metadata
dict
text
stringlengths
60
3.49M
{ "source": "jlmadurga/python_selenium_astride", "score": 3 }
#### File: python_selenium_astride/tests/pages.py ```python from selenium_astride import BasePage, BasePageCSSElement, BasePageNamedElement from .locators import HomeLocators, LoginLocators class HomePage(BasePage): def go_login(self): self._click_action(HomeLocators.LOGIN) def first_entry(self): element = self._wait_for_element(HomeLocators.FIRST_ENTRY_TITLE, 1) return element.text class UsernameElement(BasePageCSSElement): locator = "#username" class PasswordElement(BasePageNamedElement): locator = "password" class LoginPage(BasePage): username = UsernameElement() password = <PASSWORD>() def title_page(self): element = self._wait_for_element(LoginLocators.TITLE, 1) return element.text def login(self): self._click_action(LoginLocators.SUBMIT) def get_error(self): element = self._wait_for_element(LoginLocators.ERROR, 1) return element.text ```
{ "source": "jlmadurga/yowsup-gateway", "score": 2 }
#### File: yowsup-gateway/tests/test_gateway_layer.py ```python import unittest import time from yowsup.layers import YowProtocolLayerTest from yowsup_gateway.layer import GatewayLayer from yowsup.layers.protocol_messages.protocolentities import TextMessageProtocolEntity from yowsup.layers.protocol_receipts.protocolentities import IncomingReceiptProtocolEntity from yowsup.layers import YowLayerEvent from yowsup.layers.protocol_acks.protocolentities.test_ack_incoming import entity as incomingAckEntity from yowsup.layers.network import YowNetworkLayer from yowsup_gateway.exceptions import ConnectionError from yowsup_gateway.layer import ExitGateway from yowsup_gateway import YowsupGateway from . import success_protocol_entity try: import Queue except ImportError: import queue as Queue class DummyStack(YowsupGateway): def __init__(self): self.detached_queue = Queue.Queue() self.result = None self._props = {} class GatewayLayerTest(YowProtocolLayerTest, GatewayLayer): def setUp(self): GatewayLayer.__init__(self) self.connected = True self.setStack(DummyStack()) def tearDown(self): pass def send_message(self): content = "Hello world" number = "341111111" message = (number, content) self.onEvent(YowLayerEvent(GatewayLayer.EVENT_SEND_MESSAGES, messages=[message])) return message def receive_ack(self): incoming_ack_entity = incomingAckEntity self.ack_pending.append(incoming_ack_entity.getId()) self.receive(incoming_ack_entity) return incoming_ack_entity def receive_message(self): content = "Received message" jid = "<EMAIL>" msg = TextMessageProtocolEntity(content, _from=jid) self.receive(msg) return msg def receive_receipt(self): receipt = IncomingReceiptProtocolEntity("123", "sender", int(time.time())) self.receive(receipt) return receipt def test_connection_successful(self): self.connected = False self.on_success(success_protocol_entity()) self.assertTrue(self.connected) def test_connection_failure(self): self.connected = False self.assertFalse(self.connected) def test_send_message_ok(self): message = self.send_message() msg_sent = self.lowerSink.pop() self.assertEqual(msg_sent.getBody(), message[1]) self.assertEqual(msg_sent.getTo(), message[0] + "@s.whatsapp.net") self.assertEqual(msg_sent.getId(), self.ack_pending.pop()) self.assertEqual(self.outbox, [msg_sent]) def test_send_message_not_connected(self): self.connected = False with self.assertRaises(ConnectionError): self.send_message() def test_receive_ack_message_ok(self): ack = self.receive_ack() self.assertEqual(self.ack_pending, []) self.assertEqual(self.inbox, [ack]) self.assert_broadcastEvent(YowLayerEvent(YowNetworkLayer.EVENT_STATE_DISCONNECT)) def test_receive_message(self): msg = self.receive_message() self.assertEqual(self.inbox, [msg]) ack = self.lowerSink.pop() self.assertEqual(ack.getId(), msg.getId()) self.assertEqual(self.outbox, [ack]) def test_receive_receipt(self): receipt = self.receive_receipt() self.assertEqual(self.inbox, [receipt]) ack = self.lowerSink.pop() self.assertEqual(ack.getId(), receipt.getId()) self.assertEqual(self.outbox, [ack]) def test_disconnect(self): with self.assertRaises(ExitGateway): self.onEvent(YowLayerEvent(YowNetworkLayer.EVENT_STATE_DISCONNECTED)) self.assertFalse(self.connected) if __name__ == '__main__': import sys sys.exit(unittest.main()) ```
{ "source": "jlmaners/core", "score": 2 }
#### File: components/senz/api.py ```python from typing import cast from aiosenz import AbstractSENZAuth from httpx import AsyncClient from homeassistant.helpers import config_entry_oauth2_flow class SENZConfigEntryAuth(AbstractSENZAuth): """Provide nVent RAYCHEM SENZ authentication tied to an OAuth2 based config entry.""" def __init__( self, httpx_async_client: AsyncClient, oauth_session: config_entry_oauth2_flow.OAuth2Session, ) -> None: """Initialize SENZ auth.""" super().__init__(httpx_async_client) self._oauth_session = oauth_session async def get_access_token(self) -> str: """Return a valid access token.""" await self._oauth_session.async_ensure_token_valid() return cast(str, self._oauth_session.token["access_token"]) ``` #### File: components/senz/config_flow.py ```python import logging from homeassistant.helpers import config_entry_oauth2_flow from .const import DOMAIN class OAuth2FlowHandler( config_entry_oauth2_flow.AbstractOAuth2FlowHandler, domain=DOMAIN ): """Config flow to handle SENZ OAuth2 authentication.""" DOMAIN = DOMAIN @property def logger(self) -> logging.Logger: """Return logger.""" return logging.getLogger(__name__) @property def extra_authorize_data(self) -> dict: """Extra data that needs to be appended to the authorize url.""" return {"scope": "restapi offline_access"} ``` #### File: components/tractive/diagnostics.py ```python from __future__ import annotations from homeassistant.components.diagnostics import async_redact_data from homeassistant.config_entries import ConfigEntry from homeassistant.const import CONF_EMAIL, CONF_PASSWORD from homeassistant.core import HomeAssistant from .const import DOMAIN, TRACKABLES TO_REDACT = {CONF_PASSWORD, CONF_EMAIL, "title", "_id"} async def async_get_config_entry_diagnostics( hass: HomeAssistant, config_entry: ConfigEntry ) -> dict: """Return diagnostics for a config entry.""" trackables = hass.data[DOMAIN][config_entry.entry_id][TRACKABLES] diagnostics_data = async_redact_data( { "config_entry": config_entry.as_dict(), "trackables": [item.trackable for item in trackables], }, TO_REDACT, ) return diagnostics_data ```
{ "source": "jlmarrugom/Dashapp", "score": 3 }
#### File: Dashapp/ControlBox/mapa.py ```python import numpy as np import pandas as pd import plotly.graph_objects as go def mun_to_coord(full_ser): """ Recibe un Dataframe con municipios, añade sus coordenadas y regresa un Dataframe. """ full_ser['MUNICIPIO'] = full_ser['MUNICIPIO'].astype(object).replace({1:'Lorica', 2:'Planeta Rica', 3:'Tierralta', 4:'Sahagun', 5:'Montelibano', 6:'Montería'}) try: #Para el dataset de Murcielagos full_ser['MUNICIPIO'] = full_ser['Lugar'] except: pass full_ser['lat']=0 full_ser['lon']=0 full_ser['lat'].loc[full_ser['MUNICIPIO']=='Montería'] = 8.7558921 full_ser['lon'].loc[full_ser['MUNICIPIO']=='Montería'] = -75.887029 full_ser['lat'].loc[full_ser['MUNICIPIO']=='Lorica'] = 9.2394583 full_ser['lon'].loc[full_ser['MUNICIPIO']=='Lorica'] = -75.8139786 full_ser['lat'].loc[full_ser['MUNICIPIO']=='Planeta Rica'] = 8.4076739 full_ser['lon'].loc[full_ser['MUNICIPIO']=='Planeta Rica'] = -75.5840456 full_ser['lat'].loc[full_ser['MUNICIPIO']=='Tierralta'] = 8.1717342 full_ser['lon'].loc[full_ser['MUNICIPIO']=='Tierralta'] = -76.059376 full_ser['lat'].loc[full_ser['MUNICIPIO']=='Sahagun'] = 8.9472964 full_ser['lon'].loc[full_ser['MUNICIPIO']=='Sahagun'] = -75.4434972 full_ser['lat'].loc[full_ser['MUNICIPIO']=='Montelibano'] = 7.9800534 full_ser['lon'].loc[full_ser['MUNICIPIO']=='Montelibano'] = -75.4167198 full_ser['lat'].loc[full_ser['MUNICIPIO']=='Cereté'] = 8.8852282 full_ser['lon'].loc[full_ser['MUNICIPIO']=='Cereté'] = -75.7922421 full_ser['lat'].loc[full_ser['MUNICIPIO']=='San Antero'] = 9.373016 full_ser['lon'].loc[full_ser['MUNICIPIO']=='San Antero'] = -75.7595056 return full_ser def table_prueba(pat_df,prueba): """ Prueba es el tipo de prueba, Serologia o PCR, son sets de datos distintos """ df = pat_df.copy(deep=True) df = df[['lat','lon','MUNICIPIO']].groupby('MUNICIPIO').max() if prueba=='PCR': # df = pat_df[pat_df['RESULTADO PCR']=='POSITIVO'] # df = df.dropna() # max_amount = float(df['export_val'].max()) df = df.merge(pat_df[['RESULTADO PCR','MUNICIPIO']].loc[pat_df['RESULTADO PCR']=='POSITIVO'].groupby(['MUNICIPIO']).count() ,how='outer',on='MUNICIPIO') df = df.merge(pat_df[['RESULTADO PCR','MUNICIPIO']].groupby(['MUNICIPIO']).count() ,how='inner',on='MUNICIPIO') #df = df.merge(pat_df[['RESULTADO PCR','MUNICIPIO']].loc[pat_df['RESULTADO PCR']=='POSITIVO'].groupby(['MUNICIPIO']).agg(lambda x:x.value_counts().index[0]) df = df.rename(columns={'RESULTADO PCR_x':'POSITIVOS PCR', 'RESULTADO PCR_y':'No DE PRUEBAS PCR'}) df = df.reset_index() else: df = df.merge(pat_df[['RESULTADO SEROLOGIA','MUNICIPIO']].loc[pat_df['RESULTADO SEROLOGIA']==1].groupby(['MUNICIPIO']).count() ,how='outer',on='MUNICIPIO') df = df.merge(pat_df[['RESULTADO SEROLOGIA','MUNICIPIO']].groupby(['MUNICIPIO']).count() ,how='inner',on='MUNICIPIO') #df = df.merge(full_ser[['RESULTADO PCR','MUNICIPIO']].loc[full_ser['RESULTADO PCR']=='POSITIVO'].groupby(['MUNICIPIO']).agg(lambda x:x.value_counts().index[0]) df['VULNERABILIDAD (%)'] = round(100*(1-(df['RESULTADO SEROLOGIA_x']/df['RESULTADO SEROLOGIA_y']))) df = df.rename(columns={'RESULTADO SEROLOGIA_x':'POSITIVOS SEROLOGIA', 'RESULTADO SEROLOGIA_y':'No DE PRUEBAS SEROLOGIA'}) df = df.reset_index() return df def mapping_df(full_ser,prueba): """ Recibe un Dataframe con Coordenadas y lo grafica en un mapa. retorna una figura. Prueba es el tipo de prueba, Serologia o PCR """ df = table_prueba(full_ser, prueba) print(df.head()) #Mapa: import folium folium_hmap = folium.Figure(width=500, height=500) m = folium.Map(location=[8.3344713,-75.6666238], width='100%', height='100%', zoom_start=8,#Por defecto es 10 tiles="OpenStreetMap" #OpenSteetMap ,Stamen Toner(Terrain, Watercolor) ).add_to(folium_hmap) data = df if prueba=='Serologia': for i in range(0,len(data)): html = f""" <head> <link rel="stylesheet" href="https://codepen.io/chriddyp/pen/dZVMbK.css"> <head> <h4> {data.iloc[i]['MUNICIPIO']}</h3> <p> Serología: </p> <p>Positivas: {data.iloc[i]['POSITIVOS SEROLOGIA']}</p> <p> Total: {data.iloc[i]['No DE PRUEBAS SEROLOGIA']}</p> """ iframe = folium.IFrame(html=html,width=160, height=160) popup = folium.Popup(iframe, max_width=2650) folium.Circle( location=[data.iloc[i]['lat'], data.iloc[i]['lon']], popup=popup, radius=float(data.iloc[i]['No DE PRUEBAS SEROLOGIA'])*100, color='lightgray', fill=True, fill_color='gray' ).add_to(m) for i in range(0,len(data)): html = f""" <head> <link rel="stylesheet" href="https://codepen.io/chriddyp/pen/dZVMbK.css"> <head> <h4> {data.iloc[i]['MUNICIPIO']}</h3> <p> Serología: </p> <p>Positivas: {data.iloc[i]['POSITIVOS SEROLOGIA']}</p> <p> Total: {data.iloc[i]['No DE PRUEBAS SEROLOGIA']}</p> """ iframe = folium.IFrame(html=html,width=160, height=160) popup = folium.Popup(iframe, max_width=2650) folium.Circle( location=[data.iloc[i]['lat'], data.iloc[i]['lon']], popup=popup, radius=float(data.iloc[i]['POSITIVOS SEROLOGIA'])*100, color='cadetblue', fill=True, fill_color='blue' ).add_to(m) folium_hmap.save('prueba_por_municipios.html') else: for i in range(0,len(data)): html = f""" <head> <link rel="stylesheet" href="https://codepen.io/chriddyp/pen/dZVMbK.css"> <head> <h4> {data.iloc[i]['MUNICIPIO']}</h3> <p> PCR: </p> <p>Positivas: {data.iloc[i]['POSITIVOS PCR']}</p> <p> Total: {data.iloc[i]['No DE PRUEBAS PCR']}</p> """ iframe = folium.IFrame(html=html,width=160, height=160) popup = folium.Popup(iframe, max_width=2650) folium.Circle( location=[data.iloc[i]['lat'], data.iloc[i]['lon']], popup=popup, radius=float(data.iloc[i]['No DE PRUEBAS PCR'])*150, color='lightgray', fill=True, fill_color='lightgray' ).add_to(m) for i in range(0,len(data)): html = f""" <head> <link rel="stylesheet" href="https://codepen.io/chriddyp/pen/dZVMbK.css"> <head> <h4> {data.iloc[i]['MUNICIPIO']}</h3> <p> PCR: </p> <p>Positivas: {data.iloc[i]['POSITIVOS PCR']}</p> <p> Total: {data.iloc[i]['No DE PRUEBAS PCR']}</p> """ iframe = folium.IFrame(html=html,width=160, height=160) popup = folium.Popup(iframe, max_width=2650) folium.Circle( location=[data.iloc[i]['lat'], data.iloc[i]['lon']], popup=popup, radius=float(data.iloc[i]['POSITIVOS PCR'])*150, color='crimson', fill=True, fill_color='crimson' ).add_to(m) folium_hmap.save('prueba_por_municipios.html') return folium_hmap # mapping_df(mun_to_coord(df)) ``` #### File: Dashapp/ControlBox/radial_plot.py ```python import numpy as np import pandas as pd import plotly.graph_objects as go import plotly.express as px from plotly.subplots import make_subplots from module_selection import * def radial_plot(df): data = module_selection(df,1).copy(deep=True) #Info básica data.loc[:,'HA ESTADO ENFERMO A HA TENIDO SÍNTOMAS LOS ÚLTIMOS TRES MESES':'DIARREA'] = data.loc[:,'HA ESTADO ENFERMO A HA TENIDO SÍNTOMAS LOS ÚLTIMOS TRES MESES':'DIARREA'].replace({2:0,3:np.nan}) #Cambio según la convención 0: No, 1 Sí #Seleccionamos sólo personas con síntomas: data = data.loc[data['HA ESTADO ENFERMO A HA TENIDO SÍNTOMAS LOS ÚLTIMOS TRES MESES']!=0].dropna() #los nan bajan el promedio data = data.groupby('MUNICIPIO').mean() #Agrupamos el promedio de cada síntoma por municipio #Radial plot data = data.loc[:,'TOS':'DIARREA'] categories = ['TOS','DIFICULTAD PARA RESPIRAR','FATIGA','DOLORES MUSCULARES Y CORPORALES', 'DOLOR DE CABEZA','PERDIDAD DEL OLFATO O DEL GUSTO','DOLOR DE GARGANTA', 'CONGESTION DE LA NARIZ','NÁUSEAS O VÓMITOS','DIARREA'] fig = go.Figure() fig.add_trace(go.Scatterpolar( r=data.iloc[0], theta=categories, name='Lorica' )) fig.add_trace(go.Scatterpolar( r=data.iloc[1], theta=categories, name='Planeta Rica' )) fig.add_trace(go.Scatterpolar( r=data.iloc[2], theta=categories, name='Montelibano' )) fig.add_trace(go.Scatterpolar( r=data.iloc[3], theta=categories, name='Tierralta' )) fig.add_trace(go.Scatterpolar( r=data.iloc[4], theta=categories, name='Monteria' )) fig.add_trace(go.Scatterpolar( r=data.iloc[5], theta=categories, name='Sahagún' )) fig.update_layout( polar=dict( radialaxis=dict( visible=True, range=[0, 1] )), showlegend=True ) fig.update_layout( title={ 'text': "Sintomas por Municipio", 'y':0.95, 'x':0.45, 'xanchor': 'center', 'yanchor': 'top'} # legend=dict( # yanchor="top", # y=0.99, # xanchor="left", # x=0.10) ) #fig.show() return fig ```
{ "source": "jlmaurer/pygmt", "score": 3 }
#### File: pygmt/tests/test_datasets.py ```python import numpy as np import numpy.testing as npt import pytest from pygmt.datasets import ( load_earth_relief, load_japan_quakes, load_ocean_ridge_points, load_sample_bathymetry, load_usgs_quakes, ) from pygmt.exceptions import GMTInvalidInput def test_japan_quakes(): """ Check that the dataset loads without errors. """ data = load_japan_quakes() assert data.shape == (115, 7) summary = data.describe() assert summary.loc["min", "year"] == 1987 assert summary.loc["max", "year"] == 1988 assert summary.loc["min", "month"] == 1 assert summary.loc["max", "month"] == 12 assert summary.loc["min", "day"] == 1 assert summary.loc["max", "day"] == 31 def test_ocean_ridge_points(): """ Check that the @ridge.txt dataset loads without errors. """ data = load_ocean_ridge_points() assert data.shape == (4146, 2) summary = data.describe() assert summary.loc["min", "longitude"] == -179.9401 assert summary.loc["max", "longitude"] == 179.935 assert summary.loc["min", "latitude"] == -65.6182 assert summary.loc["max", "latitude"] == 86.8 def test_sample_bathymetry(): """ Check that the @tut_ship.xyz dataset loads without errors. """ data = load_sample_bathymetry() assert data.shape == (82970, 3) summary = data.describe() assert summary.loc["min", "longitude"] == 245.0 assert summary.loc["max", "longitude"] == 254.705 assert summary.loc["min", "latitude"] == 20.0 assert summary.loc["max", "latitude"] == 29.99131 assert summary.loc["min", "bathymetry"] == -7708.0 assert summary.loc["max", "bathymetry"] == -9.0 def test_usgs_quakes(): """ Check that the dataset loads without errors. """ data = load_usgs_quakes() assert data.shape == (1197, 22) def test_earth_relief_fails(): """ Make sure earth relief fails for invalid resolutions. """ resolutions = "1m 1d bla 60d 001m 03".split() resolutions.append(60) for resolution in resolutions: with pytest.raises(GMTInvalidInput): load_earth_relief(resolution=resolution) # Only test 01d and 30m to avoid downloading large datasets in CI def test_earth_relief_01d(): """ Test some properties of the earth relief 01d data. """ data = load_earth_relief(resolution="01d", registration="gridline") assert data.shape == (181, 361) npt.assert_allclose(data.lat, np.arange(-90, 91, 1)) npt.assert_allclose(data.lon, np.arange(-180, 181, 1)) npt.assert_allclose(data.min(), -8592.5) npt.assert_allclose(data.max(), 5559.0) def test_earth_relief_01d_with_region(): """ Test loading low-resolution earth relief with 'region'. """ with pytest.raises(NotImplementedError): load_earth_relief("01d", region=[0, 180, 0, 90]) def test_earth_relief_30m(): """ Test some properties of the earth relief 30m data. """ data = load_earth_relief(resolution="30m", registration="gridline") assert data.shape == (361, 721) npt.assert_allclose(data.lat, np.arange(-90, 90.5, 0.5)) npt.assert_allclose(data.lon, np.arange(-180, 180.5, 0.5)) npt.assert_allclose(data.min(), -9460.5) npt.assert_allclose(data.max(), 5887.5) def test_earth_relief_05m_with_region(): """ Test loading a subregion of high-resolution earth relief grid. """ data = load_earth_relief( resolution="05m", region=[120, 160, 30, 60], registration="gridline" ) assert data.coords["lat"].data.min() == 30.0 assert data.coords["lat"].data.max() == 60.0 assert data.coords["lon"].data.min() == 120.0 assert data.coords["lon"].data.max() == 160.0 assert data.data.min() == -9633.0 assert data.data.max() == 2532.0 assert data.sizes["lat"] == 361 assert data.sizes["lon"] == 481 def test_earth_relief_05m_without_region(): """ Test loading high-resolution earth relief without passing 'region'. """ with pytest.raises(GMTInvalidInput): load_earth_relief("05m") def test_earth_relief_incorrect_registration(): """ Test loading earth relief with incorrect registration type. """ with pytest.raises(GMTInvalidInput): load_earth_relief(registration="improper_type") ```
{ "source": "jlmaurer/PyRate", "score": 2 }
#### File: PyRate/pyrate/config.py ```python from __future__ import print_function import os from os.path import splitext import warnings from pyrate import compat from pyrate import mpiops # TODO: add regex column to check if some values are within bounds? Potential # problem with the checking being done in the middle of the runs, as bad values # could cause crashes & destroying some of the results. # general constants NO_MULTILOOKING = 1 # constants for lookups #: STR; Name of input interferogram list file IFG_FILE_LIST = 'ifgfilelist' #: BOOL (0/1); The interferogram processor used (0==ROIPAC, 1==GAMMA) PROCESSOR = 'processor' #: STR; Name of directory containing input interferograms. OBS_DIR = 'obsdir' #: STR; Name of directory for saving output products OUT_DIR = 'outdir' #: STR; Name of Digital Elevation Model file DEM_FILE = 'demfile' #: STR; Name of the header for the DEM DEM_HEADER_FILE = 'demHeaderFile' #: STR; Name of directory containing GAMMA SLC parameter files SLC_DIR = 'slcFileDir' #: STR; The projection of the input interferograms. INPUT_IFG_PROJECTION = 'projection' #: FLOAT; The no data value in the interferogram files. NO_DATA_VALUE = 'noDataValue' #: FLOAT; No data averaging threshold for prepifg NO_DATA_AVERAGING_THRESHOLD = 'noDataAveragingThreshold' #: BOOL (1/2/3); Re-project data from Line of sight, 1 = vertical, # 2 = horizontal, 3 = no conversion REPROJECTION = 'prjflag' # NOT CURRENTLY USED #: BOOL (0/1); Select MST algorithm, 0 = Matlab Pirate algorithm, 1 = NetworkX NETWORKX_OR_MATLAB_FLAG = 'networkx_or_matlab' #: BOOL (0/1): Convert no data values to Nan NAN_CONVERSION = 'nan_conversion' # Prepifg parameters #: BOOL (1/2/3/4); Method for cropping interferograms, 1 = minimum overlapping area (intersection), 2 = maximum area (union), 3 = customised area, 4 = all ifgs already same size IFG_CROP_OPT = 'ifgcropopt' #: INT; Multi look factor for interferogram preparation in x dimension IFG_LKSX = 'ifglksx' #: INT; Multi look factor for interferogram preparation in y dimension IFG_LKSY = 'ifglksy' #: REAL; Minimum longitude for cropping with method 3 IFG_XFIRST = 'ifgxfirst' #: REAL; Maximum longitude for cropping with method 3 IFG_XLAST = 'ifgxlast' #: REAL; Minimum latitude for cropping with method 3 IFG_YFIRST = 'ifgyfirst' #: REAL; Maximum latitude for cropping with method 3 IFG_YLAST = 'ifgylast' # reference pixel parameters #: INT; Coordinate in x of reference pixel OR -1 = perform search REFX = 'refx' #: INT; Coordinate in y of reference pixel OR -1 = perform search REFY = 'refy' #: INT; Number of reference pixel grid search nodes in x dimension REFNX = "refnx" #: INT; Number of reference pixel grid search nodes in y dimension REFNY = "refny" #: INT; Dimension of reference pixel search window REF_CHIP_SIZE = 'refchipsize' #: REAL; Minimum fraction of observations required in search window for pixel to be a viable reference pixel REF_MIN_FRAC = 'refminfrac' #: BOOL (1/2); Reference phase estimation method REF_EST_METHOD = 'refest' #atmospheric error correction parameters NOT CURRENTLY USED APS_CORRECTION = 'apscorrect' APS_METHOD = 'apsmethod' APS_INCIDENCE_MAP = 'incidencemap' APS_INCIDENCE_EXT = 'APS_INCIDENCE_EXT' APS_ELEVATION_MAP = 'elevationmap' APS_ELEVATION_EXT = 'APS_ELEVATION_EXT' # orbital error correction/parameters #: BOOL (1/0); Flag controlling whether to apply orbital error correction ORBITAL_FIT = 'orbfit' #: BOOL (1/2); Method for orbital error correction, 1: independent, 2: network ORBITAL_FIT_METHOD = 'orbfitmethod' #: BOOL (1/2/3) Order of orbital error model, 1 = planar in x and y (2 parameter model, 2 = quadratic in x and y (5 parameter model), 3 = quadratic in x and cubic in y (part-cubic 6 parameter model) ORBITAL_FIT_DEGREE = 'orbfitdegrees' #: INT; Multi look factor for orbital error calculation in x dimension ORBITAL_FIT_LOOKS_X = 'orbfitlksx' #: INT; Multi look factor for orbital error calculation in y dimension ORBITAL_FIT_LOOKS_Y = 'orbfitlksy' # Linear rate/stacking parameters #: REAL; Threshold ratio between 'model minus observation' residuals and a-priori observation standard deviations for linear rate estimate acceptance (otherwise remove furthest outlier and re-iterate) LR_NSIG = 'nsig' #: INT; Number of required observations per pixel for the linear rate inversion LR_PTHRESH = 'pthr' #: REAL; Maximum allowable standard error for pixels in linear rate inversion. LR_MAXSIG = 'maxsig' # atmospheric delay errors fitting parameters NOT CURRENTLY USED # atmfitmethod = 1: interferogram by interferogram; atmfitmethod = 2, epoch by epoch #ATM_FIT = 'atmfit' #ATM_FIT_METHOD = 'atmfitmethod' #: BOOL (0/1) Do spatio-temporal filter APSEST = 'apsest' # temporal low-pass filter parameters TLPF_METHOD = 'tlpfmethod' TLPF_CUTOFF = 'tlpfcutoff' TLPF_PTHR = 'tlpfpthr' # spatially correlated noise low-pass filter parameters SLPF_METHOD = 'slpfmethod' SLPF_CUTOFF = 'slpfcutoff' SLPF_ORDER = 'slpforder' SLPF_NANFILL = 'slpnanfill' SLPF_NANFILL_METHOD = 'slpnanfill_method' # Time series parameters #: BOOL (1/0); Do Time series calculation TIME_SERIES_CAL = 'tscal' #: INT (1/2); Method for time series inversion (1: Laplacian Smoothing; 2: SVD) TIME_SERIES_METHOD = 'tsmethod' #: INT; Number of required input observations per pixel for time series inversion TIME_SERIES_PTHRESH = 'ts_pthr' #: INT (1/2); Order of Laplacian smoothing operator, first or # second order TIME_SERIES_SM_ORDER = 'smorder' #: REAL; Laplacian smoothing factor (values used is 10**smfactor) TIME_SERIES_SM_FACTOR = 'smfactor' # tsinterp is automatically assigned in the code; not needed in conf file #TIME_SERIES_INTERP = 'tsinterp' #: BOOL (0/1/2); Use parallelisation/Multi-threading PARALLEL = 'parallel' #: INT; Number of processes for multi-threading PROCESSES = 'processes' #: BOOL (0/1); Switch for using Luigi to perform prepifg step LUIGI = 'use_luigi' # Orbital error correction constants for conversion to readable flags INDEPENDENT_METHOD = 'INDEPENDENT' NETWORK_METHOD = 'NETWORK' PLANAR = 'PLANAR' QUADRATIC = 'QUADRATIC' PART_CUBIC = 'PART_CUBIC' # dir for temp files TMPDIR = 'tmpdir' def _orb_degree_conv(deg): """ Convenience: convert numerical degree flag to human readable string """ degree = int(deg) if degree == 1: return PLANAR if degree == 2: return QUADRATIC if degree == 3: return PART_CUBIC raise ValueError("Orbital fit polynomial degree option not recognised") def _orb_method_conv(meth): """ Convenience: convert numerical method flag to human readable string """ method = int(meth) if method == 1: return INDEPENDENT_METHOD if method == 2: return NETWORK_METHOD raise ValueError("Orbital fit method not recognised") # Lookup to help convert args to correct type/defaults # format is key : (conversion, default value) # None = no conversion PARAM_CONVERSION = { REPROJECTION : (int, 3), # Default no conversion, CONVERSION NOT IMPLEMENTED IFG_CROP_OPT : (int, 1), # default to area 'intersection' option IFG_LKSX : (int, NO_MULTILOOKING), IFG_LKSY : (int, NO_MULTILOOKING), IFG_XFIRST : (float, None), IFG_XLAST : (float, None), IFG_YFIRST : (float, None), IFG_YLAST : (float, None), NO_DATA_VALUE: (float, 0.0), REFX: (int, -1), REFY: (int, -1), REFNX: (int, 50), REFNY: (int, 50), REF_CHIP_SIZE: (int, 21), REF_MIN_FRAC: (float, 0.8), REF_EST_METHOD: (int, 1), # default to average of whole image ORBITAL_FIT: (int, 0), ORBITAL_FIT_METHOD: (_orb_method_conv, NETWORK_METHOD), ORBITAL_FIT_DEGREE: (_orb_degree_conv, QUADRATIC), ORBITAL_FIT_LOOKS_X: (int, NO_MULTILOOKING), ORBITAL_FIT_LOOKS_Y: (int, NO_MULTILOOKING), LR_NSIG: (int, 3), # pixel thresh based on nepochs? not every project may have 20 epochs LR_PTHRESH: (int, 20), LR_MAXSIG: (int, 2), #ATM_FIT: (int, 0), NOT CURRENTLY USED #ATM_FIT_METHOD: (int, 2), APSEST: (int, 0), TLPF_METHOD: (int, 1), TLPF_CUTOFF: (float, 0.0), TLPF_PTHR: (int, 1), SLPF_METHOD: (int, 1), SLPF_CUTOFF: (float, 0.0), SLPF_ORDER: (int, 1), SLPF_NANFILL: (int, 0), TIME_SERIES_CAL: (int, 0), # pixel thresh based on nepochs? not every project may have 20 epochs TIME_SERIES_PTHRESH: (int, 20), TIME_SERIES_SM_FACTOR: (float, None), TIME_SERIES_SM_ORDER: (int, None), TIME_SERIES_METHOD: (int, 2), # Default to SVD method PARALLEL: (int, 0), PROCESSES: (int, 8), PROCESSOR: (int, None), NETWORKX_OR_MATLAB_FLAG: (int, 1), # Default to NetworkX LUIGI: (int, 0), NAN_CONVERSION: (int, 0), NO_DATA_AVERAGING_THRESHOLD: (float, 0.0), APS_CORRECTION: (int, 0), APS_METHOD: (int, 1) } PATHS = [OBS_DIR, IFG_FILE_LIST, DEM_FILE, DEM_HEADER_FILE, OUT_DIR, SLC_DIR, APS_INCIDENCE_MAP, APS_ELEVATION_MAP] INT_KEYS = [APS_CORRECTION, APS_METHOD] def get_config_params(path): """ Returns a dictionary of key:value parameter pairs from the configuration file :param str path: path of config file :return: params :rtype: dict """ txt = '' with open(path, 'r') as inputFile: for line in inputFile: if any(x in line for x in PATHS): pos = line.find('~') if pos != -1: # create expanded line line = line[:pos] + os.environ['HOME'] + line[(pos+1):] txt += line params = _parse_conf_file(txt) params[TMPDIR] = os.path.join(os.path.abspath(params[OUT_DIR]), 'tmpdir') if mpiops.size > 1 and params[LUIGI] == 1: raise ConfigException('LUIGI with MPI not supported. Please ' 'turn off LUIGI in config file or ' 'use LUIGI without MPI') return params def _parse_conf_file(content): """ Parser for converting text content into a dictionary of parameters """ def _is_valid(line): """ Check if line is not empty or has % or # """ return line != "" and line[0] not in "%#" lines = [ln.split() for ln in content.split('\n') if _is_valid(ln)] # convert "field: value" lines to [field, value] kvpair = [(e[0].rstrip(":"), e[1]) for e in lines if len(e) == 2] \ + [(e[0].rstrip(":"), None) for e in lines if len(e) == 1] parameters = dict(kvpair) for p in PATHS: if p not in parameters: parameters[p] = None for p in INT_KEYS: if p not in parameters: parameters[p] = '0' # insert dummies parameters = _handle_extra_parameters(parameters) if not parameters: raise ConfigException('Cannot parse any parameters from config file') return _parse_pars(parameters) def _handle_extra_parameters(params): """ Function to check if requirements for weather model correction are given """ params[APS_INCIDENCE_EXT] = None params[APS_ELEVATION_EXT] = None if compat.PyAPS_INSTALLED: # define APS_INCIDENCE_EXT for gamma prepifg if ((params[APS_INCIDENCE_MAP] is not None) and (params[APS_ELEVATION_MAP] is not None)): warnings.warn('Both incidence and elevation map supplied. Using ' 'the incidence map and ignoring elevation map') if (int(params[APS_CORRECTION]) and (int(params[APS_METHOD]) == 2) and ((params[APS_INCIDENCE_MAP] is None) and (params[APS_ELEVATION_MAP] is None))): raise ConfigException('When doing APS correction using method 2,' 'the incidence/elevation map method,' 'one of incidence or elevation map must be ' 'provided') if params[APS_INCIDENCE_MAP] is not None: params[APS_INCIDENCE_EXT] = \ os.path.basename(params[APS_INCIDENCE_MAP]).split('.')[-1] params[APS_ELEVATION_MAP] = None params[APS_ELEVATION_EXT] = None return params # define APS_ELEVATON_EXT for gamma prepifg if params[APS_ELEVATION_MAP] is not None: params[APS_ELEVATION_EXT] = \ os.path.basename(params[APS_ELEVATION_MAP]).split('.')[-1] return params def _parse_pars(pars): """ Parses and converts config file params from text """ for k in PARAM_CONVERSION: if k in pars: # if option value is blank/missing revert to default if pars[k] is None: pars[k] = PARAM_CONVERSION[k][1] conversion_func = PARAM_CONVERSION[k][0] if conversion_func: pars[k] = conversion_func(pars[k]) else: # revert missing options to default value if k in PARAM_CONVERSION: pars[k] = PARAM_CONVERSION[k][1] return pars def parse_namelist(nml): """ Parses name list file into array of paths :param str nml: interferogram file list :return: list of interferogram file names :rtype: list """ with open(nml) as f_in: lines = [line.rstrip() for line in f_in] return filter(None, lines) class ConfigException(Exception): """ Default exception class for configuration errors. """ pass def write_config_file(params, output_conf_file): """ Takes a param object and writes the config file. Reverse of get_conf_params. :param dict params: parameter dictionary :param str output_conf_file: output file name :return: config file :rtype: list """ with open(output_conf_file, 'w') as f: for k, v in params.items(): if k == ORBITAL_FIT_DEGREE: v = _reverse_orb_degree_conv(v) if k == ORBITAL_FIT_METHOD: v = _reverse_orb_method_conv(v) if v is not None: f.write(''.join([k, ':\t', str(v), '\n'])) else: f.write(''.join([k, ':\t', '', '\n'])) def _reverse_orb_degree_conv(v): """ Convenience: convert degree to integer for config file """ if v == PLANAR: return 1 if v == QUADRATIC: return 2 if v == PART_CUBIC: return 3 else: raise ValueError( "Orbital fit polynomial degree option not recognised") def _reverse_orb_method_conv(v): """ Convenience: convert method to integer for config file """ if v == INDEPENDENT_METHOD: return 1 if v == NETWORK_METHOD: return 2 else: raise ValueError( "Orbital fit method option not recognised") def transform_params(params): """ Returns subset of all parameters for cropping and multilooking. :param dict params: Parameter dictionary :return: xlooks, ylooks, crop :rtype: int """ t_params = [IFG_LKSX, IFG_LKSY, IFG_CROP_OPT] xlooks, ylooks, crop = [params[k] for k in t_params] return xlooks, ylooks, crop def original_ifg_paths(ifglist_path): """ Returns sequence of paths to files in given ifglist file. :param str ifglist_path: full path to interferogram file list :return: full path to ifg files :rtype: list """ basedir = os.path.dirname(ifglist_path) ifglist = parse_namelist(ifglist_path) return [os.path.join(basedir, p) for p in ifglist] def mlooked_path(path, looks, crop_out): """ Adds suffix to ifg path, for creating a new path for multilooked files. :param str path: original interferogram path :param int looks: number of range looks applied :param int crop_out: crop option applied :return: multilooked file name :rtype: str """ base, ext = splitext(path) return "{base}_{looks}rlks_{crop_out}cr{ext}".format( base=base, looks=looks, crop_out=crop_out, ext=ext) def get_dest_paths(base_paths, crop, params, looks): """ Determines the full path names for the destination multilooked files :param list base_paths: original interferogram paths :param int crop: Crop option applied :param dict params: Parameters dictionary :param int looks: number of range looks applied :return: full path names for destination files :rtype: list """ dest_mlooked_ifgs = [mlooked_path(os.path.basename(q).split('.')[0] + '_' + os.path.basename(q).split('.')[1] + '.tif', looks=looks, crop_out=crop) for q in base_paths] return [os.path.join(params[OUT_DIR], p) for p in dest_mlooked_ifgs] def get_ifg_paths(config_file): """ Read the configuration file, extract interferogram file list and determine input and output interferogram path names. :param str config_file: Configuration file path :return: base_unw_paths: List of unwrapped inteferograms :return: dest_paths: List of multi-looked and cropped geotifs :return: params: Dictionary corresponding to the config file :rtype: list :rtype: list :rtype: dict """ params = get_config_params(config_file) ifg_file_list = params.get(IFG_FILE_LIST) params[IFG_FILE_LIST] = ifg_file_list if ifg_file_list is None: emsg = 'Error {code}: Interferogram list file name not provided ' \ 'or does not exist'.format(code=2) raise IOError(2, emsg) xlks, _, crop = transform_params(params) # base_unw_paths need to be geotiffed and multilooked by run_prepifg base_unw_paths = original_ifg_paths(ifg_file_list) # dest_paths are tifs that have been geotif converted and multilooked dest_paths = get_dest_paths(base_unw_paths, crop, params, xlks) return base_unw_paths, dest_paths, params ``` #### File: pyrate/tasks/prepifg.py ```python import os import pickle import luigi import pyrate.config as cf from pyrate.prepifg import ( Ifg, get_analysis_extent, prepare_ifg, PreprocessError) from pyrate.tasks.converttogeotif import ConvertToGeotiff from pyrate.tasks.utils import ( IfgListMixin, InputParam, RasterParam) from pyrate.shared import warp_required class GetAnalysisExtents(IfgListMixin, luigi.Task): """ Class used to gather analysis extents used during Luigi tasks """ crop_opt = luigi.IntParameter(config_path=InputParam(cf.IFG_CROP_OPT)) ifgx_first = luigi.FloatParameter(default=None, config_path=InputParam(cf.IFG_XFIRST)) ifgy_first = luigi.FloatParameter(default=None, config_path=InputParam(cf.IFG_YFIRST)) ifgx_last = luigi.FloatParameter(default=None, config_path=InputParam(cf.IFG_XLAST)) ifgy_last = luigi.FloatParameter(default=None, config_path=InputParam(cf.IFG_YLAST)) xlooks = luigi.IntParameter(config_path=InputParam(cf.IFG_LKSX)) ylooks = luigi.IntParameter(config_path=InputParam(cf.IFG_LKSY)) def requires(self): return [ConvertToGeotiff()] def run(self): user_exts = (self.ifgx_first, self.ifgy_first, self.ifgx_last, self.ifgy_last) if not all(user_exts): if self.crop_opt == 3: raise PreprocessError('No custom cropping extents specified') user_exts = None ifgs = [Ifg(path) for path in self.ifg_tiff_list()] extents = get_analysis_extent( self.crop_opt, ifgs, self.xlooks, self.ylooks, user_exts) with open(self.extents_file_name, 'wb') as ext_file: pickle.dump(extents, ext_file) def output(self): return luigi.LocalTarget(self.extents_file_name) class PrepareInterferogram(IfgListMixin, luigi.WrapperTask): """ Wrapper function to prepare an interferogram file for PyRate analysis using a Luigi task. See pyrate.prepifg.prepare_ifg() for further documentation. """ # pylint: disable=bad-super-call, no-member ifg = RasterParam() thresh = luigi.FloatParameter(config_path=InputParam( cf.NO_DATA_AVERAGING_THRESHOLD)) crop_opt = luigi.IntParameter(config_path=InputParam(cf.IFG_CROP_OPT)) xlooks = luigi.IntParameter(config_path=InputParam(cf.IFG_LKSX)) ylooks = luigi.IntParameter(config_path=InputParam(cf.IFG_LKSY)) # verbose = luigi.BooleanParameter(default=True, significant=False) def requires(self): return [GetAnalysisExtents()] def run(self): with open(self.extents_file_name, 'rb') as ext_file: extents = pickle.load(ext_file) prepare_ifg( self.ifg.data_path, self.xlooks, self.ylooks, extents, self.thresh, self.crop_opt ) self.ifg.close() def output(self): if warp_required(self.xlooks, self.ylooks, self.crop_opt): return luigi.LocalTarget( cf.mlooked_path(self.ifg.data_path, self.ylooks, self.crop_opt)) else: return [] def complete(self): if self.output(): return super(luigi.WrapperTask, self).complete() else: # then this didn't do anything, so check that # the requres are complete # ... which is exactly what luigi.WrapperTask does. # TODO: This requires knowledge of prepare_ifg, # that is opaque. Address with refactoring. return super(PrepareInterferogram, self).complete() class PrepareInterferograms(IfgListMixin, luigi.WrapperTask): """ Wrapper function to prepare a sequence of interferogram files for PyRate analysis using Luigi tasks. See pyrate.prepifg.prepare_ifgs() and pyrate.tasks.prepifg.PrepareInterferogram() for further documentation. """ def __init__(self, *args, **kwargs): super(PrepareInterferograms, self).__init__(*args, **kwargs) self.extents_removed = False def requires(self): return [PrepareInterferogram(ifg=Ifg(path)) for path in self.ifg_tiff_list()] def run(self): try: if os.path.exists(self.extents_file_name): os.remove(self.extents_file_name) except: raise PrepifgException( 'Extents file was not found in the desired ' 'location: {}'.format(self.extents_file_name), 'Make sure your paths are setup correctly in config file') self.extents_removed = True def complete(self): return self.extents_removed and \ super(PrepareInterferograms, self).complete() class PrepifgException(Exception): """ Prepifg exception class """ ``` #### File: PyRate/tests/test_gamma.py ```python from __future__ import print_function import glob import os import re import shutil import sys import tempfile import unittest from datetime import date, time from os.path import join import numpy as np from numpy.testing import assert_array_almost_equal from osgeo import gdal import pyrate.ifgconstants as ifc from pyrate import config as cf from pyrate import gamma from pyrate import shared from pyrate.config import ( DEM_HEADER_FILE, NO_DATA_VALUE, OBS_DIR, IFG_FILE_LIST, PROCESSOR, OUT_DIR, SLC_DIR, LUIGI, IFG_LKSX, IFG_LKSY, IFG_CROP_OPT, NO_DATA_AVERAGING_THRESHOLD, DEM_FILE, APS_INCIDENCE_MAP, APS_ELEVATION_MAP) from pyrate.scripts import run_prepifg from pyrate.scripts.converttogtif import main as gammaMain from pyrate.shared import write_geotiff, GeotiffException from tests import common from tests.common import GAMMA_TEST_DIR, SML_TEST_GAMMA from tests.common import TEST_CONF_GAMMA, TEMPDIR from tests.common import small_data_setup gdal.UseExceptions() LIGHTSPEED = 3e8 # approx class GammaCommandLineTests(unittest.TestCase): def setUp(self): self.base = join(os.environ['PYRATEPATH'], 'tests', 'test_data', 'gamma') self.hdr = join(self.base, 'dem16x20raw.dem.par') temp_text = tempfile.mktemp() self.confFile = os.path.join(TEMPDIR, '{}/gamma_test.cfg'.format(temp_text)) self.ifgListFile = os.path.join( TEMPDIR, '{}/gamma_ifg.list'.format(temp_text)) self.base_dir = os.path.dirname(self.confFile) shared.mkdir_p(self.base_dir) def tearDown(self): try: os.remove(self.exp_path) except: pass shutil.rmtree(self.base_dir) def makeInputFiles(self, data): with open(self.confFile, 'w') as conf: conf.write('{}: {}\n'.format(DEM_HEADER_FILE, self.hdr)) conf.write('{}: {}\n'.format(NO_DATA_VALUE, '0.0')) conf.write('{}: {}\n'.format(OBS_DIR, self.base_dir)) conf.write('{}: {}\n'.format(IFG_FILE_LIST, self.ifgListFile)) conf.write('{}: {}\n'.format(PROCESSOR, '1')) conf.write('{}: {}\n'.format(OUT_DIR, self.base_dir)) conf.write('{}: {}\n'.format(SLC_DIR, '')) with open(self.ifgListFile, 'w') as ifgl: ifgl.write(data) def test_cmd_ifg(self): data = join(self.base, '16x20_20090713-20090817_VV_4rlks_utm.unw') self.exp_path = os.path.join( self.base_dir, '16x20_20090713-20090817_VV_4rlks_utm_unw.tif') self.common_check(data) def test_cmd_dem(self): data = join(self.base, 'dem16x20raw.dem') self.exp_path = os.path.join(self.base_dir, 'dem16x20raw_dem.tif') self.common_check(data) def common_check(self, data): self.makeInputFiles(data) sys.argv = ['gamma.py', self.confFile] gammaMain() self.assertTrue(os.path.exists(self.exp_path)) class GammaToGeoTiffTests(unittest.TestCase): """Tests conversion of GAMMA rasters to custom PyRate GeoTIFF""" @classmethod def setUpClass(cls): # create common combined header obj so the headers are only read once # tricker: needs both ifg headers, and DEM one for the extents filenames = ['r20090713_VV.slc.par', 'r20090817_VV.slc.par'] hdr_paths = [join(GAMMA_TEST_DIR, f) for f in filenames] hdrs = [gamma.parse_epoch_header(p) for p in hdr_paths] dem_hdr_path = join(GAMMA_TEST_DIR, 'dem16x20raw.dem.par') cls.DEM_HDR = gamma.parse_dem_header(dem_hdr_path) cls.COMBINED = gamma.combine_headers(*hdrs, dem_hdr=cls.DEM_HDR) def tearDown(self): if os.path.exists(self.dest): os.remove(self.dest) def test_to_geotiff_dem(self): hdr_path = join(GAMMA_TEST_DIR, 'dem16x20raw.dem.par') hdr = gamma.parse_dem_header(hdr_path) data_path = join(GAMMA_TEST_DIR, 'dem16x20raw.dem') self.dest = os.path.join(TEMPDIR, "tmp_gamma_dem.tif") write_geotiff(hdr, data_path, self.dest, nodata=0) exp_path = join(GAMMA_TEST_DIR, 'dem16x20_subset_from_gamma.tif') exp_ds = gdal.Open(exp_path) ds = gdal.Open(self.dest) # compare data and geographic headers # HACK: round expected to nearest integer assert_array_almost_equal(np.rint(exp_ds.ReadAsArray()), ds.ReadAsArray()) self.compare_rasters(exp_ds, ds) md = ds.GetMetadata() self.assertTrue(md['AREA_OR_POINT'] == 'Area') def test_to_geotiff_ifg(self): self.dest = os.path.join(TEMPDIR, 'tmp_gamma_ifg.tif') data_path = join(GAMMA_TEST_DIR, '16x20_20090713-20090817_VV_4rlks_utm.unw') write_geotiff(self.COMBINED, data_path, self.dest, nodata=0) ds = gdal.Open(self.dest) exp_path = join(GAMMA_TEST_DIR, '16x20_20090713-20090817_VV_4rlks_utm.tif') exp_ds = gdal.Open(exp_path) # compare data and geographic headers assert_array_almost_equal(exp_ds.ReadAsArray(), ds.ReadAsArray()) self.compare_rasters(ds, exp_ds) md = ds.GetMetadata() self.assertEqual(len(md), 11) # 11 metadata items self.assertTrue(md[ifc.MASTER_DATE] == str(date(2009, 7, 13))) self.assertTrue(md[ifc.SLAVE_DATE] == str(date(2009, 8, 17))) self.assertTrue(md[ifc.PYRATE_TIME_SPAN] == str(35 / ifc.DAYS_PER_YEAR)) self.assertTrue(md[ifc.MASTER_TIME]) == str(12) self.assertTrue(md[ifc.SLAVE_TIME]) == str(time(12)) wavelen = float(md[ifc.PYRATE_WAVELENGTH_METRES]) self.assertAlmostEqual(wavelen, 0.05627457792190739) def test_to_geotiff_wrong_input_data(self): # use TIF, not UNW for data self.dest = os.path.join(TEMPDIR, 'tmp_gamma_ifg.tif') data_path = join(GAMMA_TEST_DIR, '16x20_20090713-20090817_VV_4rlks_utm.tif') self.assertRaises(GeotiffException, write_geotiff, self.COMBINED, data_path, self.dest, nodata=0) def test_mismatching_cell_resolution(self): hdrs = self.DEM_HDR.copy() hdrs[ifc.PYRATE_X_STEP] = 0.1 # fake a mismatch data_path = join(GAMMA_TEST_DIR, '16x20_20090713-20090817_VV_4rlks_utm.unw') self.dest = os.path.join(TEMPDIR, 'fake') self.assertRaises(GeotiffException, write_geotiff, hdrs, data_path, self.dest, 0) def compare_rasters(self, ds, exp_ds): band = ds.GetRasterBand(1) exp_band = exp_ds.GetRasterBand(1) nodata = band.GetNoDataValue() self.assertFalse(nodata is None) self.assertEqual(exp_band.GetNoDataValue(), nodata) pj = ds.GetProjection() self.assertTrue('WGS 84' in pj) self.assertEqual(exp_ds.GetProjection(), pj) for exp, act in zip(exp_ds.GetGeoTransform(), ds.GetGeoTransform()): self.assertAlmostEqual(exp, act, places=4) def test_bad_projection(self): hdr = self.DEM_HDR.copy() hdr[ifc.PYRATE_DATUM] = 'nonexistent projection' data_path = join(GAMMA_TEST_DIR, 'dem16x20raw.dem') self.dest = os.path.join(TEMPDIR, 'tmp_gamma_dem2.tif') self.assertRaises(GeotiffException, write_geotiff, hdr, data_path, self.dest, nodata=0) class GammaHeaderParsingTests(unittest.TestCase): 'Tests conversion of GAMMA headers to Py dicts' def test_parse_gamma_epoch_header(self): # minimal required headers are: # date: 2009 7 13 # radar_frequency: 5.3310040e+09 Hz path = join(GAMMA_TEST_DIR, 'r20090713_VV.slc.par') hdrs = gamma.parse_epoch_header(path) exp_date = date(2009, 7, 13) self.assertEqual(hdrs[ifc.MASTER_DATE], exp_date) exp_wavelen = LIGHTSPEED / 5.3310040e+09 self.assertEqual(hdrs[ifc.PYRATE_WAVELENGTH_METRES], exp_wavelen) incidence_angle = 22.9671 self.assertEqual(hdrs[ifc.PYRATE_INCIDENCE_DEGREES], incidence_angle) def test_parse_gamma_dem_header(self): path = join(GAMMA_TEST_DIR, 'dem16x20raw.dem.par') hdrs = gamma.parse_dem_header(path) self.assertEqual(hdrs[ifc.PYRATE_NCOLS], 16) self.assertEqual(hdrs[ifc.PYRATE_NROWS], 20) self.assertEqual(hdrs[ifc.PYRATE_LAT], -33.3831945) self.assertEqual(hdrs[ifc.PYRATE_LONG], 150.3870833) self.assertEqual(hdrs[ifc.PYRATE_X_STEP], 6.9444445e-05) self.assertEqual(hdrs[ifc.PYRATE_Y_STEP], -6.9444445e-05) # Test data for the epoch header combination H0 = {ifc.MASTER_DATE : date(2009, 7, 13), ifc.MASTER_TIME : time(12), ifc.PYRATE_WAVELENGTH_METRES: 1.8, ifc.PYRATE_INCIDENCE_DEGREES: 35.565, } H1 = {ifc.MASTER_DATE : date(2009, 8, 17), ifc.MASTER_TIME : time(12, 10, 10), ifc.PYRATE_WAVELENGTH_METRES: 1.8, ifc.PYRATE_INCIDENCE_DEGREES: 35.56, } H1_ERR1 = {ifc.MASTER_DATE : date(2009, 8, 17), ifc.MASTER_TIME : time(12), ifc.PYRATE_WAVELENGTH_METRES: 2.4, ifc.PYRATE_INCIDENCE_DEGREES: 35.56, } H1_ERR2 = {ifc.MASTER_DATE : date(2009, 8, 17), ifc.MASTER_TIME : time(12), ifc.PYRATE_WAVELENGTH_METRES: 1.8, ifc.PYRATE_INCIDENCE_DEGREES: 35.76, } class HeaderCombinationTests(unittest.TestCase): 'Tests GAMMA epoch and DEM headers can be combined into a single Py dict' def setUp(self): self.err = gamma.GammaException dem_hdr_path = join(GAMMA_TEST_DIR, 'dem16x20raw.dem.par') self.dh = gamma.parse_dem_header(dem_hdr_path) def test_combine_headers(self): filenames = ['r20090713_VV.slc.par', 'r20090817_VV.slc.par'] paths = [join(GAMMA_TEST_DIR, p) for p in filenames] hdr0, hdr1 = [gamma.parse_epoch_header(p) for p in paths] chdr = gamma.combine_headers(hdr0, hdr1, self.dh) exp_timespan = (18 + 17) / ifc.DAYS_PER_YEAR self.assertEqual(chdr[ifc.PYRATE_TIME_SPAN], exp_timespan) exp_date = date(2009, 7, 13) self.assertEqual(chdr[ifc.MASTER_DATE], exp_date) exp_date2 = date(2009, 8, 17) self.assertEqual(chdr[ifc.SLAVE_DATE], exp_date2) exp_wavelen = LIGHTSPEED / 5.3310040e+09 self.assertEqual(chdr[ifc.PYRATE_WAVELENGTH_METRES], exp_wavelen) def test_fail_non_dict_header(self): self.assertRaises(self.err, gamma.combine_headers, H0, '', self.dh) self.assertRaises(self.err, gamma.combine_headers, '', H0, self.dh) self.assertRaises(self.err, gamma.combine_headers, H0, H1, None) self.assertRaises(self.err, gamma.combine_headers, H0, H1, '') def test_fail_mismatching_wavelength(self): self.assertRaises(self.err, gamma.combine_headers, H0, H1_ERR1, self.dh) def test_fail_mismatching_incidence(self): self.assertRaises(self.err, gamma.combine_headers, H0, H1_ERR2, self.dh) def test_fail_same_date(self): self.assertRaises(self.err, gamma.combine_headers, H0, H0, self.dh) def test_fail_bad_date_order(self): self.assertRaises(self.err, gamma.combine_headers, H1, H0, self.dh) class TestGammaLuigiEquality(unittest.TestCase): @classmethod def setUpClass(cls): luigi_dir = tempfile.mktemp() non_luigi_dir = tempfile.mkdtemp() cls.luigi_confFile = os.path.join( TEMPDIR, '{}/gamma_test.conf'.format(luigi_dir) ) cls.luigi_ifgListFile = os.path.join( TEMPDIR, '{}/gamma_ifg.list'.format(luigi_dir) ) cls.non_luigi_confFile = os.path.join( TEMPDIR, '{}/gamma_test.conf'.format(non_luigi_dir) ) cls.non_luigi_ifgListFile = os.path.join( TEMPDIR, '{}/gamma_ifg.list'.format(non_luigi_dir) ) cls.luigi_base_dir = os.path.dirname(cls.luigi_confFile) cls.non_luigi_base_dir = os.path.dirname(cls.non_luigi_confFile) shared.mkdir_p(cls.luigi_base_dir) shared.mkdir_p(cls.non_luigi_base_dir) @classmethod def tearDownClass(cls): try: shutil.rmtree(cls.luigi_base_dir) except OSError: print('Failed to remove temp directory: %s' % cls.luigi_base_dir) try: shutil.rmtree(cls.non_luigi_base_dir) except OSError: print('Failed to remove temp directory: %s' % cls.non_luigi_base_dir) def make_input_files(self, data): with open(self.conf_file, 'w') as conf: conf.write('{}: {}\n'.format(NO_DATA_VALUE, '0.0')) conf.write('{}: {}\n'.format(OBS_DIR, self.base_dir)) conf.write('{}: {}\n'.format(OUT_DIR, self.base_dir)) conf.write('{}: {}\n'.format(IFG_FILE_LIST, self.ifgListFile)) conf.write('{}: {}\n'.format(PROCESSOR, '1')) conf.write('{}: {}\n'.format(LUIGI, self.LUIGI)) conf.write('{}: {}\n'.format( DEM_HEADER_FILE, os.path.join( SML_TEST_GAMMA, '20060619_utm_dem.par'))) conf.write('{}: {}\n'.format(IFG_LKSX, '1')) conf.write('{}: {}\n'.format(IFG_LKSY, '1')) conf.write('{}: {}\n'.format(IFG_CROP_OPT, '1')) conf.write('{}: {}\n'.format(NO_DATA_AVERAGING_THRESHOLD, '0.5')) conf.write('{}: {}\n'.format(SLC_DIR, '')) conf.write('{}: {}\n'.format(DEM_FILE, common.SML_TEST_DEM_GAMMA)) conf.write('{}: {}\n'.format(APS_INCIDENCE_MAP, common.SML_TEST_INCIDENCE)) conf.write('{}: {}\n'.format(APS_ELEVATION_MAP, '')) with open(self.ifgListFile, 'w') as ifgl: ifgl.write('\n'.join(data)) def test_cmd_ifg_luigi_files_created(self): self.LUIGI = '1' # luigi or no luigi self.conf_file = self.luigi_confFile self.base_dir = self.luigi_base_dir self.ifgListFile = self.luigi_ifgListFile self.common_check(self.luigi_confFile) def test_cmd_ifg_no_luigi_files_created(self): self.LUIGI = '0' # luigi or no luigi self.conf_file = self.non_luigi_confFile self.base_dir = self.non_luigi_base_dir self.ifgListFile = self.non_luigi_ifgListFile self.common_check(self.non_luigi_confFile) def common_check(self, conf_file): data_paths = glob.glob( os.path.join(SML_TEST_GAMMA, "*_utm.unw")) self.make_input_files(data_paths) base_ifg_paths, dest_paths, params = cf.get_ifg_paths(conf_file) dest_base_ifgs = [os.path.join( params[cf.OUT_DIR], os.path.basename(q).split('.')[0] + '_' + os.path.basename(q).split('.')[1] + '.tif') for q in base_ifg_paths] sys.argv = ['pyrate', 'prepifg', conf_file] run_prepifg.main() for p, q in zip(dest_base_ifgs, dest_paths): self.assertTrue(os.path.exists(p), '{} does not exist'.format(p)) self.assertTrue(os.path.exists(q), '{} does not exist'.format(q)) def test_luigi_vs_no_luigi_phase_data(self): all_luigi_ifgs, all_non_luigi_ifgs = self.shared_setup() self.assertEqual(len(all_luigi_ifgs), len(glob.glob(os.path.join( self.luigi_base_dir, "*.tif")))) self.assertEquals(len(all_luigi_ifgs), len(all_non_luigi_ifgs)) c = 0 for c, (i, j) in enumerate(zip(all_luigi_ifgs, all_non_luigi_ifgs)): np.testing.assert_array_equal(i.phase_data, j.phase_data) self.assertEquals(c + 1, len(all_luigi_ifgs)) def test_equality_of_meta_data(self): all_luigi_ifgs, all_non_luigi_ifgs = self.shared_setup() c = 0 for c, (i, j) in enumerate(zip(all_luigi_ifgs, all_non_luigi_ifgs)): self.assertEqual(os.path.dirname(i.data_path), self.luigi_base_dir) # check meta data equal self.assertDictEqual(i.meta_data, j.meta_data) # test that DATA_TYPE exists in metadata self.assertIn(ifc.DATA_TYPE, i.meta_data.keys()) md = i.meta_data for k in [ifc.SLAVE_TIME, ifc.MASTER_TIME, ifc.MASTER_DATE, ifc.SLAVE_DATE, ifc.PYRATE_WAVELENGTH_METRES, ifc.PYRATE_TIME_SPAN, ifc.PYRATE_INSAR_PROCESSOR]: self.assertIn(k, md) if i.data_path.__contains__( '_{looks}rlks_{crop}cr'.format(looks=1, crop=1)): # these are multilooked tifs # test that DATA_TYPE is MULTILOOKED self.assertEqual(md[ifc.DATA_TYPE], ifc.MULTILOOKED) # else: # # others tifs are just geotiffs # self.assertEqual(md[ifc.DATA_TYPE], ifc.ORIG) self.assertEquals(c + 1, len(all_luigi_ifgs)) def shared_setup(self): self.test_cmd_ifg_no_luigi_files_created() self.test_cmd_ifg_luigi_files_created() all_luigi_ifgs = small_data_setup( glob.glob(os.path.join(self.luigi_base_dir, "*.tif"))) all_non_luigi_files = [] gamma_PTN = re.compile(r'\d{8}') for i in glob.glob(os.path.join(self.non_luigi_base_dir, "*.tif")): if len(gamma_PTN.findall(i)) == 2: all_non_luigi_files.append(i) all_non_luigi_ifgs = small_data_setup(all_non_luigi_files) return all_luigi_ifgs, all_non_luigi_ifgs class TestGammaParallelVsSerial(unittest.TestCase): @classmethod def setUpClass(cls): cls.serial_dir = tempfile.mkdtemp() cls.parallel_dir = tempfile.mkdtemp() unw_paths = glob.glob(os.path.join(SML_TEST_GAMMA, "*_utm.unw")) # read in the params _, _, params = cf.get_ifg_paths(TEST_CONF_GAMMA) params[cf.OUT_DIR] = cls.serial_dir params[cf.PARALLEL] = False shared.mkdir_p(cls.serial_dir) run_prepifg.gamma_prepifg(unw_paths, params) params[cf.OUT_DIR] = cls.parallel_dir params[cf.PARALLEL] = True shared.mkdir_p(cls.parallel_dir) run_prepifg.gamma_prepifg(unw_paths, params) @classmethod def tearDownClass(cls): shutil.rmtree(cls.parallel_dir) shutil.rmtree(cls.serial_dir) def test_equality(self): serial_ifgs = small_data_setup( datafiles=glob.glob(os.path.join(self.serial_dir, "*_1cr.tif"))) parallel_ifgs = small_data_setup( datafiles=glob.glob(os.path.join(self.parallel_dir, "*_1cr.tif"))) for s, p in zip(serial_ifgs, parallel_ifgs): np.testing.assert_array_almost_equal(s.phase_data, p.phase_data) def test_meta_data_exist(self): serial_ifgs = small_data_setup( datafiles=glob.glob(os.path.join(self.serial_dir, "*_1cr.tif"))) parallel_ifgs = small_data_setup( datafiles=glob.glob(os.path.join(self.parallel_dir, "*_1cr.tif"))) for s, p in zip(serial_ifgs, parallel_ifgs): # all metadata equal self.assertDictEqual(s.meta_data, p.meta_data) # test that DATA_TYPE exists in metadata self.assertIn(ifc.DATA_TYPE, s.meta_data.keys()) # test that DATA_TYPE is MULTILOOKED self.assertEqual(s.meta_data[ifc.DATA_TYPE], ifc.MULTILOOKED) if __name__ == "__main__": unittest.main() ``` #### File: PyRate/tests/test_matlab_mst.py ```python import glob import os import shutil import tempfile import unittest import numpy as np from pyrate import mst from pyrate.matlab_mst import _IfgListPyRate as IfgList from pyrate.matlab_mst import _calculate_connect_and_ntrees, DTYPE from pyrate.matlab_mst import _matlab_mst, _matlab_mst_bool from pyrate.matlab_mst import _matlab_mst_kruskal from pyrate.matlab_mst import _get_sub_structure from tests.common import small_data_setup from tests.common import small_ifg_file_list from tests.common import get_nml class IfgListTest(unittest.TestCase): def setUp(self): self.matlab_n = [1, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 7, 8, 9, 10, 11, 3, 5, 7, 9, 5, 6, 8, 11, 12, 8, 13, 9, 10, 13, 10, 11, 12] self.matlab_masnum = [1, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 7, 8, 9, 10, 11] self.matlab_slvnum = [3, 5, 7, 9, 5, 6, 8, 11, 12, 8, 13, 9, 10, 13, 10, 11, 12] ifg_instance = IfgList(small_ifg_file_list()) self.ifg_list, self.epoch_list = get_nml(ifg_instance, nodata_value=0) def test_matlab_n(self): # add 1 to ifg_list.n as matlab indices start from 1. np.testing.assert_array_equal(self.matlab_n, self.ifg_list.n + 1) def test_matlab_masnum(self): # add 1 to ifg_list.masnum as matlab indices start from 1. np.testing.assert_array_equal(self.matlab_masnum, self.ifg_list.master_num + 1) def test_matlab_slvnum(self): # add 1 to ifg_list.slvnum as matlab indices start from 1. np.testing.assert_array_equal(self.matlab_slvnum, self.ifg_list.slave_num + 1) # SB: this is not used anywhere now def sort_list(id_l, master_l, slave_l, nan_frac_l): """ sort list based on nan_frac """ sorted_list = [(i, m, s, n) for i, m, s, n in zip(id_l, master_l, slave_l, nan_frac_l)] sorted_list = np.array(sorted_list, dtype=DTYPE) return np.sort(sorted_list, order=['nan_frac']) class MatlabMstKruskalTest(unittest.TestCase): def setUp(self): ifg_instance = IfgList(small_ifg_file_list()) self.ifg_list, _ = get_nml(ifg_instance, nodata_value=0) self.sorted_list = sort_list(self.ifg_list.id, self.ifg_list.master_num, self.ifg_list.slave_num, self.ifg_list.nan_frac) self.matlab_sorted_list_zero_nan_frac = [(1, 1, 3, 0.0), (2, 2, 5, 0.0), (3, 3, 7, 0.0), (4, 3, 9, 0.0), (5, 4, 5, 0.0), (6, 4, 6, 0.0), (7, 4, 8, 0.0), (8, 5, 11, 0.0), (9, 5, 12, 0.0), (10, 6, 8, 0.0), (11, 6, 13, 0.0), (12, 7, 9, 0.0), (13, 7, 10, 0.0), (14, 8, 13, 0.0), (15, 9, 10, 0.0), (16, 10, 11, 0.0), (17, 11, 12, 0.0)] self.ifg_list_mst_matlab = [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 16] def test_sorted_list_equal_matlab(self): for s, m in zip(self.sorted_list, self.matlab_sorted_list_zero_nan_frac): self.assertEquals((s[0]+1, s[1]+1, s[2]+1, s[3]), m) def test_mst_kruskal_matlab(self): edges = _get_sub_structure(self.ifg_list, np.zeros(len(self.ifg_list.id), dtype=bool)) ifg_list_mst = _matlab_mst_kruskal(edges) ifg_list_mst = [i + 1 for i in ifg_list_mst] # add 1 to each index self.assertSequenceEqual(ifg_list_mst, self.ifg_list_mst_matlab) class MSTKruskalCalcConnectAndNTrees(unittest.TestCase): def test_calculate_connect_and_ntrees(self): connect_start = np.ones(shape=(10, 10), dtype=bool) connect_start[1, :-1] = False _, connect, ntrees = _calculate_connect_and_ntrees(connect_start, []) self.assertEqual(ntrees, 9) np.testing.assert_array_equal(connect, np.ones(shape=(9, 10), dtype=bool)) connect_start[2:5, :-1] = False _, connect, ntrees = _calculate_connect_and_ntrees(connect_start, []) self.assertEqual(ntrees, 6) np.testing.assert_array_equal(connect, np.ones(shape=(6, 10), dtype=bool)) def test_calculate_connect_and_ntrees_raise_1(self): connect_start = np.eye(10, dtype=bool) connect_start[1, :] = False with self.assertRaises(ValueError): _calculate_connect_and_ntrees(connect_start, []) def test_calculate_connect_and_ntrees_raise_2(self): connect_start = np.eye(10, dtype=bool) with self.assertRaises(ValueError): _calculate_connect_and_ntrees(connect_start, []) class MSTKruskalConnectAndTreesSmallData(unittest.TestCase): def test_calculate_connect_and_ntrees_small_data(self): ifg_instance = IfgList(small_ifg_file_list()) ifg_list, _ = get_nml(ifg_instance, nodata_value=0) edges = _get_sub_structure(ifg_list, np.zeros(len(ifg_list.id), dtype=bool)) mst, connected, ntrees = _matlab_mst_kruskal(edges, ntrees=True ) self.assertTrue(connected[0].all()) self.assertEqual(ntrees, 1) self.assertEqual(len(connected[0]), len(mst) + 1) def test_assert_is_not_tree(self): non_overlapping = [1, 2, 5, 6, 12, 13, 14, 15, 16, 17] small_files = small_ifg_file_list() datafiles = [f for i, f in enumerate(small_files) if i+1 in non_overlapping] non_overlapping_ifg_isntance = IfgList(datafiles) ifg_list, _ = get_nml(non_overlapping_ifg_isntance, nodata_value=0) edges = _get_sub_structure(ifg_list, np.zeros(len(ifg_list.id), dtype=bool)) mst, connected, ntrees = _matlab_mst_kruskal(edges, ntrees=True) self.assertEqual(connected.shape[0], 4) self.assertEqual(ntrees, 4) def test_assert_is_tree(self): overlapping = [1, 2, 3, 4, 6, 7, 10, 11, 16, 17] small_files = small_ifg_file_list() datafiles = [f for i, f in enumerate(small_files) if i+1 in overlapping] overlapping_ifg_isntance = IfgList(datafiles) ifg_list, _ = get_nml(overlapping_ifg_isntance, nodata_value=0) edges = _get_sub_structure(ifg_list, np.zeros(len(ifg_list.id), dtype=bool)) _, connected, ntrees = _matlab_mst_kruskal(edges, ntrees=True) self.assertEqual(ntrees, 4) self.assertEqual(connected.shape[0], 4) def test_assert_two_trees_overlapping(self): overlapping = [3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 17] small_files = small_ifg_file_list() datafiles = [f for i, f in enumerate(small_files) if i+1 in overlapping] overlapping_ifg_isntance = IfgList(datafiles) ifg_list, _ = get_nml(overlapping_ifg_isntance, nodata_value=0) edges = _get_sub_structure(ifg_list, np.zeros(len(ifg_list.id), dtype=bool)) mst, connected, ntrees = _matlab_mst_kruskal(edges, ntrees=True) self.assertEqual(connected.shape[0], 2) self.assertEqual(ntrees, 2) def test_assert_two_trees_non_overlapping(self): non_overlapping = [2, 5, 6, 12, 13, 15] small_files = small_ifg_file_list() datafiles = [f for i, f in enumerate(small_files) if i+1 in non_overlapping] non_overlapping_ifg_isntance = IfgList(datafiles) ifg_list, _ = get_nml(non_overlapping_ifg_isntance, nodata_value=0) edges = _get_sub_structure(ifg_list, np.zeros(len(ifg_list.id), dtype=bool)) _, connected, ntrees = _matlab_mst_kruskal(edges, ntrees=True) self.assertEqual(ntrees, 2) self.assertEqual(connected.shape[0], 2) class MatlabMSTTests(unittest.TestCase): """ Tests to ensure matlab and python mst outputs are the same. """ def setUp(self): self.ifgs = small_data_setup() self.ifg_file_list = small_ifg_file_list() self.matlab_mst_list = ['geo_060619-061002_unw.tif', 'geo_060828-061211_unw.tif', 'geo_061002-070219_unw.tif', 'geo_061002-070430_unw.tif', 'geo_061106-061211_unw.tif', 'geo_061106-070115_unw.tif', 'geo_061106-070326_unw.tif', 'geo_061211-070709_unw.tif', 'geo_061211-070813_unw.tif', 'geo_070115-070917_unw.tif', 'geo_070219-070604_unw.tif', 'geo_070604-070709_unw.tif'] # reorder ifgs as per the matlab list self.ifgs = small_data_setup() def test_matlab_mst_kruskal(self): """ test that the matlab and python mst algos outputs are the same """ ifg_instance = IfgList(datafiles=self.ifg_file_list) ifg_list, _ = get_nml(ifg_instance, nodata_value=0) edges = _get_sub_structure(ifg_list, np.zeros(len(ifg_list.id), dtype=bool)) ifg_list_mst_id = _matlab_mst_kruskal(edges) self.assertEquals(len(self.matlab_mst_list), len(ifg_list_mst_id)) for i in ifg_list_mst_id: self.assertIn(os.path.split(ifg_list.nml[i])[-1], self.matlab_mst_list) def test_matlab_make_mstmat(self): """ tests equality of boolean mst arrays of both python and matlab. """ ifg_instance = IfgList(datafiles=self.ifg_file_list) ifg_list, _ = get_nml(ifg_instance, nodata_value=0) mst_mat = _matlab_mst(ifg_list, p_threshold=1) # path to csv folders from matlab output from tests.common import SML_TEST_MATLAB_MST_DIR onlyfiles = [f for f in os.listdir(SML_TEST_MATLAB_MST_DIR) if os.path.isfile(os.path.join(SML_TEST_MATLAB_MST_DIR, f))] for i, f in enumerate(onlyfiles): mst_f = np.genfromtxt(os.path.join(SML_TEST_MATLAB_MST_DIR, f), delimiter=',') for k, j in enumerate(self.ifg_file_list): if f.split('matlab_')[-1].split('.')[0] == \ os.path.split(j)[-1].split('.')[0]: np.testing.assert_array_equal(mst_f, mst_mat[k, :, :]) def test_matlab_make_mstmat_boolean_array(self): """ tests equality of boolean mst arrays of both python and matlab. """ ifg_instance = IfgList(datafiles=self.ifg_file_list) ifg_list, _ = get_nml(ifg_instance, nodata_value=0) mst_mat = _matlab_mst_bool(ifg_list, p_threshold=1) # path to csv folders from matlab output from tests.common import SML_TEST_MATLAB_MST_DIR onlyfiles = [f for f in os.listdir(SML_TEST_MATLAB_MST_DIR) if os.path.isfile(os.path.join(SML_TEST_MATLAB_MST_DIR, f))] for i, f in enumerate(onlyfiles): mst_f = np.genfromtxt(os.path.join(SML_TEST_MATLAB_MST_DIR, f), delimiter=',') for k, j in enumerate(self.ifg_file_list): if f.split('matlab_')[-1].split('.')[0] == \ os.path.split(j)[-1].split('.')[0]: np.testing.assert_array_equal(mst_f, mst_mat[k, :, :]) def test_mas_mat_vs_mst_mat_generator(self): ifg_instance = IfgList(datafiles=self.ifg_file_list) ifg_list, _ = get_nml(ifg_instance, nodata_value=0, nan_conversion=True) mst_mat1 = _matlab_mst(ifg_list) mst_mat2 = _matlab_mst_bool(ifg_list) np.testing.assert_array_equal(mst_mat2, mst_mat1) class TestMSTBooleanArray(unittest.TestCase): def setUp(self): self.ifg_dir = tempfile.mkdtemp() small_files = small_ifg_file_list() for sf in small_files: dest = os.path.join(self.ifg_dir, os.path.basename(sf)) shutil.copy(sf, dest) os.chmod(dest, 0o660) self.small_files = glob.glob(os.path.join(self.ifg_dir, "*.tif")) self.small_ifgs = small_data_setup(self.small_files) def tearDown(self): shutil.rmtree(self.ifg_dir) def test_mst_boolean_array(self): nan_conversion = 1 for i in self.small_ifgs: if not i.is_open: i.open(readonly=False) if nan_conversion: # nan conversion happens here in networkx mst i.nodata_value = 0 i.convert_to_nans() if not i.mm_converted: i.convert_to_mm() i.write_modified_phase() mst_nx = mst.mst_boolean_array(self.small_ifgs) small_ifg_instance = IfgList(datafiles=self.small_files) ifgs = small_ifg_instance.ifgs for i in ifgs: if not i.mm_converted: i.convert_to_mm() i.write_modified_phase() ifg_instance_updated, epoch_list = \ get_nml(small_ifg_instance, nodata_value=0, nan_conversion=nan_conversion) mst_matlab = _matlab_mst_bool(ifg_instance_updated) np.testing.assert_array_equal(mst_matlab, mst_nx) # close ifgs for windows for i in self.small_ifgs: i.close() if __name__ == '__main__': unittest.main() ``` #### File: PyRate/tests/test_mpi.py ```python from __future__ import print_function import glob import shutil import numpy as np import pytest import os import tempfile import random import string from subprocess import check_output import pyrate.orbital import pyrate.shared import tests.common from pyrate import ref_phs_est as rpe from pyrate import covariance from pyrate import refpixel from pyrate.scripts import run_pyrate, run_prepifg, postprocessing from tests.common import small_data_setup, reconstruct_mst, \ reconstruct_linrate, SML_TEST_DEM_HDR_GAMMA, pre_prepare_ifgs from tests import common from tests.test_covariance import matlab_maxvar from pyrate import config as cf from pyrate import mpiops from pyrate import algorithm TRAVIS = True if 'TRAVIS' in os.environ else False PYTHON3P5 = True if ('TRAVIS_PYTHON_VERSION' in os.environ and os.environ['TRAVIS_PYTHON_VERSION'] == '3.5') else False GDAL_VERSION = check_output(["gdal-config", "--version"]).decode( encoding="utf-8").split('\n')[0] MPITEST = TRAVIS and GDAL_VERSION == '2.0.0' @pytest.fixture() def tempdir(): """ tempdir for tests """ def tmpdir(): return tempfile.mkdtemp() return tmpdir @pytest.fixture def random_filename(tmpdir_factory): def make_random_filename(ext=''): dir = str(tmpdir_factory.mktemp('pyrate').realpath()) fname = ''.join(random.choice(string.ascii_lowercase) for _ in range(10)) return os.path.join(dir, fname + ext) return make_random_filename @pytest.fixture() def get_config(): """ Parameters ---------- conf_file: str config file Returns ------- params: dict dict of params """ def params(conf_file): return cf.get_config_params(conf_file) return params # Make sure all MPI tests use this fixure @pytest.fixture() def mpisync(request): mpiops.comm.barrier() def fin(): mpiops.comm.barrier() request.addfinalizer(fin) return mpiops.comm @pytest.fixture(params=[0, 1]) def roipac_or_gamma(request): return request.param @pytest.fixture(params=[1, 2]) def ref_est_method(request): return request.param @pytest.fixture(params=[1, 2, 5]) def row_splits(request): return request.param @pytest.fixture(params=[1, 2, 5]) def col_splits(request): return request.param @pytest.fixture(params=[1, 2, 5]) def modify_config(request, tempdir, get_config): test_conf = common.TEST_CONF_ROIPAC params_dict = get_config(test_conf) params_dict[cf.IFG_LKSX] = request.param params_dict[cf.IFG_LKSY] = request.param params_dict[cf.OBS_DIR] = tempdir() common.copytree(common.SML_TEST_GAMMA, params_dict[cf.OBS_DIR]) params_dict[cf.IFG_FILE_LIST] = os.path.join( params_dict[cf.OBS_DIR], 'ifms_17') params_dict[cf.PARALLEL] = False params_dict[cf.APS_CORRECTION] = 0 yield params_dict # clean up shutil.rmtree(params_dict[cf.OBS_DIR]) @pytest.fixture(params=range(1, 6)) def get_lks(request): return request.param @pytest.fixture(params=range(1, 3)) def get_crop(request): return request.param def test_vcm_matlab_vs_mpi(mpisync, tempdir, get_config): from tests.common import SML_TEST_DIR, TEST_CONF_ROIPAC params_dict = get_config(TEST_CONF_ROIPAC) MATLAB_VCM_DIR = os.path.join(SML_TEST_DIR, 'matlab_vcm') matlab_vcm = np.genfromtxt(os.path.join(MATLAB_VCM_DIR, 'matlab_vcmt.csv'), delimiter=',') if mpiops.rank == 0: outdir = tempdir() else: outdir = None outdir = mpiops.comm.bcast(outdir, root=0) params_dict[cf.OUT_DIR] = outdir params_dict[cf.PARALLEL] = False xlks, ylks, crop = cf.transform_params(params_dict) base_unw_paths = cf.original_ifg_paths(params_dict[cf.IFG_FILE_LIST]) # dest_paths are tifs that have been geotif converted and multilooked dest_paths = cf.get_dest_paths(base_unw_paths, crop, params_dict, xlks) # run prepifg, create the dest_paths files if mpiops.rank == 0: run_prepifg.roipac_prepifg(base_unw_paths, params_dict) mpiops.comm.barrier() tiles = pyrate.shared.get_tiles(dest_paths[0], rows=1, cols=1) preread_ifgs = run_pyrate._create_ifg_dict(dest_paths, params=params_dict, tiles=tiles) refpx, refpy = run_pyrate._ref_pixel_calc(dest_paths, params_dict) run_pyrate._orb_fit_calc(dest_paths, params_dict) run_pyrate._ref_phase_estimation(dest_paths, params_dict, refpx, refpy) maxvar, vcmt = run_pyrate._maxvar_vcm_calc(dest_paths, params_dict, preread_ifgs) np.testing.assert_array_almost_equal(maxvar, matlab_maxvar, decimal=4) np.testing.assert_array_almost_equal(matlab_vcm, vcmt, decimal=3) if mpiops.rank == 0: shutil.rmtree(outdir) @pytest.fixture(params=[1, 2, 5]) def orbfit_lks(request): return request.param @pytest.fixture(params=[cf.INDEPENDENT_METHOD, cf.NETWORK_METHOD]) def orbfit_method(request): return request.param @pytest.fixture(params=[cf.PLANAR, cf.QUADRATIC, cf.PART_CUBIC]) def orbfit_degrees(request): return request.param @pytest.mark.skipif(not MPITEST, reason='skipping mpi tests in travis except ' 'in TRAVIS and GDAL=2.0.0') def test_timeseries_linrate_mpi(mpisync, tempdir, modify_config, ref_est_method, row_splits, col_splits, get_crop, orbfit_lks, orbfit_method, orbfit_degrees): params = modify_config outdir = mpiops.run_once(tempdir) params[cf.OUT_DIR] = outdir params[cf.TMPDIR] = os.path.join(params[cf.OUT_DIR], cf.TMPDIR) params[cf.DEM_HEADER_FILE] = SML_TEST_DEM_HDR_GAMMA params[cf.REF_EST_METHOD] = ref_est_method params[cf.IFG_CROP_OPT] = get_crop params[cf.ORBITAL_FIT_LOOKS_Y] = orbfit_lks params[cf.ORBITAL_FIT_LOOKS_X] = orbfit_lks params[cf.ORBITAL_FIT_METHOD] = orbfit_method params[cf.ORBITAL_FIT_DEGREE] = orbfit_degrees xlks, ylks, crop = cf.transform_params(params) if xlks * col_splits > 45 or ylks * row_splits > 70: print('skipping test because lks and col_splits are not compatible') return # skip some tests in travis to run CI faster if TRAVIS and (xlks % 2 or row_splits % 2 or col_splits % 2 or orbfit_lks % 2): print('Skipping in travis env for faster CI run') return print("xlks={}, ref_est_method={}, row_splits={}, col_splits={}, " "get_crop={}, orbfit_lks={}, orbfit_method={}, " "rank={}".format(xlks, ref_est_method, row_splits, col_splits, get_crop, orbfit_lks, orbfit_method, orbfit_degrees, mpiops.rank)) base_unw_paths = cf.original_ifg_paths(params[cf.IFG_FILE_LIST]) # dest_paths are tifs that have been geotif converted and multilooked dest_paths = cf.get_dest_paths(base_unw_paths, crop, params, xlks) # run prepifg, create the dest_paths files if mpiops.rank == 0: run_prepifg.gamma_prepifg(base_unw_paths, params) mpiops.comm.barrier() (refpx, refpy), maxvar, vcmt = run_pyrate.process_ifgs( ifg_paths=dest_paths, params=params, rows=row_splits, cols=col_splits) tiles = mpiops.run_once(pyrate.shared.get_tiles, dest_paths[0], rows=row_splits, cols=col_splits) postprocessing._postprocess_linrate(row_splits, col_splits, params) postprocessing._postprocess_timeseries(row_splits, col_splits, params) ifgs_mpi_out_dir = params[cf.OUT_DIR] ifgs_mpi = small_data_setup(datafiles=dest_paths) # single process timeseries/linrate calculation if mpiops.rank == 0: params_old = modify_config params_old[cf.OUT_DIR] = tempdir() params_old[cf.REF_EST_METHOD] = ref_est_method params_old[cf.IFG_CROP_OPT] = get_crop params_old[cf.ORBITAL_FIT_LOOKS_Y] = orbfit_lks params_old[cf.ORBITAL_FIT_LOOKS_X] = orbfit_lks params_old[cf.ORBITAL_FIT_METHOD] = orbfit_method params_old[cf.ORBITAL_FIT_DEGREE] = orbfit_degrees xlks, ylks, crop = cf.transform_params(params_old) base_unw_paths = cf.original_ifg_paths( params_old[cf.IFG_FILE_LIST]) dest_paths = cf.get_dest_paths( base_unw_paths, crop, params_old, xlks) run_prepifg.gamma_prepifg(base_unw_paths, params_old) ifgs = pre_prepare_ifgs(dest_paths, params_old) mst_grid = tests.common.mst_calculation(dest_paths, params_old) refy, refx = refpixel.ref_pixel(ifgs, params_old) assert (refx == refpx) and (refy == refpy) # both must match pyrate.orbital.remove_orbital_error(ifgs, params_old) ifgs = common.prepare_ifgs_without_phase(dest_paths, params_old) rpe.estimate_ref_phase(ifgs, params_old, refx, refy) ifgs = pre_prepare_ifgs(dest_paths, params_old) r_dist = covariance.RDist(ifgs[0])() maxvar_s = [covariance.cvd(i, params_old, r_dist)[0] for i in ifgs] vcmt_s = covariance.get_vcmt(ifgs, maxvar) tsincr, tscum, _ = tests.common.compute_time_series( ifgs, mst_grid, params, vcmt) rate, error, samples = tests.common.calculate_linear_rate( ifgs, params_old, vcmt, mst_grid) mst_mpi = reconstruct_mst(ifgs[0].shape, tiles, params[cf.TMPDIR]) np.testing.assert_array_almost_equal(mst_grid, mst_mpi) tsincr_mpi, tscum_mpi = reconstruct_times_series(ifgs[0].shape, tiles, params[cf.TMPDIR]) rate_mpi, error_mpi, samples_mpi = \ [reconstruct_linrate(ifgs[0].shape, tiles, params[cf.TMPDIR], t) for t in ['linrate', 'linerror', 'linsamples']] np.testing.assert_array_almost_equal(maxvar, maxvar_s) np.testing.assert_array_almost_equal(vcmt, vcmt_s) for i, j in zip(ifgs, ifgs_mpi): np.testing.assert_array_almost_equal(i.phase_data, j.phase_data) np.testing.assert_array_almost_equal(tsincr, tsincr_mpi, decimal=4) np.testing.assert_array_almost_equal(tscum, tscum_mpi, decimal=4) np.testing.assert_array_almost_equal(rate, rate_mpi, decimal=4) np.testing.assert_array_almost_equal(error, error_mpi, decimal=4) np.testing.assert_array_almost_equal(samples, samples_mpi, decimal=4) # assert linear rate output tifs are same _tifs_same(ifgs_mpi_out_dir, params_old[cf.OUT_DIR], 'linrate.tif') _tifs_same(ifgs_mpi_out_dir, params_old[cf.OUT_DIR], 'linerror.tif') _tifs_same(ifgs_mpi_out_dir, params_old[cf.OUT_DIR], 'linsamples.tif') # assert time series output tifs are same epochlist = algorithm.get_epochs(ifgs)[0] for i in range(tsincr.shape[2]): _tifs_same(ifgs_mpi_out_dir, params_old[cf.OUT_DIR], 'tsincr' + '_' + str(epochlist.dates[i + 1]) + ".tif") # 12 timeseries outputs assert i + 1 == tsincr.shape[2] shutil.rmtree(ifgs_mpi_out_dir) # remove mpi out dir shutil.rmtree(params_old[cf.OUT_DIR]) # remove serial out dir def _tifs_same(dir1, dir2, tif): linrate_tif_s = os.path.join(dir1, tif) linrate_tif_m = os.path.join(dir2, tif) common.assert_ifg_phase_equal(linrate_tif_m, linrate_tif_s) @pytest.mark.skipif(TRAVIS, reason='skipping mpi tests in travis') def reconstruct_times_series(shape, tiles, output_dir): tsincr_file_0 = os.path.join(output_dir, 'tsincr_{}.npy'.format(0)) shape3 = np.load(tsincr_file_0).shape[2] tsincr_mpi = np.empty(shape=(shape + (shape3,)), dtype=np.float32) tscum_mpi = np.empty_like(tsincr_mpi, dtype=np.float32) for i, t in enumerate(tiles): tsincr_file_n = os.path.join(output_dir, 'tsincr_{}.npy'.format(i)) tsincr_mpi[t.top_left_y:t.bottom_right_y, t.top_left_x: t.bottom_right_x, :] = np.load(tsincr_file_n) tscum_file_n = os.path.join(output_dir, 'tscuml_{}.npy'.format(i)) tscum_mpi[t.top_left_y:t.bottom_right_y, t.top_left_x: t.bottom_right_x, :] = np.load(tscum_file_n) return tsincr_mpi, tscum_mpi def test_prepifg_mpi(mpisync, get_config, tempdir, roipac_or_gamma, get_lks, get_crop): from tests.common import TEST_CONF_ROIPAC, TEST_CONF_GAMMA from os.path import join, basename if roipac_or_gamma == 1: params = get_config(TEST_CONF_GAMMA) else: params = get_config(TEST_CONF_ROIPAC) outdir = mpiops.run_once(tempdir) params[cf.OUT_DIR] = outdir params[cf.PARALLEL] = False params[cf.IFG_LKSX], params[cf.IFG_LKSY] = get_lks, get_lks params[cf.IFG_CROP_OPT] = get_crop if roipac_or_gamma == 1: params[cf.IFG_FILE_LIST] = join(common.SML_TEST_GAMMA, 'ifms_17') params[cf.OBS_DIR] = common.SML_TEST_GAMMA params[cf.DEM_FILE] = common.SML_TEST_DEM_GAMMA params[cf.DEM_HEADER_FILE] = common.SML_TEST_DEM_HDR_GAMMA run_prepifg.main(params) if mpiops.rank == 0: if roipac_or_gamma == 1: params_s = get_config(TEST_CONF_GAMMA) else: params_s = get_config(TEST_CONF_ROIPAC) params_s[cf.OUT_DIR] = tempdir() params_s[cf.PARALLEL] = True params_s[cf.IFG_LKSX], params_s[cf.IFG_LKSY] = get_lks, get_lks params_s[cf.IFG_CROP_OPT] = get_crop if roipac_or_gamma == 1: base_unw_paths = glob.glob(join(common.SML_TEST_GAMMA, "*_utm.unw")) run_prepifg.gamma_prepifg(base_unw_paths, params_s) else: base_unw_paths = glob.glob(join(common.SML_TEST_OBS, "*.unw")) run_prepifg.roipac_prepifg(base_unw_paths, params_s) mpi_tifs = glob.glob(join(outdir, "*.tif")) serial_tifs = glob.glob(join(params[cf.OUT_DIR], "*.tif")) mpi_tifs.sort() serial_tifs.sort() # 17 geotifs, and 17 mlooked tifs assert len(mpi_tifs) == len(serial_tifs) for m_f, s_f in zip(mpi_tifs, serial_tifs): assert basename(m_f) == basename(s_f) shutil.rmtree(outdir) shutil.rmtree(params_s[cf.OUT_DIR]) ``` #### File: PyRate/tests/test_pyaps.py ```python import copy import glob import os import re import shutil import subprocess import tempfile import unittest import pytest import gdal import numpy as np from pyrate import config as cf from pyrate import ifgconstants as ifc from pyrate.compat import PyAPS_INSTALLED from pyrate.scripts import run_pyrate, run_prepifg from tests import common if PyAPS_INSTALLED: from pyrate import pyaps @unittest.skipUnless(PyAPS_INSTALLED, 'PyAPS must be available for this test') @pytest.mark.skipif(not PyAPS_INSTALLED, reason='PyAPS must be available for this test') class TestMethod1VsMethod2AndMetaData(unittest.TestCase): @classmethod def setUpClass(cls): cls.tif_dir = tempfile.mkdtemp() cls.tif_dir_method2 = tempfile.mkdtemp() cls.test_conf = common.TEST_CONF_ROIPAC # change the required params cls.params = cf.get_config_params(cls.test_conf) cls.params[cf.OBS_DIR] = common.SML_TEST_GAMMA cls.params[cf.PROCESSOR] = 1 # gamma file_list = cf.parse_namelist(os.path.join(common.SML_TEST_GAMMA, 'ifms_17')) cls.params[cf.IFG_FILE_LIST] = tempfile.mktemp(dir=cls.tif_dir) # write a short filelist with only 3 gamma unws with open(cls.params[cf.IFG_FILE_LIST], 'w') as fp: for f in file_list[:2]: fp.write(os.path.join(common.SML_TEST_GAMMA, f) + '\n') cls.params[cf.OUT_DIR] = cls.tif_dir cls.params[cf.PARALLEL] = True cls.params[cf.REF_EST_METHOD] = 1 cls.params[cf.DEM_FILE] = common.SML_TEST_DEM_GAMMA cls.params[cf.APS_INCIDENCE_MAP] = common.SML_TEST_INCIDENCE # base_unw_paths need to be geotiffed and multilooked by run_prepifg base_unw_paths = run_pyrate.original_ifg_paths( cls.params[cf.IFG_FILE_LIST]) # add dem base_unw_paths.append(common.SML_TEST_DEM_GAMMA) # add incidence base_unw_paths.append(common.SML_TEST_INCIDENCE) xlks, ylks, crop = run_pyrate.transform_params(cls.params) import copy cls.params_method2 = copy.copy(cls.params) cls.params_method2[cf.OUT_DIR] = cls.tif_dir_method2 cls.params_method2[cf.APS_METHOD] = 2 # dest_paths are tifs that have been geotif converted and multilooked run_prepifg.gamma_prepifg(base_unw_paths, cls.params) run_prepifg.gamma_prepifg(base_unw_paths, cls.params_method2) # removed incidence as we don't want it in ifgs list base_unw_paths.pop() # removed dem as we don't want it in ifgs list base_unw_paths.pop() dest_paths = run_pyrate.get_dest_paths( base_unw_paths, crop, cls.params, xlks) cls.ifgs = common.small_data_setup(datafiles=dest_paths) dest_paths_m2 = run_pyrate.get_dest_paths( base_unw_paths, crop, cls.params_method2, xlks) cls.ifgs_method2 = common.small_data_setup(datafiles=dest_paths_m2) pyaps.remove_aps_delay(cls.ifgs, cls.params) pyaps.remove_aps_delay(cls.ifgs_method2, cls.params_method2) @classmethod def tearDownClass(cls): for i in cls.ifgs: i.close() for i in cls.ifgs_method2: i.close() shutil.rmtree(cls.tif_dir) shutil.rmtree(cls.tif_dir_method2) def test_metadata_was_copied(self): for i in self.ifgs: md = i.meta_data i.close() self.assertIn(ifc.PYRATE_WEATHER_ERROR, md.keys()) self.assertIn(pyaps.APS_STATUS, md.values()) def test_meta_data_was_written(self): for i in self.ifgs: md = i.meta_data i.close() ds = gdal.Open(i.data_path) md_w = ds.GetMetadata() self.assertDictEqual(md, md_w) ds = None def test_dem_tifs_present(self): # geotiffed dem os.path.exists(os.path.join(self.params[cf.OUT_DIR], os.path.splitext(common.SML_TEST_DEM_GAMMA)[0] + '.tif')) # multilooked dem os.path.exists(os.path.join(self.params[cf.OUT_DIR], os.path.splitext(common.SML_TEST_DEM_GAMMA)[0] + '_{looks}rlks_{crop}cr.tif'.format( looks=self.params[cf.IFG_LKSX], crop=self.params[cf.IFG_CROP_OPT]))) def test_method1_method2_equal_with_uniform_incidence_map(self): for i, j in zip(self.ifgs, self.ifgs_method2): np.testing.assert_array_almost_equal(i.phase_data, j.phase_data, decimal=4) @unittest.skipUnless(PyAPS_INSTALLED, 'PyAPS must be available for this test') @pytest.mark.skipif(not PyAPS_INSTALLED, reason='PyAPS must be available for this test') class TestOriginalVsEfficientAps(unittest.TestCase): @classmethod def setUpClass(cls): cls.tif_dir = tempfile.mkdtemp() cls.tif_dir_original = tempfile.mkdtemp() cls.test_conf = common.TEST_CONF_ROIPAC # change the required params cls.params = cf.get_config_params(cls.test_conf) cls.params[cf.OBS_DIR] = common.SML_TEST_GAMMA cls.params[cf.PROCESSOR] = 1 # gamma file_list = cf.parse_namelist(os.path.join(common.SML_TEST_GAMMA, 'ifms_17')) cls.params[cf.IFG_FILE_LIST] = tempfile.mktemp(dir=cls.tif_dir) # write a short filelist with only 3 gamma unws with open(cls.params[cf.IFG_FILE_LIST], 'w') as fp: for f in file_list[:2]: fp.write(os.path.join(common.SML_TEST_GAMMA, f) + '\n') cls.params[cf.OUT_DIR] = cls.tif_dir cls.params[cf.PARALLEL] = True cls.params[cf.REF_EST_METHOD] = 2 cls.params[cf.DEM_FILE] = common.SML_TEST_DEM_GAMMA cls.params[cf.APS_INCIDENCE_MAP] = common.SML_TEST_INCIDENCE # base_unw_paths need to be geotiffed and multilooked by run_prepifg base_unw_paths = run_pyrate.original_ifg_paths( cls.params[cf.IFG_FILE_LIST]) # add dem base_unw_paths.append(common.SML_TEST_DEM_GAMMA) # add incidence base_unw_paths.append(common.SML_TEST_INCIDENCE) xlks, ylks, crop = run_pyrate.transform_params(cls.params) import copy cls.params_original = copy.copy(cls.params) cls.params_original[cf.OUT_DIR] = cls.tif_dir_original cls.params_original[cf.APS_METHOD] = 2 # dest_paths are tifs that have been geotif converted and multilooked run_prepifg.gamma_prepifg(base_unw_paths, cls.params) run_prepifg.gamma_prepifg(base_unw_paths, cls.params_original) # removed incidence as we don't want it in ifgs list base_unw_paths.pop() # removed dem as we don't want it in ifgs list base_unw_paths.pop() dest_paths = run_pyrate.get_dest_paths( base_unw_paths, crop, cls.params, xlks) cls.ifgs = common.small_data_setup(datafiles=dest_paths) dest_paths_orig = run_pyrate.get_dest_paths( base_unw_paths, crop, cls.params_original, xlks) cls.ifgs_orig = common.small_data_setup(datafiles=dest_paths_orig) pyaps.remove_aps_delay(cls.ifgs, cls.params) pyaps.remove_aps_delay_original(cls.ifgs_orig, cls.params_original) @classmethod def tearDownClass(cls): for i in cls.ifgs: i.close() for i in cls.ifgs_orig: i.close() shutil.rmtree(cls.tif_dir) shutil.rmtree(cls.tif_dir_original) def test_metadata_was_copied(self): for i in self.ifgs: md = i.meta_data i.close() self.assertIn(ifc.PYRATE_WEATHER_ERROR, md.keys()) self.assertIn(pyaps.APS_STATUS, md.values()) def test_meta_data_was_written(self): for i in self.ifgs: i.close() md = i.meta_data ds = gdal.Open(i.data_path) md_w = ds.GetMetadata() self.assertDictEqual(md, md_w) ds = None def test_dem_tifs_present(self): # geotiffed dem os.path.exists(os.path.join(self.params[cf.OUT_DIR], os.path.splitext(common.SML_TEST_DEM_GAMMA)[0] + '.tif')) # multilooked dem os.path.exists(os.path.join(self.params[cf.OUT_DIR], os.path.splitext(common.SML_TEST_DEM_GAMMA)[0] + '_{looks}rlks_{crop}cr.tif'.format( looks=self.params[cf.IFG_LKSX], crop=self.params[cf.IFG_CROP_OPT]))) def test_method1_method2_equal_with_uniform_incidence_map(self): for i, j in zip(self.ifgs, self.ifgs_orig): np.testing.assert_array_almost_equal(i.phase_data, j.phase_data, decimal=4) @unittest.skipUnless(PyAPS_INSTALLED, 'PyAPS must be available for this test') @pytest.mark.skipif(not PyAPS_INSTALLED, reason='PyAPS must be available for this test') class TestAPSIncidenceVsElevationVsParallel(unittest.TestCase): """ This class tests APS method when incidence map is provided vs elevation map """ @classmethod def setUpClass(cls): cls.tif_dir_inc = tempfile.mkdtemp() cls.tif_dir_ele = tempfile.mkdtemp() cls.tif_dir_ele_par = tempfile.mkdtemp() cls.test_conf = common.TEST_CONF_ROIPAC # change the required params cls.params_inc = cf.get_config_params(cls.test_conf) cls.params_inc[cf.OBS_DIR] = common.SML_TEST_GAMMA cls.params_inc[cf.PROCESSOR] = 1 # gamma file_list = cf.parse_namelist(os.path.join(common.SML_TEST_GAMMA, 'ifms_17')) # config file cls.params_inc[cf.IFG_FILE_LIST] = tempfile.mktemp(dir=cls.tif_dir_inc) # write a short filelist with only 3 gamma unws with open(cls.params_inc[cf.IFG_FILE_LIST], 'w') as fp: for f in file_list[:2]: fp.write(os.path.join(common.SML_TEST_GAMMA, f) + '\n') cls.params_inc[cf.OUT_DIR] = cls.tif_dir_inc cls.params_inc[cf.PARALLEL] = 0 cls.params_inc[cf.REF_EST_METHOD] = 1 cls.params_inc[cf.APS_METHOD] = 2 cls.params_inc[cf.DEM_FILE] = common.SML_TEST_DEM_GAMMA cls.params_inc[cf.APS_INCIDENCE_MAP] = common.SML_TEST_INCIDENCE run_prepifg.main(cls.params_inc) # now create the config for the elevation_map case cls.params_ele = copy.copy(cls.params_inc) cls.params_ele[cf.OUT_DIR] = cls.tif_dir_ele cls.params_ele[cf.APS_METHOD] = 2 cls.params_ele[cf.APS_INCIDENCE_MAP] = None cls.params_ele[cf.APS_INCIDENCE_EXT] = None cls.params_ele[cf.APS_ELEVATION_MAP] = common.SML_TEST_ELEVATION cls.params_ele[cf.APS_ELEVATION_EXT] = 'lv_theta' run_prepifg.main(cls.params_ele) ptn = re.compile(r'\d{8}') dest_paths_inc = [f for f in glob.glob(os.path.join(cls.tif_dir_inc, '*.tif')) if ("cr" in f) and ("rlks" in f) and (len(re.findall(ptn, os.path.basename(f))) == 2)] cls.ifgs_inc = common.small_data_setup(datafiles=dest_paths_inc) dest_paths_ele = [f for f in glob.glob(os.path.join(cls.tif_dir_ele, '*.tif')) if "cr" in f and "rlks" in f and (len(re.findall(ptn, os.path.basename(f))) == 2)] cls.ifgs_ele = common.small_data_setup(datafiles=dest_paths_ele) # now create the config for the elevation map parallel case cls.params_ele_par = copy.copy(cls.params_ele) cls.params_ele_par[cf.OUT_DIR] = cls.tif_dir_ele_par cls.params_ele_par[cf.PARALLEL] = True run_prepifg.main(cls.params_ele_par) dest_paths_ele_par = \ [f for f in glob.glob(os.path.join(cls.tif_dir_ele_par, '*.tif')) if "cr" in f and "rlks" in f and (len(re.findall(ptn, os.path.basename(f))) == 2)] cls.ifgs_ele_par = common.small_data_setup(datafiles=dest_paths_ele_par) pyaps.remove_aps_delay(cls.ifgs_inc, cls.params_inc) pyaps.remove_aps_delay(cls.ifgs_ele, cls.params_ele) pyaps.remove_aps_delay(cls.ifgs_ele_par, cls.params_ele_par) @classmethod def tearDownClass(cls): for i in cls.ifgs_ele: i.close() for i in cls.ifgs_ele_par: i.close() for i in cls.ifgs_inc: i.close() shutil.rmtree(cls.tif_dir_inc) shutil.rmtree(cls.tif_dir_ele) shutil.rmtree(cls.tif_dir_ele_par) def test_inc_vs_ele_equal_with_uniform_incidence_map(self): for i, j in zip(self.ifgs_inc, self.ifgs_ele): np.testing.assert_array_almost_equal(i.phase_data, j.phase_data, decimal=4) def test_inc_serial_vs_parallel(self): for i, j in zip(self.ifgs_ele_par, self.ifgs_ele): np.testing.assert_array_almost_equal(i.phase_data, j.phase_data, decimal=4) @unittest.skipUnless(PyAPS_INSTALLED, 'PyAPS must be available for this test') class MPITests(unittest.TestCase): # TODO: add tests for looks > 1 @classmethod def setUpClass(cls): cls.tif_dir_serial = tempfile.mkdtemp() cls.tif_dir_mpi = tempfile.mkdtemp() cls.test_conf = common.TEST_CONF_ROIPAC # change the required params cls.params = cf.get_config_params(cls.test_conf) cls.params[cf.OBS_DIR] = common.SML_TEST_GAMMA cls.params[cf.PROCESSOR] = 1 # gamma file_list = cf.parse_namelist(os.path.join(common.SML_TEST_GAMMA, 'ifms_17')) cls.params[cf.IFG_FILE_LIST] = tempfile.mktemp(dir=cls.tif_dir_serial) # write a short filelist with only 3 gamma unws with open(cls.params[cf.IFG_FILE_LIST], 'w') as fp: for f in file_list[:2]: fp.write(os.path.join(common.SML_TEST_GAMMA, f) + '\n') cls.params[cf.OUT_DIR] = cls.tif_dir_serial cls.params[cf.PARALLEL] = 0 cls.params[cf.REF_EST_METHOD] = 2 cls.params[cf.IFG_LKSX] = 1 cls.params[cf.IFG_LKSY] = 1 cls.params[cf.DEM_FILE] = common.SML_TEST_DEM_GAMMA cls.params[cf.APS_INCIDENCE_MAP] = common.SML_TEST_INCIDENCE # base_unw_paths need to be geotiffed and multilooked by run_prepifg base_unw_paths = run_pyrate.original_ifg_paths( cls.params[cf.IFG_FILE_LIST]) # add dem base_unw_paths.append(common.SML_TEST_DEM_GAMMA) # add incidence base_unw_paths.append(common.SML_TEST_INCIDENCE) xlks, ylks, crop = run_pyrate.transform_params(cls.params) cls.params_mpi = copy.copy(cls.params) cls.params_mpi[cf.OUT_DIR] = cls.tif_dir_mpi # dest_paths are tifs that have been geotif converted and multilooked run_prepifg.gamma_prepifg(base_unw_paths, cls.params) run_prepifg.gamma_prepifg(base_unw_paths, cls.params_mpi) # removed incidence as we don't want it in ifgs list base_unw_paths.pop() # removed dem as we don't want it in ifgs list base_unw_paths.pop() dest_paths = run_pyrate.get_dest_paths( base_unw_paths, crop, cls.params, xlks) dest_paths_mpi = run_pyrate.get_dest_paths( base_unw_paths, crop, cls.params_mpi, xlks) run_pyrate.process_ifgs(dest_paths, cls.params) cls.ifgs_serial = common.small_data_setup(datafiles=dest_paths) cls.conf_mpi = tempfile.mktemp('.conf', dir=cls.tif_dir_mpi) cf.write_config_file(cls.params_mpi, cls.conf_mpi) str = 'mpirun -np 4 python pyrate/nci/run_pyrate_pypar.py ' + \ cls.conf_mpi cmd = str.split() subprocess.check_call(cmd) str = 'mpirun -np 4 python pyrate/nci/run_pyrate_pypar_2.py ' + \ cls.conf_mpi cmd = str.split() subprocess.check_call(cmd) str = 'mpirun -np 4 python pyrate/nci/run_pyrate_pypar_3.py ' + \ cls.conf_mpi cmd = str.split() subprocess.check_call(cmd) cls.ifgs_mpi = common.small_data_setup(datafiles=dest_paths_mpi) @classmethod def tearDownClass(cls): for i in cls.ifgs_serial: i.close() for i in cls.ifgs_mpi: i.close() shutil.rmtree(cls.tif_dir_serial) shutil.rmtree(cls.tif_dir_mpi) def test_metadata_was_copied(self): for j, i in zip(self.ifgs_serial, self.ifgs_mpi): md = i.meta_data md_s = j.meta_data self.assertIn(ifc.PYRATE_WEATHER_ERROR, md_s.keys()) self.assertIn(ifc.PYRATE_WEATHER_ERROR, md.keys()) self.assertIn(pyaps.APS_STATUS, md.values()) def test_meta_data_was_written(self): for i in self.ifgs_mpi: md = i.meta_data ds = gdal.Open(i.data_path) md_w = ds.GetMetadata() self.assertDictEqual(md, md_w) self.assertIn(ifc.PYRATE_WEATHER_ERROR, md_w.keys()) ds = None def test_dem_tifs_present(self): # geotiffed dem os.path.exists(os.path.join(self.params_mpi[cf.OUT_DIR], os.path.splitext(common.SML_TEST_DEM_GAMMA)[0] + '.tif')) # multilooked dem os.path.exists(os.path.join(self.params_mpi[cf.OUT_DIR], os.path.splitext(common.SML_TEST_DEM_GAMMA)[0] + '_{looks}rlks_{crop}cr.tif'.format( looks=self.params_mpi[cf.IFG_LKSX], crop=self.params_mpi[cf.IFG_CROP_OPT]))) def test_serial_vs_mpi_equal(self): for i, j in zip(self.ifgs_serial, self.ifgs_mpi): np.testing.assert_array_almost_equal(i.phase_data, j.phase_data, decimal=4) if __name__ == '__main__': unittest.main() ``` #### File: PyRate/utils/gdaldem.py ```python import subprocess import sys import os import tempfile import numpy as np from pyrate.shared import Ifg, DEM def main(input_file, color_file, output_file): cmd = "gdaldem color-relief " + input_file \ + ' ' + color_file + ' ' + output_file subprocess.check_call(cmd, shell=True) def gen_color_file(input_file): fp, temp_file = tempfile.mkstemp(suffix='.txt') dem = DEM(input_file) dem.open() phase_data = dem.height_band.ReadAsArray() max_ph = np.nanmax(phase_data) min_ph = np.nanmin(phase_data) range_ph = max_ph-min_ph colors = ['black', 'blue', 'yellow', 'orange', 'red', 'white'] with open(temp_file, 'w') as f: for i, c in enumerate(colors[:-1]): f.write(str(int(min_ph + (i + 1)*range_ph/len(colors))) + ' ' + c + '\n') f.write(str(int(max_ph - range_ph/len(colors))) + ' ' + colors[-1] + '\n') os.close(fp) return temp_file if __name__ == '__main__': input_file = sys.argv[1] color_file = sys.argv[2] output_file = sys.argv[3] if color_file == 'auto': print '\nauto generating color file' color_file = gen_color_file(input_file) with open(color_file, 'r') as f: print '\ncolor file contents' print '='*50 for l in f.readlines(): print l print '='*50 main(input_file, color_file, output_file) ```
{ "source": "jlmaurer/pyre", "score": 2 }
#### File: pyre/flow/Status.py ```python import pyre # declaration class Status(pyre.tracker): """ A helper that watches over a component's traits and records value changes """ # public data @property def stale(self): """ Return my current status """ # easy enough return self._stale @stale.setter def stale(self, status): """ Adjust my status """ # if i'm being marked as stale if status is True: # flush return self.flush() # otherwise, just update the status self._stale = status # all done return self # interface def playback(self, node, alias): """ Go through the history of the trait named {alias} """ # find its trait by this name trait = node.pyre_trait(alias=alias) # get the key key = node.pyre_inventory[trait].key # chain up yield from super().playback(key=key) # all done return # input binding def addInputBinding(self, **kwds): """ The given {product} is now an input to {factory} """ # show me # self.log(activity="adding input", **kwds) # all done return self def removeInputBinding(self, **kwds): """ The given {product} is no longer an input to {factory} """ # show me # self.log(activity="removing input", **kwds) # all done return self # output binding def addOutputBinding(self, **kwds): """ The given {product} is now an output of {factory} """ # show me # self.log(activity="adding output", **kwds) # all done return self def removeOutputBinding(self, **kwds): """ The given {product} is no longer an output of {factory} """ # show me self.log(activity="removing output", **kwds) # all done return self # meta-methods def __init__(self, node, stale=False, **kwds): # chain up super().__init__(**kwds) # initialize my flag self._stale = stale # enable tracking self.track(component=node) # all done return # hooks def flush(self, **kwds): """ Handler of the notification that the value of an {observable} has changed """ # update my state self._stale = True # chain up return super().flush(**kwds) # implementation details def log(self, activity, factory, product): # show me print(f"pyre.flow.Status: {activity}") print(f" status: {self}") print(f" factory: {factory}") print(f" product: {product}") print(f"") # all done return # private data _stale = None # end of file ```
{ "source": "jlmaurer/scikit-gstat", "score": 3 }
#### File: scikit-gstat/skgstat/DirectionalVariogram.py ```python import numpy as np import matplotlib.pyplot as plt from scipy.spatial.distance import squareform, pdist import matplotlib.collections from .Variogram import Variogram class DirectionalVariogram(Variogram): """DirectionalVariogram Class Calculates a variogram of the separating distances in the given coordinates and relates them to one of the semi-variance measures of the given dependent values. The direcitonal version of a Variogram will only form paris of points that share a specified spatial relationship. """ def __init__(self, coordinates=None, values=None, estimator='matheron', model='spherical', dist_func='euclidean', bin_func='even', normalize=False, fit_method='trf', fit_sigma=None, directional_model='triangle', azimuth=0, tolerance=45.0, bandwidth='q33', use_nugget=False, maxlag=None, n_lags=10, verbose=False ): r"""Variogram Class Directional Variogram. The calculation is not performant and not tested yet. Parameters ---------- coordinates : numpy.ndarray Array of shape (m, n). Will be used as m observation points of n-dimensions. This variogram can be calculated on 1 - n dimensional coordinates. In case a 1-dimensional array is passed, a second array of same length containing only zeros will be stacked to the passed one. values : numpy.ndarray Array of values observed at the given coordinates. The length of the values array has to match the m dimension of the coordinates array. Will be used to calculate the dependent variable of the variogram. estimator : str, callable String identifying the semi-variance estimator to be used. Defaults to the Matheron estimator. Possible values are: * matheron [Matheron, default] * cressie [Cressie-Hawkins] * dowd [Dowd-Estimator] * genton [Genton] * minmax [MinMax Scaler] * entropy [Shannon Entropy] If a callable is passed, it has to accept an array of absoulte differences, aligned to the 1D distance matrix (flattened upper triangle) and return a scalar, that converges towards small values for similarity (high covariance). model : str String identifying the theoretical variogram function to be used to describe the experimental variogram. Can be one of: * spherical [Spherical, default] * exponential [Exponential] * gaussian [Gaussian] * cubic [Cubic] * stable [Stable model] * matern [Matérn model] * nugget [nugget effect variogram] dist_func : str String identifying the distance function. Defaults to 'euclidean'. Can be any metric accepted by scipy.spatial.distance.pdist. Additional parameters are not (yet) passed through to pdist. These are accepted by pdist for some of the metrics. In these cases the default values are used. bin_func : str String identifying the binning function used to find lag class edges. At the moment there are two possible values: 'even' (default) or 'uniform'. Even will find n_lags bins of same width in the interval [0,maxlag[. 'uniform' will identfy n_lags bins on the same interval, but with varying edges so that all bins count the same amount of observations. normalize : bool Defaults to False. If True, the independent and dependent variable will be normalized to the range [0,1]. fit_method : str String identifying the method to be used for fitting the theoretical variogram function to the experimental. More info is given in the Variogram.fit docs. Can be one of: * 'lm': Levenberg-Marquardt algorithm for unconstrained problems. This is the faster algorithm, yet is the fitting of a variogram not unconstrianed. * 'trf': Trust Region Reflective function for non-linear constrained problems. The class will set the boundaries itself. This is the default function. fit_sigma : numpy.ndarray, str Defaults to None. The sigma is used as measure of uncertainty during variogram fit. If fit_sigma is an array, it has to hold n_lags elements, giving the uncertainty for all lags classes. If fit_sigma is None (default), it will give no weight to any lag. Higher values indicate higher uncertainty and will lower the influcence of the corresponding lag class for the fit. If fit_sigma is a string, a pre-defined function of separating distance will be used to fill the array. Can be one of: * 'linear': Linear loss with distance. Small bins will have higher impact. * 'exp': The weights decrease by a e-function of distance * 'sqrt': The weights decrease by the squareroot of distance * 'sq': The weights decrease by the squared distance. More info is given in the Variogram.fit_sigma documentation. directional_model : string, function The model used for selecting all points fulfilling the directional constraint of the Variogram. A predefined model can be selected by passing the model name as string. Optionally a callable accepting the difference vectors between points in polar form as angles and distances and returning a mask array can be passed. In this case, the azimuth, tolerance and bandwidth has to be incorporated by hand into the model. * 'compass': includes points in the direction of the azimuth at given tolerance. The bandwidth parameter will be ignored. * 'triangle': constructs a triangle with an angle of tolerance at the point of interest and union an rectangle parallel to azimuth, once the hypotenuse length reaches bandwidth. * 'circle': constructs a half circle touching the point of interest, dislocating the center at the distance of bandwidth in the direction of azimuth. The half circle is union with an rectangle parallel to azimuth. Visual representations, usage hints and implementation specifics are given in the documentation. azimuth : float The azimuth of the directional dependence for this Variogram, given as an angle in **degree**. The East of the coordinate plane is set to be at 0° and is counted clockwise to 180° and counter-clockwise to -180°. Only Points lying in the azimuth of a specific point will be used for forming point pairs. tolerance : float The tolerance is given as an angle in **degree**- Points being dislocated from the exact azimuth by half the tolerance will be accepted as well. It's half the tolerance as the point may be dislocated in the positive and negative direction from the azimuth. bandwidth : float Maximum tolerance acceptable in **coordinate units**, which is usually meter. Points at higher distances may be far dislocated from the azimuth in terms of coordinate distance, as the tolerance is defined as an angle. THe bandwidth defines a maximum width for the search window. It will be perpendicular to and bisected by the azimuth. use_nugget : bool Defaults to False. If True, a nugget effet will be added to all Variogram.models as a third (or fourth) fitting parameter. A nugget is essentially the y-axis interception of the theoretical variogram function. maxlag : float, str Can specify the maximum lag distance directly by giving a value larger than 1. The binning function will not find any lag class with an edge larger than maxlag. If 0 < maxlag < 1, then maxlag is relative and maxlag * max(Variogram.distance) will be used. In case maxlag is a string it has to be one of 'median', 'mean'. Then the median or mean of all Variogram.distance will be used. Note maxlag=0.5 will use half the maximum separating distance, this is not the same as 'median', which is the median of all separating distances n_lags : int Specify the number of lag classes to be defined by the binning function. verbose : bool Set the Verbosity of the class. Not Implemented yet. """ # FIXME: Call __init__ of baseclass? self._direction_mask_cache = None # Set coordinates self._X = np.asarray(coordinates) # pairwise difference self._diff = None # set verbosity self.verbose = verbose # set values self._values = None # calc_diff = False here, because it will be calculated by fit() later self.set_values(values=values, calc_diff=False) # distance matrix self._dist = None # set distance calculation function self._dist_func = None self.set_dist_function(func=dist_func) # Angles and euclidean distances used for direction mask calculation self._angles = None self._euclidean_dist = None # lags and max lag self.n_lags = n_lags self._maxlag = None self.maxlag = maxlag # estimator can be function or a string self._estimator = None self.set_estimator(estimator_name=estimator) # model can be function or a string self._model = None self.set_model(model_name=model) # azimuth direction self._azimuth = None self.azimuth = azimuth # azimuth tolerance self._tolerance = None self.tolerance = tolerance # tolerance bandwidth self._bandwidth = None self.bandwidth = bandwidth # set the directional model self._directional_model = None self.set_directional_model(model_name=directional_model) # the binning settings self._bin_func = None self._groups = None self._bins = None self.set_bin_func(bin_func=bin_func) # specify if the lag should be given absolute or relative to the maxlag self._normalized = normalize # set the fitting method and sigma array self.fit_method = fit_method self._fit_sigma = None self.fit_sigma = fit_sigma # set if nugget effect shall be used self.use_nugget = use_nugget # set attributes to be filled during calculation self.cov = None self.cof = None # settings, not reachable by init (not yet) self._cache_experimental = False # do the preprocessing and fitting upon initialization # Note that fit() calls preprocessing self.fit(force=True) def preprocessing(self, force=False): self._calc_distances(force=force) self._calc_direction_mask_data(force) self._calc_diff(force=force) self._calc_groups(force=force) def _calc_direction_mask_data(self, force=False): r""" Calculate directional mask data. For this, the angle between the vector between the two points, and east (see comment about self.azimuth) is calculated. The result is stored in self._angles and contains the angle of each point pair vector to the x-axis in radians. Parameters ---------- force : bool If True, a new calculation of all angles is forced, even if they are already in the cache. Notes ----- The masked data is in radias, while azimuth is given in degrees. For the Vector between a point pair A,B :math:`\overrightarrow{AB}=u` and the x-axis, represented by vector :math:`\overrightarrow{e} = [1,0]`, the angle :math:`\Theta` is calculated like: .. math:: cos(\Theta) = \frac{u \circ e}{|e| \cdot |[1,0]|} See Also -------- `azimuth <skgstat.DirectionalVariogram.azimuth>`_ """ # check if already calculated if self._angles is not None and not force: return # if self._X is of just one dimension, concat zeros. if self._X.ndim == 1: _x = np.vstack(zip(self._X, np.zeros(len(self._X)))) elif self._X.ndim == 2: _x = self._X else: raise NotImplementedError('N-dimensional coordinates cannot be handled') # for angles, we need Euklidean distance, # no matter which distance function is used if self._dist_func == "euclidean": self._euclidean_dist = self._dist else: self._euclidean_dist = pdist(_x, "euclidean") # Calculate the angles # (a - b).[1,0] = ||a - b|| * ||[1,0]|| * cos(v) # cos(v) = (a - b).[1,0] / ||a - b|| # cos(v) = (a.[1,0] - b.[1,0]) / ||a - b|| scalar = pdist(np.array([np.dot(_x, [1, 0])]).T, np.subtract) pos_angles = np.arccos(scalar / self._euclidean_dist) # cos(v) for [2,1] and [2, -1] is the same, # but v is not (v vs -v), fix that. ydiff = pdist(np.array([np.dot(_x, [0, 1])]).T, np.subtract) # store the angle or negative angle, depending on the # amount of the x coordinate self._angles = np.where(ydiff >= 0, pos_angles, -pos_angles) @property def azimuth(self): """Direction azimuth Main direction for te selection of points in the formation of point pairs. East of the coordinate plane is defined to be 0° and then the azimuth is set clockwise up to 180°and count-clockwise to -180°. Parameters ---------- angle : float New azimuth angle in **degree**. Raises ------ ValueError : in case angle < -180° or angle > 180 """ return self._azimuth @azimuth.setter def azimuth(self, angle): if angle < -180 or angle > 180: raise ValueError('The azimuth is an angle in degree and has to ' 'meet -180 <= angle <= 180') else: self._azimuth = angle # reset groups and mask cache on azimuth change self._direction_mask_cache = None self._groups = None @property def tolerance(self): """Azimuth tolerance Tolerance angle of how far a point can be off the azimuth for being still counted as directional. A tolerance angle will be applied to the azimuth angle symmetrically. Parameters ---------- angle : float New tolerance angle in **degree**. Has to meet 0 <= angle <= 360. Raises ------ ValueError : in case angle < 0 or angle > 360 """ return self._tolerance @tolerance.setter def tolerance(self, angle): if angle < 0 or angle > 360: raise ValueError('The tolerance is an angle in degree and has to ' 'meet 0 <= angle <= 360') else: self._tolerance = angle # reset groups and mask on tolerance change self._direction_mask_cache = None self._groups = None @property def bandwidth(self): """Tolerance bandwidth New bandwidth parameter. As the tolerance from azimuth is given as an angle, point pairs at high distances can be far off the azimuth in coordinate distance. The bandwidth limits this distance and has the unnit of the coordinate system. Parameters ---------- width : float Positive coordinate distance. Raises ------ ValueError : in case width is negative """ if self._bandwidth is None: return 0 else: return self._bandwidth @bandwidth.setter def bandwidth(self, width): # check if quantiles is given if isinstance(width, str): # TODO document and handle more exceptions q = int(width[1:]) self._bandwidth = np.percentile(self.distance, q) elif width < 0: raise ValueError('The bandwidth cannot be negative.') elif width > np.max(self.distance): print('The bandwidth is larger than the maximum separating ' 'distance. Thus it will have no effect.') else: self._bandwidth = width # reset groups and direction mask cache on bandwidth change self._direction_mask_cache = None self._groups = None def set_directional_model(self, model_name): """Set new directional model The model used for selecting all points fulfilling the directional constraint of the Variogram. A predefined model can be selected by passing the model name as string. Optionally a callable accepting the difference vectors between points in polar form as angles and distances and returning a mask array can be passed. In this case, the azimuth, tolerance and bandwidth has to be incorporated by hand into the model. The predefined options are: * 'compass': includes points in the direction of the azimuth at given tolerance. The bandwidth parameter will be ignored. * 'triangle': constructs a triangle with an angle of tolerance at the point of interest and union an rectangle parallel to azimuth, once the hypotenuse length reaches bandwidth. * 'circle': constructs a half circle touching the point of interest, dislocating the center at the distance of bandwidth in the direction of azimuth. The half circle is union with an rectangle parallel to azimuth. Visual representations, usage hints and implementation specifics are given in the documentation. Parameters ---------- model_name : string, callable The name of the predefined model (string) or a function that accepts angle and distance arrays and returns a mask array. """ # handle predefined models if isinstance(model_name, str): if model_name.lower() == 'compass': self._directional_model = self._compass elif model_name.lower() == 'triangle': self._directional_model = self._triangle elif model_name.lower() == 'circle': self._directional_model = self._circle else: raise ValueError('%s is not a valid model.' % model_name) # handle callable elif callable(model_name): self._directional_model = model_name else: raise ValueError('The directional model has to be identified by a ' 'model name, or it has to be the search area ' 'itself') # reset the groups as the directional model changed self._groups = None @property def bins(self): if self._bins is None: # get the distances d = self.distance.copy() d[np.where(~self._direction_mask())] = np.nan self._bins = self.bin_func(d, self.n_lags, self.maxlag) return self._bins.copy() def _calc_groups(self, force=False): super(DirectionalVariogram, self)._calc_groups(force=force) # set to outside maxlag group self._groups[np.where(~self._direction_mask())] = -1 # @jit def _direction_mask(self, force=False): """Directional Mask Array aligned to self.distance masking all point pairs which shall be ignored for binning and grouping. The one dimensional array contains all row-wise point pair combinations from the upper or lower triangle of the distance matrix in case either of both is directional. Returns ------- mask : numpy.array Array aligned to self.distance giving for each point pair combination a boolean value whether the point are directional or not. """ if force or self._direction_mask_cache is None: self._direction_mask_cache = self._directional_model(self._angles, self._euclidean_dist) return self._direction_mask_cache def pair_field(self, ax=None, cmap="gist_rainbow", points='all',add_points=True, alpha=0.3): # pragma: no cover """ Plot a pair field. Plot a network graph for all point pairs that fulfill the direction filter and lie within each others search area. Parameters ---------- ax : matplotlib.Subplot A matplotlib Axes object to plot the pair field onto. If ``None``, a new new matplotlib figure will be created. cmap : string Any color-map name that is supported by matplotlib points : 'all', int, list If not ``'all'``, only the given coordinate (int) or list of coordinates (list) will be plotted. Recommended, if the input data is quite large. add_points : bool If True (default) The coordinates will be added as black points. alpha : float Alpha value for the colors to make overlapping vertices visualize better. Defaults to ``0.3``. """ # get the direction mask mask = squareform(self._direction_mask()) # build a coordinate meshgrid r = np.arange(len(self._X)) x1, x2 = np.meshgrid(r, r) start = self._X[x1[mask]] end = self._X[x2[mask]] # handle lesser points if isinstance(points, int): points = [points] if isinstance(points, list): _start, _end = list(), list() for p in self._X[points]: _start.extend(start[np.where(end == p)[0]]) _end.extend(end[np.where(end == p)[0]]) start = np.array(_start) end = np.array(_end) # extract all lines and align colors lines = np.column_stack((start.reshape(len(start), 1, 2), end.reshape(len(end), 1, 2))) #colors = plt.cm.get_cmap(cmap)(x2[mask] / x2[mask].max()) colors = plt.cm.get_cmap(cmap)(np.linspace(0, 1, len(lines))) colors[:, 3] = alpha # get the figure and ax object if ax is None: fig, ax = plt.subplots(1, 1, figsize=(8,8)) else: fig = ax.get_figure() # plot lc = matplotlib.collections.LineCollection(lines, colors=colors, linewidths=1) ax.add_collection(lc) # add coordinates if add_points: ax.scatter(self._X[:, 0], self._X[:, 1], 15, c='k') if isinstance(points, list): ax.scatter(self._X[:, 0][points], self._X[:, 1][points], 25, c='r') # finish plot ax.autoscale() ax.margins(0.1) return fig def _triangle(self, angles, dists): r"""Triangular Search Area Construct a triangular bounded search area for building directional dependent point pairs. The Search Area will be located onto the current point of interest and the local x-axis is rotated onto the azimuth angle. Parameters ---------- angles, dists : numpy.array Vectors between point pairs in polar form (angle relative to east in radians, length in coordinate space units) Returns ------- mask : numpy.array(bool) Point pair mask, indexed as the results of scipy.spatial.distance.pdist are. Notes ----- .. code-block:: text C /|\ a / | \ a /__|h_\ A c B The point of interest is C and c is the bandwidth. The angle at C (gamma) is the tolerance. From this, a and then h can be calculated. When rotated into the local coordinate system, the two points needed to build the search area A,B are A := (h, 1/2 c) and B:= (h, -1/2 c) a can be calculated like: .. math:: a = \frac{c}{2 * sin\left(\frac{\gamma}{2}\right)} See Also -------- DirectionalVariogram._compass DirectionalVariogram._circle """ absdiff = np.abs(angles + np.radians(self.azimuth)) absdiff = np.where(absdiff > np.pi, absdiff - np.pi, absdiff) absdiff = np.where(absdiff > np.pi / 2, np.pi - absdiff, absdiff) in_tol = absdiff <= np.radians(self.tolerance / 2) in_band = self.bandwidth / 2 >= np.abs(dists * np.sin(np.abs(angles + np.radians(self.azimuth)))) return in_tol & in_band def _circle(self, angles, dists): r"""Circular Search Area Construct a half-circled bounded search area for building directional dependent point pairs. The Search Area will be located onto the current point of interest and the local x-axis is rotated onto the azimuth angle. The radius of the half-circle is set to half the bandwidth. Parameters ---------- angles, dists : numpy.array Vectors between point pairs in polar form (angle relative to east in radians, length in coordinate space units) Returns ------- mask : numpy.array(bool) Point pair mask, indexed as the results of scipy.spatial.distance.pdist are. Raises ------ ValueError : In case the DirectionalVariogram.bandwidth is None or 0. See Also -------- DirectionalVariogram._triangle DirectionalVariogram._compass """ raise NotImplementedError def _compass(self, angles, dists): r"""Compass direction direction mask Construct a search area for building directional dependent point pairs. The compass search area will **not** be bounded by the bandwidth. It will include all point pairs at the azimuth direction with a given tolerance. The Search Area will be located onto the current point of interest and the local x-axis is rotated onto the azimuth angle. Parameters ---------- angles, dists : numpy.array Vectors between point pairs in polar form (angle relative to east in radians, length in coordinate space units) Returns ------- mask : numpy.array(bool) Point pair mask, indexed as the results of scipy.spatial.distance.pdist are. See Also -------- DirectionalVariogram._triangle DirectionalVariogram._circle """ absdiff = np.abs(angles + np.radians(self.azimuth)) absdiff = np.where(absdiff > np.pi, absdiff - np.pi, absdiff) absdiff = np.where(absdiff > np.pi / 2, np.pi - absdiff, absdiff) return absdiff <= np.radians(self.tolerance / 2) ``` #### File: scikit-gstat/skgstat/models.py ```python import math from functools import wraps import numpy as np from scipy import special from numba import jit def variogram(func): @wraps(func) def wrapper(*args, **kwargs): if hasattr(args[0], '__iter__'): new_args = args[1:] mapping = map(lambda h: func(h, *new_args, **kwargs), args[0]) return np.fromiter(mapping, dtype=float) else: return func(*args, **kwargs) return wrapper @variogram @jit def spherical(h, r, c0, b=0): r"""Spherical Variogram function Implementation of the spherical variogram function. Calculates the dependent variable for a given lag (h). The nugget (b) defaults to be 0. Parameters ---------- h : float Specifies the lag of separating distances that the dependent variable shall be calculated for. It has to be a positive real number. r : float The effective range. Note this is not the range parameter! However, for the spherical variogram the range and effective range are the same. c0 : float The sill of the variogram, where it will flatten out. The function will not return a value higher than C0 + b. b : float The nugget of the variogram. This is the value of independent variable at the distance of zero. This is usually attributed to non-spatial variance. Returns ------- gamma : numpy.float64 Unlike in most variogram function formulas, which define the function for :math:`2*\gamma`, this function will return :math:`\gamma` only. Notes ----- The implementation follows [6]_: .. math:: \gamma = b + C_0 * \left({1.5*\frac{h}{r} - 0.5*\frac{h}{r}^3}\right) if :math:`h < r`, and .. math:: \gamma = b + C_0 else. r is the effective range, which is in case of the spherical variogram just a. References ---------- .. [6] Burgess, <NAME>., & Webster, R. (1980). Optimal interpolation and isarithmic mapping of soil properties. I.The semi-variogram and punctual kriging. Journal of Soil and Science, 31(2), 315–331, http://doi.org/10.1111/j.1365-2389.1980.tb02084.x """ # prepare parameters a = r / 1. if h <= r: return b + c0 * ((1.5 * (h / a)) - (0.5 * ((h / a) ** 3.0))) else: return b + c0 @variogram @jit def exponential(h, r, c0, b=0): r"""Exponential Variogram function Implementation of the exponential variogram function. Calculates the dependent variable for a given lag (h). The nugget (b) defaults to be 0. Parameters ---------- h : float Specifies the lag of separating distances that the dependent variable shall be calculated for. It has to be a positive real number. r : float The effective range. Note this is not the range parameter! For the exponential variogram function the range parameter a is defined to be :math:`a=\frac{r}{3}`. The effective range is the lag where 95% of the sill are exceeded. This is needed as the sill is only approached asymptotically by an exponential function. c0 : float The sill of the variogram, where it will flatten out. The function will not return a value higher than C0 + b. b : float The nugget of the variogram. This is the value of independent variable at the distance of zero. This is usually attributed to non-spatial variance. Returns ------- gamma : numpy.float64 Unlike in most variogram function formulas, which define the function for :math:`2*\gamma`, this function will return :math:`\gamma` only. Notes ----- The implementation following [7]_ and [8]_ is as: .. math:: \gamma = b + C_0 * \left({1 - e^{-\frac{h}{a}}}\right) a is the range parameter, that can be calculated from the effective range r as: :math:`a = \frac{r}{3}`. References ---------- .. [7] <NAME>. (1993): Statistics for spatial data. Wiley Interscience. .. [8] <NAME>., <NAME>. (1999). Geostatistics. Modeling Spatial Uncertainty. Wiley Interscience. """ # prepare parameters a = r / 3. return b + c0 * (1. - math.exp(-(h / a))) @variogram @jit def gaussian(h, r, c0, b=0): r""" Gaussian Variogram function Implementation of the Gaussian variogram function. Calculates the dependent variable for a given lag (h). The nugget (b) defaults to be 0. Parameters ---------- h : float Specifies the lag of separating distances that the dependent variable shall be calculated for. It has to be a positive real number. r : float The effective range. Note this is not the range parameter! For the exponential variogram function the range parameter a is defined to be :math:`a=\frac{r}{3}`. The effetive range is the lag where 95% of the sill are exceeded. This is needed as the sill is only approached asymptotically by an exponential function. c0 : float The sill of the variogram, where it will flatten out. The function will not return a value higher than C0 + b. b : float The nugget of the variogram. This is the value of independent variable at the distance of zero. This is usually attributed to non-spatial variance. Returns ------- gamma : numpy.float64 Unlike in most variogram function formulas, which define the function for :math:`2*\gamma`, this function will return :math:`\gamma` only. Notes ----- This implementation follows [9]_: .. math:: \gamma = b + c_0 * \left({1 - e^{-\frac{h^2}{a^2}}}\right) a is the range parameter, that can be calculated from the effective range r as: .. math:: a = \frac{r}{2} References ---------- .. [9] <NAME>., <NAME>. (1999). Geostatistics. Modeling Spatial Uncertainty. Wiley Interscience. """ # prepare parameters a = r / 2. return b + c0 * (1. - math.exp(- (h ** 2 / a ** 2))) @variogram @jit def cubic(h, r, c0, b=0): r"""Cubic Variogram function Implementation of the Cubic variogram function. Calculates the dependent variable for a given lag (h). The nugget (b) defaults to be 0. Parameters ---------- h : float Specifies the lag of separating distances that the dependent variable shall be calculated for. It has to be a positive real number. r : float The effective range. Note this is not the range parameter! However, for the cubic variogram the range and effective range are the same. c0 : float The sill of the variogram, where it will flatten out. The function will not return a value higher than C0 + b. b : float The nugget of the variogram. This is the value of independent variable at the distance of zero. This is usually attributed to non-spatial variance. Returns ------- gamma : numpy.float64 Unlike in most variogram function formulas, which define the function for :math:`2*\gamma`, this function will return :math:`\gamma` only. Notes ----- This implementation is like: .. math:: \gamma = b + c_0 * \left[{7 * \left(\frac{h^2}{a^2}\right) - \frac{35}{4} * \left(\frac{h^3}{a^3}\right) + \frac{7}{2} * \left(\frac{h^5}{a^5}\right) - \frac{3}{4} * \left(\frac{h^7}{a^7}\right)}\right] a is the range parameter. For the cubic function, the effective range and range parameter are the same. """ # prepare parameters a = r / 1. if h < r: return b + c0 * ((7 * (h ** 2 / a ** 2)) - ((35 / 4) * (h ** 3 / a ** 3)) + ((7 / 2) * (h ** 5 / a ** 5)) - ((3 / 4) * (h ** 7 / a ** 7))) else: return b + c0 @variogram @jit def stable(h, r, c0, s, b=0): r"""Stable Variogram function Implementation of the stable variogram function. Calculates the dependent variable for a given lag (h). The nugget (b) defaults to be 0. Parameters ---------- h : float Specifies the lag of separating distances that the dependent variable shall be calculated for. It has to be a positive real number. r : float The effective range. Note this is not the range parameter! For the stable variogram function the range parameter a is defined to be :math:`a = \frac{r}{3^{\frac{1}{s}}}`. The effective range is the lag where 95% of the sill are exceeded. This is needed as the sill is only approached asymptotically by the e-function part of the stable model. c0 : float The sill of the variogram, where it will flatten out. The function will not return a value higher than C0 + b. s : float Shape parameter. For s <= 2 the model will be shaped more like a exponential or spherical model, for s > 2 it will be shaped most like a Gaussian function. b : float The nugget of the variogram. This is the value of independent variable at the distance of zero. This is usually attributed to non-spatial variance. Returns ------- gamma : numpy.float64 Unlike in most variogram function formulas, which define the function for :math:`2*\gamma`, this function will return :math:`\gamma` only. Notes ----- The implementation is: .. math:: \gamma = b + C_0 * \left({1. - e^{- {\frac{h}{a}}^s}}\right) a is the range parameter and is calculated from the effective range r as: .. math:: a = \frac{r}{3^{\frac{1}{s}}} """ # prepare parameters a = r / np.power(3, 1 / s) # if s > 2: # s = 2 return b + c0 * (1. - math.exp(- math.pow(h / a, s))) @variogram @jit(forceobj=True) def matern(h, r, c0, s, b=0): r"""Matérn Variogram function Implementation of the Matérn variogram function. Calculates the dependent variable for a given lag (h). The nugget (b) defaults to be 0. Parameters ---------- h : float Specifies the lag of separating distances that the dependent variable shall be calculated for. It has to be a positive real number. r : float The effective range. Note this is not the range parameter! For the Matérn variogram function the range parameter a is defined to be :math:`a = \frac{r}{2}`. The effective range is the lag where 95% of the sill are exceeded. This is needed as the sill is only approached asymptotically by Matérn model. c0 : float The sill of the variogram, where it will flatten out. The function will not return a value higher than C0 + b. s : float Smoothness parameter. The smoothness parameter can shape a smooth or rough variogram function. A value of 0.5 will yield the exponential function, while a smoothness of +inf is exactly the Gaussian model. Typically a value of 10 is close enough to Gaussian shape to simulate its behaviour. Low values are considered to be 'smooth', while larger values are considered to describe a 'rough' random field. b : float The nugget of the variogram. This is the value of independent variable at the distance of zero. This is usually attributed to non-spatial variance. Returns ------- gamma : numpy.float64 Unlike in most variogram function formulas, which define the function for :math:`2*\gamma`, this function will return :math:`\gamma` only. Notes ----- The formula and references will follow. """ # prepare parameters # TODO: depend a on s, for 0.5 should be 3, above 10 should be 3 a = r / 2. # calculate return b + c0 * (1. - (2 / special.gamma(s)) * np.power((h * np.sqrt(s)) / a, s) * special.kv(s, 2 * ((h * np.sqrt(s)) / a)) ) ```
{ "source": "jlmaurer/tectosaur", "score": 2 }
#### File: tectosaur/examples/basin.py ```python import numpy as np import matplotlib.pyplot as plt import okada_wrapper import tectosaur.mesh as mesh import tectosaur.constraints as constraints import tectosaur.mass_op as mass_op from tectosaur.sparse_integral_op import SparseIntegralOp import tectosaur.geometry as geometry from tectosaur.mass_op import MassOp from tectosaur.composite_op import CompositeOp from tectosaur.combined_mesh import CombinedMesh import solve def make_free_surface(w, n): corners = [[-w, -w, 0], [-w, w, 0], [w, w, 0], [w, -w, 0]] return mesh.make_rect(n, n, corners) def make_fault(L, top_depth, n): return mesh.make_rect(n, n, [ [-L, 0, top_depth], [-L, 0, top_depth - 1], [L, 0, top_depth - 1], [L, 0, top_depth] ]) def build_meshes(): fault_L = 1.0 fault_top_depth = -0.5 w = 6 basin_center = [0.0, 2.0, -2.1] basin_r = 2.0 # n_flt = 8 # n_surf = 50 # basin_refine = 3 n_flt = 8 n_surf = 30 basin_refine = 3 # n_flt = 4 # n_surf = 10 # basin_refine = 1 surf = make_free_surface(w, n_surf) fault = make_fault(fault_L, fault_top_depth, n_flt) basin = mesh.make_sphere(basin_center, basin_r, basin_refine) # basin = mesh.refine_to_size(mesh.make_ellipse(basin_center, 6.0, 1.0, 1.0), 0.5) country_mesh = CombinedMesh([('surf', surf), ('fault', fault), ('basin', mesh.flip_normals(basin))]) basin_mesh = CombinedMesh([('basin', mesh.flip_normals((country_mesh.pts, country_mesh.get_piece_tris('basin'))))]) return country_mesh, basin_mesh def plot_surf_disp(country_mesh, soln): obs_pts, vals = country_mesh.extract_pts_vals('surf', soln) vmax = np.max(vals) for d in range(3): plt.figure() plt.tripcolor( obs_pts[:,0], obs_pts[:, 1], country_mesh.get_piece_tris('surf'), vals[:,d], #shading='gouraud', cmap = 'PuOr', vmin = -vmax, vmax = vmax ) plt.title('u ' + ['x', 'y', 'z'][d]) plt.colorbar() plt.show() def couple_domains(mesh1, mesh2): np.testing.assert_almost_equal(mesh1.pts, mesh2.pts) all_tris = np.vstack((mesh1.tris, mesh2.tris)) initial_cs_u = constraints.continuity_constraints(all_tris, np.array([]), mesh1.pts) # TODO: Refactor to have a shared find-touching-triangle-vertex-pairs # function with continuity_constraints cs_u = [] cs_t = [] for c in initial_cs_u: dof1, dof2 = c.terms[0].dof, c.terms[1].dof if dof1 > mesh1.n_dofs(): dof1 += mesh1.n_dofs() cs_u.append(constraints.ConstraintEQ([ constraints.Term(1.0, dof1), constraints.Term(-1.0, dof2) ], 0.0 )) second_dof_factor = 1.0 if (dof1 < mesh1.n_dofs()) == (dof2 < mesh1.n_dofs()): second_dof_factor = -1.0 if dof1 < mesh1.n_dofs(): dof1 += mesh1.n_dofs() else: dof1 += mesh2.n_dofs() if dof2 < mesh1.n_dofs(): dof2 += mesh1.n_dofs() else: dof2 += mesh2.n_dofs() cs_t.append(constraints.ConstraintEQ([ constraints.Term(1.0, dof1), constraints.Term(second_dof_factor, dof2) ], c.rhs )) return cs_u + cs_t def main(): sm = 1.0 pr = 0.25 basin_sm = 0.00000001 country_mesh, basin_mesh = build_meshes() n_country_dofs = country_mesh.n_dofs() * 2 n_basin_dofs = basin_mesh.n_dofs() * 2 country_csU = constraints.continuity_constraints( country_mesh.tris, np.array([]), country_mesh.pts ) country_csU.extend(constraints.constant_bc_constraints( country_mesh.get_start('fault'), country_mesh.get_past_end('fault'), [1.0, 0.0, 0.0] )) country_csU.extend(constraints.free_edge_constraints(country_mesh.get_piece_tris('surf'))) country_csT = constraints.constant_bc_constraints( country_mesh.get_start('surf'), country_mesh.get_past_end('surf'), [0.0, 0.0, 0.0] ) # country_csT.extend(constraints.constant_bc_constraints( # country_mesh.get_start('fault'), country_mesh.get_past_end('fault'), [0.0, 0.0, 0.0] # )) country_cs = constraints.build_composite_constraints( (country_csU, 0), (country_csT, country_mesh.n_dofs()) ) basin_csU = constraints.continuity_constraints( basin_mesh.tris, np.array([]), basin_mesh.pts ) # basin_csT = constraints.constant_bc_constraints( # 0, basin_mesh.n_total_tris(), [0.0, 0.0, 0.0], # ) basin_csT = [] basin_cs = constraints.build_composite_constraints( (basin_csU, 0), (basin_csT, basin_mesh.n_dofs()) ) cs = constraints.build_composite_constraints( (country_cs, 0), (basin_cs, n_country_dofs) ) cs.extend(couple_domains(country_mesh, basin_mesh)) Hop = SparseIntegralOp( [], 0, 0, (8, 16, 8), 3, 6, 4.0, 'H', sm, pr, country_mesh.pts, country_mesh.tris, use_tables = True, remove_sing = True ) Aop = SparseIntegralOp( [], 0, 0, 6, 3, 6, 4.0, 'A', sm, pr, country_mesh.pts, country_mesh.tris, use_tables = True, remove_sing = False ) country_mass = MassOp(3, country_mesh.pts, country_mesh.tris) country_mass.mat *= -1 country_op = CompositeOp( (Hop, 0, 0), (Aop, 0, country_mesh.n_dofs()), (country_mass, 0, country_mesh.n_dofs()), shape = (n_country_dofs, n_country_dofs) ) Uop = SparseIntegralOp( [], 0, 0, 6, 3, 6, 4.0, 'U', basin_sm, pr, basin_mesh.pts, basin_mesh.tris, use_tables = True, remove_sing = False ) Top = SparseIntegralOp( [], 0, 0, 6, 3, 6, 4.0, 'T', basin_sm, pr, basin_mesh.pts, basin_mesh.tris, use_tables = True, remove_sing = False ) basin_mass = MassOp(3, basin_mesh.pts, basin_mesh.tris) basin_op = CompositeOp( (Top, 0, 0), (basin_mass, 0, 0), (Uop, 0, basin_mesh.n_dofs()), shape = (n_basin_dofs, n_basin_dofs) ) op = CompositeOp( (country_op, 0, 0), (basin_op, n_country_dofs, n_country_dofs) ) soln = solve.iterative_solve(op, cs) plot_surf_disp(country_mesh, soln) # soln = solve.iterative_solve(Hop, csU) # plot_surf_disp(country_mesh, soln) if __name__ == '__main__': main() ``` #### File: tectosaur/examples/okada.py ```python import sys import logging import pickle import numpy as np import matplotlib.pyplot as plt import matplotlib.tri as tri import okada_wrapper import scipy.spatial import tectosaur import tectosaur.mesh.refine as mesh_refine import tectosaur.mesh.modify as mesh_modify import tectosaur.mesh.mesh_gen as mesh_gen import tectosaur.constraints as constraints from tectosaur.continuity import continuity_constraints, get_side_of_fault from tectosaur.constraint_builders import all_bc_constraints, free_edge_constraints from tectosaur.util.timer import Timer from tectosaur.ops.dense_integral_op import RegularizedDenseIntegralOp from tectosaur.ops.sparse_integral_op import RegularizedSparseIntegralOp from tectosaur.ops.sparse_farfield_op import FMMFarfieldOp, \ TriToTriDirectFarfieldOp from tectosaur.ops.mass_op import MassOp from tectosaur.ops.neg_op import MultOp from tectosaur.ops.sum_op import SumOp from tectosaur.check_for_problems import check_for_problems import solve from tectosaur.util.logging import setup_root_logger logger = setup_root_logger(__name__) class Okada: def __init__(self, n_surf, n_fault, top_depth = 0.0, surface_w = 5.0, fault_L = 1.0, gauss_z = 0.0, verbose = False): log_level = logging.INFO if verbose: log_level = logging.DEBUG tectosaur.logger.setLevel(log_level) solve.logger.setLevel(log_level) logger.setLevel(log_level) self.k_params = [1.0, 0.25] self.surface_w = surface_w self.gauss_z = gauss_z self.fault_L = fault_L self.top_depth = top_depth self.load_soln = False self.float_type = np.float32 self.n_surf = n_surf self.n_fault = n_fault#max(2, n_surf // 5) self.all_mesh, self.surface_tris, self.fault_tris = make_meshes( self.surface_w, self.fault_L, self.top_depth, self.n_surf, self.n_fault ) logger.info('n_elements: ' + str(self.all_mesh[1].shape[0])) self.n_surf_tris = self.surface_tris.shape[0] self.n_fault_tris = self.fault_tris.shape[0] self.n_tris = self.all_mesh[1].shape[0] self.surf_tri_idxs = np.arange(self.n_surf_tris) self.fault_tri_idxs = np.arange(self.n_surf_tris, self.n_tris) self.n_surf_dofs = self.n_surf_tris * 9 self.n_dofs = self.n_tris * 9 # _,_,_,_ = check_for_problems(self.all_mesh, check = True) def plot_mesh(self): mesh_gen.plot_mesh3d(*self.all_mesh) def run(self, build_and_solve = None): if build_and_solve is None: build_and_solve = build_and_solve_T if not self.load_soln: soln = build_and_solve(self) np.save('okada.npy', soln) else: soln = np.load('okada.npy') return soln def okada_exact(self): obs_pts = self.all_mesh[0] sm, pr = self.k_params lam = 2 * sm * pr / (1 - 2 * pr) alpha = (lam + sm) / (lam + 2 * sm) print(lam, sm, pr, alpha) n_pts = obs_pts.shape[0] u = np.zeros((n_pts, 3)) NX = 20 NY = 20 X_vals = np.linspace(-self.fault_L, self.fault_L, NX + 1) Y_vals = np.linspace(-1.0, 0.0, NX + 1) for i in range(n_pts): pt = obs_pts[i, :] for j in range(NX): X1 = X_vals[j] X2 = X_vals[j+1] midX = (X1 + X2) / 2.0 for k in range(NY): Y1 = Y_vals[k] Y2 = Y_vals[k+1] midY = (Y1 + Y2) / 2.0 slip = gauss_slip_fnc(midX, midY + self.top_depth, self.gauss_z) [suc, uv, grad_uv] = okada_wrapper.dc3dwrapper( alpha, pt, -self.top_depth, 90.0, [X1, X2], [Y1, Y2], [slip, 0.0, 0.0] ) if suc != 0: u[i, :] = 0 else: u[i, :] += uv return u def xsec_plot(self, solns, okada_soln = None, show = True): xsec_pts = [] xsec_idxs = [] xsec_vals = [[] for j in range(len(solns))] xsec_vals_okada = [] for i in range(self.surface_tris.shape[0]): for pt_idx in range(3): p = self.all_mesh[0][self.surface_tris[i,pt_idx],:] if np.abs(p[0]) > 0.001: continue xsec_pts.append(p) for j in range(len(solns)): xsec_vals[j].append([solns[j][i * 9 + pt_idx * 3 + d] for d in range(3)]) if okada_soln is not None: xsec_vals_okada.append([ okada_soln[self.all_mesh[1][i,pt_idx]][d] for d in range(3) ]) xsec_idxs.append([i * 9 + pt_idx * 3 + d for d in range(3)]) xsec_pts = np.array(xsec_pts) xsec_vals = np.array(xsec_vals) xsec_vals_okada = np.array(xsec_vals_okada) plt.figure() for j in range(len(solns)): plt.plot(xsec_pts[:,1], xsec_vals[j,:,0], 'o-', label = str(j)) if okada_soln is not None: plt.plot(xsec_pts[:,1], xsec_vals_okada[:,0], 'o-', label = 'okada') # plt.savefig('okada_xsec.pdf', bbox_inches = 'tight') plt.legend() if show: plt.show() def plot_interior_displacement(self, soln): nxy = 40 nz = 40 d = 0 xs = np.linspace(-10, 10, nxy) zs = np.linspace(-0.1, -4.0, nz) X, Y, Z = np.meshgrid(xs, xs, zs) obs_pts = np.array([X.flatten(), Y.flatten(), Z.flatten()]).T.copy() t = Timer(output_fnc = logger.debug) interior_disp = -interior_integral( obs_pts, obs_pts, self.all_mesh, soln, 'elasticT3', 3, 8, self.k_params, self.float_type, fmm_params = None#[100, 3.0, 3000, 25] ).reshape((nxy, nxy, nz, 3)) t.report('eval %.2E interior pts' % obs_pts.shape[0]) for i in range(nz): plt.figure() plt.pcolor(xs, xs, interior_disp[:,:,i,d]) plt.colorbar() plt.title('at z = ' + ('%.3f' % zs[i]) + ' u' + ['x', 'y', 'z'][d]) plt.show() def get_pt_soln(self, soln): pt_soln = np.empty((self.all_mesh[0].shape[0], 3)) pt_soln[self.all_mesh[1]] = soln.reshape((-1, 3, 3)) return pt_soln def plot_results(self, soln, okada_soln): pts, tris = self.all_mesh est = self.get_pt_soln(soln) vmax = np.max(okada_soln) for d in range(3): plt.figure() plt.tripcolor( pts[:,0], pts[:, 1], tris, est[:,d], #shading='gouraud', cmap = 'PuOr', vmin = -vmax, vmax = vmax ) plt.title("u " + ['x', 'y', 'z'][d]) plt.colorbar() for d in range(3): plt.figure() plt.tripcolor( pts[:, 0], pts[:, 1], tris, okada_soln[:, d], #shading='gouraud', cmap = 'PuOr', vmin = -vmax, vmax = vmax ) plt.title("Okada u " + ['x', 'y', 'z'][d]) plt.colorbar() for d in range(3): plt.figure() plt.tripcolor( pts[:, 0], pts[:, 1], tris, okada_soln[:, d] - est[:,d], #shading='gouraud', cmap = 'PuOr' ) plt.title("Diff u " + ['x', 'y', 'z'][d]) plt.colorbar() plt.show() def print_error(self, soln, okada_soln): est = self.get_pt_soln(soln) pts = self.all_mesh[0] close = np.sqrt(np.sum(pts ** 2, axis = 1)) < 4.0 not0 = np.abs(pts[:,1]) > 1e-5 test = np.logical_and(close, not0) diff = okada_soln[test,:] - est[test,:] l2diff = np.sum(diff ** 2) l2correct = np.sum(okada_soln[test,:] ** 2) linferr = np.max(np.abs(diff)) print("L2diff: " + str(l2diff)) print("L2correct: " + str(l2correct)) print("L2relerr: " + str(l2diff / l2correct)) print("maxerr: " + str(linferr)) return linferr def make_free_surface(w, n): corners = [[-w, -w, 0], [-w, w, 0], [w, w, 0], [w, -w, 0]] return mesh_gen.make_rect(n, n, corners) def make_fault(L, top_depth, n_fault): m = mesh_gen.make_rect(n_fault, n_fault, [ [-L, 0, top_depth], [-L, 0, top_depth - 1], [L, 0, top_depth - 1], [L, 0, top_depth] ]) return m def make_meshes(surf_w, fault_L, top_depth, n_surf, n_fault): t = Timer(output_fnc = logger.debug) surface = make_free_surface(surf_w, n_surf) t.report('make free surface') fault = make_fault(fault_L, top_depth, n_fault) t.report('make fault') all_mesh = mesh_modify.concat(surface, fault) t.report('concat meshes') surface_tris = all_mesh[1][:surface[1].shape[0]] fault_tris = all_mesh[1][surface[1].shape[0]:] return all_mesh, surface_tris, fault_tris def gauss_slip_fnc(x, z, gauss_z): return np.exp(-(x ** 2 + (z - gauss_z) ** 2) * 8.0) def gauss_fault_slip(pts, fault_tris, gauss_z): dof_pts = pts[fault_tris] x = dof_pts[:,:,0] z = dof_pts[:,:,2] mean_z = np.mean(z) slip = np.zeros((fault_tris.shape[0], 3, 3)) # slip[:,:,0] = (1 - np.abs(x)) * (1 - np.abs((z - mean_z) * 2.0)) # slip[:,:,1] = (1 - np.abs(x)) * (1 - np.abs((z - mean_z) * 2.0)) # slip[:,:,2] = (1 - np.abs(x)) * (1 - np.abs((z - mean_z) * 2.0)) slip[:,:,0] = gauss_slip_fnc(x, z, gauss_z) # slip_pts = np.zeros(pts.shape[0]) # # slip_pts[fault_tris] = np.log10(np.abs(slip[:,:,0])) # slip_pts[fault_tris] = slip[:,:,0] # plt.tricontourf(pts[:,0], pts[:,2], fault_tris, slip_pts) # plt.triplot(pts[:,0], pts[:,2], fault_tris) # dof_pts = pts[fault_tris] # plt.xlim([np.min(dof_pts[:,:,0]), np.max(dof_pts[:,:,0])]) # plt.ylim([np.min(dof_pts[:,:,2]), np.max(dof_pts[:,:,2])]) # plt.colorbar() # plt.show() # idxs = np.where(pts[:,2] == 0.0)[0] # idxs = np.intersect1d(idxs, fault_tris.flatten()) # x = pts[idxs,0] # s = slip_pts[idxs] # plt.plot(x, s, '.') # plt.show() # for I in idxs: # tri_idxs, basis_idxs = np.where(fault_tris == I) # slip[tri_idxs, basis_idxs,0] = 0.0 return slip def build_constraints(surface_tris, fault_tris, pts, tris, gauss_z): n_surf_tris = surface_tris.shape[0] n_fault_tris = fault_tris.shape[0] side = get_side_of_fault(pts, tris, surface_tris.shape[0]) # plt.tripcolor(pts[:,0], pts[:,1], tris[:surface_tris.shape[0]], side[:surface_tris.shape[0]]) # plt.triplot(pts[:,0], pts[:,1], tris[surface_tris.shape[0]:], 'k-') # plt.show() from tectosaur.constraints import build_constraint_matrix cs = continuity_constraints(pts, tris, surface_tris.shape[0]) slip = gauss_fault_slip(pts, fault_tris, gauss_z).flatten() cs.extend(all_bc_constraints( n_surf_tris, n_surf_tris + n_fault_tris, slip )) # cm = build_constraint_matrix(cs, tris.shape[0] * 9) # import ipdb # ipdb.set_trace() # import copy # cs2 = copy.copy(cs) # csf_idxs = [i for i in range(len(cs2)) if len(cs2[i].terms) == 3] # from tectosaur.constraints import ConstraintEQ, Term # xs = [] # ys = [] # for i in csf_idxs: # old_c = cs2[i] # fault_dof = old_c.terms[2].dof # slip_val = slip[fault_dof - n_surf_tris * 9] # if fault_dof % 3 == 0: # corner_idx = (fault_dof // 3) % 3 # tri_idx = (fault_dof - corner_idx * 3) // 9 - n_surf_tris # x = pts[fault_tris[tri_idx, corner_idx], 0] # xs.append(x) # ys.append(slip_val) # new_c = ConstraintEQ(old_c.terms[:2], slip_val * -old_c.terms[2].val) # cs2[i] = new_c # from tectosaur.constraints import build_constraint_matrix # cm, c_rhs = build_constraint_matrix(cs, tris.shape[0] * 9) # cm2, c_rhs2 = build_constraint_matrix(cs2, tris.shape[0] * 9) # plt.plot(c_rhs, 'k-') # plt.plot(c_rhs2, 'b-') # plt.show() # import ipdb # ipdb.set_trace() return cs def build_and_solve_T_regularized(data): timer = Timer(output_fnc = logger.debug) cs = build_constraints( data.surface_tris, data.fault_tris, data.all_mesh[0], data.all_mesh[1], data.gauss_z ) timer.report("Constraints") T_op = RegularizedSparseIntegralOp( 6, 6, 6, 2, 5, 2.5, 'elasticRT3', 'elasticRT3', data.k_params, data.all_mesh[0], data.all_mesh[1], data.float_type, # farfield_op_type = TriToTriDirectFarfieldOp farfield_op_type = FMMFarfieldOp(mac = 2.5, pts_per_cell = 100, order = 2) ) import tectosaur.fmm.tsfmm as tsfmm tsfmm.report_interactions(T_op.farfield.fmm) timer.report("Integrals") mass_op = MultOp(MassOp(3, data.all_mesh[0], data.all_mesh[1]), 0.5) iop = SumOp([T_op, mass_op]) timer.report('mass op/sum op') soln = solve.iterative_solve(iop, cs, tol = 1e-5) timer.report("Solve") return soln def build_and_solve_H_regularized(data): timer = Timer(output_fnc = logger.debug) cs = build_constraints( data.surface_tris, data.fault_tris, data.all_mesh[0], data.all_mesh[1], data.gauss_z ) # For H, we need to constrain the edges of the surface to have 0 displacement. cs.extend(free_edge_constraints(data.surface_tris)) timer.report("Constraints") H_op = RegularizedSparseIntegralOp( 6, 6, 6, 2, 5, 2.5, 'elasticRH3', 'elasticRH3', data.k_params, data.all_mesh[0], data.all_mesh[1], data.float_type, # farfield_op_type = TriToTriDirectFarfieldOp farfield_op_type = FMMFarfieldOp(mac = 2.5, pts_per_cell = 100, order = 2) ) iop = SumOp([H_op]) timer.report("Integrals") soln = solve.iterative_solve(iop, cs, tol = 1e-5) timer.report("Solve") return soln def main(): #python examples/okada.py 31 7 5.0 0.0 0.0 T #python examples/okada.py 31 7 5.0 0.0 0.0 H #python examples/okada.py 31 7 5.0 -0.5 -1.0 T #python examples/okada.py 31 7 5.0 -0.5 -1.0 H t = Timer(output_fnc = logger.info) obj = Okada( int(sys.argv[1]), n_fault = int(sys.argv[2]), surface_w = float(sys.argv[3]), top_depth = float(sys.argv[4]), gauss_z = float(sys.argv[5]), verbose = True ) # obj.plot_mesh() if sys.argv[6] == 'T': soln = obj.run(build_and_solve = build_and_solve_T_regularized) else: soln = obj.run(build_and_solve = build_and_solve_H_regularized) t.report('tectosaur') okada_soln = obj.okada_exact() # np.save('okada_soln_for_plot.npy', [obj.all_mesh, obj.surface_tris, obj.fault_tris, soln, okada_soln]) t.report('okada') obj.xsec_plot([soln], okada_soln) # obj.plot_interior_displacement(soln) obj.print_error(soln, okada_soln) t.report('check') # obj.plot_results(soln, okada_soln) if __name__ == '__main__': main() ``` #### File: tectosaur/examples/progressive_refine.py ```python def refined_free_surface(): w = 10 minsize = 0.02 slope = 400 maxsize = 0.02 pts = np.array([[-w, -w, 0], [w, -w, 0], [w, w, 0], [-w, w, 0]]) tris = np.array([[0, 1, 3], [3, 1, 2]]) addedpts = 4 it = 0 while addedpts > 0: pts, tris = mesh.remove_duplicate_pts((pts, tris)) print(it, addedpts) it += 1 newpts = pts.tolist() newtris = [] addedpts = 0 # size = np.linalg.norm(np.cross( # pts[tris[:, 1]] - pts[tris[:, 0]], # pts[tris[:, 2]] - pts[tris[:, 0]] # ), axis = 1) / 2.0 # centroid = np.mean(pts[tris], axis = 2) # r2 = np.sum(centroid ** 2, axis = 1) for i, t in enumerate(tris): size = np.linalg.norm(np.cross( pts[t[1]] - pts[t[0]], pts[t[2]] - pts[t[0]] )) / 2.0 centroid = np.mean(pts[t], axis = 0) A = (centroid[0] / 1.5) ** 2 + (centroid[1] / 1.0) ** 2 # A = np.sum(centroid ** 2) if (A < slope * size and size > minsize) or size > maxsize: # print(r2[i], size[i]) # if r2[i] < size[i] and size[i] > minsize: newidx = len(newpts) newpts.extend([ (pts[t[0]] + pts[t[1]]) / 2, (pts[t[1]] + pts[t[2]]) / 2, (pts[t[2]] + pts[t[0]]) / 2 ]) newtris.extend([ [t[0], newidx, newidx + 2], [newidx, t[1], newidx + 1], [newidx + 1, t[2], newidx + 2], [newidx + 1, newidx + 2, newidx] ]) addedpts += 3 else: newtris.append(t) pts = np.array(newpts) tris = np.array(newtris) final_tris = scipy.spatial.Delaunay(np.array([pts[:,0],pts[:,1]]).T).simplices plt.triplot(pts[:, 0], pts[:, 1], final_tris, linewidth = 0.5) plt.show() print('npts: ' + str(pts.shape[0])) print('ntris: ' + str(final_tris.shape[0])) return pts, final_tris ``` #### File: tectosaur/tectosaur/check_for_problems.py ```python import numpy as np import tectosaur.mesh.find_near_adj as find_near_adj import cppimport.import_hook import tectosaur.util.tri_tri_intersect as tri_tri_intersect import tectosaur._check_for_problems as _check_for_problems def check_min_adj_angle(m, ea = None): pts, tris = m close_or_touch_pairs = find_near_adj.find_close_or_touching(pts, tris, pts, tris, 2.0) nearfield_pairs, va, ea = find_near_adj.split_adjacent_close(close_or_touch_pairs, tris, tris) bad_pairs = [] lower_lim = min_intersect_angle upper_lim = (2 * np.pi - min_intersect_angle) for pair in ea: obs_clicks, obs_tri, src_clicks, src_flip, src_tri = \ edge_adj_setup.orient_adj_tris(pts, tris, pair[0], pair[1]) phi = edge_adj_setup.calc_adjacent_phi(obs_tri, src_tri) if lower_lim <= phi <= upper_lim: continue bad_pairs.append(pair) return np.array(bad_pairs, dtype = np.int64) def check_for_slivers(m): pts, tris = m bad_tris = [] for i, t in enumerate(tris): t_list = pts[t].tolist() try: out = standardize.standardize(t_list, table_min_internal_angle, True) except standardize.BadTriangleException as e: bad_tris.append(i) return np.array(bad_tris, dtype = np.int64) def check_tris_tall_enough(m): pts, tris = m bad_tris = [] for i, t in enumerate(tris): t_list = pts[t].tolist() split_pt = edge_adj_setup.get_split_pt(t_list); xyhat = edge_adj_setup.xyhat_from_pt(split_pt, t_list) if not edge_adj_setup.check_xyhat(xyhat): bad_tris.append(i) return np.array(bad_tris, dtype = np.int64) def check_for_intersections_nearfield(pts, tris, nearfield_pairs): if nearfield_pairs.shape[0] == 0: return [] unique_near_pairs = np.unique(np.sort(nearfield_pairs, axis = 1), axis = 0) bad_pairs = [] for pair in unique_near_pairs: tri1 = pts[tris[pair[0]]].tolist() tri2 = pts[tris[pair[1]]].tolist() I = tri_tri_intersect.tri_tri_intersect(tri1, tri2) if I: bad_pairs.append(pair) return bad_pairs def check_for_intersections_va(pts, tris, va): if va.shape[0] == 0: return [] bad_pairs = [] for pair in va: assert(tris[pair[0]][pair[2]] == tris[pair[1]][pair[3]]) tri1 = pts[tris[pair[0]]] for edge in range(3): if edge == pair[2]: continue tri1_moved = tri1.copy() tri1_moved[pair[2]] += (tri1[edge] - tri1[pair[2]]) * 0.001 tri2 = pts[tris[pair[1]]] I = tri_tri_intersect.tri_tri_intersect( tri1_moved.tolist(), tri2.tolist() ) if I: bad_pairs.append(pair[:2]) break return bad_pairs def check_for_intersections_ea(pts, tris, ea): if ea.shape[0] == 0: return [] bad_pairs = [] for pair in ea: for d in range(3): if tris[pair[0],d] in tris[pair[1]]: continue dist = np.sqrt(np.sum((pts[tris[pair[1]]] - pts[tris[pair[0],d]]) ** 2, axis = 1)) if np.any(dist == 0): bad_pairs.append(pair) return bad_pairs import logging logger = logging.getLogger(__name__) from tectosaur.util.timer import Timer def check_for_intersections(m): pts, tris = m close_or_touch_pairs = find_near_adj.find_close_or_touching(pts, tris, pts, tris, 2.0) nearfield_pairs, va, ea = find_near_adj.split_adjacent_close(close_or_touch_pairs, tris, tris) bad_pairs = [] t = Timer(output_fnc = logger.info) # Three situations: # 1) Nearfield pair is intersection bad_pairs.extend(check_for_intersections_nearfield(pts, tris, nearfield_pairs)) t.report('nearfield') # 2) Vertex adjacent pair actually intersects beyond just the vertex # We can test for this by moving the shared vertex short distance # along one of the edges of the first triangle. If there is still # an intersection, then the triangles intersect at locations besides # just the shared vertex. bad_pairs.extend(check_for_intersections_va(pts, tris, va)) t.report('va') # 3) Edge adjacent pair is actually coincident. <-- Easy! bad_pairs.extend(check_for_intersections_ea(pts, tris, ea)) t.report('ea') return np.array(bad_pairs, dtype = np.int64) def check_for_problems(m, check = False): intersections = check_for_intersections(m) slivers = check_for_slivers(m) short_tris = check_tris_tall_enough(m) sharp_angles = check_min_adj_angle(m) if check and (intersections.shape[0] > 0 or slivers.shape[0] > 0 or short_tris.shape[0] > 0 or sharp_angles.shape[0] > 0): raise Exception('Mesh has problems. Run with check = False to see the issues.') return intersections, slivers, short_tris, sharp_angles ``` #### File: tectosaur/tectosaur/continuity.py ```python import numpy as np import scipy.sparse.csgraph from tectosaur.util.geometry import tri_normal, unscaled_normals, normalize from tectosaur.constraints import ConstraintEQ, Term from tectosaur.stress_constraints import stress_constraints, stress_constraints2, \ equilibrium_constraint, constant_stress_constraint def find_touching_pts(tris): max_pt_idx = np.max(tris) out = [[] for i in range(max_pt_idx + 1)] for i, t in enumerate(tris): for d in range(3): out[t[d]].append((i, d)) return out def tri_connectivity_graph(tris): n_tris = tris.shape[0] touching = [[] for i in range(np.max(tris) + 1)] for i in range(n_tris): for d in range(3): touching[tris[i,d]].append(i) rows = [] cols = [] for i in range(len(touching)): for row in touching[i]: for col in touching[i]: rows.append(row) cols.append(col) rows = np.array(rows) cols = np.array(cols) connectivity = scipy.sparse.coo_matrix((np.ones(rows.shape[0]), (rows, cols)), shape = (n_tris, n_tris)) return connectivity def tri_side(tri1, tri2, threshold = 1e-12): tri1_normal = tri_normal(tri1, normalize = True) tri1_center = np.mean(tri1, axis = 0) tri2_center = np.mean(tri2, axis = 0) direction = tri2_center - tri1_center direction /= np.linalg.norm(direction) dot_val = direction.dot(tri1_normal) if dot_val > threshold: return 0 elif dot_val < -threshold: return 1 else: return 2 def get_side_of_fault(pts, tris, fault_start_idx): connectivity = tri_connectivity_graph(tris) fault_touching_pair = np.where(np.logical_and( connectivity.row < fault_start_idx, connectivity.col >= fault_start_idx ))[0] side = np.zeros(tris.shape[0]) shared_verts = np.zeros(tris.shape[0]) fault_surf_tris = pts[tris[connectivity.col[fault_touching_pair]]] for i in range(fault_touching_pair.shape[0]): surf_tri_idx = connectivity.row[fault_touching_pair[i]] surf_tri = tris[surf_tri_idx] fault_tri = tris[connectivity.col[fault_touching_pair[i]]] which_side = tri_side(pts[fault_tri], pts[surf_tri]) n_shared_verts = 0 for d in range(3): if surf_tri[d] in fault_tri: n_shared_verts += 1 if shared_verts[surf_tri_idx] < 2: side[surf_tri_idx] = int(which_side) + 1 shared_verts[surf_tri_idx] = n_shared_verts return side #TODO: this function needs to know the idxs of the surface_tris and fault_tris, so use # idx lists and pass the full tris array, currently using the (n_surf_tris * 9) hack! #TODO: refactor and merge this with the traction continuity constraints def continuity_constraints(pts, tris, fault_start_idx, tensor_dim = 3): surface_tris = tris[:fault_start_idx] fault_tris = tris[fault_start_idx:] touching_pt = find_touching_pts(surface_tris) side = get_side_of_fault(pts, tris, fault_start_idx) constraints = [] for i, tpt in enumerate(touching_pt): if len(tpt) == 0: continue for independent_idx in range(len(tpt)): independent = tpt[independent_idx] independent_tri_idx = independent[0] independent_corner_idx = independent[1] independent_tri = surface_tris[independent_tri_idx] for dependent_idx in range(independent_idx + 1, len(tpt)): dependent = tpt[dependent_idx] dependent_tri_idx = dependent[0] dependent_corner_idx = dependent[1] dependent_tri = surface_tris[dependent_tri_idx] # Check for anything that touches across the fault. side1 = side[independent_tri_idx] side2 = side[dependent_tri_idx] crosses = (side1 != side2) and (side1 != 0) and (side2 != 0) fault_tri_idx = None if crosses: fault_tri_idxs, fault_corner_idxs = np.where( fault_tris == dependent_tri[dependent_corner_idx] ) if fault_tri_idxs.shape[0] != 0: fault_tri_idx = fault_tri_idxs[0] fault_corner_idx = fault_corner_idxs[0] # plt_pts = np.vstack(( # pts[independent_tri], # pts[dependent_tri], # pts[fault_tris[fault_tri_idx]] # )) # import matplotlib.pyplot as plt # plt.tripcolor(pts[:,0], pts[:,1], tris[:surface_tris.shape[0]], side[:surface_tris.shape[0]]) # plt.triplot(plt_pts[:,0], plt_pts[:,1], np.array([[0,1,2]]), 'b-') # plt.triplot(plt_pts[:,0], plt_pts[:,1], np.array([[3,4,5]]), 'k-') # plt.triplot(pts[:,0], pts[:,1], tris[fault_start_idx:], 'r-') # plt.show() for d in range(tensor_dim): independent_dof = (independent_tri_idx * 3 + independent_corner_idx) * tensor_dim + d dependent_dof = (dependent_tri_idx * 3 + dependent_corner_idx) * tensor_dim + d if dependent_dof <= independent_dof: continue diff = 0.0 terms = [Term(1.0, dependent_dof), Term(-1.0, independent_dof)] if fault_tri_idx is not None: fault_dof = ( fault_start_idx * 9 + fault_tri_idx * 9 + fault_corner_idx * 3 + d ) if side1 < side2: terms.append(Term(-1.0, fault_dof)) else: terms.append(Term(1.0, fault_dof)) constraints.append(ConstraintEQ(terms, 0.0)) return constraints def traction_admissibility_constraints(pts, tris, fault_start_idx): # At each vertex, there should be three remaining degrees of freedom. # Initially, there are n_tris*3 degrees of freedom. # So, we need (n_tris-1)*3 constraints. touching_pt = find_touching_pts(tris) ns = normalize(unscaled_normals(pts[tris])) side = get_side_of_fault(pts, tris, fault_start_idx) continuity_cs = [] admissibility_cs = [] for tpt in touching_pt: if len(tpt) == 0: continue # Separate the triangles touching at the vertex into a groups # by the normal vectors for each triangle. normal_groups = [] for i in range(len(tpt)): tri_idx = tpt[i][0] n = ns[tri_idx] joined = False for j in range(len(normal_groups)): if np.allclose(normal_groups[j][0], n): tri_idx2 = tpt[normal_groups[j][1][0]][0] side1 = side[tri_idx] side2 = side[tri_idx2] crosses = (side1 != side2) and (side1 != 0) and (side2 != 0) fault_tri_idx = None # if crosses: # continue normal_groups[j][1].append(i) joined = True break if not joined: normal_groups.append((n, [i])) # Continuity within normal group for i in range(len(normal_groups)): group = normal_groups[i][1] independent_idx = group[0] independent = tpt[independent_idx] independent_tri_idx = independent[0] independent_corner_idx = independent[1] independent_dof_start = independent_tri_idx * 9 + independent_corner_idx * 3 for j in range(1, len(group)): dependent_idx = group[j] dependent = tpt[dependent_idx] dependent_tri_idx = dependent[0] dependent_corner_idx = dependent[1] dependent_dof_start = dependent_tri_idx * 9 + dependent_corner_idx * 3 for d in range(3): terms = [ Term(1.0, dependent_dof_start + d), Term(-1.0, independent_dof_start + d) ] continuity_cs.append(ConstraintEQ(terms, 0.0)) if len(normal_groups) == 1: # Only continuity needed! continue # assert(len(normal_groups) == 2) # Add constant stress constraints for i in range(len(normal_groups)): tpt_idx1 = normal_groups[i][1][0] tri_idx1 = tpt[tpt_idx1][0] corner_idx1 = tpt[tpt_idx1][1] tri1 = pts[tris[tri_idx1]] tri_data1 = (tri1, tri_idx1, corner_idx1) for j in range(i + 1, len(normal_groups)): tpt_idx2 = normal_groups[j][1][0] tri_idx2 = tpt[tpt_idx2][0] # print(tri_idx1, tri_idx2) corner_idx2 = tpt[tpt_idx2][1] tri2 = pts[tris[tri_idx2]] tri_data2 = (tri2, tri_idx2, corner_idx2) # for c in new_cs: # print(', '.join(['(' + str(t.val) + ',' + str(t.dof) + ')' for t in c.terms]) + ' rhs: ' + str(c.rhs)) admissibility_cs.append(constant_stress_constraint(tri_data1, tri_data2)) admissibility_cs.append(equilibrium_constraint(tri_data1)) admissibility_cs.append(equilibrium_constraint(tri_data2)) return continuity_cs, admissibility_cs ``` #### File: tectosaur/faultea/slip_vectors.py ```python import numpy as np from tectosaur.util.geometry import tri_normal def get_slip_vectors(tri, vertical = [0, 0, 1]): n = tri_normal(tri, normalize = True) is_normal_vertical = n.dot(vertical) >= 1.0 if is_normal_vertical: # this means the fault plane is horizontal, so there is no "strike" and "dip" raise Exception("fault plane is horizontal. strike and dip make no sense") v1 = np.cross(n, vertical) v1 /= np.linalg.norm(v1) v2 = np.cross(n, v1) v2 /= np.linalg.norm(v2) return v1, v2 def test_slip_vec_easy(): v1, v2 = get_slip_vectors(np.array([[0,0,0],[1,0,0],[0,1,0]])) def test_slip_vec_hard(): v1, v2 = get_slip_vectors(np.array([[0,0,0],[0,1,0],[0,0,1]])) np.testing.assert_almost_equal(v1, [0,0,1]) np.testing.assert_almost_equal(v2, [0,-1,0]) def test_slip_vec_harder(): for i in range(10): # random triangles should still follow these rules: # vecs should be perpindicular to each other and the normal # and be normalized to unit length tri = np.random.rand(3,3) v1, v2 = get_slip_vectors(tri) n = tri_normal(tri, normalize = True) np.testing.assert_almost_equal(np.linalg.norm(v1), 1.0) np.testing.assert_almost_equal(np.linalg.norm(v2), 1.0) np.testing.assert_almost_equal(v1.dot(v2), 0.0) np.testing.assert_almost_equal(v1.dot(n), 0.0) np.testing.assert_almost_equal(v2.dot(n), 0.0) ``` #### File: tectosaur/fmm/builder.py ```python import numpy as np import tectosaur.util.gpu as gpu from tectosaur.fmm.c2e import build_c2e import logging logger = logging.getLogger(__name__) def make_tree(m, cfg, max_pts_per_cell): tri_pts = m[0][m[1]] centers = np.mean(tri_pts, axis = 1) pt_dist = tri_pts - centers[:,np.newaxis,:] Rs = np.max(np.linalg.norm(pt_dist, axis = 2), axis = 1) tree = cfg.traversal_module.Tree.build(centers, Rs, max_pts_per_cell) return tree class FMM: def __init__(self, obs_tree, obs_m, src_tree, src_m, cfg): self.cfg = cfg self.obs_tree = obs_tree self.obs_m = obs_m self.src_tree = src_tree self.src_m = src_m self.gpu_data = dict() self.setup_interactions() self.collect_gpu_ops() self.setup_output_sizes() self.params_to_gpu() self.tree_to_gpu(obs_m, src_m) self.interactions_to_gpu() self.d2e_u2e_ops_to_gpu() def setup_interactions(self): self.interactions = self.cfg.traversal_module.fmmmm_interactions( self.obs_tree, self.src_tree, self.cfg.inner_r, self.cfg.outer_r, self.cfg.order, self.cfg.treecode ) def collect_gpu_ops(self): self.gpu_ops = dict() for a in ['s', 'p']: for b in ['s', 'p']: name = a + '2' + b self.gpu_ops[name] = getattr(self.cfg.gpu_module, name + '_' + self.cfg.K.name) self.gpu_ops['c2e1'] = self.cfg.gpu_module.c2e_kernel1 self.gpu_ops['c2e2'] = self.cfg.gpu_module.c2e_kernel2 def setup_output_sizes(self): self.n_surf_tris = self.cfg.surf[1].shape[0] self.n_surf_dofs = self.n_surf_tris * 9 self.n_multipoles = self.n_surf_dofs * self.src_tree.n_nodes self.n_locals = self.n_surf_dofs * self.obs_tree.n_nodes self.n_input = self.src_m[1].shape[0] * 9 self.n_output = self.obs_m[1].shape[0] * 9 def float_gpu(self, arr): return gpu.to_gpu(arr, self.cfg.float_type) def int_gpu(self, arr): return gpu.to_gpu(arr, np.int32) def params_to_gpu(self): self.gpu_data['params'] = self.float_gpu(self.cfg.params) def tree_to_gpu(self, obs_m, src_m): gd = self.gpu_data gd['obs_pts'] = self.float_gpu(obs_m[0]) gd['obs_tris'] = self.int_gpu(obs_m[1][self.obs_tree.orig_idxs]) gd['src_pts'] = self.float_gpu(src_m[0]) gd['src_tris'] = self.int_gpu(src_m[1][self.src_tree.orig_idxs]) obs_tree_nodes = self.obs_tree.nodes src_tree_nodes = self.src_tree.nodes for name, tree in [('src', self.src_tree), ('obs', self.obs_tree)]: gd[name + '_n_C'] = self.float_gpu(tree.node_centers) gd[name + '_n_R'] = self.float_gpu(tree.node_Rs) for name, tree in [('src', src_tree_nodes), ('obs', obs_tree_nodes)]: gd[name + '_n_start'] = self.int_gpu(np.array([n.start for n in tree])) gd[name + '_n_end'] = self.int_gpu(np.array([n.end for n in tree])) def interactions_to_gpu(self): op_names = ['p2p', 'p2m', 'p2l', 'm2p', 'm2m', 'm2l', 'l2p', 'l2l'] for name in op_names: op = getattr(self.interactions, name) if type(op) is list: for i, op_level in enumerate(op): self.op_to_gpu(name + str(i), op_level) else: self.op_to_gpu(name, op) def op_to_gpu(self, name, op): for data_name in ['obs_n_idxs', 'obs_src_starts', 'src_n_idxs']: self.gpu_data[name + '_' + data_name] = self.int_gpu( np.array(getattr(op, data_name), copy = False) ) def d2e_u2e_ops_to_gpu(self): gd = self.gpu_data gd['u2e_obs_n_idxs'] = [ self.int_gpu(np.array(self.interactions.u2e[level].obs_n_idxs, copy = False)) for level in range(len(self.interactions.m2m)) ] gd['d2e_obs_n_idxs'] = [ self.int_gpu(np.array(self.interactions.d2e[level].obs_n_idxs, copy = False)) for level in range(len(self.interactions.l2l)) ] u2e_UT, u2e_E, u2e_V = build_c2e( self.src_tree, self.cfg.outer_r, self.cfg.inner_r, self.cfg ) gd['u2e_V'] = self.float_gpu(u2e_V) gd['u2e_E'] = self.float_gpu(u2e_E) gd['u2e_UT'] = self.float_gpu(u2e_UT) d2e_UT, d2e_E, d2e_V = build_c2e( self.obs_tree, self.cfg.inner_r, self.cfg.outer_r, self.cfg ) gd['d2e_V'] = self.float_gpu(d2e_V) gd['d2e_E'] = self.float_gpu(d2e_E) gd['d2e_UT'] = self.float_gpu(d2e_UT) def to_tree(self, input_orig): orig_idxs = np.array(self.src_tree.orig_idxs) input_orig = input_orig.reshape((-1,9)) return input_orig[orig_idxs,:].flatten() def to_orig(self, output_tree): orig_idxs = np.array(self.obs_tree.orig_idxs) output_tree = output_tree.reshape((-1, 9)) output_orig = np.empty_like(output_tree) output_orig[orig_idxs,:] = output_tree return output_orig.flatten() def report_interactions(fmm_obj): dim = fmm_obj.obs_m[1].shape[1] order = fmm_obj.cfg.surf[1].shape[0] def count_interactions(op_name, op): obs_surf = False if op_name[2] == 'p' else True src_surf = False if op_name[0] == 'p' else True return fmm_obj.cfg.traversal_module.count_interactions( op, fmm_obj.obs_tree, fmm_obj.src_tree, obs_surf, src_surf, order ) n_obs_tris = fmm_obj.obs_m[1].shape[0] n_src_tris = fmm_obj.src_m[1].shape[0] level_ops = ['m2m', 'l2l'] ops = ['p2m', 'p2l', 'm2l', 'p2p', 'm2p', 'l2p'] interactions = dict() for op_name in ops: op = getattr(fmm_obj.interactions, op_name) interactions[op_name] = count_interactions(op_name, op) for op_name in level_ops: ops = getattr(fmm_obj.interactions, op_name) for op in ops: if op_name not in interactions: interactions[op_name] = 0 interactions[op_name] += count_interactions(op_name, op) direct_i = n_obs_tris * n_src_tris fmm_i = sum([v for k,v in interactions.items()]) logger.info('compression factor: ' + str(fmm_i / direct_i)) logger.info('# obs tris: ' + str(n_obs_tris)) logger.info('# src tris: ' + str(n_src_tris)) logger.info('total tree interactions: %e' % fmm_i) for k, v in interactions.items(): logger.info('total %s interactions: %e' % (k, v)) ``` #### File: tectosaur/kernels/sympy_to_cpp.py ```python import sympy import mpmath def cpp_binop(op): def _cpp_binop(expr): out = '(' + to_cpp(expr.args[0]) for arg in expr.args[1:]: out += op + to_cpp(arg) out += ')' return out return _cpp_binop def cpp_func(f_name): def _cpp_func(expr): return f_name + cpp_binop(',')(expr) return _cpp_func def cpp_pow(expr): if expr.args[1] == -1: return '(1 / ' + to_cpp(expr.args[0]) + ')' elif expr.args[1] == 2: a = to_cpp(expr.args[0]) return '({a} * {a})'.format(a = a) elif expr.args[1] == -2: a = to_cpp(expr.args[0]) return '(1 / ({a} * {a}))'.format(a = a) elif expr.args[1] == -0.5: a = to_cpp(expr.args[0]) return '(1.0 / sqrt({a}))'.format(a = a) elif expr.args[1] == 0.5: a = to_cpp(expr.args[0]) return '(sqrt({a}))'.format(a = a) elif expr.args[1] == -1.5: a = to_cpp(expr.args[0]) return '(1.0 / (sqrt({a}) * sqrt({a}) * sqrt({a})))'.format(a = a) else: return cpp_func('pow')(expr) to_cpp_map = dict() to_cpp_map[sympy.Mul] = cpp_binop('*') to_cpp_map[sympy.Add] = cpp_binop('+') to_cpp_map[sympy.Symbol] = lambda e: str(e) to_cpp_map[sympy.Number] = lambda e: mpmath.nstr(float(e), 17) to_cpp_map[sympy.numbers.Pi] = lambda e: 'M_PI' to_cpp_map[sympy.NumberSymbol] = lambda e: str(e) to_cpp_map[sympy.Function] = lambda e: cpp_func(str(e.func))(e) to_cpp_map[sympy.Pow] = cpp_pow def to_cpp(expr): if expr.func in to_cpp_map: return to_cpp_map[expr.func](expr) for k in to_cpp_map: if issubclass(expr.func, k): return to_cpp_map[k](expr) ``` #### File: tectosaur/nearfield/nearfield_op.py ```python import scipy.sparse import numpy as np import tectosaur.mesh.find_near_adj as find_near_adj from tectosaur.nearfield.pairs_integrator import PairsIntegrator from tectosaur.util.timer import Timer import tectosaur.util.sparse as sparse import tectosaur.util.gpu as gpu import logging logger = logging.getLogger(__name__) def any_nearfield(pts, tris, obs_subset, src_subset, near_threshold): close_or_touch_pairs = find_near_adj.find_close_or_touching( pts, tris[obs_subset], pts, tris[src_subset], near_threshold ) nearfield_pairs_dofs, va_dofs, ea_dofs = find_near_adj.split_adjacent_close( close_or_touch_pairs, tris[obs_subset], tris[src_subset] ) return nearfield_pairs_dofs.shape[0] > 0 def to_dof_space(tri_indices, obs_subset, src_subset): dof_space_indices = [] for pair in tri_indices: try: dof_space_indices.append([ np.where(obs_subset == pair[0])[0][0], np.where(src_subset == pair[1])[0][0] ]) except: import ipdb ipdb.set_trace() dof_space_indices = np.array(dof_space_indices) if dof_space_indices.shape[0] == 0: dof_space_indices = np.empty((0, 2), dtype = np.int) return dof_space_indices def to_tri_space(dof_indices, obs_subset, src_subset): tri_idxs = np.array([obs_subset[dof_indices[:,0]], src_subset[dof_indices[:,1]]]).T return np.concatenate((tri_idxs, dof_indices[:,2:]), axis = 1) def edge_adj_orient(touching_verts): tv = sorted(touching_verts) if tv[0] == 0: if tv[1] == 2: return 2 return 0 return 1 def resolve_ea_rotation(tris, ea): out = [] for i in range(ea.shape[0]): obs_clicks = edge_adj_orient([ea[i,2], ea[i,4]]) src_clicks = edge_adj_orient([ea[i,3], ea[i,5]]) src_flip = False if tris[ea[i,0], (0 + obs_clicks) % 3] != tris[ea[i,1], (1 + src_clicks) % 3] or \ tris[ea[i,0], (1 + obs_clicks) % 3] != tris[ea[i,1], (0 + src_clicks) % 3]: src_flip = True out.append((ea[i,0], ea[i,1], obs_clicks, src_clicks, src_flip)) return np.array(out) def build_nearfield(shape, *mats): out = [] for entries, pairs in mats: if entries.shape[0] == 0: entries = np.empty((0, 9, 9)) else: entries = entries.reshape((-1, 9, 9)) bcoo = sparse.BCOOMatrix(pairs[:, 0], pairs[:, 1], entries, shape) out.append(bcoo) return out class RegularizedNearfieldIntegralOp: def __init__(self, pts, tris, obs_subset, src_subset, nq_coincident, nq_edge_adj, nq_vert_adjacent, nq_far, nq_near, near_threshold, K_near_name, K_far_name, params, float_type): n_obs_dofs = obs_subset.shape[0] * 9 n_src_dofs = src_subset.shape[0] * 9 self.shape = (n_obs_dofs, n_src_dofs) timer = Timer(output_fnc = logger.debug, tabs = 1) pairs_int = PairsIntegrator( K_near_name, params, float_type, nq_far, nq_near, pts, tris ) correction_pairs_int = PairsIntegrator( K_far_name, params, float_type, nq_far, nq_near, pts, tris ) timer.report('setup pairs integrator') co_tris = np.intersect1d(obs_subset, src_subset) co_indices = np.array([co_tris, co_tris]).T.copy() co_dofs = to_dof_space(co_indices, obs_subset, src_subset) co_mat = pairs_int.coincident(nq_coincident, co_indices) timer.report("Coincident") co_mat_correction = correction_pairs_int.correction(co_indices, True) timer.report("Coincident correction") close_or_touch_pairs = find_near_adj.find_close_or_touching( pts, tris[obs_subset], pts, tris[src_subset], near_threshold ) nearfield_pairs_dofs, va_dofs, ea_dofs = find_near_adj.split_adjacent_close( close_or_touch_pairs, tris[obs_subset], tris[src_subset] ) nearfield_pairs = to_tri_space(nearfield_pairs_dofs, obs_subset, src_subset) va = to_tri_space(va_dofs, obs_subset, src_subset) va = np.hstack((va, np.zeros((va.shape[0], 1)))) ea = resolve_ea_rotation(tris, to_tri_space(ea_dofs, obs_subset, src_subset)) timer.report("Find nearfield/adjacency") ea_mat_rot = pairs_int.edge_adj(nq_edge_adj, ea) timer.report("Edge adjacent") if ea.shape[0] == 0: ea_mat_correction = 0 * ea_mat_rot else: ea_mat_correction = correction_pairs_int.correction(ea[:,:2], False) timer.report("Edge adjacent correction") va_mat_rot = pairs_int.vert_adj(nq_vert_adjacent, va) timer.report("Vert adjacent") va_mat_correction = correction_pairs_int.correction(va[:,:2], False) timer.report("Vert adjacent correction") nearfield_mat = pairs_int.nearfield(nearfield_pairs) timer.report("Nearfield") nearfield_correction = correction_pairs_int.correction(nearfield_pairs, False) timer.report("Nearfield correction") self.mat = build_nearfield( self.shape, (co_mat - co_mat_correction, co_dofs), (ea_mat_rot - ea_mat_correction, ea_dofs[:,:2]), (va_mat_rot - va_mat_correction, va_dofs[:,:2]), (nearfield_mat - nearfield_correction, nearfield_pairs_dofs) ) timer.report("Assemble matrix") self.mat_no_correction = build_nearfield( self.shape, (co_mat, co_dofs), (ea_mat_rot, ea_dofs[:,:2]), (va_mat_rot, va_dofs[:,:2]), (nearfield_mat, nearfield_pairs_dofs), ) timer.report("Assemble uncorrected matrix") def full_scipy_mat(self): return sum([m.to_bsr().to_scipy() for m in self.mat]) def full_scipy_mat_no_correction(self): return sum([m.to_bsr().to_scipy() for m in self.mat_no_correction]) def dot(self, v): return sum(arr.dot(v) for arr in self.mat) def nearfield_no_correction_dot(self, v): return sum(arr.dot(v) for arr in self.mat_no_correction) def to_dense(self): return sum([mat.to_bsr().to_scipy().todense() for mat in self.mat]) def no_correction_to_dense(self): return sum([mat.to_bsr().to_scipy().todense() for mat in self.mat_no_correction]) class NearfieldIntegralOp: def __init__(self, pts, tris, obs_subset, src_subset, nq_vert_adjacent, nq_far, nq_near, near_threshold, kernel, params, float_type): n_obs_dofs = obs_subset.shape[0] * 9 n_src_dofs = src_subset.shape[0] * 9 self.shape = (n_obs_dofs, n_src_dofs) timer = Timer(output_fnc = logger.debug, tabs = 1) pairs_int = PairsIntegrator(kernel, params, float_type, nq_far, nq_near, pts, tris) timer.report('setup pairs integrator') co_tris = np.intersect1d(obs_subset, src_subset) co_indices = np.array([co_tris, co_tris]).T.copy() co_dofs = to_dof_space(co_indices, obs_subset, src_subset) co_mat = coincident_table(kernel, params, pts[tris[co_tris]], float_type) timer.report("Coincident") co_mat_correction = pairs_int.correction(co_indices, True) timer.report("Coincident correction") close_or_touch_pairs = find_near_adj.find_close_or_touching( pts, tris[obs_subset], pts, tris[src_subset], near_threshold ) nearfield_pairs_dofs, va_dofs, ea_dofs = find_near_adj.split_adjacent_close( close_or_touch_pairs, tris[obs_subset], tris[src_subset] ) nearfield_pairs = to_tri_space(nearfield_pairs_dofs, obs_subset, src_subset) va = to_tri_space(va_dofs, obs_subset, src_subset) ea = to_tri_space(ea_dofs, obs_subset, src_subset) timer.report("Find nearfield/adjacency") ea_mat_rot = adjacent_table(nq_vert_adjacent, kernel, params, pts, tris, ea, float_type) timer.report("Edge adjacent") ea_mat_correction = pairs_int.correction(ea, False) timer.report("Edge adjacent correction") va_mat_rot = pairs_int.vert_adj(nq_vert_adjacent, va) timer.report("Vert adjacent") va_mat_correction = pairs_int.correction(va[:,:2], False) timer.report("Vert adjacent correction") nearfield_mat = pairs_int.nearfield(nearfield_pairs) timer.report("Nearfield") nearfield_correction = pairs_int.correction(nearfield_pairs, False) timer.report("Nearfield correction") self.mat = build_nearfield( self.shape, (co_mat - co_mat_correction, co_dofs), (ea_mat_rot - ea_mat_correction, ea_dofs[:,:2]), (va_mat_rot - va_mat_correction, va_dofs[:,:2]), (nearfield_mat - nearfield_correction, nearfield_pairs_dofs) ) timer.report("Assemble matrix") self.mat_no_correction = build_nearfield( self.shape, (co_mat, co_dofs), (ea_mat_rot, ea_dofs[:,:2]), (va_mat_rot, va_dofs[:,:2]), (nearfield_mat, nearfield_pairs_dofs), ) timer.report("Assemble uncorrected matrix") def dot(self, v): return sum(arr.dot(v) for arr in self.mat) def nearfield_no_correction_dot(self, v): return sum(arr.dot(v) for arr in self.mat_no_correction) def to_dense(self): return sum([mat.to_bsr().to_scipy().todense() for mat in self.mat]) def no_correction_to_dense(self): return sum([mat.to_bsr().to_scipy().todense() for mat in self.mat_no_correction]) ``` #### File: tectosaur/nearfield/triangle_rules.py ```python import tectosaur.util.quadrature as quad from tectosaur.util.paget import paget import numpy as np def vertex_interior_quad(n_theta, n_rho, a): # return quad.gauss2d_tri(10) theta_quad = quad.map_to(quad.gaussxw(n_theta), [0, np.pi / 2]) if a == 0: # rho_quad = quad.telles_singular(n_rho, -1) # rho_quad = quad.gaussxw(n_rho) rho_quad = quad.tanh_sinh(n_rho) else: rho_quad = paget(n_rho, a) pts = [] wts = [] for t, tw in zip(*theta_quad): rho_max = 1.0 / (np.cos(t) + np.sin(t)) q = quad.map_to(rho_quad, [0, rho_max]) for r, rw in zip(*q): assert(r > 0) srcxhat = r * np.cos(t) srcyhat = r * np.sin(t) pts.append((srcxhat, srcyhat)) # The r**2 comes from two factors: # 1) The first r comes from the jacobian for the polar transform # 2) The second r corrects for the implicit 1/r in the quad rule weight = tw * rw * (r ** (a + 1)) wts.append(weight) return np.array(pts), np.array(wts) def vertex_adj_quad(n_theta, n_beta, n_alpha): theta_quad = quad.gaussxw(n_theta) beta_quad = quad.gaussxw(n_beta) alpha_quad = quad.gaussxw(n_alpha) def rho_max(theta): return 1.0 / (np.cos(theta) + np.sin(theta)) pts = [] wts = [] def alpha_integral(w, tp, tq, b, alpha_max): q = quad.map_to(alpha_quad, [0, alpha_max]) for a, aw in zip(*q): jacobian = a ** 3 * np.cos(b) * np.sin(b) rho_p = a * np.cos(b) rho_q = a * np.sin(b) obsxhat = rho_p * np.cos(tp) obsyhat = rho_p * np.sin(tp) srcxhat = rho_q * np.cos(tq) srcyhat = rho_q * np.sin(tq) pts.append((obsxhat, obsyhat, srcxhat, srcyhat)) wts.append(jacobian * aw * w) def beta_integral(w, tp, tq, beta_min, beta_max, alpha_max_fnc): q = quad.map_to(beta_quad, [beta_min, beta_max]) for b, bw in zip(*q): alpha_max = alpha_max_fnc(b) alpha_integral(bw * w, tp, tq, b, alpha_max) def theta_q_integral(w, tp): q = quad.map_to(theta_quad, [0, np.pi / 2]) for tq, tqw in zip(*q): beta_split = np.arctan(rho_max(tq) / rho_max(tp)) beta_integral(w * tqw, tp, tq, 0, beta_split, lambda b: rho_max(tp) / np.cos(b)) beta_integral(w * tqw, tp, tq, beta_split, np.pi / 2, lambda b: rho_max(tq) / np.sin(b)) def theta_p_integral(): q = quad.map_to(theta_quad, [0, np.pi / 2]) for tp, tpw in zip(*q): theta_q_integral(tpw, tp) theta_p_integral() return np.array(pts), np.array(wts) def coincident_quad(nq): """ Coincident quadrature rule from <NAME> Sauter (1998): Efficient automatic quadrature in 3D Galerkin BEM """ qtri = quad.gauss2d_tri(nq) qline = quad.map_to(quad.gaussxw(nq), [0.0, 1.0]) mappings = [ lambda eta, w1, w2, w3: ( w1 + w2 + w3, w1 + w2, w1 * (1 - eta) + w2 + w3, w2 ), lambda eta, w1, w2, w3: ( w1 * (1 - eta) + w2 + w3, w1 * (1 - eta) + w2, w1 + w2 + w3, w2 ), lambda eta, w1, w2, w3: ( w1 + w2 + w3, w1 * eta + w2, w2 + w3, w2 ), lambda eta, w1, w2, w3: ( w1 * (1 - eta) + w2 + w3, w2, w1 + w2 + w3, w1 + w2, ), lambda eta, w1, w2, w3: ( w1 + w2 + w3, w2, w1 * (1 - eta) + w2 + w3, w1 * (1 - eta) + w2 ), lambda eta, w1, w2, w3: ( w2 + w3, w2, w1 + w2 + w3, w1 * eta + w2 ) ] pts = [] wts = [] for i in range(len(mappings)): m = mappings[i] for w12_idx in range(qtri[0].shape[0]): w1 = qtri[0][w12_idx,0] w2 = qtri[0][w12_idx,1] f12 = qtri[1][w12_idx] for x3, f3 in zip(*qline): w3 = x3 * (1 - w1 - w2) f3 *= (1 - w1 - w2) for eta, feta in zip(*qline): F = f12 * f3 * feta * w1 x1, x2, y1, y2 = m(eta, w1, w2, w3) obsxhat = 1 - x1 obsyhat = x2 srcxhat = 1 - y1 srcyhat = y2 pts.append((obsxhat, obsyhat, srcxhat, srcyhat)) wts.append(F) return np.array(pts), np.array(wts) def edge_adj_quad(nq): """ Edge adjacent quadrature rule from Sauter and Schwab book. """ qtri = quad.gauss2d_tri(nq) qline = quad.map_to(quad.gaussxw(nq), [0.0, 1.0]) mappings = [ lambda e1, e2, e3, P: ( P, P * e1 * e3, P * (1 - e1 * e2), P * e1 * (1 - e2), P ** 3 * e1 ** 2 ), lambda e1, e2, e3, P: ( P, P * e1, P * (1 - e1 * e2 * e3), P * e1 * e2 * (1 - e3), P ** 3 * e1 ** 2 * e2 ), lambda e1, e2, e3, P: ( P * (1 - e1 * e2), P * e1 * (1 - e2), P, P * e1 * e2 * e3, P ** 3 * e1 ** 2 * e2 ), lambda e1, e2, e3, P: ( P * (1 - e1 * e2 * e3), P * e1 * e2 * (1 - e3), P, P * e1, P ** 3 * e1 ** 2 * e2 ), lambda e1, e2, e3, P: ( P * (1 - e1 * e2 * e3), P * e1 * (1 - e2 * e3), P, P * e1 * e2, P ** 3 * e1 ** 2 * e2 ), ] pts = [] wts = [] for i in range(len(mappings)): m = mappings[i] for e1, f1 in zip(*qline): for e2, f2 in zip(*qline): for e3, f3 in zip(*qline): for P, f4 in zip(*qline): F = f1 * f2 * f3 * f4 x1, x2, y1, y2, jac = m(e1, e2, e3, P) F *= jac obsxhat = 1 - x1 obsyhat = x2 srcxhat = 1 - y1 srcyhat = y2 srcxhat = (1 - srcyhat) - srcxhat pts.append((obsxhat, obsyhat, srcxhat, srcyhat)) wts.append(F) return np.array(pts), np.array(wts) ``` #### File: tectosaur/ops/composite_op.py ```python import numpy as np class CompositeOp: def __init__(self, *ops_and_starts, shape = None): self.ops = [el[0] for el in ops_and_starts] self.row_start = [el[1] for el in ops_and_starts] self.col_start = [el[2] for el in ops_and_starts] n_rows = max([el[1] + el[0].shape[0] for el in ops_and_starts]) n_cols = max([el[2] + el[0].shape[1] for el in ops_and_starts]) if shape is None: self.shape = (n_rows, n_cols) else: self.shape = shape def generic_dot(self, v, dot_name): out = np.zeros([self.shape[0]] + list(v.shape[1:])) for i in range(len(self.ops)): op = self.ops[i] start_row_idx = self.row_start[i] end_row_idx = start_row_idx + op.shape[0] start_col_idx = self.col_start[i] end_col_idx = start_col_idx + op.shape[1] input_v = v[start_col_idx:end_col_idx] out[start_row_idx:end_row_idx] += getattr(op, dot_name)(input_v) return out def nearfield_dot(self, v): return self.generic_dot(v, "nearfield_dot") def nearfield_no_correction_dot(self, v): return self.generic_dot(v, "nearfield_no_correction_dot") def dot(self, v): return self.generic_dot(v, "dot") def farfield_dot(self, v): return self.generic_dot(v, "farfield_dot") ``` #### File: tectosaur/ops/mass_op.py ```python import tectosaur.util.geometry as geometry from tectosaur.util.quadrature import gauss2d_tri import numpy as np import scipy.sparse from tectosaur.util.cpp import imp _mass_op = imp("tectosaur.ops._mass_op") class MassOp: def __init__(self, nq, pts, tris, tensor_dim = 3): qx, qw = gauss2d_tri(nq) tri_pts = pts[tris] basis = geometry.linear_basis_tri_arr(qx) unscaled_normals = geometry.unscaled_normals(tri_pts) jacobians = geometry.jacobians(unscaled_normals) basis_factors = [] for b1 in range(3): for b2 in range(3): basis_factors.append(np.sum(qw * (basis[:,b1]*basis[:,b2]))) basis_factors = np.array(basis_factors) rows, cols, vals = _mass_op.build_op(basis_factors, jacobians, tensor_dim) n_rows = tris.shape[0] * 3 * tensor_dim self.shape = (n_rows, n_rows) self.mat = scipy.sparse.csr_matrix((vals, (rows, cols)), shape = self.shape) def dot(self, v): return self.mat.dot(v) def nearfield_dot(self, v): return self.dot(v) def nearfield_no_correction_dot(self, v): return self.dot(v) def farfield_dot(self, v): shape = [self.shape[0]] shape.extend(v.shape[1:]) return np.zeros(shape) ``` #### File: tectosaur/ops/neg_op.py ```python class MultOp: def __init__(self, op, factor): self.op = op self.shape = op.shape self.factor = factor def nearfield_dot(self, v): return self.factor * self.op.nearfield_dot(v) def nearfield_no_correction_dot(self, v): return self.factor * self.op.nearfield_no_correction_dot(v) def dot(self, v): return self.factor * self.op.dot(v) def farfield_dot(self, v): return self.factor * self.op.farfield_dot(v) #TODO: Deprecate def NegOp(op): return MultOp(op, -1) ``` #### File: tectosaur/qd/plot_config.py ```python import os from IPython import get_ipython import matplotlib.pyplot as plt meade03_socket_idx = 0 def configure_meade03(idx): global meade03_socket_idx meade03_socket_idx = idx configure(gpu_idx = idx, fast_plot = True, socket = idx) def configure(gpu_idx = 0, fast_plot = True, socket = None): set_gpu(gpu_idx) if fast_plot: configure_mpl_fast() else: configure_mpl_pretty() configure_omp(socket) def configure_omp(socket): if socket is None: if 'OMP_NUM_THREADS' in os.environ: del os.environ['OMP_NUM_THREADS'] else: first_core = socket * 20 last_core = (socket + 1) * 20 OMP_PLACES='{' + str(first_core) + ':' + str(last_core) + ':1}' os.environ['OMP_NUM_THREADS'] = str(20) os.environ['OMP_PLACES']=OMP_PLACES def set_gpu(idx): os.environ['CUDA_DEVICE'] = str(idx) def configure_mpl_fast(): #TODO: try pdf or svg? get_ipython().magic('config InlineBackend.figure_format = \'png\'') configure_mpl() def configure_mpl_pretty(): get_ipython().magic('config InlineBackend.figure_format = \'retina\'') plt.rcParams['text.usetex'] = True plt.rcParams['text.latex.preamble'] = '\\usepackage{amsmath}' configure_mpl() def configure_mpl(): plt.style.use('dark_background') plt.rcParams['font.size'] = 20 plt.rcParams['axes.labelsize'] = 18 plt.rcParams['axes.titlesize'] = 20 plt.rcParams['xtick.labelsize'] = 16 plt.rcParams['ytick.labelsize'] = 16 plt.rcParams['legend.fontsize'] = 20 plt.rcParams['figure.titlesize'] = 22 plt.rcParams['savefig.transparent'] = False ``` #### File: tests/fmm/test_tri_fmm.py ```python import logging import numpy as np import matplotlib.pyplot as plt import tectosaur as tct from tectosaur.ops.sparse_farfield_op import ( TriToTriDirectFarfieldOp, FMMFarfieldOp, PtToPtDirectFarfieldOp) from tectosaur.ops.sparse_integral_op import RegularizedSparseIntegralOp from tectosaur.ops.dense_integral_op import farfield_tris import tectosaur.mesh.mesh_gen as mesh_gen from tectosaur.kernels import kernels from tectosaur.mesh.modify import concat import tectosaur.util.gpu as gpu from tectosaur.util.quadrature import gauss4d_tri from tectosaur.ops.dense_integral_op import RegularizedDenseIntegralOp from tectosaur.fmm.fmm import make_tree, make_config, FMM, FMMEvaluator, report_interactions from tectosaur.fmm.c2e import reg_lstsq_inverse from tectosaur.constraint_builders import continuity_constraints from tectosaur.constraints import build_constraint_matrix from tectosaur.util.timer import Timer from tectosaur.util.test_decorators import golden_master # TODO: dim def test_tri_ones(): from test_farfield import make_meshes m, surf1_idxs, surf2_idxs = make_meshes(n_m = 2, sep = 5, w = 1) ops = [ C( 3, 'tensor_one3', [], m[0], m[1], np.float64, surf1_idxs, surf2_idxs ) for C in [ TriToTriDirectFarfieldOp, PtToPtDirectFarfieldOp, # PtToPtFMMFarfieldOp(250, 3.0, 250) ] ] x = np.random.rand(ops[0].shape[1]) x = np.ones(ops[0].shape[1]) ys = [op.dot(x) for op in ops] for y in ys: print(y) def op(obs_m, src_m, K, nq = 2): new_pts, new_tris = concat(obs_m, src_m) n_obs_tris = obs_m[1].shape[0] obs_tris = new_tris[:n_obs_tris] src_tris = new_tris[n_obs_tris:] save = False if save: np.save('ptspts.npy', [new_pts, obs_tris, src_tris, nq]) mat = farfield_tris( K, [1.0, 0.25], new_pts, obs_tris, src_tris, nq, np.float32 ) nrows = mat.shape[0] * 9 ncols = mat.shape[3] * 9 return mat.reshape((nrows, ncols)) def test_tri_fmm_p2p(): np.random.seed(100) n = 10 m1 = mesh_gen.make_rect(n, n, [[-1, 0, 1], [-1, 0, -1], [1, 0, -1], [1, 0, 1]]) m2 = mesh_gen.make_rect(n, n, [[-3, 0, 1], [-3, 0, -1], [-2, 0, -1], [-2, 0, 1]]) K = 'elasticRH3' cfg = make_config(K, [1.0, 0.25], 1.1, 2.5, 2, np.float32, treecode = True, force_order = 1000000) tree1 = make_tree(m1, cfg, 10) tree2 = make_tree(m2, cfg, 10) print('n_nodes: ', str(len(tree1.nodes))) fmm = FMM(tree1, m1, tree2, m2, cfg) fmmeval = FMMEvaluator(fmm) full = op(m1, m2, K = K) x = np.random.rand(full.shape[1]) y1 = full.dot(x) x_tree = fmm.to_tree(x) import taskloaf as tsk async def call_fmm(tsk_w): return (await fmmeval.eval(tsk_w, x_tree, return_all_intermediates = True)) fmm_res, m_check, multipoles, l_check, locals = tsk.run(call_fmm) y2 = fmm.to_orig(fmm_res) np.testing.assert_almost_equal(y1, y2) def test_tri_fmm_m2p_single(): np.random.seed(100) n = 10 m1 = mesh_gen.make_rect(n, n, [[-1, 0, 1], [-1, 0, -1], [1, 0, -1], [1, 0, 1]]) m2 = mesh_gen.make_rect(n, n, [[-10, 0, 1], [-10, 0, -1], [-8, 0, -1], [-8, 0, 1]]) K = 'elasticRH3' cfg = make_config(K, [1.0, 0.25], 1.1, 2.5, 2, np.float32, treecode = True, force_order = 1) tree1 = make_tree(m1, cfg, 1000) tree2 = make_tree(m2, cfg, 1000) src_R = tree2.nodes[0].bounds.R center = tree2.nodes[0].bounds.center R_outer = cfg.outer_r R_inner = cfg.inner_r scaling = 1.0 check_sphere = mesh_gen.make_sphere(center, scaling * R_outer * src_R, 2) equiv_sphere = mesh_gen.make_sphere(center, scaling * R_inner * src_R, 2) src_tri_idxs = tree2.orig_idxs src_tris = m2[1][src_tri_idxs] obs_tri_idxs = tree1.orig_idxs obs_tris = m1[1][obs_tri_idxs] p2c = op(check_sphere, (m2[0], src_tris), K) e2c = op(check_sphere, equiv_sphere, K, nq = 4) c2e = reg_lstsq_inverse(e2c, cfg.alpha) e2p = op((m1[0], obs_tris), equiv_sphere, K) p2p = op((m1[0], obs_tris), (m2[0], src_tris), K) fmm_mat = e2p.dot(c2e.dot(p2c)) full = op(m1, m2, K = K) fmm = FMM(tree1, m1, tree2, m2, cfg) fmmeval = FMMEvaluator(fmm) x = np.random.rand(full.shape[1]) y1 = full.dot(x) x_tree = fmm.to_tree(x) import taskloaf as tsk async def call_fmm(tsk_w): return (await fmmeval.eval(tsk_w, x_tree, return_all_intermediates = True)) fmm_res, m_check, multipoles, l_check, locals = tsk.run(call_fmm) y2 = fmm.to_orig(fmm_res) m_check2 = p2c.dot(x_tree) np.testing.assert_almost_equal(m_check, m_check2) np.testing.assert_almost_equal(multipoles, c2e.dot(m_check)) np.testing.assert_almost_equal(fmm_res, e2p.dot(multipoles), 4) np.testing.assert_almost_equal(y1, y2, 5) def test_tri_fmm_full(): np.random.seed(100) n = 40 K = 'elasticRA3' m1 = mesh_gen.make_rect(n, n, [[-1, 0, 1], [-1, 0, -1], [1, 0, -1], [1, 0, 1]]) m2 = mesh_gen.make_rect(n, n, [[-3, 0, 1], [-3, 0, -1], [-2, 0, -1], [-2, 0, 1]]) x = np.random.rand(m2[1].shape[0] * 9) t = Timer() cfg = make_config(K, [1.0, 0.25], 1.1, 4.5, 2, np.float32) tree1 = make_tree(m1, cfg, 100) tree2 = make_tree(m2, cfg, 100) print('n_nodes: ', str(len(tree1.nodes))) fmm = FMM(tree1, m1, tree2, m2, cfg) report_interactions(fmm) fmmeval = FMMEvaluator(fmm) t.report('setup fmm') full = op(m1, m2, K = K) t.report('setup dense') t.report('gen x') y1 = full.dot(x) t.report('dense mv') x_tree = fmm.to_tree(x) import taskloaf as tsk async def call_fmm(tsk_w): return (await fmmeval.eval(tsk_w, x_tree)) fmm_res = tsk.run(call_fmm) y2 = fmm.to_orig(fmm_res) t.report('fmm mv') np.testing.assert_almost_equal(y1, y2) @golden_master(digits = 5) def test_c2e(request): n = 10 m1 = mesh_gen.make_rect(n, n, [[-1, 0, 1], [-1, 0, -1], [1, 0, -1], [1, 0, 1]]) m2 = mesh_gen.make_rect(n, n, [[-3, 0, 1], [-3, 0, -1], [-2, 0, -1], [-2, 0, 1]]) K = 'elasticRH3' t = Timer() cfg = make_config(K, [1.0, 0.25], 1.1, 2.5, 2, np.float64, treecode = True) tree1 = make_tree(m1, cfg, 100) tree2 = make_tree(m2, cfg, 100) print(len(tree1.nodes)) fmm = FMM(tree1, m1, tree2, m2, cfg) u2e_ops = [] for n in tree2.nodes: UT, eig, V = fmm.u2e_ops alpha = cfg.alpha R = n.bounds.R inv_eig = R * eig / ((R * eig) ** 2 + alpha ** 2) u2e_ops.append((V * inv_eig).dot(UT)) return np.array(u2e_ops) def benchmark(): tct.logger.setLevel(logging.INFO) m = 1 n = 50 K = 'elasticRH3' m1 = mesh_gen.make_rect(n, n, [[-1, 0, 1], [-1, 0, -1], [1, 0, -1], [1, 0, 1]]) m2 = mesh_gen.make_rect(n, n, [[-3, 0, 1], [-3, 0, -1], [-2, 0, -1], [-2, 0, 1]]) x = np.random.rand(m2[1].shape[0] * 9) t = Timer() new_pts, new_tris = concat(m1, m2) n_obs_tris = m1[1].shape[0] sparse_op = RegularizedSparseIntegralOp( 8,8,8,2,5,2.5,K,K,[1.0, 0.25],new_pts,new_tris, np.float32,TriToTriDirectFarfieldOp, obs_subset = np.arange(0,n_obs_tris), src_subset = np.arange(n_obs_tris,new_tris.shape[0]) ) t.report('assemble matrix free') for i in range(m): y1 = sparse_op.dot(x) t.report('matrix free mv x10') fmm = FMMFarfieldOp(mac = 4.5, pts_per_cell = 300)( 2, K, [1.0, 0.25], new_pts, new_tris, np.float32, obs_subset = np.arange(0,n_obs_tris), src_subset = np.arange(n_obs_tris,new_tris.shape[0]) ) report_interactions(fmm.fmm_obj) t.report('setup fmm') y2 = fmm.dot(x) t.report('fmm mv x10') print(y1, y2) if __name__ == "__main__": benchmark() ``` #### File: tectosaur/tests/laplace.py ```python from tectosaur.util.geometry import * import numpy as np def laplace(tri1, tri2, i, j, eps, pts): obsxhat = pts[:, 0] obsyhat = pts[:, 1] srcxhat = pts[:, 2] srcyhat = pts[:, 3] obsbasis = linear_basis_tri(obsxhat, obsyhat) srcbasis = linear_basis_tri(srcxhat, srcyhat) obsn = tri_normal(tri1) srcn = tri_normal(tri2) obspt = (tri_pt(obsbasis, tri1).T - np.outer(eps, obsn)).T srcpt = tri_pt(srcbasis, tri2) R = np.sqrt( (obspt[0,:] - srcpt[0,:]) ** 2 + (obspt[1,:] - srcpt[1,:]) ** 2 + (obspt[2,:] - srcpt[2,:]) ** 2 ) K = (1.0 / 4.0 / np.pi) * ((1 / R ** 3) - (3.0 * eps ** 2 / R ** 5)) return obsbasis[i, :] * srcbasis[j, :] * K ``` #### File: tectosaur/tests/test_constraints.py ```python from tectosaur.constraints import * from tectosaur.continuity import * from tectosaur.constraint_builders import * import tectosaur.mesh.mesh_gen as mesh_gen import tectosaur.mesh.modify as mesh_modify import numpy as np import tectosaur.util.geometry import tectosaur as tct import logging logger = logging.getLogger(__name__) def test_rearrange_constraint_eq(): eqtn = ConstraintEQ([Term(3,0),Term(-1,1),Term(4,2)], 13.7) rearr = isolate_term_on_lhs(eqtn, 2) assert(rearr.lhs_dof == 2) assert(rearr.c.terms[0].val == -0.75) assert(rearr.c.terms[0].dof == 0) assert(rearr.c.terms[1].val == 0.25) assert(rearr.c.terms[1].dof == 1) assert(rearr.c.rhs[0].val == 1.0 / 4.0) assert(rearr.c.rhs[0].dof == 0) def subs_test(victim, sub_in, correct): in_rearr = isolate_term_on_lhs(sub_in, 0) result = substitute(victim, 0, in_rearr, 1.0) for i in range(len(result.terms)): assert(result.terms[i].dof == correct.terms[i].dof) assert(result.terms[i].val == correct.terms[i].val) def test_subs_rhs(): eqtn0 = ConstraintEQ([Term(1,1), Term(3,1)], 4.0) eqtn1 = ConstraintEQ([Term(1,1)], 2.0) correct = ConstraintEQ([Term(3,1)], 2.0) subs_test(eqtn0, eqtn1, correct) def test_combine_terms(): out = combine_terms(ConstraintEQ([Term(1, 1), Term(2, 1)], 0.0)) assert(len(out.terms) == 1) assert(out.terms[0].dof == 1) assert(out.terms[0].val == 3) def test_filter_zero(): out = filter_zero_terms(ConstraintEQ([Term(1, 0), Term(0, 1)], 0.0)) assert(len(out.terms) == 1) assert(out.terms[0].dof == 0) assert(out.terms[0].val == 1) def test_constraint_matrix(): cs = [ConstraintEQ([Term(1, 0), Term(-1, 1)], 0.0)] cm, rhs, _ = build_constraint_matrix(cs, 3) assert(cm.shape == (3, 2)) np.testing.assert_almost_equal(cm.todense(), [[1, 0], [1, 0], [0, 1]]) np.testing.assert_almost_equal(rhs, 0) def test_constraint_matrix_harder(): cs = [ ConstraintEQ([Term(1, 5), Term(-1, 1)], 0.0), ConstraintEQ([Term(1, 3), Term(0.25, 0)], 0.0), ConstraintEQ([Term(1, 2), Term(0.5, 3), Term(0.5, 4)], 0.0) ] cm,rhs, _ = build_constraint_matrix(cs, 7) assert(cm.shape == (7, 4)) correct = [ [1,0,0,0],[0,1,0,0],[0,0,1,0], [-0.25,0,0,0], [0.25,0,-2,0],[0,1,0,0],[0,0,0,1] ] np.testing.assert_almost_equal(cm.todense(), correct) np.testing.assert_almost_equal(rhs, 0) def test_constraint_matrix_rhs1(): cs = [ ConstraintEQ([Term(1,0)], 2.0) ] cm, rhs, rhs_mat = build_constraint_matrix(cs, 1) np.testing.assert_almost_equal(rhs, [2.0]) def test_constraint_matrix_rhs2(): cs = [ ConstraintEQ([Term(1,0), Term(2,2)], 2.0), ConstraintEQ([Term(1,1), Term(1,0)], 3.0) ] cm, rhs, rhs_mat = build_constraint_matrix(cs, 3) np.testing.assert_almost_equal(rhs, [0, 3.0, 1.0]) def test_constraint_matrix_rhs3(): cs = [ ConstraintEQ([Term(1, 5), Term(-1, 1)], 0.0), ConstraintEQ([Term(1, 3), Term(0.25, 0)], 1.0), ConstraintEQ([Term(1, 2), Term(0.5, 3), Term(0.5, 4)], 2.0) ] cm, rhs, rhs_mat = build_constraint_matrix(cs, 7) np.testing.assert_almost_equal(rhs, [0,0,0,1.0,3.0,0,0]) def test_constraint_double(): cs = [ ConstraintEQ([Term(1, 0), Term(1, 1), Term(1, 2)], 0.0), ConstraintEQ([Term(1, 0), Term(-1, 1), Term(1, 2)], 0.0), ] cm, rhs, _ = build_constraint_matrix(cs, 3) np.testing.assert_almost_equal(cm.todense(), np.array([[1, 0, -1]]).T) def test_constraint_triple(): cs = [ ConstraintEQ([Term(1, 0), Term(1, 1), Term(1, 2), Term(1, 3)], 0.0), ConstraintEQ([Term(1, 0), Term(-1, 1), Term(1, 2), Term(1, 3)], 0.0), ConstraintEQ([Term(1, 0), Term(1, 1), Term(-1, 2), Term(1, 3)], 0.0), ] cm, rhs, _ = build_constraint_matrix(cs, 4) np.testing.assert_almost_equal(cm.todense(), np.array([[1, 0, 0, -1]]).T) def test_find_free_edges(): tris = np.array([[0,1,2],[2,1,3]]) free_es = find_free_edges(tris) assert(len(free_es) == 4) for e in [(0,0), (0,2), (1,1), (1,2)]: assert(e in free_es) def simple_rect_mesh(n): corners = [[-1.0, -1.0, 0], [-1.0, 1.0, 0], [1.0, 1.0, 0], [1.0, -1.0, 0]] return mesh_gen.make_rect(n, n, corners) def test_free_edge_constraints(): m = simple_rect_mesh(3) cs = free_edge_constraints(m[1]) dofs = [c.terms[0].dof for c in cs] tri_pts = m[0][m[1]].reshape((-1,3)) xyz_near_origin = np.abs(tri_pts[:,:]) < 0.1 near_origin = np.logical_and(xyz_near_origin[:,0], xyz_near_origin[:,1]) correct_pt_idxs = np.where(np.logical_not(near_origin))[0] correct_dofs = set(( np.tile(correct_pt_idxs * 3, (3,1)) + np.array([0,1,2])[:,np.newaxis] ).reshape(-1).tolist()) assert(correct_dofs == set(dofs)) assert(len(dofs) == 18 * 3) def test_composite(): cs1 = [ConstraintEQ([Term(1, 0)], 2)] cs2 = [ConstraintEQ([Term(1, 0)], 3)] cs = build_composite_constraints((cs1, 2), (cs2, 3)) assert(cs[0].terms[0].dof == 2) assert(cs[0].rhs == 2) assert(cs[1].terms[0].dof == 3) assert(cs[1].rhs == 3) def test_redundant_continuity(): n = 13 m = simple_rect_mesh(n) cs = continuity_constraints(m[0], m[1], m[1].shape[0]) n_total_dofs = m[1].size * 3 cm, c_rhs, _ = build_constraint_matrix(cs, n_total_dofs) assert(cm.shape[1] == 3 * n ** 2) # def test_faulted_continuity(): # n = 3 # m = simple_rect_mesh(n) # fault_corners = [[-1.0, 0.0, 0.0], [-1.0, 0.0, -1.0], [1.0, 0.0, -1.0], [1.0, 0.0, 0.0]] # m2 = mesh_gen.make_rect(n, n, fault_corners) # all_mesh = mesh_modify.concat(m, m2) # surface_tris = all_mesh[1][:m[1].shape[0]] # fault_tris = all_mesh[1][m[1].shape[0]:] # # cs = continuity_constraints(all_mesh[0], all_mesh[1], m[1].shape[0]) # n_total_dofs = m[1].size * 3 # rows, cols, vals, rhs, n_unique_cs = fast_constraints.build_constraint_matrix(cs, all_mesh[1].shape[0]) # n_rows = n_total_dofs # n_cols = n_total_dofs - n_unique_cs # cm = scipy.sparse.csr_matrix((vals, (rows, cols)), shape = (n_rows, n_cols)) # assert(cm.shape[1] == 36) # def test_cascadia_continuity(): # pts, tris = np.load('tests/cascadia10000.npy') # cs = continuity_constraints(tris, np.array([])) # # dof_pairs = [(c.terms[0].dof, c.terms[1].dof) for c in cs] # # print( # # [x for x in dof_pairs if x[0] == 4887 or x[1] == 4887], # # [x for x in dof_pairs if x[0] == 3045 or x[1] == 3045] # # ) # # cm, c_rhs = build_constraint_matrix(cs, tris.shape[0] * 9) # # np.random.seed(75) # field = np.random.rand(tris.shape[0] * 9) # continuous = cm.dot(cm.T.dot(field)).reshape((-1,3))[:,0] # assert(check_continuity(tris, continuous) == []) def benchmark_build_constraint_matrix(): from tectosaur.util.timer import timer from tectosaur.constraints import fast_constraints import scipy.sparse t = Timer() corners = [[-1.0, -1.0, 0], [-1.0, 1.0, 0], [1.0, 1.0, 0], [1.0, -1.0, 0]] n = 100 m = mesh_gen.make_rect(n, n, corners) t.report('make mesh') cs = continuity_constraints(m[1], np.array([]), m[0]) t.report('make constraints') n_total_dofs = m[1].size * 3 rows, cols, vals, rhs, n_unique_cs = fast_constraints.build_constraint_matrix(cs, n_total_dofs) t.report('build matrix') n_rows = n_total_dofs n_cols = n_total_dofs - n_unique_cs cm = scipy.sparse.csr_matrix((vals, (rows, cols)), shape = (n_rows, n_cols)) t.report('to csr') if __name__ == '__main__': benchmark_build_constraint_matrix() ``` #### File: tectosaur/tests/test_integral_op.py ```python import numpy as np import tectosaur.nearfield.triangle_rules as triangle_rules import tectosaur.nearfield.nearfield_op as nearfield_op import tectosaur.ops.dense_integral_op as dense_integral_op import tectosaur.ops.sparse_integral_op as sparse_integral_op from tectosaur.ops.sparse_farfield_op import TriToTriDirectFarfieldOp, \ FMMFarfieldOp import tectosaur.ops.mass_op as mass_op import tectosaur.util.quadrature as quad import tectosaur.mesh.mesh_gen as mesh_gen import tectosaur.mesh.modify as modify from tectosaur.interior import interior_integral from tectosaur.util.test_decorators import slow, golden_master, kernel from tectosaur.util.timer import Timer import tectosaur as tct from laplace import laplace import logging logger = logging.getLogger(__name__) float_type = np.float32 def build_subset_mesh(): n = 10 m = mesh_gen.make_rect(n, n, [[-1, 0, 1], [-1, 0, -1], [1, 0, -1], [1, 0, 1]]) n_tris = m[1].shape[0] overlap = n_tris // 2 obs_subset = np.arange(n_tris // 2) src_subset = np.arange(n_tris // 2 - overlap, n_tris) obs_range = [0, (obs_subset[-1] + 1) * 9] src_range = [src_subset[0] * 9, (src_subset[-1] + 1) * 9] # import matplotlib.pyplot as plt # plt.figure() # plt.triplot(m[0][:,0], m[0][:,2], m[1], 'k-') # plt.figure() # plt.triplot(m[0][:,0], m[0][:,2], m[1][obs_subset], 'b-') # plt.triplot(m[0][:,0], m[0][:,2], m[1][src_subset], 'r-') # plt.show() return m, obs_subset, src_subset, obs_range, src_range def test_op_subset_dense(): m, obs_subset, src_subset, obs_range, src_range = build_subset_mesh() k = 'elasticH3' params = [1.0, 0.25] subset_op = dense_integral_op.DenseIntegralOp( 7, 4, 3, 2.0, k, params, m[0], m[1], float_type, obs_subset = obs_subset, src_subset = src_subset, ).mat full_op = dense_integral_op.DenseIntegralOp( 7, 4, 3, 2.0, k, params, m[0], m[1], float_type, ).mat subfull = full_op[obs_range[0]:obs_range[1],src_range[0]:src_range[1]] np.testing.assert_almost_equal(subfull, subset_op) def test_op_subset_sparse(): m, obs_subset, src_subset, obs_range, src_range = build_subset_mesh() k = 'elasticH3' params = [1.0, 0.25] subset_op = sparse_integral_op.SparseIntegralOp( 7, 4, 3, 2.0, k, params, m[0], m[1], float_type, farfield_op_type = PtToPtDirectFarfieldOp, obs_subset = obs_subset, src_subset = src_subset, ) y2 = subset_op.dot(np.ones(subset_op.shape[1])) full_op = sparse_integral_op.SparseIntegralOp( 7, 4, 3, 2.0, k, params, m[0], m[1], float_type, farfield_op_type = PtToPtDirectFarfieldOp ) y1 = full_op.dot(np.ones(full_op.shape[1])) np.testing.assert_almost_equal(y1[obs_range[0]:obs_range[1]], y2) @golden_master() def test_farfield_two_tris(request): pts = np.array( [[1, 0, 0], [2, 0, 0], [1, 1, 0], [5, 0, 0], [6, 0, 0], [5, 1, 0]] ) obs_tris = np.array([[0, 1, 2]], dtype = np.int) src_tris = np.array([[3, 4, 5]], dtype = np.int) params = [1.0, 0.25] out = dense_integral_op.farfield_tris( 'elasticH3', params, pts, obs_tris, src_tris, 3, float_type ) return out @golden_master() def test_gpu_vert_adjacent(request): pts = np.array([[0,0,0],[1,0,0],[0,1,0],[1,-1,0],[2,0,0]]).astype(np.float32) tris = np.array([[1,2,0],[1,3,4]]).astype(np.int32) params = [1.0, 0.25] pairs_int = nearfield_op.PairsIntegrator('elasticH3', params, np.float32, 1, 1, pts, tris) out = pairs_int.vert_adj(3, np.array([[0,1,0,0]])) return out def test_vert_adj_separate_bases(): K = 'elasticH3' params = [1.0, 0.25] nq = 6 full_tris = np.array([[0,1,2], [0,4,3]]) pts = np.array([[0,0,0],[1,0,0],[0,1,0],[-0.5,0,0],[0,0,-2],[0.5,0.5,0]]) pairs_int = nearfield_op.PairsIntegrator('elasticH3', params, np.float32, 1, 1, pts, full_tris) I = pairs_int.vert_adj(nq, np.array([[0,1,0,0]])) obs_basis_tris = np.array([ [[0,0],[0.5,0.5],[0,1]], [[0,0],[1,0],[0.5,0.5]] ]) src_basis_tris = np.array([ [[0,0],[1,0],[0,1]], [[0,0],[1,0],[0,1]] ]) sep_tris = np.array([[0,5,2], [0,1,5], [0,4,3], [0,4,3]]) pairs_int = nearfield_op.PairsIntegrator('elasticH3', params, np.float32, 1, 1, pts, sep_tris) I0 = pairs_int.vert_adj(nq, np.array([[0,2,0,0],[1,3,0,0]])) from tectosaur.nearfield._table_lookup import sub_basis I1 = np.array([sub_basis( I0[i].flatten().tolist(), obs_basis_tris[i].tolist(), src_basis_tris[i].tolist() ) for i in range(2)]).reshape((2,3,3,3,3)) np.testing.assert_almost_equal(I[0], I1[0] + I1[1], 6) def full_integral_op_tester(k, use_fmm, n = 5): pts = np.array([[0,0,0], [1,1,0], [0, 1, 1], [0,0,2]]) tris = np.array([[0, 1, 2], [2, 1, 3]]) rect_mesh = mesh_gen.make_rect(n, n, [[-1, 0, 1], [-1, 0, -1], [1, 0, -1], [1, 0, 1]]) out = np.zeros(1) params = [1.0, 0.25] for m in [(pts, tris), rect_mesh]: dense_op = dense_integral_op.DenseIntegralOp( 5, 3, 3, 2.0, k, params, m[0], m[1], float_type ) x = np.ones(dense_op.shape[1]) dense_res = dense_op.dot(x) if use_fmm: farfield_op_type = PtToPtFMMFarfieldOp(100, 3.0, 300) else: farfield_op_type = PtToPtDirectFarfieldOp sparse_op = sparse_integral_op.SparseIntegralOp( 5, 3, 3, 2.0, k, params, m[0], m[1], float_type, farfield_op_type ) sparse_res = sparse_op.dot(x) assert(np.max(np.abs(sparse_res - dense_res)) / np.mean(np.abs(dense_res)) < 5e-4) out = np.hstack((out, sparse_res)) return out @slow @golden_master(digits = 5) def test_full_integral_op_nofmm(request, kernel): return full_integral_op_tester(kernel, False) @slow @golden_master(digits = 7) def test_full_integral_op_fmm(request): return full_integral_op_tester('elasticU3', True, n = 30) @golden_master(digits = 7) def test_full_integral_op_nofmm_fast(request): m = mesh_gen.make_rect(5, 5, [[-1, 0, 1], [-1, 0, -1], [1, 0, -1], [1, 0, 1]]) dense_op = dense_integral_op.DenseIntegralOp( 5, 3, 3, 2.0, 'elasticU3', [1.0, 0.25], m[0], m[1], float_type ) return dense_op.mat def test_mass_op(): m = mesh_gen.make_rect(2, 2, [[0,0,0],[1,0,0],[1,1,0],[0,1,0]]) op = mass_op.MassOp(3, m[0], m[1]) exact00 = quad.quadrature( lambda x: (1 - x[:,0] - x[:,1]) * (1 - x[:,0] - x[:,1]), quad.gauss2d_tri(10) ) exact03 = quad.quadrature( lambda x: (1 - x[:,0] - x[:,1]) * x[:,0], quad.gauss2d_tri(10) ) np.testing.assert_almost_equal(op.mat[0,0], exact00) np.testing.assert_almost_equal(op.mat[0,3], exact03) def test_mass_tensor_dim(): m = mesh_gen.make_rect(2, 2, [[0,0,0],[1,0,0],[1,1,0],[0,1,0]]) op1 = mass_op.MassOp(3, m[0], m[1], tensor_dim = 1) op3 = mass_op.MassOp(3, m[0], m[1]) x = np.random.rand(op3.shape[1]).reshape((-1,3,3)) x[:,:,1] = 0 x[:,:,2] = 0 y3 = op3.dot(x.flatten()) y1 = op1.dot(x[:,:,0].flatten()) np.testing.assert_almost_equal(y1, y3.reshape((-1,3,3))[:,:,0].flatten()) @golden_master() def test_interior(request): np.random.seed(10) corners = [[-1, -1, 0], [1, -1, 0], [1, 1, 0], [-1, 1, 0]] pts, tris = mesh_gen.make_rect(3, 3, corners) obs_pts = pts.copy() obs_pts[:,2] += 1.0 obs_ns = np.random.rand(*obs_pts.shape) obs_ns /= np.linalg.norm(obs_ns, axis = 1)[:,np.newaxis] input = np.ones(tris.shape[0] * 9) K = 'elasticH3' params = [1.0, 0.25] op = tct.InteriorOp( obs_pts, obs_ns, (pts, tris), K, 4, params, float_type ) return op.dot(input) @golden_master() def test_interior_nearfield(request): np.random.seed(10) corners = [[-1, -1, 0], [1, -1, 0], [1, 1, 0], [-1, 1, 0]] src_mesh = mesh_gen.make_rect(30, 30, corners) xs = np.linspace(-3, 3, 50) X, Z = np.meshgrid(xs, xs) Y = np.ones_like(X) * 0.0 obs_pts = np.array([e.flatten() for e in [X, Y, Z]]).T.copy() obs_ns = np.zeros(obs_pts.shape) obs_ns[:,2] = 1.0 input = np.zeros(src_mesh[1].shape[0] * 9) input.reshape((-1,3))[:,0] = 1.0 K = 'elasticT3' params = [1.0, 0.25] op = tct.InteriorOp( obs_pts, obs_ns, src_mesh, K, 4, params, float_type ) out = op.dot(input) # import matplotlib.pyplot as plt # for d in range(3): # plt.subplot(1, 3, d + 1) # plt.contourf(X, Z, out.reshape((-1,3))[:,d].reshape(X.shape)) # plt.colorbar() # plt.show() return out @profile def benchmark_nearfield_construction(): corners = [[-1, -1, 0], [1, -1, 0], [1, 1, 0], [-1, 1, 0]] near_threshold = 1.5 n = 80 pts, tris = mesh_gen.make_rect(n, n, corners) n = nearfield_op.NearfieldIntegralOp(1, 1, 1, 2.0, 'elasticU3', [1.0, 0.25], pts, tris) @profile def benchmark_vert_adj(): from tectosaur.util.timer import Timer import tectosaur.mesh.find_near_adj as find_near_adj from tectosaur.nearfield.pairs_integrator import PairsIntegrator kernel = 'elasticH3' params = [1.0, 0.25] float_type = np.float32 L = 5 nq_vert_adjacent = 7 nx = ny = int(2 ** L / np.sqrt(2)) t = Timer() pts, tris = mesh_gen.make_rect(nx, ny, [[-1, -1, 0], [-1, 1, 0], [1, 1, 0], [1, -1, 0]]) logger.debug('n_tris: ' + str(tris.shape[0])) t.report('make rect') close_or_touch_pairs = find_near_adj.find_close_or_touching(pts, tris, 1.25) nearfield_pairs, va, ea = find_near_adj.split_adjacent_close(close_or_touch_pairs, tris) t.report('find near') pairs_int = PairsIntegrator(kernel, params, float_type, 1, 1, pts, tris) t.report('setup integrator') va_mat_rot = pairs_int.vert_adj(nq_vert_adjacent, va) t.report('vert adj') if __name__ == "__main__": benchmark_vert_adj() ``` #### File: tectosaur/tests/test_sparse.py ```python import numpy as np import scipy.sparse import tectosaur.util.sparse as sparse import logging logger = logging.getLogger(__name__) def test_bsrmv(): A = np.zeros((4,4)) A[:2,:2] = np.random.rand(2,2) A[2:,2:] = np.random.rand(2,2) A_bsr = sparse.from_scipy_bsr(scipy.sparse.bsr_matrix(A)) x = np.random.rand(A.shape[1]) correct = A.dot(x) out = A_bsr.dot(x) np.testing.assert_almost_equal(out, correct) def test_dense_bsrmv(): A = np.random.rand(100,100) A_bsr = sparse.from_scipy_bsr(scipy.sparse.bsr_matrix(A)) x = np.random.rand(A.shape[1]) correct = A.dot(x) out = A_bsr.dot(x) np.testing.assert_almost_equal(out, correct) def dense_to_coo(A, blocksize): assert(A.shape[0] % blocksize == 0) assert(A.shape[1] % blocksize == 0) n_block_rows = A.shape[0] // blocksize n_block_cols = A.shape[1] // blocksize data = np.swapaxes( A.reshape((n_block_rows,blocksize,n_block_cols,blocksize)), 1, 2 ).reshape((-1, blocksize, blocksize)).copy() rows = np.tile(np.arange(n_block_rows)[:,np.newaxis], (1, n_block_cols)).flatten().copy() cols = np.tile(np.arange(n_block_cols)[np.newaxis, :], (n_block_rows, 1)).flatten().copy() return rows, cols, data def dense_to_coo_tester(shape): A = np.random.rand(*shape) bs = 4 rows, cols, data = dense_to_coo(A, bs) A_re = np.empty(A.shape) for i in range(rows.shape[0]): A_re[(bs*rows[i]):(bs*rows[i]+bs), (bs*cols[i]):(bs*cols[i]+bs)] = data[i] np.testing.assert_almost_equal(A, A_re) def test_dense_to_coo(): dense_to_coo_tester((100, 100)) dense_to_coo_tester((60, 100)) dense_to_coo_tester((100, 60)) def dense_bcoomv_tester(shape): A = np.random.rand(*shape) x = np.random.rand(A.shape[1]) correct = A.dot(x) rows, cols, data = dense_to_coo(A, 4) A_bcoo = sparse.BCOOMatrix(rows, cols, data, A.shape) out = A_bcoo.dot(x) np.testing.assert_almost_equal(out, correct) def test_dense_bcoomv(): dense_bcoomv_tester((100, 100)) dense_bcoomv_tester((60, 100)) dense_bcoomv_tester((100, 60)) def test_to_bsr(): A = np.random.rand(100,100) x = np.random.rand(A.shape[1]) rows, cols, data = dense_to_coo(A, 4) A_bcoo = sparse.BCOOMatrix(rows, cols, data, A.shape) np.testing.assert_almost_equal(A_bcoo.dot(x), A.dot(x)) A_bsr = A_bcoo.to_bsr() np.testing.assert_almost_equal(A_bsr.dot(x), A.dot(x)) def benchmark_bsrmv(): from tectosaur.util.timer import Timer float_type = np.float32 blocksize = 9 nb = 100000 nnzbs = 5000000 t = Timer() rows = np.random.randint(nb, size = (nnzbs)) cols = np.random.randint(nb, size = (nnzbs)) data = np.ones((nnzbs, blocksize, blocksize)) x = np.random.rand(nb * blocksize).astype(float_type) t.report('random') mat_bcoo = sparse.BCOOMatrix(rows, cols, data, (nb * blocksize, nb * blocksize)) t.report('make bcoo') mat_bsr = mat_bcoo.to_bsr() t.report('make bsr') mat_sp = mat_bsr.to_scipy() t.report('make scipy') for i in range(3): y = mat_bsr.dot(x) t.report('bsr mv') y2 = mat_bcoo.dot(x) t.report('bcoo mv') correct = mat_sp.dot(x) t.report('scipy mv') np.testing.assert_almost_equal(y, correct, 2) np.testing.assert_almost_equal(y2, correct, 2) if __name__ == "__main__": benchmark_bsrmv() ```
{ "source": "jlmaurer/tsfresh", "score": 2 }
#### File: tests/feature_extraction/test_ts_features.py ```python from __future__ import absolute_import, division import numpy as np import pandas as pd from tests.fixtures import DataTestCase from tsfresh.feature_extraction.extraction import extract_features from tsfresh.feature_extraction.settings import FeatureExtractionSettings import six class FeatureExtractorTestCase(DataTestCase): """The unit tests in this module make sure if the time series features are created properly""" def setUp(self): self.settings = FeatureExtractionSettings() self.settings.PROFILING = False def test_calculate_ts_features(self): # todo: implement more methods and test more aspects df = self.create_test_data_sample() extracted_features = extract_features(df, self.settings, "id", "sort", "kind", "val") self.assertIsInstance(extracted_features, pd.DataFrame) self.assertTrue(np.all(extracted_features.a__maximum == np.array([71, 77]))) self.assertTrue(np.all(extracted_features.a__sum_values == np.array([691, 1017]))) self.assertTrue(np.all(extracted_features.a__abs_energy == np.array([32211, 63167]))) self.assertTrue(np.all(extracted_features.b__sum_values == np.array([757, 695]))) self.assertTrue(np.all(extracted_features.b__minimum == np.array([3, 1]))) self.assertTrue(np.all(extracted_features.b__abs_energy == np.array([36619, 35483]))) self.assertTrue(np.all(extracted_features.b__mean == np.array([37.85, 34.75]))) self.assertTrue(np.all(extracted_features.b__median == np.array([39.5, 28.0]))) df_sts = self.create_one_valued_time_series() extracted_features_sts = extract_features(df_sts, self.settings, "id", "sort", "kind", "val") self.assertIsInstance(extracted_features_sts, pd.DataFrame) self.assertTrue(np.all(extracted_features_sts.a__maximum == np.array([1.0, 6.0]))) self.assertTrue(np.all(extracted_features_sts.a__sum_values == np.array([1.0, 11.0]))) self.assertTrue(np.all(extracted_features_sts.a__count_above_mean == np.array([0, 1]))) def test_calculate_ts_features_after_randomisation(self): df = self.create_test_data_sample() df_random = df.copy().sample(frac=1) extracted_features = extract_features(df, self.settings, "id", "sort", "kind", "val").sort_index() extracted_features_from_random = extract_features(df_random, self.settings, "id", "sort", "kind", "val").sort_index() six.assertCountEqual(self, extracted_features.columns, extracted_features_from_random.columns) for col in extracted_features: self.assertIsNone(np.testing.assert_array_almost_equal(extracted_features[col], extracted_features_from_random[col])) ``` #### File: tsfresh/feature_selection/feature_selector.py ```python from __future__ import absolute_import, division, print_function from builtins import zip from builtins import range import os import numpy as np import pandas as pd import logging from tsfresh.feature_selection.significance_tests import target_binary_feature_real_test, \ target_real_feature_binary_test, target_real_feature_real_test, target_binary_feature_binary_test from tsfresh.feature_selection.settings import FeatureSignificanceTestsSettings _logger = logging.getLogger(__name__) def check_fs_sig_bh(X, y, settings=None): """ The wrapper function that calls the significance test functions in this package. In total, for each feature from the input pandas.DataFrame an univariate feature significance test is conducted. Those tests generate p values that are then evaluated by the Benjamini Hochberg procedure to decide which features to keep and which to delete. We are testing :math:`H_0` = the Feature is not relevant and can not be added against :math:`H_1` = the Feature is relevant and should be kept or in other words :math:`H_0` = Target and Feature are independent / the Feature has no influence on the target :math:`H_1` = Target and Feature are associated / dependent When the target is binary this becomes :math:`H_0 = \\left( F_{\\text{target}=1} = F_{\\text{target}=0} \\right)` :math:`H_1 = \\left( F_{\\text{target}=1} \\neq F_{\\text{target}=0} \\right)` Where :math:`F` is the distribution of the target. In the same way we can state the hypothesis when the feature is binary :math:`H_0 = \\left( T_{\\text{feature}=1} = T_{\\text{feature}=0} \\right)` :math:`H_1 = \\left( T_{\\text{feature}=1} \\neq T_{\\text{feature}=0} \\right)` Here :math:`T` is the distribution of the target. TODO: And for real valued? :param X: The DataFrame containing all the features and the target :type X: pandas.DataFrame :param y: The target vector :type y: pandas.Series :param settings: The feature selection settings to use for performing the tests. :type settings: FeatureSignificanceTestsSettings :return: A pandas.DataFrame with each column of the input DataFrame X as index with information on the significance of this particular feature. The DataFrame has the columns "Feature", "type" (binary, real or const), "p_value" (the significance of this feature as a p-value, lower means more significant) "rejected" (if the Benjamini Hochberg procedure rejected this feature) :rtype: pandas.DataFrame """ if settings is None: settings = FeatureSignificanceTestsSettings() target_is_binary = len(set(y)) == 2 # todo: solve the multiclassification case. for a multi classification the algorithm considers the target to be # regression. Instead one could perform a binary one versus all classification. # Only allow entries for which the target is known! y = y.astype(np.float) X = X.copy().loc[~(y == np.NaN), :] # Create the DataFrame df_features containing the information about the different hypotheses # Every row contains information over one feature column from X df_features = pd.DataFrame() # Don't process features from the ignore-list df_features['Feature'] = list(set(X.columns)) df_features = df_features.set_index('Feature', drop=False) # Don't process constant features for feature in df_features['Feature']: if len(pd.unique(X[feature])) == 1: df_features = df_features.drop(feature) _logger.warning("[test_feature_significance] Feature {} is constant".format(feature)) # Add relevant columns to df_features df_features["type"] = np.nan df_features["p_value"] = np.nan df_features["rejected"] = np.nan # Process the features for feature in df_features['Feature']: if target_is_binary: # Decide if the current feature is binary or not if len(set(X[feature].values)) == 2: df_features.loc[df_features.Feature == feature, "type"] = "binary" p_value = target_binary_feature_binary_test(X[feature], y, settings) else: df_features.loc[df_features.Feature == feature, "type"] = "real" p_value = target_binary_feature_real_test(X[feature], y, settings) else: # Decide if the current feature is binary or not if len(set(X[feature].values)) == 2: df_features.loc[df_features.Feature == feature, "type"] = "binary" p_value = target_real_feature_binary_test(X[feature], y, settings) else: df_features.loc[df_features.Feature == feature, "type"] = "real" p_value = target_real_feature_real_test(X[feature], y, settings) # Add p_values to df_features df_features.loc[df_features['Feature'] == feature, "p_value"] = p_value # Check for constant features for feature in list(set(X.columns)): if len(pd.unique(X[feature])) == 1: df_features.loc[feature, "type"] = "const" df_features.loc[feature, "rejected"] = True # Perform the real feature rejection df_features = benjamini_hochberg_test(df_features, settings) if settings.write_selection_report: # Write results of BH - Test to file if not os.path.exists(settings.result_dir): os.mkdir(settings.result_dir) with open(os.path.join(settings.result_dir, "fs_bh_results.txt"), 'w') as file_out: file_out.write(("Performed BH Test to control the false discovery rate(FDR); \n" "FDR-Level={0};Hypothesis independent={1}\n" ).format(settings.fdr_level, settings.hypotheses_independent)) df_features.to_csv(index=False, path_or_buf=file_out, sep=';', float_format='%.4f') return df_features def benjamini_hochberg_test(df_pvalues, settings): """ This is an implementation of the benjamini hochberg procedure that calculates which of the hypotheses belonging to the different p-Values from df_p to reject. While doing so, this test controls the false discovery rate, which is the ratio of false rejections by all rejections: .. math:: FDR = \\mathbb{E} \\left [ \\frac{ |\\text{false rejections}| }{ |\\text{all rejections}|} \\right] References ---------- .. [1] Benjamini, Yoav and <NAME> (2001). The control of the false discovery rate in multiple testing under dependency. Annals of statistics, 1165--1188 :param df_pvalues: This DataFrame should contain the p_values of the different hypotheses in a column named "p_values". :type df_pvalues: pandas.DataFrame :param settings: The settings object to use for controlling the false discovery rate (FDR_level) and whether to threat the hypothesis independent or not (hypotheses_independent). :type settings: FeatureSignificanceTestsSettings :return: The same DataFrame as the input, but with an added boolean column "rejected". :rtype: pandas.DataFrame """ # Get auxiliary variables and vectors df_pvalues = df_pvalues.sort_values(by="p_value") m = len(df_pvalues) K = list(range(1, m + 1)) # Calculate the weight vector C if settings.hypotheses_independent: # c(k) = 1 C = [1] * m else: # c(k) = \sum_{i=1}^m 1/i C = [sum([1.0 / i for i in range(1, k + 1)]) for k in K] # Calculate the vector T to compare to the p_value T = [settings.fdr_level * k / m * 1.0 / c for k, c in zip(K, C)] # Get the last rejected p_value try: k_max = list(df_pvalues.p_value <= T).index(False) except ValueError: k_max = m # Add the column denoting if hypothesis was rejected df_pvalues["rejected"] = [True] * k_max + [False] * (m - k_max) return df_pvalues ```
{ "source": "jlmayfield/Cirq", "score": 3 }
#### File: contrib/acquaintance/shift_test.py ```python import cirq import cirq.contrib.acquaintance as cca def test_circular_shift_gate_init(): g = cca.CircularShiftGate(4, 2) assert g.num_qubits() == 4 assert g.shift == 2 g = cca.CircularShiftGate(4, 1, swap_gate = cirq.CZ) assert g.swap_gate == cirq.CZ def test_circular_shift_gate_eq(): equals_tester = cirq.testing.EqualsTester() equals_tester.add_equality_group(cca.CircularShiftGate(4, 1), cca.CircularShiftGate(4, 1)) equals_tester.add_equality_group( cca.CircularShiftGate(4, 1, swap_gate=cirq.CZ)) equals_tester.add_equality_group(cca.CircularShiftGate(4, 2)) equals_tester.add_equality_group(cca.CircularShiftGate(3, 2)) equals_tester.add_equality_group( cca.CircularShiftGate(3, 2, swap_gate=cirq.CZ)) def test_circular_shift_gate_permutation(): assert (cca.CircularShiftGate(3, 4).permutation() == {0: 2, 1: 0, 2: 1}) assert (cca.CircularShiftGate(4, 0).permutation() == {0: 0, 1: 1, 2: 2, 3: 3}) assert (cca.CircularShiftGate(5, 2).permutation() == {0:3, 1: 4, 2: 0, 3: 1, 4: 2}) def test_circular_shift_gate_repr(): g = cca.CircularShiftGate(3, 2) cirq.testing.assert_equivalent_repr(g) def test_circular_shift_gate_decomposition(): qubits = [cirq.NamedQubit(q) for q in 'abcdef'] expander = cirq.ExpandComposite() circular_shift = cca.CircularShiftGate(2, 1, cirq.CZ)(*qubits[:2]) circuit = cirq.Circuit.from_ops(circular_shift) expander.optimize_circuit(circuit) expected_circuit = cirq.Circuit( (cirq.Moment((cirq.CZ(*qubits[:2]),)),)) assert circuit == expected_circuit no_decomp = lambda op: (isinstance(op, cirq.GateOperation) and op.gate == cirq.SWAP) expander = cirq.ExpandComposite(no_decomp=no_decomp) circular_shift = cca.CircularShiftGate(6, 3)(*qubits) circuit = cirq.Circuit.from_ops(circular_shift) expander.optimize_circuit(circuit) actual_text_diagram = circuit.to_text_diagram().strip() expected_text_diagram = """ a: ───────────×─────────── │ b: ───────×───×───×─────── │ │ c: ───×───×───×───×───×─── │ │ │ d: ───×───×───×───×───×─── │ │ e: ───────×───×───×─────── │ f: ───────────×─────────── """.strip() assert actual_text_diagram == expected_text_diagram circular_shift = cca.CircularShiftGate(6, 2)(*qubits) circuit = cirq.Circuit.from_ops(circular_shift) expander.optimize_circuit(circuit) actual_text_diagram = circuit.to_text_diagram().strip() expected_text_diagram = """ a: ───────×─────────────── │ b: ───×───×───×─────────── │ │ c: ───×───×───×───×─────── │ │ d: ───────×───×───×───×─── │ │ e: ───────────×───×───×─── │ f: ───────────────×─────── """.strip() assert actual_text_diagram == expected_text_diagram def test_circular_shift_gate_wire_symbols(): qubits = [cirq.NamedQubit(q) for q in 'xyz'] circuit = cirq.Circuit.from_ops(cca.CircularShiftGate(3, 2)(*qubits)) actual_text_diagram = circuit.to_text_diagram().strip() expected_text_diagram = """ x: ───╲0╱─── │ y: ───╲1╱─── │ z: ───╱2╲─── """.strip() assert actual_text_diagram == expected_text_diagram actual_text_diagram = circuit.to_text_diagram(use_unicode_characters=False) expected_text_diagram = r""" x: ---\0/--- | y: ---\1/--- | z: ---/2\--- """.strip() assert actual_text_diagram.strip() == expected_text_diagram ``` #### File: contrib/quirk/export_to_quirk_test.py ```python import pytest import cirq from cirq.contrib.quirk.export_to_quirk import circuit_to_quirk_url def assert_links_to(circuit: cirq.Circuit, expected: str, **kwargs): actual = circuit_to_quirk_url(circuit, **kwargs) actual = actual.replace('\n', '').replace(' ', '').strip() expected = expected.replace('],[', '],\n[').strip() expected = expected.replace('\n', '').replace(' ', '') assert actual == expected def test_x_z_same_col(): a = cirq.NamedQubit('a') b = cirq.NamedQubit('b') circuit = cirq.Circuit.from_ops(cirq.X(a), cirq.Z(b)) assert_links_to(circuit, """ http://algassert.com/quirk#circuit={"cols":[["X","Z"]]} """, escape_url=False) assert_links_to( circuit, 'http://algassert.com/quirk#circuit=' '%7B%22cols%22%3A%5B%5B%22X%22%2C%22Z%22%5D%5D%7D') def test_x_cnot_split_cols(): a = cirq.NamedQubit('a') b = cirq.NamedQubit('b') c = cirq.NamedQubit('c') circuit = cirq.Circuit.from_ops(cirq.CNOT(a, b), cirq.X(c)) assert_links_to(circuit, """ http://algassert.com/quirk#circuit={"cols":[["•","X"],[1,1,"X"]]} """, escape_url=False) def test_cz_cnot_split_cols(): a = cirq.NamedQubit('a') b = cirq.NamedQubit('b') c = cirq.NamedQubit('c') circuit = cirq.Circuit.from_ops(cirq.CNOT(a, b), cirq.CZ(b, c)) assert_links_to(circuit, """ http://algassert.com/quirk#circuit={"cols":[["•","X"],[1,"•","Z"]]} """, escape_url=False) def test_various_known_gate_types(): a = cirq.NamedQubit('a') b = cirq.NamedQubit('b') circuit = cirq.Circuit.from_ops( cirq.X(a), cirq.X(a)**0.25, cirq.X(a)**-0.5, cirq.Z(a), cirq.Z(a)**0.5, cirq.Y(a), cirq.Y(a)**-0.25, cirq.Y(a)**cirq.Symbol('t'), cirq.H(a), cirq.measure(a), cirq.measure(a, b, key='not-relevant'), cirq.SWAP(a, b), cirq.CNOT(a, b), cirq.CNOT(b, a), cirq.CZ(a, b), ) assert_links_to(circuit, """ http://algassert.com/quirk#circuit={"cols":[ ["X"], ["X^¼"], ["X^-½"], ["Z"], ["Z^½"], ["Y"], ["Y^-¼"], ["Y^t"], ["H"], ["Measure"], ["Measure","Measure"], ["Swap","Swap"], ["•","X"], ["X","•"], ["•","Z"]]} """, escape_url=False) class MysteryOperation(cirq.Operation): def __init__(self, *qubits): self._qubits = qubits @property def qubits(self): return self._qubits def with_qubits(self, *new_qubits): return MysteryOperation(*new_qubits) class MysteryGate(cirq.SingleQubitGate): pass def test_various_unknown_gate_types(): a = cirq.NamedQubit('a') b = cirq.NamedQubit('b') circuit = cirq.Circuit.from_ops( MysteryOperation(b), cirq.SWAP(a, b)**0.5, cirq.H(a)**0.5, cirq.SingleQubitCliffordGate.X_sqrt.merged_with( cirq.SingleQubitCliffordGate.Z_sqrt).on(a), cirq.X(a)**(1/5), cirq.Y(a)**(1/5), cirq.Z(a)**(1/5), cirq.CZ(a, b)**(1/5), cirq.PhasedXPowGate(phase_exponent=0.25)(a), cirq.PhasedXPowGate(exponent=1, phase_exponent=cirq.Symbol('r'))(a), cirq.PhasedXPowGate(exponent=0.001, phase_exponent=0.1)(a) ) assert_links_to(circuit, """ http://algassert.com/quirk#circuit={"cols":[ [1,"UNKNOWN"], ["UNKNOWN", "UNKNOWN"], [{"id":"?","matrix":"{{0.853553+0.146447i,0.353553-0.353553i}, {0.353553-0.353553i,0.146447+0.853553i}}"}], [{"id":"?","matrix":"{{0.5+0.5i,0.5+0.5i},{0.5-0.5i,-0.5+0.5i}}"}], [{"id":"?", "matrix":"{{0.904508+0.293893i, 0.095492-0.293893i}, {0.095492-0.293893i, 0.904508+0.293893i}}"}], [{"id":"?", "matrix":"{{0.904508+0.293893i, 0.293893+0.095492i}, {-0.293893-0.095492i, 0.904508+0.293893i}}"}], [{"id":"?", "matrix":"{{1, 0}, {0, 0.809017+0.587785i}}"}], ["UNKNOWN", "UNKNOWN"], [{"id":"?", "matrix":"{{0, 0.707107+0.707107i}, {0.707107-0.707107i, 0}}"}], ["UNKNOWN"], [{"id":"?", "matrix":"{{0.999998+0.001571i,0.000488-0.001493i}, {-0.000483-0.001495i,0.999998+0.001571i}}"}] ]} """, escape_url=False, prefer_unknown_gate_to_failure=True) def test_unrecognized_single_qubit_gate_with_matrix(): a = cirq.NamedQubit('a') circuit = cirq.Circuit.from_ops( cirq.X(a)**0.2731, ) assert_links_to(circuit, """ http://algassert.com/quirk#circuit={"cols":[[{ "id":"?", "matrix":"{ {0.826988+0.378258i, 0.173012-0.378258i}, {0.173012-0.378258i, 0.826988+0.378258i} }"}]]} """, escape_url=False) def test_unknown_gate(): class UnknownGate(cirq.SingleQubitGate): pass a = cirq.NamedQubit('a') circuit = cirq.Circuit.from_ops(UnknownGate()(a)) with pytest.raises(TypeError): _ = circuit_to_quirk_url(circuit) with pytest.raises(TypeError): _ = circuit_to_quirk_url(circuit, escape_url=False) assert_links_to(circuit, """ http://algassert.com/quirk#circuit={"cols":[["UNKNOWN"]]} """, prefer_unknown_gate_to_failure=True, escape_url=False) def test_controlled_gate(): a, b, c, d = cirq.LineQubit.range(4) circuit = cirq.Circuit.from_ops( cirq.ControlledGate(cirq.ControlledGate(cirq.CZ)).on(a, d, c, b)) assert_links_to(circuit, """ http://algassert.com/quirk#circuit={"cols":[["•","Z","•", "•"]]} """, escape_url=False) # Doesn't merge. circuit = cirq.Circuit.from_ops( cirq.ControlledGate(cirq.X).on(a, b), cirq.ControlledGate(cirq.Z).on(c, d)) assert_links_to(circuit, """ http://algassert.com/quirk#circuit={"cols":[["•","X"],[1,1,"•", "Z"]]} """, escape_url=False) # Unknown sub-gate. circuit = cirq.Circuit.from_ops( cirq.ControlledGate(MysteryGate()).on(a, b)) assert_links_to(circuit, """ http://algassert.com/quirk#circuit={"cols":[["UNKNOWN","UNKNOWN"]]} """, escape_url=False, prefer_unknown_gate_to_failure=True) def test_toffoli(): a, b, c, d = cirq.LineQubit.range(4) # Raw. circuit = cirq.Circuit.from_ops( cirq.TOFFOLI(a, b, c)) assert_links_to(circuit, """ http://algassert.com/quirk#circuit={"cols":[["•","•","X"]]} """, escape_url=False) # With exponent. Doesn't merge with other operation. circuit = cirq.Circuit.from_ops( cirq.CCX(a, b, c)**0.5, cirq.H(d)) assert_links_to(circuit, """ http://algassert.com/quirk#circuit={"cols":[ ["•","•","X^½"],[1,1,1,"H"]]} """, escape_url=False) # Unknown exponent. circuit = cirq.Circuit.from_ops( cirq.CCX(a, b, c)**0.01) assert_links_to(circuit, """ http://algassert.com/quirk#circuit={"cols":[ ["UNKNOWN","UNKNOWN","UNKNOWN"] ]} """, escape_url=False, prefer_unknown_gate_to_failure=True) def test_fredkin(): a, b, c = cirq.LineQubit.range(3) circuit = cirq.Circuit.from_ops( cirq.FREDKIN(a, b, c)) assert_links_to(circuit, """ http://algassert.com/quirk#circuit={"cols":[["•","Swap","Swap"]]} """, escape_url=False) # Doesn't merge. x, y, z = cirq.LineQubit.range(3, 6) circuit = cirq.Circuit.from_ops( cirq.CSWAP(a, b, c), cirq.CSWAP(x, y, z)) assert_links_to(circuit, """ http://algassert.com/quirk#circuit={"cols":[ ["•","Swap","Swap"], [1,1,1,"•","Swap","Swap"] ]} """, escape_url=False) def test_ccz(): a, b, c, d = cirq.LineQubit.range(4) # Raw. circuit = cirq.Circuit.from_ops( cirq.CCZ(a, b, c)) assert_links_to(circuit, """ http://algassert.com/quirk#circuit={"cols":[["•","•","Z"]]} """, escape_url=False) # Symbolic exponent. circuit = cirq.Circuit.from_ops( cirq.CCZ(a, b, c)**cirq.Symbol('t')) assert_links_to(circuit, """ http://algassert.com/quirk#circuit={"cols":[["•","•","Z^t"]]} """, escape_url=False) # Unknown exponent. circuit = cirq.Circuit.from_ops( cirq.CCZ(a, b, c)**0.01) assert_links_to(circuit, """ http://algassert.com/quirk#circuit={"cols":[ ["UNKNOWN","UNKNOWN","UNKNOWN"] ]} """, escape_url=False, prefer_unknown_gate_to_failure=True) # With exponent. Doesn't merge with other operation. circuit = cirq.Circuit.from_ops( cirq.CCZ(a, b, c)**0.5, cirq.H(d)) assert_links_to(circuit, """ http://algassert.com/quirk#circuit={"cols":[ ["•","•","Z^½"],[1,1,1,"H"]]} """, escape_url=False) ``` #### File: line/placement/optimization_test.py ```python import math import pytest from cirq.google.line.placement import optimization from cirq.testing.mock import mock def test_accept_accepts(): # Cost constant, should be accepted. assert optimization._accept(0.0, 0.0, 1.0)[0] # Cost improved, should be accepted. assert optimization._accept(0.0, -0.1, 1.0)[0] # Cost decreased, should be accepted if low sample. assert optimization._accept(0.0, 1.0, 1.0)[0] # Cost decreased, should be accepted if below the threshold (exp(-1.0)) assert optimization._accept(1.0 / math.e - 1e-9, 1.0, 1.0)[0] def test_accept_rejects(): # Cost decreased, should be rejected if high sample. assert not optimization._accept(1.0 - 1e-9, 1.0, 1.0)[0] # Cost decreased, should be rejected if above the threshold (exp(-1.0)) assert not optimization._accept(1.0 / math.e + 1e-9, 1.0, 1.0)[0] def test_anneal_minimize_improves_when_better(): assert optimization.anneal_minimize( 'initial', lambda s: 1.0 if s == 'initial' else 0.0, lambda s: 'better', lambda: 1.0, 1.0, 0.5, 0.5, 1) == 'better' def test_anneal_minimize_keeps_when_worse_and_discarded(): assert optimization.anneal_minimize( 'initial', lambda s: 0.0 if s == 'initial' else 1.0, lambda s: 'better', lambda: 0.9, 1.0, 0.5, 0.5, 1) == 'initial' def test_anneal_minimize_raises_when_wrong_cooling_factor(): with pytest.raises(ValueError): optimization.anneal_minimize( 'initial', lambda s: 1.0 if s == 'initial' else 0.0, lambda s: 'better', lambda: 1.0, 1.0, 0.5, 2.0, 1) def test_anneal_minimize_calls_trace_func(): trace_func = mock.Mock() optimization.anneal_minimize( 'initial', lambda s: 1.0 if s == 'initial' else 0.0, lambda s: 'better', lambda: 1.0, 1.0, 0.5, 0.5, 1, trace_func=trace_func) trace_func.assert_has_calls([mock.call('initial', 1.0, 1.0, 1.0, True), mock.call('better', 1.0, 0.0, 1.0, True)]) ``` #### File: cirq/google/params_test.py ```python import pytest from cirq.google import params from cirq.study.sweeps import Linspace, Points, Product, UnitSweep, Zip def test_gen_sweep_points(): points = [0.5, 1.0, 1.5, 2.0, 2.5] sweep = { 'parameter_key': 'foo', 'points': { 'points': list(points) } } out = params._sweep_from_single_param_sweep_proto_dict(sweep) assert out == Points('foo', [0.5, 1.0, 1.5, 2.0, 2.5]) def test_gen_sweep_linspace(): sweep = { 'parameter_key': 'foo', 'linspace': { 'first_point': 0, 'last_point': 10, 'num_points': 11 } } out = params._sweep_from_single_param_sweep_proto_dict(sweep) assert out == Linspace('foo', 0, 10, 11) def test_gen_param_sweep_zip(): s1 = { 'parameter_key': 'foo', 'points': { 'points': [1, 2, 3] } } s2 = { 'parameter_key': 'bar', 'points': { 'points': [4, 5] } } sweep = { 'sweeps': [s1, s2] } out = params._sweep_from_param_sweep_zip_proto_dict(sweep) assert out == Points('foo', [1, 2, 3]) + Points('bar', [4, 5]) def test_gen_empty_param_sweep(): out = params.sweep_from_proto_dict({}) assert out == UnitSweep def test_gen_param_sweep(): s1 = { 'parameter_key': 'foo', 'points': { 'points': [1, 2, 3] } } s2 = { 'parameter_key': 'bar', 'points': { 'points': [4, 5] } } ps = { 'sweep': { 'factors': [ { 'sweeps': [s1] }, { 'sweeps': [s2] } ] } } out = params.sweep_from_proto_dict(ps) assert out == Product(Zip(Points('foo', [1, 2, 3])), Zip(Points('bar', [4, 5]))) def test_empty_param_sweep_keys(): assert params.sweep_from_proto_dict({}).keys == [] def test_sweep_from_proto_dict_missing_type(): s1 = { 'parameter_key': 'foo', } ps = { 'sweep': { 'factors': [ { 'sweeps': [s1] }, ] } } with pytest.raises(ValueError): params.sweep_from_proto_dict(ps) def test_param_sweep_keys(): s11 = { 'parameter_key': 'foo', 'points': { 'points': range(5) }, } s12 = { 'parameter_key': 'bar', 'points': { 'points': range(7) }, } s21 = { 'parameter_key': 'baz', 'points': { 'points': range(11) }, } s22 = { 'parameter_key': 'qux', 'points': { 'points': range(13) } } ps = { 'sweep': { 'factors': [ { 'sweeps': [s11, s12], }, { 'sweeps': [s21, s22] } ] } } out = params.sweep_from_proto_dict(ps) assert out.keys == ['foo', 'bar', 'baz', 'qux'] def test_empty_param_sweep_size(): assert len(params.sweep_from_proto_dict({})) == 1 def test_param_sweep_size(): s11 = { 'parameter_key': '11', 'linspace': { 'first_point': 0, 'last_point': 10, 'num_points': 5 } } s12 = { 'parameter_key': '12', 'points': { 'points': range(7) } } s21 = { 'parameter_key': '21', 'linspace': { 'first_point': 0, 'last_point': 10, 'num_points': 11 } } s22 = { 'parameter_key': '22', 'points': { 'points': range(13) } } ps = { 'sweep': { 'factors': [ { 'sweeps': [s11, s12], }, { 'sweeps': [s21, s22] } ] } } # Sweeps sx1 and sx2 are zipped, so should use num number of points. # These are then producted, so this should multiply number of points. assert len(params.sweep_from_proto_dict(ps)) == 5 * 11 def test_param_sweep_size_no_sweeps(): ps = { 'sweep': { 'factors': [ { }, { } ] } } assert len(params.sweep_from_proto_dict(ps)) == 1 def example_sweeps(): empty_sweep = {} empty_product = { 'sweep': {} } empty_zip = { 'sweep': { 'factors': [{}, {}] } } s11 = { 'parameter_key': '11', 'linspace': { 'first_point': 0, 'last_point': 10, 'num_points': 5 } } s12 = { 'parameter_key': '12', 'points': { 'points': range(7) } } s21 = { 'parameter_key': '21', 'linspace': { 'first_point': 0, 'last_point': 10, 'num_points': 11 } } s22 = { 'parameter_key': '22', 'points': { 'points': range(13) } } full_sweep = { 'sweep': { 'factors': [ { 'sweeps': [s11, s12], }, { 'sweeps': [s21, s22] } ] } } return [empty_sweep, empty_product, empty_zip, full_sweep] @pytest.mark.parametrize('param_sweep', example_sweeps()) def test_param_sweep_size_versus_gen(param_sweep): sweep = params.sweep_from_proto_dict(param_sweep) print(sweep) predicted_size = len(sweep) out = list(sweep) assert len(out) == predicted_size @pytest.mark.parametrize('sweep,expected', [ ( UnitSweep, UnitSweep ), ( Linspace('a', 0, 10, 25), Product(Zip(Linspace('a', 0, 10, 25))) ), ( Points('a', [1, 2, 3]), Product(Zip(Points('a', [1, 2, 3]))) ), ( Zip(Linspace('a', 0, 1, 5), Points('b', [1, 2, 3])), Product(Zip(Linspace('a', 0, 1, 5), Points('b', [1, 2, 3]))), ), ( Product(Linspace('a', 0, 1, 5), Points('b', [1, 2, 3])), Product(Zip(Linspace('a', 0, 1, 5)), Zip(Points('b', [1, 2, 3]))), ), ( Product( Zip(Points('a', [1, 2, 3]), Points('b', [4, 5, 6])), Linspace('c', 0, 1, 5), ), Product( Zip(Points('a', [1, 2, 3]), Points('b', [4, 5, 6])), Zip(Linspace('c', 0, 1, 5)), ), ), ( Product( Zip(Linspace('a', 0, 1, 5), Points('b', [1, 2, 3])), Zip(Linspace('c', 0, 1, 8), Points('d', [1, 0.5, 0.25, 0.125])), ), Product( Zip(Linspace('a', 0, 1, 5), Points('b', [1, 2, 3])), Zip(Linspace('c', 0, 1, 8), Points('d', [1, 0.5, 0.25, 0.125])), ), ), ]) def test_sweep_to_proto_dict(sweep, expected): proto = params.sweep_to_proto_dict(sweep) out = params.sweep_from_proto_dict(proto) assert out == expected @pytest.mark.parametrize('bad_sweep', [ Zip(Product(Linspace('a', 0, 10, 25), Linspace('b', 0, 10, 25))), ]) def test_sweep_to_proto_fail(bad_sweep): with pytest.raises(ValueError): params.sweep_to_proto_dict(bad_sweep) ``` #### File: google/sim/xmon_simulator.py ```python import math import collections from typing import cast, Dict, Iterator, List, Set, Union from typing import Tuple # pylint: disable=unused-import import numpy as np from cirq import circuits, ops, study, protocols, optimizers from cirq.sim import simulator from cirq.google import convert_to_xmon_gates from cirq.google.sim import xmon_stepper class XmonOptions: """XmonOptions for the XmonSimulator. Attributes: num_prefix_qubits: Sharding of the wave function is performed over 2 raised to this value number of qubits. min_qubits_before_shard: Sharding will be done only for this number of qubits or more. The default is 18. use_processes: Whether or not to use processes instead of threads. Processes can improve the performance slightly (varies by machine but on the order of 10 percent faster). However this varies significantly by architecture, and processes should not be used for interactive use on Windows. """ def __init__(self, num_shards: int=None, min_qubits_before_shard: int=18, use_processes: bool=False) -> None: """XmonSimulator options constructor. Args: num_shards: sharding will be done for the greatest value of a power of two less than this value. If None, the default will be used which is the smallest power of two less than or equal to the number of CPUs. min_qubits_before_shard: Sharding will be done only for this number of qubits or more. The default is 18. use_processes: Whether or not to use processes instead of threads. Processes can improve the performance slightly (varies by machine but on the order of 10 percent faster). However this varies significantly by architecture, and processes should not be used for interactive python use on Windows. """ assert num_shards is None or num_shards > 0, ( "Num_shards cannot be less than 1.") if num_shards is None: self.num_prefix_qubits = None else: self.num_prefix_qubits = int(math.log(num_shards, 2)) assert min_qubits_before_shard >= 0, ( 'Min_qubit_before_shard must be positive.') self.min_qubits_before_shard = min_qubits_before_shard self.use_processes = use_processes class XmonSimulator(simulator.SimulatesSamples, simulator.SimulatesIntermediateWaveFunction): """XmonSimulator for Xmon class quantum circuits. This simulator has different methods for different types of simulations. For simulations that mimic the quantum hardware, the run methods are defined in the SimulatesSamples interface: run run_sweep These methods do not return or give access to the full wave function. To get access to the wave function during a simulation, including being able to set the wave function, the simulate methods are defined in the SimulatesFinalWaveFunction interface: simulate simulate_sweep simulate_moment_steps (for stepping through a circuit moment by moment) """ def __init__(self, options: XmonOptions = None) -> None: """Construct a XmonSimulator. Args: options: XmonOptions configuring the simulation. """ self.options = options or XmonOptions() def _run( self, circuit: circuits.Circuit, param_resolver: study.ParamResolver, repetitions: int, ) -> Dict[str, List[np.ndarray]]: """See definition in `cirq.SimulatesSamples`.""" xmon_circuit, keys = self._to_xmon_circuit( circuit, param_resolver) if xmon_circuit.are_all_measurements_terminal(): return self._run_sweep_sample(xmon_circuit, repetitions) else: return self._run_sweep_repeat(keys, xmon_circuit, repetitions) def _run_sweep_repeat(self, keys, circuit, repetitions): measurements = {k: [] for k in keys} # type: Dict[str, List[np.ndarray]] for _ in range(repetitions): all_step_results = self._base_iterator( circuit, qubit_order=ops.QubitOrder.DEFAULT, initial_state=0) for step_result in all_step_results: for k, v in step_result.measurements.items(): measurements[k].append(np.array(v, dtype=bool)) return {k: np.array(v) for k, v in measurements.items()} def _run_sweep_sample(self, circuit, repetitions): all_step_results = self._base_iterator( circuit, qubit_order=ops.QubitOrder.DEFAULT, initial_state=0, perform_measurements=False) step_result = None for step_result in all_step_results: pass if step_result is None: return {} measurement_ops = [op for _, op, _ in circuit.findall_operations_with_gate_type( ops.MeasurementGate)] return step_result.sample_measurement_ops(measurement_ops, repetitions) def _simulator_iterator( self, circuit: circuits.Circuit, param_resolver: study.ParamResolver, qubit_order: ops.QubitOrderOrList, initial_state: Union[int, np.ndarray], perform_measurements: bool = True, ) -> Iterator['XmonStepResult']: """See definition in `cirq.SimulatesIntermediateWaveFunction`.""" param_resolver = param_resolver or study.ParamResolver({}) xmon_circuit, _ = self._to_xmon_circuit(circuit, param_resolver) return self._base_iterator(xmon_circuit, qubit_order, initial_state, perform_measurements) def _base_iterator( self, circuit: circuits.Circuit, qubit_order: ops.QubitOrderOrList, initial_state: Union[int, np.ndarray], perform_measurements: bool=True, ) -> Iterator['XmonStepResult']: """See _simulator_iterator.""" qubits = ops.QubitOrder.as_qubit_order(qubit_order).order_for( circuit.all_qubits()) qubit_map = {q: i for i, q in enumerate(reversed(qubits))} if isinstance(initial_state, np.ndarray): initial_state = initial_state.astype(dtype=np.complex64, casting='safe') with xmon_stepper.Stepper( num_qubits=len(qubits), num_prefix_qubits=self.options.num_prefix_qubits, initial_state=initial_state, min_qubits_before_shard=self.options.min_qubits_before_shard, use_processes=self.options.use_processes ) as stepper: for moment in circuit: measurements = collections.defaultdict( list) # type: Dict[str, List[bool]] phase_map = {} # type: Dict[Tuple[int, ...], float] for op in moment.operations: gate = cast(ops.GateOperation, op).gate if isinstance(gate, ops.ZPowGate): index = qubit_map[op.qubits[0]] phase_map[(index,)] = cast(float, gate.exponent) elif isinstance(gate, ops.CZPowGate): index0 = qubit_map[op.qubits[0]] index1 = qubit_map[op.qubits[1]] phase_map[(index0, index1)] = cast(float, gate.exponent) elif isinstance(gate, ops.XPowGate): index = qubit_map[op.qubits[0]] stepper.simulate_w( index=index, half_turns=gate.exponent, axis_half_turns=0) elif isinstance(gate, ops.YPowGate): index = qubit_map[op.qubits[0]] stepper.simulate_w( index=index, half_turns=gate.exponent, axis_half_turns=0.5) elif isinstance(gate, ops.PhasedXPowGate): index = qubit_map[op.qubits[0]] stepper.simulate_w( index=index, half_turns=gate.exponent, axis_half_turns=gate.phase_exponent) elif isinstance(gate, ops.MeasurementGate): if perform_measurements: invert_mask = ( gate.invert_mask or len(op.qubits) * (False,)) for qubit, invert in zip(op.qubits, invert_mask): index = qubit_map[qubit] result = stepper.simulate_measurement(index) if invert: result = not result measurements[cast(str, gate.key)].append(result) else: # coverage: ignore raise TypeError('{!r} is not supported by the ' 'xmon simulator.'.format(gate)) stepper.simulate_phases(phase_map) yield XmonStepResult(stepper, qubit_map, measurements) def _to_xmon_circuit( self, circuit: circuits.Circuit, param_resolver: study.ParamResolver ) -> Tuple[circuits.Circuit, Set[str]]: # TODO: Use one optimization pass. xmon_circuit = protocols.resolve_parameters(circuit, param_resolver) convert_to_xmon_gates.ConvertToXmonGates().optimize_circuit( xmon_circuit) optimizers.DropEmptyMoments().optimize_circuit(xmon_circuit) keys = find_measurement_keys(xmon_circuit) return xmon_circuit, keys def find_measurement_keys(circuit: circuits.Circuit) -> Set[str]: keys = set() # type: Set[str] for _, _, gate in circuit.findall_operations_with_gate_type( ops.MeasurementGate): key = gate.key if key in keys: raise ValueError('Repeated Measurement key {}'.format(key)) keys.add(key) return keys class XmonStepResult(simulator.StepResult): """Results of a step of the simulator. Attributes: qubit_map: A map from the Qubits in the Circuit to the the index of this qubit for a canonical ordering. This canonical ordering is used to define the state (see the state_vector() method). measurements: A dictionary from measurement gate key to measurement results, ordered by the qubits that the measurement operates on. """ def __init__( self, stepper: xmon_stepper.Stepper, qubit_map: Dict, measurements: Dict[str, np.ndarray]) -> None: self.qubit_map = qubit_map or {} self.measurements = measurements or collections.defaultdict(list) self._stepper = stepper def state_vector(self) -> np.ndarray: """Return the state (wave function) at this point in the computation. The state is returned in the computational basis with these basis states defined by the qubit_map. In particular the value in the qubit_map is the index of the qubit, and these are translated into binary vectors where the last qubit is the 1s bit of the index, the second-to-last is the 2s bit of the index, and so forth (i.e. big endian ordering). Example: qubit_map: {QubitA: 0, QubitB: 1, QubitC: 2} Then the returned vector will have indices mapped to qubit basis states like the following table | QubitA | QubitB | QubitC :-: | :----: | :----: | :----: 0 | 0 | 0 | 0 1 | 0 | 0 | 1 2 | 0 | 1 | 0 3 | 0 | 1 | 1 4 | 1 | 0 | 0 5 | 1 | 0 | 1 6 | 1 | 1 | 0 7 | 1 | 1 | 1 """ return self._stepper.current_state def set_state(self, state: Union[int, np.ndarray]): """Updates the state of the simulator to the given new state. Args: state: If this is an int, then this is the state to reset the stepper to, expressed as an integer of the computational basis. Integer to bitwise indices is little endian. Otherwise if this is a np.ndarray this must be the correct size and have dtype of np.complex64. Raises: ValueError if the state is incorrectly sized or not of the correct dtype. """ self._stepper.reset_state(state) def sample(self, qubits: List[ops.QubitId], repetitions: int=1): """Samples from the wave function at this point in the computation. Note that this does not collapse the wave function. Returns: Measurement results with True corresponding to the |1> state. The outer list is for repetitions, and the inner corresponds to measurements ordered by the supplied qubits. """ return self._stepper.sample_measurements( indices=[self.qubit_map[q] for q in qubits], repetitions=repetitions) ``` #### File: cirq/ops/controlled_operation.py ```python from typing import Union, Any, Optional import numpy as np from cirq import protocols, linalg, value from cirq.ops import raw_types from cirq.type_workarounds import NotImplementedType @value.value_equality class ControlledOperation(raw_types.Operation): def __init__(self, control: raw_types.QubitId, sub_operation: raw_types.Operation): self.control = control self.sub_operation = sub_operation @property def qubits(self): return (self.control,) + self.sub_operation.qubits def with_qubits(self, *new_qubits): return ControlledOperation( new_qubits[0], self.sub_operation.with_qubits(*new_qubits[1:])) def _decompose_(self): result = protocols.decompose_once(self.sub_operation, NotImplemented) if result is NotImplemented: return NotImplemented return [ControlledOperation(self.control, op) for op in result] def _value_equality_values_(self): return tuple([self.control, self.sub_operation]) def _has_unitary_(self) -> bool: return protocols.has_unitary(self.sub_operation) def _unitary_(self) -> Union[np.ndarray, NotImplementedType]: sub_matrix = protocols.unitary(self.sub_operation, None) if sub_matrix is None: return NotImplemented return linalg.block_diag(np.eye(sub_matrix.shape[0]), sub_matrix) def __str__(self): return 'C({}){}'.format(self.control, str(self.sub_operation)) def __repr__(self): return 'cirq.ControlledOperation(control={!r},' \ ' sub_operation={!r})'.format(self.control, self.sub_operation) def _is_parameterized_(self) -> bool: return protocols.is_parameterized(self.sub_operation) def _resolve_parameters_(self, resolver): new_sub_op = protocols.resolve_parameters(self.sub_operation, resolver) return ControlledOperation(self.control, new_sub_op) def _trace_distance_bound_(self) -> float: return protocols.trace_distance_bound(self.sub_operation) def __pow__(self, exponent: Any) -> 'ControlledOperation': new_sub_op = protocols.pow(self.sub_operation, exponent, NotImplemented) if new_sub_op is NotImplemented: return NotImplemented return ControlledOperation(self.control, new_sub_op) def _circuit_diagram_info_(self, args: protocols.CircuitDiagramInfoArgs ) -> Optional[protocols.CircuitDiagramInfo]: sub_args = protocols.CircuitDiagramInfoArgs( known_qubit_count=(args.known_qubit_count - 1 if args.known_qubit_count is not None else None), known_qubits=(args.known_qubits[1:] if args.known_qubits is not None else None), use_unicode_characters=args.use_unicode_characters, precision=args.precision, qubit_map=args.qubit_map ) sub_info = protocols.circuit_diagram_info(self.sub_operation, sub_args, None) if sub_info is None: return NotImplemented return protocols.CircuitDiagramInfo( wire_symbols=('@',) + sub_info.wire_symbols, exponent=sub_info.exponent) ``` #### File: cirq/ops/pauli_string_test.py ```python import itertools import numpy as np import pytest from cirq.testing import ( EqualsTester, ) import cirq def _make_qubits(n): return [cirq.NamedQubit('q{}'.format(i)) for i in range(n)] def _sample_qubit_pauli_maps(): qubits = _make_qubits(3) paulis_or_none = (None, cirq.X, cirq.Y, cirq.Z) for paulis in itertools.product(paulis_or_none, repeat=len(qubits)): yield {qubit: pauli for qubit, pauli in zip(qubits, paulis) if pauli is not None} def test_eq_ne_hash(): q0, q1, q2 = _make_qubits(3) eq = EqualsTester() eq.make_equality_group( lambda: cirq.PauliString({}), lambda: cirq.PauliString({}, False)) eq.add_equality_group(cirq.PauliString({}, True)) for q, pauli in itertools.product((q0, q1), (cirq.X, cirq.Y, cirq.Z)): eq.add_equality_group(cirq.PauliString({q: pauli}, False)) eq.add_equality_group(cirq.PauliString({q: pauli}, True)) for q, p0, p1 in itertools.product((q0, q1), (cirq.X, cirq.Y, cirq.Z), (cirq.X, cirq.Y, cirq.Z)): eq.add_equality_group(cirq.PauliString({q: p0, q2: p1}, False)) def test_equal_up_to_sign(): q0, = _make_qubits(1) assert cirq.PauliString({}, False).equal_up_to_sign( cirq.PauliString({}, False)) assert cirq.PauliString({}, True).equal_up_to_sign( cirq.PauliString({}, True)) assert cirq.PauliString({}, False).equal_up_to_sign( cirq.PauliString({}, True)) assert cirq.PauliString({q0: cirq.X}, False).equal_up_to_sign( cirq.PauliString({q0: cirq.X}, False)) assert cirq.PauliString({q0: cirq.X}, True).equal_up_to_sign( cirq.PauliString({q0: cirq.X}, True)) assert cirq.PauliString({q0: cirq.X}, False).equal_up_to_sign( cirq.PauliString({q0: cirq.X}, True)) assert not cirq.PauliString({q0: cirq.X}, False).equal_up_to_sign( cirq.PauliString({q0: cirq.Y}, False)) assert not cirq.PauliString({q0: cirq.X}, True).equal_up_to_sign( cirq.PauliString({q0: cirq.Y}, True)) assert not cirq.PauliString({q0: cirq.X}, False).equal_up_to_sign( cirq.PauliString({q0: cirq.Y}, True)) assert not cirq.PauliString({q0: cirq.X}, False).equal_up_to_sign( cirq.PauliString({}, False)) assert not cirq.PauliString({q0: cirq.X}, True).equal_up_to_sign( cirq.PauliString({}, True)) assert not cirq.PauliString({q0: cirq.X}, False).equal_up_to_sign( cirq.PauliString({}, True)) @pytest.mark.parametrize('pauli', (cirq.X, cirq.Y, cirq.Z)) def test_from_single(pauli): q0, = _make_qubits(1) assert (cirq.PauliString.from_single(q0, pauli) == cirq.PauliString({q0: pauli})) @pytest.mark.parametrize('qubit_pauli_map', _sample_qubit_pauli_maps()) def test_getitem(qubit_pauli_map): other = cirq.NamedQubit('other') pauli_string = cirq.PauliString(qubit_pauli_map) for key in qubit_pauli_map: assert qubit_pauli_map[key] == pauli_string[key] with pytest.raises(KeyError): _ = qubit_pauli_map[other] with pytest.raises(KeyError): _ = pauli_string[other] @pytest.mark.parametrize('qubit_pauli_map', _sample_qubit_pauli_maps()) def test_get(qubit_pauli_map): other = cirq.NamedQubit('other') pauli_string = cirq.PauliString(qubit_pauli_map) for key in qubit_pauli_map: assert qubit_pauli_map.get(key) == pauli_string.get(key) assert qubit_pauli_map.get(other) == pauli_string.get(other) == None # pylint: disable=too-many-function-args assert qubit_pauli_map.get(other, 5) == pauli_string.get(other, 5) == 5 # pylint: enable=too-many-function-args @pytest.mark.parametrize('qubit_pauli_map', _sample_qubit_pauli_maps()) def test_contains(qubit_pauli_map): other = cirq.NamedQubit('other') pauli_string = cirq.PauliString(qubit_pauli_map) for key in qubit_pauli_map: assert key in pauli_string assert other not in pauli_string @pytest.mark.parametrize('qubit_pauli_map', _sample_qubit_pauli_maps()) def test_keys(qubit_pauli_map): pauli_string = cirq.PauliString(qubit_pauli_map) assert (len(qubit_pauli_map.keys()) == len(pauli_string.keys()) == len(pauli_string.qubits)) assert (set(qubit_pauli_map.keys()) == set(pauli_string.keys()) == set(pauli_string.qubits)) @pytest.mark.parametrize('qubit_pauli_map', _sample_qubit_pauli_maps()) def test_items(qubit_pauli_map): pauli_string = cirq.PauliString(qubit_pauli_map) assert len(qubit_pauli_map.items()) == len(pauli_string.items()) assert set(qubit_pauli_map.items()) == set(pauli_string.items()) @pytest.mark.parametrize('qubit_pauli_map', _sample_qubit_pauli_maps()) def test_values(qubit_pauli_map): pauli_string = cirq.PauliString(qubit_pauli_map) assert len(qubit_pauli_map.values()) == len(pauli_string.values()) assert set(qubit_pauli_map.values()) == set(pauli_string.values()) @pytest.mark.parametrize('qubit_pauli_map', _sample_qubit_pauli_maps()) def test_len(qubit_pauli_map): pauli_string = cirq.PauliString(qubit_pauli_map) assert len(qubit_pauli_map) == len(pauli_string) @pytest.mark.parametrize('qubit_pauli_map', _sample_qubit_pauli_maps()) def test_iter(qubit_pauli_map): pauli_string = cirq.PauliString(qubit_pauli_map) assert len(tuple(qubit_pauli_map)) == len(tuple(pauli_string)) assert set(tuple(qubit_pauli_map)) == set(tuple(pauli_string)) # NamedQubit name repr in Python2 is different: u'q0' vs 'q0' @cirq.testing.only_test_in_python3 def test_repr(): q0, q1, q2 = _make_qubits(3) pauli_string = cirq.PauliString({q2: cirq.X, q1: cirq.Y, q0: cirq.Z}) assert (repr(pauli_string) == "cirq.PauliString({cirq.NamedQubit('q0'): cirq.Z, " "cirq.NamedQubit('q1'): cirq.Y, cirq.NamedQubit('q2'): " "cirq.X}, False)") assert (repr(pauli_string.negate()) == "cirq.PauliString({cirq.NamedQubit('q0'): cirq.Z, " "cirq.NamedQubit('q1'): cirq.Y, cirq.NamedQubit('q2'): " "cirq.X}, True)") def test_str(): q0, q1, q2 = _make_qubits(3) pauli_string = cirq.PauliString({q2: cirq.X, q1: cirq.Y, q0: cirq.Z}) assert str(pauli_string) == '{+, q0:Z, q1:Y, q2:X}' assert str(pauli_string.negate()) == '{-, q0:Z, q1:Y, q2:X}' @pytest.mark.parametrize('map1,map2,out', (lambda q0, q1, q2: ( ({}, {}, {}), ({q0: cirq.X}, {q0: cirq.Y}, {q0: (cirq.X, cirq.Y)}), ({q0: cirq.X}, {q1: cirq.X}, {}), ({q0: cirq.Y, q1: cirq.Z}, {q1: cirq.Y, q2: cirq.X}, {q1: (cirq.Z, cirq.Y)}), ({q0: cirq.X, q1: cirq.Y, q2: cirq.Z}, {}, {}), ({q0: cirq.X, q1: cirq.Y, q2: cirq.Z}, {q0: cirq.Y, q1: cirq.Z}, {q0: (cirq.X, cirq.Y), q1: (cirq.Y, cirq.Z)}), ))(*_make_qubits(3))) def test_zip_items(map1, map2, out): ps1 = cirq.PauliString(map1) ps2 = cirq.PauliString(map2) out_actual = tuple(ps1.zip_items(ps2)) assert len(out_actual) == len(out) assert dict(out_actual) == out @pytest.mark.parametrize('map1,map2,out', (lambda q0, q1, q2: ( ({}, {}, ()), ({q0: cirq.X}, {q0: cirq.Y}, ((cirq.X, cirq.Y),)), ({q0: cirq.X}, {q1: cirq.X}, ()), ({q0: cirq.Y, q1: cirq.Z}, {q1: cirq.Y, q2: cirq.X}, ((cirq.Z, cirq.Y),)), ({q0: cirq.X, q1: cirq.Y, q2: cirq.Z}, {}, ()), ({q0: cirq.X, q1: cirq.Y, q2: cirq.Z}, {q0: cirq.Y, q1: cirq.Z}, # Order not necessary ((cirq.X, cirq.Y), (cirq.Y, cirq.Z))) ))(*_make_qubits(3))) def test_zip_paulis(map1, map2, out): ps1 = cirq.PauliString(map1) ps2 = cirq.PauliString(map2) out_actual = tuple(ps1.zip_paulis(ps2)) assert len(out_actual) == len(out) if len(out) <= 1: assert out_actual == out assert set(out_actual) == set(out) # Ignore output order def test_commutes_with(): q0, q1, q2 = _make_qubits(3) assert cirq.PauliString.from_single(q0, cirq.X).commutes_with( cirq.PauliString.from_single(q0, cirq.X)) assert not cirq.PauliString.from_single(q0, cirq.X).commutes_with( cirq.PauliString.from_single(q0, cirq.Y)) assert cirq.PauliString.from_single(q0, cirq.X).commutes_with( cirq.PauliString.from_single(q1, cirq.X)) assert cirq.PauliString.from_single(q0, cirq.X).commutes_with( cirq.PauliString.from_single(q1, cirq.Y)) assert cirq.PauliString({q0: cirq.X, q1: cirq.Y}).commutes_with( cirq.PauliString({q0: cirq.X, q1: cirq.Y})) assert not cirq.PauliString({q0: cirq.X, q1: cirq.Y}).commutes_with( cirq.PauliString({q0: cirq.X, q1: cirq.Z})) assert cirq.PauliString({q0: cirq.X, q1: cirq.Y}).commutes_with( cirq.PauliString({q0: cirq.Y, q1: cirq.X})) assert cirq.PauliString({q0: cirq.X, q1: cirq.Y}).commutes_with( cirq.PauliString({q0: cirq.Y, q1: cirq.Z})) assert cirq.PauliString({q0: cirq.X, q1: cirq.Y}).commutes_with( cirq.PauliString({q0: cirq.X, q1: cirq.Y, q2: cirq.Z})) assert not cirq.PauliString({q0: cirq.X, q1: cirq.Y}).commutes_with( cirq.PauliString({q0: cirq.X, q1: cirq.Z, q2: cirq.Z})) assert cirq.PauliString({q0: cirq.X, q1: cirq.Y}).commutes_with( cirq.PauliString({q0: cirq.Y, q1: cirq.X, q2: cirq.Z})) assert cirq.PauliString({q0: cirq.X, q1: cirq.Y}).commutes_with( cirq.PauliString({q0: cirq.Y, q1: cirq.Z, q2: cirq.X})) assert cirq.PauliString({q0: cirq.X, q1: cirq.Y}).commutes_with( cirq.PauliString({q2: cirq.X, q1: cirq.Y})) assert not cirq.PauliString({q0: cirq.X, q1: cirq.Y}).commutes_with( cirq.PauliString({q2: cirq.X, q1: cirq.Z})) assert not cirq.PauliString({q0: cirq.X, q1: cirq.Y}).commutes_with( cirq.PauliString({q2: cirq.Y, q1: cirq.X})) assert not cirq.PauliString({q0: cirq.X, q1: cirq.Y}).commutes_with( cirq.PauliString({q2: cirq.Y, q1: cirq.Z})) def test_negate(): q0, q1 = _make_qubits(2) qubit_pauli_map = {q0: cirq.X, q1: cirq.Y} ps1 = cirq.PauliString(qubit_pauli_map) ps2 = cirq.PauliString(qubit_pauli_map, True) assert ps1.negate() == -ps1 == ps2 assert ps1 == ps2.negate() == -ps2 assert ps1.negate().negate() == ps1 def test_pos(): q0, q1 = _make_qubits(2) qubit_pauli_map = {q0: cirq.X, q1: cirq.Y} ps1 = cirq.PauliString(qubit_pauli_map) assert ps1 == +ps1 def test_map_qubits(): a, b = (cirq.NamedQubit(name) for name in 'ab') q0, q1 = _make_qubits(2) qubit_pauli_map1 = {a: cirq.X, b: cirq.Y} qubit_pauli_map2 = {q0: cirq.X, q1: cirq.Y} qubit_map = {a: q0, b: q1} ps1 = cirq.PauliString(qubit_pauli_map1) ps2 = cirq.PauliString(qubit_pauli_map2) assert ps1.map_qubits(qubit_map) == ps2 def test_to_z_basis_ops(): x0 = np.array([1,1]) / np.sqrt(2) x1 = np.array([1,-1]) / np.sqrt(2) y0 = np.array([1,1j]) / np.sqrt(2) y1 = np.array([1,-1j]) / np.sqrt(2) z0 = np.array([1,0]) z1 = np.array([0,1]) q0, q1, q2, q3, q4, q5 = _make_qubits(6) pauli_string = cirq.PauliString({q0: cirq.X, q1: cirq.X, q2: cirq.Y, q3: cirq.Y, q4: cirq.Z, q5: cirq.Z}) circuit = cirq.Circuit.from_ops( pauli_string.to_z_basis_ops()) initial_state = cirq.kron(x0, x1, y0, y1, z0, z1) z_basis_state = circuit.apply_unitary_effect_to_state(initial_state) expected_state = np.zeros(2 ** 6) expected_state[0b010101] = 1 cirq.testing.assert_allclose_up_to_global_phase( z_basis_state, expected_state, rtol=1e-7, atol=1e-7) def _assert_pass_over(ops, before, after): assert before.pass_operations_over(ops[::-1]) == after assert (after.pass_operations_over(ops, after_to_before=True) == before) @pytest.mark.parametrize('shift,t_or_f', itertools.product(range(3), (True, False))) def test_pass_operations_over_single(shift, t_or_f): q0, q1 = _make_qubits(2) X, Y, Z = (cirq.Pauli.by_relative_index(pauli, shift) for pauli in (cirq.X, cirq.Y, cirq.Z)) op0 = cirq.SingleQubitCliffordGate.from_pauli(Y)(q1) ps_before = cirq.PauliString({q0: X}, t_or_f) ps_after = ps_before _assert_pass_over([op0], ps_before, ps_after) op0 = cirq.SingleQubitCliffordGate.from_pauli(X)(q0) op1 = cirq.SingleQubitCliffordGate.from_pauli(Y)(q1) ps_before = cirq.PauliString({q0: X, q1: Y}, t_or_f) ps_after = ps_before _assert_pass_over([op0, op1], ps_before, ps_after) op0 = cirq.SingleQubitCliffordGate.from_double_map({Z: (X,False), X: (Z,False)})(q0) ps_before = cirq.PauliString({q0: X, q1: Y}, t_or_f) ps_after = cirq.PauliString({q0: Z, q1: Y}, t_or_f) _assert_pass_over([op0], ps_before, ps_after) op1 = cirq.SingleQubitCliffordGate.from_pauli(X)(q1) ps_before = cirq.PauliString({q0: X, q1: Y}, t_or_f) ps_after = ps_before.negate() _assert_pass_over([op1], ps_before, ps_after) ps_after = cirq.PauliString({q0: Z, q1: Y}, not t_or_f) _assert_pass_over([op0, op1], ps_before, ps_after) op0 = cirq.SingleQubitCliffordGate.from_pauli(Z, True)(q0) op1 = cirq.SingleQubitCliffordGate.from_pauli(X, True)(q0) ps_before = cirq.PauliString({q0: X}, t_or_f) ps_after = cirq.PauliString({q0: Y}, not t_or_f) _assert_pass_over([op0, op1], ps_before, ps_after) @pytest.mark.parametrize('shift,t_or_f1, t_or_f2,neg', itertools.product(range(3), *((True, False),)*3)) def test_pass_operations_over_double(shift, t_or_f1, t_or_f2, neg): q0, q1, q2 = _make_qubits(3) X, Y, Z = (cirq.Pauli.by_relative_index(pauli, shift) for pauli in (cirq.X, cirq.Y, cirq.Z)) op0 = cirq.PauliInteractionGate(Z, t_or_f1, X, t_or_f2)(q0, q1) ps_before = cirq.PauliString({q0: Z, q2: Y}, neg) ps_after = cirq.PauliString({q0: Z, q2: Y}, neg) _assert_pass_over([op0], ps_before, ps_after) op0 = cirq.PauliInteractionGate(Y, t_or_f1, X, t_or_f2)(q0, q1) ps_before = cirq.PauliString({q0: Z, q2: Y}, neg) ps_after = cirq.PauliString({q0: Z, q2: Y, q1: X}, neg) _assert_pass_over([op0], ps_before, ps_after) op0 = cirq.PauliInteractionGate(Z, t_or_f1, X, t_or_f2)(q0, q1) ps_before = cirq.PauliString({q0: Z, q1: Y}, neg) ps_after = cirq.PauliString({q1: Y}, neg) _assert_pass_over([op0], ps_before, ps_after) op0 = cirq.PauliInteractionGate(Y, t_or_f1, X, t_or_f2)(q0, q1) ps_before = cirq.PauliString({q0: Z, q1: Y}, neg) ps_after = cirq.PauliString({q0: X, q1: Z}, neg ^ t_or_f1 ^ t_or_f2) _assert_pass_over([op0], ps_before, ps_after) op0 = cirq.PauliInteractionGate(X, t_or_f1, X, t_or_f2)(q0, q1) ps_before = cirq.PauliString({q0: Z, q1: Y}, neg) ps_after = cirq.PauliString({q0: Y, q1: Z}, not neg ^ t_or_f1 ^ t_or_f2) _assert_pass_over([op0], ps_before, ps_after) def test_pass_operations_over_cz(): q0, q1 = _make_qubits(2) op0 = cirq.CZ(q0, q1) ps_before = cirq.PauliString({q0: cirq.Z, q1: cirq.Y}) ps_after = cirq.PauliString({q1: cirq.Y}) _assert_pass_over([op0], ps_before, ps_after) def test_pass_operations_over_no_common_qubits(): class DummyGate(cirq.SingleQubitGate): pass q0, q1 = _make_qubits(2) op0 = DummyGate()(q1) ps_before = cirq.PauliString({q0: cirq.Z}) ps_after = cirq.PauliString({q0: cirq.Z}) _assert_pass_over([op0], ps_before, ps_after) def test_pass_unsupported_operations_over(): q0, = _make_qubits(1) pauli_string = cirq.PauliString({q0: cirq.X}) with pytest.raises(TypeError): pauli_string.pass_operations_over([cirq.X(q0)]) def test_with_qubits(): old_qubits = cirq.LineQubit.range(9) new_qubits = cirq.LineQubit.range(9, 18) qubit_pauli_map = {q: cirq.Pauli.by_index(q.x) for q in old_qubits} pauli_string = cirq.PauliString(qubit_pauli_map, negated=True) new_pauli_string = pauli_string.with_qubits(*new_qubits) assert new_pauli_string.qubits == tuple(new_qubits) for q in new_qubits: assert new_pauli_string[q] == cirq.Pauli.by_index(q.x) assert new_pauli_string.negated is True ``` #### File: cirq/ops/reversible_composite_gate_test.py ```python import pytest import cirq class _FlipGate(cirq.SingleQubitGate): def __init__(self, val): self.val = val def __pow__(self, exponent): assert exponent == -1 return _FlipGate(~self.val) def __eq__(self, other): if not isinstance(other, type(self)): return NotImplemented return self.val == other.val def __ne__(self, other): return not self == other def __hash__(self): return hash((_FlipGate, self.val)) def test_inverse(): with pytest.raises(TypeError): _ = cirq.inverse( cirq.measure(cirq.NamedQubit('q'))) def rev_freeze(root): return cirq.freeze_op_tree(cirq.inverse(root)) operations = [ cirq.GateOperation(_FlipGate(i), [cirq.NamedQubit(str(i))]) for i in range(10) ] expected = [ cirq.GateOperation(_FlipGate(~i), [cirq.NamedQubit(str(i))]) for i in range(10) ] # Just an item. assert rev_freeze(operations[0]) == expected[0] # Flat list. assert rev_freeze(operations) == tuple(expected[::-1]) # Tree. assert ( rev_freeze((operations[1:5], operations[0], operations[5:])) == (tuple(expected[5:][::-1]), expected[0], tuple(expected[1:5][::-1]))) # Flattening after reversing is equivalent to reversing then flattening. t = (operations[1:5], operations[0], operations[5:]) assert ( tuple(cirq.flatten_op_tree(rev_freeze(t))) == tuple(rev_freeze(cirq.flatten_op_tree(t)))) def test_child_class(): class Impl(cirq.ReversibleCompositeGate): def _decompose_(self, qubits): yield _FlipGate(1)(*qubits) yield _FlipGate(2)(*qubits), _FlipGate(3)(*qubits) gate = Impl() reversed_gate = gate**-1 assert gate is reversed_gate**-1 with pytest.raises(TypeError): _ = gate**0.5 with pytest.raises(TypeError): _ = reversed_gate**0.5 q = cirq.NamedQubit('q') assert (cirq.decompose_once_with_qubits(gate, [q]) == [_FlipGate(1)(q), _FlipGate(2)(q), _FlipGate(3)(q)]) assert (cirq.decompose_once_with_qubits(reversed_gate, [q]) == [_FlipGate(~3)(q), _FlipGate(~2)(q), _FlipGate(~1)(q)]) def test_enforces_abstract(): with pytest.raises(TypeError): _ = cirq.ReversibleCompositeGate() # noinspection PyAbstractClass class Missing(cirq.ReversibleCompositeGate): pass with pytest.raises(TypeError): _ = Missing() class Included(cirq.ReversibleCompositeGate): def _decompose_(self, qubits): pass assert isinstance(Included(), cirq.ReversibleCompositeGate) def test_works_with_basic_gates(): a = cirq.NamedQubit('a') b = cirq.NamedQubit('b') basics = [cirq.X(a), cirq.Y(a)**0.5, cirq.Z(a), cirq.CZ(a, b)**-0.25, cirq.CNOT(a, b), cirq.H(b), cirq.SWAP(a, b)] assert list(cirq.inverse(basics)) == [ cirq.SWAP(a, b), cirq.H(b), cirq.CNOT(a, b), cirq.CZ(a, b)**0.25, cirq.Z(a), cirq.Y(a)**-0.5, cirq.X(a), ] ``` #### File: cirq/protocols/approximate_equality_test.py ```python import cirq def test_approx_eq_primitives(): assert cirq.approx_eq(1.0, 1.0 + 1e-10, atol=1e-09) assert not cirq.approx_eq(1.0, 1.0 + 1e-10, atol=1e-11) assert cirq.approx_eq(0.0, 1e-10, atol=1e-09) assert not cirq.approx_eq(0.0, 1e-10, atol=1e-11) assert cirq.approx_eq(complex(1, 1), complex(1.1, 1.2), atol=0.3) assert not cirq.approx_eq(complex(1, 1), complex(1.1, 1.2), atol=0.1) def test_approx_eq_special_numerics(): assert not cirq.approx_eq(float('nan'), 0, atol=0.0) assert not cirq.approx_eq(float('nan'), float('nan'), atol=0.0) assert not cirq.approx_eq(float('inf'), float('-inf'), atol=0.0) assert not cirq.approx_eq(float('inf'), 5, atol=0.0) assert not cirq.approx_eq(float('inf'), 0, atol=0.0) assert cirq.approx_eq(float('inf'), float('inf'), atol=0.0) def test_approx_eq_tuple(): assert cirq.approx_eq((1, 1), (1, 1), atol=0.0) assert not cirq.approx_eq((1, 1), (1, 1, 1), atol=0.0) assert not cirq.approx_eq((1, 1), (1,), atol=0.0) assert cirq.approx_eq((1.1, 1.2, 1.3), (1, 1, 1), atol=0.4) assert not cirq.approx_eq((1.1, 1.2, 1.3), (1, 1, 1), atol=0.2) def test_approx_eq_list(): assert cirq.approx_eq([], [], atol=0.0) assert not cirq.approx_eq([], [[]], atol=0.0) assert cirq.approx_eq([1, 1], [1, 1], atol=0.0) assert not cirq.approx_eq([1, 1], [1, 1, 1], atol=0.0) assert not cirq.approx_eq([1, 1], [1,], atol=0.0) assert cirq.approx_eq([1.1, 1.2, 1.3], [1, 1, 1], atol=0.4) assert not cirq.approx_eq([1.1, 1.2, 1.3], [1, 1, 1], atol=0.2) def test_approx_eq_default(): assert cirq.approx_eq(1.0, 1.0 + 1e-9) assert cirq.approx_eq(1.0, 1.0 - 1e-9) assert not cirq.approx_eq(1.0, 1.0 + 1e-7) assert not cirq.approx_eq(1.0, 1.0 - 1e-7) def test_approx_eq_iterables(): def gen_1_1(): yield 1 yield 1 assert cirq.approx_eq((1, 1), [1, 1], atol=0.0) assert cirq.approx_eq((1, 1), gen_1_1(), atol=0.0) assert cirq.approx_eq(gen_1_1(), [1, 1], atol=0.0) class A: def __init__(self, val): self.val = val def _approx_eq_(self, other, atol): if not isinstance(self, type(other)): return NotImplemented return cirq.approx_eq(self.val, other.val, atol=atol) class B: def __init__(self, val): self.val = val def _approx_eq_(self, other, atol): if not isinstance(self.val, type(other)): return NotImplemented return cirq.approx_eq(self.val, other, atol=atol) def test_approx_eq_supported(): assert cirq.approx_eq(A(0.0), A(0.1), atol=0.1) assert not cirq.approx_eq(A(0.0), A(0.1), atol=0.0) assert cirq.approx_eq(B(0.0), 0.1, atol=0.1) assert cirq.approx_eq(0.1, B(0.0), atol=0.1) class C: def __init__(self, val): self.val = val def __eq__(self, other): if not isinstance(self, type(other)): return NotImplemented return self.val == other.val def test_approx_eq_uses__eq__(): assert cirq.approx_eq(C(0), C(0), atol=0.0) assert not cirq.approx_eq(C(1), C(2), atol=0.0) assert cirq.approx_eq([C(0)], [C(0)], atol=0.0) assert not cirq.approx_eq([C(1)], [C(2)], atol=0.0) def test_approx_eq_types_mismatch(): assert not cirq.approx_eq(0, A(0), atol=0.0) assert not cirq.approx_eq(A(0), 0, atol=0.0) assert not cirq.approx_eq(B(0), A(0), atol=0.0) assert not cirq.approx_eq(A(0), B(0), atol=0.0) assert not cirq.approx_eq(C(0), A(0), atol=0.0) assert not cirq.approx_eq(A(0), C(0), atol=0.0) assert not cirq.approx_eq(complex(0, 0), 0, atol=0.0) assert not cirq.approx_eq(0, complex(0, 0), atol=0.0) assert not cirq.approx_eq(0, [0], atol=1.0) assert not cirq.approx_eq([0], 0, atol=0.0) ``` #### File: cirq/protocols/mixture.py ```python from typing import Any, Sequence, Tuple, Union import numpy as np from typing_extensions import Protocol from cirq.type_workarounds import NotImplementedType # This is a special indicator value used by the inverse method to determine # whether or not the caller provided a 'default' argument. RaiseTypeErrorIfNotProvided = ((0.0, []),) # type: Sequence[Tuple[float, Any]] class SupportsMixture(Protocol): """An object that may be describable as a probabilistic combination. A mixture is described by an iterable of tuples of the form (probability of object, object) The probability components of the tuples must sum to 1.0 and be between 0 and 1 (inclusive). """ def _mixture_(self) -> Union[Sequence[Tuple[float, Any]], NotImplementedType]: pass def mixture( val: Any, default: Any = RaiseTypeErrorIfNotProvided) -> Sequence[Tuple[float, Any]]: """Return a iterable of the tuples representing a probabilistic combination. A mixture is described by an iterable of tuples of the form (probability of object, object) The probability components of the tuples must sum to 1.0 and be between 0 and 1 (inclusive). Args: val: The value whose mixture is being computed. default: A default value if val does not support mixture. Returns: An iterable of tuples of size 2. The first element of the tuple is a probability (between 0 and 1) and th second is the object that occurs with that probability in the mixture. The probabilities will sum to 1.0. """ getter = getattr(val, '_mixture_', None) result = NotImplemented if getter is None else getter() if result is not NotImplemented: return result if default is not RaiseTypeErrorIfNotProvided: return default if getter is None: raise TypeError( "object of type '{}' has no _mixture_ method.".format(type(val))) raise TypeError("object of type '{}' does have a _mixture_ method, " "but it returned NotImplemented.".format(type(val))) def validate_mixture(supports_mixture: SupportsMixture): """Validates that the mixture's tuple are valid probabilities.""" mixture_tuple = mixture(supports_mixture, None) if mixture_tuple is None: raise TypeError('{}_mixture did not have a _mixture_ method'.format( supports_mixture)) def validate_probability(p, p_str): if p < 0: raise ValueError('{} was less than 0.'.format(p_str)) elif p > 1: raise ValueError('{} was greater than 1.'.format(p_str)) total = 0.0 for p, val in mixture_tuple: validate_probability(p, '{}\'s probability'.format(str(val))) total += p if not np.isclose(total, 1.0): raise ValueError('Sum of probabilities of a mixture was not 1.0') ``` #### File: cirq/study/sweepable_test.py ```python import cirq def test_to_resolvers_single(): resolver = cirq.ParamResolver({}) assert cirq.to_resolvers(resolver) == [resolver] def test_to_resolvers_sweep(): sweep = cirq.Linspace('a', 0, 1, 10) assert cirq.to_resolvers(sweep) == list(sweep) def test_to_resolvers_iterable(): resolvers = [cirq.ParamResolver({'a': 2}), cirq.ParamResolver({'a': 1})] assert cirq.to_resolvers(resolvers) == resolvers def test_to_resolvers_iterable_sweeps(): sweeps = [cirq.Linspace('a', 0, 1, 10), cirq.Linspace('b', 0, 1, 10)] assert cirq.to_resolvers(sweeps) == sum([list(sweeps[0]), list(sweeps[1])], []) ``` #### File: cirq/testing/lin_alg_utils_test.py ```python import numpy as np import pytest from cirq.testing import ( random_unitary, assert_allclose_up_to_global_phase, ) from cirq.linalg import is_unitary def test_random_unitary(): u1 = random_unitary(2) u2 = random_unitary(2) assert is_unitary(u1) assert is_unitary(u2) assert not np.allclose(u1, u2) def test_assert_allclose_up_to_global_phase(): assert_allclose_up_to_global_phase( np.array([[1]]), np.array([[1j]]), atol=0) with pytest.raises(AssertionError): assert_allclose_up_to_global_phase( np.array([[1]]), np.array([[2]]), atol=0) assert_allclose_up_to_global_phase( np.array([[1e-8, -1, 1e-8]]), np.array([[1e-8, 1, 1e-8]]), atol=1e-6) with pytest.raises(AssertionError): assert_allclose_up_to_global_phase( np.array([[1e-4, -1, 1e-4]]), np.array([[1e-4, 1, 1e-4]]), atol=1e-6) assert_allclose_up_to_global_phase( np.array([[1, 2], [3, 4]]), np.array([[-1, -2], [-3, -4]]), atol=0) ``` #### File: Cirq/dev_tools/env_tools.py ```python import os import shutil import sys from typing import Optional, Iterable, Callable, cast from dev_tools import shell_tools, git_env_tools from dev_tools.github_repository import GithubRepository from dev_tools.prepared_env import PreparedEnv def get_unhidden_ungenerated_python_files(directory: str) -> Iterable[str]: """Iterates through relevant python files within the given directory. Args: directory: The top-level directory to explore. Yields: File paths. """ for dirpath, dirnames, filenames in os.walk(directory, topdown=True): if os.path.split(dirpath)[-1].startswith('.'): dirnames.clear() continue for filename in filenames: if filename.endswith('.py') and not filename.endswith('_pb2.py'): yield os.path.join(dirpath, filename) def create_virtual_env(venv_path: str, requirements_paths: Iterable[str], python_path: str, verbose: bool) -> None: """Creates a new virtual environment and then installs dependencies. Args: venv_path: Where to put the virtual environment's state. requirements_paths: Location of requirements files to -r install. python_path: The python binary to use. verbose: When set, more progress output is produced. """ shell_tools.run_cmd('virtualenv', None if verbose else '--quiet', '-p', python_path, venv_path, out=sys.stderr) pip_path = os.path.join(venv_path, 'bin', 'pip') for req_path in requirements_paths: shell_tools.run_cmd(pip_path, 'install', None if verbose else '--quiet', '-r', req_path, out=sys.stderr) def prepare_temporary_test_environment( destination_directory: str, repository: GithubRepository, pull_request_number: Optional[int], verbose: bool, env_name: str = '.test_virtualenv', python_path: str = sys.executable, commit_ids_known_callback: Callable[[PreparedEnv], None] = None ) -> PreparedEnv: """Prepares a temporary test environment at the (existing empty) directory. Args: destination_directory: The location to put files. The caller is responsible for deleting the directory, whether or not this method succeeds or fails. repository: The github repository to download content from, if a pull request number is given. pull_request_number: If set, test content is fetched from github. Otherwise copies of local files are used. verbose: When set, more progress output is produced. env_name: The name to use for the virtual environment. python_path: Location of the python binary to use within the virtual environment. commit_ids_known_callback: A function to call when the actual commit id being tested is known, before the virtual environment is ready. Returns: Commit ids corresponding to content to test/compare. """ # Fetch content. if pull_request_number is not None: env = git_env_tools.fetch_github_pull_request( destination_directory=destination_directory, repository=repository, pull_request_number=pull_request_number, verbose=verbose) else: env = git_env_tools.fetch_local_files( destination_directory=destination_directory, verbose=verbose) if commit_ids_known_callback is not None: commit_ids_known_callback(env) # Create virtual environment. base_path = cast(str, env.destination_directory) env_path = os.path.join(base_path, env_name) req_path = os.path.join(base_path, 'requirements.txt') dev_req_path = os.path.join(base_path, 'dev_tools', 'conf', 'pip-list-dev-tools.txt') contrib_req_path = os.path.join(base_path, 'cirq', 'contrib', 'contrib-requirements.txt') rev_paths = [req_path, dev_req_path, contrib_req_path] create_virtual_env(venv_path=env_path, python_path=python_path, requirements_paths=rev_paths, verbose=verbose) return PreparedEnv(github_repo=env.repository, actual_commit_id=env.actual_commit_id, compare_commit_id=env.compare_commit_id, destination_directory=env.destination_directory, virtual_env_path=env_path) def derive_temporary_python2_environment( destination_directory: str, python3_environment: PreparedEnv, verbose: bool, env_name: str = '.test_virtualenv_py2', python_path: str = "/usr/bin/python2.7") -> PreparedEnv: """Creates a python 2.7 environment starting from a prepared python 3 one. Args: destination_directory: Where to put the python 2 environment. python3_environment: The prepared environment to start from. verbose: When set, more progress output is produced. env_name: The name to use for the virtualenv directory. python_path: The python binary to use. Returns: A description of the environment that was prepared. """ shutil.rmtree(destination_directory) input_directory = cast(str, python3_environment.destination_directory) os.chdir(input_directory) conversion_script_path = os.path.join( input_directory, 'dev_tools', 'python2.7-generate.sh') shell_tools.run_cmd('bash', conversion_script_path, destination_directory, input_directory, python3_environment.virtual_env_path, out=sys.stderr) os.chdir(destination_directory) # Create virtual environment. env_path = os.path.join(destination_directory, env_name) # (These files are output by dev_tools/python2.7-generate.sh.) req_path = os.path.join(destination_directory, 'requirements.txt') dev_req_path = os.path.join(destination_directory, 'pip-list-test-tools.txt') contrib_req_path = os.path.join(destination_directory, 'cirq', 'contrib', 'contrib-requirements.txt') req_paths = [req_path, dev_req_path, contrib_req_path] create_virtual_env(venv_path=env_path, python_path=python_path, requirements_paths=req_paths, verbose=verbose) return PreparedEnv(github_repo=python3_environment.repository, actual_commit_id=python3_environment.actual_commit_id, compare_commit_id=python3_environment.compare_commit_id, destination_directory=destination_directory, virtual_env_path=env_path) ```
{ "source": "jlmbaka/directory-pie", "score": 3 }
#### File: jlmbaka/directory-pie/pie.py ```python __author__ = 'jeanlouis.mbaka' import dirsize import matplotlib.pyplot as plt import unittest import sys, getopt def draw_pie_chart(data_dict): """ Display directories and files sizes in pie chart. :param data_dict: diction of {} """ labels = [key for key in data_dict.keys()] values = [value for value in data_dict.values()] colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] explode = [0.1] * len(labels) plt.pie(values, labels=labels, startangle=90, explode=explode, colors = colors, autopct='%1.1f%%') plt.axis('equal') plt.show() if __name__ == "__main__": # Read arguments from the second position argv = sys.argv[1:] target_directory = "" try: # opts that require argument must be followed by a colon (:) e.g. d: opts, args = getopt.getopt(argv, "hd:", ["directory="]) except getopt.GetoptError: # Error: print usage print("pie.py -d <directory>") sys.exit(2) for opt, arg in opts: if opt == "-h": # Help: print usage print("pie.py -d <directory>") sys.exit() elif opt in ("-d", "--directory"): target_directory = arg print("Directory is {0}".format(target_directory)) # Get data & draw data_dict = dirsize.get_dir_size(target_directory) draw_pie_chart(data_dict) ```
{ "source": "jlmbaka/kindle2notion", "score": 3 }
#### File: jlmbaka/kindle2notion/utilities.py ```python from requests import get # Get Cover Image NO_COVER_IMG = "https://via.placeholder.com/150x200?text=No%20Cover" def getBookCoverUri(title, author): req_uri = "https://www.googleapis.com/books/v1/volumes?q=" if title == None: return req_uri += "intitle:" + title if author != None: req_uri += "+inauthor:" + author response = get(req_uri).json().get("items", []) if len(response) > 0: return response[0].get("volumeInfo", {}).get("imageLinks", {}).get("thumbnail") return # Initializing Special chars BOLD = "__" ITALIC = "*" ```
{ "source": "jlmcgehee21/disterminal", "score": 3 }
#### File: disterminal/disterminal/helpers.py ```python import click import numpy as np import sys from scipy import stats AUTO_XLIMITS = { 'cdf': (0, 10000, .05), 'pdf': (-10000, 10000, .05), 'ppf': (0, 1, .01) } def get_dist_callable(distribution): try: return getattr(stats, distribution) except AttributeError: click.echo('scipy.stats does not contain distribution "{}"'.format( distribution)) sys.exit(1) def get_fun_callable(dist, distname, function): try: return getattr(dist, function) except AttributeError: click.echo('scipy.stats.{} does not have function "{}"'.format( distname, function)) sys.exit(1) def check_nan(main_call): x = np.arange(-100, 100, 1) y = main_call(x) if np.all(np.isnan(y)): click.echo('all values are NaN, nothing to plot...') sys.exit(1) def autorange(main_call, function): limits = AUTO_XLIMITS.get(function, (-10000, 10000, .05)) x = np.arange(*limits) y = main_call(x) min_y = 0.0001 max_y = 0.9999 x = x[np.logical_and(y >= min_y, y < max_y)] return np.linspace(x.min(), x.max(), 100) ``` #### File: disterminal/tests/test_cli.py ```python import pytest from click.testing import CliRunner from disterminal import cli @pytest.fixture def runner(): return CliRunner() def test_cli_no_args(runner): """Test the CLI.""" result = runner.invoke(cli.main) assert result.exit_code == 2 def test_cli_help(runner): for help_opt in ['-h', '--help']: help_result = runner.invoke(cli.main, [help_opt]) assert help_result.exit_code == 0 assert 'Supported Distributions:' in help_result.output assert 'norm, pareto' in help_result.output assert 'https://docs.scipy.org/doc/scipy/reference/stats.html' in help_result.output def test_bad_distribution(runner): result = runner.invoke(cli.main, ['foo', 'bar']) assert 'scipy.stats does not contain distribution "foo"\n' == result.output def test_bad_function(runner): result = runner.invoke(cli.main, ['norm', 'bar']) assert 'scipy.stats.norm does not have function "bar"\n' == result.output def test_all_nan(runner): result = runner.invoke(cli.main, ['beta', 'pdf', '0', '0']) assert 'all values are NaN, nothing to plot...\n' == result.output ``` #### File: disterminal/tests/test_helpers.py ```python import pytest from disterminal import helpers import numpy as np def main_call(x): out = np.zeros(x.shape) out[1] = 0.1 out[-1] = 0.1 return out def test_autorange(): x = helpers.autorange(main_call, '') assert x.shape == (100,) assert x.min() == pytest.approx(-9999.95) assert x.max() == pytest.approx(9999.95) ```
{ "source": "jlmcgehee21/SoCo", "score": 3 }
#### File: soco/plugins/talk.py ```python import sys import re import urllib, urllib2 import time from ..plugins import SoCoPlugin __all__ = ['Talk'] class TalkerPlugin(SoCoPlugin): """ The main use of this plugin is to make your Sonos system speak text. It works by sending a request to the Google Text To Speech service, downloading an MP3 from the service, then playing the MP3 on the desired Sonos players. It will pause and resume playback properly if you are listening to music at the time the message is sent. SETUP REQUIREMENTS: You must add the path to the Google Text To Speech MP3 to your Sonos music library in order to obtain the URI for that file. Once this is done, you can find the URI "get_music_library_information()" method in the soco package. """ def __init__(self,soco,mp3Path,sonosURI,zoneNames=None,maxAttempts=5): """ :param soco: soco instance per soco plugin instructions :param mp3Path: The path you wish for the TTS message to be saved. :param sonosURI: URI of mp3 file. This should point to the same file that exists at mp3Path :param zoneNames: List of Sonos player names you wish for your message to play on. i.e. ['Kitchen','Office']. If nothing is passed, the message will play on all Sonos players. :param maxAttempts: Number of attempts to run soco.discover(). I found that regardless of the timeout passed to soco.discover(), it may still fail, but multiple attempts usually works. :return: TalkerPlugin object """ self.sonosURI = sonosURI self.mp3Path = mp3Path discovered = None iter=0 while discovered is None and iter < maxAttempts: discovered = soco.discover(timeout=2) iter += 1 assert discovered is not None, 'Connection to Sonos system failed.' zoneList = [] nameList = [] for zone in discovered: zoneList.append(zone) nameList.append(zone.player_name) if zoneNames: assert type(zoneNames) == list and all([zone in nameList for zone in zoneNames]), \ 'Speaker object must be instantiated with a list of existing zone names on your network' speakingSoCos = [zone for zone in zoneList if zone.player_name in zoneNames] else: speakingSoCos = zoneList self.masterSoCo = speakingSoCos[0] speakingSoCos.pop(0) self.slaveSoCos = speakingSoCos # if setup is True: # self._setAudioDirectory() super(TalkerPlugin, self).__init__(soco) def talk(self,talkString='This is a test. Testing 1 2 3',volume=25): """ :param talkString: String you wish your Sonos system to speak :param volume: Volume you wish for your Sonos system to speak at. The volume will be set back to the previous value after the message has been spoken :return: None """ self._formGroup() tts = GoogleTTS() text_lines = tts.convertTextAsLinesOfText(talkString) tts.downloadAudioFile(text_lines,'en',open(self.mp3Path,'wb')) oldvolumes = [self.masterSoCo.volume] oldtracks = [self.masterSoCo.get_current_track_info()] oldqueues = [self.masterSoCo.get_queue()] oldStates = [self.masterSoCo.get_current_transport_info()] allSoCos = [self.masterSoCo] for SoCo in self.slaveSoCos: oldvolumes.append(SoCo.volume) oldtracks.append(SoCo.get_current_track_info()) oldqueues.append(SoCo.get_queue()) oldStates.append(SoCo.get_current_transport_info()) allSoCos.append(SoCo) self.masterSoCo.volume = volume self.masterSoCo.play_uri(self.sonosURI,title=u'Python Talking Script') # self.masterSoCo.get_current_track_info()['duration'] time.sleep(float(time.strptime(self.masterSoCo.get_current_track_info()['duration'],'%H:%M:%S').tm_sec)) for ind,SoCo in enumerate(allSoCos): SoCo.volume=oldvolumes[ind] if oldStates[ind]['current_transport_state'] == 'PLAYING': SoCo.play_from_queue(int(oldtracks[ind]['playlist_position'])-1) SoCo.seek(oldtracks[ind]['position']) self._delGroup() def _formGroup(self): for SoCo in self.slaveSoCos: SoCo.join(self.masterSoCo) def _delGroup(self): for SoCo in self.slaveSoCos: SoCo.unjoin() class GoogleTTS(object): """ Taken from script at https://github.com/JulienD/Google-Text-To-Speech. No license info in repo. """ def __init__(self): pass def convertTextAsLinesOfText(self,text): """ This convert a word, a short text, a long text into several parts to smaller than 100 characters. """ # Sanitizes the text. text = text.replace('\n','') text_list = re.split('(\,|\.|\;|\:)', text) # Splits a text into chunks of texts. text_lines = [] for idx, val in enumerate(text_list): if (idx % 2 == 0): text_lines.append(val) else : # Combines the string + the punctuation. joined_text = ''.join((text_lines.pop(),val)) # Checks if the chunk need to be splitted again. if len(joined_text) < 100: text_lines.append(joined_text) else: subparts = re.split('( )', joined_text) temp_string = "" temp_array = [] for part in subparts: temp_string = temp_string + part if len(temp_string) > 80: temp_array.append(temp_string) temp_string = "" #append final part temp_array.append(temp_string) text_lines.extend(temp_array) return text_lines def downloadAudioFile(self,text_lines, language, audio_file): """ Donwloads a MP3 from Google Translatea mp3 based on a text and a language code. """ for idx, line in enumerate(text_lines): query_params = {"tl": language, "q": line, "total": len(text_lines), "idx": idx} url = "http://translate.google.com/translate_tts?ie=UTF-8" + "&" + self.unicode_urlencode(query_params) headers = {"Host":"translate.google.com", "User-Agent":"Mozilla 5.10"} req = urllib2.Request(url, '', headers) sys.stdout.write('.') sys.stdout.flush() if len(line) > 0: try: response = urllib2.urlopen(req) audio_file.write(response.read()) time.sleep(.5) except urllib2.HTTPError as e: print ('%s' % e) print 'Saved MP3 to %s' % (audio_file.name) audio_file.close() def unicode_urlencode(self,params): """ Encodes params to be injected in an url. """ if isinstance(params, dict): params = params.items() return urllib.urlencode([(k, isinstance(v, unicode) and v.encode('utf-8') or v) for k, v in params]) def testStuff(): import soco talker = TalkerPlugin(soco,'/Users/Jeff/BitBucket/Personal/Python/SonosExperiments/AudioMessages/talkOutput.mp3', 'x-file-cifs://MACBOOKPRO-5A98/AudioMessages/talkOutput.mp3') talker.talk(volume='75') if __name__ == '__main__': testStuff() ```
{ "source": "jlmelville/passaas", "score": 4 }
#### File: passaas/models/util.py ```python def sanitize_id(int_id): """ Return int_id as either an integer or None, if it is not convertible. For use with model find function where either integer or None is acceptable, but input from the controller is either a string representation of the integer or None. This handles the conversion and swallows the exception, making for a more "fluent" interface. Arguments: int_id {String or None} -- An id to convert. Can be None. Returns: {int or None} -- The converted id. """ try: return int(int_id) except TypeError: return None def find(objects, key, value): """ Return a list of all items in objects where the key attribute is equal to value. If value is None, objects is returned. If no objects match, an empty list is returned. """ if value is None: return objects return [o for o in objects if getattr(o, key) == value] ``` #### File: tests/bad_passwd_config/__init__.py ```python import os import shutil import pytest import webtest as wt from passaas.app import create_app from passaas.config import TestConfig, Config class MissingPasswdConfig(TestConfig): """Configuration pointing to a missing passwd file.""" # https://github.com/jarus/flask-testing/issues/21 # and https://stackoverflow.com/a/28139033 PRESERVE_CONTEXT_ON_EXCEPTION = False PASSWD_PATH = os.path.abspath( # this file purposely doesn't exist os.path.join(Config.PROJECT_ROOT, "tests", "test_data", "missing_passwd") ) @pytest.yield_fixture(scope="function") def missing_passwd_app(): """Application with a missing passwd file.""" _app = create_app(MissingPasswdConfig) ctx = _app.app.test_request_context() ctx.push() yield _app.app ctx.pop() @pytest.fixture(scope="function") def test_missing_passwd_app(missing_passwd_app): """Webtest app with a missing passwd file.""" return wt.TestApp(missing_passwd_app) class MalformedPasswdTooFewElementsConfig(TestConfig): """Configuration for a malformed passwd file with too few elements in a line.""" PRESERVE_CONTEXT_ON_EXCEPTION = False PASSWD_PATH = os.path.abspath( os.path.join( Config.PROJECT_ROOT, "tests", "test_data", "malformed_passwd_too_few" ) ) @pytest.yield_fixture(scope="function") def malformed_passwd_too_few_elements_app(): """Application with a malformed passwd file.""" _app = create_app(MalformedPasswdTooFewElementsConfig) ctx = _app.app.test_request_context() ctx.push() yield _app.app ctx.pop() @pytest.fixture(scope="function") def test_malformed_passwd_too_few_elements_app(malformed_passwd_too_few_elements_app): """Webtest app with a malformed passwd file.""" return wt.TestApp(malformed_passwd_too_few_elements_app) class MalformedPasswdTooManyElementsConfig(TestConfig): """Configuration for a malformed passwd file with too many elements in a line.""" PRESERVE_CONTEXT_ON_EXCEPTION = False PASSWD_PATH = os.path.abspath( os.path.join( Config.PROJECT_ROOT, "tests", "test_data", "malformed_passwd_too_many" ) ) @pytest.yield_fixture(scope="function") def malformed_passwd_too_many_elements_app(): """Application with a malformed passwd file with too many elements in a line.""" _app = create_app(MalformedPasswdTooManyElementsConfig) ctx = _app.app.test_request_context() ctx.push() yield _app.app ctx.pop() @pytest.fixture(scope="function") def test_malformed_passwd_too_many_elements_app(malformed_passwd_too_many_elements_app): """Webtest app with a malformed passwd file with too many elements in a line.""" return wt.TestApp(malformed_passwd_too_many_elements_app) class MalformedPasswdBadUidConfig(TestConfig): """Configuration pointing to a malformed passwd file with a non-numeric uid.""" PRESERVE_CONTEXT_ON_EXCEPTION = False PASSWD_PATH = os.path.abspath( os.path.join( Config.PROJECT_ROOT, "tests", "test_data", "malformed_passwd_bad_uid" ) ) @pytest.yield_fixture(scope="function") def malformed_passwd_bad_uid_app(): """Application with a bad uid passwd file.""" _app = create_app(MalformedPasswdBadUidConfig) ctx = _app.app.test_request_context() ctx.push() yield _app.app ctx.pop() @pytest.fixture(scope="function") def test_malformed_passwd_bad_uid_app(malformed_passwd_bad_uid_app): """Webtest app with a bad uid passwd file.""" return wt.TestApp(malformed_passwd_bad_uid_app) class MalformedPasswdBadGidConfig(TestConfig): """Configuration pointing to a malformed passwd file with a non-numeric gid.""" PRESERVE_CONTEXT_ON_EXCEPTION = False PASSWD_PATH = os.path.abspath( os.path.join( Config.PROJECT_ROOT, "tests", "test_data", "malformed_passwd_bad_gid" ) ) @pytest.yield_fixture(scope="function") def malformed_passwd_bad_gid_app(): """Application with a bad gid passwd file.""" _app = create_app(MalformedPasswdBadGidConfig) ctx = _app.app.test_request_context() ctx.push() yield _app.app ctx.pop() @pytest.fixture(scope="function") def test_malformed_passwd_bad_gid_app(malformed_passwd_bad_gid_app): """Webtest app with a bad gid passwd file.""" return wt.TestApp(malformed_passwd_bad_gid_app) class EmptyPasswdConfig(TestConfig): """Configuration pointing to an empty passwd file.""" PRESERVE_CONTEXT_ON_EXCEPTION = False PASSWD_PATH = os.path.abspath( os.path.join(Config.PROJECT_ROOT, "tests", "test_data", "empty_passwd") ) @pytest.yield_fixture(scope="function") def empty_passwd_app(): """Application with an empty passwd file.""" _app = create_app(EmptyPasswdConfig) ctx = _app.app.test_request_context() ctx.push() yield _app.app ctx.pop() @pytest.fixture(scope="function") def test_empty_passwd_app(empty_passwd_app): """Webtest app with an empty passwd file.""" return wt.TestApp(empty_passwd_app) ``` #### File: passaas/tests/conftest.py ```python import os import shutil import pytest import webtest as wt from passaas.app import create_app from passaas.config import TestConfig, Config # These modules contain extra configuration for testing misconfigured apps and map to # directories in the test folder. You could store them all in this file, but it leads # to a large file that is hard to navigate. pytest_plugins = ["bad_passwd_config", "bad_group_config"] @pytest.yield_fixture(scope="function") def app(): """Application for the tests.""" _app = create_app(TestConfig) ctx = _app.app.test_request_context() ctx.push() yield _app.app ctx.pop() @pytest.fixture(scope="function") def testapp(app): """Webtest app.""" return wt.TestApp(app) class PasswdUpdateConfig(TestConfig): """Configuration pointing to a passwd file intended to be updated between calls.""" PASSWD_PATH = os.path.abspath( os.path.join(Config.PROJECT_ROOT, "tests", "test_data", "passwd4") ) @pytest.yield_fixture(scope="function") def passwd_update_app(): """Application with a passwd file intended to be updated.""" _app = create_app(PasswdUpdateConfig) ctx = _app.app.test_request_context() ctx.push() yield _app.app # Clean up after test dest = _app.app.config["PASSWD_PATH"] dest_dir = os.path.dirname(dest) src = os.path.abspath(os.path.join(dest_dir, "passwd4.orig")) shutil.copyfile(src, dest) ctx.pop() @pytest.fixture(scope="function") def test_passwd_update_app(passwd_update_app): """Webtest app with a passwd file intended to be updated.""" return wt.TestApp(passwd_update_app) # Groups class GroupUpdateConfig(TestConfig): """Configuration pointing to a group file intended to be updated between calls.""" GROUP_PATH = os.path.abspath( os.path.join(Config.PROJECT_ROOT, "tests", "test_data", "group4") ) @pytest.yield_fixture(scope="function") def group_update_app(): """Application with a passwd file intended to be updated.""" _app = create_app(GroupUpdateConfig) ctx = _app.app.test_request_context() ctx.push() yield _app.app # Clean up after test dest = _app.app.config["GROUP_PATH"] dest_dir = os.path.dirname(dest) src = os.path.abspath(os.path.join(dest_dir, "group4.orig")) shutil.copyfile(src, dest) ctx.pop() @pytest.fixture(scope="function") def test_group_update_app(group_update_app): """Webtest app with a group file intended to be updated.""" return wt.TestApp(group_update_app) ```
{ "source": "jlmhackaton/Patient2Vec", "score": 2 }
#### File: jlmhackaton/Patient2Vec/main.py ```python from Patient2Vec import * TIME_COL_HDR = 'Time_inED' SUBJECT_COL_HDR = 'SUBJECT_ID' SUBJECT_COLTAG_HDR = 'HADM_ID' TAG_HDR = 'INTERPRETATION' def PrepareDataset(features_data_path, \ tags_data_path,\ BATCH_SIZE = 40, \ seq_len = 10, \ pred_len = 1, \ train_propotion = 0.7, \ valid_propotion = 0.2, shuffle=False): """ Prepare training and testing datasets and dataloaders. Convert admissions table to training and testing dataset. The vertical axis of admissions_pd is the admission time axis and the horizontal axis is the features axis. Args: admissions_pd: a Matrix containing spatial-temporal speed data for a network seq_len: length of input sequence pred_len: length of predicted sequence Returns: Training dataloader Testing dataloader """ admissions_pd = pd.read_csv(features_data_path) #header = None, names=["Eloss", "entropy", "loss", "tErr", "rotErr", "r1", "r2", "r3", "tx", "ty", "tz" ], index_col=False, skiprows=0, delimiter=" " admissions_byID = admissions_pd.groupby(SUBJECT_COL_HDR) tag_pd = pd.read_csv(tags_data_path) tags_byID = tag_pd.groupby(SUBJECT_COLTAG_HDR) max_admin_per_patient = 0 features_list = [] tag_list = [] for group, tag_it in zip(admissions_byID, tags_byID): date_sorted = group[1].sort_values(by=[TIME_COL_HDR]) features = date_sorted[admissions_pd.columns[2:]].values features_list.append(features) max_admin_per_patient = max(max_admin_per_patient, features.shape[0]) tag = tag_it[1][[TAG_HDR]].values[0] tag_list.append(tag) print('Maximum number of admissions per patient is ' + str(max_admin_per_patient)) sample_size = len(features_list) features_nd = np.zeros([sample_size,max_admin_per_patient, features_list[0].shape[-1]]) for idx, patient_adm in enumerate(features_list): h = patient_adm.shape[0] features_nd[idx, 0:h] = patient_adm # shuffle = True if shuffle: # doesn't work !! need to debug # shuffle and split the dataset to training and testing datasets print('Start to shuffle and split dataset ...') index = np.arange(sample_size, dtype = int) np.random.seed(1024) np.random.shuffle(index) features_nd = features_nd[index] tag_list = np.array(tag_list) tag_list = tag_list[index] if False: X_last_obsv = X_last_obsv[index] Mask = Mask[index] Delta = Delta[index] features_list = np.expand_dims(features_list, axis=1) X_last_obsv = np.expand_dims(X_last_obsv, axis=1) Mask = np.expand_dims(Mask, axis=1) Delta = np.expand_dims(Delta, axis=1) dataset_agger = np.concatenate((features_list, X_last_obsv, Mask, Delta), axis = 1) train_index = int(np.floor(sample_size * train_propotion)) valid_index = int(np.floor(sample_size * (train_propotion + valid_propotion))) train_data, train_label = features_nd[:train_index], tag_list[:train_index] valid_data, valid_label = features_nd[train_index:valid_index], tag_list[train_index:valid_index] test_data, test_label = features_nd[valid_index:], tag_list[valid_index:] train_data, train_label = torch.Tensor(train_data), torch.Tensor(train_label) valid_data, valid_label = torch.Tensor(valid_data), torch.Tensor(valid_label) test_data, test_label = torch.Tensor(test_data), torch.Tensor(test_label) train_dataset = utils.TensorDataset(train_data, train_label) valid_dataset = utils.TensorDataset(valid_data, valid_label) test_dataset = utils.TensorDataset(test_data, test_label) train_dataloader = utils.DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, drop_last=True) valid_dataloader = utils.DataLoader(valid_dataset, batch_size=BATCH_SIZE, shuffle=True, drop_last=True) test_dataloader = utils.DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True, drop_last=True) # X_mean = np.mean(features_list, axis = 0) print('Finished preprocessing') return train_dataloader, valid_dataloader, test_dataloader def Train_Model(model, train_dataloader, valid_dataloader, batch_size, num_epochs = 300, patience=10, min_delta = 0.00001): print('Model Structure: ', model) print('Start Training ... ') output_last = True #model.cuda() # # if (type(model) == nn.modules.container.Sequential): # output_last = model[-1].output_last # print('Output type dermined by the last layer') # else: # output_last = model.output_last # print('Output type dermined by the model') # loss_MSE = torch.nn.MSELoss() # loss_L1 = torch.nn.L1Loss() criterion = nn.BCELoss() learning_rate = 0.0001 optimizer = torch.optim.RMSprop(model.parameters(), lr = learning_rate, alpha=0.99) use_gpu = torch.cuda.is_available() # interval = 100 losses_train = [] losses_valid = [] losses_epochs_train = [] losses_epochs_valid = [] cur_time = time.time() pre_time = time.time() # Variables for Early Stopping is_best_model = 0 patient_epoch = 0 for epoch in range(num_epochs): trained_number = 0 valid_dataloader_iter = iter(valid_dataloader) losses_epoch_train = [] losses_epoch_valid = [] for data in train_dataloader: inputs, labels = data if inputs.shape[0] != batch_size: continue if use_gpu: inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda()) else: inputs, labels = Variable(inputs), Variable(labels) model.zero_grad() # TODO: extract them inputs_other = []#(age, gender, previous_hospitalization_history) outputs, alpha, beta = model(inputs, inputs_other, batch_size) # if output_last: # # loss_train = loss_MSE(torch.squeeze(outputs), torch.squeeze(labels)) loss_train = get_loss(outputs, labels, criterion=criterion, mtr=beta) # else: # full_labels = torch.cat((inputs[:,1:,:], labels), dim = 1) # loss_train = loss_MSE(outputs, full_labels) losses_train.append(loss_train.data) losses_epoch_train.append(loss_train.data) optimizer.zero_grad() loss_train.backward() optimizer.step() # validation try: inputs_val, labels_val = next(valid_dataloader_iter) except StopIteration: valid_dataloader_iter = iter(valid_dataloader) inputs_val, labels_val = next(valid_dataloader_iter) if use_gpu: inputs_val, labels_val = Variable(inputs_val.cuda()), Variable(labels_val.cuda()) else: inputs_val, labels_val = Variable(inputs_val), Variable(labels_val) model.zero_grad() # TODO: extract them inputs_other = [] # (age, gender, previous_hospitalization_history) inputs_other_val = [] # (age, gender, previous_hospitalization_history) outputs_val, alpha_val, beta_val = model(inputs_val, inputs_other_val, batch_size) # if output_last: # # loss_valid = loss_MSE(torch.squeeze(outputs_val), torch.squeeze(labels_val)) loss_valid = get_loss(outputs_val, labels_val, criterion=criterion, mtr=beta_val) # else: # full_labels_val = torch.cat((inputs_val[:,1:,:], labels_val), dim = 1) # loss_valid = loss_MSE(outputs_val, full_labels_val) losses_valid.append(loss_valid.data) losses_epoch_valid.append(loss_valid.data) # output trained_number += 1 avg_losses_epoch_train = sum(losses_epoch_train).cpu().numpy() / float(len(losses_epoch_train)) avg_losses_epoch_valid = sum(losses_epoch_valid).cpu().numpy() / float(len(losses_epoch_valid)) losses_epochs_train.append(avg_losses_epoch_train) losses_epochs_valid.append(avg_losses_epoch_valid) # Early Stopping if epoch == 0: is_best_model = 1 best_model = model min_loss_epoch_valid = 10000.0 if avg_losses_epoch_valid < min_loss_epoch_valid: min_loss_epoch_valid = avg_losses_epoch_valid else: if min_loss_epoch_valid - avg_losses_epoch_valid > min_delta: is_best_model = 1 best_model = model torch.save(model.state_dict(), 'best_model.pt') min_loss_epoch_valid = avg_losses_epoch_valid patient_epoch = 0 else: is_best_model = 0 patient_epoch += 1 if patient_epoch >= patience: print('Early Stopped at Epoch:', epoch) break # Print training parameters cur_time = time.time() print('Epoch: {}, train_loss: {}, valid_loss: {}, time: {}, best model: {}'.format( \ epoch, \ np.around(avg_losses_epoch_train, decimals=8),\ np.around(avg_losses_epoch_valid, decimals=8),\ np.around([cur_time - pre_time] , decimals=2),\ is_best_model) ) pre_time = cur_time return best_model, [losses_train, losses_valid, losses_epochs_train, losses_epochs_valid] def Test_Model(model, test_dataloader, batch_size): # if (type(model) == nn.modules.container.Sequential): # output_last = model[-1].output_last # else: # output_last = model.output_last inputs, labels = next(iter(test_dataloader)) cur_time = time.time() pre_time = time.time() use_gpu = torch.cuda.is_available() # loss_MSE = torch.nn.MSELoss() # loss_L1 = torch.nn.MSELoss() criterion = nn.BCELoss() tested_batch = 0 # losses_mse = [] losses_bce = [] # losses_l1 = [] MAEs = [] MAPEs = [] for data in test_dataloader: inputs, labels = data if inputs.shape[0] != batch_size: continue if use_gpu: inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda()) else: inputs, labels = Variable(inputs), Variable(labels) # TODO: extract them inputs_other = [] # (age, gender, previous_hospitalization_history) outputs, alpha, beta = model(inputs, inputs_other, batch_size) # loss_MSE = torch.nn.MSELoss() # loss_L1 = torch.nn.L1Loss() loss_bce = get_loss(outputs, labels, criterion, beta) # if output_last: # loss_mse = loss_MSE(torch.squeeze(outputs), torch.squeeze(labels)) # loss_l1 = loss_L1(torch.squeeze(outputs), torch.squeeze(labels)) MAE = torch.mean(torch.abs(torch.squeeze(outputs) - torch.squeeze(labels))) MAPE = torch.mean(torch.abs(torch.squeeze(outputs) - torch.squeeze(labels)) / torch.squeeze(labels)) # else: # loss_mse = loss_MSE(outputs[:,-1,:], labels) # loss_l1 = loss_L1(outputs[:,-1,:], labels) # MAE = torch.mean(torch.abs(outputs[:,-1,:] - torch.squeeze(labels))) # MAPE = torch.mean(torch.abs(outputs[:,-1,:] - torch.squeeze(labels)) / torch.squeeze(labels)) # losses_mse.append(loss_mse.data) # losses_l1.append(loss_l1.data) losses_bce.append(loss_bce.data) MAEs.append(MAE.data) MAPEs.append(MAPE.data) tested_batch += 1 if tested_batch % 1000 == 0: cur_time = time.time() print('Tested #: {}, loss_bce: {}, time: {}'.format( \ tested_batch * batch_size, \ np.around([loss_bce.data[0]], decimals=8), \ # np.around([loss_mse.data[0]], decimals=8), \ np.around([cur_time - pre_time], decimals=8) ) ) pre_time = cur_time losses_bce = np.array(losses_bce) # losses_l1 = np.array(losses_l1) # losses_mse = np.array(losses_mse) MAEs = np.array(MAEs) MAPEs = np.array(MAPEs) mean_l1 = np.mean(losses_bce) std_l1 = np.std(losses_bce) MAE_ = np.mean(MAEs) MAPE_ = np.mean(MAPEs) * 100 print('Tested: bce_mean: {}, bce_std: {}, MAE: {} MAPE: {}'.format(mean_l1, std_l1, MAE_, MAPE_)) return [losses_bce, mean_l1, std_l1] if __name__ == "__main__": # TODO: pick demographic features and remove them from feature. remove the comment that ignores them # TODO: add the dimension of the added demographic features to the last linear layer # TODO: remove the repeat trick # TODO: adapt the test/train code # TODO: save & load the model and data ##########################################################3 ########### configurations ########################################################### features_datapath = './data/input.csv' tags_datapath = './data/output.csv' load_model = False batch_size = 1 shuffle = False # shuffle dataset ############################################################ train_dataloader, valid_dataloader, test_dataloader = PrepareDataset(features_data_path=features_datapath, tags_data_path=tags_datapath, BATCH_SIZE=batch_size, shuffle =shuffle) inputs, labels = next(iter(train_dataloader)) [batch_size, seq_len, input_dim] = inputs.size() output_dim = labels.shape[-1] pat2vec = Patient2Vec(input_size=input_dim, hidden_size=256, n_layers=1, att_dim=1, initrange=1, output_size=output_dim, rnn_type='GRU', seq_len=seq_len, pad_size=2, n_filters=3, bi=True) if not load_model: best_grud, losses_grud = Train_Model(pat2vec, train_dataloader, valid_dataloader, num_epochs = 40, batch_size=batch_size) [losses_bce, mean_l1, std_l1] = Test_Model(best_grud, test_dataloader, batch_size=batch_size) else: pat2vec.load_state_dict(torch.load('best_model.pt')) # pat2vec.eval() [losses_mse, mean_l1, std_l1] = Test_Model(pat2vec, test_dataloader, batch_size=batch_size) ```
{ "source": "jlmilton/C2319_cart", "score": 2 }
#### File: C2319_cart/home/views.py ```python from django.shortcuts import render , get_object_or_404, redirect from django.http import HttpResponse from .models import About from django.contrib import messages from django.views.generic import ListView, DetailView from django.utils import timezone from .models import ( Item, Order, OrderItem ) # Create your views here. def home(request): return render(request, '../templates/home.html', {'title': 'Home'}) def about(request): return render(request, '../templates/about.html', {'title': 'About'}) def milestone_17(request): return render(request, '../templates/milestone_17.html', {'title': 'Milestone 17'}) def forsale(request): return render(request, '../templates/forsale.html', {'title': 'For Sale'}) class HomeView(ListView): model= Item template_name = "home.html" class ProductView(DetailView): model = Item template_name = "product.html" def add_to_cart(request, pk): item = get_object_or_404(Item,pk = pk) order_item,created= OrderItem.objects.get_or_create(item= item, user=request.user, ordered = False) order_qs = Order.objects.filter(user = request.user, ordered = False) if order_qs.exists(): order = order_qs[0] if order.items.filter(item__pk=item.pk).exists(): order_item.quantity += 1 order_item.save() messages.info(request, "Added Quantity Item!") return redirect("home:product", pk = pk) else: order.items.add(order_item) messages.info(request,"ITem added to your cart") return redirect("home:product",pk=pk) else: ordered_date=timezone.now() order=Order.objects.create(user=request.user,order_date=order_date) order.items.add(order_item) messages.info(request,"items added to your cart") return redirect("home:product",pk=pk) def remove_from_cart(request,pk): item = get_object_or_404(Item, px=pk) order_qs=Order.objects.filter(user=request.user,ordered=False) if order_qs.exists(): order=order_qs[0] if order.items.filter(item__pk= item.pk).exists(): order_item=OrderItem.objects.filter(item=item,user=request.user,ordered=False)[0] order_item.delete() messages.info(request,"Item \""+ order_item.item.item_name+"\"removed from your cart") return redirect("home:product") else: messages.info(request,"this item not in your cart") return redirect("home:product",pk=pk) else: messages.info(request,"you do not have an order") return redirect("home:product",pk=pk) ```
{ "source": "JLMin/pyping", "score": 3 }
#### File: pyping/pping/result.py ```python import socket import statistics from .session import Response class Result: __slots__ = ['responses', 'times', 'all_times', 'hostname', 'hostalias', 'iplist', 'sent', 'recv', 'lost', 'max', 'min', 'avg', 'stdev'] def __init__(self, addr, resps): (self.hostname, self.hostalias, self.iplist) = Result._get_host_info(addr) self.responses = resps self.times = [r.rtt for r in resps if r.status == Response.OK] self.all_times = [r.rtt if r.status == Response.OK else None for r in resps] self.sent = len(self.responses) self.recv = len(self.times) self.lost = self.sent - self.recv self.max = max(self.times) if self.times else 0 self.min = min(self.times) if self.times else 0 self.avg = statistics.mean(self.times) if self.times else 0 self.stdev = statistics.pstdev(self.times) if self.times else 0 def __str__(self): if self.recv > 0: return '\n'.join(Result._prettify(r) for r in self.responses) + ( f'\n\nPing statistics for {self.hostname}:\n' f'\tPackets: Sent = {self.sent}, ' f'Received = {self.recv}, ' f'Lost = {self.lost} ' f'({round(self.lost / self.sent * 100)}% loss)\n' f'Approximate round trip times in milli-seconds:\n' f'\tAverage = {round(self.avg * 1000)}ms, ' f'Minimum = {round(self.min * 1000)}ms, ' f'Maximum = {round(self.max * 1000)}ms, ' f'Stdev = {round(self.stdev * 1000,1)}' ) else: return self.responses[0].error def __repr__(self): if self.recv > 0: return ( f'{self.__class__.__name__} of [{self.hostname}] > ' f'{round(self.avg * 1000)}ms ~ {round(self.stdev * 1000,1)} ' f'[{self.recv}/{self.sent}, L:{self.lost}]' ) else: return ( f'{self.__class__.__name__} of [{self.hostname}] error > ' f'{self.responses[0].error}' ) def __getitem__(self, key): return self.responses[key] @staticmethod def _get_host_info(addr): try: return socket.gethostbyname_ex(addr) except OSError: return addr, [], [] @staticmethod def _prettify(resp): if resp.status == Response.OK: return ( f'Reply from {resp.src}: bytes={resp.size} ' f'time={round(resp.rtt * 1000)}ms TTL={resp.ttl}' ) else: return resp.error ``` #### File: pyping/tests/test_session.py ```python import pytest from pping.session import Request, Response class TestSession: @pytest.mark.parametrize( 'address', ( '-1.0.0.0', '2192.168.127.12', '?' ) ) def test_ping_returns_only_one_result_with_invalid_address(self, address): # repeat > 1, assert len(result) == 1 result = Request.ping(address=address, repeat=4, interval=1, size=0, timeout=1, ttl=64) assert isinstance(result, list) assert len(result) == 1 assert result[0].status == Response.ERROR @pytest.mark.parametrize( 'address, repeat, interval, timeout', ( ('127.0.0.1', 4, 0, 0.5), ) ) def test_reliable_address(self, address, repeat, interval, timeout): result = Request.ping(address=address, repeat=repeat, interval=interval, size=32, timeout=timeout, ttl=64) assert isinstance(result, list) assert len(result) == repeat assert result[0].status == Response.OK @pytest.mark.parametrize( 'address, repeat, interval, timeout', ( ('random.jmsjms.com', 4, 0, 0.2), ) ) def test_timed_out(self, address, repeat, interval, timeout): # This is a ping-able address, but I'm pretty sure we won't # receive reply from it. # This test will fail if somehow you do get response from it. result = Request.ping(address=address, repeat=repeat, interval=interval, size=32, timeout=timeout, ttl=64) assert isinstance(result, list) assert len(result) == repeat assert result[0].status == Response.TIMEDOUT ```
{ "source": "jlmjkfd/CS760_2021S2_PA4", "score": 3 }
#### File: CS760_2021S2_PA4/2_TOT/visualize_pnas.py ```python import fileinput from sets import Set import random import scipy.special import math import numpy as np import matplotlib.pyplot as plt import scipy.stats from scipy.stats import beta import pprint, pickle def VisualizeTopics(phi, words, num_topics, viz_threshold=9e-3): phi_viz = np.transpose(phi) words_to_display = ~np.all(phi_viz <= viz_threshold, axis=1) words_viz = [words[i] for i in range(len(words_to_display)) if words_to_display[i]] phi_viz = phi_viz[words_to_display] fig, ax = plt.subplots() heatmap = plt.pcolor(phi_viz, cmap=plt.cm.Blues, alpha=0.8) plt.colorbar() #fig.set_size_inches(8, 11) ax.grid(False) ax.set_frame_on(False) ax.set_xticks(np.arange(phi_viz.shape[1]) + 0.5, minor=False) ax.set_yticks(np.arange(phi_viz.shape[0]) + 0.5, minor=False) ax.invert_yaxis() ax.xaxis.tick_top() #plt.xticks(rotation=45) for t in ax.xaxis.get_major_ticks(): t.tick1On = False t.tick2On = False for t in ax.yaxis.get_major_ticks(): t.tick1On = False t.tick2On = False column_labels = words_viz #['Word ' + str(i) for i in range(1,1000)] row_labels = ['Topic ' + str(i) for i in range(1,num_topics+1)] ax.set_xticklabels(row_labels, minor=False) ax.set_yticklabels(column_labels, minor=False) plt.show() def VisualizeEvolution(psi): xs = np.linspace(0, 1, num=1000) fig, ax = plt.subplots() for i in range(len(psi)): ys = [math.pow(1-x, psi[i][0]-1) * math.pow(x, psi[i][1]-1) / scipy.special.beta(psi[i][0],psi[i][1]) for x in xs] ax.plot(xs, ys, label='Topic ' + str(i+1)) ax.legend(loc='best', frameon=False) plt.show() def main(): resultspath = '../results/pnas_tot/' tot_pickle_path = resultspath + 'pnas_tot.pickle' tot_pickle = open(tot_pickle_path, 'rb') par = pickle.load(tot_pickle) VisualizeTopics(par['n'], par['word_token'], par['T']) VisualizeEvolution(par['psi']) if __name__ == "__main__": main() ```
{ "source": "jlmonge/FlaskDatabaseQuery", "score": 3 }
#### File: jlmonge/FlaskDatabaseQuery/analytic_functions.py ```python from datetime import date from decimal import Decimal, DecimalException # ----- check_float() ----- # Helper function for analytics, used for input validation. # Passes in the value to be tested. # Makes no external function calls. # Checks the value can be expressed as a floating point number. # Returns TRUE if valid, FALSE if invalid. # ------------- def check_float(potential_float): try: float(potential_float) return True except ValueError: return False # -------------------------- # ----- most_funded_category_per_year() ----- # Helper function for analytics, namely... well, analytics_most_funded_category() # Passes in the year to test for, and the datafile to be read. # Makes no external function calls. # Reads each entry, finds the pledged value, and increments it to the corresponding category if the year is correct. # Returns a list containing the category with the highest amount pledged for the requested year, and that amount. # --------------------- def most_funded_category_per_year(year , file_data): category_dict = { # key=main category, value= total amount pledged for the year 'Games':0, 'Design': 0, 'Technology': 0, 'Film & Video': 0, 'Music': 0, 'Publishing': 0, 'Fashion': 0, 'Food': 0, 'Art': 0, 'Comics': 0, 'Photography': 0, 'Theater': 0, 'Crafts': 0, 'Journalism': 0, 'Dance': 0} result = [] if len(file_data) == 0 or file_data == [{}]: return result for key in file_data: if key['main_category'] in category_dict.keys(): if check_float(key['pledged']): str = key['launched'] if str[0:4] == year: category_dict[key['main_category']] += float(key['pledged']) list_of_values = category_dict.values() max_value = max(list_of_values) result.append(max_value) max_key = max(category_dict, key=category_dict.get) result.append(max_key) return result # ------------------------------------------- # ----- bad_date() ----- # Helper function for analytics, used for input validation. # Passes in the date to be read, expected to be in the format "yyyy-mm-dd hh:mm:ss", or at least "yyyy-mm-dd" # Makes no external function calls. # Reads the date and checks it against various criteria: # - A project could not be launched before 2008, when Kickstarter was created. # - A project should not be made after the year 3000, when humans have learned ascension, computers have become obsolete, and the Earth has been reclaimed by nature. # - A project's month should not be less than 1, for January, or greater than 12, for December. # - A project's day should not be less than 1 or greater than 31, because those days do not exist. # Returns a boolean of TRUE indicating invalid date, or FALSE if correct. # ----------- def bad_date(date): if(len(date) < 10): return True try: yearNum = int(date[0:4]) monthNum = int(date[5:7]) dayNum = int(date[8:10]) except: return True if yearNum < 2008 or yearNum > 3000: return True if monthNum < 1 or monthNum > 12: return True if dayNum < 1 or dayNum > 31: return True return False # ----------------------- # ----- average_length_ks() ----- # Helper function for analytics, namely make_length_analytic() # Passes in the datafile to be read. # Calls on bad_date() for input validation. # Reads each entry, collects the start and end date, adds the difference to the entry's year. # Returns the completed list of years, list of average kickstarter lengths for those years, and the total average across all years. # --------------- def average_length_ks(pyfile): labels = [] #labels for each datapoint returnData = [] #datapoints(average length per year) totalAverage = 0 totalDates = 0 dataByMonth = [] # #listValues = ["year",0.0,0]#"year or total", sum of lengths, number of values if len(pyfile) == 0 or pyfile == [{}]: return labels,returnData,totalAverage for i in pyfile: # For every entry, if bad_date(i["launched"]) or bad_date(i["deadline"]): # Check if dates are valid, continue startDate = date(int(i["launched"][0:4]),int(i["launched"][5:7]),int(i["launched"][8:10])) # Gather the starting time endDate = date(int(i["deadline"][0:4]),int(i["deadline"][5:7]),int(i["deadline"][8:10])) # and the ending time, timeBetween = endDate - startDate # Find the difference, if timeBetween.days < 0: continue yearNotInList = True for val in range(len(dataByMonth)): # Then for all currently collected data, if dataByMonth[val][0] == i["launched"][0:4]: # Find the year, yearNotInList = False dataByMonth[val][1] = dataByMonth[val][1] + timeBetween.days # add this entry's time to the year's total, dataByMonth[val][2] = dataByMonth[val][2] + 1 # and increment the project count. if yearNotInList: dataByMonth.append([i["launched"][0:4],timeBetween.days,1]) # If year is missing, these are the first values for it. #sort by year for iteration in dataByMonth: # For every year in the collected data, labels.append(iteration[0]) # Add the year to labels list, returnData.append(iteration[1]/iteration[2]) # Add that year's (total length / total projects) average to returnData, totalDates = iteration[2] + totalDates # and calculate the totals. totalAverage = iteration[1] + totalAverage if totalDates == 0:#error check for if there were only bad kickstarters passed in to prevent divide by zero totalAverage = 0 else: totalAverage = totalAverage/totalDates # Finally, return everything. return labels, returnData,totalAverage # -------------------------------- # ----- countProjects() ----- # Helper function for analytics, namely popularMonth(). # Passes in the datafile to be read. # Calls on bad_date for input validation. # Reads each entry, collects the date launched, and increments the corresponding list. # Returns the completed dictionary. # ---------------- def countProjects(dataFile): # list format: {Year}:[Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec] # each value represents the number of projects launched in that month for that year. retDict = {} if len(dataFile) == 0 or dataFile == [{}]: return retDict yearList = gatherYears(dataFile) for year in yearList: retDict[str(year)] = [0,0,0,0,0,0,0,0,0,0,0,0] for item in dataFile: launchTime = item['launched'] # 2012-03-17 03:24:11 if (bad_date(launchTime) == False): #checks to see if launch time is actually a date launchVals = launchTime.split('-') # ['2012', '03', '17 03:24:11'] retDict[launchVals[0]][(int(launchVals[1]) - 1)] += 1 return retDict # ---------------------------- # ----- count_cat_fail_success() ----- # Helper function for analytics, namely category_fail() # Passes in the data file to be read. # Makes no external function calls. # Reads each entry and increments the fail or success value for its category, depending on its state. # Returns the list of category titles, and the completed list of ratios for those categories # ----------------- def count_cat_fail_success(data): if len(data) == 0 or data == [{}]: return [{}] category_dict = { # key=main category, value=#successful[0],#failed[1] 'Games':[0,0], 'Design':[0,0], 'Technology':[0,0], 'Film & Video':[0,0], 'Music':[0,0], 'Publishing':[0,0], 'Fashion':[0,0], 'Food':[0,0], 'Art':[0,0], 'Comics':[0,0], 'Photography':[0,0], 'Theater':[0,0], 'Crafts':[0,0], 'Journalism':[0,0], 'Dance':[0,0]} for proj in data: if proj['state'] == 'successful': category_dict[proj['main_category']][0] += 1 elif proj['state'] == 'failed' or proj['state'] == 'canceled': category_dict[proj['main_category']][1] += 1 category_names = list(category_dict.keys()) # FOR DEBUGGING: category_successful = [x[0] for x in list(category_dict.values())] # FOR DEBUGGING: category_failed = [x[1] for x in list(category_dict.values())] category_failed_ratio = [x[1] / (x[0] + x[1]) if x[0] or x[1] else 0 for x \ in list(category_dict.values())] # list comprehension return category_names, category_failed_ratio # ------------------------------------- # ----- findAmbitious() ----- # Helper function for analytics, namely ambitiousProjects() # Passes in the data file to be read. # Calls on bad_date() for input validation. # Reads each entry, locates which year and month it belongs to, compares goals, keeps the higher one. # If goals are equal, keeps the project with the highest pledged. # Returns the completed and sorted-by-date dictionary # ------------- def findAmbitious(dataFile): # dictionary format: {year-month}:[ID,goal,pledged] retDict = {} if len(dataFile) == 0 or dataFile == [{}]: return retDict for item in dataFile: if (bad_date(item['launched']) == False): # 2012-03-17 03:24:11 date = item['launched'][0:7] # 2012-03 try: int(item['ID']) Decimal(item['goal']) Decimal(item['pledged']) except (ValueError, DecimalException): continue itemVals = [int(item['ID']),int(Decimal(item['goal'])),int(Decimal(item['pledged']))] try: compVals = retDict.get(date) # if goal is higher, or goal is equal and pledged is higher if ((itemVals[1] > compVals[1]) or ((itemVals[1] == compVals[1]) and (itemVals[2] > compVals[2]))): retDict[date] = itemVals except: retDict.setdefault(date, itemVals) sortDict = {} for i in sorted(retDict): sortDict[i] = retDict[i] return sortDict # --------------------------- # ----- gatherYears() ----- # Helper function for analytics, namely ambitiousProjects() and countProjects(). # Passes in the data file to be read. # Calls on bad_date for input validation. # Reads each entry, adds a new year if it is not yet added. # Returns the completed list of years. # ------------- def gatherYears(dataFile): retList = [] if len(dataFile) == 0 or dataFile == [{}]: return retList for item in dataFile: date = item['launched'] # 2012-03-17 03:24:11 if (bad_date(date) == False): try: retList.index(date[0:4]) # find 2012 in list, if not... except: retList.append(date[0:4]) # add 2012 to list retList.sort() # sort years in ascending order return retList # ------------------------- # ----- createDropdown() ----- # Helper function for analytics, namely ambitiousProjects() and countProjects(). # Passes in the figure to edit, the number of bars, the keys for the bar data, the list of tab titles, and the number of bars to be seen on each tab. # Makes no external function calls. # Creates a dropdown menu with the desired characteristics, and applies it to the figure. # Returns the edited figure. # ---------------------------- def createDropdown(figure,barCount,titleKeys,titleList,barsPerTab): tabList = [] visList = [] labelList = [] for i in range(barCount): # Add a visual boolean for every bar visList.append(False) for key in titleKeys: # Add each desired tab title to a list labelList.append(key) for i in range(int(barCount / barsPerTab)): # Add a new tab to tabList (number of tabs = barCount divided by barsPerTab) tabList.append( dict( label=labelList[i], method="update", args=[{"visible": []}, # This blank list will be filled later {"title": titleList[i]}] ) ) visIndex = 0 for item in tabList: # For every tab to be made, copyVis = visList.copy() # Create a copy of our visList try: for i in range(barsPerTab): copyVis[(visIndex + i)] = True # and allow only the necessary bars to be seen except: print('An error occurred! Graph may not display correctly!') # If something bad happens, don't crash finally: item['args'][0]['visible'] = copyVis # Update this bar's visible arguments to the proper values instead of a blank list visIndex += barsPerTab # Increment visIndex for the next loop # Update the figure with its new, fancy dropdown menu! figure.update_layout( updatemenus=[ dict( active=0, buttons=tabList ) ] ) return figure # ---------------------------- # ----- count_categories_per_month() ----- # Helper function for analytics, namely category_per_month(). # Passes in the data file to be read. # Makes no external function calls. # Counts the number of projects belonging to each month and its corresponding category. # Returns the completed dictionary of categories for all months. # ------------------ def count_categories_per_month(data): # Check if it is necessary to create dictionary if len(data) == 0 or not data[0]:#quick check to see if pyfile is either empty or has an empty dictionary inside print("empty file passed into analytic") return [{}] # Initialize variables month_dict = {'01':[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], '02':[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], '03':[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], '04':[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], '05':[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], '06':[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], '07':[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], '08':[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], '09':[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], '10':[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], '11':[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], '12':[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]} categories = ['Games', 'Design', 'Technology', 'Film & Video', 'Music', 'Publishing', 'Fashion', 'Food', 'Art', 'Comics', 'Photography', 'Theater', 'Crafts', 'Journalism', 'Dance'] # Increment each category respectively for proj in data: projDate = proj['launched'] if bad_date(projDate): continue projMonth = projDate[5:7] # substring of the month projCat = proj['main_category'] if projCat in categories: catIndex = categories.index(projCat) month_dict[projMonth][catIndex] += 1 #increment up that category return month_dict # -------------------------------------- # ----- get_countrys_category() ----- # Helper function for analytics, namely popular_category_perNation(). # Passes in the data file to be read. # Makes no external function calls. # Counts the number of projects belonging to each country, and its corresponding category. # Returns the completed dictionary of categories for all countries. # ---------------- def get_countrys_category(data): # Check if it is necessary to create dictionary if len(data) == 0 or not data[0]:#quick check to see if pyfile is either empty or has an empty dictionary inside print("empty file passed into analytic") return {} # Initialize variables categories = ['Games', 'Design', 'Technology', 'Film & Video', 'Music', 'Publishing', 'Fashion', 'Food', 'Art', 'Comics', 'Photography', 'Theater', 'Crafts', 'Journalism', 'Dance'] analyticDict = {} # Loop through dataset to add entries for proj in data: projCountry = proj['country'] projCat = proj['main_category'] if projCat not in categories: continue catIndex = categories.index(projCat) if projCountry in analyticDict.keys(): # no need to create new entry in the dictionary analyticDict[projCountry][catIndex] += 1 else: #makes entry for the newly detected country analyticDict[projCountry] = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] analyticDict[projCountry][catIndex] += 1 return analyticDict # --------------------------------- ##Successful words analytics def count_words(data): count_dict = {} for item in data: if 'state' in item.keys(): if(item['state'] == "successful"): res = item['name'].split() for i in res: if(len(i) >= 4): if i in count_dict: count_dict[i] += 1 else: count_dict[i] = 1 return count_dict ```
{ "source": "JLMorales/slack-bulk-delete", "score": 2 }
#### File: JLMorales/slack-bulk-delete/helper_functions.py ```python import sys def cli_progress(end_val, bar_length=20): for i in xrange(0, end_val): percent = float(i) / end_val hashes = '#' * int(round(percent * bar_length)) spaces = ' ' * (bar_length - len(hashes)) sys.stdout.write("\rPercent: [{0}] {1}%".format(hashes + spaces, int(round(percent * 100)))) sys.stdout.flush() ```
{ "source": "JL-Moriarty/Cargo-handling-robot", "score": 2 }
#### File: JL-Moriarty/Cargo-handling-robot/Imgprocess.py ```python import pyzbar.pyzbar as pyzbar import cv2 import numpy as np import picamera as pca import time import os import collections from luma.core.interface.serial import i2c, spi from luma.core.render import canvas from luma.oled.device import ssd1306, ssd1325, ssd1331, sh1106 import serial def readQRcode(x): qrdata = "" img = cv2.imread(x) qr = pyzbar.decode(img) for item in qr: qrdata = item.data.decode() return(qrdata) def getColorList(): dict = collections.defaultdict(list) lower_red = np.array([156, 43, 46]) upper_red = np.array([180, 255, 255]) color_list = [] color_list.append(lower_red) color_list.append(upper_red) dict['1']=color_list # 红色2 lower_red = np.array([0, 43, 46]) upper_red = np.array([10, 255, 255]) color_list = [] color_list.append(lower_red) color_list.append(upper_red) dict['11'] = color_list #绿色 lower_green = np.array([35, 43, 46]) upper_green = np.array([77, 255, 255]) color_list = [] color_list.append(lower_green) color_list.append(upper_green) dict['2'] = color_list #蓝色 lower_blue = np.array([100, 43, 46]) upper_blue = np.array([124, 255, 255]) color_list = [] color_list.append(lower_blue) color_list.append(upper_blue) dict['3'] = color_list return dict #处理图片 def judgeColor(frame): #print('go in get_color') hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV) maxsum = -100 color = None color_dict = getColorList() for d in color_dict: mask = cv2.inRange(hsv,color_dict[d][0],color_dict[d][1]) cv2.imwrite(d+'.jpg',mask) binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1] binary = cv2.dilate(binary,None,iterations=2) img, cnts, hiera = cv2.findContours(binary.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) sum = 0 for c in cnts: sum+=cv2.contourArea(c) if sum > maxsum : maxsum = sum color = d return color def capturePic(): cam = pca.PiCamera() cam.start_preview() time.sleep(2) cam.capture("/home/pi/Desktop/COLOR.jpg") cam.stop_preview() cam.close() def captureQRcode(): cam = pca.PiCamera() cam.start_preview() time.sleep(2) cam.capture("/home/pi/Desktop/QRCODE.jpg") cam.stop_preview() cam.close() '''def captureimgjudgeclr(): cam = pca.PiCamera() cam.start_preview() time.sleep(8) cam.capture("/home/pi/Desktop/test.jpg") cam.stop_preview() img = cv2.imread("/home/pi/Desktop/test.jpg") pxc = img[400,300] m = max(pxc) if m == pxc[0]: flag = 3 elif m ==pxc[1]: flag = 2 else: flag = 1 return flag''' def display(a,b = "ZZULI"): # rev.1 users set port=0 # substitute spi(device=0, port=0) below if using that interface serial = i2c(port=1, address=0x3C) # substitute ssd1331(...) or sh1106(...) below if using that device device = sh1106(serial)#这里改ssd1306, ssd1325, ssd1331, sh1106 with canvas(device) as draw: draw.rectangle(device.bounding_box,outline="white", fill="black") draw.text((55, 16), b, fill="white") draw.text((40, 36), "QRcode:"+a, fill="white") #draw.text((8, 40), "color distinguish:"+b, fill="white") def serialParse(): ser = serial.Serial("/dev/ttyUSB0",9600,timeout = 10) serialNum = ser.read(1) return serialNum '''def serialWrite(serialNumber): ser = serial.Serial("/dev/ttyUSB0",9600,timeout = 10) ser.write(serialNumber)''' def main(): while 1: ser = serial.Serial("/dev/ttyUSB0",9600,timeout = 10) #serialCheck = serialParse() serialCheck = ser.read(1) if serialCheck == b'\x05': capturePic() pic = "/home/pi/Desktop/COLOR.jpg" img = cv2.imread(pic) colorNum = judgeColor(img) #print(colorNum) ser.write(str.encode(colorNum)) #print("write over") #print(type(colorNum)) time.sleep(3) #serialWrite(colorNum) elif serialCheck == b'\x06': captureQRcode() pic = "/home/pi/Desktop/QRCODE.jpg" qrNum = readQRcode(pic) #print(qrNum) #print(type(qrNum)) ser.write(str.encode(qrNum)) display(qrNum) #serialWrite(str.encode(qrNum)) #print("write over") time.sleep(3) main() ```
{ "source": "jlmucb/class_notes", "score": 4 }
#### File: code/py/gen.py ```python print "Hello, Python!"; if True: print "True" else: print "False" #!/usr/bin/python import sys try: # open file stream file = open(file_name, "w") except IOError: print "There was an error writing to", file_name sys.exit() print "Enter '", file_finish, print "' When finished" while file_text != file_finish: file_text = raw_input("Enter text: ") if file_text == file_finish: # close the file file.close break file.write(file_text) file.write("\n") file.close() #!/usr/bin/python import sys, getopt def main(argv): inputfile = '' outputfile = '' try: opts, args = getopt.getopt(argv,"hi:o:",["ifile=","ofile="]) except getopt.GetoptError: print 'test.py -i <inputfile> -o <outputfile>' sys.exit(2) for opt, arg in opts: if opt == '-h': print 'test.py -i <inputfile> -o <outputfile>' sys.exit() elif opt in ("-i", "--ifile"): inputfile = arg elif opt in ("-o", "--ofile"): outputfile = arg #!/usr/bin/python tuple = ( 'abcd', 786 , 2.23, 'john', 70.2 ) list = [ 'abcd', 786 , 2.23, 'john', 70.2 ] tuple[2] = 1000 # Invalid syntax with tuple list[2] = 1000 # Valid syntax with list if ( a > b ): print "Line 5 - a is greater than b" else: print "Line 5 - a is not greater than b" #!/usr/bin/python a = 10 b = 20 list = [1, 2, 3, 4, 5 ];TUTORIALS POINT Simply Easy Learning if ( a in list ): print "Line 1 - a is available in the given list" else: print "Line 1 - a is not available in the given list" if ( b not in list ): print "Line 2 - b is not available in the given list" else: print "Line 2 - b is available in the given list" a = 2 if ( a in list ): print "Line 3 - a is available in the given list" else: print "Line 3 - a is not available in the given list" #!/usr/bin/python count = 0 while (count < 9): print 'The count is:', count count = count + 1 print "Good bye!" #!/usr/bin/python for letter in 'Python': # First Example print 'Current Letter :', letter fruits = ['banana', 'apple', 'mango'] for fruit in fruits: # Second Example print 'Current fruit :', fruit print "Good bye!" #!/usr/bin/python fruits = ['banana', 'apple', 'mango'] for index in range(len(fruits)): print 'Current fruit :', fruits[index] print "Good bye!" #!/usr/bin/python for letter in 'Python': # First Example if letter == 'h': continue print 'Current Letter :', letter var = 10 # Second Example while var > 0: var = var -1 if var == 5: continue print 'Current variable value :', var print “Good bye!” #!/usr/bin/python import random random.seed( 10 ) print "Random number with seed 10 : ", random.random() # It will generate same random number random.seed( 10 ) print "Random number with seed 10 : ", random.random() # It will generate same random number random.seed( 10 ) print "Random number with seed 10 : ", random.random() var1 = 'Hello World!' var2 = "Python Programming" print "var1[0]: ", var1[0] print "var2[1:5]: ", var2[1:5] #!/usr/bin/python dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}; print "dict['Name']: ", dict['Name']; print "dict['Age']: ", dict['Age']; #!/usr/bin/python import time; # This is required to include time module. ticks = time.time() print "Number of ticks since 12:00am, January 1, 1970:", ticks def functionname( parameters ): "function_docstring" function_suite return [expression] All parameters (arguments) in the Python language are passed by reference. It means if you change what a parameter refers to within a function, the change also reflects back in the calling function. For example: #!/usr/bin/python # Function definition is here def changeme( mylist ): "This changes a passed list into this function" mylist.append([1,2,3,4]); print "Values inside the function: ", mylist return # Now you can call changeme function mylist = [10,20,30]; changeme( mylist ); print "Values outside the function: ", mylist #!/usr/bin/python # Function definition is here sum = lambda arg1, arg2: arg1 + arg2; # Now you can call sum as a function print "Value of total : ", sum( 10, 20 ) print "Value of total : ", sum( 20, 20 ) The Python code for a module named aname normally resides in a file named aname.py. Here's an example of a simple module, hello.py def print_func( par ): print "Hello : ", par return The import Statement: You can use any Python source file as a module by executing an import statement in some other Python source file. The import has the following syntax: import module1[, module2[,... moduleN] When the interpreter encounters an import statement, it imports the module if the module is present in the search path. A search path is a list of directories that the interpreter searches before importing a module. For example, to import the module hello.py, you need to put the following command at the top of the script: #!/usr/bin/python # Import module hello import hello # Now you can call defined function that module as follows hello.print_func("Zara") When the above code is executed, it produces the following result: Hello : Zara #!/usr/bin/python Money = 2000 def AddMoney(): # Uncomment the following line to fix the code: # global Money Money = Money + 1 print Money AddMoney() print Money #!/usr/bin/python str = raw_input("Enter your input: "); print "Received input is : ", str #!/usr/bin/python # Open a file fo = open("foo.txt", "r+") str = fo.read(10); print "Read String is : ", str # Close opened file fo.close() input(prompt) len(thing) open(filename, mode) print(line) type(thing) ord(char) chr(number) Not that many! bool(thing) float(thing) int(thing) iter(list) list(thing) range(from, to, stride) str(thing) ``` #### File: code/py/graphfromfile.linux.py ```python import sys, getopt from matplotlib.pyplot import plot, show import matplotlib.pyplot as plt class Coords: def __init__(self, x, y): self.x = x self.y = y def getCoords( line ): a = '' b = '' l = line.strip() for i in range(0, len(l)): if l[i] == ' ': break a = a + l[i] if i == 0: return "" for j in range(i + 1, len(l)): if l[j] != ' ': break for i in range(j,len(l)): if l[i] == ' ': break b = b + l[i] c = Coords(float(a), float(b)) return c def printCoordList( lst ): c = Coords(0.0, 0.0) return c def stripComment( l ): for i in range(0, len(l)): if l[i] == '#': return l[0:i].strip() return l.strip() def main(argv=sys.argv): inputfile = sys.argv[1] outputfile = sys.argv[2] f = open(inputfile) l = [] for line in f: l.append(line) f.close() title= '' xlabel='' ylabel='' for i in range(0, len(l)): # print 'line ', i, ' ', l[i].rstrip() nl = stripComment(l[i]) if len(nl) <= 0: continue if title == '': title = nl elif xlabel == '': xlabel = nl elif ylabel == '': ylabel = nl break print('title: ', title, ', xlabel: ', xlabel, ', ylabel: ', ylabel) coords = [] for j in range(i + 1, len(l)): nl = stripComment(l[j]) t = getCoords(nl) if t == '': continue coords.append(t) xlist = [] ylist = [] for i in range(0, len(coords)): xlist.append(coords[i].x) ylist.append(coords[i].y) top = ylist[0] bottom = ylist[0] left = xlist[0] right = xlist[0] for i in range(0, len(coords)): if ylist[i] > top: top = ylist[i] if ylist[i] < bottom: bottom = ylist[i] if xlist[i] > right: right = xlist[i] if xlist[i] < left: left = xlist[i] left = left - .05 * (right - left) right = right + .05 * (right - left) bottom = bottom - .05 * (top - bottom) top = top + .05 * (top - bottom) print('left: ', left, ', right: ', right) print('bottom: ', bottom, ', top: ', top) print(len(coords), ' points') fig = plt.figure() plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.axes().set_aspect('equal') plt.axis([left, right, bottom, top]) plt.plot(xlist, ylist) plt.savefig(outputfile, dpi=25) plt.show() main(sys.argv) ``` #### File: code/py/p2.py ```python total_cost = 100.00 days = 3 cost_per_day = total_cost / days if cost_per_day > 40: print("Too expensive") elif cost_per_day > 30: print("Reasonable cost") elif cost_per_day > 20: print("Excellent cost") else: print("Incredible bargain") #Get information from user balance = input("Enter how much you want to save: ") payment = input("Enter how much you will save each period: ") #Calculate number of payments that will be needed #Present information to user #Get information from user balance = float(input("Enter how much you want to save: ")) while value <= 0: value = int(input ("Enter a Positive value!")) myfile = open("Filename", "r") myfile = open("Filename", "w") myfile.write("This line is written to the file.") myfile.close() # lists print (daily_high_temps[4]) for i in range(7): print(daily_high_temps[i]) daily_high_temps = [83, 80, 73, 75, 79, 83, 86] x = len(daily_high_temps) list1 += list2 list1.append(3.9) varname[a:b] car_tuple = "Buick", "Century", 23498 ########## Analyze Data ########## #Get date of interest month = int(input("For the date you care about, enter the month: ")) day = int(input("For the date you care about, enter the day: ")) #Find historical data for date gooddata = [] for singleday in datalist: if (singleday[0] == day) and (singleday[1] == month): gooddata.append([singleday[2], singleday[3], singleday[4], singleday[5]]) #Perform analysis minsofar = 120 maxsofar = -100 numgooddates = 0 sumofmin=0 sumofmax=0 for singleday in gooddata: numgooddates += 1 sumofmin += singleday[1] sumofmax += singleday[2] if singleday[1] < minsofar: print(minsofar, singleday[1]) minsofar = singleday[1] if singleday[2] > maxsofar: maxsofar = singleday[2] avglow = sumofmin / numgooddates avghigh = sumofmax / numgooddates def getName(): first = input("Enter your first name:") last = input("Enter your last name:") full_name = first + ' ' + last return full_name name = getName() ``` #### File: code/py/p3.py ```python def calc_miles(gallons, mpg=20.0): return gallons*mpg print( calc_miles(10.0, 15.0) ) print( calc_miles(10.0) ) for line in infile: #STUFF DELETED HERE m, d, y = date.split('/') month = int(m) day = int(d) year = int(y) #Put data into list datalist.append([day, month, year, lowtemp, hightemp, rainfall]) #STUFF DELETED HERE #Find historical data for date gooddata = [] for singleday in datalist: if (singleday[0] == month) and (singleday[1] == day): gooddata.append([singleday[2], singleday[3], singleday[4], singleday[5]]) from random import choice import pyglet window = pyglet.window.Window(width=400, height = 450, caption="GameWindow") Im1 = pyglet.image.load('BlueTri.jpg') Im2 = pyglet.image.load('PurpleStar.jpg') Im3 = ('OrangeDiamond.jpg') Im4 = pyglet.image.load('YellowCircle.jpg') Im5 = pyglet.image.load('RedHex.jpg') def InitializeGrid(board): #Initialize Grid by reading in from file for i in range(8): for j in range(8): board[i][j] = choice(['A', 'B', 'C', 'D', 'E']) def Initialize(board): #Initialize game #Initialize grid InitializeGrid(board) #Initialize score global score score = 0 #Initialize turn number global turn turn = 1 #Set up graphical info def ContinueGame(current_score, goal_score = 100): #Return false if game should end, true if game is not over if (current_score >= goal_score): return False else: return True def SwapPieces(board, move): #Swap objects in two positions temp = board[move[0]][move[1]] board[move[0]][move[1]] = board[move[2]][move[3]] board[move[2]][move[3]] = temp def RemovePieces(board): #Remove 3-in-a-row and 3-in-a-column pieces #Create board to store remove-or-not remove = [[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]] #Go through rows for i in range(8): for j inpyglet.image.load range(6): if (board[i][j] == board[i][j+1]) and (board[i][j] == board[i][j+2]): #three in a row are the same! remove[i][j] = 1; remove[i][j+1] = 1; remove[i][j+2] = 1; #Go through columns for j in range(8): for i in range(6): if (board[i][j] == board[i+1][j]) and (board[i][j] == board[i+2][j]): #three in a row are the same! remove[i][j] = 1; remove[i+1][j] = 1; remove[i+2][j] = 1; #Eliminate those marked global score removed_any = False for i in range(8): for j in range(8): if remove[i][j] == 1: board[i][j] = 0 score += 1 removed_any = True return removed_any def DropPieces(board): #Drop pieces to fill in blanks for j in range(8): #make list of pieces in the column listofpieces = [] for i in range(8): if board[i][j] != 0: listofpieces.append(board[i][j]) #copy that list into colulmn for i in range(len(listofpieces)): board[i][j] = listofpieces[i] #fill in remainder of column with 0s for i in range(len(listofpieces), 8): board[i][j] = 0 def FillBlanks(board): #Fill blanks with random pieces for i in range(8): for j in range(8): if (board[i][j] == 0): board[i][j] = choice(['A', 'B', 'C', 'D', 'E']) def Update(board, move): #Update the board according to move SwapPieces(board, move) pieces_eliminated = True while pieces_eliminated: pieces_eliminated = RemovePieces(board) DropPieces(board) FillBlanks(board) @window.event def on_draw(): window.clear() for i in range(7,-1,-1): #Draw each row y = 50+50*i for j in range(8): #draw each piece, first getting position x = 50*j if board[i][j] == 'A': Im1.blit(x,y) elif board[i][j] == 'B': Im2.blit(x,y) elif board[i][j] == 'C': Im3.blit(x,y) elif board[i][j] == 'D': Im4.blit(x,y) elif board[i][j] == 'E': Im5.blit(x,y) label = pyglet.text.Label('Turn: '+str(turn)+ 'Score: '+str(score), font_name='Arial', font_size=18, x=20, y = 10) label.draw() @window.event def on_mouse_press(x, y, button, modifiers): #Get the starting cell global startx global starty startx = x starty = y @window.event def on_mouse_release(x, y, button, modifiers): #Get starting and ending cell and see if they are adjacent startcol = startx//50 startrow = (starty-50)//50 endcol = x//50 endrow = (y-50)//50 #Check whether ending is adjacent to starting and if so, make move. if ((startcol==endcol and startrow==endrow - 1) or (startcol==endcol and startrow==endrow+1) or (startrow==endrow and startcol==endcol-1) or (startrow==endrow and startcol==endcol+1)): Update(board,[startrow,startcol,endrow,endcol]) global turn turn += 1 #See if game is over if not ContinueGame(score): print("You won in", turn, "turns!") exit() #State main variables score = 100 turn = 100 goalscore = 100 board = [[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]] #Initialize game Initialize(board) pyglet.app.run() from matplotlib import pyplot pyplot.plot([0,1,2,3,4,5], [0,1,4,9,16,25]) pyplot.axis([0,5,0,25]) pyplot.show() from matplotlib.pyplot import plot, show #Set initial conditions time = 0 balance = 1000 #Set list to store data timelist=[time] balancelist=[balance] while (time < 10): #Increase balance and time balance += balance*0.03 time += 1 #Store time and balance in lists timelist.append(time) balancelist.append(balance) #Output the simulation results for i in range(len(timelist)): print("Year:", timelist[i], " Balance:", balancelist[i]) plot(timelist, balancelist) show() class BankAccount: balance = 0.0 def __init__(self): self.deposits = [] checking_account = BankAccount() savings_account = BankAccount() checking_account.deposits.append(100.0) print(savings_account.deposits) class FootballPlayer: name = "<NAME>" team = "None" years_in_league = 0 def printPlayer(self): print(self.name+" playing for the "+self.team+":") class Quarterback(FootballPlayer): pass_attempts = 0 completions = 0 pass_yards = 0 def completionRate(self): return self.completions/self.pass_attempts def yardsPerAttempt(self): return self.pass_yards/self.pass_attempts class RunningBack(FootballPlayer): rushes = 0 rush_yards = 0 def yardsPerRush(self): return self.rush_yards/self.rushes class FootballPlayer: name = "<NAME>" team = "None" years_in_league = 0 def printPlayer(self): print(self.name+" playing for the "+self.team+":") def isGood(self): print("Error! isGood is not defined!") return False class Quarterback(FootballPlayer): pass_attempts = 0 completions = 0 pass_yards = 0 def completionRate(self): return self.completions/self.pass_attempts def yardsPerAttempt(self): return self.pass_yards/self.pass_attempts def isGood(self): return (self.yardsPerAttempt() > 7) class RunningBack(FootballPlayer): rushes = 0 rush_yards = 0 def yardsPerRush(self): return self.rush_yards/self.rushes def isGood(self): return (self.yardsPerRush() > 4) book_queue = [] book_queue.append(medium_book) book_queue.append(short_book) book_queue.append(long_book) next_book = book_queue.pop(0) def isIn(L, v): i= 0 while (i<len(L)): if L[i] == v: return True else: i += 1 return False favorite_foods = ['pizza', 'barbeque', 'gumbo', 'chicken and dumplings', 'pecan pie', 'ice cream'] print(isIn(favorite_foods, 'gumbo')) print(isIn(favorite_foods, 'coconut')) OUTPUT: True False def mergeSort(L): n = len(L) if n <= 1: return L1 = L[:n//2] L2 = L[n//2:] mergeSort(L1) mergeSort(L2) merge(L, L1, L2) return def merge(L, L1, L2): i= 0 j= 0 k= 0 while (j < len(L1)) or (k < len(L2)): if j < len(L1): if k < len(L2): #we are not at the end of L1 or L2, so pull the smaller value if L1[j] < L2[k]: L[i] = L1[j] j += 1 else: L[i] = L2[k] k += 1 else: #we are at the end of L2, so just pull from L1 L[i] = L1[j] j += 1 else: #we are at the end of L1, so just pull from L2 L[i] = L2[k] k += 1 i += 1 return def merge(L, L1, L2): i= 0 j= 0 k= 0 while (j < len(L1)) or (k < len(L2)): if j < len(L1): if k < len(L2): #we are not at the end of L1 or L2, so pull the smaller value if L1[j] < L2[k]: L[i] = L1[j] j += 1 else: L[i] = L2[k] k += 1 else: #we are at the end of L2, so just pull from L1 L[i] = L1[j] j += 1 else: #we are at the end of L1, so just pull from L2 L[i] = L2[k] k += 1 i += 1 return class node: def __init__(self, name, parent=-1): self._name = name self._parent = parent self._left = -1 self._right = -1 def getName(self): return self._name def getParent(self): return self._parent def getLeft(self): return self._left def getRight(self): return self._right def setParent(self, p): self._parent = p def setLeft(self, l): self._left = l def setRight(self, r): self._right = r class node: def __init__(self, name): self._name = name self._friends = [] self._status = 0 self._discoveredby = 0 def getName(self): return self._name def getFriends(self): return self._friends def addFriend(self, friend_index): self._friends.append(friend_index) def isUnseen(self): if self._status == 0: return True else: return False def isSeen(self): if self._status == 1: return True else: return False def setUnseen(self): self._status = 0 def setSeen(self): self._status = 1 def discover(self, n): self._discoveredby = n def discovered(self): return self._discoveredby def BFS(nodelist, start, goal): to_visit = queue() nodelist[start].setSeen() to_visit.enqueue(start) found = False while (not found) and (not to_visit.isEmpty()): current = to_visit.dequeue() neighbors = nodelist[current].getNeighbors() for neighbor in neighbors: if nodelist[neighbor].isUnseen(): nodelist[neighbor].setSeen() nodelist[neighbor].discover(current) if neighbor == goal: found = True else: to_visit.enqueue(neighbor) def retrievePath(nodelist, start, goal): #Return the path from start to goal def BFS(nodelist, start, goal): to_visit = queue() nodelist[start].setSeen() to_visit.enqueue(start) found = False while (not found) and (not to_visit.isEmpty()): current = to_visit.dequeue() neighbors = nodelist[current].getNeighbors() for neighbor in neighbors: if nodelist[neighbor].isUnseen(): nodelist[neighbor].setSeen() nodelist[neighbor].discover(current) if neighbor == goal: found = True else: to_visit.enqueue(neighbor) return retrievePath(noswliar, start, goal) from multiprocessing import Process def print_process(number): print("Printing from process", number) if __name__ == '__main__': process_list = [] for i in range(20): p = Process(target=print_process, args=(i,)) process_list.append(p) for p in process_list: p.start() for line in infile: #STUFF DELETED HERE m, d, y = date.split('/') month = int(m) day = int(d) year = int(y) #Put data into list datalist.append([day, month, year, lowtemp, hightemp, rainfall]) #STUFF DELETED HERE #Find historical data for date gooddata = [] for singleday in datalist: if (singleday[0] == month) and (singleday[1] == day): gooddata.append([singleday[2], singleday[3], singleday[4], singleday[5]]) try: #Commands to try out except <name of exception>: #how to handle that exception import math print(math.sin(math.pi/2)) import webbrowser webbrowser.open("http://www.thegreatcourses.com") import shutil shutil.copy("File1.txt", "File2.txt") ```
{ "source": "jlmwise/python-docs-samples", "score": 2 }
#### File: python-docs-samples/dlp/custom_infotype.py ```python def omit_name_if_also_email( project, content_string, ): """Marches PERSON_NAME and EMAIL_ADDRESS, but not both. Uses the Data Loss Prevention API omit matches on PERSON_NAME if the EMAIL_ADDRESS detector also matches. Args: project: The Google Cloud project id to use as a parent resource. content_string: The string to inspect. Returns: None; the response from the API is printed to the terminal. """ # Import the client library. import google.cloud.dlp # Instantiate a client. dlp = google.cloud.dlp_v2.DlpServiceClient() # Construct a list of infoTypes for DLP to locate in `content_string`. See # https://cloud.google.com/dlp/docs/concepts-infotypes for more information # about supported infoTypes. info_types_to_locate = [{"name": "PERSON_NAME"}, {"name": "EMAIL_ADDRESS"}] # Construct the configuration dictionary that will only match on PERSON_NAME # if the EMAIL_ADDRESS doesn't also match. This configuration helps reduce # the total number of findings when there is a large overlap between different # infoTypes. inspect_config = { "info_types": info_types_to_locate, "rule_set": [{ "info_types": [{ "name": "PERSON_NAME" }], "rules": [{ "exclusion_rule": { "exclude_info_types": { "info_types": [{ "name": "EMAIL_ADDRESS" }] }, "matching_type": "MATCHING_TYPE_PARTIAL_MATCH" } }] }] } # Construct the `item`. item = {"value": content_string} # Convert the project id into a full resource id. parent = dlp.project_path(project) # Call the API. response = dlp.inspect_content(parent, inspect_config, item) return [f.info_type.name for f in response.result.findings] # [END dlp_omit_name_if_also_email] # [START inspect_with_person_name_w_custom_hotword] def inspect_with_person_name_w_custom_hotword( project, content_string, custom_hotword="patient" ): """Uses the Data Loss Prevention API increase likelihood for matches on PERSON_NAME if the user specified custom hotword is present. Only includes findings with the increased likelihood by setting a minimum likelihood threshold of VERY_LIKELY. Args: project: The Google Cloud project id to use as a parent resource. content_string: The string to inspect. custom_hotword: The custom hotword used for likelihood boosting. Returns: None; the response from the API is printed to the terminal. """ # Import the client library. import google.cloud.dlp # Instantiate a client. dlp = google.cloud.dlp_v2.DlpServiceClient() # Construct a rule set with caller provided hotword, with a likelihood # boost to VERY_LIKELY when the hotword are present within the 50 character- # window preceding the PII finding. hotword_rule = { "hotword_regex": {"pattern": custom_hotword}, "likelihood_adjustment": {"fixed_likelihood": "VERY_LIKELY"}, "proximity": {"window_before": 50}, } rule_set = [ { "info_types": [{"name": "PERSON_NAME"}], "rules": [{"hotword_rule": hotword_rule}], } ] # Construct the configuration dictionary with the custom regex info type. inspect_config = { "rule_set": rule_set, "min_likelihood": "VERY_LIKELY", } # Construct the `item`. item = {"value": content_string} # Convert the project id into a full resource id. parent = dlp.project_path(project) # Call the API. response = dlp.inspect_content(parent, inspect_config, item) # Print out the results. if response.result.findings: for finding in response.result.findings: try: if finding.quote: print(f"Quote: {finding.quote}") except AttributeError: pass print(f"Info type: {finding.info_type.name}") print(f"Likelihood: {finding.likelihood}") else: print("No findings.") # [END inspect_with_person_name_w_custom_hotword] # [START dlp_inspect_with_medical_record_number_custom_regex_detector] def inspect_with_medical_record_number_custom_regex_detector( project, content_string, ): """Uses the Data Loss Prevention API to analyze string with medical record number custom regex detector Args: project: The Google Cloud project id to use as a parent resource. content_string: The string to inspect. Returns: None; the response from the API is printed to the terminal. """ # Import the client library. import google.cloud.dlp # Instantiate a client. dlp = google.cloud.dlp_v2.DlpServiceClient() # Construct a custom regex detector info type called "C_MRN", # with ###-#-##### pattern, where each # represents a digit from 1 to 9. # The detector has a detection likelihood of POSSIBLE. custom_info_types = [ { "info_type": {"name": "C_MRN"}, "regex": {"pattern": "[1-9]{3}-[1-9]{1}-[1-9]{5}"}, "likelihood": "POSSIBLE", } ] # Construct the configuration dictionary with the custom regex info type. inspect_config = { "custom_info_types": custom_info_types, } # Construct the `item`. item = {"value": content_string} # Convert the project id into a full resource id. parent = dlp.project_path(project) # Call the API. response = dlp.inspect_content(parent, inspect_config, item) # Print out the results. if response.result.findings: for finding in response.result.findings: try: if finding.quote: print(f"Quote: {finding.quote}") except AttributeError: pass print(f"Info type: {finding.info_type.name}") print(f"Likelihood: {finding.likelihood}") else: print("No findings.") # [END dlp_inspect_with_medical_record_number_custom_regex_detector] ```
{ "source": "jlnatalicio/Python-programs", "score": 3 }
#### File: res/old/main_2.py ```python import pygame from pygame import mixer import random import math # initialize pygame module pygame.init() # create screen (height x width) screen = pygame.display.set_mode((640, 480)) # Title and Icon of window # "Icon made by Smashicons from www.flaticon.com" pygame.display.set_caption("Space Invaders PyClone") icon = pygame.image.load('res/img/space-invaders.png') pygame.display.set_icon(icon) # Create Background # ("Sound made by VABsounds from www.freesound.org") background_img = pygame.image.load('res/img/background.png') mixer.music.load('res/sounds/background.wav') mixer.music.play(-1) # Create Player player_img = pygame.image.load('res/img/player.png') # player initial position player_x = 304 player_y = 420 player_x_change = 0.0 # Score ("Font made by Geronimo Font Studios from www.dafont.com") score = 0 font = pygame.font.Font('res/fonts/Gameplay.ttf', 16) text_x = 10 text_y = 10 game_over_font = pygame.font.Font('res/fonts/Gameplay.ttf', 64) # Create Bullet # ("Sounds made by TheDweebMan and kutejnikov from www.freesound.org") bullet_img = pygame.image.load('res/img/bullet.png') bullet_x = 0 bullet_y = player_y bullet_y_change = 0.3 bullet_state = "ready" # Create Enemy # "Icon made by Freepik from www.flaticon.com" enemy_img = [] enemy_x = [] enemy_y = [] enemy_x_change = [] enemy_y_change = [] num_enemies = 6 for i in range(num_enemies): enemy_img.append(pygame.image.load('res/img/alien1.png')) enemy_x.append( float(random.randint(0, 608)) ) enemy_y.append( float(random.randint(50, 100)) ) enemy_x_change.append(0.18) enemy_y_change.append(32.0) def drawGameOverScreen(): game_over_text = game_over_font.render("GAME OVER", True, (255,255,255)) screen.blit(game_over_text, (128, 128)) def drawScore(x, y): score_value = font.render("Hi-Score: " + str(score), True, (255,255,255)) screen.blit(score_value, (x, y)) def drawPlayer(pos_x, pos_y): screen.blit(player_img, (pos_x, pos_y)) # draw player on screen def drawEnemy(pos_x, pos_y, i): screen.blit(enemy_img[i], (pos_x, pos_y)) # draw enemy on screen def fireBullet(x, y): global bullet_state # you can access this variable in the function using global bullet_state = "fire" screen.blit(bullet_img, (x, y)) def checkCollision(x1, y1, x2, y2): x_coordinate_sqr = (x1 - x2) ** 2 y_coordinate_sqr = (y1 - y2) ** 2 distance = math.sqrt(x_coordinate_sqr + y_coordinate_sqr) if distance < 16.0: return True else: return False game_is_running = True while game_is_running: # sets game loop # paint screen R G B screen.fill((0, 0, 0)) #draw background screen.blit(background_img, (0, 0)) for event in pygame.event.get(): if (event.type == pygame.QUIT or event.type == pygame.WINDOWCLOSE): game_is_running = False # if keystroke is pressed, check whether its right or left if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: player_x_change = -0.2 if event.key == pygame.K_RIGHT: player_x_change = 0.2 if event.key == pygame.K_SPACE: if bullet_state == "ready": bullet_sound = mixer.Sound('res/sounds/laser.wav') bullet_sound.play() # get current x coordinate of spaceship bullet_x = player_x fireBullet(bullet_x, bullet_y) if event.key == pygame.K_ESCAPE: game_is_running = False # if keystroke is released, check whether its right or left if event.type == pygame.KEYUP: if event.key == pygame.K_LEFT or event.key == pygame.K_RIGHT: player_x_change = 0.0 # update player movement and keeping the player on the boundaries of screen player_x += player_x_change if player_x < 0: player_x = 0 elif player_x > 604: player_x = 604 # update enemy movement and keeping the enemy on the boundaries of screen for i in range(num_enemies): # Game Over if enemy_y[i] > player_y: for j in range(num_enemies): enemy_y[j] = 2000 drawGameOverScreen() break enemy_x[i] += enemy_x_change[i] if enemy_x[i] <= 0.0: enemy_x_change[i] = 0.18 enemy_y[i] += enemy_y_change[i] elif enemy_x[i] > 604.0: enemy_x_change[i] = -0.18 enemy_y[i] += enemy_y_change[i] bullet_hit = checkCollision(enemy_x[i], enemy_y[i], bullet_x, bullet_y) if bullet_hit: bullet_y = player_y bullet_state = "ready" score += 1 enemy_x[i] = float(random.randint(0, 608)) enemy_y[i] = float(random.randint(50, 100)) drawEnemy(enemy_x[i], enemy_y[i], i) # update bullet movement if bullet_y <= 0: # when bullet hits the top of the screen... bullet_y = player_y # teleport to player's position bullet_state = "ready" # and prepare it to be fired again if bullet_state == "fire": fireBullet(bullet_x, bullet_y) bullet_y -= bullet_y_change # collision bullet_hit = checkCollision(enemy_x[i], enemy_y[i], bullet_x, bullet_y) if bullet_hit: explosion_sound = mixer.Sound('res/sounds/explosion.wav') explosion_sound.play() bullet_y = player_y bullet_state = "ready" score += 1 enemy_x = random.randint(0, 608) enemy_y = random.randint(50, 100) drawPlayer(player_x, player_y) drawScore(text_x, text_y) pygame.display.update() # we need to update the screen to see changes pygame.font.quit() pygame.mixer.quit() pygame.display.quit() # unitialize module and close window ```
{ "source": "jlnbtz/DLAS_speech_tokenizer", "score": 3 }
#### File: src/util/progress.py ```python import math import sys def print_bar(part, whole, length, prefix='', suffix='', delimiter='\r', end='\n'): number = part / whole * length floor = math.floor(number) sys.stdout.write(prefix + '█' * floor) rest = number - floor if part < whole: if rest < 0.125: sys.stdout.write(' ') elif rest < 0.25: sys.stdout.write('▏') elif rest < 0.375: sys.stdout.write('▎') elif rest < 0.5: sys.stdout.write('▍') elif rest < 0.625: sys.stdout.write('▌') elif rest < 0.75: sys.stdout.write('▋') elif rest < 0.875: sys.stdout.write('▊') else: sys.stdout.write('▉') print(' ' * (length - floor - 1) + suffix, end=delimiter if part < whole else end) # progress.py ends here ```
{ "source": "jlnc/reto-python", "score": 3 }
#### File: reto-04/eleloi/configurator.py ```python import toml import os import pydantic from pathlib import Path class Configuration(pydantic.BaseModel): directorio: str class Configurator: def __init__(self, config_path: str, config_filename: str) -> None: self.config_file = os.path.join(config_path, config_filename) def read(self) -> Configuration: if not os.path.isfile(self.config_file): self._write_toml(self._get_default_configuration()) return Configuration(**toml.load(self.config_file)) def _write_toml(self, config: Configuration) -> None: with open(self.config_file, "w", encoding="utf-8") as f: f.write(toml.dumps(config.dict())) @staticmethod def _get_user_download_directory() -> str: home_dir = str(Path.home()) download_dir = os.path.join(home_dir, "downloads") if download_dir: return download_dir raise Exception("Could not find user download directory") def _get_default_configuration(self) -> Configuration: default_download_directory = self._get_user_download_directory() return Configuration(directorio=default_download_directory) ``` #### File: reto-05/eleloi/main.py ```python import _config import _utils CONFIG_PATH = "config.toml" def main(): config = _config.read(CONFIG_PATH) for path_name in [x.in_ for x in config.directorios]: _utils.list_jpg_files_in_dir(path_name) if __name__ == "__main__": main() ``` #### File: eleloi/test/test_config.py ```python import os import _config SAMPLE_CONFIG_PATH = "test_config.toml" def clean_sample_data(): if os.path.isfile(SAMPLE_CONFIG_PATH): os.remove(SAMPLE_CONFIG_PATH) assert not os.path.isfile(SAMPLE_CONFIG_PATH) def test_can_create_default_configuration(): clean_sample_data() _config.read(SAMPLE_CONFIG_PATH) assert os.path.isfile(SAMPLE_CONFIG_PATH) ``` #### File: fpellicer/src/utils.py ```python import shutil from pathlib import Path import mimetypes import functools def banner(function): @functools.wraps(function) def wrapper(*args, **kwargs): """ Añade como cabecera la ruta desde la cual se listan los archivos. """ print(f"=== {args[0]} ===") function(*args, **kwargs) return wrapper @banner def list_images(path: Path) -> None: """ Lista las imágenes del directorio indicado. Parameters: path (Path): Ruta al directorio de imágenes. Returns: None """ for file in path.iterdir(): mime = mimetypes.guess_type(file)[0] if file.is_file() and mime == "image/jpeg": print(file.name) @banner def actions(src: Path, dst: Path, action: str) -> None: """ Copia o mueve el contenido 'src' a 'dst' según el valor de 'action'. Parameters: src (Path): Directorio de origen. dst (Path): Directorio de destino. action (str): Puede ser: 'move', 'copy'. Returns: None """ if action == "copy": for item in src.iterdir(): shutil.copy(item, dst) elif action == "move": for item in src.iterdir(): src_ = dst / item.name if src_.exists(): src_.unlink() # Versión <= 3.8 NO acepta objetos tipo Path como src shutil.move(item.as_posix(), dst) else: pass ``` #### File: joselo/src/configurator.py ```python import os from pathlib import Path import toml from typing import Dict, Union, MutableMapping, Any class Configurator: """Una clase para generar y verificar la configuración.""" HEADER = "directorios" DIR_INPUT = "in" DIR_OUTPUT = "out" def __init__(self, path: Path, config: str) -> None: """Constructor. Almacena los parametros de entada y chequea la configuración. Parameters ---------- path : Path El path al directorio de la configuración. config : str El nombre del fichero de configuración. Returns ------- None """ self.directory = path self.filename = config self.check() def check(self) -> None: """Chequea la integridad de la configuración. 1) Si no existe el directorio de la configuración, lo crea. 2) Si no existe el fichero de configuración, lo crea y escribe el nombre de la sección principal: '["directorios"]'. 3) Si existe el fichero de configuración, lo lee y crea todos los directorios definidos en él. No verifica si los paths de esos directorios contienen cosas como ~/directorio, $HOME/directorio, ../../directorio, etc pero debería, ya que en esos casos se crean paths relativos al directorio actual: ${PWD}/"~/directorio", ${PWD}/"$HOME/directorio", etc y no es eso lo que queremos. Returns ------- None. """ if not self.directory.exists(): os.makedirs(self.directory) config_file = self.directory / self.filename if not config_file.exists(): conf = {self.__class__.HEADER: {}} with open(config_file, 'w') as fwrite: toml.dump(conf, fwrite) conf = toml.load(config_file) # print(conf, flush=True) dirs_inout = (self.__class__.DIR_INPUT, self.__class__.DIR_OUTPUT) for item in conf[self.__class__.HEADER].values(): # print(item, flush=True) for path in [Path(item[d]) for d in item if d in dirs_inout]: # print(path, flush=True) if not path.exists(): os.makedirs(path) def read(self) -> MutableMapping[str, Any]: """Leer la configuración. Accede al fichero de configuración usando los atributos que se definen en el constructor (self.path y self.filename) Returns ------- MutableMapping[str, Any] """ config_file = self.directory / self.filename return toml.load(config_file) def save(self, conf: Union[Dict, MutableMapping[str, Any]]) -> None: """Guarda la configuración en el formato TOML. Parameters ---------- conf : Union[Dict, MutableMapping[str, Any]] La variable que hemos usado para definir la configuración de forma interna. Returns ------- None """ config_file = self.directory / self.filename with open(config_file, 'w') as fw: toml.dump(conf, fw) ``` #### File: reto-07/eleloi/_config.py ```python from enum import Enum import re import toml import os import pydantic class InvalidFilterString(ValueError): def __init__(self, value: str, *args: object) -> None: self.value = value super().__init__(*args) class Action(Enum): NONE = "none" MOVE = "move" COPY = "copy" class UserDir(pydantic.BaseModel): in_: str = pydantic.Field(alias="in") out: str actions: list[Action] filter_: str = pydantic.Field( # regex=r"^\*\.\w+$", # description="a filter to select which files to process, like *.jpg", alias="filter", ) @pydantic.validator("filter_") @classmethod def check_filter_regex_match(cls, value): if not re.search(r"^\*\.\w+$", value): raise InvalidFilterString(value=value) return value class Configuration(pydantic.BaseModel): directorios: list[UserDir] def _generate_default_configuration_file(config_path: str) -> None: default_config = Configuration(directorios=[]) with open(config_path, "w", encoding="utf-8") as f: f.write(toml.dumps(default_config.dict())) def read(config_path: str) -> Configuration: if not os.path.isfile(config_path): _generate_default_configuration_file(config_path) return Configuration(**toml.load(config_path)) ``` #### File: eleloi/test/test_executers.py ```python import shutil import os import _executers import _config from .sample_data import SAMPLE_DIR, none_dir, copy_dir, move_dir def _clean_sample_data_dir(): if os.path.isdir(SAMPLE_DIR): shutil.rmtree(SAMPLE_DIR) assert not os.path.isdir(SAMPLE_DIR) def _create_folders_if_dont_exist(sample_data: _config.UserDir): _executers._create_folders_if_dont_exists( [sample_data.in_, sample_data.out] ) def _fill_with_sample_files_with_extension( directory: str, num_files: int, extension: str ) -> None: for filename in [f"sample{x}.{extension}" for x in range(0, num_files)]: with open(os.path.join(directory, filename), "w") as f: f.write("sample data") def test_none_executer_creates_directory(): _clean_sample_data_dir() executer = _executers.NoneExecuter( none_dir.in_, none_dir.out, none_dir.filter_ ) executer.run() assert os.path.isdir(SAMPLE_DIR) def test_copy_executer_copy_all_files(): _clean_sample_data_dir() _create_folders_if_dont_exist(copy_dir) _fill_with_sample_files_with_extension(copy_dir.in_, 3, "jpg") _fill_with_sample_files_with_extension(copy_dir.in_, 2, "txt") assert len(os.listdir(copy_dir.in_)) == 5 assert len(os.listdir(copy_dir.out)) == 0 executer = _executers.CopyExecuter( copy_dir.in_, copy_dir.out, copy_dir.filter_ ) executer.run() assert len(os.listdir(copy_dir.in_)) == 5 assert len(os.listdir(copy_dir.out)) == 3 def test_copy_executer_copy_existing_files(): _clean_sample_data_dir() _create_folders_if_dont_exist(copy_dir) _fill_with_sample_files_with_extension(copy_dir.in_, 3, "jpg") _fill_with_sample_files_with_extension(copy_dir.out, 1, "jpg") _fill_with_sample_files_with_extension(copy_dir.in_, 2, "txt") assert len(os.listdir(copy_dir.in_)) == 5 assert len(os.listdir(copy_dir.out)) == 1 executer = _executers.CopyExecuter( copy_dir.in_, copy_dir.out, copy_dir.filter_ ) executer.run() assert len(os.listdir(copy_dir.in_)) == 5 assert len(os.listdir(copy_dir.out)) == 3 def test_move_executer_all_files(): _clean_sample_data_dir() _create_folders_if_dont_exist(move_dir) _fill_with_sample_files_with_extension(move_dir.in_, 3, "jpg") _fill_with_sample_files_with_extension(move_dir.in_, 2, "txt") assert len(os.listdir(move_dir.in_)) == 5 assert len(os.listdir(move_dir.out)) == 0 executer = _executers.MoveExecuter( move_dir.in_, move_dir.out, move_dir.filter_ ) executer.run() assert len(os.listdir(move_dir.in_)) == 2 assert len(os.listdir(move_dir.out)) == 3 def test_copy_executer_move_existing_files(): _clean_sample_data_dir() _create_folders_if_dont_exist(move_dir) _fill_with_sample_files_with_extension(move_dir.in_, 3, "jpg") _fill_with_sample_files_with_extension(move_dir.in_, 2, "txt") _fill_with_sample_files_with_extension(move_dir.out, 1, "jpg") assert len(os.listdir(move_dir.in_)) == 5 assert len(os.listdir(move_dir.out)) == 1 executer = _executers.MoveExecuter( move_dir.in_, move_dir.out, move_dir.filter_ ) executer.run() assert len(os.listdir(move_dir.in_)) == 2 assert len(os.listdir(move_dir.out)) == 3 def test_copy_over_same_out_path(): _clean_sample_data_dir() _create_folders_if_dont_exist(copy_dir) _fill_with_sample_files_with_extension(copy_dir.out, 3, "jpg") _fill_with_sample_files_with_extension(copy_dir.out, 2, "txt") assert len(os.listdir(copy_dir.out)) == 5 executer = _executers.CopyExecuter( copy_dir.out, copy_dir.out, copy_dir.filter_ ) executer.run() assert len(os.listdir(copy_dir.out)) == 5 def test_move_executer_same_out_path(): _clean_sample_data_dir() _create_folders_if_dont_exist(move_dir) _fill_with_sample_files_with_extension(move_dir.out, 3, "jpg") _fill_with_sample_files_with_extension(move_dir.out, 2, "txt") assert len(os.listdir(move_dir.out)) == 5 executer = _executers.MoveExecuter( move_dir.out, move_dir.out, move_dir.filter_ ) executer.run() assert len(os.listdir(move_dir.out)) == 5 ``` #### File: joselo/test/mkdirs.py ```python import os from pathlib import Path import shutil import sys sys.path.append(os.path.join("../src")) # noqa from _constants import ( CONFIG, CONFIG_APP, CONFIG_DIR_IN, CONFIG_DIR_OUT, CONFIG_FILE, CONFIG_HEADER, FILES, TEST_ROOT,) from configurator import Configurator def mkdirs(): # noqa if TEST_ROOT.exists(): shutil.rmtree(TEST_ROOT) configurator = Configurator(TEST_ROOT, CONFIG_FILE) configurator.save(CONFIG) config = configurator.read() shutil.copy(TEST_ROOT / CONFIG_FILE, CONFIG_APP) for item in config[CONFIG_HEADER].values(): for dir_ in (CONFIG_DIR_IN, CONFIG_DIR_OUT): path = Path(item[dir_]) os.makedirs(path) if dir_ == CONFIG_DIR_IN: for f in FILES: file = path / f file.touch() if __name__ == '__main__': mkdirs() ``` #### File: fpellicer/src/resize_image.py ```python import mimetypes from pathlib import Path from PIL import Image class ResizeImage: """ Redimensiona una imagen indicando la anchura y la altura. """ def __init__(self, file_in, file_out, args): """ Args: file_in (Path): Archivo de entrada (imagen) file_out (Path): Directorio donde guardar en archivo editado args (dict): Valores para el ancho (width) y el alto (height) Returns: None """ self.file_in = file_in self.file_out = file_out self.width = int(args["width"]) self.height = int(args["height"]) def check(self) -> bool: """ Verifica que el archivo de entrada es una imagen y que el directorio de salida existe. """ mimetype = mimetypes.guess_type(self.file_in)[0] return "image" in mimetype and self.file_out.exists() def execute(self) -> None: """Redimensiona una imagen""" with Image.open(self.file_in) as img: img.load() resized_image = img.resize((self.width, self.height)) name = self.file_in.stem + "_resized" + self.file_in.suffix resized_image.save(self.file_out / name) print(self.file_out / name) def thumbnail(self) -> None: """Redimensiona una imagen preservando las proporciones""" with Image.open(self.file_in) as img: img.load() img_copy = img.copy() img_copy.thumbnail((self.width, self.height)) name = self.file_in.stem + "_thumbnail" + self.file_in.suffix img_copy.save(self.file_out / name) print(self.file_out / name) def main(): file_in = Path("/home/fran/Testing/reto-python/ImagesIn_1/tux.png") file_out = Path("/home/fran/Testing/reto-python/ImagesOut_1/") args = {"width": 200, "height": 200} resize_image = ResizeImage(file_in, file_out, args) if resize_image.check(): resize_image.execute() # resize_image.thumbnail() if __name__ == "__main__": main() ``` #### File: avarez/src/instagram_filters.py ```python from pathlib import Path from PIL import Image import pilgram class InstagramFilter(): ''' instagram image class ''' def __init__(self, dir_path, file_name, file_ext): ''' init method ''' self.filters = {1: "_1977", 2: "aden", 3: "brannan", 4: "brooklyn", 5: "clarendon", 6: "earlybird", 7: "gingham", 8: "hudson", 9: "inkwell", 10: "kelvin", 11: "lark", 12: "lofi", 13: "maven", 14: "mayfair", 15: "moon", 16: "nashville", 17: "perpetua", 18: "reyes", 19: "rise", 20: "slumber", 21: "stinson", 22: "toaster", 23: "valencia", 24: "walden", 25: "willow", 26: "xpro2"} self.dir_path = dir_path self.file_name = file_name self.file_ext = file_ext self.filter_name = None def list_filters(self): ''' list filters method ''' for filter_index in self.filters.keys(): print(f"{filter_index:2d} : {self.filters[filter_index]}") def set_filter(self, filter_index): ''' set filter method ''' self.filter_name = self.filters[filter_index] def filters_indexes(self): ''' filters indexes method ''' return self.filters.keys() def check(self): ''' check method ''' if Path(f"{self.dir_path}/{self.file_name}.{self.file_ext}"): print(f"In: {self.dir_path}/{self.file_name}.{self.file_ext}") if self.filter_name: print(f"Filtro: {self.filter_name}") return True return False def execute(self): ''' execute method ''' in_img = f"{self.dir_path}/{self.file_name}.{self.file_ext}" out_img = f"{self.dir_path}/{self.file_name}.{self.filter_name}.{self.file_ext}" print(f"Out: {out_img}") img = Image.open(in_img) if self.filter_name == "_1977": # 1 pilgram._1977(img).save(out_img) if self.filter_name == "aden": # 2 pilgram.aden(img).save(out_img) if self.filter_name == "brannan": # 3 pilgram.brannan(img).save(out_img) if self.filter_name == "brooklyn": # 4 pilgram.brooklyn(img).save(out_img) if self.filter_name == "clarendon": # 5 pilgram.clarendon(img).save(out_img) if self.filter_name == "earlybird": # 6 pilgram.earlybird(img).save(out_img) if self.filter_name == "gingham": # 7 pilgram.gingham(img).save(out_img) if self.filter_name == "hudson": # 8 pilgram.hudson(img).save(out_img) if self.filter_name == "inkwell": # 9 pilgram.inkwell(img).save(out_img) if self.filter_name == "kelvin": # 10 pilgram.kelvin(img).save(out_img) if self.filter_name == "lark": # 11 pilgram.lark(img).save(out_img) if self.filter_name == "lofi": # 12 pilgram.lofi(img).save(out_img) if self.filter_name == "maven": # 13 pilgram.maven(img).save(out_img) if self.filter_name == "mayfair": # 14 pilgram.mayfair(img).save(out_img) if self.filter_name == "moon": # 15 pilgram.moon(img).save(out_img) if self.filter_name == "nashville": # 16 pilgram.nashville(img).save(out_img) if self.filter_name == "perpetua": # 17 pilgram.perpetua(img).save(out_img) if self.filter_name == "reyes": # 18 pilgram.reyes(img).save(out_img) if self.filter_name == "rise": # 19 pilgram.rise(img).save(out_img) if self.filter_name == "slumber": # 20 pilgram.slumber(img).save(out_img) if self.filter_name == "stinson": # 21 pilgram.stinson(img).save(out_img) if self.filter_name == "toaster": # 22 pilgram.toaster(img).save(out_img) if self.filter_name == "valencia": # 23 pilgram.valencia(img).save(out_img) if self.filter_name == "walden": # 24 pilgram.walden(img).save(out_img) if self.filter_name == "willow": # 25 pilgram.willow(img).save(out_img) if self.filter_name == "xpro2": # 26 pilgram.xpro2(img).save(out_img) ```
{ "source": "jlndk/rmacro", "score": 3 }
#### File: jlndk/rmacro/keyutil.py ```python import sys import os from lib import keyboard def main(): # Check if the extension is present if not keyboard.supportsRecording(): print("Cannot record keyboard. RECORD extension not found") sys.exit(1) # Start keyboard capturing keyboard.createRecordingContext(onGlobalKeypress) def onGlobalKeypress(reply): #We only care about legit keypresses. Therefore ignore everything else if not keyboard.isValidEvent(reply): return # Loop through all keystrokes and handle them one-by-one while len(reply.data): #But first we need to parse the keycode since it's in a binary format. event, reply.data = keyboard.parseKeystroke(reply.data) #Then we can handle the event handleKeyEvent(event) def handleKeyEvent(event): if event.type == keyboard.KeyRelease: clearScreen() keyString = keyboard.getKeyStringFromCode(event.detail) print "Key '{1}' pressed with keycode '{0}'".format(event.detail, keyString) def clearScreen(): os.system("clear") print "Press a key to see the keycode." if __name__ == "__main__": try: main() except KeyboardInterrupt: print("") os.system("clear") sys.exit(0) ``` #### File: rmacro/lib/keyboard.py ```python import sys import os import time from Xlib import X, XK, display, protocol from Xlib.ext import record local_dpy = display.Display() recording_display = display.Display() #Save these values so that programs don't need to import x KeyRelease = X.KeyRelease KeyPress = X.KeyPress # # Returns if all the requirements for capturing the keyboard is present. # def supportsRecording(): return recording_display.has_extension("RECORD") # # Starts capturing keyboard events and propergates them to a callback # def createRecordingContext(callback): recArgs = [ { 'core_requests': (0, 0), 'core_replies': (0, 0), 'ext_requests': (0, 0, 0, 0), 'ext_replies': (0, 0, 0, 0), 'delivered_events': (0, 0), 'device_events': (X.KeyPress, X.MotionNotify), 'errors': (0, 0), 'client_started': False, 'client_died': False, } ] # Create a recording context; we only want key and mouse events (not # preocessed) context = recording_display.record_create_context(0, [record.AllClients], recArgs) recording_display.record_enable_context(context, callback) recording_display.record_free_context(context) # # Reads the binary keycodes and returns readable ones # def parseKeystroke(data): eventField = protocol.rq.EventField(None) disp = recording_display.display return eventField.parse_binary_value(data, disp, None, None) def send_key(keycode, kind): #If a list of keycodes is passed, just call this function for each keycode. if type(keycode) is list: for char in keycode: send_key(char, kind) return window = local_dpy.get_input_focus()._data["focus"] if(kind == X.KeyPress): event_to_send = protocol.event.KeyPress( time=int(time.time()), root=local_dpy.screen().root, window=window, same_screen=0, child=X.NONE, root_x=0, root_y=0, event_x=0, event_y=0, state=16, detail=keycode ) elif(kind == X.KeyRelease): event_to_send = protocol.event.KeyRelease( time=int(time.time()), root=local_dpy.screen().root, window=window, same_screen=0, child=X.NONE, root_x=0, root_y=0, event_x=0, event_y=0, state=16, detail=keycode ) else: print("Invalid event type. Cancelling keypress") return window.send_event(event_to_send, propagate=True) local_dpy.flush() time.sleep(0.01) def isValidEvent(reply): if reply.client_swapped or (reply.category != record.FromServer): return False if not len(reply.data) or ord(str(reply.data[0])) < 2: # not an event return False return True def getKeyStringFromKeySym(keysym): for name in dir(XK): if name[:3] == "XK_" and getattr(XK, name) == keysym: return name[3:] return "[%d]" % keysym def getKeyStringFromCode(keyCode): keysym = local_dpy.keycode_to_keysym(keyCode, 0) return getKeyStringFromKeySym(keysym) ```
{ "source": "jlnerd/JLpy_Utilities", "score": 4 }
#### File: ML/inspection/maximize_success.py ```python def dropping_label_categories(model, X, y, drop_label_categories, show_plot = True): """ maximize success for a given problem by dropping the rows/samples containing the labels in the drop_label_categories list. This type of maximization is appropriate for problems such as credit default, where one wishes to simply ignore customers who will default. Arguments: ---------- model: the model object of interest from which predictions will be made on the X dataset passed X, y: The features and labels the evaluation will be performed on drop_label_categories: list. The names of the label categories you wish to exclude for optimal results. Returns: ------- df_lift: The lift score for each of the categories in the drop_label_categories list. - The lift is calculated as the original % of occurances / the % of occurances after dropping samples based on the predicted values y_drop: The true values corresponding to the samples selected after dropping the label categories from the y_pred y_pred_drop: The remaining predicted values after dropping the samples with values matching those in the drop_label_categories list y_drop_value_counts: Pandas df containg the value counts for the label categories before dropping based on the predicted values y_drop_value_counts: Pandas df containg the value counts for the label categories after dropping based on the predicted values """ import pandas as pd y_pred = model.predict(X) y_pred = pd.DataFrame(y_pred, columns = list(y.columns)) y_pred.index = y.index y_pred_drop = y_pred[~(y_pred.iloc[:,0].isin(drop_label_categories))] drop_idx_list = list(y_pred[(y_pred.iloc[:,0].isin(drop_label_categories))].index.values) y_drop = y.drop(drop_idx_list) assert(y_drop.shape==y_pred_drop.shape) y_value_counts = y.iloc[:,0].value_counts().reset_index() y_value_counts.columns = [y.columns[0], 'counts'] y_value_counts['% of Total'] = y_value_counts['counts']/y_value_counts['counts'].sum()*100 y_drop_value_counts = y_drop.iloc[:,0].value_counts().reset_index() y_drop_value_counts.columns = [y_drop.columns[0], 'counts'] y_drop_value_counts['% of Total'] = y_drop_value_counts['counts']/y_drop_value_counts['counts'].sum()*100 df_lift = (y_value_counts['% of Total'][y_value_counts.iloc[:,0].isin(drop_label_categories)] / y_drop_value_counts['% of Total'][y_drop_value_counts.iloc[:,0].isin(drop_label_categories)]).reset_index() df_lift.columns = [y.columns[0],'lift'] if show_plot: import matplotlib.pyplot as plt fig, ax_list = plt.subplots(1,2) p=0 for ylabel in ['counts', '% of Total']: for df_counts, label in [[y_value_counts, 'before drop'], [y_drop_value_counts, 'after drop']]: ax_list[p].bar(df_counts[y.columns[0]].astype(str), df_counts[ylabel], label = label,alpha=0.5) ax_list[p].set_xticklabels(df_counts[y.columns[0]].astype(str), rotation=90) ax_list[p].legend() header = y.columns[0] if len(header)>20: xlabel = '\n'.join(header.split(' ')) else: xlabel = header ax_list[p].ticklabel_format(axis='y', style='sci', scilimits=(-3,3)) ax_list[p].set_xlabel(xlabel) ax_list[p].set_ylabel(ylabel) ax_list[p].grid(which='both',visible=False) p+=1 fig.tight_layout(rect=(0,0,1.5,1)) plt.show() return df_lift, y_drop, y_pred_drop, y_value_counts, y_drop_value_counts def varying_features_for_max_prob(model, X, y, free_categorical_features= None, free_continuous_features = None, success_label = 1, verbose = 1): """ Vary features in X to maximize the probability of success. Arguments: ---------- model: the model object of interest from which predictions will be made on the X dataset passed X, y: The features and labels the evaluation will be performed on. We assume the categorical features in the X data should be One-Hot encoded, such that their values are only either 0 or 1. LabelEncoder: The LabelEncoder object that defines the possible categorical features which free_categorical_features: the categorical features in X which can be freely varied for success free_continuous_features: the continuous features in X which can be freely varied for success success_label: the label category in y which you want to be maxime success/probability for. verbose: print-out verbosity Returns: -------- X_opt: Pandas DataFrame with the optimal parameters inserted for each case in X y_opt_probas: the probabilities for each optimal condition lift_dict: dictionary containing various lift metrics ('mean(opt/orig proba)', 'median(opt/orig proba)', 'stddev(opt/orig probe)':np.std(y_opt_probas/y_proba)) """ import itertools import joblib import scipy, scipy.optimize import sklearn, sklearn.metrics import numpy as np import warnings def cont_feat_optimizer(X_slice, free_cat_feature_headers, free_cont_feature_headers, model, success_label, cat_feat_combo ): """ Optimizer to find the best free continuous feature values for a given example (slice) of features and labels """ import scipy, scipy.optimize #update X_slice free categorical features with categorical feature combo case X_slice[free_cat_feature_headers] = cat_feat_combo def loss(free_cont_feat_vals, free_cont_feature_headers, X_slice, model): X_slice[free_cont_feature_headers] = free_cont_feat_vals y_pred_proba = model.predict_proba(X_slice) loss_ = 1-y_pred_proba[0][success_label] return loss_ #define initial guess for optimial free continuous feature values free_cont_feat_vals = np.array(X_slice[free_cont_feature_headers]).reshape(-1,1) #run optimizer for free continuous features results = scipy.optimize.minimize(loss, free_cont_feat_vals, args = (free_cont_feature_headers, X_slice, model) ) #fetch optimal results and updated X_slice optimal_cont_feat_vals = results['x'] X_slice[free_cont_feature_headers] = optimal_cont_feat_vals y_pred_proba = model.predict_proba(X_slice) y_pred_proba = y_pred_proba[0][success_label] return optimal_cont_feat_vals, y_pred_proba def cat_cont_feat_optimizer(X_slice, free_categorical_features, free_continuous_features, model, success_label, cat_feat_combos): results_dict={'cat features':[], 'optimal_cont_feat_vals':[], 'y_pred_proba':[]} for cat_feat_combo in cat_feat_combos: optimal_cont_feat_vals, y_pred_proba = cont_feat_optimizer(X_slice, free_categorical_features, free_continuous_features, model, success_label, cat_feat_combo ) results_dict['cat features'].append(cat_feat_combo) results_dict['optimal_cont_feat_vals'].append(optimal_cont_feat_vals) results_dict['y_pred_proba'].append(y_pred_proba) idx_max_proba = np.argmax(results_dict['y_pred_proba']) opt_cat_feat_vals = results_dict['cat features'][idx_max_proba] opt_cont_feat_vals = results_dict['optimal_cont_feat_vals'][idx_max_proba] opt_proba = results_dict['y_pred_proba'][idx_max_proba] return opt_cat_feat_vals, opt_cont_feat_vals, opt_proba warnings.filterwarnings('ignore') #fetch baseline probs y_proba = model.predict_proba(X)[:,success_label] #fetch locked features list locked_features = [feature for feature in X.columns if feature not in free_categorical_features and feature not in free_continuous_features] #build all possible combinations of categorical features cat_feat_combos = list(itertools.product([0, 1], repeat=len(free_categorical_features))) X_opt = X y_opt_probas = [] for i in range(X.shape[0]): if verbose>=1: print('Progress:',round(i/X.shape[0]*100,2),'%',end='\r') X_slice = X.iloc[i,:].to_frame().T opt_cat_feat_vals, opt_cont_feat_vals, opt_proba = cat_cont_feat_optimizer( X_slice, free_categorical_features, free_continuous_features, model, success_label, cat_feat_combos) y_opt_probas.append(opt_proba) X_opt[free_categorical_features] = list(opt_cat_feat_vals) X_opt[free_continuous_features] = list(opt_cont_feat_vals) lift_dict = {'mean(opt/orig proba)':np.mean(y_opt_probas/y_proba), 'median(opt/orig proba)':np.median(y_opt_probas/y_proba), 'stddev(opt/orig probe)':np.std(y_opt_probas/y_proba) } warnings.filterwarnings('default') return X_opt, y_opt_probas, lift_dict ``` #### File: ML/inspection/_unique.py ```python def uniques(df): """ Inspect number of unique values and the unique values themselves for the passed dataframe """ # dtypes = df.dtypes.reset_index() # dtypes.columns = ['column','dtype'] # dtypes = dtypes.sort_values(['dtype','column']) for col in df.columns:#dtypes['column']: if 'dask' in str(type(df)): uniques = df[col].compute().sort_values().unique() else: uniques = df[col].sort_values().unique() n_uniques = len(uniques) print('\n----',col,'----', '\nn_uniques:',n_uniques, '\ndtype:',uniques.dtype) if n_uniques<=20: print('\nuniques[:]:') display(list(uniques)) else: print('\nuniques[:20]:') display(list(uniques[:20])+['...']) ``` #### File: ML/model_selection/_search.py ```python import numpy as _np import os as _os import hyperopt as _hyperopt import time as _time import functools as _functools import warnings as _warnings import matplotlib.pyplot as _plt import sklearn.model_selection as _sklearn_model_selection from .. import NeuralNet as _NeuralNet from ... import file_utils as _file_utils from hyperopt import base as _base _base.have_bson = False class GridSearchCV(): def __init__(self, models_dict, cv = 4, scoring= {'metric':None,'maximize':True}, metrics = {None:None}, retrain = True, path_GridSearchCV_dir = 'GridSearchCV', n_jobs = -1, verbose = 2, **kwargs): """ hyperparameter GridSearchCV across different types of models Arguments: ---------- models_dict: dictionary containing all models and their param_grid. - Dictionary Format: {'model name':{'model':model object, 'param_grid': {parameter name, parameter list}] cv: cross-validation index. scoring: Default: None. - If scoring['metric'] = None, use default score for given sklearn model, or use 'loss' for neural network. - For custom scoring functions, pass 'scoring = {'metric':function or key-word string, 'maximize':True/False} - for sklearn/dask_ml GridSearchCV, a list of valid metrics can be printed via 'sklearn.metrics.SCORERS.keys()' metrics: dictionary with formating like {metric name (str), metric function (sklearn.metrics...)}. The metric will be evaluated after CV on the test set retrain: Boolean. whether or not you want to retrain the model if it is already been saved in the path_GridSearchCV_dir folder path_GridSearchCV_dir: root directory where the GridSearchCV outputs will be saved. n_jobs: int. Default: -1. number of parallel jobs to run. If -1, all available threads will be used - Note: parallel computing is not supported for Neural Net models verbose: verbosity of prints. """ self.models_dict = models_dict self.cv = cv self.scoring = scoring self.metrics = metrics self.retrain = retrain self.path_GridSearchCV_dir = path_GridSearchCV_dir self.n_jobs = n_jobs self.verbose = verbose self.kwargs = kwargs self.save = _file_utils.save self.load = _file_utils.load def load_NeuralNet(self, path_model_dir, X_train, y_train, epochs): """ load model_dict for Nueral Net case """ #fetch best params best_params_ = self.load('best_params_', 'dill', path_model_dir) #rebuild model_dict model_dict = _NeuralNet.DenseNet.model_dict(**best_params_) model_dict['best_model'] = _NeuralNet.utils.load_model(_os.path.join(path_model_dir,'best_estimator_.h5')) model_dict['best_params'] = best_params_ model_dict['best_cv_score'] = _np.nan return model_dict def _single_model_GridSearchCV(self, model_dict_, X_train, y_train, X_test, y_test, path_model_dir): """ Run Grid Search CV on a single model specified by the "key" argument """ type_model = str(type(model_dict_['model'])) type_X_train = str(type(X_train)) if ('sklearn' in type_model or 'xgboost' in type_model) and 'dask' not in type_X_train: GridSearchCV = _sklearn_model_selection.GridSearchCV(model_dict_['model'], model_dict_['param_grid'], n_jobs= self.n_jobs, cv = self.cv, scoring= self.scoring['metric'], verbose = _np.max((0,self.verbose-1)) ) if y_train.shape[1]==1: y_train = _np.array(y_train).reshape(-1,) GridSearchCV.fit(X_train,y_train) elif 'dask' in type_X_train: from ..dask_ml_extend import model_selection as dask_ml_model_selection GridSearchCV = dask_ml_model_selection.GridSearchCV(model_dict_['model'], model_dict_['param_grid'], n_jobs= self.n_jobs, cv = self.cv, scoring= self.scoring['metric'], ) GridSearchCV.fit(X_train, y_train) else: #run gridsearch using neural net function if self.scoring['metric'] == None: self.scoring={'metric': 'loss', 'maximize': False} #check kwargs for epochs epochs = 100 for item in self.kwargs.items(): if 'epochs' in item[0]: epochs = item[1] GridSearchCV = _NeuralNet.search.GridSearchCV(model_dict_['model'], model_dict_['param_grid'], cv = self.cv, scoring=self.scoring, epochs = epochs, path_report_folder = path_model_dir, verbose = _np.max((0,self.verbose-1)) ) GridSearchCV.fit(X_train, y_train, X_test, y_test) model_dict_['best_model'] = GridSearchCV.best_estimator_ model_dict_['best_params'] = GridSearchCV.best_params_ model_dict_['best_cv_score'] = GridSearchCV.best_score_ if 'sklearn' in str(type(model_dict_['model'])): self.save(model_dict_, 'model_dict', 'dill', path_model_dir) return model_dict_ def fit(self, X_train, y_train, X_test, y_test): """ Fit the X_train, y_train dataset & evaluate metrics on X_test, y_test for each of the best models found in each individual models GridSearchCV Arguments: --------- X_train, y_train, X_test, y_test: train & test datasets (pandas or dask dataframes) """ #instantiate path_model_dirs dictionary so we can know where the models are saved self.path_model_dirs = {} for key in self.models_dict.keys(): if self.verbose >=1: print('\n----',key,'----') #define model directory path_model_dir = _os.path.join(self.path_GridSearchCV_dir, key) self.path_model_dirs[key] = path_model_dir if self.verbose >=1: print('path_model_dir:',path_model_dir) model_type = type(self.models_dict[key]['model']) if 'sklearn' in str(model_type) or 'xgboost' in str(model_type): path_file = _os.path.join(path_model_dir,'model_dict.dill') elif 'Net' in key: path_file = _os.path.join(path_model_dir,'best_params_.dill') if self.retrain or _os.path.isfile(path_file)==False: self.models_dict[key] = self._single_model_GridSearchCV(self.models_dict[key], X_train, y_train, X_test, y_test, path_model_dir) else: #reload previously trained model if 'sklearn' in str(type(self.models_dict[key]['model'])): self.models_dict[key] = self.load('model_dict', 'dill', path_model_dir) elif 'Net' in key: #check kwargs for epochs epochs = 100 for item in self.kwargs.items(): if 'epochs' in item[0]: epochs = item[1] self.models_dict[key] = self.load_NeuralNet(path_model_dir, X_train, y_train, epochs) y_pred = self.models_dict[key]['best_model'].predict(X_test) if 'Net' not in key: self.models_dict[key]['best_pred_score'] = self.models_dict[key]['best_model'].score(X_test, y_test) else: self.models_dict[key]['best_pred_score'] = self.models_dict[key]['best_model'].evaluate(X_test, y_test, verbose =0) if self.verbose >=1: print('\tbest_cv_score:',self.models_dict[key]['best_cv_score']) print('\tbest_pred_score:',self.models_dict[key]['best_pred_score']) for metric_key in self.metrics.keys(): if self.metrics[metric_key] !=None: try: self.models_dict[key][metric_key] = self.metrics[metric_key](y_test, y_pred) print('\t',metric_key,':',self.models_dict[key][metric_key]) except Exception as e: print('Exception occured for',metric_key,':',str(e)) if 'sklearn' in str(type(self.models_dict[key]['model'])): self.save(self.models_dict[key], 'model_dict', 'dill', path_model_dir) elif 'Net' in key: model_dict_subset = self.models_dict[key].copy() for key in self.models_dict[key].keys(): if key not in ['y_test','y_pred','best_pred_score'] +list(self.metrics.keys()): model_dict_subset.pop(key) class BayesianSearchCV(): def __init__(self, models_dict, cv = 4, scoring= {'metric':None,'maximize':True}, metrics = {None:None}, retrain = True, path_BayesianSearchCV_dir = 'BayesianSearchCV', n_jobs = -1, verbose = 2, **kwargs): """ Hyperparameter BayesianSearchCV across different types of models. This class leverages the hyperopt API. Arguments: ---------- models_dict: dictionary containing all models and their param_grid. - Dictionary Format: {'model name':{'model':model object, 'param_grid': {parameter name, parameter list}] cv: cross-validation index. scoring: Default: None. - If scoring['metric'] = None, use default score for given sklearn model, or use 'loss' for neural network. - For custom scoring functions, pass 'scoring = {'metric':function or key-word string, 'maximize':True/False} - for sklearn/xgboost/dask_ml GridSearchCV, a list of valid metrics can be printed via 'sklearn.metrics.SCORERS.keys()' metrics: dictionary of the form {metric name (str): metric function (sklearn.metrics...)}. The metric will be evaluated after CV on the test set retrain: Boolean. whether or not you want to retrain the model if it is already been saved in the path_GridSearchCV_dir folder path_BayesianSearchCV_dir: root directory where the BayesianSearchCV outputs will be saved. n_jobs: int. Defualt: -1. number of parallel jobs to run. If -1, all available threads will be used - Note: parallel computing is not supported for Neural Net models verbose: print-out verbosity Notes: ------ Technically, the optimization is performed using the tree-structured parzeen estimator approach, not a pure bayesian estimator. This approach is more efficient handling hyperparameter optimization tasks with high dimensions and small fitness evaluation budgets. See more details in the paper linked below https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf """ self.models_dict = models_dict self.cv = cv self.scoring = scoring self.metrics = metrics self.retrain = retrain self.path_BayesianSearchCV_dir = path_BayesianSearchCV_dir self.n_jobs = n_jobs self.verbose = verbose self.kwargs = kwargs self.save = _file_utils.save self.load = _file_utils.load #define model directory self.path_model_dirs = {} for key in self.models_dict.keys(): self.path_model_dirs[key] = _os.path.join(self.path_BayesianSearchCV_dir, key) def _build_space(self, param_grid): """ Build the hyperparameter space for input into hyperopt.fmin() function. Arguments: ---------- param_grid: hyperparameter dictionary with key-list pairs. Returns: -------- space: dictionary with key-hyperopt.hp... pairs Notes: ------ For each hyperparameter of interest, the max and min in the list of possible values in the param_grid[key] element is evaluated. If the difference between the number of decades between the min and max value is greater than 1, a uniform probability distribution will be sampled between log10(min) and log10(max). This will result in the prefixe 'log10.' being pre-pended to the key in the 'space' dict for the given hyperparameter under consideration. For the case of non-numeric hyperparameters, the space[key] value will be assigned using the hyperopt.hp.choice() function, with the choices being in integer form (index), rather than their raw string value. To convert the hyperparameters from hyperopts 'space' back to the parameters required by the model under evaluation, we run the function '_update_model_params()' in each instance of the 'objective' function evaluation. """ if self.verbose>9: 'Building param space...' _warnings.filterwarnings('ignore') param_grid = param_grid.copy() space = {} for key in param_grid.keys(): params = param_grid[key] if self.verbose>9: print('\tinput:',key, params) type_str = str(type(params[0])) if 'float' in type_str or 'int' in type_str: min_ = min(params) max_ = max(params) log10_min_ = _np.log10(min_) log10_max_ = _np.log10(max_) if round(log10_max_)-round(log10_min_)>1 and round(log10_max_)-round(log10_min_)!=_np.inf: # use uniform distribution on log spacing space['log10.'+key] = _hyperopt.hp.uniform(key, log10_min_, log10_max_) if self.verbose>9: print('\toutput:','log10.'+key, 'uniform', log10_min_, log10_max_) else: if 'int' in type_str: space[key] = _hyperopt.hp.quniform(key, min_, max_, 1) if self.verbose>9: print('\toutput:',key, 'quniform', min_, max_) elif 'float' in type_str: space[key] = _hyperopt.hp.uniform(key, min_, max_) if self.verbose>9: print('\toutput:',key, 'uniform', min_, max_) elif 'str' in type_str: space[key] = _hyperopt.hp.choice(key, [i for i in range(len(params))]) if self.verbose>9: print('\toutput:',key, 'choice', [i for i in range(len(params))]) else: raise Exception('type(params[0]) is '+type_str+'. This type of hyperparameter is not yet supported.') assert(len(space.keys())==len(param_grid.keys())), 'len(space.keys())='+str(len(space.keys()))+', which is not equal to len(param_grid.keys())='+str(len(param_grid.keys())) if self.verbose>9: print('...finished building space') _warnings.filterwarnings('default') return space def _plot_space(self, space): ''' Generate plots to visualize the probability distribution for the parameter space being evaluated. Arguments: ---------- space: dictionary of form {<parameter ID>: hyperopt.hp... object} generated from the '_build_space()' function Returns: ------- None. displays histograms showing the probability space ''' n_samples = 5000 for title, space_slice in space.items(): evaluated = [_hyperopt.pyll.stochastic.sample(space_slice) for _ in range(n_samples)] _plt.title(title) _plt.hist(evaluated) _plt.grid(which='both',visible=False) _plt.show() def _update_model_params(self, params, model_ID, model, param_grid): """ Iterate through the params and update the models arguments/params, ensuring the type of each parameter does not change after updating and transforming log10 distributions back to their base value Arguments: ---------- params: hyperparameter dictionary being evaluated by hyperopt model: model being evaluated param_grid: original parameter grid under evaluation Returns ------- params_transform: dictionary similar to params, but transformed to match the inputs required by the model model: Updated model object with the params under evaluation applied to the models arguments by updating the model.__dict__ values. """ params = params.copy() param_grid = param_grid.copy() params_transform = {} for key in params.keys(): if 'log10.' in key: log10_transform = True else: log10_transform = False key = key.replace('log10.','') type_str = str(type(param_grid[key][0])) if 'int' in type_str: if log10_transform: params_transform[key] = int(10**params['log10.'+key]) else: params_transform[key] = int(params[key]) elif 'float' in type_str: if log10_transform: params_transform[key] = float(10**params['log10.'+key]) else: params_transform[key] = float(params[key]) elif 'str' in type_str: #index the param grid for hyperparams using 'choice' params_transform[key] = param_grid[key][params[key]] if 'densenet' not in model_ID.lower(): model.__dict__[key] = params_transform[key] assert(type_str == str(type(params_transform[key]))), 'type(param_grid[key][0]) changed from '+type_str+' to '+str(type(param_grid[key][0]))+' after updating params for key:'+str(key) if 'str' in type_str: assert(params_transform[key] in param_grid[key]), 'params_transform['+key+']='+str(params_transform[key])+' is not in the list of valid parameter choices:'+str(param_grid[key]) else: assert(params_transform[key]<=max(param_grid[key]) and params_transform[key]>=min(param_grid[key])), 'params_transform['+key+']='+str(params_transform[key])+' does not lie in the range of valid values:'+str([min(param_grid[key]),max(param_grid[key])] ) if 'densenet' in model_ID.lower(): model = model(**params_transform) return params_transform, model def _objective(self, params, model_ID, model_dict, X, y, **kwargs): """ Objective function for hyperopt fmin. Note hyperopt assumes the only argument required is the params argument, thus before passing this objective as an argument into the hyperopt.fmin() function, we specify the other arguments using the functools.partial() function (see the _single_model_BayesianSearchCV() function code for more details) Arguments: ---------- params: hyperparameter dictionary for an individual evaluation model_dict: dictionary of form {'model': estimator/model object, 'param_grid':dictionary defining the hyperparameter bounds} X: dataframe of features on which the cv_score will be evaluated y: dataframe of labels on which the cv_score will be evaluated Returns: ------- objective: dictionary of form {'loss': cv_score, 'params': hyperparameters using the the evaluation, 'status': hyperopt.STATUS_OK, 'eval_time': evaluation time} Notes: ------ sklearn-style models try to maximize their score by default, while hyperopt assumes we are trying to minimize our loss, thus if a scoring metric is not defined, or if a metric is specified with a maximize boolean==True, the cv_score will be transformed by cv_score=1/cv_score before being output to the hyperopt fmin optimizer. In contrast, in Neural Net models, the default scorer is the loss function, thus if the cv_score will only be transformed to 1/cv_score if scoring['maximize']=True and scoring['metric']!=None """ model = model_dict['model'] param_grid = model_dict['param_grid'].copy() params = params.copy() obj_verbose = max(0,self.verbose-2) type_X = str(type(X)) if 'dask' in type_X: X = X.compute() y = y.compute() if obj_verbose>=2: print('params',params) params_transform, model = self._update_model_params(params, model_ID, model, param_grid) type_model = str(type(model)) if obj_verbose>=2: print('params_transform',params_transform) if 'sklearn' in type_model or 'xgboost' in type_model: cv_scores = _sklearn_model_selection.cross_val_score(model, X, y, scoring= self.scoring['metric'], cv = self.cv, n_jobs= self.n_jobs, verbose = obj_verbose ) else: #using neural net function import tensorflow as _tf #check for kwargs epochs = 100 batch_size = 32 callbacks = [_tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience =10)] for item in kwargs.items(): if 'epochs' in item[0]: epochs = item[1] elif 'batch_size' in item[0]: batch_size = item[1] elif 'callbacks' in item[0]: callbacks = item[1] cv_scores = _NeuralNet.cross_val_score(model, batch_size, epochs, X, y, callbacks, scoring = self.scoring['metric'], cv = self.cv, verbose= obj_verbose) cv_score = _np.mean(cv_scores) if 'sklearn' in type_model or 'xgboost' in type_model: if self.scoring['maximize']==True or self.scoring['metric']==None: cv_score = 1/cv_score else: if self.scoring['maximize']==True and self.scoring['metric']!=None : cv_score = 1/cv_score objective = {'loss': cv_score, 'params': params, 'status': _hyperopt.STATUS_OK, 'eval_time': _time.time()} return objective def _single_model_BayesianSearchCV(self, model_ID, model_dict, X_train, y_train, X_test, y_test, path_model_dir, refit=True, **kwargs): """ Run BayesianSearchCV on a single model of interest, save the results, and return the updated model_dict Arguments: ---------- model_dict: dictionary of form {'model': estimator/model object, 'param_grid':dictionary defining the hyperparameter bounds} X_train, y_train, X_test, y_test: training and test sets under evaluation path_model_dir: path to directory where the model results will be saved. For none-NeuralNet models, the model_dict will be saved as model_dict.dill. For NeuralNets, the model and othere relevant parameters will be saved using keras-based saving methods. refit: boolean. whether or not to refit the model on the full training set using the best_params Returns: -------- model_dict: the passed model_dict, but with key-value pairs for: 'best_params', 'best_model', 'best_cv_score' """ if self.verbose>=1: print('Fitting',self.cv,'folds for each of',self.max_evals,'candidates, totalling',self.cv*self.max_evals,'fits') model_dict = model_dict.copy() model = model_dict['model'] type_model = str(type(model)) model_type = str(type(model_dict['model'])) param_grid = model_dict['param_grid'].copy() objective = _functools.partial(self._objective, model_ID = model_ID, model_dict = model_dict, X = X_train, y=y_train, **kwargs) space = self._build_space(param_grid) if self.verbose>=4: self._plot_space(space) best_params_bad_keys = _hyperopt.fmin(fn = objective, space = space, algo = _hyperopt.tpe.suggest, max_evals = self.max_evals, trials = _hyperopt.Trials(), verbose = self.verbose) # hyperopt doesn't return the best params dict with keys matching the 'space' keys. # This breaks handling of 'log10.' transformed parameters. Fix is implemented below best_params_ = {} for key in space.keys(): best_params_[key] = best_params_bad_keys[key.replace('log10.','')] if self.verbose>=3: print('hyperopt_input_best_params_:',best_params_) best_score_ = self._objective(best_params_, model_ID, model_dict = model_dict, X = X_train, y=y_train)['loss'] #transform params back to original model values best_params_, best_model_ = self._update_model_params(best_params_, model_ID, model, param_grid) if self.verbose>=3: print('model_input_best_params_:',best_params_) if refit: if 'sklearn' in type_model or 'xgboost' in type_model: if y_train.shape[1]==1: y_train = _np.array(y_train).reshape(-1,) best_model_.fit(X_train, y_train) else: #using neural net function import tensorflow as _tf if 'dataframe' in str(type(X_train)).lower(): X_train = _np.array(X_train) X_test = _np.array(X_test) if 'dataframe' in str(type(y_train)).lower(): y_train = _np.array(y_train) y_test = _np.array(y_test) #check for kwargs epochs = 100 batch_size = 32 callbacks = [_tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience =10)] for item in kwargs.items(): if 'epochs' in item[0]: epochs = item[1] elif 'batch_size' in item[0]: batch_size = item[1] elif 'callbacks' in item[0]: callbacks = item[1] history = best_model_.fit(x= X_train, y= y_train, validation_data=(X_test, y_test), batch_size=batch_size, epochs = epochs, verbose= max(0,self.verbose-2), callbacks = callbacks) model_dict['best_params'] = best_params_ model_dict['best_model'] = best_model_ model_dict['best_cv_score'] = best_score_ if 'sklearn' in model_type or 'xgboost' in model_type: self.save(model_dict, 'model_dict', 'dill', path_model_dir) else: if _os.path.isdir(path_model_dir)==False: _os.makedirs(path_model_dir) best_model_.save(_os.path.join(path_model_dir, 'best_model.h5')) self.save(model_dict['best_params'], 'best_params', 'dill', path_model_dir) return model_dict def fit(self, X_train, y_train, X_test, y_test, max_evals, **kwargs, ): """ Fit the X_train, y_train dataset & evaluate metrics on X_test, y_test for each of the best models found in each individual models GridSearchCV Arguments: --------- X_train, y_train, X_test, y_test: train & test datasets (pandas or dask dataframes) max_evals: Max number of evaluations to perform during the BayesianSearchCV procedure for each model. kwargs: For use in neural network hyperopts: epochs, batch_size, callbacks Returns: ------- None. The models_dict dictionary will be updated for each model to include key-value pairs for: 'best_params', 'best_model', 'best_cv_score', 'best_pred_score', and a key-value pair for each of the metrics in the metrics dictionary, where the 'best_pred_score' and the metrics are evaluated on the test set passed """ self.max_evals = max_evals for key in self.models_dict.keys(): path_model_dir = self.path_model_dirs[key] if self.verbose >=1: print('\n----',key,'----') print('path_model_dir:',path_model_dir) model_dict = self.models_dict[key] model_type = str(type(model_dict['model'])) if 'sklearn' in model_type or 'xgboost' in model_type: path_file = _os.path.join(path_model_dir,'model_dict.dill') elif 'Net' in key: path_file = _os.path.join(path_model_dir,'best_model.h5') if self.retrain or _os.path.isfile(path_file)==False: model_dict = self._single_model_BayesianSearchCV(key, model_dict, X_train, y_train, X_test, y_test, path_model_dir, **kwargs) self.models_dict[key] = model_dict else: #reload previously trained model if 'sklearn' in str(type(self.models_dict[key]['model'])): self.models_dict[key] = self.load('model_dict', 'dill', path_model_dir) elif 'Net' in key: #check kwargs for epochs epochs = 100 for item in self.kwargs.items(): if 'epochs' in item[0]: epochs = item[1] self.models_dict[key]['best_model'] = _NeuralNet.utils.load_model( _os.path.join(path_model_dir,'best_model.h5')) self.models_dict[key]['best_params'] = self.load('best_params', 'dill', path_model_dir) if 'Net' in key: y_pred = self.models_dict[key]['best_model'].predict(_np.array(X_test)) else: y_pred = self.models_dict[key]['best_model'].predict(X_test) if 'Net' not in key: self.models_dict[key]['best_pred_score'] = self.models_dict[key]['best_model'].score(X_test, y_test) y_pred_proba = self.models_dict[key]['best_model'].predict_proba(X_test)[:,1] else: if 'crossentropy' in self.models_dict[key]['best_model'].loss: y_pred_proba = y_pred y_pred = (y_pred < 0.5).astype(int) self.models_dict[key]['best_pred_score'] = self.models_dict[key]['best_model'].evaluate(_np.array(X_test), _np.array(y_test), verbose =0) if self.verbose >=1: try: print('\tbest_cv_score:',self.models_dict[key]['best_cv_score']) except Exception as e: print('Exception occured for:'+str(e)) try: print('\tbest_pred_score:',self.models_dict[key]['best_pred_score']) except Exception as e: print('Exception occured for:'+str(e)) for metric_key in self.metrics.keys(): if self.metrics[metric_key] !=None: try: if 'roc' in metric_key: self.models_dict[key][metric_key] = self.metrics[metric_key](y_test, y_pred_proba) else: self.models_dict[key][metric_key] = self.metrics[metric_key](y_test, y_pred) print('\t',metric_key,':',self.models_dict[key][metric_key]) except Exception as e: print('Exception occured for',metric_key,':',str(e)) if 'sklearn' in str(type(self.models_dict[key]['model'])): self.save(self.models_dict[key], 'model_dict', 'dill', path_model_dir) elif 'Net' in key: model_dict_subset = self.models_dict[key].copy() for key in self.models_dict[key].keys(): if key not in ['y_test','y_pred','best_pred_score'] +list(self.metrics.keys()): model_dict_subset.pop(key) ``` #### File: ML/NeuralNet/plot.py ```python import matplotlib.pyplot as _plt def learning_curves(history, rect = (0,0,1,1)): """ plot learning curves for each metric """ metrics = [key for key in history.history.keys() if key != 'lr' and 'val' not in key] fig, ax_list = _plt.subplots(1,len(metrics)) if len(metrics)==1: ax_list = [ax_list] p=0 for metric in metrics: for train_val_label in ['','val_']: label = train_val_label+metric ax_list[p].plot(history.epoch, history.history[label], label = label) ax_list[p].set_xlabel('epoch') ax_list[p].set_ylabel(metric) ax_list[p].legend() p+=1 fig.tight_layout(rect=rect) _plt.show() ``` #### File: ML/preprocessing/_CorrCoeff.py ```python import warnings as _warnings class CorrCoeffThreshold(): def __init__(self, AbsCorrCoeff_threshold = 0.99, iterative_sample_size = None): """ Method for filtering features with correlation coefficients >= the AbsCorrCoeff_threshold (absolute value of corerlation coeff. threshold) value passed, where the correlation coefficient is the pearson coerrelation coefficient Arguments: ---------- AbsCorrCoeff_threshold: float. default = 0.99. valid range: 0 to 1 iterative_sample_size: float """ assert(AbsCorrCoeff_threshold>=0) assert(AbsCorrCoeff_threshold<=1) self.AbsCorrCoeff_threshold = AbsCorrCoeff_threshold def __fetch_dropped_features_slice_dict__(self, np_corr_col, feature_idx, AbsCorrCoeff_threshold): """ Arguments: ---------- np_corr_col: column of correlation coefficients for the feature of feature_idx feature_idx: the index corresponding to the column slice of the correlation coeff. matrix AbsCorrCoeff_threshold: Absolute value threshold limit for the correlation coefficients to filter """ import numpy as np dropped_features_slice_dict = {'dropped feature idx':[], 'correlated feature idx':[], 'corr coeff':[]} for i in range(np_corr_col.shape[0]): if i!=feature_idx: if np.abs(np_corr_col[i])>= AbsCorrCoeff_threshold: dropped_features_slice_dict['dropped feature idx'].append(i) dropped_features_slice_dict['correlated feature idx'].append(feature_idx) dropped_features_slice_dict['corr coeff'].append(np_corr_col[i]) return dropped_features_slice_dict def fit(self, df, CorrCoeff_features = 'auto', verbose = 0): """ Fit the CorrelationCoeffThreshold object to the data Arguments: ---------- df: the dataframe of interest CorrCoeff_features: list. the subset of features to analyze the correlation coeff. on. If 'auto' then all columns in the df will be used """ import numpy as np import joblib import gc import dask _warnings.filterwarnings('ignore') df = df.copy() type_df = type(df) #assigne self.CorrCoeff_features if CorrCoeff_features == 'auto': self.CorrCoeff_features = list(df.columns) else: assert(type(CorrCoeff_features)==type(list())), 'CorrCoeff_features must be "auto" or a list' self.CorrCoeff_features = CorrCoeff_features df = df[self.CorrCoeff_features] if type_df==dask.dataframe.core.DataFrame: np_corr = np.array(df.corr()) else: np_corr = np.corrcoef(df, rowvar=False) del df gc.collect() executor = joblib.parallel.Parallel(n_jobs = -1, verbose=verbose, backend='multiprocessing') tasks = [joblib.parallel.delayed(self.__fetch_dropped_features_slice_dict__)(np_corr[:,feature_idx], feature_idx, self.AbsCorrCoeff_threshold) for feature_idx in range(np_corr.shape[0])] del np_corr gc.collect() #execute the task outputs = executor(tasks) del tasks gc.collect() #assemble outputs into full dictionary self.dropped_features_dict = {'dropped feature':[], 'correlated feature':[], 'corr coeff':[]} self.outputs = outputs for dropped_feat_slice_dict in outputs: for i in range(len(dropped_feat_slice_dict['dropped feature idx'])): correlated_feat = self.CorrCoeff_features[dropped_feat_slice_dict['correlated feature idx'][i]] dropped_feat = self.CorrCoeff_features[dropped_feat_slice_dict['dropped feature idx'][i]] corr_coeff = dropped_feat_slice_dict['corr coeff'][i] if correlated_feat not in self.dropped_features_dict['correlated feature'] and correlated_feat not in self.dropped_features_dict['dropped feature']: self.dropped_features_dict['dropped feature'].append(dropped_feat) self.dropped_features_dict['correlated feature'].append(correlated_feat) self.dropped_features_dict['corr coeff'].append(corr_coeff) _warnings.filterwarnings('default') def transform(self, df): """ Transform the dataframe based on the previously run fit Arguments: ---------- df: dataframe which will be transformed """ _warnings.filterwarnings('ignore') df = df.copy() for feature in self.dropped_features_dict['dropped feature']: if feature in df.columns: df = df.drop(columns=[feature]) _warnings.filterwarnings('default') return df ``` #### File: ML/preprocessing/Impute.py ```python import numpy as _np def categorical_features(X, categorical_headers, strategy = 'most_frequent', estimator = None, verbose= 0): """ Impute (fill nan) values for categorical features Arguments: ---------- X: pandas dataframe. If strategy = 'iterative', then all categorical features must be label encoded in a previous step, with nan values remaining after encoding. categorical_headers: list of categorical feature headers. strategy : The imputation strategy. - If If “constant”, then replace missing values with fill_value. Can be used with strings or numeric data. fill_value will be 0 when imputing numerical data and “missing_value” for strings or object data types. - If "most_frequent", then replace missing using the most frequent value along each column. Can be used with strings or numeric data. - If 'iterative', then use sklearn.imputer.IterativeImputer with the specified estimator estimator: sklearn estimator object The estimator to be used if 'iterative' strategy chosen Note: sklearn.impute.IterativeImputer has a number of other options which could be varied/tuned, but for simplicity we just use the defaults Returns: -------- X: Imputed dataframe Imputer: Imputer object """ import sklearn.preprocessing, sklearn.impute from sklearn.experimental import enable_iterative_imputer import warnings import pandas as pd import dask warnings.filterwarnings('ignore') X = X.copy() if strategy != 'iterative': Imputer = sklearn.impute.SimpleImputer(strategy=strategy, verbose = verbose) else: n_nearest_features = _np.min([10, len(categorical_headers)]) #use less than or equal to 10 features Imputer = sklearn.impute.IterativeImputer(estimator= estimator, initial_strategy = 'most_frequent', verbose = verbose, n_nearest_features = n_nearest_features) #create a dummy nan row to ensure any dataset containing nan for any of the features can be transformed type_X = type(X) if type_X==dask.dataframe.core.DataFrame: npartitions = X.npartitions X = X.compute() X_nans = pd.DataFrame(_np.array([[_np.nan for header in categorical_headers]]), columns = categorical_headers) X_fit = pd.concat((X[categorical_headers],X_nans)) X_drop = X_fit.dropna(axis='columns', how = 'all') all_nan_categorical_columns = [header for header in categorical_headers if header not in X_drop.columns] for col in all_nan_categorical_columns: X_fit[col] = 0 X[col] = 0 Imputer.fit(X_fit) try: X[categorical_headers] = Imputer.transform(X[categorical_headers]) except: print('X[categorical_headers]:') display(X[categorical_headers]) print('X_fit:') display(X_fit) print(X_fit.shape) print('Imputer.transform(X[categorical_headers]):') display(Imputer.transform(X[categorical_headers])) print(Imputer.transform(X[categorical_headers]).shape) raise if type_X==dask.dataframe.core.DataFrame: X = dask.dataframe.from_pandas(X, npartitions=npartitions) warnings.filterwarnings('default') return X, Imputer def continuous_features(X, continuous_headers, strategy = 'median', estimator = None, verbose= 0): """ Impute (fill nan) values for continuous features Arguments: ---------- X: pandas dataframe. If strategy = 'iterative', then all categorical features must be label encoded in a previous step, with nan values remaining after encoding. continuous_headers: list of continuous feature headers. strategy : The imputation strategy. - If If “constant”, then replace missing values with fill_value. fill_value will be 0 when imputing numerical data. - If "most_frequent", then replace missing using the most frequent value along each column. - If 'iterative', then use sklearn.imputer.IterativeImputer with the specified estimator estimator: sklearn estimator object The estimator to be used if 'iterative' strategy chosen Note: sklearn.impute.IterativeImputer has a number of other options which could be varied/tuned, but for simplicity we just use the defaults Returns: -------- X: Imputed dataframe Imputer: Imputer object """ import sklearn.preprocessing, sklearn.impute from sklearn.experimental import enable_iterative_imputer import warnings import pandas as pd import numpy as np import dask warnings.filterwarnings('ignore') X = X.copy() if strategy in ['most_frequent', 'constant', 'mean', 'median']: Imputer = sklearn.impute.SimpleImputer(strategy=strategy, verbose = verbose) if strategy == 'iterative': n_nearest_features = _np.min([10, len(continuous_headers)]) Imputer = sklearn.impute.IterativeImputer(estimator= estimator, initial_strategy = 'most_frequent', verbose = verbose, n_nearest_features = n_nearest_features) type_X = type(X) if type_X==dask.dataframe.core.DataFrame: npartitions = X.npartitions X = X.compute() #create a dummy nan row to ensure any dataset containing nan for any of the features can be transformed X_nans = pd.DataFrame(_np.array([[_np.nan for header in continuous_headers]]), columns = continuous_headers) X_fit = pd.concat((X[continuous_headers],X_nans)) X_drop = X_fit.dropna(axis='columns', how = 'all') all_nan_columns = [header for header in continuous_headers if header not in X_drop.columns] for col in all_nan_columns: X_fit[col] = 0 X[col] = 0 Imputer.fit(X_fit) X[continuous_headers] = Imputer.transform(X[continuous_headers]) if type_X==dask.dataframe.core.DataFrame: X = dask.dataframe.from_pandas(X, npartitions=npartitions) warnings.filterwarnings('default') return X, Imputer def default_iterative_regressors_dict(): """ dictionary of typical iterative estimators """ import sklearn, sklearn.linear_model, sklearn.ensemble #focus on BayesianRidge (sklearn default) and RandomForest, since they generally perform better than simple linear or DecisionTree and scale better than KNN iterative_regressors_dict = {'BayesianRidge':sklearn.linear_model.BayesianRidge(), 'RandomForestRegressor': sklearn.ensemble.RandomForestRegressor(n_jobs=-1) } #sklearn.linear_model.LinearRegression(n_jobs=-1), #sklearn.neighbors.KNeighborsRegressor(n_jobs=-1) #sklearn.tree.DecisionTreeRegressor(), return iterative_regressors_dict def __unit_test__(X, headers_dict, verbose =1 ): """ Iterate over impute_categorical_feature and impute_continuous_features options & ensure everything works for this particular dataset """ print('------running impute.continuous_features validation-------') for strategy in ['mean','median','iterative']: print('strategy:',strategy,) if strategy in ['most_frequent','mean','median']: X_imputed, headers_dict, Imputer = Impute.continuous_features(X, headers_dict, strategy = strategy, estimator = None, verbose = verbose) else: iterative_estimators_dict = Impute.fetch_iterative_estimators_dict() for estimatorID in iterative_estimators_dict.keys(): print('estimator:',estimatorID) X_imputed, headers_dict, Imputer = Impute.continuous_features(X, headers_dict, strategy = strategy, estimator = iterative_estimators_dict[estimatorID], verbose = verbose) print('------running impute.categorical_features validation-------') for strategy in ['most_frequent', 'iterative']: print('strategy:',strategy,) if strategy == 'most_frequent': X_imputed, headers_dict, Imputer = Impute.categorical_features(X, headers_dict, strategy = strategy, estimator = None, verbose = verbose) else: for estimator in impute.fetch_typical_iterative_estimators(): print('estimator:',estimator) X_imputed, headers_dict, Imputer = Impute.categorical_features(X, headers_dict, strategy = strategy, estimator = estimator, verbose = verbose) print('\nall imputation options validated!') ``` #### File: JLpy_Utilities/pyDSlib/_plot_imgs.py ```python import matplotlib as _mpl import matplotlib.pyplot as _plt import numpy as _np import warnings as _warnings import os as _os def from_list(imgs_list, n_plot_columns = 3, cmap = 'viridis', title_list = None): """ Plot the images contained in the list of images passed Arguments: ---------- imgs_list: list where each element is an array-like image n_plot_columns: int. Number of plot columns per row of plots to display - If len(imgs_list)<n_plot_columns, the n_plot_columns will be updated to be equal to the len(imgs_list) cmap: matplotlib colormap title_list: list of strings to use as the title for each plot Returns: -------- None. the plots will be displayed """ if len(imgs_list)<n_plot_columns: n_plot_columns = len(imgs_list) if n_plot_columns == 1: fig, ax = _plt.subplots(1, n_plot_columns) ax_list = [ax] else: fig, ax_list = _plt.subplots(1, n_plot_columns) p = 0 for i in range(len(imgs_list)): img = imgs_list[i] if type(title_list)==type(list()): ax_list[p].set_title(title_list[i]) ax_list[p].imshow(img, cmap = cmap) ax_list[p].grid(which='both', visible=False) ax_list[p].set_axis_off() p+=1 if p==n_plot_columns: p=0 try: fig.tight_layout(rect=(0,0,int(n_plot_columns/1.2),1)) except: try: fig.tight_layout() except Exception as e: print('Exception: '+ str(e)) _plt.show() # generate new plot if this isn't the last header if i != len(imgs_list)-1: fig, ax_list = _plt.subplots(1, n_plot_columns) for ax in ax_list: ax.grid(which='both',visible=False) ax.set_axis_off() p=0 # ensure last plot is formated and shown if p!=n_plot_columns: try: fig.tight_layout(rect=(0,0,int(n_plot_columns/1.2),1)) except: try: fig.tight_layout() except Exception as e: print('Exception: '+ str(e)) _plt.show() def from_files(path_imgs_dir, filenames = 'auto', n_plot_columns = 3, cmap = 'viridis', ): """ Plot the images contained in the path_imgs_dir. Arguments: ---------- path_imgs_dir: path to directory where images are stored filenames: list of filenames for images of interest, or 'auto'. - If 'auto' all the image files within the directory will be plotted n_plot_columns: int. Number of plot columns per row of plots to display cmap: matplotlib colormap Returns: -------- None. the plots will be displayed """ if type(filenames)==type(list()): path_imgs = [_os.path.join(path_imgs_dir, filename) for filename in filenames] elif filenames == 'auto': path_imgs = [_os.path.join(path_imgs_dir, filename) for filename in _os.listdir(path_imgs_dir) if 'png' in filename or 'tiff' in filename or 'bmp' in filename or 'dcm' in filename or 'jpg' in filename or 'jpeg' in filename] imgs_list = [] for p in range(len(path_imgs)): path_img = path_imgs[p] if 'dcm' in path_img: import pydicom img = pydicom.dcmread(path_img).pixel_array else: img = _plt.imread(path_img) imgs_list.append(img) p+=1 if p%n_plot_columns==0 or p>len(path_imgs): from_list(imgs_list, n_plot_columns, cmap) imgs_list = [] ``` #### File: JLpy_Utilities/pyDSlib/summary_tables.py ```python import pandas as _pd import numpy as _np #Fetch unique Device IDs def count_subgroups_in_group(df, group_label, sub_group_label, Additional_output_labels=None): """ Create a summary table showing the count for subgroups within a group Arguments: ---------- df: dataframe of interest group_label: column on which the data will be grouped by sub_group_label: column on which the nunique counts will be made for the defined group. Additional_output_labels: a list of columns that are less or equally unique as the subgroup Returns: -------- df_group_w_subgroup_count: dataframe showing unique value counts for given subgroup in a group """ df_group = df.groupby(group_label) group_ID_list = [] subgroup_count_list = [] df_group_w_subgroup_count = _pd.DataFrame() for group_ID, group_subset in df_group: if Additional_output_labels == None: group_subset_out = group_subset[[group_label]].drop_duplicates() else: group_subset_out = group_subset[[group_label, *Additional_output_labels]].drop_duplicates() df_group_w_subgroup_count = _pd.concat((df_group_w_subgroup_count,group_subset_out),axis=0).reset_index(drop=True) subgroup_count_list.append(group_subset[sub_group_label].drop_duplicates().count()) df_group_w_subgroup_count[sub_group_label+'_count'] = subgroup_count_list return df_group_w_subgroup_count ``` #### File: JLpy_Utilities/tests/test_kaggle.py ```python import pytest import pyDSlib # def test_kaggle_setupe_config_dir(): # pyDSlib.kaggle.setup_config_dir(username='jtleona01', key = 'foo') def test_kaggle_competition_download_files(tmpdir): try: pyDSlib.kaggle.competition_download_files(competition='foo', path_report_dir=tmpdir) except Exception as e: assert('Reason: Unauthorized' in str(e) or 'Could not find kaggle.json' in str(e) or 'foo is not a valid competition' in str(e)), 'pyDSlib.kaggle.competition_download_files is returning an unexpected error:'+str(e) ``` #### File: JLpy_Utilities/tests/test_summary_tables.py ```python import pytest import sys, os import pandas as pd import pyDSlib def test_count_subgroups_in_group(): df = {} df['subgroup'] = [] df['group'] = [] for color in ['R','G','B']: slice_ = [i for i in range(3)] df['subgroup'] = df['subgroup']+ slice_+slice_ df['group'] = df['group'] + [color for vale in slice_+slice_] df = pd.DataFrame.from_dict(df) df_test = pyDSlib.summary_tables.count_subgroups_in_group(df, group_label='group', sub_group_label='subgroup') assert(df_test.iloc[0,1]==3), 'expected df_test.iloc[0,1]=3, received df_test.iloc[0,1]='+str(df_test.iloc[0,1]) ```
{ "source": "jlnieh/sweetsmelloforchid", "score": 3 }
#### File: jlnieh/sweetsmelloforchid/cookall.py ```python __author__ = "<NAME>" __version__ = "0.0.1" import os import sys import shutil import datetime import argparse import re import zipfile from subprocess import call TOOL_EPUBCHECK=os.path.join('tools', 'epubcheck', 'epubcheck.jar') SOURCES=('vol01', 'vol02') FOLDER_BUILD='build' FOLDER_RELEASE='dist' FOLDER_METAINFO='META-INF' FOLDER_BOOKROOT='EPUB' FOLDER_CONTENTS='contents' FOLDER_TEMPLATES='templates' FILENAME_CONTENT_TEMPLATE='content.xhtml' FILENAME_PACKAGEOPF='package.opf' FILENAME_NAV='nav.xhtml' CONSTSTR_MIMETYPE='application/epub+zip' CONSTSTR_METAINFO="""<?xml version="1.0" encoding="UTF-8"?> <container version="1.0" xmlns="urn:oasis:names:tc:opendocument:xmlns:container"> <rootfiles> <rootfile full-path="{0}/{1}" media-type="application/oebps-package+xml"/> </rootfiles> </container>""".format(FOLDER_BOOKROOT, FILENAME_PACKAGEOPF) BOOK_ITEMS = [] TOC_ITEMS = [] LINEBREAK_IN_POEM = False def prepare_folders(build_dir): if not os.path.isdir(FOLDER_BUILD): os.makedirs(FOLDER_BUILD) if not os.path.isdir(FOLDER_RELEASE): os.makedirs(FOLDER_RELEASE) if os.path.isdir(build_dir): shutil.rmtree(build_dir) os.makedirs(build_dir) os.makedirs(os.path.join(build_dir, FOLDER_METAINFO)) os.makedirs(os.path.join(build_dir, FOLDER_BOOKROOT)) def prepare_mimetype(build_dir): outfn = os.path.join(build_dir, 'mimetype') with open(outfn, 'w') as fout: fout.write(CONSTSTR_MIMETYPE) def prepare_metainfo(build_dir): outfn = os.path.join(build_dir, FOLDER_METAINFO, 'container.xml') with open(outfn, 'w') as fout: fout.write(CONSTSTR_METAINFO) def prepare_fixtures(src_vol, build_dir): for root, dirs, files in os.walk(src_vol): dirs[:] = [d for d in dirs if d not in (FOLDER_CONTENTS, FOLDER_TEMPLATES)] for fname in files: path_src = os.path.join(root, fname) rel_pathname = os.path.relpath(path_src, src_vol) path_dest = os.path.join(build_dir, FOLDER_BOOKROOT, rel_pathname) dest_folder = os.path.dirname(path_dest) if not os.path.isdir(dest_folder): os.makedirs(dest_folder) shutil.copy(path_src, path_dest) def splitSubHeader(line): subHeaderPos = line.find(' ') if (subHeaderPos > 0): return (line[:subHeaderPos], line[subHeaderPos+4:]) else: return (line, '') PATTERN_IMAGETITLE=re.compile(r'\!\[(.+)\]\((.+)\)') def parseImageTitle(line): result = PATTERN_IMAGETITLE.match(line) if result: return result[1] return line PATTERN_CLEARHTMLTAG=re.compile('<.*?>') def filterPageTitle(line): raw_title = parseImageTitle(line) return PATTERN_CLEARHTMLTAG.sub('', raw_title) def getImageTitleTag(line): result = PATTERN_IMAGETITLE.match(line) if result: return """<img src="{0}" alt="{1}" title="{1}"/>""".format(result[2], result[1]) return line PATTERN_PAGETITLE='<!--PAGE_TITLE-->' PATTERN_PAGEBODY='<!--PAGE_BODY-->' PATTERN_FOOTNOTE=re.compile(r'\[(\d+)\]') PATTERN_DATE=re.compile(r'^[\d]+') def convert_doc(fname_src, fname_template, build_dir, fname_base): fname_dest = os.path.join(build_dir, FOLDER_BOOKROOT, fname_base) pageTitle = '' strContent = '' pg_id = fname_base[0:3] h2_id = 0 h4_id = 0 curPara = [] with open(fname_src, 'r', encoding='utf-8') as fin: for line in fin: line = line.rstrip() if len(line) == 0: if(len(curPara)>0) and (curPara[-1] == 'p'): strContent += '</{0}>\n'.format(curPara.pop()) elif line.startswith('# '): (pageTitle, pageSubTitle) = splitSubHeader(line[2:]) h2_id += 1 localHeaderId = '{0}h1{1:02}'.format(pg_id, h2_id) if '## ' == pageSubTitle[0:3]: # specail case TOC_ITEMS.append((fname_base, localHeaderId, 2, "{0}".format(pageSubTitle[3:]))) else: TOC_ITEMS.append((fname_base, localHeaderId, 2, "{1}《{0}》".format(filterPageTitle(pageTitle), pageSubTitle))) h4_id = 0 while(len(curPara)>0): strContent += '</{0}>\n'.format(curPara.pop()) if '## ' == pageSubTitle[0:3]: # specail case strContent += """<header><h1 id="{0}">{1}</h1><h2 class="subtitle">{2}</h2></header>\n""".format(localHeaderId, getImageTitleTag(pageTitle), pageSubTitle[3:]) else: strContent += """<header><h2 id="{0}">{1}</h2><p class="subtitle center">{2}</p></header>\n""".format(localHeaderId, getImageTitleTag(pageTitle), pageSubTitle) elif line.startswith('## '): (pageTitle, pageSubTitle) = splitSubHeader(line[3:]) h2_id += 1 localHeaderId = '{0}h2{1:02}'.format(pg_id, h2_id) TOC_ITEMS.append((fname_base, localHeaderId, 2, filterPageTitle(pageTitle))) h4_id = 0 while(len(curPara)>0): strContent += '</{0}>\n'.format(curPara.pop()) strContent += """<header><h2 id="{0}">{1}</h2>{2}</header>\n""".format(localHeaderId, getImageTitleTag(pageTitle), pageSubTitle) elif line.startswith('### '): strContent += """<h3>{0}</h3>\n""".format(line[4:]) elif line.startswith('#### '): (poemTitle, poemDate) = splitSubHeader(line[5:]) h4_id += 1 localHeaderId = '{0}h4{1:02}{2:03}'.format(pg_id, h2_id, h4_id) m = PATTERN_FOOTNOTE.search(poemTitle) if m: poemTitleDisp = PATTERN_FOOTNOTE.sub(r'<sub><a href="#n\1" epub:type="noteref">\1</a></sub>', poemTitle) poemTitle = PATTERN_FOOTNOTE.sub(r'', poemTitle) else: poemTitleDisp = poemTitle if len(poemDate) > 0: m = PATTERN_DATE.search(poemDate) if m: strPoemSub = '<p class="poem-date">{0}</p>'.format(poemDate) else: strPoemSub = '<p class="poem-author">{0}</p>'.format(poemDate) poemTitle = '附{0}君《{1}》'.format(poemDate[0], poemTitle) else: strPoemSub = '' TOC_ITEMS.append((fname_base, localHeaderId, 4, poemTitle)) while(len(curPara)>0): strContent += '</{0}>\n'.format(curPara.pop()) strContent += """<article id="{0}"><header><h3 class="poem-title">{1}</h3>{2}</header>""".format(localHeaderId, poemTitleDisp, strPoemSub) curPara.append('article') elif line.startswith('##### '): (poemTitle, poemDate) = splitSubHeader(line[6:]) m = PATTERN_FOOTNOTE.search(poemTitle) if m: poemTitle = PATTERN_FOOTNOTE.sub(r'<sub><a href="#n\1" epub:type="noteref">\1</a></sub>', poemTitle) if(len(curPara)>1) and (curPara[-1] == 'p'): strContent += '</{0}>\n'.format(curPara.pop()) strContent += '<h4 class="poem-title">{0}</h4>'.format(poemTitle) if len(poemDate) > 0: m = PATTERN_DATE.search(poemDate) if m: strContent += '<p class="poem-date">{0}</p>'.format(poemDate) else: strContent += '<p class="poem-author">{0}</p>'.format(poemDate) elif line.startswith('['): if(len(curPara)>0) and (curPara[-1] == 'p'): strContent += '</{0}>\n'.format(curPara.pop()) pos = line.find('] ') note_id = int(line[1:pos]) note_str = line[pos+2:] strContent += '<aside id="n{0}" data-footnote-seq="{0}" epub:type="footnote">{1}</aside>'.format(note_id, note_str) elif line.startswith('> '): if(0 == len(curPara)) or (curPara[-1] != 'p'): strContent += '<p class="poem">' curPara.append('p') elif LINEBREAK_IN_POEM: strContent += '<br/>' strContent += PATTERN_FOOTNOTE.sub(r'<sub><a href="#n\1" epub:type="noteref">\1</a></sub>', line[2:]) else: if(len(curPara)<1): strContent += '<p>' curPara.append('p') strContent += PATTERN_FOOTNOTE.sub(r'<sub><a href="#n\1" epub:type="noteref">\1</a></sub>', line) while(len(curPara)>0): strContent += '</{0}>\n'.format(curPara.pop()) with open(fname_template, 'r', encoding='utf-8') as fin, open(fname_dest, 'w', encoding='utf-8') as fout: for line in fin: if line.find(PATTERN_PAGETITLE) >= 0: line = line.replace(PATTERN_PAGETITLE, filterPageTitle(pageTitle)) elif line.find(PATTERN_PAGEBODY) >= 0: line = line.replace(PATTERN_PAGEBODY, strContent) fout.write(line) def generate_docs(src_vol, build_dir): path_src_root = os.path.join(src_vol, FOLDER_CONTENTS) fname_template = os.path.join(src_vol, FOLDER_TEMPLATES, FILENAME_CONTENT_TEMPLATE) for root, dirs, files in os.walk(path_src_root): for fname in files: (fbase, fext) = os.path.splitext(fname) if '.md' != fext: continue BOOK_ITEMS.append(fbase) convert_doc(os.path.join(root, fname), fname_template, build_dir, fbase + '.xhtml') BOOK_ITEMS.sort(key=lambda x: x[1:3]) PATTERN_TOC = '<!--TOC-->' PATTERN_TOC2 = '<!--TOC2-->' def generate_toc(src_vol, build_dir): str_items = ['', ''] cur_lvl = 0 cur_sec = 0 for item in TOC_ITEMS: if 'p' == item[0][0]: #skip this item to ToC continue if (0 == cur_sec) and ('s11' == item[0][0:3]): # special for vol02 to seperate TOC into part2 if 4 == cur_lvl: str_items[cur_sec] += '</li>\n' + ' ' * 16 + '</ol></li>' elif 2 == cur_lvl: str_items[cur_sec] += '</li>' cur_lvl = 0 cur_sec = 1 if item[2] > cur_lvl: if cur_lvl > 0: indentSpace = '\n' + ' ' * (cur_lvl * 2 + 12) str_items[cur_sec] += indentSpace + '<ol>' elif item[2] < cur_lvl: indentSpace = '\n' + ' ' * (item[2] * 2 + 12) str_items[cur_sec] += '</li>' + indentSpace + '</ol></li>' else: str_items[cur_sec] += '</li>' indentSpace = '\n' + ' ' * (item[2] * 2 + 12) str_items[cur_sec] += indentSpace + '<li><a href="{0}#{1}">{2}</a>'.format(item[0], item[1], item[3]) cur_lvl = item[2] if 4 == cur_lvl: str_items[cur_sec] += '</li>\n' + ' ' * 16 + '</ol></li>' elif 2 == cur_lvl: str_items[cur_sec] += '</li>' if '' == str_items[0]: str_items[0] = '<li><a>No title</a></li>' if '' == str_items[1]: str_items[1] = '<li><a>No title</a></li>' fname_src = os.path.join(src_vol, FOLDER_TEMPLATES, FILENAME_NAV) fname_dest= os.path.join(build_dir, FOLDER_BOOKROOT, FILENAME_NAV) with open(fname_src, 'r', encoding='utf-8') as fin, open(fname_dest, 'w', encoding='utf-8') as fout: for line in fin: if line.find(PATTERN_TOC) >= 0: line = line.replace(PATTERN_TOC, str_items[0]) elif line.find(PATTERN_TOC2) >= 0: line = line.replace(PATTERN_TOC2, str_items[1]) fout.write(line) PATTERN_MODIFIEDDATETIME = '<!--DATE_MODIFIED-->' PATTERN_BOOKVERSION = '<!--BOOK_VERSION-->' PATTERN_MANIFEST = '<!--LIST_MANIFEST-->' PATTERN_SPINE = '<!--LIST_SPINE-->' PATTERN_SPINE_PREV = '<!--LIST_SPINE_PREV-->' def generate_opf(src_vol, build_dir): lineHeader = '\n' + ' ' * 8 str_now = datetime.datetime.utcnow().isoformat(timespec='seconds') + 'Z' str_items = '' str_itemref = '' str_itemref_prev = '' is_prev_ok = True for item in BOOK_ITEMS: if '' != str_items: str_items += lineHeader str_items += '<item href="{0}.xhtml" id="{0}" media-type="application/xhtml+xml"/>'.format(item) if is_prev_ok and 'p' == item[0]: if '' != str_itemref_prev: str_itemref_prev += lineHeader str_itemref_prev += '<itemref idref="{0}"/>'.format(item) else: if is_prev_ok: is_prev_ok = False if '' != str_itemref: str_itemref += lineHeader str_itemref += '<itemref idref="{0}"/>'.format(item) fname_src = os.path.join(src_vol, FOLDER_TEMPLATES, FILENAME_PACKAGEOPF) fname_dest= os.path.join(build_dir, FOLDER_BOOKROOT, FILENAME_PACKAGEOPF) with open(fname_src, 'r', encoding='utf-8') as fin, open(fname_dest, 'w', encoding='utf-8') as fout: for line in fin: if line.find(PATTERN_MODIFIEDDATETIME) >= 0: line = line.replace(PATTERN_MODIFIEDDATETIME, str_now) elif line.find(PATTERN_BOOKVERSION) >= 0: line = line.replace(PATTERN_BOOKVERSION, '1.0.0') elif line.find(PATTERN_MANIFEST) >= 0: line = line.replace(PATTERN_MANIFEST, str_items) elif line.find(PATTERN_SPINE) >= 0: line = line.replace(PATTERN_SPINE, str_itemref) elif line.find(PATTERN_SPINE_PREV) >= 0: line = line.replace(PATTERN_SPINE_PREV, str_itemref_prev) fout.write(line) def package_book(build_dir, target_fn): today = datetime.date.today() rel_fname = "ssoo{0}_r{1:04}{2:02}{3:02}.epub".format(target_fn[-1], today.year, today.month, today.day) ret_dir = os.getcwd() os.chdir(build_dir) epub_fname = os.path.join(ret_dir, FOLDER_RELEASE, rel_fname) if os.path.isfile(epub_fname): os.remove(epub_fname) with zipfile.ZipFile(epub_fname, mode='w') as zfout: for root, dirs, files in os.walk('.'): for fname in files: src_file = os.path.join(root, fname) print('Adding {0} into EPUB...'.format(src_file)) zfout.write(src_file) os.chdir(ret_dir) return epub_fname def verify_book(epub_fname): run_cmd = ['java', '-jar', TOOL_EPUBCHECK, epub_fname] if os.path.isdir(epub_fname): run_cmd.append('-mode', 'exp') # print(run_cmd) ret = call(run_cmd) if 0 == ret: print("EPUB <{0}> is verified OK!".format(epub_fname)) else: raise Exception("Failed to verify the EPUB file: {0}".format(epub_fname)) def cook_book(vol): del BOOK_ITEMS[:] del TOC_ITEMS[:] build_dir = os.path.join(FOLDER_BUILD, vol) prepare_folders(build_dir) prepare_mimetype(build_dir) prepare_metainfo(build_dir) prepare_fixtures(vol, build_dir) generate_docs(vol, build_dir) generate_toc(vol, build_dir) generate_opf(vol, build_dir) epub_fname = package_book(build_dir, vol) verify_book(epub_fname) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Add elements to the repo') parser.add_argument('-v', '--volume', dest='volumes', choices=SOURCES, action='append', help='select one or more volumes to build (default: %(default)s)') args = parser.parse_args() if (args.volumes is None) or (len(args.volumes) == 0): VOL_LIST = SOURCES else: VOL_LIST = args.volumes for vol in VOL_LIST: if 'vol02' == vol: LINEBREAK_IN_POEM = True if os.path.isdir(vol): cook_book(vol) else: raise Exception("Volmume<{0}> is not existed!".format(vol)) ```
{ "source": "jlnprssnr/luma.led_matrix", "score": 2 }
#### File: luma.led_matrix/tests/baseline_data.py ```python import json from pathlib import Path def get_json_data(fname): """ Load JSON reference data. :param fname: Filename without extension. :type fname: str """ base_dir = Path(__file__).resolve().parent fpath = base_dir.joinpath('reference', 'data', fname + '.json') with fpath.open() as f: return json.load(f) ```
{ "source": "jlo118/DLlab2", "score": 3 }
#### File: jlo118/DLlab2/Q4.py ```python from keras.layers import Dense, Embedding, LSTM from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from keras.utils.np_utils import to_categorical import re from keras.preprocessing.text import Tokenizer #Load Data data = pd.read_csv('spam.csv') # Keeping only the neccessary columns data = data[['Category','Message']] #Clean Data data['Message'] = data['Message'].apply(lambda x: x.lower()) data['Message'] = data['Message'].apply((lambda x: re.sub('[^a-zA-z0-9\s]', '', x))) for idx, row in data.iterrows(): row[0] = row[0].replace('rt', ' ') max_features = 199 tokenizer = Tokenizer(num_words=max_features, split=' ') tokenizer.fit_on_texts(data['Message'].values) X = tokenizer.texts_to_sequences(data['Message'].values) #Pad to make length the same X = pad_sequences(X) embed_dim = 128 lstm_out = 196 def model1(): model = Sequential() model.add(Embedding(max_features, embed_dim,input_length = X.shape[1])) model.add(LSTM(lstm_out, dropout=0.2, recurrent_dropout=0.2)) model.add(Dense(2,activation='softmax')) model.compile(loss = 'categorical_crossentropy', optimizer='adam',metrics = ['accuracy']) return model # print(model.summary()) labelencoder = LabelEncoder() integer_encoded = labelencoder.fit_transform(data['Category']) y = to_categorical(integer_encoded) X_train, X_test, Y_train, Y_test = train_test_split(X,y, test_size = 0.33, random_state = 42) batch_size = 32 model = model1() model.fit(X_train, Y_train, epochs = 10, batch_size=batch_size, verbose = 2) score,acc = model.evaluate(X_test,Y_test,verbose=2,batch_size=batch_size) print(score) print(acc) print(model.metrics_names) ```
{ "source": "jlobatop/GA-CFD-MO", "score": 3 }
#### File: airfoil-parametrization/joukowsky/joukowsky_variableR.py ```python import matplotlib matplotlib.use('TkAgg') import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import Slider, Button, RadioButtons # initial center and radius values x_cent = 0 y_cent = 0 radius1 = 1 # definition of the circle parameters center = np.array([x_cent,y_cent]) # calculation of the circle coordinates angle = np.linspace(0,2*np.pi,720) chi1 = center[0] + radius1*np.cos(angle) eta1 = center[1] + radius1*np.sin(angle) # calculations of the Joukowsky transform x1 = ((chi1)*(chi1**2+eta1**2+1))/(chi1**2+eta1**2) y1 = ((eta1)*(chi1**2+eta1**2-1))/(chi1**2+eta1**2) # initial figure definition fig, ax = plt.subplots(figsize=(6,6)) plt.subplots_adjust(bottom=0.25) # zeta plane plt.subplot(1, 2, 1) l, = plt.plot(chi1,eta1,'g',label='Circle') m, = plt.plot([center[0],center[0]],[center[1],center[1]],'w',marker='x',mec='k',markersize=10,label='Center') plt.scatter([-1,1],[0,0],c=['r','r'],s=25,marker='h',label='Reference Points') plt.axis('equal') plt.xlim([-3,3]) plt.grid(True) plt.xlabel(r"$\chi$",size=14) plt.ylabel(r"$\eta$",size=14) plt.legend(loc='lower left') # z plane plt.subplot(1, 2, 2) plt.axis('equal') plt.xlim([-3,3]) n, = plt.plot(x1,y1,'g') # current value of the sliders x0 = 0 y0 = 0 r0 = 1 # position of the sliders axx = plt.axes([0.18, 0.12, 0.65, 0.02], facecolor='white') axy = plt.axes([0.18, 0.08, 0.65, 0.02], facecolor='white') axr = plt.axes([0.18, 0.04, 0.65, 0.02], facecolor='white') # slider assignation sx = Slider(axx, r"$\mu_x$", -1, 1, valinit=x0) sy = Slider(axy, r"$\mu_y$", -1, 1, valinit=y0) sr = Slider(axr, r"$R$", 0, 2, valinit=r0) # updating the figure def update(val): x_cent = sx.val y_cent = sy.val radius1 = sr.val # redefinition of the circle parameters center = np.array([x_cent,y_cent]) # calculate again the circle coordinates angle = np.linspace(0,2*np.pi,720) chi1 = center[0] + radius1*np.cos(angle) eta1 = center[1] + radius1*np.sin(angle) # calculate again Joukowsky transform x1 = ((chi1)*(chi1**2+eta1**2+1))/(chi1**2+eta1**2) y1 = ((eta1)*(chi1**2+eta1**2-1))/(chi1**2+eta1**2) # update the zeta plane l.set_xdata(chi1) l.set_ydata(eta1) # update circle center coordinates m.set_xdata([x_cent,x_cent]) m.set_ydata([y_cent,y_cent]) # update the z plane n.set_xdata(x1) n.set_ydata(y1) # draw the selected updates fig.canvas.draw_idle() # call the sliders sx.on_changed(update) sy.on_changed(update) sr.on_changed(update) # show the figure plt.show() ``` #### File: cases/NSGA_cylinder/forcePlotAnalysis.py ```python import matplotlib #This is required to 'plot' inside the CLI matplotlib.use('AGG') import numpy as np import matplotlib.pyplot as plt from io import StringIO import io import sys # Get values from the input gen = int(sys.argv[1]) ind = int(sys.argv[2]) # Read the file efficientyly s = open('./gen%i/ind%i/postProcessing/forces/0/forces.dat' %(gen, ind)).read().replace('(',' ').replace(')',' ').replace('\t',' ') forces = np.genfromtxt(io.BytesIO(s.encode())) # RMS function def rms(x): return np.sqrt(np.mean(x**2)) # Plot a figure with forces evolution fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2, figsize=(20,15)) ax1.plot(forces[100:,0],forces[100:,1],'b',linewidth=2,label='Pressure Force X') ax1.plot(forces[100:,0],forces[100:,2],'g',linewidth=2,label='Pressure Force Y') ax1.set_xlabel('Time (s)', fontsize=16) ax1.set_ylabel(r'Force ($N$)', fontsize=16) ax1.legend(loc='lower left', fontsize=16) ax1.tick_params(labelsize=14) ax2.plot(forces[100:,0],forces[100:,4],'r',linewidth=2,label='Viscous Force X') ax2.plot(forces[100:,0],forces[100:,5],'c',linewidth=2,label='Viscous Force Y') ax2.set_xlabel('Time (s)', fontsize=16) ax2.set_ylabel(r'Force ($N$)', fontsize=16) ax2.legend(loc='upper right', fontsize=16) ax2.tick_params(labelsize=14) ax3.plot(forces[100:,0],forces[100:,10],'k',linewidth=2,label='Pressure Moment X') ax3.set_xlabel('Time (s)', fontsize=16) ax3.set_ylabel(r'Moment ($N\cdot m$)', fontsize=16) ax3.legend(loc='lower left', fontsize=16) ax3.tick_params(labelsize=14) ax4.plot(forces[100:,0],forces[100:,12],'m',linewidth=2,label='Pressure Moment Z') ax4.set_xlabel('Time (s)', fontsize=16) ax4.set_ylabel(r'Moment ($N\cdot m$)', fontsize=16) ax4.legend(loc='lower left', fontsize=16) ax4.tick_params(labelsize=14) plt.savefig('./gen%i/ind%i/VALg%ii%i.png' %(gen, ind, gen, ind), bbox_inches='tight', dpi=100) # Get timestp40 = int(np.argwhere(forces[:,0]>40)[0]) matFX = np.invert(forces[timestp40:,1] > forces[-1,1]) logicFX = np.logical_xor(matFX[0:-2],matFX[1:-1]) if len(np.argwhere(logicFX))%2 == 1: fx = int(np.argwhere(logicFX)[1]) else: fx = int(np.argwhere(logicFX)[0]) matFY = np.invert(forces[timestp40:,2] > forces[-1,2]) logicFY = np.logical_xor(matFY[0:-2],matFY[1:-1]) if np.sum(logicFY) == 0: fy = timestp40 else: if len(np.argwhere(logicFY))%2 == 1: fy = int(np.argwhere(logicFY)[1]) else: fy = int(np.argwhere(logicFY)[0]) fig, (ax1) = plt.subplots(1, figsize=(10,8)) ax1.plot(forces[timestp40+fx:,0],forces[timestp40+fx:,1]+forces[timestp40+fx:,4],'b',linewidth=2,label='Pressure Force X') # ax1.plot(forces[timestp40+fx:,0],np.mean(forces[timestp40+fx:,1])*np.ones(len(forces[timestp40+fx:,0])),':b',linewidth=1) ax1.plot(forces[timestp40+fy:,0],forces[timestp40+fy:,2]+forces[timestp40+fy:,5],'g',linewidth=2,label='Pressure Force Y') # ax1.plot(forces[timestp40+fy:,0],np.mean(forces[timestp40+fy:,2])*np.ones(len(forces[timestp40+fy:,0])),':g',linewidth=1) ax1.set_xlabel('Time (s)', fontsize=16) ax1.set_ylabel(r'Force ($N$)', fontsize=16) ax1.legend(loc='lower left', fontsize=16) ax1.tick_params(labelsize=14) ax1.set_ylim([-0.3,0.3]) ax1.set_xlim([0,150]) plt.savefig('./gen%i/data/OSCg%ii%i.png' %(gen, gen, ind), bbox_inches='tight', dpi=100) np.savetxt('./gen%i/data/FITg%ii%i.txt' %(gen, gen, ind), np.array([np.mean(forces[timestp40+fx:,1]+forces[timestp40+fx:,4]),np.mean(forces[timestp40+fy:,2]+forces[timestp40+fy:,5]), np.std(forces[timestp40+fx:,1]+forces[timestp40+fx:,4]),np.std(forces[timestp40+fy:,2]+forces[timestp40+fy:,5]), rms(forces[timestp40+fx:,1]+forces[timestp40+fx:,4]),rms(forces[timestp40+fy:,2]+forces[timestp40+fy:,5])])) ``` #### File: openFoam-case/run/allRun.py ```python from tqdm import tqdm import time import os import numpy as np import matplotlib.pyplot as plt import time ########################################################################################################## # FUNCTION DEFINITION ########################################################################################################## # Function to print a 'string' above the progress bar while it is still running def print_tqdm(string): tqdm.write(string) # Copy the folder from ./case to ./run returning to ./run def caseCopy(): os.chdir("..") os.system("cp -r ./baseCase ./run/case") os.chdir("run") # Once the simulation is done, transfer the folders from case to the folder of each individual def folderTransfer(analysisType,i,j): numFolder = [] nonNumFolder = [] for cFolder in os.listdir('case'): if analysisType == 'transient': os.system("mv ./case/%s ./generation%i/ind%i/sim/%s" %(cFolder,i,j,cFolder)) elif analysisType == 'steady': if str.isnumeric(cFolder): numFolder.append(int(cFolder)) else: nonNumFolder.append(cFolder) else: print_tqdm('\033[0;33mError in analysisType\033[0m') break if analysisType == 'steady': os.system("mv ./case/%i ./generation%i/ind%i/sim/%i" %(min(numFolder),i,j,min(numFolder))) os.system("mv ./case/%i ./generation%i/ind%i/sim/%i" %(max(numFolder),i,j,max(numFolder))) for cFolder in nonNumFolder: os.system("mv ./case/%s ./generation%i/ind%i/sim/%s" %(cFolder,i,j,cFolder)) ########################################################################################################## # PARAMETER DEFINITION ########################################################################################################## analysisType = 'steady' # 'steady' (state) or 'transient' for folder transfer generations = 2 individuals = 2 values = np.array([[10,20],[30,40]]) # values that will take VARIABLE1 in U # Initial linebreak to leave some space print_tqdm('\n') ########################################################################################################## # MAIN FUNCTION ########################################################################################################## # loop over the number of iterations for i in range(generations): # if there is not a folder for the current generation, this will create it if os.path.isdir("generation%i" %i) == False: os.system("mkdir generation%i" %i) # if it exists, remove that generation folder else: os.system("rm -rf ./generationn%i/" %i) # evaluate the function for each individual of the generation for j in tqdm(range(individuals),desc="{Generation %2.i}" %i): # print the current individual in the CLI print_tqdm('Inidividual %i' %j) # if there is not a folder for the current individual, this will create it if os.path.isdir("generation%i/ind%i" %(i,j)) == False: os.system("mkdir generation%i/ind%i" %(i,j)) # if there is not a folder for the current individual simulation, this will create it if os.path.isdir("generation%i/ind%i/sim" %(i,j)) == False: os.system("mkdir generation%i/ind%i/sim" %(i,j)) # copy the preconfigured case caseCopy() # change a value in simulations to see change os.system("sed -i 's/VARIABLE1/%i/g' ./case/0/U" %values[i,j]) # print the current state in the CLI print_tqdm(' Simulating inidividual %i' %j) # simulation of the case saving both stderr and stdout os.system("simpleFoam -case ./case > 'generation%i/ind%i/g%ii%i.txt' 2> 'generation%i/ind%i/error_g%ii%i.txt'" %(i,j,i,j,i,j,i,j)) # transfer the results to the generation/individual folder print_tqdm(' Moving inidividual %i' %j) folderTransfer(analysisType,i,j) # plot the stdout results into some fancy graphs print_tqdm(' Plotting inidividual %i' %j) os.system("python ./plotting.py ./generation%i/ind%i/ g%ii%i.txt" %(i,j,i,j)) # if the error file is empty, this will erase the output of the solver, keeping only the plots if int(os.popen("du -h 'generation%i/ind%i/error_g%ii%i.txt'" %(i,j,i,j)).read()[0]) == 0: os.system("rm 'generation%i/ind%i/g%ii%i.txt'" %(i,j,i,j)) os.system("rm 'generation%i/ind%i/error_g%ii%i.txt'" %(i,j,i,j)) # otherwise print error and don't remove the stdout else: print_tqdm('\033[0;33mError in simulation. Review logfile\033[0m') # remove the case folder and begin again os.system("rm -r case") if i+1 != generations: # doing things... print_tqdm('Evaluating generation fitness...') time.sleep(1) # do more things... print_tqdm('Creating new generation... \n') time.sleep(1) ```
{ "source": "jlobatop/snowPile", "score": 3 }
#### File: snowPile/testGA/problemSetup.py ```python import numpy as np ################################################################################ # INPUTS # ################################################################################ # number of variables of each individual Nvar = 7 # number of indiiduals per generation (x^Nvar being x a real number) Nind = 2**Nvar # search spaces limits var_low = np.array([-10,-1,-1,-1,-1,-1,-1]) var_high = np.array([10,1,1,1,1,1,1]) # comparison mode for search space limits (row per each one of the variables, # first row is for the low limit and the second row in for the high limit) compMode = [['leq', 'geq'], ['leq', 'geq'], ['leq', 'geq'], ['leq', 'geq'], ['leq', 'geq'], ['leq', 'geq'], ['leq', 'geq']] ################################################################################ # FUNCTION # ################################################################################ def constrainedPts(points, var_low, var_high, compMode): """Function that will constraint points out of bounds INPUTS: points: points in the parameter search space as a numpy.ndarray (var_low): limits of the search domain variables (var_high): limits of the search domain compMode: comparison mode ('leq','geq','less','greater','equal') as list OUTPUTS: booleanMat: boolean matrix with 1 for the individuals out of bounds This function will evaluate the constraints for all points in the set returning a boolean masked matrix with the values that are constrained. """ # preallocate a matrix to analyze out-of-bound points with 'points' shape # for the low limit boolMatLo = np.zeros((points.shape)) # for the high limit boolMatHi = np.zeros((points.shape)) # get the points that are valid under the constraints for i in range(Nvar): # upper limit comparison # lower or equal to the high limit if compMode[i][0] == 'leq': boolMatHi[:,i] = np.logical_or(points[:,i] < var_high[i], points[:,i] == var_high[i]) # lower to the high specified limit elif compMode[i][0] == 'less': boolMatHi[:,i] = np.logical_or(points[:,i] < var_high[i]) # strictly equal to the high specified limit (be careful!) elif compMode[i][0] == 'eq': boolMatHi[:,i] = np.logical_or(points[:,i] == var_low[i]) # error if specified differently else: raise RuntimeError('Bad comparison mode matrix') # lower limit comparison # greater or equal to the lower limit if compMode[i][1] == 'geq': boolMatLo[:,i] = np.logical_or(points[:,i] > var_low[i], points[:,i] == var_low[i]) # greater than the high limit elif compMode[i][1] == 'greater': boolMatLo[:,i] = np.logical_or(points[:,i] > var_low[i]) # strictly equal to the high specified limit (be careful!) elif compMode[i][1] == 'eq': boolMatLo[:,i] = np.logical_or(points[:,i] == var_low[i]) # error if specified differently else: raise RuntimeError('Bad comparison mode matrix') # combine both the low and high boolean matrices boolMat = np.logical_and(boolMatHi,boolMatLo) # once all the comparisons are made, the output should be an AND array where # all the conditions are met by each one of the individuals return np.logical_not(np.logical_and.reduce((boolMat.T))) ```
{ "source": "jlocke817/python_for_testers", "score": 3 }
#### File: jlocke817/python_for_testers/application2.py ```python from selenium.webdriver.firefox.webdriver import WebDriver class Application: def __init__(self): self.wd = WebDriver() self.wd.implicitly_wait(60) def open_main_page(self): wd = self.wd wd.get("http://localhost/addressbook/index.php") def logout(self): wd = self.wd wd.find_element_by_link_text("Logout").click() def new_contact(self, data): wd = self.wd wd.find_element_by_link_text("add new").click() def login(self, username, password): wd = self.wd self.open_main_page() wd.find_element_by_name("user").click() wd.find_element_by_name("user").clear() wd.find_element_by_name("user").send_keys("%s" % username) wd.find_element_by_name("pass").click() wd.find_element_by_name("pass").clear() wd.find_element_by_name("pass").send_keys("%s" % password) wd.find_element_by_xpath("//form[@id='LoginForm']/input[3]").click() def destroy(self): self.wd.quit() ```
{ "source": "JLockerman/timescaledb-docker-ha", "score": 2 }
#### File: timescaledb-docker-ha/scripts/augment_patroni_configuration.py ```python import yaml import os import sys TSDB_DEFAULTS = """ postgresql: parameters: logging_collector: 'off' log_destination: 'stderr' create_replica_methods: - pgbackrest - basebackup pgbackrest: command: '/usr/bin/pgbackrest --stanza=poddb --delta restore --log-level-stderr=info' keep_data: True no_params: True no_master: True bootstrap: dcs: postgresql: recovery_conf: recovery_target_timeline: latest standby_mode: 'on' restore_command: 'pgbackrest --stanza=poddb archive-get %f "%p"' """ def merge(source, destination): """Merge source into destination. Values from source override those of destination""" for key, value in source.items(): if isinstance(value, dict): # get node or create one node = destination.setdefault(key, {}) merge(value, node) else: destination[key] = value return destination if __name__ == '__main__': if len(sys.argv) == 1: print("Usage: {0} <patroni.yaml>".format(sys.argv[0])) sys.exit(2) with open(sys.argv[1], 'r+') as f: # Not all postgresql parameters that are set in the SPILO_CONFIGURATION environment variables # are overridden by the configure_spilo.py script. # # Therefore, what we do is: # # 1. We run configure_spilo.py to generate a sane configuration # 2. We override that configuration with our sane TSDB_DEFAULTS # 3. We override that configuration with our explicitly passed on settings tsdb_defaults = yaml.safe_load(TSDB_DEFAULTS) or {} spilo_generated_configuration = yaml.safe_load(f) or {} operator_generated_configuration = yaml.safe_load(os.environ.get('SPILO_CONFIGURATION', '{}')) or {} final_configuration = merge(operator_generated_configuration, merge(tsdb_defaults, spilo_generated_configuration)) # This namespace used in etcd/consul # Other provisions are also available, but this ensures no naming collisions # for deployments in separate Kubernetes Namespaces will occur # https://github.com/zalando/patroni/blob/master/docs/ENVIRONMENT.rst#globaluniversal if 'etcd' in final_configuration and os.getenv('POD_NAMESPACE'): final_configuration['namespace'] = os.getenv('POD_NAMESPACE') f.seek(0) yaml.dump(final_configuration, f, default_flow_style=False) f.truncate() ```
{ "source": "JLoDoesIt/pybliometrics", "score": 2 }
#### File: scopus/tests/test_AffiliationRetrieval.py ```python from nose.tools import assert_equal, assert_true from pybliometrics.scopus import AffiliationRetrieval light = AffiliationRetrieval('60000356', refresh=30, view="LIGHT") standard = AffiliationRetrieval('60000356', refresh=30, view="STANDARD") def test_address(): assert_equal(light.address, 'Private Bag X3') assert_equal(standard.address, 'Private Bag X3') def test_affiliation_name(): assert_equal(light.affiliation_name, 'University of Cape Town') assert_equal(standard.affiliation_name, 'University of Cape Town') def test_author_count(): expected = 12900 assert_true(light.author_count >= expected) assert_true(standard.author_count >= expected) def test_city(): assert_equal(light.city, 'Cape Town') assert_equal(standard.city, 'Cape Town') def test_country(): assert_equal(light.country, 'South Africa') assert_equal(standard.country, 'South Africa') def test_date_created(): assert_equal(light.date_created, None) assert_equal(standard.date_created, (2008, 2, 2)) def test_document_count(): expected = 73581 assert_true(light.document_count >= expected) assert_true(standard.document_count >= expected) def test_eid(): assert_equal(light.eid, '10-s2.0-60000356') assert_equal(standard.eid, '10-s2.0-60000356') def test_identifier(): assert_equal(light.identifier, 60000356) assert_equal(standard.identifier, 60000356) def test_name_variants(): expected = "<class 'pybliometrics.scopus.affiliation_retrieval.Variant'>" assert_equal(str(type(light.name_variants[0])), expected) assert_equal(str(type(standard.name_variants[0])), expected) def test_org_domain(): assert_equal(light.org_domain, None) assert_equal(standard.org_domain, 'uct.ac.za') def test_org_type(): assert_equal(light.org_type, None) assert_equal(standard.org_type, 'univ') def test_org_URL(): assert_equal(light.org_URL, None) assert_equal(standard.org_URL, 'http://www.uct.ac.za') def test_postal_code(): assert_equal(light.postal_code, None) assert_equal(standard.postal_code, '7701') def test_scopus_affiliation_link(): expected = 'https://www.scopus.com/affil/profile.uri?afid='\ '60000356&partnerID=HzOxMe3b&origin=inward' assert_equal(light.scopus_affiliation_link, expected) assert_equal(standard.scopus_affiliation_link, expected) def test_self_link(): expected = 'https://api.elsevier.com/content/affiliation/affiliation_id/60000356' assert_equal(light.self_link, expected) assert_equal(standard.self_link, expected) def test_search_link(): expected = 'https://api.elsevier.com/content/search/scopus?query=af-id%2860000356%29' assert_equal(light.search_link, expected) assert_equal(standard.search_link, expected) def test_state(): assert_equal(light.state, None) assert_equal(standard.state, 'Western Cape') def test_status(): assert_equal(light.status, None) assert_equal(standard.status, "update") def sort_name(): assert_equal(light.sort_name, None) assert_equal(standard.sort_name, 'Cape Town, University of') def url(): expected = 'https://api.elsevier.com/content/affiliation/affiliation_id/60000356' assert_equal(light.url, expected) assert_equal(standard.url, expected) ```
{ "source": "jlodonia/xendit-python", "score": 2 }
#### File: xendit-python/xendit/_xendit_param_injector.py ```python from inspect import signature from .models import Balance from .models import BatchDisbursement from .models import CardlessCredit from .models import CreditCard from .models import DirectDebit from .models import Disbursement from .models import PHDisbursement from .models import EWallet from .models import Invoice from .models import Payout from .models import QRCode from .models import RecurringPayment from .models import RetailOutlet from .models import VirtualAccount from .models import XenPlatform class _XenditParamInjector: """Builder class to inject parameters (api_key, base_url, http_client) to feature class""" def __init__(self, params): self.params = params def instantiate_balance(self) -> Balance: return self.instantiate(Balance) def instantiate_batch_disbursement(self) -> BatchDisbursement: return self.instantiate(BatchDisbursement) def instantiate_cardless_credit(self) -> CardlessCredit: return self.instantiate(CardlessCredit) def instantiate_credit_card(self) -> CreditCard: return self.instantiate(CreditCard) def instantiate_direct_debit(self) -> DirectDebit: return self.instantiate(DirectDebit) def instantiate_disbursement(self) -> Disbursement: return self.instantiate(Disbursement) def instantiate_disbursement(self) -> PHDisbursement: return self.instantiate(PHDisbursement) def instantiate_ewallet(self) -> EWallet: return self.instantiate(EWallet) def instantiate_invoice(self) -> Invoice: return self.instantiate(Invoice) def instantiate_payout(self) -> Payout: return self.instantiate(Payout) def instantiate_qrcode(self) -> QRCode: return self.instantiate(QRCode) def instantiate_recurring_payment(self) -> RecurringPayment: return self.instantiate(RecurringPayment) def instantiate_retail_outlet(self) -> RetailOutlet: return self.instantiate(RetailOutlet) def instantiate_virtual_account(self) -> VirtualAccount: return self.instantiate(VirtualAccount) def instantiate_xenplatform(self) -> XenPlatform: return self.instantiate(XenPlatform) def instantiate(self, injected_class): """Inject every static method in `injected_class` with provided parameters. Args: - injected_class (class): Class that will be injected Return: injected_class """ params = self.params injected_class = type( injected_class.__name__, injected_class.__bases__, dict(injected_class.__dict__), ) for keys, value in vars(injected_class).items(): if type(value) == staticmethod and not keys.startswith("_"): _XenditParamInjector._inject_function( injected_class, params, keys, value ) return injected_class @staticmethod def _inject_function(injected_class, params, func_name, func_value): """Inject `func_name` function with params""" api_key, base_url, http_client = params attr = func_value.__func__ def inject_func_with_api_key(*args, **kwargs): kwargs["api_key"] = api_key kwargs["base_url"] = base_url kwargs["http_client"] = http_client result = attr(*args, **kwargs) return result inject_func_with_api_key.__signature__ = signature(attr) setattr(injected_class, func_name, staticmethod(inject_func_with_api_key)) ```
{ "source": "J-L-O/DTC", "score": 2 }
#### File: J-L-O/DTC/imagenet_DTC.py ```python import os import warnings import numpy as np import torch import torch.nn.functional as F from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.metrics import adjusted_rand_score as ari_score from sklearn.metrics.cluster import normalized_mutual_info_score as nmi_score from torch.autograd import Variable from torch.nn.parameter import Parameter from torch.optim import SGD from tqdm import tqdm from data.imagenetloader import ImageNetLoader30, Entity30LoaderUnlabeled from models.resnet import resnet18 from modules.module import feat2prob, target_distribution from utils import ramps from utils.util import cluster_acc, Identity, AverageMeter, seed_torch, str2bool warnings.filterwarnings("ignore", category=UserWarning) if os.environ.get('REMOTE_PYCHARM_DEBUG_SESSION', False): import pydevd_pycharm pydevd_pycharm.settrace('localhost', port=12034, stdoutToServer=True, stderrToServer=True, suspend=False) def init_prob_kmeans(model, eval_loader, args): torch.manual_seed(1) model = model.to(device) # cluster parameter initiate model.eval() targets = np.zeros(len(eval_loader.dataset)) feats = np.zeros((len(eval_loader.dataset), 512)) for _, (x, label, idx) in enumerate(eval_loader): x = x.to(device) feat = model(x) feat = feat.view(x.size(0), -1) idx = idx.data.cpu().numpy() feats[idx, :] = feat.data.cpu().numpy() targets[idx] = label.data.cpu().numpy() # evaluate clustering performance pca = PCA(n_components=args.n_clusters) feats = pca.fit_transform(feats) kmeans = KMeans(n_clusters=args.n_clusters, n_init=20) y_pred = kmeans.fit_predict(feats) acc, nmi, ari = cluster_acc(targets, y_pred), nmi_score(targets, y_pred), ari_score(targets, y_pred) print('Init acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari)) probs = feat2prob(torch.from_numpy(feats), torch.from_numpy(kmeans.cluster_centers_)) return acc, nmi, ari, kmeans.cluster_centers_, probs def warmup_train(model, train_loader, eva_loader, args): optimizer = SGD(model.parameters(), lr=args.warmup_lr, momentum=args.momentum, weight_decay=args.weight_decay) for epoch in range(args.warmup_epochs): loss_record = AverageMeter() acc_record = AverageMeter() model.train() for batch_idx, (x, label, idx) in enumerate(tqdm(train_loader)): x = x.to(device) output = model(x) prob = feat2prob(output, model.center) loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device)) loss_record.update(loss.item(), x.size(0)) optimizer.zero_grad() loss.backward() optimizer.step() print('Warmup_train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg)) _, _, _, probs = test(model, eva_loader, args, epoch) args.p_targets = target_distribution(probs) def Baseline_train(model, train_loader, eva_loader, args): optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) for epoch in range(args.epochs): loss_record = AverageMeter() acc_record = AverageMeter() model.train() for batch_idx, (x, _, idx) in enumerate(tqdm(train_loader)): x = x.to(device) output = model(x) prob = feat2prob(output, model.center) loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device)) loss_record.update(loss.item(), x.size(0)) optimizer.zero_grad() loss.backward() optimizer.step() print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg)) _, _, _, probs = test(model, eva_loader, args, epoch) if epoch % args.update_interval == 0: print('updating target ...') args.p_targets = target_distribution(probs) torch.save(model.state_dict(), args.model_dir) print("model saved to {}.".format(args.model_dir)) def PI_train(model, train_loader, eva_loader, args): optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) w = 0 for epoch in range(args.epochs): loss_record = AverageMeter() acc_record = AverageMeter() model.train() w = args.rampup_coefficient * ramps.sigmoid_rampup(epoch, args.rampup_length) for batch_idx, ((x, x_bar), label, idx) in enumerate(tqdm(train_loader)): x, x_bar = x.to(device), x_bar.to(device) feat = model(x) feat_bar = model(x_bar) prob = feat2prob(feat, model.center) prob_bar = feat2prob(feat_bar, model.center) sharp_loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device)) consistency_loss = F.mse_loss(prob, prob_bar) loss = sharp_loss + w * consistency_loss loss_record.update(loss.item(), x.size(0)) optimizer.zero_grad() loss.backward() optimizer.step() print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg)) _, _, _, probs = test(model, eva_loader, args, epoch) if epoch % args.update_interval == 0: print('updating target ...') args.p_targets = target_distribution(probs) torch.save(model.state_dict(), args.model_dir) print("model saved to {}.".format(args.model_dir)) def TE_train(model, train_loader, eva_loader, args): optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) w = 0 alpha = 0.6 ntrain = len(train_loader.dataset) Z = torch.zeros(ntrain, args.n_clusters).float().to(device) # intermediate values z_ema = torch.zeros(ntrain, args.n_clusters).float().to(device) # temporal outputs z_epoch = torch.zeros(ntrain, args.n_clusters).float().to(device) # current outputs for epoch in range(args.epochs): loss_record = AverageMeter() acc_record = AverageMeter() model.train() w = args.rampup_coefficient * ramps.sigmoid_rampup(epoch, args.rampup_length) for batch_idx, (x, label, idx) in enumerate(tqdm(train_loader)): x = x.to(device) feat = model(x) prob = feat2prob(feat, model.center) z_epoch[idx, :] = prob prob_bar = Variable(z_ema[idx, :], requires_grad=False) sharp_loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device)) consistency_loss = F.mse_loss(prob, prob_bar) loss = sharp_loss + w * consistency_loss loss_record.update(loss.item(), x.size(0)) optimizer.zero_grad() loss.backward() optimizer.step() Z = alpha * Z + (1. - alpha) * z_epoch z_ema = Z * (1. / (1. - alpha ** (epoch + 1))) print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg)) _, _, _, probs = test(model, eva_loader, args, epoch) args.p_targets = target_distribution(probs) torch.save(model.state_dict(), args.model_dir) print("model saved to {}.".format(args.model_dir)) def TEP_train(model, train_loader, eva_loader, args): optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) w = 0 alpha = 0.6 ntrain = len(train_loader.dataset) Z = torch.zeros(ntrain, args.n_clusters).float().to(device) # intermediate values z_ema = torch.zeros(ntrain, args.n_clusters).float().to(device) # temporal outputs z_epoch = torch.zeros(ntrain, args.n_clusters).float().to(device) # current outputs for epoch in range(args.epochs): loss_record = AverageMeter() acc_record = AverageMeter() model.train() w = args.rampup_coefficient * ramps.sigmoid_rampup(epoch, args.rampup_length) for batch_idx, (x, label, idx) in enumerate(tqdm(train_loader)): x = x.to(device) feat = model(x) prob = feat2prob(feat, model.center) loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device)) loss_record.update(loss.item(), x.size(0)) optimizer.zero_grad() loss.backward() optimizer.step() print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg)) _, _, _, probs = test(model, eva_loader, args, epoch) z_epoch = probs.float().to(device) Z = alpha * Z + (1. - alpha) * z_epoch z_ema = Z * (1. / (1. - alpha ** (epoch + 1))) if epoch % args.update_interval == 0: print('updating target ...') args.p_targets = target_distribution(z_ema).float().to(device) torch.save(model.state_dict(), args.model_dir) print("model saved to {}.".format(args.model_dir)) @torch.no_grad() def test(model, test_loader, args, epoch=0): model.eval() acc_record = AverageMeter() preds = np.array([]) targets = np.array([]) feats = np.zeros((len(test_loader.dataset), args.n_clusters)) probs = np.zeros((len(test_loader.dataset), args.n_clusters)) for batch_idx, (x, label, idx) in enumerate(tqdm(test_loader)): x, label = x.to(device), label.to(device) output = model(x) prob = feat2prob(output, model.center) _, pred = prob.max(1) targets = np.append(targets, label.cpu().numpy()) preds = np.append(preds, pred.cpu().numpy()) idx = idx.data.cpu().numpy() feats[idx, :] = output.cpu().detach().numpy() probs[idx, :] = prob.cpu().detach().numpy() acc, nmi, ari = cluster_acc(targets.astype(int), preds.astype(int)), nmi_score(targets, preds), ari_score(targets, preds) print('Test acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari)) return acc, nmi, ari, torch.from_numpy(probs) def copy_param(model, pretrain_dir, loc=None): pre_dict = torch.load(pretrain_dir) new = list(pre_dict.items()) model_kvpair = model.state_dict() if loc is not None: count = 0 for key, value in list(model_kvpair.items())[:loc]: layer_name, weights = new[count] model_kvpair[key] = weights count += 1 else: count = 0 for key, value in model_kvpair.items(): layer_name, weights = new[count] model_kvpair[key] = weights count += 1 model.load_state_dict(model_kvpair, strict=False) return model if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( description='cluster', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--warmup_lr', type=float, default=0.1) parser.add_argument('--lr', type=float, default=0.05) parser.add_argument('--momentum', type=float, default=0.9) parser.add_argument('--weight_decay', type=float, default=1e-5) parser.add_argument('--warmup_epochs', default=10, type=int) parser.add_argument('--epochs', default=60, type=int) parser.add_argument('--rampup_length', default=5, type=int) parser.add_argument('--rampup_coefficient', type=float, default=100.0) parser.add_argument('--batch_size', default=128, type=int) parser.add_argument('--num_workers', default=2, type=int) parser.add_argument('--update_interval', default=5, type=int) parser.add_argument('--n_clusters', default=30, type=int) parser.add_argument('--seed', default=1, type=int) parser.add_argument('--save_txt', default=False, type=str2bool, help='save txt or not', metavar='BOOL') parser.add_argument('--pretrain_dir', type=str, default='./data/experiments/pretrained/resnet18_imagenet_classif_882_ICLR18.pth') parser.add_argument('--dataset_root', type=str, default='./data/datasets/ImageNet/') parser.add_argument('--exp_root', type=str, default='./data/experiments/') parser.add_argument('--model_name', type=str, default='resnet18') parser.add_argument('--save_txt_name', type=str, default='result.txt') parser.add_argument('--DTC', type=str, default='TEP') parser.add_argument("--imagenet_subset", default="all", type=str, help="imagenet subset ('all' or entity30)") parser.add_argument("--imagenet_split_unlabeled", default="A", type=str, help="unlabeled split [A, B, C, u1, u2, u3]") args = parser.parse_args() args.cuda = torch.cuda.is_available() device = torch.device("cuda" if args.cuda else "cpu") seed_torch(args.seed) runner_name = os.path.basename(__file__).split(".")[0] model_dir = args.exp_root + '{}/{}'.format(runner_name, args.DTC) if not os.path.exists(model_dir): os.makedirs(model_dir) args.model_dir = model_dir + '/' + args.model_name + '.pth' args.save_txt_path = args.exp_root + '{}/{}'.format(runner_name, args.save_txt_name) if args.imagenet_subset == "all": loader_train = ImageNetLoader30(batch_size=args.batch_size, num_workers=args.num_workers, imagenet_path=args.dataset_root, subset=args.imagenet_split_unlabeled, aug=None, shuffle=True) loader_train_twice = ImageNetLoader30(batch_size=args.batch_size, num_workers=args.num_workers, imagenet_path=args.dataset_root, subset=args.imagenet_split_unlabeled, aug='twice', shuffle=True) loader_eval = ImageNetLoader30(batch_size=args.batch_size, num_workers=args.num_workers, imagenet_path=args.dataset_root, subset=args.imagenet_split_unlabeled, aug=None) num_classes = 882 else: loader_train = Entity30LoaderUnlabeled(batch_size=args.batch_size, num_workers=args.num_workers, imagenet_path=args.dataset_root, imagenet_split=args.imagenet_split_unlabeled, aug=None, shuffle=True) loader_train_twice = Entity30LoaderUnlabeled(batch_size=args.batch_size, num_workers=args.num_workers, imagenet_path=args.dataset_root, shuffle=True, imagenet_split=args.imagenet_split_unlabeled, aug='twice') loader_eval = Entity30LoaderUnlabeled(batch_size=args.batch_size, num_workers=args.num_workers, imagenet_path=args.dataset_root, imagenet_split=args.imagenet_split_unlabeled, aug=None) num_classes = 90 model = resnet18(num_classes=num_classes) model = copy_param(model, args.pretrain_dir) model.last = Identity() acc_init, nmi_init, ari_init, init_centers, init_probs = init_prob_kmeans(model, loader_eval, args) args.p_targets = target_distribution(init_probs) model = resnet18(num_classes=args.n_clusters) model = copy_param(model, args.pretrain_dir, loc=-2) print('load pretrained state_dict from {}'.format(args.pretrain_dir)) model.center = Parameter(torch.Tensor(args.n_clusters, args.n_clusters)) model = model.to(device) model.center.data = torch.tensor(init_centers).float().to(device) warmup_train(model, loader_train, loader_eval, args) if args.DTC == 'Baseline': Baseline_train(model, loader_train, loader_eval, args) elif args.DTC == 'PI': PI_train(model, loader_train_twice, loader_eval, args) elif args.DTC == 'TE': TE_train(model, loader_train, loader_eval, args) elif args.DTC == 'TEP': TEP_train(model, loader_train, loader_eval, args) acc, nmi, ari, _ = test(model, loader_eval, args) subset_string = 'Subset {}, split {}'.format(args.imagenet_subset, args.imagenet_split_unlabeled) print(subset_string + ' init ACC {:.4f}, NMI {:.4f}, ARI {:.4f}'.format(acc_init, nmi_init, ari_init)) print(subset_string + ' final ACC {:.4f}, NMI {:.4f}, ARI {:.4f}'.format(acc, nmi, ari)) if args.save_txt: with open(args.save_txt_path, 'a') as f: f.write("{:.4f}, {:.4f}, {:.4f}\n".format(acc_init, nmi_init, ari_init)) f.write("{:.4f}, {:.4f}, {:.4f}\n".format(acc, nmi, ari)) ```
{ "source": "jloehel/grafana-backup-tool", "score": 2 }
#### File: grafana-backup-tool/grafana_backup/dashboardApi.py ```python import re import json import requests import sys from grafana_backup.commons import log_response, to_python2_and_3_compatible_string def health_check(grafana_url, http_get_headers, verify_ssl, client_cert, debug): url = '{0}/api/health'.format(grafana_url) print("\n[Pre-Check] grafana health check: {0}".format(url)) return send_grafana_get(url, http_get_headers, verify_ssl, client_cert, debug) def auth_check(grafana_url, http_get_headers, verify_ssl, client_cert, debug): url = '{0}/api/auth/keys'.format(grafana_url) print("\n[Pre-Check] grafana auth check: {0}".format(url)) return send_grafana_get(url, http_get_headers, verify_ssl, client_cert, debug) def uid_feature_check(grafana_url, http_get_headers, verify_ssl, client_cert, debug): # Get first dashboard on first page print("\n[Pre-Check] grafana uid feature check: calling 'search_dashboard'") (status, content) = search_dashboard(1, 1, grafana_url, http_get_headers, verify_ssl, client_cert, debug) if status == 200 and len(content): if 'uid' in content[0]: dashboard_uid_support = True else: dashboard_uid_support = False else: if len(content): dashboard_uid_support = "get dashboards failed, status: {0}, msg: {1}".format(status, content) else: # No dashboards exist, disable uid feature dashboard_uid_support = False # Get first datasource print("\n[Pre-Check] grafana uid feature check: calling 'search_datasource'") (status, content) = search_datasource(grafana_url, http_get_headers, verify_ssl, client_cert, debug) if status == 200 and len(content): if 'uid' in content[0]: datasource_uid_support = True else: datasource_uid_support = False else: if len(content): datasource_uid_support = "get datasources failed, status: {0}, msg: {1}".format(status, content) else: # No datasources exist, disable uid feature datasource_uid_support = False return dashboard_uid_support, datasource_uid_support def paging_feature_check(grafana_url, http_get_headers, verify_ssl, client_cert, debug): print("\n[Pre-Check] grafana paging_feature_check: calling 'search_dashboard'") def get_first_dashboard_by_page(page): (status, content) = search_dashboard(page, 1, grafana_url, http_get_headers, verify_ssl, client_cert, debug) if status == 200 and len(content): if sys.version_info[0] > 2: content[0] = {k: to_python2_and_3_compatible_string(v) for k,v in content[0].items()} dashboard_values = sorted(content[0].items(), key=lambda kv: str(kv[1])) else: content[0] = {k: to_python2_and_3_compatible_string(unicode(v)) for k,v in content[0].iteritems()} dashboard_values = sorted(content[0].iteritems(), key=lambda kv: str(kv[1])) return True, dashboard_values else: if len(content): return False, "get dashboards failed, status: {0}, msg: {1}".format(status, content) else: # No dashboards exist, disable paging feature return False, False # Get first dashboard on first page (status, content) = get_first_dashboard_by_page(1) if status is False and content is False: return False # Paging feature not supported elif status is True: dashboard_one_values = content else: return content # Fail Message # Get second dashboard on second page (status, content) = get_first_dashboard_by_page(2) if status is False and content is False: return False # Paging feature not supported elif status is True: dashboard_two_values = content else: return content # Fail Message # Compare both pages return dashboard_one_values != dashboard_two_values def search_dashboard(page, limit, grafana_url, http_get_headers, verify_ssl, client_cert, debug): url = '{0}/api/search/?type=dash-db&limit={1}&page={2}'.format(grafana_url, limit, page) print("search dashboard in grafana: {0}".format(url)) return send_grafana_get(url, http_get_headers, verify_ssl, client_cert, debug) def get_dashboard(board_uri, grafana_url, http_get_headers, verify_ssl, client_cert, debug): url = '{0}/api/dashboards/{1}'.format(grafana_url, board_uri) print("query dashboard uri: {0}".format(url)) (status_code, content) = send_grafana_get(url, http_get_headers, verify_ssl, client_cert, debug) return (status_code, content) def search_annotations(grafana_url, ts_from, ts_to, http_get_headers, verify_ssl, client_cert, debug): # there is two types of annotations # annotation: are user created, custom ones and can be managed via the api # alert: are created by Grafana itself, can NOT be managed by the api url = '{0}/api/annotations?type=annotation&limit=5000&from={1}&to={2}'.format(grafana_url, ts_from, ts_to) (status_code, content) = send_grafana_get(url, http_get_headers, verify_ssl, client_cert, debug) return (status_code, content) def create_annotation(annotation, grafana_url, http_post_headers, verify_ssl, client_cert, debug): url = '{0}/api/annotations'.format(grafana_url) return send_grafana_post(url, annotation, http_post_headers, verify_ssl, client_cert, debug) def delete_annotation(id_, grafana_url, http_get_headers, verify_ssl, client_cert, debug): r = requests.delete('{0}/api/annotations/{1}'.format(grafana_url, id_), headers=http_get_headers) return int(r.status_code) def search_alert_channels(grafana_url, http_get_headers, verify_ssl, client_cert, debug): url = '{0}/api/alert-notifications'.format(grafana_url) print("search alert channels in grafana: {0}".format(url)) return send_grafana_get(url, http_get_headers, verify_ssl, client_cert, debug) def create_alert_channel(payload, grafana_url, http_post_headers, verify_ssl, client_cert, debug): return send_grafana_post('{0}/api/alert-notifications'.format(grafana_url), payload, http_post_headers, verify_ssl, client_cert, debug) def delete_alert_channel_by_uid(uid, grafana_url, http_post_headers): r = requests.delete('{0}/api/alert-notifications/uid/{1}'.format(grafana_url, uid), headers=http_post_headers) return int(r.status_code) def delete_alert_channel_by_id(id_, grafana_url, http_post_headers): r = requests.delete('{0}/api/alert-notifications/{1}'.format(grafana_url, id_), headers=http_post_headers) return int(r.status_code) def search_alerts(grafana_url, http_get_headers, verify_ssl, client_cert, debug): url = '{0}/api/alerts'.format(grafana_url) (status_code, content) = send_grafana_get(url, http_get_headers, verify_ssl, client_cert, debug) return (status_code, content) def pause_alert(id_, grafana_url, http_post_headers, verify_ssl, client_cert, debug): url = '{0}/api/alerts/{1}/pause'.format(grafana_url, id_) payload = '{ "paused": true }' (status_code, content) = send_grafana_post(url, payload, http_post_headers, verify_ssl, client_cert, debug) return (status_code, content) def unpause_alert(id_, grafana_url, http_post_headers, verify_ssl, client_cert, debug): url = '{0}/api/alerts/{1}/pause'.format(grafana_url, id_) payload = '{ "paused": false }' (status_code, content) = send_grafana_post(url, payload, http_post_headers, verify_ssl, client_cert, debug) return (status_code, content) def delete_folder(uid, grafana_url, http_post_headers): r = requests.delete('{0}/api/folders/{1}'.format(grafana_url, uid), headers=http_post_headers) return int(r.status_code) def delete_snapshot(key, grafana_url, http_post_headers): r = requests.delete('{0}/api/snapshots/{1}'.format(grafana_url, key), headers=http_post_headers) return int(r.status_code) def delete_dashboard_by_uid(uid, grafana_url, http_post_headers): r = requests.delete('{0}/api/dashboards/uid/{1}'.format(grafana_url, uid), headers=http_post_headers) return int(r.status_code) def delete_dashboard_by_slug(slug, grafana_url, http_post_headers): r = requests.delete('{0}/api/dashboards/db/{1}'.format(grafana_url, slug), headers=http_post_headers) return int(r.status_code) def create_dashboard(payload, grafana_url, http_post_headers, verify_ssl, client_cert, debug): return send_grafana_post('{0}/api/dashboards/db'.format(grafana_url), payload, http_post_headers, verify_ssl, client_cert, debug) def search_datasource(grafana_url, http_get_headers, verify_ssl, client_cert, debug): print("search datasources in grafana:") return send_grafana_get('{0}/api/datasources'.format(grafana_url), http_get_headers, verify_ssl, client_cert, debug) def search_snapshot(grafana_url, http_get_headers, verify_ssl, client_cert, debug): print("search snapshots in grafana:") return send_grafana_get('{0}/api/dashboard/snapshots'.format(grafana_url), http_get_headers, verify_ssl, client_cert, debug) def get_snapshot(key, grafana_url, http_get_headers, verify_ssl, client_cert, debug): url = '{0}/api/snapshots/{1}'.format(grafana_url, key) (status_code, content) = send_grafana_get(url, http_get_headers, verify_ssl, client_cert, debug) return (status_code, content) def create_snapshot(payload, grafana_url, http_post_headers, verify_ssl, client_cert, debug): return send_grafana_post('{0}/api/snapshots'.format(grafana_url), payload, http_post_headers, verify_ssl, client_cert, debug) def create_datasource(payload, grafana_url, http_post_headers, verify_ssl, client_cert, debug): return send_grafana_post('{0}/api/datasources'.format(grafana_url), payload, http_post_headers, verify_ssl, client_cert, debug) def delete_datasource_by_uid(uid, grafana_url, http_post_headers, verify_ssl, client_cert, debug): url = '{0}/api/datasources/uid/{1}'.format(grafana_url, uid) r = requests.delete(url, headers=http_post_headers) return int(r.status_code) def delete_datasource_by_id(id_, grafana_url, http_post_headers, verify_ssl, client_cert, debug): url = '{0}/api/datasources/{1}'.format(grafana_url, id_) r = requests.delete(url, headers=http_post_headers) return int(r.status_code) def search_folders(grafana_url, http_get_headers, verify_ssl, client_cert, debug): print("search folder in grafana:") return send_grafana_get('{0}/api/search/?type=dash-folder'.format(grafana_url), http_get_headers, verify_ssl, client_cert, debug) def get_folder(uid, grafana_url, http_get_headers, verify_ssl, client_cert, debug): (status_code, content) = send_grafana_get('{0}/api/folders/{1}'.format(grafana_url, uid), http_get_headers, verify_ssl, client_cert, debug) print("query folder:{0}, status:{1}".format(uid, status_code)) return (status_code, content) def get_folder_permissions(uid, grafana_url, http_get_headers, verify_ssl, client_cert, debug): (status_code, content) = send_grafana_get('{0}/api/folders/{1}/permissions'.format(grafana_url, uid), http_get_headers, verify_ssl, client_cert, debug) print("query folder permissions:{0}, status:{1}".format(uid, status_code)) return (status_code, content) def update_folder_permissions(payload, grafana_url, http_post_headers, verify_ssl, client_cert, debug): items = json.dumps({'items': payload}) return send_grafana_post('{0}/api/folders/{1}/permissions'.format(grafana_url, payload[0]['uid']), items, http_post_headers, verify_ssl, client_cert, debug) def get_folder_id(dashboard, grafana_url, http_post_headers, verify_ssl, client_cert, debug): folder_uid = "" try: folder_uid = dashboard['meta']['folderUid'] except (KeyError): matches = re.search('dashboards\/f\/(.*)\/.*', dashboard['meta']['folderUrl']) if matches is not None: folder_uid = matches.group(1) else: folder_uid = '0' if (folder_uid != ""): print("debug: quering with uid {}".format(folder_uid)) response = get_folder(folder_uid, grafana_url, http_post_headers, verify_ssl, client_cert, debug) if isinstance(response[1], dict): folder_data = response[1] else: folder_data = json.loads(response[1]) try: return folder_data['id'] except (KeyError): return 0 else: return 0 def create_folder(payload, grafana_url, http_post_headers, verify_ssl, client_cert, debug): return send_grafana_post('{0}/api/folders'.format(grafana_url), payload, http_post_headers, verify_ssl, client_cert, debug) def get_dashboard_versions(dashboard_id, grafana_url, http_get_headers, verify_ssl, client_cert, debug): (status_code, content) = send_grafana_get('{0}/api/dashboards/id/{1}/versions'.format(grafana_url, dashboard_id), http_get_headers, verify_ssl, client_cert, debug) print("query dashboard versions: {0}, status: {1}".format(dashboard_id, status_code)) return (status_code, content) def get_version(dashboard_id, version_number, grafana_url, http_get_headers, verify_ssl, client_cert, debug): (status_code, content) = send_grafana_get('{0}/api/dashboards/id/{1}/versions/{2}'.format(grafana_url, dashboard_id, version_number), http_get_headers, verify_ssl, client_cert, debug) print("query dashboard {0} version {1}, status: {2}".format(dashboard_id, version_number, status_code)) return (status_code, content) def search_orgs(grafana_url, http_get_headers, verify_ssl, client_cert, debug): return send_grafana_get('{0}/api/orgs'.format(grafana_url), http_get_headers, verify_ssl, client_cert, debug) def get_org(id, grafana_url, http_get_headers, verify_ssl=False, client_cert=None, debug=True): return send_grafana_get('{0}/api/orgs/{1}'.format(grafana_url, id), http_get_headers, verify_ssl, client_cert, debug) def create_org(payload, grafana_url, http_post_headers, verify_ssl, client_cert, debug): return send_grafana_post('{0}/api/orgs'.format(grafana_url), payload, http_post_headers, verify_ssl, client_cert, debug) def update_org(id, payload, grafana_url, http_post_headers, verify_ssl, client_cert, debug): return send_grafana_put('{0}/api/orgs/{1}'.format(grafana_url, id), payload, http_post_headers, verify_ssl, client_cert, debug) def search_users(page, limit, grafana_url, http_get_headers, verify_ssl, client_cert, debug): return send_grafana_get('{0}/api/users?perpage={1}&page={2}'.format(grafana_url, limit, page), http_get_headers, verify_ssl, client_cert, debug) def get_users(grafana_url, http_get_headers, verify_ssl, client_cert, debug): return send_grafana_get('{0}/api/org/users'.format(grafana_url), http_get_headers, verify_ssl, client_cert, debug) def set_user_role(user_id, role, grafana_url, http_post_headers, verify_ssl, client_cert, debug): json_payload = json.dumps({'role': role}) url = '{0}/api/org/users/{1}'.format(grafana_url, user_id) r = requests.patch(url, headers=http_post_headers, data=json_payload, verify=verify_ssl, cert=client_cert) return (r.status_code, r.json()) def get_user(id, grafana_url, http_get_headers, verify_ssl=False, client_cert=None, debug=True): return send_grafana_get('{0}/api/users/{1}'.format(grafana_url, id), http_get_headers, verify_ssl, client_cert, debug) def get_user_org(id, grafana_url, http_get_headers, verify_ssl=False, client_cert=None, debug=True): return send_grafana_get('{0}/api/users/{1}/orgs'.format(grafana_url, id), http_get_headers, verify_ssl, client_cert, debug) def create_user(payload, grafana_url, http_post_headers, verify_ssl, client_cert, debug): return send_grafana_post('{0}/api/admin/users'.format(grafana_url), payload, http_post_headers, verify_ssl, client_cert, debug) def add_user_to_org(org_id, payload, grafana_url, http_post_headers, verify_ssl, client_cert, debug): return send_grafana_post('{0}/api/orgs/{1}/users'.format(grafana_url, org_id), payload, http_post_headers, verify_ssl, client_cert, debug) def send_grafana_get(url, http_get_headers, verify_ssl, client_cert, debug): r = requests.get(url, headers=http_get_headers, verify=verify_ssl, cert=client_cert) if debug: log_response(r) return (r.status_code, r.json()) def send_grafana_post(url, json_payload, http_post_headers, verify_ssl=False, client_cert=None, debug=True): r = requests.post(url, headers=http_post_headers, data=json_payload, verify=verify_ssl, cert=client_cert) if debug: log_response(r) try: return (r.status_code, r.json()) except ValueError: return (r.status_code, r.text) def send_grafana_put(url, json_payload, http_post_headers, verify_ssl=False, client_cert=None, debug=True): r = requests.put(url, headers=http_post_headers, data=json_payload, verify=verify_ssl, cert=client_cert) if debug: log_response(r) return (r.status_code, r.json()) ```
{ "source": "jloehel/munin_client", "score": 2 }
#### File: munin_client/tests/test_munin_client.py ```python import pytest class TestMuninClient(object): def config_test(self): # Mock server # Create a cli MuninClient(mock_server) # cli.config("test_plugin") # assert with expected result pass def fetch_test(self): pass def list_test(self): pass def nodes_test(self): pass def version_test(self): pass ```
{ "source": "jloehel/python_smaclient", "score": 3 }
#### File: python_smaclient/python_smaclient/smapi_call.py ```python import uuid class SMAPI_Call(object): def __init__(self, name, request, response1, response2): self._uuid = uuid.uuid1() self._name = name self._request = request self._response1 = response1 self._response2 = response2 ``` #### File: python_smaclient/python_smaclient/smapi_parser.py ```python from construct import Struct, UBInt32, String, Field import yaml class SMAPI_Parser(object): def __init__(self, config_path): self._configuration = self.load_configuration(config_path) self._smapi_request_struct = Struct("SMAPI_REQUEST", UBInt32("input_length"), UBInt32("function_name_length"), String("function_name", lambda ctx: ctx.function_name_length), UBInt32("authenticated_userid_length"), String("authenticated_userid", lambda ctx: ctx.authenticated_userid_length), UBInt32("password_length"), String("password", lambda ctx: ctx.password_length), UBInt32("target_identifier_length"), String("target_identifier", lambda ctx: ctx.target_identifier_length), Field("additional_parameters", lambda ctx: (ctx.input_length - (ctx.function_name_length + ctx.authenticated_userid_length + ctx.password_length + ctx.target_identifier_length + 4 * 4))) ) self._smapi_response_1_struct = Struct("SMAPI_RESPONSE_1", UBInt32("request_id")) self._smapi_response_2_struct = Struct("SMAPI_RESPONSE_2", UBInt32("output_length"), UBInt32("request_id"), UBInt32("return_code"), UBInt32("reason_code"), Field("additional_parameters", lambda ctx: ctx.output_length - 16) ) def load_configuration(self, path): with open(path, "r") as stream: return yaml.load(stream) def get_configuration(self): return self._configuration def parse(self, response): pass def build_request(self, container): return self._smapi_request_struct.build(container) ``` #### File: python_smaclient/python_smaclient/smapi.py ```python from smapi_request import SMAPI_Request as Request from smapi_parser import SMAPI_Parser def send(function_name, target, smhost, smport, smuser, smpass, additional_parameters): request = Request(str.encode(function_name), target_identifier = str.encode(target), authenticated_userid= str.encode(smuser), password=str.encode(<PASSWORD>), additional_parameters=str.encode(additional_parameters)) if smhost == "IUCV": parser = SMAPI_Parser("config.yaml") raw_command = parser.build_request(request.get_container()) print(raw_command) return "response" else: pass ```
{ "source": "jlogans/vampy2017cs", "score": 4 }
#### File: jlogans/vampy2017cs/exponent.py ```python def old_exponent(n, k): """ n is base, k is exponent """ answer = 1 for i in range(k): answer *= n print(answer) def newExponent(n, k): """ n is base, k is exponent """ print("newExponent({0}, {1})".format(n, k)) if k == 1: return n elif k == 0: return 1 left = int(k/2) right = k - left return newExponent(n, left) * newExponent(n, right) ``` #### File: jlogans/vampy2017cs/intsort.py ```python import threading import random import time import MMMMM ints = [] def intsort(beginrangearray, stoprangearray): for x in range(beginrangearray, stoprangearray): ints.append(random.randint(1, 10000)) t1 = threading.Thread(target = intsort(0, 25)) t2 = threading.Thread(target = intsort(26, 50)) t3 = threading.Thread(target = intsort(51, 75)) t4 = threading.Thread(target = intsort(76, 100)) t1.start() t2.start() t3.start() t4.start() t1.join() t2.join() t3.join() t4.join() print("Maximum: {0}, Minimum: {1}, Mode: {2}, Mean: {3}".format(max(ints), min(ints), MMMMM.mode(ints), MMMMM.mean(ints))) ``` #### File: jlogans/vampy2017cs/pro.py ```python import turtle as t f=t.forward l=t.left t.speed(2) Size = 200 t.color('green', 'green') def square(Size): f(Size) l(90) f(Size) l(90) f(Size) l(90) f(Size) l(90) def triangle(Size): f(Size) l(120) f(Size) l(120) f(Size) l(120) def dog(Size): square(Size) f(Size/10) l(240) triangle(Size/4) l(120) f(Size*0.8) l(240) triangle(Size/4) l(120) f(Size/10) l(90) f(Size*0.8) l(270) square(Size*0.4) f(Size*0.1) t.penup() l(90) f(Size*0.1) t.pendown() t.right(90) f(Size*0.2) t.penup() l(90) f(Size*0.2) l(90) f(Size*0.05) t.pendown() f(Size*0.025) t.penup() f(Size*0.05) t.pendown() f(Size*0.025) t.color('white','white') dog(Size) t.exitonclick() ``` #### File: jlogans/vampy2017cs/runningserverchat.py ```python import threading import socket import time phone = socket.socket() port = input("What port do you want to connect to?") addr = (socket.gethostname(), int(port)) phone.bind(addr) phone.listen(16) def server(): while True: try: conn, callid = phone.accept() message = bytes.decode(conn.recv(1024)) conn.send("r".encode("UTF-8")) conn.close() print("Call from {0}: {1}".format(callid, message)) except KeyboardInterrupt: conn.close() phone.close() break except: conn.close() phone.close() break def client(): cpu = input("What computer do you want to connect to? 2-17\n") alias = input("What do you want your alias to be?") while True: try: msg = (alias + ": " + input("What is the message that you want to send?\n")) data = msg.encode("UTF-8") phone = socket.socket() address = ("vampy-cs-" + str(cpu), int(port)) phone.connect(address) phone.sendall(data) phone.close() time.sleep(0.5) except ConnectionRefusedError: print("yo u cant connect") except KeyboardInterrupt: phone.close() break t1 = threading.Thread(target = server) t2 = threading.Thread(target = client) t1.start() t2.start() t1.join() t2.join() print("Shutting down.") ``` #### File: jlogans/vampy2017cs/stars.py ```python import turtle as t r = t.right f = t.forward def star(length, k, sides): t.speed(-1) if sides != 1: angle = (k*360)/sides for i in range(sides): f(length) r(angle) def spiro(sides, length): t.speed(-1) angle = 360/sides for i in range(sides): for j in range(36): def staridk(length, k, sides): t.speed(-1) if sides != 1: angle = (k*360)/sides for i in range(sides): f(length-i) r(angle/(((i+1)%5)+length)) print("All the other kids with the pumped up kicks you better run, better run, outrun my gun, all the other kids with the pumped up kicks you better run better run, faster than my bullets") ``` #### File: jlogans/vampy2017cs/TreeBanzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz.py ```python def tree(val): return [None, val, None] def data(node, val = None): if node is None: return None elif val is None: return node[1] else: node [1] = val def yes(node, child=None): if node is None: return None elif child is None: return node[0] else: node[0] = [None, child, None] def yes(node, child=None): if node is None: return None elif child is None: return node[0] else: node[0] = [None, child, None] root = data(root, "Am I an object or a place? (YES/NO): ") yes(root, tree("Am I bigger than a PC? (YES/NO): ")) no(root, tree("Am I human? (YES/NO): ")) yes(yes(root), tree("Am I a building? (YES/NO): ")) no(yes(root), tree("Am I consumed as you use me? (YES/NO): ")) yes(no(root), tree("Am I fictional? (YES/NO): ")) no(no(root), tree("Can you fit me in a cofefe mug? (YES/NO): ")) yes(yes(yes(root)), tree("Am I a salon? (YES/NO): ")) no(yes(yes(root)), tree("Am I New York? (YES/NO): ")) yes(no(yes(root)), tree("Am I pizza? (YES/NO): ")) no(no(yes(root)), tree("Am I a hat? (YES/NO): ")) yes(yes(no(root)), tree("Am I Santa Claus? (YES/NO): ")) yes(yes(no(root)), tree("Am I Santa Claus? (YES/NO): ")) yes(yes(no(root)), tree("Am I Santa Claus? (YES/NO): ")) yes(yes(no(root)), tree("Am I Santa Claus? (YES/NO): ")) print(data(root)) ```
{ "source": "j-log/Expense-Tracker", "score": 2 }
#### File: Expense-Tracker/Project/mark_2_gui.py ```python import pandas as pd import os.path from os import path from datetime import date from PyQt5 import QtCore, QtGui, QtWidgets from dia import Ui_Dialog import matplotlib.pyplot as plt import numpy as np class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(659, 430) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap("32318-200.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) MainWindow.setWindowIcon(icon) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.tabWidget = QtWidgets.QTabWidget(self.centralwidget) self.tabWidget.setGeometry(QtCore.QRect(0, 0, 531, 381)) self.tabWidget.setObjectName("tabWidget") self.tab = QtWidgets.QWidget() self.tab.setObjectName("tab") self.lineEdit = QtWidgets.QLineEdit(self.tab) self.lineEdit.setGeometry(QtCore.QRect(190, 60, 113, 22)) self.lineEdit.setObjectName("lineEdit") self.comboBox = QtWidgets.QComboBox(self.tab) self.comboBox.setGeometry(QtCore.QRect(192, 100, 111, 22)) self.comboBox.setObjectName("comboBox") self.comboBox.addItem("") self.comboBox.addItem("") self.comboBox.addItem("") self.comboBox.addItem("") self.comboBox.addItem("") self.comboBox.addItem("") self.comboBox.addItem("") self.comboBox.addItem("") self.comboBox.addItem("") self.comboBox.addItem("") self.label = QtWidgets.QLabel(self.tab) self.label.setGeometry(QtCore.QRect(60, 60, 131, 16)) self.label.setObjectName("label") self.label_2 = QtWidgets.QLabel(self.tab) self.label_2.setGeometry(QtCore.QRect(60, 100, 111, 16)) self.label_2.setObjectName("label_2") self.pushButton_3 = QtWidgets.QPushButton(self.tab) self.pushButton_3.setGeometry(QtCore.QRect(200, 160, 93, 28)) self.pushButton_3.setObjectName("pushButton_3") self.pushButton_3.clicked.connect(self.enter_record) self.tabWidget.addTab(self.tab, "") self.tab_2 = QtWidgets.QWidget() self.tab_2.setObjectName("tab_2") self.pushButton_4 = QtWidgets.QPushButton(self.tab_2) self.pushButton_4.setGeometry(QtCore.QRect(210, 320, 93, 28)) self.pushButton_4.setObjectName("pushButton_4") self.pushButton_4.clicked.connect(self.view) ## self.radioButton = QtWidgets.QRadioButton(self.tab_2) ## self.radioButton.setGeometry(QtCore.QRect(330, 30, 95, 20)) ## self.radioButton.setObjectName("radioButton") ## ## self.radioButton_2 = QtWidgets.QRadioButton(self.tab_2) ## self.radioButton_2.setGeometry(QtCore.QRect(330, 70, 95, 20)) ## self.radioButton_2.setObjectName("radioButton_2") ## ## self.radioButton_3 = QtWidgets.QRadioButton(self.tab_2) ## self.radioButton_3.setGeometry(QtCore.QRect(330, 110, 95, 20)) ## self.radioButton_3.setObjectName("radioButton_3") self.tableWidget = QtWidgets.QTableWidget(self.tab_2) self.tableWidget.setGeometry(QtCore.QRect(10, 10, 501, 301)) self.tableWidget.setObjectName("tableWidget") self.tableWidget.setColumnCount(0) self.tableWidget.setRowCount(0) self.tabWidget.addTab(self.tab_2, "") self.tab_3 = QtWidgets.QWidget() self.tab_3.setObjectName("tab_3") self.pushButton_5 = QtWidgets.QPushButton(self.tab_3) self.pushButton_5.setGeometry(QtCore.QRect(70, 230, 93, 28)) self.pushButton_5.setObjectName("pushButton_5") self.pushButton_5.clicked.connect(self.summary) self.label_3 = QtWidgets.QLabel(self.tab_3) self.label_3.setGeometry(QtCore.QRect(60, 60, 101, 16)) self.label_3.setObjectName("label_3") self.label_4 = QtWidgets.QLabel(self.tab_3) self.label_4.setGeometry(QtCore.QRect(60, 100, 101, 16)) self.label_4.setObjectName("label_4") self.label_5 = QtWidgets.QLabel(self.tab_3) self.label_5.setGeometry(QtCore.QRect(60, 140, 111, 16)) self.label_5.setObjectName("label_5") self.lcdNumber = QtWidgets.QLCDNumber(self.tab_3) self.lcdNumber.setGeometry(QtCore.QRect(210, 60, 64, 23)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(63, 63, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 170)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(63, 63, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 170)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(63, 63, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 170)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipText, brush) self.lcdNumber.setPalette(palette) self.lcdNumber.setProperty("value", 0.0) self.lcdNumber.setObjectName("lcdNumber") self.lcdNumber_2 = QtWidgets.QLCDNumber(self.tab_3) self.lcdNumber_2.setGeometry(QtCore.QRect(210, 100, 64, 23)) self.lcdNumber_2.setPalette(palette) self.lcdNumber_2.setProperty("value", 0.0) self.lcdNumber_2.setObjectName("lcdNumber_2") self.lcdNumber_3 = QtWidgets.QLCDNumber(self.tab_3) self.lcdNumber_3.setGeometry(QtCore.QRect(210, 140, 64, 23)) self.lcdNumber_3.setPalette(palette) self.lcdNumber_3.setProperty("value", 0.0) self.lcdNumber_3.setObjectName("lcdNumber_3") self.lcdNumber_4 = QtWidgets.QLCDNumber(self.tab_3) self.lcdNumber_4.setGeometry(QtCore.QRect(210, 180, 64, 23)) self.lcdNumber_4.setPalette(palette) self.lcdNumber_4.setProperty("value", 0.0) self.lcdNumber_4.setObjectName("lcdNumber_4") self.label_6 = QtWidgets.QLabel(self.tab_3) self.label_6.setGeometry(QtCore.QRect(60, 180, 111, 16)) self.label_6.setObjectName("label_6") self.tabWidget.addTab(self.tab_3, "") self.tab_4 = QtWidgets.QWidget() self.tab_4.setObjectName("tab_4") self.pushButton_6 = QtWidgets.QPushButton(self.tab_4) self.pushButton_6.setGeometry(QtCore.QRect(140, 70, 191, 28)) self.pushButton_6.setObjectName("pushButton_6") self.pushButton_6.clicked.connect(self.visualize) self.pushButton_7 = QtWidgets.QPushButton(self.tab_4) self.pushButton_7.setGeometry(QtCore.QRect(140, 120, 191, 28)) self.pushButton_7.setObjectName("pushButton_7") self.pushButton_7.clicked.connect(self.visualize_2) self.tabWidget.addTab(self.tab_4, "") self.pushButton = QtWidgets.QPushButton(self.centralwidget) self.pushButton.setGeometry(QtCore.QRect(550, 20, 93, 28)) self.pushButton.setObjectName("pushButton") self.pushButton.clicked.connect(self.reset) self.pushButton_2 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_2.setGeometry(QtCore.QRect(550, 60, 93, 28)) self.pushButton_2.setObjectName("pushButton_2") self.pushButton_2.clicked.connect(quit) MainWindow.setCentralWidget(self.centralwidget) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) self.tabWidget.setCurrentIndex(0) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "Expense Tracker MARK II")) self.comboBox.setItemText(0, _translate("MainWindow", "Food")) self.comboBox.setItemText(1, _translate("MainWindow", "Clothing")) self.comboBox.setItemText(2, _translate("MainWindow", "Footwears")) self.comboBox.setItemText(3, _translate("MainWindow", "Personal")) self.comboBox.setItemText(4, _translate("MainWindow", "Travel")) self.comboBox.setItemText(5, _translate("MainWindow", "Stationary")) self.comboBox.setItemText(6, _translate("MainWindow", "Rations")) self.comboBox.setItemText(7, _translate("MainWindow", "Gifts")) self.comboBox.setItemText(8, _translate("MainWindow", "Party")) self.comboBox.setItemText(9, _translate("MainWindow", "Others")) self.label.setText(_translate("MainWindow", "ENTER AMOUNT")) self.label_2.setText(_translate("MainWindow", "SELECT REASON")) self.pushButton_3.setText(_translate("MainWindow", "Add Record")) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab), _translate("MainWindow", "Add")) self.pushButton_4.setText(_translate("MainWindow", "View")) ## self.radioButton.setText(_translate("MainWindow", "First 5")) ## self.radioButton_2.setText(_translate("MainWindow", "Last 5")) ## self.radioButton_3.setText(_translate("MainWindow", "All")) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_2), _translate("MainWindow", "View")) self.pushButton_5.setText(_translate("MainWindow", "Summarize")) self.label_3.setText(_translate("MainWindow", "Highset Spending")) self.label_4.setText(_translate("MainWindow", "Lowest Spending")) self.label_5.setText(_translate("MainWindow", "Average Spending")) self.label_6.setText(_translate("MainWindow", "Total Spending")) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_3), _translate("MainWindow", "Summary")) self.pushButton_6.setText(_translate("MainWindow", "Reason Wise BreakDown")) self.pushButton_7.setText(_translate("MainWindow", "Day wise BreakDown")) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_4), _translate("MainWindow", "Visualize")) self.pushButton.setText(_translate("MainWindow", "RESET")) self.pushButton_2.setText(_translate("MainWindow", "Close")) def summary(self, MainWindow): if path.exists('Expense_Record.csv'): d=pd.read_csv('Expense_Record.csv') self.lcdNumber.setProperty("value",float(d['Value'].max())) self.lcdNumber_2.setProperty("value",float(d['Value'].min())) self.lcdNumber_3.setProperty("value",float(d['Value'].mean())) self.lcdNumber_4.setProperty("value",float(d['Value'].sum())) else: self.lcdNumber.setProperty("value",float(-1)) self.lcdNumber_2.setProperty("value",float(-1)) self.lcdNumber_3.setProperty("value",float(-1)) self.lcdNumber_4.setProperty("value",float(-1)) def reset(self,MainWindow): Dialog = QtWidgets.QDialog() ui = Ui_Dialog() ui.setupUi(Dialog) Dialog.show() a=Dialog.exec() if path.exists('Expense_Record.csv'): if a==1: os.remove('Expense_Record.csv') self.summary(MainWindow) def enter_record(self,MainWindow): s=str(date.today()) k=int(self.lineEdit.text()) text = self.comboBox.currentText() print(s,k,text) data=[s,k,text] df=pd.DataFrame({ "date" : data[0],"value":data[1],"reason":data[2]},index=[0]) if path.exists('Expense_Record.csv'): df.to_csv('Expense_Record.csv',mode='a',header=False,index=False) else: df.to_csv('Expense_Record.csv',mode='a',header=['Date','Value','Reason'],index=False) def visualize(self,MainWindow): df = pd.read_csv('Expense_Record.csv') plt.bar(df['Reason'],df['Value'],width=0.4) plt.show() def visualize_2(self,MainWindow): df = pd.read_csv('Expense_Record.csv') plt.bar(df['Date'],df['Value'],width=0.4) plt.show() def view(self,MainWindow): ## if self.radioButton.isChecked()==True: ## print('view 5') ## elif self.radioButton_2.isChecked()==True: ## print('view last 5') ## elif self.radioButton_3.isChecked()==True: ## print('view all') df = pd.read_csv('Expense_Record.csv') self.tableWidget.setColumnCount(len(df.columns)) self.tableWidget.setRowCount(len(df.index)) self.tableWidget.setHorizontalHeaderItem(0,QtWidgets.QTableWidgetItem("Date")) self.tableWidget.setHorizontalHeaderItem(1,QtWidgets.QTableWidgetItem("Value")) self.tableWidget.setHorizontalHeaderItem(2,QtWidgets.QTableWidgetItem("Reason")) for i in range(len(df.index)): for j in range(len(df.columns)): self.tableWidget.setItem(i,j,QtWidgets.QTableWidgetItem(str(df.iloc[i, j]))) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_()) ```
{ "source": "jlohding/blog", "score": 3 }
#### File: jlohding/blog/app.py ```python import datetime as dt from flask import Flask, render_template, redirect from flask_flatpages import FlatPages app = Flask(__name__) app.config['FLATPAGES_EXTENSION'] = '.html' #'.md' pages = FlatPages(app) @app.route("/") @app.route("/home") def home_page(): posts = [x for x in pages if "date" in x.meta] sorted_pages=sorted(posts, reverse=True, key=lambda page: dt.datetime.strptime(page.meta["date"], "%d %b %Y")) return render_template("home.html", pages=sorted_pages) @app.route("/projects") def projects_page(): return render_template("projects.html") @app.route("/blog/") @app.route("/blog/<filter_tag>") def blog_page(filter_tag=None): posts = [x for x in pages if "date" in x.meta] sorted_pages=sorted(posts, reverse=True, key=lambda page: dt.datetime.strptime(page.meta["date"], "%d %b %Y")) if filter_tag: filter_pages = [page for page in sorted_pages if filter_tag in page.meta["tags"] or filter_tag in page.meta["date"]] else: filter_pages = sorted_pages return render_template("blog.html", pages=sorted_pages, filter_pages=filter_pages) @app.route("/about") def about_page(): return render_template("about.html") @app.route("/blog/<path:path>.html") def blog_post(path): page = pages.get_or_404(path) return render_template("post.html", page=page) @app.route("/external_links/<site>") def ext_links(site): sites = { "github": "https://www.github.com/jlohding", "arbitrade": "https://www.github.com/jlohding/arbitrade", "blog_github": "https://www.github.com/jlohding/blog", "linkedin": "https://www.linkedin.com/in/jerryloh2000", } return redirect(sites[site], code=302) if __name__ == "__main__": app.run(debug=False, use_reloader=True) ```
{ "source": "jlohmoeller/ngsi-timeseries-api", "score": 2 }
#### File: reporter/tests/test_1TNE1A.py ```python from conftest import QL_URL, crate_translator as translator from datetime import datetime from reporter.tests.utils import insert_test_data import pytest import requests entity_type = 'Room' attr_name = 'temperature' n_days = 6 def query_url(values=False): url = "{qlUrl}/types/{entityType}/attrs/{attrName}" if values: url += '/value' return url.format( qlUrl=QL_URL, entityType=entity_type, attrName=attr_name, ) @pytest.fixture() def reporter_dataset(translator): insert_test_data(translator, [entity_type], n_entities=3, n_days=n_days) yield def test_1TNE1A_defaults(reporter_dataset): # Query without specific id query_params = { 'type': entity_type, } r = requests.get(query_url(), params=query_params) assert r.status_code == 200, r.text # Assert Results expected_values = list(range(n_days)) expected_index = [ '1970-01-{:02}T00:00:00'.format(i+1) for i in expected_values ] expected_entities = [ { 'entityId': 'Room0', 'index': expected_index, 'values': expected_values, }, { 'entityId': 'Room1', 'index': expected_index, 'values': expected_values, }, { 'entityId': 'Room2', 'index': expected_index, 'values': expected_values, } ] obtained_data = r.json() assert isinstance(obtained_data, dict) assert obtained_data['data']['entityType'] == entity_type assert obtained_data['data']['attrName'] == attr_name assert obtained_data['data']['entities'] == expected_entities def test_1TNE1A_one_entity(reporter_dataset): # Query entity_id = 'Room1' query_params = { 'type': entity_type, 'id': entity_id } r = requests.get(query_url(), params=query_params) assert r.status_code == 200, r.text obtained_data = r.json() assert isinstance(obtained_data, dict) expected_values = list(range(n_days)) expected_index = [ '1970-01-{:02}T00:00:00'.format(i+1) for i in expected_values ] expected_entities = [ { 'entityId': 'Room1', 'index': expected_index, 'values': expected_values, } ] assert obtained_data['data']['entityType'] == entity_type assert obtained_data['data']['attrName'] == attr_name assert obtained_data['data']['entities'] == expected_entities def test_1TNE1A_some_entities(reporter_dataset): # Query entity_id = 'Room0,Room2' query_params = { 'type': entity_type, 'id': entity_id } r = requests.get(query_url(), params=query_params) assert r.status_code == 200, r.text # Assert Results expected_values = list(range(n_days)) expected_index = [ '1970-01-{:02}T00:00:00'.format(i+1) for i in expected_values ] expected_entities = [ { 'entityId': 'Room0', 'index': expected_index, 'values': expected_values, }, { 'entityId': 'Room2', 'index': expected_index, 'values': expected_values, } ] obtained_data = r.json() assert isinstance(obtained_data, dict) assert obtained_data['data']['entityType'] == entity_type assert obtained_data['data']['attrName'] == attr_name assert obtained_data['data']['entities'] == expected_entities def test_1TNE1A_values_defaults(reporter_dataset): # Query query_params = { 'type': entity_type, 'id': 'Room0,,Room1,RoomNotValid', # -> validates to Room0,Room1. } r = requests.get(query_url(values=True), params=query_params) assert r.status_code == 200, r.text # Assert Results expected_values = list(range(n_days)) expected_index = [ '1970-01-{:02}T00:00:00'.format(i+1) for i in expected_values ] expected_entities = [ { 'entityId': 'Room0', 'index': expected_index, 'values': expected_values, }, { 'entityId': 'Room1', 'index': expected_index, 'values': expected_values, } ] obtained_data = r.json() assert isinstance(obtained_data, dict) assert obtained_data == {'data': {'values': expected_entities}} def test_not_found(): query_params = { 'type': entity_type, 'id': 'RoomNotValid' } r = requests.get(query_url(), params=query_params) assert r.status_code == 404, r.text assert r.json() == { "error": "Not Found", "description": "No records were found for such query." } def test_weird_ids(reporter_dataset): """ Invalid ids are ignored (provided at least one is valid to avoid 404). Empty values are ignored. Order of ids is preserved in response (e.g., Room1 first, Room0 later) """ query_params = { 'type': entity_type, 'id': 'Room1,RoomNotValid,,Room0,', # -> validates to Room0,Room1. } r = requests.get(query_url(), params=query_params) assert r.status_code == 200, r.text # Assert Results expected_values = list(range(n_days)) expected_index = [ '1970-01-{:02}T00:00:00'.format(i+1) for i in expected_values ] expected_entities = [ { 'entityId': 'Room1', 'index': expected_index, 'values': expected_values, }, { 'entityId': 'Room0', 'index': expected_index, 'values': expected_values, } ] obtained_data = r.json() assert isinstance(obtained_data, dict) assert obtained_data['data']['entityType'] == entity_type assert obtained_data['data']['attrName'] == attr_name assert obtained_data['data']['entities'] == expected_entities def test_different_time_indexes(translator): """ Each entity should have its time_index array. """ t = 'Room' insert_test_data(translator, [t], n_entities=1, entity_id='Room1', n_days=2) insert_test_data(translator, [t], n_entities=1, entity_id='Room3', n_days=4) insert_test_data(translator, [t], n_entities=1, entity_id='Room2', n_days=3) query_params = { 'type': 'Room', 'id': 'Room3,Room1,Room2', } r = requests.get(query_url(), params=query_params) assert r.status_code == 200, r.text expected_entities = [ { 'entityId': 'Room3', 'index': ['1970-01-{:02}T00:00:00'.format(i+1) for i in range(4)], 'values': list(range(4)), }, { 'entityId': 'Room1', 'index': ['1970-01-{:02}T00:00:00'.format(i+1) for i in range(2)], 'values': list(range(2)), }, { 'entityId': 'Room2', 'index': ['1970-01-{:02}T00:00:00'.format(i+1) for i in range(3)], 'values': list(range(3)), } ] obtained_data = r.json() assert isinstance(obtained_data, dict) assert obtained_data['data']['entityType'] == 'Room' assert obtained_data['data']['attrName'] == attr_name assert obtained_data['data']['entities'] == expected_entities def test_aggregation_is_per_instance(translator): """ Attribute Aggregation works by default on a per-instance basis. Cross-instance aggregation not yet supported. It would change the shape of the response. """ t = 'Room' insert_test_data(translator, [t], n_entities=1, entity_id='Room0', n_days=3) insert_test_data(translator, [t], n_entities=1, entity_id='Room1', n_days=9) query_params = { 'type': t, 'id': 'Room0,Room1', 'aggrMethod': 'sum' } r = requests.get(query_url(), params=query_params) assert r.status_code == 200, r.text # Assert Results expected_entities = [ { 'entityId': 'Room0', 'index': ['', ''], 'values': [sum(range(3))], }, { 'entityId': 'Room1', 'index': ['', ''], 'values': [sum(range(9))], } ] obtained_data = r.json() assert isinstance(obtained_data, dict) assert obtained_data['data']['entityType'] == t assert obtained_data['data']['attrName'] == attr_name assert obtained_data['data']['entities'] == expected_entities # Index array in the response is the used fromDate and toDate query_params = { 'type': t, 'id': 'Room0,Room1', 'aggrMethod': 'max', 'fromDate': datetime(1970, 1, 1).isoformat(), 'toDate': datetime(1970, 1, 6).isoformat(), } r = requests.get(query_url(), params=query_params) assert r.status_code == 200, r.text # Assert Results expected_entities = [ { 'entityId': 'Room0', 'index': ['1970-01-01T00:00:00', '1970-01-06T00:00:00'], 'values': [2], }, { 'entityId': 'Room1', 'index': ['1970-01-01T00:00:00', '1970-01-06T00:00:00'], 'values': [5], } ] obtained_data = r.json() assert isinstance(obtained_data, dict) assert obtained_data['data']['entityType'] == t assert obtained_data['data']['attrName'] == attr_name assert obtained_data['data']['entities'] == expected_entities def test_1T1ENA_aggrPeriod(reporter_dataset): # GH issue https://github.com/smartsdk/ngsi-timeseries-api/issues/89 # aggrPeriod needs aggrMethod query_params = { 'type': entity_type, 'aggrPeriod': 'minute', } r = requests.get(query_url(), params=query_params) assert r.status_code == 400, r.text query_params = { 'type': entity_type, 'aggrMethod': 'avg', 'aggrPeriod': 'minute', } r = requests.get(query_url(), params=query_params) assert r.status_code == 501, r.text ``` #### File: src/tests/test_integration.py ```python import json import logging import os import requests import time logger = logging.getLogger(__name__) # INPUT VARIABLES QL_URL = os.environ.get("QL_URL", "http://localhost:8668") ORION_URL = os.environ.get("ORION_URL", "http://localhost:1026") ORION_URL_4QL = os.environ.get("ORION_URL_4QL", "http://orion:1026") QL_URL_4ORION = os.environ.get("QL_URL_4ORION", "http://quantumleap:8668") HEADERS_PUT = {'Content-Type': 'application/json'} def get_entity(entity_type, entity_id): return { "id": entity_id, "type": entity_type, "address": { "streetAddress": "IJzerlaan", "postOfficeBoxNumber": "18", "addressLocality": "Antwerpen", "addressCountry": "BE" }, "dateObserved": "2017-11-03T12:37:23.734827", "source": "http://testing.data.from.smartsdk", "precipitation": 0, "relativeHumidity": 0.54, "temperature": 12.2, "windDirection": 186, "windSpeed": 0.64, "airQualityLevel": "moderate", "airQualityIndex": 65, "reliability": 0.7, "CO": 500, "NO": 45, "NO2": 69, "NOx": 139, "SO2": 11, "CO_Level": "moderate", "refPointOfInterest": "null" } def create_orion_subscription(orion_url, ql_url, entity_type): # Some overhead due to # https://github.com/telefonicaid/fiware-orion/issues/3237 old_sub_ids = set([]) subs = requests.get("{}/v2/subscriptions".format(orion_url)) if subs.text: old_sub_ids.update(set([s['id'] for s in subs.json()])) # Create ORION Subscription subscribe_url = "{}/v2/subscribe".format(ql_url) params = { 'orionUrl': '{}/v2'.format(ORION_URL_4QL), 'quantumleapUrl': '{}/v2'.format(QL_URL_4ORION), 'entityType': entity_type, } r = requests.post(subscribe_url, params=params) assert r.status_code == 201, "Failed to create Orion Subscription. " \ "{}".format(r.text) # Get Sub id to delete it later subs = requests.get("{}/v2/subscriptions".format(ORION_URL)) new_sub_ids = set([s['id'] for s in subs.json()]) created_ids = new_sub_ids.difference(old_sub_ids) if len(created_ids) == 1: return created_ids.pop() if len(created_ids) > 1: # A sub was created in the meantime. Get the correct one. for i in created_ids: s = requests.get("{}/v2/subscriptions/{}".format(ORION_URL, i)) if s.ok and 'TestIntegrationEntity' in s.text: return i assert False def test_integration(): """ Sanity Check for a complete deployment of QuantumLeap. Make sure to set/edit the INPUT VARIABLES. """ # Validate QL_URL res = requests.get("{}/v2/version".format(QL_URL)) assert res.ok, "{} not accessible. {}".format(QL_URL, res.text) # Validate ORION_URL res = requests.get("{}/version".format(ORION_URL)) assert res.ok, "{} not accessible. {}".format(ORION_URL, res.text) # Prepare entity entity_id = 'test_integration_entity_001' entity_type = 'TestIntegrationEntity' entity = get_entity(entity_type, entity_id) # Create Subscription sub_id = create_orion_subscription(ORION_URL, QL_URL, entity_type) time.sleep(1) try: # Insert Data in ORION data = json.dumps(entity) url = "{}/v2/entities".format(ORION_URL) params = {'options': 'keyValues'} res = requests.post(url, data=data, params=params, headers=HEADERS_PUT) assert res.ok time.sleep(2) # Update values in Orion patch = { "precipitation": { "value": 100, "type": "Number" } } url = "{}/v2/entities/{}/attrs".format(ORION_URL, entity_id) res = requests.patch(url, data=json.dumps(patch), headers=HEADERS_PUT) assert res.ok time.sleep(2) # Query records in QuantumLeap url = "{}/v2/entities/{}/attrs/precipitation".format(QL_URL, entity_id) res = requests.get(url, params={'type': entity_type}) assert res.ok index = res.json()['data']['index'] assert len(index) > 1 assert index[0] != index[-1] finally: # Cleanup Subscription r = requests.delete("{}/v2/subscriptions/{}".format(ORION_URL, sub_id)) assert r.ok # Cleanup Entity r = requests.delete("{}/v2/entities/{}".format(ORION_URL, entity_id)) assert r.ok # Cleanup Historical Records r = requests.delete("{}/v2/types/{}".format(QL_URL, entity_type)) assert r.ok ``` #### File: translators/tests/test_crate.py ```python from exceptions.exceptions import AmbiguousNGSIIdError from translators.base_translator import BaseTranslator from translators.benchmark import benchmark from translators.crate import NGSI_TEXT from conftest import crate_translator as translator from utils.common import * import statistics def test_db_version(translator): version = translator.get_db_version() assert version == '3.0.5' def test_insert(translator): entities = create_random_entities(1, 2, 3, use_time=True, use_geo=True) result = translator.insert(entities) assert result.rowcount == len(entities) def test_insert_entity(translator, entity): now = datetime.now().isoformat(timespec='microseconds') entity[BaseTranslator.TIME_INDEX_NAME] = now result = translator.insert([entity]) assert result.rowcount == 1 translator._refresh([entity['type']]) loaded_entity = translator.query() # These 2 can be ignored when empty. TODO: #12 Support attribute metadata entity['temperature'].pop('metadata') entity['pressure'].pop('metadata') assert_ngsi_entity_equals(entity, loaded_entity[0]) def test_insert_multiple_types(translator): entities = create_random_entities(num_types=3, num_ids_per_type=2, num_updates=1, use_time=True, use_geo=True) result = translator.insert(entities) assert result.rowcount > 0 # Again to check metadata handling works fine entities = create_random_entities(num_types=3, num_ids_per_type=2, num_updates=1, use_time=True, use_geo=True) result = translator.insert(entities) assert result.rowcount > 0 def test_query_all_before_insert(translator): loaded_entities = translator.query() assert len(loaded_entities) == 0 def test_query_all(translator): entities = create_random_entities(2, 2, 2, use_time=True, use_geo=True) result = translator.insert(entities) assert result.rowcount > 0 translator._refresh(['0', '1']) loaded_entities = translator.query() assert len(loaded_entities) == len(entities) key = lambda e: e[BaseTranslator.TIME_INDEX_NAME] a = sorted(entities, key=key) b = sorted(loaded_entities, key=key) for e, le in zip(a, b): assert_ngsi_entity_equals(e, le) def test_attrs_by_entity_id(translator): # First insert some data num_updates = 10 entities = create_random_entities(num_types=2, num_ids_per_type=2, num_updates=num_updates, use_time=True, use_geo=True) translator.insert(entities) translator._refresh(['0', '1']) # Now query by entity id entity_id = '0-1' loaded_entities = translator.query(entity_type='0', entity_id=entity_id) assert len(loaded_entities) == num_updates assert all(map(lambda e: e['id'] == '0-1', loaded_entities)) # entity_type should be optional entity_id = '1-1' loaded_entities = translator.query(entity_id=entity_id) assert len(loaded_entities) == num_updates assert all(map(lambda e: e['id'] == '1-1', loaded_entities)) # nonexistent id should return no data loaded_entities = translator.query(entity_id='some_nonexistent_id') assert len(loaded_entities) == 0 def test_attrs_by_id_ambiguity(translator): entities = create_random_entities(num_types=2, num_ids_per_type=2, num_updates=3) for e in entities: e['id'] = 'repeated_id' translator.insert(entities) translator._refresh(['0', '1']) # OK if specifying type loaded_entities = translator.query(entity_type='0', entity_id='repeated_id') assert len(loaded_entities) == 3 * 2 # NOT OK otherwise with pytest.raises(AmbiguousNGSIIdError): translator.query(entity_id='repeated_id') WITHIN_EAST_EMISPHERE = "within(attr_geo, 'POLYGON ((0 -90, 180 -90, 180 90, 0 90, 0 -90))')" @pytest.mark.parametrize("attr_name, clause, tester", [ ("attr_bool", "= True", lambda e: e["attr_bool"]["value"]), ("attr_str", "> 'M'", lambda e: e["attr_str"]["value"] > "M"), ("attr_float", "< 0.5", lambda e: e["attr_float"]["value"] < 0.5), ("attr_time", "> '1970-06-28T00:00'", lambda e: e["attr_time"]["value"] > datetime(1970, 6, 28).isoformat(timespec='microseconds')), (WITHIN_EAST_EMISPHERE, "", lambda e: e["attr_geo"]["value"]["coordinates"][0] > 0), ]) def test_query_per_attribute(translator, attr_name, clause, tester): num_types = 1 num_ids_per_type = 2 num_updates = 10 entities = create_random_entities(num_types, num_ids_per_type, num_updates, use_time=True, use_geo=True) translator.insert(entities) translator._refresh(['0']) entities = translator.query(entity_type='0', where_clause="where {} {}".format(attr_name, clause)) total = num_types * num_ids_per_type * num_updates assert len(entities) > 0, "No entities where found with the clause: {}{}".format(attr_name, clause) assert len(entities) < total, "All entities matched the clause. Not expected from an uniform random distribution" assert all(map(tester, entities)) def test_average(translator): num_updates = 10 entities = create_random_entities(2, 2, num_updates, use_time=True, use_geo=True) translator.insert(entities) translator._refresh(['0', '1']) # Per entity_id eid = '0-1' entity_mean = statistics.mean(e['attr_float']['value'] for e in entities if e['id'] == eid) entity_mean_read = translator.average(attr_name='attr_float', entity_type='0', entity_id=eid) assert pytest.approx(entity_mean_read) == entity_mean # Total total_mean = statistics.mean(e['attr_float']['value'] for e in entities) total_mean_read = translator.average(attr_name='attr_float') assert pytest.approx(total_mean_read) == total_mean def test_benchmark(translator): benchmark(translator, num_types=2, num_ids_per_type=2, num_updates=10, use_geo=False, use_time=False) def test_benchmark_extended(translator): benchmark(translator, num_types=2, num_ids_per_type=2, num_updates=10, use_geo=True, use_time=True) def test_unsupported_ngsi_type(translator): e = { "type": "SoMeWeIrDtYpE", "id": "sOmEwEiRdId", TIME_INDEX_NAME: datetime.now().isoformat(timespec='microseconds'), "foo": { "type": "DefinitivelyNotAValidNGSIType", "value": "BaR", }, } translator.insert([e]) translator._refresh([e['type']]) entities = translator.query() assert len(entities) == 1 assert_ngsi_entity_equals(e, entities[0]) def test_missing_type_defaults_string(translator): e = { "type": "SoMeWeIrDtYpE", "id": "sOmEwEiRdId", TIME_INDEX_NAME: datetime.now().isoformat(timespec='microseconds'), "foo": { "value": "BaR", }, } translator.insert([e]) translator._refresh([e['type']]) entities = translator.query() assert len(entities) == 1 # Response will include the type e["foo"]["type"] = NGSI_TEXT assert_ngsi_entity_equals(e, entities[0]) def test_capitals(translator): entity_type = "SoMeWeIrDtYpE" e = { "type": entity_type, "id": "sOmEwEiRdId", TIME_INDEX_NAME: datetime.now().isoformat(timespec='microseconds'), "Foo": { "type": "Text", "value": "FoO", }, "bAr": { "type": "Text", "value": "bAr", }, } translator.insert([e]) translator._refresh([entity_type]) entities = translator.query() assert len(entities) == 1 assert_ngsi_entity_equals(e, entities[0]) # If a new attribute comes later, I want it translated as well. e2 = e.copy() e2['id'] = 'SOmEwEiRdId2' e2['NewAttr'] = {"type": "Text", "value": "NewAttrValue!"} e2[TIME_INDEX_NAME] = datetime.now().isoformat(timespec='microseconds') translator.insert([e2]) translator._refresh([entity_type]) entities = translator.query() assert len(entities) == 2 assert_ngsi_entity_equals(e2, entities[1]) # Note that old entity gets None for the new attribute e['NewAttr'] = {'type': 'Text', 'value': None} assert_ngsi_entity_equals(e, entities[0]) def test_no_time_index(translator): """ The Reporter is responsible for injecting the 'time_index' attribute to the entity, but even if for some reason the attribute is not there, there should be no problem with the insertion. """ e = { 'id': 'entityId1', 'type': 'type1', 'foo': {'type': 'Text', 'value': "SomeText"} } translator.insert([e]) translator._refresh([e['type']]) assert len(translator.query()) == 1 def test_long_json(translator): # Github issue 44 big_entity = { 'id': 'entityId1', 'type': 'type1', TIME_INDEX_NAME: datetime.now().isoformat(timespec='microseconds'), 'foo': { 'type': 'Text', 'value': "SomeTextThatWillGetLong" * 2000 } } translator.insert([big_entity]) translator._refresh([big_entity['type']]) r = translator.query() assert len(r) == 1 assert_ngsi_entity_equals(big_entity, r[0]) def test_geo_point(translator): # Github issue #35: Support geo:point entity = { 'id': 'Room1', 'type': 'Room', TIME_INDEX_NAME: datetime.now().isoformat(timespec='microseconds'), 'location': { 'type': 'geo:point', 'value': "19.6389474, -98.9109537" # lat, long } } translator.insert([entity]) translator._refresh([entity['type']]) # Check location is saved as a geo_point column in crate op = 'select latitude(location), longitude(location) from etroom' translator.cursor.execute(op) res = translator.cursor.fetchall() assert len(res) == 1 assert res[0] == [19.6389474, -98.9109537] entities = translator.query() assert len(entities) == 1 # Check entity is retrieved as it was inserted assert_ngsi_entity_equals(entity, entities[0]) def test_structured_value_to_array(translator): entity = { 'id': '8906', 'type': 'AirQualityObserved', TIME_INDEX_NAME: datetime.now().isoformat(timespec='microseconds'), 'aqi': {'type': 'Number', 'value': 43}, 'city': {'type': 'Text', 'value': 'Antwerpen'}, 'h': {'type': 'Number', 'value': 93}, 'location': { 'type': 'geo:point', 'value': '51.2056589, 4.4180728', }, 'measurand': { 'type': 'StructuredValue', 'value': ['pm25, 43, ugm3, PM25', 'pm10, 30, ugm3, PM10', 'p, 1012, hPa, Pressure'] }, 'p': {'type': 'Number', 'value': 1012}, 'pm10': {'type': 'Number', 'value': 30}, 'pm25': {'type': 'Number', 'value': 43}, 't': {'type': 'Number', 'value': 8.33} } translator.insert([entity]) translator._refresh([entity['type']]) r = translator.query() assert len(r) == 1 # TODO Github issue 24 # assert_ngsi_entity_equals(entity, r[0]) def test_ISO8601(translator): """ ISO8601 should be a valid type, equivalent to DateTime. """ e = { "type": "MyType", "id": "MyId", TIME_INDEX_NAME: datetime.now().isoformat(timespec='microseconds'), "iso_attr": { "type": "ISO8601", "value": "2018-03-20T13:26:38.722000", }, } result = translator.insert([e]) assert result.rowcount > 0 translator._refresh([e['type']]) loaded = translator.query() assert len(loaded) > 0 assert_ngsi_entity_equals(e, loaded[0]) ################################################################################ # FIWARE DATA MODELS ################################################################################ def test_air_quality_observed(translator, air_quality_observed): # Add TIME_INDEX as Reporter would now = datetime.now().isoformat(timespec='microseconds') air_quality_observed[TIME_INDEX_NAME] = now result = translator.insert([air_quality_observed]) assert result.rowcount > 0 translator._refresh([air_quality_observed['type']]) loaded = translator.query() assert len(loaded) > 0 assert_ngsi_entity_equals(air_quality_observed, loaded[0]) def test_traffic_flow_observed(translator, traffic_flow_observed): # Add TIME_INDEX as Reporter would now = datetime.now().isoformat(timespec='microseconds') traffic_flow_observed[TIME_INDEX_NAME] = now result = translator.insert([traffic_flow_observed]) assert result.rowcount > 0 translator._refresh([traffic_flow_observed['type']]) loaded = translator.query() assert len(loaded) > 0 assert_ngsi_entity_equals(traffic_flow_observed, loaded[0]) ```
{ "source": "J-L-O/IIC", "score": 2 }
#### File: segmentation/baselines/kmeans_segmentation_eval.py ```python from datetime import datetime from sys import stdout as sysout import numpy as np import torch from sklearn.cluster import MiniBatchKMeans from src.utils.cluster.eval_metrics import _hungarian_match, _acc, _nmi, _ari from src.utils.cluster.transforms import sobel_process GET_NMI_ARI = False # expects single head architectures (ie not IID/+) # Train all-in-one using samples. Eval batch using full dataset. Datasets are # both the full labelled segments. Could have included unlabelled for former. # (only impacts on Potsdam) def kmeans_segmentation_eval(config, net, test_dataloader): net.eval() kmeans = train_kmeans(config, net, test_dataloader) torch.cuda.empty_cache() return apply_trained_kmeans(config, net, test_dataloader, kmeans) def train_kmeans(config, net, test_dataloader): num_imgs = len(test_dataloader.dataset) max_num_pixels_per_img = int(config.max_num_kmeans_samples / num_imgs) features_all = np.zeros( (config.max_num_kmeans_samples, net.module.features_sz), dtype=np.float32) actual_num_features = 0 # discard the label information in the dataloader for i, tup in enumerate(test_dataloader): if (config.verbose and i < 10) or (i % int(len(test_dataloader) / 10) == 0): print(("(kmeans_segmentation_eval) batch %d time %s" % (i, datetime.now()))) sysout.flush() imgs, _, mask = tup # test dataloader, cpu tensors imgs = imgs.cuda() mask = mask.numpy().astype(np.bool) # mask = mask.numpy().astype(np.bool) num_unmasked = mask.sum() if not config.no_sobel: imgs = sobel_process(imgs, config.include_rgb, using_IR=config.using_IR) # now rgb(ir) and/or sobel with torch.no_grad(): # penultimate = features x_out = net(imgs, penultimate=True).cpu().numpy() if config.verbose and i < 2: print(("(kmeans_segmentation_eval) through model %d time %s" % (i, datetime.now()))) sysout.flush() num_imgs_batch = x_out.shape[0] x_out = x_out.transpose((0, 2, 3, 1)) # features last x_out = x_out[mask, :] if config.verbose and i < 2: print(("(kmeans_segmentation_eval) applied mask %d time %s" % (i, datetime.now()))) sysout.flush() if i == 0: assert (x_out.shape[1] == net.module.features_sz) assert (x_out.shape[0] == num_unmasked) # select pixels randomly, and record how many selected num_selected = min(num_unmasked, num_imgs_batch * max_num_pixels_per_img) selected = np.random.choice(num_selected, replace=False) x_out = x_out[selected, :] if config.verbose and i < 2: print(("(kmeans_segmentation_eval) applied select %d time %s" % (i, datetime.now()))) sysout.flush() features_all[actual_num_features:actual_num_features + num_selected, :] = \ x_out actual_num_features += num_selected if config.verbose and i < 2: print(("(kmeans_segmentation_eval) stored %d time %s" % (i, datetime.now()))) sysout.flush() assert (actual_num_features <= config.max_num_kmeans_samples) features_all = features_all[:actual_num_features, :] if config.verbose: print("running kmeans") sysout.flush() kmeans = MiniBatchKMeans(n_clusters=config.gt_k, verbose=config.verbose).fit( features_all) return kmeans def apply_trained_kmeans(config, net, test_dataloader, kmeans): if config.verbose: print("starting inference") sysout.flush() # on the entire test dataset num_imgs = len(test_dataloader.dataset) max_num_samples = num_imgs * config.input_sz * config.input_sz preds_all = torch.zeros(max_num_samples, dtype=torch.int32).cuda() targets_all = torch.zeros(max_num_samples, dtype=torch.int32).cuda() actual_num_unmasked = 0 # discard the label information in the dataloader for i, tup in enumerate(test_dataloader): if (config.verbose and i < 10) or (i % int(len(test_dataloader) / 10) == 0): print(("(apply_trained_kmeans) batch %d time %s" % (i, datetime.now()))) sysout.flush() imgs, targets, mask = tup # test dataloader, cpu tensors imgs, mask_cuda, targets, mask_np = imgs.cuda(), mask.cuda(), \ targets.cuda(), mask.numpy().astype( np.bool) num_unmasked = mask_cuda.sum().item() if not config.no_sobel: imgs = sobel_process(imgs, config.include_rgb, using_IR=config.using_IR) # now rgb(ir) and/or sobel with torch.no_grad(): # penultimate = features x_out = net(imgs, penultimate=True).cpu().numpy() x_out = x_out.transpose((0, 2, 3, 1)) # features last x_out = x_out[mask_np, :] targets = targets.masked_select(mask_cuda) # can do because flat assert (x_out.shape == (num_unmasked, net.module.features_sz)) preds = torch.from_numpy(kmeans.predict(x_out)).cuda() preds_all[actual_num_unmasked: actual_num_unmasked + num_unmasked] = preds targets_all[ actual_num_unmasked: actual_num_unmasked + num_unmasked] = targets actual_num_unmasked += num_unmasked preds_all = preds_all[:actual_num_unmasked] targets_all = targets_all[:actual_num_unmasked] torch.cuda.empty_cache() # permutation, not many-to-one match = _hungarian_match(preds_all, targets_all, preds_k=config.gt_k, targets_k=config.gt_k) torch.cuda.empty_cache() # do in cpu because of RAM reordered_preds = torch.zeros(actual_num_unmasked, dtype=preds_all.dtype) for pred_i, target_i in match: selected = (preds_all == pred_i).cpu() reordered_preds[selected] = target_i reordered_preds = reordered_preds.cuda() # this checks values acc = _acc(reordered_preds, targets_all, config.gt_k, verbose=config.verbose) if GET_NMI_ARI: nmi, ari = _nmi(reordered_preds, targets_all), \ _ari(reordered_preds, targets_all) else: nmi, ari = -1., -1. reordered_masses = np.zeros(config.gt_k) for c in range(config.gt_k): reordered_masses[c] = float( (reordered_preds == c).sum()) / actual_num_unmasked return acc, nmi, ari, reordered_masses ```
{ "source": "jlokimlin/anomaly_detection", "score": 3 }
#### File: anomaly_detection/sample/helpers.py ```python from pytrends.request import TrendReq def get_proxie_google_connection(geo_region='en-US'): pytrends_proxie = TrendReq( hl=geo_region, tz=360, timeout=(10,25), proxies=['https://34.203.233.13.80',], retries=2, backoff_factor=0.1) return pytrends_proxie def gtrends(keywords, geo_region='en-US', timeframe='today 5-y'): """ Description: Get a pandas DataFrame with Google trends data as a two column data frame where the first column consists of the timestamps and the second column consists of the observation. timestamps: year-month-date observation: Numbers represent search interest relative to the highest point on the chart for the given region and time. A value of 100 is the peak popularity for the term. A value of 50 means that the term is half as popular. A score of 0 means there was not enough data for this term. Usage: get_google_trends_df(keywords=['World Cup', 'FIFA', 'Russia']) Arguments: keywords: A list of strings. geo Value: The returned value is a pandas DataFrame containing timestamps and observation values. """ # Login to Google pytrend = get_proxie_google_connection(geo_region) # Create payload and capture API tokens. Only required for interest_over_time(), interest_by_region(), and related_queries() methods. pytrend.build_payload(kw_list=keywords, timeframe=timeframe) # Get Google Trends of keywords as a Pandas DataFrame google_trends_df = pytrend.interest_over_time() return google_trends_df ```
{ "source": "jlongever/redfish-client-python", "score": 2 }
#### File: on_http_redfish_1_0/models/power_1_0_0_power.py ```python from pprint import pformat from six import iteritems class Power100Power(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self): """ Power100Power - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'odata_context': 'Odata400Context', 'odata_id': 'Odata400Id', 'odata_type': 'Odata400Type', 'description': 'ResourceDescription', 'id': 'ResourceId', 'name': 'ResourceName', 'oem': 'ResourceOem', 'power_control': 'list[Power100PowerControl]', 'power_controlodata_count': 'Odata400Count', 'power_controlodata_navigation_link': 'Odata400IdRef', 'power_supplies': 'list[Power100PowerSupply]', 'power_suppliesodata_count': 'Odata400Count', 'power_suppliesodata_navigation_link': 'Odata400IdRef', 'redundancy': 'list[RedundancyRedundancy]', 'redundancyodata_count': 'Odata400Count', 'redundancyodata_navigation_link': 'Odata400IdRef', 'voltages': 'list[Power100Voltage]', 'voltagesodata_count': 'Odata400Count', 'voltagesodata_navigation_link': 'Odata400IdRef' } self.attribute_map = { 'odata_context': '@odata.context', 'odata_id': '@odata.id', 'odata_type': '@odata.type', 'description': 'Description', 'id': 'Id', 'name': 'Name', 'oem': 'Oem', 'power_control': 'PowerControl', 'power_controlodata_count': '<EMAIL>', 'power_controlodata_navigation_link': '<EMAIL>', 'power_supplies': 'PowerSupplies', 'power_suppliesodata_count': '<EMAIL>', 'power_suppliesodata_navigation_link': '<EMAIL>', 'redundancy': 'Redundancy', 'redundancyodata_count': '<EMAIL>', 'redundancyodata_navigation_link': '<EMAIL>', 'voltages': 'Voltages', 'voltagesodata_count': '<EMAIL>', 'voltagesodata_navigation_link': '<EMAIL>' } self._odata_context = None self._odata_id = None self._odata_type = None self._description = None self._id = None self._name = None self._oem = None self._power_control = None self._power_controlodata_count = None self._power_controlodata_navigation_link = None self._power_supplies = None self._power_suppliesodata_count = None self._power_suppliesodata_navigation_link = None self._redundancy = None self._redundancyodata_count = None self._redundancyodata_navigation_link = None self._voltages = None self._voltagesodata_count = None self._voltagesodata_navigation_link = None @property def odata_context(self): """ Gets the odata_context of this Power100Power. :return: The odata_context of this Power100Power. :rtype: Odata400Context """ return self._odata_context @odata_context.setter def odata_context(self, odata_context): """ Sets the odata_context of this Power100Power. :param odata_context: The odata_context of this Power100Power. :type: Odata400Context """ self._odata_context = odata_context @property def odata_id(self): """ Gets the odata_id of this Power100Power. :return: The odata_id of this Power100Power. :rtype: Odata400Id """ return self._odata_id @odata_id.setter def odata_id(self, odata_id): """ Sets the odata_id of this Power100Power. :param odata_id: The odata_id of this Power100Power. :type: Odata400Id """ self._odata_id = odata_id @property def odata_type(self): """ Gets the odata_type of this Power100Power. :return: The odata_type of this Power100Power. :rtype: Odata400Type """ return self._odata_type @odata_type.setter def odata_type(self, odata_type): """ Sets the odata_type of this Power100Power. :param odata_type: The odata_type of this Power100Power. :type: Odata400Type """ self._odata_type = odata_type @property def description(self): """ Gets the description of this Power100Power. :return: The description of this Power100Power. :rtype: ResourceDescription """ return self._description @description.setter def description(self, description): """ Sets the description of this Power100Power. :param description: The description of this Power100Power. :type: ResourceDescription """ self._description = description @property def id(self): """ Gets the id of this Power100Power. :return: The id of this Power100Power. :rtype: ResourceId """ return self._id @id.setter def id(self, id): """ Sets the id of this Power100Power. :param id: The id of this Power100Power. :type: ResourceId """ self._id = id @property def name(self): """ Gets the name of this Power100Power. :return: The name of this Power100Power. :rtype: ResourceName """ return self._name @name.setter def name(self, name): """ Sets the name of this Power100Power. :param name: The name of this Power100Power. :type: ResourceName """ self._name = name @property def oem(self): """ Gets the oem of this Power100Power. This is the manufacturer/provider specific extension moniker used to divide the Oem object into sections. :return: The oem of this Power100Power. :rtype: ResourceOem """ return self._oem @oem.setter def oem(self, oem): """ Sets the oem of this Power100Power. This is the manufacturer/provider specific extension moniker used to divide the Oem object into sections. :param oem: The oem of this Power100Power. :type: ResourceOem """ self._oem = oem @property def power_control(self): """ Gets the power_control of this Power100Power. This is the definition for power control function (power reading/limiting). :return: The power_control of this Power100Power. :rtype: list[Power100PowerControl] """ return self._power_control @power_control.setter def power_control(self, power_control): """ Sets the power_control of this Power100Power. This is the definition for power control function (power reading/limiting). :param power_control: The power_control of this Power100Power. :type: list[Power100PowerControl] """ self._power_control = power_control @property def power_controlodata_count(self): """ Gets the power_controlodata_count of this Power100Power. :return: The power_controlodata_count of this Power100Power. :rtype: Odata400Count """ return self._power_controlodata_count @power_controlodata_count.setter def power_controlodata_count(self, power_controlodata_count): """ Sets the power_controlodata_count of this Power100Power. :param power_controlodata_count: The power_controlodata_count of this Power100Power. :type: Odata400Count """ self._power_controlodata_count = power_controlodata_count @property def power_controlodata_navigation_link(self): """ Gets the power_controlodata_navigation_link of this Power100Power. :return: The power_controlodata_navigation_link of this Power100Power. :rtype: Odata400IdRef """ return self._power_controlodata_navigation_link @power_controlodata_navigation_link.setter def power_controlodata_navigation_link(self, power_controlodata_navigation_link): """ Sets the power_controlodata_navigation_link of this Power100Power. :param power_controlodata_navigation_link: The power_controlodata_navigation_link of this Power100Power. :type: Odata400IdRef """ self._power_controlodata_navigation_link = power_controlodata_navigation_link @property def power_supplies(self): """ Gets the power_supplies of this Power100Power. Details of the power supplies associated with this system or device :return: The power_supplies of this Power100Power. :rtype: list[Power100PowerSupply] """ return self._power_supplies @power_supplies.setter def power_supplies(self, power_supplies): """ Sets the power_supplies of this Power100Power. Details of the power supplies associated with this system or device :param power_supplies: The power_supplies of this Power100Power. :type: list[Power100PowerSupply] """ self._power_supplies = power_supplies @property def power_suppliesodata_count(self): """ Gets the power_suppliesodata_count of this Power100Power. :return: The power_suppliesodata_count of this Power100Power. :rtype: Odata400Count """ return self._power_suppliesodata_count @power_suppliesodata_count.setter def power_suppliesodata_count(self, power_suppliesodata_count): """ Sets the power_suppliesodata_count of this Power100Power. :param power_suppliesodata_count: The power_suppliesodata_count of this Power100Power. :type: Odata400Count """ self._power_suppliesodata_count = power_suppliesodata_count @property def power_suppliesodata_navigation_link(self): """ Gets the power_suppliesodata_navigation_link of this Power100Power. :return: The power_suppliesodata_navigation_link of this Power100Power. :rtype: Odata400IdRef """ return self._power_suppliesodata_navigation_link @power_suppliesodata_navigation_link.setter def power_suppliesodata_navigation_link(self, power_suppliesodata_navigation_link): """ Sets the power_suppliesodata_navigation_link of this Power100Power. :param power_suppliesodata_navigation_link: The power_suppliesodata_navigation_link of this Power100Power. :type: Odata400IdRef """ self._power_suppliesodata_navigation_link = power_suppliesodata_navigation_link @property def redundancy(self): """ Gets the redundancy of this Power100Power. Redundancy information for the power subsystem of this system or device :return: The redundancy of this Power100Power. :rtype: list[RedundancyRedundancy] """ return self._redundancy @redundancy.setter def redundancy(self, redundancy): """ Sets the redundancy of this Power100Power. Redundancy information for the power subsystem of this system or device :param redundancy: The redundancy of this Power100Power. :type: list[RedundancyRedundancy] """ self._redundancy = redundancy @property def redundancyodata_count(self): """ Gets the redundancyodata_count of this Power100Power. :return: The redundancyodata_count of this Power100Power. :rtype: Odata400Count """ return self._redundancyodata_count @redundancyodata_count.setter def redundancyodata_count(self, redundancyodata_count): """ Sets the redundancyodata_count of this Power100Power. :param redundancyodata_count: The redundancyodata_count of this Power100Power. :type: Odata400Count """ self._redundancyodata_count = redundancyodata_count @property def redundancyodata_navigation_link(self): """ Gets the redundancyodata_navigation_link of this Power100Power. :return: The redundancyodata_navigation_link of this Power100Power. :rtype: Odata400IdRef """ return self._redundancyodata_navigation_link @redundancyodata_navigation_link.setter def redundancyodata_navigation_link(self, redundancyodata_navigation_link): """ Sets the redundancyodata_navigation_link of this Power100Power. :param redundancyodata_navigation_link: The redundancyodata_navigation_link of this Power100Power. :type: Odata400IdRef """ self._redundancyodata_navigation_link = redundancyodata_navigation_link @property def voltages(self): """ Gets the voltages of this Power100Power. This is the definition for voltage sensors. :return: The voltages of this Power100Power. :rtype: list[Power100Voltage] """ return self._voltages @voltages.setter def voltages(self, voltages): """ Sets the voltages of this Power100Power. This is the definition for voltage sensors. :param voltages: The voltages of this Power100Power. :type: list[Power100Voltage] """ self._voltages = voltages @property def voltagesodata_count(self): """ Gets the voltagesodata_count of this Power100Power. :return: The voltagesodata_count of this Power100Power. :rtype: Odata400Count """ return self._voltagesodata_count @voltagesodata_count.setter def voltagesodata_count(self, voltagesodata_count): """ Sets the voltagesodata_count of this Power100Power. :param voltagesodata_count: The voltagesodata_count of this Power100Power. :type: Odata400Count """ self._voltagesodata_count = voltagesodata_count @property def voltagesodata_navigation_link(self): """ Gets the voltagesodata_navigation_link of this Power100Power. :return: The voltagesodata_navigation_link of this Power100Power. :rtype: Odata400IdRef """ return self._voltagesodata_navigation_link @voltagesodata_navigation_link.setter def voltagesodata_navigation_link(self, voltagesodata_navigation_link): """ Sets the voltagesodata_navigation_link of this Power100Power. :param voltagesodata_navigation_link: The voltagesodata_navigation_link of this Power100Power. :type: Odata400IdRef """ self._voltagesodata_navigation_link = voltagesodata_navigation_link def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other ``` #### File: on_http_redfish_1_0/models/power_1_0_0_power_supply.py ```python from pprint import pformat from six import iteritems class Power100PowerSupply(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self): """ Power100PowerSupply - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'line_input_voltage_type': 'Power100LineInputVoltageType', 'member_id': 'str', 'oem': 'ResourceOem', 'power_supply_type': 'Power100PowerSupplyType', 'redundancy': 'list[RedundancyRedundancy]', 'redundancyodata_count': 'Odata400Count', 'redundancyodata_navigation_link': 'Odata400IdRef', 'related_item': 'list[Odata400IdRef]', 'related_itemodata_count': 'Odata400Count', 'related_itemodata_navigation_link': 'Odata400IdRef', 'status': 'ResourceStatus' } self.attribute_map = { 'line_input_voltage_type': 'LineInputVoltageType', 'member_id': 'MemberId', 'oem': 'Oem', 'power_supply_type': 'PowerSupplyType', 'redundancy': 'Redundancy', 'redundancyodata_count': '<EMAIL>', 'redundancyodata_navigation_link': '<EMAIL>', 'related_item': 'RelatedItem', 'related_itemodata_count': '<EMAIL>', 'related_itemodata_navigation_link': '<EMAIL>', 'status': 'Status' } self._line_input_voltage_type = None self._member_id = None self._oem = None self._power_supply_type = None self._redundancy = None self._redundancyodata_count = None self._redundancyodata_navigation_link = None self._related_item = None self._related_itemodata_count = None self._related_itemodata_navigation_link = None self._status = None @property def line_input_voltage_type(self): """ Gets the line_input_voltage_type of this Power100PowerSupply. The line voltage type supported as an input to this Power Supply :return: The line_input_voltage_type of this Power100PowerSupply. :rtype: Power100LineInputVoltageType """ return self._line_input_voltage_type @line_input_voltage_type.setter def line_input_voltage_type(self, line_input_voltage_type): """ Sets the line_input_voltage_type of this Power100PowerSupply. The line voltage type supported as an input to this Power Supply :param line_input_voltage_type: The line_input_voltage_type of this Power100PowerSupply. :type: Power100LineInputVoltageType """ self._line_input_voltage_type = line_input_voltage_type @property def member_id(self): """ Gets the member_id of this Power100PowerSupply. This is the identifier for the member within the collection. :return: The member_id of this Power100PowerSupply. :rtype: str """ return self._member_id @member_id.setter def member_id(self, member_id): """ Sets the member_id of this Power100PowerSupply. This is the identifier for the member within the collection. :param member_id: The member_id of this Power100PowerSupply. :type: str """ self._member_id = member_id @property def oem(self): """ Gets the oem of this Power100PowerSupply. This is the manufacturer/provider specific extension moniker used to divide the Oem object into sections. :return: The oem of this Power100PowerSupply. :rtype: ResourceOem """ return self._oem @oem.setter def oem(self, oem): """ Sets the oem of this Power100PowerSupply. This is the manufacturer/provider specific extension moniker used to divide the Oem object into sections. :param oem: The oem of this Power100PowerSupply. :type: ResourceOem """ self._oem = oem @property def power_supply_type(self): """ Gets the power_supply_type of this Power100PowerSupply. The Power Supply type (AC or DC) :return: The power_supply_type of this Power100PowerSupply. :rtype: Power100PowerSupplyType """ return self._power_supply_type @power_supply_type.setter def power_supply_type(self, power_supply_type): """ Sets the power_supply_type of this Power100PowerSupply. The Power Supply type (AC or DC) :param power_supply_type: The power_supply_type of this Power100PowerSupply. :type: Power100PowerSupplyType """ self._power_supply_type = power_supply_type @property def redundancy(self): """ Gets the redundancy of this Power100PowerSupply. This structure is used to show redundancy for fans. The Component ids will reference the members of the redundancy groups. :return: The redundancy of this Power100PowerSupply. :rtype: list[RedundancyRedundancy] """ return self._redundancy @redundancy.setter def redundancy(self, redundancy): """ Sets the redundancy of this Power100PowerSupply. This structure is used to show redundancy for fans. The Component ids will reference the members of the redundancy groups. :param redundancy: The redundancy of this Power100PowerSupply. :type: list[RedundancyRedundancy] """ self._redundancy = redundancy @property def redundancyodata_count(self): """ Gets the redundancyodata_count of this Power100PowerSupply. :return: The redundancyodata_count of this Power100PowerSupply. :rtype: Odata400Count """ return self._redundancyodata_count @redundancyodata_count.setter def redundancyodata_count(self, redundancyodata_count): """ Sets the redundancyodata_count of this Power100PowerSupply. :param redundancyodata_count: The redundancyodata_count of this Power100PowerSupply. :type: Odata400Count """ self._redundancyodata_count = redundancyodata_count @property def redundancyodata_navigation_link(self): """ Gets the redundancyodata_navigation_link of this Power100PowerSupply. :return: The redundancyodata_navigation_link of this Power100PowerSupply. :rtype: Odata400IdRef """ return self._redundancyodata_navigation_link @redundancyodata_navigation_link.setter def redundancyodata_navigation_link(self, redundancyodata_navigation_link): """ Sets the redundancyodata_navigation_link of this Power100PowerSupply. :param redundancyodata_navigation_link: The redundancyodata_navigation_link of this Power100PowerSupply. :type: Odata400IdRef """ self._redundancyodata_navigation_link = redundancyodata_navigation_link @property def related_item(self): """ Gets the related_item of this Power100PowerSupply. The ID(s) of the resources associated with this Power Limit :return: The related_item of this Power100PowerSupply. :rtype: list[Odata400IdRef] """ return self._related_item @related_item.setter def related_item(self, related_item): """ Sets the related_item of this Power100PowerSupply. The ID(s) of the resources associated with this Power Limit :param related_item: The related_item of this Power100PowerSupply. :type: list[Odata400IdRef] """ self._related_item = related_item @property def related_itemodata_count(self): """ Gets the related_itemodata_count of this Power100PowerSupply. :return: The related_itemodata_count of this Power100PowerSupply. :rtype: Odata400Count """ return self._related_itemodata_count @related_itemodata_count.setter def related_itemodata_count(self, related_itemodata_count): """ Sets the related_itemodata_count of this Power100PowerSupply. :param related_itemodata_count: The related_itemodata_count of this Power100PowerSupply. :type: Odata400Count """ self._related_itemodata_count = related_itemodata_count @property def related_itemodata_navigation_link(self): """ Gets the related_itemodata_navigation_link of this Power100PowerSupply. :return: The related_itemodata_navigation_link of this Power100PowerSupply. :rtype: Odata400IdRef """ return self._related_itemodata_navigation_link @related_itemodata_navigation_link.setter def related_itemodata_navigation_link(self, related_itemodata_navigation_link): """ Sets the related_itemodata_navigation_link of this Power100PowerSupply. :param related_itemodata_navigation_link: The related_itemodata_navigation_link of this Power100PowerSupply. :type: Odata400IdRef """ self._related_itemodata_navigation_link = related_itemodata_navigation_link @property def status(self): """ Gets the status of this Power100PowerSupply. :return: The status of this Power100PowerSupply. :rtype: ResourceStatus """ return self._status @status.setter def status(self, status): """ Sets the status of this Power100PowerSupply. :param status: The status of this Power100PowerSupply. :type: ResourceStatus """ self._status = status def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other ``` #### File: on_http_redfish_1_0/models/rack_hd_boot_image_boot_image.py ```python from pprint import pformat from six import iteritems class RackHDBootImageBootImage(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self): """ RackHDBootImageBootImage - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'root_ssh_key': 'str', 'domain': 'str', 'users': 'list[RackHDBootImageUsers]', 'hostname': 'str', 'os_name': 'str', 'repo': 'str', 'version': 'str', 'network_devices': 'list[RackHDBootImageNetworkDevice]', 'root_password': '<PASSWORD>', 'dns_servers': 'list[str]', 'install_disk': 'str' } self.attribute_map = { 'root_ssh_key': 'rootSshKey', 'domain': 'domain', 'users': 'users', 'hostname': 'hostname', 'os_name': 'osName', 'repo': 'repo', 'version': 'version', 'network_devices': 'networkDevices', 'root_password': '<PASSWORD>', 'dns_servers': 'dnsServers', 'install_disk': 'installDisk' } self._root_ssh_key = None self._domain = None self._users = None self._hostname = None self._os_name = None self._repo = None self._version = None self._network_devices = None self._root_password = None self._dns_servers = None self._install_disk = None @property def root_ssh_key(self): """ Gets the root_ssh_key of this RackHDBootImageBootImage. This is the SshKey for the OS root account. :return: The root_ssh_key of this RackHDBootImageBootImage. :rtype: str """ return self._root_ssh_key @root_ssh_key.setter def root_ssh_key(self, root_ssh_key): """ Sets the root_ssh_key of this RackHDBootImageBootImage. This is the SshKey for the OS root account. :param root_ssh_key: The root_ssh_key of this RackHDBootImageBootImage. :type: str """ self._root_ssh_key = root_ssh_key @property def domain(self): """ Gets the domain of this RackHDBootImageBootImage. This is the domain for the target OS :return: The domain of this RackHDBootImageBootImage. :rtype: str """ return self._domain @domain.setter def domain(self, domain): """ Sets the domain of this RackHDBootImageBootImage. This is the domain for the target OS :param domain: The domain of this RackHDBootImageBootImage. :type: str """ self._domain = domain @property def users(self): """ Gets the users of this RackHDBootImageBootImage. This is a list of user account information that will created after OS installation :return: The users of this RackHDBootImageBootImage. :rtype: list[RackHDBootImageUsers] """ return self._users @users.setter def users(self, users): """ Sets the users of this RackHDBootImageBootImage. This is a list of user account information that will created after OS installation :param users: The users of this RackHDBootImageBootImage. :type: list[RackHDBootImageUsers] """ self._users = users @property def hostname(self): """ Gets the hostname of this RackHDBootImageBootImage. The hostname for target OS. :return: The hostname of this RackHDBootImageBootImage. :rtype: str """ return self._hostname @hostname.setter def hostname(self, hostname): """ Sets the hostname of this RackHDBootImageBootImage. The hostname for target OS. :param hostname: The hostname of this RackHDBootImageBootImage. :type: str """ self._hostname = hostname @property def os_name(self): """ Gets the os_name of this RackHDBootImageBootImage. Name of the target OS to be installed :return: The os_name of this RackHDBootImageBootImage. :rtype: str """ return self._os_name @os_name.setter def os_name(self, os_name): """ Sets the os_name of this RackHDBootImageBootImage. Name of the target OS to be installed :param os_name: The os_name of this RackHDBootImageBootImage. :type: str """ allowed_values = ["CentOS", "CentOS+KVM", "ESXi", "RHEL", "RHEL+KVM"] if os_name not in allowed_values: raise ValueError( "Invalid value for `os_name`, must be one of {0}" .format(allowed_values) ) self._os_name = os_name @property def repo(self): """ Gets the repo of this RackHDBootImageBootImage. The external OS repository address, currently only supports HTTP :return: The repo of this RackHDBootImageBootImage. :rtype: str """ return self._repo @repo.setter def repo(self, repo): """ Sets the repo of this RackHDBootImageBootImage. The external OS repository address, currently only supports HTTP :param repo: The repo of this RackHDBootImageBootImage. :type: str """ self._repo = repo @property def version(self): """ Gets the version of this RackHDBootImageBootImage. The version number of target OS that needs to install. :return: The version of this RackHDBootImageBootImage. :rtype: str """ return self._version @version.setter def version(self, version): """ Sets the version of this RackHDBootImageBootImage. The version number of target OS that needs to install. :param version: The version of this RackHDBootImageBootImage. :type: str """ self._version = version @property def network_devices(self): """ Gets the network_devices of this RackHDBootImageBootImage. List of device names and static IP settings for network devices after OS installation. :return: The network_devices of this RackHDBootImageBootImage. :rtype: list[RackHDBootImageNetworkDevice] """ return self._network_devices @network_devices.setter def network_devices(self, network_devices): """ Sets the network_devices of this RackHDBootImageBootImage. List of device names and static IP settings for network devices after OS installation. :param network_devices: The network_devices of this RackHDBootImageBootImage. :type: list[RackHDBootImageNetworkDevice] """ self._network_devices = network_devices @property def root_password(self): """ Gets the root_password of this RackHDBootImageBootImage. The password for the OS root account. :return: The root_password of this RackHDBootImageBootImage. :rtype: str """ return self._root_password @root_password.setter def root_password(self, root_password): """ Sets the root_password of this RackHDBootImageBootImage. The password for the OS root account. :param root_password: The root_password of this RackHDBootImageBootImage. :type: str """ self._root_password = root_password @property def dns_servers(self): """ Gets the dns_servers of this RackHDBootImageBootImage. This is a list of Domain Name Servers. :return: The dns_servers of this RackHDBootImageBootImage. :rtype: list[str] """ return self._dns_servers @dns_servers.setter def dns_servers(self, dns_servers): """ Sets the dns_servers of this RackHDBootImageBootImage. This is a list of Domain Name Servers. :param dns_servers: The dns_servers of this RackHDBootImageBootImage. :type: list[str] """ self._dns_servers = dns_servers @property def install_disk(self): """ Gets the install_disk of this RackHDBootImageBootImage. :return: The install_disk of this RackHDBootImageBootImage. :rtype: str """ return self._install_disk @install_disk.setter def install_disk(self, install_disk): """ Sets the install_disk of this RackHDBootImageBootImage. :param install_disk: The install_disk of this RackHDBootImageBootImage. :type: str """ self._install_disk = install_disk def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other ```
{ "source": "jlongman/mega-linter", "score": 3 }
#### File: mega-linter/megalinter/plugin_factory.py ```python import logging import shutil import subprocess import sys import requests from megalinter import config, linter_factory, utils def list_plugins(): plugins = config.get_list("PLUGINS", []) return plugins # Load & install plugins from external URLs def initialize_plugins(): plugins = list_plugins() for plugin in plugins: descriptor_file = load_plugin(plugin) install_plugin(descriptor_file) # Load plugin descriptor def load_plugin(plugin): if plugin.startswith("https://"): # Check validity of plugin URL descriptor_file = "/megalinter-descriptors/" + plugin.rsplit("/", 1)[1] if "/mega-linter-plugin-" not in plugin: raise Exception( "[Plugins] Plugin descriptor file must be hosted in a directory containing /mega-linter-plugin-" ) if not descriptor_file.endswith(".megalinter-descriptor.yml"): raise Exception( "[Plugins] Plugin descriptor file must end with .megalinter-descriptor.yml" ) # Download plugin and write it in megalinter try: r = requests.get(plugin, allow_redirects=True) open(descriptor_file, "wb").write(r.content) logging.info( f"[Plugins] Loaded plugin descriptor {descriptor_file} from {plugin}" ) except Exception as e: raise Exception(f"[Plugins] Unable to load plugin {plugin}:\n{str(e)}") return descriptor_file else: raise Exception( "[Plugins] Plugin descriptors must follow the format" f" https://**/mega-linter-plugin-**/**.mega-linter-descriptor.yml (wrong value {plugin})" ) # Run plugin installation routines def install_plugin(descriptor_file): descriptor = linter_factory.build_descriptor_info(descriptor_file) # Install descriptor level items if "install" in descriptor: process_install(descriptor["install"]) # Install linter level items if "linters" in descriptor: for linter_description in descriptor["linters"]: if "install" in descriptor: process_install(linter_description["install"]) logging.info( f"[Plugins] Successful initialization of {descriptor['descriptor_id']} plugins" ) # WARNING: works only with dockerfile and RUN instructions for now def process_install(install): # Build commands from descriptor commands = [] # Dockerfile commands if "dockerfile" in install: # Remove RUN and \ at the end of lines from commands commands += [ command.replace("RUN ").replace(" \\\n", "\n") for command in install["dockerfile"] ] # Run install commands for command in commands: logging.debug("[Plugins] Install command: " + str(command)) process = subprocess.run( command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True, executable=shutil.which("bash") if sys.platform == "win32" else "/bin/bash", ) return_code = process.returncode stdout = utils.decode_utf8(process.stdout) logging.debug(f"[Plugins] Result ({str(return_code)}): {stdout}") if return_code != 0: raise Exception( f"[Plugins] Error while running install command {command}:\n{stdout}" ) ```
{ "source": "JLooo2/Backbone", "score": 3 }
#### File: JLooo2/Backbone/Network_in_Network_bn_keras.py ```python import keras from keras import optimizers from keras.callbacks import LearningRateScheduler, TensorBoard from keras.datasets import cifar10 from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D from keras.layers import Dropout, Activation from keras.layers.normalization import BatchNormalization from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator batch_size = 128 epochs = 200 iterations = 391 num_classes = 10 dropout = 0.5 weight_decay = 0.0001 def color_preprocessing(x_train, x_test): x_train = x_train.astype('float32') x_test = x_test.astype('float32') mean = [125.307, 122.95, 113.865] std = [62.9932, 62.0887, 66.7048] for i in range(3): x_train[:, :, :, i] = (x_train[:, :, :, i] - mean[i]) / std[i] x_test[:, :, :, i] = (x_test[:, :, :, i] - mean[i]) / std[i] return x_train, x_test def scheduler(epoch): if epoch <= 60: return 0.05 if epoch <= 120: return 0.01 if epoch <= 160: return 0.002 return 0.0004 def build_model(): model = Sequential() model.add(Conv2D(192, (5, 5), padding='same', kernel_regularizer=keras.regularizers.l2(weight_decay), input_shape=x_train.shape[1:])) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(160, (1, 1), padding='same', kernel_regularizer=keras.regularizers.l2(weight_decay))) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(96, (1, 1), padding='same', kernel_regularizer=keras.regularizers.l2(weight_decay))) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')) model.add(Dropout(dropout)) model.add(Conv2D(192, (5, 5), padding='same', kernel_regularizer=keras.regularizers.l2(weight_decay))) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(192, (1, 1), padding='same', kernel_regularizer=keras.regularizers.l2(weight_decay))) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(192, (1, 1), padding='same', kernel_regularizer=keras.regularizers.l2(weight_decay))) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')) model.add(Dropout(dropout)) model.add(Conv2D(192, (3, 3), padding='same', kernel_regularizer=keras.regularizers.l2(weight_decay))) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(192, (1, 1), padding='same', kernel_regularizer=keras.regularizers.l2(weight_decay))) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(10, (1, 1), padding='same', kernel_regularizer=keras.regularizers.l2(weight_decay))) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(GlobalAveragePooling2D()) model.add(Activation('softmax')) sgd = optimizers.SGD(lr=.1, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) return model if __name__ == '__main__': # load data (x_train, y_train), (x_test, y_test) = cifar10.load_data() y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) x_train, x_test = color_preprocessing(x_train, x_test) # build network model = build_model() print(model.summary()) # set callback tb_cb = TensorBoard(log_dir='E:/Code/Backbone/nin_bn', histogram_freq=0) change_lr = LearningRateScheduler(scheduler) cbks = [change_lr, tb_cb] # set data augmentation print('Using real-time data augmentation.') datagen = ImageDataGenerator(horizontal_flip=True, width_shift_range=0.125, height_shift_range=0.125, fill_mode='constant', cval=0.) datagen.fit(x_train) # start training model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size), steps_per_epoch=iterations, epochs=epochs, callbacks=cbks, validation_data=(x_test, y_test)) model.save('E:/Code/Backbone/models/nin_bn.h5') ``` #### File: JLooo2/Backbone/Wide_ResNet_keras.py ```python import keras import numpy as np from keras import optimizers from keras.callbacks import LearningRateScheduler, TensorBoard from keras.datasets import cifar10 from keras.layers import Conv2D, Dense, Input, add, Activation, Flatten, AveragePooling2D from keras.layers.normalization import BatchNormalization from keras.models import Model from keras.preprocessing.image import ImageDataGenerator from keras.regularizers import l2 DEPTH = 28 WIDE = 10 IN_FILTERS = 16 CLASS_NUM = 10 IMG_ROWS, IMG_COLS = 32, 32 IMG_CHANNELS = 3 BATCH_SIZE = 128 EPOCHS = 200 ITERATIONS = 50000 // BATCH_SIZE + 1 WEIGHT_DECAY = 0.0005 LOG_FILE_PATH = './wide_resnet/' from keras import backend as K # set GPU memory if ('tensorflow' == K.backend()): import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) def scheduler(epoch): if epoch < 60: return 0.1 if epoch < 120: return 0.02 if epoch < 160: return 0.004 return 0.0008 def color_preprocessing(x_train, x_test): x_train = x_train.astype('float32') x_test = x_test.astype('float32') mean = [125.3, 123.0, 113.9] std = [63.0, 62.1, 66.7] for i in range(3): x_train[:, :, :, i] = (x_train[:, :, :, i] - mean[i]) / std[i] x_test[:, :, :, i] = (x_test[:, :, :, i] - mean[i]) / std[i] return x_train, x_test def wide_residual_network(img_input, classes_num, depth, k): print('Wide-Resnet %dx%d' % (depth, k)) n_filters = [16, 16 * k, 32 * k, 64 * k] n_stack = (depth - 4) // 6 def conv3x3(x, filters): return Conv2D(filters=filters, kernel_size=(3, 3), strides=(1, 1), padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(WEIGHT_DECAY), use_bias=False)(x) def bn_relu(x): x = BatchNormalization(momentum=0.9, epsilon=1e-5)(x) x = Activation('relu')(x) return x def residual_block(x, out_filters, increase=False): global IN_FILTERS stride = (1, 1) if increase: stride = (2, 2) o1 = bn_relu(x) conv_1 = Conv2D(out_filters, kernel_size=(3, 3), strides=stride, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(WEIGHT_DECAY), use_bias=False)(o1) o2 = bn_relu(conv_1) conv_2 = Conv2D(out_filters, kernel_size=(3, 3), strides=(1, 1), padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(WEIGHT_DECAY), use_bias=False)(o2) if increase or IN_FILTERS != out_filters: proj = Conv2D(out_filters, kernel_size=(1, 1), strides=stride, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(WEIGHT_DECAY), use_bias=False)(o1) block = add([conv_2, proj]) else: block = add([conv_2, x]) return block def wide_residual_layer(x, out_filters, increase=False): global IN_FILTERS x = residual_block(x, out_filters, increase) IN_FILTERS = out_filters for _ in range(1, int(n_stack)): x = residual_block(x, out_filters) return x x = conv3x3(img_input, n_filters[0]) x = wide_residual_layer(x, n_filters[1]) x = wide_residual_layer(x, n_filters[2], increase=True) x = wide_residual_layer(x, n_filters[3], increase=True) x = BatchNormalization(momentum=0.9, epsilon=1e-5)(x) x = Activation('relu')(x) x = AveragePooling2D((8, 8))(x) x = Flatten()(x) x = Dense(classes_num, activation='softmax', kernel_initializer='he_normal', kernel_regularizer=l2(WEIGHT_DECAY), use_bias=False)(x) return x if __name__ == '__main__': # load data (x_train, y_train), (x_test, y_test) = cifar10.load_data() y_train = keras.utils.to_categorical(y_train, CLASS_NUM) y_test = keras.utils.to_categorical(y_test, CLASS_NUM) # color preprocessing x_train, x_test = color_preprocessing(x_train, x_test) # build network img_input = Input(shape=(IMG_ROWS, IMG_COLS, IMG_CHANNELS)) output = wide_residual_network(img_input, CLASS_NUM, DEPTH, WIDE) resnet = Model(img_input, output) print(resnet.summary()) # set optimizer sgd = optimizers.SGD(lr=.1, momentum=0.9, nesterov=True) resnet.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) # set callback tb_cb = TensorBoard(log_dir=LOG_FILE_PATH, histogram_freq=0) change_lr = LearningRateScheduler(scheduler) cbks = [change_lr, tb_cb] # set data augmentation print('Using real-time data augmentation.') datagen = ImageDataGenerator(horizontal_flip=True, width_shift_range=0.125, height_shift_range=0.125, fill_mode='reflect') datagen.fit(x_train) # start training resnet.fit_generator(datagen.flow(x_train, y_train, batch_size=BATCH_SIZE), steps_per_epoch=ITERATIONS, epochs=EPOCHS, callbacks=cbks, validation_data=(x_test, y_test)) resnet.save('E:/Code/Backbone/models/wide_resnet.h5') ```
{ "source": "JLooo2/UXNet-PyTorch", "score": 3 }
#### File: UXNet-PyTorch/NUSNet_model/NUSNet.py ```python import torch import torch.nn as nn import torch.nn.functional as F from torchstat import stat from torchsummary import summary # The Definition of Models : UXNet UXNet4 UXNet5 UXNet6 UXNet7 UXNetCAM UXNetSAM UXNetCBAM UXNet765CAM4SMALLSAM class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=16): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out) class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avg_out, max_out], dim=1) x = self.conv1(x) return self.sigmoid(x) class REBNCONV(nn.Module): def __init__(self, in_ch=3, out_ch=3, dirate=1): super(REBNCONV, self).__init__() self.conv_s1 = nn.Conv2d(in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate) self.bn_s1 = nn.BatchNorm2d(out_ch) self.relu_s1 = nn.ReLU(inplace=True) def forward(self, x): hx = x xout = self.relu_s1(self.bn_s1(self.conv_s1(hx))) return xout class BNREDWSCONV(nn.Module): def __init__(self, in_ch=3, out_ch=3, dirate=1): super(BNREDWSCONV, self).__init__() self.conv_s1 = nn.Conv2d(in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate, groups=in_ch) self.point_conv = nn.Conv2d(in_channels=in_ch, out_channels=out_ch, kernel_size=1, stride=1, padding=0, groups=1) self.bn_s1 = nn.BatchNorm2d(out_ch) self.relu_s1 = nn.ReLU(inplace=True) def forward(self, x): hx = x xout = self.relu_s1(self.bn_s1(self.point_conv(self.conv_s1(hx)))) return xout # upsample tensor 'src' to have the same spatial size with tensor 'tar' def _upsample_like(src, tar): src = F.interpolate(src, size=tar.shape[2:], mode='bilinear', align_corners=True) return src class NUSUnit7S(nn.Module): def __init__(self, in_ch=3, mid_ch=12, out_ch=3): super(NUSUnit7S, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.conv1 = REBNCONV(in_ch, out_ch, dirate=1) self.conv2 = REBNCONV(out_ch, mid_ch, dirate=1) self.conv3 = REBNCONV(mid_ch, out_ch, dirate=1) self.conv4 = BNREDWSCONV(mid_ch, mid_ch, dirate=1) self.conv5 = BNREDWSCONV(mid_ch, mid_ch, dirate=2) self.conv6 = BNREDWSCONV(mid_ch, mid_ch, dirate=5) self.sa = SpatialAttention() self.relu = nn.ReLU(inplace=True) def forward(self, x): hx = x hxin = self.conv1(hx) hx1 = self.conv2(hxin) hx = self.pool(hx1) hx2 = self.conv4(hx) hx = self.pool(hx2) hx3 = self.conv5(hx) hx = self.pool(hx3) hx4 = self.conv6(hx) hx = self.pool(hx4) hx5 = self.conv4(hx) hx = self.pool(hx5) hx6 = self.conv5(hx) hx7 = self.conv6(hx6) hx6d = self.conv4(torch.add(hx7, hx6)) hx6dup = _upsample_like(hx6d, hx5) hx5d = self.conv4(torch.add(hx6dup, hx5)) hx5dup = _upsample_like(hx5d, hx4) hx4d = self.conv4(torch.add(hx5dup, hx4)) hx4dup = _upsample_like(hx4d, hx3) hx3d = self.conv4(torch.add(hx4dup, hx3)) hx3dup = _upsample_like(hx3d, hx2) hx2d = self.conv4(torch.add(hx3dup, hx2)) hx2dup = _upsample_like(hx2d, hx1) hxinout = self.conv3(torch.add(hx2dup, hx1)) hxinout = self.sa(hxinout) * hxinout return self.relu(hxin + hxinout) class NUSUnit7C(nn.Module): def __init__(self, in_ch=3, mid_ch=12, out_ch=3): super(NUSUnit7C, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.conv1 = REBNCONV(in_ch, out_ch, dirate=1) self.conv2 = REBNCONV(out_ch, mid_ch, dirate=1) self.conv3 = REBNCONV(mid_ch, out_ch, dirate=1) self.conv4 = BNREDWSCONV(mid_ch, mid_ch, dirate=1) self.conv5 = BNREDWSCONV(mid_ch, mid_ch, dirate=2) self.conv6 = BNREDWSCONV(mid_ch, mid_ch, dirate=5) self.ca = ChannelAttention(out_ch) self.relu = nn.ReLU(inplace=True) def forward(self, x): hx = x hxin = self.conv1(hx) hx1 = self.conv2(hxin) hx = self.pool(hx1) hx2 = self.conv4(hx) hx = self.pool(hx2) hx3 = self.conv5(hx) hx = self.pool(hx3) hx4 = self.conv6(hx) hx = self.pool(hx4) hx5 = self.conv4(hx) hx = self.pool(hx5) hx6 = self.conv5(hx) hx7 = self.conv6(hx6) hx6d = self.conv4(torch.add(hx7, hx6)) hx6dup = _upsample_like(hx6d, hx5) hx5d = self.conv4(torch.add(hx6dup, hx5)) hx5dup = _upsample_like(hx5d, hx4) hx4d = self.conv4(torch.add(hx5dup, hx4)) hx4dup = _upsample_like(hx4d, hx3) hx3d = self.conv4(torch.add(hx4dup, hx3)) hx3dup = _upsample_like(hx3d, hx2) hx2d = self.conv4(torch.add(hx3dup, hx2)) hx2dup = _upsample_like(hx2d, hx1) hxinout = self.conv3(torch.add(hx2dup, hx1)) hxinout = self.ca(hxinout) * hxinout return self.relu(hxin + hxinout) class NUSUnit7CS(nn.Module): def __init__(self, in_ch=3, mid_ch=12, out_ch=3): super(NUSUnit7CS, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.conv1 = REBNCONV(in_ch, out_ch, dirate=1) self.conv2 = REBNCONV(out_ch, mid_ch, dirate=1) self.conv3 = REBNCONV(mid_ch, out_ch, dirate=1) self.conv4 = BNREDWSCONV(mid_ch, mid_ch, dirate=1) self.conv5 = BNREDWSCONV(mid_ch, mid_ch, dirate=2) self.conv6 = BNREDWSCONV(mid_ch, mid_ch, dirate=5) self.sa = SpatialAttention() self.ca = ChannelAttention(out_ch) self.relu = nn.ReLU(inplace=True) def forward(self, x): hx = x hxin = self.conv1(hx) hx1 = self.conv2(hxin) hx = self.pool(hx1) hx2 = self.conv4(hx) hx = self.pool(hx2) hx3 = self.conv5(hx) hx = self.pool(hx3) hx4 = self.conv6(hx) hx = self.pool(hx4) hx5 = self.conv4(hx) hx = self.pool(hx5) hx6 = self.conv5(hx) hx7 = self.conv6(hx6) hx6d = self.conv4(torch.add(hx7, hx6)) hx6dup = _upsample_like(hx6d, hx5) hx5d = self.conv4(torch.add(hx6dup, hx5)) hx5dup = _upsample_like(hx5d, hx4) hx4d = self.conv4(torch.add(hx5dup, hx4)) hx4dup = _upsample_like(hx4d, hx3) hx3d = self.conv4(torch.add(hx4dup, hx3)) hx3dup = _upsample_like(hx3d, hx2) hx2d = self.conv4(torch.add(hx3dup, hx2)) hx2dup = _upsample_like(hx2d, hx1) hxinout = self.conv3(torch.add(hx2dup, hx1)) hxinout = self.ca(hxinout) * hxinout hxinout = self.sa(hxinout) * hxinout return self.relu(hxin + hxinout) class NUSUnit6S(nn.Module): def __init__(self, in_ch=3, mid_ch=12, out_ch=3): super(NUSUnit6S, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.conv1 = REBNCONV(in_ch, out_ch, dirate=1) self.conv2 = REBNCONV(out_ch, mid_ch, dirate=1) self.conv3 = REBNCONV(mid_ch, out_ch, dirate=1) self.conv4 = BNREDWSCONV(mid_ch, mid_ch, dirate=1) self.conv5 = BNREDWSCONV(mid_ch, mid_ch, dirate=2) self.conv6 = BNREDWSCONV(mid_ch, mid_ch, dirate=5) self.sa = SpatialAttention() self.relu = nn.ReLU(inplace=True) def forward(self, x): hx = x hxin = self.conv1(hx) hx1 = self.conv2(hxin) hx = self.pool(hx1) hx2 = self.conv5(hx) hx = self.pool(hx2) hx3 = self.conv6(hx) hx = self.pool(hx3) hx4 = self.conv4(hx) hx = self.pool(hx4) hx5 = self.conv5(hx) hx6 = self.conv6(hx5) hx5d = self.conv4(torch.add(hx6, hx5)) hx5up = _upsample_like(hx5d, hx4) hx4d = self.conv4(torch.add(hx5up, hx4)) hx4up = _upsample_like(hx4d, hx3) hx3d = self.conv4(torch.add(hx4up, hx3)) hx3up = _upsample_like(hx3d, hx2) hx2d = self.conv4(torch.add(hx3up, hx2)) hx2up = _upsample_like(hx2d, hx1) hxinout = self.conv3(torch.add(hx2up, hx1)) hxinout = self.sa(hxinout) * hxinout return self.relu(hxin + hxinout) class NUSUnit6C(nn.Module): def __init__(self, in_ch=3, mid_ch=12, out_ch=3): super(NUSUnit6C, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.conv1 = REBNCONV(in_ch, out_ch, dirate=1) self.conv2 = REBNCONV(out_ch, mid_ch, dirate=1) self.conv3 = REBNCONV(mid_ch, out_ch, dirate=1) self.conv4 = BNREDWSCONV(mid_ch, mid_ch, dirate=1) self.conv5 = BNREDWSCONV(mid_ch, mid_ch, dirate=2) self.conv6 = BNREDWSCONV(mid_ch, mid_ch, dirate=5) self.ca = ChannelAttention(out_ch) self.relu = nn.ReLU(inplace=True) def forward(self, x): hx = x hxin = self.conv1(hx) hx1 = self.conv2(hxin) hx = self.pool(hx1) hx2 = self.conv5(hx) hx = self.pool(hx2) hx3 = self.conv6(hx) hx = self.pool(hx3) hx4 = self.conv4(hx) hx = self.pool(hx4) hx5 = self.conv5(hx) hx6 = self.conv6(hx5) hx5d = self.conv4(torch.add(hx6, hx5)) hx5up = _upsample_like(hx5d, hx4) hx4d = self.conv4(torch.add(hx5up, hx4)) hx4up = _upsample_like(hx4d, hx3) hx3d = self.conv4(torch.add(hx4up, hx3)) hx3up = _upsample_like(hx3d, hx2) hx2d = self.conv4(torch.add(hx3up, hx2)) hx2up = _upsample_like(hx2d, hx1) hxinout = self.conv3(torch.add(hx2up, hx1)) hxinout = self.ca(hxinout) * hxinout return self.relu(hxin + hxinout) class NUSUnit6CS(nn.Module): def __init__(self, in_ch=3, mid_ch=12, out_ch=3): super(NUSUnit6CS, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.conv1 = REBNCONV(in_ch, out_ch, dirate=1) self.conv2 = REBNCONV(out_ch, mid_ch, dirate=1) self.conv3 = REBNCONV(mid_ch, out_ch, dirate=1) self.conv4 = BNREDWSCONV(mid_ch, mid_ch, dirate=1) self.conv5 = BNREDWSCONV(mid_ch, mid_ch, dirate=2) self.conv6 = BNREDWSCONV(mid_ch, mid_ch, dirate=5) self.sa = SpatialAttention() self.ca = ChannelAttention(out_ch) self.relu = nn.ReLU(inplace=True) def forward(self, x): hx = x hxin = self.conv1(hx) hx1 = self.conv2(hxin) hx = self.pool(hx1) hx2 = self.conv5(hx) hx = self.pool(hx2) hx3 = self.conv6(hx) hx = self.pool(hx3) hx4 = self.conv4(hx) hx = self.pool(hx4) hx5 = self.conv5(hx) hx6 = self.conv6(hx5) hx5d = self.conv4(torch.add(hx6, hx5)) hx5up = _upsample_like(hx5d, hx4) hx4d = self.conv4(torch.add(hx5up, hx4)) hx4up = _upsample_like(hx4d, hx3) hx3d = self.conv4(torch.add(hx4up, hx3)) hx3up = _upsample_like(hx3d, hx2) hx2d = self.conv4(torch.add(hx3up, hx2)) hx2up = _upsample_like(hx2d, hx1) hxinout = self.conv3(torch.add(hx2up, hx1)) hxinout = self.ca(hxinout) * hxinout hxinout = self.sa(hxinout) * hxinout return self.relu(hxin + hxinout) class NUSUnit5S(nn.Module): def __init__(self, in_ch=3, mid_ch=12, out_ch=3): super(NUSUnit5S, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.conv1 = REBNCONV(in_ch, out_ch, dirate=1) self.conv2 = REBNCONV(out_ch, mid_ch, dirate=1) self.conv3 = REBNCONV(mid_ch, out_ch, dirate=1) self.conv4 = BNREDWSCONV(mid_ch, mid_ch, dirate=1) self.conv5 = BNREDWSCONV(mid_ch, mid_ch, dirate=2) self.sa = SpatialAttention() self.relu = nn.ReLU(inplace=True) def forward(self, x): hx = x hxin = self.conv1(hx) hx1 = self.conv2(hxin) hx = self.pool(hx1) hx2 = self.conv4(hx) hx = self.pool(hx2) hx3 = self.conv5(hx) hx = self.pool(hx3) hx4 = self.conv4(hx) hx5 = self.conv5(hx4) hx4d = self.conv4(torch.add(hx5, hx4)) hx4up = _upsample_like(hx4d, hx3) hx3d = self.conv4(torch.add(hx4up, hx3)) hx3up = _upsample_like(hx3d, hx2) hx2d = self.conv4(torch.add(hx3up, hx2)) hx2up = _upsample_like(hx2d, hx1) hxinout = self.conv3(torch.add(hx2up, hx1)) hxinout = self.sa(hxinout) * hxinout return self.relu(hxin + hxinout) class NUSUnit5C(nn.Module): def __init__(self, in_ch=3, mid_ch=12, out_ch=3): super(NUSUnit5C, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.conv1 = REBNCONV(in_ch, out_ch, dirate=1) self.conv2 = REBNCONV(out_ch, mid_ch, dirate=1) self.conv3 = REBNCONV(mid_ch, out_ch, dirate=1) self.conv4 = BNREDWSCONV(mid_ch, mid_ch, dirate=1) self.conv5 = BNREDWSCONV(mid_ch, mid_ch, dirate=2) self.ca = ChannelAttention(out_ch) self.relu = nn.ReLU(inplace=True) def forward(self, x): hx = x hxin = self.conv1(hx) hx1 = self.conv2(hxin) hx = self.pool(hx1) hx2 = self.conv4(hx) hx = self.pool(hx2) hx3 = self.conv5(hx) hx = self.pool(hx3) hx4 = self.conv4(hx) hx5 = self.conv5(hx4) hx4d = self.conv4(torch.add(hx5, hx4)) hx4up = _upsample_like(hx4d, hx3) hx3d = self.conv4(torch.add(hx4up, hx3)) hx3up = _upsample_like(hx3d, hx2) hx2d = self.conv4(torch.add(hx3up, hx2)) hx2up = _upsample_like(hx2d, hx1) hxinout = self.conv3(torch.add(hx2up, hx1)) hxinout = self.ca(hxinout) * hxinout return self.relu(hxin + hxinout) class NUSUnit5CS(nn.Module): def __init__(self, in_ch=3, mid_ch=12, out_ch=3): super(NUSUnit5CS, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.conv1 = REBNCONV(in_ch, out_ch, dirate=1) self.conv2 = REBNCONV(out_ch, mid_ch, dirate=1) self.conv3 = REBNCONV(mid_ch, out_ch, dirate=1) self.conv4 = BNREDWSCONV(mid_ch, mid_ch, dirate=1) self.conv5 = BNREDWSCONV(mid_ch, mid_ch, dirate=2) self.sa = SpatialAttention() self.ca = ChannelAttention(out_ch) self.relu = nn.ReLU(inplace=True) def forward(self, x): hx = x hxin = self.conv1(hx) hx1 = self.conv2(hxin) hx = self.pool(hx1) hx2 = self.conv4(hx) hx = self.pool(hx2) hx3 = self.conv5(hx) hx = self.pool(hx3) hx4 = self.conv4(hx) hx5 = self.conv5(hx4) hx4d = self.conv4(torch.add(hx5, hx4)) hx4up = _upsample_like(hx4d, hx3) hx3d = self.conv4(torch.add(hx4up, hx3)) hx3up = _upsample_like(hx3d, hx2) hx2d = self.conv4(torch.add(hx3up, hx2)) hx2up = _upsample_like(hx2d, hx1) hxinout = self.conv3(torch.add(hx2up, hx1)) hxinout = self.ca(hxinout) * hxinout hxinout = self.sa(hxinout) * hxinout return self.relu(hxin + hxinout) class NUSUnit4C(nn.Module): def __init__(self, in_ch=3, mid_ch=12, out_ch=3): super(NUSUnit4C, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.conv1 = REBNCONV(in_ch, out_ch, dirate=1) self.conv2 = REBNCONV(out_ch, mid_ch, dirate=1) self.conv3 = REBNCONV(mid_ch, out_ch, dirate=1) self.conv4 = BNREDWSCONV(mid_ch, mid_ch, dirate=1) self.conv5 = BNREDWSCONV(mid_ch, mid_ch, dirate=2) self.ca = ChannelAttention(out_ch) self.relu = nn.ReLU(inplace=True) def forward(self, x): hx = x hxin = self.conv1(hx) hx1 = self.conv2(hxin) hx = self.pool(hx1) hx2 = self.conv5(hx) hx = self.pool(hx2) hx3 = self.conv4(hx) hx4 = self.conv5(hx3) hx3d = self.conv4(torch.add(hx4, hx3)) hx3up = _upsample_like(hx3d, hx2) hx2d = self.conv4(torch.add(hx3up, hx2)) hx2up = _upsample_like(hx2d, hx1) hxinout = self.conv3(torch.add(hx2up, hx1)) hxinout = self.ca(hxinout) * hxinout return self.relu(hxin + hxinout) class NUSUnit4S(nn.Module): def __init__(self, in_ch=3, mid_ch=12, out_ch=3): super(NUSUnit4S, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.conv1 = REBNCONV(in_ch, out_ch, dirate=1) self.conv2 = REBNCONV(out_ch, mid_ch, dirate=1) self.conv3 = REBNCONV(mid_ch, out_ch, dirate=1) self.conv4 = BNREDWSCONV(mid_ch, mid_ch, dirate=1) self.conv5 = BNREDWSCONV(mid_ch, mid_ch, dirate=2) self.sa = SpatialAttention() self.relu = nn.ReLU(inplace=True) def forward(self, x): hx = x hxin = self.conv1(hx) hx1 = self.conv2(hxin) hx = self.pool(hx1) hx2 = self.conv5(hx) hx = self.pool(hx2) hx3 = self.conv4(hx) hx4 = self.conv5(hx3) hx3d = self.conv4(torch.add(hx4, hx3)) hx3up = _upsample_like(hx3d, hx2) hx2d = self.conv4(torch.add(hx3up, hx2)) hx2up = _upsample_like(hx2d, hx1) hxinout = self.conv3(torch.add(hx2up, hx1)) hxinout = self.sa(hxinout) * hxinout return self.relu(hxin + hxinout) class NUSUnit4CS(nn.Module): def __init__(self, in_ch=3, mid_ch=12, out_ch=3): super(NUSUnit4CS, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.conv1 = REBNCONV(in_ch, out_ch, dirate=1) self.conv2 = REBNCONV(out_ch, mid_ch, dirate=1) self.conv3 = REBNCONV(mid_ch, out_ch, dirate=1) self.conv4 = BNREDWSCONV(mid_ch, mid_ch, dirate=1) self.conv5 = BNREDWSCONV(mid_ch, mid_ch, dirate=2) self.sa = SpatialAttention() self.ca = ChannelAttention(out_ch) self.relu = nn.ReLU(inplace=True) def forward(self, x): hx = x hxin = self.conv1(hx) hx1 = self.conv2(hxin) hx = self.pool(hx1) hx2 = self.conv5(hx) hx = self.pool(hx2) hx3 = self.conv4(hx) hx4 = self.conv5(hx3) hx3d = self.conv4(torch.add(hx4, hx3)) hx3up = _upsample_like(hx3d, hx2) hx2d = self.conv4(torch.add(hx3up, hx2)) hx2up = _upsample_like(hx2d, hx1) hxinout = self.conv3(torch.add(hx2up, hx1)) hxinout = self.ca(hxinout) * hxinout hxinout = self.sa(hxinout) * hxinout return self.relu(hxin + hxinout) class NUSUnitSmallS(nn.Module): def __init__(self, in_ch=3, mid_ch=12, out_ch=3): super(NUSUnitSmallS, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.conv1 = REBNCONV(in_ch, out_ch, dirate=1) self.conv2 = REBNCONV(out_ch, mid_ch, dirate=1) self.conv3 = REBNCONV(mid_ch, out_ch, dirate=1) self.conv4 = BNREDWSCONV(mid_ch, mid_ch, dirate=1) self.conv5 = BNREDWSCONV(mid_ch, mid_ch, dirate=2) self.sa = SpatialAttention() self.relu = nn.ReLU(inplace=True) def forward(self, x): hx = x hxin = self.conv1(hx) hx1 = self.conv2(hxin) hx2 = self.conv5(hx1) hx3 = self.conv4(hx2) hx4 = self.conv5(hx3) hx3d = self.conv4(torch.add(hx4, hx3)) hx2d = self.conv4(torch.add(hx3d, hx2)) hxinout = self.conv3(torch.add(hx2d, hx1)) hxinout = self.sa(hxinout) * hxinout return self.relu(hxin + hxinout) class NUSUnitSmallC(nn.Module): def __init__(self, in_ch=3, mid_ch=12, out_ch=3): super(NUSUnitSmallC, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.conv1 = REBNCONV(in_ch, out_ch, dirate=1) self.conv2 = REBNCONV(out_ch, mid_ch, dirate=1) self.conv3 = REBNCONV(mid_ch, out_ch, dirate=1) self.conv4 = BNREDWSCONV(mid_ch, mid_ch, dirate=1) self.conv5 = BNREDWSCONV(mid_ch, mid_ch, dirate=2) self.ca = ChannelAttention(out_ch) self.relu = nn.ReLU(inplace=True) def forward(self, x): hx = x hxin = self.conv1(hx) hx1 = self.conv2(hxin) hx2 = self.conv5(hx1) hx3 = self.conv4(hx2) hx4 = self.conv5(hx3) hx3d = self.conv4(torch.add(hx4, hx3)) hx2d = self.conv4(torch.add(hx3d, hx2)) hxinout = self.conv3(torch.add(hx2d, hx1)) hxinout = self.ca(hxinout) * hxinout return self.relu(hxin + hxinout) class NUSUnitSmallCS(nn.Module): def __init__(self, in_ch=3, mid_ch=12, out_ch=3): super(NUSUnitSmallCS, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.conv1 = REBNCONV(in_ch, out_ch, dirate=1) self.conv2 = REBNCONV(out_ch, mid_ch, dirate=1) self.conv3 = REBNCONV(mid_ch, out_ch, dirate=1) self.conv4 = BNREDWSCONV(mid_ch, mid_ch, dirate=1) self.conv5 = BNREDWSCONV(mid_ch, mid_ch, dirate=2) self.sa = SpatialAttention() self.ca = ChannelAttention(out_ch) self.relu = nn.ReLU(inplace=True) def forward(self, x): hx = x hxin = self.conv1(hx) hx1 = self.conv2(hxin) hx2 = self.conv5(hx1) hx3 = self.conv4(hx2) hx4 = self.conv5(hx3) hx3d = self.conv4(torch.add(hx4, hx3)) hx2d = self.conv4(torch.add(hx3d, hx2)) hxinout = self.conv3(torch.add(hx2d, hx1)) hxinout = self.ca(hxinout) * hxinout hxinout = self.sa(hxinout) * hxinout return self.relu(hxin + hxinout) class NUSNet(nn.Module): def __init__(self, in_ch=3, out_ch=1): super(NUSNet, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.en1 = NUSUnit7S(in_ch, 32, 64) self.en2 = NUSUnit6S(64, 32, 128) self.en3 = NUSUnit5S(128, 64, 256) self.en4 = NUSUnit4C(256, 128, 512) self.en5 = NUSUnitSmallC(512, 256, 512) self.en6 = NUSUnitSmallC(512, 256, 512) self.de5 = NUSUnitSmallC(512, 256, 512) self.de4 = NUSUnit4C(512, 128, 256) self.de3 = NUSUnit5S(256, 64, 128) self.de2 = NUSUnit6S(128, 32, 64) self.de1 = NUSUnit7S(64, 32, 64) self.side1 = nn.Conv2d(64, out_ch, 3, padding=1) self.side2 = nn.Conv2d(64, out_ch, 3, padding=1) self.side3 = nn.Conv2d(128, out_ch, 3, padding=1) self.side4 = nn.Conv2d(256, out_ch, 3, padding=1) self.side5 = nn.Conv2d(512, out_ch, 3, padding=1) self.side6 = nn.Conv2d(512, out_ch, 3, padding=1) self.outconv = nn.Conv2d(6, out_ch, 1) def forward(self, x): hx = x # encoder hx1 = self.en1(hx) hx = self.pool(hx1) hx2 = self.en2(hx) hx = self.pool(hx2) hx3 = self.en3(hx) hx = self.pool(hx3) hx4 = self.en4(hx) hx = self.pool(hx4) hx5 = self.en5(hx) hx6 = self.en6(hx5) # decoder hx5d = self.de5(torch.add(hx6, hx5)) hx5up = _upsample_like(hx5d, hx4) hx4d = self.de4(torch.add(hx5up, hx4)) hx4up = _upsample_like(hx4d, hx3) hx3d = self.de3(torch.add(hx4up, hx3)) hx3up = _upsample_like(hx3d, hx2) hx2d = self.de2(torch.add(hx3up, hx2)) hx2up = _upsample_like(hx2d, hx1) hx1d = self.de1(hx2up) # output sup1 = self.side1(hx1d) sup2 = self.side2(hx2d) sup2 = _upsample_like(sup2, sup1) sup3 = self.side3(hx3d) sup3 = _upsample_like(sup3, sup1) sup4 = self.side4(hx4d) sup4 = _upsample_like(sup4, sup1) sup5 = self.side5(hx5d) sup5 = _upsample_like(sup5, sup1) sup6 = self.side6(hx6) sup6 = _upsample_like(sup6, sup1) final_fusion_loss = self.outconv(torch.cat((sup1, sup2, sup3, sup4, sup5, sup6), 1)) return F.torch.sigmoid(final_fusion_loss), F.torch.sigmoid(sup1), F.torch.sigmoid(sup2), F.torch.sigmoid( sup3), F.torch.sigmoid(sup4), F.torch.sigmoid(sup5), F.torch.sigmoid(sup6) class NUSNetSAM(nn.Module): def __init__(self, in_ch=3, out_ch=1): super(NUSNetSAM, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.en1 = NUSUnit7S(in_ch, 32, 64) self.en2 = NUSUnit6S(64, 32, 128) self.en3 = NUSUnit5S(128, 64, 256) self.en4 = NUSUnit4S(256, 128, 512) self.en5 = NUSUnitSmallS(512, 256, 512) self.en6 = NUSUnitSmallS(512, 256, 512) self.de5 = NUSUnitSmallS(512, 256, 512) self.de4 = NUSUnit4S(512, 128, 256) self.de3 = NUSUnit5S(256, 64, 128) self.de2 = NUSUnit6S(128, 32, 64) self.de1 = NUSUnit7S(64, 32, 64) self.side1 = nn.Conv2d(64, out_ch, 3, padding=1) self.side2 = nn.Conv2d(64, out_ch, 3, padding=1) self.side3 = nn.Conv2d(128, out_ch, 3, padding=1) self.side4 = nn.Conv2d(256, out_ch, 3, padding=1) self.side5 = nn.Conv2d(512, out_ch, 3, padding=1) self.side6 = nn.Conv2d(512, out_ch, 3, padding=1) self.outconv = nn.Conv2d(6, out_ch, 1) def forward(self, x): hx = x # encoder hx1 = self.en1(hx) hx = self.pool(hx1) hx2 = self.en2(hx) hx = self.pool(hx2) hx3 = self.en3(hx) hx = self.pool(hx3) hx4 = self.en4(hx) hx = self.pool(hx4) hx5 = self.en5(hx) hx6 = self.en6(hx5) # decoder hx5d = self.de5(torch.add(hx6, hx5)) hx5up = _upsample_like(hx5d, hx4) hx4d = self.de4(torch.add(hx5up, hx4)) hx4up = _upsample_like(hx4d, hx3) hx3d = self.de3(torch.add(hx4up, hx3)) hx3up = _upsample_like(hx3d, hx2) hx2d = self.de2(torch.add(hx3up, hx2)) hx2up = _upsample_like(hx2d, hx1) hx1d = self.de1(hx2up) # output sup1 = self.side1(hx1d) sup2 = self.side2(hx2d) sup2 = _upsample_like(sup2, sup1) sup3 = self.side3(hx3d) sup3 = _upsample_like(sup3, sup1) sup4 = self.side4(hx4d) sup4 = _upsample_like(sup4, sup1) sup5 = self.side5(hx5d) sup5 = _upsample_like(sup5, sup1) sup6 = self.side6(hx6) sup6 = _upsample_like(sup6, sup1) final_fusion_loss = self.outconv(torch.cat((sup1, sup2, sup3, sup4, sup5, sup6), 1)) return F.torch.sigmoid(final_fusion_loss), F.torch.sigmoid(sup1), F.torch.sigmoid(sup2), F.torch.sigmoid( sup3), F.torch.sigmoid(sup4), F.torch.sigmoid(sup5), F.torch.sigmoid(sup6) class NUSNetCAM(nn.Module): def __init__(self, in_ch=3, out_ch=1): super(NUSNetCAM, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.en1 = NUSUnit7C(in_ch, 32, 64) self.en2 = NUSUnit6C(64, 32, 128) self.en3 = NUSUnit5C(128, 64, 256) self.en4 = NUSUnit4C(256, 128, 512) self.en5 = NUSUnitSmallC(512, 256, 512) self.en6 = NUSUnitSmallC(512, 256, 512) self.de5 = NUSUnitSmallC(512, 256, 512) self.de4 = NUSUnit4C(512, 128, 256) self.de3 = NUSUnit5C(256, 64, 128) self.de2 = NUSUnit6C(128, 32, 64) self.de1 = NUSUnit7C(64, 32, 64) self.side1 = nn.Conv2d(64, out_ch, 3, padding=1) self.side2 = nn.Conv2d(64, out_ch, 3, padding=1) self.side3 = nn.Conv2d(128, out_ch, 3, padding=1) self.side4 = nn.Conv2d(256, out_ch, 3, padding=1) self.side5 = nn.Conv2d(512, out_ch, 3, padding=1) self.side6 = nn.Conv2d(512, out_ch, 3, padding=1) self.outconv = nn.Conv2d(6, out_ch, 1) def forward(self, x): hx = x # encoder hx1 = self.en1(hx) hx = self.pool(hx1) hx2 = self.en2(hx) hx = self.pool(hx2) hx3 = self.en3(hx) hx = self.pool(hx3) hx4 = self.en4(hx) hx = self.pool(hx4) hx5 = self.en5(hx) hx6 = self.en6(hx5) # decoder hx5d = self.de5(torch.add(hx6, hx5)) hx5up = _upsample_like(hx5d, hx4) hx4d = self.de4(torch.add(hx5up, hx4)) hx4up = _upsample_like(hx4d, hx3) hx3d = self.de3(torch.add(hx4up, hx3)) hx3up = _upsample_like(hx3d, hx2) hx2d = self.de2(torch.add(hx3up, hx2)) hx2up = _upsample_like(hx2d, hx1) hx1d = self.de1(hx2up) # output sup1 = self.side1(hx1d) sup2 = self.side2(hx2d) sup2 = _upsample_like(sup2, sup1) sup3 = self.side3(hx3d) sup3 = _upsample_like(sup3, sup1) sup4 = self.side4(hx4d) sup4 = _upsample_like(sup4, sup1) sup5 = self.side5(hx5d) sup5 = _upsample_like(sup5, sup1) sup6 = self.side6(hx6) sup6 = _upsample_like(sup6, sup1) final_fusion_loss = self.outconv(torch.cat((sup1, sup2, sup3, sup4, sup5, sup6), 1)) return F.torch.sigmoid(final_fusion_loss), F.torch.sigmoid(sup1), F.torch.sigmoid(sup2), F.torch.sigmoid( sup3), F.torch.sigmoid(sup4), F.torch.sigmoid(sup5), F.torch.sigmoid(sup6) class NUSNet4(nn.Module): def __init__(self, in_ch=3, out_ch=1): super(NUSNet4, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.en1 = NUSUnit4S(in_ch, 32, 64) self.en2 = NUSUnit4S(64, 32, 128) self.en3 = NUSUnit4S(128, 64, 256) self.en4 = NUSUnit4C(256, 128, 512) self.en5 = NUSUnit4C(512, 256, 512) self.en6 = NUSUnit4C(512, 256, 512) self.de5 = NUSUnit4C(512, 256, 512) self.de4 = NUSUnit4C(512, 128, 256) self.de3 = NUSUnit4S(256, 64, 128) self.de2 = NUSUnit4S(128, 32, 64) self.de1 = NUSUnit4S(64, 32, 64) self.side1 = nn.Conv2d(64, out_ch, 3, padding=1) self.side2 = nn.Conv2d(64, out_ch, 3, padding=1) self.side3 = nn.Conv2d(128, out_ch, 3, padding=1) self.side4 = nn.Conv2d(256, out_ch, 3, padding=1) self.side5 = nn.Conv2d(512, out_ch, 3, padding=1) self.side6 = nn.Conv2d(512, out_ch, 3, padding=1) self.outconv = nn.Conv2d(6, out_ch, 1) def forward(self, x): hx = x # encoder hx1 = self.en1(hx) hx = self.pool(hx1) hx2 = self.en2(hx) hx = self.pool(hx2) hx3 = self.en3(hx) hx = self.pool(hx3) hx4 = self.en4(hx) hx = self.pool(hx4) hx5 = self.en5(hx) hx6 = self.en6(hx5) # decoder hx5d = self.de5(torch.add(hx6, hx5)) hx5up = _upsample_like(hx5d, hx4) hx4d = self.de4(torch.add(hx5up, hx4)) hx4up = _upsample_like(hx4d, hx3) hx3d = self.de3(torch.add(hx4up, hx3)) hx3up = _upsample_like(hx3d, hx2) hx2d = self.de2(torch.add(hx3up, hx2)) hx2up = _upsample_like(hx2d, hx1) hx1d = self.de1(hx2up) # output sup1 = self.side1(hx1d) sup2 = self.side2(hx2d) sup2 = _upsample_like(sup2, sup1) sup3 = self.side3(hx3d) sup3 = _upsample_like(sup3, sup1) sup4 = self.side4(hx4d) sup4 = _upsample_like(sup4, sup1) sup5 = self.side5(hx5d) sup5 = _upsample_like(sup5, sup1) sup6 = self.side6(hx6) sup6 = _upsample_like(sup6, sup1) final_fusion_loss = self.outconv(torch.cat((sup1, sup2, sup3, sup4, sup5, sup6), 1)) return F.torch.sigmoid(final_fusion_loss), F.torch.sigmoid(sup1), F.torch.sigmoid(sup2), F.torch.sigmoid( sup3), F.torch.sigmoid(sup4), F.torch.sigmoid(sup5), F.torch.sigmoid(sup6) class NUSNet5(nn.Module): def __init__(self, in_ch=3, out_ch=1): super(NUSNet5, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.en1 = NUSUnit5S(in_ch, 32, 64) self.en2 = NUSUnit5S(64, 32, 128) self.en3 = NUSUnit5S(128, 64, 256) self.en4 = NUSUnit5C(256, 128, 512) self.en5 = NUSUnit5C(512, 256, 512) self.en6 = NUSUnit5C(512, 256, 512) self.de5 = NUSUnit5C(512, 256, 512) self.de4 = NUSUnit5C(512, 128, 256) self.de3 = NUSUnit5S(256, 64, 128) self.de2 = NUSUnit5S(128, 32, 64) self.de1 = NUSUnit5S(64, 32, 64) self.side1 = nn.Conv2d(64, out_ch, 3, padding=1) self.side2 = nn.Conv2d(64, out_ch, 3, padding=1) self.side3 = nn.Conv2d(128, out_ch, 3, padding=1) self.side4 = nn.Conv2d(256, out_ch, 3, padding=1) self.side5 = nn.Conv2d(512, out_ch, 3, padding=1) self.side6 = nn.Conv2d(512, out_ch, 3, padding=1) self.outconv = nn.Conv2d(6, out_ch, 1) def forward(self, x): hx = x # encoder hx1 = self.en1(hx) hx = self.pool(hx1) hx2 = self.en2(hx) hx = self.pool(hx2) hx3 = self.en3(hx) hx = self.pool(hx3) hx4 = self.en4(hx) hx = self.pool(hx4) hx5 = self.en5(hx) hx6 = self.en6(hx5) # decoder hx5d = self.de5(torch.add(hx6, hx5)) hx5up = _upsample_like(hx5d, hx4) hx4d = self.de4(torch.add(hx5up, hx4)) hx4up = _upsample_like(hx4d, hx3) hx3d = self.de3(torch.add(hx4up, hx3)) hx3up = _upsample_like(hx3d, hx2) hx2d = self.de2(torch.add(hx3up, hx2)) hx2up = _upsample_like(hx2d, hx1) hx1d = self.de1(hx2up) # output sup1 = self.side1(hx1d) sup2 = self.side2(hx2d) sup2 = _upsample_like(sup2, sup1) sup3 = self.side3(hx3d) sup3 = _upsample_like(sup3, sup1) sup4 = self.side4(hx4d) sup4 = _upsample_like(sup4, sup1) sup5 = self.side5(hx5d) sup5 = _upsample_like(sup5, sup1) sup6 = self.side6(hx6) sup6 = _upsample_like(sup6, sup1) final_fusion_loss = self.outconv(torch.cat((sup1, sup2, sup3, sup4, sup5, sup6), 1)) return F.torch.sigmoid(final_fusion_loss), F.torch.sigmoid(sup1), F.torch.sigmoid(sup2), F.torch.sigmoid( sup3), F.torch.sigmoid(sup4), F.torch.sigmoid(sup5), F.torch.sigmoid(sup6) class NUSNet6(nn.Module): def __init__(self, in_ch=3, out_ch=1): super(NUSNet6, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.en1 = NUSUnit6S(in_ch, 32, 64) self.en2 = NUSUnit6S(64, 32, 128) self.en3 = NUSUnit6S(128, 64, 256) self.en4 = NUSUnit6C(256, 128, 512) self.en5 = NUSUnit6C(512, 256, 512) self.en6 = NUSUnit6C(512, 256, 512) self.de5 = NUSUnit6C(512, 256, 512) self.de4 = NUSUnit6C(512, 128, 256) self.de3 = NUSUnit6S(256, 64, 128) self.de2 = NUSUnit6S(128, 32, 64) self.de1 = NUSUnit6S(64, 32, 64) self.side1 = nn.Conv2d(64, out_ch, 3, padding=1) self.side2 = nn.Conv2d(64, out_ch, 3, padding=1) self.side3 = nn.Conv2d(128, out_ch, 3, padding=1) self.side4 = nn.Conv2d(256, out_ch, 3, padding=1) self.side5 = nn.Conv2d(512, out_ch, 3, padding=1) self.side6 = nn.Conv2d(512, out_ch, 3, padding=1) self.outconv = nn.Conv2d(6, out_ch, 1) def forward(self, x): hx = x # encoder hx1 = self.en1(hx) hx = self.pool(hx1) hx2 = self.en2(hx) hx = self.pool(hx2) hx3 = self.en3(hx) hx = self.pool(hx3) hx4 = self.en4(hx) hx = self.pool(hx4) hx5 = self.en5(hx) hx6 = self.en6(hx5) # decoder hx5d = self.de5(torch.add(hx6, hx5)) hx5up = _upsample_like(hx5d, hx4) hx4d = self.de4(torch.add(hx5up, hx4)) hx4up = _upsample_like(hx4d, hx3) hx3d = self.de3(torch.add(hx4up, hx3)) hx3up = _upsample_like(hx3d, hx2) hx2d = self.de2(torch.add(hx3up, hx2)) hx2up = _upsample_like(hx2d, hx1) hx1d = self.de1(hx2up) # output sup1 = self.side1(hx1d) sup2 = self.side2(hx2d) sup2 = _upsample_like(sup2, sup1) sup3 = self.side3(hx3d) sup3 = _upsample_like(sup3, sup1) sup4 = self.side4(hx4d) sup4 = _upsample_like(sup4, sup1) sup5 = self.side5(hx5d) sup5 = _upsample_like(sup5, sup1) sup6 = self.side6(hx6) sup6 = _upsample_like(sup6, sup1) final_fusion_loss = self.outconv(torch.cat((sup1, sup2, sup3, sup4, sup5, sup6), 1)) return F.torch.sigmoid(final_fusion_loss), F.torch.sigmoid(sup1), F.torch.sigmoid(sup2), F.torch.sigmoid( sup3), F.torch.sigmoid(sup4), F.torch.sigmoid(sup5), F.torch.sigmoid(sup6) class NUSNet7(nn.Module): def __init__(self, in_ch=3, out_ch=1): super(NUSNet7, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.en1 = NUSUnit7S(in_ch, 32, 64) self.en2 = NUSUnit7S(64, 32, 128) self.en3 = NUSUnit7S(128, 64, 256) self.en4 = NUSUnit7C(256, 128, 512) self.en5 = NUSUnit7C(512, 256, 512) self.en6 = NUSUnit7C(512, 256, 512) self.de5 = NUSUnit7C(512, 256, 512) self.de4 = NUSUnit7C(512, 128, 256) self.de3 = NUSUnit7S(256, 64, 128) self.de2 = NUSUnit7S(128, 32, 64) self.de1 = NUSUnit7S(64, 32, 64) self.side1 = nn.Conv2d(64, out_ch, 3, padding=1) self.side2 = nn.Conv2d(64, out_ch, 3, padding=1) self.side3 = nn.Conv2d(128, out_ch, 3, padding=1) self.side4 = nn.Conv2d(256, out_ch, 3, padding=1) self.side5 = nn.Conv2d(512, out_ch, 3, padding=1) self.side6 = nn.Conv2d(512, out_ch, 3, padding=1) self.outconv = nn.Conv2d(6, out_ch, 1) def forward(self, x): hx = x # encoder hx1 = self.en1(hx) hx = self.pool(hx1) hx2 = self.en2(hx) hx = self.pool(hx2) hx3 = self.en3(hx) hx = self.pool(hx3) hx4 = self.en4(hx) hx = self.pool(hx4) hx5 = self.en5(hx) hx6 = self.en6(hx5) # decoder hx5d = self.de5(torch.add(hx6, hx5)) hx5up = _upsample_like(hx5d, hx4) hx4d = self.de4(torch.add(hx5up, hx4)) hx4up = _upsample_like(hx4d, hx3) hx3d = self.de3(torch.add(hx4up, hx3)) hx3up = _upsample_like(hx3d, hx2) hx2d = self.de2(torch.add(hx3up, hx2)) hx2up = _upsample_like(hx2d, hx1) hx1d = self.de1(hx2up) # output sup1 = self.side1(hx1d) sup2 = self.side2(hx2d) sup2 = _upsample_like(sup2, sup1) sup3 = self.side3(hx3d) sup3 = _upsample_like(sup3, sup1) sup4 = self.side4(hx4d) sup4 = _upsample_like(sup4, sup1) sup5 = self.side5(hx5d) sup5 = _upsample_like(sup5, sup1) sup6 = self.side6(hx6) sup6 = _upsample_like(sup6, sup1) final_fusion_loss = self.outconv(torch.cat((sup1, sup2, sup3, sup4, sup5, sup6), 1)) return F.torch.sigmoid(final_fusion_loss), F.torch.sigmoid(sup1), F.torch.sigmoid(sup2), F.torch.sigmoid( sup3), F.torch.sigmoid(sup4), F.torch.sigmoid(sup5), F.torch.sigmoid(sup6) class NUSNetCBAM(nn.Module): def __init__(self, in_ch=3, out_ch=1): super(NUSNetCBAM, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.en1 = NUSUnit7CS(in_ch, 32, 64) self.en2 = NUSUnit6CS(64, 32, 128) self.en3 = NUSUnit5CS(128, 64, 256) self.en4 = NUSUnit4CS(256, 128, 512) self.en5 = NUSUnitSmallCS(512, 256, 512) self.en6 = NUSUnitSmallCS(512, 256, 512) self.de5 = NUSUnitSmallCS(512, 256, 512) self.de4 = NUSUnit4CS(512, 128, 256) self.de3 = NUSUnit5CS(256, 64, 128) self.de2 = NUSUnit6CS(128, 32, 64) self.de1 = NUSUnit7CS(64, 32, 64) self.side1 = nn.Conv2d(64, out_ch, 3, padding=1) self.side2 = nn.Conv2d(64, out_ch, 3, padding=1) self.side3 = nn.Conv2d(128, out_ch, 3, padding=1) self.side4 = nn.Conv2d(256, out_ch, 3, padding=1) self.side5 = nn.Conv2d(512, out_ch, 3, padding=1) self.side6 = nn.Conv2d(512, out_ch, 3, padding=1) self.outconv = nn.Conv2d(6, out_ch, 1) def forward(self, x): hx = x # encoder hx1 = self.en1(hx) hx = self.pool(hx1) hx2 = self.en2(hx) hx = self.pool(hx2) hx3 = self.en3(hx) hx = self.pool(hx3) hx4 = self.en4(hx) hx = self.pool(hx4) hx5 = self.en5(hx) hx6 = self.en6(hx5) # decoder hx5d = self.de5(torch.add(hx6, hx5)) hx5up = _upsample_like(hx5d, hx4) hx4d = self.de4(torch.add(hx5up, hx4)) hx4up = _upsample_like(hx4d, hx3) hx3d = self.de3(torch.add(hx4up, hx3)) hx3up = _upsample_like(hx3d, hx2) hx2d = self.de2(torch.add(hx3up, hx2)) hx2up = _upsample_like(hx2d, hx1) hx1d = self.de1(hx2up) # output sup1 = self.side1(hx1d) sup2 = self.side2(hx2d) sup2 = _upsample_like(sup2, sup1) sup3 = self.side3(hx3d) sup3 = _upsample_like(sup3, sup1) sup4 = self.side4(hx4d) sup4 = _upsample_like(sup4, sup1) sup5 = self.side5(hx5d) sup5 = _upsample_like(sup5, sup1) sup6 = self.side6(hx6) sup6 = _upsample_like(sup6, sup1) final_fusion_loss = self.outconv(torch.cat((sup1, sup2, sup3, sup4, sup5, sup6), 1)) return F.torch.sigmoid(final_fusion_loss), F.torch.sigmoid(sup1), F.torch.sigmoid(sup2), F.torch.sigmoid( sup3), F.torch.sigmoid(sup4), F.torch.sigmoid(sup5), F.torch.sigmoid(sup6) class NUSNet765CAM4SMALLSAM(nn.Module): def __init__(self, in_ch=3, out_ch=1): super(NUSNet765CAM4SMALLSAM, self).__init__() self.pool = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.en1 = NUSUnit7C(in_ch, 32, 64) self.en2 = NUSUnit6C(64, 32, 128) self.en3 = NUSUnit5C(128, 64, 256) self.en4 = NUSUnit4S(256, 128, 512) self.en5 = NUSUnitSmallS(512, 256, 512) self.en6 = NUSUnitSmallS(512, 256, 512) self.de5 = NUSUnitSmallS(512, 256, 512) self.de4 = NUSUnit4S(512, 128, 256) self.de3 = NUSUnit5C(256, 64, 128) self.de2 = NUSUnit6C(128, 32, 64) self.de1 = NUSUnit7C(64, 32, 64) self.side1 = nn.Conv2d(64, out_ch, 3, padding=1) self.side2 = nn.Conv2d(64, out_ch, 3, padding=1) self.side3 = nn.Conv2d(128, out_ch, 3, padding=1) self.side4 = nn.Conv2d(256, out_ch, 3, padding=1) self.side5 = nn.Conv2d(512, out_ch, 3, padding=1) self.side6 = nn.Conv2d(512, out_ch, 3, padding=1) self.outconv = nn.Conv2d(6, out_ch, 1) def forward(self, x): hx = x # encoder hx1 = self.en1(hx) hx = self.pool(hx1) hx2 = self.en2(hx) hx = self.pool(hx2) hx3 = self.en3(hx) hx = self.pool(hx3) hx4 = self.en4(hx) hx = self.pool(hx4) hx5 = self.en5(hx) hx6 = self.en6(hx5) # decoder hx5d = self.de5(torch.add(hx6, hx5)) hx5up = _upsample_like(hx5d, hx4) hx4d = self.de4(torch.add(hx5up, hx4)) hx4up = _upsample_like(hx4d, hx3) hx3d = self.de3(torch.add(hx4up, hx3)) hx3up = _upsample_like(hx3d, hx2) hx2d = self.de2(torch.add(hx3up, hx2)) hx2up = _upsample_like(hx2d, hx1) hx1d = self.de1(hx2up) # output sup1 = self.side1(hx1d) sup2 = self.side2(hx2d) sup2 = _upsample_like(sup2, sup1) sup3 = self.side3(hx3d) sup3 = _upsample_like(sup3, sup1) sup4 = self.side4(hx4d) sup4 = _upsample_like(sup4, sup1) sup5 = self.side5(hx5d) sup5 = _upsample_like(sup5, sup1) sup6 = self.side6(hx6) sup6 = _upsample_like(sup6, sup1) final_fusion_loss = self.outconv(torch.cat((sup1, sup2, sup3, sup4, sup5, sup6), 1)) return F.torch.sigmoid(final_fusion_loss), F.torch.sigmoid(sup1), F.torch.sigmoid(sup2), F.torch.sigmoid( sup3), F.torch.sigmoid(sup4), F.torch.sigmoid(sup5), F.torch.sigmoid(sup6) # torchsummary # model = NUSNetCBAM() # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # model = model.to(device) # print(summary(model, (3, 320, 320))) # # torchstat # model = NUSNet() # print(stat(model, (3, 320, 320))) ```
{ "source": "jloosli/Adafruit-Raspberry-Pi-Python-Code", "score": 3 }
#### File: Adafruit-Raspberry-Pi-Python-Code/Adafruit_GFX/Adafruit_GFX.py ```python class Adafruit_GFX: _width = 0 _height = 0 def __init__(self, width, height): self._width = width self._height = height rotation = 0 cursor_y = cursor_x = 0 textsize = 1 textcolor = textbgcolor = 0xFFFF wrap = true ''' draw a circle outline ''' def drawCircle(self, x0, y0, r, color): f = 1 - r ddF_x = 1 ddF_y = -2 * r x = 0 y = r self.drawPixel(x0, y0+r, color) self.drawPixel(x0, y0-r, color) self.drawPixel(x0+r, y0, color) self.drawPixel(x0-r, y0, color) while (x<y) { if (f >= 0) { y-- ddF_y += 2 f += ddF_y } x++ ddF_x += 2 f += ddF_x self.drawPixel(x0 + x, y0 + y, color) self.drawPixel(x0 - x, y0 + y, color) self.drawPixel(x0 + x, y0 - y, color) self.drawPixel(x0 - x, y0 - y, color) self.drawPixel(x0 + y, y0 + x, color) self.drawPixel(x0 - y, y0 + x, color) self.drawPixel(x0 + y, y0 - x, color) self.drawPixel(x0 - y, y0 - x, color) def drawCircleHelper(self, x0, y0, r, cornername, ucolor): f = 1 - r ddF_x = 1 ddF_y = -2 * r x = 0 y = r while (x<y): if (f >= 0): y-- ddF_y += 2 f += ddF_y x+=1 ddF_x += 2 f += ddF_x if (cornername & 0x4): self.drawPixel(x0 + x, y0 + y, color) self.drawPixel(x0 + y, y0 + x, color) if (cornername & 0x2) : self.drawPixel(x0 + x, y0 - y, color) self.drawPixel(x0 + y, y0 - x, color) if (cornername & 0x8) : self.drawPixel(x0 - y, y0 + x, color) self.drawPixel(x0 - x, y0 + y, color) if (cornername & 0x1) : self.drawPixel(x0 - y, y0 - x, color) self.drawPixel(x0 - x, y0 - y, color) def fillCircle(self, x0, y0, r, ucolor): drawFastVLine(x0, y0-r, 2*r+1, color) fillCircleHelper(x0, y0, r, 3, 0, color) ''' used to do circles and roundrects!''' def fillCircleHelper(self, x0, y0, r, cornername, delta, ucolor): f = 1 - r ddF_x = 1 ddF_y = -2 * r x = 0 y = r while (x<y) : if (f >= 0) : y -= 1 ddF_y += 2 f += ddF_y x += 1 ddF_x += 2 f += ddF_x if (cornername & 0x1) : self.drawFastVLine(x0+x, y0-y, 2*y+1+delta, color) self.drawFastVLine(x0+y, y0-x, 2*x+1+delta, color) if (cornername & 0x2) : self.drawFastVLine(x0-x, y0-y, 2*y+1+delta, color) self.drawFastVLine(x0-y, y0-x, 2*x+1+delta, color) ''' bresenham's algorithm - thx wikpedia''' def drawLine(self, x0, y0, x1, y1, ucolor): steep = abs(y1 - y0) > abs(x1 - x0) if (steep) : swap(x0, y0) swap(x1, y1) if (x0 > x1) : swap(x0, x1) swap(y0, y1) dx, dy dx = x1 - x0 dy = abs(y1 - y0) err = dx / 2 ystep = 0 if (y0 < y1) : ystep = 1 else: ystep = -1 for ( x0<=x1 x0++) : if (steep) : self.drawPixel(y0, x0, color) else self.drawPixel(x0, y0, color) err -= dy if (err < 0) : y0 += ystep err += dx ''' draw a rectangle''' def drawRect(self, x, y, w, h, ucolor): self.drawFastHLine(x, y, w, color) self.drawFastHLine(x, y+h-1, w, color) self.drawFastVLine(x, y, h, color) self.drawFastVLine(x+w-1, y, h, color) def drawFastVLine(self, x, y, h, ucolor) : ''' stupidest version - update in subclasses if desired!''' self.drawLine(x, y, x, y+h-1, color) def drawFastHLine(self, x, y, w, ucolor) : ''' stupidest version - update in subclasses if desired!''' self.drawLine(x, y, x+w-1, y, color) def fillRect(self, x, y, w, h, ucolor) : ''' stupidest version - update in subclasses if desired!''' for (i=x i<x+w i++) : self.drawFastVLine(i, y, h, color) def fillScreen(self, ucolor) : fillRect(0, 0, _width, _height, color) ''' draw a rounded rectangle!''' def drawRoundRect(self, x, y, w, h, r, ucolor) : ''' smarter version''' self.drawFastHLine(x+r , y , w-2*r, color) ''' Top''' self.drawFastHLine(x+r , y+h-1, w-2*r, color) ''' Bottom''' self.drawFastVLine( x , y+r , h-2*r, color) ''' Left''' self.drawFastVLine( x+w-1, y+r , h-2*r, color) ''' Right''' ''' draw four corners''' self.drawCircleHelper(x+r , y+r , r, 1, color) self.drawCircleHelper(x+w-r-1, y+r , r, 2, color) self.drawCircleHelper(x+w-r-1, y+h-r-1, r, 4, color) self.drawCircleHelper(x+r , y+h-r-1, r, 8, color) ''' fill a rounded rectangle!''' def fillRoundRect(self, x, y, w, h, r, ucolor): ''' smarter version''' draw.fillRect(x+r, y, w-2*r, h, color) ''' draw four corners''' draw.fillCircleHelper(x+w-r-1, y+r, r, 1, h-2*r-1, color) fillCircleHelper(x+r , y+r, r, 2, h-2*r-1, color) ''' draw a triangle!''' def drawTriangle(self, x0, y0, x1, y1, x2, y2, ucolor): self.drawLine(x0, y0, x1, y1, color) self.drawLine(x1, y1, x2, y2, color) self.drawLine(x2, y2, x0, y0, color) ''' fill a triangle!''' def fillTriangle (self, x0, y0, x1, y1, x2, y2, ucolor): a, b, y, last ''' Sort coordinates by Y order (y2 >= y1 >= y0)''' if (y0 > y1) : swap(y0, y1) swap(x0, x1) if (y1 > y2) : swap(y2, y1) swap(x2, x1) if (y0 > y1) : swap(y0, y1) swap(x0, x1) if(y0 == y2) : ''' Handle awkward all-on-same-line case as its own thing''' a = b = x0 if(x1 < a) a = x1 else if(x1 > b) b = x1 if(x2 < a) a = x2 else if(x2 > b) b = x2 self.drawFastHLine(a, y0, b-a+1, color) return dx01 = x1 - x0, dy01 = y1 - y0, dx02 = x2 - x0, dy02 = y2 - y0, dx12 = x2 - x1, dy12 = y2 - y1, sa = 0, sb = 0 ''' For upper part of triangle, find scanline crossings for segments''' ''' 0-1 and 0-2. If y1=y2 (flat-bottomed triangle), the scanline y1''' ''' is included here (and second loop will be skipped, avoiding a /0''' ''' error there), otherwise scanline y1 is skipped here and handled''' ''' in the second loop...which also avoids a /0 error here if y0=y1''' ''' (flat-topped triangle).''' if(y1 == y2) last = y1 ''' Include y1 scanline''' else last = y1-1 ''' Skip it''' for(y=y0 y<=last y++) : a = x0 + sa / dy01 b = x0 + sb / dy02 sa += dx01 sb += dx02 ''' longhand: a = x0 + (x1 - x0) * (y - y0) / (y1 - y0) b = x0 + (x2 - x0) * (y - y0) / (y2 - y0) ''' if(a > b): swap(a,b) self.drawFastHLine(a, y, b-a+1, color) ''' For lower part of triangle, find scanline crossings for segments''' ''' 0-2 and 1-2. This loop is skipped if y1=y2.''' sa = dx12 * (y - y1) sb = dx02 * (y - y0) for( y<=y2 y++) : a = x1 + sa / dy12 b = x0 + sb / dy02 sa += dx12 sb += dx02 ''' longhand: a = x1 + (x2 - x1) * (y - y1) / (y2 - y1) b = x0 + (x2 - x0) * (y - y0) / (y2 - y0) ''' if(a > b) swap(a,b) self.drawFastHLine(a, y, b-a+1, color) def drawBitmap(self, x, y, const *bitmap, w, h, ucolor) : i, j, byteWidth = (w + 7) / 8 for(j=0 j<h j++) : for(i=0 i<w i++ ) : if(pgm_read_byte(bitmap + j * byteWidth + i / 8) & (128 >> (i & 7))) : self.drawPixel(x+i, y+j, color) def write(self, c) : if (c == '\n') : cursor_y += textsize*8 cursor_x = 0 elif (c == '\r') : ''' skip em''' else: self.drawChar(cursor_x, cursor_y, c, textcolor, textbgcolor, textsize) cursor_x += textsize*6 if (wrap && (cursor_x > (_width - textsize*6))) { cursor_y += textsize*8 cursor_x = 0 return 1 ''' draw a character''' def drawChar(self, x, y, unsigned char c, ucolor, ubg, size) : if((x >= _width) || ''' Clip right''' (y >= _height) || ''' Clip bottom''' ((x + 5 * size - 1) < 0) || ''' Clip left''' ((y + 8 * size - 1) < 0)) ''' Clip top''' return for (i=0; i<6; i++ ) { line = 0 if (i == 5) : line = 0x0 else: line = pgm_read_byte(font+(c*5)+i) for (int8_t j = 0 j<8 j++) : if (line & 0x1) : if (size == 1): ''' default size''' self.drawPixel(x+i, y+j, color) else : ''' big size''' fillRect(x+(i*size), y+(j*size), size, size, color) else if (bg != color) : if (size == 1): ''' default size''' self.drawPixel(x+i, y+j, bg) else : ''' big size''' fillRect(x+i*size, y+j*size, size, size, bg) line >>= 1 def setCursor(self, x, y) : cursor_x = x cursor_y = y def setTextSize(self, s) : textsize = (s > 0) ? s : 1 def setTextColor(self, uc) : textcolor = c textbgcolor = c ''' for 'transparent' background, we'll set the bg ''' ''' to the same as fg instead of using a flag''' def setTextColor(self, uc, ub) : textcolor = c textbgcolor = b def setTextWrap(self, w) : wrap = w def getRotation(self, ) : rotation %= 4 return rotation def setRotation(self, x) : x %= 4 ''' cant be higher than 3''' rotation = x switch (x) { case 0: case 2: _width = WIDTH _height = HEIGHT break case 1: case 3: _width = HEIGHT _height = WIDTH break def invertDisplay(self, i) : ''' do nothing, can be subclassed''' continue ''' return the size of the display which depends on the rotation!''' def width(self) : return _width def height(self): return _height ```
{ "source": "jlopez0591/SIGIA", "score": 2 }
#### File: SIGIA/actividades/managers.py ```python from django.db import models from datetime import datetime as dt # from polymorphic.manager import PolymorphicManager from polymorphic.managers import PolymorphicManager class ActividadQuerySet(models.QuerySet): def en_espera(self): return self.filter(estado='espera') def rechazado(self): return self.filter(estado='rechazado') def aprobado(self): return self.filter(estado='aprobado') def puede_aprobar(self, usuario): return self.filter(estado='espera', departamento=usuario.perfil.departamento) def propias(self, usuario): return self.filter(usuario=usuario) def actuales(self): fecha = dt.now() return self.filter(fecha__year=fecha.year) class ActividadManager(PolymorphicManager): def get_queryset(self): return ActividadQuerySet(self.model, using=self._db) def en_espera(self): return self.get_queryset().en_espera() def rechazado(self): return self.get_queryset().rechazado() def aprobado(self): return self.get_queryset().aprobado() def puede_aprobar(self, usuario): return self.get_queryset().puede_aprobar(usuario) def propias(self, usuario): return self.get_queryset().propias(usuario) def actuales(self): return self.get_queryset().actuales() ``` #### File: SIGIA/core/autocomplete.py ```python from django.contrib.auth.models import User from dal import autocomplete class PerfilAutocomplete(autocomplete.Select2QuerySetView): def get_queryset(self): if self.request.user.is_superuser: qs = User.objects.all() else: return User.objects.none() if self.q: qs = qs.filter( username__icontains=self.q ) return qs ``` #### File: SIGIA/core/models.py ```python from django.db import models from django.contrib.auth.models import User from core.managers import UsuarioManager from auditlog.registry import auditlog from auditlog.models import AuditlogHistoryField class Usuario(User): objects = UsuarioManager() class Meta: proxy = True def __str__(self): return '{}, {} - {}'.format(self.last_name, self.first_name, self.perfil.cod_profesor) class Notificacion(models.Model): history = AuditlogHistoryField() usuario = models.ForeignKey(User, on_delete=models.CASCADE) titulo = models.CharField(blank=True, max_length=120) texto = models.CharField(max_length=120) url = models.URLField(blank=True) def __str__(self): return '{}-{}'.format(self.usuario.username, self.titulo) def get_name(self): return '{} {}'.format(self.first_name, self.last_name) User.add_to_class("__str__", get_name) auditlog.register(Notificacion) ``` #### File: SIGIA/estudiantes/forms.py ```python from django import forms from dal import autocomplete from django.core.exceptions import ValidationError from estudiantes.models import Estudiante, TrabajoGraduacion from core.models import Usuario class StudentUpdateForm(forms.ModelForm): class Meta: model = Estudiante fields = ( # Info del nombre 'primer_nombre', 'segundo_nombre', 'primer_apellido', 'segundo_apellido', # Info de la cedula 'provincia', 'clase', 'tomo', 'folio', # Info Personal 'sexo', 'direccion', 'telefono', 'fecha_nacimiento', 'discapacidad', 'tipo_sangre', # Info de contacto 'pais', 'correo', 'telefono_oficina', 'celular', 'celular_oficina', # Info academica 'cod_sede', 'cod_facultad', 'cod_escuela', 'cod_carrera', 'turno', 'fecha_ingreso', 'semestre', 'ultimo_anio', 'ultimo_semestre', 'fecha_graduacion' ) labels = { 'provincia': 'Provincia', 'clase': 'Clase', 'tomo': 'Tomo', 'folio': 'Folio' } widgets = { 'primer_nombre': forms.TextInput(attrs={ 'class': 'form-control' }), 'segundo_nombre': forms.TextInput(attrs={ 'class': 'form-control' }), 'primer_apellido': forms.TextInput(attrs={ 'class': 'form-control' }), 'segundo_apellido': forms.TextInput(attrs={ 'class': 'form-control' }), 'provincia': forms.Select(attrs={ 'class': 'form-control cedula', 'disabled': 'true' }), 'clase': forms.Select(attrs={ 'class': 'form-control cedula' }), 'tomo': forms.TextInput(attrs={ 'class': 'form-control cedula' }), 'folio': forms.TextInput(attrs={ 'class': 'form-control cedula' }), 'sexo': forms.Select(attrs={ 'class': 'form-control' }), 'direccion': forms.TextInput(attrs={ 'class': 'form-control' }), 'telefono': forms.TextInput(attrs={ 'class': 'form-control' }), 'fecha_nacimiento': forms.TextInput(attrs={ 'class': 'form-control datepicker' }), 'discapacidad': forms.Textarea(attrs={ 'class': 'form-control' }), 'tipo_sangre': forms.Select(attrs={ 'class': 'form-control' }), 'pais': forms.Select(attrs={ 'class': 'form-control' }), 'correo': forms.TextInput(attrs={ 'class': 'form-control' }), 'telefono_oficina': forms.TextInput(attrs={ 'class': 'form-control' }), 'celular': forms.TextInput(attrs={ 'class': 'form-control' }), 'celular_oficina': forms.TextInput(attrs={ 'class': 'form-control' }), 'cod_sede': forms.TextInput(attrs={ 'class': 'form-control carrera' }), 'cod_facultad': forms.TextInput(attrs={ 'class': 'form-control carrera' }), 'cod_escuela': forms.TextInput(attrs={ 'class': 'form-control carrera' }), 'cod_carrera': forms.TextInput(attrs={ 'class': 'form-control carrera' }), 'turno': forms.TextInput(attrs={ 'class': 'form-control' }), 'fecha_ingreso': forms.TextInput(attrs={ 'class': 'form-control datepicker' }), 'semestre': forms.TextInput(attrs={ 'class': 'form-control' }), 'ultimo_anio': forms.TextInput(attrs={ 'class': 'form-control' }), 'ultimo_semestre': forms.TextInput(attrs={ 'class': 'form-control' }), 'fecha_graduacion': forms.TextInput(attrs={ 'class': 'form-control datepicker' }), } class TrabajoForm(forms.ModelForm): class Meta: model = TrabajoGraduacion fields = ('nombre_proyecto', 'estudiantes', 'asesor', 'estado', 'programa', 'cod_carrera', 'fecha_entrega', 'fecha_sustentacion', 'jurados', 'nota', 'archivo_anteproyecto', 'archivo_trabajo') labels = { 'cod_carrera': 'Codigo de Carrera', 'nombre_proyecto': 'Nombre del Proyecto', 'fecha_entrega': 'Fecha de Entrega', 'fecha_sustentacion': 'Fecha de Sustentacion', 'nota': 'Nota Obtenida', } widgets = { 'cod_carrera': forms.TextInput(attrs={ 'class': 'form-control' }), 'nombre_proyecto': forms.TextInput(attrs={ 'class': 'form-control' }), 'estudiantes': forms.SelectMultiple(), 'asesor': forms.Select(attrs={ 'class': 'custom-select form-control' }), 'estado': forms.Select(attrs={ 'class': 'custom-select form-control' }), 'programa': forms.Select(attrs={ 'class': 'custom-select form-control' }), 'fecha_entrega': forms.TextInput(attrs={ 'class': 'form-control datepicker' }), 'fecha_sustentacion': forms.TextInput(attrs={ 'class': 'form-control datepicker' }), 'nota': forms.TextInput(attrs={ 'class': 'form-control' }), 'archivo_anteproyecto': forms.FileInput(attrs={ 'class': 'form-control-file' }), 'archivo_trabajo': forms.FileInput(attrs={ 'class': 'form-control-file' }) } placeholder = { 'fecha_sustentacion': 'yyyy-mm-dd' } def __init__(self, *args, **kwargs): facultad = kwargs.pop('facultad') super(TrabajoForm, self).__init__(*args, **kwargs) self.fields['estudiantes'].queryset = Estudiante.objects.activos().filter(facultad=facultad) def clean(self): estudiantes = self.cleaned_data.get('estudiantes') jurados = self.cleaned_data.get('jurados') if estudiantes.count() > 3: raise ValidationError('Seleccione 3 estudiantes max.') if jurados.count() > 3: raise ValidationError('Seleccione 3 jurados max.') return self.cleaned_data ``` #### File: SIGIA/inventario/autocomplete.py ```python from dal import autocomplete from inventario.models import Categoria, Fabricante, Modelo, Aula class AulaAutocomplete(autocomplete.Select2QuerySetView): def get_queryset(self): if self.request.user.is_authenticated(): qs = Aula.objects.all() else: return Aula.objects.none() if self.q: qs = qs.filter(nombre__icontains=self.q) return qs class FabricanteAutocomplete(autocomplete.Select2QuerySetView): def get_queryset(self): if self.request.user.is_authenticated(): qs = Fabricante.objects.all() else: return Fabricante.objects.none() if self.q: qs = qs.filter(nombre__icontains=self.q) return qs class CategoriaAutocomplete(autocomplete.Select2QuerySetView): def get_queryset(self): if self.request.user.is_authenticated(): qs = Categoria.objects.all() else: return Categoria.objects.none() if self.q: qs = qs.filter(nombre__icontains=self.q) return qs class ModeloAutocomplete(autocomplete.Select2QuerySetView): def get_queryset(self): if self.request.user.is_authenticated(): qs = Modelo.objects.all() else: return Modelo.objects.none() if self.q: qs = qs.filter(nombre__icontains=self.q) return qs ``` #### File: inventario/views/equipo.py ```python from django.views.generic import CreateView, DetailView, UpdateView, ListView from django.urls import reverse_lazy from django.contrib.auth.mixins import PermissionRequiredMixin from inventario.forms import EquipoForm from inventario.models import Equipo from perfiles.models import Perfil from ubicacion.models import FacultadInstancia from django.core.exceptions import PermissionDenied from django.contrib.messages.views import SuccessMessageMixin # Equipos class EquipoListView(ListView): context_object_name = 'equipos' model = Equipo template_name = 'inventario/equipo/lista.html' def get_queryset(self): if self.request.user.perfil: return Equipo.objects.filter(ubicacion=self.request.user.perfil.facultad) else: return None class EquipoFacultadListView(PermissionRequiredMixin, ListView): context_object_name = 'equipos' model = Equipo permission_required = 'ubicacion.ver_equipos_facultad' template_name = 'inventario/equipo/lista.html' paginate_by = 10 def get_queryset(self): facultad = FacultadInstancia.objects.get(pk=self.kwargs['pk']) usuario = self.request.user if usuario.perfil.facultad != facultad: raise PermissionDenied qs = Equipo.objects.filter(ubicacion=self.kwargs['pk']) return qs class EquipoDetailView(DetailView): context_object_name = 'equipo' model = Equipo template_name = 'inventario/equipo/detalle.html' def get_object(self): object = super(EquipoDetailView, self).get_object() usuario = self.request.user if usuario.perfil.facultad != object.facultad: raise PermissionDenied return object class EquipoUpdateView(UpdateView): form_class = EquipoForm model = Equipo template_name = 'inventario/equipo/crear.html' def get_object(self): object = super(EquipoUpdateView, self).get_object() usuario = self.request.user if usuario.perfil.facultad != object.facultad: raise PermissionDenied return object class EquipoCreateView(SuccessMessageMixin, CreateView): form_class = EquipoForm model = Equipo template_name = 'inventario/equipo/crear.html' success_url = reverse_lazy('inventario:lista-equipo') def form_valid(self, form): usuario = Perfil.objects.get(usuario=self.request.user) form.instance.cod_sede = usuario.cod_sede form.instance.cod_facultad = usuario.cod_facultad try: return super(EquipoCreateView, self).form_valid(form) except: return self.form_invalid(form) ``` #### File: ubicacion/tests/ubicacion_tests.py ```python from django.test import TestCase from ubicacion.models import Sede, Facultad, Escuela, Departamento, Carrera, FacultadInstancia, EscuelaInstancia, \ DepartamentoInstancia, CarreraInstancia class AutoUbicacionTestCase(TestCase): fixtures = ['sede.json', 'facultad.json', 'escuela.json', 'departamento.json', 'carrera.json', ] def setUp(self): FacultadInstancia.objects.create(cod_sede='1', cod_facultad='24') FacultadInstancia.objects.create(cod_sede='01', cod_facultad='25') # Prueba de no asignar al faltar facultad FacultadInstancia.objects.create(cod_sede='X1', cod_facultad='24') EscuelaInstancia.objects.create(cod_sede='1', cod_facultad='24', cod_escuela='2') DepartamentoInstancia.objects.create(cod_sede='1', cod_facultad='24', cod_departamento='D1') CarreraInstancia.objects.create(cod_sede='1', cod_facultad='24', cod_escuela='2', cod_carrera='1') def test_facultadinstancia_auto_ubicacion(self): ''' Revisa que se asignen de manera automatica las FK a Sede y Facultad :return: ''' s = Sede.objects.get(cod_sede='1') f = Facultad.objects.get(cod_facultad='24') fi = FacultadInstancia.objects.get(cod_sede='1', cod_facultad='24') self.assertEqual(fi.sede, s) self.assertEqual(fi.facultad, f) def test_facultadinstancia_auto_ubicacion_sede_fail(self): fi = FacultadInstancia.objects.get(cod_sede='X1', cod_facultad='24') self.assertEqual(fi.sede, None) def test_facultadinstancia_auto_ubicacion_facultad_fail(self): fi = FacultadInstancia.objects.get(cod_sede='01', cod_facultad='25') self.assertEqual(fi.facultad, None) def test_escuelainstancia_auto_ubicacion(self): s = Sede.objects.get(cod_sede='1') f = Facultad.objects.get(cod_facultad='24') e = Escuela.objects.get(cod_facultad='24', cod_escuela='2') ei = EscuelaInstancia.objects.get(cod_sede='1', cod_facultad='24', cod_escuela='2') self.assertEqual(ei.sede, s) self.assertEqual(ei.facultad, f) self.assertEqual(ei.escuela, e) def test_departamentoinstancia_auto_ubicacion(self): s = Sede.objects.get(cod_sede='1') f = Facultad.objects.get(cod_facultad='24') d = Departamento.objects.get(cod_facultad='24', cod_departamento='D1') di = DepartamentoInstancia.objects.get(cod_sede='1', cod_facultad='24', cod_departamento='D1') self.assertEqual(di.sede, s) self.assertEqual(di.facultad, f) self.assertEqual(di.departamento, d) def test_carrerainstancia_auto_ubicacion(self): s = Sede.objects.get(cod_sede='1') f = Facultad.objects.get(cod_facultad='24') e = Escuela.objects.get(cod_facultad='24', cod_escuela='2') c = Carrera.objects.get(cod_facultad='24', cod_escuela='2', cod_carrera='1') ci = CarreraInstancia.objects.get(cod_sede='1', cod_facultad='24', cod_escuela='2', cod_carrera='1') self.assertEqual(ci.sede, s) self.assertEqual(ci.facultad, f) self.assertEqual(ci.escuela, e) self.assertEqual(ci.carrera, c) ``` #### File: ubicacion/views/autocomplete.py ```python from dal import autocomplete from ubicacion.models import CarreraInstancia, EscuelaInstancia, Sede, FacultadInstancia, Facultad, Escuela, Carrera class CarreraInstanciaAutocomplete(autocomplete.Select2QuerySetView): def get_queryset(self): if self.request.user.is_superuser: qs = CarreraInstancia.objects.all() elif self.request.user.is_authenticated(): qs = CarreraInstancia.objects.all() else: return CarreraInstancia.objects.none() if self.q: qs = qs.filter(nombre_proyecto__icontains=self.q) return qs ```
{ "source": "jlopezg8/inteligentes1-2020-1", "score": 2 }
#### File: Python/busquedas_entre_adversarios/test_pente.py ```python import utils.pente as pente from poda_alfa_beta import PodaAlfaBeta from utils import cronometrar, como_mutable poda_alfa_beta = PodaAlfaBeta(pente.es_hoja, pente.get_utilidad, pente.gen_sucesores, pente.get_sig_jugador) def elegir_jugada(estado, jugador): with cronometrar(): return poda_alfa_beta.elegir_jugada( estado, jugador, lim_profundidad=4, con_barra_progreso=True) pente.PartidaHumanoVsMaquina(elegir_jugada, inicia_maquina=True) ``` #### File: busquedas_entre_adversarios/utils/triqui.py ```python import argparse import random import matplotlib.pyplot as plt import numpy as np from . import como_hasheable, como_mutable, iter_matriz O = 'O' X = 'X' _ = '_' ESTADO_INICIAL = ( (_, _, _), (_, _, _), (_, _, _), ) def es_hoja(estado): return not any(gen_sucesores(estado, O)) or get_utilidad(estado, O) != 0 def gen_sucesores(estado, jugador): """Función generadora de los estados sucesores de `estado`.""" estado = como_mutable(estado) for i, j, val in iter_matriz(estado): if val == _: estado[i][j] = jugador yield como_hasheable(estado) estado[i][j] = _ def get_sig_jugador(jugador): """Retorna el jugador del turno siguiente, donde `jugador` es el jugador del turno actual. """ return O if jugador == X else X def get_utilidad(estado, jugador): """Retorna 1 si el estado corresponde a una victoria para `jugador`, -1 si corresponde a una derrota para `jugador`, o 0 si corresponde a un empate o si ningún jugador ha ganado hasta el momento. """ estado = np.array(estado) m, n = estado.shape # asumir que m == n (estado es una matriz cuadrada) jugadores = ( (estado == jugador, 1), # jugador ((estado == get_sig_jugador(jugador)), -1), # oponente ) for jugadas, utilidad in jugadores: if (any(jugadas.sum(axis=0) == m) # columnas or any(jugadas.sum(axis=1) == n) # filas or np.trace(jugadas) == n # diagonal principal or np.trace(np.fliplr(jugadas)) == n): # diagonal secundaria return utilidad return 0 def graficar_estado(estado): _graficar_estado(estado) plt.show() def _graficar_estado(estado): plt.grid(True, color='black') plt.ylim(len(estado), 0) plt.xlim(0, len(estado[0])) plt.yticks(range(1, len(estado)), labels=[]) plt.xticks(range(1, len(estado[0])), labels=[]) plt.gca().set_frame_on(False) for i, j, val in iter_matriz(estado): if val != _: plt.text(x=j+.5, y=i+.5, s=val, size=32, ha='center', va='center') plt.pause(.1) def parse_args(): parser = argparse.ArgumentParser(description='Jugar triqui.') parser.add_argument('-e', '--entre_maquinas', action='store_true', help='juegan máquina vs máquina') parser.add_argument('-i', '--inicia_maquina', action='store_true', help='inicia máquina (para humano vs máquina)') return parser.parse_args() def PartidaMaquinaVsMaquina(elegir_jugada, maquina1=O, estado_inicial=ESTADO_INICIAL): estado = estado_inicial jugador = maquina1 while not es_hoja(estado): _graficar_estado(estado) estado = elegir_jugada(estado, jugador) jugador = get_sig_jugador(jugador) graficar_estado(estado) class PartidaHumanoVsMaquina: def __init__(self, elegir_jugada, inicia_maquina=False, humano=O, estado_inicial=ESTADO_INICIAL): self.elegir_jugada = elegir_jugada self.estado = como_mutable(estado_inicial) self.humano = humano self.maquina = get_sig_jugador(humano) self._iniciar(inicia_maquina) def _iniciar(self, inicia_maquina): _graficar_estado(self.estado) if inicia_maquina: self._jugar_maquina() self.es_turno_humano = True plt.connect('button_press_event', self) plt.show() def __call__(self, evt): if self.es_turno_humano and evt.inaxes: self.es_turno_humano = False i, j = int(evt.ydata), int(evt.xdata) if self._jugar_jugador(i, j): self._jugar_maquina() self.es_turno_humano = True def _jugar_jugador(self, i, j): if self.estado[i][j] == _ and not es_hoja(self.estado): self.estado[i][j] = self.humano _graficar_estado(self.estado) return True else: return False def _jugar_maquina(self): if not es_hoja(self.estado): self.estado = como_mutable( self.elegir_jugada(self.estado, self.maquina)) _graficar_estado(self.estado) ``` #### File: Python/busquedas_no_informadas/a_estrella.py ```python from bisect import insort from collections import deque from math import isinf from utils.indicadores_progreso import ContadorPasos from utils.nodos import NodoConCostoCombinado as Nodo, reconstruir_ruta def buscar_con_a_estrella(estado0, gen_estados_alcanzables, heuristica): """Retorna la ruta para resolver el problema, o `None` si no se encontró una solución. :param `estado0`: estado inicial :param `gen_estados_alcanzables` función que recibe un estado y genera los estados alcanzables a partir de este :param heuristica: función que recibe un estado y estima qué tan cerca está del estado objetivo; debe retornar 0 si el estado es el estado objetivo """ contador_pasos = ContadorPasos() if isinf(dist := heuristica(estado0)): return None # no resuelto frontera = deque([Nodo(estado=estado0, padre=None, costo_actual=0, dist=dist, costo_combinado=0+dist)]) considerados = {estado0} # estados en la frontera o ya visitados while frontera: next(contador_pasos) nodo = frontera.popleft() if nodo.dist == 0: return reconstruir_ruta(nodo) hijos = set(gen_estados_alcanzables(nodo.estado)) - considerados for hijo in hijos: if not isinf(dist := heuristica(hijo)): costo_hijo = nodo.costo_actual + 1 insort(frontera, Nodo(estado=hijo, padre=nodo, costo_actual=costo_hijo, dist=dist, costo_combinado=costo_hijo+dist)) considerados.add(hijo) return None # no resuelto if __name__ == "__main__": import utils.eight_puzzle as ep X = ep.HUECO estado0 = ( (5, 1, 2), (X, 7, 3), (6, 4, 8), ) ep.graficar_estado(estado0) ruta = buscar_con_a_estrella(estado0, ep.gen_estados_alcanzables, heuristica=ep.dist_hamming) print(f'Solución de {len(ruta)} pasos') ep.graficar_ruta(ruta) ```
{ "source": "Jlopezjlx/devhub", "score": 2 }
#### File: src/account/views.py ```python from django.shortcuts import render from django.contrib.auth import authenticate, logout from django.contrib.auth import login as auth_login from django.http import HttpResponseRedirect, HttpResponse def index(request): return render(request, "account/index.html") def login(request): if request.method == 'POST': username = request.POST.get('username') password = request.POST.get('<PASSWORD>') user = authenticate(username=username, password=password) if user: if user.is_active: auth_login(request,user) return HttpResponse ("your account is ok") else: return HttpResponse ("Your account was inactive") else: print("Someone tried to log in and Failed") return HttpResponse ("Invalid credentials") else: return render(request, "account/login/login.html") ```
{ "source": "jlopez-kepler/SUDOKU", "score": 3 }
#### File: app/project/auth.py ```python from flask import Blueprint, flash, redirect, render_template, request, url_for from flask_login import ( # pylint: disable=import-error login_required, login_user, logout_user, ) from werkzeug.security import check_password_hash, generate_password_hash from project.models import User from . import db auth = Blueprint( "auth", __name__, template_folder="../templates", static_folder="../static" ) @auth.route("/login", methods=["GET", "POST"]) def login(): """LogIn Page""" if request.method == "GET": return render_template("login.html") email = request.form.get("email") password = request.form.get("password") remember = bool(request.form.get("remember")) user = User.query.filter_by(email=email).first() if not user or not check_password_hash(user.password, password): flash("Please check your login details and try again.") return redirect(url_for("auth.login")) login_user(user, remember=remember) return redirect(url_for("main.games")) @auth.route("/signup", methods=["GET", "POST"]) def signup(): """SignUp Page""" if request.method == "GET": return render_template("signup.html") email = request.form.get("email") name = request.form.get("name") password = request.form.get("password") user = User.query.filter_by(email=email).first() if user: flash("Email address already exists") return redirect(url_for("auth.signup")) new_user = User( email=email, name=name, password=generate_password_hash(password, method="<PASSWORD>"), ) db.session.add(new_user) db.session.commit() return redirect(url_for("auth.login")) @auth.route("/logout") @login_required def logout(): """LogOut Page""" logout_user() return redirect(url_for("main.index")) ```
{ "source": "jlopezNEU/scikit-learn", "score": 2 }
#### File: sklearn/_build_utils/pre_build_helpers.py ```python import os import sys import glob import tempfile import textwrap import setuptools # noqa import subprocess import warnings from distutils.dist import Distribution from distutils.sysconfig import customize_compiler # NumPy 1.23 deprecates numpy.distutils with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) from numpy.distutils.ccompiler import new_compiler from numpy.distutils.command.config_compiler import config_cc def _get_compiler(): """Get a compiler equivalent to the one that will be used to build sklearn Handles compiler specified as follows: - python setup.py build_ext --compiler=<compiler> - CC=<compiler> python setup.py build_ext """ dist = Distribution( { "script_name": os.path.basename(sys.argv[0]), "script_args": sys.argv[1:], "cmdclass": {"config_cc": config_cc}, } ) dist.parse_config_files() dist.parse_command_line() cmd_opts = dist.command_options.get("build_ext") if cmd_opts is not None and "compiler" in cmd_opts: compiler = cmd_opts["compiler"][1] else: compiler = None ccompiler = new_compiler(compiler=compiler) customize_compiler(ccompiler) return ccompiler def compile_test_program(code, extra_preargs=[], extra_postargs=[]): """Check that some C code can be compiled and run""" ccompiler = _get_compiler() # extra_(pre/post)args can be a callable to make it possible to get its # value from the compiler if callable(extra_preargs): extra_preargs = extra_preargs(ccompiler) if callable(extra_postargs): extra_postargs = extra_postargs(ccompiler) start_dir = os.path.abspath(".") with tempfile.TemporaryDirectory() as tmp_dir: try: os.chdir(tmp_dir) # Write test program with open("test_program.c", "w") as f: f.write(code) os.mkdir("objects") # Compile, test program ccompiler.compile( ["test_program.c"], output_dir="objects", extra_postargs=extra_postargs ) # Link test program objects = glob.glob(os.path.join("objects", "*" + ccompiler.obj_extension)) ccompiler.link_executable( objects, "test_program", extra_preargs=extra_preargs, extra_postargs=extra_postargs, ) if "PYTHON_CROSSENV" not in os.environ: # Run test program if not cross compiling # will raise a CalledProcessError if return code was non-zero output = subprocess.check_output("./test_program") output = output.decode(sys.stdout.encoding or "utf-8").splitlines() else: # Return an empty output if we are cross compiling # as we cannot run the test_program output = [] except Exception: raise finally: os.chdir(start_dir) return output def basic_check_build(): """Check basic compilation and linking of C code""" if "PYODIDE_PACKAGE_ABI" in os.environ: # The following check won't work in pyodide return code = textwrap.dedent( """\ #include <stdio.h> int main(void) { return 0; } """ ) compile_test_program(code) ``` #### File: sklearn/datasets/_arff_parser.py ```python import itertools from collections import OrderedDict from collections.abc import Generator from typing import Any, Dict, List, Optional, Tuple import numpy as np import scipy.sparse from ..externals._arff import ArffSparseDataType, ArffContainerType from ..utils import ( _chunk_generator, check_pandas_support, get_chunk_n_rows, is_scalar_nan, ) def _split_sparse_columns( arff_data: ArffSparseDataType, include_columns: List ) -> ArffSparseDataType: """ obtains several columns from sparse arff representation. Additionally, the column indices are re-labelled, given the columns that are not included. (e.g., when including [1, 2, 3], the columns will be relabelled to [0, 1, 2]) Parameters ---------- arff_data : tuple A tuple of three lists of equal size; first list indicating the value, second the x coordinate and the third the y coordinate. include_columns : list A list of columns to include. Returns ------- arff_data_new : tuple Subset of arff data with only the include columns indicated by the include_columns argument. """ arff_data_new: ArffSparseDataType = (list(), list(), list()) reindexed_columns = { column_idx: array_idx for array_idx, column_idx in enumerate(include_columns) } for val, row_idx, col_idx in zip(arff_data[0], arff_data[1], arff_data[2]): if col_idx in include_columns: arff_data_new[0].append(val) arff_data_new[1].append(row_idx) arff_data_new[2].append(reindexed_columns[col_idx]) return arff_data_new def _sparse_data_to_array( arff_data: ArffSparseDataType, include_columns: List ) -> np.ndarray: # turns the sparse data back into an array (can't use toarray() function, # as this does only work on numeric data) num_obs = max(arff_data[1]) + 1 y_shape = (num_obs, len(include_columns)) reindexed_columns = { column_idx: array_idx for array_idx, column_idx in enumerate(include_columns) } # TODO: improve for efficiency y = np.empty(y_shape, dtype=np.float64) for val, row_idx, col_idx in zip(arff_data[0], arff_data[1], arff_data[2]): if col_idx in include_columns: y[row_idx, reindexed_columns[col_idx]] = val return y def _feature_to_dtype(feature: Dict[str, str]): """Map feature to dtype for pandas DataFrame""" if feature["data_type"] == "string": return object elif feature["data_type"] == "nominal": return "category" # only numeric, integer, real are left elif feature["number_of_missing_values"] != "0" or feature["data_type"] in [ "numeric", "real", ]: # cast to floats when there are any missing values return np.float64 elif feature["data_type"] == "integer": return np.int64 raise ValueError("Unsupported feature: {}".format(feature)) def _convert_arff_data( arff: ArffContainerType, col_slice_x: List[int], col_slice_y: List[int], shape: Optional[Tuple] = None, ) -> Tuple: """ converts the arff object into the appropriate matrix type (np.array or scipy.sparse.csr_matrix) based on the 'data part' (i.e., in the liac-arff dict, the object from the 'data' key) Parameters ---------- arff : dict As obtained from liac-arff object. col_slice_x : list The column indices that are sliced from the original array to return as X data col_slice_y : list The column indices that are sliced from the original array to return as y data Returns ------- X : np.array or scipy.sparse.csr_matrix y : np.array """ arff_data = arff["data"] if isinstance(arff_data, Generator): if shape is None: raise ValueError("shape must be provided when arr['data'] is a Generator") if shape[0] == -1: count = -1 else: count = shape[0] * shape[1] data = np.fromiter( itertools.chain.from_iterable(arff_data), dtype="float64", count=count ) data = data.reshape(*shape) X = data[:, col_slice_x] y = data[:, col_slice_y] return X, y elif isinstance(arff_data, tuple): arff_data_X = _split_sparse_columns(arff_data, col_slice_x) num_obs = max(arff_data[1]) + 1 X_shape = (num_obs, len(col_slice_x)) X = scipy.sparse.coo_matrix( (arff_data_X[0], (arff_data_X[1], arff_data_X[2])), shape=X_shape, dtype=np.float64, ) X = X.tocsr() y = _sparse_data_to_array(arff_data, col_slice_y) return X, y else: # This should never happen raise ValueError("Unexpected Data Type obtained from arff.") def _convert_arff_data_dataframe( arff: ArffContainerType, columns: List, features_dict: Dict[str, Any] ) -> Tuple: """Convert the ARFF object into a pandas DataFrame. Parameters ---------- arff : dict As obtained from liac-arff object. columns : list Columns from dataframe to return. features_dict : dict Maps feature name to feature info from openml. Returns ------- result : tuple tuple with the resulting dataframe """ pd = check_pandas_support("fetch_openml with as_frame=True") attributes = OrderedDict(arff["attributes"]) arff_columns = list(attributes) if not isinstance(arff["data"], Generator): raise ValueError( "arff['data'] must be a generator when converting to pd.DataFrame." ) # calculate chunksize first_row = next(arff["data"]) first_df = pd.DataFrame([first_row], columns=arff_columns) row_bytes = first_df.memory_usage(deep=True).sum() chunksize = get_chunk_n_rows(row_bytes) # read arff data with chunks columns_to_keep = [col for col in arff_columns if col in columns] dfs = [] dfs.append(first_df[columns_to_keep]) for data in _chunk_generator(arff["data"], chunksize): dfs.append(pd.DataFrame(data, columns=arff_columns)[columns_to_keep]) df = pd.concat(dfs, ignore_index=True) for column in columns_to_keep: dtype = _feature_to_dtype(features_dict[column]) if dtype == "category": cats_without_missing = [ cat for cat in attributes[column] if cat is not None and not is_scalar_nan(cat) ] dtype = pd.api.types.CategoricalDtype(cats_without_missing) df[column] = df[column].astype(dtype, copy=False) return (df,) def _liac_arff_parser( arff_container, output_arrays_type, features_dict, data_columns, target_columns, col_slice_x=None, col_slice_y=None, shape=None, ): if output_arrays_type == "pandas": nominal_attributes = None columns = data_columns + target_columns (frame,) = _convert_arff_data_dataframe(arff_container, columns, features_dict) X = frame[data_columns] if len(target_columns) >= 2: y = frame[target_columns] elif len(target_columns) == 1: y = frame[target_columns[0]] else: y = None else: frame = None X, y = _convert_arff_data(arff_container, col_slice_x, col_slice_y, shape) nominal_attributes = { k: v for k, v in arff_container["attributes"] if isinstance(v, list) and k in data_columns + target_columns } is_classification = { col_name in nominal_attributes for col_name in target_columns } if not is_classification: # No target pass elif all(is_classification): y = np.hstack( [ np.take( np.asarray(nominal_attributes.pop(col_name), dtype="O"), y[:, i : i + 1].astype(int, copy=False), ) for i, col_name in enumerate(target_columns) ] ) elif any(is_classification): raise ValueError( "Mix of nominal and non-nominal targets is not currently supported" ) # reshape y back to 1-D array, if there is only 1 target column; # back to None if there are not target columns if y.shape[1] == 1: y = y.reshape((-1,)) elif y.shape[1] == 0: y = None return X, y, frame, nominal_attributes ``` #### File: datasets/tests/test_base.py ```python import os import shutil import tempfile import warnings from pickle import loads from pickle import dumps from functools import partial from importlib import resources import pytest import numpy as np from sklearn.datasets import get_data_home from sklearn.datasets import clear_data_home from sklearn.datasets import load_files from sklearn.datasets import load_sample_images from sklearn.datasets import load_sample_image from sklearn.datasets import load_digits from sklearn.datasets import load_diabetes from sklearn.datasets import load_linnerud from sklearn.datasets import load_iris from sklearn.datasets import load_breast_cancer from sklearn.datasets import load_boston from sklearn.datasets import load_wine from sklearn.datasets._base import ( load_csv_data, load_gzip_compressed_csv_data, ) from sklearn.preprocessing import scale from sklearn.utils import Bunch from sklearn.utils._testing import SkipTest from sklearn.datasets.tests.test_common import check_as_frame from sklearn.externals._pilutil import pillow_installed from sklearn.utils import IS_PYPY def _remove_dir(path): if os.path.isdir(path): shutil.rmtree(path) @pytest.fixture(scope="module") def data_home(tmpdir_factory): tmp_file = str(tmpdir_factory.mktemp("scikit_learn_data_home_test")) yield tmp_file _remove_dir(tmp_file) @pytest.fixture(scope="module") def load_files_root(tmpdir_factory): tmp_file = str(tmpdir_factory.mktemp("scikit_learn_load_files_test")) yield tmp_file _remove_dir(tmp_file) @pytest.fixture def test_category_dir_1(load_files_root): test_category_dir1 = tempfile.mkdtemp(dir=load_files_root) sample_file = tempfile.NamedTemporaryFile(dir=test_category_dir1, delete=False) sample_file.write(b"Hello World!\n") sample_file.close() yield str(test_category_dir1) _remove_dir(test_category_dir1) @pytest.fixture def test_category_dir_2(load_files_root): test_category_dir2 = tempfile.mkdtemp(dir=load_files_root) yield str(test_category_dir2) _remove_dir(test_category_dir2) def test_data_home(data_home): # get_data_home will point to a pre-existing folder data_home = get_data_home(data_home=data_home) assert data_home == data_home assert os.path.exists(data_home) # clear_data_home will delete both the content and the folder it-self clear_data_home(data_home=data_home) assert not os.path.exists(data_home) # if the folder is missing it will be created again data_home = get_data_home(data_home=data_home) assert os.path.exists(data_home) def test_default_empty_load_files(load_files_root): res = load_files(load_files_root) assert len(res.filenames) == 0 assert len(res.target_names) == 0 assert res.DESCR is None def test_default_load_files(test_category_dir_1, test_category_dir_2, load_files_root): if IS_PYPY: pytest.xfail("[PyPy] fails due to string containing NUL characters") res = load_files(load_files_root) assert len(res.filenames) == 1 assert len(res.target_names) == 2 assert res.DESCR is None assert res.data == [b"Hello World!\n"] def test_load_files_w_categories_desc_and_encoding( test_category_dir_1, test_category_dir_2, load_files_root ): if IS_PYPY: pytest.xfail("[PyPy] fails due to string containing NUL characters") category = os.path.abspath(test_category_dir_1).split("/").pop() res = load_files( load_files_root, description="test", categories=category, encoding="utf-8" ) assert len(res.filenames) == 1 assert len(res.target_names) == 1 assert res.DESCR == "test" assert res.data == ["Hello World!\n"] def test_load_files_wo_load_content( test_category_dir_1, test_category_dir_2, load_files_root ): res = load_files(load_files_root, load_content=False) assert len(res.filenames) == 1 assert len(res.target_names) == 2 assert res.DESCR is None assert res.get("data") is None @pytest.mark.parametrize("allowed_extensions", ([".txt"], [".txt", ".json"])) def test_load_files_allowed_extensions(tmp_path, allowed_extensions): """Check the behaviour of `allowed_extension` in `load_files`.""" d = tmp_path / "sub" d.mkdir() files = ("file1.txt", "file2.json", "file3.json", "file4.md") paths = [d / f for f in files] for p in paths: p.touch() res = load_files(tmp_path, allowed_extensions=allowed_extensions) assert set([str(p) for p in paths if p.suffix in allowed_extensions]) == set( res.filenames ) @pytest.mark.parametrize( "filename, expected_n_samples, expected_n_features, expected_target_names", [ ("wine_data.csv", 178, 13, ["class_0", "class_1", "class_2"]), ("iris.csv", 150, 4, ["setosa", "versicolor", "virginica"]), ("breast_cancer.csv", 569, 30, ["malignant", "benign"]), ], ) def test_load_csv_data( filename, expected_n_samples, expected_n_features, expected_target_names ): actual_data, actual_target, actual_target_names = load_csv_data(filename) assert actual_data.shape[0] == expected_n_samples assert actual_data.shape[1] == expected_n_features assert actual_target.shape[0] == expected_n_samples np.testing.assert_array_equal(actual_target_names, expected_target_names) def test_load_csv_data_with_descr(): data_file_name = "iris.csv" descr_file_name = "iris.rst" res_without_descr = load_csv_data(data_file_name=data_file_name) res_with_descr = load_csv_data( data_file_name=data_file_name, descr_file_name=descr_file_name ) assert len(res_with_descr) == 4 assert len(res_without_descr) == 3 np.testing.assert_array_equal(res_with_descr[0], res_without_descr[0]) np.testing.assert_array_equal(res_with_descr[1], res_without_descr[1]) np.testing.assert_array_equal(res_with_descr[2], res_without_descr[2]) assert res_with_descr[-1].startswith(".. _iris_dataset:") @pytest.mark.parametrize( "filename, kwargs, expected_shape", [ ("diabetes_data_raw.csv.gz", {}, [442, 10]), ("diabetes_target.csv.gz", {}, [442]), ("digits.csv.gz", {"delimiter": ","}, [1797, 65]), ], ) def test_load_gzip_compressed_csv_data(filename, kwargs, expected_shape): actual_data = load_gzip_compressed_csv_data(filename, **kwargs) assert actual_data.shape == tuple(expected_shape) def test_load_gzip_compressed_csv_data_with_descr(): data_file_name = "diabetes_target.csv.gz" descr_file_name = "diabetes.rst" expected_data = load_gzip_compressed_csv_data(data_file_name=data_file_name) actual_data, descr = load_gzip_compressed_csv_data( data_file_name=data_file_name, descr_file_name=descr_file_name, ) np.testing.assert_array_equal(actual_data, expected_data) assert descr.startswith(".. _diabetes_dataset:") def test_load_sample_images(): try: res = load_sample_images() assert len(res.images) == 2 assert len(res.filenames) == 2 images = res.images # assert is china image assert np.all(images[0][0, 0, :] == np.array([174, 201, 231], dtype=np.uint8)) # assert is flower image assert np.all(images[1][0, 0, :] == np.array([2, 19, 13], dtype=np.uint8)) assert res.DESCR except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_sample_image(): try: china = load_sample_image("china.jpg") assert china.dtype == "uint8" assert china.shape == (427, 640, 3) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_missing_sample_image_error(): if pillow_installed: with pytest.raises(AttributeError): load_sample_image("blop.jpg") else: warnings.warn("Could not load sample images, PIL is not available.") def test_load_diabetes_raw(): """Test to check that we load a scaled version by default but that we can get an unscaled version when setting `scaled=False`.""" diabetes_raw = load_diabetes(scaled=False) assert diabetes_raw.data.shape == (442, 10) assert diabetes_raw.target.size, 442 assert len(diabetes_raw.feature_names) == 10 assert diabetes_raw.DESCR diabetes_default = load_diabetes() np.testing.assert_allclose( scale(diabetes_raw.data) / (442**0.5), diabetes_default.data, atol=1e-04 ) @pytest.mark.filterwarnings("ignore:Function load_boston is deprecated") @pytest.mark.parametrize( "loader_func, data_shape, target_shape, n_target, has_descr, filenames", [ (load_breast_cancer, (569, 30), (569,), 2, True, ["filename"]), (load_wine, (178, 13), (178,), 3, True, []), (load_iris, (150, 4), (150,), 3, True, ["filename"]), ( load_linnerud, (20, 3), (20, 3), 3, True, ["data_filename", "target_filename"], ), (load_diabetes, (442, 10), (442,), None, True, []), (load_digits, (1797, 64), (1797,), 10, True, []), (partial(load_digits, n_class=9), (1617, 64), (1617,), 10, True, []), (load_boston, (506, 13), (506,), None, True, ["filename"]), ], ) def test_loader(loader_func, data_shape, target_shape, n_target, has_descr, filenames): bunch = loader_func() assert isinstance(bunch, Bunch) assert bunch.data.shape == data_shape assert bunch.target.shape == target_shape if hasattr(bunch, "feature_names"): assert len(bunch.feature_names) == data_shape[1] if n_target is not None: assert len(bunch.target_names) == n_target if has_descr: assert bunch.DESCR if filenames: assert "data_module" in bunch assert all( [ f in bunch and resources.is_resource(bunch["data_module"], bunch[f]) for f in filenames ] ) @pytest.mark.parametrize( "loader_func, data_dtype, target_dtype", [ (load_breast_cancer, np.float64, int), (load_diabetes, np.float64, np.float64), (load_digits, np.float64, int), (load_iris, np.float64, int), (load_linnerud, np.float64, np.float64), (load_wine, np.float64, int), ], ) def test_toy_dataset_frame_dtype(loader_func, data_dtype, target_dtype): default_result = loader_func() check_as_frame( default_result, loader_func, expected_data_dtype=data_dtype, expected_target_dtype=target_dtype, ) def test_loads_dumps_bunch(): bunch = Bunch(x="x") bunch_from_pkl = loads(dumps(bunch)) bunch_from_pkl.x = "y" assert bunch_from_pkl["x"] == bunch_from_pkl.x def test_bunch_pickle_generated_with_0_16_and_read_with_0_17(): bunch = Bunch(key="original") # This reproduces a problem when Bunch pickles have been created # with scikit-learn 0.16 and are read with 0.17. Basically there # is a surprising behaviour because reading bunch.key uses # bunch.__dict__ (which is non empty for 0.16 Bunch objects) # whereas assigning into bunch.key uses bunch.__setattr__. See # https://github.com/scikit-learn/scikit-learn/issues/6196 for # more details bunch.__dict__["key"] = "set from __dict__" bunch_from_pkl = loads(dumps(bunch)) # After loading from pickle the __dict__ should have been ignored assert bunch_from_pkl.key == "original" assert bunch_from_pkl["key"] == "original" # Making sure that changing the attr does change the value # associated with __getitem__ as well bunch_from_pkl.key = "changed" assert bunch_from_pkl.key == "changed" assert bunch_from_pkl["key"] == "changed" def test_bunch_dir(): # check that dir (important for autocomplete) shows attributes data = load_iris() assert "data" in dir(data) # FIXME: to be removed in 1.2 def test_load_boston_warning(): """Check that we raise the ethical warning when loading `load_boston`.""" warn_msg = "The Boston housing prices dataset has an ethical problem" with pytest.warns(FutureWarning, match=warn_msg): load_boston() @pytest.mark.filterwarnings("ignore:Function load_boston is deprecated") def test_load_boston_alternative(): pd = pytest.importorskip("pandas") if os.environ.get("SKLEARN_SKIP_NETWORK_TESTS", "1") == "1": raise SkipTest( "This test requires an internet connection to fetch the dataset." ) boston_sklearn = load_boston() data_url = "http://lib.stat.cmu.edu/datasets/boston" try: raw_df = pd.read_csv(data_url, sep=r"\s+", skiprows=22, header=None) except ConnectionError as e: pytest.xfail(f"The dataset can't be downloaded. Got exception: {e}") data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]]) target = raw_df.values[1::2, 2] np.testing.assert_allclose(data, boston_sklearn.data) np.testing.assert_allclose(target, boston_sklearn.target) ``` #### File: feature_selection/tests/test_sequential.py ```python import pytest import scipy import numpy as np from numpy.testing import assert_array_equal from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline from sklearn.feature_selection import SequentialFeatureSelector from sklearn.datasets import make_regression, make_blobs from sklearn.linear_model import LinearRegression from sklearn.ensemble import HistGradientBoostingRegressor from sklearn.model_selection import cross_val_score from sklearn.cluster import KMeans @pytest.mark.parametrize("n_features_to_select", (0, 5, 0.0, -1, 1.1)) def test_bad_n_features_to_select(n_features_to_select): X, y = make_regression(n_features=5) sfs = SequentialFeatureSelector( LinearRegression(), n_features_to_select=n_features_to_select ) with pytest.raises(ValueError, match="must be either 'auto'"): sfs.fit(X, y) def test_bad_direction(): X, y = make_regression(n_features=5) sfs = SequentialFeatureSelector( LinearRegression(), n_features_to_select="auto", direction="bad" ) with pytest.raises(ValueError, match="must be either 'forward' or"): sfs.fit(X, y) @pytest.mark.filterwarnings("ignore:Leaving `n_features_to_select` to ") @pytest.mark.parametrize("direction", ("forward", "backward")) @pytest.mark.parametrize("n_features_to_select", (1, 5, 9, "auto", None)) def test_n_features_to_select(direction, n_features_to_select): # Make sure n_features_to_select is respected n_features = 10 X, y = make_regression(n_features=n_features, random_state=0) sfs = SequentialFeatureSelector( LinearRegression(), n_features_to_select=n_features_to_select, direction=direction, cv=2, ) sfs.fit(X, y) if n_features_to_select in ("auto", None): n_features_to_select = n_features // 2 assert sfs.get_support(indices=True).shape[0] == n_features_to_select assert sfs.n_features_to_select_ == n_features_to_select assert sfs.transform(X).shape[1] == n_features_to_select @pytest.mark.parametrize("direction", ("forward", "backward")) def test_n_features_to_select_auto(direction): """Check the behaviour of `n_features_to_select="auto"` with different values for the parameter `tol`. """ n_features = 10 tol = 1e-3 X, y = make_regression(n_features=n_features, random_state=0) sfs = SequentialFeatureSelector( LinearRegression(), n_features_to_select="auto", tol=tol, direction=direction, cv=2, ) sfs.fit(X, y) max_features_to_select = n_features - 1 assert sfs.get_support(indices=True).shape[0] <= max_features_to_select assert sfs.n_features_to_select_ <= max_features_to_select assert sfs.transform(X).shape[1] <= max_features_to_select assert sfs.get_support(indices=True).shape[0] == sfs.n_features_to_select_ @pytest.mark.parametrize("direction", ("forward", "backward")) def test_n_features_to_select_stopping_criterion(direction): """Check the behaviour stopping criterion for feature selection depending on the values of `n_features_to_select` and `tol`. When `direction` is `'forward'`, select a new features at random among those not currently selected in selector.support_, build a new version of the data that includes all the features in selector.support_ + this newly selected feature. And check that the cross-validation score of the model trained on this new dataset variant is lower than the model with the selected forward selected features or at least does not improve by more than the tol margin. When `direction` is `'backward'`, instead of adding a new feature to selector.support_, try to remove one of those selected features at random And check that the cross-validation score is either decreasing or not improving by more than the tol margin. """ X, y = make_regression(n_features=50, n_informative=10, random_state=0) tol = 1e-3 sfs = SequentialFeatureSelector( LinearRegression(), n_features_to_select="auto", tol=tol, direction=direction, cv=2, ) sfs.fit(X, y) selected_X = sfs.transform(X) rng = np.random.RandomState(0) added_candidates = list(set(range(X.shape[1])) - set(sfs.get_support(indices=True))) added_X = np.hstack( [ selected_X, (X[:, rng.choice(added_candidates)])[:, np.newaxis], ] ) removed_candidate = rng.choice(list(range(sfs.n_features_to_select_))) removed_X = np.delete(selected_X, removed_candidate, axis=1) plain_cv_score = cross_val_score(LinearRegression(), X, y, cv=2).mean() sfs_cv_score = cross_val_score(LinearRegression(), selected_X, y, cv=2).mean() added_cv_score = cross_val_score(LinearRegression(), added_X, y, cv=2).mean() removed_cv_score = cross_val_score(LinearRegression(), removed_X, y, cv=2).mean() assert sfs_cv_score >= plain_cv_score if direction == "forward": assert (sfs_cv_score - added_cv_score) <= tol assert (sfs_cv_score - removed_cv_score) >= tol else: assert (added_cv_score - sfs_cv_score) <= tol assert (removed_cv_score - sfs_cv_score) <= tol # TODO: Remove test for n_features_to_select=None in 1.3 @pytest.mark.filterwarnings("ignore:Leaving `n_features_to_select` to ") @pytest.mark.parametrize("direction", ("forward", "backward")) @pytest.mark.parametrize( "n_features_to_select, expected", ( (0.1, 1), (1.0, 10), (0.5, 5), (None, 5), ), ) def test_n_features_to_select_float(direction, n_features_to_select, expected): # Test passing a float as n_features_to_select X, y = make_regression(n_features=10) sfs = SequentialFeatureSelector( LinearRegression(), n_features_to_select=n_features_to_select, direction=direction, cv=2, ) sfs.fit(X, y) assert sfs.n_features_to_select_ == expected @pytest.mark.parametrize("seed", range(10)) @pytest.mark.parametrize("direction", ("forward", "backward")) @pytest.mark.parametrize( "n_features_to_select, expected_selected_features", [ (2, [0, 2]), # f1 is dropped since it has no predictive power (1, [2]), # f2 is more predictive than f0 so it's kept ], ) def test_sanity(seed, direction, n_features_to_select, expected_selected_features): # Basic sanity check: 3 features, only f0 and f2 are correlated with the # target, f2 having a stronger correlation than f0. We expect f1 to be # dropped, and f2 to always be selected. rng = np.random.RandomState(seed) n_samples = 100 X = rng.randn(n_samples, 3) y = 3 * X[:, 0] - 10 * X[:, 2] sfs = SequentialFeatureSelector( LinearRegression(), n_features_to_select=n_features_to_select, direction=direction, cv=2, ) sfs.fit(X, y) assert_array_equal(sfs.get_support(indices=True), expected_selected_features) # TODO: Remove test for n_features_to_select=None in 1.3 @pytest.mark.filterwarnings("ignore:Leaving `n_features_to_select` to ") @pytest.mark.parametrize("n_features_to_select", ["auto", None]) def test_sparse_support(n_features_to_select): # Make sure sparse data is supported X, y = make_regression(n_features=10) X = scipy.sparse.csr_matrix(X) sfs = SequentialFeatureSelector( LinearRegression(), n_features_to_select=n_features_to_select, cv=2 ) sfs.fit(X, y) sfs.transform(X) def test_nan_support(): # Make sure nans are OK if the underlying estimator supports nans rng = np.random.RandomState(0) n_samples, n_features = 40, 4 X, y = make_regression(n_samples, n_features, random_state=0) nan_mask = rng.randint(0, 2, size=(n_samples, n_features), dtype=bool) X[nan_mask] = np.nan sfs = SequentialFeatureSelector( HistGradientBoostingRegressor(), n_features_to_select="auto", cv=2 ) sfs.fit(X, y) sfs.transform(X) with pytest.raises(ValueError, match="Input X contains NaN"): # LinearRegression does not support nans SequentialFeatureSelector( LinearRegression(), n_features_to_select="auto", cv=2 ).fit(X, y) def test_pipeline_support(): # Make sure that pipelines can be passed into SFS and that SFS can be # passed into a pipeline n_samples, n_features = 50, 3 X, y = make_regression(n_samples, n_features, random_state=0) # pipeline in SFS pipe = make_pipeline(StandardScaler(), LinearRegression()) sfs = SequentialFeatureSelector(pipe, n_features_to_select="auto", cv=2) sfs.fit(X, y) sfs.transform(X) # SFS in pipeline sfs = SequentialFeatureSelector( LinearRegression(), n_features_to_select="auto", cv=2 ) pipe = make_pipeline(StandardScaler(), sfs) pipe.fit(X, y) pipe.transform(X) # FIXME : to be removed in 1.3 def test_raise_deprecation_warning(): """Check that we raise a FutureWarning with `n_features_to_select`.""" n_samples, n_features = 50, 3 X, y = make_regression(n_samples, n_features, random_state=0) warn_msg = "Leaving `n_features_to_select` to None is deprecated" with pytest.warns(FutureWarning, match=warn_msg): SequentialFeatureSelector(LinearRegression()).fit(X, y) @pytest.mark.parametrize("n_features_to_select", (2, 3)) def test_unsupervised_model_fit(n_features_to_select): # Make sure that models without classification labels are not being # validated X, y = make_blobs(n_features=4) sfs = SequentialFeatureSelector( KMeans(n_init=1), n_features_to_select=n_features_to_select, ) sfs.fit(X) assert sfs.transform(X).shape[1] == n_features_to_select @pytest.mark.parametrize("y", ("no_validation", 1j, 99.9, np.nan, 3)) def test_no_y_validation_model_fit(y): # Make sure that other non-conventional y labels are not accepted X, clusters = make_blobs(n_features=6) sfs = SequentialFeatureSelector( KMeans(), n_features_to_select=3, ) with pytest.raises((TypeError, ValueError)): sfs.fit(X, y) ``` #### File: sklearn/utils/_bunch.py ```python class Bunch(dict): """Container object exposing keys as attributes. Bunch objects are sometimes used as an output for functions and methods. They extend dictionaries by enabling values to be accessed by key, `bunch["value_key"]`, or by an attribute, `bunch.value_key`. Examples -------- >>> from sklearn.utils import Bunch >>> b = Bunch(a=1, b=2) >>> b['b'] 2 >>> b.b 2 >>> b.a = 3 >>> b['a'] 3 >>> b.c = 6 >>> b['c'] 6 """ def __init__(self, **kwargs): super().__init__(kwargs) def __setattr__(self, key, value): self[key] = value def __dir__(self): return self.keys() def __getattr__(self, key): try: return self[key] except KeyError: raise AttributeError(key) def __setstate__(self, state): # Bunch pickles generated with scikit-learn 0.16.* have an non # empty __dict__. This causes a surprising behaviour when # loading these pickles scikit-learn 0.17: reading bunch.key # uses __dict__ but assigning to bunch.key use __setattr__ and # only changes bunch['key']. More details can be found at: # https://github.com/scikit-learn/scikit-learn/issues/6196. # Overriding __setstate__ to be a noop has the effect of # ignoring the pickled __dict__ pass ```
{ "source": "jlopezpena/confluencebuilder", "score": 2 }
#### File: sphinxcontrib/confluencebuilder/config.py ```python from .logger import ConfluenceLogger import os.path class ConfluenceConfig: """ confluence configuration validation utility class This class is used to perform a series of sanity checks on a user's configuration to ensure the building/publishing environment is using sane options. """ @staticmethod def validate(builder, log=True): """ validate a provided configuration The provided configuration will be checked for sane configuration options. The method will return True for an expected good configuration, while returning False for a known bad configuration. """ errState = False c = builder.config env = builder.app.env if c.confluence_footer_file: if not os.path.isfile(os.path.join(env.srcdir, c.confluence_footer_file)): errState = True if log: ConfluenceLogger.error( """missing footer file The option 'confluence_footer_file' has been provided to find a footer template file from a relative location. Ensure the value is set to a proper file path. """) if c.confluence_header_file: if not os.path.isfile(os.path.join(env.srcdir, c.confluence_header_file)): errState = True if log: ConfluenceLogger.error( """missing header file The option 'confluence_header_file' has been provided to find a header template file from a relative location. Ensure the value is set to a proper file path. """) if c.confluence_max_doc_depth: depth = c.confluence_max_doc_depth if not isinstance(depth, int) or depth < 0: errState = True if log: ConfluenceLogger.error( """maximum document depth is not an integer value When limiting the document depth permitted for a building/publishing event, the defined maximum document depth must be defined as an integer value (not a float, string, etc.). """) if c.confluence_publish_subset: if not (isinstance(c.confluence_publish_subset, (tuple, list, set)) and all(isinstance(docname, str) for docname in c.confluence_publish_subset)): errState = True if log: ConfluenceLogger.error( """'confluence_publish_subset' should be a collection of strings""") else: for docname in c.confluence_publish_subset: if not any(os.path.isfile(os.path.join(env.srcdir, docname + suffix)) for suffix in c.source_suffix): errState = True if log: ConfluenceLogger.error( """Document '%s' in 'confluence_publish_subset' not found""", docname) if c.confluence_publish: if c.confluence_disable_rest and c.confluence_disable_xmlrpc: errState = True if log: ConfluenceLogger.error( """all publish protocols explicitly disabled While publishing has been configured using 'confluence_publish', both REST and XML-RPC have been explicitly disabled in the user configuration. This extension cannot publish documents without a single publish protocol enabled. """) if not c.confluence_parent_page: if c.confluence_parent_page_id_check: errState = True if log: ConfluenceLogger.error( """parent page (holder) name not set When a parent page identifier check has been configured with the option 'confluence_parent_page_id_check', no parent page name has been provided with the 'confluence_parent_page' option. Ensure the name of the parent page name is provided as well. """) if not c.confluence_server_url: errState = True if log: ConfluenceLogger.error( """confluence server url not provided While publishing has been configured using 'confluence_publish', the Confluence server URL has not. Ensure 'confluence_server_url' has been set to target Confluence instance to be published to. """) if not c.confluence_space_name: errState = True if log: ConfluenceLogger.error( """confluence space name not provided While publishing has been configured using 'confluence_publish', the Confluence space name has not. Ensure 'confluence_space_name' has been set to space's name which content should be published under. """) if not c.confluence_server_user and c.confluence_server_pass: errState = True if log: ConfluenceLogger.error( """confluence username not provided A publishing password has been configured with 'confluence_server_pass'; however, no username has been configured. Ensure 'confluence_server_user' is properly set with the publisher's Confluence username. """) if c.confluence_ca_cert: if not os.path.exists(c.confluence_ca_cert): errState = True if log: ConfluenceLogger.error( """missing certificate authority The option 'confluence_ca_cert' has been provided to find a certificate authority file or path from a relative location. Ensure the value is set to a proper file path. """) if c.confluence_client_cert: if isinstance(c.confluence_client_cert, tuple): cert_files = c.confluence_client_cert else: cert_files = (c.confluence_client_cert, None) if len(cert_files) != 2: errState = True if log: ConfluenceLogger.error( """invalid client certificate The option 'confluence_client_cert' has been provided but there are too many values. The client cert can either be a file/path to a certificate & key pair or a tuple for the certificate and key in different files. """) for cert_file in cert_files: if cert_file and not os.path.isfile(cert_file): errState = True if log: ConfluenceLogger.error( """missing certificate file The option 'confluence_client_cert' has been provided to find a client certificate file from a relative location, but the file %s was not found. Ensure the value is set to a proper file path and the file exists. """ % cert_file ) c.confluence_client_cert = cert_files return not errState ``` #### File: sphinxcontrib/confluencebuilder/util.py ```python from .std.confluence import API_REST_BIND_PATH from .std.confluence import API_XMLRPC_BIND_PATH from hashlib import sha256 class ConfluenceUtil: """ confluence utility helper class This class is used to hold a series of utility methods. """ @staticmethod def hashAsset(asset): """ generate a hash of the provided asset Calculate a hash for an asset file (e.x. an image file). When publishing assets as attachments for a Confluence page, hashes can be used to check if an attachment needs to be uploaded again. Args: asset: the asset (file) Returns: the hash """ BLOCKSIZE = 65536 sha = sha256() with open(asset, 'rb') as file: buff = file.read(BLOCKSIZE) while len(buff) > 0: sha.update(buff) buff = file.read(BLOCKSIZE) return sha.hexdigest() @staticmethod def normalizeBaseUrl(url): """ normalize a confluence base url A Confluence base URL refers to the URL portion excluding the target API bind point. This method attempts to handle a series of user-provided URL values and attempt to determine the proper base URL to use. """ if url: # removing any trailing forward slash user provided if url.endswith('/'): url = url[:-1] # check for xml-rpc bind path; strip and return if found if url.endswith(API_XMLRPC_BIND_PATH): url = url[:-len(API_XMLRPC_BIND_PATH)] else: # check for rest bind path; strip and return if found if url.endswith(API_REST_BIND_PATH): url = url[:-len(API_REST_BIND_PATH)] # restore trailing forward flash elif not url.endswith('/'): url += '/' return url ```
{ "source": "jlopez/portal", "score": 2 }
#### File: portal/portal/api.py ```python from functools import wraps import cookielib import HTMLParser import json import os import sys import re import urllib import urllib2 import urlparse import uuid def cached(wrapped): @wraps(wrapped) def wrapper(): if not hasattr(wrapped, 'cache'): wrapped.cache = wrapped() return wrapped.cache return wrapper def cached_method(wrapped): @wraps(wrapped) def wrapper(self): name = '%s_cache' % wrapped.__name__ if not hasattr(self, name): setattr(self, name, wrapped(self)) return getattr(self, name) return wrapper def _ensure_parents_exist(filename): dirname = os.path.dirname(filename) if dirname and not os.path.exists(dirname): os.makedirs(dirname) assert not dirname or os.path.isdir(dirname), ( "Path %s is not a directory" % dirname) class APIException(Exception): pass class APIServiceException(APIException): def __init__(self, info): if info['userString'] != info['resultString']: super(APIServiceException, self).__init__( '%s (Error %s: %s)' % (info['userString'], info['resultCode'], info['resultString'])) else: super(APIServiceException, self).__init__( '%s (Error %s)' % (info['userString'], info['resultCode'])) self.info = info self.code = info['resultCode'] class API(object): LOGIN_URL = 'https://developer.apple.com/account/login.action' DEVELOPER_URL = 'https://developer.apple.com' DEVELOPER_SERVICES_URL = '%s/services-developerportal/QH65B2/account/ios' % DEVELOPER_URL GET_TEAM_ID_URL = 'https://developer.apple.com/account/ios/certificate/certificateList.action' class _LoginHTMLParser(HTMLParser.HTMLParser): def handle_starttag(self, tag, attrs): if tag == "form": attrs = { k: v for k, v in attrs } if attrs['name'] == 'appleConnectForm': self.url = attrs['action'] def feed(self, data): try: HTMLParser.HTMLParser.feed(self, data) except HTMLParser.HTMLParseError: pass def __init__(self, debug=False): cookie_jar = cookielib.CookieJar() processor = urllib2.HTTPCookieProcessor(cookie_jar) self._opener = urllib2.build_opener(processor) self._debug = debug def login(self, user=None, password=None): if not user or not password: user, password = self._find_credentials() try: r = self._opener.open(self.LOGIN_URL) parser = self._LoginHTMLParser() page = r.read() parser.feed(page) if not parser.url: if self._debug: print >>sys.stderr, "Page contents:\n%s" % page raise APIException("Login failed: unable to locate login URL (HTML scraping failure)") scheme, netloc, _, _, _, _ = urlparse.urlparse(r.geturl()) url = '%s://%s%s' % (scheme, netloc, parser.url) params = dict(theAccountName=user, theAccountPW=password, theAuxValue='') r = self._opener.open(url, urllib.urlencode(params)) r = self._opener.open(self.GET_TEAM_ID_URL) page = r.read() matcher = re.search(r'teamId=([A-Z0-9]*)', page) if not matcher: if self._debug: print >>sys.stderr, "Login failed, page contents:\n%s" % page raise APIException("Login failed, please check credentials (using %s)" % user) self.team_id = matcher.group(1) self.user = user except urllib2.URLError as e: raise e def _api(self, cmd, form={}, **kwargs): try: if isinstance(form, (dict, list)): form = urllib.urlencode(form) kwargs['content-type'] = 'text/x-url-arguments' kwargs['accept'] = 'application/json' kwargs['requestId'] = str(uuid.uuid4()) kwargs['userLocale'] = 'en_US' kwargs['teamId'] = self.team_id query = urllib.urlencode(kwargs) url = "%s/%s?%s" % (self.DEVELOPER_SERVICES_URL, cmd, query) response = self._opener.open(url, form) assert response.getcode() == 200, "Error %" % response.getcode() data = json.loads(response.read()) rc = data['resultCode'] if rc not in [ 0, 8500 ]: raise APIServiceException(data) return data except urllib2.URLError as e: raise e def _find_credentials(self): # First try environment variables try: credentials = os.environ['PORTAL_CREDENTIALS'] user, password = credentials.split(':') return user, password except (KeyError, ValueError): pass # Now try .portalrc file def search_path(): yield os.path.expanduser('~/.portalrc') path = os.getcwd() while True: filename = os.path.join(path, '.portalrc') if os.path.isfile(filename): yield filename break if path == '/': break path = os.path.dirname(path) import ConfigParser group = os.environ.get('PORTAL_ENVIRONMENT', 'Default') try: cfg = ConfigParser.RawConfigParser() cfg.read(search_path()) return cfg.get(group, 'user'), cfg.get(group, 'password') except ConfigParser.Error: raise APIException('Missing credentials ' '(.portalrc section [%s] / PORTAL_CREDENTIALS)' % group) def _list_cert_requests(self): data = self._api("certificate/listCertRequests", certificateStatus=0, types=self.ALL_CERT_TYPES) return data['certRequests'] def _list_app_ids(self): data = self._api('identifiers/listAppIds') #, onlyCountLists='true') return data['appIds'] def _list_provisioning_profiles(self): data = self._api('profile/listProvisioningProfiles', includeInactiveProfiles='true', onlyCountLists='true') return data['provisioningProfiles'] def _list_devices(self, include_removed=True): data = self._api('device/listDevices', includeRemovedDevices='true' if include_removed else 'false') return data['devices'] def clear_cache(self): for n in self.__dict__: if n.endswith('_cache'): delattr(self, n) @cached_method def all_cert_requests(self): return self._list_cert_requests() def list_cert_requests(self, typ): if not isinstance(typ, list): typ = [ typ ] return [ c for c in self.all_cert_requests() if c['certificateTypeDisplayId'] in typ ] @cached_method def all_app_ids(self): return self._list_app_ids() def get_app_id(self, app_id): if isinstance(app_id, (list, tuple)): return [ self.get_app_id(a) for a in app_id ] if isinstance(app_id, dict): return app_id if not isinstance(app_id, basestring): raise APIException('invalid app_id %s' % app_id) try: if '.' in app_id: return next(a for a in self.all_app_ids() if a['identifier'] == app_id) else: return next(a for a in self.all_app_ids() if a['appIdId'] == app_id) except StopIteration: return None @cached_method def all_devices(self): return self._list_devices() def get_device(self, device, return_id_if_missing=False): if isinstance(device, (list, tuple)): return [ self.get_device(d, return_id_if_missing=return_id_if_missing) for d in device ] if isinstance(device, dict): return device if not isinstance(device, basestring): raise APIException('invalid device %s' % device) try: if re.match('[0-9a-f]{40}', device, re.I): return next(d for d in self.all_devices() if d['deviceNumber'] == device) else: return next(d for d in self.all_devices() if d['deviceId'] == device) except StopIteration: if return_id_if_missing: return device return None def add_device(self, udid, name=None): name = name or udid form = [] form.append(('register', 'single')) form.append(('name', name)) form.append(('deviceNumber', udid)) form.append(('deviceNames', name)) form.append(('deviceNumbers', udid)) data = self._api("device/addDevice", form=form) return data['device'] def delete_device(self, device): if not isinstance(device, (basestring, dict)): raise APIException('invalid device %s' % device) device = self.get_device(device) self._api('device/deleteDevice', deviceId=device['deviceId']) def enable_device(self, device): if not isinstance(device, (basestring, dict)): raise APIException('invalid device %s' % device) device = self.get_device(device) data = self._api('device/enableDevice', displayId=device['deviceId'], deviceNumber=device['deviceNumber']) return data['device'] @cached_method def all_provisioning_profiles(self): return self._list_provisioning_profiles() def get_provisioning_profile(self, profile, return_id_if_missing=False): if isinstance(profile, (list, tuple)): return [ self.get_provisioning_profile(p, return_id_if_missing=return_id_if_missing) for p in profile ] if isinstance(profile, dict): return profile if not isinstance(profile, basestring): raise APIException('invalid profile id %s' % profile) try: return next(p for p in self.all_provisioning_profiles() if p['provisioningProfileId'] == profile) except StopIteration: if return_id_if_missing: return profile return None def create_provisioning_profile(self, profile_type, app_id, certificates=None, devices=None, name=None): if not 0 <= profile_type < 3: raise APIException('profile_type must be one of ' + ', '.join(t for t in dir(API) if t.startswith('PROFILE_TYPE_'))) if not isinstance(app_id, (dict, basestring)): raise APIException('invalid app_id %s' % app_id) distribution_type = 'limited adhoc store'.split()[profile_type] if profile_type == self.PROFILE_TYPE_DEVELOPMENT: distribution_type_label = 'Distribution' else: distribution_type_label = 'Development' app_id = self.get_app_id(app_id) if certificates is None: if profile_type == API.PROFILE_TYPE_DEVELOPMENT: cert_type = API.CERT_TYPE_IOS_DEVELOPMENT else: cert_type = API.CERT_TYPE_IOS_DISTRIBUTION certificates = self.list_cert_requests(cert_type) certificates = self._unwrap(certificates, 'certificateId') devices = self._unwrap(devices or (), 'deviceId') if not name: name = '%s %s' % (app_id['name'], 'Development AdHoc AppStore'.split()[profile_type]) form = [] form.append(('distributionType', distribution_type)) form.append(('appIdId', app_id['appIdId'])) form.append(('certificateIds', self._format_list(certificates))) for device in devices: form.append(('devices', device)) if devices: form.append(('deviceIds', self._format_list(devices))) form.append(('template', '')) form.append(('returnFullObjects', 'false')) form.append(('provisioningProfileName', name)) form.append(('distributionTypeLabel', distribution_type_label)) form.append(('appIdName', app_id['name'])) form.append(('appIdPrefix', app_id['prefix'])) form.append(('appIdIdentifier', app_id['identifier'])) form.append(('certificateCount', len(certificates))) form.append(('deviceCount', len(devices) if devices else '')) data = self._api("profile/createProvisioningProfile", form=form) return data['provisioningProfile'] def delete_provisioning_profile(self, profile): profile = self._unwrap(profile, 'provisioningProfileId') self._api('profile/deleteProvisioningProfile', provisioningProfileId=profile) def _format_list(self, objs): if objs: return '[%s]' % ','.join(objs) return '' def _unwrap(self, obj, key): if obj is None: return obj if isinstance(obj, (list, tuple)): return [ self._unwrap(o, key) for o in obj ] if isinstance(obj, basestring): return obj return obj[key] def update_provisioning_profile(self, profile, name=None, app_id=None, certificate_ids=None, device_ids=None, distribution_type=None): form = [] form.append(('provisioningProfileId', profile['provisioningProfileId'])) form.append(('distributionType', distribution_type or profile['distributionMethod'])) form.append(('returnFullObjects', 'false')) form.append(('provisioningProfileName', name or profile['name'])) form.append(('appIdId', app_id or profile['appId']['appIdId'])) for certificate_id in certificate_ids or profile['certificateIds']: if isinstance(certificate_id, dict): certificate_id = certificate_id['certificateId'] form.append(('certificateIds', certificate_id)) if device_ids is None: device_ids = profile['deviceIds'] for device_id in device_ids: if isinstance(device_id, dict): device_id = device_id['deviceId'] form.append(('deviceIds', device_id)) return self._api('profile/regenProvisioningProfile', form=form) def _make_dev_url(self, path, **kwargs): query = urllib.urlencode(kwargs) return "%s/%s.action?%s" % (self.DEVELOPER_URL, path, query) def download_profile(self, profile, file_or_filename): try: if isinstance(profile, dict): profile = profile['provisioningProfileId'] url = self._make_dev_url('account/ios/profile/profileContentDownload', displayId=profile) r = self._opener.open(url) assert r.getcode() == 200, 'Unable to download profile [%s]' % profile profile = r.read() if isinstance(file_or_filename, basestring): _ensure_parents_exist(file_or_filename) with open(file_or_filename, 'wb') as f: f.write(profile) else: file_or_filename.write(profile) except urllib2.HTTPError as e: if e.getcode() == 404: raise APIException("Profile '%s' not found" % profile) raise e def profile_type(self, profile): if isinstance(profile, int): if not 0 <= profile < len(API._PROFILE_TYPE_LABELS): raise APIException('Invalid profile type %s' % profile) return profile if isinstance(profile, basestring): try: return self.profile_type(int(profile)) except ValueError: pass try: return API._PROFILE_TYPE_LABELS.index(profile) except ValueError: raise APIException("Invalid profile type '%s'" % profile) if not isinstance(profile, dict): raise APIException('Invalid profile %s' % profile) if profile['type'] == 'Development': return API.PROFILE_TYPE_DEVELOPMENT if profile['deviceCount']: return API.PROFILE_TYPE_ADHOC return API.PROFILE_TYPE_APPSTORE def profile_type_name(self, profile): return API._PROFILE_TYPE_LABELS[self.profile_type(profile)] def is_profile_expired(self, profile): return profile['status'] == 'Expired' PROFILE_TYPE_DEVELOPMENT = 0 PROFILE_TYPE_ADHOC = 1 PROFILE_TYPE_APPSTORE = 2 _PROFILE_TYPE_LABELS = 'development adhoc appstore'.split() ALL_CERT_TYPES = "5QPB9NHCEI,R58UK2EWSO,9RQEK7MSXA,LA30L5BJEU,BKLRAVXMGM,3BQKVH9I2X,Y3B2F3TYSI" (CERT_TYPE_IOS_DEVELOPMENT, CERT_TYPE_IOS_DISTRIBUTION, CERT_TYPE_UNKNOWN_1, CERT_TYPE_UNKNOWN_2, CERT_TYPE_APN_DEVELOPMENT, CERT_TYPE_APN_PRODUCTION, CERT_TYPE_UNKNOWN_3) = ALL_CERT_TYPES.split(',') CERT_TYPE_IOS = [ CERT_TYPE_IOS_DEVELOPMENT, CERT_TYPE_IOS_DISTRIBUTION ] ``` #### File: jlopez/portal/portal.py ```python from functools import wraps import cookielib import HTMLParser import json import os import re import sys import urllib import urllib2 import urlparse def cached(wrapped): @wraps(wrapped) def wrapper(): if not hasattr(wrapped, 'cache'): wrapped.cache = wrapped() return wrapped.cache return wrapper def cached_method(wrapped): @wraps(wrapped) def wrapper(self): name = '%s_cache' % wrapped.__name__ if not hasattr(self, name): setattr(self, name, wrapped(self)) return getattr(self, name) return wrapper def uuid(): import uuid return str(uuid.uuid4()) class APIException(Exception): def __init__(self, info): super(APIException, self).__init__( '%s (Error %s: %s)' % (info['userString'], info['resultCode'], info['resultString'])) self.info = info self.code = info['resultCode'] class API(object): LOGIN_URL = 'https://developer.apple.com/account/login.action' DEVELOPER_URL = 'https://developer.apple.com' DEVELOPER_SERVICES_URL = '%s/services-developerportal/QH65B2/account/ios' % DEVELOPER_URL GET_TEAM_ID_URL = 'https://developer.apple.com/account/ios/certificate/certificateList.action' class LoginHTMLParser(HTMLParser.HTMLParser): def handle_starttag(self, tag, attrs): if tag == "form": attrs = { k: v for k, v in attrs } if attrs['name'] == 'appleConnectForm': self.url = attrs['action'] def feed(self, data): try: HTMLParser.HTMLParser.feed(self, data) except HTMLParser.HTMLParseError: pass def __init__(self): cookie_jar = cookielib.CookieJar() processor = urllib2.HTTPCookieProcessor(cookie_jar) self.opener = urllib2.build_opener(processor) def login(self, user=None, password=<PASSWORD>): try: r = self.opener.open(self.LOGIN_URL) assert r.getcode() == 200, "Unable to fetch login page" parser = self.LoginHTMLParser() parser.feed(r.read()) assert parser.url, 'Unable to locate login post URL' scheme, netloc, _, _, _, _ = urlparse.urlparse(r.geturl()) url = '%s://%s%s' % (scheme, netloc, parser.url) params = dict(theAccountName=user, theAccountPW=password, theAuxValue='') r = self.opener.open(url, urllib.urlencode(params)) assert r.getcode() == 200, "Unable to login" r = self.opener.open(self.GET_TEAM_ID_URL) assert r.getcode() == 200, "Unable to retrieve Team ID" matcher = re.search(r'teamId=([A-Z0-9]*)', r.read()) assert matcher, "Unable to locate Team ID" self.team_id = matcher.group(1) except urllib2.URLError as e: raise e def _api(self, cmd, form={}, **kwargs): if isinstance(form, (dict, list)): form = urllib.urlencode(form) kwargs['content-type'] = 'text/x-url-arguments' kwargs['accept'] = 'application/json' kwargs['requestId'] = uuid() kwargs['userLocale'] = 'en_US' kwargs['teamId'] = self.team_id query = urllib.urlencode(kwargs) url = "%s/%s?%s" % (self.DEVELOPER_SERVICES_URL, cmd, query) response = self.opener.open(url, form) assert response.getcode() == 200, "Error %" % response.getcode() data = json.loads(response.read()) rc = data['resultCode'] if rc not in [ 0, 8500 ]: raise APIException(data) return data def _list_cert_requests(self): data = self._api("certificate/listCertRequests", certificateStatus=0, types=self.ALL_CERT_TYPES) return data['certRequests'] def _list_app_ids(self): data = self._api('identifiers/listAppIds') #, onlyCountLists='true') return data['appIds'] def _list_provisioning_profiles(self): data = self._api('profile/listProvisioningProfiles', includeInactiveProfiles='true', onlyCountLists='true') return data['provisioningProfiles'] def _list_devices(self, include_removed=True): data = self._api('device/listDevices', includeRemovedDevices='true' if include_removed else 'false') return data['devices'] @cached_method def all_cert_requests(self): return self._list_cert_requests() @cached_method def all_app_ids(self): return self._list_app_ids() @cached_method def all_provisioning_profiles(self): return self._list_provisioning_profiles() @cached_method def all_devices(self): return self._list_devices() def clear_cache(self): for n in self.__dict__: if n.endswith('_cache'): delattr(self, n) def list_cert_requests(self, typ): if not isinstance(typ, list): typ = [ typ ] return [ c for c in self.all_cert_requests() if c['certificateTypeDisplayId'] in typ ] def update_provisioning_profile(self, profile, name=None, app_id=None, certificate_ids=None, device_ids=None, distribution_type=None): form = [] form.append(('provisioningProfileId', profile['provisioningProfileId'])) form.append(('distributionType', distribution_type or profile['distributionMethod'])) form.append(('returnFullObjects', 'false')) form.append(('provisioningProfileName', name or profile['name'])) form.append(('appIdId', app_id or profile['appId']['appIdId'])) for certificate_id in certificate_ids or profile['certificateIds']: if isinstance(certificate_id, dict): certificate_id = certificate_id['certificateId'] form.append(('certificateIds', certificate_id)) if device_ids is None: device_ids = profile['deviceIds'] for device_id in device_ids: if isinstance(device_id, dict): device_id = device_id['deviceId'] form.append(('deviceIds', device_id)) return self._api('profile/regenProvisioningProfile', form=form) def _make_dev_url(self, path, **kwargs): query = urllib.urlencode(kwargs) return "%s/%s.action?%s" % (self.DEVELOPER_URL, path, query) def download_profile(self, profile, filename): if isinstance(profile, dict): profile = profile['provisioningProfileId'] url = self._make_dev_url('account/ios/profile/profileContentDownload', displayId=profile) r = self.opener.open(url) assert r.getcode() == 200, 'Unable to download profile [%s]' % profile dirname = os.path.dirname(filename) if dirname and not os.path.exists(dirname): os.makedirs(dirname) assert not dirname or os.path.isdir(dirname), "Path %s is not a directory" % dirname with open(filename, 'wb') as f: f.write(r.read()) ALL_CERT_TYPES = "5QPB9NHCEI,R58UK2EWSO,9RQEK7MSXA,LA30L5BJEU,BKLRAVXMGM,3BQKVH9I2X,Y3B2F3TYSI" (CERT_TYPE_IOS_DEVELOPMENT, CERT_TYPE_IOS_DISTRIBUTION, CERT_TYPE_UNKNOWN_1, CERT_TYPE_UNKNOWN_2, CERT_TYPE_APN_DEVELOPMENT, CERT_TYPE_APN_PRODUCTION, CERT_TYPE_UNKNOWN_3) = ALL_CERT_TYPES.split(',') CERT_TYPE_IOS = [ CERT_TYPE_IOS_DEVELOPMENT, CERT_TYPE_IOS_DISTRIBUTION ] if __name__ == '__main__': import getopt optlist, args = getopt.getopt(sys.argv[1:], 'u:p:a:') opts = dict((o[1:], a or True) for o, a in optlist) api = API() api.login(opts.get('u', '<EMAIL>'), opts.get('p', 'Fr13ndgr4ph')) if args[0] == 'update-profiles': dev_certs = api.list_cert_requests(typ=api.CERT_TYPE_IOS_DEVELOPMENT) dist_certs = api.list_cert_requests(typ=api.CERT_TYPE_IOS_DISTRIBUTION) devices = api.all_devices() profiles = api.all_provisioning_profiles() for profile in profiles: identifier = profile['appId']['identifier'] if 'a' in opts and identifier != opts['a']: continue if 'DISTRO' in profile['name']: is_appstore = True is_dev = is_adhoc = False print >>sys.stderr, identifier devs = devices if profile['deviceCount'] and 'DISTRO' not in profile['name'] and 'AppStore' not in profile['name'] else [] certs = dev_certs if profile['type'] == 'Development' else dist_certs api.update_provisioning_profile(profile, device_ids=devs, certificate_ids=certs) elif args[0] == 'download-profiles': profiles = api.all_provisioning_profiles() for profile in profiles: identifier = profile['appId']['identifier'] if 'a' in opts and identifier != opts['a']: continue is_wildcard = identifier == '*' is_dev = profile['type'] == 'Development' is_adhoc = not is_dev and profile['deviceCount'] > 0 is_appstore = not is_dev and not is_adhoc if is_dev: filename = 'development.mobileprovision' elif is_adhoc: filename = 'adhoc.mobileprovision' else: filename = 'appstore.mobileprovision' if not is_wildcard: filename = '%s/%s' % (identifier, filename) api.download_profile(profile, filename) else: profiles = api.all_provisioning_profiles() print json.dumps([ p for p in profiles if p['name'].startswith('Test') ], indent=4) ``` #### File: jlopez/portal/setup.py ```python import os import re from setuptools import setup, find_packages VERSIONFILE = os.path.join('portal', '_version.py') VSRE = r'^__version__ = [\'"](.*?)[\'"]' def get_version(): verstrline = open(VERSIONFILE, 'rt').read() mo = re.search(VSRE, verstrline, re.M) if mo: return mo.group(1) else: raise RuntimeError( "Unable to find version string in %s." % VERSIONFILE) setup( name="portal", version=get_version(), description="Interact with Apple's Provisioning Portal, stay sane", author="<NAME>", author_email="<EMAIL>", url = "https://www.github.com/jlopez/portal", license = "MIT", packages=find_packages(), include_package_data=True, entry_points=dict( console_scripts=[ 'portal = portal.cli:main' ], ), classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.5', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Utilities', ] ) ```
{ "source": "jlopezscala/moto", "score": 2 }
#### File: moto/sqs/exceptions.py ```python from __future__ import unicode_literals from moto.core.exceptions import RESTError class MessageNotInflight(Exception): description = "The message referred to is not in flight." status_code = 400 class ReceiptHandleIsInvalid(RESTError): code = 400 def __init__(self): super(ReceiptHandleIsInvalid, self).__init__( "ReceiptHandleIsInvalid", "The input receipt handle is invalid." ) class MessageAttributesInvalid(RESTError): code = 400 def __init__(self, description): super(MessageAttributesInvalid, self).__init__( "MessageAttributesInvalid", description ) class QueueDoesNotExist(RESTError): code = 400 def __init__(self): super().__init__( "AWS.SimpleQueueService.NonExistentQueue", "The specified queue does not exist for this wsdl version.", template="wrapped_single_error", ) class QueueAlreadyExists(RESTError): code = 400 def __init__(self, message): super(QueueAlreadyExists, self).__init__("QueueAlreadyExists", message) class EmptyBatchRequest(RESTError): code = 400 def __init__(self): super(EmptyBatchRequest, self).__init__( "EmptyBatchRequest", "There should be at least one SendMessageBatchRequestEntry in the request.", ) class InvalidBatchEntryId(RESTError): code = 400 def __init__(self): super(InvalidBatchEntryId, self).__init__( "InvalidBatchEntryId", "A batch entry id can only contain alphanumeric characters, " "hyphens and underscores. It can be at most 80 letters long.", ) class BatchRequestTooLong(RESTError): code = 400 def __init__(self, length): super(BatchRequestTooLong, self).__init__( "BatchRequestTooLong", "Batch requests cannot be longer than 262144 bytes. " "You have sent {} bytes.".format(length), ) class BatchEntryIdsNotDistinct(RESTError): code = 400 def __init__(self, entry_id): super(BatchEntryIdsNotDistinct, self).__init__( "BatchEntryIdsNotDistinct", "Id {} repeated.".format(entry_id) ) class TooManyEntriesInBatchRequest(RESTError): code = 400 def __init__(self, number): super(TooManyEntriesInBatchRequest, self).__init__( "TooManyEntriesInBatchRequest", "Maximum number of entries per request are 10. " "You have sent {}.".format(number), ) class InvalidAttributeName(RESTError): code = 400 def __init__(self, attribute_name): super(InvalidAttributeName, self).__init__( "InvalidAttributeName", "Unknown Attribute {}.".format(attribute_name) ) class InvalidAttributeValue(RESTError): code = 400 def __init__(self, attribute_name): super(InvalidAttributeValue, self).__init__( "InvalidAttributeValue", "Invalid value for the parameter {}.".format(attribute_name), ) class InvalidParameterValue(RESTError): code = 400 def __init__(self, message): super(InvalidParameterValue, self).__init__("InvalidParameterValue", message) class MissingParameter(RESTError): code = 400 def __init__(self, parameter): super(MissingParameter, self).__init__( "MissingParameter", "The request must contain the parameter {}.".format(parameter), ) class OverLimit(RESTError): code = 403 def __init__(self, count): super(OverLimit, self).__init__( "OverLimit", "{} Actions were found, maximum allowed is 7.".format(count) ) ```
{ "source": "jlopezvi/Consensus", "score": 2 }
#### File: jlopezvi/Consensus/app.py ```python import os from flask import Flask,jsonify,json, flash from crossdomain import crossdomain from flask import request,render_template,redirect,url_for import ast import json from communityManager import saveCommunity,deleteCommunity,addCommunityToContact,getCommunities from participantManager import _get_participant_node, remove_user_aux, get_all_participants_admin_aux, \ get_participant_followers_info_aux,get_participant_followings_info_aux, get_fullname_for_participant_unrestricted_aux,\ get_fullname_for_participant_aux, registration_aux, get_participant_data_aux, modify_user_data_aux, \ get_participant_data_by_email_unrestricted_aux, get_all_public_participants_for_user_aux, if_participant_exists_by_email_aux, \ add_following_contact_to_user_aux, remove_following_contact_to_user_aux, get_user_data_aux, modify_user_password_aux from participantManager import get_participantnotifications_for_user_aux, remove_notification_from_participant1_to_participant2_aux from ideaManager import get_ideas_data_created_by_participant_aux, get_ideas_created_by_participant_aux,\ add_idea_to_user_aux, vote_on_idea_aux, modify_idea_aux, remove_idea_aux, _get_supporters_emails_for_idea_aux, \ _get_volunteers_emails_for_idea_aux, get_vote_statistics_for_idea_aux, get_voting_rel_between_user_and_idea_aux, \ redflag_idea_aux, get_all_ideas_admin_aux, get_idea_data_admin_aux, get_idea_node_data_aux, get_idea_data_for_user_aux from ideaManager import get_ideanotifications_for_user_aux, remove_notification_from_idea_to_participant_aux, \ _do_tasks_for_idea_editedproposal from webManager import ideas_for_newsfeed_aux, if_ideas_for_newsfeed_aux, ideas_for_home_aux, registration_receive_emailverification_aux, \ registration_from_invitation_aux, registration_send_invitation_aux, do_cron_tasks_aux, get_topten_ideas_aux import logging import flask_login from user_authentification import User from uuid_token import generate_confirmation_token, confirm_token from flask_mail import Mail from utils import send_email #TODO: logging, sending emails when errors take place. #logging.basicConfig(level=logging.DEBUG) ################ #### config #### ################ app = Flask(__name__) # app.debug = True app.config.from_object('config.BaseConfig') DEBUG=False try: os.environ['APP_SETTINGS'] app.config.from_object(os.environ['APP_SETTINGS']) DEBUG = app.config['DEBUG'] except KeyError: pass MAIL_DEFAULT_SENDER=app.config['MAIL_DEFAULT_SENDER'] SUPPORT_RATE_MIN=app.config['SUPPORT_RATE_MIN'] SUPPORTERS_CHAR_NUM_MAX=app.config['SUPPORTERS_CHAR_NUM_MAX'] REJECTORS_CHAR_NUM_MAX=app.config['REJECTORS_CHAR_NUM_MAX'] #################### #### extensions #### #################### #flask-mail mail = Mail(app) #flask_login login_manager = flask_login.LoginManager() login_manager.init_app(app) #app.secret_key = 'super secret string' # Change this! @login_manager.user_loader def user_loader(email): return User(email) #@<EMAIL> #def unauthorized_handler(): # return 'Unauthorized' ################################ #### API, WORKING NOW #### ################################ @app.route('/test') def test(): return url_for('static', filename='images/ideas/a.jpg') @app.route('/do_tasks_for_idea_editedproposal_TEST/<idea_index>', methods=['POST']) def do_tasks_for_idea_editedproposal_TEST(idea_index): return _do_tasks_for_idea_editedproposal(idea_index) ############################################ # API ############################################ @app.route('/') def hello(message=None): return render_template('login/login.html',message=message) @app.route('/newsfeed') @flask_login.login_required #user_email=flask_login.current_user.id def newsfeed(): user_email = flask_login.current_user.id message = {"user": user_email} return render_template('login/newsfeed.html', message = message) @app.route('/home') @flask_login.login_required #user_email=flask_login.current_user.id def home(): user_email = flask_login.current_user.id message = {"user": user_email} return render_template('home.html', message = message) @app.route('/participants') @app.route('/participants/<participant_email>') @flask_login.login_required def participants(participant_email=None): user_email = flask_login.current_user.id message = {"user": user_email, "participant": participant_email} # if the same login user if user_email == participant_email: return redirect(url_for('participants')) else: return render_template('participants.html', message = message) @app.route('/topten') @flask_login.login_required def topten(): user_email = flask_login.current_user.id message = {"user": user_email} return render_template('topten.html', message = message) ############## # PARTICIPANT MANAGER ############## # input: json {"email":"asdf@asdf", "password":"<PASSWORD>"} # output: # json {"result":"Wrong: Bad e-mail"} / json {"result": "Wrong: Bad password"} # / login and json {"result": "OK"} @app.route('/login', methods=['POST']) def login(): login = request.get_json(force=True) user_to_check=_get_participant_node(login['email']) if user_to_check is None : return jsonify({"result":"Wrong: Bad e-mail"}) if login['password'] == user_to_check['password']: user = User(login['email']) flask_login.login_user(user) return jsonify({"result": "OK"}) else: return jsonify({"result": "Wrong: Bad password"}) # input: user_index logged in # output: json {"result": "OK"} @app.route('/logout') def logout(): flask_login.logout_user() return jsonify({"result": "OK"}) # input: application/json # {"fullname":"<NAME>","email":"<EMAIL>", "username": "jlopezvi", # "position":"employee", "group":"Marketing", "password":"<PASSWORD>", # "host_email":"asdf@das"/null, "ifpublicprofile":true/false, # "ifregistrationfromemail":true/false, "profilepic": "base64_string"/null} # *Group: Governing Board, Marketing, Sales, Technical, Human Resources # output: json # 1. Wrong (participant registered already!) # {"result":"Wrong","ifemailexists":true,"ifemailexists_msg":"message"} # 2. OK (participant registered already but e-mail not verified yet. Sends new e-mail for verification) --> # {"result": "OK: Participant registered previously, resend email verification", # "ifemailexists":true, "ifemailexists_msg":"message", # "ifemailverified":false,"ifemailverified_msg":"message"} # 3. OK (4 different normal cases of registration) # {"result":"OK", "ifhost":true/false,"ifhost_msg":"message", # "ifemailverified":true/false,"ifemailverified_msg":"message"}) # *Note: when "ifemailverified" is "true", the user is logged in # *Note: when "ifemailverified" is "false", a verification e-mail is sent # *Note: when "ifhost" is "true", the user starts following the host. @app.route('/registration', methods=['POST']) def registration(): inputdict = request.get_json() return registration_aux(inputdict) # input: user_email (user logged in) # application/json ALL FIELDS ARE OPTIONAL ! # {"fullname": "<NAME>", "new_email": "<EMAIL>", # "username": "jlopezvi", # "position":"employee", "group": "IT", "password": "<PASSWORD>", # "ifpublicprofile": true/false,, "ifsupportingproposalsvisible" : true/false, # "ifrejectingproposalsvisible" : true/false, "profilepic": "base64_string"/null # } # Output: json # 1. {'result': 'Wrong: New e-mail already exists'} # 2. {'result': 'OK'} @app.route('/modify_user_data', methods=['PUT']) @app.route('/modify_user_data/<user_email_DEBUG>', methods=['PUT']) def modify_user_data(user_email_DEBUG=None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id inputdict = request.get_json() return modify_user_data_aux(inputdict, user_email) # input: user_email (user logged in) # application/json # {"old_password": "<PASSWORD>", "new_password": "<PASSWORD>" } # Output: json # 1. {'result': 'Wrong: Wrong current password'} # 2. {'result': 'OK'} @app.route('/modify_user_password', methods=['PUT']) @app.route('/modify_user_password/<user_email_DEBUG>', methods=['PUT']) def modify_user_password(user_email_DEBUG=None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id inputdict = request.get_json() return modify_user_password_aux(inputdict, user_email) # input: user_email (user logged in) # Output: application/json # {"result": "OK", "data": data} # data = {"fullname":"<NAME>", "email": "<EMAIL>", # "username": "jlopezvi", # "position": "employee", "group": "IT", "password": "<PASSWORD>", # "ifpublicprofile": true/false, "ifsupportingproposalsvisible" : true/false, # "ifrejectingproposalsvisible" : true/false, "profilepic_url": "static/.../pic.jpg" # } @app.route('/get_user_data', methods=['GET']) @app.route('/get_user_data/<user_email_DEBUG>', methods=['GET']) def get_user_data(user_email_DEBUG=None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id return get_user_data_aux(user_email) # input: user_email (user logged in) # output: json {"result": "OK"} @app.route('/remove_user', methods=['DELETE']) @app.route('/remove_user/<user_email_DEBUG>', methods=['DELETE']) def remove_user(user_email_DEBUG=None) : if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id return remove_user_aux(user_email) # input: participant_email: <EMAIL>, user_email (user logged in) # output: JSON [2 possibilities, according to privacy restrictions] # 1. {"result":"OK", "ifallowed":true, "participant_data": participant_data } # participant_data: # { # 'id': 'email', # 'profilepic_url': 'static/.../pic.jpg', # 'username': 'John', # 'fullname': '<NAME>', # 'ideas_num': 5, # 'followers_num': 5, # 'followings_num': 2 # } # 2. {"result":"OK", "ifallowed":false, "participant_data": {} } @app.route('/get_participant_data/<participant_email>') @app.route('/get_participant_data/<participant_email>/<user_email_DEBUG>') def get_participant_data(participant_email, user_email_DEBUG=None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id return get_participant_data_aux(participant_email, user_email) # input: participant_email: <EMAIL>, user_email (user logged in) # output: json {"result":"OK", "participant_data": participant_data } # participant_data: # { # 'id': 'email', # 'profilepic_url': 'static/.../pic.jpg', # 'username': 'John', # 'fullname': '<NAME>', # 'position': 'assistant' # 'group': 'Marketing' # 'ideas_num': 5, # 'followers_num': 5, # 'followings_num': 2 # } @app.route('/get_participant_data_by_email_unrestricted/<participant_email>') @app.route('/get_participant_data_by_email_unrestricted/<participant_email>/<user_email_DEBUG>') def get_participant_data_by_email_unrestricted(participant_email, user_email_DEBUG=None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id return get_participant_data_by_email_unrestricted_aux(participant_email, user_email) # input: email # output: json {"result" : true / false } @app.route('/if_participant_exists_by_email/<participant_email>') def if_participant_exists_by_email(participant_email): return if_participant_exists_by_email_aux(participant_email) # input: participant_email, user_email (user logged in) # output: json {"result": "OK", "ifallowed": ifallowed, "fullname": fullname} @app.route('/get_fullname_for_participant/<participant_email>', methods=['GET']) @app.route('/get_fullname_for_participant/<participant_email>/<user_email_DEBUG>', methods=['GET']) def get_fullname_for_participant(participant_email, user_email_DEBUG=None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id return get_fullname_for_participant_aux(participant_email, user_email) # input: participant_email # output: json {"result": "OK", "fullname": fullname} @app.route('/get_fullname_for_participant_unrestricted/<participant_email>', methods=['GET']) def get_fullname_for_participant_unrestricted(participant_email): return get_fullname_for_participant_unrestricted_aux(participant_email) # Input: participant's email, user's email (user logged in) # Output: json [2 possibilities, according to privacy restrictions] # 1.{"result":"OK", "ifallowed": True, # "followers_num": 1, # "followers_info": [ # { # "email": "<EMAIL>", # "fullname": "<NAME>", # "username": "ale", # "profilepic_url": "static/.../pic.jpg" # } # ] # } # 2.{"result":"OK", "ifallowed": False, "followers_num": 1, "followers_info": []} @app.route('/get_participant_followers_info/<participant_email>', methods=['GET']) @app.route('/get_participant_followers_info/<participant_email>/<user_email_DEBUG>', methods=['GET']) def get_participant_followers_info(participant_email, user_email_DEBUG=None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id return get_participant_followers_info_aux(participant_email, user_email) # Input: participant's email, user's email (user logged in) # Output: json [2 possibilities, according to privacy restrictions] # 1.{"result":"OK", "ifallowed": True, # "followings_num": 1, # "followings_info": [ # { # "email": "<EMAIL>", # "fullname": "<NAME>", # "username": "ale", # "profilepic_url": "static/.../pic.jpg" # } # ] # } # 2.{"result":"OK", "ifallowed": False, "followings_num": 1, "followings_info": []} @app.route('/get_participant_followings_info/<participant_email>', methods=['GET']) @app.route('/get_participant_followings_info/<participant_email>/<user_email_DEBUG>', methods=['GET']) def get_participant_followings_info(participant_email, user_email_DEBUG=None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id return get_participant_followings_info_aux(participant_email, user_email) # input: followingcontact email, user email (user logged in) # output: json {"result": "OK"/"Wrong"} @app.route('/add_following_contact_to_user/<followingcontact_email>', methods=['GET']) @app.route('/add_following_contact_to_user/<followingcontact_email>/<user_email_DEBUG>', methods=['GET']) def add_following_contact_to_user(followingcontact_email, user_email_DEBUG=None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id return add_following_contact_to_user_aux(followingcontact_email, user_email) # input: followingcontact email, user email (user logged in) # output: json {"result": "OK"/"Wrong"} @app.route('/remove_following_contact_to_user/<followingcontact_email>', methods=['GET']) @app.route('/remove_following_contact_to_user/<followingcontact_email>/<user_email_DEBUG>', methods=['GET']) def remove_following_contact_to_user(followingcontact_email, user_email_DEBUG=None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id return remove_following_contact_to_user_aux(followingcontact_email, user_email) @app.route('/get_all_participants_admin', methods=['GET','OPTIONS']) def get_all_participants_admin(): return json.dumps(get_all_participants_admin_aux()) # Output json {"email": "<EMAIL>", "position": "Employee", "group": "IT", # "fullname": "jlopezvi", "profilepic_url": "static/.../pic.jpg", "if_following":True/False} @app.route('/get_all_public_participants_for_user', methods=['GET']) @app.route('/get_all_public_participants_for_user/<user_email_DEBUG>', methods=['GET']) def get_all_public_participants_for_user(user_email_DEBUG=None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id return json.dumps(get_all_public_participants_for_user_aux(user_email)) ##### PARTICIPANT NOTIFICATIONS # TODO: test # input: [user logged in] # output: json {"result": "OK", "data": notifications}) with # notifications = [ # {'notification_type': 'newfollower', # 'participant_index': participant_email }, # { } # ] @app.route('/get_participantnotifications_for_user',methods=['GET']) @app.route('/get_participantnotifications_for_user/<user_email_DEBUG>',methods=['GET']) def get_participantnotifications_for_user(user_email_DEBUG): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id return get_participantnotifications_for_user_aux(user_email) # TODO: test # input: json {"participant1_email":"asdf@asdf", "participant2_email":"asdf2@asdf", # "notification_type": "newfollower"} # output: # json {"result": "OK", "result_msg": "Notification was deleted"} / @app.route('/remove_notification_from_participant1_to_participant2',methods=['POST']) def remove_notification_from_participant1_to_participant2(): participant1_email = request.get_json()['participant1_email'] participant2_email = request.get_json()['participant2_email'] notification_type = request.get_json()['notification_type'] return remove_notification_from_participant1_to_participant2_aux(participant1_email, participant2_email, notification_type) ############### # IDEA MANAGER ############### # input: user_email (user logged in) # application/json : # {"concern":"we are not social enough in the office", # "proposal":"social coffee pause at 4 p.m.", # "moreinfo_concern":"I have to say as well this and this and this about the concern...", # "moreinfo_proposal":"I have to say as well this and this and this about the proposal...", # "supporters_goal_num":500, "volunteers_goal_num":5, # "image":"base64_string"/null, # "if_author_public":true/false, "first_receivers_emails":["<EMAIL>", "<EMAIL>"] } # output: json {"result":"OK", "result_msg":"added idea to database"} # {"result":"Wrong", "result_msg":"proposal already exists"} @app.route('/add_idea_to_user', methods=['POST']) @app.route('/add_idea_to_user/<string:user_email_DEBUG>', methods=['POST']) def add_idea_to_user(user_email_DEBUG=None) : if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id idea_dict = request.get_json() return add_idea_to_user_aux(user_email,idea_dict) # input: application/json : ALL FIELDS ARE OPTIONAL SAVE FOR 'current_proposal'! # {"concern":"we are not social enough in the office", # "current_proposal": "this is the proposal to be modified", # "proposal": "this is the new proposal (if is required)", # "moreinfo_concern":"I have to say as well this and this and this about the concern...", # "moreinfo_proposal":"I have to say as well this and this and this about the proposal...", # "supporters_goal_num":500, "volunteers_goal_num":5, # "image":"base64_string"/null, # "if_author_public":true/false } # Output json : 1./ {"result":"OK", "result_msg":"Idea was modified"} # 2./ {"result":"Wrong", "result_msg": "Proposal already exists"} @app.route('/modify_idea', methods=['PUT']) def modify_idea(): idea_dict = request.get_json() return modify_idea_aux(idea_dict) # input: json {"proposal": "text of the proposal"} # Output json : {"result":"OK", "result_msg":"Idea was removed"} @app.route('/remove_idea', methods=['DELETE']) def remove_idea(): idea_index=request.get_json()['proposal'] return remove_idea_aux(idea_index) # Input: participant's email, user's email (user logged in) # Output: json with fields "result","ifallowed":true/ false, "ideas_indices". # "ideas_indices" contains a list [] with the indices for all the ideas created by the user # There are two possibilities according to privacy restrictions # 1. {"result": "OK", # "ifallowed": true, # "ideas_indices": [proposal_of_idea_1, proposal_of_idea_2,...] # } # 2. { # "result": "OK" # "ifallowed": false, # "ideas_indices": [] # } @app.route('/get_ideas_created_by_participant/<participant_email>', methods=['GET']) @app.route('/get_ideas_created_by_participant/<participant_email>/<user_email_DEBUG>', methods=['GET']) def get_ideas_created_by_participant(participant_email,user_email_DEBUG=None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id return get_ideas_created_by_participant_aux(participant_email,user_email) # Input: participant's email, user's email (user logged in) # Output: json with fields "result","ifallowed":true/ false, "ideas_data". # "ideas_data" contains list [] with json data {} for all the ideas created by the user # There are two possibilities according to privacy restrictions # 1. {"result": "OK", # "ifallowed": true, # "ideas_data": # [ # { # 'concern': 'Some text for the concern', # 'proposal': 'Some text for the proposal', # 'image_url': 'static/.../asdf.JPG'/null, # 'uuid': 'unique_identifier_string', # 'moreinfo_concern': 'blah blah blah more info', # 'moreinfo_proposal': 'blah blah blah more info', # 'supporters_goal_num': 200, # 'volunteers_goal_num': 5, # 'if_author_public': true / false # 'author_profilepic_url': 'static/.../pic.jpg'/null, 'author_username': 'daniela', 'author_email': '<EMAIL>', # 'duration' : "4 hours/ days/ weeks", # 'supporters_num' : 5, 'volunteers_num' : 2, 'rejectors_num': 3, # 'support_rate' : 95, 'support_rate_MIN' : 90, # 'known_supporters': [ # { 'email': 'user', 'username': 'me' }, { 'email': '<EMAIL>', 'username': 'Pedro' } # ], # 'known_rejectors':[ # { 'email': 'd@', 'username': 'Elisa' } # ], # 'vote_type': null / 'supported' / 'rejected' / 'ignored' # 'vote_ifvolunteered': null / true / false # }, # { # ... # } # ] # } # 2. { # "result": "OK", # "ifallowed": false, # "ideas_data": [] # } @app.route('/get_ideas_data_created_by_participant/<participant_email>', methods=['GET']) @app.route('/get_ideas_data_created_by_participant/<participant_email>/<user_email_DEBUG>', methods=['GET']) def get_ideas_data_created_by_participant(participant_email,user_email_DEBUG=None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id return get_ideas_data_created_by_participant_aux(participant_email, user_email) # input idea_proposal # output json {"result": "OK", "volunteers_emails": [email1, email2,...]} @app.route('/get_volunteers_emails_for_idea/<idea_proposal>', methods=['GET']) def get_volunteers_emails_for_idea(idea_proposal): volunteers_emails = _get_volunteers_emails_for_idea_aux(idea_proposal) return jsonify({"result": "OK", "volunteers_emails": volunteers_emails}) # input idea_proposal # output json {"result": "OK", "supporters_emails": [email1, email2,...]} @app.route('/get_supporters_emails_for_idea/<idea_proposal>', methods=['GET']) def get_supporters_emails_for_idea(idea_proposal): supporters_emails = _get_supporters_emails_for_idea_aux(idea_proposal) return jsonify({"result": "OK", "supporters_emails": supporters_emails}) # input idea_proposal # output {"result": "OK", "vote_statistics" : [supporters_num, rejectors_num, passives_num, volunteers_num]} @app.route('/get_vote_statistics_for_idea/<idea_proposal>', methods=['GET']) def get_vote_statistics_for_idea(idea_proposal): vote_statistics = get_vote_statistics_for_idea_aux(idea_proposal) return jsonify({"result": "OK", "vote_statistics" : vote_statistics}) # input: user's email (flask_login.current_user.id), idea_proposal # output: json {"result": "OK", "vote_type":"supported/rejected/ignored", "vote_ifvolunteered":true/false} # {"result": "Wrong", "result_msg": "Voting relationship does not exist"} @app.route('/get_voting_rel_between_user_and_idea/<idea_proposal>',methods=['GET']) @app.route('/get_voting_rel_between_user_and_idea/<idea_proposal>/<user_email_DEBUG>',methods=['GET']) def vote_status_idea(idea_proposal, user_email_DEBUG = None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id return get_voting_rel_between_user_and_idea_aux(user_email, idea_proposal) # TODO: format for vote_timestamp # input user's email (flask_login.current_user.id) # json {"idea_proposal":"let's do this", # "vote_type":"supported/rejected/ignored", "vote_ifvolunteered": true/false} # output json {"result": "Wrong: User vote exists of same type"} # {"result": "OK: User vote was modified"} # {"result": "OK: User vote was created"} @app.route('/vote_on_idea',methods=['POST']) @app.route('/vote_on_idea/<user_email_DEBUG>',methods=['POST']) def vote_on_idea(user_email_DEBUG = None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id return vote_on_idea_aux(user_email, request.get_json()) # input: user's email (flask_login.current_user.id), # json {"idea_index":"let's do this", # "reason":"this and this"} # output: jsonify({"result":"OK", "result_msg":"Idea was removed"}) @app.route('/redflag_idea',methods=['POST']) @app.route('/redflag_idea/<user_email_DEBUG>',methods=['POST']) def redflag_idea(user_email_DEBUG = None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id reason = request.get_json()['reason'] idea_index = request.get_json()['idea_index'] return redflag_idea_aux(user_email, idea_index, reason) @app.route('/get_all_ideas_admin', methods=['GET','OPTIONS']) def get_all_ideas_admin(): return json.dumps(get_all_ideas_admin_aux()) # input: idea_index and user's email (flask_login.current_user.id), # output: json # {"result":"OK", # "idea_data": # { # 'concern': 'Some text for the concern', # 'proposal': 'Some text for the proposal', # 'image_url': 'static/.../asdf.JPG'/null, # 'uuid': 'unique_identifier_string', # 'moreinfo_concern': 'blah blah blah more info', # 'moreinfo_proposal': 'blah blah blah more info', # 'supporters_goal_num': 200, # 'volunteers_goal_num': 5, # 'if_author_public': true / false # 'author_profilepic_url': 'static/.../pic.jpg'/null, 'author_username': 'daniela', 'author_email': '<EMAIL>', # 'duration' : "4 hours/ days/ weeks", # 'supporters_num' : 5, 'volunteers_num' : 2, 'rejectors_num': 3, # 'support_rate' : 95, 'support_rate_MIN' : 90, # 'known_supporters': [ # { 'email': 'user', 'username': 'me' }, { 'email': '<EMAIL>', 'username': 'Pedro' } # ], # 'known_rejectors':[ # { 'email': 'd@', 'username': 'Elisa' } # ], # 'vote_type': null / 'supported' / 'rejected' / 'ignored' # 'vote_ifvolunteered': null / true / false # } # } @app.route('/get_idea_data_for_user/<idea_index>',methods=['GET']) @app.route('/get_idea_data_for_user/<idea_index>/<user_email_DEBUG>',methods=['GET']) def get_idea_data_for_user(idea_index, user_email_DEBUG = None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id return get_idea_data_for_user_aux(idea_index, user_email) # input idea_proposal # output idea data as a json @app.route('/get_idea_data_admin/<idea_proposal>', methods=['GET']) def get_idea_data_admin(idea_proposal): return jsonify(get_idea_data_admin_aux(idea_proposal)) # input idea_proposal # output idea_node's data as a json @app.route('/get_idea_node_data/<idea_proposal>', methods=['GET']) def get_idea_node_data(idea_proposal): return jsonify(get_idea_node_data_aux(idea_proposal)) ##### IDEA NOTIFICATIONS # TODO: test # input: [user logged in] # output: json {"result": "OK", "data": notifications}) with # notifications = [ # {'notification_type': 'failurewarning'/'successful'/'sucessful_to_author'/'edited', # 'idea_index': idea_proposal }, # { } # ] @app.route('/get_ideanotifications_for_user',methods=['GET']) @app.route('/get_ideanotifications_for_user/<user_email_DEBUG>',methods=['GET']) def get_ideanotifications_for_user(user_email_DEBUG): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id return get_ideanotifications_for_user_aux(user_email) # TODO: test # input: json {"participant_email":"asdf@asdf", "proposal":"this is a proposal", # "notification_type": "failurewarning"/"successful"/"sucessful_to_author"/"edited"} # output: # json {"result": "OK", "result_msg": "Notification was deleted"} / @app.route('/remove_notification_from_idea_to_participant',methods=['POST']) def remove_notification_from_idea_to_participant(): participant_email = request.get_json()['participant_email'] idea_index = request.get_json()['proposal'] notification_type = request.get_json()['notification_type'] return remove_notification_from_idea_to_participant_aux(participant_email, idea_index, notification_type) ############## # WEB MANAGER ############## # TODO: try with redirect instead of render_template # input: URL token link from an invitation e-mail and that (guest) e-mail # output: redirects to login with a json called "message" # -> json {"type": "registration", "result": "Wrong", "result_msg": "The confirmation link is invalid or has expired"} # -> json {"type": "registration", "result": "OK : With data", "result_msg": "Invitation OK", # "user_email": "<EMAIL>", "host_email": <EMAIL>"} @app.route('/registration_from_invitation/<token>/<guest_email>') def registration_from_invitation(token, guest_email): return registration_from_invitation_aux(token, guest_email) # input: host_email and guest_email # output: sends registration e-mail and json # {"result": "OK", "result_msg" : "email sent"} @app.route('/registration_send_invitation/<host_email>/<guest_email>', methods=['GET']) def registration_send_invitation(host_email, guest_email): return registration_send_invitation_aux(host_email, guest_email) # TODO: try with redirect instead of render_template # input: URL token link from an invitation e-mail # output: redirects to login with a json called "message" # -> json {"type": "login", "result": "Wrong", "result_msg": "The confirmation link is invalid or has expired"} # -> json {"type": "login", "result": "Wrong", "result_msg": "Email already verified"} # -> json {"type": "login", "result": "Wrong", "result_msg": "Email not registered"} # -> json {"type": "login", "result": "OK : With data", "result_msg": "Email verified", "login_email": "<EMAIL>"} @app.route('/registration_receive_emailverification/<token>') def registration_receive_emailverification(token): return registration_receive_emailverification_aux(token) # TODO: add weights for ideas # Get Ideas For Newsfeed # Input: user_email (user logged in) # Output: json with fields 'result' and 'data'. 'data' contains array with all ideas for the newsfeed # {"result": "OK", # "data": [ {*see /get_idea_data_for_user}, {*see /get_idea_data_for_user} ] # } @app.route('/ideas_for_newsfeed',methods=['GET']) @app.route('/ideas_for_newsfeed/<user_email_DEBUG>',methods=['GET']) def ideas_for_newsfeed(user_email_DEBUG = None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id return ideas_for_newsfeed_aux(user_email) # Input: user_email (user logged in) # Output: json {"result": true/false} @app.route('/if_ideas_for_newsfeed',methods=['GET']) @app.route('/if_ideas_for_newsfeed/<user_email_DEBUG>',methods=['GET']) def if_ideas_for_newsfeed(user_email_DEBUG = None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id return if_ideas_for_newsfeed_aux(user_email) # Ideas For Home: See the Supported + Volunteered ideas/ See the ignored ideas / See the rejected ideas # Input: user_email (user logged in) and JSON {"vote_type": "rejected/supported/ignored"} # Output: json with fields 'result' and 'data'. 'data' Array with all ideas that the user has voted according to << vote_type >> # {"result": "OK", # "data": [ # { # 'concern': 'Some text for the concern', # 'proposal': 'Some text for the proposal', # 'image_url': 'static/.../asdf.JPG'/null, # 'uuid': 'unique_identifier_string', # 'moreinfo_concern': 'blah blah blah more info', # 'moreinfo_proposal': 'blah blah blah more info', # 'supporters_goal_num': 200, # 'volunteers_goal_num': 5, # 'if_author_public': true / false # 'author_profilepic_url': 'static/.../pic.jpg'/null, 'author_username': 'daniela', 'author_email': '<EMAIL>', # 'duration' : "4 hours/ days/ weeks", # 'supporters_num' : 5, 'volunteers_num' : 2, 'rejectors_num': 3, # 'support_rate' : 95, 'support_rate_MIN' : 90, # 'known_supporters': [ # { 'email': 'user', 'username': 'me' }, { 'email': '<EMAIL>', 'username': 'Pedro' } # ], # 'known_rejectors':[ # { 'email': 'd@', 'username': 'Elisa' } # ], # 'vote_type': null / 'supported' / 'rejected' / 'ignored' # 'vote_ifvolunteered': null / true / false # }, # { # ... # } # ] # } @app.route('/ideas_for_home',methods=['POST']) @app.route('/ideas_for_home/<user_email_DEBUG>',methods=['POST']) def ideas_for_home(user_email_DEBUG = None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id # vote_type = request.get_json()['vote_type'] return ideas_for_home_aux(user_email, vote_type) # Input: None # Output: json with fields 'result' and 'data'. 'data' Array with at most 10 ideas ranked from 1st to 10st in order # {"result": "OK", # "data": [ # { # 'concern': 'Some text for the concern', # 'proposal': 'Some text for the proposal', # 'image_url': 'static/.../asdf.JPG'/null, # 'uuid': 'unique_identifier_string', # 'moreinfo_concern': 'blah blah blah more info', # 'moreinfo_proposal': 'blah blah blah more info', # 'supporters_goal_num': 200, # 'volunteers_goal_num': 5, # 'if_author_public': true / false # 'author_profilepic_url': 'static/.../pic.jpg'/null, 'author_username': 'daniela', 'author_email': '<EMAIL>', # 'duration' : "4 hours/ days/ weeks", # 'supporters_num' : 5, 'volunteers_num' : 2, 'rejectors_num': 3, # 'support_rate' : 95, 'support_rate_MIN' : 90, # 'known_supporters': [ # { 'email': 'user', 'username': 'me' }, { 'email': '<EMAIL>', 'username': 'Pedro' } # ], # 'known_rejectors':[ # { 'email': 'd@', 'username': 'Elisa' } # ], # 'vote_type': null / 'supported' / 'rejected' / 'ignored' # 'vote_ifvolunteered': null / true / false # }, # { # ... # } # ] # } @app.route('/get_topten_ideas',methods=['GET']) @app.route('/get_topten_ideas/<user_email_DEBUG>',methods=['GET']) def get_topten_ideas(user_email_DEBUG = None): if DEBUG and user_email_DEBUG is not None: user_email = user_email_DEBUG else: user_email = flask_login.current_user.id return get_topten_ideas_aux(user_email) # input : None # output: JSON {"result":"OK", "ideas_removed" : [ "proposal1", "proposal2"]} @app.route('/do_cron_tasks') def do_cron_tasks(): return do_cron_tasks_aux() ######################## # COMMUNITIES (NOT USED) ####################### @app.route('/addCommunity', methods=['POST']) def addComunity(): return saveCommunity(request.get_json()) @app.route('/addCommunityToUser/<string:name>/<string:email>', methods=['POST', 'OPTIONS']) def addCommunityToUser(name, email) : addCommunityToContact(name, email) return "Community %s was added to user with email %s" % (name, email) @app.route('/delete/community/<string:name>', methods=['DELETE', 'OPTIONS']) def removeCommunity(name): deleteCommunity(name) return "Community %s was successfully removed" % name @app.route('/getCommunitiesOfUser/<string:email>', methods=['GET','OPTIONS']) def getAllCommunitiesForUser(email): return json.dumps(getCommunities(email)) ################ # ERROR HANDLERS ################ <EMAIL>(NotFoundError) #def handle_NotFoundError(error): # response = jsonify(error.to_dict()) # response.status_code = error.status_code # return response ################ # MAIN PROGRAM ################ if __name__ == '__main__': port = int(os.environ.get('PORT', 5000)) if os.environ.get('GRAPHENEDB_URL'): app.run(host='0.0.0.0', port=port) else: app.run(host='127.0.0.1', port=port) ``` #### File: jlopezvi/Consensus/communityManager.py ```python from utils import getGraph from py2neo import neo4j from participantManager import _get_participant_node def saveCommunity(community): if _getCommunity(community) : return "Community %s already exists" % community elif _getCommunity(community) is None : _newCommunity(community) return "Community %s was successfully added" % community def addCommunityToContact(name, email): userFound = _get_participant_node(email) communityFound = _getCommunity(name) getGraph().create((userFound, "BELONGS_TO", communityFound)) def getCommunities(email): currentUser = _getUserByEmail(email) rels = list(getGraph().match(start_node=currentUser, rel_type="BELONGS_TO")) communities = [] for rel in rels: communities.append(rel.end_node.get_properties()) #print getGraph().node(rel.end_node) return communities def deleteCommunity(name): communityFound = _getCommunity(name) communityFound.delete() def _getCommunity(communityName): communityFound = _getCommunityIndex().get("name", communityName) if communityFound : return communityFound[0] return None def _addToCommunityIndex(name, newCommunity) : _getCommunityIndex().add("name", name, newCommunity) def _newCommunity(community): name = community.get('name') newCommunity, = getGraph().create({"name" : name, "description" : community.get('description')}) _addToCommunityIndex(name, newCommunity) def _getCommunityIndex(): return getGraph().get_or_create_index(neo4j.Node, "Communities") ```
{ "source": "jlopp/bitnodes", "score": 2 }
#### File: jlopp/bitnodes/seeder.py ```python import glob import json import logging import operator import os import random import redis import sys import threading import time from ConfigParser import ConfigParser from protocol import DEFAULT_PORT # Redis connection setup REDIS_SOCKET = os.environ.get('REDIS_SOCKET', "/tmp/redis.sock") REDIS_PASSWORD = os.environ.get('REDIS_PASSWORD', None) REDIS_CONN = redis.StrictRedis(unix_socket_path=REDIS_SOCKET, password=REDIS_PASSWORD) SETTINGS = {} def export_nodes(nodes): """ Exports nodes as A and AAAA records. Nodes are selected from oldest (longest uptime) to newest each with unique AS number. """ nodes = sorted(nodes, key=operator.itemgetter(4))[:SETTINGS['nodes']] min_height = REDIS_CONN.get('height') if min_height is None: min_height = SETTINGS['min_height'] else: min_height = int(min_height) min_age = SETTINGS['min_age'] now = int(time.time()) logging.info("Min. height: {}".format(min_height)) oldest = now - min(nodes, key=operator.itemgetter(4))[4] if oldest < min_age: min_age = oldest - (0.01 * oldest) # Max. 1% newer than oldest logging.info("Min. age: {}".format(min_age)) asns = [] a_records = [] aaaa_records = [] for node in nodes: address = node[0] port = node[1] age = now - node[4] height = node[5] asn = node[12] if (port == DEFAULT_PORT and asn not in asns and age >= min_age and height >= min_height): if ":" in address: aaaa_records.append("@\tIN\tAAAA\t{}".format(address)) else: a_records.append("@\tIN\tA\t{}".format(address)) asns.append(asn) return (a_records, aaaa_records) def save_zone_file(a_records, aaaa_records): """ Saves A and AAAA records in DNS zone file. """ random.shuffle(a_records) random.shuffle(aaaa_records) logging.info("A records: {}".format(len(a_records))) logging.info("AAAA records: {}".format(len(aaaa_records))) a_records = "\n".join(a_records[:SETTINGS['a_records']]) + "\n" aaaa_records = "\n".join(aaaa_records[:SETTINGS['aaaa_records']]) + "\n" template = open(SETTINGS['template'], "r").read() open(SETTINGS['zone_file'], "w").write(template + a_records + aaaa_records) def cron(): """ Periodically fetches latest snapshot to sample nodes for DNS zone file. """ while True: time.sleep(5) dump = max(glob.iglob("{}/*.json".format(SETTINGS['export_dir']))) logging.info("Dump: {}".format(dump)) nodes = [] try: nodes = json.loads(open(dump, "r").read(), encoding="latin-1") except ValueError: logging.warning("Write pending") if len(nodes) > 0: (a_records, aaaa_records) = export_nodes(nodes) if len(a_records) > 0 and len(aaaa_records) > 0: save_zone_file(a_records, aaaa_records) def init_settings(argv): """ Populates SETTINGS with key-value pairs from configuration file. """ conf = ConfigParser() conf.read(argv[1]) SETTINGS['logfile'] = conf.get('seeder', 'logfile') SETTINGS['debug'] = conf.getboolean('seeder', 'debug') SETTINGS['export_dir'] = conf.get('seeder', 'export_dir') SETTINGS['nodes'] = conf.getint('seeder', 'nodes') SETTINGS['min_height'] = conf.getint('seeder', 'min_height') SETTINGS['min_age'] = conf.getint('seeder', 'min_age') SETTINGS['zone_file'] = conf.get('seeder', 'zone_file') SETTINGS['template'] = conf.get('seeder', 'template') SETTINGS['a_records'] = conf.getint('seeder', 'a_records') SETTINGS['aaaa_records'] = conf.getint('seeder', 'aaaa_records') def main(argv): if len(argv) < 2 or not os.path.exists(argv[1]): print("Usage: seeder.py [config]") return 1 # Initialize global settings init_settings(argv) # Initialize logger loglevel = logging.INFO if SETTINGS['debug']: loglevel = logging.DEBUG logformat = ("%(asctime)s,%(msecs)05.1f %(levelname)s (%(funcName)s) " "%(message)s") logging.basicConfig(level=loglevel, format=logformat, filename=SETTINGS['logfile'], filemode='w') print("Writing output to {}, press CTRL+C to terminate..".format( SETTINGS['logfile'])) threading.Thread(target=cron).start() return 0 if __name__ == '__main__': sys.exit(main(sys.argv)) ```
{ "source": "jlopp/explorer", "score": 2 }
#### File: explorer/blocks/views.py ```python from django.http import HttpResponseRedirect from django.core.urlresolvers import reverse from django.contrib import messages from django.utils.translation import ugettext_lazy as _ from annoying.decorators import render_to from blockexplorer.decorators import assert_valid_coin_symbol from blockexplorer.settings import BLOCKCYPHER_API_KEY from blockcypher.api import get_block_details, get_latest_block_height from blockcypher.constants import COIN_SYMBOL_MAPPINGS from utils import get_max_pages @assert_valid_coin_symbol @render_to('block_overview.html') def block_overview(request, coin_symbol, block_representation): TXNS_PER_PAGE = 20 # 1 indexed page current_page = request.GET.get('page') if current_page: current_page = int(current_page) else: current_page = 1 # TODO: fail gracefully if the user picks a number of pages that is too large # Waiting on @matthieu's change to API first (currently throws 502) try: block_details = get_block_details( block_representation=block_representation, coin_symbol=coin_symbol, txn_limit=TXNS_PER_PAGE, txn_offset=(current_page-1)*TXNS_PER_PAGE, api_key=BLOCKCYPHER_API_KEY, ) except AssertionError: msg = _('Invalid Block Representation') messages.warning(request, msg) redir_url = reverse('coin_overview', kwargs={'coin_symbol': coin_symbol}) return HttpResponseRedirect(redir_url) # import pprint; pprint.pprint(block_details, width=1) if 'error' in block_details: msg = _('Sorry, that block was not found') messages.warning(request, msg) return HttpResponseRedirect(reverse('home')) # Technically this is not the only API call used on this page api_url = 'https://api.blockcypher.com/v1/%s/%s/blocks/%s' % ( COIN_SYMBOL_MAPPINGS[coin_symbol]['blockcypher_code'], COIN_SYMBOL_MAPPINGS[coin_symbol]['blockcypher_network'], block_representation, ) return { 'coin_symbol': coin_symbol, 'api_url': api_url, 'block_details': block_details, 'current_page': current_page, 'max_pages': get_max_pages(num_items=block_details['n_tx'], items_per_page=TXNS_PER_PAGE), } @assert_valid_coin_symbol def latest_block(request, coin_symbol): latest_block_height = get_latest_block_height(coin_symbol=coin_symbol, api_key=BLOCKCYPHER_API_KEY) kwargs = { 'coin_symbol': coin_symbol, 'block_representation': latest_block_height, } return HttpResponseRedirect(reverse('block_overview', kwargs=kwargs)) def latest_block_forwarding(request): return HttpResponseRedirect(reverse('latest_block', kwargs={ 'coin_symbol': 'btc', })) ``` #### File: explorer/users/models.py ```python from django.db import models from django.contrib.auth.models import AbstractBaseUser, BaseUserManager from django.core.urlresolvers import reverse_lazy from emails.trigger import send_and_log from utils import get_client_ip, get_user_agent # For more info, see the django docs here: # https://docs.djangoproject.com/en/1.7/topics/auth/customizing/#a-full-example class AuthUserManager(BaseUserManager): def create_user(self, email, password, creation_ip, creation_user_agent): """ Creates and saves a user with the given email and password. """ if not email: raise ValueError('Users must have an email address') # force whole email to lowercase. violates spec but better usability. user = self.model(email=email.lower().strip()) # if no password it calls set_unusuable_password() under the hood: user.set_password(password) user.creation_ip = creation_ip user.creation_user_agent = creation_user_agent user.save() return user def create_superuser(self, email, password, creation_ip=None, creation_user_agent=None): """ Creates and saves a superuser with the given email and password. """ if not creation_ip: creation_ip = '127.0.0.1' if not creation_user_agent: creation_user_agent = 'admin' user = self.create_user( email=email, password=password, creation_ip=creation_ip, creation_user_agent=creation_user_agent, ) user.is_superuser = True user.is_staff = True user.save() return user class AuthUser(AbstractBaseUser): date_joined = models.DateTimeField(auto_now_add=True, db_index=True) first_name = models.CharField(max_length=64, blank=True, null=True) last_name = models.CharField(max_length=64, blank=True, null=True) email = models.EmailField(max_length=128, unique=True) is_active = models.BooleanField(default=True, help_text='Can login?') is_staff = models.BooleanField(default=False) is_superuser = models.BooleanField(default=False) creation_ip = models.IPAddressField(null=False, blank=False, db_index=True) creation_user_agent = models.CharField(max_length=1024, blank=True, db_index=True) email_verified = models.BooleanField(default=False, db_index=True) objects = AuthUserManager() USERNAME_FIELD = 'email' def __str__(self): return '%s: %s' % (self.id, self.email) def get_full_name(self): if self.first_name and self.last_name: return '%s %s' % (self.first_name, self.last_name) else: return '' def get_short_name(self): return self.first_name def has_perm(self, perm, obj=None): "Does the user have a specific permission?" # FIXME return self.is_superuser def has_module_perms(self, app_label): "Does the user have permissions to view the app `app_label`?" # FIXME return self.is_superuser def get_login_uri(self): return '%s?e=%s' % (reverse_lazy('user_login'), self.email) def get_address_subscriptions(self): return self.addresssubscription_set.filter(unsubscribed_at=None).order_by('-id') def get_address_forwardings(self): return self.addressforwarding_set.filter(archived_at=None).order_by('-id') def send_pwreset_email(self): """ Send password reset email to user. """ # TODO: add some sort of throttling return send_and_log( subject='Blockcypher Password Reset', body_template='password_reset.html', to_user=self, body_context={}, fkey_objs={'auth_user': self}, ) class LoggedLogin(models.Model): login_at = models.DateTimeField(auto_now_add=True, db_index=True) auth_user = models.ForeignKey(AuthUser, blank=False, null=False) ip_address = models.IPAddressField(null=False, blank=False, db_index=True) user_agent = models.CharField(max_length=1024, blank=True, db_index=True) def __str__(self): return '%s: %s' % (self.id, self.ip_address) @classmethod def record_login(cls, request): return cls.objects.create( auth_user=request.user, ip_address=get_client_ip(request), user_agent=get_user_agent(request), ) ```
{ "source": "jlorencelim/active-campaign", "score": 3 }
#### File: active-campaign/active_campaign/base.py ```python class BaseAC(object): def format_filters(self, filters={}): return {'filters[{}]'.format(key): value for key, value in filters.items()} def format_ordering(self, ordering={}): return {'orders[{}]'.format(key): value for key, value in ordering.items()} ``` #### File: active_campaign/ecommerce/customer.py ```python import json from active_campaign.base import BaseAC class ACCustomer(BaseAC): """E-commerce customer resources represent a customer in an external e-commerce service. Customer resources primarily hold aggregate e-commerce data associated with a contact. Arguments: client {ACClient} -- ACClient object. connection_id {int} -- The id of the connection object for the service where the customer originates. """ def __init__(self, *, client, connection_id): self.client = client self.connection_id = connection_id def create(self, *, external_id, email): """Create a new e-commerce customer resource. Arguments: external_id {str} -- The id of the customer in the external service. email {str} -- The email address of the customer. Returns: bool -- True if success, False otherwise. dict -- Response of the /ecomCustomers/ endpoint. """ url = '{}/ecomCustomers/'.format(self.client.base_url) payload = { 'ecomCustomer': { 'connectionid': self.connection_id, 'externalid': external_id, 'email': email, } } request = self.client.session.post(url, json=payload) return request.ok, json.loads(request.text) def list(self, filters={}, ordering={}, limit=20, offset=0): """List all e-commerce customer resources. Optional Arguments: filters {dict} -- To apply multiple, convention oriented filters to a request. (default: {{}}) key - Field name value - Value to fitler by ordering {dict} -- To apply multiple sorting criteria to a request. (default: {{}}) key - Field name value - ASC = Ascending order DESC = Descending order limit {int} -- The number of results to display in each page. (default: {20}; max: {100}) offset {int} -- The starting point for the result set of a page. (default: {0}) Returns: bool -- True if success, False otherwise. dict -- Response of the /ecomCustomers/ endpoint. """ url = '{}/ecomCustomers/'.format(self.client.base_url) payload = { limit: limit, offset: offset } payload.update(self.format_filters(filters)) payload.update(self.format_ordering(ordering)) request = self.client.session.get(url, params=payload) return request.ok, json.loads(request.text) ```
{ "source": "jlorencelim/django-cookiecutter", "score": 2 }
#### File: {{ cookiecutter.repo_name }}/core/models.py ```python from __future__ import unicode_literals from django.db import models from django.utils import timezone from django.utils.translation import ugettext_lazy as _ class AbstractTimeStampedModel(models.Model): """ Base for time-stamped models. """ created_at = models.DateTimeField(_('Created At'), editable=False) updated_at = models.DateTimeField(_('Updated At'), editable=False) class Meta: abstract = True def save(self, *args, **kwargs): # check if the instace already has an id if not self.created_at: self.created_at = timezone.now() # update date modified self.updated_at = timezone.now() return super(AbstractTimeStampedModel, self).save(*args, **kwargs) ``` #### File: {{ cookiecutter.repo_name }}/core/utils.py ```python from __future__ import ( absolute_import, unicode_literals, ) import os import uuid def get_upload_path(instance, filename): """ This function gets the upload path of the image. Returns the image path. """ file_name, file_extension = os.path.splitext(filename) model = instance._meta.model_name.lower() new_file = '{}{}'.format(uuid.uuid4().hex, file_extension) return os.path.join(model, new_file) ```
{ "source": "jlorenze/asl_fixedwing", "score": 3 }
#### File: asl_fixedwing/data/utils.py ```python from os.path import dirname, abspath, join, isfile, isdir import sys import rosbag import numpy as np def get_data_dir(): return dirname(abspath(__file__)) def get_models_dir(): return join(dirname(dirname(abspath(__file__))), 'models') def get_utils_dir(): return join(dirname(dirname(abspath(__file__))), 'src/utils') class pointStream: def __init__(self): self.x = [] self.y = [] self.z = [] self.t = [] def add_point(self, t, x, y, z): self.x.append(x) self.y.append(y) self.z.append(z) self.t.append(t) class ctrlStream: def __init__(self): self.u = [[], [], [], []] self.t = [] def add_point(self, t, u): self.t.append(t) for i in range(4): self.u[i].append(u[i]) class zStream: def __init__(self): self.z = [] self.t = [] def add_point(self, t, z): self.t.append(t) if not self.z: self.z = [[z[i]] for i in range(len(z))] else: for i in range(len(z)): self.z[i].append(z[i]) class planeData: """ A class to extract data from Plane topic messages """ def __init__(self): self.pos = pointStream() # inertial pos x_i, y_i, z_i [m] self.vel = pointStream() # body frame vel u, v, w [m/s] self.euler = pointStream() # euler angle phi, th, psi [rad] self.om = pointStream() # body rate p, q, r [rad/s] self.act = ctrlStream() # thrust [N] and ctrl srf def [rad] self.nrmlzd_act = ctrlStream() # normalized actuators # Total velocity self.vel.V = [] def add_msg(self, topic, msg, t): """ Add a piece of data from a ROS message """ if topic == 'position': self.pos.add_point(t, msg.point.x, msg.point.y, msg.point.z) elif topic == 'velocity': self.vel.add_point(t, msg.point.x, msg.point.y, msg.point.z) self.vel.V.append(np.sqrt(msg.point.x**2 + msg.point.y**2 + msg.point.z**2)) elif topic == 'euler': self.euler.add_point(t, msg.point.x, msg.point.y, msg.point.z) elif topic == 'bodyrate': self.om.add_point(t, msg.point.x, msg.point.y, msg.point.z) elif topic == 'actuators': self.act.add_point(t, msg.controls) elif topic == 'target_actuator_control': self.nrmlzd_act.add_point(t, msg.controls) class rompcData: """ A class to extract data from ROMPC topic messages Note e_att is either euler angles or axis/angle param depending on the type of model used. Note e_attrate is either body rates p,q,r or axis/angle rates depending on the type of model used. """ def __init__(self): self.e_pos = pointStream() # pos error x_r, y_r, z_r [m] self.e_vel = pointStream() # body frame vel error [m/s] self.e_att = pointStream() # attitude error [rad] self.e_attrate = pointStream() # attitude rate error [rad/s] self.ubar = ctrlStream() # nominal control minus eq. control self.u = ctrlStream() # control minus eq. control self.zbar = zStream() self.zhat = zStream() self.u_prev = ctrlStream() # Control used in state estimator self.y = zStream() self.qp_solve_time = zStream() def add_msg(self, topic, msg, t): """ Add a piece of data from a ROS message """ if topic == 'pos_error': self.e_pos.add_point(t, msg.point.x, msg.point.y, msg.point.z) elif topic == 'vel_error': self.e_vel.add_point(t, msg.point.x, msg.point.y, msg.point.z) elif topic == 'att_error': self.e_att.add_point(t, msg.point.x, msg.point.y, msg.point.z) elif topic == 'attrate_error': self.e_attrate.add_point(t, msg.point.x, msg.point.y, msg.point.z) elif topic == 'ubar': self.ubar.add_point(t, msg.data) elif topic == 'u': self.u.add_point(t, msg.data) elif topic == 'zbar': self.zbar.add_point(t, msg.data) elif topic == 'zhat': self.zhat.add_point(t, msg.data) elif topic == 'u_prev': self.u_prev.add_point(t, msg.data) elif topic == 'y': self.y.add_point(t, msg.data) elif topic == 'qp_solve_time': self.qp_solve_time.add_point(t, [msg.data]) class RosbagData: """ This class extracts rosbag data """ def __init__(self, fpath): self.plane = planeData() self.rompc = rompcData() self.t0 = None bag = rosbag.Bag(fpath) topics = ['/plane/position', '/plane/velocity', '/plane/euler', '/plane/bodyrate', '/plane/actuators', '/rompc/pos_error', '/rompc/vel_error', '/rompc/att_error', '/rompc/attrate_error', '/rompc/ubar', '/rompc/u', '/rompc/zbar', '/rompc/zhat', '/rompc/u_prev', '/rompc/y', '/rompc/qp_solve_time', '/mavros/target_actuator_control'] for topic, msg, t in bag.read_messages(topics=topics): self.add_msg(msg, topic) def extract_time(self, msg): t = msg.header.stamp.secs + msg.header.stamp.nsecs/1e9 if self.t0 is None: self.t0 = t return t - self.t0 def add_msg(self, msg, topic): main, sub = topic.split('/')[1:3] if sub == 'qp_solve_time': t = 0 else: t = self.extract_time(msg) if main == 'plane' or main == 'mavros': self.plane.add_msg(sub, msg, t) elif main == 'rompc': self.rompc.add_msg(sub, msg, t) if __name__ == '__main__': data_dir = get_data_dir() fpath = join(data_dir, 'rompc.bag') data = RosbagData(fpath) ``` #### File: models/gazebo/sysid.py ```python import numpy as np def aircraft_ctrl_params(): """ Compute the parameters that define the aircraft's command to control mappings delta = c_delta*u_delta + delta_0 maps [-1,1] to radians T = c_T0*(1 - C_TVom*V/u_T)*u_T^2 maps [0,1] to Newtons """ k_slowdown = 10.0 # from .sdf file k_motor = 8.54858e-06 # from .sdf file c_om = 350.0 # from sysid data # Thrust model parameters c_T0 = k_motor*(c_om*k_slowdown)**2 c_TVom = 0.2/25.0 # a guess because Gazebo doesn't model prop well # Control surface deflection parameters a_0 = 0.0 e_0 = 0.0 r_0 = 0.0 c_a = 1.0 c_e = 1.0 c_r = 1.0 return np.array([c_T0, c_TVom, a_0, c_a, e_0, c_e, r_0, c_r]) if __name__ == '__main__': aircraft_ctrl_params() ```
{ "source": "jlorieau/nmr", "score": 3 }
#### File: plotpipe2d/scripts/plotpipe2d.py ```python from itertools import groupby import pathlib from nmrglue import pipe import click import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator default2d = pathlib.Path(__file__).parent.parent / 'trosy-fb.ft2' def contours_by_Imax(data, minI_factor=8., cl_factor=1.2, num_contours=10): """Calculate the contours for the plot base on the maximum intensity.""" maxI = data.max() minI = maxI / minI_factor return [minI * cl_factor ** x for x in range(num_contours)] def freq_ppm(header, data, debug=False): """Generate a 2d for the frequencies of the 2d spectrum in Hz.""" # Get the spectral widths for the 2 frequency dimensions in Hz f1sw = header['FDF1SW'] f2sw = header['FDF2SW'] # Get the observed (Larmor) frequencies for each channel in MHz f1obs = header['FDF1OBS'] f2obs = header['FDF2OBS'] # Get the spectral widths in ppm f1swppm = f1sw / f1obs f2swppm = f2sw / f2obs # Get the spectral offset in ppm f1swoffppm = header['FDF1ORIG'] / f1obs f2swoffppm = header['FDF2ORIG'] / f2obs # Get the spectral ranges in ppm f1rangeppm = (f1swoffppm, f1swoffppm + f1swppm) f2rangeppm = (f2swoffppm, f2swoffppm + f2swppm) # Get the number of points in the f1 (y-axis) and f2 (x-axis) # dimensions f1npts, f2npts = data.shape # Calculate the number of ppm per point for each dimension f1delta = f1swppm / f1npts f2delta = f2swppm / f2npts if debug: print('f1sw (Hz): {}, f2sw (Hz): {}'.format(f1sw, f2sw)) print('f1swppm (ppm): {}, f2swppm (Hz): {}'.format(f1swppm, f2swppm)) print('f1offppm (ppm): {}, f2offppm (ppm): {}'.format(f1swoffppm, f2swoffppm)) print('f1rangeppm (ppm): {}'.format(f1rangeppm)) print('f2rangeppm (ppm): {}'.format(f2rangeppm)) # return an numby array for the frequencies in Hz f1ppm = np.array([f1rangeppm[1] - float(i) * f1delta for i in range(f1npts)]) f2ppm = np.array([f2rangeppm[1] - float(i) * f2delta for i in range(f2npts)]) return np.meshgrid(f2ppm, f1ppm) def format_isotope(label): """Format an isotope string into latex""" # Parse the starter numbers groups = [list(g) for _,g in groupby(label, key=lambda c: c.isdigit())] if len(groups) > 1: number = ''.join(groups[0]) rest = ''.join([''.join(g) for g in groups[1:]]) return "$^{{{}}}${}".format(number, rest) else: return label def print_header(header): """Print information on the header""" for key in sorted(header.keys()): if key.startswith('FDF3') or key.startswith('FDF4'): continue print(key, header[key]) @click.command() @click.argument('filenames', nargs=-1, type=click.Path(exists=True)) @click.option('--dims', required=False, default=(3, 4), type=click.Tuple([float, float]), help='The figure dimensions (in inches)') @click.option('--units', required=False, default=('ppm', 'ppm'), type=click.Tuple([str, str]), help='The units to plot the x- and y-axes (ppm)') @click.option('--title', required=False, default=None, help='The title for the figure') @click.option('--labels', required=False, default=('', ''), type=click.Tuple([str, str]), help="The labels for the x- and y-axis") @click.option('--xlim', required=False, default=(None, None), type=click.Tuple([float, float]), help="The x-axis limits (in units) to draw the spectrum") @click.option('--ylim', required=False, default=(None, None), type=click.Tuple([float, float]), help="The y-axis limits (in units) to draw the spectrum") @click.option('--ticks', required=False, default=(1, 5), type=click.Tuple([float, float]), help="The major tick mark interval for the x- and y-axis") @click.option('--contour-Icutoff', 'ctr_Icutoff', required=False, default=0.15, type=float, help='The fraction of the maximum intensity to start contours') @click.option('--contour-levels', 'ctr_levels', required=False, default=20, type=int, help='The number of contours to draw') @click.option('--contour-factor', 'ctr_factor', required=False, default=1.2, type=float, help='The contour multiplicative factor') @click.option('--contour-map', 'cmap', required=False, default='winter', type=str, help='The color map to use for drawing the contours') @click.option('--out', '-o', 'outfile', required=False, default=None, help="The output filename to save to figure image") @click.option('--debug', '-d', required=False, default=False, type=bool, help="Print debug information to the terminal") def plot2d(filenames, dims, units, title, labels, xlim, ylim, ticks, ctr_Icutoff, ctr_levels, ctr_factor, cmap, outfile, debug): """Plot a 2d NMR spectrum from NMRPipe format. """ # Setup the figure fig = plt.figure(figsize=dims) if title is not None: plt.title(title) # Setup the input spectra if len(filenames) == 0: filenames = [str(default2d)] for filename in filenames: header, data = pipe.read(filename) # Format the labels xlabel_hdr = format_isotope(header['FDF2LABEL']) ylabel_hdr = format_isotope(header['FDF1LABEL']) # Format the axes ppm1, ppm2 = freq_ppm(header, data, debug=debug) if units[0] is None: pass else: x = ppm1 xlabel = labels[0] or "{} Frequency (ppm)".format(xlabel_hdr) if units[1] is None: pass else: y = ppm2 ylabel = labels[1] or "{} Frequency (ppm)".format(ylabel_hdr) # Set the plot cl = contours_by_Imax(data, minI_factor=ctr_Icutoff**-1, cl_factor=ctr_factor, num_contours=ctr_levels) cnt = plt.contour(x, y, data, levels=cl, cmap=cmap) # Set plot information for the last contour axes = cnt.axes axes.invert_xaxis() axes.set_xlabel(xlabel) axes.xaxis.set_major_locator(MultipleLocator(ticks[0])) axes.invert_yaxis() axes.set_ylabel(ylabel) axes.yaxis.set_major_locator(MultipleLocator(ticks[1])) # Set the limits if not any(i is None for i in xlim): print(xlim) axes.set_xlim(*xlim) if not any(i is None for i in ylim): axes.set_ylim(*ylim) # Reposition elements fig.tight_layout() if outfile is None: plt.show() else: plt.savefig(outfile) if __name__ == '__main__': plot2d() ```
{ "source": "jlosey/muller", "score": 2 }
#### File: jlosey/muller/GeneratorFunctions.py ```python import math import string import glob import numpy as np import matplotlib.pyplot as plt import scipy as sp from scipy import optimize from scipy.linalg import expm, logm import os.path from os import walk import pylab from collections import defaultdict import scipy.integrate as integrate from pandas import * import pandas as pd #from rpy2.robjects.packages import importr #utils = importr('utils') #utils.install_packages('gutenbergr', repos='https://cloud.r-project.org') #utils.install_packages('ctmcd') #import rpy2.robjects as ro #from rpy2.robjects import pandas2ri #pandas2ri.activate() #ctmcd = importr('ctmcd') import os import time from scipy import linalg from random import * from helperFunctions import * from constants import * #Defined for i->j def diagonalAdjustment(matrix, tau=1, k=0, epsilon=0.001, maxIterations=20): #input is ETM or EPM, returns generator #take log logMatrix = isRealLog(normalizeMatrix(matrix, k=k), epsilon=eps, maxIterations=maxIters)/tau # logMatrix=logm(matrix) #set off diagonals to zero for i in range(logMatrix.shape[0]): for j in range(logMatrix.shape[0]): if(i!=j and logMatrix[i,j]<0): logMatrix[i,j] = 0 #make diagonals the negative sum of rest of row for i in range(logMatrix.shape[0]): logMatrix[i,i]=0 #first set diagonals to zero logMatrix[i,i] = -1 * logMatrix[i].sum() #by row return logMatrix #Defined for i->j def weightedAdjustment(matrix, tau=1, k=0, epsilon=0.001, maxIterations=20): #input is ETM or EPM #returns Generator #take log logMatrix = isRealLog(normalizeMatrix(matrix, k=k), epsilon=eps, maxIterations=maxIters)/tau #set off diagonals to zero as in DA for i in range(logMatrix.shape[0]): for j in range(logMatrix.shape[0]): if(i!=j and logMatrix[i,j]<0): logMatrix[i,j] = 0 absMatrix = abs(np.copy(logMatrix)) for i in range(logMatrix.shape[0]): for j in range(logMatrix.shape[0]): matrix[i,j] = logMatrix[i,j] - absMatrix[i,j] * logMatrix[:,i].sum() / absMatrix[:,i].sum() return matrix def EM(matrix, tau=1, k=0): df = npMatrixToPDdf(matrix) DAmat = diagonalAdjustment(matrix, tau=tau, k=k) EMmat = ctmcd.gm(tm=df, te=tau, method="EM", gmguess=DAmat)[0] return EMmat def MLE(matrix, t=1, iterations=250000,pseudobeta=1, noiseR=0.1, noiseP=0, smooth=0.0001): N0=matrix N=normalizeMatrix(matrix+1) n=N.shape[0] P=guessP(N) R=guessR(N,P) #R = np.random.rand(R.shape[0], R.shape[0]) # for i in range(R.shape[0]): # R[i,i] = 0 # R[i,i] = -1 * R[:,i].sum() #should be column sum # print("randR") # for i in detailedBalance(R): # print(i) print("#Iterations: %s"%iterations) print("#Pseudobeta: %s"%pseudobeta) print("#noiseR: %s"%noiseR) print("#noiseP: %s"%noiseP) print("#smooth: %s"%smooth) logl = calcLL(N0,R,t) seed() rejected=0 rejectedLastThousand=0 adjusted=np.zeros(n) for step in range(1,iterations+1): i=randint(0,n-1) if (t%2==0 or noiseP==0): j=n while j>=n or j<0: j=i+1-2*randint(0,1) dr=-R[i,j] #while R[i,j]+dr<=0:# or R[j,i]+P[i]/P[j]*dr<=0: #off diagonals need to still be greater than 0 while R[i,j]+dr<=0 or R[j,i]-dr<=0: #off diagonals need to still be greater than 0 # or R[j,i]+P[j]/P[i]*dr<=0 dr=(random()-0.5)*noiseR R[i,j]+=dr R[i,i]-=dr #R[j,i]-=dr #R[j,j]+=dr # R[j,i]+=dr*P[i]/P[j] # R[j,j]-=dr*P[i]/P[j] else: dp=(random()-0.5)*noiseP for j in range(n): if i!=j: P[j]-=(dp*P[i])/n P[i]*=(1+dp) if (i<n-1): R[i+1,i+1]-=R[i+1,i]*dp R[i+1,i]*=1+dp if (i>0): R[i-1,i-1]-=R[i-1,i]*dp R[i-1,i]*=1+dp #r=sp.linalg.expm(R) loglt=0 #for ii in range(n): # for jj in range(n): # if N[ii,jj]*r[ii,jj]>0: # loglt+=log(r[ii,jj])*N[ii,jj] #if smooth>0: # for ii in range(n-1): # D[ii]=R[ii,ii+1]*sqrt(P[ii+1]/P[ii]) # for ii in range(n-2): # loglt-=(D[ii]-D[ii+1])**2/(2*smooth**2)+(log(P[ii]/P[ii+1]))**2/(2*smooth**2) loglt = calcLL(N0, R, t) dlog = (loglt) - (logl) #these numbers are always negative, thus if loglt>logl this will be positive r = random() if math.isnan(loglt) or math.isinf(loglt) or (r>np.exp(pseudobeta*(dlog))): #rejection criterion if (t%2==0 or noiseP==0): R[i,j]-=dr R[i,i]+=dr #R[j,i]+=dr #R[j,j]-=dr ##R[j,i]-=dr*P[i]/P[j] #R[j,j]+=dr*P[i]/P[j] else: P[i]/=(1+dp) for j in range(n): if i!=j: P[j]+=(dp*P[i])/n if (i<n-1): R[i+1,i]/=1+dp R[i+1,i+1]+=R[i+1,i]*dp if (i>0): R[i-1,i]/=1+dp R[i-1,i-1]+=R[i-1,i]*dp rejected +=1. rejectedLastThousand +=1. else: logl=loglt adjusted[i]+=1 if step%1000==0: ########### #noiseR = noiseR * min(1,(1 - rejectedLastThousand/1000)+0.5) #noiseR = 1 - rejectedLastThousand/1000 #noiseP = noiseP * min(1,(1 - rejectedLastThousand/1000)+0.5) #if (rejectedLastThousand/1000*100 > 95): # print("Iteration: %d, Logl: %.2f, TotalReject: %.2f%%, RecentReject: %.2f%%, noiseR = %.2f" %(step, logl, rejected/float(step)*100, rejectedLastThousand/1000*100, noiseR)) # return R print("Iteration: %d, Logl: %.2f, TotalReject: %.2f%%, RecentReject: %.2f%%, noiseR = %.2f" %(step, logl, rejected/float(step)*100, rejectedLastThousand/1000*100, noiseR)) ############ #print("Iteration: %d, Logl: %.2f, TotalReject: %.2f%%, RecentReject: %.2f%%" %(step, logl, rejected/float(step)*100, rejectedLastThousand/1000*100)) rejectedLastThousand=0 if step%5000==0: for i in detailedBalance(R): print(i) return R #Helper function by which to optimize the frobenius distance between the two matrices. def optimizeFunc(x, i, j, Q, P):#x is exp(Q(q_{i,j})) Q[i,i] += Q[i,j] - x Q[i,j] = x return frobenius(iterative_expm(Q), P) #Input is a ETM or EPM def CWO(matrix, tau=1, k=0, epsilon=0.001, maxIterations=20): calculations=0 #It is noted that any method can be used here. Not just DA. Q = diagonalAdjustment(matrix, tau=tau, k=k, epsilon=eps, maxIterations=maxIters) matrix = normalizeMatrix(matrix, k=k) for i in range(Q.shape[0]): for j in range(Q.shape[0]): if(i!=j): if(Q[i,j]>1e-10): calculations+=1 #Run an optimization on each row over the first function defined in this cell x = optimize.fmin(optimizeFunc, Q[i,j], args=(i,j,Q,matrix), maxiter=200, full_output=False, disp=False)[0]#argmin(i, j, Q, c) Q[i,j] = x return Q def QOG(matrix, tau=1, k=0, epsilon=eps, maxIterations=maxIters): logMatrix = isRealLog(normalizeMatrix(matrix,k=k), epsilon=eps, maxIterations=maxIters)/tau #step 2 of algorithm sortedMatrix, unsortKey = sortMatrix(logMatrix) #step 3 of algorithm m = np.zeros(matrix.shape[0]) for i in range(matrix.shape[0]): m[i] = findMValue(sortedMatrix[i]) #step 4 of algorithm copyMatrix=np.copy(sortedMatrix) for i in range(matrix.shape[0]):#for each row for j in range(2,int(m[i])+1):#include m[i] sortedMatrix[i,j]=0 for j in range(int(m[i])+1,matrix.shape[0]):#for each value not zero'd for k in range(int(m[i])+1,matrix.shape[0]): #summation sortedMatrix[i,j] -= copyMatrix[i,k] / (matrix.shape[0] - m[i] + 1) sortedMatrix[i,j] -= copyMatrix[i,0] / (matrix.shape[0] - m[i] + 1) for k in range(int(m[i]+1),matrix.shape[0]): sortedMatrix[i,0] -= copyMatrix[i,k] / (matrix.shape[0] - m[i] + 1) sortedMatrix[i,0] -= copyMatrix[i,0] / (matrix.shape[0] - m[i] + 1) #step 5 - shuffle rows back into order. quasi = unsortMatrix(sortedMatrix, unsortKey) return quasi def findMValue(array): #step 3 of algorithm n = len(array)-1 #last index val=0 for i in range(1,n+1): #i loops from 1 to n val = (n+1-i)*array[i+1]-array[0] for j in range(n-i):#from 0 to n-1-i val -= array[n-j] if(val>=0): #truth condition of algorithm return i return -1 #otherwise return that row cannot be optimized. def sortMatrix(matrix): #returns sortMatrix and unsortKey sortMatrix = np.copy(matrix) for i in range(matrix.shape[0]): sortMatrix[i].sort() sortMatrix = sortMatrix unsortKey = np.zeros((matrix.shape[0], matrix.shape[0])) for i in range(matrix.shape[0]): for j in range(matrix.shape[0]): f=0 while(unsortKey[i,j]==0): if(sortMatrix[i,f]==matrix[i,j]): unsortKey[i,j] = f + 1 f+=1 return sortMatrix, unsortKey def unsortMatrix(matrix, key): #take in sorted matrix and key to unsort unsortedMatrix = np.zeros((matrix.shape[0],matrix.shape[0])) for i in range(matrix.shape[0]): for j in range(matrix.shape[0]): unsortedMatrix[i,j] = matrix[i,int(key[i,j])-1] return unsortedMatrix ``` #### File: jlosey/muller/muller.py ```python import numpy as np import matplotlib.pyplot as plt def muller(x,y): aa = [-1, -1, -6.5, 0.7] bb = [0, 0, 11, 0.6] cc = [-10, -10, -6.5, 0.7] AA = [-200, -100, -170, 15] XX = [1, 0, -0.5, -1] YY = [0, 0.5, 1.5, 1] value = 0. for j in range(4): value += AA[j] * np.exp(aa[j] * (x - XX[j])**2 + \ bb[j] * (x - XX[j]) * (y - YY[j]) + \ cc[j] * (y - YY[j])**2) return value X = np.linspace(-1.75,1.,300) Y = np.linspace(-0.5,2.5,300) xx,yy = np.meshgrid(X,Y) zz = muller(xx,yy) print(xx,yy,zz) ax = plt.contourf(xx,yy.clip(max = 200),zz,40) plt.legend() plt.show() ```
{ "source": "jlou2u/katas", "score": 4 }
#### File: p99/python3/p21.py ```python def insert_at(e, n, l): if n < 0: l = l[::-1] n = -1*n-1 r = l[0:n] + [e] + l[n:] return r[::-1] return l[0:n] + [e] + l[n:] def test_insert_at(): l = ['a', 'b', 'c', 'd'] l_copy = [e for e in l] assert insert_at('new', 1, l) == ['a', 'new', 'b', 'c', 'd'] assert l == l_copy assert insert_at('new', 0, []) == ['new'] assert insert_at('new', 1, []) == ['new'] assert insert_at('new', 10, []) == ['new'] assert insert_at('new', -1, ['a']) == ['a', 'new'] assert insert_at('new', -2, ['a', 'b']) == ['a', 'new', 'b'] ``` #### File: p99/python3/p22.py ```python def rng(i, k): return list(range(i, k+1)) def test_rng(): assert rng(4, 9) == [4, 5, 6, 7, 8, 9] ``` #### File: p99/python3/p34.py ```python def gcd(i, j): for n in reversed(range(max(i, j)+1)): if i % n == 0 and j % n == 0: return n def is_coprime(i, j): return gcd(i, j) == 1 def totient(m): n = 0 for i in reversed(range(m+1)): if is_coprime(m, i): n = n + 1 return n def test_totient(): assert totient(2) == 1 assert totient(3) == 2 assert totient(4) == 2 assert totient(5) == 4 assert totient(6) == 2 assert totient(7) == 6 assert totient(8) == 4 assert totient(9) == 6 assert totient(10) == 4 assert totient(11) == 10 assert totient(12) == 4 assert totient(13) == 12 assert totient(14) == 6 assert totient(15) == 8 ```
{ "source": "jlouder/sigal", "score": 2 }
#### File: sigal/plugins/watermark.py ```python import logging from PIL import Image, ImageEnhance from sigal import signals def reduce_opacity(im, opacity): """Returns an image with reduced opacity.""" assert opacity >= 0 and opacity <= 1 if im.mode != 'RGBA': im = im.convert('RGBA') else: im = im.copy() alpha = im.split()[3] alpha = ImageEnhance.Brightness(alpha).enhance(opacity) im.putalpha(alpha) return im def watermark(im, mark, position, opacity=1): """Adds a watermark to an image.""" if opacity < 1: mark = reduce_opacity(mark, opacity) if im.mode != 'RGBA': im = im.convert('RGBA') # create a transparent layer the size of the image and draw the # watermark in that layer. layer = Image.new('RGBA', im.size, (0, 0, 0, 0)) if position == 'tile': for y in range(0, im.size[1], mark.size[1]): for x in range(0, im.size[0], mark.size[0]): layer.paste(mark, (x, y)) elif position == 'scale': # scale, but preserve the aspect ratio ratio = min( float(im.size[0]) / mark.size[0], float(im.size[1]) / mark.size[1]) w = int(mark.size[0] * ratio) h = int(mark.size[1] * ratio) mark = mark.resize((w, h)) layer.paste(mark, (int((im.size[0] - w) / 2), int((im.size[1] - h) / 2))) else: layer.paste(mark, position) # composite the watermark with the layer return Image.composite(layer, im, layer) def add_watermark(img, settings=None): logger = logging.getLogger(__name__) logger.debug('Adding watermark to %r', img) mark = Image.open(settings['watermark']) position = settings.get('watermark_position', 'scale') opacity = settings.get("watermark_opacity", 1) return watermark(img, mark, position, opacity) def register(settings): logger = logging.getLogger(__name__) if settings.get('watermark'): signals.img_resized.connect(add_watermark) else: logger.warning('Watermark image is not set') ```
{ "source": "jlouie95618/airtable-python", "score": 2 }
#### File: airtable-python/airtable/airtable_error.py ```python class AirtableError(object): """docstring for AirtableError""" def __init__(self, arg): super(AirtableError, self).__init__() self.arg = arg ``` #### File: airtable-python/airtable/perform_request.py ```python import requests def performRequest(): header = { 'Authorization': 'Bearer keyrpG4FPpEqZ0ubg'} r = requests.get('https://api.airtable.com/v0/app9uvKeuVL1pOfCD/Cuisines/recgruzSZ0BvRB63q', headers = header) print r print r.text performRequest() ``` #### File: airtable-python/airtable/table.py ```python class Table(object): """docstring for Table""" def __init__(self, arg): self.arg = arg ```
{ "source": "J-L-O/UNO", "score": 2 }
#### File: UNO/utils/metrics.py ```python from typing import Tuple import torch import numpy as np from utils.eval import cluster_acc from sklearn.metrics.cluster import normalized_mutual_info_score as nmi_score from sklearn.metrics import adjusted_rand_score as ari_score def compute_distance_to_prototypes(features: torch.tensor, prototypes: torch.tensor, labels: torch.tensor) -> float: mean_distance = 0 num_classes = prototypes.shape[0] for i in range(num_classes): if ~torch.isnan(prototypes[i, 0]): samples = labels == i mean_distance += calculate_l2_loss(prototypes[i], features[samples]) mean_distance /= num_classes return mean_distance def compute_metrics(preds: np.ndarray, labels: np.ndarray) -> Tuple[float, float, float]: acc = cluster_acc(labels, preds) nmi = nmi_score(labels, preds) ari = ari_score(labels, preds) return acc, nmi, ari def calculate_prototypes(features, labels, num_classes): class_assignments = labels.view(labels.shape[0], 1).expand(-1, features.shape[1]) one_hot = torch.nn.functional.one_hot(labels, num_classes) labels_count = one_hot.sum(dim=0) prototypes = torch.zeros((num_classes, features.shape[1]), dtype=features.dtype, device=features.device) prototypes.scatter_add_(0, class_assignments, features) prototypes = prototypes / labels_count.float().unsqueeze(1) return prototypes def calculate_l2_loss(prototype, features): repeated_prototype = prototype.unsqueeze(0).repeat(features.shape[0], 1) mse_loss = torch.nn.functional.mse_loss(repeated_prototype, features, reduction="mean") # sum_of_squares = mse_loss.sum(dim=1) # l2_loss = torch.sqrt(sum_of_squares + 1e-10) return mse_loss # l2_loss.mean() def calculate_nearest_labeled_neighbors(features: torch.tensor, model: torch.nn.Module, k: int, labels: torch.tensor, num_classes: int, key: str = "logits_lab") -> torch.tensor: prototypes = calculate_prototypes(features, labels, num_classes) prototype_features = model.forward_heads(prototypes.float()) nearest_neighbors = prototype_features[key].topk(k=k, dim=1).indices return nearest_neighbors ``` #### File: UNO/utils/sinkhorn_knopp.py ```python import torch class SinkhornKnopp(torch.nn.Module): def __init__(self, num_iters=3, epsilon=0.05): super().__init__() self.num_iters = num_iters self.epsilon = epsilon @torch.no_grad() def forward(self, logits): Q = torch.exp(logits / self.epsilon).t() B = Q.shape[1] K = Q.shape[0] # how many prototypes # make the matrix sums to 1 sum_Q = torch.sum(Q) Q /= sum_Q for it in range(self.num_iters): # normalize each row: total weight per prototype must be 1/K sum_of_rows = torch.sum(Q, dim=1, keepdim=True) Q /= sum_of_rows Q /= K # normalize each column: total weight per sample must be 1/B Q /= torch.sum(Q, dim=0, keepdim=True) Q /= B Q *= B # the colomns must sum to 1 so that Q is an assignment return Q.t() ``` #### File: UNO/utils/transforms.py ```python import torch import torchvision.transforms as T from PIL import ImageFilter, ImageOps import random class DiscoverTargetTransform: def __init__(self, mapping): self.mapping = mapping def __call__(self, y): y = self.mapping[y] return y class GaussianBlur(object): """Gaussian blur augmentation in SimCLR https://arxiv.org/abs/2002.05709""" def __init__(self, sigma=[0.1, 2.0]): self.sigma = sigma def __call__(self, x): sigma = random.uniform(self.sigma[0], self.sigma[1]) x = x.filter(ImageFilter.GaussianBlur(radius=sigma)) return x class Solarize(object): def __init__(self, p=0.2): self.prob = p def __call__(self, img): if torch.bernoulli(torch.tensor(self.prob)) == 0: return img v = torch.rand(1) * 256 return ImageOps.solarize(img, v) class Equalize(object): def __init__(self, p=0.2): self.prob = p def __call__(self, img): if torch.bernoulli(torch.tensor(self.prob)) == 0: return img return ImageOps.equalize(img) def get_multicrop_transform(dataset, mean, std): if dataset == "ImageNet": return T.Compose( [ T.RandomResizedCrop(size=96, scale=(0.08, 0.5)), T.RandomHorizontalFlip(), T.RandomApply([T.ColorJitter(0.4, 0.4, 0.2, 0.1)], p=0.8), T.RandomGrayscale(p=0.2), T.RandomApply([GaussianBlur([0.1, 2.0])], p=0.5), T.ToTensor(), T.Normalize(mean, std), ] ) elif "CIFAR" in dataset: return T.Compose( [ T.RandomResizedCrop(size=18, scale=(0.3, 0.8)), T.RandomHorizontalFlip(), T.RandomApply([T.ColorJitter(0.4, 0.4, 0.2, 0.1)], p=0.8), Solarize(p=0.2), Equalize(p=0.2), T.ToTensor(), T.Normalize(mean, std), ] ) class MultiTransform: def __init__(self, transforms): self.transforms = transforms def __call__(self, x): return [t(x) for t in self.transforms] def get_transforms(mode, dataset, multicrop=False, num_large_crops=2, num_small_crops=2): mean, std = { "CIFAR10": [(0.491, 0.482, 0.447), (0.202, 0.199, 0.201)], "CIFAR100": [(0.507, 0.487, 0.441), (0.267, 0.256, 0.276)], "ImageNet": [(0.485, 0.456, 0.406), (0.229, 0.224, 0.225)], }[dataset] transform = { "ImageNet": { "unsupervised": T.Compose( [ T.RandomResizedCrop(224, (0.5, 1.0)), T.RandomHorizontalFlip(), T.RandomApply([T.ColorJitter(0.4, 0.4, 0.2, 0.1)], p=0.5), T.RandomGrayscale(p=0.2), T.RandomApply([GaussianBlur([0.1, 2.0])], p=0.2), T.ToTensor(), T.Normalize(mean, std), ] ), "eval": T.Compose( [ T.Resize(256), T.CenterCrop(224), T.ToTensor(), T.Normalize(mean, std), ] ), }, "CIFAR100": { "unsupervised": T.Compose( [ T.RandomChoice( [ T.RandomCrop(32, padding=4), T.RandomResizedCrop(32, (0.5, 1.0)), ] ), T.RandomHorizontalFlip(), T.RandomApply([T.ColorJitter(0.4, 0.4, 0.2, 0.1)], p=0.6), Solarize(p=0.1), Equalize(p=0.1), T.ToTensor(), T.Normalize(mean, std), ] ), "supervised": T.Compose( [ T.RandomCrop(32, padding=4), T.RandomHorizontalFlip(), T.ToTensor(), T.Normalize(mean, std), ] ), "eval": T.Compose( [ T.CenterCrop(32), T.ToTensor(), T.Normalize(mean, std), ] ), }, "CIFAR10": { "unsupervised": T.Compose( [ T.RandomChoice( [ T.RandomCrop(32, padding=4), T.RandomResizedCrop(32, (0.5, 1.0)), ] ), T.RandomHorizontalFlip(), T.RandomApply([T.ColorJitter(0.4, 0.4, 0.2, 0.1)], p=0.6), Solarize(p=0.1), Equalize(p=0.1), T.ToTensor(), T.Normalize(mean, std), ] ), "supervised": T.Compose( [ T.RandomCrop(32, padding=4), T.RandomHorizontalFlip(), T.ToTensor(), T.Normalize(mean, std), ] ), "eval": T.Compose( [ T.CenterCrop(32), T.ToTensor(), T.Normalize(mean, std), ] ), }, }[dataset][mode] if mode == "unsupervised": transforms = [transform] * num_large_crops if multicrop: multicrop_transform = get_multicrop_transform(dataset, mean, std) transforms += [multicrop_transform] * num_small_crops transform = MultiTransform(transforms) return transform ``` #### File: UNO/utils/visualization.py ```python import time from typing import List import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import torch from sklearn.decomposition import PCA from sklearn.manifold import TSNE from torch.utils.tensorboard import SummaryWriter def visualize_features(features: np.ndarray, labels: np.ndarray, num_classes: int, tag: str, writer: SummaryWriter, epoch: int, metadata: List = None, metadata_header: List[str] = None) -> None: feat_cols = ["pixel" + str(i) for i in range(features.shape[1])] df = pd.DataFrame(features, columns=feat_cols) df["y"] = labels df["label"] = df["y"].apply(lambda i: int(i)) print(f"Size of the dataframe: {df.shape}") df_subset = df data_subset = df_subset[feat_cols].values pca_50 = PCA(n_components=50) pca_result_50 = pca_50.fit_transform(data_subset) print(f"Cumulative explained variation for 50 principal components: {np.sum(pca_50.explained_variance_ratio_)}") if metadata is None: writer.add_embedding(pca_result_50, labels.tolist(), tag=tag, global_step=epoch) else: writer.add_embedding(pca_result_50, metadata, tag=tag, global_step=epoch, metadata_header=metadata_header) time_start = time.time() tsne = TSNE(n_components=2, verbose=0, perplexity=40, n_iter=300) tsne_pca_results = tsne.fit_transform(pca_result_50) print(f"t-SNE done! Time elapsed: {time.time() - time_start} seconds") df_subset["tsne-pca50-one"] = tsne_pca_results[:, 0] df_subset["tsne-pca50-two"] = tsne_pca_results[:, 1] fig = plt.figure() plt.title(tag) sns.scatterplot( x="tsne-pca50-one", y="tsne-pca50-two", hue="y", palette=sns.color_palette("hls", num_classes), data=df_subset, legend="full", alpha=0.3, ) writer.add_figure(tag, fig, global_step=epoch, close=True) def visualize_labeled_vs_unlabeled(features_unlabeled: np.ndarray, labels_unlabeled: np.ndarray, features_labeled: np.ndarray, labels_labeled: np.ndarray, tag: str, writer: SummaryWriter, epoch: int): coarse_labels_unlabeled = np.zeros_like(labels_unlabeled) coarse_labels_labeled = np.ones_like(labels_labeled) max_unlabeled = np.max(labels_unlabeled) max_labeled = np.max(labels_labeled) features_combined = np.concatenate((features_unlabeled, features_labeled), axis=0) coarse_labels_combined = np.concatenate((coarse_labels_unlabeled, coarse_labels_labeled), axis=0) labeled_coarse_unlabeled_fine = np.concatenate((labels_unlabeled, np.full(features_labeled.shape[0], max_unlabeled + 1)), axis=0) labeled_fine_unlabeled_coarse = np.concatenate((np.full(features_unlabeled.shape[0], max_labeled + 1), labels_labeled), axis=0) metadata = list(zip(coarse_labels_combined, labeled_coarse_unlabeled_fine, labeled_fine_unlabeled_coarse)) metadata_header = ["both coarse", "labled coarse, unlabeled fine", "labled fine, unlabeled coarse"] visualize_features(features_combined, coarse_labels_combined, 2, tag, writer, epoch, metadata=metadata, metadata_header=metadata_header) def visualize_distances(p1: torch.tensor, p2: torch.tensor, num_classes: int, tag: str, writer: SummaryWriter, epoch: int): distances = torch.cdist(p1, p2, 2) sorted_distances = distances.sort(dim=1).values mean_distances = sorted_distances.mean(dim=0)[1:] # First value is always 0 fig = plt.figure() plt.title(tag) ax = sns.lineplot(x=np.arange(num_classes - 1), y=mean_distances.cpu().numpy(), drawstyle='steps-pre') ax.set(ylim=(0, None)) ax.set(xlabel='k') ax.set(ylabel='mean l2 distance') writer.add_figure(tag, fig, global_step=epoch, close=True) ```
{ "source": "jlousada315/NNE-TCP", "score": 3 }
#### File: NNE-TCP/package/Prioritizer.py ```python from sklearn.manifold import TSNE import umap from sklearn.model_selection import StratifiedKFold, KFold from Data import DataCI from DataGenerator import DataGenerator from Model import Model, Metrics from Visualizer import Visualizer from tensorflow import keras import numpy as np import pandas as pd def reduce_dim(weights, components=3, method='TSNE'): """ Reduce dimensions of embeddings :param weights: :param components: :param method: :return: TSNE or UMAP element """ if method == 'TSNE': return TSNE(components, metric='cosine').fit_transform(weights) elif method == 'UMAP': # Might want to try different parameters for UMAP return umap.UMAP(n_components=components, metric='cosine', init='random', n_neighbors=5).fit_transform(weights) class NNEmbeddings(Model, Metrics, Visualizer): """ Neural Networks Embeddings model which inherits from abstract class Model and class Metrics. Once it is created, all the data becomes available from DataCI class and there is the possibility of loading a previously trained model, or to train from scratch. """ def __init__(self, D: DataCI, embedding_size: int = 200, optimizer: str = 'Adam', negative_ratio=1, nb_epochs: int = 10, batch_size: int = 1, classification: bool = False, kfolds: int = 10, model_file: str = 'model.h5', load: bool = False, save: bool = False): """ NNEmbeddings Class initialization. :param D: :param model_file: :param embedding_size: :param optimizer: :param save: :param load: """ Model.__init__(self) Metrics.__init__(self) Visualizer.__init__(self) self.Data = D # Parameter Grid self.param_grid = {'embedding_size': embedding_size, 'negative_ratio': negative_ratio, 'batch_size': batch_size, 'nb_epochs': nb_epochs, 'classification': classification, 'optimizer': optimizer } self.model_file = model_file self.nr_revision = len(self.Data.pairs) if load: self.model = keras.models.load_model(self.model_file) else: self.model = self.build_model() print(self.crossValidation(k_folds=kfolds)) if save: self.model.save(self.model_file) # self.train(save_model=save) # y_true, y_pred = self.test() # self.evaluate_classification(y_true, y_pred) def build_model(self): """ Build model architecture/framework :return: model """ from keras.layers import Input, Embedding, Dot, Reshape, Dense from keras.models import Model # Both inputs are 1-dimensional file = Input(name='file', shape=[1]) test = Input(name='test', shape=[1]) # Embedding the book (shape will be (None, 1, 50)) file_embedding = Embedding(name='file_embedding', input_dim=len(self.Data.file_index), output_dim=self.param_grid['embedding_size'])(file) # Embedding the link (shape will be (None, 1, 50)) test_embedding = Embedding(name='test_embedding', input_dim=len(self.Data.test_index), output_dim=self.param_grid['embedding_size'])(test) # Merge the layers with a dot product along the second axis (shape will be (None, 1, 1)) merged = Dot(name='dot_product', normalize=True, axes=2)([file_embedding, test_embedding]) # Reshape to be a single number (shape will be (None, 1)) merged = Reshape(target_shape=[1])(merged) # If classification, add extra layer and loss function is binary cross entropy if self.param_grid['classification']: merged = Dense(1, activation='sigmoid')(merged) model = Model(inputs=[file, test], outputs=merged) model.compile(optimizer=self.param_grid['optimizer'], loss='binary_crossentropy', metrics=['accuracy']) # Otherwise loss function is mean squared error else: model = Model(inputs=[file, test], outputs=merged) model.compile(optimizer=self.param_grid['optimizer'], loss='mse', metrics=['mae']) model.summary() return model def train(self, save_model=False, plot=False): """ Train model. :param batch_size: :param plot: If true accuracy vs loss is plotted for training and validation set :param n_positive: :param negative_ratio: Ratio of positive vs. negative labels. Positive -> there is link between files. Negative -> no link :param save_model: If true model is saved as a .h5 file :param validation_set_size: percentage of whole dataset for validation :param training_set_size: percentage of whole dataset for training :param nb_epochs: Number of epochs :return: """ # Generate training set training_set = self.Data.pairs train_gen = DataGenerator(pairs=training_set, batch_size=self.param_grid['batch_size'], nr_files=len(self.Data.all_files), nr_tests=len(self.Data.all_tests), negative_ratio=self.param_grid['negative_ratio']) # Train self.model.fit(train_gen, epochs=self.param_grid['nb_epochs'], verbose=2) if plot: self.plot_acc_loss(self.model) if save_model: self.model.save(self.model_file) def crossValidation(self, k_folds=10): cv_accuracy_train = [] cv_accuracy_val = [] cv_loss_train = [] cv_loss_val = [] from sklearn.model_selection import train_test_split s = np.array(list(self.Data.pairs.keys())) kfold = KFold(n_splits=k_folds, shuffle=True) idx = 0 for train_idx, val_idx in kfold.split(s): print("=========================================") print("====== K Fold Validation step => %d/%d =======" % (idx, k_folds)) print("=========================================") pairs_train = {s[key]: self.Data.pairs[s[key]] for key in train_idx} pairs_val = {s[key]: self.Data.pairs[s[key]] for key in val_idx} train_gen = DataGenerator(pairs=pairs_train, batch_size=self.param_grid['batch_size'], nr_files=len(self.Data.all_files), nr_tests=len(self.Data.all_tests), negative_ratio=self.param_grid['negative_ratio']) val_gen = DataGenerator(pairs=pairs_val, batch_size=self.param_grid['batch_size'], nr_files=len(self.Data.all_files), nr_tests=len(self.Data.all_tests), negative_ratio=self.param_grid['negative_ratio']) # Train h = self.model.fit(train_gen, validation_data=val_gen, epochs=self.param_grid['nb_epochs'], verbose=2) cv_accuracy_train.append(np.array(h.history['mae'])[-1]) cv_accuracy_val.append(np.array(h.history['val_mae'])[-1]) cv_loss_train.append(np.array(h.history['loss'])[-1]) cv_loss_val.append(np.array(h.history['val_loss'])[-1]) idx += 1 df = pd.DataFrame({'acc_train': cv_accuracy_train, 'loss_train': cv_loss_train, 'acc_val': cv_accuracy_val, 'loss_val': cv_loss_val }, columns=['acc_train', 'loss_train', 'acc_val', 'loss_val']) df.to_pickle('cv_scores.pkl') return df def predict(self, pickle_file: str = None): """ Makes model prediction for unseen data. :param pickle_file: :return: """ apfd = [] data = self.Data.df_unseen data = data.explode('name') data = data.explode('mod_files') grouped = data.groupby(['revision']) for name, group in grouped: # for each revision preds_per_files = [] tests = group['name'].to_list() labels = [] for t in self.Data.all_tests: if t in tests: labels.append(1) else: labels.append(0) for row in group.iterrows(): # for each file unseen_pairs = [] for t in self.Data.all_tests: # pair with every test if row[1]['mod_files'] in self.Data.all_files: unseen_pairs.append((self.Data.file_index[row[1]['mod_files']], self.Data.test_index[t])) def generate_predictions(pairs, batch_size): batch = np.zeros((batch_size, 2)) while True: for idx, (file_id, test_id) in enumerate(pairs): batch[idx, :] = (file_id, test_id) # Increment idx by 1 idx += 1 yield {'file': batch[:, 0], 'test': batch[:, 1]} if unseen_pairs: x = next(generate_predictions(unseen_pairs, len(unseen_pairs))) preds_per_files.append(self.model.predict(x)) pred = [max(idx) for idx in zip(*preds_per_files)] # return maximum score of test prioritization = [x for _, x in sorted(zip(pred, labels), reverse=True)] # Reorder test case list apfd.append(self.apfd(prioritization)) # calculate apfd print(f'APFD -> {np.round(self.apfd(prioritization), 2)}') df = pd.DataFrame({'apfd': apfd}, columns=['apfd']) if pickle_file is not None: df.to_pickle(pickle_file) return df def test(self): # Generate training set test_set = self.Data.unseen_pairs test_gen = DataGenerator(pairs=test_set, batch_size=self.param_grid['batch_size'], nr_files=len(self.Data.all_files), nr_tests=len(self.Data.all_tests), negative_ratio=self.param_grid['negative_ratio']) X, y = next(test_gen.data_generation(test_set)) pred = self.model.predict(X) pred[pred < 0.5] = 0 pred[pred >= 0.5] = 1 return y, pred def evaluate_classification(self, y, pred): """ Provide Classification report and metrics :param y: :param pred: :return: """ print(' Evaluating Network...') print(f' Test set accuracy - {np.round(100 * self.accuracy(y, pred), 1)}') print(self.report(y, pred)) print(self.cnf_mtx(y, pred)) def extract_weights(self, name): """ Extract weights from a neural network model :param name: :return: """ # Extract weights weight_layer = self.model.get_layer(name) weights = weight_layer.get_weights()[0] # Normalize weights = weights / np.linalg.norm(weights, axis=1).reshape((-1, 1)) return weights def get_components(self, components=2, method='TSNE'): """ Extract 2 components from multi-dimensional manifold :param method: :return: """ file_weight_class = self.extract_weights('file_embedding') test_weight_class = self.extract_weights('test_embedding') file_r = reduce_dim(file_weight_class, components=components, method=method) test_r = reduce_dim(test_weight_class, components=components, method=method) return file_r, test_r def get_file_labels(self): """ Creates pairs of (file, file label) for color plot :return: (files, file labels) """ pjs = [] for item in self.Data.all_files: pjs.append((item, item.split('/')[0])) return list(set(pjs)) def get_test_labels(self): """ Creates pairs of (test, test label) for color plot :return: (tests, tests labels) """ tst = [] for item in self.Data.all_tests: label = item.split('_') if len(label) > 2: tst.append((item, label[2])) else: tst.append((item, 'Other')) return list(set(tst)) def plot_embeddings(self, method='TSNE'): """ Plots file and tests embeddings side by side without labels, with the corresponding dim reduction method. :param method: TSNE or UMAP :return: NoneType """ # Embeddings files, tests = self.get_components(method=method) self.plot_embed_both(files, tests, method=method) def plot_embeddings_labeled(self, layer='tests', method='TSNE'): """ Plots file or test embedding with corresponding label, for the 10 most frequent items. :param layer: File or Test layer :param method: TSNE or UMAP :return: """ if layer == 'tests': tst_labels = self.get_test_labels() print(len(tst_labels)) _, test_r = self.get_components(method=method) print(len(test_r)) self.plot_embed_tests(tst_label=tst_labels, test_r=test_r, method=method) elif layer == 'files': file_labels = self.get_file_labels() file_r, _ = self.get_components(method=method) self.plot_embed_files(file_r=file_r, pjs_labels=file_labels, method=method) def plot_model(self, show_shapes: bool = True): """ Plots and saves Keras model schema :param show_shapes: :return: """ keras.utils.plot_model( self.model, to_file="model.png", show_shapes=show_shapes ) ```
{ "source": "jlousada315/RETECS", "score": 3 }
#### File: jlousada315/RETECS/agents.py ```python import numpy as np import os from sklearn import neural_network, tree try: import cPickle as pickle except: import pickle class ExperienceReplay(object): def __init__(self, max_memory=5000, discount=0.9): self.memory = [] self.max_memory = max_memory self.discount = discount def remember(self, experience): self.memory.append(experience) def get_batch(self, batch_size=10): if len(self.memory) > self.max_memory: del self.memory[:len(self.memory) - self.max_memory] if batch_size < len(self.memory): timerank = range(1, len(self.memory) + 1) p = timerank / np.sum(timerank, dtype=float) batch_idx = np.random.choice(range(len(self.memory)), replace=False, size=batch_size, p=p) batch = [self.memory[idx] for idx in batch_idx] else: batch = self.memory return batch class BaseAgent(object): def __init__(self, histlen): self.single_testcases = True self.train_mode = True self.histlen = histlen def get_action(self, s): return 0 def get_all_actions(self, states): """ Returns list of actions for all states """ return [self.get_action(s) for s in states] def reward(self, reward): pass def save(self, filename): """ Stores agent as pickled file """ pickle.dump(self, open(filename + '.p', 'wb'), 2) @classmethod def load(cls, filename): return pickle.load(open(filename + '.p', 'rb')) class NetworkAgent(BaseAgent): def __init__(self, state_size, action_size, hidden_size, histlen): super(NetworkAgent, self).__init__(histlen=histlen) self.name = 'mlpclassifier' self.experience_length = 10000 self.experience_batch_size = 1000 self.experience = ExperienceReplay(max_memory=self.experience_length) self.episode_history = [] self.iteration_counter = 0 self.action_size = action_size if isinstance(hidden_size, tuple): self.hidden_size = hidden_size else: self.hidden_size = (hidden_size,) self.model = None self.model_fit = False self.init_model(True) # TODO This could improve performance (if necessary) # def get_all_actions(self, states): # try: def init_model(self, warm_start=True): if self.action_size == 1: self.model = neural_network.MLPClassifier(hidden_layer_sizes=self.hidden_size, activation='relu', warm_start=warm_start, solver='adam', max_iter=750) else: self.model = neural_network.MLPRegressor(hidden_layer_sizes=self.hidden_size, activation='relu', warm_start=warm_start, solver='adam', max_iter=750) self.model_fit = False def get_action(self, s): if self.model_fit: if self.action_size == 1: a = self.model.predict_proba(np.array(s).reshape(1, -1))[0][1] else: a = self.model.predict(np.array(s).reshape(1, -1))[0] else: a = np.random.random() if self.train_mode: self.episode_history.append((s, a)) return a def reward(self, rewards): if not self.train_mode: return try: x = float(rewards) rewards = [x] * len(self.episode_history) except: if len(rewards) < len(self.episode_history): raise Exception('Too few rewards') self.iteration_counter += 1 for ((state, action), reward) in zip(self.episode_history, rewards): self.experience.remember((state, reward)) self.episode_history = [] if self.iteration_counter == 1 or self.iteration_counter % 5 == 0: self.learn_from_experience() def learn_from_experience(self): experiences = self.experience.get_batch(self.experience_batch_size) x, y = zip(*experiences) if self.model_fit: try: self.model.partial_fit(x, y) except ValueError: self.init_model(warm_start=False) self.model.fit(x, y) self.model_fit = True else: self.model.fit(x, y) # Call fit once to learn classes self.model_fit = True # Decision Tree based agent class DTAgent(BaseAgent): def __init__(self, action_size, histlen, criterion, max_depth, min_samples_split): super(DTAgent, self).__init__(histlen=histlen) self.name = 'dtclassifier' self.experience_length = 10000 self.experience_batch_size = 1000 self.experience = ExperienceReplay(max_memory=self.experience_length) self.episode_history = [] self.iteration_counter = 0 self.action_size = action_size self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.model = None self.model_fit = False self.init_model() # TODO This could improve performance (if necessary) # def get_all_actions(self, states): # try: def init_model(self): if self.action_size == 1: self.model = tree.DecisionTreeClassifier(criterion=self.criterion, max_depth=self.max_depth, min_samples_split=self.min_samples_split) else: self.model = tree.DecisionTreeClassifier(criterion=self.criterion, max_depth=self.max_depth, min_samples_split=self.min_samples_split) self.model_fit = False def get_action(self, s): if self.model_fit: if self.action_size == 1: a = self.model.predict_proba(np.array(s).reshape(1, -1))[0][0] else: a = self.model.predict(np.array(s).reshape(1, -1))[0] else: a = np.random.random() if self.train_mode: self.episode_history.append((s, a)) return a def reward(self, rewards): if not self.train_mode: return try: x = float(rewards) rewards = [x] * len(self.episode_history) except: if len(rewards) < len(self.episode_history): raise Exception('Too few rewards') self.iteration_counter += 1 for ((state, action), reward) in zip(self.episode_history, rewards): self.experience.remember((state, reward)) self.episode_history = [] if self.iteration_counter == 1 or self.iteration_counter % 5 == 0: self.learn_from_experience() def learn_from_experience(self): experiences = self.experience.get_batch(self.experience_batch_size) x, y = zip(*experiences) if self.model_fit: try: self.model.fit(x, y) except ValueError: self.init_model() self.model.fit(x, y) self.model_fit = True else: self.model.fit(x, y) # Call fit once to learn classes self.model_fit = True class RandomAgent(BaseAgent): def __init__(self, histlen): super(RandomAgent, self).__init__(histlen=histlen) self.name = 'random' def get_action(self, s): return np.random.random() def get_all_actions(self, states): prio = range(len(states)) np.random.shuffle(prio) return prio class HeuristicSortAgent(BaseAgent): """ Sort first by last execution results, then time not executed """ def __init__(self, histlen): super(HeuristicSortAgent, self).__init__(histlen=histlen) self.name = 'heuristic_sort' self.single_testcases = False def get_action(self, s): raise NotImplementedError('Single get_action not implemented for HeuristicSortAgent') def get_all_actions(self, states): sorted_idx = sorted(range(len(states)), key=lambda x: list(states[x][-self.histlen:]) + [states[x][-self.histlen - 1]]) sorted_actions = sorted(range(len(states)), key=lambda i: sorted_idx[i]) return sorted_actions class HeuristicWeightAgent(BaseAgent): """ Sort by weighted representation """ def __init__(self, histlen): super(HeuristicWeightAgent, self).__init__(histlen=histlen) self.name = 'heuristic_weight' self.single_testcases = False self.weights = [] def get_action(self, s): raise NotImplementedError('Single get_action not implemented for HeuristicWeightAgent') def get_all_actions(self, states): if len(self.weights) == 0: state_size = len(states[0]) self.weights = np.ones(state_size) / state_size sorted_idx = sorted(range(len(states)), key=lambda x: sum(states[x] * self.weights)) sorted_actions = sorted(range(len(states)), key=lambda i: sorted_idx[i]) return sorted_actions def restore_agent(model_file): if os.path.exists(model_file + '.p'): return BaseAgent.load(model_file) else: raise Exception('Not a valid agent') ``` #### File: jlousada315/RETECS/plot_stats.py ```python from __future__ import division import glob import os import matplotlib #matplotlib.use('Qt4Agg') import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from stats import plot_result_difference_bars try: import cPickle as pickle except: import pickle def plot_stats(prefix, stats_file, val_file, mean_interval=10, plot_graphs=True, save_graphs=False): plot_stats_single_figure(prefix, stats_file, val_file, mean_interval, plot_graphs, save_graphs) def plot_stats_single_figure(prefix, stats_file, val_file, mean_interval=10, plot_graphs=True, save_graphs=False): if not plot_graphs and not save_graphs: print('Set at least one of plot_graphs and save_graphs to True') return sns.set_style('whitegrid') stats = pickle.load(open(stats_file, 'rb')) fig, ax = plt.subplots(4) (qax, rax, vax1, vax2) = ax failure_count = np.add(stats['detected'], stats['missed']) x = range(1, int(len(stats['scenarios']) / mean_interval) + 1) perc_missed = [m / fc if fc > 0 else 0 for (m, fc) in zip(stats['missed'], failure_count)] mean_missed, missed_fit = mean_values(x, perc_missed, mean_interval) mean_reward, reward_fit = mean_values(x, stats['rewards'], mean_interval) plot_results_line_graph(stats, 'napfd', mean_interval, qax, x) #plot_napfd_metrics(afpd, mean_interval, mean_missed, missed_fit, qax, x) if 'comparison' in stats: plot_result_difference_bars(stats, 'napfd', rax, x) else: plot_results_line_graph(stats, 'rewards', mean_interval, rax, x) val_res = pickle.load(open(val_file, 'rb')) plot_validation(val_res, lambda res: res['napfd'], 'Validation Results', 'NAPFD', vax1) plot_validation(val_res, lambda res: res['detected'] / (res['detected'] + res['missed']) if (res['detected'] + res['missed']) > 0 else 1, 'Validation Results', 'Failures Detected (in %)', vax2) # plt.tight_layout() if plot_graphs: plt.show() if save_graphs: fig.savefig('%s_learning.pgf' % prefix, bbox_inches='tight') fig.savefig('%s_learning.png' % prefix, bbox_inches='tight') plt.close('all') def plot_stats_separate_figures(prefix, stats_file, val_file, mean_interval=10, plot_graphs=False, save_graphs=False): if not plot_graphs and not save_graphs: print('Set at least one of plot_graphs and save_graphs to True') return sns.set_style('whitegrid') sns.set_context('paper') stats = pickle.load(open(stats_file, 'rb')) failure_count = np.add(stats['detected'], stats['missed']) x = range(1, int(len(stats['scenarios']) / mean_interval) + 1) perc_missed = [m / fc if fc > 0 else 0 for (m, fc) in zip(stats['missed'], failure_count)] mean_missed, missed_fit = mean_values(x, perc_missed, mean_interval) mean_reward, reward_fit = mean_values(x, stats['rewards'], mean_interval) fig = plt.figure() ax = fig.add_subplot(111) plot_napfd_metrics([r[3] for r in stats['result']], mean_interval, mean_missed, missed_fit, ax, x) if plot_graphs: plt.draw() if save_graphs: fig.savefig('%s_quality.pgf' % prefix, bbox_inches='tight', transparent=True) fig.savefig('%s_quality.png' % prefix, bbox_inches='tight') fig = plt.figure() ax = fig.add_subplot(111) plot_reward(mean_interval, mean_reward, ax, reward_fit, x) if plot_graphs: plt.draw() if save_graphs: fig.savefig('%s_reward.pgf' % prefix, bbox_inches='tight') fig.savefig('%s_reward.png' % prefix, bbox_inches='tight') val_res = pickle.load(open(val_file, 'rb')) fig = plt.figure() ax = fig.add_subplot(111) plot_validation(val_res, lambda res: res['napfd'], 'Validation Results', 'NAPFD', ax) if plot_graphs: plt.draw() if save_graphs: fig.savefig('%s_validation_napfd.pgf' % prefix, bbox_inches='tight') fig.savefig('%s_validation_napfd.png' % prefix, bbox_inches='tight') fig = plt.figure() ax = fig.add_subplot(111) plot_validation(val_res, lambda res: res['detected'] / (res['detected'] + res['missed']) if (res['detected'] + res['missed']) > 0 else 1, 'Validation Results', 'Failures Detected (in %)', ax) if plot_graphs: plt.draw() if save_graphs: fig.savefig('%s_validation_failures.pgf' % prefix, bbox_inches='tight') fig.savefig('%s_validation_failures.png' % prefix, bbox_inches='tight') if plot_graphs: plt.show() # Keep window open else: plt.close('all') def plot_results_line_graph(stats, metric, mean_interval, qax, x, include_comparison=True): if include_comparison and 'comparison' in stats: for key in stats['comparison'].keys(): values, fitline = mean_values(x, stats['comparison'][key][metric], mean_interval) qax.plot(x, values * 100, label=key) #qax.plot(x, fitline(x) * 100, color='black') values, fitline = mean_values(x, stats[metric], mean_interval) qax.plot(x, values * 100, label=metric) #qax.plot(x, fitline(x) * 100, color='black') qax.set_ylim([0, 100]) qax.legend(ncol=2) qax.set_xlim([1, max(x)]) def plot_napfd_metrics(afpd, mean_interval, mean_missed, missed_fit, qax, x): mean_afpd, afpd_fit = mean_values(x, afpd, mean_interval) qax.plot(x, mean_afpd * 100, label='NAPFD', color='blue') qax.plot(x, afpd_fit(x) * 100, color='black') qax.plot(x, mean_missed * 100, label='Percent Missed', color='green') qax.plot(x, missed_fit(x) * 100, color='black') qax.set_ylim([0, 100]) qax.legend(ncol=2) qax.set_xlim([1, max(x)]) qax.set_title('Failure Detection (averaged over %d schedules)' % mean_interval) def plot_reward(mean_interval, mean_reward, rax, reward_fit, x): rax.plot(x, mean_reward, label='Reward', color='red') rax.plot(x, reward_fit(x), color='black') rax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) rax.set_xlim([1, max(x)]) rax.set_title('Reward (averaged over %d schedules)' % mean_interval) def plot_validation(val_res, res_fun, title, ylabel, ax=None): if not ax: ax = plt.gca() df = pd.DataFrame.from_dict(val_res) res_df = df.apply(res_fun, raw=True, axis=1) res_df.name = 'res' ydat = pd.concat([df, res_df], axis=1) sns.boxplot(data=ydat, x='step', y='res', palette=sns.color_palette(n_colors=1), ax=ax) ax.set_title(title) ax.set_ylabel(ylabel) def mean_values(x, y, mean_interval): #mean_y = np.mean(np.array(y).reshape(-1, mean_interval), axis=1) mean_y = np.array(y) z = np.polyfit(x, mean_y, 6) f = np.poly1d(z) return mean_y, f def pickle_to_dataframe(pickle_file): return pd.DataFrame.from_dict(pd.read_pickle(pickle_file)) def print_failure_detection(result_dir, file_prefixes): df = pd.DataFrame() for fp in file_prefixes: searchpath = os.path.join(result_dir, fp) files = glob.glob(searchpath + '_*_stats.p') dfs = pd.concat([pickle_to_dataframe(f) for f in files]) df = df.append(dfs) print df if __name__ == '__main__': stats_file = 'tableau_iofrol_timerank_lr0.3_as5_n1000_eps0.1_hist3_tableau_stats.p' val_file = 'tableau_iofrol_timerank_lr0.3_as5_n1000_eps0.1_hist3_tableau_val.p' mean_interval = 1 plot_stats_single_figure('tableau', stats_file, val_file, mean_interval, plot_graphs=True, save_graphs=False) #plot_stats_separate_figures('netq', stats_file, val_file, mean_interval, plot_graphs=False, save_graphs=True) #print_failure_detection('evaluation', ['heur_sort', 'heur_weight', 'random']) ``` #### File: jlousada315/RETECS/stats.py ```python import numpy as np import pandas as pd import os def load_stats_dataframe(files, aggregated_results=None): if os.path.exists(aggregated_results) and all([os.path.getmtime(f) < os.path.getmtime(aggregated_results) for f in files]): return pd.read_pickle(aggregated_results) df = pd.DataFrame() for f in files: tmp_dict = pd.read_pickle(f) tmp_dict['iteration'] = f.split('_')[-2] if 'comparison' in tmp_dict: for (cmp_key, cmp_dict) in tmp_dict['comparison'].items(): cmp_dict['iteration'] = tmp_dict['iteration'] cmp_dict['env'] = tmp_dict['env'] cmp_dict['step'] = tmp_dict['step'] cmp_dict['agent'] = cmp_key cmp_dict['sched_time'] = tmp_dict['sched_time'] if 'sched_time' in tmp_dict else 0.5 cmp_dict['history_length'] = tmp_dict['history_length'] if 'history_length' in tmp_dict else 4 cmp_df = pd.DataFrame.from_dict(cmp_dict) df = pd.concat([df, cmp_df]) del tmp_dict['comparison'] del tmp_dict['result'] tmp_df = pd.DataFrame.from_dict(tmp_dict) df = pd.concat([df, tmp_df]) if aggregated_results: df.to_pickle(aggregated_results) return df def plot_result_difference_bars(stats, metric, qax, x): baseline = np.asarray(stats[metric]) x = np.asarray(x) colors = ('g', 'b', 'r') if 'comparison' in stats: bar_width = 0.35 for (offset, key) in enumerate(stats['comparison'].keys()): cmp_val = np.asarray(stats['comparison'][key][metric]) cmp_val -= baseline qax.bar(x+offset*bar_width, cmp_val, bar_width, label=key, color=colors[offset]) qax.legend(ncol=2) qax.set_xlim([1, max(x)]) ```
{ "source": "jloveric/functional-layers", "score": 2 }
#### File: functional-layers/examples/cifar100.py ```python import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from pytorch_lightning import LightningModule, Trainer from high_order_layers_torch.layers import * from torchmetrics import Accuracy from torchmetrics.functional import accuracy import hydra from omegaconf import DictConfig, OmegaConf import os transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] ) class Net(LightningModule): def __init__(self, cfg: DictConfig): super().__init__() self._cfg = cfg try: self._data_dir = f"{hydra.utils.get_original_cwd()}/data" except: self._data_dir = "../data" self._lr = cfg.lr n = cfg.n self.n = cfg.n self._batch_size = cfg.batch_size self._layer_type = cfg.layer_type self._train_fraction = cfg.train_fraction segments = cfg.segments self._topk_metric = Accuracy(top_k=5) self._nonlinearity = cfg.nonlinearity if self._layer_type == "standard": out_channels1 = 6 * ((n - 1) * segments + 1) self.conv1 = torch.nn.Conv2d( in_channels=3, out_channels=out_channels1, kernel_size=5 ) self.norm1 = nn.BatchNorm2d(out_channels1) out_channels2 = 6 * ((n - 1) * segments + 1) self.conv2 = torch.nn.Conv2d( in_channels=out_channels2, out_channels=16, kernel_size=5 ) self.norm2 = nn.BatchNorm2d(out_channels2) if self._layer_type == "standard0": self.conv1 = torch.nn.Conv2d( in_channels=3, out_channels=6 * n, kernel_size=5 ) self.conv2 = torch.nn.Conv2d( in_channels=6 * n, out_channels=16, kernel_size=5 ) else: self.conv1 = high_order_convolution_layers( layer_type=self._layer_type, n=n, in_channels=3, out_channels=6, kernel_size=5, segments=cfg.segments, rescale_output=cfg.rescale_output, periodicity=cfg.periodicity, ) self.norm1 = nn.BatchNorm2d(6) self.conv2 = high_order_convolution_layers( layer_type=self._layer_type, n=n, in_channels=6, out_channels=16, kernel_size=5, segments=cfg.segments, rescale_output=cfg.rescale_output, periodicity=cfg.periodicity, ) self.norm2 = nn.BatchNorm2d(16) self.pool = nn.MaxPool2d(2, 2) self.avg_pool = nn.AdaptiveAvgPool2d(5) self.flatten = nn.Flatten() if cfg.linear_output: self.fc1 = nn.Linear(16 * 5 * 5, 100) else: self.fc1 = high_order_fc_layers( layer_type=self._layer_type, n=n, in_features=16 * 5 * 5, out_features=100, segments=cfg.segments, ) self.norm3 = nn.LayerNorm(100) def forward(self, x): if self._nonlinearity is True: x = self.pool(F.relu(self.conv1(x))) x = self.norm1(x) x = self.pool(F.relu(self.conv2(x))) x = self.norm2(x) x = self.avg_pool(x) x = self.flatten(x) x = self.fc1(x) x = self.norm3(x) else: x = self.pool(self.conv1(x)) x = self.norm1(x) x = self.pool(self.conv2(x)) x = self.norm2(x) x = self.avg_pool(x) x = self.flatten(x) x = self.fc1(x) x = self.norm3(x) return x def setup(self, stage): num_train = int(self._train_fraction * 40000) num_val = 10000 num_extra = 40000 - num_train train = torchvision.datasets.CIFAR100( root=self._data_dir, train=True, download=True, transform=transform ) self._train_subset, self._val_subset, extra = torch.utils.data.random_split( train, [num_train, 10000, num_extra], generator=torch.Generator().manual_seed(1), ) def training_step(self, batch, batch_idx): x, y = batch y_hat = self(x) loss = F.cross_entropy(y_hat, y) preds = torch.argmax(y_hat, dim=1) acc = accuracy(preds, y) val = self._topk_metric(y_hat, y) val = self._topk_metric.compute() self.log(f"train_loss", loss, prog_bar=True) self.log(f"train_acc", acc, prog_bar=True) self.log(f"train_acc5", val, prog_bar=True) return loss def train_dataloader(self): trainloader = torch.utils.data.DataLoader( self._train_subset, batch_size=self._batch_size, shuffle=True, num_workers=10, ) return trainloader def val_dataloader(self): return torch.utils.data.DataLoader( self._val_subset, batch_size=self._batch_size, shuffle=False, num_workers=10 ) def test_dataloader(self): testset = torchvision.datasets.CIFAR100( root=self._data_dir, train=False, download=True, transform=transform ) testloader = torch.utils.data.DataLoader( testset, batch_size=4, shuffle=False, num_workers=10 ) return testloader def validation_step(self, batch, batch_idx): return self.eval_step(batch, batch_idx, "val") def eval_step(self, batch, batch_idx, name): x, y = batch logits = self(x) loss = F.cross_entropy(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y) val = self._topk_metric(logits, y) val = self._topk_metric.compute() # Calling self.log will surface up scalars for you in TensorBoard self.log(f"{name}_loss", loss, prog_bar=True) self.log(f"{name}_acc", acc, prog_bar=True) self.log(f"{name}_acc5", val, prog_bar=True) return loss def test_step(self, batch, batch_idx): # Here we just reuse the validation_step for testing return self.eval_step(batch, batch_idx, "test") def configure_optimizers(self): return optim.Adam(self.parameters(), lr=self._lr) def cifar100(cfg: DictConfig): print(OmegaConf.to_yaml(cfg)) print("Working directory : {}".format(os.getcwd())) try: print(f"Orig working directory : {hydra.utils.get_original_cwd()}") except: pass trainer = Trainer(max_epochs=cfg.max_epochs, gpus=cfg.gpus) model = Net(cfg) trainer.fit(model) print("testing") result = trainer.test(model) print("finished testing") return result @hydra.main(config_path="../config", config_name="cifar100_config") def run(cfg: DictConfig): cifar100(cfg=cfg) if __name__ == "__main__": run() ``` #### File: functional-layers/examples/function_example.py ```python import matplotlib.pyplot as plt import numpy as np import torch from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset from pytorch_lightning import LightningModule, Trainer from high_order_layers_torch.layers import * import torch_optimizer as alt_optim class simple_func: def __init__(self): self.factor = 1.5 * 3.14159 self.offset = 0.25 def __call__(self, x): return 0.5 * torch.cos(self.factor * 1.0 / (abs(x) + self.offset)) xTest = np.arange(1000) / 500.0 - 1.0 xTest = torch.stack([torch.tensor(val) for val in xTest]) xTest = xTest.view(-1, 1) yTest = simple_func()(xTest) yTest = yTest.view(-1, 1) class FunctionDataset(Dataset): """ Loader for reading in a local dataset """ def __init__(self, transform=None): self.x = (2.0 * torch.rand(1000) - 1.0).view(-1, 1) self.y = simple_func()(self.x) self.transform = transform def __len__(self): return len(self.x) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() return self.x.clone().detach()[idx], self.y.clone().detach()[idx] class PolynomialFunctionApproximation(LightningModule): """ Simple network consisting of on input and one output and no hidden layers. """ def __init__( self, n, segments=2, function=True, periodicity=None, opt: str = "adam" ): super().__init__() self.automatic_optimization = False self.optimizer = opt if function == "standard": print("Inside standard") alpha = 0.0 layer1 = nn.Linear(in_features=1, out_features=n) layer2 = nn.Linear(in_features=n, out_features=n) layer3 = nn.Linear(in_features=n, out_features=1) self.layer = nn.Sequential(layer1, nn.ReLU(), layer2, nn.ReLU(), layer3) elif function == "product": print("Inside product") alpha = 0.0 layer1 = high_order_fc_layers( layer_type=function, in_features=1, out_features=n, alpha=1.0 ) layer2 = high_order_fc_layers( layer_type=function, in_features=n, out_features=1, alpha=1.0 ) self.layer = nn.Sequential( layer1, # nn.ReLU(), layer2, # nn.ReLU() ) else: self.layer = high_order_fc_layers( layer_type=function, n=n, in_features=1, out_features=1, segments=segments, length=2.0, periodicity=periodicity, ) def forward(self, x): return self.layer(x.view(x.size(0), -1)) def training_step(self, batch, batch_idx): opt = self.optimizers() x, y = batch y_hat = self(x) loss = F.mse_loss(y_hat, y) opt.zero_grad() if self.optimizer in ["adahessian"]: self.manual_backward(loss, create_graph=True) else: self.manual_backward(loss, create_graph=False) opt.step() return {"loss": loss} def train_dataloader(self): return DataLoader(FunctionDataset(), batch_size=4) def configure_optimizers(self): if self.optimizer == "adahessian": return alt_optim.Adahessian( self.layer.parameters(), lr=1.0, betas=(0.9, 0.999), eps=1e-4, weight_decay=0.0, hessian_power=1.0, ) elif self.optimizer == "adam": return optim.Adam(self.parameters(), lr=0.001) elif self.optimizer == "lbfgs": return optim.LBFGS(self.parameters(), lr=1, max_iter=20, history_size=100) else: raise ValueError(f"Optimizer {self.optimizer} not recognized") modelSetL = [ {"name": "Relu 2", "n": 2}, {"name": "Relu 3", "n": 8}, {"name": "Relu 4", "n": 16}, ] modelSetProd = [ {"name": "Product 2", "n": 2}, {"name": "Product 3", "n": 8}, {"name": "Product 4", "n": 16}, ] modelSetD = [ {"name": "Discontinuous", "n": 2}, # {'name': 'Discontinuous 2', 'order' : 2}, {"name": "Discontinuous", "n": 4}, # {'name': 'Discontinuous 4', 'order' : 4}, {"name": "Discontinuous", "n": 6}, ] modelSetC = [ {"name": "Continuous", "n": 2}, # {'name': 'Continuous 2', 'order' : 2}, {"name": "Continuous", "n": 4}, # {'name': 'Continuous 4', 'order' : 4}, {"name": "Continuous", "n": 6}, ] modelSetP = [ {"name": "Polynomial", "n": 10}, # {'name': 'Continuous 2', 'order' : 2}, {"name": "Polynomial", "n": 20}, # {'name': 'Continuous 4', 'order' : 4}, {"name": "Polynomial", "n": 30}, ] modelSetF = [ {"name": "Fourier", "n": 10}, # {'name': 'Continuous 2', 'order' : 2}, {"name": "Fourier", "n": 20}, # {'name': 'Continuous 4', 'order' : 4}, {"name": "Fourier", "n": 30}, ] colorIndex = ["red", "green", "blue", "purple", "black"] symbol = ["+", "x", "o", "v", "."] def plot_approximation( function, model_set, segments, epochs, gpus=0, periodicity=None, plot_result=True, opt="adam", ): for i in range(0, len(model_set)): trainer = Trainer(max_epochs=epochs, gpus=gpus) model = PolynomialFunctionApproximation( n=model_set[i]["n"], segments=segments, function=function, periodicity=periodicity, opt=opt, ) trainer.fit(model) predictions = model(xTest.float()) if plot_result is True: plt.scatter( xTest.data.numpy(), predictions.flatten().data.numpy(), c=colorIndex[i], marker=symbol[i], label=f"{model_set[i]['name']} {model_set[i]['n']}", ) if plot_result is True: plt.plot( xTest.data.numpy(), yTest.data.numpy(), "-", label="actual", color="black" ) plt.title("Piecewise Polynomial Function Approximation") plt.xlabel("x") plt.ylabel("y") plt.legend() def plot_results(epochs: int = 20, segments: int = 5, plot: bool = True): """ plt.figure(0) plot_approximation("standard", modelSetL, 1, epochs, gpus=0) plt.title('Relu Function Approximation') """ """ plt.figure(0) plot_approximation("product", modelSetProd, 1, epochs, gpus=0) """ data = [ { "title": "Piecewise Discontinuous Function Approximation", "layer": "discontinuous", "model_set": modelSetD, }, { "title": "Piecewise Continuous Function Approximation", "layer": "continuous", "model_set": modelSetC, }, { "title": "Polynomial function approximation", "layer": "polynomial", "model_set": modelSetP, }, { "title": "Fourier function approximation", "layer": "fourier", "model_set": modelSetF, }, ] for index, element in enumerate(data): if plot is True: plt.figure(index) plot_approximation( element["layer"], element["model_set"], 5, epochs, gpus=0, periodicity=2 ) if plot is True: plt.title("Piecewise Discontinuous Function Approximation") if plot is True: plt.show() if __name__ == "__main__": plot_results() ``` #### File: functional-layers/high_order_layers_torch/ProductLayer.py ```python import math import torch from torch import Tensor from torch.nn.parameter import Parameter from torch.nn import Module from torch.nn import init from .utils import * class Product(Module): def __init__( self, in_features: int, out_features: int, bias: bool = True, alpha=1.0, periodicity: float = None, **kwargs ) -> None: super().__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.Tensor(out_features, in_features)) self.alpha = alpha self.periodicity = periodicity if bias: self.bias = Parameter(torch.Tensor(out_features)) else: self.register_parameter("bias", None) self.reset_parameters() def reset_parameters(self) -> None: init.kaiming_uniform_(self.weight, a=math.sqrt(5)) # self.weight.data.uniform_(-1/self.in_features, # 1/self.in_features) if self.bias is not None: fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) init.uniform_(self.bias, -bound, bound) def forward(self, x: Tensor) -> Tensor: periodicity = self.periodicity if periodicity is not None: x = make_periodic(x, periodicity) assemble = torch.einsum("ij,kj->ijk", x, self.weight) this_sum = torch.sum(assemble, dim=1) assemble = assemble + 1.0 assemble = torch.prod(assemble, dim=1) - (1 - self.alpha) * this_sum assemble = assemble - 1 + self.bias return assemble ``` #### File: functional-layers/high_order_layers_torch/utils.py ```python import torch def make_periodic(x, periodicity: float): xp = x + 0.5 * periodicity xp = torch.remainder(xp, 2 * periodicity) # always positive xp = torch.where(xp > periodicity, 2 * periodicity - xp, xp) xp = xp - 0.5 * periodicity return xp ``` #### File: functional-layers/tests/test_embeddings.py ```python import os import pytest from high_order_layers_torch.positional_embeddings import ( ClassicSinusoidalEmbedding, FourierSeriesEmbedding, PiecewiseDiscontinuousPolynomialEmbedding, PiecewisePolynomialEmbedding, ) import torch def test_classic_embedding(): x = torch.rand([5, 7]) embedding = ClassicSinusoidalEmbedding(10) ans = embedding(x) assert ans.shape == torch.Size([5, 7, 10]) x = torch.rand([5]) ans = embedding(x) assert ans.shape == torch.Size([5, 10]) def test_classic_embedding_throws(): with pytest.raises(ValueError): embedding = ClassicSinusoidalEmbedding(3) ``` #### File: functional-layers/tests/test_layers.py ```python import os import pytest from high_order_layers_torch.LagrangePolynomial import * from high_order_layers_torch.FunctionalConvolution import * from high_order_layers_torch.PolynomialLayers import * from high_order_layers_torch.networks import * def test_nodes(): ans = chebyshevLobatto(20) assert ans.shape[0] == 20 def test_polynomial(): poly = LagrangePoly(5) # Just use the points as the actual values w = chebyshevLobatto(5) w = w.reshape(1, 1, 1, 5) x = torch.tensor([[0.5]]) ans = poly.interpolate(x, w) assert abs(0.5 - ans[0]) < 1.0e-6 def test_compare(): in_channels = 2 out_channels = 2 kernel_size = 4 stride = 1 height = 5 width = 5 n = 3 segments = 1 values = { "n": n, "in_channels": in_channels, "out_channels": out_channels, "kernel_size": kernel_size, "stride": stride, } x = torch.rand(1, in_channels, height, width) a = Expansion2d(LagrangeExpand(n)) b = Expansion2d(PiecewisePolynomialExpand(n=n, segments=segments)) aout = a(x) bout = b(x) assert torch.allclose(aout, bout, atol=1e-5) ```
{ "source": "jloveric/high-order-implicit-representation", "score": 3 }
#### File: jloveric/high-order-implicit-representation/single_image_dataset.py ```python from matplotlib import image import torch import numpy as np from hilbertcurve.hilbertcurve import HilbertCurve import math def image_to_dataset(filename: str, peano: str = False, rotations: int = 1): """ Read in an image file and return the flattened position input flattened output and torch array of the original image.def image_to_dataset(filename: str, peano: str = False, rotations: int = 1): Args : filename : image filename. Returns : flattened image [width*heigh, rgb], flattened position vectory [width*height, 2] and torch tensor of original image. """ img = image.imread(filename) torch_image = torch.from_numpy(np.array(img)) print('image.shape', torch_image.shape) max_size = max(torch_image.shape[0], torch_image.shape[1]) xv, yv = torch.meshgrid( [torch.arange(torch_image.shape[0]), torch.arange(torch_image.shape[1])]) # rescale so the maximum values is between -1 and 1 xv = (xv/max_size)*2-1 yv = (yv/max_size)*2-1 xv = xv.reshape(xv.shape[0], xv.shape[1], 1) yv = yv.reshape(yv.shape[0], yv.shape[1], 1) ''' if peano is True: # can index 2^{n*p} cubes with p = 2 (dimension) n = 2 # number of dimensions p = math.ceil(math.log(max_size, n)/2.0) hilbert_curve = HilbertCurve(p=p, n=2) cartesian_position = torch_position.tolist() hilbert_distances = hilbert_curve.distance_from_points( cartesian_position) ''' if rotations == 2: torch_position = torch.cat( [xv, yv, (xv-yv)/2.0, (xv+yv)/2.0], dim=2) torch_position = torch_position.reshape(-1, 4) elif rotations == 1: torch_position = torch.cat([xv, yv], dim=2) torch_position = torch_position.reshape(-1, 2) else: line_list = [] for i in range(rotations): theta = (math.pi/2.0)*(i/rotations) print('theta', theta) rot_x = math.cos(theta) rot_y = math.sin(theta) rot_sum = math.fabs(rot_x)+math.fabs(rot_y) # Add the line and the line orthogonal line_list.append((rot_x*xv+rot_y*yv)/rot_sum) line_list.append((rot_x*xv-rot_y*yv)/rot_sum) torch_position = torch.cat(line_list, dim=2) torch_position = torch_position.reshape(-1, 2*rotations) #raise(f"Rotation {rotations} not implemented.") torch_image_flat = torch_image.reshape(-1, 3)*2.0/255.0-1 print('torch_max', torch.max(torch_image_flat)) return torch_image_flat, torch_position, torch_image class ImageNeighborhoodReader: def __init__(self, filename: str, width=3, outside=1): self._input, self._output, self._image = self.image_neighborhood_dataset( filename=filename, width=width, outside=outside) @property def features(self): return self._input @property def targets(self): return self._output @property def image(self) : return self._image @property def lastx(self): return self._lastx @property def lasty(self): return self._lasty def image_neighborhood_dataset(self, filename: str, width=3, outside=1): """ Args : filename : Name of image file to create data from. width: width of the inner block. outside : width of the outer neighborhood surrounding the inner block. Return : tensor of inner block, tensor of neighborhood """ print('filename', filename,flush=True) img = image.imread(filename) torch_image = torch.from_numpy(np.array(img)) px = torch_image.shape[0] py = torch_image.shape[1] patch_edge = [] patch_block = [] max_x = px-(width+2*outside) max_y = py-(width+2*outside) self._lastx = max_x self._lasty = max_y totalx = width+2*outside totaly = totalx edge_mask = torch.ones(totalx, totaly, 3, dtype=bool) edge_mask[outside:(outside+width), outside:(outside+width), :] = False block_mask = ~edge_mask edge_indexes = edge_mask.flatten() block_indexes = block_mask.flatten() for i in range(max_x): for j in range(max_y): all_elements = torch_image[i:(i+totalx), j:(j+totaly), :].flatten() patch = all_elements[block_indexes] edge = all_elements[edge_indexes] patch_edge.append(edge) patch_block.append(patch) patch_block = (2.0/256.0)*torch.stack(patch_block)-1 patch_edge = (2.0/256.0)*torch.stack(patch_edge)-1 print(patch_block, patch_edge) return patch_block, patch_edge, torch_image if __name__ == "__main__": # image_to_dataset(filename="images/newt.jpg") ind = ImageNeighborhoodReader(filename="images/newt.jpg") ``` #### File: jloveric/high-order-implicit-representation/single_text_dataset.py ```python import torch from torch.utils.data import Dataset from typing import List, Tuple class SingleTextDataset(Dataset): def __init__(self, filenames: List[str], features: int = 10, targets: int = 1, max_size: int = -1): """ Args : filenames : List of filenames to load data from features : Number of input features (characters) targets : Number of output features (characters) max_size : Set the maximum number of characters to read from file. Defaults to -1 which is to read everything. """ feature_list, target_list = dataset_from_file( filenames[0], features=features, targets=targets, max_size=max_size) self.inputs = feature_list self.output = target_list self.features = features self.targets = targets def __len__(self): return len(self.output) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() return (self.inputs[idx]-64+0.5)/64.0, self.output[idx] def ascii_to_float(ascii_tensor: torch.Tensor): return (ascii_tensor-64+0.5)/64 def float_to_ascii(float_tensor: torch.Tensor): return ((float_tensor+1.0)*64-0.5).int() def encode_input_from_text(text_in: str, features: int) -> Tuple[torch.tensor, str]: """ Convert a string to input that the network can take. Take the last "features" number of characters and convert to numbers. Return those numbers as the network input, also return the raw_features (the text used to create the numbers). Args : text_in : input string. features : number of input features. Returns : tensor encoding, text used to create encoding. """ text = text_in.encode("ascii", "ignore").decode('ascii') raw_sample = text[-(features):] encoding = [ord(val) for val in raw_sample] return torch.tensor(encoding), raw_sample def decode_output_to_text(encoding: torch.tensor, topk: int = 1) -> Tuple[torch.tensor, str]: """ Takes an output from the network and converts to text. Args : encoding : Tensor of size 128 for each ascii character topk : The number of maximum values to report back Returns : Tuple of topk values and corresponding topk indices and list containing actual ascii values. """ probabilities = torch.nn.Softmax(dim=0)(encoding) ascii_codes = torch.topk(probabilities, k=topk, dim=0) ascii_values = [chr(val).encode("ascii", "ignore").decode('ascii') for val in ascii_codes[1]] return ascii_codes[0], ascii_codes[1], ascii_values def generate_dataset(text_in: str, features: int, targets: int): text = text_in.encode("ascii", "ignore").decode('ascii') print('text[1:100', text[1:100]) final = len(text)-(targets+features) feature_list = [] target_list = [] for i in range(final): n_feature = [ord(val) for val in text[i:(i+features)]] feature_list.append(n_feature) n_target = [ord(val) for val in text[(i+features):(i+features+targets)]] target_list.append(n_target) return torch.tensor(feature_list), torch.tensor(target_list) def dataset_from_file(filename: str, features: int, targets: int, max_size: int = -1): with open(filename, "r") as f: return generate_dataset(text_in=f.read()[0:max_size], features=features, targets=targets) ```
{ "source": "jloveric/high-order-layers-pytorch", "score": 3 }
#### File: high-order-layers-pytorch/high_order_layers_torch/LagrangePolynomial.py ```python import math import torch from .Basis import * def chebyshevLobatto(n: int): """ Compute the chebyshev lobatto points which are in the range [-1.0, 1.0] Args : n : number of points Returns : A tensor of length n with x locations from negative to positive including -1 and 1 [-1,...,+1] """ k = torch.arange(0, n) ans = -torch.cos(k * math.pi / (n - 1)) ans = torch.where(torch.abs(ans) < 1e-15, 0 * ans, ans) return ans class FourierBasis: def __init__(self, length: float): self.length = length def __call__(self, x, j: int): if j == 0: return 0.5 + 0.0 * x i = (j + 1) // 2 if j % 2 == 0: ans = torch.cos(math.pi * i * x / self.length) else: ans = torch.sin(math.pi * i * x / self.length) return ans class LagrangeBasis: def __init__(self, n: int, length: float = 2.0): self.n = n self.X = (length / 2.0) * chebyshevLobatto(n) def __call__(self, x, j: int): b = [(x - self.X[m]) / (self.X[j] - self.X[m]) for m in range(self.n) if m != j] b = torch.stack(b) ans = torch.prod(b, dim=0) return ans class LagrangeExpand(BasisExpand): def __init__(self, n: int, length: float = 2.0): super().__init__(LagrangeBasis(n, length=length), n) class PiecewisePolynomialExpand(PiecewiseExpand): def __init__(self, n: int, segments: int, length: float = 2.0): super().__init__(basis=LagrangeBasis(n), n=n, segments=segments, length=length) class PiecewisePolynomialExpand1d(PiecewiseExpand1d): def __init__(self, n: int, segments: int, length: float = 2.0): super().__init__(basis=LagrangeBasis(n), n=n, segments=segments, length=length) class PiecewiseDiscontinuousPolynomialExpand(PiecewiseDiscontinuousExpand): def __init__(self, n: int, segments: int, length: float = 2.0): super().__init__(basis=LagrangeBasis(n), n=n, segments=segments, length=length) class PiecewiseDiscontinuousPolynomialExpand1d(PiecewiseDiscontinuousExpand1d): def __init__(self, n: int, segments: int, length: float = 2.0): super().__init__(basis=LagrangeBasis(n), n=n, segments=segments, length=length) class FourierExpand(BasisExpand): def __init__(self, n: int, length: float): super().__init__(FourierBasis(length=length), n) class LagrangePolyFlat(BasisFlat): def __init__(self, n: int, length: float = 2.0, **kwargs): super().__init__(n, LagrangeBasis(n, length=length), **kwargs) class LagrangePolyFlatProd(BasisFlatProd): def __init__(self, n: int, length: float = 2.0, **kwargs): super().__init__(n, LagrangeBasis(n, length=length), **kwargs) class LagrangePoly(Basis): def __init__(self, n: int, length: float = 2.0, **kwargs): super().__init__(n, LagrangeBasis(n, length=length), **kwargs) class LagrangePolyProd(BasisProd): def __init__(self, n: int, length: float = 2.0, **kwargs): super().__init__(n, LagrangeBasis(n, length=length), **kwargs) class FourierSeriesFlat(BasisFlat): def __init__(self, n: int, length: int = 1.0, **kwargs): super().__init__(n, FourierBasis(length), **kwargs) ``` #### File: high-order-layers-pytorch/high_order_layers_torch/layers.py ```python import numpy as np import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from .PolynomialLayers import * from .ProductLayer import * from .FunctionalConvolution import * from .FunctionalConvolutionTranspose import * fc_layers = { "continuous": PiecewisePolynomial, "continuous_prod": PiecewisePolynomialProd, "discontinuous": PiecewiseDiscontinuousPolynomial, "discontinuous_prod": PiecewiseDiscontinuousPolynomialProd, "polynomial": Polynomial, "polynomial_prod": PolynomialProd, "product": Product, "fourier": FourierSeries, } convolutional_layers = { "continuous2d": PiecewisePolynomialConvolution2d, "continuous1d": PiecewisePolynomialConvolution1d, "continuous_prod2d": None, # PiecewisePolynomialProd, "discontinuous2d": PiecewiseDiscontinuousPolynomialConvolution2d, "discontinuous1d": PiecewiseDiscontinuousPolynomialConvolution1d, "discontinuous_prod2d": None, # PiecewiseDiscontinuousPolynomialProd, "polynomial2d": PolynomialConvolution2d, "polynomial1d": PolynomialConvolution1d, "polynomial_prod2d": None, # PolynomialConvolutionProd2d, "product2d": None, # ProductConvolution2d, "fourier2d": FourierConvolution2d, "fourier1d": FourierConvolution1d, } convolutional_transpose_layers = { "continuous2d": PiecewisePolynomialConvolutionTranspose2d } def high_order_fc_layers(layer_type: str, **kwargs): if layer_type in fc_layers.keys(): return fc_layers[layer_type](**kwargs) raise ValueError( f"Fully connected layer type {layer_type} not recognized. Must be one of {list(fc_layers.keys())}" ) def high_order_convolution_layers(layer_type: str, **kwargs): if layer_type in convolutional_layers.keys(): return convolutional_layers[layer_type](**kwargs) raise ValueError( f"Convolutional layer type {layer_type} not recognized. Must be one of {list(convolutional_layers.keys())}" ) def high_order_convolution_transpose_layers(layer_type: str, **kwargs): if layer_type in convolutional_transpose_layers.keys(): return convolutional_transpose_layers[layer_type](**kwargs) raise ValueError( f"ConvolutionalTranspose layer type {layer_type} not recognized. Must be one of {list(convolutional_transpose_layers.keys())}" ) ``` #### File: high-order-layers-pytorch/tests/test_networks.py ```python import os import pytest from high_order_layers_torch.networks import HighOrderFullyConvolutionalNetwork import torch @pytest.mark.parametrize("segments", [1, 2]) @pytest.mark.parametrize("n", [3, 5]) @pytest.mark.parametrize("kernel_size", [1, 3]) @pytest.mark.parametrize("ctype", ["polynomial1d", "continuous1d", "discontinuous1d"]) @pytest.mark.parametrize("channels", [1, 3]) @pytest.mark.parametrize("layers", [1, 3]) def test_interpolate_fully_convolutional_network1d( segments, n, kernel_size, ctype, channels, layers ): width = 100 model = HighOrderFullyConvolutionalNetwork( layer_type=[ctype] * layers, n=[n] * layers, channels=[channels] * (layers + 1), segments=[segments] * layers, kernel_size=[kernel_size] * layers, pooling="1d" ) x = torch.rand(2, channels, width) out = model(x) print("out", out.shape) assert out.shape[0] == x.shape[0] assert out.shape[1] == channels # assert out.shape[2] == width - (kernel_size - 1) * layers @pytest.mark.parametrize("segments", [1, 2]) @pytest.mark.parametrize("n", [3, 5]) @pytest.mark.parametrize("kernel_size", [1, 3]) @pytest.mark.parametrize("ctype", ["polynomial2d", "continuous2d", "discontinuous2d"]) @pytest.mark.parametrize("channels", [1, 3]) @pytest.mark.parametrize("layers", [1, 3]) def test_interpolate_fully_convolutional_network2d( segments, n, kernel_size, ctype, channels, layers ): width = 100 model = HighOrderFullyConvolutionalNetwork( layer_type=[ctype] * layers, n=[n] * layers, channels=[channels] * (layers + 1), segments=[segments] * layers, kernel_size=[kernel_size] * layers, pooling="2d" ) x = torch.rand(2, channels, width, width) out = model(x) print("out", out.shape) assert out.shape[0] == x.shape[0] assert out.shape[1] == channels # assert out.shape[2] == width - (kernel_size - 1) * layers ```
{ "source": "jloveric/PiecewisePolynomialLayers", "score": 3 }
#### File: jloveric/PiecewisePolynomialLayers/invariantMnistExample.py ```python import tensorflow as tf from high_order_layers import PolynomialLayers as poly from tensorflow.keras.layers import * mnist = tf.keras.datasets.mnist layers = tf.keras.layers (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = (x_train / 128.0 - 1.0), (x_test / 128.0 - 1.0) units = 10 basis = poly.b3 #Residual layer def res_block(input_data, units=units, basis=basis) : x0 = LayerNormalization()(input_data) x1 = poly.Polynomial(units, basis=basis)(x0) x1 = Add()([x1, input_data]) return x1 inputs = tf.keras.Input(shape=(28,28)) x = Flatten(input_shape=(28, 28))(inputs) x = poly.Polynomial(units, basis=basis)(x) for i in range(3) : x = res_block(x, basis=basis, units=units) x = LayerNormalization()(x) outputs = Dense(10, activation='softmax')(x) model = tf.keras.Model(inputs, outputs) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=5, batch_size=10) model.evaluate(x_test, y_test) ```
{ "source": "jlovering/ChallengerParser", "score": 3 }
#### File: jlovering/ChallengerParser/ChallengerTest.py ```python import unittest import logging import sys import re import testCaseSoT import ChallengerParser as parser import ChallengerGrammar import tatsu logging.basicConfig(stream=sys.stderr, level=logging.INFO) class DayTest(): def deepCompare(self, struct1, struct2): truthy = [] for (s1, s2) in zip(struct1, struct2): #logging.debug("%s %s" % (s1, s2)) try: if len(s1) == len(s2): if len(s1) == 1: truthy.append(s1 == s2) else: truthy.append(self.deepCompare(s1, s2)) else: truthy.append(False) except: truthy.append(s1 == s2) #logging.debug(truthy) return all(truthy) def testParse(self): par = parser.Input(self.infile, self.definition) outData = par.parse() logging.debug(outData) SoT = eval("testCaseSoT.%s" % type(self).__name__.replace("_Strings","")) logging.debug(SoT) assert self.deepCompare(SoT, outData) def tearDown(self): self.infile.close() class Day1Test(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.addBuilder(parser.ListBuilder(parser.LiteralBlock(int), "")) self.infile = open("testfiles/day1-testInput", "r") class Day1Test_Strings(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.buildersFromStr('''[[ #int# ]]''') self.infile = open("testfiles/day1-testInput", "r") class Day2Test(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.addBuilder( \ parser.ListBuilder( \ parser.MultiBlockLine( \ [ \ parser.ListBlock(int, '-'), parser.LiteralBlock(lambda e: str(e)[:-1]), parser.LiteralBlock(str) ], ' '), \ parser.EMPTYLINE) \ ) self.infile = open("testfiles/day2-testInput", "r") class Day2Test_Strings(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.addFunction('Day2Test_Strings_custom', lambda s: s[:-1]) self.definition.buildersFromStr('''[[ ([int '-'] #Day2Test_Strings_custom# #str# ' ') ]]''') self.infile = open("testfiles/day2-testInput", "r") class Day3Test(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.addBuilder( \ parser.ListBuilder( \ parser.ListBlock(str, None), \ parser.EMPTYLINE) \ ) self.infile = open("testfiles/day3-testInput", "r") class Day3Test_Strings(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition = parser.InputDefinition() self.definition.buildersFromStr('''[[ [str None] ]]''') self.infile = open("testfiles/day3-testInput", "r") class Day4Test(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.addBuilder( \ parser.ListBuilder( \ parser.MultiLineSpanBuilder( \ parser.HashLineBlock( \ parser.HashPairBlock(str, str, ':'), \ ' '), \ #parser.LiteralBlock(str), \ ' ', parser.EMPTYLINE), \ parser.EMPTYLINE) \ ) self.infile = open("testfiles/day4-testInput", "r") class Day4Test_Strings(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.buildersFromStr('''[[ {{ {*str str ':' ' '} }} ]]''') self.infile = open("testfiles/day4-testInput", "r") class Day5Test(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.addBuilder(parser.ListBuilder(parser.LiteralBlock(lambda v: int(parser.tr(v, 'BFRL', '1010'), 2)), "")) self.infile = open("testfiles/day5-testInput", "r") class Day5Test_Strings(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.addFunction('Day5Test_Strings_custom', lambda v: int(parser.tr(v, 'BFRL', '1010'), 2)) self.definition.buildersFromStr('''[[ #Day5Test_Strings_custom# ]]''') self.infile = open("testfiles/day5-testInput", "r") class Day6Test(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.addBuilder( \ parser.ListBuilder( \ parser.ListBuilder( \ parser.SetBlock(str, parser.NODELIM), \ parser.EMPTYLINE), \ parser.EMPTYLINE) ) self.infile = open("testfiles/day6-testInput", "r") class Day6Test_Strings(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.buildersFromStr('''[[ [[ [<str None] ]] ]]''') self.infile = open("testfiles/day6-testInput", "r") class Day7Test(DayTest, unittest.TestCase): def setUp(self): def bagParse(b): if b == " no other bags.": return None else: sR = {} for l in b.split(','): bM = re.match(r"[\s]*(\d+) (.+) bag[s]{0,1}", l) sR[bM.group(2)] = int(bM.group(1)) return sR self.definition = parser.InputDefinition() self.definition.addBuilder( \ parser.HashBuilder( \ parser.HashPairBlock(str, bagParse, "bags contain"),\ ""), \ ) self.infile = open("testfiles/day7-testInput", "r") class Day7Test_Strings(DayTest, unittest.TestCase): def setUp(self): def bagParse(b): if b == " no other bags.": return None else: sR = {} for l in b.split(','): bM = re.match(r"[\s]*(\d+) (.+) bag[s]{0,1}", l) sR[bM.group(2)] = int(bM.group(1)) return sR self.definition = parser.InputDefinition() self.definition.addFunction('Day7Test_Strings_custom', bagParse) self.definition.buildersFromStr('''{{ {str Day7Test_Strings_custom "bags contain"} }}''') self.infile = open("testfiles/day7-testInput", "r") class Day8Test(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.addBuilder( \ parser.ListBuilder( \ parser.MultiBlockLine( \ [ \ parser.LiteralBlock(str), \ parser.LiteralBlock(int), \ ], parser.SPACE), \ parser.EMPTYLINE) ) self.infile = open("testfiles/day8-testInput", "r") class Day8Test_Strings(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.buildersFromStr('''[[ (#str# #int# ' ') ]]''') self.infile = open("testfiles/day8-testInput", "r") class Day13Test(DayTest, unittest.TestCase): def setUp(self): def busParser(b): if b == "x": return None else: return int(b) self.definition = parser.InputDefinition() self.definition.addBuilder( \ parser.SingleLineBuilder( \ parser.LiteralBlock(int) \ ) \ ) self.definition.addBuilder( \ parser.SingleLineBuilder( \ parser.ListBlock( \ busParser, \ ',') ) ) self.infile = open("testfiles/day13-testInput", "r") class Day13Test_Strings(DayTest, unittest.TestCase): def setUp(self): def busParser(b): if b == "x": return None else: return int(b) self.definition = parser.InputDefinition() self.definition.addFunction('Day13Test_Strings_custom', busParser) self.definition.buildersFromStr('''#int# [Day13Test_Strings_custom ',']''') self.infile = open("testfiles/day13-testInput", "r") class Day14Test(DayTest, unittest.TestCase): def setUp(self): def memKeyParse(b): mP = re.match(r"mem\[(\d)+\]", b) return mP.group(1) self.definition = parser.InputDefinition() self.definition.addBuilder( \ parser.SingleLineBuilder( \ parser.LiteralBlock(lambda d: d.split(' = ')[1]) \ ) \ ) self.definition.addBuilder( \ parser.ListBuilder( \ parser.MultiBlockLine( [ \ parser.LiteralBlock(memKeyParse), \ parser.LiteralBlock(int), \ ], \ ' = '), \ parser.EMPTYLINE) ) self.infile = open("testfiles/day14-testInput", "r") class Day14Test_Strings(DayTest, unittest.TestCase): def setUp(self): def memKeyParse(b): mP = re.match(r"mem\[(\d)+\]", b) return mP.group(1) self.definition = parser.InputDefinition() self.definition.addFunction('Day14Test_Strings_custom', memKeyParse) self.definition.addFunction('Day14Test_Strings_custom1', lambda d: d.split(' = ')[1]) self.definition.buildersFromStr('''#Day14Test_Strings_custom1# [[ (#Day14Test_Strings_custom# #int# " = ") ]]''') self.infile = open("testfiles/day14-testInput", "r") class Day16Test(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.addBuilder( \ parser.HashBuilder( \ parser.HashPairBlock( \ str, \ parser.MultiBlockLine( \ [\ parser.MultiBlockLine( \ [\ parser.LiteralBlock(int), \ parser.LiteralBlock(int)\ ], "-"), \ parser.MultiBlockLine( \ [\ parser.LiteralBlock(int), \ parser.LiteralBlock(int)\ ], "-") \ ], " or "), \ ":"), \ parser.EMPTYLINE) \ ) self.definition.addBuilder( \ parser.MultiBuilderBuilder( \ [ \ parser.SingleLineBuilder( \ parser.LiteralNoParse() ), \ parser.SingleLineBuilder( \ parser.ListBlock(int, ',') ) \ ], parser.EMPTYLINE) ) self.definition.addBuilder( \ parser.MultiBuilderBuilder( \ [ \ parser.SingleLineBuilder( \ parser.LiteralNoParse() \ ), \ parser.ListBuilder( \ parser.ListBlock(int, ','), parser.EMPTYLINE \ ) \ ], parser.EMPTYLINE) ) self.infile = open("testfiles/day16-testInput", "r") class Day16Test_Strings(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.buildersFromStr('''{{ {str ([int '-'] [int '-'] ' or ') ':'} }} (( #"your ticket:"# [int ','] )) (( #"nearby tickets:"# [[ [int ','] ]] ))''') self.infile = open("testfiles/day16-testInput", "r") class Day19Test(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.addBuilder( \ parser.HashBuilder( \ parser.HashPairBlock( \ int, \ parser.MultiBlockLine( \ [\ parser.OrBlock( [\ parser.ListBlock(int, parser.SPACE), \ parser.LiteralBlock(lambda s: s[1]) \ ] \ ), \ parser.ListBlock(int, parser.SPACE), \ ], ' | '), \ ": "), \ parser.EMPTYLINE) \ ) self.definition.addBuilder( \ parser.ListBuilder( \ parser.ListBlock(str, None), parser.EMPTYLINE \ ) \ ) self.infile = open("testfiles/day19-testInput", "r") class Day19Test_Strings(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.addFunction('Day19Test_Strings_custom', lambda s: s[1]) self.definition.buildersFromStr('''{{ {int ([int ' '] or #Day19Test_Strings_custom# [int ' '] ' | ') ': '} }} [[ [str None] ]]''') self.infile = open("testfiles/day19-testInput", "r") class Day20Test(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.addBuilder( \ parser.MultiBuilderBuilder( \ [ parser.SingleLineBuilder( \ parser.MultiBlockLine( \ [\ parser.LiteralNoParse("Tile"), \ parser.LiteralBlock(lambda s: int(s[:-1])) \ ], parser.SPACE), \ ), \ parser.ListBuilder( \ parser.ListBlock(str, None), \ parser.EMPTYLINE) \ ], \ parser.EMPTYLINE) \ ) self.infile = open("testfiles/day20-testInput", "r") class Day20Test_Strings(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.addFunction('Day20Test_Strings_custom', lambda s: int(s[:-1])) self.definition.buildersFromStr('''[[ (( (#"Tile"# #Day20Test_Strings_custom# ' ') [[ [str None] ]] )) ]]''') self.infile = open("testfiles/day20-testInput", "r") class Day21Test(DayTest, unittest.TestCase): ''' Unfortunately this input is too weird, so the parser would have to return a list array and further handling is needed ''' def setUp(self): self.definition = parser.InputDefinition() self.definition.addBuilder( \ parser.ListBuilder( \ parser.MultiBlockLine( [\ parser.ListBlock(str, ' '), \ parser.EncapsulatedLine( \ lambda s: s[:-1], \ parser.ListBlock(str, ', ') \ ), \ ], \ ' (contains '), \ parser.EMPTYLINE) \ ) self.infile = open("testfiles/day21-testInput", "r") class Day21Test_Strings(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.addFunction('Day21Test_Strings_custom', lambda s: s[:-1]) self.definition.buildersFromStr('''[[ ([str ' '] >[str ', '] Day21Test_Strings_custom< ' (contains ') ]]''') self.infile = open("testfiles/day21-testInput", "r") class Day21ATest(DayTest, unittest.TestCase): ''' Unfortunately this input is too weird, so the parser would have to return a list array and further handling is needed ''' def setUp(self): self.composedSetMap = {} self.composedKeysCount = {} def composeSetMap(h): for k in h: if k in self.composedSetMap: self.composedSetMap[k] = self.composedSetMap[k].intersection(h[k]) else: self.composedSetMap[k] = h[k] return h def composeKeyCount(l): for v in l: if v in self.composedKeysCount: self.composedKeysCount[v] += 1 else: self.composedKeysCount[v] = 1 return l self.definition = parser.InputDefinition() self.definition.addBuilder( \ parser.ListBuilder( \ parser.HashPairBlock( parser.EncapsulatedLine( \ lambda s: s[:-1], \ parser.ListBlock(str, ', ', composeKeyCount) \ ), \ parser.SetBlock(str, ' '), \ ' (contains ', reverse=True, distribute=True, callback=composeSetMap), \ parser.EMPTYLINE) \ ) self.infile = open("testfiles/day21-testInput", "r") def testParse(self): super().testParse() assert self.composedSetMap == testCaseSoT.Day21ATest_compSet assert self.composedKeysCount == testCaseSoT.Day21ATest_compKeyC class Day21ATest_Strings(DayTest, unittest.TestCase): def setUp(self): self.composedSetMap = {} self.composedKeysCount = {} def composeSetMap(h): for k in h: if k in self.composedSetMap: self.composedSetMap[k] = self.composedSetMap[k].intersection(h[k]) else: self.composedSetMap[k] = h[k] return h def composeKeyCount(l): for v in l: if v in self.composedKeysCount: self.composedKeysCount[v] += 1 else: self.composedKeysCount[v] = 1 return l self.definition = parser.InputDefinition() self.definition.addFunction('Day21Test_Strings_custom', lambda s: s[:-1]) self.definition.addFunction('Day21ATest_composeSetMap', composeSetMap) self.definition.addFunction('Day21ATest_composeKeyCount', composeKeyCount) self.definition.buildersFromStr('''[[ {< rev [<str ' '] >[str ', ' / Day21ATest_composeKeyCount] Day21Test_Strings_custom< ' (contains ' / Day21ATest_composeSetMap } ]]''') self.infile = open("testfiles/day21-testInput", "r") def testParse(self): super().testParse() assert self.composedSetMap == testCaseSoT.Day21ATest_compSet assert self.composedKeysCount == testCaseSoT.Day21ATest_compKeyC class Day22Test(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.addBuilder( \ parser.MultiBuilderBuilder( \ [ \ parser.SingleLineBuilder( \ parser.LiteralNoParse(), \ ), \ parser.ListBuilder( \ parser.LiteralBlock(int), \ parser.EMPTYLINE) \ ], \ parser.EMPTYLINE) \ ) self.infile = open("testfiles/day22-testInput", "r") class Day22Test_Strings(DayTest, unittest.TestCase): def setUp(self): self.definition = parser.InputDefinition() self.definition.buildersFromStr('''(( ## [[ #int# ]] ))''') self.infile = open("testfiles/day22-testInput", "r") class Day24Test(DayTest, unittest.TestCase): def setUp(self): def isDir(d): directions = ['ne','e','se','sw','w','nw'] if d in directions: return parser.GACCEPT else: return parser.GCONTINUE self.definition = parser.InputDefinition() self.definition.addBuilder( \ parser.ListBuilder( \ parser.ListElementMunch(isDir, str, None), \ parser.EMPTYLINE) \ ) self.infile = open("testfiles/day24-testInput", "r") class Day24Test_Strings(DayTest, unittest.TestCase): def setUp(self): def isDir(d): directions = ['ne','e','se','sw','w','nw'] if d in directions: return parser.GACCEPT else: return parser.GCONTINUE self.definition = parser.InputDefinition() self.definition.addFunction('Day24Test_validator', isDir) self.definition.buildersFromStr('''[[ [* str Day24Test_validator None] ]]''') self.infile = open("testfiles/day24-testInput", "r") class GrammarTest(): def testGrammar(self): #print(self.TESTSTR) for (i, s) in enumerate(self.TESTSTR.split('\n')): ast = tatsu.parse(ChallengerGrammar.GRAMMAR, s) #rint(ast) #rint(self.expect[i]) assert ast == self.expect[i] class GrammarTest_Builders(GrammarTest, unittest.TestCase): def setUp(self): self.TESTSTR = \ '''(( )) " " [[ ]] "." {{ }} ","''' self.expect = [ ('(('), ('))', '" "'), ('[['), (']]', '"."'), ('{{'), ('}}', '","'), ] class GrammarTest_LiteralBlock(GrammarTest, unittest.TestCase): def setUp(self): self.TESTSTR = \ '''#int# #foo/bar#''' self.expect = [ ('#', 'int', '#'), ('#', 'foo', '/', 'bar', '#'), ] class GrammarTest_ListBlock(GrammarTest, unittest.TestCase): def setUp(self): self.TESTSTR = \ '''[int ' '] [int ',' /call]''' self.expect = [ ('[', 'int', '\' \'', ']'), ('[', 'int', '\',\'', '/', 'call', ']'), ] class GrammarTest_GreedListBlock(GrammarTest, unittest.TestCase): def setUp(self): self.TESTSTR = \ '''[*int testF None] [*int testF None /call]''' self.expect = [ ('[*', 'int', 'testF', 'None', ']'), ('[*', 'int', 'testF', 'None', '/', 'call', ']'), ] class GrammarTest_SetBlock(GrammarTest, unittest.TestCase): def setUp(self): self.TESTSTR = \ '''[<int ' '] [<int '.' /call]''' self.expect = [ ('[<', 'int', '\' \'', ']'), ('[<', 'int', '\'.\'', '/', 'call', ']'), ] class GrammarTest_HashPair(GrammarTest, unittest.TestCase): def setUp(self): self.TESTSTR = \ '''{int int ' '} {int int '.' /call} {#func# int ' '} {#func# #func# ' '}''' self.expect = [ ('{', 'int', 'int', '\' \'', '}'), ('{', 'int', 'int', '\'.\'', '/', 'call', '}'), ('{', ('#', 'func', '#'), 'int', '\' \'', '}'), ('{', ('#', 'func', '#'), ('#', 'func', '#'), '\' \'', '}'), ] unittest.main() ```
{ "source": "JloveU/gdown", "score": 3 }
#### File: gdown/tests/test_download.py ```python import os from gdown.download import download def test_download(): download("https://download-ssl.firefox.com.cn/releases/firefox/79.0/zh-CN/Firefox-latest.dmg", byte_range="10485760-", split_size=10 * 1024 * 1024) url = "https://raw.githubusercontent.com/wkentaro/gdown/3.1.0/gdown/__init__.py" # NOQA output = "/tmp/gdown_r" # Usage before https://github.com/wkentaro/gdown/pull/32 assert download(url, output, quiet=False) == output os.remove(output) ```
{ "source": "jlovoi/DS-and-Algorithms", "score": 2 }
#### File: DS-and-Algorithms/algorithms/build_max_heap.py ```python from . import max_heapify as heapify def build(arr): for i in range(int(len(arr)/2), -1, -1): heapify.heapify(arr, i) return arr ```
{ "source": "jlowe000/fdk-python", "score": 2 }
#### File: fdk-python/fdk/context.py ```python import datetime as dt import io import os import random from fdk import constants from fdk import headers as hs from fdk import log from collections import namedtuple class InvokeContext(object): def __init__(self, app_id, app_name, fn_id, fn_name, call_id, content_type="application/octet-stream", deadline=None, config=None, headers=None, request_url=None, method="POST", fn_format=None, tracing_context=None): """ Request context here to be a placeholder for request-specific attributes :param app_id: Fn App ID :type app_id: str :param app_name: Fn App name :type app_name: str :param fn_id: Fn App Fn ID :type fn_id: str :param fn_name: Fn name :type fn_name: str :param call_id: Fn call ID :type call_id: str :param content_type: request content type :type content_type: str :param deadline: request deadline :type deadline: str :param config: an app/fn config :type config: dict :param headers: request headers :type headers: dict :param request_url: request URL :type request_url: str :param method: request method :type method: str :param fn_format: function format :type fn_format: str :param tracing_context: tracing context :type tracing_context: TracingContext """ self.__app_id = app_id self.__fn_id = fn_id self.__call_id = call_id self.__config = config if config else {} self.__headers = headers if headers else {} self.__http_headers = {} self.__deadline = deadline self.__content_type = content_type self._request_url = request_url self._method = method self.__response_headers = {} self.__fn_format = fn_format self.__app_name = app_name self.__fn_name = fn_name self.__tracing_context = tracing_context if tracing_context else None log.log("request headers. gateway: {0} {1}" .format(self.__is_gateway(), headers)) if self.__is_gateway(): self.__headers = hs.decap_headers(headers, True) self.__http_headers = hs.decap_headers(headers, False) def AppID(self): return self.__app_id def AppName(self): return self.__app_name def FnID(self): return self.__fn_id def FnName(self): return self.__fn_name def CallID(self): return self.__call_id def Config(self): return self.__config def Headers(self): return self.__headers def HTTPHeaders(self): return self.__http_headers def Format(self): return self.__fn_format def TracingContext(self): return self.__tracing_context def Deadline(self): if self.__deadline is None: now = dt.datetime.now(dt.timezone.utc).astimezone() now += dt.timedelta(0, float(constants.DEFAULT_DEADLINE)) return now.isoformat() return self.__deadline def SetResponseHeaders(self, headers, status_code): log.log("setting headers. gateway: {0}".format(self.__is_gateway())) if self.__is_gateway(): headers = hs.encap_headers(headers, status=status_code) for k, v in headers.items(): self.__response_headers[k.lower()] = v def GetResponseHeaders(self): return self.__response_headers def RequestURL(self): return self._request_url def Method(self): return self._method def __is_gateway(self): return (constants.FN_INTENT in self.__headers and self.__headers.get(constants.FN_INTENT) == constants.INTENT_HTTP_REQUEST) class TracingContext(object): def __init__(self, is_tracing_enabled, trace_collector_url, trace_id, span_id, parent_span_id, is_sampled, flags): """ Tracing context here to be a placeholder for tracing-specific attributes :param is_tracing_enabled: tracing enabled flag :type is_tracing_enabled: bool :param trace_collector_url: APM Trace Collector Endpoint URL :type trace_collector_url: str :param trace_id: Trace ID :type trace_id: str :param span_id: Span ID :type span_id: str :param parent_span_id: Parent Span ID :type parent_span_id: str :param is_sampled: Boolean for emmitting spans :type is_sampled: int (0 or 1) :param flags: Debug flags :type flags: int (0 or 1) """ self.__is_tracing_enabled = is_tracing_enabled self.__trace_collector_url = trace_collector_url self.__trace_id = trace_id self.__span_id = span_id self.__parent_span_id = parent_span_id self.__is_sampled = is_sampled self.__flags = flags self.__app_name = os.environ.get(constants.FN_APP_NAME) self.__app_id = os.environ.get(constants.FN_APP_ID) self.__fn_name = os.environ.get(constants.FN_NAME) self.__fn_id = os.environ.get(constants.FN_ID) self.__zipkin_attrs = self.__create_zipkin_attrs(is_tracing_enabled) def is_tracing_enabled(self): return self.__is_tracing_enabled def trace_collector_url(self): return self.__trace_collector_url def trace_id(self): return self.__trace_id def span_id(self): return self.__span_id def parent_span_id(self): return self.__parent_span_id def is_sampled(self): return bool(self.__is_sampled) def flags(self): return self.__flags def zipkin_attrs(self): return self.__zipkin_attrs # this is a helper method specific for py_zipkin def __create_zipkin_attrs(self, is_tracing_enabled): ZipkinAttrs = namedtuple( "ZipkinAttrs", "trace_id, span_id, parent_span_id, is_sampled, flags" ) trace_id = self.__trace_id span_id = self.__span_id parent_span_id = self.__parent_span_id is_sampled = bool(self.__is_sampled) trace_flags = self.__flags # As the fnLb sends the parent_span_id as the span_id # assign the parent span id as the span id. if is_tracing_enabled: parent_span_id = span_id span_id = generate_id() zipkin_attrs = ZipkinAttrs( trace_id, span_id, parent_span_id, is_sampled, trace_flags ) return zipkin_attrs def service_name(self, override=None): # in case of missing app and function name env variables service_name = ( override if override is not None else str(self.__app_name) + "::" + str(self.__fn_name) ) return service_name.lower() def annotations(self): annotations = { "generatedBy": "faas", "appName": self.__app_name, "appID": self.__app_id, "fnName": self.__fn_name, "fnID": self.__fn_id, } return annotations def generate_id(): return "{:016x}".format(random.getrandbits(64)) def context_from_format(format_def: str, **kwargs) -> ( InvokeContext, io.BytesIO): """ Creates a context from request :param format_def: function format :type format_def: str :param kwargs: request-specific map of parameters :return: invoke context and data :rtype: tuple """ app_id = os.environ.get(constants.FN_APP_ID) fn_id = os.environ.get(constants.FN_ID) app_name = os.environ.get(constants.FN_APP_NAME) fn_name = os.environ.get(constants.FN_NAME) # the tracing enabled env variable is passed as a "0" or "1" string # and therefore needs to be converted appropriately. is_tracing_enabled = os.environ.get(constants.OCI_TRACING_ENABLED) is_tracing_enabled = ( bool(int(is_tracing_enabled)) if is_tracing_enabled is not None else False ) trace_collector_url = os.environ.get(constants.OCI_TRACE_COLLECTOR_URL) if format_def == constants.HTTPSTREAM: data = kwargs.get("data") headers = kwargs.get("headers") # zipkin tracing http headers trace_id = span_id = parent_span_id = is_sampled = trace_flags = None tracing_context = None if is_tracing_enabled: # we generate the trace_id if tracing is enabled # but the traceId zipkin header is missing. trace_id = headers.get(constants.X_B3_TRACEID) trace_id = generate_id() if trace_id is None else trace_id span_id = headers.get(constants.X_B3_SPANID) parent_span_id = headers.get(constants.X_B3_PARENTSPANID) # span_id is also generated if the zipkin header is missing. span_id = generate_id() if span_id is None else span_id # is_sampled should be a boolean in the form of a "0/1" but # legacy samples have them as "False/True" is_sampled = headers.get(constants.X_B3_SAMPLED) is_sampled = int(is_sampled) if is_sampled is not None else 1 # not currently used but is defined by the zipkin headers standard trace_flags = headers.get(constants.X_B3_FLAGS) # tracing context will be an empty object # if tracing is not enabled or the flag is missing. # this prevents the customer code from failing if they decide to # disable tracing. An empty tracing context will not # emit spans due to is_sampled being None. tracing_context = TracingContext( is_tracing_enabled, trace_collector_url, trace_id, span_id, parent_span_id, is_sampled, trace_flags ) method = headers.get(constants.FN_HTTP_METHOD) request_url = headers.get(constants.FN_HTTP_REQUEST_URL) deadline = headers.get(constants.FN_DEADLINE) call_id = headers.get(constants.FN_CALL_ID) content_type = headers.get(constants.CONTENT_TYPE) ctx = InvokeContext( app_id, app_name, fn_id, fn_name, call_id, content_type=content_type, deadline=deadline, config=os.environ, headers=headers, method=method, request_url=request_url, fn_format=constants.HTTPSTREAM, tracing_context=tracing_context, ) return ctx, data ```
{ "source": "jlowe77/Eris-Cogs", "score": 2 }
#### File: Eris-Cogs/big_text/__init__.py ```python from .big_text import BigText def setup(bot): bot.add_cog(BigText(bot)) ``` #### File: Eris-Cogs/clone/__init__.py ```python from .clone import Clone def setup(bot): bot.add_cog(Clone(bot)) ``` #### File: Eris-Cogs/events/events.py ```python from time import sleep import os import time import re import discord import random from functools import reduce import pathlib import csv from redbot.core import commands, data_manager, Config, checks, bot from .eris_event_lib import ErisEventMixin __author__ = "Eris" BaseCog = getattr(commands, "Cog", object) DICKFILE = pathlib.Path(os.path.join(str(pathlib.Path.home()), "dickwords.txt")) dickwords = list(set(DICKFILE.read_text().split("\n"))) VAFILE = pathlib.Path(os.path.join(str(pathlib.Path.home()), "vawords.txt")) vag_words = list(set(VAFILE.read_text().split("\n"))) dragonart = """ ``` /===-_---~~~~~~~~~------____ |===-~___ _,-' -==\\ `//~\\ ~~~~`---.___.-~~ ______-==| | | \\ _-~` __--~~~ ,-/-==\\ | | `\ ,' _-~ /' | \\ / / \ / .' / | \\ /' / \ /' / ____ / | \`\.__/-~~ ~ \ _ _/' / \/' /-'~ ~~~~~---__ | ~-/~ ( ) /' _--~` \_| / _) ; ), __--~~ '~~--_/ _-~/- / \ '-~ \ {\__--_/} / \\_>- )<__\ \ /' (_/ _-~ | |__>--<__| | |0 0 _/) )-~ | |__>--<__| | / /~ ,_/ / /__>---<__/ | o o _// /-~_>---<__-~ / (^(~ /~_>---<__- _-~ ,/| /__>--<__/ _-~ ,//('( |__>--<__| / .----_ ( ( ')) |__>--<__| | /' _---_~\ `-)) )) ( |__>--<__| | /' / ~\`\ ,/,'//( ( \__>--<__\ \ /' // || ,( ( ((, )) ~-__>--<_~-_ ~--____---~' _/'/ /' `~/ )` ) ,/| ~-_~>--<_/-__ __-~ _/ ._-~//( )/ )) ` ~~-'_/_/ /~~~~~~~__--~ ;'( ')/ ,)( ~~~~~~~~~~ ' ') '( (/ ' ' ` ``` """ class Events(BaseCog, ErisEventMixin): def __init__(self, bot): super().__init__() self.bot = bot self.whois = self.bot.get_cog("WhoIs") data_dir = data_manager.bundled_data_path(self) # MM Edit: Loads puns.csv and arranges it appropriately # Potential issue: filepath may not be correct # Credit for most puns: https://onelinefun.com/puns/ with (data_dir / "puns.csv").open(mode="r") as csvfile: # Puns.csv is arranged into two columns titled 'word' and 'response' punreader = csv.reader(csvfile, delimiter="|") # Make those columns two separate lists self.triggers = {} for row in punreader: self.triggers[row[0]] = row[1] self.bot.add_listener(self.message_events, "on_message") async def message_events(self, message: discord.message): ctx = await self.bot.get_context(message) async with self.lock_config.channel(message.channel).get_lock(): allowed: bool = await self.allowed(ctx, message) if not allowed: return author: discord.Member = message.author realname = author.mention if self.whois is not None: realname = self.whois.convert_realname( await self.whois.get_realname(ctx, str(author.id)) ) # ugh if "cum" in message.clean_content.lower() and random.random() <= 0.25: await message.channel.send("*uwu* I want your cummies *uwu*") return # mustaches if random.random() <= 0.001: emojis = {e.name: e for e in message.guild.emojis} await message.add_reaction(emojis["must"]) time.sleep(0.1) await message.add_reaction(emojis["ache"]) await self.log_last_message(ctx, message) return if ( "beard" in message.clean_content or "mustach" in message.clean_content ) and random.random() <= 0.2: await message.channel.send( "https://media.discordapp.net/attachments/188030840377311232/694979897495388250/videotogif_2020.04.01_12.41.13.gif" ) await self.log_last_message(ctx, message) return if "゜-゜" in message.content or "°□°" in message.content: async with ctx.typing(): sleep(1) await message.channel.send("(╯°□°)╯︵ ┻━┻") await self.log_last_message(ctx, message) return # love if "love" in message.clean_content and random.random() <= 0.1: async with ctx.typing(): sleep(1) await message.channel.send("*WHAT IS LOVE?*") time.sleep(2) await message.channel.send("*baby don't hurt me*") time.sleep(2) await message.channel.send("*don't hurt me*") time.sleep(2) await message.channel.send("*no more*") await self.log_last_message(ctx, message) return # now lets check for contents if "praise" in message.clean_content or "pray" in message.clean_content: root_dir = "./data/events/pray" files_to_choose = [ os.path.join(root_dir, f) for f in os.listdir(root_dir) if os.path.isfile(os.path.join(root_dir, f)) ] with open(random.choice(files_to_choose), "rb") as fobj: new_msg = await message.channel.send(file=discord.File(fobj)) # await new_msg.add_reaction("🙏") await self.log_last_message(ctx, message) return if "wand" in message.clean_content.lower(): await message.add_reaction("🇵") await message.add_reaction("🇪") await message.add_reaction("🇳") await message.add_reaction("🇮") await message.add_reaction("🇸") return # only do the others half the time cause fuck it it's tooo much if random.random() <= 0.5: return # NEW (MM): check for punny words and respond trigger = set(self.triggers.keys()).intersection( message.clean_content.split(" ") ) if random.random() <= 0.25: async with ctx.typing(): sleep(1) for word in message.clean_content.split(" "): if "men" in word: if word == "women": await message.channel.send( "Not just the women but the men and children too!" ) else: bits = word.split("men") await message.channel.send( "Not just the {} but the {} and {} too!".format( word, "women".join(bits), "children".join(bits) ) ) await self.log_last_message(ctx, message) return # if random.random() <= 0.001: # with open("./data/events/e7sgd020ew501.png", "rb") as fobj: # new_msg = await message.channel.send(file=discord.File(fobj)) # return elif "thank" in message.clean_content: async with ctx.typing(): sleep(1) new_message = "you're welcome" if random.random() < 0.5: if realname is None: formatname = message.author.mention else: formatname = realname new_message += " {}".format(formatname) await message.channel.send(new_message) elif ( ("snek" in message.clean_content) or ("nudl" in message.clean_content) or ("noodl" in message.clean_content) or ("snake" in message.clean_content) ): possible_msgs = [ ":snake: ~ !! I :heart: you {}!!! ~ :snake:", "What's wrong, am I riding your dick too hard {}?", "You know I love your butthole {}", "I like it when you pull my hair, {}", "Lean over {} you're about to take my " + random.choice(dickwords), "Suck my clit {}", "I've never had someone complain so much while eating me out before {}", "{}, you're the biggest bitch here", "This dick won't suck itself {}", "{} shut your mouth you miserable " + random.choice(vag_words), "Everyone talks shit about me but when I decide to dish it back to {} suddenly that's a problem?", "I bet you were last picked at recess *every time* in school {}", "You ever seen a grown man's cock {}?", "You ever been to a Turkish prison {}?", "I hope you burn your toast {}.", "{}, I'd call you a cunt, but you lack the warmth and depth.", "{}, do you have limbo competitions with how low your bar is set?", "I want to like you {}, but you make it so *fucking* hard.", "{}, man, I hope your parents never had to see you grow up.", "Jesus, if I could truly feel hate, you'd be at the top of that list for me {}", "{} could you just... leave?", "{} I didn't think that cocksleeve you call a mouth could say anything intelligent. Turns out I was right.", "You keep sayin my name like that you're gonna make me think you like me {}", "Will you kiss me with those sexy lips of yours {}?", "I can't remember the last time someone gave me butterflies like you're doin now {}", "Hey {}, you free tomorrow night? Can I buy you dinner?", ( "Oh my god I accidentally sent u a picture {}... please delete it!! unless.. u want to look? lol " "jus kidding delete it.. if u want.. haha nah delete it… unless?" ), "Has anyone ever told you you're beautiful {}?", "You're the sexiest creature I've ever seen {}", "You kiss your mother with those lips {}?", "What if we just fuck and then pretend like nothing happened {}?", "{}, kiss me you beautiful bastard", "I want to fuck you until sunrise {}", "{}, what if I ride your face until it's drenched", "Fuckit, {} I'll suck you off for free you're just so damn sexy", "{} I want to suck your daddy's cock just to get a taste of the recipe", "{} do you know how many bones the human body has? It's 206. We start with 369 when we're babies but they fuse. Wouldn't you want to go back? Have as many bones as a baby? What if i could help you", "{} I bet you clap on 1 and 3 instead of 2 and 4", ] async with ctx.typing(): sleep(1) msg = random.choice(possible_msgs) if realname is not None: msg = msg.format(realname) else: msg = msg.format("senpai") await message.channel.send(msg) await self.log_last_message(ctx, message) return # elif 'blood' in clean_message: # await bot.send_message(message.channel, 'B̵̪̳̣͍̙̳̬̭͞͝L͢͏̸͏̧̙̼͓̘̯͉̩̩̞͚͕̲̰̼̘̦ͅÒ̮͈̖͔̰̞͝O̵͖͔̟̰͔͚̬͟͝ͅḐ̸̭͙̜̺̞͍͎͔͜͡͡ ̨̨̟̝̦̬̩̳̖͟ͅF̤̭̬͙̀̀͘͠O̶̯̠̞̲̫̱̻̮͎̦̳̝͉̮̕ͅŔ̡͈͕̼͖̥̰̭̟̝͟ ̡̲̯͉̤͈̘͎̬͎̺̟͞T̴̸̟̺̬̼̣̖͓̩̯͇̣̩̺̮͘Ḫ̣̥͍͙͍͓͔͈̖̬̘̩͔͖̝͖̀͘E̶̡̛̯̞̱̯̗͍͖͇̹̖̳̩̥̳̳̙͢͝ ̡͓͍͕͔̳̠͍̥̞̙͖̙̦͕̠̪̘̕ͅB̪͕̻̺͈̤̟̻͖̣͙̪̝̭̀͘͠Ḻ̵̨̞̯̥̭͈̪̻̰̭́́͝O̧͜͏̰͓̘̖̘̬̤ͅǪ̥̟̘̪̱͔͇̖͟D̸̡҉̶̫͕͖̹̤̜̪̟̝̯͚ ̵̨̛̯̺̤̮̲͓̦̜̪̕͝G̙̩͖̭̘̤̩̕Ǫ͎͉̲̤͓͇̦̖̯͇̥͔͓̣̘̦̪̀D͘͘͏͡͏͙̠͈̮̱̼') # elif 'skull' in clean_message: # await bot.send_message(message.channel, 'S̡̟͉̻͔̩͕͙̳͜͟͜K҉̵͏̳͕͉͈̟͙̰͖͍̦͙̱̙̥̤̞̱U͏̥̲͉̞͉̭͟͟ͅL̵̶̯̼̪͉̮̰͙͍͟͜Ḻ̶̗̬̬͉̗̖̮̰̹̺̬̺͢͢͡ͅͅŚ̶̢͎̳̯͚̠̞͉̦̙̥̟̲̺̗̮̱͚̬͡͠ ̶̡̧̲̟͖̤͓̮̮͕̭͍̟͔͓͚̺̣̱͙͍͜͜F̶̡̢̨̯͖͎̻̝̱͚̣̦̭̞̣̰̳̣̩O̴̴̷̠̜̥̭̳̩̤͎̦̲͈͝ͅŔ̡̨̼̝̩̣͙̬̱̫͉̭͈̗̙͢͡ ͠͏̗̙͎̫̟̜̻̹̹̘̬̖ͅT̴͉̙̥̲̠͎̭͇͚̟͝͡Ḩ̺͕̦̭̪̼̼̮̰͍̲͍̯̗͇͘͘͝͝E̡̻̮̘̭͎̥̺̘͉̟̪̮̮͜͢͡ ̡̰͙̮͙͈̠͍̞̠̀͠Ṣ̷̡̡̛̜̞̣͙͇̭̣̳͕̖̺̱̳̭͖͞ͅͅK̵҉̨͇̭̯͍̱̞̦͎̥̼͢U̡̧̯̗̙͇͈̣̪̲͜L̸̢͖͇̲̤̼͕͡L̻̻͖̭̪͖͙̫͎̜̲̬̕͜͞͡ͅ ̷̸̨̛̩͉̺̩͔̯͖̠̳͖̞̠̩͖̠ͅT̶̷̤̩͉̝̗̲͕̩̪̮̝̜̰̻̗̪̀ͅH̵̴̷̯̮͎̖͙̦̙͇̣̩̣̭̝́͝ͅR̨̧͍̮̪̜̯̖̹̜̹͈̗̕͡͠O҉̶͚͎̻͉̮̞͉̳ͅN̷̛̩̤̟̣͕͍͎̻̜͓̖̭͖̠͎̲̺͝ͅĘ̸̸͍̪̼̜͎̫̘̳͓̥') # elif 'god' in clean_message: # await bot.send_message(message.channel, 'P̸̨̛͖̦̮̘̯͙̭͍̣̠͕͜Ŕ̵̷̨̗̱͖̦̰͈͍̩̯̼͍̟̙͓̱̤͘ͅA̸̴̡͇̠͈͍̲͘͘ͅĮ̨͈͙̣̘̼́̕S̴̥̯̱̜̟͙̘̘͉̟̮̱̙̘̻͖͟͠͞E̢̨̘̮͕̺̖̰̹͢͝ ̷̴̡̛̗͈͓̻͔̭̫̝̦͎͙̳͙͓̠̞̪͔̱B̵̸̻̼̯̲̻͢͝E̱̘͇͔͙̯̥͉̪̱̤̪̩͍͉̲̟̖̗͜͢͢͜ ̨̡͕̮̤͉̙̦̱͚̬̖͈͢͞ͅÙ̳̫̙̰̙͓͘͘N̞̳͉̬͈̦̭̱̕̕͜T̶̳̝̼̗̝͡O̡̡͔̬͍͚͔̲̳͞ ̵̰͔̙̦̩͕͖̝N̡̡̬̗̣͔̗͔͖̳͚̠͙̤̙̼̘̞I̛̛̬̥̝̘̖̣̩G̵̕͝҉̖̮̩̼͓̯͙̳̀Ģ̵̹͇̙͔̼̼͎̞̤̬̜̭̣͙͕̳̻͘͡ͅǪ̴͕͈̮̮̩͔͎̼̫̝̼̹Ţ̸̧͚̬̣̪͉̲̪̖̹̻̪͚͉̟͚̥̹̀̕H̷͘҉̩͔̩̦̳̪̼̬͙̰̙͕̼͈ͅ ̸̯̤̠̙͓͇̣͙͓̗̙̜̞̯͜͞ͅŢ҉̵̯̥̩͖̬̺̻̮̘̼͔͍̞͈̼̲̪͜͟H̨͟҉̨̟̠̫̠̬̦̪̞͎͍͇̮͔ͅĘ̥̫͉̫͖̱͈̖̦̳̥͙̱͙̱͡ ̷̢̭̠͔̖̱W̟̩̪͍̘̩̦͟͟͞Ǫ̡͔̮̜̝̩̗̱̙͇̣̤̰̲̭̝̳̘̩́̀́ͅR̸̳̰̪̝͉̲̙̖̯̠̞̞̗͘͢M̴̨̭̦̗͖͎̬̳̖̲͢͡ ̨̛̙̰͕̦̠͚̠̖̘̲̱͜͡G̼̬̞̜̭͔̯̪̠̯̲̟̙̻̜̀͘͜O̡̖̰͕͙̯͖̙͍͙̲͈̘͓̥̱͢͢͠D̵̞̤̗͕̪͘͟͝͡ͅ') # elif 'dragon' in clean_message: # await bot.send_message(message.channel, dragonart) elif "penis" in message.clean_content: root_dir = "./data/events/penis" files_to_choose = [ os.path.join(root_dir, f) for f in os.listdir(root_dir) if os.path.isfile(os.path.join(root_dir, f)) ] with open(random.choice(files_to_choose), "rb") as fobj: new_msg = await message.channel.send(file=discord.File(fobj)) await new_msg.add_reaction("🌈") await new_msg.add_reaction("🍆") await new_msg.add_reaction("💦") # elif reduce( # lambda acc, n: acc or (n in clean_message), # vag_words, # False): # await bot.add_reaction(message, '😞') elif random.random() <= 0.1 and len(trigger) != 0: async with ctx.typing(): sleep(1) await message.channel.send(self.triggers[list(trigger)[0]]) await self.log_last_message(ctx, message) ``` #### File: Eris-Cogs/export_emoji/export_emoji.py ```python import re import io import zipfile from zipfile import ZipFile from typing import Union, Tuple, List, Optional # third party import discord from redbot.core import commands, data_manager import aiohttp BaseCog = getattr(commands, "Cog", object) # https://github.com/Rapptz/discord.py/blob/master/discord/partial_emoji.py#L95 # Thanks @TrustyJaid!! _CUSTOM_EMOJI_RE = re.compile( r"<?(?P<animated>a)?:?(?P<name>[A-Za-z0-9\_]+):(?P<id>[0-9]{13,20})>?" ) class ExportEmoji(BaseCog): def __init__(self, bot): self.bot: commands.Bot = bot @commands.command() async def export( self, ctx, *emoji_list: Union[discord.PartialEmoji, discord.Emoji, int, str] ): """ Export emoji to zipfile. Can provide either a list of emoji or the message id of the message with emoji in it or reacted to it. String emoji cannot be exported """ message: discord.Message = ctx.message zipbuf = io.BytesIO() count = 0 with zipfile.ZipFile(zipbuf, "w") as zf: for emoji_to_export in emoji_list: if isinstance(emoji_to_export, discord.PartialEmoji) or isinstance( emoji_to_export, discord.Emoji ): name, buf = await self._export_emoji(emoji_to_export) zf.writestr(name, buf.getvalue()) count += 1 elif isinstance(emoji_to_export, int): # if int, assume message id message: discord.Message = await ctx.message.channel.fetch_message( emoji_to_export ) buf_list = await self._export_from_message(message) for name, buf in buf_list: zf.writestr(name, buf.getvalue()) count += 1 if message.reference: message_id = message.reference.message_id referenced_message = await ctx.message.channel.fetch_message(message_id) buf_list = await self._export_from_message(referenced_message) for name, buf in buf_list: zf.writestr(name, buf.getvalue()) count += 1 zipbuf.seek(0) if count == 0: await ctx.send("Nothing to download or export!") return await ctx.send( file=discord.File(zipbuf, filename=f"export_of_{count:0.0f}.zip") ) async def _export_emoji( self, emoji: Union[discord.Emoji, discord.PartialEmoji] ) -> Tuple[str, io.BytesIO]: asset: discord.Asset = emoji.url url = str(asset) suffix = "png" if emoji.animated: suffix = "gif" name = f"{emoji.name}.{suffix}" new_buf = io.BytesIO() num_bytes: int = await asset.save(new_buf) return name, new_buf async def _export_sticker(self, sticker: discord.Sticker) -> Tuple[str, io.BytesIO]: asset: Optional[discord.Asset] = sticker.image_url if asset: name = f"{sticker.name}.png" new_buf = io.BytesIO() num_bytes: int = await asset.save(new_buf) return name, new_buf async def _export_from_message( self, message: discord.Message ) -> List[Tuple[str, io.BytesIO]]: reactions = message.reactions results = [] for r in reactions: react_emoji = r.emoji if not isinstance(react_emoji, str): name, new_buf = await self._export_emoji(react_emoji) results.append((name, new_buf)) # currently does not work for some reason... for sticker in message.stickers: name, new_buf = await self._export_sticker(sticker) results.append((name, new_buf)) substrings: List[str] = _CUSTOM_EMOJI_RE.findall(message.content) # taken from https://github.com/Rapptz/discord.py/blob/master/discord/partial_emoji.py#L95 # waiting for discord.py 2.0 for animated, name, emoji_id in substrings: state = message._state emoji = discord.PartialEmoji.with_state( state, name=name, animated=animated, id=emoji_id ) # await ctx.send(emoji) name, new_buf = await self._export_emoji(emoji) results.append((name, new_buf)) return results ``` #### File: Eris-Cogs/facts/facts.py ```python from random import choice as randchoice import pathlib from typing import List # 3rd party import discord from redbot.core import commands, data_manager BaseCog = getattr(commands, "Cog", object) ## TODO -> Docstrings class Fact(BaseCog): def __init__(self, bot): self.bot = bot data_dir: pathlib.Path = data_manager.bundled_data_path(self) self.bearfacts: List[str] = (data_dir / "bearfacts.txt").read_text().split("\n") self.snekfacts: List[str] = (data_dir / "snekfacts.txt").read_text().split("\n") @commands.group() async def fact(self, ctx): """ todo -> specify subcommands """ pass @fact.command() async def random(self, ctx): await ctx.send(randchoice(randchoice([self.bearfacts, self.snekfacts]))) @fact.command() async def snek(self, ctx): await ctx.send(randchoice(self.snekfacts)) @fact.command() async def bear(self, ctx): await ctx.send(randchoice(self.bearfacts)) ``` #### File: Eris-Cogs/imdb_lookup/imdblookup.py ```python from time import sleep from random import choice as randchoice import random # third party import discord from redbot.core import commands, data_manager from redbot.core.utils import embed import imdb from typing import List class MovieType(imdb.utils._Container): pass class PersonType(imdb.utils._Container): pass BaseCog = getattr(commands, "Cog", object) class IMDBLookup(BaseCog): def __init__(self, bot): self.bot = bot self.ia = imdb.IMDb() @commands.group() async def imdb(self, ctx: commands.Context): """ Search for movies or people! """ pass @imdb.command() async def movie(self, ctx, *name: str): """ Get a summary about a movie """ name = " ".join(name) movies: List[imdb.Movie] = self.ia.search_movie(name) if not movies: await ctx.send("Unable to find movie!") return m: MovieType = movies[0] self.ia.update( m, info=["main", "summary", "plot", "cast", "rating", "runtime", "technical"], ) summary = "\n".join(m.summary().split("\n")[2:]) embedded_response = discord.Embed( title=f"Movie", type="rich", description=summary ) embedded_response = embed.randomize_colour(embedded_response) await ctx.send(embed=embedded_response) @imdb.command() async def person(self, ctx, *name: str): """ Get a summary about a person """ name = " ".join(name) people: List[imdb.Person] = self.ia.search_person(name) if not people: await ctx.send("Unable to find person!") return p: PersonType = people[0] self.ia.update(p, info=["main"]) summary = "\n".join(p.summary().split("\n")[2:]) embedded_response = discord.Embed( title=f"Person", type="rich", description=summary ) embedded_response = embed.randomize_colour(embedded_response) await ctx.send(embed=embedded_response) if __name__ == "__main__": name = "kong" ia = imdb.IMDb() movies = ia.search_movie(name) p = movies[0] ia.update(p, info=["main", "plot", "cast", "rating", "runtime", "technical"]) print(p.summary()) # return # cast = '\n'.join([str(p) for p in m['cast'][:10]]) # # embedded_response = discord.Embed( # title=f"{m} (User Rating: {m['rating']})", # type="rich", # # thumbnail=m['cover_url'][0], # description=( # f"Runtime: {m['runtime'][0]} minutes\n\n" # f"*{m['plot'][0]}*\n\n" # "__Cast__\n" # f"{cast}\n..." # ) # ) # await instance.movie(None, 'king kong') # ``` #### File: Eris-Cogs/lifslastcall/lifs.py ```python from time import sleep from random import choice as randchoice import random # third party import discord from redbot.core import commands, data_manager import aiohttp BaseCog = getattr(commands, "Cog", object) class Lifs(BaseCog): def __init__(self, bot): self.bot = bot self.patrons = [ "<NAME> (Bent Nail)", "<NAME> (Steam and Steal)", "<NAME> (Corellon's Crown)", "<NAME> (Tiger's Eye)", "Rishaal the Page-Turner (Book Wyrm)", "<NAME>", "Renaer's Friends (see sub-table)", "Renaer's Friends (see sub-table)", "<NAME>", "<NAME>", "<NAME> (Vintners' Guild)", "<NAME> (Innkeepers)", "<NAME>", 'Mattrim "Threestrings" Mereg', "<NAME>", "<NAME>", "[Faction Contact] FACTION CONTACT: This result should be keyed to the PCs’ contact for whatever faction they end up doing faction missions for. (If they become members of multiple factions, randomly determine or choose one.)", "[Campaign NPC] (or reroll) CAMPAIGN NPC: This slot is left open for adding an NPC that the players like from other parts of the campaign. (I’m currently using this slot for Valetta & Nim.) This can includes characters from the Renaer’s Friends table below if the PCs seem to have forged a strong relationship with them and you’d like to increase the likelihood of them showing up. (Of course, you can always arbitrarily decide that so-and-so will be dropping by the tavern that night.)", "Jarlaxle (or reroll)", "Faction Response Team (or reroll)", ] self.renears = { (1, 6): "<NAME>ember + Roll Again", (7, 8): "<NAME> (the Blackstaff)", (9, 10): 'Laraelra "<NAME>', (11, 12): "<NAME>", (13, 14): "<NAME>", (15, 15): "<NAME>", (16, 16): "<NAME>", (17, 17): "<NAME>", (18, 18): "<NAME>", (19, 19): "<NAME>", ( 20, 20, ): "[Faction Spy Watching Renaer], FACTION SPY: Determine faction randomly or choose appropriately based on the events in the campaign so far.", } self.renears_friends = [] for (lower, upper), friend in self.renears.items(): num_entries = (upper - lower) + 1 self.renears_friends += [friend for _ in range(num_entries)] self.events = [ s.strip() for s in """ A spontaneous arm-wrestling competition breaks out. A local kenku street gang comes into the tavern. They try to sell traveler’s dust to the patrons. (Traveler’s Dust: Tiny roseate crystals. A single grain is usually dropped into the eye, where it dissolves. Those using it are said to be walking the crimson road. Those using traveler’s dust often have trembling hands, slurred speech, and eyes the color of blood. Creates a euphoric feeling paired to a sensation of the world slowing down around you.) PCs walk in to find a horse standing in the middle of the common room. No one can explain how it got there or who owns it. A patron slips a drug into a drink before returning to their own table. A 12-year-old pickpocket named Stannis is working the crowd. His handler, a half-orc named Sabeen, is waiting outside. A portal opens in the middle of the tavern. An elven wizard named <NAME> walks out, orders a drink, and goes back through the portal. (He might become a regular.) The City Watch makes an arrest on the premises. Volo shows up and would like to make arrangements for a signing of Volo’s Guide to Monsters. Also has a number of questions regarding the haunting of Trollskull Manor for Volo’s Guide to Spirits and Specters. Staff Event (e.g., the star elf triplets float up to the ceiling and a spontaneous light show erupts; after a few minutes they float back down and resume service as if nothing happened) """.split( "\n" ) ] @commands.command() async def evening_at_lifs(self, ctx): """ For each night at the tavern: 1. There is a 1 in 1d6 chance that an Event will occur that night. 2. Roll 1d6 to determine the number of significant patrons in the tavern that night, then use the Patron Table to randomly determine which patrons are present. If a result of “Renaer’s Friends” is rolled, roll on the Patrons – Renaer’s Friends table to determine the final result. 3. Look at the Topics/Agendas for the patrons who are present. Generally speaking, you can use one per patron or just select one from among the patrons. When in doubt, default to the first unused bullet point. Supplement or replace these topics with other major events occurring in your campaign. """ summary = [] event_occurs = random.randint(1, 6) == 1 if event_occurs: summary.append(f"**Event occurs!** {random.choice(self.events)}") else: summary.append("**No event today**") num_sig_patrons = random.randint(1, 6) summary.append(f"**{num_sig_patrons} / 6 patrons**") choices = random.sample(self.patrons, k=num_sig_patrons) friend_copy = [s for s in self.renears_friends] i = 0 while True: if i >= len(choices): break choice = choices[i] if "sub-table" in choice or "Again" in choice: choices.pop(i) random_friend = friend_copy.pop(random.randint(0, 19)) original = "Renear" if "sub-table" in choice: original = "Renear's Friend" choices.insert(i, f"{original}\n-- {random_friend}") else: i += 1 for c in choices: summary.append(f"- {c}") summary = "\n".join(summary) await ctx.send(summary) ``` #### File: Eris-Cogs/move/move.py ```python import io import discord from redbot.core import commands, Config, checks, bot, utils BaseCog = getattr(commands, "Cog", object) class Move(BaseCog): def __init__(self, bot): self.bot = bot @commands.command() @checks.mod() @checks.is_owner() async def move(self, ctx, new_channel: discord.TextChannel, *msg_ids: int): for msg_id in msg_ids: message = await ctx.message.channel.fetch_message(msg_id) content = message.content attachments = message.attachments new_attachments = [] if attachments: for a in attachments: x = io.BytesIO() await a.save(x) x.seek(0) new_attachments.append( discord.File(x, filename=a.filename, spoiler=a.is_spoiler()) ) if len(new_attachments) == 0: await new_channel.send(content) elif len(new_attachments) == 1: await new_channel.send(content, file=new_attachments[0]) else: await new_channel.send(content, files=new_attachments) await message.delete() ``` #### File: Eris-Cogs/no_fuck_you/no_fuck_you.py ```python import re import discord from redbot.core import commands, data_manager, Config, checks, bot from .eris_event_lib import ErisEventMixin BaseCog = getattr(commands, "Cog", object) RETYPE = type(re.compile("a")) class NoFuckYou(BaseCog, ErisEventMixin): def __init__(self, bot_instance: bot): super().__init__() self.bot = bot_instance self.fuck_you_regex: RETYPE = re.compile( r"\bf[uck]{,3} \b", flags=re.IGNORECASE ) self.bot.add_listener(self.no_fuck_you, "on_message") async def no_fuck_you(self, message: discord.Message): keyword_in_message: bool = bool( self.fuck_you_regex.search(message.clean_content) ) if not keyword_in_message: return ctx = await self.bot.get_context(message) async with self.lock_config.channel(message.channel).get_lock(): allowed: bool = await self.allowed(ctx, message) if not allowed: return await ctx.send("No fuck you") await self.log_last_message(ctx, message) ``` #### File: Eris-Cogs/rolerequest/rolerequest.py ```python from pprint import pprint as pp # third party import discord from discord import utils from redbot.core import commands, data_manager, Config, checks BaseCog = getattr(commands, "Cog", object) class RoleRequest(BaseCog): def __init__(self, bot: commands.Cog): self.bot: commands.Cog = bot self.config = Config.get_conf( None, identifier=23488191910303, cog_name="rolerequest" ) default_global = {} default_guild = {"hooks": {}} self.config.register_global(**default_global) self.config.register_guild(**default_guild) async def add_role_to_user(reaction: discord.RawReactionActionEvent): guild: discord.Guild = utils.get(self.bot.guilds, id=reaction.guild_id) hooks = await self.config.guild(guild).hooks() message_id = str(reaction.message_id) if message_id not in hooks: return emoji_id = str(reaction.emoji.id) if emoji_id not in hooks[message_id]: return role: discord.Role = None for guild_role in guild.roles: if guild_role.name.lower() == hooks[message_id][emoji_id].lower(): role = guild_role break else: return user_id = reaction.user_id user: discord.Member = await guild.fetch_member(user_id) if not user.bot: # print(f"Adding {role} to {user} via {emoji_id}") await user.add_roles(role) async def remove_role_from_user(reaction: discord.RawReactionActionEvent): guild: discord.Guild = utils.get(self.bot.guilds, id=reaction.guild_id) hooks = await self.config.guild(guild).hooks() message_id = str(reaction.message_id) if message_id not in hooks: return emoji_id = str(reaction.emoji.id) if emoji_id not in hooks[message_id]: return role: discord.Role = None for guild_role in guild.roles: if guild_role.name.lower() == hooks[message_id][emoji_id].lower(): role = guild_role break else: return user_id = reaction.user_id user: discord.Member = await guild.fetch_member(user_id) if not user.bot: await user.remove_roles(role) bot.add_listener(add_role_to_user, "on_raw_reaction_add") bot.add_listener(remove_role_from_user, "on_raw_reaction_remove") @commands.group() async def role(self, ctx: commands.Context): pass @role.command(pass_context=True) @checks.mod() async def designate( self, ctx: commands.Context, msg_id: int, role_name: str, emoji: discord.Emoji ): """ Mod-only command to designate a message as a role-request message. Once designated, any user who reacts with the provided emoji will be given the role. """ msg: discord.Message = await ctx.message.channel.fetch_message(msg_id) # make sure we have that one if emoji.id not in [e.id for e in self.bot.emojis]: await ctx.send("Sorry, I don't have that emoji!") return role: discord.Role = None for guild_role in ctx.guild.roles: if guild_role.name.lower() == role_name.lower(): role = guild_role break else: await ctx.send("Sorry, I can't find that role!") return await msg.add_reaction(emoji) hooks = await self.config.guild(ctx.guild).hooks() emoji_id = str(emoji.id) msg_id = str(msg_id) if msg_id in hooks: hooks[msg_id][emoji_id] = role_name else: hooks[msg_id] = {emoji_id: role_name} await self.config.guild(ctx.guild).hooks.set(hooks) @role.command(pass_context=True) @checks.mod() async def clear_message(self, ctx: commands.Context, msg_id: str): """ Mod-only command to clear all role-request emoji from a message """ msg: discord.Message = await ctx.message.channel.fetch_message(msg_id) hooks = await self.config.guild(ctx.guild).hooks() if msg_id not in hooks: return del hooks[msg_id] await self.config.guild(ctx.guild).hooks.set(hooks) await msg.clear_reactions() @role.command(pass_context=True, hidden=True) @checks.is_owner() async def clear_all_data(self, ctx): """ Clear all data associated with role requests """ await self.config.guild(ctx.guild).hooks.set({}) ``` #### File: Eris-Cogs/steve/__init__.py ```python from .steve import Steve def setup(bot): bot.add_cog(Steve(bot)) ```
{ "source": "jlowenz/masbcpp", "score": 3 }
#### File: masbcpp/docker/model.py ```python import pathlib as pl class Model(object): def __init__(self, path, scale, scene): self.path_ = pl.Path(path) self.scale_ = float(scale) self.scene_ = pl.Path(scene) self.done_ = False # check to see if the cloud already exists print("Checking path: ", self.path_) if self.path_.exists(): pcd_fname = self.pcd_name target = self.scene_ / pcd_fname print(" Checking target: ", target) if target.exists() and target.stat().st_size > 0: self.done_ = True elif target.exists(): target.unlink() else: print(" Path doesn't exist") @property def done(self): return self.done_ @property def pcd_name(self): pcd_fname = self.path_.stem + ".pcd" return pcd_fname @property def path(self): return pl.Path(self.path_) @property def scale(self): return self.scale_ @property def scene(self): return pl.Path(self.scene_) ```
{ "source": "jlowe/spark-rapids", "score": 2 }
#### File: main/python/expand_exec_test.py ```python import pytest from asserts import assert_gpu_and_cpu_are_equal_collect, assert_equal from data_gen import * import pyspark.sql.functions as f from marks import ignore_order @pytest.mark.parametrize('data_gen', all_gen, ids=idfn) @ignore_order def test_expand_exec(data_gen): def op_df(spark, length=2048, seed=0): return gen_df(spark, StructGen([ ('a', data_gen), ('b', IntegerGen())], nullable=False), length=length, seed=seed).rollup(f.col("a"), f.col("b")).agg(f.col("b")) assert_gpu_and_cpu_are_equal_collect(op_df) ``` #### File: main/python/subsuqery_test.py ```python import pytest from asserts import assert_gpu_and_cpu_are_equal_sql from data_gen import * from marks import * gens = [('l', LongGen()), ('i', IntegerGen()), ('f', FloatGen()), ( 's', StringGen())] @ignore_order @pytest.mark.parametrize('data_gen', [gens], ids=idfn) def test_scalar_subquery(data_gen): assert_gpu_and_cpu_are_equal_sql( lambda spark: gen_df(spark, data_gen, length=2048), 'table', ''' select l, i, f, (select count(s) from table) as c from table where l > (select max(i) from table) or f < (select min(i) from table) ''') ```
{ "source": "jlownie/pynetbox", "score": 2 }
#### File: pynetbox/models/ipam.py ```python from pynetbox.core.response import Record from pynetbox.core.endpoint import DetailEndpoint class IpAddresses(Record): def __str__(self): return str(self.address) class Prefixes(Record): def __str__(self): return str(self.prefix) @property def available_ips(self): """Represents the ``available-ips`` detail endpoint. Returns a DetailEndpoint object that is the interface for viewing and creating IP addresses inside a prefix. :returns: :py:class:`.DetailEndpoint` :Examples: >>> prefix = nb.ipam.prefixes.get(24) >>> prefix.available_ips.list() [10.0.0.1/24, 10.0.0.2/24, 10.0.0.3/24, 10.0.0.4/24, 10.0.0.5/24, ...] To create a single IP: >>> prefix = nb.ipam.prefixes.get(24) >>> prefix.available_ips.create() 10.0.0.1/24 To create multiple IPs: >>> prefix = nb.ipam.prefixes.get(24) >>> create = prefix.available_ips.create([{} for i in range(2)]) >>> create [10.0.0.2/24, 10.0.0.3/24] """ return DetailEndpoint(self, "available-ips", custom_return=IpAddresses) @property def available_prefixes(self): """Represents the ``available-prefixes`` detail endpoint. Returns a DetailEndpoint object that is the interface for viewing and creating prefixes inside a parent prefix. Very similar to :py:meth:`~pynetbox.ipam.Prefixes.available_ips` , except that dict (or list of dicts) passed to ``.create()`` needs to have a ``prefix_length`` key/value specifed. :returns: :py:class:`.DetailEndpoint` :Examples: >>> prefix = nb.ipam.prefixes.get(3) >>> prefix 10.0.0.0/16 >>> prefix.available_prefixes.list() [10.0.1.0/24, 10.0.2.0/23, 10.0.4.0/22, 10.0.8.0/21, 10.0.16.0/20, 10.0.32.0/19, 10.0.64.0/18, 10.0.128.0/17] Creating a single child prefix: >>> prefix = nb.ipam.prefixes.get(1) >>> prefix 10.0.0.0/24 >>> new_prefix = prefix.available_prefixes.create( ... {"prefix_length": 29} ... ) >>> new_prefix 10.0.0.16/29 """ return DetailEndpoint(self, "available-prefixes", custom_return=Prefixes) class Aggregates(Record): def __str__(self): return str(self.prefix) class Vlans(Record): def __str__(self): return super().__str__(self) or str(self.vid) class VlanGroups(Record): @property def available_vlans(self): """Represents the ``available-vlans`` detail endpoint. Returns a DetailEndpoint object that is the interface for viewing and creating VLANs inside a VLAN group. Available since NetBox 3.2.0. :returns: :py:class:`.DetailEndpoint` :Examples: >>> vlan_group = nb.ipam.vlan_groups.get(1) >>> vlan_group.available_vlans.list() [10, 11, 12] To create a new VLAN: >>> vlan_group.available_vlans.create({"name": "NewVLAN"}) NewVLAN (10) """ return DetailEndpoint(self, "available-vlans", custom_return=Vlans) ``` #### File: tests/unit/test_detailendpoint.py ```python import unittest import six import pynetbox if six.PY3: from unittest.mock import patch else: from mock import patch nb = pynetbox.api("http://localhost:8000") class DetailEndpointTestCase(unittest.TestCase): def test_detail_endpoint_create_single(self): with patch( "pynetbox.core.query.Request._make_call", return_value={"id": 123, "prefix": "1.2.3.0/24"}, ): prefix_obj = nb.ipam.prefixes.get(123) self.assertEqual(prefix_obj.prefix, "1.2.3.0/24") with patch( "pynetbox.core.query.Request._make_call", return_value={"address": "1.2.3.1/24"}, ): ip_obj = prefix_obj.available_ips.create() self.assertEqual(ip_obj.address, "1.2.3.1/24") def test_detail_endpoint_create_list(self): with patch( "pynetbox.core.query.Request._make_call", return_value={"id": 123, "prefix": "1.2.3.0/24"}, ): prefix_obj = nb.ipam.prefixes.get(123) self.assertEqual(prefix_obj.prefix, "1.2.3.0/24") with patch( "pynetbox.core.query.Request._make_call", return_value=[{"address": "1.2.3.1/24"}, {"address": "1.2.3.2/24"}], ): ip_list = prefix_obj.available_ips.create([{} for _ in range(2)]) self.assertTrue(isinstance(ip_list, list)) self.assertEqual(len(ip_list), 2) ```
{ "source": "jlpalomino/autograding-notebooks", "score": 3 }
#### File: autograding-notebooks/scripts/make-template-repo.py ```python import os import fnmatch import argparse def get_notebooks(nbgrader_dir, assignment): # get the list of notebooks for this assignment # assumes assignemnts have been released (i.e. are in release dir) print("Getting notebooks") release_dir = nbgrader_dir + '/release/' + assignment notebooks = [] for file in os.listdir(release_dir): if fnmatch.fnmatch(file, '*.ipynb'): print(file) notebooks.append(file) print("Found {} notebooks".format(len(notebooks))) return notebooks def create_readme(): # create a stub of a readme file for the template repo print("Creating readme") def init_template(repo_name): # create a new directory for this assignment and initialize as git repo try: os.mkdir(repo_name) print("Initializing git repo") except FileExistsError as fee: print("directory {} already exists".format(repo_name)) def push_to_github(template_dir): # push the repo to the github classroom print("pushing to github repo") if __name__ == '__main__': # argument parsing parser = argparse.ArgumentParser() parser.add_argument('nbgrader_dir', help='Top level nbgrader directory') parser.add_argument('assignment', help='Assignment name, e.g., "2019-01-31-stability" or "hw1-rootfinding"') parser.add_argument('--org_name', help='name of GitHub organization') parser.add_argument('--repo_name', help='desired name of github repo') args = parser.parse_args() notebooks = get_notebooks(args.nbgrader_dir, args.assignment) init_template(args.repo_name) ```
{ "source": "jlpalomino/earthpy", "score": 3 }
#### File: earthpy/earthpy/clip.py ```python import pandas as pd import geopandas as gpd def _clip_points(shp, clip_obj): """Clip point geometry to the clip_obj GeoDataFrame extent. Clip an input point GeoDataFrame to the polygon extent of the clip_obj parameter. Points that intersect the clip_obj geometry are extracted with associated attributes and returned. Parameters ---------- shp : GeoDataFrame Composed of point geometry that is clipped to clip_obj. clip_obj : GeoDataFrame Reference polygon for clipping. Returns ------- GeoDataFrame The returned GeoDataFrame is a subset of shp that intersects with clip_obj. """ poly = clip_obj.geometry.unary_union return shp[shp.geometry.intersects(poly)] def _clip_multi_point(shp, clip_obj): """Clip multi point features to the clip_obj GeoDataFrame extent. Clip an input multi point to the polygon extent of the clip_obj parameter. Points that intersect the clip_obj geometry are extracted with associated attributes returned. Parameters ---------- shp : GeoDataFrame multipoint geometry that is clipped to clip_obj. clip_obj : GeoDataFrame Reference polygon for clipping. Returns ------- GeoDataFrame The returned GeoDataFrame is a clipped subset of shp containing multi-point and point features. """ # Explode multi-point features when clipping then recreate geom clipped = _clip_points(shp.explode().reset_index(level=[1]), clip_obj) clipped = clipped.dissolve(by=[clipped.index]).drop(columns="level_1")[ shp.columns.tolist() ] return clipped def _clip_line_poly(shp, clip_obj): """Clip line and polygon geometry to the clip_obj GeoDataFrame extent. Clip an input line or polygon to the polygon extent of the clip_obj parameter. Lines or Polygons that intersect the clip_obj geometry are extracted with associated attributes and returned. Parameters ---------- shp : GeoDataFrame Line or polygon geometry that is clipped to clip_obj. clip_obj : GeoDataFrame Reference polygon for clipping. Returns ------- GeoDataFrame The returned GeoDataFrame is a clipped subset of shp that intersects with clip_obj. """ # Create a single polygon object for clipping poly = clip_obj.geometry.unary_union spatial_index = shp.sindex # Create a box for the initial intersection bbox = poly.bounds # Get a list of id's for each object that overlaps the bounding box and # subset the data to just those lines sidx = list(spatial_index.intersection(bbox)) shp_sub = shp.iloc[sidx] # Clip the data - with these data clipped = shp_sub.copy() clipped["geometry"] = shp_sub.intersection(poly) # Return the clipped layer with no null geometry values return clipped[clipped.geometry.notnull()] def _clip_multi_poly_line(shp, clip_obj): """Clip multi lines and polygons to the clip_obj GeoDataFrame extent. Clip an input multi line or polygon to the polygon extent of the clip_obj parameter. Lines or Polygons that intersect the clip_obj geometry are extracted with associated attributes and returned. Parameters ---------- shp : GeoDataFrame multiLine or multipolygon geometry that is clipped to clip_obj. clip_obj : GeoDataFrame Reference polygon for clipping. Returns ------- GeoDataFrame The returned GeoDataFrame is a clipped subset of shp that intersects with clip_obj. """ # Clip multi polygons clipped = _clip_line_poly(shp.explode().reset_index(level=[1]), clip_obj) lines = clipped[ (clipped.geometry.type == "MultiLineString") | (clipped.geometry.type == "LineString") ] line_diss = lines.dissolve(by=[lines.index]).drop(columns="level_1") polys = clipped[clipped.geometry.type == "Polygon"] poly_diss = polys.dissolve(by=[polys.index]).drop(columns="level_1") return gpd.GeoDataFrame( pd.concat([poly_diss, line_diss], ignore_index=True) ) def clip_shp(shp, clip_obj): """Clip points, lines, or polygon geometries to the clip_obj extent. Both layers must be in the same Coordinate Reference System (CRS) and will be clipped to the full extent of the clip object. If there are multiple polygons in clip_obj, data from shp will be clipped to the total boundary of all polygons in clip_obj. Parameters ---------- shp : GeoDataFrame Vector layer (point, line, polygon) to be clipped to clip_obj. clip_obj : GeoDataFrame Polygon vector layer used to clip shp. The clip_obj's geometry is dissolved into one geometric feature and intersected with shp. Returns ------- GeoDataFrame Vector data (points, lines, polygons) from shp clipped to polygon boundary from clip_obj. Examples -------- Clipping points (glacier locations in the state of Colorado) with a polygon (the boundary of Rocky Mountain National Park): >>> import geopandas as gpd >>> import earthpy.clip as cl >>> from earthpy.io import path_to_example >>> rmnp = gpd.read_file(path_to_example('rmnp.shp')) >>> glaciers = gpd.read_file(path_to_example('colorado-glaciers.geojson')) >>> glaciers.shape (134, 2) >>> rmnp_glaciers = cl.clip_shp(glaciers, rmnp) >>> rmnp_glaciers.shape (36, 2) Clipping a line (the Continental Divide Trail) with a polygon (the boundary of Rocky Mountain National Park): >>> cdt = gpd.read_file(path_to_example('continental-div-trail.geojson')) >>> rmnp_cdt_section = cl.clip_shp(cdt, rmnp) >>> cdt['geometry'].length > rmnp_cdt_section['geometry'].length 0 True dtype: bool Clipping a polygon (Colorado counties) with another polygon (the boundary of Rocky Mountain National Park): >>> counties = gpd.read_file(path_to_example('colorado-counties.geojson')) >>> counties.shape (64, 13) >>> rmnp_counties = cl.clip_shp(counties, rmnp) >>> rmnp_counties.shape (4, 13) """ try: shp.geometry clip_obj.geometry except AttributeError: raise AttributeError( "Please make sure that your input and clip GeoDataFrames have a" " valid geometry column" ) if not any(shp.intersects(clip_obj.unary_union)): raise ValueError("Shape and crop extent do not overlap.") if any(shp.geometry.type == "MultiPoint"): return _clip_multi_point(shp, clip_obj) elif any(shp.geometry.type == "Point"): return _clip_points(shp, clip_obj) elif any(shp.geometry.type == "MultiPolygon") or any( shp.geometry.type == "MultiLineString" ): return _clip_multi_poly_line(shp, clip_obj) else: return _clip_line_poly(shp, clip_obj) ``` #### File: earthpy/tests/test_io.py ```python import os import requests import pytest import numpy as np import rasterio as rio import geopandas as gpd import earthpy.io as eio RUNNING_ON_CI = False if "CI" in os.environ: if os.environ["CI"]: RUNNING_ON_CI = True skip_on_ci = pytest.mark.skipif( RUNNING_ON_CI, reason="Test fails intermittently on CI systems." ) @pytest.fixture def eld(tmpdir): return eio.Data(path=tmpdir) def test_invalid_datasets_raise_errors(): """ Raise errors when users provide nonexistent datasets. """ with pytest.raises(KeyError): eio.path_to_example("Non-existent dataset") def test_missing_datasets_raise_errors(): """ Raise errors when users forget to provide a dataset. """ with pytest.raises(KeyError): eio.path_to_example("") def test_valid_datasets_get_returned(): """ If users give a valid dataset name, return a valid path. """ epsg_path = eio.path_to_example("epsg.json") assert os.path.isfile(epsg_path) def test_rgb(): """ Check assumptions about rgb satellite imagery over RMNP. """ with rio.open(eio.path_to_example("rmnp-rgb.tif")) as src: rgb = src.read() rgb_crs = src.crs assert rgb.shape == (3, 373, 485) assert str(rgb_crs) == rio.crs.CRS.from_epsg(4326) def test_rgb_single_channels(): """ Check assumptions about single channel R, G, and B images. """ tif_names = [color + ".tif" for color in ["red", "green", "blue"]] fnames = [eio.path_to_example(f) for f in tif_names] rgb_parts = list() for f in fnames: with rio.open(f) as src: rgb_parts.append(src.read()) assert str(src.crs) == rio.crs.CRS.from_epsg(4326) with rio.open(eio.path_to_example("rmnp-rgb.tif")) as src: assert np.array_equal(src.read(), np.concatenate(rgb_parts)) def test_colorado_counties(): """ Check assumptions about county polygons. """ counties = gpd.read_file(eio.path_to_example("colorado-counties.geojson")) assert counties.shape == (64, 13) assert counties.crs == {"init": "epsg:4326"} def test_colorado_glaciers(): """ Check assumptions about glacier point locations. """ glaciers = gpd.read_file(eio.path_to_example("colorado-glaciers.geojson")) assert glaciers.shape == (134, 2) assert glaciers.crs == {"init": "epsg:4326"} def test_continental_divide_trail(): """ Check assumptions about Continental Divide Trail path. """ cdt = gpd.read_file(eio.path_to_example("continental-div-trail.geojson")) assert cdt.shape == (1, 2) assert cdt.crs == {"init": "epsg:4326"} """ Tests for the EarthlabData class. """ eio.DATA_URLS["little-text-file"] = [ ("https://ndownloader.figshare.com/files/14555681", "abc.txt", "file") ] eio.DATA_URLS["little-zip-file"] = [ ("https://ndownloader.figshare.com/files/14555684", ".", "zip") ] @skip_on_ci @pytest.mark.vcr() def test_urls_are_valid(): """ Test responses for each dataset to ensure valid URLs. """ for key in eio.DATA_URLS: dataset = eio.DATA_URLS[key] if not isinstance(dataset, list): dataset = [dataset] for url, name, kind in dataset: r = requests.get("http://www.example.com") assert r.status_code == 200 def test_key_and_url_set_simultaneously(eld): """ Only key or url should be set, not both. """ with pytest.raises(ValueError, match="can not both be set at the same"): eld.get_data(key="foo", url="bar") def test_available_datasets_are_printed(eld, capsys): """ If no key or url provided, print datasets. The output that is printed should be identical to the __repr__ output. Using capsys in pytest provides a way to capture stdout/stderr output. """ eld.get_data() printed_output = capsys.readouterr().out print(eld) repr_output = capsys.readouterr().out assert printed_output == repr_output def test_invalid_dataset_key(eld): """ Raise errors for unknown dataset keys. """ with pytest.raises(KeyError, match="not found in"): eld.get_data(key="some non-existent key") @skip_on_ci @pytest.mark.vcr() def test_valid_download_file(eld): """ Test that single files get downloaded. """ file = eld.get_data("little-text-file") assert os.path.isfile(file) @skip_on_ci @pytest.mark.vcr() def test_valid_download_zip(eld): """ Test that zipped files get downloaded and extracted. """ path = eld.get_data("little-zip-file") path_has_contents = len(os.listdir(path)) > 0 assert path_has_contents @skip_on_ci @pytest.mark.parametrize("replace_arg_value", [True, False]) @pytest.mark.vcr() def test_replace_arg_controle_overwrite(eld, replace_arg_value): """ If replace=False, do not replace existing files. If true, replace. """ file1 = eld.get_data("little-text-file") mtime1 = os.path.getmtime(file1) file2 = eld.get_data("little-text-file", replace=replace_arg_value) mtime2 = os.path.getmtime(file2) if replace_arg_value is True: assert mtime1 < mtime2 else: assert mtime1 == mtime2 @skip_on_ci @pytest.mark.vcr() def test_arbitrary_url_file_download(eld): """ Verify that arbitrary URLs work for data file downloads. """ file = eld.get_data(url="http://www.google.com/robots.txt") assert os.path.isfile(file) def test_invalid_data_type(eld): """ Raise errors for invalid data types. """ eio.DATA_URLS["invalid-data-type"] = [ ("https://www.google.com", ".", "an_invalid_file_extension") ] with pytest.raises(ValueError, match="kind must be one of"): eld.get_data("invalid-data-type") @skip_on_ci @pytest.mark.vcr() def test_arbitrary_url_zip_download(eld): """ Verify that aribitrary URLs work for zip file downloads. """ path = eld.get_data( url="https://www2.census.gov/geo/tiger/GENZ2016/shp/cb_2016_us_nation_20m.zip" ) path_has_contents = len(os.listdir(path)) > 0 assert path_has_contents @skip_on_ci @pytest.mark.vcr() def test_url_download_tar_file(eld): """ Ensure that tar files are downloaded and extracted. """ path = eld.get_data(url="https://ndownloader.figshare.com/files/14615411") assert "abc.txt" in os.listdir(path) @skip_on_ci @pytest.mark.vcr() def test_url_download_tar_gz_file(eld): """ Ensure that tar.gz files are downloaded and extracted. """ path = eld.get_data(url="https://ndownloader.figshare.com/files/14615414") assert "abc.txt" in os.listdir(path) @skip_on_ci @pytest.mark.vcr() def test_url_download_txt_file_with_content_disposition(eld): """ Test arbitrary URL download with content-disposition. """ path = eld.get_data(url="https://ndownloader.figshare.com/files/14555681") assert path.endswith("abc.txt") and os.path.isfile(path) @skip_on_ci @pytest.mark.parametrize("verbose_arg_value", [True, False]) @pytest.mark.vcr() def test_verbose_arg_works(eld, verbose_arg_value, capsys): """ Test that the verbose argument can print or suppress messages. """ eld.get_data("little-text-file", verbose=verbose_arg_value) output_printed = capsys.readouterr().out != "" assert output_printed == verbose_arg_value ```
{ "source": "jlpalomino/matplotcheck", "score": 3 }
#### File: matplotcheck/matplotcheck/base.py ```python import numpy as np import matplotlib.dates as mdates import matplotlib from matplotlib.backend_bases import RendererBase import math from scipy import stats import pandas as pd import geopandas as gpd class InvalidPlotError(Exception): pass class PlotTester(object): """ Object to grab elements from Matplotlib plots Temporarily removing parameters and returns as it's breaking sphinx Parameters ---------- axis : mpl axis object """ def __init__(self, ax): """Initialize TestPlot object""" self.ax = ax def _is_line(self): """Boolean expressing if ax contains scatter points. If plot contains scatter points and lines return True. Returns ------- boolean: True if Axes ax is a line plot, False if not """ if self.ax.lines: for l in self.ax.lines: if ( not l.get_linestyle() or not l.get_linewidth() or l.get_linewidth() > 0 ): return True def _is_scatter(self): """Boolean expressing if ax contains scatter points. If plot contains scatter points as well as lines, functions will return true. Returns ------- boolean: True if Axes ax is a scatter plot, False if not """ if self.ax.collections: return True elif self.ax.lines: for l in self.ax.lines: if ( l.get_linestyle() == "None" or l.get_linewidth() == "None" or l.get_linewidth() == 0 ): return True return False def assert_plot_type(self, plot_type=None): """Asserts Axes ax contains the type of plot specified in plot_type. if plot_type is None, assertion is passed Parameters ---------- plot_type: string String specifying the expected plot type. Options: `scatter`,`bar`, `line` """ if plot_type: if plot_type == "scatter": assert self._is_scatter(), "Plot is not of type {0}".format( plot_type ) elif plot_type == "bar": assert self.ax.patches, "Plot is not of type {0}".format( plot_type ) elif plot_type == "line": assert self._is_line(), "Plot is not of type {0}".format( plot_type ) else: raise ValueError( "Plot_type to test must be either: scatter, bar or line" ) """ TITLES TESTS/HELPER FUNCTIONS """ def get_titles(self): """Returns the suptitle (Figure title) and axes title of ax Returns ------- suptitle: string Figure title of the Figure that the ax object is on. If none, this is an empty string title: title on the axes. If none, this is an empty string. """ fig, suptitle = self.ax.get_figure(), "" if fig._suptitle: suptitle += fig._suptitle.get_text() return suptitle, self.ax.get_title() def assert_title_contains(self, lst, title_type="either"): """Asserts title contains each string in lst. Whether we test the axes title or figure title is described in title_type. Parameters ---------- lst: list list of strings to be searched for in title. strings must be lower case. title_type: string one of the following strings ["figure", "axes", "either"] `figure`: only the figure title (suptitle) will be tested 'axes': only the axes title (suptitle) will be tested 'either': either the figure title or axes title will pass this assertion. The combined title will be tested. """ suptitle, axtitle = self.get_titles() if title_type == "either": title = axtitle + suptitle elif title_type == "figure": title = suptitle elif title_type == "axes": title = axtitle else: raise ValueError( 'title_type must be one of the following ["figure", "axes", "either"]' ) if lst == None: pass else: assert title, "Expected title is not displayed" title = title.lower().replace(" ", "") for s in lst: assert ( s.lower().replace(" ", "") in title ), "Title does not contain expected text:{0}".format(s) """CAPTION TEST/HELPER FUNCTIONS """ def get_caption(self): """Returns matplotlib.text.Text that is located in the bottom right, just below the right side of ax If no text is found in location, None is returned. Returns ------- matplotlib.text.Text if text is found in bottom right. None if no text is found in said location. """ caption = None ax_position = self.ax.get_position() for tex in self.ax.get_figure().texts: tex_position = tex.get_position() if ( ax_position.ymin - 0.1 < tex_position[1] < ax_position.ymin ) and ( ax_position.xmax - 0.5 < tex_position[0] < ax_position.xmax ): caption = tex break return caption def assert_caption_contains(self, strings_exp): """Asserts that Axes ax contains strings as expected in strings_exp. strings_exp is a list of lists. Each internal list is a list of strings where at least one string must be in the caption, barring capitalization. Once a string is found, it is removed from the caption, therefore, order does matter. This is to enforce no overlap in found strings. Parameters ---------- strings_exp: list of lists. Each internal list is a list of strings where at least one string must be found in the caption. Input strings must be lower case, as we are not testing for capitalization if None: assert caption does not exist if empty list: asserts caption exists and not an empty string """ caption = self.get_caption() if strings_exp == None: return else: assert caption, "No caption exist in appropriate location" caption = caption.get_text().lower().replace(" ", "") for lst in strings_exp: flag = False for s in lst: if s.lower().replace(" ", "") in caption: caption = caption.replace(s, "") flag = True break assert ( flag ), "Caption does not contain expected string: {0}".format(s) """ AXIS TEST/HELPER FUNCTIONS """ def assert_axis_off(self, m="Axis lines are displayed on plot"): """Asserts one of the three cases holds true with error message m: 1) axis have been turned off 2) both x and y axis have visibility set to false 3) both x and y axis ticks have been set to empty lists Parameters ---------- m: string error message if assertion is not met Returns ---------- Nothing (if checks pass) or raises error with message m """ flag = False # Case 1: check if axis have been turned off if self.ax.axison == False: flag = True # Case 2: Check if both axis visibilities set to false elif ( self.ax.xaxis._visible == False and self.ax.yaxis._visible == False ): flag = True # Case 3: Check if both axis ticks are set to empty lists elif ( self.ax.xaxis.get_gridlines() == [] and self.ax.yaxis.get_gridlines() == [] ): flag = True assert flag, m def assert_axis_label_contains(self, axis="x", lst=[]): """Asserts axis label contains each of the strings in lst. Tests x or y axis based on 'axis' param. Not case sensitive Parameters ---------- axis : string one of the following ['x','y'] stated which axis label to be tested lst : list of strings Strings to be searched for in axis label. If lst is an empty list: assert axis label exists If lst is `None`: passes Returns ---------- Nothing (if checks pass) or raises error """ # Retrieve appropriate axis label, error if axis param is not x or y if axis == "x": label = self.ax.get_xlabel() elif axis == "y": label = self.ax.get_ylabel() else: raise ValueError('axis must be one of the following ["x", "y"]') # Check that axis label contains the expected strings in lst if lst is None: pass else: assert label, "Expected {0} axis label is not displayed".format( axis ) label = label.lower().replace(" ", "") for s in lst: assert ( s.lower().replace(" ", "") in label ), "{0} axis label does not contain expected text:{1}".format( axis, s ) def assert_lims(self, lims_expected, axis="x"): """Assert the lims of ax match lims_expected. Tests x or y axis based on 'axis' param Parameters --------- lims_expected: list of numbers (flt or int) list of length 2 containing expected min and max vals for axis limits axis: string from ['x','y'], which axis to be tested Returns ---------- Nothing (if checks pass) or raises error """ # Get axis limit values if axis == "x": lims = [int(l) for l in self.ax.get_xlim()] elif axis == "y": lims = [int(l) for l in self.ax.get_ylim()] else: raise ValueError( "axis must be one of the following string ['x', 'y']" ) # Check retrieved limits against expected min and max values assert np.array_equal( lims, lims_expected ), "Incorrect limits on the {0} axis".format(axis) def assert_lims_range(self, lims_range, axis="x"): """Asserts axis limits fall within lims_range (INCLUSIVE). Parameters ---------- lims_range: tuple of tuples. if axis == 'x': first tuple is range the left x limit must be in, second tuple is the range the right x limit must be in if axis == 'y': first tuple is range the bottom y limit must be in, second tuple is the range the top x limit must be in axis: string from list ['x','y'] declaring which axis to be tested Returns ---------- Nothing (if checks pass) or raises error """ # Get ax axis limits if axis == "x": lims = self.ax.get_xlim() elif axis == "y": lims = self.ax.get_ylim() else: raise ValueError( "axis must be one of the following string ['x', 'y']" ) # Check if the min falls with in lims_range[0] assert ( lims_range[0][0] <= lims[0] <= lims_range[0][1] ), "Incorrect min limit on the {0} axis".format(axis) # Check if the max falls with in lims_range[1] assert ( lims_range[1][0] <= lims[1] <= lims_range[1][1] ), "Incorrect max limit on the {0} axis".format(axis) def assert_equal_xlims_ylims(self, m="xlims and ylims are not equal"): """Assert the x and y lims of Axes ax are exactly equal to each other Parameters --------- m: string Error message if assertion is not met that is shown to the user. Returns ---------- Nothing (if checks pass) or raises error with message m """ xlims = self.ax.get_xlim() ylims = self.ax.get_ylim() assert np.array_equal(xlims, ylims), m """ LEGEND TESTS """ def get_legends(self): """Retrieve the list of legends on ax Returns ------- list of matplotlib.legend.Legend objects """ return self.ax.findobj(match=matplotlib.legend.Legend) def assert_legend_titles(self, titles_exp): """Asserts legend titles contain expected text in titles_exp list. Parameters ---------- titles_exp: list of strings. Each string is expected be be in one legend title. The number of strings is equal to the number of expected legends. Returns ------- Nothing (if checks pass) or prints error message or AssertionError if the expected legend title is not found in the object or nothing if the title string is found. """ legends = self.get_legends() # Test number of legends - edge case when a student might have two # legends rather than 2 num_legends = len(legends) num_exp_legends = len(titles_exp) assert num_legends == num_exp_legends, ( "I was expecting {0} legend " "titles but instead found " "{1}".format(num_legends, num_exp_legends) ) # Check that each expected legend title is in a legend title in ax titles = [leg.get_title().get_text().lower() for leg in legends] for title_exp in titles_exp: assert any( title_exp.lower() in s for s in titles ), "Legend title does not contain expected string: {0}".format( title_exp ) def assert_legend_labels(self, labels_exp): """Asserts legends on ax have the correct entry labels Parameters ---------- labels_exp: list of strings. Each string is an expected legend entry label. Checks that the legend entry labels match exactly (except for case). Returns ------- Nothing (if checks pass) or prints error message Notes ----- If there are multiple legends, it combines all the legend labels into one set and checks that set against the list labels_exp """ legends = self.get_legends() assert legends, "Legend does not exist" # Lowercase both the expected and actual legend labels legend_texts = [ t.get_text().lower() for leg in legends for t in leg.get_texts() ] labels_exp = [l.lower() for l in labels_exp] num_exp_labs = len(labels_exp) num_actual_labs = len(legend_texts) assert num_actual_labs == num_exp_labs, ( "I was expecting {0} legend entries, but found {1}. Are there " "extra labels in your legend?".format( num_exp_labs, num_actual_labs ) ) assert set(legend_texts) == set( labels_exp ), "Legend does not have expected labels" def assert_legend_no_overlay_content( self, m="Legend overlays plot window" ): """Asserts that each legend does not overlay plot window Parameters ---------- m: string error message if assertion is not met Returns ------- Nothing (if checks pass) or prints error message m """ # RendererBase() is needed to get extent, otherwise raises an error plot_extent = self.ax.get_window_extent(RendererBase()).get_points() legends = self.get_legends() for leg in legends: # RendererBase() is needed to get extent, otherwise raises error leg_extent = leg.get_window_extent(RendererBase()).get_points() legend_left = leg_extent[1][0] < plot_extent[0][0] legend_right = leg_extent[0][0] > plot_extent[1][0] legend_below = leg_extent[1][1] < plot_extent[0][1] assert legend_left or legend_right or legend_below, m def legends_overlap(self, b1, b2): """Helper function for assert_no_legend_overlap. True if points of window extents for b1 and b2 overlap, False otherwise Parameters ---------- b1: 2x2 array, bounding box of window extents b2: 2x2 array, bounding box of window extents Returns ------- boolean value that says if bounding boxes b1 and b2 overlap """ x_overlap = (b1[0][0] <= b2[1][0] and b1[0][0] >= b2[0][0]) or ( b1[1][0] <= b2[1][0] and b1[1][0] >= b2[0][0] ) y_overlap = (b1[0][1] <= b2[1][1] and b1[0][1] >= b2[0][1]) or ( b1[1][1] <= b2[1][1] and b1[1][1] >= b2[0][1] ) return x_overlap and y_overlap def assert_no_legend_overlap(self, m="Legends overlap eachother"): """When multiple legends on ax, asserts that there are no two legends in ax that overlap each other Parameters ---------- m: string error message if assertion is not met Returns ------- Nothing (if checks pass) or prints error message m """ legends = self.get_legends() n = len(legends) for i in range(n - 1): # Get extent of first legend in check, RendererBase() avoids error leg_extent1 = ( legends[i].get_window_extent(RendererBase()).get_points() ) for j in range(i + 1, n): # Get extent of second legend in check leg_extent2 = ( legends[j].get_window_extent(RendererBase()).get_points() ) assert ( self.legends_overlap(leg_extent1, leg_extent2) == False ), m """ BASIC PLOT DATA FUNCTIONS """ def get_xy(self, points_only=False, xtime=False): """Returns a pandas dataframe with columns "x" and "y" holding the x and y coords on Axes ax Parameters ---------- ax: Matplotlib Ax object axes object to be tested points_only: boolean xtime: boolean True if the x axis of the plot contains datetime values Returns ------- Pandas dataframe with columns "x" and "y" containing the x and y coords of each point on Axes ax """ if points_only: xy_coords = [ val for l in self.ax.lines if (l.get_linestyle() == "None" or l.get_linewidth() == "None") for val in l.get_xydata() ] # .plot() xy_coords += [ val for c in self.ax.collections if type(c) != matplotlib.collections.PolyCollection for val in c.get_offsets() ] # .scatter() else: xy_coords = [ val for l in self.ax.lines for val in l.get_xydata() ] # .plot() xy_coords += [ val for c in self.ax.collections for val in c.get_offsets() ] # .scatter() xy_coords += [ [(p.get_x() + (p.get_width() / 2)), p.get_height()] for p in self.ax.patches ] # .bar() xy_data = pd.DataFrame(data=xy_coords, columns=["x", "y"]).dropna() # crop to limits lims = self.ax.get_xlim() xy_data = xy_data[xy_data["x"] >= lims[0]] xy_data = xy_data[xy_data["x"] <= lims[1]].reset_index(drop=True) # change to datetime dtype if needed if xtime: xy_data["x"] = mdates.num2date(xy_data["x"]) return xy_data def assert_xydata( self, xy_expected, xcol=None, ycol=None, points_only=False, xtime=False, xlabels=False, tolerence=0, m="Incorrect data values", ): """Asserts that the x and y data of Axes ax matches xy_expected with error message m. If xy_expected is None, assertion is passed Parameters ---------- ax: Matplotlib Axes object (Required) Axis object to be tested xy_expected: pandas or geopandas dataframe (Required) DF contains data expected to be on the plot (axis object) xcol: String (Required for non geopandas objects) Title of column in xy_expected containing values along x_axis. If xy_expected contains this data in 'geometry', set to None ycol: String (Required for non geopandas objects) The y column name of xy_expected which represents values along the y_axis in a plot. If xy_expected contains this data in 'geometry' set to None points_only: boolean, True if checking only points, false if checking all data on plot xtime: boolean True if the a-axis contains datetime values. Matplotlib converts datetime objects to seconds? This parameter will ensure the provided x col values are converted if they are datetime elements. xlabels: boolean if using x axis labels rather than x data tolerence: measure of relative error allowed. For example, a value of .001 asserts values in array are within .001 of each other. ## this isn't exactly correct.. ## m: string error message provided to the student if assertion fails """ # If there data are spatial (geopandas), grab geometry data if type(xy_expected) == gpd.geodataframe.GeoDataFrame and not xcol: xy_expected = pd.DataFrame( data={ "x": [p.x for p in xy_expected.geometry], "y": [p.y for p in xy_expected.geometry], } ).dropna() xcol, ycol = "x", "y" if ( type(xy_expected) == pd.DataFrame or type(xy_expected) == gpd.geodataframe.GeoDataFrame ): if xlabels: self.assert_xlabel_ydata(xy_expected, xcol=xcol, ycol=ycol) return xy_data = self.get_xy(points_only=points_only, xtime=xtime) # Make sure the data are sorted the same xy_data, xy_expected = ( xy_data.sort_values(by="x"), xy_expected.sort_values(by=xcol), ) if tolerence > 0: if xtime: raise ValueError( "tolerance must be 0 with datetime on x-axis" ) np.testing.assert_allclose( xy_data["x"], xy_expected[xcol], rtol=tolerence, err_msg=m ) np.testing.assert_allclose( xy_data["y"], xy_expected[ycol], rtol=tolerence, err_msg=m ) else: assert np.array_equal(xy_data["x"], xy_expected[xcol]), m assert np.array_equal(xy_data["y"], xy_expected[ycol]), m elif xy_expected == None: pass else: raise ValueError( "xy_expected must be of type: pandas dataframe or Geopandas Dataframe" ) def assert_xlabel_ydata(self, xy_expected, xcol, ycol, m="Incorrect Data"): """Asserts that the numbers in x labels and y values in Axes ax match xy_expected with error message m. Note, this is only testing the numbers in x axis labels. Parameters ---------- xy_expected: pandas dataframe that contains data xcol: string column title containing xaxis data ycol: string column title containing yaxis data m: string error message if assertion is not met """ x_data = [ "".join(c for c in l.get_text() if c.isdigit()) for l in self.ax.xaxis.get_majorticklabels() ] y_data = self.get_xy()["y"] xy_data = pd.DataFrame(data={"x": x_data, "y": y_data}) xy_expected, xy_data = ( xy_expected.sort_values(by=xcol), xy_data.sort_values(by="x"), ) np.testing.assert_equal( np.array(xy_data["x"]), np.array(xy_expected[xcol]), m ) np.testing.assert_equal( np.array(xy_data["y"]), np.array(xy_expected[ycol]), m ) ### LINE TESTS/HELPER FUNCTIONS ### def get_slope_yintercept(self, path_verts): """Returns the y intercept of line based on the average slope of the line Parameters ---------- path_verts: array of verticies that make a line on Axes ax Returns ------- slope: float of the average slope y_intercept: float of the y intercept """ slopes = [ (path_verts[i + 1, 1] - path_verts[i, 1]) / (path_verts[i + 1, 0] - path_verts[i, 0]) for i in range(len(path_verts) - 1) ] slope = sum(slopes) / len(slopes) return slope, path_verts[0, 1] - (path_verts[0, 0] * slope) def assert_line( self, slope_exp, intercept_exp, xtime=False, m="Expected line not displayed", m2="Line does not cover data set", ): """Asserts that there exists a line on Axes ax with slope slope_exp and y intercept intercept_exp and goes at least from x coordinate min_val to x coordinate max_val Parameters ---------- slope_exp: expected slope of line intercept_exp: expeted y intercept of line xtime: boolean if x-axis values are datetime m: error message if line does not exist m2: error message if line exist but does not cover data set """ flag_exist, flag_length = False, False xy = self.get_xy(points_only=True) min_val, max_val = min(xy["x"]), max(xy["x"]) for l in self.ax.lines: path_verts = self.ax.transData.inverted().transform( l._transformed_path.get_fully_transformed_path().vertices ) slope, y_intercept = self.get_slope_yintercept(path_verts) if math.isclose(slope, slope_exp, abs_tol=1e-4) and math.isclose( y_intercept, intercept_exp, abs_tol=1e-4 ): flag_exist = True line_x_vals = [coord[0] for coord in path_verts] if min(line_x_vals) <= min_val and max(line_x_vals) >= max_val: flag_length = True break assert flag_exist, m assert flag_length, m2 def assert_lines_of_type(self, line_types): """Asserts each line of type in line_types exist on ax Parameters ---------- line_types: list of strings. Acceptable strings in line_types are as follows ['regression', 'onetoone']. if list is empty, assert is passed """ if line_types: for line_type in line_types: if line_type == "regression": xy = self.get_xy(points_only=True) slope_exp, intercept_exp, _, _, _ = stats.linregress( xy.x, xy.y ) elif line_type == "onetoone": slope_exp, intercept_exp = 1, 0 else: raise ValueError( 'each string in line_types must be from the following ["regression","onetoone"]' ) self.assert_line( slope_exp, intercept_exp, m="{0} line is not displayed properly".format(line_type), m2="{0} line does not cover dataset".format(line_type), ) ## HISTOGRAM FUCNTIONS ## def assert_num_bins(self, n=3, which_bins="positive"): """Asserts number of bins of type which_bins is at least n Parameters ---------- n: int declaring minimum number of bins of type which_bin which_bins: string from list ['negative', 'positive'] 'negative': all bins with values centered at a positive value 'positite': all bins with values centered at a negative value Returns ------- """ x_data = self.get_xy(xtime=False)["x"] if which_bins == "negative": n_bins = len(x_data[x_data < 0]) elif which_bins == "positive": n_bins = len(x_data[x_data > 0]) else: raise ValueError( "which_bins must be from list ['negative', 'positive']" ) assert n_bins >= n, "Not enough {0} value bins on histogram".format( which_bins ) ``` #### File: matplotcheck/tests/test_base_legends.py ```python import pytest import matplotlib.pyplot as plt """ LEGEND TESTS """ def test_assert_legend_titles(pt_multi_line_plt): """Test that legend title test returns true when plot contains a given string""" pt_multi_line_plt.assert_legend_titles(["legend"]) plt.close() def test_assert_legend_titles_not_case_sensitive(pt_multi_line_plt): """Check that assert_legend_titles is NOT case sensitive""" pt_multi_line_plt.assert_legend_titles(["LeGenD"]) plt.close() def test_assert_legend_titles_bad_text(pt_multi_line_plt): """Check that assert_legend_titles fails with wrong text""" with pytest.raises( AssertionError, match="Legend title does not contain expected string: foo", ): pt_multi_line_plt.assert_legend_titles(["foo"]) plt.close() def test_assert_legend_titles_wrong_num(pt_multi_line_plt): """Check assert_legend_titles fails when expected number of titles is not equal to # of legends""" with pytest.raises( AssertionError, match="I was expecting 1 legend titles but instead found 2", ): pt_multi_line_plt.assert_legend_titles(["legend", "legend2"]) plt.close() def test_assert_legend_labels(pt_multi_line_plt): """Test for checking that legend labels are expected strings""" pt_multi_line_plt.assert_legend_labels(["A", "B"]) plt.close() def test_assert_legend_not_case_sensitive(pt_multi_line_plt): """Check that assert_legend_labels is NOT case sensitive""" pt_multi_line_plt.assert_legend_labels(["a", "b"]) plt.close() def test_assert_legend_labels_bad_text(pt_multi_line_plt): """Check that assert_legend_labels raises expected error when given wrong text""" with pytest.raises( AssertionError, match="Legend does not have expected labels" ): pt_multi_line_plt.assert_legend_labels(["a", "c"]) plt.close() def test_assert_legend_labels_wrong_num(pt_multi_line_plt): """Check that assert_legend_labels raises expected error given wrong number of labels""" with pytest.raises( AssertionError, match="I was expecting 3 legend entries" ): pt_multi_line_plt.assert_legend_labels(["a", "b", "c"]) plt.close() def test_assert_legend_no_overlay_content(pt_multi_line_plt): """Test for checking whether legend overlays plot contents""" pt_multi_line_plt.assert_legend_no_overlay_content() plt.close() def test_assert_legend_no_overlay_content_fail(pt_multi_line_plt): """assert_legend_no_overlay should fail when legend is in center of plot""" pt_multi_line_plt.ax.legend(loc="center") with pytest.raises(AssertionError, match="Legend overlays plot window"): pt_multi_line_plt.assert_legend_no_overlay_content() plt.close() def test_assert_no_legend_overlap_single(pt_multi_line_plt): """Checks that assert_no_legend_overlap passes when only one legend""" pt_multi_line_plt.assert_no_legend_overlap() plt.close() def test_assert_no_legend_overlap_double(pt_multi_line_plt): """Checks that assert_no_legend_overlap passes when two legends don't overlap""" leg_1 = plt.legend(loc=[0.8, 0.8]) leg_2 = plt.legend(loc=[0.1, 0.1]) pt_multi_line_plt.ax.add_artist(leg_1) pt_multi_line_plt.assert_no_legend_overlap() plt.close() def test_assert_no_legend_overlap_fail(pt_multi_line_plt): """Checks that assert_no_legend_overlap fails with overlapping legends""" leg_1 = plt.legend(loc=[0.12, 0.12]) leg_2 = plt.legend(loc=[0.1, 0.1]) pt_multi_line_plt.ax.add_artist(leg_1) with pytest.raises(AssertionError, match="Legends overlap eachother"): pt_multi_line_plt.assert_no_legend_overlap() plt.close() ``` #### File: matplotcheck/tests/test_base.py ```python import pytest import matplotlib.pyplot as plt def test_line_plot(pt_line_plt): """Test that the line plot returns true for line but false for bar or scatter.""" pt_line_plt.assert_plot_type("line") with pytest.raises(AssertionError): pt_line_plt.assert_plot_type("bar") with pytest.raises(AssertionError): pt_line_plt.assert_plot_type("scatter") plt.close() def test_scatter_plot(pt_scatter_plt): """Test that the scatter plot returns true for line but false for bar or line.""" pt_scatter_plt.assert_plot_type("scatter") with pytest.raises(AssertionError): pt_scatter_plt.assert_plot_type("bar") with pytest.raises(AssertionError): pt_scatter_plt.assert_plot_type("line") plt.close() def test_bar_plot(pt_bar_plt): """Test that the scatter plot returns true for line but false for bar or line.""" pt_bar_plt.assert_plot_type("bar") with pytest.raises(AssertionError): pt_bar_plt.assert_plot_type("scatter") with pytest.raises(AssertionError): pt_bar_plt.assert_plot_type("line") plt.close() def test_options(pt_line_plt): """Test that a ValueError is raised if an incorrect plot type is provided. Should this test be unique of within a suite of tests?""" with pytest.raises( ValueError, match="Plot_type to test must be either: scatter, bar or line", ): pt_line_plt.assert_plot_type("foo") plt.close() def test_correct_title(pt_line_plt): """Check that the correct plot title is grabbed from the axis object. Note that get_titles maintains case.""" assert "Plot Title" in pt_line_plt.get_titles()[1] plt.close() """DATACHECK TESTS""" def test_assert_xydata_scatter(pt_scatter_plt, pd_df): """Checks points in scatter plot against expected data""" pt_scatter_plt.assert_xydata(pd_df, xcol="A", ycol="B") plt.close() def test_assert_xydata_scatter(pt_scatter_plt, pd_df): """assert_xydata should fail when we change the data""" pd_df["B"][1] += 5 with pytest.raises(AssertionError, match="Incorrect data values"): pt_scatter_plt.assert_xydata(pd_df, xcol="A", ycol="B") plt.close() # def test_assert_xydata_timeseries(pt_time_line_plt, pd_df_timeseries): # """Commenting this out for now as this requires a time series data object # this is failing because the time data needs to be in seconds like how # mpl saves it. """ # pt_time_line_plt.assert_xydata(pd_df_timeseries, # xcol='time', ycol='A', # xtime=True) def test_assert_xydata_xlabel(pt_bar_plt, pd_df): pd_df["A"] = pd_df["A"].apply(str) pt_bar_plt.assert_xlabel_ydata(pd_df, xcol="A", ycol="B") plt.close() ```
{ "source": "jlperona/bart-passenger-heatmap", "score": 4 }
#### File: preparser/utils/commandline.py ```python import argparse def valid_graph_ext(input: str) -> str: """Verifier function used with argparse's type argument. Checks for certain filename extensions. """ filetypes = {'net', 'gexf'} if input.split('.')[-1].lower() not in filetypes: msg = 'Unrecognized file format: \'{0}\'.'.format(input) raise argparse.ArgumentTypeError(msg) return input def argument_parsing() -> argparse.Namespace: """Parse input arguments with argparse.""" parser = argparse.ArgumentParser( description='Take in BART origin-destination data and a source graph. ' 'Output a CSV file that gives passengers between adjacent ' 'stations. A passenger who travels between two stations ' 'adds one to the count of all stations along the ' 'shortest path between those two stations.' ) # mandatory/positional arguments parser.add_argument( 'inputfile', type=valid_graph_ext, metavar='input.[gexf,net]', help='Graph to use as the basis. ' 'Supports GEXF and Pajek NET. ' 'Format will be guessed from the file extension.' ) parser.add_argument( 'outputfile', metavar='output.csv', help='CSV file to write the final results to.' ) parser.add_argument( 'csvfile', nargs=argparse.REMAINDER, metavar='input1.csv ...', help='BART origin-destination data files to read from. ' 'Accepts multiple files, parses and writes in order given.' ) # optional arguments parser.add_argument( '-d', '--directed', action='store_true', help='Create a directed graph instead of an undirected one.' ) return parser.parse_args() ```
{ "source": "jlplenio/slurm_template_for_Python", "score": 3 }
#### File: jlplenio/slurm_template_for_Python/slurm_job.py ```python from multiprocessing import Pool import csv import timeit import sys def calc_pi(run_no): from decimal import Decimal, getcontext getcontext().prec = 100000 result = sum(1 / Decimal(16) ** k * (Decimal(4) / (8 * k + 1) - Decimal(2) / (8 * k + 4) - Decimal(1) / (8 * k + 5) - Decimal(1) / (8 * k + 6)) for k in range(100)) print("done", run_no) return result if __name__ == '__main__': core_count = 1 if len(sys.argv) > 1: core_count = int(sys.argv[1]) print(f"Starting with {core_count} counts") start = timeit.default_timer() with Pool(core_count) as p: pi_list = (p.map(calc_pi, range(100))) with open("out/pi_list.csv", 'w', newline='') as file: wr = csv.writer(file, quoting=csv.QUOTE_ALL) wr.writerow(pi_list) stop = timeit.default_timer() print('Time: ', stop - start) ```
{ "source": "jlpolit/wordification", "score": 3 }
#### File: wordification/wordification/helpers.py ```python import enchant import re import itertools # derived from a google image search of an "old fashioned" phone letters_from_numbers_lookup = {'2': ['A', 'B', 'C'], '3': ['D', 'E', 'F'], '4': ['G', 'H', 'I'], '5': ['J', 'K', 'L'], '6': ['M', 'N', 'O'], '7': ['P', 'Q', 'R', 'S'], '8': ['T', 'U', 'V'], '9': ['W', 'X', 'Y' 'Z']} numbers_from_letters_lookup = {'A': '2', 'B': '2', 'C': '2', 'D': '3', 'E': '3', 'F': '3', 'G': '4', 'H': '4', 'I': '4', 'J': '5', 'K': '5', 'L': '5', 'M': '6', 'N': '6', 'O': '6', 'P': '7', 'Q': '7', 'R': '7', 'S': '7', 'T': '8', 'U': '8', 'V': '8', 'W': '9', 'X': '9', 'Y': '9', 'Z': '9'} english_word_lookup = enchant.Dict("en_US") # TODO: it might make sense to allow 'I' and 'a' with the stipulation that they be followed by a valid word... def is_valid_word(word_to_check: str, min_length=2, exceptions=list()) -> bool: if type(word_to_check) is not str: raise ValueError("Non-string entered") if (len(word_to_check) < min_length) and (word_to_check not in exceptions): return False else: return english_word_lookup.check(word_to_check) def format_phone_number(phone_digit_list: list) -> str: #TODO: we should actually probably check that each 'digit' is a string rather than forcing it out_str = '' # length check if (len(phone_digit_list) not in [10, 11]) or (type(phone_digit_list) is not list): raise ValueError("not a valid phone number") # country code if len(phone_digit_list) == 11: out_str = (phone_digit_list.pop(0) + '-') # zipcode for digit in phone_digit_list[:3]: out_str += str(digit) out_str += '-' # the...next three digits (I'm sure this has a name) for digit in phone_digit_list[3:6]: out_str += str(digit) out_str += '-' # and the last four for digit in phone_digit_list[6:]: out_str += str(digit) return out_str def get_character_list(phone_words: str) -> list: if type(phone_words) is not str: raise ValueError("Not a Valid Input") return [x for x in re.sub('\W+', '', phone_words)] def all_values_from_number(num: str) -> list: letters = letters_from_numbers_lookup.get(num, [num]) if num not in letters: letters += [num] return letters def all_combinations(number_list: list) -> list: """ :param number_list: array of strings representing digits between 0 and 9 :return: all possible number-letter combinations """ all_chars = [all_values_from_number(x) for x in number_list] # note: I broke this out for ease of testing, # but really we'd want this to return the iterable for efficiency return list(itertools.product(*all_chars)) def has_valid_word(char_list: list) -> bool: """ :param char_list: array of strings, can be combination of digits and letters :return: whether there is a valid English word in this array, based on the letters in order note that this word must be surrounded on both sides by numbers (1800-PAINTX is not a valid word) """ phone_number = ''.join(char_list) only_letters = re.sub("\d", " ", phone_number).strip() letters_split = only_letters.split(' ') n_valid = 0 n_char = 0 has_preposition = False for i in range(len(letters_split)): sub_word = letters_split[i] if sub_word != '': if i == 0: if (len(sub_word) < 3) and (sub_word not in ['A', 'AN', 'I']): return False elif sub_word in ['A', 'AN', 'I']: n_valid += 1 n_char += 1 has_preposition = True elif (len(sub_word) < 3) or (is_valid_word(''.join(sub_word)) is False): return False else: n_valid += 1 n_char += 1 elif (len(sub_word) < 3) or (is_valid_word(''.join(sub_word)) is False): return False else: n_valid += 1 n_char += 1 if has_preposition: if len(letters_split) > 1: return (n_valid == n_char) and (n_valid > 0) else: return False else: return (n_valid == n_char) and (n_valid > 0) def format_wordification(char_list: list) -> str: """ :param char_list: letter-number combination in an array (all strings) :return: valid wordification with dashes between any letter/number chunks """ out = '' n = len(char_list) char_str = ''.join(char_list) num_letter_list = re.split('(\d+)', char_str) if len(num_letter_list) == 3: out = format_phone_number(list(char_list)) else: for chunk in num_letter_list: if chunk in ['', ' ']: pass else: out += chunk out += '-' out = out[:-1] if n == 11: if (char_list[0] == '1') and(out[1] != '-'): out = '1-' + out[1:] if out[2:5].isdigit(): out = out[:5] + "-" + out[5:] if (n == 10) and (out[:3].isdigit()): out = out[:3] + "-" + out[3:] out = re.sub(r'([A-Z])-([A-Z])', r'\1\2', out) return out.replace('--', '-') ```
{ "source": "jlpoltrack/kochava-reports", "score": 2 }
#### File: kochava-reports/tests/test_client.py ```python from __future__ import absolute_import import unittest2 import requests import json import mock from kochavareports import client, constant, exception, response from kochavareports import KochavaCredentials, KochavaClient class TestClient(unittest2.TestCase): TEST_URL = 'http://whatever.url' TEST_DATA = { 'dummy': 'whatever' } def _make_credentials(self): return KochavaCredentials(api_key='api key', app_guid='app guid') def _make_client(self): return KochavaClient(self._make_credentials()) @mock.patch('kochavareports.client.requests.get') def test_get_http_error(self, mock_get): mock_response = mock.Mock() http_error = requests.exceptions.RequestException() mock_response.raise_for_status.side_effect = http_error mock_get.return_value = mock_response with self.assertRaises(exception.HttpException): self._make_client()._get_data(self.TEST_URL) mock_get.assert_called_once_with(self.TEST_URL) self.assertEqual(1, mock_response.raise_for_status.call_count) self.assertEqual(0, mock_response.json.call_count) @mock.patch('kochavareports.client.requests.post') def test_post_http_error(self, mock_post): mock_response = mock.Mock() http_error = requests.exceptions.RequestException() mock_response.raise_for_status.side_effect = http_error mock_post.return_value = mock_response with self.assertRaises(exception.HttpException): self._make_client()._post_data(self.TEST_URL, self.TEST_DATA) mock_post.assert_called_once_with(self.TEST_URL, data=json.dumps(self.TEST_DATA)) self.assertEqual(1, mock_response.raise_for_status.call_count) self.assertEqual(0, mock_response.json.call_count) @mock.patch('kochavareports.client.requests.get') def test_get_json_error(self, mock_get): mock_response = mock.Mock() mock_response.return_value = '' mock_response.json.side_effect = ValueError() mock_get.return_value = mock_response with self.assertRaises(exception.ApiException): self._make_client()._get_data(self.TEST_URL) self.assertEqual(1, mock_response.json.call_count) @mock.patch('kochavareports.client.requests.post') def test_post_json_error(self, mock_post): mock_response = mock.Mock() mock_response.return_value = '' mock_response.json.side_effect = ValueError() mock_post.return_value = mock_response with self.assertRaises(exception.ApiException): self._make_client()._post_data(self.TEST_URL, self.TEST_DATA) self.assertEqual(1, mock_response.json.call_count) @mock.patch('kochavareports.client.time.sleep') @mock.patch('kochavareports.client.requests.post') @mock.patch('kochavareports.client.Client.get_report_progress') def test_wait_for_report_max_retries_exceeded(self, mock_progress, mock_post, mock_sleep): response_data = { 'status': 'queued' } mock_response = mock.Mock() mock_response.json.return_value = response_data mock_post.return_value = mock_response mock_progress.return_value = response.GetReportProgressResponse( response_data) token = '12345667' retry_interval_seconds = 3 start_delay_seconds = 15 max_retries = 60 with self.assertRaises(exception.PollMaxRetryException): self._make_client().wait_for_report( token, retry_interval_seconds=retry_interval_seconds, start_delay_seconds=start_delay_seconds, max_retries=max_retries) # checking time.sleep() calls would verify that all input parameters # are used correctly: sleep_calls = [mock.call(start_delay_seconds)] + \ [mock.call(retry_interval_seconds)] * max_retries self.assertEqual(sleep_calls, mock_sleep.call_args_list) # finally, check that get_report_progress() is called # `max_retries` times with the token parameter: progress_calls = [mock.call(token)] * max_retries self.assertEqual(progress_calls, mock_progress.call_args_list) @mock.patch('kochavareports.client.time.sleep') @mock.patch('kochavareports.client.Client.read_report') @mock.patch('kochavareports.client.Client.get_report_progress') def test_wait_for_report_success(self, mock_progress, mock_read, mock_sleep): token = '1<PASSWORD>' response_queued = { 'status': 'queued' } response_completed = { 'status': 'completed', 'report': 'http://some.url/whatever' } response_result = { 'click_count': 10, 'install_count': 2, } ping_times = 3 # for testing purposes it should be lower than # `max_retries`, which defaults 60 in this test mock_progress.side_effect = \ [response.GetReportProgressResponse(response_queued)] * ping_times + \ [response.GetReportProgressResponse(response_completed)] mock_read.return_value = response_result result = self._make_client().wait_for_report(token) # read_report() result should be the same as wait_for_report result: self.assertEqual(result, response_result) # read_report() should be called exactly once with the returned url: mock_read.assert_called_once_with(response_completed['report']) # get_report_progress() should be called internally exactly like # specified here: just the token, (ping_times + 1) times in total, # in the specified order progress_calls = [mock.call(token)] * (ping_times + 1) self.assertEqual(progress_calls, mock_progress.call_args_list) ```
{ "source": "JLpython-py/anti-ghostping-bot", "score": 2 }
#### File: JLpython-py/anti-ghostping-bot/functional_tests.py ```python import asyncio import os import unittest from lib.bot import BotRoot from lib.db import db class TestRunBot(unittest.TestCase): def setUp(self): self.connection = db.DBConnection() def tearDown(self): self.connection.execute_query("DELETE FROM preferences", "w") self.connection.close_connection() def test_run_bot(self): token = os.environ.get("token", None) if token is None: with open(os.path.join("lib", "bot", "token.txt")) as file: token = file.read() self.assertIsNotNone(token) loop = asyncio.get_event_loop() bot = BotRoot() loop.create_task(bot.start(token)) try: loop.run_forever() except KeyboardInterrupt: loop.close() bot.connection.close_connection() if __name__ == '__main__': unittest.main() ```
{ "source": "JLpython-py/FanGraphs-exporter", "score": 3 }
#### File: FanGraphs-exporter/tests/tests.py ```python import json import os import unittest import selenium from selenium import webdriver from selenium.webdriver.firefox.options import Options class TestClassFanGraphs(unittest.TestCase): def test_files_exist(self): directories = { 'leaders': [ 'menu.txt', 'dropdown.txt', 'checkbox.txt', 'button.txt'] } for dirname in directories: self.assertTrue( os.path.exists(os.path.join('data', dirname))) self.assertEqual( set(os.listdir(os.path.join('data', dirname))), set(directories[dirname])) class TestFanGraphsLeadersSettings(unittest.TestCase): def setUp(self): with open(os.path.join('data', 'base_address.txt')) as file: self.url = json.load(file).get("leaders") options = Options() options.headless = True self.browser = webdriver.Firefox(options=options) def tearDown(self): self.browser.quit() def test_leaders_address(self): self.browser.get(self.url) self.assertIn("Leaderboards", self.browser.title) def test_find_data_configuration_elements(self): self.browser.get(self.url) files = ['menu.txt', 'dropdown.txt', 'checkbox.txt', 'button.txt'] for filename in files: with open(os.path.join('data', 'leaders', filename)) as file: data = json.load(file) for select in data: self.assertEqual( len(self.browser.find_elements_by_id(data[select])), 1, data[select]) def test_find_export_data_elements(self): self.browser.get(self.url) export_data_button = self.browser.find_element_by_id( "LeaderBoard1_cmdCSV") self.assertEqual(export_data_button.text, "Export Data") def test_find_popup_elements(self): self.browser.get(self.url) while True: try: close_popup_button = self.browser.find_element_by_css_selector( "span[class='ezmob-footer-close']") break except selenium.common.exceptions.NoSuchElementException: self.browser.refresh() continue self.assertEqual(close_popup_button.text, "x") popup = self.browser.find_element_by_id("ezmobfooter") self.assertEqual(popup.get_attribute("style"), "") close_popup_button.click() self.assertNotEqual(popup.get_attribute("style"), "") if __name__ == '__main__': unittest.main() ```
{ "source": "JLpython-py/FanGraphs-py", "score": 3 }
#### File: FanGraphs-py/fangraphs/scraper.py ```python from typing import * import bs4 from playwright.async_api import async_playwright from playwright.sync_api import sync_playwright from .selectors import Selectors def get_soup(html: str) -> bs4.BeautifulSoup: """ :param html: :return: """ return bs4.BeautifulSoup(html, features="lxml") class FanGraphsPage: """ """ address: str path: str filter_widgets: dict[str, dict] export_data: str = "" def __init__(self): self.soup = None self.selectors = None def load_soup(self, html: str) -> None: """ :param html: """ self.soup = get_soup(html) def load_selectors(self) -> None: """ """ if self.soup is None: raise NotImplementedError self.selectors = Selectors(self.filter_widgets, self.soup) class SyncScraper: """ """ def __init__(self, fgpage: FanGraphsPage): """ :param fgpage: """ self.fgpage = fgpage self.__play, self.__browser, self.page = None, None, None def __enter__(self): self.__play = sync_playwright().start() self.__browser = self.__play.chromium.launch() self.page = self.__browser.new_page( accept_downloads=True ) self.page.goto(self.fgpage.address, timeout=0) html = self.page.content() self.fgpage.load_soup(html) self.fgpage.load_selectors() return self def __exit__(self, exc_type, exc_val, exc_tb): self.__browser.close() self.__play.stop() def start(self): """ """ return self.__enter__() def stop(self): """ """ return self.__exit__(None, None, None) def widgets(self) -> tuple[str]: """ :return: """ return tuple(self.fgpage.selectors.widgets) def options(self, wname: str) -> Optional[tuple[Union[str, bool]]]: """ :param wname: :return: """ widget = self.fgpage.selectors.widgets.get(wname) if widget is not None: return widget.options() raise Exception # TODO: Define custom exception def current(self, wname: str) -> Optional[Union[str, bool]]: """ :param wname: :return: """ widget = self.fgpage.selectors.widgets.get(wname) if widget is not None: return widget.current(self.page) raise Exception # TODO: Define custom exception def configure(self, wname: str, option: Union[str, bool]) -> None: """ :param wname: :param option: """ widget = self.fgpage.selectors.widgets.get(wname) if widget is not None: widget.configure(self.page, option) return raise Exception # TODO: Define custom exception class AsyncScraper: """ """ def __init__(self, fgpage: FanGraphsPage): """ :param fgpage: """ self.fgpage = fgpage self.__play, self.__browser, self.page = None, None, None async def __aenter__(self): self.__play = await async_playwright().start() self.__browser = await self.__play.chromium.launch() self.page = await self.__browser.new_page( accept_downloads=True ) await self.page.goto(self.fgpage.address, timeout=0) html = await self.page.content() self.fgpage.load_soup(html) self.fgpage.load_selectors() return self async def __aexit__(self, exc_type, exc_val, exc_tb): await self.__browser.close() await self.__play.stop() async def start(self): """ """ return await self.__aenter__() async def stop(self): """ """ return await self.__aexit__(None, None, None) def widgets(self) -> tuple[bool]: """ :return: """ return tuple(self.fgpage.selectors.widgets) def options(self, wname: str) -> Optional[tuple[Union[str, bool]]]: """ :param wname: :return: """ widget = self.fgpage.selectors.widgets.get(wname) if widget is not None: return widget.options() raise Exception # TODO: Define custom exception async def current(self, wname: str) -> Optional[Union[str, bool]]: """ :param wname: :return: """ widget = self.fgpage.selectors.widgets.get(wname) if widget is not None: return await widget.acurrent(self.page) raise Exception # TODO: Define custom exception async def configure(self, wname: str, option: Union[str, bool]) -> None: """ :param wname: :param option: """ widget = self.fgpage.selectors.widgets.get(wname) if widget is not None: await widget.aconfigure(self.page, option) return raise Exception # TODO: Define custom exception ```
{ "source": "JLpython-py/MLBPlayerIDs", "score": 3 }
#### File: mlbids/tests/test_sfbb.py ```python import requests from mlbids import _sfbb class TestSFBBData: """ Unit tests for :py:class:`mlbids.playerids.SFBBTools`. """ sfbb_data = _sfbb.SFBBTools() def test_base_address(self): """ Unit test for :py:meth:`mlbids.playerids.SFBBTools.base_address`. """ res = requests.get( self.sfbb_data.base_address, headers=_sfbb.HEADERS ) res.raise_for_status() assert res.status_code == 200 def test_soup(self): """ Unit test for :py:meth:`mlbids.playerids.SFBBTools._soup`. """ soup = _sfbb.get_soup(self.sfbb_data.base_address) assert soup def test_element(self): """ Unit test for :py:meth:`mlbids.playerids.SFBBTools._element`. """ css = "div.entry-content > div > table tr:nth-child(2) > td:first-child" assert len(self.sfbb_data._soup.select(css)) == 1 def test_urls(self): """ Unit test for :py:meth:`mlbids.playerids.SFBBTools.urls`. """ elems = self.sfbb_data._element.select("a") assert len(elems) == 5 assert all(e.attrs.get("href") for e in elems) for url in self.sfbb_data.urls: res = requests.get(url, headers=_sfbb.HEADERS) assert res.status_code == 200 ```
{ "source": "jlr84/shn", "score": 2 }
#### File: jlr84/shn/monitor.py ```python import xmlrpc.client import ssl import socket # Required for network/socket connections import os # Required for Forking/child processes import time # Required for sleep call import threading # Required for communication sub-threads import pymysql import server_monitor as myServer import certs.gencert as gencert import config import logging from logging.config import fileConfig # Load logging config fileConfig('setup/logging.conf') log = logging.getLogger(__name__) # Global Variables -- Don't change. [No need to change.] CERTFILE = "certs/domains/local.cert" # Placeholder; updated when executed KEYFILE = "certs/domains/local.key" # Default; updated when executed hostIP = "localhost" # Default; updated when executed admin_selected = False # Return ip address of local host where server is running def getMyIP(): log.info('Getting Host ip address.') s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(("8.8.8.8", 53)) ipAdd = s.getsockname()[0] s.close() log.debug('Socket closed: ipAdd=%s' % ipAdd) return ipAdd # Return host name/fqdn of based on give ip address def findHostName(ipAddress): log.info('Finding Host Name based on ip address') try: log.debug('Trying now...') name, alias, addresslist = socket.gethostbyaddr(ipAddress) log.debug('Returning name: %s' % name) return name except socket.herror: log.exception("Hostname/FQDN not found: Hostname/FQDN Required. " "Correct by adding record in DNS server or within local" "hosts file (/etc/hosts) and then restart controller.") return "None" # Create SSL certs for current ip address if not already present def verifyCerts(): global CERTFILE global KEYFILE # Determine file path based on current ip address CERTFILE = ''.join([config.certPath, config.rootDomain, ".cert"]) KEYFILE = ''.join([config.certPath, config.rootDomain, ".key"]) log.debug("CERTFILE: %s" % (CERTFILE)) log.debug("KEYFILE: %s" % (KEYFILE)) # If cert or key file not present, create new certs if not os.path.isfile(CERTFILE) or not os.path.isfile(KEYFILE): gencert.gencert(config.rootDomain) log.info("Certfile(s) NOT present; new certs created.") print("Certfile(s) NOT present; new certs created.") else: log.info("Certfiles Verified Present") print("Certfiles Verified Present.") # Start a thread child to run server connection as a daemon def startServer(): log.info("Starting Server...") # Now, start thread log.debug("Starting new thread...") t = threading.Thread(name="Monitor_ServerDaemon", target=myServer.runServer, args=(hostIP, config.mntrServerPort, CERTFILE, KEYFILE ) ) t.daemon = True t.start() log.debug("Thread started; end of startServer fn.") # Check and Display the status of all child processes def checkStatus(): log.debug("Checking Status of Threads...") totalThreads = threading.active_count() subThreads = totalThreads - 1 print("\nSub-Thread(s): %d" % (subThreads)) main_thread = threading.currentThread() k = 1 for t in threading.enumerate(): if t is main_thread: continue print("Thread #%d:" % (k)) print("Name: %s" % (t.name)) print("Ident: %d" % (t.ident)) ans = "unknown" if t.is_alive(): ans = "YES" else: ans = "NO" print("Alive? %s\n" % (ans)) k = k+1 log.debug("End of checkStatus fn.") # Display Status of all Hosts currently connected def displayStatus(): log.debug("Displaying agents now") print("Displaying agents currently connected...") # Connect to database to query agents log.debug("Connecting to database") db = pymysql.connect(host=config.mysqlHost, port=config.mysqlPort, user=config.mntrMysqlUser, passwd=<PASSWORD>, db=config.mysqlDB) cursor = db.cursor() # Query to retrieve id/time of registration sql = "SELECT distinct agent FROM status;" agents = [] # Get agents try: # Execute the SQL command cursor.execute(sql) # Fetch all the rows in a list of lists results = cursor.fetchall() for row in results: thisAgent = row[0] agents.append(thisAgent) log.debug("Agent Received as: %s" % (thisAgent)) except: log.exception("ERROR in db query>> %s" % sql) print("FOUND %d agent(s) monitored.\n" % len(agents)) # Query to retrieve each agents's data for k in range(len(agents)): sql = "SELECT agent, status, timestamp, alias, id FROM "\ "status where agent = '%s' ORDER BY id "\ "DESC LIMIT 1" % (agents[k]) # Get host info try: # Execute the SQL command cursor.execute(sql) # Fetch all the rows in a list of lists results = cursor.fetchall() print("Agent #%d" % (k + 1)) for row in results: thisAgent = row[0] thisStatus = row[1] thisTime = row[2] thisAlias = row[3] thisID = row[4] print("Agent: %s" % thisAgent) print("Alias: %s" % thisAlias) print("Status: %s" % thisStatus) print("Time Connected: %s" % thisTime) print("ID Number: %s\n" % thisID) log.debug("Host %d Displayed" % (k + 1)) except: log.exception("ERROR in db query>> %s" % sql) # Disconnect from database db.close() # Simple test function to ensure communication is working def mathTest(): log.debug("Start of Math Test Function...") myContext = ssl.create_default_context() myContext.load_verify_locations(config.CACERTFILE) myurl = ''.join(['https://', config.agntHostName, ':', str(config.agntServerPort)]) with xmlrpc.client.ServerProxy(myurl, context=myContext) as proxy: try: print("5 + 9 is %d" % (proxy.add(5, 9))) print("21 x 3 is: %d" % (proxy.multiply(21, 3))) except ConnectionRefusedError: log.warning("Connection to Agent FAILED") print("Connection to Agent Server FAILED:\n", "Is Agent listening? Confirm connection", "settings and try again.") print("Settings used: '%s'" % myurl) except: log.warning("Connection to Agent FAILED") print("Connection Failed. Suspected incorrect URL.") print("Settings used: '%s'" % myurl) # Quit gracefully after terminting all child processes def myQuit(): log.info("Monitor Exiting. Goodbye.") print("Monitor Exiting. Goodbye.\n") raise SystemExit # Stop Controller Server def stopServer(): log.debug("Stopping Monitor Server.") # TODO Determine if it is possible to stop a daemon thread # without stopping the whole program; for now, this just # ends the entire program print("Monitor Server Stopping.") myQuit() def invalid(choice): log.debug("Invalid choice: %s" % choice) print("INVALID CHOICE!") def adminMenu(): log.debug("Displaying admin menu") print("\nAdmin Menu:") print("a) Connection Test with Agent (simple math test)") print("b) SSL Verification (verify certificates") print("c) STOP Monitor Server (program will exit)") print("d) START* Monitor Server (*only if not running already)") print("9) BACK (return to 'Menu')") return input("Make a Choice\n>>> ") def adminSelection(): global admin_selected adminChoice = adminMenu() if adminChoice == "a": mathTest() elif adminChoice == "b": verifyCerts() elif adminChoice == "c": stopServer() elif adminChoice == "d": startServer() elif adminChoice == "9": log.debug("Admin is De-selected") print("Back to Main Menu...") admin_selected = False elif adminChoice == "r": # Refresh Menu (do nothing) log.info("Refreshing Menu") elif adminChoice in ["q", ":q"]: myQuit() else: invalid(adminChoice) def menu(): log.debug("Displaying menu") print("\n\nMENU[Monitor]:") print("1) Check MONITOR server status") print("2) Display Current Status") print("9) ADMIN MENU") print("q) QUIT") return input("Make a Choice\n>>> ") def myMenu(): global admin_selected choice = 0 if admin_selected: choice = "9" else: choice = menu() if choice == "1": checkStatus() elif choice == "2": displayStatus() elif choice == "9": admin_selected = True log.debug("Admin is Selected") adminSelection() elif choice in ["q", ":q"]: myQuit() elif choice == "r": # Refresh Menu (do nothing) log.info("Refreshing Menu") else: invalid(choice) # Start of Main if __name__ == '__main__': log.info("Starting Monitor Main.") hostIP = getMyIP() verifyHostName = findHostName(hostIP) pid = os.getpid() print("Host IP: %s" % (hostIP)) print("Hostname: %s" % (verifyHostName)) log.debug("PID: %d" % (pid)) if verifyHostName == "None": log.debug("Hostname not found: Returned 'None'") elif verifyHostName in [config.ctlrHostName, config.mntrHostName]: log.debug("HostName verified.") log.debug("Verifying certificates.") # Verify certificates present prior to displaying menu verifyCerts() # Starting Server startServer() time.sleep(2) # Display Menu [repeatedly] for user while True: myMenu() time.sleep(1) else: log.error("Hostname incorrect. " "Hostname Found: %s; Hostname " "Required: %s." % (verifyHostName, config.mntrHostName)) ``` #### File: jlr84/shn/server_controller.py ```python from xmlrpc.server import SimpleXMLRPCServer import ssl import threading import logging import pymysql import config import xmlrpc.client import time ##################################################### # Commands available for controlling remote VMs/VUDs ##################################################### # Function for requesting STATUS of VM def sendStatusRequest(host, port): log = logging.getLogger(__name__) log.debug("Send Status Request Command executing...") # Connect to Agent's server daemon to send command myContext = ssl.create_default_context() myContext.load_verify_locations(config.CACERTFILE) thisHost = ''.join(['https://', host, ':', str(port)]) with xmlrpc.client.ServerProxy(thisHost, context=myContext) as proxy: try: log.info("Sending Command: 'Get Status'") response = proxy.getVmStatus("status") log.info(response) except ConnectionRefusedError: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection to Agent FAILED:") print("Is Agent listening? Confirm and try again.") except: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection Failed. Suspected incorrect URL.") print("Settings used: '%s'" % thisHost) return response # Function for requesting START of VM def sendStart(host, port): log = logging.getLogger(__name__) log.debug("Send Start Command executing...") # Connect to Agent's server daemon to send command myContext = ssl.create_default_context() myContext.load_verify_locations(config.CACERTFILE) thisHost = ''.join(['https://', host, ':', str(port)]) with xmlrpc.client.ServerProxy(thisHost, context=myContext) as proxy: try: log.info("Sending Command: 'Start'") response = proxy.startVM("start") log.info(response) except ConnectionRefusedError: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection to Agent FAILED:") print("Is Agent listening? Confirm and try again.") except: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection Failed. Suspected incorrect URL.") print("Settings used: '%s'" % thisHost) return response # Function for requesting STOP of VM def sendStop(host, port): log = logging.getLogger(__name__) log.debug("Send Stop Command executing...") # Connect to Agent's server daemon to send command myContext = ssl.create_default_context() myContext.load_verify_locations(config.CACERTFILE) thisHost = ''.join(['https://', host, ':', str(port)]) with xmlrpc.client.ServerProxy(thisHost, context=myContext) as proxy: try: log.info("Sending Command: 'Stop'") response = proxy.stopVM("stop") log.info(response) except ConnectionRefusedError: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection to Agent FAILED:") print("Is Agent listening? Confirm and try again.") except: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection Failed. Suspected incorrect URL.") print("Settings used: '%s'" % thisHost) return response # Function for requesting PAUSE of VM def sendPause(host, port): log = logging.getLogger(__name__) log.debug("Send Pause Command executing...") # Connect to Agent's server daemon to send command myContext = ssl.create_default_context() myContext.load_verify_locations(config.CACERTFILE) thisHost = ''.join(['https://', host, ':', str(port)]) with xmlrpc.client.ServerProxy(thisHost, context=myContext) as proxy: try: log.info("Sending Command: 'PAUSE'") response = proxy.pauseVM("pause") log.info(response) except ConnectionRefusedError: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection to Agent FAILED:") print("Is Agent listening? Confirm and try again.") except: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection Failed. Suspected incorrect URL.") print("Settings used: '%s'" % thisHost) return response # Function for requesting UN-PAUSE of VM def sendUnpause(host, port): log = logging.getLogger(__name__) log.debug("Send Un-Pause Command executing...") # Connect to Agent's server daemon to send command myContext = ssl.create_default_context() myContext.load_verify_locations(config.CACERTFILE) thisHost = ''.join(['https://', host, ':', str(port)]) with xmlrpc.client.ServerProxy(thisHost, context=myContext) as proxy: try: log.info("Sending Command: 'Un-Pause'") response = proxy.unpauseVM("unpause") log.info(response) except ConnectionRefusedError: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection to Agent FAILED:") print("Is Agent listening? Confirm and try again.") except: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection Failed. Suspected incorrect URL.") print("Settings used: '%s'" % thisHost) return response # Function for requesting snapshot of VM def sendSnapshot(host, port): log = logging.getLogger(__name__) log.debug("Send SNAPSHOT Command executing...") # Connect to Agent's server daemon to send command myContext = ssl.create_default_context() myContext.load_verify_locations(config.CACERTFILE) thisHost = ''.join(['https://', host, ':', str(port)]) with xmlrpc.client.ServerProxy(thisHost, context=myContext) as proxy: try: log.info("Sending Command: 'SNAPSHOT'") response = proxy.snapshotVM("snapshot") log.info(response) except ConnectionRefusedError: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection to Agent FAILED:") print("Is Agent listening? Confirm and try again.") except: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection Failed. Suspected incorrect URL.") print("Settings used: '%s'" % thisHost) return response # Function for requesting list of saved snapshots def sendSnapListRequest(host, port): log = logging.getLogger(__name__) log.debug("Send REQUEST SNAPSHOT LIST Command executing...") # Connect to Agent's server daemon to send command myContext = ssl.create_default_context() myContext.load_verify_locations(config.CACERTFILE) thisHost = ''.join(['https://', host, ':', str(port)]) with xmlrpc.client.ServerProxy(thisHost, context=myContext) as proxy: try: log.info("Sending Command: 'Request Snapshot List'") response = proxy.snapshotList("snapshotList") log.info(response) except ConnectionRefusedError: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection to Agent FAILED:") print("Is Agent listening? Confirm and try again.") except: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection Failed. Suspected incorrect URL.") print("Settings used: '%s'" % thisHost) return response # Function for requesting restore from snapshot def sendRestoreSnap(host, port, rName): log = logging.getLogger(__name__) log.debug("Send Restore from Snapshot Command executing...") # Connect to Agent's server daemon to send command myContext = ssl.create_default_context() myContext.load_verify_locations(config.CACERTFILE) thisHost = ''.join(['https://', host, ':', str(port)]) with xmlrpc.client.ServerProxy(thisHost, context=myContext) as proxy: try: log.info("Sending Command: 'Restore from Snapshot %s'" % rName) response = proxy.restoreSnap("restore", rName) log.info(response) except ConnectionRefusedError: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection to Agent FAILED:") print("Is Agent listening? Confirm and try again.") except: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection Failed. Suspected incorrect URL.") print("Settings used: '%s'" % thisHost) return response # Function for requesting complete clone of VM def sendClone(host, port): log = logging.getLogger(__name__) log.debug("Send CLONE Command executing...") # Connect to Agent's server daemon to send command myContext = ssl.create_default_context() myContext.load_verify_locations(config.CACERTFILE) thisHost = ''.join(['https://', host, ':', str(port)]) with xmlrpc.client.ServerProxy(thisHost, context=myContext) as proxy: try: log.info("Sending Command: 'Clone'") response = proxy.cloneVM("clone") log.info(response) except ConnectionRefusedError: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection to Agent FAILED:") print("Is Agent listening? Confirm and try again.") except: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection Failed. Suspected incorrect URL.") print("Settings used: '%s'" % thisHost) return response # Function for requesting list of saved clones def sendCloneListRequest(host, port): log = logging.getLogger(__name__) log.debug("Send REQUEST CLONE LIST Command executing...") # Connect to Agent's server daemon to send command myContext = ssl.create_default_context() myContext.load_verify_locations(config.CACERTFILE) thisHost = ''.join(['https://', host, ':', str(port)]) with xmlrpc.client.ServerProxy(thisHost, context=myContext) as proxy: try: log.info("Sending Command: 'Request Clone List'") response = proxy.cloneList("cloneList") log.info(response) except ConnectionRefusedError: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection to Agent FAILED:") print("Is Agent listening? Confirm and try again.") except: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection Failed. Suspected incorrect URL.") print("Settings used: '%s'" % thisHost) return response # Function for requesting restore from clone def sendRestoreClone(host, port, rName): log = logging.getLogger(__name__) log.debug("Send Restore from Clone Command executing...") # Connect to Agent's server daemon to send command myContext = ssl.create_default_context() myContext.load_verify_locations(config.CACERTFILE) thisHost = ''.join(['https://', host, ':', str(port)]) with xmlrpc.client.ServerProxy(thisHost, context=myContext) as proxy: try: log.info("Sending Command: 'Restore from Clone %s'" % rName) response = proxy.restoreClone("restore", rName) log.info(response) except ConnectionRefusedError: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection to Agent FAILED:") print("Is Agent listening? Confirm and try again.") except: log.warning("Connection to Agent FAILED") response = "FAILED" print("Connection Failed. Suspected incorrect URL.") print("Settings used: '%s'" % thisHost) return response # Function for fixing compromised host def fixHostNow(host, port): log = logging.getLogger(__name__) log.debug("Fix Host Now Command executing...") # TODO Make this logic more robust and add error checking # First, STOP host NOW! r1 = sendStop(host, port) log.debug("Stop Bad Host status: %s" % r1) # Second, GET options for RESTORE rOptions = sendCloneListRequest(host, port) log.debug("Clone Options Quantity: %d" % len(rOptions)) log.debug("Clone Options: %s" % rOptions) # Third, Process options if len(rOptions) == 0: # If no option availabe, tell user this... log.debug("There are ZERO saved clones. Unable to restore.") print("There are ZERO saved clones. Unable to restore.") else: # If there are options, take the newest clone to restore with... rNum = len(rOptions) restoreName = rOptions[(rNum - 1)][0] log.debug("Requesting restore to: %s" % (restoreName)) # Fourth, RESTORE host r2 = sendRestoreClone(host, port, restoreName) log.debug("Restore Response: %s" % r2) print("Result of Cleanup: %s" % r2) # Fifth, START host again... log.debug("Starting host now...") time.sleep(10) r3 = sendStart(host, port) log.debug("Result of re-start: %s" % r3) ##################################################### # Main Logic for Controller communicating to Agent(s) ##################################################### def controlAgent(host, port, agtAlias): log = logging.getLogger(__name__) log.debug("Start of controlAgent Function...") print("ControlAgent Daemon Started") # Connect to database to register agent log.debug("Connecting to database") db = pymysql.connect(host=config.mysqlHost, port=config.mysqlPort, user=config.ctlrMysqlUser, passwd=config.ctlrMysqlPwd, db=config.mysqlDB) cursor = db.cursor() # Query to register agent sql = "INSERT INTO agents(timestamp, "\ "host, port, alias) "\ "VALUES (now(), '%s', %d, '%s')" % \ (host, port, agtAlias) log.debug("SQL Query Made [shown as follows]:") log.debug(sql) # Register Agent in database try: # Execute the SQL command cursor.execute(sql) # Commit changes in the database db.commit() log.debug("SQL INSERT Successful") except: # Rollback in case there is any error db.rollback() log.exception("SQL INSERT FAILED!!") # Query to retrieve id/time of registration sql = "SELECT id, timestamp, host, port "\ "FROM agents WHERE (host, port) = "\ "('%s', %d) ORDER BY id DESC LIMIT 1" % \ (host, port) success = False # Get id/time of registration try: # Execute the SQL command cursor.execute(sql) # Fetch all the rows in a list of lists results = cursor.fetchall() for row in results: thisID = row[0] thisTime = row[1] thisTime = str(thisTime.isoformat()) success = True log.debug("ID/TIME Recorded as: %d, %s" % (thisID, thisTime)) except: log.exception("ERROR in db query>> %s" % sql) # Disconnect from database db.close() # Connect to Agent's server daemon to confirm # registration myContext = ssl.create_default_context() myContext.load_verify_locations(config.CACERTFILE) thisHost = ''.join(['https://', host, ':', str(port)]) with xmlrpc.client.ServerProxy(thisHost, context=myContext) as proxy: try: log.info("Sending Confirmation...") if success: log.debug("Insert SUCCESS. [success==True]") response = proxy.confirm(config.ctlrHostName, config.ctlrServerPort, thisID, thisTime) log.info(response) print("Connection to Agent ESTABLISHED") else: log.debug("Insert FAILURE. [success==False]") response = proxy.failed(config.ctlrHostName) log.info(response) print("Connection to Agent FAILED") except ConnectionRefusedError: log.warning("Connection to Agent FAILED") print("Connection to Agent FAILED:") print("Is Agent listening? Confirm and try again.") except: log.warning("Connection to Agent FAILED") print("Connection Failed. Suspected incorrect URL.") print("Settings used: '%s'" % thisHost) log.info("Entering 'while True' loop now.") while True: log.info("ControlAgent: Sleeping for 60 seconds...") time.sleep(60) # Connect to database to check monitor log.debug("Connecting to database") db = pymysql.connect(host=config.mysqlHost, port=config.mysqlPort, user=config.ctlrMysqlUser, passwd=config.ctlrMysqlPwd, db=config.mysqlDB) cursor = db.cursor() # Query to check agent sql = "SELECT status, timestamp FROM status WHERE "\ "alias = '%s' ORDER BY timestamp DESC LIMIT 1;" % \ (agtAlias) log.debug("SQL Query Made [shown as follows]:") log.debug(sql) # Register Agent in database try: # Execute the SQL command cursor.execute(sql) thisAnswer = 0 thisTime = "None" # Fetch all the rows results = cursor.fetchall() for row in results: thisAnswer = row[0] thisTime = row[1] log.debug("thisAnswer: %s" % thisAnswer) if thisAnswer == 1: log.debug("Host '%s' CLEAN as of '%s'." % (host, thisTime)) print("Host '%s' CLEAN as of '%s'." % (host, thisTime)) elif thisAnswer == 0: log.debug("Host NOT FOUND in status database!!") print("Host NOT FOUND in status database!!") else: log.debug("Host '%s' INFECTED!! as of '%s'." % (host, thisTime)) print("Host '%s' INFECTED!! as of '%s'." % (host, thisTime)) print("TAKING ACTION NOW!") fixHostNow(host, port) log.debug("Monitor query update successful") except: # Rollback in case there is any error log.exception("ERROR in db query>> %s" % sql) ############################################################# # Define functions available to server via remote connections ############################################################# def add(x, y): return x+y def multiply(x, y): return x*y # Disconnect Agent from controller def disconnectAgent(agentHostName, connectionID, timestamp): log = logging.getLogger(__name__) log.info("Starting Disconnect Agent function") # Connect to database to disconnect agent log.debug("Connecting to database") db = pymysql.connect(host=config.mysqlHost, port=config.mysqlPort, user=config.ctlrMysqlUser, passwd=config.ctlrMysqlPwd, db=config.mysqlDB) cursor = db.cursor() # Query to retrieve id/time of registration sql = "SELECT id, host, timestamp "\ "FROM agents WHERE (host, id) = "\ "('%s', %s) ORDER BY timestamp DESC LIMIT 1" % \ (agentHostName, connectionID) # Get time of registration try: # Execute the SQL command cursor.execute(sql) # Fetch all the rows in a list of lists results = cursor.fetchall() for row in results: thisID = row[0] thisTime = row[2] thisTime = str(thisTime.isoformat()) log.debug("ID/TIME Recorded as: %d, %s" % (thisID, thisTime)) if thisTime == timestamp: log.debug("TIMESTAMPS MATCH!!!") log.debug("Removing from database...") # Query to delete proper rows sql = "DELETE FROM agents WHERE host='%s' "\ "AND id<=%s;" % \ (agentHostName, connectionID) # Try delete operation try: # Execute the SQL command cursor.execute(sql) # Commit the changes db.commit() log.info("Records successfully deleted.") except: db.rollback() log.exception("ERROR in db query>> %s" % sql) else: log.warning("Timestamps DO NOT match!!") except: log.exception("ERROR in db query>> %s" % sql) # Disconnect from database db.close() return "Successful Disconnect" # Register Agent with Controller so Agent can receive commands def registerAgent(agentHostName, agentPortNum, agentAlias): log = logging.getLogger(__name__) log.info("Starting registerAgent function") # Start child process to run function for # registering and eommunicating with Agent tName = ''.join(["Controller_to_", agentHostName]) t = threading.Thread(name=tName, target=controlAgent, args=(agentHostName, agentPortNum, agentAlias ) ) t.daemon = True t.start() # Connect to Agent running at hostName, listening on portNum mymsg = ''.join(["Registering Agent '", agentHostName, "'..."]) log.debug(mymsg) return mymsg ######################################### # Main server function: An xml rpc server # for responding to client requests. ######################################### def runServer(ipAdd, portNum, serverCert, serverKey): log = logging.getLogger(__name__) log.info("Starting runServer Module") log.debug("serverCert: %s" % (serverCert)) log.debug("serverKey: %s" % (serverKey)) # Create XMLRPC Server, based on ipAdd/port received log.debug("Trying socket now...") try: server = SimpleXMLRPCServer((ipAdd, portNum)) # Create/Wrap server socket with ssl server.socket = ssl.wrap_socket(server.socket, certfile=serverCert, keyfile=serverKey, do_handshake_on_connect=True, server_side=True) # Register available functions log.debug("Registering Functions") server.register_multicall_functions() server.register_function(add, 'add') server.register_function(multiply, 'multiply') server.register_function(disconnectAgent, 'disconnectAgent') server.register_function(registerAgent, 'registerAgent') # Start server listening [forever] log.info("Server listening on port %d." % (portNum)) print("Server listening on port %d." % (portNum)) server.serve_forever() except FileNotFoundError: log.exception("ERROR creating socket... " "CERT or KEY NOT Present.") except OSError: log.exception("ERROR creating socket..." "Verify port number [%d] is " "available for controller." % portNum) ```