(db.Integer, primary_key=True) date_created = db.Column(db.DateTime, default=db.func.current_timestamp()) date_accessed = db.Column(db.DateTime, default=db.func.current_timestamp(), onupdate=db.func.current_timestamp()) #User to Data Lookup Table class UserData(Base): __tablename__ = 'userdata' userid = db.Column(db.Integer, nullable=False) datahash = db.Column(db.String(256), nullable=False) dataname = db.Column(db.String(256), nullable=False) def __init__(self, userid, datahash, dataname): self.userid = userid self.datahash = datahash self.dataname = dataname def __repr__(self): return '<User: {} | Data: {}>'.format(self.userid, self.datahash) class UserPyObj(Base): __tablename__ = 'userpyobj' userid = db.Column(db.Integer, nullable=False) dataname = db.Column(db.String(256), nullable=False) pyobj = db.Column(db.PickleType, nullable=True) datahash = db.Column(db.String(256), nullable=False) ''' def __init__(self, userid, pyobj, dataname, datahash=None): self.userid = userid self.pyobj = pyobj self.datahash = datahash self.dataname = dataname ''' def get_pyobj(self): """ Return a python object, loaded via cPickle, from the DB and parse out the methods and attributes. """ #self.liveobj = cPickle.loads(str(self.pyobj)) self.liveobj = self.pyobj self.methods = {} methods = inspect.getmembers(self.liveobj, predicate=inspect.ismethod) for m in methods: if m[0][0] != '_': self.methods[m[0]] = inspect.getargspec(m[1]) #Parse the available attributes self.attributes = [] attrs = inspect.getmembers(self.liveobj,lambda i : not(inspect.ismethod(i))) for a in attrs: if not a[0].startswith('__'): self.attributes.append(a[0]) def __repr__(self): return '<User: {} has a pyobj names {}.>'.format(self.userid, self.datahash) class GeoPoly(): wkb_geometry = db.Column(Geometry("POLYGON")) def as_dict(self): return {c.name: getattr(self, c.name) for c in self.__table__.columns} class GeoMultiPoly(): wkb_geometry = db.Column(Geometry("MULTIPOLYGON")) def as_dict(self): return {c.name: getattr(self, c.name) for c in self.__table__.columns} GEOMLOOKUP = {'Polygon':GeoPoly, 'MultiPolygon':GeoMultiPoly} ```
{ "source": "jlaura/plio", "score": 2 }
#### File: plio/io/io_controlnetwork.py ```python from enum import IntEnum from time import gmtime, strftime import warnings import pandas as pd import numpy as np import pvl import struct from plio.io import ControlNetFileV0002_pb2 as cnf from plio.io import ControlNetFileHeaderV0005_pb2 as cnh5 from plio.io import ControlPointFileEntryV0005_pb2 as cnp5 from plio.utils.utils import xstr, find_in_dict HEADERSTARTBYTE = 65536 DEFAULTUSERNAME = 'None' def write_filelist(lst, path="fromlist.lis"): """ Writes a filelist to a file so it can be used in ISIS3. Parameters ---------- lst : list A list containing full paths to the images used, as strings. path : str The name of the file to write out. Default: fromlist.lis """ handle = open(path, 'w') for filename in lst: handle.write(filename) handle.write('\n') return class MeasureMessageType(IntEnum): """ An enum to mirror the ISIS3 MeasureLogData enum. """ GoodnessOfFit = 2 MinimumPixelZScore = 3 MaximumPixelZScore = 4 PixelShift = 5 WholePixelCorrelation = 6 SubPixelCorrelation = 7 class MeasureLog(): def __init__(self, messagetype, value): """ A protobuf compliant measure log object. Parameters ---------- messagetype : int or str Either the integer or string representation from the MeasureMessageType enum value : int or float The value to be stored in the message log """ if isinstance(messagetype, int): # by value self.messagetype = MeasureMessageType(messagetype) else: # by name self.messagetype = MeasureMessageType[messagetype] if not isinstance(value, (float, int)): raise TypeError(f'{value} is not a numeric type') self.value = value def __repr__(self): return f'{self.messagetype.name}: {self.value}' def to_protobuf(self, version=2): """ Return protobuf compliant measure log object representation of this class. Returns ------- log_message : obj MeasureLogData object suitable to append to a MeasureLog repeated field. """ # I do not see a better way to get to the inner MeasureLogData obj than this # imports were not working because it looks like these need to instantiate off # an object if version == 2: log_message = cnf.ControlPointFileEntryV0002().Measure().MeasureLogData() elif version == 5: log_message = cnp5.ControlPointFileEntryV0005().Measure().MeasureLogData() log_message.doubleDataValue = self.value log_message.doubleDataType = self.messagetype return log_message @classmethod def from_protobuf(cls, protobuf): return cls(protobuf.doubleDataType, protobuf.doubleDataValue) class IsisControlNetwork(pd.DataFrame): # normal properties _metadata = ['header'] @property def _constructor(self): return IsisControlNetwork def from_isis(path, remove_empty=True): # Now get ready to work with the binary with IsisStore(path, mode='rb') as store: df = store.read() return df def to_isis(obj, path, mode='wb', version=2, headerstartbyte=HEADERSTARTBYTE, networkid='None', targetname='None', description='None', username=DEFAULTUSERNAME, creation_date=None, modified_date=None, pointid_prefix=None, pointid_suffix=None): if targetname == 'None': warnings.warn("Users should provide a targetname to this function such as 'Moon' or 'Mars' in order to generate a valid ISIS control network.") with IsisStore(path, mode) as store: if not creation_date: creation_date = strftime("%Y-%m-%d %H:%M:%S", gmtime()) if not modified_date: modified_date = strftime("%Y-%m-%d %H:%M:%S", gmtime()) point_messages, point_sizes = store.create_points(obj, pointid_prefix, pointid_suffix) points_bytes = sum(point_sizes) buffer_header, buffer_header_size = store.create_buffer_header(networkid, targetname, description, username, point_sizes, creation_date, modified_date) # Write the buffer header store.write(buffer_header, HEADERSTARTBYTE) # Then write the points, so we know where to start writing, + 1 to avoid overwrite point_start_offset = HEADERSTARTBYTE + buffer_header_size for i, point in enumerate(point_messages): store.write(point, point_start_offset) point_start_offset += point_sizes[i] header = store.create_pvl_header(version, headerstartbyte, networkid, targetname, description, username, buffer_header_size, points_bytes, creation_date, modified_date) store.write(header.encode('utf-8')) class IsisStore(object): """ Class to manage IO of an ISIS control network (version 2). Attributes ---------- pointid : int The current index to be assigned to newly added points """ point_field_map = { 'type' : 'pointType', 'chooserName' : 'pointChoosername', 'datetime' : 'pointDatetime', 'editLock' : 'pointEditLock', 'ignore' : 'pointIgnore', 'jigsawRejected' : 'pointJigsawRejected', 'log' : 'pointLog' } measure_field_map = { 'type' : 'measureType', 'choosername' : 'measureChoosername', 'datetime' : 'measureDatetime', 'editLock' : 'measureEditLock', 'ignore' : 'measureIgnore', 'jigsawRejected' : 'measureJigsawRejected', 'log' : 'measureLog' } def __init__(self, path, mode=None, **kwargs): self.nmeasures = 0 self.npoints = 0 # Conversion from buffer types to Python types bt = {1: float, 5: int, 8: bool, 9: str, 11: list, 14: int} self.header_attrs = [(i.name, bt[i.type]) for i in cnf._CONTROLNETFILEHEADERV0002.fields] self.point_attrs = [(i.name, bt[i.type]) for i in cnf._CONTROLPOINTFILEENTRYV0002.fields] self.measure_attrs = [(i.name, bt[i.type]) for i in cnf._CONTROLPOINTFILEENTRYV0002_MEASURE.fields] self._path = path if not mode: mode = 'a' # pragma: no cover self._mode = mode self._handle = None self._open() def __enter__(self): return self def __exit__(self, exc_type, exc_val, traceback): self.close() def close(self): if self._handle is not None: self._handle.close() self._handle = None def _open(self): self._handle = open(self._path, self._mode) def read(self): """ Given an ISIS store, read the underlying ISIS3 compatible control network and return an IsisControlNetwork dataframe. """ pvl_header = pvl.load(self._path, grammar=pvl.grammar.ISISGrammar()) header_start_byte = find_in_dict(pvl_header, 'HeaderStartByte') header_bytes = find_in_dict(pvl_header, 'HeaderBytes') point_start_byte = find_in_dict(pvl_header, 'PointsStartByte') version = find_in_dict(pvl_header, 'Version') if version == 2: self.point_attrs = [i for i in cnf._CONTROLPOINTFILEENTRYV0002.fields_by_name if i != 'measures'] self.measure_attrs = [i for i in cnf._CONTROLPOINTFILEENTRYV0002_MEASURE.fields_by_name] cp = cnf.ControlPointFileEntryV0002() self._handle.seek(header_start_byte) pbuf_header = cnf.ControlNetFileHeaderV0002() pbuf_header.ParseFromString(self._handle.read(header_bytes)) self._handle.seek(point_start_byte) cp = cnf.ControlPointFileEntryV0002() pts = [] for s in pbuf_header.pointMessageSizes: cp.ParseFromString(self._handle.read(s)) pt = [getattr(cp, i) for i in self.point_attrs if i != 'measures'] for measure in cp.measures: meas = pt + [getattr(measure, j) for j in self.measure_attrs] pts.append(meas) elif version == 5: self.point_attrs = [i for i in cnp5._CONTROLPOINTFILEENTRYV0005.fields_by_name if i != 'measures'] self.measure_attrs = [i for i in cnp5._CONTROLPOINTFILEENTRYV0005_MEASURE.fields_by_name] cp = cnp5.ControlPointFileEntryV0005() self._handle.seek(header_start_byte) pbuf_header = cnh5.ControlNetFileHeaderV0005() pbuf_header.ParseFromString(self._handle.read(header_bytes)) self._handle.seek(point_start_byte) cp = cnp5.ControlPointFileEntryV0005() pts = [] byte_count = 0 while byte_count < find_in_dict(pvl_header, 'PointsBytes'): message_size = struct.unpack('I', self._handle.read(4))[0] cp.ParseFromString(self._handle.read(message_size)) pt = [getattr(cp, i) for i in self.point_attrs if i != 'measures'] for measure in cp.measures: meas = pt + [getattr(measure, j) for j in self.measure_attrs] pts.append(meas) byte_count += 4 + message_size # Some point and measure fields have the same name, so mangle them as point_ and measure_ point_cols = [self.point_field_map[attr] if attr in self.point_field_map else attr for attr in self.point_attrs] measure_cols = [self.measure_field_map[attr] if attr in self.measure_field_map else attr for attr in self.measure_attrs] cols = point_cols + measure_cols df = IsisControlNetwork(pts, columns=cols) # Convert the (0.5, 0.5) origin pixels back to (0,0) pixels df['line'] -= 0.5 df['sample'] -= 0.5 if 'aprioriline' in df.columns: df['aprioriline'] -= 0.5 df['apriorisample'] -= 0.5 # Munge the MeasureLogData into Python objs df['measureLog'] = df['measureLog'].apply(lambda x: [MeasureLog.from_protobuf(i) for i in x]) df.header = pvl_header return df def write(self, data, offset=0): """ Parameters ---------- data : bytes Encoded header to be written to the file offset : int The byte offset into the output binary """ self._handle.seek(offset) self._handle.write(data) def create_points(self, df, pointid_prefix, pointid_suffix): """ Step through a control network (C) and return protocol buffer point objects Parameters ---------- df : DataFrame with the appropriate attributes: point_id, point_type, serial, measure_type, x, y required. The entries in the list must support grouping by the point_id attribute. Returns ------- point_messages : list of serialized points buffers point_sizes : list of integer point sizes """ def _set_pid(pointid): return '{}{}{}'.format(xstr(pointid_prefix), pointid, xstr(pointid_suffix)) # TODO: Rewrite using apply syntax for performance point_sizes = [] point_messages = [] for i, g in df.groupby('id'): # Get the point specification from the protobuf point_spec = cnf.ControlPointFileEntryV0002() # Set the ID and then loop over all of the attributes that the # point has and check for corresponding columns in the group and # set with the correct type #point_spec.id = _set_pid(i) point_spec.id = _set_pid(i) point_spec.type = g.iloc[0].pointType try: point_spec.referenceIndex = g.iloc[0].referenceIndex except: warnings.warn(f'Unable to identify referenceIndex for point {point_spec.id}. Defaulting to index 0.') point_spec.referenceIndex = 0 for attr, attrtype in self.point_attrs: # Un-mangle common attribute names between points and measures df_attr = self.point_field_map.get(attr, attr) if df_attr in g.columns: if df_attr == 'pointLog': # Currently pointLog is not supported. warnings.warn('The pointLog field is currently unsupported. Any pointLog data will not be saved.') continue # As per protobuf docs for assigning to a repeated field. if df_attr == 'aprioriCovar' or df_attr == 'adjustedCovar': arr = g.iloc[0][df_attr] if isinstance(arr, np.ndarray): arr = arr.ravel().tolist() if arr: point_spec.aprioriCovar.extend(arr) # If field is repeated you must extend instead of assign elif cnf._CONTROLPOINTFILEENTRYV0002.fields_by_name[attr].label == 3: getattr(point_spec, attr).extend(g.iloc[0][df_attr]) else: setattr(point_spec, attr, attrtype(g.iloc[0][df_attr])) # A single extend call is cheaper than many add calls to pack points measure_iterable = [] for node_id, m in g.iterrows(): measure_spec = point_spec.Measure() # For all of the attributes, set if they are an dict accessible attr of the obj. for attr, attrtype in self.measure_attrs: # Un-mangle common attribute names between points and measures df_attr = self.measure_field_map.get(attr, attr) if df_attr in g.columns: if df_attr == 'measureLog': [getattr(measure_spec, attr).extend([i.to_protobuf()]) for i in m[df_attr]] # If field is repeated you must extend instead of assign elif cnf._CONTROLPOINTFILEENTRYV0002_MEASURE.fields_by_name[attr].label == 3: getattr(measure_spec, attr).extend(m[df_attr]) else: setattr(measure_spec, attr, attrtype(m[df_attr])) # ISIS pixels are centered on (0.5, 0.5). NDArrays are (0,0) based. measure_spec.sample = m['sample'] + 0.5 measure_spec.line = m['line'] + 0.5 if 'apriorisample' in g.columns: measure_spec.apriorisample = m['apriorisample'] + 0.5 measure_spec.aprioriline = m['aprioriline'] + 0.5 measure_iterable.append(measure_spec) self.nmeasures += 1 self.npoints += 1 point_spec.measures.extend(measure_iterable) point_message = point_spec.SerializeToString() point_sizes.append(point_spec.ByteSize()) point_messages.append(point_message) return point_messages, point_sizes def create_buffer_header(self, networkid, targetname, description, username, point_sizes, creation_date, modified_date): """ Create the Google Protocol Buffer header using the protobuf spec. Parameters ---------- networkid : str The user defined identifier of this control network targetname : str The name of the target, e.g. Moon description : str A description for the network. username : str The name of the user / application that created the control network point_sizes : list of the point sizes for each point message Returns ------- header_message : str The serialized message to write header_message_size : int The size of the serialized header, in bytes """ raw_header_message = cnf.ControlNetFileHeaderV0002() raw_header_message.created = creation_date raw_header_message.lastModified = modified_date raw_header_message.networkId = networkid raw_header_message.description = description raw_header_message.targetName = targetname raw_header_message.userName = username raw_header_message.pointMessageSizes.extend(point_sizes) header_message_size = raw_header_message.ByteSize() header_message = raw_header_message.SerializeToString() return header_message, header_message_size def create_pvl_header(self, version, headerstartbyte, networkid, targetname, description, username, buffer_header_size, points_bytes, creation_date, modified_date): """ Create the PVL header object Parameters ---------- version : int The current ISIS version to write, defaults to 2 headerstartbyte : int The seek offset that the protocol buffer header starts at networkid : str The name of the network targetname : str The name of the target, e.g. Moon description : str A description for the network. username : str The name of the user / application that created the control network buffer_header_size : int Total size of the header in bytes points_bytes : int The total number of bytes all points require Returns ------- : object An ISIS compliant PVL header object """ encoder = pvl.encoder.ISISEncoder(end_delimiter=False) header_bytes = buffer_header_size points_start_byte = HEADERSTARTBYTE + buffer_header_size header = pvl.PVLModule([ ('ProtoBuffer', ({'Core':{'HeaderStartByte': headerstartbyte, 'HeaderBytes': header_bytes, 'PointsStartByte': points_start_byte, 'PointsBytes': points_bytes}, 'ControlNetworkInfo': pvl.PVLGroup([ ('NetworkId', networkid), ('TargetName', targetname), ('UserName', username), ('Created', creation_date), ('LastModified', modified_date), ('Description', description), ('NumberOfPoints', self.npoints), ('NumberOfMeasures', self.nmeasures), ('Version', version) ]) }), ) ]) return pvl.dumps(header, encoder=encoder) ``` #### File: jlaura/plio/setup.py ```python import os from setuptools import setup, find_packages #Grab the README.md for the long description with open('README.md', 'r') as f: long_description = f.read() def setup_package(): setup( name = "plio", version = '1.5.0', author = "USGS Astrogeology", author_email = "<EMAIL>", description = ("I/O API to support planetary data formats."), long_description = long_description, license = "Public Domain", keywords = "planetary io", url = "http://packages.python.org/plio", packages=find_packages(), include_package_data=True, package_data={'plio' : ['sqlalchemy_json/*.py', 'sqlalchemy_json/LICENSE']}, zip_safe=True, scripts=['bin/socetnet2isis', 'bin/isisnet2socet'], install_requires=[ 'gdal', 'numpy', 'pyproj', 'pvl', 'protobuf', 'h5py', 'pandas', 'sqlalchemy', 'pyyaml', 'networkx', 'affine', 'scipy'], classifiers=[ "Development Status :: 3 - Alpha", "Topic :: Utilities", "License :: Public Domain", 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], ) if __name__ == '__main__': setup_package() ```
{ "source": "jlaura/socet_gxp_dev", "score": 3 }
#### File: socet_gxp_dev/Workflow_Scripts/ode_csv2shapefile.py ```python import os import sys import csv import glob import math import argparse from osgeo import ogr #ocentric to ographic latitudes def oc2og(dlat, dMajorRadius, dMinorRadius): try: dlat = math.radians(dlat) dlat = math.atan(((dMajorRadius / dMinorRadius)**2) * (math.tan(dlat))) dlat = math.degrees(dlat) except: print ("Error in oc2og conversion") return dlat #ographic to ocentric latitudes def og2oc(dlat, dMajorRadius, dMinorRadius): try: dlat = math.radians(dlat) dlat = math.atan((math.tan(dlat) / ((dMajorRadius / dMinorRadius)**2))) dlat = math.degrees(dlat) except: print ("Error in oc2og conversion") return dlat # Convert longitudes to -180 to 180 degrees def LonTo180(dlon): if (dlon > 180.0): dlon = dlon - 360.0 return dlon def parse_arguments(): ## Parse commandline args with argparse parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter, description="""Convert ODE created LOLA, MOLA, or MLA shot data to an Esri pointZ Shapefile. The CSV is expected to be generated from the script ode_get_laser_alt.py""", epilog="""EXAMPLES: %(prog)s Mars --input ode_lolardr.csv %(prog)s Moon --input ode_molapedr.csv %(prog)s Mercury --pattern "*_pts_csv.csv" """) #parser.add_argument('product', choices=["lolardr","molapedr","mla"], # help="Specify desired product type: LOLA RDR or MOLA PEDR") parser.add_argument('target', choices=["mars","moon","mercury"], type = str.lower, help="Specify which target: Mars, Moon, Mercury") ## User must specify exactly one of --coords or --raster group = parser.add_mutually_exclusive_group(required=True) group.add_argument('--input', nargs=1, metavar="file.csv", help='an input ODE csv file as downloaded using ode_get_laser_alt.py.') group.add_argument('--pattern', nargs=1, metavar='"*_pts_csv.csv"', default='"*_pts_csv.csv"', dest='pattern', help='pattern to find and run on many strings. Default pattern is "*_pts_csv.csv".') args = parser.parse_args() return args args = parse_arguments() target = args.target if args.input is not None: files = args.input elif args.pattern is not None: pattern = args.pattern[0] files = glob.glob(pattern) else: argparse.parser.print_usage() sys.exit(1) if target == "mars": targetWKT = "Mars" majorRadius = 3396190.0 minorRadius = 3376200.0 year = 2000 #From ode Mars run the fields should be: #LONG_EAST, LAT_NORTH, TOPOGRAPHY, MOLA_RANGE, PLANET_RAD, C, A, EMPHEMERIS_TIME, UTC, ORBIT longField = 'LONG_EAST' latField = 'LAT_NORTH' elevField = 'TOPOGRAPHY' radiusField = 'PLANET_RAD' utcField = 'UTC' orbitField = 'ORBIT' elif target == "mercury": targetWKT = "Mercury" majorRadius = minorRadius = 2439400.0 year = 2015 #From ode Mercury run the fields should be: #longitude,latitude,altitude,radius,EphemerisTime,MET,frm,chn,Pulswd,thrsh,gain,1way_range,Emiss,TXmJ,UTC,TOF_ns_ET,Sat_long,Sat_lat,Sat_alt,Offnad,Phase,Sol_inc,SCRNGE,seqid,Product_id longField = 'longitude' latField = 'latitude' elevField = 'altitude' radiusField = 'radius' utcField = 'UTC' orbitField = 'chn' elif target == "moon": targetWKT = "Moon" majorRadius = minorRadius = 1737400.0 year = 2000 #From ode Moon run the fields should be: #Coordinated_Universal_Time,Pt_Longitude,Pt_Latitude,Pt_Radius,Pt_Range,Pt_PulseW,Pt_Energy,Pt_noi,Pt_Thr,Pt_Gn,Flg,S,Frm,Mission_ET,Subseconds,Terrestrial_Dyn_Time,TX_Energy_mJ,TX_PulseW,SC_Longitude,SC_Latitude,SC_radius,Geoid,Offnadir,Emission,Sol_INC,Sol_Phs,Earth_Centr.,Earth_PW,Earth_E. longField = 'Pt_Longitude' latField = 'Pt_Latitude' elevField = 'Pt_Radius' radiusField = 'Pt_Radius' utcField = 'Coordinated_Universal_Time' orbitField = 'S' #not named correctly in the CSV, should be PRODUCT_SHOT_NUMBER else: print("Error: " + target + " currently not supported.") argparse.parser.print_usage() sys.exit(1) #based on target and radius write out projection # #New prj for GXP #GEOGCS["GCS_Mars_2000",DATUM["D_Mars_2000",SPHEROID["Mars_2000_IAU_IAG",3396190.0,169.8944472]],PRIMEM["Reference_Meridian",0.0],UNIT["Degree",0.0174532925199433]],VERTCS["Mars_2000",DATUM["D_Mars_2000",SPHEROID["Mars_2000_IAU_IAG",3396190.0,169.8944472]],PARAMETER["Vertical_Shift",0.0],PARAMETER["Direction",1.0],UNIT["Meter",1.0]] # if majorRadius - minorRadius > 0.00001: ecc = majorRadius / (majorRadius - minorRadius) else: ecc = 0.0 thePrj = 'GEOGCS["GCS_{0}_{1}",DATUM["D_{0}_{1}",SPHEROID["{0}_{1}_IAU",{2:.1f},{3:.14f}]],PRIMEM["Reference_Meridian",0.0],UNIT["Degree",0.0174532925199433]],VERTCS["Mars_2000",DATUM["D_{0}_{1}",SPHEROID["{0}_{1}_IAU",{2:.1f},{3:.14f}]],PARAMETER["Vertical_Shift",0.0],PARAMETER["Direction",1.0],UNIT["Meter",1.0]]' \ .format(targetWKT,year,majorRadius,ecc) #loop over files, if the user passed --input then just one file for input in files: filename = os.path.basename(input) nameList = os.path.splitext(filename)[0].split("_") #VRT didn't like long "name" so, I am creating a shorter name if (len(nameList) > 3): shortName = nameList[0]+"_"+nameList[1]+"_"+nameList[2] else: shortName = os.path.splitext(filename)[0] #create output shapefile and temporary csv outcsv = shortName+"_tmp.csv" outvrt = shortName+"_tmp.vrt" outprj = shortName+"_Z.prj" outshp = shortName+"_Z.shp" #open ODE csv file for reformating, Lons -180 to 180, and for Mars oc2og lats outCSV = open(outcsv,'w') fieldnames = 'Longitude,Latitude,Elev_m,Radius_m,UTC,Orbit\n' outCSV.write(fieldnames) with open(input) as csvfile: reader = csv.DictReader(csvfile, skipinitialspace=True) header = reader.fieldnames for row in reader: #convert to -180 to 180 Longitude domain lon180 = LonTo180(float(row[longField])) latOG = float(row[latField]) #if Mars convert to ographic Latitudes if target == "mars": latOG = oc2og(latOG, majorRadius, minorRadius) newl = '{0:.5f},{1:.5f},'.format(lon180, latOG) newl = newl + row[elevField]+','+row[radiusField]+','+row[utcField]+','+row[orbitField] if target == "moon": #convert radius from km to meters radius = float(row[radiusField]) * 1000.0 #subtract radius from LOLA radius to get 'elevation' in meters elev = radius - majorRadius newl = '{0:.5f},{1:.5f},{2:.5f},{3:.2f},'.format(lon180, latOG, elev, radius) newl = newl + row[utcField] +','+ row[orbitField] if target == "mercury": #convert radius from km to meters radius = float(row[radiusField]) * 1000.0 #subtract radius from LOLA radius to get 'elevation' in meters #elev = radius - majorRadius #OR #convert elevation from km to meters elev = float(row[elevField]) * 1000.0 newl = '{0:.5f},{1:.5f},{2:.5f},{3:.2f},'.format(lon180, latOG, elev, radius) newl = newl + row[utcField] +','+ row[orbitField] outCSV.write(newl+'\n') outCSV.close() # Create ogr2ogr virtual header (*.vrt) outVRT = open(outvrt , 'w') outVRT.write('<OGRVRTDataSource>\n') outVRT.write(' <OGRVRTLayer name="'+shortName+'_tmp">\n') outVRT.write(' <SrcDataSource>'+outcsv+'</SrcDataSource>\n') outVRT.write(' <LayerSRS>'+thePrj+'</LayerSRS>\n') outVRT.write(' <GeometryType>wkbPoint</GeometryType>\n') outVRT.write(' <GeometryField encoding="PointFromColumns" x="Longitude" y="Latitude" z="Elev_m"/>\n') outVRT.write(' <Field name=\"Longitude\" src=\"Longitude\" type=\"Real\"/>\n') outVRT.write(' <Field name=\"Latitude\" src=\"Latitude\" type=\"Real\"/>\n') outVRT.write(' <Field name=\"Elev_m\" src=\"Elev_m\" type=\"Real\"/>\n') outVRT.write(' <Field name=\"Radius_m\" src=\"Radius_m\" type=\"Real\"/>\n') outVRT.write(' <Field name=\"UTC\" src=\"UTC\" type=\"String\"/>\n') outVRT.write(' <Field name=\"Orbit\" src=\"Orbit\" type=\"Integer\"/>\n') outVRT.write(' </OGRVRTLayer>\n') outVRT.write('</OGRVRTDataSource>\n') outVRT.close() #convert to shapefile using GDAL's ogr in_ds = ogr.Open(outvrt) ogr.GetDriverByName("ESRI Shapefile").CopyDataSource(in_ds, outshp) in_ds = None outPRJ = open(outprj , 'w') outPRJ.write(thePrj) outPRJ.close() #clean up temporary files if os.path.exists(outshp): print (" -deleting temporary csv and vrt files") os.remove(outcsv) os.remove(outvrt) print (" -output shapefile file generated: "+ outshp) else: print ("\n Shapefile not generated...something's wrong\n\n") ```
{ "source": "jlausuch/pcw", "score": 2 }
#### File: ocw/lib/cleanup.py ```python from webui.settings import PCWConfig from ocw.lib.azure import Azure from ocw.lib.EC2 import EC2 from ocw.lib.gce import GCE from ocw.lib.emailnotify import send_mail from ocw.lib.emailnotify import send_cluster_notification import logging import traceback from ocw.apps import getScheduler logger = logging.getLogger(__name__) def cleanup_run(): for namespace in PCWConfig.get_namespaces_for('cleanup'): try: providers = PCWConfig.get_providers_for('cleanup', namespace) logger.debug("[{}] Run cleanup for {}".format(namespace, ','.join(providers))) if 'azure' in providers: Azure(namespace).cleanup_all() if 'ec2' in providers: EC2(namespace).cleanup_all() if 'gce' in providers: GCE(namespace).cleanup_all() except Exception as e: logger.exception("[{}] Cleanup failed!".format(namespace)) send_mail('{} on Cleanup in [{}]'.format(type(e).__name__, namespace), traceback.format_exc()) def list_clusters(): for namespace in PCWConfig.get_namespaces_for('clusters'): try: clusters = EC2(namespace).all_clusters() logger.info("%d clusters found", len(clusters)) send_cluster_notification(namespace, clusters) except Exception as e: logger.exception("[{}] List clusters failed!".format(namespace)) send_mail('{} on List clusters in [{}]'.format(type(e).__name__, namespace), traceback.format_exc()) def init_cron(): getScheduler().add_job(cleanup_run, trigger='interval', minutes=60, id='cleanup_all') getScheduler().add_job(list_clusters, trigger='interval', hours=18, id='list_clusters') ``` #### File: ocw/lib/provider.py ```python from webui.settings import PCWConfig import re from datetime import datetime from datetime import timedelta from datetime import timezone from distutils.version import LooseVersion import logging class Provider: def __init__(self, namespace: str): self._namespace = namespace self.dry_run = PCWConfig.getBoolean('default/dry_run') self.logger = logging.getLogger(self.__module__) def older_than_min_age(self, age): return datetime.now(timezone.utc) > age + timedelta( hours=PCWConfig.get_feature_property('cleanup', 'min-image-age-hours', self._namespace)) def needs_to_delete_image(self, order_number, image_date): if self.older_than_min_age(image_date): max_images_per_flavor = PCWConfig.get_feature_property('cleanup', 'max-images-per-flavor', self._namespace) max_image_age = image_date + timedelta( hours=PCWConfig.get_feature_property('cleanup', 'max-image-age-hours', self._namespace)) return order_number >= max_images_per_flavor or max_image_age < datetime.now(timezone.utc) else: return False def parse_image_name_helper(self, img_name, regex_s, group_key=['version', 'flavor', 'type', 'arch'], group_build=['kiwi', 'build']): for regex in regex_s: m = re.match(regex, img_name) if m: gdict = m.groupdict() return { 'key': '-'.join([gdict[k] for k in group_key if k in gdict and gdict[k] is not None]), 'build': "-".join([gdict[k] for k in group_build if k in gdict and gdict[k] is not None]), } return None def get_keeping_image_names(self, images): images_by_flavor = dict() for img in images: if (img.flavor not in images_by_flavor): images_by_flavor[img.flavor] = list() images_by_flavor[img.flavor].append(img) keep_images = list() for img_list in [images_by_flavor[x] for x in sorted(images_by_flavor)]: img_list.sort(key=lambda x: LooseVersion(x.build), reverse=True) for i in range(0, len(img_list)): img = img_list[i] if (not self.needs_to_delete_image(i, img.date)): keep_images.append(img.name) return keep_images def log_info(self, message: str, *args: object): if args: message = message.format(*args) self.logger.info("[{}] {}".format(self._namespace, message)) def log_warn(self, message: str, *args: object): if args: message = message.format(*args) self.logger.warning("[{}] {}".format(self._namespace, message)) def log_err(self, message: str, *args: object): if args: message = message.format(*args) self.logger.error("[{}] {}".format(self._namespace, message)) def log_dbg(self, message: str, *args: object): if args: message = message.format(*args) self.logger.debug("[{}] {}".format(self._namespace, message)) class Image: def __init__(self, name, flavor, build, date, img_id=None): self.name = name self.flavor = flavor self.build = build self.date = date self.id = img_id if img_id else name def __str__(self): return "[{} {} {} {}]".format(self.name, self.flavor, self.build, self.date) ``` #### File: pcw/tests/generators.py ```python from faker import Faker from datetime import datetime fake = Faker() min_image_age_hours = 7 max_images_per_flavor = 1 max_image_age_hours = 20 azure_storage_resourcegroup = 'openqa' ec2_max_snapshot_age_days = 1 ec2_max_volumes_age_days = 5 class MockImage: def __init__(self, name, last_modified=None): self.name = name self.last_modified = last_modified def mock_get_feature_property(feature: str, property: str, namespace: str = None): if property == 'min-image-age-hours': return min_image_age_hours elif property == 'max-images-per-flavor': return max_images_per_flavor elif property == 'max-image-age-hours': return max_image_age_hours elif property == 'azure-storage-resourcegroup': return azure_storage_resourcegroup elif property == 'ec2-max-snapshot-age-days': return ec2_max_snapshot_age_days elif property == 'ec2-max-volumes-age-days': return ec2_max_volumes_age_days class ec2_meta_mock: def __init__(self): self.data = fake.uuid4() class ec2_image_mock: def __init__(self): self.image_id = fake.uuid4() self.meta = ec2_meta_mock() self.name = fake.uuid4() def ec2_tags_mock(tags={fake.uuid4(): fake.uuid4()}): return [ {'Key': key, 'Value': tags[key]} for key in tags] class ec2_instance_mock: def __init__(self, **kwargs): self.state = {'Name': fake.uuid4()} self.instance_id = fake.uuid4() self.image_id = fake.uuid4() self.instance_lifecycle = fake.uuid4() self.instance_type = fake.uuid4() self.kernel_id = fake.uuid4() self.launch_time = datetime.now() self.public_ip_address = fake.uuid4() self.security_groups = [{'GroupName': fake.uuid4()}, {'GroupName': fake.uuid4()}] self.sriov_net_support = fake.uuid4() self.tags = ec2_tags_mock(**kwargs) self.state_reason = {'Message': fake.uuid4()} self.image = ec2_image_mock() class azure_instance_mock: def __init__(self): self.tags = fake.uuid4() self.name = fake.uuid4() self.id = fake.uuid4() self.type = fake.uuid4() self.location = fake.uuid4() def gce_instance_mock(): return { 'name': fake.uuid4(), 'id': fake.uuid4(), 'machineType': fake.uuid4() + '/qq', 'zone': fake.uuid4() + '/qq', 'status': fake.uuid4(), 'creationTimestamp': datetime.now(), 'metadata': fake.uuid4(), 'tags': {'sshKeys': fake.uuid4()} } ``` #### File: pcw/tests/test_provider.py ```python from ocw.lib.provider import Provider, Image from datetime import datetime from datetime import timezone from datetime import timedelta from tests import generators from webui.settings import PCWConfig from .generators import mock_get_feature_property from .generators import max_images_per_flavor from .generators import min_image_age_hours from .generators import max_image_age_hours def test_older_than_min_age_older(monkeypatch): monkeypatch.setattr(PCWConfig, 'get_feature_property', lambda *args, **kwargs: 24) provider = Provider('testolderminage') assert provider.older_than_min_age(datetime.now(timezone.utc) - timedelta(hours=25)) == True def test_older_than_min_age_younger(monkeypatch): monkeypatch.setattr(PCWConfig, 'get_feature_property', lambda *args, **kwargs: 24) provider = Provider('testolderminage') assert provider.older_than_min_age(datetime.now(timezone.utc) - timedelta(hours=23)) == False def test_needs_to_delete_image(monkeypatch): monkeypatch.setattr(PCWConfig, 'get_feature_property', mock_get_feature_property) provider = Provider('testneedstodelete') too_many_images = max_images_per_flavor+1 not_enough_images = max_images_per_flavor-3 older_than_min_age = datetime.now(timezone.utc) - timedelta(hours=min_image_age_hours+1) assert provider.needs_to_delete_image(too_many_images, datetime.now(timezone.utc)) == False assert provider.needs_to_delete_image(too_many_images, older_than_min_age) == True assert provider.needs_to_delete_image(not_enough_images, older_than_min_age) == False def test_get_keeping_image_names(monkeypatch): monkeypatch.setattr(PCWConfig, 'get_feature_property', mock_get_feature_property) provider = Provider('testneedstodelete') newer_then_min_age = datetime.now(timezone.utc) older_then_min_age = datetime.now(timezone.utc) - timedelta(hours=min_image_age_hours+1) older_then_max_age = datetime.now(timezone.utc) - timedelta(hours=max_image_age_hours+1) generators.max_images_per_flavor = 1 images = [ Image('foo-A-0.0.1-0.1', 'A', '0.0.1-0.1', older_then_min_age), Image('foo-A-0.0.1-0.2', 'A', '0.0.1-0.2', older_then_min_age), ] assert provider.get_keeping_image_names(images) == ['foo-A-0.0.1-0.2'] images = [ Image('foo-A-0.0.1-0.1', 'A', '0.0.1-0.1', older_then_min_age), Image('foo-A-0.0.1-0.2', 'A', '0.0.1-0.2', older_then_max_age), ] assert provider.get_keeping_image_names(images) == [] images = [ Image('foo-A-0.0.1-0.1', 'A', '0.0.1-0.1', newer_then_min_age), Image('foo-A-0.0.1-0.2', 'A', '0.0.1-0.2', older_then_min_age), ] assert provider.get_keeping_image_names(images) == ['foo-A-0.0.1-0.2', 'foo-A-0.0.1-0.1'] images = [ Image('foo-A-0.0.1-0.1', 'A', '0.0.1-0.1', older_then_min_age), Image('foo-A-0.0.1-0.2', 'A', '0.0.1-0.2', older_then_min_age), Image('foo-B-0.0.1-0.1', 'B', '0.0.1-0.1', older_then_min_age), Image('foo-B-0.1.1-0.1', 'B', '0.1.1-0.1', older_then_min_age) ] assert provider.get_keeping_image_names(images) == ['foo-A-0.0.1-0.2', 'foo-B-0.1.1-0.1'] generators.max_images_per_flavor = 2 images = [ Image('foo-A-0.0.1-0.1', 'A', '0.0.1-0.1', older_then_min_age), Image('foo-A-0.0.1-0.2', 'A', '0.0.1-0.2', older_then_min_age), ] assert provider.get_keeping_image_names(images) == ['foo-A-0.0.1-0.2', 'foo-A-0.0.1-0.1'] ```
{ "source": "jlavallee/HotGator", "score": 3 }
#### File: HotGator/heatmap/process.py ```python import os try: import simplejson except: import json as simplejson class Point: def __init__(self,x,y): #assert (x > -180) and (x < 180) #assert (y > -90) and (y < 90) self.x = x self.y = y def __str__(self): return self.wkt @property def wkt(self): return 'POINT( %f %F )' % (self.x,self.y) @property def json(self): return simplejson.dumps({"type": "Point", "coordinates": [self.x,self.y]}) def intersects(self,bbox): assert isinstance(bbox,tuple) minx,miny,maxx,maxy = bbox return not (self.x>maxx or self.x<minx or self.y>maxy or self.y<miny) def read_caligator_json(filename): # get data from: #http://calagator.org/events.json?date%5Bstart%5D=2010-01-01&date%5Bend%5D=2010-12-31&commit=Filter return simplejson.loads(open(filename,'r').read()) def stream_csv(header,events_list): e_list = [] ids = {} csv_items = ['%s,%s,%s' % header] for e in events_list: venue_id = e.get('venue_id') if venue_id: if venue_id in ids.keys(): ids[venue_id] += 1 else: ids[venue_id] = 1 for e in events_list: venue = e.get('venue') if venue: pnt = Point(venue['longitude'],venue['latitude']) v_id = e['venue_id'] if v_id not in e_list: if pnt.x and pnt.y and pnt.intersects(bbox): e_list.append(v_id) csv_items.append('%s,%s,%s' % (pnt.x, pnt.y, ids[v_id])) return '\n'.join(csv_items) def stream_vrt(name,csv,x,y,z): vrt = '''<OGRVRTDataSource> <OGRVRTLayer name="%(name)s"> <SrcDataSource>%(csv)s</SrcDataSource> <GeometryType>wkbPoint</GeometryType> <LayerSRS>WGS84</LayerSRS> <GeometryField encoding="PointFromColumns" x="%(x)s" y="%(y)s" z="%(z)s"/> </OGRVRTLayer> </OGRVRTDataSource>''' % locals() return vrt def interpolate(vrt_file,bbox,filename,radius=0,smooth=0,width=256,height=256): xmin, ymin, xmax, ymax = bbox#-123.115196,45.351904,-122.237663,45.69395 layer = vrt_file.replace('.vrt','') cmd = 'gdal_grid -a invdist:power=2.0:smoothing=%(smooth)f -txe %(xmin)f %(xmax)f -tye %(ymin)f %(ymax)f -outsize %(width)d %(height)d -l %(layer)s -of GTiff -ot Float32 %(vrt_file)s %(filename)s' % locals() os.system(cmd) if __name__ == '__main__': # lets restrict points to this area (roughly PDX and neighborhoods) # bounding coordinates are in degrees bbox = (-123.115196,45.351904,-122.237663,45.69395) x,y,z = 'lon','lat','event_count' csv_header = x,y,z json_file = 'testdata/events.json' csv_file = 'heat.csv' vrt_file = 'heat.vrt' events_list = read_caligator_json(json_file) open(csv_file,'w').write(stream_csv(csv_header,events_list)) open(vrt_file,'w').write(stream_vrt('heat',csv_file,x,y,z)) # then open to demo in QGIS # it will be greyscale until you display values with color range interpolate(vrt_file,bbox,'pdx.tif',radius=.5,smooth=.001) ```
{ "source": "jlaw9/rlmolecule", "score": 2 }
#### File: examples/hallway/hallway_config.py ```python class HallwayConfig: def __init__(self, size: int = 5, max_steps: int = 32): self.size = size self.max_steps = max_steps ``` #### File: old/tf_serving_example/layers.py ```python import numpy as np import tensorflow as tf from tensorflow.keras import layers from tensorflow.python.keras.layers.pooling import GlobalPooling1D from tensorflow.python.keras import backend from tensorflow.python.ops import math_ops from tensorflow.python.ops import array_ops import nfp class ConcatDense(layers.Layer): """ Layer to combine the concatenation and two dense layers """ def build(self, input_shape): num_features = input_shape[0][-1] self.concat = layers.Concatenate() self.dense1 = layers.Dense(2 * num_features, activation='relu') self.dense2 = layers.Dense(num_features) def call(self, inputs, mask=None): output = self.concat(inputs) output = self.dense1(output) output = self.dense2(output) return output class GraphLayer(layers.Layer): """ Base class for all GNN layers """ def __init__(self, dropout: float=0.0, **kwargs): super().__init__(**kwargs) self.dropout = dropout def build(self, input_shape): if len(input_shape) == 4: self.use_global = True self.tile = Tile() elif len(input_shape) == 3: self.use_global = False else: raise RuntimeError("wrong input shape") if self.dropout > 0.: self.dropout_layer = layers.Dropout(self.dropout) def get_config(self): return {"dropout": self.dropout} class EdgeUpdate(GraphLayer): def build(self, input_shape): """ inputs = [atom_state, bond_state, connectivity] shape(bond_state) = [batch, num_bonds, bond_features] """ super().build(input_shape) bond_features = input_shape[1][-1] self.gather = nfp.Gather() self.slice1 = nfp.Slice(np.s_[:, :, 1]) self.slice0 = nfp.Slice(np.s_[:, :, 0]) self.concat = ConcatDense() self.add = layers.Add() def call(self, inputs, mask=None): """ Inputs: [atom_state, bond_state, connectivity] Outputs: bond_state """ if not self.use_global: atom_state, bond_state, connectivity = inputs else: atom_state, bond_state, connectivity, global_state = inputs global_state = self.tile([global_state, bond_state]) # Get nodes at start and end of edge source_atom = self.gather([atom_state, self.slice1(connectivity)]) target_atom = self.gather([atom_state, self.slice0(connectivity)]) if not self.use_global: new_bond_state = self.concat([bond_state, source_atom, target_atom]) else: new_bond_state = self.concat([bond_state, source_atom, target_atom, global_state]) if self.dropout > 0.: new_bond_state = self.dropout_layer(new_bond_state) new_bond_state = self.add([bond_state, new_bond_state]) return new_bond_state def compute_output_shape(self, input_shape): return input_shape[1] class NodeUpdate(GraphLayer): def build(self, input_shape): super().build(input_shape) num_features = input_shape[1][-1] self.gather = nfp.Gather() self.slice0 = nfp.Slice(np.s_[:, :, 0]) self.slice1 = nfp.Slice(np.s_[:, :, 1]) self.concat = ConcatDense() self.reduce = nfp.Reduce(reduction='sum') self.dense1 = layers.Dense(2 * num_features, activation='relu') self.dense2 = layers.Dense(num_features) self.add = layers.Add() def call(self, inputs, mask=None): """ Inputs: [atom_state, bond_state, connectivity] Outputs: atom_state """ if not self.use_global: atom_state, bond_state, connectivity = inputs else: atom_state, bond_state, connectivity, global_state = inputs global_state = self.tile([global_state, bond_state]) source_atom = self.gather([atom_state, self.slice1(connectivity)]) if not self.use_global: messages = self.concat([source_atom, bond_state]) else: messages = self.concat([source_atom, bond_state, global_state]) new_atom_state = self.reduce([messages, self.slice0(connectivity), atom_state]) # Dense net after message reduction new_atom_state = self.dense1(new_atom_state) new_atom_state = self.dense2(new_atom_state) if self.dropout > 0.: new_atom_state = self.dropout_layer(new_atom_state) new_atom_state = self.add([atom_state, new_atom_state]) return new_atom_state def compute_output_shape(self, input_shape): return input_shape[0] class Tile(layers.Layer): def call(self, inputs): global_state, target = inputs target_shape = tf.shape(target)[1] # number of edges or nodes expanded = tf.expand_dims(global_state, 1) return tf.tile(expanded, tf.stack([1, target_shape, 1])) class GlobalUpdate(GraphLayer): def __init__(self, units, num_heads, **kwargs): super().__init__(**kwargs) self.units = units # H self.num_heads = num_heads # N def build(self, input_shape): super().build(input_shape) dense_units = self.units * self.num_heads # N*H self.query_layer = layers.Dense(self.num_heads, name='query') self.value_layer = layers.Dense(dense_units, name='value') self.add = layers.Add() def transpose_scores(self, input_tensor): input_shape = tf.shape(input_tensor) output_shape = [input_shape[0], input_shape[1], self.num_heads, self.units] output_tensor = tf.reshape(input_tensor, output_shape) return tf.transpose(a=output_tensor, perm=[0, 2, 1, 3]) # [B,N,S,H] def call(self, inputs, mask=None): if not self.use_global: atom_state, bond_state, connectivity = inputs else: atom_state, bond_state, connectivity, global_state = inputs batch_size = tf.shape(atom_state)[0] graph_elements = tf.concat([atom_state, bond_state], axis=1) query = self.query_layer(graph_elements) # [B,N,S,H] query = tf.transpose(query, perm=[0, 2, 1]) value = self.transpose_scores(self.value_layer(graph_elements)) # [B,N,S,H] attention_probs = tf.nn.softmax(query) context = tf.matmul(tf.expand_dims(attention_probs, 2), value) context = tf.reshape(context, [batch_size, self.num_heads*self.units]) if self.dropout > 0.: context = self.dropout_layer(context) if self.use_global: global_state = self.add([global_state, context]) else: global_state = context return global_state def get_config(self): config = super(GlobalUpdate, self).get_config() config.update( {"units": self.units, "num_heads": self.num_heads}) return config class GlobalSumPooling1D(GlobalPooling1D): def __init__(self, data_format='channels_last', **kwargs): super().__init__(data_format=data_format, **kwargs) self.supports_masking = True def call(self, inputs, mask=None): steps_axis = 1 if self.data_format == 'channels_last' else 2 if mask is not None: mask = math_ops.cast(mask, backend.floatx()) mask = array_ops.expand_dims( mask, 2 if self.data_format == 'channels_last' else 1) inputs *= mask return backend.sum(inputs, axis=steps_axis) def compute_mask(self, inputs, mask=None): return None ``` #### File: rlmolecule/molecule_game/policy_data.py ```python import io import nfp import numpy as np import tensorflow as tf import molecule_game.config as config def parse_binary_data(binary_data, reward): """ Use io and numpy to parse the binary data from postgresQL """ with io.BytesIO(binary_data.numpy()) as f: parsed_data = dict(np.load(f, allow_pickle=True).items()) # This is something we could talk about; but I'm wondering if the best # loss function for a boolean reward is a binary crossentropy if reward == -1: reward = 0 visit_probs = parsed_data.pop('visit_probs') return (parsed_data['atom'], parsed_data['bond'], parsed_data['connectivity'], int(reward), visit_probs) def parse_data_tf(binary_data, reward): """tf.py_func wants a flat list of outputs, but here we restructure to keras's desired (inputs, outputs) format""" atom, bond, connectivity, reward, visit_probs = tf.py_function( parse_binary_data, inp=[binary_data, reward], Tout=[tf.int64, tf.int64, tf.int64, tf.int64, tf.float32]) # The py_func doesn't provide tensor shapes, and we'll need these for the # padded batch operation atom.set_shape([None, None]) bond.set_shape([None, None]) connectivity.set_shape([None, None, 2]) reward.set_shape([]) visit_probs.set_shape([None]) return ({'atom': atom, 'bond': bond, 'connectivity': connectivity}, (reward, visit_probs)) def create_dataset(sql_generator): """ Given a generator that yields data (bytes), ranked_rewards (float) pairs, zip these together into a tensorflow dataset. """ dataset = tf.data.Dataset.from_generator(sql_generator, output_types=(tf.string, tf.float32)) \ .repeat() \ .shuffle(config.policy_buffer_max_size) \ .map(parse_data_tf, num_parallel_calls=tf.data.experimental.AUTOTUNE) \ .padded_batch(config.batch_size, padding_values=({'atom': nfp.zero, 'bond': nfp.zero, 'connectivity': nfp.zero}, (nfp.zero, 0.))) \ .prefetch(tf.data.experimental.AUTOTUNE) return dataset ``` #### File: rlmolecule/alphazero/alphazero_problem.py ```python import os import random from abc import abstractmethod from typing import Optional import sqlalchemy from rlmolecule.alphazero.alphazero_vertex import AlphaZeroVertex from rlmolecule.tree_search.reward import Reward from rlmolecule.mcts.mcts_problem import MCTSProblem from rlmolecule.sql import Base, Session from rlmolecule.sql.tables import GameStore, RewardStore from rlmolecule.tree_search.graph_search_state import GraphSearchState class AlphaZeroProblem(MCTSProblem): def __init__(self, engine: sqlalchemy.engine.Engine, run_id: Optional[str] = None, max_buffer_size: int = 200, min_buffer_size: int = 50, batch_size: int = 32, **kwargs): super(AlphaZeroProblem, self).__init__(**kwargs) Base.metadata.create_all(engine, checkfirst=True) Session.configure(bind=engine) self._session = Session() self.run_id = run_id if run_id is not None else os.environ.get('AZ_RUNID', 'not specified') self.batch_size = batch_size self.max_buffer_size = max_buffer_size self.min_buffer_size = min_buffer_size @abstractmethod def get_value_and_policy(self, parent: AlphaZeroVertex) -> (float, {AlphaZeroVertex: float}): """ A user-provided function to get value and child prior estimates for the given vertex. :return: (value_of_current_vertex, {child_vertex: child_prior for child_vertex in children}) """ pass @property def session(self) -> 'sqlalchemy.orm.session.Session': return self._session def reward_wrapper(self, state: GraphSearchState) -> Reward: """A wrapper that caches reward calculations in a SQL database, and calls self.get_scaled_reward :param state: The state for which rewards are cached :return: the scaled reward """ existing_record = self.session.query(RewardStore).get((hash(state), self.run_id, state.serialize())) if existing_record is not None: reward = existing_record.reward else: reward, data = self.get_reward(state) record = RewardStore(hash=hash(state), run_id=self.run_id, state=state.serialize(), reward=reward, data=data) self.session.merge(record) self.session.commit() return self.reward_class(reward) def _store_search_statistics(self, path: [], reward: Reward) -> None: """Store the game data in the replay buffer :param path: The path data collected by AlphaZero._accumulate_path_data :param reward: The final state's unscaled reward """ # path[-1] is the terminal state with no children search_statistics = [ (vertex.state.serialize(), visit_probabilities) for (vertex, visit_probabilities) in path[:-1]] record = GameStore(id=str(self.id), run_id=self.run_id, raw_reward=reward.raw_reward, scaled_reward=reward.scaled_reward, search_statistics=search_statistics) self.session.add(record) self.session.commit() def iter_recent_games(self) -> (str, 'np.ndarray', float): """Iterate over randomly chosen positions in games from the replay buffer :returns: a generator of (serialized_parent, visit_probabilities, scaled_reward) pairs """ recent_games = self.session.query(GameStore).filter_by(run_id=self.run_id) \ .order_by(GameStore.index.desc()).limit(self.max_buffer_size) for game in recent_games: parent_state_string, visit_probabilities = random.choice(game.search_statistics) yield parent_state_string, game.scaled_reward, visit_probabilities ``` #### File: rlmolecule/mcts/mcts.py ```python import logging import math import random from typing import Callable, List, Optional, Type import numpy as np from rlmolecule.tree_search.reward import Reward from rlmolecule.mcts.mcts_problem import MCTSProblem from rlmolecule.mcts.mcts_vertex import MCTSVertex from rlmolecule.tree_search.graph_search import GraphSearch from rlmolecule.tree_search.graph_search_state import GraphSearchState logger = logging.getLogger(__name__) class MCTS(GraphSearch[MCTSVertex]): def __init__( self, problem: MCTSProblem, ucb_constant: float = math.sqrt(2), vertex_class: Optional[Type[MCTSVertex]] = None, ) -> None: super().__init__(MCTSVertex if vertex_class is None else vertex_class) self._problem: MCTSProblem = problem self.ucb_constant: float = ucb_constant @property def problem(self) -> MCTSProblem: return self._problem def run( self, state: Optional[GraphSearchState] = None, num_mcts_samples: int = 256, max_depth: int = 1000000, action_selection_function: Optional[Callable[[MCTSVertex], MCTSVertex]] = None, reset_canonicalizer: bool = True, ) -> ([], float): """ Run the MCTS search from the given starting state (or the root node if not provided). This function runs a given number of MCTS iterations per step, and then descends the action space according to the provided `action_selection_function` (softmax sampling of visit counts if not provided). :param num_mcts_samples: number of samples to perform at each level of the MCTS search :param max_depth: the maximum search depth. :param state: the starting state, or if not provided, the state returned from _get_root() :param action_selection_function: a function used to select among the possible next actions. Defaults to softmax sampling by visit counts. :param reset_canonicalizer: whether to reset the graph canonicalizer in advance of the run :return: The search path (as a list of vertexes) and the reward from this search. """ self.problem.initialize_run() if reset_canonicalizer: self.canonicalizer.reset() vertex = self._get_root() if state is None else self.get_vertex_for_state(state) action_selection_function = action_selection_function if action_selection_function is not None \ else self.softmax_selection path: [] = [] for _ in range(max_depth): # todo: this loop is odd, we're sampling terminal nodes a whole bunch of extra times self.sample(vertex, num_mcts_samples) self._accumulate_path_data(vertex, path) if len(vertex.children) == 0: return path, self.problem.reward_wrapper(vertex.state) logger.debug(f'{vertex} has children { {child: (round(child.value, 2), child.visit_count) for child in vertex.children} }') vertex = action_selection_function(vertex) logger.warning(f"{self} reached max_depth.") return path, math.nan # todo: make sure this returns a reward class def sample( self, vertex: MCTSVertex, num_mcts_samples: int = 1, ) -> None: """ Perform MCTS sampling from the given vertex. """ for _ in range(num_mcts_samples): search_path = self._select(vertex) value = self._evaluate(search_path) self._backpropagate(search_path, value) # noinspection PyMethodMayBeStatic def _accumulate_path_data(self, vertex: MCTSVertex, path: []): path.append(vertex) def _select( self, root: MCTSVertex, ) -> [MCTSVertex]: """ Selection step of MCTS From Wikipedia (https://en.wikipedia.org/wiki/Monte_Carlo_tree_search): Selection: Start from root R and select successive child vertices until a leaf vertex L is reached. The root is the current game state and a leaf is any vertex that has a potential child from which no simulation (playout) has yet been initiated. The section below says more about a way of biasing choice of child vertices that lets the game tree expand towards the most promising moves, which is the essence of Monte Carlo tree search. """ search_path = [root] while True: current = search_path[-1] children = current.children if children is None or len(children) == 0: return search_path search_path.append(max(children, key=lambda child: self._ucb_score(current, child))) def _expand(self, leaf: MCTSVertex) -> None: """ Expansion step of MCTS From Wikipedia (https://en.wikipedia.org/wiki/Monte_Carlo_tree_search): Expansion: Unless L ends the game decisively (e.g. win/loss/draw) for either player, create one (or more) child vertices and choose vertex C from one of them. Child vertices are any valid moves from the game position defined by L. """ if leaf.children is None: leaf.children = [self.get_vertex_for_state(state) for state in leaf.state.get_next_actions()] def _evaluate( self, search_path: [MCTSVertex], ) -> Reward: """ Estimates the value of a leaf vertex. Simulation step of MCTS. From Wikipedia (https://en.wikipedia.org/wiki/Monte_Carlo_tree_search): Simulation: Complete one random playout from vertex C. This step is sometimes also called playout or rollout. A playout may be as simple as choosing uniform random moves until the game is decided (for example in chess, the game is won, lost, or drawn). :return: value estimate of the given leaf vertex """ assert len(search_path) > 0, 'Invalid attempt to evaluate an empty search path.' leaf = search_path[-1] # This `expand` call sets up further visits for this node, but visits to children # aren't tracked below the given leaf node self._expand(leaf) state = leaf.state while True: children = state.get_next_actions() if len(children) == 0: return self.problem.reward_wrapper(state) state = random.choice(children) @staticmethod def _backpropagate(search_path: [MCTSVertex], value: Reward): """ Backpropagation step of MCTS From Wikipedia (https://en.wikipedia.org/wiki/Monte_Carlo_tree_search): Backpropagation: Use the result of the playout to update information in the vertices on the search_path from C to R. """ for vertex in reversed(search_path): vertex.update(value.scaled_reward) @staticmethod def visit_selection(parent: MCTSVertex) -> MCTSVertex: return max(parent.children, key=lambda child: child.visit_count) @staticmethod def softmax_selection(parent: MCTSVertex) -> MCTSVertex: children: List[MCTSVertex] = parent.children visit_counts = np.array([child.visit_count for child in children]) visit_counts -= visit_counts.max() visit_softmax = np.exp(visit_counts) / sum(np.exp(visit_counts)) return children[np.random.choice(range(len(children)), size=1, p=visit_softmax)[0]] def _get_root(self) -> MCTSVertex: return self.get_vertex_for_state(self.problem.get_initial_state()) def _ucb_score(self, parent: MCTSVertex, child: MCTSVertex) -> float: """Calculates the UCB1 score for the given child vertex. From <NAME>., <NAME>., & <NAME>. (2002). Machine Learning, 47(2/3), 235–256. doi:10.1023/a:1013689704352 :param child: Vertex for which the UCB score is desired :return: UCB1 score. """ if parent.visit_count == 0: raise RuntimeError("Child {} of parent {} with zero visits".format(child, self)) if child.visit_count == 0: return math.inf return child.value + self.ucb_constant * math.sqrt(math.log(parent.visit_count) / child.visit_count) ``` #### File: rlmolecule/molecule/molecule_problem.py ```python import logging from abc import ABC from typing import Dict, Optional import rdkit import sqlalchemy from rlmolecule.alphazero.tfalphazero_problem import TFAlphaZeroProblem from rlmolecule.mcts.mcts_problem import MCTSProblem from rlmolecule.molecule.molecule_config import MoleculeConfig from rlmolecule.molecule.molecule_state import MoleculeState from rlmolecule.molecule.policy.model import policy_model from rlmolecule.molecule.policy.preprocessor import MolPreprocessor, load_preprocessor logger = logging.getLogger(__name__) class MoleculeProblem(MCTSProblem, ABC): def __init__(self, config: MoleculeConfig, *args, **kwargs): self._config = config super(MoleculeProblem, self).__init__(*args, **kwargs) def get_initial_state(self) -> MoleculeState: return MoleculeState(rdkit.Chem.MolFromSmiles('C'), self._config) class MoleculeTFAlphaZeroProblem(MoleculeProblem, TFAlphaZeroProblem, ABC): def __init__(self, engine: sqlalchemy.engine.Engine, config: MoleculeConfig, preprocessor: Optional[MolPreprocessor] = None, preprocessor_data: Optional[str] = None, features: int = 64, num_heads: int = 4, num_messages: int = 3, **kwargs) -> None: self.num_messages = num_messages self.num_heads = num_heads self.features = features self.preprocessor = preprocessor if preprocessor else load_preprocessor(preprocessor_data) super(MoleculeTFAlphaZeroProblem, self).__init__(config=config, engine=engine, **kwargs) def policy_model(self) -> 'tf.keras.Model': return policy_model( self.preprocessor, features=self.features, num_heads=self.num_heads, num_messages=self.num_messages) def get_policy_inputs(self, state: MoleculeState) -> Dict: return self.preprocessor.construct_feature_matrices(state.molecule) ``` #### File: molecule/policy/preprocessor.py ```python import os from typing import Dict, Optional import nfp import numpy as np import rdkit def atom_featurizer(atom: rdkit.Chem.Atom) -> str: """ Return an string representing the atom type :param atom: the rdkit.Atom object :return: a string representation for embedding """ return str(( atom.GetSymbol(), atom.GetNumRadicalElectrons(), atom.GetFormalCharge(), atom.GetChiralTag().name, atom.GetIsAromatic(), nfp.get_ring_size(atom, max_size=6), atom.GetDegree(), atom.GetTotalNumHs(includeNeighbors=True) )) def bond_featurizer(bond: rdkit.Chem.Bond, flipped: bool = False) -> str: """Return a string representation of the given bond :param bond: The rdkit bond object :param flipped: Whether the bond is considered in the forward or reverse direction :return: a string representation of the bond type """ if not flipped: atoms = "{}-{}".format( *tuple((bond.GetBeginAtom().GetSymbol(), bond.GetEndAtom().GetSymbol()))) else: atoms = "{}-{}".format( *tuple((bond.GetEndAtom().GetSymbol(), bond.GetBeginAtom().GetSymbol()))) bstereo = bond.GetStereo().name btype = str(bond.GetBondType()) ring = 'R{}'.format(nfp.get_ring_size(bond, max_size=6)) if bond.IsInRing() else '' return " ".join([atoms, btype, ring, bstereo]).strip() def filter_keys(attribute: Dict) -> Dict: """Remove unnecessary model inputs from nfp.SmilesPreprocessor outputs :param attribute: A dictionary containing unnecessary keys :return: The same dictionary with only 'atom', 'bond', and 'connectivity' arrays """ return {key: value for key, value in attribute.items() if key in {'atom', 'bond', 'connectivity'}} class MolPreprocessor(nfp.preprocessing.SmilesPreprocessor): output_types = filter_keys(nfp.preprocessing.SmilesPreprocessor.output_types) output_shapes = filter_keys(nfp.preprocessing.SmilesPreprocessor.output_shapes) padding_values = filter_keys(nfp.preprocessing.SmilesPreprocessor.padding_values) def padded_shapes(self, *args, **kwargs): return filter_keys(super().padded_shapes(*args, **kwargs)) def construct_feature_matrices(self, mol: rdkit.Chem.Mol, train: bool = False) -> {}: """ Convert an rdkit Mol to a list of tensors 'atom' : (n_atom,) length list of atom classes 'bond' : (n_bond,) list of bond classes 'connectivity' : (n_bond, 2) array of source atom, target atom pairs. """ self.atom_tokenizer.train = train self.bond_tokenizer.train = train if self.explicit_hs: mol = rdkit.Chem.AddHs(mol) n_atom = mol.GetNumAtoms() n_bond = 2 * mol.GetNumBonds() # If its an isolated atom, add a self-link if n_bond == 0: n_bond = 1 atom_feature_matrix = np.zeros(n_atom, dtype='int') bond_feature_matrix = np.zeros(n_bond, dtype='int') connectivity = np.zeros((n_bond, 2), dtype='int') if n_bond == 1: bond_feature_matrix[0] = self.bond_tokenizer('self-link') bond_index = 0 for n, atom in enumerate(mol.GetAtoms()): # Atom Classes atom_feature_matrix[n] = self.atom_tokenizer( self.atom_features(atom)) start_index = atom.GetIdx() for bond in atom.GetBonds(): # Is the bond pointing at the target atom rev = bond.GetBeginAtomIdx() != start_index # Bond Classes bond_feature_matrix[bond_index] = self.bond_tokenizer( self.bond_features(bond, flipped=rev)) # Connectivity if not rev: # Original direction connectivity[bond_index, 0] = bond.GetBeginAtomIdx() connectivity[bond_index, 1] = bond.GetEndAtomIdx() else: # Reversed connectivity[bond_index, 0] = bond.GetEndAtomIdx() connectivity[bond_index, 1] = bond.GetBeginAtomIdx() bond_index += 1 return { 'atom': atom_feature_matrix, 'bond': bond_feature_matrix, 'connectivity': connectivity, } def load_preprocessor(saved_preprocessor_file: Optional[str] = None) -> MolPreprocessor: """Load the MolPreprocessor object from either the default json file or a provided data file :param saved_preprocessor_file: directory of the saved nfp.Preprocessor json data :return: a MolPreprocessor instance for the molecule policy network """ preprocessor = MolPreprocessor(atom_features=atom_featurizer, bond_features=bond_featurizer, explicit_hs=False) if not saved_preprocessor_file: saved_preprocessor_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'preprocessor.json') preprocessor.from_json(saved_preprocessor_file) return preprocessor ``` #### File: tests/mcts/test_hash_canonicalization.py ```python import random from rlmolecule.mcts.mcts import MCTS from rlmolecule.mcts.mcts_vertex import MCTSVertex from rlmolecule.molecule.molecule_config import MoleculeConfig from tests.qed_optimization_problem import QEDWithRandomPolicy def test_get_successors(engine): config = MoleculeConfig(max_atoms=4, min_atoms=1, tryEmbedding=False, sa_score_threshold=None, stereoisomers=False) problem = QEDWithRandomPolicy(config=config, engine=engine) game = MCTS(problem) root: MCTSVertex = game._get_root() game._expand(root) root.update(1.0) successor0: MCTSVertex = root.children[0] game._expand(successor0) successor0.update(1.0) successor1: MCTSVertex = root.children[1] game._expand(successor1) successor1.update(1.0) random.seed(42) game.sample(root, 5) child1 = root.children[1].children[0] # CCN child2 = root.children[0].children[1] # CCN assert (child1 == child2) assert (child1.value == child2.value) assert (child1.visit_count == child2.visit_count) child1.update(1.) assert (child1.value == child2.value) assert (child1.visit_count == child2.visit_count) ```
{ "source": "jlawcordova/coordinatesystem", "score": 4 }
#### File: coordinatesystem/coordinatesystem/component.py ```python import sys from math import cos, sin, atan, pow, sqrt class Point2D: """ Represents a point in a 2-dimensional plane. :param xCoordinate: X-coordinate of the point. :param yCoordinate: Y-coordinate of the point. """ def __init__(self, x = 0.0, y = 0.0): self.x = x self.y = y def __str__(self): return '(%f, %f)' % (self.x, self.y) @classmethod def from_polar_coordinate(cls, magnitude, angle): """ Creates a point in a 2-dimensional plane from a given polar coordinate. :param magnitude: Magnitude of the polar coodinate. :param angle: Angle of the polar coordinate. :returns: Point2D object. """ x = magnitude * cos(angle) y = magnitude * sin(angle) point2d = cls(x, y) return point2d def rotate(self, angle): """ Rotates the point by an angle in radians. :param angle: Angle in radians. """ cosang = cos(angle) sinang = sin(angle) temp = self.x self.x = (self.x * cosang) + (self.y * sinang) self.y = (-temp * sinang) + (self.y * cosang) def offset(self, xoffset, yoffset): """ Offsets the point by an x and y displacement. :param xoffset: Offset in the x-axis. :param yoffset: Offset in the y-axis """ self.x += xoffset self.y += yoffset def get_distance(self, point): """ Gets the distance from the point and another point. :param point: Point to calculate the distance with. :returns: Distance between the two points. """ xdistance = self.x - point.x ydistance = self.y - point.y distance = sqrt(pow(xdistance, 2) + pow(ydistance, 2)) return distance def get_slope(self, point): """ Gets the slope of the line formed from the point and another point. :param point: Point to calculate the slope with. :returns: Slope of the line formed from the two points. """ xdistance = self.x - point.x ydistance = self.y - point.y if xdistance != 0: slope = ydistance/xdistance else: # Avoid a divide by zero error. Use the smallest possible float instead. slope = ydistance/sys.float_info.min return slope class Line2D: """ Represents an infinite-lengthed line in a 2-dimensional plane. :param slope: Slope of the line. :param yintercept: Y-intercept of the line. """ def __init__(self, slope = 1.0, yintercept = 0.0): self.slope = slope self.yintercept = yintercept def __str__(self): return 'y = %2fx + %f' % (self.slope, self.yintercept) @classmethod def from_two_points(cls, point1, point2): """ Creates an infinite-lengthed line in a 2-dimensional plane given two points on the line. :param point1: First point on the line. :param point2: Second point on the line. :returns: Line2D object. """ slope = point1.get_slope(point2) # Since the equation of a line in slope-intercept form is y = mx - m(x1) + (y1), # where - m(x1) + (y1) is the y-intercept. yintercept = (-(slope * point1.x) + point1.y) line2d = cls(slope, yintercept) return line2d @classmethod def from_point_slope(cls, slope, point): """ Creates an infinite-lengthed line in a 2-dimensional plane given a point on the line and the line's slope. :param slope: Slope of the line. :param point: Point on the line. :returns: Line2D object. """ # Since the equation of a line in slope-intercept form is y = mx - m(x1) + (y1), # where - m(x1) + (y1) is the y-intercept. yintercept = (-(slope * point.x) + point.y) line2d = cls(slope, yintercept) return line2d def includes_point(self, point): """ Determines if a point is on or included in the line. :param point: Point to be determine if on the line. :returns: Boolean stating if the point is on the line. """ # Given a value x-coordinate, determine the corresponding y-coordinate # on the line (y = mx + b). liney = (self.slope * point.x) - self.yintercept return (liney == point.y) def is_above_point(self, point): """ Determines if the line is above a given point. .. note:: If the line is vertical with a positive infinite slope, the result of this function will be true if the point is on the left side of the line. :param point: Point to determine the position with. :returns: Boolean stating if the line is above the given point. """ # Given a value x-coordinate, determine the corresponding y-coordinate # on the line (y = mx + b). liney = (self.slope * point.x) - self.yintercept return (liney > point.y) def get_angle_between(self, line): """ Gets the angle between the line and another line. :param line: Line used to calculate the angle in between. :returns: Angle in between the two line in radians. """ angle = atan((self.slope - line.slope) / (1 + (self.slope * line.slope))) return angle ```
{ "source": "JLawrence-SADA/memegen", "score": 2 }
#### File: app/utils/meta.py ```python from urllib.parse import unquote import aiohttp from sanic.log import logger from .. import settings def get_watermark(request, watermark: str) -> tuple[str, bool]: updated = False if watermark == "none": watermark = "" elif watermark: if watermark == settings.DEFAULT_WATERMARK: logger.warning(f"Redundant watermark: {watermark}") updated = True elif watermark not in settings.ALLOWED_WATERMARKS: logger.warning(f"Unknown watermark: {watermark}") watermark = settings.DEFAULT_WATERMARK updated = True else: watermark = settings.DEFAULT_WATERMARK return watermark, updated async def track(request, lines: list[str]): text = " ".join(lines).strip() trackable = not any( name in request.args for name in ["height", "width", "watermark"] ) if text and trackable and settings.REMOTE_TRACKING_URL: async with aiohttp.ClientSession() as session: params = dict( text=text, source="memegen.link", context=unquote(request.url), ) logger.info(f"Tracking request: {params}") response = await session.get(settings.REMOTE_TRACKING_URL, params=params) if response.status != 200: try: message = await response.json() except aiohttp.client_exceptions.ContentTypeError: message = response.text logger.error(f"Tracker response: {message}") ```
{ "source": "JLazarte/notebook_convert", "score": 2 }
#### File: notebook_convert/nb_lib/formatter.py ```python import os import nbformat from nbconvert import MarkdownExporter, PDFExporter, RSTExporter from nbconvert.writers import FilesWriter SUPPORTED_FORMATS = {"md", "pdf", "rst"} SUPPORTED_DESTINATIONS_MODES = {"same_place", "mirror_folder"} class Formatter: def __init__(self, output_format, destination_mode): assert output_format in SUPPORTED_FORMATS, f"supported formats are {SUPPORTED_FORMATS}" assert ( destination_mode in SUPPORTED_DESTINATIONS_MODES ), f"supported destination modes are {SUPPORTED_DESTINATIONS_MODES}" self.read_encoding = "utf-8" self.write_encoding = "utf-8" self.format = output_format self.destination_mode = destination_mode if self.format == "pdf": pdf = PDFExporter() pdf.exclude_output_prompt = True pdf.exclude_input = True self.exporter = pdf elif self.format == "rst": self.exporter = RSTExporter() else: self.exporter = MarkdownExporter() def get_output_dir_base(self, file): isMirrorFolder = self.destination_mode == "mirror_folder" return f"converted/to_{self.format}/" if isMirrorFolder else "" def get_output_file_path(self, file): filePath = file.split("/")[0:-1] isMultiFilesFormat = self.format in ["rst", "md"] if isMultiFilesFormat: filePath.append(self.dest_file(file, withFormat=False)) return "/".join(filePath) + "/" if len(filePath) > 0 else "" def dst_folder(self, file): return self.get_output_dir_base(file) + self.get_output_file_path(file) def dest_file(self, file, withFormat=True): return file.split("/")[-1].replace(".ipynb", "." + self.format if withFormat else "") def dst_path(self, file): return self.dst_folder(file) + self.dest_file(file) def convert(self, file): assert os.path.exists(file), f"this should not happen, path {file} must exist" body, resources = self.export(file) fw = FilesWriter() fw._makedir(self.dst_folder(file)) fw.build_directory = self.dst_folder(file) fw.write(body, resources, notebook_name=self.dest_file(file, withFormat=False)) def export(self, file): with open(file, "r", encoding=self.read_encoding) as f: nb = nbformat.read(f, as_version=4) body, resources = self.exporter.from_notebook_node(nb) return body, resources def needs_format(self, file): f_path = self.dst_path(file) if not os.path.exists(f_path): return True notebook_modified = os.stat(file).st_mtime formatted_modified = os.stat(f_path).st_mtime return notebook_modified > formatted_modified def save_figures(self, resources): if "outputs" not in resources: return for name, bytes_ in resources["outputs"]: print(f"name = {name}, bytes = {len(bytes_)}") for key, value in resources.items(): pass ``` #### File: notebook_convert/nb_lib/git.py ```python import pygit2 from pygit2 import GIT_STATUS_INDEX_NEW, GIT_STATUS_INDEX_MODIFIED STAGED_STATUSES = {GIT_STATUS_INDEX_NEW, GIT_STATUS_INDEX_MODIFIED} def is_staged(file): repo = pygit2.Repository(".") staged_files = [f for f, flag in repo.status().items() if flag in STAGED_STATUSES] return file in staged_files ```
{ "source": "jlaz/BISTRO-Starter-Kit", "score": 3 }
#### File: BISTRO-Starter-Kit/utilities/input_sampler.py ```python from collections import Counter from pathlib import Path import numpy as np import pandas as pd from utils import lazyprop MASS_TRANSIT_FARE_FILE = "MassTransitFares.csv" AGE_RANGE_LOWER = np.array([i for i in range(1, 116, 5)]) AGE_RANGE_UPPER = np.array([i for i in range(5, 120, 5)]) INCOME_RANGE_LOWER = np.array([0] + [i for i in range(5000, 150000, 5000)]) INCOME_RANGE_UPPER = np.array([i for i in range(4999, 149999, 5000)] + [150000]) def scenario_agencies(data_dir, scenario_name): """Given root data directory and scenario name, computes a mapping of agency names to their respective paths. Parameters ---------- data_dir : Path Absolute path to root of data directory scenario_name : str Name of scenario with GTFS data Returns ------- dict Dictionary of agency names mapped to directories containing files comprising their GTFS data. """ gtfs_root = (data_dir / scenario_name).absolute() return {p.stem: p for p in gtfs_root.iterdir()} class AgencyGtfsDataManager(object): def __init__(self, agency_gtfs_path): """Used to cache an agency's GTFS data for sampling purposes Parameters ---------- agency_gtfs_path : pahtlib.Path object Directory containing the agency's gtfs data """ self.agency_gtfs_path = agency_gtfs_path @lazyprop def routes(self): return pd.read_csv(self.agency_gtfs_path / "gtfs_data/routes.txt", header=0, index_col=1, na_values=None, delimiter=',') @lazyprop def vehicle_types(self): return pd.read_csv(self.agency_gtfs_path / "availableVehicleTypes.csv", header=0, index_col=0, na_values=None, delimiter=',') @lazyprop def trips(self): return pd.read_csv(self.agency_gtfs_path / "gtfs_data/trips.txt", header=0, index_col=2, na_values=None, delimiter=',') def sample_vehicle_fleet_mix_input(num_records, gtfs_manager, bus_set=None): """Generate random `VehicleFleetMix` input according to possible substitute vehicle trip ids available for an agency. Parameters ---------- num_records : int Number of randomly sampled records to create. gtfs_manager : `AgencyGtfsDataManager` An instance of the `AgencyGtfsDataManager` for the target agency. bus_set : list of strings A list of possible bus types that we want to sample from if we don't want to sample from all bus types. If bus_set = None samples from all bus types Returns ------- `pd.DataFrame` `num_records` `VehicleFleetMix` records. These are unique by `routeId` for the `agencyId` specified on the `gtfs_manager` Raises ------ `ValueError` If the `num_records` is in excess of the number of routes that an agency schedules buses on. """ df_columns = ["agencyId", "routeId", "vehicleTypeId"] if num_records == 0: return pd.DataFrame({k: [] for k in df_columns}) max_num_routes = gtfs_manager.routes.shape[0] if num_records > max_num_routes: raise ValueError( "More samples requested than the number of routes available in agency; please enter a " "number less than {}".format( max_num_routes)) route_agency_sample = gtfs_manager.routes.sample(num_records) routes = pd.Series(route_agency_sample.index.values) agency = pd.Series(route_agency_sample.agency_id.values) if bus_set is None: vehicles = pd.Series((gtfs_manager.vehicle_types.filter(like="BUS", axis=0)) .sample(num_records, replace=True).index) else: vehicles = pd.Series(bus_set).sample(num_records, replace=True).reset_index(drop=True) df = pd.concat([agency, routes, vehicles], axis=1, ignore_index=True) df.columns = df_columns return df def _sample_census_interval(census_type): if census_type == "age": eps = AGE_RANGE_LOWER, AGE_RANGE_UPPER elif census_type == "income": eps = INCOME_RANGE_LOWER, INCOME_RANGE_UPPER else: raise ValueError("Undefined census type!") right_ep = np.random.choice(eps[1]) left_ep = np.random.choice(eps[0][eps[0] < right_ep]) return "[{}:{}]".format(left_ep, right_ep) def sample_frequency_adjustment_input(num_service_periods, gtfs_manager): """Generate random `FrequencyAdjustment` inputs according to trips run by an agency. Creates `num_records` frequency adjustment records where fields for each record where the `headway_secs` field is randomly chosen from a range of between `min_headway_seconds` (per the route.txt file in the corresponding gtfs data for the trip) and 7200 seconds at intervals of 60 seconds and the `min_time` and `max_time` field are sampled between the 0 and 86340 seconds, respectively (i.e., the possible minimum and maximum number of seconds in a day of 86359 seconds, given the headway interval). Note that a frequency adjustment is really tied to a route based on a particular trip. The trip serves as a template for the frequency adjustment. See the documentation for further details. Parameters ---------- num_service_periods : int Number of service periods with a new headway that can be added to a route. gtfs_manager : `AgencyGtfsDataManager` An instance of the `AgencyGtfsDataManager` for the target agency. Returns ------- `pd.DataFrame` `num_records` `FrequencyAdjustmentInput` records. """ if num_service_periods > 5: raise ValueError( "The maximum number of service periods per route is equal to {0} although it should not exceed 5.".format( num_service_periods)) df_columns = ['route_id', 'start_time', 'end_time', 'headway_secs'] grouped = [np.random.randint(num_service_periods) * [route_id] for route_id in gtfs_manager.routes.index.values.astype(int)] route_id_list = [i for j in grouped for i in j] min_secs = 0 max_secs = 86399 min_headway_seconds = 180 max_headway_seconds = 7199 frequency_data = [] route_frequency = Counter(route_id_list).items() for route_id, route_num_service_periods in route_frequency: st_et_flat = np.sort( np.random.choice(np.arange(min_secs, max_secs, 60), route_num_service_periods, replace=False)) for st, et in zip(st_et_flat, st_et_flat[1:]): headway = np.random.choice(np.arange(min_headway_seconds, max_headway_seconds, 60)) frequency_data.append([route_id, st, et, headway]) frequency_adjustment_df = pd.DataFrame(frequency_data, columns=df_columns) frequency_adjustment_df['exact_times'] = 0 return frequency_adjustment_df def sample_mode_incentives_input(num_records, gtfs_manager=None, min_incentive=0.1, max_incentive=50): """Generate random mode incentives inputs based on modes available for subsidies. Creates `num_records` ModeIncentivesInput records where fields for each record are randomly sampled as follows: * `age` : an interval with age values sampled uniformly from [1 .. 116]\cup[120] inclusive, in steps of 5. * `mode` : uniformly from list of available modes for scenario. * `income` : an interval with income values sampled uniformly from integers values [0 to 144,999]\cup[150,000] in steps of 5,000. * `amount` : uniformly from `range(0.1,50)`. The amount of subsidy is rounded to the nearest $0.10. Parameters ---------- num_records : int Number of randomly sampled records to create. gtfs_manager : `AgencyGtfsDataManager`, optional An instance of the `AgencyGtfsDataManager` for the target agency. min_incentive : float Minimum amount accepted for an incentive according to the inputs specifications of the Starter-Kit max_incentive : float Maximum amount accepted for an incentive according to the inputs specifications of the Starter-Kit Notes ----- `gtfs_manager` added to support duck-typing this field. Returns ------- `DataFrame` `num_records` `ModeIncentivesInput` records. """ df_columns = ['mode', 'age', 'income', 'amount'] if num_records == 0: return pd.DataFrame({k: [] for k in df_columns}) possible_modes = ['OnDemand_ride', 'walk_transit', 'drive_transit'] modes = np.random.choice(possible_modes, num_records).tolist() ages = [_sample_census_interval("age") for _ in range(num_records)] incomes = [_sample_census_interval("income") for _ in range(num_records)] amounts = [np.round(np.random.uniform(min_incentive, max_incentive), 1) for _ in range(num_records)] return pd.DataFrame(np.array([modes, ages, incomes, amounts]).T, columns=df_columns) def sample_mass_transit_fares_input(num_records, gtfs_manager, max_fare_amount=10.0): """Generate `num_records` random `PtFares` for an agency (specified within `gtfs_manager`) by randomly sampling age and fare amount. The fare amount will not exceed the maximum fare amount and cannot be less than $0.10 (else, there shouldn't have been a fare assigned in the first place). The age will be sampled from 1 to 120 inclusive (maximum age in scenario). Parameters ---------- num_records : int Number of randomly sampled records to create. gtfs_manager : `AgencyGtfsDataManager` An instance of the `AgencyGtfsDataManager` for the target agency. max_fare_amount : float The maximum fare amount that should be charged. Returns ------- `pd.DataFrame` `num_records` `PtFares` records. These are unique by `routeId` for the `agencyId` specified on the `gtfs_manager` Raises ------ `ValueError` If the `num_records` is in excess of the number of routes that an agency schedules buses on. """ df_columns = ['agencyId', 'routeId', 'age', 'amount'] if num_records == 0: return pd.read_csv('../submission-inputs/{0}'.format(MASS_TRANSIT_FARE_FILE)) max_num_routes = gtfs_manager.routes.shape[0] if num_records > max_num_routes: raise ValueError( "More samples requested than the number of routes available in agency; please enter a " "number less than {}".format(max_num_routes)) route_agency_sample = gtfs_manager.routes.sample(num_records) routes = pd.Series(route_agency_sample.index.values) agency = pd.Series(route_agency_sample.agency_id.values) amounts = [np.round(np.random.uniform(0.1, max_fare_amount), 1) for _ in range(num_records)] ages = [_sample_census_interval("age") for _ in range(num_records)] return pd.DataFrame(np.array([agency, routes, ages, amounts]).T, columns=df_columns) ``` #### File: BISTRO-Starter-Kit/utilities/plans_parser.py ```python import pandas as pd import numpy as np from pathlib import Path from data_parsing import extract_dataframe, open_xml import gzip from collections import defaultdict # ########### 1. INTERMEDIARY FUNCTIONS ########### def unzip_file(path: Path): """ Unzips a file ending with .gz Parameters ---------- path: pathlib.Path object or os.path object Returns ------- path: string Path of the unzipped folder or file """ if Path(path).suffix == ".gz": return gzip.open(path) else: return path def parse_bus_fare_input(bus_fare_data_df, route_ids): """Processes the `MassTransitFares.csv` input file into a dataframe with rows = ages and columns = routes Parameters ---------- bus_fare_data_df: pandas DataFrame Bus fares extracted from the "submission-inputs/MassTransitFares.csv" route_ids: list of strings All routes ids where buses operate (from `routes.txt` file in the GTFS data) Returns ------- bus_fare_per_route_df: pandas DataFrame Dataframe with rows = ages and columns = routes """ bus_fare_per_route_df = pd.DataFrame(np.zeros((120, len(route_ids))), columns=route_ids) routes = bus_fare_data_df['routeId'].unique() for r in routes: if np.isnan(r): cols = route_ids else: cols = int(r) # get all fare rows for this route: r_fares = bus_fare_data_df.loc[np.isnan(bus_fare_data_df['routeId']),] for i, row in r_fares.iterrows(): age_group = row['age'] left = age_group[0] ages = age_group[1:-1].split(':') right = age_group[-1] if left == '(': min_a = int(ages[0]) + 1 else: min_a = int(ages[0]) if right == ')': max_a = int(ages[1]) - 1 else: max_a = int(ages[1]) bus_fare_per_route_df.loc[min_a:max_a, cols] = float(row['amount']) return bus_fare_per_route_df def calc_fuel_costs(legs_df, fuel_cost_dict): # legs_df: legs_dataframe # fuel_cost_dict: {fuel_type: $/MJoule} # returns: legs_df augmented with an additional column of estimated fuel costs legs_df.loc[:, "FuelCost"] = np.zeros(legs_df.shape[0]) for f in fuel_cost_dict.keys(): legs_df.loc[legs_df["fuelType"] == f.capitalize(), "FuelCost"] = (pd.to_numeric( legs_df.loc[legs_df["fuelType"] == f.capitalize(), "fuel"]) * float(fuel_cost_dict[f])) / 1000000 return legs_df def calc_transit_fares(row, bus_fare_dict, person_df, trip_to_route): pid = row['PID'] age = person_df.loc[pid,'Age'] vehicle = row['Veh'] route = trip_to_route[vehicle.split(':')[1]] fare = bus_fare_dict.loc[age,route] return fare def calc_fares(legs_df, ride_hail_fares, bus_fare_dict, person_df, trip_to_route): # legs_df: legs_dataframe # ride_hail_fares: {'base': $, 'duration': $/hour, 'distance': $/km} # transit_fares isnt being used currently - would need to be updated to compute fare based on age # returns: legs_df augmented with an additional column of estimated transit and on-demand ride fares legs_df["Fare"] = np.zeros(legs_df.shape[0]) legs_df.loc[legs_df["Mode"] == 'bus', "Fare"] = legs_df.loc[legs_df["Mode"] == 'bus'].apply( lambda row: calc_transit_fares(row, bus_fare_dict, person_df, trip_to_route), axis=1) legs_df.loc[legs_df["Mode"] == 'OnDemand_ride', "Fare"] = ride_hail_fares['base'] + ( pd.to_timedelta(legs_df['Duration_sec']).dt.seconds / 60) * float(ride_hail_fares['duration']) + ( pd.to_numeric( legs_df['Distance_m']) / 1000) * ( 0.621371) * float(ride_hail_fares['distance']) return legs_df def one_path(path_trav, leg_id, pid, trip_id): # extracts leg data from path traversal # returns a leg_dataframe row l_row = path_trav leg_id_this = leg_id + l_row.name leg_id_full = trip_id + "_l-" + str(leg_id) veh_id = l_row["vehicle"] leg_start_time = l_row['departureTime'] veh_type = l_row['vehicleType'] distance = l_row['length'] leg_end_time = l_row['arrivalTime'] leg_duration = int(leg_end_time) - int(leg_start_time) leg_path = l_row['links'] leg_mode = l_row['mode'] leg_fuel = l_row['fuel'] leg_fuel_type = l_row['fuelType'] # return the leg record return [pid, trip_id, leg_id_full, leg_mode, veh_id, veh_type, leg_start_time, leg_end_time, leg_duration, distance, leg_path, leg_fuel, leg_fuel_type] def parse_transit_trips(row, non_bus_path_traversal_events, bus_path_traversal_events, enter_veh_events): # inputs: # row: a row from transit_trips_df # path_traversal_events: non-transit path traversal df # bus_path_traversal_events: transit path traversal df # enter_veh_events: enter vehicle events leg_array = [] pid = row['PID'] trip_id = row['Trip_ID'] start_time = row['Start_time'].total_seconds() duration = row['Duration_sec'] end_time = row['End_time'] mode = row['Mode'] # initiate the leg ID counter leg_id = 0 # get all path traversals occuring within the time frame of this trip in which the driver is the person making this trip path_trav = non_bus_path_traversal_events[ (non_bus_path_traversal_events['driver'] == pid) & (non_bus_path_traversal_events['arrivalTime'] <= end_time) & ( non_bus_path_traversal_events['departureTime'] >= start_time)] path_trav = path_trav.reset_index(drop=True) # get the vehicle entry events corresponding to this person during the time frame of this trip veh_entries = enter_veh_events[ (enter_veh_events['person'] == pid) & (enter_veh_events['time'] >= start_time) & ( enter_veh_events['time'] <= end_time)] # get bus entry events for this person & trip bus_entries = veh_entries[veh_entries['vehicle'].str.startswith('siouxareametro-sd-us:', na=False)] bus_entries = bus_entries.reset_index(drop=True) if len(bus_entries) > 0: prev_entry_time = start_time for idx, bus_entry in bus_entries.iterrows(): if idx < len(bus_entries)-1: next_entry = bus_entries.loc[idx+1] next_entry_time = next_entry['time'] else: next_entry_time = end_time # get all path traversals occuring before the bus entry prev_path_trav = path_trav[ (path_trav['arrivalTime'] <= bus_entry['time']) & (path_trav['arrivalTime'] >= prev_entry_time)] # get all path traversals occuring after the bus entry post_path_trav = path_trav[(path_trav['arrivalTime'] > bus_entry['time']) & (path_trav['arrivalTime'] <= next_entry_time)] prev_path_trav = prev_path_trav.reset_index(drop=True) post_path_trav = post_path_trav.reset_index(drop=True) prev_entry_time = bus_entry['time'] # iterate through the path traversals prior to the bus entry if len(prev_path_trav)>0: these_legs = prev_path_trav.apply(lambda row1: one_path(row1, leg_id, pid, trip_id), axis=1) leg_array.extend(these_legs) # record transit leg leg_id += 1 leg_id_full = trip_id + "_l-" + str(leg_id) veh_id = bus_entry['vehicle'] leg_start_time = int(bus_entry['time']) if len(post_path_trav)> 0: leg_end_time = int(post_path_trav['departureTime'].values[0]) bus_path_trav = bus_path_traversal_events[(bus_path_traversal_events['vehicle'] == veh_id) & ( bus_path_traversal_events['arrivalTime'] <= leg_end_time) & (bus_path_traversal_events[ 'departureTime']>=leg_start_time)] else: leg_end_time = next_entry_time bus_path_trav = bus_path_traversal_events[(bus_path_traversal_events['vehicle'] == veh_id) & ( bus_path_traversal_events['arrivalTime'] < leg_end_time) & (bus_path_traversal_events[ 'departureTime']>=leg_start_time)] leg_duration = int(leg_end_time - bus_entry['time']) # find the path traversals of the bus corresponding to the bus entry for this trip, occuring between the last prev_path_traversal and the first post_path_traversal if len(bus_path_trav) > 0: veh_type = bus_path_trav['vehicleType'].values[0] distance = bus_path_trav['length'].sum() leg_path = [path['links'] for p, path in bus_path_trav.iterrows()] leg_mode = bus_path_trav['mode'].values[0] leg_fuel = 0 leg_fuel_type = 'Diesel' leg_array.append( [pid, trip_id, leg_id_full, leg_mode, veh_id, veh_type, leg_start_time, leg_end_time, leg_duration, distance, leg_path, leg_fuel, leg_fuel_type]) # iterate through the path traversals after the bus entry if len(post_path_trav) > 0: these_legs = post_path_trav.apply(lambda row1: one_path(row1, leg_id, pid, trip_id), axis=1) leg_array.extend(these_legs) # if the agent underwent replanning, there will be no bus entry else: leg_array = parse_walk_car_trips(row, non_bus_path_traversal_events, enter_veh_events) return leg_array def parse_walk_car_trips(row, path_traversal_events, enter_veh_events): # inputs: # row: a row from transit_trips_df # path_traversal_events: non-transit path traversal df # person_costs: person cost events df # enter_veh_events: enter vehicle events leg_array = [] pid = row['PID'] trip_id = row['Trip_ID'] start_time = row['Start_time'] duration = row['Duration_sec'] end_time = row['End_time'] mode = row['Mode'] # initiate the leg ID counter leg_id = 0 # get all path traversals occuring within the time frame of this trip in which the driver is the person making this trip path_trav = path_traversal_events.loc[ (path_traversal_events['driver'] == pid) & (path_traversal_events['arrivalTime'] <= end_time) & ( path_traversal_events['departureTime'] >= start_time.total_seconds()),] path_trav.reset_index(drop=True, inplace=True) # iterate through the path traversals if len(path_trav > 0): these_legs = path_trav.apply(lambda row: one_path(row, leg_id, pid, trip_id), axis=1) leg_array.extend(these_legs) return leg_array def parse_ridehail_trips(row, path_traversal_events, enter_veh_events): # inputs: # row: a row from transit_trips_df # path_traversal_events: non-transit path traversal df # person_costs: person cost events df # enter_veh_events: enter vehicle events leg_array = [] pid = row['PID'] trip_id = row['Trip_ID'] start_time = row['Start_time'] duration = row['Duration_sec'] end_time = row['End_time'] mode = row['Mode'] # initiate the leg ID counter leg_id = 0 # get all vehicle entry events corresponding to this person during the time frame of this trip, not including those corresponding to a walking leg veh_entry = enter_veh_events.loc[ (enter_veh_events['person'] == pid) & (enter_veh_events['time'] >= start_time.total_seconds()) & ( enter_veh_events['time'] <= end_time),] veh_entry2 = veh_entry.loc[(veh_entry['vehicle'] != 'body-' + pid),] try: veh_id = veh_entry2['vehicle'].item() leg_start_time = veh_entry2['time'].item() # get the path traversal corresponding to this ridehail trip path_trav = path_traversal_events.loc[(path_traversal_events['vehicle'] == veh_id) & ( path_traversal_events['departureTime'] == int(leg_start_time)) & (path_traversal_events['numPassengers'] > 0),] except: path_trav = [] print(row) leg_id += 1 # create leg ID leg_id_full = trip_id + "_l-" + str(leg_id) if len(path_trav) > 0: veh_type = path_trav['vehicleType'].values[0] distance = path_trav['length'].item() leg_end_time = path_trav['arrivalTime'].item() leg_duration = int(leg_end_time) - int(leg_start_time) leg_path = path_trav['links'].item() leg_mode = 'OnDemand_ride' leg_fuel = path_trav['fuel'].item() leg_fuel_type = path_trav['fuelType'].item() leg_array.append( [pid, trip_id, leg_id_full, leg_mode, veh_id, veh_type, leg_start_time, leg_end_time, leg_duration, distance, leg_path, leg_fuel, leg_fuel_type]) return leg_array def label_trip_mode(modes): if ('walk' in modes) and ('car' in modes) and ('bus' in modes): return 'drive_transit' elif ('car' in modes) and ('bus' in modes): return 'drive_transit' elif ('walk' in modes) and ('bus' in modes): return 'walk_transit' elif ('walk' in modes) and ('car' in modes): return 'car' elif ('car' == modes): return 'car' elif ('OnDemand_ride' in modes): return 'OnDemand_ride' elif ('walk' == modes): return 'walk' else: print(modes) def merge_legs_trips(legs_df, trips_df): trips_df = trips_df[ ['PID', 'Trip_ID', 'Origin_Activity_ID', 'Destination_activity_ID', 'Trip_Purpose', 'Mode']] trips_df.columns = ['PID', 'Trip_ID', 'Origin_Activity_ID', 'Destination_activity_ID', 'Trip_Purpose', 'plannedTripMode'] legs_grouped = legs_df.groupby("Trip_ID") unique_modes = legs_grouped['Mode'].unique() unique_modes_df = pd.DataFrame(unique_modes) unique_modes_df.columns = ['legModes'] merged_trips = trips_df.merge(legs_grouped['Duration_sec','Distance_m','fuel','FuelCost','Fare'].sum(),on='Trip_ID') merged_trips.set_index('Trip_ID',inplace=True) legs_transit = legs_df.loc[legs_df['Mode']=='bus',] legs_transit_grouped = legs_transit.groupby("Trip_ID") count_modes = legs_transit_grouped['Mode'].count() merged_trips.loc[count_modes.loc[count_modes.values >1].index.values,'Fare'] = merged_trips.loc[count_modes.loc[count_modes.values >1].index.values,'Fare']/count_modes.loc[count_modes.values >1].values merged_trips = merged_trips.merge(unique_modes_df,on='Trip_ID') legs_grouped_start_min = pd.DataFrame(legs_grouped['Start_time'].min()) legs_grouped_end_max = pd.DataFrame(legs_grouped['End_time'].max()) merged_trips= merged_trips.merge(legs_grouped_start_min,on='Trip_ID') merged_trips= merged_trips.merge(legs_grouped_end_max,on='Trip_ID') merged_trips['realizedTripMode'] = merged_trips['legModes'].apply(lambda row: label_trip_mode(row)) return merged_trips # ########### 2. PARSING AND PROCESSING THE XML FILES INTO PANDAS DATA FRAMES ############### def get_person_output_from_households_xml(households_xml, output_folder_path): """ - Parses the outputHouseholds file to create the households_dataframe gathering each person's household attributes (person id, household id, number of vehicles in the household, overall income of the household) - Saves the household dataframe to csv Parameters ---------- households_xml: ElementTree object Output of the open_xml() function for the `outputHouseholds.xml` file output_folder_path: pathlib.Path object Absolute path of the output folder of the simulation (format of the output folder name: `<scenario_name>-<sample_size>__<date and time>`) Returns ------- households_df: pandas Dataframe Record of each person's household attributes (person id, household id, number of vehicles in the household, overall income of the household) """ # get root of the `outputHouseholds.xml` file households_root = households_xml.getroot() hhd_array = [] for hhd in households_root.getchildren(): hhd_id = hhd.get('id').strip() hhd_children = hhd.getchildren() # check for vehicles; record household attributes if len(hhd_children) == 3: members = hhd_children[0] vehicles = hhd_children[1] income = hhd_children[2] vehs = vehicles.getchildren() hdd_num_veh = len(vehs) else: members = hhd_children[0] vehicles = [] income = hhd_children[1] hdd_num_veh = 0 hhd_income = income.text.strip() # get list of persons in household and make a record of each person list_members = members.getchildren() for person in list_members: pid = person.attrib['refId'].strip() hhd_array.append([pid, hhd_id, hdd_num_veh, hhd_income]) # convert array to dataframe and save households_df = pd.DataFrame(hhd_array, columns=['PID', 'Household_ID', 'Household_num_vehicles', 'Household_income [$]']) households_df.to_csv(str(output_folder_path) + "/households_dataframe.csv") return households_df def get_person_output_from_output_plans_xml(output_plans_xml): """ Parses the outputPlans file to create the person_dataframe gathering individual attributes of each person (person id, age, sex, home location) Parameters ---------- output_plans_xml: ElementTree object Output of the open_xml() function for the `outputPlans.xml` file Returns ------- person_df: pandas DataFrame Record of some of each person's individual attributes (person id, age, sex, home location) """ # get root of the `outputPlans.xml` file output_plans_root = output_plans_xml.getroot() person_array = [] for person in output_plans_root.findall('./person'): pid = person.get('id') attributes = person.findall('./attributes')[0] age = int(attributes.findall('./attribute[<EMAIL>="age"]')[0].text) sex = attributes.findall('./attribute[<EMAIL>="sex"]')[0].text plan = person.findall('./plan')[0] home = plan.findall('./activity')[0] home_x = home.get('x') home_y = home.get('y') person_array.append([pid, age, sex, home_x, home_y]) # convert person array to dataframe person_df = pd.DataFrame(person_array, columns=['PID', 'Age', 'Sex', 'Home_X', 'Home_Y']) return person_df def get_person_output_from_output_person_attributes_xml(persons_xml): """ Parses outputPersonAttributes.xml file to create population_attributes_dataframe gathering individual attributes of the population (person id, excluded modes (i.e. transportation modes that the peron is not allowed to use), income, rank, value of time). Parameters ---------- persons_xml: ElementTree object Output of the open_xml() function for the `outputPersonAttributes.xml` file Returns ------- person_df_2: pandas DataFrame Record of some of each person's individual attributes (person id, excluded modes (i.e. transportation modes that the peron is not allowed to use), income, rank, value of time) """ # get root of the `outputPersonAttributes.xml` file persons_root = persons_xml.getroot() population_attributes = [] population = persons_root.getchildren() for person in population: pid = person.get('id') attributes = person.findall("./attribute") population_attributes_dict = {} population_attributes_dict['PID'] = pid for attribute in attributes: population_attributes_dict[attribute.attrib['name']] = attribute.text population_attributes.append(population_attributes_dict) # convert attribute array to dataframe person_df_2 = pd.DataFrame(population_attributes) return person_df_2 import time def get_persons_attributes_output(output_plans_xml, persons_xml, households_xml, output_folder_path): """Outputs the augmented persons dataframe, including all individual and household attributes for each person Parameters ---------- output_plans_xml: ElementTree object Output of the open_xml() function for the `outputPlans.xml` file persons_xml: ElementTree object Output of the open_xml() function for the `outputPersonAttributes.xml` file households_xml: ElementTree object Output of the open_xml() function for the `outputHouseholds.xml` file output_folder_path: pathlib.Path object Absolute path of the output folder of the simulation (format of the output folder name: `<scenario_name>-<sample_size>__<date and time>`) Returns ------- persons_attributes_df: pandas DataFrame Record of all individual and household attributes for each person """ # get the person attributes dataframes households_df = get_person_output_from_households_xml(households_xml, output_folder_path) person_df = get_person_output_from_output_plans_xml(output_plans_xml) person_df_2 = get_person_output_from_output_person_attributes_xml(persons_xml) # set the index of all dataframes to PID (person ID) person_df.set_index('PID', inplace=True) person_df_2.set_index('PID', inplace=True) households_df.set_index('PID', inplace=True) # join the three dataframes together persons_attributes_df = person_df.join(person_df_2) persons_attributes_df = persons_attributes_df.join(households_df) return persons_attributes_df def get_activities_output(experienced_plans_xml): """ Parses the experiencedPlans.xml file to create the activities_dataframe, gathering each person's activities' attributes (person id, activity id, activity type, activity start time, activity end time) Parameters ---------- experienced_plans_xml: ElementTree object Output of the open_xml() function for the `<num_iterations>.experiencedPlans.xml` file located in the `/ITERS/it.<num_iterations> folder Returns ------- activities_df: pandas DataFrame Record of each person's activities' attributes trip_purposes: list of string purpose of each trip, ege, "Work", "Home".etc... """ # get root of experiencedPlans xml file plans_root = experienced_plans_xml.getroot() acts_array = [] # iterate through persons, recording activities and trips for each person for person in plans_root.findall('./person'): # we use the person ID from the raw output pid = person.get('id') plan = person.getchildren()[0] activities = plan.findall('./activity') # initialize activity ID counters (we create activity IDs using these) act_id = 0 trip_purposes = [] # iterate through activities and make record of each activity for activity in activities: act_id += 1 # create activity ID activity_id = pid + "_a-" + str(act_id) act_type = activity.get('type') if activity.get('start_time') is None: act_start_time = None else: act_start_time = activity.get('start_time') if activity.get('end_time') is None: act_end_time = None else: act_end_time = activity.get('end_time') # record all activity types to determine trip trip_purposes trip_purposes.append([act_type]) acts_array.append([pid, activity_id, act_type, act_start_time, act_end_time]) # convert the activity_array to a dataframe activities_df = pd.DataFrame(acts_array, columns=['PID', 'Activity_ID', 'Activity_Type', 'Start_time', 'End_time']) return activities_df, trip_purposes def get_trips_output(experienced_plans_xml_path): """ Parses the experiencedPlans.xml file to create the trips dataframe, gathering each person's trips' attributes (person id, trip id, id of the origin activity of the trip, id of the destination activity of the trip, trip purpose, mode used, start time of the trip, duration of the trip, distance of the trip, path of the trip) Parameters ---------- experienced_plans_xml_path: str Output of the open_xml() function for the `<num_iterations>.experiencedPlans.xml` file located in the `/ITERS/it.<num_iterations> folder Returns ------- trips_df: pandas DataFrame Record of each person's trips' attributes """ # get root of experiencedPlans xml file experienced_plans_xml = open_xml(experienced_plans_xml_path) plans_root = experienced_plans_xml.getroot() trip_array = [] # Getting the activities dataframe _, trip_purposes = get_activities_output(experienced_plans_xml) # iterate through persons, recording activities and trips for each person for person in plans_root.findall('./person'): # we use the person ID from the raw output pid = person.get('id') plan = person.getchildren()[0] legs = plan.findall('./leg') # initialize trip ID counters (we create trip IDs using these) trip_id = 0 # iterate through trips (called legs in the `experiencedPlans.xml` file) and make record of each trip for trip in legs: trip_id += 1 # create trip ID trip_id_full = pid + "_t-" + str(trip_id) # record activity IDs for origin and destination activities of the trip o_act_id = pid + "_a-" + str(trip_id) d_act_id = pid + "_a-" + str(trip_id + 1) # identify the activity type of the trip destination to record as the trip trip_purpose trip_purpose = trip_purposes[trip_id][0] mode = trip.get('mode') dep_time = trip.get('dep_time') duration = trip.get('trav_time') route = trip.find('./route') distance = route.get('distance') path = route.text trip_array.append( [pid, trip_id_full, o_act_id, d_act_id, trip_purpose, mode, dep_time, duration, distance, path]) # convert the trip_array to a dataframe trips_df = pd.DataFrame(trip_array, columns=['PID', 'Trip_ID', 'Origin_Activity_ID', 'Destination_activity_ID', 'Trip_Purpose', 'Mode', 'Start_time', 'Duration_sec', 'Distance_m', 'Path_linkIds']) return trips_df # def get_events_output(events): # """ Parses the outputEvents.xml to gather the event types into a pandas DataFrame # # Parameters # ---------- # events: xml.etree.ElementTree.ElementTree # Element tree instance of the xml file of interest # # Returns # ------- # :pandas Dataframe # # """ # event_data = {} # root = events.getroot() # for event in root.getchildren(): # add_event_type_data_to_library(event, event_data) # return pd.DataFrame(event_data) # # # def add_event_type_data_to_library(event, event_data): # """For each child element in the tree, creates a dictionary with the "type" attribute. # # Parameters # ---------- # event: xml.etree.ElementTree.Element # Child of the element tree instance # # event_data: dictionary # Dictionary where the "type" attribute of the child element will be stored # # """ # attrib = event.attrib # event_type = attrib['type'] # if event_type not in event_data: # dd = defaultdict(list) # event_data[event_type] = dd # else: # dd = event_data[event_type] # for k, v in attrib.items(): # dd[k].append(v) def get_path_traversal_output(events_df): """ Parses the experiencedPlans.xml file to create the trips dataframe, gathering each person's trips' attributes (person id, trip id, id of the origin activity of the trip, id of the destination activity of the trip, trip purpose, mode used, start time of the trip, duration of the trip, distance of the trip, path of the trip) Parameters ---------- events_df: pandas DataFrame DataFrame extracted from the outputEvents.xml` file: output of the extract_dataframe() function trips_df: pandas DataFrame Record of each person's trips' attributes: output of the get_trips_output() function Returns ------- path_traversal_events_df: pandas DataFrame """ # creates a dataframe of trip legs using the events dataframe; creates and saves a pathTraversal dataframe to csv # outputs the legs dataframe # Selecting the columns of interest events_df = events_df[['time', 'type', 'person', 'vehicle', 'driver', 'vehicleType', 'length', 'numPassengers', 'departureTime', 'arrivalTime', 'mode', 'links', 'fuelType', 'fuel']] # get all path traversal events (all vehicle movements, and all person walk movements) path_traversal_events_df = events_df[(events_df['type'] == 'PathTraversal') & (events_df['length'] > 0)] path_traversal_events_df = path_traversal_events_df.reset_index(drop=True) path_traversal_events_df = path_traversal_events_df return path_traversal_events_df def get_legs_output(events_df, trips_df): """ Parses the outputEvents.xml and trips_df file to create the legs dataframe, gathering each person's trips' legs' attributes (PID, Trip_ID, Leg_ID, Mode, Veh, Veh_type, Start_time, End_time, Duration, Distance, Path, fuel, fuelType) Parameters ---------- events_df: pandas DataFrame DataFrame extracted from the outputEvents.xml` file: output of the extract_dataframe() function trips_df: pandas DataFrame Record of each person's trips' attributes: output of the get_trips_output() function Returns ------- legs_df: pandas DataFrame Records the legs attributes for each person's trip """ # convert trip times to timedelta; calculate end time of trips trips_df['Start_time'] = pd.to_timedelta(trips_df['Start_time']) trips_df['Duration_sec'] = pd.to_timedelta(trips_df['Duration_sec']) trips_df['End_time'] = trips_df['Start_time'].dt.seconds + trips_df['Duration_sec'].dt.seconds + ( 3600 * 24 * trips_df['Start_time'].dt.days) path_traversal_events_full = get_path_traversal_output(events_df) # get all relevant personEntersVehicle events (those occurring at time ==0 are all ridehail/bus drivers) enter_veh_events = events_df[(events_df['type'] == 'PersonEntersVehicle') & (events_df['time'] > 0)] # filter for bus path traversals only bus_path_traversal_events = path_traversal_events_full[path_traversal_events_full['mode'] == "bus"] # filter for car & body path traversals only non_bus_path_traversal_events = path_traversal_events_full[path_traversal_events_full['mode'] != "bus"] # get all PersonCost events (record the expenditures of persons during a trip) # person_costs = events_df.loc[events_df['type']=='PersonCost',] legs_array = [] # record all legs corresponding to OnDemand_ride trips on_demand_ride_trips = trips_df.loc[((trips_df['Mode'] == 'OnDemand_ride') | (trips_df['Mode'] == 'ride_hail')),] on_demand_ride_legs_array = on_demand_ride_trips.apply( lambda row: parse_ridehail_trips(row, non_bus_path_traversal_events, enter_veh_events), axis=1) for bit in on_demand_ride_legs_array.tolist(): legs_array.extend(tid for tid in bit) # record all legs corresponding to transit trips transit_trips_df = trips_df[(trips_df['Mode'] == 'drive_transit') | (trips_df['Mode'] == 'walk_transit')] transit_legs_array = transit_trips_df.apply( lambda row: parse_transit_trips(row, non_bus_path_traversal_events, bus_path_traversal_events, enter_veh_events), axis=1) for bit in transit_legs_array.tolist(): legs_array.extend(tid for tid in bit) # record all legs corresponding to walk and car trips walk_car_trips_df = trips_df.loc[(trips_df['Mode'] == 'car') | (trips_df['Mode'] == 'walk'),] walk_car_legs_array = walk_car_trips_df.apply( lambda row: parse_walk_car_trips(row, non_bus_path_traversal_events, enter_veh_events), axis=1) for bit in walk_car_legs_array.tolist(): legs_array.extend(tid for tid in bit) # convert the leg array to a dataframe legs_df = pd.DataFrame(legs_array, columns=['PID', 'Trip_ID', 'Leg_ID', 'Mode', 'Veh', 'Veh_type', 'Start_time', 'End_time', 'Duration_sec', 'Distance_m', 'Path', 'fuel', 'fuelType']) return legs_df, path_traversal_events_full # ############ 3. GENERATE THE CSV FILES ########### def extract_person_dataframes(output_plans_path, persons_path, households_path, output_folder_path): """ Create a csv file from the processed person dataframe Parameters ---------- output_plans_path: pathlib.Path object Absolute path of the the `outputPlans.xml` file persons_path: pathlib.Path object Absolute path of the the `outputPersonAttributes.xml` file households_path: pathlib.Path object Absolute path of the the `outputHouseholds.xml` file output_folder_path: pathlib.Path object Absolute path of the output folder of the simulation (format of the output folder name: `<scenario_name>-<sample_size>__<date and time>`) Returns ------- persons_attributes_df: pandas DataFrame Record of all individual and household attributes for each person """ # opens the xml files output_plans_xml = open_xml(output_plans_path) persons_xml = open_xml(persons_path) households_xml = open_xml(households_path) persons_attributes_df = get_persons_attributes_output(output_plans_xml, persons_xml, households_xml, output_folder_path) persons_attributes_df.to_csv(str(output_folder_path) + "/persons_dataframe.csv") print("person_dataframe.csv generated") return persons_attributes_df def extract_activities_dataframes(experienced_plans_path, output_folder): """ Create a csv file from the processed activities dataframe Parameters ---------- experienced_plans_path: pathlib.Path object output_folder_path: pathlib.Path object Absolute path of the output folder of the simulation (format of the output folder name: `<scenario_name>-<sample_size>__<date and time>`) Returns ------- activities_df """ # opens the experiencedPlans and passes the xml file to get_activity_trip_output # returns the actitivities_dataframe and trips_dataframe experienced_plans_xml = open_xml(experienced_plans_path) activities_df, _ = get_activities_output(experienced_plans_xml) # convert dataframes into csv files activities_df.to_csv(str(output_folder) + "/activities_dataframe.csv") print("activities_dataframe.csv generated") return activities_df def extract_legs_dataframes(events_path, trips_df, person_df, bus_fares_df, trip_to_route, fuel_costs, output_folder_path): """ Create a csv file from the processes legs dataframe Parameters ---------- events_path: pathlib.Path object Absolute path of the `ITERS/<num_iterations>.events.csv.gz` file trips_df: pandas DataFrame Record of each person's trips' attributes: output of the get_trips_output() function person_df: pandas DataFrame Record of each person's trips' attributes: output of the get_persons_attributes_output() function bus_fares_df: pandas DataFrame Dataframe with rows = ages and columns = routes: output of the parse_bus_fare_input() function trip_to_route: dictionary route_id / trip_id correspondence extracted from the `trips.csv` file in the `/reference-data/sioux_faux/sioux_faux_bus_lines/gtfs_data` folder of the Starter Kit fuel_costs: dictionary fuel type / fuel price correspondence extracted from the `beamFuelTypes.csv` file in the `/reference-data/sioux_faux/config/<SAMPLE_SIZE>` folder of the Starter Kit output_folder_path: pathlib.Path object Absolute path of the output folder of the simulation (format of the output folder name: `<scenario_name>-<sample_size>__<date and time>`) Returns ------- legs_df: pandas DataFrame Records the legs attributes for each person's trips """ # opens the outputevents and passes the xml file to get_legs_output # augments the legs dataframe with estimates of the fuelcosts and fares for each leg # extract a dataframe from the `outputEvents.xml` file #all_events_df = extract_dataframe(str(events_path)) all_events_df = pd.read_csv(events_path) legs_df, path_traversal_df = get_legs_output(all_events_df, trips_df) path_traversal_df_new = calc_fuel_costs(path_traversal_df, fuel_costs) path_traversal_df_new.to_csv(str(output_folder_path) + '/path_traversals_dataframe.csv') print("path_traversals_dataframe.csv generated") legs_df_new = calc_fuel_costs(legs_df, fuel_costs) ride_hail_fares = {'base': 0.0, 'distance': 1.0, 'duration': 0.5} legs_df_new_new = calc_fares(legs_df_new, ride_hail_fares, bus_fares_df, person_df, trip_to_route) legs_df.to_csv(str(output_folder_path) + '/legs_dataframe.csv') print("legs_dataframe.csv generated") return legs_df_new_new def output_parse(events_path, output_plans_path, persons_path, households_path, experienced_plans_path, bus_fares_data_df, route_ids, trip_to_route, fuel_costs, output_folder_path): persons_attributes_df = extract_person_dataframes(output_plans_path, persons_path, households_path, output_folder_path) activities_df = extract_activities_dataframes(experienced_plans_path, output_folder_path) trips_df = get_trips_output(experienced_plans_path) bus_fares_df = parse_bus_fare_input(bus_fares_data_df, route_ids) legs_df = extract_legs_dataframes(events_path, trips_df, persons_attributes_df, bus_fares_df, trip_to_route, fuel_costs, output_folder_path) final_trips_df = merge_legs_trips(legs_df, trips_df) final_trips_df.to_csv(str(output_folder_path) +'/trips_dataframe.csv') print("trips_dataframe.csv generated") ```
{ "source": "jlazic/glog-sms-gateway", "score": 2 }
#### File: glog-sms-gateway/sms/views.py ```python __author__ = '<EMAIL>' import json from django.http import HttpResponse, HttpResponseNotAllowed from sms.models import StatusLog, Phone, Message from sms.forms import RequestForm from django.views.decorators.csrf import csrf_exempt from django.shortcuts import get_object_or_404 from jsonview.decorators import json_view from django.contrib.auth.decorators import login_required from django.utils.decorators import method_decorator from django.views.generic.edit import CreateView from django.views.generic.detail import DetailView from django.views.generic.base import RedirectView from django.views.generic.list import ListView from forms import MessageForm from django.conf import settings from django.core.exceptions import PermissionDenied class Redirect(RedirectView): url = '/sms/user/send/' class Index(CreateView): template_name = 'sms/user_send_message.html' form_class = MessageForm def get_context_data(self, **kwargs): context = super(Index, self).get_context_data(**kwargs) context['request'] = self.request return context @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(Index, self).dispatch(*args, **kwargs) class MessageDetail(DetailView): model = Message @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(MessageDetail, self).dispatch(*args, **kwargs) def get_context_data(self, **kwargs): context = super(MessageDetail, self).get_context_data(**kwargs) context['request'] = self.request return context class MessageList(ListView): model = Message def get_queryset(self): return Message.objects.filter(user=self.request.user) @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(MessageList, self).dispatch(*args, **kwargs) def get_context_data(self, **kwargs): context = super(MessageList, self).get_context_data(**kwargs) context['request'] = self.request return context @csrf_exempt @json_view def pool(request): """ Implementation of EnvayaSMS API http://sms.envaya.org/serverapi/ :param request: :return: """ # We must allow HEAD verb in order for phones to being able to ping server if request.method == 'HEAD': return HttpResponse('OK') # Deny any other verb except POST if request.method != 'POST': return HttpResponseNotAllowed('Only POST requests allowed here') """ First, save incoming request to database via RequestForm. We save all incoming requests without discrimination based on wrong passwords, missing settings,... yeah, this could bite me in the ass later on. """ rf = RequestForm(request.POST) r = rf.save() """ After we have saved request to database, check if we have this phone in database If there is no such phone this will fail with error 403, and it will be written to log file """ try: phone = Phone.objects.get(number=request.POST['phone_number']) except Phone.DoesNotExist: raise PermissionDenied('We have no phone with number {} configured'.format(request.POST['phone_number'])) """ If we use authentication check phones password against X-Request-Signature sent by phone """ if settings.SMS_USE_AUTH: url = request.build_absolute_uri() request_signature = phone.calculate_signature(url, request.POST) if request_signature != request.META['HTTP_X_REQUEST_SIGNATURE']: raise PermissionDenied('You have an invalid password. What is your first dogs name?') events = None json_response = '{}' # Default empty JSON response """Sada idemo lijepo redom po svim mogucim opcijama, pocevsi sa outgoing, send_status, incoming,...""" if request.POST['action'] == 'outgoing': """Additional parameters sent in POST requests with action=outgoing: (None)""" # Sending max 5 messages at once, poor mans throttling messages = Message.objects.filter(status='queued')[:5] # status=queued, Server queue events = {'events': [{'event': 'send', 'messages': []}]} # Inicijaliziramo prazane evente for message in messages: # Grozno izgleda kako python barata sa nestanim listama i dictovima, ali sta da se radi. events['events'][0]['messages'].append( {'id': message.id, 'to': message.phone_number(), 'message': message.message} ) message.status = 'sent' message.save() json_response = json.dumps(events) # Server salje send_status za poruke koje imaju message.id elif request.POST['action'] == 'send_status': m = get_object_or_404(Message, pk=request.POST['id']) # Pronajdi poruku, ili vrati 404 gresku s = StatusLog(status=request.POST['status'], error=request.POST['error'], log=request.POST['log'], phone_number=request.POST['phone_number'], message=m) s.save() m.update_status(request.POST['status']) return HttpResponse(json_response, content_type='application/json') """ DRF API related views """ from sms.models import Message from rest_framework import viewsets, mixins from sms.serializers import MessageSerializer class MessageAPIList(mixins.CreateModelMixin, mixins.RetrieveModelMixin, mixins.ListModelMixin, viewsets.GenericViewSet): """ Messages list, filtered by current user """ serializer_class = MessageSerializer def get_queryset(self): """ Filter only messages for currently authenticated user """ user = self.request.user return Message.objects.filter(user=user) def perform_create(self, serializer): serializer.save(user=self.request.user) ```
{ "source": "j-lazo/image_processing", "score": 3 }
#### File: scripts/general_functions/annotate_ROI_dataset.py ```python import argparse import cv2 coords = [] drawing = False drawing_lines = True import os import pandas as pd def click_and_select_roi(event, x, y, flag, image): """ Callback function, called by OpenCV when the user interacts with the window using the mouse. This function will be called repeatedly as the user interacts. (https://www.timpoulsen.com/2018/handling-mouse-events-in-opencv.html) """ # get access to a couple of global variables we'll need global coords, drawing, drawing_lines, image_name, imgs_rois if imgs_rois[image_name]: cords_frame = imgs_rois[image_name] clone = image.copy() cv2.rectangle(clone, cords_frame[0], cords_frame[1], (0, 255, 0), 2) cv2.imshow(image_name, clone) if event == cv2.EVENT_RBUTTONDOWN: imgs_rois[image_name] = [] cv2.imshow(image_name, image) else: clone = image.copy() if event == cv2.EVENT_LBUTTONDOWN: # user has clicked the mouse's left button drawing = True # save those starting coordinates coords = [(x, y)] elif event == cv2.EVENT_MOUSEMOVE and drawing is True: # user is moving the mouse within the window if drawing is True: # if we're in drawing mode, we'll draw a green rectangle # from the starting x,y coords to our current coords cv2.rectangle(clone, coords[0], (x, y), (0, 255, 0), 2) cv2.imshow(image_name, clone) elif event == cv2.EVENT_MOUSEMOVE and drawing_lines is True: clone = image.copy() cv2.line(clone, (x, 0), (x, 511), (0, 255, 0), 2) cv2.line(clone, (0, y), (511, y), (0, 255, 0), 2) cv2.imshow(image_name, clone) elif event == cv2.EVENT_LBUTTONUP: # user has released the mouse button, leave drawing mode # and crop the photo drawing = False # save our ending coordinates coords.append((x, y)) cv2.rectangle(clone, coords[0], (x, y), (0, 255, 0), 2) cv2.imshow(image_name, clone) drawing_lines = False imgs_rois[image_name] = coords def UI_annotate_roi(dir_dataset, output_dir=''): """ Creates a dictionary of the ROI of the images in a dataset Parameters ---------- dir_dataset : (str) Directory of the image dataset Returns ------- """ global imgs_rois list_imgs = [f for f in os.listdir(dir_dataset) if f.endswith('.png')] imgs_rois = dict.fromkeys(list_imgs, []) # wait for Esc or q key and then exit i = 0 total_frames = len(list_imgs) while True: if i < 0: i = 0 if i > total_frames - 1: i = total_frames - 1 global image_name image_name = list_imgs[i] img_dir = dir_dataset + image_name image = cv2.imread(img_dir) # show the captured image in a window cv2.namedWindow(image_name, cv2.WINDOW_NORMAL) if imgs_rois[image_name]: coords_frame = imgs_rois[image_name] clone = image.copy() cv2.rectangle(clone, coords_frame[0], coords_frame[1], (0, 255, 0), 2) cv2.imshow(image_name, clone) else: cv2.imshow(image_name, image) cv2.setMouseCallback(image_name, click_and_select_roi, image) new_key = cv2.waitKey(0) & 0xFF # wait for Esc or q key and then exit # previous frame if new_key == ord('a'): cv2.destroyWindow(image_name) i -= 1 # next frame if new_key == ord('s'): cv2.destroyWindow(image_name) i += 1 if new_key == 27 or new_key == ord("k"): print(imgs_rois) pd.DataFrame.from_dict(imgs_rois) #out_put_file_name = '.json' #pd.to_json(out_put_file_name) cv2.destroyAllWindows() break def main(): # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--path_dataset", help="Path to the dataset") args = vars(ap.parse_args()) dir_dataset = args["path_dataset"] if args["path_dataset"] else 0 # now let-s label the ROI of the dataset UI_annotate_roi(dir_dataset) if __name__ == "__main__": main() ```
{ "source": "j-lazo/lumen_segmentation", "score": 3 }
#### File: lumen_segmentation/general/calculate_area_circunference.py ```python from matplotlib import pyplot as plt import numpy as np import cv2 import os def calculate_area_and_circunference(dir_folder): mask_list = sorted(os.listdir(dir_folder)) list_areas = [] list_circuference = [] list_circularities = [] size_x = [] size_y = [] for mask in mask_list[:]: name_mask = ''.join([dir_folder, mask]) arc_len, area = findArc(name_mask) if area != 0: circulatiry = 1.0*(arc_len**2)/(4*np.pi*area) list_circularities.append(circulatiry) list_areas.append(area) list_circuference.append(arc_len) #size_x.append(np.amax(list_x_pixels) - np.amin(list_x_pixels)) #size_y.append(np.amax(list_y_pixels) - np.amin(list_y_pixels)) return list_areas, list_circuference, list_circularities def calculateDistance(x1, y1, X, Y): dist_vector = [] for index, x2, in enumerate(X): y2 = Y[index] dist = np.sqrt((x2 - x1)**2 + (y2 - y1)**2) dist_vector.append(dist) return dist_vector def findArc(image, th=200): img = cv2.imread(image) res = img.copy() ## convert to gray gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ## threshold the gray th, threshed = cv2.threshold(gray, th, 255, cv2.THRESH_BINARY) ## Find contours on the binary threshed image cnts = cv2.findContours(threshed, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[-2] ## calcualte for cnt in cnts: arclen = cv2.arcLength(cnt, True) area = cv2.contourArea(cnt) cv2.drawContours(res, [cnt], -1, (0,255,0), 3, cv2.LINE_AA) #print("Length: {:.3f}\nArea: {:.3f}".format(arclen, area)) cnt = cnts[0] pnts_x = [point[0][0] for point in cnt] pnts_y = [point[0][1] for point in cnt] moments = cv2.moments(cnt) print(np.shape(moments)) print(moments) cx = int(moments['m10'] / moments['m00']) cy = int(moments['m01'] / moments['m00']) c1 = int(moments['m20'] / moments['m00']) c2 = int(moments['m11'] / moments['m00']) c3 = int(moments['m02'] / moments['m00']) c4 = int(moments['m30'] / moments['m00']) c5 = int(moments['m21'] / moments['m00']) c6 = int(moments['m12'] / moments['m00']) c7 = int(moments['m03'] / moments['m00']) distances = calculateDistance(cx, cy, pnts_x, pnts_y) print('cx:', cx, 'cy:', cy) print('c1:', c1, 'c3:', c3) print('c2:', c2, 'c4:', c4) print('c5:', c5, 'c6:', c6) print(1.0*(arclen**2)/(4*np.pi*area)) print(arclen, area) print(np.min(distances), np.amax(distances)) fig, ax = plt.subplots() ax.plot(cx, cy, 'ro') ax.plot(c1, c3, 'go') ax.plot(c5, c6, 'bo') ax.add_artist(plt.Circle((cx, cy), np.min(distances), color='g', fill=False)) ax.add_artist(plt.Circle((cx, cy), np.max(distances), color='b', fill=False)) plt.imshow(img) plt.show() return arclen, area def other(): #directory = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/lumen_data/samples_masks/' directory = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/lumen_data/all_data/patient_cases/p_002_pt1/label/' calculate_area_and_circunference(directory) def main(): directory = '/home/nearlab/Jorge/DATASETS/lumen_ureteroscopy/p_001_pt1/label/' size_x, size_y, circ_1 = calculate_area_and_circunference(directory) plt.figure() plt.plot(size_x, size_y, 'ro') directory = '/home/nearlab/Jorge/DATASETS/lumen_ureteroscopy/p_001_pt2/label/' size_x, size_y, circ_2 = calculate_area_and_circunference(directory) plt.plot(size_x, size_y, 'ro', label='patient 1') directory = '/home/nearlab/Jorge/DATASETS/lumen_ureteroscopy/p_006_pt1/label/' size_x, size_y, circ_3 = calculate_area_and_circunference(directory) plt.plot(size_x, size_y, 'g*', label='patient 6') directory = '/home/nearlab/Jorge/DATASETS/lumen_ureteroscopy/p_003_pt1/label/' size_x, size_y, circ_4 = calculate_area_and_circunference(directory) plt.plot(size_x, size_y, 'bo') directory = '/home/nearlab/Jorge/DATASETS/lumen_ureteroscopy/p_003_pt2/label/' size_x, size_y, circ_5 = calculate_area_and_circunference(directory) plt.plot(size_x, size_y, 'bo') directory = '/home/nearlab/Jorge/DATASETS/lumen_ureteroscopy/p_003_pt3/label/' size_x, size_y, circ_6 = calculate_area_and_circunference(directory) plt.plot(size_x, size_y, 'bo', label='patient 3') plt.legend(loc='best') plt.xlabel('Contour Perimeter ') plt.ylabel('Area') data_patient_1 = circ_1 + circ_2 data_patient_2 = circ_3 data_patient_3 = circ_4 + circ_5 + circ_6 plt.figure() directory = '/home/nearlab/Jorge/DATASETS/lumen_ureteroscopy/p_004_pt1/label/' size_x, size_y, circ_7 = calculate_area_and_circunference(directory) plt.plot(size_x, size_y, 'r*', label='patient 4') directory = '/home/nearlab/Jorge/DATASETS/lumen_ureteroscopy/p_002_pt1/label/' size_x, size_y, circ_8 = calculate_area_and_circunference(directory) plt.plot(size_x, size_y, 'bo', label='patient 2') directory = '/home/nearlab/Jorge/DATASETS/lumen_ureteroscopy/p_005_pt1/label/' size_x, size_y, circ_9 = calculate_area_and_circunference(directory) plt.plot(size_x, size_y, 'g*') directory = '/home/nearlab/Jorge/DATASETS/lumen_ureteroscopy/p_005_pt2/label/' size_x, size_y, circ_10 = calculate_area_and_circunference(directory) plt.plot(size_x, size_y, 'g*', label='patient 5') directory = '/home/nearlab/Jorge/DATASETS/lumen_ureteroscopy/p_007_pt1/label/' size_x, size_y, circ_11 = calculate_area_and_circunference(directory) plt.plot(size_x, size_y, 'yo') directory = '/home/nearlab/Jorge/DATASETS/lumen_ureteroscopy/p_007_pt2/label/' size_x, size_y, circ_12 = calculate_area_and_circunference(directory) plt.plot(size_x, size_y, 'yo') directory = '/home/nearlab/Jorge/DATASETS/lumen_ureteroscopy/p_007_pt3/label/' size_x, size_y, circ_13 = calculate_area_and_circunference(directory) plt.plot(size_x, size_y, 'yo') directory = '/home/nearlab/Jorge/DATASETS/lumen_ureteroscopy/p_007_pt4/label/' size_x, size_y, circ_14 = calculate_area_and_circunference(directory) plt.plot(size_x, size_y, 'yo', label='patient 7') plt.legend(loc='best') plt.xlabel('Contour Perimeter ') plt.ylabel('Area') plt.figure(3) fig, axs = plt.subplots(1, 3) axs[0].boxplot(data_patient_1, 1, 'gD') axs[0].set_title('patient 1') axs[0].set_ylim(0.8, 8.9) axs[1].boxplot(data_patient_2, 1, 'gD') axs[1].set_title('patient 6') axs[1].set_ylim(0.8, 8.9) axs[2].boxplot(data_patient_3, 1, 'gD') axs[2].set_title('patient 3') axs[2].set_ylim(0.8, 8.9) data_patient_7 = circ_11 + circ_12 + circ_13 + circ_14 plt.figure(4) fig, axs = plt.subplots(1, 4) axs[0].boxplot(circ_7, 1, 'gD') axs[0].set_title('patient 4') axs[0].set_ylim(0.8, 11) axs[1].boxplot(circ_8, 1, 'gD') axs[1].set_title('patient 1') axs[1].set_ylim(0.8, 11) axs[2].boxplot(circ_9 + circ_10, 1, 'gD') axs[2].set_title('patient 5') axs[2].set_ylim(0.8, 11) axs[3].boxplot(data_patient_7, 1, 'gD') axs[3].set_title('patient 7') axs[3].set_ylim(0.8, 11) plt.show() if __name__ == '__main__': #main() other() ``` #### File: lumen_segmentation/general/calculate_p_values.py ```python import scipy.stats as stats import matplotlib.pyplot as plt import csv from scipy.stats import norm from statsmodels.stats.contingency_tables import mcnemar from scipy.stats import kruskal def contingency_table(real_val, file_1, file_2): # work on this, in this actually what you would need, for every dataset # is the value of the pixels then you can build your table as: # Classifier2 Correct, Classifier2 Incorrect # Classifier1 Correct Yes/Yes Yes/No #Classifier1 Incorrect No/Yes No/No #check: # https://machinelearningmastery.com/mcnemars-test-for-machine-learning/ return [[4, 2], [1, 3]] csv_path_1 = '/home/nearlab/Jorge/current_work/' \ 'lumen_segmentation/data/lumen_data/' \ 'results/compare_3Dvs2D/' \ 'results_evaluation_test_02_ResUnet_lr_0.001_bs_8_grayscale_03_11_2020_20_08_.csv' csv_path_2 = '/home/nearlab/Jorge/current_work/' \ 'lumen_segmentation/data/lumen_data/' \ 'results/compare_3Dvs2D/' \ 'results_evaluation_test_02_3D_ResUnet_lr_0.0001_bs_8_rgb_29_11_2020_20_15_new.csv' csv_path_3= '/home/nearlab/Jorge/current_work/' \ 'lumen_segmentation/data/lumen_data/' \ 'results/compare_3Dvs2D/' \ 'results_evaluation_test_02_3D_ResUnet_lr_0.0001_bs_16_grayscale_16_11_2020_20_17_.csv' csv_path_4 = '/home/nearlab/Jorge/current_work/' \ 'lumen_segmentation/data/lumen_data/' \ 'results/compare_3Dvs2D/' \ 'results_evaluation_test_02_3DMaskRCNN_2_.csv' csv_path_5= '/home/nearlab/Jorge/current_work/' \ 'lumen_segmentation/data/lumen_data/' \ 'results/compare_3Dvs2D/' \ 'results_evaluation_test_02_ResUnet_lr_0.001_bs_8_grayscale_03_11_2020_20_08_.csv' csv_path_6 = '/home/nearlab/Jorge/current_work/' \ 'lumen_segmentation/data/lumen_data/' \ 'results/compare_3Dvs2D/' \ 'results_evaluation_test_02_ensemble_all_data_average.csv' def read_results_csv(file_path, row_id=0): dice_values = [] with open(file_path, 'r') as file: reader = csv.reader(file) for row in reader: dice_values.append(float(row[row_id])) return dice_values def read_results_csv_str(file_path, row_id=0): dice_values = [] with open(file_path, 'r') as file: reader = csv.reader(file) for row in reader: dice_values.append(row[row_id]) return dice_values pre_image_list = read_results_csv_str(csv_path_1, 1) parameter_data_1 = read_results_csv(csv_path_4, 2) parameter_data_2 = read_results_csv(csv_path_6, 2) parameter_data_3 = read_results_csv(csv_path_3, 2) parameter_data_4 = read_results_csv(csv_path_4, 2) parameter_data_5 = read_results_csv(csv_path_5, 2) parameter_data_6 = read_results_csv(csv_path_6, 2) #maharashtra_ages=np.concatenate((maharashtra_ages1,maharashtra_ages2)) # Paired T-Test result = stats.ttest_ind(a=parameter_data_1, b=parameter_data_2, equal_var=False) print('T-test result') print(result) # compare samples stat, p = kruskal(parameter_data_1, parameter_data_2) print('Statistics=%.9f, p=%.9f' % (stat, p)) # interpret print('otra vez') print(stat, p) alpha = 0.05 if p > alpha: print('Same distributions (fail to reject H0)') else: print('Different distributions (reject H0)') """plt.figure() plt.subplot(121) plt.hist(parameter_data_1, bins = 10) plt.subplot(122) plt.hist(parameter_data_2, bins = 10) plt.show()""" ``` #### File: lumen_segmentation/general/erode_and_dilate.py ```python import os import numpy as np import cv2 def dilate(folder, output_folder, kernel_size=3): kernel = np.ones((kernel_size, kernel_size), np.uint8) img_list = sorted(os.listdir(folder)) if not(os.path.isdir(output_folder)): os.mkdir(output_folder) for j, image in enumerate(img_list[:]): print(j, image) img = cv2.imread(os.path.join(folder, image), 1) dilation = cv2.dilate(img, kernel, iterations=1) new_name = ''.join([output_folder, image]) cv2.imwrite(new_name, dilation) def erode(folder, output_folder, kernel_size=3): kernel = np.ones((kernel_size, kernel_size), np.uint8) img_list = sorted(os.listdir(folder)) if not(os.path.isdir(output_folder)): os.mkdir(output_folder) for j, image in enumerate(img_list[:]): print(j, image) img = cv2.imread(os.path.join(folder, image), 1) erosion = cv2.erode(img, kernel, iterations=1) new_name = ''.join([output_folder, image]) cv2.imwrite(new_name, erosion) def main(): path_directory = '/home/nearlab/Jorge/current_work/' \ 'lumen_segmentation/data/lumen_data/' \ 'test/test_02/label/' ouput_folder = '/home/nearlab/Jorge/current_work/' \ 'lumen_segmentation/data/' \ 'lumen_data/test/test_02/label_dilate_3/' dilate(path_directory, ouput_folder, kernel_size=3) if __name__ == "__main__": main() ``` #### File: lumen_segmentation/general/gather_all_data.py ```python import os import random import shutil def gather_all_data(source_folder, destination_folder, exceptions): """ This function gathers all data from different folders and put it all together in a single folder called "all" :param source_folders: :param destination_folder: :param exceptions: :return: """ folder_list = set(os.listdir(source_folder)) - set(exceptions) folder_list = sorted([element for element in folder_list if os.path.isdir(''.join([source_folder, element]))]) for folder in folder_list[:]: print(folder) files_path_images = "".join([source_folder, folder, '/image/']) files_path_labels = "".join([source_folder, folder, '/label/']) images_list = os.listdir(files_path_images) labels_list = os.listdir(files_path_labels) #image_subfolder = sorted([element for element in images_list if os.path.isdir(''.join([source_folder, files_path_images]))]) labels_subfolder = sorted([element for element in labels_list if os.path.isdir(''.join([source_folder, files_path_labels]))]) if not(labels_subfolder): destination_image_folder = "".join([destination_folder, 'image/']) destination_label_folder = "".join([destination_folder, 'label/']) if not (os.path.isdir(destination_image_folder)): os.mkdir(destination_image_folder) if not (os.path.isdir(destination_label_folder)): os.mkdir(destination_label_folder) for counter, image in enumerate(images_list[:]): shutil.copy(files_path_images + image, destination_image_folder + image) shutil.copy(files_path_labels + image[:-4] + '.png', destination_label_folder + image[:-4] + '.png') else: for sub_folder in labels_subfolder: #2Do complete this option and the funciotn copy_images_and_label copy_images_and_label(source_folder, destination_folder, sub_folder) def copy_images_and_label(source_folder, destination_folder, folder=''): """ Copy tuples of images and labels in 1 step :param original_folder: :param destination_folder: :return: """ source_folder = "".join([source_folder, '/', folder, '/']) destination_folder = "".join([destination_folder, '/', folder, '/']) files_path_images = "".join([source_folder, '/image/']) files_path_labels = "".join([source_folder, '/label/']) images_list = os.listdir(files_path_images) labels_list = os.listdir(files_path_labels) destination_image_folder = "".join([destination_folder, 'image/']) destination_label_folder = "".join([destination_folder, 'label/']) if not (os.path.isdir(destination_image_folder)): os.mkdir(destination_image_folder) if not (os.path.isdir(destination_label_folder)): os.mkdir(destination_label_folder) for counter, image in enumerate(images_list): shutil.copy(files_path_images + image, destination_image_folder + image) shutil.copy(files_path_labels + image, destination_label_folder + image) return 0 def main(): source_folders = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/3x3_rgb_dataset/all/patients_cases/' destination_folder = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/3x3_rgb_dataset/all/all/' exceptions = ['all'] gather_all_data(source_folders, destination_folder, exceptions) if __name__ == '__main__': main() ``` #### File: lumen_segmentation/general/general_comparison.py ```python import sys import os import numpy as np import cv2 from glob import glob from sklearn.model_selection import train_test_split from sklearn.metrics import average_precision_score from sklearn.metrics import recall_score import os.path from os import path from PIL import Image from os import listdir from os.path import isfile, join from datetime import datetime import csv import matplotlib.pyplot as plt def get_mcc(groundtruth_list, predicted_list): """Return mcc covering edge cases""" tn, fp, fn, tp = get_confusion_matrix_elements(groundtruth_list, predicted_list) if _all_class_0_predicted_as_class_0(groundtruth_list, predicted_list) is True: mcc = 1 elif _all_class_1_predicted_as_class_1(groundtruth_list, predicted_list) is True: mcc = 1 elif _all_class_1_predicted_as_class_0(groundtruth_list, predicted_list) is True: mcc = -1 elif _all_class_0_predicted_as_class_1(groundtruth_list, predicted_list) is True : mcc = -1 elif _mcc_denominator_zero(tn, fp, fn, tp) is True: mcc = -1 # Finally calculate MCC else: mcc = ((tp * tn) - (fp * fn)) / ( np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))) return mcc def get_confusion_matrix_intersection_mats(groundtruth, predicted): """ Returns dict of 4 boolean numpy arrays with True at TP, FP, FN, TN """ confusion_matrix_arrs = {} groundtruth_inverse = np.logical_not(groundtruth) predicted_inverse = np.logical_not(predicted) confusion_matrix_arrs['tp'] = np.logical_and(groundtruth, predicted) confusion_matrix_arrs['tn'] = np.logical_and(groundtruth_inverse, predicted_inverse) confusion_matrix_arrs['fp'] = np.logical_and(groundtruth_inverse, predicted) confusion_matrix_arrs['fn'] = np.logical_and(groundtruth, predicted_inverse) return confusion_matrix_arrs def get_confusion_matrix_overlaid_mask(image, groundtruth, predicted, alpha, colors): """ Returns overlay the 'image' with a color mask where TP, FP, FN, TN are each a color given by the 'colors' dictionary """ #image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) masks = get_confusion_matrix_intersection_mats(groundtruth, predicted) color_mask = np.zeros_like(image, dtype=np.float32) for label, mask in masks.items(): color = colors[label] mask_rgb = np.zeros_like(image, dtype=np.float32) #mask_rgb = mask_rgb.astype(int) size_x, size_y, channels = np.shape(mask) plt.figure() plt.title(label) plt.imshow(mask.astype(np.float32)) for x_index in range(size_x): for y_index in range(size_y): if mask[x_index, y_index, 0] != 0: #and mask[x_index, y_index, 1] == 0 and mask[x_index, y_index, 2] == 0: mask_rgb[x_index, y_index, :] = color #print(mask_rgb[x_index, y_index, :]) color_mask += mask_rgb plt.close() """for label, mask in masks.items(): color = colors[label] mask_rgb = np.zeros_like(image) mask_rgb[mask != 0] = color color_mask += mask_rgb return cv2.addWeighted(image, alpha, color_mask, 1 - alpha, 0)""" return color_mask.astype(np.float32)#cv2.addWeighted(image, 0.1, color_mask, 0.5, 0) def calculae_rates(image_1, image_2): image_1 = np.asarray(image_1).astype(np.bool) image_2 = np.asarray(image_2).astype(np.bool) image_1 = image_1.flatten() image_2 = image_2.flatten() if image_1.shape != image_2.shape: raise ValueError("Shape mismatch: im1 and im2 must have the same shape.") precision_value = average_precision_score(image_1, image_2) recall_value = recall_score(image_1, image_2) print(precision_value, recall_value) return precision_value, recall_value def dice(im1, im2): im1 = np.asarray(im1).astype(np.bool) im2 = np.asarray(im2).astype(np.bool) if im1.shape != im2.shape: raise ValueError("Shape mismatch: im1 and im2 must have the same shape.") # Compute Dice coefficient intersection = np.logical_and(im1, im2) return 2. * intersection.sum() / (im1.sum() + im2.sum()) def read_img(dir_image): original_img = cv2.imread(dir_image) height, width, depth = original_img.shape img = cv2.resize(original_img, (256, 256)) img = (img > 0.9) * 1.0 return img # save the resutls of the validation dataset in a CSV file def read_results_csv(file_path, row_id=0): dice_values = [] with open(file_path, 'r') as file: reader = csv.reader(file) for row in reader: dice_values.append(float(row[row_id])) return dice_values def read_img_results(dir_image): #original_img = cv2.imread(dir_image, cv2.COLOR_BGRA2RGBA) #original_img = cv2.imread(dir_image, cv2.COLOR_BGR2RGB) original_img = cv2.imread(dir_image) new_im = cv2.cvtColor(original_img, cv2.COLOR_BGR2RGB) if original_img is None: print('Could not open or find the image:', dir_image) exit(0) img = cv2.resize(new_im, (256, 256)) return img def read_mask(dir_image): original_img = cv2.imread(dir_image) if original_img is None: print('Could not open or find the image:', args.input) exit(0) height, width, depth = original_img.shape img = cv2.resize(original_img, (256, 256)) img = img / 255 img = (img > 0.9) * 1.0 return img def read_results_csv_plot(file_path): dice_values = [] with open(file_path, 'r') as file: reader = csv.reader(file) for row in reader: dice_values.append([row[1], row[2]]) return dice_values def print_box_plots(name_test_csv_file, name_validation_csv_file, save_directory): path_file_1= name_test_csv_file path_file_2 = name_validation_csv_file list_dice_values_file_1 = read_results_csv(path_file_1, 2) list_dice_values_file_2 = read_results_csv(path_file_2, 2) data_dice = [list_dice_values_file_1, list_dice_values_file_2] list_precision_values_file_1 = read_results_csv(path_file_1, 3) list_precision_values_file_2 = read_results_csv(path_file_2, 3) data_precision_values = [list_precision_values_file_1, list_precision_values_file_2] list_recall_file_1 = read_results_csv(path_file_1, 4) list_recall_file_2 = read_results_csv(path_file_2, 4) data_recall = [list_recall_file_1, list_recall_file_2] fig1 = plt.figure(1) ax1 = fig1.add_subplot(131) ax1.boxplot(data_dice[0], 1, 'gD') ax2 = fig1.add_subplot(132) ax2.boxplot(data_precision_values[0], 1, 'gD') ax3 = fig1.add_subplot(133) ax3.boxplot(data_recall[0], 1, 'gD') ax1.title.set_text('Dice Coeff') ax2.title.set_text('Precision') ax3.title.set_text('Recall') ax1.set_ylim(0, 1) ax2.set_ylim(0, 1) ax3.set_ylim(0, 1) plt.savefig(save_directory + 'results_test.svg') plt.close() fig2 = plt.figure(2) ax1 = fig2.add_subplot(131) ax1.boxplot(data_dice[1], 1, 'gD') ax2 = fig2.add_subplot(132) ax2.boxplot(data_precision_values[1], 1, 'gD') ax3 = fig2.add_subplot(133) ax3.boxplot(data_recall[1], 1, 'gD') ax1.title.set_text('Dice Coeff') ax2.title.set_text('Precision') ax3.title.set_text('Recall') ax1.set_ylim(0, 1) ax2.set_ylim(0, 1) ax3.set_ylim(0, 1) plt.savefig(save_directory + 'results_val.svg') plt.close() def compare_results(dir_groundtruth, directories_prediction_1, dir_csv_file_1, directories_prediction_2, dir_csv_file_2, directories_prediction_3, dir_csv_file_3, directories_prediction_4, dir_csv_file_4, directories_prediction_5, dir_csv_file_5, save_directory): alpha=0.5 confusion_matrix_colors = { 'tp': (50, 100, 0), # cyan 'fp': (125, 0, 125), # magenta 'fn': (0, 100, 50), # blue 'tn': (0, 0, 0) # black } path_images_folder = dir_groundtruth + 'image/rgb/' path_masks_folder = dir_groundtruth + 'label/' list_dice_values_1 = read_results_csv_plot(dir_csv_file_1) list_dice_values_2 = read_results_csv_plot(dir_csv_file_2) list_dice_values_3 = read_results_csv_plot(dir_csv_file_3) list_dice_values_4 = read_results_csv_plot(dir_csv_file_4) list_dice_values_5 = read_results_csv_plot(dir_csv_file_5) image_list = [f for f in listdir(path_images_folder) if isfile(join(path_images_folder, f))] mask_list = sorted([f for f in listdir(path_masks_folder) if isfile(join(path_masks_folder, f))]) predicted_masks_1 = [f for f in listdir(directories_prediction_1) if isfile(join(directories_prediction_1, f))] predicted_masks_2 = [f for f in listdir(directories_prediction_2) if isfile(join(directories_prediction_2, f))] predicted_masks_3 = [f for f in listdir(directories_prediction_3) if isfile(join(directories_prediction_3, f))] predicted_masks_4 = [f for f in listdir(directories_prediction_4) if isfile(join(directories_prediction_4, f))] predicted_masks_5 = [f for f in listdir(directories_prediction_5) if isfile(join(directories_prediction_5, f))] for image in predicted_masks_1[:]: result_image = [name for name in mask_list if (image[:] == name[:])][0] if result_image is not None: path_image = ''.join([path_images_folder, image]) path_mask = ''.join([path_masks_folder, image]) path_predicted_1 = ''.join([directories_prediction_1, image]) path_predicted_2 = ''.join([directories_prediction_2, image]) path_predicted_3 = ''.join([directories_prediction_3, image]) path_predicted_4 = ''.join([directories_prediction_4, image]) path_predicted_5 = ''.join([directories_prediction_5, image]) image_frame = read_img_results(path_image) mask_image = read_mask(path_mask) for counter, element in enumerate(list_dice_values_1): if image == element[0]: dice_value_1 = float(element[1]) predicted_mask_1 = read_mask(path_predicted_1) dice_value_1 = float("{:.3f}".format(dice_value_1)) overlay_1 = get_confusion_matrix_overlaid_mask(image_frame, mask_image, predicted_mask_1, alpha, confusion_matrix_colors) for counter, element in enumerate(list_dice_values_2): if image == element[0]: dice_value_2 = float(element[1]) predicted_mask_2 = read_mask(path_predicted_2) dice_value_2 = float("{:.3f}".format(dice_value_2)) overlay_2 = get_confusion_matrix_overlaid_mask(image_frame, mask_image, predicted_mask_2, alpha, confusion_matrix_colors) for counter, element in enumerate(list_dice_values_3): if image == element[0]: dice_value_3 = float(element[1]) predicted_mask_3 = read_mask(path_predicted_3) dice_value_3 = float("{:.3f}".format(dice_value_3)) overlay_3 = get_confusion_matrix_overlaid_mask(image_frame, mask_image, predicted_mask_3, alpha, confusion_matrix_colors) for counter, element in enumerate(list_dice_values_4): if image == element[0]: dice_value_4 = float(element[1]) predicted_mask_4 = read_mask(path_predicted_4) dice_value_4 = float("{:.3f}".format(dice_value_4)) overlay_4 = get_confusion_matrix_overlaid_mask(image_frame, mask_image, predicted_mask_4, alpha, confusion_matrix_colors) for counter, element in enumerate(list_dice_values_5): if image == element[0]: dice_value_5 = float(element[1]) predicted_mask_5 = read_mask(path_predicted_5) dice_value_5 = float("{:.3f}".format(dice_value_5)) overlay_5 = get_confusion_matrix_overlaid_mask(image_frame, mask_image, predicted_mask_5, alpha, confusion_matrix_colors) my_dpi = 96 plt.figure(3, figsize=(640/my_dpi, 480/my_dpi), dpi=my_dpi) print('img:', image[12:-4]) plt.subplot(171) #plt.title('img:', image[12:-4]) #plt.title('Frame') plt.imshow(image_frame) plt.axis('off') plt.subplot(172) #plt.title('Mask') plt.imshow(mask_image) plt.axis('off') plt.subplot(173) title_1 = 'DSC: ' + str(dice_value_1) #title_1 = str(dice_value_1) plt.title(title_1) plt.imshow(overlay_1) plt.axis('off') plt.subplot(174) title_2 = str(dice_value_2) plt.title(title_2) plt.imshow(overlay_2) plt.axis('off') plt.subplot(175) title_3 = str(dice_value_3) plt.title(title_3) plt.imshow(overlay_3) plt.axis('off') plt.subplot(176) title_3 = str(dice_value_4) plt.title(title_3) plt.imshow(overlay_4) plt.axis('off') plt.subplot(177) title_3 = str(dice_value_5) plt.title(title_3) plt.imshow(overlay_5) plt.axis('off') plt.savefig(''.join([save_directory, image])) plt.close() """ for image in predicted_masks_2[:]: result_image = [name for name in mask_list if (image[:] == name[:])][0] if result_image is not None: path_image = ''.join([path_images_folder, image]) path_mask = ''.join([path_masks_folder, image]) path_predicted_2 = ''.join([directories_prediction_2, image]) for counter, element in enumerate(list_dice_values_2): if image == element[0]: dice_value_2 = float(element[1]) predicted_mask_2 = read_mask(path_predicted_2) dice_value_2 = float("{:.3f}".format(dice_value_2)) for image in predicted_masks_3[:]: result_image = [name for name in mask_list if (image[:] == name[:])][0] if result_image is not None: path_predicted_3 = ''.join([directories_prediction_3, image]) for counter, element in enumerate(list_dice_values_3): if image == element[0]: dice_value_3 = float(element[1]) predicted_mask_3 = read_mask(path_predicted_3) dice_value_3 = float("{:.3f}".format(dice_value_3)) my_dpi = 96 plt.figure(3, figsize=(640/my_dpi, 480/my_dpi), dpi=my_dpi) plt.subplot(151) plt.title(image) plt.imshow(image_frame) plt.axis('off') plt.subplot(152) plt.title('Mask') plt.imshow(mask_image) plt.axis('off') plt.subplot(153) title_1 = 'DSC: ' + str(dice_value_1) plt.title(title_1) plt.imshow(predicted_mask_1) plt.axis('off') plt.subplot(154) title_2 = 'DSC: ' + str(dice_value_2) plt.title(title_2) plt.imshow(predicted_mask_2) plt.axis('off') plt.subplot(155) title_3 = 'DSC: ' + str(dice_value_3) plt.title(title_3) plt.imshow(predicted_mask_3) plt.axis('off') plt.savefig(''.join([save_directory, image, '_',str(counter),'_.png'])) plt.close()""" def crop_images(image_directory, roi, string_to_add): image_list = [f for f in listdir(image_directory) if isfile(join(image_directory, f))] for image in image_list: print('resizing', image) path_image = ''.join([image_directory, image]) original_img = cv2.imread(path_image) croped_img = original_img[roi[1]:roi[3], roi[0]:roi[2]] new_name = ''.join([image_directory, string_to_add, image]) cv2.imwrite(new_name, croped_img) def main(): """ test_dataset = 'test_03' project_folder = '/home/nearlab/Jorge/current_work/' \ 'lumen_segmentation/data/lumen_data/' test_directory = ''.join([project_folder, 'test/', test_dataset, '/']) predictions_test_directory_1 = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/' \ 'old_lumen_data/results/' \ 'ResUnet_lr_0.001_bs_16_rgb_05_11_2020_16_32/' \ 'predictions/' + test_dataset + '/' name_test_csv_file_1 = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/' \ 'old_lumen_data/results/' \ 'ResUnet_lr_0.001_bs_16_rgb_05_11_2020_16_32/' \ 'results_evaluation_' + test_dataset + '_ResUnet_lr_0.001_bs_16_rgb_05_11_2020_16_32_.csv' predictions_test_directory_2 = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/' \ 'old_lumen_data/results/' \ 'MaskRCNN_threshold_0.8_grayscale/' \ 'predictions/' + test_dataset + '/' name_test_csv_file_2 = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/' \ 'old_lumen_data/results/' \ 'MaskRCNN_threshold_0.8_rgb/' \ 'results_evaluation_' + test_dataset + '_MaskRCNN_thershold_0.8_rgb_.csv' save_directory = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/' \ 'old_lumen_data/results/' \ 'comparison_MaskRCNN_vs_ResUnet_color/' + test_dataset + '/'""" """test_directory = project_folder + 'test_03/' predictions_test_directory_1 = project_folder + 'predictions/new_data/' predictions_test_directory_2 = project_folder + 'predictions/old_data/' name_test_csv_file_1 = project_folder + 'predictions/results_new_data.csv' name_test_csv_file_2 = project_folder + 'predictions/results_old_data.csv' save_directory = project_folder + 'results_comparison/'""" test_directory = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/lumen_data/test/test_02/' predictions_test_directory_1 = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/lumen_data/results/compare_3Dvs2D/ResUnet_lr_0.001_bs_8_grayscale_03_11_2020_20_08/' predictions_test_directory_2 = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/lumen_data/results/compare_3Dvs2D/MaskRCNN_thershold_0.8_grayscale_/' predictions_test_directory_3 = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/lumen_data/results/compare_3Dvs2D/3D_ResUnet_lr_0.001_bs_16_grayscale_16_11_2020_19_37/' predictions_test_directory_4 = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/lumen_data/results/compare_3Dvs2D/3DMaskRCNN_2/' predictions_test_directory_5 = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/lumen_data/results/compare_3Dvs2D/ensemble_all_data/average/' name_test_csv_file_1 = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/lumen_data/results/compare_3Dvs2D/results_evaluation_test_02_ResUnet_lr_0.001_bs_8_grayscale_03_11_2020_20_08_.csv' name_test_csv_file_2 = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/lumen_data/results/compare_3Dvs2D/results_evaluation_test_02_MaskRCNN_thershold_0.8_grayscale_.csv' name_test_csv_file_3 = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/lumen_data/results/compare_3Dvs2D/results_evaluation_test_02_3D_ResUnet_lr_0.001_bs_16_grayscale_16_11_2020_19_37_.csv' name_test_csv_file_4 = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/lumen_data/results/compare_3Dvs2D/results_evaluation_test_02_3DMaskRCNN_2_.csv' name_test_csv_file_5 = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/lumen_data/results/compare_3Dvs2D/results_evaluation_test_02_ensemble_all_data_average.csv' save_directory = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/lumen_data/results/compare_3Dvs2D/comparisons/' compare_results(test_directory, predictions_test_directory_1, name_test_csv_file_1, predictions_test_directory_2, name_test_csv_file_2, predictions_test_directory_3, name_test_csv_file_3, predictions_test_directory_4, name_test_csv_file_4, predictions_test_directory_5, name_test_csv_file_5, save_directory) roi = [76, 160, 580, 300] crop_images(save_directory, roi, 'test_') #crop_images(save_directory_val, roi,'val_') if __name__ == "__main__": main() ``` #### File: lumen_segmentation/general/generate_training_and_validation.py ```python import os import random import shutil def generate_training_and_validation_sets(current_directory, output_directory, training_percentage=0.5): """ :param current_directory: :param output_directory: :param training_percentage: :return: """ files_path_images = "".join([current_directory, 'image/']) files_path_labels = "".join([current_directory, 'label/']) original_images = os.listdir(files_path_images) label_images = os.listdir(files_path_labels) training_dir = output_directory + 'train/' validation_dir = output_directory + 'val/' original_images = [image[:-4] for image in original_images] label_images = [image[:-4] for image in label_images] for count_i, image in enumerate(original_images): if random.random() <= training_percentage: if image in label_images: print(image, 'image and label exists') shutil.copy(files_path_images + image + '.png', "".join([training_dir, 'image/', image, '.png'])) shutil.copy(files_path_labels + image + '.png', "".join([training_dir, 'label/', image, '.png'])) else: print(image, 'the pair does not exists') else: if image in label_images: print(image, 'image and label exists') shutil.copy(files_path_images + image + '.png', "".join([validation_dir, 'image/', image, '.png'])) shutil.copy(files_path_labels + image + '.png', "".join([validation_dir, 'label/', image, '.png'])) else: print(image, 'the pair does not exists') def main(): data_directory = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/' \ 'lumen_data/test/phantom_001_pt1/original_data/' output_directory = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/lumen_data/' generate_training_and_validation_sets(data_directory, output_directory, training_percentage=0.65) if __name__ == '__main__': main() ``` #### File: lumen_segmentation/general/list_artifacts.py ```python import csv import cv2 import numpy as np import matplotlib.patches as patches from matplotlib import pyplot as plt import os def read_file_txt(file_path, row_id=0): color = [] point_1 = [] point_2 = [] point_3 = [] point_4 = [] with open(file_path, 'r') as file: reader = csv.reader(file) for row in reader: line = row[0].split() color.append(float(line[0])) point_1.append(float(line[1])) point_2.append(float(line[2])) point_3.append(float(line[3])) point_4.append(float(line[4])) return color, point_1, point_2, point_3, point_4 def build_rectangle(center_x, center_y, width, height): x_min = center_x - int(width/2) x_max = center_x + int(width / 2) y_min = center_y - int(height / 2) y_max = center_y + int(height / 2) points_x = [x_min, x_max, x_max, x_min, x_min] points_y = [y_min, y_min, y_max, y_max, y_min] return points_x, points_y def remove_duplicates(duplicate): final_list = [] for num in duplicate: if num not in final_list: final_list.append(num) print(final_list) return final_list def prepare_data(dir_images, dir_csv_files, plot=False): name_test_csv_file = 'name_file.csv' list_csv_files = os.listdir(dir_csv_files) list_csv_files = sorted([file[:-4] for file in list_csv_files if file.endswith('.txt')]) list_imgs =sorted([file for file in os.listdir(dir_images) if file.endswith('.png')]) unique_colors = [] unique_imgs = [] for image in list_imgs: print(image) if image[:-4] in list_csv_files: img = cv2.imread(dir_images + image) w, h, d = np.shape(img) colours, pnts_xmax, pnts_ymax, pnts_xmin, pnts_ymin = read_file_txt(dir_csv_files + image[:-4] + '.txt') unique_imgs.append(image) unique_colors.append(remove_duplicates(colours)) pnts_ymax = [int(point*w) for point in pnts_ymax] pnts_xmax = [int(point*h) for point in pnts_xmax] pnts_ymin = [int(point*w) for point in pnts_ymin] pnts_xmin = [int(point*h) for point in pnts_xmin] with open(name_test_csv_file, mode='w') as results_file: results_file_writer = csv.writer(results_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) results_file_writer.writerow(['num', 'name', 'specularity', 'saturation', 'artifact', 'blur', 'bubbles']) for i, file in enumerate(unique_imgs): if 0.0 in unique_colors[i]: specularity = 1 else: specularity = 0 if 1.0 in unique_colors[i]: saturation = 1 else: saturation = 0 if 2.0 in unique_colors[i]: artifact = 1 else: artifact = 0 if 3.0 in unique_colors[i]: blur = 1 else: blur = 0 if 5.0 in unique_colors[i]: bubbles = 1 else: bubbles = 0 results_file_writer.writerow([str(i), file, specularity, saturation, artifact, blur, bubbles]) if plot is True: plt.figure() plt.imshow(img) for j, color in enumerate(colours): print(color) if color == 0.0: # specularity col = 'red' elif color == 1.0: # saturation col = 'green' elif color == 2.0: # artifact col = 'purple' elif color == 3.0: # blur col = 'pink' elif color == 4.0: # contrast col = 'yellow' elif color == 5.0: # bubles col = 'orange' elif color == 6.0: # insturment col = 'white' else: # blood col = 'black' pnts_x, pnts_y = build_rectangle(pnts_xmax[j], pnts_ymax[j], pnts_xmin[j], pnts_ymin[j]) plt.plot(pnts_xmax[j], pnts_ymax[j], '*') plt.plot(pnts_x, pnts_y, color=col) plt.show() #print(list_csv_files) #print(list_imgs) def main(): dir_csv_files = '/home/nearlab/Jorge/data/EAD_2019/trainingData_detection/trainingData_detection/' dir_images = '/home/nearlab/Jorge/DATASETS/EAD_2019/image/' prepare_data(dir_images, dir_csv_files) if __name__ == '__main__': main() ``` #### File: lumen_segmentation/general/load_npy.py ```python import os import random import cv2 from tqdm import tqdm, trange import numpy as np from matplotlib import pyplot as plt from os import listdir def load_npy_data(X_test_path, Y_test_path): print('-' * 30) print('load test images...') print('-' * 30) test_dir = listdir(X_test_path) test_dir.sort() test_mask_dir = listdir(Y_test_path) test_mask_dir.sort() img_size = 256 volume_size = 3 imgs_test = np.empty([0, volume_size, img_size, img_size, 3], dtype=np.float32) mask_test = np.empty([0, volume_size, img_size, img_size, 3], dtype=np.float32) for t in tqdm(test_dir[:]): X_vol = np.load(os.path.join(X_test_path, t), allow_pickle=True) print(np.shape(X_vol)) #X_vol = np.moveaxis(X_vol, -2, 0) #print(np.shape(X_vol)) #imgs_test = np.append(imgs_test, [X_vol / 255], axis=0) imgs_test = np.append(imgs_test, [X_vol/255], axis=0) for tm in tqdm(test_mask_dir[:]): Y_vol = np.load(os.path.join(Y_test_path, tm), allow_pickle=True) #Y_vol = np.moveaxis(Y_vol, -2, 0) #print('Y_vol', np.shape(Y_vol)) #print(np.amin(Y_vol), np.amax(Y_vol)) mask_test = np.append(mask_test, [Y_vol / 255], axis=0) # y_new = np.empty([256, 256, 1], dtype=np.float32) # Y_vol[:, :, 0] = cv2.cvtColor(Y_vol[:, :, :], cv2.COLOR_RGB2GRAY) # y_new[:, :, 0] = cv2.threshold(Y_vol[:, :, 0], 127, 255, cv2.THRESH_BINARY)[1] / 255 # mask_test = np.append(mask_test, [y_new], axis=0) return imgs_test, mask_test def main(): path = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/' \ '3D_volume_data/train/' path_images = path + 'image/' path_labels = path + 'label/' images, labels = load_npy_data(path_images, path_labels) print(np.shape(images), np.shape(labels)) index = 25 image_tes_1 = images[index][0] mask_test_1 = labels[index][0] image_tes_2 = images[index][1] mask_test_2 = labels[index][1] image_tes_3 = images[index][2] mask_test_3 = labels[index][2] plt.figure() plt.subplot(421) plt.imshow(image_tes_1) plt.subplot(422) plt.imshow(mask_test_1) plt.subplot(423) plt.imshow(image_tes_2) plt.subplot(424) plt.imshow(mask_test_2) plt.subplot(425) plt.imshow(image_tes_3) plt.subplot(426) plt.imshow(mask_test_3) plt.show() if __name__ == "__main__": main() ``` #### File: lumen_segmentation/general/test_hough.py ```python import numpy as np import cv2 from matplotlib import pyplot as plt import os from skimage import data, color, img_as_ubyte from skimage.feature import canny from skimage.transform import hough_ellipse from skimage.draw import ellipse_perimeter import time import csv import imutils import copy def detect_circle(image_name): calculate_elipse_hough img = cv2.imread(image_name, 0) img = cv2.medianBlur(img, 5) cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20, param1=50, param2=30, minRadius=45, maxRadius=80) circles = np.uint16(np.around(circles)) for i in circles[0, :]: # draw the outer circle cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2) # draw the center of the circle cv2.circle(cimg, (i[0], i[1]), 2, (0, 0, 255), 3) plt.figure() plt.imshow(cimg) plt.show() def detect_square(image_name): print(image_name) img = cv2.imread(image_name) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 90, 200, apertureSize=3) lines = cv2.HoughLines(edges, 1, np.pi / 360, 60) if lines is not None: list_1 = [value[0][0] for value in lines] list_2 = [value[0][1] for value in lines] for element in lines[:4]: rho = element[0][0] theta = element[0][1] print('rho', rho, 'theta', theta) draw = False if theta>-5*np.pi/180 and theta<5*np.pi/180: #if theta in range(-5, 5) or theta in range(-85, 55): draw = True if theta>85*np.pi/180 and theta<95*np.pi/180: draw = True if draw is True: a = np.cos(theta) b = np.sin(theta) x0 = a * rho y0 = b * rho x1 = int(x0 + 1000 * (-b)) y1 = int(y0 + 1000 * (a)) x2 = int(x0 - 1000 * (-b)) y2 = int(y0 - 1000 * (a)) cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2) plt.figure() plt.subplot(121) plt.plot(list_1, list_2, '*') plt.subplot(122) plt.imshow(img) plt.show() def calculate_elipse_hough(image_gray, sigma, high_threshold): edges = canny(image_gray, sigma=sigma, low_threshold=0.01, high_threshold=high_threshold) plt.figure() plt.imshow(edges) plt.show() init_time = time.time() shape = detect_shape(edges) print(shape) # Perform a Hough Transform # The accuracy corresponds to the bin size of a major axis. # The value is chosen in order to get a single high accumulator. # The threshold eliminates low accumulators result = hough_ellipse(edges, accuracy=20, threshold=250, min_size=100) delta = time.time() - init_time print(type(result)) print(np.shape(result)) print(result[0]) print(result) print(delta) return result, delta def detect_shape(img_array_edges): #blurred = cv2.GaussianBlur(img_array_edges, (5, 5), 0) print(np.unique(img_array_edges)) th, thresh = cv2.threshold(np.float32(img_array_edges), 10, 255, cv2.THRESH_BINARY) print(np.shape(thresh)) print(np.unique(thresh)) ## Find contours on the binary threshed image black_and_white = img_array_edges*255 print(np.unique(black_and_white)) plt.figure() plt.imshow(black_and_white) plt.show() cnts, hierarchy = cv2.findContours(np.float32(black_and_white), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) print(np.unique(thresh)) plt.figure() plt.imshow(thresh) plt.show() cnts = imutils.grab_contours(cnts) shape = "unidentified" peri = cv2.arcLength(cnts, True) approx = cv2.approxPolyDP(cnts, 0.04 * peri, True) # if the shape is a triangle, it will have 3 vertices if len(approx) == 3: shape = "triangle" # if the shape has 4 vertices, it is either a square or # a rectangle elif len(approx) == 4: # compute the bounding box of the contour and use the # bounding box to compute the aspect ratio (x, y, w, h) = cv2.boundingRect(approx) ar = w / float(h) # a square will have an aspect ratio that is approximately # equal to one, otherwise, the shape is a rectangle shape = "square" if ar >= 0.95 and ar <= 1.05 else "rectangle" # if the shape is a pentagon, it will have 5 vertices elif len(approx) == 5: shape = "pentagon" elif len(approx) > 6 and len(approx) < 12: shape = "octagon" # otherwise, we assume the shape is a circle else: shape = "circle" # return the name of the shape return shape def detect_edge(path_image): image_rgb = cv2.imread(path_image) image_gray = cv2.cvtColor(image_rgb, cv2.COLOR_BGR2GRAY) high_threshold = 100 sigma = 3 result, delta = calculate_elipse_hough(image_gray, sigma, high_threshold) counter = 0 """while len(result) == 0 or counter == 3: sigma = sigma - 0.1 high_threshold = high_threshold - 0.1 result, delta = calculate_elipse_hough(image_gray, sigma, high_threshold) counter = counter + 1""" # Estimated parameters for the ellipse if counter <= 3: best = list(result[-1]) yc, xc, a, b = [int(round(x)) for x in best[1:5]] orientation = best[5] # Draw the ellipse on the original image cy, cx = ellipse_perimeter(yc, xc, a, b, orientation) image_rgb[:, np.min(cx)-15] = (255, 0, 0) image_rgb[:, np.max(cx)+15] = (255, 0, 0) image_rgb[np.min(cy)-15, :] = (255, 0, 0) image_rgb[np.max(cy)+15, :] = (255, 0, 0) image_rgb[cy, cx] = (0, 255, 0) return image_rgb, delta def prepare_data(path_images_folder, output_dir=''): image_list = sorted([f for f in os.listdir(path_images_folder) if os.path.isfile(os.path.join(path_images_folder, f))]) time_stats = [] for image in image_list: print(image) detect_circle(path_images_folder + image) """path_image = ''.join([path_images_folder, image]) edge_detected, time = detect_edge(path_image) cv2.imwrite(''.join([path_images_folder, 'test/', image]), edge_detected) time_stats.append(time)""" # modified_image = crop_image(path_image) csv_file_name = path_images_folder + 'time_test.csv' with open(csv_file_name, mode='w') as results_file: results_file_writer = csv.writer(results_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) results_file_writer.writerow(time_stats) def main(): list_images_dir = '/home/nearlab/Desktop/test_shapes/' prepare_data(list_images_dir) if __name__ == '__main__': main() ``` #### File: lumen_segmentation/general/test_shape_detection.py ```python import cv2 import numpy as np import imutils from matplotlib import pyplot as plt from skimage.feature import canny def detect(c): # initialize the shape name and approximate the contour shape = "unidentified" peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.04 * peri, True) # if the shape is a triangle, it will have 3 vertices if len(approx) == 3: shape = "triangle" # if the shape has 4 vertices, it is either a square or # a rectangle elif len(approx) == 4: # compute the bounding box of the contour and use the # bounding box to compute the aspect ratio (x, y, w, h) = cv2.boundingRect(approx) ar = w / float(h) # a square will have an aspect ratio that is approximately # equal to one, otherwise, the shape is a rectangle shape = "square" if ar >= 0.95 and ar <= 1.05 else "rectangle" # if the shape is a pentagon, it will have 5 vertices elif len(approx) == 5: shape = "pentagon" # otherwise, we assume the shape is a circle else: shape = "circle" # return the name of the shape return shape image_dir = '/home/nearlab/Downloads/test_shapes/example_2.png' # load the image and resize it to a smaller factor so that # the shapes can be approximated better image = cv2.imread(image_dir) resized = imutils.resize(image, width=300) ratio = image.shape[0] / float(resized.shape[0]) # convert the resized image to grayscale, blur it slightly, # and threshold it gray = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (5, 5), 0) print(np.unique(gray)) edges = canny(gray, sigma=3.5, low_threshold=0.01, high_threshold=0.6) x_lim = np.shape(edges)[0] y_lim = np.shape(edges)[1] print(x_lim, y_lim) for x in range(0, x_lim): for y in range(0, y_lim): if edges[x, y] == True: print(x, y, edges[x, y]) edges[x, y] = 255 else: edges[x, y] = 0 print('edges', np.unique(edges)) thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)[1] print(np.unique(thresh)) # find contours in the thresholded image and initialize the # shape detector cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) print('edges', type(edges), np.shape(edges), np.amin(edges), np.amax(edges)) print('thres, ', type(thresh), np.shape(thresh), np.amin(thresh), np.amax(thresh)) for c in cnts: #print(cnts[0][1][0]) #plt.figure() #cnts_0 = [numbers for numbers in cnts[0][0]] #print(cnts_0) #plt.plot(cnts[0]) #plt.show() # compute the center of the contour, then detect the name of the # shape using only the contour #M = cv2.moments(cv2.UMat(cnts)) #cX = int((M["m10"] / M["m00"]) * ratio) #cY = int((M["m01"] / M["m00"]) * ratio) shape = detect(c) print(shape) # multiply the contour (x, y)-coordinates by the resize ratio, # then draw the contours and the name of the shape on the image c = c.astype("float") c *= ratio c = c.astype("int") cv2.drawContours(image, [c], -1, (0, 255, 0), 2) #cv2.putText(image, shape, (cX, cY), cv2.FONT_HERSHEY_SIMPLEX, # 0.5, (255, 255, 255), 2) # show the output image plt.figure() plt.subplot(221) plt.imshow(thresh) plt.subplot(222) plt.imshow(edges) plt.subplot(223) plt.imshow(gray) plt.subplot(224) plt.imshow(image) plt.figure() plt.imshow(image) plt.show() ``` #### File: lumen_segmentation/general/violin_plots.py ```python import matplotlib.pyplot as plt import numpy as np import csv def adjacent_values(vals, q1, q3): upper_adjacent_value = q3 + (q3 - q1) * 1.5 upper_adjacent_value = np.clip(upper_adjacent_value, q3, vals[-1]) lower_adjacent_value = q1 - (q3 - q1) * 1.5 lower_adjacent_value = np.clip(lower_adjacent_value, vals[0], q1) return lower_adjacent_value, upper_adjacent_value def set_axis_style(ax, labels): ax.get_xaxis().set_tick_params(direction='out') ax.xaxis.set_ticks_position('bottom') ax.set_xticks(np.arange(1, len(labels) + 1)) ax.set_xticklabels(labels) ax.set_xlim(0.25, len(labels) + 0.75) ax.set_xlabel('Sample name') def read_results_csv(file_path, row_id=0): dice_values = [] with open(file_path, 'r') as file: reader = csv.reader(file) for row in reader: dice_values.append(float(row[row_id])) return dice_values # create test data np.random.seed(19680801) path_file_1 = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/' \ '3x3_grayscale_dataset/results/' \ 'ResUnet_lr_0.001_bs_16_grayscale_16_11_2020_19_37/' \ 'results_evaluationtest_01_ResUnet_lr_0.001_bs_16_grayscale_16_11_2020_19_37_new.csv' path_file_2 = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/' \ '3x3_grayscale_dataset/results/' \ 'ResUnet_lr_1e-05_bs_16_grayscale_16_11_2020_19_32/' \ 'results_evaluationtest_01_ResUnet_lr_1e-05_bs_16_grayscale_16_11_2020_19_32_new.csv' path_file_3 = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/' \ 'lumen_data/results/' \ 'ResUnet_lr_0.001_bs_16_hsv_14_11_2020_20_06/' \ 'results_evaluation_test_02_ResUnet_lr_0.001_bs_16_hsv_14_11_2020_20_06_.csv' path_file_4 = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/' \ 'lumen_data/results/' \ 'ResUnet_lr_0.001_bs_16_rgb_06_11_2020_00_51/' \ 'results_evaluation_test_02_ResUnet_lr_0.001_bs_16_rgb_06_11_2020_00_51_.csv' path_file_5 = '/home/nearlab/Jorge/current_work/lumen_segmentation/' \ 'data/' \ '3x3_grayscale_dataset/results/MaskRCNN_2/' \ 'results_evaluationtest_02_MaskRCNN_2_new.csv' path_file_6 = '/home/nearlab/Jorge/current_work/lumen_segmentation/' \ 'data/3x3_grayscale_dataset/' \ 'results/MaskRCNN_2/' \ 'results_evaluationtest_02_MaskRCNN_2_new.csv' data_experiment_1 = sorted(read_results_csv(path_file_1, 2)) data_experiment_2 = read_results_csv(path_file_2, 2) data_experiment_3 = read_results_csv(path_file_3, 2) data_experiment_4 = sorted(read_results_csv(path_file_4, 2)) data_experiment_5 = sorted(read_results_csv(path_file_5, 2)) data_experiment_6 = sorted(read_results_csv(path_file_6, 2)) #data = [data_experiment_1, data_experiment_4, data_experiment_5, data_experiment_6] #data = [sorted(np.random.normal(0, std, 100)) for std in range(1, 5)] data = [data_experiment_1, data_experiment_2, data_experiment_3, 0, 0, 0] data_2 = [0,0,0, data_experiment_4, data_experiment_5, data_experiment_6] print(np.shape(data)) fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(9, 5), sharey=True) ax1.set_title('Default violin plot') ax1.set_ylabel('Observed values') ax1.violinplot(data) ax1.violinplot(data_2) ax2.set_title('Customized violin plot') parts = ax2.violinplot( data, showmeans=True, showmedians=True, showextrema=True) """ for pc in parts['bodies']: pc.set_facecolor('#D43F3A') pc.set_edgecolor('black') pc.set_alpha(1) quartile1, medians, quartile3 = np.percentile(data, [25, 50, 100], axis=1) print(quartile1, medians, quartile3) whiskers = np.array([ adjacent_values(sorted_array, q1, q3) for sorted_array, q1, q3 in zip(data, quartile1, quartile3)]) whiskers_min, whiskers_max = whiskers[:, 0], whiskers[:, 1] inds = np.arange(1, len(medians) + 1) ax2.scatter(inds, medians, marker='o', color='white', s=30, zorder=3) ax2.vlines(inds, quartile1, quartile3, color='k', linestyle='-', lw=5) ax2.vlines(inds, whiskers_min, whiskers_max, color='k', linestyle='-', lw=1) """ # set style for the axes labels = ['A', 'B', 'C', 'D', 'E', 'F'] for ax in [ax1, ax2]: set_axis_style(ax, labels) plt.subplots_adjust(bottom=0.15, wspace=0.05) plt.show() ``` #### File: lumen_segmentation/models/res_unet.py ```python project_folder = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/lumen_data/' image_modality = 'rgb' augmented = True if augmented is True: amount_data = '/augmented_data/' else: amount_data = '/original/' analyze_validation_set = False evaluate_train_dir = False import sys sys.path.append(project_folder) import numpy as np import cv2 from glob import glob from sklearn.model_selection import train_test_split import tensorflow as tf from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau, CSVLogger, TensorBoard from tqdm import tqdm import tensorflow as tf import keras.backend as K from tensorflow.keras.backend import sum as suma from tensorflow.keras.backend import mean from tensorflow.keras.layers import * from tensorflow.keras.models import Model from keras.utils import CustomObjectScope import os.path from os import path from PIL import Image from os import listdir from os.path import isfile, join from datetime import datetime import csv import matplotlib.pyplot as plt from sklearn.metrics import average_precision_score from sklearn.metrics import recall_score def load_data(path): path_images = ''.join([path, 'image/', image_modality, "/*"]) path_labels = ''.join([path, "label/*"]) images = sorted(glob(path_images)) masks = sorted(glob(path_labels)) total_size_images = len(images) total_size_labels = len(masks) print('total size images:', total_size_images, path_images) print('total size labels:', total_size_labels, path_labels) return (images, masks) def read_image(path): path = path.decode() x = cv2.imread(path, 1) x = cv2.resize(x, (256, 256)) x = x / 255.0 return x def read_mask(path): path = path.decode() x = cv2.imread(path) x = cv2.cvtColor(x, cv2.COLOR_BGR2GRAY) x = cv2.resize(x, (256, 256)) x = x / 255.0 x = np.expand_dims(x, axis=-1) return x def tf_parse(x, y): def _parse(x, y): x = read_image(x) y = read_mask(y) return x, y x, y = tf.numpy_function(_parse, [x, y], [tf.float64, tf.float64]) x.set_shape([256, 256, 3]) y.set_shape([256, 256, 1]) return x, y def tf_dataset(x, y, batch=8): dataset = tf.data.Dataset.from_tensor_slices((x, y)) dataset = dataset.map(tf_parse) dataset = dataset.batch(batch) dataset = dataset.repeat() return dataset def iou(y_true, y_pred): def f(y_true, y_pred): intersection = (y_true * y_pred).sum() union = y_true.sum() + y_pred.sum() - intersection x = (intersection + 1e-15) / (union + 1e-15) x = x.astype(np.float32) return x return tf.numpy_function(f, [y_true, y_pred], tf.float32) """def dice_coef(y_true, y_pred, smooth=1): def f (y_true, y_pred): intersection = suma(y_true * y_pred, axis=[1,2,3]) union = suma(y_true, axis=[1,2,3]) + suma(y_pred, axis=[1,2,3]) x = mean( (2. * intersection + smooth) / (union + smooth), axis=0) #x = x.astype(np.float32) return x return tf.numpy_function(f, [y_true, y_pred], tf.float32)""" def dice_coef(y_true, y_pred, smooth=0.00001): intersection = K.sum(y_true * y_pred, axis=[1, 2, 3]) union = K.sum(y_true, axis=[1, 2, 3]) + K.sum(y_pred, axis=[1, 2, 3]) return K.mean((2. * intersection + smooth) / (union + smooth), axis=0) def dice_coef_loss(y_true, y_pred): return 1 - dice_coef(y_true, y_pred) def conv_block(x, num_filters): x = Conv2D(num_filters, (3, 3), padding="same")(x) x = BatchNormalization()(x) skip = Conv2D(num_filters, (3, 3), padding="same")(x) #skip = Activation("relu")(skip) skip = BatchNormalization()(skip) x = Conv2D(num_filters, (3, 3), padding="same")(x) x = BatchNormalization()(x) x = Activation("relu")(x) x = tf.math.add_n([x, skip]) x = Activation("relu")(x) return x def build_model(): size = 256 num_filters = [16, 32, 48, 64] inputs = Input((size, size, 3)) skip_x = [] x = inputs ## Encoder for f in num_filters: x = conv_block(x, f) skip_x.append(x) x = MaxPool2D((2, 2))(x) ## Bridge x = conv_block(x, num_filters[-1]) num_filters.reverse() skip_x.reverse() ## Decoder for i, f in enumerate(num_filters): x = UpSampling2D((2, 2))(x) xs = skip_x[i] x = Concatenate()([x, xs]) x = conv_block(x, f) ## Output x = Conv2D(1, (1, 1), padding="same")(x) x = Activation("sigmoid")(x) return Model(inputs, x) def mask_parse(mask): mask = np.squeeze(mask) mask = [mask, mask, mask] mask = np.transpose(mask, (1, 2, 0)) return mask def read_image_test(path): x = cv2.imread(path, cv2.IMREAD_COLOR) x = cv2.resize(x, (256, 256)) x = x / 255.0 return x def read_mask_test(path): x = cv2.imread(path, cv2.IMREAD_GRAYSCALE) x = cv2.resize(x, (256, 256)) x = np.expand_dims(x, axis=-1) return x def calculae_rates(image_1, image_2): image_1 = np.asarray(image_1).astype(np.bool) image_2 = np.asarray(image_2).astype(np.bool) image_1 = image_1.flatten() image_2 = image_2.flatten() if image_1.shape != image_2.shape: raise ValueError("Shape mismatch: im1 and im2 must have the same shape.") precision_value = average_precision_score(image_1, image_2) recall_value = recall_score(image_1, image_2) return precision_value, recall_value def dice(im1, im2, smooth=1): im1 = np.asarray(im1).astype(np.bool) im2 = np.asarray(im2).astype(np.bool) if im1.shape != im2.shape: raise ValueError("Shape mismatch: im1 and im2 must have the same shape.") # Compute Dice coefficient intersection = np.logical_and(im1, im2) return 2. * (intersection.sum() + smooth) / (im1.sum() + im2.sum() + smooth) def read_img(dir_image): original_img = cv2.imread(dir_image) height, width, depth = original_img.shape img = cv2.resize(original_img, (256, 256)) return img def make_predictions(): return 0 def read_results_csv(file_path, row_id=0): dice_values = [] with open(file_path, 'r') as file: reader = csv.reader(file) for row in reader: dice_values.append(float(row[row_id])) return dice_values def evaluate_and_predict(model, directory_to_evaluate, results_directory, output_name): output_directory = 'predictions/' + output_name + '/' batch_size = 16 (test_x, test_y) = load_data(directory_to_evaluate) test_dataset = tf_dataset(test_x, test_y, batch=batch_size) test_steps = (len(test_x)//batch_size) if len(test_x) % batch_size != 0: test_steps += 1 # evaluate the model in the test dataset model.evaluate(test_dataset, steps=test_steps) test_steps = (len(test_x)//batch_size) if len(test_x) % batch_size != 0: test_steps += 1 for i, (x, y) in tqdm(enumerate(zip(test_x, test_y)), total=len(test_x)): print(i, x) directory_image = x x = read_image_test(x) y = read_mask_test(y) y_pred = model.predict(np.expand_dims(x, axis=0))[0] > 0.5 print(directory_to_evaluate + image_modality + '/') name_original_file = directory_image.replace(''.join([directory_to_evaluate, 'image/', image_modality, '/']), '') print(name_original_file) results_name = ''.join([results_directory, output_directory, name_original_file]) print(results_name) cv2.imwrite(results_name, y_pred * 255.0) # save the results of the test dataset in a CSV file ground_truth_imgs_dir = directory_to_evaluate + 'image/' + image_modality + '/' result_mask_dir = results_directory + output_directory ground_truth_image_list = [file for file in listdir(ground_truth_imgs_dir) if isfile(join(ground_truth_imgs_dir, file))] results_image_list = [file for file in listdir(result_mask_dir) if isfile(join(result_mask_dir, file))] results_dice = [] results_sensitivity = [] results_specificity = [] for image in ground_truth_image_list[:]: result_image = [name for name in results_image_list if image[-12:] == name[-12:]][0] if result_image is not None: original_mask = read_img(''.join([ground_truth_imgs_dir, image])) predicted_mask = read_img(''.join([result_mask_dir, result_image])) dice_val = dice(original_mask, predicted_mask) results_dice.append(dice_val) sensitivity, specificity = calculae_rates(original_mask, predicted_mask) results_sensitivity.append(sensitivity) results_specificity.append(specificity) else: print(image, 'not found in results list') name_test_csv_file = ''.join([results_directory, 'results_evaluation_', output_name, '_', new_results_id, '_.csv']) with open(name_test_csv_file, mode='w') as results_file: results_file_writer = csv.writer(results_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) for i, file in enumerate(ground_truth_image_list): results_file_writer.writerow( [str(i), file, results_dice[i], results_sensitivity[i], results_specificity[i]]) return name_test_csv_file filepath_models = '/home/nearlab/Jorge/current_work/lumen_segmentation/data/old_lumen_data/results' \ '/ResUnet_lr_0.001_bs_16_grayscale_23_10_2020_13_31' \ 'ResUnet_lr_0.001_bs_16_grayscale_23_10_2020_13_31_model.h5' # ------------------- Hyperparameters ----------------------------------- batch = 16 lr = 1e-3 epochs = 10 opt = tf.keras.optimizers.Adam(lr) metrics = ["acc", tf.keras.metrics.Recall(), tf.keras.metrics.Precision(), dice_coef, iou] model = build_model() model.compile(optimizer=opt, loss=dice_coef_loss, metrics=metrics) model.load_weights('/home/nearlab/Jorge/current_work/lumen_segmentation/' 'data/old_lumen_data/results/' 'ResUnet_lr_0.001_bs_16_grayscale_23_10_2020_15_04/' 'ResUnet_lr_0.001_bs_16_grayscale_23_10_2020_15_04_model.h5') model.summary() training_time = datetime.now() new_results_id = ''.join(['ResUnet', '_lr_', str(lr), '_bs_', str(batch), '_', image_modality, '_', training_time.strftime("%d_%m_%Y_%H_%M"), ]) results_directory = ''.join([project_folder, 'results/', new_results_id, '/']) os.mkdir(results_directory) os.mkdir(results_directory + 'predictions/') os.mkdir(results_directory + 'predictions/test_01/') os.mkdir(results_directory + 'predictions/test_02/') os.mkdir(results_directory + 'predictions/test_03/') evaluation_directory_01 = project_folder + "test/test_01/" evaluation_directory_02 = project_folder + "test/test_02/" evaluation_directory_03 = project_folder + "test/test_03/" name_test_csv_file_1 = evaluate_and_predict(model, evaluation_directory_01, results_directory, 'test_01') name_test_csv_file_2 = evaluate_and_predict(model, evaluation_directory_02, results_directory, 'test_02') name_test_csv_file_3 = evaluate_and_predict(model, evaluation_directory_03, results_directory, 'test_03') ```
{ "source": "jlazzaridean/mScarlet_lifetime_reports_pH", "score": 2 }
#### File: fig1_Scarlet_pH_sensitivity/in_vitro_PBS_35C/plot_PBS_35C.py ```python from pathlib import Path import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import Divider, Size import pandas as pd from scipy.optimize import curve_fit from scipy.stats import linregress # This script plots the in vitro data taken for purified Scarlet-His. # Data were analyzed with SPT (mean arrival time). Median and stdev of # the mean arrival time for each image was calculated by # generate_in_vitro_summary_table.py. def logistic4(pH, min_val, hill, pKa, max_val): return ((min_val - max_val) / (1.0 + ((pH/pKa)**hill))) + max_val # generate some paths current_dir = Path.cwd() manuscript_path = current_dir.parents[2] data_path_1 = manuscript_path / 'source_data' / 'in_vitro_characterization' data_path = data_path_1 / 'combined_in_vitro_mean_arrival_time.csv' # basic plot setup plt.style.use(manuscript_path / 'figures' / 'default.mplstyle') cycle = plt.rcParams['axes.prop_cycle'].by_key()['color'] # load in the results results = pd.read_csv(data_path) ######################################################################### ###FIGURE 5. In vitro in PBS at 35C (this alone for main text fig5 = plt.figure(figsize=(3, 3)) # generate fixed size axes, 1.5 inches h = [Size.Fixed(1.0), Size.Fixed(1.5)] v = [Size.Fixed(0.7), Size.Fixed(1.5)] divider = Divider(fig5, (0, 0, 1, 1), h, v, aspect=False) axs5 = fig5.add_axes(divider.get_position(), axes_locator=divider.new_locator(nx=1, ny=1)) # now let's find the data we want to plot pH_temp = results.loc[results['series'] == 'pH_temp'] summary = pH_temp.groupby(['buffer', 'temp_C', 'pH'])['median_tau_ns'].mean() PBS_35 = summary.at['PBS', 35] init_params = [1.7, 15, 5, 3.5] # generate the fit again for plotting popt, pcov = curve_fit(logistic4, xdata = PBS_35.index.tolist(), ydata = PBS_35.tolist(), p0 = init_params, maxfev=10000) min_val, hill, pKa, max_val = popt # now plot the means and the fit curves axs5.plot(PBS_35.index.tolist(), PBS_35.tolist(), linewidth=0) pH_plotting = np.linspace(4, 7.5, num=500) axs5.plot(pH_plotting, logistic4(pH_plotting, min_val, hill, pKa, max_val), label='', marker=None, markersize=0, color=cycle[0]) # some plot formatting axs5.set_title('In Vitro') axs5.set_ylim(1.8, 3.8) axs5.set_yticks(np.linspace(1.8, 3.8, 6)) for ax in fig5.axes: ax.set_xlabel('pH') ax.set_ylabel('Lifetime (ns)') # save the results fig5.savefig('PBS_35C_for_main_text.pdf', bbox_inches='tight', transparent=True) plt.show() ``` #### File: fig1_Scarlet_pH_sensitivity/nigericin_monensin/plot_nigericin_monensin_by_cell.py ```python from pathlib import Path import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import Divider, Size from scipy.optimize import curve_fit import pandas as pd # This script reads in the output of # 'nigericin_monensin_combo_by_cell.py', which processes the lifetime # image data for the nigericin and monensin calibration. This script # then generates a pH titration curve and fits it to a 4- parameter # logistic function. # generate some paths current_dir = Path.cwd() manuscript_path = current_dir.parents[2] data_path = manuscript_path / 'source_data' / 'nigericin_monensin_U2OS' / 'nigericin_monensin_cell_means.csv' # basic plot setup plt.style.use(manuscript_path / 'figures' / 'default.mplstyle') cycle = plt.rcParams['axes.prop_cycle'].by_key()['color'] # load in the results results = pd.read_csv(data_path) # Calculate some rudimentary stats gb_pH = results.groupby(['buffer_pH']) tau_means = gb_pH['mean_tau_ns'].mean().tolist() tau_stds = gb_pH['mean_tau_ns'].std().tolist() fig1 = plt.figure(figsize=(3,3), dpi=300) # generate fixed size axes, 1.5 inches h = [Size.Fixed(1.0), Size.Fixed(1.5)] v = [Size.Fixed(0.7), Size.Fixed(1.5)] divider = Divider(fig1, (0, 0, 1, 1), h, v, aspect=False) axs1 = fig1.add_axes(divider.get_position(), axes_locator=divider.new_locator(nx=1, ny=1)) # fit to a 4 parameter logistic function def logistic4(pH, min_val, hill, pKa, max_val): return ((min_val - max_val) / (1.0 + ((pH/pKa)**hill))) + max_val # set up a dataframe to store the fit outputs fit_output = pd.DataFrame(columns={'condition','model', 'temperature', 'min_val', 'min_val_SD', 'max_val', 'max_val_SD', 'hill', 'hill_SD', 'pKa', 'pKa_SD'}) # perform the fitting pH_range = gb_pH['mean_tau_ns'].mean().index.tolist() init_params = [1.7, 15, 5, 3.5] popt, pcov = curve_fit(logistic4, xdata = pH_range, ydata = tau_means, p0 = init_params, maxfev=10000) fit_output.at[0, 'condition'] = 'U2OS' fit_output.at[0, 'temperature'] = 35 fit_output.at[0, 'model'] = 'mean_arrival' min_val, hill, pKa, max_val = popt fit_output.at[0, 'min_val'] = min_val fit_output.at[0, 'max_val'] = max_val fit_output.at[0, 'hill'] = hill fit_output.at[0, 'pKa'] = pKa perr = np.sqrt(np.diag(pcov)) fit_output.at[0, 'min_val_SD'] = perr[0] fit_output.at[0, 'max_val_SD'] = perr[3] fit_output.at[0, 'hill_SD'] = perr[1] fit_output.at[0, 'pKa_SD'] = perr[2] # now plot the means and the fit curves pH_plotting = np.linspace(4, 7.5, num=500) axs1.plot(pH_plotting, logistic4(pH_plotting, min_val, hill, pKa, max_val), label='', marker=None, markersize=0, color=cycle[0]) # medians +/- stdev axs1.errorbar(pH_range, tau_means, tau_stds, linewidth=0, elinewidth=1, markersize=4, marker='.', capthick=1, color=cycle[0]) axs1.spines['right'].set_visible(False) axs1.spines['top'].set_visible(False) axs1.set_ylabel('Lifetime (ns)') axs1.set_xlabel('Buffer pH') axs1.set_ylim(1.6, 3.6) axs1.set_yticks(np.linspace(1.6, 3.6, 6)) axs1.set_title('U2OS Cells') fig1.savefig('nigericin_monensin_means_whole_cell.pdf', bbox_inches='tight', transparent=True) fit_output.to_csv('U2OS_4PL_fits.csv') # print the standard deviation by pH for inclusion in main text print('standard deviation by pH') print(results.groupby('buffer_pH')['mean_tau_ns'].std()) plt.show() ```
{ "source": "jlbbj111/2019-Software-Engineering-Curriculum-Design", "score": 3 }
#### File: EMS/backstage/models.py ```python from django.db import models from django.contrib.auth.models import User # 学院 class College(models.Model): # 学院名 name = models.CharField(unique=True, max_length=128) # 学院简称 short_name = models.CharField(unique=True, max_length=128) def __str__(self): return self.name class Meta: db_table = 'college' # 专业 class Major(models.Model): # 专业代码,如0403。 # 04是所在学院的排序,03是专业在院中的排序 mno = models.CharField(unique=True, max_length=20) # 专业名称,唯一,如:计算机科学与技术, 化学工程与工艺 mname = models.CharField(max_length=128, default="") # 专业简称,如:计算机科学与技术--计科, 化学工程与工业--化工 short_name = models.CharField(max_length=20) # 所属学院,外键 in_college = models.ForeignKey(to=College, on_delete=models.CASCADE) def __str__(self): return "-".join([self.mno, self.mname]) class Meta: db_table = 'major' unique_together = ( 'mno', 'mname' ) # 专业信息 class MajorPlan(models.Model): # 学年,该专业下的那个年级的学生 year = models.IntegerField() # 专业名称,对应了需要的专业 major = models.ForeignKey(to=Major, on_delete=models.CASCADE) # 专业计划班级数 cls_num = models.IntegerField() # 行政班 # 专业计划人数 people_num = models.IntegerField() # 毕业最低学分 score_grad = models.IntegerField() # 学制:毕业需要学习的年数, 4 stu_years = models.IntegerField() # 该年级专业需要修学的课程数,80, 88... course_num = models.IntegerField() def __str__(self): return str(self.year) + '-' + str(self.major) class Meta: db_table = 'major_plan' unique_together = ( 'year', 'major' ) # 行政班 class AdmClass(models.Model): # 行政班名,如:计科1605 name = models.CharField(max_length=10, unique=True) # 行政班所属专业,由 major.short_name + in_year + 编号(自增)构成 # 例如:计科1605, 化工1606 major = models.ForeignKey(to=MajorPlan, on_delete=models.CASCADE) def __str__(self): return self.name class Meta: db_table = 'adm_class' # 学生 class Student(User): # 学生姓名 name = models.CharField(max_length=128) # 学号,必须10位,例如:2016011186 # username = models.CharField() # 登录所需密码,初始密码设置为学号 # password = models.CharField() # 学生性别 sex = models.BooleanField(default=True) # 目前已修学分 score_got = models.IntegerField() # 所在的行政班级,外键 in_cls = models.ForeignKey(to=AdmClass, on_delete=models.CASCADE) # 入学年份,用int表示即可,该学生入学的年份 # 考虑可能留级的情况,入学年份与专业年级不对应 in_year = models.IntegerField() def __str__(self): return "-".join([self.username, self.name]) class Meta: db_table = 'student' # 教师 class Teacher(User): # 教师姓名 name = models.CharField(max_length=128) # username, 自带字段 # 同时也就是教师工号,设置为9位,与学生区分 # password, 自带字段,默认与工号相同 sex = models.BooleanField(default=True) # 教师所属学院 college = models.ForeignKey(to=College, on_delete=models.CASCADE) # 教师入职的年份 in_year = models.IntegerField() # 学历,在个人信息中显示。如:博士,博士后... edu_background = models.CharField(null=True, max_length=128) # 在校职位,如:教授,副教授,讲师等 title = models.CharField(default='讲师', max_length=128) # 教师个人简介,可空 description = models.TextField(null=True) def __str__(self): return "-".join([self.username, self.name]) class Meta: db_table = 'teacher' # 教室 class ClassRoom(models.Model): # 教室编号,如:A-302, B阶-202 crno = models.CharField(primary_key=True, max_length=128) # 教室类型,阶教180人,中等教室120人,小教室50人 # 教室类型需要和教室编号对应 crtype = models.CharField(null=False, max_length=10) # 教室能够容纳的学生数目,需要与类型对应 contain_num = models.IntegerField() def __str__(self): return self.crno class Meta: db_table = 'class_room' class Announcement(models.Model): dep = ( ('全体成员', '全体成员'), ('信息科学与技术学院', '信息科学与技术学院'), ('化学工程学院', '化学工程学院'), ('材料科学与工程学院', '材料科学与工程学院'), ('机电工程学院', '机电工程学院'), ('经济管理学院', '经济管理学院'), ('理学院', '理学院'), ('文法学院', '文法学院'), ('生命科学与技术学院', '生命科学与技术学院'), ('继续教育学院', '继续教育学院'), ('马克思主义学院', '马克思主义学院'), ('国际教育学院', '国际教育学院'), ('侯德榜工程师学院', '侯德榜工程师学院'), ('能源学院', '能源学院'), ('巴黎居里工程师学院', '巴黎居里工程师学院'), ('个人', '个人'), ) title = models.TextField(max_length=150, default='通知') messages = models.TextField(max_length=150) author = models.CharField(max_length=128) receiver = models.CharField(max_length=32, choices=dep, default='全体成员') year = models.CharField(max_length=32, default='2016') receiver_grade = models.CharField(max_length=32, default="2016"), visible = models.BooleanField(default=True) time = models.DateTimeField(auto_now_add=True) class Meta: db_table = 'announcement' class UploadFiles(models.Model): file = models.FileField(upload_to='files', default='../backstage/media/image/default.png', blank=True, null=True) author = models.CharField(max_length=128) visible = models.BooleanField(default=True) time = models.DateTimeField(auto_now_add=True) class Meta: db_table = 'upload_files' ``` #### File: utils/database_utils/add_stu_tchs.py ```python import os import re import math from random import choice, randint, choices from backstage.models import College, Major, AdmClass, Student,\ Teacher, ClassRoom, MajorPlan from scoreManagement.models import Course, Teaching from django.db.utils import IntegrityError from .make_encoding import make_encode class CollegeInit: college_names = [ ['信息科学与技术学院', '信息学院'], ['化学工程学院', '化工学院'], ['材料科学与工程学院', '材料学院'], ['机电工程学院', '机电学院'], ['文法学院', '文法学院'], ['经济管理学院', '经管学院'], ['理学院', '理学院'], ['生命科学与技术学院', '生命学院'], ['巴黎居里工程师学院', '巴黎居里工程师学院'], ] def __init__(self): for i in self.college_names: college = College.objects.create(name=i[0], short_name=i[1]) try: college.save() except: print("Except happen: " + str(len(College.objects.all()))) class MajorInit: major_names = { '信息科学与技术学院': [ ['计算机科学与技术', '计科', 192], ['自动化控制', '自控', 192], ['测控技术与仪器', '测控', 193], ['电子信息工程', '信工', 192], ['数字媒体艺术', '数媒', 173], ], '化学工程学院': [ ['化学工程与工艺', '化工'], ['能源工程', '能源'], ['环境工程', '环工'], ], '材料科学与工程学院': [ ['高分子材料与技术', '高材'], ['材料科学与技术', '材料'], ['功能材料', '功材'], ], '机电工程学院': [ [''] ], '文法学院': [ ['英语'] ], '经济管理学院': [ [] ], '理学院': [ [] ], '生命科学与技术学院': [ [] ], '巴黎居里工程师学院': [ [] ] } def information_init(self): college = College.objects.get(name='信息科学与技术学院') for m in self.major_names['信息科学与技术学院']: try: maj = Major.objects.create(in_college=college, mname=m[0], short_name=m[1]) maj.save() except IntegrityError: print(len(Major.objects.all())) def information_major_plan_init(self): years = [2015, 2016, 2017, 2018] for year in years: for maj in Major.objects.all(): cls_num=choice([3, 4, 5, 6]) try: majp = MajorPlan.objects.create( year=year, major=maj, cls_num=cls_num, score_grad=choice([192, 193]), people_num=35*cls_num, stu_years=4 ) majp.save() except IntegrityError: print(len(MajorPlan.objects.all())) def information_class_init(self): major_plan_set = MajorPlan.objects.all() cnt = 1 for maj in major_plan_set: cls_base_name = maj.major.short_name + str(maj.year)[2:] for j in range(1, maj.cls_num+1): cls_name = cls_base_name + "%02d" % j print(cls_name) try: cls = AdmClass.objects.create(name=cls_name, major=maj, people_num=maj.people_num) cls.save() except IntegrityError: print(len(AdmClass.objects.all())) def information_student_init(self): last_name = '赵钱孙李周吴郑王冯陈褚卫蒋沈韩杨朱秦尤许何吕施张孔曹严华金魏陶姜' first_name = '豫章故郡洪都新府星分翼轸地接衡庐襟三江而带五湖' score_gots = { 2015: 190, 2016: 180, 2017: 100, 2018: 56 } adm_class_set = AdmClass.objects.all() cnt = 1 for cls in adm_class_set: for j in range(cls.people_num + 1): year = cls.major.year prefix = str(year) subfix = "%06d" % cnt sno = prefix + subfix cnt += 1 name = choice(last_name) + "".join(choice(first_name) for i in range(2)) print({ 'name': name, 'sno': sno }) # try: # stu = Student.objects.create( # sno=sno, # username=name, # password=<PASSWORD>, # sex=choice([True, False]), # in_cls=cls, # in_year=cls.major.year, # score_got=score_gots[year] # ) # stu.save() # except IntegrityError: # print(len(Student.objects.all())) class TeacherInit: last_name = '赵钱孙李周吴郑王冯陈褚卫蒋沈韩杨朱秦尤许何吕施张孔曹严华金魏陶姜' first_name = '豫章故郡洪都新府星分翼轸地接衡庐襟三江而带五湖' sex = choice([True, False]) college = College.objects.get(name='信息科学与技术学院') in_year = randint(1980, 2018) pass if __name__ == '__main__': # college_init = CollegeInit() major_init = MajorInit() # major_init.information_init() # major_init.information_major_plan_init() # major_init.information_class_init() major_init.information_student_init() pass ``` #### File: utils/score_utils/query_set2excel.py ```python import os import pandas as pd import MySQLdb import xlrd import xlwt from xlwt import Workbook, Worksheet, Row, Column from openpyxl.writer.excel import save_virtual_workbook, save_workbook, ExcelWriter base_dir = '../others/' xls_file = '2018-2019-1semester.xls' def write_to_excel(n, head_data, records, download_url): <<<<<<< HEAD ======= >>>>>>> ba466dfe7bfbdff2f98729239dada46adfd5f951 pass ```
{ "source": "jlbcontrols/ignition-vcs-tools", "score": 2 }
#### File: tagfiles/exporternode/code.py ```python import json import os import shutil from com.inductiveautomation.ignition.common.tags import TagUtilities from com.inductiveautomation.ignition.client.gateway_interface import GatewayConnectionManager from com.inductiveautomation.ignition.common.tags.paths.parser import TagPathParser class ExporterNode(): def __init__(self, parentDirPath,fullConfig={},tagPath=""): self.parentDirPath = parentDirPath if (not fullConfig) and (not tagPath): raise ValueError("Must provide a fullConfig or tagPath") elif not fullConfig: self.fullConfig = getFullConfigFromGateway(tagPath) else: self.fullConfig = fullConfig def __str__(self): return "%s(name=%s,dirPath=%s)" % (self.__class__.__name__,self.fullConfig["name"],self.getDirPath()) def getDirPath(self): return os.path.join(self.parentDirPath, self.fullConfig['name']) def getNodeFilePath(self): return os.path.join(self.getDirPath(), "nodeconfig.json") # tag config json without "name" or "tags" items. name and tags information becomes part of the folder structure. def getNodeConfig(self): nodeConfig = dict(self.fullConfig) del nodeConfig["name"] if "tags" in nodeConfig: del nodeConfig["tags"] return nodeConfig # create a list of nodes for direct children (not recursive). def getChildNodes(self): nodes = [] if "tags" in self.fullConfig: for childConfig in self.fullConfig["tags"]: nodes.append(ExporterNode(self.getDirPath(),fullConfig=childConfig)) return nodes # save all tag information as a directory of files (recursive). def exportToFiles(self): self.exportNodeConfig() for node in self.getChildNodes(): node.exportToFiles() # export the json for this node's top level tag. def exportNodeConfig(self): self.clearDirectory() with open(self.getNodeFilePath(),'w') as outfile: json.dump(self.getNodeConfig(),outfile,indent=4,sort_keys=True) # Delete any existing directory, and create new def clearDirectory(self): dirPath = self.getDirPath() if os.path.exists(dirPath): shutil.rmtree(dirPath) os.makedirs(dirPath) # Get tagConfiguration dictionary for tagpath. "system.tag.getConfiguration" dict does not dump to json, so using Using "TagProviderRpc.getTagExport" instead. def getFullConfigFromGateway(tagPath): configString = GatewayConnectionManager.getInstance().getGatewayInterface().invoke("TagProviderRpc.getTagExport", [[TagPathParser.parse(tagPath)],True,"json"]) fullConfig = json.loads(configString) if fullConfig["tagType"]=="Unknown": raise ValueError(fullConfig["name"] + " tagType is Unknown. Check if tag exists.") return fullConfig # Export a list of tags, with prompts to select export directory and confirm. def exportWithPrompts(tagPaths): if not tagPaths: raise ValueError("At least one tag required for export.") parentDirPath = openFolderDialog("Select Parent Directory") if parentDirPath: nodes = [] for tagPath in tagPaths: nodes.append(ExporterNode(parentDirPath,tagPath=tagPath)) nodeNamesLower = getNodeNamesLower(nodes) if containsDuplicate(nodeNamesLower): raise ValueError("Duplicate node names are not permitted.") confirmMessage = "Are you sure you want to create or overwrite the following folder(s)?" for node in nodes: confirmMessage += "\n" + node.getDirPath() parentDirName = os.path.basename(parentDirPath) if (parentDirName.lower() in nodeNamesLower): confirmMessage += "\n\n WARNING: Parent directory name matches tag name." if system.gui.confirm(confirmMessage): for node in nodes: node.exportToFiles() system.gui.messageBox("Export Complete") # Get lowercase list of node names from list of nodes def getNodeNamesLower(nodes): names = [] for node in nodes: names.append(node.fullConfig["name"].lower()) return names def openFolderDialog(dialogTitle): from javax.swing import JFileChooser chooser = JFileChooser() chooser.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY) chooser.setDialogTitle(dialogTitle) if chooser.showOpenDialog(None) == JFileChooser.APPROVE_OPTION: return str(chooser.getSelectedFile()) # Check for duplicates in a list def containsDuplicate(list): return len(list) != len(set(list)) ```
{ "source": "jlbcontrols/pidbot-manager", "score": 2 }
#### File: opc/opc_drop_listener/code.py ```python logger = system.util.getLogger('opc_drop_listener') from com.jlbcontrols.vcob import OpcBrowseNodeListTransferable from java.awt.dnd import DropTargetListener, DropTarget from java.awt.datatransfer import DataFlavor from com.inductiveautomation.ignition.client.tags.dnd import ListOfNodeBrowseInfo import pidbotscripts.pb_mgr.pidtags.pidbot_instance_generator.PidbotInstanceGenerator as PidbotInstanceGenerator import pidbotscripts.utils.component_tools as component_tools def addOpcDropListener(opcDroppableComponent,instanceGenerator): # Check if component has required custom properties to add the OpcDropListener requiredProps = ['dragEntered'] propsNotFound = component_tools.componentMissingProps(opcDroppableComponent,requiredProps) if propsNotFound: errorMessage = "Component %s does not have custom properties required to add an OpcDropListener: %s" % (opcDroppableComponent.getName(),propsNotFound) system.gui.errorBox(errorMessage) return opcDropListener = OpcDropListener(opcDroppableComponent,instanceGenerator) DropTarget(opcDroppableComponent, opcDropListener) class OpcDropListener(DropTargetListener): def __init__(self, opcDroppableComponent,instanceGenerator): DropTargetListener.__init__(self) self.opcDroppableComponent = opcDroppableComponent self.instanceGenerator = instanceGenerator def drop(self, e): self.opcDroppableComponent.dragEntered=False browseNodes = getOpcBrowseNodesFromDropEvent(e) logger.debug("Dropped browseNodes="+str(browseNodes)) self.instanceGenerator.createFromOpcBrowseNodes(browseNodes) self.opcDroppableComponent.dropComplete() def dragOver(self,e): return def dragEnter(self,e): self.opcDroppableComponent.dragEntered=True def dragExit(self,e): self.opcDroppableComponent.dragEntered=False def getOpcBrowseNodesFromDropEvent(e): if e.isDataFlavorSupported(OpcBrowseNodeListTransferable.FLAVOR): browseNodes = e.getTransferable().getTransferData(OpcBrowseNodeListTransferable.FLAVOR) else: raise Exception("Drop data types: %s not supported" % e.getCurrentDataFlavorsAsList()) if len(browseNodes)>20: if not system.gui.confirm("Create %s new tags?" % len(browseNodes)): return [] return browseNodes ``` #### File: pb_historian_dash/tag_history/code.py ```python def queryTagHistoryFillRange(tagPath,startDate,endDate): # Query Raw data for time range dsRaw = system.tag.queryTagHistory( paths=[tagPath], startDate=startDate, endDate=endDate, returnSize=-1, returnFormat="Wide", includeBoundingValues=True ) #If there is no data recorded, return the empty dataset if dsRaw.getRowCount() == 0: return dsRaw #Move start bounding value to the chart start time dsWithStart = system.dataset.setValue(dsRaw,0,0,startDate) #Duplicate end value at chart end time lastValue = dsRaw.getValueAt(dsRaw.getRowCount()-1,1) dsWithEnd = system.dataset.addRow(dsWithStart,[endDate,lastValue]) return dsWithEnd ``` #### File: pb_mgr/pb_mgr_config/code.py ```python import pidbotscripts.utils.data_mapping as data_mapping ### Tag Provider Settings ### def getPrimaryTagProvider(): return str(system.tag.read("[System]Client/System/DefaultTagProvider").value) def getPidGroupTagProvider(): return getPrimaryTagProvider() # Add more providers here to allow user to create/delete tags in additional providers. def getManageableTagProviders(asDataset=False): providerList = [ getPrimaryTagProvider(), "testProv" ] deduplicatedList = list(set(providerList)) if asDataset: return data_mapping.listToColumnDs(deduplicatedList) return deduplicatedList ### PID Group Settings (aka Displays) ### def getPidGroupFolderPath(tagProvider=getPrimaryTagProvider()): return "["+tagProvider+"]PidbotInst/PidGroups" def getPidGroupUdtPath(tagProvider=getPrimaryTagProvider()): return "["+tagProvider+"]_types_/PidbotTypes/PidGroup" ### OPC Tag Generator Settings ### def getPidTagRootPath(tagProvider): return "["+tagProvider+"]PidbotInst/PidTags" def getPidTagUdtPaths(tagProvider,asDataset=False): paths = [ "_types_/PidbotTypes/Pid/Studio5000/PIDE", "_types_/PidbotTypes/Pid/Studio5000/P_PIDE", "_types_/PidbotTypes/Pid/Studio5000/PID" ] fullPaths = ["["+tagProvider+"]"+path for path in paths] if asDataset: return data_mapping.listToColumnDs(fullPaths) return fullPaths ``` #### File: members/member_pids/code.py ```python logger = system.util.getLogger(__name__) def getMembershipDict(pidTagPaths,pidGroupPaths): pidTagDict = getPidTagDict(pidGroupPaths) membershipDict = {} for pidTagPath in pidTagPaths: membershipDict[pidTagPath]=[] for pidGroupPath,groupMembers in pidTagDict.items(): if pidTagPath in groupMembers: membershipDict[pidTagPath].append(pidGroupPath) return membershipDict def getPidTagDict(pidGroupPaths): if isinstance(pidGroupPaths,str): pidGroupPaths = [pidGroupPaths] if pidGroupPaths: pidTagListPaths = [pidGroupPath + "/pidTagList" for pidGroupPath in pidGroupPaths] logger.debug("reading pidTagLists...\n" + str(pidTagListPaths)) pidTagListQvs = system.tag.readBlocking(pidTagListPaths) pidTagLists = [qv.value for qv in pidTagListQvs] pidTagDict = {} for pidGroupPath,pidTagList in zip(pidGroupPaths,pidTagLists): pidTagDict[pidGroupPath]=pidTagList return pidTagDict return {} def updatePidTagLists(pidTagDict): if logger.isDebugEnabled(): import pprint logger.debug( "updating pid group tag lists...\n"+ pprint.pformat(pidTagDict) ) pidTagListPaths = [] pidTagLists = [] for pidGroupPath,pidTagList in pidTagDict.items(): pidTagListPaths.append(pidGroupPath+"/pidTagList") pidTagLists.append(pidTagList) system.tag.writeBlocking(pidTagListPaths,pidTagLists) return ### Testing ### def getPidTagDictTest(pidGroupPaths=["[default]PidbotInst/PidGroups/PidGroup0","[default]PidbotInst/PidGroups/PidGroup1"]): pidTagDict = getPidTagDict(pidGroupPaths) for pidGroupPath in pidGroupPaths: assert pidTagDict[pidGroupPath]==system.tag.read(pidGroupPath+"/pidTagList").value ``` #### File: members/remove_pid/code.py ```python import pidbotscripts.pb_mgr.pidgroups.members.member_pids as member_pids import pidbotscripts.utils.list_tools as list_tools logger = system.util.getLogger(__name__) def removePidTagsFromGroups(pathsToRemove,pidGroupPaths,removeChildren=False): pidTagDict = member_pids.getPidTagDict(pidGroupPaths) for pidGroupPath in pidTagDict.keys(): if removeChildren: pidTagDict[pidGroupPath] = removeTagsAndChildrenFromList(pathsToRemove, pidTagDict[pidGroupPath]) else: pidTagDict[pidGroupPath] = list_tools.listExcludingItems(pidTagDict[pidGroupPath],pathsToRemove) member_pids.updatePidTagLists(pidTagDict) return def removeTagsAndChildrenFromList(pathsToRemove,pathList): filteredList = [] for path in pathList: remove = False for pathToRemove in pathsToRemove: if path.startswith(pathToRemove): remove = True break if not remove: filteredList.append(path) return filteredList ``` #### File: pidgroups/pid_drop_listener/code.py ```python from java.awt.dnd import DropTargetListener, DropTarget from java.awt.datatransfer import DataFlavor from com.inductiveautomation.ignition.client.tags.dnd import ListOfNodeBrowseInfo import pidbotscripts.utils.component_tools as component_tools import pidbotscripts.pb_mgr.pidgroups.members.add_pid as add_pid def addPidDropListener(pidDroppableComponent): # Check if component has required custom properties to add the PidDropListener requiredProps = ['pidGroupPath','dropBeforeTagPath','dragEntered'] propsNotFound = component_tools.componentMissingProps(pidDroppableComponent,requiredProps) if propsNotFound: errorMessage = "Component %s does not have custom properties required to use addPidDropListener(component): %s" % (pidDroppableComponent.getName(),propsNotFound) system.gui.errorBox(errorMessage) return pidDropListener = PidDropListener(pidDroppableComponent) DropTarget(pidDroppableComponent, pidDropListener) class PidDropListener(DropTargetListener): def __init__(self, pidDroppableComponent): DropTargetListener.__init__(self) self.pidDroppableComponent = pidDroppableComponent def drop(self, e): self.pidDroppableComponent.dragEntered=False newTagPaths = getTagPathListFromDropEvent(e) pidGroupPath = self.pidDroppableComponent.pidGroupPath dropBeforeTagPath = self.pidDroppableComponent.dropBeforeTagPath add_pid.addTagsToGroup(newTagPaths,pidGroupPath,dropBeforeTagPath) def dragOver(self,e): return def dragEnter(self,e): self.pidDroppableComponent.dragEntered=True def dragExit(self,e): self.pidDroppableComponent.dragEntered=False def getTagPathListFromDropEvent(e): if e.isDataFlavorSupported(ListOfNodeBrowseInfo.FLAVOR): transferData = e.getTransferable().getTransferData(ListOfNodeBrowseInfo.FLAVOR) tagPathList = [str(tag.getFullPath()) for tag in transferData] elif e.isDataFlavorSupported(DataFlavor.stringFlavor): transferData = e.getTransferable().getTransferData(DataFlavor.stringFlavor) tagPathList = [str(transferData)] else: raise Exception("Drop data types: %s not supported" % e.getCurrentDataFlavorsAsList()) if len(tagPathList)>20: if not system.gui.confirm("Add %s tags to Tag Group?" % len(transferData)): return [] return tagPathList ``` #### File: pidtags/pidbot_instance_generator/code.py ```python import pidbotscripts.opc.udt_instance_generator as udt_instance_generator import pidbotscripts.opc.opc_type_recognizer as opc_type_recognizer import pidbotscripts.utils.list_tools as list_tools import pidbotscripts.utils.tag_tools as tag_tools class PidbotInstanceGenerator(udt_instance_generator.AbstractUdtInstanceGenerator): def __init__(self,instanceRootFolderPath,opcRecognizedUdtPaths): self.instanceRootFolderPath = instanceRootFolderPath opcTypeRecognizer = opc_type_recognizer.OpcMultiTypeRecognizer(opcRecognizedUdtPaths) udt_instance_generator.AbstractUdtInstanceGenerator.__init__(self,opcTypeRecognizer) def getInstanceName(self,udtPath,opcNodeId,opcServerName): return opcNodeId.split(']')[1].replace(".","_") def getInstanceParams(self,udtPath,opcNodeId,opcServerName): params = {} params['opcPrefix'] = opcNodeId.split('[')[0] params['plcName'] = opcNodeId.split('[')[1].split(']')[0] params['plcTag'] = opcNodeId.split(']')[1] params['opcServName'] = opcServerName return params def getInstanceFolderPath(self,udtPath,opcNodeId,opcServerName): params = self.getInstanceParams(udtPath,opcNodeId,opcServerName) return self.instanceRootFolderPath + "/" + params['opcServName'] + "/" + params['plcName'] def onInstanceCreated(self,folderPath,tagConfig): loopNamePath = folderPath + "/" + tagConfig['name'] + "/loopName" system.tag.write(loopNamePath, tagConfig['name']) def handleUnrecognizedOpcBrowseNodes(self,unrecognizedOpcBrowseNodes): if unrecognizedOpcBrowseNodes: errorMessage = self.getUnrecognizedOpcBrowseNodesMessage(self,unrecognizedOpcBrowseNodes) system.gui.messageBox(errorMessage, "Error recognizing some requested tags.") # Testing def createInstanceTest(plcTag = "LC1", udtPath = "[default]_types_/PidbotTypes/Pid/Studio5000/P_PIDE",instanceRootFolderPath="[default]PidbotInst/PidTags"): opcPrefix = "ns=1;s=" plcName = "plc1" opcNodeId = opcPrefix+"["+plcName+"]"+plcTag opcServerName = "Ignition OPC UA Server" pidInstanceGenerator = PidbotInstanceGenerator(instanceRootFolderPath,[udtPath]) tagName = pidInstanceGenerator.getInstanceName(udtPath,opcNodeId,opcServerName) instancePath = pidInstanceGenerator.getInstanceFolderPath(udtPath,opcNodeId,opcServerName)+"/"+tagName if system.tag.exists(instancePath): raise Exception("createInstanceTest not valid, tag already exists") pidInstanceGenerator.createInstance(udtPath,opcNodeId,opcServerName) newTagConfig = system.tag.getConfiguration(instancePath)[0] assert str(newTagConfig['tagType']) == 'UdtInstance' assert str(newTagConfig['typeId']) == tag_tools.shortenUdtPath(udtPath) params = newTagConfig['parameters'] # .value needed for 8.0.16, not 8.0.12 assert params['opcPrefix'].value==opcPrefix assert params['opcServName'].value==opcServerName assert params['plcTag'].value==plcTag assert params['plcName'].value==plcName loopName = system.tag.read(instancePath+"/loopName").value print loopName assert loopName == plcTag def getInstanceParamsTest(plcTag = "LC1", opcPrefix = "ns=1;s=", plcName = "plc1", opcServerName = "Ignition OPC UA Server"): opcNodeId = opcPrefix+"["+plcName+"]"+plcTag udtPath = "[default]_types_/PidbotTypes/Pid/Studio5000/P_PIDE" instanceRootFolderPath="some/path/for/test" pidInstanceGenerator = PidbotInstanceGenerator(instanceRootFolderPath,[udtPath]) params = pidInstanceGenerator.getInstanceParams("",opcNodeId,opcServerName) assert params['opcPrefix'] == opcPrefix assert params['plcName'] == plcName assert params['plcTag'] == plcTag ``` #### File: tagnode/node_checker/code.py ```python import pidbotscripts.utils.list_tools as list_tools class AbstractListRequiredChecker(): def __init__(self,failKey,requiredList,listDescription): self.requiredList = requiredList self.listDescription = listDescription self.failKey = failKey def check(self,tagConfigNode): return not self.missingItemsFrom(tagConfigNode) def getFailureMessage(self,tagConfigNode): missingItems = self.missingItemsFrom(tagConfigNode) if missingItems: path = str(tagConfigNode.tagConfig['path']) header = "Tag is not valid:\n%s\nMissing %s:" % (path,self.listDescription) return list_tools.createListMessage(missingItems,header) return "" def missingItemsFrom(self,tagConfigNode): actualList = self.itemsFoundForNode(tagConfigNode) return list_tools.itemsNotInList(self.requiredList,actualList) def itemsFoundForNode(self,tagConfigNode): raise NotImplementedError class ChildrenRequiredChecker(AbstractListRequiredChecker): def __init__(self,requiredChildNames,failKey="missingChildren"): AbstractListRequiredChecker.__init__(self,failKey,requiredChildNames,"required child tags") def itemsFoundForNode(self,tagConfigNode): return [childNode.getName() for childNode in tagConfigNode.childNodes] class ParamsRequiredChecker(AbstractListRequiredChecker): def __init__(self,requiredParamNames,failKey="missingParams"): AbstractListRequiredChecker.__init__(self,failKey,requiredParamNames,"required parameters") def itemsFoundForNode(self,tagConfigNode): return tagConfigNode.tagConfig.get('parameters',{}).keys() class UdtMemberExcluder(): def __init__(self,failKey="udtMember"): self.failKey = failKey def check(self,tagConfigNode): for ancestorNode in tagConfigNode.getAncestorNodes(): if str(ancestorNode.tagConfig.get('tagType',"")) in ["UdtInstance","UdtType"]: return False return True def getFailureMessage(self,tagConfigNode): if not self.check(tagConfigNode): path = str(tagConfigNode.tagConfig['path']) return "Tag is not valid:\n%s\nCannot be a member of another tag." % path return "" class DirectoryChecker(): def __init__(self,allowedDirectoryPaths,failKey="directoryNotAllowed"): self.allowedDirectoryPaths = allowedDirectoryPaths self.failKey = failKey def check(self,tagConfigNode): for allowedDirectoryPath in self.allowedDirectoryPaths: if tagConfigNode.isDescendentOf(allowedDirectoryPath): return True return False def getFailureMessage(self,tagConfigNode): if not self.check(tagConfigNode): path = str(tagConfigNode.tagConfig['path']) header = "Tag is not valid:\n%s\nMust be located in directory:%s\n" % (path) return list_tools.createListMessage(self.allowedDirectoryPaths,header) return "" class TagTypeChecker(): def __init__(self,allowedTypes,failKey="typeNotAllowed"): self.allowedTypes = allowedTypes self.failKey = failKey def check(self,tagConfigNode): tagType = str(tagConfigNode.tagConfig['tagType']) return tagType in self.allowedTypes def getFailureMessage(self,tagConfigNode): if not self.check(tagConfigNode): path = str(tagConfigNode.tagConfig['path']) header = "Tag is not valid:\n%s\nType must be:" % path return list_tools.createListMessage(self.allowedTypes,header) return "" class NodeExistsChecker(): def __init__(self,failKey="doesNotExist"): self.failKey = failKey def check(self,tagConfigNode): return tagConfigNode.exists def getFailureMessage(self,tagConfigNode): if not self.check(tagConfigNode): path = str(tagConfigNode.tagConfig['path']) return "Tag not found or does not exist:\n%s" % path return "" ``` #### File: tagnode/tag_config_node/code.py ```python from com.inductiveautomation.ignition.common.tags.model import TagPath from com.inductiveautomation.ignition.common.tags.paths.parser import TagPathParser import pidbotscripts.utils.tag_tools as tag_tools class TagConfigNode: def __init__(self,tagConfig,parentNode=None,exists=True): self.tagConfig = tagConfig self.parentNode = parentNode self.exists = exists self.childNodes = self.createChildNodes() def createChildNodes(self): childNodes = [] for tagConfig in self.tagConfig.get('tags',[]): childNodes.append(TagConfigNode(tagConfig,self)) return childNodes def getAncestorNodes(self,nodes=[]): if self.parentNode: nodes.append(self.parentNode) self.parentNode.getAncestorNodes(nodes) return nodes def getRootNode(self): ancestorNodes = self.getAncestorNodes() if ancestorNodes: return ancestorNodes.pop() def getChildNode(self,childName): for childNode in self.childNodes: if childNode.getName()==childName: return childNode return createImaginaryNode(childName,parentNode=self) def getName(self): return str(self.tagConfig.get('name',"")) def getFullPath(self): tagPath = self.tagConfig['path'] if self.parentNode: return self.parentNode.getFullPath().getChildPath(tagPath.toStringFull()) return tagPath def getNodeForPath(self,path): tagPath = tag_tools.coerceToTagPathObject(path) if self.pathEquals(tagPath): return self if self.isAncestorOf(tagPath): childName = tagPath.getPathComponent(self.getFullPath().getPathLength()) childNode = self.getChildNode(childName) return childNode.getNodeForPath(tagPath) if self.parentNode: return self.parentNode.getNodeForPath(tagPath) return createImaginaryNode(path) def pathEquals(self,path): tagPath = tag_tools.coerceToTagPathObject(path) return self.getFullPath().toStringFull().lower() == tagPath.toStringFull().lower() # Check if a path would be a descendent of this node. A node for this path does not need to exist. def isAncestorOf(self,path): tagPath = tag_tools.coerceToTagPathObject(path) return self.getFullPath().isAncestorOf(tagPath) # Check if a path would be an ancestor of this node. A node for this path does not need to exist. def isDescendentOf(self,path): tagPath = tag_tools.coerceToTagPathObject(path) return tagPath.isAncestorOf(self.getFullPath()) def createImaginaryNode(path,parentNode=None): tagPath = tag_tools.coerceToTagPathObject(path) tagConfig = { 'name':tagPath.getItemName(), 'path':tagPath } return TagConfigNode(tagConfig,parentNode,exists=False) def createRootNodeForPath(path): rootConfig = system.tag.getConfiguration(path,True)[0] return TagConfigNode(rootConfig,None) ``` #### File: utils/list_tools/code.py ```python logger = system.util.getLogger('pidbotscripts_util') # Return a list of required items not found in another list def itemsNotInList(requiredItems,items): itemsNotFound = [] for requiredItem in requiredItems: if not requiredItem in items: itemsNotFound.append(requiredItem) return itemsNotFound def listExcludingItems(fullList,itemsToExclude): return [item for item in fullList if item not in itemsToExclude] # Generate a titled message (i.e. for use in message box) for a list of objects. Returns "" if list is empty. def createListMessage(items,title): if items: message = str(title) + "\n" for item in items: message += "- " + str(item) + "\n" return message return "" ``` #### File: utils/tag_tools/code.py ```python from com.inductiveautomation.ignition.common.tags.model import TagPath from com.inductiveautomation.ignition.common.tags.paths.parser import TagPathParser import pidbotscripts.utils.list_tools as list_tools logger = system.util.getLogger(__name__) def coerceToTagPathObject(path): if isinstance(path,TagPath): return path return TagPathParser.parseSafe(path) def commonAncestorOf(paths,tagProvider): shortestPathLength = sys.maxsize #sys.maxint shortestPath = None tagPaths = [] for path in paths: tagPath = coerceToTagPathObject(path) tagPaths.append(tagPath) if tagPath.getPathLength()<shortestPathLength: shortestPathLength=tagPath.getPathLength() shortestPath = tagPath ancestorPath = "["+tagProvider+"]" for i in range(0,shortestPathLength): pathSegment = shortestPath.getPathComponent(i).lower() for tagPath in tagPaths: if tagPath.getPathComponent(i).lower() != pathSegment: return ancestorPath ancestorPath += pathSegment + '/' return ancestorPath def sortTagsByProvider(paths): tagPaths = [coerceToTagPathObject(path) for path in paths] tagDict = {} for tagPath in tagPaths: provider = tagPath.getSource() if provider not in tagDict.keys(): tagDict[provider]=[tagPath.toStringFull()] else: tagDict[provider].append(tagPath.toStringFull()) return tagDict def shortenUdtPath(udtPath): splitPath = udtPath.split("_types_/") if len(splitPath)==2: return splitPath[1] return udtPath def getUdtInstancePathsInFolder(udtPath,folderPath): children = system.tag.browse(folderPath).getResults() pathList = [] if children!=None: shortUdtPath = shortenUdtPath(udtPath) for child in children: if str(child['tagType']) == "UdtInstance" and str(child['typeId']).endswith(shortUdtPath): childPath = str(child['fullPath']) pathList.append(childPath) return pathList def createFolderAndParentFolders(folderPath): if system.tag.exists(folderPath): return pathSegments = folderPath.split("/") if pathSegments[0].startswith("["): parentPath = pathSegments.pop(0) else: parentPath = "" collisionPolicy = "a" for pathSegment in pathSegments: folderConfig = { "name": pathSegment, "tagType" : "Folder", } qc = system.tag.configure(parentPath, [folderConfig], collisionPolicy) if logger.isDebugEnabled(): logger.debug(str(qc[0])) parentPath+= "/" + pathSegment if not system.tag.exists(folderPath): raise Exception("Folder '%s' could not be created." % folderPath) class TagQualityException(Exception): def __init__(self, tagPaths, qualitycodes, baseMessage="Error updating tags."): self.qualDict = dict(zip(tagPaths,qualitycodes)) self.baseMessage = baseMessage Exception.__init__(self,self.getTagQualMessage(includeGood=False)) def getTagsByQuality(self): tagsByQual = { "good":[], "notGood":{} } for tagPath,qc in self.qualDict.items(): if qc.good: tagsByQual["good"].append(tagPath) else: tagsByQual["notGood"].setdefault(qc, []).append(tagPath) return tagsByQual def getTagQualMessage(self,includeGood=True): tagsByQual = self.getTagsByQuality() message = self.baseMessage + "\n" for qc,tagPaths in tagsByQual["notGood"].items(): message += list_tools.createListMessage(tagPaths,"Quality Code=%s" % str(qc)) + "\n" if includeGood: message += list_tools.createListMessage(tagsByQual["good"],"The following tags were updated successfully:") + "\n" return message class TagConfigQualityException(TagQualityException): def __init__(self, tagPaths, qualitycodes, baseMessage="Error configuring tags."): TagQualityException.__init__(self, tagPaths, qualitycodes, baseMessage) class TagWriteQualityException(TagQualityException): def __init__(self, tagPaths, qualitycodes, baseMessage="Error writing to tags."): TagQualityException.__init__(self, tagPaths, qualitycodes, baseMessage) def writeBlockingRaiseException(tagPaths,values,timeout=45000): qualitycodes = system.tag.writeBlocking(tagPaths,values,timeout) for qc in qualitycodes: if not qc.good: raise TagWriteQualityException(tagPaths,qualitycodes) def configureRaiseException(basePath, tags, collisionPolicy="a"): qualitycodes = system.tag.configure(basePath, tags, collisionPolicy) for qc in qualitycodes: if not qc.good: tagPaths = [basePath+"/"+tag['name'] for tag in tags] raise TagConfigQualityException(tagPaths,qualitycodes) ### Testing #### def createFolderAndParentFoldersTest(): folderPath = "[default]test22341/test352341/test41/test5253" createFolderAndParentFolders(folderPath) assert system.tag.exists(folderPath) folderPath = "test2478/test33568/test43568/test53568" createFolderAndParentFolders(folderPath) assert system.tag.exists(folderPath) ```
{ "source": "JLBicho/rssi_module", "score": 3 }
#### File: lib.linux-x86_64-2.7/rssi/__init__.py ```python name = "rssi" from subprocess import Popen, PIPE # Used to run native OS commads in python wrapped subproccess import numpy # Used for matrix operations in localization algorithm # RSSI_Scan # Use: # from rssi import RSSI_Scan # rssi_scan_instance = RSSI_Scan('network_interface_name) # ------------------------------------------------------- # Description: # Allows a user to query all available accesspoints available. # User has the option of define a specific set of access # points to query. # ------------------------------------------------------- # Input: interface name # [ie. network interface names: wlp1s0m, docker0, wlan0] class RSSI_Scan(object): # Allows us to declare a network interface externally. def __init__(self, interface): self.interface = interface # getRawNetworkScan # Description: # Runs the Ubuntu command 'iwlist' to scan for available networks. # Returns the raw console window output (unparsed). # ---------------------------------------------------------------- # Input: (optional) # sudo: bool; defaults to false. False will not refresh the # network interface upon query. Sudo=true will require # the user will need to enter a sudo password at runtime. # ---------------------------------------------------------------- # Returns: Raw terminal output # { # 'output':'''wlp1s0 Scan completed : # Cell 01 - Address: A0:3D:6F:26:77:8E # Channel:144 # Frequency:5.72 GHz # Quality=43/70 Signal level=-67 dBm # Encryption key:on # ESSID:"ucrwpa" # Bit Rates:24 Mb/s; 36 Mb/s; 48 Mb/s; 54 Mb/s # Mode:Master # Cell 02 - Address: A0:3D:6F:26:77:82 # Channel:1 # Frequency:2.412 GHz (Channel 1) # Quality=43/70 Signal level=-67 dBm # Encryption key:on # ESSID:"eduroam" # Bit Rates:18 Mb/s; 24 Mb/s; 36 Mb/s; 48 Mb/s; 54 Mb/s # Mode:Master''', # 'error':'' # } def getRawNetworkScan(self, sudo=False): # Scan command 'iwlist interface scan' needs to be fed as an array. if sudo: scan_command = ['sudo','iwlist',self.interface,'scan'] else: scan_command = ['iwlist',self.interface,'scan'] # Open a subprocess running the scan command. scan_process = Popen(scan_command, stdout=PIPE, stderr=PIPE) # Returns the 'success' and 'error' output. (raw_output, raw_error) = scan_process.communicate() # Block all execution, until the scanning completes. scan_process.wait() # Returns all output in a dictionary for easy retrieval. return {'output':raw_output,'error':raw_error} # getSSID # Description: # Parses the 'SSID' for a given cell. # ----------------------------------------------- # Input: (Raw string) # 01 - Address: A0:3D:6F:26:77:8E # Channel:144 # Frequency:5.72 GHz # Quality=43/70 Signal level=-67 dBm # Encryption key:on # ESSID:"ucrwpa" # Bit Rates:24 Mb/s; 36 Mb/s; 48 Mb/s; 54 Mb/s # Mode:Master # ----------------------------------------------- # Returns: # 'ucrwpa' @staticmethod def getSSID(raw_cell): ssid = raw_cell.split('ESSID:"')[1] ssid = ssid.split('"')[0] return ssid # getQuality # Description: # Parses 'Quality level' for a given cell. # ----------------------------------------------- # Input: (Raw string) # 01 - Address: A0:3D:6F:26:77:8E # Channel:144 # Frequency:5.72 GHz # Quality=43/70 Signal level=-67 dBm # Encryption key:on # ESSID:"ucrwpa" # Bit Rates:24 Mb/s; 36 Mb/s; 48 Mb/s; 54 Mb/s # Mode:Master # ----------------------------------------------- # Returns: # '43/70' @staticmethod def getQuality(raw_cell): quality = raw_cell.split('Quality=')[1] quality = quality.split(' ')[0] return quality # getSignalLevel # Description: # Parses 'Signal level' for a given cell. # Measurement is in 'dBm'. # ----------------------------------------------- # Input: (Raw string) # 01 - Address: A0:3D:6F:26:77:8E # Channel:144 # Frequency:5.72 GHz # Quality=43/70 Signal level=-67 dBm # Encryption key:on # ESSID:"ucrwpa" # Bit Rates:24 Mb/s; 36 Mb/s; 48 Mb/s; 54 Mb/s # Mode:Master # ----------------------------------------------- # Returns: (string) # '-67' @staticmethod def getSignalLevel(raw_cell): signal = raw_cell.split('Signal level=')[1] signal = int(signal.split(' ')[0]) return signal # parseCell # Description: # Takes a raw cell string and parses it into a dictionary. # ----------------------------------------------- # Input: (Raw string) # '''01 - Address: A0:3D:6F:26:77:8E # Channel:144 # Frequency:5.72 GHz # Quality=43/70 Signal level=-67 dBm # Encryption key:on # ESSID:"ucrwpa" # Bit Rates:24 Mb/s; 36 Mb/s; 48 Mb/s; 54 Mb/s # Mode:Master''' # ----------------------------------------------- # Returns: # { # 'ssid':'ucrwpa', # 'quality':'43/70', # 'signal':'-67' # } def parseCell(self, raw_cell): cell = { 'ssid': self.getSSID(raw_cell), 'quality': self.getQuality(raw_cell), 'signal': self.getSignalLevel(raw_cell) } return cell # formatCells # Description: # Every network listed is considered a 'cell. # This function parses each cell into a dictionary. # Returns list of dictionaries. Makes use of 'parseCell'. # If not networks were detected, returns False. # ----------------------------------------------- # Input: (Raw terminal string) # '''01 - Address: A0:3D:6F:26:77:8E # Channel:144 # Frequency:5.72 GHz # Quality=43/70 Signal level=-67 dBm # Encryption key:on # ESSID:"ucrwpa" # Bit Rates:24 Mb/s; 36 Mb/s; 48 Mb/s; 54 Mb/s # Mode:Master # 02 - Address: A0:3D:6F:26:77:8E # Channel:144 # Frequency:5.72 GHz # Quality=30/70 Signal level=-42 dBm # Encryption key:on # ESSID:"dd-wrt" # Bit Rates:24 Mb/s; 36 Mb/s; 48 Mb/s; 54 Mb/s # Mode:Master''' # ----------------------------------------------- # Returns: (Array of dictionaries) # [ # { # 'ssid':'ucrwpa', # 'quality':'43/70', # 'signal':'-67' # }, # { # 'ssid':'dd-wrt', # 'quality':'30/70', # 'signal':'-42' # } # ] def formatCells(self, raw_cell_string): raw_cells = raw_cell_string.split('Cell') # Divide raw string into raw cells. raw_cells.pop(0) # Remove unneccesary "Scan Completed" message. if(len(raw_cells) > 0): # Continue execution, if atleast one network is detected. # Iterate through raw cells for parsing. # Array will hold all parsed cells as dictionaries. formatted_cells = [self.parseCell(cell) for cell in raw_cells] # Return array of dictionaries, containing cells. return formatted_cells else: print("Networks not detected.") return False # TODO implement function in ndoe to process this boolean (False) # filterAccessPoints # Description: # If the 'networks' parameter is passed to the 'getAPinfo' # function, then this method will filter out all irrelevant # access-points. Access points specified in 'networks' array # will be returned (if available). # ----------------------------------------------- # Input: (Parsed array of cell dictionaries) # all_access_points = # [ # { # 'ssid':'ucrwpa', # 'quality':'43/70', # 'signal':'-67' # }, # { # 'ssid':'dd-wrt', # 'quality':'30/70', # 'signal':'-42' # }, # { # 'ssid':'linksys', # 'quality':'58/70', # 'signal':'-24' # } # ] # network_names = (array of network names) # ['ucrwpa','dd-wrt'] # ----------------------------------------------- # Returns: (Array of dictionaries) # [ # { # 'ssid':'ucrwpa', # 'quality':'43/70', # 'signal':'-67' # }, # { # 'ssid':'dd-wrt', # 'quality':'30/70', # 'signal':'-42' # } # ] @staticmethod def filterAccessPoints(all_access_points, network_names): focus_points = [] # Array holding the access-points of concern. # Iterate throguh all access-points found. for point in all_access_points: # Check if current AP is in our desired list. if point['ssid'] in network_names: focus_points.append(point) return focus_points # TODO implement something incase our desired ones were not found # getAPinfo # Description: # Method returns all (or chosen) available access points (in range). # Takes 2 optional parameters: # 'networks' (array): # Lists all ssid's of concern. Will return only the available access # points listed here. If not provided, will return ALL access-points in range. # 'sudo' (bool): # Whether of not method should use sudo privileges. If user uses sudo # privileges, the network manager will be refreshed and will return # a fresh list of access-points available. If sudo is not provided, # a cached list will be returned. Cached list gets updated periodically. # ----------------------------------------------- # Input: (Parsed array of cell dictionaries) # networks = (array of network names) # ['ucrwpa','dd-wrt'] # sudo = True || False # ----------------------------------------------- # Returns: (Array of dictionaries) # [ # { # 'ssid':'ucrwpa', # 'quality':'43/70', # 'signal':'-67' # }, # { # 'ssid':'dd-wrt', # 'quality':'30/70', # 'signal':'-42' # } # ] def getAPinfo(self, networks=False, sudo=False): # TODO implement error callback if error is raise in subprocess # Unparsed access-point listing. AccessPoints are strings. raw_scan_output = self.getRawNetworkScan(sudo)['output'] # Parsed access-point listing. Access-points are dictionaries. all_access_points = self.formatCells(raw_scan_output) # Checks if access-points were found. if all_access_points: # Checks if specific networks were declared. if networks: # Return specific access-points found. return self.filterAccessPoints(all_access_points, networks) else: # Return ALL access-points found. return all_access_points else: # No access-points were found. return False # RSSI_Localizer # Use: # from rssi import RSSI_Localizer # rssi_localizer_instance = RSSI_Localizer() # ------------------------------------------------------- # Description: # This class helps a user implement rssi-based localization. # The algorithm assumes the logarithmic distance-path-loss model # And assumes a minimum of 3 (or more) access points. # ------------------------------------------------------- # Input: # accessPoints: Array holding accessPoint dictionaries. # The order of the arrays supplied will retain # its order, throughout the entire execution. # [{ # 'signalAttenuation': 3, # 'location': { # 'y': 1, # 'x': 1 # }, # 'reference': { # 'distance': 4, # 'signal': -50 # }, # 'name': 'dd-wrt' # }, # { # 'signalAttenuation': 4, # 'location': { # 'y': 1, # 'x': 7 # }, # 'reference': { # 'distance': 3, # 'signal': -41 # }, # 'name': 'ucrwpa' # }] class RSSI_Localizer(object): # Allows us to fetch for networks/accessPoints externally. # Array of access points must be formatted. # 'self.count' parameter is computed internally to aid in # scaling of the algorithm. def __init__(self,accessPoints): self.accessPoints = accessPoints self.count = len(accessPoints) # getDistanceFromAP # Description: # Uses the log model to compute an estimated dstance(di) from node(i) # ------------------------------------------------------- # Input: # accessPoint: dicitonary holding accesspoint info. # { # 'signalAttenuation': 3, # 'location': { # 'y': 1, # 'x': 1 # }, # 'reference': { # 'distance': 4, # 'signal': -50 # }, # 'name': 'dd-wrt' # } # signalStrength: -69 # ------------------------------------------------------- # output: # accessPoint: dicitonary holding accesspoint info. # { # 'signalAttenuation': 3, # 'location': { # 'y': 1, # 'x': 1 # }, # 'reference': { # 'distance': 4, # 'signal': -50 # }, # 'name': 'dd-wrt', # 'distance': 2 # } @staticmethod def getDistanceFromAP(accessPoint, signalStrength): beta_numerator = float(accessPoint['reference']['signal']-signalStrength) beta_denominator = float(10*accessPoint['signalAttenuation']) beta = beta_numerator/beta_denominator distanceFromAP = round(((10**beta)*accessPoint['reference']['distance']),4) accessPoint.update({'distance':distanceFromAP}) return accessPoint # TODO fix this because theres two consecutive for loops. # One that runs to fefd signal strengths to this function, # a second consecutive loop inside the function. # getDistancesForAllAPs # Description: # Makes use of 'getDistanceFromAP' to iterate through all # accesspoints being used in localization and obtains the # distance from each one of them. # ------------------------------------------------ # Input: # signalStrengths: # [siganl1, siganl2, siganl3] # [-42, -53, -77] # ------------------------------------------------ # Output: # [ # { # 'distance': 4, # 'x': 2, # 'y': 3 # }, # { # 'distance': 7, # 'x': 2, # 'y': 5 # }, # { # 'distance': 9, # 'x': 7, # 'y': 3 # } # ] def getDistancesForAllAPs(self, signalStrengths): apNodes = [] for i in range(len(self.accessPoints)): ap = self.accessPoints[i] distanceFromAP = self.getDistanceFromAP( ap, signalStrengths[i] ) apNodes.append({ 'distance': distanceFromAP['distance'], 'x': ap['location']['x'], 'y': ap['location']['y'] }) return apNodes # createMatrices # Description: # Creates tehmatrices neccesary to use the least squares method # in order to mnimize the error (error=|realDistance-estimatedDistance|). # Assuming 'n' number of nodes and d(m) is the distance(d) from node (m). # AX = B, where X is our estimated location. # A = [ # 2(x(i)-xn) 2(y(i)-yn) # 2(x(i+1)-xn) 2(y(i+1)-yn) # ... ... # 2(x(n-1)-xn) 2(y(n-1)-yn) # ] # B = [ # x(i)^2 + y(i)^2 - x(n)^2 + y(n)^2 - d(i)^2 + d(n)^2 # x(i+1)^2 + y(i+1)^2 - x(n)^2 + y(n)^2 - d(i+1)^2 + d(n)^2 # ... # x(n-1)^2 + y(n-1)^2 - x(n)^2 + y(n)^2 - d(n-1)^2 + d(n)^2 # ] # ---------------------------------------- # Input: # accessPoints # [ # { # 'distance': 4, # 'x': 2, # 'y': 3 # }, # { # 'distance': 7, # 'x': 2, # 'y': 5 # }, # { # 'distance': 9, # 'x': 7, # 'y': 3 # } # ] # ---------------------------------------- # Output: # A = [ # 2(2-7) 2(3-3) # 2(2-7) 2(5-3) # ] # B = [ # 2^2 + 3^2 - 7^2 + 3^2 - 4^2 + 9^2 # 2^2 + 5^2 - 7^2 + 3^2 - 7^2 + 9^2 # ] def createMatrices(self, accessPoints): # Sets up that te matrics only go as far as 'n-1' rows, # with 'n being the # of access points being used. n_count = self.count-1 # initialize 'A' matrix with 'n-1' ranodm rows. a = numpy.empty((n_count,2)) # initialize 'B' matrix with 'n-1' ranodm rows. b = numpy.empty((n_count,1)) # Define 'x(n)' (x of last accesspoint) x_n = accessPoints[n_count]['x'] # Define 'y(n)' (y of last accesspoint) y_n = accessPoints[n_count]['y'] # Define 'd(n)' (distance from of last accesspoint) d_n = accessPoints[n_count]['distance'] # Iteration through accesspoints is done upto 'n-1' only for i in range(n_count): ap = accessPoints[i] x, y, d = ap['x'], ap['y'], ap['distance'] a[i] = [2*(x-x_n), 2*(y-y_n)] b[i] = [(x**2)+(y**2)-(x_n**2)-(y_n**2)-(d**2)+(d_n**2)] return a, b # computePosition # Description: # Performs the 'least squares method' matrix operations # neccessary to get the 'x' and 'y' of the unknown # beacon's position. # X = [(A_transposed*A)^-1]*[A_transposed*B] # ---------------------------------------- # Input: # A = [ # 0 0 # 0 -4 # ] # B = [ # 4 + 9 - 49 + 9 - 16 + 81 => 38 # 4 + 25 - 49 + 9 - 49 + 81 => 21 # ] # ---------------------------------------- # Output: # x # [ # 2, # 3 # ] @staticmethod def computePosition(a, b): # Get 'A_transposed' matrix at = numpy.transpose(a) # Get 'A_transposed*A' matrix at_a = numpy.matmul(at,a) # Get '[(A_transposed*A)^-1]' matrix inv_at_a = numpy.linalg.inv(at_a) # Get '[A_transposed*B]' at_b = numpy.matmul(at,b) # Get '[(A_transposed*A)^-1]*[A_transposed*B]' # This holds our position (xn,yn) x = numpy.matmul(inv_at_a,at_b) return x # getNodePosition # Description: # Combines 'getDistancesForAllAPs', 'createMatrics', # and 'computerPosition' to get the 'X' vector that # contains our unkown (x,y) position. # ---------------------------------------- # Input: # signalStrengths # [4, 2 , 3] # ---------------------------------------- # Output: # x # [2, 3] def getNodePosition(self, signalStrengths): apNodes = self.getDistancesForAllAPs(signalStrengths) a, b = self.createMatrices(apNodes) position = self.computePosition(a, b) # print(a) # print(b) return position ```
{ "source": "jlboat/BayesASE", "score": 3 }
#### File: src/scripts/gen_headers_after_merge_priors_one_comparate.py ```python import re import argparse import os import sys import numpy as np from functools import reduce from collections import OrderedDict import pandas as pd DEBUG = False def getOptions(): parser = argparse.ArgumentParser( description='Create headers for model for a for a single comparate.' ) parser.add_argument( "-output", "--output", dest="output", action="store", required=True, help="Output directory for complete merged comparate files ready for Bayesian" ) parser.add_argument( "-collection_identifiers", "--collection_identifiers", dest="collection_identifiers", action="store", required=True, help="ASE count table collection identifiers" ) parser.add_argument( "-collection_filenames", "--collection_filenames", dest="collection_filenames", action='store', required=True, help="ASE count table collection filenames" ) parser.add_argument( "-design", "--design", dest="design", action='store', required=True, help="Design file" ) parser.add_argument( "--debug", action="store_true", default=False, help="Print debugging output" ) args = parser.parse_args() return args def main(): args = getOptions() global DEBUG if args.debug: DEBUG=True identifiers = [i.strip() for i in args.collection_identifiers.split(",")] filenames = [i.strip() for i in args.collection_filenames.split(",")] input_dict_comp = dict(zip(identifiers, filenames)) if DEBUG: print(f"DEBUG: input dict:\n{input_dict_comp}") ### Read in design file as dataframe #Make sure design file is read as a tsv df_design = pd.read_csv(args.design, sep ='\t') if DEBUG: print(f"DEBUG: design:\n{df_design}") ### Subset design file and create comparate specification columns ### Store compID to name output file c1_list = df_design['Comparate_1'].tolist() #Changed dict to dict_b since "dict" is name already used above to read collections sample_dict = {} #col_list = list(df_design.columns.values) row_list = [] comparison_list = df_design['compID'].tolist() del df_design['compID'] ### Create dictionaries per design file row to store the row's comparate files for index, sample in df_design.iterrows(): sample_dict[index] = list(sample) ## Create a dictionary containing the comparisons between each parental genome the comparate for key in sample_dict: row_list = sample_dict[key] file_list = [] comp_dict = {} comparison = comparison_list[key] c1 = c1_list[key] for i, comp in enumerate(row_list): comp_dict[i + 1] = comp # Assign filename so that Galaxy can correctly call and recognize the collection comp_name = 'bayesian_input_' + comp row_list[i] = input_dict_comp[comp_name] #Use pd.read_table to read file into dataframe file = pd.read_table(row_list[i], index_col=None, header=0) file_list.append(file) df_merged = reduce(lambda x, y: pd.merge(x, y, on = ['FEATURE_ID']), file_list) ### drop columns you don't want before merge df_merged = df_merged[df_merged.columns.drop(list(df_merged.filter(regex='comp')))] df_merged.set_index('FEATURE_ID', inplace=True) ## AMM fixing below line get_values is deprecated ## merged_headers = list(df_merged.columns.get_values()) merged_headers = list(df_merged.columns.to_numpy()) ### For stan model, requires headers to have general comparate input names ### This reassigns comparate names to be c1 for x in comp_dict: for i in range(len(merged_headers)): if c1 in merged_headers[i]: merged_headers[i] = merged_headers[i].replace(c1, 'c1') df_merged.columns=merged_headers df_filtered = df_merged #Change the output name from bayesian_input_comp to bayesian_input outfile = args.output + '/bayesian_input_' + comparison df_filtered.to_csv(outfile, sep='\t') if __name__=='__main__': main() ```