metadata
dict
text
stringlengths
60
3.49M
{ "source": "jleinonen/cloudsat-gan", "score": 2 }
#### File: csmodiscgan/src/data_utils.py ```python import gc import numpy as np import h5py import keras.backend as K import netCDF4 def load_cloudsat_scenes(fn, n=None, right_handed=False, frac_validate=0.1, shuffle=True, shuffle_seed=None): with netCDF4.Dataset(fn, 'r') as ds: if n is None: n = ds["scenes"].shape[0] cs_scenes = np.array(ds["scenes"][:n,:,:]) cs_scenes = cs_scenes.reshape(cs_scenes.shape+(1,)) if right_handed: cs_scenes = np.rot90(cs_scenes, axes=(2,1)) # rescale from (0,1) to (-1,1) cs_scenes *= 2 cs_scenes -= 1 modis_vars = np.zeros((n,)+ds["tau_c"].shape[1:]+(4,), dtype=np.float32) modis_vars[:,:,0] = ds["tau_c"][:n,:] modis_vars[:,:,1] = ds["p_top"][:n,:] modis_vars[:,:,2] = ds["r_e"][:n,:] modis_vars[:,:,3] = ds["twp"][:n,:] modis_mask = np.zeros((n,)+ds["tau_c"].shape[1:]+(1,), dtype=np.float32) modis_mask[:,:,0] = ds["modis_mask"][:n,:] num_scenes = cs_scenes.shape[0] if shuffle: prng = np.random.RandomState(shuffle_seed) ind = np.arange(num_scenes) prng.shuffle(ind) cs_scenes = cs_scenes[ind,...] modis_vars = modis_vars[ind,...] modis_mask = modis_mask[ind,...] gc.collect() num_train = int(round(num_scenes*(1.0-frac_validate))) scenes = { "train": ( cs_scenes[:num_train,...], modis_vars[:num_train,...], modis_mask[:num_train,...] ), "validate": ( cs_scenes[num_train:,...], modis_vars[num_train:,...], modis_mask[num_train:,...] ) } return scenes def decode_modis_vars(modis_vars, modis_mask): tau_c_scaled = modis_vars[:,:,0] p_top_scaled = modis_vars[:,:,1] r_e_scaled = modis_vars[:,:,2] twp_scaled = modis_vars[:,:,3] decoded_vars = {} decoded_vars["tau_c"] = np.exp((1.13*tau_c_scaled+2.20)) decoded_vars["p_top"] = 265.0*p_top_scaled+532.0 decoded_vars["r_e"] = np.exp((0.542*r_e_scaled+3.06)) decoded_vars["twp"] = np.exp((1.11*twp_scaled+0.184)) for var in decoded_vars: decoded_vars[var][~modis_mask[:,:,0].astype(bool)] = np.nan return decoded_vars def rescale_scene(scene, Z_range=(-35,20), missing_max=-30): sc = Z_range[0] + (scene+1)/2.0 * (Z_range[1]-Z_range[0]) sc[sc <= missing_max] = np.nan return sc def gen_batch(cs_scenes, modis_vars, modis_mask, batch_size): ind = np.arange(cs_scenes.shape[0], dtype=int) np.random.shuffle(ind) while len(ind) >= batch_size: idx = ind[:batch_size] ind = ind[batch_size:] yield (cs_scenes[idx,...], modis_vars[idx,...], modis_mask[idx,...]) def gen_modis_batch_2d(modis_vars_2d, modis_mask_2d, batch_size): ind = np.arange(modis_vars_2d.shape[0], dtype=int) np.random.shuffle(ind) while len(ind) >= batch_size: idx = ind[:batch_size] ind = ind[batch_size:] (modis_vars_2d_b, modis_mask_2d_b) = ( modis_vars_2d[idx,...], modis_mask_2d[idx,...]) yield (modis_vars_2d_b, modis_mask_2d_b) def expand_modis_batch(modis_vars_2d_b, modis_mask_2d_b, scene_size): vars_shape = modis_vars_2d_b.shape[:3]+(scene_size,modis_vars_2d_b.shape[-1]) mask_shape = modis_mask_2d_b.shape[:3]+(scene_size,modis_mask_2d_b.shape[-1]) modis_vars_3d_b = np.empty(vars_shape, dtype=np.float32) modis_mask_3d_b = np.empty(mask_shape, dtype=np.float32) for i in range(scene_size): modis_vars_3d_b[:,:,:,i,:] = modis_vars_2d_b modis_mask_3d_b[:,:,:,i,:] = modis_mask_2d_b return (modis_vars_3d_b, modis_mask_3d_b) def sample_noise(noise_scale, batch_size, noise_dim): return np.random.normal(scale=noise_scale, size=(batch_size, noise_dim)) def get_disc_batch(cs_scenes_b, modis_vars_b, modis_mask_b, gen, fake, batch_size, noise_dim, noise_scale=1.0, max_smoothing=0.1): # Create X_disc: alternatively only generated or real images #if fake: # generate fake samples if fake: # Pass noise to the generator noise = sample_noise(noise_scale, batch_size, noise_dim) #cont = sample_noise(noise_scale, batch_size, cont_dim) X_disc = [ gen.predict([noise, modis_vars_b, modis_mask_b]), modis_vars_b, modis_mask_b ] # label smoothing y_disc = 1-max_smoothing*np.random.rand(batch_size, 1) else: X_disc = [cs_scenes_b, modis_vars_b, modis_mask_b] y_disc = max_smoothing*np.random.rand(batch_size, 1) return (X_disc, y_disc) def get_gan_batch(batch_size, noise_dim, noise_scale=1.0, max_smoothing=0.1, num_disc=1): noise = sample_noise(noise_scale, batch_size, noise_dim) X_gan = noise y_gan_disc = max_smoothing*np.random.rand(batch_size, num_disc) return (X_gan, y_gan_disc) def save_opt_weights(model, filepath): with h5py.File(filepath, 'w') as f: # Save optimizer weights. symbolic_weights = getattr(model.optimizer, 'weights') if symbolic_weights: optimizer_weights_group = f.create_group('optimizer_weights') weight_values = K.batch_get_value(symbolic_weights) weight_names = [] for i, (w, val) in enumerate(zip(symbolic_weights, weight_values)): # Default values of symbolic_weights is /variable for theano if K.backend() == 'theano': if hasattr(w, 'name') and w.name != "/variable": name = str(w.name) else: name = 'param_' + str(i) else: if hasattr(w, 'name') and w.name: name = str(w.name) else: name = 'param_' + str(i) weight_names.append(name.encode('utf8')) optimizer_weights_group.attrs['weight_names'] = weight_names for name, val in zip(weight_names, weight_values): param_dset = optimizer_weights_group.create_dataset( name, val.shape, dtype=val.dtype) if not val.shape: # scalar param_dset[()] = val else: param_dset[:] = val def load_opt_weights(model, filepath): with h5py.File(filepath, mode='r') as f: optimizer_weights_group = f['optimizer_weights'] optimizer_weight_names = [n.decode('utf8') for n in optimizer_weights_group.attrs['weight_names']] optimizer_weight_values = [optimizer_weights_group[n] for n in optimizer_weight_names] model.optimizer.set_weights(optimizer_weight_values) ``` #### File: csmodiscgan/src/models.py ```python from keras.models import Model from keras.layers import Activation, Concatenate, Dense, Flatten, Input from keras.layers import LeakyReLU, Reshape from keras.layers import Conv2D, UpSampling2D from keras.layers import BatchNormalization def cs_generator(scene_size, modis_var_dim, noise_dim): f = 256 start_dim = 8 reshape_shape = (start_dim, start_dim, f) modis_var_input = Input(shape=(scene_size,modis_var_dim), name="modis_var_in") modis_mask_input = Input(shape=(scene_size,1), name="modis_mask_in") noise_input = Input(shape=(noise_dim,), name="noise_in") inputs = [noise_input, modis_var_input, modis_mask_input] inputs_flat = [inputs[0], Flatten()(inputs[1]), Flatten()(inputs[2])] gen_input = Concatenate()(inputs_flat) x = Dense(f * start_dim * start_dim)(gen_input) x = Activation("relu")(x) x = BatchNormalization(momentum=0.8)(x) x = Reshape(reshape_shape)(x) x = UpSampling2D(size=(2, 2))(x) x = Conv2D(256, (3, 3), padding="same")(x) x = Activation("relu")(x) x = BatchNormalization(momentum=0.8)(x) x = UpSampling2D(size=(2, 2))(x) x = Conv2D(128, (3, 3), padding="same")(x) x = Activation("relu")(x) x = BatchNormalization(momentum=0.8)(x) x = UpSampling2D(size=(2, 2))(x) x = Conv2D(64, (3, 3), padding="same")(x) x = Activation("relu")(x) x = BatchNormalization(momentum=0.8)(x) x = Conv2D(1, (3, 3), padding="same", activation='tanh')(x) gen = Model(inputs=inputs, outputs=x, name="gen") return gen def modis_upsampler(modis_var_input, modis_mask_input, modis_var_dim, scene_size, upsampled_channels=None): if upsampled_channels is None: upsampled_channels = modis_var_dim+1 modis_input = Concatenate()([modis_var_input, modis_mask_input]) x = Reshape((1,scene_size,modis_var_dim+1))(modis_input) x = UpSampling2D(size=(4,1))(x) x = Conv2D(256, (5, 3), padding="same")(x) x = LeakyReLU(0.2)(x) x = BatchNormalization(momentum=0.8)(x) x = UpSampling2D(size=(4,1))(x) x = Conv2D(128, (5, 3), padding="same")(x) x = LeakyReLU(0.2)(x) x = BatchNormalization(momentum=0.8)(x) x = UpSampling2D(size=(2,1))(x) x = Conv2D(64, (3, 3), padding="same")(x) x = LeakyReLU(0.2)(x) x = BatchNormalization(momentum=0.8)(x) x = UpSampling2D(size=(2,1))(x) x = Conv2D(upsampled_channels, (3, 3), padding="same")(x) x = LeakyReLU(0.2)(x) x = BatchNormalization(momentum=0.8)(x) return x def discriminator(scene_size, modis_var_dim): disc_input = Input(shape=(scene_size,scene_size,1), name="disc_in") modis_var_input = Input(shape=(scene_size,modis_var_dim), name="modis_var_in") modis_mask_input = Input(shape=(scene_size,1), name="modis_mask_in") modis_upsampled = modis_upsampler(modis_var_input, modis_mask_input, modis_var_dim, scene_size) full_input = Concatenate()([disc_input, modis_upsampled]) x = Conv2D(64, (3, 3), strides=(2, 2), padding="same")(full_input) x = LeakyReLU(0.2)(x) x = Conv2D(128, (3, 3), strides=(2, 2), padding="same")(x) x = LeakyReLU(0.2)(x) x = Conv2D(256, (3, 3), strides=(2, 2), padding="same")(x) x = LeakyReLU(0.2)(x) x = Conv2D(256, (3, 3), strides=(2, 2), padding="same")(x) x = LeakyReLU(0.2)(x) x = Flatten()(x) x_disc = Dense(1, activation='sigmoid', name="disc_out")(x) model = Model(inputs=[disc_input, modis_var_input, modis_mask_input], outputs=x_disc, name="disc") return model def cs_modis_cgan(gen, disc, scene_size, modis_var_dim, noise_dim): modis_var_input = Input(shape=(scene_size,modis_var_dim), name="modis_var_in") modis_mask_input = Input(shape=(scene_size,1), name="modis_mask_in") noise_input = Input(shape=(noise_dim,), name="noise_in") inputs = [noise_input, modis_var_input, modis_mask_input] generated_image = gen(inputs) disc_inputs = [generated_image, modis_var_input, modis_mask_input] x_disc = disc(disc_inputs) gan = Model(inputs=inputs, outputs=x_disc, name="cs_modis_cgan") return gan ```
{ "source": "jleinonen/downscaling-rnn-gan", "score": 2 }
#### File: downscaling-rnn-gan/dsrnngan/eval.py ```python from bisect import bisect_left from datetime import datetime, timedelta import os import netCDF4 import numpy as np from scipy.interpolate import interp1d import crps import train import data import models import msssim import noise import plots import rainfarm path = os.path.dirname(os.path.abspath(__file__)) def randomize_nans(x, rnd_mean, rnd_range): nan_mask = np.isnan(x) nan_shape = x[nan_mask].shape x[nan_mask] = rnd_mean + \ (np.random.rand(*nan_shape)-0.5)*rnd_range def ensemble_ranks(gen, batch_gen, noise_gen, noise_offset=0.0, noise_mul=1.0, num_batches=1024, rank_samples=100, normalize_ranks=True): rnd_range = 0.1 * (batch_gen.decoder.value_range[0] - batch_gen.decoder.below_val) ranks = [] crps_scores = [] for k in range(num_batches): (sample,cond) = next(batch_gen) sample_crps = sample sample = sample.ravel() sample = batch_gen.decoder.denormalize(sample) randomize_nans(sample, batch_gen.decoder.below_val, rnd_range) samples_gen = [] for i in range(rank_samples): n = noise_gen() for nn in n: nn *= noise_mul nn -= noise_offset sample_gen = gen.predict([cond]+n) samples_gen.append(sample_gen) samples_gen = np.stack(samples_gen, axis=-1) crps_score = crps.crps_ensemble(sample_crps, samples_gen) crps_scores.append(crps_score.ravel()) samples_gen = samples_gen.reshape( (np.prod(samples_gen.shape[:-1]), samples_gen.shape[-1])) samples_gen = batch_gen.decoder.denormalize(samples_gen) randomize_nans(samples_gen, batch_gen.decoder.below_val, rnd_range) rank = np.count_nonzero(sample[:,None] >= samples_gen, axis=-1) ranks.append(rank) ranks = np.concatenate(ranks) crps_scores = np.concatenate(crps_scores) if normalize_ranks: ranks = ranks / rank_samples return (ranks, crps_scores) def rank_KS(norm_ranks, num_ranks=100): (h,b) = np.histogram(norm_ranks, num_ranks+1) h = h / h.sum() ch = np.cumsum(h) cb = b[1:] return abs(ch-cb).max() def rank_CvM(norm_ranks, num_ranks=100): (h,b) = np.histogram(norm_ranks, num_ranks+1) h = h / h.sum() ch = np.cumsum(h) cb = b[1:] db = np.diff(b) return np.sqrt(((ch-cb)**2*db).sum()) def rank_DKL(norm_ranks, num_ranks=100): (h,b) = np.histogram(norm_ranks, num_ranks+1) q = h / h.sum() p = 1/len(h) return p*np.log(p/q).sum() def rank_OP(norm_ranks, num_ranks=100): op = np.count_nonzero( (norm_ranks==0) | (norm_ranks==1) ) op = float(op)/len(norm_ranks) return op def rank_metrics_by_time(application, data_file, out_fn, weights_dir, check_every=1, N_range=None): (wgan, batch_gen_train, batch_gen_valid, batch_gen_test, noise_shapes, steps_per_epoch) = train.setup_gan(data_file, application=application, batch_size=64) gen = wgan.gen noise_gen = noise.NoiseGenerator(noise_shapes(), batch_size=batch_gen_valid.batch_size) files = os.listdir(weights_dir) def get_id(fn): return fn.split("-")[1] files = sorted(fn for fn in files if get_id(fn)==application) def log_line(line): with open(out_fn, 'a') as f: print(line, file=f) log_line("N KS CvM DKL OP CRPS mean std") for fn in files[::check_every]: N_samples = int(fn.split("-")[-1].split(".")[0]) if (N_range is not None) and not (N_range[0] <= N_samples < N_range[1]): continue gen.load_weights(weights_dir+"/"+fn) (ranks, crps_scores) = ensemble_ranks(gen, batch_gen_valid, noise_gen, num_batches=8) KS = rank_KS(ranks) CvM = rank_CvM(ranks) DKL = rank_DKL(ranks) OP = rank_OP(ranks) CRPS = crps_scores.mean() mean = ranks.mean() std = ranks.std() log_line("{} {:.6f} {:.6f} {:.6f} {:.6f} {:.6f} {:.6f} {:.6f}".format( N_samples, KS, CvM, DKL, OP, CRPS, mean, std)) def rank_metrics_by_noise(application, run_id, data_file, weights_fn): (wgan, batch_gen_train, batch_gen_valid, _, noise_shapes, steps_per_epoch) = train.setup_gan(data_file, application=application) gen = wgan.gen noise_gen = noise.NoiseGenerator(noise_shapes(), batch_size=batch_gen_valid.batch_size) for m in list(range(0.5,2.51,0.1))+[3.0,3.5]: N_samples = int(fn.split("-")[-1].split(".")[0]) gen.load_weights(weights_dir+"/"+fn) (ranks, crps_scores) = ensemble_ranks(gen, batch_gen_valid, noise_gen, num_batches=32, noise_mul=m) KS = rank_KS(ranks) CvM = rank_CvM(ranks) DKL = rank_DKL(ranks) CRPS = crps_scores.mean() mean = ranks.mean() std = ranks.std() print(N_samples, KS, CvM, DKL, CRPS, mean, std) def rank_metrics_table(application, data_file, weights_fn, method="gan"): if method=="gan": (wgan, batch_gen_train, batch_gen_valid, batch_gen_test, noise_shapes, steps_per_epoch) = train.setup_gan(data_file, test_data_file=data_file, application=application, batch_size=64) gen = wgan.gen gen.load_weights(weights_fn) elif method=="rainfarm": (gen_det, batch_gen_train, batch_gen_valid, batch_gen_test, steps_per_epoch) = train.setup_deterministic(data_file, test_data_file=data_file, sample_random=True, n_samples=1, batch_size=64, application=application, loss='mse') gen = GeneratorRainFARM(16, batch_gen_test.decoder) noise_shapes = lambda: [] noise_gen = noise.NoiseGenerator(noise_shapes(), batch_size=batch_gen_valid.batch_size) (ranks, crps_scores) = ensemble_ranks(gen, batch_gen_test, noise_gen, num_batches=16) KS = rank_KS(ranks) CvM = rank_CvM(ranks) DKL = rank_DKL(ranks) OP = rank_OP(ranks) CRPS = crps_scores.mean() mean = ranks.mean() std = ranks.std() print("KS: {:.3f}".format(KS)) print("CvM: {:.3f}".format(CvM)) print("DKL: {:.3f}".format(DKL)) print("OP: {:.3f}".format(OP)) print("CRPS: {:.3f}".format(CRPS)) print("mean: {:.3f}".format(mean)) print("std: {:.3f}".format(std)) def reconstruct_time_series_partial(images_fn, gen, noise_shapes, init_model, out_fn, time_range, h=None, last_t=None, application="mchrzc", ds_factor=16, n_ensemble=4, scaling_fn=path+"/../data/scale_rzc.npy", relax_lam=0.0): if application == "mchrzc": dec = data.RainRateDecoder(scaling_fn, below_val=np.log10(0.025)) else: raise ValueError("Unknown application.") downsampler = data.LogDownsampler(min_val=dec.below_val, threshold_val=dec.value_range[0]) with netCDF4.Dataset(images_fn) as ds_img: time = np.array(ds_img["time"][:], copy=False) time_dt = [datetime(1970,1,1)+timedelta(seconds=t) for t in time] t0 = bisect_left(time_dt, time_range[0]) t1 = bisect_left(time_dt, time_range[1]) images = np.array(ds_img["images"][t0:t1,...], copy=False) time = time[t0:t1] img_shape = images.shape[1:3] img_shape = ( img_shape[0] - img_shape[0]%ds_factor, img_shape[1] - img_shape[1]%ds_factor, ) noise_gen = noise.NoiseGenerator(noise_shapes(img_shape), batch_size=n_ensemble) images_ds = np.zeros( (images.shape[0],img_shape[0]//ds_factor,img_shape[1]//ds_factor,1), dtype=np.uint8 ) images_gen = np.zeros( (images.shape[0],)+img_shape+(1,n_ensemble), dtype=np.uint8 ) # this finds the nearest index in the R encoding def encoder(): lR = dec.logR ind = np.arange(len(lR)) ip = interp1d(lR,ind) def f(x): y = np.zeros(x.shape, dtype=np.uint8) valid = (x >= dec.value_range[0]) y[valid] = ip(x[valid]).round().astype(np.uint8) return y return f encode = encoder() for k in range(images.shape[0]): print("{}/{}".format(k+1,images.shape[0])) img_real = images[k:k+1,:img_shape[0],:img_shape[1],:] img_real = dec(img_real) img_real = img_real.reshape( (1,1)+img_real.shape[1:]) img_real[np.isnan(img_real)] = dec.below_val img_ds = downsampler(img_real) img_ds = dec.normalize(img_ds) img_ds_denorm = dec.denormalize(img_ds) img_ds = np.tile(img_ds, (n_ensemble,1,1,1,1)) (n_init, n_update) = noise_gen() if (h is None) or (time[k]-last_t != 600): h = init_model.predict([img_ds[:,0,...], n_init]) (img_gen,h) = gen.predict([img_ds, h, n_update]) if relax_lam > 0.0: # nudge h towards null h_null = init_model.predict([ np.zeros_like(img_ds[:,0,...]), n_init ]) h = h_null + (1.0-relax_lam)*(h-h_null) img_gen = dec.denormalize(img_gen) img_gen = img_gen.transpose((1,2,3,4,0)) images_ds[k,...] = encode(img_ds_denorm[0,...]) images_gen[k,...] = encode(img_gen[0,...]) last_t = time[k] with netCDF4.Dataset(out_fn, 'w') as ds: dim_height = ds.createDimension("dim_height", img_shape[0]) dim_width = ds.createDimension("dim_width", img_shape[1]) dim_height_ds = ds.createDimension("dim_height_ds", img_shape[0]/ds_factor) dim_width_ds = ds.createDimension("dim_width_ds", img_shape[1]/ds_factor) dim_samples = ds.createDimension("dim_samples", images.shape[0]) dim_ensemble = ds.createDimension("dim_ensemble", n_ensemble) dim_channels = ds.createDimension("dim_channels", 1) var_params = {"zlib": True, "complevel": 9} def create_var(name, dims, **params): dtype = params.pop("dtype", np.float32) var = ds.createVariable(name, dtype, dims, **params) return var var_img = create_var("images", ("dim_samples","dim_height","dim_width","dim_channels", "dim_ensemble"), chunksizes=(1,64,64,1,1), dtype=np.uint8, **var_params) var_img.units = "Encoded R" var_img_ds = create_var("images_ds", ("dim_samples","dim_height_ds","dim_width_ds","dim_channels"), dtype=np.uint8, **var_params) var_img_ds.units = "Encoded R" var_time = create_var("time", ("dim_samples",), chunksizes=(1,), dtype=np.float64, **var_params) var_time.units = "Seconds since 1970-01-01 00:00" var_img_ds[:] = images_ds var_img[:] = images_gen var_time[:] = time return (h, last_t) def reconstruct_time_series_monthly(images_fn, weights_fn, out_dir, time_range, application="mchrzc", ds_factor=16, n_ensemble=4, relax_lam=0.0): (gen,_) = models.generator(num_timesteps=1) init_model = models.initial_state_model() (gen_init, noise_shapes) = models.generator_initialized(gen, init_model, num_timesteps=1) gen_init.load_weights(weights_fn) t0 = time_range[0] months = [] while t0 < time_range[1]: (y,m) = (t0.year, t0.month) m += 1 if m > 12: m = 1 y += 1 t1 = datetime(y,m,1) months.append((t0,t1)) t0 = t1 (h, last_t) = (None, None) for month in months: out_fn = out_dir + "/timeseries-{}-{}{:02d}.nc".format( application,month[0].year,month[0].month) (h, last_t) = reconstruct_time_series_partial(images_fn, gen, noise_shapes, init_model, out_fn, month, h=h, last_t=last_t, application=application, ds_factor=ds_factor, n_ensemble=n_ensemble, relax_lam=relax_lam ) def log_spectral_distance(img1, img2): def power_spectrum_dB(img): fx = np.fft.fft2(img) fx = fx[:img.shape[0]//2,:img.shape[1]//2] px = abs(fx)**2 return 10 * np.log10(px) d = (power_spectrum_dB(img1)-power_spectrum_dB(img2))**2 d[~np.isfinite(d)] = np.nan return np.sqrt(np.nanmean(d)) def log_spectral_distance_batch(batch1, batch2): lsd_batch = [] for i in range(batch1.shape[0]): for j in range(batch1.shape[1]): lsd = log_spectral_distance( batch1[i,j,:,:,0], batch2[i,j,:,:,0] ) lsd_batch.append(lsd) return np.array(lsd_batch) def image_quality(gen, batch_gen, noise_shapes, num_instances=1, N_batches=100): N = batch_gen.N #N_batches = N//batch_gen.batch_size img_shape = batch_gen.img_shape noise_gen = noise.NoiseGenerator(noise_shapes(img_shape), batch_size=batch_gen.batch_size, random_seed=1234) batch_gen.reset(random_seed=1234) rmse_all = [] ssim_all = [] lsd_all = [] for k in range(N_batches): (img_real, img_ds) = next(batch_gen) for i in range(num_instances): n = noise_gen() img_gen = gen.predict([img_ds]+n) rmse = np.sqrt(((img_real-img_gen)**2).mean(axis=(2,3,4))) ssim = msssim.MultiScaleSSIM(img_real, img_gen, 1.0) lsd = log_spectral_distance_batch(img_real, img_gen) rmse_all.append(rmse.flatten()) ssim_all.append(ssim.flatten()) lsd_all.append(lsd.flatten()) rmse_all = np.concatenate(rmse_all) ssim_all = np.concatenate(ssim_all) lsd_all = np.concatenate(lsd_all) return (rmse_all, ssim_all, lsd_all) def quality_metrics_by_time(application, data_fn, out_fn, weights_dir, check_every=1): (wgan, batch_gen_train, batch_gen_valid, _, noise_shapes, steps_per_epoch) = train.setup_gan(data_fn, application=application, batch_size=32) gen = wgan.gen files = os.listdir(weights_dir) def get_app(fn): return fn.split("-")[1] files = sorted(fn for fn in files if get_app(fn)==application) def log_line(line): with open(out_fn, 'a') as f: print(line, file=f) log_line("N RMSE MSSSIM LSD") for fn in files[::check_every]: N_samples = int(fn.split("-")[-1].split(".")[0]) print(N_samples) gen.load_weights(weights_dir+"/"+fn) (rmse, ssim, lsd) = image_quality(gen, batch_gen_valid, noise_shapes) log_line("{} {:.6f} {:.6f} {:.6f}".format( N_samples, rmse.mean(), ssim.mean(), np.nanmean(lsd))) def quality_metrics_table(application, data_fn, weights_fn, method="gan"): if method == "gan": (wgan, batch_gen_train, batch_gen_valid, batch_gen_test, noise_shapes, steps_per_epoch) = train.setup_gan(data_fn, test_data_file=data_fn, application=application, batch_size=32) gen = wgan.gen gen.load_weights(weights_fn) elif method == "gen_det": (gen_det, batch_gen_train, batch_gen_valid, batch_gen_test, steps_per_epoch) = train.setup_deterministic(data_fn, test_data_file=data_fn, sample_random=True, n_samples=1, batch_size=32, application=application, loss='mse') gen_det.load_weights(weights_fn) gen = GeneratorDeterministicPlaceholder(gen_det) noise_shapes = lambda s: [] elif method == "lanczos": (gen_det, batch_gen_train, batch_gen_valid, batch_gen_test, steps_per_epoch) = train.setup_deterministic(data_fn, test_data_file=data_fn, sample_random=True, n_samples=1, batch_size=32, application=application, loss='mse') gen = GeneratorLanczos((128,128)) noise_shapes = lambda s: [] elif method == "rainfarm": (gen_det, batch_gen_train, batch_gen_valid, batch_gen_test, steps_per_epoch) = train.setup_deterministic(data_fn, test_data_file=data_fn, sample_random=True, n_samples=1, batch_size=32, application=application, loss='mse') gen = GeneratorRainFARM(16, batch_gen_test.decoder) noise_shapes = lambda s: [] (rmse, ssim, lsd) = image_quality(gen, batch_gen_test, noise_shapes) print("RMSE: {:.3f}".format(rmse.mean())) print("MSSSIM: {:.3f}".format(ssim.mean())) print("LSD: {:.3f}".format(np.nanmean(lsd))) class GeneratorLanczos: # class that can be used in place of a generator for evaluation purposes, # using Lanczos filtering def __init__(self, out_size): self.out_size = out_size def predict(self, *args): y = args[0][0] out_shape = y.shape[:2] + self.out_size + y.shape[4:] x = np.zeros(out_shape, dtype=y.dtype) for i in range(x.shape[0]): for k in range(x.shape[1]): x[i,k,:,:,0] = plots.resize_lanczos(y[i,k,:,:,0], self.out_size) return x class GeneratorDeterministicPlaceholder: def __init__(self, gen_det): self.gen_det = gen_det def predict(self, *args): y = args[0] return self.gen_det.predict(y) class GeneratorRainFARM: def __init__(self, ds_factor, decoder): self.ds_factor = ds_factor self.decoder = decoder self.batches = 0 def predict(self, *args): print(self.batches) self.batches += 1 y = args[0][0] y = self.decoder.denormalize(y) P = 10**y P[~np.isfinite(P)] = 0 out_size = (y.shape[2]*self.ds_factor, y.shape[3]*self.ds_factor) out_shape = y.shape[:2] + out_size + y.shape[4:] x = np.zeros(out_shape, dtype=y.dtype) for i in range(y.shape[0]): alpha = rainfarm.get_alpha_seq(P[i,...,0]) r = [rainfarm.rainfarm_downscale(p, alpha=alpha, threshold=0.1, ds_factor=self.ds_factor) for p in P[0,...,0]] log_r = np.log10(r) log_r[~np.isfinite(log_r)] = np.nan log_r = self.decoder.normalize(log_r) log_r[~np.isfinite(log_r)] = 0.0 x[i,...,0] = log_r x = x.clip(0,1) return x ``` #### File: downscaling-rnn-gan/dsrnngan/gan.py ```python import gc import numpy as np from tensorflow.keras.models import Model from tensorflow.keras.layers import Input from tensorflow.keras import backend as K from tensorflow.keras.optimizers import Adam from tensorflow.python.keras.utils import generic_utils from layers import GradientPenalty, RandomWeightedAverage from meta import Nontrainable, input_shapes, ensure_list from meta import save_opt_weights, load_opt_weights class WGANGP(object): def __init__(self, gen, disc, num_channels=1, num_timesteps=8, gradient_penalty_weight=10, lr_disc=0.0001, lr_gen=0.0001, avg_seed=None): self.gen = gen self.disc = disc self.num_channels = num_channels self.num_timesteps = num_timesteps self.gradient_penalty_weight = gradient_penalty_weight self.lr_disc = lr_disc self.lr_gen = lr_gen self.build_wgan_gp() def filenames_from_root(self, root): fn = { "gen_weights": root+"-gen_weights.h5", "disc_weights": root+"-disc_weights.h5", "gen_opt_weights": root+"-gen_opt_weights.h5", "disc_opt_weights": root+"-disc_opt_weights.h5" } return fn def load(self, load_files): self.gen.load_weights(load_files["gen_weights"]) self.disc.load_weights(load_files["disc_weights"]) with Nontrainable(self.disc): self.gen_trainer._make_train_function() load_opt_weights(self.gen_trainer, load_files["gen_opt_weights"]) with Nontrainable(self.gen): self.disc_trainer._make_train_function() load_opt_weights(self.disc_trainer, load_files["disc_opt_weights"]) def save(self, save_fn_root): paths = self.filenames_from_root(save_fn_root) self.gen.save_weights(paths["gen_weights"], overwrite=True) self.disc.save_weights(paths["disc_weights"], overwrite=True) save_opt_weights(self.disc_trainer, paths["disc_opt_weights"]) save_opt_weights(self.gen_trainer, paths["gen_opt_weights"]) def build_wgan_gp(self): # find shapes for inputs cond_shapes = input_shapes(self.gen, "cond") noise_shapes = input_shapes(self.gen, "noise") sample_shapes = input_shapes(self.disc, "sample") # Create generator training network with Nontrainable(self.disc): cond_in = [Input(shape=s) for s in cond_shapes] noise_in = [Input(shape=s) for s in noise_shapes] gen_in = cond_in+noise_in gen_out = self.gen(gen_in) gen_out = ensure_list(gen_out) disc_in_gen = cond_in+[gen_out] disc_out_gen = self.disc(disc_in_gen) self.gen_trainer = Model(inputs=gen_in, outputs=disc_out_gen) # Create discriminator training network with Nontrainable(self.gen): cond_in = [Input(shape=s) for s in cond_shapes] noise_in = [Input(shape=s) for s in noise_shapes] sample_in = [Input(shape=s) for s in sample_shapes] gen_in = cond_in+noise_in disc_in_real = sample_in[0] disc_in_fake = self.gen(gen_in) disc_in_avg = RandomWeightedAverage()([disc_in_real,disc_in_fake]) disc_out_real = self.disc(cond_in+[disc_in_real]) disc_out_fake = self.disc(cond_in+[disc_in_fake]) disc_out_avg = self.disc(cond_in+[disc_in_avg]) disc_gp = GradientPenalty()([disc_out_avg, disc_in_avg]) self.disc_trainer = Model(inputs=cond_in+sample_in+noise_in, outputs=[disc_out_real,disc_out_fake,disc_gp]) self.compile() def compile(self, opt_disc=None, opt_gen=None): #create optimizers if opt_disc is None: opt_disc = Adam(self.lr_disc, beta_1=0.5, beta_2=0.9) self.opt_disc = opt_disc if opt_gen is None: opt_gen = Adam(self.lr_gen, beta_1=0.5, beta_2=0.9) self.opt_gen = opt_gen with Nontrainable(self.disc): self.gen_trainer.compile(loss=wasserstein_loss, optimizer=self.opt_gen) with Nontrainable(self.gen): self.disc_trainer.compile( loss=[wasserstein_loss, wasserstein_loss, 'mse'], loss_weights=[1.0, 1.0, self.gradient_penalty_weight], optimizer=self.opt_disc ) def train(self, batch_gen, noise_gen, num_gen_batches=1, training_ratio=1, show_progress=True): disc_target_real = None if show_progress: # Initialize progbar and batch counter progbar = generic_utils.Progbar( num_gen_batches*batch_gen.batch_size) disc_target_real = np.ones( (batch_gen.batch_size, batch_gen.num_frames, 1), dtype=np.float32) disc_target_fake = -disc_target_real gen_target = disc_target_real target_gp = np.zeros((batch_gen.batch_size, 1), dtype=np.float32) disc_target = [disc_target_real, disc_target_fake, target_gp] loss_log = [] for k in range(num_gen_batches): # train discriminator disc_loss = None disc_loss_n = 0 for rep in range(training_ratio): # generate some real samples (sample, cond) = next(batch_gen) noise = noise_gen() with Nontrainable(self.gen): dl = self.disc_trainer.train_on_batch( [cond,sample]+noise, disc_target) if disc_loss is None: disc_loss = np.array(dl) else: disc_loss += np.array(dl) disc_loss_n += 1 del sample, cond disc_loss /= disc_loss_n with Nontrainable(self.disc): (sample, cond) = next(batch_gen) gen_loss = self.gen_trainer.train_on_batch( [cond]+noise_gen(), gen_target) del sample, cond if show_progress: losses = [] for (i,dl) in enumerate(disc_loss): losses.append(("D{}".format(i), dl)) for (i,gl) in enumerate([gen_loss]): losses.append(("G{}".format(i), gl)) progbar.add(batch_gen.batch_size, values=losses) loss_log.append(np.hstack((disc_loss,gen_loss))) gc.collect() return np.array(loss_log) def wasserstein_loss(y_true, y_pred): return K.mean(y_true * y_pred, axis=-1) ``` #### File: downscaling-rnn-gan/dsrnngan/layers.py ```python import numpy as np import tensorflow as tf from tensorflow.python.keras.engine import InputSpec from tensorflow.python.keras.engine import base_layer_utils from tensorflow.python.ops import math_ops from tensorflow.keras.layers import Layer from tensorflow.keras.layers import Dense, Conv2D from tensorflow.python.keras.layers.merge import _Merge from tensorflow.keras import initializers from tensorflow.keras import backend as K class GradientPenalty(Layer): def __init__(self, **kwargs): super(GradientPenalty, self).__init__(**kwargs) def call(self, inputs): target, wrt = inputs grad = K.gradients(target, wrt)[0] return K.sqrt(K.sum(K.batch_flatten(K.square(grad)), axis=1, keepdims=True))-1 def compute_output_shape(self, input_shapes): return (input_shapes[1][0], 1) class RandomWeightedAverage(_Merge): def build(self, input_shape): super(RandomWeightedAverage, self).build(input_shape) if len(input_shape) != 2: raise ValueError('A `RandomWeightedAverage` layer should be ' 'called on exactly 2 inputs') def _merge_function(self, inputs): if len(inputs) != 2: raise ValueError('A `RandomWeightedAverage` layer should be ' 'called on exactly 2 inputs') (x,y) = inputs shape = K.shape(x) weights = K.random_uniform(shape[:1],0,1) for i in range(len(K.int_shape(x))-1): weights = K.expand_dims(weights,-1) return x*weights + y*(1-weights) class SNConv2D(Conv2D): def build(self, input_shape): if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 if input_shape[channel_axis] is None: raise ValueError('The channel dimension of the inputs ' 'should be defined. Found `None`.') input_dim = input_shape[channel_axis] kernel_shape = self.kernel_size + (input_dim, self.filters) self.kernel = self.add_weight(shape=kernel_shape, initializer=self.kernel_initializer, name='kernel', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) if self.use_bias: self.bias = self.add_weight(shape=(self.filters,), initializer=self.bias_initializer, name='bias', regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None self.u = self.add_weight(shape=tuple([1, self.kernel.shape.as_list()[-1]]), initializer=initializers.RandomNormal(0, 1), name='sn', trainable=False) # Set input spec. self.input_spec = InputSpec(ndim=self.rank + 2, axes={channel_axis: input_dim}) self.built = True def _get_trainable_var(self): if self._trainable_var is None: self._trainable_var = K.freezable_variable( self._trainable, name=self.name + '_trainable') return self._trainable_var def _get_training_value(self, training=None): if training is None: training = K.learning_phase() if isinstance(training, int): training = bool(training) if base_layer_utils.is_in_keras_graph(): training = math_ops.logical_and(training, self._get_trainable_var()) else: training = math_ops.logical_and(training, self.trainable) return training def call(self, inputs, training=None): training = self._get_training_value(training) def _l2normalize(v, eps=1e-12): return v / (K.sum(v ** 2) ** 0.5 + eps) def power_iteration(W, u): #Accroding the paper, we only need to do power iteration one time. _u = u _v = _l2normalize(K.dot(_u, K.transpose(W))) _u = _l2normalize(K.dot(_v, W)) return _u, _v #Spectral Normalization W_shape = self.kernel.shape.as_list() #Flatten the Tensor W_reshaped = K.reshape(self.kernel, [-1, W_shape[-1]]) _u, _v = power_iteration(W_reshaped, self.u) #Calculate Sigma sigma = K.dot(_v, W_reshaped) sigma = K.dot(sigma, K.transpose(_u)) #normalize it W_bar = W_reshaped / sigma if training == False: W_bar = K.reshape(W_bar, W_shape) else: u = self.u.assign(tf.cond( training, lambda: _u, lambda: self.u )) with tf.control_dependencies([u]): W_bar = K.reshape(W_bar, W_shape) outputs = K.conv2d( inputs, W_bar, strides=self.strides, padding=self.padding, data_format=self.data_format, dilation_rate=self.dilation_rate) if self.use_bias: outputs = K.bias_add( outputs, self.bias, data_format=self.data_format) if self.activation is not None: return self.activation(outputs) return outputs class SNDense(Dense): def build(self, input_shape): assert len(input_shape) >= 2 input_dim = input_shape[-1] self.kernel = self.add_weight(shape=(input_dim, self.units), initializer=self.kernel_initializer, name='kernel', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) if self.use_bias: self.bias = self.add_weight(shape=(self.units,), initializer=self.bias_initializer, name='bias', regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None self.u = self.add_weight(shape=tuple([1, self.kernel.shape.as_list()[-1]]), initializer=initializers.RandomNormal(0, 1), name='sn', trainable=False) self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim}) self.built = True def _get_trainable_var(self): if self._trainable_var is None: self._trainable_var = K.freezable_variable( self._trainable, name=self.name + '_trainable') return self._trainable_var def _get_training_value(self, training=None): if training is None: training = K.learning_phase() if isinstance(training, int): training = bool(training) if base_layer_utils.is_in_keras_graph(): training = math_ops.logical_and(training, self._get_trainable_var()) else: training = math_ops.logical_and(training, self.trainable) return training def call(self, inputs, training=None): training = self._get_training_value(training) def _l2normalize(v, eps=1e-12): return v / (K.sum(v ** 2) ** 0.5 + eps) def power_iteration(W, u): _u = u _v = _l2normalize(K.dot(_u, K.transpose(W))) _u = _l2normalize(K.dot(_v, W)) return _u, _v W_shape = self.kernel.shape.as_list() #Flatten the Tensor W_reshaped = K.reshape(self.kernel, [-1, W_shape[-1]]) _u, _v = power_iteration(W_reshaped, self.u) #Calculate Sigma sigma = K.dot(_v, W_reshaped) sigma = K.dot(sigma, K.transpose(_u)) #normalize it W_bar = W_reshaped / sigma if training == False: W_bar = K.reshape(W_bar, W_shape) else: u = self.u.assign(tf.cond( training, lambda: _u, lambda: self.u )) with tf.control_dependencies([u]): W_bar = K.reshape(W_bar, W_shape) output = K.dot(inputs, W_bar) if self.use_bias: output = K.bias_add(output, self.bias, data_format='channels_last') if self.activation is not None: output = self.activation(output) return output class ReflectionPadding2D(Layer): def __init__(self, padding=(1,1), **kwargs): self.padding = tuple(padding) super(ReflectionPadding2D, self).__init__(**kwargs) def compute_output_shape(self, s): return ( s[0], None if s[1] is None else s[1]+2*self.padding[0], None if s[2] is None else s[2]+2*self.padding[1], s[3] ) def call(self, x): (i_pad,j_pad) = self.padding return tf.pad(x, [[0,0], [i_pad,i_pad], [j_pad,j_pad], [0,0]], 'REFLECT') ``` #### File: downscaling-rnn-gan/dsrnngan/plots.py ```python from bisect import bisect_left from datetime import datetime, timedelta import gc import os from string import ascii_lowercase import matplotlib matplotlib.use("Agg") from matplotlib import pyplot as plt from matplotlib import colorbar, colors, gridspec import netCDF4 import numpy as np import pandas as pd try: from PIL import Image except ImportError: pass # to allow loading on setups witout PIL import data import models import noise import train path = os.path.dirname(os.path.abspath(__file__)) def plot_img(img, value_range=(np.log10(0.1), np.log10(100)), extent=None): plt.imshow(img, interpolation='nearest', norm=colors.Normalize(*value_range), extent=extent) plt.gca().tick_params(left=False, bottom=False, labelleft=False, labelbottom=False) def plot_sequences(gen, batch_gen, noise_gen, num_samples=8, num_instances=4, out_fn=None, plot_stride=1): old_batch_size = batch_gen.batch_size try: batch_gen.batch_size = num_samples noise_gen.batch_size = num_samples (seq_real, cond) = next(batch_gen) seq_gen = [] for i in range(num_instances): seq_gen.append(gen.predict([cond]+noise_gen())) finally: batch_gen.batch_size = old_batch_size noise_gen.batch_size = old_batch_size seq_real = batch_gen.decoder.denormalize(seq_real) cond = batch_gen.decoder.denormalize(cond) seq_gen = [batch_gen.decoder.denormalize(seq) for seq in seq_gen] num_frames = batch_gen.num_frames if plot_stride > 1: seq_real = seq_real[:,::plot_stride,...] cond = cond[:,::plot_stride,...] for i in range(len(seq_gen)): seq_gen[i] = seq_gen[i][:,::plot_stride,...] num_frames = seq_real.shape[1] num_rows = num_samples*num_frames num_cols = 2+num_instances figsize = (num_cols*1.5, num_rows*1.5) plt.figure(figsize=figsize) gs = gridspec.GridSpec(num_rows, num_cols, wspace=0.05, hspace=0.05) value_range = batch_gen.decoder.value_range for s in range(num_samples): for t in range(num_frames): i = s*num_frames+t plt.subplot(gs[i,0]) plot_img(seq_real[s,t,:,:,0], value_range=value_range) plt.subplot(gs[i,1]) plot_img(cond[s,t,:,:,0], value_range=value_range) for k in range(num_instances): j = 2+k plt.subplot(gs[i,j]) plot_img(seq_gen[k][s,t,:,:,0], value_range=value_range) if out_fn is not None: plt.savefig(out_fn, bbox_inches='tight') plt.close() def plot_rank_metrics_by_samples(metrics_fn,ax=None, plot_metrics=["KS", "DKL", "OP", "mean"], value_range=(-0.1,0.2), linestyles=['solid', 'dashed', 'dashdot', ':',], opt_switch_point=350000, plot_switch_text=True): if ax is None: ax = plt.gca() df = pd.read_csv(metrics_fn, delimiter=" ") x = df["N"] for (metric,linestyle) in zip(plot_metrics,linestyles): y = df[metric] label = metric if metric=="DKL": label = "$D_\\mathrm{KL}$" if metric=="OP": label = "OF" if metric=="mean": y = y-0.5 label = "mean - $\\frac{1}{2}$" ax.plot(x, y, label=label, linestyle=linestyle) ax.set_xlim((0,x.max())) ax.set_ylim(value_range) ax.axhline(0, linestyle='--', color=(0.75,0.75,0.75), zorder=-10) ax.axvline(opt_switch_point, linestyle='--', color=(0.75,0.75,0.75), zorder=-10) if plot_switch_text: text_x = opt_switch_point*0.98 text_y = value_range[1]-(value_range[1]-value_range[0])*0.02 ax.text(text_x, text_y, "Adam\u2192SGD", horizontalalignment='right', verticalalignment='top', color=(0.5,0.5,0.5)) plt.grid(axis='y') def plot_rank_metrics_by_samples_multiple(metrics_files, value_ranges=[(-0.025,0.075),(-0.1,0.2)]): (fig,axes) = plt.subplots(len(metrics_files),1, sharex=True, squeeze=True) plt.subplots_adjust(hspace=0.1) for (i,(ax,fn,vr)) in enumerate(zip(axes,metrics_files,value_ranges)): plot_rank_metrics_by_samples(fn,ax,plot_switch_text=(i==0),value_range=vr) if i==len(metrics_files)-1: ax.legend(ncol=5) ax.set_xlabel("Training sequences") ax.text(0.04, 0.97, "({})".format(ascii_lowercase[i]), horizontalalignment='left', verticalalignment='top', transform=ax.transAxes) ax.set_ylabel("Rank metric") ax.grid(axis='y') def plot_quality_metrics_by_samples(quality_metrics_fn, rank_metrics_fn, ax=None, plot_metrics=["RMSE", "MSSSIM", "LSD", "CRPS"], value_range=(0,0.7), linestyles=['-', '--', ':', '-.'], opt_switch_point=350000, plot_switch_text=True): if ax is None: ax = plt.gca() df = pd.read_csv(quality_metrics_fn, delimiter=" ") df_r = pd.read_csv(rank_metrics_fn, delimiter=" ") df["CRPS"] = df_r["CRPS"] x = df["N"] for (metric,linestyle) in zip(plot_metrics,linestyles): y = df[metric] label = metric if metric=="MSSSIM": y = 1-y label = "$1 - $MS-SSIM" if metric=="LSD": label = "LSD [dB] / 50" y = y/50 if metric=="CRPS": y = y*10 label = "CRPS $\\times$ 10" ax.plot(x, y, label=label, linestyle=linestyle) ax.set_xlim((0,x.max())) ax.set_ylim(value_range) ax.axhline(0, linestyle='--', color=(0.75,0.75,0.75), zorder=-10) ax.axvline(opt_switch_point, linestyle='--', color=(0.75,0.75,0.75), zorder=-10) if plot_switch_text: text_x = opt_switch_point*0.98 text_y = value_range[1]-(value_range[1]-value_range[0])*0.02 ax.text(text_x, text_y, "Adam\u2192SGD", horizontalalignment='right', verticalalignment='top', color=(0.5,0.5,0.5)) def plot_quality_metrics_by_samples_multiple( quality_metrics_files, rank_metrics_files): (fig,axes) = plt.subplots(len(quality_metrics_files),1, sharex=True, squeeze=True) plt.subplots_adjust(hspace=0.1) value_ranges = [(0,0.4),(0,0.8)] for (i,(ax,fn_q,fn_r,vr)) in enumerate(zip( axes,quality_metrics_files,rank_metrics_files,value_ranges)): plot_quality_metrics_by_samples(fn_q,fn_r,ax, plot_switch_text=(i==0), value_range=vr) if i==0: ax.legend(mode='expand', ncol=4, loc='lower left') if i==1: ax.set_xlabel("Training sequences") ax.text(0.04, 0.97, "({})".format(ascii_lowercase[i]), horizontalalignment='left', verticalalignment='top', transform=ax.transAxes) ax.set_ylabel("Quality metric") ax.grid(axis='y') def plot_sequences_horiz(gen, noise_shapes, batch_gen, samples=[0,1,2], num_instances=3, out_fn=None, plot_stride=2, random_seed=1234, application="mchrzc"): num_samples = len(samples) old_batch_size = batch_gen.batch_size old_augment = batch_gen.augment old_zeros_frac = batch_gen.zeros_frac img_shape = batch_gen.sequences.shape[2:4] noise_gen = noise.NoiseGenerator(noise_shapes(img_shape), batch_size=num_samples, random_seed=random_seed) # force the batch generator to return the selected samples batch_gen.next_ind = np.array(samples) try: batch_gen.batch_size = num_samples batch_gen.augment = False batch_gen.zeros_frac = 0.0 (seq_real, cond) = next(batch_gen) seq_gen = [] for i in range(num_instances): seq_gen.append(gen.predict([cond]+noise_gen())) finally: batch_gen.batch_size = old_batch_size batch_gen.augment = old_augment batch_gen.zeros_frac = old_zeros_frac seq_real = batch_gen.decoder.denormalize(seq_real) cond = batch_gen.decoder.denormalize(cond) seq_gen = [batch_gen.decoder.denormalize(seq) for seq in seq_gen] num_frames = batch_gen.num_frames if plot_stride > 1: seq_real = seq_real[:,::plot_stride,...] cond = cond[:,::plot_stride,...] for i in range(len(seq_gen)): seq_gen[i] = seq_gen[i][:,::plot_stride,...] num_frames = seq_real.shape[1] num_rows = num_samples num_cols = num_frames num_rows_s = 2+num_instances figsize = (num_cols*1.5, num_rows*num_rows_s*1.60) fig = plt.figure(figsize=figsize) gs = gridspec.GridSpec(num_rows+1, 1, hspace=0.05, height_ratios=[1]*num_rows+[0.035]) value_range = batch_gen.decoder.value_range for s in range(num_samples): gs_s = gridspec.GridSpecFromSubplotSpec(num_rows_s, num_cols, subplot_spec=gs[s,0], wspace=0.05, hspace=0.05) for t in range(num_frames): plt.subplot(gs_s[0,t]) plot_img(seq_real[s,t,:,:,0], value_range=value_range) if t==0: plt.ylabel("Real", fontsize=16) plt.text(0.01, 0.97, "({})".format(ascii_lowercase[s]), horizontalalignment='left', verticalalignment='top', transform=plt.gca().transAxes, fontsize=16) if s==0: plt.title("Time \u2192", fontsize=16) plt.subplot(gs_s[1,t]) plot_img(cond[s,t,:,:,0], value_range=value_range) if t==0: plt.ylabel("Downs.", fontsize=16) for k in range(num_instances): j = 2+k plt.subplot(gs_s[j,t]) plot_img(seq_gen[k][s,t,:,:,0], value_range=value_range) if t==0: plt.ylabel("Gen. #{}".format(k+1), fontsize=16) if application == 'mchrzc': units = "Rain rate [mm h$^{-1}$]" cb_tick_loc = np.array([-1, 0, 1, 2]) cb_tick_labels = [0.1, 1, 10, 100] elif application == 'goescod': units = "Cloud optical thickness" cb_tick_loc = np.log([2, 10, 50, 150]) cb_tick_labels = np.exp(cb_tick_loc).round().astype(int) cax = plt.subplot(gs[-1,0]).axes cb = colorbar.ColorbarBase(cax, norm=colors.Normalize(*value_range), orientation='horizontal') cb.set_ticks(cb_tick_loc) cb.set_ticklabels(cb_tick_labels) cax.tick_params(labelsize=16) cb.set_label(units, size=16) if out_fn is not None: plt.savefig(out_fn, bbox_inches='tight') plt.close() def plot_examples_mchrzc(data_fn, weights_fn, plot_fn): (wgan, batch_gen_train, batch_gen_valid, batch_gen_test, noise_shapes, steps_per_epoch) = train.setup_gan(data_fn, test_data_file=data_fn, sample_random=True, n_samples=1, application='mchrzc', random_seed=1234) gen = wgan.gen gen.load_weights(weights_fn) plot_sequences_horiz(gen, noise_shapes, batch_gen_test, samples=[0,21,15], application='mchrzc', plot_stride=1) plt.savefig(plot_fn, bbox_inches='tight') plt.close() def plot_examples_goescod(data_fn, weights_fn, plot_fn): (wgan, batch_gen_train, batch_gen_valid, batch_gen_test, noise_shapes, steps_per_epoch) = train.setup_gan(data_fn, test_data_file=data_fn, sample_random=True, n_samples=1, application='goescod', random_seed=1234) gen = wgan.gen gen.load_weights(weights_fn) plot_sequences_horiz(gen, noise_shapes, batch_gen_test, samples=[0,1,2], application='goescod', plot_stride=1) plt.savefig(plot_fn, bbox_inches='tight') plt.close() def plot_examples_mchrzc_random(data_fn, weights_fn, plot_dir, num_examples=16): (wgan, batch_gen_train, batch_gen_valid, batch_gen_test, noise_shapes, steps_per_epoch) = train.setup_gan(data_fn, test_data_file=data_fn, sample_random=True, n_samples=1, application='mchrzc', random_seed=2345) gen = wgan.gen gen.load_weights(weights_fn) for k in range(num_examples): plot_fn = plot_dir + "/examples-mchrzc-random-{:02d}.pdf".format(k) plot_sequences_horiz(gen, noise_shapes, batch_gen_test, samples=[k], application='mchrzc', plot_stride=1, num_instances=12) plt.savefig(plot_fn, bbox_inches='tight') plt.close() def plot_examples_goescod_random(data_fn, weights_fn, plot_dir, num_examples=16): (wgan, batch_gen_train, batch_gen_valid, batch_gen_test, noise_shapes, steps_per_epoch) = train.setup_gan(data_fn, test_data_file=data_fn, sample_random=True, n_samples=1, application='goescod', random_seed=2345) gen = wgan.gen gen.load_weights(weights_fn) for k in range(num_examples): plot_fn = plot_dir + "/examples-goescod-random-{:02d}.pdf".format(k) plot_sequences_horiz(gen, noise_shapes, batch_gen_test, samples=[k], application='goescod', plot_stride=1, num_instances=12) plt.savefig(plot_fn, bbox_inches='tight') plt.close() def plot_video_frame(img_real, img_ds, img_gen, oob_mask, time, num_ensemble=4): assert(num_ensemble in {1,4}) img_shape = img_real.shape if num_ensemble == 1: figsize = (img_shape[1]/img_shape[0]*3*4, 4) gs = gridspec.GridSpec(1,3,hspace=0.05, wspace=0.05) elif num_ensemble == 4: figsize = (img_shape[1]/img_shape[0]*3*4, 2*4) gs = gridspec.GridSpec(2,3,hspace=0.05, wspace=0.05) fig = plt.figure(figsize=figsize, dpi=210) ds_factor = int(round((img_gen.shape[0]/img_ds.shape[0]))) oob_mask_ds = np.zeros(img_ds.shape, dtype=bool) oob_mask_gen = np.zeros(img_gen[:,:,0].shape, dtype=bool) for i_ds in range(oob_mask_ds.shape[0]): for j_ds in range(oob_mask_ds.shape[1]): i0 = i_ds*ds_factor j0 = j_ds*ds_factor i1 = i0+ds_factor j1 = j0+ds_factor oob_mask_ds[i_ds,j_ds] = oob_mask[i0:i1,j0:j1].any() oob_mask_gen[i0:i1,j0:j1] = oob_mask_ds[i_ds,j_ds] cmap_mask = colors.ListedColormap([ [0.0,0.0,0.0,0.0], [0.75,0.75,0.75,1.0] ]) import shapefile border = shapefile.Reader("../data/Border_CH.shp") shapes = list(border.shapeRecords()) def draw_border(): for shape in shapes: x = [i[0]/1000. for i in shape.shape.points[:]] y = [i[1]/1000. for i in shape.shape.points[:]] plt.plot(x,y,'k',linewidth=1.0) extent_real = [254.5,965.5,-159.5,480.5] extent_gen = [254.5,959.5,-159.5,480.5] plt.subplot(gs[0,0]) plot_img(img_real, extent=extent_real) plt.imshow(oob_mask.astype(int), cmap=cmap_mask, extent=extent_real) draw_border() plt.gca().set_xlim((extent_real[0],extent_real[1])) plt.gca().set_ylim((extent_real[2],extent_real[3])) plt.title("Real", fontsize=14) if num_ensemble == 1: gs_ds = gs[0,1] elif num_ensemble == 4: gs_ds = gs[1,0] plt.subplot(gs_ds) plot_img(img_ds, extent=extent_gen) plt.imshow(oob_mask_ds.astype(int), cmap=cmap_mask, extent=extent_gen) draw_border() plt.gca().set_xlim((extent_real[0],extent_real[1])) plt.gca().set_ylim((extent_real[2],extent_real[3])) if num_ensemble == 1: plt.title(time.strftime("%Y-%m-%d %H:%M UTC")+"\n\nDownsampled", fontsize=14) elif num_ensemble == 4: plt.xlabel("Downsampled", fontsize=14) if num_ensemble == 1: gs_list = [gs[0,2]] elif num_ensemble == 4: gs_list = [gs[0,1], gs[0,2], gs[1,1], gs[1,2]] for (k,g) in enumerate(gs_list): plt.subplot(g) plot_img(img_gen[:,:,k], extent=extent_gen) plt.imshow(oob_mask_gen.astype(int), cmap=cmap_mask, extent=extent_gen) draw_border() plt.gca().set_xlim((extent_real[0],extent_real[1])) plt.gca().set_ylim((extent_real[2],extent_real[3])) if num_ensemble == 1: plt.title("Reconstructed", fontsize=14) elif num_ensemble == 4: if k == 1: plt.title("Generated #{}".format(k+1), fontsize=14) elif k == 0: plt.title(time.strftime("%Y-%m-%d %H:%M UTC") + "\n\nGenerated#{}".format(k+1), fontsize=14) else: plt.xlabel("Generated #{}".format(k+1), fontsize=14) def plot_video_frames_all(images_fn, gen_fn, out_dir, format="png", application="mchrzc", time_range=None, scaling_fn=path+"/../data/scale_rzc.npy", num_ensemble=4): if application == "mchrzc": dec = data.RainRateDecoder(scaling_fn, below_val=np.log10(0.025)) else: raise ValueError("Unknown application.") if not os.path.exists(out_dir): os.mkdir(out_dir) smoothener = data.Smoothener() # To get a proper comparison of real and generated fields we must # apply the same kind of preprocessing as we do when training the GAN def decode_real(x): oob_mask = (x==0) nan_mask = (x==1) x = dec(x) x[nan_mask | oob_mask] = dec.below_val x = x.reshape((1,1)+img_real.shape+(1,)) x = smoothener.smoothen(x) x = x[0,0,:,:,0] x[x < dec.value_range[0]] = np.nan return (x, oob_mask) def decode(x): oob_mask = (x==0) nan_mask = (x==1) x = dec(x) x[nan_mask | oob_mask] = np.nan return x with netCDF4.Dataset(images_fn, 'r') as ds_images: time_real = np.array(ds_images["time"][:], copy=False) with netCDF4.Dataset(gen_fn, 'r') as ds_gen: t0 = ds_gen["time"][0] k0 = bisect_left(time_real,t0) N = ds_gen["images"].shape[0] for k in range(k0,k0+ds_gen["images"].shape[0]): time = float(ds_images["time"][k]) time = datetime(1970,1,1)+timedelta(seconds=time) if time_range is not None: if not (time_range[0]<=time<time_range[1]): continue print(k) img_real = np.array(ds_images["images"][k,:,:,0], copy=False) (img_real,oob_mask) = decode_real(img_real) img_ds = decode(np.array(ds_gen["images_ds"][k-k0,:,:,0], copy=False)) img_gen = decode(np.array(ds_gen["images"][k-k0,:,:,0,:], copy=False)) plot_video_frame(img_real, img_ds, img_gen, oob_mask, time, num_ensemble=num_ensemble) out_fn = "{}/frame-{:05d}.{}".format(out_dir,k,format) plt.savefig(out_fn, bbox_inches='tight') plt.close() def plot_rank_histogram(ax, ranks, N_ranks=101, **plot_params): bc = np.linspace(0,1,N_ranks) db = (bc[1]-bc[0]) bins = bc-db/2 bins = np.hstack((bins, bins[-1]+db)) (h,_) = np.histogram(ranks,bins=bins) h = h / h.sum() ax.plot(bc,h,**plot_params) def plot_rank_cdf(ax, ranks, N_ranks=101, **plot_params): bc = np.linspace(0,1,N_ranks) db = (bc[1]-bc[0]) bins = bc-db/2 bins = np.hstack((bins, bins[-1]+db)) (h,_) = np.histogram(ranks,bins=bins) h = h.cumsum() h = h / h[-1] ax.plot(bc,h,**plot_params) def plot_rank_histogram_all(rank_files, labels, N_ranks=101): (fig,axes) = plt.subplots(2,1,sharex=True,figsize=(6,3)) plt.subplots_adjust(hspace=0.15) linestyles = ["-","--"] colors = ["C0", "C1"] for ((fn_valid,fn_test),label,ls,c) in zip(rank_files,labels,linestyles,colors): with np.load(fn_test, allow_pickle=True) as f: ranks = f['arr_0'].item()['ranks'] plot_rank_histogram(axes[0], ranks, N_ranks=N_ranks, label=label, linestyle=ls, linewidth=2, c=c, alpha=0.7, zorder=1) with np.load(fn_valid) as f: ranks = f['arr_0'] plot_rank_histogram(axes[0], ranks, N_ranks=N_ranks, label=None, linestyle=ls, linewidth=0.75, c=c, zorder=2) bc = np.linspace(0,1,N_ranks) axes[0].plot(bc, [1./N_ranks]*len(bc), linestyle=':', label="Uniform", c='C2', zorder=0) axes[0].set_ylabel("Norm. occurrence") ylim = axes[0].get_ylim() axes[0].set_ylim((0,ylim[1])) axes[0].set_xlim((0,1)) axes[0].text(0.01, 0.97, "(a)", horizontalalignment='left', verticalalignment='top', transform=axes[0].transAxes) for ((fn_valid,fn_test),label,ls,c) in zip(rank_files,labels,linestyles,colors): with np.load(fn_test, allow_pickle=True) as f: ranks = f['arr_0'].item()['ranks'] plot_rank_cdf(axes[1], ranks, N_ranks=N_ranks, label=label, linestyle=ls, linewidth=2, c=c, alpha=0.7, zorder=1) with np.load(fn_valid) as f: ranks = f['arr_0'] plot_rank_cdf(axes[1], ranks, N_ranks=N_ranks, label=None, linestyle=ls, linewidth=0.75, c=c, zorder=2) axes[1].plot(bc,bc,linestyle=':', label="Uniform", c='C2', zorder=0) axes[1].set_ylabel("CDF") axes[1].set_xlabel("Normalized rank") axes[1].set_ylim(0,1) axes[1].set_xlim((0,1)) axes[1].text(0.01, 0.97, "(b)", horizontalalignment='left', verticalalignment='top', transform=axes[1].transAxes) axes[1].legend(loc='lower right') def plot_all( mchrzc_data_fn, goescod_data_fn, figs_dir="../figures/", mchrzc_gen_weights_fn="../models/gen_weights-mchrzc-0361600.h5", goescod_gen_weights_fn="../models/gen_weights-goescod-0371200.h5", mchrzc_quality_metrics_fn="../data/quality_metrics_by_time-mchrzc.txt", goescod_quality_metrics_fn="../data/quality_metrics_by_time-goescod.txt", mchrzc_rank_metrics_fn="../data/rank_metrics_by_time-mchrzc.txt", goescod_rank_metrics_fn="../data/rank_metrics_by_time-goescod.txt", mchrzc_rank_samples_valid_fn="../data/ranks-mchrzc-361600-valid.npz", mchrzc_rank_samples_test_fn="../data/ranks-mchrzc-361600-test.npz", goescod_rank_samples_valid_fn="../data/ranks-goescod-371200-valid.npz", goescod_rank_samples_test_fn="../data/ranks-goescod-371200-test.npz" ): plot_examples_mchrzc( mchrzc_data_fn, mchrzc_gen_weights_fn, "{}/examples-mchrzc.pdf".format(figs_dir) ) gc.collect() plot_examples_mchrzc_random( mchrzc_data_fn, mchrzc_gen_weights_fn, figs_dir ) gc.collect() plot_examples_goescod( goescod_data_fn, goescod_gen_weights_fn, "{}/examples-goescod.pdf".format(figs_dir) ) gc.collect() plot_examples_goescod_random( goescod_data_fn, goescod_gen_weights_fn, figs_dir ) gc.collect() plot_quality_metrics_by_samples_multiple( [mchrzc_quality_metrics_fn, goescod_quality_metrics_fn], [mchrzc_rank_metrics_fn, goescod_rank_metrics_fn] ) plt.savefig("{}/quality-metrics-time.pdf".format(figs_dir), bbox_inches='tight') plt.close() plot_rank_metrics_by_samples_multiple( [mchrzc_rank_metrics_fn, goescod_rank_metrics_fn] ) plt.savefig("{}/rank-metrics-time.pdf".format(figs_dir), bbox_inches='tight') plt.close() plot_rank_histogram_all( [ (mchrzc_rank_samples_valid_fn,mchrzc_rank_samples_test_fn), (goescod_rank_samples_valid_fn,goescod_rank_samples_test_fn), ], ["MCH-RZC", "GOES-COT"] ) plt.savefig("{}/rank-distribution.pdf".format(figs_dir), bbox_inches='tight') plt.close() plots.plot_comparison("/data/nowgan/test-samples-2017-128x128.nc", "../models/gen_weights-mchrzc-0361600.h5", "../models/gen_det_weights-mse.h5", random_seed=16) plt.savefig("../figures/comparison.pdf", bbox_inches='tight') plt.close() def resize_lanczos(img, size): return np.array(Image.fromarray(img).resize(size, resample=Image.LANCZOS)) def plot_comparison(test_data_file, gen_gan_weights, gen_det_mse_weights, application="mchrzc", random_seed=None): (_, _, batch_gen) = train.setup_batch_gen( test_data_file, test_data_file=test_data_file, application=application, random_seed=random_seed, batch_size=1 ) old_batch_size = batch_gen.batch_size try: batch_gen.batch_size = 1 (seq_real, cond) = next(batch_gen) finally: batch_gen.batch_size = old_batch_size size = tuple(seq_real.shape[2:4]) seq_lanczos = np.array([resize_lanczos(x, size) for x in cond[0,...,0]]) (gen, _) = models.generator() init_model = models.initial_state_model() (gen_gan, noise_shapes) = models.generator_initialized( gen, init_model) gen_det = models.generator_deterministic(gen_gan) noise = [np.random.randn(*((1,)+s)) for s in noise_shapes(size)] gen_gan.load_weights(gen_gan_weights) seq_gan = gen_gan.predict([cond]+noise) gen_det.load_weights(gen_det_mse_weights) seq_mse = gen_det.predict(cond) seq_real = batch_gen.decoder.denormalize(seq_real) cond = batch_gen.decoder.denormalize(cond) seq_lanczos = batch_gen.decoder.denormalize(seq_lanczos) seq_mse = batch_gen.decoder.denormalize(seq_mse) seq_gan = batch_gen.decoder.denormalize(seq_gan) import rainfarm P = 10**cond P[~np.isfinite(P)] = 0 alpha = rainfarm.get_alpha_seq(P[0,...,0]) print(alpha) r = [rainfarm.rainfarm_downscale(p, alpha=alpha, threshold=0.1) for p in P[0,...,0]] log_r = np.log10(r) log_r[~np.isfinite(log_r)] = np.nan sequences = [ seq_real[0,...,0], cond[0,...,0], seq_lanczos, seq_mse[0,...,0], log_r, seq_gan[0,...,0] ] labels = [ "Real", "Downsampled", "Lanczos", "Det. RCNN", "RainFARM", "GAN" ] num_cols = seq_real.shape[1] num_rows = len(sequences) plt.figure(figsize=(1.5*num_cols,1.5*num_rows)) gs = gridspec.GridSpec(num_rows,num_cols,wspace=0.05,hspace=0.05) for k in range(seq_real.shape[1]): for i in range(num_rows): plt.subplot(gs[i,k]) plot_img(sequences[i][k,:,:]) if k==0: plt.ylabel(labels[i]) gc.collect() ```
{ "source": "jleinonen/gan-elements", "score": 3 }
#### File: gan-elements/cgan/train.py ```python from data import MNISTBatchGenerator, NoiseGenerator from gan import GAN from models import cgan_disc, cgan_gen import plots def build_gan(): noise_dim = 64 gen = cgan_gen(noise_dim=noise_dim) disc = cgan_disc() gan = GAN(gen, disc) batch_gen = MNISTBatchGenerator() noise_gen = NoiseGenerator([(noise_dim,)]) return (gan, batch_gen, noise_gen) def train_gan(gan, batch_gen, noise_gen, num_epochs=1, steps_per_epoch=1, plot_fn=None): gan.fit_generator(batch_gen, noise_gen, num_epochs=num_epochs, steps_per_epoch=steps_per_epoch) plots.plot_samples(gan.gen, batch_gen, noise_gen, out_fn=plot_fn) if __name__ == "__main__": (gan, batch_gen, noise_gen) = build_gan() for i in range(200): train_gan(gan, batch_gen, noise_gen, steps_per_epoch=20, plot_fn="../figures/cgan_samples_{:03d}.png".format(i)) ```
{ "source": "jleinonen/geogan", "score": 2 }
#### File: geogan/geogan/goesdata.py ```python import json import netCDF4 import numpy as np class BatchGenerator(object): def __init__(self, data_file, errors_file=None, batch_size=32, tile_shape=(128,128), random_seed=None): self.data_file = data_file self.errors_file = errors_file self.batch_size = batch_size self.tile_shape = tile_shape self.img_shape = tile_shape # for compatibility self.ds = netCDF4.Dataset(data_file, 'r') self.N = self.ds["image"].shape[0] self.n_channels = self.ds["image"].shape[-1] self.image_shape = self.ds["image"].shape[1:3] self.timestamps = [str(ts) for ts in netCDF4.chartostring(self.ds["timestamp"][:])] with open(errors_file) as f: self.errors = json.load(f) self.prng = np.random.RandomState(seed=random_seed) def __del__(self): if "ds" in self.__dict__: self.ds.close() def __iter__(self): return self def __next__(self): batch_shape = (self.batch_size,) + self.tile_shape + \ (self.n_channels,) batch = np.zeros(batch_shape, dtype=np.float32) for k in range(self.batch_size): tile = self.sample_tile() tile = tile.astype(np.float32) batch[k,...] = tile batch /= 127.5 batch -= 1 return batch def sample_tile(self): tile_errors = True while tile_errors: k = self.prng.randint(self.N) i0 = self.prng.randint(self.image_shape[0]-self.tile_shape[0]) i1 = i0+self.tile_shape[0] j0 = self.prng.randint(self.image_shape[1]-self.tile_shape[1]) j1 = j0+self.tile_shape[1] timestamp = self.timestamps[k] if timestamp in self.errors: rect = (i0,i1,j0,j1) tile_errors = any(rects_overlap(rect, r) for r in self.errors[timestamp]) else: tile_errors = False tile = np.array(self.ds["image"][k,i0:i1,j0:j1,:], copy=False) return tile def rects_overlap(rect1, rect2): (l1, r1, b1, t1) = rect1 (l2, r2, b2, t2) = rect2 return (l1 < r2) and (r1 >= l2) and (t1 >= b2) and (b1 < t2) ``` #### File: geogan/geogan/train.py ```python import gc import netCDF4 import numpy as np import gan import goesdata import mchdata import models import noise import plots def setup_gan(data_file=None, application="mch", num_epochs=1, steps_per_epoch=None, training_ratio=1, batch_size=32, sample_random=False, scaling_fn="../data/scale_rzc.npy", error_fn="../data/goes_errors.json", n_samples=None, random_seed=None, lr_disc=0.0001, lr_gen=0.0001): if data_file is not None: if application == "mch": with netCDF4.Dataset(data_file, 'r') as ds: if n_samples is None: seq = np.array(ds["sequences"][:], copy=False) else: if sample_random: prng = np.random.RandomState(seed=random_seed) ind = prng.choice(ds["sequences"].shape[0], n_samples, replace=False) seq = np.array(ds["sequences"][ind,...], copy=False) else: seq = np.array(ds["sequences"][n_samples[0]:n_samples[1]], copy=False) dec = mchdata.RainRateDecoder(scaling_fn, below_val=np.log10(0.025)) batch_gen = mchdata.BatchGenerator(seq, dec, batch_size=batch_size, random_seed=random_seed) num_channels = 1 elif application == "goes": batch_gen = goesdata.BatchGenerator(data_file, errors_file=error_fn, batch_size=batch_size, random_seed=random_seed) num_channels = 3 else: raise ValueError("Unknown application.") if steps_per_epoch is None: steps_per_epoch = batch_gen.N//batch_gen.batch_size (gen_styled, gen, styling, noise_shapes) = models.generator_styled( num_channels=num_channels) disc = models.discriminator(num_channels=num_channels) wgan = gan.WGANGP(gen_styled, disc, lr_disc=lr_disc, lr_gen=lr_gen, num_channels=num_channels) gc.collect() return (wgan, batch_gen, noise_shapes, steps_per_epoch) def train_gan(wgan, batch_gen, noise_shapes, steps_per_epoch, num_epochs, application="mch"): img_shape = batch_gen.img_shape noise_gen = noise.NoiseGenerator(noise_shapes(img_shape), batch_size=batch_gen.batch_size) for epoch in range(num_epochs): print("Epoch {}/{}".format(epoch+1,num_epochs)) wgan.train(batch_gen, noise_gen, steps_per_epoch, training_ratio=5) plots.plot_samples(wgan.gen, batch_gen, noise_gen, application=application, out_fn="../figures/progress_{}.pdf".format(application)) return wgan ``` #### File: geogan/geogan/utils.py ```python import h5py from keras import backend as K def save_opt_weights(model, filepath): with h5py.File(filepath, 'w') as f: # Save optimizer weights. symbolic_weights = getattr(model.optimizer, 'weights') if symbolic_weights: optimizer_weights_group = f.create_group('optimizer_weights') weight_values = K.batch_get_value(symbolic_weights) weight_names = [] for i, (w, val) in enumerate(zip(symbolic_weights, weight_values)): # Default values of symbolic_weights is /variable for theano if K.backend() == 'theano': if hasattr(w, 'name') and w.name != "/variable": name = str(w.name) else: name = 'param_' + str(i) else: if hasattr(w, 'name') and w.name: name = str(w.name) else: name = 'param_' + str(i) weight_names.append(name.encode('utf8')) optimizer_weights_group.attrs['weight_names'] = weight_names for name, val in zip(weight_names, weight_values): param_dset = optimizer_weights_group.create_dataset( name, val.shape, dtype=val.dtype) if not val.shape: # scalar param_dset[()] = val else: param_dset[:] = val def load_opt_weights(model, filepath): with h5py.File(filepath, mode='r') as f: optimizer_weights_group = f['optimizer_weights'] optimizer_weight_names = [n.decode('utf8') for n in optimizer_weights_group.attrs['weight_names']] optimizer_weight_values = [optimizer_weights_group[n] for n in optimizer_weight_names] model.optimizer.set_weights(optimizer_weight_values) def ensure_list(x): if type(x) != list: x = [x] return x def input_shapes(model, prefix): shapes = [il.shape[1:] for il in model.inputs if il.name.startswith(prefix)] shapes = [tuple([d.value for d in dims]) for dims in shapes] return shapes ```
{ "source": "jleinonen/weather4cast-bigdata", "score": 2 }
#### File: weather4cast-bigdata/weather4cast/main.py ```python import argparse from functools import partial import datasets import ensemble import models from models import rnn3_model, rnn4_model, rnn5_model, crr_combo_model def get_ensemble_weights(weights="ridge"): assert (weights in ["equal", "ridge", "ridge_lagrange"]) if weights == "equal": w = { "temperature": [1/5]*5, "crr_intensity": [1/2]*2, "asii_turb_trop_prob": [1/3]*3, "cma": [1/2]*2, } elif weights == "ridge": w = { "temperature": [0.1455, 0.2666, 0.0904, 0.2487, 0.2457], "crr_intensity": [0.5206, 0.5320], "asii_turb_trop_prob": [0.2722, 0.2941, 0.4344], "cma": [0.5165, 0.4864], } elif weights == "ridge_lagrange": w = { "temperature": [0.1455, 0.2666, 0.0904, 0.2487, 0.2457], "crr_intensity": [0.5122, 0.4878], "asii_turb_trop_prob": [0.2722, 0.2941, 0.4344], "cma": [0.5165, 0.4864], } return w def get_model(model_type): model_func = { "resgru_deep": models.rnn3_model, "resgru_shallow": models.rnn4_model, "convgru_deep": models.rnn5_model, "convgru_old": models.rnn2_model, "crr_combo_model_old": models.crr_combo_model, "crr_combo_model_new": partial(crr_combo_model, model_func=rnn5_model) }[model_type] return model_func def regions_for_dir(comp_dir): if "core" in comp_dir: regions = ["R1", "R2", "R3", "R7", "R8"] else: regions = ["R4", "R5", "R6", "R9", "R10", "R11"] def build_model_list(w): modif_crr_model = partial(crr_combo_model, model_func=rnn5_model) var_models = [ ("CTTH", "temperature", [ ("../models/srnn_adabelief_1-temperature.h5", rnn4_model, w["temperature"][0]), ("../models/srnn_adabelief_2-temperature.h5", rnn4_model, w["temperature"][1]), ("../models/srnn_adabelief_3-temperature.h5", rnn4_model, w["temperature"][2]), ("../models/srnn_adabelief_4-temperature.h5", rnn4_model, w["temperature"][3]), ("../models/srnn_adabelief_5-temperature.h5", rnn4_model, w["temperature"][4]), ]), ("CRR", "crr_intensity", [ ("../models/srnn_adabelief_3-crr_intensity.h5", crr_combo_model, w["crr_intensity"][0]), ("../models/srnn_adabelief_4-crr_intensity.h5", modif_crr_model, w["crr_intensity"][1]), ]), ("ASII", "asii_turb_trop_prob", [ ("../models/srnn_adabelief_1-asii_turb_trop_prob.h5", rnn4_model, w["asii_turb_trop_prob"][0]), ("../models/srnn_adabelief_2-asii_turb_trop_prob.h5", rnn3_model, w["asii_turb_trop_prob"][1]), ("../models/srnn_adabelief_3-asii_turb_trop_prob.h5", rnn3_model, w["asii_turb_trop_prob"][2]), ]), ("CMA", "cma", [ ("../models/srnn_adabelief_1-cma.h5", rnn4_model, w["cma"][0]), ("../models/srnn_adabelief_2-cma.h5", rnn3_model, w["cma"][1]), ]), ] return var_models def generate_predictions( submission_dir, comp_dir="w4c-core-stage-1", regions=None, weights="ridge" ): if regions is None: regions = regions_for_dir(comp_dir) batch_gen_valid = datasets.BatchGenerator( comp_dir=comp_dir, regions=regions, data_subset="test", augment=False, shuffle=False ) w = get_ensemble_weights(weights=weights) var_models = build_model_list(w) comb_model = models.ensemble_model_with_weights( batch_gen_valid, var_models=var_models, logit=(weights!="equal")) datasets.generate_submission( comb_model, submission_dir, regions=regions, comp_dir=comp_dir ) def evaluate( comp_dir="w4c-core-stage-1", regions=None, dataset="CTTH", variable="temperature", batch_size=32, model_type="resgru", weight_fn=None ): if regions is None: regions = regions_for_dir(comp_dir) batch_gen_valid = datasets.BatchGenerator( comp_dir=comp_dir, regions=regions, data_subset="validation", augment=False, shuffle=False ) datasets.setup_univariate_batch_gen(batch_gen_valid, dataset, variable, batch_size=batch_size) model_func = get_model(model_type) model = models.init_model(batch_gen_valid, model_func=model_func) if weight_fn is not None: model.load_weights(weight_fn) eval_results = model.evaluate(batch_gen_valid) print(eval_results) def evaluate_ensemble( comp_dir="w4c-core-stage-1", regions=None, dataset="CTTH", variable="temperature", batch_size=32, model_type="resgru", weight_fn=None, ensemble_weights="ridge" ): if regions is None: regions = regions_for_dir(comp_dir) batch_gen_valid = datasets.BatchGenerator( comp_dir=comp_dir, regions=regions, data_subset="validation", augment=False, shuffle=False ) datasets.setup_univariate_batch_gen(batch_gen_valid, dataset, variable, batch_size=batch_size) w = get_ensemble_weights(weights=ensemble_weights) var_models = build_model_list(w) var_list = [v[1] for v in var_models] ind = var_list.index(variable) model_list = var_models[ind][2] var_model_list = [] var_ensemble_weights = [] for (model_weights, model_func, ensemble_weight) in model_list: model = models.init_model(batch_gen_valid, model_func=model_func, compile=False, init_strategy=False) model.load_weights(model_weights) var_model_list.append(model) var_ensemble_weights.append(ensemble_weight) logit = (ensemble_weights != "equal") weighted_model = ensemble.weighted_model( var_model_list, var_ensemble_weights, variable, logit=(logit and (variable=="asii_turb_trop_prob")) ) eval_results = weighted_model.evaluate(batch_gen_valid) print(eval_results) def train( comp_dir="w4c-core-stage-1", regions=None, dataset="CTTH", variable="temperature", batch_size=32, model_type="resgru_shallow", weight_fn=None ): if regions is None: regions = regions_for_dir(comp_dir) batch_gen_train = datasets.BatchGenerator( comp_dir=comp_dir, regions=regions, data_subset="training" ) batch_gen_valid = datasets.BatchGenerator( comp_dir=comp_dir, regions=regions, data_subset="validation", augment=False, shuffle=False ) datasets.setup_univariate_batch_gen(batch_gen_train, dataset, variable, batch_size=batch_size) datasets.setup_univariate_batch_gen(batch_gen_valid, dataset, variable, batch_size=batch_size) model_func = get_model(model_type) model = models.init_model(batch_gen_valid, model_func=model_func) models.train_model(model, batch_gen_train, batch_gen_valid, weight_fn=weight_fn) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('mode', type=str, help="submit / evaluate / train") parser.add_argument('--comp_dir', type=str, help="Directory where the data are located") parser.add_argument('--regions', type=str, help="Comma-separated list or regions, default all regions for comp_dir") parser.add_argument('--submission_dir', type=str, default="", help="Directory to save the results in, will be created if needed") parser.add_argument('--batch_size', type=int, default=32, help="Batch size for training / evaluation") parser.add_argument('--dataset', type=str, default="", help="Dataset for training / evaluation") parser.add_argument('--variable', type=str, default="", help="Variable for training / evaluation") parser.add_argument('--weights', type=str, default="", help="Model weight file for training / evaluation") parser.add_argument('--model', type=str, default="resgru", help="Model type for training / evaluation, either 'convgru' or 'resgru'") parser.add_argument('--ensemble_weights', type=str, default="ridge", help="Ensemble weights, either 'ridge', 'equal' or 'ridge_lagrange'") args = parser.parse_args() mode = args.mode regions = args.regions if not regions: regions = None else: regions = regions.split(",") comp_dir = args.comp_dir if mode == "submit": submission_dir = args.submission_dir assert(submission_dir != "") generate_predictions(submission_dir, comp_dir=comp_dir, regions=regions) elif mode in ["evaluate", "evaluate_ensemble", "train"]: batch_size = args.batch_size dataset = args.dataset variable = args.variable weight_fn = args.weights model_type = args.model ensemble_weights = args.ensemble_weights assert(dataset in ["CTTH", "CRR", "ASII", "CMA"]) assert(variable in ["temperature", "crr_intensity", "asii_turb_trop_prob", "cma"]) if mode == "evaluate": evaluate(comp_dir=comp_dir, regions=regions, dataset=dataset, variable=variable, batch_size=batch_size, weight_fn=weight_fn, model_type=model_type) elif mode == "evaluate_ensemble": evaluate_ensemble(comp_dir=comp_dir, regions=regions, dataset=dataset, variable=variable, batch_size=batch_size, weight_fn=weight_fn, model_type=model_type, ensemble_weights=ensemble_weights) else: train(comp_dir=comp_dir, regions=regions, dataset=dataset, variable=variable, batch_size=batch_size, weight_fn=weight_fn, model_type=model_type) ```
{ "source": "jlejeune/putio-cli", "score": 3 }
#### File: commands/config/show.py ```python import sys from putio_cli.commands.config import Config class Show(Config): """ show command to print configuration file Usage: putio-cli config show """ def run(self): try: cfgfile = open(self.cfgfilename, 'r') except IOError: sys.exit( 'Config file does not exist, please use template subcommand first') print cfgfile.read() cfgfile.close() ``` #### File: jlejeune/putio-cli/setup.py ```python from os.path import abspath, dirname, join from setuptools import find_packages, setup from setuptools.command.test import test as TestCommand from putio_cli import __version__ this_dir = abspath(dirname(__file__)) with open(join(this_dir, 'README.md')) as file: long_description = file.read() class Tox(TestCommand): """Run all tests.""" description = 'run tests' user_options = [] def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): #import here, cause outside the eggs aren't loaded import tox import sys errcode = tox.cmdline(self.test_args) sys.exit(errcode) setup( name='putio-cli', version=__version__, description='A command line program in Python to talk to Put.io Rest API', long_description=long_description, url='https://github.com/jlejeune/putio-cli', author='<NAME>', author_email='<EMAIL>', license='MIT', classifiers=[ 'Topic :: Utilities', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2.7', ], keywords='putio-cli', packages=find_packages(exclude=['docs', 'tests*']), install_requires=['docopt', 'putio.py'], extras_require={ 'test': ['tox', 'nose', 'coverage'], }, tests_require=['tox'], scripts=['putio-cli'], cmdclass={'test': Tox}, ) ```
{ "source": "jlema/Udacity-Self-Driving-Car-Engineer-Nanodegree", "score": 4 }
#### File: Term 1- Computer Vision and Deep Learning/Project 3 - Behavioral Cloning/image_preproc.py ```python import cv2 import numpy as np # Some of these image preprocessing functions are based on <NAME>'s augmentation code # https://chatbotslife.com/using-augmentation-to-mimic-human-driving-496b569760a9#.nen5tsjgw # Loads an image and changes the color space to RGB def load_image(image_name): image_name = image_name.strip() #changing to RGB was crucial step in the image processing #as the simulator feeds RGB images, not BGR images image = cv2.cvtColor(cv2.imread(image_name), cv2.COLOR_BGR2RGB) return image # Halves the image size def reduce_image(image): r_image = cv2.resize(image, None, fx=0.5, fy=0.5, interpolation = cv2.INTER_AREA) return r_image # Randomly flips image horizontally and returns the mirrored steering angle # this is done to reduce bias for a particular turning direction def flip_image(image, angle): if np.random.randint(2) == 0: return cv2.flip(image, 1), -angle else: return image, angle # Randomly translates image vertically and horizontally # This is done to improve recovery and to simulate driving uphill/downhill def trans_image(image, steer, t_range=100): rows,cols,ch = image.shape # Horizontal translation tr_x = t_range * np.random.uniform() - t_range / 2 # New steering angle n_steer = steer + tr_x / t_range * 2 * 0.2 # Vertical translation tr_y = 40 * np.random.uniform() - 40 / 2 # Translation matrix to be used for affine transformation Trans_M = np.float32([[1, 0, tr_x],[0, 1, tr_y]]) t_image = cv2.warpAffine(image, Trans_M, (cols,rows)) return t_image, n_steer # Crop top 68 pixels and bottom 20 pixels # This is the equivalent of removing the sky and the car hood def crop_image(image): shape = image.shape crop_image = image[68:shape[0]-20, 0:shape[1]] return crop_image # Change image color space to HSV # Randomly scale V channel to increase/reduce brightness # Return image color space to RGB # This helps with shadows and driving with other different light conditions def scale_brightness_image(image): temp = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) b_scale = 0.25 + np.random.uniform() # range [0.25, 1.25) # We use Numpy indexing instead of cv2.split and cv2.merge # as those operations are more costly # [:, :, 2] is the V channel temp[:, :, 2] = temp[:, :, 2] * b_scale scaled_image = cv2.cvtColor(temp, cv2.COLOR_HSV2RGB) return scaled_image ``` #### File: Term 1- Computer Vision and Deep Learning/Project 3 - Behavioral Cloning/model.py ```python import argparse import json import pandas as pd import numpy as np from image_preproc import load_image, reduce_image, flip_image, trans_image, crop_image, scale_brightness_image from keras.models import Sequential from keras.layers import Dense, Flatten, Lambda, ELU from keras.layers import Convolution2D from keras.callbacks import TensorBoard from sklearn.model_selection import train_test_split ch, row, col = 3, 36, 160 # resized camera format def get_model(): model = Sequential() # Normalize data to -0.5 to 0.5 range model.add(Lambda(lambda x: x/127.5 - 1., input_shape=(row, col, ch), output_shape=(row, col, ch))) # The next layer is 3 1X1 filters, this has the effect of transforming the color space of the images. # As we do not know the best color space beforehand, using 3 1X1 filters allows the model to choose its best color space model.add(Convolution2D(3, 1, 1, border_mode="same")) model.add(ELU()) # We follow the NVIDIA architecture and create 3 convolutional layers with 2x2 stride and 5x5 kernel model.add(Convolution2D(3, 5, 5, subsample=(2, 2), border_mode="same")) model.add(ELU()) model.add(Convolution2D(24, 5, 5, subsample=(2, 2), border_mode="same")) model.add(ELU()) model.add(Convolution2D(36, 5, 5, subsample=(2, 2), border_mode="same")) model.add(ELU()) # We follow the NVIDIA architecture and create 2 convolutional layers with no stride and 3x3 kernel model.add(Convolution2D(48, 3, 3, border_mode="same")) model.add(ELU()) model.add(Convolution2D(64, 3, 3, border_mode="same")) model.add(Flatten()) model.add(ELU()) # We follow the NVIDIA architecture and create 3 fully connected layers model.add(Dense(100)) model.add(ELU()) model.add(Dense(50)) model.add(ELU()) model.add(Dense(10)) model.add(ELU()) model.add(Dense(1)) # We optimize using Adam optimizer for Mean Square Error model.compile(optimizer="adam", loss="mse") return model # training generator def gen(image_names, steering, batch_size, augmentate=True): while True: # get a random sample of images of size batch size without replacement batch_mask = np.random.choice(image_names.index, size=batch_size, replace=False) x = [] y = [] image_path = '' for i in range(batch_size): index = batch_mask[i] # load original steering angle steer = steering[index] # randomly remove lower steering angles (< 0.1) if abs(steer) < 0.1: if np.random.randint(2) == 0: continue # if we are augmentating (i.e. generating training data) if (augmentate): # randomly choose left, center or right images # and apply a small shift to the steering angle to compensate rand = np.random.randint(3) if (rand == 0): image_path = data['left'][index] comp = .25 if (rand == 1): image_path = data['center'][index] comp = 0. if (rand == 2): image_path = data['right'][index] comp = -.25 steer = steer + comp image = load_image(image_path) # cut off unnecessary top and bottom parts of image image = crop_image(image) # translate images horizontally and vertically image, steer = trans_image(image, steer) # increase/decrease brightness image = scale_brightness_image(image) # reduce size of image image = reduce_image(image) # flip images and steering angles image, steer = flip_image(image, steer) # if we are NOT augmentating (i.e. generating validation data) else: # load original image image_path = data['center'][index] image = load_image(image_path) # cut off unnecessary top and bottom parts of image image = crop_image(image) # reduce size of image image = reduce_image(image) x.append(image) y.append(steer) x = np.array(x) y = np.array(y) yield x, y if __name__ == "__main__": # parse arguments parser = argparse.ArgumentParser(description='Steering angle model trainer') parser.add_argument('--batch', type=int, default=287, help='Batch size.') parser.add_argument('--epoch', type=int, default=5, help='Number of epochs.') parser.add_argument('--epochsize', type=int, default=19803, help='How many frames per epoch.') args = parser.parse_args() # import driving log data = pd.read_csv('driving_log.csv') # split data into training and validation X_train, X_val, y_train, y_val = train_test_split(data['center'], data['steering']) model = get_model() model.summary() model.fit_generator( gen(X_train, y_train, args.batch), samples_per_epoch=args.epochsize, nb_epoch=args.epoch, validation_data=gen(X_val, y_val, args.batch, False), # do not augmentate validation samples nb_val_samples=len(X_val), callbacks = [TensorBoard(log_dir='./logs', histogram_freq=0, write_graph=True, write_images=True)] ) print("Saving model weights and configuration file.") model.save_weights("model.h5", True) with open('model.json', 'w') as outfile: json.dump(model.to_json(), outfile) ``` #### File: Term 1- Computer Vision and Deep Learning/Project 5 - Vehicle Detection and Tracking/window.py ```python import matplotlib.pyplot as plt import numpy as np import cv2 from features import single_img_features, get_hog_features, bin_spatial, color_hist # Functions reproduced from Search and Classify lesson # Define a function that takes an image, # start and stop positions in both x and y, # window size (x and y dimensions), # and overlap fraction (for both x and y) def slide_window(img, x_start_stop=[None, None], y_start_stop=[None, None], xy_window=(64, 64), xy_overlap=(0.5, 0.5)): # If x and/or y start/stop positions not defined, set to image size if x_start_stop[0] == None: x_start_stop[0] = 0 if x_start_stop[1] == None: x_start_stop[1] = img.shape[1] if y_start_stop[0] == None: y_start_stop[0] = 0 if y_start_stop[1] == None: y_start_stop[1] = img.shape[0] # Compute the span of the region to be searched xspan = x_start_stop[1] - x_start_stop[0] yspan = y_start_stop[1] - y_start_stop[0] # Compute the number of pixels per step in x/y nx_pix_per_step = np.int(xy_window[0]*(1 - xy_overlap[0])) ny_pix_per_step = np.int(xy_window[1]*(1 - xy_overlap[1])) # Compute the number of windows in x/y nx_windows = np.int(xspan/nx_pix_per_step) - 1 ny_windows = np.int(yspan/ny_pix_per_step) - 1 # Initialize a list to append window positions to window_list = [] # Loop through finding x and y window positions # Note: you could vectorize this step, but in practice # you'll be considering windows one by one with your # classifier, so looping makes sense for ys in range(ny_windows): for xs in range(nx_windows): # Calculate window position startx = xs*nx_pix_per_step + x_start_stop[0] endx = startx + xy_window[0] starty = ys*ny_pix_per_step + y_start_stop[0] endy = starty + xy_window[1] # Append window position to list window_list.append(((startx, starty), (endx, endy))) # Return the list of windows return window_list # Define a function to draw bounding boxes def draw_boxes(img, bboxes, color=(0, 0, 255), thick=6): # Make a copy of the image imcopy = np.copy(img) # Iterate through the bounding boxes for bbox in bboxes: # Draw a rectangle given bbox coordinates cv2.rectangle(imcopy, bbox[0], bbox[1], color, thick) # Return the image copy with boxes drawn return imcopy # Define a function you will pass an image # and the list of windows to be searched (output of slide_windows()) def search_windows(img, windows, clf, scaler, color_space='RGB', spatial_size=(32, 32), hist_bins=32, hist_range=(0, 256), orient=9, pix_per_cell=8, cell_per_block=2, hog_channel=0, spatial_feat=True, hist_feat=True, hog_feat=True): #1) Create an empty list to receive positive detection windows on_windows = [] #2) Iterate over all windows in the list for window in windows: #3) Extract the test window from original image test_img = cv2.resize(img[window[0][1]:window[1][1], window[0][0]:window[1][0]], (64, 64)) #4) Extract features for that window using single_img_features() features = single_img_features(test_img, color_space=color_space, spatial_size=spatial_size, hist_bins=hist_bins, orient=orient, pix_per_cell=pix_per_cell, cell_per_block=cell_per_block, hog_channel=hog_channel, spatial_feat=spatial_feat, hist_feat=hist_feat, hog_feat=hog_feat) #5) Scale extracted features to be fed to classifier test_features = scaler.transform(np.array(features).reshape(1, -1)) #6) Predict using your classifier prediction = clf.predict(test_features) #7) If positive (prediction == 1) then save the window if prediction == 1: on_windows.append(window) #8) Return windows for positive detections return on_windows # Define a function for plotting multiple images # Not from lesson, taken from Q&A session def visualize(fig, rows, cols, imgs, titles): for i, img in enumerate(imgs): plt.subplot(rows, cols, i+1) plt.title(i+1) img_dims = len(img.shape) if img_dims < 3: plt.imshow(img, cmap='hot') plt.title(titles[i]) else: plt.imshow(img) plt.title(titles[i]) # Color space changing function def convert_color(img, conv='RGB2YCrCb'): if conv == 'RGB2YCrCb': return cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb) if conv == 'BGR2YCrCb': return cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb) if conv == 'RGB2LUV': return cv2.cvtColor(img, cv2.COLOR_RGB2LUV) if conv == 'RGB2HSV': return cv2.cvtColor(img, cv2.COLOR_RGB2HSV) # We scale image and apply HOG to the entire image - which effectively is the same as sampling with different window sizes def find_cars(img, scale, hog_channel, ystart, ystop, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins, clf, scl, prob_threshold, cps): draw_img = np.copy(img) # Make a heatmap of zeros heatmap = np.zeros_like(img[:,:,0]) img = img.astype(np.float32)/255 img_tosearch = img[ystart:ystop,:,:] # cropped version of the image to be searched ctrans_tosearch = convert_color(img_tosearch, conv='RGB2YCrCb') # color transformed image #ctrans_tosearch = convert_color(img_tosearch, conv='RGB2HSV') # color transformed image if scale != 1: imshape = ctrans_tosearch.shape ctrans_tosearch = cv2.resize(ctrans_tosearch, (np.int(imshape[1]/scale), np.int(imshape[0]/scale))) # Split 3 color channels if hog_channel == 'ALL': ch1 = ctrans_tosearch[:,:,0] ch2 = ctrans_tosearch[:,:,1] ch3 = ctrans_tosearch[:,:,2] elif hog_channel == 0: ch1 = ctrans_tosearch[:,:,0] elif hog_channel == 1: ch2 = ctrans_tosearch[:,:,1] elif hog_channel == 2: ch3 = ctrans_tosearch[:,:,2] # Define blocks and steps as above nxblocks = (ch1.shape[1] // pix_per_cell) - 1 # Number of HOG cells on X axis nyblocks = (ch1.shape[0] // pix_per_cell) - 1 # Number of HOG cells on Y axis # nfeat_per_block = orient*cell_per_block**2 # Features per block = orientation * cells per block ^ 2 window = 64 # Size of the original windows that we're extracting feature vectors from (64 x 64) nblocks_per_window = (window // pix_per_cell) - 1 # Number of HOG cells per window cells_per_step = cps # Instead of defining overlap, define how many cells to step # How many cells do I want to step in the HOG array # e.g. window size 64, pix_per_cell 8 # then nblocks_per_window = 7 # if we step 2 cells per step, we'd have 6 cells overlapping # 6 / 8 = 0.75 or 75% overlap nxsteps = (nxblocks - nblocks_per_window) // cells_per_step # How many steps in the x direction we're going to do nysteps = (nyblocks - nblocks_per_window) // cells_per_step # How many steps in the y direction we're going to do # Compute individual channel HOG features for the entire image if hog_channel == 'ALL': hog1 = get_hog_features(ch1, orient, pix_per_cell, cell_per_block, feature_vec=False) hog2 = get_hog_features(ch2, orient, pix_per_cell, cell_per_block, feature_vec=False) hog3 = get_hog_features(ch3, orient, pix_per_cell, cell_per_block, feature_vec=False) elif hog_channel == 0: hog1 = get_hog_features(ch1, orient, pix_per_cell, cell_per_block, feature_vec=False) elif hog_channel == 1: hog2 = get_hog_features(ch2, orient, pix_per_cell, cell_per_block, feature_vec=False) elif hog_channel == 2: hog3 = get_hog_features(ch3, orient, pix_per_cell, cell_per_block, feature_vec=False) # First scan vertically then horizontally for xb in range(nxsteps): for yb in range(nysteps): ypos = yb*cells_per_step xpos = xb*cells_per_step # Extract HOG for this patch and unroll each of the feature vectors if hog_channel == 'ALL': hog_feat1 = hog1[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel() hog_feat2 = hog2[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel() hog_feat3 = hog3[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel() elif hog_channel == 0: hog_feat1 = hog1[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel() elif hog_channel == 1: hog_feat2 = hog2[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel() elif hog_channel == 2: hog_feat3 = hog3[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel() # Stack up HOG feature vectors into one vector if hog_channel == 'ALL': hog_features = np.hstack((hog_feat1, hog_feat2, hog_feat3)) elif hog_channel == 0: hog_features = hog_feat1 elif hog_channel == 1: hog_features = hog_feat2 elif hog_channel == 2: hog_features = hog_feat3 # Define where we are in pixel space for the particular patch xleft = xpos*pix_per_cell ytop = ypos*pix_per_cell # Extract the image patch # Rescaling to original image size (64, 64) subimg = cv2.resize(ctrans_tosearch[ytop:ytop+window, xleft:xleft+window], (64, 64)) # Get color features spatial_features = bin_spatial(subimg, size=spatial_size) hist_features = color_hist(subimg, nbins=hist_bins) # Scale features and make a prediction test_features = scl.transform(np.hstack((spatial_features, hist_features, hog_features)).reshape(1, -1)) test_prediction = clf.predict(test_features) # If we have predicted a car (1) then draw a bounding box on the original image and add heat to the heatmap xbox_left = np.int(xleft*scale) ytop_draw = np.int(ytop*scale) win_draw = np.int(window*scale) if test_prediction == 1: conf_score = clf.predict_proba(test_features) # Only draw box and add to heatmap if they have a specific prob threshold or higher if conf_score[0][1] >= prob_threshold: # cars class, first entry in array cv2.rectangle(draw_img, (xbox_left, ytop_draw+ystart), (xbox_left+win_draw, ytop_draw+ystart+win_draw), (0, 0, 255), 6) #img_boxes.append(((xbox_left, ytop_draw+ystart),(xbox_left+win_draw, ytop_draw+ystart+win_draw))) heatmap[ytop_draw+ystart:ytop_draw+ystart+win_draw, xbox_left:xbox_left+win_draw] += 1 # If we have not predicted a car (0) then remove heat from the heatmap # With a floor of zero to avoid negative values # else: # heatmap[ytop_draw+ystart:ytop_draw+ystart+win_draw, xbox_left:xbox_left+win_draw][np.nonzero(heatmap[ytop_draw+ystart:ytop_draw+ystart+win_draw, xbox_left:xbox_left+win_draw])] -= 1 return draw_img, heatmap def draw_labeled_bboxes(img, labels): # Iterate through all detected cars for car_number in range(1, labels[1]+1): # Find pixels with each car_number label value nonzero = (labels[0] == car_number).nonzero() # Identify x and y values of those pixels nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # Define a bounding box based on min/max x and y bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox), np.max(nonzeroy))) # Draw the box on the image cv2.rectangle(img, bbox[0], bbox[1], (0,0,255), 6) # Return the image return img ```
{ "source": "jlemon/zlogger", "score": 3 }
#### File: jlemon/zlogger/get_riders.py ```python import sys, argparse, getpass import requests import json import sqlite3 import os, time, stat import mkresults from collections import namedtuple global args global dbh def post_credentials(session, username, password): # Credentials POSTing and tokens retrieval # POST https://secure.zwift.com/auth/realms/zwift/tokens/access/codes try: response = session.post( url="https://secure.zwift.com/auth/realms/zwift/tokens/access/codes", headers={ "Accept": "*/*", "Accept-Encoding": "gzip, deflate", "Connection": "keep-alive", "Content-Type": "application/x-www-form-urlencoded", "Host": "secure.zwift.com", "User-Agent": "Zwift/1.5 (iPhone; iOS 9.0.2; Scale/2.00)", "Accept-Language": "en-US;q=1", }, data={ "client_id": "Zwift_Mobile_Link", "username": username, "password": password, "grant_type": "password", }, allow_redirects = False, verify = args.verifyCert, ) if args.verbose: print('Response HTTP Status Code: {status_code}'.format( status_code=response.status_code)) print('Response HTTP Response Body: {content}'.format( content=response.content)) json_dict = json.loads(response.content) return (json_dict["access_token"], json_dict["refresh_token"], json_dict["expires_in"]) except requests.exceptions.RequestException, e: print('HTTP Request failed: %s' % e) def query_player_profile(session, access_token, player_id): # Query Player Profile # GET https://us-or-rly101.zwift.com/api/profiles/<player_id> try: response = session.get( url="https://us-or-rly101.zwift.com/api/profiles/%s" % player_id, headers={ "Accept-Encoding": "gzip, deflate", "Accept": "application/json", "Connection": "keep-alive", "Host": "us-or-rly101.zwift.com", "User-Agent": "Zwift/115 CFNetwork/758.0.2 Darwin/15.0.0", "Authorization": "Bearer %s" % access_token, "Accept-Language": "en-us", }, verify = args.verifyCert, ) if args.verbose: print('Response HTTP Status Code: {status_code}'.format( status_code=response.status_code)) print('Response HTTP Response Body: {content}'.format( content=response.content)) json_dict = json.loads(response.content) return json_dict except requests.exceptions.RequestException, e: print('HTTP Request failed: %s' % e) def logout(session, refresh_token): # Logout # POST https://secure.zwift.com/auth/realms/zwift/tokens/logout try: response = session.post( url="https://secure.zwift.com/auth/realms/zwift/tokens/logout", headers={ "Accept": "*/*", "Accept-Encoding": "gzip, deflate", "Connection": "keep-alive", "Content-Type": "application/x-www-form-urlencoded", "Host": "secure.zwift.com", "User-Agent": "Zwift/1.5 (iPhone; iOS 9.0.2; Scale/2.00)", "Accept-Language": "en-US;q=1", }, data={ "client_id": "Zwift_Mobile_Link", "refresh_token": refresh_token, }, verify = args.verifyCert, ) if args.verbose: print('Response HTTP Status Code: {status_code}'.format( status_code=response.status_code)) print('Response HTTP Response Body: {content}'.format( content=response.content)) except requests.exceptions.RequestException, e: print('HTTP Request failed: %s' % e) def login(session, user, password): access_token, refresh_token, expired_in = post_credentials(session, user, password) return access_token, refresh_token def updateRider(session, access_token, user): # Query Player Profile json_dict = query_player_profile(session, access_token, user) if args.verbose: print ("\n") print (json_dict) male = 1 if json_dict["male"] else 0 # Power Meter, Smart Trainer, zPower if (json_dict["powerSourceModel"] == "zPower"): power = 1 elif (json_dict["powerSourceModel"] == "Smart Trainer"): power = 2 else: power = 3 fname = json_dict["firstName"].strip() lname = json_dict["lastName"].strip() print ("id=%s wt=%s m=%s [%s] <%s %s>\n" % (json_dict["id"], json_dict["weight"], json_dict["male"], json_dict["powerSourceModel"], fname.encode('ascii', 'ignore'), lname.encode('ascii', 'ignore'))) c = dbh.cursor() try: c.execute("insert into rider " + "(rider_id, fname, lname, age, weight, height, male, zpower," + " fetched_at) " + "values (?,?,?,?,?,?,?,?,date('now'))", (json_dict["id"], fname, lname, json_dict["age"], json_dict["weight"], json_dict["height"], male, power)) except sqlite3.IntegrityError: c.execute("update rider " + "set fname = ?, lname = ?, age = ?, weight = ?, height = ?," + " male = ?, zpower = ?, fetched_at = date('now')" + " where rider_id = ?", (fname, lname, json_dict["age"], json_dict["weight"], json_dict["height"], male, power, json_dict["id"])) def get_rider_list(): mkresults.dbh = sqlite3.connect('race_database.sql3') conf = mkresults.config(args.config) mkresults.conf = conf mkresults.args = namedtuple('Args', 'no_cat debug')(no_cat=False, debug=args.verbose) startTime = conf.start_ms / 1000 retrievalTime = startTime + conf.start_window_ms / 1000 sleepTime = retrievalTime - time.time() while sleepTime > 0: print "Sleeping %s seconds" % sleepTime time.sleep(sleepTime) sleepTime = retrievalTime - time.time() conf.load_chalklines() R, all_pos = mkresults.get_riders(conf.start_ms - conf.lookback_ms, conf.finish_ms) return [ r.id for r in R.values() if mkresults.filter_start(r) ] def main(argv): global args global dbh access_token = None cookies = None parser = argparse.ArgumentParser(description = 'Zwift Name Fetcher') parser.add_argument('-v', '--verbose', action='store_true', help='Verbose output') parser.add_argument('--dont-check-certificates', action='store_false', dest='verifyCert', default=True) parser.add_argument('-c', '--config', help='Use config file') parser.add_argument('-u', '--user', help='Zwift user name') parser.add_argument('idlist', metavar='rider_id', type=int, nargs='*', help='rider ids to fetch') args = parser.parse_args() if args.user: password = getpass.getpass("Password for %s? " % args.user) else: file = os.environ['HOME'] + '/.zwift_cred.json' with open(file) as f: try: cred = json.load(f) except ValueError, se: sys.exit('"%s": %s' % (args.output, se)) f.close args.user = cred['user'] password = cred['pass'] session = requests.session() # test the credentials - token will expire, so we'll log in again after sleeping access_token, refresh_token = login(session, args.user, password) logout(session, refresh_token) if args.config: L = get_rider_list() elif args.idlist: L = args.idlist else: L = [ int(line) for line in sys.stdin ] if args.verbose: print 'Selected %d riders' % len(L) access_token, refresh_token = login(session, args.user, password) dbh = sqlite3.connect('rider_names.sql3') for id in L: updateRider(session, access_token, id) dbh.commit() dbh.close() logout(session, refresh_token) if __name__ == '__main__': try: main(sys.argv) except KeyboardInterrupt: pass except SystemExit, se: print "ERROR:",se ```
{ "source": "JleMyP/wol", "score": 2 }
#### File: wol/logic/crud.py ```python from typing import List, Optional from flask import abort, make_response from marshmallow import Schema, fields from peewee import JOIN from playhouse.flask_utils import get_object_or_404 from ..doc_utils import exclude_parent_attrs from ..fields import HostField, MacField, PortField from ..models import Credentials, Target from .core import check_host, wakeup_host __all__ = ['create_target', 'get_target_by_id', 'get_all_targets', 'delete_target_by_id', 'get_target_by_name', 'edit_target_by_id', 'wakeup_target_by_id', 'check_target_by_id', 'create_credentials', 'get_credentials_by_id', 'get_all_credentials', 'delete_credentials_by_id', 'edit_credentials_by_id', 'TargetSchema', 'CredentialsSchema'] # TODO: drop flask deps class CredentialsSchema(Schema): """credentials (de)serialization""" id = fields.Int(dump_only=True) # noqa: A003, VNE003 username = fields.Str() password = fields.Str() pkey = fields.Str() class TargetSchema(Schema): """target (de)serialization""" id = fields.Int(dump_only=True) # noqa: A003, VNE003 name = fields.Str() host = HostField() mac = MacField() wol_port = PortField() credentials = fields.Nested(CredentialsSchema()) def _delete_object(model, id_: int) -> None: obj = get_object_or_404(model, model.id == id_) obj.delete_instance() def _edit_object_by_id(model, id_: int, **kwargs) -> None: obj = get_object_or_404(model, model.id == id_) edited_fields = [] for field_name, value in kwargs.items(): field = getattr(model, field_name) edited_fields.append(field) setattr(obj, field_name, value) obj.save(only=edited_fields) def create_target( name: str, host: Optional[str] = None, mac: Optional[str] = None, wol_port: Optional[int] = None, credentials: Optional[int] = None, ) -> int: target = Target.create(name=name, host=host, mac=mac, wol_port=wol_port, credentials=credentials) return target.id def get_target_by_id(id_: int) -> dict: query = Target.select(Target, Credentials).join(Credentials, JOIN.LEFT_OUTER) target = get_object_or_404(query, Target.id == id_) return TargetSchema().dump(target) def get_target_by_name(name: str) -> dict: query = Target.select(Target, Credentials).join(Credentials, JOIN.LEFT_OUTER) target = get_object_or_404(query, Target.name == name) return TargetSchema().dump(target) def get_all_targets() -> List[dict]: query = Target.select(Target, Credentials).join(Credentials, JOIN.LEFT_OUTER) return TargetSchema(many=True).dump(query) def delete_target_by_id(id_: int) -> None: _delete_object(Target, id_) def edit_target_by_id(id_: int, **kwargs) -> None: _edit_object_by_id(Target, id_, **kwargs) def wakeup_target_by_id(id_: int) -> None: target = get_object_or_404(Target, Target.id == id_) if not target.mac: abort(make_response({'error': 'empty mac'}, 400)) wakeup_host(target.mac, port=target.wol_port) def check_target_by_id(id_: int) -> bool: target = get_object_or_404(Target, Target.id == id_) if not target.host: abort(make_response({'error': 'empty host'}, 400)) return check_host(target.host) def create_credentials( username: str, password: Optional[str] = None, pkey: Optional[str] = None, ) -> int: credentials = Credentials.create(username=username, password=password, pkey=pkey) return credentials.id def get_credentials_by_id(id_: int) -> dict: credentials = get_object_or_404(Credentials, Credentials.id == id_) return CredentialsSchema().dump(credentials) def get_all_credentials() -> List[dict]: qs = Credentials.select() return list(qs.dicts()) def delete_credentials_by_id(id_: int) -> None: _delete_object(Credentials, id_) def edit_credentials_by_id(id_: int, **kwargs) -> None: _edit_object_by_id(Credentials, id_, **kwargs) for schema in (CredentialsSchema, TargetSchema): exclude_parent_attrs(schema) ``` #### File: wol/views/pages.py ```python from flask import Blueprint, render_template from ..logic.crud import get_all_targets pages = Blueprint('web', __name__, template_folder='../templates') @pages.route('/targets/', methods=['GET']) def get_web_targets(): targets = get_all_targets() return render_template('targets.html', targets=targets) ``` #### File: wol/wol/wsgi.py ```python import logging import sys from configargparse import ArgumentDefaultsHelpFormatter, ArgumentParser from environs import Env from flask import Flask, Response, jsonify from marshmallow import ValidationError from .views import core try: from . import models except ImportError: models = None else: from .views import crud, pages def create_app(no_db: bool = False): env = Env() env.read_env() logger = logging.getLogger(__name__) logger.addHandler(logging.StreamHandler(sys.stdout)) app = Flask(__name__) app.register_blueprint(core, url_prefix='/api') with env.prefixed('WOL_'): logger.setLevel(env.log_level('LOG_LEVEL', logging.DEBUG)) if not env('NO_DB', False) and not no_db and models: # TODO: shit app.config['DATABASE'] = env.str('DATABASE_URL', 'postgres://postgres@localhost:5432/wol') models.db.init_app(app) app.register_blueprint(crud, url_prefix='/api') app.register_blueprint(pages) @app.errorhandler(ValidationError) def handle_validation(error: ValidationError): response = jsonify(error.messages) response.status_code = 400 return response @app.errorhandler(NotImplementedError) def handle_not_implemented(_error: NotImplementedError): return Response(status=501) return app # TODO: catch 404? def dev_server(): parser = ArgumentParser( auto_env_var_prefix='WOL_', formatter_class=ArgumentDefaultsHelpFormatter, ) parser.add_argument('--bind', '-b', default='127.0.0.1', help="ip address to listen") parser.add_argument('--port', '-p', default=5000, help="port to listen") parser.add_argument('--debug', '-d', action='store_true', default=False, help="run in debug mode") parser.add_argument('--no-db', action='store_true', default=False, help="do not use database and disable CRUD api") parser.add_argument('command', choices=('run', 'initdb'), nargs='?', default='run') args = parser.parse_args() app = create_app(no_db=args.no_db) if args.command == 'run': app.run(host=args.bind, port=args.port, debug=args.debug) elif args.command == 'initdb': if args.no_db: print("incompatible command and \"--no-db\" argument") sys.exit(1) elif not models: print("database deps is not installed (extra \"db\"") sys.exit(1) else: models.init_db() print("db initialized") if __name__ == '__main__': dev_server() ```
{ "source": "jlenain/nectarchain", "score": 2 }
#### File: nectarchain/dqm/camera_monitoring.py ```python from dqm_summary_processor import * import math import sqlite3 import os class CameraMonitoring(dqm_summary): def __init__(self, gaink): self.k = gaink return None def ConfigureForRun(self,path, Chan, Samp, Reader1): #define number of channels and samples self.Chan = Chan self.Samp= Samp self.camera = CameraGeometry.from_name("NectarCam", 3) self.cmap = 'gnuplot2' self.subarray = Reader1.subarray self.event_id = [] self.event_times = [] for i, evt1 in enumerate(Reader1): self.run_start1= evt1.nectarcam.tel[0].svc.date SqlFileDate = (astropytime.Time(self.run_start1, format='unix').iso).split(" ")[0] SqlFilePath = "" for i in range(len(path.split("/"))-1): SqlFilePath = SqlFilePath + path.split("/")[i] + "/" SqlFileName = SqlFilePath + "nectarcam_monitoring_db_" + SqlFileDate + ".sqlite" print("SqlFileName", SqlFileName) con = sqlite3.connect(SqlFileName) cursor = con.cursor() #print(cursor.fetchall()) cursor.execute("SELECT name FROM sqlite_master WHERE type='table';") TempData=cursor.execute('''SELECT * FROM monitoring_drawer_temperatures''') #print(TempData.description) self.DrawerTemp = cursor.fetchall() cursor.close() def ProcessEvent(self, evt): trigger_time = evt.trigger.time.value trigger_id = evt.index.event_id self.event_times.append(trigger_time) self.event_id.append(trigger_id) def FinishRun(self): self.event_id = np.array(self.event_id) self.event_times = np.array(self.event_times) self.run_start = self.event_times[self.event_id == np.min(self.event_id)] - 100 self.run_end = np.max(self.event_times) + 100 self.DrawerTemp = np.array(self.DrawerTemp) self.DrawerTimes = np.array(self.DrawerTemp[:,3]) for i in range(len(self.DrawerTimes)): self.DrawerTimes[i] = astropytime.Time(self.DrawerTimes[i], format = 'iso').unix self.DrawerTemp11 = self.DrawerTemp[:,4][self.DrawerTimes > self.run_start] self.DrawerTemp21 = self.DrawerTemp[:,5][self.DrawerTimes > self.run_start] self.DrawerNum1 = self.DrawerTemp[:,2][self.DrawerTimes > self.run_start] self.DrawerTimes_new = self.DrawerTimes[self.DrawerTimes > self.run_start] self.DrawerTemp12 = self.DrawerTemp11[self.DrawerTimes_new < self.run_end] self.DrawerTemp22 = self.DrawerTemp21[self.DrawerTimes_new < self.run_end] self.DrawerNum2 = self.DrawerNum1[self.DrawerTimes_new < self.run_end] self.DrawerTemp1_mean = [] self.DrawerTemp2_mean = [] TotalDrawers = np.max(self.DrawerNum2) for i in range(TotalDrawers+1): for j in range(7): self.DrawerTemp1_mean.append(np.mean(self.DrawerTemp12[self.DrawerNum2 == i])) self.DrawerTemp2_mean.append(np.mean(self.DrawerTemp22[self.DrawerNum2 == i])) self.DrawerTemp1_mean = np.array(self.DrawerTemp1_mean) self.DrawerTemp2_mean = np.array(self.DrawerTemp2_mean) self.DrawerTemp_mean = (self.DrawerTemp1_mean + self.DrawerTemp2_mean)/2 def GetResults(self): self.CameraMonitoring_Results_Dict = {} self.CameraMonitoring_Results_Dict["CAMERA-TEMPERATURE-AVERAGE"] = self.DrawerTemp_mean return self.CameraMonitoring_Results_Dict def PlotResults(self,name,FigPath): self.ChargeInt_Figures_Dict={} self.ChargeInt_Figures_Names_Dict = {} fig, disp = plt.subplots() disp = CameraDisplay(self.camera) disp.image = self.DrawerTemp_mean disp.cmap = plt.cm.coolwarm disp.axes.text(1.8, -0.3, 'Temperature', fontsize=12,rotation=90) disp.add_colorbar() plt.title("Camera temperature average") full_name = name + '_CameraTemperature_Mean.png' FullPath = FigPath +full_name self.ChargeInt_Figures_Dict["CAMERA-TEMPERATURE-IMAGE-AVERAGE"] = fig self.ChargeInt_Figures_Names_Dict["CAMERA-TEMPERATURE-IMAGE-AVERAGE"] = FullPath plt.close() fig1, disp = plt.subplots() disp = CameraDisplay(self.camera) disp.image = self.DrawerTemp1_mean disp.cmap = plt.cm.coolwarm disp.axes.text(1.8, -0.3, 'Temperature 1', fontsize=12,rotation=90) disp.add_colorbar() plt.title("Camera temperature average 1") full_name = name + '_CameraTemperature_average1.png' FullPath = FigPath +full_name self.ChargeInt_Figures_Dict["CAMERA-TEMPERATURE-IMAGE-AVERAGE-1"] = fig1 self.ChargeInt_Figures_Names_Dict["CAMERA-TEMPERATURE-IMAGE-AVERAGE-1"] = FullPath plt.close() fig2, disp = plt.subplots() disp = CameraDisplay(self.camera) disp.image = self.DrawerTemp2_mean disp.cmap = plt.cm.coolwarm disp.axes.text(1.8, -0.3, 'Temperature 2', fontsize=12,rotation=90) disp.add_colorbar() plt.title("Camera temperature average 2") full_name = name + '_CameraTemperature_average2.png' FullPath = FigPath +full_name self.ChargeInt_Figures_Dict["CAMERA-TEMPERATURE-IMAGE-AVERAGE-2"] = fig2 self.ChargeInt_Figures_Names_Dict["CAMERA-TEMPERATURE-IMAGE-AVERAGE-2"] = FullPath plt.close() return self.ChargeInt_Figures_Dict, self.ChargeInt_Figures_Names_Dict ``` #### File: nectarchain/dqm/mean_waveforms.py ```python from dqm_summary_processor import * class MeanWaveForms_HighLowGain(dqm_summary): def __init__(self, gaink): self.k = gaink return None def ConfigureForRun(self,path, Chan, Samp, Reader1): #define number of channels and samples self.Chan = Chan self.Samp= Samp #redefine everything self.Mwf = np.zeros((self.Chan,self.Samp)) self.Mwf_ped = np.zeros((self.Chan,self.Samp)) self.counter_evt = 0 self.counter_ped = 0 self.Mwf_average = np.zeros((self.Chan,self.Samp)) self.Mwf_ped_average = np.zeros((self.Chan,self.Samp)) self.Mwf_Mean_overChan = [] self.Mwf_ped_Mean_overChan = [] self.wf_list_plot = list(range(1, self.Samp+1))#used for plotting later on return None def ProcessEvent(self, evt): if evt.trigger.event_type.value == 32: #count peds self.counter_ped += 1 else: self.counter_evt += 1 for ichan in range(self.Chan): #loop over channels # 1855 should be redefined as a variable if evt.trigger.event_type.value == 32: #only peds now self.Mwf_ped[ichan,:] += evt.r0.tel[0].waveform[self.k][ichan] # fill channels one by one and sum them for peds only else: self.Mwf[ichan,:] += evt.r0.tel[0].waveform[self.k][ichan] # fill channels one by one and sum them return None def FinishRun(self): if (self.k==0): gain_c = 'High' if (self.k ==1): gain_c = 'Low' self.Mwf_average = self.Mwf/self.counter_evt #get average #get average over channels self.Mwf_Mean_overChan = np.mean(self.Mwf_average,axis=0) if self.counter_ped > 0: self.Mwf_ped_average = self.Mwf_ped/self.counter_ped #get average pedestals self.Mwf_ped_Mean_overChan = np.mean(self.Mwf_ped_average,axis=0) return None def GetResults(self): #INITIATE DICT self.MeanWaveForms_Results_Dict = {} #ASSIGN RESUTLS TO DICT if (self.k==0): self.MeanWaveForms_Results_Dict["WF-PHY-AVERAGE-HIGH-GAIN"] = self.Mwf_average self.MeanWaveForms_Results_Dict["WF-PHY-AVERAGE-CHAN-HIGH-GAIN"] = self.Mwf_Mean_overChan if self.counter_ped > 0: self.MeanWaveForms_Results_Dict["WF-PED-AVERAGE-HIGH-GAIN"] = self.Mwf_ped_average self.MeanWaveForms_Results_Dict["WF-AVERAGE-PED-CHAN-HIGH-GAIN"] = self.Mwf_ped_Mean_overChan if (self.k ==1): self.MeanWaveForms_Results_Dict["WF-AVERAGE-LOW-GAIN"] = self.Mwf_average self.MeanWaveForms_Results_Dict["WF-AVERAGE-CHAN-LOW-GAIN"] = self.Mwf_Mean_overChan if self.counter_ped > 0: self.MeanWaveForms_Results_Dict["WF-PHY-PED-AVERAGE-LOW-GAIN"] = self.Mwf_ped_average self.MeanWaveForms_Results_Dict["WF-PHY-AVERAGE-PED-CHAN-LOW-GAIN"] = self.Mwf_ped_Mean_overChan return self.MeanWaveForms_Results_Dict def PlotResults(self,name,FigPath): self.MeanWaveForms_Figures_Dict = {} self.MeanWaveForms_Figures_Names_Dict = {} wf_list = np.array(self.wf_list_plot) counter_fig = 0 colors = ['blue', 'red'] colors2 = ['cyan', 'orange'] titles = ['Physical', 'Pedestals'] Mean_plot_array = [self.Mwf_Mean_overChan, self.Mwf_ped_Mean_overChan] #Set characters of gain: high or lo if (self.k==0): gain_c = 'High' if (self.k ==1): gain_c = 'Low' full_fig, full_ax = plt.subplots() if self.counter_ped > 0: array_plot = [self.Mwf_average, self.Mwf_ped_average] else: array_plot = [self.Mwf_average] for x in array_plot: part_fig, part_ax = plt.subplots() for ichan in range(self.Chan): full_ax.plot(wf_list ,x[ichan,:], color = colors[counter_fig], alpha = 0.005, linewidth=1) part_ax.plot(wf_list ,x[ichan,:], color = colors[counter_fig], alpha = 0.005, linewidth=1) Mean_plot = Mean_plot_array[counter_fig] full_ax_return = full_ax.plot(wf_list, Mean_plot, color = colors2[counter_fig], alpha = 1, linewidth=3, label = 'Mean ' + titles[counter_fig]) part_ax_return = part_ax.plot(wf_list, Mean_plot, color = colors2[counter_fig], alpha = 1, linewidth=3, label = 'Mean ' + titles[counter_fig]) part_ax.set_title('Mean Waveforms %s (%s Gain)' %(titles[counter_fig], gain_c)) part_ax.set_xlabel('Samples') part_ax.set_ylabel('Amplitude (DC)') part_ax.legend() part_ax.grid() part_name = name + '_MeanWaveforms_%s_%sGain.png' %(titles[counter_fig], gain_c) PartPath = FigPath + part_name self.MeanWaveForms_Figures_Dict["FIGURE-WF-%s-%s-GAIN" %(titles[counter_fig], gain_c)]= part_fig self.MeanWaveForms_Figures_Names_Dict["FIGURE-WF-%s-%s-GAIN" %(titles[counter_fig], gain_c)]= PartPath plt.close() counter_fig +=1 full_ax.set_title('Mean Waveforms Combined Plot (%s Gain)' % gain_c) full_ax.set_xlabel('Samples') full_ax.set_ylabel('Amplitude (DC)') full_ax.legend() full_ax.grid() full_name = name + '_MeanWaveforms_CombinedPlot_%sGain.png' %gain_c FullPath = FigPath +full_name self.MeanWaveForms_Figures_Dict["FIGURE-WF-COMBINED-%s-GAIN" % gain_c] = full_fig self.MeanWaveForms_Figures_Names_Dict["FIGURE-WF-COMBINED-%s-GAIN" % gain_c]= FullPath plt.close() return self.MeanWaveForms_Figures_Dict, self.MeanWaveForms_Figures_Names_Dict ```
{ "source": "jlenain/PhotALPsConv", "score": 2 }
#### File: jlenain/PhotALPsConv/deltas.py ```python import numpy as np __version__=0.04 Bcrit = 4.414e13 # critical magnetic field in G kpcmuG2GeV = 0.030422 # Conversion from kpc*muG to GeV in LHU (needs to be checked) #g is photon axion coupling in 10^-11 GeV^-1 #B is magnetic field in nG #returns Delta in Mpc^-1 #taken from Mirizzi & Montanino 2009 Delta_ag_Mpc= lambda g,B: 1.52e-2*g*B #g is photon axion coupling in 10^-11 GeV^-1 #B is magnetic field in muG #returns Delta in kpc^-1 Delta_ag_kpc= lambda g,B: 1.52e-2*g*B #m is photon axion mass in 10^-10 eV #E is Energy in TeV #returns Delta in Mpc^-1 #taken from Mirizzi & Montanino 2009 Delta_a_Mpc= lambda m,E: -7.8e-4*m**2./E #m is photon axion mass in 10^-9 eV #E is Energy in GeV #returns Delta in kpc^-1 Delta_a_kpc= lambda m,E: -7.8e-2*m**2./E #n is electron density in 10^-7 cm^-3 #E is Energy in TeV #returns Delta in Mpc^-1 #taken from Mirizzi & Montanino 2009 Delta_pl_Mpc= lambda n,E: -1.1e-11*n/E + Delta_CMB_Mpc(E) #n is electron density in 10^-3 cm^-3 #E is Energy in GeV #returns Delta in kpc^-1 Delta_pl_kpc= lambda n,E: -1.1e-7*n/E + Delta_CMB_kpc(E) #E is Energy in GeV #returns Delta in kpc^-1 # additional term from Dobrynina+ 2014, 1412.4771 Delta_CMB_kpc= lambda E: 0.8e-7*E #E is Energy in TeV #returns Delta in Mpc^-1 # additional term from Dobrynina+ 2014, 1412.4771 Delta_CMB_Mpc= lambda E: 0.8e-1*E #B is magnetic field in nG #E is Energy in TeV #returns Delta in Mpc^-1 #taken from Mirizzi & Montanino 2009 Delta_QED_Mpc= lambda B,E: 4.1e-9*E*B**2. #B is magnetic field in muG #E is Energy in GeV #returns Delta in kpc^-1 # with correction factors of Perna et al. 2012 Delta_QED_kpc= lambda B,E: 4.1e-9*E*B**2. * (1. + 1.2e-6 * B / Bcrit) / \ (1. + 1.33e-6*B / Bcrit + 0.59e-6 * (B / Bcrit)**2.) def Delta_Osc_kpc_array(m,n,g,B,E): """ Compute Delta Osc Parameters ---------- m: ALP mass, scalar, in neV n: el. density in 10^-3 cm^-3, n-dim array g: photon-ALP coyupling strength, scalar B: magnetic field in muG, n-dim array E: energy in GeV, m-dim array Returns ------- Delta_osc as mxn-dim array in kpc^-1 """ if np.isscalar(E): E = np.array([E]) if np.isscalar(B): B = np.array([B]) if np.isscalar(n): n = np.array([n]) if not B.shape[0] == n.shape[0]: raise ValueError("B and n array have to have the same shape. B.shape: {0}, n.shape: {1}".format(B.shape[0],n.shape[0])) result = -7.8e-2 * m ** 2. * (np.ones((E.shape[0],B.shape[0])).transpose()/E).transpose() # Delta_a as ExB-shaped matrix result -= -1.1e-7*((np.ones((E.shape[0],B.shape[0]))*n).transpose()/E).transpose() # Delta_pl as ExB-shaped matrix result *= result result += 4. * np.ones((E.shape[0],B.shape[0]))* (1.52e-2*g*B)**2. return np.sqrt(result) def Delta_Osc_Mpc_array(m,n,g,B,E): """ Compute Delta Osc Parameters ---------- m: ALP mass, scalar, in 10^-10 eV n: el. density in 10^-7 cm^-3, n-dim array g: photon-ALP coupling strength, scalar, in 10^-11 GeV^-1 B: magnetic field in nG, n-dim array E: energy in TeV, m-dim array Returns ------- Delta_osc as mxn-dim array in Mpc^-1 """ if np.isscalar(E): E = np.array([E]) if np.isscalar(B): B = np.array([B]) if np.isscalar(n): n = np.array([n]) if not B.shape[0] == n.shape[0]: raise ValueError("B and n array have to have the same shape. B.shape: {0}, n.shape: {1}".format(B.shape[0],n.shape[0])) result = -7.8e-4 * m ** 2. * (np.ones((E.shape[0],B.shape[0])).transpose()/E).transpose() # Delta_a as ExB-shaped matrix result -= -1.1e-11*((np.ones((E.shape[0],B.shape[0]))*n).transpose()/E).transpose() # Delta_pl as ExB-shaped matrix result *= result result += 4. * np.ones((E.shape[0],B.shape[0]))* (1.52e-2*g*B)**2. return np.sqrt(result) #Plasma freq in 10^-10 eV #n is electron density in 10^-7 cm^-3 w_pl_e10 = lambda n: 0.000117*np.sqrt(n) #Plasma freq in 10^-9 eV #n is electron density in 10^-3 cm^-3 w_pl_e9 = lambda n: 0.00117*np.sqrt(n) #from math import abs #Critical energy for strong mixing regime in TeV #m is photon axion mass in 10^-10 eV #n is electron density in 10^-7 cm^-3 #B is magnetic field in nG #g is photon axion coupling in 10^-11 GeV^-1 Ecrit_TeV= lambda m,n,B,g: 2.5e-2*abs(m**2. - w_pl_e10(n)**2.)/B/g #Critical energy for strong mixing regime in GeV #m is axion mass in 10^-09 eV #n is electron density in 10^-3 cm^-3 #B is magnetic field in muG #g is photon axion coupling in 10^-11 GeV^-1 Ecrit_GeV= lambda m,n,B,g: 2.5e0*abs(m**2. - w_pl_e9(n)**2.)/B/g #Maximum energy for strong mixing regime in GeV #B is magnetic field in muG #g is photon axion coupling in 10^-11 GeV^-1 #Emax_GeV= lambda B,g: 2.12e6 * g / B # Check this! Emax_GeV= lambda B,g: kpcmuG2GeV*(3.5*4.1e-9*B**2 + 0.8e-7 )**-1 *B * g # mixing angle #m is axion mass in 10^-09 eV #n is electron density in 10^-3 cm^-3 #B is magnetic field in muG #g is photon axion coupling in 10^-11 GeV^-1 #E is energy in GeV alpha_kpc = lambda g,B,n,E,m: 0.5 * np.arctan2(2. * Delta_ag_kpc(g,B) , (Delta_pl_kpc(n,E) + 3.5*Delta_QED_kpc(B,E) - Delta_a_kpc(m,E))) # mixing angle #m is axion mass in 10^-10 eV #n is electron density in 10^-7 cm^-3 #B is magnetic field in nG #g is photon axion coupling in 10^-11 GeV^-1 #E is energy in TeV alpha_Mpc = lambda g,B,n,E,m: 0.5 * np.arctan2(2. * Delta_ag_Mpc(g,B) , (Delta_pl_Mpc(n,E) + 3.5*Delta_QED_Mpc(B,E) - Delta_a_Mpc(m,E))) # oscillation wave number #m is axion mass in 10^-09 eV #n is electron density in 10^-3 cm^-3 #B is magnetic field in muG #g is photon axion coupling in 10^-11 GeV^-1 #E is energy in GeV Delta_osc_kpc = lambda g,B,n,E,m : np.sqrt((Delta_pl_kpc(n,E) + 3.5*Delta_QED_kpc(B,E) - Delta_a_kpc(m,E)) ** 2. + 4. * Delta_ag_kpc(g,B) ** 2.) # oscillation wave number #m is axion mass in 10^-10 eV #n is electron density in 10^-7 cm^-3 #B is magnetic field in nG #g is photon axion coupling in 10^-11 GeV^-1 #E is energy in TeV Delta_osc_Mpc = lambda g,B,n,E,m : np.sqrt((Delta_pl_Mpc(n,E) + 3.5*Delta_QED_Mpc(B,E) - Delta_a_Mpc(m,E)) ** 2. + 4. * Delta_ag_Mpc(g,B) ** 2.) ``` #### File: jlenain/PhotALPsConv/tools.py ```python __version__=0.01 __author__="<NAME> // <EMAIL>" # --- Imports -------------- # #from numpy import mean,nanmean,sqrt,sort,median,array from numpy import mean,sqrt,sort,median,array from math import floor,ceil # -------------------------- # # calculate index for lower confidence contour # for matrix P along axis axis and for confidence level conf ind_lo = lambda P,conf,axis: int(floor((P.shape[axis]*0.5*(1. - conf)))) # calculate index for upper confidence contour # for matrix P along axis axis and for confidence level conf ind_up = lambda P,conf,axis: int(ceil((P.shape[axis]*0.5*(1. + conf)))) def rms(x, axis=None): """calculate rms of x along axis axis""" return sqrt(mean(x**2, axis=axis)) #def nanrms(x, axis=None): # """calculate rms of x if x contains nans along axis axis""" # return sqrt(nanmean(x**2, axis=axis)) def median_contours(P,axis = 0, conf = [0.68,0.95]): """ Calculate median and 68,95 % confidence contours of survival probability matrix P Parameters ---------- P: np.array with photon survival probabilities, either n or n x m dimensional kwargs ------ axis: int, axis along which median etc. is calculated, default: 0 conf: list with confidence levels, defaut: [0.68,0.95] Returns ------- dictionary with entries median: n [or m] dimensional array with median entries conf_{int(100 * conf)} 2 x n [or m] dimensional array with confidence contours around median """ result = {} for c in conf: idx_low = ind_lo(P,c,axis) idx_up = ind_up(P,c,axis) if idx_up > P.shape[axis] - 1: idx_up = P.shape[axis] - 1 if axis: result['conf_{0:n}'.format(int(c * 100))] = array([sort(P, axis = axis)[:,idx_low],sort(P, axis = axis)[:,idx_up]]) else: result['conf_{0:n}'.format(int(c * 100))] = array([sort(P, axis = axis)[idx_low,:],sort(P, axis = axis)[idx_up,:]]) result['median'] = median(P,axis = axis) return result ```
{ "source": "jlengrand/Ivolution", "score": 3 }
#### File: Ivolution/ivolution/Eye.py ```python class Eye(object): """ Eye-like blob used in the Face Detection algorithm. .. note:: This class **is not used for now**, but should get useful when implementing the use interaction feature """ def __init__(self): """A facemovie redefinition of the human eye :param x_pos: x position of the eye in the image (in pixels) :type x_pos: int :param y_pos: y position of the eye in the image (in pixels) :type y_pos: int :param x_size: x size of the blob (in pixels) :type x_size: int :param y_size: y size of the blob (in pixels) :type y_size: int :param conf: confidence indice, indicating the probability of the target to actually be an eye :type conf: float """ x_pos = None # x position of the eye in the image y_pos = None # y position of the eye in the image x_size = None # x size of the blob in pixel y_size = None # y size of the blob in pixel conf = None # confidence indice, indicating the probability of the target to actually be an eye ``` #### File: Ivolution/ivolution/Facemovie_lib.py ```python import os import sys import logging import cv from util import exif import Guy from util.Notifier import Observable from util.Notifier import Observer class FaceMovie(object, Observable, Observer): ''' Main class of the whole application. Contains the core image processing functions. Takes a bunch of parameters and a list of images and creates the ouput, depending what the user asked for. Contains general methods, aimed at being used trough an interface. ''' def __init__(self, face_params): """ Initializes all parameters of the application. Input and output folders are defined, together with the classifier profile. :param in_folder: the location where input files will be searched :type in_folder: string :param out_folder: the location where the outputs will be saved :type out_folder: string :param face_param: the location of the profile file used to train the classifier :type face_param: string """ Observable.__init__(self) # used to send notifications to process Observer.__init__(self, "Lib") # used to receive notification to stop #self.console_logger = logging.getLogger('ConsoleLog') # Used to send messages to the console self.my_logger = logging.getLogger('IvolutionFile.Lib') # Used to save events into a file self.source = face_params.input_folder # Source folder for pictures # Retrieving parameters for Face Detection self.face_params = face_params out_folder = self.face_params.output_folder self.out_path = "./data" self.out_name = "ivolution" self.out_format = "avi" # updating the out_folder if needed self.check_out_name(out_folder) self.sort_method = face_params.sort # sorting by name or using metadata (n or e) self.mode = face_params.mode # can be crop or conservative. ### self.guys = [] # List of pictures in source folder self.center = [0, 0] # Position of the center in output images (x, y) self.dims = [0, 0] # Size of the final output image (x, y). Depends on selected mode self.nChannels = 0 # number of channels of the set of images self.depth = 0 # depth of the set of images self.weight_steps = 5 # number of images to be inserted between each frame to reduce violent switch self.speed = [3, 6, 9] # this one should be internal. Number of fps for the video self.run = True # command used to stop the processing if needed def update(self, message): """ Used to receive system commands, using the Observer pattern """ if len(message) == 1: # system command self.run = False def list_guys(self): """ Aims at populating the guys list, using the source folder as an input. Guys list can be sorted either by name, or using metadata. In case source folder is not found; Exits without processing. Non Image files are autmatically skipped. Source folder is searched recursively. All subfolders are also processed. .. note::In case no valid date is found for metadata mode, the images are taken in name order """ try: os.path.exists(self.source) os.path.isdir(self.source) # checking if folder exists except: # find precise exception #self.console_logger.critical("Source folder not found ! Exiting. . .") self.my_logger.critical("Source folder not found ! Exiting. . .") self.run = False #sys.exit(0) return -1 # loading images, create Guys and store it into guys ptr = 0 for root, _, files in os.walk(self.source): for a_file in files: # notifying the Observers self.notify_progress("Processing file", ptr, len(files)) if self.run: # as long as we want to continue guy_source = os.path.join(root, a_file) try: cv.LoadImage(guy_source) # used to check image is valid guy_name = os.path.splitext(a_file)[0] # Tries to extract date from metadata try: guy_date = exif.parse(guy_source)['DateTime'] except Exception: self.my_logger.warning("No metadata found for %s" % (guy_name)) #if self.sort_method == "exif": #self.console_logger.warning(" No metadata found for %s" % (guy_name)) guy_date = '' a_guy = Guy.Guy(guy_name, guy_date, guy_source) ptr += 1 # Adding file only if picture # populating guys self.guys.append(a_guy) self.notify(["Application", ["FILEADD", guy_name]]) except: #self.console_logger.info("Skipping %s. Not an image file" % (guy_source)) self.my_logger.info("Skipping %s. Not an image file" % (guy_source)) # Checking if we have at least one image if self.number_guys > 0: self.sort_guys() ##self.console_logger.info("%d guys found in source folder." % (self.number_guys())) self.my_logger.info("%d guys found in source folder." % (self.number_guys())) return self.number_guys() def sort_guys(self): """ Guys list has just been populated, but elements are not ordered yet. Sorts the elements of the list either by name or by date extracted from metadata, depending on the chosen mode. """ # Sorting either by exif date or name if self.sort_method == "exif": self.guys.sort(key=lambda g: g.date) else: # default is sort by name self.guys.sort(key=lambda g: g.name) def search_faces(self): """ Searches for all faces in the guys we have Results to be stored directly in guys Takes each image one after the other, and create a guy out of it. The Face of each guy is searched. In case no face is found, a warning is returned and Guy is set to None """ ptr = 0 for a_guy in self.guys: ptr += 1 if self.run: faceres = 0 a_guy.search_face(self.face_params) # notifying the Observers self.notify_progress("Processing picture", ptr, self.number_guys()) if a_guy.has_face(): # face(s) have been found #self.console_logger.info("Face found for %s" % (a_guy.name)) self.my_logger.info("Face found for %s" % (a_guy.name)) faceres = 1 # for notifying else: #self.console_logger.warning("No face found for %s. Skipped . . ." % (a_guy.name)) self.my_logger.warning("No face found for %s. Skipped . . ." % (a_guy.name)) self.notify(["Application", ["FILEDONE", a_guy.name, faceres]]) def percent(self, num, den): """ Returns a float between 0 and 1, being the percentage given by num / den """ if num > den: raise ArithmeticError if den <= 0: raise ZeroDivisionError return (num / float(den)) def notify_progress(self, message_root, num, den): """ A notification scheme to quickly notify most common messages """ # notifying the Observers try: message = message_root + " %d / %d" % (num, den) self.notify(["Application", [message, self.percent(num, den)]]) except (ArithmeticError, ZeroDivisionError): self.my_logger.error("ArithmeticError on %s, %d, %d" % (message_root, num, den)) self.notify(["Application", ["Error", 0]]) def clean_guys(self): """ Removes all guys for who no face has been found. This avoids all has_face loops in the rest of the application """ return [a_guy for a_guy in self.guys if a_guy.has_face()] def prepare_faces(self): """ Searches for all faces and keep only the one that may be properly used. Images without face are discarded. The program is exited in case no face is found. Searches for the reference size. If will be used later for image resizing, so that all faces have the same size. """ self.search_faces() # removes guys that have no faces self.guys = self.clean_guys() # check that everybody has the same number of channels self.check_channels() self.check_depth() if self.number_guys() == 0: #self.console_logger.error("No face has been found in the whole repository! Exiting. . . ") self.my_logger.error("No face has been found in the whole repository! Exiting. . . ") self.notify(["Error", 0]) sys.exit(0) # normalize faces to make them clean self.set_guys_ratio() # sets all faces to the same size, by calculating a ratio to a reference def check_depth(self): """ Checks that the depth of all the images in guys is the same Sets the depth for the video """ my_depth = [] for a_guy in self.guys: my_depth.append(a_guy.depth) my_depth = list(set(my_depth)) # remove duplicates if len(my_depth) != 1: # We do not have a unique number of channels for all images #self.console_logger.error("All images must have the same depth") self.my_logger.error("All images must have the same depth") else: self.depth = my_depth[0] def check_channels(self): """ Checks that the number of channels of all the images in guys is the same Sets the number of channels for the video """ my_chans = [] for a_guy in self.guys: my_chans.append(a_guy.in_channels) my_chans = list(set(my_chans)) # remove duplicates if len(my_chans) != 1: # We do not have a unique number of channels for all images #self.console_logger.error("All images must have the same number of channels") self.my_logger.error("All images must have the same number of channels") else: self.nChannels = my_chans[0] def set_guys_ratio(self): """ For each Guy, calculates the factor by which the image is going to be resized so that all faces finally have the same size. """ ref = self.find_reference() for a_guy in self.guys: a_guy.set_ratio(ref) def find_reference(self): """ Searched for the best face size we want to have. Defined (for now), as the smallest of all found faces. :returns int - the reference size of the bounding square for faces. """ references = [] for a_guy in self.guys: if a_guy.has_face(): references.append(a_guy.faces[0][0][3]) # catch face size (width) return min(references) def find_final_dimensions(self, cropdims=(0, 0)): """ Finds the final dimensions that will be needed to create the output. Depending on the desired output, it can be - (default) the maximal size of the image, by overlapping all images and adding black borders. - (crop) the maximal size of the image by overlapping all the images, without adding any black borders - (custom crop) A chosen user size, defined as x * y times the head size. """ if self.mode == "conservative": self.find_default_dims() elif self.mode == "crop": self.find_crop_dims() elif self.mode == "custom crop": # TODO : implement #self.console_logger.critical("custom crop is not yet implemented") self.my_logger.critical("custom crop is not yet implemented") raise Exception def find_default_dims(self): """ Calculates best output image size and position depending on faces found in guys. The system is simple. The output image should be as big as possible, and faces are always placed in the same position. Depending on that, the image input image is placed in the output at the correct position. Black borders are set everywhere else. """ # TODO: badly done ! x_af = 0 y_af = 0 ptr = 0 for a_guy in self.guys: if self.run: ptr += 1 # notifying the Observers self.notify_progress("Processing picture", ptr, self.number_guys()) (xc, yc) = a_guy.resized_center() (inx, iny) = a_guy.resized_dims() # update center if xc > self.center[0]: self.center[0] = xc if yc > self.center[1]: self.center[1] = yc # update right part if (inx - xc) > x_af: x_af = inx - xc if (iny - yc) > y_af: y_af = iny - yc self.dims = [x_af + self.center[0], y_af + self.center[1]] def find_crop_dims(self): """ Calculates smallest output image that can be used to avoid adding black borders on image It will later be used to create the final image. """ # TODO: badly done ! ht = 1000000 # space left above eyes hb = 1000000 # space left beneath eyes wl = 1000000 # space left left of eyes wr = 1000000 # space left right of eyes #tr = 0 ptr = 0 for a_guy in self.guys: if self.run: ptr += 1 # notifying the Observers self.notify_progress("Processing picture", ptr, self.number_guys()) (xc, yc) = a_guy.resized_center() (inx, iny) = a_guy.resized_dims() # finding width if xc < wl: wl = xc if (inx - xc) < wr: wr = inx - xc # finding height if yc < ht: ht = yc if (iny - yc) < hb: hb = iny - yc self.dims = [wl + wr, ht + hb] self.center = [wl, ht] def get_out_file(self): """ Reconstructs the final output file for the movie creation :returns: String -- The ouput file path to be saved """ return os.path.join(self.out_path, (self.out_name + "." + self.out_format)) def save_movie(self): """ Creates a movie with all faces found in the inputs. Guy is skipped if no face is found. :param out_folder: the location where to save the output image. :type out_folder: string :param fps: the number of frames per second to be displayed in final video (3) :type fps: int """ speedrate = self.face_params.speed if "win" in sys.platform: fourcc = cv.CV_FOURCC('C', 'V', 'I', 'D') else: # some kind of Linux/Unix platform fourcc = cv.CV_FOURCC('F', 'M', 'P', '4') # Corrects frameSize to get a nice video output frameSize = self.resizes_for_video_codec() # Fixme : Put in global parameter # We have to resize the out_image to make them fit with the desired size corr_im = cv.CreateImage(frameSize, self.depth, self.nChannels) #frameSize = (652, 498) pace = ["slow", "normal", "fast"] my_video = cv.CreateVideoWriter(self.get_out_file(), fourcc, self.speed[speedrate], frameSize, 1) ii = 0 for a_guy in self.guys: if self.run: ii += 1 self.notify_progress("Saving frame", ii, self.number_guys()) #self.console_logger.info("Saving frame %d / %d" % (ii, self.number_guys())) self.my_logger.info("Saving frame %d / %d" % (ii, self.number_guys())) out_im = self.prepare_image(a_guy) cv.Resize(out_im, corr_im, cv.CV_INTER_LINEAR) cv.WriteFrame(my_video, corr_im) def show_faces(self, mytime=1000): """ Show all faces that have been found for the guys. The time for which each image will be displayed can be chosen. :param mytime: time for which the image should be displayed (in ms) (1000) :type mytime: int """ win_name = " Face Results" cv.NamedWindow(win_name, cv.CV_WINDOW_NORMAL) cv.ResizeWindow(win_name, 640, 480) for a_guy in self.guys: if self.run: out_im = self.prepare_image(a_guy) cv.ShowImage(win_name, out_im) cv.WaitKey(mytime) cv.DestroyWindow(win_name) def save_faces(self, im_format="png"): """ Save all faces into out_folder, in the given image format :param out_folder: the location where to save the output image. :type out_folder: string :param im_format: Format in which the image should be saved ("png") :type im_format: string """ for a_guy in self.guys: if self.run: out_im = self.prepare_image(a_guy) self.save_guy(out_im, a_guy.name, im_format) def number_guys(self): """ Simply returns the number of guys in the current to-be movie .. note:: Designed for interface use only """ return len(self.guys) def out_display(self, im, name, time=1000, im_x=640, im_y=480): """ Displays the output image, for time ms. Setting time to 0 causes the image to remains open. Window name slightly changed to match output :param im: the image to be saved, formatted as an OpenCV Image :type im: IplImage :param name: the name of the image to be saved :type name: string :param time: time for which the image should be displayed (in ms) (1000) :type time: int :param im_x: output size of the displayed image (in pixels) (640) :type im_x: int :param im_y: output size of the displayed image (in pixels) (480) :type im_y: int """ win_name = name + " - out" cv.NamedWindow(win_name, cv.CV_WINDOW_NORMAL) cv.ResizeWindow(win_name, im_x, im_y) cv.ShowImage(win_name, im) cv.WaitKey(time) cv.DestroyWindow(win_name) def check_out_name(self, out_folder): """ Checks the desired output selected by the user. It can be either a folder or a file itself. Checks whether the designated path ends with a extension name. In case it is, the extension is checked and changed if needed :param out_folder: the path slected by the user as output location :type out_folder: String """ if len(os.path.splitext(out_folder)[1]) > 0: # if ends up with an extension self.out_path, complete_name = os.path.split(out_folder) self.out_name, format = os.path.splitext(complete_name) if format != self.out_format: # the format is not compliant with what we can do. We refuse it self.my_logger.info("Changing format to avi") else: # no filename is given. We keep the default self.out_path = os.path.split(out_folder)[0] def save_guy(self, im, name, ext): """ Saves output image to the given format (given in extension) :param im: the image to be saved, formatted as an OpenCV Image :type im: IplImage :param name: the name of the image to be saved :type name: string :param out_folder: the location where to save the image :type out_folder: string :param ext: Format in which the image should be saved ("png") :type ext: string """ file_name = name + "." + ext out_name = os.path.join(self.out_path, file_name) self.my_logger.info("Saving %s" % (out_name)) #self.console_logger.info("Saving %s" % (out_name)) cv.SaveImage(out_name, im) def prepare_image(self, a_guy): """ Takes a Guy and processes its input image. Prepares the final output image for this Guy, so that it is ready to be saved in the desired output. :param a_guy: The Guy currently being processed. :type a_guy: Guy :returns: IplImage -- The ouput image, created depending on the chosen mode, ready to be saved """ if self.mode == "conservative": out_im = a_guy.create_default_output(self.dims, self.center) elif self.mode == "crop": out_im = a_guy.create_crop_output(self.dims, self.center) return out_im def resizes_for_video_codec(self): """ Searches for the closest couple of frameSize so that width*height is a multiple of 4 to avoid weird image encoding. :param frameSize: The desired video output size before correction. (in Pixels) :type frameSize: (int, int) :returns: corrected frameSize -- The desired output size after correction. In (x, y) form. """ frameSize = (self.dims[0], self.dims[1]) try: x, y = frameSize except ValueError: self.my_logger.error("unknown format for frameSize ") return (0, 0) if not(isinstance(x, int)) or not(isinstance(x, int)): self.my_logger.error("method expects two integers") return (0, 0) while ((x * self.nChannels) % 4) != 0: x += 1 return (x, y) ``` #### File: Ivolution/ivolution/FacemovieThread.py ```python import threading import logging import Facemovie_lib from util.Notifier import Observer from util.Notifier import Observable class FacemovieThread(threading.Thread, Observable, Observer): ''' Creates a Thread version of Facemovie using the facemovie_lib. This class can then be run anywhere, from a GUI, script, ... ''' def __init__(self, face_params): """ Initializes all parameters of the application. Input and output folders are defined, together with the classifier profile. :param face_params: A faceparams object that contains all needed information to run the Facemovie. :type face_params: FaceParams """ threading.Thread.__init__(self) Observable.__init__(self) Observer.__init__(self, "Application") self.stop_process = False self.face_params = face_params self.facemovie = Facemovie_lib.FaceMovie(self.face_params) self.facemovie.subscribe(self) # Subscribing to facemovie reports self.subscribe(self.facemovie) # Used to send request to stop self.my_logger = logging.getLogger('IvolutionFile.Thread') #self.console_logger = logging.getLogger('ConsoleLog') def update(self, message): """ Trigerred by IvolutionWindow. Uses the Observer pattern to inform the user about the progress of the GUI. """ if len(message) == 1: # system commands if message[0] == "STOP": #self.console_logger.debug("Facemovie is going to stop") self.my_logger.debug("Facemovie is going to stop") self.stop_process = True self.notify(["Lib", ["STOP"]]) else: #self.console_logger.debug("Unrecognized system command") self.my_logger.debug("Unrecognized system command") ##self.console_logger.debug(message) self.my_logger.debug(message) elif len(message) == 2: # notifications ##self.console_logger.debug(message) self.my_logger.debug(message) if message[0] == "FILEADD": self.notify(["Interface", [message[0], message[1], 0]]) else: # notify gui about small updates self.notify(["Interface", ["STATUS", message[0], message[1]]]) # checking for fatal error if message[0] == "Error": #self.console_logger.debug("Fatal Error detected") self.my_logger.debug("Fatal Error detected") self.stop_process = True self.notify(["Lib", ["STOP"]]) elif len(message) == 3: # notifications if message[0] == "FILEDONE": self.notify(["Interface", message]) else: #self.console_logger.debug("Unrecognized command") self.my_logger.debug("Unrecognized command") #self.console_logger.debug(message) self.my_logger.debug(message) def run(self): if not self.stop_process: self.my_logger.debug("Listing pictures") self.notify(["Interface", ["PROGRESS", "Listing pictures", 0.0]]) num_guys = self.facemovie.list_guys() # FIXME: Later to be done in Lib if num_guys < 0: self.notify(["Interface", ["STATUS", "Source folder not found", 0.0]]) self.stop_process = True elif num_guys == 0: self.notify(["Interface", ["STATUS", "No image found in source folder", 0.0]]) self.stop_process = True if not self.stop_process: self.my_logger.debug("Detecting Faces") self.notify(["Interface", ["PROGRESS", "Detecting Faces", 0.2]]) self.facemovie.prepare_faces() # I want to search for the faces, and characteristics of the images if not self.stop_process: self.my_logger.debug("Calculating video requirements") self.notify(["Interface", ["PROGRESS", "Calculating video requirements", 0.6]]) self.facemovie.find_final_dimensions() # finds output size for desired mode. if not self.stop_process: self.my_logger.debug("Generating movie") self.notify(["Interface", ["PROGRESS", "Generating movie", 0.8]]) self.facemovie.save_movie() self.my_logger.debug("Movie saved") self.notify(["Interface", ["PROGRESS", "Movie saved, Finished!", 1.0]]) # updating status to avoid remanent messages self.notify(["Interface", ["STATUS", " ", 1.0]]) if not self.stop_process: self.my_logger.debug("Thread terminated") if self.stop_process: self.notify(["Interface", ["PROGRESS", "Process cancelled!", 1.0]]) ``` #### File: Ivolution/test/face_script.py ```python import cv def detectRedEyes(image, faceCascade, eyeCascade): min_size = (20,20) image_scale = 2 haar_scale = 1.2 min_neighbors = 2 haar_flags = 0 # Allocate the temporary images gray = cv.CreateImage((image.width, image.height), 8, 1) smallImage = cv.CreateImage((cv.Round(image.width / image_scale), cv.Round (image.height / image_scale)), 8 ,1) # Convert color input image to grayscale cv.CvtColor(image, gray, cv.CV_BGR2GRAY) # Scale input image for faster processing cv.Resize(gray, smallImage, cv.CV_INTER_LINEAR) # Equalize the histogram cv.EqualizeHist(smallImage, smallImage) # Detect the faces faces = cv.HaarDetectObjects(smallImage, faceCascade, cv.CreateMemStorage(0), haar_scale, min_neighbors, haar_flags, min_size) # If faces are found if faces: for ((x, y, w, h), n) in faces: # the input to cv.HaarDetectObjects was resized, so scale the # bounding box of each face and convert it to two CvPoints pt1 = (int(x * image_scale), int(y * image_scale)) pt2 = (int((x + w) * image_scale), int((y + h) * image_scale)) cv.Rectangle(image, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)# If faces are found # Estimate the eyes position # First, set the image region of interest # The last division removes the lower part of the face to lower probability for false recognition cv.SetImageROI(image, (pt1[0], pt1[1], pt2[0] - pt1[0], int((pt2[1] - pt1[1]) * 0.6))) # Detect the eyes eyes = cv.HaarDetectObjects(image, eyeCascade, cv.CreateMemStorage(0), haar_scale, min_neighbors, haar_flags, (20,15)) # If eyes were found if eyes: # For each eye found for eye in eyes: # Draw a rectangle around the eye cv.Rectangle(image, (eye[0][0], eye[0][1]), (eye[0][0] + eye[0][2], eye[0][1] + eye[0][3]), cv.RGB(255, 0, 0), 1, 8, 0) # Finally, reset the image region of interest (otherwise this won t # be drawn correctly cv.ResetImageROI(image) return image def load(): image = cv.LoadImage("input/Axel/2012-01-12-13h54m34DSCN9766.JPG") faceCascade = cv.Load("haarcascades/haarcascade_frontalface_alt.xml") eyeCascade = cv.Load("haarcascades/haarcascade_eye.xml") return (image, faceCascade, eyeCascade) def display(image): cv.NamedWindow("Red Eye Test", cv.CV_WINDOW_AUTOSIZE) cv.ResizeWindow("Red Eye Test", 10, 10) cv.ShowImage("Red Eye Test", image) cv.WaitKey(0) cv.DestroyWindow("Red Eye Test") if __name__ == '__main__': print "test" image, faceCascade, eyeCascade = load() image = detectRedEyes(image, faceCascade, eyeCascade) display(image) ```
{ "source": "jlengvarsky/codeAgainst", "score": 3 }
#### File: jlengvarsky/codeAgainst/deck_manager.py ```python import json class DeckManager: __default = False @staticmethod def default(): if DeckManager.__default: return DeckManager.__default else: DeckManager.__default = DeckManager() return DeckManager.__default def __init__(self): self.packs = None with open("./iic_cards.json", "r") as cardFile: self.packs = json.load(cardFile) def listPacks(self): return self.packs.keys() def getQuestions(self, pack): return self.packs[pack]["questions"] def getAnswers(self, pack): return self.packs[pack]["answers"] ``` #### File: jlengvarsky/codeAgainst/game_manager.py ```python import asyncio from random import randint, shuffle from utils import send_object, recv_object from deck_manager import DeckManager class GameManager: def __init__(self, packs, questions=[], answers=[]): self.joinCode = "".join(str(randint(0, 9)) for i in range(0, 6)) self.members = [] self.questions = [] self.answers = [] self.customQuestions = questions self.customAnswers = answers self.question = "" self.status = "open" self.judge = 0 self.packs = packs def regenJoinCode(self): self.joinCode = "".join(str(randint(0, 9)) for i in range(0, 6)) def addMember(self, member): memberId = len(self.members) member.chatMessageHandler = self.handleChatMessage self.members.append(member) return memberId async def broadcastToAll(self, obj): for member in self.members: await member.addObj(obj) async def broadcastToAllExcept(self, doNotInclude, obj): for member in self.members: if doNotInclude != member: await member.addObj(obj) async def handleChatMessage(self, obj, member): await self.broadcastToAllExcept(member, { "action": "chatMessage", "from": member.name, "content": obj["content"] }) def setUpDecks(self, categories): self.questions = self.customQuestions self.answers = self.customAnswers for category in categories: self.questions = self.questions + DeckManager.default().getQuestions(category) self.answers = self.answers + DeckManager.default().getAnswers(category) shuffle(self.questions) shuffle(self.answers) def fillAllHands(self): for member in self.members: if len(self.answers) < 1: self.setUpDecks(self.packs) member.fillHand(self.answers) async def getAnswerFromMember(self, member): return {"answerObj": await member.getObj(), "member": member} async def getAllAnswers(self): membersToWaitFor = self.members[:self.judge] + self.members[self.judge + 1:] rawAnswerData = await asyncio.gather(*[self.getAnswerFromMember(m) for m in membersToWaitFor]) result = [] for answer in rawAnswerData: result.append({"answer": answer["answerObj"]["answer"], "member": answer["member"]}) return result async def getJudgeSelection(self): return await self.members[self.judge].getObj() async def sendOutNewQuestion(self): self.fillAllHands() if len(self.questions) == 0: self.setUpDecks(self.packs) self.question = self.questions.pop().replace("[[BLANK]]", "___") for member in self.members: if member != self.members[self.judge]: await member.addObj({ "action": "newQuestion", "question": self.question, "hand": member.hand, "judge": self.members[self.judge].name }) else: await member.addObj({ "action": "youAreTheJudge", "question": self.question }) def clearSelectedCards(self, answerData): for answer in answerData: if answer["answer"] in answer["member"].hand: answer["member"].hand.remove(answer["answer"]) async def startGame(self): await self.broadcastToAll({"action": "preparingGame"}) self.judge = randint(0, len(self.members) - 1) self.status = "ingame" self.setUpDecks(self.packs) await self.broadcastToAll({"action": "gameStart"}) while True: await self.sendOutNewQuestion() # gets all answer data as objects answerData = await self.getAllAnswers() # Begin judging answersToDisplay = [answer["answer"] for answer in answerData] shuffle(answersToDisplay) await self.broadcastToAllExcept(self.members[self.judge], { "action": "showAnswers", "answers": answersToDisplay, "question": self.question, "judge": self.members[self.judge].name }) await self.members[self.judge].addObj({ "action": "selectAnswer", "answers": answersToDisplay, "question": self.question }) judgeSelection = await self.getJudgeSelection() # Figure out who the judge picked pickedMember = self.members[0] for answer in answerData: if answer["answer"] == judgeSelection["answer"]: pickedMember = answer["member"] break # Send out selection data await self.broadcastToAll({"action": "judgeSelected", "answer": judgeSelection["answer"], "question": self.question, "submittedBy": pickedMember.name}) # Send out score data pickedMember.score += 1 await pickedMember.addObj({ "action": "updateScore", "score": pickedMember.score }) # Wait a bit await asyncio.sleep(5) # Get ready for next round self.clearSelectedCards(answerData) self.judge = (self.judge + 1) % len(self.members) ```
{ "source": "jleni/EPG", "score": 2 }
#### File: epg/envs/random_robots.py ```python import numpy as np from gym import Env from gym.envs.registration import EnvSpec from gym.wrappers.time_limit import TimeLimit from epg.envs.mujoco.hopper import RandomWeightHopperEnv, RandomWeightHopperDirEnv, NormalHopperEnv class RandomHopper(Env): def __init__(self, rand_mass=True, rand_gravity=True, rand_friction=True, rand_thickness=True, seed=None, **_): self.rand_mass = rand_mass self.rand_gravity = rand_gravity self.rand_friction = rand_friction self.rand_thickness = rand_thickness env = RandomWeightHopperEnv(rand_mass=self.rand_mass, rand_gravity=self.rand_gravity, rand_friction=self.rand_friction, rand_thickness=self.rand_thickness) self.observation_space = env.observation_space self.action_space = env.action_space self.reset_model = env.reset_model self.step = env.step def meta_reset(self, seed): np.random.seed(seed) env = RandomWeightHopperEnv(rand_mass=self.rand_mass, rand_gravity=self.rand_gravity, rand_friction=self.rand_friction, rand_thickness=self.rand_thickness) # Based on Hopper-v2 spec = EnvSpec( 'RandomWeightHopperEnv-v0', entry_point='generic_rl.envs.mujoco:RandomWeightHopperEnv', max_episode_steps=1000, reward_threshold=3800.0 ) env._spec = spec env.seed(seed) # Wrap the env as needed env = TimeLimit( env, max_episode_steps=spec.max_episode_steps, max_episode_seconds=spec.max_episode_seconds ) self.env = env # Fix for done flags. self.env.reset() self.step = env.step self.render = env.render self.reset = env.reset class NormalHopper(Env): def __init__(self, seed=None, **_): env = NormalHopperEnv() self.observation_space = env.observation_space self.action_space = env.action_space self.reset_model = env.reset_model self.step = env.step def meta_reset(self, seed): np.random.seed(seed) env = NormalHopperEnv() # Based on Hopper-v2 spec = EnvSpec( 'NormalHopperEnv-v0', entry_point='generic_rl.envs.mujoco:NormalHopperEnv', max_episode_steps=1000, reward_threshold=3800.0 ) env._spec = spec env.seed(seed) # Wrap the env as needed env = TimeLimit( env, max_episode_steps=spec.max_episode_steps, max_episode_seconds=spec.max_episode_seconds ) self.env = env # Fix for done flags. self.env.reset() self.step = env.step self.render = env.render self.reset = env.reset class DirHopper(Env): def __init__(self, seed=None, **__): env = RandomWeightHopperDirEnv() self.observation_space = env.observation_space self.action_space = env.action_space self.reset_model = env.reset_model self.step = env.step def meta_reset(self, seed): np.random.seed(seed) env = RandomWeightHopperDirEnv() # Based on Hopper-v2 spec = EnvSpec( 'DirHopperEnv-v0', entry_point='generic_rl.envs.mujoco:DirHopperEnv', max_episode_steps=1000, reward_threshold=3800.0 ) env._spec = spec env.seed(seed) # Wrap the env as needed env = TimeLimit( env, max_episode_steps=spec.max_episode_steps, max_episode_seconds=spec.max_episode_seconds ) self.env = env # Fix for done flags. self.env.reset() self.step = env.step self.render = env.render self.reset = env.reset ``` #### File: epg/launching/logger.py ```python import datetime import json import os import os.path as osp import sys import tempfile LOG_OUTPUT_FORMATS = ['log', 'stdout', 'csv', 'json'] # Also valid: json, tensorboard DEBUG = 10 INFO = 20 WARN = 30 ERROR = 40 DISABLED = 50 class KVWriter(object): def writekvs(self, kvs): raise NotImplementedError class SeqWriter(object): def writeseq(self, seq): raise NotImplementedError class HumanOutputFormat(KVWriter, SeqWriter): def __init__(self, filename_or_file): if isinstance(filename_or_file, str): self.file = open(filename_or_file, 'wt') self.own_file = True else: assert hasattr(filename_or_file, 'read'), 'expected file or str, got %s' % filename_or_file self.file = filename_or_file self.own_file = False def writekvs(self, kvs): # Create strings for printing key2str = {} for (key, val) in sorted(kvs.items()): if isinstance(val, float): valstr = '%-8.3g' % (val,) else: valstr = str(val) key2str[self._truncate(key)] = self._truncate(valstr) # Find max widths if len(key2str) == 0: print('WARNING: tried to write empty key-value dict') return else: keywidth = max(map(len, key2str.keys())) valwidth = max(map(len, key2str.values())) # Write out the data dashes = '-' * (keywidth + valwidth + 7) lines = [dashes] for (key, val) in sorted(key2str.items()): lines.append('| %s%s | %s%s |' % ( key, ' ' * (keywidth - len(key)), val, ' ' * (valwidth - len(val)), )) lines.append(dashes) self.file.write('\n'.join(lines) + '\n') # Flush the output to the file self.file.flush() def _truncate(self, s): return s[:20] + '...' if len(s) > 23 else s def writeseq(self, seq): for arg in seq: self.file.write(arg) self.file.write('\n') self.file.flush() def close(self): if self.own_file: self.file.close() class JSONOutputFormat(KVWriter): def __init__(self, filename): self.file = open(filename, 'wt') def writekvs(self, kvs): for k, v in sorted(kvs.items()): if hasattr(v, 'dtype'): v = v.tolist() kvs[k] = float(v) self.file.write(json.dumps(kvs) + '\n') self.file.flush() def close(self): self.file.close() class CSVOutputFormat(KVWriter): def __init__(self, filename): self.file = open(filename, 'w+t') self.keys = [] self.sep = ',' def writekvs(self, kvs): # Add our current row to the history extra_keys = kvs.keys() - self.keys if extra_keys: self.keys.extend(extra_keys) self.file.seek(0) lines = self.file.readlines() self.file.seek(0) for (i, k) in enumerate(self.keys): if i > 0: self.file.write(',') self.file.write(k) self.file.write('\n') for line in lines[1:]: self.file.write(line[:-1]) self.file.write(self.sep * len(extra_keys)) self.file.write('\n') for (i, k) in enumerate(self.keys): if i > 0: self.file.write(',') v = kvs.get(k) if v: self.file.write(str(v)) self.file.write('\n') self.file.flush() def close(self): self.file.close() def make_output_format(format, ev_dir): from mpi4py import MPI os.makedirs(ev_dir, exist_ok=True) rank = MPI.COMM_WORLD.Get_rank() if format == 'stdout': return HumanOutputFormat(sys.stdout) elif format == 'log': suffix = "" if rank == 0 else ("-mpi%03i" % rank) return HumanOutputFormat(osp.join(ev_dir, 'log%s.txt' % suffix)) elif format == 'json': assert rank == 0 return JSONOutputFormat(osp.join(ev_dir, 'progress.json')) elif format == 'csv': assert rank == 0 return CSVOutputFormat(osp.join(ev_dir, 'progress.csv')) else: raise ValueError('Unknown format specified: %s' % (format,)) # ================================================================ # API # ================================================================ def logkv(key, val): """ Log a value of some diagnostic Call this once for each diagnostic quantity, each iteration """ Logger.CURRENT.logkv(key, val) def logkvs(d): """ Log a dictionary of key-value pairs """ for (k, v) in d.items(): logkv(k, v) def dumpkvs(): """ Write all of the diagnostics from the current iteration level: int. (see logger.py docs) If the global logger level is higher than the level argument here, don't print to stdout. """ Logger.CURRENT.dumpkvs() def getkvs(): return Logger.CURRENT.name2val def log(*args, level=INFO): """ Write the sequence of args, with no separators, to the console and output files (if you've configured an output file). """ Logger.CURRENT.log(*args, level=level) def debug(*args): log(*args, level=DEBUG) def info(*args): log(*args, level=INFO) def warn(*args): log(*args, level=WARN) def error(*args): log(*args, level=ERROR) def set_level(level): """ Set logging threshold on current logger. """ Logger.CURRENT.set_level(level) def get_dir(): """ Get directory that log files are being written to. will be None if there is no output directory (i.e., if you didn't call start) """ return Logger.CURRENT.get_dir() record_tabular = logkv dump_tabular = dumpkvs # ================================================================ # Backend # ================================================================ class Logger(object): DEFAULT = None # A logger with no output files. (See right below class definition) # So that you can still log to the terminal without setting up any output files CURRENT = None # Current logger being used by the free functions above def __init__(self, dir, output_formats): self.name2val = {} # values this iteration self.level = INFO self.dir = dir self.output_formats = output_formats # Logging API, forwarded # ---------------------------------------- def logkv(self, key, val): self.name2val[key] = val def dumpkvs(self): if self.level == DISABLED: return for fmt in self.output_formats: if isinstance(fmt, KVWriter): fmt.writekvs(self.name2val) self.name2val.clear() def log(self, *args, level=INFO): if self.level <= level: self._do_log(args) # Configuration # ---------------------------------------- def set_level(self, level): self.level = level def get_dir(self): return self.dir def close(self): for fmt in self.output_formats: fmt.close() # Misc # ---------------------------------------- def _do_log(self, args): for fmt in self.output_formats: if isinstance(fmt, SeqWriter): fmt.writeseq(map(str, args)) Logger.DEFAULT = Logger.CURRENT = Logger(dir=None, output_formats=[HumanOutputFormat(sys.stdout)]) def configure(dir=None, format_strs=None): if dir is None: dir = osp.join(tempfile.gettempdir(), datetime.datetime.now().strftime("epg-%Y-%m-%d-%H-%M-%S-%f")) assert isinstance(dir, str) os.makedirs(dir, exist_ok=True) if format_strs is None: format_strs = LOG_OUTPUT_FORMATS output_formats = [make_output_format(f, dir) for f in format_strs] Logger.CURRENT = Logger(dir=dir, output_formats=output_formats) log('Logging to %s' % dir) def reset(): if Logger.CURRENT is not Logger.DEFAULT: Logger.CURRENT.close() Logger.CURRENT = Logger.DEFAULT log('Reset logger') class scoped_configure(object): def __init__(self, dir=None, format_strs=None): self.dir = dir self.format_strs = format_strs self.prevlogger = None def __enter__(self): self.prevlogger = Logger.CURRENT configure(dir=self.dir, format_strs=self.format_strs) def __exit__(self, *args): Logger.CURRENT.close() Logger.CURRENT = self.prevlogger ``` #### File: EPG/epg/plotting.py ```python import os import numpy as np from epg.launching import logger from epg.utils import ret_to_obj def plot_results(itr, results): import matplotlib.pyplot as plt def sliding_mean(data_array, window=5): data_array = np.array(data_array) new_list = [] for i in range(len(data_array)): indices = list(range(max(i - window + 1, 0), min(i + window + 1, len(data_array)))) avg = 0 for j in indices: avg += data_array[j] avg /= float(len(indices)) new_list.append(avg) return np.array(new_list) f, axarr = plt.subplots(2, len(results), figsize=(24, 6)) f.tight_layout() for idx, r in enumerate(results): smoothed_ret = sliding_mean(r['ep_return'], window=np.maximum(int(len(r['ep_return']) / 50), 1)) axarr[0, idx].plot(range(len(smoothed_ret)), smoothed_ret, linewidth=1.0, color='red') obj = ret_to_obj(r['ep_return']) axarr[0, idx].set_title('{:.3f}'.format(obj), y=0.8) axarr[1, idx].plot(range(len(r['ep_kl'])), r['ep_kl'], linewidth=1.0, color='blue') plt.show() save_path = os.path.join(logger.get_dir(), 'analysis') if not os.path.exists(save_path): os.makedirs(save_path) plt.savefig(os.path.join(save_path, 'epoch_{}.png'.format(itr))) plt.clf() plt.close() ``` #### File: EPG/epg/rollout.py ```python import time import numpy as np from epg import utils from epg.launching import logger def run_batch_rl(env, agent, inner_opt_freq, inner_max_n_epoch, inner_buffer_size, pool_rank, ppo_factor, epoch=None, render=False, verbose=False): from collections import deque assert isinstance(inner_opt_freq, int) assert isinstance(inner_max_n_epoch, int) assert isinstance(inner_buffer_size, int) lst_ep_rew, lst_loss, lst_ep_steps, lst_kl = [], [], [], [] buffer = deque(maxlen=inner_buffer_size) n_ep, ep_rew, ep_steps = 0, 0., 0 tot_update_time, start_env_time = 0., time.time() # Assumes meta wrapper used. if epoch is not None: env.meta_reset(epoch) env.seed(epoch) else: env.meta_reset(pool_rank + utils.get_time_seed()) env.seed(pool_rank + utils.get_time_seed()) obs = env.reset() n_steps = 0 for itr in range(inner_max_n_epoch): ep_obs = [] for _ in range(inner_opt_freq): obs = obs.astype(np.float32) act = agent.act(obs) obs_prime, rew, done, _ = env.step(agent.act_to_env_format(act)) ep_obs.append(obs) buffer.append((obs, act, rew, done)) ep_rew += rew ep_steps += 1 n_steps += 1 if done: obs = env.reset() lst_ep_rew.append(ep_rew) lst_ep_steps.append(ep_steps) if verbose and pool_rank == 0: logger.log('Train run (ep {}, return {:.3f})'.format(n_ep, ep_rew)) ep_steps, ep_rew = 0, 0. n_ep += 1 else: obs = obs_prime # This is disabled for now. But it's easy to add an exploration bonus as an additional # input the the loss function! # for rew_bonus_eval in agent.lst_rew_bonus_eval: # rew_bonus_eval.fit_before_process_samples(obs) start_update_time = time.time() loss_input = [np.array([e[i] for e in buffer], dtype=np.float32) for i in range(len(buffer[0]))] loss_input += [ppo_factor, inner_opt_freq] loss, kl = agent.update(*loss_input) lst_loss.append(loss) lst_kl.append(kl) tot_update_time += time.time() - start_update_time # Evaluate final policy obs, final_rew, ep_counter = env.reset(), [0., 0., 0.], 0 while ep_counter < 3: obs = obs.astype(np.float32) act = agent.act(obs) obs_prime, rew, done, _ = env.step(agent.act_to_env_format(act)) final_rew[ep_counter] += rew if done: obs = env.reset() ep_counter += 1 else: obs = obs_prime tot_env_time = time.time() - start_env_time - tot_update_time if render: logger.log('Rendering final policy for 5 steps ...') obs, ep_rew = env.reset(), 0. ep_counter = 0 while ep_counter < 5: obs = obs.astype(np.float32) act = agent.act(obs) obs_prime, rew, done, _ = env.step(agent.act_to_env_format(act)) env.render() ep_rew += rew if done: logger.log('Test run with final policy (return {:.3f}).'.format(ep_rew)) time.sleep(2) obs, ep_rew = env.reset(), 0. ep_counter += 1 else: obs = obs_prime return dict(ep_return=np.asarray(lst_ep_rew), ep_final_rew=np.asarray(final_rew), ep_loss=lst_loss, ep_length=lst_ep_steps, ep_kl=np.asarray(lst_kl), update_time=tot_update_time, env_time=tot_env_time) ```
{ "source": "jleni/ledger-ci-test", "score": 3 }
#### File: ledger-ci-test/tools/test.py ```python from __future__ import print_function import binascii from ledgerblue.comm import getDongle from ledgerblue.commException import CommException try: dongle = getDongle(True) except CommException as e: print(e) quit() def send(cmd, params=[]): try: cmd_str = "80{0:02x}".format(cmd) for p in params: cmd_str = cmd_str + "{0:02x}".format(p) return dongle.exchange(binascii.unhexlify(cmd_str)) except CommException as e: print("COMMEXC: ", e) except Exception as e: print("COMMEXC: ", e) send(1) ```
{ "source": "jleni/lola", "score": 3 }
#### File: lola/lola_dice/policy.py ```python import numpy as np import tensorflow as tf import sonnet as snt class Policy(object): """The base class for policy networks. Policy parameters are allowed to be functions of other policies. To keep track of such dependencies, each policy stores a list of parent policies on which it depends. To make an action or update a policy with a non-empty list of dependencies, we need to ensure that all parent placeholders are fed-in with appropriate values. """ def __init__(self, ob_size, num_actions, prev=None): self.ob_size = ob_size self.num_actions = num_actions self._root = self self._parents = tuple() if prev is not None: self._root = prev.root self._parents = prev.parents + (prev, ) self._params = [] self._opponents = None def build(self, scope, reuse=None): raise NotImplementedError @property def opponents(self): return self._opponents @opponents.setter def opponents(self, opponents): self._opponents = opponents @property def parameters(self): raise NotImplementedError @property def parents(self): return self._parents @property def root(self): return self._root def get_feed_list(self, trace): obs, acs, rets, values, infos = trace aa = np.asarray([info['available_actions'] for info in infos]) feed_list = [ (self.obs_ph, obs), (self.acs_ph, acs), (self.rets_ph, rets), (self.values_ph, values), (self.avail_acs_ph, aa) ] return feed_list def act(self, ob, info, sess, parent_feed_list=[]): aa = info['available_actions'] feed_list = [(self.obs_ph, [ob]), (self.avail_acs_ph, [aa])] + \ parent_feed_list ac = sess.run(self.action, feed_dict=dict(feed_list)) return ac def predict(self, ob, sess, parent_feed_list=[]): feed_list = [(self.obs_ph, [ob])] + parent_feed_list vpred = sess.run(self.vpred, feed_dict=dict(feed_list)) return vpred @property def parameters(self): return self._params class SimplePolicy(Policy): """A single layer network that maps states to action probabilities.""" def build(self, scope, reuse=None): self.scope = scope with tf.variable_scope(scope, reuse=reuse): # Placeholders self.acs_ph = tf.placeholder( shape=[None, None], dtype=tf.int32, name="acs") self.obs_ph = tf.placeholder( shape=[None, None, self.ob_size], dtype=tf.float32, name="obs") self.rets_ph = tf.placeholder( shape=[None, None], dtype=tf.float32, name="rets") self.avail_acs_ph = tf.placeholder( shape=[None, None, self.num_actions], dtype=tf.int32, name="avail_acs") self.values_ph = tf.placeholder( shape=[None, None], dtype=tf.float32, name="target_values") self.gamma_ph = tf.placeholder( shape=[1, 1], dtype=tf.float32, name="gamma_ph") self.discount = tf.cumprod( self.gamma_ph * tf.ones_like(self.rets_ph), axis=0, exclusive=True, name="discount") with tf.variable_scope("policy", reuse=reuse): pol_lin = snt.Linear(1, use_bias=False) logits = snt.BatchApply(pol_lin)(self.obs_ph) pol_params = [pol_lin.w] # logits, pol_params = Linear3D(1)(self.obs_ph) logits = tf.concat([logits, tf.zeros_like(logits)], -1) # Mask out unavailable actions # MA: Not sure how that affects the gradients. Maybe better for # the environment to mask out the actions? mask = -9999999 * tf.ones_like(logits) logits = tf.where( tf.equal(self.avail_acs_ph, 1), x=logits, y=mask) # Log probs and actions self.log_pi = tf.nn.log_softmax(logits) self.acs_onehot = tf.one_hot( self.acs_ph, self.num_actions, dtype=tf.float32) self.log_pi_acs = tf.reduce_sum( tf.multiply(self.log_pi, self.acs_onehot), axis=-1) self.log_pi_acs_cumsum = tf.cumsum(self.log_pi_acs, axis=0) self.action = tf.squeeze(tf.multinomial( tf.reshape(self.log_pi, shape=(-1, self.num_actions)), 1)) # Value with tf.variable_scope("value", reuse=reuse): val_lin = snt.Linear(1, use_bias=True) self.vpred = snt.BatchApply(val_lin)(self.obs_ph) self.vpred = tf.squeeze(self.vpred) val_params = [val_lin.w, val_lin.b] # Parameters self._params += pol_params + val_params class MLPPolicy(Policy): """A feed-forward network with one or multiple hidden layers.""" def __init__(self, ob_size, num_actions, hidden_sizes=[16], prev=None): super(MLPPolicy, self).__init__(ob_size, num_actions, prev=prev) self.hidden_sizes = hidden_sizes def build(self, scope, reuse=None): self.scope = scope with tf.variable_scope(scope, reuse=reuse): # Placeholders self.acs_ph = tf.placeholder( shape=[None, None], dtype=tf.int32) self.obs_ph = tf.placeholder( shape=[None, None, self.ob_size], dtype=tf.float32) self.rets_ph = tf.placeholder( shape=[None, None], dtype=tf.float32) self.avail_acs_ph = tf.placeholder( shape=[None, None, self.num_actions], dtype=tf.int32) self.values_ph = tf.placeholder( shape=[None, None], dtype=tf.float32, name="target_values") self.gamma_ph = tf.placeholder( shape=[1, 1], dtype=tf.float32, name="gamma_ph") self.discount = tf.cumprod( self.gamma_ph * tf.ones_like(self.rets_ph), axis=0, exclusive=True, name="discount") with tf.variable_scope("policy", reuse=reuse): # Hidden layers pol_params = [] last = self.obs_ph for i, units in enumerate(self.hidden_sizes): pol_lin = snt.Linear(units, name="h_%d" % i) last = snt.BatchApply(pol_lin)(last) last = tf.nn.relu(last) pol_params += [pol_lin.w, pol_lin.b] pol_lin = snt.Linear(self.num_actions) logits = snt.BatchApply(pol_lin)(last) pol_params += [pol_lin.w, pol_lin.b] # Mask out unavailable actions # MA: Not sure how that affects the gradients. Maybe better for # the environment to mask out the actions? mask = -9999999 * tf.ones_like(logits) logits = tf.where( tf.equal(self.avail_acs_ph, 1), x=logits, y=mask) # Log probs and actions self.log_pi = tf.nn.log_softmax(logits) self.acs_onehot = tf.one_hot( self.acs_ph, self.num_actions, dtype=tf.float32) self.log_pi_acs = tf.reduce_sum( tf.multiply(self.log_pi, self.acs_onehot), axis=-1) self.log_pi_acs_cumsum = tf.cumsum(self.log_pi_acs, axis=0) self.action = tf.squeeze(tf.multinomial( tf.reshape(self.log_pi, shape=(-1, self.num_actions)), 1)) # Value with tf.variable_scope("value", reuse=reuse): val_params = [] last = self.obs_ph for i, units in enumerate(self.hidden_sizes): val_lin = snt.Linear(units, name="h_%d" % i) last = snt.BatchApply(val_lin)(last) last = tf.nn.relu(last) val_params += [val_lin.w, val_lin.b] val_lin = snt.Linear(1) self.vpred = snt.BatchApply(val_lin)(last) self.vpred = tf.squeeze(self.vpred) val_params += [val_lin.w, val_lin.b] # Parameters self._params += pol_params + val_params class RecurrentPolicy(Policy): """A recurrent network with one or multiple hidden layers.""" def __init__(self, ob_size, num_actions, hidden_sizes=[16], prev=None): super(MLPPolicy, self).__init__(ob_size, num_actions, prev=prev) self.hidden_sizes = hidden_sizes def build(self, scope, reuse=None): self.scope = scope with tf.variable_scope(scope, reuse=reuse): # Placeholders self.acs_ph = tf.placeholder( shape=[None, None], dtype=tf.int32) self.obs_ph = tf.placeholder( shape=[None, None, self.ob_size], dtype=tf.float32) self.rets_ph = tf.placeholder( shape=[None, None], dtype=tf.float32) self.avail_acs_ph = tf.placeholder( shape=[None, None, self.num_actions], dtype=tf.int32) self.values_ph = tf.placeholder( shape=[None, None], dtype=tf.float32, name="target_values") self.gamma_ph = tf.placeholder( shape=[1, 1], dtype=tf.float32, name="gamma_ph") self.discount = tf.cumprod( self.gamma_ph * tf.ones_like(self.rets_ph), axis=0, exclusive=True, name="discount") with tf.variable_scope("policy", reuse=reuse): # Hidden layers pol_params = [] last = self.obs_ph for i, units in enumerate(self.hidden_sizes): pol_lin = snt.Linear(units, name="h_%d" % i) last = snt.BatchApply(pol_lin)(last) last = tf.nn.relu(last) pol_params += [pol_lin.w, pol_lin.b] pol_lin = snt.Linear(self.num_actions) logits = snt.BatchApply(pol_lin)(last) pol_params += [pol_lin.w, pol_lin.b] # Mask out unavailable actions # MA: Not sure how that affects the gradients. Maybe better for # the environment to mask out the actions? mask = -9999999 * tf.ones_like(logits) logits = tf.where( tf.equal(self.avail_acs_ph, 1), x=logits, y=mask) # Log probs and actions self.log_pi = tf.nn.log_softmax(logits) self.acs_onehot = tf.one_hot( self.acs_ph, self.num_actions, dtype=tf.float32) self.log_pi_acs = tf.reduce_sum( tf.multiply(self.log_pi, self.acs_onehot), axis=-1) self.log_pi_acs_cumsum = tf.cumsum(self.log_pi_acs, axis=0) self.action = tf.squeeze(tf.multinomial( tf.reshape(self.log_pi, shape=(-1, self.num_actions)), 1)) # Value with tf.variable_scope("value", reuse=reuse): val_params = [] last = self.obs_ph for i, units in enumerate(self.hidden_sizes): val_lin = snt.Linear(units, name="h_%d" % i) last = snt.BatchApply(val_lin)(last) last = tf.nn.relu(last) val_params += [val_lin.w, val_lin.b] val_lin = snt.Linear(1) self.vpred = snt.BatchApply(val_lin)(last) self.vpred = tf.squeeze(self.vpred) val_params += [val_lin.w, val_lin.b] # Parameters self._params += pol_params + val_params ``` #### File: lola/envs/matching_pennies.py ```python import gym import numpy as np from gym.spaces import Discrete, Tuple from .common import OneHot class IteratedMatchingPennies(gym.Env): """ A two-agent vectorized environment for the Matching Pennies game. """ NAME = 'IMP' NUM_AGENTS = 2 NUM_ACTIONS = 2 NUM_STATES = 5 def __init__(self, max_steps): self.max_steps = max_steps self.payout_mat = np.array([[1, -1],[-1, 1]]) self.action_space = \ Tuple([Discrete(self.NUM_ACTIONS), Discrete(self.NUM_ACTIONS)]) self.observation_space = \ Tuple([OneHot(self.NUM_STATES), OneHot(self.NUM_STATES)]) self.step_count = None def reset(self): self.step_count = 0 init_state = np.zeros(self.NUM_STATES) init_state[-1] = 1 observations = [init_state, init_state] return observations def step(self, action): ac0, ac1 = action self.step_count += 1 rewards = [self.payout_mat[ac1][ac0], -self.payout_mat[ac1][ac0]] state = np.zeros(self.NUM_STATES) state[ac0 * 2 + ac1] = 1 observations = [state, state] done = (self.step_count == self.max_steps) return observations, rewards, done ``` #### File: lola/envs/prisoners_dilemma.py ```python import gym import numpy as np from gym.spaces import Discrete, Tuple from .common import OneHot class IteratedPrisonersDilemma(gym.Env): """ A two-agent vectorized environment for the Prisoner's Dilemma game. Possible actions for each agent are (C)ooperate and (D)efect. """ NAME = 'IPD' NUM_AGENTS = 2 NUM_ACTIONS = 2 NUM_STATES = 5 def __init__(self, max_steps): self.max_steps = max_steps self.payout_mat = np.array([[-1., 0.], [-3., -2.]]) self.action_space = \ Tuple([Discrete(self.NUM_ACTIONS), Discrete(self.NUM_ACTIONS)]) self.observation_space = \ Tuple([OneHot(self.NUM_STATES), OneHot(self.NUM_STATES)]) self.step_count = None def reset(self): self.step_count = 0 init_state = np.zeros(self.NUM_STATES) init_state[-1] = 1 observations = [init_state, init_state] return observations def step(self, action): ac0, ac1 = action self.step_count += 1 rewards = [self.payout_mat[ac1][ac0], self.payout_mat[ac0][ac1]] state = np.zeros(self.NUM_STATES) state[ac0 * 2 + ac1] = 1 observations = [state, state] done = (self.step_count == self.max_steps) return observations, rewards, done ``` #### File: lola/scripts/run_lola_dice.py ```python import click import tensorflow as tf from lola_dice.envs import IPD from lola_dice.policy import SimplePolicy, MLPPolicy, RecurrentPolicy from lola_dice.rpg import train @click.command() @click.option("--use-dice/--no-dice", default=True, help="Whether to use the DiCE operator in the policy objective.") @click.option("--use-opp-modeling/--no-opp-modeling", default=False, help="Whether to use opponent modeling.") @click.option("--batch-size", default=64) @click.option("--epochs", default=200) @click.option("--runs", default=5) @click.option("--save-dir", default="results_ipd") def main(use_dice, use_opp_modeling, epochs, batch_size, runs, save_dir): n_agents = 2 env = IPD(max_steps=150, batch_size=batch_size) def make_simple_policy(ob_size, num_actions, prev=None, root=None): return SimplePolicy(ob_size, num_actions, prev=prev) def make_mlp_policy(ob_size, num_actions, prev=None): return MLPPolicy(ob_size, num_actions, hidden_sizes=[64], prev=prev) def make_sgd_optimizer(*, lr): return tf.train.GradientDescentOptimizer(learning_rate=lr) for r in range(runs): print("-" * 10, "Run: %d/%d" % (r + 1, runs), "-" * 10) train(env, make_simple_policy, make_sgd_optimizer, epochs=epochs, gamma=.96, lr_inner=.1, lr_outer=.2, lr_value=.1, lr_om=.1, inner_asymm=True, n_agents=n_agents, n_inner_steps=2, value_batch_size=16, value_epochs=0, om_batch_size=16, om_epochs=0, use_baseline=False, use_dice=use_dice, use_opp_modeling=use_opp_modeling, save_dir='%s/run-%d' % (save_dir, r + 1)) if __name__ == '__main__': main() ```
{ "source": "jleni/marLo", "score": 2 }
#### File: marLo/marlo/base_env_builder.py ```python import time import json import gym import numpy as np import marlo from marlo import MalmoPython import uuid import hashlib import base64 import xml.etree.ElementTree as ElementTree import traceback from jinja2 import Environment as jinja2Environment from jinja2 import FileSystemLoader as jinja2FileSystemLoader import logging logger = logging.getLogger(__name__) class dotdict(dict): """dot.notation access to dictionary attributes""" __getattr__ = dict.get __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ class TurnState(object): def __init__(self): self._turn_key = None self._has_played = False def update(self, key): self._has_played = False self._turn_key = key @property def can_play(self): return self._turn_key is not None and not self._has_played @property def key(self): return self._turn_key @property def has_played(self): return self._has_played @has_played.setter def has_played(self, value): self._has_played = bool(value) class MarloEnvBuilderBase(gym.Env): """Base class for all Marlo environment builders All the individual ``MarloEnvBuilder`` classes (for example: :class:`marlo.envs.DefaultWorld.main.MarloEnvBuilder`) derive from this class. This class provides all the necessary functions for the lifecycle management of a MarLo environment. """ metadata = {'render.modes': ['human', 'rgb_array']} def __init__(self, templates_folder): super(MarloEnvBuilderBase, self).__init__() self.templates_folder = templates_folder self.setup_templating() self._default_base_params = False self.agent_host = MalmoPython.AgentHost() self.mission_spec = None self.client_pool = None self.experiment_id = None self._turn = None def setup_templating(self): """ Sets up the basic ``jinja2`` templating fileloader and environments. The ``MarloEnvBuilder`` classes, expect the following variables to be available to them for rendering the ``MissionSpec`` - ``self.jinja2_fileloader`` - ``self.jinj2_env`` """ self.jinja2_fileloader = jinja2FileSystemLoader(self.templates_folder) self.jinj2_env = jinja2Environment(loader=self.jinja2_fileloader) def render_mission_spec(self): """ This function looks for a ``mission.xml`` template inside the ``templates`` folder, and renders it using ``jinja2``. This can very well be overriden by ``MarloEnvBuilder`` if required. """ template = self.jinj2_env.get_template("mission.xml") return template.render( params=self.params ) @property def white_listed_join_params(self): """ This returns a list of whitelisted game parameters which can be modified when joining a game by using :meth:`marlo.init`. """ return marlo.JOIN_WHITELISTED_PARAMS @property def default_base_params(self): """ The **default game parametes** for all MarLo environments. These can be modified by either overriding this class in :class:`marlo.envs.DefaultWorld.main.MarloEnvBuilder` or implementing a `_default_params` function in the derived class. The default parameters are as follows : :param seed: Seed for the random number generator (Default : ``random``). (**Note** This is not properly integrated yet.) :type seed: int :param tick_length: length of a single in-game tick (in milliseconds) (Default : ``50``) :type tick_length: int :param role: Game Role with which the current agent should join. (Default : ``0``) :type role: int :param experiment_id: A unique alphanumeric id for a single game. This is used to validate the session that an agent is joining. (Default : ``random_experiment_id``). :type experiment_id: str :param client_pool: A `list` of `tuples` representing the Minecraft client_pool the current agent can try to join. (Default : ``[('127.0.0.1', 10000)]``) :type client_pool: list :param agent_names: A `list` of names for the agents that are expected to join the game. This is used by the templating system to add an appropriate number of agents. (Default : ``["MarLo-Agent-0"]``) :type client_pool: list :param max_retries: Maximum Number of retries when trying to connect to a client_pool to start a mission. (Default : ``30``) :type max_retries: int :param retry_sleep: Time (in seconds) that the execution should sleep between retries for starting a mission. (Default: ``3``) :type retry_sleep: float :param step_sleep: Time (in seconds) to sleep when trying to obtain the latest world state. (Default: ``0.001``) :type step_sleep: float :param skip_steps: Number of observation steps to skip everytime we attempt to the latest world_state. (Default: ``0``) :type skip_steps: int :param videoResolution: Resolution of the frame that is expected as the RGB observation. (Default: ``[800, 600]``) :type videoResolution: list :param videoWithDepth: If the depth channel should also be added to the observation. (Default: ``False`` ) :type videoWithDepth: bool :param observeRecentCommands: If the Recent Commands should be included in the auxillary observation available through ``info['observation']``. (Default: ``False``) :type observeRecentCommands: bool :param observeHotBar: If the HotBar information should be included in the auxillary observation available through ``info['observation']``. (Default: ``False``) :type observeHotBar: bool :param observeFullInventory: If the FullInventory information should be included in the auxillary observation available through ``info['observation']``. (Default: ``False``) :type observeFullInventory: bool :param observeGrid: Asks for observations of the block types within a cuboid relative to the agent's position in the auxillary observation available through ``info['observation']``. (Default: ``False``) :type observeGrid: bool, list :param observeDistance: Asks for the Euclidean distance to a location to be included in the auxillary observation available through ``info['observation']``. (Default: ``False``) :type observeDistance: bool, list :param observeChat: If the Chat information should be included in the auxillary observation available through ``info['observation']``. (Default: ``False``) :type observeChat: bool :param continuous_to_discrete: Converts continuous actions to discrete. when allowed continuous actions are 'move' and 'turn', then discrete action space contains 4 actions: move -1, move 1, turn -1, turn 1. (Default : ``True``) :type continuous_to_discrete: bool :param allowContinuousMovement: If all continuous movement commands should be allowed. (Default : ``True``) :type allowContinuousMovement: bool :param allowDiscreteMovement: If all discrete movement commands should be allowed. (Default : ``True``) :type allowDiscreteMovement: bool :param allowAbsoluteMovement: If all absolute movement commands should be allowed. (Default : ``False``) (**Not Implemented**) :type allowAbsoluteMovement: bool :param add_noop_command: If a ``noop`` (``move 0\\nturn 0``) command should be added to the actions. (Default : ``True``) :type add_noop_command: bool :param recordDestination: Destination where Mission Records should be stored. (Default : ``None``) :type recordDestination: str :param recordObservations: If Observations should be recorded in the ``MissionRecord``s. (Default : ``None``) :type recordObservations: bool :param recordRewards: If Rewards should be recorded in the ``MissionRecord``s. (Default : ``None``) :type recordRewards: bool :param recordCommands: If Commands (actions) should be recorded in the ``MissionRecord``s. (Default : ``None``) :type recordCommands: bool :param recordMP4: If a MP4 should be recorded in the ``MissionRecord``, and if so, the specifications as : ``[frame_rate, bit_rate]``. (Default : ``None``) :type recordMP4: list :param gameMode: The Minecraft gameMode for this particular game. One of ``['spectator', 'creative', 'survival']``. (Default: ``survival``) :type gameMode: str :param forceWorldReset: Force world reset on every reset. Makes sense only in case of environments with inherent stochasticity (Default: ``False``) :type forceWorldReset: bool :param turn_based: Specifies if the current game is a turn based game. (Default : ``False``) :type turn_based: bool """ if not self._default_base_params: self._default_base_params = dotdict( seed="random", tick_length=50, role=0, experiment_id="random_experiment_id", client_pool = [('127.0.0.1', 10000)], agent_names = ["MarLo-Agent-0"], max_retries=30, retry_sleep=3, step_sleep=0.001, skip_steps=0, videoResolution=[800, 600], videoWithDepth=None, observeRecentCommands=None, observeHotBar=None, observeFullInventory=None, observeGrid=None, observeDistance=None, observeChat=None, continuous_to_discrete=True, allowContinuousMovement=True, allowDiscreteMovement=True, allowAbsoluteMovement=False, add_noop_command=True, recordDestination=None, recordObservations=None, recordRewards=None, recordCommands=None, recordMP4=None, gameMode="survival", forceWorldReset=False, turn_based=False, ) return self._default_base_params def setup_video(self, params): """ Setups up the Video Requests for an environment. :param params: Marlo Game Parameters as described in :meth:`default_base_params` :type params: dict """ ############################################################ # Setup Video ############################################################ if params.videoResolution: if params.videoWithDepth: self.mission_spec.requestVideoWithDepth( *params.videoResolution ) else: self.mission_spec.requestVideo(*params.videoResolution) def setup_observe_params(self, params): """ Setups up the Auxillary Observation Requests for an environment. :param params: Marlo Game Parameters as described in :meth:`default_base_params` :type params: dict """ ############################################################ # Setup observe<>* ############################################################ if params.observeRecentCommands: self.mission_spec.observeRecentCommands() if params.observeHotBar: self.mission_spec.observeHotBar() if params.observeFullInventory: self.mission_spec.observeFullInventory() if params.observeGrid: self.mission_spec.observeGrid(*(params.observeGrid + ["grid"])) if params.observeDistance: self.mission_spec.observeDistance( *(params.observeDistance + ["dist"]) ) if params.observeChat: self.mission_spec.observeChat() def setup_action_commands(self, params): """ Setups up the Action Commands for the current agent interacting with the environment. :param params: Marlo Game Parameters as described in :meth:`default_base_params` :type params: dict """ ############################################################ # Setup Action Commands ############################################################ if params.allowContinuousMovement or params.allowAbsoluteMovement or \ params.allowDiscreteMovement: # Remove all command handlers self.mission_spec.removeAllCommandHandlers() # ContinousMovement commands if isinstance(params.allowContinuousMovement, list): for _command in params.allowContinuousMovement: self.mission_spec.allowContinuousMovementCommand(_command) elif params.allowContinuousMovement is True: self.mission_spec.allowAllContinuousMovementCommands() # AbsoluteMovement commands if isinstance(params.allowAbsoluteMovement, list): for _command in params.allowAbsoluteMovement: self.mission_spec.allowAbsoluteMovementCommand(_command) elif params.allowAbsoluteMovement is True: self.mission_spec.allowAllAbsoluteMovementCommands() # DiscreteMovement commands if isinstance(params.allowDiscreteMovement, list): for _command in params.allowDiscreteMovement: self.mission_spec.allowDiscreteMovementCommand(_command) elif params.allowDiscreteMovement is True: self.mission_spec.allowAllDiscreteMovementCommands() def setup_observation_space(self, params): """ Setups up the Observation Space for an environment. :param params: Marlo Game Parameters as described in :meth:`default_base_params` :type params: dict """ ############################################################ # Setup Observation Space ############################################################ self.video_height = self.mission_spec.getVideoHeight(0) self.video_width = self.mission_spec.getVideoWidth(0) self.video_depth = self.mission_spec.getVideoChannels(0) self.observation_space = gym.spaces.Box( low=0, high=255, shape=(self.video_height, self.video_width, self.video_depth), dtype=np.uint8 ) # Setup a dummy first image self.last_image = np.zeros( (self.video_height, self.video_width, self.video_depth), dtype=np.uint8 ) def setup_action_space(self, params): """ Setups up the action space for the current agent interacting with the environment. :param params: Marlo Game Parameters as described in :meth:`default_base_params` :type params: dict """ ############################################################ # Setup Action Space ############################################################ continuous_actions = [] discrete_actions = [] multidiscrete_actions = [] multidiscrete_action_ranges = [] if params.add_noop_command: discrete_actions.append("move 0\nturn 0") command_handlers = self.mission_spec.getListOfCommandHandlers(0) for command_handler in command_handlers: commands = self.mission_spec.getAllowedCommands(0, command_handler) for command in commands: logger.debug("Command : {}".format(command)) if command_handler == "ContinuousMovement": if command in ["move", "strafe", "pitch", "turn"]: if params.continuous_to_discrete: discrete_actions.append(command + " 1") discrete_actions.append(command + " -1") else: continuous_actions.append(command) elif command in ["crouch", "jump", "attack", "use"]: if params.continuous_to_discrete: discrete_actions.append(command + " 1") discrete_actions.append(command + " 0") else: multidiscrete_actions.append(command) multidiscrete_action_ranges.append([0, 1]) else: raise ValueError( "Unknown continuois action : {}".format(command) ) elif command_handler == "DiscreteMovement": if command in marlo.SINGLE_DIRECTION_DISCRETE_MOVEMENTS: discrete_actions.append(command + " 1") elif command in marlo.MULTIPLE_DIRECTION_DISCRETE_MOVEMENTS: discrete_actions.append(command + " 1") discrete_actions.append(command + " -1") else: raise ValueError( "Unknown discrete action : {}".format(command) ) elif command_handler in ["AbsoluteMovement", "Inventory"]: logger.warn( "Command Handler `{}` Not Implemented".format( command_handler ) ) else: raise ValueError( "Unknown Command Handler : `{}`".format( command_handler ) ) # Convert lists into proper gym action spaces self.action_names = [] self.action_spaces = [] # Discrete Actions if len(discrete_actions) > 0: self.action_spaces.append( gym.spaces.Discrete(len(discrete_actions)) ) self.action_names.append(discrete_actions) # Continuous Actions if len(continuous_actions) > 0: self.action_spaces.append( gym.spaces.Box(-1, 1, (len(continuous_actions),)) ) self.action_names.append(continuous_actions) if len(multidiscrete_actions) > 0: self.action_spaces.append( gym.spaces.MultiDiscrete(multidiscrete_action_ranges) ) self.action_names.append(multidiscrete_actions) # No tuples in case a single action if len(self.action_spaces) == 1: self.action_space = self.action_spaces[0] else: self.action_space = gym.spaces.Tuple(self.action_space) def setup_client_pool(self, params): """ Setups up the ``client_pool`` for the current environment. :param params: Marlo Game Parameters as described in :meth:`default_base_params` :type params: dict """ ############################################################ # Setup Client Pool ############################################################ if not params.client_pool: logger.warn("No client pool provided, attempting to create " "a client_pool of the correct size") number_of_agents = self.mission_spec.getNumberOfAgents() params.client_pool = marlo.launch_clients(number_of_agents) self.client_pool = MalmoPython.ClientPool() for _client in params.client_pool: self.client_pool.add(MalmoPython.ClientInfo(*_client)) if not isinstance(params.client_pool, list): raise ValueError("params.client_pool must be a list of tuples" "of (ip_address, port)") def setup_mission_record(self, params): """ Setups up the ``mission_record`` for the current environment. :param params: Marlo Game Parameters as described in :meth:`default_base_params` :type params: dict """ ############################################################ # Setup Mission Record ############################################################ self.mission_record_spec = MalmoPython.MissionRecordSpec() # empty if params.recordDestination: self.mission_record_spec.setDestination(params.recordDestination) if params.recordRewards: self.mission_record_spec.recordRewards() if params.recordCommands: self.mission_record_spec.recordCommands() if params.recordMP4: assert type(params.recordMP4) == list \ and len(params.recordMP4) == 2 self.mission_record_spec.recordMP4(*(params.recordMP4)) else: if params.recordRewards or params.recordCommands or params.recordMP4: raise Exception("recordRewards or recordCommands or recordMP4 " "provided without specifyin recordDestination") def setup_game_mode(self, params): """ Setups up the ``gameMode`` for the current environment. :param params: Marlo Game Parameters as described in :meth:`default_base_params` :type params: dict """ ############################################################ # Setup Game Mode ############################################################ if params.gameMode: if params.gameMode == "spectator": self.mission_spec.setModeToSpectator() elif params.gameMode == "creative": self.mission_spec.setModeToCreative() elif params.gameMode == "survival": logger.info("params.gameMode : Cannot force survival mode.") else: raise Exception("Unknown params.gameMode : {}".format( params.gameMode )) def setup_mission_spec(self, params): """ Generates and setups the first MissionSpec as generated by :meth:`render_mission_spec`. :param params: Marlo Game Parameters as described in :meth:`default_base_params` :type params: dict """ ############################################################ # Instantiate Mission Spec ############################################################ mission_xml = self.render_mission_spec() self.mission_spec = MalmoPython.MissionSpec(mission_xml, True) def setup_turn_based_games(self, params): """ Setups up a ``turn_based`` game. :param params: Marlo Game Parameters as described in :meth:`default_base_params` :type params: dict """ if params.turn_based: self._turn = TurnState() def init(self, params, dry_run=False): """ Generates the join tokens for all the agents in a game based on the provided game params. :param params: Marlo Game Parameters as described in :meth:`default_base_params` :type params: dict :param dry_run: If the current execution is a ``dry_run`` :type dry_run: bool :returns: List of join_tokens, one join_token for every agent in the game. :rtype: list """ self.params.update(params) self.dry_run = dry_run self.build_env(self.params) number_of_agents = self.mission_spec.getNumberOfAgents() mission_xml = self.mission_spec.getAsXML(False) join_tokens = [] experiment_id = str(uuid.uuid4()) for _idx in range(number_of_agents): _join_token = {} _join_token["role"] = _idx _join_token["mission_xml"] = mission_xml _join_token["experiment_id"] = experiment_id _join_token["game_params"] = self.params _join_token = base64.b64encode( json.dumps(_join_token).encode('utf8') ) join_tokens.append(_join_token) return join_tokens def build_env(self, params): self.setup_mission_spec(params) self.setup_turn_based_games(params) self.setup_video(params) self.setup_observe_params(params) self.setup_action_commands(params) self.setup_observation_space(params) self.setup_action_space(params) self.setup_client_pool(params) self.setup_mission_record(params) self.setup_game_mode(params) ######################################################################## # Env interaction functions ######################################################################## def reset(self): if self.params.forceWorldReset: # Force a World Reset on each reset self.mission_spec.forceWorldReset() # Attempt to start a mission for retry in range(self.params.max_retries + 1): logger.debug("RETRY : {}".format(retry)) # Role 0 (the server) could take some extra time to start if self.params.role != 0: time.sleep(1) else: time.sleep(0.1) if self.params.experiment_id: self.experiment_id = self.params.experiment_id try: if not self.client_pool: raise Exception("client_pool not specified.") self.agent_host.startMission( self.mission_spec, self.client_pool, self.mission_record_spec, self.params.role, self.experiment_id ) break #Break out of the try-to-connect loop except RuntimeError as e: traceback.format_exc() if retry == self.params.max_retries: logger.error("Error Starting Mission : {}".format( traceback.format_exc() )) raise e else: logger.warn("Error on attempting to start mission : {}" .format(str(e))) logger.warn("Will attempt again after {} seconds." .format(self.params.retry_sleep)) time.sleep(self.params.retry_sleep) logger.info("Waiting for mission to start...") world_state = self.agent_host.getWorldState() while not world_state.has_mission_begun: time.sleep(0.1) world_state = self.agent_host.getWorldState() for error in world_state.errors: logger.error("Error", error) logger.warn(error.text) logger.info("Mission Running") frame = self._get_video_frame(world_state) return frame def _get_world_state(self): # patiently wait till we get the next observation while True: time.sleep(self.params.step_sleep) world_state = self.agent_host.peekWorldState() if world_state.number_of_observations_since_last_state > \ self.params.skip_steps or not world_state.is_mission_running: break return self.agent_host.getWorldState() def _get_video_frame(self, world_state): if world_state.number_of_video_frames_since_last_state > 0: assert len(world_state.video_frames) == 1 frame = world_state.video_frames[0] image = np.frombuffer(frame.pixels, dtype=np.uint8) image = image.reshape((frame.height, frame.width, frame.channels)) print("Frame Receieved : ".format(image.shape)) self.last_image = image else: # can happen only when mission ends before we get frame # then just use the last frame, it doesn't matter much anyway image = self.last_image return image def _get_observation(self, world_state): if world_state.number_of_observations_since_last_state > 0: missed = world_state.number_of_observations_since_last_state \ - len(world_state.observations) - self.params.skip_steps if missed > 0: logger.warn("Agent missed %d observation(s).", missed) assert len(world_state.observations) == 1 return json.loads(world_state.observations[0].text) else: return None def _send_command(self, command): if self._turn: self.agent_host.sendCommand(command, self._turn.key) self._turn.has_payed = True else: logger.debug("Send Command : {}".format(command)) self.agent_host.sendCommand(command) def _take_action(self, actions): # no tuple in case of a single action if len(self.action_spaces) == 1: actions = [actions] if self._turn: if not self._turn.can_play: return # send corresponding command for _spaces, _commands, _actions in \ zip(self.action_spaces, self.action_names, actions): if isinstance(_spaces, gym.spaces.Discrete): logger.debug(_commands[_actions]) # print("cmd " + cmds[acts]) self._send_command(_commands[_actions]) elif isinstance(_spaces, gym.spaces.Box): for command, value in zip(_commands, _actions): _command = "{}-{}".format(command, value) logger.debug(_command) self._send_command(_command) elif isinstance(_spaces, gym.spaces.MultiDiscrete): for command, value in zip(_commands, _actions): _command = "{}-{}".format(command, value) logger.debug(_command) self._send_command(_command) else: logger.warn("Ignoring unknown action space for {}".format( _commands )) def step(self, action): world_state = self.agent_host.peekWorldState() if world_state.is_mission_running: self._take_action(action) world_state = self._get_world_state() # Update turn state if world_state.number_of_observations_since_last_state > 0: data = json.loads(world_state.observations[-1].text) turn_key = data.get(u'turn_key', None) if turn_key is not None and turn_key != self._turn.key: self._turn.update(turn_key) # Log for error in world_state.errors: logger.warn(error.text) for message in world_state.mission_control_messages: logger.debug(message.text) root = ElementTree.fromstring(message.text) if root.tag == '{http://ProjectMalmo.microsoft.com}MissionEnded': for el in root.findall( '{http://ProjectMalmo.microsoft.com}HumanReadableStatus' # noqa: E501 ): logger.info("Mission ended: %s", el.text) # Compute Rewards reward = 0 for _reward in world_state.rewards: print(_reward) reward += _reward.getValue() # Get observation image = self._get_video_frame(world_state) # detect if done ? done = not world_state.is_mission_running # gather info info = {} info['has_mission_begun'] = world_state.has_mission_begun info['is_mission_running'] = world_state.is_mission_running info['number_of_video_frames_since_last_state'] = world_state.number_of_video_frames_since_last_state # noqa: E501 info['number_of_rewards_since_last_state'] = world_state.number_of_rewards_since_last_state # noqa: E501 info['number_of_observations_since_last_state'] = world_state.number_of_observations_since_last_state # noqa: E501 info['mission_control_messages'] = [msg.text for msg in world_state.mission_control_messages] # noqa: E501 info['observation'] = self._get_observation(world_state) return image, reward, done, info def render(self, mode='rgb_array', close=False): if mode == "rgb_array": return self.last_image elif mode == "human": # TODO: Implement this raise None else: raise NotImplemented("Render Mode not implemented : {}" .format(mode)) def seed(self, seed=None): self.mission_spec.setWorldSeed(str(seed)) return [seed] ```
{ "source": "jleni/pyscaffold", "score": 2 }
#### File: pyscaffold/extensions/tox.py ```python from __future__ import absolute_import from ..templates import tox as tox_ini from ..api import Extension from ..api import helpers class Tox(Extension): """Generate Tox configuration file""" def activate(self, actions): """Activate extension Args: actions (list): list of actions to perform Returns: list: updated list of actions """ return self.register( actions, self.add_files, after='define_structure') def add_files(self, struct, opts): """Add .tox.ini file to structure Args: struct (dict): project representation as (possibly) nested :obj:`dict`. opts (dict): given options, see :obj:`create_project` for an extensive list. Returns: struct, opts: updated project representation and options """ files = { 'tox.ini': (tox_ini(opts), helpers.NO_OVERWRITE) } return helpers.merge(struct, {opts['project']: files}), opts ``` #### File: src/pyscaffold/info.py ```python from __future__ import absolute_import, print_function import copy import getpass import os import socket from .contrib.six.moves import configparser from .contrib.six import raise_from from . import shell, utils from .exceptions import ( ShellCommandException, GitNotInstalled, GitNotConfigured, PyScaffoldTooOld, NoPyScaffoldProject) def username(): """Retrieve the user's name Returns: str: user's name """ try: user = next(shell.git("config", "--get", "user.name")) user = user.strip() except ShellCommandException: user = getpass.getuser() return utils.utf8_decode(user) def email(): """Retrieve the user's email Returns: str: user's email """ try: email = next(shell.git("config", "--get", "user.email")) email = email.strip() except ShellCommandException: user = getpass.getuser() host = socket.gethostname() email = "{user}@{host}".format(user=user, host=host) return utils.utf8_decode(email) def is_git_installed(): """Check if git is installed Returns: bool: True if git is installed, False otherwise """ if shell.git is None: return False try: shell.git("--version") except ShellCommandException: return False return True def is_git_configured(): """Check if user.name and user.email is set globally in git This will also return false if git is not available at all. Returns: bool: True if it is set globally, False otherwise """ try: for attr in ["name", "email"]: shell.git("config", "--get", "user.{}".format(attr)) except ShellCommandException: return False return True def check_git(): """Checks for git and raises appropriate exception if not Raises: :class:`~.GitNotInstalled`: when git command is not available :class:`~.GitNotConfigured`: when git does not know user information """ if not is_git_installed(): raise GitNotInstalled if not is_git_configured(): raise GitNotConfigured def project(opts): """Update user options with the options of an existing PyScaffold project Params: opts (dict): options of the project Returns: dict: options with updated values Raises: :class:`~.PyScaffoldTooOld`: when PyScaffold is to old to update from :class:`~.NoPyScaffoldProject`: when project was not generated with PyScaffold """ from pkg_resources import iter_entry_points opts = copy.deepcopy(opts) try: cfg = configparser.ConfigParser() cfg.read(os.path.join(opts['project'], 'setup.cfg')) if not cfg.has_section('pyscaffold'): raise PyScaffoldTooOld pyscaffold = cfg['pyscaffold'] metadata = cfg['metadata'] # This would be needed in case of inplace updates, see issue #138 # if opts['project'] == '.': # opts['project'] = metadata['name'] # Overwrite only if user has not provided corresponding cli argument opts.setdefault('package', pyscaffold['package']) opts.setdefault('author', metadata['author']) opts.setdefault('email', metadata['author-email']) opts.setdefault('url', metadata['url']) opts.setdefault('description', metadata['description']) opts.setdefault('license', utils.best_fit_license(metadata['license'])) # Additional parameters compare with `get_default_options` opts['classifiers'] = metadata['classifiers'].strip().split('\n') opts['version'] = pyscaffold['version'] # complement the cli extensions with the ones from configuration if 'extensions' in pyscaffold: cfg_extensions = pyscaffold['extensions'].strip().split('\n') opt_extensions = [ext.name for ext in opts['extensions']] add_extensions = set(cfg_extensions) - set(opt_extensions) for extension in iter_entry_points('pyscaffold.cli'): if extension.name in add_extensions: extension_obj = extension.load()(extension.name) if extension.name in pyscaffold: ext_value = pyscaffold[extension.name] extension_obj.args = ext_value opts[extension.name] = ext_value opts['extensions'].append(extension_obj) except Exception as e: raise raise_from(NoPyScaffoldProject, e) return opts ``` #### File: src/pyscaffold/termui.py ```python from __future__ import absolute_import import sys ESCAPE = '\033[{:d}m' STYLES = dict( clear=0, bold=1, black=30, red=31, green=32, yellow=33, blue=34, magenta=35, cyan=36, white=37, on_black=40, on_red=41, on_green=42, on_yellow=43, on_blue=44, on_magenta=45, on_cyan=46, on_white=47 ) def isatty(stream=None): """Detect if the given stream/stdout is part of an interactive terminal. Args: stream: optionally the stream to check Returns: bool: result of check """ stream = stream or sys.stdout if hasattr(stream, 'isatty'): return stream.isatty() return False def init_colorama(): """Initialize colorama if it is available. Returns: bool: result of check """ try: import colorama # noqa colorama.init() return True except ImportError: return False def curses_available(): """Check if the curses package from stdlib is available. Usually not available for windows, but its presence indicates that the terminal is capable of displaying some UI. Returns: bool: result of check """ try: import curses # noqa return True except ImportError: return False SYSTEM_SUPPORTS_COLOR = curses_available() or init_colorama() # Eagerly executed, in order to avoid calling colorama.init multiple times def supports_color(stream=None): """Check if the stream is supposed to handle coloring. Returns: bool: result of check """ return isatty(stream) and SYSTEM_SUPPORTS_COLOR def decorate(msg, *styles): """Use ANSI codes to format the message. Args: msg (str): string to be formatted *styles (list): the remaining arguments should be strings that represent the 8 basic ANSI colors. ``clear`` and ``bold`` are also supported. For background colors use ``on_<color>``. Returns: str: styled and formatted message """ if not styles: return msg styles = ''.join(ESCAPE.format(STYLES[s]) for s in styles if s in STYLES) return styles + msg + ESCAPE.format(STYLES['clear']) ```
{ "source": "jlenn/movie-web-app", "score": 2 }
#### File: app/movies/views.py ```python from django.shortcuts import render, redirect from django.contrib import messages from airtable import Airtable import os AT = Airtable(os.environ.get('AIRTABLE_MOVIESTABLE_BASE_ID'), 'Movies', api_key=os.environ.get('AIRTABLE_API_KEY')) # Create your views here. def home_page(request): user_query = str(request.GET.get('query', '')) search_result = AT.get_all(formula="FIND('" + user_query.lower() + "', LOWER({Name}))") stuff_for_frontend = {'search_result': search_result} return render(request, 'movies/movies_stuff.html', stuff_for_frontend) def create(request): if request.method == 'POST': data = { 'Name': request.POST.get('name'), 'Pictures': [{'url': request.POST.get('url') or 'https://www.classicposters.com/images/nopicture.gif'}], 'Rating': int(request.POST.get('rating')), 'Notes': request.POST.get('notes') } try: response = AT.insert(data) messages.success(request, 'New movie added: {}'.format(response['fields'].get('Name'))) except Exception as e: messages.warning(request, 'Got an error when trying to add a movie: {}'.format(e)) return redirect('/') def edit(request, movie_id): if request.method == 'POST': data= { 'Name': request.POST.get('name'), 'Pictures': [{'url': request.POST.get('url') or 'https://www.classicposters.com/images/nopicture.gif'}], 'Rating': int(request.POST.get('rating')), 'Notes': request.POST.get('notes'), } try: response = AT.update(movie_id, data) messages.success(request, 'Updated movie: {}'.format(response['fields'].get('Name'))) except Exception as e: messages.warning(request, 'Got an error when trying to update a movie: {}'.format(e)) return redirect('/') def delete(request, movie_id): try: movie_name = AT.get(movie_id)['fields'].get('Name') AT.delete(movie_id) messages.warning(request, 'Movie deleted: {}'.format(movie_name)) except Exception as e: messages.warning(request, 'Got an error when trying to delete a movie: {}'.format(e)) return redirect('/') ```
{ "source": "jlennox/PicoPi", "score": 3 }
#### File: PicoPi/simon/simon.py ```python import machine import utime import random import _thread import sh1106 import micropython # Since there's multiple things that are logically grouped together, lets logically group them together. class SimonIO: def __init__(self, name, ledPin, buttonPin, buzzerFreq): self.name = name self.led = machine.Pin(ledPin, machine.Pin.OUT) self.button = machine.Pin(buttonPin, machine.Pin.IN, machine.Pin.PULL_DOWN) self.buzzerFreq = buzzerFreq def buzz(self, enable): if enable: buzzer.duty_u16(1000) buzzer.freq(self.buzzerFreq) else: buzzer.duty_u16(0) def show(self, timeout): self.led.on() self.buzz(True) utime.sleep(timeout) self.led.off() self.buzz(False) # Configure our program so it knows what pins go where. # All pin #'s are in the same place of the code to keep it centralized/organized. pins = [ SimonIO("Green", 16, 17, 262), # 262 = freq for C4 note. These notes are from the C major scale. SimonIO("Red", 18, 19, 294), # D4 SimonIO("Yellow", 20, 21, 330), # E4 SimonIO("Blue", 26, 27, 349), # F4 ] # Each one of these that's set to positive voltage will increase the difficulty. difficultyPins = [ machine.Pin(0, machine.Pin.IN, machine.Pin.PULL_DOWN), machine.Pin(1, machine.Pin.IN, machine.Pin.PULL_DOWN), ] buzzer = machine.PWM(machine.Pin(28)) displayi2c = machine.I2C(1, sda=machine.Pin(2), scl=machine.Pin(3), freq=800000) # The display connects over I2C. The display has a command based language implemented # on it's display controller chip (SH1106). Thankfully someone already wrote a MicrPython # driver for it. # https://github.com/robert-hh/SH1106 displayWidth = micropython.const(128) displayHeight = micropython.const(64) display = sh1106.SH1106_I2C(displayWidth, displayHeight, displayi2c, None, 60) display.init_display() display.contrast(255) display.rotate(True) display.invert(True) display.poweron() # Displays 2 rows of text centered on the screen. def displayScore(label, wut): # Blank out the old pixels display.fill(0) # Each character is 8 pixels wide. Since we want half that (we're centering) # then we * 4 instead of * 8. display.text(label, int(displayWidth / 2) - len(label) * 4, 30 - 6, 1) # We're prone to giving numbers, so lets be sure it's a string. wut = str(wut) display.text(wut, int(displayWidth / 2) - len(wut) * 4, 30 + 6, 1) display.show() # Lets load the highscore. highScore = int(0) try: with open("highscore.txt", "r") as highScoreFile: highScoreStr = highScoreFile.read() highScore = int("0" if highScoreStr == "" or highScoreStr is None else highScoreStr) except: pass print("Found highscore: " + str(highScore)) # There's no escape! while True: # Reset game to initial state. print("Reset.") for pin in pins: pin.led.off() buzzer.duty_u16(0) currentGame = [] currentScore = 0 # Run a sort of attract mode and show highscore. displayScore("Highscore", highScore) print("Running attract.") for _ in range(2): for pin in pins: pin.led.on() pin.buzz(True) utime.sleep(.1) for pin in reversed(pins): pin.led.off() pin.buzz(False) utime.sleep(.1) for _ in range(4): for pin in pins: pin.led.toggle() utime.sleep(.1) lost = False # Each pin that's set reduces the amount of time throughout the program. difficulty = 1.0 for difficultyPin in difficultyPins: difficulty -= .4 if difficultyPin.value() == 1 else 0 # A base of 5 seconds. inputTime = 5.0 * difficulty print("Difficulty %f (inputTime: %f" % (difficulty, inputTime)) while not lost: # Show their current score as they play displayScore("Score", currentScore) # Add a new entry. newPin = random.choice(pins) currentGame.append(newPin) print("Adding new entry %s." % newPin.name) # Replay the existing sequence for entry in currentGame: entry.show(.5 * difficulty) utime.sleep(.2 * difficulty) # Now they've got to enter that same sequence. for entry in currentGame: inputPin = None # Loop until they enter something or inputTime elapses. start = utime.time() while inputPin is None and utime.time() - start < inputTime: # Loop through the pins... for pin in pins: # ...and check each ones button to see if it's pushed. if pin.button.value() == 1: print("Button %s was pushed..." % pin.name) # Give the real human player feedback that the button was pushed. pin.buzz(True) pin.led.on() inputPin = pin # Loop until they release the button. while pin.button.value() == 1: pass pin.buzz(False) pin.led.off() print("...and released.") # Sleep for a small amount of time. After testing, sometimes the button # would register again. utime.sleep(.2) # Don't loop through the rest of the pins because we got a hit already. break utime.sleep(.01) # They got it wrong! Or inputTime elapsed. if inputPin is not entry: print("They lost! Actual answer was %s." % entry.name) # Blink the correct one in their stupid face. entry.buzz(True) for _ in range(12): entry.led.toggle(); utime.sleep(.1) entry.buzz(False) # Start a new game, brings us back to the outer while loop. lost = True break # Add a bit of a delay so it doesn't jump right into the replay when they release the button utime.sleep(1) currentScore += 1 if currentScore > highScore: print("New highscore! " + str(currentScore)) highScore = currentScore with open("highscore.txt", "w") as highScoreFile: highScoreFile.write(str(highScore)) ```
{ "source": "JLenssen/AttestationEngine", "score": 2 }
#### File: asvr/db/mqtt.py ```python import paho.mqtt.client as mqtt import a10.structures.identity import a10.asvr.db.configuration import threading import time def on_disconnect(client, userdata, rc): logging.info("disconnecting reason " + str(rc)) client.connected_flag = False client.disconnect_flag = True def on_connect(client, metadata, flags, rc): print("Connected mqtt: {}".format(rc)) def on_disconnect(client, metadata, flags, rc): print("MQTT Disconnected") try: client.reconnect() except: print("Connection is fscked") def publish(ch, t, op, data): payload = str({"t": t, "op": op, "data": data}) mqttc.publish(ch, payload) def sendKeepAlive(): print( "Starting keepalive ping with rate ", a10.asvr.db.configuration.MQTTKEEPALIVEPING, ) while True: print("ping!") publish( "AS/MQTTPING", "ping", "ping", {"session": a10.asvr.db.configuration.ASSESSIONIDENTITY}, ) time.sleep(int(a10.asvr.db.configuration.MQTTKEEPALIVEPING)) print(a10.asvr.db.configuration.MQTTADDRESS) # # This is a bit nasty, but if two clients have the same name then the earlier one # will be kicked off by the MQTT broker - at least in mosquitto # So we will add the AS_Session_Identity and a UUID # id = ( a10.asvr.db.configuration.MQTTCLIENTNAME + "_" + a10.asvr.db.configuration.ASSESSIONIDENTITY + "_" + a10.structures.identity.generateID() ) print("mqtt client id is ", id) mqttc = mqtt.Client(id) mqttc.on_connect = on_connect mqttc.connect(a10.asvr.db.configuration.MQTTADDRESS, port=a10.asvr.db.configuration.MQTTPORT) # KEEP ALIVE PING print("Starting keep alive thead") keepalivethread = threading.Thread(target=sendKeepAlive) print("Keep alive thread ID is ", keepalivethread) keepalivethread.start() ``` #### File: asvr/protocols/A10HttpRest.py ```python import json import requests import subprocess import tempfile import secrets import string import base64 import a10.asvr.protocols.A10ProtocolBase import a10.structures.constants import a10.structures.returncode class A10HttpRest(a10.asvr.protocols.A10ProtocolBase.A10ProtocolBase): NAME = "A10HTTPREST" def __init__(self, endpoint, policyintent, policyparameters, callparameters): super().__init__(endpoint, policyintent, policyparameters, callparameters) def exec(self): print("1¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤") # see the makecredential example for how to use this. # basically to store data that shouldn't be transmitted to the element # but needs to be persisted, eg: makecredetial's secret transientdata = {} # print( # "Calling protocol A10HTTPREST ", # self.endpoint, # self.policyintent, # self.policyparameters, # self.callparameters, # ) # print( # " + ---------------Types ", # type(self.endpoint), # type(self.policyintent), # type(self.policyparameters), # type(self.callparameters), # ) # # Some intents require additional processing # if self.policyintent=="tpm2/credentialcheck": c = self.makecredential() if c==None: return a10.structures.returncode.ReturnCode( a10.structures.constants.PROTOCOLEXECUTIONFAILURE, {"msg": "Makecredential failed","transientdata":transientdata} ) cred,secret = self.makecredential() self.callparameters["credential"] = cred transientdata["secret"]=secret # # Ok, now go on with the calling # elementURL = self.endpoint + "/" + self.policyintent callbody = { "policyparameters": self.policyparameters, "callparameters": self.callparameters, } jsondata = json.dumps(callbody, ensure_ascii=False) # note, we use POST because the body contains data, which is not part of the GET standard try: r = requests.post( url=elementURL, json=jsondata, headers={"Content-type": "application/json", "Accept": "text/plain"}, timeout=30, ) except requests.exceptions.ConnectionError as e: return a10.structures.returncode.ReturnCode( a10.structures.constants.PROTOCOLNETWORKFAILURE, {"msg": "Network failure " + str(e),"transientdata":transientdata}, ) # This is already in JSON so ok # print("RETURNING ",r,r.text,r.status_code) # r.text is JSON but encoded as a strong, # so we need to convert (load) it into a python dictionary if things went well j = json.loads(r.text) print("2¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤") # # Note we return a tuple of the data back from the element and the transient data # if r.status_code == 200: return a10.structures.returncode.ReturnCode( a10.structures.constants.PROTOCOLSUCCESS, {"claim":json.loads(r.text),"transientdata":transientdata} ) else: return a10.structures.returncode.ReturnCode( a10.structures.constants.PROTOCOLEXECUTIONFAILURE, {"msg":json.loads(r.text),"transientdata":transientdata} ) def makecredential(self): print("\nmakecredential") try: ekpub = self.callparameters["ekpub"] akname = self.callparameters["akname"] except: print("missing ekpub and/or akname ") return None # a bit of housekeeping # store ek in temporary file ektf = tempfile.NamedTemporaryFile() ektf.write(bytes(ekpub, "utf-8")) ektf.seek(0) # generate secret # This must be a maximum of 32 bytes for makecredential - it is possible that your TPM might vary, but 32 seems to be usual alphabet = string.ascii_letters + string.digits secret = "".join(secrets.choice(alphabet) for i in range(30)) print("Secret is ", secret) secf = tempfile.NamedTemporaryFile() secf.write(bytes(secret, "ascii")) secf.seek(0) # temporary file for credential credf = tempfile.NamedTemporaryFile() # makecredential # # assuming no local TPM with -T none --- might change this one day # given that the tools need to be available .... or pytss. # OK, maybe not such a bad thing that the AE runs on a device with a TPM or at least the tools # Will be necessary for using tpm2_send in the other protocol # try: out="" cmd = ( "tpm2_makecredential -T none" + " -s " + secf.name + " -u " + ektf.name + " -n " + akname + " -G rsa -o " + credf.name ) out = subprocess.check_output(cmd.split()) except: print("tpm2_makecredential failed "+out) return None # read the credential credf.seek(0) cred = base64.b64encode(credf.read()).decode("utf-8") # cleanup ektf.close() secf.close() credf.close() # return return cred,secret ``` #### File: nut10/endpoints/ima_endpoint.py ```python from flask import Blueprint, jsonify import json import datetime import base64 from claims import claimstructure ima_endpoint = Blueprint("ima_endpoint", __name__) @ima_endpoint.route("/measurements", methods=["GET", "POST"]) def returnIMALOG(): c = claimstructure.Claim() c.addHeaderItem("ta_received", str(datetime.datetime.now(datetime.timezone.utc))) try: f = open("/sys/kernel/security/ima/ascii_runtime_measurements","r") imalog = f.read() #eventlog_enc = base64.b85encode(eventlog).decode("utf-8") #c.addPayloadItem("encoding", "base85/utf-8") #c.addPayloadItem("eventlog", eventlog_enc) c.addPayloadItem("size",len(imalog)) c.addPayloadItem("logfile","/sys/kernel/security/ima/ascii_runtime_measurements") c.addPayloadItem("imalog",imalog) #c.addPayloadItem("sizeencoded",len(eventlog_enc)) f.close() except Exception as e: c.addPayloadItem("error", str(e)) c.addHeaderItem("ta_complete", str(datetime.datetime.now(datetime.timezone.utc))) rc = c.getClaim() return jsonify(rc), 200 ```
{ "source": "jleopold28/eds", "score": 3 }
#### File: eds/interfaces/vcs_provider.py ```python from typing import Dict from abc import abstractmethod from eds.interfaces.plugin import Plugin class VcsProvider(Plugin): """eds.vcs_provider interface.""" interface_name = "eds.vcs_provider" schema = { "$schema": "https://json-schema.org/draft/2020-12/schema", "$id": "eds.vcs_provider", "title": "VCS Provider", "type": "object", "properties": {} } @abstractmethod def parse_event(self) -> Dict: """Parse webhook event for project url and ref.""" raise NotImplementedError() @abstractmethod def get_files(self) -> Dict: """Get project files.""" raise NotImplementedError() @abstractmethod def create_project(self) -> None: """Create a Project.""" raise NotImplementedError() @abstractmethod def delete_project(self) -> None: """Delete a Project.""" raise NotImplementedError() @abstractmethod def update_project(self) -> None: """Update a Project.""" raise NotImplementedError() ``` #### File: eds/eds/main.py ```python from __future__ import annotations from eds.interfaces.worker import Worker from eds.event import Event from eds.extend import get_plugin from eds.project import Project def main(event: Event) -> None: """The main routine to process events. Includes exception logging. Args: event (Event): The commit event to process. """ try: process(event) except Exception: pass def process(event: Event) -> None: """The main routine to process events. Args: event (Event): The commit event to process. """ worker = get_plugin(Worker.interface_name, event.worker_plugin) if not event.eds_built: worker.build_eds(event.eds_version) return else: project = Project(event) if not event.eds_plugins_built: worker.build_eds(event.eds_version, project.plugin_versions) return for pipeline in project.pipelines: pipeline.build() ``` #### File: eds/tests/test_plugin.py ```python from eds.plugin import BasePlugin class PluginChild(BasePlugin): pass class PluginParent(BasePlugin): @property def children(self): return [PluginChild({})] class PluginGrandParent(BasePlugin): @property def children(self): return [PluginParent({})] def test_get_child_plugins(): p = PluginGrandParent({}) assert len(p.descendants) == 2 assert type(p.descendants[0]).__name__ == 'PluginChild' assert type(p.descendants[1]).__name__ == 'PluginParent' def test_id_property(): p = PluginChild({'id': 'my_id'}) assert p.id == 'my_id' def test_yaml_property(): p = PluginChild({'some': 'yaml'}) assert p.yaml == {'some': 'yaml'} ```
{ "source": "jleopold28/snippets-and-notes", "score": 4 }
#### File: ansible/notes/python.py ```python def firstRepeatedWord(s): words = s.replace(',',' ').replace(';',' ').replace(':',' ').replace('-',' ').split(' ') for word_check in words[::-1]: words.remove(word_check) for word in words: if word == word_check: return word ``` #### File: machine-learning/general/kpca.py ```python import scipy.spatial.distance as dist import scipy.linalg as linalg import numpy as np def rbf_kernel_pca(data, gamma, n_components): """ rbf kernel pca implementation params - numpy ndarray data: shape = [n_samples, n_features] float gamma: tuning param of rbf kernel int n_components: num components to return returns - numpy ndarray projected data, list eigvals: shape = [n_samples, k_features] """ # calc pairwise squared euclidean distances in MxN dataset sq_dists = dist.pdist(data, 'sqeuclidean') # convert pairwise distances into square matrix mat_sq_dists = dist.squareform(sq_dists) # compute symmetric kernel matrix k_mat = np.exp(-gamma * mat_sq_dists) # center kernel matrix flat = k_mat.shape[0] one_flat = np.ones((flat, flat)) / flat k_mat = (k_mat - one_flat.dot(k_mat) - k_mat.dot(one_flat) + one_flat.dot(k_mat).dot(one_flat)) # obtain eigpairs from centered kernel matrix # scipy.eigh returns them sorted eigvals, eigvecs = linalg.eigh(k_mat) # collect top k eigvecs (projected samples, eigvals) # these are informally alphas and lambdas return (np.column_stack((eigvecs[:, -index] for index in range(1, n_components + 1))), [eigvals[-index] for index in range(1, n_components + 1)]) def project_data(data_proj, data, gamma, alphas, lambdas): """project a data point""" pair_dist = np.array([(np.sum(data_proj - row)**2) for row in data]) return np.exp(-gamma * pair_dist).dot(alphas / lambdas) ```
{ "source": "jlep/freestylesvg", "score": 2 }
#### File: jlep/freestylesvg/svg_visible.py ```python import os import re from freestyle import * from freestyle.functions import * from freestyle.predicates import * from freestyle.types import * from freestyle.shaders import * from parameter_editor import * from freestyle.chainingiterators import * # select preds = [ pyNatureUP1D(Nature.SILHOUETTE), pyNatureUP1D(Nature.CREASE), ContourUP1D() ] upred = join_unary_predicates(preds, OrUP1D) upred = AndUP1D(QuantitativeInvisibilityUP1D(0), upred) Operators.select(upred) # chain Operators.bidirectional_chain(ChainSilhouetteIterator()) # sort Operators.sort(pyZBP1D()) scene = getCurrentScene() current_frame = scene.frame_current # shade and write svg path = re.sub(r'\.blend$|$', '%06d.svg' % current_frame, bpy.data.filepath) f = open(path, "a") w = scene.render.resolution_x * scene.render.resolution_percentage / 100 h = scene.render.resolution_y * scene.render.resolution_percentage / 100 class SVGPathShader(StrokeShader): def shade(self, stroke): f.write('<path fill="none" stroke="black" stroke-width="2" d="\nM ') for v in stroke: x, y = v.point f.write('%.3f,%.3f ' % (x, h - y)) f.write('"\n />') shaders_list = [ SamplingShader(50), SVGPathShader(), ConstantColorShader(0, 0, 1), ConstantThicknessShader(10) ] f.write('<g id="layer_visible" inkscape:groupmode="layer" inkscape:label="visible">\n') f.write('<g id="visible">\n') Operators.create(TrueUP1D(), shaders_list) f.write('</g>\n') f.write('</g>\n') f.close() ```
{ "source": "jlepinski/pyconvcli", "score": 2 }
#### File: pyconvcli/test_pyconvcli_internal_cli/cli.py ```python from pyconvcli import PyConvCli import os def main(): cli = PyConvCli('test_pyconvcli_internal_cli',os.path.dirname(os.path.realpath(__file__)),'pyconvcli-test') cli.run() def visualize(): cli= PyConvCli('test_pyconvcli_internal_cli',os.path.dirname(os.path.realpath(__file__)),'pyconvcli-test') args,parsers = cli.parse_args() cli.parsers=parsers cli.visualize() ```
{ "source": "jlerasmus/ambianic-edge", "score": 2 }
#### File: ambianic/webapp/flaskr.py ```python import os import logging import time from pathlib import Path import flask from flask import Flask, request, jsonify, json from flask_cors import CORS from flask.logging import default_handler from requests import get from werkzeug.serving import make_server from werkzeug.exceptions import HTTPException from ambianic import config, DEFAULT_DATA_DIR, __version__ from ambianic.util import ServiceExit, ThreadedJob, ManagedService from ambianic.webapp.server import samples, config_sources log = logging.getLogger(__name__) # configuration DEBUG = True class FlaskJob(ManagedService): """Flask based managed web service.""" def __init__(self, config): """Create Flask based web service.""" self.config = config data_dir = None if config: data_dir = config.get('data_dir', None) if not data_dir: data_dir = DEFAULT_DATA_DIR self.srv = None app = create_app(data_dir=data_dir) ip_address = '0.0.0.0' port = 8778 log.info('starting flask web server on %s:%d', ip_address, port) self.srv = make_server(ip_address, port, app) ctx = app.app_context() ctx.push() with app.app_context(): flask.current_app.data_dir = data_dir self.flask_stopped = True log.debug('Flask process created') def start(self, **kwargs): """Start service.""" log.debug('Flask starting main loop') self.flask_stopped = False try: self.srv.serve_forever() except ServiceExit: log.info('Service exit requested') self.flask_stopped = True log.debug('Flask ended main loop') def stop(self): """Stop service.""" if not self.flask_stopped: log.debug('Flask stopping main loop') self.srv.shutdown() log.debug('Flask main loop ended') def healthcheck(self): """Report health status.""" return time.monotonic(), 'OK' class FlaskServer(ManagedService): """ Thin wrapper around Flask constructs. Allows controlled start and stop of the web app server in a separate process. Parameters ---------- config : yaml reference to the yaml configuration file """ def __init__(self, config): self.config = config self.flask_job = None def start(self, **kwargs): log.info('Flask server job starting...') f = FlaskJob(self.config) self.flask_job = ThreadedJob(f) self.flask_job.start() log.info('Flask server job started') def healthcheck(self): # Note: Implement actual health check for Flask # See if the /healthcheck URL returns a 200 quickly return time.monotonic(), True def heal(self): """Heal the server. TODO: Keep an eye for potential scenarios that cause this server to become unresponsive. """ def stop(self): if self.flask_job: log.info('Flask server job stopping...') self.flask_job.stop() self.flask_job.join() log.info('Flask server job stopped.') def create_app(data_dir=None): log.debug('Creating Flask app...') # if Ambianic is in INFO or DEBUG mode, pass that info on to Flask if log.level <= logging.INFO: os.environ['FLASK_ENV'] = 'development' # create and configure the web app # set the project root directory as the static folder, you can set others. app = Flask(__name__, instance_relative_config=True) app.logger.removeHandler(default_handler) # ensure the instance folder exists try: os.makedirs(app.instance_path) except OSError: pass # enable CORS for development CORS(app, resources={r'/*': {'origins': '*'}}) # [Sitemap] # sitemap definitions follow # a simple page that says hello @app.route('/') def hello(): return 'Ambianic Edge! Helpful AI for home and business automation.' # healthcheck page available to docker-compose # and other health monitoring tools @app.route('/healthcheck') def health_check(): return 'Ambianic Edge is running in a cheerful healthy state!' # live view of ambianic pipelines @app.route('/pipelines') def view_pipelines(): return flask.render_template('pipelines.html') # healthcheck page available to docker-compose # and other health monitoring tools @app.route('/api/status') def get_status(): response_object = {'status': 'OK', 'version': __version__} resp = jsonify(response_object) return resp @app.route('/api/timeline', methods=['GET']) @app.route('/api/timeline.json', methods=['GET']) def get_timeline(): response_object = {'status': 'success'} req_page = request.args.get('page', default=1, type=int) log.debug('Requested timeline events page" %d', req_page) nonlocal data_dir resp = samples.get_timeline(page=req_page, data_dir=data_dir) response_object['timeline'] = resp log.debug('Returning %d timeline events', len(resp)) # log.debug('Returning samples: %s ', response_object) resp = jsonify(response_object) return resp @app.route('/api/samples', methods=['GET', 'POST']) def get_samples(): response_object = {'status': 'success'} if request.method == 'POST': post_data = request.get_json() new_sample = { 'title': post_data.get('title'), 'author': post_data.get('author'), 'read': post_data.get('read') } samples.add_sample(new_sample) response_object['message'] = 'Sample added!' response_object['sample_id'] = new_sample["id"] log.debug('Sample added: %s ', new_sample) else: req_page = request.args.get('page', default=1, type=int) resp = samples.get_samples(page=req_page) response_object['samples'] = resp log.debug('Returning %d samples', len(resp)) # log.debug('Returning samples: %s ', response_object) resp = jsonify(response_object) return resp @app.route('/api/samples/<sample_id>', methods=['PUT', 'DELETE']) def update_sample(sample_id): response_object = {'status': 'success'} if request.method == 'PUT': post_data = request.get_json() sample = { 'id': sample_id, 'title': post_data.get('title'), 'author': post_data.get('author'), 'read': post_data.get('read') } log.debug('update_sample %s', sample) samples.update_sample(sample) response_object['message'] = 'Sample updated!' if request.method == 'DELETE': samples.delete_sample(sample_id) response_object['message'] = 'Sample removed!' return jsonify(response_object) @app.route('/api/config', methods=['GET']) def get_config(): return jsonify(config.as_dict()) @app.route( '/api/config/source/<source_id>', methods=['GET', 'PUT', 'DELETE'] ) def handle_config_source(source_id): if request.method == 'DELETE': config_sources.remove(source_id) return jsonify({'status': 'success'}) if request.method == 'PUT': source = request.get_json() config_sources.save(source_id, source) return jsonify(config_sources.get(source_id)) # sanity check route @app.route('/api/ping', methods=['GET']) def ping(): response_object = 'pong' return jsonify(response_object) @app.route('/static/<path:path>') def static_file(path): return flask.send_from_directory('static', path) @app.route('/api/data/<path:path>') def data_file(path): data_path = Path(DEFAULT_DATA_DIR).resolve() log.info('Serving static data file from: %r', data_path / path) return flask.send_from_directory(data_path, path) @app.route('/client', defaults={'path': 'index.html'}) @app.route('/client/', defaults={'path': 'index.html'}) @app.route('/client/<path:path>') def client_file(path): if log.level <= logging.DEBUG: # development mode hostname = flask.request.host.split(':')[0] base_uri = 'http://{host}:1234/'.format(host=hostname) return get(f'{base_uri}{path}').content # production mode return flask.send_from_directory('client/dist', path) @app.errorhandler(Exception) def handle_exception(e: Exception): """Return JSON instead of HTML for HTTP errors.""" # start with the correct headers and status code from the error if isinstance(e, HTTPException): response = e.get_response() response.content_type = "application/json" # replace the body with JSON response.data = json.dumps({ "code": e.code, "error": e.description, }) return response # generic error handler log.error("Request failed") log.exception(e) return jsonify( code=500, error="Request failed" ), 500 # @app.route('/', defaults={'path': 'index.html'}) # @app.route('/<path:path>') # def client_all(path): # return flask.send_from_directory('client/dist', path) log.debug('Flask url map: %s', str(app.url_map)) log.debug('Flask config map: %s', str(app.config)) log.debug('Flask running in %s mode', 'development' if app.config['DEBUG'] else 'production') log.debug('Flask app created.') return app ```
{ "source": "jlerat/pybomwater", "score": 3 }
#### File: pybomwater/bom_water/spatial_util.py ```python from geojson import Feature, FeatureCollection, Point class spatail_utilty(): def create_geojson_feature(self, lat, long, station_no=None, station_id=None, name=None, long_name=None): '''Create a geojson feature that can be append to a list''' try: coords = (float(long),float(lat)) a_point = Point(coords) except ValueError as e: return Feature( geometry = None, properties = { 'stationNo': station_no, 'stationId': station_id, 'name': name, 'long_name': long_name } ) return Feature( geometry = a_point, properties = { 'stationNo': station_no, 'stationId': station_id, 'name': name, 'long_name': long_name } ) def get_feature_collection(self, features): return FeatureCollection(features) def write_features(self, features, path): collection = FeatureCollection(features) with open(path, "w") as f: f.write('%s' % collection) ```
{ "source": "jlerman44/cameo", "score": 2 }
#### File: cameo/api/hosts.py ```python from __future__ import absolute_import, print_function import os from functools import partial import six from lazy_object_proxy import Proxy import cameo from cameo import load_model from cameo import util __all__ = ['hosts'] MODEL_DIRECTORY = os.path.join(os.path.join(cameo.__path__[0]), 'models/json') class Host(object): def __init__(self, name='', models=None, biomass=None, carbon_sources=None): models = models or [] biomass = biomass or [] carbon_sources = carbon_sources or [] self.name = name self.models = util.IntelliContainer() for id, biomass, carbon_source in zip(models, biomass, carbon_sources): def lazy_model_init(path): model = load_model(path) setattr(model, "biomass", biomass) setattr(model, "carbon_source", carbon_source) return model model = Proxy(partial(lazy_model_init, os.path.join(MODEL_DIRECTORY, id + '.json'))) self.models[id] = model def __str__(self): return self.name class Hosts(object): def __init__(self, host_spec, aliases=None): self._host_spec = host_spec self._hosts = list() for host_id, information in six.iteritems(self._host_spec): host = Host(**information) self._hosts.append(host) setattr(self, host_id, host) if aliases and isinstance(aliases, list): for pair in aliases: setattr(self, pair[1], getattr(self, pair[0])) def __iter__(self): return iter(self._hosts) def __dir__(self): return list(self._host_spec.keys()) HOST_SPECS = { # 'iAF1260', 'iJO1366', 'EcoliCore' 'ecoli': { 'name': '<NAME>', 'models': ('iJO1366',), 'biomass': ('BIOMASS_Ec_iJO1366_core_53p95M',), 'carbon_sources': ('EX_glc__D_e',) }, # 'iND750', 'scerevisiae': { 'name': '<NAME>', 'models': ('iMM904',), 'biomass': ('BIOMASS_SC5_notrace',), 'carbon_sources': ('EX_glc__D_e',) } } hosts = Hosts(HOST_SPECS, aliases=[('scerevisiae', 'yeast')]) ``` #### File: cameo/cameo/__init__.py ```python import os import sys from cameo import config from cameo.util import get_system_info, in_ipnb if sys.version_info[0] == 2: import imp def find_module(name): try: imp.find_module(name) return True except ImportError: return False elif sys.version_info[0] == 3: if sys.version_info[1] <= 3: from importlib import find_loader as _find else: from importlib.util import find_spec as _find def find_module(name): return _find(name) is not None _cameo_path = __path__[0] _cameo_data_path = os.path.join(_cameo_path, 'data') # fix - if matplotlib is installed it is not possible to import cameo without importing matplotlib on jupyter notebook. if find_module("matplotlib") and in_ipnb(): from IPython import get_ipython ipython = get_ipython() ipython.magic("matplotlib inline") system_info = get_system_info() from ._version import get_versions __version__ = get_versions()['version'] del get_versions from cameo.io import load_model from cameo import models from .flux_analysis.analysis import flux_variability_analysis, phenotypic_phase_plane from .flux_analysis.simulation import fba, pfba from ._version import get_versions __version__ = get_versions()['version'] del get_versions del os, sys, in_ipnb, get_system_info, find_module ``` #### File: visualization/plotting/with_ggplot.py ```python from __future__ import absolute_import from math import ceil import six from warnings import warn from ggplot import scale_colour_manual, geom_area, geom_tile, scale_x_continuous, scale_y_continuous, aes, facet_grid from cameo.util import in_ipnb, inheritdocstring from cameo.visualization.plotting import AbstractPlotter @six.add_metaclass(inheritdocstring) class GGPlotPlotter(AbstractPlotter): def __init__(self, **options): warn("ggplot interface is under construction...") super(GGPlotPlotter, self).__init__(**options) def production_envelope(self, dataframe, grid=None, width=None, height=None, title=None, points=None, points_colors=None, palette=None, x_axis_label=None, y_axis_label=None): palette = self.get_option('palette') if palette is None else palette width = self.get_option('width') if width is None else width colors = self._palette(palette, len(dataframe.strain.unique())) plot = aes(data=dataframe, ymin="lb", ymax="ub", x="value", color=scale_colour_manual(colors)) + geom_area() if title: plot += geom_tile(title) if x_axis_label: plot += scale_x_continuous(name=x_axis_label) if y_axis_label: plot += scale_y_continuous(name=y_axis_label) return plot def flux_variability_analysis(self, dataframe, grid=None, width=None, height=None, title=None, palette=None, x_axis_label=None, y_axis_label=None): return aes(data=dataframe, ) @property def _display(self): if in_ipnb(): from IPython.display import display return display @staticmethod def _make_grid(grid): columns = ceil(grid.n_rows / len(grid.plots())) return grid.plot[0] + facet_grid(grid.n_rows, columns, scales="fixed") ``` #### File: cameo/tests/test_api.py ```python import os import pickle import re import pytest from cameo import api, load_model from cameo import models, config from cameo.api.hosts import Host from cameo.api.products import Compound MODELS = os.path.dirname(models.__file__) UNIVERSALMODEL = load_model(os.path.join(MODELS, 'json/iJO1366.json')) UNIVERSALMODEL.remove_reactions(UNIVERSALMODEL.exchanges) def test_api(): mock_host = Host('core', models=['e_coli_core'], biomass=['BIOMASS_Ecoli_core_w_GAM'], carbon_sources=['EX_glc__D_e']) api.design.debug = True pathways = api.design.predict_pathways(product=UNIVERSALMODEL.metabolites.ser__L_c, hosts=[mock_host], database=UNIVERSALMODEL, aerobic=True) optimization_reports = api.design.optimize_strains(pathways, config.default_view, aerobic=True) pickle.loads(pickle.dumps(optimization_reports)) assert len(optimization_reports) > 0 def test_compound_repr(): pytest.mark.skipif(not re.match('Open Babel.*', os.popen('obabel').read()), reason='Skipping because OpenBabel is not installed.') compound = Compound('InChI=1S/H2O/h1H2') assert re.match(r"^<\?xml version=\"1\.0\"\?>.*</svg>$", compound._repr_svg_().replace('\n', '')) assert compound._repr_html_() == compound._repr_svg_() def test_products(): assert api.products.search('3-hydroxy propionate').index[0] == 'MNXM872' assert len(api.products.search('old spice')) == 0 def test_hosts(): assert api.hosts.ecoli.models.iJO1366.id == 'iJO1366' assert api.hosts.scerevisiae.models.iMM904.id == 'iMM904' ``` #### File: cameo/tests/test_io.py ```python from __future__ import absolute_import, print_function import os import cobra import pytest import cameo from cameo import load_model from cameo.config import solvers try: import libsbml except ImportError: libsbml = None TESTDIR = os.path.dirname(__file__) @pytest.fixture(scope="module", params=list(solvers)) def solver_interface(request): return solvers[request.param] class TestModelLoading(object): def test_load_model_pickle_path(self, solver_interface): model = load_model(os.path.join(TESTDIR, 'data/iJO1366.pickle'), solver_interface=solver_interface) assert abs(model.optimize().f - 0.9823718127269768) < 10e-6 def test_load_model_pickle_handle(self, solver_interface): with open(os.path.join(TESTDIR, 'data/iJO1366.pickle'), 'rb') as handle: model = load_model(handle, solver_interface=solver_interface) assert abs(model.optimize().f - 0.9823718127269768) < 10e-6 def test_load_model_sbml_path(self, solver_interface): model = load_model(os.path.join(TESTDIR, 'data/iJO1366.xml'), solver_interface=solver_interface) assert abs(model.optimize().f - 0.9823718127269768) < 10e-6 def test_load_model_sbml_handle(self, solver_interface): with open(os.path.join(TESTDIR, 'data/iJO1366.xml')) as handle: model = load_model(handle, solver_interface=solver_interface) assert abs(model.optimize().f - 0.9823718127269768) < 10e-6 def test_load_model_sbml_path_set_none_interface(self): model = load_model(os.path.join(TESTDIR, 'data/EcoliCore.xml'), solver_interface=None) assert abs(model.optimize().f - 0.8739215069684306) < 10e-6 assert isinstance(model, cobra.Model) def test_import_model_bigg(self): model = cameo.models.bigg.e_coli_core assert model.id == 'e_coli_core' @pytest.mark.skipif(libsbml is None, reason="minho has fbc < 2, requiring missing lisbml") def test_import_model_minho(self): model = cameo.models.minho if model.status != 'indexed': pytest.skip('failed to index minho db') assert model.__getattr__('Ecoli core Model').id == 'Ecoli_core_model' def test_invalid_path(self): with pytest.raises(Exception): load_model("blablabla_model") ```
{ "source": "jlerman44/DnaWeaver", "score": 2 }
#### File: dnaweaver/AssemblyPlanReport/AssemblyPlanReport.py ```python from copy import deepcopy from .ObjectDict import ObjectDict from . import mixins class AssemblyPlanReport( mixins.PlotsMixin, mixins.FolderReportMixin, mixins.GenbankExportMixin, mixins.PdfReportMixin, ): def __init__(self, plan, sources): self.plan = ObjectDict.from_dict(plan) self.sources = ObjectDict.from_dict(sources) @staticmethod def from_dnaweaver_quote(quote): plan = quote.assembly_plan_as_dict() sources = quote.source.dict_supply_graph() return AssemblyPlan(plan, sources) def to_steps_list(self): plan = deepcopy(self.plan) nodes = [] def rec(node, depth=0): if node.get("_visited", False): return node["_visited"] = True assembly_plan = node.get("assembly_plan", []) node["children"] = [n["id"] for n in assembly_plan] nodes.append(node) for other in sorted( assembly_plan, key=lambda n: n["segment_start"] ): rec(other) rec(plan) return nodes ``` #### File: AssemblyPlanReport/mixins/GenbankExportMixin.py ```python from copy import deepcopy from io import StringIO from Bio.SeqRecord import SeqRecord from Bio.Seq import Seq try: # Biopython <1.78 from Bio.Alphabet import DNAAlphabet has_dna_alphabet = True except ImportError: # Biopython >=1.78 has_dna_alphabet = False from Bio import SeqIO from Bio.SeqFeature import SeqFeature, FeatureLocation class GenbankExportMixin: def to_record(self, record=None, record_id=None): """Return a Biopython seqrecord of the quote. >>> record = to_record(solution) >>> # Let's plot with DnaVu: >>> from dnavu import create_record_plot >>> from bokeh.io import output_file, show >>> output_file("view.html") >>> plot = create_record_plot(record) >>> show(plot) """ if record_id is None: record_id = self.id if record is None: if has_dna_alphabet: # Biopython <1.78 record = SeqRecord(Seq(self.sequence, DNAAlphabet()), id=record_id) else: record = SeqRecord(Seq(self.sequence), id=record_id) record.annotations["molecule_type"] = "DNA" else: record = deepcopy(record) if self.plan is not None: features = [ SeqFeature( FeatureLocation(q.segment_start, q.segment_end, 1), type="misc_feature", qualifiers={ "label": "%s - From %s" % (q.id, q.source), "name": q.id, "source": q.source, "price": q.price, "lead_time": q.lead_time, }, ) for q in self.plan ] record.features = features + record.features return record def write_genbank( self, filename=None, filehandle=None, record=None, record_id=None ): record = self.to_record(record=record, record_id=record_id) if filehandle is None: with open(filename, "w+") as f: SeqIO.write(record, f, "genbank") else: SeqIO.write(record, filehandle, "genbank") def write_all_sequence_records(self, target): for step in self.to_steps_list(): record = self.plan_step_to_record(step) path = target._file(step.id + ".gb").open("w") SeqIO.write(record, path, "genbank") @staticmethod def plan_step_to_record(plan_step, record=None, record_id=None): """Return a Biopython seqrecord of the quote. >>> record = to_SeqRecord(solution) >>> # Let's plot with DnaVu: >>> from dnavu import create_record_plot >>> from bokeh.io import output_file, show >>> output_file("view.html") >>> plot = create_record_plot(record) >>> show(plot) """ if record_id is None: record_id = plan_step.id if record is None: if has_dna_alphabet: # Biopython <1.78 record = SeqRecord(Seq(plan_step.sequence, DNAAlphabet()), id=record_id) else: record = SeqRecord(Seq(plan_step.sequence), id=record_id) record.annotations["molecule_type"] = "DNA" else: record = deepcopy(record) if plan_step.assembly_plan is not None: features = [ SeqFeature( FeatureLocation(q.segment_start, q.segment_end, 1), type="misc_feature", qualifiers={ "label": "%s - From %s" % (q.id, q.source), "name": q.id, "source": q.source, "price": q.price, "lead_time": q.lead_time, }, ) for q in plan_step.assembly_plan ] record.features = features + record.features return record ``` #### File: mixins/PlotsMixin/ColorsMixin.py ```python import colorsys import itertools import matplotlib.colors as cl import matplotlib.cm as cm def hls_to_hex(hue, luminance, saturation): """Return (R,G,B) equivalent of a hue/staturation/value color.""" return cl.rgb2hex(colorsys.hls_to_rgb(hue, luminance, saturation)) def rgb_to_hex(red, green, blue): """Return color as #rrggbb for the given color values.""" return "#%02x%02x%02x" % (int(red), int(green), int(blue)) class ColorsMixin: def autocolor_quote_sources( self, hues=(0.635, 0.047, 0.117), saturations=(0.9, 0.7, 0.5, 0.3), min_lum=0.2, max_lum=0.8, ): """Auto-add a `_report_color` field to the sources in in quote.sources. Sources at the same depth share the same luminance. """ colors = itertools.cycle( [ rgb_to_hex(*[255 * e ** 0.4 for e in cm.Paired(0.13 * i % 1.0)][:3]) for i in range(30) ] ) for _name, source in sorted(self.sources.items()): color = next(colors) source._report_color = color ``` #### File: mixins/PlotsMixin/matplotlib_export.py ```python from io import StringIO, BytesIO from base64 import b64encode def matplotlib_figure_to_file_string(fig, format="svg", **kwargs): """Return a string of the figure in the requested format.""" if format == "pdf": output = BytesIO() else: output = StringIO() fig.savefig(output, format=format, **kwargs) return output.getvalue() def matplotlib_figure_to_svg_base64_data(fig, **kwargs): """Return a string of the form '' where XXX is the base64-encoded svg version of the figure.""" svg_txt = matplotlib_figure_to_file_string(fig, format="svg", **kwargs) svg_txt = "\n".join(svg_txt.split("\n")[4:]) svg_txt = "".join(svg_txt.split("\n")) try: return "data:image/svg+xml;base64," + b64encode(svg_txt) except: content = b64encode(svg_txt.encode("ascii")) result = (b"data:image/svg+xml;base64," + content).decode("utf-8") return str(result) ``` #### File: dnaweaver/biotools/sequence_homologies.py ```python import tempfile import time import os import subprocess from Bio.Blast import NCBIXML import numpy as np from .sequence_operations import sequence_to_atgc def blast_sequence( sequence, blast_db=None, subject=None, word_size=4, perc_identity=80, num_alignments=1000, num_threads=3, use_megablast=True, ungapped=True, ): """Return a Biopython BLAST record of the given sequence BLASTed against the provided database. Parameters ---------- sequence An ATGC sequence. blast_db Path to a BLAST database. subject Either a path to a fasta (.fa) file or an ATGC string. Subject to blast against. word_size Word size to use in the blast. perc_identity Minimal percentage of identical nucleotides in a match for it to be kept. num_alignments Number of alignments to keep. num_threads Number of threads for the BLAST. use_megablast Whether to use Megablast. ungapped No-gaps matches only ? Examples -------- >>> blast_record = blast_sequence("ATTGTGCGTGTGTGCGT", "blastdb/ecoli") >>> for alignment in blast_record.alignments: >>> for hit in alignment.hsps: >>> print (hit.identities) """ xml_file, xml_name = tempfile.mkstemp(".xml") fasta_file, fasta_name = tempfile.mkstemp(".fa") sequence = sequence_to_atgc(sequence) with open(fasta_name, "w+") as f: f.write(">seq\n" + sequence) if subject is not None: close_subject = True if not subject.endswith(".fa"): remove_subject = True _subject_file, fasta_subject_name = tempfile.mkstemp(".fa") with open(fasta_subject_name, "w+") as f: f.write(">subject\n" + subject) subject = fasta_subject_name else: remove_subject = False else: close_subject = False p = subprocess.Popen( [ "blastn", "-out", xml_name, "-outfmt", "5", "-num_alignments", str(num_alignments), "-query", fasta_name, ] + (["-db", blast_db] if blast_db is not None else ["-subject", subject]) + (["-ungapped"] if ungapped else []) + (["-task", "megablast"] if use_megablast else []) + [ "-word_size", str(word_size), "-num_threads", str(num_threads), "-dust", "no", "-evalue", "0.01", "-perc_identity", str(perc_identity), ], close_fds=True, stderr=subprocess.PIPE, ) res, _blast_err = p.communicate() p.wait() error = None for i in range(3): try: with open(xml_name, "r") as f: res = list(NCBIXML.parse(f)) os.fdopen(xml_file, "w").close() os.fdopen(fasta_file, "w").close() os.remove(xml_name) os.remove(fasta_name) if close_subject: open(subject, "w").close() if remove_subject: os.remove(subject) if len(res) == 1: return res[0] else: return res break except ValueError as err: error = err time.sleep(0.1) else: raise ValueError("Problem reading the blast record: " + str(error)) def make_blast_db(fasta_input, target): proc = subprocess.Popen( ["makeblastdb", "-in", fasta_input, "-dbtype", "nucl", "-out", target] ) proc.wait() def perfect_match_locations_in_hsp(hsp, span_cutoff=10): """Return the locations of perfect matches in a BLAST HSP. Only locations with a span above span_cutoff are kept. """ if hsp.align_length < span_cutoff: return [] arr = np.frombuffer(hsp.match.encode(), dtype="uint8") indices = [0] + list((arr != 124).nonzero()[0]) + [len(arr)] return [ (start + hsp.query_start, end + hsp.query_start) for start, end in zip(indices, indices[1:]) if end - start >= span_cutoff ] def largest_common_substring(query, target, max_overhang): """Return the largest common substring between `query` and `target`. Find the longest substring of query that is contained in target. If the common substring is too much smaller than `query` False is returned, else the location `(start, end)` of the substring in `target` is returned. Parameters: ----------- query (str) The sequence to be found in target (minus some overhangs possibly). target (str) The sequence in which to find `query`. max_overhang Maximal size allowed for the flanking regions of `query` that would not be contained in `target`. Examples -------- >>> seqA = '-----oooooooo' >>> seqB = 'oooooo-----tttt' >>> largest_common_substring(seqA, seqA, 80) # == (0, 12) >>> largest_common_substring(seqA, seqB, 80) # == (5, 11) Notes: ------ This is intended for finding whether `query` can be extracted from `target` using PCR. See the PcrExtractionStation implementation in DnaSupplier.py. """ # The trick here is to start with the central region of "query". # This region is initially as small as max_overhang allows, and it is # progressively expanded on the sides max_overhang = min(max_overhang, int(len(query) / 2)) start, end = max_overhang, len(query) - max_overhang if query[start:end] not in target: return False while (start >= 0) and (query[start:end] in target): start -= 1 start += 1 while (end < len(query)) and (query[start:end] in target): end += 1 end -= 1 return start, end ``` #### File: dnaweaver/DnaAssemblyMethod/BluntEndAssemblyMethod.py ```python from .DnaAssemblyMethod import DnaAssemblyMethod class BluntEndAssemblyMethod(DnaAssemblyMethod): def compute_fragment_for_sequence_segment(self, sequence, segment, **kw): start, end = segment return sequence[start:end] ``` #### File: dnaweaver/DnaAssemblyMethod/OverlapingAssemblyMethod.py ```python from .DnaAssemblyMethod import DnaAssemblyMethod from ..biotools import reverse_complement class OverlapingAssemblyMethod(DnaAssemblyMethod): """General class for all overlapping assembly methods. Parameters ---------- homology_arm_length Length of the homology arm, or "overhang". A length of L means that consecutive segments will overlap by 2*L. """ name = "Overlaping Assembly" alternate_fragments_orientation = False def __init__(self, overhang_selector, **properties): super(OverlapingAssemblyMethod, self).__init__(**properties) selector = overhang_selector self.overhang_selector = selector if selector.has_location_filter: self.cut_location_constraints.append(selector.location_filter_method) def compute_fragment_for_sequence_segment(self, sequence, segment, **kw): selector = self.overhang_selector.compute_fragment_for_sequence_segment fragment = selector(sequence, segment) if self.alternate_fragments_orientation: if kw.get("segment_position", 0) % 2: fragment = reverse_complement(fragment) return fragment class GibsonAssemblyMethod(OverlapingAssemblyMethod): """Gibson Assembly Method. Just another overlap-method""" name = "Gibson Assembly" class OligoAssemblyMethod(OverlapingAssemblyMethod): """The Build-a-Genome Assembly Method. Just another overlap-method""" alternate_fragments_orientation = True name = "Oligo Assembly" ``` #### File: dnaweaver/DnaQuote/ExportsMixin.py ```python import json from copy import deepcopy from Bio.SeqRecord import SeqRecord from Bio.Seq import Seq try: # Biopython <1.78 from Bio.Alphabet import DNAAlphabet has_dna_alphabet = True except ImportError: # Biopython >=1.78 has_dna_alphabet = False from Bio import SeqIO from Bio.SeqFeature import SeqFeature, FeatureLocation from io import StringIO from ..AssemblyPlanReport import AssemblyPlanReport class ExportsMixin: def tree_as_list(self): """Return a list containing the current AssemblyOperation and all its sub-operations and their respective sub-operations. Said otherwise, it flattens the assembly tree into the list of all nodes. """ result = [self] if self.assembly_plan is not None: result += sum( [child.tree_as_list() for segment, child in self.assembly_plan.items()], [], ) return result def assembly_plan_as_dict(self, as_json=False, json_indent=None): """Return a JSON-like version of the nested tree. Parameters ---------- as_json If True, a JSON string is returned, else the result is a dict object. json_indent number of spaces in the JSON indentation (for pretty printing). The default None means that the JSON will be on one line (TODO: check). Returns ------- { "id": self.id, "source": self.source.name, "price": self.price, "lead_time": self.lead_time, "sequence": self.sequence, "message": self.message, "metadata" = self.metadata, "assembly_plan": { (start1, end1): {(subquote_1)}, (start2, end2): {(subquote_2)}, } } """ final_location = ( self.final_location if hasattr(self, "final_location") else None ) matching_segment = ( self.matching_segment if hasattr(self, "matching_segment") else None ) assembly_plan = [] if self.assembly_plan is not None: for (segment, quote) in self.assembly_plan.items(): quote_as_dict = quote.assembly_plan_as_dict() quote_as_dict["segment_start"] = segment[0] quote_as_dict["segment_end"] = segment[1] assembly_plan.append(quote_as_dict) tree = { "id": self.id, "source": self.source.name, "price": self.price, "lead_time": self.lead_time, "sequence": self.sequence, "message": self.message, "metadata": self.metadata, "assembly_plan": assembly_plan, "final_location": final_location, "matching_segment": matching_segment, "accepted": self.accepted, } metadata = tree["metadata"] if "via" in metadata: metadata["via"] = [ station if isinstance(station, str) else station.name for station in metadata["via"] ] if as_json: return json.dumps(tree, indent=json_indent) else: return tree def to_record(self, record=None, record_id=None): """Return a Biopython seqrecord of the quote. >>> record = to_record(solution) >>> # Let's plot with DnaVu: >>> from dnavu import create_record_plot >>> from bokeh.io import output_file, show >>> output_file("view.html") >>> plot = create_record_plot(record) >>> show(plot) """ if record_id is None: record_id = self.id if record is None: if has_dna_alphabet: # Biopython <1.78 record = SeqRecord(Seq(self.sequence, DNAAlphabet()), id=record_id) else: record = SeqRecord(Seq(self.sequence), id=record_id) record.annotations["molecule_type"] = "DNA" else: record = deepcopy(record) if self.assembly_plan is not None: features = [ SeqFeature( FeatureLocation(segment[0], segment[1], 1), type="Feature", qualifiers={ "name": quote.id, "source": quote.source, "price": quote.price, "lead_time": quote.lead_time, }, ) for segment, quote in self.assembly_plan.items() ] record.features = features + record.features return record def write_genbank( self, filename=None, filehandle=None, record=None, record_id=None ): record = self.to_record(record=record, record_id=record_id) if filename is not None: with open(filename, "w+") as f: SeqIO.write(record, f, "genbank") else: output = StringIO() SeqIO.write(record, output, "genbank") return output.getvalue() def to_assembly_plan_report( self, refine_fragments_locations=True, autocolor_quotes=True ): """Convert the quote into a full assembly plan data structure which can be used to generate assembly reports.""" if refine_fragments_locations: self.compute_fragments_final_locations() if not self.full_assembly_plan_computed: self.compute_full_assembly_plan() original_source = self.source if "via" in self.metadata: # intermediary comparator of the quote original_source = self.metadata["via"][0] report = AssemblyPlanReport( plan=self.assembly_plan_as_dict(), sources=original_source.dict_supply_graph(), ) if autocolor_quotes: report.autocolor_quote_sources() return report ``` #### File: dnaweaver/DnaQuote/PostProcessingMixin.py ```python import itertools as itt import os import tempfile from ..biotools import blast_sequence class PostProcessingMixin: def compute_full_assembly_plan(self, id_prefix="S", id_digits=5): """ """ counter = itt.count() def rec(quote): if not quote.accepted: return quote if any( [ hasattr(quote.source, attr) for attr in ["supplier", "primers_supplier"] ] ): if quote.assembly_plan is None: quote = quote.source.get_quote( quote.sequence, max_lead_time=quote.lead_time, with_assembly_plan=True, ) segments = { segment: rec(subquote) for segment, subquote in sorted( quote.assembly_plan.items(), key=lambda item: item[0] ) } quote.assembly_plan = segments if id_prefix: index = next(counter) quote.id = "{id_prefix}_{index:0{id_digits}}".format( id_prefix=id_prefix, index=index, id_digits=id_digits ) return quote rec(self) if id_prefix: index = next(counter) self.id = "{id_prefix}_{index:0{id_digits}}".format( id_prefix=id_prefix, index=index, id_digits=id_digits ) self.full_assembly_plan_computed = True def compute_fragments_final_locations(self): """Compute the exact final location of the fragments in the final sequence. """ if not self.full_assembly_plan_computed: self.compute_full_assembly_plan() quotes = self.tree_as_list() quotes_dict = {quote.id: quote for quote in quotes} _, temp_fasta = tempfile.mkstemp(suffix=".fa") with open(temp_fasta, "w+") as f: for quote in quotes: f.write(">%s\n%s\n" % (quote.id, quote.sequence)) results = blast_sequence( self.sequence, subject=temp_fasta, word_size=10, perc_identity=100 ) if isinstance(results, list): alignments = sum([rec.alignments for rec in results], []) else: alignments = results.alignments for al in alignments: hit = max(al.hsps, key=lambda hit: hit.align_length) final_location = sorted((hit.query_start, hit.query_end)) matching_segment = sorted((hit.sbjct_start, hit.sbjct_end)) quotes_dict[al.hit_def].final_location = final_location quotes_dict[al.hit_def].matching_segment = matching_segment os.remove(temp_fasta) def propagate_deadline(self, deadline): """Add a `deadline` attribute to the quote and propagate it to the quote's children by taking into account the duration of operations. For instance if "self" has a duration of 5 and receives a deadline of 8, the quotes that "self" depends on will receive a deadline of 8-5=3. """ self.deadline = deadline children_deadline = deadline - self.step_duration if self.assembly_plan is not None: for segment, child in self.assembly_plan.items(): child.propagate_deadline(children_deadline) ``` #### File: dnaweaver/DnaSupplier/builtin_constraints.py ```python from Bio import Restriction import re from ..biotools import gc_content, reverse_complement class NoPatternConstraint: """Constraint class forbidding a given pattern in DNA sequences. Class of callables (sequence)-> True/False whether the sequence contains the pattern. Can be useful for defining constraints in DNA assembly methods or DNA providers. The interest of having this as a class is that a DnaSupplier using this constraint can be displayed as a string with the pattern appearing explicitly, which would not be the case for a function Parameters ---------- pattern=None, enzyme=None, is_regex=False, with_revcomp=True """ def __init__(self, pattern=None, enzyme=None, is_regex=False, with_revcomp=True): self.biopython_enzyme = None if enzyme is not None: if enzyme in Restriction.__dict__: biopython_enzyme = Restriction.__dict__[enzyme] if all([c in "ATGC" for c in biopython_enzyme.site]): pattern = biopython_enzyme.site else: self.biopython_enzyme = biopython_enzyme else: raise ValueError("Unknown enzyme: %s" % enzyme) self.enzyme = enzyme self.pattern = pattern self.is_regex = is_regex self.with_revcomp = with_revcomp if self.with_revcomp and self.pattern: self.rev_pattern = reverse_complement(pattern) def __call__(self, sequence): if self.biopython_enzyme is not None: return self.biopython_enzyme.search(sequence) == [] if self.is_regex: cm_pattern = re.compile(self.pattern) if cm_pattern.search(sequence) is not None: if self.with_revcomp: sequence_rev = reverse_complement(sequence) return cm_pattern.search(sequence_rev) is not None else: return True else: return False else: if self.pattern not in sequence: if self.with_revcomp: return self.rev_pattern not in sequence else: return True else: return False def __repr__(self): return "No pattern '%s'" % (self.pattern) class SequenceLengthConstraint: def __init__(self, min_length=0, max_length=None): self.min_length = min_length self.max_length = max_length def __call__(self, sequence): L = len(sequence) upper_bound = self.max_length if self.max_length is not None else L return self.min_length <= L <= upper_bound def __str__(self): left_side = "" if (self.min_length == 0) else ("%d < " % self.min_length) right_side = "" if (self.max_length is None) else (" < %d" % self.max_length) return left_side + "length" + right_side class GcContentConstraint: def __init__(self, min_gc=0, max_gc=1.0, memoize=False): self.min_gc = min_gc self.max_gc = max_gc self.memoize = True self.memoization_dict = {} def __call__(self, sequence): if self.memoize: if sequence not in self.memoization_dict: result = self.min_gc <= gc_content(sequence) <= self.max_gc self.memoization_dict[sequence] = result return self.memoization_dict[sequence] return self.min_gc <= gc_content(sequence) <= self.max_gc def __str__(self): left_side = ( "" if (self.min_gc == 0) else ("%.01f" % (self.min_gc * 100) + "% < ") ) right_side = ( "" if (self.max_gc == 1) else (" < %.01f" % (self.max_gc * 100) + "%") ) return left_side + "GC" + right_side ``` #### File: DnaSupplier/builtin_suppliers/PartsLibrary.py ```python from Bio import SeqIO from ...DnaQuote import DnaQuote from ..DnaSupplier import DnaSupplier class PartsLibrary(DnaSupplier): """Class for collections of ready-to-assemble parts. This class is admittedly under-developed and could be expanded-subclassed to accommodate the different kinds of registries etc. """ class_description = "Parts Library" operation_type = "library" report_fa_symbol = u"" report_fa_symbol_plain = "book" report_color = "#feeefe" collections_by_id = {} library_classes = {} def __init__( self, name, parts_dict=None, fasta_file=None, memoize=False, price_per_part=0, lead_time=0, sequence_constraints=(), ): self.name = name self.price_per_part = price_per_part self.lead_time = lead_time self.sequence_constraints = sequence_constraints if fasta_file is not None: parts_dict = { record.id: str(record.seq).upper() for record in SeqIO.parse(fasta_file, "fasta") } self.parts_dict = parts_dict self.inverted_parts_dict = {v: k for k, v in parts_dict.items()} self.sequences_set = set(self.inverted_parts_dict) self.memoize = memoize self.memoize_dict = {} def get_best_price( self, sequence, max_lead_time=None, with_assembly_plan=False, ): """Returns a price-optimal DnaQuote for the given sequence. Parameters ---------- sequence (str) The sequence submitted to the Dna Source for a quote. max_lead_time (float) If provided, the quote returned is the best quote (price-wise) whose lead time is less or equal to max_lead_time. with_assembly_plan If True, the assembly plan is added to the quote. """ sequence = self.preprocess_sequence(sequence) if sequence in self.sequences_set: part_name = self.inverted_parts_dict[sequence] return DnaQuote( self, sequence, accepted=True, price=self.price_per_part, lead_time=self.lead_time, message="Part: " + part_name, metadata={"part_name": part_name}, ) return DnaQuote( self, sequence, accepted=False, message="Sequence not in the library", ) def preprocess_sequence(self, sequence): """Can be used by subclasses e.g. to anonymize wildcard nucleotides""" return sequence def additional_dict_description(self): return {"flanks length": self.flanks_length} @classmethod def from_dict(cls, data): parameters = cls.collections_by_id[data["collection"]] library_class = parameters.pop("library_class") if library_class in cls.library_classes: library_class = cls.library_classes[library_class] def get(param, default): return data.get(param, parameters.get(param, default)) return library_class( name=get("name", "library"), price_per_part=get("price_per_part", 0), lead_time=get("lead_time", 0), parts_dict=get("parts_dict", None), fasta_file=get("fasta_file", None), memoize=get("memoize", None), ) class GoldenGatePartsLibrary(PartsLibrary): """Library of parts for Golden Gate Assembly.""" class_description = "Golden Gate parts library" def __init__( self, name, parts_dict=None, fasta_file=None, price_per_part=0, lead_time=0, flanks_length=7, memoize=False, sequence_constraints=(), ): PartsLibrary.__init__( self, name, parts_dict=parts_dict, fasta_file=fasta_file, memoize=memoize, sequence_constraints=sequence_constraints, ) self.flanks_length = flanks_length def suggest_cuts(self, sequence): suggested_cuts = [] # + 2 is because the cut falls in the middle of the 4bp linker: flank = self.flanks_length for part, part_sequence in self.parts_dict.items(): segment = part_sequence[flank:-flank] i = sequence.find(segment) if i != -1: suggested_cuts += [i + 2, i + len(segment) - 2] return sorted(list(set(suggested_cuts))) def suggest_segments(self, sequence): suggested_segments = [] # + 2 is because the cut falls in the middle of the 4bp linker: flank = self.flanks_length for part, part_sequence in self.parts_dict.items(): segment = part_sequence[flank:-flank] i = sequence.find(segment) if i != -1: L = len(segment) suggested_segments.append(((i + 2, i + L - 2), part)) return sorted(set(suggested_segments)) @classmethod def preprocess_sequence(cls, sequence): """Can be used by subclasses e.g. to anonymize wildcard nucleotides""" return sequence[:6] + "N" + sequence[7:-7] + "N" + sequence[-6:] def additional_dict_description(self): return { "class": "Golden Gate parts library", "operation_type": "library", "flanks length": self.flanks_length, } PartsLibrary.library_classes.update( {"library": PartsLibrary, "golden_gate": GoldenGatePartsLibrary} ) ``` #### File: DnaSupplier/mixins/SupplyGraphNetwork.py ```python class SupplyNetworkMixin: def compute_supply_graph(self): """Return elements to plot the supply graph underlying this DnaSupplier. Returns ------- edges A list [(s1,s2), (s1,s3), (s2, s5)...] of couples of DnaSuppliers in a supplier-supplied relationship. levels A list of lists [[s1,s2], [s4,s8,s9]...] of sources. The first sublist (first level) are all sources at the farthest distance from the current source in the supply graph, and the last sublist contains only the current DnaSupplier. """ source_max_level = {} edges = [] def rec(source, depth, seen_sources): if source in seen_sources: return if source not in source_max_level: source_max_level[source] = depth else: source_max_level[source] = max(source_max_level[source], depth) new_seen_sources = seen_sources + [source] if hasattr(source, "suppliers"): for other in source.suppliers: edges.append((other, source)) rec(other, depth + 1, new_seen_sources) elif hasattr(source, "supplier"): edges.append((source.supplier, source)) rec(source.supplier, depth + 1, new_seen_sources) if hasattr(source, "primers_supplier"): edges.append((source.primers_supplier, source)) rec(source.primers_supplier, depth + 1, new_seen_sources) rec(self, depth=0, seen_sources=[]) levels = [ [source for source, level in source_max_level.items() if level == i] for i in range(max(source_max_level.values()) + 1) ][::-1] return edges, levels def dict_supply_graph(self): sources = {} def rec(source, depth=0): if source in sources: return if hasattr(source, "is_ghost_source") and source != self: return sources[source.name] = source.dict_description() sources[source.name]["_depth"] = depth providers = sources[source.name]["providers"] = [] if hasattr(source, "suppliers"): for other in source.suppliers: providers.append(other.name) rec(other, depth + 1) # if hasattr(source, "dna_supplier"): # providers.append(source.dna_supplier.name) # rec(source.dna_supplier, depth + 1) # if hasattr(source, "primers_supplier"): # providers.append(source.primers_supplier.name) # rec(source.primers_supplier, depth + 1) # if hasattr(source, "dna_suppliers"): # for other in source.dna_suppliers: # providers.append(other.name) # rec(other, depth + 1) rec(self) return sources ``` #### File: dnaweaver/SegmentSelector/FixedSizeSegmentSelector.py ```python from .SegmentSelector import SegmentSelector class FixedSizeSegmentSelector(SegmentSelector): """Selects segments of a constant size. Great for methods involving large homology regions where melting temperature matters less. """ def __init__(self, segment_size=100, left_addition="", right_addition=""): self.segment_size = segment_size self.left_addition = left_addition self.right_addition = right_addition def compute_segment_location(self, sequence, index): return self.get_segment_coordinates(index, self.segment_size, len(sequence)) @property def max_homology_size(self): return self.segment_size def __str__(self): result = "FixedSize(%dbp)" % self.segment_size if self.left_addition: result = ("...%s-" % self.left_addition[-12:]) + result if self.right_addition: result = result + ("-%s..." % self.right_addition[:12]) return result ``` #### File: manuscript_examples/a_star_factor_comparison/generate_supply_network.py ```python import os from dnaweaver.biotools import gc_content import dnaweaver as dw def generate_supply_network(a_star_factor): oligo_com = dw.CommercialDnaOffer( name="Oligo.com", sequence_constraints=[dw.SequenceLengthConstraint(max_length=200)], pricing=dw.PerBasepairPricing(0.10), lead_time=7, ) deluxe_dna_com = dw.CommercialDnaOffer( name="DeluxeDNA.com", sequence_constraints=[dw.SequenceLengthConstraint(max_length=4000)], pricing=dw.PerBasepairPricing(0.20), lead_time=10, ) cheap_dna_com = dw.CommercialDnaOffer( name="CheapDNA.com", sequence_constraints=[ dw.SequenceLengthConstraint(max_length=4000), dw.NoPatternConstraint(enzyme="AarI"), dw.NoPatternConstraint(enzyme="BsaI"), lambda seq: (0.4 < gc_content(seq) < 0.6), ], pricing=dw.PerBasepairPricing(0.10), lead_time=15, ) # OLIGOS TO BLOCKS ASSEMBLY oligo_assembly_station = dw.DnaAssemblyStation( name="Oligo Assembly Station", assembly_method=dw.OligoAssemblyMethod( overhang_selector=dw.TmSegmentSelector( min_size=15, max_size=25, min_tm=50, max_tm=70 ), min_segment_length=40, max_segment_length=200, sequence_constraints=[dw.SequenceLengthConstraint(max_length=1500)], duration=8, cost=2, ), supplier=oligo_com, coarse_grain=20, fine_grain=False, a_star_factor=a_star_factor, ) # BLOCKS TO CHUNKS ASSEMBLY blocks_sources_comparator = dw.DnaSuppliersComparator( name="bs_comparator", suppliers=[oligo_assembly_station, cheap_dna_com, deluxe_dna_com], memoize=True, ) gibson_blocks_assembly_station = dw.DnaAssemblyStation( name="Gibson Blocks Assembly", assembly_method=dw.GibsonAssemblyMethod( overhang_selector=dw.FixedSizeSegmentSelector(80), min_segment_length=1000, max_segment_length=4000, duration=8, cost=16, ), supplier=blocks_sources_comparator, coarse_grain=300, fine_grain=False, memoize=True, a_star_factor=a_star_factor, ) goldengate_blocks_assembly_station = dw.DnaAssemblyStation( name="Golden Gate Blocks Assembly", assembly_method=dw.GoldenGateAssemblyMethod( enzyme="BsmBI", wildcard_basepair="A", min_segment_length=1000, max_segment_length=4000, duration=5, cost=6, ), supplier=blocks_sources_comparator, coarse_grain=400, fine_grain=False, memoize=True, a_star_factor=a_star_factor, ) ecoli_genome_path = os.path.join( "..", "..", "data", "ecoli_blast_db", "ecoli" ) ecoli_genome = dw.PcrExtractionStation( "E. coli Genome (PCR)", primers_supplier=oligo_com, homology_selector=dw.TmSegmentSelector(), blast_database=ecoli_genome_path, max_amplicon_length=10000, extra_time=3, extra_cost=1, ) # CHUNKS TO MEGACHUNKS ASSEMBLY return dw.DnaAssemblyStation( name="Chunks assembly (Yeast)", assembly_method=dw.GibsonAssemblyMethod( overhang_selector=dw.FixedSizeSegmentSelector(300), min_segment_length=7000, max_segment_length=25000, duration=8, ), supplier=[ ecoli_genome, goldengate_blocks_assembly_station, gibson_blocks_assembly_station, ], coarse_grain=1000, fine_grain=None, a_star_factor=a_star_factor, memoize=True, ) ``` #### File: DnaWeaver/tests/test_full_report.py ```python import matplotlib matplotlib.use("Agg") import os from dnaweaver import ( PcrExtractionStation, CommercialDnaOffer, DnaAssemblyStation, GibsonAssemblyMethod, GoldenGateAssemblyMethod, OligoAssemblyMethod, DnaSuppliersComparator, TmSegmentSelector, FixedSizeSegmentSelector, PerBasepairPricing, NoPatternConstraint, SequenceLengthConstraint, ) from dnaweaver.biotools import gc_content SEQUENCE_PATH = os.path.join("tests", "data", "full_example_50kb_sequence.txt") ECOLI_DB_PATH = os.path.join("tests", "data", "ecoli_blast_db", "ecoli") def test_full_report(): # OLIGO COMPANIES a_star_factor = "auto" memoize = True oligo_com = CommercialDnaOffer( name="Oligo.com", sequence_constraints=[SequenceLengthConstraint(max_length=200)], pricing=PerBasepairPricing(0.10), lead_time=7, ) deluxe_dna_com = CommercialDnaOffer( name="DeluxeDNA.com", sequence_constraints=[SequenceLengthConstraint(max_length=4000)], pricing=PerBasepairPricing(0.20), lead_time=10, ) cheap_dna_com = CommercialDnaOffer( name="CheapDNA.com", sequence_constraints=[ SequenceLengthConstraint(max_length=4000), NoPatternConstraint(enzyme="AarI"), NoPatternConstraint(enzyme="BsaI"), lambda seq: (0.4 < gc_content(seq) < 0.6), ], pricing=PerBasepairPricing(0.10), lead_time=15, ) # OLIGOS TO BLOCKS ASSEMBLY oligo_assembly_station = DnaAssemblyStation( name="Oligo Assembly Station", assembly_method=OligoAssemblyMethod( overhang_selector=TmSegmentSelector( min_size=15, max_size=25, min_tm=50, max_tm=70 ), min_segment_length=40, max_segment_length=200, sequence_constraints=[SequenceLengthConstraint(max_length=1500)], duration=8, cost=2, ), supplier=oligo_com, coarse_grain=20, fine_grain=False, a_star_factor=a_star_factor, ) # BLOCKS TO CHUNKS ASSEMBLY blocks_sources_comparator = DnaSuppliersComparator( name="bs_comparator", suppliers=[oligo_assembly_station, cheap_dna_com, deluxe_dna_com], memoize=memoize, ) gibson_blocks_assembly_station = DnaAssemblyStation( name="Gibson Blocks Assembly", assembly_method=GibsonAssemblyMethod( overhang_selector=FixedSizeSegmentSelector(80), min_segment_length=1000, max_segment_length=4000, duration=8, cost=16, ), supplier=blocks_sources_comparator, coarse_grain=300, fine_grain=False, memoize=memoize, a_star_factor=a_star_factor, ) goldengate_blocks_assembly_station = DnaAssemblyStation( name="Golden Gate Blocks Assembly", assembly_method=GoldenGateAssemblyMethod( enzyme="BsmBI", wildcard_basepair="A", min_segment_length=1000, max_segment_length=4000, duration=5, cost=6, ), supplier=blocks_sources_comparator, coarse_grain=400, fine_grain=False, memoize=memoize, a_star_factor=a_star_factor, ) ecoli_genome = PcrExtractionStation( "E. coli Genome (PCR)", primers_supplier=oligo_com, homology_selector=TmSegmentSelector( min_size=18, max_size=22, min_tm=55, max_tm=65 ), blast_database=ECOLI_DB_PATH, max_amplicon_length=10000, extra_time=3, extra_cost=1, ) # CHUNKS TO MEGACHUNKS ASSEMBLY chunks_assembly_station = DnaAssemblyStation( name="Chunks assembly (Gibson)", assembly_method=GibsonAssemblyMethod( overhang_selector=FixedSizeSegmentSelector(300), min_segment_length=7000, max_segment_length=25000, duration=8, ), supplier=DnaSuppliersComparator( [ ecoli_genome, goldengate_blocks_assembly_station, gibson_blocks_assembly_station, ] ), coarse_grain=1000, fine_grain=None, a_star_factor=a_star_factor, memoize=memoize, ) with open(SEQUENCE_PATH, "r") as f: sequence = f.read() import time t0 = time.time() chunks_assembly_station.prepare_network_on_sequence(sequence) quote = chunks_assembly_station.get_quote( sequence, with_assembly_plan=True ) t1 = time.time() print("ELAPSED:", "%.02f" % (t1 - t0)) if quote.accepted: print(quote.assembly_step_summary()) assert 3500 < quote.price < 3600 report = quote.to_assembly_plan_report() report.write_full_report("@memory") # report.plot_assembly_timeline( # deadline=None, # ax=None, # rectangle_color="#bbbbff", # scale=1.0, # ) ```
{ "source": "jlerman44/escher", "score": 2 }
#### File: escher/escher/plots.py ```python from escher.quick_server import serve_and_open from escher import urls import os from os.path import dirname, abspath, join, isfile, isdir from warnings import warn from urllib2 import urlopen, HTTPError, URLError import json import shutil import appdirs import re from jinja2 import Environment, PackageLoader, Template import codecs import random import string # set up jinja2 template location env = Environment(loader=PackageLoader('escher', 'templates')) def get_cache_dir(name=None): """ Get the cache dir as a string. name: an optional subdirectory within the cache """ cache_dir = join(appdirs.user_cache_dir('escher', appauthor="<NAME>")) if name is not None: cache_dir = join(cache_dir, name) try: os.makedirs(cache_dir) except OSError: pass return cache_dir def clear_cache(): """Empty the contents of the cache directory.""" cache_dir = get_cache_dir() for root, dirs, files in os.walk(cache_dir): for f in files: os.unlink(join(root, f)) for d in dirs: shutil.rmtree(join(root, d)) def list_cached_maps(): """Return a list of all cached maps.""" try: return [x.replace('.json', '') for x in os.listdir(get_cache_dir(name='maps'))] except OSError: print 'No cached maps' return None def list_cached_models(): """Return a list of all cached models.""" try: return [x.replace('.json', '') for x in os.listdir(get_cache_dir(name='models'))] except OSError: print 'No cached maps' return None def get_an_id(): return unicode(''.join(random.choice(string.ascii_lowercase) for _ in range(10))) def load_resource(resource, name, safe=False): """Load a resource that could be a file, URL, or json string.""" # if it's a url, download it if resource.startswith('http://') or resource.startswith('https://'): try: download = urlopen(resource) except URLError as err: raise err else: return download.read() # if it's a filepath, load it if os.path.exists(resource): if (safe): raise Exception('Cannot load resource from file with safe mode enabled.') try: with open(resource, 'r') as f: loaded_resource = f.read() _ = json.loads(loaded_resource) except ValueError as err: raise ValueError('%s not a valid json file' % name) else: return loaded_resource # try to validate the json try: _ = json.loads(resource) except ValueError as err: raise ValueError('Could not load %s. Not valid json, url, or filepath' % name) else: return resource raise Exception('Could not load %s.' % name) class Builder(object): """Viewable metabolic map. This map will also show metabolic fluxes passed in during consruction. It can be viewed as a standalone html inside a browswer. Alternately, the respresentation inside an IPython notebook will also display the map. Maps are stored in json files and are stored in a cache directory. Maps which are not found will be downloaded from a map repository if found. Arguments --------- map_name: a string specifying a map to be downloaded from the Escher web server. map_json: a json string, or a file path to a json file, or a URL specifying a json file to be downloaded. model_name: a string specifying a model to be downloaded from the Escher web server. model_json: a json string, or a file path to a json file, or a URL specifying a json file to be downloaded. reaction_data: a dictionary with keys that correspond to reaction ids and values that will be mapped to reaction arrows and labels. reaction_data: a dictionary with keys that correspond to metabolite ids and values that will be mapped to metabolite nodes and labels. local_host: a hostname that will be used for any local files in dev mode. Defaults to the current host. safe: if True, then loading files from the filesytem is not allowed. This is to ensure the safety of using Builder with a web server. """ def __init__(self, map_name=None, map_json=None, model_name=None, model_json=None, reaction_data=None, metabolite_data=None, local_host='', safe=False): self.safe = safe # load the map self.map_name = map_name self.map_json = map_json self.loaded_map_json = None if map_name and map_json: warn('map_json overrides map_name') self.load_map() # load the model self.model_name = model_name self.model_json = model_json self.loaded_model_json = None if model_name and model_json: warn('model_json overrides model_name') self.load_model() # set the args self.reaction_data = reaction_data self.metabolite_data = metabolite_data self.local_host = local_host.strip(os.sep) # make the unique id self.generate_id() def generate_id(self): self.the_id = get_an_id() def load_model(self): """Load the model from input model_json using load_resource, or, secondarily, from model_name. """ model_json = self.model_json if model_json is not None: self.loaded_model_json = load_resource(self.model_json, 'model_json', safe=self.safe) elif self.model_name is not None: # get the name model_name = self.model_name model_name = model_name.replace(".json", "") # if the file is not present attempt to download cache_dir = get_cache_dir(name='models') model_filename = join(cache_dir, model_name + ".json") if not isfile(model_filename): model_not_cached = 'Model "%s" not in cache. Attempting download from %s' % \ (model_name, urls.escher_home) warn(model_not_cached) try: url = urls.model_download + model_name + ".json" download = urlopen(url) with open(model_filename, "w") as outfile: outfile.write(download.read()) except HTTPError: raise ValueError("No model named %s found in cache or at %s" % \ (model_name, url)) with open(model_filename) as f: self.loaded_model_json = f.read() def load_map(self): """Load the map from input map_json using load_resource, or, secondarily, from map_name. """ map_json = self.map_json if map_json is not None: self.loaded_map_json = load_resource(self.map_json, 'map_json', safe=self.safe) elif self.map_name is not None: # get the name map_name = self.map_name map_name = map_name.replace(".json", "") # if the file is not present attempt to download cache_dir = get_cache_dir(name='maps') map_filename = join(cache_dir, map_name + ".json") if not isfile(map_filename): map_not_cached = 'Map "%s" not in cache. Attempting download from %s' % \ (map_name, urls.escher_home) warn(map_not_cached) try: url = urls.map_download + map_name + ".json" download = urlopen(url) with open(map_filename, "w") as outfile: outfile.write(download.read()) except HTTPError: raise ValueError("No map named %s found in cache or at %s" % \ (map_name, url)) with open(map_filename) as f: self.loaded_map_json = f.read() def _embedded_css(self, is_local): loc = (join(self.local_host, urls.builder_embed_css_local) if is_local else urls.builder_embed_css) download = urlopen(urls.builder_embed_css) return unicode(download.read().replace('\n', ' ')) def _initialize_javascript(self, is_local): javascript = (u"var map_data_{the_id} = {map_data};" u"var cobra_model_{the_id} = {cobra_model};" u"var reaction_data_{the_id} = {reaction_data};" u"var metabolite_data_{the_id} = {metabolite_data};" u"var css_string_{the_id} = '{style}';").format( the_id=self.the_id, map_data=(self.loaded_map_json if self.loaded_map_json else u'null'), cobra_model=(self.loaded_model_json if self.loaded_model_json else u'null'), reaction_data=(json.dumps(self.reaction_data) if self.reaction_data else u'null'), metabolite_data=(json.dumps(self.metabolite_data) if self.metabolite_data else u'null'), style=self._embedded_css(is_local)) return javascript def _draw_js(self, the_id, enable_editing, menu, enable_keys, dev, fill_screen, scroll_behavior): draw = (u"Builder({{ selection: d3.select('#{the_id}')," u"enable_editing: {enable_editing}," u"menu: {menu}," u"enable_keys: {enable_keys}," u"scroll_behavior: {scroll_behavior}," u"fill_screen: {fill_screen}," u"map: map_data_{the_id}," u"cobra_model: cobra_model_{the_id}," u"reaction_data: reaction_data_{the_id}," u"metabolite_data: metabolite_data_{the_id}," u"css: css_string_{the_id} }});").format( the_id=the_id, enable_editing=json.dumps(enable_editing), menu=json.dumps(menu), enable_keys=json.dumps(enable_keys), scroll_behavior=json.dumps(scroll_behavior), fill_screen=json.dumps(fill_screen)) if not dev: draw = u'escher.%s' % draw return draw def _get_html(self, js_source='web', menu='none', scroll_behavior='pan', html_wrapper=False, enable_editing=False, enable_keys=False, minified_js=True, fill_screen=False, height='800px'): """Generate the Escher HTML. Arguments -------- js_source: Can be one of the following: 'web' - (Default) use js files from zakandrewking.github.io/escher. 'local' - use compiled js files in the local escher installation. Works offline. 'dev' - use the local, uncompiled development files. Works offline. menu: Menu bar options include: 'none' - (Default) No menu or buttons. 'zoom' - Just zoom buttons (does not require bootstrap). 'all' - Menu and button bar (requires bootstrap). scroll_behavior: Scroll behavior options: 'pan' - (Default) Pan the map. 'zoom' - Zoom the map. 'none' - No scroll events. minified_js: If True, use the minified version of js files. If js_source is 'dev', then this option is ignored. html_wrapper: If True, return a standalone html file. enable_editing: Enable the editing modes (build, rotate, etc.). enable_keys: Enable keyboard shortcuts. height: The height of the HTML container. """ if js_source not in ['web', 'local', 'dev']: raise Exception('Bad value for js_source: %s' % js_source) if menu not in ['none', 'zoom', 'all']: raise Exception('Bad value for menu: %s' % menu) if scroll_behavior not in ['pan', 'zoom', 'none']: raise Exception('Bad value for scroll_behavior: %s' % scroll_behavior) content = env.get_template('content.html') # if height is not a string if type(height) is int: height = u"%dpx" % height elif type(height) is float: height = u"%fpx" % height elif type(height) is str: height = unicode(height) # set the proper urls is_local = js_source=='local' or js_source=='dev' is_dev = js_source=='dev' d3_url = (join(self.local_host, urls.d3_local) if is_local else urls.d3) escher_url = ("" if js_source=='dev' else (join(self.local_host, urls.escher_min_local) if is_local and minified_js else (join(self.local_host, urls.escher_local) if is_local else (urls.escher_min if minified_js else urls.escher)))) jquery_url = ("" if not menu=='all' else (join(self.local_host, urls.jquery_local) if is_local else urls.jquery)) boot_css_url = ("" if not menu=='all' else (join(self.local_host, urls.boot_css_local) if is_local else urls.boot_css)) boot_js_url = ("" if not menu=='all' else (join(self.local_host, urls.boot_js_local) if is_local else urls.boot_js)) require_js_url = (urls.require_js_local if is_local else urls.require_js) html = content.render(require_js=require_js_url, id=self.the_id, height=height, escher_css=(join(self.local_host, urls.builder_css_local) if is_local else urls.builder_css), dev=is_dev, d3=d3_url, escher=escher_url, jquery=jquery_url, boot_css=boot_css_url, boot_js=boot_js_url, wrapper=html_wrapper, host=self.local_host, initialize_js=self._initialize_javascript(is_local), draw_js=self._draw_js(self.the_id, enable_editing, menu, enable_keys, is_dev, fill_screen, scroll_behavior),) return html def display_in_notebook(self, js_source='web', menu='zoom', scroll_behavior='none', enable_editing=False, enable_keys=False, minified_js=True, height=500): """Display the plot in the notebook. Arguments -------- js_source: Can be one of the following: 'web' (Default) - use js files from zakandrewking.github.io/escher. 'local' - use compiled js files in the local escher installation. Works offline. 'dev' - use the local, uncompiled development files. Works offline. menu: Menu bar options include: 'none' - No menu or buttons. 'zoom' - Just zoom buttons. Note: The 'all' menu option does not work in an IPython notebook. scroll_behavior: Scroll behavior options: 'pan' - Pan the map. 'zoom' - Zoom the map. 'none' - (Default) No scroll events. enable_editing: Enable the editing modes (build, rotate, etc.). enable_keys: Enable keyboard shortcuts. minified_js: If True, use the minified version of js files. If js_source is 'dev', then this option is ignored. height: Height of the HTML container. """ html = self._get_html(js_source=js_source, menu=menu, scroll_behavior=scroll_behavior, html_wrapper=False, enable_editing=enable_editing, enable_keys=enable_keys, minified_js=minified_js, fill_screen=False, height=height) if menu=='all': raise Exception("The 'all' menu option cannot be used in an IPython notebook.") # import here, in case users don't have requirements installed from IPython.display import HTML return HTML(html) def display_in_browser(self, ip='127.0.0.1', port=7655, n_retries=50, js_source='web', menu='all', scroll_behavior='pan', enable_editing=True, enable_keys=True, minified_js=True): """Launch a web browser to view the map. Arguments -------- js_source: Can be one of the following: 'web' - use js files from zakandrewking.github.io/escher. 'local' - use compiled js files in the local escher installation. Works offline. 'dev' - use the local, uncompiled development files. Works offline. menu: Menu bar options include: 'none' - No menu or buttons. 'zoom' - Just zoom buttons (does not require bootstrap). 'all' - Menu and button bar (requires bootstrap). scroll_behavior: Scroll behavior options: 'pan' - (Default) Pan the map. 'zoom' - Zoom the map. 'none' - No scroll events. enable_editing: Enable the editing modes (build, rotate, etc.). enable_keys: Enable keyboard shortcuts. minified_js: If True, use the minified version of js files. If js_source is 'dev', then this option is ignored. height: Height of the HTML container. """ html = self._get_html(js_source=js_source, menu=menu, scroll_behavior=scroll_behavior, html_wrapper=True, enable_editing=enable_editing, enable_keys=enable_keys, minified_js=minified_js, fill_screen=True, height="100%") serve_and_open(html, ip=ip, port=port, n_retries=n_retries) def save_html(self, filepath=None, js_source='web', menu='all', scroll_behavior='pan', enable_editing=True, enable_keys=True, minified_js=True): """Save an HTML file containing the map. Arguments -------- js_source: Can be one of the following: 'web' - use js files from zakandrewking.github.io/escher. 'local' - use compiled js files in the local escher installation. Works offline. 'dev' - use the local, uncompiled development files. Works offline. menu: Menu bar options include: 'none' - No menu or buttons. 'zoom' - Just zoom buttons (does not require bootstrap). 'all' - Menu and button bar (requires bootstrap). scroll_behavior: Scroll behavior options: 'pan' - (Default) Pan the map. 'zoom' - Zoom the map. 'none' - No scroll events. enable_editing: Enable the editing modes (build, rotate, etc.). enable_keys: Enable keyboard shortcuts. minified_js: If True, use the minified version of js files. If js_source is 'dev', then this option is ignored. height: Height of the HTML container. """ html = self._get_html(js_source=js_source, menu=menu, scroll_behavior=scroll_behavior, html_wrapper=True, enable_editing=enable_editing, enable_keys=enable_keys, minified_js=minified_js, fill_screen=True, height="100%") if filepath is not None: with codecs.open(filepath, 'w', encoding='utf-8') as f: f.write(html) return filepath else: from tempfile import mkstemp from os import write, close os_file, filename = mkstemp(suffix=".html") write(os_file, unicode(html).encode('utf-8')) close(os_file) return filename ``` #### File: escher/escher/server.py ```python from escher.ko_server import koHandler from escher.plots import Builder import os, subprocess from os.path import join import tornado.ioloop from tornado.web import RequestHandler, asynchronous, HTTPError, Application from tornado.httpclient import AsyncHTTPClient from tornado import gen import tornado.escape from tornado.options import define, options, parse_command_line import json import re from jinja2 import Environment, PackageLoader from mimetypes import guess_type # set up jinja2 template location env = Environment(loader=PackageLoader('escher', 'templates')) # set directory to server directory = os.path.abspath(os.path.dirname(__file__)).strip(os.pathsep) directory = re.sub(r'escher$', '', directory) NO_CACHE = True PORT = 7778 PUBLIC = False def run(port=PORT, public=PUBLIC): global PORT global PUBLIC PORT = port PUBLIC = public print 'serving directory %s on port %d' % (directory, PORT) application.listen(port, None if public else "localhost") try: tornado.ioloop.IOLoop.instance().start() except KeyboardInterrupt: print "bye!" def stop(): tornado.ioloop.IOLoop.instance().stop() class BaseHandler(RequestHandler): def serve_path(self, path): # make sure the path exists if not os.path.isfile(path): raise HTTPError(404) # serve it with open(path, "rb") as file: data = file.read() # set the mimetype self.set_header("Content-Type", guess_type(path, strict=False)[0]) self.serve(data) def serve(self, data): if (NO_CACHE): self.set_header('Cache-Control', 'no-store, no-cache, must-revalidate, max-age=0') self.write(data) self.finish() class IndexHandler(BaseHandler): def get(self): template = env.get_template('index.html') data = template.render() self.set_header("Content-Type", "text/html") self.serve(data) class BuilderHandler(BaseHandler): @asynchronous @gen.engine def get(self, dev_path, offline_path, kind, path): # builder vs. viewer & dev vs. not dev js_source = ('dev' if (dev_path is not None) else ('local' if (offline_path is not None) else 'web')) enable_editing = (kind=='builder') # Builder options builder_kwargs = {} for a in ['starting_reaction', 'model_name', 'map_name', 'map_json']: args = self.get_arguments(a) if len(args)==1: builder_kwargs[a] = args[0] # make the builder builder = Builder(safe=True, **builder_kwargs) # display options display_kwargs = {'minified_js': True, 'scroll_behavior': 'pan', 'menu': 'all'} # keyword for a in ['menu', 'scroll_behavior', 'minified_js']: args = self.get_arguments(a) if len(args)==1: display_kwargs[a] = args[0] # get the html html = builder._get_html(js_source=js_source, enable_editing=enable_editing, enable_keys=True, html_wrapper=True, fill_screen=True, height='100%', **display_kwargs) self.set_header("Content-Type", "text/html") self.serve(html) class LibHandler(BaseHandler): def get(self, path): full_path = join(directory, 'escher', 'lib', path) if os.path.isfile(full_path): path = full_path else: raise HTTPError(404) self.serve_path(path) class StaticHandler(BaseHandler): def get(self, path): path = join(directory, 'escher', path) print 'getting path %s' % path self.serve_path(path) settings = {"debug": "False"} application = Application([ (r".*/knockout-map/(.*)", koHandler), (r".*/lib/(.*)", LibHandler), (r".*/(fonts/.*)", LibHandler), (r".*/(js/.*)", StaticHandler), (r".*/(css/.*)", StaticHandler), (r".*/(resources/.*)", StaticHandler), (r"/(dev/)?(offline/)?(builder|viewer)(.*)", BuilderHandler), (r".*/(map_spec.json)", StaticHandler), (r".*/(escher[^/]+js)", LibHandler), (r"/", IndexHandler), ], **settings) if __name__ == "__main__": # define port define("port", default=PORT, type=int, help="Port to serve on.") define("public", default=PUBLIC, type=bool, help=("If False, listen only on localhost. If True, listen on " "all available addresses.")) parse_command_line() run(port=options.port, public=options.public) ```
{ "source": "jlesage/TygerCaddy", "score": 2 }
#### File: TygerCaddy/hosts/caddyfile.py ```python import subprocess from config.models import Config from django.conf import settings from django.contrib.auth.models import User from dns.models import EVariables from proxies.models import Header from .models import Host def reload_caddy(): subprocess.call('pkill -USR1 caddy', shell=True) return True def generate_caddyfile(): user = User.objects.get(pk=1) project = settings.BASE_DIR caddyfilepath = project + '/data/caddyfile.conf' caddyfile = open(caddyfilepath, "w+") config = Config.objects.get(pk=1) if config.dns_provider: dns = config.dns_provider caddyname = dns.caddy_name set_evariables(config=config, dns=dns) hosts = Host.objects.all() if hosts: for caddyhost in hosts: # if caddyhost.dns_verification: # set_evariables(config=config, dns=caddyhost.dns_provider) headerlist = Header.objects.filter(proxy_id=caddyhost.proxy.id) block = caddyhost.host_name + ' { \n' block += '\t root ' + caddyhost.root_path + '\n' block += '\t\t proxy ' + caddyhost.proxy.proxy_from + ' ' + caddyhost.proxy.proxy_to + ' { \n' print(caddyhost.proxy) if caddyhost.proxy.load_policy: block += '\t\t\t load_policy ' + str(caddyhost.proxy.load_policy.name) + '\n' if caddyhost.proxy.fail_timeout: block += '\t\t\t fail_timeout ' + str(caddyhost.proxy.fail_timeout) + '\n' if caddyhost.proxy.max_fails: block += '\t\t\t max_fails ' + str(caddyhost.proxy.max_fails) + '\n' if caddyhost.proxy.max_conns: block += '\t\t\t max_conns ' + str(caddyhost.proxy.max_conns) + '\n' if caddyhost.proxy.try_duration: block += '\t\t\t try_duration ' + str(caddyhost.proxy.try_duration) + '\n' if caddyhost.proxy.try_interval: block += '\t\t\t try_interval ' + str(caddyhost.proxy.try_interval) + '\n' if caddyhost.proxy.health_check: block += '\t\t\t health_check ' + str(caddyhost.proxy.health_check) + '\n' if caddyhost.proxy.health_check_port: block += '\t\t\t health_check_port ' + str(caddyhost.proxy.health_check_port) + '\n' if caddyhost.proxy.health_check_interval: block += '\t\t\t health_check_interval ' + str(caddyhost.proxy.health_check_interval) + '\n' if caddyhost.proxy.health_check_timeout: block += '\t\t\t health_check_timeout ' + str(caddyhost.proxy.health_check_timeout) + '\n' if caddyhost.proxy.keep_alive: block += '\t\t\t keep_alive ' + str(caddyhost.proxy.keep_alive) + '\n' if caddyhost.proxy.timeout: block += '\t\t\t timeout ' + str(caddyhost.proxy.timeout) + '\n' if caddyhost.proxy.without: block += '\t\t\t without ' + str(caddyhost.proxy.without) + '\n' if caddyhost.proxy.exceptions: block += '\t\t\t exceptions ' + str(caddyhost.proxy.exceptions) + '\n' if caddyhost.proxy.insecure_skip_verify: block += '\t\t\t insecure_skip_verify \n' if caddyhost.proxy.websocket: block += '\t\t\t websocket \n' if caddyhost.proxy.transparent: block += '\t\t\t transparent \n' if headerlist: for header in headerlist: if header.downstream: block += 'header_downstream ' + header.header + ' ' + header.value + '\n' if header.upstream: block += 'header_upstream ' + header.header + ' ' + header.value + '\n' block += '\t\t } \n' if caddyhost.tls == False: block += '\ttls off \n } \n \n' elif config.dns_challenge: block += '\ttls ' + caddyname + '\n } \n \n' elif caddyhost.staging: block += '\ttls ' + user.email + ' {\n' \ '\t ca https://acme-staging-v02.api.letsencrypt.org/directory\n' \ '\t } \n' \ '} \n' else: block += '\ttls ' + user.email + '\n } \n \n' caddyfile.write(block) caddyfile.close() generate_dash() reload_caddy() return True def generate_dash(): project = settings.BASE_DIR caddyfilepath = project + '/data/caddyfile.conf' config = Config.objects.get(pk=1) block = config.interface + ':' + str(config.port) + ' { \n \n' \ 'proxy / ' + config.proxy_host + ' { \n' \ 'transparent \n' \ 'except ' + config.proxy_exception + '\n' \ '} \n \n' \ 'root ' + str(config.root_dir) + '\n' \ '} \n' caddyfile = open(caddyfilepath, "a+") caddyfile.write(block) caddyfile.close() return True def set_evariables(config, dns): variables = EVariables.objects.filter(dns_provider_id=dns.id) project = settings.BASE_DIR envpath = project + '/data/dns.env' env = open(envpath, 'w+') for var in variables: line = var.variable + '=' + var.value + '\n' env.write(line) env.close() return True ``` #### File: TygerCaddy/proxies/views.py ```python from django.views.generic import CreateView, ListView, UpdateView, DeleteView, DetailView from django.shortcuts import redirect from django.http import HttpResponseRedirect from django.contrib.auth.mixins import LoginRequiredMixin from django.urls import reverse_lazy from hosts.caddyfile import generate_caddyfile from .models import Proxy, Header class CreateProxy(LoginRequiredMixin, CreateView): template_name = 'proxies/add_proxy.html' model = Proxy success_url = '/proxies/list' fields = ['name', 'proxy_from', 'proxy_to', 'load_policy', 'fail_timeout', 'max_fails', 'max_conns', 'try_duration', 'try_interval', 'health_check', 'health_check_port', 'health_check_interval', 'health_check_timeout', 'keep_alive', 'timeout', 'without', 'exceptions', 'insecure_skip_verify', 'websocket', 'transparent'] def form_valid(self, form): form.save() generate_caddyfile() return redirect(reverse_lazy('all-proxies')) class ListProxies(LoginRequiredMixin, ListView): template_name = 'proxies/all_proxies.html' context_object_name = 'proxies' queryset = Proxy.objects.order_by('id') paginate_by = 10 title = 'All Proxies' class DetailProxy(LoginRequiredMixin, DetailView): template_name = 'proxies/proxy_detail.html' title = 'Proxy Detail' model = Proxy class UpdateProxy(LoginRequiredMixin, UpdateView): model = Proxy fields = ['name', 'proxy_from', 'proxy_to', 'load_policy', 'fail_timeout', 'max_fails', 'max_conns', 'try_duration', 'try_interval', 'health_check', 'health_check_port', 'health_check_interval', 'health_check_timeout', 'keep_alive', 'timeout', 'without', 'exceptions', 'insecure_skip_verify', 'websocket', 'transparent'] slug_field = 'name' success_url = reverse_lazy('all-proxies') def form_valid(self, form): form.save() generate_caddyfile() return redirect(reverse_lazy('all-proxies')) class DeleteProxy(LoginRequiredMixin, DeleteView): model = Proxy title = "Delete Proxy" success_url = reverse_lazy('all-proxies') def delete(self, request, *args, **kwargs): """ Calls the delete() method on the fetched object and then redirects to the success URL. """ self.object = self.get_object() self.object.delete() generate_caddyfile() return HttpResponseRedirect(self.get_success_url()) class CreateHeader(LoginRequiredMixin, CreateView): template_name = 'proxies/headers/add_header.html' model = Header success_url = '/proxies/headers/list' fields = ['header', 'upstream', 'downstream', 'value', 'proxy'] def form_valid(self, form): form.save() generate_caddyfile() return redirect(reverse_lazy('all-headers')) class ListHeaders(LoginRequiredMixin, ListView): template_name = 'proxies/headers/all_headers.html' context_object_name = 'headers' queryset = Header.objects.order_by('id') paginate_by = 10 title = 'All Headers' class DetailHeader(LoginRequiredMixin, DetailView): template_name = 'proxies/headers/header_detail.html' title = 'Header Detail' model = Proxy class UpdateHeader(LoginRequiredMixin, UpdateView): model = Header fields = ['header', 'upstream', 'downstream', 'value', 'proxy'] slug_field = 'header' success_url = reverse_lazy('all-headers') def form_valid(self, form): form.save() return redirect(reverse_lazy('all-headers')) class DeleteHeader(LoginRequiredMixin, DeleteView): model = Header title = "Delete Header" template_name = 'proxies/headers/header_confirm_delete.html' success_url = reverse_lazy('all-headers') def delete(self, request, *args, **kwargs): """ Calls the delete() method on the fetched object and then redirects to the success URL. """ self.object = self.get_object() self.object.delete() generate_caddyfile() return HttpResponseRedirect(self.get_success_url()) ```
{ "source": "jlesquembre/rst-tables.nvim", "score": 3 }
#### File: rplugin/python3/rst-tables.py ```python import re import textwrap import neovim from neovim.api import NvimError def mapl(f, x): return list(map(f, x)) def line_has_sep(line): """Line has a `-` before a `=` """ a = line.find('-') # not header b = line.find('=') # header if a == -1: # No `-` return False elif b == -1: # No `=`, but `-` return True else: return a < b def table_has_header(chunk): if len(chunk) == 1: return False try: if line_has_sep(chunk[2]) or line_has_sep(chunk[1]): return False except IndexError: return True return True def join_rows(rows, sep='\n'): """Given a list of rows (a list of lists) this function returns a flattened list where each the individual columns of all rows are joined together using the line separator. """ output = [] for row in rows: # grow output array, if necessary if len(output) <= len(row): for i in range(len(row) - len(output)): output.extend([[]]) for i, field in enumerate(row): field_text = field.strip() if field_text: output[i].append(field_text) return mapl(lambda lines: sep.join(lines), output) def line_is_separator(line): return re.match('^[\t +=-]+$', line) def has_line_seps(raw_lines): for line in raw_lines: if line_is_separator(line): return True return False def partition_raw_lines(raw_lines): """Partitions a list of raw input lines so that between each partition, a table row separator can be placed. """ if not has_line_seps(raw_lines): return mapl(lambda x: [x], raw_lines) curr_part = [] parts = [curr_part] for line in raw_lines: if line_is_separator(line): curr_part = [] parts.append(curr_part) else: curr_part.append(line) # remove any empty partitions (typically the first and last ones) return filter(lambda x: x != [], parts) def unify_table(table): """Given a list of rows (i.e. a table), this function returns a new table in which all rows have an equal amount of columns. If all full column is empty (i.e. all rows have that field empty), the column is removed. """ max_fields = max(map(lambda row: len(row), table)) empty_cols = [True] * max_fields output = [] for row in table: curr_len = len(row) if curr_len < max_fields: row += [''] * (max_fields - curr_len) output.append(row) # register empty columns (to be removed at the end) for i in range(len(row)): if row[i].strip(): empty_cols[i] = False # remove empty columns from all rows table = output output = [] for row in table: cols = [] for i in range(len(row)): should_remove = empty_cols[i] if not should_remove: cols.append(row[i]) output.append(cols) return output def split_table_row(row_string): if row_string.find("|") >= 0: # first, strip off the outer table drawings row_string = re.sub(r'^\s*\||\|\s*$', '', row_string) return re.split(r'\s*\|\s*', row_string.strip()) return re.split(r'\s\s+', row_string.rstrip()) def parse_table(raw_lines): row_partition = partition_raw_lines(raw_lines) lines = mapl(lambda row_string: join_rows(mapl(split_table_row, row_string)), row_partition) return unify_table(lines) def table_line(widths, header=False): if header: linechar = '=' else: linechar = '-' sep = '+' parts = [] for width in widths: parts.append(linechar * width) if parts: parts = [''] + parts + [''] return sep.join(parts) def str_width(unicode_text): """calc string width, support cjk characters.""" from unicodedata import east_asian_width return sum(1+(east_asian_width(c) in "WF") for c in unicode_text) def split_row_into_lines(row): row = mapl(lambda field: field.split('\n'), row) height = max(map(lambda field_lines: len(field_lines), row)) turn_table = [] for i in range(height): fields = [] for field_lines in row: if i < len(field_lines): fields.append(field_lines[i]) else: fields.append('') turn_table.append(fields) return turn_table def get_column_widths_from_border_spec(chunk): border = None for row in chunk: if line_is_separator(row): border = row.strip() break if border is None: raise RuntimeError('Cannot reflow this table. Top table border not found.') left = right = None if border[0] == '+': left = 1 if border[-1] == '+': right = -1 return mapl(lambda drawing: max(0, len(drawing) - 2), border[left:right].split('+')) def get_indent(line): return line[0 : len(line)-len(line.lstrip())] def apply_indent(table, indent): for i in range(len(table)): table[i] = indent + table[i] return table def get_field_width(field_text): return max(map(lambda s: str_width(s), field_text.split('\n'))) def get_column_widths(table): widths = [] for row in table: num_fields = len(row) # dynamically grow if num_fields >= len(widths): widths.extend([0] * (num_fields - len(widths))) for i in range(num_fields): field_width = get_field_width(row[i]) widths[i] = max(widths[i], field_width) return widths def pad_fields(row, widths): """Pads fields of the given row, so each field lines up nicely with the others. """ # Pad all fields using the calculated widths new_row = [] for i in range(len(row)): unicode_len = str_width(row[i]) col = ' ' + row[i] + ' ' * int(widths[i] - unicode_len + 1) new_row.append(col) return new_row def wrap_text(text, width): """wrap text, support cjk characters.""" lines = [] while len(text) > 0: w = width # check 1st string, if too wide, then guess again; guess = textwrap.wrap(text, w)[0] while str_width(guess) > width: w -= (str_width(guess) - width + 1)/2 guess = textwrap.wrap(text, w)[0] lines.append(guess) text = text[len(guess):].strip() return lines def reflow_row_contents(row, widths): new_row = [] for i, field in enumerate(row): wrapped_lines = wrap_text(field.replace('\n', ' '), widths[i]) new_row.append("\n".join(wrapped_lines)) return new_row def draw_table(table, manual_widths=None, header=True): if table == []: return [] if manual_widths is None: col_widths = get_column_widths(table) else: col_widths = manual_widths new_widths = get_column_widths(table) if len(new_widths) > len(col_widths): col_widths += new_widths[len(col_widths):] # Reserve room for the spaces sep_col_widths = mapl(lambda x: x + 2, col_widths) header_line = table_line(sep_col_widths, header=True) normal_line = table_line(sep_col_widths, header=False) output = [normal_line] first = True for row in table: if manual_widths: row = reflow_row_contents(row, manual_widths) row_lines = split_row_into_lines(row) # draw the lines (num_lines) for this row for row_line in row_lines: row_line = pad_fields(row_line, col_widths) output.append("|".join([''] + row_line + [''])) # then, draw the separator if first and header: output.append(header_line) first = False else: output.append(normal_line) return output @neovim.plugin class Main(object): def __init__(self, vim): self.vim = vim def get_table_bounds(self): row, col = self.vim.current.window.cursor upper = lower = row try: while self.vim.current.buffer[upper - 1].strip(): upper -= 1 except (IndexError, NvimError): pass else: upper += 1 try: while self.vim.current.buffer[lower - 1].strip(): lower += 1 except (IndexError, NvimError): pass else: lower -= 1 return (upper, lower) @neovim.command('TableRstFormat') def reformat_table(self): upper, lower = self.get_table_bounds() chunk = self.vim.current.buffer[upper - 1:lower] indent = get_indent(chunk[0]) table = parse_table(chunk) has_header = table_has_header(chunk) chunk = draw_table(table, header=has_header) self.vim.current.buffer[upper - 1:lower] = apply_indent(chunk, indent) @neovim.command('TableRstReflow') def reflow_table(self): upper, lower = self.get_table_bounds() chunk = self.vim.current.buffer[upper - 1:lower] indent = get_indent(chunk[0]) table = parse_table(chunk) widths = get_column_widths_from_border_spec(chunk) table = parse_table(chunk) has_header = table_has_header(chunk) chunk = draw_table(table, widths, header=has_header) self.vim.current.buffer[upper - 1:lower] = apply_indent(chunk, indent) ```
{ "source": "jlestel/quickstart-datalake-47lining", "score": 2 }
#### File: assets/analysis/glue.py ```python import boto3 import logging from time import sleep from multiprocessing import Process from botocore.errorfactory import ClientError def get_crawler_state(glue_client, crawler_name): response = glue_client.get_crawler( Name=crawler_name ) return response['Crawler']['State'] def crawl_after_job(glue_client, job_name, job_run_id, crawler_name): log = logging.getLogger('job_poll') while True: log.info('Waiting') sleep(30) response = glue_client.get_job_run( JobName=job_name, RunId=job_run_id ) job_run_state = response['JobRun']['JobRunState'] log.info('Job run state: {}'.format(job_run_state)) if job_run_state == 'SUCCEEDED': log.info('SUCCEEDED so break') break try: log.info('Trying to run crawler') glue_client.start_crawler( Name=crawler_name ) except ClientError as e: if e.response['Error']['Code'] == 'CrawlerRunningException': log.info('Crawler already running. Waiting additional 30 seconds') sleep(30) crawl_after_job(glue_client, job_name, job_run_id, crawler_name) else: log.exception(e) log.info('Finished') def run_aws_glue_crawler(config): log = logging.getLogger(__name__) client = boto3.client('glue', region_name=config['region_name']) curated_datasets_crawler_name = config['curated_datasets_crawler_name'] job_name = config['curated_datasets_job_name'] try: client.start_crawler( Name=curated_datasets_crawler_name ) except ClientError as e: if e.response['Error']['Code'] == 'CrawlerRunningException': log.info('Crawler already running') else: log.exception(e) raise e while True: sleep(10) curated_state = get_crawler_state(client, curated_datasets_crawler_name) log.info("Curated crawler state: {}".format(curated_state)) if curated_state != 'RUNNING': break try: response = client.start_job_run( JobName=job_name ) job_run_id = response['JobRunId'] p = Process(target=crawl_after_job, args=(client, job_name, job_run_id, curated_datasets_crawler_name)) p.start() except ClientError as e: if e.response['Error']['Code'] == 'ConcurrentRunsExceededException': log.info('Job already running') else: log.exception(e) raise e ``` #### File: assets/analysis/learn_more.py ```python import json import boto3 from analysis.exceptions import PublishTopicException def learn_more(config, form): print('SNS form {}'.format(form)) topic_arn = config['sns_learn_more_topic_arn'] payload = { 'name': form['name'], 'role': form['role'], 'email': form['email'], 'company': form['company'], 'message': form['message'] } region = topic_arn.split(':')[3] client = boto3.client('sns', region_name=region) response = client.publish( TopicArn=topic_arn, Message=json.dumps(payload), Subject='Data Lake Learn More request from {}'.format(payload['name'])) print('SNS response {}'.format(response)) if response['ResponseMetadata']['HTTPStatusCode'] != 200: raise PublishTopicException() ```
{ "source": "jletienne/yff", "score": 3 }
#### File: yff/archive/get_player_points.py ```python def get_player_points(player_season_id='390.p.28389') url = 'https://fantasysports.yahooapis.com/fantasy/v2/player/{}/stats;week=10;type=week'.format(player_season_id) response = oauth.session.get(url, params={'format': 'json'}) r = response.json() stats = r['fantasy_content']['player'][1]['player_stats']['stats'] player_stats = {} for i in stats: player_stats[i['stat']['stat_id']] = i['stat']['value'] player_stats_df = pd.DataFrame(list(player_stats.items()), index=None) header = ['stat_id', 'value'] player_stats_df.columns = header league_multiplier = get_league_settings() player_scores = player_stats_df.merge(league_multiplier, on='stat_id', how='left').fillna(0) player_scores["stat_multiplier"] = player_scores.stat_multiplier.astype(float) player_scores["value"] = player_scores.value.astype(float) player_scores["fantasy_points"] = player_scores["stat_multiplier"] * player_scores["value"] return sum(player_scores["fantasy_points"]) ``` #### File: yff/archive/get_roster_points.py ```python def get_roster_points(): url = 'https://fantasysports.yahooapis.com/fantasy/v2/team/390.l.XXXXXX.t.1/roster;week=10' response = oauth.session.get(url, params={'format': 'json'}) r = response.json() team_info = r['fantasy_content']['team'][1]['roster']['0']['players'] num_players = team_info['count'] for i in range(num_players): player_info = team_info[str(i)]['player'] print(player_info[0][2]['name']['full'], player_info[1]['selected_position'][1]['position']) ``` #### File: jletienne/yff/get_stats.py ```python import pandas as pd from yahoo_oauth import OAuth2 import logging import json from json import dumps import datetime week_num = 16 class Yahoo_Api(): def __init__(self, consumer_key, consumer_secret, access_token ): self._consumer_key = consumer_key self._consumer_secret = consumer_secret self._access_token = access_token self._authorization = None def _login(self): global oauth oauth = OAuth2(None, None, from_file='oauth2yahoo.json') if not oauth.token_is_valid(): oauth.refresh_access_token() with open('oauth2yahoo.json') as json_yahoo_file: auths = json.load(json_yahoo_file) yahoo_consumer_key = auths['consumer_key'] yahoo_consumer_secret = auths['consumer_secret'] yahoo_access_key = auths['access_token'] json_yahoo_file.close() yahoo_api = Yahoo_Api(yahoo_consumer_key, yahoo_consumer_secret, yahoo_access_key) yahoo_api._login() weekly_team_stats = [] opponent = {'0': '1', '1': '0'} for week in range(1, week_num+1): url = 'https://fantasysports.yahooapis.com/fantasy/v2/league/390.l.XXXXXX/scoreboard;week={}'.format(week) response = oauth.session.get(url, params={'format': 'json'}) r = response.json() for game in ['0', '1', '2', '3', '4']: try: for team in ['0','1']: name = r['fantasy_content']['league'][1]['scoreboard']['0']['matchups'][game]['matchup']['0']['teams'][team]['team'][0][2]['name'] manager = r['fantasy_content']['league'][1]['scoreboard']['0']['matchups'][game]['matchup']['0']['teams'][team]['team'][0][-1]['managers'][0]['manager']['nickname'] points = r['fantasy_content']['league'][1]['scoreboard']['0']['matchups'][game]['matchup']['0']['teams'][team]['team'][1]['team_points']['total'] points_against = r['fantasy_content']['league'][1]['scoreboard']['0']['matchups'][game]['matchup']['0']['teams'][opponent[team]]['team'][1]['team_points']['total'] projected_points = r['fantasy_content']['league'][1]['scoreboard']['0']['matchups'][game]['matchup']['0']['teams'][team]['team'][1]['team_projected_points']['total'] stats={'week': week, 'manager': manager, 'team_name': name, 'points': points, 'points_against': points_against, 'projected_points': projected_points} weekly_team_stats.append(stats) except: pass pd.DataFrame(weekly_team_stats).to_csv("rawdata/2019_fantasy_stats.csv", index=None) ```
{ "source": "jlettman/adventofcode", "score": 4 }
#### File: 2021/02/day02.py ```python from os.path import join, dirname, realpath from argparse import ArgumentParser from functools import reduce from sys import stderr __author__ = "<NAME>" __email__ = "<EMAIL>" __license__ = "MIT" CHALLENGE = """ Now, you need to figure out how to pilot this thing. It seems like the submarine can take a series of commands like forward 1, down 2, or up 3: forward X increases the horizontal position by X units. down X increases the depth by X units. up X decreases the depth by X units. Note that since you're on a submarine, down and up affect your depth, and so they have the opposite result of what you might expect. The submarine seems to already have a planned course (your puzzle input). You should probably figure out where it's going. For example: forward 5 down 5 forward 8 up 3 down 8 forward 2 Your horizontal position and depth both start at 0. The steps above would then modify them as follows: forward 5 adds 5 to your horizontal position, a total of 5. down 5 adds 5 to your depth, resulting in a value of 5. forward 8 adds 8 to your horizontal position, a total of 13. up 3 decreases your depth by 3, resulting in a value of 2. down 8 adds 8 to your depth, resulting in a value of 10. forward 2 adds 2 to your horizontal position, a total of 15. After following these instructions, you would have a horizontal position of 15 and a depth of 10. (Multiplying these together produces 150.) --- Part Two --- Based on your calculations, the planned course doesn't seem to make any sense. You find the submarine manual and discover that the process is actually slightly more complicated. In addition to horizontal position and depth, you'll also need to track a third value, aim, which also starts at 0. The commands also mean something entirely different than you first thought: down X increases your aim by X units. up X decreases your aim by X units. forward X does two things: It increases your horizontal position by X units. It increases your depth by your aim multiplied by X. Again note that since you're on a submarine, down and up do the opposite of what you might expect: "down" means aiming in the positive direction. Now, the above example does something different: forward 5 adds 5 to your horizontal position, a total of 5. Because your aim is 0, your depth does not change. down 5 adds 5 to your aim, resulting in a value of 5. forward 8 adds 8 to your horizontal position, a total of 13. Because your aim is 5, your depth increases by 8*5=40. up 3 decreases your aim by 3, resulting in a value of 2. down 8 adds 8 to your aim, resulting in a value of 10. forward 2 adds 2 to your horizontal position, a total of 15. Because your aim is 10, your depth increases by 2*10=20 to a total of 60. After following these new instructions, you would have a horizontal position of 15 and a depth of 60. (Multiplying these produces 900.) """ MOVE_UP = "up" MOVE_DOWN = "down" MOVE_FORWARD = "forward" def interpret(instruction: str) -> tuple: """ Split and interpret a piloting instruction and return a tuple of action and units. Paramaters: instruction (str): Instruction to interpret Returns tuple: Tuple of action and units """ action, units = instruction.split(" ", 1) units = int(units) return (action, units) def process_simple(last: tuple, instruction: str) -> tuple: """ Process instructions using simple mode (non-aim) and return the new tuple of horizontal and depth. Parameters: last (tuple): Last values of horizontal and depth instruction (str): Current instruction Returns: tuple: New values of horizontal and depth """ # extract last values horiz, depth = last # interpret the instruction action, units = interpret(instruction) if action == MOVE_UP: depth -= units elif action == MOVE_DOWN: depth += units elif action == MOVE_FORWARD: horiz += units else: raise ValueError(f"Unknown pilot command: {action}") return (horiz, depth) def process_advanced(last: tuple, instruction: str) -> tuple: """ Process instructions using advanced mode (aim) and return the new tuple of horizontal, depth, and aim. Parameters: last (tuple): Last values of horizontal, depth, and aim instruction (str): Current instruction Returns: tuple: New values of horizontal, depth, and aim """ # extract last values horiz, depth, aim = last # interpret the instruction action, units = interpret(instruction) if action == MOVE_UP: aim -= units elif action == MOVE_DOWN: aim += units elif action == MOVE_FORWARD: horiz += units depth += units * aim else: raise ValueError(f"Unknown pilot command: {action}") return (horiz, depth, aim) def pilot(instructions: iter, advanced: bool = False) -> int: """ Pilot a submarine using a list of instructions. Parameters: instructions (iter): Iterable list of piloting instructions advanced (bool): Use advanced (aim) mode as per part 2 Returns: int: Value of (horizontal * depth) distance measurements """ if advanced: horiz, depth, _ = reduce(process_advanced, instructions, (0, 0, 0)) else: horiz, depth = reduce(process_simple, instructions, (0, 0)) return (horiz * depth) def main(): """Command-line interface main function.""" parser = ArgumentParser(prog="day02", description=__doc__) parser.add_argument("-c", "--challenge", action="store_true", help="show the Advent of Code challenge and exit") parser.add_argument("-i", "--instructions", metavar="FILE", default=join( dirname(realpath(__file__)), "input.txt"), help="path to the instructions file") parser.add_argument("-a", "--advanced", action="store_true", help="use advanced (aim) mode") args = parser.parse_args() if args.challenge: print(CHALLENGE) return with open(args.instructions, 'r') as lines: instructions = map(lambda line: line.strip(), lines) res = pilot(instructions, args.advanced) print(res) if __name__ == "__main__": main() ```
{ "source": "jleung1/goal_modelling_rl", "score": 2 }
#### File: agents/gnet_agent/gnet_agent.py ```python from agents.base.agent import Agent from agents.gnet_agent.model import GNetGoalDQN import torch from tqdm import tqdm import numpy as np import pickle import torch.optim as optim from skimage.color import rgb2gray class GNetAgent(Agent): def __init__( self, env, gnet_manager, action_model, goal_model, action_memory, goal_memory, action_space, goal_space, num_goals, idx2goalnet, use_ga, env_name, device, ): super(GNetAgent, self).__init__( env, gnet_manager, action_model, action_memory, action_space, goal_space, num_goals, idx2goalnet, env_name, device, ) self.use_ga = use_ga if self.env_name == "two_keys" or self.env_name == "four_rooms_3d": if self.env_name == "two_keys": self.goal_clone_interval = 10 elif self.env_name == "four_rooms_3d": self.goal_clone_interval = 50 self.goal_replay_memory = goal_memory self.goal_model = goal_model self.goal_tau = 1.0 self.goal_lr = 0.001 self.eps_hi = 0.5 self.goal_opt = optim.Adam(self.goal_model.parameters(), lr=self.goal_lr) self.clone_goal_model = ( GNetGoalDQN(num_goals, self.device, env_name).eval().to(self.device) ) self.clone(self.clone_goal_model, self.goal_model, 1) def select_action(self, state, goal, c_goal, actions=None): state = torch.as_tensor(state, device=self.device).float().unsqueeze(0) goal = torch.as_tensor(goal, device=self.device).float().unsqueeze(0) c_goal = torch.as_tensor(c_goal, device=self.device).float().unsqueeze(0) if actions is not None: actions = torch.as_tensor(actions, device=self.device).float().unsqueeze(0) q_values = self.action_model(state, goal, c_goal, actions) action = torch.argmax(q_values) return action.item() def select_subgoal(self, state, goalnet_code, mask, state_extra=None): state = torch.as_tensor(state, device=self.device).float().unsqueeze(0) goalnet_code = torch.as_tensor(goalnet_code, device=self.device) mask = torch.as_tensor(mask, device=self.device) if state_extra is not None: state_extra = torch.as_tensor(state_extra, device=self.device).float() q_values = self.goal_model(state, goalnet_code, mask, state_extra) subgoal = torch.argmax(q_values) subgoal_coords = self.gnet_manager.get_goal_state(self.idx2goalnet[subgoal]) return subgoal, subgoal_coords def update_action_model(self): if self.env_name == "two_keys": ( state, action, reward, terminal, next_state, goal, c_goal, n_goal, ) = self.action_replay_memory.retrieve() q = ( self.action_model(state, goal, c_goal) .gather(1, action.view(self.minibatch_size, 1)) .squeeze(1) ) a_max = self.action_model(next_state, goal, n_goal).max(dim=1)[1].detach() qmax = ( self.clone_action_model(next_state, goal, n_goal) .detach() .gather(1, a_max.view(self.minibatch_size, 1)) .squeeze(1) ) elif self.env_name == "four_rooms_3d" or self.env_name == "ai2thor_kitchen": ( reward, terminal, goal, indexes, ) = self.action_replay_memory.retrieve_frame_stack() ( state, action, c_goal, next_state, n_goal, ) = self.action_replay_memory.get_frame_stack(indexes) q = ( self.action_model(state, goal, c_goal, action[:, :-1]) .squeeze(1) .gather(1, action[:, -1].view(self.minibatch_size, 1)) .squeeze(1) ) a_max = ( self.action_model(next_state, goal, n_goal, action[:, 1:]) .squeeze(1) .max(dim=1)[1] .detach() ) qmax = ( self.clone_action_model(next_state, goal, n_goal, action[:, 1:]) .squeeze(1) .detach() .gather(1, a_max.view(self.minibatch_size, 1)) .squeeze(1) ) nonterminal_target = reward + self.gamma * qmax terminal_target = reward target = ( terminal.float() * terminal_target + (~terminal).float() * nonterminal_target ) loss = self.loss(q, target) self.action_opt.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(self.action_model.parameters(), 1.0) self.action_opt.step() def update_goal_model(self): if self.env_name == "two_keys": ( state, action, reward, terminal, next_state, gnet_state, gnet_mask, next_gnet_state, next_gnet_mask, steps, _, _, ) = self.goal_replay_memory.retrieve() q = ( self.goal_model(state, gnet_state, gnet_mask) .gather(1, action.view(self.minibatch_size, 1)) .squeeze(1) ) g_max = ( self.goal_model(next_state, next_gnet_state, next_gnet_mask) .max(dim=1)[1] .detach() ) qmax = ( self.clone_goal_model(next_state, next_gnet_state, next_gnet_mask) .detach() .gather(1, g_max.view(self.minibatch_size, 1)) .squeeze(1) ) elif self.env_name == "four_rooms_3d" or self.env_name == "ai2thor_kitchen": ( state, action, reward, terminal, next_state, gnet_state, gnet_mask, next_gnet_state, next_gnet_mask, steps, state_extra, next_state_extra, ) = self.goal_replay_memory.retrieve() q = ( self.goal_model(state, gnet_state, gnet_mask, state_extra) .gather(1, action.view(self.minibatch_size, 1)) .squeeze(1) ) g_max = ( self.goal_model( next_state, next_gnet_state, next_gnet_mask, next_state_extra ) .max(dim=1)[1] .detach() ) qmax = ( self.clone_goal_model( next_state, next_gnet_state, next_gnet_mask, next_state_extra ) .detach() .gather(1, g_max.view(self.minibatch_size, 1)) .squeeze(1) ) nonterminal_target = (self.gamma ** steps) * reward + ( self.gamma ** steps ) * qmax terminal_target = (self.gamma ** steps) * reward target = ( terminal.float() * terminal_target + (~terminal).float() * nonterminal_target ) loss = self.loss(q, target) self.goal_opt.zero_grad() loss.backward() self.goal_opt.step() def save(self, result_data): super(GNetAgent, self).save(result_data) if self.env_name != "ai2thor_kitchen": torch.save(self.goal_model.state_dict(), self.save_dir + "/high_level.pt") torch.save( self.clone_goal_model.state_dict(), self.save_dir + "/high_level_clone.pt", ) torch.save(self.goal_opt.state_dict(), self.save_dir + "/high_level_opt.pt") self.goal_replay_memory.save_to_disk() def run( self, episodes, train=False, load=False, eval=False, episode=0, start_frame=0, save_checkpoints=False, do_print=True, floor_idx=-1, seed=-1, ): if not eval: self.frame = start_frame result_data = dict(episode=[], reward=[], steps=[], frames=[]) reward_history = [] steps_history = [] subgoal_progress = {} for key in self.gnet_manager.gnet_goals.keys(): subgoal_progress[key] = [] if load: self.load() progress_bar = tqdm(range(episode, episodes), unit="episode", disable=eval) goal_steps = 0 if self.env_name == "four_rooms_3d": channels = 3 img_height = 60 img_width = 80 if self.use_ga: state_extra_size = 11 else: state_extra_size = 8 elif self.env_name == "ai2thor_kitchen": channels = 4 img_height = 100 img_width = 100 if self.use_ga: state_extra_size = 10 else: state_extra_size = 8 for episode in progress_bar: total_steps = 0 if self.env_name == "ai2thor_kitchen": obs = self.env.reset(train=train, idx=floor_idx, seed=seed) else: obs = self.env.reset() state = self.process_obs(obs) if self.env_name == "two_keys": obs = state self.gnet_manager.reset() state_goal_selection = state trajectory_data = [] her_trajectory_data = [] episode_done = False total_reward = 0 c_goal_stack = None state_stack = None action_stack = None if self.env_name == "four_rooms_3d" or self.env_name == "ai2thor_kitchen": c_goal_stack = np.zeros((state_extra_size * self.frame_stack)) state_stack = np.zeros( (channels * self.frame_stack, img_height, img_width) ) action_stack = np.zeros((self.frame_stack - 1)) # Outer loop for high level while not episode_done: extrinsic_reward = 0 if self.env_name == "four_rooms_3d": hi_c_goal = [ self.env.agent.pos[0], self.env.agent.pos[2], self.env.goal.pos[0], self.env.goal.pos[2], self.env.yellow_subgoal.pos[0], self.env.yellow_subgoal.pos[2], self.env.blue_subgoal.pos[0], self.env.blue_subgoal.pos[2], ] else: hi_c_goal = None if ( train and self.env_name != "ai2thor_kitchen" and np.random.uniform() < self.eps_hi ): goalnet_code, mask = self.gnet_manager.generate_goal_mask() choices = self.gnet_manager.generate_options_list() probs = [] target_choices = [] for init_g, target_g in choices: success_rate = ( self.gnet_manager.goal_successes[init_g][target_g].sum() / self.gnet_manager.last_num_goals if len(self.gnet_manager.goal_successes[init_g][target_g]) > 0 else 0 ) probs.append(1.0 - success_rate + 0.1) target_choices.append(target_g) probs = probs / np.array(probs).sum() chosen = np.random.choice(target_choices, p=probs) subgoal_id = self.idx2goalnet.index(chosen) subgoal_coord = self.gnet_manager.get_goal_state(chosen) self.gnet_manager.gnet_state = self.gnet_manager.get_parent_goal( chosen ) elif self.env_name == "ai2thor_kitchen": chosen = self.gnet_manager.generate_options_list()[0][-1] self.gnet_manager.gnet_state = self.gnet_manager.get_parent_goal( chosen ) subgoal_id = self.idx2goalnet.index(chosen) subgoal_coord = self.gnet_manager.get_goal_state(chosen) else: goalnet_code, mask = self.gnet_manager.generate_goal_mask() subgoal_id, subgoal_coord = self.select_subgoal( state, goalnet_code, mask, hi_c_goal ) self.gnet_manager.gnet_state = self.gnet_manager.get_parent_goal( self.idx2goalnet[subgoal_id] ) goal_data = [] subgoal_data = [] subgoal_achieved = False other_subgoal_achieved = False achieved_subgoal_id = 0 # Inner loop for low level while ( not subgoal_achieved and not episode_done and not other_subgoal_achieved ): c_goal = self.gnet_manager.current_goal_state() if self.env_name == "four_rooms_3d": if self.use_ga: c_goal = [ self.env.goal.pos[0], self.env.goal.pos[2], self.env.yellow_subgoal.pos[0], self.env.yellow_subgoal.pos[2], self.env.blue_subgoal.pos[0], self.env.blue_subgoal.pos[2], ] + c_goal else: c_goal = [ self.env.agent.pos[0], self.env.agent.pos[2], self.env.goal.pos[0], self.env.goal.pos[2], self.env.yellow_subgoal.pos[0], self.env.yellow_subgoal.pos[2], self.env.blue_subgoal.pos[0], self.env.blue_subgoal.pos[2], ] state_stack = np.concatenate((state_stack[channels:], state)) c_goal_stack = np.concatenate( (c_goal_stack[state_extra_size:], c_goal) ) elif self.env_name == "ai2thor_kitchen": if self.use_ga: c_goal = self.env.fridge_pos + self.env.light_pos + c_goal else: c_goal = ( [ self.env.last_meta["agent"]["position"]["x"], self.env.last_meta["agent"]["position"]["z"], ] + self.env.fridge_pos + self.env.light_pos ) state_stack = np.concatenate((state_stack[channels:], state)) c_goal_stack = np.concatenate( (c_goal_stack[state_extra_size:], c_goal) ) if ( train and np.random.uniform() < self.gnet_manager.get_exploration_rate( self.gnet_manager.gnet_state, self.idx2goalnet[subgoal_id] ) ): action = np.random.choice(self.num_actions) elif ( eval and self.env_name == "four_rooms_3d" and np.random.uniform() < self.eps_eval ): action = np.random.choice(self.num_actions) else: if self.env_name == "two_keys": action = self.select_action(state, subgoal_coord, c_goal) else: action = self.select_action( state_stack, subgoal_coord, c_goal_stack, action_stack ) if ( self.env_name == "four_rooms_3d" or self.env_name == "ai2thor_kitchen" ): action_stack = np.append(action_stack[1:], action) new_obs, reward, episode_done, info = self.env.step(action) new_state = self.process_obs(new_obs) n_goal = self.gnet_manager.current_goal_state() if self.env_name == "two_keys": new_obs = new_state if self.env_name == "four_rooms_3d": if self.use_ga: n_goal = [ self.env.goal.pos[0], self.env.goal.pos[2], self.env.yellow_subgoal.pos[0], self.env.yellow_subgoal.pos[2], self.env.blue_subgoal.pos[0], self.env.blue_subgoal.pos[2], ] + n_goal else: n_goal = [ self.env.agent.pos[0], self.env.agent.pos[2], self.env.goal.pos[0], self.env.goal.pos[2], self.env.yellow_subgoal.pos[0], self.env.yellow_subgoal.pos[2], self.env.blue_subgoal.pos[0], self.env.blue_subgoal.pos[2], ] elif self.env_name == "ai2thor_kitchen": if self.use_ga: n_goal = self.env.fridge_pos + self.env.light_pos + n_goal else: n_goal = ( [ self.env.last_meta["agent"]["position"]["x"], self.env.last_meta["agent"]["position"]["z"], ] + self.env.fridge_pos + self.env.light_pos ) total_steps += 1 if self.gnet_manager.check_goal_satisfied( self.idx2goalnet[subgoal_id] ): subgoal_achieved = True subgoal_reward = 1 else: for path in self.gnet_manager.goal_paths: for gnet_state in self.gnet_manager.gnet_goals[ path.current_gnet_goal ]["goal_selection_options"]: if ( self.gnet_manager.check_goal_satisfied(gnet_state) and gnet_state != "end" ): other_subgoal_achieved = True achieved_parent_goal = path.current_gnet_goal achieved_subgoal_id = self.idx2goalnet.index( gnet_state ) subgoal_reward = 0 if train: if episode_done or subgoal_achieved or other_subgoal_achieved: done = True else: done = False subgoal_data.append( ( obs, action, done, subgoal_reward, new_obs, self.gnet_manager.target_goal_state, c_goal, n_goal, ) ) goal_data.append((obs, episode_done)) if self.env_name == "two_keys": self.action_replay_memory.save( obs, action, done, subgoal_reward, new_obs, self.gnet_manager.target_goal_state, c_goal, n_goal, ) else: trajectory_data.append( ( obs, action, done, subgoal_reward, new_obs, self.gnet_manager.target_goal_state, c_goal, n_goal, ) ) state = new_state obs = new_obs total_reward += reward extrinsic_reward += reward if not eval: self.frame += 1 if ( train and self.frame > self.min_buffer and self.frame > self.minibatch_size ): if self.frame % self.update_interval == 0: self.update_action_model() if self.frame % self.clone_interval == 0: self.clone( self.clone_action_model, self.action_model, self.tau ) if self.frame % 100 == 0: progress_bar.set_description("frame = {}".format(self.frame)) if subgoal_achieved: r_gnet_goal = self.gnet_manager.gnet_state r_subgoal_id = subgoal_id elif ( self.env_name == "two_keys" and self.env.agent_pos.tolist() == self.env.goal_pos.tolist() ): r_gnet_goal = self.gnet_manager.gnet_state r_subgoal_id = self.idx2goalnet.index("end") elif self.env_name == "four_rooms_3d" and self.env.near(self.env.goal): r_gnet_goal = self.gnet_manager.gnet_state r_subgoal_id = self.idx2goalnet.index("end") elif other_subgoal_achieved: r_gnet_goal = achieved_parent_goal r_subgoal_id = achieved_subgoal_id if train: add_experience = False new_goal = self.gnet_manager.current_goal_state() first = True if self.env_name == "two_keys": for ( r_state, r_action, r_done, _, r_new_state, _, c_goal, n_goal, ) in subgoal_data[::-1]: if first: new_reward = 1 first = False else: new_reward = 0 self.action_replay_memory.save( r_state, r_action, r_done, new_reward, r_new_state, new_goal, c_goal, n_goal, ) else: ( old_state, old_action, old_done, old_reward, old_new_state, old_goal, old_c_goal, old_n_goal, ) = subgoal_data[-1] subgoal_data[-1] = ( old_state, old_action, old_done, 1, old_new_state, old_goal, old_c_goal, old_n_goal, ) for ( r_state, r_action, r_done, r_reward, r_new_state, _, r_c_goal, r_n_goal, ) in subgoal_data: her_trajectory_data.append( ( r_state, r_action, r_done, r_reward, r_new_state, new_goal, r_c_goal, r_n_goal, ) ) self.gnet_manager.update_success_rate( self.idx2goalnet[subgoal_id], subgoal_achieved ) goal_steps += 1 if subgoal_achieved: subgoal_progress[self.idx2goalnet[subgoal_id]].append(1) add_experience = True # Add a relabelled transition for the goal selection model elif ( self.env_name == "two_keys" and self.env.agent_pos.tolist() == self.env.goal_pos.tolist() ): add_experience = True elif self.env_name == "four_rooms_3d" and self.env.near( self.env.goal ): add_experience = True elif other_subgoal_achieved: subgoal_progress[self.idx2goalnet[subgoal_id]].append(0) add_experience = True else: subgoal_progress[self.idx2goalnet[subgoal_id]].append(0) if add_experience: steps = 1 next_gnet_state = self.idx2goalnet[r_subgoal_id] self.gnet_manager.set_state(r_gnet_goal, next_gnet_state) if self.env_name != "ai2thor_kitchen": ( next_goalnet_code, next_mask, ) = self.gnet_manager.generate_goal_mask() if self.env_name == "four_rooms_3d": hi_n_goal = [ self.env.agent.pos[0], self.env.agent.pos[2], self.env.goal.pos[0], self.env.goal.pos[2], self.env.yellow_subgoal.pos[0], self.env.yellow_subgoal.pos[2], self.env.blue_subgoal.pos[0], self.env.blue_subgoal.pos[2], ] for r_state, r_done in goal_data[::-1]: if self.env_name == "two_keys": self.goal_replay_memory.save( r_state, r_subgoal_id, episode_done, extrinsic_reward, new_state, goalnet_code, self.gnet_manager.gnet_goals[next_gnet_state][ "code" ], mask, next_mask, steps, ) elif self.env_name == "two_keys": self.goal_replay_memory.save( r_state, r_subgoal_id, episode_done, extrinsic_reward, new_obs, goalnet_code, gnet_goals[next_gnet_state]["code"], mask, next_mask, steps, hi_c_goal, hi_n_goal, ) steps += 1 if self.env_name != "ai2thor_kitchen": if self.goal_replay_memory.current_size > self.minibatch_size: self.update_goal_model() if goal_steps % self.goal_clone_interval == 0: self.clone( self.clone_goal_model, self.goal_model, self.goal_tau ) elif (subgoal_achieved or other_subgoal_achieved) and not episode_done: self.gnet_manager.set_state( r_gnet_goal, self.idx2goalnet[r_subgoal_id] ) state_goal_selection = new_state if self.env_name == "four_rooms_3d" or self.env_name == "ai2thor_kitchen": for ( r_state, r_action, r_done, r_reward, r_new_state, r_target_goal, r_c_goal, r_n_goal, ) in trajectory_data: self.action_replay_memory.save( r_state, r_action, r_done, r_reward, r_new_state, r_target_goal, r_c_goal, r_n_goal, ) self.action_replay_memory.update_trajectory_id() for ( r_state, r_action, r_done, r_reward, r_new_state, r_target_goal, r_c_goal, r_n_goal, ) in her_trajectory_data: self.action_replay_memory.save( r_state, r_action, r_done, r_reward, r_new_state, r_target_goal, r_c_goal, r_n_goal, ) self.action_replay_memory.update_trajectory_id() reward_history.append(total_reward) steps_history.append(total_steps) if not eval and episode % self.eval_every == 0 and episode > 0: if self.env_name != "ai2thor_kitchen": self.goal_model.eval() self.action_model.eval() with torch.no_grad(): eval_rewards = [] eval_steps = [] if self.env_name == "ai2thor_kitchen": for i in range(1, 31): results = self.run( 1, train=False, eval=True, floor_idx=i, seed=1 ) eval_rewards.append(results["reward"][0]) eval_steps.append(results["steps"][0]) else: for i in range(self.eval_episodes): results = self.run(1, train=False, eval=True) eval_rewards.append(results["reward"][0]) eval_steps.append(results["steps"][0]) result_data["episode"].append(episode) result_data["reward"].append(eval_rewards) result_data["steps"].append(eval_steps) result_data["frames"].append(self.frame) if self.env_name != "ai2thor_kitchen": self.goal_model.train() self.action_model.train() if do_print: self.print_stats( reward_history, steps_history, result_data, subgoal_progress ) elif eval: result_data["episode"].append(episode) result_data["reward"].append(total_reward) result_data["steps"].append(total_steps) if save_checkpoints and ( episode % self.save_every == 0 and episode > 0 and not eval ): self.save(result_data) return result_data ``` #### File: agents/gnet_agent/replay_memory.py ```python from agents.base.replay_memory import ReplayMemory import numpy as np import random import torch class GNetActionReplayMemory(ReplayMemory): def __init__( self, size, goal_space_size, device, minibatch_size, env_name, use_ga, load=False, ): super(GNetActionReplayMemory, self).__init__( size, device, minibatch_size, env_name, load, "./save/low_replay" ) self.goals = np.empty(self.size, dtype=(np.int32, goal_space_size)) self.use_ga = use_ga self.gnet_model = True if self.env_name == "two_keys": self.cur_goal_s = np.empty(self.size, dtype=(np.int32, goal_space_size)) self.next_goal_s = np.empty(self.size, dtype=(np.int32, goal_space_size)) elif self.env_name == "four_rooms_3d" or self.env_name == "ai2thor_kitchen": if use_ga: size = goal_space_size + 6 else: size = 8 self.cur_goal_s = np.empty(self.size, dtype=(np.float32, size)) self.next_goal_s = np.empty(self.size, dtype=(np.float32, size)) if load: self.load_from_disk() def save(self, state, action, done, reward, next_state, goal, c_goal, n_goal): super(GNetActionReplayMemory, self).save( state, action, done, reward, next_state ) self.goals[self.current_index] = goal self.cur_goal_s[self.current_index] = c_goal self.next_goal_s[self.current_index] = n_goal self.current_size = max(self.current_size, self.current_index + 1) self.current_index = (self.current_index + 1) % self.size def load_from_disk(self): super(GNetActionReplayMemory, self).load_from_disk() infile = open(self.save_dir + "/goals.npy", "rb") self.goals = np.load(infile) infile.close() infile = open(self.save_dir + "/cur_goal_s.npy", "rb") self.cur_goal_s = np.load(infile) infile.close() infile = open(self.save_dir + "/next_goal_s.npy", "rb") self.next_goal_s = np.load(infile) infile.close() def save_to_disk(self): super(GNetActionReplayMemory, self).save_to_disk() outfile = open(self.save_dir + "/goals.npy", "wb") np.save(outfile, self.goals) outfile.close() outfile = open(self.save_dir + "/cur_goal_s.npy", "wb") np.save(outfile, self.cur_goal_s) outfile.close() outfile = open(self.save_dir + "/next_goal_s.npy", "wb") np.save(outfile, self.next_goal_s) outfile.close() def retrieve(self): indexes = [ random.randint(0, self.current_size - 1) for i in range(self.minibatch_size) ] return ( torch.as_tensor(self.states[indexes], device=self.device).float(), torch.as_tensor(self.actions[indexes], device=self.device).long(), torch.as_tensor(self.rewards[indexes], device=self.device), torch.as_tensor(self.done_flags[indexes], device=self.device), torch.as_tensor(self.next_states[indexes], device=self.device).float(), torch.as_tensor(self.goals[indexes], device=self.device).long(), torch.as_tensor(self.cur_goal_s[indexes], device=self.device).long(), torch.as_tensor(self.next_goal_s[indexes], device=self.device).long(), ) def get_frame_stack(self, ref_indexes): if self.use_ga: if self.env_name == "four_rooms_3d": size = 11 elif self.env_name == "ai2thor_kitchen": size = 10 else: size = 8 return super(GNetActionReplayMemory, self).get_frame_stack(ref_indexes, size) # Retrieve function for environments that use frame stacking def retrieve_frame_stack(self): indexes = [ np.random.randint(self.current_size) for i in range(self.minibatch_size) ] return ( torch.as_tensor(self.rewards[indexes], device=self.device), torch.as_tensor(self.done_flags[indexes], device=self.device), torch.as_tensor(self.goals[indexes], device=self.device).long(), indexes, ) class GNetGoalReplayMemory(ReplayMemory): def __init__(self, size, num_goals, device, minibatch_size, env_name, load=False): super(GNetGoalReplayMemory, self).__init__( size, device, minibatch_size, env_name, load, "./save/high_replay" ) self.gnet_states = np.empty((self.size, num_goals), dtype=np.int32) self.gnet_masks = np.empty((self.size, num_goals), dtype=np.float32) self.next_gnet_states = np.empty((self.size, num_goals), dtype=np.int32) self.next_gnet_masks = np.empty((self.size, num_goals), dtype=np.float32) self.steps = np.empty(self.size, dtype=np.int32) if self.env_name == "four_rooms_3d" or self.env_name == "ai2thor_kitchen": self.state_extra = np.empty(self.size, dtype=(np.float32, 8)) self.next_state_extra = np.empty(self.size, dtype=(np.float32, 8)) if load: self.load_from_disk() def save( self, state, action, done, reward, next_state, gnet_state, next_gnet_state, gnet_mask, next_gnet_mask, steps, state_extra=None, next_state_extra=None, ): super(GNetGoalReplayMemory, self).save(state, action, done, reward, next_state) self.gnet_states[self.current_index] = gnet_state self.gnet_masks[self.current_index] = gnet_mask self.next_gnet_states[self.current_index] = next_gnet_state self.next_gnet_masks[self.current_index] = next_gnet_mask self.steps[self.current_index] = steps if self.env_name == "four_rooms_3d" or self.env_name == "ai2thor_kitchen": self.state_extra[self.current_index] = state_extra self.next_state_extra[self.current_index] = next_state_extra self.current_size = max(self.current_size, self.current_index + 1) self.current_index = (self.current_index + 1) % self.size def load_from_disk(self): super(GNetGoalReplayMemory, self).load_from_disk() infile = open(self.save_dir + "/gnet_states.npy", "rb") self.gnet_states = np.load(infile) infile.close() infile = open(self.save_dir + "/gnet_masks.npy", "rb") self.gnet_masks = np.load(infile) infile.close() infile = open(self.save_dir + "/next_gnet_states.npy", "rb") self.next_gnet_states = np.load(infile) infile.close() infile = open(self.save_dir + "/next_gnet_masks.npy", "rb") self.next_gnet_masks = np.load(infile) infile.close() infile = open(self.save_dir + "/steps.npy", "rb") self.steps = np.load(infile) infile.close() infile = open(self.save_dir + "/state_extra.npy", "rb") self.state_extra = np.load(infile) infile.close() infile = open(self.save_dir + "/next_state_extra.npy", "rb") self.next_state_extra = np.load(infile) infile.close() def save_to_disk(self): super(GNetGoalReplayMemory, self).save_to_disk() outfile = open(self.save_dir + "/gnet_states.npy", "wb") np.save(outfile, self.gnet_states) outfile.close() outfile = open(self.save_dir + "/gnet_masks.npy", "wb") np.save(outfile, self.gnet_masks) outfile.close() outfile = open(self.save_dir + "/next_gnet_states.npy", "wb") np.save(outfile, self.next_gnet_states) outfile.close() outfile = open(self.save_dir + "/next_gnet_masks.npy", "wb") np.save(outfile, self.next_gnet_masks) outfile.close() outfile = open(self.save_dir + "/steps.npy", "wb") np.save(outfile, self.steps) outfile.close() outfile = open(self.save_dir + "/state_extra.npy", "wb") np.save(outfile, self.state_extra) outfile.close() outfile = open(self.save_dir + "/next_state_extra.npy", "wb") np.save(outfile, self.next_state_extra) outfile.close() def retrieve(self): indexes = [ np.random.randint(self.current_size) for i in range(self.minibatch_size) ] if self.env_name == "four_rooms_3d" or self.env_name == "ai2thor_kitchen": state_extra = torch.as_tensor( self.state_extra[indexes], device=self.device ).float() next_state_extra = torch.as_tensor( self.next_state_extra[indexes], device=self.device ).float() else: state_extra = None next_state_extra = None return ( torch.as_tensor(self.states[indexes], device=self.device).float(), torch.as_tensor(self.actions[indexes], device=self.device).long(), torch.as_tensor(self.rewards[indexes], device=self.device), torch.as_tensor(self.done_flags[indexes], device=self.device), torch.as_tensor(self.next_states[indexes], device=self.device).float(), torch.as_tensor(self.gnet_states[indexes], device=self.device).long(), torch.as_tensor(self.gnet_masks[indexes], device=self.device).float(), torch.as_tensor(self.next_gnet_states[indexes], device=self.device).long(), torch.as_tensor(self.next_gnet_masks[indexes], device=self.device).float(), torch.as_tensor(self.steps[indexes], device=self.device).long(), state_extra, next_state_extra, ) ``` #### File: goal_modelling_rl/env/four_rooms_subgoals_3d.py ```python from gym_miniworld.params import DEFAULT_PARAMS from gym_miniworld.entity import Box from gym_miniworld.miniworld import MiniWorldEnv from gym import spaces import numpy as np class FourRoomsSubgoals3D(MiniWorldEnv): def __init__( self, max_episode_steps=300, preset=False, forward_step=0.6, turn_step=30, **kwargs ): self.preset = preset params = DEFAULT_PARAMS.no_random() params.set("forward_step", forward_step, forward_step - 0.1, forward_step + 0.1) params.set("turn_step", turn_step, turn_step - 10, turn_step + 10) super().__init__(max_episode_steps=max_episode_steps, params=params, **kwargs) self.action_space = spaces.Discrete(self.actions.move_back + 1) def _gen_world(self): # Taken from the gym miniworld fourrooms env # Top-left room room0 = self.add_rect_room(min_x=-7, max_x=-1, min_z=1, max_z=7) # Top-right room room1 = self.add_rect_room(min_x=1, max_x=7, min_z=1, max_z=7) # Bottom-right room room2 = self.add_rect_room(min_x=1, max_x=7, min_z=-7, max_z=-1) # Bottom-left room room3 = self.add_rect_room(min_x=-7, max_x=-1, min_z=-7, max_z=-1) # Add openings to connect the rooms together self.connect_rooms(room0, room1, min_z=3, max_z=5, max_y=2.2) self.connect_rooms(room1, room2, min_x=3, max_x=5, max_y=2.2) self.connect_rooms(room2, room3, min_z=-5, max_z=-3, max_y=2.2) self.connect_rooms(room3, room0, min_x=-5, max_x=-3, max_y=2.2) # Custom part self.reached_yellow_subgoal = False self.reached_blue_subgoal = False if self.preset: self.blue_subgoal = self.place_entity(Box(color="blue"), room=self.rooms[1]) self.yellow_subgoal = self.place_entity( Box(color="yellow"), room=self.rooms[2] ) self.goal = self.place_entity(Box(color="green"), room=self.rooms[3]) self.place_agent(dir=0, room=self.rooms[0]) else: goal_agent_rooms = np.random.choice([0, 1, 2, 3], 2, replace=False) subgoal_rooms = np.random.choice([0, 1, 2, 3], 2) self.goal = self.place_entity( Box(color="green"), room=self.rooms[goal_agent_rooms[0]] ) self.place_agent(room=self.rooms[goal_agent_rooms[1]]) self.blue_subgoal = self.place_entity( Box(color="blue"), room=self.rooms[subgoal_rooms[0]] ) while self.near(self.blue_subgoal, self.goal, 2.5) or self.near( self.blue_subgoal, self.agent, 2.5 ): self.entities.remove(self.blue_subgoal) self.blue_subgoal = self.place_entity( Box(color="blue"), room=self.rooms[subgoal_rooms[0]] ) self.yellow_subgoal = self.place_entity( Box(color="yellow"), room=self.rooms[subgoal_rooms[1]] ) while ( self.near(self.yellow_subgoal, self.goal, 2.5) or self.near(self.yellow_subgoal, self.agent, 2.5) or self.near(self.yellow_subgoal, self.blue_subgoal, 2.5) ): self.entities.remove(self.yellow_subgoal) self.yellow_subgoal = self.place_entity( Box(color="yellow"), room=self.rooms[subgoal_rooms[1]] ) def step(self, action): obs, reward, done, info = super().step(action) if self.near(self.yellow_subgoal) and not self.reached_yellow_subgoal: self.reached_yellow_subgoal = True self.entities.remove(self.yellow_subgoal) elif self.near(self.blue_subgoal) and not self.reached_blue_subgoal: self.reached_blue_subgoal = True self.entities.remove(self.blue_subgoal) elif self.near(self.goal): done = True reward = 1 - 0.9 * (self.step_count / self.max_episode_steps) if done and not (self.reached_blue_subgoal and self.reached_yellow_subgoal): reward = 0 return obs, reward, done, info # Replace the near function def near(self, ent0, ent1=None, limit=1.5): if ent1 == None: ent1 = self.agent dist = np.linalg.norm(ent0.pos - ent1.pos) return dist < limit ```
{ "source": "JLeung46/Customer-Segmentation", "score": 4 }
#### File: JLeung46/Customer-Segmentation/kmeans_model.py ```python from pyspark.ml.clustering import KMeans from pyspark.ml.feature import VectorAssembler class KMeansModel: """ Class to train a KMeans model and return the predictions """ def __init__(self): self.assembled_df = None def assemble_features(self, df, feature_names, output_col_name): vec_assembler = VectorAssembler(inputCols=feature_names, outputCol=output_col_name) assembler_df = vec_assembler.transform(df) self.assembled_df = assembler_df def train(self, k=5, seed=3): kmeans = KMeans().setK(k).setSeed(seed) model = kmeans.fit(new_df.select("features")) transformed = model.transform(new_df) preds = transformed.select("prediction") return preds ``` #### File: JLeung46/Customer-Segmentation/split_files.py ```python import os import sqlite3 import csv def split_file(db_name, table_name, output_path, num_samples): """ Splits sql database table into mutiple csv files. """ # Define database name and table name db_name = db_name table_name = table_name # Define output path output_path = output_path output_name_template='output_%s.csv' current_piece = 1 # Create a connection and get a cursor connection = sqlite3.connect(db_name) cursor = connection.cursor() # Execute the query cursor.execute('select * from %s', table_name) # Get data in batches while True: current_out_path = os.path.join( output_path, output_name_template % current_piece ) f = open(current_out_path, 'w', encoding="utf-8", newline='') outcsv = csv.writer(f, quoting=csv.QUOTE_NONNUMERIC) rows = cursor.fetchmany(num_samples) if len(rows) == 0: break else: outcsv.writerows(rows) current_piece += 1 # Clean up f.close() cursor.close() connection.close() if __name__ == '__main__': split_file('database.sqlite', 'SearchInfo', 'search_info_files') split_file('database.sqlite', 'trainSearchStream', 'train_search_stream_files') ```
{ "source": "jleung51-coursework/phaser", "score": 4 }
#### File: build/scripts-auth/authfields.py ```python import json # Return sort key for AuthTable entries def key (a): return (a['Partition'], a['Row']) # Return a list of non-required fields in an AuthTable entry def other_fields(e): result = [] for fn in e: if fn not in {'Partition', 'Row', 'DataPartition', 'DataRow', 'Password'}: result.append((fn,e[fn])) return result # Return an AuthTable entry as a tuple with its fields in a specified order def entry_to_list(e): return [e['Row'], e['Password'], e['DataPartition'], e['DataRow']] + other_fields(e) # Main routine array = json.loads(input ()) array.sort(key=key) for obj in array: print (entry_to_list(obj)) ```
{ "source": "jleung51/scripts", "score": 3 }
#### File: scripts/battery_notifier/battery_notifier.py ```python import configparser import os import subprocess import sys import time # Custom modules: from logger import Logger from slack_messenger import SlackMessenger # Change the values in this array to modify at what percentages the # notification should be sent. alert_percentages = [20, 50] def report_battery_level(slack_config, battery_level): if slack_config.getboolean("reporting") is True: slack_messenger = SlackMessenger( slack_config["report_slack_token"], slack_config["report_channel"], slack_config["report_slackbot_name"] ) slack_messenger.message( "Current laptop battery level: " + str(battery_level) + "%." ) def alert_battery_level(slack_config, alert_level): slack_messenger = SlackMessenger( slack_config["alert_slack_token"], slack_config["alert_channel"], slack_config["alert_slackbot_name"] ) slack_messenger.notify( slack_config["alert_list"], "Laptop battery is below " + str(alert_level) + "%." ) def alert_error(slack_config): slack_messenger = SlackMessenger( slack_config["alert_slack_token"], slack_config["alert_channel"], slack_config["alert_slackbot_name"] ) slack_messenger.notify( slack_config["alert_list"], "Internal error for Battery Notifier, please check the logs." ) def run_cmd(args): '''Executes a set of arguments in the command line. Arguments: args -- Arguments to execute. Returns: string -- Output (stdout) from the execution. ''' return subprocess.run(args, stdout=subprocess.PIPE).stdout.decode("utf-8") def find_line_with(lines, str): '''Returns the first line with the given search term. Arguments: lines (string) -- Set of lines, separated by newlines. str (string) -- The given search term. Returns: string -- The first occurrence of a line containing the search term.s ''' for line in lines.split("\n"): if str in line: return line def get_battery_percentage(): '''Returns the current battery level in percent. Returns: int -- The current battery level in percent. ''' # Parse power data from OS power_files = run_cmd(["upower", "-e"]) power_file = find_line_with(power_files, "BAT") power_data = run_cmd(["upower", "-i", power_file]) percentage_line = find_line_with(power_data, "percentage") # Parse percentage from string with various characters into number current_percent = "" for char in percentage_line: if char.isdigit(): current_percent += char return int(current_percent) def main(config): slack_config = config["Slack"] current_percent = get_battery_percentage() Logger.debug("Current battery: " + str(current_percent) + "%") report_battery_level(slack_config, current_percent) battery_level_filename = "/tmp/last_battery_level" # Open file for reading and writing, or create one if it does not exist try: # Read and write existing file file = open(battery_level_filename, mode='r+') except IOError: Logger.debug("Battery state file does not exist; creating new file.") # Read and write new file file = open(battery_level_filename, mode='x+') file.write(str(current_percent)) file.flush() file.seek(0) # Rewind to beginning of file file_contents = file.read() try: last_percent = int(file_contents) except ValueError: Logger.error("Last battery level could not be parsed. Contents: ") Logger.error(file.read(file_contents)) Logger.error("Recreating battery state file.") last_percent = current_percent # # Tester # current_percent = 0 # last_percent = 100 if current_percent < last_percent: alert_percentages.sort() # Only alert for the lowest percentage for i in alert_percentages: if current_percent <= i and i < last_percent: Logger.info("Alert: Battery is below " + str(i) + "%.") alert_battery_level(slack_config, i) break; # Replace previous percentage with new percentage file.seek(0) file.write(str(current_percent)) file.truncate() file.close() if __name__ == "__main__": location = os.path.realpath( os.path.join(os.getcwd(), os.path.dirname(__file__))) config_filename = os.path.join(location, "battery_notifier.cfg") config = configparser.ConfigParser() config.read(config_filename) try: main(config) except Exception as e: alert_error(config["Slack"]) raise ``` #### File: mp3_formatter/mp3_formatter/url_scrape_div.py ```python import lxml.html import requests import sys def validate_url(url): """Ensure the URL is non-empty and uses the HTTP protocol. """ if not url: raise SystemError("validate_url() was given an empty URL") protocol = "http://" protocol_error_message = ValueError("A URL beginning with " \ "'http://' is required") if len(url) < len(protocol): raise protocol_error_message if url[:len(protocol)] != protocol: raise protocol_error_message def scrape_div(url, div_id): """Return the content of the div at the given URL. """ div_id_lookup_string = '//div[contains(@id, "' + div_id + '")]' try: html_page = requests.get(url) except: e = sys.exc_info()[0] raise ValueError("Request could not be completed. Perhaps the " \ "URL provided was invalid?") html_page.raise_for_status() html_tree = lxml.html.fromstring(html_page.content) content = html_tree.xpath(div_id_lookup_string) if len(content) < 1: raise LookupError("The requested div could not be found") elif len(content) > 1: raise LookupError("More than one of the requested divs were found") return str(content[0].text_content()) def extract_tracklist_begin_num(content): """Return list of track names extracted from messy web content. The name of a track is defined as a line which begins with a number (excluding whitespace). """ tracklist = [] for line in content.splitlines(): # Empty line if not line: continue # Strip leading and trailing whitespace line.lstrip() line.rstrip() if line[0].isdigit(): tracklist.append(line) return tracklist def strip_leading_number(tracklist): """Remove the leading numbers for each track. """ for track in tracklist: i = 0 while(track[i].isdigit()): i += 1 tracklist[tracklist.index(track)] = track[i:] if len(sys.argv) < 2: raise RuntimeError("Please provide the URL to the page with "\ "the target tracklist") url = sys.argv[1] # sys.argv[0] is the name of this script validate_url(url) div_id = "stcpDiv" content = scrape_div(url, div_id) tracklist = extract_tracklist_begin_num(content) strip_leading_number(tracklist) for track in tracklist: print(track.strip()) ``` #### File: scripts/traffic_monitor/traffic_monitor.py ```python import sys # Custom modules from logger import Logger from bing_api import BingApi from google_api import GmailApi # Configuration for traffic incident data: # Bing Maps authentication key for map data requests. # Details about the key parameter for the HTTP request: # https://msdn.microsoft.com/en-ca/library/ff701720.aspx # # Go to the Bing Maps Portal to retrieve your key: # https://www.bingmapsportal.com/ # Sign in, go to "My Account" -> "My Keys", create a new key, and fill out # the form. Paste the key into the variable below. bing_maps_auth_key = "" # Coordinates of the bounding box where traffic incidents are to be monitored. # Details about the bounding box: # https://msdn.microsoft.com/en-us/library/ff701726.aspx # # To find a coordinate, go to Google Maps (yes, I'm aware of the irony): # https://maps.google.com/ # Right-click on any point and select "What's here?". A small box will appear # with the coordinate at that location coordinate_southwest = "45.219, -122.325" coordinate_northeast = "46.610, -122.107" # Severity and type of traffic incident. # Details about severity and type: # https://msdn.microsoft.com/en-ca/library/hh441726.aspx # See the lists below for the interpretation of each level. # # Keep only the security levels and types which you want to be notified of, # and remove the rest. severity = "1, 2, 3, 4" incident_type = "1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11" # Configuration for email notifications: # Application name from which the email is sent mail_source_application_name = "Traffic Monitor" # Gmail account from which your notification emails will be sent. # # This should include the "@gmail.com". mail_source_email = "<EMAIL>" # Destination email account to which your notification emails will be sent. # # This should include the "@email.com". mail_target_email = "<EMAIL>" # Configuration for a report to a Slack channel: # Change this to True and fill in the following fields if you would like # to send a report; otherwise, ignore the following fields report = False # The API token of the Slackbot (see README:Setup:Reports to a Slack Channel) # E.g. "<KEY>" report_slack_token = "" # The name of the channel (without a "#") # E.g. "random" report_channel = "" # The name of the Slackbot user which will send the message # E.g. "Traffic Monitor Slackbot" report_slackbot_name = "" # The usernames of Slack users who should be alerted upon a failure # Each username must begin with a "@" # E.g. "@jleung51 | @jleung52 | @jleung53" report_alert_list = "" # Conditional imports # Do not modify if you are setting up this script! if report: from slack_messenger import SlackMessenger def slack_report_message(operation_status, message_text): if report: s = SlackMessenger( report_slack_token, report_channel, report_slackbot_name ) s.operation_report(operation_status, message_text) Logger.debug("Slack report sent.") def slack_notify_users(alert_users, message_text): if report: s = SlackMessenger( report_slack_token, report_channel, report_slackbot_name ) s.notify(alert_users, message_text) Logger.debug("Slack alert sent.") def string_list_from(original_list): string_list = [] for i in original_list: string_list.append(str(i)) return string_list def send_email_with_incidents(incidents): message_text = "" for i in incidents: description = i.get("description") description = description[0].lower() + description[1:] message_text += \ results.get("severity") + " traffic disruption. " + \ results.get("type") + " " + \ description + " Coordinates: (" + \ ", ".join(string_list_from(i.get("coordinates"))) + ")" + \ ".\n\n" message_text += \ "\nSincerely,\n\n" + \ "- Your friendly neighborhood Traffic Monitor" email_sender = GmailApi( mail_source_email, mail_source_application_name ) email_sender.send_email( mail_target_email, "Traffic Incident Alert", message_text ) slack_report_message( "*SUCCESS*", "Traffic incident alert sent to " + mail_target_email + "." ) def main(): b = BingApi(bing_maps_auth_key) incidents = b.get_traffic_data_readable( coordinate_southwest, coordinate_northeast, severity, incident_type) if len(incidents) > 0: send_email_with_incidents(incidents) log_message = "Traffic check completed. " + str(len(incidents)) + \ " incidents reported." else: log_message = "Traffic check completed. No incidents reported." Logger.success(log_message) slack_report_message("*SUCCESS*", log_message) if __name__ == "__main__": try: main() except Exception as e: slack_report_message( report_alert_list, "*ERROR*: Please check the logs." ) raise ```
{ "source": "jleuschn/adler", "score": 2 }
#### File: adler/tensorflow/training.py ```python import demandimport with demandimport.enabled(): import tensorflow as tf import numpy as np __all__ = ('cosine_decay', 'ema_wrapper', 'EMAHelper') def cosine_decay(learning_rate, global_step, maximum_steps, name=None): """ """ from tensorflow.python.ops import math_ops from tensorflow.python.framework import ops if global_step is None: raise ValueError("global_step is required for cosine_decay.") with ops.name_scope(name, "CosineDecay", [learning_rate, global_step, maximum_steps]) as name: learning_rate = ops.convert_to_tensor(learning_rate, name="learning_rate") dtype = learning_rate.dtype global_step = math_ops.cast(global_step, dtype) maximum_steps = math_ops.cast(maximum_steps, dtype) p = tf.mod(global_step / maximum_steps, 1) return learning_rate * (0.5 + 0.5 * math_ops.cos(p * np.pi)) class EMAHelper(object): def __init__(self, decay=0.99, session=None): if session is None: self.session = tf.get_default_session() else: self.session = session self.all_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) self.ema = tf.train.ExponentialMovingAverage(decay=decay) self.apply = self.ema.apply(self.all_vars) self.averages = [self.ema.average(var) for var in self.all_vars] def average_dict(self): ema_averages_results = self.session.run(self.averages) return {var: value for var, value in zip(self.all_vars, ema_averages_results)} def variables_to_restore(self): return self.ema.variables_to_restore(tf.moving_average_variables()) def ema_wrapper(is_training, decay=0.99, scope='ema_wrapper', reuse=False): """Use Exponential Moving Average of weights during testing. Parameters ---------- is_training : bool or `tf.Tensor` of type bool Indicates if the EMA should be applied or not decay: Examples -------- During training, the current value of a is used. During testing, the exponential moving average is applied instead. >>> @ema_wrapper(is_training) ... def function(x): .... a = tf.get_variable('a', [], tf.float32) ... return a * x """ def function(fun): def fun_wrapper(*args, **kwargs): with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): # Regular call with tf.variable_scope('function_call') as sc: result_train = fun(*args, **kwargs) # Set up exponential moving average ema = tf.train.ExponentialMovingAverage(decay=decay) var_class = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, sc.name) ema_op = ema.apply(var_class) # Add to collection so they are updated tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, ema_op) # Getter for the variables with EMA applied def ema_getter(getter, name, *args, **kwargs): var = getter(name, *args, **kwargs) ema_var = ema.average(var) return ema_var if ema_var else var # Call with EMA applied with tf.variable_scope('function_call', reuse=True, custom_getter=ema_getter): result_test = fun(*args, **kwargs) # Return the correct version depending on if we're training or # not return tf.cond(is_training, lambda: result_train, lambda: result_test) return fun_wrapper return function ``` #### File: adler/tensorflow/util.py ```python import os import shutil from os.path import join, expanduser, exists import demandimport with demandimport.enabled(): import tensorflow as tf __all__ = ('get_base_dir', 'default_checkpoint_path', 'default_tensorboard_dir', 'summary_writers') def get_base_dir(): """Get the data directory.""" base_odl_dir = os.environ.get('ADLER_HOME', expanduser(join('~', '.adler'))) data_home = join(base_odl_dir, 'tensorflow') if not exists(data_home): os.makedirs(data_home) return data_home def default_checkpoint_path(name): checkpoint_dir = join(get_base_dir(), 'checkpoints') if not exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_path = join(checkpoint_dir, '{}.ckpt'.format(name)) return checkpoint_path def default_tensorboard_dir(name): tensorboard_dir = join(get_base_dir(), 'tensorboard', name) if not exists(tensorboard_dir): os.makedirs(tensorboard_dir) return tensorboard_dir def summary_writers(name, cleanup=False, session=None, write_graph=True): if session is None: session = tf.get_default_session() dname = default_tensorboard_dir(name) if cleanup and os.path.exists(dname): shutil.rmtree(dname, ignore_errors=True) if write_graph: graph = session.graph else: graph = None test_summary_writer = tf.summary.FileWriter(dname + '/test', graph) train_summary_writer = tf.summary.FileWriter(dname + '/train') return test_summary_writer, train_summary_writer def run_with_profile(ops, feed_dict, name='profile.json', session=None): from tensorflow.python.client import timeline if session is None: session = tf.get_default_session() options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() result = session.run(ops, feed_dict=feed_dict, options=options, run_metadata=run_metadata) fetched_timeline = timeline.Timeline(run_metadata.step_stats) chrome_trace = fetched_timeline.generate_chrome_trace_format() with open(name, 'w') as f: f.write(chrome_trace) return result if __name__ == '__main__': print('base dir: {}'.format(get_base_dir())) ```
{ "source": "jleuschn/dival", "score": 2 }
#### File: dival/datasets/lodopab_dataset.py ```python import os from warnings import warn from math import ceil import numpy as np import h5py from zipfile import ZipFile from tqdm import tqdm from odl import uniform_discr import odl.tomo from dival.datasets.dataset import Dataset from dival.config import CONFIG, set_config from dival.util.constants import MU_MAX from dival.util.zenodo_download import download_zenodo_record from dival.util.input import input_yes_no try: DATA_PATH = CONFIG['lodopab_dataset']['data_path'] except Exception: raise RuntimeError( 'Could not retrieve config value `lodopab_dataset/data_path`, ' 'maybe the configuration (e.g. in ~/.dival/config.json) is corrupt.') NUM_SAMPLES_PER_FILE = 128 PHOTONS_PER_PIXEL = 4096 ORIG_MIN_PHOTON_COUNT = 0.1 MIN_PT = [-0.13, -0.13] MAX_PT = [0.13, 0.13] LEN = { 'train': 35820, 'validation': 3522, 'test': 3553} NUM_PATIENTS = { 'train': 632, 'validation': 60, 'test': 60} PATIENT_ID_OFFSETS = { 'train': 0, 'validation': NUM_PATIENTS['train'], 'test': NUM_PATIENTS['train'] + NUM_PATIENTS['validation']} def download_lodopab(): global DATA_PATH print('Before downloading, please make sure to have enough free disk ' 'space (~150GB). After unpacking, 114.7GB will be used.') print("path to store LoDoPaB-CT dataset (default '{}'):".format(DATA_PATH)) inp = input() if inp: DATA_PATH = inp set_config('lodopab_dataset/data_path', DATA_PATH) os.makedirs(DATA_PATH, exist_ok=True) ZENODO_RECORD_ID = '3384092' success = download_zenodo_record(ZENODO_RECORD_ID, DATA_PATH) print('download of LoDoPaB-CT dataset {}'.format('successful' if success else 'failed')) if not success: return False file_list = ['observation_train.zip', 'ground_truth_train.zip', 'observation_validation.zip', 'ground_truth_validation.zip', 'observation_test.zip', 'ground_truth_test.zip'] print('unzipping zip files, this can take several minutes', flush=True) for file in tqdm(file_list, desc='unzip'): filename = os.path.join(DATA_PATH, file) with ZipFile(filename, 'r') as f: f.extractall(DATA_PATH) os.remove(filename) return True class LoDoPaBDataset(Dataset): """ The LoDoPaB-CT dataset, which is documented in the Data Descriptor article `<https://www.nature.com/articles/s41597-021-00893-z>`_ and hosted on `<https://zenodo.org/record/3384092>`_. It is a simulated low dose CT dataset based on real reconstructions from the `LIDC-IDRI <https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI>`_ dataset. The dataset contains 42895 pairs of images and projection data. For simulation, a ray transform with parallel beam geometry using 1000 angles and 513 detector pixels is used. Poisson noise corresponding to 4096 incident photons per pixel before attenuation is applied to the projection data. The images have a size of 362x362 px. An ODL ray transform that corresponds to the noiseless forward operator can be obtained via the `get_ray_trafo` method of this dataset. Additionally, the :attr:`ray_trafo` attribute holds a ray transform instance, which is created during :meth:`__init__`. *Note:* By default, the ``'astra_cuda'`` implementation backend is used, which requires both astra and a CUDA-enabled GPU being available. You can choose a different backend by passing ``impl='skimage'`` or ``impl='astra_cpu'``. Further functionalities: * converting the stored post-log observations to pre-log observations on the fly (cf. `observation_model` parameter of :meth:`__init__`) * sorting by patient ids (cf. ``sorted_by_patient`` parameter of :meth:`__init__`) * changing the zero photon count replacement value of ``0.1`` used for pre-log observations (cf. ``min_photon_count`` parameter of :meth:`__init__`) Attributes ---------- space ``(space[0], space[1])``, where ``space[0]`` ``odl.uniform_discr([0., -0.1838], [3.1416, 0.1838], (1000, 513), dtype='float32')`` ``space[1]`` ``odl.uniform_discr(min_pt, max_pt, (362, 362), dtype='float32'))``, with `min_pt` and `max_pt` parameters passed to :meth:`__init__` shape ``(362, 362)`` train_len ``35820`` validation_len ``3522`` test_len ``3553`` random_access ``True`` num_elements_per_sample ``2`` ray_trafo : :class:`odl.tomo.RayTransform` Ray transform corresponding to the noiseless forward operator. sorted_by_patient : bool Whether the samples are sorted by patient id. Default: ``False``. rel_patient_ids : (dict of array) or `None` Relative patient ids of the samples in the original non-sorted order for each part, as returned by :meth:`LoDoPaBDataset.get_patient_ids`. `None`, if the csv files are not found. """ def __init__(self, min_pt=None, max_pt=None, observation_model='post-log', min_photon_count=None, sorted_by_patient=False, impl='astra_cuda'): """ Parameters ---------- min_pt : [float, float], optional Minimum values of the lp space. Default: ``[-0.13, -0.13]``. max_pt : [float, float], optional Maximum values of the lp space. Default: ``[0.13, 0.13]``. observation_model : {'post-log', 'pre-log'}, optional The observation model to use. The default is ``'post-log'``. ``'post-log'`` Observations are linearly related to the normalized ground truth via the ray transform, ``obs = ray_trafo(gt) + noise``. Note that the scaling of the observations matches the normalized ground truth, i.e., they are divided by the linear attenuation of 3071 HU. ``'pre-log'`` Observations are non-linearly related to the ground truth, as given by the Beer-Lambert law. The model is ``obs = exp(-ray_trafo(gt * MU(3071 HU))) + noise``, where `MU(3071 HU)` is the factor, by which the ground truth was normalized. min_photon_count : float, optional Replacement value for a simulated photon count of zero. If ``observation_model == 'post-log'``, a value greater than zero is required in order to avoid undefined values. The default is 0.1, both for ``'post-log'`` and ``'pre-log'`` model. sorted_by_patient : bool, optional Whether to sort the samples by patient id. Useful to resplit the dataset. See also :meth:`get_indices_for_patient`. Note that the slices of each patient are ordered randomly wrt. the z-location in any case. Default: ``False``. impl : {``'skimage'``, ``'astra_cpu'``, ``'astra_cuda'``},\ optional Implementation passed to :class:`odl.tomo.RayTransform` to construct :attr:`ray_trafo`. """ global DATA_PATH NUM_ANGLES = 1000 NUM_DET_PIXELS = 513 self.shape = ((NUM_ANGLES, NUM_DET_PIXELS), (362, 362)) self.num_elements_per_sample = 2 if min_pt is None: min_pt = MIN_PT if max_pt is None: max_pt = MAX_PT domain = uniform_discr(min_pt, max_pt, self.shape[1], dtype=np.float32) if observation_model == 'post-log': self.post_log = True elif observation_model == 'pre-log': self.post_log = False else: raise ValueError("`observation_model` must be 'post-log' or " "'pre-log', not '{}'".format(observation_model)) if min_photon_count is None or min_photon_count <= 1.: self.min_photon_count = min_photon_count else: self.min_photon_count = 1. warn('`min_photon_count` changed from {} to 1.'.format( min_photon_count)) self.sorted_by_patient = sorted_by_patient self.train_len = LEN['train'] self.validation_len = LEN['validation'] self.test_len = LEN['test'] self.random_access = True while not LoDoPaBDataset.check_for_lodopab(): print('The LoDoPaB-CT dataset could not be found under the ' "configured path '{}'.".format( CONFIG['lodopab_dataset']['data_path'])) print('Do you want to download it now? (y: download, n: input ' 'other path)') download = input_yes_no() if download: success = download_lodopab() if not success: raise RuntimeError('lodopab dataset not available, ' 'download failed') else: print('Path to LoDoPaB dataset:') DATA_PATH = input() set_config('lodopab_dataset/data_path', DATA_PATH) self.rel_patient_ids = None try: self.rel_patient_ids = LoDoPaBDataset.get_patient_ids() except OSError as e: if self.sorted_by_patient: raise RuntimeError( 'Can not load patient ids, required for sorting. ' 'OSError: {}'.format(e)) warn( 'Can not load patient ids (OSError: {}). ' 'Therefore sorting is not possible, so please keep the ' 'attribute `sorted_by_patient = False` for the LoDoPaBDataset.' .format(e)) if self.rel_patient_ids is not None: self._idx_sorted_by_patient = ( LoDoPaBDataset.get_idx_sorted_by_patient( self.rel_patient_ids)) self.geometry = odl.tomo.parallel_beam_geometry( domain, num_angles=NUM_ANGLES, det_shape=(NUM_DET_PIXELS,)) range_ = uniform_discr(self.geometry.partition.min_pt, self.geometry.partition.max_pt, self.shape[0], dtype=np.float32) super().__init__(space=(range_, domain)) self.ray_trafo = self.get_ray_trafo(impl=impl) def __get_observation_trafo(self, num_samples=1): if (self.min_photon_count is None or self.min_photon_count == ORIG_MIN_PHOTON_COUNT): if self.post_log: def observation_trafo(out): pass else: def observation_trafo(obs): obs *= MU_MAX np.exp(-obs, out=obs) else: shape = (self.shape[0] if num_samples == 1 else (num_samples,) + self.shape[0]) mask = np.empty(shape, dtype=np.bool) thres0 = 0.5 * ( -np.log(ORIG_MIN_PHOTON_COUNT/PHOTONS_PER_PIXEL) - np.log(1/PHOTONS_PER_PIXEL)) / MU_MAX if self.post_log: def observation_trafo(obs): np.greater_equal(obs, thres0, out=mask) obs[mask] = -np.log(self.min_photon_count / PHOTONS_PER_PIXEL) / MU_MAX else: def observation_trafo(obs): np.greater_equal(obs, thres0, out=mask) obs *= MU_MAX np.exp(-obs, out=obs) obs[mask] = self.min_photon_count/PHOTONS_PER_PIXEL return observation_trafo def generator(self, part='train'): """Yield pairs of low dose observations and (virtual) ground truth. Parameters ---------- part : {``'train'``, ``'validation'``, ``'test'``}, optional The data part. Default is ``'train'``. Yields ------ (observation, ground_truth) `observation` : odl element with shape ``(1000, 513)`` The values depend on the `observation_model` and `min_photon_count` parameters that were passed to :meth:`__init__`. `ground_truth` : odl element with shape ``(362, 362)`` The values lie in the range ``[0., 1.]``. """ if self.sorted_by_patient: # fall back to default implementation yield from super().generator(part=part) return num_files = ceil(self.get_len(part) / NUM_SAMPLES_PER_FILE) observation_trafo = self.__get_observation_trafo() for i in range(num_files): with h5py.File( os.path.join(DATA_PATH, 'ground_truth_{}_{:03d}.hdf5' .format(part, i)), 'r') as file: ground_truth_data = file['data'][:] with h5py.File( os.path.join(DATA_PATH, 'observation_{}_{:03d}.hdf5' .format(part, i)), 'r') as file: observation_data = file['data'][:] for gt_arr, obs_arr in zip(ground_truth_data, observation_data): ground_truth = self.space[1].element(gt_arr) observation = self.space[0].element(obs_arr) observation_trafo(observation) yield (observation, ground_truth) def get_ray_trafo(self, **kwargs): """ Return the ray transform that is a noiseless version of the forward operator. Parameters ---------- impl : {``'skimage'``, ``'astra_cpu'``, ``'astra_cuda'``}, optional The backend implementation passed to :class:`odl.tomo.RayTransform`. Returns ------- ray_trafo : odl operator The ray transform that corresponds to the noiseless map from 362 x 362 images to the ``-log`` of their projections (sinograms). """ return odl.tomo.RayTransform(self.space[1], self.geometry, **kwargs) def get_sample(self, index, part='train', out=None): """ Get single sample of the dataset. Returns a pair of (virtual) ground truth and its low dose observation, of which either part can be left out by option. Parameters ---------- index : int The index into the dataset part. part : {``'train'``, ``'validation'``, ``'test'``}, optional The data part. Default is ``'train'``. out : tuple of array-likes or bools, optional ``out==(out_observation, out_ground_truth)`` out_observation : array-like or bool Shape ``(1000, 513)``. If an odl element or array is passed, the observation is written to it. If ``True``, a new odl element holding the observation is created (the default). If ``False``, no observation is returned. out_ground_truth : array-like or bool Shape ``(362, 362)``. If an odl element or array is passed, the ground truth is written to it. If ``True``, a new odl element holding the ground truth is created (the default). If ``False``, no ground truth is returned. Returns ------- ``(observation, ground_truth)`` observation : odl element or :class:`np.ndarray` or `None` Depending on the value of ``out_observation`` (see parameter `out`), a newly created odl element, ``out_observation`` or `None` is returned. The observation values depend on the `observation_model` and `min_photon_count` parameters that were given to the constructor. ground_truth : odl element or :class:`np.ndarray` or `None` Depending on the value of ``out_ground_truth`` (see parameter `out`), a newly created odl element, ``out_ground_truth`` or `None` is returned. The values lie in the range ``[0., 1.]``. """ len_part = self.get_len(part) if index >= len_part or index < -len_part: raise IndexError("index {} out of bounds for part '{}' ({:d})" .format(index, part, len_part)) if index < 0: index += len_part if out is None: out = (True, True) (out_observation, out_ground_truth) = out if self.sorted_by_patient: index = self._idx_sorted_by_patient[part][index] file_index = index // NUM_SAMPLES_PER_FILE index_in_file = index % NUM_SAMPLES_PER_FILE if isinstance(out_observation, bool): obs = self.space[0].zero() if out_observation else None else: obs = out_observation if isinstance(out_ground_truth, bool): gt = self.space[1].zero() if out_ground_truth else None else: gt = out_ground_truth if obs is not None: with h5py.File( os.path.join(DATA_PATH, 'observation_{}_{:03d}.hdf5' .format(part, file_index)), 'r') as file: file['data'].read_direct(np.asarray(obs)[np.newaxis], np.s_[index_in_file:index_in_file+1], np.s_[0:1]) observation_trafo = self.__get_observation_trafo() observation_trafo(obs) if gt is not None: with h5py.File( os.path.join(DATA_PATH, 'ground_truth_{}_{:03d}.hdf5' .format(part, file_index)), 'r') as file: file['data'].read_direct(np.asarray(gt)[np.newaxis], np.s_[index_in_file:index_in_file+1], np.s_[0:1]) return (obs, gt) def get_samples(self, key, part='train', out=None): """ Get slice of the dataset. Returns a pair of (virtual) ground truth data and its low dose observation data, of which either part can be left out by option. Parameters ---------- key : slice or range The indices into the dataset part. part : {``'train'``, ``'validation'``, ``'test'``}, optional The data part. Default is ``'train'``. out : tuple of arrays or bools, optional ``out==(out_observation, out_ground_truth)`` out_observation : :class:`np.ndarray` or bool If an array is passed, the observation data is written to it. If ``True``, a new array holding the observation data is created (the default). If ``False``, no observation data is returned. out_ground_truth : :class:`np.ndarray` or bool If an array is passed, the ground truth data is written to it. If ``True``, a new array holding the ground truth data is created (the default). If ``False``, no ground truth data is returned. Returns ------- ``(observation, ground_truth)`` observation : :class:`np.ndarray` or `None` Shape ``(samples, 1000, 513)``. Depending on the value of ``out_observation`` (see parameter `out`), a newly created array, ``out_observation`` or `None` is returned. The observation values depend on the `observation_model` and `min_photon_count` parameters that were given to the constructor. ground_truth : :class:`np.ndarray` or `None` Shape ``(samples, 362, 362)``. Depending on the value of ``out_ground_truth`` (see parameter `out`), a newly created array, ``out_ground_truth`` or `None` is returned. The values lie in the range ``[0., 1.]``. """ if self.sorted_by_patient: # fall back to default implementation return super().get_samples(key, part=part, out=out) len_part = self.get_len(part) if isinstance(key, slice): key_start = (0 if key.start is None else (key.start if key.start >= 0 else max(0, len_part+key.start))) key_stop = (len_part if key.stop is None else (key.stop if key.stop >= 0 else max(0, len_part+key.stop))) range_ = range(key_start, key_stop, key.step or 1) elif isinstance(key, range): range_ = key else: raise TypeError('`key` expected to have type `slice` or `range`') if range_.step < 0: raise ValueError('key {} invalid, negative steps are not ' 'implemented yet'.format(key)) if range_[-1] >= len_part: raise IndexError("key {} out of bounds for part '{}' ({:d})" .format(key, part, len_part)) range_files = range(range_[0] // NUM_SAMPLES_PER_FILE, range_[-1] // NUM_SAMPLES_PER_FILE + 1) if out is None: out = (True, True) (out_observation, out_ground_truth) = out # compute slice objects slices_files = [] slices_data = [] data_count = 0 for i in range_files: if i == range_files.start: start = range_.start % NUM_SAMPLES_PER_FILE else: start = (range_.start - i*NUM_SAMPLES_PER_FILE) % range_.step if i == range_files[-1]: stop = range_[-1] % NUM_SAMPLES_PER_FILE + 1 else: __next_start = ((range_.start - (i+1)*NUM_SAMPLES_PER_FILE) % range_.step) stop = (__next_start - range_.step) % NUM_SAMPLES_PER_FILE + 1 s = slice(start, stop, range_.step) slices_files.append(s) len_slice = ceil((s.stop-s.start) / s.step) slices_data.append(slice(data_count, data_count+len_slice)) data_count += len_slice # read data if isinstance(out_observation, bool): obs_arr = (np.empty((len(range_),) + self.shape[0], dtype=np.float32) if out_observation else None) else: obs_arr = out_observation if isinstance(out_ground_truth, bool): gt_arr = (np.empty((len(range_),) + self.shape[1], dtype=np.float32) if out_ground_truth else None) else: gt_arr = out_ground_truth if obs_arr is not None: for i, slc_f, slc_d in zip(range_files, slices_files, slices_data): with h5py.File( os.path.join(DATA_PATH, 'observation_{}_{:03d}.hdf5' .format(part, i)), 'r') as file: file['data'].read_direct(obs_arr, slc_f, slc_d) observation_trafo = self.__get_observation_trafo( num_samples=len(obs_arr)) observation_trafo(obs_arr) if gt_arr is not None: for i, slc_f, slc_d in zip(range_files, slices_files, slices_data): with h5py.File( os.path.join(DATA_PATH, 'ground_truth_{}_{:03d}.hdf5' .format(part, i)), 'r') as file: file['data'].read_direct(gt_arr, slc_f, slc_d) return (obs_arr, gt_arr) def get_indices_for_patient(self, rel_patient_id, part='train'): """ Return the indices of the samples from one patient. If ``self.sorted_by_patient`` is ``True``, the indices will be subsequent. Parameters ---------- rel_patient_id : int Patient id, relative to the part. part : {``'train'``, ``'validation'``, ``'test'``}, optional Whether to return the number of train, validation or test patients. Default is ``'train'``. Returns ------- indices : array The indices of the samples from the patient. """ if self.sorted_by_patient: num_samples_by_patient = np.bincount(self.rel_patient_ids[part]) first_sample = np.sum(num_samples_by_patient[:rel_patient_id]) indices = np.array(range( first_sample, first_sample + num_samples_by_patient[rel_patient_id])) else: indices = np.nonzero( self.rel_patient_ids[part] == rel_patient_id)[0] return indices @staticmethod def check_for_lodopab(): """Fast check whether first and last file of each dataset part exist under the configured data path. Returns ------- exists : bool Whether LoDoPaB seems to exist. """ for part in ['train', 'validation', 'test']: first_file = os.path.join( DATA_PATH, 'observation_{}_000.hdf5'.format(part)) last_file = os.path.join( DATA_PATH, 'observation_{}_{:03d}.hdf5'.format( part, ceil(LEN[part] / NUM_SAMPLES_PER_FILE) - 1)) if not (os.path.exists(first_file) and os.path.exists(last_file)): return False return True @staticmethod def get_num_patients(part='train'): """ Return the number of patients in a dataset part. Parameters ---------- part : {``'train'``, ``'validation'``, ``'test'``}, optional Whether to return the number of train, validation or test patients. Default is ``'train'``. """ return NUM_PATIENTS[part] @staticmethod def _abs_to_rel_patient_id(abs_patient_id, part): return abs_patient_id - PATIENT_ID_OFFSETS[part] @staticmethod def _rel_to_abs_patient_id(rel_patient_id, part): return rel_patient_id + PATIENT_ID_OFFSETS[part] @staticmethod def get_patient_ids(relative=True): """ Return the (relative) patient id for all samples of all dataset parts. Parameters ---------- relative : bool, optional Whether to use ids relative to the dataset part. The csv files store absolute indices, where "train_ids < validation_ids < test_ids". If ``False``, these absolute indices are returned. If ``True``, the smallest absolute id of the part is subtracted, giving zero-based (relative) patient ids. Default: ``True`` Returns ------- ids : dict of array For each part: an array with the (relative) patient ids for all samples (length: number of samples in the corresponding part). Raises ------ OSError An `OSError` is raised if one of the csv files containing the patient ids is missing in the configured data path. """ ids = {} for part in ['train', 'validation', 'test']: ids[part] = np.loadtxt( os.path.join(DATA_PATH, 'patient_ids_rand_{}.csv'.format(part)), dtype=np.int) if relative: ids[part] = LoDoPaBDataset._abs_to_rel_patient_id(ids[part], part) return ids @staticmethod def get_idx_sorted_by_patient(ids=None): """ Return indices that allow access to each dataset part in patient id order. *Note:* in most cases this method should not be called directly. Rather specify ``sorted_by_patient=True`` to the constructor if applicable. A plausible use case of this method, however, is to access existing cache files that were created with ``sorted_by_patient=False``. In this case, the dataset should be constructed with ``sorted_by_patient=False``, wrapped by a :class:`CachedDataset` and then reordered with :class:`ReorderedDataset` using the indices returned by this method. Parameters ---------- ids : dict of array-like, optional Patient ids as returned by :meth:`get_patient_ids`. It is not relevant to this function whether they are relative. Returns ------- idx : dict of array Indices that allow access to each dataset part in patient id order. Each array value is an index into the samples in original order (as stored in the HDF5 files). I.e.: By iterating the samples with index ``idx[part][i]`` for ``i = 0, 1, 2, ...`` one first obtains all samples from one patient, then continues with the samples of the second patient, and so on. Raises ------ OSError An `OSError` is raised if ``ids is None`` and one of the csv files containing the patient ids is missing in the configured data path. """ if ids is None: ids = LoDoPaBDataset.get_patient_ids() idx = {} for part in ['train', 'validation', 'test']: idx[part] = np.argsort(ids[part], kind='stable') return idx ``` #### File: dival/reconstructors/learnedgd_reconstructor.py ```python from copy import deepcopy import odl import torch from odl.contrib.torch import OperatorModule from odl.tomo import fbp_op from odl.operator.operator import OperatorRightScalarMult from dival.reconstructors.standard_learned_reconstructor import ( StandardLearnedReconstructor) from dival.reconstructors.networks.iterative import IterativeNet class LearnedGDReconstructor(StandardLearnedReconstructor): """ CT reconstructor applying a learned gradient descent iterative scheme. Note that the weights are not shared across the blocks, like presented in the original paper [1]_. This implementation rather follows https://github.com/adler-j/learned_primal_dual/blob/master/ellipses/learned_primal.py. References ---------- .. [1] <NAME> & <NAME> (2017). Solving ill-posed inverse problems using iterative deep neural networks. Inverse Problems, 33(12), 124007. """ HYPER_PARAMS = deepcopy(StandardLearnedReconstructor.HYPER_PARAMS) HYPER_PARAMS.update({ 'epochs': { 'default': 20, 'retrain': True }, 'batch_size': { 'default': 32, 'retrain': True }, 'lr': { 'default': 0.01, 'retrain': True }, 'normalize_by_opnorm': { 'default': True, 'retrain': True }, 'niter': { 'default': 5, 'retrain': True }, 'init_fbp': { 'default': True, 'retrain': True }, 'init_filter_type': { 'default': 'Hann', 'retrain': True }, 'init_frequency_scaling': { 'default': 0.4, 'retrain': True }, 'use_sigmoid': { 'default': False, 'retrain': True }, 'nlayer': { 'default': 3, 'retrain': True }, 'internal_ch': { 'default': 32, 'retrain': True }, 'kernel_size': { 'default': 3, 'retrain': True }, 'batch_norm': { 'default': False, 'retrain': True }, 'prelu': { 'default': False, 'retrain': True }, 'lrelu_coeff': { 'default': 0.2, 'retrain': True }, 'lr_time_decay_rate': { 'default': 3.2, 'retrain': True }, 'init_weight_xavier_normal': { 'default': False, 'retrain': True }, 'init_weight_gain': { 'default': 1.0, 'retrain': True } }) def __init__(self, ray_trafo, **kwargs): """ Parameters ---------- ray_trafo : :class:`odl.tomo.RayTransform` Ray transform (the forward operator). Further keyword arguments are passed to ``super().__init__()``. """ super().__init__(ray_trafo, **kwargs) def init_model(self): self.op_mod = OperatorModule(self.op) self.op_adj_mod = OperatorModule(self.op.adjoint) partial0 = odl.PartialDerivative(self.op.domain, axis=0) partial1 = odl.PartialDerivative(self.op.domain, axis=1) self.reg_mod = OperatorModule(partial0.adjoint * partial0 + partial1.adjoint * partial1) if self.hyper_params['init_fbp']: fbp = fbp_op( self.non_normed_op, filter_type=self.hyper_params['init_filter_type'], frequency_scaling=self.hyper_params['init_frequency_scaling']) if self.normalize_by_opnorm: fbp = OperatorRightScalarMult(fbp, self.opnorm) self.init_mod = OperatorModule(fbp) else: self.init_mod = None self.model = IterativeNet( n_iter=self.niter, n_memory=5, op=self.op_mod, op_adj=self.op_adj_mod, op_init=self.init_mod, op_reg=self.reg_mod, use_sigmoid=self.hyper_params['use_sigmoid'], n_layer=self.hyper_params['nlayer'], internal_ch=self.hyper_params['internal_ch'], kernel_size=self.hyper_params['kernel_size'], batch_norm=self.hyper_params['batch_norm'], prelu=self.hyper_params['prelu'], lrelu_coeff=self.hyper_params['lrelu_coeff']) def weights_init(m): if isinstance(m, torch.nn.Conv2d): m.bias.data.fill_(0.0) if self.hyper_params['init_weight_xavier_normal']: torch.nn.init.xavier_normal_( m.weight, gain=self.hyper_params['init_weight_gain']) self.model.apply(weights_init) if self.use_cuda: # WARNING: using data-parallel here doesn't work, probably # astra_cuda is not thread-safe self.model = self.model.to(self.device) # def init_optimizer(self, dataset_train): # self.optimizer = torch.optim.RMSprop(self.model.parameters(), # lr=self.lr, alpha=0.9) # def init_scheduler(self, dataset_train): # self.scheduler = None ```
{ "source": "jleutgeb/privilege", "score": 3 }
#### File: oTree/privilege/tests.py ```python from otree.api import Currency as c, currency_range, expect, Bot from . import * import random class PlayerBot(Bot): def play_round(self): yield Instructions yield Decision1, dict( choice=random.choice(range(0, Constants.number_of_choices)), ) yield Info, dict( beliefs_high_ability=random.random(), beliefs_privileged=random.random(), beliefs_partner_high_ability=random.random(), beliefs_partner_privileged=random.random(), ) if self.player.id_in_group == 1: yield FirstMover, dict(leads=random.choice([True, False])) if self.player.id_in_group == 2 and self.player.session.config["follower_choice"] and \ self.player.get_others_in_group()[0].leads: yield SecondMover, dict(follows=random.choice([True, False])) if self.player.makes_leadership_choice: yield Decision2, dict(leadership_choice=random.choice([True, False])) yield Feedback ``` #### File: oTree/subject_email/__init__.py ```python from otree.api import * c = Currency doc = """ Your app description """ class Constants(BaseConstants): name_in_url = 'subject_email' players_per_group = None num_rounds = 1 class Subsession(BaseSubsession): pass class Group(BaseGroup): pass class Player(BasePlayer): subject_email = models.StringField( label="Please enter your Email address" ) # PAGES class MyPage(Page): form_model = 'player' form_fields = ['subject_email'] @staticmethod def before_next_page(player: Player, timeout_happened): player.participant.label = player.subject_email page_sequence = [MyPage] ``` #### File: oTree/subject_email/tests.py ```python from otree.api import Currency as c, currency_range, expect, Bot from . import * import random class PlayerBot(Bot): def play_round(self): yield MyPage, dict( subject_email="<EMAIL>", ) ``` #### File: oTree/survey/__init__.py ```python from otree.api import * c = Currency doc = """ Your app description """ class Constants(BaseConstants): name_in_url = 'survey' players_per_group = None num_rounds = 1 survey_payoff = c(5) class Subsession(BaseSubsession): pass class Group(BaseGroup): pass class Player(BasePlayer): gender = models.StringField( choices=[ ['m', 'male'], ['f', 'female'], ['o', 'other'], ], label="Gender" ) age = models.IntegerField(min=0, max=100, label="How old are you?") field = models.LongStringField(label="Which field of study?") semesters = models.IntegerField(min=0, max=100, label="How many semesters have you been studying?") strategy = models.LongStringField(blank=True, label="Please describe your thought process or your strategy in this experiment.") comments = models.LongStringField(blank=True, label="Do you have any other comments or questions about this experiment?") # PAGES class Survey(Page): form_model = "player" form_fields = ['gender', 'age', 'field', 'semesters', 'strategy', 'comments'] @staticmethod def before_next_page(player: Player, timeout_happened): player.payoff = Constants.survey_payoff page_sequence = [Survey] ``` #### File: oTree/survey/tests.py ```python from otree.api import Currency as c, currency_range, expect, Bot from . import * import random class PlayerBot(Bot): def play_round(self): yield Survey, dict( gender=random.choice(['m', 'f', 'o']), age=random.randint(0, 100), field="I'm a bot", semesters=random.randint(0, 100), strategy="I'm a bot", comments="I'm a bot", ) ```
{ "source": "jleven/httpx", "score": 3 }
#### File: httpx/httpx/_exceptions.py ```python import contextlib import typing if typing.TYPE_CHECKING: from ._models import Request, Response # pragma: nocover class HTTPError(Exception): """ Base class for `RequestError` and `HTTPStatusError`. Useful for `try...except` blocks when issuing a request, and then calling `.raise_for_status()`. For example: ``` try: response = httpx.get("https://www.example.com") response.raise_for_status() except httpx.HTTPError as exc: print(f"HTTP Exception for {exc.request.url} - {exc}") ``` """ def __init__(self, message: str) -> None: super().__init__(message) class RequestError(HTTPError): """ Base class for all exceptions that may occur when issuing a `.request()`. """ def __init__(self, message: str, *, request: "Request" = None) -> None: super().__init__(message) # At the point an exception is raised we won't typically have a request # instance to associate it with. # # The 'request_context' context manager is used within the Client and # Response methods in order to ensure that any raised exceptions # have a `.request` property set on them. self._request = request @property def request(self) -> "Request": if self._request is None: raise RuntimeError("The .request property has not been set.") return self._request @request.setter def request(self, request: "Request") -> None: self._request = request class TransportError(RequestError): """ Base class for all exceptions that occur at the level of the Transport API. """ # Timeout exceptions... class TimeoutException(TransportError): """ The base class for timeout errors. An operation has timed out. """ class ConnectTimeout(TimeoutException): """ Timed out while connecting to the host. """ class ReadTimeout(TimeoutException): """ Timed out while receiving data from the host. """ class WriteTimeout(TimeoutException): """ Timed out while sending data to the host. """ class PoolTimeout(TimeoutException): """ Timed out waiting to acquire a connection from the pool. """ # Core networking exceptions... class NetworkError(TransportError): """ The base class for network-related errors. An error occurred while interacting with the network. """ class ReadError(NetworkError): """ Failed to receive data from the network. """ class WriteError(NetworkError): """ Failed to send data through the network. """ class ConnectError(NetworkError): """ Failed to establish a connection. """ class CloseError(NetworkError): """ Failed to close a connection. """ # Other transport exceptions... class ProxyError(TransportError): """ An error occurred while establishing a proxy connection. """ class UnsupportedProtocol(TransportError): """ Attempted to make a request to an unsupported protocol. For example issuing a request to `ftp://www.example.com`. """ class ProtocolError(TransportError): """ The protocol was violated. """ class LocalProtocolError(ProtocolError): """ A protocol was violated by the client. For example if the user instantiated a `Request` instance explicitly, failed to include the mandatory `Host:` header, and then issued it directly using `client.send()`. """ class RemoteProtocolError(ProtocolError): """ The protocol was violated by the server. For example, returning malformed HTTP. """ # Other request exceptions... class DecodingError(RequestError): """ Decoding of the response failed, due to a malformed encoding. """ class TooManyRedirects(RequestError): """ Too many redirects. """ # Client errors class HTTPStatusError(HTTPError): """ The response had an error HTTP status of 4xx or 5xx. May be raised when calling `response.raise_for_status()` """ def __init__( self, message: str, *, request: "Request", response: "Response" ) -> None: super().__init__(message) self.request = request self.response = response class InvalidURL(Exception): """ URL is improperly formed or cannot be parsed. """ def __init__(self, message: str) -> None: super().__init__(message) class CookieConflict(Exception): """ Attempted to lookup a cookie by name, but multiple cookies existed. Can occur when calling `response.cookies.get(...)`. """ def __init__(self, message: str) -> None: super().__init__(message) # Stream exceptions... # These may occur as the result of a programming error, by accessing # the request/response stream in an invalid manner. class StreamError(RuntimeError): """ The base class for stream exceptions. The developer made an error in accessing the request stream in an invalid way. """ def __init__(self, message: str) -> None: super().__init__(message) class StreamConsumed(StreamError): """ Attempted to read or stream content, but the content has already been streamed. """ def __init__(self) -> None: message = ( "Attempted to read or stream some content, but the content has " "already been streamed. For requests, this could be due to passing " "a generator as request content, and then receiving a redirect " "response or a secondary request as part of an authentication flow." "For responses, this could be due to attempting to stream the response " "content more than once." ) super().__init__(message) class StreamClosed(StreamError): """ Attempted to read or stream response content, but the request has been closed. """ def __init__(self) -> None: message = ( "Attempted to read or stream content, but the stream has " "been closed." ) super().__init__(message) class ResponseNotRead(StreamError): """ Attempted to access streaming response content, without having called `read()`. """ def __init__(self) -> None: message = "Attempted to access streaming response content, without having called `read()`." super().__init__(message) class RequestNotRead(StreamError): """ Attempted to access streaming request content, without having called `read()`. """ def __init__(self) -> None: message = "Attempted to access streaming request content, without having called `read()`." super().__init__(message) @contextlib.contextmanager def request_context(request: "Request" = None) -> typing.Iterator[None]: """ A context manager that can be used to attach the given request context to any `RequestError` exceptions that are raised within the block. """ try: yield except RequestError as exc: if request is not None: exc.request = request raise exc ```
{ "source": "jlevente/django-allauth", "score": 2 }
#### File: providers/strava/provider.py ```python from allauth.socialaccount.providers.base import ProviderAccount from allauth.socialaccount.providers.oauth2.provider import OAuth2Provider class StravaAccount(ProviderAccount): def to_str(self): dflt = super(StravaAccount, self).to_str() return self.account.extra_data.get('username', dflt) class StravaProvider(OAuth2Provider): id = 'strava' name = 'Strava' account_class = StravaAccount def get_auth_params(self, request, action): data = super(StravaProvider, self).get_auth_params(request, action) data['scope'] = "view_private" return data def extract_uid(self, data): return str(data['id']) def extract_common_fields(self, data): return dict( email=data.get('email'), username=data.get('username'), first_name=data.get('firstname'), last_name=data.get('lastname'), name="%s %s" % (data.get('firstname'), data.get('lastname')), ) provider_classes = [StravaProvider] ```
{ "source": "jlevente/social", "score": 2 }
#### File: socialcollector/socialcollector/collector.py ```python import params import psycopg2, psycopg2.extras import requests import json import oauth2 from datetime import datetime from dateutil import parser, tz from xml.etree import ElementTree as ET import sys import math utc_zone = tz.gettz('UTC') INSTA_LIMIT = 20 TWEET_LIMIT = 200 FOURSQUARE_LIMIT = 250 FLICKR_LIMIT = 400 OSM_LIMIT = 100 MAPILLARY_LIMIT = 1000 STRAVA_LIMIT = 100 INAT_LIMIT = 200 MEETUP_LIMIT = 200 FB_LIMIT = 100 GOOGLE_POINT_BATCH = 20000 GOOGLE_LINE_BATCH = 1000 class DBHandler(): def __init__(self): self.data_db = psycopg2.connect(host=params.environ['DJANGO_SOCIAL_DATA_DB_HOST'], port=params.environ['DJANGO_SOCIAL_DATA_DB_PORT'], user=params.environ['DJANGO_SOCIAL_DATA_DB_USER'], password=<PASSWORD>['<PASSWORD>'], dbname=params.environ['DJANGO_SOCIAL_DATA_DB_NAME']) self.django_db = psycopg2.connect(host=params.environ['DJANGO_SOCIAL_DEFAULT_DB_HOST'], port=params.environ['DJANGO_SOCIAL_DEFAULT_DB_PORT'], user=params.environ['DJANGO_SOCIAL_DEFAULT_DB_USER'], password=params.environ['<PASSWORD>_SOCIAL_DEFAULT_DB_PASS'], dbname=params.environ['DJANGO_SOCIAL_DEFAULT_DB_NAME']) def getAllParams(self): sql = ''' select provider.id as acc_id, provider.provider, provider.user_id, provider.uid, token.token, token.token_secret, provider.client_id, provider.secret, provider.extra_data::json from (select distinct on (provider, user_id) acc.id, acc.provider, acc.user_id, acc.uid, app.id app_id, app.client_id, app.secret, acc.extra_data from socialaccount_socialaccount acc, socialaccount_socialapp app where acc.provider = app.provider order by provider, user_id, id asc) provider, socialaccount_socialtoken token where provider.id = token.account_id ''' cur = self.django_db.cursor() data = [] try: cur.execute(sql) user = cur.fetchall() for u in user: params = { "platform": u[1], "user_django": u[2], "user_platform": u[3], "access_token": u[4], "token_secret": u[5], "client_id": u[6], "client_secret": u[7], } #print params try: login = u[8]['login'] print login params['login'] = login data.append(params) except: data.append(params) except Exception, e: print(Exception, e) return data def getUserParams(self, user_id, platform): sql = ''' select provider.id as acc_id, provider.provider, provider.user_id, provider.uid, token.token, token.token_secret, provider.client_id, provider.secret, provider.extra_data::json from ( select distinct on (provider, user_id) acc.id, acc.provider, acc.user_id, acc.uid, app.id app_id, app.client_id, app.secret, acc.extra_data from socialaccount_socialaccount acc, (select * from socialaccount_socialapp where provider = %s) app where acc.provider = app.provider and acc.user_id = %s order by provider, user_id, id asc ) provider, socialaccount_socialtoken token where provider.id = token.account_id ''' cur = self.django_db.cursor() try: cur.execute(sql, (platform, user_id)) user = cur.fetchone() params = { "platform": user[1], "user_django": user[2], "user_platform": user[3], "access_token": user[4], "token_secret": user[5], "client_id": user[6], "client_secret": user[7], } try: login = json.loads(user[8])['login'] params['login'] = login except: pass except Exception, e: print(Exception, e) return params def downloadData(self, params, collector): print 'User id: %s,platform: %s' % (params['user_django'], params['platform']) if params['platform'] == 'instagram': collector.getInstaMedia(params, self.data_db) elif params['platform'] == 'twitter': collector.getTweets(params, self.data_db) elif params['platform'] == 'foursquare': collector.getFoursquareCheckins(params, self.data_db) elif params['platform'] == 'flickr': collector.getFlickrPhotos(params, self.data_db) elif params['platform'] == 'openstreetmap': collector.getOSMChangesets(params, self.data_db) elif params['platform'] == 'mapillary': collector.getMapillarySequences(params, self.data_db) elif params['platform'] == 'strava': collector.getStravaActivities(params, self.data_db) elif params['platform'] == 'inaturalist': collector.getInatObservations(params, self.data_db) elif params['platform'] == 'meetup': collector.getMeetups(params, self.data_db) def getNewUserParams(self): data_cur = self.data_db.cursor() params = self.getAllParams() fb_users = data_cur.execute('select array_agg(distinct user_id) from facebook_places') return params def setupTables(self): cursor = self.data_db.cursor() insta_table_sql = ''' CREATE TABLE insta_media ( pid serial primary key, ''' cursor.execute(insta_table_sql) class DataCollector(): def getInstaMedia(self, user_params, db): url = 'https://api.instagram.com/v1/users/self/media/recent/?count=20&access_token=' + user_params['access_token'] cursor = db.cursor() insert_sql = ''' INSERT INTO insta_media (user_id, created_at, location_name, geom, raw) VALUES (%s, %s, %s, st_setsrid(st_makepoint(%s, %s), 4326), %s::json) ''' insert_sql_noloc = ''' INSERT INTO insta_media (user_id, created_at, raw) VALUES (%s, %s, %s::json) ''' curr_url = url more = True while more: resp = requests.get(curr_url) if resp.status_code == 200: data = resp.json() for media in data['data']: id = media['id'] if media['location'] and 'latitude' in media['location'].keys(): loc_name = media['location']['name'] lat = media['location']['latitude'] lng = media['location']['longitude'] cursor.execute(insert_sql, (user_params['user_django'], datetime.utcfromtimestamp(int(media['created_time'])), loc_name, lng, lat, json.dumps(media))) else: cursor.execute(insert_sql_noloc, (user_params['user_django'], datetime.utcfromtimestamp(int(media['created_time'])), json.dumps(media))) db.commit() if len(data['data']) == INSTA_LIMIT: more = True curr_url = url + "&max_id=" + id db.commit() else: more = False else: more = False def getTweets(self, user_params, db): url = 'https://api.twitter.com/1.1/statuses/user_timeline.json?count=' + str(TWEET_LIMIT) consumer = oauth2.Consumer(key=user_params['client_id'], secret=user_params['client_secret']) token = oauth2.Token(key=user_params['access_token'], secret=user_params['token_secret']) client = oauth2.Client(consumer, token) cursor = db.cursor() insert_sql = ''' INSERT INTO tweets (user_id, created_at, coordinates, place_name, place_bbox, raw) VALUES (%s, %s, st_setsrid(st_geomfromgeojson(%s), 4326), %s, st_makevalid(st_setsrid(st_geomfromgeojson(%s), 4326)), %s::json) ''' more = True curr_url = url while more: resp, content = client.request(curr_url, method='GET', headers=None) if resp.status == 200: content = json.loads(content) for tweet in content: created_at = parser.parse(tweet['created_at']) id = tweet['id'] if tweet['coordinates']: coordinates = json.dumps(tweet['coordinates']) else: coordinates = None if tweet['place']: place_name = tweet['place']['full_name'] place_bbox = json.dumps(tweet['place']['bounding_box']) else: place_name = None place_bbox = None cursor.execute(insert_sql, (user_params['user_django'], created_at, coordinates, place_name, place_bbox, json.dumps(tweet))) if len(content) == TWEET_LIMIT: more = True curr_url = url + '&max_id=' + str(id) db.commit() else: more = False else: print resp db.commit() def getFoursquareCheckins(self, user_params, db): url ='https://api.foursquare.com/v2/users/self/checkins?v=20180401&limit=' + str(FOURSQUARE_LIMIT) + '&oauth_token=' + user_params['access_token'] cursor = db.cursor() insert_sql = ''' INSERT INTO foursquare_checkins (user_id, created_at, venue_name, geom, raw) VALUES (%s, %s, %s, st_setsrid(st_makepoint(%s, %s), 4326), %s::json) ''' insert_sql_private = ''' INSERT INTO foursquare_checkins (user_id, created_at, venue_name, raw) VALUES (%s, %s, %s, %s::json) ''' curr_url = url more = True while more: checkins = requests.get(curr_url) if checkins.status_code == 200: checkins = checkins.json() for checkin in checkins['response']['checkins']['items']: created_at = checkin['createdAt'] if 'venue' in checkin.keys(): venue_name = checkin['venue']['name'] if 'private' in checkin['venue'].keys(): lat = None lng = None else: lat = checkin['venue']['location']['lat'] lng = checkin['venue']['location']['lng'] if lat is None: cursor.execute(insert_sql_private, (user_params['user_django'], datetime.utcfromtimestamp(created_at), venue_name, json.dumps(checkin))) else: cursor.execute(insert_sql, (user_params['user_django'], datetime.utcfromtimestamp(created_at), venue_name, lng, lat, json.dumps(checkin))) if len(checkins['response']['checkins']['items']) == FOURSQUARE_LIMIT: more = True curr_url = url + '&beforeTimestamp=' + str(created_at) db.commit() else: more = False else: print checkins.text db.commit() def getFlickrPhotos(self, user_params, db): url = url = 'https://api.flickr.com/services/rest/?oauth_consumer_key=' + user_params['client_id'] + '&method=flickr.people.getPhotos&user_id=me&extras=date_upload,date_taken,geo,url_m&format=json&nojsoncallback=1&oauth_token=' + user_params['access_token'] + '&oauth_signature=' + user_params['token_secret']+ '&per_page=' + str(FLICKR_LIMIT) cursor = db.cursor() insert_sql = ''' insert into flickr_photos (user_id, created_at, geom, raw) values (%s, %s, st_setsrid(st_makepoint(%s, %s), 4326), %s::json) ''' insert_sql_noloc = ''' insert into flickr_photos (user_id, created_at, raw) values (%s, %s, %s::json) ''' more = True curr_url = url while more: resp = requests.get(curr_url) if resp.status_code == 200: photos = resp.json() for photo in photos['photos']['photo']: created_at = datetime.utcfromtimestamp(int(photo['dateupload'])) lat = photo['latitude'] lng = photo['longitude'] if lat == 0 and lng == 0: cursor.execute(insert_sql_noloc, (user_params['user_django'], created_at, json.dumps(photo))) else: cursor.execute(insert_sql, (user_params['user_django'], created_at, lng, lat, json.dumps(photo))) if photos['photos']['page'] < photos['photos']['pages']: more = True curr_url = url + '&page=' + str(photos['photos']['page'] + 1) db.commit() if created_at < datetime(2014, 1, 1): more = False else: more = False else: print resp.text db.commit() def getOSMChangesets(self, user_params, db): url = 'https://api.openstreetmap.org/api/0.6/changesets?user=' + user_params['user_platform'] + '&time=2014-01-01,' cursor = db.cursor() insert_sql = ''' insert into osm_changesets (user_id, created_at, geom) values (%s, %s, st_setsrid(st_makeenvelope(%s, %s, %s, %s), 4326)) ''' more = True curr_url = url + str(datetime.now().date()) while more: resp = requests.get(curr_url) if resp.status_code == 200: root = ET.fromstring(resp.content) changesets = list(root.iter('changeset')) for changeset in changesets: attr = changeset.attrib try: min_lon = attr['min_lon'] min_lat = attr['min_lat'] max_lon = attr['max_lon'] max_lat = attr['max_lat'] except KeyError: continue created_at = parser.parse(attr['created_at']) cursor.execute(insert_sql, (user_params['user_django'], created_at, min_lon, min_lat, max_lon, max_lat)) if len(changesets) == OSM_LIMIT: more = True curr_url = url + str(created_at) db.commit() else: more = False if changesets and created_at.replace(tzinfo=None) < datetime(2015, 1, 1): more = False db.commit() def getMapillarySequences(self, user_params, db): url = 'https://a.mapillary.com/v3/sequences?userkeys=' + user_params['user_platform'] + '&client_id=' + user_params['client_id'] + '&per_page=' + str(MAPILLARY_LIMIT) cursor = db.cursor() insert_sql = ''' insert into mapillary_sequences (user_id, created_at, geom, raw) values (%s, %s, st_setsrid(st_geomfromgeojson(%s), 4326), %s::json) ''' insert_sql_fast = ''' insert into mapillary_sequences (user_id, created_at, geom, raw) values %s ''' more = True curr_url = url data_insert = [] while more: resp = requests.get(curr_url) if resp.status_code == 200: headers = resp.headers resp = resp.json() for sequence in resp['features']: created_at = parser.parse(sequence['properties']['created_at']) geom = sequence['geometry'] data_insert.append((user_params['user_django'], created_at, json.dumps(geom), json.dumps(sequence))) #cursor.execute(insert_sql, (user_params['user_django'], created_at, json.dumps(geom), json.dumps(sequence))) next_link = findNextLink(headers) if next_link: more = True curr_url = next_link #db.commit() else: more = False psycopg2.extras.execute_values(cursor, insert_sql_fast, data_insert, template='(%s, %s, st_setsrid(st_geomfromgeojson(%s), 4326), %s::json)') db.commit() def getStravaActivities(self, user_params, db): import polyline auth = {"Authorization": "Bearer " + user_params['access_token']} url = 'https://www.strava.com/api/v3/athlete/activities?per_page=' + str(STRAVA_LIMIT) cursor = db.cursor() insert_sql = ''' insert into strava_activities (user_id, created_at, geom, raw) values (%s, %s, st_setsrid(st_geomfromgeojson(%s), 4326), %s::json) ''' more = True curr_url = url while more: resp = requests.get(curr_url, headers=auth) if resp.status_code == 200: resp = resp.json() for activity in resp: created_at = parser.parse(activity['start_date']) if 'map' in activity.keys(): if 'polyline' in activity['map'].keys(): line = polyline.decode(activity['map']['polyline']) elif 'summary_polyline' in activity['map'].keys(): line = polyline.decode(activity['map']['summary_polyline']) # Watch order in geojson. reverse latlng with [::-1] geom = { "type": "LineString", "coordinates": [list(coords)[::-1] for coords in line] } else: continue cursor.execute(insert_sql, (user_params['user_django'], created_at, json.dumps(geom), json.dumps(activity))) if len(resp) == STRAVA_LIMIT: more = True curr_url = url + '&before=' + str(int((created_at.replace(tzinfo=None) - datetime(1970,1,1)).total_seconds())) db.commit() else: more = False db.commit() def getInatObservations(self, user_params, db): auth = {"Authorization": "Bearer " + user_params['access_token']} url = 'https://www.inaturalist.org/observations/' + user_params['login'] + '.json?per_page=' + str(INAT_LIMIT) + "&has[]=geo" cursor = db.cursor() insert_sql = ''' insert into inat_observations (user_id, created_at, geom, raw) values (%s, %s, st_setsrid(st_makepoint(%s, %s), 4326), %s::json) ''' more = True curr_url = url while more: resp = requests.get(curr_url, headers=auth) if resp.status_code == 200: headers = resp.headers resp = resp.json() for obs in resp: created_at = parser.parse(obs['created_at']).astimezone(utc_zone).replace(tzinfo=None) lat = float(obs['latitude']) lng = float(obs['longitude']) cursor.execute(insert_sql, (user_params['user_django'], created_at, lng, lat, json.dumps(obs))) cont = findNextPage(headers) if cont: more = True curr_url = url + '&page=' + str(cont) db.commit() else: more = False db.commit() def getMeetups(self, user_params, db): auth = {"Authorization": "Bearer " + user_params['access_token']} url = 'https://api.meetup.com/self/events?desc=true&page=' + str(MEETUP_LIMIT) cursor = db.cursor() insert_sql = ''' insert into meetups (user_id, created_at, venue_name, geom, raw) values (%s, %s, %s, st_setsrid(st_makepoint(%s, %s), 4326), %s::json) ''' curr_url = url more = True while more: resp = requests.get(curr_url, headers=auth) if resp.status_code == 200: headers = resp.headers resp = resp.json() for meetup in resp: if 'created' in meetup.keys(): created_at = datetime.fromtimestamp(meetup['created']/1000.0) else: try: created_at = datetime.fromtimestamp(meetup['time']/1000.0) except KeyError: created_at = None if 'venue' in meetup.keys(): venue_name = meetup['venue']['name'] lat = meetup['venue']['lat'] lng = meetup['venue']['lon'] else: try: venue_name = meetup['group']['name'] lat = meetup['group']['lat'] lng = meetup['venue']['lon'] except KeyError: venue_name = None lat = None lng = None cursor.execute(insert_sql, (user_params['user_django'], created_at, venue_name, lng, lat, json.dumps(meetup))) next_link = findNextLink(headers) if next_link: more = True curr_url = next_link db.commit() else: more = False db.commit() def getFacebookPlaces(self, user_params, db): url = "https://graph.facebook.com/v2.12/me/tagged_places?access_token=" + user_params['access_token'] + "&limit=" + str(FB_LIMIT) cursor = db.cursor() insert_sql = ''' insert into facebook_places (user_id, created_at, name, geom, raw) values (%s, %s, %s, st_setsrid(st_makepoint(%s, %s), 4326), %s::json) ''' insert_sql_nogeom = ''' insert into facebook_places (user_id, created_at, name, raw) values (%s, %s, %s, %s::json) ''' curr_url = url more = True while more: resp = requests.get(curr_url) if resp.status_code == 200: resp = resp.json() for place in resp: created_at = parser.parse(place['created_time']) name = place['place']['name'] try: lat = place['place']['location']['latitude'] lng = place['place']['location']['longitude'] except KeyError: lat = None if not lat: cursor.execute(insert_sql_nogeom, (user_params['user_django'], created_at, name, json.dumps(place))) else: cursor.execute(insert_sql, (user_params['user_django'], created_at, name, lng, lat, json.dumps(place))) if 'next' in resp['paging'].keys(): more = True curr_url = resp['paging']['next'] else: more = False db.commit() def findNextLink(headers): try: links = headers['link'] except KeyError: try: links = headers['Link'] except KeyError: return False for x in links.split(','): if 'next' in x: next_link = x.split('<')[1].split('>')[0] else: next_link = False return next_link def findNextPage(headers): tot = int(headers['X-Total-Entries']) perpage = int(headers['X-Per-Page']) curr_page = int(headers['X-Page']) if curr_page * perpage < tot: return curr_page + 1 else: return False def get_args(): import argparse p = argparse.ArgumentParser(description="Control from the command line") p.add_argument('-a', '--all', help='Get params from all users', action='store_true') p.add_argument('-i', '--index', help='run collector for this index (comma separated) in params list') return p.parse_args() def deg2rad(deg): return deg * (math.pi/180) def getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2): R = 6371 # Radius of the earth in km dlat = deg2rad(lat2-lat1) dlon = deg2rad(lon2-lon1) a = math.sin(dlat/2) * math.sin(dlat/2) + \ math.cos(deg2rad(lat1)) * math.cos(deg2rad(lat2)) * \ math.sin(dlon/2) * math.sin(dlon/2) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a)) d = R * c # Distance in km return d def parseGoogleLocationHistory(user_id, file, db_handler, types=['point', 'line']): import io db = db_handler.data_db with io.open(file, encoding='utf-8') as f: data = json.load(f) geom = { "type": "LineString", "coordinates": [ # [102.0, 0.0], [103.0, 1.0], [104.0, 0.0], [105.0, 1.0] ] } last = None point_cur = db.cursor() line_cur = db.cursor() insert_point_sql = ''' INSERT INTO google_loc_points (user_id, created_at, accuracy, geom) values %s ''' insert_line_sql = ''' INSERT INTO google_loc_lines (user_id, start_time, end_time, geom) values %s ''' points_insert = [] lines_insert = [] point_counter = 0 line_counter = 0 for loc in data['locations']: time = datetime.utcfromtimestamp(int(loc['timestampMs'])/1000.0) point = [loc['longitudeE7']/10000000.0, loc['latitudeE7']/10000000.0] if 'accuracy' in loc.keys(): acc = loc['accuracy'] else: acc= None if 'point' in types: points_insert.append((user_id, time, acc) + tuple(point)) point_counter += 1 if point_counter % GOOGLE_POINT_BATCH == 0: # write something here print 'Writing %s points to table (total: %s)' % (str(GOOGLE_POINT_BATCH), str(point_counter)) psycopg2.extras.execute_values(point_cur, insert_point_sql, points_insert, template='(%s, %s, %s, st_setsrid(st_makepoint(%s, %s),4326))') points_insert = [] db.commit() if 'line' in types: if last: prev_point = [last['longitudeE7']/10000000.0, last['latitudeE7']/10000000.0] timedelta = (int(loc['timestampMs']) - int(last['timestampMs'])) / 1000.0 / 60.0 distancedelta = getDistanceFromLatLonInKm(point[1], point[0], prev_point[1], prev_point[0]) if timedelta < -20 or distancedelta > 10: # build line here from last segment_start = datetime.utcfromtimestamp(int(last['timestampMs'])/1000.0) #print 'timedelta: %s, distancedelta: %s' % (str(timedelta), str(distancedelta)) #print 'Segment started: %s, ended: %s' % (str(segment_start), str(segment_end)) #print 'Segment points: %s' % str(len(geom['coordinates'])) lines_insert.append((user_id, segment_start, segment_end, json.dumps(geom))) line_counter += 1 # Insert into postgres if line_counter % GOOGLE_LINE_BATCH == 0: print 'Writing %s lines to table (total: %s)' % (str(GOOGLE_LINE_BATCH), str(line_counter)) psycopg2.extras.execute_values(line_cur, insert_line_sql, lines_insert, template='(%s, %s, %s,st_setsrid(st_geomfromgeojson(%s),4326))') db.commit() lines_insert = [] geom['coordinates'] = [] if len(geom['coordinates']) == 0: segment_end = time geom['coordinates'].append(point) last = loc # insert last if 'point' in types: psycopg2.extras.execute_values(point_cur, insert_point_sql, points_insert, template='(%s, %s, %s, st_setsrid(st_makepoint(%s, %s),4326))') if 'line' in types: psycopg2.extras.execute_values(line_cur, insert_line_sql, lines_insert, template='(%s, %s, %s,st_setsrid(st_geomfromgeojson(%s),4326))') db.commit() def main(): args = vars(get_args()) all = args['all'] accounts = args['index'] db = DBHandler() coll = DataCollector() if all: userparams = db.getAllParams() else: sys.exit(0) if accounts: accounts = [int(i) for i in accounts.split(',')] for acc in accounts: db.downloadData(userparams[acc], coll) else: sys.exit(0) if __name__ == "__main__": main() ```
{ "source": "jleveque/sonic-mgmt", "score": 2 }
#### File: tests/bgp/conftest.py ```python import os import contextlib import ipaddress import json import logging import netaddr import pytest import random from jinja2 import Template from tests.common.helpers.assertions import pytest_assert as pt_assert from tests.common.helpers.generators import generate_ips from tests.common.helpers.parallel import parallel_run from tests.common.helpers.parallel import reset_ansible_local_tmp from tests.common.utilities import wait_until from tests.common.utilities import wait_tcp_connection from tests.common import config_reload from bgp_helpers import define_config from bgp_helpers import apply_default_bgp_config from bgp_helpers import DUT_TMP_DIR from bgp_helpers import TEMPLATE_DIR from bgp_helpers import BGP_PLAIN_TEMPLATE from bgp_helpers import BGP_NO_EXPORT_TEMPLATE from bgp_helpers import DUMP_FILE, CUSTOM_DUMP_SCRIPT, CUSTOM_DUMP_SCRIPT_DEST, BGPMON_TEMPLATE_FILE, BGPMON_CONFIG_FILE, BGP_MONITOR_NAME, BGP_MONITOR_PORT from tests.common.helpers.constants import DEFAULT_NAMESPACE from tests.common.dualtor.dual_tor_utils import mux_cable_server_ip logger = logging.getLogger(__name__) @pytest.fixture(scope='module') def setup_keepalive_and_hold_timer(duthosts, rand_one_dut_hostname, nbrhosts): duthost = duthosts[rand_one_dut_hostname] # incrase the keepalive and hold timer duthost.command("vtysh -c \"configure terminal\" \ -c \"router bgp {}\" \ -c \"neighbor {} timers 60 180\"".format( metadata['localhost']['bgp_asn'], \ bgp_nbr_ip)) for k, nbr in nbrhosts.items(): nbr['host'].eos_config(lines=["timers 60 180"], parents=["router bgp {}".format(bgp_nbr['asn'])]) yield def check_results(results): """Helper function for checking results of parallel run. Args: results (Proxy to shared dict): Results of parallel run, indexed by node name. """ failed_results = {} for node_name, node_results in results.items(): failed_node_results = [res for res in node_results if res['failed']] if len(failed_node_results) > 0: failed_results[node_name] = failed_node_results if failed_results: logger.error('failed_results => {}'.format(json.dumps(failed_results, indent=2))) pt_assert(False, 'Some processes for updating nbr hosts configuration returned failed results') @pytest.fixture(scope='module') def setup_bgp_graceful_restart(duthosts, rand_one_dut_hostname, nbrhosts): duthost = duthosts[rand_one_dut_hostname] config_facts = duthost.config_facts(host=duthost.hostname, source="running")['ansible_facts'] bgp_neighbors = config_facts.get('BGP_NEIGHBOR', {}) @reset_ansible_local_tmp def configure_nbr_gr(node=None, results=None): """Target function will be used by multiprocessing for configuring VM hosts. Args: node (object, optional): A value item of the dict type fixture 'nbrhosts'. Defaults to None. results (Proxy to shared dict, optional): An instance of multiprocessing.Manager().dict(). Proxy to a dict shared by all processes for returning execution results. Defaults to None. """ if node is None or results is None: logger.error('Missing kwarg "node" or "results"') return node_results = [] logger.info('enable graceful restart on neighbor host {}'.format(node['host'].hostname)) logger.info('bgp asn {}'.format(node['conf']['bgp']['asn'])) node_results.append(node['host'].eos_config( lines=['graceful-restart restart-time 300'], \ parents=['router bgp {}'.format(node['conf']['bgp']['asn'])], \ module_ignore_errors=True) ) node_results.append(node['host'].eos_config( lines=['graceful-restart'], \ parents=['router bgp {}'.format(node['conf']['bgp']['asn']), 'address-family ipv4'], \ module_ignore_errors=True) ) node_results.append(node['host'].eos_config( lines=['graceful-restart'], \ parents=['router bgp {}'.format(node['conf']['bgp']['asn']), 'address-family ipv6'], \ module_ignore_errors=True) ) results[node['host'].hostname] = node_results @reset_ansible_local_tmp def restore_nbr_gr(node=None, results=None): """Target function will be used by multiprocessing for restoring configuration for the VM hosts. Args: node (object, optional): A value item of the dict type fixture 'nbrhosts'. Defaults to None. results (Proxy to shared dict, optional): An instance of multiprocessing.Manager().dict(). Proxy to a dict shared by all processes for returning execution results. Defaults to None. """ if node is None or results is None: logger.error('Missing kwarg "node" or "results"') return # start bgpd if not started node_results = [] node['host'].start_bgpd() logger.info('disable graceful restart on neighbor {}'.format(node)) node_results.append(node['host'].eos_config( lines=['no graceful-restart'], \ parents=['router bgp {}'.format(node['conf']['bgp']['asn']), 'address-family ipv4'], \ module_ignore_errors=True) ) node_results.append(node['host'].eos_config( lines=['no graceful-restart'], \ parents=['router bgp {}'.format(node['conf']['bgp']['asn']), 'address-family ipv6'], \ module_ignore_errors=True) ) results[node['host'].hostname] = node_results results = parallel_run(configure_nbr_gr, (), {}, nbrhosts.values(), timeout=120) check_results(results) logger.info("bgp neighbors: {}".format(bgp_neighbors.keys())) res = True err_msg = "" if not wait_until(300, 10, duthost.check_bgp_session_state, bgp_neighbors.keys()): res = False err_msg = "not all bgp sessions are up after enable graceful restart" if res and not wait_until(100, 5, duthost.check_default_route): res = False err_msg = "ipv4 or ipv6 default route not available" if not res: # Disable graceful restart in case of failure parallel_run(restore_nbr_gr, (), {}, nbrhosts.values(), timeout=120) pytest.fail(err_msg) yield results = parallel_run(restore_nbr_gr, (), {}, nbrhosts.values(), timeout=120) check_results(results) if not wait_until(300, 10, duthost.check_bgp_session_state, bgp_neighbors.keys()): pytest.fail("not all bgp sessions are up after disable graceful restart") @pytest.fixture(scope="module") def setup_interfaces(duthosts, rand_one_dut_hostname, ptfhost, request, tbinfo): """Setup interfaces for the new BGP peers on PTF.""" def _is_ipv4_address(ip_addr): return ipaddress.ip_address(ip_addr).version == 4 def _duthost_cleanup_ip(duthost, namespace, ip): """ Search if "ip" is configured on any DUT interface. If yes, remove it. """ for line in duthost.shell("ip addr show | grep 'inet '")['stdout_lines']: # Example line: ''' inet 10.0.0.2/31 scope global Ethernet104''' fields = line.split() intf_ip = fields[1].split("/")[0] if intf_ip == ip: intf_name = fields[-1] duthost.shell("config interface %s ip remove %s %s" % (namespace, intf_name, ip)) ip_intfs = duthost.show_and_parse('show ip {} interface'.format(namespace)) # For interface that has two IP configured, the output looks like: # admin@vlab-03:~$ show ip int # Interface Master IPv4 address/mask Admin/Oper BGP Neighbor Neighbor IP # --------------- -------- ------------------- ------------ -------------- ------------- # Ethernet100 10.0.0.50/31 up/up ARISTA10T0 10.0.0.51 # Ethernet104 10.0.0.2/31 up/up N/A N/A # 10.0.0.52/31 ARISTA11T0 10.0.0.53 # Ethernet108 10.0.0.54/31 up/up ARISTA12T0 10.0.0.55 # Ethernet112 10.0.0.56/31 up/up ARISTA13T0 10.0.0.57 # # For interface Ethernet104, it has two entries in the output list: # [{ # "ipv4 address/mask": "10.0.0.2/31", # "neighbor ip": "N/A", # "master": "", # "admin/oper": "up/up", # "interface": "Ethernet104", # "bgp neighbor": "N/A" # }, # { # "ipv4 address/mask": "10.0.0.52/31", # "neighbor ip": "10.0.0.53", # "master": "", # "admin/oper": "", # "interface": "", # "bgp neighbor": "ARISTA11T0" # },] # The second item has empty value for key "interface". Below code is to fill "Ethernet104" for the second item. last_interface = "" for ip_intf in ip_intfs: if ip_intf["interface"] == "": ip_intf["interface"] = last_interface else: last_interface = ip_intf["interface"] # Remove the specified IP from interfaces for ip_intf in ip_intfs: if ip_intf["ipv4 address/mask"].split("/")[0] == ip: duthost.shell("config interface %s ip remove %s %s" % (namespace, ip_intf["interface"], ip)) def _find_vlan_intferface(mg_facts): for vlan_intf in mg_facts["minigraph_vlan_interfaces"]: if _is_ipv4_address(vlan_intf["addr"]): return vlan_intf raise ValueError("No Vlan interface defined in T0.") def _find_loopback_interface(mg_facts): loopback_intf_name = "Loopback0" for loopback in mg_facts["minigraph_lo_interfaces"]: if loopback["name"] == loopback_intf_name: return loopback raise ValueError("No loopback interface %s defined." % loopback_intf_name) @contextlib.contextmanager def _setup_interfaces_dualtor(mg_facts, peer_count): try: connections = [] vlan_intf = _find_vlan_intferface(mg_facts) loopback_intf = _find_loopback_interface(mg_facts) vlan_intf_addr = vlan_intf["addr"] vlan_intf_prefixlen = vlan_intf["prefixlen"] loopback_intf_addr = loopback_intf["addr"] loopback_intf_prefixlen = loopback_intf["prefixlen"] mux_configs = mux_cable_server_ip(duthost) local_interfaces = random.sample(mux_configs.keys(), peer_count) for local_interface in local_interfaces: connections.append( { "local_intf": loopback_intf["name"], "local_addr": "%s/%s" % (loopback_intf_addr, loopback_intf_prefixlen), "neighbor_intf": "eth%s" % mg_facts["minigraph_port_indices"][local_interface], "neighbor_addr": "%s/%s" % (mux_configs[local_interface]["server_ipv4"].split("/")[0], vlan_intf_prefixlen) } ) ptfhost.remove_ip_addresses() for conn in connections: ptfhost.shell("ifconfig %s %s" % (conn["neighbor_intf"], conn["neighbor_addr"])) ptfhost.shell("ip route add %s via %s" % (loopback_intf_addr, vlan_intf_addr)) yield connections finally: ptfhost.shell("ip route delete %s" % loopback_intf_addr) for conn in connections: ptfhost.shell("ifconfig %s 0.0.0.0" % conn["neighbor_intf"]) @contextlib.contextmanager def _setup_interfaces_t0(mg_facts, peer_count): try: connections = [] vlan_intf = _find_vlan_intferface(mg_facts) vlan_intf_name = vlan_intf["attachto"] vlan_intf_addr = "%s/%s" % (vlan_intf["addr"], vlan_intf["prefixlen"]) vlan_members = mg_facts["minigraph_vlans"][vlan_intf_name]["members"] local_interfaces = random.sample(vlan_members, peer_count) neighbor_addresses = generate_ips( peer_count, vlan_intf["subnet"], [netaddr.IPAddress(vlan_intf["addr"])] ) loopback_ip = None for intf in mg_facts["minigraph_lo_interfaces"]: if netaddr.IPAddress(intf["addr"]).version == 4: loopback_ip = intf["addr"] break if not loopback_ip: pytest.fail("ipv4 lo interface not found") for local_intf, neighbor_addr in zip(local_interfaces, neighbor_addresses): conn = {} conn["local_intf"] = vlan_intf_name conn["local_addr"] = vlan_intf_addr conn["neighbor_addr"] = neighbor_addr conn["neighbor_intf"] = "eth%s" % mg_facts["minigraph_port_indices"][local_intf] conn["loopback_ip"] = loopback_ip connections.append(conn) ptfhost.remove_ip_addresses() # In case other case did not cleanup IP address configured on PTF interface for conn in connections: ptfhost.shell("ifconfig %s %s" % (conn["neighbor_intf"], conn["neighbor_addr"])) yield connections finally: for conn in connections: ptfhost.shell("ifconfig %s 0.0.0.0" % conn["neighbor_intf"]) @contextlib.contextmanager def _setup_interfaces_t1(mg_facts, peer_count): try: connections = [] ipv4_interfaces = [] used_subnets = set() if mg_facts["minigraph_interfaces"]: for intf in mg_facts["minigraph_interfaces"]: if _is_ipv4_address(intf["addr"]): ipv4_interfaces.append(intf["attachto"]) used_subnets.add(ipaddress.ip_network(intf["subnet"])) ipv4_lag_interfaces = [] if mg_facts["minigraph_portchannel_interfaces"]: for pt in mg_facts["minigraph_portchannel_interfaces"]: if _is_ipv4_address(pt["addr"]): pt_members = mg_facts["minigraph_portchannels"][pt["attachto"]]["members"] # Only use LAG with 1 member for bgpmon session between PTF, # It's because exabgp on PTF is bind to single interface if len(pt_members) == 1: ipv4_lag_interfaces.append(pt["attachto"]) used_subnets.add(ipaddress.ip_network(pt["subnet"])) subnet_prefixlen = list(used_subnets)[0].prefixlen _subnets = ipaddress.ip_network(u"10.0.0.0/24").subnets(new_prefix=subnet_prefixlen) subnets = (_ for _ in _subnets if _ not in used_subnets) loopback_ip = None for intf in mg_facts["minigraph_lo_interfaces"]: if netaddr.IPAddress(intf["addr"]).version == 4: loopback_ip = intf["addr"] break if not loopback_ip: pytest.fail("ipv4 lo interface not found") for intf, subnet in zip(random.sample(ipv4_interfaces + ipv4_lag_interfaces, peer_count), subnets): conn = {} local_addr, neighbor_addr = [_ for _ in subnet][:2] conn["local_intf"] = "%s" % intf conn["local_addr"] = "%s/%s" % (local_addr, subnet_prefixlen) conn["neighbor_addr"] = "%s/%s" % (neighbor_addr, subnet_prefixlen) conn["loopback_ip"] = loopback_ip conn["namespace"] = DEFAULT_NAMESPACE if intf.startswith("PortChannel"): member_intf = mg_facts["minigraph_portchannels"][intf]["members"][0] conn["neighbor_intf"] = "eth%s" % mg_facts["minigraph_port_indices"][member_intf] conn["namespace"] = mg_facts["minigraph_portchannels"][intf]["namespace"] else: conn["neighbor_intf"] = "eth%s" % mg_facts["minigraph_port_indices"][intf] connections.append(conn) ptfhost.remove_ip_addresses() # In case other case did not cleanup IP address configured on PTF interface for conn in connections: namespace = '-n {}'.format(conn["namespace"]) if conn["namespace"] else '' # Find out if any other interface has the same IP configured. If yes, remove it # Otherwise, there may be conflicts and test would fail. _duthost_cleanup_ip(duthost, namespace, conn["local_addr"]) # bind the ip to the interface and notify bgpcfgd duthost.shell("config interface %s ip add %s %s" % (namespace, conn["local_intf"], conn["local_addr"])) ptfhost.shell("ifconfig %s %s" % (conn["neighbor_intf"], conn["neighbor_addr"])) yield connections finally: for conn in connections: namespace = '-n {}'.format(conn["namespace"]) if conn["namespace"] else '' duthost.shell("config interface %s ip remove %s %s" % (namespace, conn["local_intf"], conn["local_addr"])) ptfhost.shell("ifconfig %s 0.0.0.0" % conn["neighbor_intf"]) peer_count = getattr(request.module, "PEER_COUNT", 1) if "dualtor" in tbinfo["topo"]["name"]: setup_func = _setup_interfaces_dualtor elif tbinfo["topo"]["type"] == "t0": setup_func = _setup_interfaces_t0 elif tbinfo["topo"]["type"] == "t1": setup_func = _setup_interfaces_t1 else: raise TypeError("Unsupported topology: %s" % tbinfo["topo"]["type"]) duthost = duthosts[rand_one_dut_hostname] mg_facts = duthost.get_extended_minigraph_facts(tbinfo) with setup_func(mg_facts, peer_count) as connections: yield connections duthost.shell("sonic-clear arp") @pytest.fixture(scope="module") def deploy_plain_bgp_config(duthost): """ Deploy bgp plain config on the DUT Args: duthost: DUT host object Returns: Pathname of the bgp plain config on the DUT """ bgp_plain_template_src_path = os.path.join(TEMPLATE_DIR, BGP_PLAIN_TEMPLATE) bgp_plain_template_path = os.path.join(DUT_TMP_DIR, BGP_PLAIN_TEMPLATE) define_config(duthost, bgp_plain_template_src_path, bgp_plain_template_path) return bgp_plain_template_path @pytest.fixture(scope="module") def deploy_no_export_bgp_config(duthost): """ Deploy bgp no export config on the DUT Args: duthost: DUT host object Returns: Pathname of the bgp no export config on the DUT """ bgp_no_export_template_src_path = os.path.join(TEMPLATE_DIR, BGP_NO_EXPORT_TEMPLATE) bgp_no_export_template_path = os.path.join(DUT_TMP_DIR, BGP_NO_EXPORT_TEMPLATE) define_config(duthost, bgp_no_export_template_src_path, bgp_no_export_template_path) return bgp_no_export_template_path @pytest.fixture(scope="module") def backup_bgp_config(duthost): """ Copy default bgp configuration to the DUT and apply default configuration on the bgp docker after test Args: duthost: DUT host object """ apply_default_bgp_config(duthost, copy=True) yield try: apply_default_bgp_config(duthost) except Exception: config_reload(duthost) apply_default_bgp_config(duthost) @pytest.fixture(scope="module") def bgpmon_setup_teardown(ptfhost, duthost, localhost, setup_interfaces): connection = setup_interfaces[0] dut_lo_addr = connection["loopback_ip"].split("/")[0] peer_addr = connection['neighbor_addr'].split("/")[0] mg_facts = duthost.minigraph_facts(host=duthost.hostname)['ansible_facts'] asn = mg_facts['minigraph_bgp_asn'] # TODO: Add a common method to load BGPMON config for test_bgpmon and test_traffic_shift logger.info("Configuring bgp monitor session on DUT") bgpmon_args = { 'db_table_name': 'BGP_MONITORS', 'peer_addr': peer_addr, 'asn': asn, 'local_addr': dut_lo_addr, 'peer_name': BGP_MONITOR_NAME } bgpmon_template = Template(open(BGPMON_TEMPLATE_FILE).read()) duthost.copy(content=bgpmon_template.render(**bgpmon_args), dest=BGPMON_CONFIG_FILE) # Start bgpmon on DUT logger.info("Starting bgpmon on DUT") duthost.command("sonic-cfggen -j {} -w".format(BGPMON_CONFIG_FILE)) logger.info("Starting bgp monitor session on PTF") # Clean up in case previous run failed to clean up. ptfhost.exabgp(name=BGP_MONITOR_NAME, state="absent") ptfhost.file(path=CUSTOM_DUMP_SCRIPT_DEST, state="absent") # Start bgp monitor session on PTF ptfhost.file(path=DUMP_FILE, state="absent") ptfhost.copy(src=CUSTOM_DUMP_SCRIPT, dest=CUSTOM_DUMP_SCRIPT_DEST) ptfhost.exabgp(name=BGP_MONITOR_NAME, state="started", local_ip=peer_addr, router_id=peer_addr, peer_ip=dut_lo_addr, local_asn=asn, peer_asn=asn, port=BGP_MONITOR_PORT, dump_script=CUSTOM_DUMP_SCRIPT_DEST) # Flush neighbor and route in advance to avoid possible "RTNETLINK answers: File exists" ptfhost.shell("ip neigh flush to %s nud permanent" % dut_lo_addr) ptfhost.shell("ip route del %s" % dut_lo_addr + "/32", module_ignore_errors=True) # Add the route to DUT loopback IP and the interface router mac ptfhost.shell("ip neigh add %s lladdr %s dev %s" % (dut_lo_addr, duthost.facts["router_mac"], connection["neighbor_intf"])) ptfhost.shell("ip route add %s dev %s" % (dut_lo_addr + "/32", connection["neighbor_intf"])) pt_assert(wait_tcp_connection(localhost, ptfhost.mgmt_ip, BGP_MONITOR_PORT), "Failed to start bgp monitor session on PTF") pt_assert(wait_until(20, 5, duthost.check_bgp_session_state, [peer_addr]), 'BGP session {} on duthost is not established'.format(BGP_MONITOR_NAME)) yield # Cleanup bgp monitor duthost.shell("redis-cli -n 4 -c DEL 'BGP_MONITORS|{}'".format(peer_addr)) ptfhost.exabgp(name=BGP_MONITOR_NAME, state="absent") ptfhost.file(path=CUSTOM_DUMP_SCRIPT_DEST, state="absent") ptfhost.file(path=DUMP_FILE, state="absent") # Remove the route to DUT loopback IP and the interface router mac ptfhost.shell("ip route del %s" % dut_lo_addr + "/32") ptfhost.shell("ip neigh flush to %s nud permanent" % dut_lo_addr) ```
{ "source": "jleverenz/dupi", "score": 2 }
#### File: dupi/dupi/commands.py ```python import os from dupi import conf, core _command_dict = dict() def dispatch(index, command, **kwargs): _command_dict[command](index, **kwargs) def _dupi_command(fn): _command_dict[fn.__name__] = fn return fn @_dupi_command def update(index, **kwargs): if 'dirs'in kwargs: core.update_index(index, kwargs['dirs']) else: core.purge_removed_files(index) @_dupi_command def purge(index, **kwargs): index.purge() @_dupi_command def list(index, **kwargs): for i in core.list_duplicates(index): print(i) @_dupi_command def report(index, **kwargs): for orig, *dupes in core.list_duplicates_with_originals(index): print("o {}".format(orig)) for i in dupes: print("d {}".format(i)) @_dupi_command def stats(index, **kwargs): all = index.all() print("{} file records".format(len(all))) print("{} unique file sizes".format(len(set([i['size'] for i in all])))) print("\nFiles in the following directories:") for i in sorted(set([os.path.dirname(i['fullpath']) for i in all])): print(" {}".format(i)) ``` #### File: dupi/tests/test_commands.py ```python from tests.common import * # dupi/tests/common import io import re import sys from pyfakefs import fake_filesystem_unittest from dupi import conf, core from dupi.commands import dispatch from dupi.index import Index class TestCommands(fake_filesystem_unittest.TestCase): # Override run() to wrap each test in a context redirecting stderr def run(self, result=None): err_out = io.StringIO() with redirect_stderr(err_out): super().run(result) def setUp(self): self.setUpPyfakefs() # Touch the default index file location on fake filesystem, # to be sure parent dir structure exists. self.fs.CreateFile(conf.index_file, create_missing_dirs=True) def test_update_command(self): self.fs.CreateFile('/test/file1', contents='abc') self.fs.CreateFile('/test/file2', contents='abc') index = Index(conf.index_file) params = {'dirs': ['/test']} dispatch(index, 'update', **params) self.fs.RemoveObject('/test/file2') dispatch(index, 'update') self.assertEqual(1, len(index.all())) def test_report_command(self): self.fs.CreateFile('/test/file1', contents='abc') self.fs.CreateFile('/test/file2', contents='abc') self.fs.CreateFile('/test/file3', contents='defg') self.fs.CreateFile('/test/file4', contents='hijk') self.fs.CreateFile('/test/afile', contents='abc') _old_stdout = sys.stdout stdout_cap = io.StringIO() sys.stdout = stdout_cap index = Index(conf.index_file) core.update_index(index, ['/test']) dispatch(index, 'report') sys.stdout = _old_stdout # Just check that three lines got written.. self.assertEqual(3, len(stdout_cap.getvalue().strip().split("\n"))) def test_report_stats(self): self.fs.CreateFile('/test/file1', contents='abc') self.fs.CreateFile('/test/file2', contents='abc') self.fs.CreateFile('/test/file3', contents='defg') self.fs.CreateFile('/test/file4', contents='hijk') self.fs.CreateFile('/test/afile', contents='abc') _old_stdout = sys.stdout stdout_cap = io.StringIO() sys.stdout = stdout_cap index = Index(conf.index_file) core.update_index(index, ['/test']) dispatch(index, 'stats') sys.stdout = _old_stdout self.assertRegex(stdout_cap.getvalue(), re.compile('file records', re.M)) ``` #### File: dupi/tests/test_core.py ```python from tests.common import * # dupi/tests/common import io from pyfakefs import fake_filesystem, fake_filesystem_unittest from dupi import conf, core from dupi.index import Index from unittest.mock import patch class TestCore(fake_filesystem_unittest.TestCase): # Override run() to wrap each test in a context redirecting stderr def run(self, result=None): err_out = io.StringIO() with redirect_stderr(err_out): super().run(result) def setUp(self): self.setUpPyfakefs() # Touch the default index file location on fake filesystem, # to be sure parent dir structure exists. self.fs.CreateFile(conf.index_file, create_missing_dirs=True) # Setup index self.index = Index(conf.index_file) def test_update_index_with_single_file(self): self.fs.CreateFile('/test/file1', contents='abc') core.update_index(self.index, ['/test']) self.assertEqual(len(self.index.all()), 1) def test_update_index_without_change(self): self.fs.CreateFile('/test/file1', contents='abc') self.fs.CreateFile('/test/file2', contents='def') core.update_index(self.index, ['/test']) orig = dict() for i in self.index.all(): orig[i['fullpath']] = i core.update_index(self.index, ['/test']) for i in self.index.all(): self.assertEqual(i, orig[i['fullpath']]) def test_update_index_on_content_change(self): self.fs.CreateFile('/test/file1', contents='abc') self.fs.CreateFile('/test/file2', contents='def') core.update_index(self.index, ['/test']) shas = dict() for i in self.index.all(): shas[i['fullpath']] = i['sha256'] with open('/test/file2', "w") as f: f.write('ghi') core.update_index(self.index, ['/test']) file1_sha = self.index.get('/test/file1')['sha256'] file2_sha = self.index.get('/test/file2')['sha256'] self.assertEqual(shas['/test/file1'], file1_sha) self.assertNotEqual(shas['/test/file2'], file2_sha) def test_update_index_deletes_and_updates_files(self): self.fs.CreateFile('/test/file1', contents='abc') self.fs.CreateFile('/test/file2', contents='def') core.update_index(self.index, ['/test']) sha = self.index.get('/test/file1')['sha256'] with open('/test/file1', "w") as f: f.write('ghi') self.fs.RemoveObject('/test/file2') core.update_index(self.index) self.assertEqual(1, len(self.index.all())) self.assertNotEqual(sha, self.index.get('/test/file1')['sha256']) def _delete_file_before_stat(self, f): # This function is used in tests below to simulate a file being deleted # while dupi is processing. Since dupi will build file lists first, and # then process them, there's a window where a file my be removed and is # no longer processable. This simulates that behavior by destroying # files immediately before os.stat is called. fake_os = fake_filesystem.FakeOsModule(self.fs) # delete the file right before calling self.fs.RemoveObject(f) return fake_os.stat(f) def test_update_with_dirs_handles_disappearing_files(self): self.fs.CreateFile('/test/blahfile', contents='abc') with patch('dupi.index.os.path', side_effect=self._delete_file_before_stat): core.update_index(self.index, ['/test']) # Nothing added .. the file disappeared self.assertEqual(len(self.index.all()), 0) def test_update_empty_handles_disappearing_files(self): self.fs.CreateFile('/test/blahfile', contents='abc') core.update_index(self.index, ['/test']) self.assertEqual(len(self.index.all()), 1) with patch('dupi.index.os.stat', side_effect=self._delete_file_before_stat): core.update_index(self.index, []) self.assertEqual(len(self.index.all()), 0) def test_update_index_deletes_removed_files(self): self.fs.CreateFile('/test/file1', contents='abc') self.fs.CreateFile('/test/file2', contents='def') core.update_index(self.index, ['/test']) self.fs.RemoveObject('/test/file2') core.update_index(self.index, ['/test']) self.assertEqual(1, len(self.index.all())) ``` #### File: dupi/tests/test_reporting.py ```python from tests.common import * # dupi/tests/common import io import sys from pyfakefs import fake_filesystem_unittest from dupi import conf, core from dupi.index import Index # TODO order is not deterministic while based on os.walk class TestReporting(fake_filesystem_unittest.TestCase): # Override run() to wrap each test in a context redirecting stderr def run(self, result=None): err_out = io.StringIO() with redirect_stderr(err_out): super().run(result) def setUp(self): self.setUpPyfakefs() # Touch the default index file location on fake filesystem, # to be sure parent dir structure exists. self.fs.CreateFile(conf.index_file, create_missing_dirs=True) # Setup index self.index = Index(conf.index_file) def test_list_empty(self): core.update_index(self.index, ['/test']) results = core.list_duplicates(self.index) self.assertEqual(0, len(list(results))) def test_list_no_duplicates(self): self.fs.CreateFile('/test/file1', contents='abc') self.fs.CreateFile('/test/file3', contents='defg') self.fs.CreateFile('/test/file4', contents='hijk') core.update_index(self.index, ['/test']) results = core.list_duplicates(self.index) self.assertEqual(0, len(list(results))) def test_list(self): self.fs.CreateFile('/test/file1', contents='abc') self.fs.CreateFile('/test/file2', contents='abc') self.fs.CreateFile('/test/file3', contents='defg') self.fs.CreateFile('/test/file4', contents='hijk') self.fs.CreateFile('/test/afile', contents='abc') core.update_index(self.index, ['/test']) results = core.list_duplicates(self.index) self.assertSetEqual(set(results), {'/test/file1', '/test/file2'}) def test_list_with_originals(self): self.fs.CreateFile('/test/file1', contents='abc') self.fs.CreateFile('/test/file2', contents='abc') self.fs.CreateFile('/test/file3', contents='defg') self.fs.CreateFile('/test/file4', contents='hijk') self.fs.CreateFile('/test/afile', contents='abc') core.update_index(self.index, ['/test']) results = core.list_duplicates_with_originals(self.index) self.assertEqual(1, len(results)) orig, *dupes = results[0] self.assertEqual('/test/afile', orig) self.assertSetEqual(set(dupes), {'/test/file1', '/test/file2'}) def test_list_empty_with_originals(self): core.update_index(self.index, ['/test']) results = core.list_duplicates_with_originals(self.index) self.assertEqual(0, len(results)) def test_list_no_duplicates_with_originals(self): self.fs.CreateFile('/test/file1', contents='abc') self.fs.CreateFile('/test/file3', contents='defg') self.fs.CreateFile('/test/file4', contents='hijk') core.update_index(self.index, ['/test']) results = core.list_duplicates_with_originals(self.index) self.assertEqual(0, len(results)) def test_list_duplicates_with_originals_pairs(self): self.fs.CreateFile('/test/file1', contents='abc') self.fs.CreateFile('/test/file2', contents='abc') core.update_index(self.index, ['/test']) results = core.list_duplicates_with_originals(self.index) self.assertEqual(1, len(results)) self.assertSetEqual(set(results[0]), {'/test/file1', '/test/file2'}) ```
{ "source": "jleverenz/finddup", "score": 3 }
#### File: finddup/tests/test_finddup.py ```python from test_helper import * from collections import namedtuple from pyfakefs import fake_filesystem_unittest class TestCompareFiles(fake_filesystem_unittest.TestCase): def setUp(self): self.setUpPyfakefs() def test_group_by_size(self): self.fs.CreateFile("/test/file1", contents='abcdefg') self.fs.CreateFile("/test/file2", contents='1234567') filelist = ["/test/file1", "/test/file2"] size_hash = group_by_size(filelist) self.assertEqual(list(size_hash.keys()), [7]) self.assertEqual(len(size_hash[7]), 2) def test_file_comparer(self): self.fs.CreateFile("/test/file1", contents='abcdefg') self.fs.CreateFile("/test/file2", contents='abcdefg') filelist = ["/test/file1", "/test/file2"] compare_results = compare_files(filelist) self.assertEqual(compare_results, {"/test/file1": ["/test/file2"]}) ```
{ "source": "jleverenz/hurl", "score": 2 }
#### File: integration/tests_failed/assert_header_not_found.py ```python from app import app @app.route("/error-assert-header-not-found") def error_assert_header_not_found(): return "Hello World!" ``` #### File: integration/tests_failed/assert_query_cookie.py ```python from flask import request, make_response from app import app @app.route("/error-assert-query-cookie") def error_assert_query_cookie(): resp = make_response() resp.set_cookie("cookie1", "value1") resp.set_cookie("cookie2", "value2", secure=True) return resp ``` #### File: integration/tests_failed/timeout.py ```python from app import app import time @app.route("/timeout") def timeout(): time.sleep(2) return "" ``` #### File: integration/tests_ok/cookie_storage.py ```python from flask import request, make_response from app import app @app.route("/cookie-storage/assert-that-cookie1-is-valueA") def cookiestorage_assert_that_cookie1_is_valuea(): assert request.cookies["cookie1"] == "valueA" return "" @app.route("/cookie-storage/assert-that-cookie1-is-not-in-session") def cookiestorage_assert_that_cookie1_is_not_in_session(): assert "cookie1" not in request.cookies return "" ``` #### File: integration/tests_ok/delete.py ```python from app import app @app.route("/delete", methods=["DELETE"]) def delete(): return "" ``` #### File: integration/tests_ok/hello.py ```python from app import app from flask import request @app.route("/hello") def hello(): assert "Content-Type" not in request.headers assert "Content-Length" not in request.headers assert len(request.data) == 0 return "Hello World!" ``` #### File: integration/tests_ok/output.py ```python from app import app from flask import request @app.route("/output/endpoint1", methods=["POST"]) def output_endpoint1(): assert request.headers["Content-Type"] == "application/json" s = request.data.decode("utf-8") assert s == '{ "user": "bob" }' return app.response_class( headers={"date": "DATE1"}, response="Response endpoint1\n" ) @app.route("/output/endpoint2") def output_endpoint2(): return app.response_class( headers={"date": "DATE2"}, response="Response endpoint2\n" ) ``` #### File: integration/tests_ok/post_multilines.py ```python from flask import request from app import app @app.route("/post-multilines", methods=["POST"]) def post_multilines(): s = request.data.decode("utf-8") assert s == "name,age\nbob,10\nbill,22\n" return "" @app.route("/get-bob-age", methods=["GET"]) def get_bob_age(): return "10" ``` #### File: integration/tests_ok/predicates_string.py ```python from flask import request from app import app @app.route("/predicates-string") def predicates_string(): return "Hello World!" @app.route("/predicates-string-empty") def predicates_string_empty(): return "" @app.route("/predicates-string-unicode") def predicates_string_unicode(): return "\u2708" ``` #### File: integration/tests_ok/user_agent.py ```python from app import app from flask import request @app.route("/user-agent/a") def useragent_a(): assert "Mozilla/5.0 A" == request.headers["User-Agent"] return "" @app.route("/user-agent/b") def useragent_b(): assert "Mozilla/5.0 B" == request.headers["User-Agent"] return "" ```
{ "source": "jlevman/empyricalRMT", "score": 3 }
#### File: empyricalRMT/empyricalRMT/brody.py ```python import numpy as np from numpy import ndarray from scipy.optimize import minimize_scalar from scipy.special import gamma from scipy.stats.mstats import gmean from statsmodels.distributions.empirical_distribution import ECDF def brody_dist(s: ndarray, beta: float) -> ndarray: """See Eq. 8 of <NAME>., <NAME>., & <NAME>. (2017). Spectral statistics of random geometric graphs. EPL (Europhysics Letters), 118(1), 18003. """ b1 = beta + 1 alpha = gamma((beta + 2) / b1) ** b1 return b1 * alpha * s ** beta * np.exp(-alpha * s ** b1) def brody_cdf(s: ndarray, beta: float) -> ndarray: """Return the cumulative distribution function of the Brody distribution for beta.""" b1 = beta + 1 alpha = gamma((beta + 2) / b1) ** b1 return 1 - np.exp(-alpha * s ** b1) def log_brody(s: ndarray, beta: float) -> ndarray: """Just a helper re-written to prevent overflows and filter negative spacings""" b1 = beta + 1.0 alpha = gamma((beta + 2.0) / b1) ** b1 s = s[s > 0.0] # the lines below are separate for better logging of underflow issues t1 = np.log(b1 * alpha) t2 = beta * np.log(s) t3 = alpha * s ** b1 return np.sum([t1, t2, t3]) def fit_brody(s: ndarray, method: str = "spacing") -> float: """Get an estimate for the beta parameter of the Brody distribution Paramaters ---------- s: ndarray The array of spacings. Returns ------- beta: float The MLE estimate for beta. """ method = method.lower() if method == "spacing" or method == "spacings": return fit_brody_max_spacing(s) if method == "mle": return fit_brody_mle(s) raise ValueError("`method` must be one of 'spacing' or 'mle'.") def fit_brody_mle(s: ndarray) -> float: """Return the maximum likelihood estimate for beta. Paramaters ---------- s: ndarray The array of spacings. Returns ------- beta: float The MLE estimate for beta. Notes ----- Try using https://en.wikipedia.org/wiki/Maximum_spacing_estimation instead """ # use negative log-likelihood because we want to minimize # log_like = lambda beta: -np.sum(log_brody(s, beta)) log_like = lambda beta: -np.sum(brody_dist(s, beta)) opt_result = minimize_scalar( log_like, bounds=(1e-5, 1.0 - 1e-5), method="Bounded", tol=1e-10 ) if not opt_result.success: raise RuntimeError("Optimizer failed to find optimal Brody fit.") return float(opt_result.x) def fit_brody_max_spacing(s: ndarray) -> float: """Return the maximum likelihood estimate for beta. Paramaters ---------- s: ndarray The array of spacings. Returns ------- beta: float The maximum spacings estimate for beta. Notes ----- Try using https://en.wikipedia.org/wiki/Maximum_spacing_estimation instead """ n = len(s) - 1 def alpha(beta: float) -> np.float64: return gamma((beta + 2) / (beta + 1)) ** (beta + 1) def _positive_diffs(s: ndarray, beta: float) -> np.float64: s = np.sort(s) brody_cdf = 1.0 - np.exp(-alpha(beta) * (s ** (beta + 1))) diffs = np.diff(brody_cdf) diffs = diffs[diffs > 0] # necessary to prevent over/underflows return diffs # use negative log-likelihood because we want to minimize # log_like = lambda beta: -np.sum(log_brody(s, beta)) # s = np.sort(s) # brody_cdf = lambda beta: 1.0 - np.exp(-alpha(beta) * (s ** (beta + 1))) # diffs = lambda beta: np.diff(brody_cdf(beta)) log_spacings = lambda beta: np.log(_positive_diffs(s, beta)) S_n = lambda beta: -np.sum(log_spacings(beta)) / (n + 1) opt_result = minimize_scalar( S_n, bounds=(1e-5, 1.0 - 1e-5), method="Bounded", tol=1e-10 ) if not opt_result.success: raise RuntimeError("Optimizer failed to find optimal Brody fit.") return float(opt_result.x) def brody_fit_evaluate(s: ndarray, method: str = "spacing") -> dict: beta = fit_brody(s, method) ecdf = ECDF(s) ecdf_x = ecdf.x[1:] # ECDF always makes first x value -inf if `side`=="left" ecdf_y = ecdf.y[1:] bcdf = brody_cdf(ecdf_x, beta) mad = np.mean(np.abs(ecdf_y - bcdf)) msqd = np.mean((ecdf_y - bcdf) ** 2) return { "beta": beta, "mad": mad, "msqd": msqd, "spacings": ecdf_x, "ecdf": ecdf_y, "brody_cdf": bcdf, } ``` #### File: empyricalRMT/empyricalRMT/compare.py ```python import numpy as np import pandas as pd from numba import jit from numpy import ndarray from pandas import DataFrame from typing import Any, List, Tuple from typing_extensions import Literal from empyricalRMT._validate import make_1d_array Metric = Literal["mad", "msqd", "corr"] class Compare: """A helper class for implementing various curve comparison methods.""" def __init__( self, curves: List[ndarray], labels: List[str], base_curve: ndarray = None, base_label: str = None, ): """Construct a Compare object for accessing various comparison methods. Parameters ---------- curves: List[ndarray] A list of unidimensional numpy arrays of values to compare. For most comparison methods besides some piecewise / quantile comparison methods, the curves must have identical lengths. labels: List[str] A list of strings identifying each curve. Must be the same length as curves, and labels[i] must be the label for curves[i], for all valid values of i. base_curve: ndarray The base curve against which each curve of `curves` will be compared, if the desire is to compare multiple curves only to one single curve. base_label: str The label for identifying the base_curve. """ self.curves = [make_1d_array(curve) for curve in curves] self.labels = labels.copy() self.base_curve = make_1d_array(base_curve) if base_curve is not None else None self.base_label = base_label # don't need to copy strings in Python self.__validate_curve_lengths() self.dict = dict(zip(self.labels, self.curves)) def correlate(self) -> DataFrame: """Return the grid of correlations across curves. """ self.__validate_curve_lengths( message="Comparing via correlation requires all curves have identical lengths", check_all_equal=True, ) if self.base_curve is not None: # index with [0, 1:], since [0, :] give first row of correlations, and since # [0, 0] is just the correlation of the base_curve with itself data = np.corrcoef(self.base_curve, self.curves)[0, 1:] return pd.DataFrame(data=data, index=self.labels, columns=[self.base_label]) data = np.corrcoef(self.curves) return pd.DataFrame(data=data, index=self.labels, columns=self.labels) def mean_sq_difference(self) -> DataFrame: """Return the grid of mean square differences across curves.""" self.__validate_curve_lengths( message="Comparing via mean squared differences requires all curves have identical lengths", check_all_equal=True, ) curves = np.array(self.curves) if self.base_curve is not None: diffs = np.empty(curves.shape[0]) for i in range(len(diffs)): diffs[i] = np.mean((self.base_curve - curves[i]) ** 2) return pd.DataFrame( data=diffs, index=self.labels, columns=[self.base_label] ) data = self.__fast_msqd(curves) return pd.DataFrame(data=data, index=self.labels, columns=self.labels) def mean_abs_difference(self) -> DataFrame: """Return the grid of mean absolute differences across curves.""" self.__validate_curve_lengths( message="Comparing via mean absolute differences requires all curves have identical lengths", check_all_equal=True, ) curves = np.array(self.curves) if self.base_curve is not None: diffs = np.empty(curves.shape[0]) for i in range(len(diffs)): diffs[i] = np.mean(np.abs(self.base_curve - curves[i])) return pd.DataFrame( data=diffs, index=self.labels, columns=[self.base_label] ) data = self.__fast_mad(curves) return pd.DataFrame(data=data, index=self.labels, columns=self.labels) def _test_validate(self, **kwargs: Any) -> None: self.__validate_curve_lengths(**kwargs) @staticmethod @jit(nopython=True, fastmath=True) def __fast_msqd(curves: ndarray) -> ndarray: n = curves.shape[0] data = np.empty((n, n), dtype=np.float64) for j in range(n): for i in range(n): data[i, j] = np.mean((curves[i] - curves[j]) ** 2) return data @staticmethod @jit(nopython=True, fastmath=True) def __fast_mad(curves: ndarray) -> ndarray: n = curves.shape[0] data = np.empty((n, n), dtype=np.float64) for j in range(n): for i in range(n): data[i, j] = np.mean(np.abs(curves[i] - curves[j])) return data @staticmethod def __histograms( curve1: ndarray, curve2: ndarray, n_bins: int = 10 ) -> Tuple[ndarray, ndarray, ndarray]: """Compute a histogram over [min(curve1, curve2), max(curve1, curve2)]. Returns ------- counts1: ndarray The bin counts for curve1. counts2: ndarray The bin counts for curve2. endpoints: ndarray The (sorted) ndarray of bin endpoints. """ vals1 = np.sort(curve1) vals2 = np.sort(curve2) endpoints = np.linspace( min(vals1[0], vals2[0]), max(vals1[-1], vals2[-1]), n_bins + 1 ) n, counts1, counts2 = 0, np.arange(n_bins), np.arange(n_bins) for val in vals1: if val < endpoints[n]: counts1[n] += 1 else: n += 1 if n >= len(counts1): raise RuntimeError("Problem with hist algorithm. Should be impossible.") n = 0 for val in vals2: if val < endpoints[n]: counts2[n] += 1 else: n += 1 if n >= len(counts2): raise RuntimeError("Problem with hist algorithm. Should be impossible.") return endpoints, counts1, counts2 def __validate_curve_lengths( self, message: str = None, check_all_equal: bool = False ) -> None: """Ensure curve lengths are appropriate for desired comparison methods.""" curves = self.curves labels = self.labels if len(curves) < 1: raise ValueError("There must be more than one curve to compare.") if len(curves) == 1 and self.base_curve is None: raise ValueError( "There must be more than one curve to compare to the base curve." ) if len(self.curves) != len(labels): raise ValueError("`labels` must have the same length as `curves`.") all_equal = np.all([len(curve) == len(curves[0]) for curve in curves]) if check_all_equal: if self.base_curve is not None and self.base_label is not None: if len(curves[0]) != len(self.base_curve): raise ValueError(message) if not all_equal: raise ValueError(message) ``` #### File: empyricalRMT/empyricalRMT/_eigvals.py ```python import numpy as np from numpy import ndarray from typing import Sized from empyricalRMT._validate import make_1d_array from empyricalRMT.observables.step import _step_function_fast from empyricalRMT.plot import _spacings as plotSpacings from empyricalRMT.plot import _raw_eig_dist, _raw_eig_sorted, _step_function, PlotResult class EigVals: """Base class, not to be instantiated. """ def __init__(self, eigenvalues: Sized): self.__construct_vals: ndarray = make_1d_array(eigenvalues) self._steps = None self._vals = np.sort(eigenvalues) # to be overridden in actual classes @property def original_values(self) -> ndarray: return self.__construct_vals @property def original_eigs(self) -> ndarray: return self.__construct_vals @property def original_eigenvalues(self) -> ndarray: return self.__construct_vals # NOTE: This *must* be overridden @property def values(self) -> ndarray: raise NotImplementedError(".values() should be implemented in derived classes.") # NOTE: This *must* be overridden @property def vals(self) -> ndarray: raise NotImplementedError(".vals() should be implemented in derived classes.") @property def steps(self) -> ndarray: if self._steps is None: self._steps = _step_function_fast(self._vals, self._vals) return self._steps @property def spacings(self) -> ndarray: return np.diff(np.sort(self.vals)) def step_function(self, x: ndarray) -> ndarray: return _step_function_fast(eigs=self.vals, x=x) def plot_sorted(self, *args, **kwargs) -> PlotResult: # type: ignore return _raw_eig_sorted(eigs=self.values, *args, **kwargs) # type: ignore def plot_distribution(self, *args, **kwargs) -> PlotResult: # type: ignore return _raw_eig_dist(eigs=self.values, *args, **kwargs) # type: ignore def plot_steps(self, *args, **kwargs) -> PlotResult: # type: ignore return _step_function(eigs=self.values, *args, **kwargs) # type: ignore def plot_spacings(self, *args, **kwargs) -> PlotResult: # type: ignore return plotSpacings(unfolded=self.values, *args, **kwargs) # type: ignore ``` #### File: empyricalRMT/signalproc/detrend.py ```python import numpy as np from numpy import ndarray from numba import jit, prange from PyEMD import EMD from scipy.stats import linregress from empyricalRMT.utils import slope, intercept class Detrend: def __init__(self) -> None: return def linear(self, series: ndarray) -> ndarray: """Remove the linear trend by fitting a linear model, and returning the residuals""" time = np.arange(0, len(series)) m, b = linregress(time, series) # m == slope, b == intercept fitted = m * time + b return series - fitted def emd(self, series: ndarray) -> ndarray: """Remove the lowest-frequency trend as determined by Empirical Mode Decomposition """ trend = EMD().emd(series)[-1] return series - trend def difference(self, series: ndarray) -> ndarray: """Remove non-stationarity by differencing the data (once)""" differenced = np.empty([len(series - 1)]) for i in range(len(series) - 1): differenced[i] = series[i + 1] - series[i] return differenced @jit(nopython=True, parallel=True, fastmath=True) def linear_detrend(signals: ndarray, ret: ndarray) -> ndarray: """takes voxels with nonzero variance""" m, T = signals.shape x = np.arange(0, T) for i in prange(m): y = signals[i, :] a = slope(x, y) b = intercept(x, y, a) fitted = m * x + b detrended = y - fitted ret[i, :] = detrended return ret @jit(nopython=True, parallel=True, fastmath=True) def mean_detrend(signals: ndarray, ret: ndarray) -> ndarray: """takes voxels with nonzero variance""" m, T = signals.shape for i in prange(m): ret[i, :] = signals[i, :] - np.mean(signals[i, :]) return ret ``` #### File: empyricalRMT/empyricalRMT/smoother.py ```python import numpy as np import pandas as pd from numpy import ndarray from numpy.polynomial.polynomial import polyfit, polyval from pandas import DataFrame from scipy.interpolate import UnivariateSpline as USpline from scipy.optimize import curve_fit from typing import Any, Callable, Dict, List, Optional, Tuple, Union from typing_extensions import Literal from warnings import warn from empyricalRMT._constants import ( DEFAULT_POLY_DEGREE, DEFAULT_SPLINE_DEGREE, DEFAULT_SPLINE_DEGREES, DEFAULT_SPLINE_SMOOTH, DEFAULT_SPLINE_SMOOTHS, ) from empyricalRMT.exponentials import gompertz from empyricalRMT.detrend import emd_detrend SPLINE_DICT = {3: "cubic", 4: "quartic", 5: "quintic"} SmoothMethod = Union[Literal["poly"], Literal["spline"], Literal["gompertz"]] SmoothArg = Union[List[float], Literal["heuristic"]] def _spline_name(i: int) -> str: return SPLINE_DICT[i] if SPLINE_DICT.get(i) is not None else f"deg{i}" class Smoother: def __init__(self, eigenvalues: ndarray): """Initialize a Smoother. Parameters ---------- eigenvalues: ndarray Eigenvalues for fitting to the step function. """ try: eigs = np.array(eigenvalues).ravel() except BaseException as e: raise ValueError("Could not convert eigenvalues into numpy array.") from e if len(eigs) != len(eigenvalues): raise ValueError("Input array must be one-dimensional.") self._eigs = np.sort(eigs) def fit( self, smoother: SmoothMethod = "poly", degree: int = DEFAULT_POLY_DEGREE, spline_smooth: float = DEFAULT_SPLINE_SMOOTH, detrend: bool = False, return_callable: bool = False, ) -> Tuple[ndarray, ndarray, Optional[Callable[[ndarray], ndarray]]]: """Computer the specified smoothing function values for a set of eigenvalues. Parameters ---------- eigs: ndarray The sorted eigenvalues smoother: "poly" | "spline" | "gompertz" | lambda The type of smoothing function used to fit the step function degree: int The degree of the polynomial or spline spline_smooth: float The smoothing factors passed into scipy.interpolate.UnivariateSpline detrend: bool Whether or not to perform EMD detrending before returning the unfolded eigenvalues. return_callable: bool If true, return a function that closes over the fit parameters so that, e.g., additional values can be fit later. Returns ------- unfolded: ndarray the unfolded eigenvalues steps: ndarray the step-function values """ eigs = self._eigs # steps = _step_function_fast(eigs, eigs) steps = np.arange(0, len(eigs)) + 1 self.__validate_args( smoother=smoother, degree=degree, spline_smooth=spline_smooth ) if smoother == "poly": poly_coef = polyfit(eigs, steps, degree) unfolded = polyval(eigs, poly_coef) func = lambda x: polyval(x, poly_coef) if return_callable else None if detrend: unfolded = emd_detrend(unfolded) return unfolded, steps, func if smoother == "spline": k = DEFAULT_SPLINE_DEGREE try: k = int(degree) except BaseException as e: print(ValueError("Cannot convert spline degree to int.")) raise e if spline_smooth == "heuristic": s = len(eigs) * np.var(eigs, ddof=1) spline = USpline(eigs, steps, k=k, s=s) elif spline_smooth is not None: if not isinstance(spline_smooth, float): raise ValueError("Spline smoothing factor must be a float") spline = USpline(eigs, steps, k=k, s=spline_smooth) else: raise ValueError( "Unreachable: All possible spline_smooth arguments should have been handled." ) spline = USpline(eigs, steps, k=k, s=spline_smooth) func = lambda x: spline(x) if return_callable else None unfolded = spline(eigs) if detrend: unfolded = emd_detrend(unfolded) return unfolded, steps, func if smoother == "gompertz": # use steps[end] as guess for the asymptote, a, of gompertz curve [a, b, c], cov = curve_fit(gompertz, eigs, steps, p0=(steps[-1], 1, 1)) func = lambda x: gompertz(x, a, b, c) if return_callable else None unfolded = gompertz(eigs, a, b, c) if detrend: unfolded = emd_detrend(unfolded) return unfolded, steps, func raise RuntimeError("Unreachable!") def fit_all( self, poly_degrees: List[int] = [], spline_smooths: SmoothArg = [], spline_degrees: List[int] = DEFAULT_SPLINE_DEGREES, gompertz: bool = False, detrend: bool = False, ) -> Tuple[DataFrame, DataFrame, DataFrame, Dict[str, Callable]]: """unfold eigenvalues for all specified smoothers Parameters ---------- poly_degrees: List[int] the polynomial degrees for which to compute fits. Default [3, 4, 5, 6, 7, 8, 9, 10, 11] spline_smooths: List[float] | "heuristic" If a list of floats, the smoothing factors, s, passed into scipy.interpolate.UnivariateSpline. If "heuristic", choose a set of smoothing factors scaled to the length of the eigenvalues, that, on GOE eigenvalues, tend to result in a range of fits varying from highly flexible (nearly interpolated) to about the flexibility of a cubic or quartic. As the number of eigenvalues starts to go below about 300, an increasing number of practically-identical, redundant splines will be fit with this option, and manual inspection or non-heuristic specification of spline smoothing factors is strongly recommended. spline_degrees: List[int] A list of ints determining the degrees of scipy.interpolate.UnivariateSpline fits. Default [3] Returns ------- unfoldeds: DataFrame DataFrame of unfolded eigenvalues for each set of fit parameters, e.g. where each column contains a name indicating the fitting parameters, with the values of that column being the (sorted) unfolded eigenvalues. sqes: DataFrame DataFrame of mean-squared error of fits, where each column contains a name indicating the fitting parameters and smoother, with the values of the column being the mean of the squared residuals of the fit smoother_map: dict A dict of {col_name: closure} for accessing the fitted smoothers later. """ # construct dataframes to hold all info col_names, unfoldeds, spacings, sqes = [], [], [], [] smoother_map = {} for d in poly_degrees: col_name = f"poly_{d}" unfolded, steps, closure = self.fit( smoother="poly", degree=d, return_callable=True, detrend=detrend ) col_names.append(col_name) sqes.append(np.mean((unfolded - steps) ** 2)) unfolded = np.sort(unfolded) # Important! unfoldeds.append(unfolded) spacings.append(np.diff(unfolded)) smoother_map[col_name] = closure if spline_smooths == "heuristic": for s in DEFAULT_SPLINE_SMOOTHS: for d in spline_degrees: col_name = f"{_spline_name(d)}-spline_" "{:1.2f}_heuristic".format( s ) unfolded, steps, closure = self.fit( smoother="spline", spline_smooth=len(self._eigs) ** s, degree=d, return_callable=True, detrend=detrend, ) col_names.append(col_name) sqes.append(np.mean((unfolded - steps) ** 2)) unfolded = np.sort(unfolded) unfoldeds.append(unfolded) spacings.append(np.diff(unfolded)) smoother_map[col_name] = closure else: for s in spline_smooths: # type: ignore for d in spline_degrees: col_name = f"{_spline_name(d)}-spline_" "{:1.3f}".format(s) unfolded, steps, closure = self.fit( smoother="spline", spline_smooth=s, degree=d, return_callable=True, detrend=detrend, ) col_names.append(col_name) sqes.append(np.mean((unfolded - steps) ** 2)) unfolded = np.sort(unfolded) unfoldeds.append(unfolded) spacings.append(np.diff(unfolded)) smoother_map[col_name] = closure if gompertz: unfolded, steps, closure = self.fit( smoother="gompertz", return_callable=True, detrend=detrend ) col_names.append("gompertz") sqes.append(np.mean((unfolded - steps) ** 2)) unfolded = np.sort(unfolded) unfoldeds.append(unfolded) spacings.append(np.diff(unfolded)) smoother_map["gompertz"] = closure unfoldeds = pd.DataFrame(data=unfoldeds, index=col_names).T spacings = pd.DataFrame(data=spacings, index=col_names).T sqes = pd.DataFrame(data=sqes, index=col_names).T return unfoldeds, spacings, sqes, smoother_map # type: ignore @staticmethod def _get_smoother_names( poly_degrees: List[int], spline_smooths: SmoothArg, spline_degrees: List[int] = [3], gompertz: bool = True, ) -> List[str]: """If arguments are arrays, generate names (unique identifiers) for each smoother + smoother parameters. Otherwise, just return the name for indexing into the report. """ col_names = [] if isinstance(poly_degrees, list): for d in poly_degrees: col_names.append(f"poly_{d}") else: raise ValueError("poly_degrees must be a list of int values") if spline_smooths == "heuristic": for s in DEFAULT_SPLINE_SMOOTHS: if not isinstance(spline_degrees, list): raise ValueError("spline_degrees must be a list of integer values") for deg in spline_degrees: col_name = ( f"{_spline_name(deg)}-spline_" "{:1.3f}_heuristic".format(s) ) col_names.append(col_name) else: try: spline_smooths = list(spline_smooths) # type: ignore except Exception as e: raise ValueError(f"Error converting `spline_smooths` to list: {e}") if isinstance(spline_smooths, list): for s in spline_smooths: if not isinstance(spline_degrees, list): raise ValueError( "spline_degrees must be a list of integer values" ) for deg in spline_degrees: col_name = f"{_spline_name(deg)}-spline_" "{:1.3f}".format(s) col_names.append(col_name) else: raise ValueError("spline_smooths must be a list of float values") if gompertz is True: col_names.append("gompertz") return col_names def __validate_args(self, **kwargs: Any) -> None: """throw an error if smoother args are in any way invalid""" smoother = kwargs.get("smoother") degree = kwargs.get("degree") spline_smooth = kwargs.get("spline_smooth") emd = kwargs.get("detrend") # TODO: implement method = kwargs.get("method") if smoother == "poly": if degree is None: warn( "No degree set for polynomial unfolding." f"Will default to polynomial of degree {DEFAULT_POLY_DEGREE}.", category=UserWarning, ) if not isinstance(degree, int): raise ValueError("Polynomial degree must be of type `int`") if degree < 3: raise ValueError("Unfolding polynomial must have minimum degree 3.") elif smoother == "spline": spline_degree = degree if degree is None: warn( f"No degree set for spline unfolding. Will default to spline of degree {DEFAULT_SPLINE_DEGREE}.", category=UserWarning, ) if not isinstance(spline_degree, int) or spline_degree > 5: raise ValueError("Degree of spline must be an int <= 5") if spline_smooth is not None and spline_smooth != "heuristic": spline_smooth = float(spline_smooth) elif smoother == "gompertz": pass # just allow this for now elif callable(smoother): # NOTE: above is not a great check, but probably good enough for our purposes # https://stackoverflow.com/questions/624926/how-do-i-detect-whether-a-python-variable-is-a-function#comment437753_624939 raise NotImplementedError("Custom fit functions not currently implemented.") else: raise ValueError("Unrecognized smoother argument.") if emd is not None and not isinstance(emd, bool): raise ValueError("`detrend` can be only a boolean or undefined (None).") if method is None or method == "auto" or method == "manual": pass else: raise ValueError("`method` must be one of 'auto', 'manual', or 'None'") ``` #### File: empyricalRMT/empyricalRMT/utils.py ```python import curses import multiprocess as mp import nibabel as nib import numpy as np from numpy import ndarray import os import shutil import sys from colorama import Cursor, init, Style, Fore from nibabel import Nifti1Image from numba import jit from pathlib import Path from progressbar import Bar, AdaptiveETA, Percentage, ProgressBar, RotatingMarker, Timer from sys import stderr from typing import Any, Callable, List, Optional RESET = Style.RESET_ALL def res(path: Path) -> str: return str(path.absolute().resolve()) def eprint(*args: Any, **kwargs: Any) -> None: print(*args, file=stderr, **kwargs) def log(label: str, var: Any) -> None: eprint(f"{label}: {var}") # https://stackoverflow.com/a/42913743 def is_symmetric(a: ndarray, rtol: float = 1e-05, atol: float = 1e-08) -> bool: return bool(np.allclose(a, a.T, rtol=rtol, atol=atol)) def array_map(array: np.array, f: Callable, x: ndarray) -> None: it = np.nditer(array, flags=["f_index"], op_flags=["readwrite"]) while not it.finished: i = it.index it[0] = f(x[i]) it.iternext() it.close() def make_cheaty_nii(orig: Nifti1Image, array: np.array) -> Nifti1Image: """clone the header and extraneous info from `orig` and data in `array` into a new Nifti1Image object, for plotting """ affine = orig.affine header = orig.header return nib.Nifti1Image(dataobj=array, affine=affine, header=header) def mkdirp(path: Path) -> None: try: os.makedirs(path, exist_ok=True) except Exception as e: print( f"Error making directory {path}. Another program may have modified the file " "while this script was running.", file=sys.stderr, ) print("Original error:", file=sys.stderr) raise e def make_directory(path: Path) -> Path: if not os.path.exists(path): try: os.makedirs(path) return path except Exception as e: print( f"Error making directory {path}. Another program likely modified it while this script was running.", file=sys.stderr, ) print("Original error:", file=sys.stderr) raise e else: return path def make_parent_directories(path: Path) -> None: path = path.absolute() paths = [] for folder in path.parents: if folder != Path.home(): paths.append(folder) else: break paths.reverse() for path in paths: make_directory(path) def parallel_map(func: Callable, data: list, cpus: int = None) -> List[Any]: """func: function that takes one parameter data: the array of values that func will take """ result = [] if cpus is None: with mp.Pool( mp.cpu_count() ) as pool: # ensure automatic closing, use available cpus result = pool.map(func, data) else: with mp.Pool(cpus) as pool: # ensure automatic closing, use available cpus result = pool.map(func, data) return result @jit(nopython=True, cache=True, fastmath=True) def nd_find(arr: np.array, value: Any) -> Optional[int]: for i, val in np.ndenumerate(arr): if val == value: return i # type: ignore return None @jit(nopython=True) def find_first(arr: np.array, value: Any) -> int: for i, val in enumerate(arr): if val == value: return i # type: ignore return -1 @jit(nopython=True) def find_last(arr: np.array, value: Any) -> int: for i in range(len(arr)): j = len(arr) - i - 1 if arr[j] == value: return j # type: ignore return -1 # clear all def tty_clear(COLS: int, ROWS: int) -> None: sys.stdout.write(Cursor.POS(1, 1)) for row in range(ROWS): sys.stdout.write(Cursor.POS(1, row + 1)) sys.stdout.write(f"{' ' * COLS}") sys.stdout.write(Cursor.POS(1, 1)) def write_in_place(message: str, value: str, value_color: Any) -> None: init() COLS, ROWS = shutil.get_terminal_size((80, 40)) tty_clear(COLS, ROWS) full = f"{message}: {value_color}{value}{Style.RESET_ALL}{Cursor.POS(1, 1)}" sys.stdout.write(full) sys.stdout.flush() def write_block(messages: List[str], border: str = None) -> None: init() COLS, ROWS = shutil.get_terminal_size((80, 40)) tty_clear(COLS, ROWS) if border is not None and len(str(border[0])) == 1: sys.stdout.write(str(border[0]) * COLS) for i, message in enumerate(messages): if border is not None and len(str(border[0])) == 1: full = "{:160}{}".format(message, Cursor.POS(1, i + 3)) else: full = "{:160}{}".format(message, Cursor.POS(1, i + 2)) sys.stdout.write(full) if border is not None and len(str(border[0])) == 1: sys.stdout.write("=" * COLS) sys.stdout.write(f"{Cursor.POS(0, len(messages)+2)}") else: sys.stdout.write(f"{Cursor.POS(0, len(messages)+1)}") sys.stdout.write(f"{Fore.RESET}") sys.stdout.flush() def end_curses(screen: Any) -> None: curses.nocbreak() screen.keypad(False) curses.echo() curses.endwin() def setup_progressbar(desc: str, max_count: int, marker: bool = False) -> ProgressBar: bar = Bar(marker=RotatingMarker()) if marker else "" bar_space = " " if marker else "" pbar_widgets = [ f"{Fore.GREEN}{desc}: {Style.RESET_ALL}", f"{Fore.BLUE}", Percentage(), f" {Style.RESET_ALL}", bar, bar_space, f"|{Fore.WHITE}", Timer(), f"{Style.RESET_ALL} |", f"{Fore.YELLOW}", AdaptiveETA(), f"{Style.RESET_ALL}|", ] pbar = ProgressBar( widgets=pbar_widgets, maxval=max_count, redirect_stderr=True ).start() return pbar def flatten_4D(img4D: np.ndarray) -> np.ndarray: if type(img4D) == np.ndarray: return img4D.reshape((np.prod(img4D.shape[0:-1]),) + (img4D.shape[-1],)) @jit(nopython=True, fastmath=True, cache=True) def slope(x: np.array, y: np.array) -> np.float64: x_mean = np.mean(x) y_mean = np.mean(y) x_dev = x - x_mean y_dev = y - y_mean cov = np.sum(x_dev * y_dev) var = np.sum(x_dev * x_dev) if var == 0: return 0 return cov / var @jit(nopython=True, fastmath=True) def variance(arr: np.array) -> float: """i.e. s^2""" n = len(arr) scale = 1.0 / (n - 1.0) mean = np.mean(arr) diffs = arr - mean squares = diffs ** 2 summed = np.sum(squares) return scale * summed # type: ignore @jit(nopython=True, fastmath=True, cache=True) def intercept(x: np.array, y: np.array, slope: np.float64) -> np.float64: return np.mean(y) - slope * np.mean(x) @jit(nopython=True, fastmath=True, cache=True) def fast_r(x: np.array, y: np.array) -> np.float64: n = len(x) num = x * y - n * np.mean(x) * np.mean(y) denom = (n - 1) * np.sqrt(variance(x)) * np.sqrt(variance(y)) if denom == 0: return 0 return num / denom # termios.tcsetattr(fd, termios.TCSADRAIN, old_settings) ``` #### File: empyricalRMT/tests/test_plot.py ```python import numpy as np import pytest import time from numpy import ndarray from empyricalRMT.eigenvalues import Eigenvalues from empyricalRMT.construct import goe_unfolded from empyricalRMT.correlater import correlate_fast def get_eigs(arr: ndarray) -> ndarray: print(f"\n{time.strftime('%H:%M:%S (%b%d)')} -- computing eigenvalues...") eigs = np.linalg.eigvalsh(arr) print(f"\n{time.strftime('%H:%M:%S (%b%d)')} -- computed eigenvalues...") return eigs @pytest.mark.plot def test_axes_configuring() -> None: var = 0.1 percent = 25 A = np.random.standard_normal([1000, 500]) correlated = np.random.permutation(A.shape[0] - 1) + 1 # don't select first row last = int(np.floor((percent / 100) * A.shape[0])) corr_indices = correlated[:last] # introduce correlation in A for i in corr_indices: A[i, :] = np.random.uniform(1, 2) * A[0, :] + np.random.normal( 0, var, size=A.shape[1] ) M = correlate_fast(A) eigs = get_eigs(M) print(f"\nPercent correlated noise: {percent}%") unfolded = Eigenvalues(eigs).unfold(degree=13) unfolded.plot_fit(mode="noblock") goe_unfolded(1000, log=True).plot_fit(mode="block") ``` #### File: empyricalRMT/tests/test_trim.py ```python import numpy as np import pandas as pd import pytest from pathlib import Path from empyricalRMT.eigenvalues import Eigenvalues from empyricalRMT.construct import generate_eigs from empyricalRMT.trim import TrimIter @pytest.mark.fast @pytest.mark.trim def test_init_sanity() -> None: eigs = Eigenvalues(generate_eigs(1000)) report = eigs.trim_report( max_iters=9, poly_degrees=[5, 7, 9], spline_degrees=[], spline_smooths=[], show_progress=True, ) assert np.allclose(report._untrimmed, eigs.original_eigenvalues) assert isinstance(report.summary, pd.DataFrame) assert isinstance(report._trim_iters, list) assert isinstance(report._trim_iters[0], TrimIter) path = Path(".") / "trim_report.csv" report.to_csv(path) assert path.exists() path.unlink() report.plot_trim_steps(mode="test") @pytest.mark.fast @pytest.mark.trim def test_trim_manual() -> None: vals = generate_eigs(2000) for i in range(20): m, n = np.sort(np.array(np.random.uniform(0, len(vals), 2), dtype=int)) raw_trimmed = np.copy(vals[m:n]) eigenvalues = Eigenvalues(vals) trimmed = eigenvalues.trim_manually(m, n) assert np.allclose(raw_trimmed, trimmed.vals) @pytest.mark.fast @pytest.mark.trim def test_trim_reports() -> None: eigs = Eigenvalues(generate_eigs(2000, seed=2)) report = eigs.trim_report() best_smoothers, best_unfolds, best_indices, consistent_smoothers = ( report.best_overall() ) assert np.array_equal( np.sort(consistent_smoothers), np.sort(["poly_7", "poly_8", "poly_9"]) ) assert np.array_equal(best_indices, [(104, 1765), (231, 1765), (104, 2000)]) report.plot_trim_steps(mode="test") ```
{ "source": "jlev/njtransit-fares", "score": 3 }
#### File: jlev/njtransit-fares/cli.py ```python import argparse, sys from datetime import datetime from collections import defaultdict import itertools import csv import logging from api import get_trip import stops log = logging.getLogger(__name__) def valid_date(s): try: return datetime.strptime(s, "%Y-%m-%d") except ValueError: msg = "Not a valid date: '{0}'.".format(s) raise argparse.ArgumentTypeError(msg) def valid_time(s): try: return datetime.strptime(s, "%H:%M").time() except ValueError: msg = "Not a valid time: '{0}'.".format(s) raise argparse.ArgumentTypeError(msg) def valid_town(s): s = s.strip().replace("'",'').upper() if s in stops.NAMES: return s else: log.error(f'{s} not in valid stop names') return None def write_outfile(pairs, filename='output.csv'): # output huge spreadsheet with all possible stop combinations with open(filename, 'w') as out_file: fieldnames = list(stops.NAMES) fieldnames.insert(0, 'stop') pair_writer = csv.DictWriter(out_file, fieldnames=fieldnames) pair_writer.writeheader() for town in stops.NAMES: values = pairs[town] values['stop'] = town pair_writer.writerow(values) log.info('wrote '+filename) if __name__=="__main__": parser = argparse.ArgumentParser(description='Get bus fares for NJ Transit') parser.add_argument('origin', help='TOWN', type=valid_town, nargs='?') parser.add_argument('destination', help='TOWN', type=valid_town, nargs='?') parser.add_argument('--load', help='route CSV') parser.add_argument('date', help='YYYY-MM-DD', type=valid_date) parser.add_argument('time', help='HH:MM', type=valid_time) parser.add_argument('--log', help='LEVEL', default='error') args = parser.parse_args() console_out = logging.StreamHandler(sys.stdout) console_out.setLevel(args.log.upper()) log.addHandler(console_out) when = datetime.combine(args.date, args.time) if args.origin and args.destination: log.info(f'getting {args.origin} to {args.destination} at {when}') fare = get_trip(args.origin, args.destination, when) log.info(f'fare: {fare}') elif args.load: log.info(f'loading {args.load}') # file layout is route,also,towns (list) with open(args.load, 'r') as route_file: route_reader = csv.reader(route_file) fieldnames = route_reader.__next__() pairs = defaultdict(dict) try: for route in route_reader: print('route '+route[0]) # each route contains a list of towns to check legs # split field by comma, check for valid name, and filter out nones towns = filter(None.__ne__, [valid_town(t) for t in route[2].split(',')]) # check each pair of towns without repeating combinations = itertools.combinations(towns, 2) for (orig,dest) in combinations: log.info(f'{orig}-{dest}') pairs[orig][dest] = get_trip(orig, dest, when) write_outfile(pairs) except KeyboardInterrupt: print('quitter') finally: log.debug(pairs) write_outfile(pairs) ```
{ "source": "jlevy44/airlab", "score": 3 }
#### File: airlab/utils/imageFilters.py ```python import os import multiprocessing as mp os.environ["ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS"] = str(mp.cpu_count()) import SimpleITK as sitk import numpy as np import torch as th from .image import Image def auto_crop_image_filter(image, boundary_value=0): """ Performs an auto cropping of values on boundary image (Image): image which has to be cropped boundary_value (float|int): specifies the boundary value which will be cropped return (Image): a new image with cropped boundary """ msk = 1 - (image.image.squeeze() == boundary_value) rminmax = [] for d in range(len(msk.shape)): region = msk.argmax(dim=d).nonzero() rminmax.append((region.min(dim=0)[0], region.max(dim=0)[0])) #print(rminmax[-1]) if image.ndim == 2: cropped = image.image.squeeze()[rminmax[1][0]:rminmax[1][1], rminmax[0][0]:rminmax[0][1]] origin = image.origin + th.Tensor(image.spacing) * th.Tensor([rminmax[1][0], rminmax[0][0]]) elif image.ndim == 3: cropped = image.image.squeeze()[rminmax[1][0][0]:rminmax[1][1][0], \ rminmax[0][0][0]:rminmax[0][1][0], \ rminmax[0][0][1]:rminmax[0][1][1]] #print(cropped.shape) origin = th.Tensor(image.origin) + th.Tensor(image.spacing) * th.Tensor([rminmax[1][0][0], rminmax[0][0][0],rminmax[0][0][1]]) else: raise Exception("Only 2 and 3 space dimensions supported") size = tuple(cropped.shape) cropped.unsqueeze_(0).unsqueeze_(0) return Image(cropped, size, image.spacing, origin.tolist()) def normalize_images(fixed_image, moving_image): """ Noramlize image intensities by extracting joint minimum and dividing by joint maximum Note: the function is inplace fixed_image (Image): fixed image moving_image (Image): moving image return (Image, Image): normalized images """ fixed_min = fixed_image.image.min() moving_min = moving_image.image.min() min_val = min(fixed_min, moving_min) fixed_image.image -= min_val moving_image.image -= min_val moving_max = moving_image.image.max() fixed_max = fixed_image.image.max() max_val = max(fixed_max, moving_max) fixed_image.image /= max_val moving_image.image /= max_val return (fixed_image, moving_image) def remove_bed_filter(image, cropping=True): """ Removes fine structures from the image using morphological operators. It can be used to remove the bed structure usually present in CT images. The resulting image and the respective body mask can be cropped with the cropping option. Note: the morphological operations are performed on a downsampled version of the image image (Image): image of interest cropping (bool): specifies if the image should be cropped after bed removal return (Image, Image): bed-free image and a body mask """ # define parameters houndsfield_min = -300 houndsfield_max = 3071 houndsfield_default = -1024 radius_opening = 3 radius_closing = 40 image_itk = image.itk() # resample image workingSize = np.array(image.size) workingSize[0] /= 3 workingSize[1] /= 3 workingSpacing = np.array(image.spacing, dtype=float) * np.array(image.size, dtype=float) / np.array(workingSize, dtype=float) resampler = sitk.ResampleImageFilter() resampler.SetOutputOrigin(image.origin) resampler.SetSize(workingSize.tolist()) resampler.SetOutputSpacing(workingSpacing.tolist()) resampler.SetInterpolator(2) # linear interpolation resampler.SetNumberOfThreads(mp.cpu_count()) image_tmp = resampler.Execute(image_itk) # threshold image thresholder = sitk.BinaryThresholdImageFilter() thresholder.SetOutsideValue(0) thresholder.SetInsideValue(1) thresholder.SetLowerThreshold(houndsfield_min) thresholder.SetUpperThreshold(houndsfield_max) thresholder.SetNumberOfThreads(mp.cpu_count()) image_tmp = thresholder.Execute(image_tmp) # morphological opening with ball as structuring element # removes thin structures as the bed opening = sitk.BinaryMorphologicalOpeningImageFilter() opening.SetKernelType(sitk.sitkBall) opening.SetKernelRadius(radius_opening) opening.SetForegroundValue(1) opening.SetNumberOfThreads(mp.cpu_count()) image_tmp = opening.Execute(image_tmp) # crop zero values from mask boundary if cropping: image_tmp = auto_crop_image_filter(Image(image_tmp).to(device=image.device)).itk() # morphological closing with ball as structuring element # fills up the lungs closing = sitk.BinaryMorphologicalClosingImageFilter() closing.SetKernelRadius(sitk.sitkBall) closing.SetKernelRadius(radius_closing) closing.SetForegroundValue(1) closing.SetNumberOfThreads(mp.cpu_count()) image_tmp = closing.Execute(image_tmp) # resample mask to original spacing mask_size = np.array(np.array(image_tmp.GetSpacing(), dtype=float)*np.array(image_tmp.GetSize(),dtype=float)/np.array(image.spacing, dtype=float), dtype=int).tolist() resampler = sitk.ResampleImageFilter() resampler.SetOutputOrigin(image_tmp.GetOrigin()) resampler.SetSize(mask_size) resampler.SetOutputSpacing(image.spacing) resampler.SetInterpolator(1) # nearest neighbor interpolation resampler.SetNumberOfThreads(mp.cpu_count()) bodyMask = resampler.Execute(image_tmp) # resample also original image resampler.SetInterpolator(2) image_itk = resampler.Execute(image_itk) # mask image with found label map masking = sitk.MaskImageFilter() masking.SetMaskingValue(0) masking.SetOutsideValue(houndsfield_default) masking.SetNumberOfThreads(mp.cpu_count()) outImage = masking.Execute(image_itk, bodyMask) return (Image(outImage).to(device=image.device), Image(bodyMask).to(device=image.device)) ``` #### File: airlab/utils/points.py ```python import numpy as np import torch as th import SimpleITK as sitk from .image import Displacement class Points: """ Class implementing functionality for dealing with points: - read/write: supported formats are pts and vtk (polydata) - transform: transform the points given a displacement field - TRE: calculates the target registration error between two point sets """ @staticmethod def read(filename): """ Read points from file. Following formats are supported: - pts: each point is represended in one line where the coordinates are separated with a tab - vtk: the vtk polydata is supported as well filename (str): filename return (array): two dimensional array """ if filename.endswith("pts"): points = [] with open(filename) as f: lines = f.readlines() for l in lines: points.append([float(p) for p in l.split()]) return np.array(points) elif filename.endswith("vtk"): with open(filename) as f: lines = f.readlines() if not lines[1] == "vtk output\n" and \ not lines[2] == "ASCII\n" and \ not lines[3] == "DATASET POLYDATA\n": raise Exception("Tried to read corrupted vtk polydata file") n = int(lines[4].split()[1]) one_line = ''.join(''.join(lines[5:]).split('\n')) one_line = [float(p) for p in one_line.split()] return np.array(one_line).reshape((n, 3)) else: raise Exception("Format not supported: "+str(filename)) @staticmethod def write(filename, points): """ Write point list to hard drive filename (str): destination filename points (array): two dimensional array """ if filename.endswith("pts"): with open(filename, 'w') as f: for p in points: f.write('\t'.join([str(v) for v in p])+'\n') elif filename.endswith("vtk"): n = points.shape[0] with open(filename, 'w') as f: f.write("# vtk DataFile Version 3.0\n") f.write("vtk output\n") f.write("ASCII\n") f.write("DATASET POLYDATA\n") f.write("POINTS "+str(n)+" float\n") for p in points: f.write('\t'.join([str(v) for v in p])+'\n') else: raise Exception("Format not supported: "+str(filename)) @staticmethod def transform(points, displacement): """ Transforms a set of points with a displacement field points (array): array of points displacement (SimpleITK.Image | Displacement ): displacement field to transform points return (array): transformed points """ if type(displacement) == sitk.SimpleITK.Image: df_transform = sitk.DisplacementFieldTransform(displacement) elif type(displacement) == Displacement: df_transform = sitk.DisplacementFieldTransform(displacement.to(dtype=th.float64).itk()) else: raise Exception("Datatype of displacement field not supported.") df_transform.SetSmoothingOff() transformed_points = np.zeros_like(points) for i in range(points.shape[0]): transformed_points[i, :] = df_transform.TransformPoint(points[i, :]) return transformed_points @staticmethod def TRE(points1, points2): """ Computes the average distance between points in points1 and points2 Note: if there is a different amount of points in the two sets, only the first points are compared points1 (array): point set 1 points2 (array): point set 2 return (float): mean difference """ n = min(points1.shape[0], points2.shape[0]) return np.mean(np.linalg.norm(points1[:n,:]-points2[:n,:], axis=1)) ``` #### File: airlab/examples/affine_registration_3d.py ```python import sys import os import time import matplotlib.pyplot as plt import torch as th sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import airlab as al def main(): start = time.time() # set the used data type dtype = th.float32 # set the device for the computaion to CPU device = th.device("cpu") # In order to use a GPU uncomment the following line. The number is the device index of the used GPU # Here, the GPU with the index 0 is used. # device = th.device("cuda:0") # create 3D image volume with two objects object_shift = 10 fixed_image = th.zeros(64, 64, 64).to(device=device) fixed_image[16:32, 16:32, 16:32] = 1.0 fixed_image = al.Image(fixed_image, [64, 64, 64], [1, 1, 1], [0, 0, 0]) moving_image = th.zeros(64, 64, 64).to(device=device) moving_image[16 - object_shift:32 - object_shift, 16 - object_shift:32 - object_shift, 16 - object_shift:32 - object_shift] = 1.0 moving_image = al.Image(moving_image, [64, 64, 64], [1, 1, 1], [0, 0, 0]) # create pairwise registration object registration = al.PairwiseRegistration() # choose the affine transformation model transformation = al.transformation.pairwise.RigidTransformation(moving_image, opt_cm=True) transformation.init_translation(fixed_image) registration.set_transformation(transformation) # choose the Mean Squared Error as image loss image_loss = al.loss.pairwise.MSE(fixed_image, moving_image) registration.set_image_loss([image_loss]) # choose the Adam optimizer to minimize the objective optimizer = th.optim.Adam(transformation.parameters(), lr=0.1) registration.set_optimizer(optimizer) registration.set_number_of_iterations(500) # start the registration registration.start() # set the intensities for the visualisation fixed_image.image = 1 - fixed_image.image moving_image.image = 1 - moving_image.image # warp the moving image with the final transformation result displacement = transformation.get_displacement() warped_image = al.transformation.utils.warp_image(moving_image, displacement) end = time.time() print("=================================================================") print("Registration done in: ", end - start, " s") print("Result parameters:") transformation.print() # sitk.WriteImage(warped_image.itk(), '/tmp/rigid_warped_image.vtk') # sitk.WriteImage(moving_image.itk(), '/tmp/rigid_moving_image.vtk') # sitk.WriteImage(fixed_image.itk(), '/tmp/rigid_fixed_image.vtk') # plot the results plt.subplot(131) plt.imshow(fixed_image.numpy()[16, :, :], cmap='gray') plt.title('Fixed Image Slice') plt.subplot(132) plt.imshow(moving_image.numpy()[16, :, :], cmap='gray') plt.title('Moving Image Slice') plt.subplot(133) plt.imshow(warped_image.numpy()[16, :, :], cmap='gray') plt.title('Warped Moving Image Slice') plt.show() if __name__ == '__main__': main() ```
{ "source": "jlevy44/HE2Tri", "score": 3 }
#### File: HE2Tri/data/npy_dataset.py ```python from data.base_dataset import BaseDataset, get_transform from data.image_folder import make_dataset from PIL import Image import os import numpy as np import cv2 class NPYDataset(BaseDataset): """This dataset class can load a set of images specified by the path --dataroot /path/to/data. It can be used for generating CycleGAN results only for one side with the model option '-model test'. """ def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseDataset.__init__(self, opt) self.img_path = os.path.abspath(opt.wsi_name) self.img = np.load(self.img_path) print("WSI image shape", self.img.shape) if False or opt.bgr2rgb: self.img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB) input_nc = self.opt.output_nc if self.opt.direction == 'BtoA' else self.opt.input_nc # self.transform = get_transform(opt, grayscale=(input_nc == 1)) self.transform = get_transform(opt, grayscale=(input_nc == 1), to_pil=True) self.reset() def reset(self): self.img_new = np.zeros_like(self.img, dtype=np.uint32) def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index - - a random integer for data indexing Returns a dictionary that contains A and A_paths A(tensor) - - an image in one domain A_paths(str) - - the path of the image """ A = self.img[index] A = self.transform(A) return A def __len__(self): """Return the total number of images in the dataset.""" return self.img.shape[0] def push_image(self, index, patch_img): self.img_new[index] = patch_img ```
{ "source": "jlevy44/JoshuaTree2", "score": 3 }
#### File: JoshuaTree2/CNSAnalysis/circosGeneration.py ```python import sys,os from collections import defaultdict, Counter from fai2karyotypeMod import fai2karyotype from pybedtools import BedTool import subprocess import numpy as np import shutil import operator from ete2 import Tree e = sys.argv print e try: maxInner = float(e[1]) except: maxInner = 0.3 try: analysisCompare = int(e[2]) except: analysisCompare = 0 print 'maxInner',maxInner print analysisCompare def parseConfigFindList(stringFind,configFile): """parseConfigFindList inputs a particular string to find and read file after and a configuration file object outputs list of relevant filenames""" read = 0 listOfItems = [] for line in configFile: if line: if read == 1: if 'Stop' in line: configFile.seek(0) break # exit the function and return the list of files or list information listOfItems.append(line.strip('\n')) if stringFind in line: read = 1 # if find string specified, begin reading lines configFile.seek(0) return listOfItems def parseConfigFindPath(stringFind,configFile): """findPath will find path of associated specified string or info from config file""" for line in configFile: if stringFind in line: # if find string specified, return pathname or info configFile.seek(0) return line.split()[-1].strip('\n') configFile.seek(0) confDict = {'ticks':"""show_ticks = yes show_tick_labels = yes <ticks> radius = dims(ideogram,radius_outer) orientation = out label_multiplier = 1e-6 color = black size = 20p thickness = 3p label_offset = 5p format = %d <tick> spacing = 1u show_label = no size = 10p </tick> <tick> spacing = 5u show_label = yes label_size = 20p size = 15p </tick> <tick> spacing = 10u show_label = yes label_size = 24p </tick> </ticks>""", 'label':"""show_label = yes label_font = default label_radius = dims(image,radius)-30p label_size = 24 label_parallel = yes label_case = lower label_format = eval(sprintf("chr%s",var(label))) """, 'position':"""radius = 0.775r thickness = 30p fill = yes fill_color = black stroke_thickness = 2 stroke_color = black""", 'r0r1':"""# set track radius values based on track counter r1 = eval(sprintf("%fr",conf(track_start)-counter(plot)*(conf(track_width)+conf(track_pad)))) r0 = eval(sprintf("%fr",conf(track_start)-counter(plot)*(conf(track_width)+conf(track_pad))-conf(track_width)))""", 'ideogram':"""<ideogram> <spacing> default = 0.01r break = 0.5r </spacing> <<include position.conf>> <<include label.conf>> <<include bands.conf>> radius* = 0.95r </ideogram>""", 'bands':"""show_bands = yes fill_bands = yes band_stroke_thickness = 2 band_stroke_color = white band_transparency = 0"""} for conf in confDict.keys(): with open(conf+'.conf','w') as f: f.write(confDict[conf]) f.close() with open('configCNSAnalysis.txt','r') as f: inputSpecies = parseConfigFindList('masterListSpecies', f) inputTree = parseConfigFindPath('inputTree',f) protId = defaultdict(list) for line in inputSpecies: if line: print line protId[line.split('_')[0]] = line.split('_')[1] #protId = {'Bdistachyon':'314','Bstacei':'316','Osativa':'323','Phallii':'308','Pvirgatum':'383','Sbicolor':'313','Sitalica':'312'} #inputList = sys.argv inputList = protId.keys()#['Bdistachyon','Bstacei','Osativa','Phallii','Pvirgatum','Sbicolor','Sitalica'] try: with open(inputTree,'r') as f: speciesTree = Tree(f.read()) inputSpecies = [node.name for node in speciesTree.traverse('preorder') if node.name] inputList2 = [] for species in inputSpecies: if species in inputList: inputList2.append(species) inputList = inputList2 except: pass listFiles = os.listdir('.') speciesDict = defaultdict(list) """files = [[file for file in listFiles if species in file and 'Conserved_CDS' in file][0], [file for file in listFiles if species in file and 'CNSElements_Intergenic' in file][0], [file for file in listFiles if species in file and 'CNSElements_Intronic' in file][0]]""" for species in inputList: if species: speciesDict[species] = [[file for file in listFiles if species in file and 'ConservedElements' in file][0], [file for file in listFiles if protId[species] in file and 'Genes' in file and file.endswith('.bed3')][0], fai2karyotype([file for file in listFiles if protId[species] in file and file.endswith('.fai')][0],species,300000), 'heatmap.%s.txt'%species,open('heatmap.%s.txt'%species,'w')] generateRadii = np.linspace(0.40,0.80,len(speciesDict.keys())+1) print generateRadii totalNumberSpecies = float(len(speciesDict.keys())) for species in inputList: try: histInterval = defaultdict(list) with open([file for file in listFiles if protId[species] in file and file.endswith('.fai')][0],'r') as f: #chromCount = 0 #print 'a1' faiArray = np.array([line.split('\t')[0:2] for line in f if line]) faiArray = faiArray[np.argsort(faiArray[:,1].astype(np.int32),axis=0)[::-1],:] faiArray = faiArray[0:22,:] #print faiArray #print 'a2' #for line in f: #chromCount+=1 #bedread = '\n'.join('\t'.join('%s\t%d\t%d'%tuple([line.split('\t')[0]]+sorted(np.vectorize(lambda x: int(x))(line.split('\t')[1:3]))))) for chrom in faiArray: histInterval[chrom[0]] = list(np.arange(0.,int(chrom[1]),250000.)) + [int(chrom[1])] #interval = sorted(np.vectorize(lambda x: int(x))(line.split('\t')[1:3])) #histInterval[line.split('\t')[0]] = list(np.arange(0.,interval[-1],250000.)) + [interval[-1]] #if chromCount > 22: # break print histInterval.keys() bedHist = BedTool('\n'.join('\n'.join('\t'.join([key] + [str(int(x)) for x in [histInterval[key][i],histInterval[key][i+1]]]) for i in range(len(histInterval[key])-1)) for key in histInterval.keys()),from_string=True) print speciesDict[species][1] with open(speciesDict[species][1],'r') as f: bedGenes = BedTool(f.read(),from_string=True).sort().merge() bedHistGeneFinal = bedHist.intersect(bedGenes,wao=True).sort().merge(c=7,o='sum',d=-1) with open('%s_geneDensity.txt'%(species),'w') as f: for line in str(bedHistGeneFinal).split('\n'): if line: lineList = line.split('\t') f.write('\t'.join(lineList[0:3])+'\t%f'%(float(lineList[-1])/(float(lineList[2])-float(lineList[1])))+'\n') transposonDensityFile = next((file for file in os.listdir('.') if '%s_transposonDensity' % protId[species] in file and (file.endswith('.gff') or file.endswith('.gff2') or file.endswith('.gff3'))), ['emptyDensity.txt']) print protId[species],transposonDensityFile if transposonDensityFile != 'emptyDensity.txt': #FIXME start here with open(transposonDensityFile, 'r') as f: #print 'hello' #print '\n'.join('\t'.join(operator.itemgetter(0, 3, 4)(line.split('\t'))) for line in f.readlines()) bedTrans = bedHist.intersect(BedTool('\n'.join('\t'.join(operator.itemgetter(0, 3, 4)(line.split('\t'))) for line in f.readlines() if line.startswith("##") == 0),from_string=True).sort().merge(),wao = True).merge(c=7,o='sum',d=-1) with open('%s_transposonDensity.bed'%protId[species],'w') as f: for line in str(bedTrans).split('\n'): if line: lineList = line.split('\t') f.write('\t'.join(lineList[0:3])+'\t%f'%(float(lineList[-1])/(float(lineList[2])-float(lineList[1])))+'\n') else: open('%s_transposonDensity.bed' % protId[species],'w').close() for species2 in speciesDict.keys(): speciesDict[species2][-1].close() speciesDict[species2][-1] = open(speciesDict[species2][-2],'w') with open('histogramCount%s.txt'%species,'w') as f: for i in range(1):#3 file = speciesDict[species][i] #file in speciesDict[species][0:3]: with open(file,'r') as bedfile: for line in bedfile: if line: try: countSeq = Counter() for countOfSpecies in line.split('\t')[-1].split(';')[1].split(','): countSeq[countOfSpecies.split(':')[0]] = int(countOfSpecies.split(':')[1]) f.write(line[:line.rfind('\t')+1]+str((float(line.split('\t')[2])-float(line.split('\t')[1]))*float(len(set(countSeq.elements())))/totalNumberSpecies)+'\n') for species2 in countSeq.keys(): if countSeq[species2] > 0: output = str(i+2) speciesDict[species2][-1].write(line[:line.rfind('\t')] + '\n') else: output = '1' except: pass f.close() with open('histogramCount%s.txt'%species,'r') as f: bedHist2 = BedTool(f.read(), from_string=True).sort().merge(c=4,o='mean').saveas('histogramCount%s.txt'%species) bedSpeciesHist = bedHist.intersect(bedHist2, wao=True).sort().merge(c=7, o='sum', d=-1).saveas('histogramCount%s.txt'%species)#.merge(c=[7,8], o=['sum','sum'], d=-1) """with open('histogramCount%s.txt'%species,'w') as f: for line in str(bedSpeciesHist).split('\n'): if line: #if not float(line.split('\t')[3]): # print line if line.split('\t')[4] != '0': f.write('\t'.join(line.split('\t')[0:3]+[str(float(line.split('\t')[3])/float(line.split('\t')[4]))])+'\n') else: f.write('\t'.join( line.split('\t')[0:3] + [str(float(line.split('\t')[3]))]) + '\n') """ for species2 in speciesDict.keys(): speciesDict[species2][-1].close() with open(speciesDict[species2][-2],'r') as f: reads = f.read() with open(speciesDict[species2][-2],'w') as f2: for line in str(bedHist.intersect(BedTool(reads,from_string=True).sort().merge(),wao=True).sort().merge(c=7,o='sum',d=-1)).split('\n'): if line: try: f2.write('\t'.join(line.split('\t')[0:3]+[str(float(line.split('\t')[-1])/250000.)])+'\n') except: pass # now configure circos files print speciesDict[species][2], [(os.getcwd()+'/',species2) for species2 in speciesDict.keys()], os.getcwd()+'/'+'histogramCount%s.txt' %species,os.getcwd()+'/'+'%s_geneDensity.txt'%species if analysisCompare: compareString = """<plot> show = conf(show_histogram) type = heatmap file = %s orientation = out thickness = 1 padding = 1 color = greens-9-seq color_mapping = 1 #fill_under = yes #fill_color = green r0 = 0.85r r1 = 0.90r max_gap = 5u z = 10 </plot>"""%(os.getcwd()+'/CompareAnalysis/'+'histogramCount%s.txt'%(species)) else: compareString = '' #print compareString circosconf = """ show_histogram = yes show_heatmap = yes use_rules = yes <<include colors_fonts_patterns.conf>> <<include ideogram.conf>> <<include ticks.conf>> <<include bands.conf>> <<include position.conf>> <<include label.conf>> <image> <<include etc/image.conf>> </image> karyotype = %s chromosomes_units = 1000000 chromosomes_display_default = yes # to see how reversing ideograms work - comment out the chromosomes # line below #chromosomes = hs2 # and uncomment the two definitions below # - first split hs2 into three ideograms # - now reverse the ideogram with tag "b" #chromosomes = hs2[a]:0-60;hs2[b]:70-140;hs2[c]:150-) #chromosomes_reverse = b #chromosomes = hs2[a]:0-30;hs2[b]:50-80;hs2[c]:100-130;hs2[d]:150-180;hs2[e]:190-200;hs2[f]:210-) #chromosomes_radius = a:0.95r;b:0.9r;c:0.85r;d:0.8r;e:0.75r;f:0.7r <plots> show = no %s %s <plot> show = conf(show_histogram) type = heatmap file = %s orientation = out thickness = 1 padding = 1 color = reds-9-seq color_mapping = 1 #fill_under = yes #fill_color = green r0 = 0.80r r1 = 0.85r max_gap = 5u z = 10 </plot> <plot> show = conf(show_histogram) type = heatmap file = %s orientation = out thickness = 1 padding = 1 color = purples-9-seq color_mapping = 1 #fill_under = yes #fill_color = green r0 = 0.90r r1 = 0.95r max_gap = 5u min = 0 max = 0.45 z = 10 </plot> <plot> show = conf(show_histogram) type = heatmap file = %s min = 0 max = 0.45 orientation = out thickness = 1 padding = 1 color = blues-9-seq color_mapping = 1 #fill_under = yes #fill_color = green r0 = 0.95r r1 = 1.0r max_gap = 5u z = 10 </plot> </plots> <<include etc/housekeeping.conf>> data_out_of_range* = trim"""%(os.getcwd()+'/'+speciesDict[species][2],'\n'.join("""<plot> show = conf(show_heatmap) type = heatmap min = 0 max = %f margin = 0.02u #orientation = out color = white, spectral-11-div, grey color_mapping = 1 thickness = 1 padding = 1 #color = black #fill_color = yellow #stroke_thickness = 5 #scale_log_base = 0.25 #stroke_color = black file = %s r0 = %fr r1 = %fr #<rules> #use = conf(use_rules) #<rule> #condition = var(value) == 1 #color = white #</rule> #<rule> #condition = var(value) > 1 #color = black #</rule> #</rules> </plot>"""%(maxInner,os.getcwd()+'/'+'heatmap.'+inputList[i]+'.txt',generateRadii[i],generateRadii[i+1]) for i in range(len(speciesDict.keys()))), compareString,os.getcwd()+'/'+'histogramCount%s.txt'%(species),os.getcwd()+'/'+'%s_transposonDensity.bed'%protId[species],os.getcwd()+'/'+species+'_geneDensity.txt') with open('circos.conf','w') as f: f.write(circosconf) f.close() print os.getcwd()+'/'+'circos.conf' print ['circos','-conf',os.getcwd()+'/'+'circos.conf','-outputfile', species,'-outputdir',os.getcwd()] subprocess.call(['circos','-conf',os.getcwd()+'/'+'circos.conf','-outputfile',species,'-outputdir',os.getcwd()]) except: print 'Error for '+species """<plot> <<include r0r1.conf>> file = data/6/variation.heatmap.txt stroke_thickness = 0 min = 2000 max = 250000 </plot> <plot> <<include r0r1.conf>> scale_log_base = 0.5 </plot> <plot> <<include r0r1.conf>> scale_log_base = 1 # this is the default value </plot> <plot> <<include r0r1.conf>> scale_log_base = 2 </plot> <plot> <<include r0r1.conf>> scale_log_base = 3 </plot> <plot> <<include r0r1.conf>> scale_log_base = 5 </plot> <plot> <<include r0r1.conf>> color = conf(plots,color_alt) file = data/6/heatmap.step.txt pattern = hline,vline color_mapping = 0 # default min = 0 max = 10 stroke_thickness = 0 </plot> <plot> <<include r0r1.conf>> color = conf(plots,color_alt) file = data/6/heatmap.step.txt pattern = hline,solid,vline color_mapping = 1 min = 0 max = 10 stroke_thickness = 0 </plot> <plot> <<include r0r1.conf>> color = conf(plots,color_alt) file = data/6/heatmap.step.txt pattern = hline,solid,vline color_mapping = 2 min = 0 max = 10 stroke_thickness = 0 </plot> <plot> <<include r0r1.conf>> color = conf(plots,color_alt) file = data/6/heatmap.step.txt pattern = hline,checker,vline color_mapping = 2 min = 2 max = 8 stroke_thickness = 0 </plot>""" """<<include etc/colors_fonts_patterns.conf>> <<include ideogram.conf>> <<include ticks.conf>> <image> <<include etc/image.conf>> </image> karyotype = %s chromosomes_units = 1000000 #chromosomes = hs1;hs2 #chromosomes_breaks = -hs1:120-140 chromosomes_display_default = yes track_width = 0.05 track_pad = 0.02 track_start = 0.95 <plots> type = heatmap <rules> <rule> condition = var(value) = 0 color = white </rule> <rule> condition = var(value) = 1 color = black </rule> #<rule> #condition = var(value) = 2 #color = green #</rule> #<rule> #condition = var(value) = 3 #color = blue #</rule> </rules> # default file for all tracks #file = data/6/snp.number.1mb.txt # a 9 color diverging spectral palette specified using a color list name color = spectral-9-div # referenced via conf(plots,color_alt) color_alt = black,spectral-8-div,grey # or the reverse list #color = spectral-9-div-rev # or you can even combine lists # color = ylorrd-9-seq-rev,ylgnbu-9-seq stroke_thickness = 1 stroke_color = black min = 1000 max = 5000 %s <\plots> <plots> <plot> # The type sets the format of the track. type = histogram file = %s # The track is confined within r0/r1 radius limits. When using the # relative "r" suffix, the values are relative to the position of the # ideogram. r1 = 0.75r r0 = 0.80r # Histograms can have both a fill and outline. The default outline is 1px thick black. fill_color = vdgrey # To turn off default outline, set the outline thickness to zero. If # you want to permanently disable this default, edit # etc/tracks/histogram.conf in the Circos distribution. #thickness = 0p # Do not join histogram bins that do not abut. extend_bin = no # Like for links, rules are used to dynamically alter formatting of # each data point (i.e. histogram bin). Here, I include the <rule> # block from a file, which contains the following # # <rule> # condition = on(hs1) # show = no # </rule> # # to avoid displaying any data on hs1. The rule is included from a # file because it is reused again in the track below. <rules> </rules> </plot> <plot> # The type sets the format of the track. type = histogram file = %s # The track is confined within r0/r1 radius limits. When using the # relative "r" suffix, the values are relative to the position of the # ideogram. r1 = 0.65r r0 = 0.75r # Histograms can have both a fill and outline. The default outline is 1px thick black. fill_color = vdgrey # To turn off default outline, set the outline thickness to zero. If # you want to permanently disable this default, edit # etc/tracks/histogram.conf in the Circos distribution. #thickness = 0p # Do not join histogram bins that do not abut. extend_bin = no # Like for links, rules are used to dynamically alter formatting of # each data point (i.e. histogram bin). Here, I include the <rule> # block from a file, which contains the following # # <rule> # condition = on(hs1) # show = no # </rule> # # to avoid displaying any data on hs1. The rule is included from a # file because it is reused again in the track below. <rules> </rules> </plot> </plots> <<include etc/housekeeping.conf>> data_out_of_range* = trim <plot> show = conf(show_histogram) type = histogram file = %s thickness = 2 #color = black fill_under = yes fill_color = blue r0 = 0.80r r1 = 0.95r orientation = out max_gap = 5u z = 10 </plot> <plot> show = conf(show_histogram) type = histogram file = %s thickness = 2 #color = black fill_under = yes fill_color = blue r0 = 0.85r r1 = 0.90r orientation = out max_gap = 5u z = 10 </plot> <plot> show = conf(show_histogram) type = histogram file = %s orientation = out thickness = 1 #color = black fill_under = yes fill_color = green r0 = 0.90r r1 = 0.95r max_gap = 5u z = 10 </plot>"""#%(os.getcwd()+'/'+speciesDict[species][2],'\n'.join("""<plot> #<<include r0r1.conf>> #file = %sheatmap.%s.txt #</plot>"""%(os.getcwd()+'/',species2) for species2 in speciesDict.keys()),os.getcwd()+'/'+'histogramCount%s.txt' %species,os.getcwd()+'/'+'%s_geneDensity.txt'%species) ``` #### File: scaffolding_tool_bin/old_scripts/fixv0.py ```python import subprocess, os, sys from collections import defaultdict import numpy as np from multiprocessing import Pool, Queue import subprocess,shutil from jcvi.formats import gff from pyfaidx import Fasta references = [folder for folder in os.listdir('referenceGenomes') if '.' not in folder and folder] buildSamples = np.vectorize(lambda x: 'Bdist_%s_v0'%(x))(sys.argv[1:]) root = os.getcwd()+'/' CDSOld = root+'referenceGenomes/'+'314'+'/'+[file for file in os.listdir(root+'referenceGenomes/'+'314') if file.endswith('.fa') and '.cds' in file.lower()][0] runCommand = lambda x: subprocess.call(x,shell=True) def formatSamplev0(sample): global root commands = ['python %sformatBed.py s %s v0'%(root,sample),'python %sformatCDS.py s %s v0'%(root,sample)] for command in commands: runCommand(command) os.chdir(root) def buildSamplesv0(sample): #sample = Bdist_xxx_v0.fa global root global CDSOld print sample os.chdir('v0/'+sample) print 'c ' + os.getcwd() fastaNew = sample+'.fa' geneNaming = sample.replace('_','') writeCommands = ['samtools faidx %s' %fastaNew,'python -m jcvi.formats.gff bed --type=CDS --key=Name %s -o %s' % ( geneNaming + '.gff3', sample + '.CDS.bed'),'bedtools getfasta -name -fi ./%s -bed %s.CDS.bed -fo %s.cds'%(fastaNew,sample,sample) ]#'gffread -E %s -o- > %s' % (geneNaming + '.gff3', geneNaming + '.cufflinks.gff'), #'python -m jcvi.formats.gff load %s %s --feature=CDS --id_attribute=Name -o %s' % (geneNaming + '.cufflinks.gff', fastaNew,sample + '.cds')] writeCommands2 = ['samtools faidx %s' % fastaNew, 'gmap_build --dir=. -d %s %s' % (geneNaming, fastaNew), 'gmap --dir=. -d %s -B 5 -A --format=gff3_gene -n 1 -t 8 %s > %s 2> %s' % ( geneNaming, CDSOld, geneNaming + '.gff3', geneNaming + '.log'), 'python %srenameGenes.py %s %s %s' % (root, geneNaming + '.gff3', 'Bradi', geneNaming), 'python -m jcvi.formats.gff bed --type=mRNA --key=Name %s -o %s' % ( geneNaming + '.gff3', sample + '.bed'), 'python -m jcvi.formats.gff load %s %s --feature=CDS --id_attribute=Name -o %s' % ( geneNaming + '.gff3', fastaNew, sample + '.cds')] for command in writeCommands: runCommand(command) print command os.chdir(root) if __name__ == '__main__': with open('output.txt', 'a') as f: f.write('Outv1') p = Pool(processes=6) p.map(func=buildSamplesv0, iterable=buildSamples) p.map(func=formatSamplev0, iterable=buildSamples) #for sample in buildSamples: # os.chdir(root) # buildSamplesv0(sample) # os.chdir(root) # formatSamplev0(sample) ``` #### File: scaffolding_tool_bin/old_scripts/genomeScaffolding.py ```python import subprocess, os, sys from collections import defaultdict, OrderedDict import numpy as np from multiprocessing import Pool, Queue, Process from threading import Thread import subprocess,shutil from pybedtools import BedTool from jcvi.formats import gff from pyfaidx import Fasta import time """python genomeScaffolding.py ReferenceBuild sampleBuild CDSProtID OldCDSGeneName protID1 weight1 protID2 weight2 ...""" CDSgeneNaming = sys.argv[4] CDSspecies = sys.argv[3] args = sys.argv[5:] root = os.getcwd()+'/' weights = OrderedDict() listSamplesv0 = [folder for folder in os.listdir('v0') if folder.endswith('v0')] try: ReferenceBuild = int(sys.argv[1]) except: ReferenceBuild = 1 try: sampleBuild = int(sys.argv[2]) except: sampleBuild = 1 print args print CDSgeneNaming print CDSspecies for i in np.arange(0,len(args),2): try: weights[args[i]]=int(args[i+1]) except: print args print weights runCommand = lambda x: subprocess.call(x,shell=True) binbash = "#!/bin/bash" makeTrashFolder = 'mkdir oldFiles' moduleLoads = """module load cufflinks/2.2.1 module load samtools/1.3.1 module load gmap module load parallel/20150222 module load bedtools/2.25.0 module unload gcc module load gcc/6.3.0 """ def runCommands(q): while not q.empty(): print q try: print q.get() runCommand(q.get()) except: with open('Error.txt','a') as f: f.write(q.get()+'\n') q.task_done() def buildReferences(reference): # essentially keys of weights global root global binbash, makeTrashFolder, moduleLoads print reference os.chdir('./referenceGenomes/'+reference) #print os.getcwd() #print os.listdir('.') fastaOld = [fasta for fasta in os.listdir('.') if 'cds' not in fasta.lower() and (fasta.endswith('.fa') or fasta.endswith('.fasta'))][0] #Fasta(fastaOld) #gff.load([file for file in os.listdir('.') if 'cufflinks' not in file and (file.endswith('.gff3') or file.endswith('.gff'))][0]) writeCommands = [binbash,moduleLoads,makeTrashFolder,'samtools faidx %s'%fastaOld, 'python -m jcvi.formats.gff load %s %s --parents=mRNA --children=CDS -o %s'%([file for file in os.listdir('.') if 'cufflinks' not in file and (file.endswith('.gff3') or file.endswith('.gff'))][0],fastaOld,reference+'.cds'), 'python -m jcvi.formats.gff bed --type=mRNA --key=Name %s -o %s'%([file for file in os.listdir('.') if 'cufflinks' not in file and (file.endswith('.gff3') or file.endswith('.gff'))][0],reference+'.bed'), 'python %sreplacepath.py %s'%(root,reference+'.bed'),'mv %s %s ..'%(reference+'.bed',reference+'.cds')] #binbash,makeTrashFolder,moduleLoads, #print '\n'.join(writeCommands) """if __name__ == '__main__': q = Queue(maxsize=0) for command in writeCommands: q.put(command) runCommands(q)""" """for command in writeCommands: print command try: runCommand(command) except: with open('Error.txt','a') as f: f.write(command+'\n')""" """for i, command in writeCommands: print command if (i == 3 or i==4) and (reference + '.bed' not in os.listdir('..') or os.stat('../'+reference + '.bed').st_size == 0): runCommand(command) elif i == 2 and (reference + '.cds' not in os.listdir('..') or os.stat('../'+reference + '.cds').st_size == 0): runCommand(command) elif i not in range(2, 7): runCommand(command)""" with open('buildReference.sh','w') as f: f.write('\n'.join(writeCommands)) subprocess.call(['nohup','sh','buildReference.sh']) os.chdir(root) #print ReferenceBuild CDSOld = [fasta for fasta in os.listdir('./referenceGenomes/%s'%CDSspecies) if 'cds' in fasta.lower() and (fasta.endswith('.fa') or fasta.endswith('.fasta'))][0] linkReferences = ['ln -s %s%s/%s.cds %s.cds\nln -s %s%s/%s.bed %s.bed'%(root,'referenceGenomes',ref,ref,root,'referenceGenomes',ref,ref) for ref in weights.keys()] def buildSamplesv0(sample): #sample = Bdist_xxx_v0.fa global root global CDSspecies, CDSOld global binbash, makeTrashFolder, moduleLoads global CDSgeneNaming, linkReferences print sample os.chdir('v0/'+sample) fastaNew = sample+'.fa' geneNaming = sample.replace('_','') # -t is number of worker threads runCommand('rm finishBuild.txt') writeCommands = [binbash,moduleLoads,makeTrashFolder,'rm -r %s %s.gff3.db %s.chromosome *.iit %s.coords'%(geneNaming,geneNaming,geneNaming,geneNaming), 'samtools faidx %s' %fastaNew, 'gmap_build --dir=. -d %s %s' % (geneNaming,fastaNew), 'gmap --dir=. -d %s -B 5 -A --format=gff3_gene -n 1 -t 6 %s > %s 2> %s' % ( geneNaming, '../../referenceGenomes/%s/'%CDSspecies + CDSOld, geneNaming + '.gff3', geneNaming + '.log'), 'python %srenameGenes.py %s %s %s' %(root,geneNaming + '.gff3', CDSgeneNaming ,geneNaming), 'python -m jcvi.formats.gff bed --type=mRNA --key=Name %s -o %s' % (geneNaming + '.gff3', sample + '.bed'), 'python -m jcvi.formats.gff load %s %s --parents=mRNA --children=CDS -o %s' % ( geneNaming+'.gff3', fastaNew,sample + '.cds')]+linkReferences+['> finishBuild.txt'] #"""'python %sgff2CDSBed.py %s'%(root,geneNaming + '.gff3'),'sortBed -i %s.CDS.bed > %s.CDS2.bed'%(geneNaming,geneNaming), #'python %sformatBed.py s %s v0 1'%(root,geneNaming+'.CDS2'),'bedtools getfasta -name -fi ./%s -bed %s.CDS2.bed -fo %s.cds'%(fastaNew,geneNaming,sample) #]"""#'mv %s %s ..'%(sample+'.cds',sample+'.bed') binbash, moduleLoads, makeTrashFolder, #'python -m jcvi.formats.gff load %s %s --feature=CDS --id_attribute=Name -o %s' % (geneNaming + '.gff3', fastaNew,sample + '.cds'), #'mergeBed -c 4 -i %s.CDS2.bed > %s.CDS.bed'%(geneNaming,geneNaming) #print writeCommands #print os.getcwd() #open('buildSample.sh', 'w').close() """if __name__ == '__main__': q = Queue(maxsize=0) for command in writeCommands: q.put(command) runCommands(q)""" i=0 """ for command in writeCommands: #print i,command #print i if (i == 2 or i == 3 or i == 4) and (geneNaming + '.gff3' not in os.listdir('.') or os.stat(geneNaming + '.gff3').st_size ==0): print(command) runCommand(command) elif i==5 and (sample + '.bed' not in os.listdir('.') or os.stat(sample + '.bed').st_size ==0): print(command) runCommand(command) elif i == 6 and (sample + '.cds' not in os.listdir('.') or os.stat(sample + '.cds').st_size ==0): print(command) runCommand(command) elif i not in range(2,7): print(command) runCommand(command) i+=1 """ with open('buildSample.sh', 'w') as f: f.write('\n'.join(writeCommands)) #subprocess.call(['nohup', 'sh', 'buildSample.sh']) runCommand('qsub -P plant-analysis.p -N %s -cwd -l high.c -pe pe_slots 16 -e %s %s' % ( 'build'+sample.split('_')[1], 'ErrFile.txt', 'buildSample.sh')) while True: if os.path.isfile('finishBuild.txt'): break else: time.sleep(10) os.chdir(root) """try: runCommand(command) except: with open('Error.txt','a') as f: f.write(command+'\n')""" """with open('buildSample.sh','w') as f: f.write('\n'.join(writeCommands)) try: subprocess.call(['nohup','sh','buildSample.sh']) except: with open('output.txt', 'a') as f: f.write('Error in %s'%sample)""" """writeCommands2 = [binbash, moduleLoads,'gmap_build --dir=. -d %s %s' % (geneNaming,fastaNew), 'gmap --dir=. -d %s -B 5 -A --format=gff3_gene -n 1 -t 8 %s > %s 2> %s' % ( geneNaming, CDSOld, geneNaming + '.gff3', geneNaming + '.log'), 'python %srenameGenes.py %s %s %s' % (root, geneNaming + '.gff3', CDSgeneNaming, geneNaming), 'python -m jcvi.formats.gff bed --type=mRNA --key=Name %s -o %s' % ( geneNaming + '.gff3', sample + '.bed'), 'python -m jcvi.formats.gff bed --type=CDS --key=Name %s -o %s' % ( geneNaming + '.gff3', sample + '.CDS.bed'), 'bedtools getfasta -name -fi ./%s -bed %s.CDS.bed -fo %s.cds' % ( fastaNew, sample, sample)] with open('buildSample.sh', 'w') as f: f.write('\n'.join(writeCommands2)) subprocess.call(['nohup', 'sh', 'buildSample.sh'])""" try: os.mkdir('v1') for folder in listSamplesv0: os.mkdir('v1/%s'%folder.replace('v0','v1')) os.mkdir('v1/%s/OldFiles'%folder.replace('v0','v1')) except: pass buildCorrespondence = {folder:folder.replace('v0','v1') for folder in listSamplesv0} listSamplesv1 = buildCorrespondence.values() print listSamplesv1 def replaceGeneNames(sample,ref,count=0,nuc=0): refGeneCount = 0 synmap = '%s.%s.lifted.anchors' % (sample, ref) if nuc: nucAdd = 'nuc' synmap = 'nucMap.bed' refbed = ref + '_nucSyn.bed' sampbed = sample + '_nucSyn.bed' a, b = 1, 0 else: nucAdd = '' refbed = ref + '.bed' sampbed = sample + '.bed' a, b = 0, 1 sampleProt = sample.split('_')[1] with open(refbed,'r') as f: refBedLines = f.readlines() refBedOut = [] refGenes = defaultdict(list) for line in refBedLines: if line: refGenes[line.split('\t')[3]] = ref+nucAdd+'_'+str(refGeneCount) refBedOut.append(line.replace(line.split('\t')[3],ref+nucAdd+'_'+str(refGeneCount))) refGeneCount+=1 #ref+'_syn'+'.bed',sample+'_%ssyn'%ref+'.bed' #print refGenes with open(sampbed,'r') as f: sampBedLines = f.readlines() sampBedOut = [] sampGenes = defaultdict(list) for line in sampBedLines: if line: sampGenes[line.split('\t')[3]] = sampleProt+nucAdd+'_'+str(count) sampBedOut.append(line.replace(line.split('\t')[3], sampleProt + nucAdd + '_' + str(count))) count+=1 with open(synmap,'r') as f: synRead = f.readlines() synOut = [] for line in synRead: if line and '###' not in line: try: genes = line.split('\t') print genes synOut.append(line.replace(genes[0],refGenes[genes[a]]).replace(genes[1],sampGenes[genes[b]])) except: with open('Err.txt','a') as f: f.write(line+'\n') """ if nuc: print sampBedOut[0:10] print refBedOut[0:10] print sampGenes.items()[0:10] print refGenes.items()[0:10] print synOut[0:10] with open('nucMap.bed','r') as f: print f.readlines()[0:10] """ if nuc == 0: for writeTuple in [(ref+'_syn'+'.bed',refBedOut),(sample+'_%ssyn'%ref+'.bed',sampBedOut),(synmap,synOut)]: with open(writeTuple[0],'w') as f: f.writelines(writeTuple[1]) else: for writeTuple in [(refbed,refBedOut),(sampbed,sampBedOut),(synmap,synOut)]: with open(writeTuple[0],'w') as f: f.writelines(writeTuple[1]) return count def tiling2bed(tilingFile,ref,sample,sampBed): with open(tilingFile,'r') as f: tilingLines = f.read().split('\n') genesDict = defaultdict(list) with open(ref+'_nucSyn.bed','w') as f1, open(sample+'_nucSyn.bed','w') as f2: for line in tilingLines: if line: lineList = line.split('\t') int1 = sorted(map(int,lineList[0:2])) int1[0] -= 1 int2 = sorted(map(int,lineList[2:4])) int2[0] -= 1 f1.write('\t'.join([lineList[-2]]+map(str,int1)+['_'.join([lineList[-2]]+map(str,int1)),'0','+']) + '\n') f2.write('\t'.join([lineList[-1]]+map(str,int2)+['_'.join([lineList[-1]]+map(str,int2)),'0','+']) + '\n') genesDict['_'.join([lineList[-1]]+map(str,int2))] = '_'.join([lineList[-2]]+map(str,int1)) b = BedTool(sample+'_nucSyn.bed').subtract(BedTool(sampBed),A=True) #print b.head() #print genesDict.keys()[0:10] origGenes = set(genesDict.keys()) #print str(b).split('\n')[0:10] #print [ line.split('\t')[3] for line in str(b).split('\n') if line][0:10] remainGenes = set([ line.split('\t')[3] for line in str(b).split('\n') if line]) #print list(remainGenes)[0:10] BadGenes = list(origGenes - remainGenes) #print BadGenes[0:10] #print len(origGenes), len(remainGenes), len(BadGenes) #exit() for gene in BadGenes: try: del genesDict[gene] except: pass with open('nucMap.bed','w') as f: f.write('\n'.join('%s\t%s\t100'%item for item in genesDict.items() if item)) fastaNucOld = [fasta for fasta in os.listdir('./referenceGenomes/%s'%CDSspecies) if 'cds' not in fasta.lower() and (fasta.endswith('.fa') or fasta.endswith('.fasta'))][0] def generatev1(sample): os.chdir('v0/%s'%sample) print sample.replace('v0', 'v1') global binbash, makeTrashFolder, moduleLoads, root, weights, fastaNucOld, CDSspecies #print weights print '\n'.join('%s %d'%(key,weights[key]) for key in weights.keys())#weights.keys()#'\n'.join('%s %d'%(key,weights[key]) for key in sorted(weights, key=weights.get, reverse=True).keys()) print 'hi' """if __name__ == '__main__': p = Pool(None) p.imap(pairwise, [(sample,ref) for ref in weights.keys()])""" with open('weights.txt','w') as f: f.write('\n'.join([weights.keys()[0]+' %d'%weights[weights.keys()[0]],'%snuc %d'%(CDSspecies,weights[CDSspecies]-1)]+['%s %d'%(key,weights[key]) for key in weights.keys()[1:]])) nucCommands = [binbash,moduleLoads]+ ['nucmer -t 6 -p %s %s %s'%(CDSspecies+'nuc',root+'referenceGenomes/%s/'%CDSspecies+fastaNucOld,sample+'.fa'), 'delta-filter -m -q -i 85 -u 50 %snuc.delta > %snuc2.delta'%(CDSspecies,CDSspecies),'show-tiling -a %snuc2.delta > %snuc.tiling'%(CDSspecies,CDSspecies)] commands1 = [binbash, moduleLoads]+['rm *.anchors *.last *.filtered *.prj']+\ ['nohup python -m jcvi.compara.catalog ortholog %s %s\nmv %s %s'%(ref,sample,'%s.%s.lifted.anchors'%(ref,sample),'%s.%s.lifted.anchors'%(sample,ref)) for ref in weights.keys()] commands2=[binbash, moduleLoads]+['rm multipleMapping.bed','\n'.join('python -m jcvi.assembly.syntenypath bed %s --switch --scale=10000 --qbed=%s --sbed=%s -o %s'%('%s.%s.lifted.anchors'%(sample,ref),ref+'_syn'+'.bed',sample+'_%ssyn'%ref+'.bed','%s.synteny.bed'%(ref)) for ref in weights.keys()), 'python -m jcvi.assembly.syntenypath bed %s --switch --scale=10000 --qbed=%s --sbed=%s -o %snuc.synteny.bed'%('nucMap.bed',CDSspecies+'_nucSyn.bed',sample+'_nucSyn.bed',CDSspecies), 'nohup python -m jcvi.assembly.allmaps mergebed %s -o %s'%(' '.join(['%s.synteny.bed'%(ref) for ref in (weights.keys() + [CDSspecies+'nuc'])]),'multipleMapping.bed')] qsub=[binbash,moduleLoads]+['python -m jcvi.assembly.allmaps path --skipconcorde --cpus=32 --ngen=300 --npop=50 multipleMapping.bed %s.fa' % (sample), 'mv multipleMapping.fasta %sv1/%s/%s.fa' % (root,sample.replace('v0', 'v1'), sample.replace('v0', 'v1'))] #'nohup liftOver -gff %s.gff3 multipleMapping.chain %s.gff3 unmapped' % (sample.replace('_',''), sample.replace('_','').replace('v0', 'v1')), ,'mv %s.gff3 ../../v1/%s' % (sample.replace('_','').replace('v0', 'v1'), sample.replace('v0', 'v1')) #for ref in weights.keys(): # pairwise((sample,ref)) """if __name__ == '__main__': q = Queue(maxsize=0) for command in commands: q.put(command) runCommands(q)""" #print '\n'.join(commands) with open('nucCommand.sh','w') as f: f.write('\n'.join(nucCommands)) with open('constructv1_1.sh','w') as f: f.write('\n'.join(commands1)) with open('constructv1_2.sh','w') as f: f.write('\n'.join(commands2)) with open('qsub_buildv1.sh','w') as f: f.write('\n'.join(qsub)) print os.listdir('%s/v1/%s'%(root,sample.replace('v0','v1'))) if '%snuc.tiling'%CDSspecies not in os.listdir('.'): runCommand('sh nucCommand.sh') #print ['%s.%s.lifted.anchors' %(sample, ref) in os.listdir('.') and os.stat('%s.%s.lifted.anchors' %(sample, ref)).st_size > 0 for ref in weights.keys()] print all(['%s.%s.lifted.anchors' %(sample, ref) in os.listdir('.') and os.stat('%s.%s.lifted.anchors' %(sample, ref)).st_size > 0 for ref in weights.keys()]) == 0 #exit() if all([os.path.isfile('%s.%s.lifted.anchors' %(sample, ref)) and os.stat('%s.%s.lifted.anchors' %(sample, ref)).st_size > 0 for ref in weights.keys()]) == 0: print sample, ['%s.%s.lifted.anchors' %(sample, ref) in os.listdir('.') and os.stat('%s.%s.lifted.anchors' %(sample, ref)).st_size > 0 for ref in weights.keys()] runCommand('sh constructv1_1.sh') sampleCount = 0 for ref in weights.keys(): sampleCount = replaceGeneNames(sample, ref, sampleCount) print 'hello ' + sample, ref print 'construct_1' + sample + ' done' try: tiling2bed('%snuc.tiling'%CDSspecies, CDSspecies, sample, sample+'_%ssyn'%CDSspecies+'.bed') except: print sys.exc_info()[0] #exit() print 'hi2' replaceGeneNames(sample,CDSspecies,0,1) if os.stat('nucMap.bed').st_size == 0: exit() print 'hi3' runCommand('sh constructv1_2.sh') try: if os.stat('./multipleMapping.bed').st_size > 0: runCommand('qsub -P plant-analysis.p -N %s -cwd -l h_rt=50:00:00 -pe pe_slots 32 -e %s %s'%(sample,'ErrFile.txt','qsub_buildv1.sh')) #FIXME pe_slots 16, time limit pe_8 else: with open('ErrFile.txt','a') as f: f.write('Multiple Mapping Size 0, unable to build v1...') except: with open('ErrFile.txt', 'a') as f: f.write('Multiple Mapping File does not exist, unable to build v1...') os.chdir(root) #for command in commands: # print command # runCommand(command) #FIXME ADD qsub def formatSamplev0(sample): global root commands = ['python %sformatBed.py s %s v0'%(root,sample),'python %sformatCDS.py s %s v0'%(root,sample)] for command in commands: runCommand(command) os.chdir(root) def formatRef(reference): global root commands = ['python %sformatBed.py r %s v0' % (root, reference), 'python %sformatCDS.py r %s v0' % (root, reference)] for command in commands: runCommand(command) os.chdir(root) sampleDist = [listSamplesv0[x:x+7] for x in xrange(0,len(listSamplesv0),7)] print sampleDist def buildSampv0List(samplist): for sample in samplist: try: buildSamplesv0(sample) except: print 'Error building ' + sample def formatv0List(samplist): for sample in samplist: try: formatSamplev0(sample) except: print 'Error formatting ' + sample if __name__ == '__main__': with open('output.txt', 'a') as f: f.write('Outv1') listSamplesv0 = [sample for sample in listSamplesv0 if sample.replace('v0', 'v1') + '.fa' not in os.listdir( '%sv1/%s' % (root, sample.replace('v0', 'v1')))] print len(listSamplesv0) // 6 + 1 sampleDist = [listSamplesv0[x:x + len(listSamplesv0) // 6 + 1] for x in xrange(0, len(listSamplesv0), len(listSamplesv0) // 6 + 1)] print listSamplesv0 print sampleDist if ReferenceBuild: p = Pool(processes=6) p.map(buildReferences, weights.keys()) p.map(func=formatRef, iterable=weights.keys()) p.close() p.join() if sampleBuild: p = Pool(processes=6)#processes=8 p.map_async(func=buildSampv0List, iterable=sampleDist) p.map_async(func=formatv0List, iterable=sampleDist) p.close() p.join() #for samplelist in sampleDist: # p.map(generatev1, samplelist) #for ref in weights.keys(): # formatRef(ref) #buildReferences('460') #formatRef('460') def reader(q): while True: sample = q.get() try: generatev1(sample) except: print 'Generation Error in ' + sample with open('Error.txt', 'a') as f: f.write('Generation Error in ' + sample + '\n') q.task_done() def genv1List(samplelist): for sample in samplelist: #generatev1(sample) try: generatev1(sample) except: print 'Error gen v1 in ' + sample if __name__ == '__main__': #for samplelist in sampleDist: #q = Queue(maxsize=0) #num_threads = 6 #for i in range(num_threads): # worker = Process(target = reader,args=(q,)) # worker.daemon=True # worker.start() listSamplesv0 = [sample for sample in listSamplesv0 if sample.replace('v0','v1') + '.fa' not in os.listdir('%sv1/%s'%(root,sample.replace('v0','v1')))] print len(listSamplesv0)//6 + 1 sampleDist = [listSamplesv0[x:x + len(listSamplesv0)//6 + 1] for x in xrange(0, len(listSamplesv0), len(listSamplesv0)//6 + 1)] p = Pool() p.map_async(genv1List,sampleDist) #for sample in samplelist: # p.map(generatev1,args=(sample,)) p.close() p.join() #for sample in samplelist: # q.put(sample) #q.join() """try: generatev1(sample) break except: print 'Generation Error in '+ sample with open('Error.txt','a') as f: f.write('Generation Error in '+ sample + '\n') break """ """'gffread -E %s -o- > %s' % (geneNaming + '.gff3', sample + '.cufflinks.gff'), 'python %sgff2CDSBed.py %s.cufflinks.gff' % (root, sample), 'gffread -E %s -o- > %s' % (geneNaming + '.gff3', sample + '.cufflinks.gff'), 'gffread -E %s -o- > %s'%([file for file in os.listdir('.') if 'cufflinks' not in file and (file.endswith('.gff3') or file.endswith('.gff'))][0],reference+'.cufflinks.gff'), 'gffread %s -x %s -g %s'%(reference+'.cufflinks.gff',reference+'.cds',fastaOld), 'python %sgff2CDSBed.py %s.cufflinks.gff'%(root,sample), 'bedtools getfasta -name -fi ./%s -bed %s.cufflinks.CDS.bed -fo %s.cds'%(fastaNew,sample,sample), """ ``` #### File: JoshuaTree2/scaffolding_tool_bin/pipelineFunctions.py ```python from pybedtools import BedTool from collections import defaultdict, OrderedDict def parseConfigFindList(stringFind,configFile): """parseConfigFindList inputs a particular string to find and read file after and a configuration file object outputs list of relevant filenames""" read = 0 listOfItems = [] for line in configFile: if line: if read == 1: if 'Stop' in line: configFile.seek(0) break # exit the function and return the list of files or list information listOfItems.append(line.strip('\n')) if stringFind in line: read = 1 # if find string specified, begin reading lines configFile.seek(0) return listOfItems def parseConfigFindPath(stringFind,configFile): """findPath will find path or value of associated specified string or info from config file""" for line in configFile: if stringFind in line: # if find string specified, return pathname or specific value trying to find configFile.seek(0) return line.split()[-1].strip('\n') configFile.seek(0) def replaceGeneNames(sample,ref,count=0,nuc=0,BB=0): refGeneCount = 0 if nuc: nucAdd = 'nuc' synmap = 'nucMap.bed' refbed = ref + '_nucSyn.bed' sampbed = sample + '_nucSyn.bed' a, b = 1, 0 elif BB: nucAdd = 'BB' synmap = 'BBMap.bed' refbed = ref + '_BBSyn.bed' sampbed = sample + '_BBSyn.bed' a, b = 1, 0 else: synmap = '%s.%s.lifted.anchors' % (sample, ref) nucAdd = '' refbed = ref + '.bed' sampbed = sample + '.bed' a, b = 0, 1 sampleProt = sample.split('_')[1] with open(refbed,'r') as f: refBedLines = f.readlines() refBedOut = [] refGenes = defaultdict(list) for line in refBedLines: if line: refGenes[line.split('\t')[3]] = ref+nucAdd+'_'+str(refGeneCount) refBedOut.append(line.replace(line.split('\t')[3],ref+nucAdd+'_'+str(refGeneCount))) refGeneCount+=1 #ref+'_syn'+'.bed',sample+'_%ssyn'%ref+'.bed' #print refGenes with open(sampbed,'r') as f: sampBedLines = f.readlines() sampBedOut = [] sampGenes = defaultdict(list) for line in sampBedLines: if line: sampGenes[line.split('\t')[3]] = sampleProt+nucAdd+'_'+str(count) sampBedOut.append(line.replace(line.split('\t')[3], sampleProt + nucAdd + '_' + str(count))) count+=1 with open(synmap,'r') as f: synRead = f.readlines() synOut = [] for line in synRead: if line and '###' not in line: try: genes = line.split('\t') print genes synOut.append(line.replace(genes[0],refGenes[genes[a]]).replace(genes[1],sampGenes[genes[b]])) except: with open('Err.txt','a') as f: f.write(line+'\n') """ if nuc: print sampBedOut[0:10] print refBedOut[0:10] print sampGenes.items()[0:10] print refGenes.items()[0:10] print synOut[0:10] with open('nucMap.bed','r') as f: print f.readlines()[0:10] """ if nuc == 0 and BB == 0: for writeTuple in [(ref+'_syn'+'.bed',refBedOut),(sample+'_%ssyn'%ref+'.bed',sampBedOut),(synmap,synOut)]: with open(writeTuple[0],'w') as f: f.writelines(writeTuple[1]) else: for writeTuple in [(refbed,refBedOut),(sampbed,sampBedOut),(synmap,synOut)]: with open(writeTuple[0],'w') as f: f.writelines(writeTuple[1]) return count def tiling2bed(tilingFile,ref,sample,sampBed): with open(tilingFile,'r') as f: tilingLines = f.read().split('\n') genesDict = defaultdict(list) with open(ref+'_nucSyn.bed','w') as f1, open(sample+'_nucSyn.bed','w') as f2: for line in tilingLines: if line: lineList = line.split('\t') int1 = sorted(map(int,lineList[0:2])) int1[0] -= 1 int2 = sorted(map(int,lineList[2:4])) int2[0] -= 1 f1.write('\t'.join([lineList[-2]]+map(str,int1)+['_'.join([lineList[-2]]+map(str,int1)),'0','+']) + '\n') f2.write('\t'.join([lineList[-1]]+map(str,int2)+['_'.join([lineList[-1]]+map(str,int2)),'0','+']) + '\n') genesDict['_'.join([lineList[-1]]+map(str,int2))] = '_'.join([lineList[-2]]+map(str,int1)) b = BedTool(sample+'_nucSyn.bed').subtract(BedTool(sampBed),A=True) #print b.head() #print genesDict.keys()[0:10] origGenes = set(genesDict.keys()) #print str(b).split('\n')[0:10] #print [ line.split('\t')[3] for line in str(b).split('\n') if line][0:10] remainGenes = set([ line.split('\t')[3] for line in str(b).split('\n') if line]) #print list(remainGenes)[0:10] BadGenes = list(origGenes - remainGenes) #print BadGenes[0:10] #print len(origGenes), len(remainGenes), len(BadGenes) #exit() for gene in BadGenes: try: del genesDict[gene] except: pass with open('nucMap.bed','w') as f: f.write('\n'.join('%s\t%s\t100'%item for item in genesDict.items() if item)) def BB2bed(BBfile,ref,sample,centromereBed): with open(BBfile,'r') as f: BBLines = f.read().split('\n') genesDict = defaultdict(list) with open(ref+'_BBSyn.bed','w') as f1, open(sample+'_BBSyn.bed','w') as f2: for line in BBLines: if line: lineList = line.split('\t') refChr = lineList[0] int1 = sorted(map(int,lineList[1:3])) #int1[0] -= 1 if '_part_' in lineList[3]: sampChr,part = tuple(lineList[3].split('_part_')) int2 = [(int(part)-1)*600]#300] int2.append(int2[0] + 600)#300) else: sampChr = lineList[3] int2 = [0,600]#300] #int2[0] -= 1 f1.write('\t'.join([refChr]+map(str,int1)+['_'.join([refChr]+map(str,int1)),'0','+']) + '\n') f2.write('\t'.join([sampChr]+map(str,int2)+['_'.join([sampChr]+map(str,int2)),'0','+']) + '\n') genesDict['_'.join([refChr]+map(str,int1))] = '_'.join([sampChr]+map(str,int2)) origGenes = set(genesDict.keys()) centromere = BedTool(ref+'_BBSyn.bed').intersect(centromereBed,wa=True) nonCentromere = BedTool(ref+'_BBSyn.bed').subtract(centromereBed,A=True) remainGenes = set([line.split('\t')[3] for line in str(centromere).split('\n')[::2] if line] + [line.split('\t')[3] for line in str(nonCentromere).split('\n')[::10] if line]) BadGenes = list(origGenes - remainGenes) for gene in BadGenes: try: del genesDict[gene] except: pass with open('BBMap.bed','w') as f: f.write('\n'.join('%s\t%s\t100'%item[::-1] for item in genesDict.items() if item)) def filterBB(BBbed): with open(BBbed,'r') as f: change = 1 #FIXME one to three per gene/scaffold ``` #### File: jlevy44/JoshuaTree2/ScaffoldingTool.py ```python import click, os, sys, subprocess ####################### #### RUN CLI GROUP #### CONTEXT_SETTINGS = dict(help_option_names=['-h','--help'], max_content_width=90) @click.group(context_settings= CONTEXT_SETTINGS) @click.version_option(version='0.01') def scaffolder(): pass ############################## # fixme just throw this into another python script dedicated to scaffolding pipeline, not worth having in main joshuaTree code. It looks really bad, play it off as old script #### SCAFFOLD VIA SYNTENY #### @scaffolder.command() @click.option('-i', '--scaffolding_inputs_dir', default = './scaffolding_inputs', show_default=True, help='Path containing fasta file one.', type=click.Path(exists=False)) @click.option('-o', '--scaffolding_outputs_dir', default = './scaffolding_outputs', show_default=True, help='Path containing fasta file two.', type=click.Path(exists=False)) @click.option('-n', '--new_genome_name', default = 'Bdist', show_default=True, help='New genome name.', type=click.Path(exists=False)) @click.option('-w', '--weights_file', default = './weights.txt', show_default=True, help='Weights file.', type=click.Path(exists=False)) @click.option('-p', '--primary_proteome_id', default = 314, show_default=True, help='Primary proteome id.', type=click.Path(exists=False)) def scaffold_assemblies(scaffolding_inputs_dir,scaffolding_outputs_dir, new_genome_name, weights_file, primary_proteome_id): """Scaffold assemblies based on synteny to references.""" cwd = os.getcwd() scaffolding_bin = os.path.abspath('scaffolding_tool_bin')+'/' scaffolding_inputs_dir = os.path.abspath(scaffolding_inputs_dir) scaffolding_outputs_dir = os.path.abspath(scaffolding_outputs_dir) query_dir = scaffolding_inputs_dir+'/query/' references_dir = scaffolding_inputs_dir+'/references/' subprocess.call('python %s/renameGenomes.py %s %s'%(scaffolding_bin,new_genome_name, query_dir),shell=True) subprocess.call('cp %s/pipelineFunctions.py %s'%(scaffolding_bin,query_dir)) # add build references and weights file os.chdir(query_dir) subprocess.call('python %s/scaffoldPipeline.sh --write_sh 1 --version v0 --cds %s ' '--gene_name_old %s --build_sample 1 --bb 0 --nuc 0 --com1_2 1 --allmaps 1 --reference_genomes_dir %s' '--output_dir %s --query_genome_dir %s --bin %s --weights_file %s'%(scaffolding_bin,primary_proteome_id, new_genome_name, references_dir, scaffolding_outputs_dir, query_dir, scaffolding_bin, os.path.abspath(weights_file)), shell=True) # fixme write nextflow config os.chdir(cwd) """writeSh = params.write_sh.asType(Integer); buildRef = params.build_ref.asType(Integer); version = params.version; CDS = params.cds; CDSFasta = params.cds_fasta; geneNameOld = params.gene_name_old; buildSamp = params.build_sample.asType(Integer); BB = params.bb.asType(Integer); nuc = params.nucmer.asType(Integer); com1_2 = params.com1_2.asType(Integer); allmaps = params.allmaps.asType(Integer); nextVersion = 'v' + ((version - 'v').asType(Integer)+1).asType(String); chanBuildSamples = Channel.fromPath(version + '/*'+version,type: 'dir', relative: true) workingDir = new File('').getAbsolutePath() reference_genome_dir = params.reference_genomes_dir query_genome_dir = params.query_genome_dir output_dir = params.output_dir bin = params.bin """ # fixme add reference and output directories to scaffold pipeline, dockerize scaffold pipeline, make docker images #### RUN CLI #### if __name__ == '__main__': scaffolder() ```
{ "source": "jlevy44/PathFlowAI", "score": 2 }
#### File: lib/pathflowai/model_training.py ```python import torch, os, numpy as np, pandas as pd from pathflowai.utils import * #from large_data_utils import * from pathflowai.datasets import * from pathflowai.models import * from pathflowai.schedulers import * from pathflowai.visualize import * import copy from pathflowai.sampler import ImbalancedDatasetSampler import argparse import sqlite3 #from nonechucks import SafeDataLoader as DataLoader from torch.utils.data import DataLoader import click CONTEXT_SETTINGS = dict(help_option_names=['-h','--help'], max_content_width=90) @click.group(context_settings= CONTEXT_SETTINGS) @click.version_option(version='0.1') def train(): pass def train_model_(training_opts): """Function to train, predict on model. Parameters ---------- training_opts : dict Training options populated from command line. """ dataset_df = pd.read_csv(training_opts['dataset_df']) if os.path.exists(training_opts['dataset_df']) else create_train_val_test(training_opts['train_val_test_splits'],training_opts['patch_info_file'],training_opts['patch_size']) dataset_opts=dict(dataset_df=dataset_df, set='pass', patch_info_file=training_opts['patch_info_file'], input_dir=training_opts['input_dir'], target_names=training_opts['target_names'], pos_annotation_class=training_opts['pos_annotation_class'], segmentation=training_opts['segmentation'], patch_size=training_opts['patch_size'], fix_names=training_opts['fix_names'], other_annotations=training_opts['other_annotations'], target_segmentation_class=training_opts['target_segmentation_class'][0] if set=='train' else -1, target_threshold=training_opts['target_threshold'][0], oversampling_factor=training_opts['oversampling_factor'][0] if set=='train' else 1, n_segmentation_classes=training_opts['num_targets'],gdl=training_opts['loss_fn']=='gdl',mt_bce=training_opts['mt_bce'], classify_annotations=training_opts['classify_annotations']) norm_dict = get_normalizer(training_opts['normalization_file'], dataset_opts) transform_opts=dict(patch_size = training_opts['patch_resize'], mean=norm_dict['mean'], std=norm_dict['std'], resize=True, transform_platform=training_opts['transform_platform'] if not training_opts['segmentation'] else 'albumentations') transformers = get_data_transforms(**transform_opts) datasets= {set: DynamicImageDataset(dataset_df, set, training_opts['patch_info_file'], transformers, training_opts['input_dir'], training_opts['target_names'], training_opts['pos_annotation_class'], segmentation=training_opts['segmentation'], patch_size=training_opts['patch_size'], fix_names=training_opts['fix_names'], other_annotations=training_opts['other_annotations'], target_segmentation_class=training_opts['target_segmentation_class'][0] if set=='train' else -1, target_threshold=training_opts['target_threshold'][0], oversampling_factor=training_opts['oversampling_factor'][0] if set=='train' else 1, n_segmentation_classes=training_opts['num_targets'],gdl=training_opts['loss_fn']=='gdl',mt_bce=training_opts['mt_bce'], classify_annotations=training_opts['classify_annotations']) for set in ['train','val','test']} # nc.SafeDataset( print(datasets['train']) if len(training_opts['target_segmentation_class']) > 1: from functools import reduce for i in range(1,len(training_opts['target_segmentation_class'])): #print(training_opts['classify_annotations']) datasets['train'].concat(DynamicImageDataset(dataset_df, 'train', training_opts['patch_info_file'], transformers, training_opts['input_dir'], training_opts['target_names'], training_opts['pos_annotation_class'], segmentation=training_opts['segmentation'], patch_size=training_opts['patch_size'], fix_names=training_opts['fix_names'], other_annotations=training_opts['other_annotations'], target_segmentation_class=training_opts['target_segmentation_class'][i], target_threshold=training_opts['target_threshold'][i], oversampling_factor=training_opts['oversampling_factor'][i],n_segmentation_classes=training_opts['num_targets'],gdl=training_opts['loss_fn']=='gdl',mt_bce=training_opts['mt_bce'],classify_annotations=training_opts['classify_annotations'])) #datasets['train']=reduce(lambda x,y: x.concat(y),[DynamicImageDataset(dataset_df, 'train', training_opts['patch_info_file'], transformers, training_opts['input_dir'], training_opts['target_names'], training_opts['pos_annotation_class'], segmentation=training_opts['segmentation'], patch_size=training_opts['patch_size'], fix_names=training_opts['fix_names'], other_annotations=training_opts['other_annotations'], target_segmentation_class=training_opts['target_segmentation_class'][i], target_threshold=training_opts['target_threshold'][i], oversampling_factor=training_opts['oversampling_factor'][i]) for i in range(len(training_opts['target_segmentation_class']))]) print(datasets['train']) if training_opts['supplement']: old_train_set = copy.deepcopy(datasets['train']) datasets['train']=DynamicImageDataset(dataset_df, 'train', training_opts['patch_info_file'], transformers, training_opts['input_dir'], training_opts['target_names'], training_opts['pos_annotation_class'], segmentation=training_opts['segmentation'], patch_size=training_opts['patch_size'], fix_names=training_opts['fix_names'], other_annotations=training_opts['other_annotations'], target_segmentation_class=-1, target_threshold=training_opts['target_threshold'], oversampling_factor=1,n_segmentation_classes=training_opts['num_targets'],gdl=training_opts['loss_fn']=='gdl',mt_bce=training_opts['mt_bce'],classify_annotations=training_opts['classify_annotations']) datasets['train'].concat(old_train_set) if training_opts['subsample_p']<1.0: datasets['train'].subsample(training_opts['subsample_p']) if training_opts['subsample_p_val']<1.0: if training_opts['subsample_p_val']==-1.: training_opts['subsample_p_val']=training_opts['subsample_p'] if training_opts['subsample_p_val']<1.0: datasets['val'].subsample(training_opts['subsample_p_val']) if training_opts['num_training_images_epoch']>0: num_train_batches = min(training_opts['num_training_images_epoch'],len(datasets['train']))//training_opts['batch_size'] else: num_train_batches = None if training_opts['classify_annotations']: binarizer=datasets['train'].binarize_annotations(num_targets=training_opts['num_targets'],binary_threshold=training_opts['binary_threshold']) datasets['val'].binarize_annotations(num_targets=training_opts['num_targets'],binary_threshold=training_opts['binary_threshold']) datasets['test'].binarize_annotations(num_targets=training_opts['num_targets'],binary_threshold=training_opts['binary_threshold']) training_opts['num_targets']=len(datasets['train'].targets) for Set in ['train','val','test']: print(datasets[Set].patch_info.iloc[:,6:].sum(axis=0)) if training_opts['external_test_db'] and training_opts['external_test_dir']: datasets['test'].update_dataset(input_dir=training_opts['external_test_dir'],new_db=training_opts['external_test_db']) dataloaders={set: DataLoader(datasets[set], batch_size=training_opts['batch_size'], shuffle=False if (not training_opts['segmentation']) else (set=='train'), num_workers=10, sampler=ImbalancedDatasetSampler(datasets[set]) if (training_opts['imbalanced_correction'] and set=='train' and not training_opts['segmentation']) else None) for set in ['train', 'val', 'test']} #print(dataloaders) # FIXME VAL SEEMS TO BE MISSING DURING PREDICTION model = generate_model(pretrain=training_opts['pretrain'],architecture=training_opts['architecture'],num_classes=training_opts['num_targets'], add_sigmoid=False, n_hidden=training_opts['n_hidden'], segmentation=training_opts['segmentation']) if os.path.exists(training_opts['pretrained_save_location']): model_dict = torch.load(training_opts['pretrained_save_location']) keys=list(model_dict.keys()) if not training_opts['segmentation']: model_dict.update(dict(list(model.state_dict().items())[-2:]))#={k:model_dict[k] for k in keys[:-2]} model.load_state_dict(model_dict) # this will likely break after pretraining? if torch.cuda.is_available(): model.cuda() if 0 and training_opts['run_test']: for X,y in dataloaders['train']: np.save('test_predictions.npy',model(X.cuda() if torch.cuda.is_available() else X).detach().cpu().numpy()) exit() model_trainer_opts=dict(model=model, n_epoch=training_opts['n_epoch'], validation_dataloader=dataloaders['val'], optimizer_opts=dict(name=training_opts['optimizer'], lr=training_opts['lr'], weight_decay=training_opts['wd']), scheduler_opts=dict(scheduler=training_opts['scheduler_type'], lr_scheduler_decay=0.5, T_max=training_opts['T_max'], eta_min=training_opts['eta_min'], T_mult=training_opts['T_mult']), loss_fn=training_opts['loss_fn'], num_train_batches=num_train_batches) if not training_opts['predict']: trainer = ModelTrainer(**model_trainer_opts) if training_opts['imbalanced_correction2']: trainer.add_class_balance_loss(datasets['train']) if training_opts['adopt_training_loss']: trainer.val_loss_fn = trainer.loss_fn trainer.fit(dataloaders['train'], verbose=True, print_every=1, plot_training_curves=True, plot_save_file=training_opts['training_curve'], print_val_confusion=training_opts['print_val_confusion'], save_val_predictions=training_opts['save_val_predictions']) torch.save(trainer.model.state_dict(),training_opts['save_location']) else: model_dict = torch.load(training_opts['save_location']) model.load_state_dict(model_dict) if training_opts['extract_model']: dataset_opts.update(dict(target_segmentation_class=-1, target_threshold=training_opts['target_threshold'][0] if len(training_opts['target_threshold']) else 0., set='test', binary_threshold=training_opts['binary_threshold'], num_targets=training_opts['num_targets'], oversampling_factor=1)) torch.save(dict(model=model,dataset_opts=dataset_opts, transform_opts=transform_opts),'{}.{}'.format(training_opts['save_location'],'extracted_model.pkl')) exit() trainer = ModelTrainer(**model_trainer_opts) if training_opts['segmentation']: for ID, dataset in datasets['test'].split_by_ID(): dataloader = DataLoader(dataset, batch_size=training_opts['batch_size'], shuffle=False, num_workers=10) if training_opts['run_test']: for X,y in dataloader: np.save('test_predictions.npy',model(X.cuda() if torch.cuda.is_available() else X).detach().cpu().numpy()) exit() y_pred = trainer.predict(dataloader) print(ID,y_pred.shape) segmentation_predictions2npy(y_pred, dataset.patch_info, dataset.segmentation_maps[ID], npy_output='{}/{}_predict.npy'.format(training_opts['prediction_output_dir'],ID), original_patch_size=training_opts['patch_size'], resized_patch_size=training_opts['patch_resize']) else: extract_embedding=training_opts['extract_embedding'] if extract_embedding: trainer.model.fc = trainer.model.fc[0] trainer.bce=False y_pred = trainer.predict(dataloaders['test']) patch_info = dataloaders['test'].dataset.patch_info if extract_embedding: patch_info['name']=patch_info.astype(str).apply(lambda x: '\n'.join(['{}:{}'.format(k,v) for k,v in x.to_dict().items()]),axis=1)#.apply(','.join,axis=1) embeddings=pd.DataFrame(y_pred,index=patch_info['name']) embeddings['ID']=patch_info['ID'].values torch.save(dict(embeddings=embeddings,patch_info=patch_info),join(training_opts['prediction_output_dir'],'embeddings.pkl')) else: if len(y_pred.shape)>1 and y_pred.shape[1]>1: annotations = np.vectorize(lambda x: x+'_pred')(np.arange(y_pred.shape[1]).astype(str)).tolist() # [training_opts['pos_annotation_class']]+training_opts['other_annotations']] if training_opts['classify_annotations'] else for i in range(y_pred.shape[1]): patch_info.loc[:,annotations[i]]=y_pred[:,i] patch_info['y_pred']=y_pred if (training_opts['num_targets']==1 or not (training_opts['classify_annotations'] or training_opts['mt_bce'])) else y_pred.argmax(axis=1) conn = sqlite3.connect(training_opts['prediction_save_path']) patch_info.to_sql(str(training_opts['patch_size']),con=conn, if_exists='replace') conn.close() @train.command() @click.option('-s', '--segmentation', is_flag=True, help='Segmentation task.', show_default=True) @click.option('-p', '--prediction', is_flag=True, help='Predict on model.', show_default=True) @click.option('-pa', '--pos_annotation_class', default='', help='Annotation Class from which to apply positive labels.', type=click.Path(exists=False), show_default=True) @click.option('-oa', '--other_annotations', default=[], multiple=True, help='Annotations in image.', type=click.Path(exists=False), show_default=True) @click.option('-o', '--save_location', default='', help='Model Save Location, append with pickle .pkl.', type=click.Path(exists=False), show_default=True) @click.option('-pt', '--pretrained_save_location', default='', help='Model Save Location, append with pickle .pkl, pretrained by previous analysis to be finetuned.', type=click.Path(exists=False), show_default=True) @click.option('-i', '--input_dir', default='', help='Input directory containing slides and everything.', type=click.Path(exists=False), show_default=True) @click.option('-ps', '--patch_size', default=224, help='Patch size.', show_default=True) @click.option('-pr', '--patch_resize', default=224, help='Patch resized.', show_default=True) @click.option('-tg', '--target_names', default=[], multiple=True, help='Targets.', type=click.Path(exists=False), show_default=True) @click.option('-df', '--dataset_df', default='', help='CSV file with train/val/test and target info.', type=click.Path(exists=False), show_default=True) @click.option('-fn', '--fix_names', is_flag=True, help='Whether to fix names in dataset_df.', show_default=True) @click.option('-a', '--architecture', default='alexnet', help='Neural Network Architecture.', type=click.Choice(['alexnet', 'densenet121', 'densenet161', 'densenet169', 'densenet201', 'inception_v3', 'resnet101', 'resnet152', 'resnet18', 'resnet34', 'resnet50', 'vgg11', 'vgg11_bn','unet','unet2','nested_unet','fast_scnn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19', 'vgg19_bn', 'deeplabv3_resnet101','deeplabv3_resnet50','fcn_resnet101', 'fcn_resnet50']+['efficientnet-b{}'.format(i) for i in range(8)]), show_default=True) @click.option('-imb', '--imbalanced_correction', is_flag=True, help='Attempt to correct for imbalanced data.', show_default=True) @click.option('-imb2', '--imbalanced_correction2', is_flag=True, help='Attempt to correct for imbalanced data.', show_default=True) @click.option('-ca', '--classify_annotations', is_flag=True, help='Classify annotations.', show_default=True) @click.option('-nt', '--num_targets', default=1, help='Number of targets.', show_default=True) @click.option('-ss', '--subsample_p', default=1.0, help='Subsample training set.', show_default=True) @click.option('-ssv', '--subsample_p_val', default=-1., help='Subsample val set. If not set, defaults to that of training set', show_default=True) @click.option('-t', '--num_training_images_epoch', default=-1, help='Number of training images per epoch. -1 means use all training images each epoch.', show_default=True) @click.option('-lr', '--learning_rate', default=1e-2, help='Learning rate.', show_default=True) @click.option('-tp', '--transform_platform', default='torch', help='Transform platform for nonsegmentation tasks.', type=click.Choice(['torch','albumentations'])) @click.option('-ne', '--n_epoch', default=10, help='Number of epochs.', show_default=True) @click.option('-pi', '--patch_info_file', default='patch_info.db', help='Patch info file.', type=click.Path(exists=False), show_default=True) @click.option('-tc', '--target_segmentation_class', default=[-1], multiple=True, help='Segmentation Class to finetune on.', show_default=True) @click.option('-tt', '--target_threshold', default=[0.], multiple=True, help='Threshold to include target for segmentation if saving one class.', show_default=True) @click.option('-ov', '--oversampling_factor', default=[1.], multiple=True, help='How much to oversample training set.', show_default=True) @click.option('-sup', '--supplement', is_flag=True, help='Use the thresholding to supplement the original training set.', show_default=True) @click.option('-bs', '--batch_size', default=10, help='Batch size.', show_default=True) @click.option('-rt', '--run_test', is_flag=True, help='Output predictions for a batch to "test_predictions.npy". Use for debugging.', show_default=True) @click.option('-mtb', '--mt_bce', is_flag=True, help='Run multi-target bce predictions on the annotations.', show_default=True) @click.option('-po', '--prediction_output_dir', default='predictions', help='Where to output segmentation predictions.', type=click.Path(exists=False), show_default=True) @click.option('-ee', '--extract_embedding', is_flag=True, help='Extract embeddings.', show_default=True) @click.option('-em', '--extract_model', is_flag=True, help='Save entire torch model.', show_default=True) @click.option('-bt', '--binary_threshold', default=0., help='If running binary classification on annotations, dichotomize selected annotation as such.', show_default=True) @click.option('-prt', '--pretrain', is_flag=True, help='Pretrain on ImageNet.', show_default=True) @click.option('-olf', '--overwrite_loss_fn', default='', help='Overwrite the default training loss functions with loss of choice.', type=click.Choice(['','bce','mse','focal','dice','gdl','ce']), show_default=True) @click.option('-atl', '--adopt_training_loss', is_flag=True, help='Adopt training loss function for validation calculation.', show_default=True) @click.option('-tdb', '--external_test_db', default='', help='External database of samples to test on.', type=click.Path(exists=False), show_default=True) @click.option('-tdir', '--external_test_dir', default='', help='External directory of samples to test on.', type=click.Path(exists=False), show_default=True) def train_model(segmentation,prediction,pos_annotation_class,other_annotations,save_location,pretrained_save_location,input_dir,patch_size,patch_resize,target_names,dataset_df,fix_names, architecture, imbalanced_correction, imbalanced_correction2, classify_annotations, num_targets, subsample_p,subsample_p_val,num_training_images_epoch, learning_rate, transform_platform, n_epoch, patch_info_file, target_segmentation_class, target_threshold, oversampling_factor, supplement, batch_size, run_test, mt_bce, prediction_output_dir, extract_embedding, extract_model, binary_threshold, pretrain, overwrite_loss_fn, adopt_training_loss, external_test_db,external_test_dir): """Train and predict using model for regression and classification tasks.""" # add separate pretrain ability on separating cell types, then transfer learn # add pretrain and efficient net, pretraining remove last layer while loading state dict target_segmentation_class=list(map(int,target_segmentation_class)) target_threshold=list(map(float,target_threshold)) oversampling_factor=[(int(x) if float(x)>=1 else float(x)) for x in oversampling_factor] other_annotations=list(other_annotations) command_opts = dict(segmentation=segmentation, prediction=prediction, pos_annotation_class=pos_annotation_class, other_annotations=other_annotations, save_location=save_location, pretrained_save_location=pretrained_save_location, input_dir=input_dir, patch_size=patch_size, target_names=target_names, dataset_df=dataset_df, fix_names=fix_names, architecture=architecture, patch_resize=patch_resize, imbalanced_correction=imbalanced_correction, imbalanced_correction2=imbalanced_correction2, classify_annotations=classify_annotations, num_targets=num_targets, subsample_p=subsample_p, num_training_images_epoch=num_training_images_epoch, lr=learning_rate, transform_platform=transform_platform, n_epoch=n_epoch, patch_info_file=patch_info_file, target_segmentation_class=target_segmentation_class, target_threshold=target_threshold, oversampling_factor=oversampling_factor, supplement=supplement, predict=prediction, batch_size=batch_size, run_test=run_test, mt_bce=mt_bce, prediction_output_dir=prediction_output_dir, extract_embedding=extract_embedding, extract_model=extract_model, binary_threshold=binary_threshold, subsample_p_val=subsample_p_val, wd=1e-3, scheduler_type='warm_restarts', T_max=10, T_mult=2, eta_min=5e-8, optimizer='adam', n_hidden=100, pretrain=pretrain, training_curve='training_curve.png', adopt_training_loss=adopt_training_loss, external_test_db=external_test_db, external_test_dir=external_test_dir) training_opts = dict(normalization_file="normalization_parameters.pkl", loss_fn='bce', print_val_confusion=True, save_val_predictions=True, prediction_save_path = 'predictions.db', train_val_test_splits='train_val_test.pkl' ) segmentation_training_opts = copy.deepcopy(training_opts) segmentation_training_opts.update(dict(loss_fn='dice',#gdl dice+ce normalization_file='normalization_segmentation.pkl', fix_names=False, save_val_predictions=True, )) if segmentation: training_opts = segmentation_training_opts for k in command_opts: training_opts[k] = command_opts[k] if classify_annotations: if training_opts['num_targets']==1: training_opts['loss_fn']='bce' else: training_opts['loss_fn']='ce' if mt_bce: training_opts['loss_fn']='bce' if overwrite_loss_fn: training_opts['loss_fn']=overwrite_loss_fn train_model_(training_opts) if __name__=='__main__': train() ``` #### File: lib/pathflowai/monitor_memory_usage.py ```python import GPUtil import psutil import time from threading import Thread import pandas as pd import argparse import click CONTEXT_SETTINGS = dict(help_option_names=['-h','--help'], max_content_width=90) @click.group(context_settings= CONTEXT_SETTINGS) @click.version_option(version='0.1') def monitor(): pass class Monitor(Thread): def __init__(self, start_time, delay, end_time): super(Monitor, self).__init__() self.stopped = False self.start_time = start_time self.end_time = end_time self.delay = delay # Time between calls to GPUtil self.records = [] self.start() def run(self): time_from_start = 0. while time_from_start <= self.end_time: memory = psutil.virtual_memory() stats = {"gpu.{}.memory.used".format(gpu.id):gpu.memoryUsed for gpu in GPUtil.getGPUs()} stats['cpu.utilization'] = psutil.cpu_percent() current_time = time.time() stats['current.time'] = current_time time_from_start = current_time - self.start_time stats['system.memory.used'] = memory.used stats['system.memory.used.percent'] = memory.percent stats['elapsed.time'] = time_from_start self.records.append(stats) time.sleep(self.delay) self.stop() def stop(self): self.stopped = True def return_records(self): return pd.DataFrame(self.records) def get_usage(total_time, delay_time, records_output_csv): start_time = time.time() monitor = Monitor(start_time, delay_time, total_time) monitor.run() while not monitor.stopped: time.sleep(delay_time) records = monitor.return_records() records.to_csv(records_output_csv) @monitor.command() @click.option('-csv', '--records_output_csv', default='records.csv', help='Where to store records.', type=click.Path(exists=False), show_default=True) @click.option('-tt', '--total_time', default=1., help='Total time to monitor for in minutes.', show_default=True) @click.option('-dt', '--delay_time', default=1., help='Time between samples, in seconds.', show_default=True) def monitor_usage(records_output_csv,total_time,delay_time): """Monitor Usage over Time Interval.""" total_time*= 60. # convert to seconds get_usage(total_time, delay_time, records_output_csv) if __name__ == '__main__': monitor() ``` #### File: lib/pathflowai/visualize.py ```python import plotly.graph_objs as go import plotly.offline as py import pandas as pd, numpy as np import networkx as nx import dask.array as da from PIL import Image import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import seaborn as sns import sqlite3 import seaborn as sns from os.path import join sns.set() class PlotlyPlot: """Creates plotly html plots.""" def __init__(self): self.plots=[] def add_plot(self, t_data_df, G=None, color_col='color', name_col='name', xyz_cols=['x','y','z'], size=2, opacity=1.0, custom_colors=[]): """Adds plotting data to be plotted. Parameters ---------- t_data_df:dataframe 3-D transformed dataframe. G:nx.Graph Networkx graph. color_col:str Column to use to color points. name_col:str Column to use to name points. xyz_cols:list 3 columns that denote x,y,z coords. size:int Marker size. opacity:float Marker opacity. custom_colors:list Custom colors to supply. """ plots = [] x,y,z=tuple(xyz_cols) if t_data_df[color_col].dtype == np.float64: plots.append( go.Scatter3d(x=t_data_df[x], y=t_data_df[y], z=t_data_df[z], name='', mode='markers', marker=dict(color=t_data_df[color_col], size=size, opacity=opacity, colorscale='Viridis', colorbar=dict(title='Colorbar')), text=t_data_df[color_col] if name_col not in list(t_data_df) else t_data_df[name_col])) else: colors = t_data_df[color_col].unique() c = sns.color_palette('hls', len(colors)) c = np.array(['rgb({})'.format(','.join(((np.array(c_i)*255).astype(int).astype(str).tolist()))) for c_i in c])#c = ['hsl(' + str(h) + ',50%' + ',50%)' for h in np.linspace(0, 360, len(colors) + 2)] if custom_colors: c = custom_colors color_dict = {name: c[i] for i,name in enumerate(sorted(colors))} for name,col in color_dict.items(): plots.append( go.Scatter3d(x=t_data_df[x][t_data_df[color_col]==name], y=t_data_df[y][t_data_df[color_col]==name], z=t_data_df[z][t_data_df[color_col]==name], name=str(name), mode='markers', marker=dict(color=col, size=size, opacity=opacity), text=t_data_df.index[t_data_df[color_col]==name] if 'name' not in list(t_data_df) else t_data_df[name_col][t_data_df[color_col]==name])) if G is not None: #pos = nx.spring_layout(G,dim=3,iterations=0,pos={i: tuple(t_data.loc[i,['x','y','z']]) for i in range(len(t_data))}) Xed, Yed, Zed = [], [], [] for edge in G.edges(): if edge[0] in t_data_df.index.values and edge[1] in t_data_df.index.values: Xed += [t_data_df.loc[edge[0],x], t_data_df.loc[edge[1],x], None] Yed += [t_data_df.loc[edge[0],y], t_data_df.loc[edge[1],y], None] Zed += [t_data_df.loc[edge[0],z], t_data_df.loc[edge[1],z], None] plots.append(go.Scatter3d(x=Xed, y=Yed, z=Zed, mode='lines', line=go.scatter3d.Line(color='rgb(210,210,210)', width=2), hoverinfo='none' )) self.plots.extend(plots) def plot(self, output_fname, axes_off=False): """Plot embedding of patches to html file. Parameters ---------- output_fname:str Output html file. axes_off:bool Remove axes. """ if axes_off: fig = go.Figure(data=self.plots,layout=go.Layout(scene=dict(xaxis=dict(title='',autorange=True,showgrid=False,zeroline=False,showline=False,ticks='',showticklabels=False), yaxis=dict(title='',autorange=True,showgrid=False,zeroline=False,showline=False,ticks='',showticklabels=False), zaxis=dict(title='',autorange=True,showgrid=False,zeroline=False,showline=False,ticks='',showticklabels=False)))) else: fig = go.Figure(data=self.plots) py.plot(fig, filename=output_fname, auto_open=False) def to_pil(arr): """Numpy array to pil. Parameters ---------- arr:array Numpy array. Returns ------- Image PIL Image. """ return Image.fromarray(arr.astype('uint8'), 'RGB') def blend(arr1, arr2, alpha=0.5): """Blend 2 arrays together, mixing with alpha. Parameters ---------- arr1:array Image 1. arr2:array Image 2. alpha:float Higher alpha makes image more like image 1. Returns ------- array Resulting image. """ return alpha*arr1 + (1.-alpha)*arr2 def prob2rbg(prob, palette, arr): """Convert probability score to rgb image. Parameters ---------- prob:float Between 0 and 1 score. palette:palette Pallet converts between prob and color. arr:array Original array. Returns ------- array New image colored by prediction score. """ col = palette(prob) for i in range(3): arr[...,i] = int(col[i]*255) return arr def seg2rgb(seg, palette, n_segmentation_classes): """Color each pixel by segmentation class. Parameters ---------- seg:array Segmentation mask. palette:palette Color to RGB map. n_segmentation_classes:int Total number segmentation classes. Returns ------- array Returned segmentation image. """ #print(seg.shape) #print((seg/n_segmentation_classes)) img=(palette(seg/n_segmentation_classes)[...,:3]*255).astype(int) #print(img.shape) return img def annotation2rgb(i,palette,arr): """Go from annotation of patch to color. Parameters ---------- i:int Annotation index. palette:palette Index to color mapping. arr:array Image array. Returns ------- array Resulting image. """ col = palette[i] for i in range(3): arr[...,i] = int(col[i]*255) return arr def plot_image_(image_file, compression_factor=2., test_image_name='test.png'): """Plots entire SVS/other image. Parameters ---------- image_file:str Image file. compression_factor:float Amount to shrink each dimension of image. test_image_name:str Output image file. """ from pathflowai.utils import svs2dask_array, npy2da import cv2 arr=svs2dask_array(image_file, tile_size=1000, overlap=0, remove_last=True, allow_unknown_chunksizes=False) if (not image_file.endswith('.npy')) else npy2da(image_file) arr2=to_pil(cv2.resize(arr.compute(), dsize=tuple((np.array(arr.shape[:2])/compression_factor).astype(int).tolist()), interpolation=cv2.INTER_CUBIC)) arr2.save(test_image_name) # for now binary output class PredictionPlotter: """Plots predictions over entire image. Parameters ---------- dask_arr_dict:dict Stores all dask arrays corresponding to all of the images. patch_info_db:str Patch level information, eg. prediction. compression_factor:float How much to compress image by. alpha:float Low value assigns higher weight to prediction over original image. patch_size:int Patch size. no_db:bool Don't use patch information. plot_annotation:bool Plot annotations from patch information. segmentation:bool Plot segmentation mask. n_segmentation_classes:int Number segmentation classes. input_dir:str Input directory. annotation_col:str Annotation column to plot. scaling_factor:float Multiplies the prediction scores to make them appear darker on the images when predicting. """ # some patches have been filtered out, not one to one!!! figure out def __init__(self, dask_arr_dict, patch_info_db, compression_factor=3, alpha=0.5, patch_size=224, no_db=False, plot_annotation=False, segmentation=False, n_segmentation_classes=4, input_dir='', annotation_col='annotation', scaling_factor=1.): self.segmentation = segmentation self.scaling_factor=scaling_factor self.segmentation_maps = None self.n_segmentation_classes=float(n_segmentation_classes) self.pred_palette = sns.cubehelix_palette(start=0,as_cmap=True) if not no_db: self.compression_factor=compression_factor self.alpha = alpha self.patch_size = patch_size conn = sqlite3.connect(patch_info_db) patch_info=pd.read_sql('select * from "{}";'.format(patch_size),con=conn) conn.close() self.annotations = {str(a):i for i,a in enumerate(patch_info['annotation'].unique().tolist())} self.plot_annotation=plot_annotation self.palette=sns.color_palette(n_colors=len(list(self.annotations.keys()))) #print(self.palette) if 'y_pred' not in patch_info.columns: patch_info['y_pred'] = 0. self.patch_info=patch_info[['ID','x','y','patch_size','annotation',annotation_col]] # y_pred if 0: for ID in predictions: patch_info.loc[patch_info["ID"]==ID,'y_pred'] = predictions[ID] self.patch_info = self.patch_info[np.isin(self.patch_info['ID'],np.array(list(dask_arr_dict.keys())))] if self.segmentation: self.segmentation_maps = {slide:npy2da(join(input_dir,'{}_mask.npy'.format(slide))) for slide in dask_arr_dict.keys()} #self.patch_info[['x','y','patch_size']]/=self.compression_factor self.dask_arr_dict = {k:v[...,:3] for k,v in dask_arr_dict.items()} def add_custom_segmentation(self, basename, npy): """Replace segmentation mask with new custom segmentation. Parameters ---------- basename:str Patient ID npy:str Numpy mask. """ self.segmentation_maps[basename] = da.from_array(np.load(npy,mmap_mode='r+')) def generate_image(self, ID): """Generate the image array for the whole slide image with predictions overlaid. Parameters ---------- ID:str patient ID. Returns ------- array Resulting overlaid whole slide image. """ patch_info = self.patch_info[self.patch_info['ID']==ID] dask_arr = self.dask_arr_dict[ID] arr_shape = np.array(dask_arr.shape).astype(float) #image=da.zeros_like(dask_arr) arr_shape[:2]/=self.compression_factor arr_shape=arr_shape.astype(int).tolist() img = Image.new('RGB',arr_shape[:2],'white') for i in range(patch_info.shape[0]): ID,x,y,patch_size,annotation,pred = patch_info.iloc[i].tolist() #print(x,y,annotation) x_new,y_new = int(x/self.compression_factor),int(y/self.compression_factor) image = np.zeros((patch_size,patch_size,3)) if self.segmentation: image=seg2rgb(self.segmentation_maps[ID][x:x+patch_size,y:y+patch_size].compute(),self.pred_palette, self.n_segmentation_classes) else: image=prob2rbg(pred*self.scaling_factor, self.pred_palette, image) if not self.plot_annotation else annotation2rgb(self.annotations[str(pred)],self.palette,image) # annotation arr=dask_arr[x:x+patch_size,y:y+patch_size].compute() #print(image.shape) blended_patch=blend(arr,image, self.alpha).transpose((1,0,2)) blended_patch_pil = to_pil(blended_patch) patch_size/=self.compression_factor patch_size=int(patch_size) blended_patch_pil=blended_patch_pil.resize((patch_size,patch_size)) img.paste(blended_patch_pil, box=(x_new,y_new), mask=None) return img def return_patch(self, ID, x, y, patch_size): """Return one single patch instead of entire image. Parameters ---------- ID:str Patient ID x:int X coordinate. y:int Y coordinate. patch_size:int Patch size. Returns ------- array Image. """ img=(self.dask_arr_dict[ID][x:x+patch_size,y:y+patch_size].compute() if not self.segmentation else seg2rgb(self.segmentation_maps[ID][x:x+patch_size,y:y+patch_size].compute(),self.pred_palette, self.n_segmentation_classes)) return to_pil(img) def output_image(self, img, filename, tif=False): """Output calculated image to file. Parameters ---------- img:array Image. filename:str Output file name. tif:bool Store in TIF format? """ if tif: from tifffile import imwrite imwrite(filename, np.array(img), photometric='rgb') else: img.save(filename) def plot_shap(model, dataset_opts, transform_opts, batch_size, outputfilename, n_outputs=1, method='deep', local_smoothing=0.0, n_samples=20, pred_out=False): """Plot shapley attributions overlaid on images for classification tasks. Parameters ---------- model:nn.Module Pytorch model. dataset_opts:dict Options used to configure dataset transform_opts:dict Options used to configure transformers. batch_size:int Batch size for training. outputfilename:str Output filename. n_outputs:int Number of top outputs. method:str Gradient or deep explainer. local_smoothing:float How much to smooth shapley map. n_samples:int Number shapley samples to draw. pred_out:bool Label images with binary prediction score? """ import torch from torch.nn import functional as F import numpy as np from torch.utils.data import DataLoader import shap from pathflowai.datasets import DynamicImageDataset import matplotlib from matplotlib import pyplot as plt from pathflowai.sampler import ImbalancedDatasetSampler out_transform=dict(sigmoid=F.sigmoid,softmax=F.softmax,none=lambda x: x) binary_threshold=dataset_opts.pop('binary_threshold') num_targets=dataset_opts.pop('num_targets') dataset = DynamicImageDataset(**dataset_opts) if dataset_opts['classify_annotations']: binarizer=dataset.binarize_annotations(num_targets=num_targets,binary_threshold=binary_threshold) num_targets=len(dataset.targets) dataloader_val = DataLoader(dataset,batch_size=batch_size, num_workers=10, shuffle=True if num_targets>1 else False, sampler=ImbalancedDatasetSampler(dataset) if num_targets==1 else None) #dataloader_test = DataLoader(dataset,batch_size=batch_size,num_workers=10, shuffle=False) background,y_background=next(iter(dataloader_val)) if method=='gradient': background=torch.cat([background,next(iter(dataloader_val))[0]],0) X_test,y_test=next(iter(dataloader_val)) if torch.cuda.is_available(): background=background.cuda() X_test=X_test.cuda() if pred_out!='none': if torch.cuda.is_available(): model2=model.cuda() y_test=out_transform[pred_out](model2(X_test)).detach().cpu() y_test=y_test.numpy() if method=='deep': e = shap.DeepExplainer(model, background) s=e.shap_values(X_test, ranked_outputs=n_outputs) elif method=='gradient': e = shap.GradientExplainer(model, background, batch_size=batch_size, local_smoothing=local_smoothing) s=e.shap_values(X_test, ranked_outputs=n_outputs, nsamples=n_samples) if y_test.shape[1]>1: y_test=y_test.argmax(axis=1) if n_outputs>1: shap_values, idx = s else: shap_values, idx = s, y_test #print(shap_values) # .detach().cpu() if num_targets == 1: shap_numpy = [np.swapaxes(np.swapaxes(shap_values, 1, -1), 1, 2)] else: shap_numpy = [np.swapaxes(np.swapaxes(s, 1, -1), 1, 2) for s in shap_values] #print(shap_numpy.shape) X_test_numpy=X_test.detach().cpu().numpy() X_test_numpy=X_test_numpy.transpose((0,2,3,1)) for i in range(X_test_numpy.shape[0]): X_test_numpy[i,...]*=np.array(transform_opts['std']) X_test_numpy[i,...]+=np.array(transform_opts['mean']) X_test_numpy=X_test_numpy.transpose((0,3,1,2)) test_numpy = np.swapaxes(np.swapaxes(X_test_numpy, 1, -1), 1, 2) if pred_out!='none': labels=y_test.astype(str) else: labels = np.array([[(dataloader_val.dataset.targets[i[j]] if num_targets>1 else str(i)) for j in range(n_outputs)] for i in idx])#[:,np.newaxis] # y_test if 0 and (len(labels.shape)<2 or labels.shape[1]==1): labels=labels.flatten()#[:np.newaxis] #print(labels.shape,shap_numpy.shape[0]) plt.figure() shap.image_plot(shap_numpy, test_numpy, labels)# if num_targets!=1 else shap_values -test_numpy , labels=dataloader_test.dataset.targets) plt.savefig(outputfilename, dpi=300) def plot_umap_images(dask_arr_dict, embeddings_file, ID=None, cval=1., image_res=300., outputfname='output_embedding.png', mpl_scatter=True, remove_background_annotation='', max_background_area=0.01, zoom=0.05, n_neighbors=10, sort_col='', sort_mode='asc'): """Make UMAP embedding plot, overlaid with images. Parameters ---------- dask_arr_dict:dict Stored dask arrays for each WSI. embeddings_file:str Embeddings pickle file stored from running using after trainign the model. ID:str Patient ID. cval:float Deprecated image_res:float Image resolution. outputfname:str Output image file. mpl_scatter:bool Recommended: Use matplotlib for scatter plot. remove_background_annotation:str Remove the background annotations. Enter for annotation to remove. max_background_area:float Maximum backgrund area in each tile for inclusion. zoom:float How much to zoom in on each patch, less than 1 is zoom out. n_neighbors:int Number of neighbors for UMAP embedding. sort_col:str Patch info column to sort on. sort_mode:str Sort ascending or descending. Returns ------- type Description of returned object. Inspired by: https://gist.github.com/lukemetz/be6123c7ee3b366e333a WIP!! Needs testing.""" import torch import dask from dask.distributed import Client from umap import UMAP from pathflowai.visualize import PlotlyPlot import pandas as pd, numpy as np import skimage.io from skimage.transform import resize import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt sns.set(style='white') def min_resize(img, size): """ Resize an image so that it is size along the minimum spatial dimension. """ w, h = map(float, img.shape[:2]) if min([w, h]) != size: if w <= h: img = resize(img, (int(round((h/w)*size)), int(size))) else: img = resize(img, (int(size), int(round((w/h)*size)))) return img #dask_arr = dask_arr_dict[ID] embeddings_dict=torch.load(embeddings_file) embeddings=embeddings_dict['embeddings'] patch_info=embeddings_dict['patch_info'] if sort_col: idx=np.argsort(patch_info[sort_col].values) if sort_mode == 'desc': idx=idx[::-1] patch_info = patch_info.iloc[idx] embeddings=embeddings.iloc[idx] if ID: removal_bool=(patch_info['ID']==ID).values patch_info = patch_info.loc[removal_bool] embeddings=embeddings.loc[removal_bool] if remove_background_annotation: removal_bool=(patch_info[remove_background_annotation]<=(1.-max_background_area)).values patch_info=patch_info.loc[removal_bool] embeddings=embeddings.loc[removal_bool] umap=UMAP(n_components=2,n_neighbors=n_neighbors) t_data=pd.DataFrame(umap.fit_transform(embeddings.iloc[:,:-1].values),columns=['x','y'],index=embeddings.index) images=[] for i in range(patch_info.shape[0]): ID=patch_info.iloc[i]['ID'] x,y,patch_size=patch_info.iloc[i][['x','y','patch_size']].values.tolist() arr=dask_arr_dict[ID][x:x+patch_size,y:y+patch_size]#.transpose((2,0,1)) images.append(arr) c=Client() images=dask.compute(images) c.close() if mpl_scatter: from matplotlib.offsetbox import OffsetImage, AnnotationBbox def imscatter(x, y, ax, imageData, zoom): images = [] for i in range(len(x)): x0, y0 = x[i], y[i] img = imageData[i] #print(img.shape) image = OffsetImage(img, zoom=zoom) ab = AnnotationBbox(image, (x0, y0), xycoords='data', frameon=False) images.append(ax.add_artist(ab)) ax.update_datalim(np.column_stack([x, y])) ax.autoscale() fig, ax = plt.subplots() imscatter(t_data['x'].values, t_data['y'].values, imageData=images[0], ax=ax, zoom=zoom) sns.despine() plt.savefig(outputfname,dpi=300) else: xx=t_data.iloc[:,0] yy=t_data.iloc[:,1] images = [min_resize(image, img_res) for image in images] max_width = max([image.shape[0] for image in images]) max_height = max([image.shape[1] for image in images]) x_min, x_max = xx.min(), xx.max() y_min, y_max = yy.min(), yy.max() # Fix the ratios sx = (x_max-x_min) sy = (y_max-y_min) if sx > sy: res_x = sx/float(sy)*res res_y = res else: res_x = res res_y = sy/float(sx)*res canvas = np.ones((res_x+max_width, res_y+max_height, 3))*cval x_coords = np.linspace(x_min, x_max, res_x) y_coords = np.linspace(y_min, y_max, res_y) for x, y, image in zip(xx, yy, images): w, h = image.shape[:2] x_idx = np.argmin((x - x_coords)**2) y_idx = np.argmin((y - y_coords)**2) canvas[x_idx:x_idx+w, y_idx:y_idx+h] = image skimage.io.imsave(outputfname, canvas) ``` #### File: PathFlowAI/experimental/get_counts.py ```python import brambox as bb import os from os.path import join, basename from pathflowai.utils import load_sql_df, npy2da, df2sql import skimage import dask, dask.array as da, pandas as pd, numpy as np import argparse from scipy import ndimage from scipy.ndimage.measurements import label import pickle from dask.distributed import Client from multiprocessing import Pool from functools import reduce def count_cells(m, num_classes=3): lbls,n_lbl=label(m) obj_labels=np.zeros(num_classes) for i in range(1,num_classes+1): obj_labels[i-1]=len(np.unique(lbls[m==i].flatten())) return obj_labels if __name__=='__main__': p=argparse.ArgumentParser() p.add_argument('--num_classes',default=4,type=int) p.add_argument('--patch_size',default=512,type=int) p.add_argument('--n_workers',default=40,type=int) p.add_argument('--p_sample',default=0.7,type=float) p.add_argument('--input_dir',default='inputs',type=str) p.add_argument('--patch_info_file',default='cell_info.db',type=str) p.add_argument('--reference_mask',default='reference_mask.npy',type=str) #c=Client() # add mode to just use own extracted boudning boxes or from seg, maybe from histomicstk args=p.parse_args() num_classes=args.num_classes n_workers=args.n_workers input_dir=args.input_dir patch_info_file=args.patch_info_file patch_size=args.patch_size np.random.seed(42) reference_mask=args.reference_mask patch_info=load_sql_df(patch_info_file, patch_size) IDs=patch_info['ID'].unique() #slides = {slide:da.from_zarr(join(input_dir,'{}.zarr'.format(slide))) for slide in IDs} masks = {mask:npy2da(join(input_dir,'{}_mask.npy'.format(mask))) for mask in IDs} def process_chunk(patch_info_sub): patch_info_sub=patch_info_sub.reset_index(drop=True) counts=[] for i in range(patch_info_sub.shape[0]): #print(i) patch=patch_info_sub.iloc[i] ID,x,y,patch_size2=patch[['ID','x','y','patch_size']].tolist() m=masks[ID][x:x+patch_size2,y:y+patch_size2] counts.append(dask.delayed(count_cells)(m, num_classes=num_classes)) return dask.compute(*counts,scheduler='threading') patch_info_subs=np.array_split(patch_info,n_workers) p=Pool(n_workers) counts=reduce(lambda x,y:x+y,p.map(process_chunk,patch_info_subs)) #bbox_dfs=dask.compute(*bbox_dfs,scheduler='processes') counts=pd.DataFrame(np.vstack(counts)) patch_info=pd.concat([patch_info[['ID','x','y','patch_size','annotation']].reset_index(drop=True),counts.reset_index(drop=True)],axis=1).reset_index() print(patch_info) df2sql(patch_info, 'counts_test.db', patch_size, mode='replace') ``` #### File: PathFlowAI/pathflowai/cli_visualizations.py ```python import click from pathflowai.visualize import PredictionPlotter, plot_image_ import glob, os from utils import load_preprocessed_img import dask.array as da CONTEXT_SETTINGS = dict(help_option_names=['-h','--help'], max_content_width=90) @click.group(context_settings= CONTEXT_SETTINGS) @click.version_option(version='0.1') def visualize(): pass @visualize.command() @click.option('-i', '--input_dir', default='./inputs/', help='Input directory for patches.', type=click.Path(exists=False), show_default=True) @click.option('-b', '--basename', default='A01', help='Basename of patches.', type=click.Path(exists=False), show_default=True) @click.option('-p', '--patch_info_file', default='patch_info.db', help='Datbase containing all patches', type=click.Path(exists=False), show_default=True) @click.option('-ps', '--patch_size', default=224, help='Patch size.', show_default=True) @click.option('-x', '--x', default=0, help='X Coordinate of patch.', show_default=True) @click.option('-y', '--y', default=0, help='Y coordinate of patch.', show_default=True) @click.option('-o', '--outputfname', default='./output_image.png', help='Output extracted image.', type=click.Path(exists=False), show_default=True) @click.option('-s', '--segmentation', is_flag=True, help='Plot segmentations.', show_default=True) @click.option('-sc', '--n_segmentation_classes', default=4, help='Number segmentation classes', show_default=True) @click.option('-c', '--custom_segmentation', default='', help='Add custom segmentation map from prediction, in npy', show_default=True) def extract_patch(input_dir, basename, patch_info_file, patch_size, x, y, outputfname, segmentation, n_segmentation_classes, custom_segmentation): """Extract image of patch of any size/location and output to image file""" if glob.glob(os.path.join(input_dir,'*.zarr')): dask_arr_dict = {os.path.basename(f).split('.zarr')[0]:da.from_zarr(f) for f in glob.glob(os.path.join(input_dir,'*.zarr')) if os.path.basename(f).split('.zarr')[0] == basename} else: dask_arr_dict = {basename:load_preprocessed_img(os.path.join(input_dir,'{}.npy'.format(basename)))} pred_plotter = PredictionPlotter(dask_arr_dict, patch_info_file, compression_factor=3, alpha=0.5, patch_size=patch_size, no_db=True, segmentation=segmentation,n_segmentation_classes=n_segmentation_classes, input_dir=input_dir) if custom_segmentation: pred_plotter.add_custom_segmentation(basename,custom_segmentation) img = pred_plotter.return_patch(basename, x, y, patch_size) pred_plotter.output_image(img,outputfname) @visualize.command() @click.option('-i', '--image_file', default='./inputs/a.svs', help='Input image file.', type=click.Path(exists=False), show_default=True) @click.option('-cf', '--compression_factor', default=3., help='How much compress image.', show_default=True) @click.option('-o', '--outputfname', default='./output_image.png', help='Output extracted image.', type=click.Path(exists=False), show_default=True) def plot_image(image_file, compression_factor, outputfname): """Plots the whole slide image supplied.""" plot_image_(image_file, compression_factor=compression_factor, test_image_name=outputfname) @visualize.command() @click.option('-i', '--mask_file', default='./inputs/a_mask.npy', help='Input mask file.', type=click.Path(exists=False), show_default=True) @click.option('-o', '--outputfname', default='./output_image.png', help='Output extracted image.', type=click.Path(exists=False), show_default=True) def plot_mask_mpl(mask_file, outputfname): """Plots the whole slide mask supplied.""" import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np #plt.figure() plt.imshow(np.load(mask_file)) plt.axis('off') plt.savefig(outputfname,dpi=500) @visualize.command() @click.option('-i', '--input_dir', default='./inputs/', help='Input directory for patches.', type=click.Path(exists=False), show_default=True) @click.option('-b', '--basename', default='A01', help='Basename of patches.', type=click.Path(exists=False), show_default=True) @click.option('-p', '--patch_info_file', default='patch_info.db', help='Datbase containing all patches', type=click.Path(exists=False), show_default=True) @click.option('-ps', '--patch_size', default=224, help='Patch size.', show_default=True) @click.option('-o', '--outputfname', default='./output_image.png', help='Output extracted image.', type=click.Path(exists=False), show_default=True) @click.option('-an', '--annotations', is_flag=True, help='Plot annotations instead of predictions.', show_default=True) @click.option('-cf', '--compression_factor', default=3., help='How much compress image.', show_default=True) @click.option('-al', '--alpha', default=0.8, help='How much to give annotations/predictions versus original image.', show_default=True) @click.option('-s', '--segmentation', is_flag=True, help='Plot segmentations.', show_default=True) @click.option('-sc', '--n_segmentation_classes', default=4, help='Number segmentation classes', show_default=True) @click.option('-c', '--custom_segmentation', default='', help='Add custom segmentation map from prediction, npy format.', show_default=True) @click.option('-ac', '--annotation_col', default='annotation', help='Column of annotations', type=click.Path(exists=False), show_default=True) @click.option('-sf', '--scaling_factor', default=1., help='Multiply all prediction scores by this amount.', show_default=True) @click.option('-tif', '--tif_file', is_flag=True, help='Write to tiff file.', show_default=True) def plot_predictions(input_dir,basename,patch_info_file,patch_size,outputfname,annotations, compression_factor, alpha, segmentation, n_segmentation_classes, custom_segmentation, annotation_col, scaling_factor, tif_file): """Overlays classification, regression and segmentation patch level predictions on top of whole slide image.""" if glob.glob(os.path.join(input_dir,'*.zarr')): dask_arr_dict = {os.path.basename(f).split('.zarr')[0]:da.from_zarr(f) for f in glob.glob(os.path.join(input_dir,'*.zarr')) if os.path.basename(f).split('.zarr')[0] == basename} else: dask_arr_dict = {basename:load_preprocessed_img(os.path.join(input_dir,'{}.npy'.format(basename)))} pred_plotter = PredictionPlotter(dask_arr_dict, patch_info_file, compression_factor=compression_factor, alpha=alpha, patch_size=patch_size, no_db=False, plot_annotation=annotations, segmentation=segmentation, n_segmentation_classes=n_segmentation_classes, input_dir=input_dir, annotation_col=annotation_col, scaling_factor=scaling_factor) if custom_segmentation: pred_plotter.add_custom_segmentation(basename,custom_segmentation) img = pred_plotter.generate_image(basename) pred_plotter.output_image(img, outputfname, tif_file) @visualize.command() @click.option('-i', '--img_file', default='image.txt', help='Input image.', type=click.Path(exists=False), show_default=True) @click.option('-a', '--annotation_txt', default='annotation.txt', help='Column of annotations', type=click.Path(exists=False), show_default=True) @click.option('-ocf', '--original_compression_factor', default=1., help='How much compress image.', show_default=True) @click.option('-cf', '--compression_factor', default=3., help='How much compress image.', show_default=True) @click.option('-o', '--outputfilename', default='./output_image.png', help='Output extracted image.', type=click.Path(exists=False), show_default=True) def overlay_new_annotations(img_file,annotation_txt, original_compression_factor,compression_factor, outputfilename): """Custom annotations, in format [Point: x, y, Point: x, y ... ] one line like this per polygon, overlap these polygons on top of WSI.""" #from shapely.ops import unary_union, polygonize #from shapely.geometry import MultiPolygon, LineString, MultiPoint, box, Point #from shapely.geometry.polygon import Polygon print("Experimental, in development") import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import re, numpy as np from PIL import Image import cv2 from pathflowai.visualize import to_pil from scipy.misc import imresize im=plt.imread(img_file) if not img_file.endswith('.npy') else np.load(img_file,mmap_mode='r+') print(im.shape) if compression_factor>1 and original_compression_factor == 1.: im=cv2.resize(im,dsize=(int(im.shape[1]/compression_factor),int(im.shape[0]/compression_factor)),interpolation=cv2.INTER_CUBIC)#im.resize((int(im.shape[0]/compression_factor),int(im.shape[1]/compression_factor))) print(im.shape) im=np.array(im) im=im.transpose((1,0,2))##[::-1,...]# plt.imshow(im) with open(annotation_txt) as f: polygons=[np.array([list(map(float,filter(None,coords.strip(' ').split(',')))) for coords in re.sub('\]|\[|\ ','',line).rstrip().split('Point:') if coords])/compression_factor for line in f] for polygon in polygons: plt.plot(polygon[:,0],polygon[:,1],color='blue') plt.axis('off') plt.savefig(outputfilename,dpi=500) @visualize.command() @click.option('-i', '--embeddings_file', default='predictions/embeddings.pkl', help='Embeddings.', type=click.Path(exists=False), show_default=True) @click.option('-o', '--plotly_output_file', default='predictions/embeddings.html', help='Plotly output file.', type=click.Path(exists=False), show_default=True) @click.option('-a', '--annotations', default=[], multiple=True, help='Multiple annotations to color image.', show_default=True) @click.option('-rb', '--remove_background_annotation', default='', help='If selected, removes 100\% background patches based on this annotation.', type=click.Path(exists=False), show_default=True) @click.option('-ma', '--max_background_area', default=0.05, help='Max background area before exclusion.', show_default=True) @click.option('-b', '--basename', default='', help='Basename of patches.', type=click.Path(exists=False), show_default=True) @click.option('-nn', '--n_neighbors', default=8, help='Number nearest neighbors.', show_default=True) def plot_embeddings(embeddings_file,plotly_output_file, annotations, remove_background_annotation , max_background_area, basename, n_neighbors): """Perform UMAP embeddings of patches and plot using plotly.""" import torch from umap import UMAP from pathflowai.visualize import PlotlyPlot import pandas as pd, numpy as np embeddings_dict=torch.load(embeddings_file) embeddings=embeddings_dict['embeddings'] patch_info=embeddings_dict['patch_info'] if remove_background_annotation: removal_bool=(patch_info[remove_background_annotation]<=(1.-max_background_area)).values patch_info=patch_info.loc[removal_bool] embeddings=embeddings.loc[removal_bool] if basename: removal_bool=(patch_info['ID']==basename).values patch_info=patch_info.loc[removal_bool] embeddings=embeddings.loc[removal_bool] if annotations: annotations=np.array(annotations) if len(annotations)>1: embeddings.loc[:,'ID']=np.vectorize(lambda i: annotations[np.argmax(patch_info.iloc[i][annotations].values)])(np.arange(embeddings.shape[0])) else: embeddings.loc[:,'ID']=patch_info[annotations].values umap=UMAP(n_components=3,n_neighbors=n_neighbors) t_data=pd.DataFrame(umap.fit_transform(embeddings.iloc[:,:-1].values),columns=['x','y','z'],index=embeddings.index) t_data['color']=embeddings['ID'].values t_data['name']=embeddings.index.values pp=PlotlyPlot() pp.add_plot(t_data,size=8) pp.plot(plotly_output_file,axes_off=True) @visualize.command() @click.option('-m', '--model_pkl', default='', help='Plotly output file.', type=click.Path(exists=False), show_default=True) @click.option('-bs', '--batch_size', default=32, help='Batch size.', show_default=True) @click.option('-o', '--outputfilename', default='predictions/shap_plots.png', help='SHAPley visualization.', type=click.Path(exists=False), show_default=True) @click.option('-mth', '--method', default='deep', help='Method of explaining.', type=click.Choice(['deep','gradient']), show_default=True) @click.option('-l', '--local_smoothing', default=0.0, help='Local smoothing of SHAP scores.', show_default=True) @click.option('-ns', '--n_samples', default=32, help='Number shapley samples for shapley regression (gradient explainer).', show_default=True) @click.option('-p', '--pred_out', default='none', help='If not none, output prediction as shap label.', type=click.Choice(['none','sigmoid','softmax']), show_default=True) def shapley_plot(model_pkl, batch_size, outputfilename, method='deep', local_smoothing=0.0, n_samples=20, pred_out='none'): """Run SHAPley attribution method on patches after classification task to see where model made prediction based on.""" from pathflowai.visualize import plot_shap import torch from pathflowai.datasets import get_data_transforms model_dict=torch.load(model_pkl) model_dict['dataset_opts']['transformers']=get_data_transforms(**model_dict['transform_opts']) plot_shap(model_dict['model'], model_dict['dataset_opts'], model_dict['transform_opts'], batch_size, outputfilename, method=method, local_smoothing=local_smoothing, n_samples=n_samples, pred_out=pred_out) @visualize.command() @click.option('-i', '--input_dir', default='./inputs/', help='Input directory for patches.', type=click.Path(exists=False), show_default=True) @click.option('-e', '--embeddings_file', default='predictions/embeddings.pkl', help='Embeddings.', type=click.Path(exists=False), show_default=True) @click.option('-b', '--basename', default='', help='Basename of patches.', type=click.Path(exists=False), show_default=True) @click.option('-o', '--outputfilename', default='predictions/shap_plots.png', help='Embedding visualization.', type=click.Path(exists=False), show_default=True) @click.option('-mpl', '--mpl_scatter', is_flag=True, help='Plot segmentations.', show_default=True) @click.option('-rb', '--remove_background_annotation', default='', help='If selected, removes 100\% background patches based on this annotation.', type=click.Path(exists=False), show_default=True) @click.option('-ma', '--max_background_area', default=0.05, help='Max background area before exclusion.', show_default=True) @click.option('-z', '--zoom', default=0.05, help='Size of images.', show_default=True) @click.option('-nn', '--n_neighbors', default=8, help='Number nearest neighbors.', show_default=True) @click.option('-sc', '--sort_col', default='', help='Sort samples on this column.', type=click.Path(exists=False), show_default=True) @click.option('-sm', '--sort_mode', default='asc', help='Sort ascending or descending.', type=click.Choice(['asc','desc']), show_default=True) def plot_image_umap_embeddings(input_dir,embeddings_file,basename,outputfilename,mpl_scatter, remove_background_annotation, max_background_area, zoom, n_neighbors, sort_col='', sort_mode='asc'): """Plots a UMAP embedding with each point as its corresponding patch image.""" from pathflowai.visualize import plot_umap_images if glob.glob(os.path.join(input_dir,'*.zarr')): dask_arr_dict = {os.path.basename(f).split('.zarr')[0]:da.from_zarr(f) for f in glob.glob(os.path.join(input_dir,'*.zarr')) if (not basename) or os.path.basename(f).split('.zarr')[0] == basename} else: dask_arr_dict = {basename:load_preprocessed_img(os.path.join(input_dir,'{}.npy'.format(basename))) for basename in ([basename] if basename else set(list(map(lambda x: os.path.basename(os.path.splitext(x)[0]),glob.glob(os.path.join(input_dir,"*.*"))))))} plot_umap_images(dask_arr_dict, embeddings_file, ID=basename, cval=1., image_res=300., outputfname=outputfilename, mpl_scatter=mpl_scatter, remove_background_annotation=remove_background_annotation, max_background_area=max_background_area, zoom=zoom, n_neighbors=n_neighbors, sort_col=sort_col, sort_mode=sort_mode) if __name__ == '__main__': visualize() ``` #### File: PathFlowAI/pathflowai/stain_norm.py ```python import cv2 import sys import fire import histomicstk import histomicstk as htk import openslide import dask import tqdm import numpy as np from dask.diagnostics import ProgressBar from pathflowai.utils import generate_tissue_mask from histomicstk.preprocessing.color_normalization.\ deconvolution_based_normalization import deconvolution_based_normalization W_target = np.array([ [0.6185391, 0.1576997, -0.01119131], [0.7012888, 0.8638838, 0.45586256], [0.3493163, 0.4657428, -0.85597752] ]) def return_norm_image(img,mask,W_source=None,W_target=None): img=deconvolution_based_normalization( img, W_source=W_source, W_target=W_target, im_target=None, stains=['hematoxylin', 'eosin'], mask_out=~mask, stain_unmixing_routine_params={"I_0":215}) return img def check_ext(image_file): return any([image_file.endswith(ext) for ext in ['.svs','.png','.jpg','.jpeg','.tiff','.tif']]) def stain_norm(image_file,compression=10,patch_size=1024): if check_ext(image_file): img = openslide.open_slide(image_file) image = np.array(img.read_region((0,0), 0, img.level_dimensions[0]))[...,:3] elif image_file.endswith(".npy"): image=np.load(image_file) else: raise NotImplementedError mask=generate_tissue_mask(image,compression=compression,keep_holes=False) img_small=cv2.resize(image,None,fx=1/compression,fy=1/compression) mask_small=cv2.resize(mask.astype(int),None,fx=1/compression,fy=1/compression,interpolation=cv2.INTER_NEAREST).astype(bool) W_source = htk.preprocessing.color_deconvolution.rgb_separate_stains_macenko_pca(img_small, 215) W_source = htk.preprocessing.color_deconvolution._reorder_stains(W_source) res=[] coords=[] for i in np.arange(0,image.shape[0]-patch_size,patch_size): for j in np.arange(0,image.shape[1]-patch_size,patch_size): if mask[i:i+patch_size,j:j+patch_size].mean(): coords.append((i,j)) res.append(dask.delayed(return_norm_image)(image[i:i+patch_size,j:j+patch_size],mask[i:i+patch_size,j:j+patch_size],W_source,W_target)) with ProgressBar(): res_returned=dask.compute(*res,scheduler="processes") img_new=np.ones(image.shape).astype(np.uint8)*255 for k in tqdm.trange(len(coords)): i,j=coords[k] img_new[i:i+patch_size,j:j+patch_size]=res_returned[k] return img_new def stain_norm_pipeline(image_file="stain_in.svs", npy_out='stain_out.npy', compression=10, patch_size=1024): np.save(npy_out,stain_norm(image_file,compression,patch_size)) if __name__=="__main__": fire.Fire(stain_norm_pipeline) ``` #### File: jlevy44/PathFlowAI/setup.py ```python from setuptools import setup from setuptools.command.install import install import subprocess import os PACKAGES=[ 'pandas==0.25.0', 'numpy', 'dask[dataframe]', 'distributed', 'nonechucks', 'dask-image', 'opencv-python', 'scikit-learn', 'scipy', 'umap-learn', 'pysnooper', 'tifffile', 'seaborn', 'scikit-image', 'openslide-python', 'Shapely', 'click==6.7', 'torch', 'torchvision', 'albumentations', 'GPUtil', 'beautifulsoup4', 'plotly', 'xarray', 'matplotlib', 'networkx', 'shap', 'pyyaml', 'torch-encoding', 'xmltodict', #'lightnet', 'brambox', 'blosc', 'numcodecs', 'zarr', 'pytorchcv', 'h5py', 'timm' ] with open('README.md','r', encoding='utf-8') as f: long_description = f.read() class CustomInstallCommand(install): """Custom install setup to help run shell commands (outside shell) before installation""" def run(self): #for package in PACKAGES: #os.system('pip install {}'.format(package))#install.do_egg_install(self) self.do_egg_install()#install.run(self) subprocess.call('rm -rf apex'.split()) os.system('git clone https://github.com/NVIDIA/apex') #try: #os.system('cd apex && pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./') #except: os.system('echo pwd && cd apex && (pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./ || pip install -v --no-cache-dir ./)') subprocess.call('rm -rf apex'.split()) setup(name='pathflowai', version='0.1.1', description='A modular approach for preprocessing and deep learning on histopathology images.', url='https://github.com/jlevy44/PathFlowAI', author='<NAME>', author_email='<EMAIL>', license='MIT', scripts=['bin/install_apex', 'bin/install_lightnet'], #cmdclass={'install': CustomInstallCommand}, entry_points={ 'console_scripts':['pathflowai-preprocess=pathflowai.cli_preprocessing:preprocessing', 'pathflowai-visualize=pathflowai.cli_visualizations:visualize', 'pathflowai-monitor=pathflowai.monitor_memory_usage:monitor', 'pathflowai-train_model=pathflowai.model_training:train'] }, long_description=long_description, long_description_content_type='text/markdown', packages=['pathflowai'], install_requires=PACKAGES) ```
{ "source": "jlevy44/PathPretrain", "score": 2 }
#### File: PathPretrain/pathpretrain/datasets.py ```python import torch import os import pickle import tifffile from PIL import Image import tqdm import numpy as np, pandas as pd from torch.utils.data import Dataset, DataLoader import glob from .utils import load_image class NPYDataset(Dataset): def __init__(self, patch_info, npy_file, transform, tensor_dataset=False): self.ID=os.path.basename(npy_file).replace(".npy","").replace(".tiff","").replace(".tif","").replace(".svs","") self.patch_info=patch_info.loc[patch_info["ID"]==self.ID].reset_index() self.X=load_image(npy_file) self.to_pil=lambda x: Image.fromarray(x) self.transform=transform self.tensor_dataset=tensor_dataset def __getitem__(self,i): x,y,patch_size=self.patch_info.loc[i,["x","y","patch_size"]] img=self.X[x:x+patch_size,y:y+patch_size] return self.transform(self.to_pil(img)) if not self.tensor_dataset else torch.tensor(img),torch.tensor([-1]) def __len__(self): return self.patch_info.shape[0] def embed(self,model,batch_size,out_dir): Z=[] dataloader=DataLoader(self,batch_size=batch_size,shuffle=False) n_batches=len(self)//batch_size with torch.no_grad(): for i,(X,y) in tqdm.tqdm(enumerate(dataloader),total=n_batches): if torch.cuda.is_available(): X=X.cuda() if self.tensor_dataset: X = self.transform(X) z=model(X).detach().cpu().numpy() Z.append(z) print(f"Processed batch {i}/{n_batches}") Z=np.vstack(Z) torch.save(dict(embeddings=Z,patch_info=self.patch_info),os.path.join(out_dir,f"{self.ID}.pkl")) print("Embeddings saved") quit() class PickleDataset(Dataset): def __init__(self, pkl, transform, label_map): self.data=pickle.load(open(pkl,'rb')) self.X,self.targets=self.data['X'],self.data['y'] self.aux_data=self.data.get("z",None) self.has_aux=(self.aux_data is not None) if self.has_aux and isinstance(self.aux_data,pd.DataFrame): self.aux_data=self.aux_data.values if self.has_aux: self.n_aux_features=self.aux_data.shape[1] self.transform=transform self.to_pil=lambda x: Image.fromarray(x) self.label_map=label_map if self.label_map: self.targets=pd.Series(self.targets).map(lambda x: self.label_map.get(x,-1)).values if -1 in self.targets: remove_bool=(self.targets!=-1) self.targets=self.targets[remove_bool] self.X=pd.Series(self.X).iloc[remove_bool].tolist() if self.has_aux: self.aux_data=self.aux_data[remove_bool] self.length=len(self.X) def __getitem__(self,idx): items=(self.transform(self.to_pil(self.X[idx])), torch.tensor(self.targets[idx]).long()) if self.has_aux: items+=(torch.tensor(self.aux_data[idx]).float(),) return items def __len__(self): return self.length class NPYRotatingStack(Dataset): def __init__(self, patch_dir, transform, sample_frac=1., sample_every=0, target_col={'old_y_true':'y_true'}): self.patch_npy=np.array(glob.glob(os.path.join(patch_dir,"*.npy"))) self.patch_pkl=np.vectorize(lambda x: x.replace(".npy",".pkl"))(self.patch_npy) self.sample_every=sample_every self.sample_frac=sample_frac if self.sample_frac==1: self.sample_every=0 self.target_col=list(target_col.items())[0] self.ref_index=None # dictionary self.data={} self.cache_npy=None # dictionary keys self.to_pil=lambda x: Image.fromarray(x) self.transform=transform assert self.target_col[1]=='y_true' self.targets=np.hstack([pd.read_pickle(pkl)[self.target_col[0]].values for pkl in self.patch_pkl]) self.load_image_annot() def load_image_annot(self): if self.sample_frac<1: idx=np.arange(len(self.patch_npy)) idx=np.random.choice(idx,int(self.sample_frac*len(index))) patch_npy=self.patch_npy[idx] patch_pkl=self.patch_pkl[idx] remove_npy=np.setdiff1d(self.patch_npy,patch_npy) for npy in remove_npy: if isinstance(self.cache_npy,type(None))==False and npy not in self.cache_npy: del self.data[npy] new_data={npy:(dict(patches=load_image(npy), patch_info=pd.read_pickle(pkl)) if (isinstance(self.cache_npy,type(None))==False and npy in self.cache_npy) else self.data[k]) for npy,pkl in zip(patch_npy,patch_pkl)} self.data.clear() self.data=new_data self.cache_npy=sorted(list(self.data.keys())) self.ref_index=np.vstack([np.array(([i]*self.data[npy]['patch_info'].shape[0],list(range(self.data[npy]['patch_info'].shape[0])))).T] for i,npy in enumerate(self.cache_npy)) else: self.data={npy:dict(patches=load_image(npy), patch_info=pd.read_pickle(pkl)) for npy,pkl in zip(self.patch_npy,self.patch_pkl)} self.cache_npy=sorted(patch_npy) self.ref_index=np.vstack([np.array(([i]*self.data[npy]['patch_info'].shape[0],list(range(self.data[npy]['patch_info'].shape[0])))).T] for i,npy in enumerate(self.cache_npy)) for npy in self.data: self.data[npy]['patch_info'][self.target_col[1]]=self.data[npy]['patch_info'][self.target_col[0]] self.length=self.ref_index.shape[0] def __getitem__(self,idx): i,j=self.ref_index[idx] npy=self.cache_npy[i] X=self.data[npy]['patches'][j] y=torch.LongTensor([self.data[npy]['patch_info'].iloc[j][self.target_col]]) X=self.transform(self.to_pil(X)) return X, y def __len__(self): return self.length ```
{ "source": "jlevy44/PolyCRACKER-Unofficial-Mirror", "score": 2 }
#### File: PolyCRACKER-Unofficial-Mirror/polycracker/format.py ```python from collections import Counter, defaultdict, OrderedDict import cPickle as pickle import errno from itertools import combinations, permutations import itertools import os import shutil import subprocess import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import click import numpy as np import pandas as pd import plotly.graph_objs as go import plotly.offline as py import pybedtools from Bio import Phylo from Bio.Phylo.TreeConstruction import DistanceTreeConstructor, _DistanceMatrix import hdbscan import networkx as nx from pybedtools import BedTool from pyfaidx import Fasta import scipy.sparse as sps from scipy.stats import pearsonr, chi2_contingency import seaborn as sns from sklearn.cluster import MiniBatchKMeans from sklearn.manifold import SpectralEmbedding from sklearn.feature_selection import SelectKBest, chi2 from sklearn.neighbors import NearestNeighbors from sklearn.cluster import FeatureAgglomeration from sklearn.decomposition import FactorAnalysis, LatentDirichletAllocation, NMF from sklearn.decomposition import KernelPCA, TruncatedSVD from sklearn.preprocessing import StandardScaler from sklearn.cluster import SpectralClustering from sklearn.mixture import GaussianMixture, BayesianGaussianMixture from sklearn.pipeline import Pipeline from sklearn.metrics import * from sklearn.metrics import calinski_harabaz_score, silhouette_score # from evolutionary_search import maximize RANDOM_STATE=42 CONTEXT_SETTINGS = dict(help_option_names=['-h','--help'], max_content_width=90) @click.group(context_settings= CONTEXT_SETTINGS) @click.version_option(version='1.1.3') def format(): pass def create_path(path): """Create a path if directory does not exist, raise exception for other errors""" if not os.path.exists(path): try: os.makedirs(path) except OSError as e: if e.errno != errno.EEXIST: raise @format.command(name='maf2bed') @click.option('-maf', '--last', default='fasta1.fasta2.last,fasta2.fasta1.last', show_default=True, help='Maf output of last alignment. Comma delimited list if multiple maf files.', type=click.Path(exists=False)) @click.option('-w', '--work_dir', default='./', show_default=True, help='Work directory for final outputs.', type=click.Path(exists=False)) def maf2bed(last, work_dir): # FIXME what I can do instead is say that if > 57.5% sequence is covered, than that CDS is one and others are 0, count 1 CDS vs all 0 CDS for identity, does not have to be pure alignment, this should increase similarity scores """Convert maf file to bed and perform stats on sequence alignment.""" from Bio import AlignIO #from BCBio import GFF import glob work_dir += '/' last_files = last.split(',') final_output = [] for last in last_files: gff_files, bed_files_final = [] , [] heads = last.split('/')[-1].split('.')[::-1][1:] for f_name in heads: open(work_dir + f_name+'.gff','w').close() gff_files.append(open(work_dir + f_name+'.gff','w')) bed_files_final.append(work_dir + f_name+'.bed') seqrecs = [[] for i in heads] for multiple_alignment in AlignIO.parse(last,'maf'): for i,seqrec in enumerate(multiple_alignment): # FIXME seqrecs[i].append((seqrec.name,seqrec.annotations['start'] if seqrec.annotations['strand'] == 1 else seqrec.annotations['srcSize'] - seqrec.annotations['start'] - seqrec.annotations['size'], seqrec.annotations['start'] + seqrec.annotations['size'] if seqrec.annotations['strand'] == 1 else seqrec.annotations['srcSize'] - seqrec.annotations['start'])) #for i, gff_file in enumerate(gff_files): # GFF.write(seqrecs[i],gff_file) # subprocess.call('grep -v "##sequence-region" %s > %s && mv %s %s'%(gff_files_final[i],'temp.gff','temp.gff',gff_files_final[i]),shell=True) for i, bed_file in enumerate(bed_files_final): pd.DataFrame(seqrecs[i]).to_csv(bed_file, sep='\t',header=None,index=None) # FIXME fasta_files = [] last_path = last[:last.rfind('/')+1] for f in heads: fasta_files.extend(glob.glob(last_path+f+'.fasta') + glob.glob(last_path+f+'.fa')) for i,fasta in enumerate(fasta_files): Fasta(fasta) subprocess.call("awk -v OFS='\\t' '{print $1, 0, $2}' %s > %s"%(fasta+'.fai',fasta+'.bed'),shell=True) a = BedTool(fasta+'.bed').sort() df = a.intersect(BedTool(bed_files_final[i]).sort().merge()).to_dataframe() df2 = a.to_dataframe() intersect_sum = (df['end'] - df['start']).sum() genome_size = (df2['end'] - df2['start']).sum() final_output.append((heads[i],genome_size,intersect_sum,float(intersect_sum)/genome_size)) df_final = pd.DataFrame(final_output,columns = ['fasta_head','genome_size','length_aligned','percent_aligned']) df_final.to_csv(work_dir+'sequence_similarity.csv') with open(work_dir+'weighted_sum.txt','w') as f: f.write(str((df_final['percent_aligned']*df_final['genome_size']).sum()/float(df_final['genome_size'].sum()))) @format.command(name='convert_mat2R') @click.option('-npz','--input_matrix',default='clusteringMatrix.npz',help='Input sparse matrix, scipy sparse npz format.',show_default=True, type=click.Path(exists=False)) def convert_mat2R(input_matrix): """Convert any sparse matrix into a format to be read by R. Can import matrix into R metagenomics clustering programs.""" from scipy.io import mmwrite mmwrite(input_matrix.replace('.npz','.mtx'),sps.load_npz(input_matrix)) @format.command() @click.option('-i', '--hipmer_input', default='test.txt', help = 'Input file or directory from hipmer kmer counting run.', show_default=True, type=click.Path(exists=False)) @click.option('-o', '--kcount_output', default='test.final.kcount', help = 'Output kmer count file.', show_default=True, type=click.Path(exists=False)) @click.option('-d', '--run_on_dir', is_flag=True, help='Choose to run on all files in hipmer_input if you have specified a directory for the hipmer input. Directory can only contain hipmer files.') def hipmer_output_to_kcount(hipmer_input, kcount_output, run_on_dir): """Converts hipmer kmer count output into a kmer count, kcount, file.""" if run_on_dir: hipmer_path = hipmer_input + '/' subprocess.call("cat %s | awk '{OFS = \"\\t\"; sum=0; for (i=2; i<=7; i++) { sum+= $i }; if (sum >= 3) print $1, sum}' > %s"%(' '.join([hipmer_path+hipmer_input for hipmer_input in os.listdir(hipmer_path)]),kcount_output),shell=True) else: subprocess.call("cat %s | awk '{OFS = \"\\t\"; sum=0; for (i=2; i<=7; i++) { sum+= $i }; if (sum >= 3) print $1, sum}' > %s"%(hipmer_input,kcount_output),shell=True) @format.command() @click.option('-a', '--anchor_file', help = 'Lifted anchor file generated from basic synteny run using jcvi tools.', type=click.Path(exists=False)) @click.option('-q', '--qbed', help='First bed file.', type=click.Path(exists=False)) @click.option('-s', '--sbed', help='Second bed file.', type=click.Path(exists=False)) def anchor2bed(anchor_file, qbed, sbed): """Convert syntenic blocks of genes to bed coordinates between the two genomes being compared.""" with open(anchor_file,'r') as f: anchors = f.read().split('###') with open(qbed,'r') as f: qbed = {} for line in f: if line: lineL = line.split() qbed[lineL[3]] = [lineL[0]] + map(int,lineL[1:3]) #print qbed with open(sbed,'r') as f: sbed = {} for line in f: if line: lineL = line.split() sbed[lineL[3]] = [lineL[0]] + map(int,lineL[1:3]) with open(anchor_file.replace('.lifted.anchors','.bed'),'w') as f: for anchor in anchors: if anchor: #print anchor q_coords = [] s_coords = [] for line in anchor.splitlines(): if line: genes = line.split()[:2] #print genes q_coords.append(qbed[genes[0]]) s_coords.append(sbed[genes[1]]) #print q_coords q_coords = pd.DataFrame(np.array(q_coords)).sort_values([0,1]).as_matrix() s_coords = pd.DataFrame(np.array(s_coords)).sort_values([0,1]).as_matrix() f.write('\t'.join(map(str,[q_coords[0,0],q_coords[:,1:].min(),q_coords[:,1:].max(), s_coords[0,0],s_coords[:,1:].min(),s_coords[:,1:].max()]))+'\n') with open(anchor_file.replace('.lifted.anchors','.bed'),'r') as f: links = np.array([line.split() for line in f.read().splitlines()]) colors_set = {color:i+1 for i, color in enumerate(set(links[:,0]))} colors = pd.DataFrame(np.vectorize(lambda color: colors_set[color])(links[:,0]),columns=['Color']) colors.to_csv('link_colors.csv',index=False) links = pd.DataFrame(links,columns=['seg1','start1','end1','seg2','start2','end2']) links.to_csv('links.csv',index=False) # FIXME, need to grab correct orientation!!! if __name__ == '__main__': format() ``` #### File: PolyCRACKER-Unofficial-Mirror/polycracker/helper.py ```python def compute_correlation(mat): rowShape, columnShape = np.shape(mat) rowCombos = permutations(range(rowShape),rowShape) columnCombos = permutations(range(columnShape),columnShape) print mat maxR = [] for idx,combos in enumerate([columnCombos,rowCombos]): for combo in combos: if idx == 0: matNew = mat[:, combo] else: matNew = mat[combo, :] coords = [] for i in range(rowShape): for j in range(columnShape): if matNew[i,j] > 0: for k in range(matNew[i,j]): coords.append((i,j)) xy = np.array(coords) maxR.append(abs(pearsonr(xy[:,0],xy[:,1])[0])) return max(maxR) def stats(arr): return (np.mean(arr), np.std(arr), np.min(arr), np.max(arr)) def label_new_windows(work_dir, windows_bed, original_subgenomes_bed): windows_bed = BedTool(windows_bed) scaffolds_subgenome_bed = BedTool(original_subgenomes_bed) labelled_bed = windows_bed.intersect(scaffolds_subgenome_bed,wa=True,wb=True).sort().merge(d=-1,c=7,o='distinct') ambiguous_bed = windows_bed.intersect(scaffolds_subgenome_bed,wa=True,v=True) bed_lines = [] for line in str(ambiguous_bed).splitlines(): if line: bed_lines.append(line.split()+['ambiguous']) for line in str(labelled_bed).splitlines(): if line: if ',' in line: bed_lines.append(line.split()[:-1]+['ambiguous']) else: bed_lines.append(line.split()) a = BedTool(bed_lines).sort() a.saveas(work_dir+'relabelled_windows.bed') new_labels = np.array([line.split()[-1] for line in str(a).splitlines()]) pickle.dump(new_labels,open(work_dir+'new_labels.p','wb')) ```
{ "source": "jlevy/ghizmo", "score": 3 }
#### File: ghizmo/commands/misc.py ```python from ghizmo.commands import lib def stale_pr_branches(config, args): """ List "stale" PR branches, i.e. those for a closed PR from the same, non-forked repository. """ repo = config.repo for pr in repo.pull_requests(state="closed"): if pr.head.repo == pr.base.repo and repo.branch(pr.head.ref): yield { "html_url": pr.html_url, "base_branch": pr.base.ref, "head_branch": pr.head.ref, } ``` #### File: ghizmo/commands/team.py ```python from ghizmo.commands import lib def teams(config, args): """ List teams in a given organization. """ return config.github.organization(args.org_name).teams() ```
{ "source": "jlewi/code-intelligence", "score": 2 }
#### File: py/code_intelligence/github_util_test.py ```python import logging import pytest from code_intelligence import github_util def test_build_issue_doc(): result = github_util.build_issue_doc("someOrg", "someRepo", "issue title", ["line1", "line2"]) expected = """issue title someorg_somerepo line1 line2""" assert result == expected if __name__ == "__main__": logging.basicConfig( level=logging.INFO, format=('%(levelname)s|%(asctime)s' '|%(pathname)s|%(lineno)d| %(message)s'), datefmt='%Y-%m-%dT%H:%M:%S', ) logging.getLogger().setLevel(logging.INFO) pytest.main() ``` #### File: py/code_intelligence/run_with_auto_restart.py ```python import argparse import subprocess import time import logging from watchdog.observers import Observer from watchdog.events import LoggingEventHandler class RestartEventHandler(LoggingEventHandler): def __init__(self, command): """Create the handler. Args: command: The command to run. """ super(RestartEventHandler, self).__init__() self._command = command self._p = None self.restart() def restart(self): if self._p: logging.info("Terminating the current process") self._p.terminate() logging.info(f"Starting a proces to run command: {' '.join(self._command)}") self._p = subprocess.Popen(self._command) def on_any_event(self, event): super().on_any_event(event) self.restart() if __name__ == "__main__": logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S') parser = argparse.ArgumentParser(description="Run and auto restart.") parser.add_argument('--directory', dest="directories", action="append", help="A directory to watch for changes.") args, unparsed = parser.parse_known_args() # Remove "--" as an argument while True: if unparsed[0].strip() == "--": del unparsed[0] continue break event_handler = RestartEventHandler(unparsed) observer = Observer() for d in args.directories: logging.info(f"Watching {d}") observer.schedule(event_handler, d, recursive=True) observer.start() try: while True: if event_handler._p: if event_handler._p.poll() is not None: # TODO(jlewi): would it be better to exit to force a container restart logging.info("Process has terminated restarting it") event_handler.restart() time.sleep(1) except KeyboardInterrupt: observer.stop() observer.join() ``` #### File: py/label_microservice/cli.py ```python import logging import json import fire from code_intelligence import graphql from code_intelligence import github_util from code_intelligence import util from google.cloud import pubsub import subprocess DEFAULT_TOPIC = "projects/issue-label-bot-dev/topics/TEST_event_queue" class Cli: @staticmethod def get_issue(url): """Get the data for a specific issue. Args: url: URL of the issue """ gh_client = graphql.GraphQLClient() result = github_util.get_issue(url, gh_client) print(json.dumps(result, indent=4, sort_keys=True)) @staticmethod def label_issue(issue, pubsub_topic=DEFAULT_TOPIC): """Label a specific issue. Args: issue: The issue in the form {owner}/{repo}#{issue} pubsub_topic: (Optional) the pubsub topic to publish to. This should be in the form projects/{project}/topics/{topic_name} """ publisher = pubsub.PublisherClient() repo_owner, repo_name, issue_num = util.parse_issue_spec(issue) if not repo_owner: raise ValueError(f"issue={issue} didn't match regex " f"{util.ISSUE_RE.pattern}") # all attributes being published to pubsub must be sent as text strings publisher.publish(pubsub_topic, b'New issue.', # TODO(jlewi): Does the backend depend on the client # providing the installation id installation_id="", repo_owner=repo_owner, repo_name=repo_name, issue_num=str(issue_num)) @staticmethod def pod_logs(pod): """Pretty print pod logs Args: pod: Name of the pod """ output = subprocess.check_output(["kubectl", "logs", pod]) for l in output.splitlines(): try: entry = json.loads(l) filename = entry.get("filename") line = entry.get("line") message = entry.get("message") print(f"{filename}:{line}: {message}") except json.JSONDecodeError: print(l) continue if __name__ == "__main__": logging.basicConfig(level=logging.INFO, format=('%(levelname)s|%(asctime)s' '|%(message)s|%(pathname)s|%(lineno)d|'), datefmt='%Y-%m-%dT%H:%M:%S', ) fire.Fire(Cli) ```
{ "source": "jlewi/Issue-Label-Bot", "score": 2 }
#### File: argo/src/preprocess.py ```python import pandas as pd import dask.dataframe as df from dask_ml.preprocessing import OneHotEncoder import numpy as np from keras.utils.np_utils import to_categorical import time from sklearn.model_selection import train_test_split from typing import Callable, List from keras.preprocessing.text import text_to_word_sequence from keras.preprocessing.sequence import pad_sequences from dask import array as da from textacy.preprocess import preprocess_text import dask.multiprocessing from pathos.multiprocessing import cpu_count from collections import Counter from collections import defaultdict import h5py start_time = time.time() dask.config.set(scheduler='processes') output_dir = "/data/" base_url = 'https://storage.googleapis.com/codenet/issue_labels/' dd = df.from_pandas(pd.concat([pd.read_csv(base_url+f'00000000000{i}.csv.gz') for i in range(10)]), npartitions=128) print(dd.head()) def textacy_cleaner(text: str) -> str: """ Defines the default function for cleaning text. This function operates over a list. """ return preprocess_text(text, fix_unicode=True, lowercase=True, transliterate=True, no_urls=True, no_emails=True, no_phone_numbers=True, no_numbers=True, no_currency_symbols=True, no_punct=True, no_contractions=False, no_accents=True) def process_document(doc: str) -> List[str]: doc = text_to_word_sequence(textacy_cleaner(doc)) return ["_start_"] + doc + ["_end_"] test_data = 'hello world 314-903-3072, <EMAIL> wee woo' assert process_document(test_data) == ['_start_', 'hello', 'world', 'phone', 'email', 'wee', 'woo', '_end_'] bodies_parsed = dd["body"].apply(process_document) titles_parsed = dd["title"].apply(process_document) now = time.time() - start_time print(f"tokenized {now}") def to_one_hot(df): return to_categorical(df.values, num_classes=3) targets = dd["class_int"].to_frame().map_partitions(to_one_hot) body_quant = int(bodies_parsed.apply(len).quantile(q=0.75).compute()) title_quant = int(titles_parsed.apply(len).quantile(q=0.75).compute()) def count_words(partition): c = Counter() def count(p): c.update(p) return c return partition.apply(count).iloc[0] body_counts = bodies_parsed.map_partitions(count_words).compute() body_counts = sum(body_counts.tolist(), Counter()) title_counts = titles_parsed.map_partitions(count_words).compute() title_counts = sum(title_counts.tolist(), Counter()) words_to_keep_body = body_counts.most_common(n=8000) body_vocab = defaultdict(lambda: 1) body_vocab.update({x:i+2 for i, x in enumerate([x[0] for x in words_to_keep_body])}) words_to_keep_title = title_counts.most_common(n=4500) titles_vocab = defaultdict(lambda: 1) titles_vocab.update({x:i+2 for i, x in enumerate([x[0] for x in words_to_keep_title])}) numer_bodies = bodies_parsed.apply(lambda x: [body_vocab[w] for w in x]) numer_titles = titles_parsed.apply(lambda x: [titles_vocab[w] for w in x]) def pad_partition(numerized_doc): if type(numerized_doc) != list: return return pad_sequences([numerized_doc], maxlen=body_quant, truncating='post')[0] processed_bodies = numer_bodies.apply(pad_partition) processed_titles = numer_titles.apply(pad_partition) num_titles = processed_titles.count().compute() num_bodies = processed_bodies.count().compute() now = time.time() - start_time print(f"saving {now}") processed_titles = da.stack(processed_titles.values.compute()) processed_bodies = da.stack(processed_bodies.values.compute()) f = h5py.File('/data/output.hdf5', 'w') f.create_dataset('/titles', data=processed_titles.compute()) f.create_dataset('/bodies', data=processed_bodies.compute()) f.create_dataset('/targets', data=targets.compute()) f.close() now = time.time() - start_time print(f"saved {now}") ```
{ "source": "jlewi/metadata", "score": 2 }
#### File: python/tests/test_notebook.py ```python import tempfile import logging import os import papermill logger = logging.getLogger(__name__) FILE_DIR = os.path.dirname(__file__) NOTEBOOK_REL_PATH = "../sample/demo.ipynb" NOTEBOOK_ABS_PATH = os.path.normpath(os.path.join(FILE_DIR, NOTEBOOK_REL_PATH)) GRPC_HOST = "127.0.0.1" GRPC_PORT = 8081 def test_notebook(): temp_dir = tempfile.mkdtemp() notebook_output_path = os.path.join(temp_dir, "out.ipynb") parameters = { "METADATA_STORE_HOST": GRPC_HOST, "METADATA_STORE_PORT": GRPC_PORT, } papermill.execute_notebook(NOTEBOOK_ABS_PATH, notebook_output_path, cwd=os.path.dirname(NOTEBOOK_ABS_PATH), parameters=parameters, log_output=True) check_notebook_output(notebook_output_path) def check_notebook_output(output_path): num_cells = 0 num_completed_cells = 0 with open(output_path, 'r') as f: for lines in f: if lines.find('"status": "completed"') != -1: num_completed_cells = num_completed_cells + 1 if lines.find('cell_type') != -1: num_cells = num_cells + 1 with open(output_path, 'r') as f: assert num_cells == num_completed_cells, "Not all cells succeeded. Notebook output:\n {}".format( f.read()) ```
{ "source": "jlewi/testing", "score": 2 }
#### File: kubeflow/testing/prow_artifacts.py ```python import argparse import logging import json import os import time from google.cloud import storage # pylint: disable=no-name-in-module from kubeflow.testing import util # TODO(jlewi): Replace create_finished in tensorflow/k8s/py/prow.py with this # version. We should do that when we switch tensorflow/k8s to use Argo instead # of Airflow. def create_started(): """Return a string containing the contents of started.json for gubernator. """ # See: # https://github.com/kubernetes/test-infra/tree/master/gubernator#job-artifact-gcs-layout # For a list of fields expected by gubernator started = { "timestamp": int(time.time()), "repos": { }, } repo_owner = os.getenv("REPO_OWNER", "") repo_name = os.getenv("REPO_NAME", "") if repo_owner: sha = os.getenv("PULL_PULL_SHA", "") if not sha: # Its a post submit job. sha = os.getenv("PULL_BASE_SHA", "") started["repos"][repo_owner + "/" + repo_name] = sha PULL_REFS = os.getenv("PULL_REFS", "") if PULL_REFS: started["pull"] = PULL_REFS return json.dumps(started) # TODO(jlewi): Replace create_finished in tensorflow/k8s/py/prow.py with this # version. We should do that when we switch tensorflow/k8s to use Argo instead # of Airflow. def create_finished(success): """Create a string containing the contents for finished.json. Args: success: Bool indicating whether the workflow succeeded or not. """ if success: result = "SUCCESS" else: result = "FAILED" finished = { "timestamp": int(time.time()), "result": result, # Dictionary of extra key value pairs to display to the user. # TODO(jlewi): Perhaps we should add the GCR path of the Docker image # we are running in. We'd have to plumb this in from bootstrap. "metadata": {}, } return json.dumps(finished) def get_gcs_dir(bucket): """Return the GCS directory for this job.""" pull_number = os.getenv("PULL_NUMBER") repo_owner = os.getenv("REPO_OWNER") repo_name = os.getenv("REPO_NAME") job_name = os.getenv("JOB_NAME") # GCS layout is defined here: # https://github.com/kubernetes/test-infra/tree/master/gubernator#job-artifact-gcs-layout pull_number = os.getenv("PULL_NUMBER") repo_owner = os.getenv("REPO_OWNER") repo_name = os.getenv("REPO_NAME") if pull_number: output = ("gs://{bucket}/pr-logs/pull/{owner}_{repo}/" "{pull_number}/{job}/{build}").format( bucket=bucket, owner=repo_owner, repo=repo_name, pull_number=pull_number, job=os.getenv("JOB_NAME"), build=os.getenv("BUILD_NUMBER")) elif repo_owner: # It is a postsubmit job output = ("gs://{bucket}/logs/{owner}_{repo}/" "{job}/{build}").format( bucket=bucket, owner=repo_owner, repo=repo_name, job=job_name, build=os.getenv("BUILD_NUMBER")) else: # Its a periodic job output = ("gs://{bucket}/logs/{job}/{build}").format( bucket=bucket, job=job_name, build=os.getenv("BUILD_NUMBER")) return output def copy_artifacts(args): """Sync artifacts to GCS.""" job_name = os.getenv("JOB_NAME") # GCS layout is defined here: # https://github.com/kubernetes/test-infra/tree/master/gubernator#job-artifact-gcs-layout pull_number = os.getenv("PULL_NUMBER") repo_owner = os.getenv("REPO_OWNER") repo_name = os.getenv("REPO_NAME") output = get_gcs_dir(args.bucket) if os.getenv("GOOGLE_APPLICATION_CREDENTIALS"): logging.info("GOOGLE_APPLICATION_CREDENTIALS is set; configuring gcloud " "to use service account.") # Since a service account is set tell gcloud to use it. util.run(["gcloud", "auth", "activate-service-account", "--key-file=" + os.getenv("GOOGLE_APPLICATION_CREDENTIALS")]) util.run(["gsutil", "-m", "rsync", "-r", args.artifacts_dir, output]) def create_pr_symlink(args): """Create a 'symlink' in GCS pointing at the results for a PR. This is a null op if PROW environment variables indicate this is not a PR job. """ gcs_client = storage.Client() # GCS layout is defined here: # https://github.com/kubernetes/test-infra/tree/master/gubernator#job-artifact-gcs-layout pull_number = os.getenv("PULL_NUMBER") if not pull_number: # Symlinks are only created for pull requests. return "" path = "pr-logs/directory/{job}/{build}.txt".format( job=os.getenv("JOB_NAME"), build=os.getenv("BUILD_NUMBER")) pull_number = os.getenv("PULL_NUMBER") repo_owner = os.getenv("REPO_OWNER") repo_name = os.getenv("REPO_NAME") build_dir = ("gs://{bucket}/pr-logs/pull/{owner}_{repo}/" "{pull_number}/{job}/{build}").format( bucket=args.bucket, owner=repo_owner, repo=repo_name, pull_number=pull_number, job=os.getenv("JOB_NAME"), build=os.getenv("BUILD_NUMBER")) source = util.to_gcs_uri(args.bucket, path) target = get_gcs_dir(args.bucket) logging.info("Creating symlink %s pointing to %s", source, target) bucket = gcs_client.get_bucket(args.bucket) blob = bucket.blob(path) blob.upload_from_string(target) def main(unparsed_args=None): # pylint: disable=too-many-locals logging.getLogger().setLevel(logging.INFO) # pylint: disable=too-many-locals # create the top-level parser parser = argparse.ArgumentParser( description="Create prow artifacts.") parser.add_argument( "--artifacts_dir", default="", type=str, help="Directory to use for all the gubernator artifacts.") subparsers = parser.add_subparsers() ############################################################################# # Copy artifacts. parser_copy = subparsers.add_parser( "copy_artifacts", help="Copy the artifacts.") parser_copy.add_argument( "--bucket", default="", type=str, help="Bucket to copy the artifacts to.") parser_copy.set_defaults(func=copy_artifacts) ############################################################################# # Create the pr symlink. parser_link = subparsers.add_parser( "create_pr_symlink", help="Create a symlink pointing at PR output dir; null " "op if prow job is not a presubmit job.") parser_link.add_argument( "--bucket", default="", type=str, help="Bucket to copy the artifacts to.") parser_link.set_defaults(func=create_pr_symlink) ############################################################################# # Process the command line arguments. # Parse the args args = parser.parse_args(args=unparsed_args) # Setup a logging file handler. This way we can upload the log outputs # to gubernator. root_logger = logging.getLogger() test_log = os.path.join(os.path.join(args.artifacts_dir, "artifacts"), "logs", "prow_artifacts." + args.func.__name__ + ".log") if not os.path.exists(os.path.dirname(test_log)): os.makedirs(os.path.dirname(test_log)) file_handler = logging.FileHandler(test_log) root_logger.addHandler(file_handler) # We need to explicitly set the formatter because it will not pick up # the BasicConfig. formatter = logging.Formatter(fmt=("%(levelname)s|%(asctime)s" "|%(pathname)s|%(lineno)d| %(message)s"), datefmt="%Y-%m-%dT%H:%M:%S") file_handler.setFormatter(formatter) logging.info("Logging to %s", test_log) args.func(args) if __name__ == "__main__": logging.basicConfig(level=logging.INFO, format=('%(levelname)s|%(asctime)s' '|%(pathname)s|%(lineno)d| %(message)s'), datefmt='%Y-%m-%dT%H:%M:%S', ) logging.getLogger().setLevel(logging.INFO) main() ```
{ "source": "JlexZhong/ZDEM_View", "score": 2 }
#### File: ZDEM_View/model/io_plot.py ```python import io import os import sys from matplotlib.backends.backend_qt5 import NavigationToolbar2QT as NavigationToolbar import cv2 from PIL import Image from PyQt5.QtCore import pyqtSignal, QObject from PyQt5.QtWidgets import QApplication, QWidget import PyQt5.QtWidgets as QtWidgets from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg from matplotlib.lines import Line2D from matplotlib.ticker import FuncFormatter, FormatStrFormatter import numpy as np from matplotlib.figure import Figure from matplotlib.patches import Circle from matplotlib.ticker import MultipleLocator import matplotlib.pyplot as plt import pyqtgraph as pg from pyqtgraph.functions import mkBrush class MatplotlibFigure(FigureCanvasQTAgg): """ 创建一个画布类,并把画布放到FigureCanvasQTAgg """ def __init__(self, parent=None): """ :param parent: :param filePrefix: """ self.figs = Figure(figsize=(10, 8), dpi=300) super(MatplotlibFigure, self).__init__(self.figs) # 在父类中激活self.fig self.setParent(parent) self.axes = self.figs.add_subplot(111) filepath = "E:\\Study\\Data_Visualization ui_pyqt5\\Data_Visualization\\V2.0\\example\\easyData\\all_0000003600.dat" self.mpl_plot(filepath, xmove=-1000, ymove=-1000) FigureCanvasQTAgg.setSizePolicy( self, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) # 用于告知包含该widget的layout:该widget的size hint已发生变化,layout会自动进行调整。 FigureCanvasQTAgg.updateGeometry(self) def readData(self,filepath=None, xmove=0, ymove=0): """读取.dat格式文件内容 """ flag = 0 WALL = [] BALL = [] CurrentStep = 0 BallNum = 0 ZDEM_File = open(filepath, 'r') for line in ZDEM_File: # 逐行读取文件 if "current_step" in line: # 当前所在步数 step = line.split() # 将该行(list)以空格“ ”进行切片 CurrentStep = step[-1] # 取step的最后一个元素作为步数 if "ball num" in line: # 获取颗粒个数 ball_num = line.split() BallNum = ball_num[-1] if " index id P1[0]" in line: # 标记wall数据开始 flag = 1 continue if " index id xF" in line: # 当读取到此行时,含wall坐标的数据结束 flag = 0 if " index id x" in line: # 标记ball数据开始 flag = 2 continue if " index id m" in line: # 当读取到此行时,含ball坐标的数据结束 flag = 0 if flag == 0: continue if flag == 1: wall = line.split() # 将该行(list)以空格“ ”进行切片 # 读取第3到第6列,并用for循环把字符串转变为浮点型 wall = [float(i) for i in wall[2:6]] WALL.append(wall) # wall两点p1、p2的x、y坐标 if flag == 2: ball = line.split() # 将该行(list)以空格“ ”进行切片 ball = [float(i) for i in ball[2:6]] BALL.append(ball) # ball的x、y坐标以及半径、颜色 del WALL[-1] # 删除最后的空行 del BALL[-1] # 删除最后的空行 ZDEM_File.close() # 关闭对象,避免占用过多资源 # self.updata_progressbar_signal.emit(0) WALL, BALL, CurrentStep = np.array( WALL), np.array(BALL), np.array(CurrentStep) # ZDEM颜色的RGB列表 ZDEMColor_num = np.array([[0.85, 0.85, 0.85], [0.00, 1.00, 0.00], [1.00, 1.00, 0.00], [1.00, 0.00, 0.00], [0.90, 0.90, 0.90], [0.15, 0.15, 0.15], [0.50, 0.50, 0.50], [0.00, 0.00, 1.00], [0.00, 1.00, 1.00], [1.00, 0.00, 1.00]]) ZDEMColor_code = ['#D9D9D9', '#00FF00', '#FFFF00', '#FF0000', '#F5F5F5', '#262626', '#808080', '#0000FF', '#00FFFF', '#FF00FF'] # 读取数组对应需要的元素 BALL_x = BALL[:, 0] BALL_y = BALL[:, 1] BALL_r = BALL[:, 2] BALL_c = BALL[:, 3] WALL_P1_x = WALL[4:7, 0] WALL_P1_y = WALL[4:7, 1] WALL_P2_x = WALL[4:7, 2] WALL_P2_y = WALL[4:7, 3] # 进行偏移量修改 for i in range(len(WALL_P1_x)): WALL_P1_x[i] = WALL_P1_x[i] + xmove WALL_P1_y[i] = WALL_P1_y[i] + ymove WALL_P2_x[i] = WALL_P2_x[i] + xmove WALL_P2_y[i] = WALL_P2_y[i] + ymove for i in range(len(BALL_x)): BALL_x[i] = BALL_x[i] + xmove BALL_y[i] = BALL_y[i] + ymove # begin_plot_signal.emit(id) # 发送信号:开始绘图 ball_c = [] # 颜色 #xxxxxx格式 for i in range(len(BALL_x)): color_num = BALL_c[i] color_num = int(color_num) ballColor = ZDEMColor_num[color_num] ball_c.append(ballColor) return BALL_x, BALL_y, BALL_r, ball_c, WALL_P1_x, WALL_P1_y, WALL_P2_x, WALL_P2_y def mpl_plot(self,filepath=None, xmove=0, ymove=0): BALL_x, BALL_y, BALL_r, BALL_c, WALL_P1_x, WALL_P1_y, WALL_P2_x, WALL_P2_y = self.readData(filepath, xmove, ymove) self.axes.cla() for i in range(len(BALL_x)): ball_x = BALL_x[i] ball_y = BALL_y[i] ball_r = BALL_r[i] ball_c = BALL_c[i] # 绘图 cir = Circle(xy=(ball_x, ball_y), radius=ball_r, facecolor=ball_c) self.axes.add_patch(cir) print('ball id:', i) self.draw() class MplWidget(QWidget): """Qt控件,用于嵌入matplotlib画布和工具栏 Args: QWidget ([type]): [description] """ def __init__(self, parent=None): """ :param parent: """ QWidget.__init__(self, parent) self.qCanvas = MatplotlibFigure(parent) self.mpl_toolbar = NavigationToolbar(self.qCanvas, self) # 创建工具条 # 创建布局,把画布类组件对象和工具条对象添加到QWidget控件中 self.vbl = QtWidgets.QVBoxLayout(self) self.vbl.addWidget(self.qCanvas) self.vbl.addWidget(self.mpl_toolbar) if __name__ == '__main__': app = QApplication(sys.argv) ui = MplWidget() ui.show() sys.exit(app.exec_()) ``` #### File: ZDEM_View/model/plot.py ```python import io import os import cv2 from PIL import Image from PyQt5.QtCore import pyqtSignal, QObject from matplotlib.lines import Line2D from matplotlib.ticker import FuncFormatter, FormatStrFormatter import numpy as np from matplotlib.patches import Circle from matplotlib.ticker import MultipleLocator import pyqtgraph as pg from pyqtgraph.functions import mkBrush """ 读取和绘图文件,负责读取文件和图像的绘制 """ class _plot(object): updata_progressbar_signal = pyqtSignal(int) def __init__(self): # self.wMain = myUi super().__init__() self.WALL = [] self.BALL = [] self.CurrentStep = 0 self.BallNum = 0 self.xmove = 0 self.ymove = 0 self.wallShow = "true" self.units = 1 self.canvasObj = None self.pagesize = 14 def readData(self, filepath): filename = os.path.split(filepath)[1] self.filePrefix = os.path.splitext(filename)[0] flag = 0 self.WALL = [] self.BALL = [] self.CurrentStep = 0 self.BallNum = 0 ZDEM_File = open(filepath, 'r') for line in ZDEM_File: # 逐行读取文件 if "current_step" in line: # 当前所在步数 step = line.split() # 将该行(list)以空格“ ”进行切片 self.CurrentStep = step[-1] # 取step的最后一个元素作为步数 if "ball num" in line: # 获取颗粒个数 ball_num = line.split() self.BallNum = ball_num[-1] if " index id P1[0]" in line: # 标记wall数据开始 flag = 1 continue if " index id xF" in line: # 当读取到此行时,含wall坐标的数据结束 flag = 0 if " index id x" in line: # 标记ball数据开始 flag = 2 continue if " index id m" in line: # 当读取到此行时,含ball坐标的数据结束 flag = 0 if flag == 0: continue if flag == 1: wall = line.split() # 将该行(list)以空格“ ”进行切片 # 读取第3到第6列,并用for循环把字符串转变为浮点型 wall = [float(i) for i in wall[2:6]] self.WALL.append(wall) # wall两点p1、p2的x、y坐标 if flag == 2: ball = line.split() # 将该行(list)以空格“ ”进行切片 ball = [float(i) for i in ball[2:6]] self.BALL.append(ball) # ball的x、y坐标以及半径、颜色 del self.WALL[-1] # 删除最后的空行 del self.BALL[-1] # 删除最后的空行 ZDEM_File.close() # 关闭对象,避免占用过多资源 self.updata_progressbar_signal.emit(0) def plotJPG(self, canvasObj): self.canvasObj = canvasObj self.xmove = 0 self.ymove = 0 self.wallShow = 'true' self.units = 1 self.canvasObj.axes.cla() # 清理画布后必须重新添加绘图区 # 转换为numpy数组,便于处理 self.WALL, self.BALL, self.CurrentStep = np.array( self.WALL), np.array(self.BALL), np.array(self.CurrentStep) # ZDEM颜色的RGB列表 Color = np.array([[0.85, 0.85, 0.85], [0.00, 1.00, 0.00], [1.00, 1.00, 0.00], [1.00, 0.00, 0.00], [0.90, 0.90, 0.90], [0.15, 0.15, 0.15], [0.50, 0.50, 0.50], [0.00, 0.00, 1.00], [0.00, 1.00, 1.00], [1.00, 0.00, 1.00]]) ZDEM_color = ['#D9D9D9', '#00FF00', '#FFFF00', '#FF0000', '#F5F5F5', '#262626', '#808080', '#0000FF', '#00FFFF', '#FF00FF'] # 读取数组对应需要的元素 BALL_x = self.BALL[:, 0] BALL_y = self.BALL[:, 1] BALL_r = self.BALL[:, 2] BALL_c = self.BALL[:, 3] WALL_P1_x = self.WALL[4:7, 0] WALL_P1_y = self.WALL[4:7, 1] WALL_P2_x = self.WALL[4:7, 2] WALL_P2_y = self.WALL[4:7, 3] # 获取x、y轴偏移量,并对ball、wall的坐标修改 # xmove = min(min(WALL_P1_x),min(WALL_P2_x)) # ymove = min(min(WALL_P1_y),min(WALL_P2_y)) for i in range(len(WALL_P1_x)): WALL_P1_x[i] = WALL_P1_x[i] + self.xmove WALL_P1_y[i] = WALL_P1_y[i] + self.ymove WALL_P2_x[i] = WALL_P2_x[i] + self.xmove WALL_P2_y[i] = WALL_P2_y[i] + self.ymove for i in range(len(BALL_x)): BALL_x[i] = BALL_x[i] + self.xmove BALL_y[i] = BALL_y[i] + self.ymove # 通过循环获取每个颗粒的坐标和半径、颜色,用matplotlib库的Circle绘制颗粒 # 先设置坐标轴max、min b_xmax = max(BALL_x) b_ymax = max(BALL_y) w_p1_xmax = max(WALL_P1_x) w_p2_xmax = max(WALL_P2_x) w_p1_ymax = max(WALL_P1_y) w_p2_ymax = max(WALL_P2_y) w_xmax = max(w_p1_xmax, w_p2_xmax) w_ymax = max(w_p1_ymax, w_p2_ymax) xmax = max(b_xmax, w_xmax) ymax = max(b_ymax, w_ymax) b_xmin = min(BALL_x) b_ymin = min(BALL_y) w_p1_xmin = min(WALL_P1_x) w_p2_xmin = min(WALL_P2_x) w_p1_ymin = min(WALL_P1_y) w_p2_ymin = min(WALL_P2_y) w_xmin = min(w_p1_xmin, w_p2_xmin) w_ymin = min(w_p1_ymin, w_p2_ymin) xmin = min(b_xmin, w_xmin) ymin = min(b_ymin, w_ymin) self.canvasObj.axes.set_xlim(0, xmax) self.canvasObj.axes.set_ylim(0, ymax) ball_c = [] for i in range(len(BALL_x)): color_num = BALL_c[i] color_num = int(color_num) ballColor = ZDEM_color[color_num] ball_c.append(ballColor) ballNUM = len(BALL_r) # 绘制点图,转换坐标 rr_pix = (self.canvasObj.axes.transData.transform(np.vstack([BALL_r, BALL_r]).T) - self.canvasObj.axes.transData.transform(np.vstack([np.zeros(ballNUM), np.zeros(ballNUM)]).T)) rpix, _ = rr_pix.T size_pt = (2 * rpix / self.canvasObj.figs.dpi * 72) ** 2 scat = self.canvasObj.axes.scatter(BALL_x, BALL_y, s=size_pt, c=ball_c) for i in range(len(BALL_x)): ball_x = BALL_x[i] ball_y = BALL_y[i] ball_r = BALL_r[i] # .dat文件的颜色为0-7,要对应到相应的RGB值 # color_num = BALL_c[i] # color_num = int(color_num) # ball_c = Color[color_num] # 绘图 # cir = Circle(xy=(ball_x, ball_y), radius=ball_r, facecolor=ball_c) # self.canvasObj.axes.add_patch(cir) BallNum_45 = (int(self.BallNum) // 45) for n in range(45): if i == (BallNum_45 * (n + 1)): self.updata_progressbar_signal.emit(1) n = 0 if (self.wallShow == 'true'): for n in range(len(WALL_P1_x)): p1x = WALL_P1_x[n] p1y = WALL_P1_y[n] p2x = WALL_P2_x[n] p2y = WALL_P2_y[n] p12x = [p1x, p2x] p12y = [p1y, p2y] self.canvasObj.axes.plot(p12x, p12y, c='k') line1 = [(p1x, p1y), (p2x, p2y)] (line1_xs, line1_ys) = zip(*line1) # 创建两条线,并添加 self.canvasObj.axes.add_line( Line2D(line1_xs, line1_ys, linewidth=1, color='black')) self.updata_progressbar_signal.emit(2) # plt.plot(VBOXx,VBOXy,'.') """for i in range(len(wp1x)): # 两条line的数据 line1 = [(wp1x[i], wp1y[i]), (wp2x[i], wp2y[i])] (line1_xs, line1_ys) = zip(*line1) # 创建两条线,并添加 self.canvasObj.axes.add_line(Line2D(line1_xs, line1_ys, linewidth=1, color='black'))""" self.canvasObj.axes.axis('scaled') def unitsformat(x, pos): return '{:n}'.format(x / self.units) xmajorformatter = FuncFormatter(unitsformat) self.canvasObj.axes.xaxis.set_major_formatter(xmajorformatter) ymajorformatter = FuncFormatter(unitsformat) self.canvasObj.axes.yaxis.set_major_formatter(ymajorformatter) # 修改次刻度 xminorLocator = MultipleLocator(1000) yminorLocator = MultipleLocator(1000) self.canvasObj.axes.xaxis.set_minor_locator(xminorLocator) self.canvasObj.axes.yaxis.set_minor_locator(yminorLocator) ''' b_xmax = BALL_x[0] for i in range(len(BALL_x)): b_xmax = max(BALL_x[i],b_xmax) ''' b_xmax = max(BALL_x) b_ymax = max(BALL_y) w_p1_xmax = max(WALL_P1_x) w_p2_xmax = max(WALL_P2_x) w_p1_ymax = max(WALL_P1_y) w_p2_ymax = max(WALL_P2_y) w_xmax = max(w_p1_xmax, w_p2_xmax) w_ymax = max(w_p1_ymax, w_p2_ymax) xmax = max(b_xmax, w_xmax) ymax = max(b_ymax, w_ymax) b_xmin = min(BALL_x) b_ymin = min(BALL_y) w_p1_xmin = min(WALL_P1_x) w_p2_xmin = min(WALL_P2_x) w_p1_ymin = min(WALL_P1_y) w_p2_ymin = min(WALL_P2_y) w_xmin = min(w_p1_xmin, w_p2_xmin) w_ymin = min(w_p1_ymin, w_p2_ymin) xmin = min(b_xmin, w_xmin) ymin = min(b_ymin, w_ymin) wi = xmax - xmin hi = ymax - ymin wcm = self.pagesize winch = wcm / 2.54 hinch = winch / wi * hi self.canvasObj.axes.set_xlim(0, xmax) self.canvasObj.axes.set_ylim(0, ymax) self.canvasObj.figs.set_size_inches(w=winch, h=hinch) self.canvasObj.figs.canvas.draw() # 这里注意是画布重绘,figs.canvas self.canvasObj.figs.canvas.flush_events() # 画布刷新self.figs.canvas self.canvasObj.figs.savefig( "./temp save files/" + self.filePrefix + ".jpg", dpi=100, bbox_inches="tight") self.updata_progressbar_signal.emit(3) class Plot(QObject): updata_progressbar_signal = pyqtSignal(int) updata_canvas_signal = pyqtSignal(int) begin_plot_signal = pyqtSignal(int) def __init__(self, param_list, canvasObj, filepath): super().__init__() self.canvasObj = canvasObj self.param_list = param_list self.filepath = filepath # 绘图参数 self.xmove = self.param_list[0] self.ymove = self.param_list[1] self.xmin = self.param_list[2] self.xmax = self.param_list[3] self.ymin = self.param_list[4] self.ymax = self.param_list[5] self.ballStyle = self.param_list[6] self.wallShow = self.param_list[7] self.wallLineSize = self.param_list[8] self.colorStyle = self.param_list[9] self.titleText = self.param_list[10] self.titleTextFontSize = self.param_list[11] self.xText = self.param_list[12] self.xTextFontSize = self.param_list[13] self.yText = self.param_list[14] self.yTextFontSize = self.param_list[15] self.mainTickInterval = self.param_list[16] self.minorTickInterval = self.param_list[17] self.isShowTop = self.param_list[18] self.isShowBottom = self.param_list[19] self.isShowLeft = self.param_list[20] self.isShowRight = self.param_list[21] self.units = self.param_list[22] # 图片尺寸 self.pagesize = 14 def readData(self): filename = os.path.split(self.filepath)[1] self.filePrefix = os.path.splitext(filename)[0] flag = 0 self.WALL = [] self.BALL = [] self.CurrentStep = 0 self.BallNum = 0 ZDEM_File = open(self.filepath, 'r') for line in ZDEM_File: # 逐行读取文件 if "current_step" in line: # 当前所在步数 step = line.split() # 将该行(list)以空格“ ”进行切片 self.CurrentStep = step[-1] # 取step的最后一个元素作为步数 if "ball num" in line: # 获取颗粒个数 ball_num = line.split() self.BallNum = ball_num[-1] if " index id P1[0]" in line: # 标记wall数据开始 flag = 1 continue if " index id xF" in line: # 当读取到此行时,含wall坐标的数据结束 flag = 0 if " index id x" in line: # 标记ball数据开始 flag = 2 continue if " index id m" in line: # 当读取到此行时,含ball坐标的数据结束 flag = 0 if flag == 0: continue if flag == 1: wall = line.split() # 将该行(list)以空格“ ”进行切片 # 读取第3到第6列,并用for循环把字符串转变为浮点型 wall = [float(i) for i in wall[2:6]] self.WALL.append(wall) # wall两点p1、p2的x、y坐标 if flag == 2: ball = line.split() # 将该行(list)以空格“ ”进行切片 ball = [float(i) for i in ball[2:6]] self.BALL.append(ball) # ball的x、y坐标以及半径、颜色 del self.WALL[-1] # 删除最后的空行 del self.BALL[-1] # 删除最后的空行 ZDEM_File.close() # 关闭对象,避免占用过多资源 # self.updata_progressbar_signal.emit(0) def plotJPG(self, id): # 初始化 self.canvasObj.qCanvas.axes.clear() # 清理画布 # 转换为numpy数组 self.WALL, self.BALL, self.CurrentStep = np.array( self.WALL), np.array(self.BALL), np.array(self.CurrentStep) # ZDEM颜色的RGB列表 ZDEMColor_num = np.array([[0.85, 0.85, 0.85], [0.00, 1.00, 0.00], [1.00, 1.00, 0.00], [1.00, 0.00, 0.00], [0.90, 0.90, 0.90], [0.15, 0.15, 0.15], [0.50, 0.50, 0.50], [0.00, 0.00, 1.00], [0.00, 1.00, 1.00], [1.00, 0.00, 1.00]]) ZDEMColor_code = ['#D9D9D9', '#00FF00', '#FFFF00', '#FF0000', '#F5F5F5', '#262626', '#808080', '#0000FF', '#00FFFF', '#FF00FF'] # 读取数组对应需要的元素 self.BALL_x = self.BALL[:, 0] self.BALL_y = self.BALL[:, 1] self.BALL_r = self.BALL[:, 2] self.BALL_c = self.BALL[:, 3] self.WALL_P1_x = self.WALL[4:7, 0] self.WALL_P1_y = self.WALL[4:7, 1] self.WALL_P2_x = self.WALL[4:7, 2] self.WALL_P2_y = self.WALL[4:7, 3] # 进行偏移量修改 for i in range(len(self.WALL_P1_x)): self.WALL_P1_x[i] = self.WALL_P1_x[i] + self.xmove self.WALL_P1_y[i] = self.WALL_P1_y[i] + self.ymove self.WALL_P2_x[i] = self.WALL_P2_x[i] + self.xmove self.WALL_P2_y[i] = self.WALL_P2_y[i] + self.ymove for i in range(len(self.BALL_x)): self.BALL_x[i] = self.BALL_x[i] + self.xmove self.BALL_y[i] = self.BALL_y[i] + self.ymove self.plot_axis() self.begin_plot_signal.emit(id) # 发送信号:开始绘图 ball_c = [] # 颜色 #xxxxxx格式 for i in range(len(self.BALL_x)): color_num = self.BALL_c[i] color_num = int(color_num) ballColor = ZDEMColor_code[color_num] ball_c.append(ballColor) if self.ballStyle == 'point': # 绘制散点图 ballNUM = len(self.BALL_r) # 绘制点图,转换坐标数据 rr_pix = (self.canvasObj.qCanvas.axes.transData.transform(np.vstack([self.BALL_r, self.BALL_r]).T) - self.canvasObj.qCanvas.axes.transData.transform( np.vstack([np.zeros(ballNUM), np.zeros(ballNUM)]).T)) rpix, _ = rr_pix.T size_pt = (rpix / self.canvasObj.qCanvas.figs.dpi * 72) ** 2 scat = self.canvasObj.qCanvas.axes.scatter( self.BALL_x, self.BALL_y, s=size_pt, c=ball_c) if self.ballStyle == 'circle': # 绘制二维圆图 for i in range(len(self.BALL_x)): ball_x = self.BALL_x[i] ball_y = self.BALL_y[i] ball_r = self.BALL_r[i] # .dat文件的颜色为0-7,要对应到相应的RGB值 color_num = self.BALL_c[i] color_num = int(color_num) ball_c = ZDEMColor_num[color_num] # 绘图 cir = Circle(xy=(ball_x, ball_y), radius=ball_r, facecolor=ball_c) self.canvasObj.qCanvas.axes.add_patch(cir) if (self.wallShow == True): for n in range(len(self.WALL_P1_x)): p1x = self.WALL_P1_x[n] p1y = self.WALL_P1_y[n] p2x = self.WALL_P2_x[n] p2y = self.WALL_P2_y[n] p12x = [p1x, p2x] p12y = [p1y, p2y] line1 = [(p1x, p1y), (p2x, p2y)] (line1_xs, line1_ys) = zip(*line1) # 创建两条线,并添加 self.canvasObj.qCanvas.axes.add_line( Line2D(line1_xs, line1_ys, linewidth=self.wallLineSize, color='black')) # self.canvasObj.qCanvas.axes.margins(0,0) # self.canvasObj.qCanvas.axes.tick_params(which='both', width=0.5, pad=1) # self.canvasObj.qCanvas.axes.set_xlim(xmin, xmax) # self.canvasObj.qCanvas.axes.set_ylim(xmin, ymax) # self.canvasObj.qCanvas.axes.tick_params(bottom=True, top=False, width=1, colors='black') # self.canvasObj.qCanvas.axes.tick_params(left=True, right=False, width=1, colors='black') # self.canvasObj.qCanvas.axes.tick_params(top='off',bottom='on',left='on',right='off') # top和right轴标签默认不显示 # self.canvasObj.qCanvas.axes.tick_params(bottom=False,top = False,left=True, right=False) self.updata_canvas_signal.emit(id) self.canvasObj.qCanvas.figs.canvas.draw_idle() # self.canvasObj.qCanvas.figs.canvas.draw() # self.canvasObj.qCanvas.figs.canvas.flush_events() # 画布刷新self.figs.canvas # self.canvasObj.qCanvas.figs.savefig("./temp save files/"+self.filePrefix+".png",dpi=100,bbox_inches="tight") def plot_axis(self): """ BUG: 绘图数过多时报错Traceback (most recent call last): File "e:\Study\Data_Visualization ui_pyqt5\Data_Visualization\V2.0\model\Thread.py", line 145, in run self.plotObj_test.plotJPG(self.id ) File "e:\Study\Data_Visualization ui_pyqt5\Data_Visualization\V2.0\model\plot.py", line 408, in plotJPG self.plot_axis() File "e:\Study\Data_Visualization ui_pyqt5\Data_Visualization\V2.0\model\plot.py", line 479, in plot_axis w_p1_xmax = max(self.WALL_P1_x) ValueError: max() arg is an empty sequence """ # 坐标轴 if (self.xmin == None) & (self.xmax == None) & (self.ymin == None) & (self.ymax == None): # 若未传入min、max参数,进行计算 # 计算xmax、ymax b_xmax = max(self.BALL_x) b_ymax = max(self.BALL_y) w_p1_xmax = max(self.WALL_P1_x) w_p2_xmax = max(self.WALL_P2_x) w_p1_ymax = max(self.WALL_P1_y) w_p2_ymax = max(self.WALL_P2_y) w_xmax = max(w_p1_xmax, w_p2_xmax) w_ymax = max(w_p1_ymax, w_p2_ymax) self.xmax = max(b_xmax, w_xmax) self.ymax = max(b_ymax, w_ymax) # 计算xmin、ymin b_xmin = min(self.BALL_x) b_ymin = min(self.BALL_y) w_p1_xmin = min(self.WALL_P1_x) w_p2_xmin = min(self.WALL_P2_x) w_p1_ymin = min(self.WALL_P1_y) w_p2_ymin = min(self.WALL_P2_y) w_xmin = min(w_p1_xmin, w_p2_xmin) w_ymin = min(w_p1_ymin, w_p2_ymin) self.xmin = min(b_xmin, w_xmin) self.ymin = min(b_ymin, w_ymin) # 坐标轴等比例缩放 self.canvasObj.qCanvas.axes.axis('scaled') # 设置 x轴、y轴范围 self.canvasObj.qCanvas.axes.set_xlim(self.xmin, self.xmax) self.canvasObj.qCanvas.axes.set_ylim(self.xmin, self.ymax) # 单位 def unitsformat(x, pos): return '{:n}'.format(x / self.units) xmajorformatter = FuncFormatter(unitsformat) self.canvasObj.qCanvas.axes.xaxis.set_major_formatter(xmajorformatter) ymajorformatter = FuncFormatter(unitsformat) self.canvasObj.qCanvas.axes.yaxis.set_major_formatter(ymajorformatter) # 修改主刻度 xmajorLocator = MultipleLocator( self.mainTickInterval) # 将x主刻度标签设置为20的倍数 # xmajorFormatter = FormatStrFormatter('%5.1f') # 设置x轴标签文本的格式 ymajorLocator = MultipleLocator( self.mainTickInterval) # 将y轴主刻度标签设置为0.5的倍数 # ymajorFormatter = FormatStrFormatter('%1.1f') # 设置y轴标签文本的格式 # 设置主刻度标签的位置,标签文本的格式 self.canvasObj.qCanvas.axes.xaxis.set_major_locator(xmajorLocator) # self.canvasObj.qCanvas.axes.xaxis.set_major_formatter(xmajorFormatter) self.canvasObj.qCanvas.axes.yaxis.set_major_locator(ymajorLocator) # self.canvasObj.qCanvas.axes.yaxis.set_major_formatter(ymajorFormatter) # 修改次刻度 xminorLocator = MultipleLocator(self.minorTickInterval) yminorLocator = MultipleLocator(self.minorTickInterval) self.canvasObj.qCanvas.axes.xaxis.set_minor_locator(xminorLocator) self.canvasObj.qCanvas.axes.yaxis.set_minor_locator(yminorLocator) # 设置标签label的字体大小 self.canvasObj.qCanvas.axes.tick_params( axis='x', labelsize=self.xTextFontSize) self.canvasObj.qCanvas.axes.tick_params( axis='y', labelsize=self.yTextFontSize) # 坐标轴边框显示/隐藏 self.canvasObj.qCanvas.axes.spines['top'].set_visible(self.isShowTop) self.canvasObj.qCanvas.axes.spines['right'].set_visible( self.isShowRight) self.canvasObj.qCanvas.axes.spines['bottom'].set_visible( self.isShowBottom) self.canvasObj.qCanvas.axes.spines['left'].set_visible(self.isShowLeft) # 计算图片尺寸 wi = self.xmax - self.xmin hi = self.ymax - self.ymin wcm = self.pagesize winch = wcm / 2.54 hinch = (winch) / wi * hi self.canvasObj.qCanvas.figs.set_size_inches(w=winch, h=hinch) class pg_plot(QObject): updata_progressbar_signal = pyqtSignal(int) updata_canvas_signal = pyqtSignal(int) begin_plot_signal = pyqtSignal(int) updata_pg_circle_signal = pyqtSignal(list) updata_pg_wall_signal = pyqtSignal(list) def __init__(self, param_list, plot_widget, filepath): super().__init__() self.plot_widget = plot_widget self.param_list = param_list self.filepath = filepath # 绘图参数 self.xmove = self.param_list[0] self.ymove = self.param_list[1] self.xmin = self.param_list[2] self.xmax = self.param_list[3] self.ymin = self.param_list[4] self.ymax = self.param_list[5] self.ballStyle = self.param_list[6] self.wallShow = self.param_list[7] self.wallLineSize = self.param_list[8] self.colorStyle = self.param_list[9] self.titleText = self.param_list[10] self.titleTextFontSize = self.param_list[11] self.xText = self.param_list[12] self.xTextFontSize = self.param_list[13] self.yText = self.param_list[14] self.yTextFontSize = self.param_list[15] self.mainTickInterval = self.param_list[16] self.minorTickInterval = self.param_list[17] self.isShowTop = self.param_list[18] self.isShowBottom = self.param_list[19] self.isShowLeft = self.param_list[20] self.isShowRight = self.param_list[21] self.units = self.param_list[22] # 图片尺寸 self.pagesize = 14 def readData(self): filename = os.path.split(self.filepath)[1] self.filePrefix = os.path.splitext(filename)[0] flag = 0 self.WALL = [] self.BALL = [] self.CurrentStep = 0 self.BallNum = 0 "" ZDEM_File = open(self.filepath, 'r') for line in ZDEM_File: # 逐行读取文件 if "current_step" in line: # 当前所在步数 step = line.split() # 将该行(list)以空格“ ”进行切片 self.CurrentStep = step[-1] # 取step的最后一个元素作为步数 if "ball num" in line: # 获取颗粒个数 ball_num = line.split() self.BallNum = ball_num[-1] if " index id P1[0]" in line: # 标记wall数据开始 flag = 1 continue if " index id xF" in line: # 当读取到此行时,含wall坐标的数据结束 flag = 0 if " index id x" in line: # 标记ball数据开始 flag = 2 continue if " index id m" in line: # 当读取到此行时,含ball坐标的数据结束 flag = 0 if flag == 0: continue if flag == 1: wall = line.split() # 将该行(list)以空格“ ”进行切片 # 读取第3到第6列,并用for循环把字符串转变为浮点型 wall = [float(i) for i in wall[2:6]] self.WALL.append(wall) # wall两点p1、p2的x、y坐标 if flag == 2: ball = line.split() # 将该行(list)以空格“ ”进行切片 ball = [float(i) for i in ball[2:6]] self.BALL.append(ball) # ball的x、y坐标以及半径、颜色 del self.WALL[-1] # 删除最后的空行 del self.BALL[-1] # 删除最后的空行 ZDEM_File.close() # 关闭对象,避免占用过多资源 # 转换为numpy数组 self.WALL, self.BALL, self.CurrentStep = np.array( self.WALL), np.array(self.BALL), np.array(self.CurrentStep) # ZDEM颜色的RGB列表 ZDEMColor_num = np.array([[0.85, 0.85, 0.85], [0.00, 1.00, 0.00], [1.00, 1.00, 0.00], [1.00, 0.00, 0.00], [0.90, 0.90, 0.90], [0.15, 0.15, 0.15], [0.50, 0.50, 0.50], [0.00, 0.00, 1.00], [0.00, 1.00, 1.00], [1.00, 0.00, 1.00]]) ZDEMColor_code = ['#D9D9D9', '#00FF00', '#FFFF00', '#FF0000', '#F5F5F5', '#262626', '#808080', '#0000FF', '#00FFFF', '#FF00FF'] # 读取数组对应需要的元素 self.BALL_x = self.BALL[:, 0] self.BALL_y = self.BALL[:, 1] self.BALL_r = self.BALL[:, 2] self.BALL_c = self.BALL[:, 3] self.WALL_P1_x = self.WALL[4:7, 0] self.WALL_P1_y = self.WALL[4:7, 1] self.WALL_P2_x = self.WALL[4:7, 2] self.WALL_P2_y = self.WALL[4:7, 3] # 进行偏移量修改 for i in range(len(self.WALL_P1_x)): self.WALL_P1_x[i] = self.WALL_P1_x[i] + self.xmove self.WALL_P1_y[i] = self.WALL_P1_y[i] + self.ymove self.WALL_P2_x[i] = self.WALL_P2_x[i] + self.xmove self.WALL_P2_y[i] = self.WALL_P2_y[i] + self.ymove for i in range(len(self.BALL_x)): self.BALL_x[i] = self.BALL_x[i] + self.xmove self.BALL_y[i] = self.BALL_y[i] + self.ymove # self.begin_plot_signal.emit(id) # 发送信号:开始绘图 self.ball_c = [] # 颜色 #xxxxxx格式 for i in range(len(self.BALL_x)): color_num = self.BALL_c[i] color_num = int(color_num) ballColor = ZDEMColor_code[color_num] self.ball_c.append(ballColor) def plot_circle(self,id): """ 使用QGraphicsEllipseItem绘制圆 Args: id ([type]): [description] """ self.plot_axis() circle_list = [] wall_list = [] # 颗粒 for i in range(len(self.BALL_x)): x = self.BALL_x[i] y = self.BALL_y[i] r = self.BALL_r[i] color = self.ball_c[i] circle = pg.QtGui.QGraphicsEllipseItem(x - r, y - r, 2 * r, 2 * r) circle.setPen(pg.mkPen(color=color,width=0)) circle.setBrush(pg.mkBrush(color)) circle_list.append(circle) self.plot_widget.addItem(circle) # self.updata_pg_circle_signal.emit(circle_list) # 绘制墙 if (self.wallShow == True): for n in range(len(self.WALL_P1_x)): p1x = self.WALL_P1_x[n] p1y = self.WALL_P1_y[n] p2x = self.WALL_P2_x[n] p2y = self.WALL_P2_y[n] p12x = [p1x, p2x] p12y = [p1y, p2y] # plot_wall_item = pg.PlotItem(x=p12x,y=p12y,pen=pg.mkPen(width=3,color='k')) self.plot_widget.plot(x=p12x,y=p12y,pen=pg.mkPen(width=3,color='k')) #线条粗细为2 # wall_list.append(plot_wall_item) # self.updata_pg_wall_signal.emit(wall_list) # 发送信号,绘图结束 self.updata_progressbar_signal.emit(id) def plot_scatter(self,id): self.plot_axis() self.plot_item = pg.ScatterPlotItem( size=5, pen=pg.mkPen(None), ) self.plot_item.addPoints( x=self.BALL_x, y=self.BALL_y, brush=self.ball_c ) self.plot_widget.addItem(self.plot_item) # 绘制墙 if (self.wallShow == True): for n in range(len(self.WALL_P1_x)): p1x = self.WALL_P1_x[n] p1y = self.WALL_P1_y[n] p2x = self.WALL_P2_x[n] p2y = self.WALL_P2_y[n] p12x = [p1x, p2x] p12y = [p1y, p2y] self.plot_widget.plot(x=p12x,y=p12y,pen=pg.mkPen(width=2)) #线条粗细为2 # 发送信号,绘图结束 self.updata_progressbar_signal.emit(id) def plot_axis(self): if (self.xmin == None) & (self.xmax == None) & (self.ymin == None) & (self.ymax == None): # 若未传入min、max参数,进行计算 # 计算xmax、ymax b_xmax = max(self.BALL_x) b_ymax = max(self.BALL_y) w_p1_xmax = max(self.WALL_P1_x) w_p2_xmax = max(self.WALL_P2_x) w_p1_ymax = max(self.WALL_P1_y) w_p2_ymax = max(self.WALL_P2_y) w_xmax = max(w_p1_xmax, w_p2_xmax) w_ymax = max(w_p1_ymax, w_p2_ymax) self.xmax = max(b_xmax, w_xmax) self.ymax = max(b_ymax, w_ymax) # 计算xmin、ymin b_xmin = min(self.BALL_x) b_ymin = min(self.BALL_y) w_p1_xmin = min(self.WALL_P1_x) w_p2_xmin = min(self.WALL_P2_x) w_p1_ymin = min(self.WALL_P1_y) w_p2_ymin = min(self.WALL_P2_y) w_xmin = min(w_p1_xmin, w_p2_xmin) w_ymin = min(w_p1_ymin, w_p2_ymin) self.xmin = min(b_xmin, w_xmin) self.ymin = min(b_ymin, w_ymin) self.plot_widget.setXRange(self.xmin, self.xmax,padding=0) self.plot_widget.setYRange(self.ymin, self.ymax,padding=0) self.plot_widget.showAxis('right') self.plot_widget.showAxis('top') ``` #### File: ZDEM_View/UI/leftBar.py ```python import os from matplotlib.ticker import FuncFormatter, MultipleLocator from model.Thread import PlotThread import numpy as np from PyQt5 import QtGui, QtWidgets from PyQt5 import QtCore from PyQt5.QtCore import QSize, Qt class leftBar(): toolsBox_page_style = ("QWidget {" "background-color: #ebf5ff;" "}") def __init__(self,leftFrame,myUi): self.leftFrame = leftFrame self.myUi = myUi self.leftFrame.setMaximumWidth(350) self.leftFrame_HLayout = QtWidgets.QHBoxLayout(self.leftFrame) self.leftFrame_HLayout.setSpacing(0) self.leftFrame_HLayout.setContentsMargins(0,0,0,0) self.leftFrame_HLayout.setAlignment(QtCore.Qt.AlignCenter) self.left_list_widget = QtWidgets.QListWidget(self.leftFrame) self.left_stacked_widget = QtWidgets.QStackedWidget(self.leftFrame) self.left_stacked_widget.setContentsMargins(0,0,0,0) self.leftFrame_HLayout.addWidget(self.left_list_widget) self.leftFrame_HLayout.addWidget(self.left_stacked_widget) QtCore.QMetaObject.connectSlotsByName(self.leftFrame) # init self.init_list_widget() self.init_dataView() self.init_dataLog() self.init_paramWidgets() self.init_export() self.retranslateUi() # self.left_list_widget.setCurrentRow(0) def init_list_widget(self): self.left_list_widget.setFrameShape(QtWidgets.QListWidget.NoFrame) # 去除边框 self.left_list_widget.setVerticalScrollBarPolicy(Qt.ScrollBarPolicy.ScrollBarAlwaysOff) # 隐藏滚动条 self.left_list_widget.setHorizontalScrollBarPolicy(Qt.ScrollBarPolicy.ScrollBarAlwaysOff) # 字体 font_1 = QtGui.QFont() font_1.setFamily("黑体") font_1.setPointSize(12) font_1.setBold(False) self.left_list_widget.setFont(font_1) # dataView_icon = QtGui.QIcon() dataView_icon.addPixmap(QtGui.QPixmap("./icons/dataView.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.dataView_item = QtWidgets.QListWidgetItem(dataView_icon,'文件管理',self.left_list_widget) self.dataView_item.setSizeHint(QSize(30,60)) self.dataView_item.setTextAlignment(QtCore.Qt.AlignCenter) # dataLog_icon = QtGui.QIcon() dataLog_icon.addPixmap(QtGui.QPixmap("./icons/dataLog.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.dataLog_item = QtWidgets.QListWidgetItem(dataLog_icon,'数据信息',self.left_list_widget) self.dataLog_item.setSizeHint(QSize(30,60)) self.dataLog_item.setTextAlignment(QtCore.Qt.AlignCenter) # param_icon = QtGui.QIcon() param_icon.addPixmap(QtGui.QPixmap("./icons/figureParam.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.param_item = QtWidgets.QListWidgetItem(param_icon,'图像参数',self.left_list_widget) self.param_item.setSizeHint(QSize(30,60)) self.param_item.setTextAlignment(QtCore.Qt.AlignCenter) # export_icon = QtGui.QIcon() export_icon.addPixmap(QtGui.QPixmap("./icons/save.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.export_item = QtWidgets.QListWidgetItem(export_icon,'导出',self.left_list_widget) self.export_item.setSizeHint(QSize(30,60)) self.export_item.setTextAlignment(QtCore.Qt.AlignCenter) self.export_item.whatsThis() # 添加点击事件 self.left_list_widget.itemClicked.connect(self.item_clicked) def init_dataView(self): self.left_stacked_widget.addWidget(self.myUi.dataViewFrame) self.left_stacked_widget.setMaximumWidth(230) def init_dataLog(self): self.export_frame = QtWidgets.QFrame() self.export_frame.setMaximumWidth(230) self.export_frame.setMinimumWidth(230) self.export_frame.setObjectName("export_frame") self.dataLog_verticalLayout = QtWidgets.QVBoxLayout(self.export_frame) self.dataLog_verticalLayout.setContentsMargins(1, 1, 1, 1) self.dataLog_verticalLayout.setObjectName("dataLog_verticalLayout") self.label_dataText = QtWidgets.QLabel(self.export_frame) font = QtGui.QFont() font.setFamily("黑体") font.setPointSize(12) font.setBold(False) font.setWeight(50) self.label_dataText.setFont(font) self.label_dataText.setAlignment(QtCore.Qt.AlignCenter) self.label_dataText.setObjectName("label_dataText") self.dataLog_verticalLayout.addWidget(self.label_dataText) self.textBrowser_data = QtWidgets.QTextBrowser(self.export_frame) font = QtGui.QFont() font.setFamily("黑体") font.setPointSize(12) font.setBold(False) font.setWeight(50) self.textBrowser_data.setFont(font) self.textBrowser_data.setFrameShape(QtWidgets.QFrame.NoFrame) self.textBrowser_data.setHorizontalScrollBarPolicy( QtCore.Qt.ScrollBarAlwaysOn) self.textBrowser_data.setObjectName("textBrowser_data") self.dataLog_verticalLayout.addWidget(self.textBrowser_data) spacerItem = QtWidgets.QSpacerItem( 20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.dataLog_verticalLayout.addItem(spacerItem) # 添加 self.left_stacked_widget.addWidget(self.export_frame) def init_paramWidgets(self): self.param_widget = QtWidgets.QWidget() self.param_widget.setObjectName("param_widget") self.verticalLayout = QtWidgets.QVBoxLayout(self.param_widget) self.verticalLayout.setObjectName("verticalLayout") self.verticalLayout.setContentsMargins(1,1,1,1) self.label_paramTitle = QtWidgets.QLabel(self.param_widget) self.label_paramTitle.setAlignment(QtCore.Qt.AlignCenter) font = QtGui.QFont() font.setFamily("黑体") font.setPointSize(12) font.setBold(False) font.setWeight(50) self.label_paramTitle.setFont(font) self.label_paramTitle.setObjectName("label_paramTitle") self.verticalLayout.addWidget(self.label_paramTitle) self.toolBox_figureParam = QtWidgets.QToolBox(self.param_widget) self.toolBox_figureParam.setFont(font) # self.toolBox_figureParam.setMaximumWidth(480) self.toolBox_figureParam.setToolTip("") self.toolBox_figureParam.setFrameShape(QtWidgets.QFrame.NoFrame) self.toolBox_figureParam.setObjectName("toolBox_figureParam") self.tools_move = QtWidgets.QWidget() self.tools_move.setStyleSheet(self.toolsBox_page_style) # self.tools_move.setGeometry(QtCore.QRect(0, 0, 301, 372)) self.tools_move.setToolTip("") self.tools_move.setWhatsThis("") self.tools_move.setAccessibleDescription("") self.tools_move.setAutoFillBackground(True) self.tools_move.setObjectName("tools_move") self.gridLayout_5 = QtWidgets.QGridLayout(self.tools_move) self.gridLayout_5.setObjectName("gridLayout_5") self.lineEdit_xmove = QtWidgets.QLineEdit(self.tools_move) self.lineEdit_xmove.setObjectName("lineEdit_xmove") # self.lineEdit_xmove.setText() self.gridLayout_5.addWidget(self.lineEdit_xmove, 0, 1, 1, 1) self.label_ymove = QtWidgets.QLabel(self.tools_move) self.label_ymove.setObjectName("label_ymove") self.gridLayout_5.addWidget(self.label_ymove, 1, 0, 1, 1) self.label_xmove = QtWidgets.QLabel(self.tools_move) self.label_xmove.setToolTip("") self.label_xmove.setObjectName("label_xmove") self.gridLayout_5.addWidget(self.label_xmove, 0, 0, 1, 1) self.lineEdit_ymove = QtWidgets.QLineEdit(self.tools_move) self.lineEdit_ymove.setObjectName("lineEdit_ymove") self.gridLayout_5.addWidget(self.lineEdit_ymove, 1, 1, 1, 1) spacerItem1 = QtWidgets.QSpacerItem( 20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout_5.addItem(spacerItem1, 2, 1, 1, 1) self.toolBox_figureParam.addItem(self.tools_move, "") self.page_axisRange = QtWidgets.QWidget() self.page_axisRange.setObjectName("page_axisRange") self.page_axisRange.setStyleSheet(self.toolsBox_page_style) self.gridLayout_3 = QtWidgets.QGridLayout(self.page_axisRange) self.gridLayout_3.setObjectName("gridLayout_3") self.yminLabel = QtWidgets.QLabel(self.page_axisRange) self.yminLabel.setObjectName("yminLabel") self.gridLayout_3.addWidget(self.yminLabel, 2, 0, 1, 1) self.xmax_lineEdit = QtWidgets.QLineEdit(self.page_axisRange) self.xmax_lineEdit.setObjectName("xmax_lineEdit") self.gridLayout_3.addWidget(self.xmax_lineEdit, 1, 1, 1, 1) self.xmaxLabel = QtWidgets.QLabel(self.page_axisRange) self.xmaxLabel.setObjectName("xmaxLabel") self.gridLayout_3.addWidget(self.xmaxLabel, 1, 0, 1, 1) self.xminLabel = QtWidgets.QLabel(self.page_axisRange) self.xminLabel.setObjectName("xminLabel") self.gridLayout_3.addWidget(self.xminLabel, 0, 0, 1, 1) self.xmin_lineEdit = QtWidgets.QLineEdit(self.page_axisRange) self.xmin_lineEdit.setObjectName("xmin_lineEdit") self.gridLayout_3.addWidget(self.xmin_lineEdit, 0, 1, 1, 1) self.ymaxLabel = QtWidgets.QLabel(self.page_axisRange) self.ymaxLabel.setObjectName("ymaxLabel") self.gridLayout_3.addWidget(self.ymaxLabel, 3, 0, 1, 1) self.ymin_lineEdit = QtWidgets.QLineEdit(self.page_axisRange) self.ymin_lineEdit.setObjectName("ymin_lineEdit") self.gridLayout_3.addWidget(self.ymin_lineEdit, 2, 1, 1, 1) self.ymax_lineEdit = QtWidgets.QLineEdit(self.page_axisRange) self.ymax_lineEdit.setObjectName("ymax_lineEdit") self.gridLayout_3.addWidget(self.ymax_lineEdit, 3, 1, 1, 1) spacerItem2 = QtWidgets.QSpacerItem( 20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout_3.addItem(spacerItem2, 4, 0, 1, 1) self.toolBox_figureParam.addItem(self.page_axisRange, "") self.page = QtWidgets.QWidget() self.page.setObjectName("page") self.page.setStyleSheet(self.toolsBox_page_style) self.gridLayout_10 = QtWidgets.QGridLayout(self.page) self.gridLayout_10.setObjectName("gridLayout_10") self.Button_plotPoint = QtWidgets.QRadioButton(self.page) icon1 = QtGui.QIcon() icon1.addPixmap(QtGui.QPixmap("./icons/plotPoint.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.Button_plotPoint.setIcon(icon1) self.Button_plotPoint.setObjectName("Button_plotPoint") self.gridLayout_10.addWidget(self.Button_plotPoint, 1, 0, 1, 1) self.Button_plotCircle = QtWidgets.QRadioButton(self.page) icon2 = QtGui.QIcon() icon2.addPixmap(QtGui.QPixmap("./icons/plot.ico"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.Button_plotCircle.setIcon(icon2) self.Button_plotCircle.setObjectName("Button_plotCircle") self.gridLayout_10.addWidget(self.Button_plotCircle, 0, 0, 1, 1) spacerItem3 = QtWidgets.QSpacerItem( 20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout_10.addItem(spacerItem3, 2, 0, 1, 1) self.toolBox_figureParam.addItem(self.page, "") self.tools_plotWall = QtWidgets.QWidget() self.tools_plotWall.setGeometry(QtCore.QRect(0, 0, 301, 372)) self.tools_plotWall.setObjectName("tools_plotWall") self.tools_plotWall.setStyleSheet(self.toolsBox_page_style) self.gridLayout_9 = QtWidgets.QGridLayout(self.tools_plotWall) self.gridLayout_9.setObjectName("gridLayout_9") self.SpinBox_lineSize = QtWidgets.QDoubleSpinBox(self.tools_plotWall) self.SpinBox_lineSize.setFrame(True) self.SpinBox_lineSize.setButtonSymbols( QtWidgets.QAbstractSpinBox.UpDownArrows) self.SpinBox_lineSize.setSingleStep(0.1) self.SpinBox_lineSize.setProperty("value", 0.8) self.SpinBox_lineSize.setObjectName("SpinBox_lineSize") self.gridLayout_9.addWidget(self.SpinBox_lineSize, 1, 1, 1, 1) spacerItem4 = QtWidgets.QSpacerItem( 20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout_9.addItem(spacerItem4, 5, 1, 1, 1) self.label_lineSize = QtWidgets.QLabel(self.tools_plotWall) self.label_lineSize.setObjectName("label_lineSize") self.gridLayout_9.addWidget(self.label_lineSize, 1, 0, 1, 1) self.checkBox_plotWall = QtWidgets.QCheckBox(self.tools_plotWall) self.checkBox_plotWall.setMaximumSize(QtCore.QSize(100, 16777215)) self.checkBox_plotWall.setChecked(True) self.checkBox_plotWall.setObjectName("checkBox_plotWall") self.gridLayout_9.addWidget(self.checkBox_plotWall, 0, 0, 1, 1) self.toolBox_figureParam.addItem(self.tools_plotWall, "") self.page_color = QtWidgets.QWidget() self.page_color.setStyleSheet(self.toolsBox_page_style) self.page_color.setGeometry(QtCore.QRect(0, 0, 301, 372)) self.page_color.setObjectName("page_color") self.gridLayout = QtWidgets.QGridLayout(self.page_color) self.gridLayout.setObjectName("gridLayout") self.label_color = QtWidgets.QLabel(self.page_color) self.label_color.setObjectName("label_color") self.gridLayout.addWidget(self.label_color, 0, 0, 1, 1) self.comboBox_color = QtWidgets.QComboBox(self.page_color) self.comboBox_color.setObjectName("comboBox_color") self.comboBox_color.addItem("") self.gridLayout.addWidget(self.comboBox_color, 0, 1, 1, 1) self.Button_importColor = QtWidgets.QPushButton(self.page_color) self.Button_importColor.setObjectName("Button_importColor") self.gridLayout.addWidget(self.Button_importColor, 1, 1, 1, 1) spacerItem5 = QtWidgets.QSpacerItem( 20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout.addItem(spacerItem5, 2, 1, 1, 1) self.toolBox_figureParam.addItem(self.page_color, "") self.page_figureTitle = QtWidgets.QWidget() self.page_figureTitle.setStyleSheet(self.toolsBox_page_style) self.page_figureTitle.setObjectName("page_figureTitle") self.gridLayout_2 = QtWidgets.QGridLayout(self.page_figureTitle) self.gridLayout_2.setObjectName("gridLayout_2") self.lineEdit_title = QtWidgets.QLineEdit(self.page_figureTitle) self.lineEdit_title.setObjectName("lineEdit_title") self.gridLayout_2.addWidget(self.lineEdit_title, 0, 1, 1, 1) self.fontComboBox_titleFont = QtWidgets.QFontComboBox( self.page_figureTitle) sizePolicy = QtWidgets.QSizePolicy( QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth( self.fontComboBox_titleFont.sizePolicy().hasHeightForWidth()) self.fontComboBox_titleFont.setSizePolicy(sizePolicy) self.fontComboBox_titleFont.setMaximumSize(QtCore.QSize(200, 16777215)) self.fontComboBox_titleFont.setObjectName("fontComboBox_titleFont") self.gridLayout_2.addWidget(self.fontComboBox_titleFont, 1, 1, 1, 1) self.label_titleFont = QtWidgets.QLabel(self.page_figureTitle) self.label_titleFont.setObjectName("label_titleFont") self.gridLayout_2.addWidget(self.label_titleFont, 1, 0, 1, 1) self.label_titleFontSize = QtWidgets.QLabel(self.page_figureTitle) self.label_titleFontSize.setObjectName("label_titleFontSize") self.gridLayout_2.addWidget(self.label_titleFontSize, 2, 0, 1, 1) self.label_title = QtWidgets.QLabel(self.page_figureTitle) self.label_title.setObjectName("label_title") self.gridLayout_2.addWidget(self.label_title, 0, 0, 1, 1) self.spinBox_title = QtWidgets.QSpinBox(self.page_figureTitle) self.spinBox_title.setPrefix("") self.spinBox_title.setSingleStep(1) self.spinBox_title.setProperty("value", 12) self.spinBox_title.setObjectName("spinBox_title") self.gridLayout_2.addWidget(self.spinBox_title, 2, 1, 1, 1) spacerItem6 = QtWidgets.QSpacerItem( 20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout_2.addItem(spacerItem6, 3, 1, 1, 1) self.toolBox_figureParam.addItem(self.page_figureTitle, "") self.page_axisTick = QtWidgets.QWidget() self.page_axisTick.setStyleSheet(self.toolsBox_page_style) self.page_axisTick.setObjectName("page_axisTick") self.gridLayout_6 = QtWidgets.QGridLayout(self.page_axisTick) self.gridLayout_6.setObjectName("gridLayout_6") self.label_yName = QtWidgets.QLabel(self.page_axisTick) self.label_yName.setObjectName("label_yName") self.gridLayout_6.addWidget(self.label_yName, 4, 0, 1, 1) self.spinBox_xTickSize = QtWidgets.QSpinBox(self.page_axisTick) self.spinBox_xTickSize.setPrefix("") self.spinBox_xTickSize.setSingleStep(1) self.spinBox_xTickSize.setProperty("value", 9) self.spinBox_xTickSize.setObjectName("spinBox_xTickSize") self.gridLayout_6.addWidget(self.spinBox_xTickSize, 2, 1, 1, 1) self.label_xName = QtWidgets.QLabel(self.page_axisTick) self.label_xName.setObjectName("label_xName") self.gridLayout_6.addWidget(self.label_xName, 0, 0, 1, 1) self.label_xTickFont = QtWidgets.QLabel(self.page_axisTick) self.label_xTickFont.setObjectName("label_xTickFont") self.gridLayout_6.addWidget(self.label_xTickFont, 1, 0, 1, 1) self.label_yTickSize = QtWidgets.QLabel(self.page_axisTick) self.label_yTickSize.setObjectName("label_yTickSize") self.gridLayout_6.addWidget(self.label_yTickSize, 6, 0, 1, 1) self.label_yTickFont = QtWidgets.QLabel(self.page_axisTick) self.label_yTickFont.setObjectName("label_yTickFont") self.gridLayout_6.addWidget(self.label_yTickFont, 5, 0, 1, 1) self.label_minorTickInterval = QtWidgets.QLabel(self.page_axisTick) self.label_minorTickInterval.setObjectName("label_minorTickInterval") self.gridLayout_6.addWidget(self.label_minorTickInterval, 10, 0, 1, 2) self.line_2 = QtWidgets.QFrame(self.page_axisTick) self.line_2.setFrameShadow(QtWidgets.QFrame.Plain) self.line_2.setFrameShape(QtWidgets.QFrame.HLine) self.line_2.setObjectName("line_2") self.gridLayout_6.addWidget(self.line_2, 7, 0, 1, 2) self.line = QtWidgets.QFrame(self.page_axisTick) self.line.setFrameShadow(QtWidgets.QFrame.Plain) self.line.setLineWidth(1) self.line.setFrameShape(QtWidgets.QFrame.HLine) self.line.setObjectName("line") self.gridLayout_6.addWidget(self.line, 3, 0, 1, 2) self.lineEdit_xName = QtWidgets.QLineEdit(self.page_axisTick) self.lineEdit_xName.setObjectName("lineEdit_xName") self.gridLayout_6.addWidget(self.lineEdit_xName, 0, 1, 1, 1) self.label_mainTickInterval = QtWidgets.QLabel(self.page_axisTick) self.label_mainTickInterval.setObjectName("label_mainTickInterval") self.gridLayout_6.addWidget(self.label_mainTickInterval, 8, 0, 1, 2) self.lineEdit_yName = QtWidgets.QLineEdit(self.page_axisTick) self.lineEdit_yName.setObjectName("lineEdit_yName") self.gridLayout_6.addWidget(self.lineEdit_yName, 4, 1, 1, 1) self.label_xTickSzie = QtWidgets.QLabel(self.page_axisTick) self.label_xTickSzie.setObjectName("label_xTickSzie") self.gridLayout_6.addWidget(self.label_xTickSzie, 2, 0, 1, 1) self.spinBox_yTickSize = QtWidgets.QSpinBox(self.page_axisTick) self.spinBox_yTickSize.setPrefix("") self.spinBox_yTickSize.setSingleStep(1) self.spinBox_yTickSize.setProperty("value", 9) self.spinBox_yTickSize.setObjectName("spinBox_yTickSize") self.gridLayout_6.addWidget(self.spinBox_yTickSize, 6, 1, 1, 1) self.fontComboBox_yTick = QtWidgets.QFontComboBox(self.page_axisTick) sizePolicy = QtWidgets.QSizePolicy( QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth( self.fontComboBox_yTick.sizePolicy().hasHeightForWidth()) self.fontComboBox_yTick.setSizePolicy(sizePolicy) self.fontComboBox_yTick.setMaximumSize(QtCore.QSize(220, 16777215)) self.fontComboBox_yTick.setObjectName("fontComboBox_yTick") self.gridLayout_6.addWidget(self.fontComboBox_yTick, 5, 1, 1, 1) self.fontComboBox_xTick = QtWidgets.QFontComboBox(self.page_axisTick) sizePolicy = QtWidgets.QSizePolicy( QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth( self.fontComboBox_xTick.sizePolicy().hasHeightForWidth()) self.fontComboBox_xTick.setSizePolicy(sizePolicy) self.fontComboBox_xTick.setMaximumSize(QtCore.QSize(220, 16777215)) self.fontComboBox_xTick.setObjectName("fontComboBox_xTick") self.gridLayout_6.addWidget(self.fontComboBox_xTick, 1, 1, 1, 2) spacerItem7 = QtWidgets.QSpacerItem( 20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout_6.addItem(spacerItem7, 12, 0, 1, 1) self.lineEdit_mainTickInterval = QtWidgets.QLineEdit( self.page_axisTick) self.lineEdit_mainTickInterval.setMaximumSize( QtCore.QSize(200, 16777215)) self.lineEdit_mainTickInterval.setObjectName( "lineEdit_mainTickInterval") self.gridLayout_6.addWidget(self.lineEdit_mainTickInterval, 9, 0, 1, 2) self.lineEdit_minorTickInterval = QtWidgets.QLineEdit( self.page_axisTick) self.lineEdit_minorTickInterval.setMaximumSize( QtCore.QSize(200, 16777215)) self.lineEdit_minorTickInterval.setObjectName( "lineEdit_minorTickInterval") self.gridLayout_6.addWidget( self.lineEdit_minorTickInterval, 11, 0, 1, 2) self.toolBox_figureParam.addItem(self.page_axisTick, "") self.page_showAxis = QtWidgets.QWidget() self.page_showAxis.setStyleSheet(self.toolsBox_page_style) self.page_showAxis.setObjectName("page_showAxis") self.gridLayout_7 = QtWidgets.QGridLayout(self.page_showAxis) self.gridLayout_7.setObjectName("gridLayout_7") self.checkBox_top = QtWidgets.QCheckBox(self.page_showAxis) self.checkBox_top.setChecked(True) self.checkBox_top.setObjectName("checkBox_top") self.gridLayout_7.addWidget(self.checkBox_top, 0, 0, 1, 1) self.checkBox_bottom = QtWidgets.QCheckBox(self.page_showAxis) self.checkBox_bottom.setChecked(True) self.checkBox_bottom.setObjectName("checkBox_bottom") self.gridLayout_7.addWidget(self.checkBox_bottom, 0, 1, 1, 1) self.checkBox_left = QtWidgets.QCheckBox(self.page_showAxis) self.checkBox_left.setChecked(True) self.checkBox_left.setObjectName("checkBox_left") self.gridLayout_7.addWidget(self.checkBox_left, 1, 0, 1, 1) self.checkBox_right = QtWidgets.QCheckBox(self.page_showAxis) self.checkBox_right.setChecked(True) self.checkBox_right.setObjectName("checkBox_right") self.gridLayout_7.addWidget(self.checkBox_right, 1, 1, 1, 1) spacerItem8 = QtWidgets.QSpacerItem( 20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout_7.addItem(spacerItem8, 2, 0, 1, 1) self.toolBox_figureParam.addItem(self.page_showAxis, "") self.page_units = QtWidgets.QWidget() self.page_units.setStyleSheet(self.toolsBox_page_style) self.page_units.setObjectName("page_units") self.gridLayout_8 = QtWidgets.QGridLayout(self.page_units) self.gridLayout_8.setObjectName("gridLayout_8") self.comboBox_units = QtWidgets.QComboBox(self.page_units) self.comboBox_units.setObjectName("comboBox_units") self.comboBox_units.addItem("") self.comboBox_units.addItem("") self.gridLayout_8.addWidget(self.comboBox_units, 0, 1, 1, 1) self.label_units = QtWidgets.QLabel(self.page_units) self.label_units.setObjectName("label_units") self.gridLayout_8.addWidget(self.label_units, 0, 0, 1, 1) spacerItem9 = QtWidgets.QSpacerItem( 20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout_8.addItem(spacerItem9, 1, 0, 1, 1) self.toolBox_figureParam.addItem(self.page_units, "") self.verticalLayout.addWidget(self.toolBox_figureParam) # 重绘功能 self.reDraw_buttton = QtWidgets.QPushButton( QtGui.QIcon("./icons/reDraw.png"), '重新绘图', self.param_widget) self.reDraw_action = QtWidgets.QAction(self.param_widget) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap("./icons/reDraw.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.reDraw_action.setIcon(icon) self.reDraw_action.setText('重新绘图') self.reDraw_action.setObjectName("reDraw_action") self.reDraw_buttton.addAction(self.reDraw_action) self.reDraw_buttton.setFont(font) # self.reDraw_buttton.setMaximumWidth(200) # 重置参数功能 self.reSet_button = QtWidgets.QPushButton( QtGui.QIcon("./icons/reSet.png"), '重置参数', self.param_widget) self.reSet_action = QtWidgets.QAction(self.param_widget) icon2 = QtGui.QIcon() icon2.addPixmap(QtGui.QPixmap("./icons/reSet.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.reSet_action.setIcon(icon2) self.reSet_action.setText('重新绘图') self.reSet_action.setObjectName("reSet_action") self.reSet_button.addAction(self.reSet_action) self.reSet_button.setFont(font) self.verticalLayout.addWidget(self.reSet_button) self.verticalLayout.addWidget(self.reDraw_buttton) spacerItem10 = QtWidgets.QSpacerItem( 20, 150, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) self.verticalLayout.addItem(spacerItem10) self.toolBox_figureParam.layout().setSpacing(1) self.left_stacked_widget.addWidget(self.param_widget) def init_export(self): self.export_widget = QtWidgets.QWidget() self.export_widget.setMaximumWidth(230) self.export_widget.setObjectName("export_widget") icon4 = QtGui.QIcon() font = QtGui.QFont() font.setFamily("黑体") font.setPointSize(12) font.setBold(False) font.setWeight(50) icon4.addPixmap(QtGui.QPixmap("./icons/save.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) # 为导出页添加控件 self.vLayout_export = QtWidgets.QVBoxLayout(self.export_widget) self.vLayout_export.setObjectName("vLayout_export") self.saveAll_button = QtWidgets.QPushButton( QtGui.QIcon("./icons/save.ico"), '保存全部图片', self.export_widget) self.saveAll_button.setFont(font) self.vLayout_export.addWidget(self.saveAll_button) self.left_stacked_widget.addWidget(self.export_widget) def item_clicked(self): item = self.left_list_widget.selectedItems()[0] if item.text() == '文件管理': self.switch_dataView() elif (item.text() == '数据信息'): self.switch_dataLog() elif item.text() == '图像参数': self.switch_paramWidget() else: self.switch_export() def switch_dataView(self): self.left_stacked_widget.setCurrentWidget(self.myUi.dataViewFrame) self.leftFrame.setMaximumWidth(350) self.leftFrame.setMinimumWidth(350) def switch_dataLog(self): self.left_stacked_widget.setCurrentWidget(self.export_frame) self.leftFrame.setMaximumWidth(350) self.leftFrame.setMinimumWidth(350) def switch_paramWidget(self): self.left_stacked_widget.setCurrentWidget(self.param_widget) self.left_stacked_widget.setMinimumWidth(380) self.left_stacked_widget.setMaximumWidth(380) self.leftFrame.setMaximumWidth(500) self.leftFrame.setMinimumWidth(500) def switch_export(self): self.left_stacked_widget.setCurrentWidget(self.export_widget) self.leftFrame.setMaximumWidth(350) self.leftFrame.setMinimumWidth(350) def getParam(self): # 默认参数表 paramList = [] xMove = None yMove = None xMin = 0.0 xMax = 0.0 yMin = 0.0 yMax = 0.0 ballStyle = '' isPlotWall = True wallLineSize = 0.8 colorStyle = 'ZDEMColor' titleText = '' titleTextFontSize = 12 xText = '' xTextFontSize = 9 yText = '' yTextFontSize = 9 mainTickInterval = 10000.0 minorTickInterval = 1000.0 isShowTop = True isShowBottom = True isShowLeft = True isShowRight = True unit = 1000 # 坐标偏移量 if self.lineEdit_xmove.text() != '': xMove = float(self.lineEdit_xmove.text()) if self.lineEdit_ymove.text() != '': yMove = float(self.lineEdit_ymove.text()) # 坐标轴范围 xMin = float(self.xmin_lineEdit.text()) xMax = float(self.xmax_lineEdit.text()) yMin = float(self.ymin_lineEdit.text()) yMax = float(self.ymax_lineEdit.text()) # 颗粒 if (self.Button_plotCircle.isChecked() == True) & (self.Button_plotPoint.isChecked() == False): ballStyle = 'circle' if (self.Button_plotCircle.isChecked() == False) & (self.Button_plotPoint.isChecked() == True): ballStyle = 'point' if (self.Button_plotCircle.isChecked() == True) & (self.Button_plotPoint.isChecked() == True): msg_box = QtWidgets.QMessageBox(QtWidgets.QMessageBox.Warning, '警告', '请选择颗粒样式') msg_box.exec_() if (self.Button_plotCircle.isChecked() == False) & (self.Button_plotPoint.isChecked() == False): msg_box1 = QtWidgets.QMessageBox(QtWidgets.QMessageBox.Warning, '警告', '请选择颗粒样式') msg_box1.exec_() # 墙 isPlotWall = self.checkBox_plotWall.isChecked() # 返回值为bool wallLineSize = self.SpinBox_lineSize.value() # 颜色设置 if (self.comboBox_color.currentText() == 'ZDEM默认颜色'): colorStyle = 'ZDEMColor' # 图名 !!!!暂时未实现自定义字体样式功能,x、y轴too titleText = self.lineEdit_title.text() titleTextFontSize = self.spinBox_title.value() # 轴标签 xText = self.lineEdit_xName.text() xTextFontSize = self.spinBox_xTickSize.value() yText = self.lineEdit_yName.text() yTextFontSize = self.spinBox_yTickSize.value() if self.lineEdit_mainTickInterval.text() != '': mainTickInterval = float(self.lineEdit_mainTickInterval.text()) if self.lineEdit_minorTickInterval.text() != '': minorTickInterval = float(self.lineEdit_minorTickInterval.text()) # 是否显示坐标轴 isShowTop = self.checkBox_top.isChecked() # bool isShowBottom = self.checkBox_bottom.isChecked() isShowLeft = self.checkBox_left.isChecked() isShowRight = self.checkBox_right.isChecked() # 单位 if self.comboBox_units.currentText() == 'km': unit = 1000 if self.comboBox_units.currentText() == 'm': unit = 1 # 将得到的参数存放到参数表 paramList.append(xMove) paramList.append(yMove) paramList.append(xMin) paramList.append(xMax) paramList.append(yMin) paramList.append(yMax) paramList.append(ballStyle) paramList.append(isPlotWall) paramList.append(wallLineSize) paramList.append(colorStyle) paramList.append(titleText) paramList.append(titleTextFontSize) paramList.append(xText) paramList.append(xTextFontSize) paramList.append(yText) paramList.append(yTextFontSize) paramList.append(mainTickInterval) paramList.append(minorTickInterval) paramList.append(isShowTop) paramList.append(isShowBottom) paramList.append(isShowLeft) paramList.append(isShowRight) paramList.append(unit) return paramList def reDraw(self): self.paramList = self.getParam() if self.paramList[6] == '': return False self.mplWidgetList = self.myUi.dataView.mplWidget_list self.list_select_files = self.myUi.dataView.list_select_files self.absulotePathList = self.myUi.dataView.absulotePathList if (self.paramList[0] is None) and (self.paramList[1] is None) and (self.paramList[7] == True) and (self.paramList[8] == 0.8): self.reDraw_axis() else: for i in range(len(self.list_select_files)): # 循环创建多个线程对象,添加到线程池 PlotALLThread = PlotThread( self.mplWidgetList[i], self.absulotePathList[i], self.myUi, i, paramList=self.paramList) PlotALLThread.plotObj_test.updata_canvas_signal.connect( self.myUi.dataView.updataCanvas) PlotALLThread.plotObj_test.begin_plot_signal.connect( self.myUi.dataView.beginPlot_labelupdata) self.myUi.dataView.poolManager.addThread( PlotALLThread) # 添加到线程池 PlotALLThread.autoDelete() # 线程执行完毕自动删除 self.myUi.dataView.poolManager.start() # 所有的绘图子线程已经添加到线程池,start开启执行 self.myUi.ProgressBar.statusLabel.setText("绘图中,请稍后...") def reDraw_axis(self): for i in range(len(self.list_select_files)): # 设置 x轴、y轴范围 self.mplWidgetList[i].qCanvas.axes.set_xlim( self.paramList[2], self.paramList[3]) self.mplWidgetList[i].qCanvas.axes.set_ylim( self.paramList[4], self.paramList[5]) # 单位 def unitsformat(x, pos): return '{:n}'.format(x / self.paramList[22]) xmajorformatter = FuncFormatter(unitsformat) self.mplWidgetList[i].qCanvas.axes.xaxis.set_major_formatter( xmajorformatter) ymajorformatter = FuncFormatter(unitsformat) self.mplWidgetList[i].qCanvas.axes.yaxis.set_major_formatter( ymajorformatter) # 修改主刻度 xmajorLocator = MultipleLocator( self.paramList[16]) # 将x主刻度标签设置为20的倍数 # xmajorFormatter = FormatStrFormatter('%5.1f') # 设置x轴标签文本的格式 ymajorLocator = MultipleLocator( self.paramList[16]) # 将y轴主刻度标签设置为0.5的倍数 # ymajorFormatter = FormatStrFormatter('%1.1f') # 设置y轴标签文本的格式 # 设置主刻度标签的位置,标签文本的格式 self.mplWidgetList[i].qCanvas.axes.xaxis.set_major_locator( xmajorLocator) # self.canvasObj.qCanvas.axes.xaxis.set_major_formatter(xmajorFormatter) self.mplWidgetList[i].qCanvas.axes.yaxis.set_major_locator( ymajorLocator) # self.canvasObj.qCanvas.axes.yaxis.set_major_formatter(ymajorFormatter) # 修改次刻度 xminorLocator = MultipleLocator(self.paramList[17]) yminorLocator = MultipleLocator(self.paramList[17]) self.mplWidgetList[i].qCanvas.axes.xaxis.set_minor_locator( xminorLocator) self.mplWidgetList[i].qCanvas.axes.yaxis.set_minor_locator( yminorLocator) # 设置标签label的字体大小 self.mplWidgetList[i].qCanvas.axes.tick_params( axis='x', labelsize=self.paramList[13]) self.mplWidgetList[i].qCanvas.axes.tick_params( axis='y', labelsize=self.paramList[15]) # 坐标轴边框显示/隐藏 self.mplWidgetList[i].qCanvas.axes.spines['top'].set_visible( self.paramList[18]) self.mplWidgetList[i].qCanvas.axes.spines['right'].set_visible( self.paramList[21]) self.mplWidgetList[i].qCanvas.axes.spines['bottom'].set_visible( self.paramList[19]) self.mplWidgetList[i].qCanvas.axes.spines['left'].set_visible( self.paramList[20]) # 计算图片尺寸 wi = self.paramList[3] - self.paramList[2] hi = self.paramList[5] - self.paramList[4] wcm = 14 winch = wcm/2.54 hinch = (winch+0.1)/wi*hi self.mplWidgetList[i].qCanvas.figs.set_size_inches( w=winch, h=hinch) self.mplWidgetList[i].qCanvas.figs.canvas.draw() # 画布刷新self.figs.canvas self.mplWidgetList[i].qCanvas.figs.canvas.flush_events() def saveAll(self): """ :return: """ QCanvas_list = [] QCanvas_list = self.myUi.dataView.QCanvas_list num = len(self.myUi.dataView.list_select_files) for i in range(num): QCanvas_list[i].saveFig() def retranslateUi(self): _translate = QtCore.QCoreApplication.translate self.label_dataText.setText(_translate("self.siderBarWidget", "数据信息")) self.label_paramTitle.setText( _translate("self.siderBarWidget", "图像参数")) self.tools_move.setStatusTip(_translate("self.siderBarWidget", ")")) self.tools_move.setAccessibleName( _translate("self.siderBarWidget", ")")) self.lineEdit_xmove.setToolTip(_translate( "self.siderBarWidget", "设置坐标沿X轴的偏移量,单位(m)")) self.label_ymove.setText(_translate("self.siderBarWidget", "Y轴")) self.label_xmove.setText(_translate("self.siderBarWidget", "X轴")) self.lineEdit_ymove.setToolTip(_translate( "self.siderBarWidget", "设置坐标沿Y轴的偏移量,单位(m)")) self.toolBox_figureParam.setItemText(self.toolBox_figureParam.indexOf( self.tools_move), _translate("self.siderBarWidget", "坐标偏移量")) self.yminLabel.setText(_translate("self.siderBarWidget", "Y轴最小值")) self.xmax_lineEdit.setToolTip( _translate("self.siderBarWidget", "单位(m)")) self.xmaxLabel.setText(_translate("self.siderBarWidget", "X轴最大值")) self.xminLabel.setText(_translate("self.siderBarWidget", "X轴最小值")) self.xmin_lineEdit.setToolTip( _translate("self.siderBarWidget", "单位(m)")) self.ymaxLabel.setText(_translate("self.siderBarWidget", "Y轴最大值")) self.toolBox_figureParam.setItemText(self.toolBox_figureParam.indexOf( self.page_axisRange), _translate("self.siderBarWidget", "坐标轴范围")) self.Button_plotPoint.setText(_translate("self.siderBarWidget", "散点")) self.Button_plotCircle.setText( _translate("self.siderBarWidget", "二维圆")) self.toolBox_figureParam.setItemText(self.toolBox_figureParam.indexOf( self.page), _translate("self.siderBarWidget", "颗粒")) self.label_lineSize.setText(_translate("self.siderBarWidget", "线条粗细")) self.checkBox_plotWall.setText( _translate("self.siderBarWidget", "绘制墙体")) self.toolBox_figureParam.setItemText(self.toolBox_figureParam.indexOf( self.tools_plotWall), _translate("self.siderBarWidget", "墙")) self.label_color.setText(_translate("self.siderBarWidget", "颜色设置")) self.comboBox_color.setItemText( 0, _translate("self.siderBarWidget", "ZDEM默认颜色")) self.Button_importColor.setText( _translate("self.siderBarWidget", "导入其他")) self.toolBox_figureParam.setItemText(self.toolBox_figureParam.indexOf( self.page_color), _translate("self.siderBarWidget", "颜色设置")) self.label_titleFont.setText(_translate("self.siderBarWidget", "字体")) self.label_titleFontSize.setText( _translate("self.siderBarWidget", "大小")) self.label_title.setText(_translate("self.siderBarWidget", "图名")) self.toolBox_figureParam.setItemText(self.toolBox_figureParam.indexOf( self.page_figureTitle), _translate("self.siderBarWidget", "图名")) self.label_yName.setText(_translate("self.siderBarWidget", "Y轴名")) self.label_xName.setText(_translate("self.siderBarWidget", "X轴名")) self.label_xTickFont.setText(_translate("self.siderBarWidget", "字体")) self.label_yTickSize.setText(_translate("self.siderBarWidget", "大小")) self.label_yTickFont.setText(_translate("self.siderBarWidget", "字体")) self.label_minorTickInterval.setText( _translate("self.siderBarWidget", "次坐标刻度间隔")) self.label_mainTickInterval.setText( _translate("self.siderBarWidget", "主坐标刻度间隔")) self.label_xTickSzie.setText(_translate("self.siderBarWidget", "大小")) self.lineEdit_mainTickInterval.setText( _translate("self.siderBarWidget", "10000.0")) self.lineEdit_minorTickInterval.setText( _translate("self.siderBarWidget", "1000.0")) self.toolBox_figureParam.setItemText(self.toolBox_figureParam.indexOf( self.page_axisTick), _translate("self.siderBarWidget", "轴标签")) self.checkBox_top.setText(_translate("self.siderBarWidget", "Top")) self.checkBox_bottom.setText( _translate("self.siderBarWidget", "Bottom")) self.checkBox_left.setText(_translate("self.siderBarWidget", "Left")) self.checkBox_right.setText(_translate("self.siderBarWidget", "Right")) self.toolBox_figureParam.setItemText(self.toolBox_figureParam.indexOf( self.page_showAxis), _translate("self.siderBarWidget", "显示/隐藏坐标轴")) self.comboBox_units.setItemText( 0, _translate("self.siderBarWidget", "km")) self.comboBox_units.setItemText( 1, _translate("self.siderBarWidget", "m")) self.label_units.setText(_translate("self.siderBarWidget", "单位")) self.toolBox_figureParam.setItemText(self.toolBox_figureParam.indexOf( self.page_units), _translate("self.siderBarWidget", "单位")) # caohshu self.reDraw_buttton.clicked.connect(self.reDraw) self.saveAll_button.clicked.connect(self.saveAll) ``` #### File: ZDEM_View/UI/wMain.py ```python import os from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import QRectF, QSize, Qt, pyqtSignal from PyQt5.QtGui import QBrush, QColor, QIcon, QPainter, QPainterPath, QPalette, QPixmap from PyQt5.QtWidgets import QFileDialog, QFrame, QGraphicsDropShadowEffect, QGroupBox, QMessageBox, QWidget from UI.parametersFrame import Ui_parametersFrame from model import canvas, plot, progressbar from model.dataView import FileSystemTableView from UI.mainWidgets import Ui_mainWidgets from UI.siderBar import siderBar from UI.leftBar import leftBar import shutil class Ui_MainWindow(object): """ 主窗口UI类 """ log_signal = pyqtSignal(str) def setupUi(self, MainWindow): """ :param MainWindow: :return: """ self.MainWindow = MainWindow self.MainWindow.setObjectName("MainWindow") self.MainWindow.resize(1600, 900) self.MainWindow.setContentsMargins(0, 0, 0, 0) # 设置无边框圆角带阴影窗口 # self.MainWindow.setWindowFlag(QtCore.Qt.FramelessWindowHint) # 无边框 # ===============透明阴影==================== # self.MainWindow.setAutoFillBackground(True) #一定要加上 #self.MainWindow.setAttribute(QtCore.Qt.WA_TranslucentBackground) # 窗口透明 #shadow=QGraphicsDropShadowEffect() # 创建阴影 #shadow.setBlurRadius(20) # 设置阴影大小为9px #shadow.setColor(QColor("#444444")) # 设置颜色透明度为100的(0,0,0)黑色 #shadow.setOffset(0,0) # 阴影偏移距离为0px #self.MainWindow.setGraphicsEffect(shadow) # 添加阴影 # 最大化显示窗口 # self.MainWindow.showMaximized() self.MainWindow.setCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor)) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.MainLayout = QtWidgets.QHBoxLayout(self.centralwidget) self.MainLayout.setObjectName("MainLayout") self.MainLayout.setContentsMargins(1, 1, 1, 1) self.MainLayout.setSpacing(0) # 控件之间的距离为0 # 创建绘图区Frame self.mainWorkFrame = QtWidgets.QFrame(self.centralwidget) self.mainWorkFrame.setObjectName("mainWorkFrame") # 实例化绘图区类对象 self.mainWidgetsObj = Ui_mainWidgets(self.mainWorkFrame, self) # 文件树 self.dataViewFrame = QtWidgets.QFrame() self.dataViewFrame.setObjectName("dataViewFrame") self.dataViewFrame.setStyleSheet(("QFrame{\n" " border-radius: 9px;\n" "}")) # 创建dataview对象 self.dataView = FileSystemTableView(self.dataViewFrame, self) # 设置水平和垂直布局策略,这里水平固定 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.dataView.sizePolicy().hasHeightForWidth()) self.dataView.setSizePolicy(sizePolicy) self.dataView.setObjectName("dataView") self.dataviewLayout = QtWidgets.QVBoxLayout(self.dataViewFrame) self.dataviewLayout.setContentsMargins(1, 0, 0, 0) self.dataviewLayout.setSpacing(0) self.dataviewLabel = QtWidgets.QLabel() self.dataviewLabel.setText('文件管理器') self.dataviewLabel.setStyleSheet(("QLabel{\n" " background-color: #c7e0ff;\n" "border-radius: 9px;" "}")) # 字体 font_1 = QtGui.QFont() font_1.setFamily("黑体") font_1.setPointSize(12) font_1.setBold(False) self.dataviewLabel.setFont(font_1) self.dataviewLabel.setMaximumWidth(230) self.dataviewLabel.setMinimumHeight(35) self.dataviewLabel.setMaximumHeight(35) self.dataviewLabel.setAlignment(QtCore.Qt.AlignCenter) self.dataviewLayout.addWidget(self.dataviewLabel) self.dataviewLayout.addWidget(self.dataView) # MainWindow.setCentralWidget(self.centralwidget) # 菜单栏 self.menuBar = QtWidgets.QMenuBar(MainWindow) self.menuBar.setGeometry(QtCore.QRect(0, 0, 886, 24)) self.menuBar.setObjectName("menuBar") self.file_menu = QtWidgets.QMenu(self.menuBar) self.file_menu.setObjectName("file_menu") self.edit_menu = QtWidgets.QMenu(self.menuBar) self.edit_menu.setObjectName("edit_menu") self.view_menu = QtWidgets.QMenu(self.menuBar) self.view_menu.setObjectName("view_menu") self.help_menu = QtWidgets.QMenu(self.menuBar) self.help_menu.setObjectName("help_menu") MainWindow.setMenuBar(self.menuBar) # 工具栏 self.toolBar = QtWidgets.QToolBar(MainWindow) self.toolBar.setCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor)) self.toolBar.setMouseTracking(False) self.toolBar.setObjectName("toolBar") MainWindow.addToolBar(QtCore.Qt.TopToolBarArea, self.toolBar) # 状态栏 self.statusBar = QtWidgets.QStatusBar(MainWindow) self.statusBar.setObjectName("statusBar") MainWindow.setStatusBar(self.statusBar) #self.statusBar.setMaximumHeight(25) self.statusBar.setStyleSheet(("QStatusBar{\n" "background:#0F6BAE;\n" "}\n")) # 实例化进度条类对象 self.ProgressBar = progressbar.ProgressBar(self) # self.plotObj.updata_progressbar_signal.connect(self.ProgressBar.updata_PBar) # 为工具栏添加功能 self.openFile_action = QtWidgets.QAction(MainWindow) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap("./icons/open.ico"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.openFile_action.setIcon(icon) self.openFile_action.setObjectName("openFile_action") self.saveFile_action = QtWidgets.QAction(MainWindow) icon1 = QtGui.QIcon() icon1.addPixmap(QtGui.QPixmap("./icons/save.ico"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.saveFile_action.setIcon(icon1) self.saveFile_action.setObjectName("saveFile_action") self.cleanALl_action = QtWidgets.QAction(MainWindow) icon3 = QtGui.QIcon() icon3.addPixmap(QtGui.QPixmap("./icons/clear.ico"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.cleanALl_action.setIcon(icon3) self.cleanALl_action.setObjectName("cleanALl_action") self.plotCircle_action = QtWidgets.QAction(MainWindow) # 画二维圆图 icon4 = QtGui.QIcon() icon4.addPixmap(QtGui.QPixmap("./icons/plot.ico"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.plotCircle_action.setIcon(icon4) self.plotCircle_action.setObjectName("plotCircle_action") self.plotPoint_action = QtWidgets.QAction(MainWindow) # 画点图 icon5 = QtGui.QIcon() icon5.addPixmap(QtGui.QPixmap("./icons/plotPoint.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.plotPoint_action.setIcon(icon5) self.plotPoint_action.setObjectName("plotPoint_action") self.file_menu.addAction(self.openFile_action) self.file_menu.addAction(self.saveFile_action) self.file_menu.addSeparator() self.edit_menu.addAction(self.plotCircle_action) self.edit_menu.addAction(self.plotPoint_action) self.edit_menu.addAction(self.cleanALl_action) self.menuBar.addAction(self.file_menu.menuAction()) self.menuBar.addAction(self.edit_menu.menuAction()) self.menuBar.addAction(self.view_menu.menuAction()) self.menuBar.addAction(self.help_menu.menuAction()) self.toolBar.addAction(self.openFile_action) # self.toolBar.addAction(self.saveFile_action) self.toolBar.addSeparator() self.toolBar.addAction(self.cleanALl_action) self.toolBar.addSeparator() self.toolBar.addAction(self.plotPoint_action) self.toolBar.addAction(self.plotCircle_action) self.toolBar.addSeparator() self.previousPage_action = self.toolBar.addAction(QIcon("./icons/previous.png"), u'上一张') self.nextPage_action = self.toolBar.addAction(QIcon("./icons/next.png"), u'下一张') self.toolBar.addSeparator() self.composeGIF_action = self.toolBar.addAction(QIcon("./icons/GIF.png"), u'生成GIF') self.playGIF_action = self.toolBar.addAction(QIcon("./icons/interface.png"), u'播放GIF') self.pauseGIF_action = self.toolBar.addAction(QIcon("./icons/pause.png"), u'暂停GIF') self.toolBar.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon) # 创建侧边栏控件对象 # 左侧边栏listwidget self.leftFrame = QtWidgets.QFrame(self.centralwidget) self.leftFrame.setObjectName('leftFrame') self.leftFrame.setContentsMargins(0,0,0,0) self.leftBar = leftBar(self.leftFrame,self) #self.siderBar = siderBar(self.leftFrame, self) # 为centralwidget添加控件 self.MainLayout.addWidget(self.leftFrame) self.MainLayout.addWidget(self.mainWorkFrame) # self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): """ :param MainWindow: :return: """ _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) self.file_menu.setTitle(_translate("MainWindow", "文件")) self.edit_menu.setTitle(_translate("MainWindow", "编辑")) self.view_menu.setTitle(_translate("MainWindow", "可视化操作")) self.help_menu.setTitle(_translate("MainWindow", "帮助")) self.toolBar.setWindowTitle(_translate("MainWindow", "toolBar")) self.openFile_action.setText(_translate("MainWindow", "打开")) self.saveFile_action.setText(_translate("MainWindow", "另存为")) self.saveFile_action.setShortcut(_translate("MainWindow", "Ctrl+S")) self.cleanALl_action.setText(_translate("MainWindow", "清除全部")) self.plotCircle_action.setText(_translate("MainWindow", "绘制二维圆")) self.plotPoint_action.setText(_translate("MainWindow", "绘制散点图")) # 绑定事件函数 self.openFile_action.triggered.connect(self.open_FileDir) self.plotCircle_action.triggered.connect(self.dataView.plotAllSlot_circle) self.plotPoint_action.triggered.connect(self.dataView.plotAllSlot_point) self.nextPage_action.triggered.connect(self.mainWidgetsObj.nextPage) self.previousPage_action.triggered.connect(self.mainWidgetsObj.previousPage) self.composeGIF_action.triggered.connect(self.mainWidgetsObj.compose_gif) self.playGIF_action.triggered.connect(self.mainWidgetsObj.playGif) self.pauseGIF_action.triggered.connect(self.mainWidgetsObj.pauseGif) self.cleanALl_action.triggered.connect(self.clear_all) def open_FileDir(self): """ 打开文件对话框,读取文件夹下.dat格式的文件列表,储存在列表中。并调用dataview对象的addData方法,初始化文件管理器和画布 :return: """ self.dataView.myModel.removeRows(0,self.dataView.myModel.rowCount()) # 删除所有行 self.folderDir = None self.folderDir = QFileDialog.getExistingDirectory(self.MainWindow, '选取文件夹', "./") # 打开文件夹选择对话框 if self.folderDir == "": pass # 防止未选择文件或者关闭对话框程序闪退 else: AllFileList = os.listdir(self.folderDir) # os.listdir读取文件夹目录的所有文件,并返回文件名列表 self.prefixList = [] self.absolute_FileList = [] self.FileNameList = [] for FileName in AllFileList: absolutePath = os.path.join(self.folderDir, FileName) # 拼接成绝对路径 if os.path.isfile(absolutePath): # 判断对象是否为文件,传入的参数必须是绝对路径,而os.listdir()获得的是文件名,需要join拼接成绝对路径, self.prefixList.append(os.path.splitext(FileName)[0]) # 前缀名列表 if os.path.splitext(FileName)[1] == '.dat': # os.path.splitext()分离文件名和后缀,返回元组 self.FileNameList.append(FileName) # 文件名列表 self.absolute_FileList.append(absolutePath) # 绝对路径文件列表 # 文件名列表删除init_xyr.dat if self.FileNameList[-1] == 'init_xyr.dat': del self.FileNameList[-1] self.dataView.addData(self.dataView.myModel, self.FileNameList, self.folderDir) # 初始化文件管理器和matplotlib画布 def clear_all(self): """清空所有 TODO:实现清空“图像参数”模块的功能 """ self.dataView.myModel.removeRows(0,self.dataView.myModel.rowCount()) # 删除所有行 self.mainWidgetsObj.tabWidget.clear() # 输出所有的可视化图像 self.mainWidgetsObj.select_comBox.clear() # 输出文件选择框 self.ProgressBar.statusLabel.clear() # 状态栏信息 self.ProgressBar.plotAllLabel.clear() self.ProgressBar.beginPlotLabel.clear() self.ProgressBar.pBar.setValue(0) self.ProgressBar.pBar.close() # leftbar self.leftBar.textBrowser_data.clear() # 清空数据记录信息 class RoundShadow(QWidget): """ 圆角边框类 """ def __init__(self, parent=None): super(RoundShadow, self).__init__(parent) self.border_width = 8 # 设置 窗口无边框和背景透明 *必须 self.setAttribute(Qt.WA_TranslucentBackground) self.setWindowFlags(Qt.FramelessWindowHint | Qt.Window) def paintEvent(self, paintEvent): # 阴影 path = QPainterPath() path.setFillRule(Qt.WindingFill) pat = QPainter(self) pat.setRenderHint(pat.Antialiasing) pat.fillPath(path, QBrush(Qt.white)) color = QColor(192, 192, 192, 50) for i in range(10): i_path = QPainterPath() i_path.setFillRule(Qt.WindingFill) ref = QRectF(10-i, 10-i, self.width()-(10-i)*2, self.height()-(10-i)*2) # i_path.addRect(ref) i_path.addRoundedRect(ref, self.border_width, self.border_width) color.setAlpha(150 - i**0.5*50) pat.setPen(color) pat.drawPath(i_path) # 圆角 pat2 = QPainter(self) pat2.setRenderHint(pat2.Antialiasing) # 抗锯齿 pat2.setBrush(Qt.white) pat2.setPen(Qt.transparent) rect = self.rect() rect.setLeft(9) rect.setTop(9) rect.setWidth(rect.width()-9) rect.setHeight(rect.height()-9) pat2.drawRoundedRect(rect, 4, 4) class myMainWindow(QtWidgets.QMainWindow): """对QMainWindow类重写,实现一些功能""" def closeEvent(self, event): """ 重写closeEvent方法,实现窗体关闭时执行一些代码 :param event: close()触发的事件 :return: None """ reply = QtWidgets.QMessageBox.question(self, '本程序', "是否要退出程序?", QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No, QtWidgets.QMessageBox.No) if reply == QtWidgets.QMessageBox.Yes: event.accept() # FIXME: !报错,无法删除gif文件 shutil.rmtree('./temp save files') os.mkdir('./temp save files') else: event.ignore() def paintEvent(self, event): # 阴影 self.border_width = 8 path = QPainterPath() path.setFillRule(Qt.WindingFill) pat = QPainter(self) pat.setRenderHint(pat.Antialiasing) pat.fillPath(path, QBrush(Qt.white)) color = QColor(192, 192, 192, 50) for i in range(10): i_path = QPainterPath() i_path.setFillRule(Qt.WindingFill) ref = QRectF(10-i, 10-i, self.width()-(10-i)*2, self.height()-(10-i)*2) # i_path.addRect(ref) i_path.addRoundedRect(ref, self.border_width, self.border_width) color.setAlpha(150 - i**0.5*50) pat.setPen(color) pat.drawPath(i_path) # 圆角 pat2 = QPainter(self) pat2.setRenderHint(pat2.Antialiasing) # 抗锯齿 pat2.setBrush(Qt.white) pat2.setPen(Qt.transparent) rect = self.rect() rect.setLeft(9) rect.setTop(9) rect.setWidth(rect.width()-9) rect.setHeight(rect.height()-9) pat2.drawRoundedRect(rect, 4, 4) ```
{ "source": "jlezama/disentangling-jacobian", "score": 3 }
#### File: conditional_image_manipulation/web_demo/aux.py ```python attr_dict = { 0: '5 o Clock shadow', 1: 'Arched Eyebrows', 2: 'Attractive', 3: 'Bags Under Eyes', 4: 'Bald', 5: 'Bangs', 6: 'Big Lips', 7: 'Big Nose', 8: 'Black Hair', 9: 'Blond Hair', 10: 'Blurry', 11: 'Brown hair', 12: 'Bushy Eyebrows', 13: 'Chubby', 14: 'Double Chin', 15: 'Eyeglasses', 16: 'Goatee', 17: 'Gray Hair', 18: 'Heavy Makeup', 19: 'High Cheekbones', 20: 'Male', 21: 'Mouth Slightly Open', 22: 'Mustache', 23: 'Narrow Eyes', 24: 'No Beard', 25: 'Oval Face', 26: 'Pale Skin', 27: 'Pointy nose', 28: 'Receding Hairline', 29: 'Rosy Cheeks', 30: 'Sideburns', 31: 'Smiling', 32: 'Straight Hair', 33: 'Wavy Hair', 34: 'Wearing Earrings', 35: 'Wearing Hat', 36: 'Wearing Lipstick', 37: 'Wearing Necklace', 38: 'Wearing Necktie', 39: 'Young', } ################################################################################ def create_html_result(outfname, y_pred, params): # create html table rows1 = '' rows2 = '' for i in range(40): row = '<tr><td style="font-size:14"> %s </td><td > <div class="slidecontainer"> <input type="range" min="-40" max="40" step="0.1" class="slider" id="myRange_%i" name="attr_%i" value="%2.2f"> </div> </td> <td id="value_%i" style="width:40"> %2.2f</td></tr>' % (attr_dict[i], i,i, y_pred[i], i, y_pred[i]) if i<20: rows1 += row else: rows2 += row model_description = params.model_path table_txt = """ <div style="margin-left:2cm;margin-top:3cm;font-family:'Trebuchet MS'"> <p style="text-align:center;font-size:28px">%s</p> <table> <tr> <td> <table border=0 >%s</table> </td> <td> <table border=0 >%s</table> </td> <td style="text-align:center;font-size:28px"> Original / Reconstruction / Manipulation <br><br> <img src="%s" id="result_img"> </td> </tr> </table> </div> """ % (model_description, rows1, rows2, outfname) javascript = '<script>' for i in range(40): javascript += """ var slider{i} = document.getElementById("myRange_{i}"); var output{i} = document.getElementById("value_{i}"); output{i}.innerHTML = slider{i}.value; slider{i}.oninput = function() {{ output{i}.innerHTML = this.value;}} slider{i}.onmouseup = function(){{document.getElementById("sliders_form").submit();}}; """.format(i=i) javascript += '</script>' html = """ <html><body> <form action='/get_image' method=GET id="img_id_form"> Image ID: <input type="text" name="fname" value="%i"> <input type="submit" value="Submit"> </form> <br> <hr> <br> <form action='.' method=POST id="sliders_form"> %s </form> %s </body></html> """ % (params.offset, table_txt, javascript) return html ``` #### File: conditional_image_manipulation/web_demo/web_server.py ```python from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer import SocketServer # for interpolation import os import argparse import numpy as np import torch from torch.autograd import Variable from torchvision.utils import make_grid import matplotlib.image import sys sys.path.append('../') from src.logger import create_logger from src.loader import load_images, DataSampler from src.utils import bool_flag from os import curdir, sep from aux import * class S(BaseHTTPRequestHandler): def _set_headers(self): self.send_response(200) self.send_header('Content-type', 'text/html') self.end_headers() def do_GET(self): if self.path == "/": self._set_headers() params.offset = 1106 interpolations, y_pred = run_interpolations(params, test_data) outfname = compute_grid(interpolations, params) html = create_html_result(outfname, y_pred, params) self.wfile.write(html) elif self.path.startswith('/get_image'): self._set_headers() print self.path params.offset = int(self.path.split('fname=')[1]) interpolations, y_pred = run_interpolations(params, test_data) outfname = compute_grid(interpolations, params) html = create_html_result(outfname, y_pred, params) self.wfile.write(html) sendReply = False if self.path.endswith(".png"): mimetype='image/png' sendReply = True if sendReply == True: #Open the static file requested and send it f = open(curdir + sep + self.path) self.send_response(200) self.send_header('Content-type',mimetype) self.end_headers() self.wfile.write(f.read()) f.close() def do_HEAD(self): self._set_headers() def do_POST(self): # Doesn't do anything with posted data content_length = int(self.headers['Content-Length']) # <--- Gets the size of data post_data = self.rfile.read(content_length) # <--- Gets the data itself self._set_headers() # parse post data alphas = np.zeros(40) for i in range(40): tmp = post_data.split('attr_%i=' % i)[1].split('&')[0] alphas[i] = float(tmp) interpolations, y_pred = run_interpolations(params, test_data, alphas=alphas) outfname = compute_grid(interpolations, params) html = create_html_result(outfname, alphas, params) self.wfile.write(html) def run(server_class=HTTPServer, handler_class=S, port=80): server_address = ('', port) httpd = server_class(server_address, handler_class) print 'Starting httpd...' httpd.serve_forever() #################################################################### # INTERPOLATION # parse parameters parser = argparse.ArgumentParser(description='Attributes swapping') parser.add_argument("--model_path", type=str, default="", help="Trained model path") parser.add_argument("--outdir", type=str, default="", help="out dir suffix") parser.add_argument("--dataset", type=str, default="test", help="dataset type: train, val, test") parser.add_argument("--port", type=str, default="9999", help="http server port") parser.add_argument("--mode", type=str, default="grid", help="alpha mode, mult or grid") parser.add_argument("--n_images", type=int, default=1, help="Number of images to modify") parser.add_argument("--offset", type=int, default=6, help="First image index") parser.add_argument("--n_interpolations", type=int, default=10, help="Number of interpolations per image") parser.add_argument("--alpha_mult", type=float, default=100, help="How much multiply alpha by") parser.add_argument("--alpha_min", type=float, default=1, help="Min interpolation value") parser.add_argument("--alpha_max", type=float, default=1, help="Max interpolation value") parser.add_argument("--plot_size", type=int, default=5, help="Size of images in the grid") parser.add_argument("--selected_attr", type=str, default="0", help="selected attribute") parser.add_argument("--row_wise", type=bool_flag, default=True, help="Represent image interpolations horizontally") parser.add_argument("--output_path", type=str, default="output.png", help="Output path") params = parser.parse_args() # check parameters assert os.path.isfile(params.model_path), params.model_path assert params.n_images >= 1 and params.n_interpolations >= 2 # patch to load model trained with newer pytorch version import torch._utils try: torch._utils._rebuild_tensor_v2 except AttributeError: def _rebuild_tensor_v2(storage, storage_offset, size, stride, requires_grad, backward_hooks): tensor = torch._utils._rebuild_tensor(storage, storage_offset, size, stride) tensor.requires_grad = requires_grad tensor._backward_hooks = backward_hooks return tensor torch._utils._rebuild_tensor_v2 = _rebuild_tensor_v2 logger = create_logger(None) ae = torch.load(params.model_path).eval() # restore main parameters params.debug = False params.batch_size = 32 params.v_flip = False params.h_flip = False params.img_sz = ae.img_sz params.attr = ae.attr params.n_attr = ae.n_attr # load dataset data, attributes = load_images(params) #test_data = DataSampler(data[2], attributes[2], params) if params.dataset == 'train': data_ix = 0 elif params.dataset == 'val': data_ix = 1 elif params.dataset == 'test': data_ix = 2 test_data = DataSampler(data[data_ix], attributes[data_ix], params) def get_interpolations(ae, images, attributes, params, alphas): """ Reconstruct images / create interpolations """ ae.eval() assert len(images) == len(attributes) enc_outputs = ae.encode(images) # separate latent code and attribute prediction bs = enc_outputs[0].size(0) z_all = enc_outputs[-1] # full latent code n_pred = params.n_attr y_pred = z_all[:,-n_pred:,:,:] z_latent = z_all[:,:-n_pred,:,:] enc_outputs[-1] = z_latent.contiguous() y_pred = torch.mean(y_pred.contiguous().view(bs, params.n_attr, -1), dim=2) outputs = [] # original image / reconstructed image / interpolations new_image = ae.decode(enc_outputs, y_pred)[-1] outputs.append(images) outputs.append(new_image) y_pred_tmp = y_pred.clone() if alphas is not None: print 'fixing alphas:', alphas for attr in range(40): y_pred_tmp[:,attr] = alphas[attr] outputs.append(ae.decode(enc_outputs, y_pred_tmp)[-1]) # return stacked images return torch.cat([x.unsqueeze(1) for x in outputs], 1).data.cpu(), y_pred.data.cpu().numpy().tolist()[0] def run_interpolations(params, test_data, alphas=None): interpolations = [] for k in range(0, params.n_images, 100): i = params.offset + k j = params.offset + min(params.n_images, k + 100) images, attributes = test_data.eval_batch(i, j) generated_images, y_pred = get_interpolations(ae, images, attributes, params, alphas) interpolations.append(generated_images) interpolations = torch.cat(interpolations, 0) return interpolations, y_pred def get_grid(images, row_wise, plot_size=5): """ Create a grid with all images. """ n_images, n_columns, img_fm, img_sz, _ = images.size() if not row_wise: images = images.transpose(0, 1).contiguous() images = images.view(n_images * n_columns, img_fm, img_sz, img_sz) images.add_(1).div_(2.0) return make_grid(images, nrow=(n_columns if row_wise else n_images)) def compute_grid(interpolations, params): # generate the grid / save it to a PNG file grid = get_grid(interpolations, params.row_wise, params.plot_size) attrs = [int(x) for x in params.selected_attr.split(',')] outdir = 'imgs' os.system('mkdir -p %s' % outdir) outfname = '%s/tmp.png' % (outdir) matplotlib.image.imsave(outfname, grid.numpy().transpose((1, 2, 0))) print 'saved', outfname return outfname ################################################################# # MAIN if __name__ == "__main__": run(port=int(params.port)) ```
{ "source": "jlfilho/CISRDCNN-keras", "score": 2 }
#### File: CISRDCNN-keras/libs/cisrdcnn.py ```python import os import logging os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras import Input from tensorflow.keras.layers import Conv2D, MaxPooling2D, ReLU, BatchNormalization, Add from tensorflow.keras.layers import UpSampling2D,Conv2DTranspose from tensorflow.keras.optimizers import SGD, Adam from tensorflow.keras.models import Model from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint, LambdaCallback from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping from tensorflow.keras.initializers import RandomNormal import restore from util import DataLoader, plot_test_images from losses import psnr3 as psnr from losses import euclidean, cosine, charbonnier class CISRDCNN(): def __init__(self, height_lr=16, width_lr=16, channels=3, upscaling_factor=4, lr = 1e-4, stage=None, colorspace = 'RGB', fulltrain = False ): # Low-resolution image dimensions self.height_lr = height_lr self.width_lr = width_lr # High-resolution image dimensions if upscaling_factor not in [1, 2, 4, 8]: raise ValueError( 'Upscaling factor must be either 2, 4, or 8. You chose {}'.format(upscaling_factor)) self.upscaling_factor = upscaling_factor self.height_hr = int(self.height_lr * self.upscaling_factor) self.width_hr = int(self.width_lr * self.upscaling_factor) # Low-resolution and high-resolution shapes self.channels = channels self.colorspace = colorspace self.stage = stage self.shape_lr = (self.height_lr, self.width_lr, self.channels) self.shape_hr = (self.height_hr, self.width_hr, self.channels) self.loss = "mse" self.lr = lr if (stage=='dbcnn'): print("Compiling DBCNN") self.dbcnn = self.build_dbcnn() self.compile_model(self.dbcnn) if (stage=='uscnn'): print("Compiling USCNN") self.dbcnn = self.build_dbcnn() self.dbcnn.trainable = False self.compile_model(self.dbcnn) self.uscnn = self.build_uscnn() self.compile_model(self.uscnn) if (stage=='qecnn'): print("Compiling QECNN") self.dbcnn = self.build_dbcnn() self.dbcnn.trainable = False self.compile_model(self.dbcnn) self.uscnn = self.build_uscnn() self.uscnn.trainable = False self.compile_model(self.uscnn) self.qecnn = self.build_qecnn() self.compile_model(self.qecnn) if (stage=='cisrdcnn'): print("Compiling CISRDCNN") self.dbcnn = self.build_dbcnn() self.dbcnn.trainable = True self.compile_model(self.dbcnn) self.uscnn = self.build_uscnn() self.uscnn.trainable = True self.compile_model(self.uscnn) self.qecnn = self.build_qecnn() self.qecnn.trainable = True self.compile_model(self.qecnn) self.cisrdcnn = self.build_cisrdcnn() self.cisrdcnn.trainable = True self.compile_model(self.cisrdcnn) def compile_model(self, model): """Compile the DBCNN with appropriate optimizer""" model.compile( loss=self.loss, optimizer= SGD(lr=self.lr, momentum=0.9, decay=1e-6, nesterov=True),# Adam(lr=self.lr,beta_1=0.9, beta_2=0.999), metrics=[psnr] ) def build_dbcnn(self,k1=20): def DBCNN(input): x=input for i in range(k1-1): x = Conv2D(filters= 64, kernel_size = (3,3), strides=1,padding='same')(x) x = BatchNormalization()(x) x = ReLU()(x) x = Conv2D(filters= self.channels, kernel_size = (3,3), strides=1, padding='same', name='K1')(x) x = ReLU()(x) x = Add()([x, input]) return x inputs = Input(shape=(None, None, self.channels)) x = DBCNN(inputs) model = Model(inputs=inputs, outputs=x,name="DBCNN") #logging.debug(model.summary()) return model def build_uscnn(self,k2=10): def USCNN(input): x = input for i in range(k2-1): x = Conv2D(filters= 64, kernel_size = (3,3), strides=1,padding='same')(x) x = BatchNormalization()(x) x = ReLU()(x) x = UpSampling2D(size=(self.upscaling_factor, self.upscaling_factor),interpolation="nearest")(x) x = Conv2D(filters= self.channels, kernel_size = (9,9), strides=1,padding='same')(x) x = ReLU()(x) return x inputs = Input(shape=(None, None, self.channels)) x = self.dbcnn(inputs) x = USCNN(x) model = Model(inputs=inputs, outputs=x, name="USCNN") #logging.debug(model.summary()) return model def build_qecnn(self,k3=20): def QECNN(input): x=input for i in range(k3-1): x = Conv2D(filters= 64, kernel_size = (3,3), strides=1,padding='same')(x) x = BatchNormalization()(x) x = ReLU()(x) x = Conv2D(filters= self.channels, kernel_size = (3,3), strides=1, padding='same', name='K3')(x) x = ReLU()(x) x = Add()([x, input]) return x z = Input(shape=(None, None, self.channels)) x = self.uscnn(z) hr = QECNN(x) model = Model(inputs=z, outputs=hr,name="QECNN") #logging.debug(model.summary()) return model def build_cisrdcnn(self): z = Input(shape=(None, None, self.channels)) hr = self.qecnn(z) model = Model(inputs=z, outputs=hr,name="CISRDCNN") #logging.debug(model.summary()) return model def train_dbcnn(self, epochs=50, batch_size=8, steps_per_epoch=5, steps_per_validation=5, crops_per_image=4, print_frequency=5, log_tensorboard_update_freq=10, workers=1, max_queue_size=5, model_name='DBCNN', media_type='i', datapath_train='../../../videos_harmonic/MYANMAR_2160p/train/', datapath_validation='../../../videos_harmonic/MYANMAR_2160p/validation/', datapath_test='../../../videos_harmonic/MYANMAR_2160p/test/', log_weight_path='../model/', log_tensorboard_path='../logs/', log_test_path='../test/', qf=30 ): # Create data loaders train_loader = DataLoader( datapath_train, batch_size, self.height_hr, self.width_hr, self.upscaling_factor, crops_per_image, media_type, self.channels, self.colorspace, self.stage, qf ) validation_loader = None if datapath_validation is not None: validation_loader = DataLoader( datapath_validation, batch_size, self.height_hr, self.width_hr, self.upscaling_factor, crops_per_image, media_type, self.channels, self.colorspace, self.stage, qf ) test_loader = None if datapath_test is not None: test_loader = DataLoader( datapath_test, 1, self.height_hr, self.width_hr, self.upscaling_factor, 1, media_type, self.channels, self.colorspace, self.stage, qf ) # Callback: tensorboard callbacks = [] if log_tensorboard_path: tensorboard = TensorBoard( log_dir=os.path.join(log_tensorboard_path, model_name), histogram_freq=0, write_graph=True, update_freq=log_tensorboard_update_freq ) callbacks.append(tensorboard) else: print(">> Not logging to tensorboard since no log_tensorboard_path is set") # Callback: Stop training when a monitored quantity has stopped improving earlystopping = EarlyStopping( monitor='val_loss', patience=30, verbose=1, restore_best_weights=True ) callbacks.append(earlystopping) # Callback: Reduce lr when a monitored quantity has stopped improving reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, min_lr=1e-6,verbose=1) callbacks.append(reduce_lr) # Callback: save weights after each epoch modelcheckpoint = ModelCheckpoint( os.path.join(log_weight_path, model_name + '_{}X.tf'.format(self.upscaling_factor)), monitor='val_loss', save_best_only=True, save_weights_only=True) callbacks.append(modelcheckpoint) # Callback: test images plotting if datapath_test is not None: testplotting = LambdaCallback( on_epoch_end=lambda epoch, logs: None if ((epoch+1) % print_frequency != 0 ) else plot_test_images( self.dbcnn, test_loader, datapath_test, log_test_path, epoch+1, name=model_name, channels=self.channels, colorspace=self.colorspace)) callbacks.append(testplotting) #callbacks.append(TQDMCallback()) self.dbcnn.fit( train_loader, steps_per_epoch=steps_per_epoch, epochs=epochs, validation_data=validation_loader, validation_steps=steps_per_validation, callbacks=callbacks, shuffle=True, use_multiprocessing=False, workers=workers ) def train_uscnn(self, epochs=50, batch_size=8, steps_per_epoch=5, steps_per_validation=5, crops_per_image=4, print_frequency=5, log_tensorboard_update_freq=10, workers=1, max_queue_size=5, model_name='CISRDCNN', media_type='i', datapath_train='../../../videos_harmonic/MYANMAR_2160p/train/', datapath_validation='../../../videos_harmonic/MYANMAR_2160p/validation/', datapath_test='../../../videos_harmonic/MYANMAR_2160p/test/', log_weight_path='../model/', log_tensorboard_path='../logs/', log_test_path='../test/', qf=30 ): # Create data loaders train_loader = DataLoader( datapath_train, batch_size, self.height_hr, self.width_hr, self.upscaling_factor, crops_per_image, media_type, self.channels, self.colorspace, self.stage, qf ) validation_loader = None if datapath_validation is not None: validation_loader = DataLoader( datapath_validation, batch_size, self.height_hr, self.width_hr, self.upscaling_factor, crops_per_image, media_type, self.channels, self.colorspace, self.stage, qf ) test_loader = None if datapath_test is not None: test_loader = DataLoader( datapath_test, 1, self.height_hr, self.width_hr, self.upscaling_factor, 1, media_type, self.channels, self.colorspace, self.stage, qf ) # Callback: tensorboard callbacks = [] if log_tensorboard_path: tensorboard = TensorBoard( log_dir=os.path.join(log_tensorboard_path, model_name), histogram_freq=0, write_graph=True, update_freq=log_tensorboard_update_freq ) callbacks.append(tensorboard) else: print(">> Not logging to tensorboard since no log_tensorboard_path is set") # Callback: Stop training when a monitored quantity has stopped improving earlystopping = EarlyStopping( monitor='val_loss', patience=30, verbose=1, restore_best_weights=True ) callbacks.append(earlystopping) # Callback: Reduce lr when a monitored quantity has stopped improving reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, min_lr=1e-6,verbose=1) callbacks.append(reduce_lr) # Callback: save weights after each epoch modelcheckpoint = ModelCheckpoint( os.path.join(log_weight_path, model_name + '_{}X.tf'.format(self.upscaling_factor)), monitor='val_loss', save_best_only=True, save_weights_only=True) callbacks.append(modelcheckpoint) # Callback: test images plotting if datapath_test is not None: testplotting = LambdaCallback( on_epoch_end=lambda epoch, logs: None if ((epoch+1) % print_frequency != 0 ) else plot_test_images( self.uscnn, test_loader, datapath_test, log_test_path, epoch+1, name=model_name, channels=self.channels, colorspace=self.colorspace)) callbacks.append(testplotting) #callbacks.append(TQDMCallback()) self.uscnn.fit( train_loader, steps_per_epoch=steps_per_epoch, epochs=epochs, validation_data=validation_loader, validation_steps=steps_per_validation, callbacks=callbacks, shuffle=True, use_multiprocessing=False, workers=workers ) def train_qecnn(self, epochs=50, batch_size=8, steps_per_epoch=5, steps_per_validation=5, crops_per_image=4, print_frequency=5, log_tensorboard_update_freq=10, workers=1, max_queue_size=5, model_name='CISRDCNN', media_type='i', datapath_train='../../../videos_harmonic/MYANMAR_2160p/train/', datapath_validation='../../../videos_harmonic/MYANMAR_2160p/validation/', datapath_test='../../../videos_harmonic/MYANMAR_2160p/test/', log_weight_path='../model/', log_tensorboard_path='../logs/', log_test_path='../test/', qf=30 ): # Create data loaders train_loader = DataLoader( datapath_train, batch_size, self.height_hr, self.width_hr, self.upscaling_factor, crops_per_image, media_type, self.channels, self.colorspace, self.stage, qf ) validation_loader = None if datapath_validation is not None: validation_loader = DataLoader( datapath_validation, batch_size, self.height_hr, self.width_hr, self.upscaling_factor, crops_per_image, media_type, self.channels, self.colorspace, self.stage, qf ) test_loader = None if datapath_test is not None: test_loader = DataLoader( datapath_test, 1, self.height_hr, self.width_hr, self.upscaling_factor, 1, media_type, self.channels, self.colorspace, self.stage, qf ) # Callback: tensorboard callbacks = [] if log_tensorboard_path: tensorboard = TensorBoard( log_dir=os.path.join(log_tensorboard_path, model_name), histogram_freq=0, write_graph=True, update_freq=log_tensorboard_update_freq ) callbacks.append(tensorboard) else: print(">> Not logging to tensorboard since no log_tensorboard_path is set") # Callback: Stop training when a monitored quantity has stopped improving earlystopping = EarlyStopping( monitor='val_loss', patience=30, verbose=1, restore_best_weights=True ) callbacks.append(earlystopping) # Callback: Reduce lr when a monitored quantity has stopped improving reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, min_lr=1e-6,verbose=1) callbacks.append(reduce_lr) # Callback: save weights after each epoch modelcheckpoint = ModelCheckpoint( os.path.join(log_weight_path, model_name + '_{}X.tf'.format(self.upscaling_factor)), monitor='val_loss', save_best_only=True, save_weights_only=True) callbacks.append(modelcheckpoint) # Callback: test images plotting if datapath_test is not None: testplotting = LambdaCallback( on_epoch_end=lambda epoch, logs: None if ((epoch+1) % print_frequency != 0 ) else plot_test_images( self.qecnn, test_loader, datapath_test, log_test_path, epoch+1, name=model_name, channels=self.channels, colorspace=self.colorspace)) callbacks.append(testplotting) #callbacks.append(TQDMCallback()) self.qecnn.fit( train_loader, steps_per_epoch=steps_per_epoch, epochs=epochs, validation_data=validation_loader, validation_steps=steps_per_validation, callbacks=callbacks, shuffle=True, use_multiprocessing=False, workers=workers ) def train_cisrdcnn(self, epochs=50, batch_size=8, steps_per_epoch=5, steps_per_validation=5, crops_per_image=4, print_frequency=5, log_tensorboard_update_freq=10, workers=1, max_queue_size=5, model_name='CISRDCNN', media_type='i', datapath_train='../../../videos_harmonic/MYANMAR_2160p/train/', datapath_validation='../../../videos_harmonic/MYANMAR_2160p/validation/', datapath_test='../../../videos_harmonic/MYANMAR_2160p/test/', log_weight_path='../model/', log_tensorboard_path='../logs/', log_test_path='../test/', qf=30 ): # Create data loaders train_loader = DataLoader( datapath_train, batch_size, self.height_hr, self.width_hr, self.upscaling_factor, crops_per_image, media_type, self.channels, self.colorspace, self.stage, qf ) validation_loader = None if datapath_validation is not None: validation_loader = DataLoader( datapath_validation, batch_size, self.height_hr, self.width_hr, self.upscaling_factor, crops_per_image, media_type, self.channels, self.colorspace, self.stage, qf ) test_loader = None if datapath_test is not None: test_loader = DataLoader( datapath_test, 1, self.height_hr, self.width_hr, self.upscaling_factor, 1, media_type, self.channels, self.colorspace, self.stage, qf ) # Callback: tensorboard callbacks = [] if log_tensorboard_path: tensorboard = TensorBoard( log_dir=os.path.join(log_tensorboard_path, model_name), histogram_freq=0, write_graph=True, update_freq=log_tensorboard_update_freq ) callbacks.append(tensorboard) else: print(">> Not logging to tensorboard since no log_tensorboard_path is set") # Callback: Stop training when a monitored quantity has stopped improving earlystopping = EarlyStopping( monitor='val_loss', patience=30, verbose=1, restore_best_weights=True ) callbacks.append(earlystopping) # Callback: Reduce lr when a monitored quantity has stopped improving reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, min_lr=1e-6,verbose=1) callbacks.append(reduce_lr) # Callback: save weights after each epoch modelcheckpoint = ModelCheckpoint( os.path.join(log_weight_path, model_name + '_{}X.tf'.format(self.upscaling_factor)), monitor='val_loss', save_best_only=True, save_weights_only=True) callbacks.append(modelcheckpoint) # Callback: test images plotting if datapath_test is not None: testplotting = LambdaCallback( on_epoch_end=lambda epoch, logs: None if ((epoch+1) % print_frequency != 0 ) else plot_test_images( self.cisrdcnn, test_loader, datapath_test, log_test_path, epoch+1, name=model_name, channels=self.channels, colorspace=self.colorspace)) callbacks.append(testplotting) #callbacks.append(TQDMCallback()) self.cisrdcnn.fit( train_loader, steps_per_epoch=steps_per_epoch, epochs=epochs, validation_data=validation_loader, validation_steps=steps_per_validation, callbacks=callbacks, shuffle=True, use_multiprocessing=False, workers=workers ) def predict_dbcnn(self, lr_path = None, sr_path = None, print_frequency = False, qp = 8, fps = None, media_type = None, gpu = False ): """ lr_videopath: path of video in low resoluiton sr_videopath: path to output video print_frequency: print frequncy the time per frame and estimated time, if False no print crf: [0,51] QP parameter 0 is the best quality and 51 is the worst one fps: framerate if None is use the same framerate of the LR video media_type: type of media 'v' to video and 'i' to image """ if(media_type == 'v'): time_elapsed = restore.write_srvideo(self.dbcnn,lr_path,sr_path,self.upscaling_factor,print_frequency=print_frequency,crf=qp,fps=fps,gpu=gpu) elif(media_type == 'i'): time_elapsed = restore.write_sr_images(self.dbcnn, lr_imagepath=lr_path, sr_imagepath=sr_path,scale=self.upscaling_factor) else: print(">> Media type not defined or not suported!") return 0 return time_elapsed def predict_uscnn(self, lr_path = None, sr_path = None, print_frequency = False, qp = 8, fps = None, media_type = None, gpu = False ): """ lr_videopath: path of video in low resoluiton sr_videopath: path to output video print_frequency: print frequncy the time per frame and estimated time, if False no print crf: [0,51] QP parameter 0 is the best quality and 51 is the worst one fps: framerate if None is use the same framerate of the LR video media_type: type of media 'v' to video and 'i' to image """ if(media_type == 'v'): time_elapsed = restore.write_srvideo(self.uscnn,lr_path,sr_path,self.upscaling_factor,print_frequency=print_frequency,crf=qp,fps=fps,gpu=gpu) elif(media_type == 'i'): time_elapsed = restore.write_sr_images(self.uscnn, lr_imagepath=lr_path, sr_imagepath=sr_path,scale=self.upscaling_factor) else: print(">> Media type not defined or not suported!") return 0 return time_elapsed def predict_cisrdcnn(self, lr_path = None, sr_path = None, print_frequency = False, qp = 8, fps = None, media_type = None, gpu = False ): """ lr_videopath: path of video in low resoluiton sr_videopath: path to output video print_frequency: print frequncy the time per frame and estimated time, if False no print crf: [0,51] QP parameter 0 is the best quality and 51 is the worst one fps: framerate if None is use the same framerate of the LR video media_type: type of media 'v' to video and 'i' to image """ if(media_type == 'v'): time_elapsed = restore.write_srvideo(self.cisrdcnn,lr_path,sr_path,self.upscaling_factor,print_frequency=print_frequency,crf=qp,fps=fps,gpu=gpu) elif(media_type == 'i'): time_elapsed = restore.write_sr_images(self.cisrdcnn, lr_imagepath=lr_path, sr_imagepath=sr_path,scale=self.upscaling_factor) else: print(">> Media type not defined or not suported!") return 0 return time_elapsed def main(): logging.basicConfig(filename='../logs/cisrdcnn.log', level=logging.INFO) logging.info('Started') #------------------------------------------------------ # Instantiate the TSRGAN object logging.info(">> Creating the CISRDCNN network") cisrdcnn = CISRDCNN(height_lr=16, width_lr=16,lr=1e-3,upscaling_factor=2,channels=3,colorspace = 'RGB',fulltrain = True) #cisrdcnn.load_weights(weights='../model/CISRDCNN_v1_2X.tf') """ datapath = '../../data/videoset/540p/' outpath = '../out/540p_2X/' for dirpath, _, filenames in os.walk(datapath): for filename in [f for f in sorted(filenames) if any(filetype in f.lower() for filetype in ['jpeg', 'png', 'jpg','mp4','264','webm','wma'])]: print(os.path.join(dirpath, filename),outpath+filename.split('.')[0]+'.mp4') t = cisrdcnn.predict( lr_path=os.path.join(dirpath, filename), sr_path=outpath+filename.split('.')[0]+'.mp4', qp=0, media_type='v', gpu=False ) """ """ datapath = '../../data/videoset/360p/' outpath = '../out/360p_2X/' i=1 for dirpath, _, filenames in os.walk(datapath): for filename in [f for f in sorted(filenames) if any(filetype in f.lower() for filetype in ['jpeg', 'png', 'jpg','mp4','264','webm','wma'])]: if(i==17): print(os.path.join(dirpath, filename),outpath+filename.split('.')[0]+'.mp4') t = cisrdcnn.predict( lr_path=os.path.join(dirpath, filename), sr_path=outpath+filename.split('.')[0]+'.mp4', qp=0, media_type='v', gpu=False ) i+=1 """ cisrdcnn.train_cisrdcnn( epochs=10000, batch_size=32, steps_per_epoch=10, steps_per_validation=5, crops_per_image=4, print_frequency=5, log_tensorboard_update_freq=10, workers=1, max_queue_size=10, model_name='CISRDCNN', datapath_train='../../../Documents/data/train_large/data_large/', datapath_validation='../../data/val_large/', datapath_test='../../data/benchmarks/Set5/', log_weight_path='../model/', log_tensorboard_path='../logs/', log_test_path='../test/' ) #------------------------------------------------------ logging.info('Finished') # Run the CISRDCNN network if __name__ == "__main__": main() ```
{ "source": "jlfilho/SR-LiveS", "score": 2 }
#### File: collector_server/api/collector.py ```python import json from flask_restful import Resource, Api from flask import make_response from flask_cors import CORS import logging def output_json(obj, code, headers=None): resp = make_response(json.dumps(obj), code) resp.headers.extend(headers or {}) return resp def create_api(app): DEFAULT_REPRESENTATIONS = {'application/json': output_json} app.config['CORS_HEADERS'] = "Content-Type" CORS(app) api = Api(app) api.representations = DEFAULT_REPRESENTATIONS logging.getLogger('flask_cors').level = logging.DEBUG #Registrando os Blueprints from api.resources.logs import metrics_blue, LogsResource, Index, GeneralResource app.register_blueprint(metrics_blue) #Registrando os recursos api.add_resource(Index, '/') api.add_resource(LogsResource, '/metrics') api.add_resource(GeneralResource, '/general') return app ``` #### File: share/tools/metrics.py ```python import os import ast import pandas as pd import numpy as np from datetime import datetime import time import logging level_config = {'debug': logging.DEBUG, 'info': logging.INFO} FILE_SIZE = 500 BYTES_PER_PKT = 1500.0*8 MILLISEC_IN_SEC = 1000.0 EXP_LEN = 1000 # millisecond class Metric: def __init__(self,name,mi=1., lbd=1., mi_s=1.,log_level='debug'): self.name = name self.mi = mi self.lbd = lbd self.mi_s = mi_s log_level = level_config[log_level.lower()] logging.basicConfig(level=log_level) self.logger = logging.getLogger(__name__) def calc(self,listRate,listRebuffer): pass def tabulation(self,listQoE,scores = pd.DataFrame(),abrRule = 'abr Rule',prefix=''): scores_tmp = pd.DataFrame() scores_tmp['abr Rule'] = [ abrRule for i in listQoE] scores_tmp['Average value'] = np.asarray([i[0] for i in listQoE]) scores_tmp['Metrics'] = [ self.name for i in listQoE] scores = scores.append(scores_tmp) scores_tmp = pd.DataFrame() scores_tmp['Average value'] = np.asarray([i[1] for i in listQoE]) scores_tmp['Metrics'] = [ prefix+'_'+'Bitrate Utility' for i in listQoE] scores_tmp['abr Rule'] = [ abrRule for i in listQoE] scores = scores.append(scores_tmp) scores_tmp['Average value'] = np.asarray([i[2] for i in listQoE]) scores_tmp['Metrics'] = [ prefix+'_'+'Smoothness Penalty' for i in listQoE] scores_tmp['abr Rule'] = [ abrRule for i in listQoE] scores = scores.append(scores_tmp) scores_tmp = pd.DataFrame() scores_tmp['Average value'] = np.asarray([i[3] for i in listQoE]) scores_tmp['Metrics'] = [ prefix+'_'+'Rebuffering Penalty' for i in listQoE] scores_tmp['abr Rule'] = [ abrRule for i in listQoE] scores = scores.append(scores_tmp) scores_tmp = pd.DataFrame() scores_tmp['Average value'] = np.asarray([i[4] for i in listQoE]) scores_tmp['Metrics'] = [ prefix+'_'+'Startup Delay' for i in listQoE] scores_tmp['abr Rule'] = [ abrRule for i in listQoE] scores = scores.append(scores_tmp) return scores class MetricQoElin(Metric): def __init__(self,name='',mi=1., lbd=1., mi_s=1.,log_level='debug'): super().__init__(name,mi, lbd, mi_s,log_level) def calc(self,listRate,listRebuffer): bitrateUtility = np.asarray(listRate).sum() startupDelay = self.mi_s*np.asarray(listRebuffer[0]) rebufferingPenalty = self.mi*np.asarray(listRebuffer[1:]).sum() smoothnessPenalty = self.lbd*np.abs(np.asarray(listRate[1:])-np.asarray(listRate[:-1])).sum() qoe = bitrateUtility - (smoothnessPenalty + rebufferingPenalty + startupDelay) # print(qoe) return qoe,bitrateUtility,smoothnessPenalty,rebufferingPenalty,startupDelay class MetricQoEMean(Metric): def __init__(self,name='',mi=1., lbd=1., mi_s=1.,log_level='debug'): super().__init__(name,mi, lbd, mi_s,log_level) def calc(self,listRate,listRebuffer): bitrateUtility = np.asarray(listRate[1:]) startupDelay = self.mi_s*np.asarray(listRebuffer[0]) rebufferingPenalty = self.mi*np.asarray(listRebuffer[1:]) smoothnessPenalty = self.lbd*np.abs(np.asarray(listRate[1:])-np.asarray(listRate[:-1])) qoe = bitrateUtility - (smoothnessPenalty + rebufferingPenalty + startupDelay) # print(qoe.sum()) return qoe.sum(),bitrateUtility.sum(),smoothnessPenalty.sum(),rebufferingPenalty.sum(),startupDelay.sum() class MetricQoElog(Metric): def __init__(self,name='',mi=1., lbd=1., mi_s=1.,log_level='debug'): super().__init__(name+'_'+'QoE_log',mi, lbd, mi_s,log_level) def calc(self,listRate,listRebuffer): bitrateUtility = np.log(np.asarray(listRate)/np.asarray(listRate).min()).sum() startupDelay = self.mi_s*np.asarray(listRebuffer[0]) rebufferingPenalty = self.mi*np.asarray(listRebuffer[1:]).sum() smoothnessPenalty = self.lbd*np.abs(np.log(np.asarray(listRate[1:])/np.asarray(listRate[1:]).min()) \ - np.log(np.asarray(listRate[:-1])/np.asarray(listRate[1:]).min())).sum() qoe=bitrateUtility - (smoothnessPenalty + rebufferingPenalty + startupDelay) return qoe,bitrateUtility,smoothnessPenalty,rebufferingPenalty,startupDelay class MetricQoEhd(Metric): def __init__(self,name='',mi=1., lbd=1., mi_s=1.,log_level='debug'): super().__init__(name+'_'+'QoE_hd',mi, lbd, mi_s,log_level) def calc(self,listRate,listRebuffer): bitrateUtility = (np.asarray(listRate)*100).mean() rebufferingPenalty = self.rebufferPenalty*(np.asarray(listRebuffer)).mean() smoothnessPenalty = np.abs((np.asarray(listRate[1:])*100)-(np.asarray(listRate[:-1])*100)).mean() qoe=(np.asarray(listRate)*100).sum()-self.rebufferPenalty*(np.asarray(listRebuffer)).sum()-np.abs((np.asarray(listRate[1:])*100)-(np.asarray(listRate[:-1])*100)).sum() return qoe,bitrateUtility,rebufferingPenalty,smoothnessPenalty def parseLogs(metricQoE,path = '../results-collector/abrBola/',log_level='info',div_by=1e3): log_level = level_config[log_level.lower()] logging.basicConfig(level=log_level) logger = logging.getLogger(__name__) files = os.listdir(path) listQoE = [] for file in files: # print(path+file) f = open(path+file, 'r') lines = f.readlines() logs = [] i=0 for line in lines: logs.append(ast.literal_eval(line.strip())) #print("bitrate: {} rebufferTime: {}".format(logs[i]['bitrate'],logs[i]['rebufferTime'])) i+=1 # print("Count segments: {}".format(i)) df = pd.DataFrame(logs) #print(df['bitrate']/1e6,df['rebufferTime']) mt = metricQoE.calc(df['bitrate']/div_by,df['rebufferTime']) logger.debug(mt) listQoE.append(mt) return listQoE def parseLogsBy(path = '../results-collector/abrBola',file_type='json',log_level='debug'): log_level = level_config[log_level.lower()] logging.basicConfig(level=log_level) logger = logging.getLogger(__name__) frames = [] for dirpath, subdirpath, filenames in os.walk(path): client = 0 for filename in [f for f in filenames if any(filetype in f.lower() for filetype in [file_type])]: current_file = os.path.join(dirpath, filename) logger.debug(current_file) f = open(current_file, 'r') lines = f.readlines() logs = [] for line in lines: logs.append(ast.literal_eval(line.strip())) df = pd.DataFrame(logs) df['scenario'] = dirpath.split('/')[-2] df['abr Rule'] = filename.split('_')[1] df['client'] = client df['calc_bitrate'] = (((df['totalBytesLength']*8)/1000)/df['mediaduration']) frames.append(df) client +=1 result = pd.concat(frames) return result def writeTrace(output=None,df=None): t = df.Timestamp.apply(lambda x: time.mktime(datetime.strptime(x, "%Y.%m.%d_%H.%M.%S").timetuple())) bw = df['DL_bitrate'] dfbw = pd.DataFrame() dfbw['time']=range(0,len(t)) dfbw['DL_bitrate']=bw.reset_index(drop=True) dfbw.to_csv(output,index=False) def parseTraces(input_path = '../../traces/5G-production-dataset/5G-production-dataset/Amazon_Prime/Driving/', output_path=None,minimum=0,maximum=1e15,file_type='csv',parameter='DL_bitrate',log_level='info'): log_level = level_config[log_level.lower()] logging.basicConfig(level=log_level) logger = logging.getLogger(__name__) frames = [] for dirpath, subdirpath, filenames in os.walk(input_path): for filename in [f for f in filenames if any(filetype in f.lower() for filetype in [file_type])]: current_file = os.path.join(dirpath, filename) logger.debug("input file: {}".format(current_file)) df = pd.read_csv(current_file) if output_path is not None: df = df[(df[parameter] >= minimum) & (df[parameter] <= maximum) ] logger.debug("output file: {}".format(output_path+filename)) writeTrace(output=output_path+filename,df=df) frames.append(df) result = pd.concat(frames) return result def maker_mahimahi_trace(IN_FILE = None,OUT_FILE = None): files = os.listdir(IN_FILE) for trace_file in files: if os.stat(IN_FILE + trace_file).st_size >= FILE_SIZE: df = pd.read_csv(IN_FILE + trace_file) with open(OUT_FILE + trace_file, 'w') as mf: millisec_time = 0 mf.write(str(millisec_time) + '\n') for i in range(1,len(df.DL_bitrate)): throughput = (float(df.DL_bitrate[i])*1000) pkt_per_millisec = throughput / BYTES_PER_PKT / MILLISEC_IN_SEC #print("pkt_per_millisec: {}".format(pkt_per_millisec)) millisec_count = 0 pkt_count = 0 while True: millisec_count += 1 millisec_time += 1 to_send = (millisec_count * pkt_per_millisec) - pkt_count to_send = np.floor(to_send) #print("to_send: {}".format(to_send)) for i in range(int(to_send)): mf.write(str(millisec_time) + '\n') # print(millisec_time) pkt_count += to_send if millisec_count >= EXP_LEN: break ```
{ "source": "jlfilho/sr-on-fog", "score": 2 }
#### File: sr-on-fog/real_exp/run_video.py ```python import os import sys import signal import subprocess from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.common.keys import Keys from selenium.common.exceptions import TimeoutException from pyvirtualdisplay import Display from time import sleep # TO RUN: download https://pypi.python.org/packages/source/s/selenium/selenium-2.39.0.tar.gz # run sudo apt-get install python-setuptools # run sudo apt-get install xvfb # after untar, run sudo python setup.py install # follow directions here: https://pypi.python.org/pypi/PyVirtualDisplay to install pyvirtualdisplay # For chrome, need chrome driver: https://code.google.com/p/selenium/wiki/ChromeDriver # chromedriver variable should be path to the chromedriver # the default location for firefox is /usr/bin/firefox and chrome binary is /usr/bin/google-chrome # if they are at those locations, don't need to specify def timeout_handler(signum, frame): raise Exception("Timeout") abr_algo = sys.argv[1] run_time = int(sys.argv[2]) exp_id = sys.argv[3] # --------------------------------------------------- # ---- change localhost in url to server address ---- # --------------------------------------------------- # | # v url = 'localhost/' + 'myindex_' + abr_algo + '.html' # timeout signal signal.signal(signal.SIGALRM, timeout_handler) signal.alarm(run_time + 30) try: # copy over the chrome user dir #default_chrome_user_dir = '../abr_browser_dir/chrome_data_dir' default_chrome_user_dir = '/home/joao/.config/google-chrome' chrome_user_dir = '/tmp/chrome_user_dir_real_exp_' + abr_algo os.system('rm -r ' + chrome_user_dir) os.system('cp -r ' + default_chrome_user_dir + ' ' + chrome_user_dir) # start abr algorithm server if abr_algo == 'RL': command = 'exec /usr/bin/python ../rl_server/rl_server_no_training.py ' + exp_id elif abr_algo == 'fastMPC': command = 'exec /usr/bin/python ../rl_server/mpc_server.py ' + exp_id elif abr_algo == 'robustMPC': command = 'exec /usr/bin/python ../rl_server/robust_mpc_server.py ' + exp_id else: command = 'exec /usr/bin/python ../rl_server/simple_server.py ' + abr_algo + ' ' + exp_id proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) sleep(2) # to not display the page in browser display = Display(visible=1, size=(800,600)) display.start() # initialize chrome driver options=Options() chrome_driver = '../abr_browser_dir/chromedriver' options.add_argument('--no-sandbox') options.add_argument('--user-data-dir=' + chrome_user_dir) options.add_argument('--ignore-certificate-errors') options.add_argument('--disable-dev-shm-usage') driver=webdriver.Chrome(chrome_driver, chrome_options=options) # run chrome print(url) driver.set_page_load_timeout(60) driver.get(url) sleep(run_time) driver.quit() display.stop() # kill abr algorithm server proc.send_signal(signal.SIGINT) # proc.kill() print('done') except Exception as e: try: display.stop() except: pass try: driver.quit() except: pass try: proc.send_signal(signal.SIGINT) except: pass print(e) ```
{ "source": "jlfilho/sr", "score": 2 }
#### File: jlfilho/sr/teste.py ```python import tensorflow as tf import json import argparse from models.dataset import Dataset from models.model import Model class RTVSRGAN(Model): def __init__(self, args): super().__init__(args) self._prediction_offset = self._scale_factor * 4 def get_data(self): data_batch, initializer = self.dataset.get_data() lr_batch = tf.cast(data_batch['lr1'], tf.float32) / 255.0 hr_batch = tf.cast(data_batch['hr'], tf.float32) / 255.0 return [lr_batch, hr_batch], initializer def get_placeholder(self): input_ph = tf.placeholder(tf.float32, shape=[1, None, None, 1], name="x") return [input_ph] def load_model(self, data_batch): lr_batch = data_batch[0] with tf.variable_scope('espcn'): if not self._using_dataset: lr_batch = tf.pad(lr_batch, [[0, 0], [4, 4], [4, 4], [0, 0]], 'SYMMETRIC') net = tf.layers.conv2d(lr_batch, 64, 5, activation=tf.nn.tanh, padding='valid', name='conv1', kernel_initializer=tf.keras.initializers.he_normal()) net = tf.layers.conv2d(net, 32, 3, activation=tf.nn.tanh, padding='valid', name='conv2', kernel_initializer=tf.keras.initializers.he_normal()) net = tf.layers.conv2d(net, self._scale_factor ** 2, 3, activation=tf.nn.sigmoid, padding='valid', name='conv3', kernel_initializer=tf.keras.initializers.he_normal()) predicted_batch = tf.depth_to_space(net, self._scale_factor, name='prediction') espcn_variables = tf.trainable_variables(scope='espcn') for variable in espcn_variables: if 'conv3' in variable.name: self.lr_multipliers[variable.name] = 0.1 else: self.lr_multipliers[variable.name] = 1.0 if self._using_dataset: tf.summary.image('Low_resolution', data_batch[0][:, 4:-4, 4:-4], max_outputs=self._save_num) tf.summary.image('High_resolution', data_batch[1][:, self._prediction_offset:-self._prediction_offset, self._prediction_offset:-self._prediction_offset], max_outputs=self._save_num) tf.summary.image('High_resolution_prediction', predicted_batch, max_outputs=self._save_num) return predicted_batch def get_loss(self, data_batch, predicted_batch): loss = tf.losses.mean_squared_error( data_batch[1][:, self._prediction_offset:-self._prediction_offset, self._prediction_offset:-self._prediction_offset], predicted_batch) tf.summary.scalar('MSE', loss) tf.summary.scalar('PSNR', tf.reduce_mean(tf.image.psnr( data_batch[1][:, self._prediction_offset:-self._prediction_offset, self._prediction_offset:-self._prediction_offset], predicted_batch, max_val=1.0))) tf.summary.scalar('SSIM', tf.reduce_mean(tf.image.ssim( data_batch[1][:, self._prediction_offset:-self._prediction_offset, self._prediction_offset:-self._prediction_offset], predicted_batch, max_val=1.0))) return loss def calculate_metrics(self, data_batch, predicted_batch): diff = data_batch[1][:, self._prediction_offset:-self._prediction_offset, self._prediction_offset:-self._prediction_offset] - predicted_batch diff_sqr = tf.square(diff) mse = ('MSE', tf.reduce_mean(diff_sqr, axis=[1, 2, 3])) psnr = ('PSNR', tf.squeeze(tf.image.psnr( data_batch[1][:, self._prediction_offset:-self._prediction_offset, self._prediction_offset:-self._prediction_offset], predicted_batch, max_val=1.0))) ssim = ('SSIM', tf.squeeze(tf.image.ssim( data_batch[1][:, self._prediction_offset:-self._prediction_offset, self._prediction_offset:-self._prediction_offset], predicted_batch, max_val=1.0))) return [mse, psnr, ssim] TRAINING_LOGDIR='logdir/espcn_batch_32_lr_1e-3_decay_adam/train' EVAL_LOGDIR='logdir/espcn_batch_32_lr_1e-3_decay_adam/test' TRAINING_DATASET_PATH='datasets/train_div2k/dataset.tfrecords' TRAINING_DATASET_INFO_PATH='datasets/train_div2k/dataset_info.txt' TESTING_DATASET_PATH='datasets/test_div2k/dataset.tfrecords' TESTING_DATASET_INFO_PATH='datasets/test_div2k/dataset_info.txt' MODEL='rtvsrgan' BATCH_SIZE=32 OPTIMIZER='adam' LEARNING_RATE=1e-3 USE_LR_DECAY_FLAG='--use_lr_decay' LEARNING_DECAY_RATE=0.1 LEARNING_DECAY_EPOCHS=30 STAIRCASE_LR_DECAY_FLAG='--staircase_lr_decay' STEPS_PER_LOG=1000 NUM_EPOCHS=100 EPOCHS_PER_EVAL=1 EPOCHS_PER_SAVE=1 SHUFFLE_BUFFER_SIZE=100000 def get_arguments(): parser = argparse.ArgumentParser(description='train one of the models for image and video super-resolution') parser.add_argument('--model', type=str, default=MODEL, choices=['rtvsrgan','srcnn', 'espcn', 'vespcn', 'vsrnet'], help='What model to train') parser.add_argument('--batch_size', type=int, default=BATCH_SIZE, help='Number of images in batch') parser.add_argument('--dataset_path', type=str, default=TRAINING_DATASET_PATH, help='Path to the dataset') parser.add_argument('--dataset_info_path', type=str, default=TRAINING_DATASET_INFO_PATH, help='Path to the dataset info') parser.add_argument('--ckpt_path', default=None, help='Path to the model checkpoint to evaluate') parser.add_argument('--shuffle_buffer_size', type=int, default=SHUFFLE_BUFFER_SIZE, help='Buffer size used for shuffling examples in dataset') parser.add_argument('--optimizer', type=str, default=OPTIMIZER, choices=['adam', 'momentum', 'sgd'], help='What optimizer to use for training') parser.add_argument('--learning_rate', type=float, default=LEARNING_RATE, help='Learning rate used for training') parser.add_argument('--use_lr_decay', action='store_true', help='Whether to apply exponential decay to the learning rate') parser.add_argument('--lr_decay_rate', type=float, default=LEARNING_DECAY_RATE, help='Learning rate decay rate used in exponential decay') parser.add_argument('--lr_decay_epochs', type=int, default=LEARNING_DECAY_EPOCHS, help='Number of epochs before full decay rate tick used in exponential decay') parser.add_argument('--staircase_lr_decay', action='store_true', help='Whether to decay the learning rate at discrete intervals') parser.add_argument('--num_epochs', type=int, default=NUM_EPOCHS, help='Number of training epochs') parser.add_argument('--save_num', type=int, default=NUM_EPOCHS, help='How many images to write to summary') parser.add_argument('--steps_per_log', type=int, default=STEPS_PER_LOG, help='How often to save summaries') parser.add_argument('--epochs_per_save', type=int, default=EPOCHS_PER_SAVE, help='How often to save checkpoints') parser.add_argument('--use_mc', action='store_true', help='Whether to use motion compensation in video super resolution model') parser.add_argument('--mc_independent', action='store_true', help='Whether to train motion compensation network independent from super resolution network') parser.add_argument('--logdir', type=str, default=TRAINING_LOGDIR, help='Where to save checkpoints and summaries') return parser.parse_args() def main(): args = get_arguments() print(args) if args.model == 'rtvsrgan': model = RTVSRGAN(args) data_batch, data_initializer = model.get_data() print(data_batch) main() ```
{ "source": "jlfilho/sr-tf2", "score": 2 }
#### File: models/evsrnet/block.py ```python import tensorflow as tf class RB(tf.keras.Model): def __init__(self,filters=64): super(RB, self).__init__() self.conv1 = tf.keras.layers.Conv2D(filters, 3,padding='same',strides=(1, 1), kernel_initializer=tf.keras.initializers.VarianceScaling(scale=1., mode='fan_in', distribution='truncated_normal', seed=None)) self.act = tf.keras.layers.ReLU() self.conv2 = tf.keras.layers.Conv2D(filters, 3,padding='same',strides=(1, 1), kernel_initializer=tf.keras.initializers.VarianceScaling(scale=1., mode='fan_in', distribution='truncated_normal', seed=None)) def call(self, inputs): identity = inputs out = self.act(self.conv1(inputs)) out = self.conv2(out) out_fused = tf.keras.layers.add([identity, out]) return out_fused class Upsample(tf.keras.Model): def __init__(self,channels=1,scale_factor=2): super(Upsample, self).__init__() self.conv = tf.keras.layers.Conv2D(channels*(scale_factor ** 2), 3, padding='same',strides=(1, 1), kernel_initializer=tf.keras.initializers.VarianceScaling(scale=1., mode='fan_in', distribution='truncated_normal', seed=None)) self.upsample = tf.keras.layers.Lambda(lambda x:tf.nn.depth_to_space(x,scale_factor)) def call(self, inputs): x = self.conv(inputs) return self.upsample(x) ``` #### File: sr-tf2/models/metrics.py ```python import tensorflow as tf from lpips_tf import lpips_tf def psnr(y, y_pred,max_val=1.0): y = tf.image.convert_image_dtype(y, tf.float32) y_pred = tf.image.convert_image_dtype(y_pred, tf.float32) if(len(y.shape)==4): values = tf.image.psnr(y[:, 4:-4, 4:-4], y_pred[:, 4:-4, 4:-4], max_val=max_val) if (len(y.shape)==3): values = tf.image.psnr(y[4:-4, 4:-4], y_pred[4:-4, 4:-4], max_val=max_val) return tf.reduce_mean(values) def ssim(y, y_pred,max_val=1.0): y = tf.image.convert_image_dtype(y, tf.float32) y_pred = tf.image.convert_image_dtype(y_pred, tf.float32) if(len(y.shape)==4): values = tf.image.ssim(y[:, 4:-4, 4:-4], y_pred[:, 4:-4, 4:-4], max_val=max_val, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03) if (len(y.shape)==3): values = tf.image.ssim(y[4:-4, 4:-4], y_pred[4:-4, 4:-4], max_val=max_val, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03) return tf.reduce_mean(values) rmse = tf.keras.metrics.RootMeanSquaredError(name='rmse') def psnr_loss(y, y_pred,max_val=1.0): y = tf.image.convert_image_dtype(y, tf.float32) y_pred = tf.image.convert_image_dtype(y_pred, tf.float32) if(len(y.shape)==4): values = tf.image.psnr(y[:, 4:-4, 4:-4], y_pred[:, 4:-4, 4:-4], max_val=max_val) if (len(y.shape)==3): values = tf.image.psnr(y[4:-4, 4:-4], y_pred[4:-4, 4:-4], max_val=max_val) return values def ssim_loss(y, y_pred,max_val=1.0): y = tf.image.convert_image_dtype(y, tf.float32) y_pred = tf.image.convert_image_dtype(y_pred, tf.float32) if(len(y.shape)==4): values = tf.image.ssim(y[:, 4:-4, 4:-4], y_pred[:, 4:-4, 4:-4], max_val=max_val, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03) if (len(y.shape)==3): values = tf.image.ssim(y[4:-4, 4:-4], y_pred[4:-4, 4:-4], max_val=max_val, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03) return values @tf.function def lpips(y, y_pred): y = (y*255.) if(y.shape[-1]==1): y = tf.keras.layers.Concatenate()([y, y, y]) y_pred = (y_pred*255.) if(y_pred.shape[-1]==1): y_pred = tf.keras.layers.Concatenate()([y_pred, y_pred, y_pred]) if(len(y.shape)==4): values = lpips_tf.lpips(y[:, 4:-4, 4:-4], y_pred[:, 4:-4, 4:-4], model='net-lin', net='alex') if (len(y.shape)==3): values = lpips_tf.lpips(y[4:-4, 4:-4], y_pred[4:-4, 4:-4], model='net-lin', net='alex') return tf.reduce_mean(values) ``` #### File: models/rtsrgan/block.py ```python import tensorflow as tf class RRDB(tf.keras.Model): def __init__(self,filters=32,kernel_size=3,name=None): super(RRDB, self).__init__() self.c1 = tf.keras.layers.Conv2D(filters, kernel_size,padding='valid',strides=(1, 1), name=name,kernel_initializer=tf.keras.initializers.he_normal()) self.bn = tf.keras.layers.BatchNormalization() self.act = tf.keras.layers.ReLU() def call(self, inputs): x = self.c1(inputs) x = self.bn(x) return self.act(x) ``` #### File: models/rtsrgan/model_gan.py ```python import tensorflow as tf from functools import reduce class GAN(tf.keras.Model): def __init__(self, discriminator, generator): super(GAN, self).__init__() self.discriminator = discriminator self.generator = generator def compile(self, d_optimizer, g_optimizer, d_loss, g_loss, metrics): super(GAN, self).compile(metrics = metrics) self.d_optimizer = d_optimizer self.d_loss = d_loss self.g_optimizer = g_optimizer self.g_loss = g_loss def load_weights_gen(self,checkpoint_filepath): self.generator.load_weights(checkpoint_filepath) def load_weights_dis(self,checkpoint_filepath): self.discriminator.load_weights(checkpoint_filepath) def save_weights_gen(self,checkpoint_filepath): # Save the weights self.generator.save_weights(checkpoint_filepath) def train_step(self, data): if isinstance(data, tuple): img_lr, img_hr = data with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: img_sr = self.generator(img_lr, training=True) real_output = self.discriminator(img_hr, training=True) fake_output = self.discriminator(img_sr, training=True) g_loss,c_loss, a_loss, p_loss = self.g_loss(fake_output,img_hr,img_sr) d_loss = self.d_loss(real_output, fake_output) gradients_of_generator = gen_tape.gradient(g_loss, self.generator.trainable_variables) gradients_of_discriminator = disc_tape.gradient(d_loss, self.discriminator.trainable_variables) self.g_optimizer.apply_gradients(zip(gradients_of_generator, self.generator.trainable_variables)) self.d_optimizer.apply_gradients(zip(gradients_of_discriminator, self.discriminator.trainable_variables)) self.compiled_metrics.update_state(img_hr, img_sr) return reduce(lambda x,y: dict(x, **y), ({"d_loss": d_loss, "g_loss": g_loss,"a_loss": a_loss, "c_loss": c_loss, "p_loss": p_loss }, {m.name: m.result() for m in self.metrics})) ``` #### File: models/rtvsrgan/KnowledgeDistillation.py ```python import tensorflow as tf from models.metrics import ssim_loss class Distiller(tf.keras.Model): def __init__(self, student, teacher): super(Distiller, self).__init__() self.teacher = teacher self.student = student self.time = [] def get_run_time(self): if(len(self.time)>0): return sum(self.time)/len(self.time) else: return -1 def compile( self, optimizer, metrics, student_loss_fn, distillation_loss_fn, perc_loss_fn, alpha=0.1, beta=0.2, ): """ Configure the distiller. Args: optimizer: Keras optimizer for the student weights metrics: Keras metrics for evaluation student_loss_fn: Loss function of difference between student predictions and ground-truth distillation_loss_fn: Loss function of difference between soft student predictions and soft teacher predictions alpha: weight to student_loss_fn and 1-alpha to distillation_loss_fn temperature: Temperature for softening probability distributions. Larger temperature gives softer distributions. """ super(Distiller, self).compile(optimizer=optimizer, metrics=metrics) self.student_loss_fn = student_loss_fn self.distillation_loss_fn = distillation_loss_fn self.perc_loss_fn = perc_loss_fn self.alpha = alpha self.beta = beta @tf.function def train_step(self, data): # Unpack data x, y = data # Forward pass of teacher teacher_predictions = self.teacher(x, training=False) with tf.GradientTape() as tape: # Forward pass of student student_predictions = self.student(x, training=True) # Compute losses student_loss = self.student_loss_fn(y, student_predictions) distillation_loss = self.distillation_loss_fn(teacher_predictions,student_predictions) #distillation_loss = self.distillation_loss_fn(ssim_loss(y,y),ssim_loss(y,student_predictions)) teacher_predictions = tf.keras.layers.Concatenate()([teacher_predictions, teacher_predictions, teacher_predictions]) student_predictions = tf.keras.layers.Concatenate()([student_predictions, student_predictions, student_predictions]) y = tf.keras.layers.Concatenate()([y, y, y]) perc_loss = self.perc_loss_fn(y, student_predictions) loss = (1 - (self.alpha + self.beta)) * student_loss + self.alpha * distillation_loss + self.beta * perc_loss # Compute gradients trainable_vars = self.student.trainable_variables gradients = tape.gradient(loss, trainable_vars) # Update weights self.optimizer.apply_gradients(zip(gradients, trainable_vars)) # Update the metrics configured in `compile()`. self.compiled_metrics.update_state(y, student_predictions) # Return a dict of performance results = {m.name: m.result() for m in self.metrics} results.update( {"student_loss": student_loss, "distillation_loss": distillation_loss, "perceptual_loss": perc_loss} ) return results @tf.function def test_step(self, data): # Unpack the data x, y = data # Compute predictions y_prediction = self.student(x, training=False) # Calculate the loss #student_loss = self.student_loss_fn(y, y_prediction) # Update the metrics. self.compiled_metrics.update_state(y, y_prediction) # Return a dict of performance results = {m.name: m.result() for m in self.metrics} #results.update({"student_loss": student_loss}) return results ``` #### File: models/rtvsrgan/model_generator.py ```python import tensorflow as tf from models.rtvsrgan.blocks import RB,DRB, Upsample class G_RTVSRGAN(tf.keras.Model): def __init__(self,channels=1,scale_factor=2,file_writer_cm=None,method=None): super(G_RTVSRGAN, self).__init__() self.method = method self.scale_factor = scale_factor self.RB1 = RB(filters=32,kernel_size=3) self.RB2 = RB(filters=32,kernel_size=3) self.RB3 = RB(filters=32,kernel_size=3) self.upsample = Upsample(channels=channels,scale_factor=scale_factor) self.time = [] def get_run_time(self): if(len(self.time)>0): return sum(self.time)/len(self.time) else: return -1 def call(self, inputs): x = tf.pad(inputs, [[0, 0], [0, 0], [0, 0], [0, 0]], 'SYMMETRIC') rb1 = self.RB1(x) rb2 = self.RB2(rb1) x = tf.keras.layers.add([rb1, rb2]) rb3 = self.RB3(x) x = tf.keras.layers.concatenate([rb1, rb2, rb3],axis=3) x = self.upsample(x) if self.method != None: input_resized = tf.image.resize(inputs, [inputs.shape[1]*self.scale_factor,inputs.shape[2]*self.scale_factor],method=self.method) x = tf.keras.layers.add([x,input_resized]) return x # class G_RTVSRGAN_2(tf.keras.Model): # def __init__(self,channels=1,scale_factor=2,file_writer_cm=None,distillation_rate=0.8): # super(G_RTVSRGAN_2, self).__init__() # self.RB1 = RB(filters=72,kernel_size=3) # self.RB2 = RB(filters=72,kernel_size=3) # self.RB3 = RB(filters=72,kernel_size=3) # self.upsample = Upsample(channels=channels,scale_factor=scale_factor) # self.time = [] # def get_run_time(self): # if(len(self.time)>0): # return sum(self.time)/len(self.time) # else: # return -1 # def call(self, inputs): # x = tf.pad(inputs, [[0, 0], [0, 0], [0, 0], [0, 0]], 'SYMMETRIC') # rb1 = self.RB1(x) # rb2 = self.RB2(rb1) # x = tf.keras.layers.add([rb1, rb2]) # rb3 = self.RB3(x) # x = tf.keras.layers.concatenate([rb1, rb2, rb3],axis=3) # return self.upsample(x) # class G_RTVSRGAN2(tf.keras.Model): # def __init__(self,channels=1,scale_factor=2,file_writer_cm=None,distillation_rate=0.8): # super(G_RTVSRGAN2, self).__init__() # self.c1 = tf.keras.layers.Conv2D(32, 3,padding='same',strides=(1, 1), # kernel_initializer=tf.keras.initializers.VarianceScaling(scale=1., mode='fan_in', # distribution='truncated_normal', seed=None)) # self.RB1 = DRB(filters=32,kernel_size=3,distillation_rate=distillation_rate) # self.RB2 = DRB(filters=32,kernel_size=3,distillation_rate=distillation_rate) # self.RB3 = DRB(filters=32,kernel_size=3,distillation_rate=distillation_rate) # self.RB4 = DRB(filters=32,kernel_size=3,distillation_rate=distillation_rate) # self.RB5 = DRB(filters=32,kernel_size=3,distillation_rate=distillation_rate) # self.c2 = tf.keras.layers.Conv2D(32, 1,padding='same',strides=(1, 1), # kernel_initializer=tf.keras.initializers.VarianceScaling(scale=1., mode='fan_in', # distribution='truncated_normal', seed=None)) # self.c3 = tf.keras.layers.Conv2D(32, 3,padding='same',strides=(1, 1), # kernel_initializer=tf.keras.initializers.VarianceScaling(scale=1., mode='fan_in', # distribution='truncated_normal', seed=None)) # self.lrelu = tf.keras.layers.LeakyReLU(alpha=0.2) # self.upsample = Upsample(channels=channels,scale_factor=scale_factor) # self.time = [] # def get_run_time(self): # if(len(self.time)>0): # return sum(self.time)/len(self.time) # else: # return -1 # def call(self, inputs): # x = tf.pad(inputs, [[0, 0], [0, 0], [0, 0], [0, 0]], 'SYMMETRIC') # x1 = self.lrelu(self.c1(x)) # rb1 = self.RB1(x1) # rb2 = self.RB2(rb1) # rb3 = self.RB3(rb2) # rb4 = self.RB4(rb3) # rb5 = self.RB4(rb4) # x = tf.keras.layers.concatenate([rb1, rb2, rb3, rb4, rb5],axis=3) # x = self.lrelu(self.c2(x)) # x = self.lrelu(self.c3(x)) # x_fused = tf.keras.layers.add([x, x1]) # return self.upsample(x_fused) # class G_RTVSRGAN(tf.keras.Model): # def __init__(self,channels=1,scale_factor=2,file_writer_cm=None,distillation_rate=0.8): # super(G_RTVSRGAN, self).__init__() # self.RB1 = RB(filters=64,kernel_size=3) # self.RB2 = RB(filters=64,kernel_size=3) # self.RB3 = RB(filters=64,kernel_size=3) # self.RB4 = RB(filters=64,kernel_size=3) # self.RB5 = RB(filters=64,kernel_size=3) # self.lrelu = tf.keras.layers.LeakyReLU(alpha=0.2) # self.upsample = Upsample(channels=channels,scale_factor=scale_factor) # self.time = [] # def get_run_time(self): # if(len(self.time)>0): # return sum(self.time)/len(self.time) # else: # return -1 # def call(self, inputs): # x = tf.pad(inputs, [[0, 0], [0, 0], [0, 0], [0, 0]], 'SYMMETRIC') # rb1 = self.RB1(x) # rb2 = self.RB2(rb1) # x = tf.keras.layers.add([rb1, rb2]) # rb3 = self.RB3(x) # x = tf.keras.layers.add([rb2, rb3]) # rb4 = self.RB4(x) # x = tf.keras.layers.add([rb3, rb4]) # return self.upsample(x) ``` #### File: jlfilho/sr-tf2/train.py ```python import tensorflow as tf import argparse import os import statistics as stat from models.utils import plot_test_images, plot_images, print_metrics from models.espcn.model_espcn import ESPCN as espcn from models.evsrnet.model_evsrnet import EVSRNet from models.rtsrgan.model_generator import G_RTSRGAN as g_rtsrgan from models.rtsrgan.model_discriminator import d_rtsrgan from models.rtsrgan.model_gan import GAN from models.rtvsrgan.model_generator import G_RTVSRGAN as g_rtvsrgan from models.rtvsrgan.KnowledgeDistillation import Distiller from models.rtvsrgan.model_discriminator import d_rtvsrgan, rad_rtvsrgan from models.rtvsrgan.model_ragan import RaGAN from models.percsr.model_discriminator import d_percsr, rad_percsr from models.percsr.model_percsr import PercSR from models.percsr.model_teacher import Teacher from models.imdn.model_imdn import IMDN from models.dataset import Dataset from models.metrics import psnr, ssim, rmse, lpips from models.losses import VGGLossNoActivation as VGGLoss, GANLoss from models.save_img_callback import SaveImageCallback from models.utils import scale_1 as scale hot_test= {'hot_test_generic': { 'lr_hot_test_path': "datasets/loaded_harmonic/img_hot_test/generic/lr/270p_qp17/", 'hr_hot_test_path': "datasets/loaded_harmonic/img_hot_test/generic/hr/1080p/" }, 'hot_test_game': { 'lr_hot_test_path': "datasets/loaded_harmonic/img_hot_test/game/lr/270p_qp17/", 'hr_hot_test_path': "datasets/loaded_harmonic/img_hot_test/game/hr/1080p/" }, 'hot_test_sport': { 'lr_hot_test_path': "datasets/loaded_harmonic/img_hot_test/sport/lr/270p_qp17/", 'hr_hot_test_path': "datasets/loaded_harmonic/img_hot_test/sport/hr/1080p/" }, 'hot_test_podcast': { 'lr_hot_test_path': "datasets/loaded_harmonic/img_hot_test/podcast/lr/270p_qp17/", 'hr_hot_test_path': "datasets/loaded_harmonic/img_hot_test/podcast/hr/1080p/" }} test= { 'test_generic': { 'lr_test_path': "/home/joao/Documentos/projetos/sr-tf2/datasets/loaded_harmonic/img_test/lr/270p_qp17/", 'hr_test_path': "/home/joao/Documentos/projetos/sr-tf2/datasets/loaded_harmonic/img_test/hr/1080p/", 'logdir': "test_logdir/test/generic/" }, 'test_game': { 'lr_test_path': "/media/joao/SAMSUNG/Youtube/game/img_test/lr/270p_qp17/", 'hr_test_path': "/media/joao/SAMSUNG/Youtube/game/img_test/hr/1080p/", 'logdir': "test_logdir/test/game/" }, 'test_sport': { 'lr_test_path': "/media/joao/SAMSUNG/Youtube/sport/img_test/lr/270p_qp17/", 'hr_test_path': "/media/joao/SAMSUNG/Youtube/sport/img_test/hr/1080p/", 'logdir': "test_logdir/test/sport/" }, 'test_podcast': { 'lr_test_path': "/media/joao/SAMSUNG/Youtube/podcast/img_test/lr/270p_qp17/", 'hr_test_path': "/media/joao/SAMSUNG/Youtube/podcast/img_test/hr/1080p/", 'logdir': "test_logdir/test/podcast/" }} test_datasets = { 'test_generic': { 'test_dataset_path': "datasets/loaded_harmonic/output/generic/test/4X/270p_qp17/dataset.tfrecords", 'test_dataset_info_path': "datasets/loaded_harmonic/output/generic/test/4X/270p_qp17/dataset_info.txt" }, 'test_game': { 'test_dataset_path': "datasets/loaded_harmonic/output/game/test/4X/270p_qp17/dataset.tfrecords", 'test_dataset_info_path': "datasets/loaded_harmonic/output/game/test/4X/270p_qp17/dataset_info.txt" }, 'test_sport': { 'test_dataset_path': "datasets/loaded_harmonic/output/sport/test/4X/270p_qp17/dataset.tfrecords", 'test_dataset_info_path': "datasets/loaded_harmonic/output/sport/test/4X/270p_qp17/dataset_info.txt" }, 'test_podcast': { 'test_dataset_path': "datasets/loaded_harmonic/output/podcast/test/4X/270p_qp17/dataset.tfrecords", 'test_dataset_info_path': "datasets/loaded_harmonic/output/podcast/test/4X/270p_qp17/dataset_info.txt" }} LIST_MODEL=['espcn','g_rtsrgan','rtsrgan','g_rtvsrgan','teacher','rtvsrgan','imdn','k_dist','percsr','evsrnet'] MODEL='rtvsrgan' LIST_GENERATOR=[None,'espcn','g_rtsrgan','imdn','evsrnet','g_rtvsrgan'] GENERATOR=None BATCH_SIZE = 32 VAL_BATCH_SIZE = 16 TEST_BATCH_SIZE = 4 SHUFFLE_BUFFER_SIZE = 64 LIST_TEST_CLUSTER = ['generic','game','sport','podcast'] TEST_CLUSTER = ['sport'] SCHEDULE_VALUES=[100] # Knowledge distillation model LOSS_FN='mae' DISTILLATION_RATE=0.8 ALPHA=0.3 BETA=0.65 LIST_WEIGHTS=[1e-5,1e-2,1e-2] TYPE_REDUCE_LR='schedules' LEARNING_RATE = 1e-4 LEARNING_DECAY_RATE = 1e-1 LEARNING_DECAY_EPOCHS = 20 NUM_EPOCHS = 100 STEPS_PER_EPOCH = 100 VAL_STEPS = 1 TEST_STEPS = 0 EPOCHS_PER_SAVE = 5 LOGDIR = 'logdir' CHECKPOINT = 'checkpoint/' TRAINNABLE_LAYER = 'final' PATH_TO_EVAL = 'test_logdir/stats.txt' TEST_LOGDIR='test_logdir/' HOT_TEST_SIZE=5 LR_HOT_TEST_PATH="datasets/loaded_harmonic/img_test/lr/270p_qp28/" HR_HOT_TEST_PATH="datasets/loaded_harmonic/img_test/hr/1080p/" TRAIN_DATASET_PATH='datasets/loaded_harmonic/output/train/2X/270p_qp17/dataset.tfrecords' TRAIN_DATASET_INFO_PATH='datasets/loaded_harmonic/output/train/2X/270p_qp17/dataset_info.txt' VAL_DATASET_PATH='datasets/loaded_harmonic/output/val/2X/270p_qp17/dataset.tfrecords' VAL_DATASET_INFO_PATH='datasets/loaded_harmonic/output/val/2X/270p_qp17/dataset_info.txt' TEST_DATASET_PATH='datasets/loaded_harmonic/output/test/2X/270p_qp17/dataset.tfrecords' TEST_DATASET_INFO_PATH='datasets/loaded_harmonic/output/test/2X/270p_qp17/dataset_info.txt' def get_arguments(): parser = argparse.ArgumentParser(description='train one of the models for image and video super-resolution') parser.add_argument('--model', type=str, default=MODEL, choices=LIST_MODEL, help='What model to train', required=True) parser.add_argument('--generator', type=str, default=GENERATOR, choices=LIST_GENERATOR, help='What model to train', required=False) parser.add_argument('--batch_size', type=int, default=BATCH_SIZE, help='Number of images in batch', required=True) parser.add_argument('--train_dataset_path', type=str, default=TRAIN_DATASET_PATH, help='Path to the train dataset', required=True) parser.add_argument('--train_dataset_info_path', type=str, default=TRAIN_DATASET_INFO_PATH, help='Path to the train dataset info', required=True) parser.add_argument('--num_epochs', type=int, default=NUM_EPOCHS, help='Number of training epochs', required=True) parser.add_argument('--steps_per_epoch', type=int, default=STEPS_PER_EPOCH, help='Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch.') parser.add_argument('--val_batch_size', type=int, default=VAL_BATCH_SIZE, help='Number of images in val batch') parser.add_argument('--val_dataset_path', type=str, default=VAL_DATASET_PATH, help='Path to the val dataset') parser.add_argument('--val_dataset_info_path', type=str, default=VAL_DATASET_INFO_PATH, help='Path to the val dataset info') parser.add_argument('--validation_steps', type=int, default=VAL_STEPS, help='Total number of steps (batches of samples) to draw before stopping when performing validation at the end of every epoch.') parser.add_argument('--test_batch_size', type=int, default=TEST_BATCH_SIZE, help='Number of images in test batch') parser.add_argument('--test_dataset_path', type=str, default=TEST_DATASET_PATH, help='Path to the test dataset') parser.add_argument('--test_dataset_info_path', type=str, default=TEST_DATASET_INFO_PATH, help='Path to the test dataset info') parser.add_argument('--test_steps', type=int, default=TEST_STEPS, help='Total number of steps (batches of samples) to draw before stopping when performing evaluate at the end of every epoch.') parser.add_argument('--test_cluster', nargs='*', type=str, default=TEST_CLUSTER, choices=LIST_TEST_CLUSTER, help='What cluster dataset to eval', required=False) parser.add_argument('--hot_test_size', type=int, default=HOT_TEST_SIZE, help='Number of images in hot test') parser.add_argument('--lr_hot_test_path', type=str, default=LR_HOT_TEST_PATH, help='Path to the hot test dataset') parser.add_argument('--hr_hot_test_path', type=str, default=HR_HOT_TEST_PATH, help='Path to the hr hot test path') parser.add_argument('--ckpt_path', default=CHECKPOINT, help='Path to the model checkpoint to evaluate') parser.add_argument('--load_weights', action='store_true', help='Load weights') parser.add_argument('--load_weights_perc', action='store_true', help='Load weights perceptual') parser.add_argument('--eval', action='store_true', help='Avaluete model') parser.add_argument('--range_to_save', type=int, default=10, help='Range of image to save for teste.' ) parser.add_argument('--transfer_learning', action='store_true', help='Transfer learning from lower-upscale model') parser.add_argument('--trainable_layer', type=str, default=TRAINNABLE_LAYER, help='Transfer learning from lower-upscale model') parser.add_argument('--scaleFrom', type=int, default=2, help='Perform transfer learning from lower-upscale model' ) parser.add_argument('--shuffle_buffer_size', type=int, default=SHUFFLE_BUFFER_SIZE, help='Buffer size used for shuffling examples in dataset') parser.add_argument('--learning_rate', type=float, default=LEARNING_RATE, help='Learning rate used for training') parser.add_argument('--lr_decay_rate', type=float, default=LEARNING_DECAY_RATE, help='Learning rate decay rate used in exponential decay') parser.add_argument('--lr_decay_epochs', type=int, default=LEARNING_DECAY_EPOCHS, help='Number of epochs before full decay rate tick used in exponential decay') parser.add_argument('--type_reduce_lr', type=str, default=TYPE_REDUCE_LR, choices=['plateau','schedules'], help='Type of reduce learning rate') parser.add_argument('--schedule_values',nargs='*', type=int, default=SCHEDULE_VALUES, help='list of epochs values to reduce lr') parser.add_argument('--loss_fn', type=str, default=LOSS_FN, choices=['mse','mae','huber', 'fea'], help='Set the loss function to knowledge distillation model') parser.add_argument('--distillation_rate', type=float, default=DISTILLATION_RATE, help='Distillation rate in knowledge distillation model') parser.add_argument('--alpha', type=float, default=ALPHA, help='Weight for distillation loss function in knowledge distillation model') parser.add_argument('--beta', type=float, default=BETA, help='Weight for perceptual loss function in knowledge distillation model') parser.add_argument('--list_weights', nargs='*', type=float, default=LIST_WEIGHTS, help='Auxiliary list to weight values') parser.add_argument('--inter_method', type=str, default=None, choices=['bilinear','lanczos3','lanczos5','bicubic','nearest','mitchellcubic'], help='Type of interpolation resize used of same models') parser.add_argument('--epochs_per_save', type=int, default=EPOCHS_PER_SAVE, help='How often to save checkpoints') parser.add_argument('--logdir', type=str, default=LOGDIR, help='Where to save checkpoints and summaries') parser.add_argument('--test_logdir', type=str, default=TEST_LOGDIR, help='Where to save tests images') parser.add_argument('--path_to_eval', type=str, default=PATH_TO_EVAL, help='Path to save evals') return parser.parse_args() def main(): args = get_arguments() # train dataset train_dataset = Dataset(args.batch_size, args.train_dataset_path, args.train_dataset_info_path, args.shuffle_buffer_size) scale_factor = train_dataset.scale_factor if args.steps_per_epoch == 0: steps_per_epoch = train_dataset.examples_num // args.batch_size \ if train_dataset.examples_num % args.batch_size != 0 else 0 else: steps_per_epoch = args.steps_per_epoch train_dataset = train_dataset.get_data(args.num_epochs) train_batch = train_dataset.map(lambda x0,x1,x2,y: (scale(x1),scale(y))) # val dataset val_dataset = Dataset(args.val_batch_size, args.val_dataset_path, args.val_dataset_info_path, args.shuffle_buffer_size) if args.validation_steps == 0: validation_steps = val_dataset.examples_num // args.val_batch_size \ if val_dataset.examples_num % args.val_batch_size != 0 else 0 else: validation_steps = args.validation_steps val_dataset = val_dataset.get_data() val_batch = val_dataset.map(lambda x0,x1,x2,y: (scale(x1),scale(y))) # test dataset test_dataset = Dataset(args.test_batch_size, args.test_dataset_path, args.test_dataset_info_path, args.shuffle_buffer_size) if args.test_steps == 0: test_steps = test_dataset.examples_num // args.test_batch_size \ if test_dataset.examples_num % args.test_batch_size != 0 else 0 else: test_steps = args.test_steps test_dataset = test_dataset.get_data() test_batch = test_dataset.map(lambda x0,x1,x2,y: (scale(x1),scale(y))) # hot test lr_img_paths=sorted([[dp+filename for filename in filenames] for dp, dn, filenames in os.walk(args.lr_hot_test_path) if len(filenames)!=0][0])[0:args.hot_test_size] hr_img_paths=sorted([[dp+filename for filename in filenames] for dp, dn, filenames in os.walk(args.hr_hot_test_path) if len(filenames)!=0][0])[0:args.hot_test_size] test_print = [lr_img_paths,hr_img_paths] checkpoint_paph="{}{}_{}x/model.ckpt".format(args.ckpt_path,args.model,scale_factor) checkpoint_callback = tf.keras.callbacks.ModelCheckpoint( filepath=checkpoint_paph, save_weights_only=True, monitor='val_loss', save_freq= 'epoch', mode='min', save_best_only=True) tensorboard_callback = tf.keras.callbacks.TensorBoard( log_dir=args.logdir+"/"+args.model, histogram_freq=1, write_graph=True, write_images=True, write_steps_per_second=True, update_freq='batch') file_writer_cm = tf.summary.create_file_writer(args.logdir+"/"+args.model + '/validation') earlystopping = tf.keras.callbacks.EarlyStopping( monitor='val_loss', min_delta=1e-5, patience=100, verbose=1, mode='min', restore_best_weights=True) if args.type_reduce_lr == 'plateau': reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_rmse', factor=args.lr_decay_rate, patience=args.lr_decay_epochs, mode='min', min_lr=1e-6,verbose=1) elif args.type_reduce_lr == 'schedules': def scheduler(epoch, lr): if epoch in args.schedule_values: return lr * tf.math.exp(-0.1) else: return lr reduce_lr=tf.keras.callbacks.LearningRateScheduler(scheduler) else: print("--type_reduce_lr not valid!") exit(1) if args.model == 'espcn': callbacks=[checkpoint_callback,tensorboard_callback,earlystopping,reduce_lr] eval,run_time=train_espcn(train_batch,steps_per_epoch, validation_steps,val_batch, test_batch, test_steps, test_print, scale_factor,args,callbacks,checkpoint_paph,file_writer_cm,trainable_layer=args.trainable_layer) print_eval(args.path_to_eval,eval,args.model+"_{}X_q{}".format(str(scale_factor),str(args.train_dataset_path).split('_q')[-1]),run_time) elif args.model == 'imdn': callbacks=[checkpoint_callback,tensorboard_callback,earlystopping,reduce_lr] eval,run_time=train_imdn(train_batch,steps_per_epoch, validation_steps,val_batch, test_batch, test_steps, test_print, scale_factor,args,callbacks,checkpoint_paph,file_writer_cm,trainable_layer=args.trainable_layer) print_eval(args.path_to_eval,eval,args.model+"_{}X_q{}".format(str(scale_factor),str(args.train_dataset_path).split('_q')[-1]),run_time) elif args.model == 'g_rtsrgan': callbacks=[checkpoint_callback,tensorboard_callback,earlystopping,reduce_lr] eval, run_time=train_g_rtsrgan(train_batch,steps_per_epoch, validation_steps,val_batch, test_batch, test_steps, test_print, scale_factor,args,callbacks,checkpoint_paph,file_writer_cm,trainable_layer=args.trainable_layer) print_eval(args.path_to_eval,eval,args.model+"_{}X_q{}".format(str(scale_factor),str(args.train_dataset_path).split('_q')[-1]),run_time) elif args.model == 'rtsrgan': callbacks=[tensorboard_callback] eval,run_time=train_rtsrgan(train_batch,steps_per_epoch, validation_steps,val_batch, test_batch, test_steps, test_print, scale_factor,args,callbacks,checkpoint_paph,file_writer_cm,trainable_layer=args.trainable_layer) print_eval(args.path_to_eval,eval,args.model+"_{}X_q{}".format(str(scale_factor),str(args.train_dataset_path).split('_q')[-1]),run_time) elif args.model == 'evsrnet': callbacks=[checkpoint_callback,tensorboard_callback,earlystopping,reduce_lr] eval,run_time=train_evsrnet(train_batch,steps_per_epoch, validation_steps,val_batch, test_batch, test_steps, test_print, scale_factor,args,callbacks,checkpoint_paph,file_writer_cm,trainable_layer=args.trainable_layer) print_eval(args.path_to_eval,eval,args.model+"_{}X_q{}".format(str(scale_factor),str(args.train_dataset_path).split('_q')[-1]),run_time) # Ours models elif args.model == 'g_rtvsrgan': callbacks=[checkpoint_callback,tensorboard_callback,earlystopping,reduce_lr] eval,run_time=train_g_rtvsrgan(train_batch,steps_per_epoch, validation_steps,val_batch, test_batch, test_steps, test_print, scale_factor,args,callbacks,checkpoint_paph,file_writer_cm,trainable_layer=args.trainable_layer) print_eval(args.path_to_eval,eval,args.model+"_{}X_q{}".format(str(scale_factor),str(args.train_dataset_path).split('_q')[-1]),run_time) elif args.model == 'teacher': callbacks=[checkpoint_callback,tensorboard_callback,earlystopping,reduce_lr] eval,run_time=train_teacher(train_batch,steps_per_epoch, validation_steps,val_batch, test_batch, test_steps, test_print, scale_factor,args,callbacks,checkpoint_paph,file_writer_cm,trainable_layer=args.trainable_layer) print_eval(args.path_to_eval,eval,args.model+"_{}X_q{}".format(str(scale_factor),str(args.train_dataset_path).split('_q')[-1]),run_time) elif args.model == 'rtvsrgan': callbacks=[tensorboard_callback,reduce_lr] eval,run_time=train_rtvsrgan(train_batch,steps_per_epoch, validation_steps,val_batch, test_batch, test_steps, test_print, scale_factor,args,callbacks,checkpoint_paph,file_writer_cm,trainable_layer=args.trainable_layer) print_eval(args.path_to_eval,eval,args.model+"_{}X_q{}".format(str(scale_factor),str(args.train_dataset_path).split('_q')[-1]),run_time) elif args.model == 'k_dist': callbacks=[tensorboard_callback, reduce_lr] eval,run_time=train_k_distillation(train_batch,steps_per_epoch, validation_steps,val_batch, test_batch, test_steps, test_print, scale_factor,args,callbacks,checkpoint_paph,file_writer_cm,trainable_layer=args.trainable_layer) print_eval(args.path_to_eval,eval,args.model+"_{}X_q{}".format(str(scale_factor),str(args.train_dataset_path).split('_q')[-1]),run_time) elif args.model == 'percsr': callbacks=[tensorboard_callback, reduce_lr] print("CALLING MODEL {}".format(args.model)) eval,run_time=train_percsr(train_batch,steps_per_epoch, validation_steps,val_batch, test_batch, test_steps, test_print, scale_factor,args,callbacks,checkpoint_paph,file_writer_cm,trainable_layer=args.trainable_layer) print_eval(args.path_to_eval,eval,args.model+'_'+args.generator+"_{}X_q{}".format(str(scale_factor),str(args.train_dataset_path).split('_q')[-1]),run_time) else: exit(1) def trainable_weights(model): print("Weights:", len(model.weights)) print("Trainable_weights:", len(model.trainable_weights)) print("Non_trainable_weights:", len(model.non_trainable_weights)) def trainable_layers(model, trainable_layer): for i in range(len(model.layers)): if(i+1 == trainable_layer): break else: model.layers[i].trainable=False def print_eval(file_stats,eval,model_name,run_time): statsFile=open(file_stats,"a") print(model_name, file = statsFile) print(eval, file = statsFile) print(run_time, file = statsFile) statsFile.close() def saved_model(model, filepath): tf.keras.models.save_model(model, filepath, save_traces=True) def train_espcn(train_batch,steps_per_epoch, validation_steps,val_batch, test_batch, test_steps, test_print, scale_factor,args,callbacks,checkpoint_paph, file_writer_cm,trainable_layer): model = espcn(scale_factor=scale_factor) if args.load_weights: print("Loading weights...") model.load_weights(checkpoint_paph) if args.transfer_learning: checkpoint_paph_from="{}{}_{}x/model.ckpt".format("checkpoint/",args.model,args.scaleFrom) print("Transfer learning from {}x-upscale model...".format(args.scaleFrom)) modelFrom = espcn(scale_factor=args.scaleFrom) modelFrom.load_weights(checkpoint_paph_from) for i in range(len(modelFrom.layers)): if(modelFrom.layers[i].name == trainable_layer): break else: print("Set_weights in: {} layer".format(model.layers[i].name)) model.layers[i].set_weights(modelFrom.layers[i].get_weights()) model.layers[i].trainable=False opt = tf.keras.optimizers.Adam(learning_rate=args.learning_rate,clipnorm=1.0) if args.loss_fn == "mse": loss_fn = tf.keras.losses.MeanSquaredError() if args.loss_fn == "huber": loss_fn = tf.keras.losses.Huber() if args.loss_fn == "mae": loss_fn = tf.keras.losses.MeanAbsoluteError() model.compile(optimizer=opt, loss=loss_fn, metrics=[psnr,ssim,rmse,lpips]) trainable_weights(model) if(args.eval==True): print("Loading weights...") checkpoint_paph="{}{}_{}x/model.ckpt".format(args.ckpt_path,args.model,scale_factor) model.load_weights(checkpoint_paph) print("Evaluate model") get_test_dataset(model,scale_factor,args) exit(1) save_img_callback = SaveImageCallback( model=model, model_name=args.model, scale_factor=scale_factor, epochs_per_save=args.epochs_per_save, lr_paths=test_print[0], hr_paths=test_print[1], log_dir=args.test_logdir, file_writer_cm=file_writer_cm) callbacks.append(save_img_callback) model.fit(train_batch,epochs=args.num_epochs,callbacks=callbacks, verbose=1,steps_per_epoch=steps_per_epoch,validation_steps=validation_steps,validation_data=val_batch) print("Evaluate model") eval = model.evaluate(test_batch, verbose=1, steps=test_steps) saved_model(model, 'saved_model/{}/'.format(args.model)) return eval,model.get_run_time() def train_imdn(train_batch,steps_per_epoch, validation_steps,val_batch, test_batch, test_steps, test_print, scale_factor,args,callbacks,checkpoint_paph, file_writer_cm,trainable_layer): model = IMDN(scale_factor=scale_factor) if args.load_weights: print("Loading weights...") model.load_weights(checkpoint_paph) if args.transfer_learning: checkpoint_paph_from="{}{}_{}x/model.ckpt".format("checkpoint/",args.model,args.scaleFrom) print("Transfer learning from {}x-upscale model...".format(args.scaleFrom)) modelFrom = IMDN(scale_factor=args.scaleFrom) modelFrom.load_weights(checkpoint_paph_from) for i in range(len(modelFrom.layers)): if(modelFrom.layers[i].name == trainable_layer): break else: print("Set_weights in: {} layer".format(model.layers[i].name)) model.layers[i].set_weights(modelFrom.layers[i].get_weights()) model.layers[i].trainable=False opt = tf.keras.optimizers.Adam(learning_rate=args.learning_rate,clipnorm=1.0) if args.loss_fn == "mse": loss_fn = tf.keras.losses.MeanSquaredError() if args.loss_fn == "huber": loss_fn = tf.keras.losses.Huber() if args.loss_fn == "mae": loss_fn = tf.keras.losses.MeanAbsoluteError() model.compile(optimizer=opt, loss=loss_fn, metrics=[psnr,ssim,rmse,lpips]) trainable_weights(model) if(args.eval==True): print("Loading weights...") checkpoint_paph="{}{}_{}x/model.ckpt".format(args.ckpt_path,args.model,scale_factor) model.load_weights(checkpoint_paph) print("Evaluate model") get_test_dataset(model,scale_factor,args) exit(1) save_img_callback = SaveImageCallback( model=model, model_name=args.model, scale_factor=scale_factor, epochs_per_save=args.epochs_per_save, lr_paths=test_print[0], hr_paths=test_print[1], log_dir=args.test_logdir, file_writer_cm=file_writer_cm) callbacks.append(save_img_callback) model.fit(train_batch,epochs=args.num_epochs,callbacks=callbacks, verbose=1,steps_per_epoch=steps_per_epoch,validation_steps=validation_steps,validation_data=val_batch) print("Evaluate model") eval = model.evaluate(test_batch, verbose=1, steps=test_steps) saved_model(model, 'saved_model/{}/'.format(args.model)) return eval, model.get_run_time() def train_g_rtsrgan(train_batch,steps_per_epoch, validation_steps,val_batch, test_batch, test_steps, test_print, scale_factor,args,callbacks,checkpoint_paph, file_writer_cm,trainable_layer): model = g_rtsrgan(scale_factor=scale_factor) if args.load_weights: print("Loading weights...") model.load_weights(checkpoint_paph) if args.transfer_learning: checkpoint_paph_from="{}{}_{}x/model.ckpt".format("checkpoint/",args.model,args.scaleFrom) print("Transfer learning from {}x-upscale model...".format(args.scaleFrom)) modelFrom = g_rtsrgan(scale_factor=args.scaleFrom) modelFrom.load_weights(checkpoint_paph_from) for i in range(len(modelFrom.layers)): if(modelFrom.layers[i].name == trainable_layer): break else: print("Set_weights in: {} layer".format(model.layers[i].name)) model.layers[i].set_weights(modelFrom.layers[i].get_weights()) model.layers[i].trainable=False opt = tf.keras.optimizers.Adam(learning_rate=args.learning_rate,clipnorm=1.0) if args.loss_fn == "mse": loss_fn = tf.keras.losses.MeanSquaredError() if args.loss_fn == "huber": loss_fn = tf.keras.losses.Huber() if args.loss_fn == "mae": loss_fn = tf.keras.losses.MeanAbsoluteError() model.compile(optimizer=opt, loss=loss_fn, metrics=[psnr,ssim,rmse,lpips]) trainable_weights(model) if(args.eval==True): print("Loading weights...") checkpoint_paph="{}{}_{}x/model.ckpt".format(args.ckpt_path,args.model,scale_factor) model.load_weights(checkpoint_paph) print("Evaluate model") get_test_dataset(model,scale_factor,args) exit(1) save_img_callback = SaveImageCallback( model=model, model_name=args.model, scale_factor=scale_factor, epochs_per_save=args.epochs_per_save, lr_paths=test_print[0], hr_paths=test_print[1], log_dir=args.test_logdir, file_writer_cm=file_writer_cm) callbacks.append(save_img_callback) model.fit(train_batch,epochs=args.num_epochs,callbacks=callbacks, verbose=1,steps_per_epoch=steps_per_epoch,validation_steps=validation_steps,validation_data=val_batch) print("Evaluate model") eval = model.evaluate(test_batch, verbose=1, steps=test_steps) saved_model(model, 'saved_model/{}/'.format(args.model)) return eval,model.get_run_time() def train_rtsrgan(train_batch,steps_per_epoch, validation_steps,val_batch, test_batch, test_steps, test_print, scale_factor,args,callbacks,checkpoint_paph,file_writer_cm,trainable_layer): g=g_rtsrgan(scale_factor=scale_factor) g.compile(metrics=[psnr,ssim,rmse,lpips]) d=d_rtsrgan(input_shape=(36*scale_factor,36*scale_factor,1)) gan = GAN(discriminator = d, generator = g) if args.loss_fn == "mse": cont_loss = tf.keras.losses.MeanSquaredError() if args.loss_fn == "huber": cont_loss = tf.keras.losses.Huber() if args.loss_fn == "mae": cont_loss = tf.keras.losses.MeanAbsoluteError() shape_hr = (36*scale_factor,36*scale_factor,3) vgg_loss = VGGLoss(shape_hr,cont_loss) perc_loss = vgg_loss.custom_perceptual_loss adv_loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) lbd = 1 * 1e-5 eta = 1 * 1e-2 mu = 1 * 1e-2 gan_loss=GANLoss(perc_loss, cont_loss, adv_loss,lbd,eta,mu) if (args.load_weights): print("Loading weights...") checkpoint_paph="{}g_rtsrgan_{}x/model.ckpt".format(args.ckpt_path,scale_factor) gan.load_weights_gen(checkpoint_paph) for i in range(len(g.layers)): if(g.layers[i].name == trainable_layer): break else: g.layers[i].trainable=False gan.compile(d_optimizer = tf.keras.optimizers.Adam(learning_rate=args.learning_rate,clipnorm=1.0), g_optimizer = tf.keras.optimizers.Adam(learning_rate=args.learning_rate,clipnorm=1.0), d_loss = gan_loss.discriminator_loss, g_loss = gan_loss.generator_loss, metrics=[psnr,ssim,rmse,lpips]) trainable_weights(gan) save_img_callback = SaveImageCallback( model=g, model_name=args.model, scale_factor=scale_factor, epochs_per_save=args.epochs_per_save, lr_paths=test_print[0], hr_paths=test_print[1], log_dir=args.test_logdir, file_writer_cm=file_writer_cm) callbacks.append(save_img_callback) checkpoint_paph="{}{}_{}x/model.ckpt".format(args.ckpt_path,args.model,scale_factor) checkpoint_callback = tf.keras.callbacks.ModelCheckpoint( filepath=checkpoint_paph, save_weights_only=True, monitor='val_lpips', save_freq= 'epoch', mode='min', save_best_only=True) callbacks.append(checkpoint_callback) gan.fit(train_batch, epochs=args.num_epochs,callbacks=callbacks,verbose=1,steps_per_epoch=steps_per_epoch) checkpoint_paph="{}{}_{}x/g_rtsrgan/model.ckpt".format(args.ckpt_path,args.model,scale_factor) gan.save_weights_gen(checkpoint_paph) print("Evaluate model") eval = g.evaluate(test_batch, verbose=1, steps=test_steps) saved_model(g, 'saved_model/{}/'.format(args.model)) return eval, g.get_run_time() def train_evsrnet(train_batch,steps_per_epoch, validation_steps,val_batch, test_batch, test_steps, test_print, scale_factor,args,callbacks,checkpoint_paph, file_writer_cm,trainable_layer): model = EVSRNet(scale_factor=scale_factor,method=args.inter_method) model.build((None, None, None,1)) #print(model.summary()) if args.load_weights: print("Loading weights...") model.load_weights(checkpoint_paph) opt = tf.keras.optimizers.Adam(learning_rate=args.learning_rate,clipnorm=1.0) if args.loss_fn == "mse": loss_fn = tf.keras.losses.MeanSquaredError() if args.loss_fn == "huber": loss_fn = tf.keras.losses.Huber() if args.loss_fn == "mae": # default loss_fn = tf.keras.losses.MeanAbsoluteError() model.compile(optimizer=opt, loss=loss_fn, metrics=[psnr,ssim,rmse,lpips]) trainable_weights(model) if(args.eval==True): print("Loading weights...") checkpoint_paph="{}{}_{}x/model.ckpt".format(args.ckpt_path,args.model,scale_factor) model.load_weights(checkpoint_paph) print("Evaluate model") get_test_dataset(model,scale_factor,args) exit(1) save_img_callback = SaveImageCallback( model=model, model_name=args.model, scale_factor=scale_factor, epochs_per_save=args.epochs_per_save, lr_paths=test_print[0], hr_paths=test_print[1], log_dir=args.test_logdir, file_writer_cm=file_writer_cm) callbacks.append(save_img_callback) model.fit(train_batch,epochs=args.num_epochs,callbacks=callbacks, verbose=1,steps_per_epoch=steps_per_epoch,validation_steps=validation_steps,validation_data=val_batch) print("Evaluate model") eval = model.evaluate(test_batch, verbose=1, steps=test_steps) saved_model(model, 'saved_model/{}/'.format(args.model)) return eval,model.get_run_time() def train_teacher(train_batch,steps_per_epoch, validation_steps,val_batch, test_batch, test_steps, test_print, scale_factor,args,callbacks,checkpoint_paph,file_writer_cm,trainable_layer): model = Teacher(channels=1,scale_factor=scale_factor,distillation_rate=args.distillation_rate) model.build((None, None, None,1)) print(model.summary()) if args.load_weights: print("Loading weights...") model.load_weights(checkpoint_paph) if(args.eval==True): print("Loading weights...") model.load_weights(checkpoint_paph) print("Evaluate model") model.compile(metrics=[psnr,ssim,rmse,lpips]) get_test_dataset(model,scale_factor,args) exit(1) if args.transfer_learning: checkpoint_paph_from="{}{}_{}x/model.ckpt".format("checkpoint/",args.model,args.scaleFrom) print("Transfer learning from {}x-upscale model...".format(args.scaleFrom)) modelFrom = g_rtvsrgan(scale_factor=args.scaleFrom) modelFrom.load_weights(checkpoint_paph_from) for i in range(len(modelFrom.layers)): if(modelFrom.layers[i].name == trainable_layer): break else: print("Set_weights in: {} layer".format(model.layers[i].name)) model.layers[i].set_weights(modelFrom.layers[i].get_weights()) model.layers[i].trainable=False opt = tf.keras.optimizers.Adam(learning_rate=args.learning_rate,clipnorm=1.0) if args.loss_fn == "mse": loss_fn = tf.keras.losses.MeanSquaredError() if args.loss_fn == "huber": loss_fn = tf.keras.losses.Huber() if args.loss_fn == "mae": loss_fn = tf.keras.losses.MeanAbsoluteError() if args.loss_fn == "fea": loss_aux = tf.keras.losses.MeanAbsoluteError() shape_hr = (36*scale_factor,36*scale_factor,3) vgg_loss = VGGLoss(shape_hr,loss_aux) loss_fn = vgg_loss.custom_perceptual_loss model.compile(optimizer=opt, loss=loss_fn, metrics=[psnr,ssim,rmse,lpips]) trainable_weights(model) save_img_callback = SaveImageCallback( model=model, model_name=args.model, scale_factor=scale_factor, epochs_per_save=args.epochs_per_save, lr_paths=test_print[0], hr_paths=test_print[1], log_dir=args.test_logdir, file_writer_cm=file_writer_cm) callbacks.append(save_img_callback) model.fit(train_batch,epochs=args.num_epochs,callbacks=callbacks, verbose=1,steps_per_epoch=steps_per_epoch,validation_steps=validation_steps,validation_data=val_batch) print("Evaluate model") if args.loss_fn == "fea": eval = [] else: eval = model.evaluate(test_batch, verbose=1, steps=test_steps) saved_model(model, 'saved_model/{}/'.format(args.model)) return eval, model.get_run_time() def train_g_rtvsrgan(train_batch,steps_per_epoch, validation_steps,val_batch, test_batch, test_steps, test_print, scale_factor,args,callbacks,checkpoint_paph,file_writer_cm,trainable_layer): model = g_rtvsrgan(scale_factor=scale_factor,method=args.inter_method) if args.load_weights: print("Loading weights...") model.load_weights(checkpoint_paph) if args.transfer_learning: checkpoint_paph_from="{}{}_{}x/model.ckpt".format("checkpoint/",args.model,args.scaleFrom) print("Transfer learning from {}x-upscale model...".format(args.scaleFrom)) modelFrom = g_rtvsrgan(scale_factor=args.scaleFrom) modelFrom.load_weights(checkpoint_paph_from) for i in range(len(modelFrom.layers)): if(modelFrom.layers[i].name == trainable_layer): break else: print("Set_weights in: {} layer".format(model.layers[i].name)) model.layers[i].set_weights(modelFrom.layers[i].get_weights()) model.layers[i].trainable=False opt = tf.keras.optimizers.Adam(learning_rate=args.learning_rate,clipnorm=1.0) if args.loss_fn == "mse": loss_fn = tf.keras.losses.MeanSquaredError() if args.loss_fn == "huber": loss_fn = tf.keras.losses.Huber() if args.loss_fn == "mae": loss_fn = tf.keras.losses.MeanAbsoluteError() model.compile(optimizer=opt, loss=loss_fn, metrics=[psnr,ssim,rmse,lpips]) trainable_weights(model) if(args.eval==True): print("Loading weights...") checkpoint_paph="{}{}_{}x/model.ckpt".format(args.ckpt_path,args.model,scale_factor) model.load_weights(checkpoint_paph) print("Evaluate model") get_test_dataset(model,scale_factor,args) exit(1) save_img_callback = SaveImageCallback( model=model, model_name=args.model, scale_factor=scale_factor, epochs_per_save=args.epochs_per_save, lr_paths=test_print[0], hr_paths=test_print[1], log_dir=args.test_logdir, file_writer_cm=file_writer_cm) callbacks.append(save_img_callback) model.fit(train_batch,epochs=args.num_epochs,callbacks=callbacks, verbose=1,steps_per_epoch=steps_per_epoch,validation_steps=validation_steps,validation_data=val_batch) print("Evaluate model") eval = model.evaluate(test_batch, verbose=1, steps=test_steps) saved_model(model, 'saved_model/{}/'.format(args.model)) return eval,model.get_run_time() def train_k_distillation(train_batch,steps_per_epoch, validation_steps,val_batch, test_batch, test_steps, test_print, scale_factor,args,callbacks,checkpoint_paph,file_writer_cm,trainable_layer): opt=tf.keras.optimizers.Adam(learning_rate=args.learning_rate,clipnorm=1.0) if args.loss_fn == "mse": aux_loss_fn = tf.keras.losses.MeanSquaredError() if args.loss_fn == "huber": aux_loss_fn = tf.keras.losses.Huber() if args.loss_fn == "mae": aux_loss_fn = tf.keras.losses.MeanAbsoluteError() student_loss_fn = tf.keras.losses.MeanSquaredError() distillation_loss_fn= tf.keras.losses.MeanAbsoluteError() shape_hr = (36*scale_factor,36*scale_factor,3) vgg_loss = VGGLoss(shape_hr,aux_loss_fn) perc_loss = vgg_loss.custom_perceptual_loss teacher = g_rtvsrgan(channels=1,scale_factor=scale_factor) print("Loading teacher weights...") weights_paph="{}{}_{}x/model.ckpt".format(args.ckpt_path,'g_rtvsrgan',scale_factor) teacher.load_weights(weights_paph) student = g_rtvsrgan(channels=1,scale_factor=scale_factor) student.build((None, None, None,1)) # Initialize and compile distiller distiller = Distiller(student=student, teacher=teacher) distiller.compile( optimizer=opt, metrics=[psnr,ssim,rmse,lpips], student_loss_fn=student_loss_fn, distillation_loss_fn=distillation_loss_fn, perc_loss_fn=perc_loss, alpha=args.alpha, beta=args.beta ) trainable_weights(student) if args.load_weights: print("Loading student weights...") checkpoint_paph="{}{}_{}x/model.ckpt".format(args.ckpt_path,'g_rtvsrgan',scale_factor) student.load_weights(checkpoint_paph) trainable_layers(student, len(student.layers)-1) trainable_weights(student) if args.transfer_learning: checkpoint_paph_from="{}{}_{}x/model.ckpt".format("checkpoint/",args.model,args.scaleFrom) print("Transfer learning from {}x-upscale model...".format(args.scaleFrom)) modelFrom = student(scale_factor=args.scaleFrom) modelFrom.load_weights(checkpoint_paph_from) for i in range(len(modelFrom.layers)): if(modelFrom.layers[i].name == trainable_layer): break else: print("Set_weights in: {} layer".format(student.layers[i].name)) student.layers[i].set_weights(modelFrom.layers[i].get_weights()) student.layers[i].trainable=False save_img_callback = SaveImageCallback( model=distiller.student, model_name=args.model, scale_factor=scale_factor, epochs_per_save=args.epochs_per_save, lr_paths=test_print[0], hr_paths=test_print[1], log_dir=args.test_logdir, file_writer_cm=file_writer_cm) callbacks.append(save_img_callback) earlystopping = tf.keras.callbacks.EarlyStopping( monitor='val_rmse', min_delta=1e-5, patience=50, verbose=1, mode='min', restore_best_weights=True) callbacks.append(earlystopping) checkpoint_paph="{}{}_{}x/model.ckpt".format(args.ckpt_path,args.model,scale_factor) checkpoint_callback = tf.keras.callbacks.ModelCheckpoint( filepath=checkpoint_paph, save_weights_only=True, monitor='val_lpips', save_freq= 'epoch', mode='min', save_best_only=True) callbacks.append(checkpoint_callback) # Distill teacher to student distiller.fit(train_batch, epochs=args.num_epochs,callbacks=callbacks, verbose=1,steps_per_epoch=steps_per_epoch,validation_steps=validation_steps,validation_data=val_batch) checkpoint_paph="{}{}_{}x/g_rtsrgan/model.ckpt".format(args.ckpt_path,args.model,scale_factor) student.save_weights(checkpoint_paph) print("Evaluate model") # Evaluate student on test dataset eval = distiller.evaluate(test_batch, verbose=1, steps=test_steps) saved_model(distiller.student, 'saved_model/{}/'.format(args.model)) return eval,distiller.student.get_run_time() def train_rtvsrgan(train_batch,steps_per_epoch, validation_steps,val_batch, test_batch, test_steps, test_print, scale_factor,args,callbacks,checkpoint_paph,file_writer_cm,trainable_layer): g=g_rtvsrgan(scale_factor=scale_factor) g.build((None, None, None,1)) d=d_rtvsrgan(input_shape=(36*scale_factor,36*scale_factor,1)) ra_d=rad_rtvsrgan(discriminator=d,shape_hr=(36*scale_factor,36*scale_factor,1)) if args.loss_fn == "mse": aux_loss = tf.keras.losses.MeanSquaredError() if args.loss_fn == "huber": aux_loss = tf.keras.losses.Huber() if args.loss_fn == "mae": aux_loss = tf.keras.losses.MeanAbsoluteError() cont_loss = tf.keras.losses.MeanSquaredError() shape_hr = (36*scale_factor,36*scale_factor,3) vgg_loss = VGGLoss(shape_hr,aux_loss) perc_loss = vgg_loss.custom_perceptual_loss adv_loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) lbd = args.list_weights[0] eta = args.list_weights[1] mu = args.list_weights[2] gan_loss=GANLoss(perc_loss, cont_loss, adv_loss,lbd,eta,mu) ra_gan = RaGAN(ra_discriminator=ra_d, generator=g) ra_gan.compile(d_optimizer=tf.keras.optimizers.Adam(learning_rate=args.learning_rate,clipnorm=1.0), g_optimizer=tf.keras.optimizers.Adam(learning_rate=args.learning_rate,clipnorm=1.0), ra_d_loss=gan_loss.discriminator_loss, g_loss = gan_loss.generator_loss, metrics=[psnr,ssim,rmse,lpips]) if (args.load_weights): print("Loading weights...") checkpoint_paph="{}{}_{}x/model.ckpt".format(args.ckpt_path,'g_rtvsrgan',scale_factor) ra_gan.load_weights_gen(checkpoint_paph) trainable_layers(g, len(g.layers)-1) trainable_weights(g) save_img_callback = SaveImageCallback( model=g, model_name=args.model, scale_factor=scale_factor, epochs_per_save=args.epochs_per_save, lr_paths=test_print[0], hr_paths=test_print[1], log_dir=args.test_logdir, file_writer_cm=file_writer_cm) callbacks.append(save_img_callback) checkpoint_paph="{}{}_{}x/model.ckpt".format(args.ckpt_path,args.model,scale_factor) checkpoint_callback = tf.keras.callbacks.ModelCheckpoint( filepath=checkpoint_paph, save_weights_only=True, monitor='val_lpips', save_freq= 'epoch', mode='min', save_best_only=True) callbacks.append(checkpoint_callback) ra_gan.fit(train_batch, epochs=args.num_epochs,callbacks=callbacks,verbose=1,steps_per_epoch=steps_per_epoch,validation_steps=validation_steps,validation_data=val_batch) checkpoint_paph="{}{}_{}x/g_rtvsrgan/model.ckpt".format(args.ckpt_path,args.model,scale_factor) ra_gan.save_weights_gen(checkpoint_paph) print("Evaluate model") eval = ra_gan.evaluate(test_batch, verbose=1) saved_model(ra_gan.generator, 'saved_model/{}/'.format(args.model)) return eval,ra_gan.student.get_run_time() def model_generator(args=None,scale_factor=None): if args.generator== 'espcn': model= espcn(scale_factor=scale_factor) elif args.generator== 'g_rtsrgan': model= g_rtsrgan(scale_factor=scale_factor) elif args.generator== 'imdn': model= IMDN(scale_factor=scale_factor) elif args.generator== 'evsrnet': model= EVSRNet(scale_factor=scale_factor,method=args.inter_method) elif args.generator== 'g_rtvsrgan': model= g_rtvsrgan(scale_factor=scale_factor) elif args.generator== 'teacher': model = Teacher(channels=1,scale_factor=scale_factor,distillation_rate=args.distillation_rate) else: exit(1) return model def print_hot_test(lr_hot_test_path,hr_hot_test_path,model=None,model_name=None,args=None,scale_factor=2): time_elapsed = plot_test_images(model,lr_hot_test_path,hr_hot_test_path, args.test_logdir,scale_factor=scale_factor,model_name=model_name,epoch=0) return time_elapsed def get_test_dataset(model,scale_factor,args): bic = True if ('generic' in args.test_cluster): # test dataset test_dataset_path=test_datasets['test_generic']['test_dataset_path'] test_dataset_info_path=test_datasets['test_generic']['test_dataset_info_path'] test_dataset = Dataset( args.test_batch_size, test_dataset_path, test_dataset_info_path, args.shuffle_buffer_size) if args.test_steps == 0: test_steps = test_dataset.examples_num // args.test_batch_size \ if test_dataset.examples_num % args.test_batch_size != 0 else 0 else: test_steps = args.test_steps test_dataset = test_dataset.get_data() test_batch = test_dataset.map(lambda x0,x1,x2,y: (scale(x1),scale(y))) name_dataset = args.model+'_'+args.generator+"_{}_{}X_q{}".format(str(test_dataset_path).split('/')[3],str(scale_factor),str(test_dataset_path).split('_q')[-1]) if args.generator!=None else args.model+"_{}_{}X_q{}".format(str(test_dataset_path).split('/')[3],str(scale_factor),str(test_dataset_path).split('_q')[-1]) print(name_dataset,args.path_to_eval) lr_path=test['test_generic']['lr_test_path'] hr_path=test['test_generic']['hr_test_path'] logdir=test['test_generic']['logdir'] lr_paths=sorted([[dp+filename for filename in filenames] for dp, dn, filenames in os.walk(lr_path) if len(filenames)!=0][0]) hr_paths=sorted([[dp+filename for filename in filenames] for dp, dn, filenames in os.walk(hr_path) if len(filenames)!=0][0]) if (bic): print_metrics(lr_paths, hr_paths, scale_factor=scale_factor) exit(1) # plot_images("bi", lr_paths, hr_paths, args, logdir+"/"+"bicubic"+"/",scale_factor=scale_factor) # plot_images("hr", lr_paths, hr_paths, args, logdir+"/"+"hr"+"/",scale_factor=scale_factor) # run_time = plot_images(model, lr_paths, hr_paths, args, logdir+"/"+args.generator+"/",scale_factor=scale_factor) run_time = print_hot_test(lr_paths,hr_paths,model=model,model_name=args.model,args=args,scale_factor=scale_factor) eval = model.evaluate(test_batch, verbose=1) lr_hot_test_path=hot_test['hot_test_generic']['lr_hot_test_path'] hr_hot_test_path=hot_test['hot_test_generic']['hr_hot_test_path'] lr_img_paths=sorted([[dp+filename for filename in filenames] for dp, dn, filenames in os.walk(lr_hot_test_path) if len(filenames)!=0][0])[0:args.hot_test_size] hr_img_paths=sorted([[dp+filename for filename in filenames] for dp, dn, filenames in os.walk(hr_hot_test_path) if len(filenames)!=0][0])[0:args.hot_test_size] test_print = [lr_img_paths,hr_img_paths] name_model = "generic"+'_'+args.model+'_'+args.generator if args.generator != None else "generic"+'_'+args.model # run_time = print_hot_test(test_print[0],test_print[1],model=model,model_name=name_model,args=args,scale_factor=scale_factor) print_eval(args.path_to_eval,eval,name_dataset,stat.mean(run_time)) if ('game' in args.test_cluster): # test dataset test_dataset_path=test_datasets['test_game']['test_dataset_path'] test_dataset_info_path=test_datasets['test_game']['test_dataset_info_path'] test_dataset = Dataset( args.test_batch_size, test_dataset_path, test_dataset_info_path, args.shuffle_buffer_size) if args.test_steps == 0: test_steps = test_dataset.examples_num // args.test_batch_size \ if test_dataset.examples_num % args.test_batch_size != 0 else 0 else: test_steps = args.test_steps test_dataset = test_dataset.get_data() test_batch = test_dataset.map(lambda x0,x1,x2,y: (scale(x1),scale(y))) name_dataset = args.model+'_'+args.generator+"_{}_{}X_q{}".format(str(test_dataset_path).split('/')[3],str(scale_factor),str(test_dataset_path).split('_q')[-1]) if args.generator != None else args.model+"_{}_{}X_q{}".format(str(test_dataset_path).split('/')[3],str(scale_factor),str(test_dataset_path).split('_q')[-1]) print(name_dataset,args.path_to_eval) lr_path=test['test_game']['lr_test_path'] hr_path=test['test_game']['hr_test_path'] logdir=test['test_game']['logdir'] lr_paths=sorted([[dp+filename for filename in filenames] for dp, dn, filenames in os.walk(lr_path) if len(filenames)!=0][0]) hr_paths=sorted([[dp+filename for filename in filenames] for dp, dn, filenames in os.walk(hr_path) if len(filenames)!=0][0]) if (bic): print_metrics(lr_paths, hr_paths, scale_factor=scale_factor) exit(1) # plot_images("bi", lr_paths, hr_paths, args, logdir+"/"+"bicubic"+"/",scale_factor=scale_factor) # plot_images("hr", lr_paths, hr_paths, args, logdir+"/"+"hr"+"/",scale_factor=scale_factor) # run_time = plot_images(model, lr_paths, hr_paths, args, logdir+"/"+args.generator+"/",scale_factor=scale_factor) run_time = print_hot_test(lr_paths,hr_paths,model=model,model_name=args.model,args=args,scale_factor=scale_factor) eval = model.evaluate(test_batch, verbose=1) lr_hot_test_path=hot_test['hot_test_game']['lr_hot_test_path'] hr_hot_test_path=hot_test['hot_test_game']['hr_hot_test_path'] lr_img_paths=sorted([[dp+filename for filename in filenames] for dp, dn, filenames in os.walk(lr_hot_test_path) if len(filenames)!=0][0])[0:args.hot_test_size] hr_img_paths=sorted([[dp+filename for filename in filenames] for dp, dn, filenames in os.walk(hr_hot_test_path) if len(filenames)!=0][0])[0:args.hot_test_size] test_print = [lr_img_paths,hr_img_paths] name_model = "game"+'_'+args.model+'_'+args.generator if args.generator != None else "game"+'_'+args.model # run_time = print_hot_test(test_print[0],test_print[1],model=model,model_name=name_model,args=args,scale_factor=scale_factor) print_eval(args.path_to_eval,eval,name_dataset,stat.mean(run_time)) if ('sport' in args.test_cluster): # test dataset test_dataset_path=test_datasets['test_sport']['test_dataset_path'] test_dataset_info_path=test_datasets['test_sport']['test_dataset_info_path'] test_dataset = Dataset( args.test_batch_size, test_dataset_path, test_dataset_info_path, args.shuffle_buffer_size) if args.test_steps == 0: test_steps = test_dataset.examples_num // args.test_batch_size \ if test_dataset.examples_num % args.test_batch_size != 0 else 0 else: test_steps = args.test_steps test_dataset = test_dataset.get_data() test_batch = test_dataset.map(lambda x0,x1,x2,y: (scale(x1),scale(y))) name_dataset = args.model+'_'+args.generator+"_{}_{}X_q{}".format(str(test_dataset_path).split('/')[3],str(scale_factor),str(test_dataset_path).split('_q')[-1]) if args.generator != None else args.model+"_{}_{}X_q{}".format(str(test_dataset_path).split('/')[3],str(scale_factor),str(test_dataset_path).split('_q')[-1]) print(name_dataset,args.path_to_eval) lr_path=test['test_sport']['lr_test_path'] hr_path=test['test_sport']['hr_test_path'] logdir=test['test_sport']['logdir'] lr_paths=sorted([[dp+filename for filename in filenames] for dp, dn, filenames in os.walk(lr_path) if len(filenames)!=0][0]) hr_paths=sorted([[dp+filename for filename in filenames] for dp, dn, filenames in os.walk(hr_path) if len(filenames)!=0][0]) if (bic): print_metrics(lr_paths, hr_paths, scale_factor=scale_factor) exit(1) # plot_images("bi", lr_paths, hr_paths, args, logdir+"/"+"bicubic"+"/",scale_factor=scale_factor) # plot_images("hr", lr_paths, hr_paths, args, logdir+"/"+"hr"+"/",scale_factor=scale_factor) # run_time = plot_images(model, lr_paths, hr_paths, args, logdir+"/"+args.generator+"/",scale_factor=scale_factor) run_time = print_hot_test(lr_paths,hr_paths,model=model,model_name=args.model,args=args,scale_factor=scale_factor) eval = model.evaluate(test_batch, verbose=1) lr_hot_test_path=hot_test['hot_test_sport']['lr_hot_test_path'] hr_hot_test_path=hot_test['hot_test_sport']['hr_hot_test_path'] lr_img_paths=sorted([[dp+filename for filename in filenames] for dp, dn, filenames in os.walk(lr_hot_test_path) if len(filenames)!=0][0])[0:args.hot_test_size] hr_img_paths=sorted([[dp+filename for filename in filenames] for dp, dn, filenames in os.walk(hr_hot_test_path) if len(filenames)!=0][0])[0:args.hot_test_size] test_print = [lr_img_paths,hr_img_paths] name_model = "sport"+'_'+args.model+'_'+args.generator if args.generator != None else "sport"+'_'+args.model # run_time = print_hot_test(test_print[0],test_print[1],model=model,model_name=name_model,args=args,scale_factor=scale_factor) print_eval(args.path_to_eval,eval,name_dataset,stat.mean(run_time)) if ('podcast' in args.test_cluster): # test dataset test_dataset_path=test_datasets['test_podcast']['test_dataset_path'] test_dataset_info_path=test_datasets['test_podcast']['test_dataset_info_path'] test_dataset = Dataset( args.test_batch_size, test_dataset_path, test_dataset_info_path, args.shuffle_buffer_size) if args.test_steps == 0: test_steps = test_dataset.examples_num // args.test_batch_size \ if test_dataset.examples_num % args.test_batch_size != 0 else 0 else: test_steps = args.test_steps test_dataset = test_dataset.get_data() test_batch = test_dataset.map(lambda x0,x1,x2,y: (scale(x1),scale(y))) name_dataset = args.model+'_'+args.generator+"_{}_{}X_q{}".format(str(test_dataset_path).split('/')[3],str(scale_factor),str(test_dataset_path).split('_q')[-1]) if args.generator != None else args.model+"_{}_{}X_q{}".format(str(test_dataset_path).split('/')[3],str(scale_factor),str(test_dataset_path).split('_q')[-1]) print(name_dataset,args.path_to_eval) lr_path=test['test_podcast']['lr_test_path'] hr_path=test['test_podcast']['hr_test_path'] logdir=test['test_podcast']['logdir'] lr_paths=sorted([[dp+filename for filename in filenames] for dp, dn, filenames in os.walk(lr_path) if len(filenames)!=0][0]) hr_paths=sorted([[dp+filename for filename in filenames] for dp, dn, filenames in os.walk(hr_path) if len(filenames)!=0][0]) if (bic): print_metrics(lr_paths, hr_paths, scale_factor=scale_factor) exit(1) # plot_images("bi", lr_paths, hr_paths, args, logdir+"/"+"bicubic"+"/",scale_factor=scale_factor) # plot_images("hr", lr_paths, hr_paths, args, logdir+"/"+"hr"+"/",scale_factor=scale_factor) # run_time = plot_images(model, lr_paths, hr_paths, args, logdir+"/"+args.generator+"/",scale_factor=scale_factor) run_time = print_hot_test(lr_paths,hr_paths,model=model,model_name=args.model,args=args,scale_factor=scale_factor) eval = model.evaluate(test_batch, verbose=1) lr_hot_test_path=hot_test['hot_test_podcast']['lr_hot_test_path'] hr_hot_test_path=hot_test['hot_test_podcast']['hr_hot_test_path'] lr_img_paths=sorted([[dp+filename for filename in filenames] for dp, dn, filenames in os.walk(lr_hot_test_path) if len(filenames)!=0][0])[0:args.hot_test_size] hr_img_paths=sorted([[dp+filename for filename in filenames] for dp, dn, filenames in os.walk(hr_hot_test_path) if len(filenames)!=0][0])[0:args.hot_test_size] test_print = [lr_img_paths,hr_img_paths] name_model = "podcast"+'_'+args.model+'_'+args.generator if args.generator != None else "podcast"+'_'+args.model # run_time = print_hot_test(test_print[0],test_print[1],model=model,model_name=name_model,args=args,scale_factor=scale_factor) print_eval(args.path_to_eval,eval,name_dataset,stat.mean(run_time)) def train_percsr(train_batch,steps_per_epoch, validation_steps,val_batch, test_batch, test_steps, test_print, scale_factor,args,callbacks,checkpoint_paph,file_writer_cm,trainable_layer): g=model_generator(scale_factor=scale_factor,args=args) g.build((None, None, None,1)) d=d_percsr(input_shape=(36*scale_factor,36*scale_factor,1)) ra_d=rad_percsr(discriminator=d,shape_hr=(36*scale_factor,36*scale_factor,1)) if args.loss_fn == "mse": aux_loss = tf.keras.losses.MeanSquaredError() if args.loss_fn == "huber": aux_loss = tf.keras.losses.Huber() if args.loss_fn == "mae": aux_loss = tf.keras.losses.MeanAbsoluteError() loss_pix = tf.keras.losses.MeanSquaredError() shape_hr = (36*scale_factor,36*scale_factor,3) vgg_loss = VGGLoss(shape_hr,aux_loss) loss_fea = vgg_loss.custom_perceptual_loss loss_dis = tf.keras.losses.MeanAbsoluteError() adv_loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) alfa = args.list_weights[0] eta = args.list_weights[1] lbd = args.list_weights[2] mu = args.list_weights[3] gan_loss=GANLoss(loss_pix, loss_fea, loss_dis, adv_loss, alfa, eta, lbd, mu) teacher = Teacher(channels=1,scale_factor=scale_factor,distillation_rate=args.distillation_rate) print("Loading teacher weights...") weights_paph="{}{}_{}x/model.ckpt".format(args.ckpt_path,'teacher',scale_factor) teacher.load_weights(weights_paph) teacher.build((None, None, None,1)) ra_gan = PercSR(ra_discriminator=ra_d, generator=g,teacher=teacher) ra_gan.compile(d_optimizer=tf.keras.optimizers.Adam(learning_rate=args.learning_rate,clipnorm=1.0), g_optimizer=tf.keras.optimizers.Adam(learning_rate=args.learning_rate,clipnorm=1.0), perc_loss=gan_loss.generative_loss, metrics=[psnr,ssim,rmse,lpips]) if(args.eval==True): print("Loading weights...") checkpoint_paph="{}{}_{}x/{}/model.ckpt".format(args.ckpt_path,args.model,scale_factor,args.generator) ra_gan.load_weights(checkpoint_paph) print("Evaluate model") g.compile(metrics=[psnr,ssim,rmse,lpips]) get_test_dataset(g,scale_factor,args) exit(1) if (args.load_weights): print("Loading weights...") checkpoint_paph="{}{}_{}x/model.ckpt".format(args.ckpt_path,args.generator,scale_factor) ra_gan.load_weights_gen(checkpoint_paph) # trainable_layers(g, len(g.layers)-1) trainable_weights(g) if (args.load_weights_perc): print("Loading weights perceptual...") checkpoint_paph="{}{}_{}x/{}/model.ckpt".format(args.ckpt_path,args.model,scale_factor,args.generator) ra_gan.load_weights(checkpoint_paph) for i in range(len(g.layers)): print("Camada: {}".format(g.layers[i].name)) if(g.layers[i].name == trainable_layer): break else: g.layers[i].trainable=False #trainable_layers(g, len(g.layers)-1) trainable_weights(g) save_img_callback = SaveImageCallback( model=g, model_name=args.model+'_'+args.generator, scale_factor=scale_factor, epochs_per_save=args.epochs_per_save, lr_paths=test_print[0], hr_paths=test_print[1], log_dir=args.test_logdir, file_writer_cm=file_writer_cm) callbacks.append(save_img_callback) checkpoint_paph="{}{}_{}x/{}/model.ckpt".format(args.ckpt_path,args.model,scale_factor,args.generator) checkpoint_callback = tf.keras.callbacks.ModelCheckpoint( filepath=checkpoint_paph, save_weights_only=True, monitor='val_lpips', save_freq= 'epoch', mode='min', save_best_only=True) callbacks.append(checkpoint_callback) ra_gan.fit(train_batch, epochs=args.num_epochs,callbacks=callbacks,verbose=1,steps_per_epoch=steps_per_epoch,validation_steps=validation_steps,validation_data=val_batch) checkpoint_paph="{}{}_{}x/{}/{}/model.ckpt".format(args.ckpt_path,args.model,scale_factor,args.generator,'generator') ra_gan.save_weights_gen(checkpoint_paph) print("Evaluate model") eval = ra_gan.evaluate(test_batch, verbose=1) saved_model(ra_gan.generator, 'saved_model/{}/'.format(args.model)) return eval, ra_gan.generator.get_run_time() if __name__ == '__main__': main() ```
{ "source": "jlfilho/VSRGAN-keras", "score": 2 }
#### File: jlfilho/VSRGAN-keras/train.py ```python import os import sys os.environ['CUDA_VISIBLE_DEVICES']='0' #Set a single gpu #stderr = sys.stderr #sys.stderr = open(os.devnull, 'w') sys.path.append('libs/') import gc import numpy as np import matplotlib.pyplot as plt # Import backend without the "Using X Backend" message from argparse import ArgumentParser from PIL import Image from vsrganplus import VSRGANplus from util import plot_test_images, DataLoader from tensorflow.keras import backend as K # Sample call """ # Train 2X VSRGANplus python3 train.py --train ../data/videoset/1080p/ --validation ../data/val_large/ --test /media/joao/SAMSUNG1/data/out/test/ --log_test_path ./test/ --steps_per_epoch 200 --scale 2 --stage all # Train the 4X VSRGANplus python3 train.py --train ../../data/train_large/ --validation ../data/val_large/ --test ../data/benchmarks/Set5/ --log_test_path ./test/ --scale 4 --scaleFrom 2 --stage all # Train the 8X VSRGANplus python3 train.py --train ../../data/train_large/ --validation ../data/val_large/ --test ../data/benchmarks/Set5/ --log_test_path ./test/ --scale 8 --scaleFrom 4 --stage all """ def parse_args(): parser = ArgumentParser(description='Training script for VSRGANplus') parser.add_argument( '-s', '--stage', type=str, default='all', help='Which stage of training to run', choices=['all', 'mse', 'gan', 'gan-finetune'] ) parser.add_argument( '-e', '--epochs', type=int, default=1000000, help='Number epochs per train' ) parser.add_argument( '-fe', '--first_epoch', type=int, default=0, help='Number of the first epoch to start in logs train' ) parser.add_argument( '-t', '--train', type=str, default='../../data/train_large/', help='Folder with training images' ) parser.add_argument( '-spe', '--steps_per_epoch', type=int, default=2000, help='Steps per epoch' ) parser.add_argument( '-v', '--validation', type=str, default='../data/val_large/', help='Folder with validation images' ) parser.add_argument( '-spv', '--steps_per_validation', type=int, default=10, help='Steps per validation' ) parser.add_argument( '-te', '--test', type=str, default='../data/benchmarks/Set5/', help='Folder with testing images' ) parser.add_argument( '-pf', '--print_frequency', type=int, default=5, help='Frequency of print test images' ) parser.add_argument( '-sc', '--scale', type=int, default=2, help='How much should we upscale images' ) parser.add_argument( '-scf', '--scaleFrom', type=int, default=None, help='Perform transfer learning from lower-upscale model' ) parser.add_argument( '-w', '--workers', type=int, default=1, help='How many workers to user for pre-processing' ) parser.add_argument( '-mqs', '--max_queue_size', type=int, default=100, help='Max queue size to workers' ) parser.add_argument( '-bs', '--batch_size', type=int, default=16, help='What batch-size should we use' ) parser.add_argument( '-cpi', '--crops_per_image', type=int, default=4, help='Increase in order to reduce random reads on disk (in case of slower SDDs or HDDs)' ) parser.add_argument( '-wp', '--weight_path', type=str, default='./model/', help='Where to output weights during training' ) parser.add_argument( '-lwf', '--log_weight_frequency', type=int, default=1, help='Where to output weights during training' ) parser.add_argument( '-ltf', '--log_test_frequency', type=int, default=1, help='Frequency to output test' ) parser.add_argument( '-ltuf', '--log_tensorboard_update_freq', type=int, default=1, help='Frequency of update tensorboard weight' ) parser.add_argument( '-lp', '--log_path', type=str, default='./logs/', help='Where to output tensorboard logs during training' ) parser.add_argument( '-ltp', '--log_test_path', type=str, default='./test/', help='Path to generate images in train' ) parser.add_argument( '-hlr', '--height_lr', type=int, default=64, help='height of lr crop' ) parser.add_argument( '-wlr', '--width_lr', type=int, default=64, help='width of lr crop' ) parser.add_argument( '-c', '--channels', type=int, default=3, help='channels of images' ) parser.add_argument( '-cs', '--colorspace', type=str, default='RGB', help='Colorspace of images, e.g., RGB or YYCbCr' ) parser.add_argument( '-mt', '--media_type', type=str, default='v', help='Type of media i to image or v to video' ) parser.add_argument( '-mn', '--modelname', type=str, default='_places365', help='Name for the model' ) return parser.parse_args() def reset_layer_names(args): '''In case of transfer learning, it's important that the names of the weights match between the different networks (e.g. 2X and 4X). This function loads the lower-lever SR network from a reset keras session (thus forcing names to start from naming index 0), loads the weights onto that network, and saves the weights again with proper names''' # Find lower-upscaling model results BASE_G = os.path.join(args.weight_path, 'VSRGANplus'+args.modelname+'_generator_'+str(args.scaleFrom)+'X.h5') BASE_D = os.path.join(args.weight_path, 'VSRGANplus'+args.modelname+'_discriminator_'+str(args.scaleFrom)+'X.h5') assert os.path.isfile(BASE_G), 'Could not find '+BASE_G assert os.path.isfile(BASE_D), 'Could not find '+BASE_D # Load previous model with weights, and re-save weights so that name ordering will match new model prev_gan = VSRGANplus(upscaling_factor=args.scaleFrom) prev_gan.load_weights(BASE_G, BASE_D) prev_gan.save_weights(args.weight_path+'VSRGANplus{}'.format(args.modelname)) del prev_gan K.reset_uids() gc.collect() return BASE_G, BASE_D def gan_freeze_layers(args, gan): '''In case of transfer learning, this function freezes lower-level generator layers according to the scaleFrom argument, and recompiles the model so that only the top layer is trained in the generator''' # Map scalings to layer name s2l = {2: '1', 4: '2', 8: '3'} # 4X -> 8X block always trainable. 2X -> 4X only if going from 2X. up_trainable = ["3", s2l[args.scale]] if args.scaleFrom == 2: up_trainable.append("2") trainable=False for layer in gan.generator.layers: if 'upSample' in layer.name and any([layer.name.endswith('_'+s) for s in up_trainable]) : trainable = True layer.trainable = trainable # Compile generator with frozen layers gan.compile_generator(gan.generator) def train_generator(args, gan, common, epochs=None): '''Just a convenience function for training the GAN''' print("TRAINING GENERATOR ONLY WITH MSE LOSS") gan.train_generator( epochs=epochs, modelname='SRResNet'+args.modelname, steps_per_epoch=args.steps_per_epoch, **common ) def train_gan(args, gan, common, epochs=None): '''Just a convenience function for training the GAN''' gan.train_vsrganplus( epochs=epochs, modelname='VSRGANplus'+args.modelname, log_weight_frequency=args.log_weight_frequency, log_test_frequency=args.log_test_frequency, first_epoch=args.first_epoch, **common ) # Run script if __name__ == '__main__': # Parse command-line arguments args = parse_args() # Common settings for all training stages args_train = { "batch_size": args.batch_size, "steps_per_validation": args.steps_per_validation, "crops_per_image": args.crops_per_image, "print_frequency": args.print_frequency, "log_tensorboard_update_freq": args.log_tensorboard_update_freq, "workers": args.workers, "max_queue_size": args.max_queue_size, "datapath_train": args.train, "datapath_validation": args.validation, "datapath_test": args.test, "log_weight_path": args.weight_path, "log_tensorboard_path": args.log_path, "log_test_path": args.log_test_path, "media_type": args.media_type } # Specific of the model args_model = { "height_lr": args.height_lr, "width_lr": args.width_lr, "channels": args.channels, "upscaling_factor": args.scale, "colorspace": args.colorspace, } # Generator weight paths srresnet_path = os.path.join(args.weight_path, 'SRResNet{}_{}X.h5'.format(args.modelname,args.scale)) srrgan_G_path = os.path.join(args.weight_path, 'VSRGANplus{}_generator_{}X.h5'.format(args.modelname,args.scale)) srrgan_D_path = os.path.join(args.weight_path, 'VSRGANplus{}_discriminator_{}X.h5'.format(args.modelname,args.scale)) # Generator weight paths ## FIRST STAGE: TRAINING GENERATOR ONLY WITH MSE LOSS ###################################################### # If we are doing transfer learning, only train top layer of the generator # And load weights from lower-upscaling model if args.stage in ['all', 'mse']: if args.scaleFrom: print("TRANSFERING LEARN") # Ensure proper layer names BASE_G, BASE_D = reset_layer_names(args) # Load the properly named weights onto this model and freeze lower-level layers gan = VSRGANplus(gen_lr=1e-4, **args_model) gan.load_weights(BASE_G, BASE_D, by_name=True) gan_freeze_layers(args, gan) train_generator(args, gan, args_train, epochs=3) # Train entire generator for 3 epochs gan = VSRGANplus(gen_lr=1e-4, **args_model) gan.load_weights(srresnet_path) train_generator(args, gan, args_train, epochs=3) else: # As in paper - train for 10 epochs gan = VSRGANplus(gen_lr=2*1e-4, **args_model) gan.load_weights(srresnet_path)#Teste trainable=False for layer in gan.generator.layers: #print(layer.name) if 'upSample_Conv2d_1' == layer.name: trainable = True if 'upSample_SubPixel_1' == layer.name: trainable = True if 'upSample_SubPixel_1' == layer.name: trainable = True if 'conv2d_14' == layer.name: trainable = True if 'conv2d_15' == layer.name: trainable = True if 'conv2d_16' == layer.name: trainable = True layer.trainable = trainable gan.compile_generator(gan.generator) gan.generator.summary() train_generator(args, gan, args_train, epochs=args.epochs) ## SECOND STAGE: TRAINING GAN WITH HIGH LEARNING RATE ###################################################### # Re-initialize & train the GAN - load just created generator weights if args.stage in ['all', 'gan']: gan = VSRGANplus(gen_lr=1e-4, dis_lr=1e-4, ra_lr = 1e-4, loss_weights=[1., 5e-3,1e-2], **args_model) gan.load_weights(srresnet_path) trainable=False for layer in gan.generator.layers: #print(layer.name) if 'upSample_Conv2d_1' == layer.name: trainable = True if 'upSample_SubPixel_1' == layer.name: trainable = True if 'upSample_SubPixel_1' == layer.name: trainable = True if 'conv2d_14' == layer.name: trainable = True if 'conv2d_15' == layer.name: trainable = True if 'conv2d_16' == layer.name: trainable = True layer.trainable = trainable gan.compile_generator(gan.generator) gan.generator.summary() #gan.load_weights(srrgan_G_path, srrgan_D_path) print("TRAINING GAN WITH HIGH LEARNING RATE") train_gan(args, gan, args_train, epochs= args.epochs//10 if args.epochs == int(4e5) else args.epochs) ```
{ "source": "jlfly12/qrsim", "score": 2 }
#### File: jlfly12/qrsim/Circuit_ops.py ```python from Gate_bases import x, y, z, s_phi, identity import matplotlib.pyplot as plt import time import numpy as np try: import cupy as cp from cupy import rint, array, pi, exp, log2, sin, cos, random, linspace, sort, copy, zeros, roll, swapaxes, multiply, matmul, angle, binary_repr from cupy import sum as arr_sum from cupy import absolute as arr_abs except ImportError: from numpy import rint, array, pi, exp, log2, sin, cos, random, linspace, sort, copy, zeros, roll, swapaxes, multiply, matmul, angle, binary_repr from numpy import sum as arr_sum from numpy import absolute as arr_abs # Check if cupy is imported def check_if_cupy_is_imported(): import sys return True if 'cupy' in sys.modules else False # Give basic statistical info about given set of fidelities def stat_analysis(results): print(f"Number of data = {len(results)}") print(f"Average fidelity = {sum(results) / len(results)}") print(f"Max fidelity minus Min fidelity = {max(results) - min(results)}") print(f"Variance = {var(results)}") # Convert state index to a bit string (useful for extracting specific state amplitudes) def int_to_bit_str(integer, N): return array(list(binary_repr(integer, width=N)), dtype=int) # Do the opposite def bit_str_to_int(bit_str): return int(''.join(str(e) for e in bit_str), 2) def zero_state(n): state = zeros(2 ** n, dtype=complex) state[0] = 1 return state def remove_global_phase(states): gp = exp(- 1j * angle(states[0])) c = swapaxes(states, 0, 1) states = multiply(gp.T, c).T return states # -- Apply gate to state -- def apply(gate, states, global_phase=False): # A shorthand for the original states a = states # d1 = number of circuit runs with noise, d2 = 2 ** N = dimension of state vector d1, d2 = states.shape N = int(rint(log2(d2))) # A copy of state a, to be flipped by qubit-wise Pauli operations b = copy(a) # print("d1 = ", d1) # print("d2 = ", d2) # print("N = ", N) # Reshape to rank-(N+1) tensor b = b.reshape([d1] + [2] * N) for k in range(len(gate[0])): basis = gate[0][k] q = gate[1][k] if basis == identity: pass if basis == x: b = roll(b, 1, q+1) if basis == y: b = roll(b, 1, q+1) b = swapaxes(b, 0, q+1) b[0] *= -1j b[1] *= 1j b = swapaxes(b, 0, q+1) if basis == s_phi: phi = array(gate[3][k]) b = roll(b, 1, q+1) b = swapaxes(b, 0, q+1) b = swapaxes(b, N, q+1) phase1 = cos(phi) + 1j * sin(phi) phase2 = cos(phi) - 1j * sin(phi) b[0] = multiply(phase2, b[0]) b[1] = multiply(phase1, b[1]) b = swapaxes(b, N, q+1) b = swapaxes(b, 0, q+1) if basis == z: b = swapaxes(b, 0, q+1) b[1] *= -1 b = swapaxes(b, 0, q+1) b = b.reshape(d1, d2) angles = array(gate[2][0]) states = (cos(angles/2) * a.T - 1j * sin(angles/2) * b.T).T # Remove global phase (may be awkward if first amplitude is close to zero) if global_phase == False: pass return states # Plot state probabilities for one state vector only # ADD COLOUR FOR PHASE? def state_prob_plot(state, title='State probability plot', save=False): if check_if_cupy_is_imported(): state = cp.asnumpy(state) for i in range(len(state)): plt.title(title) plt.plot(np.linspace(i, i, 2), np.linspace( 0, np.absolute(state[i]) ** 2, 2), 'b', linewidth=5) if save: import os.path count = 1 while os.path.exists(f'{count}.pdf'): count += 1; plt.savefig(f'{count}.pdf') plt.show() # Calculate, plot, save and read fidelities def find_fidelities(states, ideal): if states.shape == ideal.shape: fidelities = arr_abs(arr_sum(states * ideal.conj(), axis=1)) ** 2 else: fidelities = arr_abs(matmul(states, ideal.conj())) ** 2 return fidelities def plot_fidelities(fidelities, bins=20, range=None, title="Fidelity plot"): if check_if_cupy_is_imported(): fidelities = cp.asnumpy(fidelities) runs = len(fidelities) plt.title(title) plt.hist(fidelities, bins, range) plt.show() print(f'Average fidelity = {arr_sum(fidelities) / len(fidelities)}') print(f'10-th percentile fidelity = {sort(fidelities)[int(runs/10)]}') print(f'90-th percentile fidelity = {sort(fidelities)[int(9*runs/10)]}') def save_fidelities(fidelities, N, n_gates, err, runs, fn="Fidelities"): with open(fn, 'w') as f: f.write( f'Results for {N} qubits, {n_gates} gates with max error = {err * 100}% over {runs} runs \n') for fidelity in fidelities: f.write("%s\n" % fidelity) f.close() def read_fidelities(fn): with open(fn) as f: fidelities = [] F = f.read().splitlines() # The first line in the txt file is just a description for i in range(len(F)-1): fidelities.append(float(F[i+1])) return fidelities # Find probability of measuring a K-qubit state given an N-qubit state def find_prob(measured_qubits, sub_state, states): # Make sure measured qubit numbers are in ascending order qubits = measured_qubits qubits.sort() # Make a copy of given states in order not to alter them a = states.copy() d1, d2 = a.shape # d1 = number of circuit runs, d2 = 2 ** N N = int(rint(log2(d2))) # Reshape to rank-(N+1) tensor a = a.reshape([d1] + [2] * N) # K = number of measured qubits, M = number of qubits not measured K = len(qubits) M = N - K # Reorder qubit number axes for i in range(K): a = swapaxes(a, i + 1, qubits[i] + 1) # Flatten arrays for 2 groups of qubits a = a.reshape([d1] + [2 ** K] + [2 ** M]) # Broadcast multiply coefficients a = swapaxes(a, 0, 1) a = multiply(a.T, sub_state).T # Sum over coefficients a = a.sum(axis=0) a = abs(a) ** 2 a = a.sum(axis=1) # Return probability of measuring a substate for all circuit runs return a def plot_prob(probabilities, bins=20, range=None, title="Probability of measuring a specific state from subsystem"): if check_if_cupy_is_imported(): probabilities = cp.asnumpy(probabilities) runs = len(probabilities) plt.title(title) plt.hist(probabilities, bins, range) plt.show() print(f'Average probability = {arr_sum(probabilities) / len(probabilities)}') print(f'10-th percentile probability = {sort(probabilities)[int(runs/10)]}') print(f'90-th percentile probability = {sort(probabilities)[int(9*runs/10)]}') ``` #### File: jlfly12/qrsim/Circuit.py ```python from Circuit_ops import apply, zero_state from Compiler import compile_gates # -- The quantum circuit -- class Circuit: def __init__(self, N): # Circuit name self.name = "Circuit" # Number of qubits self.N = N # Single-qubit over-rotation, phase-error, two-qubit-over-rotation self.errors = [.0, .0, .0] # Ideal gates used for plotting circuits self.ideal_gates = [] # Native gates (e.g. in ion traps) self.native_gates = [] # Noisy native gates: [bases, qubits, rotation angle, axis angle] self.noisy_gates = [] # Number of circuit execution with randomized gate noises self.runs = 2 # Initialize state to be zero state self.init_state = zero_state(N) self.Z_is_native = False self.library = "cupy" def compile_circuit_gates(self): errors = self.errors ideal_gates = self.ideal_gates runs = self.runs Z_is_native = self.Z_is_native native_gates, noisy_gates = compile_gates(ideal_gates, errors, runs, Z_is_native=Z_is_native) self.native_gates = native_gates self.noisy_gates = noisy_gates # Computes the final state given the initial state and circuit def compute(self, mode="single-init-state", compile_gates=True): # Run circuit with different noise distributions given one initial state if mode == "single-init-state": # Make sure number of runs is 2 or larger runs = self.runs if self.runs > 1 else 2 # Clone initial state for multiple runs with different gate errors try: from cupy import tile except ImportError: from numpy import tile states = tile(self.init_state, (runs, 1)) # Run the same circuit given multiple initial states elif mode == "mulitple-init-states": self.runs = len(self.init_state) states = self.init_state if compile_gates: self.compile_circuit_gates() noisy_gates = self.noisy_gates for gate in noisy_gates: states = apply(gate, states) return states # Clear gates def clear_gates(self): self.ideal_gates = [] self.noisy_gates = [] # -- Ideal gates in a circuit -- def S_phi(self, q, t, phi): self.ideal_gates.append(["S_phi", q, t, phi]) return self def X(self, q, t): self.ideal_gates.append(["X", q, t, None]) return self def Y(self, q, t): self.ideal_gates.append(["Y", q, t, None]) return self def Z(self, q, t): self.ideal_gates.append(["Z", q, t, None]) return self def XX(self, q1, q2, t): self.ideal_gates.append(["XX", [q1, q2], t, None]) return self # -- Synthesized gates -- def H(self, q): self.ideal_gates.append(["H", q, None, None]) return self def CNOT(self, q1, q2): self.ideal_gates.append(["CNOT", [q1, q2], None, None]) return self # -- Plot circuit for ideal gates -- def plot_circuit(self): return ``` #### File: jlfly12/qrsim/Compiler.py ```python try: from cupy import sqrt, pi, sin, cos, array, zeros, swapaxes except ImportError: from numpy import sqrt, pi, sin, cos, array, zeros, swapaxes from Gate_bases import * from Error_dist import error_dist # -- The gate compiler -- def compile_gates(gates, errors, runs, Z_is_native): # -- Helper functions for returning gates -- # The native bit-flip rotation def S_phi(q, t, phi): return [[s_phi], [q], t, [phi]] def X(q, t): return S_phi(q, t, 0) def Y(q, t): return S_phi(q, t, pi/2) # Z-rotations are assumed to be synthesized from X and Y for now def Z(q, t): if Z_is_native: return [[[z], [q], t, [0]]] else: return [Y(q, pi/2), X(q, t), Y(q, -pi/2)] # XX-rotations are native to ion traps through motional sideband coupling def XX(q1, q2, t): return [[s_phi, s_phi], [q1, q2], t, [0, 0]] native_gates = [] for gate in gates: gate_type = gate[0] # Gate type q = gate[1] # Qubit(s) t = gate[2] # Gate angle phi = gate[3] # Gate axis (on the x-y plane) # -- Switch between different gate types -- if gate_type == s_phi: native_gates.append(S_phi(q, t, phi)) if gate_type == x: native_gates.append(X(q, t)) if gate_type == y: native_gates.append(Y(q, t)) if gate_type == z: for gate in Z(q, t): native_gates.append(gate) if gate_type == xx: native_gates.append(XX(q[0], q[1], t)) # Hadmard gate synthesis if gate_type == h: native_gates.extend([Y(q, pi/2), X(q, -pi)]) # CNOT gate synthesis if gate_type == cnot: native_gates.extend([Y(q[0], pi/2), XX(q[0], q[1], pi/2), X(q[0], -pi/2), X(q[1], -pi/2), Y(q[0], -pi/2)]) # -- Compile and output list of native gates -- # Native gates to noisy gates [single_err, phase_err, xx_err] = errors # Noisy gates: bases, qubit numbers, rotation angle, axis angle noisy_gates = [] for native_gate in native_gates: basis = native_gate[0] qubits = native_gate[1] # Two-qubit gate if len(basis) == 2: angle = [native_gate[2] * (xx_err * array(error_dist(runs)) + 1)] axis1 = native_gate[3][0] + phase_err * \ array(error_dist(runs)) * pi * sqrt(2) / 4 axis2 = native_gate[3][1] + phase_err * \ array(error_dist(runs)) * pi * sqrt(2) / 4 noisy_gates.append([basis, qubits, angle, [axis1, axis2]]) # noisy_gates[0].append(native_gates[i][0]) # noisy_gates[1].append(native_gates[i][1]) # noisy_gates[2].append(native_gates[i][2] * # (xx_err * error_dist(runs) + 1)) # noisy_gates[3].append([native_gates[i][3][0] + phase_err * error_dist(runs) * pi * sqrt(2) / 4, # native_gates[i][3][1] + phase_err * error_dist(runs) * pi * sqrt(2) / 4]) # Single-qubit gate else: angle = [native_gate[2] * (single_err * array(error_dist(runs)) + 1)] axis = [native_gate[3][0] + phase_err * array(error_dist(runs)) * pi / 2] noisy_gates.append([basis, qubits, angle, axis]) # noisy_gates[0].append(native_gates[i][0]) # noisy_gates[1].append(native_gates[i][1]) # noisy_gates[2].append(native_gates[i][2] * # (single_err * error_dist(runs) + 1)) # noisy_gates[3].append(native_gates[i][3] + # phase_err * error_dist(runs) * pi / 2) return native_gates, noisy_gates ```
{ "source": "jlfrancisco/paydunya-python", "score": 3 }
#### File: paydunya-python/paydunya/__init__.py ```python __version__ = '1.0.6' __author__ = "PAYDUNYA <<EMAIL>>" import sys import requests try: import simplejson as json except ImportError: import json # runs in LIVE mode by defaults debug = False api_keys = {} # PAYDUNYA HTTP API version API_VERSION = 'v1' SERVER = "app.paydunya.com" # Sandbox Endpoint SANDBOX_ENDPOINT = "https://%s/sandbox-api/%s/" % (SERVER, API_VERSION) # Live Endpoint LIVE_ENDPOINT = "https://%s/api/%s/" % (SERVER, API_VERSION) # user-agent PAYDUNYA_USER_AGENT = "paydunya-python/v%s" % __version__ # fixme: find a better way of 'self' referencing __MODULE__ = sys.modules[__name__] class PaydunyaError(Exception): """Base Exception class""" def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class Store(object): """PAYDUNYA Store Creates a store object for PAYDUNYA transactions """ def __init__(self, **kwargs): self.name = kwargs.get('name', None) self.tagline = kwargs.get('tagline', None) self.postal_address = kwargs.get('postal_address', None) self.phone_number = kwargs.get('phone_number', None) self.website_url = kwargs.get('website_url', None) self.logo_url = kwargs.get('logo_url', None) @property def info(self): """Returns the store information What this does is simply return the store object's attributes """ return self.__dict__ class Payment(object): """Base class for other PAYDUNYA classes""" def __init__(self): """Base class for all the other payment libraries""" # request headers self._headers = { 'User-Agent': PAYDUNYA_USER_AGENT, "Content-Type": "application/json" } # response object self._response = None # data to send to server self._data = None self.store = Store(name=None) def _process(self, resource=None, data={}): """Processes the current transaction Sends an HTTP request to the PAYDUNYA API server """ # use object's data if no data is passed _data = data or self._data rsc_url = self.get_rsc_endpoint(resource) if _data: req = requests.post(rsc_url, data=json.dumps(_data), headers=self.headers) else: req = requests.get(rsc_url, params=_data, headers=self.headers) if req.status_code == 200: self._response = json.loads(req.text) if int(self._response['response_code']) == 00: return (True, self._response) else: return (False, self._response['response_text']) else: return (500, "Request Failed") @property def headers(self): """Returns the client's Request headers""" return dict(self._config, **self._headers) def add_header(self, header): """Add a custom HTTP header to the client's request headers""" if type(header) is dict: self._headers.update(header) else: raise ValueError( "Dictionary expected, got '%s' instead" % type(header) ) def get_rsc_endpoint(self, rsc): """Returns the HTTP API URL for current payment transaction""" if self.debug: return SANDBOX_ENDPOINT + rsc return LIVE_ENDPOINT + rsc @property def debug(self): """Returns the current transaction mode""" return __MODULE__.debug @property def _config(self): _m = __MODULE__ return { 'PAYDUNYA-MASTER-KEY': _m.api_keys.get('PAYDUNYA-MASTER-KEY'), 'PAYDUNYA-PRIVATE-KEY': _m.api_keys.get('PAYDUNYA-PRIVATE-KEY'), 'PAYDUNYA-TOKEN': _m.api_keys.get('PAYDUNYA-TOKEN') } # moved here so the modules that depend on the 'Payment' class will work from .invoice import Invoice, InvoiceItem from .direct_payments import DirectPay from .opr import OPR __all__ = [ Store.__name__, Payment.__name__, Invoice.__name__, InvoiceItem.__name__, DirectPay.__name__, OPR.__name__ ] ```
{ "source": "jlfrancisco/Shop-Synchro", "score": 2 }
#### File: synchro_shop/sync/admin.py ```python from django.contrib import admin from django.contrib import admin as auth_admin from .models import Shop, ShopReading @admin.register(Shop) class ShopAdmin(auth_admin.ModelAdmin): list_display = ["id", "uuid", "name"] search_fields = ["name"] @admin.register(ShopReading) class ShopReadingAdmin(auth_admin.ModelAdmin): list_display = ["gtin", "get_shop", "expiry_date", "reading_time"] search_fields = ["gtin"] def get_shop(self, obj): return obj.shop.name ```
{ "source": "jlfranklin/python-acquia-cloud-2", "score": 2 }
#### File: acapi2/resources/subscriptionlist.py ```python from acapi2.resources.acquialist import AcquiaList from acapi2.resources.subscription import Subscription class SubscriptionList(AcquiaList): def __init__(self, uri: str, api_key: str, api_secret: str, *args, **kwargs) -> None: # TODO Filters super().__init__(uri, api_key, api_secret, *args, **kwargs) self.fetch() def fetch(self): subs = self.request(uri=self.uri).json() try: sub_items = subs["_embedded"]["items"] except KeyError: # TODO Handle this pass else: for sub in sub_items: name = sub["id"] subs_uri = "{base_uri}/{uuid}".format( base_uri=self.uri, uuid=name) self.__setitem__(name, Subscription(subs_uri, self.api_key, self.api_secret)) @property def base_uri(self) -> str: return self._base_uri @base_uri.setter def base_uri(self, base_uri: str): uri = "{}/subscriptions".format(base_uri) self._base_uri = uri ``` #### File: acapi2/tests/test_agreements.py ```python import requests_mock from acapi2.resources.agreement import Agreement from acapi2.resources.agreementlist import AgreementList from acapi2.tests import BaseTest @requests_mock.Mocker() class TestAgreements(BaseTest): def test_agreement_list(self, mocker): response = { "total": 3, "_links": { "self": { "href": "https://cloud.acquia.com/api/agreements" }, "parent": { "href": "https://cloud.acquia.com/api/" } }, "_embedded": { "items": [ { "uuid": "efc62c93-8203-4e8b-a8ff-4d18b780d4ab", "document_uuid": "f25d0284-f25f-4e59-" "9c48-7c39ae57b400", "title": "Agreement Title", "body": "<p>Agreement body and text.</p>", "status": "accepted", "created_at": "2017-01-23T12:00:00Z", "updated_at": "2017-01-27T12:00:00Z", "actioned_by": { "uuid": "5aa902c5-f1c1-6c94-edfa-86bc58d0dce3", "first_name": "James", "last_name": "Kirk", "mail": "<EMAIL>", "picture_url": "https://accounts.acquia.com/sites" "/default/avatars/456def" "?mail=james.kirk" "@example.com", "username": "james.kirk" }, "reference": { "uuid": "9ab09eba-290d-4ed9-be4d-fa194ab92f39", "name": "Acquia Subscription", "type": "subscription" }, "_links": { "self": { "href": "https://cloud.acquia.com/api" "/agreements/efc62c93-8203-4e8b-" "a8ff-4d18b780d4ab" } } }, { "uuid": "b63fff64-6c18-4899-acba-00ec6c8930e9", "title": "Another Agreement", "body": "<p>This is the body and text of another " "agreement.</p>", "status": "declined", "created_at": "2017-02-23T12:00:00Z", "updated_at": "2017-02-27T12:00:00Z", "actioned_by": { "uuid": "550e8400-e29b-41d4-a716-446655440000", "first_name": "Jane", "last_name": "Doe", "mail": "<EMAIL>", "picture_url": "https://accounts.acquia.com/" "sites/default/avatars/123abc?" "mail=jane.doe" "@example.com", "username": "jane.doe" }, "reference": { "uuid": "9ab09eba-290d-4ed9-be4d-fa194ab92f39", "name": "Acquia Subscription", "type": "subscription" }, "_links": { "self": { "href": "https://cloud.acquia.com/api/" "agreements/b63fff64-6c18-4899-acba-" "00ec6c8930e9" } } }, { "uuid": "a8777880-8924-494a-abe2-62cc092df269", "title": "A Third Agreement", "body": "<p>This is the body and text of one " "more agreement.</p>", "status": "pending", "created_at": "2017-02-23T12:00:00Z", "updated_at": None, "actioned_by": None, "reference": { "uuid": "9ab09eba-290d-4ed9-be4d-fa194ab92f39", "name": "Acquia Subscription", "type": "subscription" }, "_links": { "self": { "href": "https://cloud.acquia.com/api/" "agreements/a8777880-8924-494a-" "abe2-62cc092df269" } } } ] } } uri = f"{self.endpoint}/agreements" mocker.register_uri("GET", uri, json=response, status_code=200) agrs = self.acquia.agreements() self.assertIsInstance(agrs, AgreementList) def test_agreement(self, mocker): uuid = "efc62c93-8203-4e8b-a8ff-4d18b780d4ab" response = { "uuid": uuid, "document_uuid": "f25d0284-f25f-4e59-9c48-7c39ae57b400", "title": "Agreement Title", "body": "<p>Agreement body and text.</p>", "status": "accepted", "created_at": "2017-01-23T12:00:00Z", "updated_at": "2017-01-27T12:00:00Z", "actioned_by": { "uuid": "5aa902c5-f1c1-6c94-edfa-86bc58d0dce3", "first_name": "James", "last_name": "Kirk", "mail": "<EMAIL>", "picture_url": "https://accounts.acquia.com/sites/default/" "avatars/456def?mail=<EMAIL>", "username": "james.kirk" }, "reference": { "uuid": "9ab09eba-290d-4ed9-be4d-fa194ab92f39", "name": "Acquia Subscription", "type": "subscription" }, "_links": { "self": { "href": "https://cloud.acquia.com/api/agreements/" "efc62c93-8203-4e8b-a8ff-4d18b780d4ab" }, "invitees": { "href": "https://cloud.acquia.com/api/agreements/" "efc62c93-8203-4e8b-a8ff-4d18b780d4ab/invitees" }, "subscription": { "href": "https://cloud.acquia.com/api/subscriptions/" "9ab09eba-290d-4ed9-be4d-fa194ab92f39" }, "actioned_by": { "href": "https://cloud.acquia.com/api/users/" "5aa902c5-f1c1-6c94-edfa-86bc58d0dce3" }, "parent": { "href": "https://cloud.acquia.com/api/agreements" } } } uri = f"{self.endpoint}/agreements/{uuid}" mocker.register_uri("GET", uri, json=response, status_code=200) agreement = self.acquia.agreement(uuid) self.assertIsInstance(agreement, Agreement) def test_accept_agreement(self, mocker): response = { "message": "The agreement has been accepted." } uuid = "efc62c93-8203-4e8b-a8ff-4d18b780d4ab" uri = f"{self.endpoint}/agreements/{uuid}/actions/accept" mocker.register_uri(url=uri, method="POST", status_code=200, json=response) response = self.acquia.agreement(uuid).accept() self.assertEqual(response.status_code, 200) def test_decline_agreement(self, mocker): response = { "message": "The agreement has been declined." } uuid = "efc62c93-8203-4e8b-a8ff-4d18b780d4ab" uri = f"{self.endpoint}/agreements/{uuid}/actions/decline" mocker.register_uri(url=uri, method="POST", status_code=200, json=response) response = self.acquia.agreement(uuid).decline() self.assertEqual(response.status_code, 200) def test_agreement_invitees(self, mocker): response = { "total": 2, "_links": { "self": { "href": "https://cloud.acquia.com/api/agreements/" "efc62c93-8203-4e8b-a8ff-4d18b780d4ab/invitees" }, "parent": { "href": "https://cloud.acquia.com/api/agreements/" "efc62c93-8203-4e8b-a8ff-4d18b780d4ab" } }, "_embedded": { "items": [ { "uuid": "u4ee550f-ee0c-102e-8305-1231390f2cc1", "first_name": "User", "last_name": "One", "mail": "<EMAIL>", "username": "user.one", "picture_url": "https://accounts.acquia.com/" "path/to/image.png" }, { "uuid": "u4ef8edc-ee0c-102e-8305-1231390f2cc2", "first_name": "User", "last_name": "Two", "mail": "<EMAIL>", "username": "user.two", "picture_url": "https://accounts.acquia.com/" "path/to/image.png" } ] } } uuid = "efc62c93-8203-4e8b-a8ff-4d18b780d4ab" uri = f"{self.endpoint}/agreements/{uuid}/invitees" mocker.register_uri("GET", uri, json=response, status_code=200) invitees_response = self.acquia.agreement(uuid).invitees() self.assertIn("total", invitees_response) ``` #### File: acapi2/tests/test_http_request.py ```python from unittest.mock import patch from acapi2.http_request import HttpRequest from acapi2.tests import BaseTest class TestHttpRequest(BaseTest): def test_session(self): http_request = HttpRequest() http_request_1 = HttpRequest() self.assertEqual(id(http_request.session), id(http_request_1.session)) def test_get_session(self): request_session = HttpRequest()._get_session() self.assertEqual(HttpRequest._session, request_session) @patch("requests.Session.request") def test_make_request(self, mock_session): http_request = HttpRequest() http_request.body = "body" http_request.do() mock_session.assert_called_once_with( "GET", "http://localhost/", data="body", headers={} ) ```
{ "source": "JLGGG/master_thesis_code", "score": 3 }
#### File: master_thesis_code/DataCollecting/ToS&PP_crawler.py ```python import os import re from pathlib import Path import pandas as pd import time from bs4 import BeautifulSoup from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk.tokenize import word_tokenize from selenium import webdriver from selenium.common.exceptions import NoSuchElementException, TimeoutException from func_timeout import func_timeout, FunctionTimedOut import nltk nltk.download('stopwords') nltk.download('punkt') # import matplotlib.pyplot as plt # For visualization. def start_search(query): opt = webdriver.ChromeOptions() opt.add_experimental_option('prefs', {'intl.accept_languages': 'en,en_US'}) # opt.add_argument('headless') # Set up your chromedriver path. driver = webdriver.Chrome("C:/Users/USER-PC/Downloads/chromedriver.exe", options=opt) links = [] # Initiate empty list to capture final results # Specify number of pages on google search, each page has 10 links n_pages = 35 # Sites including with [...] should remove blacklist = ['sample', 'template', 'frontpage', 'definition', 'generator', 'generate', 'clauses', 'abuse', 'what', 'different', 'difference', 'agree', 'no', 'wikipedia', 'why', 'how', 'need', 'feed', 'not', 'click', 'spectrum', 'free', 'read', '?', 'tldr', 'court', 'include', 'add', 'whether', 'practise', 'design', 'violating', 'welcome', 'watch', 'are', 'improving', 'about', 'creating', 'vs.', 'versus', 'can', 'form', 'receive', 'euro', 'review', 'determining', 'to', 'in', 'apply'] # whitelist = ['terms', 'condition', 'service', 'use', 'agreement', 'statement'] Tos and T&C whitelist = ['privacy'] for page in range(1, n_pages): url = "http://www.google.com/search?q=" + query + "&start=" + str((page - 1) * 10) driver.get(url) soup = BeautifulSoup(driver.page_source, 'html.parser') # Remove related questions for tag in soup.select('.ULSxyf'): tag.decompose() search = soup.select('.yuRUbf') for h in search: links.append({ 'Title': h.select_one('.LC20lb.DKV0Md').text, 'Link': h.a.get('href'), 'Flag': "false" }) # try to bypass "I am not a robot". time.sleep(0.25) # Remove links that contain blacklist words for link in links: for black in blacklist: # The find() method returns -1 if the value is not found. if link['Title'].lower().find(black) >= 0: link['Flag'] = "true" break final_links = [] for i, link in enumerate(links): for white in whitelist: if link['Flag'] == "false" and link['Title'].lower().find(white) >= 0: final_links.append(link) break return final_links, driver stop_words = set(stopwords.words('english')) lemma = WordNetLemmatizer() def clean_text(s): s = re.sub('[^a-zA-Z]', ' ', s) # Removing numbers and punctuation s = str(s).lower() # Convert all characters into lowercase s = word_tokenize(s) # Tokenization s = [w for w in s if w not in stop_words] # Removing stop words s = [lemma.lemmatize(word=w, pos='v') for w in s] # Lemmatization s = [i for i in s if len(i) > 2] # Remove the words having length <= 2 s = ' '.join(s) # Converting list to string return s def collect_ToS_text(soup, link): # whitelist = [ # 'p', # 'li', # 'div', # 'span', # 'b', # 'a', # 'strong', # 'font', # ] # blacklist = [ # '[document]', # 'noscript', # 'header', # 'html', # 'meta', # 'head', # 'input', # 'script', # 'style', # 'title', # # there may be more elements you don't want, such as "style", etc. # ] node = [] #text_elements = [t for t in soup.find_all(text=True) if t.parent.name not in blacklist] #text_elements = [t for t in text_elements if t.parent.name in whitelist] # for text in text_elements: # node.append({ # 'Length': len(text), # 'Link': link, # 'Original': text, # 'Processed': text, # }) text = soup.get_text() node.append({ 'Length': len(text), 'Link': link, 'Original': text, # 'Processed': text, }) df = pd.DataFrame(node) # df_cut = df[df['Length'] > 100] # df_cut_revised = df_cut.copy() # df_cut_revised['Processed'] = df_cut_revised['Processed'].apply(clean_text) # Text preprocessing # df_cut_revised['Length'] = df_cut_revised['Processed'].apply(lambda x: len(x)) # final_df = df_cut_revised[df_cut_revised['Length'] > 10] # Visualization code # df.sort_values(by='Length', inplace=True, ascending=False) # df.plot(x='Content', y='Length') # plt.show() #return final_df return df def enter_link(links, driver, flag, duplicate_check, df): # super_filename = 'tos_data.csv' super_filename = 'privacy_policy_data.csv' i = 0 for link in links: if link['Link'].find('.pdf') >= 0 or link['Link'].find('.html') >= 0: continue if flag == 0: duplicate_check.append(link["Link"]) elif flag == 1: # Confirm already accessed link if link["Link"] in duplicate_check: print("Accessed duplicate link. Return previous page.") continue try: print(f'Go to {link["Link"]}') driver.get(link["Link"]) except (NoSuchElementException, TimeoutException) : continue try: soup = func_timeout(300, BeautifulSoup, args=(driver.page_source, 'html.parser')) except FunctionTimedOut: print(f'{link["link"]} page use too many time. It is terminated.') continue # Save each web page, log file try: tdf = collect_ToS_text(soup, link["Link"]) except KeyError: print("KeyError happens") continue path = os.getcwd() + "/data_privacy_policy/" # path = os.getcwd() + "/data/" sub_filename = f'{link["Title"]}.csv' sub_filename = re.sub("[\/:*?\"<>|]", "", sub_filename) tdf.to_csv(Path(path + sub_filename), index=False) # save each page print(tdf) df = pd.concat([df, tdf]) if i % 10 == 0: df.to_csv(Path(os.getcwd() + "/" + super_filename), index=False) i += 1 try: driver.back() except TimeoutException: continue df.to_csv(Path(os.getcwd() + "/" + super_filename), index=False) # save whole page's data print(f'Number of sentences collected: {len(df)}') driver.close() # Close Chrome process return df def main(): duplicate_check = [] # df = pd.DataFrame(columns=['Length', 'Link', 'Original', 'Processed']) df = pd.DataFrame(columns=['Length', 'Link', 'Original']) links, driver = start_search('Privacy Policy') df = enter_link(links, driver, 0, duplicate_check, df) # links, driver = start_search('Terms of Service') # df = enter_link(links, driver, 0, duplicate_check, df) # links, driver = start_search('Terms of Conditions') # enter_link(links, driver, 1, duplicate_check, df) main() ```
{ "source": "jlgoh/labeldat", "score": 3 }
#### File: labeldat/models/organisation.py ```python from extensions import db class Organisation(db.Model): id = db.Column(db.String(80), primary_key=True, nullable=False) name = db.Column(db.String(80), nullable=False) is_enterprise = db.Column(db.Boolean, nullable=False) created_at = db.Column(db.DateTime(), nullable=False) projects = db.relationship('Project', backref='org', lazy=True) # 1(Organisation)-to-Many(Project) users = db.relationship('User', backref='org', lazy=True) # 1(Organisation)-to-Many(Users) def __repr__(self): return f"<Organisation {self.id} | {self.name} | Enterprise : {self.is_enterprise}>" def to_response(self): return { "id": self.id, "name": self.name, "is_enterprise": self.is_enterprise, "created_at": self.created_at, "projects": [pj.to_response() for pj in self.projects], "users": [user.to_response() for user in self.users] } ``` #### File: labeldat/models/project.py ```python from extensions import db from models.item_data_type import ItemDataType from models.label import Label from models.task import Task class Project(db.Model): id = db.Column(db.String(80), primary_key=True, nullable=False) # 1(Project)-to-1(organisation) org_id = db.Column(db.String(80), db.ForeignKey('organisation.id'), nullable=False) project_name = db.Column(db.String(80), nullable=False) item_data_type = db.Column(db.Enum(ItemDataType), nullable=False) layout = db.Column(db.JSON, nullable=False) outsource_labelling = db.Column(db.Boolean, nullable=False) created_at = db.Column(db.DateTime(), nullable=False) # parent 1-to-many w Task tasks = db.relationship('Task', backref='task', lazy=True) # parent 1-to-many w ProjectManager project_managers = db.relationship('ProjectManager', backref='project', lazy=True) def __repr__(self): return f"<Project {self.id} | {self.project_name} | Organisation : {self.org_id}>" def to_response(self): return { "id": self.id, "orgId": self.org_id, "projectName": self.project_name, "itemDataType": self.item_data_type.name, "layout": self.layout, "outsourceLabelling": self.outsource_labelling, "tasks": [t.to_response_without_item_data() for t in self.tasks], "projectManagers": [pm.to_response() for pm in self.project_managers], "created_at": self.created_at } def to_project_for_user_response(self, user_id): return { "id": self.id, "orgId": self.org_id, "projectName": self.project_name, "itemDataType": self.item_data_type.name, "layout": self.layout, "outsourceLabelling": self.outsource_labelling, "tasksLabelled": [t.to_response_with_labels_from_user(user_id) for t in self.tasks_and_labels_from_user(user_id)], "projectManagers": [pm.to_response() for pm in self.project_managers], "created_at": self.created_at } def to_created_project_response(self): return { "id": self.id, "orgId": self.org_id, "projectName": self.project_name, "itemDataType": self.item_data_type.name, "layout": self.layout, "outsourceLabelling": self.outsource_labelling, "tasks": [t.to_response_without_item_data() for t in self.tasks], "projectManagers": [pm.to_response() for pm in self.project_managers], "tasksCount": self.calculate_number_of_tasks(), "overallPercentage": self.calculate_tasks_labelled_percentage(), "created_at": self.created_at } def to_contributed_project_response(self, user_id): return { "id": self.id, "orgId": self.org_id, "projectName": self.project_name, "itemDataType": self.item_data_type.name, "layout": self.layout, "outsourceLabelling": self.outsource_labelling, "tasks": [t.to_response_without_item_data() for t in self.tasks], "projectManagers": [pm.to_response() for pm in self.project_managers], "tasksCount": self.calculate_number_of_tasks(), "overallPercentage": self.calculate_tasks_labelled_percentage(), "contributionCount": self.calculate_tasks_labelled_by_user(user_id), "contributionPercentage": self.calculate_tasks_labelled_percentage_by_user(user_id), "created_at": self.created_at } def tasks_and_labels_from_user(self, user_id): resulting_tasks = [] for task in self.tasks: for label in task.labels: if label.user_id == user_id: resulting_tasks.append(task) break return resulting_tasks def calculate_number_of_tasks(self): return len(self.tasks) def calculate_tasks_labelled_percentage(self): """ Count % of tasks that have >= 1 label """ number_of_tasks = self.calculate_number_of_tasks() if not number_of_tasks: # When there are no tasks return 0 num_labelled = len([task for task in self.tasks if len(task.labels) > 0]) return round(float((num_labelled / number_of_tasks * 100)), 1) def calculate_tasks_labelled_percentage_by_user(self, user_id): """ Count % of tasks that a user has labelled """ number_of_tasks = self.calculate_number_of_tasks() if not number_of_tasks: # When there are no tasks return 0 num_labelled_by_user = self.calculate_tasks_labelled_by_user(user_id) return round(float((num_labelled_by_user / number_of_tasks) * 100), 1) def calculate_tasks_labelled_by_user(self, user_id): """ Count number of tasks that a user has labelled """ tasks_by_user = db.session.query(Task).filter_by(project_id=self.id).join(Label).filter_by( user_id=user_id).all() num_labelled = len(tasks_by_user) return num_labelled ``` #### File: labeldat/services/label_service.py ```python import uuid from extensions import db from werkzeug.exceptions import * from models import * from datetime import datetime class LabelService: @staticmethod def create_label(user_id, labels): if not user_id: raise BadRequest("LabelService :: create_label :: The user id is missing") if not labels: raise BadRequest("LabelService :: create_label :: The labels data is missing") # To add the limits for number of labels for user and a specific task? saved_labels = [] for label in labels: task_id = label.get("taskId") label_data = label.get("data") new_label = Label(task_id=task_id, user_id=user_id, label_data=label_data, created_at=datetime.now()) db.session.add(new_label) saved_labels.append(new_label) db.session.commit() print(f"LabelService :: create_label :: New labels saved: {saved_labels}") return [saved_label.to_response() for saved_label in saved_labels] ``` #### File: labeldat/utilities/tasks_and_layout_response.py ```python from models.item_data_type import ItemDataType class TasksAndLayoutResponse: def __init__(self, project_name=None, layout=None, item_data_type=None, data=None): self.data = data self.layout = layout self.project_name = project_name self.item_data_type = item_data_type def to_dict(self): return { 'layout': self.layout if self.layout else dict(), 'data': self.data if self.data else dict(), 'projectName': self.project_name if self.project_name else "Project", 'itemDataType': self.item_data_type if self.item_data_type else ItemDataType.IMAGE } ``` #### File: labeldat/utilities/user_projects_results.py ```python class UserProjectsResults: def __init__(self, projects: [], contributed_projects: []): self.projects = projects self.contributed_projects = contributed_projects def to_response(self, user_id): return { "projects": [pj.to_created_project_response() for pj in self.projects], "contributedProjects": [pj.to_contributed_project_response(user_id) for pj in self.contributed_projects] } ```
{ "source": "jlgoldman/big-query-log-drain", "score": 3 }
#### File: jlgoldman/big-query-log-drain/app_test.py ```python import base64 import unittest import flask_testing import mock from app import app class AppTest(flask_testing.TestCase): def create_app(self): app.config['TESTING'] = True return app def test_forbidden_if_no_credentials(self): resp = self.client.post('/log') self.assertEqual(403, resp.status_code) @mock.patch('settings.LOG_DRAIN_USERNAME', 'test-username') @mock.patch('settings.LOG_DRAIN_PASSWORD', '<PASSWORD>') @mock.patch('app._post_to_bigquery') def test_allowed_if_credentials_match(self, mock_post_to_bigquery): credentials = base64.b64encode('test-username:<PASSWORD>') resp = self.client.post('/log', headers={'Authorization': 'Basic ' + credentials}) self.assertEqual(200, resp.status_code) self.assertEqual('', resp.data) mock_post_to_bigquery.assert_not_called() @mock.patch('settings.LOG_DRAIN_USERNAME', 'test-username') @mock.patch('settings.LOG_DRAIN_PASSWORD', '<PASSWORD>') @mock.patch('app._post_to_bigquery') def test_single_record(self, mock_post_to_bigquery): body = '''403 <190>1 2017-08-22T23:39:51.262277+00:00 host app web.1 - json: {"duration": 0.027, "host": "test.com", "method": "GET", "path": "/", "referrer": "", "remote_addr": "11.11.222.333", "response_code": 200, "timestamp": "2017-08-22T23:39:51.261888+00:00", "url": "/", "user_agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.101 Safari/537.36"}\n''' credentials = base64.b64encode('test-username:test-password') resp = self.client.post('/log', data=body, headers={'Authorization': 'Basic ' + credentials}) self.assertEqual(200, resp.status_code) self.assertEqual('', resp.data) mock_post_to_bigquery.assert_called_once() log_records = mock_post_to_bigquery.call_args[0][0] self.assertEqual(1, len(log_records)) expected_record = { 'duration': 0.027, 'host': 'test.com', 'method': 'GET', 'path': '/', 'referrer': '', 'remote_addr': '11.11.222.333', 'response_code': 200, 'timestamp': '2017-08-22T23:39:51.261888+00:00', 'url': '/', 'user_agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.101 Safari/537.36', } self.assertEqual(expected_record, log_records[0]) @mock.patch('settings.LOG_DRAIN_USERNAME', 'test-username') @mock.patch('settings.LOG_DRAIN_PASSWORD', '<PASSWORD>') @mock.patch('app._post_to_bigquery') def test_two_records(self, mock_post_to_bigquery): line1 = '''403 <190>1 2017-08-22T23:39:51.262277+00:00 host app web.1 - json: {"duration": 0.027, "host": "test.com", "method": "GET", "path": "/", "referrer": "", "remote_addr": "11.11.222.333", "response_code": 200, "timestamp": "2017-08-22T23:39:51.261888+00:00", "url": "/", "user_agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.101 Safari/537.36"}''' line2 = '''390 <190>1 2017-08-30T23:39:51.000000+00:00 host app web.1 - json: {"host": "test.com", "method": "GET", "path": "/foo", "referrer": "", "remote_addr": "1.2.3.4", "response_code": 200, "timestamp": "2017-08-30T23:39:51.000000+00:00", "url": "/foo?bar=1", "user_agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.101 Safari/537.36"}''' body = '%s\n%s\n' % (line1, line2) credentials = base64.b64encode('test-username:test-password') resp = self.client.post('/log', data=body, headers={'Authorization': 'Basic ' + credentials}) self.assertEqual(200, resp.status_code) self.assertEqual('', resp.data) mock_post_to_bigquery.assert_called_once() log_records = mock_post_to_bigquery.call_args[0][0] self.assertEqual(2, len(log_records)) expected_record1 = { 'duration': 0.027, 'host': 'test.com', 'method': 'GET', 'path': '/', 'referrer': '', 'remote_addr': '11.11.222.333', 'response_code': 200, 'timestamp': '2017-08-22T23:39:51.261888+00:00', 'url': '/', 'user_agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.101 Safari/537.36', } self.assertEqual(expected_record1, log_records[0]) expected_record2 = { 'host': 'test.com', 'method': 'GET', 'path': '/foo', 'referrer': '', 'remote_addr': '1.2.3.4', 'response_code': 200, 'timestamp': '2017-08-30T23:39:51.000000+00:00', 'url': '/foo?bar=1', 'user_agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.101 Safari/537.36', } self.assertEqual(expected_record2, log_records[1]) @mock.patch('settings.LOG_DRAIN_USERNAME', 'test-username') @mock.patch('settings.LOG_DRAIN_PASSWORD', '<PASSWORD>') @mock.patch('app._post_to_bigquery') def test_garbage_record(self, mock_post_to_bigquery): body = 'garbage' credentials = base64.b64encode('test-username:test-password') resp = self.client.post('/log', data=body, headers={'Authorization': 'Basic ' + credentials}) self.assertEqual(200, resp.status_code) self.assertEqual('', resp.data) mock_post_to_bigquery.assert_not_called() @mock.patch('settings.LOG_DRAIN_USERNAME', 'test-username') @mock.patch('settings.LOG_DRAIN_PASSWORD', '<PASSWORD>') @mock.patch('app._post_to_bigquery') def test_malformed_record2(self, mock_post_to_bigquery): body = '100 foo' credentials = base64.b64encode('test-username:test-password') resp = self.client.post('/log', data=body, headers={'Authorization': 'Basic ' + credentials}) self.assertEqual(200, resp.status_code) self.assertEqual('', resp.data) mock_post_to_bigquery.assert_not_called() body = '2 foo' credentials = base64.b64encode('test-username:test-password') resp = self.client.post('/log', data=body, headers={'Authorization': 'Basic ' + credentials}) self.assertEqual(200, resp.status_code) self.assertEqual('', resp.data) mock_post_to_bigquery.assert_not_called() def test_render_default_diagnostics(self): resp = self.client.get('/') self.assertEqual(200, resp.status_code) if __name__ == '__main__': unittest.main() ``` #### File: jlgoldman/big-query-log-drain/settings.py ```python import os import dotenv dotenv_filename = dotenv.find_dotenv() if dotenv_filename: dotenv.load_dotenv(dotenv_filename) def parse_bool(env_value): return env_value is not None and env_value.lower() not in ('0', 'false') DEBUG = parse_bool(os.environ.get('DEBUG')) LOG_DRAIN_USERNAME = os.environ.get('LOG_DRAIN_USERNAME') LOG_DRAIN_PASSWORD = os.environ.get('LOG_DRAIN_PASSWORD') LOG_RECORD_PREFIX = os.environ.get('LOG_RECORD_PREFIX', 'json:') BIG_QUERY_PROJECT_ID = os.environ.get('BIG_QUERY_PROJECT_ID') BIG_QUERY_DATASET_ID = os.environ.get('BIG_QUERY_DATASET_ID') BIG_QUERY_TABLE_ID = os.environ.get('BIG_QUERY_TABLE_ID') BIG_QUERY_SKIP_INVALID_ROWS = parse_bool(os.environ.get('BIG_QUERY_SKIP_INVALID_ROWS')) BIG_QUERY_IGNORE_UNKNOWN_VALUES = parse_bool(os.environ.get('BIG_QUERY_IGNORE_UNKNOWN_VALUES')) GOOGLE_SERVICE_ACCOUNT_CREDENTIALS_JSON = os.environ.get('GOOGLE_SERVICE_ACCOUNT_CREDENTIALS_JSON') ```
{ "source": "jlgrady1/youtopia", "score": 3 }
#### File: youtopia/docker/reaper.py ```python import logging import os import time log = logging.getLogger(__name__) HOME = os.environ.get("MEDIA_HOME") DEBUG = os.environ.get("DEBUG", "False") INTERVAL = 5 * 60 # 5 Minutes REAP_AGE_MIN = 30 # Files created greater than REAP_AGE_MIN ago will be reaped def validate(): if not HOME: log.error("YOUTOPIA_HOME is not set!") exit(1) def run(): while True: time.sleep(INTERVAL) log.info("Reaper is waking up.") files = os.listdir(HOME) now = time.time() for f in files: log.debug("Examining {}".format(f)) path = "{}/{}".format(HOME, f) if not os.path.isfile(path): log.info("Skipping dir {}".format(f)) info = os.stat(path) created = info.st_ctime delta = (now - created) / 60.0 # Time delta in minutes if delta >= REAP_AGE_MIN: log.info("Reaping file {}".format(f)) os.remove(path) log.info("Reaper is going to sleep.") def main(): # Configure logging dbg = DEBUG.lower() == 'true' if dbg: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) log.info("Reaper is starting up") validate() run() if __name__ == '__main__': main() ``` #### File: youtopia/mp3/forms.py ```python import logging from django import forms LOGGER = logging.getLogger(__name__) class YouTubeURLForm(forms.Form): url_attrs = { 'placeholder': 'https://www.youtube.com/watch?v=<videoid>', 'class': 'form-control' } youtube_url = forms.CharField( required=True, max_length=100, widget=forms.TextInput(attrs=url_attrs), error_messages={'required': 'URL is required'} ) def clean_youtube_url(self): url = self.data['youtube_url'] # https://www.youtube.com/watch?v=<videoid> if 'youtube.com/watch?v=' not in url: raise forms.ValidationError("Unknown youtube url.") return url ```
{ "source": "jlgutenson/RAPIDpy", "score": 2 }
#### File: RAPIDpy/inflow/lsm_rapid_process.py ```python from datetime import datetime, timedelta import multiprocessing import os import re import traceback # external packages import pandas as pd import pangaea from netCDF4 import Dataset import numpy as np # local imports from ..rapid import RAPID from .CreateInflowFileFromERAInterimRunoff import \ CreateInflowFileFromERAInterimRunoff from .CreateInflowFileFromLDASRunoff import CreateInflowFileFromLDASRunoff from .CreateInflowFileFromWRFHydroRunoff import \ CreateInflowFileFromWRFHydroRunoff from ..postprocess.generate_return_periods import generate_return_periods from ..postprocess.generate_seasonal_averages import generate_seasonal_averages from ..utilities import (case_insensitive_file_search, get_valid_directory_list, partition) # ----------------------------------------------------------------------------- # MULTIPROCESSING FUNCTION # ----------------------------------------------------------------------------- def generate_inflows_from_runoff(args): """ prepare runoff inflow file for rapid """ runoff_file_list = args[0] file_index_list = args[1] weight_table_file = args[2] grid_type = args[3] rapid_inflow_file = args[4] rapid_inflow_tool = args[5] mp_lock = args[6] time_start_all = datetime.utcnow() if not isinstance(runoff_file_list, list): runoff_file_list = [runoff_file_list] else: runoff_file_list = runoff_file_list if not isinstance(file_index_list, list): file_index_list = [file_index_list] else: file_index_list = file_index_list if runoff_file_list and file_index_list: # prepare ECMWF file for RAPID index_string = "Index: {0}".format(file_index_list[0]) if len(file_index_list) > 1: index_string += " to {0}".format(file_index_list[-1]) print(index_string) runoff_string = "File(s): {0}".format(runoff_file_list[0]) if len(runoff_file_list) > 1: runoff_string += " to {0}".format(runoff_file_list[-1]) print(runoff_string) print("Converting inflow ...") try: rapid_inflow_tool.execute(nc_file_list=runoff_file_list, index_list=file_index_list, in_weight_table=weight_table_file, out_nc=rapid_inflow_file, grid_type=grid_type, mp_lock=mp_lock) except Exception: # This prints the type, value, and stack trace of the # current exception being handled. traceback.print_exc() raise time_finish_ecmwf = datetime.utcnow() print("Time to convert inflows: {0}" .format(time_finish_ecmwf-time_start_all)) # ----------------------------------------------------------------------------- # UTILITY FUNCTIONS # ----------------------------------------------------------------------------- DEFAULT_LSM_INPUTS = { 'erai_new': { 'file_datetime_re_pattern': r'\d{8}', 'file_datetime_pattern': "%Y%m%d", }, 't255': { 'file_datetime_re_pattern': r'\d{8}', 'file_datetime_pattern': "%Y%m%d", }, 't511': { 'file_datetime_re_pattern': r'\d{8}', 'file_datetime_pattern': "%Y%m%d", }, 't159': { 'file_datetime_re_pattern': r'\d{8}', 'file_datetime_pattern': "%Y%m%d", }, 'gldas2': { 'file_datetime_re_pattern': r'\d{8}\.\d{2}', 'file_datetime_pattern': "%Y%m%d.%H", }, 'gldas': { 'file_datetime_re_pattern': r'\d{8}\.\d{2}', 'file_datetime_pattern': "%Y%m%d.%H", }, 'nldas': { 'file_datetime_re_pattern': r'\d{8}\.\d{2}', 'file_datetime_pattern': "%Y%m%d.%H", }, 'cmip5': { 'file_datetime_re_pattern': r'\d{4}', 'file_datetime_pattern': "%Y", }, 'lis': { 'file_datetime_re_pattern': r'\d{10}', 'file_datetime_pattern': "%Y%m%d%H", }, 'joules': { 'file_datetime_re_pattern': r'\d{10}', 'file_datetime_pattern': "%Y%m%d%H", }, 'wrf': { 'file_datetime_re_pattern': r'\d{10}', 'file_datetime_pattern': "%Y%m%d%H", }, } def identify_lsm_grid(lsm_grid_path): """ This is used to idenfity the input LSM grid """ # check to see what kind of file we are dealing with lsm_example_file = Dataset(lsm_grid_path) # INDENTIFY LAT/LON DIMENSIONS dim_list = lsm_example_file.dimensions.keys() latitude_dim = "lat" if 'latitude' in dim_list: latitude_dim = 'latitude' elif 'g0_lat_0' in dim_list: # GLDAS/NLDAS MOSAIC latitude_dim = 'g0_lat_0' elif 'lat_110' in dim_list: # NLDAS NOAH/VIC latitude_dim = 'lat_110' elif 'north_south' in dim_list: # LIS/Joules latitude_dim = 'north_south' elif 'south_north' in dim_list: # WRF Hydro latitude_dim = 'south_north' elif 'Y' in dim_list: # FLDAS latitude_dim = 'Y' longitude_dim = "lon" if 'longitude' in dim_list: longitude_dim = 'longitude' elif 'g0_lon_1' in dim_list: # GLDAS/NLDAS MOSAIC longitude_dim = 'g0_lon_1' elif 'lon_110' in dim_list: # NLDAS NOAH/VIC longitude_dim = 'lon_110' elif 'east_west' in dim_list: # LIS/Joules longitude_dim = 'east_west' elif 'west_east' in dim_list: # WRF Hydro longitude_dim = 'west_east' elif 'X' in dim_list: # FLDAS longitude_dim = 'X' time_dim = None if 'time' in dim_list: time_dim = 'time' elif 'Time' in dim_list: time_dim = 'Time' elif 'Times' in dim_list: time_dim = 'Times' elif 'times' in dim_list: time_dim = 'times' lat_dim_size = len(lsm_example_file.dimensions[latitude_dim]) lon_dim_size = len(lsm_example_file.dimensions[longitude_dim]) # IDENTIFY VARIABLES var_list = lsm_example_file.variables.keys() latitude_var = "lat" if 'latitude' in var_list: latitude_var = 'latitude' elif 'g0_lat_0' in var_list: latitude_var = 'g0_lat_0' elif 'lat_110' in var_list: latitude_var = 'lat_110' elif 'north_south' in var_list: latitude_var = 'north_south' elif 'XLAT' in var_list: # WRF latitude_var = 'XLAT' elif 'Y' in var_list: # FLDAS latitude_var = 'Y' longitude_var = "lon" if 'longitude' in var_list: longitude_var = 'longitude' elif 'g0_lon_1' in var_list: longitude_var = 'g0_lon_1' elif 'lon_110' in var_list: longitude_var = 'lon_110' elif 'east_west' in var_list: longitude_var = 'east_west' elif 'XLONG' in var_list: # WRF longitude_var = 'XLONG' elif 'X' in var_list: # FLDAS longitude_var = 'X' time_var = None if 'time' in var_list: time_var = 'time' elif 'Time' in var_list: time_var = 'Time' elif 'Times' in var_list: time_var = 'Times' elif 'times' in var_list: time_var = 'times' surface_runoff_var = "" subsurface_runoff_var = "" total_runoff_var = "" for var in var_list: if var.startswith("SSRUN"): # NLDAS/GLDAS surface_runoff_var = var elif var.startswith("BGRUN"): # NLDAS/GLDAS subsurface_runoff_var = var elif var == "Qs_acc": # GLDAS v2 surface_runoff_var = var elif var == "Qsb_acc": # GLDAS v2 subsurface_runoff_var = var elif var == "Qs_tavg": # FLDAS surface_runoff_var = var elif var == "Qsb_tavg": # FLDAS subsurface_runoff_var = var elif var == "Qs_inst": # LIS surface_runoff_var = var elif var == "Qsb_inst": # LIS subsurface_runoff_var = var elif var == "SFROFF": # WRF Hydro surface_runoff_var = var elif var == "UDROFF": # WRF Hydro subsurface_runoff_var = var elif var.lower() == "ro": # ERA Interim total_runoff_var = var elif var == "total runoff": # CMIP5 data total_runoff_var = var # IDENTIFY GRID TYPE lsm_file_data = { "weight_file_name": "", "grid_type": "", "model_name": "", "description": "", "rapid_inflow_tool": None, "latitude_var": latitude_var, "longitude_var": longitude_var, "time_var": time_var, "latitude_dim": latitude_dim, "longitude_dim": longitude_dim, "time_dim": time_dim, } institution = "" title = "" try: institution = lsm_example_file.getncattr("institution") except AttributeError: pass try: title = lsm_example_file.getncattr("title") except AttributeError: pass runoff_vars = [surface_runoff_var, subsurface_runoff_var] if institution == "European Centre for Medium-Range Weather Forecasts" \ or total_runoff_var.lower() == "ro": # these are the ECMWF models if lat_dim_size == 1280 and lon_dim_size == 2576: print("Runoff file identified as new ERA Interim GRID") # A) ERA Interim Low Res (T255) # Downloaded as 0.5 degree grid # dimensions: # longitude = 720 ; # latitude = 361 ; lsm_file_data["description"] = "new ERA Interim GRID" lsm_file_data["model_name"] = "erai" lsm_file_data["weight_file_name"] = r'weight_era_new\.csv' lsm_file_data["grid_type"] = 'erai_new' elif lat_dim_size == 361 and lon_dim_size == 720: print("Runoff file identified as ERA Interim Low Res (T255) GRID") # A) ERA Interim Low Res (T255) # Downloaded as 0.5 degree grid # dimensions: # longitude = 720 ; # latitude = 361 ; lsm_file_data["description"] = "ERA Interim (T255 Grid)" lsm_file_data["model_name"] = "erai" lsm_file_data["weight_file_name"] = r'weight_era_t255\.csv' lsm_file_data["grid_type"] = 't255' elif lat_dim_size == 512 and lon_dim_size == 1024: print("Runoff file identified as ERA Interim High Res (T511) GRID") # B) ERA Interim High Res (T511) # dimensions: # lon = 1024 ; # lat = 512 ; lsm_file_data["description"] = "ERA Interim (T511 Grid)" lsm_file_data["weight_file_name"] = r'weight_era_t511\.csv' lsm_file_data["model_name"] = "erai" lsm_file_data["grid_type"] = 't511' elif lat_dim_size == 161 and lon_dim_size == 320: print("Runoff file identified as ERA 20CM (T159) GRID") # C) ERA 20CM (T159) - 3hr - 10 ensembles # Downloaded as 1.125 degree grid # dimensions: # longitude = 320 ; # latitude = 161 ; lsm_file_data["description"] = "ERA 20CM (T159 Grid)" lsm_file_data["weight_file_name"] = r'weight_era_t159\.csv' lsm_file_data["model_name"] = "era_20cm" lsm_file_data["grid_type"] = 't159' else: lsm_example_file.close() raise Exception("Unsupported ECMWF grid.") lsm_file_data["rapid_inflow_tool"] = \ CreateInflowFileFromERAInterimRunoff() elif institution == "NASA GSFC": if title == "GLDAS2.0 LIS land surface model output": print("Runoff file identified as GLDAS v2 LIS GRID") # this is the LIS model lsm_file_data["weight_file_name"] = r'weight_gldas2\.csv' lsm_file_data["grid_type"] = 'gldas2' lsm_file_data["description"] = "GLDAS2.0 LIS" lsm_file_data["model_name"] = "nasa" else: print("Runoff file identified as LIS GRID") # this is the LIS model (can be FLDAS) # THIS CASE CAN ALSO BE FOR FLDAS, however you will need to add # the file_datetime_pattern && file_datetime_re_pattern for it to # work if it is not 3-hourly time step. lsm_file_data["weight_file_name"] = r'weight_lis\.csv' lsm_file_data["grid_type"] = 'lis' lsm_file_data["description"] = "NASA GSFC LIS" lsm_file_data["model_name"] = "nasa" elif institution == "Met Office, UK": print("Runoff file identified as Joules GRID") lsm_file_data["weight_file_name"] = r'weight_joules\.csv' lsm_file_data["grid_type"] = 'joules' lsm_file_data["description"] = "Met Office Joules" lsm_file_data["model_name"] = "met_office" elif institution == "NCAR, USACE, USBR": print("Runoff file identified as CMIP5") lsm_file_data["weight_file_name"] = r'weight_cmip5\.csv' lsm_file_data["grid_type"] = 'cmip5' lsm_file_data["description"] = "CMIP5 Runoff" lsm_file_data["model_name"] = "cmip5" runoff_vars = [total_runoff_var] elif surface_runoff_var.startswith("SSRUN") \ and subsurface_runoff_var.startswith("BGRUN"): lsm_file_data["model_name"] = "nasa" if lat_dim_size == 600 and lon_dim_size == 1440: print("Runoff file identified as GLDAS GRID") # GLDAS NC FILE # dimensions: # g0_lat_0 = 600 ; # g0_lon_1 = 1440 ; # variables # SSRUN_GDS0_SFC_ave1h (surface) # BGRUN_GDS0_SFC_ave1h (subsurface) # or # SSRUNsfc_GDS0_SFC_ave1h (surface) # BGRUNsfc_GDS0_SFC_ave1h (subsurface) lsm_file_data["description"] = "GLDAS" lsm_file_data["weight_file_name"] = r'weight_gldas\.csv' lsm_file_data["grid_type"] = 'gldas' elif lat_dim_size <= 224 and lon_dim_size <= 464: print("Runoff file identified as NLDAS GRID") # NLDAS MOSAIC FILE # dimensions: # g0_lat_0 = 224 ; # g0_lon_1 = 464 ; # NLDAS NOAH/VIC FILE # dimensions: # lat_110 = 224 ; # lon_110 = 464 ; lsm_file_data["description"] = "NLDAS" lsm_file_data["weight_file_name"] = r'weight_nldas\.csv' lsm_file_data["grid_type"] = 'nldas' else: lsm_example_file.close() raise Exception("Unsupported runoff grid.") else: title = "" try: title = lsm_example_file.getncattr("TITLE") except AttributeError: pass if "WRF" in title: lsm_file_data["description"] = "WRF/WRF-Hydro Runoff" lsm_file_data["weight_file_name"] = r'weight_wrf\.csv' lsm_file_data["model_name"] = 'wrf' lsm_file_data["grid_type"] = 'wrf' lsm_file_data['rapid_inflow_tool'] = \ CreateInflowFileFromWRFHydroRunoff( latitude_dim, longitude_dim, latitude_var, longitude_var, surface_runoff_var, subsurface_runoff_var, ) else: lsm_example_file.close() raise Exception("Unsupported LSM grid.") lsm_example_file.close() # set the inflow tool to use the LDAS tool by default if lsm_file_data["rapid_inflow_tool"] is None: lsm_file_data["rapid_inflow_tool"] = \ CreateInflowFileFromLDASRunoff( latitude_dim, longitude_dim, latitude_var, longitude_var, runoff_vars, ) return lsm_file_data def determine_start_end_timestep(lsm_file_list, file_re_match=None, file_datetime_pattern=None, expected_time_step=None, lsm_grid_info=None): """ Determine the start and end date from LSM input files """ if lsm_grid_info is None: lsm_grid_info = identify_lsm_grid(lsm_file_list[0]) if None in (lsm_grid_info['time_var'], lsm_grid_info['time_dim'])\ or lsm_grid_info['model_name'] in ('era_20cm', 'erai'): # NOTE: the ERA20CM and ERA 24hr time variables # in the tests are erroneous if None in (file_re_match, file_datetime_pattern): raise ValueError("LSM files missing time dimension and/or " "variable.To mitigate this, add the " "'file_re_match' and 'file_datetime_pattern' " "arguments.") if lsm_grid_info['time_dim'] is None: print("Assuming time dimension is 1") file_size_time = 1 else: lsm_example_file = Dataset(lsm_file_list[0]) file_size_time = \ len(lsm_example_file.dimensions[lsm_grid_info['time_dim']]) lsm_example_file.close() total_num_time_steps = int(file_size_time * len(lsm_file_list)) # determine the start time from the existing files actual_simulation_start_datetime = \ datetime.strptime(file_re_match.search(lsm_file_list[0]).group(0), file_datetime_pattern) # check to see if the time step matches expected if len(lsm_file_list) > 1: time_step = \ int((datetime.strptime( file_re_match.search(lsm_file_list[1]).group(0), file_datetime_pattern) - actual_simulation_start_datetime).total_seconds() / float(file_size_time)) elif expected_time_step is not None: time_step = int(expected_time_step) else: raise ValueError("Only one LSM file with one timestep present. " "'expected_time_step' parameter required to " "continue.") # determine the end datetime actual_simulation_end_datetime = \ datetime.strptime(file_re_match.search(lsm_file_list[-1]).group(0), file_datetime_pattern) \ + timedelta(seconds=(file_size_time-1) * time_step) else: with pangaea.open_mfdataset(lsm_file_list, lat_var=lsm_grid_info['latitude_var'], lon_var=lsm_grid_info['longitude_var'], time_var=lsm_grid_info['time_var'], lat_dim=lsm_grid_info['latitude_dim'], lon_dim=lsm_grid_info['longitude_dim'], time_dim=lsm_grid_info['time_dim']) as xds: datetime_arr = [pd.to_datetime(dval) for dval in xds.lsm.datetime.values] actual_simulation_start_datetime = datetime_arr[0] actual_simulation_end_datetime = datetime_arr[-1] total_num_time_steps = len(datetime_arr) if total_num_time_steps <= 1: if expected_time_step is not None: time_step = int(expected_time_step) else: raise ValueError("Only one LSM file with one timestep " "present. 'expected_time_step' parameter " "required to continue.") else: time_step = int(np.diff(xds.lsm.datetime.values)[0] / np.timedelta64(1, 's')) if expected_time_step is not None: if time_step != int(expected_time_step): print("WARNING: The time step used {0} is different than " "expected {1}".format(time_step, expected_time_step)) return (actual_simulation_start_datetime, actual_simulation_end_datetime, time_step, total_num_time_steps) # ------------------------------------------------------------------------------ # MAIN PROCESS # ------------------------------------------------------------------------------ def run_lsm_rapid_process(rapid_executable_location, lsm_data_location, rapid_io_files_location=None, rapid_input_location=None, rapid_output_location=None, simulation_start_datetime=None, simulation_end_datetime=datetime.utcnow(), file_datetime_pattern=None, file_datetime_re_pattern=None, initial_flows_file=None, ensemble_list=(None,), generate_rapid_namelist_file=True, run_rapid_simulation=True, generate_return_periods_file=False, return_period_method='weibul', generate_seasonal_averages_file=False, generate_seasonal_initialization_file=False, generate_initialization_file=False, use_all_processors=True, num_processors=1, mpiexec_command="mpiexec", cygwin_bin_location="", modeling_institution="US Army Engineer Research " "and Development Center", convert_one_hour_to_three=False, expected_time_step=None): # pylint: disable=anomalous-backslash-in-string """ This is the main process to generate inflow for RAPID and to run RAPID. Parameters ---------- rapid_executable_location: str Path to the RAPID executable. lsm_data_location: str Path to the directory containing the Land Surface Model output files. rapid_io_files_location: str, optional Path to the directory containing the input and output folders for RAPID. This is for running multiple watersheds. rapid_input_location: str, optional Path to directory with RAPID simulation input data. Required if `rapid_io_files_location` is not set. rapid_output_location: str, optional Path to directory to put output. Required if `rapid_io_files_location` is not set. simulation_start_datetime: datetime, optional Datetime object with date bound of earliest simulation start. simulation_end_datetime: datetime, optional Datetime object with date bound of latest simulation end. Defaults to :obj:`datetime.utcnow`. file_datetime_pattern: str, optional Datetime pattern for files (Ex. '%Y%m%d%H'). If set, `file_datetime_re_pattern` is required. Various defaults used by each model. file_datetime_re_pattern: raw str, optional Regex pattern to extract datetime (Ex. r'\d{10}'). If set, `file_datetime_pattern` is required. Various defaults used by each model. initial_flows_file: str, optional If given, this is the path to a file with initial flows for the simulaion. ensemble_list: list, optional This is the expexted ensemble name appended to the end of the file name. generate_rapid_namelist_file: bool, optional If True, this will create a RAPID namelist file for the run in your RAPID input directory. Default is True. run_rapid_simulation: bool, optional If True, the RAPID simulation will run after generating the inflow file. Default is True. generate_return_periods_file: bool, optional If True, the return period file will be generated in the output. Default is False. return_period_method: str, optional If True, the return period file will be generated in the output. Default is False. generate_seasonal_averages_file: bool, optional If True, the season average file will be generated. Default is False. generate_seasonal_initialization_file: bool, optional If True, an intialization based on the seasonal average for the current day of the year will be created. Default is False. generate_initialization_file: bool, optional If True, an initialization file from the last time step of the simulation willl be created. Default is False. use_all_processors: bool, optional If True, it will use all available processors to perform this operation. Default is True. num_processors: int, optional If use_all_processors is False, this argument will determine the number of processors to use. Default is 1. mpiexec_command: str, optional This is the command to execute RAPID. Default is "mpiexec". cygwin_bin_location: str, optional If using Windows, this is the path to the Cygwin bin location. Default is "". modeling_institution: str, optional This is the institution performing the modeling and is in the output files. Default is "US Army Engineer Research and Development Center". convert_one_hour_to_three: bool, optional If the time step is expected to be 1-hr it will convert to 3. Set to False if the LIS, NLDAS, or Joules grid time step is greater than 1-hr. expected_time_step: int, optional The time step in seconds of your LSM input data if only one file is given. Required if only one file is present. Returns ------- list: A list of output file information. Example of regular run: .. code:: python from datetime import datetime from RAPIDpy.inflow import run_lsm_rapid_process run_lsm_rapid_process( rapid_executable_location='/home/alan/rapid/src/rapid', rapid_io_files_location='/home/alan/rapid-io', lsm_data_location='/home/alan/era_data', ) Example of single input/output run: .. code:: python from datetime import datetime from RAPIDpy.inflow import run_lsm_rapid_process run_lsm_rapid_process( rapid_executable_location='/home/alan/rapid/src/rapid', rapid_input_location='/home/alan/rapid-io/input/provo_watershed', rapid_output_location='/home/alan/rapid-io/output/provo_watershed', lsm_data_location='/home/alan/era_data', ) Example of run with FLDAS and datetime filter: .. note:: http://disc.sci.gsfc.nasa.gov/uui/datasets?keywords=FLDAS .. code:: python from datetime import datetime from RAPIDpy.inflow import run_lsm_rapid_process run_lsm_rapid_process( rapid_executable_location='/home/alan/rapid/src/rapid', rapid_io_files_location='/home/alan/rapid-io', lsm_data_location='/home/alan/lsm_data', simulation_start_datetime=datetime(1980, 1, 1), file_datetime_re_pattern = r'\d{8}', file_datetime_pattern = "%Y%m%d", ) Example of run with CMIP5: .. note:: http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/BCSD5HydrologyMemo.pdf .. code:: python from datetime import datetime from RAPIDpy.inflow import run_lsm_rapid_process run_lsm_rapid_process( rapid_executable_location='/home/jimwlewis/rapid/src/rapid', rapid_io_files_location='/data/rapid-io4', lsm_data_location='/data/rapid-io4/input/cmip5-jun01', simulation_start_datetime=datetime(2001, 1, 1), simulation_end_datetime=datetime(2002, 12, 31), file_datetime_pattern="%Y", file_datetime_re_pattern=r'\d{4}', ) """ # noqa time_begin_all = datetime.utcnow() # use all processors makes precedent over num_processors arg if use_all_processors is True: num_cpus = multiprocessing.cpu_count() elif num_processors > multiprocessing.cpu_count(): print("WARNING: Num processors requested exceeded max. Set to max ...") num_cpus = multiprocessing.cpu_count() else: num_cpus = num_processors # get list of correctly formatted rapid input directories in # rapid directory rapid_directories = [] if rapid_io_files_location is not None: main_rapid_input_directory = os.path.join(rapid_io_files_location, 'input') for watershed_directory in \ get_valid_directory_list(main_rapid_input_directory): watershed_input_path = os.path.join(main_rapid_input_directory, watershed_directory) watershed_output_path = os.path.join(rapid_io_files_location, 'output', watershed_directory) rapid_directories.append( (watershed_input_path, watershed_output_path)) elif None not in (rapid_input_location, rapid_output_location): rapid_directories = [(rapid_input_location, rapid_output_location)] else: raise ValueError("Need 'rapid_io_files_location' or " "'rapid_input_location' and 'rapid_output_location'" " set to continue.") all_output_file_information = [] for ensemble in ensemble_list: output_file_information = { 'ensemble': ensemble, } ensemble_file_ending = ".nc" ensemble_file_ending4 = ".nc4" if ensemble is not None: ensemble_file_ending = "_{0}.nc".format(ensemble) ensemble_file_ending4 = "_{0}.nc4".format(ensemble) # get list of files lsm_file_list = [] for walkdir_info in os.walk(lsm_data_location, followlinks=True): for lsm_file in walkdir_info[2]: if lsm_file.endswith(ensemble_file_ending) or \ lsm_file.endswith(ensemble_file_ending4): lsm_file_list.append( os.path.join(walkdir_info[0], lsm_file)) lsm_file_list = sorted(lsm_file_list) # IDENTIFY THE GRID lsm_file_data = identify_lsm_grid(lsm_file_list[0]) # load in the datetime pattern if file_datetime_pattern is None or file_datetime_re_pattern is None: file_datetime_re_pattern = \ DEFAULT_LSM_INPUTS[lsm_file_data['grid_type']][ 'file_datetime_re_pattern'] file_datetime_pattern = \ DEFAULT_LSM_INPUTS[lsm_file_data['grid_type']][ 'file_datetime_pattern'] file_re_match = re.compile(file_datetime_re_pattern) # get subset based on time bounds if simulation_start_datetime is not None: print("Filtering files by datetime ...") lsm_file_list_subset = [] for lsm_file in lsm_file_list: match = file_re_match.search(lsm_file) print(match.group(0)) file_date = datetime.strptime(match.group(0), file_datetime_pattern) if file_date > simulation_end_datetime: break if file_date >= simulation_start_datetime: lsm_file_list_subset.append(lsm_file) lsm_file_list = sorted(lsm_file_list_subset) print("Running from {0} to {1}".format(lsm_file_list[0], lsm_file_list[-1])) # get number of time steps in file actual_simulation_start_datetime, actual_simulation_end_datetime, \ time_step, total_num_time_steps = \ determine_start_end_timestep( lsm_file_list, file_re_match=file_re_match, file_datetime_pattern=file_datetime_pattern, expected_time_step=expected_time_step, lsm_grid_info=lsm_file_data) # VALIDATING INPUT IF DIVIDING BY 3 if (lsm_file_data['grid_type'] in ('nldas', 'lis', 'joules')) \ and convert_one_hour_to_three: num_extra_files = total_num_time_steps % 3 if num_extra_files != 0: print("WARNING: Number of files needs to be divisible by 3. " "Remainder is {0}".format(num_extra_files)) print("This means your simulation will be truncated") total_num_time_steps /= 3 time_step *= 3 # compile the file ending out_file_ending = "{0}_{1}_{2}hr_{3:%Y%m%d}to{4:%Y%m%d}{5}"\ .format(lsm_file_data['model_name'], lsm_file_data['grid_type'], int(time_step/3600), actual_simulation_start_datetime, actual_simulation_end_datetime, ensemble_file_ending) # run LSM processes for master_watershed_input_directory, \ master_watershed_output_directory in rapid_directories: print("Running from: {0}".format(master_watershed_input_directory)) try: os.makedirs(master_watershed_output_directory) except OSError: pass # create inflow to dump data into master_rapid_runoff_file = \ os.path.join(master_watershed_output_directory, 'm3_riv_bas_{0}'.format(out_file_ending)) weight_table_file = \ case_insensitive_file_search(master_watershed_input_directory, lsm_file_data['weight_file_name']) try: in_rivid_lat_lon_z_file = \ case_insensitive_file_search( master_watershed_input_directory, r'comid_lat_lon_z\.csv') except IndexError: in_rivid_lat_lon_z_file = "" print("WARNING: comid_lat_lon_z file not found." " The lat/lon will not be added ...") print("Writing inflow file to: {0}" .format(master_rapid_runoff_file)) lsm_file_data['rapid_inflow_tool'].generateOutputInflowFile( out_nc=master_rapid_runoff_file, start_datetime_utc=actual_simulation_start_datetime, number_of_timesteps=total_num_time_steps, simulation_time_step_seconds=time_step, in_rapid_connect_file=case_insensitive_file_search( master_watershed_input_directory, r'rapid_connect\.csv'), in_rivid_lat_lon_z_file=in_rivid_lat_lon_z_file, land_surface_model_description=lsm_file_data['description'], modeling_institution=modeling_institution ) job_combinations = [] if (lsm_file_data['grid_type'] in ('nldas', 'lis', 'joules')) \ and convert_one_hour_to_three: print("Grouping {0} in threes" .format(lsm_file_data['grid_type'])) lsm_file_list = [lsm_file_list[nldas_index:nldas_index+3] for nldas_index in range(0, len(lsm_file_list), 3) if len(lsm_file_list[ nldas_index:nldas_index+3]) == 3] if len(lsm_file_list) < num_cpus: num_cpus = len(lsm_file_list) # pylint: disable=no-member mp_lock = multiprocessing.Manager().Lock() partition_list, partition_index_list = \ partition(lsm_file_list, num_cpus) for loop_index, cpu_grouped_file_list in enumerate(partition_list): if cpu_grouped_file_list and partition_index_list[loop_index]: job_combinations.append(( cpu_grouped_file_list, partition_index_list[loop_index], weight_table_file, lsm_file_data['grid_type'], master_rapid_runoff_file, lsm_file_data['rapid_inflow_tool'], mp_lock)) # # COMMENTED CODE IS FOR DEBUGGING generate_inflows_from_runoff(( cpu_grouped_file_list, partition_index_list[loop_index], weight_table_file, lsm_file_data['grid_type'], master_rapid_runoff_file, lsm_file_data['rapid_inflow_tool'], mp_lock)) # pool = multiprocessing.Pool(num_cpus) # pool.map(generate_inflows_from_runoff, # job_combinations) # pool.close() # pool.join() # set up RAPID manager rapid_manager = RAPID( rapid_executable_location=rapid_executable_location, cygwin_bin_location=cygwin_bin_location, num_processors=num_cpus, mpiexec_command=mpiexec_command, ZS_TauR=time_step, ZS_dtR=15 * 60, ZS_TauM=total_num_time_steps * time_step, ZS_dtM=time_step) if initial_flows_file and os.path.exists(initial_flows_file): rapid_manager.update_parameters( Qinit_file=initial_flows_file, BS_opt_Qinit=True ) # run RAPID for the watershed lsm_rapid_output_file = \ os.path.join(master_watershed_output_directory, 'Qout_{0}'.format(out_file_ending)) rapid_manager.update_parameters( rapid_connect_file=case_insensitive_file_search( master_watershed_input_directory, r'rapid_connect\.csv'), Vlat_file=master_rapid_runoff_file, riv_bas_id_file=case_insensitive_file_search( master_watershed_input_directory, r'riv_bas_id\.csv'), k_file=case_insensitive_file_search( master_watershed_input_directory, r'k\.csv'), x_file=case_insensitive_file_search( master_watershed_input_directory, r'x\.csv'), Qout_file=lsm_rapid_output_file ) rapid_manager.update_reach_number_data() output_file_information[ os.path.basename(master_watershed_input_directory)] = { 'm3_riv': master_rapid_runoff_file, 'qout': lsm_rapid_output_file } if generate_rapid_namelist_file: rapid_manager.generate_namelist_file( os.path.join(master_watershed_input_directory, "rapid_namelist_{}" .format(out_file_ending[:-3]))) if run_rapid_simulation: rapid_manager.run() rapid_manager.make_output_cf_compliant( simulation_start_datetime=actual_simulation_start_datetime, comid_lat_lon_z_file=in_rivid_lat_lon_z_file, project_name="{0} Based Historical flows by {1}" .format(lsm_file_data['description'], modeling_institution) ) # generate return periods if generate_return_periods_file and \ os.path.exists(lsm_rapid_output_file) and \ lsm_rapid_output_file: return_periods_file = os.path.join( master_watershed_output_directory, 'return_periods_{0}'.format(out_file_ending)) # assume storm has 3 day length storm_length_days = 3 generate_return_periods( qout_file=lsm_rapid_output_file, return_period_file=return_periods_file, num_cpus=num_cpus, storm_duration_days=storm_length_days, method=return_period_method) # generate seasonal averages file if generate_seasonal_averages_file and \ os.path.exists(lsm_rapid_output_file) and \ lsm_rapid_output_file: seasonal_averages_file = os.path.join( master_watershed_output_directory, 'seasonal_averages_{0}'.format(out_file_ending)) generate_seasonal_averages(lsm_rapid_output_file, seasonal_averages_file, num_cpus) # generate seasonal initialization file if generate_seasonal_initialization_file and \ os.path.exists(lsm_rapid_output_file) and \ lsm_rapid_output_file: seasonal_qinit_file = os.path.join( master_watershed_input_directory, 'seasonal_qinit_{0}.csv'.format(out_file_ending[:-3])) rapid_manager.generate_seasonal_intitialization( seasonal_qinit_file) # generate initialization file if generate_initialization_file and \ os.path.exists(lsm_rapid_output_file) and \ lsm_rapid_output_file: qinit_file = os.path.join( master_watershed_input_directory, 'qinit_{0}.csv'.format(out_file_ending[:-3])) rapid_manager.generate_qinit_from_past_qout(qinit_file) all_output_file_information.append(output_file_information) # print info to user time_end = datetime.utcnow() print("Time Begin All: {0}".format(time_begin_all)) print("Time Finish All: {0}".format(time_end)) print("TOTAL TIME: {0}".format(time_end-time_begin_all)) return all_output_file_information ```
{ "source": "jlgzb/mmpose", "score": 2 }
#### File: models/backbones/tcn.py ```python import copy import torch.nn as nn from mmcv.cnn import ConvModule, build_conv_layer, constant_init, kaiming_init from mmcv.utils.parrots_wrapper import _BatchNorm from mmpose.core import WeightNormClipHook from ..builder import BACKBONES from .base_backbone import BaseBackbone class BasicTemporalBlock(nn.Module): """Basic block for VideoPose3D. Args: in_channels (int): Input channels of this block. out_channels (int): Output channels of this block. mid_channels (int): The output channels of conv1. Default: 1024. kernel_size (int): Size of the convolving kernel. Default: 3. dilation (int): Spacing between kernel elements. Default: 3. dropout (float): Dropout rate. Default: 0.25. causal (bool): Use causal convolutions instead of symmetric convolutions (for real-time applications). Default: False. residual (bool): Use residual connection. Default: True. use_stride_conv (bool): Use optimized TCN that designed specifically for single-frame batching, i.e. where batches have input length = receptive field, and output length = 1. This implementation replaces dilated convolutions with strided convolutions to avoid generating unused intermediate results. Default: False. conv_cfg (dict): dictionary to construct and config conv layer. Default: dict(type='Conv1d'). norm_cfg (dict): dictionary to construct and config norm layer. Default: dict(type='BN1d'). """ def __init__(self, in_channels, out_channels, mid_channels=1024, kernel_size=3, dilation=3, dropout=0.25, causal=False, residual=True, use_stride_conv=False, conv_cfg=dict(type='Conv1d'), norm_cfg=dict(type='BN1d')): # Protect mutable default arguments conv_cfg = copy.deepcopy(conv_cfg) norm_cfg = copy.deepcopy(norm_cfg) super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.mid_channels = mid_channels self.kernel_size = kernel_size self.dilation = dilation self.dropout = dropout self.causal = causal self.residual = residual self.use_stride_conv = use_stride_conv self.pad = (kernel_size - 1) * dilation // 2 if use_stride_conv: self.stride = kernel_size self.causal_shift = kernel_size // 2 if causal else 0 self.dilation = 1 else: self.stride = 1 self.causal_shift = kernel_size // 2 * dilation if causal else 0 self.conv1 = nn.Sequential( ConvModule( in_channels, mid_channels, kernel_size=kernel_size, stride=self.stride, dilation=self.dilation, bias='auto', conv_cfg=conv_cfg, norm_cfg=norm_cfg)) self.conv2 = nn.Sequential( ConvModule( mid_channels, out_channels, kernel_size=1, bias='auto', conv_cfg=conv_cfg, norm_cfg=norm_cfg)) if residual and in_channels != out_channels: self.short_cut = build_conv_layer(conv_cfg, in_channels, out_channels, 1) else: self.short_cut = None self.dropout = nn.Dropout(dropout) if dropout > 0 else None def forward(self, x): """Forward function.""" if self.use_stride_conv: assert self.causal_shift + self.kernel_size // 2 < x.shape[2] else: assert 0 <= self.pad + self.causal_shift < x.shape[2] - \ self.pad + self.causal_shift <= x.shape[2] out = self.conv1(x) if self.dropout is not None: out = self.dropout(out) out = self.conv2(out) if self.dropout is not None: out = self.dropout(out) if self.residual: if self.use_stride_conv: res = x[:, :, self.causal_shift + self.kernel_size // 2::self.kernel_size] else: res = x[:, :, (self.pad + self.causal_shift):(x.shape[2] - self.pad + self.causal_shift)] if self.short_cut is not None: res = self.short_cut(res) out = out + res return out @BACKBONES.register_module() class TCN(BaseBackbone): """TCN backbone. Temporal Convolutional Networks. More details can be found in the `paper <https://arxiv.org/abs/1811.11742>`__ . Args: in_channels (int): Number of input channels, which equals to num_keypoints * num_features. stem_channels (int): Number of feature channels. Default: 1024. num_blocks (int): NUmber of basic temporal convolutional blocks. Default: 2. kernel_sizes (Sequence[int]): Sizes of the convolving kernel of each basic block. Default: ``(3, 3, 3)``. dropout (float): Dropout rate. Default: 0.25. causal (bool): Use causal convolutions instead of symmetric convolutions (for real-time applications). Default: False. residual (bool): Use residual connection. Default: True. use_stride_conv (bool): Use TCN backbone optimized for single-frame batching, i.e. where batches have input length = receptive field, and output length = 1. This implementation replaces dilated convolutions with strided convolutions to avoid generating unused intermediate results. The weights are interchangeable with the reference implementation. Default: False conv_cfg (dict): dictionary to construct and config conv layer. Default: dict(type='Conv1d'). norm_cfg (dict): dictionary to construct and config norm layer. Default: dict(type='BN1d'). max_norm (float|None): if not None, the weight of convolution layers will be clipped to have a maximum norm of max_norm. Example: >>> from mmpose.models import TCN >>> import torch >>> self = TCN(in_channels=34) >>> self.eval() >>> inputs = torch.rand(1, 34, 243) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) (1, 1024, 235) (1, 1024, 217) """ def __init__(self, in_channels, stem_channels=1024, num_blocks=2, kernel_sizes=(3, 3, 3), dropout=0.25, causal=False, residual=True, use_stride_conv=False, conv_cfg=dict(type='Conv1d'), norm_cfg=dict(type='BN1d'), max_norm=None): # Protect mutable default arguments conv_cfg = copy.deepcopy(conv_cfg) norm_cfg = copy.deepcopy(norm_cfg) super().__init__() self.in_channels = in_channels self.stem_channels = stem_channels self.num_blocks = num_blocks self.kernel_sizes = kernel_sizes self.dropout = dropout self.causal = causal self.residual = residual self.use_stride_conv = use_stride_conv self.max_norm = max_norm assert num_blocks == len(kernel_sizes) - 1 for ks in kernel_sizes: assert ks % 2 == 1, 'Only odd filter widths are supported.' self.expand_conv = ConvModule( in_channels, stem_channels, kernel_size=kernel_sizes[0], stride=kernel_sizes[0] if use_stride_conv else 1, bias='auto', conv_cfg=conv_cfg, norm_cfg=norm_cfg) dilation = kernel_sizes[0] self.tcn_blocks = nn.ModuleList() for i in range(1, num_blocks + 1): self.tcn_blocks.append( BasicTemporalBlock( in_channels=stem_channels, out_channels=stem_channels, mid_channels=stem_channels, kernel_size=kernel_sizes[i], dilation=dilation, dropout=dropout, causal=causal, residual=residual, use_stride_conv=use_stride_conv, conv_cfg=conv_cfg, norm_cfg=norm_cfg)) dilation *= kernel_sizes[i] if self.max_norm is not None: # Apply weight norm clip to conv layers weight_clip = WeightNormClipHook(self.max_norm) for module in self.modules(): if isinstance(module, nn.modules.conv._ConvNd): weight_clip.register(module) self.dropout = nn.Dropout(dropout) if dropout > 0 else None def forward(self, x): """Forward function.""" x = self.expand_conv(x) if self.dropout is not None: x = self.dropout(x) outs = [] for i in range(self.num_blocks): x = self.tcn_blocks[i](x) outs.append(x) return tuple(outs) def init_weights(self, pretrained=None): """Initialize the weights.""" super().init_weights(pretrained) if pretrained is None: for m in self.modules(): if isinstance(m, nn.modules.conv._ConvNd): kaiming_init(m, mode='fan_in', nonlinearity='relu') elif isinstance(m, _BatchNorm): constant_init(m, 1) ``` #### File: tests/test_backward_compatibility/test_eval_hook_compatibility.py ```python import unittest.mock as mock import torch from torch.utils.data import DataLoader, Dataset from mmpose.core import DistEvalHook, EvalHook class ExampleDataset(Dataset): def __init__(self): self.index = 0 self.eval_result = [0.1, 0.4, 0.3, 0.7, 0.2, 0.05, 0.4, 0.6] def __getitem__(self, idx): results = dict(imgs=torch.tensor([1])) return results def __len__(self): return 1 @mock.create_autospec def evaluate(self, results, res_folder=None, logger=None): pass def test_old_fashion_eval_hook_parameters(): data_loader = DataLoader( ExampleDataset(), batch_size=1, sampler=None, num_workers=0, shuffle=False) # test argument "key_indicator" _ = EvalHook(data_loader, key_indicator='AP') _ = DistEvalHook(data_loader, key_indicator='AP') # test argument "gpu_collect" _ = EvalHook(data_loader, save_best='AP', gpu_collect=False) ``` #### File: tests/test_evaluation/test_bottom_up_eval.py ```python import copy import numpy as np import torch from mmpose.core import (aggregate_results, get_group_preds, get_multi_stage_outputs) def test_get_multi_stage_outputs(): fake_outputs = [torch.zeros((1, 4, 2, 2))] fake_flip_outputs = [torch.ones((1, 4, 2, 2))] # outputs_flip outputs, heatmaps, tags = \ get_multi_stage_outputs(outputs=copy.deepcopy(fake_outputs), outputs_flip=None, num_joints=4, with_heatmaps=[False], with_ae=[True]) assert heatmaps == [] outputs, heatmaps, tags = \ get_multi_stage_outputs(outputs=copy.deepcopy(fake_outputs), outputs_flip=None, num_joints=2, with_heatmaps=[True], with_ae=[True]) assert len(heatmaps) == 1 flip_index = [1, 0] outputs, heatmaps, tags = \ get_multi_stage_outputs(outputs=copy.deepcopy(fake_outputs), outputs_flip=fake_flip_outputs, num_joints=2, with_heatmaps=[True], with_ae=[True], flip_index=flip_index) assert len(heatmaps) == 2 outputs, heatmaps, tags = \ get_multi_stage_outputs(outputs=copy.deepcopy(fake_outputs), tag_per_joint=False, outputs_flip=fake_flip_outputs, num_joints=2, with_heatmaps=[True], with_ae=[True], flip_index=flip_index) assert len(heatmaps) == 2 # with heatmaps & with ae fake_outputs = [torch.zeros((1, 4, 2, 2)), torch.ones((1, 2, 4, 4))] fake_flip_outputs = [torch.ones((1, 4, 2, 2)), torch.ones((1, 2, 4, 4))] outputs, heatmaps, tags = \ get_multi_stage_outputs(outputs=copy.deepcopy(fake_outputs), outputs_flip=None, num_joints=2, with_heatmaps=[True, False], with_ae=[True, True]) assert torch.allclose(heatmaps[0], torch.tensor(0.)) outputs, heatmaps, tags = \ get_multi_stage_outputs(outputs=copy.deepcopy(fake_outputs), outputs_flip=fake_flip_outputs, num_joints=2, with_heatmaps=[True, True], with_ae=[True, False]) assert torch.allclose(heatmaps[0], torch.tensor(0.5)) outputs, heatmaps, tags = \ get_multi_stage_outputs(outputs=copy.deepcopy(fake_outputs), outputs_flip=fake_flip_outputs, num_joints=2, with_heatmaps=[True, False], with_ae=[True, False], flip_index=flip_index) assert torch.allclose(heatmaps[0], torch.tensor(0.)) # size_projected outputs, heatmaps, tags = \ get_multi_stage_outputs(outputs=copy.deepcopy(fake_outputs), outputs_flip=None, num_joints=2, with_heatmaps=[True, True], with_ae=[True, False], size_projected=(8, 8)) assert heatmaps[0].shape == torch.Size([1, 2, 8, 8]) outputs, heatmaps, tags = \ get_multi_stage_outputs(outputs=copy.deepcopy(fake_outputs), outputs_flip=fake_flip_outputs, num_joints=2, with_heatmaps=[True, True], with_ae=[True, False], align_corners=True) assert torch.allclose(heatmaps[0], torch.tensor(0.5)) def test_aggregate_results(): fake_heatmaps = [torch.zeros((1, 2, 2, 2))] fake_tags = [torch.zeros((1, 2, 2, 2))] aggregated_heatmaps, tags_list = \ aggregate_results(scale=1, aggregated_heatmaps=None, tags_list=[], heatmaps=fake_heatmaps, tags=fake_tags, test_scale_factor=[1], project2image=True, flip_test=False) assert torch.allclose(aggregated_heatmaps, torch.tensor(0.)) fake_aggr_heatmaps = torch.ones(1, 2, 2, 2) aggregated_heatmaps, tags_list = \ aggregate_results(scale=1, aggregated_heatmaps=fake_aggr_heatmaps, tags_list=[], heatmaps=fake_heatmaps, tags=fake_tags, test_scale_factor=[1], project2image=True, flip_test=False) assert torch.allclose(aggregated_heatmaps, torch.tensor(1.)) aggregated_heatmaps, tags_list = \ aggregate_results(scale=1, aggregated_heatmaps=fake_aggr_heatmaps, tags_list=[], heatmaps=fake_heatmaps, tags=fake_tags, test_scale_factor=[1], project2image=True, flip_test=False, align_corners=True) assert torch.allclose(aggregated_heatmaps, torch.tensor(1.)) fake_heatmaps = [torch.zeros((1, 2, 2, 2)), torch.ones((1, 2, 2, 2))] fake_aggr_heatmaps = torch.ones(1, 2, 4, 4) aggregated_heatmaps, tags_list = \ aggregate_results(scale=1, aggregated_heatmaps=fake_aggr_heatmaps, tags_list=[], heatmaps=fake_heatmaps, tags=fake_tags, test_scale_factor=[1], project2image=False, flip_test=True) assert aggregated_heatmaps.shape == torch.Size((1, 2, 4, 4)) aggregated_heatmaps, tags_list = \ aggregate_results(scale=2, aggregated_heatmaps=fake_aggr_heatmaps, tags_list=[], heatmaps=fake_heatmaps, tags=fake_tags, test_scale_factor=[1, 2], project2image=False, flip_test=True) assert aggregated_heatmaps.shape == torch.Size((1, 2, 4, 4)) def test_get_group_preds(): fake_grouped_joints = [np.array([[[0, 0], [1, 1]]])] results = get_group_preds( fake_grouped_joints, center=np.array([0, 0]), scale=np.array([1, 1]), heatmap_size=np.array([2, 2])) assert not results == [] results = get_group_preds( fake_grouped_joints, center=np.array([0, 0]), scale=np.array([1, 1]), heatmap_size=np.array([2, 2]), use_udp=True) assert not results == [] ``` #### File: mmpose/tests/test_post_processing.py ```python import numpy as np from numpy.testing import assert_array_almost_equal from mmpose.core import (affine_transform, flip_back, fliplr_joints, fliplr_regression, get_affine_transform, rotate_point, transform_preds) def test_affine_transform(): pt = np.array([0, 1]) trans = np.array([[1, 0, 1], [0, 1, 0]]) ans = affine_transform(pt, trans) assert_array_almost_equal(ans, np.array([1, 1]), decimal=4) assert isinstance(ans, np.ndarray) def test_rotate_point(): src_point = np.array([0, 1]) rot_rad = np.pi / 2. ans = rotate_point(src_point, rot_rad) assert_array_almost_equal(ans, np.array([-1, 0]), decimal=4) assert isinstance(ans, list) def test_fliplr_joints(): joints = np.array([[0, 0, 0], [1, 1, 0]]) joints_vis = np.array([[1], [1]]) joints_flip, _ = fliplr_joints(joints, joints_vis, 5, [[0, 1]]) res = np.array([[3, 1, 0], [4, 0, 0]]) assert_array_almost_equal(joints_flip, res) def test_flip_back(): heatmaps = np.random.random([1, 2, 32, 32]) flipped_heatmaps = flip_back(heatmaps, [[0, 1]]) heatmaps_new = flip_back(flipped_heatmaps, [[0, 1]]) assert_array_almost_equal(heatmaps, heatmaps_new) heatmaps = np.random.random([1, 2, 32, 32]) flipped_heatmaps = flip_back(heatmaps, [[0, 1]]) heatmaps_new = flipped_heatmaps[..., ::-1] assert_array_almost_equal(heatmaps[:, 0], heatmaps_new[:, 1]) assert_array_almost_equal(heatmaps[:, 1], heatmaps_new[:, 0]) ori_heatmaps = heatmaps.copy() # test in-place flip heatmaps = heatmaps[:, :, :, ::-1] assert_array_almost_equal(ori_heatmaps[:, :, :, ::-1], heatmaps) def test_transform_preds(): coords = np.random.random([2, 2]) center = np.array([50, 50]) scale = np.array([100 / 200.0, 100 / 200.0]) size = np.array([100, 100]) ans = transform_preds(coords, center, scale, size) assert_array_almost_equal(coords, ans) coords = np.random.random([2, 2]) center = np.array([50, 50]) scale = np.array([100 / 200.0, 100 / 200.0]) size = np.array([101, 101]) ans = transform_preds(coords, center, scale, size, use_udp=True) assert_array_almost_equal(coords, ans) def test_get_affine_transform(): center = np.array([50, 50]) scale = np.array([100 / 200.0, 100 / 200.0]) size = np.array([100, 100]) ans = get_affine_transform(center, scale, 0, size) trans = np.array([[1, 0, 0], [0, 1, 0]]) assert_array_almost_equal(trans, ans) def test_flip_regression(): coords = np.random.rand(3, 3) flip_pairs = [[1, 2]] root = coords[:1] coords_flipped = coords.copy() coords_flipped[1] = coords[2] coords_flipped[2] = coords[1] coords_flipped[..., 0] = 2 * root[..., 0] - coords_flipped[..., 0] # static mode res_static = fliplr_regression( coords, flip_pairs, center_mode='static', center_x=root[0, 0]) assert_array_almost_equal(res_static, coords_flipped) # root mode res_root = fliplr_regression( coords, flip_pairs, center_mode='root', center_index=0) assert_array_almost_equal(res_root, coords_flipped) ``` #### File: tools/dataset/preprocess_h36m.py ```python import argparse import os import pickle import tarfile import xml.etree.ElementTree as ET from os.path import join import cv2 import numpy as np from spacepy import pycdf class PreprocessH36m: """Preprocess Human3.6M dataset. Args: metadata (str): Path to metadata.xml. original_dir (str): Directory of the original dataset with all files compressed. Specifically, .tgz files belonging to subject 1 should be placed under the subdirectory 's1'. extracted_dir (str): Directory of the extracted files. If not given, it will be placed under the same parent directory as original_dir. processed_der (str): Directory of the processed files. If not given, it will be placed under the same parent directory as original_dir. sample_rate (int): Downsample FPS to `1 / sample_rate`. Default: 5. """ def __init__(self, metadata, original_dir, extracted_dir=None, processed_dir=None, sample_rate=5): self.metadata = metadata self.original_dir = original_dir self.sample_rate = sample_rate if extracted_dir is None: self.extracted_dir = join( os.path.dirname(os.path.abspath(self.original_dir)), 'extracted') else: self.extracted_dir = extracted_dir if processed_dir is None: self.processed_dir = join( os.path.dirname(os.path.abspath(self.original_dir)), 'processed') else: self.processed_dir = processed_dir self.subjects = [] self.sequence_mappings = {} self.action_names = {} self.camera_ids = [] self._load_metadata() self.subjects_annot = ['S1', 'S5', 'S6', 'S7', 'S8', 'S9', 'S11'] self.subjects_splits = { 'train': ['S1', 'S5', 'S6', 'S7', 'S8'], 'test': ['S9', 'S11'] } self.extract_files = ['Videos', 'D2_Positions', 'D3_Positions_mono'] self.movable_joints = [ 0, 1, 2, 3, 6, 7, 8, 12, 13, 14, 15, 17, 18, 19, 25, 26, 27 ] self.scale_factor = 1.2 self.image_sizes = { '54138969': { 'width': 1000, 'height': 1002 }, '55011271': { 'width': 1000, 'height': 1000 }, '58860488': { 'width': 1000, 'height': 1000 }, '60457274': { 'width': 1000, 'height': 1002 } } def extract_tgz(self): """Extract files from self.extrct_files.""" os.makedirs(self.extracted_dir, exist_ok=True) for subject in self.subjects_annot: cur_dir = join(self.original_dir, subject.lower()) for file in self.extract_files: filename = join(cur_dir, file + '.tgz') print(f'Extracting {filename} ...') with tarfile.open(filename) as tar: tar.extractall(self.extracted_dir) print('Extraction done.\n') def generate_cameras_file(self): """Generate cameras.pkl which contains camera parameters for 11 subjects each with 4 cameras.""" cameras = {} for subject in range(1, 12): for camera in range(4): key = (f'S{subject}', self.camera_ids[camera]) cameras[key] = self._get_camera_params(camera, subject) out_file = join(self.processed_dir, 'annotation_body3d', 'cameras.pkl') with open(out_file, 'wb') as fout: pickle.dump(cameras, fout) print(f'Camera parameters have been written to "{out_file}".\n') def generate_annotations(self): """Generate annotations for training and testing data.""" output_dir = join(self.processed_dir, 'annotation_body3d', f'fps{50 // self.sample_rate}') os.makedirs(output_dir, exist_ok=True) for data_split in ('train', 'test'): imgnames_all = [] centers_all = [] scales_all = [] kps2d_all = [] kps3d_all = [] for subject in self.subjects_splits[data_split]: for action, subaction in self.sequence_mappings[subject].keys( ): if action == '1': # exclude action "_ALL" continue for camera in self.camera_ids: imgnames, centers, scales, kps2d, kps3d\ = self._load_annotations( subject, action, subaction, camera) imgnames_all.append(imgnames) centers_all.append(centers) scales_all.append(scales) kps2d_all.append(kps2d) kps3d_all.append(kps3d) imgnames_all = np.concatenate(imgnames_all) centers_all = np.concatenate(centers_all) scales_all = np.concatenate(scales_all) kps2d_all = np.concatenate(kps2d_all) kps3d_all = np.concatenate(kps3d_all) out_file = join(output_dir, f'h36m_{data_split}.npz') np.savez( out_file, imgname=imgnames_all, center=centers_all, scale=scales_all, part=kps2d_all, S=kps3d_all) print( f'All annotations of {data_split}ing data have been written to' f' "{out_file}". {len(imgnames_all)} samples in total.\n') if data_split == 'train': kps_3d_all = kps3d_all[..., :3] # remove visibility mean_3d, std_3d = self._get_pose_stats(kps_3d_all) kps_2d_all = kps2d_all[..., :2] # remove visibility mean_2d, std_2d = self._get_pose_stats(kps_2d_all) # centered around root # the root keypoint is 0-index kps_3d_rel = kps_3d_all[..., 1:, :] - kps_3d_all[..., :1, :] mean_3d_rel, std_3d_rel = self._get_pose_stats(kps_3d_rel) kps_2d_rel = kps_2d_all[..., 1:, :] - kps_2d_all[..., :1, :] mean_2d_rel, std_2d_rel = self._get_pose_stats(kps_2d_rel) stats = { 'joint3d_stats': { 'mean': mean_3d, 'std': std_3d }, 'joint2d_stats': { 'mean': mean_2d, 'std': std_2d }, 'joint3d_rel_stats': { 'mean': mean_3d_rel, 'std': std_3d_rel }, 'joint2d_rel_stats': { 'mean': mean_2d_rel, 'std': std_2d_rel } } for name, stat_dict in stats.items(): out_file = join(output_dir, f'{name}.pkl') with open(out_file, 'wb') as f: pickle.dump(stat_dict, f) print(f'Create statistic data file: {out_file}') @staticmethod def _get_pose_stats(kps): """Get statistic information `mean` and `std` of pose data. Args: kps (ndarray): keypoints in shape [..., K, C] where K and C is the keypoint category number and dimension. Returns: mean (ndarray): [K, C] """ assert kps.ndim > 2 K, C = kps.shape[-2:] kps = kps.reshape(-1, K, C) mean = kps.mean(axis=0) std = kps.std(axis=0) return mean, std def _load_metadata(self): """Load meta data from metadata.xml.""" assert os.path.exists(self.metadata) tree = ET.parse(self.metadata) root = tree.getroot() for i, tr in enumerate(root.find('mapping')): if i == 0: _, _, *self.subjects = [td.text for td in tr] self.sequence_mappings \ = {subject: {} for subject in self.subjects} elif i < 33: action_id, subaction_id, *prefixes = [td.text for td in tr] for subject, prefix in zip(self.subjects, prefixes): self.sequence_mappings[subject][(action_id, subaction_id)]\ = prefix for i, elem in enumerate(root.find('actionnames')): action_id = str(i + 1) self.action_names[action_id] = elem.text self.camera_ids \ = [elem.text for elem in root.find('dbcameras/index2id')] w0 = root.find('w0') self.cameras_raw = [float(num) for num in w0.text[1:-1].split()] def _get_base_filename(self, subject, action, subaction, camera): """Get base filename given subject, action, subaction and camera.""" return f'{self.sequence_mappings[subject][(action, subaction)]}' + \ f'.{camera}' def _get_camera_params(self, camera, subject): """Get camera parameters given camera id and subject id.""" metadata_slice = np.zeros(15) start = 6 * (camera * 11 + (subject - 1)) metadata_slice[:6] = self.cameras_raw[start:start + 6] metadata_slice[6:] = self.cameras_raw[265 + camera * 9 - 1:265 + (camera + 1) * 9 - 1] # extrinsics x, y, z = -metadata_slice[0], metadata_slice[1], -metadata_slice[2] R_x = np.array([[1, 0, 0], [0, np.cos(x), np.sin(x)], [0, -np.sin(x), np.cos(x)]]) R_y = np.array([[np.cos(y), 0, np.sin(y)], [0, 1, 0], [-np.sin(y), 0, np.cos(y)]]) R_z = np.array([[np.cos(z), np.sin(z), 0], [-np.sin(z), np.cos(z), 0], [0, 0, 1]]) R = (R_x @ R_y @ R_z).T T = metadata_slice[3:6].reshape(-1, 1) # convert unit from milimeter to meter T *= 0.001 # intrinsics c = metadata_slice[8:10, None] f = metadata_slice[6:8, None] # distortion k = metadata_slice[10:13, None] p = metadata_slice[13:15, None] return { 'R': R, 'T': T, 'c': c, 'f': f, 'k': k, 'p': p, 'w': self.image_sizes[self.camera_ids[camera]]['width'], 'h': self.image_sizes[self.camera_ids[camera]]['height'], 'name': f'camera{camera + 1}', 'id': self.camera_ids[camera] } def _load_annotations(self, subject, action, subaction, camera): """Load annotations for a sequence.""" subj_dir = join(self.extracted_dir, subject) basename = self._get_base_filename(subject, action, subaction, camera) # load 2D keypoints with pycdf.CDF( join(subj_dir, 'MyPoseFeatures', 'D2_Positions', basename + '.cdf')) as cdf: kps_2d = np.array(cdf['Pose']) num_frames = kps_2d.shape[1] kps_2d = kps_2d.reshape((num_frames, 32, 2))[::self.sample_rate, self.movable_joints] kps_2d = np.concatenate([kps_2d, np.ones((len(kps_2d), 17, 1))], axis=2) # load 3D keypoints with pycdf.CDF( join(subj_dir, 'MyPoseFeatures', 'D3_Positions_mono', basename + '.cdf')) as cdf: kps_3d = np.array(cdf['Pose']) kps_3d = kps_3d.reshape( (num_frames, 32, 3))[::self.sample_rate, self.movable_joints] / 1000. kps_3d = np.concatenate([kps_3d, np.ones((len(kps_3d), 17, 1))], axis=2) # calculate bounding boxes bboxes = np.stack([ np.min(kps_2d[:, :, 0], axis=1), np.min(kps_2d[:, :, 1], axis=1), np.max(kps_2d[:, :, 0], axis=1), np.max(kps_2d[:, :, 1], axis=1) ], axis=1) centers = np.stack([(bboxes[:, 0] + bboxes[:, 2]) / 2, (bboxes[:, 1] + bboxes[:, 3]) / 2], axis=1) scales = self.scale_factor * np.max( bboxes[:, 2:] - bboxes[:, :2], axis=1) / 200 # extract frames and save imgnames imgnames = [] video_path = join(subj_dir, 'Videos', basename + '.mp4') sub_base = subject + '_' + basename.replace(' ', '_') img_dir = join(self.processed_dir, 'images', subject, sub_base) os.makedirs(img_dir, exist_ok=True) prefix = join(subject, sub_base, sub_base) cap = cv2.VideoCapture(video_path) i = 0 while True: success, img = cap.read() if not success: break if i % self.sample_rate == 0: imgname = f'{prefix}_{i + 1:06d}.jpg' imgnames.append(imgname) dest_path = join(self.processed_dir, 'images', imgname) if not os.path.exists(dest_path): cv2.imwrite(dest_path, img) if len(imgnames) == len(centers): break i += 1 cap.release() imgnames = np.array(imgnames) print(f'Annoatations for sequence "{subject} {basename}" are loaded. ' f'{len(imgnames)} samples in total.') return imgnames, centers, scales, kps_2d, kps_3d def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( '--metadata', type=str, required=True, help='Path to metadata.xml') parser.add_argument( '--original', type=str, required=True, help='Directory of the original dataset with all files compressed. ' 'Specifically, .tgz files belonging to subject 1 should be placed ' 'under the subdirectory \"s1\".') parser.add_argument( '--extracted', type=str, default=None, help='Directory of the extracted files. If not given, it will be ' 'placed under the same parent directory as original_dir.') parser.add_argument( '--processed', type=str, default=None, help='Directory of the processed files. If not given, it will be ' 'placed under the same parent directory as original_dir.') parser.add_argument( '--sample_rate', type=int, default=5, help='Downsample FPS to `1 / sample_rate`. Default: 5.') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() h36m = PreprocessH36m( metadata=args.metadata, original_dir=args.original, extracted_dir=args.extracted, processed_dir=args.processed, sample_rate=args.sample_rate) h36m.extract_tgz() h36m.generate_cameras_file() h36m.generate_annotations() ```
{ "source": "jlhall/dotfiles", "score": 2 }
#### File: workflows/user.workflow.F455B544-D4E3-402B-B987-8D3EA582A111/alfred-wunderlist-workflow.py ```python import logging from logging.config import fileConfig import sys fileConfig('logging_config.ini') from wunderlist.handlers.route import route from wunderlist.util import workflow log = logging.getLogger('wunderlist') def main(wf): route(wf.args) log.info('Workflow response complete') if __name__ == '__main__': wf = workflow() sys.exit(wf.run(main, text_errors='--commit' in wf.args)) ``` #### File: wunderlist/handlers/search.py ```python import re from peewee import fn, OperationalError from workflow import MATCH_ALL, MATCH_ALLCHARS from wunderlist import icons from wunderlist.models.list import List from wunderlist.models.preferences import Preferences from wunderlist.models.task import Task from wunderlist.sync import background_sync from wunderlist.util import workflow _hashtag_prompt_pattern = re.compile(r'#\S*$', re.UNICODE) def filter(args): query = ' '.join(args[1:]) wf = workflow() prefs = Preferences.current_prefs() matching_hashtags = [] if not query: wf.add_item('Begin typing to search tasks', '', icon=icons.SEARCH) hashtag_match = re.search(_hashtag_prompt_pattern, query) if hashtag_match: from wunderlist.models.hashtag import Hashtag hashtag_prompt = hashtag_match.group().lower() hashtags = Hashtag.select().where(Hashtag.id.contains(hashtag_prompt)).order_by(fn.Lower(Hashtag.tag).asc()) for hashtag in hashtags: # If there is an exact match, do not show hashtags if hashtag.id == hashtag_prompt: matching_hashtags = [] break matching_hashtags.append(hashtag) # Show hashtag prompt if there is more than one matching hashtag or the # hashtag being typed does not exactly match the single matching hashtag if len(matching_hashtags) > 0: for hashtag in matching_hashtags: wf.add_item(hashtag.tag[1:], '', autocomplete=u'-search %s%s ' % (query[:hashtag_match.start()], hashtag.tag), icon=icons.HASHTAG) else: conditions = True lists = workflow().stored_data('lists') matching_lists = None query = ' '.join(args[1:]).strip() list_query = None # Show all lists on the main search screen if not query: matching_lists = lists # Filter lists when colon is used if ':' in query: matching_lists = lists components = re.split(r':\s*', query, 1) list_query = components[0] if list_query: matching_lists = workflow().filter( list_query, lists if lists else [], lambda l: l['title'], # Ignore MATCH_ALLCHARS which is expensive and inaccurate match_on=MATCH_ALL ^ MATCH_ALLCHARS ) # If no matching list search against all tasks if matching_lists: query = components[1] if len(components) > 1 else '' # If there is a list exactly matching the query ignore # anything else. This takes care of lists that are substrings # of other lists if len(matching_lists) > 1: for l in matching_lists: if l['title'].lower() == list_query.lower(): matching_lists = [l] break if matching_lists: if not list_query: wf.add_item('Browse by hashtag', autocomplete='-search #', icon=icons.HASHTAG) if len(matching_lists) > 1: for l in matching_lists: icon = icons.INBOX if l['list_type'] == 'inbox' else icons.LIST wf.add_item(l['title'], autocomplete='-search %s: ' % l['title'], icon=icon) else: conditions = conditions & (Task.list == matching_lists[0]['id']) if not matching_lists or len(matching_lists) <= 1: for arg in query.split(' '): if len(arg) > 1: conditions = conditions & (Task.title.contains(arg) | List.title.contains(arg)) if conditions: if not prefs.show_completed_tasks: conditions = Task.completed_at.is_null() & conditions tasks = Task.select().where(Task.list.is_null(False) & conditions) # Default Wunderlist sort order reversed to show newest first tasks = tasks.join(List).order_by(Task.order.desc(), List.order.asc()) # Avoid excessive results tasks = tasks.limit(50) try: for t in tasks: wf.add_item(u'%s – %s' % (t.list_title, t.title), t.subtitle(), autocomplete='-task %s ' % t.id, icon=icons.TASK_COMPLETED if t.completed else icons.TASK) except OperationalError: background_sync() if prefs.show_completed_tasks: wf.add_item('Hide completed tasks', arg='-pref show_completed_tasks --alfred %s' % ' '.join(args), valid=True, icon=icons.HIDDEN) else: wf.add_item('Show completed tasks', arg='-pref show_completed_tasks --alfred %s' % ' '.join(args), valid=True, icon=icons.VISIBLE) wf.add_item('New search', autocomplete='-search ', icon=icons.CANCEL) wf.add_item('Main menu', autocomplete='', icon=icons.BACK) # Make sure tasks are up-to-date while searching background_sync() def commit(args, modifier=None): action = args[1] ``` #### File: wunderlist/models/list.py ```python import logging import time from peewee import (BooleanField, CharField, IntegerField, PeeweeException, PrimaryKeyField, TextField) from wunderlist.models.fields import DateTimeUTCField from wunderlist.models.base import BaseModel from wunderlist.util import workflow, NullHandler log = logging.getLogger(__name__) log.addHandler(NullHandler()) class List(BaseModel): id = PrimaryKeyField() title = TextField(index=True) list_type = CharField() public = BooleanField() completed_count = IntegerField(default=0) uncompleted_count = IntegerField(default=0) order = IntegerField(index=True) revision = IntegerField() created_at = DateTimeUTCField() @classmethod def sync(cls): from wunderlist.api import lists start = time.time() lists_data = lists.lists() instances = [] log.info('Retrieved all %d lists in %s', len(lists_data), time.time() - start) start = time.time() workflow().store_data('lists', lists_data) try: instances = cls.select(cls.id, cls.revision, cls.title) except PeeweeException: pass log.info('Loaded all %d lists from the database in %s', len(instances), time.time() - start) return cls._perform_updates(instances, lists_data) @classmethod def _populate_api_extras(cls, info): from wunderlist.api.lists import update_list_with_tasks_count update_list_with_tasks_count(info) return info def __str__(self): return u'<%s %d %s>' % (type(self).__name__, self.id, self.title) def _sync_children(self): from wunderlist.models.task import Task Task.sync_tasks_in_list(self) class Meta: order_by = ('order', 'id') has_children = True ``` #### File: wunderlist/models/reminder.py ```python import logging import time from peewee import (ForeignKeyField, IntegerField, PeeweeException, PrimaryKeyField) from wunderlist.models.fields import DateTimeUTCField from wunderlist.models.base import BaseModel from wunderlist.models.task import Task from wunderlist.util import NullHandler log = logging.getLogger(__name__) log.addHandler(NullHandler()) class Reminder(BaseModel): id = PrimaryKeyField() task = ForeignKeyField(Task, null=True, related_name='reminders') date = DateTimeUTCField() revision = IntegerField() created_at = DateTimeUTCField() @classmethod def sync(cls): from wunderlist.api import reminders start = time.time() instances = [] reminders_data = reminders.reminders() log.info('Retrieved all %d reminders in %s', len(reminders_data), time.time() - start) start = time.time() try: instances = cls.select(cls.id, cls.revision) except PeeweeException: pass log.info('Loaded all %d reminders from the database in %s', len(instances), time.time() - start) return cls._perform_updates(instances, reminders_data) ``` #### File: wunderlist/models/root.py ```python import logging import time from peewee import ForeignKeyField, IntegerField, PrimaryKeyField from workflow.notify import notify from wunderlist.models.base import BaseModel from wunderlist.models.list import List from wunderlist.models.user import User from wunderlist.util import NullHandler log = logging.getLogger(__name__) log.addHandler(NullHandler()) class Root(BaseModel): id = PrimaryKeyField() user = ForeignKeyField(User, null=True) revision = IntegerField() @classmethod def sync(cls, background=False): from wunderlist.api import root start = time.time() instance = None root_data = root.root() log.info('Retrieved Root revision in %s', time.time() - start) try: instance = cls.get() except Root.DoesNotExist: pass if not background and (not instance or instance.revision != root_data['revision']): notify('Please wait...', 'The workflow is making sure your tasks are up-to-date') return cls._perform_updates([instance], [root_data]) def _sync_children(self): from wunderlist.models.hashtag import Hashtag from wunderlist.models.preferences import Preferences from wunderlist.models.reminder import Reminder start = time.time() user_revised = User.sync() log.info('Synced user in %s', time.time() - start) start = time.time() lists_revised = List.sync() log.info('Synced lists and tasks in %s', time.time() - start) start = time.time() # Changes to reminders or settings increment the User revision if user_revised: Preferences.sync() log.info('Synced preferences in %s', time.time() - start) start = time.time() Reminder.sync() log.info('Synced reminders in %s', time.time() - start) start = time.time() # Changes in lists or tasks require hashtags to be updated if lists_revised: Hashtag.sync() log.info('Synced hashtags in %s', time.time() - start) def __str__(self): return '<%s>' % (type(self).__name__) class Meta(object): expect_revisions = True has_children = True ``` #### File: wunderlist/models/task.py ```python from datetime import date import logging import time from peewee import (BooleanField, CharField, DateField, ForeignKeyField, IntegerField, PeeweeException, PrimaryKeyField, TextField, JOIN) from wunderlist.models.fields import DateTimeUTCField from wunderlist.models.base import BaseModel from wunderlist.models.list import List from wunderlist.models.user import User from wunderlist.util import short_relative_formatted_date, NullHandler log = logging.getLogger(__name__) log.addHandler(NullHandler()) _days_by_recurrence_type = { 'day': 1, 'week': 7, 'month': 30.43, 'year': 365 } _star = u'★' _overdue_1x = u'⚠️' _overdue_2x = u'❗️' _recurrence = u'↻' _reminder = u'⏰' class Task(BaseModel): id = PrimaryKeyField() list = ForeignKeyField(List, null=True, related_name='tasks') task = ForeignKeyField('self', null=True, related_name='subtasks') title = TextField(index=True) completed_at = DateTimeUTCField(null=True) completed_by = ForeignKeyField(User, related_name='completed_tasks', null=True) starred = BooleanField(index=True, null=True) due_date = DateField(index=True, null=True) recurrence_type = CharField(null=True) recurrence_count = IntegerField(null=True) assignee = ForeignKeyField(User, related_name='assigned_tasks', null=True) order = IntegerField(index=True, null=True) revision = IntegerField() created_at = DateTimeUTCField() created_by = ForeignKeyField(User, related_name='created_tasks', null=True) @classmethod def sync_tasks_in_list(cls, list): from wunderlist.api import tasks from concurrent import futures start = time.time() instances = [] tasks_data = [] position_by_task_id = {} with futures.ThreadPoolExecutor(max_workers=4) as executor: positions_job = executor.submit(tasks.task_positions, list.id) jobs = ( executor.submit(tasks.tasks, list.id, completed=False), executor.submit(tasks.tasks, list.id, completed=True), executor.submit(tasks.tasks, list.id, subtasks=True) ) for job in futures.as_completed(jobs): tasks_data += job.result() position_by_task_id = dict((id, index) for (id, index) in enumerate(positions_job.result())) log.info('Retrieved all %d tasks for %s in %s', len(tasks_data), list, time.time() - start) start = time.time() def task_order(task): task['order'] = position_by_task_id.get(task['id']) return task['order'] or 1e99 tasks_data.sort(key=task_order) try: # Include all tasks thought to be in the list, plus any additional # tasks referenced in the data (task may have been moved to a different list) ParentTask = cls.alias() task_ids = [task['id'] for task in tasks_data] instances = cls.select(cls.id, cls.title, cls.revision)\ .join(ParentTask, JOIN.LEFT_OUTER)\ .where( (ParentTask.list == list.id) | (cls.list == list.id) | (cls.id.in_(task_ids)) | (cls.task.in_(task_ids)) ) except PeeweeException: pass log.info('Loaded all %d tasks for %s from the database in %s', len(instances), list, time.time() - start) start = time.time() cls._perform_updates(instances, tasks_data) log.info('Completed updates to tasks in %s in %s', list, time.time() - start) return None @classmethod def due_today(cls): return ( cls.select(cls, List) .join(List) .where(cls.completed_at >> None) .where(cls.due_date <= date.today()) .order_by(List.order.asc(), cls.due_date.asc()) ) @classmethod def search(cls, query): return ( cls.select(cls, List) .join(List) .where(cls.completed_at >> None) .where(cls.title.contains(query)) .order_by(List.order.asc(), cls.due_date.asc()) ) @property def reminder_date_local(self): # For related property Task.reminders import wunderlist.models.reminder for reminder in self.reminders: return reminder.date_local return None @property def completed(self): return bool(self.completed_at) @property def overdue_times(self): if self.recurrence_type is None or self.completed: return 0 recurrence_days = _days_by_recurrence_type[self.recurrence_type] * self.recurrence_count overdue_time = date.today() - self.due_date return int(overdue_time.days / recurrence_days) @property def list_title(self): if self.list: return self.list.title return None def subtitle(self): from wunderlist.util import format_time subtitle = [] if self.starred: subtitle.append(_star) # Task is completed if self.completed: subtitle.append('Completed %s' % short_relative_formatted_date(self.completed_at)) # Task is not yet completed elif self.due_date: subtitle.append('Due %s' % short_relative_formatted_date(self.due_date)) if self.recurrence_type: if self.recurrence_count > 1: subtitle.append('%s Every %d %ss' % (_recurrence, self.recurrence_count, self.recurrence_type)) # Cannot simply add -ly suffix elif self.recurrence_type == 'day': subtitle.append('%s Daily' % (_recurrence)) else: subtitle.append('%s %sly' % (_recurrence, self.recurrence_type.title())) if not self.completed: overdue_times = self.overdue_times if overdue_times > 1: subtitle.insert(0, u'%s %dX OVERDUE!' % (_overdue_2x, overdue_times)) elif overdue_times == 1: subtitle.insert(0, u'%s OVERDUE!' % (_overdue_1x)) reminder_date = self.reminder_date_local if reminder_date: reminder_date_phrase = None if reminder_date.date() == self.due_date: reminder_date_phrase = 'On due date' else: reminder_date_phrase = short_relative_formatted_date(reminder_date) subtitle.append('%s %s at %s' % ( _reminder, reminder_date_phrase, format_time(reminder_date, 'short'))) subtitle.append(self.title) return ' '.join(subtitle) def __str__(self): title = self.title if len(self.title) <= 20 else self.title[:20].rstrip() + u'…' return u'<%s %d %s>' % (type(self).__name__, self.id, title) class Meta(object): order_by = ('order', 'id') ``` #### File: user.workflow.F455B544-D4E3-402B-B987-8D3EA582A111/wunderlist/sync.py ```python from datetime import datetime import os import time from workflow.notify import notify from workflow.background import is_running from wunderlist.models.preferences import Preferences from wunderlist.util import workflow def sync(background=False): from wunderlist.models import base, root, list, task, user, hashtag, reminder from peewee import OperationalError # If a sync is already running, wait for it to finish. Otherwise, store # the current pid in alfred-workflow's pid cache file if not background: if is_running('sync'): wait_count = 0 while is_running('sync'): time.sleep(.25) wait_count += 1 if wait_count == 2: notify('Please wait...', 'The workflow is making sure your tasks are up-to-date') return False pidfile = workflow().cachefile('sync.pid') with open(pidfile, 'wb') as file_obj: file_obj.write('{0}'.format(os.getpid())) Preferences.current_prefs().last_sync = datetime.now() base.BaseModel._meta.database.create_tables([ root.Root, list.List, task.Task, user.User, hashtag.Hashtag, reminder.Reminder ], safe=True) # Perform a query that requires the latest schema; if it fails due to a # mismatched scheme, delete the old database and re-sync try: task.Task.select().where(task.Task.recurrence_count > 0).count() hashtag.Hashtag.select().where(hashtag.Hashtag.tag == '').count() except OperationalError: base.BaseModel._meta.database.close() workflow().clear_data(lambda f: 'wunderlist.db' in f) # Make sure that this sync does not try to wait until its own process # finishes sync(background=True) return first_sync = False try: root.Root.get() except root.Root.DoesNotExist: first_sync = True root.Root.sync(background=background) if background: if first_sync: notify('Initial sync has completed', 'All of your tasks are now available for browsing') # If executed manually, this will pass on to the post notification action print 'Sync completed successfully' return True def background_sync(): from workflow.background import run_in_background task_id = 'sync' # Only runs if another sync is not already in progress run_in_background(task_id, [ '/usr/bin/env', 'python', workflow().workflowfile('alfred-wunderlist-workflow.py'), 'pref sync background', '--commit' ]) def background_sync_if_necessary(seconds=30): last_sync = Preferences.current_prefs().last_sync # Avoid syncing on every keystroke, background_sync will also prevent # multiple concurrent syncs if last_sync is None or (datetime.now() - last_sync).total_seconds() > seconds: background_sync() ``` #### File: user.workflow.F455B544-D4E3-402B-B987-8D3EA582A111/wunderlist/util.py ```python from datetime import date, datetime, timedelta import logging from workflow import Workflow try: # Python 2.7+ from logging import NullHandler except ImportError: class NullHandler(logging.Handler): def emit(self, record): pass _workflow = None _update_settings = None def workflow(): global _workflow, _update_settings if _workflow is None: version = '0.7.0' _workflow = Workflow( capture_args=False, update_settings={ 'github_slug': 'idpaterson/alfred-wunderlist-workflow', 'version': version, # Check for updates daily # TODO: check less frequently as the workflow becomes more # stable 'frequency': 1, # Always download pre-release updates if a prerelease is # currently installed 'prerelease': '-' in version } ) # Avoid default logger output configuration _workflow.logger = logging.getLogger('workflow') return _workflow def parsedatetime_calendar(): from parsedatetime import Calendar, Constants return Calendar(parsedatetime_constants()) def parsedatetime_constants(): from parsedatetime import Constants from wunderlist.models.preferences import Preferences loc = Preferences.current_prefs().date_locale or user_locale() return Constants(loc) def user_locale(): import locale loc = locale.getlocale(locale.LC_TIME)[0] if not loc: # In case the LC_* environment variables are misconfigured, catch # an exception that may be thrown try: loc = locale.getdefaultlocale()[0] except IndexError: loc = 'en_US' return loc def format_time(time, format): c = parsedatetime_constants() expr = c.locale.timeFormats[format] expr = (expr .replace('HH', '%H') .replace('h', '%I') .replace('mm', '%M') .replace('ss', '%S') .replace('a', '%p') .replace('z', '%Z') .replace('v', '%z')) return time.strftime(expr).lstrip('0') def short_relative_formatted_date(dt): d = dt.date() if isinstance(dt, datetime) else dt today = date.today() # Mar 3, 2016 date_format = '%b %d, %Y' if d == today: return 'today' if d == today + timedelta(days=1): return 'tomorrow' elif d == today - timedelta(days=1): return 'yesterday' elif d.year == today.year: # Wed, Mar 3 date_format = '%a, %b %d' return dt.strftime(date_format) def relaunch_alfred(command='wl'): import subprocess alfred_major_version = workflow().alfred_version.tuple[0] subprocess.call([ '/usr/bin/env', 'osascript', '-l', 'JavaScript', 'bin/launch_alfred.scpt', command, str(alfred_major_version) ]) def utc_to_local(utc_dt): import calendar # get integer timestamp to avoid precision lost timestamp = calendar.timegm(utc_dt.timetuple()) local_dt = datetime.fromtimestamp(timestamp) return local_dt.replace(microsecond=utc_dt.microsecond) ```
{ "source": "jlhall/ImplAlgos", "score": 4 }
#### File: py/data_structures/binary_tree.py ```python class Node(object): """Node class for use in binary tree""" def __init__(self, value, left=None, right=None): super(Node, self).__init__() self.value = value self.left = left self.right = right class Tree(object): """Tree class for use in binary tree""" def __init__(self): super(Tree, self).__init__() self.root = None def add(self, value): curr = self.root if curr == None: self.root = Node(value, None, None) while curr != None: if (value < curr.value and curr.left == None): curr.left = Node(value, None, None) elif value > curr.value and curr.right == None: curr.right = Node(value, None, None) elif value < curr.value: curr = curr.left elif value > curr.value: curr = curr.right else: return ``` #### File: py/sorting_algos/bubble_sort.py ```python import random n = random.randint(1, 1000) ab = [] for i in range(n): ab.append(random.randint(1, n)) def bub_sort(a): for i in range(len(a)-1, 0, -1): for j in range(i): if a[j] > a[j+1]: a[j], a[j+1] = a[j+1], a[j] return a print bub_sort(ab) ```
{ "source": "JLHasson/coremltools", "score": 2 }
#### File: nnssa/coreml/ssa_converter.py ```python import numpy as np from warnings import warn from six import string_types as _string_types from coremltools.models import datatypes from coremltools.proto import NeuralNetwork_pb2, Model_pb2 from coremltools.models.neural_network import NeuralNetworkBuilder from coremltools.models.neural_network.flexible_shape_utils import set_multiarray_ndshape_range from collections import Iterable import coremltools from ..commons import builtins from ..commons.basic_graph_ops import topsort, check_connections from .graph_pass import * try: import shapes except: from . import shapes DEBUG = False def _is_scalar(type_): if type_ is None: return False result = builtins.is_int(type_) or builtins.is_float(type_) or builtins.is_bool(type_) if builtins.is_tensor(type_) and (len(type_.get_shape()) == 0): result = True return result def ssa_convert(ssa, top_func='main', inputs=None, outputs=None, image_input_names=None, image_format=None, is_bgr=False, red_bias=0.0, green_bias=0.0, blue_bias=0.0, gray_bias=0.0, image_scale=1.0, class_labels=None, predicted_feature_name=None, predicted_probabilities_output='', add_custom_layers=False, custom_conversion_functions=None, custom_shape_functions=None, optional_inputs=None ): """ Convert NNSSA into Core ML spec. ssa : NetworkEnsemble Required parameter NNSSA to be converted to CoreML spec. top_func : str or 'main' Function entry point inputs : dict of str -> list/tuple or None Input features of CoreML specs. Must be a dictionary with name as key and shape as value {name: shape}, where name is the input's name, shape is the shape of the feature tensor. The shape must be static - all dimensions of shape should be a positive integer. When not provided, SSA converter will treat all input nodes in top level NNSSA as inputs. outputs : list of str or None Output features of CoreML specs. Must be a list of [name]. When not provided, SSA converter will treat all output nodes in top level NNSSA as outputs. add_custom_layers : bool or False If True, then `custom` layers will be added to the model in place for unsupported ops. Parameters for these custom layers should be filled manually by editing the mlmodel or the 'custom_conversion_functions' argument can be used to do the same during the process of conversion custom_conversion_functions : dict of str -> function or empty dict Specify custom function to be used for conversion for given op. User can override existing conversion function and provide their own custom implementation to convert certain ops. Dictionary key must be string specifying Op name or Op type and value must be a function implementation available in current context. If user provides two separate functions for node name and node type, then custom function tied to node name will be used. As, function tied to node type is more generic than one tied to node name. custom_conversion_functions option is different than add_custom_layers. Both options can be used in conjunction in which case, custom function will be invoked for provided ops and custom layer will be added for ops with no respective conversion function. This option gives finer control to user. One use case could be to modify input attributes or certain graph properties before calling existing conversion function. Note that, It is custom conversion function's responsibility to add respective Core ML layer into builder (coremltools's NeuralNetworkBuilder) custom_shape_functions : dict of str -> functions or empty dict Specify custom function to compute `output` shape given `input` shape for given custom operator This is required for new converter path, which maintains and propagates shapes while converting operators. image_format: str Optional and valid if image_input_names is also set. Specify either 'NCHW' or 'NHWC' to set or override the image format. If not set, tries to use hints from the graph which may be present in convolution or other image-specific layers. Ultimately defaults to NHWC. """ if not custom_conversion_functions: custom_conversion_functions = dict() if not custom_shape_functions: custom_shape_functions = dict() if not optional_inputs: optional_inputs = list() if outputs is not None: ssa.extract_subgraph(outputs, name=top_func) if DEBUG: import graphviz dot_string = ssa.get_dot_string(annotation=True, name_and_op_style=True, highlight_debug_nodes=[]) graphviz.Source(dot_string).view(filename='/tmp/ssa') # apply passes on the ssa, prior to conversion # note: ideally order of passes should not matter, however, might be few special cases # fuse_batch_to_space_or_space_to_batch needs to be applied before transform_nhwc_to_nchw passes = [ constant_weight_link_removal, onehot_matmul_to_embedding, fuse_layer_norm, fuse_gelu, fuse_batch_to_space_or_space_to_batch, fuse_bias_add, transform_nhwc_to_nchw, remove_identity, remove_no_ops_and_shift_control_dependencies, remove_single_isolated_node, fuse_batch_norm, spatial_reduce_to_global_pool, fuse_pad_into_conv, remove_oneway_split, remove_noneffective_transpose, remove_noneffective_reshape ] for p in passes: p(ssa) if DEBUG: import graphviz dot_string = ssa.get_dot_string(annotation=True, name_and_op_style=True, highlight_debug_nodes=[]) graphviz.Source(dot_string).view(filename='/tmp/ssa_after_passes') for f in list(ssa.functions.values()): check_connections(f.graph) # Set classifier flag is_classifier = class_labels is not None neural_network_type = 'classifier' if is_classifier else None converter = SSAConverter(ssa, top_func=top_func, inputs=inputs, outputs=outputs, neural_network_type=neural_network_type, add_custom_layers=add_custom_layers, custom_conversion_functions=custom_conversion_functions, custom_shape_functions=custom_shape_functions, optional_inputs=optional_inputs) converter.convert() builder = converter._get_builder(func=top_func) # Add image input identifier if image_input_names is not None and isinstance( image_input_names, _string_types): image_input_names = [image_input_names] # Add classifier classes (if applicable) if is_classifier: classes = [] classes_in = class_labels if isinstance(classes_in, _string_types): # string import os if not os.path.isfile(classes_in): raise ValueError("Path to class labels (%s) does not exist." % \ classes_in) with open(classes_in, 'r') as f: classes = f.read() classes = classes.splitlines() elif type(classes_in) is list: # list[int or str] classes = classes_in else: raise ValueError('Class labels must be a list of integers / strings,' \ ' or a file path') if predicted_feature_name is not None: builder.set_class_labels( classes, predicted_feature_name=predicted_feature_name, prediction_blob=predicted_probabilities_output) else: builder.set_class_labels(classes) detected_image_format = ssa.get_image_format() if image_format and detected_image_format and image_format != detected_image_format: warn('[SSAConverter] Detected image format different from input.' 'Detected: {} Input: {}'.format(detected_image_format, image_format)) image_format = image_format or detected_image_format or 'NHWC' # Set pre-processing parameters builder.set_pre_processing_parameters(image_input_names=image_input_names, is_bgr=is_bgr, red_bias=red_bias, green_bias=green_bias, blue_bias=blue_bias, gray_bias=gray_bias, image_scale=image_scale, image_format=image_format) mlmodel_spec = converter.get_spec() # Required if an output node produces multiple outputs # Generate new output features modified_output_features_list = [] for idx, output_feature in enumerate(mlmodel_spec.description.output): if output_feature.name in converter.op_tensor_map: atype = mlmodel_spec.description.output[idx].type for aname in converter.op_tensor_map[output_feature.name]: new_feature = Model_pb2.FeatureDescription() new_feature.name = aname new_feature.type.CopyFrom(atype) if aname not in [feature.name for feature in modified_output_features_list]: modified_output_features_list.append(new_feature) else: modified_output_features_list.append(output_feature) # delete the existing output feature mlmodel_spec.description.ClearField('output') # creating new output features description mlmodel_spec.description.output.extend(modified_output_features_list) # MLModel passes mlmodel_passes = [remove_disconnected_layers, remove_redundant_transposes, ] for p in mlmodel_passes: p(mlmodel_spec) if DEBUG: coremltools.models.utils.save_spec(mlmodel_spec, '/tmp/model_from_spec.mlmodel') return mlmodel_spec class SSAConverter(object): def __init__(self, net_ensemble, # type: NetworkEnsemble top_func='main', # type: str inputs=None, # type: Dict[str, tuple] outputs=None, # type: List[str] neural_network_type=None, # type: str add_custom_layers=False, # type: bool custom_conversion_functions={}, # type: Dict[Text, Any] custom_shape_functions={}, # type: Dict[Text, Any] optional_inputs=[] # type: List[str] ): self.net_ensemble = net_ensemble self.top_func = top_func # string indicating the top level function if self.top_func not in self.net_ensemble.functions: raise ValueError( 'Top level function %s not in the NetworkEnsemble Provided' % self.top_func) # get top level inputs and outputs to instantiate spec self.net_ensemble.functions[top_func].find_inputs_and_outputs() top_input_names = list(map(str, self.net_ensemble.functions[top_func].inputs)) top_output_names = list(map(str, self.net_ensemble.functions[top_func].outputs)) top_ssa = self.net_ensemble.functions[top_func] # custom conversion functions self.custom_conversion_functions = custom_conversion_functions self.add_custom_layers = add_custom_layers self.custom_shape_functions = custom_shape_functions # find_inputs_and_outputs() generates a list of required inputs, which # may not be supplied by inputs. We need to make sure that the # user-supplied inputs name and shape are consistent with the NNSSA. top_input_shapes = [] for name in top_input_names: node = top_ssa.graph[name] shape = self._get_tensor_shape_from_type(node.datatype) if shape is None and inputs is None: raise ValueError( 'NNSSA input "%s" has non-static shape %s, please provide in argument "inputs"' % (name, str(shape))) if inputs is not None: if name not in inputs: raise ValueError( 'Input "%s" is required by SSAConverter, but not passed in argument "inputs"' % name) if shapes.is_static_shape(inputs[name]) and not shapes.is_a_shape_of(inputs[name], shape): raise ValueError( 'Input "%s" expects a shape compatible to %s, but is given %s' % (name, str(shape), inputs[name])) # Now that we can use the shape to create top_input_shapes shape = inputs[name] if inputs[name] else [1, ] top_input_shapes.append(shape) top_input_types = [] is_input_optional = [True if name in optional_inputs else False for name in top_input_names] is_input_dynamic = [True if not shapes.is_static_shape(shape) else False for shape in top_input_shapes] for idx, dims in enumerate(top_input_shapes): if is_input_dynamic[idx]: static_shape = [dim_size if dim_size > 0 else 1 for dim_size in dims] else: static_shape = dims top_input_types.append(datatypes.Array(*static_shape)) top_input_features = list(zip(top_input_names, top_input_types)) # TODO - verify outputs if outputs is not None: top_output_features = [] for name in outputs: if name in self.net_ensemble.variables.keys(): # Variable/States are optional inputs & outputs to be added later continue elif name in top_output_names: top_output_features.append((name, None)) else: if len(top_output_names) == 1: raise ValueError('Output "{}" is not an output node in the source graph. Do you mean "{}"?' .format(name, top_output_names[0])) else: raise ValueError('Output "%s" is not an output node in the source graph.' % name) else: top_output_features = list(zip(top_output_names, [None] * len(top_output_names))) self.top_builder = NeuralNetworkBuilder(input_features=top_input_features, output_features=top_output_features, disable_rank5_shape_mapping=True, mode=neural_network_type, use_float_arraytype=True) self.spec = self.top_builder.spec for idx, input in enumerate(self.spec.description.input): if is_input_dynamic[idx]: input_name = top_input_names[idx] dynamic_shape = top_input_shapes[idx] lower_bounds, upper_bounds = [], [] for dim_size in dynamic_shape: if dim_size > 0: lower_bounds.append(dim_size) upper_bounds.append(dim_size) else: lower_bounds.append(1) upper_bounds.append(-1) set_multiarray_ndshape_range(self.spec, input_name, lower_bounds=lower_bounds, upper_bounds=upper_bounds) if is_input_optional[idx]: self.spec.description.input[idx].type.isOptional = True self.CONVERT_FUNCTION_MAP = { 'Abs': self._convert_unary_common, 'Add': self._convert_binary, 'AddV2': self._convert_binary, 'AddN': self._convert_addn, 'All': self._convert_reduction, 'Any': self._convert_reduction, 'ArgMax': self._convert_argmax, 'ArgMin': self._convert_argmin, 'AvgPool': self._convert_avgpool, 'BatchMatMul': self._convert_batched_mat_mul, 'BatchNorm': self._convert_batchnorm, 'BatchToSpaceND': self._convert_batch_to_space_nd, 'BiasAdd': self._convert_binary_broadcastable, 'Cast': self._convert_cast, 'Ceil': self._convert_unary_common, 'ClipByValue': self._convert_clip, 'Concat': self._convert_concat_nd, 'ConcatV2': self._convert_concat_nd, 'Const': self._convert_const, 'Conv2D': self._convert_conv2d, 'Conv2DBackpropInput': self._convert_conv2d_transpose, 'Cos': self._convert_unary_trigonometric, 'DepthToSpace': self._convert_reorganize_data, 'DepthwiseConv2dNative': self._convert_conv2d, 'Elu': self._convert_unary_activation, 'Embedding': self._convert_embedding, 'Equal': self._convert_binary_broadcastable, 'Exp': self._convert_unary_common, 'ExpandDims': self._convert_expand_dims, 'Fill': self._convert_fill, 'Floor': self._convert_unary_common, 'FloorDiv': self._convert_binary_broadcastable, 'FloorMod': self._convert_floor_mod, 'Gather': self._convert_gather, 'GatherNd': self._convert_gather_nd, 'GeLU': self._convert_gelu, 'Greater': self._convert_binary_broadcastable, 'GreaterEqual': self._convert_binary_broadcastable, 'Identity': self._convert_identity, 'LRN': self._convert_lrn, 'LSTMBlock': self._convert_lstm_block_cell, 'LayerNormalization': self._convert_layer_normalization, 'LeakyRelu': self._convert_unary_activation, 'Less': self._convert_binary_broadcastable, 'LessEqual': self._convert_binary_broadcastable, 'Log': self._convert_unary_common, 'LogSoftmax': self._convert_unary_log_softmax, 'LogicalAnd': self._convert_binary_broadcastable, 'LogicalNot': self._convert_unary_logical_not, 'LogicalOr': self._convert_binary_broadcastable, 'MatMul': self._convert_batched_mat_mul, 'MatrixBandPart': self._convert_matrix_band_part, 'Max': self._convert_reduction, 'MaxPool': self._convert_maxpool, 'Maximum': self._convert_binary_broadcastable, 'Mean': self._convert_reduction, 'Min': self._convert_reduction, 'Minimum': self._convert_binary_broadcastable, 'MirrorPad': self._convert_mirror_pad, 'Mul': self._convert_binary, 'Neg': self._convert_unary_neg, 'NotEqual': self._convert_binary_broadcastable, 'Pack': self._convert_pack, 'Pad': self._convert_constant_pad, 'PadV2': self._convert_constant_pad, 'Placeholder': self._convert_input, 'Pow': self._convert_binary_broadcastable, 'Prod': self._convert_reduction, 'Range': self._convert_range, 'RealDiv': self._convert_binary, 'Reciprocal': self._convert_unary_inverse, 'Relu': self._convert_unary_activation, 'Relu6': self._convert_unary_activation_relu6, 'Reshape': self._convert_reshape, 'ResizeBilinear': self._convert_resize_bilinear, 'ResizeNearestNeighbor': self._convert_resize_nearest_neighbor, 'ReverseSequence': self._convert_reverse_sequence, 'ReverseV2': self._convert_reverse, 'Round': self._convert_unary_common, 'Rsqrt': self._convert_unary_common, 'ScatterNd': self._convert_scatter_nd, 'SelectMask': self._convert_select, 'Shape': self._convert_shape, 'Sigmoid': self._convert_unary_activation, 'Sign': self._convert_unary_common, 'Sin': self._convert_unary_trigonometric, 'Size': self._convert_size, 'Selu': self._convert_selu, 'Slice': self._convert_slice, 'Softmax': self._convert_softmax, 'SpaceToBatchND': self._convert_space_to_batch_nd, 'SpaceToDepth': self._convert_reorganize_data, 'Split': self._convert_split, 'SplitV': self._convert_split, 'Sqrt': self._convert_unary_common, 'Square': self._convert_unary_square, 'SquaredDifference': self._convert_squared_difference, 'Squeeze': self._convert_squeeze, 'StridedSlice': self._convert_slice, 'Sub': self._convert_binary, 'Sum': self._convert_reduction, 'Softplus': self._convert_unary_activation, 'Tan': self._convert_unary_trigonometric, 'Tanh': self._convert_unary_activation, 'TensorArrayGatherV3': self._convert_tensorarray_gather, 'TensorArrayReadV3': self._convert_tensorarray_read, 'TensorArrayScatterV3': self._convert_array_scatter, 'TensorArraySizeV3': self._convert_tensorarray_size, 'TensorArrayV3': self._convert_tensorarray_alloc, 'TensorArrayWriteV3': self._convert_tensorarray_write, 'Tile': self._convert_tile, 'TopKV2': self._convert_topk, 'Transpose': self._convert_transpose, 'Unpack': self._convert_unpack, 'Where': self._convert_where, 'function_entry': self._convert_function, 'get_global': self._convert_get_global, 'get_tuple': self._convert_get_tuple, 'iff': self._convert_iff, 'make_tuple': self._convert_make_tuple, 'return': self._convert_return, 'set_global': self._convert_set_global, 'while': self._convert_while, 'ZerosLike': self._convert_zeros_like } # converter state variables # func_stack stores a list of NNSSA function names self.func_stack = [self.top_func] # Theoretically, there should be a one-to-one mapping between # SSA function and nn_spec, which is associated with a NeuralNetworkBuilder self.func_builder_map = {self.top_func: self.top_builder} # All the shapes of the tensor of CoreML str:shape self.tensor_shapes = { name: top_input_shapes[idx] for idx, name in enumerate(top_input_names) } # Map for tensors generated by special ops (make_tuple, get_tuple, function, return, etc) # and value is the list of node names that represent tensors self.op_tensor_map = {} # all variables/states are treated as both inputs & outputs. for name, aVariable in self.net_ensemble.variables.items(): if _is_scalar(aVariable): shape = [1, ] else: assert builtins.is_tensor(aVariable) shape = list([int(i) if i and i > 0 else 1 for i in self._get_tensor_shape_from_type(aVariable)]) self.top_builder.add_optionals([(name + '__invar__', shape)], [(name + '__outvar__', shape)]) self.tensor_shapes[name + '__invar__'] = shape def get_spec(self): return self.spec def print_function_nodes(self, func_name): if func_name not in self.net_ensemble.functions: raise ValueError('%s is not a function name in NetworkEnsemble' % func_name) graph = self.net_ensemble.functions[func_name].graph for name, node in graph.items(): if node.op == 'get_global': print('%s (%s) var = %s' % (name, node.op, node.attr['variable'])) if node.op == 'set_global': print('%s (%s) var = %s' % (name, node.op, node.attr['variable'])) def get_nnssa_inputs_outputs(self): inputs, outputs, placeholder_defaults = self.net_ensemble._get_inputs_outputs() print('Inputs: ') for i in inputs: print(i) print('Outputs: ') for o in outputs: print(o) print('Placeholders with default: ') for p in placeholder_defaults: print(p) return inputs, outputs, placeholder_defaults def convert(self): """ Convert the NNSSA function on top of func_stack into NeuralNetworkSpec. """ func_name = self.func_stack[-1] func = self.net_ensemble.functions[func_name] print('[SSAConverter] Converting function %s ...' % func_name) # Do a topological sort restricted_graph = {} function = self.net_ensemble.functions[func_name] for k, v in function.graph.items(): if len(v.outputs) > 0 and all( [function.graph[i].value is not None for i in v.outputs]): continue restricted_graph[k] = v instruction_order = topsort(restricted_graph) # Make a buffer between variable inputs builder = self._get_builder() for name, var in self.net_ensemble.variables.items(): layer = builder.add_copy( name=name + '_copy', input_name=name + '__invar__', output_name=name) shapes.propagate_single_layer(layer, self.tensor_shapes) # Convert operations one by one for idx, node_name in enumerate(instruction_order): node = func.graph[node_name] op_type = node.op custom_conversion_name = None if node_name in self.custom_conversion_functions: custom_conversion_name = node_name elif op_type in self.custom_conversion_functions: custom_conversion_name = op_type # Set conversion function and message conversion_message = '' if custom_conversion_name is not None: conversion_message = ' with custom conversion function' elif op_type in self.CONVERT_FUNCTION_MAP: convert_func = self.CONVERT_FUNCTION_MAP[op_type] elif self.add_custom_layers: # Add custom layer convert_func = self._convert_custom_layer conversion_message = ' with custom layer' else: raise NotImplementedError( '[SSAConverter] Conversion for op %s not implemented, terminating...' % op_type) print('[SSAConverter] [{}/{}] Converting op type: \'{}\', name: \'{}\'{}{}'.format( idx + 1, len(instruction_order), op_type, node_name, conversion_message, ((', output_shape: ' + str(node.datatype.get_shape()) + '.') if builtins.is_tensor(node.datatype) else '.'))) # If custom conversion method is provided, use it # Otherwise, invoke internal conversion method if custom_conversion_name is not None: self.custom_conversion_functions[custom_conversion_name](self, node) else: convert_func(node) # Make a buffer between variable inputs builder = self._get_builder() for name, var in self.net_ensemble.variables.items(): layer = builder.add_copy( name=name + '_copy_r', input_name=name, output_name=name + '__outvar__') shapes.propagate_single_layer(layer, self.tensor_shapes) def _get_builder(self, func=None): if func is None: func = self.func_stack[-1] return self.func_builder_map[func] def _get_tensor_shape_from_type(self, type_): if _is_scalar(type_): shape = (1,) elif builtins.is_tensor(type_): shape = type_.get_shape() elif builtins.is_list(type_): element_shape = type_.T[0].get_shape() for ashape in type_.T: assert ashape.get_shape() == element_shape shape = [-1] + list(element_shape) else: shape = None return shape def _get_input_tensors(self, node, inspect_shapes=True): """ Get the input nodes, their names and types for a node. There are three cases: (1) (Tuple case) input is a tuple. In this case, expand that tuple input into a list of input tensors (2) (Regular case) input is a node name. In this case just copy it. (3) (Indexed tuple case) input is one element in a tuple. In this case it should be stored in op_tensor_map """ input_nodes, input_names, input_types = [], [], [] for name in node.inputs: if name in self.op_tensor_map: input_names.extend(self.op_tensor_map[name]) else: input_names.append(name) for name in input_names: if name in self.net_ensemble.variables: input_node, _ = self.__get_node_and_type_by_name(name + "/read") input_type = self.net_ensemble.variables[name] else: input_node, input_type = self.__get_node_and_type_by_name(name) assert input_node is not None assert input_type is not None input_nodes.append(input_node) input_types.append(input_type) if inspect_shapes: self.__compare_propagated_and_inferred_shape(name, input_type) return input_nodes, input_names, input_types def __get_node_and_type_by_name(self, name): for fname in self.func_stack[::-1]: func = self.net_ensemble.functions[fname] if name in func.graph: node = func.graph[name] return node, node.datatype for node_name, output_names in self.op_tensor_map.items(): if name in output_names: node, type_ = self.__get_node_and_type_by_name(node_name) if builtins.is_tuple(type_): Id = output_names.index(name) type_ = node.datatype.T[Id] return node, type_ return None, None def __compare_propagated_and_inferred_shape(self, name, type_): propagated_shape = tuple(self.tensor_shapes[name]) if _is_scalar(type_): inferred_shape = (1,) elif builtins.is_tensor(type_): inferred_shape = type_.get_shape() elif builtins.is_list(type_): element_shape = type_.T[0].get_shape() for ashape in type_.T: assert ashape.get_shape() == element_shape inferred_shape = [-1] + list(element_shape) else: raise ValueError('[SSAConverter] Failed to infer shape for tensor %s' % name) mismatch = '[SSAConverter] Shape mismatch for {}: inferred {} vs. propagated {}.'.format( name, inferred_shape, propagated_shape) if len(propagated_shape) != len(inferred_shape): raise ValueError(mismatch) for pdim, idim in zip(propagated_shape, inferred_shape): if pdim == -1 or idim == -1 or pdim == idim: continue raise ValueError(mismatch) def _convert_input(self, node): """ Convert an input node. For now, we may just need to skip it. """ pass def _convert_const(self, node): """ Convert a constant node. """ node_value = node.value if node_value is None: node_value = node.attr.get('value') val = np.array(node_value.val) if len(val.shape) == 0: val = np.array([node_value.val]) builder = self._get_builder() layer = builder.add_load_constant_nd( name=node.name, output_name=node.name, constant_value=val, shape=val.shape) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_custom_layer(self, node): """ Add custom layer """ params = NeuralNetwork_pb2.CustomLayerParams() params.className = node.op params.description = "Custom layer that corresponds to the TensorFlow op {}".format(node.op) builder = self._get_builder() layer = builder.add_custom(name=node.name, input_names=node.inputs, output_names=[node.name], custom_proto_spec=params) if node.op not in self.custom_shape_functions: raise ValueError('Custom Shape Function for {} not provided!'.format(node.op)) shapes.propagate_single_layer(layer, self.tensor_shapes, custom_shape_function=self.custom_shape_functions[node.op]) def _convert_transpose(self, node): """ Convert a transpose op. """ # permute dimensions are assumed to be a const input_nodes, input_names, input_types = self._get_input_tensors(node) dim = input_nodes[1].value.val if len(input_names) > 1 else node.attr.get('dim') if dim is None: raise ValueError('[SSAConverter] Cannot handle dynamic Transpose') dim = list(dim) builder = self._get_builder() layer = builder.add_transpose( name=node.name, axes=dim, input_name=input_names[0], output_name=node.name) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_shape(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) assert (len(input_names) == 1) builder = self._get_builder() layer = builder.add_get_shape( name=node.name, input_name=input_names[0], output_name=node.name) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_selu(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) assert (len(input_names) == 1) builder = self._get_builder() elu_output_name = node.name + '_elu' builder.add_activation(node.name +'__elu__', 'ELU', input_names[0], elu_output_name, params=1.6732632) builder.add_elementwise(node.name, input_names=elu_output_name, output_name=node.name, mode='MULTIPLY', alpha=1.05070098) self.tensor_shapes[node.name] = self._get_tensor_shape_from_type(node.datatype) def _convert_size(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) assert (len(input_names) == 1) builder = self._get_builder() layer = builder.add_get_shape( name=node.name + "_shape", input_name=input_names[0], output_name=node.name + "_shape") layer = builder.add_reduce_prod( name=node.name, input_name=node.name + "_shape", output_name=node.name, keepdims=True, reduce_all=True) self.tensor_shapes[node.name] = [1] def _convert_slice(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) has_squeeze = 'squeeze' in node.attr and node.attr['squeeze'] axes = node.attr.get('squeeze') if _is_scalar(node.datatype): output_shape = [] elif builtins.is_tensor(node.datatype): output_shape = self._get_tensor_shape_from_type(node.datatype) else: output_shape = None if has_squeeze: if output_shape is None: raise ValueError('[SSAConverter] Unable to determine output shapes for Slice') if len(output_shape) == 0 and len(axes) == 1: has_squeeze = False slice_output_name = node.name + '_slice_' if has_squeeze else node.name builder = self._get_builder() rank = len(self._get_tensor_shape_from_type(input_types[0])) begin_masks = [True if i in node.attr['begin_masks'] else False for i in range(rank)] end_masks = [True if i in node.attr['end_masks'] else False for i in range(rank)] if 'slice' not in node.attr: assert node.attr["new_axis_mask"] == 0 assert len(input_names) >= 4 layer = builder.add_slice_dynamic(name=slice_output_name, input_names=input_names[:4], output_name=slice_output_name, begin_masks=begin_masks, end_masks=end_masks) if not has_squeeze and output_shape: self.tensor_shapes[node.name] = output_shape else: shapes.propagate_single_layer(layer, self.tensor_shapes) else: # For simple RNN, node.attr always has a 'slice' # This means slicing is always static # each slice is [begin, end, step] slices = node.attr['slice'] begin_indices, end_indices, strides = [], [], [] for s in slices: begin_indices.append(s[0]) end_indices.append(s[1]) strides.append(s[2]) layer = builder.add_slice_static( name=slice_output_name, input_name=input_names[0], output_name=slice_output_name, begin_ids=begin_indices, end_ids=end_indices, strides=strides, begin_masks=begin_masks, end_masks=end_masks) shapes.propagate_single_layer(layer, self.tensor_shapes) if has_squeeze: input_shape = self._get_tensor_shape_from_type(input_types[0]) input_rank = len(input_shape) squeeze_all = (input_rank == len(axes)) layer = builder.add_squeeze( name=node.name, input_name=slice_output_name, output_name=node.name, axes=axes if not squeeze_all else None, squeeze_all=squeeze_all) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_range(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) if len(input_names) != 3: raise ValueError( 'CoreML NeuralNetwork range layer must have 3 inputs: start, end and step') input_names = [input_names[1], input_names[0], input_names[2]] builder = self._get_builder() layer = builder.add_range_dynamic(name=node.name, output_name=node.name, input_names=input_names) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_tensorarray_alloc(self, node): # TensorArray is a list of tensors, it will be treated as a rank+1 # tensor when converted. The shape information is stored at two # different places - node input specifies the length of the list # while the node's datatype stores the shape of each tensor allocated. input_nodes, input_names, input_types = self._get_input_tensors(node) assert (len(input_names) == 1) element_shape = node.datatype.T[0].get_shape() if (not node.attr.get('identical_element_shapes', True) or not all([atype.get_shape() == element_shape for atype in node.datatype.T])): raise ValueError( '[SSAConverter] TensorArray allocation cannot handle arrays' 'with tensors of various shapes.') has_static_element_shape = all([dim > 0 for dim in element_shape]) if input_nodes[0].op == 'Const': length = input_nodes[0].value.val array_size = length if length > 0 else 1 elif 'size' in node.attr and isinstance(node.attr['size'], int): array_size = node.attr['size'] else: array_size = None # Simpler case: No dynamic shape if array_size is not None and has_static_element_shape: array_shape = [array_size] + list(element_shape) layer = self._get_builder().add_load_constant_nd( name=node.name, output_name=node.name, constant_value=np.zeros(array_shape, dtype='float'), shape=array_shape) shapes.propagate_single_layer(layer, self.tensor_shapes) elif has_static_element_shape: # Load element shape into network builder = self._get_builder() if element_shape: node_es_name = node.name + '__element_shape' layer = builder.add_load_constant_nd( name=node_es_name, output_name=node_es_name, constant_value=np.array(element_shape, dtype='float'), shape=[len(element_shape)]) shapes.propagate_single_layer(layer, self.tensor_shapes) # Concatenate list length (the input, should be a constant vector of size 1) with element shape node_arr_shape_name = node.name + '__arr_shape' layer = builder.add_concat_nd( name=node_arr_shape_name, input_names=input_names + [node_es_name], output_name=node_arr_shape_name, axis=0) shapes.propagate_single_layer(layer, self.tensor_shapes) else: node_arr_shape_name = input_names[0] # Now allocate required shape layer = builder.add_fill_dynamic( name=node.name, input_name=node_arr_shape_name, output_name=node.name) shapes.propagate_single_layer(layer, self.tensor_shapes) # Overwrite the output shape with fixed element shape self.tensor_shapes[node.name][1:] = element_shape layer.outputTensor[0].dimValue[1:] = element_shape else: raise ValueError( '[SSAConverter] TensorArray allocation cannot determine element shapes statically' ) def _convert_array_scatter(self, node): # NNSSA input order: indices, value, array # CoreML input order: container (array), indices, slices (value) input_nodes, input_names, input_types = self._get_input_tensors(node) if len(input_names) != 3: raise ValueError('Scatter only accepts 3 inputs') indices, value, array = input_names layer = self._get_builder().add_scatter( name=node.name, input_names=[array, indices, value], output_name=node.name) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_make_tuple(self, node): # make tuple aggregates a list of SSA nodes (which also stands for their outputs) # For now, I think recording the make_tuple node itself for reference would suffice. if node.name in self.op_tensor_map: raise ValueError('make_tuple node %s should not be visited twice.' % node.name) input_nodes, input_names, input_types = self._get_input_tensors(node) self.op_tensor_map[node.name] = input_names def _convert_while(self, node): # In CoreML, loops and branches should be designed such that inputs / outputs # should be empty, because it is not necessary and not clearly defined. # Should only take a tuples assert (len(node.inputs) == 1) current_graph = self.net_ensemble.functions[self.func_stack[-1]].graph assert (current_graph[node.inputs[0]].op == 'make_tuple') input_nodes, input_names, input_types = self._get_input_tensors(node) self.op_tensor_map[node.name] = input_names builder_top = self._get_builder() while_layer = builder_top.add_loop(name=node.name) loop_param = while_layer.loop loop_param.maxLoopIterations = 0 # Both body function and condition function share the same inputs (args) of the loop # convert the condition function if 'cond_function' in node.attr: if not loop_param.HasField('conditionNetwork'): loop_param.condition.MergeFromString(b'') cond_func_name = node.attr['cond_function'] # TODO - need to find cond_var name self.func_stack.append(cond_func_name) self.func_builder_map[cond_func_name] = NeuralNetworkBuilder( nn_spec=loop_param.conditionNetwork, disable_rank5_shape_mapping=True) self.op_tensor_map[cond_func_name] = input_names self.convert() cond_func = self.net_ensemble.functions[cond_func_name] ret_node_name = cond_func.outputs[0] loop_param.conditionVar = cond_func.graph[ret_node_name].inputs[0] self.func_stack.pop() else: raise ValueError('Unable to determine condition function in the loop') # convert the body function if 'body_function' not in node.attr: raise ValueError('A "while" SSA node should not be empty.') if not loop_param.HasField('bodyNetwork'): loop_param.bodyNetwork.MergeFromString(b'') body_func_name = node.attr['body_function'] self.func_stack.append(body_func_name) self.func_builder_map[body_func_name] = NeuralNetworkBuilder( nn_spec=loop_param.bodyNetwork, disable_rank5_shape_mapping=True) self.op_tensor_map[body_func_name] = input_names self.convert() # The body function should re-write variables when it returns. body_func = self.net_ensemble.functions[body_func_name] loop_var_tuple_name = None for k, v in body_func.graph.items(): # k is name, v is node if v.op == 'make_tuple' and body_func.graph[v.outputs[0]].op == 'return': loop_var_tuple_name = k break loop_var_names = self.op_tensor_map[loop_var_tuple_name] assert len(loop_var_names) == len(input_names) # Loop body should have the same input and output builder_body = self._get_builder() for src, dst in zip(loop_var_names, input_names): # loop variables may be passed as an input to while op but unused. if src == dst: continue layer = builder_body.add_copy( name='copy_' + src + '_' + dst, input_name=src, output_name=dst) shapes.propagate_single_layer(layer, self.tensor_shapes) # Pop back into while's loop self.func_stack.pop() def _convert_function(self, node): # Function node is the entry point of a function pass def _convert_get_tuple(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) self.op_tensor_map[node.name] = [input_names[node.attr['index']]] if node.attr['index'] < len(input_names) else [] def _convert_get_global(self, node): input_name = node.attr["variable"] self.op_tensor_map[node.name] = [input_name] def _convert_set_global(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) output_name = node.attr["variable"] builder = self._get_builder() if len(node.outputs) > 0: self.op_tensor_map[node.name] = [input_names[0]] if input_nodes[0].op == "Const" and input_nodes[0].value.val.size == 0: return if output_name != input_names[0]: layer = builder.add_copy(name=node.name, input_name=input_names[0], output_name=output_name) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_return(self, node): # When converting a body function of a loop, return node should overwrite body functions' input tensors pass def _convert_unary_logical_not(self, node): assert len(node.inputs) == 1 input_nodes, input_names, input_types = self._get_input_tensors(node) layer = self._get_builder().add_logical( name=node.name, input_names=input_names, output_name=node.name, mode='NOT') shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_floor_mod(self, node): assert len(node.inputs) == 2 input_nodes, input_names, input_types = self._get_input_tensors(node) a, b = input_names a_div_b = node.name + "_floor_div" floor_a = node.name + "_floor_a" if builtins.is_int(node.attr['T']): round_a = node.name + "_round_a" round_b = node.name + "_round_b" layer = self._get_builder().add_round(name=round_a, input_name=a, output_name=round_a) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = self._get_builder().add_round(name=round_b, input_name=b, output_name=round_b) shapes.propagate_single_layer(layer, self.tensor_shapes) a, b = round_a, round_b layer = self._get_builder().add_floor_div_broadcastable( name=a_div_b, input_names=[a, b], output_name=a_div_b) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = self._get_builder().add_multiply_broadcastable( name=floor_a, input_names=[a_div_b, b], output_name=floor_a) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = self._get_builder().add_subtract_broadcastable( name=node.name, input_names=[a, floor_a], output_name=node.name) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_squared_difference(self, node): assert (len(node.inputs) == 2) input_nodes, input_names, input_types = self._get_input_tensors(node) sub_node_name = node.name + '_sub_' layer = self._get_builder().add_subtract_broadcastable( name=sub_node_name, input_names=input_names, output_name=sub_node_name) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = self._get_builder().add_unary( name=node.name, input_name=sub_node_name, output_name=node.name, mode='power', alpha=2.0) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_select(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) assert (len(input_names) == 3) cond_name, true_name, false_name = input_names if "expand_dims" in node.attr: axes = node.attr["expand_dims"] cond_output_name = node.name + '_expanded' layer = self._get_builder().add_expand_dims( name=cond_output_name, input_name=cond_name, output_name=cond_output_name, axes=axes) shapes.propagate_single_layer(layer, self.tensor_shapes) cond_name = cond_output_name layer = self._get_builder().add_where_broadcastable( name=node.name, input_names=[cond_name, true_name, false_name], output_name=node.name) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_where(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) if len(input_names) == 3: self._convert_select(node) else: assert len(input_names) == 1 layer = self._get_builder().add_where_nonzero(name=node.name, input_name=input_names[0], output_name=node.name) self.tensor_shapes[node.name] = self._get_tensor_shape_from_type(node.datatype) def _convert_softmax(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) axis = -1 if 'axis' not in node.attr else node.attr['axis'] layer = self._get_builder().add_softmax_nd( name=node.name, input_name=input_names[0], output_name=node.name, axis=axis) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_tensorarray_read(self, node): # TensorArrayReadV3 slices an element from TensorArray, which in NNSSA is a list. # This is equivalent to array gather input_nodes, input_names, input_types = self._get_input_tensors(node) slice_output_name = node.name + '_slice_' layer = self._get_builder().add_gather( name=node.name + '_gather_', input_names=input_names[::-1], output_name=slice_output_name, axis=0) shapes.propagate_single_layer(layer, self.tensor_shapes) # tensorarray_read should generate only 1 slice, so adding a squeeze should be enough layer = self._get_builder().add_squeeze( name=node.name + '_squeeze_', input_name=slice_output_name, output_name=node.name, axes=[0]) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_tensorarray_write(self, node): """def TensorArrayWrite(index, value, array): array[index] = value return array """ # node.inputs = ['index', 'value', 'array'] input_nodes, input_names, input_types = self._get_input_tensors(node) assert (len(input_names) == 3) index_name, value_name, array_name = input_names if 'dynamic_size' in input_nodes[-1].attr: builder = self._get_builder() layer = builder.add_get_shape( name=array_name + '_full_shape', input_name=array_name, output_name=array_name + '_full_shape') shapes.propagate_single_layer(layer, self.tensor_shapes) layer = builder.add_slice_static( name=array_name + '_length', input_name=array_name + '_full_shape', output_name=array_name + '_length', begin_ids=[0], end_ids=[1], begin_masks=[False], end_masks=[False], strides=[1]) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = builder.add_slice_static( name=array_name + '_element_shape', input_name=array_name + '_full_shape', output_name=array_name + '_element_shape', begin_ids=[1], end_ids=[1], begin_masks=[False], end_masks=[True], strides=[1]) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = builder.add_greater_than( name=array_name + "_is_growing", input_names=[index_name, array_name + '_length'], output_name=array_name + "_is_growing", use_greater_than_equal=True ) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = builder.add_branch( name=array_name + "_condition", input_name=array_name + "_is_growing") ifbranch = NeuralNetworkBuilder(nn_spec=layer.branch.ifBranch, disable_rank5_shape_mapping=True) layer = ifbranch.add_fill_dynamic( name=array_name + "_alloc", input_name=array_name + '_element_shape', output_name=array_name + "_alloc", value=0.0) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = ifbranch.add_expand_dims( name=array_name + "_new_element", input_name=array_name + "_alloc", output_name=array_name + "_new_element", axes=[0]) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = ifbranch.add_concat_nd( name=array_name + "_updated", input_names=[array_name, array_name + "_new_element"], output_name=array_name + "_updated", axis=0) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = ifbranch.add_copy( name=array_name + '_assign', input_name=array_name + "_updated", output_name=array_name ) shapes.propagate_single_layer(layer, self.tensor_shapes) values_name = node.name + '_expanded' layer = self._get_builder().add_expand_dims( name=values_name, input_name=value_name, output_name=values_name, axes=[0]) shapes.propagate_single_layer(layer, self.tensor_shapes) # 3 inputs: [Scatter target, indices, scatter source] layer = self._get_builder().add_scatter( name=node.name, input_names=[array_name, index_name, values_name], output_name=node.name) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_addn(self, node): # TODO: Support single value addn # Blocked by a bug in coremltools if len(node.inputs) <= 1: raise ValueError("Only supports two or more inputs for add_n operation.") input_nodes, input_names, input_types = self._get_input_tensors(node) prev_name = input_names[0] for i in range(1,len(input_names)): node_name = node.name + '_' + str(i) output_name = node.name if i == len(input_names) -1 else node_name layer = self._get_builder().add_elementwise( name=node_name, input_names=[prev_name, input_names[i]], output_name=output_name, mode='ADD') shapes.propagate_single_layer(layer, self.tensor_shapes) prev_name = node_name def _convert_concat_nd(self, node): assert len(node.inputs) > 1 input_nodes, input_names, input_types = self._get_input_tensors(node) axis = node.attr.get('axis') if axis is None: axis = input_nodes[-1].value.val if node.op == 'ConcatV2' else input_nodes[0].value.val if axis is None: raise NotImplementedError('[SSAConverter] Dynamic concatenation is not supported') input_names = input_names[:-1] if node.op == 'ConcatV2' else input_names[1:] input_types = input_types if node.op == 'ConcatV2' else input_types[1:] input_names = [name for i, name in enumerate(input_names) if self._get_tensor_shape_from_type(input_types[i])[axis] != 0] if len(input_names) == 1: self.op_tensor_map[node.name] = input_names return if node.attr.get('data_format', None) == 'NHWC_format_inserted' and (axis == 1 or axis == -3): layer = self._get_builder().add_elementwise(node.name, input_names, node.name, 'CONCAT') else: layer = self._get_builder().add_concat_nd( name=node.name, input_names=input_names, output_name=node.name, axis=axis) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_batched_mat_mul(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) weight, bias = None, None if len(input_names) == 1: weight = node.attr.get('W', node.attr.get('W_const')) bias = node.attr.get('bias') elif len(input_names) == 2 and input_nodes[1].op == 'Const': input_names = [input_names[0]] weight = input_nodes[1].value.val bias = node.attr.get('bias') transpose_a = node.attr.get('adj_x', False) or node.attr.get('transpose_a', False) transpose_b = node.attr.get('adj_y', False) or node.attr.get('transpose_b', False) if len(input_names) == 1 and transpose_b and weight is not None: weight = weight.transpose((1, 0)) n_rows = 0 if weight is None else weight.shape[0] n_cols = 0 if weight is None else weight.shape[1] builder = self._get_builder() layer = builder.add_batched_mat_mul( name=node.name, input_names=input_names, output_name=node.name, W=weight, # (batched_mat_mul requires Cin, Cout) weight_matrix_rows=n_rows, weight_matrix_columns=n_cols, bias=bias, transpose_a=transpose_a, transpose_b=transpose_b) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_split(self, node): # Only handles static splits axis = node.attr['split_dim'] split = node.attr['split'] split = [size for size in split if size != 0] num_splits = len(split) has_equal_splits = all([size == split[0] for size in split]) input_nodes, input_names, input_types = self._get_input_tensors(node) if num_splits == 1: if node.name in [feature.name for feature in self.get_spec().description.output]: layer = self._get_builder().add_activation( name=node.name, non_linearity='LINEAR', input_name=input_names[-1], output_name=node.name, params=(1.0, 0.0)) shapes.propagate_single_layer(layer, self.tensor_shapes) else: self.op_tensor_map[node.name] = [input_names[-1]] return # Split output is a tuple. We need to split them into a list of tensors output_names = [(node.name + '_' + str(i)) for i in range(num_splits)] if node.name in self.op_tensor_map: raise ValueError( '[SSAConverter] split node %s should not be visited twice.' % node.name) self.op_tensor_map[node.name] = output_names tensor_id = -1 if node.op == 'Split' else 0 if has_equal_splits: layer = self._get_builder().add_split_nd( name=node.name, input_name=input_names[tensor_id], output_names=output_names, axis=axis, num_splits=num_splits) else: layer = self._get_builder().add_split_nd( name=node.name, input_name=input_names[tensor_id], output_names=output_names, axis=axis, split_sizes=list(split)) if not has_equal_splits: for i, name in enumerate(output_names): self.tensor_shapes[name] = self._get_tensor_shape_from_type(node.datatype.T[i]) else: shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_identity(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) if node.name in [feature.name for feature in self.get_spec().description.output]: layer = self._get_builder().add_activation( name=node.name, non_linearity='LINEAR', input_name=input_names[0], output_name=node.name, params=(1.0, 0.0)) shapes.propagate_single_layer(layer, self.tensor_shapes) else: self.op_tensor_map[node.name] = [input_names[-1]] def _convert_tensorarray_size(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) assert (len(input_names) == 1) builder = self._get_builder() layer = builder.add_get_shape( name=node.name + '_full_shape', input_name=input_names[0], output_name=node.name + '_full_shape') shapes.propagate_single_layer(layer, self.tensor_shapes) layer = builder.add_slice_static( name=node.name, input_name=node.name + '_full_shape', output_name=node.name, begin_ids=[0], end_ids=[1], begin_masks=[False], end_masks=[False], strides=[1]) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_tensorarray_gather(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) assert (len(input_names) == 2) layer = self._get_builder().add_gather( name=node.name, input_names=input_names[::-1], output_name=node.name, axis=0) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_pack(self, node): axis = node.attr.get('axis') axis = axis if axis else 0 input_nodes, input_names, input_types = self._get_input_tensors(node) if len(input_names) == 1: if _is_scalar(input_types[0]): # skip /identity op in this case self.op_tensor_map[node.name] = input_names else: layer = self._get_builder().add_expand_dims( name=node.name, input_name=input_names[0], output_name=node.name, axes=[0]) else: if all([_is_scalar(input_type) for input_type in input_types]): layer = self._get_builder().add_concat_nd( name=node.name, input_names=input_names, output_name=node.name, axis=axis) else: layer = self._get_builder().add_stack( name=node.name, input_names=input_names, output_name=node.name, axis=axis) self.tensor_shapes[node.name] = self._get_tensor_shape_from_type(node.datatype) def _convert_unpack(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) output_names = [(node.name + '_' + str(i) + '_') for i in range(len(node.datatype.T))] self.op_tensor_map[node.name] = output_names num_splits = node.attr['num'] axis = int(node.attr['axis']) interm_output_names = [name + '_unsqueezed_' for name in output_names] layer = self._get_builder().add_split_nd( name=node.name, input_name=input_names[0], output_names=interm_output_names, axis=axis, num_splits=num_splits) shapes.propagate_single_layer(layer, self.tensor_shapes) for in_name, out_name in zip(interm_output_names, output_names): layer = self._get_builder().add_squeeze( name=out_name, input_name=in_name, output_name=out_name, axes=[0]) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_gather(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) # NNSSA: [u'encoder/Variable/read', u'Placeholder', u'encoder/embedding_lookup/axis'] # CoreML Given two inputs, 'data' and 'indices', gather the slices of 'data' axis = node.attr['axis'] layer = self._get_builder().add_gather( name=node.name, input_names=input_names[0:2], output_name=node.name, axis=axis) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_gather_nd(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) layer = self._get_builder().add_gather_nd( name=node.name, input_names=input_names, output_name=node.name ) self.tensor_shapes[node.name] = self._get_tensor_shape_from_type(node.datatype) def _convert_scatter_nd(self, node): assert len(node.inputs) == 3 input_nodes, input_names, input_types = self._get_input_tensors(node) indices, updates, shape = input_names if input_nodes[2].value: output_shape = input_nodes[2].value.val layer = self._get_builder().add_fill_static( name=node.name + '_tmp', output_name=node.name + '_tmp', output_shape=output_shape, ) else: layer = self._get_builder().add_fill_dynamic( name=node.name + '_tmp', input_name= shape, output_name=node.name + '_tmp' ) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = self._get_builder().add_scatter_nd( name=node.name, input_names=[node.name + '_tmp', indices, updates], output_name=node.name, mode='ADD' ) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_unary_square(self, node): assert len(node.inputs) == 1 input_nodes, input_names, input_types = self._get_input_tensors(node) layer = self._get_builder().add_elementwise( name=node.name, input_names=input_names * 2, output_name=node.name, mode='MULTIPLY') shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_unary_neg(self, node): assert len(node.inputs) == 1 input_nodes, input_names, input_types = self._get_input_tensors(node) layer = self._get_builder().add_elementwise( name=node.name, input_names=[input_names[0]], output_name=node.name, mode='MULTIPLY', alpha=-1.0) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_conv2d(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) weight = None bias = None if len(input_names) == 1: weight = node.attr.get('W', node.attr.get('W_const')) bias = node.attr.get('bias') elif len(input_names) == 2: input_names = [input_names[0]] if input_nodes[1].op == 'Const': weight = input_nodes[1].value.val bias = node.attr.get('bias') if weight is None: raise NotImplementedError( '[SSAConverter] Dynamic weights in convolution not implemented') dilations_factors = node.attr.get('dilations', [1, 1, 1, 1]) assert len(weight.shape) == 4, 'Conv2d: weight parameter not rank 4' data_format = node.attr.get('data_format', 'NHWC') conv_input_name = input_names[0] conv_output_name = node.name builder = self._get_builder() if data_format == 'NHWC' or data_format == 'NHWC_format_inserted': stride_height = node.attr.get('strides', [1, 1, 1, 1])[1] stride_width = node.attr.get('strides', [1, 1, 1, 1])[2] else: stride_height = node.attr.get('strides', [1, 1, 1, 1])[-2] stride_width = node.attr.get('strides', [1, 1, 1, 1])[-1] border_mode = node.attr.get('padding').lower() groups = 1 kernel_height, kernel_width, kernel_channels, output_channels = weight.shape if node.op == 'DepthwiseConv2dNative': depth_multiplier = weight.shape[3] weight = np.reshape(weight, (kernel_height, kernel_width, 1, kernel_channels * depth_multiplier)) output_channels = kernel_channels * depth_multiplier groups = kernel_channels kernel_channels = 1 pad_h = node.attr.get('pad_h', [0, 0]) pad_w = node.attr.get('pad_w', [0, 0]) paddings_before = node.attr.get('_paddings_before', None) if paddings_before: layer = builder.add_padding( name=node.name + '_paddings_before', left=paddings_before[0], right=paddings_before[1], top=paddings_before[2], bottom=paddings_before[3], value=0, input_name=conv_input_name, output_name=node.name + '_paddings_before' ) shapes.propagate_single_layer(layer, self.tensor_shapes) builder.add_convolution( name=conv_output_name, kernel_channels=kernel_channels, output_channels=output_channels, height=kernel_height, width=kernel_width, stride_height=stride_height, stride_width=stride_width, border_mode=border_mode, groups=groups, W=weight, b=bias, has_bias=(bias is not None), is_deconv=False, output_shape=None, input_name=conv_input_name if not paddings_before else node.name + '_paddings_before', output_name=conv_output_name, dilation_factors=dilations_factors, padding_bottom=pad_h[0], padding_top=pad_h[1], padding_left=pad_w[0], padding_right=pad_w[1] ) self.tensor_shapes[node.name] = self._get_tensor_shape_from_type(node.datatype) def _convert_pool(self, node, layer_type): input_nodes, input_names, input_types = self._get_input_tensors(node) data_format = node.attr.get('data_format', 'NHWC') kernel_sizes = node.attr.get('ksize', [1, 1, 1, 1]) stride_sizes = node.attr.get('strides', [1, 1, 1, 1]) padding_type = node.attr.get('padding') global_pooling = node.attr.get('global_pooling', False) if data_format == 'NHWC' or data_format == 'NHWC_format_inserted': kernel_height = kernel_sizes[1] kernel_width = kernel_sizes[2] stride_height = stride_sizes[1] stride_width = stride_sizes[2] else: kernel_height = kernel_sizes[-2] kernel_width = kernel_sizes[-1] stride_height = stride_sizes[-2] stride_width = stride_sizes[-1] self._get_builder().add_pooling( name=node.name, height=kernel_height, width=kernel_width, stride_height=stride_height, stride_width=stride_width, layer_type=layer_type, padding_type=padding_type, input_name=input_names[0], output_name=node.name, exclude_pad_area=True, is_global=global_pooling ) self.tensor_shapes[node.name] = self._get_tensor_shape_from_type(node.datatype) def _convert_maxpool(self, node): self._convert_pool(node, 'MAX') def _convert_avgpool(self, node): self._convert_pool(node, 'AVERAGE') def _convert_reshape(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) if _is_scalar(node.datatype) and self._get_tensor_shape_from_type(input_types[0]) == (1,): # skip/identity op in that case self.op_tensor_map[node.name] = [input_names[0]] elif self._get_tensor_shape_from_type(input_types[0]) == self._get_tensor_shape_from_type(node.datatype) \ and sum([i < 0 for i in self._get_tensor_shape_from_type(node.datatype)]) <= 1: # in this case reshape is not changing the shape self.op_tensor_map[node.name] = [input_names[0]] elif (builtins.is_tensor(node.datatype) and sum([i < 0 for i in self._get_tensor_shape_from_type(node.datatype)]) <= 1): output_shape = self._get_tensor_shape_from_type(node.datatype) layer = self._get_builder().add_reshape_static( name=node.name, input_name=input_names[0], output_name=node.name, output_shape=output_shape) shapes.propagate_single_layer(layer, self.tensor_shapes) else: layer = self._get_builder().add_reshape_dynamic( name=node.name, input_names=input_names, output_name=node.name) self.tensor_shapes[node.name] = self._get_tensor_shape_from_type(node.datatype) def _convert_matrix_band_part(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) assert (len(input_names) == 3) assert all([x.op == 'Const' for x in input_nodes[-2:]]) lower = input_nodes[1].value.val upper = input_nodes[2].value.val builder = self._get_builder() builder.add_matrix_band_part( name = node.name, input_name= input_names[0], output_name=node.name, num_lower=lower, num_upper=upper) self.tensor_shapes[node.name] = self._get_tensor_shape_from_type(node.datatype) def _convert_argmax(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) axis = node.attr['reduction_indices'][0] layer = self._get_builder().add_argmax( name=node.name, input_name=input_names[0], output_name=node.name, axis=axis, keepdims=node.attr.get("keep_dims", False)) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_argmin(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) axis = node.attr['reduction_indices'][0] layer = self._get_builder().add_argmin( name=node.name, input_name=input_names[0], output_name=node.name, axis=axis, keepdims=node.attr.get("keep_dims", False)) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_reverse(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) reverse_axes = input_nodes[1].value.val rank = len(self.tensor_shapes[input_names[0]]) reverse_dim = [False] * rank for axis in reverse_axes: reverse_dim[axis] = True layer = self._get_builder().add_reverse( name=node.name, input_name=input_names[0], output_name=node.name, reverse_dim=reverse_dim) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_expand_dims(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) if _is_scalar(input_types[0]): # skip/identity op in that case input_nodes[0].datatype = builtins.tensor(input_types[0], (1,)) self.op_tensor_map[node.name] = [input_names[0]] if len(input_names) == 2 and input_nodes[1].value.val is None: raise NotImplementedError("[SSAConverter] Cannot handle dynamic expandDims") axes = input_nodes[1].value.val axes = list(axes) if isinstance(axes, Iterable) else [axes] layer = self._get_builder().add_expand_dims( name=node.name, input_name=input_names[0], output_name=node.name, axes=axes) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_squeeze(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) axes = node.attr["squeeze_dims"] layer = self._get_builder().add_squeeze( name=node.name, input_name=input_names[0], output_name=node.name, axes=axes) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_cast(self, node): assert len(node.inputs) == 1 input_nodes, input_names, input_types = self._get_input_tensors(node) layer = self._get_builder().add_round( name=node.name, input_name=input_names[0], output_name=node.name) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_reverse_sequence(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) batch_axis = node.attr['batch_dim'] seq_axis = node.attr['seq_dim'] layer = self._get_builder().add_reverse_sequence( name=node.name, input_names=input_names, output_name=node.name, batch_axis=batch_axis, seq_axis=seq_axis) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_embedding(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) weight = None if len(input_names) == 1: weight = node.attr.get('W') elif len(input_names) == 2 and input_nodes[1].op == 'Const': weight = input_nodes[1].value.val # (batch, depth, out_channels) if weight is None: raise ValueError('[SSAConverter] Unable to handle dynamic embedding') out_channels = weight.shape[-1] depth = node.attr['depth'] weight = weight.reshape([depth, out_channels]).transpose((1, 0)) expanddim_name = node.name + '_expandim_' layer = self._get_builder().add_expand_dims( name=expanddim_name, input_name=input_names[0], output_name=expanddim_name, axes=[-1]) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = self._get_builder().add_embedding_nd( name=node.name, input_name=expanddim_name, output_name=node.name, vocab_size=depth, embedding_size=out_channels, W=weight) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_tile(self, node): assert len(node.inputs) == 2 input_nodes, input_names, input_types = self._get_input_tensors(node) reps = input_nodes[1].value.val layer = self._get_builder().add_tile( name=node.name, input_name=input_names[0], output_name=node.name, reps=reps ) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_lstm_block_cell(self, node): assert len(node.inputs) == 5 input_nodes, input_names, input_types = self._get_input_tensors(node) x, w_name, b_name, h_prev, c_prev = input_names weight = input_nodes[1].value.val bias = input_nodes[2].value.val builder = self._get_builder() def igfo_to_ifog(data): i, g, f, o = np.split(data, 4, axis=-1) return np.concatenate([i, f, o, g], axis=-1) hidden_size = weight.shape[-1] // 4 input_size = weight.shape[0] - hidden_size W_h_fw = weight[input_size:, :4 * hidden_size] W_h_fw = igfo_to_ifog(W_h_fw) W_h_fw = np.transpose(W_h_fw, [1, 0]) W_h_fw = np.ascontiguousarray(W_h_fw) W_h_fw = np.split(W_h_fw, 4, axis=0) W_x_fw = weight[:input_size, :4 * hidden_size] W_x_fw = igfo_to_ifog(W_x_fw) W_x_fw = np.transpose(W_x_fw, [1, 0]) W_x_fw = np.ascontiguousarray(W_x_fw) W_x_fw = np.split(W_x_fw, 4, axis=0) b_fw = bias[:4 * hidden_size] b_fw = igfo_to_ifog(b_fw) b_fw = np.split(b_fw, 4, axis=-1) forget_bias = node.attr.get('forget_bias') has_forget_bias = forget_bias and forget_bias != 0.0 if has_forget_bias: b_fw[1] += forget_bias layer = builder.add_expand_dims( name=node.name + '_in_expand', input_name=x, output_name=node.name + '_in_expand', axes=[-1, -2] ) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = builder.add_expand_dims( name=node.name + '_h_prev_expand', input_name=h_prev, output_name=node.name + '_h_prev_expand', axes=[0, -1, -2] ) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = builder.add_expand_dims( name=node.name + '_c_prev_expand', input_name=c_prev, output_name=node.name + '_c_prev_expand', axes=[0, -1, -2] ) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = builder.add_unilstm( name=node.name + '_lstm', W_h=W_h_fw, W_x=W_x_fw, b=b_fw, hidden_size=hidden_size, input_size=input_size, input_names=[ node.name + '_in_expand', node.name + '_h_prev_expand', node.name + '_c_prev_expand' ], output_names=[ node.name + '_lstm_out', node.name + '_lstm_h', node.name + '_lstm_c', ], forget_bias=has_forget_bias, output_all=True, ) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = builder.add_squeeze( name=node.name + '_out', input_name=node.name + '_lstm_out', output_name=node.name + '_out', axes=[-1, -2] ) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = builder.add_copy( name=node.name + '_temp_h', input_name=node.name + '_lstm_out', output_name=node.name + '_temp_h' ) shapes.propagate_single_layer(layer, self.tensor_shapes) # workaround: Core ML LSTM layer outputs the states on last sequence layer = builder.add_broadcast_to_like( name=node.name + '_temp_c', input_names=[node.name + '_lstm_c', node.name + '_lstm_out'], output_name=node.name + '_temp_c', ) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = builder.add_squeeze( name=node.name + '_h', input_name=node.name + '_temp_h', output_name=node.name + '_h', axes=[-1, -2] ) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = builder.add_squeeze( name=node.name + '_c', input_name=node.name + '_temp_c', output_name=node.name + '_c', axes=[-1, -2] ) shapes.propagate_single_layer(layer, self.tensor_shapes) self.op_tensor_map[node.name] = [ node.name + '_out', node.name + '_h', node.name + '_c' ] def _convert_constant_pad(self, node): # operator Pad has 2 inputs, PadV2 has 3 inputs assert len(node.inputs) == 2 or len(node.inputs) == 3 input_nodes, input_names, input_types = self._get_input_tensors(node) constant_value = 0 if len(node.inputs) == 3: constant_value = input_nodes[2].value.val if constant_value == -np.inf: INT_MIN = - np.iinfo(np.int64).max - 1 constant_value = np.float(INT_MIN) if constant_value == np.inf: INT_MAX = np.iinfo(np.int64).max constant_value = np.float(INT_MAX) # this layer takes at most 2 inputs input_names = input_names[:2] layer = self._get_builder().add_constant_pad( name=node.name, input_names=input_names, output_name=node.name, value=constant_value ) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_mirror_pad(self, node): assert len(node.inputs) == 2 input_nodes, input_names, input_types = self._get_input_tensors(node) paddings = input_nodes[1].value.val # rank 4, nhwc left, right = paddings[2][0], paddings[2][1] top, bottom = paddings[1][0], paddings[1][1] if node.attr.get('mode', '').lower() == 'symmetric': warn('[SSAConverter]Warning: Symmetric MirrorPad is not supported' 'but can be approximated with non-symmetric padding in some' 'cases. Conversion will continue, but expect some loss' 'of model accuracy.') builder = self._get_builder() layer = builder.add_padding( name=node.name, left=left, right=right, top=top, bottom=bottom, input_name=input_names[0], output_name=node.name, padding_type='reflection' ) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_topk(self, node): assert len(node.inputs) == 2 if node.attr.get('sorted') is False: raise NotImplementedError('sorted should be set to True.') input_nodes, input_names, input_types = self._get_input_tensors(node) k = input_nodes[1].value.val output_names = [(node.name + '_' + str(i)) for i in range(2)] layer = self._get_builder().add_topk( name=node.name, input_names=[input_names[0]], output_names=output_names, k=k, axis=-1 ) shapes.propagate_single_layer(layer, self.tensor_shapes) self.op_tensor_map[node.name] = output_names def _convert_unary_log_softmax(self, node): assert len(node.inputs) == 1 input_nodes, input_names, input_types = self._get_input_tensors(node) axis = -1 if 'axis' not in node.attr else node.attr['axis'] layer = self._get_builder().add_reduce_logsumexp( name=node.name + "_logsumexp", input_name=input_names[0], output_name=node.name + "_logsumexp", axes=[axis], keepdims=True, reduce_all=False ) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = self._get_builder().add_subtract_broadcastable( name=node.name, input_names=input_names + [node.name + "_logsumexp"], output_name=node.name ) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_unary_inverse(self, node): assert len(node.inputs) == 1 input_nodes, input_names, input_types = self._get_input_tensors(node) layer = self._get_builder().add_unary( name=node.name, input_name=input_names[0], output_name=node.name, mode='inverse' ) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_batchnorm(self, node): assert len(node.inputs) == 1 input_nodes, input_names, input_types = self._get_input_tensors(node) if 'gamma' not in node.attr or 'beta' not in node.attr: raise ValueError('BatchNorm node must have attributes \'gamma\' and \'beta\'') gamma = node.attr.get('gamma') num_channels = len(gamma) beta = node.attr.get('beta') mean = node.attr.get('mean', np.zeros((num_channels,))) variance = node.attr.get('variance', np.ones((num_channels,))) layer = self._get_builder().add_batchnorm( name=node.name, channels=num_channels, gamma=gamma, beta=beta, mean=mean, variance=variance, input_name=input_names[0], output_name=node.name ) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_unary_common(self, node): assert len(node.inputs) == 1 input_nodes, input_names, input_types = self._get_input_tensors(node) op = node.op.lower() # type of the unary operator if op in ['sqrt', 'rsqrt', 'exp', 'log', 'abs']: layer = self._get_builder().add_unary( name=node.name, input_name=input_names[0], output_name=node.name, mode=op) else: # same function name for TensorFlow and Core ML func = getattr(self._get_builder(), 'add_' + op) layer = func(name=node.name, input_name=input_names[0], output_name=node.name) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_unary_trigonometric(self, node): assert len(node.inputs) == 1 input_nodes, input_names, input_types = self._get_input_tensors(node) op = node.op.lower() # type of the unary operator # assumes TensorFlow and Core ML has same op name func = getattr(self._get_builder(), 'add_' + op) layer = func(name=node.name, input_name=input_names[0], output_name=node.name) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_unary_activation(self, node): assert len(node.inputs) == 1 input_nodes, input_names, input_types = self._get_input_tensors(node) op = node.op.upper() # type of the unary operator params = None if op in ['LEAKYRELU']: params = ([node.attr['alpha']]) elif op in ['ELU']: params = 1.0 layer = self._get_builder().add_activation( name=node.name, input_name=input_names[0], output_name=node.name, non_linearity=op, params=params ) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_unary_activation_relu6(self, node): assert len(node.inputs) == 1 input_nodes, input_names, input_types = self._get_input_tensors(node) builder = self._get_builder() layer = builder.add_activation( name=node.name + '_relu', input_name=input_names[0], output_name=node.name + '_relu', non_linearity='RELU', ) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = builder.add_clip( name=node.name, input_name=node.name + '_relu', output_name=node.name, max_value=6.0 ) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_gelu(self, node): assert len(node.inputs) == 1 input_nodes, input_names, input_types = self._get_input_tensors(node) # Core ML has 3 modes: EXACT, TANH_APPROXIMATION, SIGMOID_APPROXIMATION layer = self._get_builder().add_gelu( name=node.name, input_name=input_names[0], output_name=node.name, mode='TANH_APPROXIMATION') output_shape = self._get_tensor_shape_from_type(node.datatype) shapes.propagate_single_layer(layer, self.tensor_shapes, output_shapes=[output_shape]) def _convert_reduction(self, node): assert len(node.inputs) == 2 input_nodes, input_names, input_types = self._get_input_tensors(node) if len(input_names) == 2: axes = np.array(input_nodes[1].value.val).flatten() reduction_indices = list(axes) if isinstance(axes, Iterable) else [axes] elif 'reduction_indices' in node.attr: reduction_indices = node.attr['reduction_indices'] else: reduction_indices = node.attr['axis'] if 'keep_dims' in node.attr: keepdims = node.attr['keep_dims'] else: keepdims = node.attr['keepdims'] op = node.op.lower() # type of the unary operator if op in ['all', 'any']: op = 'prod' if op == 'all' else 'sum' func = getattr(self._get_builder(), 'add_reduce_' + op) layer = func( name=node.name, input_name=input_names[0], output_name=node.name, axes=reduction_indices, keepdims=keepdims, reduce_all=not reduction_indices ) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_resize_bilinear(self, node): # In TF, ResizeBilinear requires channel-last image axis order input_nodes, input_names, input_types = self._get_input_tensors(node) if len(input_names) == 2 and input_nodes[1].op == 'Const': target_size = input_nodes[1].value.val else: raise ValueError('[SSAConverter] Unable to determine target size' 'for ResizeBilinear') mode = 'STRICT_ALIGN_ENDPOINTS_MODE' if node.attr.get( 'align_corners', False) else 'UPSAMPLE_MODE' builder = self._get_builder() layer = builder.add_resize_bilinear( name=node.name, input_name=input_names[0], output_name=node.name, target_height=target_size[0], target_width=target_size[1], mode=mode) output_shape = self._get_tensor_shape_from_type(node.datatype) shapes.propagate_single_layer(layer, self.tensor_shapes, output_shapes=[output_shape]) def _convert_resize_nearest_neighbor(self, node): # In TF, ResizeNearestNeighbor requires channel-last image axis order # During conversion, NNSSA's output shape should have been modified # to NCHW in transform_nhwc_to_nchw() input_nodes, input_names, input_types = self._get_input_tensors(node) if len(input_names) == 2 and input_nodes[1].op == 'Const': target_size = input_nodes[1].value.val else: raise ValueError('[SSAConverter] Unable to determine target size' 'for ResizeNearestNeighbor') try: input_shape = self._get_tensor_shape_from_type(input_types[0]) except: input_shape = None if input_shape is None or len(input_shape) != 4: raise ValueError('[SSAConverter] ResizeNearestNeighbor has invalid' 'input shape {}'.format(input_shape)) if target_size[0] < input_shape[2] and target_size[1] < input_shape[3]: self._convert_resize_bilinear(node) elif target_size[0] > input_shape[2] and target_size[1] > input_shape[3]: if (target_size[0] % input_shape[2] > 0 or target_size[1] % input_shape[3] > 0): raise ValueError('[SSAConverter] Unsupported fractional' 'nearest-neighbor upsampling') scaling_factor_h = int(target_size[0] / input_shape[2]) scaling_factor_w = int(target_size[1] / input_shape[3]) if scaling_factor_h <= 0 or scaling_factor_w <= 0: raise ValueError('[SSAConverter] Invalid scaling factor.') if node.attr.get('align_corners', False) is True: raise ValueError('[SSAConverter] CoreML does not support ' 'ResizeNearestNeighbor with align_core.') builder = self._get_builder() layer = builder.add_upsample( name=node.name, scaling_factor_h=scaling_factor_h, scaling_factor_w=scaling_factor_w, input_name=input_names[0], output_name=node.name, mode='NN') output_shape = self._get_tensor_shape_from_type(node.datatype) shapes.propagate_single_layer(layer, self.tensor_shapes, output_shapes=[output_shape]) else: raise NotImplementedError("[SSAConverter] Unsupported resizing option.") def _convert_layer_normalization(self, node): assert len(node.inputs) == 1 input_nodes, input_names, input_types = self._get_input_tensors(node) input_name = input_names[0] builder = self._get_builder() gamma = node.attr['gamma'] beta = node.attr['beta'] axes = node.attr['axes'] epsilon = node.attr['epsilon'] input_shape = list(input_types[0].get_shape()) if (len(input_shape) in [2, 3] and len(axes) == 1 and \ axes[0] == len(input_shape) - 1): # Performance enhancement for some models with layer-norm builder.add_reshape_static(name=input_name + '_reshape', input_name=input_name, output_name=input_name + '_reshape', output_shape=input_shape + [1, 1]) builder.add_mvn(name=input_name + '_mvn', input_name=input_name + '_reshape', output_name=input_name + '_mvn', across_channels=True, normalize_variance=True, epsilon=epsilon) builder.add_scale(name=node.name + '_5d', input_name=input_name + '_mvn', output_name=node.name + '_5d', W=gamma, b=beta, has_bias=True, shape_scale=[len(gamma)], shape_bias=[len(beta)]) builder.add_reshape_static(name=node.name, input_name=node.name + '_5d', output_name=node.name, output_shape=input_shape) else: # General implementation input_shape = input_types[0].get_shape() rdims = len(axes) normalized_shape = node.datatype.get_shape()[-rdims:] if gamma.shape != normalized_shape: gamma = np.zeros(normalized_shape) + gamma if beta.shape != normalized_shape: beta = np.zeros(normalized_shape) + beta builder.add_layer_normalization(node.name, input_name, node.name, normalized_shape, gamma, beta, eps=1e-5) self.tensor_shapes[node.name] = self._get_tensor_shape_from_type( node.datatype) def _convert_binary(self, node): """ Convert binary operator - Attempts to add elementwise operator if possible - Otherwise, inserts broadcastable operator """ def _is_elementwise_scalar_check(input_type): """ Checks if element is scalar - A scalar - 0-D tensor - 1-D tensor with only one element """ if _is_scalar(input_type): return True shape = input_type.get_shape() if builtins.is_tensor(input_type) and len(shape) == 1 and shape[0] == 1: return True return False # CoreML elementwise operator has limited brodcastable support # Check if first shape can be broadcasted to second shape def _is_broadcastable_shape(shape_0, shape_1): assert (len(shape_0) > 0 and len(shape_1) > 0) if shape_0[0] != 1 and shape_0[0] != shape_1[0]: return False if shape_0[1:] == [1] * (len(shape_0)-1): return True return False def _convert_binary_elementwise(node): """ Adds binary elementwise operator - Returns True if successful - Otherwise returns False """ assert len(node.inputs) == 2 input_nodes, input_names, input_types = self._get_input_tensors(node) builder = self._get_builder() elementwise_support = {'add', 'addv2', 'sub', 'mul', 'realdiv'} op = node.op.lower() if op not in elementwise_support: return False # If any of the input is dynamic, cannot add Elementwise operator for _input in input_types: if -1 in self._get_tensor_shape_from_type(_input): return False alpha = None inputs = [] if input_nodes[1].op == 'Const' and _is_elementwise_scalar_check(input_types[1]): # Note alpha is second input is scalar alpha = input_nodes[1].value.val inputs = [input_names[0]] elif input_nodes[0].op == 'Const' and _is_elementwise_scalar_check(input_types[0]): # Note alpha is first input is scalar alpha = input_nodes[0].value.val inputs = [input_names[1]] else: # If both inputs are not scalar, ensure shape is same # If any of the input is not tensor, add broadcastable layer instead if not (builtins.is_tensor(input_types[0]) and builtins.is_tensor(input_types[1])): return False shape_0 = list(input_types[0].get_shape()) shape_1 = list(input_types[1].get_shape()) # Make sure, any of the input is not rank-0 if len(shape_0) == 0 or len(shape_1) == 0: return False if _is_broadcastable_shape(shape_0, shape_1) or _is_broadcastable_shape(shape_1, shape_0): pass # NOTE: Special case, one of the input has multiple 1 dims and same shape # e.g. (1, 4, 5) and (4, 5): in this case, we can expand second # input to make equivalent to (1, 4, 5) elif abs(len(shape_0) - len(shape_1)) > 0: small_index = 1 if len(shape_0) > len(shape_1) else 0 # Switch shape and make first shape smaller to infer axis information if small_index == 1: shape_0, shape_1 = shape_1, shape_0 same_shape_index = len(shape_1) - len(shape_0) shape_temp = [1] * same_shape_index + shape_0 if shape_temp != shape_1: return False # Extend one of the input to allow use of elementwise operator layer = builder.add_expand_dims(name=node.name+'_'+input_names[small_index]+'_'+'_expand_dims', input_name=input_names[small_index], output_name=input_names[small_index]+'_expanded', axes=list(range(same_shape_index))) shapes.propagate_single_layer(layer, self.tensor_shapes) input_names[small_index] += '_expanded' elif shape_0 != shape_1: return False inputs = input_names # Div operation cannot be simulated with more than one input and # without Alpha if op == 'realdiv' and alpha is None: return False if op == 'realdiv': # Inverse Alpha to simulate DIV using MUL operator if alpha is None: raise ValueError("Incorrect configuration!! Alpha not provided for Elementwise Div operator") alpha = 1 / float(alpha) elif op == 'sub': if alpha and inputs[0] == input_names[0]: alpha = -alpha else: neg_index = 1 if alpha: neg_index = 0 layer = builder.add_elementwise(name=node.name+'_'+inputs[neg_index]+'_neg', input_names=[inputs[neg_index]], output_name=inputs[neg_index]+'_neg', mode='MULTIPLY', alpha=-1.0) inputs[neg_index] += '_neg' shapes.propagate_single_layer(layer, self.tensor_shapes) # map certain ops to different but equivalent ops mapping_op = {'ADDV2':'ADD', 'SUB':'ADD', 'REALDIV':'MULTIPLY', 'MUL':'MULTIPLY'} op = op.upper() op = mapping_op.get(op, op) layer = builder.add_elementwise(name=node.name, input_names=inputs, output_name=node.name, mode=op, alpha=alpha) shapes.propagate_single_layer(layer, self.tensor_shapes) return True # Try to add Elementwise operator if possible, # If configuration not supported, insert broadcastable operator instead if not _convert_binary_elementwise(node): self._convert_binary_broadcastable(node) def _convert_binary_broadcastable(self, node): assert len(node.inputs) == 2 input_nodes, input_names, input_types = self._get_input_tensors(node) builder = self._get_builder() op = node.op.lower() # type of the unary operator compare_greater_ops = {'greater', 'greaterequal'} compare_equal_ops = {'equal', 'notequal'} compare_less_ops = {'less', 'lessequal'} logical_ops = {'logicaland': 'AND', 'logicalor': 'OR'} math_ops = {'sub': 'subtract', 'mul': 'multiply', 'realdiv': 'divide', 'floordiv': 'floor_div', 'maximum': 'max', 'minimum': 'min', 'biasadd': 'add', 'pow': 'pow', 'addv2': 'add'} if op in compare_greater_ops: layer = builder.add_greater_than( name=node.name, input_names=input_names, output_name=node.name, use_greater_than_equal='equal' in op ) elif op in compare_equal_ops: op = 'not_equal' if op == 'notequal' else op func = getattr(builder, 'add_' + op) layer = func( name=node.name, input_names=input_names, output_name=node.name ) elif op in compare_less_ops: layer = builder.add_less_than( name=node.name, input_names=input_names, output_name=node.name, use_less_than_equal='equal' in op ) elif op in logical_ops.keys(): layer = self._get_builder().add_logical( name=node.name, input_names=input_names, output_name=node.name, mode=logical_ops[op] ) elif op in math_ops.keys(): func = getattr(builder, 'add_' + math_ops[op] + '_broadcastable') layer = func( name=node.name, input_names=input_names, output_name=node.name ) else: # same function name for TensorFlow and Core ML func = getattr(builder, 'add_' + op + '_broadcastable') layer = func( name=node.name, input_names=input_names, output_name=node.name ) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_fill(self, node): assert len(node.inputs) == 2 input_nodes, input_names, input_types = self._get_input_tensors(node) value = input_nodes[1].value.val layer = self._get_builder().add_fill_dynamic(name=node.name, input_name=input_names[0], output_name=node.name, value=value) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_iff(self, node): assert len(node.inputs) == 3 input_nodes, input_names, input_types = self._get_input_tensors(node) layer = self._get_builder().add_branch(name=node.name, input_name=input_names[0]) ifbranch = NeuralNetworkBuilder(nn_spec=layer.branch.ifBranch, disable_rank5_shape_mapping=True) ifbranch.add_activation(name=node.name + "_if_", non_linearity='LINEAR', input_name=input_names[1], output_name=node.name, params=(1.0, 0.0)) elsebranch = NeuralNetworkBuilder(nn_spec=layer.branch.elseBranch, disable_rank5_shape_mapping=True) elsebranch.add_activation(name=node.name + "_else_", non_linearity='LINEAR', input_name=input_names[2], output_name=node.name, params=(1.0, 0.0)) self.tensor_shapes[node.name] = self._get_tensor_shape_from_type(node.datatype) def _convert_reorganize_data(self, node): assert len(node.inputs) == 1 input_nodes, input_names, input_types = self._get_input_tensors(node) block_size = node.attr.get('block_size', 2) if node.op == 'SpaceToDepth': mode = 'SPACE_TO_DEPTH' else: # node.op == 'DepthToSpace': mode = 'DEPTH_TO_SPACE' builder = self._get_builder() layer = builder.add_reorganize_data( name=node.name, input_name=input_names[0], output_name=node.name, mode=mode, block_size=block_size ) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_space_to_batch_nd(self, node): assert len(node.inputs) == 3 input_nodes, input_names, input_types = self._get_input_tensors(node) block_shape = input_nodes[1].value.val if len(block_shape.flatten()) != 2 or block_shape[0] != block_shape[1]: raise NotImplementedError('non-equal block shape is not yet supported') paddings = input_nodes[2].value.val needs_paddings = any(paddings.flatten()) builder = self._get_builder() layer = builder.add_transpose( name=node.name + '_transpose1', input_name=input_names[0], output_name=node.name + '_transpose1', axes=[3, 0, 1, 2] ) shapes.propagate_single_layer(layer, self.tensor_shapes) if needs_paddings: left, right = paddings[1][0], paddings[1][1] top, bottom = paddings[0][0], paddings[0][1] layer = builder.add_padding( name=node.name + '_padding', left=left, right=right, top=top, bottom=bottom, input_name=node.name + '_transpose1', output_name=node.name + '_padding' ) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = builder.add_reorganize_data( name=node.name + '_reorganize', input_name=node.name + '_transpose1' if not needs_paddings else node.name + '_padding', output_name=node.name + '_reorganize', mode='space_to_depth'.upper(), block_size=block_shape[0] ) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = builder.add_transpose( name=node.name, input_name=node.name + '_reorganize', output_name=node.name, axes=[1, 2, 3, 0] ) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_batch_to_space_nd(self, node): assert len(node.inputs) == 3 input_nodes, input_names, input_types = self._get_input_tensors(node) block_shape = input_nodes[1].value.val if block_shape[0] != block_shape[1]: raise NotImplementedError('non-equal block shape is not yet supported') crops = input_nodes[2].value.val needs_cropping = any(crops.flatten()) builder = self._get_builder() layer = builder.add_transpose( name=node.name + '_transpose1', input_name=input_names[0], output_name=node.name + '_transpose1', axes=[3, 0, 1, 2] ) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = builder.add_reorganize_data( name=node.name + '_reorganize', input_name=node.name + '_transpose1', output_name=node.name + '_reorganize', mode='depth_to_space'.upper(), block_size=block_shape[0] ) shapes.propagate_single_layer(layer, self.tensor_shapes) if needs_cropping: left, right = crops[1][0], crops[1][1] top, bottom = crops[0][0], crops[0][1] layer = builder.add_crop( name=node.name + '_cropping', left=left, right=right, top=top, bottom=bottom, offset=0, input_names=[node.name + '_reorganize'], output_name=node.name + '_cropping' ) shapes.propagate_single_layer(layer, self.tensor_shapes) layer = builder.add_transpose( name=node.name, input_name=node.name + '_reorganize' if not needs_cropping else node.name + '_cropping', output_name=node.name, axes=[1, 2, 3, 0] ) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_conv2d_transpose(self, node): assert len(node.inputs) == 3 input_nodes, input_names, input_types = self._get_input_tensors(node) input_name = input_names[2] weight = input_nodes[1].value.val bias = node.attr.get('bias') strides = node.attr.get('strides') border_mode = node.attr.get('padding').lower() stride_height = strides[1] stride_width = strides[2] kernel_channels = input_types[-1].get_shape()[1] output_channels = node.datatype.get_shape()[1] self._get_builder().add_convolution( name=node.name, kernel_channels=kernel_channels, output_channels=output_channels, height=weight.shape[0], width=weight.shape[1], stride_height=stride_height, stride_width=stride_width, border_mode=border_mode, groups=1, W=np.transpose(weight, (0, 1, 3, 2)), b=bias, has_bias=(bias is not None), is_deconv=True, output_shape=None, input_name=input_name, output_name=node.name ) self.tensor_shapes[node.name] = self._get_tensor_shape_from_type(node.datatype) def _convert_lrn(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) alpha = node.attr.get('alpha') beta = node.attr.get('beta') bias = node.attr.get('bias') depth_radius = node.attr.get('depth_radius') n_channels = self._get_tensor_shape_from_type(input_types[-1])[-1] if node.attr.get('data_format') == 'NHWC_format_inserted': n_channels = self._get_tensor_shape_from_type(input_types[-1])[1] layer = self._get_builder().add_lrn( name=node.name, input_name=input_names[0], output_name=node.name, alpha=alpha * n_channels, beta=beta, local_size=depth_radius, k=bias ) shapes.propagate_single_layer(layer, self.tensor_shapes) def _convert_clip(self, node): input_nodes, input_names, input_types = self._get_input_tensors(node) min_value = input_nodes[1].value.val max_value = input_nodes[2].value.val layer = self._get_builder().add_clip(name=node.name, input_name=input_names[0], output_name=node.name, min_value=min_value, max_value=max_value) self.tensor_shapes[node.name] = self._get_tensor_shape_from_type(node.datatype) def _convert_zeros_like(self, node): """ Convert a ZerosLike node. """ input_nodes, input_names, input_types = self._get_input_tensors(node) shape = input_types[0].get_shape() builder = self._get_builder() if -1 not in shape: # We can use fill static or load constant as shape is known val = np.zeros(shape) if len(shape) == 0: val = np.array([0]) layer = builder.add_load_constant_nd( name=node.name, output_name=node.name, constant_value=val, shape=val.shape) else: # Insert dynamic zeros like layer = builder.add_fill_like( name=node.name, input_name=input_names[0], output_name=node.name, value=0.0) shapes.propagate_single_layer(layer, self.tensor_shapes) ```
{ "source": "jlhbaseball15/DIVA", "score": 2 }
#### File: manuals/processes/sample_process.py ```python from sprokit.pipeline import process from kwiver.kwiver_process import KwiverProcess class ClassifierProcess(KwiverProcess): def __init__(self, conf): KwiverProcess.__init__(self, conf) # declare configuration self.add_config_trait("model_file", "model_file", 'dummy.model', 'Model file for the classifier') self.declare_config_using_trait('model_file') # set up flags required = process.PortFlags() required.add(self.flag_required) optional = process.PortFlags() # declare ports self.declare_input_port_using_trait('image', required) self.declare_input_port_using_trait('file_name', optional ) self.declare_output_port_using_trait( 'double_vector', required ); def _configure(self): # Configure the process self.classifier = Classifier(self.config_value("model_file")) def _step(self): # Step Function for the process img_container = self.grab_input_using_trait('image') video_name = self.grab_input_using_trait('file_name') # Classify the image class_score = self.classifier.classify(img_container.image()) # Push results to port self.push_to_port_using_trait('double_vector', class_score) def __sprokit_register__(): from sprokit.pipeline import process_factory module_name = 'python:kwiver.ClassifierSample' if process_factory.is_process_module_loaded(module_name): return process_factory.add_process('ClassifierSample', 'Dummy Classifier', ClassifierProcess) process_factory.mark_process_module_as_loaded(module_name) ```
{ "source": "jlhbaseball15/nmt_chinese_to_english", "score": 3 }
#### File: jlhbaseball15/nmt_chinese_to_english/data_preprocessor.py ```python import numpy as np import os import gzip import pickle from IPython import embed import xml.etree.ElementTree as ET class CorpusFileMapping: def __init__(self, english_filename, chinese_filename, sentence_mappings): self.english_filename = english_filename self.chinese_filename = chinese_filename self.sentence_mappings = sentence_mappings class Sentence: def __init__(self, sentence, tag): self.tag = tag self.sentence = sentence class DatasetProcessor: def __init__(self): self.ChineseDictionary = {} self.EnglishDictionary = {} self.EnglishDataset = [] self.ChineseDataset = [] def CreateDataset(self, filename, saveDictionary=True, saveDataset=True): sentence_mappings = self.read_sentence_mapping(filename) self.ProcessSentenceMappings(sentence_mappings) if saveDictionary: self.save_dictionaries() def LoadCorpusFiles(self, filename): english_corpus_files = [] chinese_corpus_files = [] return english_corpus_files, chinese_corpus_files def CloseCorpusFiles(self, files): for f in files: f.close() def ProcessSentenceMappings(self, file_mappings, saveDatasets=True): dataset_count = 0 for i, fm in enumerate(file_mappings): print "Processing " + fm.english_filename + " and " + fm.chinese_filename english_data = self.ProcessCorpusFile(fm.english_filename, 'English') chinese_data = self.ProcessCorpusFile(fm.chinese_filename, 'Chinese') english_data, chinese_data = self.AlignDatasets(english_data, chinese_data, fm.sentence_mappings) print "Aligned " + fm.english_filename + " and " + fm.chinese_filename self.EnglishDataset.extend(english_data) self.ChineseDataset.extend(chinese_data) if i % 25 == 24: if saveDatasets: print "Saving Dataset" + str(dataset_count) self.saveDatasets(dataset_count) dataset_count += 1 self.EnglishDataset = [] self.ChineseDataset = [] self.saveDatasets(dataset_count) def read_sentence_mapping(self, xml_file): tree = ET.parse(xml_file) root = tree.getroot() file_maps = [] for linkGroup in root: english_file = linkGroup.attrib['fromDoc'] chinese_file = linkGroup.attrib['toDoc'] sentence_mappings = [] for link in linkGroup: mapping = self.processXMLMapping(link.attrib['xtargets']) sentence_mappings.append(mapping) file_map = CorpusFileMapping(english_file, chinese_file, sentence_mappings) file_maps.append(file_map) return file_maps def AlignDatasets(self, english_data, chinese_data, sentence_mappings): edata = [] cdata = [] for sm in sentence_mappings: english = [] for i in sm[0]: try: english.extend(english_data[i - 1]) except: print len(english_data) print i chinese = [] for i in sm[1]: chinese.extend(chinese_data[i - 1]) edata.append(english) cdata.append(chinese) return edata, cdata def processXMLMapping(self, link_attrib): english_chinese_split = link_attrib.split(';') for s in range(len(english_chinese_split)): if english_chinese_split[s] is '': english_chinese_split[s] = '-1' english_chinese_split[0] = map(int, english_chinese_split[0].split(' ')) english_chinese_split[1] = map(int, english_chinese_split[1].split(' ')) return english_chinese_split # this will need to change based on different xml structures, but for our data set, this splits and tokenizes the sentences def ProcessCorpusFile(self, filename, language): with gzip.open(filename, 'rb') as f: tree = ET.parse(f) data = [] root = tree.getroot() f.close() for child in root: sentence = [] for token in child: if (token.tag == 'w'): text = token.text if language is 'English': text = self.fix_lower_l(text) self.add_to_dictionary(text, language) sentence.append(text) sentence.append("</s>") data.append(sentence) return data def fix_lower_l(self, text): if 'l' in text: if text.replace('l', '') == text.replace('l', '').upper(): text = text.replace('l', 'I') return text def add_to_dictionary(self, word, language): d = None if language is 'English': d = self.EnglishDictionary elif language is 'Chinese': d = self.ChineseDictionary if word not in d.keys(): d[word] = len(d.keys()) def save_dictionaries(self): with open('Chinese_Dictionary.pkl', 'wb') as f: pickle.dump(self.ChineseDictionary, f, pickle.HIGHEST_PROTOCOL) f.close() with open('English_Dictionary.pkl', 'wb') as f: pickle.dump(self.EnglishDictionary, f, pickle.HIGHEST_PROTOCOL) f.close() def saveDatasets(self, dataset_count): e_filename = "pickle/english_dataset_" + str(dataset_count) + ".pkl" c_filename = "pickle/chinese_dataset_" + str(dataset_count) + ".pkl" e_file = open(e_filename, 'wb') c_file = open(c_filename, 'wb') pickle.dump(self.EnglishDataset, e_file) pickle.dump(self.ChineseDataset, c_file) e_file.close() c_file.close() def main(): dp = DatasetProcessor() dp.CreateDataset('en-zh_cn.xml') embed() if __name__ == '__main__': main() ``` #### File: jlhbaseball15/nmt_chinese_to_english/model.py ```python import numpy as np import pickle from IPython import embed class Weights: def __init__(self, input_nodes, hidden_nodes, output_nodes, uniform): self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # x weight values self.wix = np.random.uniform(-uniform, uniform, (self.input_nodes, self.hidden_nodes)) self.wgx = np.random.uniform(-uniform, uniform, (self.input_nodes, self.hidden_nodes)) self.wfx = np.random.uniform(-uniform, uniform, (self.input_nodes, self.hidden_nodes)) self.wox = np.random.uniform(-uniform, uniform, (self.input_nodes, self.hidden_nodes)) # h weight values self.wih = np.random.uniform(-uniform, uniform, (1, self.hidden_nodes)) self.wgh = np.random.uniform(-uniform, uniform, (1, self.hidden_nodes)) self.wfh = np.random.uniform(-uniform, uniform, (1, self.hidden_nodes)) self.woh = np.random.uniform(-uniform, uniform, (1, self.hidden_nodes)) # bias terms self.bi = np.random.uniform(-uniform, uniform, (self.hidden_nodes, 1)) self.bg = np.random.uniform(-uniform, uniform, (self.hidden_nodes, 1)) self.bf = np.random.uniform(-uniform, uniform, (self.hidden_nodes, 1)) self.bo = np.random.uniform(-uniform, uniform, (self.hidden_nodes, 1)) # output weights self.whv = np.random.uniform(-uniform, uniform, (self.hidden_nodes, self.output_nodes)) self.bv = np.random.uniform(-uniform, uniform, (self.output_nodes, 1)) class State: def __init__(self, i, g, f, o, s, h, v): self.i = i self.g = g self.f = f self.o = o self.s = s self.h = h self.v = v class LSTM: def __init__(self, input_nodes, hidden_nodes, output_nodes): self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes self.weights = Weights(input_nodes, hidden_nodes, output_nodes, 0.08) def predict(self, x, initial_h=None): b = False if initial_h is not None: h = initial_h b = True else: h = np.zeros((self.hidden_nodes, 1)) s = np.zeros((self.hidden_nodes, 1)) v = np.zeros((self.output_nodes, 1)) state = State(s, s, s, s, s, h, v) states = [state] for j, token in enumerate(x): try: assert token.shape == (self.input_nodes, 1) except AssertionError: print token.shape g = np.tanh(np.dot(self.weights.wgx.T, token) + self.weights.wgh.T*h + self.weights.bg) i = self.sigmoid(np.dot(self.weights.wix.T, token) + self.weights.wih.T*h + self.weights.bi) f = self.sigmoid(np.dot(self.weights.wfx.T, token) + self.weights.wfh.T*h + self.weights.bf) o = self.sigmoid(np.dot(self.weights.wox.T, token) + self.weights.woh.T*h + self.weights.bo) s = g*i + f*s h = o*s v = self.softmax(np.dot(self.weights.whv.T, h) + self.weights.bv) if b and j < 10: x.append(v) state = State(i, g, f, o, s, h, v) states.append(state) return states def sigmoid(self, x): return 1.0 / (1.0 + np.exp(-x)) def softmax(self, x): e_x = np.exp(x - np.max(x)) return e_x / e_x.sum() def save_weights(self, filename): weights_file = open(filename, 'wb') pickle.dump(self.weights, weights_file) weights_file.close() def load_weights(self, filename): f = open(filename) self.weights = pickle.load(f) ```
{ "source": "jlhbaseball15/object_store_downloader", "score": 3 }
#### File: object_store_downloader/cosio/upload.py ```python import os from .helper import is_file, to_absolute_path def upload_to_object_store(local, bucket_name, remote, transfer_manager): local = to_absolute_path(local) if not os.path.exists(local): print('Path does not exist') return try: if is_file(local): local_filename = os.path.basename(local) remote = os.path.join(remote, local_filename) upload_file(local, bucket_name, remote, transfer_manager) else: upload_directory(local, bucket_name, remote, transfer_manager) except Exception as e: print(e) def upload_file(local_file, bucket_name, remote_file, transfer_manager): print('Uploading file {} to bucket {} as {}'.format( local_file, bucket_name, remote_file)) future = transfer_manager.upload(local_file, bucket_name, remote_file) future.result() def upload_directory(local_directory, bucket_name, remote_directory, transfer_manager): print('Uploading local directory {} to bucket {} as {}'.format( local_directory, bucket_name, remote_directory)) future = transfer_manager.upload_directory(local_directory, bucket_name, remote_directory) future.result() ```
{ "source": "jlhcrawford/he-toolkit", "score": 3 }
#### File: logistic-regression/datasets/lr_base.py ```python import numpy as np # Sigmoid function def sigmoid(x): return 1. / (1 + np.exp(-x)) # 3-degree polynomial representation of sigmoid function, effective in range of [-5, 5] def sigmoid_poly3(x): return 0.5 - 1.20096 * (x / 8.) + 0.81562 * (x / 8.)**3 # 4-degree polynomial representation of log(sigmoid(x)) function, effective in range of [-5, 5] def log_sig4(x): return 0.000527 * x**4 - 0.0822 * x**2 + 0.5 * x - 0.78 # Realign target to -1, 1 and calculate X@y' def get_z(X, y, add1=True): if add1: X_ = np.concatenate([np.ones((X.shape[0], 1)), X], axis=1) else: X_ = np.array(X) y_ = 2 * y - 1 z = X_ * y_[:, None] return np.array(z) # Compute initial weight for logistic regression def get_initweight(X, y, add1=True): n = X.shape[0] z = get_z(X, y, add1) return np.sum(z, axis=0) / n # get evaluation metrics (accuracy, f1 score, etc.) def get_eval_metrics(actual, predicted): tp = 0 tn = 0 fp = 0 fn = 0 for a, p in zip(actual, predicted): if a == 1 and p == 1: tp += 1 elif a == 1 and p == 0: fn += 1 elif a == 0 and p == 1: fp += 1 else: tn += 1 acc = (tp + tn) / (tp + fp + tn + fn) if tp + fp > 0: precision = tp / (tp + fp) # correct 1s over predicted 1s else: precision = 0. if tp + fn > 0: recall = tp / (tp + fn) # correct 1s over actual 1s else: recall = 0. if precision + recall == 0: f1 = 0. else: f1 = 2 * (precision * recall) / (precision + recall) return acc, precision, recall, f1 # loss/gradient descent with standard sigmoid def get_lgd(X, y, w): n = X.shape[0] z = get_z(X, y) zw = z @ w # calculate loss jw = np.sum(np.log(1 + np.exp(-zw))) / n # calculate gradient descent dw = 1. / (1 + np.exp(zw)) dzw = z * dw[:, None] djw = -np.sum(dzw, axis=0) / n return jw, djw # loss/gradient descent with poly3 sigmoid def get_lgd_poly3(X, y, w): n = X.shape[0] z = get_z(X, y) zw = z @ w # calculate loss jw = np.sum(-log_sig4(zw)) / n # calculate gradient descent dw = sigmoid_poly3(zw) dzw = z * dw[:, None] djw = -np.sum(dzw, axis=0) / n return jw, djw # test standard sigmoid def test(X, y, w, add1=True): if add1: X_ = np.concatenate([np.ones((X.shape[0], 1)), X], axis=1) else: X_ = np.array(X) y_ = np.array([]) for xi in X_: xiw = np.inner(xi, w) yi = sigmoid(xiw) #1./(1+np.exp(-xiw)) if yi > 0.5: yi = 1 else: yi = 0 y_ = np.append(y_, yi) acc, _, recall, f1 = get_eval_metrics(y, y_) return np.array(y_), acc, recall, f1 # test poly3 sigmoid def test_poly3(X, y, w, add1=True): if add1: X_ = np.concatenate([np.ones((X.shape[0], 1)), X], axis=1) else: X_ = np.array(X) y_ = np.array([]) for xi in X_: xiw = np.inner(xi, w) yi = sigmoid_poly3(-xiw) #1./(1+np.exp(-xiw)) if yi > 0.5: yi = 1 else: yi = 0 y_ = np.append(y_, yi) acc, _, recall, f1 = get_eval_metrics(y, y_) return np.array(y_), acc, recall, f1 ```
{ "source": "jlhitt1993/pytentiostat", "score": 3 }
#### File: GUI/code/GUI_load_config.py ```python import sys from PySide2 import QtGui from PySide2.QtWidgets import QApplication, QWidget, QFileDialog class Ui_Load(QWidget): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(640, 480) file = self.openFileNameDialog() icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap("../pics/icon_pytentiostat.ico"), QtGui.QIcon.Normal, QtGui.QIcon.Off) MainWindow.setWindowIcon(icon) return file def setupUi_save(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(640, 480) folder = self.saveFileDialog() icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap("../pics/icon_pytentiostat.ico"), QtGui.QIcon.Normal, QtGui.QIcon.Off) MainWindow.setWindowIcon(icon) return folder def openFileNameDialog(self): options = QFileDialog.Options() options |= QFileDialog.DontUseNativeDialog file, _ = QFileDialog.getOpenFileName(self, "Load config file", "","All Files (*);;Config Files (*config.yml)", options=options) if file: return file def saveFileDialog(self): folder = QFileDialog.getExistingDirectory(self, "Select directory") if folder: return folder+'/' if __name__ == '__main__': app = QApplication(sys.argv) ex = Ui_Load() sys.exit(app.exec_()) ``` #### File: GUI/code/LSV_GUI.py ```python from PySide2 import QtCore, QtGui, QtWidgets ## Local library # GUI_function from GUI_load_config import Ui_Load from Adv_params_GUI import Ui_Adv_Params class Ui_LSV(object): def load_folder_name(self): """ Initializes the 'Load config file' window Returns ------ string : the loaded filename """ self.window = QtWidgets.QWidget() self.Load = Ui_Load() return self.Load.setupUi_save(self.window) def AP_window(self): """ Initializes the 'Advanced parameters' window Returns ------ AP : the Ui_Adv_Params object window : QtWidgets.QMainWindow object """ self.window = QtWidgets.QMainWindow() self.AP = Ui_Adv_Params() self.AP.setupUi(self.window) self.window.show() return self.AP,self.window def setupUi(self, LSV): """ Initializes the LSV window """ LSV.setObjectName("LSV") LSV.resize(800, 519) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) LSV.setPalette(palette) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap("../pics/icon_pytentiostat.ico"), QtGui.QIcon.Normal, QtGui.QIcon.Off) LSV.setWindowIcon(icon) self.centralwidget = QtWidgets.QWidget(LSV) self.centralwidget.setObjectName("centralwidget") self.rest_time_label = QtWidgets.QLabel(self.centralwidget) self.rest_time_label.setEnabled(True) self.rest_time_label.setGeometry(QtCore.QRect(10, 220, 161, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(161, 188, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(161, 188, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipText, brush) self.rest_time_label.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.rest_time_label.setFont(font) self.rest_time_label.setContextMenuPolicy(QtCore.Qt.NoContextMenu) self.rest_time_label.setAcceptDrops(False) self.rest_time_label.setAutoFillBackground(True) self.rest_time_label.setFrameShape(QtWidgets.QFrame.Box) self.rest_time_label.setFrameShadow(QtWidgets.QFrame.Sunken) self.rest_time_label.setLineWidth(1) self.rest_time_label.setMidLineWidth(1) self.rest_time_label.setScaledContents(False) self.rest_time_label.setTextInteractionFlags(QtCore.Qt.LinksAccessibleByMouse) self.rest_time_label.setObjectName("rest_time_label") self.experiment_type_label = QtWidgets.QLabel(self.centralwidget) self.experiment_type_label.setEnabled(True) self.experiment_type_label.setGeometry(QtCore.QRect(10, 50, 161, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(161, 188, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(161, 188, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipText, brush) self.experiment_type_label.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.experiment_type_label.setFont(font) self.experiment_type_label.setContextMenuPolicy(QtCore.Qt.NoContextMenu) self.experiment_type_label.setAcceptDrops(False) self.experiment_type_label.setAutoFillBackground(True) self.experiment_type_label.setFrameShape(QtWidgets.QFrame.Box) self.experiment_type_label.setFrameShadow(QtWidgets.QFrame.Sunken) self.experiment_type_label.setLineWidth(1) self.experiment_type_label.setMidLineWidth(1) self.experiment_type_label.setScaledContents(False) self.experiment_type_label.setTextInteractionFlags(QtCore.Qt.LinksAccessibleByMouse) self.experiment_type_label.setObjectName("experiment_type_label") self.experiment_step_number = QtWidgets.QLineEdit(self.centralwidget) self.experiment_step_number.setGeometry(QtCore.QRect(190, 260, 61, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) self.experiment_step_number.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.experiment_step_number.setFont(font) self.experiment_step_number.setText("") self.experiment_step_number.setFrame(True) self.experiment_step_number.setAlignment(QtCore.Qt.AlignCenter) self.experiment_step_number.setObjectName("experiment_step_number") self.select_output_filepath_button = QtWidgets.QPushButton(self.centralwidget) self.select_output_filepath_button.setGeometry(QtCore.QRect(10, 130, 161, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(91, 166, 232)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Highlight, brush) brush = QtGui.QBrush(QtGui.QColor(247, 217, 21)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Link, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.NoRole, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(248, 221, 23)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Highlight, brush) brush = QtGui.QBrush(QtGui.QColor(247, 217, 21)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Link, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.NoRole, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 120, 215)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Highlight, brush) brush = QtGui.QBrush(QtGui.QColor(247, 217, 21)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Link, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.NoRole, brush) self.select_output_filepath_button.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.select_output_filepath_button.setFont(font) self.select_output_filepath_button.setAcceptDrops(False) self.select_output_filepath_button.setWhatsThis("") self.select_output_filepath_button.setAutoFillBackground(True) self.select_output_filepath_button.setInputMethodHints(QtCore.Qt.ImhNone) self.select_output_filepath_button.setAutoDefault(False) self.select_output_filepath_button.setDefault(True) self.select_output_filepath_button.setFlat(True) self.select_output_filepath_button.setObjectName("select_output_filepath_button") self.sweep_rate_label = QtWidgets.QLabel(self.centralwidget) self.sweep_rate_label.setEnabled(True) self.sweep_rate_label.setGeometry(QtCore.QRect(10, 380, 161, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(161, 188, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(161, 188, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipText, brush) self.sweep_rate_label.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.sweep_rate_label.setFont(font) self.sweep_rate_label.setContextMenuPolicy(QtCore.Qt.NoContextMenu) self.sweep_rate_label.setAcceptDrops(False) self.sweep_rate_label.setAutoFillBackground(True) self.sweep_rate_label.setFrameShape(QtWidgets.QFrame.Box) self.sweep_rate_label.setFrameShadow(QtWidgets.QFrame.Sunken) self.sweep_rate_label.setLineWidth(1) self.sweep_rate_label.setMidLineWidth(1) self.sweep_rate_label.setScaledContents(False) self.sweep_rate_label.setTextInteractionFlags(QtCore.Qt.LinksAccessibleByMouse) self.sweep_rate_label.setObjectName("sweep_rate_label") self.end_voltage_label = QtWidgets.QLabel(self.centralwidget) self.end_voltage_label.setEnabled(True) self.end_voltage_label.setGeometry(QtCore.QRect(10, 340, 161, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(161, 188, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(161, 188, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipText, brush) self.end_voltage_label.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.end_voltage_label.setFont(font) self.end_voltage_label.setContextMenuPolicy(QtCore.Qt.NoContextMenu) self.end_voltage_label.setAcceptDrops(False) self.end_voltage_label.setAutoFillBackground(True) self.end_voltage_label.setFrameShape(QtWidgets.QFrame.Box) self.end_voltage_label.setFrameShadow(QtWidgets.QFrame.Sunken) self.end_voltage_label.setLineWidth(1) self.end_voltage_label.setMidLineWidth(1) self.end_voltage_label.setScaledContents(False) self.end_voltage_label.setTextInteractionFlags(QtCore.Qt.LinksAccessibleByMouse) self.end_voltage_label.setObjectName("end_voltage_label") self.general_parameters_label = QtWidgets.QLabel(self.centralwidget) self.general_parameters_label.setEnabled(True) self.general_parameters_label.setGeometry(QtCore.QRect(10, 10, 191, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(212, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(113, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(212, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(212, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(113, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(212, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(212, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(113, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipText, brush) self.general_parameters_label.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.general_parameters_label.setFont(font) self.general_parameters_label.setContextMenuPolicy(QtCore.Qt.NoContextMenu) self.general_parameters_label.setAcceptDrops(False) self.general_parameters_label.setAutoFillBackground(True) self.general_parameters_label.setFrameShape(QtWidgets.QFrame.Box) self.general_parameters_label.setFrameShadow(QtWidgets.QFrame.Sunken) self.general_parameters_label.setLineWidth(1) self.general_parameters_label.setMidLineWidth(1) self.general_parameters_label.setScaledContents(False) self.general_parameters_label.setTextInteractionFlags(QtCore.Qt.LinksAccessibleByMouse) self.general_parameters_label.setObjectName("general_parameters_label") self.experiment_end_voltage = QtWidgets.QLineEdit(self.centralwidget) self.experiment_end_voltage.setGeometry(QtCore.QRect(190, 340, 61, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) self.experiment_end_voltage.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.experiment_end_voltage.setFont(font) self.experiment_end_voltage.setText("") self.experiment_end_voltage.setFrame(True) self.experiment_end_voltage.setAlignment(QtCore.Qt.AlignCenter) self.experiment_end_voltage.setObjectName("experiment_end_voltage") self.experiment_type_verify = QtWidgets.QLineEdit(self.centralwidget) self.experiment_type_verify.setGeometry(QtCore.QRect(190, 50, 211, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) self.experiment_type_verify.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.experiment_type_verify.setFont(font) self.experiment_type_verify.setStyleSheet("background-color: rgb(240, 240, 240);") self.experiment_type_verify.setFrame(False) self.experiment_type_verify.setAlignment(QtCore.Qt.AlignCenter) self.experiment_type_verify.setReadOnly(True) self.experiment_type_verify.setObjectName("experiment_type_verify") self.experiment_start_voltage = QtWidgets.QLineEdit(self.centralwidget) self.experiment_start_voltage.setGeometry(QtCore.QRect(190, 300, 61, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) self.experiment_start_voltage.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.experiment_start_voltage.setFont(font) self.experiment_start_voltage.setText("") self.experiment_start_voltage.setFrame(True) self.experiment_start_voltage.setAlignment(QtCore.Qt.AlignCenter) self.experiment_start_voltage.setObjectName("experiment_start_voltage") self.output_filename_label = QtWidgets.QLabel(self.centralwidget) self.output_filename_label.setEnabled(True) self.output_filename_label.setGeometry(QtCore.QRect(10, 90, 161, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(161, 188, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(161, 188, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipText, brush) self.output_filename_label.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.output_filename_label.setFont(font) self.output_filename_label.setContextMenuPolicy(QtCore.Qt.NoContextMenu) self.output_filename_label.setAcceptDrops(False) self.output_filename_label.setAutoFillBackground(True) self.output_filename_label.setFrameShape(QtWidgets.QFrame.Box) self.output_filename_label.setFrameShadow(QtWidgets.QFrame.Sunken) self.output_filename_label.setLineWidth(1) self.output_filename_label.setMidLineWidth(1) self.output_filename_label.setScaledContents(False) self.output_filename_label.setTextInteractionFlags(QtCore.Qt.LinksAccessibleByMouse) self.output_filename_label.setObjectName("output_filename_label") self.experiment_file_name = QtWidgets.QLineEdit(self.centralwidget) self.experiment_file_name.setGeometry(QtCore.QRect(190, 90, 241, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) self.experiment_file_name.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.experiment_file_name.setFont(font) self.experiment_file_name.setInputMethodHints(QtCore.Qt.ImhNone) self.experiment_file_name.setText("") self.experiment_file_name.setFrame(True) self.experiment_file_name.setAlignment(QtCore.Qt.AlignCenter) self.experiment_file_name.setObjectName("experiment_file_name") self.step_number_label = QtWidgets.QLabel(self.centralwidget) self.step_number_label.setEnabled(True) self.step_number_label.setGeometry(QtCore.QRect(10, 260, 161, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(161, 188, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(161, 188, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipText, brush) self.step_number_label.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.step_number_label.setFont(font) self.step_number_label.setContextMenuPolicy(QtCore.Qt.NoContextMenu) self.step_number_label.setAcceptDrops(False) self.step_number_label.setAutoFillBackground(True) self.step_number_label.setFrameShape(QtWidgets.QFrame.Box) self.step_number_label.setFrameShadow(QtWidgets.QFrame.Sunken) self.step_number_label.setLineWidth(1) self.step_number_label.setMidLineWidth(1) self.step_number_label.setScaledContents(False) self.step_number_label.setTextInteractionFlags(QtCore.Qt.LinksAccessibleByMouse) self.step_number_label.setObjectName("step_number_label") self.experiment_sweep_rate = QtWidgets.QLineEdit(self.centralwidget) self.experiment_sweep_rate.setGeometry(QtCore.QRect(190, 380, 61, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) self.experiment_sweep_rate.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.experiment_sweep_rate.setFont(font) self.experiment_sweep_rate.setText("") self.experiment_sweep_rate.setFrame(True) self.experiment_sweep_rate.setAlignment(QtCore.Qt.AlignCenter) self.experiment_sweep_rate.setObjectName("experiment_sweep_rate") self.experiment_parameters_label = QtWidgets.QLabel(self.centralwidget) self.experiment_parameters_label.setEnabled(True) self.experiment_parameters_label.setGeometry(QtCore.QRect(10, 180, 191, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(212, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(113, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(212, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(212, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(113, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(212, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(212, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(113, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipText, brush) self.experiment_parameters_label.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.experiment_parameters_label.setFont(font) self.experiment_parameters_label.setContextMenuPolicy(QtCore.Qt.NoContextMenu) self.experiment_parameters_label.setAcceptDrops(False) self.experiment_parameters_label.setAutoFillBackground(True) self.experiment_parameters_label.setFrameShape(QtWidgets.QFrame.Box) self.experiment_parameters_label.setFrameShadow(QtWidgets.QFrame.Sunken) self.experiment_parameters_label.setLineWidth(1) self.experiment_parameters_label.setMidLineWidth(1) self.experiment_parameters_label.setScaledContents(False) self.experiment_parameters_label.setTextInteractionFlags(QtCore.Qt.LinksAccessibleByMouse) self.experiment_parameters_label.setObjectName("experiment_parameters_label") self.experiment_duration = QtWidgets.QLineEdit(self.centralwidget) self.experiment_duration.setGeometry(QtCore.QRect(220, 430, 171, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) self.experiment_duration.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.experiment_duration.setFont(font) self.experiment_duration.setText("") self.experiment_duration.setFrame(True) self.experiment_duration.setAlignment(QtCore.Qt.AlignCenter) self.experiment_duration.setReadOnly(True) self.experiment_duration.setObjectName("experiment_duration") self.experiment_file_path = QtWidgets.QLineEdit(self.centralwidget) self.experiment_file_path.setGeometry(QtCore.QRect(190, 130, 241, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) self.experiment_file_path.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setPointSize(7) font.setBold(True) font.setWeight(75) self.experiment_file_path.setFont(font) self.experiment_file_path.setText("") self.experiment_file_path.setFrame(True) self.experiment_file_path.setAlignment(QtCore.Qt.AlignCenter) self.experiment_file_path.setReadOnly(False) self.experiment_file_path.setObjectName("experiment_file_path") self.experiment_preview_label = QtWidgets.QLabel(self.centralwidget) self.experiment_preview_label.setEnabled(True) self.experiment_preview_label.setGeometry(QtCore.QRect(440, 10, 351, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(212, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(113, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(212, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(212, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(113, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(212, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(212, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(113, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipText, brush) self.experiment_preview_label.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.experiment_preview_label.setFont(font) self.experiment_preview_label.setContextMenuPolicy(QtCore.Qt.NoContextMenu) self.experiment_preview_label.setAcceptDrops(False) self.experiment_preview_label.setAutoFillBackground(True) self.experiment_preview_label.setFrameShape(QtWidgets.QFrame.Box) self.experiment_preview_label.setFrameShadow(QtWidgets.QFrame.Sunken) self.experiment_preview_label.setLineWidth(1) self.experiment_preview_label.setMidLineWidth(1) self.experiment_preview_label.setScaledContents(False) self.experiment_preview_label.setTextInteractionFlags(QtCore.Qt.LinksAccessibleByMouse) self.experiment_preview_label.setObjectName("experiment_preview_label") self.sweep_rate_units_label = QtWidgets.QLineEdit(self.centralwidget) self.sweep_rate_units_label.setGeometry(QtCore.QRect(260, 380, 41, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) self.sweep_rate_units_label.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.sweep_rate_units_label.setFont(font) self.sweep_rate_units_label.setStatusTip("") self.sweep_rate_units_label.setStyleSheet("background-color: rgb(240, 240, 240);") self.sweep_rate_units_label.setFrame(False) self.sweep_rate_units_label.setObjectName("sweep_rate_units_label") self.experiment_duration_label = QtWidgets.QLabel(self.centralwidget) self.experiment_duration_label.setEnabled(True) self.experiment_duration_label.setGeometry(QtCore.QRect(10, 430, 201, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(212, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(113, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(212, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(212, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(113, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(212, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(212, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(113, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(85, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(170, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipText, brush) self.experiment_duration_label.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.experiment_duration_label.setFont(font) self.experiment_duration_label.setContextMenuPolicy(QtCore.Qt.NoContextMenu) self.experiment_duration_label.setAcceptDrops(False) self.experiment_duration_label.setAutoFillBackground(True) self.experiment_duration_label.setFrameShape(QtWidgets.QFrame.Box) self.experiment_duration_label.setFrameShadow(QtWidgets.QFrame.Sunken) self.experiment_duration_label.setLineWidth(1) self.experiment_duration_label.setMidLineWidth(1) self.experiment_duration_label.setScaledContents(False) self.experiment_duration_label.setTextInteractionFlags(QtCore.Qt.LinksAccessibleByMouse) self.experiment_duration_label.setObjectName("experiment_duration_label") self.v_vs_label_1 = QtWidgets.QLineEdit(self.centralwidget) self.v_vs_label_1.setGeometry(QtCore.QRect(260, 300, 41, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) self.v_vs_label_1.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.v_vs_label_1.setFont(font) self.v_vs_label_1.setStatusTip("") self.v_vs_label_1.setStyleSheet("background-color: rgb(240, 240, 240);") self.v_vs_label_1.setFrame(False) self.v_vs_label_1.setObjectName("v_vs_label_1") self.v_vs_label_2 = QtWidgets.QLineEdit(self.centralwidget) self.v_vs_label_2.setGeometry(QtCore.QRect(260, 340, 41, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) self.v_vs_label_2.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.v_vs_label_2.setFont(font) self.v_vs_label_2.setStatusTip("") self.v_vs_label_2.setStyleSheet("background-color: rgb(240, 240, 240);") self.v_vs_label_2.setFrame(False) self.v_vs_label_2.setObjectName("v_vs_label_2") self.experiment_rest_time = QtWidgets.QLineEdit(self.centralwidget) self.experiment_rest_time.setGeometry(QtCore.QRect(190, 220, 61, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) self.experiment_rest_time.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.experiment_rest_time.setFont(font) self.experiment_rest_time.setText("") self.experiment_rest_time.setFrame(True) self.experiment_rest_time.setAlignment(QtCore.Qt.AlignCenter) self.experiment_rest_time.setObjectName("experiment_rest_time") self.advanced_parameters_button = QtWidgets.QPushButton(self.centralwidget) self.advanced_parameters_button.setGeometry(QtCore.QRect(400, 430, 201, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(91, 166, 232)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Highlight, brush) brush = QtGui.QBrush(QtGui.QColor(247, 217, 21)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Link, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.NoRole, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(248, 221, 23)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Highlight, brush) brush = QtGui.QBrush(QtGui.QColor(247, 217, 21)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Link, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.NoRole, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 120, 215)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Highlight, brush) brush = QtGui.QBrush(QtGui.QColor(247, 217, 21)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Link, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.NoRole, brush) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.advanced_parameters_button.setFont(font) self.advanced_parameters_button.setContextMenuPolicy(QtCore.Qt.PreventContextMenu) self.advanced_parameters_button.setAcceptDrops(False) self.advanced_parameters_button.setWhatsThis("") self.advanced_parameters_button.setAutoFillBackground(True) self.advanced_parameters_button.setLocale(QtCore.QLocale(QtCore.QLocale.English, QtCore.QLocale.UnitedStates)) self.advanced_parameters_button.setInputMethodHints(QtCore.Qt.ImhNone) self.advanced_parameters_button.setAutoRepeatDelay(301) self.advanced_parameters_button.setAutoRepeatInterval(96) self.advanced_parameters_button.setAutoDefault(False) self.advanced_parameters_button.setDefault(False) self.advanced_parameters_button.setFlat(False) self.advanced_parameters_button.setObjectName("advanced_parameters_button") self.start_voltage_label = QtWidgets.QLabel(self.centralwidget) self.start_voltage_label.setEnabled(True) self.start_voltage_label.setGeometry(QtCore.QRect(10, 300, 161, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(161, 188, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(161, 188, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(84, 151, 213)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(44, 80, 114)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(33, 60, 85)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(67, 121, 171)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipText, brush) self.start_voltage_label.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.start_voltage_label.setFont(font) self.start_voltage_label.setContextMenuPolicy(QtCore.Qt.NoContextMenu) self.start_voltage_label.setAcceptDrops(False) self.start_voltage_label.setAutoFillBackground(True) self.start_voltage_label.setFrameShape(QtWidgets.QFrame.Box) self.start_voltage_label.setFrameShadow(QtWidgets.QFrame.Sunken) self.start_voltage_label.setLineWidth(1) self.start_voltage_label.setMidLineWidth(1) self.start_voltage_label.setScaledContents(False) self.start_voltage_label.setTextInteractionFlags(QtCore.Qt.LinksAccessibleByMouse) self.start_voltage_label.setObjectName("start_voltage_label") self.rest_time_units_label = QtWidgets.QLineEdit(self.centralwidget) self.rest_time_units_label.setGeometry(QtCore.QRect(260, 220, 16, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) self.rest_time_units_label.setPalette(palette) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.rest_time_units_label.setFont(font) self.rest_time_units_label.setStatusTip("") self.rest_time_units_label.setStyleSheet("background-color: rgb(240, 240, 240);") self.rest_time_units_label.setFrame(False) self.rest_time_units_label.setObjectName("rest_time_units_label") self.save_experiment_file_button = QtWidgets.QPushButton(self.centralwidget) self.save_experiment_file_button.setGeometry(QtCore.QRect(610, 430, 181, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(91, 166, 232)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Highlight, brush) brush = QtGui.QBrush(QtGui.QColor(247, 217, 21)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Link, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.NoRole, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(248, 221, 23)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Highlight, brush) brush = QtGui.QBrush(QtGui.QColor(247, 217, 21)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Link, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.NoRole, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 120, 215)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Highlight, brush) brush = QtGui.QBrush(QtGui.QColor(247, 217, 21)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Link, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.NoRole, brush) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.save_experiment_file_button.setFont(font) self.save_experiment_file_button.setContextMenuPolicy(QtCore.Qt.PreventContextMenu) self.save_experiment_file_button.setAcceptDrops(False) self.save_experiment_file_button.setWhatsThis("") self.save_experiment_file_button.setAutoFillBackground(True) self.save_experiment_file_button.setLocale(QtCore.QLocale(QtCore.QLocale.English, QtCore.QLocale.UnitedStates)) self.save_experiment_file_button.setInputMethodHints(QtCore.Qt.ImhNone) self.save_experiment_file_button.setAutoRepeatDelay(301) self.save_experiment_file_button.setAutoRepeatInterval(96) self.save_experiment_file_button.setAutoDefault(False) self.save_experiment_file_button.setDefault(False) self.save_experiment_file_button.setFlat(False) self.save_experiment_file_button.setObjectName("save_experiment_file_button") self.generate_preview_button = QtWidgets.QPushButton(self.centralwidget) self.generate_preview_button.setGeometry(QtCore.QRect(610, 350, 181, 31)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(91, 166, 232)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Highlight, brush) brush = QtGui.QBrush(QtGui.QColor(247, 217, 21)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Link, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.NoRole, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(248, 221, 23)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Highlight, brush) brush = QtGui.QBrush(QtGui.QColor(247, 217, 21)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Link, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.NoRole, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 120, 215)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Highlight, brush) brush = QtGui.QBrush(QtGui.QColor(247, 217, 21)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Link, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.NoRole, brush) font = QtGui.QFont() font.setFamily("Arial") font.setBold(True) font.setWeight(75) self.generate_preview_button.setFont(font) self.generate_preview_button.setContextMenuPolicy(QtCore.Qt.PreventContextMenu) self.generate_preview_button.setAcceptDrops(False) self.generate_preview_button.setWhatsThis("") self.generate_preview_button.setAutoFillBackground(True) self.generate_preview_button.setLocale(QtCore.QLocale(QtCore.QLocale.English, QtCore.QLocale.UnitedStates)) self.generate_preview_button.setInputMethodHints(QtCore.Qt.ImhNone) self.generate_preview_button.setAutoRepeatDelay(301) self.generate_preview_button.setAutoRepeatInterval(96) self.generate_preview_button.setAutoDefault(False) self.generate_preview_button.setDefault(False) self.generate_preview_button.setFlat(False) self.generate_preview_button.setObjectName("generate_preview_button") self.voltage_ref = QtWidgets.QComboBox(self.centralwidget) self.voltage_ref.setGeometry(QtCore.QRect(310, 300, 101, 31)) font = QtGui.QFont() font.setBold(False) font.setWeight(50) self.voltage_ref.setFont(font) self.voltage_ref.setEditable(False) self.voltage_ref.setInsertPolicy(QtWidgets.QComboBox.InsertAtBottom) self.voltage_ref.setObjectName("voltage_ref") self.voltage_ref.addItem("") self.voltage_ref.addItem("") self.voltage_ref_2 = QtWidgets.QComboBox(self.centralwidget) self.voltage_ref_2.setGeometry(QtCore.QRect(310, 340, 101, 31)) font = QtGui.QFont() font.setBold(False) font.setWeight(50) self.voltage_ref_2.setFont(font) self.voltage_ref_2.setEditable(False) self.voltage_ref_2.setInsertPolicy(QtWidgets.QComboBox.InsertAtBottom) self.voltage_ref_2.setObjectName("voltage_ref_2") self.voltage_ref_2.addItem("") self.voltage_ref_2.addItem("") self.plot_area = QtWidgets.QWidget(self.centralwidget) self.plot_area.setGeometry(QtCore.QRect(440, 50, 351, 281)) self.plot_area.setStyleSheet("border: 1px solid black;\n" "background-color: rgb(255, 255, 255);\n" "\n" "") self.plot_area.setObjectName("plot_area") LSV.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(LSV) self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 18)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(240, 240, 240)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) self.menubar.setPalette(palette) self.menubar.setObjectName("menubar") LSV.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(LSV) self.statusbar.setStyleSheet("background-color: rgb(228, 228, 228);") self.statusbar.setObjectName("statusbar") LSV.setStatusBar(self.statusbar) self.V1 = QtWidgets.QAction(LSV) self.V1.setCheckable(True) self.V1.setObjectName("V1") self.V2 = QtWidgets.QAction(LSV) self.V2.setObjectName("V2") self.retranslateUi(LSV) QtCore.QMetaObject.connectSlotsByName(LSV) def retranslateUi(self, LSV): _translate = QtCore.QCoreApplication.translate LSV.setWindowTitle(_translate("LSV", "LSV Experiment Creator")) self.rest_time_label.setText(_translate("LSV", "<html><head/><body><p align=\"center\">Rest Time</p></body></html>")) self.experiment_type_label.setText(_translate("LSV", "<html><head/><body><p align=\"center\">Experiment Type</p></body></html>")) self.experiment_step_number.setStatusTip(_translate("LSV", "Number of steps between voltages over which the experiment will be conducted.")) self.select_output_filepath_button.setStatusTip(_translate("LSV", "Click this button to select the output filepath for your files.")) self.select_output_filepath_button.setText(_translate("LSV", "Output Filepath")) self.sweep_rate_label.setText(_translate("LSV", "<html><head/><body><p align=\"center\">Sweep Rate</p></body></html>")) self.end_voltage_label.setText(_translate("LSV", "<html><head/><body><p align=\"center\">End Voltage</p></body></html>")) self.general_parameters_label.setText(_translate("LSV", "<html><head/><body><p align=\"center\">General Parameters</p></body></html>")) self.experiment_end_voltage.setStatusTip(_translate("LSV", "Voltage to end sweep at.")) self.experiment_type_verify.setStatusTip(_translate("LSV", "Type of experiment for this file.")) self.experiment_type_verify.setText(_translate("LSV", "Linear Sweep Voltammetry")) self.experiment_start_voltage.setStatusTip(_translate("LSV", "Voltage to start sweep at.")) self.output_filename_label.setText(_translate("LSV", "<html><head/><body><p align=\"center\">Output Filename</p></body></html>")) self.experiment_file_name.setStatusTip(_translate("LSV", "Name that will be attached to. Data will be output to _data.csv and an experiment file will be saved to _config.yml.")) self.step_number_label.setText(_translate("LSV", "<html><head/><body><p align=\"center\">Step Number</p></body></html>")) self.experiment_sweep_rate.setStatusTip(_translate("LSV", "Rate at which voltage is swept over.")) self.experiment_parameters_label.setText(_translate("LSV", "<html><head/><body><p align=\"center\">Experiment Parameters</p></body></html>")) self.experiment_duration.setStatusTip(_translate("LSV", "Estimated length of experiment in H:M:S.")) self.experiment_file_path.setStatusTip(_translate("LSV", "Path at which data and experiment files will be exported to.")) self.experiment_preview_label.setText(_translate("LSV", "<html><head/><body><p align=\"center\">Experiment Preview</p></body></html>")) self.sweep_rate_units_label.setText(_translate("LSV", "mV/s")) self.experiment_duration_label.setText(_translate("LSV", "<html><head/><body><p align=\"center\">Experiment Duration</p></body></html>")) self.v_vs_label_1.setText(_translate("LSV", "V vs.")) self.v_vs_label_2.setText(_translate("LSV", "V vs.")) self.experiment_rest_time.setStatusTip(_translate("LSV", "Length of time to wait before start voltage.")) self.advanced_parameters_button.setStatusTip(_translate("LSV", "Click this button to edit hardset paraemeters used for all experiments.")) self.advanced_parameters_button.setText(_translate("LSV", "Advanced Parameters")) self.start_voltage_label.setText(_translate("LSV", "<html><head/><body><p align=\"center\">Start Voltage</p></body></html>")) self.rest_time_units_label.setText(_translate("LSV", "s")) self.save_experiment_file_button.setStatusTip(_translate("LSV", "Click this button to save a config file with the created experiment.")) self.save_experiment_file_button.setText(_translate("LSV", "Save Experiment File")) self.generate_preview_button.setStatusTip(_translate("LSV", "Click this button to generate a preview of the experiment to be run.")) self.generate_preview_button.setText(_translate("LSV", "Generate Preview")) self.voltage_ref.setCurrentText(_translate("LSV", "Vref")) self.voltage_ref.setItemText(0, _translate("LSV", "Vref")) self.voltage_ref.setItemText(1, _translate("LSV", "Vocv")) self.voltage_ref_2.setCurrentText(_translate("LSV", "Vref")) self.voltage_ref_2.setItemText(0, _translate("LSV", "Vref")) self.voltage_ref_2.setItemText(1, _translate("LSV", "Vocv")) self.V1.setText(_translate("LSV", "V1")) self.V2.setText(_translate("LSV", "V2")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) LSV = QtWidgets.QMainWindow() ui = Ui_LSV() ui.setupUi(LSV) LSV.show() sys.exit(app.exec_()) ```
{ "source": "jlhonora/rabbitmq-demo", "score": 3 }
#### File: jlhonora/rabbitmq-demo/client.py ```python import os import datetime import sys sys.path.append("..") import puka def get_queue_name(): return os.environ.get('RABBITMQ_QUEUE', 'default_queue') def get_timestamp(): return datetime.datetime.utcnow().strftime("%H:%M:%S") # Puka uses IPv6 addresses first, so we can't use localhost # as address. Check https://github.com/majek/puka/issues/35 client = puka.Client("amqp://guest:[email protected]:5672/") promise = client.connect() client.wait(promise) queue_name = get_queue_name() args = {} args['x-message-ttl'] = 5000 promise = client.queue_declare( queue=queue_name, auto_delete=False, exclusive=False, durable=True, arguments=args ) client.wait(promise) print " [*] Waiting for messages in %s. Press CTRL+C to quit." % queue_name consume_promise = client.basic_consume(queue=queue_name, prefetch_count=1) while True: result = client.wait(consume_promise) print "%s [python client] Received %r" % (get_timestamp(), result['body']) client.basic_ack(result) promise = client.close() client.wait(promise) ```
{ "source": "jlhourENSAE/podcast-app", "score": 3 }
#### File: podcast-app/src/cli.py ```python from docopt import docopt import os import sys import yaml import vlc import time from src.podcastClasses import Podcast, Episode from src.playerOperations import stopListening, resumeListening, jumpTime def main(): args = docopt(__doc__) # Load podcast list : config_file = 'subscriptions.yml' with open(config_file, 'r') as stream: config = yaml.safe_load(stream) if args['ls']: podcasts = list(config['subscriptions'].keys()) print('You are subscribed to the following podcasts :') print(', \n'.join(podcasts)) if args['lastep']: url = config['subscriptions'].get(args['<podcast_name>']) if url is not None: podcast = Podcast(url) print(f'You have selected : {podcast.title}') history = podcast.getLastEpisode() # New episode newEpisode = next(history) newEpisode.displayInfos() player = vlc.MediaPlayer(newEpisode.audioUrl) resumeListening(newEpisode, player) try: while player.is_playing() == 1: continue stopListening(newEpisode, player) except KeyboardInterrupt: stopListening(newEpisode, player) try: sys.exit(0) except SystemExit: os._exit(0) if args['pastep']: url = config['subscriptions'].get(args['<podcast_name>']) if args['stop']: pass if __name__=='__main__': pass ```
{ "source": "jli0108/simplex", "score": 3 }
#### File: jli0108/simplex/revised_simplex.py ```python import numpy as np from numpy.linalg import inv import sys # -- Solve your LP problems with this simple code!!! ----- # -- Your LP must be in the following format: ------------ # -- Maximize/Minimize c^T x ----------------------------- # -- subject to Ax <= b ---------------------------------- # -- Modify if you want to maximize or minimize ----------------------- maximize : bool = True # -- Modify if your problem is in standard or canonical form ---------- standard : bool = False # -- Modify these arrays in the correct format ------------------------ c : np.ndarray = np.array([[7, 6, 5, -2, 3]]) A_B : np.ndarray = np.array([[1, 3, 5, -2, 2], [4, 2, -2, 1, 1], [2, 4, 4, -2, 5], [3, 1, 2, -1, -2]]) b : np.ndarray = np.array([[4], [3], [5], [1]]) assert A_B.shape[0] == b.shape[0] assert c.shape[1] == A_B.shape[1] def solve_LP(c : np.ndarray, A_B : np.ndarray, b : np.ndarray, maximize : bool, standard : bool) -> None: if (standard): solve_standard(c, A_B, b, maximize) else: solve_canonical(c, A_B, b, maximize) # solves problem in canonical form def solve_canonical(c : np.ndarray, A_B : np.ndarray, b : np.ndarray, maximize : bool) -> None: if not maximize: c = -c optimal_cost, RHS, basic_variables, shadow_prices, A_B_inv = maximize_canonical(c, A_B, b) print("----- Solution -----") if maximize: print("Max value of objective function:", optimal_cost) else: print("Min value of objective function:", -optimal_cost) for i in range(basic_variables.shape[0]): print(f"x{basic_variables[i]+1} = {RHS[i,0] : 0.7f}") for i in range(shadow_prices.shape[1]): print(f"Shadow price of x{basic_variables[i]+1}: {shadow_prices[0,i] : 0.7f}") for i in range(RHS.shape[0]): allowable_increase = None allowable_decrease = None for j in range(RHS.shape[0]): if A_B_inv[j,i] > 0: if allowable_decrease is None or allowable_decrease > RHS[i,0] / A_B_inv[j,i]: allowable_decrease = RHS[i,0] / A_B_inv[j,i] elif A_B_inv[j,i] < 0: if allowable_increase is None or allowable_increase > - RHS[i,0] / A_B_inv[j,i]: allowable_increase = - RHS[i,0] / A_B_inv[j,i] if allowable_decrease is None: allowable_decrease = np.Infinity if allowable_increase is None: allowable_increase = np.Infinity print(f"Row {i+1}: Allowable decrease = {allowable_decrease : 0.001f}, Allowable increase = {allowable_increase : 0.001f}") #print(A_B_inv) print("Set all other variables to zero.") def solve_standard(c, A_B, b, maximize): sys.exit("Not implemented without tableaus yet. Use simplex.py") # takes problem in standard form and solves phase 1 LP def solve_phase_one(A_B, b): sys.exit("Not implemented without tableaus yet. Use simplex.py") # solves maximization problem in canonical form # returns the final tableau and a list of the basis variables def maximize_canonical(c_N, A_N, b): #if b.min() < 0: # sys.exit("Initial feasibility problem. Not implemented yet.") m, n = A_N.shape A_B = np.eye(m) for i in range(m): if b[i] < 0: A_N[i] *= -1 b[i,0] *= -1 A_B[i] *= -1 A = np.concatenate((A_N, np.eye(m)), axis=1) #print(A) # c_B is coefficients from original c (not getting reduced) c_B = np.zeros((1,m)) c = np.concatenate((c_N, c_B), axis=1) basic_variables = np.arange(n, m+n) nonbasic_variables = np.arange(0, n) A_B_inv = np.eye(m) y = np.zeros((1,m)) b_bar = b reduced_c_N = c_N index_of_entering_variable = None i = 0 # for first iteration, entering variable is equal to index while i < n:# and index_of_entering_variable is None: # Uncomment lines above and below to use Bland's rule # (if so, we do not need to check if entering_variable is None) if reduced_c_N[0,i] > 0 and (index_of_entering_variable is None or reduced_c_N[0,i] > reduced_c_N[0,index_of_entering_variable]): # It should usually be faster if we take the largest coefficient #if c_N[i] > 0 and (entering_variable is None or c_N[i] > c_N[entering_variable]): index_of_entering_variable = i i = i + 1 while index_of_entering_variable is not None: reduced_col_of_A_N = np.dot(A_B_inv, A_N[:,index_of_entering_variable]) #print(A_B_inv) #print(b_bar[:,0] / reduced_col_of_A_N) index_of_leaving_variable = None for i in range(m): if (reduced_col_of_A_N[i] > 0 and (index_of_leaving_variable is None or b_bar[i,0] * reduced_col_of_A_N[index_of_leaving_variable] < b_bar[index_of_leaving_variable,0] * reduced_col_of_A_N[i])): index_of_leaving_variable = i if index_of_leaving_variable is None: sys.exit("LP is unbounded") entering_variable = nonbasic_variables[index_of_entering_variable] leaving_variable = basic_variables[index_of_leaving_variable] #print("basis",basic_variables+1) #print("nonbasic",nonbasic_variables+1) #print(f"x{entering_variable+1} enters, x{leaving_variable+1} leaves") # variable enters the basis basic_variables[index_of_leaving_variable] = entering_variable nonbasic_variables[index_of_entering_variable] = leaving_variable # A_B gets updated based on new basic variables A_B[:,index_of_leaving_variable] = A[:,entering_variable] A_N[:,index_of_entering_variable] = A[:,leaving_variable] # c_B gets updated based on new basic variables c_B[0,index_of_leaving_variable] = c[0,entering_variable] c_N[0,index_of_entering_variable] = c[0,leaving_variable] #print(A_B) #if (np.linalg.det(A_B) == 0): A_B_inv = inv(A_B) y = np.dot(c_B, A_B_inv) b_bar = np.dot(A_B_inv, b) reduced_c_N = c_N - np.dot(y, A_N) index_of_entering_variable = None i = 0 #print(reduced_c_N) # for first iteration, entering variable is equal to index while i < n:# and index_of_entering_variable is None: # Uncomment lines above and below to use Bland's rule # (if so, we do not need to check if entering_variable is None) if reduced_c_N[0,i] > 0 and (index_of_entering_variable is None or reduced_c_N[0,i] > reduced_c_N[0,index_of_entering_variable]): # It should usually be faster if we take the largest coefficient #if c_N[i] > 0 and (entering_variable is None or c_N[i] > c_N[entering_variable]): index_of_entering_variable = i i = i + 1 #print(index_of_leaving_variable) return np.dot(y, b)[0,0], b_bar, basic_variables, y, A_B_inv #solve_canonical(c, A_B, b, maximize) #solve_standard(c, A_B, b, maximize) solve_LP(c, A_B, b, maximize, standard) ```
{ "source": "jli0117/ehrMGAN", "score": 2 }
#### File: jli0117/ehrMGAN/Bilateral_lstm_class.py ```python import tensorflow as tf class Bilateral_LSTM_cell(): def __init__(self, input_dim, hidden_dim, scope_name): self.input_dim = input_dim self.hidden_dim = hidden_dim self.scope_name = scope_name def __call__(self, x, hidden_memory_tm1, hidden_memory_tm2): ## unstack hidden vectors and context vectors previous_hidden_state, c_prev = tf.unstack(hidden_memory_tm1) previous_hidden_state_, _ = tf.unstack(hidden_memory_tm2) # Input Gate (Wi, Ui, Vi) with tf.variable_scope(self.scope_name + "Input_gate", reuse=tf.AUTO_REUSE): Wi = tf.get_variable(name='Wi', shape=[self.input_dim, self.hidden_dim], initializer=tf.random_normal_initializer(mean=0, stddev=0.1)) Ui = tf.get_variable(name='Ui', shape=[self.hidden_dim, self.hidden_dim], initializer=tf.random_normal_initializer(mean=0, stddev=0.1)) Vi = tf.get_variable(name='Vi', shape=[self.hidden_dim, self.hidden_dim], initializer=tf.random_normal_initializer(mean=0, stddev=0.1)) i = tf.sigmoid( tf.matmul(x, Wi) + tf.matmul(previous_hidden_state, Ui) + tf.matmul(previous_hidden_state_, Vi) ) # Forget gate (Wf, Uf, Vf) with tf.variable_scope(self.scope_name + "Forget_gate", reuse=tf.AUTO_REUSE): Wf = tf.get_variable(name='Wf', shape=[self.input_dim, self.hidden_dim], initializer=tf.random_normal_initializer(mean=0, stddev=0.1)) Uf = tf.get_variable(name='Uf', shape=[self.hidden_dim, self.hidden_dim], initializer=tf.random_normal_initializer(mean=0, stddev=0.1)) Vf = tf.get_variable(name='Vf', shape=[self.hidden_dim, self.hidden_dim], initializer=tf.random_normal_initializer(mean=0, stddev=0.1)) f = tf.sigmoid( tf.matmul(x, Wf) + tf.matmul(previous_hidden_state, Uf) + tf.matmul(previous_hidden_state_, Vf) ) # Output gate (Wo, Uo, Vo) with tf.variable_scope(self.scope_name + "Output_gate", reuse=tf.AUTO_REUSE): Wo = tf.get_variable(name='Wo', shape=[self.input_dim, self.hidden_dim], initializer=tf.random_normal_initializer(mean=0, stddev=0.1)) Uo = tf.get_variable(name='Uo', shape=[self.hidden_dim, self.hidden_dim], initializer=tf.random_normal_initializer(mean=0, stddev=0.1)) Vo = tf.get_variable(name='Vo', shape=[self.hidden_dim, self.hidden_dim], initializer=tf.random_normal_initializer(mean=0, stddev=0.1)) o = tf.sigmoid( tf.matmul(x, Wo) + tf.matmul(previous_hidden_state, Uo) + tf.matmul(previous_hidden_state_, Vo) ) # Updated part for new cell state (Wc, Uc, Vc) with tf.variable_scope(self.scope_name + "Cell_gate", reuse=tf.AUTO_REUSE): Wc = tf.get_variable(name='Wc', shape=[self.input_dim, self.hidden_dim], initializer=tf.random_normal_initializer(mean=0, stddev=0.1)) Uc = tf.get_variable(name='Uc', shape=[self.hidden_dim, self.hidden_dim], initializer=tf.random_normal_initializer(mean=0, stddev=0.1)) Vc = tf.get_variable(name='Vc', shape=[self.hidden_dim, self.hidden_dim], initializer=tf.random_normal_initializer(mean=0, stddev=0.1)) c_ = tf.nn.tanh( tf.matmul(x, Wc) + tf.matmul(previous_hidden_state, Uc) + tf.matmul(previous_hidden_state_, Vc) ) # Final Memory cell c = f * c_prev + i * c_ # Current Hidden state current_hidden_state = o * tf.nn.tanh(c) return current_hidden_state, tf.stack([current_hidden_state, c]) class MultilayerCells(): def __init__(self, cells): self.cells = cells def __call__(self, input, state, state_): cur_inp = input new_states = [] for i in range(len(self.cells)): with tf.variable_scope("cell_%d" % i): cell = self.cells[i] cur_inp, new_state = cell(x=cur_inp, hidden_memory_tm1=state[i], hidden_memory_tm2=state_[i]) new_states.append(new_state) return cur_inp, new_states ```
{ "source": "jli05/CS229-TimeSeries-LSTM", "score": 3 }
#### File: jli05/CS229-TimeSeries-LSTM/tspred_qtl.py ```python import random import sys import argparse import numpy as np import tensorflow as tf from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error def build_lstm_graph(n_features, n_targets, quantiles, burn_in, num_units, input_keep_prob=1.0, output_keep_prob=1.0, variable_scope='ts', dtype=tf.float32): ''' Build the symbolic graph for modeling the time series ''' # x, y are indexed by batch, time_step and feature with tf.variable_scope(variable_scope): x = tf.placeholder(dtype, [None, None, n_features], name='x') y = tf.placeholder(dtype, [None, None, n_targets], name='y') cell = tf.contrib.rnn.LSTMCell(num_units, use_peepholes=True) dropout_cell = tf.contrib.rnn.DropoutWrapper(cell, input_keep_prob, output_keep_prob) outputs, state = tf.nn.dynamic_rnn(dropout_cell, x, dtype=dtype) w_fcst = tf.get_variable('w_fcst', [n_features + num_units, len(quantiles) * n_targets]) b_fcst = tf.get_variable('b_fcst', [len(quantiles) * n_targets]) # Use the last n_targets elements in each output vector at # each time step to match against y # Features for linear forecast features_ = tf.concat([tf.reshape(x, [-1, n_features]), tf.reshape(outputs, [-1, num_units])], axis=1) # Predicted quantiles pred = tf.nn.xw_plus_b(features_, w_fcst, b_fcst) # Transform into shape [n_samples, n_steps, n_quantiles * n_targets] y_tiled = tf.tile(y, [1, 1, len(quantiles)]) pred = tf.reshape(pred, tf.shape(y_tiled)) # TODO: add penalty on LSTM weight matrices and w_fcst theta = y_tiled[:, burn_in:, :] - pred[:, burn_in:, :] err = theta * np.repeat(quantiles, n_targets) - tf.minimum(theta, 0) cost = tf.reduce_mean(tf.reshape(err, [-1, len(quantiles) * n_targets]), axis=0) cost = tf.reduce_mean(cost) return {'x': x, 'y': y, 'pred': pred, 'cost': cost, 'lstm_state': state, 'lstm_outputs': outputs, 'lstm_weights': cell.weights, 'w_fcst': w_fcst, 'b_fcst': b_fcst}, cell def train_lstm(sess, ts, y=None, features_func=None, targets_func=None, quantiles=[.5], burn_in=50, batch_size=50, lr0=1e-5, lr_decay=(50, .99), n_iter=500, valid_every=5, print_every=5, variable_scope='ts', **kwargs): ''' Train LSTM for given features and targets functions ''' assert (y is not None or ((features_func is not None) and (targets_func is not None))) # ts <num samples>-by-<length of every sample> # Split ts into train, dev set; we'll only use ts_test once at the end test_size = .1 if y is not None: features, dev_features, targets, dev_targets = ( train_test_split(ts, y, test_size=test_size)) else: ts_train, ts_dev = train_test_split(ts, test_size=test_size) # Make features, targets for LSTM training features = np.apply_along_axis(features_func, axis=1, arr=ts_train) targets = np.apply_along_axis(targets_func, axis=1, arr=ts_train) dev_features = np.apply_along_axis(features_func, axis=1, arr=ts_dev) dev_targets = np.apply_along_axis(targets_func, axis=1, arr=ts_dev) if features.ndim == 2: features = features[:, :, None] dev_features = dev_features[:, :, None] if targets.ndim == 2: targets = targets[:, :, None] dev_targets = dev_targets[:, :, None] n_features = features.shape[2] n_targets = targets.shape[2] # The burn-in period would be excluded from cost calculation if np.isscalar(quantiles): quantiles = [quantiles] lstm, cell = build_lstm_graph(n_features, n_targets, quantiles, burn_in, variable_scope=variable_scope, **kwargs) # Initialise optimiser with tf.variable_scope(variable_scope): global_step = tf.Variable(0, trainable=False) learning_rate = tf.train.exponential_decay(lr0, global_step, lr_decay[0], lr_decay[1]) optimizer = (tf.train.MomentumOptimizer(learning_rate, momentum=.5) .minimize(lstm['cost'], global_step=global_step)) # Begin training var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, variable_scope) sess.run(tf.variables_initializer(var_list)) # Run minibatch SGD # Break when Ctrl-C is pressed try: for i in range(n_iter): msg = f'Iter {i}' # Run SGD batch = random.sample(range(features.shape[0]), batch_size) _, cost = sess.run([optimizer, lstm['cost']], feed_dict={lstm['x']: features[batch], lstm['y']: targets[batch]}) msg += f' Train loss {cost:.4f}' if i % valid_every == 0: dict_ = {lstm['x']: dev_features, lstm['y']: dev_targets} dev_cost = sess.run(lstm['cost'], feed_dict=dict_) msg += f' Dev loss {dev_cost:.4f}' if i % print_every == 0: print(msg, file=sys.stderr) except KeyboardInterrupt: pass return lstm, cell def eval_ar(sess, lstm, ts_test, features_func, targets_func, burn_in): ''' Evaluate the AR model ''' # ts_test <num samples>-by-<num variables> # -by-<length of every sample/series> TS_WITH_NOISE = 0 TS_WITH_NO_NOISE = 1 x = ts_test[:, TS_WITH_NOISE, :].squeeze() x_no_noise = ts_test[:, TS_WITH_NO_NOISE, :].squeeze() features = np.apply_along_axis(features_func, axis=1, arr=x) targets = np.apply_along_axis(targets_func, axis=1, arr=x) targets_no_noise = np.apply_along_axis(targets_func, axis=1, arr=x_no_noise) if features.ndim == 2: features = features[:, :, None] if targets.ndim == 2: targets = targets[:, :, None] targets_no_noise = targets_no_noise[:, :, None] dict_ = {lstm['x']: features, lstm['y']: targets} cost, pred = sess.run([lstm['cost'], lstm['pred']], feed_dict=dict_) # For simple feature and median quantile cost_no_noise = mean_squared_error(targets_no_noise[:, burn_in:, 0], pred[:, burn_in:, 0]) return cost, np.sqrt(cost_no_noise), pred if __name__ == '__main__': ''' Command line interface Usage: seq 1 50 | xargs -I {} -P 3 python3 tspred_qtl.py simulation.npz simulation_test.npz >> out.csv ''' # Parse command line parser = argparse.ArgumentParser() parser.add_argument('train_file') parser.add_argument('test_file') args = parser.parse_args() # Read data data = np.load(args.train_file)['data'] data_test = np.load(args.test_file)['data'] # Train simple_features = lambda x: x[:-1] moments_features = lambda x: np.column_stack([x[:-1], x[:-1] ** 2]) sess = tf.Session() burn_in = 50 features_func = simple_features res = train_lstm(sess, data[:, 0, :].squeeze() * 10, features_func, lambda x: x[1:], quantiles=[.5], burn_in=burn_in, batch_size=50, lr0=3e-3, lr_decay=(50, .99), n_iter=300, num_units=10) # Test cost, cost_no_noise, pred = eval_ar(sess, res[0], data_test * 10, features_func, lambda x: x[1:], burn_in) pred_error = data_test[:, 1, 1:].squeeze() - pred.squeeze() / 10 print(' '.join([str(w) for w in pred_error.flat])) ```
{ "source": "jli113/mortar", "score": 3 }
#### File: mortar/python/load_csv.py ```python import io import csv import requests from requests.utils import quote import sys if len(sys.argv) != 2: print("Usage: python load_csv.py <path to csv file>") sys.exit(1) def register(source, name, uri, btype, units): d = { 'SourceName': source, 'Name': name, 'Units': units, 'BrickURI': uri, 'BrickClass': btype } resp = requests.post("http://localhost:5001/register_stream", json=d) if not resp.ok: print(resp.content) # TODO: need to split the files by source!! with open(sys.argv[1], 'r') as f: with io.StringIO() as buf: w = csv.writer(buf) r = csv.DictReader(f) registered = False for row in r: if not registered: source = quote(row['site']) name = quote(row['label']) uri = quote(row['id']) btype = quote(row['type']) units = 'degF' registered = True w.writerow([row['time'], row['value']]) url = f'http://localhost:5001/insert/csv?source={source}&\ name={name}&brick_uri={uri}&units={units}&brick_class={btype}&apikey=f7851e93-5717-4921-a978-26c5c550e0a5' print(url) b = io.BytesIO(buf.getvalue().encode('utf8')) resp = requests.post(url, data=b, headers={'Content-Type': 'text/csv'}) if not resp.ok: print(resp.content) ``` #### File: pymortar/pymortar/application.py ```python import toml from functools import lru_cache # would use cached_property but we need to be compliant down to python 3.7 class Application: def __init__(self, filename, client): self.spec = toml.load(open(filename)) self.queries = self.spec["queries"] self.name = self.spec["name"] self.client = client @property @lru_cache(maxsize=0) def valid_sites(self): return self.refresh_valid_sites() def refresh_valid_sites(self): df = self.client.qualify(self.queries).df sites = list(df[df.all(axis=1)].index) return sites ``` #### File: pymortar/pymortar/mortar_pb2_grpc.py ```python import grpc from . import mortar_pb2 as mortar__pb2 class MortarStub(object): # missing associated documentation comment in .proto file pass def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetAPIKey = channel.unary_unary( "/mortar.Mortar/GetAPIKey", request_serializer=mortar__pb2.GetAPIKeyRequest.SerializeToString, response_deserializer=mortar__pb2.APIKeyResponse.FromString, ) self.Qualify = channel.unary_unary( "/mortar.Mortar/Qualify", request_serializer=mortar__pb2.QualifyRequest.SerializeToString, response_deserializer=mortar__pb2.QualifyResponse.FromString, ) self.Fetch = channel.unary_stream( "/mortar.Mortar/Fetch", request_serializer=mortar__pb2.FetchRequest.SerializeToString, response_deserializer=mortar__pb2.FetchResponse.FromString, ) class MortarServicer(object): # missing associated documentation comment in .proto file pass def GetAPIKey(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details("Method not implemented!") raise NotImplementedError("Method not implemented!") def Qualify(self, request, context): """identify which sites meet the requirements of the queries""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details("Method not implemented!") raise NotImplementedError("Method not implemented!") def Fetch(self, request, context): """pull data from Mortar""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details("Method not implemented!") raise NotImplementedError("Method not implemented!") def add_MortarServicer_to_server(servicer, server): rpc_method_handlers = { "GetAPIKey": grpc.unary_unary_rpc_method_handler( servicer.GetAPIKey, request_deserializer=mortar__pb2.GetAPIKeyRequest.FromString, response_serializer=mortar__pb2.APIKeyResponse.SerializeToString, ), "Qualify": grpc.unary_unary_rpc_method_handler( servicer.Qualify, request_deserializer=mortar__pb2.QualifyRequest.FromString, response_serializer=mortar__pb2.QualifyResponse.SerializeToString, ), "Fetch": grpc.unary_stream_rpc_method_handler( servicer.Fetch, request_deserializer=mortar__pb2.FetchRequest.FromString, response_serializer=mortar__pb2.FetchResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( "mortar.Mortar", rpc_method_handlers ) server.add_generic_rpc_handlers((generic_handler,)) ```
{ "source": "jli755/colectica_api", "score": 3 }
#### File: jli755/colectica_api/get_mode_collection.py ```python import colectica from colectica import ColecticaObject import api import pandas as pd import os import numpy as np def get_all_series(C): """ Get a list of all series """ all_series = C.general_search(C.item_code('Series'),'',MaxResults=0)['Results'] return all_series def from_series_get_study(C, Agency, ID): """ From a series, get list of studies """ d = C.item_to_dict(Agency, ID) return d['study'] def from_study_get_instrument(C, Agency, ID): """ From a study, get instrument and Mode of Data Collection """ d = C.item_to_dict(Agency, ID) c = C.item_to_dict(d['Data Collection']['Agency'], d['Data Collection']['ID']) name = c['Name'] mode_list = [c['CollectionEvent']['ModeOfCollection'][i]['TypeOfMode'] for i in range(len(c['CollectionEvent']['ModeOfCollection']))] if 'InstrumentReferences' in c['Ref'].keys(): instrument_urn = c['Ref']['InstrumentReferences'] else: instrument_urn = None return name, instrument_urn, mode_list def get_instruments_df(C): """ From series, return a dataframe of instrument/mode_list """ all_series = get_all_series(C) df = pd.DataFrame(columns=['study_name', 'instrument_name', 'instrument_urn', 'data_collection_mode']) for s in all_series: # print("*****") study_name = list(s['ItemName'].values())[0] # print('series') # print(s['AgencyId'], s['Identifier']) all_studies = from_series_get_study(C, s['AgencyId'], s['Identifier']) for st in all_studies: # print("======") # print('studies') # print(st['Agency'], st['ID']) name, instrument_urn, mode_list = from_study_get_instrument(C, st['Agency'], st['ID']) df = df.append({'study_name': study_name, 'instrument_name': name, 'instrument_urn': instrument_urn, 'data_collection_mode': mode_list}, ignore_index=True) lst_col = 'data_collection_mode' df_unlist = pd.DataFrame({col:np.repeat(df[col].values, df[lst_col].str.len()) for col in df.columns.difference([lst_col])}).assign(**{lst_col:np.concatenate(df[lst_col].values)})[df.columns.tolist()] return df_unlist def main(): outdir = 'output' if not os.path.exists(outdir): os.makedirs(outdir) hostname = None username = None password = None if not hostname: hostname = input ("enter the url of the site: ") if not username: username = input("enter your username: ") if not password: password = input("enter your password: ") C = ColecticaObject(hostname, username, password) df = get_instruments_df(C) df.to_csv(os.path.join(outdir, 'instrument_mode_data_collection.csv'), index=False, sep=';') if __name__ == '__main__': main() ``` #### File: jli755/colectica_api/get_questions.py ```python import colectica from colectica import ColecticaObject import api import pandas as pd import os import numpy as np import json def from_instrument_get_question_response(C, Agency, ID): """ From an instrument get all questions, all response """ df_instrument_set, instrument_info = C.item_info_set(Agency, ID) df_question = df_instrument_set.loc[(df_instrument_set.ItemType == 'Question') , :] question_df_list = [] codelist_df_list = [] response_df_list = [] for question_id in df_question['Identifier']: # print(question_id) df_question, df_response = C.get_question_all(Agency, question_id) # store DataFrame in list question_df_list.append(df_question) if df_question['response_type'][0] == 'CodeList': codelist_df_list.append(df_response) else: response_df_list.append(df_response) df_question_all = pd.concat(question_df_list) if codelist_df_list == []: df_codelist_all = pd.DataFrame() else: df_codelist_all = pd.concat(codelist_df_list) if response_df_list == []: df_response_all = pd.DataFrame() else: df_response_all = pd.concat(response_df_list) return instrument_info, df_question_all, df_codelist_all, df_response_all def from_instrument_get_statement(C, Agency, ID): """ From an instrument get all Statement """ df_instrument_set, instrument_info = C.item_info_set(Agency, ID) df_statement = df_instrument_set.loc[(df_instrument_set.ItemType == 'Statement') , :] statement_df_list = [] for statement_id in df_statement['Identifier']: dict_statement = C.item_to_dict(Agency, statement_id) df_statement = pd.DataFrame([dict_statement], columns=dict_statement.keys()) statement_df_list.append(df_statement) if not statement_df_list == []: df_statement_all = pd.concat(statement_df_list) else: df_statement_all = pd.DataFrame(columns=['AgencyId', 'Version', 'Identifier', 'URN', 'SourceId', 'Instruction', 'Label', 'Literal']) return df_statement_all def main(): outdir = 'instrument' if not os.path.exists(outdir): os.makedirs(outdir) hostname = None username = None password = None if not hostname: hostname = input ("enter the url of the site: ") if not username: username = input("enter your username: ") if not password: password = input("enter your password: ") C = ColecticaObject(hostname, username, password) # get all instruments # L = C.general_search('f196cc07-9c99-4725-ad55-5b34f479cf7d', '', 0) # print(L['TotalResults']) # 313 # json.dump(L, open(os.path.join(outdir, 'all_instrument.txt'),'w')) L = json.load(open(os.path.join(outdir, 'all_instrument.txt'))) # print(L) all_idx = np.array(range(L['TotalResults'])) # split into 10 chunks chunks = np.array_split(all_idx, 10) this_chunk = 9 for i in chunks[this_chunk]: print(i) Agency = L['Results'][i]['AgencyId'] ID = L['Results'][i]['Identifier'] Version = L['Results'][i]['Version'] instrument_name = '_'.join(' '.join(L['Results'][i]['ItemName'].values()).split(' ')) instrument_dir = os.path.join(outdir, instrument_name) if not os.path.exists(instrument_dir): os.makedirs(instrument_dir) # From an instrument get all questions, all response, print to file instrument_info, df_question_all, df_codelist_all, df_response_all = from_instrument_get_question_response(C, Agency, ID) with open(os.path.join(instrument_dir, 'instrument.txt'), 'w') as f: print(instrument_info, file=f) df_question_all.to_csv(os.path.join(instrument_dir, 'question.csv'), index=False, sep='\t') df_codelist_all.to_csv(os.path.join(instrument_dir, 'codelist.csv'), index=False, sep='\t') df_response_all.to_csv(os.path.join(instrument_dir, 'response.csv'), index=False, sep='\t') # From an instrument get all statements df_statement_all = from_instrument_get_statement(C, Agency, ID) df_statement_out = df_statement_all.loc[:, ['AgencyId', 'Version', 'Identifier', 'URN', 'SourceId', 'Instruction', 'Label', 'Literal']] df_statement_out.to_csv(os.path.join(instrument_dir, 'statement.csv'), index=False, sep='\t') if __name__ == '__main__': main() ```
{ "source": "jliahut/02-Text-adventure", "score": 3 }
#### File: jliahut/02-Text-adventure/main.py ```python import sys, os, json assert sys.version_info >= (3,7), "This script requires at least Python 3.7" # The game and item description files (in the same folder as this script) game_file = 'zork.json' item_file = 'items.json' def load_files(): try: __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) with open(os.path.join(__location__, game_file)) as json_file: game = json.load(json_file) with open(os.path.join(__location__, item_file)) as json_file: items = json.load(json_file) return (game,items) except: print("There was a problem reading either the game or item file.") os._exit(1) # The main function for the game def main(): current = 'PIZZ1' # The starting location end_game = ['GAME1'] # Any of the end-game locations (game,items) = load_files() # Add your code here # run the main function if __name__ == '__main__': main() ```
{ "source": "jliang117/jliang117.github.io", "score": 3 }
#### File: _site/sampleSaleProject/scrape.py ```python from bs4 import BeautifulSoup import requests import json import os class MyEncoder(json.JSONEncoder): """ JSONEncoder subclass that leverages an object's `__json__()` method, if available, to obtain its default JSON representation. """ def default(self, obj): if hasattr(obj, '__json__'): return obj.__json__() return json.JSONEncoder.default(self, obj) class MarkerData(): def __init__(self, title, latitude, longitude, description): self.title = title self.latitude = latitude self.longitude = longitude self.description = description def __json__(self): return{'title': self.title, 'latitude': self.latitude, 'longitude': self.longitude, 'description': self.description} def saveScrapeToJson(filename): """ The site content looks like: <p class="lead">Tuesday through Friday, 6/4-6/7, <a href="https://www.260samplesale.com/" rel="noreferrer noopener" target="_blank">260 Sample Sale  </a>hosts  <a href="http://www.montblanc.com/en-us/home.html" rel="noreferrer noopener" target="_blank">Mont Blanc </a>. Watches, writing instruments, leather accessories and jewelry will all be up to 80% off. </p> *usefulData* </div> <p>Mont Blanc – 260 Fifth Ave btw 28th &amp; 29th – Tues-Thurs 9am-7pm, Fri 9am-12pm – <a href="https://www.google.com/maps/place/260+Sample+Sale/@40.7451863,-73.9895217,17z/data=!3m1!4b1!4m5!3m4!1s0x89c259a63b66ffeb:0x85f1cf2e6ed1fa24!8m2!3d40.7451823!4d-73.987333" rel="noreferrer noopener" target="_blank">Map </a> </p>: """ HEADERS = {'User-agent':'sample sale scraper - contact on twitter @j_liang_'} URL = 'http://www.thechoosybeggar.com' r = requests.get(URL, headers=HEADERS, timeout=10) soup = BeautifulSoup(r.text, "html5lib") # create markerList markerDataList = [] marker_list = [] for sectionData in soup.find_all("div", class_="entry"): paragraphs = sectionData.find_all('p') if len(paragraphs) <= 1: # skip if just one paragraph continue usefulData = paragraphs[1] markerText = usefulData.getText() if "am" not in markerText: # skipping this entry if there's no date continue firstWord = markerText.split(" ")[0] mapLink = usefulData.find('a').get('href') mapUrlSplit = mapLink.split("/") for s in mapUrlSplit: if s.startswith("@"): latLong = s.split(",") latitude = latLong[0][1:] longitude = latLong[1] marker_list.append("markers=size:large|label:" + firstWord + "|color:0xFFFF00|" + latitude + "," + longitude + "|") markerDataList.append(MarkerData( firstWord, latitude, longitude, markerText)) with open(filename, 'w') as outfile: json.dump(markerDataList, outfile, cls=MyEncoder) saveScrapeToJson('pins.json') ```
{ "source": "jlianglab/CAiD", "score": 2 }
#### File: jlianglab/CAiD/trainer.py ```python from utils import AverageMeter,ProgressMeter import torch import time def train(train_loader, model, nce_criterion, mse_criterion, optimizer, epoch, args): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') nce_losses = AverageMeter('NCE Loss', ':.4e') mse_losses = AverageMeter('MSE Loss', ':.4e') losses = AverageMeter('Loss', ':.4e') progress = ProgressMeter( len(train_loader), [batch_time, data_time, nce_losses,mse_losses,losses], prefix="Epoch: [{}]".format(epoch)) # switch to train mode model.train() end = time.time() for i, (images) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) if args.mode.lower() == "id": if args.gpu is not None: images[0] = images[0].cuda(args.gpu, non_blocking=True) images[1] = images[1].cuda(args.gpu, non_blocking=True) output, target = model(im_q=images[0], im_k=images[1]) loss = nce_criterion(output, target) nce_losses.update(loss.item(), images[0].size(0)) losses.update(loss.item(), images[0].size(0)) elif args.mode.lower() == "caid": if args.gpu is not None: images[0] = images[0].cuda(args.gpu, non_blocking=True) images[1] = images[1].cuda(args.gpu, non_blocking=True) images[2] = images[2].cuda(args.gpu, non_blocking=True) output, target, rec_output = model(im_q=images[0], im_k=images[1]) nce_loss = nce_criterion(output, target) mse_loss = mse_criterion(rec_output, images[2]) loss = args.contrastive_weight * nce_loss + args.mse_weight * mse_loss nce_losses.update(nce_loss.item(), images[0].size(0)) mse_losses.update(mse_loss.item(), images[0].size(0)) losses.update(loss.item(), images[0].size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.display(i) def validate(val_loader, model, nce_criterion, mse_criterion, epoch, args): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') nce_losses = AverageMeter('NCE Loss', ':.4e') mse_losses = AverageMeter('MSE Loss', ':.4e') losses = AverageMeter('Loss', ':.4e') progress = ProgressMeter( len(val_loader), [batch_time, data_time, nce_losses,mse_losses,losses], prefix="Validation: ") model.eval() counter = torch.zeros((2,), device=torch.device(f'cuda:{args.rank}')) end = time.time() for i, (images) in enumerate(val_loader): with torch.no_grad(): # measure data loading time data_time.update(time.time() - end) if args.mode.lower() == "id": if args.gpu is not None: images[0] = images[0].cuda(args.gpu, non_blocking=True) images[1] = images[1].cuda(args.gpu, non_blocking=True) output, target = model(im_q=images[0], im_k=images[1]) loss = nce_criterion(output, target) nce_losses.update(loss.item(), images[0].size(0)) losses.update(loss.item(), images[0].size(0)) elif args.mode.lower() == "caid": if args.gpu is not None: images[0] = images[0].cuda(args.gpu, non_blocking=True) images[1] = images[1].cuda(args.gpu, non_blocking=True) images[2] = images[2].cuda(args.gpu, non_blocking=True) output, target, rec_output = model(im_q=images[0], im_k=images[1]) nce_loss = nce_criterion(output, target) mse_loss = mse_criterion(rec_output, images[2]) loss = args.contrastive_weight * nce_loss + args.mse_weight * mse_loss nce_losses.update(nce_loss.item(), images[0].size(0)) mse_losses.update(mse_loss.item(), images[0].size(0)) losses.update(loss.item(), images[0].size(0)) counter[0] += loss.item() counter[1] += 1 # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.display(i) return counter ```
{ "source": "jlianglab/TransVW", "score": 2 }
#### File: TransVW/self_discovery/utils.py ```python import numpy as np import SimpleITK as sitk def resample_img(itk_image, out_spacing=[2.0, 2.0, 2.0], is_label=True): # Resample images to 2mm spacing with SimpleITK original_spacing = itk_image.GetSpacing() original_size = itk_image.GetSize() out_size = [ int(np.round(original_size[0] * (original_spacing[0] / out_spacing[0]))), int(np.round(original_size[1] * (original_spacing[1] / out_spacing[1]))), int(np.round(original_size[2] * (original_spacing[2] / out_spacing[2])))] resample = sitk.ResampleImageFilter() resample.SetOutputSpacing(out_spacing) resample.SetSize(out_size) resample.SetOutputDirection(itk_image.GetDirection()) resample.SetOutputOrigin(itk_image.GetOrigin()) resample.SetTransform(sitk.Transform()) resample.SetDefaultPixelValue(itk_image.GetPixelIDValue()) if is_label: resample.SetInterpolator(sitk.sitkNearestNeighbor) else: resample.SetInterpolator(sitk.sitkBSpline) return resample.Execute(itk_image) ```
{ "source": "jlibovicky/asses-multilingual-bert", "score": 3 }
#### File: jlibovicky/asses-multilingual-bert/att_entropies_per_lng.py ```python import argparse import numpy as np import torch import torch.nn as nn import torch.optim as optim from pytorch_pretrained_bert import BertTokenizer, BertModel import logging logging.basicConfig(level=logging.INFO) def text_data_generator(path, tokenizer): with open(path, 'r', encoding='utf-8') as f: for line in f: sentence = line.strip() # 512 is the maximum input size of BERT tokens = tokenizer.tokenize(sentence) tokenized = ["[CLS]"] + tokens[:510] + ["[SEP]"] token_ids = tokenizer.convert_tokens_to_ids(tokenized) yield torch.tensor(token_ids) def main(): parser = argparse.ArgumentParser(__doc__) parser.add_argument( "bert_model", choices=["bert-base-uncased", "bert-large-uncased", "bert-base-cased", "bert-base-multilingual-cased", "bert-base-multilingual-uncased", "bert-base-chinese"], help="Variant of pre-trained model.") parser.add_argument( "language_data", nargs="+", type=str, help="Files with data, name of the file is language code.") parser.add_argument("--num-threads", type=int, default=4) parser.add_argument("--limit", type=int, default=10000) args = parser.parse_args() torch.set_num_threads(args.num_threads) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=False) model = BertModel.from_pretrained( args.bert_model, output_attentions=True, keep_multihead_output=True).to(device) model.eval() languages = [] entropies = [] with torch.no_grad(): for input_file in args.language_data: lng_code = input_file.split("/")[-1][:-4] print(f"Working on {lng_code}") entropies_sums = None sentence_count = 0 for sentence_tensor in text_data_generator(input_file, tokenizer): sentence_count += 1 layer_attentions = model(sentence_tensor.unsqueeze(0))[0] head_count = layer_attentions[0].shape[1] if entropies_sums is None: entropies_sums = np.zeros( len(layer_attentions) * head_count) head_id = 0 for att_matrices in layer_attentions: for matrix in att_matrices.squeeze(0): entropy = -torch.mean((matrix * torch.log(matrix + 1e-9)).sum(1)) entropies_sums[head_id] += entropy.cpu().numpy() head_id += 1 if sentence_count >= args.limit: break languages.append(lng_code) entropies.append(entropies_sums / sentence_count) for lng, entropy in zip(languages, entropies): formatted_ent = "\t".join([f"{e:.5f}" for e in entropy]) print(f"{lng}\t{formatted_ent}") if __name__ == "__main__": main() ``` #### File: jlibovicky/asses-multilingual-bert/lang_id_embeddings.py ```python import argparse import numpy as np from sklearn.linear_model import LogisticRegression from utils import load_word_embeddings, mean_word_embedding def load_dataset(txt_file, lng_file, all_embeddings, lng2idx): representations = [] targets = [] with open(txt_file) as f_txt, open(lng_file) as f_lng: for sentence, lng in zip(f_txt, f_lng): lng = lng.strip() vector = mean_word_embedding( all_embeddings[lng], sentence.strip(), lng) if vector.shape == tuple(): continue representations.append(vector) targets.append(lng2idx[lng]) return np.stack(representations), np.array(targets) def main(): parser = argparse.ArgumentParser(__doc__) parser.add_argument( "embeddings_prefix", type=str, help="Directory with word embeddings.") parser.add_argument( "languages", type=str, help="File with a list of languages.") parser.add_argument( "train_data_txt", type=str, help="Training sentences.") parser.add_argument( "train_data_lng", type=str, help="Language codes for training sentences.") parser.add_argument( "val_data_txt", type=str, help="Validation sentences.") parser.add_argument( "val_data_lng", type=str, help="Language codes for validation sentences.") parser.add_argument( "test_data_txt", type=str, help="Test sentences.") parser.add_argument( "test_data_lng", type=str, help="Language codes for test sentences.") parser.add_argument("--num-threads", type=int, default=4) parser.add_argument( "--save-model", type=str, help="Path where to save the best model.") parser.add_argument( "--save-centroids", type=str, help="Path to save language centroids.") parser.add_argument( "--test-output", type=str, default=None, help="Output for example classification.") parser.add_argument( "--center-lng", default=False, action="store_true", help="Center languages to be around coordinate origin.") args = parser.parse_args() with open(args.languages) as f_lang: languages = [line.strip() for line in f_lang] lng2idx = {lng: i for i, lng in enumerate(languages)} print("Loading embeddings.") all_embeddings = { lng: load_word_embeddings(f"{args.embeddings_prefix}/{lng}.vec") for lng in languages} print("Loading training data.") train_repr, train_tgt = load_dataset( args.train_data_txt, args.train_data_lng, all_embeddings, lng2idx) print("Loading test data.") test_repr, test_tgt = load_dataset( args.test_data_txt, args.test_data_lng, all_embeddings, lng2idx) if args.center_lng: centroids = np.stack([ np.mean(train_repr[train_tgt == i], axis=0) for i in range(len(all_embeddings))]) train_repr = train_repr - centroids[train_tgt] test_repr = test_repr - centroids[test_tgt] model = LogisticRegression() model.fit(train_repr, train_tgt) test_prediction = model.predict(test_repr) accuracy = np.mean(test_prediction == test_tgt) print(accuracy) if __name__ == "__main__": main() ``` #### File: jlibovicky/asses-multilingual-bert/lang_id.py ```python import argparse import logging import numpy as np import torch import torch.nn as nn import torch.optim as optim from utils import ( text_data_generator, batch_generator, get_repr_from_layer, load_bert) logging.basicConfig(level=logging.INFO) def lng_data_generator(path, lng2idx, epochs=1): for _ in range(epochs): with open(path, 'r', encoding='utf-8') as f_lang: for line in f_lang: lng = line.strip() lng_id = lng2idx[lng] yield torch.tensor(lng_id) def get_centroids( device, model, data, languages, labels, layer, tokenizer, mean_pool=False): """Get language centeroids based on labels.""" labels = torch.cat(labels).to(device) text_repr = torch.cat([ get_repr_from_layer(model, d.to(device), layer, tokenizer.pad_token_id, mean_pool=mean_pool) for d in data]) centroids = torch.zeros((len(languages), text_repr.size(1))) for i, _ in enumerate(languages): centroids[i] = text_repr[labels == i].mean(0) return centroids def load_and_batch_data(txt, lng, tokenizer, lng2idx, batch_size=32, epochs=1): text_batches = batch_generator( text_data_generator( txt, tokenizer, epochs=epochs, max_len=110), size=batch_size, tokenizer=tokenizer, padding=True) lng_batches = batch_generator( lng_data_generator(lng, lng2idx, epochs=epochs), size=batch_size, tokenizer=None, padding=False) return zip(text_batches, lng_batches) def main(): parser = argparse.ArgumentParser(__doc__) parser.add_argument( "bert_model", type=str, help="Variant of pre-trained model.") parser.add_argument( "layer", type=int, help="Layer from of layer from which the representation is taken.") parser.add_argument( "languages", type=str, help="File with a list of languages.") parser.add_argument( "train_data_txt", type=str, help="Training sentences.") parser.add_argument( "train_data_lng", type=str, help="Language codes for training sentences.") parser.add_argument( "val_data_txt", type=str, help="Validation sentences.") parser.add_argument( "val_data_lng", type=str, help="Language codes for validation sentences.") parser.add_argument( "test_data_txt", type=str, help="Test sentences.") parser.add_argument( "test_data_lng", type=str, help="Language codes for test sentences.") parser.add_argument( "--hidden", default=None, type=int, help="Size of the hidden classification layer.") parser.add_argument("--num-threads", type=int, default=4) parser.add_argument( "--save-model", type=str, help="Path where to save the best model.") parser.add_argument( "--save-centroids", type=str, help="Path to save language centroids.") parser.add_argument( "--test-output", type=str, default=None, help="Output for example classification.") parser.add_argument( "--skip-tokenization", default=False, action="store_true", help="Only split on spaces, skip wordpieces.") parser.add_argument( "--mean-pool", default=False, action="store_true", help="If true, use mean-pooling instead of [CLS] vecotr.") parser.add_argument( "--center-lng", default=False, action="store_true", help="Center languages to be around coordinate origin.") args = parser.parse_args() with open(args.languages) as f_lang: languages = [line.strip() for line in f_lang] lng2idx = {lng: i for i, lng in enumerate(languages)} torch.set_num_threads(args.num_threads) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tokenizer, model, model_dim, _ = load_bert( args.bert_model, device) if args.layer < -1: print("Layer index cannot be negative.") exit(1) num_layers = None if hasattr(model.config, "num_hidden_layers"): num_layers = model.config.num_hidden_layers if hasattr(model.config, "n_layers"): num_layers = model.config.n_layers if args.layer >= num_layers: print(f"Model only has {num_layers} layers, {args.layer} is too much.") exit(1) train_batches = load_and_batch_data( args.train_data_txt, args.train_data_lng, tokenizer, lng2idx, batch_size=32, epochs=1000) print("Train data iterator initialized.") centroids = None if args.center_lng: print("Estimating language centroids.") with torch.no_grad(): texts, labels = [], [] for _, (txt, lab) in zip(range(100), train_batches): texts.append(txt) labels.append(lab) centroids = get_centroids( device, model, texts, languages, labels, args.layer, tokenizer, mean_pool=args.mean_pool) centroids = centroids.to(device) if args.save_centroids: torch.save(centroids.cpu(), args.save_centroids) print("Loading validation data.") val_batches_raw = list(load_and_batch_data( args.val_data_txt, args.val_data_lng, tokenizer, lng2idx, batch_size=32, epochs=1)) print("Validation data loaded in memory, pre-computing BERT.") val_batches = [] with torch.no_grad(): for tokens, lng in val_batches_raw: bert_features = get_repr_from_layer( model, tokens.to(device), args.layer, tokenizer.pad_token_id, args.mean_pool).cpu() val_batches.append((bert_features, lng)) print("Loading test data.") test_batches_raw = list(load_and_batch_data( args.test_data_txt, args.test_data_lng, tokenizer, lng2idx, batch_size=32, epochs=1)) print("Test data loaded in memory, pre-computing BERT.") test_batches = [] with torch.no_grad(): for tokens, lng in test_batches_raw: bert_features = get_repr_from_layer( model, tokens.to(device), args.layer, tokenizer.pad_token_id, args.mean_pool).cpu() test_batches.append((bert_features, lng)) print() test_accuracies = [] all_test_outputs = [] trained_models = [] for exp_no in range(5): print(f"Starting experiment no {exp_no + 1}") print(f"------------------------------------") if args.hidden is None: classifier = nn.Linear(model_dim, len(languages)) else: classifier = nn.Sequential( nn.Linear(model_dim, args.hidden), nn.ReLU(), nn.Dropout(0.1), nn.Linear(args.hidden, len(languages))) classifier = classifier.to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(classifier.parameters(), lr=1e-3) def evaluate(data_batches): classifier.eval() with torch.no_grad(): running_val_loss = 0. running_val_acc = 0. val_count = 0 outputs = [] for bert_features, lng in data_batches: bert_features, lng = ( bert_features.to(device), lng.to(device)) batch_size = bert_features.size(0) if centroids is not None: bert_features = bert_features - centroids[lng] prediction = classifier(bert_features) batch_loss = criterion(prediction, lng) predicted_lng = prediction.max(-1)[1] batch_accuracy = torch.sum((predicted_lng == lng).float()) running_val_loss += ( batch_size * batch_loss.cpu().numpy().tolist()) running_val_acc += batch_accuracy.cpu().numpy().tolist() val_count += batch_size outputs.extend(predicted_lng.cpu().numpy().tolist()) val_loss = running_val_loss / val_count accuracy = running_val_acc / val_count return val_loss, accuracy, outputs best_accuracy = 0.0 no_improvement = 0 learning_rate_decreased = 0 learning_rate = 1e-3 for i, (sentences, lng) in enumerate(train_batches): try: classifier.train() optimizer.zero_grad() sentences, lng = sentences.to(device), lng.to(device) bert_features = get_repr_from_layer( model, sentences, args.layer, tokenizer.pad_token_id, mean_pool=args.mean_pool) if centroids is not None: with torch.no_grad(): bert_features = bert_features - centroids[lng] prediction = classifier(bert_features) loss = criterion(prediction, lng) loss.backward() optimizer.step() if i % 10 == 9: print(f"loss: {loss.cpu().detach().numpy().tolist():5g}") if i % 50 == 49: print() val_loss, accuracy, _ = evaluate(val_batches) print("Validation: " f"loss: {val_loss:5g}, " f"accuracy: {accuracy:5g}") if accuracy > best_accuracy: best_accuracy = accuracy no_improvement = 0 else: no_improvement += 1 if no_improvement >= 5: if learning_rate_decreased >= 5: print( "Learning rate decreased five times, ending.") break learning_rate /= 2 print(f"Decreasing learning rate to {learning_rate}.") for param_group in optimizer.param_groups: param_group['lr'] = learning_rate learning_rate_decreased += 1 no_improvement = 0 print() except KeyboardInterrupt: break model.eval() test_loss, test_accuracy, test_outputs = evaluate(test_batches) print() print("Testing:") print(f"test loss: {test_loss:5g}, " f"test accuracy: {test_accuracy:5g}") test_accuracies.append(test_accuracy) this_test_outputs = [] for lng_prediction in test_outputs: this_test_outputs.append(languages[lng_prediction]) all_test_outputs.append(this_test_outputs) trained_models.append(classifier.cpu()) print() print("===============================================") print("All experiments done.") print("===============================================") print(f"Mean test accuracy {np.mean(test_accuracies)}") print(f"Mean test stdev {np.std(test_accuracies)}") best_exp_id = np.argmax(test_accuracies) print(f"Best test accuracy {max(test_accuracies)}") if args.save_model: torch.save(trained_models[best_exp_id], args.save_model) if args.test_output is not None: with open(args.test_output, 'w') as f_out: for prediction in all_test_outputs[best_exp_id]: print(prediction, file=f_out) if __name__ == "__main__": main() ``` #### File: jlibovicky/asses-multilingual-bert/qe_by_cosine_embeddings.py ```python import argparse import logging import sys import numpy as np import torch from qe_by_cosine import apply_sklearn_proj from utils import load_word_embeddings, word_embeddings_for_file logging.basicConfig(level=logging.INFO) def center(lng_repr): return lng_repr - lng_repr.mean(0, keepdim=True) def main(): parser = argparse.ArgumentParser(__doc__) parser.add_argument( "src", type=str, help="Sentences in source language.") parser.add_argument( "mt", type=str, help="Sentences in the target language.") parser.add_argument( "src_emb", type=str, help="Source language word embeddings.") parser.add_argument( "mt_emb", type=str, help="Target language word embeddings.") parser.add_argument( "src_lng", type=str, help="Source language code.") parser.add_argument( "mt_lng", type=str, help="Target language code.") parser.add_argument( "--mean-pool", default=False, action="store_true", help="If true, use mean-pooling instead of [CLS] vecotr.") parser.add_argument( "--center-lng", default=False, action="store_true", help="If true, center representations first.") parser.add_argument( "--batch-size", type=int, default=32) parser.add_argument( "--src-proj", default=None, type=str, help="Sklearn projection of the source language.") parser.add_argument( "--mt-proj", default=None, type=str, help="Sklearn projection of the target language.") parser.add_argument("--num-threads", type=int, default=4) args = parser.parse_args() if args.center_lng and ( args.src_proj is not None and args.src_proj is not None): print("You can either project or center " "the representations, not both.", file=sys.stderr) exit(1) torch.set_num_threads(args.num_threads) src_embeddings = load_word_embeddings(args.src_emb) mt_embeddings = load_word_embeddings(args.mt_emb) src_repr = torch.from_numpy(np.stack( word_embeddings_for_file(args.src, src_embeddings, args.src_lng))) mt_repr = torch.from_numpy(np.stack( word_embeddings_for_file(args.mt, mt_embeddings, args.mt_lng))) if args.center_lng: src_repr = center(src_repr) mt_repr = center(mt_repr) if args.src_proj is not None: src_repr = apply_sklearn_proj(src_repr, args.src_proj) if args.mt_proj is not None: mt_repr = apply_sklearn_proj(mt_repr, args.mt_proj) src_norm = (src_repr * src_repr).sum(1).sqrt() mt_norm = (mt_repr * mt_repr).sum(1).sqrt() cosine = (src_repr * mt_repr).sum(1) / src_norm / mt_norm for num in cosine.cpu().detach().numpy(): print(num) if __name__ == "__main__": main() ```