metadata
dict
text
stringlengths
60
3.49M
{ "source": "jlr-academy/MP-Ashley-Robinson", "score": 3 }
#### File: MP-Ashley-Robinson/src/database_utils.py ```python import pymysql import os from dotenv import load_dotenv from utilities import select_from_list # Load environment variables from .env file with dotenv.load_dotenv() # establishes connection to database outlined in .env file & creates connection and cursor objects def initialise_db(): # Load environment variables from .env file load_dotenv() host = os.environ.get("mysql_host") user = os.environ.get("mysql_user") password = <PASSWORD>("mysql_pass") database = os.environ.get("mysql_db") # Establish a database connection connection = pymysql.connect( host, user, password, database ) #create cursor object that manages db operations cursor = connection.cursor() return connection, cursor # Creates a new table in the database named in .env file. # adds fields *table_name*_id as PK, # adds field *table_name*_name as varchar def create_new_table(table_name:str): #initialise - gets env vars and creates a connection & cursor connection, cursor = initialise_db() #check if tables exist already and create if not cursor.execute("SHOW TABLES") table_exists = False for x in cursor: if table_name == str(x[0]): print("The table already exists") table_exists = True break #create required tables if table_exists == False: sql = f"CREATE TABLE {table_name}({table_name}_id INT AUTO_INCREMENT PRIMARY KEY, {table_name}_name VARCHAR(255));" cursor.execute(sql) #commit chnages and close connection.commit() cursor.close() connection.close() #Add specified db item to named table #takes a list of fields and list of values def add_to_db_table(table_name:str,fields:list,vals:list): #initialise - gets env vars and creates a connection & cursor connection, cursor = initialise_db() #create fields string & values string converted_list = [str(element) for element in fields] fields_str = ",".join(converted_list) converted_list = ["'" + str(element) + "'" for element in vals] vals_str = ",".join(converted_list) #Create SQL commands from strings sql = f"INSERT INTO {table_name}({fields_str}) VALUES({vals_str});" #Execute changes cursor.execute(sql) #commit chnages and close connection.commit() cursor.close() connection.close() #updates the db named in .envs with given SQL syntax def db_update_SQL_syntax(SQL_syntax:str): #initialise - gets env vars and creates a connection & cursor connection, cursor = initialise_db() #Create SQL commands from strings sql = str(SQL_syntax) #Execute changes cursor.execute(sql) #commit chnages and close connection.commit() cursor.close() connection.close() # returns a list of dictionaries from a specified table def db_table_to_list_of_dics(db_table:str): #initialise - gets env vars and creates a connection & cursor connection, cursor = initialise_db() #Create SQL commands from strings sql = str(f"SELECT * FROM {db_table}") #Execute changes cursor.execute(sql) #get field names from db_table columns = cursor.description list_of_dics = [{columns[index][0]:column for index, column in enumerate(value)} for value in cursor.fetchall()] #commit chnages and close connection.commit() cursor.close() connection.close() return list_of_dics def list_of_dics_to_db_table(db_table:str, list_to_upload): ### wip - may not be required #initialise - gets env vars and creates a connection & cursor connection, cursor = initialise_db() #Create SQL commands from strings sql = str(f"SELECT * FROM {db_table}") #Execute query cursor.execute(sql) #get all field names from db table field_names = [i[0] for i in cursor.description] #iterate through list of dics and add to db if fields match for i in list_to_upload: for field in i: if field in field_names: sql = "UPDATE customers SET address = 'Canyon 123' WHERE address = 'Valley 345'" def get_field_names(db_table): #initialise - gets env vars and creates a connection & cursor connection, cursor = initialise_db() #Create SQL commands from strings sql = str(f"SELECT * FROM {db_table}") #Execute query cursor.execute(sql) #get all field names from db table field_names = [i[0] for i in cursor.description] connection.commit() cursor.close() connection.close() return field_names def add_new_record_in_db(table_name): #get all field names from db table field_names = get_field_names(table_name) #remove auto inc primary key from list field_names_less_pk = [] #ask for input of values for each field vals_list = [] print("Please enter the value for each required field. ") for i in field_names: if i[-3:] != "_id": field_names_less_pk.append(i) vals_list.append(str(input(f"{i}: "))) #Add to db table add_to_db_table(table_name,field_names_less_pk,vals_list) def print_db_table(table_name): #get all field names from db table field_names = get_field_names(table_name) #initialise - gets env vars and creates a connection & cursor connection, cursor = initialise_db() #Create SQL commands from strings sql = str(f"SELECT * FROM {table_name}") #Execute query cursor.execute(sql) #iterate through table and print each row rows = cursor.fetchall() for row in rows: j=0 print_str = "" for i in row: ### calculate white space requirement for print -to do print_str = print_str + f"{field_names[j]}: {i}, " j=j+1 print(print_str) #commit changes and close connection.commit() cursor.close() connection.close() #deletes a record from named table def delete_db_record(table_name): #Ask which item requires deleting delete_id = int(input("Enter id number of the item you would like to delete: ")) #initialise - gets env vars and creates a connection & cursor connection, cursor = initialise_db() #Create SQL commands from strings sql = str(f"DELETE FROM {table_name} WHERE {table_name}_id={delete_id};") #Execute query cursor.execute(sql) #commit changes and close connection.commit() cursor.close() connection.close() def amend_db_record(table_name): #get the item that requires updating amend_id = input("\n Enter id number of the item you would like to amend: ") #get the field that requires updating field_names = get_field_names(table_name) field_selected = select_from_list(field_names) amend_field_str = field_names[field_selected] # to do - stop from trying to change the id number #get the new required value new_value = input(f"\n What would you like the new value for {amend_field_str} to be? ") #Create SQL syntax SQL_syntax = f"UPDATE {table_name} SET {amend_field_str} = '{new_value}' WHERE {table_name}_id = {amend_id};" #update the database db_update_SQL_syntax(SQL_syntax) ### below used to create dummy data ''' create_new_table("couriers") create_new_table("products") courier_fields_list =["couriers_name", "contact"] product_field_list =["products_name","price"] add_to_db("couriers",courier_fields_list,["DHL","07563355888"]) add_to_db("couriers",courier_fields_list,["Parcelforce","07563355999"]) add_to_db("products",product_field_list,["Pepsi","£0.75"]) add_to_db("products",product_field_list,["Sandwich","£2.50"]) add_to_db("products",product_field_list,["Crisps","£0.90"]) ''' ``` #### File: MP-Ashley-Robinson/src/menus.py ```python from utilities import print_list, create_order, del_list_item, amend_list_item, amend_order_status, print_db_table, add_new_record_in_db, delete_db_record, amend_db_record, display_orders from datetime import datetime import os from cafe_ASCII_art import cafe_banner ##### MENUS ##### #welcome note def welcome_note(): #####WIP if datetime.now().time() < 12: return "Good Morning" elif datetime.now().time() > 16.30: return "Good Evening" else: return "Good afternoon" #Start menu def start_menu_choice(): clear_screen() print('\nWhat would you like review? ') print(''' 1 Inventory 2 Couriers 3 Customers 4 Orders 0 Exit app''') choicemade = int(input()) return choicemade #product menu def products_menu_choice(): choicemade = 1 while choicemade !=0: clear_screen() print("What would you like to do with your products?") print(''' 1 See Products 2 Amend Products 3 Create New products 0 Exit to Main Menu ''') choicemade = int(input()) if choicemade == 1: # see list clear_screen() print_db_table("products") input('Press any key to continue ') elif choicemade == 2: # amend list item clear_screen() print('This is how your product list currently looks') print_db_table("products") ans = input('Would you like to amend (A) or delete (D) a product? ') if ans.upper() == "D": #del_list_item(products_list) delete_db_record("products") else: #amend_product() amend_db_record("products") elif choicemade == 3: # append list add_new_record_in_db("products") elif choicemade == 0: return else: print('Invalid choice. Try again') #Courier menu def couriers_menu_choice(): choicemade = 1 while choicemade !=0: clear_screen() print("What would you like to do with Couriers?") print(''' 1 See Couriers 2 Amend Couriers 3 Create new Courier 0 Exit to Main Menu ''') choicemade = int(input()) if choicemade == 1: clear_screen() print_db_table("couriers") input('Press any key to continue ') elif choicemade == 2: clear_screen() print('This is how your courier list currently looks') print_db_table("couriers") ans = input('Would you like to amend (A) or delete (D) a Courier? ') if ans.upper() == "D": #del_list_item(courier_list) delete_db_record("couriers") else: amend_db_record("couriers") elif choicemade == 3: add_new_record_in_db("couriers") elif choicemade == 0: return else: print('Invalid choice. Try again') #Customers Menu def customers_menu_choice(): choicemade = 1 while choicemade !=0: clear_screen() print("What would you like to do with Customers?") print(''' 1 See Customers 2 Amend Customers 3 Create new Customer 0 Exit to Main Menu ''') choicemade = int(input()) if choicemade == 1: clear_screen() print_db_table("customers") input('Press any key to continue ') elif choicemade == 2: clear_screen() print('This is how your customers currently looks') print_db_table("customers") ans = input('Would you like to amend (A) or delete (D) a Customer? ') if ans.upper() == "D": #del_list_item(courier_list) delete_db_record("customers") else: amend_db_record("customers") elif choicemade == 3: add_new_record_in_db("customers") elif choicemade == 0: return else: print('Invalid choice. Try again') #Orders Menu def orders_menu_choice(orders_list): clear_screen() choicemade = 1 while choicemade !=0: print("What would you like to do with Orders?") print(''' 1 See Orders 2 Amend Orders 3 Create New Order 4 Update Customer Fields 5 Update Order Status 0 Exit to Main Menu ''') choicemade = int(input()) if choicemade == 1: clear_screen() display_orders() input('Press any key to continue ') elif choicemade == 2: print('These are your current orders ') display_orders() ans = input('Would you like to amend (A) or delete (D) an Order? ') if ans.upper() == "D": del_list_item(orders_list) else: amend_list_item(orders_list) elif choicemade == 3: create_order() elif choicemade == 4: print("This functionality not available on your current subscription level. \n Consider upgrading to Premium.") #### update required to add elif choicemade == 5: amend_order_status(orders_list) elif choicemade == 0: return else: print('Invalid choice. Try again') def clear_screen(): os.system('cls' if os.name=='nt' else 'clear') print(cafe_banner) print('{:^48s}'.format('Welcome to CAFE APP\n')) print('{:^48s}'.format("A Lazy Pig application\n")) ```
{ "source": "jlrainbolt/MG5_v2_6_1", "score": 2 }
#### File: madgraph/iolibs/files.py ```python import logging import os import shutil logger = logging.getLogger('madgraph.files') #=============================================================================== # read_from_file #=============================================================================== def read_from_file(filename, myfunct, *args, **opt): """Open a file, apply the function myfunct (with sock as an arg) on its content and return the result. Deals properly with errors and returns None if something goes wrong. """ try: sock = open(filename, 'r') try: ret_value = myfunct(sock, *args) finally: sock.close() except IOError, (errno, strerror): if opt.has_key('print_error'): if not opt['print_error']: return None logger.error("I/O error on file %s (%s): %s" % (filename,errno, strerror)) return None return ret_value #=============================================================================== # write_to_file #=============================================================================== def write_to_file(filename, myfunct, *args, **opts): """Open a file for writing, apply the function myfunct (with sock as an arg) on its content and return the result. Deals properly with errors and returns None if something goes wrong. """ try: sock = open(filename, 'w') try: ret_value = myfunct(sock, *args) finally: sock.close() except IOError, (errno, strerror): if 'log' not in opts or opts['log']: logger.error("I/O error (%s): %s" % (errno, strerror)) return None return ret_value #=============================================================================== # append_to_file #=============================================================================== def append_to_file(filename, myfunct, *args): """Open a file for appending, apply the function myfunct (with sock as an arg) on its content and return the result. Deals properly with errors and returns None if something goes wrong. """ try: sock = open(filename, 'a') try: ret_value = myfunct(sock, *args) finally: sock.close() except IOError, (errno, strerror): logger.error("I/O error (%s): %s" % (errno, strerror)) return None return ret_value #=============================================================================== # check piclke validity #=============================================================================== def is_uptodate(picklefile, path_list=None, min_time=1343682423): """Check if the pickle files is uptodate compare to a list of files. If no files are given, the pickle files is checked against it\' current directory""" if not os.path.exists(picklefile): return False if path_list is None: dirpath = os.path.dirname(picklefile) path_list = [ os.path.join(dirpath, file) for file in \ os.listdir(dirpath)] assert type(path_list) == list, 'is_update expect a list of files' pickle_date = os.path.getctime(picklefile) if pickle_date < min_time: return False for path in path_list: try: if os.path.getmtime(path) > pickle_date: return False except Exception: continue #all pass return True ################################################################################ ## helper function for universal file treatment ################################################################################ def format_path(path): """Format the path in local format taking in entry a unix format""" if path[0] != '/': return os.path.join(*path.split('/')) else: return os.path.sep + os.path.join(*path.split('/')) def cp(path1, path2, log=True, error=False): """ simple cp taking linux or mix entry""" path1 = format_path(path1) path2 = format_path(path2) try: shutil.copy(path1, path2) except IOError, why: try: if os.path.exists(path2): path2 = os.path.join(path2, os.path.split(path1)[1]) shutil.copytree(path1, path2) except IOError, why: if error: raise if log: logger.warning(why) except shutil.Error: # idetical file pass def rm(path, log=True): """removes path, that can be a single element or a list""" if type(path) == list: for p in path: rm(p, log) else: path = format_path(path) try: os.remove(path) except OSError: shutil.rmtree(path, ignore_errors = True) def mv(path1, path2): """simple mv taking linux or mix format entry""" path1 = format_path(path1) path2 = format_path(path2) try: shutil.move(path1, path2) except Exception: # An error can occur if the files exist at final destination if os.path.isfile(path2): os.remove(path2) shutil.move(path1, path2) return elif os.path.isdir(path2) and os.path.exists( os.path.join(path2, os.path.basename(path1))): path2 = os.path.join(path2, os.path.basename(path1)) os.remove(path2) shutil.move(path1, path2) else: raise def put_at_end(src, *add): with open(src,'ab') as wfd: for f in add: with open(f,'rb') as fd: shutil.copyfileobj(fd, wfd, 1024*1024*100) #100Mb chunk to avoid memory issue def ln(file_pos, starting_dir='.', name='', log=True, cwd=None, abspath=False): """a simple way to have a symbolic link without to have to change directory starting_point is the directory where to write the link file_pos is the file to link WARNING: not the linux convention """ file_pos = format_path(file_pos) starting_dir = format_path(starting_dir) if not name: name = os.path.split(file_pos)[1] if cwd: if not os.path.isabs(file_pos): file_pos = os.path.join(cwd, file_pos) if not os.path.isabs(starting_dir): starting_dir = os.path.join(cwd, starting_dir) # Remove existing link if necessary path = os.path.join(starting_dir, name) if os.path.exists(path): if os.path.realpath(path) != os.path.realpath(file_pos): os.remove(os.path.join(starting_dir, name)) else: return if not abspath: target = os.path.relpath(file_pos, starting_dir) else: target = file_pos try: os.symlink(target, os.path.join(starting_dir, name)) except Exception, error: if log: logger.warning('Could not link %s at position: %s' % (file_pos, \ os.path.realpath(starting_dir))) def copytree(src, dst): if not os.path.exists(dst): os.makedirs(dst) for item in os.listdir(src): s = os.path.join(src, item) d = os.path.join(dst, item) if os.path.isdir(s): copytree(s, d, symlinks, ignore) else: shutil.copy2(s, d) ``` #### File: madgraph/various/process_checks.py ```python from __future__ import division import array import copy import fractions import itertools import logging import math import os import sys import re import shutil import random import glob import re import subprocess import time import datetime import errno import pickle # If psutil becomes standard, the RAM check can be performed with it instead #import psutil import aloha import aloha.aloha_writers as aloha_writers import aloha.create_aloha as create_aloha import madgraph.iolibs.export_python as export_python import madgraph.iolibs.helas_call_writers as helas_call_writers import models.import_ufo as import_ufo import madgraph.iolibs.save_load_object as save_load_object import madgraph.iolibs.file_writers as writers import madgraph.core.base_objects as base_objects import madgraph.core.color_algebra as color import madgraph.core.color_amp as color_amp import madgraph.core.helas_objects as helas_objects import madgraph.core.diagram_generation as diagram_generation import madgraph.various.rambo as rambo import madgraph.various.misc as misc import madgraph.various.progressbar as pbar import madgraph.various.banner as bannermod import madgraph.various.progressbar as pbar import madgraph.loop.loop_diagram_generation as loop_diagram_generation import madgraph.loop.loop_helas_objects as loop_helas_objects import madgraph.loop.loop_base_objects as loop_base_objects import models.check_param_card as check_param_card from madgraph.interface.madevent_interface import MadLoopInitializer from madgraph.interface.common_run_interface import AskforEditCard from madgraph import MG5DIR, InvalidCmd, MadGraph5Error from madgraph.iolibs.files import cp import StringIO import models.model_reader as model_reader import aloha.template_files.wavefunctions as wavefunctions from aloha.template_files.wavefunctions import \ ixxxxx, oxxxxx, vxxxxx, sxxxxx, txxxxx, irxxxx, orxxxx ADDED_GLOBAL = [] temp_dir_prefix = "TMP_CHECK" pjoin = os.path.join def clean_added_globals(to_clean): for value in list(to_clean): del globals()[value] to_clean.remove(value) #=============================================================================== # Fake interface to be instancied when using process_checks from tests instead. #=============================================================================== class FakeInterface(object): """ Just an 'option container' to mimick the interface which is passed to the tests. We put in only what is now used from interface by the test: cmd.options['fortran_compiler'] cmd.options['complex_mass_scheme'] cmd._mgme_dir""" def __init__(self, mgme_dir = "", complex_mass_scheme = False, fortran_compiler = 'gfortran' ): self._mgme_dir = mgme_dir self.options = {} self.options['complex_mass_scheme']=complex_mass_scheme self.options['fortran_compiler']=fortran_compiler #=============================================================================== # Logger for process_checks #=============================================================================== logger = logging.getLogger('madgraph.various.process_checks') # Helper function to boost momentum def boost_momenta(p, boost_direction=1, beta=0.5): """boost the set momenta in the 'boost direction' by the 'beta' factor""" boost_p = [] gamma = 1/ math.sqrt(1 - beta**2) for imp in p: bosst_p = imp[boost_direction] E, px, py, pz = imp boost_imp = [] # Energy: boost_imp.append(gamma * E - gamma * beta * bosst_p) # PX if boost_direction == 1: boost_imp.append(-gamma * beta * E + gamma * px) else: boost_imp.append(px) # PY if boost_direction == 2: boost_imp.append(-gamma * beta * E + gamma * py) else: boost_imp.append(py) # PZ if boost_direction == 3: boost_imp.append(-gamma * beta * E + gamma * pz) else: boost_imp.append(pz) #Add the momenta to the list boost_p.append(boost_imp) return boost_p #=============================================================================== # Helper class MatrixElementEvaluator #=============================================================================== class MatrixElementEvaluator(object): """Class taking care of matrix element evaluation, storing relevant quantities for speedup.""" def __init__(self, model , param_card = None, auth_skipping = False, reuse = True, cmd = FakeInterface()): """Initialize object with stored_quantities, helas_writer, model, etc. auth_skipping = True means that any identical matrix element will be evaluated only once reuse = True means that the matrix element corresponding to a given process can be reused (turn off if you are using different models for the same process)""" self.cmd = cmd # Writer for the Python matrix elements self.helas_writer = helas_call_writers.PythonUFOHelasCallWriter(model) # Read a param_card and calculate couplings self.full_model = model_reader.ModelReader(model) try: self.full_model.set_parameters_and_couplings(param_card) except MadGraph5Error: if isinstance(param_card, (str,file)): raise logger.warning('param_card present in the event file not compatible.'+ ' We will use the default one.') self.full_model.set_parameters_and_couplings() self.auth_skipping = auth_skipping self.reuse = reuse self.cmass_scheme = cmd.options['complex_mass_scheme'] self.store_aloha = [] self.stored_quantities = {} #=============================================================================== # Helper function evaluate_matrix_element #=============================================================================== def evaluate_matrix_element(self, matrix_element, p=None, full_model=None, gauge_check=False, auth_skipping=None, output='m2', options=None): """Calculate the matrix element and evaluate it for a phase space point output is either m2, amp, jamp """ if full_model: self.full_model = full_model process = matrix_element.get('processes')[0] model = process.get('model') if "matrix_elements" not in self.stored_quantities: self.stored_quantities['matrix_elements'] = [] matrix_methods = {} if self.reuse and "Matrix_%s" % process.shell_string() in globals() and p: # Evaluate the matrix element for the momenta p matrix = eval("Matrix_%s()" % process.shell_string()) me_value = matrix.smatrix(p, self.full_model) if output == "m2": return matrix.smatrix(p, self.full_model), matrix.amp2 else: m2 = matrix.smatrix(p, self.full_model) return {'m2': m2, output:getattr(matrix, output)} if (auth_skipping or self.auth_skipping) and matrix_element in \ self.stored_quantities['matrix_elements']: # Exactly the same matrix element has been tested logger.info("Skipping %s, " % process.nice_string() + \ "identical matrix element already tested" \ ) return None self.stored_quantities['matrix_elements'].append(matrix_element) # Create an empty color basis, and the list of raw # colorize objects (before simplification) associated # with amplitude if "list_colorize" not in self.stored_quantities: self.stored_quantities["list_colorize"] = [] if "list_color_basis" not in self.stored_quantities: self.stored_quantities["list_color_basis"] = [] if "list_color_matrices" not in self.stored_quantities: self.stored_quantities["list_color_matrices"] = [] col_basis = color_amp.ColorBasis() new_amp = matrix_element.get_base_amplitude() matrix_element.set('base_amplitude', new_amp) colorize_obj = col_basis.create_color_dict_list(new_amp) try: # If the color configuration of the ME has # already been considered before, recycle # the information col_index = self.stored_quantities["list_colorize"].index(colorize_obj) except ValueError: # If not, create color basis and color # matrix accordingly self.stored_quantities['list_colorize'].append(colorize_obj) col_basis.build() self.stored_quantities['list_color_basis'].append(col_basis) col_matrix = color_amp.ColorMatrix(col_basis) self.stored_quantities['list_color_matrices'].append(col_matrix) col_index = -1 # Set the color for the matrix element matrix_element.set('color_basis', self.stored_quantities['list_color_basis'][col_index]) matrix_element.set('color_matrix', self.stored_quantities['list_color_matrices'][col_index]) # Create the needed aloha routines if "used_lorentz" not in self.stored_quantities: self.stored_quantities["used_lorentz"] = [] me_used_lorentz = set(matrix_element.get_used_lorentz()) me_used_lorentz = [lorentz for lorentz in me_used_lorentz \ if lorentz not in self.store_aloha] aloha_model = create_aloha.AbstractALOHAModel(model.get('name')) aloha_model.add_Lorentz_object(model.get('lorentz')) aloha_model.compute_subset(me_used_lorentz) # Write out the routines in Python aloha_routines = [] for routine in aloha_model.values(): aloha_routines.append(routine.write(output_dir = None, mode='mg5', language = 'Python')) for routine in aloha_model.external_routines: aloha_routines.append( open(aloha_model.locate_external(routine, 'Python')).read()) # Define the routines to be available globally previous_globals = list(globals().keys()) for routine in aloha_routines: exec(routine, globals()) for key in globals().keys(): if key not in previous_globals: ADDED_GLOBAL.append(key) # Add the defined Aloha routines to used_lorentz self.store_aloha.extend(me_used_lorentz) # Export the matrix element to Python calls exporter = export_python.ProcessExporterPython(matrix_element, self.helas_writer) try: matrix_methods = exporter.get_python_matrix_methods(\ gauge_check=gauge_check) # print "I got matrix_methods=",str(matrix_methods.items()[0][1]) except helas_call_writers.HelasWriterError, error: logger.info(error) return None # If one wants to output the python code generated for the computation # of these matrix elements, it is possible to run the following cmd # open('output_path','w').write(matrix_methods[process.shell_string()]) if self.reuse: # Define the routines (globally) exec(matrix_methods[process.shell_string()], globals()) ADDED_GLOBAL.append('Matrix_%s' % process.shell_string()) else: # Define the routines (locally is enough) exec(matrix_methods[process.shell_string()]) # Generate phase space point to use if not p: p, w_rambo = self.get_momenta(process, options) # Evaluate the matrix element for the momenta p exec("data = Matrix_%s()" % process.shell_string()) if output == "m2": return data.smatrix(p, self.full_model), data.amp2 else: m2 = data.smatrix(p,self.full_model) return {'m2': m2, output:getattr(data, output)} @staticmethod def pass_isolation_cuts(pmoms, ptcut=50.0, drcut=0.5): """ Check whether the specified kinematic point passes isolation cuts """ def Pt(pmom): """ Computes the pt of a 4-momentum""" return math.sqrt(pmom[1]**2+pmom[2]**2) def DeltaR(p1,p2): """ Computes the DeltaR between two 4-momenta""" # First compute pseudo-rapidities p1_vec=math.sqrt(p1[1]**2+p1[2]**2+p1[3]**2) p2_vec=math.sqrt(p2[1]**2+p2[2]**2+p2[3]**2) eta1=0.5*math.log((p1_vec+p1[3])/(p1_vec-p1[3])) eta2=0.5*math.log((p2_vec+p2[3])/(p2_vec-p2[3])) # Then azimutal angle phi phi1=math.atan2(p1[2],p1[1]) phi2=math.atan2(p2[2],p2[1]) dphi=abs(phi2-phi1) # Take the wraparound factor into account dphi=abs(abs(dphi-math.pi)-math.pi) # Now return deltaR return math.sqrt(dphi**2+(eta2-eta1)**2) for i, pmom in enumerate(pmoms[2:]): # Pt > 50 GeV if Pt(pmom)<ptcut: return False # Delta_R ij > 0.5 for pmom2 in pmoms[3+i:]: if DeltaR(pmom,pmom2)<drcut: return False return True #=============================================================================== # Helper function get_momenta #=============================================================================== def get_momenta(self, process, options=None, special_mass=None): """Get a point in phase space for the external states in the given process, with the CM energy given. The incoming particles are assumed to be oriented along the z axis, with particle 1 along the positive z axis. For the CMS check, one must be able to chose the mass of the special resonance particle with id = -1, and the special_mass option allows to specify it.""" if not options: energy=1000 events=None else: energy = options['energy'] events = options['events'] to_skip = 0 if not (isinstance(process, base_objects.Process) and \ isinstance(energy, (float,int))): raise rambo.RAMBOError, "Not correct type for arguments to get_momenta" sorted_legs = sorted(process.get('legs'), lambda l1, l2:\ l1.get('number') - l2.get('number')) # If an events file is given use it for getting the momentum if events: ids = [l.get('id') for l in sorted_legs] import MadSpin.decay as madspin if not hasattr(self, 'event_file'): fsock = open(events) self.event_file = madspin.Event(fsock) skip = 0 while self.event_file.get_next_event() != 'no_event': event = self.event_file.particle #check if the event is compatible event_ids = [p['pid'] for p in event.values()] if event_ids == ids: skip += 1 if skip > to_skip: break else: raise MadGraph5Error, 'No compatible events for %s' % ids p = [] for part in event.values(): m = part['momentum'] p.append([m.E, m.px, m.py, m.pz]) return p, 1 nincoming = len([leg for leg in sorted_legs if leg.get('state') == False]) nfinal = len(sorted_legs) - nincoming # Find masses of particles mass = [] for l in sorted_legs: if l.get('id') != 0: mass_string = self.full_model.get_particle(l.get('id')).get('mass') mass.append(self.full_model.get('parameter_dict')[mass_string].real) else: if isinstance(special_mass, float): mass.append(special_mass) else: raise Exception, "A 'special_mass' option must be specified"+\ " in get_momenta when a leg with id=-10 is present (for CMS check)" #mass = [math.sqrt(m.real) for m in mass] # Make sure energy is large enough for incoming and outgoing particles, # # Keep the special_mass case separate to be sure that nothing interferes # # with the regular usage of get_momenta. # if not (any(l.get('id')==0 for l in sorted_legs) and \ # isinstance(special_mass, float)): energy = max(energy, sum(mass[:nincoming])*1.2,sum(mass[nincoming:])*1.2) # else: # incoming_mass = sum([mass[i] for i, leg in enumerate(sorted_legs) \ # if leg.get('state') == False and leg.get('id')!=0]) # outcoming_mass = sum([mass[i] for i, leg in enumerate(sorted_legs) \ # if leg.get('state') == True and leg.get('id')!=0]) # energy = max(energy, incoming_mass*1.2, outcoming_mass*1.2) if nfinal == 1: p = [] energy = mass[-1] p.append([energy/2,0,0,energy/2]) p.append([energy/2,0,0,-energy/2]) p.append([mass[-1],0,0,0]) return p, 1.0 e2 = energy**2 m1 = mass[0] p = [] masses = rambo.FortranList(nfinal) for i in range(nfinal): masses[i+1] = mass[nincoming + i] if nincoming == 1: # Momenta for the incoming particle p.append([abs(m1), 0., 0., 0.]) p_rambo, w_rambo = rambo.RAMBO(nfinal, abs(m1), masses) # Reorder momenta from px,py,pz,E to E,px,py,pz scheme for i in range(1, nfinal+1): momi = [p_rambo[(4,i)], p_rambo[(1,i)], p_rambo[(2,i)], p_rambo[(3,i)]] p.append(momi) return p, w_rambo if nincoming != 2: raise rambo.RAMBOError('Need 1 or 2 incoming particles') if nfinal == 1: energy = masses[1] if masses[1] == 0.0: raise rambo.RAMBOError('The kinematic 2 > 1 with the final'+\ ' state particle massless is invalid') e2 = energy**2 m2 = mass[1] mom = math.sqrt((e2**2 - 2*e2*m1**2 + m1**4 - 2*e2*m2**2 - \ 2*m1**2*m2**2 + m2**4) / (4*e2)) e1 = math.sqrt(mom**2+m1**2) e2 = math.sqrt(mom**2+m2**2) # Set momenta for incoming particles p.append([e1, 0., 0., mom]) p.append([e2, 0., 0., -mom]) if nfinal == 1: p.append([energy, 0., 0., 0.]) return p, 1. p_rambo, w_rambo = rambo.RAMBO(nfinal, energy, masses) # Reorder momenta from px,py,pz,E to E,px,py,pz scheme for i in range(1, nfinal+1): momi = [p_rambo[(4,i)], p_rambo[(1,i)], p_rambo[(2,i)], p_rambo[(3,i)]] p.append(momi) return p, w_rambo #=============================================================================== # Helper class LoopMatrixElementEvaluator #=============================================================================== class LoopMatrixElementEvaluator(MatrixElementEvaluator): """Class taking care of matrix element evaluation for loop processes.""" def __init__(self,cuttools_dir=None, output_path=None, tir_dir={}, cmd=FakeInterface(),*args,**kwargs): """Allow for initializing the MG5 root where the temporary fortran output for checks is placed.""" super(LoopMatrixElementEvaluator,self).__init__(*args,cmd=cmd,**kwargs) self.mg_root=self.cmd._mgme_dir # If no specific output path is specified, then write in MG5 root directory if output_path is None: self.output_path = self.cmd._mgme_dir else: self.output_path = output_path self.cuttools_dir=cuttools_dir self.tir_dir=tir_dir self.loop_optimized_output = cmd.options['loop_optimized_output'] # Set proliferate to true if you want to keep the produced directories # and eventually reuse them if possible self.proliferate=True #=============================================================================== # Helper function evaluate_matrix_element for loops #=============================================================================== def evaluate_matrix_element(self, matrix_element, p=None, options=None, gauge_check=False, auth_skipping=None, output='m2', PS_name = None, MLOptions={}): """Calculate the matrix element and evaluate it for a phase space point Output can only be 'm2. The 'jamp' and 'amp' returned values are just empty lists at this point. If PS_name is not none the written out PS.input will be saved in the file PS.input_<PS_name> as well.""" process = matrix_element.get('processes')[0] model = process.get('model') if options and 'split_orders' in options.keys(): split_orders = options['split_orders'] else: split_orders = -1 if "loop_matrix_elements" not in self.stored_quantities: self.stored_quantities['loop_matrix_elements'] = [] if (auth_skipping or self.auth_skipping) and matrix_element in \ [el[0] for el in self.stored_quantities['loop_matrix_elements']]: # Exactly the same matrix element has been tested logger.info("Skipping %s, " % process.nice_string() + \ "identical matrix element already tested" ) return None # Generate phase space point to use if not p: p, w_rambo = self.get_momenta(process, options=options) if matrix_element in [el[0] for el in \ self.stored_quantities['loop_matrix_elements']]: export_dir=self.stored_quantities['loop_matrix_elements'][\ [el[0] for el in self.stored_quantities['loop_matrix_elements']\ ].index(matrix_element)][1] logger.debug("Reusing generated output %s"%str(export_dir)) else: export_dir=pjoin(self.output_path,temp_dir_prefix) if os.path.isdir(export_dir): if not self.proliferate: raise InvalidCmd("The directory %s already exist. Please remove it."%str(export_dir)) else: id=1 while os.path.isdir(pjoin(self.output_path,\ '%s_%i'%(temp_dir_prefix,id))): id+=1 export_dir=pjoin(self.output_path,'%s_%i'%(temp_dir_prefix,id)) if self.proliferate: self.stored_quantities['loop_matrix_elements'].append(\ (matrix_element,export_dir)) # I do the import here because there is some cyclic import of export_v4 # otherwise import madgraph.loop.loop_exporters as loop_exporters if self.loop_optimized_output: exporter_class=loop_exporters.LoopProcessOptimizedExporterFortranSA else: exporter_class=loop_exporters.LoopProcessExporterFortranSA MLoptions = {'clean': True, 'complex_mass': self.cmass_scheme, 'export_format':'madloop', 'mp':True, 'SubProc_prefix':'P', 'compute_color_flows': not process.get('has_born'), 'loop_dir': pjoin(self.mg_root,'Template','loop_material'), 'cuttools_dir': self.cuttools_dir, 'fortran_compiler': self.cmd.options['fortran_compiler'], 'output_dependencies': self.cmd.options['output_dependencies']} MLoptions.update(self.tir_dir) FortranExporter = exporter_class(export_dir, MLoptions) FortranModel = helas_call_writers.FortranUFOHelasCallWriter(model) FortranExporter.copy_template(model) FortranExporter.generate_subprocess_directory(matrix_element, FortranModel) wanted_lorentz = list(set(matrix_element.get_used_lorentz())) wanted_couplings = list(set([c for l in matrix_element.get_used_couplings() \ for c in l])) FortranExporter.convert_model(model,wanted_lorentz,wanted_couplings) FortranExporter.finalize(matrix_element,"",self.cmd.options, ['nojpeg']) MadLoopInitializer.fix_PSPoint_in_check(pjoin(export_dir,'SubProcesses'), split_orders=split_orders) self.fix_MadLoopParamCard(pjoin(export_dir,'Cards'), mp = gauge_check and self.loop_optimized_output, MLOptions=MLOptions) if gauge_check: file_path, orig_file_content, new_file_content = \ self.setup_ward_check(pjoin(export_dir,'SubProcesses'), ['helas_calls_ampb_1.f','loop_matrix.f']) file = open(file_path,'w') file.write(new_file_content) file.close() if self.loop_optimized_output: mp_file_path, mp_orig_file_content, mp_new_file_content = \ self.setup_ward_check(pjoin(export_dir,'SubProcesses'), ['mp_helas_calls_ampb_1.f','mp_compute_loop_coefs.f'],mp=True) mp_file = open(mp_file_path,'w') mp_file.write(mp_new_file_content) mp_file.close() # Evaluate the matrix element for the momenta p finite_m2 = self.get_me_value(process.shell_string_v4(), 0,\ export_dir, p, PS_name = PS_name, verbose=False)[0][0] # Restore the original loop_matrix.f code so that it could be reused if gauge_check: file = open(file_path,'w') file.write(orig_file_content) file.close() if self.loop_optimized_output: mp_file = open(mp_file_path,'w') mp_file.write(mp_orig_file_content) mp_file.close() # Now erase the output directory if not self.proliferate: shutil.rmtree(export_dir) if output == "m2": # We do not provide details (i.e. amps and Jamps) of the computed # amplitudes, hence the [] return finite_m2, [] else: return {'m2': finite_m2, output:[]} def fix_MadLoopParamCard(self,dir_name, mp=False, loop_filter=False, DoubleCheckHelicityFilter=False, MLOptions={}): """ Set parameters in MadLoopParams.dat suited for these checks.MP stands for multiple precision and can either be a bool or an integer to specify the mode.""" # Instanciate a MadLoopParam card file = open(pjoin(dir_name,'MadLoopParams.dat'), 'r') MLCard = bannermod.MadLoopParam(file) if isinstance(mp,bool): mode = 4 if mp else 1 else: mode = mp for key, value in MLOptions.items(): if key == "MLReductionLib": if isinstance(value, int): ml_reds = str(value) if isinstance(value,list): if len(value)==0: ml_reds = '1' else: ml_reds="|".join([str(vl) for vl in value]) elif isinstance(value, str): ml_reds = value elif isinstance(value, int): ml_reds = str(value) else: raise MadGraph5Error, 'The argument %s '%str(value)+\ ' in fix_MadLoopParamCard must be a string, integer'+\ ' or a list.' MLCard.set("MLReductionLib",ml_reds) elif key == 'ImprovePS': MLCard.set('ImprovePSPoint',2 if value else -1) elif key == 'ForceMP': mode = 4 elif key in MLCard: MLCard.set(key,value) else: raise Exception, 'The MadLoop options %s specified in function'%key+\ ' fix_MadLoopParamCard does not correspond to an option defined'+\ ' MadLoop nor is it specially handled in this function.' if not mode is None: MLCard.set('CTModeRun',mode) MLCard.set('CTModeInit',mode) MLCard.set('UseLoopFilter',loop_filter) MLCard.set('DoubleCheckHelicityFilter',DoubleCheckHelicityFilter) MLCard.write(pjoin(dir_name,os.pardir,'SubProcesses','MadLoopParams.dat')) @classmethod def get_me_value(cls, proc, proc_id, working_dir, PSpoint=[], PS_name = None, verbose=True, format='tuple', skip_compilation=False): """Compile and run ./check, then parse the output and return the result for process with id = proc_id and PSpoint if specified. If PS_name is not none the written out PS.input will be saved in the file PS.input_<PS_name> as well""" if verbose: sys.stdout.write('.') sys.stdout.flush() shell_name = None directories = misc.glob('P%i_*' % proc_id, pjoin(working_dir, 'SubProcesses')) if directories and os.path.isdir(directories[0]): shell_name = os.path.basename(directories[0]) # If directory doesn't exist, skip and return 0 if not shell_name: logging.info("Directory hasn't been created for process %s" %proc) return ((0.0, 0.0, 0.0, 0.0, 0), []) if verbose: logging.debug("Working on process %s in dir %s" % (proc, shell_name)) dir_name = pjoin(working_dir, 'SubProcesses', shell_name) if not skip_compilation: # Make sure to recreate the executable and modified sources if os.path.isfile(pjoin(dir_name,'check')): os.remove(pjoin(dir_name,'check')) try: os.remove(pjoin(dir_name,'check_sa.o')) os.remove(pjoin(dir_name,'loop_matrix.o')) except OSError: pass # Now run make devnull = open(os.devnull, 'w') retcode = subprocess.call(['make','check'], cwd=dir_name, stdout=devnull, stderr=devnull) devnull.close() if retcode != 0: logging.info("Error while executing make in %s" % shell_name) return ((0.0, 0.0, 0.0, 0.0, 0), []) # If a PS point is specified, write out the corresponding PS.input if PSpoint: misc.write_PS_input(pjoin(dir_name, 'PS.input'),PSpoint) # Also save the PS point used in PS.input_<PS_name> if the user # wanted so. It is used for the lorentz check. if not PS_name is None: misc.write_PS_input(pjoin(dir_name, \ 'PS.input_%s'%PS_name),PSpoint) # Run ./check try: output = subprocess.Popen('./check', cwd=dir_name, stdout=subprocess.PIPE, stderr=subprocess.STDOUT).stdout output.read() output.close() if os.path.exists(pjoin(dir_name,'result.dat')): return cls.parse_check_output(file(pjoin(dir_name,\ 'result.dat')),format=format) else: logging.warning("Error while looking for file %s"%str(os.path\ .join(dir_name,'result.dat'))) return ((0.0, 0.0, 0.0, 0.0, 0), []) except IOError: logging.warning("Error while executing ./check in %s" % shell_name) return ((0.0, 0.0, 0.0, 0.0, 0), []) @classmethod def parse_check_output(cls,output,format='tuple'): """Parse the output string and return a pair where first four values are the finite, born, single and double pole of the ME and the fourth is the GeV exponent and the second value is a list of 4 momenta for all particles involved. Return the answer in two possible formats, 'tuple' or 'dict'.""" res_dict = {'res_p':[], 'born':0.0, 'finite':0.0, '1eps':0.0, '2eps':0.0, 'gev_pow':0, 'export_format':'Default', 'accuracy':0.0, 'return_code':0, 'Split_Orders_Names':[], 'Loop_SO_Results':[], 'Born_SO_Results':[], 'Born_kept':[], 'Loop_kept':[] } res_p = [] # output is supposed to be a file, if it is its content directly then # I change it to be the list of line. if isinstance(output,file) or isinstance(output,list): text=output elif isinstance(output,str): text=output.split('\n') else: raise MadGraph5Error, 'Type for argument output not supported in'+\ ' parse_check_output.' for line in text: splitline=line.split() if len(splitline)==0: continue elif splitline[0]=='PS': res_p.append([float(s) for s in splitline[1:]]) elif splitline[0]=='ASO2PI': res_dict['alphaS_over_2pi']=float(splitline[1]) elif splitline[0]=='BORN': res_dict['born']=float(splitline[1]) elif splitline[0]=='FIN': res_dict['finite']=float(splitline[1]) elif splitline[0]=='1EPS': res_dict['1eps']=float(splitline[1]) elif splitline[0]=='2EPS': res_dict['2eps']=float(splitline[1]) elif splitline[0]=='EXP': res_dict['gev_pow']=int(splitline[1]) elif splitline[0]=='Export_Format': res_dict['export_format']=splitline[1] elif splitline[0]=='ACC': res_dict['accuracy']=float(splitline[1]) elif splitline[0]=='RETCODE': res_dict['return_code']=int(splitline[1]) elif splitline[0]=='Split_Orders_Names': res_dict['Split_Orders_Names']=splitline[1:] elif splitline[0] in ['Born_kept', 'Loop_kept']: res_dict[splitline[0]] = [kept=='T' for kept in splitline[1:]] elif splitline[0] in ['Loop_SO_Results', 'Born_SO_Results']: # The value for this key of this dictionary is a list of elements # with format ([],{}) where the first list specifies the split # orders to which the dictionary in the second position corresponds # to. res_dict[splitline[0]].append(\ ([int(el) for el in splitline[1:]],{})) elif splitline[0]=='SO_Loop': res_dict['Loop_SO_Results'][-1][1][splitline[1]]=\ float(splitline[2]) elif splitline[0]=='SO_Born': res_dict['Born_SO_Results'][-1][1][splitline[1]]=\ float(splitline[2]) res_dict['res_p'] = res_p if format=='tuple': return ((res_dict['finite'],res_dict['born'],res_dict['1eps'], res_dict['2eps'],res_dict['gev_pow']), res_dict['res_p']) else: return res_dict @staticmethod def apply_log_tweak(proc_path, mode): """ Changes the file model_functions.f in the SOURCE of the process output so as to change how logarithms are analytically continued and see how it impacts the CMS check.""" valid_modes = ['default','recompile'] if not (mode in valid_modes or (isinstance(mode, list) and len(mode)==2 and all(m in ['logp','logm','log'] for m in mode))): raise MadGraph5Error("Mode '%s' not reckonized"%mode+ " in function apply_log_tweak.") model_path = pjoin(proc_path,'Source','MODEL') directories = misc.glob('P0_*', pjoin(proc_path,'SubProcesses')) if directories and os.path.isdir(directories[0]): exe_path = directories[0] else: raise MadGraph5Error, 'Could not find a process executable '+\ 'directory in %s'%proc_dir bu_path = pjoin(model_path, 'model_functions.f__backUp__') if mode=='default': # Restore the default source file model_function.f if not os.path.isfile(bu_path): raise MadGraph5Error, 'Back up file %s could not be found.'%bu_path shutil.move(bu_path, pjoin(model_path, 'model_functions.f')) return if mode=='recompile': try: os.remove(pjoin(model_path,'model_functions.o')) os.remove(pjoin(proc_path,'lib','libmodel.a')) except: pass misc.compile(cwd=model_path) # Remove the executable to insure proper recompilation try: os.remove(pjoin(exe_path,'check')) except: pass misc.compile(arg=['check'], cwd=exe_path) return if mode[0]==mode[1]: return # Now change the logs mp_prefix = 'MP_' target_line = 'FUNCTION %%sREG%s(ARG)'%mode[0].lower() # Make sure to create a backup if not os.path.isfile(bu_path): shutil.copy(pjoin(model_path, 'model_functions.f'), bu_path) model_functions = open(pjoin(model_path,'model_functions.f'),'r') new_model_functions = [] has_replaced = False just_replaced = False find_one_replacement= False mp_mode = None suffix = {'log':'','logp':r'\s*\+\s*TWOPII','logm':r'\s*\-\s*TWOPII'} replace_regex=r'^\s*%%sREG%s\s*=\s*LOG\(ARG\)%s'%(mode[0],suffix[mode[0]]) for line in model_functions: # Make sure to skip split lines after the replacement if just_replaced: if not re.match(r'\s{6}', line): continue else: just_replaced = False if mp_mode is None: # We are looking for the start of the function new_model_functions.append(line) if (target_line%mp_prefix).lower() in line.lower(): mp_mode = mp_prefix elif (target_line%'').lower() in line.lower(): mp_mode = '' else: # Now apply the substitution if not has_replaced and re.match(replace_regex%mp_mode,line, re.IGNORECASE): # Apply the replacement if mode[0]=='log': if mp_mode=='': new_line =\ """ if(dble(arg).lt.0.0d0.and.dimag(arg).gt.0.0d0)then reg%s=log(arg) %s TWOPII else reg%s=log(arg) endif\n"""%(mode[0],'+' if mode[1]=='logp' else '-',mode[0]) else: new_line =\ """ if(real(arg,kind=16).lt.0.0e0_16.and.imagpart(arg).lt.0.0e0_16)then mp_reg%s=log(arg) %s TWOPII else mp_reg%s=log(arg) endif\n"""%(mode[0],'+' if mode[1]=='logp' else '-',mode[0]) else: new_line = ' '*6+"%sreg%s=log(arg) %s\n"%(mp_mode,mode[0], ('' if mode[1]=='log' else ('+TWOPII' if mode[1]=='logp' else '-TWOPII'))) new_model_functions.append(new_line) just_replaced = True has_replaced = True find_one_replacement = True else: new_model_functions.append(line) if re.match(r'^\s*END\s*$',line,re.IGNORECASE): mp_mode = None has_replaced = False if not find_one_replacement: logger.warning('No replacement was found/performed for token '+ "'%s->%s'."%(mode[0],mode[1])) else: open(pjoin(model_path,'model_functions.f'),'w').\ write(''.join(new_model_functions)) return def setup_ward_check(self, working_dir, file_names, mp = False): """ Modify loop_matrix.f so to have one external massless gauge boson polarization vector turned into its momentum. It is not a pretty and flexible solution but it works for this particular case.""" shell_name = None directories = misc.glob('P0_*', working_dir) if directories and os.path.isdir(directories[0]): shell_name = os.path.basename(directories[0]) dir_name = pjoin(working_dir, shell_name) # Look, in order, for all the possible file names provided. ind=0 while ind<len(file_names) and not os.path.isfile(pjoin(dir_name, file_names[ind])): ind += 1 if ind==len(file_names): raise Exception, "No helas calls output file found." helas_file_name=pjoin(dir_name,file_names[ind]) file = open(pjoin(dir_name,helas_file_name), 'r') helas_calls_out="" original_file="" gaugeVectorRegExp=re.compile(\ r"CALL (MP\_)?VXXXXX\(P\(0,(?P<p_id>\d+)\),((D)?CMPLX\()?ZERO((,KIND\=16)?\))?,"+ r"NHEL\(\d+\),[\+\-]1\*IC\(\d+\),W\(1,(?P<wf_id>\d+(,H)?)\)\)") foundGauge=False # Now we modify the first massless gauge vector wavefunction for line in file: helas_calls_out+=line original_file+=line if line.find("INCLUDE 'coupl.inc'") != -1 or \ line.find("INCLUDE 'mp_coupl_same_name.inc'") !=-1: helas_calls_out+=" INTEGER WARDINT\n" if not foundGauge: res=gaugeVectorRegExp.search(line) if res!=None: foundGauge=True helas_calls_out+=" DO WARDINT=1,4\n" helas_calls_out+=" W(WARDINT+4,"+res.group('wf_id')+")=" if not mp: helas_calls_out+=\ "DCMPLX(P(WARDINT-1,"+res.group('p_id')+"),0.0D0)\n" else: helas_calls_out+="CMPLX(P(WARDINT-1,"+\ res.group('p_id')+"),0.0E0_16,KIND=16)\n" helas_calls_out+=" ENDDO\n" file.close() return pjoin(dir_name,helas_file_name), original_file, helas_calls_out #=============================================================================== # Helper class LoopMatrixElementEvaluator #=============================================================================== class LoopMatrixElementTimer(LoopMatrixElementEvaluator): """Class taking care of matrix element evaluation and running timing for loop processes.""" def __init__(self, *args, **kwargs): """ Same as the mother for now """ LoopMatrixElementEvaluator.__init__(self,*args, **kwargs) @classmethod def get_MadLoop_Params(cls,MLCardPath): """ Return a dictionary of the parameter of the MadLoopParamCard. The key is the name of the parameter and the value is the corresponding string read from the card.""" return bannermod.MadLoopParam(MLCardPath) @classmethod def set_MadLoop_Params(cls,MLCardPath,params): """ Set the parameters in MadLoopParamCard to the values specified in the dictionary params. The key is the name of the parameter and the value is the corresponding string to write in the card.""" MLcard = bannermod.MadLoopParam(MLCardPath) for key,value in params.items(): MLcard.set(key, value, changeifuserset=False) MLcard.write(MLCardPath, commentdefault=True) def skip_loop_evaluation_setup(self, dir_name, skip=True): """ Edit loop_matrix.f in order to skip the loop evaluation phase. Notice this only affects the double precision evaluation which is normally fine as we do not make the timing check on mp.""" file = open(pjoin(dir_name,'loop_matrix.f'), 'r') loop_matrix = file.read() file.close() file = open(pjoin(dir_name,'loop_matrix.f'), 'w') loop_matrix = re.sub(r"SKIPLOOPEVAL=\S+\)","SKIPLOOPEVAL=%s)"%('.TRUE.' if skip else '.FALSE.'), loop_matrix) file.write(loop_matrix) file.close() def boot_time_setup(self, dir_name, bootandstop=True): """ Edit loop_matrix.f in order to set the flag which stops the execution after booting the program (i.e. reading the color data).""" file = open(pjoin(dir_name,'loop_matrix.f'), 'r') loop_matrix = file.read() file.close() file = open(pjoin(dir_name,'loop_matrix.f'), 'w') loop_matrix = re.sub(r"BOOTANDSTOP=\S+\)","BOOTANDSTOP=%s)"%('.TRUE.' if bootandstop else '.FALSE.'), loop_matrix) file.write(loop_matrix) file.close() def setup_process(self, matrix_element, export_dir, reusing = False, param_card = None, MLOptions={},clean=True): """ Output the matrix_element in argument and perform the initialization while providing some details about the output in the dictionary returned. Returns None if anything fails""" infos={'Process_output': None, 'HELAS_MODEL_compilation' : None, 'dir_path' : None, 'Initialization' : None, 'Process_compilation' : None} if not reusing and clean: if os.path.isdir(export_dir): clean_up(self.output_path) if os.path.isdir(export_dir): raise InvalidCmd(\ "The directory %s already exist. Please remove it."\ %str(export_dir)) else: if not os.path.isdir(export_dir): raise InvalidCmd(\ "Could not find the directory %s to reuse."%str(export_dir)) if not reusing and clean: model = matrix_element['processes'][0].get('model') # I do the import here because there is some cyclic import of export_v4 # otherwise import madgraph.loop.loop_exporters as loop_exporters if self.loop_optimized_output: exporter_class=loop_exporters.LoopProcessOptimizedExporterFortranSA else: exporter_class=loop_exporters.LoopProcessExporterFortranSA MLoptions = {'clean': True, 'complex_mass': self.cmass_scheme, 'export_format':'madloop', 'mp':True, 'SubProc_prefix':'P', 'compute_color_flows':not matrix_element['processes'][0].get('has_born'), 'loop_dir': pjoin(self.mg_root,'Template','loop_material'), 'cuttools_dir': self.cuttools_dir, 'fortran_compiler':self.cmd.options['fortran_compiler'], 'output_dependencies':self.cmd.options['output_dependencies']} MLoptions.update(self.tir_dir) start=time.time() FortranExporter = exporter_class(export_dir, MLoptions) FortranModel = helas_call_writers.FortranUFOHelasCallWriter(model) FortranExporter.copy_template(model) FortranExporter.generate_subprocess_directory(matrix_element, FortranModel) wanted_lorentz = list(set(matrix_element.get_used_lorentz())) wanted_couplings = list(set([c for l in matrix_element.get_used_couplings() \ for c in l])) FortranExporter.convert_model(self.full_model,wanted_lorentz,wanted_couplings) infos['Process_output'] = time.time()-start start=time.time() FortranExporter.finalize(matrix_element,"",self.cmd.options, ['nojpeg']) infos['HELAS_MODEL_compilation'] = time.time()-start # Copy the parameter card if provided if param_card != None: if isinstance(param_card, str): cp(pjoin(param_card),\ pjoin(export_dir,'Cards','param_card.dat')) else: param_card.write(pjoin(export_dir,'Cards','param_card.dat')) # First Initialize filters (in later versions where this will hopefully # be done at generation time, then it will be able to skip it) MadLoopInitializer.fix_PSPoint_in_check( pjoin(export_dir,'SubProcesses'), read_ps = False, npoints = 4) self.fix_MadLoopParamCard(pjoin(export_dir,'Cards'), mp = False, loop_filter = True,MLOptions=MLOptions) shell_name = None directories = misc.glob('P0_*', pjoin(export_dir, 'SubProcesses')) if directories and os.path.isdir(directories[0]): shell_name = os.path.basename(directories[0]) dir_name = pjoin(export_dir, 'SubProcesses', shell_name) infos['dir_path']=dir_name # Do not refresh the filter automatically as this is very often a waste # of time if not MadLoopInitializer.need_MadLoopInit( export_dir, subproc_prefix='P'): return infos attempts = [3,15] # remove check and check_sa.o for running initialization again try: os.remove(pjoin(dir_name,'check')) os.remove(pjoin(dir_name,'check_sa.o')) except OSError: pass nPS_necessary = MadLoopInitializer.run_initialization(dir_name, pjoin(export_dir,'SubProcesses'),infos,\ req_files = ['HelFilter.dat','LoopFilter.dat'], attempts = attempts) if attempts is None: logger.error("Could not compile the process %s,"%shell_name+\ " try to generate it via the 'generate' command.") return None if nPS_necessary is None: logger.error("Could not initialize the process %s"%shell_name+\ " with %s PS points."%max(attempts)) return None elif nPS_necessary > min(attempts): logger.warning("Could not initialize the process %s"%shell_name+\ " with %d PS points. It needed %d."%(min(attempts),nPS_necessary)) return infos def time_matrix_element(self, matrix_element, reusing = False, param_card = None, keep_folder = False, options=None, MLOptions = {}): """ Output the matrix_element in argument and give detail information about the timing for its output and running""" # If True, then force three PS points only and skip the test on # unpolarized PS point make_it_quick=False if options and 'split_orders' in options.keys(): split_orders = options['split_orders'] else: split_orders = -1 assert ((not reusing and isinstance(matrix_element, \ helas_objects.HelasMatrixElement)) or (reusing and isinstance(matrix_element, base_objects.Process))) if not reusing: proc_name = matrix_element['processes'][0].shell_string()[2:] else: proc_name = matrix_element.shell_string()[2:] export_dir=pjoin(self.output_path,('SAVED' if keep_folder else '')+\ temp_dir_prefix+"_%s"%proc_name) res_timings = self.setup_process(matrix_element,export_dir, \ reusing, param_card,MLOptions = MLOptions,clean=True) if res_timings == None: return None dir_name=res_timings['dir_path'] def check_disk_usage(path): return subprocess.Popen("du -shc -L "+str(path), \ stdout=subprocess.PIPE, shell=True).communicate()[0].split()[-2] # The above is compatible with python 2.6, not the neater version below #return subprocess.check_output(["du -shc %s"%path],shell=True).\ # split()[-2] res_timings['du_source']=check_disk_usage(pjoin(\ export_dir,'Source','*','*.f')) res_timings['du_process']=check_disk_usage(pjoin(dir_name,'*.f')) res_timings['du_color']=check_disk_usage(pjoin(dir_name, 'MadLoop5_resources','*.dat')) res_timings['du_exe']=check_disk_usage(pjoin(dir_name,'check')) if not res_timings['Initialization']==None: time_per_ps_estimate = (res_timings['Initialization']/4.0)/2.0 elif make_it_quick: time_per_ps_estimate = -1.0 else: # We cannot estimate from the initialization, so we run just a 3 # PS point run to evaluate it. MadLoopInitializer.fix_PSPoint_in_check(pjoin(export_dir,'SubProcesses'), read_ps = False, npoints = 3, hel_config = -1, split_orders=split_orders) compile_time, run_time, ram_usage = MadLoopInitializer.make_and_run(dir_name) time_per_ps_estimate = run_time/3.0 self.boot_time_setup(dir_name,bootandstop=True) compile_time, run_time, ram_usage = MadLoopInitializer.make_and_run(dir_name) res_timings['Booting_time'] = run_time self.boot_time_setup(dir_name,bootandstop=False) # Detect one contributing helicity contributing_hel=0 n_contrib_hel=0 proc_prefix_file = open(pjoin(dir_name,'proc_prefix.txt'),'r') proc_prefix = proc_prefix_file.read() proc_prefix_file.close() helicities = file(pjoin(dir_name,'MadLoop5_resources', '%sHelFilter.dat'%proc_prefix)).read().split() for i, hel in enumerate(helicities): if (self.loop_optimized_output and int(hel)>-10000) or hel=='T': if contributing_hel==0: contributing_hel=i+1 n_contrib_hel += 1 if contributing_hel==0: logger.error("Could not find a contributing helicity "+\ "configuration for process %s."%proc_name) return None res_timings['n_contrib_hel']=n_contrib_hel res_timings['n_tot_hel']=len(helicities) # We aim at a 30 sec run if not make_it_quick: target_pspoints_number = max(int(30.0/time_per_ps_estimate)+1,50) else: target_pspoints_number = 10 logger.info("Checking timing for process %s "%proc_name+\ "with %d PS points."%target_pspoints_number) MadLoopInitializer.fix_PSPoint_in_check(pjoin(export_dir,'SubProcesses'), read_ps = False, npoints = target_pspoints_number*2, \ hel_config = contributing_hel, split_orders=split_orders) compile_time, run_time, ram_usage = MadLoopInitializer.make_and_run(dir_name) if compile_time == None: return None res_timings['run_polarized_total']=\ (run_time-res_timings['Booting_time'])/(target_pspoints_number*2) if make_it_quick: res_timings['run_unpolarized_total'] = 1.0 res_timings['ram_usage'] = 0.0 else: MadLoopInitializer.fix_PSPoint_in_check(pjoin(export_dir,'SubProcesses'), read_ps = False, npoints = target_pspoints_number, hel_config = -1, split_orders=split_orders) compile_time, run_time, ram_usage = MadLoopInitializer.make_and_run(dir_name, checkRam=True) if compile_time == None: return None res_timings['run_unpolarized_total']=\ (run_time-res_timings['Booting_time'])/target_pspoints_number res_timings['ram_usage'] = ram_usage if not self.loop_optimized_output: return res_timings # For the loop optimized output, we also check the time spent in # computing the coefficients of the loop numerator polynomials. # So we modify loop_matrix.f in order to skip the loop evaluation phase. self.skip_loop_evaluation_setup(dir_name,skip=True) if make_it_quick: res_timings['run_unpolarized_coefs'] = 1.0 else: MadLoopInitializer.fix_PSPoint_in_check(pjoin(export_dir,'SubProcesses'), read_ps = False, npoints = target_pspoints_number, hel_config = -1, split_orders=split_orders) compile_time, run_time, ram_usage = MadLoopInitializer.make_and_run(dir_name) if compile_time == None: return None res_timings['run_unpolarized_coefs']=\ (run_time-res_timings['Booting_time'])/target_pspoints_number MadLoopInitializer.fix_PSPoint_in_check(pjoin(export_dir,'SubProcesses'), read_ps = False, npoints = target_pspoints_number*2, \ hel_config = contributing_hel, split_orders=split_orders) compile_time, run_time, ram_usage = MadLoopInitializer.make_and_run(dir_name) if compile_time == None: return None res_timings['run_polarized_coefs']=\ (run_time-res_timings['Booting_time'])/(target_pspoints_number*2) # Restitute the original file. self.skip_loop_evaluation_setup(dir_name,skip=False) return res_timings #=============================================================================== # Global helper function run_multiprocs #=============================================================================== def check_matrix_element_stability(self, matrix_element,options=None, infos_IN = None, param_card = None, keep_folder = False, MLOptions = {}): """ Output the matrix_element in argument, run in for nPoints and return a dictionary containing the stability information on each of these points. If infos are provided, then the matrix element output is skipped and reused from a previous run and the content of infos. """ if not options: reusing = False nPoints = 100 split_orders = -1 else: reusing = options['reuse'] nPoints = options['npoints'] split_orders = options['split_orders'] assert ((not reusing and isinstance(matrix_element, \ helas_objects.HelasMatrixElement)) or (reusing and isinstance(matrix_element, base_objects.Process))) # Helper functions def format_PS_point(ps, rotation=0): """ Write out the specified PS point to the file dir_path/PS.input while rotating it if rotation!=0. We consider only rotations of 90 but one could think of having rotation of arbitrary angle too. The first two possibilities, 1 and 2 are a rotation and boost along the z-axis so that improve_ps can still work. rotation=0 => No rotation rotation=1 => Z-axis pi/2 rotation rotation=2 => Z-axis pi/4 rotation rotation=3 => Z-axis boost rotation=4 => (x'=z,y'=-x,z'=-y) rotation=5 => (x'=-z,y'=y,z'=x)""" if rotation==0: p_out=copy.copy(ps) elif rotation==1: p_out = [[pm[0],-pm[2],pm[1],pm[3]] for pm in ps] elif rotation==2: sq2 = math.sqrt(2.0) p_out = [[pm[0],(pm[1]-pm[2])/sq2,(pm[1]+pm[2])/sq2,pm[3]] for pm in ps] elif rotation==3: p_out = boost_momenta(ps, 3) # From this point the transformations will prevent the # improve_ps script of MadLoop to work. elif rotation==4: p_out=[[pm[0],pm[3],-pm[1],-pm[2]] for pm in ps] elif rotation==5: p_out=[[pm[0],-pm[3],pm[2],pm[1]] for pm in ps] else: raise MadGraph5Error("Rotation id %i not implemented"%rotation) return '\n'.join([' '.join(['%.16E'%pi for pi in p]) for p in p_out]) def pick_PS_point(proc, options): """ Randomly generate a PS point and make sure it is eligible. Then return it. Users can edit the cuts here if they want.""" p, w_rambo = self.get_momenta(proc, options) if options['events']: return p # For 2>1 process, we don't check the cuts of course while (not MatrixElementEvaluator.pass_isolation_cuts(p) and len(p)>3): p, w_rambo = self.get_momenta(proc, options) # For a 2>1 process, it would always be the same PS point, # so here we bring in so boost along the z-axis, just for the sake # of it. if len(p)==3: p = boost_momenta(p,3,random.uniform(0.0,0.99)) return p # Start loop on loop libraries # Accuracy threshold of double precision evaluations above which the # PS points is also evaluated in quadruple precision accuracy_threshold=1.0e-1 # Number of lorentz transformations to consider for the stability test # (along with the loop direction test which is performed by default) num_rotations = 1 if "MLReductionLib" not in MLOptions: tools=[1] else: tools=MLOptions["MLReductionLib"] tools=list(set(tools)) # remove the duplication ones # not self-contained tir libraries tool_var={'pjfry':2,'golem':4,'samurai':5,'ninja':6,'collier':7} for tool in ['pjfry','golem','samurai','ninja','collier']: tool_dir='%s_dir'%tool if not tool_dir in self.tir_dir: continue tool_libpath=self.tir_dir[tool_dir] tool_libname="lib%s.a"%tool if (not isinstance(tool_libpath,str)) or (not os.path.exists(tool_libpath)) \ or (not os.path.isfile(pjoin(tool_libpath,tool_libname))): if tool_var[tool] in tools: tools.remove(tool_var[tool]) if not tools: return None # Normally, this should work for loop-induced processes as well if not reusing: process = matrix_element['processes'][0] else: process = matrix_element proc_name = process.shell_string()[2:] export_dir=pjoin(self.mg_root,("SAVED" if keep_folder else "")+\ temp_dir_prefix+"_%s"%proc_name) tools_name=bannermod.MadLoopParam._ID_reduction_tool_map return_dict={} return_dict['Stability']={} infos_save={'Process_output': None, 'HELAS_MODEL_compilation' : None, 'dir_path' : None, 'Initialization' : None, 'Process_compilation' : None} for tool in tools: tool_name=tools_name[tool] # Each evaluations is performed in different ways to assess its stability. # There are two dictionaries, one for the double precision evaluation # and the second one for quadruple precision (if it was needed). # The keys are the name of the evaluation method and the value is the # float returned. DP_stability = [] QP_stability = [] # The unstable point encountered are stored in this list Unstable_PS_points = [] # The exceptional PS points are those which stay unstable in quad prec. Exceptional_PS_points = [] MLoptions=MLOptions MLoptions["MLReductionLib"]=tool clean = (tool==tools[0]) and not nPoints==0 if infos_IN==None or (tool_name not in infos_IN): infos=infos_IN else: infos=infos_IN[tool_name] if not infos: infos = self.setup_process(matrix_element,export_dir, \ reusing, param_card,MLoptions,clean) if not infos: return None if clean: infos_save['Process_output']=infos['Process_output'] infos_save['HELAS_MODEL_compilation']=infos['HELAS_MODEL_compilation'] infos_save['dir_path']=infos['dir_path'] infos_save['Process_compilation']=infos['Process_compilation'] else: if not infos['Process_output']: infos['Process_output']=infos_save['Process_output'] if not infos['HELAS_MODEL_compilation']: infos['HELAS_MODEL_compilation']=infos_save['HELAS_MODEL_compilation'] if not infos['dir_path']: infos['dir_path']=infos_save['dir_path'] if not infos['Process_compilation']: infos['Process_compilation']=infos_save['Process_compilation'] dir_path=infos['dir_path'] # Reuse old stability runs if present savefile='SavedStabilityRun_%s%%s.pkl'%tools_name[tool] data_i = 0 if reusing: # Possibly add additional data than the main one in 0 data_i=0 while os.path.isfile(pjoin(dir_path,savefile%('_%d'%data_i))): pickle_path = pjoin(dir_path,savefile%('_%d'%data_i)) saved_run = save_load_object.load_from_file(pickle_path) if data_i>0: logger.info("Loading additional data stored in %s."% str(pickle_path)) logger.info("Loaded data moved to %s."%str(pjoin( dir_path,'LOADED_'+savefile%('_%d'%data_i)))) shutil.move(pickle_path, pjoin(dir_path,'LOADED_'+savefile%('%d'%data_i))) DP_stability.extend(saved_run['DP_stability']) QP_stability.extend(saved_run['QP_stability']) Unstable_PS_points.extend(saved_run['Unstable_PS_points']) Exceptional_PS_points.extend(saved_run['Exceptional_PS_points']) data_i += 1 return_dict['Stability'][tool_name] = {'DP_stability':DP_stability, 'QP_stability':QP_stability, 'Unstable_PS_points':Unstable_PS_points, 'Exceptional_PS_points':Exceptional_PS_points} if nPoints==0: if len(return_dict['Stability'][tool_name]['DP_stability'])!=0: # In case some data was combined, overwrite the pickle if data_i>1: save_load_object.save_to_file(pjoin(dir_path, savefile%'_0'),return_dict['Stability'][tool_name]) continue else: logger.info("ERROR: Not reusing a directory or any pickled"+ " result for tool %s and the number"%tool_name+\ " of point for the check is zero.") return None logger.info("Checking stability of process %s "%proc_name+\ "with %d PS points by %s."%(nPoints,tool_name)) if infos['Initialization'] != None: time_per_ps_estimate = (infos['Initialization']/4.0)/2.0 sec_needed = int(time_per_ps_estimate*nPoints*4) else: sec_needed = 0 progress_bar = None time_info = False if sec_needed>5: time_info = True logger.info("This check should take about "+\ "%s to run. Started on %s."%(\ str(datetime.timedelta(seconds=sec_needed)),\ datetime.datetime.now().strftime("%d-%m-%Y %H:%M"))) if logger.getEffectiveLevel()<logging.WARNING and \ (sec_needed>5 or infos['Initialization'] == None): widgets = ['Stability check:', pbar.Percentage(), ' ', pbar.Bar(),' ', pbar.ETA(), ' '] progress_bar = pbar.ProgressBar(widgets=widgets, maxval=nPoints, fd=sys.stdout) MadLoopInitializer.fix_PSPoint_in_check(pjoin(export_dir,'SubProcesses'), read_ps = True, npoints = 1, hel_config = -1, split_orders=split_orders) # Recompile (Notice that the recompilation is only necessary once) for # the change above to take effect. # Make sure to recreate the executable and modified sources try: os.remove(pjoin(dir_path,'check')) os.remove(pjoin(dir_path,'check_sa.o')) except OSError: pass # Now run make devnull = open(os.devnull, 'w') retcode = subprocess.call(['make','check'], cwd=dir_path, stdout=devnull, stderr=devnull) devnull.close() if retcode != 0: logging.info("Error while executing make in %s" % dir_path) return None # First create the stability check fortran driver executable if not # already present. if not os.path.isfile(pjoin(dir_path,'StabilityCheckDriver.f')): # Use the presence of the file born_matrix.f to check if this output # is a loop_induced one or not. if os.path.isfile(pjoin(dir_path,'born_matrix.f')): checkerName = 'StabilityCheckDriver.f' else: checkerName = 'StabilityCheckDriver_loop_induced.f' with open(pjoin(self.mg_root,'Template','loop_material','Checks', checkerName),'r') as checkerFile: with open(pjoin(dir_path,'proc_prefix.txt')) as proc_prefix: checkerToWrite = checkerFile.read()%{'proc_prefix': proc_prefix.read()} checkerFile = open(pjoin(dir_path,'StabilityCheckDriver.f'),'w') checkerFile.write(checkerToWrite) checkerFile.close() #cp(pjoin(self.mg_root,'Template','loop_material','Checks',\ # checkerName),pjoin(dir_path,'StabilityCheckDriver.f')) # Make sure to recompile the possibly modified files (time stamps can be # off). if os.path.isfile(pjoin(dir_path,'StabilityCheckDriver')): os.remove(pjoin(dir_path,'StabilityCheckDriver')) if os.path.isfile(pjoin(dir_path,'loop_matrix.o')): os.remove(pjoin(dir_path,'loop_matrix.o')) misc.compile(arg=['StabilityCheckDriver'], cwd=dir_path, \ mode='fortran', job_specs = False) # Now for 2>1 processes, because the HelFilter was setup in for always # identical PS points with vec(p_1)=-vec(p_2), it is best not to remove # the helicityFilter double check if len(process['legs'])==3: self.fix_MadLoopParamCard(dir_path, mp=False, loop_filter=False, DoubleCheckHelicityFilter=True) StabChecker = subprocess.Popen([pjoin(dir_path,'StabilityCheckDriver')], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=dir_path) start_index = len(DP_stability) if progress_bar!=None: progress_bar.start() # Flag to know if the run was interrupted or not interrupted = False # Flag to know wheter the run for one specific PS point got an IOError # and must be retried retry = 0 # We do not use a for loop because we want to manipulate the updater. i=start_index if options and 'events' in options and options['events']: # it is necessary to reuse the events from lhe file import MadSpin.decay as madspin fsock = open(options['events']) self.event_file = madspin.Event(fsock) while i<(start_index+nPoints): # To be added to the returned statistics qp_dict={} dp_dict={} UPS = None EPS = None # Pick an eligible PS point with rambo, if not already done if retry==0: p = pick_PS_point(process, options) # print "I use P_%i="%i,p try: if progress_bar!=None: progress_bar.update(i+1-start_index) # Write it in the input file PSPoint = format_PS_point(p,0) dp_res=[] dp_res.append(self.get_me_value(StabChecker,PSPoint,1, split_orders=split_orders)) dp_dict['CTModeA']=dp_res[-1] dp_res.append(self.get_me_value(StabChecker,PSPoint,2, split_orders=split_orders)) dp_dict['CTModeB']=dp_res[-1] for rotation in range(1,num_rotations+1): PSPoint = format_PS_point(p,rotation) dp_res.append(self.get_me_value(StabChecker,PSPoint,1, split_orders=split_orders)) dp_dict['Rotation%i'%rotation]=dp_res[-1] # Make sure all results make sense if any([not res for res in dp_res]): return None dp_accuracy =((max(dp_res)-min(dp_res))/ abs(sum(dp_res)/len(dp_res))) dp_dict['Accuracy'] = dp_accuracy if dp_accuracy>accuracy_threshold: if tool in [1,6]: # Only CutTools or Ninja can use QP UPS = [i,p] qp_res=[] PSPoint = format_PS_point(p,0) qp_res.append(self.get_me_value(StabChecker,PSPoint,4, split_orders=split_orders)) qp_dict['CTModeA']=qp_res[-1] qp_res.append(self.get_me_value(StabChecker,PSPoint,5, split_orders=split_orders)) qp_dict['CTModeB']=qp_res[-1] for rotation in range(1,num_rotations+1): PSPoint = format_PS_point(p,rotation) qp_res.append(self.get_me_value(StabChecker,PSPoint,4, split_orders=split_orders)) qp_dict['Rotation%i'%rotation]=qp_res[-1] # Make sure all results make sense if any([not res for res in qp_res]): return None qp_accuracy = ((max(qp_res)-min(qp_res))/ abs(sum(qp_res)/len(qp_res))) qp_dict['Accuracy']=qp_accuracy if qp_accuracy>accuracy_threshold: EPS = [i,p] else: # Simply consider the point as a UPS when not using # CutTools UPS = [i,p] except KeyboardInterrupt: interrupted = True break except IOError, e: if e.errno == errno.EINTR: if retry==100: logger.error("Failed hundred times consecutively because"+ " of system call interruptions.") raise else: logger.debug("Recovered from a system call interruption."+\ "PSpoint #%i, Attempt #%i."%(i,retry+1)) # Sleep for half a second. Safety measure. time.sleep(0.5) # We will retry this PS point retry = retry+1 # Make sure the MadLoop process is properly killed try: StabChecker.kill() except Exception: pass StabChecker = subprocess.Popen(\ [pjoin(dir_path,'StabilityCheckDriver')], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=dir_path) continue else: raise # Successfully processed a PS point so, # > reset retry retry = 0 # > Update the while loop counter variable i=i+1 # Update the returned statistics DP_stability.append(dp_dict) QP_stability.append(qp_dict) if not EPS is None: Exceptional_PS_points.append(EPS) if not UPS is None: Unstable_PS_points.append(UPS) if progress_bar!=None: progress_bar.finish() if time_info: logger.info('Finished check on %s.'%datetime.datetime.now().strftime(\ "%d-%m-%Y %H:%M")) # Close the StabChecker process. if not interrupted: StabChecker.stdin.write('y\n') else: StabChecker.kill() #return_dict = {'DP_stability':DP_stability, # 'QP_stability':QP_stability, # 'Unstable_PS_points':Unstable_PS_points, # 'Exceptional_PS_points':Exceptional_PS_points} # Save the run for possible future use save_load_object.save_to_file(pjoin(dir_path,savefile%'_0'),\ return_dict['Stability'][tool_name]) if interrupted: break return_dict['Process'] = matrix_element.get('processes')[0] if not \ reusing else matrix_element return return_dict @classmethod def get_me_value(cls, StabChecker, PSpoint, mode, hel=-1, mu_r=-1.0, split_orders=-1): """ This version of get_me_value is simplified for the purpose of this class. No compilation is necessary. The CT mode can be specified.""" # Reset the stdin with EOF character without closing it. StabChecker.stdin.write('\x1a') StabChecker.stdin.write('1\n') StabChecker.stdin.write('%d\n'%mode) StabChecker.stdin.write('%s\n'%PSpoint) StabChecker.stdin.write('%.16E\n'%mu_r) StabChecker.stdin.write('%d\n'%hel) StabChecker.stdin.write('%d\n'%split_orders) try: while True: output = StabChecker.stdout.readline() if output != '': last_non_empty = output if output==' ##TAG#RESULT_START#TAG##\n': break # Break if the checker has crashed for some reason. ret_code = StabChecker.poll() if not ret_code is None: output = StabChecker.stdout.readline() if output != '': last_non_empty = output error = StabChecker.stderr.readline() raise MadGraph5Error, \ "The MadLoop stability checker crashed with return code = %d, and last output:\n\nstdout: %s\nstderr: %s\n"%\ (ret_code, last_non_empty, error) res = "" while True: output = StabChecker.stdout.readline() if output != '': last_non_empty = output if output==' ##TAG#RESULT_STOP#TAG##\n': break else: res += output ret_code = StabChecker.poll() if not ret_code is None: output = StabChecker.stdout.readline() if output != '': last_non_empty = output error = StabChecker.stderr.readline() raise MadGraph5Error, \ "The MadLoop stability checker crashed with return code = %d, and last output:\n\nstdout: %s\nstderr: %s\n"%\ (ret_code, last_non_empty, error) return cls.parse_check_output(res,format='tuple')[0][0] except IOError as e: logging.warning("Error while running MadLoop. Exception = %s"%str(e)) raise e def evaluate_helicities(process, param_card = None, mg_root="", cmass_scheme = False): """ Perform a python evaluation of the matrix element independently for all possible helicity configurations for a fixed number of points N and returns the average for each in the format [[hel_config, eval],...]. This is used to determine what are the vanishing and dependent helicity configurations at generation time and accordingly setup the output. This is not yet implemented at LO.""" # Make sure this function is employed with a single process at LO assert isinstance(process,base_objects.Process) assert process.get('perturbation_couplings')==[] N_eval=50 evaluator = MatrixElementEvaluator(process.get('model'), param_card, auth_skipping = False, reuse = True) amplitude = diagram_generation.Amplitude(process) matrix_element = helas_objects.HelasMatrixElement(amplitude,gen_color=False) cumulative_helEvals = [] # Fill cumulative hel progressively with several evaluations of the ME. for i in range(N_eval): p, w_rambo = evaluator.get_momenta(process) helEvals = evaluator.evaluate_matrix_element(\ matrix_element, p = p, output = 'helEvals')['helEvals'] if cumulative_helEvals==[]: cumulative_helEvals=copy.copy(helEvals) else: cumulative_helEvals = [[h[0],h[1]+helEvals[i][1]] for i, h in \ enumerate(cumulative_helEvals)] # Now normalize with the total number of evaluations cumulative_helEvals = [[h[0],h[1]/N_eval] for h in cumulative_helEvals] # As we are not in the context of a check command, so we clean the added # globals right away clean_added_globals(ADDED_GLOBAL) return cumulative_helEvals def run_multiprocs_no_crossings(function, multiprocess, stored_quantities, opt=None, options=None): """A wrapper function for running an iteration of a function over a multiprocess, without having to first create a process list (which makes a big difference for very large multiprocesses. stored_quantities is a dictionary for any quantities that we want to reuse between runs.""" model = multiprocess.get('model') isids = [leg.get('ids') for leg in multiprocess.get('legs') \ if not leg.get('state')] fsids = [leg.get('ids') for leg in multiprocess.get('legs') \ if leg.get('state')] # Create dictionary between isids and antiids, to speed up lookup id_anti_id_dict = {} for id in set(tuple(sum(isids+fsids, []))): id_anti_id_dict[id] = model.get_particle(id).get_anti_pdg_code() id_anti_id_dict[model.get_particle(id).get_anti_pdg_code()] = id sorted_ids = [] results = [] for is_prod in apply(itertools.product, isids): for fs_prod in apply(itertools.product, fsids): # Check if we have already checked the process if check_already_checked(is_prod, fs_prod, sorted_ids, multiprocess, model, id_anti_id_dict): continue # Generate process based on the selected ids process = multiprocess.get_process_with_legs(base_objects.LegList(\ [base_objects.Leg({'id': id, 'state':False}) for \ id in is_prod] + \ [base_objects.Leg({'id': id, 'state':True}) for \ id in fs_prod])) if opt is not None: if isinstance(opt, dict): try: value = opt[process.base_string()] except Exception: continue result = function(process, stored_quantities, value, options=options) else: result = function(process, stored_quantities, opt, options=options) else: result = function(process, stored_quantities, options=options) if result: results.append(result) return results #=============================================================================== # Helper function check_already_checked #=============================================================================== def check_already_checked(is_ids, fs_ids, sorted_ids, process, model, id_anti_id_dict = {}): """Check if process already checked, if so return True, otherwise add process and antiprocess to sorted_ids.""" # Check if process is already checked if id_anti_id_dict: is_ids = [id_anti_id_dict[id] for id in \ is_ids] else: is_ids = [model.get_particle(id).get_anti_pdg_code() for id in \ is_ids] ids = array.array('i', sorted(is_ids + list(fs_ids)) + \ [process.get('id')]) if ids in sorted_ids: # We have already checked (a crossing of) this process return True # Add this process to tested_processes sorted_ids.append(ids) # Skip adding antiprocess below, since might be relevant too return False #=============================================================================== # Generate a loop matrix element #=============================================================================== def generate_loop_matrix_element(process_definition, reuse, output_path=None, cmd = FakeInterface(), proc_name=None, loop_filter=None): """ Generate a loop matrix element from the process definition, and returns it along with the timing information dictionary. If reuse is True, it reuses the already output directory if found. There is the possibility of specifying the proc_name.""" assert isinstance(process_definition, (base_objects.ProcessDefinition,base_objects.Process)) assert process_definition.get('perturbation_couplings')!=[] if isinstance(process_definition,base_objects.ProcessDefinition): if any(len(l.get('ids'))>1 for l in process_definition.get('legs')): raise InvalidCmd("This check can only be performed on single "+ " processes. (i.e. without multiparticle labels).") isids = [leg.get('ids')[0] for leg in process_definition.get('legs') \ if not leg.get('state')] fsids = [leg.get('ids')[0] for leg in process_definition.get('legs') \ if leg.get('state')] # Now generate a process based on the ProcessDefinition given in argument. process = process_definition.get_process(isids,fsids) else: process = process_definition if not output_path is None: root_path = output_path else: root_path = cmd._mgme_dir # By default, set all entries to None timing = {'Diagrams_generation': None, 'n_loops': None, 'HelasDiagrams_generation': None, 'n_loop_groups': None, 'n_loop_wfs': None, 'loop_wfs_ranks': None} if proc_name: proc_dir = pjoin(root_path,proc_name) else: proc_dir = pjoin(root_path,"SAVED"+temp_dir_prefix+"_%s"%( '_'.join(process.shell_string().split('_')[1:]))) if reuse and os.path.isdir(proc_dir): logger.info("Reusing directory %s"%str(proc_dir)) # If reusing, return process instead of matrix element return timing, process logger.info("Generating p%s"%process_definition.nice_string()[1:]) start=time.time() try: amplitude = loop_diagram_generation.LoopAmplitude(process, loop_filter=loop_filter) except InvalidCmd: # An error about the sanity of the process can be thrown, in which case # we return nothing return time.time()-start, None if not amplitude.get('diagrams'): # Not matrix eleemnt for this process return time.time()-start, None # Make sure to disable loop_optimized_output when considering loop induced # processes loop_optimized_output = cmd.options['loop_optimized_output'] timing['Diagrams_generation']=time.time()-start timing['n_loops']=len(amplitude.get('loop_diagrams')) start=time.time() matrix_element = loop_helas_objects.LoopHelasMatrixElement(amplitude, optimized_output = loop_optimized_output,gen_color=True) # Here, the alohaModel used for analytica computations and for the aloha # subroutine output will be different, so that some optimization is lost. # But that is ok for the check functionality. matrix_element.compute_all_analytic_information() timing['HelasDiagrams_generation']=time.time()-start if loop_optimized_output: timing['n_loop_groups']=len(matrix_element.get('loop_groups')) lwfs=[l for ldiag in matrix_element.get_loop_diagrams() for l in \ ldiag.get('loop_wavefunctions')] timing['n_loop_wfs']=len(lwfs) timing['loop_wfs_ranks']=[] for rank in range(0,max([l.get_analytic_info('wavefunction_rank') \ for l in lwfs])+1): timing['loop_wfs_ranks'].append(\ len([1 for l in lwfs if \ l.get_analytic_info('wavefunction_rank')==rank])) return timing, matrix_element #=============================================================================== # check profile for loop process (timings + stability in one go) #=============================================================================== def check_profile(process_definition, param_card = None,cuttools="",tir={}, options = {}, cmd = FakeInterface(),output_path=None,MLOptions={}): """For a single loop process, check both its timings and then its stability in one go without regenerating it.""" if 'reuse' not in options: keep_folder=False else: keep_folder = options['reuse'] model=process_definition.get('model') timing1, matrix_element = generate_loop_matrix_element(process_definition, keep_folder,output_path=output_path,cmd=cmd) reusing = isinstance(matrix_element, base_objects.Process) options['reuse'] = reusing myProfiler = LoopMatrixElementTimer(cuttools_dir=cuttools,tir_dir=tir, model=model, output_path=output_path, cmd=cmd) if not myProfiler.loop_optimized_output: MLoptions={} else: MLoptions=MLOptions timing2 = myProfiler.time_matrix_element(matrix_element, reusing, param_card, keep_folder=keep_folder,options=options, MLOptions = MLoptions) timing2['reduction_tool'] = MLoptions['MLReductionLib'][0] if timing2 == None: return None, None # The timing info is made of the merged two dictionaries timing = dict(timing1.items()+timing2.items()) stability = myProfiler.check_matrix_element_stability(matrix_element, options=options, infos_IN=timing,param_card=param_card, keep_folder = keep_folder, MLOptions = MLoptions) if stability == None: return None, None else: timing['loop_optimized_output']=myProfiler.loop_optimized_output stability['loop_optimized_output']=myProfiler.loop_optimized_output return timing, stability #=============================================================================== # check_timing for loop processes #=============================================================================== def check_stability(process_definition, param_card = None,cuttools="",tir={}, options=None,nPoints=100, output_path=None, cmd = FakeInterface(), MLOptions = {}): """For a single loop process, give a detailed summary of the generation and execution timing.""" if "reuse" in options: reuse=options['reuse'] else: reuse=False reuse=options['reuse'] keep_folder = reuse model=process_definition.get('model') timing, matrix_element = generate_loop_matrix_element(process_definition, reuse, output_path=output_path, cmd=cmd) reusing = isinstance(matrix_element, base_objects.Process) options['reuse'] = reusing myStabilityChecker = LoopMatrixElementTimer(cuttools_dir=cuttools,tir_dir=tir, output_path=output_path,model=model,cmd=cmd) if not myStabilityChecker.loop_optimized_output: MLoptions = {} else: MLoptions = MLOptions # Make sure that the poles computation is disabled for COLLIER if 'COLLIERComputeUVpoles' not in MLoptions: MLoptions['COLLIERComputeUVpoles']=False if 'COLLIERComputeIRpoles' not in MLoptions: MLoptions['COLLIERComputeIRpoles']=False # Use high required accuracy in COLLIER's requirement if not specified if 'COLLIERRequiredAccuracy' not in MLoptions: MLoptions['COLLIERRequiredAccuracy']=1e-13 # Use loop-direction switching as stability test if not specifed (more reliable) if 'COLLIERUseInternalStabilityTest' not in MLoptions: MLoptions['COLLIERUseInternalStabilityTest']=False # Finally we *must* forbid the use of COLLIER global cache here, because it # does not work with the way we call independently CTMODERun 1 and 2 # with the StabilityChecker. MLoptions['COLLIERGlobalCache'] = 0 if "MLReductionLib" not in MLOptions: MLoptions["MLReductionLib"] = [] if cuttools: MLoptions["MLReductionLib"].extend([1]) if "iregi_dir" in tir: MLoptions["MLReductionLib"].extend([3]) if "pjfry_dir" in tir: MLoptions["MLReductionLib"].extend([2]) if "golem_dir" in tir: MLoptions["MLReductionLib"].extend([4]) if "samurai_dir" in tir: MLoptions["MLReductionLib"].extend([5]) if "ninja_dir" in tir: MLoptions["MLReductionLib"].extend([6]) if "collier_dir" in tir: MLoptions["MLReductionLib"].extend([7]) stability = myStabilityChecker.check_matrix_element_stability(matrix_element, options=options,param_card=param_card, keep_folder=keep_folder, MLOptions=MLoptions) if stability == None: return None else: stability['loop_optimized_output']=myStabilityChecker.loop_optimized_output return stability #=============================================================================== # check_timing for loop processes #=============================================================================== def check_timing(process_definition, param_card= None, cuttools="",tir={}, output_path=None, options={}, cmd = FakeInterface(), MLOptions = {}): """For a single loop process, give a detailed summary of the generation and execution timing.""" if 'reuse' not in options: keep_folder = False else: keep_folder = options['reuse'] model=process_definition.get('model') timing1, matrix_element = generate_loop_matrix_element(process_definition, keep_folder, output_path=output_path, cmd=cmd) reusing = isinstance(matrix_element, base_objects.Process) options['reuse'] = reusing myTimer = LoopMatrixElementTimer(cuttools_dir=cuttools,model=model,tir_dir=tir, output_path=output_path, cmd=cmd) if not myTimer.loop_optimized_output: MLoptions = {} else: MLoptions = MLOptions # Make sure that the poles computation is disabled for COLLIER if 'COLLIERComputeUVpoles' not in MLoptions: MLoptions['COLLIERComputeUVpoles']=False if 'COLLIERComputeIRpoles' not in MLoptions: MLoptions['COLLIERComputeIRpoles']=False # And the COLLIER global cache is active, if not specified if 'COLLIERGlobalCache' not in MLoptions: MLoptions['COLLIERGlobalCache']=-1 # And time NINJA by default if not specified: if 'MLReductionLib' not in MLoptions or \ len(MLoptions['MLReductionLib'])==0: MLoptions['MLReductionLib'] = [6] timing2 = myTimer.time_matrix_element(matrix_element, reusing, param_card, keep_folder = keep_folder, options=options, MLOptions = MLoptions) if timing2 == None: return None else: # Return the merged two dictionaries res = dict(timing1.items()+timing2.items()) res['loop_optimized_output']=myTimer.loop_optimized_output res['reduction_tool'] = MLoptions['MLReductionLib'][0] return res #=============================================================================== # check_processes #=============================================================================== def check_processes(processes, param_card = None, quick = [],cuttools="",tir={}, options=None, reuse = False, output_path=None, cmd = FakeInterface()): """Check processes by generating them with all possible orderings of particles (which means different diagram building and Helas calls), and comparing the resulting matrix element values.""" cmass_scheme = cmd.options['complex_mass_scheme'] if isinstance(processes, base_objects.ProcessDefinition): # Generate a list of unique processes # Extract IS and FS ids multiprocess = processes model = multiprocess.get('model') # Initialize matrix element evaluation if multiprocess.get('perturbation_couplings')==[]: evaluator = MatrixElementEvaluator(model, auth_skipping = True, reuse = False, cmd = cmd) else: evaluator = LoopMatrixElementEvaluator(cuttools_dir=cuttools,tir_dir=tir, model=model, auth_skipping = True, reuse = False, output_path=output_path, cmd = cmd) results = run_multiprocs_no_crossings(check_process, multiprocess, evaluator, quick, options) if "used_lorentz" not in evaluator.stored_quantities: evaluator.stored_quantities["used_lorentz"] = [] if multiprocess.get('perturbation_couplings')!=[] and not reuse: # Clean temporary folders created for the running of the loop processes clean_up(output_path) return results, evaluator.stored_quantities["used_lorentz"] elif isinstance(processes, base_objects.Process): processes = base_objects.ProcessList([processes]) elif isinstance(processes, base_objects.ProcessList): pass else: raise InvalidCmd("processes is of non-supported format") if not processes: raise InvalidCmd("No processes given") model = processes[0].get('model') # Initialize matrix element evaluation if processes[0].get('perturbation_couplings')==[]: evaluator = MatrixElementEvaluator(model, param_card, auth_skipping = True, reuse = False, cmd = cmd) else: evaluator = LoopMatrixElementEvaluator(cuttools_dir=cuttools, tir_dir=tir, model=model,param_card=param_card, auth_skipping = True, reuse = False, output_path=output_path, cmd = cmd) # Keep track of tested processes, matrix elements, color and already # initiated Lorentz routines, to reuse as much as possible sorted_ids = [] comparison_results = [] # Check process by process for process in processes: # Check if we already checked process if check_already_checked([l.get('id') for l in process.get('legs') if \ not l.get('state')], [l.get('id') for l in process.get('legs') if \ l.get('state')], sorted_ids, process, model): continue # Get process result res = check_process(process, evaluator, quick, options) if res: comparison_results.append(res) if "used_lorentz" not in evaluator.stored_quantities: evaluator.stored_quantities["used_lorentz"] = [] if processes[0].get('perturbation_couplings')!=[] and not reuse: # Clean temporary folders created for the running of the loop processes clean_up(output_path) return comparison_results, evaluator.stored_quantities["used_lorentz"] def check_process(process, evaluator, quick, options): """Check the helas calls for a process by generating the process using all different permutations of the process legs (or, if quick, use a subset of permutations), and check that the matrix element is invariant under this.""" model = process.get('model') # Ensure that leg numbers are set for i, leg in enumerate(process.get('legs')): leg.set('number', i+1) logger.info("Checking crossings of %s" % \ process.nice_string().replace('Process:', 'process')) process_matrix_elements = [] # For quick checks, only test twp permutations with leg "1" in # each position if quick: leg_positions = [[] for leg in process.get('legs')] quick = range(1,len(process.get('legs')) + 1) values = [] # Now, generate all possible permutations of the legs number_checked=0 for legs in itertools.permutations(process.get('legs')): order = [l.get('number') for l in legs] if quick: found_leg = True for num in quick: # Only test one permutation for each position of the # specified legs leg_position = legs.index([l for l in legs if \ l.get('number') == num][0]) if not leg_position in leg_positions[num-1]: found_leg = False leg_positions[num-1].append(leg_position) if found_leg: continue # Further limit the total number of permutations checked to 3 for # loop processes. if quick and process.get('perturbation_couplings') and number_checked >3: continue legs = base_objects.LegList(legs) if order != range(1,len(legs) + 1): logger.info("Testing permutation: %s" % \ order) newproc = copy.copy(process) newproc.set('legs',legs) # Generate the amplitude for this process try: if newproc.get('perturbation_couplings')==[]: amplitude = diagram_generation.Amplitude(newproc) else: # Change the cutting method every two times. loop_base_objects.cutting_method = 'optimal' if \ number_checked%2 == 0 else 'default' amplitude = loop_diagram_generation.LoopAmplitude(newproc) except InvalidCmd: result=False else: result = amplitude.get('diagrams') # Make sure to re-initialize the cutting method to the original one. loop_base_objects.cutting_method = 'optimal' if not result: # This process has no diagrams; go to next process logging.info("No diagrams for %s" % \ process.nice_string().replace('Process', 'process')) break if order == range(1,len(legs) + 1): # Generate phase space point to use p, w_rambo = evaluator.get_momenta(process, options) # Generate the HelasMatrixElement for the process if not isinstance(amplitude,loop_diagram_generation.LoopAmplitude): matrix_element = helas_objects.HelasMatrixElement(amplitude, gen_color=False) else: matrix_element = loop_helas_objects.LoopHelasMatrixElement(amplitude, optimized_output=evaluator.loop_optimized_output) # The loop diagrams are always the same in the basis, so that the # LoopHelasMatrixElement always look alike. One needs to consider # the crossing no matter what then. if amplitude.get('process').get('has_born'): # But the born diagrams will change depending on the order of the # particles in the process definition if matrix_element in process_matrix_elements: # Exactly the same matrix element has been tested # for other permutation of same process continue process_matrix_elements.append(matrix_element) res = evaluator.evaluate_matrix_element(matrix_element, p = p, options=options) if res == None: break values.append(res[0]) number_checked += 1 # Check if we failed badly (1% is already bad) - in that # case done for this process if abs(max(values)) + abs(min(values)) > 0 and \ 2 * abs(max(values) - min(values)) / \ (abs(max(values)) + abs(min(values))) > 0.01: break # Check if process was interrupted if not values: return None # Done with this process. Collect values, and store # process and momenta diff = 0 if abs(max(values)) + abs(min(values)) > 0: diff = 2* abs(max(values) - min(values)) / \ (abs(max(values)) + abs(min(values))) # be more tolerant with loop processes if process.get('perturbation_couplings'): passed = diff < 1.e-5 else: passed = diff < 1.e-8 return {"process": process, "momenta": p, "values": values, "difference": diff, "passed": passed} def clean_up(mg_root): """Clean-up the possible left-over outputs from 'evaluate_matrix element' of the LoopMatrixEvaluator (when its argument proliferate is set to true). """ if mg_root is None: pass directories = misc.glob('%s*' % temp_dir_prefix, mg_root) if directories != []: logger.debug("Cleaning temporary %s* check runs."%temp_dir_prefix) for dir in directories: # For safety make sure that the directory contains a folder SubProcesses if os.path.isdir(pjoin(dir,'SubProcesses')): shutil.rmtree(dir) def format_output(output,format): """ Return a string for 'output' with the specified format. If output is None, it returns 'NA'.""" if output!=None: return format%output else: return 'NA' def output_profile(myprocdef, stability, timing, output_path, reusing=False): """Present the results from a timing and stability consecutive check""" opt = timing['loop_optimized_output'] text = 'Timing result for the '+('optimized' if opt else 'default')+\ ' output:\n' text += output_timings(myprocdef,timing) text += '\nStability result for the '+('optimized' if opt else 'default')+\ ' output:\n' text += output_stability(stability,output_path, reusing=reusing) mode = 'optimized' if opt else 'default' logFilePath = pjoin(output_path, 'profile_%s_%s.log'\ %(mode,stability['Process'].shell_string())) logFile = open(logFilePath, 'w') logFile.write(text) logFile.close() logger.info('Log of this profile check was output to file %s'\ %str(logFilePath)) return text def output_stability(stability, output_path, reusing=False): """Present the result of a stability check in a nice format. The full info is printed out in 'Stability_result_<proc_shell_string>.dat' under the MadGraph5_aMC@NLO root folder (output_path)""" def accuracy(eval_list): """ Compute the accuracy from different evaluations.""" return (2.0*(max(eval_list)-min(eval_list))/ abs(max(eval_list)+min(eval_list))) def best_estimate(eval_list): """ Returns the best estimate from different evaluations.""" return (max(eval_list)+min(eval_list))/2.0 def loop_direction_test_power(eval_list): """ Computes the loop direction test power P is computed as follow: P = accuracy(loop_dir_test) / accuracy(all_test) So that P is large if the loop direction test is effective. The tuple returned is (log(median(P)),log(min(P)),frac) where frac is the fraction of events with powers smaller than -3 which means events for which the reading direction test shows an accuracy three digits higher than it really is according to the other tests.""" powers=[] for eval in eval_list: loop_dir_evals = [eval['CTModeA'],eval['CTModeB']] # CTModeA is the reference so we keep it in too other_evals = [eval[key] for key in eval.keys() if key not in \ ['CTModeB','Accuracy']] if accuracy(other_evals)!=0.0 and accuracy(loop_dir_evals)!=0.0: powers.append(accuracy(loop_dir_evals)/accuracy(other_evals)) n_fail=0 for p in powers: if (math.log(p)/math.log(10))<-3: n_fail+=1 if len(powers)==0: return (None,None,None) return (math.log(median(powers))/math.log(10), math.log(min(powers))/math.log(10), n_fail/len(powers)) def test_consistency(dp_eval_list, qp_eval_list): """ Computes the consistency test C from the DP and QP evaluations. C = accuracy(all_DP_test) / abs(best_QP_eval-best_DP_eval) So a consistent test would have C as close to one as possible. The tuple returned is (log(median(C)),log(min(C)),log(max(C)))""" consistencies = [] for dp_eval, qp_eval in zip(dp_eval_list,qp_eval_list): dp_evals = [dp_eval[key] for key in dp_eval.keys() \ if key!='Accuracy'] qp_evals = [qp_eval[key] for key in qp_eval.keys() \ if key!='Accuracy'] if (abs(best_estimate(qp_evals)-best_estimate(dp_evals)))!=0.0 and \ accuracy(dp_evals)!=0.0: consistencies.append(accuracy(dp_evals)/(abs(\ best_estimate(qp_evals)-best_estimate(dp_evals)))) if len(consistencies)==0: return (None,None,None) return (math.log(median(consistencies))/math.log(10), math.log(min(consistencies))/math.log(10), math.log(max(consistencies))/math.log(10)) def median(orig_list): """ Find the median of a sorted float list. """ list=copy.copy(orig_list) list.sort() if len(list)%2==0: return (list[int((len(list)/2)-1)]+list[int(len(list)/2)])/2.0 else: return list[int((len(list)-1)/2)] # Define shortcut f = format_output opt = stability['loop_optimized_output'] mode = 'optimized' if opt else 'default' process = stability['Process'] res_str = "Stability checking for %s (%s mode)\n"\ %(process.nice_string()[9:],mode) logFile = open(pjoin(output_path, 'stability_%s_%s.log'\ %(mode,process.shell_string())), 'w') logFile.write('Stability check results\n\n') logFile.write(res_str) data_plot_dict={} accuracy_dict={} nPSmax=0 max_acc=0.0 min_acc=1.0 if stability['Stability']: toolnames= stability['Stability'].keys() toolnamestr=" | ".join(tn+ ''.join([' ']*(10-len(tn))) for tn in toolnames) DP_stability = [[eval['Accuracy'] for eval in stab['DP_stability']] \ for key,stab in stability['Stability'].items()] med_dp_stab_str=" | ".join([f(median(dp_stab),'%.2e ') for dp_stab in DP_stability]) min_dp_stab_str=" | ".join([f(min(dp_stab),'%.2e ') for dp_stab in DP_stability]) max_dp_stab_str=" | ".join([f(max(dp_stab),'%.2e ') for dp_stab in DP_stability]) UPS = [stab['Unstable_PS_points'] for key,stab in stability['Stability'].items()] res_str_i = "\n= Tool (DoublePrec for CT)....... %s\n"%toolnamestr len_PS=["%i"%len(evals)+\ ''.join([' ']*(10-len("%i"%len(evals)))) for evals in DP_stability] len_PS_str=" | ".join(len_PS) res_str_i += "|= Number of PS points considered %s\n"%len_PS_str res_str_i += "|= Median accuracy............... %s\n"%med_dp_stab_str res_str_i += "|= Max accuracy.................. %s\n"%min_dp_stab_str res_str_i += "|= Min accuracy.................. %s\n"%max_dp_stab_str pmedminlist=[] pfraclist=[] for key,stab in stability['Stability'].items(): (pmed,pmin,pfrac)=loop_direction_test_power(stab['DP_stability']) ldtest_str = "%s,%s"%(f(pmed,'%.1f'),f(pmin,'%.1f')) pfrac_str = f(pfrac,'%.2e') pmedminlist.append(ldtest_str+''.join([' ']*(10-len(ldtest_str)))) pfraclist.append(pfrac_str+''.join([' ']*(10-len(pfrac_str)))) pmedminlist_str=" | ".join(pmedminlist) pfraclist_str=" | ".join(pfraclist) res_str_i += "|= Overall DP loop_dir test power %s\n"%pmedminlist_str res_str_i += "|= Fraction of evts with power<-3 %s\n"%pfraclist_str len_UPS=["%i"%len(upup)+\ ''.join([' ']*(10-len("%i"%len(upup)))) for upup in UPS] len_UPS_str=" | ".join(len_UPS) res_str_i += "|= Number of Unstable PS points %s\n"%len_UPS_str res_str_i += \ """ = Legend for the statistics of the stability tests. (all log below ar log_10) The loop direction test power P is computed as follow: P = accuracy(loop_dir_test) / accuracy(all_other_test) So that log(P) is positive if the loop direction test is effective. The tuple printed out is (log(median(P)),log(min(P))) The consistency test C is computed when QP evaluations are available: C = accuracy(all_DP_test) / abs(best_QP_eval-best_DP_eval) So a consistent test would have log(C) as close to zero as possible. The tuple printed out is (log(median(C)),log(min(C)),log(max(C)))\n""" res_str+=res_str_i for key in stability['Stability'].keys(): toolname=key stab=stability['Stability'][key] DP_stability = [eval['Accuracy'] for eval in stab['DP_stability']] # Remember that an evaluation which did not require QP has an empty dictionary QP_stability = [eval['Accuracy'] if eval!={} else -1.0 for eval in \ stab['QP_stability']] nPS = len(DP_stability) if nPS>nPSmax:nPSmax=nPS UPS = stab['Unstable_PS_points'] UPS_stability_DP = [DP_stability[U[0]] for U in UPS] UPS_stability_QP = [QP_stability[U[0]] for U in UPS] EPS = stab['Exceptional_PS_points'] EPS_stability_DP = [DP_stability[E[0]] for E in EPS] EPS_stability_QP = [QP_stability[E[0]] for E in EPS] res_str_i = "" # Use nicer name for the XML tag in the log file xml_toolname = {'GOLEM95':'GOLEM','IREGI':'IREGI', 'CUTTOOLS':'CUTTOOLS','PJFRY++':'PJFRY', 'NINJA':'NINJA','SAMURAI':'SAMURAI', 'COLLIER':'COLLIER'}[toolname.upper()] if len(UPS)>0: res_str_i = "\nDetails of the %d/%d UPS encountered by %s\n"\ %(len(UPS),nPS,toolname) prefix = 'DP' if toolname=='CutTools' else '' res_str_i += "|= %s Median inaccuracy.......... %s\n"\ %(prefix,f(median(UPS_stability_DP),'%.2e')) res_str_i += "|= %s Max accuracy............... %s\n"\ %(prefix,f(min(UPS_stability_DP),'%.2e')) res_str_i += "|= %s Min accuracy............... %s\n"\ %(prefix,f(max(UPS_stability_DP),'%.2e')) (pmed,pmin,pfrac)=loop_direction_test_power(\ [stab['DP_stability'][U[0]] for U in UPS]) if toolname=='CutTools': res_str_i += "|= UPS DP loop_dir test power.... %s,%s\n"\ %(f(pmed,'%.1f'),f(pmin,'%.1f')) res_str_i += "|= UPS DP fraction with power<-3. %s\n"\ %f(pfrac,'%.2e') res_str_i += "|= QP Median accuracy............ %s\n"\ %f(median(UPS_stability_QP),'%.2e') res_str_i += "|= QP Max accuracy............... %s\n"\ %f(min(UPS_stability_QP),'%.2e') res_str_i += "|= QP Min accuracy............... %s\n"\ %f(max(UPS_stability_QP),'%.2e') (pmed,pmin,pfrac)=loop_direction_test_power(\ [stab['QP_stability'][U[0]] for U in UPS]) res_str_i += "|= UPS QP loop_dir test power.... %s,%s\n"\ %(f(pmed,'%.1f'),f(pmin,'%.1f')) res_str_i += "|= UPS QP fraction with power<-3. %s\n"%f(pfrac,'%.2e') (pmed,pmin,pmax)=test_consistency(\ [stab['DP_stability'][U[0]] for U in UPS], [stab['QP_stability'][U[0]] for U in UPS]) res_str_i += "|= DP vs QP stab test consistency %s,%s,%s\n"\ %(f(pmed,'%.1f'),f(pmin,'%.1f'),f(pmax,'%.1f')) if len(EPS)==0: res_str_i += "= Number of Exceptional PS points : 0\n" if len(EPS)>0: res_str_i = "\nDetails of the %d/%d EPS encountered by %s\n"\ %(len(EPS),nPS,toolname) res_str_i += "|= DP Median accuracy............ %s\n"\ %f(median(EPS_stability_DP),'%.2e') res_str_i += "|= DP Max accuracy............... %s\n"\ %f(min(EPS_stability_DP),'%.2e') res_str_i += "|= DP Min accuracy............... %s\n"\ %f(max(EPS_stability_DP),'%.2e') pmed,pmin,pfrac=loop_direction_test_power(\ [stab['DP_stability'][E[0]] for E in EPS]) res_str_i += "|= EPS DP loop_dir test power.... %s,%s\n"\ %(f(pmed,'%.1f'),f(pmin,'%.1f')) res_str_i += "|= EPS DP fraction with power<-3. %s\n"\ %f(pfrac,'%.2e') res_str_i += "|= QP Median accuracy............ %s\n"\ %f(median(EPS_stability_QP),'%.2e') res_str_i += "|= QP Max accuracy............... %s\n"\ %f(min(EPS_stability_QP),'%.2e') res_str_i += "|= QP Min accuracy............... %s\n"\ %f(max(EPS_stability_QP),'%.2e') pmed,pmin,pfrac=loop_direction_test_power(\ [stab['QP_stability'][E[0]] for E in EPS]) res_str_i += "|= EPS QP loop_dir test power.... %s,%s\n"\ %(f(pmed,'%.1f'),f(pmin,'%.1f')) res_str_i += "|= EPS QP fraction with power<-3. %s\n"%f(pfrac,'%.2e') logFile.write(res_str_i) if len(EPS)>0: logFile.write('\nFull details of the %i EPS encountered by %s.\n'\ %(len(EPS),toolname)) logFile.write('<EPS_data reduction=%s>\n'%xml_toolname.upper()) for i, eps in enumerate(EPS): logFile.write('\nEPS #%i\n'%(i+1)) logFile.write('\n'.join([' '+' '.join(['%.16E'%pi for pi in p]) \ for p in eps[1]])) logFile.write('\n DP accuracy : %.4e\n'%DP_stability[eps[0]]) logFile.write(' QP accuracy : %.4e\n'%QP_stability[eps[0]]) logFile.write('</EPS_data>\n') if len(UPS)>0: logFile.write('\nFull details of the %i UPS encountered by %s.\n'\ %(len(UPS),toolname)) logFile.write('<UPS_data reduction=%s>\n'%xml_toolname.upper()) for i, ups in enumerate(UPS): logFile.write('\nUPS #%i\n'%(i+1)) logFile.write('\n'.join([' '+' '.join(['%.16E'%pi for pi in p]) \ for p in ups[1]])) logFile.write('\n DP accuracy : %.4e\n'%DP_stability[ups[0]]) logFile.write(' QP accuracy : %.4e\n'%QP_stability[ups[0]]) logFile.write('</UPS_data>\n') logFile.write('\nData entries for the stability plot.\n') logFile.write('First row is a maximal accuracy delta, second is the '+\ 'fraction of events with DP accuracy worse than delta.\n') logFile.write('<plot_data reduction=%s>\n'%xml_toolname.upper()) # Set the x-range so that it spans [10**-17,10**(min_digit_accuracy)] if max(DP_stability)>0.0: min_digit_acc=int(math.log(max(DP_stability))/math.log(10)) if min_digit_acc>=0: min_digit_acc = min_digit_acc+1 accuracies=[10**(-17+(i/5.0)) for i in range(5*(17+min_digit_acc)+1)] else: logFile.writelines('%.4e %.4e\n'%(accuracies[i], 0.0) for i in \ range(len(accuracies))) logFile.write('</plot_data>\n') res_str_i += '\nPerfect accuracy over all the trial PS points. No plot'+\ ' is output then.' logFile.write('Perfect accuracy over all the trial PS points.') res_str +=res_str_i continue accuracy_dict[toolname]=accuracies if max(accuracies) > max_acc: max_acc=max(accuracies) if min(accuracies) < min_acc: min_acc=min(accuracies) data_plot=[] for acc in accuracies: data_plot.append(float(len([d for d in DP_stability if d>acc]))\ /float(len(DP_stability))) data_plot_dict[toolname]=data_plot logFile.writelines('%.4e %.4e\n'%(accuracies[i], data_plot[i]) for i in \ range(len(accuracies))) logFile.write('</plot_data>\n') logFile.write('\nList of accuracies recorded for the %i evaluations with %s\n'\ %(nPS,toolname)) logFile.write('First row is DP, second is QP (if available).\n\n') logFile.write('<accuracies reduction=%s>\n'%xml_toolname.upper()) logFile.writelines('%.4e '%DP_stability[i]+('NA\n' if QP_stability[i]==-1.0 \ else '%.4e\n'%QP_stability[i]) for i in range(nPS)) logFile.write('</accuracies>\n') res_str+=res_str_i logFile.close() res_str += "\n= Stability details of the run are output to the file"+\ " stability_%s_%s.log\n"%(mode,process.shell_string()) # Bypass the plotting if the madgraph logger has a FileHandler (like it is # done in the check command acceptance test) because in this case it makes # no sense to plot anything. if any(isinstance(handler,logging.FileHandler) for handler in \ logging.getLogger('madgraph').handlers): return res_str try: import matplotlib.pyplot as plt colorlist=['b','r','g','y','m','c','k'] for i,key in enumerate(data_plot_dict.keys()): color=colorlist[i] data_plot=data_plot_dict[key] accuracies=accuracy_dict[key] plt.plot(accuracies, data_plot, color=color, marker='', linestyle='-',\ label=key) plt.axis([min_acc,max_acc,\ 10**(-int(math.log(nPSmax-0.5)/math.log(10))-1), 1]) plt.yscale('log') plt.xscale('log') plt.title('Stability plot for %s (%s mode, %d points)'%\ (process.nice_string()[9:],mode,nPSmax)) plt.ylabel('Fraction of events') plt.xlabel('Maximal precision') plt.legend() if not reusing: logger.info('Some stability statistics will be displayed once you '+\ 'close the plot window') plt.show() else: fig_output_file = str(pjoin(output_path, 'stability_plot_%s_%s.png'%(mode,process.shell_string()))) logger.info('Stability plot output to file %s. '%fig_output_file) plt.savefig(fig_output_file) return res_str except Exception as e: if isinstance(e, ImportError): res_str += "\n= Install matplotlib to get a "+\ "graphical display of the results of this check." else: res_str += "\n= Could not produce the stability plot because of "+\ "the following error: %s"%str(e) return res_str def output_timings(process, timings): """Present the result of a timings check in a nice format """ # Define shortcut f = format_output loop_optimized_output = timings['loop_optimized_output'] reduction_tool = bannermod.MadLoopParam._ID_reduction_tool_map[ timings['reduction_tool']] res_str = "%s \n"%process.nice_string() try: gen_total = timings['HELAS_MODEL_compilation']+\ timings['HelasDiagrams_generation']+\ timings['Process_output']+\ timings['Diagrams_generation']+\ timings['Process_compilation']+\ timings['Initialization'] except TypeError: gen_total = None res_str += "\n= Generation time total...... ========== %s\n"%f(gen_total,'%.3gs') res_str += "|= Diagrams generation....... %s\n"\ %f(timings['Diagrams_generation'],'%.3gs') res_str += "|= Helas Diagrams generation. %s\n"\ %f(timings['HelasDiagrams_generation'],'%.3gs') res_str += "|= Process output............ %s\n"\ %f(timings['Process_output'],'%.3gs') res_str += "|= HELAS+model compilation... %s\n"\ %f(timings['HELAS_MODEL_compilation'],'%.3gs') res_str += "|= Process compilation....... %s\n"\ %f(timings['Process_compilation'],'%.3gs') res_str += "|= Initialization............ %s\n"\ %f(timings['Initialization'],'%.3gs') res_str += "\n= Reduction tool tested...... %s\n"%reduction_tool res_str += "\n= Helicity sum time / PSpoint ========== %.3gms\n"\ %(timings['run_unpolarized_total']*1000.0) if loop_optimized_output: coef_time=timings['run_unpolarized_coefs']*1000.0 loop_time=(timings['run_unpolarized_total']-\ timings['run_unpolarized_coefs'])*1000.0 total=coef_time+loop_time res_str += "|= Coefs. computation time... %.3gms (%d%%)\n"\ %(coef_time,int(round(100.0*coef_time/total))) res_str += "|= Loop evaluation time...... %.3gms (%d%%)\n"\ %(loop_time,int(round(100.0*loop_time/total))) res_str += "\n= One helicity time / PSpoint ========== %.3gms\n"\ %(timings['run_polarized_total']*1000.0) if loop_optimized_output: coef_time=timings['run_polarized_coefs']*1000.0 loop_time=(timings['run_polarized_total']-\ timings['run_polarized_coefs'])*1000.0 total=coef_time+loop_time res_str += "|= Coefs. computation time... %.3gms (%d%%)\n"\ %(coef_time,int(round(100.0*coef_time/total))) res_str += "|= Loop evaluation time...... %.3gms (%d%%)\n"\ %(loop_time,int(round(100.0*loop_time/total))) res_str += "\n= Miscellaneous ========================\n" res_str += "|= Number of hel. computed... %s/%s\n"\ %(f(timings['n_contrib_hel'],'%d'),f(timings['n_tot_hel'],'%d')) res_str += "|= Number of loop diagrams... %s\n"%f(timings['n_loops'],'%d') if loop_optimized_output: res_str += "|= Number of loop groups..... %s\n"\ %f(timings['n_loop_groups'],'%d') res_str += "|= Number of loop wfs........ %s\n"\ %f(timings['n_loop_wfs'],'%d') if timings['loop_wfs_ranks']!=None: for i, r in enumerate(timings['loop_wfs_ranks']): res_str += "||= # of loop wfs of rank %d.. %d\n"%(i,r) res_str += "|= Loading time (Color data). ~%.3gms\n"\ %(timings['Booting_time']*1000.0) res_str += "|= Maximum RAM usage (rss)... %s\n"\ %f(float(timings['ram_usage']/1000.0),'%.3gMb') res_str += "\n= Output disk size =====================\n" res_str += "|= Source directory sources.. %s\n"%f(timings['du_source'],'%sb') res_str += "|= Process sources........... %s\n"%f(timings['du_process'],'%sb') res_str += "|= Color and helicity data... %s\n"%f(timings['du_color'],'%sb') res_str += "|= Executable size........... %s\n"%f(timings['du_exe'],'%sb') return res_str def output_comparisons(comparison_results): """Present the results of a comparison in a nice list format mode short: return the number of fail process """ proc_col_size = 17 pert_coupl = comparison_results[0]['process']['perturbation_couplings'] if pert_coupl: process_header = "Process [virt="+" ".join(pert_coupl)+"]" else: process_header = "Process" if len(process_header) + 1 > proc_col_size: proc_col_size = len(process_header) + 1 for proc in comparison_results: if len(proc['process'].base_string()) + 1 > proc_col_size: proc_col_size = len(proc['process'].base_string()) + 1 col_size = 18 pass_proc = 0 fail_proc = 0 no_check_proc = 0 failed_proc_list = [] no_check_proc_list = [] res_str = fixed_string_length(process_header, proc_col_size) + \ fixed_string_length("Min element", col_size) + \ fixed_string_length("Max element", col_size) + \ fixed_string_length("Relative diff.", col_size) + \ "Result" for result in comparison_results: proc = result['process'].base_string() values = result['values'] if len(values) <= 1: res_str += '\n' + fixed_string_length(proc, proc_col_size) + \ " * No permutations, process not checked *" no_check_proc += 1 no_check_proc_list.append(result['process'].nice_string()) continue passed = result['passed'] res_str += '\n' + fixed_string_length(proc, proc_col_size) + \ fixed_string_length("%1.10e" % min(values), col_size) + \ fixed_string_length("%1.10e" % max(values), col_size) + \ fixed_string_length("%1.10e" % result['difference'], col_size) if passed: pass_proc += 1 res_str += "Passed" else: fail_proc += 1 failed_proc_list.append(result['process'].nice_string()) res_str += "Failed" res_str += "\nSummary: %i/%i passed, %i/%i failed" % \ (pass_proc, pass_proc + fail_proc, fail_proc, pass_proc + fail_proc) if fail_proc != 0: res_str += "\nFailed processes: %s" % ', '.join(failed_proc_list) if no_check_proc != 0: res_str += "\nNot checked processes: %s" % ', '.join(no_check_proc_list) return res_str def fixed_string_length(mystr, length): """Helper function to fix the length of a string by cutting it or adding extra space.""" if len(mystr) > length: return mystr[0:length] else: return mystr + " " * (length - len(mystr)) #=============================================================================== # check_gauge #=============================================================================== def check_gauge(processes, param_card = None,cuttools="", tir={}, reuse = False, options=None, output_path=None, cmd = FakeInterface()): """Check gauge invariance of the processes by using the BRS check. For one of the massless external bosons (e.g. gluon or photon), replace the polarization vector (epsilon_mu) with its momentum (p_mu) """ cmass_scheme = cmd.options['complex_mass_scheme'] if isinstance(processes, base_objects.ProcessDefinition): # Generate a list of unique processes # Extract IS and FS ids multiprocess = processes model = multiprocess.get('model') # Initialize matrix element evaluation if multiprocess.get('perturbation_couplings')==[]: evaluator = MatrixElementEvaluator(model, param_card,cmd= cmd, auth_skipping = True, reuse = False) else: evaluator = LoopMatrixElementEvaluator(cuttools_dir=cuttools,tir_dir=tir, cmd=cmd,model=model, param_card=param_card, auth_skipping = False, reuse = False, output_path=output_path) if not cmass_scheme and multiprocess.get('perturbation_couplings')==[]: # Set all widths to zero for gauge check logger.info('Set All width to zero for non complex mass scheme checks') for particle in evaluator.full_model.get('particles'): if particle.get('width') != 'ZERO': evaluator.full_model.get('parameter_dict')[particle.get('width')] = 0. results = run_multiprocs_no_crossings(check_gauge_process, multiprocess, evaluator, options=options ) if multiprocess.get('perturbation_couplings')!=[] and not reuse: # Clean temporary folders created for the running of the loop processes clean_up(output_path) return results elif isinstance(processes, base_objects.Process): processes = base_objects.ProcessList([processes]) elif isinstance(processes, base_objects.ProcessList): pass else: raise InvalidCmd("processes is of non-supported format") assert processes, "No processes given" model = processes[0].get('model') # Initialize matrix element evaluation if processes[0].get('perturbation_couplings')==[]: evaluator = MatrixElementEvaluator(model, param_card, auth_skipping = True, reuse = False, cmd = cmd) else: evaluator = LoopMatrixElementEvaluator(cuttools_dir=cuttools,tir_dir=tir, model=model, param_card=param_card, auth_skipping = False, reuse = False, output_path=output_path, cmd = cmd) comparison_results = [] comparison_explicit_flip = [] # For each process, make sure we have set up leg numbers: for process in processes: # Check if we already checked process #if check_already_checked([l.get('id') for l in process.get('legs') if \ # not l.get('state')], ## [l.get('id') for l in process.get('legs') if \ # l.get('state')], # sorted_ids, process, model): # continue # Get process result result = check_gauge_process(process, evaluator,options=options) if result: comparison_results.append(result) if processes[0].get('perturbation_couplings')!=[] and not reuse: # Clean temporary folders created for the running of the loop processes clean_up(output_path) return comparison_results def check_gauge_process(process, evaluator, options=None): """Check gauge invariance for the process, unless it is already done.""" model = process.get('model') # Check that there are massless vector bosons in the process found_gauge = False for i, leg in enumerate(process.get('legs')): part = model.get_particle(leg.get('id')) if part.get('spin') == 3 and part.get('mass').lower() == 'zero': found_gauge = True break if not found_gauge: logger.info("No ward identity for %s" % \ process.nice_string().replace('Process', 'process')) # This process can't be checked return None for i, leg in enumerate(process.get('legs')): leg.set('number', i+1) logger.info("Checking ward identities for %s" % \ process.nice_string().replace('Process', 'process')) legs = process.get('legs') # Generate a process with these legs # Generate the amplitude for this process try: if process.get('perturbation_couplings')==[]: amplitude = diagram_generation.Amplitude(process) else: amplitude = loop_diagram_generation.LoopAmplitude(process) except InvalidCmd: logging.info("No diagrams for %s" % \ process.nice_string().replace('Process', 'process')) return None if not amplitude.get('diagrams'): # This process has no diagrams; go to next process logging.info("No diagrams for %s" % \ process.nice_string().replace('Process', 'process')) return None # Generate the HelasMatrixElement for the process if not isinstance(amplitude,loop_diagram_generation.LoopAmplitude): matrix_element = helas_objects.HelasMatrixElement(amplitude, gen_color = False) else: matrix_element = loop_helas_objects.LoopHelasMatrixElement(amplitude, optimized_output=evaluator.loop_optimized_output) #p, w_rambo = evaluator.get_momenta(process) # MLOptions = {'ImprovePS':True,'ForceMP':True} # brsvalue = evaluator.evaluate_matrix_element(matrix_element, gauge_check = True, # output='jamp',MLOptions=MLOptions, options=options) brsvalue = evaluator.evaluate_matrix_element(matrix_element, gauge_check = True, output='jamp', options=options) if not isinstance(amplitude,loop_diagram_generation.LoopAmplitude): matrix_element = helas_objects.HelasMatrixElement(amplitude, gen_color = False) mvalue = evaluator.evaluate_matrix_element(matrix_element, gauge_check = False, output='jamp', options=options) if mvalue and mvalue['m2']: return {'process':process,'value':mvalue,'brs':brsvalue} def output_gauge(comparison_results, output='text'): """Present the results of a comparison in a nice list format""" proc_col_size = 17 pert_coupl = comparison_results[0]['process']['perturbation_couplings'] # Of course, be more tolerant for loop processes if pert_coupl: threshold=1e-5 else: threshold=1e-10 if pert_coupl: process_header = "Process [virt="+" ".join(pert_coupl)+"]" else: process_header = "Process" if len(process_header) + 1 > proc_col_size: proc_col_size = len(process_header) + 1 for one_comp in comparison_results: proc = one_comp['process'].base_string() mvalue = one_comp['value'] brsvalue = one_comp['brs'] if len(proc) + 1 > proc_col_size: proc_col_size = len(proc) + 1 col_size = 18 pass_proc = 0 fail_proc = 0 failed_proc_list = [] no_check_proc_list = [] res_str = fixed_string_length(process_header, proc_col_size) + \ fixed_string_length("matrix", col_size) + \ fixed_string_length("BRS", col_size) + \ fixed_string_length("ratio", col_size) + \ "Result" for one_comp in comparison_results: proc = one_comp['process'].base_string() mvalue = one_comp['value'] brsvalue = one_comp['brs'] ratio = (abs(brsvalue['m2'])/abs(mvalue['m2'])) res_str += '\n' + fixed_string_length(proc, proc_col_size) + \ fixed_string_length("%1.10e" % mvalue['m2'], col_size)+ \ fixed_string_length("%1.10e" % brsvalue['m2'], col_size)+ \ fixed_string_length("%1.10e" % ratio, col_size) if ratio > threshold: fail_proc += 1 proc_succeed = False failed_proc_list.append(proc) res_str += "Failed" else: pass_proc += 1 proc_succeed = True res_str += "Passed" #check all the JAMP # loop over jamp # This is not available for loop processes where the jamp list returned # is empty. if len(mvalue['jamp'])!=0: for k in range(len(mvalue['jamp'][0])): m_sum = 0 brs_sum = 0 # loop over helicity for j in range(len(mvalue['jamp'])): #values for the different lorentz boost m_sum += abs(mvalue['jamp'][j][k])**2 brs_sum += abs(brsvalue['jamp'][j][k])**2 # Compare the different helicity if not m_sum: continue ratio = abs(brs_sum) / abs(m_sum) tmp_str = '\n' + fixed_string_length(' JAMP %s'%k , proc_col_size) + \ fixed_string_length("%1.10e" % m_sum, col_size) + \ fixed_string_length("%1.10e" % brs_sum, col_size) + \ fixed_string_length("%1.10e" % ratio, col_size) if ratio > 1e-15: if not len(failed_proc_list) or failed_proc_list[-1] != proc: fail_proc += 1 pass_proc -= 1 failed_proc_list.append(proc) res_str += tmp_str + "Failed" elif not proc_succeed: res_str += tmp_str + "Passed" res_str += "\nSummary: %i/%i passed, %i/%i failed" % \ (pass_proc, pass_proc + fail_proc, fail_proc, pass_proc + fail_proc) if fail_proc != 0: res_str += "\nFailed processes: %s" % ', '.join(failed_proc_list) if output=='text': return res_str else: return fail_proc #=============================================================================== # check_lorentz #=============================================================================== def check_lorentz(processes, param_card = None,cuttools="", tir={}, options=None, \ reuse = False, output_path=None, cmd = FakeInterface()): """ Check if the square matrix element (sum over helicity) is lorentz invariant by boosting the momenta with different value.""" cmass_scheme = cmd.options['complex_mass_scheme'] if isinstance(processes, base_objects.ProcessDefinition): # Generate a list of unique processes # Extract IS and FS ids multiprocess = processes model = multiprocess.get('model') # Initialize matrix element evaluation if multiprocess.get('perturbation_couplings')==[]: evaluator = MatrixElementEvaluator(model, cmd= cmd, auth_skipping = False, reuse = True) else: evaluator = LoopMatrixElementEvaluator(cuttools_dir=cuttools,tir_dir=tir, model=model, auth_skipping = False, reuse = True, output_path=output_path, cmd = cmd) if not cmass_scheme and processes.get('perturbation_couplings')==[]: # Set all widths to zero for lorentz check logger.info('Set All width to zero for non complex mass scheme checks') for particle in evaluator.full_model.get('particles'): if particle.get('width') != 'ZERO': evaluator.full_model.get('parameter_dict')[\ particle.get('width')] = 0. results = run_multiprocs_no_crossings(check_lorentz_process, multiprocess, evaluator, options=options) if multiprocess.get('perturbation_couplings')!=[] and not reuse: # Clean temporary folders created for the running of the loop processes clean_up(output_path) return results elif isinstance(processes, base_objects.Process): processes = base_objects.ProcessList([processes]) elif isinstance(processes, base_objects.ProcessList): pass else: raise InvalidCmd("processes is of non-supported format") assert processes, "No processes given" model = processes[0].get('model') # Initialize matrix element evaluation if processes[0].get('perturbation_couplings')==[]: evaluator = MatrixElementEvaluator(model, param_card, auth_skipping = False, reuse = True, cmd=cmd) else: evaluator = LoopMatrixElementEvaluator(cuttools_dir=cuttools, tir_dir=tir, model=model,param_card=param_card, auth_skipping = False, reuse = True, output_path=output_path, cmd = cmd) comparison_results = [] # For each process, make sure we have set up leg numbers: for process in processes: # Check if we already checked process #if check_already_checked([l.get('id') for l in process.get('legs') if \ # not l.get('state')], # [l.get('id') for l in process.get('legs') if \ # l.get('state')], # sorted_ids, process, model): # continue # Get process result result = check_lorentz_process(process, evaluator,options=options) if result: comparison_results.append(result) if processes[0].get('perturbation_couplings')!=[] and not reuse: # Clean temporary folders created for the running of the loop processes clean_up(output_path) return comparison_results def check_lorentz_process(process, evaluator,options=None): """Check gauge invariance for the process, unless it is already done.""" amp_results = [] model = process.get('model') for i, leg in enumerate(process.get('legs')): leg.set('number', i+1) logger.info("Checking lorentz transformations for %s" % \ process.nice_string().replace('Process:', 'process')) legs = process.get('legs') # Generate a process with these legs # Generate the amplitude for this process try: if process.get('perturbation_couplings')==[]: amplitude = diagram_generation.Amplitude(process) else: amplitude = loop_diagram_generation.LoopAmplitude(process) except InvalidCmd: logging.info("No diagrams for %s" % \ process.nice_string().replace('Process', 'process')) return None if not amplitude.get('diagrams'): # This process has no diagrams; go to next process logging.info("No diagrams for %s" % \ process.nice_string().replace('Process', 'process')) return None # Generate the HelasMatrixElement for the process p, w_rambo = evaluator.get_momenta(process, options) # Generate the HelasMatrixElement for the process if not isinstance(amplitude, loop_diagram_generation.LoopAmplitude): matrix_element = helas_objects.HelasMatrixElement(amplitude, gen_color = True) else: matrix_element = loop_helas_objects.LoopHelasMatrixElement(amplitude, optimized_output = evaluator.loop_optimized_output) MLOptions = {'ImprovePS':True,'ForceMP':True} if not isinstance(amplitude, loop_diagram_generation.LoopAmplitude): data = evaluator.evaluate_matrix_element(matrix_element, p=p, output='jamp', auth_skipping = True, options=options) else: data = evaluator.evaluate_matrix_element(matrix_element, p=p, output='jamp', auth_skipping = True, PS_name = 'original', MLOptions=MLOptions, options = options) if data and data['m2']: if not isinstance(amplitude, loop_diagram_generation.LoopAmplitude): results = [data] else: results = [('Original evaluation',data)] else: return {'process':process, 'results':'pass'} # The boosts are not precise enough for the loop evaluations and one need the # fortran improve_ps function of MadLoop to work. So we only consider the # boosts along the z directions for loops or simple rotations. if not isinstance(amplitude, loop_diagram_generation.LoopAmplitude): for boost in range(1,4): boost_p = boost_momenta(p, boost) results.append(evaluator.evaluate_matrix_element(matrix_element, p=boost_p,output='jamp')) else: # We only consider the rotations around the z axis so to have the boost_p = boost_momenta(p, 3) results.append(('Z-axis boost', evaluator.evaluate_matrix_element(matrix_element, options=options, p=boost_p, PS_name='zBoost', output='jamp',MLOptions = MLOptions))) # We add here also the boost along x and y for reference. In the output # of the check, it is now clearly stated that MadLoop improve_ps script # will not work for them. The momenta read from event file are not # precise enough so these x/yBoost checks are omitted. if not options['events']: boost_p = boost_momenta(p, 1) results.append(('X-axis boost', evaluator.evaluate_matrix_element(matrix_element, options=options, p=boost_p, PS_name='xBoost', output='jamp',MLOptions = MLOptions))) boost_p = boost_momenta(p, 2) results.append(('Y-axis boost', evaluator.evaluate_matrix_element(matrix_element,options=options, p=boost_p, PS_name='yBoost', output='jamp',MLOptions = MLOptions))) # We only consider the rotations around the z axis so to have the # improve_ps fortran routine work. rot_p = [[pm[0],-pm[2],pm[1],pm[3]] for pm in p] results.append(('Z-axis pi/2 rotation', evaluator.evaluate_matrix_element(matrix_element,options=options, p=rot_p, PS_name='Rotation1', output='jamp',MLOptions = MLOptions))) # Now a pi/4 rotation around the z-axis sq2 = math.sqrt(2.0) rot_p = [[pm[0],(pm[1]-pm[2])/sq2,(pm[1]+pm[2])/sq2,pm[3]] for pm in p] results.append(('Z-axis pi/4 rotation', evaluator.evaluate_matrix_element(matrix_element,options=options, p=rot_p, PS_name='Rotation2', output='jamp',MLOptions = MLOptions))) return {'process': process, 'results': results} #=============================================================================== # check_gauge #=============================================================================== def check_unitary_feynman(processes_unit, processes_feynm, param_card=None, options=None, tir={}, output_path=None, cuttools="", reuse=False, cmd = FakeInterface()): """Check gauge invariance of the processes by flipping the gauge of the model """ mg_root = cmd._mgme_dir cmass_scheme = cmd.options['complex_mass_scheme'] if isinstance(processes_unit, base_objects.ProcessDefinition): # Generate a list of unique processes # Extract IS and FS ids multiprocess_unit = processes_unit model = multiprocess_unit.get('model') # Initialize matrix element evaluation # For the unitary gauge, open loops should not be used loop_optimized_bu = cmd.options['loop_optimized_output'] if processes_unit.get('squared_orders'): if processes_unit.get('perturbation_couplings') in [[],['QCD']]: cmd.options['loop_optimized_output'] = True else: raise InvalidCmd("The gauge test cannot be performed for "+ " a process with more than QCD corrections and which"+ " specifies squared order constraints.") else: cmd.options['loop_optimized_output'] = False aloha.unitary_gauge = True if processes_unit.get('perturbation_couplings')==[]: evaluator = MatrixElementEvaluator(model, param_card, cmd=cmd,auth_skipping = False, reuse = True) else: evaluator = LoopMatrixElementEvaluator(cuttools_dir=cuttools,tir_dir=tir, cmd=cmd, model=model, param_card=param_card, auth_skipping = False, output_path=output_path, reuse = False) if not cmass_scheme and multiprocess_unit.get('perturbation_couplings')==[]: logger.info('Set All width to zero for non complex mass scheme checks') for particle in evaluator.full_model.get('particles'): if particle.get('width') != 'ZERO': evaluator.full_model.get('parameter_dict')[particle.get('width')] = 0. output_u = run_multiprocs_no_crossings(get_value, multiprocess_unit, evaluator, options=options) clean_added_globals(ADDED_GLOBAL) # Clear up previous run if checking loop output if processes_unit.get('perturbation_couplings')!=[]: clean_up(output_path) momentum = {} for data in output_u: momentum[data['process']] = data['p'] multiprocess_feynm = processes_feynm model = multiprocess_feynm.get('model') # Initialize matrix element evaluation aloha.unitary_gauge = False # We could use the default output as well for Feynman, but it provides # an additional check cmd.options['loop_optimized_output'] = True if processes_feynm.get('perturbation_couplings')==[]: evaluator = MatrixElementEvaluator(model, param_card, cmd= cmd, auth_skipping = False, reuse = False) else: evaluator = LoopMatrixElementEvaluator(cuttools_dir=cuttools,tir_dir=tir, cmd= cmd, model=model, param_card=param_card, auth_skipping = False, output_path=output_path, reuse = False) if not cmass_scheme and multiprocess_feynm.get('perturbation_couplings')==[]: # Set all widths to zero for gauge check for particle in evaluator.full_model.get('particles'): if particle.get('width') != 'ZERO': evaluator.full_model.get('parameter_dict')[particle.get('width')] = 0. output_f = run_multiprocs_no_crossings(get_value, multiprocess_feynm, evaluator, momentum, options=options) output = [processes_unit] for data in output_f: local_dico = {} local_dico['process'] = data['process'] local_dico['value_feynm'] = data['value'] local_dico['value_unit'] = [d['value'] for d in output_u if d['process'] == data['process']][0] output.append(local_dico) if processes_feynm.get('perturbation_couplings')!=[] and not reuse: # Clean temporary folders created for the running of the loop processes clean_up(output_path) # Reset the original global variable loop_optimized_output. cmd.options['loop_optimized_output'] = loop_optimized_bu return output # elif isinstance(processes, base_objects.Process): # processes = base_objects.ProcessList([processes]) # elif isinstance(processes, base_objects.ProcessList): # pass else: raise InvalidCmd("processes is of non-supported format") #=============================================================================== # check_cms #=============================================================================== def check_complex_mass_scheme(process_line, param_card=None, cuttools="",tir={}, cmd = FakeInterface(), output_path=None, MLOptions = {}, options={}): """Check complex mass scheme consistency in the offshell region of s-channels detected for this process, by varying the expansion paramer consistently with the corresponding width and making sure that the difference between the complex mass-scheme and the narrow-width approximation is higher order. """ if not isinstance(process_line, str): raise InvalidCmd("Proces definition must be given as a stirng for this check") # Generate a list of unique processes in the NWA scheme cmd.do_set('complex_mass_scheme False', log=False) #cmd.do_import('model loop_qcd_qed_sm-NWA') multiprocess_nwa = cmd.extract_process(process_line) # Change the option 'recompute_width' to the optimal value if set to 'auto'. has_FRdecay = os.path.isfile(pjoin(cmd._curr_model.get('modelpath'), 'decays.py')) # Proceed with some warning missing_perturbations = cmd._curr_model.get_coupling_orders()-\ set(multiprocess_nwa.get('perturbation_couplings')) if len(multiprocess_nwa.get('perturbation_couplings'))>0 and \ len(missing_perturbations)>0: logger.warning("------------------------------------------------------") logger.warning("The process considered does not specify the following "+ "type of loops to be included : %s"%str(list(missing_perturbations))) logger.warning("Consequently, the CMS check will be unsuccessful if the"+ " process involves any resonating particle whose LO decay is "+ "mediated by one of these orders.") logger.warning("You can use the syntax '[virt=all]' to automatically"+ " include all loops supported by the model.") logger.warning("------------------------------------------------------") if len(multiprocess_nwa.get('perturbation_couplings'))>0 and \ len(multiprocess_nwa.get('legs'))<=4: logger.warning("------------------------------------------------------") logger.warning("Processes with four or less external states are typically not"+\ " sensitive to incorrect Complex Mass Scheme implementations.") logger.warning("You can test this sensitivity by making sure that the"+ " same check on the leading-order counterpart of this process *fails*"+ " when using the option '--diff_lambda_power=2'.") logger.warning("If it does not, then consider adding a massless "+ "gauge vector to the external states.") logger.warning("------------------------------------------------------") if options['recompute_width']=='auto': if multiprocess_nwa.get('perturbation_couplings')!=[]: # NLO, so it is necessary to have the correct LO width for the check options['recompute_width'] = 'first_time' else: options['recompute_width'] = 'never' # Some warnings if options['recompute_width'] in ['first_time', 'always'] and \ not has_FRdecay and not 'cached_widths' in options: logger.info('The LO widths will need to be recomputed but the '+ 'model considered does not appear to have a decay module.\nThe widths'+ ' will need to be computed numerically and it will slow down the test.\n'+ 'Consider using a param_card already specifying correct LO widths and'+ " adding the option --recompute_width=never when doing this check.") if options['recompute_width']=='never' and \ any(order in multiprocess_nwa.get('perturbation_couplings') for order in options['expansion_orders']): logger.warning('You chose not to recompute the widths while including'+ ' loop corrections. The check will be successful only if the width'+\ ' specified in the default param_card is LO accurate (Remember that'+\ ' the default values of alpha_s and awem1 are set to 0.1 and 10.0'+\ ' respectively by default).') # Reload the model including the decay.py to have efficient MadWidth if # possible (this model will be directly given to MadWidth. Notice that # this will not be needed for the CMS run because MadWidth is not supposed # to be used there (the widths should be recycled from those of the NWA run). if options['recompute_width'] in ['first_time', 'always'] and has_FRdecay: modelname = cmd._curr_model.get('modelpath+restriction') with misc.MuteLogger(['madgraph'], ['INFO']): model = import_ufo.import_model(modelname, decay=True, complex_mass_scheme=False) multiprocess_nwa.set('model', model) run_options = copy.deepcopy(options) # Set the seed if chosen by user if options['seed'] > 0: random.seed(options['seed']) # Add useful entries run_options['param_card'] = param_card if isinstance(cmd, FakeInterface): raise MadGraph5Error, "Check CMS cannot be run with a FakeInterface." run_options['cmd'] = cmd run_options['MLOptions'] = MLOptions if output_path: run_options['output_path'] = output_path else: run_options['output_path'] = cmd._mgme_dir # Add the information regarding FR decay for optimal log information run_options['has_FRdecay'] = has_FRdecay # And one for caching the widths computed along the way if 'cached_widths' not in run_options: run_options['cached_widths'] = {} # Cached param_cards, first is param_card instance, second is # param_name dictionary run_options['cached_param_card'] = {'NWA':[None,None],'CMS':[None,None]} if options['tweak']['name']: logger.info("Now running the CMS check for tweak '%s'"\ %options['tweak']['name']) model = multiprocess_nwa.get('model') # Make sure all masses are defined as external for particle in model.get('particles'): mass_param = model.get_parameter(particle.get('mass')) if particle.get('mass')!='ZERO' and 'external' not in mass_param.depend: if model.get('name') not in ['sm','loop_sm']: logger.warning("The mass '%s' of particle '%s' is not an external"%\ (model.get_parameter(particle.get('mass')).name,particle.get('name'))+\ " parameter as required by this check. \nMG5_aMC will try to"+\ " modify the model to remedy the situation. No guarantee.") status = model.change_electroweak_mode(set(['mz','mw','alpha'])) if not status: raise InvalidCmd('The EW scheme could apparently not be changed'+\ ' so as to have the W-boson mass external. The check cannot'+\ ' proceed.') break veto_orders = [order for order in model.get('coupling_orders') if \ order not in options['expansion_orders']] if len(veto_orders)>0: logger.warning('You did not define any parameter scaling rule for the'+\ " coupling orders %s. They will be "%','.join(veto_orders)+\ "forced to zero in the tests. Consider adding the scaling rule to"+\ "avoid this. (see option '--cms' in 'help check')") for order in veto_orders: multiprocess_nwa.get('orders')[order]==0 multiprocess_nwa.set('perturbation_couplings', [order for order in multiprocess_nwa['perturbation_couplings'] if order not in veto_orders]) if multiprocess_nwa.get('perturbation_couplings')==[]: evaluator = MatrixElementEvaluator(model, param_card, cmd=cmd,auth_skipping = False, reuse = True) else: evaluator = LoopMatrixElementTimer(cuttools_dir=cuttools,tir_dir=tir, cmd=cmd, model=model, param_card=param_card, auth_skipping = False, output_path=output_path, reuse = False) cached_information = [] output_nwa = run_multiprocs_no_crossings(check_complex_mass_scheme_process, multiprocess_nwa, evaluator, # This empty list 'opt' will be passed to the check_complex_mass_scheme_process # function which will fill it with the specification of the particle for which # the the complex mass scheme must be checked. The fact that it is a list # at this stage tells the function check_complex_mass_scheme_process that # we are doing nwa. It will then be converted to a dictionary when doing cms. opt = cached_information, options=run_options) # Make sure to start from fresh for LO runs clean_added_globals(ADDED_GLOBAL) # Generate a list of unique processes in the CMS scheme cmd.do_set('complex_mass_scheme True', log=False) #cmd.do_import('model loop_qcd_qed_sm__CMS__-CMS') multiprocess_cms = cmd.extract_process(process_line) model = multiprocess_cms.get('model') # Apply veto if len(veto_orders)>0: for order in veto_orders: multiprocess_cms.get('orders')[order]==0 multiprocess_cms.set('perturbation_couplings', [order for order in multiprocess_cms['perturbation_couplings'] if order not in veto_orders]) if multiprocess_cms.get('perturbation_couplings')==[]: evaluator = MatrixElementEvaluator(model, param_card, cmd=cmd,auth_skipping = False, reuse = True) else: evaluator = LoopMatrixElementTimer(cuttools_dir=cuttools,tir_dir=tir, cmd=cmd, model=model, param_card=param_card, auth_skipping = False, output_path=output_path, reuse = False) output_cms = run_multiprocs_no_crossings(check_complex_mass_scheme_process, multiprocess_cms, evaluator, # We now substituted the cached information opt = dict(cached_information), options=run_options) if multiprocess_cms.get('perturbation_couplings')!=[] and not options['reuse']: # Clean temporary folders created for the running of the loop processes clean_up(output_path) # Now reformat a bit the output by putting the CMS and NWA results together # as values of a dictionary with the process name as key. # Also a 'processes_order' to list all processes in their order of appearance result = {'ordered_processes':[],'lambdaCMS':options['lambdaCMS']} # Recall what perturbation orders were used result['perturbation_orders']=multiprocess_nwa.get('perturbation_couplings') for i, proc_res in enumerate(output_nwa): result['ordered_processes'].append(proc_res[0]) result[proc_res[0]] = { 'NWA':proc_res[1]['resonances_result'], 'CMS':output_cms[i][1]['resonances_result'], 'born_order':proc_res[1]['born_order'], 'loop_order':proc_res[1]['loop_order']} # As an optimization we propagate the widths as they could be reused when # using several tweaks options['cached_widths'] = run_options['cached_widths'] # Add widths information to the result result['recompute_width'] = options['recompute_width'] result['has_FRdecay'] = has_FRdecay result['widths_computed'] = [] cached_widths = sorted(options['cached_widths'].items(), key=lambda el: \ abs(el[0][0])) for (pdg, lambda_value), width in cached_widths: if lambda_value != 1.0: continue result['widths_computed'].append((model.get_particle(pdg).get_name(), width)) # Make sure to clear the python ME definitions generated in LO runs clean_added_globals(ADDED_GLOBAL) return result # Check CMS for a given process def check_complex_mass_scheme_process(process, evaluator, opt = [], options=None): """Check CMS for the process in argument. The options 'opt' is quite important. When opt is a list, it means that we are doing NWA and we are filling the list with the following tuple ('proc_name',({'ParticlePDG':ParticlePDG, 'FinalStateMothersNumbers':set([]), 'PS_point_used':[]},...)) When opt is a dictionary, we are in the CMS mode and it will be reused then. """ # a useful logical to check if we are in LO (python on the flight) or # NLO (output and compilation) mode NLO = process.get('perturbation_couplings') != [] def glue_momenta(production, decay): """ Merge together the kinematics for the production of particle positioned last in the 'production' array with the 1>N 'decay' kinematic' provided where the decay particle is first.""" from MadSpin.decay import momentum full = production[:-1] # Consistency check: # target = production[decay_number-1] # boosted = momentum(decay[0][0],decay[0][1],decay[0][2],decay[0][3]) # print 'Consistency check ',target==boosted for p in decay[1:]: bp = momentum(*p).boost(momentum(*production[-1])) full.append([bp.E,bp.px,bp.py,bp.pz]) return full def find_resonances(diagrams): """ Find all the resonances in the matrix element in argument """ model = process['model'] resonances_found = [] for ll, diag in enumerate(diagrams): for amp in diag.get('amplitudes'): # 0 specifies the PDG given to the fake s-channels from # vertices with more than four legs s_channels, t_channels = amp.\ get_s_and_t_channels(process.get_ninitial(), model, 0) # The s-channel are given from the outmost ones going inward as # vertices, so we must replace parent legs with the outermost ones replacement_dict = {} for s_channel in s_channels: new_resonance = { 'ParticlePDG':s_channel.get('legs')[-1].get('id'), 'FSMothersNumbers':[], 'PS_point_used':[]} for leg in s_channel.get('legs')[:-1]: if leg.get('number')>0: new_resonance['FSMothersNumbers'].append( leg.get('number')) else: try: new_resonance['FSMothersNumbers'].extend( replacement_dict[leg.get('number')]) except KeyError: raise Exception, 'The following diagram '+\ 'is malformed:'+diag.nice_string() replacement_dict[s_channel.get('legs')[-1].get('number')] = \ new_resonance['FSMothersNumbers'] new_resonance['FSMothersNumbers'] = set( new_resonance['FSMothersNumbers']) if new_resonance not in resonances_found: resonances_found.append(new_resonance) # Now we setup the phase-space point for each resonance found kept_resonances = [] for resonance in resonances_found: # Discard fake s-channels if resonance['ParticlePDG'] == 0: continue # Discard if the particle appears in the final state if abs(resonance['ParticlePDG']) in \ [abs(l.get('id')) for l in process.get('legs')]: continue mass_string = evaluator.full_model.get_particle( resonance['ParticlePDG']).get('mass') mass = evaluator.full_model.get('parameter_dict')[mass_string].real # Discard massless s-channels if mass==0.0: continue width_string = evaluator.full_model.get_particle( resonance['ParticlePDG']).get('width') width = evaluator.full_model.get('parameter_dict')[width_string].real # Discard stable s-channels if width==0.0: continue final_state_energy = sum( evaluator.full_model.get('parameter_dict')[ evaluator.full_model.get_particle(l.get('id')).get('mass')].real for l in process.get('legs') if l.get('number') in resonance['FSMothersNumbers']) # Choose the offshellness special_mass = (1.0 + options['offshellness'])*mass # Discard impossible kinematics if special_mass<final_state_energy: raise InvalidCmd('The offshellness specified (%s) is such'\ %options['offshellness']+' that the resulting kinematic is '+\ 'impossible for resonance %s %s.'%(evaluator.full_model. get_particle(resonance['ParticlePDG']).get_name(), str(list(resonance['FSMothersNumbers'])))) continue # Add it to the list of accepted resonances kept_resonances.append(resonance) for resonance in kept_resonances: # Chose the PS point for the resonance set_PSpoint(resonance, force_other_res_offshell=kept_resonances) # misc.sprint(kept_resonances) # misc.sprint(len(kept_resonances)) return tuple(kept_resonances) def set_PSpoint(resonance, force_other_res_offshell=[], allow_energy_increase=1.5, isolation_cuts=True): """ Starting from the specified resonance, construct a phase space point for it and possibly also enforce other resonances to be onshell. Possibly allow to progressively increase enregy by steps of the integer specified (negative float to forbid it) and possible enforce default isolation cuts as well.""" def invmass(momenta): """ Computes the invariant mass of a list of momenta.""" ptot = [sum(p[i] for p in momenta) for i in range(4)] return math.sqrt(ptot[0]**2-ptot[1]**2-ptot[2]**2-ptot[3]**2) model = evaluator.full_model def getmass(pdg): """ Returns the mass of a particle given the current model and its pdg given in argument.""" return model.get('parameter_dict')[ model.get_particle(pdg).get('mass')].real N_trials = 0 max_trial = 1e4 nstep_for_energy_increase = 1e3 PS_point_found = None if options['offshellness'] > 0.0: offshellness = options['offshellness'] else: # We must undershoot the offshellness since one needs more # energy than the target mass to have a valid PS point. So we # start with an offshellness 4 times larger, and progressively reduce # it later offshellness = (0.25*(options['offshellness']+1.0))-1.0 # When offshellness is negative, it is progressively decreased every # nstep_for_energy_increase attempts (not increased!), so it is more # dangerous, and we therefore want the steps to be smaller if options['offshellness'] < 0.0: energy_increase = math.sqrt(allow_energy_increase) else: energy_increase = allow_energy_increase # Make sure to remove the resonance itself from force_other_res_offshell other_res_offshell = [res for res in force_other_res_offshell if res!=resonance] # Now play it smart on finding starting energy and offshellness and # register all resonance masses all_other_res_masses = [getmass(res['ParticlePDG']) for res in other_res_offshell] resonance_mass = getmass(resonance['ParticlePDG']) str_res = '%s %s'%(model.get_particle( resonance['ParticlePDG']).get_name(), str(list(resonance['FSMothersNumbers']))) leg_number_to_leg = dict((l.get('number'),l) for l in process.get('legs')) # Find what is the minimum possible offshellness given # the mass of the daughters of this resonance. # This will only be relevant when options['offshellness'] is negative daughter_masses = sum(getmass(leg_number_to_leg[\ number].get('id')) for number in resonance['FSMothersNumbers']) min_offshellnes = 4.0*((daughter_masses*1.2)/resonance_mass)-1.0 # Compute the minimal energy given the external states, add 20% to leave # enough phase-space min_energy = max(sum(getmass(l.get('id')) for l in \ process.get('legs') if l.get('state')==True), sum(getmass(l.get('id')) for l in \ process.get('legs') if l.get('state')==False)) # List all other offshellnesses of the potential daughters of this # resonance daughter_offshellnesses = [(1.0+options['offshellness'])*mass for i, mass in enumerate(all_other_res_masses) if other_res_offshell[i]['FSMothersNumbers'].issubset( resonance['FSMothersNumbers'])] if options['offshellness'] >= 0.0: if len(daughter_offshellnesses)>0: max_mass = max(daughter_offshellnesses) # A factor two to have enough phase-space offshellness = max(2.0*(max_mass/resonance_mass)-1.0, options['offshellness']) max_mass = max([(1.0+options['offshellness'])*mass for mass in \ all_other_res_masses]+[(1.0+offshellness)*resonance_mass]) # Account for external_masses too # A factor two to have enough phase-space open target = max(min_energy*1.2,max_mass*2.0) if target > options['energy']: logger.warning("The user-defined energy %f seems "%options['energy']+ " insufficient to reach the minimum propagator invariant mass "+ "%f required for the chosen offshellness %f."%(max_mass, options['offshellness']) + " Energy reset to %f."%target) options['energy'] = target else: if len(daughter_offshellnesses) > 0: min_mass = min(daughter_offshellnesses) # A factor one half to have enough phase-space offshellness = min(0.25*(min_mass/resonance_mass)-1.0, options['offshellness']) # Make sure the chosen offshellness leaves enough energy to produce # the daughter masses if (1.0+offshellness)*resonance_mass < daughter_masses*1.2: msg = 'The resonance %s cannot accomodate'%str_res+\ ' an offshellness of %f because the daughter'%options['offshellness']+\ ' masses are %f.'%daughter_masses if options['offshellness']<min_offshellnes: msg += ' Try again with an offshellness'+\ ' smaller (in absolute value) of at least %f.'%min_offshellnes else: msg += ' Try again with a smalled offshellness (in absolute value).' raise InvalidCmd(msg) min_mass = min([(1.0+options['offshellness'])*mass for mass in \ all_other_res_masses]+[(1.0+offshellness)*resonance_mass]) # Account for external_masses too # A factor two to have enough phase-space open if 2.0*min_mass < options['energy']: new_energy = max(min_energy*1.2, 2.0*min_mass) logger.warning("The user-defined energy %f seems "%options['energy']+ " too large to not overshoot the maximum propagator invariant mass "+ "%f required for the chosen offshellness %f."%(min_mass, options['offshellness']) + " Energy reset to %f."%new_energy) options['energy'] = new_energy if options['offshellness'] < 0.0 and options['energy'] >= min_mass: logger.debug("The target energy is not compatible with the mass"+ " of the external states for this process (%f). It is "%min_mass+ "unlikely that a valid kinematic configuration will be found.") if options['offshellness']<0.0 and offshellness<options['offshellness'] or \ options['offshellness']>0.0 and offshellness>options['offshellness']: logger.debug("Offshellness increased to %f"%offshellness+ " so as to try to find a kinematical configuration with"+ " offshellness at least equal to %f"%options['offshellness']+ " for all resonances.") start_energy = options['energy'] while N_trials<max_trial: N_trials += 1 if N_trials%nstep_for_energy_increase==0: if allow_energy_increase > 0.0: old_offshellness = offshellness if offshellness > 0.0: options['energy'] *= energy_increase offshellness *= energy_increase else: options['energy'] = max(options['energy']/energy_increase, min_energy*1.2) offshellness = max(min_offshellnes, ((offshellness+1.0)/energy_increase)-1.0) if old_offshellness!=offshellness: logger.debug('Trying to find a valid kinematic'+\ " configuration for resonance '%s'"%str_res+\ ' with increased offshellness %f'%offshellness) candidate = get_PSpoint_for_resonance(resonance, offshellness) pass_offshell_test = True for i, res in enumerate(other_res_offshell): # Make sure other resonances are sufficiently offshell too if offshellness > 0.0: if invmass([candidate[j-1] for j in res['FSMothersNumbers']]) <\ ((1.0+options['offshellness'])*all_other_res_masses[i]): pass_offshell_test = False break else: if invmass([candidate[j-1] for j in res['FSMothersNumbers']]) >\ ((1.0+options['offshellness'])*all_other_res_masses[i]): pass_offshell_test = False break if not pass_offshell_test: continue # Make sure it is isolated if isolation_cuts: # Set ptcut to 5% of total energy if not evaluator.pass_isolation_cuts(candidate, ptcut=0.05*invmass([candidate[0],candidate[1]]), drcut=0.4): continue PS_point_found = candidate break # Restore the initial energy setup options['energy'] = start_energy if PS_point_found is None: err_msg = 'Could not find a valid PS point in %d'%max_trial+\ ' trials. Try increasing the energy, modify the offshellness '+\ 'or relax some constraints.' if options['offshellness']<0.0: err_msg +='Try with a positive offshellness instead (or a '+\ 'negative one of smaller absolute value)' raise InvalidCmd, err_msg else: # misc.sprint('PS point found in %s trials.'%N_trials) # misc.sprint(PS_point_found) resonance['offshellnesses'] = [] all_other_res_masses = [resonance_mass] + all_other_res_masses other_res_offshell = [resonance] + other_res_offshell for i, res in enumerate(other_res_offshell): if i==0: res_str = 'self' else: res_str = '%s %s'%(model.get_particle( res['ParticlePDG']).get_name(), str(list(res['FSMothersNumbers']))) resonance['offshellnesses'].append((res_str,( (invmass([PS_point_found[j-1] for j in res['FSMothersNumbers']])/all_other_res_masses[i])-1.0))) resonance['PS_point_used'] = PS_point_found def get_PSpoint_for_resonance(resonance, offshellness = options['offshellness']): """ Assigns a kinematic configuration to the resonance dictionary given in argument.""" # Get the particle mass mass_string = evaluator.full_model.get_particle( resonance['ParticlePDG']).get('mass') mass = evaluator.full_model.get('parameter_dict')[mass_string].real # Choose the offshellness special_mass = (1.0 + offshellness)*mass # Create a fake production and decay process prod_proc = base_objects.Process({'legs':base_objects.LegList( copy.copy(leg) for leg in process.get('legs') if leg.get('number') not in resonance['FSMothersNumbers'])}) # Add the resonant particle as a final state # ID set to 0 since its mass will be forced # Number set so as to be first in the list in get_momenta prod_proc.get('legs').append(base_objects.Leg({ 'number':max(l.get('number') for l in process.get('legs'))+1, 'state':True, 'id':0})) # now the decay process decay_proc = base_objects.Process({'legs':base_objects.LegList( copy.copy(leg) for leg in process.get('legs') if leg.get('number') in resonance['FSMothersNumbers'] and not leg.get('state')==False)}) # Add the resonant particle as an initial state # ID set to 0 since its mass will be forced # Number set to -1 as well so as to be sure it appears first in # get_momenta decay_proc.get('legs').insert(0,base_objects.Leg({ 'number':-1, 'state':False, 'id':0})) prod_kinematic = evaluator.get_momenta(prod_proc, options=options, special_mass=special_mass)[0] decay_kinematic = evaluator.get_momenta(decay_proc, options=options, special_mass=special_mass)[0] momenta = glue_momenta(prod_kinematic,decay_kinematic) # Reshuffle the momentum so as to put it back in the order specified # in the process definition. # First the production momenta, without the special decayed particle ordered_momenta = [(prod_proc.get('legs')[i].get('number'),momenta[i]) for i in range(len(prod_proc.get('legs'))-1)] # And then the decay ones. ordered_momenta += [(decay_proc.get('legs')[-i].get('number'), momenta[-i]) for i in range(1,len(decay_proc.get('legs')))] # Return the PSpoint found in the right order return [m[1] for m in sorted(ordered_momenta, key = lambda el: el[0])] # misc.sprint(resonance['PS_point_used']) @misc.mute_logger() def get_width(PDG, lambdaCMS, param_card): """ Returns the width to use for particle with absolute PDG 'PDG' and for the the lambdaCMS value 'lambdaCMS' using the cache if possible.""" # If an unstable particle is in the external state, then set its width # to zero and don't cache the result of course. if abs(PDG) in [abs(leg.get('id')) for leg in process.get('legs')]: return 0.0 particle = evaluator.full_model.get_particle(PDG) # If it is a goldstone or a ghost, return zero as its width should anyway # not be independent. if particle.get('ghost') or particle.get('goldstone'): return 0.0 # If its width is analytically set to zero, then return zero right away if particle.get('width')=='ZERO': return 0.0 if (PDG,lambdaCMS) in options['cached_widths']: return options['cached_widths'][(PDG,lambdaCMS)] if options['recompute_width'] == 'never': width = evaluator.full_model.\ get('parameter_dict')[particle.get('width')].real else: # Crash if we are doing CMS and the width was not found and recycled above if aloha.complex_mass: raise MadGraph5Error, "The width for particle with PDG %d and"%PDG+\ " lambdaCMS=%f should have already been "%lambdaCMS+\ "computed during the NWA run." # Use MadWith if options['recompute_width'] in ['always','first_time']: particle_name = particle.get_name() with misc.TMP_directory(dir=options['output_path']) as path: param_card.write(pjoin(path,'tmp.dat')) # 2-body decay is the maximum that should be considered for NLO check. # The default 1% accuracy is not enough when pushing to small # lambdaCMS values, we need 1 per mil at least. command = '%s --output=%s'%(particle_name,pjoin(path,'tmp.dat'))+\ ' --path=%s --body_decay=2'%pjoin(path,'tmp.dat')+\ ' --precision_channel=0.001' # misc.sprint(command) param_card.write(pjoin(options['output_path'],'tmp.dat')) # The MG5 command get_width will change the cmd._curr_model # and the cmd._curr_fortran_model which what we specified, so # we must make sure to restore them after it finishes orig_model = options['cmd']._curr_model orig_helas_model = options['cmd']._curr_helas_model options['cmd'].do_compute_widths(command, evaluator.full_model) # Restore the models options['cmd']._curr_model = orig_model options['cmd']._curr_helas_model = orig_helas_model # Restore the width of the model passed in argument since # MadWidth will automatically update the width evaluator.full_model.set_parameters_and_couplings( param_card=param_card) try: tmp_param_card = check_param_card.ParamCard(pjoin(path,'tmp.dat')) except: raise MadGraph5Error, 'Error occured during width '+\ 'computation with command:\n compute_widths %s'%command width = tmp_param_card['decay'].get(PDG).value # misc.sprint('lambdaCMS checked is', lambdaCMS, # 'for particle',particle_name) # misc.sprint('Width obtained :', width) # if lambdaCMS != 1.0: # misc.sprint('Naively expected (lin. scaling) :', # options['cached_widths'][(PDG,1.0)]*lambdaCMS) if options['recompute_width'] in ['never','first_time']: # Assume linear scaling of the width for lam in options['lambdaCMS']: options['cached_widths'][(PDG,lam)]=width*(lam/lambdaCMS) else: options['cached_widths'][(PDG,lambdaCMS)] = width return options['cached_widths'][(PDG,lambdaCMS)] def get_order(diagrams, diagsName): """Compute the common summed of coupling orders used for this cms check in the diagrams specified. When inconsistency occurs, use orderName in the warning message if throwm.""" orders = set([]) for diag in diagrams: diag_orders = diag.calculate_orders() orders.add(sum((diag_orders[order] if order in diag_orders else 0) for order in options['expansion_orders'])) if len(orders)>1: logger.warning(msg%('%s '%diagsName,str(orders))) return min(list(orders)) else: return list(orders)[0] MLoptions = copy.copy(options['MLOptions']) # Make sure double-check helicities is set to False MLoptions['DoubleCheckHelicityFilter'] = False # Apply the seed tweak if present for tweak in options['tweak']['custom']: if tweak.startswith('seed'): try: new_seed = int(tweak[4:]) except ValueError: raise MadGraph5Error, "Seed '%s' is not of the right format 'seed<int>'."%tweak random.seed(new_seed) mode = 'CMS' if aloha.complex_mass else 'NWA' for i, leg in enumerate(process.get('legs')): leg.set('number', i+1) logger.info("Running CMS check for process %s (now doing %s scheme)" % \ ( process.nice_string().replace('Process:', 'process'), mode)) proc_dir = None resonances = None warning_msg = "All %sdiagrams do not share the same sum of orders "+\ "%s; found %%s."%(','.join(options['expansion_orders']))+\ " This potentially problematic for the CMS check." if NLO: # We must first create the matrix element, export it and set it up. # If the reuse option is specified, it will be recycled. if options['name']=='auto': proc_name = "%s%s_%s%s__%s__"%(('SAVED' if options['reuse'] else ''), temp_dir_prefix, '_'.join(process.shell_string().split('_')[1:]), ('_' if process.get('perturbation_couplings') else '')+ '_'.join(process.get('perturbation_couplings')),mode) else: proc_name = "%s%s_%s__%s__"%(('SAVED' if options['reuse'] else ''), temp_dir_prefix,options['name'], mode) # Generate the ME timing, matrix_element = generate_loop_matrix_element(process, options['reuse'], output_path=options['output_path'], cmd = options['cmd'], proc_name=proc_name, loop_filter=options['loop_filter']) if matrix_element is None: # No diagrams for this process return None reusing = isinstance(matrix_element, base_objects.Process) proc_dir = pjoin(options['output_path'],proc_name) # Export the ME infos = evaluator.setup_process(matrix_element, proc_dir, reusing = reusing, param_card = options['param_card'], MLOptions=MLoptions) # Make sure the right MLoptions are set evaluator.fix_MadLoopParamCard(pjoin(proc_dir,'Cards'), mp = None, loop_filter = True,MLOptions=MLoptions) # Make sure to start from fresh if previous run was stopped tmp_card_backup = pjoin(proc_dir,'Cards','param_card.dat__TemporaryBackup__') if os.path.isfile(tmp_card_backup): # Run was stopped mid-way, we must then restore the original card logger.info("Last run in process '%s' apparently aborted."%proc_dir+\ " Now reverting 'param_card.dat' to its original value.") shutil.copy(tmp_card_backup, pjoin(proc_dir, 'Cards','param_card.dat')) else: # Create a temporary backup which will be cleaned if the run ends properly shutil.copy(pjoin(proc_dir,'Cards','param_card.dat'), tmp_card_backup) # Now do the same with model_functions.f tmp_modelfunc_backup = pjoin(proc_dir,'Source','MODEL', 'model_functions.f__TemporaryBackup__') if os.path.isfile(tmp_modelfunc_backup): # Run was stopped mid-way, we must then restore the model functions logger.info("Last run in process '%s' apparently aborted."%proc_dir+\ " Now reverting 'model_functions.f' to its original value.") shutil.copy(tmp_modelfunc_backup, pjoin(proc_dir,'Source','MODEL', 'model_functions.f')) evaluator.apply_log_tweak(proc_dir, 'recompile') else: # Create a temporary backup which will be cleaned if the run ends properly shutil.copy(pjoin(proc_dir,'Source','MODEL','model_functions.f'), tmp_modelfunc_backup) # Make sure to setup correctly the helicity MadLoopInitializer.fix_PSPoint_in_check(pjoin(proc_dir,'SubProcesses'), read_ps = True, npoints = 1, hel_config = options['helicity'], split_orders=options['split_orders']) # And recompile while making sure to recreate the executable and # modified sources for dir in misc.glob('P*_*', pjoin(proc_dir,'SubProcesses')): if not (re.search(r'.*P\d+_\w*$', dir) or not os.path.isdir(dir)): continue try: os.remove(pjoin(dir,'check')) os.remove(pjoin(dir,'check_sa.o')) except OSError: pass # Now run make with open(os.devnull, 'w') as devnull: retcode = subprocess.call(['make','check'], cwd=dir, stdout=devnull, stderr=devnull) if retcode != 0: raise MadGraph5Error, "Compilation error with "+\ "'make check' in %s"%dir # Now find all the resonances of the ME, if not saved from a previous run pkl_path = pjoin(proc_dir,'resonance_specs.pkl') if reusing: # We recover the information from the pickle dumped during the # original run if not os.path.isfile(pkl_path): raise InvalidCmd('The folder %s could'%proc_dir+\ " not be reused because the resonance specification file "+ "'resonance_specs.pkl' is missing.") else: proc_name, born_order, loop_order, resonances = \ save_load_object.load_from_file(pkl_path) # Make sure to rederive the phase-space point since parameters # such as masses, seed, offshellness could have affected it for res in resonances: set_PSpoint(res, force_other_res_offshell=resonances) # Second run (CMS), we can reuse the information if it is a dictionary if isinstance(opt, list): opt.append((proc_name, resonances)) else: resonances = opt else: helas_born_diagrams = matrix_element.get_born_diagrams() if len(helas_born_diagrams)==0: logger.warning('The CMS check for loop-induced process is '+\ 'not yet available (nor is it very interesting).') return None born_order = get_order(helas_born_diagrams,'Born') loop_order = get_order(matrix_element.get_loop_diagrams(),'loop') # Second run (CMS), we can reuse the information if it is a dictionary if isinstance(opt, list): opt.append((process.base_string(),find_resonances(helas_born_diagrams))) resonances = opt[-1][1] else: resonances = opt # Save the resonances to a pickle file in the output directory so that # it can potentially be reused. save_load_object.save_to_file(pkl_path, (process.base_string(), born_order, loop_order,resonances)) else: # The LO equivalent try: amplitude = diagram_generation.Amplitude(process) except InvalidCmd: logging.info("No diagrams for %s" % \ process.nice_string().replace('Process', 'process')) return None if not amplitude.get('diagrams'): # This process has no diagrams; go to next process logging.info("No diagrams for %s" % \ process.nice_string().replace('Process', 'process')) return None matrix_element = helas_objects.HelasMatrixElement(amplitude, gen_color=True) diagrams = matrix_element.get('diagrams') born_order = get_order(diagrams,'Born') # Loop order set to -1 indicates an LO result loop_order = -1 # Find all the resonances of the ME, if not already given in opt if isinstance(opt, list): opt.append((process.base_string(),find_resonances(diagrams))) resonances = opt[-1][1] else: resonances= opt if len(resonances)==0: logger.info("No resonance found for process %s."\ %process.base_string()) return None # Cache the default param_card for NLO if not options['cached_param_card'][mode][0]: if NLO: param_card = check_param_card.ParamCard( pjoin(proc_dir,'Cards','param_card.dat')) else: param_card = check_param_card.ParamCard( StringIO.StringIO(evaluator.full_model.write_param_card())) options['cached_param_card'][mode][0] = param_card name2block, _ = param_card.analyze_param_card() options['cached_param_card'][mode][1] = name2block else: param_card = options['cached_param_card'][mode][0] name2block = options['cached_param_card'][mode][1] # Already add the coupling order for this sqaured ME. if loop_order != -1 and (loop_order+born_order)%2 != 0: raise MadGraph5Error, 'The summed squared matrix element '+\ " order '%d' is not even."%(loop_order+born_order) result = {'born_order':born_order, 'loop_order': (-1 if loop_order==-1 else (loop_order+born_order)/2), 'resonances_result':[]} # Create a physical backup of the param_card if NLO: try: shutil.copy(pjoin(proc_dir,'Cards','param_card.dat'), pjoin(proc_dir,'Cards','param_card.dat__backUp__')) except: pass # Apply custom tweaks had_log_tweaks=False if NLO: for tweak in options['tweak']['custom']: if tweak.startswith('seed'): continue try: logstart, logend = tweak.split('->') except: raise Madgraph5Error, "Tweak '%s' not reckognized."%tweak if logstart in ['logp','logm', 'log'] and \ logend in ['logp','logm', 'log']: if NLO: evaluator.apply_log_tweak(proc_dir, [logstart, logend]) had_log_tweaks = True else: raise Madgraph5Error, "Tweak '%s' not reckognized."%tweak if had_log_tweaks: evaluator.apply_log_tweak(proc_dir, 'recompile') # Select what resonances should be run if options['resonances']=='all': resonances_to_run = resonances elif isinstance(options['resonances'],int): resonances_to_run = resonances[:options['resonances']] elif isinstance(options['resonances'],list): resonances_to_run = [] for res in resonances: for res_selection in options['resonances']: if abs(res['ParticlePDG'])==res_selection[0] and \ res['FSMothersNumbers']==set(res_selection[1]): resonances_to_run.append(res) break else: raise InvalidCmd("Resonance selection '%s' not reckognized"%\ str(options['resonances'])) # Display progressbar both for LO and NLO for now but not when not showing # the plots if NLO and options['show_plot']: widgets = ['ME evaluations:', pbar.Percentage(), ' ', pbar.Bar(),' ', pbar.ETA(), ' '] progress_bar = pbar.ProgressBar(widgets=widgets, maxval=len(options['lambdaCMS'])*len(resonances_to_run), fd=sys.stdout) progress_bar.update(0) # Flush stdout to force the progress_bar to appear sys.stdout.flush() else: progress_bar = None for resNumber, res in enumerate(resonances_to_run): # First add a dictionary for this resonance to the result with already # one key specifying the resonance result['resonances_result'].append({'resonance':res,'born':[]}) if NLO: result['resonances_result'][-1]['finite'] = [] # Now scan the different lambdaCMS values for lambdaNumber, lambdaCMS in enumerate(options['lambdaCMS']): # Setup the model for that value of lambdaCMS # The copy constructor below creates a deep copy new_param_card = check_param_card.ParamCard(param_card) # Change all specified parameters for param, replacement in options['expansion_parameters'].items(): # Replace the temporary prefix used for evaluation of the # substitution expression orig_param = param.replace('__tmpprefix__','') if orig_param not in name2block: # It can be that some parameter ar in the NWA model but not # in the CMS, such as the Yukawas for example. # logger.warning("Unknown parameter '%s' in mode '%s'."%(param,mode)) continue for block, lhaid in name2block[orig_param]: orig_value = float(param_card[block].get(lhaid).value) new_value = eval(replacement, {param:orig_value,'lambdacms':lambdaCMS}) new_param_card[block].get(lhaid).value=new_value # Apply these changes already (for the purpose of Width computation. # although it is optional since we now provide the new_param_card to # the width computation function.). Also in principle this matters # only in the CMS and there the widths would be reused from their # prior computation within NWA with zero widths. So, all in all, # the line below is really not crucial, but semantically, it ought # to be there. evaluator.full_model.set_parameters_and_couplings( param_card=new_param_card) # Now compute or recyle all widths for decay in new_param_card['decay'].keys(): if mode=='CMS': new_width = get_width(abs(decay[0]), lambdaCMS, new_param_card) else: new_width = 0.0 new_param_card['decay'].get(decay).value= new_width # Apply these changes for the purpose of the final computation evaluator.full_model.set_parameters_and_couplings( param_card=new_param_card) if NLO: new_param_card.write(pjoin(proc_dir,'Cards','param_card.dat')) # Write the recomputed widths so that it can potentially be # used for future runs (here for the model in the CMS format) if lambdaCMS==1.0 and mode=='CMS' and \ options['recompute_width'] in ['always','first_time']: new_param_card.write(pjoin(proc_dir, 'Cards','param_card.dat_recomputed_widths')) # If recomputing widths with MadWidths, we want to do it within # the NWA models with zero widths. if mode=='NWA' and (options['recompute_width']=='always' or ( options['recompute_width']=='first_time' and lambdaCMS==1.0)): # The copy constructor below creates a deep copy tmp_param_card = check_param_card.ParamCard(new_param_card) # We don't use the result here, it is just so that it is put # in the cache and reused in the CMS run that follows. for decay in new_param_card['decay'].keys(): particle_name = evaluator.full_model.get_particle(\ abs(decay[0])).get_name() new_width = get_width(abs(decay[0]),lambdaCMS,new_param_card) tmp_param_card['decay'].get(decay).value = new_width if not options['has_FRdecay'] and new_width != 0.0 and \ (abs(decay[0]),lambdaCMS) not in options['cached_widths']: logger.info('Numerically computed width of particle'+\ ' %s for lambda=%.4g : %-9.6gGeV'% (particle_name,lambdaCMS,new_width)) # Write the recomputed widths so that it can potentially be # used for future runs (here the model in the NWA format) if lambdaCMS==1.0 and NLO: tmp_param_card.write(pjoin(proc_dir, 'Cards','param_card.dat_recomputed_widths')) # Apply the params tweaks for param, replacement in options['tweak']['params'].items(): # Replace the temporary prefix used for evaluation of the # substitution expression orig_param = param.replace('__tmpprefix__','') # Treat the special keyword 'allwidths' if orig_param.lower() == 'allwidths': # Apply the rule to all widhts for decay in new_param_card['decay'].keys(): orig_value = float(new_param_card['decay'].get(decay).value) new_value = eval(replacement, {param:orig_value,'lambdacms':lambdaCMS}) new_param_card['decay'].get(decay).value = new_value continue if orig_param not in name2block: # It can be that some parameter are in the NWA model but not # in the CMS, such as the Yukawas for example. continue for block, lhaid in name2block[orig_param]: orig_value = float(new_param_card[block].get(lhaid).value) new_value = eval(replacement, {param:orig_value,'lambdacms':lambdaCMS}) new_param_card[block].get(lhaid).value=new_value if options['tweak']['params']: # Apply the tweaked param_card one last time evaluator.full_model.set_parameters_and_couplings( param_card=new_param_card) if NLO: new_param_card.write(pjoin(proc_dir,'Cards','param_card.dat')) # Finally ready to compute the matrix element if NLO: ME_res = LoopMatrixElementEvaluator.get_me_value(process, 0, proc_dir, PSpoint=res['PS_point_used'], verbose=False, format='dict', skip_compilation=True) # Notice that there is much more information in ME_res. It can # be forwarded to check_complex_mass_scheme in this result # dictionary if necessary for the analysis. (or even the full # dictionary ME_res can be added). result['resonances_result'][-1]['born'].append(ME_res['born']) result['resonances_result'][-1]['finite'].append( ME_res['finite']*ME_res['born']*ME_res['alphaS_over_2pi']) else: ME_res = evaluator.evaluate_matrix_element(matrix_element, p=res['PS_point_used'], auth_skipping=False, output='m2')[0] result['resonances_result'][-1]['born'].append(ME_res) if not progress_bar is None: progress_bar.update(resNumber*len(options['lambdaCMS'])+\ (lambdaNumber+1)) # Flush to force the printout of the progress_bar to be updated sys.stdout.flush() # Restore the original continued log definition if necessary log_reversed = False for tweak in options['tweak']['custom']: if tweak.startswith('log') and had_log_tweaks: if log_reversed: continue if NLO: evaluator.apply_log_tweak(proc_dir, 'default') evaluator.apply_log_tweak(proc_dir, 'recompile') log_reversed = True # Restore the original model parameters evaluator.full_model.set_parameters_and_couplings(param_card=param_card) if NLO: try: shutil.copy(pjoin(proc_dir,'Cards','param_card.dat__backUp__'), pjoin(proc_dir,'Cards','param_card.dat')) except: param_card.write(pjoin(proc_dir,'Cards','param_card.dat')) # All should have been restored properly, so we can now clean the temporary # backups try: os.remove(pjoin(proc_dir,'Cards','param_card.dat__TemporaryBackup__')) os.remove(pjoin(proc_dir,'Source','MODEL', 'model_functions.f__TemporaryBackup__')) except: pass return (process.nice_string().replace('Process:', '').strip(),result) def get_value(process, evaluator, p=None, options=None): """Return the value/momentum for a phase space point""" for i, leg in enumerate(process.get('legs')): leg.set('number', i+1) logger.info("Checking %s in %s gauge" % \ ( process.nice_string().replace('Process:', 'process'), 'unitary' if aloha.unitary_gauge else 'feynman')) legs = process.get('legs') # Generate a process with these legs # Generate the amplitude for this process try: if process.get('perturbation_couplings')==[]: amplitude = diagram_generation.Amplitude(process) else: amplitude = loop_diagram_generation.LoopAmplitude(process) except InvalidCmd: logging.info("No diagrams for %s" % \ process.nice_string().replace('Process', 'process')) return None if not amplitude.get('diagrams'): # This process has no diagrams; go to next process logging.info("No diagrams for %s" % \ process.nice_string().replace('Process', 'process')) return None if not p: # Generate phase space point to use p, w_rambo = evaluator.get_momenta(process, options) # Generate the HelasMatrixElement for the process if not isinstance(amplitude, loop_diagram_generation.LoopAmplitude): matrix_element = helas_objects.HelasMatrixElement(amplitude, gen_color = True) else: matrix_element = loop_helas_objects.LoopHelasMatrixElement(amplitude, gen_color = True, optimized_output = evaluator.loop_optimized_output) mvalue = evaluator.evaluate_matrix_element(matrix_element, p=p, output='jamp',options=options) if mvalue and mvalue['m2']: return {'process':process.base_string(),'value':mvalue,'p':p} def output_lorentz_inv_loop(comparison_results, output='text'): """Present the results of a comparison in a nice list format for loop processes. It detail the results from each lorentz transformation performed. """ process = comparison_results[0]['process'] results = comparison_results[0]['results'] # Rotations do not change the reference vector for helicity projection, # the loop ME are invarariant under them with a relatively good accuracy. threshold_rotations = 1e-6 # This is typically not the case for the boosts when one cannot really # expect better than 1e-5. It turns out that this is even true in # quadruple precision, for an unknown reason so far. threshold_boosts = 1e-3 res_str = "%s" % process.base_string() transfo_col_size = 17 col_size = 18 transfo_name_header = 'Transformation name' if len(transfo_name_header) + 1 > transfo_col_size: transfo_col_size = len(transfo_name_header) + 1 misc.sprint(results) for transfo_name, value in results: if len(transfo_name) + 1 > transfo_col_size: transfo_col_size = len(transfo_name) + 1 res_str += '\n' + fixed_string_length(transfo_name_header, transfo_col_size) + \ fixed_string_length("Value", col_size) + \ fixed_string_length("Relative diff.", col_size) + "Result" ref_value = results[0] res_str += '\n' + fixed_string_length(ref_value[0], transfo_col_size) + \ fixed_string_length("%1.10e" % ref_value[1]['m2'], col_size) # Now that the reference value has been recuperated, we can span all the # other evaluations all_pass = True for res in results[1:]: threshold = threshold_boosts if 'BOOST' in res[0].upper() else \ threshold_rotations rel_diff = abs((ref_value[1]['m2']-res[1]['m2'])\ /((ref_value[1]['m2']+res[1]['m2'])/2.0)) this_pass = rel_diff <= threshold if not this_pass: all_pass = False res_str += '\n' + fixed_string_length(res[0], transfo_col_size) + \ fixed_string_length("%1.10e" % res[1]['m2'], col_size) + \ fixed_string_length("%1.10e" % rel_diff, col_size) + \ ("Passed" if this_pass else "Failed") if all_pass: res_str += '\n' + 'Summary: passed' else: res_str += '\n' + 'Summary: failed' return res_str def output_lorentz_inv(comparison_results, output='text'): """Present the results of a comparison in a nice list format if output='fail' return the number of failed process -- for test-- """ # Special output for loop processes if comparison_results[0]['process']['perturbation_couplings']!=[]: return output_lorentz_inv_loop(comparison_results, output) proc_col_size = 17 threshold=1e-10 process_header = "Process" if len(process_header) + 1 > proc_col_size: proc_col_size = len(process_header) + 1 for proc, values in comparison_results: if len(proc) + 1 > proc_col_size: proc_col_size = len(proc) + 1 col_size = 18 pass_proc = 0 fail_proc = 0 no_check_proc = 0 failed_proc_list = [] no_check_proc_list = [] res_str = fixed_string_length(process_header, proc_col_size) + \ fixed_string_length("Min element", col_size) + \ fixed_string_length("Max element", col_size) + \ fixed_string_length("Relative diff.", col_size) + \ "Result" for one_comp in comparison_results: proc = one_comp['process'].base_string() data = one_comp['results'] if data == 'pass': no_check_proc += 1 no_check_proc_list.append(proc) continue values = [data[i]['m2'] for i in range(len(data))] min_val = min(values) max_val = max(values) diff = (max_val - min_val) / abs(max_val) res_str += '\n' + fixed_string_length(proc, proc_col_size) + \ fixed_string_length("%1.10e" % min_val, col_size) + \ fixed_string_length("%1.10e" % max_val, col_size) + \ fixed_string_length("%1.10e" % diff, col_size) if diff < threshold: pass_proc += 1 proc_succeed = True res_str += "Passed" else: fail_proc += 1 proc_succeed = False failed_proc_list.append(proc) res_str += "Failed" #check all the JAMP # loop over jamp # Keep in mind that this is not available for loop processes where the # jamp list is empty if len(data[0]['jamp'])!=0: for k in range(len(data[0]['jamp'][0])): sum = [0] * len(data) # loop over helicity for j in range(len(data[0]['jamp'])): #values for the different lorentz boost values = [abs(data[i]['jamp'][j][k])**2 for i in range(len(data))] sum = [sum[i] + values[i] for i in range(len(values))] # Compare the different lorentz boost min_val = min(sum) max_val = max(sum) if not max_val: continue diff = (max_val - min_val) / max_val tmp_str = '\n' + fixed_string_length(' JAMP %s'%k , proc_col_size) + \ fixed_string_length("%1.10e" % min_val, col_size) + \ fixed_string_length("%1.10e" % max_val, col_size) + \ fixed_string_length("%1.10e" % diff, col_size) if diff > 1e-10: if not len(failed_proc_list) or failed_proc_list[-1] != proc: fail_proc += 1 pass_proc -= 1 failed_proc_list.append(proc) res_str += tmp_str + "Failed" elif not proc_succeed: res_str += tmp_str + "Passed" res_str += "\nSummary: %i/%i passed, %i/%i failed" % \ (pass_proc, pass_proc + fail_proc, fail_proc, pass_proc + fail_proc) if fail_proc != 0: res_str += "\nFailed processes: %s" % ', '.join(failed_proc_list) if no_check_proc: res_str += "\nNot checked processes: %s" % ', '.join(no_check_proc_list) if output == 'text': return res_str else: return fail_proc def output_unitary_feynman(comparison_results, output='text'): """Present the results of a comparison in a nice list format if output='fail' return the number of failed process -- for test-- """ proc_col_size = 17 # We use the first element of the comparison_result list to store the # process definition object pert_coupl = comparison_results[0]['perturbation_couplings'] comparison_results = comparison_results[1:] if pert_coupl: process_header = "Process [virt="+" ".join(pert_coupl)+"]" else: process_header = "Process" if len(process_header) + 1 > proc_col_size: proc_col_size = len(process_header) + 1 for data in comparison_results: proc = data['process'] if len(proc) + 1 > proc_col_size: proc_col_size = len(proc) + 1 pass_proc = 0 fail_proc = 0 no_check_proc = 0 failed_proc_list = [] no_check_proc_list = [] col_size = 18 res_str = fixed_string_length(process_header, proc_col_size) + \ fixed_string_length("Unitary", col_size) + \ fixed_string_length("Feynman", col_size) + \ fixed_string_length("Relative diff.", col_size) + \ "Result" for one_comp in comparison_results: proc = one_comp['process'] data = [one_comp['value_unit'], one_comp['value_feynm']] if data[0] == 'pass': no_check_proc += 1 no_check_proc_list.append(proc) continue values = [data[i]['m2'] for i in range(len(data))] min_val = min(values) max_val = max(values) # when max_val is also negative # diff will be negative if there is no abs diff = (max_val - min_val) / abs(max_val) res_str += '\n' + fixed_string_length(proc, proc_col_size) + \ fixed_string_length("%1.10e" % values[0], col_size) + \ fixed_string_length("%1.10e" % values[1], col_size) + \ fixed_string_length("%1.10e" % diff, col_size) if diff < 1e-8: pass_proc += 1 proc_succeed = True res_str += "Passed" else: fail_proc += 1 proc_succeed = False failed_proc_list.append(proc) res_str += "Failed" #check all the JAMP # loop over jamp # This is not available for loop processes where the jamp list returned # is empty. if len(data[0]['jamp'])>0: for k in range(len(data[0]['jamp'][0])): sum = [0, 0] # loop over helicity for j in range(len(data[0]['jamp'])): #values for the different lorentz boost values = [abs(data[i]['jamp'][j][k])**2 for i in range(len(data))] sum = [sum[i] + values[i] for i in range(len(values))] # Compare the different lorentz boost min_val = min(sum) max_val = max(sum) if not max_val: continue diff = (max_val - min_val) / max_val tmp_str = '\n' + fixed_string_length(' JAMP %s'%k , col_size) + \ fixed_string_length("%1.10e" % sum[0], col_size) + \ fixed_string_length("%1.10e" % sum[1], col_size) + \ fixed_string_length("%1.10e" % diff, col_size) if diff > 1e-10: if not len(failed_proc_list) or failed_proc_list[-1] != proc: fail_proc += 1 pass_proc -= 1 failed_proc_list.append(proc) res_str += tmp_str + "Failed" elif not proc_succeed: res_str += tmp_str + "Passed" res_str += "\nSummary: %i/%i passed, %i/%i failed" % \ (pass_proc, pass_proc + fail_proc, fail_proc, pass_proc + fail_proc) if fail_proc != 0: res_str += "\nFailed processes: %s" % ', '.join(failed_proc_list) if no_check_proc: res_str += "\nNot checked processes: %s" % ', '.join(no_check_proc_list) if output == 'text': return res_str else: return fail_proc def CMS_save_path(extension, cms_res, used_model, opts, output_path=None): """Creates a suitable filename for saving these results.""" if opts['name']=='auto' and opts['analyze']!='None': # Reuse the same name then return '%s.%s'%(os.path.splitext(opts['analyze'].split(',')[0])\ [0],extension) # if a name is specified, use it if opts['name']!='auto': basename = opts['name'] else: prefix = 'cms_check_' # Use process name if there is only one process if len(cms_res['ordered_processes'])==1: proc = cms_res['ordered_processes'][0] replacements = [('=>','gt'),('<=','lt'),('/','_no_'), (' ',''),('+','p'),('-','m'), ('~','x'), ('>','_'),('=','eq'),('^2','squared')] # Remove the perturbation couplings: try: proc=proc[:proc.index('[')] except ValueError: pass for key, value in replacements: proc = proc.replace(key,value) basename =prefix+proc+'_%s_'%used_model.get('name')+\ ( ('_'+'_'.join(cms_res['perturbation_orders'])) if \ cms_res['perturbation_orders']!=[] else '') # Use timestamp otherwise else: basename = prefix+datetime.datetime.now().strftime("%Y_%m_%d_%Hh%Mm%Ss") suffix = '_%s'%opts['tweak']['name'] if opts['tweak']['name']!='' else '' if output_path: return pjoin(output_path,'%s%s.%s'%(basename,suffix,extension)) else: return '%s%s.%s'%(basename,suffix,extension) def output_complex_mass_scheme(result,output_path, options, model, output='text'): """ Outputs nicely the outcome of the complex mass scheme check performed by varying the width in the offshell region of resonances found for eahc process. Output just specifies whether text should be returned or a list of failed processes. Use 'concise_text' for a consise report of the results.""" pert_orders=result['perturbation_orders'] ######## CHECK PARAMETERS ######### # # diff_lambda_power choses the power by which one should divide the difference # curve. The test should only work with 1, but it is useful for the LO # check to see the difference has O(\lambda) contribution by setting this # parameter to 2. If the Born does not have O(\lambda) contributions # (i.e. if the test still pas with diff_lambda_power=2) then the NLO test # will not be sensitive to the CMS implementation details. diff_lambda_power = options['diff_lambda_power'] # DISLAIMER: # The CMS check is non trivial to automate and it is actually best done # manually by looking at plots for various implementation of the CMS. # The automatic check performed here with the default parameters below # should typically capture the main features of the CMS implementation. # There will always be exceptions however. # if 'has_FRdecay' in result: has_FRdecay = result['has_FRdecay'] else: has_FRdecay = False # be tighter at LO if not pert_orders: CMS_test_threshold = 1e-3 else: # AT NLO, a correct cancellation is typically of the order of 2% with # a lowest lambda value of 10^-4. It is clear that the threshold should # scale with the minimum lambda value because any little offset in the # LO width value for example (acceptable when less than one 1% if the # widths were computed numerically) will lead to an inaccuracy of the # cancellation scaling with lambda. if not has_FRdecay and ('recomputed_with' not in result or \ result['recompute_width'] in ['always','first_time']): CMS_test_threshold = 2e-2*(1.0e-4/min(result['lambdaCMS'])) else: # If the widths were not computed numerically, then the accuracy of # the cancellation should be better. CMS_test_threshold = 2e-2*(1.0e-5/min(result['lambdaCMS'])) # This threshold sets how flat the diff line must be when approaching it from # the right to start considering its value. Notice that it cannot be larger # than the CMS_test_threshold consideration_threshold = min(CMS_test_threshold/10.0, 0.05) # Number of values groupes with the median technique to avoid being # sensitive to unstabilities group_val = 3 # Starting from which value, relative to the averaged diff, should one consider # the asymptotic diff median to be exactly 0.0 in which case one would use this # average instead of this asymptotic median. u d~ > e+ ve LO exhibit a \ # difference at zero for example. diff_zero_threshold = 1e-3 # Plotting parameters. Specify the lambda range to plot. # lambda_range = [-1,-1] returns the default automatic setup lambda_range = options['lambda_plot_range'] ################################## # One can print out the raw results by uncommenting the line below # misc.sprint(result) # for i, res in enumerate(result['a e- > e- ve ve~ [ virt = QCD QED ]']['CMS']): # for i, res in enumerate(result['u d~ > e+ ve a [ virt = QCD QED ]']['CMS']): # if res['resonance']['FSMothersNumbers'] == set([3, 4]): # misc.sprint(res['resonance']['PS_point_used']) # stop res_str = '' # Variables for the concise report concise_str = '' concise_data = '%%(process)-%ds%%(asymptot)-15s%%(cms_check)-25s%%(status)-25s\n' concise_repl_dict = {'Header':{'process':'Process', 'asymptot':'Asymptot', 'cms_check':'Deviation to asymptot', 'status':'Result'}} ####### BEGIN helper functions # Chose here whether to use Latex particle names or not # Possible values are 'none', 'model' or 'built-in' useLatexParticleName = 'built-in' name2tex = {'e+':r'e^+','w+':r'W^+','a':r'\gamma','g':'g', 'e-':r'e^-','w-':r'W^-','z':'Z','h':'H', 'mu+':r'\mu^+', 'mu-':r'\mu^-', 'ta+':r'\tau^+', 'ta-':r'\tau^-'} for p in ['e','m','t']: d = {'e':'e','m':r'\mu','t':r'\tau'} name2tex['v%s'%p]=r'\nu_{%s}'%d[p] name2tex['v%s~'%p]=r'\bar{\nu_{%s}}'%d[p] for p in ['u','d','c','s','b','t']: name2tex[p]=p name2tex['%s~'%p]=r'\bar{%s}'%p def format_particle_name(particle, latex=useLatexParticleName): p_name = particle if latex=='model': try: texname = model.get_particle(particle).get('texname') if texname and texname!='none': p_name = r'$\displaystyle %s$'%texname except: pass elif latex=='built-in': try: p_name = r'$\displaystyle %s$'%name2tex[particle] except: pass return p_name def resonance_str(resonance, latex=useLatexParticleName): """ Provides a concise string to characterize the resonance """ particle_name = model.get_particle(resonance['ParticlePDG']).get_name() mothersID=['%d'%n for n in sorted(resonance['FSMothersNumbers'])] return r"%s [%s]"%(format_particle_name(particle_name,latex=latex), ','.join(mothersID)) def format_title(process, resonance): """ Format the plot title given the process and resonance """ process_string = [] for particle in process.split(): if '<=' in particle: particle = particle.replace('<=',r'$\displaystyle <=$') if '^2' in particle: particle = particle.replace('^2',r'$\displaystyle ^2$') if particle=='$$': process_string.append(r'\$\$') continue if particle=='>': process_string.append(r'$\displaystyle \rightarrow$') continue if particle=='/': process_string.append(r'$\displaystyle /$') continue process_string.append(format_particle_name(particle)) if resonance=='': return r'CMS check for %s' %(' '.join(process_string)) else: return r'CMS check for %s ( resonance %s )'\ %(' '.join(process_string),resonance) def guess_lambdaorder(ME_values_list, lambda_values, expected=None, proc=None, res=None): """ Guess the lambda scaling from a list of ME values and return it. Also compare with the expected result if specified and trigger a warning if not in agreement.""" # guess the lambdaCMS power in the amplitude squared bpowers = [] for i, lambdaCMS in enumerate(lambda_values[1:]): bpowers.append(round(math.log(ME_values_list[0]/ME_values_list[i+1],\ lambda_values[0]/lambdaCMS))) # Pick the most representative power bpower = sorted([(el, bpowers.count(el)) for el in set(bpowers)], key = lambda elem: elem[1], reverse=True)[0][0] if not expected: return bpower if bpower != expected: logger.warning('The apparent scaling of the squared amplitude'+ 'seems inconsistent w.r.t to detected value '+ '(%i vs %i). %i will be used.'%(expected,bpower,bpower)+ ' This happend for process %s and resonance %s'%(proc, res)) return bpower def check_stability(ME_values, lambda_values, lambda_scaling, values_name): """ Checks if the values passed in argument are stable and return the stability check outcome warning if it is not precise enough. """ values = sorted([ abs(val*(lambda_values[0]/lambda_values[i])**lambda_scaling) for \ i, val in enumerate(ME_values)]) median = values[len(values)//2] max_diff = max(abs(values[0]-median),abs(values[-1]-median)) stability = max_diff/median stab_threshold = 1e-2 if stability >= stab_threshold: return "== WARNING: Stability check failed for '%s' with stability %.2e.\n"\ %(values_name, stability) else: return None ####### END helper functions if options['analyze']=='None': if options['reuse']: save_path = CMS_save_path('pkl', result, model, options, output_path=output_path) buff = "\nThe results of this check have been stored on disk and its "+\ "analysis can be rerun at anytime with the MG5aMC command:\n "+\ " check cms --analyze=%s\n"%save_path res_str += buff concise_str += buff save_load_object.save_to_file(save_path, result) elif len(result['ordered_processes'])>0: buff = "\nUse the following synthax if you want to store "+\ "the raw results on disk.\n"+\ " check cms -reuse <proc_def> <options>\n" res_str += buff concise_str += buff ############################ # Numerical check first # ############################ checks = [] for process in result['ordered_processes']: checks.extend([(process,resID) for resID in \ range(len(result[process]['CMS']))]) if options['reuse']: logFile = open(CMS_save_path( 'log', result, model, options, output_path=output_path),'w') lambdaCMS_list=result['lambdaCMS'] # List of failed processes failed_procs = [] # A bar printing function helper. Change the length here for esthetics bar = lambda char: char*47 # Write out the widths used if information is present: if 'widths_computed' in result: res_str += '\n%s%s%s\n'%(bar('='),' Widths ',bar('=')) if result['recompute_width'] == 'never': res_str += '| Widths extracted from the param_card.dat' else: res_str += '| Widths computed %s'%('analytically' if has_FRdecay else 'numerically') if result['recompute_width'] == 'first_time': res_str += ' for \lambda = 1' elif result['recompute_width'] == 'always': res_str += ' for all \lambda values' res_str += " using mode '--recompute_width=%s'.\n"%result['recompute_width'] for particle_name, width in result['widths_computed']: res_str += '| %-10s = %-11.6gGeV\n'%('Width(%s)'%particle_name,width) res_str += '%s%s%s\n'%(bar('='),'='*8,bar('=')) # Doing the analysis to printout to the MG5 interface and determine whether # the test is passed or not # Number of last points to consider for the stability test nstab_points=group_val # Store here the asymptot detected for each difference curve differences_target = {} for process, resID in checks: # Reinitialize the concise result replacement dictionary # (only one resonance is indicated in this one, no matter what.) concise_repl_dict[process] = {'process':process, 'asymptot':'N/A', 'cms_check':'N/A', 'status':'N/A'} proc_res = result[process] cms_res = proc_res['CMS'][resID] nwa_res = proc_res['NWA'][resID] resonance = resonance_str(cms_res['resonance'], latex='none') cms_born=cms_res['born'] nwa_born=nwa_res['born'] # Starting top thick bar res_str += '\n%s%s%s\n'%(bar('='),'='*8,bar('=')) # Centered process and resonance title proc_title = "%s (resonance %s)"%(process,resonance) centering = (bar(2)+8-len(proc_title))//2 res_str += "%s%s\n"%(' '*centering,proc_title) # Starting bottom thin bar res_str += '%s%s%s\n'%(bar('-'),'-'*8,bar('-')) # Reminder if diff_lambda_power is not 1 if diff_lambda_power!=1: res_str += "== WARNING diff_lambda_power is not 1 but = %g\n"%diff_lambda_power res_str += '%s%s%s\n'%(bar('-'),'-'*8,bar('-')) born_power = guess_lambdaorder(nwa_born,lambdaCMS_list, expected=proc_res['born_order'], proc=process, res=resonance) stab_cms_born = check_stability(cms_born[-nstab_points:], lambdaCMS_list[-nstab_points:], born_power, 'CMS Born') if stab_cms_born: res_str += stab_cms_born stab_nwa_born = check_stability(nwa_born[-nstab_points:], lambdaCMS_list[-nstab_points:], born_power, 'NWA Born') if stab_nwa_born: res_str += stab_nwa_born # Write out the phase-space point res_str += "== Kinematic configuration in GeV (E,px,pypz)\n" for i, p in enumerate(cms_res['resonance']['PS_point_used']): res_str += " | p%-2.d = "%(i+1) for pi in p: res_str += '%-24.17g'%pi if pi<0.0 else ' %-23.17g'%pi res_str += "\n" # Write out the offshellnesses specification res_str += "== Offshellnesses of all detected resonances\n" for res_name, offshellness in cms_res['resonance']['offshellnesses']: res_str += " | %-15s = %f\n"%(res_name, offshellness) res_str += '%s%s%s\n'%(bar('-'),'-'*8,bar('-')) if not pert_orders: res_str += "== Born scaling lambda^n_born. nborn = %d\n"%born_power else: cms_finite=cms_res['finite'] nwa_finite=nwa_res['finite'] loop_power = guess_lambdaorder(nwa_finite,lambdaCMS_list, expected=proc_res['loop_order'], proc=process, res=resonance) res_str += "== Scaling lambda^n. nborn, nloop = %d, %d\n"\ %(born_power,loop_power) stab_cms_finite = check_stability(cms_finite[-nstab_points:], lambdaCMS_list[-nstab_points:], loop_power, 'CMS finite') if stab_cms_finite: res_str += stab_cms_finite stab_nwa_finite = check_stability(nwa_finite[-nstab_points:], lambdaCMS_list[-nstab_points:], loop_power, 'NWA finite') if stab_nwa_finite: res_str += stab_nwa_finite # Now organize data CMSData = [] NWAData = [] DiffData = [] for idata, lam in enumerate(lambdaCMS_list): if not pert_orders: new_cms=cms_born[idata]/(lam**born_power) new_nwa=nwa_born[idata]/(lam**born_power) else: new_cms=(cms_finite[idata]+cms_born[idata]-nwa_born[idata])/(lam*nwa_born[idata]) new_nwa=nwa_finite[idata]/(lam*nwa_born[idata]) new_diff=(new_cms-new_nwa)/(lam**diff_lambda_power) CMSData.append(new_cms) NWAData.append(new_nwa) DiffData.append(new_diff) # NWA Born median # Find which values to start the test at by looking at the CMSdata scaling # First compute the median of the middle 60% of entries in the plot trim_range=int(((1.0-0.6)/2.0)*len(DiffData)) low_diff_median = sorted(DiffData[trim_range:-trim_range])\ [(len(DiffData)-2*trim_range)//2] # Now walk the values from the right of the diff plot until we reaches # values stable with respect to the CMS_tale_median. This value will # be limit of the range considered for the CMS test. Do it in a way which # is insensitive to instabilities, by considering medians of group_val # consecutive points. current_median = 0 # We really want to select only the very stable region scan_index = 0 reference = abs(sorted(NWAData)[len(NWAData)//2]) if low_diff_median!= 0.0: if abs(reference/low_diff_median)<diff_zero_threshold: reference = abs(low_diff_median) while True: scanner = DiffData[scan_index:group_val+scan_index] current_median = sorted(scanner)[len(scanner)//2] # Useful for debugging #misc.sprint(scanner,current_median,abs(current_median-low_diff_median)/reference,reference,consideration_threshold) if abs(current_median-low_diff_median)/reference<\ consideration_threshold: break; scan_index += 1 if (group_val+scan_index)>=len(DiffData): # this should not happen, but in this case we arbitrarily take # half of the data logger.warning('The median scanning failed during the CMS check '+ 'for process %s'%proc_title+\ 'This is means that the difference plot has not stable'+\ 'intermediate region and MG5_aMC will arbitrarily consider the'+\ 'left half of the values.') scan_index = -1 break; if scan_index == -1: cms_check_data_range = len(DiffData)//2 else: cms_check_data_range = scan_index + group_val res_str += "== Data range considered (min, max, n_val) = (%.1e, %.1e, %d)\n"\ %(lambdaCMS_list[-1],lambdaCMS_list[scan_index], len(lambdaCMS_list)-scan_index) # Now setup the list of values affecting the CMScheck CMScheck_values = DiffData[cms_check_data_range:] # For the purpose of checking the stability of the tale, we now do # the consideration_threshold scan from the *left* and if we finsih # before the end, it means that there is an unstable region. if scan_index >= 0: # try to find the numerical instability region scan_index = len(CMScheck_values) used_group_val = max(3,group_val) unstability_found = True while True: scanner = CMScheck_values[scan_index-used_group_val:scan_index] maxdiff = max(abs(scan-low_diff_median) for scan in scanner) if maxdiff/reference<consideration_threshold: break; if (scan_index-used_group_val)==0: # this only happens when no stable intermediate region can be found # Set scan_index to -99 so as to prevent warning unstability_found = False break; # Proceed to th next block of data scan_index -= 1 # Now report here the unstability found if unstability_found: unstab_check=CMScheck_values[scan_index:] relative_array = [val > CMScheck_values[scan_index-1] for val in unstab_check] upper = relative_array.count(True) lower = relative_array.count(False) if not ((lower==0 and upper>=0) or (lower>=0 and upper==0)): logger.warning( """For process %s, a numerically unstable region was detected starting from lambda < %.1e. Look at the plot in this region (and possibly throw more points using the option --lambdaCMS). If this is indeed a stability issue, then either decrease MLStabThreshold in MadLoop or decrease the minimum value of lambda to be considered in the CMS check."""\ %(proc_title, lambdaCMS_list[cms_check_data_range+scan_index-1])) # Now apply the same same technique, as above but to the difference plot # Now we will use low_diff_median instead of diff_tale_median #diff_tale_median = sorted(CMScheck_values)[len(CMScheck_values)//2] scan_index = 0 max_diff = 0.0 res_str += "== Ref. value used in the ratios (Born NWA) = %s\n"\ %('%.3g'%reference) res_str += "== Asymptotic difference value detected = %s\n"\ %('%.3g'%low_diff_median) concise_repl_dict[process]['asymptot'] = '%.3e'%low_diff_median # Pass information to the plotter for the difference target differences_target[(process,resID)]= low_diff_median # misc.sprint('Now doing resonance %s.'%res_str) while True: current_vals = CMScheck_values[scan_index:scan_index+group_val] max_diff = max(max_diff, abs(low_diff_median- sorted(current_vals)[len(current_vals)//2])/reference) if (scan_index+group_val)>=len(CMScheck_values): break scan_index += 1 # Now use the CMS check result cms_check = (max_diff*100.0, '>' if max_diff>CMS_test_threshold else '<', CMS_test_threshold*100.0) res_str += "== CMS check result (threshold) = %.3g%% (%s%.3g%%)\n"%cms_check concise_repl_dict[process]['cms_check'] = \ "%-10s (%s%.3g%%)"%('%.3g%%'%cms_check[0],cms_check[1],cms_check[2]) if max_diff>CMS_test_threshold: failed_procs.append((process,resonance)) res_str += "%s %s %s\n"%(bar('='), 'FAILED' if max_diff>CMS_test_threshold else 'PASSED',bar('=')) concise_repl_dict[process]['status'] = 'Failed' if max_diff>CMS_test_threshold \ else 'Passed' if output=='concise_text': # Find what is the maximum size taken by the process string max_proc_size = max( [len(process) for process in result['ordered_processes']]+[10]) # Re-initialize the res_str so as to contain only the minimal report res_str = concise_str res_str += '\n'+concise_data%(max_proc_size+4)%concise_repl_dict['Header'] for process in result['ordered_processes']: res_str += (concise_data%(max_proc_size+4)%concise_repl_dict[process]) if len(checks): res_str += "Summary: %i/%i passed"%(len(checks)-len(failed_procs),len(checks))+\ ('.\n' if not failed_procs else ', failed checks are for:\n') else: return "\nNo CMS check to perform, the process either has no diagram or does not "+\ "not feature any massive s-channel resonance." for process, resonance in failed_procs: res_str += "> %s, %s\n"%(process, resonance) if output=='concise_text': res_str += '\nMore detailed information on this check available with the command:\n' res_str += ' MG5_aMC>display checks\n' ############################ # Now we turn to the plots # ############################ if not options['show_plot']: if options['reuse']: logFile.write(res_str) logFile.close() if output.endswith('text'): return res_str else: return failed_procs fig_output_file = CMS_save_path('pdf', result, model, options, output_path=output_path) base_fig_name = fig_output_file[:-4] suffix = 1 while os.path.isfile(fig_output_file): fig_output_file = '%s__%d__.pdf'%(base_fig_name,suffix) suffix+=1 process_data_plot_dict={} # load possible additional results. The second element of the tuple is # the dataset name. all_res = [(result, None)] for i, add_res in enumerate(options['analyze'].split(',')[1:]): specs =re.match(r'^(?P#.*)\((?P<title>.*)\)$', add_res) if specs: filename = specs.group('filename') title = specs.group('title') else: filename = add_res title = '#%d'%(i+1) new_result = save_load_object.load_from_file(filename) if new_result is None: raise InvalidCmd('The complex mass scheme check result'+ " file below could not be read.\n %s"%filename) if len(new_result['ordered_processes'])!=len(result['ordered_processes']) \ or len(new_result['lambdaCMS'])!=len(result['lambdaCMS']): raise self.InvalidCmd('The complex mass scheme check result'+ " file below does not seem compatible.\n %s"%filename) all_res.append((new_result,title)) # Prepare the data for process, resID in checks: data1=[] # for subplot 1,i.e. CMS and NWA data2=[] # for subplot 2,i.e. diff info ={} # info to be passed to the plotter for res in all_res: proc_res = res[0][process] cms_res = proc_res['CMS'][resID] nwa_res = proc_res['NWA'][resID] resonance = resonance_str(cms_res['resonance']) if options['resonances']!=1: info['title'] = format_title(process, resonance) else: info['title'] = format_title(process, '') # Born result cms_born=cms_res['born'] nwa_born=nwa_res['born'] if len(cms_born) != len(lambdaCMS_list) or\ len(nwa_born) != len(lambdaCMS_list): raise MadGraph5Error, 'Inconsistent list of results w.r.t. the'+\ ' lambdaCMS values specified for process %s'%process if pert_orders: cms_finite=cms_res['finite'] nwa_finite=nwa_res['finite'] if len(cms_finite) != len(lambdaCMS_list) or\ len(nwa_finite) != len(lambdaCMS_list): raise MadGraph5Error, 'Inconsistent list of results w.r.t. the'+\ ' lambdaCMS values specified for process %s'%process bpower = guess_lambdaorder(nwa_born,lambdaCMS_list, expected=proc_res['born_order'], proc=process, res=resonance) CMSData = [] NWAData = [] DiffData = [] for idata, lam in enumerate(lambdaCMS_list): if not pert_orders: new_cms = cms_born[idata]/lam**bpower new_nwa = nwa_born[idata]/lam**bpower else: new_cms=cms_finite[idata]+cms_born[idata]-nwa_born[idata] new_nwa=nwa_finite[idata] new_cms /= lam*nwa_born[idata] new_nwa /= lam*nwa_born[idata] new_diff=(new_cms-new_nwa)/(lam**diff_lambda_power) CMSData.append(new_cms) NWAData.append(new_nwa) DiffData.append(new_diff) if res[1] is None: if not pert_orders: data1.append([r'$\displaystyle CMS\;=\;\mathcal{M}_{CMS}^{(0)}/\lambda^%d$'%bpower,CMSData]) data1.append([r'$\displaystyle NWA\;=\;\mathcal{M}_{NWA}^{(0)}/\lambda^%d$'%bpower,NWAData]) else: data1.append([r'$\displaystyle CMS\;=\;(\mathcal{M}^{(1)}_{CMS}+\mathcal{M}_{CMS}^{(0)}-\mathcal{M}^{(0)}_{NWA})/(\lambda\cdot\mathcal{M}^{(0)}_{NWA})$',CMSData]) data1.append([r'$\displaystyle NWA\;=\;\mathcal{M}^{(1)}_{NWA}/(\lambda\cdot\mathcal{M}^{(0)}_{NWA})$',NWAData]) data2.append([r'$\displaystyle\Delta\;=\;(CMS-NWA)/\lambda%s$'\ %('' if diff_lambda_power==1 else r'^{%g}'%diff_lambda_power) ,DiffData]) data2.append([r'Detected asymptot',[differences_target[(process,resID)] for i in range(len(lambdaCMS_list))]]) else: data1.append([r'$\displaystyle CMS$ %s'%res[1].replace('_',' ').replace('#','\#'), CMSData]) data1.append([r'$\displaystyle NWA$ %s'%res[1].replace('_',' ').replace('#','\#'), NWAData]) data2.append([r'$\displaystyle\Delta$ %s'%res[1].replace('_',' ').replace('#','\#'), DiffData]) process_data_plot_dict[(process,resID)]=(data1,data2, info) # Now turn to the actual plotting try: import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages logger.info('Rendering plots... (this can take some time because of the latex labels)') res_str += \ """\n----------------------------------------------------------------------------------------------- | In the plots, the Complex Mass Scheme check is successful if the normalized difference | | between the CMS and NWA result (lower inset) tends to a constant when \lambda goes to zero. | -----------------------------------------------------------------------------------------------\n""" # output the figures if lambda_range[1]>0: min_lambda_index = -1 for i, lam in enumerate(lambdaCMS_list): if lam<=lambda_range[1]: min_lambda_index = i break else: min_lambda_index = 0 if lambda_range[0]>0: max_lambda_index = -1 for i, lam in enumerate(lambdaCMS_list): if lam<=lambda_range[0]: max_lambda_index=i-1 break else: max_lambda_index=len(lambdaCMS_list)-1 if max_lambda_index==-1 or min_lambda_index==-1 or \ min_lambda_index==max_lambda_index: raise InvalidCmd('Invalid lambda plotting range: (%.1e,%.1e)'%\ (lambda_range[0],lambda_range[1])) # Trim lambda values if lambda_range[0]>0.0 or lambda_range[1]>0.0: lambdaCMS_list = lambdaCMS_list[min_lambda_index:max_lambda_index+1] plt.rc('text', usetex=True) plt.rc('font', family='serif') pp=PdfPages(fig_output_file) if len(checks)==0 or len(process_data_plot_dict[checks[0]][1])<=7: colorlist=['b','r','g','k','c','m','y'] else: import matplotlib.colors as colors import matplotlib.cm as mplcm import matplotlib.colors as colors # Nice color maps here are 'gist_rainbow' cm = plt.get_cmap('gist_rainbow') cNorm = colors.Normalize(vmin=0, vmax=(len(data2)-1)) scalarMap = mplcm.ScalarMappable(norm=cNorm, cmap=cm) # use vmax=(len(data1)-1)*0.9 to remove pink at the end of the spectrum colorlist = [scalarMap.to_rgba(i*0.9) for i in range(len(data2))] # Or it is also possible to alternate colors so as to make them # as distant as possible to one another # colorlist = sum([ # [scalarMap.to_rgba(i),scalarMap.to_rgba(i+len(data2)//2)] # for i in range(len(data2)//2)],[]) legend_size = 10 for iproc, (process, resID) in enumerate(checks): data1,data2, info=process_data_plot_dict[(process,resID)] # Trim dataplot if necessary if lambda_range[0]>0.0 or lambda_range[1]>0.0: for i in range(len(data1)): data1[i][1]=data1[i][1][min_lambda_index:max_lambda_index+1] for i in range(len(data2)): data2[i][1]=data2[i][1][min_lambda_index:max_lambda_index+1] plt.figure(iproc+1) plt.subplot(211) minvalue=1e+99 maxvalue=-1e+99 for i, d1 in enumerate(data1): # Use the same color for NWA and CMS curve but different linestyle color=colorlist[i//2] data_plot=d1[1] minvalue=min(min(data_plot),minvalue) maxvalue=max(max(data_plot),maxvalue) plt.plot(lambdaCMS_list, data_plot, color=color, marker='', \ linestyle=('-' if i%2==0 else '--'), label=(d1[0] if (i%2==0 or i==1) else '_nolegend_')) ymin = minvalue-(maxvalue-minvalue)/5. ymax = maxvalue+(maxvalue-minvalue)/5. plt.yscale('linear') plt.xscale('log') plt.title(info['title'],fontsize=12,y=1.08) plt.ylabel(r'$\displaystyle \mathcal{M}$') #plt.xlabel('lambdaCMS') if ymax*len(data1)-sum(max(d1[1][-len(d1[1])//2:]) \ for d1 in data1) > 0.5*(ymax-ymin)*len(data1): plt.legend(prop={'size':legend_size},loc='upper left', frameon=False) else: plt.legend(prop={'size':legend_size},loc='lower left', frameon=False) plt.axis([min(lambdaCMS_list),max(lambdaCMS_list), ymin, ymax]) plt.subplot(212) minvalue=1e+99 maxvalue=-1e+99 try: asymptot_index = [d2[0] for d2 in data2].index('Detected asymptot') plt.plot(lambdaCMS_list, data2[asymptot_index][1], color='0.75', marker='', linestyle='-', label='') except ValueError: pass color_ID = -1 for d2 in data2: # Special setup for the reference asymptot straight line if d2[0]=='Detected asymptot': continue color_ID += 1 color=colorlist[color_ID] data_plot=d2[1] minvalue=min(min(data_plot),minvalue) maxvalue=max(max(data_plot),maxvalue) plt.plot(lambdaCMS_list, data_plot, color=color, marker='',\ linestyle='-', label=d2[0]) ymin = minvalue-(maxvalue-minvalue)/5. ymax = maxvalue+(maxvalue-minvalue)/5. plt.yscale('linear') plt.xscale('log') plt.ylabel(r'$\displaystyle \Delta$') plt.xlabel(r'$\displaystyle \lambda$') # The unreadable stuff below is just to check if the left of the # plot is stable or not sd = [sorted(d2[1][-len(d2[1])//2:]) for d2 in data2] left_stability = sum(abs(s[0]-s[-1]) for s in sd) sd = [sorted(d2[1][:-len(d2[1])//2]) for d2 in data2] right_stability = sum(abs(s[0]-s[-1]) for s in sd) left_stable = False if right_stability==0.0 else \ (left_stability/right_stability)<0.1 if left_stable: if ymax*len(data2)-sum(max(d2[1][-len(d2[1])//2:]) \ for d2 in data2) > 0.5*(ymax-ymin)*len(data2): plt.legend(prop={'size':legend_size},loc='upper left', frameon=False) else: plt.legend(prop={'size':legend_size},loc='lower left', frameon=False) else: if ymax*len(data2)-sum(max(d2[1][:-len(d2[1])//2]) \ for d2 in data2) > 0.5*(ymax-ymin)*len(data2): plt.legend(prop={'size':legend_size},loc='upper right', frameon=False) else: plt.legend(prop={'size':legend_size},loc='lower right', frameon=False) plt.axis([min(lambdaCMS_list),max(lambdaCMS_list),\ minvalue-(maxvalue-minvalue)/5., maxvalue+(maxvalue-minvalue)/5.]) plt.savefig(pp,format='pdf') pp.close() if len(checks)>0: logger.info('Complex Mass Scheme check plot output to file %s. '%fig_output_file) if sys.platform.startswith('linux'): misc.call(["xdg-open", fig_output_file]) elif sys.platform.startswith('darwin'): misc.call(["open", fig_output_file]) plt.close("all") except Exception as e: if isinstance(e, ImportError): res_str += "\n= Install matplotlib to get a "+\ "graphical display of the results of the cms check." else: general_error = "\n= Could not produce the cms check plot because of "+\ "the following error: %s"%str(e) try: import Tkinter if isinstance(e, Tkinter.TclError): res_str += "\n= Plots are not generated because your system"+\ " does not support graphical display." else: res_str += general_error except: res_str += general_error if options['reuse']: logFile.write(res_str) logFile.close() if output.endswith('text'): return res_str else: return failed_procs ``` #### File: tests/parallel_tests/madevent_comparator.py ```python import datetime import glob import itertools import logging import os import re import shutil import subprocess import sys import time pjoin = os.path.join # Get the grand parent directory (mg5 root) of the module real path # (tests/acceptance_tests) and add it to the current PYTHONPATH to allow # for easy import of MG5 tools _file_path = os.path.dirname(os.path.realpath(__file__)) import madgraph.iolibs.template_files as template_files import madgraph.iolibs.save_load_object as save_load_object import madgraph.interface.master_interface as cmd_interface import madgraph.various.misc as misc from madgraph import MadGraph5Error, MG5DIR import me_comparator class MadEventComparator(me_comparator.MEComparator): """Base object to run comparison tests. Take standard Runner objects and a list of proc as an input and return detailed comparison tables in various formats.""" def run_comparison(self, proc_list, model='sm', orders={}): """Run the codes and store results.""" if isinstance(model, basestring): model= [model] * len(self.me_runners) self.results = [] self.proc_list = proc_list logging.info(\ "Running on %i processes with order: %s, in model %s" % \ (len(proc_list), me_comparator.MERunner.get_coupling_definitions(orders), '/'.join([onemodel for onemodel in model]))) pass_proc = False for i,runner in enumerate(self.me_runners): cpu_time1 = time.time() logging.info("Now running %s" % runner.name) if pass_proc: runner.pass_proc = pass_proc self.results.append(runner.run(proc_list, model[i], orders)) cpu_time2 = time.time() logging.info(" Done in %0.3f s" % (cpu_time2 - cpu_time1)) # logging.info(" (%i/%i with zero ME)" % \ # (len([res for res in self.results[-1] if res[0][0] == 0.0]), # len(proc_list))) def cleanup(self): """Call cleanup for each MERunner.""" for runner in self.me_runners: logging.info("Cleaning code %s runner" % runner.name) runner.cleanup() def output_result(self, filename=None, tolerance=3e-02): """Output result as a nicely formated table. If filename is provided, write it to the file, else to the screen. Tolerance can be adjusted.""" def detect_type(data): """check if the type is an integer/float/string""" if data.isdigit(): return 'int' elif len(data) and data[0] == '-' and data[1:].isdigit(): return 'int' try: float(data) return 'float' except: return 'str' proc_col_size = 17 for proc in self.results[0]: if len(proc) + 1 > proc_col_size: proc_col_size = len(proc) + 1 col_size = 17 pass_test = 0 fail_test = 0 failed_prop_list = [] res_str = "\n" + self._fixed_string_length("Checked", proc_col_size) + \ ''.join([self._fixed_string_length(runner.name, col_size) for \ runner in self.me_runners]) + \ self._fixed_string_length("Relative diff.", col_size) + \ "Result" for prop in self.results[0]: loc_results = [] succeed = True for i in range(len(self.results)): if not self.results[i].has_key(prop): loc_results.append('not present') succeed = False else: loc_results.append(self.results[i][prop]) res_str += '\n' + self._fixed_string_length(proc, proc_col_size)+ \ ''.join([self._fixed_string_length(str(res), col_size) for res in loc_results]) if not succeed: res_str += self._fixed_string_length("NAN", col_size) res_str += 'failed' fail_test += 1 failed_prop_list.append(prop) else: # check the type (integer/float/string) type = detect_type(loc_results[0]) if type == 'int': if any(detect_type(loc)=='float' for loc in loc_results): type = 'float' if type == 'float': if max(loc_results) == 0.0 and min(loc_results) == 0.0: res_str += self._fixed_string_length("0", col_size) res_str += 'passed' pass_test +=1 else: loc_results = [float(d) for d in loc_results] diff = (max(loc_results) - min(loc_results)) / \ (max(loc_results) + min(loc_results)) res_str += self._fixed_string_length("%1.10e" % diff, col_size) if diff >= tolerance: res_str += 'failed' failed_prop_list.append(prop) fail_test += 1 else: res_str += 'passed' pass_test +=1 else: for value in loc_results: if value != loc_results[0]: res_str += self._fixed_string_length("differ", col_size) res_str += 'failed' failed_prop_list.append(prop) fail_test += 1 break res_str += self._fixed_string_length("identical", col_size) res_str += 'passed' pass_test +=1 res_str += "\nSummary: %i/%i passed, %i/%i failed" % \ (pass_test, pass_test + fail_test, fail_test, pass_test + fail_test) if fail_test != 0: res_str += "\nFailed processes: %s" % ', '.join(failed_prop_list) logging.info(res_str) if filename: file = open(filename, 'w') file.write(res_str) file.close() return fail_test, failed_prop_list def assert_processes(self, test_object, tolerance = 1e-06): """Run assert to check that all processes passed comparison""" fail_test, fail_prop = self.output_result('', tolerance) test_object.assertEqual(fail_test, 0, "Failed for processes: %s" % ', '.join(fail_prop)) class MadEventComparatorGauge(me_comparator.MEComparatorGauge): """Base object to run comparison tests. Take standard Runner objects and a list of proc as an input and return detailed comparison tables in various formats.""" def run_comparison(self, proc_list, model='sm', orders={}): """Run the codes and store results.""" #if isinstance(model, basestring): # model= [model] * len(self.me_runners) self.results = [] self.proc_list = proc_list logging.info(\ "Running on %i processes with order: %s, in model %s" % \ (len(proc_list), ' '.join(["%s=%i" % (k, v) for k, v in orders.items()]), model)) pass_proc = False for i,runner in enumerate(self.me_runners): cpu_time1 = time.time() logging.info("Now running %s" % runner.name) if pass_proc: runner.pass_proc = pass_proc self.results.append(runner.run(proc_list, model, orders)) cpu_time2 = time.time() logging.info(" Done in %0.3f s" % (cpu_time2 - cpu_time1)) # logging.info(" (%i/%i with zero ME)" % \ # (len([res for res in self.results[-1] if res[0][0] == 0.0]), # len(proc_list))) def cleanup(self): """Call cleanup for each MERunner.""" for runner in self.me_runners: logging.info("Cleaning code %s runner" % runner.name) runner.cleanup() def output_result(self, filename=None, tolerance=3e-03): """Output result as a nicely formated table. If filename is provided, write it to the file, else to the screen. Tolerance can be adjusted.""" def detect_type(data): """check if the type is an integer/float/string""" if data.isdigit(): return 'int' elif len(data) and data[0] == '-' and data[1:].isdigit(): return 'int' try: float(data) return 'float' except: return 'str' proc_col_size = 17 for proc in self.results[0]: if len(proc) + 1 > proc_col_size: proc_col_size = len(proc) + 1 col_size = 17 pass_test = 0 fail_test = 0 failed_proc_list = [] res_str = "\n" + self._fixed_string_length("Process", proc_col_size) + \ ''.join([self._fixed_string_length(runner.name, col_size) for \ runner in self.me_runners]) + \ self._fixed_string_length("Diff both unit", col_size) + \ self._fixed_string_length("Diff both cms", col_size) + \ self._fixed_string_length("Diff both fixw", col_size) + \ self._fixed_string_length("Diff both feyn", col_size) + \ "Result" for proc in self.results[0]: loc_results = [] succeed = True for i in range(len(self.results)): if not self.results[i].has_key(proc): loc_results.append('not present') succeed = False else: loc_results.append(self.results[i][proc]) res_str += '\n' + self._fixed_string_length(proc, proc_col_size)+ \ ''.join([self._fixed_string_length(str(res), col_size) for res in loc_results]) if not succeed: res_str += self._fixed_string_length("NAN", col_size) res_str += 'failed' fail_test += 1 failed_proc_list.append(proc) else: # check the type (integer/float/string) type = detect_type(loc_results[0]) if type == 'float': if max(loc_results) == 0.0 and min(loc_results) == 0.0: res_str += self._fixed_string_length("0", col_size) res_str += 'passed' pass_test +=1 else: loc_results = [float(d) for d in loc_results] diff_feyn = abs(loc_results[1] - loc_results[2]) / \ (loc_results[1] + loc_results[2] + 1e-99) diff_unit = abs(loc_results[0] - loc_results[3]) / \ (loc_results[0] + loc_results[3] + 1e-99) diff_cms = abs(loc_results[0] - loc_results[1]) / \ (loc_results[0] + loc_results[1] + 1e-99) diff_fixw = abs(loc_results[2] - loc_results[3]) / \ (loc_results[2] + loc_results[3] + 1e-99) res_str += self._fixed_string_length("%1.10e" % diff_unit, col_size) res_str += self._fixed_string_length("%1.10e" % diff_cms, col_size) res_str += self._fixed_string_length("%1.10e" % diff_fixw, col_size) res_str += self._fixed_string_length("%1.10e" % diff_feyn, col_size) if diff_feyn < 4e-2 and diff_cms < 1e-2 and diff_fixw < 1e-2 and \ diff_unit < 4e-2: pass_test += 1 res_str += "Pass" else: fail_test += 1 failed_proc_list.append(proc) res_str += "Fail" else: for value in loc_results: if value != loc_results[0]: res_str += self._fixed_string_length("differ", col_size) res_str += 'failed' failed_proc_list.append(proc) fail_test += 1 break res_str += self._fixed_string_length("identical", col_size) res_str += 'passed' pass_test +=1 res_str += "\nSummary: %i/%i passed, %i/%i failed" % \ (pass_test, pass_test + fail_test, fail_test, pass_test + fail_test) if fail_test != 0: res_str += "\nFailed processes: %s" % ', '.join(failed_proc_list) logging.info(res_str) if filename: file = open(filename, 'w') file.write(res_str) file.close() return fail_test, failed_proc_list def assert_processes(self, test_object, tolerance = 1e-06): """Run assert to check that all processes passed comparison""" fail_test, fail_prop = self.output_result('', tolerance) test_object.assertEqual(fail_test, 0, "Failed for processes: %s" % ', '.join(fail_prop)) class FakeRunner(object): temp_dir_name = "" proc_list = [] res_list = [] setup_flag = False name = 'Store' type = 'Store' model_dir = os.path.join(MG5DIR,'models') def cleanup(self): pass class MadEventRunner(object): """Base class to containing default function to setup, run and access results produced with a specific ME generator. """ temp_dir_name = "" proc_list = [] res_list = [] setup_flag = False name = 'None' model_dir = os.path.join(MG5DIR,'models') class MERunnerException(Exception): """Default Exception class for MERunner objects""" def setup(self): """Empty method to define all warming up operations to be executed before actually running the generator. """ pass def run(self, proc_list, model, orders, energy): """Run the generator for a specific list of processes (see below for conventions) and store the result. """ pass def get_result(self, proc_id): """Return the result (i.e., ME value for a particular PS point) for a specific process identified with its id.""" return self.proc_list[proc_id] def cleanup(self): """Perform some clean up procedure to leave the ME code directory in the same state as it was initially (e.g., remove temp dirs, ...) """ pass class MG5Runner(MadEventRunner): """Runner object for the MG5 Matrix Element generator.""" mg5_path = "" name = 'MadGraph v5' type = 'v5' def setup(self, mg5_path, temp_dir=None): """Wrapper for the mg4 setup, also initializing the mg5 path variable""" self.mg5_path = os.path.abspath(mg5_path) if not temp_dir: i=0 while os.path.exists(os.path.join(mg5_path, "p_ME_test_%s_%s" % (self.type, i))): i += 1 temp_dir = "p_ME_test_%s_%s" % (self.type, i) self.temp_dir_name = temp_dir def run(self, proc_list, model, orders={}): """Execute MG5 on the list of processes mentioned in proc_list, using the specified model, the specified maximal coupling orders and a certain energy for incoming particles (for decay, incoming particle is at rest). """ self.res_list = [] # ensure that to be void, and avoid pointer problem self.proc_list = proc_list self.model = model self.orders = orders self.non_zero = 0 dir_name = os.path.join(self.mg5_path, self.temp_dir_name) # Create a proc_card.dat in the v5 format proc_card_location = os.path.join(self.mg5_path, 'proc_card_%s.dat' % \ self.temp_dir_name) proc_card_file = open(proc_card_location, 'w') proc_card_file.write(self.format_mg5_proc_card(proc_list, model, orders)) proc_card_file.close() logging.info("proc_card.dat file for %i processes successfully created in %s" % \ (len(proc_list), os.path.join(dir_name, 'Cards'))) # Run mg5 logging.info("Running MG5") #proc_card = open(proc_card_location, 'r').read() new_proc_list = [] cmd = cmd_interface.MasterCmd() cmd.no_notification() cmd.exec_cmd('import command %s' %proc_card_location) #for line in proc_card.split('\n'): # cmd.exec_cmd(line, errorhandling=False) os.remove(proc_card_location) values = self.get_values() self.res_list.append(values) return values def format_mg5_proc_card(self, proc_list, model, orders): """Create a proc_card.dat string following v5 conventions.""" if model != 'mssm': v5_string = "import model %s\n" % os.path.join(self.model_dir, model) else: v5_string = "import model %s\n" % model v5_string += "set automatic_html_opening False\n" couplings = me_comparator.MERunner.get_coupling_definitions(orders) for i, proc in enumerate(proc_list): v5_string += 'add process ' + proc + ' ' + couplings + \ '@%i' % i + '\n' v5_string += "output %s -f\n" % \ os.path.join(self.mg5_path, self.temp_dir_name) v5_string += "launch -i --multicore\n" v5_string += " set automatic_html_opening False\n" v5_string += "edit_cards\n" # v5_string += "set ickkw 0\n" v5_string += "set LHC 13\n" # v5_string += "set xqcut 0\n" v5_string += "set auto_ptj_mjj True\n" v5_string += "set cut_decays True\n" v5_string += "set ickkw 0\n" v5_string += "set xqcut 0\n" v5_string += "survey run_01; refine 0.01; refine 0.01\n" #v5_string += "print_results\n" return v5_string def get_values(self): dir_name = os.path.join(self.mg5_path, self.temp_dir_name) SubProc=[name for name in os.listdir(dir_name + '/SubProcesses') if name[0]=='P' and os.path.isdir(dir_name + '/SubProcesses/'+name) and \ name[1].isdigit()] output = {} #Part1: number of SubProcesses numsubProc={} for name in SubProc : tag=name.split('_')[0][1:] if numsubProc.has_key(tag): numsubProc[tag]+=1 else: numsubProc[tag]=1 for key,value in numsubProc.items(): output['number_of_P'+key]=str(value) #Part 2: cross section for name in SubProc: if os.path.exists(dir_name+'/SubProcesses/'+name+'/run_01_results.dat'): filepath = dir_name+'/SubProcesses/'+name+'/run_01_results.dat' else: filepath = dir_name+'/SubProcesses/'+name+'/results.dat' if not os.path.exists(filepath): break for line in file(filepath): splitline=line.split() #if len(splitline)==8: output['cross_'+name]=splitline[0] print "found %s %s" % (splitline[0], splitline[1]) else: return output filepath = dir_name+'/HTML/run_01/results.html' text = open(filepath).read() #id="#P1_qq_ll" href=#P1_qq_ll onClick="check_link('#P1_qq_ll','#P1_qq_ll','#P1_qq_ll')"> 842.9 info = re.findall('id="\#(?P<a1>\w*)" href=\#(?P=a1) onClick="check_link\(\'\#(?P=a1)\',\'\#(?P=a1)\',\'\#(?P=a1)\'\)">\s* ([\d.e+-]*)', text) for name,value in info: output['cross_'+name] = value return output class MG5OldRunner(MG5Runner): """Runner object for the MG5 Matrix Element generator.""" mg5_path = "" name = 'v5 Ref' type = 'v5_ref' def format_mg5_proc_card(self, proc_list, model, orders): """Create a proc_card.dat string following v5 conventions.""" v5_string = "import model %s\n" % os.path.join(self.model_dir, model) v5_string += "set automatic_html_opening False\n" couplings = me_comparator.MERunner.get_coupling_definitions(orders) for i, proc in enumerate(proc_list): v5_string += 'add process ' + proc + ' ' + couplings + \ '@%i' % i + '\n' v5_string += "output %s -f\n" % \ os.path.join(self.mg5_path, self.temp_dir_name) v5_string += "launch -f \n" return v5_string def run(self, proc_list, model, orders={}): """Execute MG5 on the list of processes mentioned in proc_list, using the specified model, the specified maximal coupling orders and a certain energy for incoming particles (for decay, incoming particle is at rest). """ self.res_list = [] # ensure that to be void, and avoid pointer problem self.proc_list = proc_list self.model = model self.orders = orders self.non_zero = 0 dir_name = os.path.join(self.mg5_path, self.temp_dir_name) # Create a proc_card.dat in the v5 format proc_card_location = os.path.join(self.mg5_path, 'proc_card_%s.dat' % \ self.temp_dir_name) proc_card_file = open(proc_card_location, 'w') proc_card_file.write(self.format_mg5_proc_card(proc_list, model, orders)) proc_card_file.close() logging.info("proc_card.dat file for %i processes successfully created in %s" % \ (len(proc_list), os.path.join(dir_name, 'Cards'))) # Run mg5 logging.info("Running MG5") devnull = open(os.devnull,'w') if logging.root.level >=20: subprocess.call([pjoin(self.mg5_path,'bin','mg5'), proc_card_location], stdout=devnull, stderr=devnull) else: subprocess.call([pjoin(self.mg5_path,'bin','mg5'), proc_card_location]) os.remove(proc_card_location) values = self.get_values() self.res_list.append(values) return values class MG5gaugeRunner(MG5Runner): """Runner object for the MG5 Matrix Element generator.""" def __init__(self, cms, gauge): self.cms = cms self.gauge = gauge self.mg5_path = "" self.name = 'MG_%s_%s' %(self.cms, self.gauge) self.type = '%s_%s' %(self.cms, self.gauge) def format_mg5_proc_card(self, proc_list, model, orders): """Create a proc_card.dat string following v5 conventions.""" v5_string = 'import model sm \n' v5_string += 'set automatic_html_opening False\n' v5_string += 'set complex_mass_scheme %s \n' % self.cms v5_string += 'set gauge %s \n' % self.gauge v5_string += "import model %s \n" % os.path.join(self.model_dir, model) couplings = me_comparator.MERunner.get_coupling_definitions(orders) for i, proc in enumerate(proc_list): v5_string += 'add process ' + proc + ' ' + couplings + \ '@%i' % i + '\n' v5_string += "output %s -f\n" % \ os.path.join(self.mg5_path, self.temp_dir_name) v5_string += "launch -f \n" v5_string += 'set complex_mass_scheme False \n' v5_string += 'set gauge unitary' return v5_string ```
{ "source": "jlrainbolt/pyunfold", "score": 2 }
#### File: pyunfold/pyunfold/teststat.py ```python from __future__ import division, print_function import numpy as np from scipy.special import gammaln as lgamma from .utils import none_to_empty_list class TestStat(object): """Common base class for test statistic methods """ def __init__(self, tol=None, num_causes=None, test_range=None, **kwargs): test_range = none_to_empty_list(test_range) self.tol = tol if num_causes is None: raise ValueError('Number of causes (num_causes) must be provided.') cause_bin_edges = np.arange(num_causes + 1, dtype=float) # Get bin midpoints cause_axis = (cause_bin_edges[1:] + cause_bin_edges[:-1]) / 2 self.cause_axis = cause_axis self.ts_range = test_range self.has_ts_range = False self.ts_bins = self.set_test_range_bins() # Initialize Unnatural TS data self.stat = np.inf self.dof = -1 self.dofSet = False def set_test_range_bins(self): bins = [0, -1] if self.ts_range != []: lTSR = len(self.ts_range) err_mess = ("***\n Test stat range can only have two elements. " "This has {}. Exiting...***\n".format(lTSR)) assert lTSR == 2, err_mess xlo = self.ts_range[0] xhi = self.ts_range[1] err_mess = "***\n Test stat limits reversed. xlo must be < xhi. Exiting...***\n" assert xlo < xhi, err_mess # Find the bins corresponding to the test range requested lobin = np.searchsorted(self.cause_axis, xlo) hibin = np.searchsorted(self.cause_axis, xhi) bins = [lobin, hibin] self.has_ts_range = True return bins def get_array_range(self, dist1, dist2): if self.has_ts_range: NR1 = dist1[self.ts_bins[0]:self.ts_bins[1]] NR2 = dist2[self.ts_bins[0]:self.ts_bins[1]] return NR1, NR2 else: return dist1.copy(), dist2.copy() def pass_tol(self): """Function testing whether TS < tol """ pass_tol = self.stat < self.tol return pass_tol def set_dof(self, dof): """Set degrees of freedom """ if self.dof == -1: self.dof = dof def check_lengths(self, dist1, dist2): """Test for equal length distributions """ ln1 = len(dist1) ln2 = len(dist2) err_mess = ("Test Statistic arrays are not equal length. " "{} != {}. Exiting...\n".format(ln1, ln2)) assert ln1 == ln2, err_mess if not self.dofSet: self.set_dof(ln1) self.dofSet = True def calc(self, dist1, dist2): """Undefined test statistics calculator """ raise NotImplementedError() class Chi2(TestStat): """Reduced chi-squared test statistic """ def calc(self, dist1, dist2): """Calculate the test statistic between two input distributions Parameters ---------- dist1 : array_like Input distribution. dist2 : array_like Input distribution. Returns ------- stat : float Test statistic """ dist1, dist2 = self.get_array_range(dist1, dist2) self.check_lengths(dist1, dist2) n1 = np.sum(dist1) n2 = np.sum(dist2) h_sum = dist1 + dist2 # Don't divide by 0... h_sum[(h_sum < 1)] = 1. h_dif = n2 * dist1 - n1 * dist2 h_quot = h_dif * h_dif / h_sum stat = np.sum(h_quot)/(n1*n2)/self.dof self.stat = stat return stat class BF(TestStat): """Bayes factor test statistic Notes ----- For details related to the Bayes fator see [1]_. References ---------- .. [1] <NAME> and <NAME> and <NAME> and <NAME>. "A Bayesian Approach to Comparing Cosmic Ray Energy Spectra". *The Astrophysical Journal* 738 (1):82. `<https://doi.org/10.1088/0004-637X/738/1/82>`_. """ def calc(self, dist1, dist2): """Calculate the test statistic between two input distributions Parameters ---------- dist1 : array_like Input distribution. dist2 : array_like Input distribution. Returns ------- stat : float Test statistic """ dist1, dist2 = self.get_array_range(dist1, dist2) self.check_lengths(dist1, dist2) lnB = 0 n1 = np.sum(dist1) n2 = np.sum(dist2) nFactor = lgamma(n1+n2+2) - lgamma(n1+1) - lgamma(n2+1) lnB += nFactor for i in range(0, len(dist1)): lnB += lgamma(dist1[i]+1) + lgamma(dist2[i]+1) - lgamma(dist1[i]+dist2[i]+2) self.stat = lnB return lnB class RMD(TestStat): """Maximum relative difference test statistic """ def calc(self, dist1, dist2): """Calculate the test statistic between two input distributions Parameters ---------- dist1 : array_like Input distribution. dist2 : array_like Input distribution. Returns ------- stat : float Test statistic """ dist1, dist2 = self.get_array_range(dist1, dist2) self.check_lengths(dist1, dist2) h_sum = dist1+dist2 h_sum[(h_sum < 1)] = 1. h_dif = np.abs(dist1 - dist2) h_quot = h_dif / h_sum stat = np.max(h_quot) self.stat = stat return stat class KS(TestStat): """Kolmogorov-Smirnov (KS) two-sided test statistic """ def calc(self, dist1, dist2): """Calculate the test statistic between two input distributions Parameters ---------- dist1 : array_like Input distribution. dist2 : array_like Input distribution. Returns ------- stat : float Test statistic """ dist1, dist2 = self.get_array_range(dist1, dist2) self.check_lengths(dist1, dist2) n1 = np.sum(dist1) n2 = np.sum(dist2) cs1 = np.cumsum(dist1)/n1 cs2 = np.cumsum(dist2)/n2 len1 = len(dist1) self.en = np.sqrt(len1/2) stat = np.max(np.abs(cs1-cs2)) self.stat = stat return stat TEST_STATISTICS = {"chi2": Chi2, "bf": BF, "rmd": RMD, "ks": KS, } def get_ts(name='ks'): """Convenience function for retrieving test statisitc calculators Parameters ---------- name : {'ks', 'chi2', 'bf', 'rmd'} Name of test statistic. Returns ------- ts : TestStat Test statistics calculator """ if name in TEST_STATISTICS: ts = TEST_STATISTICS[name] return ts else: raise ValueError('Invalid test statistic, {}, entered. Must be ' 'in {}'.format(name, TEST_STATISTICS.keys())) ``` #### File: pyunfold/tests/test_callbacks.py ```python from __future__ import division, print_function import numpy as np import pytest from scipy.interpolate import UnivariateSpline from pyunfold.unfold import iterative_unfold from pyunfold.callbacks import (Callback, CallbackList, Logger, Regularizer, SplineRegularizer, validate_callbacks, extract_regularizer, setup_callbacks_regularizer) @pytest.mark.parametrize('attr', ['on_unfolding_begin', 'on_unfolding_end', 'on_iteration_begin', 'on_iteration_end']) def test_callback_attributes(attr): assert hasattr(Callback(), attr) @pytest.mark.parametrize('callbacks', [[Logger()], Logger()]) def test_logger(capsys, callbacks, example_dataset): # Perform iterative unfolding unfolded_results = iterative_unfold(data=example_dataset.data, data_err=example_dataset.data_err, response=example_dataset.response, response_err=example_dataset.response_err, efficiencies=example_dataset.efficiencies, efficiencies_err=example_dataset.efficiencies_err, return_iterations=True, callbacks=callbacks) # Get stdout and std err from iterative_unfold out, err = capsys.readouterr() # Build expected output expected_output = '' for row_index, row in unfolded_results.iterrows(): row_output = ('Iteration {}: ts = {:0.4f}, ts_stopping =' ' {}\n'.format(row_index + 1, row['ts_iter'], row['ts_stopping'])) expected_output += row_output assert expected_output == out def test_Logger_isinstance_Callback(): logger = Logger() assert isinstance(logger, Callback) def test_SplineRegularizer_isinstance_Regularizer(): spline_reg = SplineRegularizer() assert isinstance(spline_reg, Regularizer) def test_SplineRegularizer(example_dataset): degree = 3 smooth = 20 spline_reg = SplineRegularizer(degree=degree, smooth=smooth) unfolded_with_reg = iterative_unfold(data=example_dataset.data, data_err=example_dataset.data_err, response=example_dataset.response, response_err=example_dataset.response_err, efficiencies=example_dataset.efficiencies, efficiencies_err=example_dataset.efficiencies_err, return_iterations=True, callbacks=[spline_reg]) unfolded_no_reg = iterative_unfold(data=example_dataset.data, data_err=example_dataset.data_err, response=example_dataset.response, response_err=example_dataset.response_err, efficiencies=example_dataset.efficiencies, efficiencies_err=example_dataset.efficiencies_err, return_iterations=True) no_reg = unfolded_no_reg.iloc[0]['unfolded'] x = np.arange(len(no_reg), dtype=float) spline = UnivariateSpline(x, no_reg, k=degree, s=smooth) fitted_unfolded = spline(x) np.testing.assert_allclose(unfolded_with_reg.iloc[0]['unfolded'], fitted_unfolded) def test_SplineRegularizer_groups(example_dataset): degree = 3 smooth = 20 groups = np.empty_like(example_dataset.data) groups[:len(groups) // 2] = 0 groups[len(groups) // 2:] = 1 spline_reg = SplineRegularizer(degree=degree, smooth=smooth, groups=groups) unfolded_with_reg = iterative_unfold(data=example_dataset.data, data_err=example_dataset.data_err, response=example_dataset.response, response_err=example_dataset.response_err, efficiencies=example_dataset.efficiencies, efficiencies_err=example_dataset.efficiencies_err, return_iterations=True, callbacks=[spline_reg]) unfolded_no_reg = iterative_unfold(data=example_dataset.data, data_err=example_dataset.data_err, response=example_dataset.response, response_err=example_dataset.response_err, efficiencies=example_dataset.efficiencies, efficiencies_err=example_dataset.efficiencies_err, return_iterations=True) # Manually regularize each group independently y_no_reg = unfolded_no_reg.iloc[0]['unfolded'] x = np.arange(len(y_no_reg), dtype=float) fitted_unfolded_no_reg = np.empty(len(y_no_reg)) group_ids = np.unique(groups) for group in group_ids: group_mask = groups == group x_group = x[group_mask] y_group = y_no_reg[group_mask] spline_group = UnivariateSpline(x_group, y_group, k=degree, s=smooth) fitted_unfolded_group = spline_group(x_group) fitted_unfolded_no_reg[group_mask] = fitted_unfolded_group np.testing.assert_allclose(unfolded_with_reg.iloc[0]['unfolded'], fitted_unfolded_no_reg) def test_SplineRegularizer_groups_raises(example_dataset): degree = 3 smooth = 20 groups = np.empty(len(example_dataset.data) - 1) groups[:len(groups) // 2] = 0 groups[len(groups) // 2:] = 1 spline_reg = SplineRegularizer(degree=degree, smooth=smooth, groups=groups) with pytest.raises(ValueError) as excinfo: iterative_unfold(data=example_dataset.data, data_err=example_dataset.data_err, response=example_dataset.response, response_err=example_dataset.response_err, efficiencies=example_dataset.efficiencies, efficiencies_err=example_dataset.efficiencies_err, return_iterations=True, callbacks=[spline_reg]) err_msg = ('Invalid groups array. There should be an entry ' 'for each cause bin. However, got len(groups)={} ' 'while there are {} cause bins.'.format(len(groups), len(example_dataset.data))) assert err_msg == str(excinfo.value) def test_validate_callbacks(): callbacks = [Logger(), SplineRegularizer()] assert validate_callbacks(callbacks) == callbacks def test_validate_empty_callbacks(): assert validate_callbacks(None) == [] @pytest.mark.parametrize('callback', [Logger(), SplineRegularizer()]) def test_validate_callbacks_single_callback(callback): validate_callbacks(callback) == [callback] def test_validate_callbacks_raises(): callbacks = [Logger(), SplineRegularizer(), 'not a callback'] with pytest.raises(TypeError) as excinfo: validate_callbacks(callbacks) err_msg = 'Found non-callback object in callbacks: {}'.format(['not a callback']) assert err_msg == str(excinfo.value) def test_extract_regularizer_mutliple_raises(): callbacks = [SplineRegularizer(), SplineRegularizer()] with pytest.raises(NotImplementedError) as excinfo: extract_regularizer(callbacks) err_msg = 'Multiple regularizer callbacks where provided.' assert err_msg == str(excinfo.value) def test_extract_regularizer_no_regularizer(): callbacks = [Logger()] assert extract_regularizer(callbacks) is None @pytest.mark.parametrize('callback', [SplineRegularizer()]) def test_extract_regularizer(callback): callbacks = [Logger(), callback] assert extract_regularizer(callbacks) == callback def test_setup_callbacks_regularizer(): callbacks = [Logger(), SplineRegularizer()] c, r = setup_callbacks_regularizer(callbacks) assert isinstance(c, CallbackList) assert len(c) == 1 assert c.callbacks[0] is callbacks[0] assert r is callbacks[1] def test_callbacklist_empty(): c = CallbackList() assert c.callbacks == [] def test_callbacklist_callbacks(): logger = Logger() reg = SplineRegularizer() callbacks = [logger, reg] c = CallbackList(callbacks=callbacks) assert len(c) == len(callbacks) assert all(i is j for i, j in zip(c.callbacks, callbacks)) def test_callbacklist_method_calls(): class MethodChecker(Callback): def __init__(self): super(Callback, self).__init__() self.called_unfolding_begin = False self.called_on_unfolding_end = False self.called_on_iteration_begin = False self.called_on_iteration_end = False def on_unfolding_begin(self, status=None): self.called_on_unfolding_begin = True def on_unfolding_end(self, status=None): self.called_on_unfolding_end = True def on_iteration_begin(self, iteration, status=None): self.called_on_iteration_begin = True def on_iteration_end(self, iteration, status=None): self.called_on_iteration_end = True method_checker = MethodChecker() c = CallbackList(method_checker) c.on_iteration_begin(1) assert method_checker.called_on_iteration_begin c.on_iteration_end(1) assert method_checker.called_on_iteration_end c.on_unfolding_begin() assert method_checker.called_on_unfolding_begin c.on_unfolding_end() assert method_checker.called_on_unfolding_end ``` #### File: pyunfold/tests/test_priors.py ```python from __future__ import division, print_function import pytest import numpy as np from pyunfold.priors import jeffreys_prior, setup_prior, uniform_prior @pytest.mark.parametrize('prior', ['uniform', 123, 123.0]) def test_setup_prior_invalid_prior(prior): with pytest.raises(TypeError) as excinfo: setup_prior(prior) expected_msg = ('prior must be either None or array_like, ' 'but got {}'.format(type(prior))) assert expected_msg == str(excinfo.value) def test_setup_prior_non_normalized_raises(): prior = [1, 2, 3, 4] with pytest.raises(ValueError) as excinfo: setup_prior(prior) expected_msg = ('Prior (which is an array of probabilities) does ' 'not add to 1. sum(prior) = {}'.format(np.sum(prior))) assert expected_msg == str(excinfo.value) def test_setup_prior_negative_raises(): prior = [2, 0, -1] with pytest.raises(ValueError) as excinfo: setup_prior(prior) expected_msg = ('Input prior has negative values. Since the values ' 'of prior are interpreted as probabilities, they ' 'cannot be negative.') assert expected_msg == str(excinfo.value) def test_jeffreys_prior(): causes = np.linspace(5, 10, 4) # Calculate expected prior ln_factor = np.log(causes.max() / causes.min()) prior = 1 / (ln_factor * causes) prior = prior / np.sum(prior) np.testing.assert_allclose(prior, jeffreys_prior(causes=causes)) def test_jeffreys_prior_normalized(): causes = np.array([0.5, 1.5]) prior = jeffreys_prior(causes=causes) np.testing.assert_allclose(prior.sum(), 1) @pytest.mark.parametrize('type_', [list, tuple, np.array]) def test_jeffreys_prior_array_like(type_): causes = type_([1, 2, 3, 4, 5]) jeffreys_prior(causes=causes) @pytest.mark.parametrize('num_causes', [1, 7, 100]) def test_uniform_prior(num_causes): prior = uniform_prior(num_causes) # Correct number of cause bins assert len(prior) == num_causes # Every bin has same probability assert len(np.unique(prior)) # Sum of probabilities add to one np.testing.assert_allclose(np.sum(prior), 1) ``` #### File: pyunfold/pyunfold/utils.py ```python from __future__ import division, print_function import numpy as np def assert_same_shape(*arrays): """Checks that each input array_like objects are the same shape """ arrays = cast_to_array(*arrays) shapes = [array.shape for array in arrays] unique_shapes = set(shapes) if not len(unique_shapes) == 1: raise ValueError('Multiple shapes found: {}'.format(unique_shapes)) def cast_to_array(*arrays): """Casts input arrays to numpy.ndarray objects Note that no copy is made if an input array is already a numpy.ndarray. Parameters ---------- arrays : array_like Input array_like objects to be cast to numpy arrays. Returns ------- output : list List of casted numpy arrays. Examples -------- >>> import numpy as np >>> a_original = [1, 2, 3] >>> b_original = np.array([4.5, 2.1, 900]) >>> a, b = cast_to_array(a_original, b_original) >>> a array([1, 2, 3]) >>> b array([ 4.5, 2.1, 900. ]) >>> b is b_original True """ if len(arrays) == 1: output = np.asarray(arrays[0]) else: output = map(np.asarray, arrays) return output def none_to_empty_list(*args): """Replaces None inputs with an empty list Examples -------- Single input case >>> none_to_empty_list(None) [] Multiple input case >>> a, b, c = None, 'woo', 34 >>> none_to_empty_list(a, b, c) [[], 'woo', 34] """ outputs = [] for arg in args: outputs.append(arg if arg is not None else []) if len(outputs) == 1: return outputs[0] else: return outputs def safe_inverse(x): """Safely inverts the elements in x Parameters ---------- x : array_like Input array to take the inverse of (i.e. 1 / x). Returns ------- inv : numpy.ndarray Inverse of input array with inf set to zero. Examples -------- >>> a = [1, 2, 3, 0, 4] >>> safe_inverse(a) array([1. , 0.5 , 0.33333333, 0. , 0.25 ]) """ x = np.asarray(x) is_zero = x == 0 with np.errstate(divide='ignore'): inv = 1 / x inv[is_zero] = 0 return inv ```
{ "source": "jlramalheira/sudoku", "score": 4 }
#### File: sudoku/sudoku/coloring.py ```python import networkx as nx from math import sqrt from queue import * import random def welsh_powell(graph): """Runs the Welsh-Powell algorithm to color a graph. Arguments: graph (networkx.Graph): a graph. """ def _welsh(graph): for node in graph.node: if not graph.node[node]['fixed']: for neighbor in graph.neighbors(node): if (graph.node[neighbor]['fixed']): try: graph.node[node]['label'].remove( graph.node[neighbor]['label']) except: pass def _update(graph): for node in graph.node: if (not graph.node[node]['fixed'] and len(graph.node[node]['label']) == 1): graph.node[node]['fixed'] = True graph.node[node]['label'] = graph.node[node]['label'][0] def _clear(graph): for node in graph.node: if (graph.node[node]['fixed'] and type(graph.node[node]['label']) is not int): graph.node[node]['fixed'] = False def _engage(graph): for i in range(size): for j in range(size): name = '{}{}'.format(i, j) if not graph.node[name]['fixed']: graph.node[name]['fixed'] = True _welsh(graph) _update(graph) _clear(graph) size = int(sqrt(len(graph.node))) for node in graph.node: if (graph.node[node]['label'] is None): graph.node[node]['label'] = [(x + 1) for x in range(size)] for i in range(size): _engage(graph) _welsh(graph) _update(graph) return graph def sequencial_coloring(graph): """Runs the Sequencial Coloring algorithm to color a graph. Arguments: graph (networkx.Graph): a graph. """ def is_label_possible(graph, node, label): for neighbor in graph.neighbors(node): if graph.node[neighbor]['label'] == label: return False return True size = int(sqrt(len(graph.node))) labels = [(x + 1) for x in range(size)] for label in labels: for node in graph.node: if is_label_possible(graph, node, label): graph.node[node]['label'] = label return graph def class_coloring(graph): """Runs the Class Coloring algorithm to color a graph. Arguments: graph (networkx.Graph): a graph. """ def _init_classes_and_candidates(graph,classes,candidates): for node in graph.node: if graph.node[node]['fixed']: classes[graph.node[node]['label'] - 1].add(node) else: candidates.append(node) def _coloring(graph,candidates,classes): while len(candidates) != 0: v = candidates.pop() for i in range(len(classes)): neigh_set = set(graph.neighbors(v)) if len(classes[i].intersection(neigh_set)) == 0: classes[i].add(v) graph.node[v]['label'] = i + 1 break size = int(sqrt(len(graph.node))) classes = [set() for x in range(size)] candidates = [] _init_classes_and_candidates(graph,classes,candidates) _coloring(graph,candidates,classes) return graph def class_coloring_backtracking(graph): """Runs the Class Coloring Backtracking algorithm to color a graph. Arguments: graph (networkx.Graph): a graph. """ def _candidate_was_colored(graph,node): return graph.node[node]['label'] != None def _remove_from_class(last_colored,classes): for c in classes: if last_colored in c: c.remove(last_colored) def _init_classes_and_candidates(graph, classes, candidates): for node in graph.node: if graph.node[node]['fixed']: classes[graph.node[node]['label'] - 1].add(node) else: candidates.append(node) def _coloring(graph, candidates, classes, colored_stack): while len(candidates) != 0: v = candidates.pop() init_index = 0 if type(graph.node[v]['label']) != int else graph.node[v]['label'] graph.node[v]['label'] = None for i in range(init_index,len(classes)): neigh_set = set(graph.neighbors(v)) if len(classes[i].intersection(neigh_set)) == 0: classes[i].add(v) graph.node[v]['label'] = i + 1 colored_stack.append(v) break if not _candidate_was_colored(graph,v): candidates.append(v) last_colored = colored_stack.pop() _remove_from_class(last_colored,classes) candidates.append(last_colored) size = int(sqrt(len(graph.node))) classes = [set() for x in range(size)] candidates = [] colored_stack = [] _init_classes_and_candidates(graph,classes,candidates) _coloring(graph,candidates,classes,colored_stack) #raise NotImplementedError('') return graph def dsatur(graph): """Runs the Degree of Saturation heuristic algorithm to color a graph. Arguments: graph (networkx.Graph): a graph. """ def _saturation(graph): candidates = 0 for node in graph.node: if not graph.node[node]['fixed']: candidates+=1 for neighbor in graph.neighbors(node): if (graph.node[neighbor]['fixed']): graph.node[node]['label'].add( graph.node[neighbor]['label']) return candidates def _find_highest_saturation(graph): highest_saturation = -1 for node in graph.node: if (not graph.node[node]['fixed'] and type(graph.node[node]['label']) is not int): if (len(graph.node[node]['label']) > highest_saturation): highest_saturation = len(graph.node[node]['label']) highest_node = node return highest_node def _find_smallest_color(graph,node): size = int(sqrt(len(graph.node))) for i in range(1,size+1): if not (i in graph.node[node]['label']): return i def _update_saturation(graph,node): for neighbor in graph.neighbors(node): if ( not graph.node[neighbor]['fixed'] and type(graph.node[neighbor]['label']) is not int): graph.node[neighbor]['label'].add( graph.node[node]['label']) for node in graph.node: if (graph.node[node]['label'] is None): graph.node[node]['label'] = set() candidates = _saturation(graph) while(candidates>0): highest_node = _find_highest_saturation(graph) color = _find_smallest_color(graph,highest_node) if(color != None): graph.node[highest_node]['label'] = color _update_saturation(graph,highest_node) candidates-=1 else: break return graph def bfs_heuristic(graph,max_iterations): """Runs the Breadth First Search heuristic algorithm to color a graph. Arguments: graph (networkx.Graph): a graph. """ def _clear(graph): for node in graph.node: if not graph.node[node]['fixed']: graph.node[node]['label'] = None def _is_possible_color(graph,nodes,color): for node in nodes: if graph.node[node]['label'] == color: return False return True def _coloring(graph,node): size = int(sqrt(len(graph.node))) colors = [] for i in range(size): if _is_possible_color(graph,graph.neighbors(node),i+1): colors.append(i+1) if len(colors) > 0: r = random.SystemRandom() graph.node[node]['label'] = r.choice(colors) return True return False def _bfs(graph,node): q = Queue() if not graph.node[node]['fixed']: if not _coloring(graph,node): return q.put(node) while not q.empty(): v = q.get() neighbors = graph.neighbors(v) for neighbor in neighbors: if graph.node[neighbor]['label'] == None: if not _coloring(graph,neighbor): return q.put(neighbor) def _is_valid_solution(graph): for node in graph.node: if graph.node[node]['label'] == None: return False return True for i in range(max_iterations): r = random.SystemRandom() _bfs(graph,r.choice(graph.nodes())) if _is_valid_solution(graph): break else: _clear(graph) for i in range(9): for j in range(9): print (graph.node['{}{}'.format(i,j)]['label'],end=' ') print() return graph def dfs_heuristic(graph,max_iterations): """Runs the Depth First Search heuristic algorithm to color a graph. Arguments: graph (networkx.Graph): a graph. """ def _clear(graph): for node in graph.node: if not graph.node[node]['fixed']: graph.node[node]['label'] = None def _is_possible_color(graph,nodes,color): for node in nodes: if graph.node[node]['label'] == color: return False return True def _coloring(graph,node): size = int(sqrt(len(graph.node))) colors = [] for i in range(size): if _is_possible_color(graph,graph.neighbors(node),i+1): colors.append(i+1) if len(colors) > 0: r = random.SystemRandom() graph.node[node]['label'] = r.choice(colors) return True return False def _dfs(graph,node): stack = [] if not graph.node[node]['fixed']: if not _coloring(graph,node): return stack.append(node) while not len(stack) == 0: v = stack.pop() neighbors = graph.neighbors(v) for neighbor in neighbors: if graph.node[neighbor]['label'] == None: if not _coloring(graph,neighbor): return stack.append(neighbor) def _is_valid_solution(graph): for node in graph.node: if graph.node[node]['label'] == None: return False return True for i in range(max_iterations): r = random.SystemRandom() _dfs(graph,r.choice(graph.nodes())) if _is_valid_solution(graph): break else: _clear(graph) for i in range(9): for j in range(9): print (graph.node['{}{}'.format(i,j)]['label'],end=' ') print() return graph ``` #### File: sudoku/tests/coloring_tests.py ```python import unittest import os.path import sudoku.io import sudoku.coloring class ColoringTests(unittest.TestCase): def test_welsh_powell(self): filepath = os.path.join( os.path.dirname(__file__), '../rsc/9/sample-2.sdk') graph = sudoku.io.read(filepath) graph_solved = sudoku.coloring.welsh_powell(graph) def test_sequencial_coloring(self): filepath = os.path.join( os.path.dirname(__file__), '../rsc/25/sample-0.sdk') graph = sudoku.io.read(filepath) graph_solved = sudoku.coloring.sequencial_coloring(graph) def test_class_coloring(self): filepath = os.path.join( os.path.dirname(__file__), '../rsc/9/sample-2.sdk') graph = sudoku.io.read(filepath) graph_solved = sudoku.coloring.class_coloring(graph) def test_class_coloring_backtracking(self): filepath = os.path.join( os.path.dirname(__file__), '../rsc/9/sample-2.sdk') graph = sudoku.io.read(filepath) graph_solved = sudoku.coloring.class_coloring_backtracking(graph) def test_dsatur(self): filepath = os.path.join( os.path.dirname(__file__), '../rsc/9/solved-0.sdk') graph = sudoku.io.read(filepath) graph_solved = sudoku.coloring.dsatur(graph) def test_bfs_heuristic(self): filepath = os.path.join( os.path.dirname(__file__), '../rsc/9/sample-2.sdk') graph = sudoku.io.read(filepath) max_iterations = 100000 graph_solved = sudoku.coloring.bfs_heuristic(graph,max_iterations) def test_dfs_heuristic(self): filepath = os.path.join( os.path.dirname(__file__), '../rsc/9/sample-2.sdk') graph = sudoku.io.read(filepath) max_iterations = 100000 graph_solved = sudoku.coloring.dfs_heuristic(graph,max_iterations) ```
{ "source": "jlramirez/index-herbariorum-python-client", "score": 3 }
#### File: index-herbariorum-python-client/tests/client_test.py ```python import os import unittest from indexherbariorum.client import IndexHerbariorumApi class IndexHerbariorumApiTest(unittest.TestCase): """Tests for Index Herbariorum API""" def test_countries(self): api = IndexHerbariorumApi() countries = api.countries() self.assertEqual(countries['meta']['code'], 200) def test_staff(self): api = IndexHerbariorumApi() staff = api.staff(rq={'code': 'ny', 'sort': 'lastName'}) self.assertEqual(staff['meta']['code'], 200) with self.assertRaises(Exception): api.staff(rq={'download': 'yes'}) def test_institutions(self): api = IndexHerbariorumApi() institutions = api.institutions(rq={'country': 'italy', 'city': 'rome', 'sort': 'code'}) self.assertEqual(institutions['meta']['code'], 200) with self.assertRaises(Exception): api.institutions(rq={'download': 'yes'}) def test_institution(self): api = IndexHerbariorumApi() institution = api.institution('ala') self.assertEqual(institution['code'], 'ALA') def test_count_countries(self): api = IndexHerbariorumApi() count = api.count_countries() self.assertIsInstance(count, int) self.assertGreaterEqual(count, 0) def test_count_staff(self): api = IndexHerbariorumApi() count = api.count_staff(rq={'country': 'spain', 'correspondent': 'yes'}) self.assertIsInstance(count, int) self.assertGreaterEqual(count, 0) def test_count_institutions(self): api = IndexHerbariorumApi() count = api.count_institutions(rq={'country': 'bolivia'}) self.assertIsInstance(count, int) self.assertGreaterEqual(count, 0) def test_download(self): api = IndexHerbariorumApi() api.download('institutions', rq={'country': 'italy', 'city': 'rome'}) api.download('staff', rq={'state': 'new york', 'correspondent': 'yes'}, filename='staff.csv') self.assertTrue(os.path.exists('index_herbariorum.csv')) self.assertTrue(os.path.exists('staff.csv')) with self.assertRaises(Exception): api.download('staff') api.download('countries') if __name__ == '__main__': unittest.main() ```
{ "source": "jlrandulfe/drone-swarm", "score": 2 }
#### File: src/controller/p_controller.py ```python import numpy as np import rospy import geometry_msgs.msg import std_msgs.msg # Local libraries from controller import array_operations from controller import error_functions from pycopter.srv import DroneSwarmMultiArray def dist(vector): length = np.sqrt(pow(vector[0],2)+pow(vector[1],2)) return length class PControlNode(): def __init__(self, kp=0.02): self.start = False self.new_it = False self.n_drones = 0 self.timestamp = 0 self.movement = "static" self.velocity = np.array([0,0]) # [m/s, m/s] self.sin_amplitude = np.array([0, 0]) # [m, m] self.sin_frequency = 0.0 # [Hz] self.timestamp = 0 # [ms] self.kp = kp # Variables for getting the settling time self.t1 = 0.0 self.t2 = 0.0 self.init_error = 0.0 self.set_time = 0.0 # Errors matrix self.errors = np.array([[0, 1, 2],[1, 0, 3],[2, 3, 0]]) self.abs_errors = self.errors.copy() self.system_error = 0.0 self.predicted_rel_positions = np.array([]) self.predicted_distances = np.array([]) self.desired_distances = np.array([]) # Control variables matrix self.control_u = np.array([]) # Kalman filter topic susbscribers rospy.Subscriber("kalman/pos_estimation", std_msgs.msg.Float64MultiArray, self.kalman_callback, queue_size=1) # Drone controller topic publisher self.control_var_pub = rospy.Publisher( "controller/control_value", std_msgs.msg.Float64MultiArray, queue_size=1) self.errors_pub = rospy.Publisher( "controller/errors", std_msgs.msg.Float64MultiArray, queue_size=1) return def kalman_callback(self, data): """ Calculate and send the control variable of the drones The control is done with a P controller fed with the actual distances between the drones, which are obtained in the Kalman node. It will not work until the desired distances are obtained from the pattern generator. """ # Can not go through the routine without the desired distance # been given beforehand. if not self.start: return self.timestamp = data.layout.data_offset # Get the relative positions from the Kalman node. self.predicted_rel_positions = array_operations.multiarray2np(data) self.new_it = True return def pat_gen_start(self): """ Store the desired distances, and allow the controller to start """ x_value, y_value = 0, 0 try: setup_pycopter = rospy.ServiceProxy("supervisor/kalman", DroneSwarmMultiArray) resp = setup_pycopter(True) self.n_drones = resp.n_rows x_value = resp.param1 y_value = resp.param2 freq = resp.param3 movement = resp.param4 if resp.param6 > 0.0: self.kp = resp.param6 except rospy.ServiceException as e: print("Service call failed: {}".format(e)) return -1 self.desired_distances = array_operations.multiarray2np_sqr(resp) if movement == 1: self.movement = "static" self.velocity = np.array([0, 0]) self.sin_amplitude = np.array([0, 0]) elif movement == 2: self.movement = "linear" self.velocity = np.array([x_value, y_value]) self.sin_amplitude = np.array([0, 0]) elif movement == 3: self.movement = "sinusoidal" self.velocity = np.array([0, 0]) self.sin_amplitude = np.array([x_value, y_value]) self.sin_frequency = freq else: raise ValueError("Non recognized movement int: {}".format(movement)) rospy.loginfo("\n{}".format(self.desired_distances)) # self.desired_distances = array_operations.multiarray2np_sqr(data.data) self.start = True rospy.loginfo("Controller: Received formation from supervisor.") return 0 def gradient_descent_control(self): """ Apply gradient descent for finding the control action For a given N number of agents, calculate the control action so it minimizes the accumulated error of the drones positions. """ # Calculate the predicted distances between the drones. Then, get the # errors to the desired distances. predicted_distances = np.linalg.norm(self.predicted_rel_positions, axis=2) self.predicted_distances = predicted_distances self.errors = error_functions.simple_differences( predicted_distances, self.desired_distances) # Unit vectors calculation. Create a virtual axis so the division is # dimension meaningful. unit_vectors = np.zeros_like(self.predicted_rel_positions) np.divide(self.predicted_rel_positions, predicted_distances[:,:,None], out=unit_vectors, where=predicted_distances[:,:,None]!=[0,0]) self.abs_errors = self.errors.copy() # Calculate and send the final control variable vectorial_errors = self.errors[:, :, None] * unit_vectors self.system_error = np.linalg.norm(vectorial_errors, axis=2).sum() self.errors = (vectorial_errors).sum(axis=1) self.control_u = np.clip(self.errors * self.kp, -1, 1) # Settling time calculations if self.init_error == 0.0: self.init_error = self.system_error if self.t1 == 0.0 and self.system_error < 0.9*self.init_error: self.t1 = self.timestamp if self.t2 == 0.0 and self.system_error < 0.1*self.init_error: self.t2 = self.timestamp self.set_time = self.t2 - self.t1 # Print system error and settling time rospy.loginfo("System error: {}".format(self.system_error)) rospy.loginfo("System error percentage: {}".format((self.system_error/self.init_error)*100)) rospy.loginfo("Settling time: {}".format(self.set_time)) return def set_leader_velocity(self): if self.movement == "static": pass elif self.movement == "linear": for i in range(self.n_drones): self.control_u[i] += self.velocity elif self.movement == "sinusoidal": self.control_u[0] += self.sin_amplitude * np.sin( 0.01*self.sin_frequency * (self.timestamp/1000.0)) else: raise ValueError("Unrecognized movement type") return def run(self): """ Main routine. Wait for initialization and then do the main loop It waits until the supervisor node service is active. Then, it requests the desired formation from it. Afterwards, it enters the main loop, where it continuously waits for position predictions. After receiving a prediction, it calculates the control action by using a gradient-descent based controller. Finally, it applies to the leader of the formation the desired movement of the swarm on top of the control action. """ rospy.loginfo("Controller started. Waiting for a desired formation") rospy.wait_for_service("/supervisor/kalman") rospy.loginfo("Online") # Connect to the supervisor service and get the desired formation. self.pat_gen_start() # Main loop. Wait for predictions and calculate the control action rate = rospy.Rate(200) while not rospy.is_shutdown(): if self.start and self.new_it: self.gradient_descent_control() self.set_leader_velocity() self.control_var_pub.publish(array_operations.np2multiarray( self.control_u)) self.errors_pub.publish(array_operations.np2multiarray( self.abs_errors, extra_val=self.system_error)) rospy.logdebug("Kalman: published Z ") rospy.logdebug("Controller: published U ") for i in range(self.n_drones): rospy.logdebug("{}".format(self.control_u[i])) self.new_it = False rate.sleep() rospy.spin() return def main(): # Instantiate the error_estimator node class and run it controller = PControlNode() controller.run() return ``` #### File: src/kalman_filter/array_operations.py ```python import numpy as np import rospy import geometry_msgs.msg import std_msgs.msg # Local libraries def np2multiarray(data): """ Convert a 2D square numpy.array into a Float64MultiArray msg """ n_drones = data.shape[0] # Define the 2 dimensions of the array. dim_1 = std_msgs.msg.MultiArrayDimension(label="drone_n", size=n_drones, stride=n_drones**2) dim_2 = std_msgs.msg.MultiArrayDimension(label="drone_n", size=n_drones, stride=n_drones) # Create the layout of the message, necessary for deserializing it. layout = std_msgs.msg.MultiArrayLayout() layout.dim.append(dim_1) layout.dim.append(dim_2) # Create the output message with the data and the created layout. message = std_msgs.msg.Float64MultiArray() message.layout = layout message.data = data.reshape(data.size).tolist() return message def multiarray2np(data): """ Convert a Float64MultiArray msg into a 2D square numpy.array """ np_data = np.array(data.data) # Assuming that the output is a square matrix simplifies the problem. dim_size = int(np.sqrt(np_data.size)) data_array = np_data.reshape([dim_size, dim_size]) return data_array ``` #### File: src/kalman_filter/kalman.py ```python import numpy as np from scipy import linalg as la from matplotlib import pyplot as pl from matplotlib import mlab as mlab class Kalman: def __init__(self): # Kalman matrices init! # Observation matrix H 1/d * [ px, py ] JACOBIAN because we've non linear measure self.H = np.array([[1.0, 1.0]]) # time step self.dt = 5e-2 # distance sensor noise self.radar_sigma = 0.1 # measurement covariance matrix self.R = np.array([[0.01], [0.01]]) # States p01_x and p01_y self.state_X = np.array([[0.0, 0.0]]).T # P Covariance matrix for the position meas self.cov_P = np.array([[0.5, 0.0], [0.0, 0.5]]) # predicted state self.predict_state_X = np.array([[0.0, 0.0]]).T self.predict_cov_P = np.array([[0.0, 0.0], [0.0, 0.0]]) self.F = np.array([[1.0, 0.0], [0.0, 1.0]]) # Matrix G is for determine the dynamics of the states based on the sensor measures in this case velocity to # estimate position.! self.G = np.array([[self.dt, 0.0], [0.0, self.dt]]) # variance vx and vy # vel_sigma = np.array([[0.01, 0], # [0, 0.01]]) self.vel_sigma = 0.1 # self.Q = np.outer(self.G*vel_sigma, vel_sigma*self.G.transpose()) self.Q = (self.G * self.vel_sigma).dot(self.vel_sigma * self.G.transpose()) self.K = np.array([[0.1, 0.1]]).T # self.i = 0 self.err_class = 0.0 self.start_prediction_flag = False # pl.ion() # self.fig, self.axis = pl.subplots(3, 1) def predict(self, state_sim, relative_velocities, timestamp): print('STATE BEFORE FLAG', self.state_X) if not self.start_prediction_flag: self.state_X = state_sim + np.random.rand(2, 1) * 0.5 self.start_prediction_flag = True print('STATE AFTER FLAG: ', self.state_X) self.dt = timestamp # self.G = np.array([[self.dt, 0], # [0, self.dt]]) # self.Q = (self.G * self.vel_sigma).dot(self.vel_sigma * self.G.transpose()) # print("*****DT****:: ", self.dt) # self.G = np.array([[self.dt, 0], # [0, self.dt]]) # print(" PREDICTION ") # print("\n") # predict the position in the plane of the drone # How the position evolvers -> dynamics # self.next_pos_x = self.state_X[0] + relative_velocities[0] * self.dt # self.next_pos_y = self.state_X[1] + relative_velocities[1] * self.dt # gaussian distributions for position in x and y they are stochastic variables. That is why we estimate position # and we calculate the variance of that estimation. mean + var : normal distr # print(" F size: ", self.F.size) # print("\n") # print(" state_X size: ", self.state_X.size) # print("\n") # print(" G: ", self.G) # print("\n") # print(" rel_velocities size: ", relative_velocities.shape) # print("\n") # print(" first mult size: ", self.F.dot(self.state_X).shape) # print("\n") # print(" second mult : ", self.G.dot(relative_velocities).reshape(2, 1)) # print("\n") # print(" Q size: ", self.Q.size) # print("\n") # self.state_X = state_sim self.predict_state_X = self.F.dot(self.state_X) + self.G.dot(relative_velocities.reshape(2, 1)) self.predict_cov_P = self.F.dot(self.cov_P).dot(self.F.transpose()) + self.Q self.state_X = self.predict_state_X self.cov_P = self.predict_cov_P # print(" predict_State : ", self.state_X) # print("\n") # print(" predict_cov_P : ", self.cov_P) # print("\n") def distance(self, x, y): # norm distance calculation because we have a radio frequency sensor that measures the distance between drones sum_sq = (x * x) + (y * y) d = np.sqrt(sum_sq) return d def update(self, state_sim, distance_sensor): # print(" UPDATE ") # STEP K # print("\n") # correct the KF # print(" predict_State size: ", self.predict_state_X.size) # print("\n") # previous_state = self.predict_state_X # previous_cov = self.predict_cov_P # due the fact that the distance has a non linear relation with the position we calculate the jacobian # scalar * 2D array # print("STATE SIMULATOR: ", state_sim) dist = (self.distance(self.state_X[0][0], self.state_X[1][0])) # print(" statex: ", self.state_X[0][0]) # print("\n") if dist.any() == 0: pass else: self.H = (1 / dist) * self.state_X.transpose() # print(" H ", self.H) # print("\n") # print(" Previous state: ", previous_state) # print("\n") # print(" H shape: ", self.H.shape) # print("\n") # print(" H : ", self.H) # print("\n") # print(" previous_State size: ", previous_state.shape) # print("\n") # print(" first mult size: ", (self.H * self.radar_sigma).shape) # print("\n") # print(" second mult size: ", (self.radar_sigma * self.H.reshape(2,1)).shape) # print("\n") # print(" H_trans: ", self.H.transpose().shape) # print("\n") self.R = (self.H * self.radar_sigma).dot((self.radar_sigma * self.H.reshape(2, 1))) # print(" R size: ", self.R.shape) # print("\n") # print(" R: ", self.R) # print("\n") S = self.H.dot(self.cov_P).dot(self.H.reshape(2, 1)) + self.R # print(" S size: ", S.shape) # print("\n") # print(" P : ", self.cov_P) # print("\n") # print(" S : ", S) # print("\n") # print(" first mult size: ", (self.H * self.radar_sigma)) # print("\n") if np.size(S) == 1: ## WHATS WRONG HERE? self.K = self.cov_P.dot(self.H.reshape(2, 1)) / S # print(" P * Ht size: ", (self.cov_P.dot(self.H.reshape(2, 1))).shape) # print("\n") # print(" P * Ht : ", (self.cov_P.dot(self.H.reshape(2, 1)))) # print("\n") # print(" K size: ", self.K.shape) # print("\n") # print(" K : ", self.K) # print("\n") # print(" prueba2: ", self.H.dot(self.cov_P)) # print("\n") # print(" prueba1: ", np.outer(self.K, self.H.dot(self.cov_P))) # print("\n") self.cov_P = self.cov_P - np.outer(self.K, self.H.dot(self.cov_P)) else: self.K = self.cov_P.dot(self.H.reshape(2, 1)).dot(la.inv(S)) self.cov_P = self.cov_P - np.outer(self.K, self.H.dot(self.cov_P)) self.state_X = self.state_X + self.K * (self.error(distance_sensor)) # print("DISTANCE SENSOR: ", distance_sensor) # print(" H : ", self.H) # print("\n") # print(" cov_P: ", self.cov_P) # print("\n") # print(" state_X: ", self.state_X) # print("\n") # print(" cov_P: ", self.cov_P) # print("\n") def error(self, distance_sensor): # for tracking the error: here we compare the distance that we obtain with the sensor vs the distance calculated # by the position estimation. dist_estimation = self.distance(self.state_X[0][0], self.state_X[1][0]) err = distance_sensor - dist_estimation # print('err:', err) self.err_class = err # self.err_plot[self.i] = distance_sensor - dist_estimation # rmse = np.sqrt(dist_estimation*dist_estimation - distance_sensor*distance_sensor) # self.i = self.i +1 # print(" Error: ", err) # print("\n") # print(" RMSE CALC: ", rmse) # print("\n") return err def variance_calculation(self, P): norm_cov = la.norm(P) # print('NORM COVARIANCE: ', norm_cov) def animation(self, it, tf, time, err_plt): err_plt[it] = self.err_class self.fig.tight_layout() xpl = 10 ypl = 1 y_y_lim = 10 xlimits0 = np.linspace(-2.5, xpl, 300) # Limits for pos in axis 'x' and 'y' xlimits1 = np.linspace(-2.5, y_y_lim, 300) # Plot of X position relative self.axis[0].clear() self.axis[0].grid("on") pxgauss = mlab.normpdf(xlimits0, self.state_X[0][0], np.sqrt(self.cov_P[0, 0])) self.axis[0].plot(xlimits0, pxgauss) self.axis[0].fill_between(xlimits0, pxgauss, color='cyan') self.axis[0].set_xlim([-xpl, xpl]) self.axis[0].set_ylim([0, ypl]) self.axis[0].set_yticks([0, 0.5 * ypl, ypl]) self.axis[0].set_title("Estimated relative X position") self.axis[0].set_xlabel("[m]") self.axis[0].arrow(0, 0, 0, ypl, \ head_width=0.05, head_length=0.1, fc='k', ec='k') # Plot of Y position relative self.axis[1].clear() self.axis[1].grid("on") pygauss = mlab.normpdf(xlimits1, self.state_X[1], np.sqrt(self.cov_P[1, 1])) self.axis[1].plot(xlimits1, pygauss) self.axis[1].fill_between(xlimits1, pygauss, color='cyan') self.axis[1].set_xlim([-xpl, xpl]) self.axis[1].set_ylim([0, ypl]) self.axis[1].set_yticks([0, 0.5 * ypl, ypl]) self.axis[1].set_title("Estimated relative Y velocity") self.axis[1].set_xlabel("[m]") self.axis[1].arrow(0, 0, 0, ypl, \ head_width=0.05, head_length=0.1, fc='k', ec='k') # Plot of distance error self.axis[2].clear() self.axis[2].grid("on") self.axis[2].plot(time[0:it], err_plt[0:it], 'r') self.axis[2].set_xlim([0, tf]) self.axis[2].set_ylim([0, 1]) self.axis[2].set_title("Error in distance estimation") self.axis[2].set_xlabel("[m]") ``` #### File: offboardnode/src/offboard_node.py ```python import rospy import mavros from mavros.utils import * from mavros import setpoint as SP import mavros.setpoint import mavros.command import mavros_msgs.msg import mavros_msgs.srv import sys import signal from geometry_msgs.msg import Vector3 import math def signal_handler(signal, frame): print('You pressed Ctrl+C!') sys.exit(0) signal.signal(signal.SIGINT, signal_handler) current_pose = Vector3() UAV_state = mavros_msgs.msg.State() def _state_callback(topic): UAV_state.armed = topic.armed UAV_state.connected = topic.connected UAV_state.mode = topic.mode UAV_state.guided = topic.guided def _setpoint_position_callback(topic): pass def _local_position_callback(topic): print(topic.pose.position.z) pass def _set_pose(pose, x, y, z): pose.pose.position.x = x pose.pose.position.y = y pose.pose.position.z = z pose.header = mavros.setpoint.Header( frame_id="att_pose", stamp=rospy.Time.now()) def update_setpoint(): pass def main(): rospy.init_node('default_offboard', anonymous=True) rate = rospy.Rate(20) mavros.set_namespace('/mavros') # setup subscriber # /mavros/state state_sub = rospy.Subscriber(mavros.get_topic('state'), mavros_msgs.msg.State, _state_callback) # /mavros/local_position/pose local_position_sub = rospy.Subscriber(mavros.get_topic('local_position', 'pose'), SP.PoseStamped, _local_position_callback) # /mavros/setpoint_raw/target_local setpoint_local_sub = rospy.Subscriber(mavros.get_topic('setpoint_raw', 'target_local'), mavros_msgs.msg.PositionTarget, _setpoint_position_callback) # setup publisher # /mavros/setpoint/position/local setpoint_local_pub = mavros.setpoint.get_pub_position_local(queue_size=10) velocity_pub = mavros.setpoint.get_pub_velocity_cmd_vel(queue_size=10) # setup service # /mavros/cmd/arming set_arming = rospy.ServiceProxy('/mavros/cmd/arming', mavros_msgs.srv.CommandBool) # /mavros/set_mode set_mode = rospy.ServiceProxy('/mavros/set_mode', mavros_msgs.srv.SetMode) setpoint_msg = mavros.setpoint.PoseStamped( header=mavros.setpoint.Header( frame_id="att_pose", stamp=rospy.Time.now()), ) velocity_msg = mavros.setpoint.TwistStamped( header=mavros.setpoint.Header(frame_id="vel_pose", stamp=rospy.Time.now()), ) # wait for FCU connection while (not UAV_state.connected): rate.sleep() # initialize the setpoint setpoint_msg.pose.position.x = 0 setpoint_msg.pose.position.y = 0 setpoint_msg.pose.position.z = 3 mavros.command.arming(True) # send 100 setpoints before starting for i in range(0, 50): setpoint_local_pub.publish(setpoint_msg) rate.sleep() set_mode(0, 'OFFBOARD') last_request = rospy.Time.now() # enter the main loop while (True): # print "Entered whiled loop" if (UAV_state.mode != "OFFBOARD" and (rospy.Time.now() - last_request > rospy.Duration(5.0))): set_mode(0, 'OFFBOARD') print("enabling offboard mode") last_request = rospy.Time.now() else: if (not UAV_state.armed and (rospy.Time.now() - last_request > rospy.Duration(5.0))): if (mavros.command.arming(True)): print("Vehicle armed") last_request = rospy.Time.now() setpoint_msg.pose.position.z = 3 if (rospy.Time.now()-last_request > rospy.Duration(5.0)): velocity_msg.twist.linear.x = 10 velocity_pub.publish(velocity_msg) print("Setting velocity set point") else: setpoint_local_pub.publish(setpoint_msg) print("Height: %f" % setpoint_msg.pose.position.z) rate.sleep() return 0 if __name__ == '__main__': main() ``` #### File: pycopter/test/test_positions_start_services.py ```python import rospy import std_msgs.msg # Local libraries from pycopter.srv import DroneSwarmMultiArray from pycopter.srv import DroneSwarmMultiArrayResponse from pycopter.srv import PycopterStartStop start = False ndrones = 3 def handle_start_positions(req): resp = DroneSwarmMultiArrayResponse() if ndrones == 2: resp.n_rows = 2 resp.data = [1, 2, 0, 1] elif ndrones == 3: resp.n_rows = 3 resp.data = [1, 2, 1, 3, 2, 3] resp.param1 = 40 # seconds resp.param2 = 50 # milliseconds rospy.loginfo("Response sent back") global start start = True return resp def main(): # Instantiate the error_estimator node class and run it rospy.Service('supervisor/pycopter', DroneSwarmMultiArray, handle_start_positions) rospy.loginfo("The service is ready") while not start: pass rospy.wait_for_service("pycopter/start_stop") try: start_pycopter = rospy.ServiceProxy("pycopter/start_stop", PycopterStartStop) resp = start_pycopter(start=True, stop=False) ack = resp.ack except rospy.ServiceException as e: print("Service call failed: {}".format(e)) return -1 if ack: rospy.loginfo("Start command acknowledged") else: rospy.logwarn("Start command rejected") return if __name__ == "__main__": rospy.init_node("test_positions_services") main() ``` #### File: drone-swarm/kalman/animation.py ```python from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as pl def draw3d(ax, xyz, R, quadcolor): # We draw in ENU coordinates, R and xyz are in NED ax.scatter(xyz[1], xyz[0], -xyz[2], color=quadcolor) ax.quiver(xyz[1], xyz[0], -xyz[2], R[0, 1], R[0, 0], R[0, 2], pivot='tail', \ color='red') ax.quiver(xyz[1], xyz[0], -xyz[2], R[1, 1], R[1, 0], R[1, 2], pivot='tail', \ color='green') ax.quiver(xyz[1], xyz[0], -xyz[2], -R[2, 1], -R[2, 0], -R[2, 2], pivot='tail', \ color='blue') def draw2d(fig, X, fc, quadcolor): agents = fc.agents m = fc.m pl.figure(fig) for i in range(0, agents): if m == 2: pl.plot(X[m*i], X[m*i+1], 'o'+quadcolor[i]) def draw_edges(fig, X, fc, n): agents = fc.agents edges = fc.edges m = fc.m B = fc.B pl.figure(fig) a, b = 0, 0 for i in range(0, edges): for j in range(0, agents): if B[j,i] == 1: a = j elif B[j,i] == -1: b = j if m == 2: if i == n: pl.plot([X[m*a], X[m*b]], [X[m*a+1], X[m*b+1]], 'r--', lw=2) else: pl.plot([X[m*a], X[m*b]], [X[m*a+1], X[m*b+1]], 'k--', lw=2) ```
{ "source": "jlrandulfe/PyGCMSE", "score": 3 }
#### File: PyGCMSE/gcmse/gcmse.py ```python import numpy as np from scipy import ndimage def GCMSE(ref_image, work_image, kappa=0.5, option=1): """GCMSE --- Gradient Conduction Mean Square Error. Computation of the GCMSE. An image quality assessment measurement for image filtering, focused on edge preservation evaluation. Both input images are compared, returning a float number. As little as the GCMSE is, more similar the images are. This metric is edge preservation oriented, thus differences between border regions will contribute more to the final result. The borders are obtained from the reference image, and it only works with images of the same scale, size and geometry. This metric is not intended to measure any image processing applications but filtering i.e.: it will NOT work for assessing the quality of compression, contrast stretching... Parameters --------- ref_image[]: Array of pixels. Pixel values 0 to 255. Reference image. The border regions will be obtained from it. This image is the ideal objective, and the filtered images must be as much similar to it as possible. work_image[]: Array of pixels. Pixel values 0 to 255. Image that is compared to the reference one. kappa: decimal number. Values 0 to 1 Conductance parameter. It increases the amount of the images that are analyzed, as it defines the permisivity for pixels to belong to border regions, and how high is their contribution. option: integer. Values: 1 or 2 Select which of the Perona-Malik equations will be used. Returns ------- gcmse: float Value of the GCMSE metric between the 2 provided images. It gets smaller as the images are more similar. weight: float Amount of the image that has been taken into account. """ # Normalization of the images to [0,1] values. ref_image_float = ref_image.astype('float32') work_image_float = work_image.astype('float32') normed_ref_image = ref_image_float / 255 normed_work_image = work_image_float / 255 # Initialization and calculation of south and east gradients arrays. gradient_S = np.zeros_like(normed_ref_image) gradient_E = gradient_S.copy() gradient_S[:-1,: ] = np.diff(normed_ref_image, axis=0) gradient_E[: ,:-1] = np.diff(normed_ref_image, axis=1) # Image conduction is calculated using the Perona-Malik equations. if option == 1: cond_S = np.exp(-(gradient_S/kappa) ** 2) cond_E = np.exp(-(gradient_E/kappa) ** 2) elif option == 2: cond_S = 1.0 / (1 + (gradient_S/kappa)**2) cond_E = 1.0 / (1 + (gradient_E/kappa)**2) # New conduction components are initialized to 1 in order to treat # image corners as homogeneous regions cond_N = np.ones_like(normed_ref_image) cond_W = cond_N.copy() # South and East arrays values are moved one position in order to # obtain North and West values, respectively. cond_N[1:, :] = cond_S[:-1, :] cond_W[:, 1:] = cond_E[:, :-1] # Conduction module is the mean of the 4 directional values. conduction = (cond_N + cond_S + cond_W + cond_E) / 4 conduction = np.clip (conduction, 0., 1.) G = 1 - conduction # Calculation of the GCMSE value num = ((G*(normed_ref_image - normed_work_image)) ** 2).sum() gcmse = num * normed_ref_image.size / G.sum() weight = G.sum() / G.size return [gcmse, weight] ```
{ "source": "JLRepo/CREAM", "score": 2 }
#### File: CREAM/utils/IoU.py ```python import numpy as np import xml.etree.ElementTree as ET import torch def get_gt_boxes(xmlfile): '''get ground-truth bbox from VOC xml file''' tree = ET.parse(xmlfile) objs = tree.findall('object') num_objs = len(objs) gt_boxes = [] for obj in objs: bbox = obj.find('bndbox') x1 = float(bbox.find('xmin').text)-1 y1 = float(bbox.find('ymin').text)-1 x2 = float(bbox.find('xmax').text)-1 y2 = float(bbox.find('ymax').text)-1 gt_boxes.append((x1, y1, x2, y2)) return gt_boxes def get_cls_gt_boxes(xmlfile, cls): '''get ground-truth bbox from VOC xml file''' tree = ET.parse(xmlfile) objs = tree.findall('object') num_objs = len(objs) gt_boxes = [] for obj in objs: bbox = obj.find('bndbox') cls_name = obj.find('name').text #print(cls_name, cls) if cls_name != cls: continue x1 = float(bbox.find('xmin').text)-1 y1 = float(bbox.find('ymin').text)-1 x2 = float(bbox.find('xmax').text)-1 y2 = float(bbox.find('ymax').text)-1 gt_boxes.append((x1, y1, x2, y2)) if len(gt_boxes)==0: pass #print('%s bbox = 0'%cls) return gt_boxes def get_cls_and_gt_boxes(xmlfile, cls,class_to_idx): '''get ground-truth bbox from VOC xml file''' tree = ET.parse(xmlfile) objs = tree.findall('object') num_objs = len(objs) gt_boxes = [] for obj in objs: bbox = obj.find('bndbox') cls_name = obj.find('name').text #print(cls_name, cls) if cls_name != cls: continue x1 = float(bbox.find('xmin').text)-1 y1 = float(bbox.find('ymin').text)-1 x2 = float(bbox.find('xmax').text)-1 y2 = float(bbox.find('ymax').text)-1 gt_boxes.append((class_to_idx[cls_name],[x1, y1, x2-x1, y2-y1])) if len(gt_boxes)==0: pass #print('%s bbox = 0'%cls) return gt_boxes def convert_boxes(boxes): ''' convert the bbox to the format (x1, y1, x2, y2) where x1,y1<x2,y2''' converted_boxes = [] for bbox in boxes: (x1, y1, x2, y2) = bbox converted_boxes.append((min(x1, x2), min(y1, y2), max(x1, x2), max(y1, y2))) return converted_boxes def IoU(a, b): #print(a, b) x1 = max(a[0], b[0]) y1 = max(a[1], b[1]) x2 = min(a[2], b[2]) y2 = min(a[3], b[3]) def compute_area(box): dx = max(0, box[2]-box[0]) dy = max(0, box[3]-box[1]) dx = float(dx) dy = float(dy) return dx*dy #print(x1, y1, x2, y2) w = max(0, x2-x1+1) h = max(0, y2-y1+1) #inter = w*h #aarea = (a[2]-a[0]+1)*(a[3]-a[1]+1) #barea = (b[2]-b[0]+1)*(b[3]-b[1]+1) inter = compute_area([x1, y1, x2, y2]) aarea = compute_area(a) barea = compute_area(b) #assert aarea+barea-inter>0 if aarea + barea - inter <=0: print(a) print(b) o = inter / (aarea+barea-inter) #if w<=0 or h<=0: # o = 0 return o def to_2d_tensor(inp): inp = torch.Tensor(inp) if len(inp.size()) < 2: inp = inp.unsqueeze(0) return inp def xywh_to_x1y1x2y2(boxes): boxes = to_2d_tensor(boxes) boxes[:, 2] += boxes[:, 0] - 1 boxes[:, 3] += boxes[:, 1] - 1 return boxes def x1y1x2y2_to_xywh(boxes): boxes = to_2d_tensor(boxes) boxes[:, 2] -= boxes[:, 0] - 1 boxes[:, 3] -= boxes[:, 1] - 1 return boxes def compute_IoU(pred_box, gt_box): boxes1 = to_2d_tensor(pred_box) # boxes1 = xywh_to_x1y1x2y2(boxes1) boxes1[:, 2] = torch.clamp(boxes1[:, 0] + boxes1[:, 2], 0, 1) boxes1[:, 3] = torch.clamp(boxes1[:, 1] + boxes1[:, 3], 0, 1) boxes2 = to_2d_tensor(gt_box) boxes2[:, 2] = torch.clamp(boxes2[:, 0] + boxes2[:, 2], 0, 1) boxes2[:, 3] = torch.clamp(boxes2[:, 1] + boxes2[:, 3], 0, 1) # boxes2 = xywh_to_x1y1x2y2(boxes2) intersec = boxes1.clone() intersec[:, 0] = torch.max(boxes1[:, 0], boxes2[:, 0]) intersec[:, 1] = torch.max(boxes1[:, 1], boxes2[:, 1]) intersec[:, 2] = torch.min(boxes1[:, 2], boxes2[:, 2]) intersec[:, 3] = torch.min(boxes1[:, 3], boxes2[:, 3]) def compute_area(boxes): # in (x1, y1, x2, y2) format dx = boxes[:, 2] - boxes[:, 0] dx[dx < 0] = 0 dy = boxes[:, 3] - boxes[:, 1] dy[dy < 0] = 0 return dx * dy a1 = compute_area(boxes1) a2 = compute_area(boxes2) ia = compute_area(intersec) assert ((a1 + a2 - ia < 0).sum() == 0) return ia / (a1 + a2 - ia) ```
{ "source": "jlrgraham23/okta-sdk-python", "score": 2 }
#### File: tests/unit/test_applications_ut.py ```python import aiohttp import asyncio import json import pytest import okta.models as models from okta.client import Client as OktaClient @pytest.mark.asyncio async def test_set_provisioning_connection(monkeypatch, mocker): org_url = "https://test.okta.com" token = "TOKEN" config = {'orgUrl': org_url, 'token': token} client = OktaClient(config) # mock http requests, verify if custom header is present in request class MockHTTPRequest(): def __call__(self, **params): self.request_info = params self.headers = params['headers'] self.url = params['url'] self.content_type = 'application/json' self.links = '' self.text = MockHTTPRequest.mock_response_text self.status = 200 return self async def __aenter__(self): return self async def __aexit__(self, exc_type, exc, tb): pass @staticmethod async def mock_response_text(): return '[{"text": "mock response text"}]' mock_http_request = MockHTTPRequest() monkeypatch.setattr(aiohttp.ClientSession, 'request', mock_http_request) profile = models.ProvisioningConnectionProfile( { 'authScheme': models.ProvisioningConnectionAuthScheme('TOKEN'), 'token': 'TEST' } ) provisioning_conn_req = models.ProvisioningConnectionRequest({'profile': profile}) _ = await client.set_default_provisioning_connection_for_application('test_app_id', provisioning_conn_req, query_params={'activate': True}) assert mock_http_request.request_info['url'].endswith('/apps/test_app_id/connections/default/?activate=True') data = mock_http_request.request_info['data'] assert json.loads(data) == {"profile": {"authScheme": "TOKEN", "token": "TEST"}} @pytest.mark.asyncio async def test_list_features_for_application(monkeypatch, mocker): mocked_response = """[ { "name": "USER_PROVISIONING", "status": "ENABLED", "description": "User provisioning settings from Okta to a downstream application", "capabilities": { "create": { "lifecycleCreate": { "status": "DISABLED" } }, "update": { "profile": { "status": "DISABLED" }, "lifecycleDeactivate": { "status": "DISABLED" }, "password": { "status": "DISABLED", "seed": "RANDOM", "change": "KEEP_EXISTING" } } }, "_links": { "self": { "href": "https://${yourOktaDomain}/api/v1/apps/${applicationId}/features/USER_PROVISIONING", "hints": { "allow": [ "GET", "PUT" ] } } } } ]""" org_url = "https://test.okta.com" token = "TOKEN" config = {'orgUrl': org_url, 'token': token} client = OktaClient(config) # mock http requests, verify if custom header is present in request class MockHTTPRequest(): def __call__(self, **params): self.request_info = params self.headers = params['headers'] self.url = params['url'] self.content_type = 'application/json' self.links = '' self.text = MockHTTPRequest.mock_response_text self.status = 200 return self async def __aenter__(self): return self async def __aexit__(self, exc_type, exc, tb): pass @staticmethod async def mock_response_text(): return mocked_response mock_http_request = MockHTTPRequest() monkeypatch.setattr(aiohttp.ClientSession, 'request', mock_http_request) features, _, err = await client.list_features_for_application('test_app_id') assert isinstance(features[0], models.ApplicationFeature) assert features[0].name == 'USER_PROVISIONING' assert isinstance(features[0].capabilities, models.CapabilitiesObject) assert isinstance(features[0].capabilities.create, models.CapabilitiesCreateObject) assert isinstance(features[0].capabilities.update, models.CapabilitiesUpdateObject) assert isinstance(features[0].capabilities.update, models.CapabilitiesUpdateObject) assert isinstance(features[0].capabilities.update.password, models.PasswordSettingObject) assert isinstance(features[0].capabilities.update.password.change, models.ChangeEnum) assert isinstance(features[0].status, models.EnabledStatus) @pytest.mark.asyncio async def test_get_feature_for_application(monkeypatch, mocker): mocked_response = """{ "name": "USER_PROVISIONING", "status": "ENABLED", "description": "User provisioning settings from Okta to a downstream application", "capabilities": { "create": { "lifecycleCreate": { "status": "DISABLED" } }, "update": { "profile": { "status": "DISABLED" }, "lifecycleDeactivate": { "status": "DISABLED" }, "password": { "status": "DISABLED", "seed": "RANDOM", "change": "KEEP_EXISTING" } } }, "_links": { "self": { "href": "https://${yourOktaDomain}/api/v1/apps/${applicationId}/features/USER_PROVISIONING", "hints": { "allow": [ "GET", "PUT" ] } } } }""" org_url = "https://test.okta.com" token = "TOKEN" config = {'orgUrl': org_url, 'token': token} client = OktaClient(config) # mock http requests, verify if custom header is present in request class MockHTTPRequest(): def __call__(self, **params): self.request_info = params self.headers = params['headers'] self.url = params['url'] self.content_type = 'application/json' self.links = '' self.text = MockHTTPRequest.mock_response_text self.status = 200 return self async def __aenter__(self): return self async def __aexit__(self, exc_type, exc, tb): pass @staticmethod async def mock_response_text(): return mocked_response mock_http_request = MockHTTPRequest() monkeypatch.setattr(aiohttp.ClientSession, 'request', mock_http_request) feature, _, err = await client.get_feature_for_application('test_app_id', 'USER_PROVISIONING') assert isinstance(feature, models.ApplicationFeature) assert feature.name == 'USER_PROVISIONING' assert isinstance(feature.capabilities, models.CapabilitiesObject) assert isinstance(feature.capabilities.create, models.CapabilitiesCreateObject) assert isinstance(feature.capabilities.update, models.CapabilitiesUpdateObject) assert isinstance(feature.capabilities.update, models.CapabilitiesUpdateObject) assert isinstance(feature.capabilities.update.password, models.PasswordSettingObject) assert isinstance(feature.capabilities.update.password.change, models.ChangeEnum) assert isinstance(feature.status, models.EnabledStatus) @pytest.mark.asyncio async def test_update_feature_for_application(monkeypatch, mocker): org_url = "https://test.okta.com" token = "TOKEN" config = {'orgUrl': org_url, 'token': token} client = OktaClient(config) # mock http requests, verify if custom header is present in request class MockHTTPRequest(): def __call__(self, **params): self.request_info = params self.headers = params['headers'] self.url = params['url'] self.content_type = 'application/json' self.links = '' self.text = MockHTTPRequest.mock_response_text self.status = 200 return self async def __aenter__(self): return self async def __aexit__(self, exc_type, exc, tb): pass @staticmethod async def mock_response_text(): return '[{"text": "mock response text"}]' mock_http_request = MockHTTPRequest() monkeypatch.setattr(aiohttp.ClientSession, 'request', mock_http_request) capabilities_object_dict = { "create": { "lifecycleCreate": { "status": "ENABLED" } }, "update": { "lifecycleDeactivate": { "status": "ENABLED" }, "profile":{ "status": "ENABLED" }, "password":{ "status": "ENABLED", "seed": "RANDOM", "change": "CHANGE" } } } capabilities_object = models.CapabilitiesObject(capabilities_object_dict) feature, _, err = await client.update_feature_for_application('test_app_id', 'test_name', capabilities_object) assert mock_http_request.request_info['url'].endswith('/apps/test_app_id/features/test_name') data = mock_http_request.request_info['data'] assert json.loads(data) == capabilities_object_dict @pytest.mark.asyncio async def test_upload_application_logo(monkeypatch, mocker): org_url = "https://test.okta.com" token = "TOKEN" config = {'orgUrl': org_url, 'token': token} client = OktaClient(config) # mock http requests, verify if custom header is present in request class MockHTTPRequest(): def __call__(self, **params): self.request_info = params self.headers = params['headers'] self.url = params['url'] self.content_type = 'application/json' self.links = '' self.text = MockHTTPRequest.mock_response_text self.status = 200 return self async def __aenter__(self): return self async def __aexit__(self, exc_type, exc, tb): pass @staticmethod async def mock_response_text(): return '[{"text": "mock response text"}]' mock_http_request = MockHTTPRequest() monkeypatch.setattr(aiohttp.ClientSession, 'request', mock_http_request) logo = mocker.Mock() _, err = await client.upload_application_logo('test_app_id', logo) assert mock_http_request.request_info['url'].endswith('/apps/test_app_id/logo') data = mock_http_request.request_info['data'] assert data == {'file': logo} ``` #### File: tests/unit/test_client.py ```python import aiohttp import asyncio import aiohttp import logging from aiohttp.client_reqrep import ConnectionKey from ssl import SSLCertVerificationError from okta.client import Client as OktaClient import pytest from okta.constants import FINDING_OKTA_DOMAIN import yaml import os from okta.error_messages import ERROR_MESSAGE_API_TOKEN_DEFAULT, \ ERROR_MESSAGE_API_TOKEN_MISSING, ERROR_MESSAGE_AUTH_MODE_INVALID, \ ERROR_MESSAGE_CLIENT_ID_DEFAULT, ERROR_MESSAGE_CLIENT_ID_MISSING,\ ERROR_MESSAGE_ORG_URL_ADMIN, ERROR_MESSAGE_ORG_URL_MISSING, \ ERROR_MESSAGE_ORG_URL_NOT_HTTPS, ERROR_MESSAGE_ORG_URL_TYPO, \ ERROR_MESSAGE_ORG_URL_YOUROKTADOMAIN, ERROR_MESSAGE_SCOPES_PK_MISSING, \ ERROR_MESSAGE_PROXY_MISSING_HOST, ERROR_MESSAGE_PROXY_MISSING_AUTH, \ ERROR_MESSAGE_PROXY_INVALID_PORT from okta.constants import _GLOBAL_YAML_PATH, _LOCAL_YAML_PATH from okta.exceptions import HTTPException from okta.http_client import HTTPClient """ Testing Okta Client Instantiation in different scenarios """ def test_constructor_user_config_empty(fs): config = {} with pytest.raises(ValueError) as exception_info: OktaClient(user_config=config) assert ERROR_MESSAGE_ORG_URL_MISSING in str(exception_info.value) assert ERROR_MESSAGE_API_TOKEN_MISSING in str(exception_info.value) def test_constructor_user_config_url_empty(): config = {'orgUrl': '', 'token': 'TOKEN'} with pytest.raises(ValueError) as exception_info: OktaClient(user_config=config) assert ERROR_MESSAGE_ORG_URL_MISSING in str(exception_info.value) def test_constructor_user_config_url_not_https(): config = {'orgUrl': 'http://test.okta.com', 'token': 'TOKEN'} with pytest.raises(ValueError) as exception_info: OktaClient(user_config=config) assert ERROR_MESSAGE_ORG_URL_NOT_HTTPS in str(exception_info.value) assert FINDING_OKTA_DOMAIN in str(exception_info.value) def test_constructor_user_config_url_has_yourOktaDomain(): config = { 'orgUrl': 'https://{yourOktaDomain}.okta.com', 'token': 'TOKEN' } with pytest.raises(ValueError) as exception_info: OktaClient(user_config=config) assert ERROR_MESSAGE_ORG_URL_YOUROKTADOMAIN in str(exception_info.value) @ pytest.mark.parametrize("url", ["https://dev-admin.okta.com", "https://dev-admin.oktapreview.com", "https://dev-admin.okta-emea.com", "https://test-admin.okta.com"]) def test_constructor_user_config_url_has_admin(url): config = { 'orgUrl': url, 'token': 'TOKEN' } with pytest.raises(ValueError) as exception_info: OktaClient(user_config=config) assert all(string in str(exception_info.value) for string in [ ERROR_MESSAGE_ORG_URL_ADMIN, f"Current value: {url}"]) def test_constructor_user_config_url_dot_com_twice(): url = 'https://test.okta.com.com' config = { 'orgUrl': url, 'token': 'TOKEN' } with pytest.raises(ValueError) as exception_info: OktaClient(user_config=config) assert all(string in str(exception_info.value) for string in [ ERROR_MESSAGE_ORG_URL_TYPO, f"Current value: {url}"]) def test_constructor_user_config_url_punctuation(): # test for urls with '://' multiple times url = 'https://://test.okta.com' config = { 'orgUrl': url, 'token': 'TOKEN' } with pytest.raises(ValueError) as exception_info: OktaClient(user_config=config) assert all(string in str(exception_info.value) for string in [ ERROR_MESSAGE_ORG_URL_TYPO, f"Current value: {url}"]) def test_constructor_user_config_token_empty(fs): config = {'orgUrl': 'https://test.okta.com', 'token': ''} with pytest.raises(ValueError) as exception_info: OktaClient(user_config=config) assert ERROR_MESSAGE_API_TOKEN_MISSING in str(exception_info.value) def test_constructor_user_config_url_has_apiToken(fs): config = { 'orgUrl': 'https://test.okta.com', 'token': '{apiToken}' } with pytest.raises(ValueError) as exception_info: OktaClient(user_config=config) assert ERROR_MESSAGE_API_TOKEN_DEFAULT in str(exception_info.value) def test_constructor_user_config_auth_mode_invalid(): authorizationMode = "blah" config = {'orgUrl': "https://test.okta.com", 'token': "TOKEN", 'authorizationMode': authorizationMode} with pytest.raises(ValueError) as exception_info: OktaClient(user_config=config) assert all(string in str(exception_info.value) for string in [ ERROR_MESSAGE_AUTH_MODE_INVALID, f"with {authorizationMode}"]) def test_constructor_user_config_SSWS(): org_url = "https://test.okta.com" token = "TOKEN" config = {'orgUrl': org_url, 'token': token} client = OktaClient(user_config=config) loaded_config = client.get_config() assert org_url == loaded_config['client']['orgUrl'] assert token == loaded_config['client']['token'] assert 'SSWS' == loaded_config['client']['authorizationMode'] def test_constructor_user_config_Bearer(): authorizationMode = "Bearer" org_url = "https://test.okta.com" token = "TOKEN" config = {'orgUrl': org_url, 'token': token, 'authorizationMode': authorizationMode} client = OktaClient(user_config=config) loaded_config = client.get_config() assert org_url == loaded_config['client']['orgUrl'] assert token == loaded_config['client']['token'] assert authorizationMode == loaded_config['client']['authorizationMode'] @ pytest.mark.parametrize("private_key", ["private key hash", "pem_file.pem", "{'Jwks'}"]) def test_constructor_user_config_PK(private_key): org_url = "https://test.okta.com" authorizationMode = "PrivateKey" client_id = "clientID" scopes = ["scope1"] config = { 'orgUrl': org_url, 'authorizationMode': authorizationMode, 'clientId': client_id, 'scopes': scopes, 'privateKey': private_key } client = OktaClient(user_config=config) loaded_config = client.get_config() assert org_url == loaded_config['client']['orgUrl'] assert authorizationMode == loaded_config['client']['authorizationMode'] assert client_id == loaded_config['client']['clientId'] assert scopes == loaded_config['client']['scopes'] assert private_key == loaded_config['client']['privateKey'] def test_constructor_user_config_PK_empty(fs): org_url = "https://test.okta.com" authorizationMode = "PrivateKey" config = { 'orgUrl': org_url, 'authorizationMode': authorizationMode, } with pytest.raises(ValueError) as exception_info: OktaClient(user_config=config) assert all(string in str(exception_info.value) for string in [ ERROR_MESSAGE_CLIENT_ID_MISSING, ERROR_MESSAGE_SCOPES_PK_MISSING ]) def test_constructor_user_config_PK_client_id_empty(): org_url = "https://test.okta.com" authorizationMode = "PrivateKey" scopes = ["scope1"] private_key_hash = "private key hash" config = { 'orgUrl': org_url, 'authorizationMode': authorizationMode, 'clientId': "", 'scopes': scopes, 'privateKey': private_key_hash } with pytest.raises(ValueError) as exception_info: OktaClient(user_config=config) assert all(string in str(exception_info.value) for string in [ ERROR_MESSAGE_CLIENT_ID_MISSING ]) def test_constructor_user_config_PK_client_id_default(): org_url = "https://test.okta.com" authorizationMode = "PrivateKey" scopes = ["scope1"] private_key_hash = "private key hash" config = { 'orgUrl': org_url, 'authorizationMode': authorizationMode, 'clientId': "{clientId}", 'scopes': scopes, 'privateKey': private_key_hash } with pytest.raises(ValueError) as exception_info: OktaClient(user_config=config) assert all(string in str(exception_info.value) for string in [ ERROR_MESSAGE_CLIENT_ID_DEFAULT ]) @ pytest.mark.parametrize("scopes,private_key", [([], "private key hash"), (["scope1"], ""), ([], "")]) def test_constructor_user_config_PK_scopes_and_or_private_key_empty( scopes, private_key): org_url = "https://test.okta.com" authorizationMode = "PrivateKey" client_id = "clientID" config = { 'orgUrl': org_url, 'authorizationMode': authorizationMode, 'clientId': client_id, 'scopes': scopes, 'privateKey': private_key } with pytest.raises(ValueError) as exception_info: OktaClient(user_config=config) assert all(string in str(exception_info.value) for string in [ ERROR_MESSAGE_SCOPES_PK_MISSING ]) """ Testing constructor with YAML configurations """ def test_constructor_global_config_SSWS(fs): fs.pause() global_sample = os.path.join(os.path.dirname( __file__), "files", "SSWS-sample-global.yaml") with open(global_sample) as file: global_config = yaml.load(file, Loader=yaml.SafeLoader) org_url = global_config["okta"]["client"]["orgUrl"] token = global_config["okta"]["client"]["token"] fs.resume() fs.create_file(_GLOBAL_YAML_PATH, contents=yaml.dump(global_config)) client = OktaClient() loaded_config = client.get_config() assert org_url == loaded_config['client']['orgUrl'] assert token == loaded_config['client']['token'] def test_constructor_local_config_SSWS(fs): fs.pause() local_sample = os.path.join(os.path.dirname( __file__), "files", "SSWS-sample-local.yaml") with open(local_sample) as file: local_config = yaml.load(file, Loader=yaml.SafeLoader) org_url = local_config["okta"]["client"]["orgUrl"] token = local_config["okta"]["client"]["token"] fs.resume() fs.create_file(_LOCAL_YAML_PATH, contents=yaml.dump(local_config)) client = OktaClient() loaded_config = client.get_config() assert org_url == loaded_config['client']['orgUrl'] assert token == loaded_config['client']['token'] def test_constructor_global_config_PK(fs): fs.pause() global_sample = os.path.join(os.path.dirname( __file__), "files", "PK-sample-global.yaml") with open(global_sample) as file: global_config = yaml.load(file, Loader=yaml.SafeLoader) org_url = global_config["okta"]["client"]["orgUrl"] client_id = global_config["okta"]["client"]["clientId"] private_key = global_config["okta"]["client"]["privateKey"] fs.resume() fs.create_file(_GLOBAL_YAML_PATH, contents=yaml.dump(global_config)) client = OktaClient() loaded_config = client.get_config() assert org_url == loaded_config['client']['orgUrl'] assert client_id == loaded_config['client']['clientId'] assert private_key == loaded_config['client']['privateKey'] def test_constructor_local_config_PK(fs): fs.pause() local_sample = os.path.join(os.path.dirname( __file__), "files", "PK-sample-local.yaml") with open(local_sample) as file: local_config = yaml.load(file, Loader=yaml.SafeLoader) org_url = local_config["okta"]["client"]["orgUrl"] client_id = local_config["okta"]["client"]["clientId"] private_key = local_config["okta"]["client"]["privateKey"] fs.resume() fs.create_file(_LOCAL_YAML_PATH, contents=yaml.dump(local_config)) client = OktaClient() loaded_config = client.get_config() assert org_url == loaded_config['client']['orgUrl'] assert client_id == loaded_config['client']['clientId'] assert private_key == loaded_config['client']['privateKey'] def test_constructor_env_vars_SSWS(): org_url = "https://test.okta.com" token = "TOKEN" os.environ["OKTA_CLIENT_ORGURL"] = org_url os.environ["OKTA_CLIENT_TOKEN"] = token client = OktaClient() loaded_config = client.get_config() os.environ.pop("OKTA_CLIENT_ORGURL") os.environ.pop("OKTA_CLIENT_TOKEN") assert org_url == loaded_config['client']['orgUrl'] assert token == loaded_config['client']['token'] def test_constructor_env_vars_PK(): authorizationMode = "PrivateKey" org_url = "https://test.okta.com" client_id = "clientID" scopes = "scope1,scope2,scope3" private_key = "private key" os.environ["OKTA_CLIENT_AUTHORIZATIONMODE"] = authorizationMode os.environ["OKTA_CLIENT_ORGURL"] = org_url os.environ["OKTA_CLIENT_CLIENTID"] = client_id os.environ["OKTA_CLIENT_SCOPES"] = scopes os.environ["OKTA_CLIENT_PRIVATEKEY"] = private_key client = OktaClient() loaded_config = client.get_config() os.environ.pop("OKTA_CLIENT_ORGURL") os.environ.pop("OKTA_CLIENT_AUTHORIZATIONMODE") os.environ.pop("OKTA_CLIENT_CLIENTID") os.environ.pop("OKTA_CLIENT_SCOPES") os.environ.pop("OKTA_CLIENT_PRIVATEKEY") assert authorizationMode == loaded_config['client']['authorizationMode'] assert org_url == loaded_config['client']['orgUrl'] assert client_id == loaded_config['client']['clientId'] assert scopes.split(',') == loaded_config['client']['scopes'] assert private_key == loaded_config['client']['privateKey'] def test_constructor_precedence_highest_rank_local_yaml(fs): # Setup Global config fs.pause() global_sample = os.path.join(os.path.dirname( __file__), "files", "SSWS-sample-global.yaml") with open(global_sample) as file: global_config = yaml.load(file, Loader=yaml.SafeLoader) global_org_url = global_config["okta"]["client"]["orgUrl"] global_token = global_config["okta"]["client"]["token"] fs.resume() fs.create_file(_GLOBAL_YAML_PATH, contents=yaml.dump(global_config)) # Setup Local config fs.pause() local_sample = os.path.join(os.path.dirname( __file__), "files", "SSWS-sample-local.yaml") with open(local_sample) as file: local_config = yaml.load(file, Loader=yaml.SafeLoader) local_org_url = local_config["okta"]["client"]["orgUrl"] local_token = local_config["okta"]["client"]["token"] fs.resume() fs.create_file(_LOCAL_YAML_PATH, contents=yaml.dump(local_config)) # Create client and validate values client = OktaClient() loaded_config = client.get_config() assert local_org_url == loaded_config['client']['orgUrl'] assert local_token == loaded_config['client']['token'] assert local_org_url != global_org_url assert local_token != global_token assert global_org_url != loaded_config['client']['orgUrl'] assert global_token != loaded_config['client']['token'] def test_constructor_precedence_highest_rank_env_vars(fs): # Setup Local config fs.pause() local_sample = os.path.join(os.path.dirname( __file__), "files", "SSWS-sample-local.yaml") with open(local_sample) as file: local_config = yaml.load(file, Loader=yaml.SafeLoader) local_org_url = local_config["okta"]["client"]["orgUrl"] local_token = local_config["okta"]["client"]["token"] fs.resume() fs.create_file(_LOCAL_YAML_PATH, contents=yaml.dump(local_config)) # Setup env. vars env_org_url = "https://test.env.okta.com" env_token = "envTOKEN" os.environ["OKTA_CLIENT_ORGURL"] = env_org_url os.environ["OKTA_CLIENT_TOKEN"] = env_token client = OktaClient() loaded_config = client.get_config() os.environ.pop("OKTA_CLIENT_ORGURL") os.environ.pop("OKTA_CLIENT_TOKEN") assert local_org_url != loaded_config['client']['orgUrl'] assert local_token != loaded_config['client']['token'] assert local_org_url != env_org_url assert local_token != env_token assert env_org_url == loaded_config['client']['orgUrl'] assert env_token == loaded_config['client']['token'] def test_constructor_precedence_highest_rank_user_config(): # Setup env. vars env_org_url = "https://test.env.okta.com" env_token = "envTOKEN" os.environ["OKTA_CLIENT_ORGURL"] = env_org_url os.environ["OKTA_CLIENT_TOKEN"] = env_token # Setup user config user_org_url = "https://test.user.okta.com" user_token = "userTOKEN" config = {'orgUrl': user_org_url, 'token': user_token} client = OktaClient(config) loaded_config = client.get_config() os.environ.pop("OKTA_CLIENT_ORGURL") os.environ.pop("OKTA_CLIENT_TOKEN") assert user_org_url == loaded_config['client']['orgUrl'] assert user_token == loaded_config['client']['token'] assert user_org_url != env_org_url assert user_token != env_token assert env_org_url != loaded_config['client']['orgUrl'] assert env_token != loaded_config['client']['token'] def test_constructor_valid_proxy(): org_url = "https://test.okta.com" token = "TOKEN" port = 8080 host = "test.okta.com" username = "username" password = "password" config = { 'orgUrl': org_url, 'token': token, 'proxy': { 'port': port, 'host': host, 'username': username, 'password': password } } # Ensure no error is raised and correct proxy is determined client = OktaClient(user_config=config) assert client.get_request_executor( )._http_client._proxy == f"http://{username}:{password}@{host}:{port}/" def test_constructor_valid_no_proxy(): org_url = "https://test.okta.com" token = "TOKEN" config = { 'orgUrl': org_url, 'token': token } # Ensure no error is raised and proxy is None client = OktaClient(user_config=config) assert client.get_request_executor( )._http_client._proxy is None def test_constructor_valid_env_vars(): org_url = "https://test.okta.com" token = "TOKEN" config = { 'orgUrl': org_url, 'token': token } # Setting up env vars os.environ["HTTP_PROXY"] = "http://user:[email protected]:8080" os.environ["HTTPS_PROXY"] = "https://user:[email protected]:8080" expected = os.environ["HTTPS_PROXY"] client = OktaClient(user_config=config) # Deleting env vars del os.environ['HTTP_PROXY'] del os.environ['HTTPS_PROXY'] # Ensure no error is raised and proxy is None assert client.get_request_executor( )._http_client._proxy == expected def test_constructor_invalid_missing_host(): org_url = "https://test.okta.com" token = "TOKEN" port = 8080 username = "username" password = "password" config = { 'orgUrl': org_url, 'token': token, 'proxy': { 'port': port, 'username': username, 'password': password } } # Expect error with config with pytest.raises(ValueError) as exception_info: OktaClient(user_config=config) assert ERROR_MESSAGE_PROXY_MISSING_HOST in exception_info.value @pytest.mark.parametrize("username,password", [("", "password"), ("username", "")]) def test_constructor_invalid_missing_username_or_password(username, password): org_url = "https://test.okta.com" token = "TOKEN" port = 8080 host = "test.okta.com" config = { 'orgUrl': org_url, 'token': token, 'proxy': { 'port': port, 'host': host, 'username': username, 'password': password } } # Expect error with config with pytest.raises(ValueError) as exception_info: OktaClient(user_config=config) assert ERROR_MESSAGE_PROXY_MISSING_AUTH in exception_info.value @pytest.mark.parametrize("port", [-1, 0, 65536, "port"]) def test_constructor_invalid_port_number(port): org_url = "https://test.okta.com" token = "TOKEN" host = "test.okta.com" username = "username" password = "password" config = { 'orgUrl': org_url, 'token': token, 'proxy': { 'port': port, 'host': host, 'username': username, 'password': password } } # Expect error with config with pytest.raises(ValueError) as exception_info: OktaClient(user_config=config) assert ERROR_MESSAGE_PROXY_INVALID_PORT in exception_info.value def test_constructor_custom_http_client_impl(): class CustomHTTPClient(HTTPClient): pass org_url = "https://test.okta.com" token = "TOKEN" config = {'orgUrl': org_url, 'token': token, 'httpClient': CustomHTTPClient} client = OktaClient(config) assert isinstance(client._request_executor._http_client, CustomHTTPClient) def test_constructor_client_logging(): logger = logging.getLogger('okta-sdk-python') assert logger.disabled org_url = "https://test.okta.com" token = "TOKEN" config = {'orgUrl': org_url, 'token': token, 'logging': {"enabled": True, "logLevel": logging.DEBUG}} client = OktaClient(config) assert not logger.disabled assert logger.level == logging.DEBUG def test_client_raise_exception(): org_url = "https://test.okta.com" token = "TOKEN" config = {'orgUrl': org_url, 'token': token, 'raiseException': True} client = OktaClient(config) with pytest.raises(HTTPException): asyncio.run(client.list_users()) def test_client_custom_headers(monkeypatch, mocker): org_url = "https://test.okta.com" token = "TOKEN" config = {'orgUrl': org_url, 'token': token} custom_headers = {'Header-Test-1': 'test value 1', 'Header-Test-2': 'test value 2'} client = OktaClient(config) # verify custom headers are set client.set_custom_headers(custom_headers) assert client.get_custom_headers() == custom_headers # mock http requests, verify if custom header is present in request class MockHTTPRequest(): def __call__(self, **params): self.request_info = params self.headers = params['headers'] self.url = params['url'] self.content_type = 'application/json' self.links = '' self.text = MockHTTPRequest.mock_response_text self.status = 200 return self async def __aenter__(self): return self async def __aexit__(self, exc_type, exc, tb): pass @staticmethod async def mock_response_text(): return '[{"text": "mock response text"}]' mock_http_request = MockHTTPRequest() monkeypatch.setattr(aiohttp.ClientSession, 'request', mock_http_request) asyncio.run(client.list_users()) assert 'Header-Test-1' in mock_http_request.headers assert 'Header-Test-2' in mock_http_request.headers # verify custom headers are cleared client.clear_custom_headers() assert client.get_custom_headers() == {} def test_client_handle_aiohttp_error(monkeypatch, mocker): org_url = "https://test.okta.com" token = "TOKEN" config = {'orgUrl': org_url, 'token': token} client = OktaClient(config) class MockHTTPRequest(): def __call__(self, **params): raise aiohttp.ClientConnectorCertificateError( ConnectionKey(host=org_url, port=443, is_ssl=True, ssl=None, proxy=None, proxy_auth=None, proxy_headers_hash=None), SSLCertVerificationError(1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: ' 'unable to get local issuer certificate (_ssl.c:1123)')) async def __aenter__(self): return self async def __aexit__(self, exc_type, exc, tb): pass @staticmethod async def mock_response_text(): return '[{"text": "mock response text"}]' mock_http_request = MockHTTPRequest() monkeypatch.setattr(aiohttp.ClientSession, 'request', mock_http_request) res, resp_body, error = asyncio.run(client.list_users()) assert res is None assert resp_body is None assert isinstance(error, aiohttp.ClientError) def test_client_log_debug(monkeypatch, caplog): org_url = "https://test.okta.com" token = "TOKEN" config = {'orgUrl': org_url, 'token': token, 'logging': {'enabled': True, 'logLevel': logging.DEBUG}} client = OktaClient(config) class MockHTTPRequest(): def __call__(self, **params): self.request_info = params self.headers = params['headers'] self.url = params['url'] self.content_type = 'application/json' self.links = '' self.text = MockHTTPRequest.mock_response_text self.status = 200 return self async def __aenter__(self): return self async def __aexit__(self, exc_type, exc, tb): pass @staticmethod async def mock_response_text(): return '[{"embedded": null,' \ '"links": {"self": {"href": "https://test.okta.com/v1/users/test_id"}},' \ '"activated": "2021-01-01T00:00:00.000Z",' \ '"created": "2021-01-01T00:00:00.000Z",' \ '"credentials": null,' \ '"id": "test_id",' \ '"last_login": null,' \ '"profile": {"name": "test_name"},' \ '"status": null,' \ '"status_changed": null,' \ '"transitioning_to_status": null,' \ '"type": null}]' mock_http_request = MockHTTPRequest() monkeypatch.setattr(aiohttp.ClientSession, 'request', mock_http_request) with caplog.at_level(logging.DEBUG): res, resp_body, error = asyncio.run(client.list_users()) assert 'okta-sdk-python' in caplog.text assert 'DEBUG' in caplog.text assert "'method': 'GET'" in caplog.text assert "'url': 'https://test.okta.com/api/v1/users'" in caplog.text def test_client_log_info(monkeypatch, caplog): org_url = "https://test.okta.com" token = "TOKEN" config = {'orgUrl': org_url, 'token': token, 'logging': {'enabled': True, 'logLevel': logging.INFO}} client = OktaClient(config) class MockHTTPRequest(): def __call__(self, **params): self.request_info = params self.headers = params['headers'] self.url = params['url'] self.content_type = 'application/json' self.links = '' self.text = MockHTTPRequest.mock_response_text self.status = 200 return self async def __aenter__(self): return self async def __aexit__(self, exc_type, exc, tb): pass @staticmethod async def mock_response_text(): return '[{"embedded": null,' \ '"links": {"self": {"href": "https://test.okta.com/v1/users/test_id"}},' \ '"activated": "2021-01-01T00:00:00.000Z",' \ '"created": "2021-01-01T00:00:00.000Z",' \ '"credentials": null,' \ '"id": "test_id",' \ '"last_login": null,' \ '"profile": {"name": "test_name"},' \ '"status": null,' \ '"status_changed": null,' \ '"transitioning_to_status": null,' \ '"type": null}]' mock_http_request = MockHTTPRequest() monkeypatch.setattr(aiohttp.ClientSession, 'request', mock_http_request) with caplog.at_level(logging.INFO): res, resp_body, error = asyncio.run(client.list_users()) assert caplog.text == '' def test_client_log_exception(monkeypatch, caplog): org_url = "https://test.okta.com" token = "TOKEN" config = {'orgUrl': org_url, 'token': <PASSWORD>, 'logging': {'enabled': True, 'logLevel': logging.DEBUG}} client = OktaClient(config) class MockHTTPRequest(): def __call__(self, **params): raise aiohttp.ClientConnectorCertificateError( ConnectionKey(host=org_url, port=443, is_ssl=True, ssl=None, proxy=None, proxy_auth=None, proxy_headers_hash=None), SSLCertVerificationError(1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: ' 'unable to get local issuer certificate (_ssl.c:1123)')) async def __aenter__(self): return self async def __aexit__(self, exc_type, exc, tb): pass @staticmethod async def mock_response_text(): return '[{"text": "mock response text"}]' mock_http_request = MockHTTPRequest() monkeypatch.setattr(aiohttp.ClientSession, 'request', mock_http_request) with caplog.at_level(logging.DEBUG): res, resp_body, error = asyncio.run(client.list_users()) assert 'Cannot connect to host https://test.okta.com' in caplog.text def test_client_ssl_context(monkeypatch, mocker): org_url = "https://test.okta.com" token = "TOKEN" mock_ssl_context = mocker.MagicMock() config = {'orgUrl': org_url, 'token': <PASSWORD>, 'sslContext': mock_ssl_context} client = OktaClient(config) # mock http requests, verify if custom header is present in request class MockHTTPRequest(): def __call__(self, **params): self.request_info = params self.headers = params['headers'] self.url = params['url'] self.content_type = 'application/json' self.links = '' self.text = MockHTTPRequest.mock_response_text self.status = 200 return self async def __aenter__(self): return self async def __aexit__(self, exc_type, exc, tb): pass @staticmethod async def mock_response_text(): return '[{"text": "mock response text"}]' mock_http_request = MockHTTPRequest() monkeypatch.setattr(aiohttp.ClientSession, 'request', mock_http_request) asyncio.run(client.list_users()) assert mock_http_request.request_info['ssl_context'] == mock_ssl_context @pytest.mark.asyncio async def test_client_session(mocker): org_url = "https://test.okta.com" token = "TOKEN" # no session config = {'orgUrl': org_url, 'token': token} client = OktaClient(config) assert client._request_executor._http_client._session is None # with session config = {'orgUrl': org_url, 'token': token} async with OktaClient(config) as client: assert isinstance(client._request_executor._http_client._session, aiohttp.ClientSession) ```
{ "source": "jlrgraham/hjuutilainen-recipes", "score": 3 }
#### File: hjuutilainen-recipes/AlfredApp/Alfred2URLProvider.py ```python import urllib2 import plistlib from autopkglib import Processor, ProcessorError __all__ = ["Alfred2URLProvider"] UPDATE_INFO_PLIST_URL = "http://media.alfredapp.com/v2update/info.plist" class Alfred2URLProvider(Processor): """Provides a download URL for the latest Alfred""" input_variables = { "base_url": { "required": False, "description": "The Alfred update info property list URL", }, } output_variables = { "url": { "description": "URL to the latest Alfred release.", }, } description = __doc__ def download_info_plist(self, base_url): """Downloads the info.plist file and returns a plist object""" try: f = urllib2.urlopen(base_url) plist_data = f.read() f.close() except BaseException as e: raise ProcessorError("Can't download %s: %s" % (base_url, e)) info_plist = plistlib.readPlistFromString(plist_data) return info_plist def get_alfred_dmg_url(self, base_url): """Find and return a download URL""" # Alfred 2 update check uses a standard plist file. # Grab it and parse... info_plist = self.download_info_plist(base_url) version = info_plist.get('version', None) self.output("Found version %s" % version) location = info_plist.get('location', None) return location def main(self): base_url = self.env.get("base_url", UPDATE_INFO_PLIST_URL) self.env["url"] = self.get_alfred_dmg_url(base_url) self.output("Found URL %s" % self.env["url"]) if __name__ == "__main__": processor = Alfred2URLProvider() processor.execute_shell() ```
{ "source": "jlrgraham/munki", "score": 2 }
#### File: client/munkilib/adobeutils.py ```python import os import re import subprocess import time import tempfile import sqlite3 from xml.dom import minidom from glob import glob import FoundationPlist import munkicommon import munkistatus import utils # we use lots of camelCase-style names. Deal with it. # pylint: disable=C0103 class AdobeInstallProgressMonitor(object): """A class to monitor installs/removals of Adobe products. Finds the currently active installation log and scrapes data out of it. Installations that install a product and updates may actually create multiple logs.""" def __init__(self, kind='CS5', operation='install'): '''Provide some hints as to what type of installer is running and whether we are installing or removing''' self.kind = kind self.operation = operation self.payload_count = {} def get_current_log(self): '''Returns the current Adobe install log''' logpath = '/Library/Logs/Adobe/Installers' # find the most recently-modified log file proc = subprocess.Popen(['/bin/ls', '-t1', logpath], bufsize=-1, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (output, dummy_err) = proc.communicate() if output: firstitem = str(output).splitlines()[0] if firstitem.endswith(".log"): # return path of most recently modified log file return os.path.join(logpath, firstitem) return None def info(self): '''Returns the number of completed Adobe payloads, and the AdobeCode of the most recently completed payload.''' last_adobecode = "" logfile = self.get_current_log() if logfile: if self.kind in ['CS6', 'CS5']: regex = r'END TIMER :: \[Payload Operation :\{' elif self.kind in ['CS3', 'CS4']: if self.operation == 'install': regex = r'Closed PCD cache session payload with ID' else: regex = r'Closed CAPS session for removal of payload' else: if self.operation == 'install': regex = r'Completing installation for payload at ' else: regex = r'Physical payload uninstall result ' cmd = ['/usr/bin/grep', '-E', regex, logfile] proc = subprocess.Popen(cmd, bufsize=-1, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (output, dummy_err) = proc.communicate() if output: lines = str(output).splitlines() completed_payloads = len(lines) if (not logfile in self.payload_count or completed_payloads > self.payload_count[logfile]): # record number of completed payloads self.payload_count[logfile] = completed_payloads # now try to get the AdobeCode of the most recently # completed payload. # this isn't 100% accurate, but it's mostly for show # anyway... regex = re.compile(r'[^{]*(\{[A-Fa-f0-9-]+\})') lines.reverse() for line in lines: m = regex.match(line) try: last_adobecode = m.group(1) break except (IndexError, AttributeError): pass total_completed_payloads = 0 for key in self.payload_count.keys(): total_completed_payloads += self.payload_count[key] return (total_completed_payloads, last_adobecode) # dmg helper # we need this instead of the one in munkicommon because the Adobe stuff # needs the dmgs mounted under /Volumes. We can merge this later (or not). def mountAdobeDmg(dmgpath): """ Attempts to mount the dmg at dmgpath and returns a list of mountpoints """ mountpoints = [] dmgname = os.path.basename(dmgpath) proc = subprocess.Popen(['/usr/bin/hdiutil', 'attach', dmgpath, '-nobrowse', '-noverify', '-plist'], bufsize=-1, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (pliststr, err) = proc.communicate() if err: munkicommon.display_error('Error %s mounting %s.' % (err, dmgname)) if pliststr: plist = FoundationPlist.readPlistFromString(pliststr) for entity in plist['system-entities']: if 'mount-point' in entity: mountpoints.append(entity['mount-point']) return mountpoints def getCS5uninstallXML(optionXMLfile): '''Gets the uninstall deployment data from a CS5 installer''' xml = '' dom = minidom.parse(optionXMLfile) DeploymentInfo = dom.getElementsByTagName('DeploymentInfo') if DeploymentInfo: for info_item in DeploymentInfo: DeploymentUninstall = info_item.getElementsByTagName( 'DeploymentUninstall') if DeploymentUninstall: deploymentData = DeploymentUninstall[0].getElementsByTagName( 'Deployment') if deploymentData: Deployment = deploymentData[0] xml += Deployment.toxml('UTF-8') return xml def getCS5mediaSignature(dirpath): '''Returns the CS5 mediaSignature for an AAMEE CS5 install. dirpath is typically the root of a mounted dmg''' payloads_dir = "" # look for a payloads folder for (path, dummy_dirs, dummy_files) in os.walk(dirpath): if path.endswith('/payloads'): payloads_dir = path # return empty-handed if we didn't find a payloads folder if not payloads_dir: return '' # now look for setup.xml setupxml = os.path.join(payloads_dir, 'Setup.xml') if os.path.exists(setupxml) and os.path.isfile(setupxml): # parse the XML dom = minidom.parse(setupxml) setupElements = dom.getElementsByTagName('Setup') if setupElements: mediaSignatureElements = \ setupElements[0].getElementsByTagName('mediaSignature') if mediaSignatureElements: element = mediaSignatureElements[0] elementvalue = '' for node in element.childNodes: elementvalue += node.nodeValue return elementvalue return "" def getPayloadInfo(dirpath): '''Parses Adobe payloads, pulling out info useful to munki. .proxy.xml files are used if available, or for CC-era updates which do not contain one, the Media_db.db file, which contains identical XML, is instead used. CS3/CS4: contain only .proxy.xml CS5/CS5.5/CS6: contain both CC: contain only Media_db.db''' payloadinfo = {} # look for .proxy.xml file dir if os.path.isdir(dirpath): proxy_paths = glob(os.path.join(dirpath, '*.proxy.xml')) if proxy_paths: xmlpath = proxy_paths[0] dom = minidom.parse(xmlpath) # if there's no .proxy.xml we should hope there's a Media_db.db else: db_path = os.path.join(dirpath, 'Media_db.db') if os.path.exists(db_path): conn = sqlite3.connect(db_path) cur = conn.cursor() cur.execute("SELECT value FROM PayloadData WHERE " "PayloadData.key = 'PayloadInfo'") result = cur.fetchone() cur.close() if result: info_xml = result[0].encode('UTF-8') dom = minidom.parseString(info_xml) else: # no xml, no db, no payload info! return payloadinfo payload_info = dom.getElementsByTagName('PayloadInfo') if payload_info: installer_properties = payload_info[0].getElementsByTagName( 'InstallerProperties') if installer_properties: properties = installer_properties[0].getElementsByTagName( 'Property') for prop in properties: if 'name' in prop.attributes.keys(): propname = prop.attributes['name'].value.encode('UTF-8') propvalue = '' for node in prop.childNodes: propvalue += node.nodeValue if propname == 'AdobeCode': payloadinfo['AdobeCode'] = propvalue if propname == 'ProductName': payloadinfo['display_name'] = propvalue if propname == 'ProductVersion': payloadinfo['version'] = propvalue installmetadata = payload_info[0].getElementsByTagName( 'InstallDestinationMetadata') if installmetadata: totalsizes = installmetadata[0].getElementsByTagName( 'TotalSize') if totalsizes: installsize = '' for node in totalsizes[0].childNodes: installsize += node.nodeValue payloadinfo['installed_size'] = int(installsize)/1024 return payloadinfo def getAdobeSetupInfo(installroot): '''Given the root of mounted Adobe DMG, look for info about the installer or updater''' info = {} payloads = [] # look for all the payloads folders for (path, dummy_dirs, dummy_files) in os.walk(installroot): if path.endswith('/payloads'): driverfolder = '' mediaSignature = '' setupxml = os.path.join(path, 'setup.xml') if os.path.exists(setupxml): dom = minidom.parse(setupxml) drivers = dom.getElementsByTagName('Driver') if drivers: driver = drivers[0] if 'folder' in driver.attributes.keys(): driverfolder = driver.attributes[ 'folder'].value.encode('UTF-8') if driverfolder == '': # look for mediaSignature (CS5 AAMEE install) setupElements = dom.getElementsByTagName('Setup') if setupElements: mediaSignatureElements = setupElements[ 0].getElementsByTagName('mediaSignature') if mediaSignatureElements: element = mediaSignatureElements[0] for node in element.childNodes: mediaSignature += node.nodeValue for item in munkicommon.listdir(path): payloadpath = os.path.join(path, item) payloadinfo = getPayloadInfo(payloadpath) if payloadinfo: payloads.append(payloadinfo) if ((driverfolder and item == driverfolder) or (mediaSignature and payloadinfo['AdobeCode'] == mediaSignature)): info['display_name'] = payloadinfo['display_name'] info['version'] = payloadinfo['version'] info['AdobeSetupType'] = 'ProductInstall' if not payloads: # look for an extensions folder; almost certainly this is an Updater for (path, dummy_dirs, dummy_files) in os.walk(installroot): if path.endswith("/extensions"): for item in munkicommon.listdir(path): #skip LanguagePacks if item.find("LanguagePack") == -1: itempath = os.path.join(path, item) payloadinfo = getPayloadInfo(itempath) if payloadinfo: payloads.append(payloadinfo) # we found an extensions dir, # so no need to keep walking the install root break if payloads: if len(payloads) == 1: info['display_name'] = payloads[0]['display_name'] info['version'] = payloads[0]['version'] else: if not 'display_name' in info: info['display_name'] = "ADMIN: choose from payloads" if not 'version' in info: info['version'] = "ADMIN please set me" info['payloads'] = payloads installed_size = 0 for payload in payloads: installed_size = installed_size + payload.get('installed_size', 0) info['installed_size'] = installed_size return info def getAdobePackageInfo(installroot): '''Gets the package name from the AdobeUberInstaller.xml file; other info from the payloads folder''' info = getAdobeSetupInfo(installroot) info['description'] = "" installerxml = os.path.join(installroot, "AdobeUberInstaller.xml") if os.path.exists(installerxml): description = '' dom = minidom.parse(installerxml) installinfo = dom.getElementsByTagName("InstallInfo") if installinfo: packagedescriptions = \ installinfo[0].getElementsByTagName("PackageDescription") if packagedescriptions: prop = packagedescriptions[0] for node in prop.childNodes: description += node.nodeValue if description: description_parts = description.split(' : ', 1) info['display_name'] = description_parts[0] if len(description_parts) > 1: info['description'] = description_parts[1] else: info['description'] = "" return info else: installerxml = os.path.join(installroot, "optionXML.xml") if os.path.exists(installerxml): dom = minidom.parse(installerxml) installinfo = dom.getElementsByTagName("InstallInfo") if installinfo: pkgname_elems = installinfo[0].getElementsByTagName( "PackageName") if pkgname_elems: prop = pkgname_elems[0] pkgname = "" for node in prop.childNodes: pkgname += node.nodeValue info['display_name'] = pkgname if not info.get('display_name'): info['display_name'] = os.path.basename(installroot) return info def getXMLtextElement(dom_node, name): '''Returns the text value of the first item found with the given tagname''' value = None subelements = dom_node.getElementsByTagName(name) if subelements: value = '' for node in subelements[0].childNodes: value += node.nodeValue return value def parseOptionXML(option_xml_file): '''Parses an optionXML.xml file and pulls ot items of interest, returning them in a dictionary''' info = {} dom = minidom.parse(option_xml_file) installinfo = dom.getElementsByTagName('InstallInfo') if installinfo: if 'id' in installinfo[0].attributes.keys(): info['packager_id'] = installinfo[0].attributes['id'].value if 'version' in installinfo[0].attributes.keys(): info['packager_version'] = installinfo[ 0].attributes['version'].value info['package_name'] = getXMLtextElement(installinfo[0], 'PackageName') info['package_id'] = getXMLtextElement(installinfo[0], 'PackageID') info['products'] = [] medias_elements = installinfo[0].getElementsByTagName('Medias') if medias_elements: media_elements = medias_elements[0].getElementsByTagName('Media') if media_elements: for media in media_elements: product = {} product['prodName'] = getXMLtextElement(media, 'prodName') product['prodVersion'] = getXMLtextElement( media, 'prodVersion') setup_elements = media.getElementsByTagName('Setup') if setup_elements: mediaSignatureElements = setup_elements[ 0].getElementsByTagName('mediaSignature') if mediaSignatureElements: product['mediaSignature'] = '' element = mediaSignatureElements[0] for node in element.childNodes: product['mediaSignature'] += node.nodeValue info['products'].append(product) return info def countPayloads(dirpath): '''Attempts to count the payloads in the Adobe installation item''' count = 0 for (path, dummy_dirs, dummy_files) in os.walk(dirpath): if path.endswith("/payloads"): for subitem in munkicommon.listdir(path): subitempath = os.path.join(path, subitem) if os.path.isdir(subitempath): count = count + 1 return count def getPercent(current, maximum): '''Returns a value useful with MunkiStatus to use when displaying precent-done stauts''' if maximum == 0: percentdone = -1 elif current < 0: percentdone = -1 elif current > maximum: percentdone = -1 elif current == maximum: percentdone = 100 else: percentdone = int(float(current)/float(maximum)*100) return percentdone def findSetupApp(dirpath): '''Search dirpath and enclosed directories for Setup.app. Returns the path to the actual executable.''' for (path, dummy_dirs, dummy_files) in os.walk(dirpath): if path.endswith("Setup.app"): setup_path = os.path.join(path, "Contents", "MacOS", "Setup") if os.path.exists(setup_path): return setup_path return '' def findInstallApp(dirpath): '''Searches dirpath and enclosed directories for Install.app. Returns the path to the actual executable.''' for (path, dummy_dirs, dummy_files) in os.walk(dirpath): if path.endswith("Install.app"): setup_path = os.path.join(path, "Contents", "MacOS", "Install") if os.path.exists(setup_path): return setup_path return '' def findAdobePatchInstallerApp(dirpath): '''Searches dirpath and enclosed directories for AdobePatchInstaller.app. Returns the path to the actual executable.''' for (path, dummy_dirs, dummy_files) in os.walk(dirpath): if path.endswith("AdobePatchInstaller.app"): setup_path = os.path.join( path, "Contents", "MacOS", "AdobePatchInstaller") if os.path.exists(setup_path): return setup_path return '' def findAdobeDeploymentManager(dirpath): '''Searches dirpath and enclosed directories for AdobeDeploymentManager. Returns path to the executable.''' for (path, dummy_dirs, dummy_files) in os.walk(dirpath): if path.endswith("pkg/Contents/Resources"): dm_path = os.path.join(path, "AdobeDeploymentManager") if os.path.exists(dm_path): return dm_path return '' secondsToLive = {} def killStupidProcesses(): '''A nasty bit of hackery to get Adobe CS5 AAMEE packages to install when at the loginwindow.''' stupid_processes = ["Adobe AIR Installer", "Adobe AIR Application Installer", "InstallAdobeHelp", "open -a /Library/Application Support/Adobe/" "SwitchBoard/SwitchBoard.app", "/bin/bash /Library/Application Support/Adobe/" "SwitchBoard/SwitchBoard.app/Contents/MacOS/" "switchboard.sh"] for procname in stupid_processes: pid = utils.getPIDforProcessName(procname) if pid: if not pid in secondsToLive: secondsToLive[pid] = 30 else: secondsToLive[pid] = secondsToLive[pid] - 1 if secondsToLive[pid] == 0: # it's been running too long; kill it munkicommon.log("Killing PID %s: %s" % (pid, procname)) try: os.kill(int(pid), 9) except OSError: pass # remove this PID from our list del secondsToLive[pid] # only kill one process per invocation return def runAdobeInstallTool( cmd, number_of_payloads=0, killAdobeAIR=False, payloads=None, kind="CS5", operation="install"): '''An abstraction of the tasks for running Adobe Setup, AdobeUberInstaller, AdobeUberUninstaller, AdobeDeploymentManager, etc''' # initialize an AdobeInstallProgressMonitor object. progress_monitor = AdobeInstallProgressMonitor( kind=kind, operation=operation) if munkicommon.munkistatusoutput and not number_of_payloads: # indeterminate progress bar munkistatus.percent(-1) proc = subprocess.Popen(cmd, shell=False, bufsize=1, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) old_payload_completed_count = 0 payloadname = "" while proc.poll() == None: time.sleep(1) (payload_completed_count, adobe_code) = progress_monitor.info() if payload_completed_count > old_payload_completed_count: old_payload_completed_count = payload_completed_count if adobe_code and payloads: matched_payloads = [payload for payload in payloads if payload.get('AdobeCode') == adobe_code] if matched_payloads: payloadname = matched_payloads[0].get('display_name') else: payloadname = adobe_code payloadinfo = " - " + payloadname else: payloadinfo = "" if number_of_payloads: munkicommon.display_status_minor( 'Completed payload %s of %s%s' % (payload_completed_count, number_of_payloads, payloadinfo)) else: munkicommon.display_status_minor( 'Completed payload %s%s', payload_completed_count, payloadinfo) if munkicommon.munkistatusoutput: munkistatus.percent( getPercent(payload_completed_count, number_of_payloads)) # Adobe AIR Installer workaround/hack # CSx installs at the loginwindow hang when Adobe AIR is installed. # So we check for this and kill the process. Ugly. # Hopefully we can disable this in the future. if killAdobeAIR: if (not munkicommon.getconsoleuser() or munkicommon.getconsoleuser() == u"loginwindow"): # we're at the loginwindow. killStupidProcesses() # run of tool completed retcode = proc.poll() #check output for errors output = proc.stdout.readlines() for line in output: line = line.rstrip("\n") if line.startswith("Error"): munkicommon.display_error(line) if line.startswith("Exit Code:"): if retcode == 0: try: retcode = int(line[11:]) except (ValueError, TypeError): retcode = -1 if retcode != 0 and retcode != 8: munkicommon.display_error( 'Adobe Setup error: %s: %s', retcode, adobeSetupError(retcode)) else: if munkicommon.munkistatusoutput: munkistatus.percent(100) munkicommon.display_status_minor('Done.') return retcode def runAdobeSetup(dmgpath, uninstalling=False, payloads=None): '''Runs the Adobe setup tool in silent mode from an Adobe update DMG or an Adobe CS3 install DMG''' munkicommon.display_status_minor( 'Mounting disk image %s' % os.path.basename(dmgpath)) mountpoints = mountAdobeDmg(dmgpath) if mountpoints: setup_path = findSetupApp(mountpoints[0]) if setup_path: # look for install.xml or uninstall.xml at root deploymentfile = None installxml = os.path.join(mountpoints[0], "install.xml") uninstallxml = os.path.join(mountpoints[0], "uninstall.xml") if uninstalling: operation = 'uninstall' if os.path.exists(uninstallxml): deploymentfile = uninstallxml else: # we've been asked to uninstall, # but found no uninstall.xml # so we need to bail munkicommon.unmountdmg(mountpoints[0]) munkicommon.display_error( '%s doesn\'t appear to contain uninstall info.', os.path.basename(dmgpath)) return -1 else: operation = 'install' if os.path.exists(installxml): deploymentfile = installxml # try to find and count the number of payloads # so we can give a rough progress indicator number_of_payloads = countPayloads(mountpoints[0]) munkicommon.display_status_minor('Running Adobe Setup') adobe_setup = [setup_path, '--mode=silent', '--skipProcessCheck=1'] if deploymentfile: adobe_setup.append('--deploymentFile=%s' % deploymentfile) retcode = runAdobeInstallTool( adobe_setup, number_of_payloads, payloads=payloads, kind='CS3', operation=operation) else: munkicommon.display_error( '%s doesn\'t appear to contain Adobe Setup.' % os.path.basename(dmgpath)) retcode = -1 munkicommon.unmountdmg(mountpoints[0]) return retcode else: munkicommon.display_error('No mountable filesystems on %s' % dmgpath) return -1 def writefile(stringdata, path): '''Writes string data to path. Returns the path on success, empty string on failure.''' try: fileobject = open(path, mode='w', buffering=1) print >> fileobject, stringdata.encode('UTF-8') fileobject.close() return path except (OSError, IOError): munkicommon.display_error("Couldn't write %s" % stringdata) return "" def doAdobeCS5Uninstall(adobeInstallInfo, payloads=None): '''Runs the locally-installed Adobe CS5 tools to remove CS5 products. We need the uninstallxml and the CS5 Setup.app.''' uninstallxml = adobeInstallInfo.get('uninstallxml') if not uninstallxml: munkicommon.display_error("No uninstall.xml in adobe_install_info") return -1 payloadcount = adobeInstallInfo.get('payload_count', 0) path = os.path.join(munkicommon.tmpdir(), "uninstall.xml") deploymentFile = writefile(uninstallxml, path) if not deploymentFile: return -1 setupapp = "/Library/Application Support/Adobe/OOBE/PDApp/DWA/Setup.app" setup = os.path.join(setupapp, "Contents/MacOS/Setup") if not os.path.exists(setup): munkicommon.display_error("%s is not installed." % setupapp) return -1 uninstall_cmd = [setup, '--mode=silent', '--action=uninstall', '--skipProcessCheck=1', '--deploymentFile=%s' % deploymentFile] munkicommon.display_status_minor('Running Adobe Uninstall') return runAdobeInstallTool(uninstall_cmd, payloadcount, payloads=payloads, kind='CS5', operation='uninstall') def runAdobeCCPpkgScript(dmgpath, payloads=None, operation='install'): '''Installs or removes an Adobe product packaged via Creative Cloud Packager''' munkicommon.display_status_minor( 'Mounting disk image %s' % os.path.basename(dmgpath)) mountpoints = mountAdobeDmg(dmgpath) if not mountpoints: munkicommon.display_error("No mountable filesystems on %s" % dmgpath) return -1 deploymentmanager = findAdobeDeploymentManager(mountpoints[0]) if not deploymentmanager: munkicommon.display_error( '%s doesn\'t appear to contain AdobeDeploymentManager', os.path.basename(dmgpath)) munkicommon.unmountdmg(mountpoints[0]) return -1 # big hack to convince the Adobe tools to install off a mounted # disk image. # # For some reason, some versions of the Adobe install tools refuse to # install when the payloads are on a "removable" disk, # which includes mounted disk images. # # we create a temporary directory on the local disk and then symlink # some resources from the mounted disk image to the temporary # directory. When we pass this temporary directory to the Adobe # installation tools, they are now happy. basepath = os.path.dirname(deploymentmanager) preinstall_script = os.path.join(basepath, "preinstall") if not os.path.exists(preinstall_script): if operation == 'install': munkicommon.display_error( "No Adobe install script found on %s" % dmgpath) else: munkicommon.display_error( "No Adobe uninstall script found on %s" % dmgpath) munkicommon.unmountdmg(mountpoints[0]) return -1 number_of_payloads = countPayloads(basepath) tmpdir = tempfile.mkdtemp(prefix='munki-', dir='/tmp') # make our symlinks for dir_name in ['ASU' 'ASU2', 'ProvisioningTool', 'uninstallinfo']: if os.path.isdir(os.path.join(basepath, dir_name)): os.symlink(os.path.join(basepath, dir_name), os.path.join(tmpdir, dir_name)) for dir_name in ['Patches', 'Setup']: realdir = os.path.join(basepath, dir_name) if os.path.isdir(realdir): tmpsubdir = os.path.join(tmpdir, dir_name) os.mkdir(tmpsubdir) for item in munkicommon.listdir(realdir): os.symlink(os.path.join(realdir, item), os.path.join(tmpsubdir, item)) os_version_tuple = munkicommon.getOsVersion(as_tuple=True) if (os_version_tuple < (10, 11) and (not munkicommon.getconsoleuser() or munkicommon.getconsoleuser() == u"loginwindow")): # we're at the loginwindow, so we need to run the deployment # manager in the loginwindow context using launchctl bsexec # launchctl bsexec doesn't work for this in El Cap, so do it # only if we're running Yosemite or earlier loginwindowPID = utils.getPIDforProcessName("loginwindow") cmd = ['/bin/launchctl', 'bsexec', loginwindowPID] else: cmd = [] # preinstall script is in pkg/Contents/Resources, so calculate # path to pkg pkg_dir = os.path.dirname(os.path.dirname(basepath)) cmd.extend([preinstall_script, pkg_dir, '/', '/']) if operation == 'install': munkicommon.display_status_minor('Starting Adobe installer...') retcode = runAdobeInstallTool( cmd, number_of_payloads, killAdobeAIR=True, payloads=payloads, kind='CS6', operation=operation) # now clean up and return dummy_result = subprocess.call(["/bin/rm", "-rf", tmpdir]) munkicommon.unmountdmg(mountpoints[0]) return retcode def runAdobeCS5AAMEEInstall(dmgpath, payloads=None): '''Installs a CS5 product using an AAMEE-generated package on a disk image.''' munkicommon.display_status_minor( 'Mounting disk image %s' % os.path.basename(dmgpath)) mountpoints = mountAdobeDmg(dmgpath) if not mountpoints: munkicommon.display_error("No mountable filesystems on %s" % dmgpath) return -1 deploymentmanager = findAdobeDeploymentManager(mountpoints[0]) if deploymentmanager: # big hack to convince the Adobe tools to install off a mounted # disk image. # # For some reason, some versions of the Adobe install tools refuse to # install when the payloads are on a "removable" disk, # which includes mounted disk images. # # we create a temporary directory on the local disk and then symlink # some resources from the mounted disk image to the temporary # directory. When we pass this temporary directory to the Adobe # installation tools, they are now happy. basepath = os.path.dirname(deploymentmanager) number_of_payloads = countPayloads(basepath) tmpdir = tempfile.mkdtemp(prefix='munki-', dir='/tmp') # make our symlinks os.symlink(os.path.join(basepath, "ASU"), os.path.join(tmpdir, "ASU")) os.symlink(os.path.join(basepath, "ProvisioningTool"), os.path.join(tmpdir, "ProvisioningTool")) for dir_name in ['Patches', 'Setup']: realdir = os.path.join(basepath, dir_name) if os.path.isdir(realdir): tmpsubdir = os.path.join(tmpdir, dir_name) os.mkdir(tmpsubdir) for item in munkicommon.listdir(realdir): os.symlink( os.path.join(realdir, item), os.path.join(tmpsubdir, item)) optionXMLfile = os.path.join(basepath, "optionXML.xml") os_version_tuple = munkicommon.getOsVersion(as_tuple=True) if (os_version_tuple < (10, 11) and (not munkicommon.getconsoleuser() or munkicommon.getconsoleuser() == u"loginwindow")): # we're at the loginwindow, so we need to run the deployment # manager in the loginwindow context using launchctl bsexec # launchctl bsexec doesn't work for this in El Cap, so do it # only if we're running Yosemite or earlier loginwindowPID = utils.getPIDforProcessName("loginwindow") cmd = ['/bin/launchctl', 'bsexec', loginwindowPID] else: cmd = [] cmd.extend([deploymentmanager, '--optXMLPath=%s' % optionXMLfile, '--setupBasePath=%s' % basepath, '--installDirPath=/', '--mode=install']) munkicommon.display_status_minor('Starting Adobe installer...') retcode = runAdobeInstallTool( cmd, number_of_payloads, killAdobeAIR=True, payloads=payloads, kind='CS5', operation='install') # now clean up our symlink hackfest dummy_result = subprocess.call(["/bin/rm", "-rf", tmpdir]) else: munkicommon.display_error( '%s doesn\'t appear to contain AdobeDeploymentManager', os.path.basename(dmgpath)) retcode = -1 munkicommon.unmountdmg(mountpoints[0]) return retcode def runAdobeCS5PatchInstaller(dmgpath, copylocal=False, payloads=None): '''Runs the AdobePatchInstaller for CS5. Optionally can copy the DMG contents to the local disk to work around issues with the patcher.''' munkicommon.display_status_minor( 'Mounting disk image %s' % os.path.basename(dmgpath)) mountpoints = mountAdobeDmg(dmgpath) if mountpoints: if copylocal: # copy the update to the local disk before installing updatedir = tempfile.mkdtemp(prefix='munki-', dir='/tmp') retcode = subprocess.call( ["/bin/cp", "-r", mountpoints[0], updatedir]) # unmount diskimage munkicommon.unmountdmg(mountpoints[0]) if retcode: munkicommon.display_error( 'Error copying items from %s' % dmgpath) return -1 # remove the dmg file to free up space, since we don't need it # any longer dummy_result = subprocess.call(["/bin/rm", dmgpath]) else: updatedir = mountpoints[0] patchinstaller = findAdobePatchInstallerApp(updatedir) if patchinstaller: # try to find and count the number of payloads # so we can give a rough progress indicator number_of_payloads = countPayloads(updatedir) munkicommon.display_status_minor('Running Adobe Patch Installer') install_cmd = [patchinstaller, '--mode=silent', '--skipProcessCheck=1'] retcode = runAdobeInstallTool(install_cmd, number_of_payloads, payloads=payloads, kind='CS5', operation='install') else: munkicommon.display_error( "%s doesn't appear to contain AdobePatchInstaller.app.", os.path.basename(dmgpath)) retcode = -1 if copylocal: # clean up our mess dummy_result = subprocess.call(["/bin/rm", "-rf", updatedir]) else: munkicommon.unmountdmg(mountpoints[0]) return retcode else: munkicommon.display_error('No mountable filesystems on %s' % dmgpath) return -1 def runAdobeUberTool(dmgpath, pkgname='', uninstalling=False, payloads=None): '''Runs either AdobeUberInstaller or AdobeUberUninstaller from a disk image and provides progress feedback. pkgname is the name of a directory at the top level of the dmg containing the AdobeUber tools and their XML files.''' munkicommon.display_status_minor( 'Mounting disk image %s' % os.path.basename(dmgpath)) mountpoints = mountAdobeDmg(dmgpath) if mountpoints: installroot = mountpoints[0] if uninstalling: ubertool = os.path.join(installroot, pkgname, "AdobeUberUninstaller") else: ubertool = os.path.join(installroot, pkgname, "AdobeUberInstaller") if os.path.exists(ubertool): info = getAdobePackageInfo(installroot) packagename = info['display_name'] action = "Installing" operation = "install" if uninstalling: action = "Uninstalling" operation = "uninstall" munkicommon.display_status_major('%s %s' % (action, packagename)) if munkicommon.munkistatusoutput: munkistatus.detail('Starting %s' % os.path.basename(ubertool)) # try to find and count the number of payloads # so we can give a rough progress indicator number_of_payloads = countPayloads(installroot) retcode = runAdobeInstallTool( [ubertool], number_of_payloads, killAdobeAIR=True, payloads=payloads, kind='CS4', operation=operation) else: munkicommon.display_error("No %s found" % ubertool) retcode = -1 munkicommon.unmountdmg(installroot) return retcode else: munkicommon.display_error("No mountable filesystems on %s" % dmgpath) return -1 def findAcrobatPatchApp(dirpath): '''Attempts to find an AcrobatPro patching application in dirpath. If found, returns the path to the bundled patching script.''' for (path, dummy_dirs, dummy_files) in os.walk(dirpath): if path.endswith(".app"): # look for Adobe's patching script patch_script_path = os.path.join( path, 'Contents', 'Resources', 'ApplyOperation.py') if os.path.exists(patch_script_path): return path return '' def updateAcrobatPro(dmgpath): """Uses the scripts and Resources inside the Acrobat Patch application bundle to silently update Acrobat Pro and related apps Why oh why does this use a different mechanism than the other Adobe apps?""" if munkicommon.munkistatusoutput: munkistatus.percent(-1) #first mount the dmg munkicommon.display_status_minor( 'Mounting disk image %s' % os.path.basename(dmgpath)) mountpoints = mountAdobeDmg(dmgpath) if mountpoints: installroot = mountpoints[0] pathToAcrobatPatchApp = findAcrobatPatchApp(installroot) else: munkicommon.display_error("No mountable filesystems on %s" % dmgpath) return -1 if not pathToAcrobatPatchApp: munkicommon.display_error( 'No Acrobat Patch app at %s', pathToAcrobatPatchApp) munkicommon.unmountdmg(installroot) return -1 # some values needed by the patching script resourcesDir = os.path.join( pathToAcrobatPatchApp, 'Contents', 'Resources') ApplyOperation = os.path.join(resourcesDir, 'ApplyOperation.py') callingScriptPath = os.path.join(resourcesDir, 'InstallUpdates.sh') appList = [] appListFile = os.path.join(resourcesDir, 'app_list.txt') if os.path.exists(appListFile): fileobj = open(appListFile, mode='r', buffering=-1) if fileobj: for line in fileobj.readlines(): appList.append(line) fileobj.close() if not appList: munkicommon.display_error('Did not find a list of apps to update.') munkicommon.unmountdmg(installroot) return -1 payloadNum = -1 for line in appList: payloadNum = payloadNum + 1 if munkicommon.munkistatusoutput: munkistatus.percent(getPercent(payloadNum + 1, len(appList) + 1)) (appname, status) = line.split("\t") munkicommon.display_status_minor('Searching for %s' % appname) # first look in the obvious place pathname = os.path.join("/Applications/Adobe Acrobat 9 Pro", appname) if os.path.exists(pathname): item = {} item['path'] = pathname candidates = [item] else: # use system_profiler to search for the app candidates = [item for item in munkicommon.getAppData() if item['path'].endswith('/' + appname)] # hope there's only one! if len(candidates) == 0: if status == "optional": continue else: munkicommon.display_error("Cannot patch %s because it " "was not found on the startup " "disk." % appname) munkicommon.unmountdmg(installroot) return -1 if len(candidates) > 1: munkicommon.display_error("Cannot patch %s because we found " "more than one copy on the " "startup disk." % appname) munkicommon.unmountdmg(installroot) return -1 munkicommon.display_status_minor('Updating %s' % appname) apppath = os.path.dirname(candidates[0]["path"]) cmd = [ApplyOperation, apppath, appname, resourcesDir, callingScriptPath, str(payloadNum)] proc = subprocess.Popen(cmd, shell=False, bufsize=-1, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) while proc.poll() == None: time.sleep(1) # run of patch tool completed retcode = proc.poll() if retcode != 0: munkicommon.display_error( 'Error patching %s: %s', appname, retcode) break else: munkicommon.display_status_minor('Patching %s complete.', appname) munkicommon.display_status_minor('Done.') if munkicommon.munkistatusoutput: munkistatus.percent(100) munkicommon.unmountdmg(installroot) return retcode def getBundleInfo(path): """ Returns Info.plist data if available for bundle at path """ infopath = os.path.join(path, "Contents", "Info.plist") if not os.path.exists(infopath): infopath = os.path.join(path, "Resources", "Info.plist") if os.path.exists(infopath): try: plist = FoundationPlist.readPlist(infopath) return plist except FoundationPlist.NSPropertyListSerializationException: pass return None def getAdobeInstallInfo(installdir): '''Encapsulates info used by the Adobe Setup/Install app.''' adobeInstallInfo = {} if installdir: adobeInstallInfo['media_signature'] = getCS5mediaSignature(installdir) adobeInstallInfo['payload_count'] = countPayloads(installdir) optionXMLfile = os.path.join(installdir, "optionXML.xml") if os.path.exists(optionXMLfile): adobeInstallInfo['uninstallxml'] = \ getCS5uninstallXML(optionXMLfile) return adobeInstallInfo def getAdobeCatalogInfo(mountpoint, pkgname=""): '''Used by makepkginfo to build pkginfo data for Adobe installers/updaters''' # look for AdobeDeploymentManager (AAMEE installer) deploymentmanager = findAdobeDeploymentManager(mountpoint) if deploymentmanager: dirpath = os.path.dirname(deploymentmanager) option_xml_file = os.path.join(dirpath, 'optionXML.xml') option_xml_info = {} if os.path.exists(option_xml_file): option_xml_info = parseOptionXML(option_xml_file) cataloginfo = getAdobePackageInfo(dirpath) if cataloginfo: # add some more data if option_xml_info.get('packager_id') == u'CloudPackager': # CCP package cataloginfo['display_name'] = option_xml_info.get( 'package_name', 'unknown') cataloginfo['name'] = cataloginfo['display_name'].replace( ' ', '') cataloginfo['uninstallable'] = True cataloginfo['uninstall_method'] = "AdobeCCPUninstaller" cataloginfo['installer_type'] = "AdobeCCPInstaller" cataloginfo['minimum_os_version'] = "10.6.8" mediasignatures = [ item['mediaSignature'] for item in option_xml_info.get('products', []) if 'mediaSignature' in item] else: # AAMEE package cataloginfo['name'] = cataloginfo['display_name'].replace( ' ', '') cataloginfo['uninstallable'] = True cataloginfo['uninstall_method'] = "AdobeCS5AAMEEPackage" cataloginfo['installer_type'] = "AdobeCS5AAMEEPackage" cataloginfo['minimum_os_version'] = "10.5.0" cataloginfo['adobe_install_info'] = getAdobeInstallInfo( installdir=dirpath) mediasignature = cataloginfo['adobe_install_info'].get( "media_signature") mediasignatures = [mediasignature] if mediasignatures: # make a default <key>installs</key> array uninstalldir = "/Library/Application Support/Adobe/Uninstall" installs = [] for mediasignature in mediasignatures: signaturefile = mediasignature + ".db" filepath = os.path.join(uninstalldir, signaturefile) installitem = {} installitem['path'] = filepath installitem['type'] = 'file' installs.append(installitem) cataloginfo['installs'] = installs return cataloginfo # Look for Install.app (Bare metal CS5 install) # we don't handle this type, but we'll report it # back so makepkginfo can provide an error message installapp = findInstallApp(mountpoint) if installapp: cataloginfo = {} cataloginfo['installer_type'] = "AdobeCS5Installer" return cataloginfo # Look for AdobePatchInstaller.app (CS5 updater) installapp = findAdobePatchInstallerApp(mountpoint) if os.path.exists(installapp): # this is a CS5 updater disk image cataloginfo = getAdobePackageInfo(mountpoint) if cataloginfo: # add some more data cataloginfo['name'] = cataloginfo['display_name'].replace(' ', '') cataloginfo['uninstallable'] = False cataloginfo['installer_type'] = "AdobeCS5PatchInstaller" if pkgname: cataloginfo['package_path'] = pkgname # make some (hopfully functional) installs items from the payloads installs = [] uninstalldir = "/Library/Application Support/Adobe/Uninstall" # first look for a payload with a display_name matching the # overall display_name for payload in cataloginfo.get('payloads', []): if (payload.get('display_name', '') == cataloginfo['display_name']): if 'AdobeCode' in payload: dbfile = payload['AdobeCode'] + ".db" filepath = os.path.join(uninstalldir, dbfile) installitem = {} installitem['path'] = filepath installitem['type'] = 'file' installs.append(installitem) break if installs == []: # didn't find a payload with matching name # just add all of the non-LangPack payloads # to the installs list. for payload in cataloginfo.get('payloads', []): if 'AdobeCode' in payload: if ("LangPack" in payload.get("display_name") or "Language Files" in payload.get( "display_name")): # skip Language Packs continue dbfile = payload['AdobeCode'] + ".db" filepath = os.path.join(uninstalldir, dbfile) installitem = {} installitem['path'] = filepath installitem['type'] = 'file' installs.append(installitem) cataloginfo['installs'] = installs return cataloginfo # Look for AdobeUberInstaller items (CS4 install) pkgroot = os.path.join(mountpoint, pkgname) adobeinstallxml = os.path.join(pkgroot, "AdobeUberInstaller.xml") if os.path.exists(adobeinstallxml): # this is a CS4 Enterprise Deployment package cataloginfo = getAdobePackageInfo(pkgroot) if cataloginfo: # add some more data cataloginfo['name'] = cataloginfo['display_name'].replace(' ', '') cataloginfo['uninstallable'] = True cataloginfo['uninstall_method'] = "AdobeUberUninstaller" cataloginfo['installer_type'] = "AdobeUberInstaller" if pkgname: cataloginfo['package_path'] = pkgname return cataloginfo # maybe this is an Adobe update DMG or CS3 installer # look for Adobe Setup.app setuppath = findSetupApp(mountpoint) if setuppath: cataloginfo = getAdobeSetupInfo(mountpoint) if cataloginfo: # add some more data cataloginfo['name'] = cataloginfo['display_name'].replace(' ', '') cataloginfo['installer_type'] = "AdobeSetup" if cataloginfo.get('AdobeSetupType') == "ProductInstall": cataloginfo['uninstallable'] = True cataloginfo['uninstall_method'] = "AdobeSetup" else: cataloginfo['description'] = "Adobe updater" cataloginfo['uninstallable'] = False cataloginfo['update_for'] = ["PleaseEditMe-1.0.0.0.0"] return cataloginfo # maybe this is an Adobe Acrobat 9 Pro patcher? acrobatpatcherapp = findAcrobatPatchApp(mountpoint) if acrobatpatcherapp: cataloginfo = {} cataloginfo['installer_type'] = "AdobeAcrobatUpdater" cataloginfo['uninstallable'] = False plist = getBundleInfo(acrobatpatcherapp) cataloginfo['version'] = munkicommon.getVersionString(plist) cataloginfo['name'] = "AcrobatPro9Update" cataloginfo['display_name'] = "Adobe Acrobat Pro Update" cataloginfo['update_for'] = ["AcrobatPro9"] cataloginfo['RestartAction'] = 'RequireLogout' cataloginfo['requires'] = [] cataloginfo['installs'] = [ {'CFBundleIdentifier': 'com.adobe.Acrobat.Pro', 'CFBundleName': 'Acrobat', 'CFBundleShortVersionString': cataloginfo['version'], 'path': '/Applications/Adobe Acrobat 9 Pro/Adobe Acrobat Pro.app', 'type': 'application'} ] return cataloginfo # didn't find any Adobe installers/updaters we understand return None def adobeSetupError(errorcode): '''Returns text description for numeric error code Reference: http://www.adobe.com/devnet/creativesuite/pdfs/DeployGuide.pdf''' errormessage = { 0: "Application installed successfully", 1: "Unable to parse command line", 2: "Unknown user interface mode specified", 3: "Unable to initialize ExtendScript", 4: "User interface workflow failed", 5: "Unable to initialize user interface workflow", 6: "Silent workflow completed with errors", 7: "Unable to complete the silent workflow", 8: "Exit and restart", 9: "Unsupported operating system version", 10: "Unsupported file system", 11: "Another instance of Adobe Setup is running", 12: "CAPS integrity error", 13: "Media optimization failed", 14: "Failed due to insufficient privileges", 15: "Media DB Sync Failed", 16: "Failed to laod the Deployment file", 17: "EULA Acceptance Failed", 18: "C3PO Bootstrap Failed", 19: "Conflicting processes running", 20: "Install source path not specified or does not exist", 21: "Version of payloads is not supported by this version of RIB", 22: "Install Directory check failed", 23: "System Requirements Check failed", 24: "Exit User Canceled Workflow", 25: "A binary path Name exceeded Operating System's MAX PATH limit", 26: "Media Swap Required in Silent Mode", 27: "Keyed files detected in target", 28: "Base product is not installed", 29: "Base product has been moved", 30: "Insufficient disk space to install the payload + Done with errors", 31: "Insufficient disk space to install the payload + Failed", 32: "The patch is already applied", 9999: "Catastrophic error", -1: "AdobeUberInstaller failed before launching Setup"} return errormessage.get(errorcode, "Unknown error") def doAdobeRemoval(item): '''Wrapper for all the Adobe removal methods''' uninstallmethod = item['uninstall_method'] payloads = item.get("payloads") itempath = "" if "uninstaller_item" in item: managedinstallbase = munkicommon.pref('ManagedInstallDir') itempath = os.path.join(managedinstallbase, 'Cache', item["uninstaller_item"]) if not os.path.exists(itempath): munkicommon.display_error("%s package for %s was " "missing from the cache." % (uninstallmethod, item['name'])) return -1 if uninstallmethod == "AdobeSetup": # CS3 uninstall retcode = runAdobeSetup(itempath, uninstalling=True, payloads=payloads) elif uninstallmethod == "AdobeUberUninstaller": # CS4 uninstall pkgname = item.get("adobe_package_name") or item.get("package_path", "") retcode = runAdobeUberTool( itempath, pkgname, uninstalling=True, payloads=payloads) elif uninstallmethod == "AdobeCS5AAMEEPackage": # CS5 uninstall. Sheesh. Three releases, three methods. adobeInstallInfo = item.get('adobe_install_info') retcode = doAdobeCS5Uninstall(adobeInstallInfo, payloads=payloads) elif uninstallmethod == "AdobeCCPUninstaller": # Adobe Creative Cloud Packager packages retcode = runAdobeCCPpkgScript( itempath, payloads=payloads, operation="uninstall") if retcode: munkicommon.display_error("Uninstall of %s failed.", item['name']) return retcode def doAdobeInstall(item): '''Wrapper to handle all the Adobe installer methods. First get the path to the installer dmg. We know it exists because installer.py already checked.''' managedinstallbase = munkicommon.pref('ManagedInstallDir') itempath = os.path.join( managedinstallbase, 'Cache', item['installer_item']) installer_type = item.get("installer_type", "") payloads = item.get("payloads") if installer_type == "AdobeSetup": # Adobe CS3/CS4 updater or Adobe CS3 installer retcode = runAdobeSetup(itempath, payloads=payloads) elif installer_type == "AdobeUberInstaller": # Adobe CS4 installer pkgname = item.get("adobe_package_name") or item.get("package_path", "") retcode = runAdobeUberTool(itempath, pkgname, payloads=payloads) elif installer_type == "AdobeAcrobatUpdater": # Acrobat Pro 9 updater retcode = updateAcrobatPro(itempath) elif installer_type == "AdobeCS5AAMEEPackage": # Adobe CS5 AAMEE package retcode = runAdobeCS5AAMEEInstall(itempath, payloads=payloads) elif installer_type == "AdobeCS5PatchInstaller": # Adobe CS5 updater retcode = runAdobeCS5PatchInstaller( itempath, copylocal=item.get("copy_local"), payloads=payloads) elif installer_type == "AdobeCCPInstaller": # Adobe Creative Cloud Packager packages retcode = runAdobeCCPpkgScript(itempath, payloads=payloads) return retcode def main(): '''Placeholder''' pass if __name__ == '__main__': main() ```
{ "source": "jlrickert/clipvault", "score": 3 }
#### File: clipvault/cmd/vault.py ```python import pyperclip from termcolor import colored, cprint from rfc3987 import parse from .cli import AbstractCli class VaultCli(AbstractCli): """Vault description """ name = 'vault' def command(self, args): key, fromCb = self.__process_key(args.key) if key and not fromCb: value = pyperclip.paste() self.vault[key] = value else: value = self.vault.set_password_by_input(key) pyperclip.copy(value) text = colored( 'Value for {} has been set and is now in your clipboard!'.format( key), 'green') cprint(text) def _setup_parser(self, parser): parser.add_argument( 'key', nargs='?', type=str, help='Key to store contents of clipboard into') def __process_key(self, key): fromCb = False if key is None: key = pyperclip.paste() fromCb = True try: tmp_key = key uri = parse(tmp_key) if uri['authority'] is not None: key = uri['authority'] except ValueError: pass return key, fromCb def __process_value(self): return pyperclip.paste(), True ``` #### File: clipvault/clipvault/__main__.py ```python import argparse import sys import pyperclip from termcolor import colored, cprint from .cli import Cli from .vault import vault def usage(): print('Missing key') def copy_key(key, timeout=5): try: value = vault[key] pyperclip.copy(value) text = colored( '"{} copied to clipboard for {} minutes!"'.format(key, timeout), 'green') except vault.KeyError: text = colored( '"{} has no associated value"'.format(key, timeout), 'red') cprint(text) def set_key(key, value): vault[key] = value text = colored( 'Value for {} has been set!'.format(key), 'green') cprint(text) def main() -> None: cli = Cli(sys.argv, vault) return cli.run() # args = sys.argv # parser = argparse.ArgumentParser(description='') # subparsers = parser.add_subparser() # subparsers.require = True # subparsers.dest = 'command' # get_parser = subparsers.add_parser('get') # set_parser = subparsers.add_parser('set') # # parser.add_argument('command') # if len(args) == 2: # copy_key(args[1]) # elif len(args) >= 3: # set_key(args[1], args[2]) # else: # usage() if __name__ == '__main__': sys.exit(main()) ```
{ "source": "jlrickert/code_repo", "score": 4 }
#### File: code_repo/python-snippets/graph.py ```python class Graph(object): def __init__(self, graph_dic=None): self.__graph_dic = dict() for v, edges in graph_dic.items(): self.add_vertex(v) for e in edges: self.add_edge(v, e) def vertices(self): return set(self.__graph_dic.keys()) def edges(self): return self.__generate_edges() def add_vertex(self, vertex): if vertex not in self.__graph_dic: self.__graph_dic[vertex] = set() def add_edge(self, vertex1, vertex2): self.add_vertex(vertex1) self.add_vertex(vertex2) self.__graph_dic[vertex1].add(vertex2) self.__graph_dic[vertex2].add(vertex1) def adj(self, src): return self.__graph_dic[src] def __generate_edges(self): edges = set() for vertex in self.__graph_dic: for neighbour in self.__graph_dic[vertex]: edges.add((vertex, neighbour)) return edges def __str__(self): res = "vertices: " for k in self.__graph_dic: res += str(k)+" " res += "\nedges: " for edge in self.__generate_edges(): res += str(edge)+" " return res def test_graph(): g = { "a": ["d"], "b": ["a", "c"], "c": ["a", "f"], "d": ["b", "e", "f"], "e": ["b", "f"], "f": ["d", "e"], } graph = Graph(g) assert graph.adj("a") == {"b", "c", "d"} assert graph.adj("b") == {"a", "d", "e", "c"} assert graph.adj("c") == {"a", "b", "f"} assert graph.adj("d") == {"a", "b", "e", "f"} assert graph.adj("e") == {"b", "d", "f"} assert graph.adj("f") == {"c", "d", "e"} assert set(graph.edges()) == { ("a", "b"), ("a", "c"), ("a", "d"), ("b", "a"), ("b", "c"), ("b", "d"), ("b", "e"), ("c", "a"), ("c", "b"), ("c", "f"), ("d", "a"), ("d", "b"), ("d", "e"), ("d", "f"), ("e", "b"), ("e", "d"), ("e", "f"), ("f", "c"), ("f", "d"), ("f", "e") } ```
{ "source": "jlrickert/form-monster", "score": 2 }
#### File: form-monster/examples/sample.py ```python import logging from datetime import datetime, date from form_monster import Form, Web, WxView logging.basicConfig(level=logging.DEBUG) log = logging.getLogger() class StrField(): def __init__(self, name): pass class computedField(object): def __init__(self, name, field): pass form = Form([ (StrField("first_text"), { "optional": True }), (ComputedField("full_name", StrField), { "optional": False }) ]) ``` #### File: form-monster/form_monster/test_form.py ```python from collections import OrderedDict from datetime import date, datetime, timedelta import pytest from .form import Form from .fields import StrField, DateField, BoolField days_in_year = int(18.0 * 365.25) def compute_over_18(birth_date): if birth_date: return (datetime.now().date() - birth_date).days >= days_in_year @pytest.fixture def first_name(): return StrField("First Name") @pytest.fixture def last_name(): return StrField("Last Name", optional=True) @pytest.fixture def signature(): return StrField("Signature", validate=lambda name: name == "Jack") @pytest.fixture def full_name(first_name, last_name): print("computing", first_name, last_name) return StrField( "Full Name", dependencies=[first_name, last_name], compute=lambda first, last: (first or "") + " " + (last or "")) @pytest.fixture def date_of_birth(): return DateField("Date of Birth") @pytest.fixture def over_18(date_of_birth): return BoolField( "Over 18", dependencies=[date_of_birth], compute=compute_over_18) @pytest.fixture def example_form(first_name, last_name, signature, full_name, date_of_birth, over_18): print('asds') form = Form( fields={ "first_name": first_name, "last_name": last_name, "signature": signature, "full_name": full_name, "date_of_birth": date_of_birth, "over_18": over_18 }) print('gasdfe') return form def compute_full_name(first_name, last_name): first = first_name or "" last = "" if last_name: last = (" " + last_name) return first + last @pytest.fixture def self_contained_form(): form = Form( fields={ "first_name": StrField("First Name"), "last_name": StrField("Last Name", optional=True), "signature": StrField("signature", validate=lambda name: name == "Jack"), "full_name": StrField( "Full Name", dependencies=["first_name", "last_name"], compute=compute_full_name), "date_of_birth": DateField("Date of Birth"), "over_18": BoolField( "Over 18", dependencies=["date_of_birth"], compute=compute_over_18) }) return form @pytest.fixture def forms(example_form, self_contained_form): return [example_form, self_contained_form] class TestValues(): def test_set_value_for_simple_form(self, forms): for form in forms: form.set_value("first_name", "jack") assert form.get_value("first_name") == "jack" def test_computed(self, full_name, forms): for form in forms: assert id(full_name) != id(form.get_field("full_name")) form.set_value("first_name", "Jack") form.set_value("last_name", "Rabbit") assert form.get_value("full_name") == "<NAME>" class TestValidation(): def test_invalid_from_optional_fields(self, forms): for form in forms: assert form.is_valid() is False def test_invalid(self, forms): for form in forms: form.set_value("first_name", "Jack") form.set_value("signature", "Rawr") assert form.is_valid() is False def test_valid(self, forms): for form in forms: form.set_value("first_name", "Jack") form.set_value("signature", "Jack") dob = (datetime.now() - timedelta(days=(5 + 22 * 365))).date() form.set_value("date_of_birth", dob) for k, field in form.get_fields(): if not field.is_valid(): print(k, repr(field), field.get_value()) assert field.is_valid() is True assert form.is_valid() is True ``` #### File: form-monster/form_monster/test_utils.py ```python from .utils import UNIX_SHELL_RE, WINDOWS_SHELL_RE def test_unix_shell_regex(): result = UNIX_SHELL_RE.match("/usr/bin/zsh") assert result, "should return a value" result = UNIX_SHELL_RE.match("/usr/bin/powershell") assert result, "should return a value" def test_windows_shell_regex(): result = WINDOWS_SHELL_RE.match("/usr/bin/zsh") assert result is None ```
{ "source": "jlricon/pandas.table", "score": 3 }
#### File: jlricon/pandas.table/pandastable.py ```python from pandas import DataFrame import types class PandasTable(DataFrame): """ We can have dt('a==1') Then operations on that dt('a==1',sum(species)') """ def __call__(self, *args, **kwargs): return (self._querycheck(args)._groupcheck(args, kwargs)._colcheck(args)) def _groupcheck(self, args, kwargs): """If there is a groupby operation in the arguments, apply it""" print(kwargs) if "by" in kwargs: if self._getfunc(args): return PandasTable( self.groupby(kwargs["by"]).apply(self._getfunc(args))) else: raise Exception("No function was defined") return self def _querycheck(self, args): """ If there is a query in the arguments, use it. In any case, return the dataframe """ for arg in args: if type(arg) == str and arg != 'N': return PandasTable(self.query(arg)) return self def _colcheck(self, args): """ If there is a column subsetting operation, do it """ for arg in args: if type(arg) == list: return PandasTable(self.loc[:, arg]) return self def _getfunc(self, args): """ Returns a function, if present in the arguments """ for arg in args: if isinstance(arg, types.FunctionType) or isinstance( arg, types.BuiltinMethodType) or isinstance( arg, types.BuiltinFunctionType): return arg if arg == 'N': return len return None _N = "N" ```
{ "source": "jlries61/SPM_vs_XGBOOST", "score": 3 }
#### File: SPM_vs_XGBOOST/Scripts/funcs.py ```python import numpy as np import pandas as pd from sklearn.metrics import confusion_matrix from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve import os import shutil import matplotlib.pyplot as plt from scipy import stats def df_anyobj(df): anyobj = False for varname in df.columns: if df[varname].dtype == "object": anyobj = True break return anyobj def expandClass(inframe, varlist): outframe = inframe.copy() for varname in inframe.columns: if inframe[varname].dtype == "object": varlist.add(varname) for varname in varlist: values = inframe[varname] cats = values.unique() for cat in cats: dummy = list() for value in values: if pd.isnull(cat) and pd.isnull(value): dummy.append(1) elif value == cat: dummy.append(1) else: dummy.append(0) if pd.isnull(cat): name = varname + "_miss" else: name = varname + "_" + str(cat) outframe[name] = pd.Series(dummy) outframe.drop(varname, axis=1, inplace=True) return outframe def fileparts(path): folder_ = os.path.dirname(path) file_ = os.path.basename(path).split('.')[0] ext_ = os.path.splitext(path)[1] return folder_, file_, ext_ def fbb(s, n=12, t='l'): # fill by blanks if n <= len(s): return s bl = '' for i in range(n - len(s)): bl += ' ' if t == "l": s = bl+s if t == 'r': s = s+bl return s def get_dict_row(dict_input, row): dict_output = {} for key in dict_input.keys(): dict_output[key] = dict_input[key][row] return dict_output def copy_and_delete(source_filename, destination_filename, rem_source=True): if os.path.isfile(destination_filename): os.remove(destination_filename) if os.path.isfile(source_filename): shutil.copyfile(source_filename, destination_filename) if rem_source: os.remove(source_filename) def create_report(report_folder, models, dataset, note=""): report = list() report.append("========= Dataset name: " + dataset['Name'] + " =========\n") report.append(" - train part size: {}".format(dataset['N_obs_train_sam']) + "\n") report.append(" - test part size: {}".format(dataset['N_obs_test_sam']) + "\n") report.append(" - number of features: {}".format(dataset['N_features']) + "\n") report.append(" - number of classes: {}".format(dataset['N_classes']) + "\n") report.append("\n") report.append("\n") report.append(" --- Time elapsed during training ---\n") for model in models: report.append(" - " + model.perf['Name'] + ": {:.3f}".format(model.perf['TrainingTime']) + " seconds\n") report.append("\n") report.append("\n") report.append(" --- Individual AUCs ---\n") for model in models: report.append(" - " + model.perf['Name'] + ": {:.3f}".format(model.perf['AUC']) + "\n") report.append("\n") report.append("\n") report.append(" --- Performance for test set ---\n") for model in models: report.append("\n") report.append(" --- " + model.perf['Name'] + " ---\n") report.append("\n") report.append(model.perf['StatsTxt']) if not os.path.isdir(report_folder): os.mkdir(report_folder) f_report = open(report_folder + "/report" + note + ".txt", "w") for line in report: f_report.writelines(line) f_report.close() plt.clf() for model in models: plt.plot(1-model.perf['ROC_Specificity'], model.perf['ROC_Sensitivity'], model.perf['Color'], linewidth=2, label="AUC={:6.4f}, ".format(model.perf['AUC']) + model.perf['Name']) plt.xlabel('False Positive Rate (1-Specificity)') plt.ylabel('True Positive Rate (Sensitivity)') plt.title('ROC (Dataset: ' + dataset['Name'] + ')') plt.legend(loc=4) plt.grid(True) plt.savefig(report_folder + "/roc_curves" + note + ".png") def get_common_stats(report_folder, models_lists, dataset, note): n_model = len(models_lists) n_sam = dataset['N_data_samples'] model_names = list() for model_list in models_lists: model_names.append(model_list[0].perf['Name']) auc = np.zeros((n_sam, n_model)) fp = np.arange(0, 1.01, 0.01) tp = np.zeros((len(fp), n_sam)) plt.clf() for i in range(n_model): for j in range(n_sam): perf = models_lists[i][j].perf if np.isnan(perf['AUC']): continue auc[j, i] = perf['AUC'] sensitivity = perf['ROC_Sensitivity'] specificity = perf['ROC_Specificity'] ispec = 1-specificity plt.plot(ispec, sensitivity, perf['Color'], linewidth=0.5, alpha=0.4) tp[:, j] = np.interp(fp, ispec, sensitivity) tp_mean = np.mean(tp, axis=1) plt.plot(fp, tp_mean, perf['Color'], linewidth=2, label="AUC={:6.4f}, ".format(np.mean(auc[:, i])) + model_names[i]) plt.xlabel('False Positive Rate (1-Specificity)') plt.ylabel('True Positive Rate (Sensitivity)') plt.title('ROC (Dataset: ' + dataset['Name'] + ')') plt.legend(loc=4) plt.grid(True) plt.savefig(report_folder + dataset['Name'] + "_roc_curves" + note + ".png") auc_stats = {'Mean ': np.mean(auc, axis=0), 'Min ': np.min(auc, axis=0), 'Max ': np.max(auc, axis=0), 'Range': np.max(auc, axis=0)-np.min(auc, axis=0), 'Std ': np.std(auc, axis=0)} time_sam = np.zeros((n_sam, n_model)) for i in range(n_model): for j in range(n_sam): time_sam[j, i] = models_lists[i][j].perf['TrainingTime'] time_mean = np.mean(time_sam, 0) report = list() report.append("========= Dataset name: " + dataset['Name'] + " =========\n") report.append(" - train part size: {}".format(dataset['N_obs_train_sam']) + "\n") report.append(" - test part size: {}".format(dataset['N_obs_test_sam']) + "\n") report.append(" - number of features: {}".format(dataset['N_features']) + "\n") report.append(" - number of classes: {}".format(dataset['N_classes']) + "\n") report.append(" - number of data samples: {}".format(dataset['N_data_samples']) + "\n") report.append("\n") report.append("\n") report.append("========= Average time elapsed during training (sec) =========\n") line1 = ' ' line2 = 'Time' for i in range(n_model): line1 += fbb(model_names[i], 12) line2 += '{:12.3f}'.format(time_mean[i]) report.append(line1 + "\n") report.append(line2 + "\n") report.append("\n") report.append("\n") report.append("========= Individual AUCs =========\n") line1 = ' ' for i in range(n_model): line1 += fbb(model_names[i], 12) report.append(line1 + "\n") for i in range(n_sam): line2 = fbb("Sample#" + str(i+1), 9, 'r') for j in range(n_model): line2 += '{:12.3f}'.format(auc[i, j]) report.append(line2 + "\n") report.append("\n") report.append("\n") report.append("========= Summary =========\n") line1 = ' ' for i in range(n_model): line1 += fbb(model_names[i], 12) report.append(line1 + "\n") for key in auc_stats.keys(): line2 = key for i in range(n_model): line2 += '{:12.3f}'.format(auc_stats[key][i]) report.append(line2 + "\n") report.append("\n") report.append("\n") for i in range(0, n_model-1): for j in range(i+1, n_model): t, p = stats.ttest_rel(auc[:, i], auc[:, j]) report.append("========= Paired t-Test (" + model_names[i] + " <-> " + model_names[j] + ") =========\n") report.append("t = {:.4f}".format(t) + "\n") report.append("p = {:.4e}".format(p) + "\n") if p <= 0.05: report.append("Mean difference is significant.\n") else: report.append("Mean difference is NOT significant.\n") report.append('\n') f_report = open(report_folder + dataset['Name'] + "_summary_report" + note + ".txt", "w") for line in report: f_report.writelines(line) f_report.close() ``` #### File: SPM_vs_XGBOOST/Scripts/sumrept4m.py ```python import os import pandas as pd import re from sklearn.metrics import roc_auc_score def rng(series): return series.max() - series.min() def gtct(series1, series2): cmp = series1.gt(series2) count = 0 for bigger in cmp: if bigger: count = count + 1 return count # Define constants SPREAD = "../Datasets4.xlsx" # Input dataset information spreadsheet OUTFILE = "../Reports/tn_vs_xgb_sumrept4m.xlsx" # Summary report workbook to create fields1 = ["Name", "N Replications", "N Features", "N Learn", "N Holdout", "Avg ROC (TN; MART)", "Avg ROC (TN; RGBOOST, MHESS=0)", "Avg ROC (TN; RGBOOST, MHESS=1)", "Avg ROC (XGB)", "StdDev ROC (TN; MART)", "StdDev ROC (TN; RGB MHESS=0)", "StdDev ROC (TN; RGB MHESS=1)", "StdDev ROC (XGB)", "Avg Delta_ROC (Best TN vs XGB)", "Min Delta ROC (Best TN vs XGB)", "Max Delta ROC (Best TN vs XGB)", "StdDev Delta ROC (Best TN vs XGB)"] fields2 = ["Name", "Stat", "ROC(TN; MART)", "ROC(TN; RGBOOST; MHESS=0)", "ROC(TN; RGBOOST; MHESS=1)", "ROC(XGBoost)"] fields3 = ["Name", "N Replications", "N Features", "N Learn", "N Holdout", "Avg ROC (TN)", "Avg ROC (XGB)", "Min ROC (TN)", "Min ROC (XGB)", "Max ROC (TN)", "Max ROC (XGB)", "StdDev ROC (TN)", "StdDev ROC (XGB)", "Avg Delta ROC", "Min Delta ROC", "Max Delta ROC", "StdDev Delta ROC", "# times TN beats XGB"] REPTDIR = "../Reports/RGBOOST4M" # Directory from which to pull the model results DATADIR = "../Data/Classification" # Repository of classification model datasets SLASH = "/" MODSET = "_RGLs-0_INF-0.0_SUBS-1.0_LR-0.1_DEPTH-7_PREDS-500_NTREES-400" # Model set to use scorenames = ["Class", "Prob"] # Names of fields in score datasets filename_root = ["mart", "treenet", "treenet2", "xgb"] # Input Filename prefixes fltfmt = "%.5f" # Define list of fields for the roc data frame (created once per input dataset) roccols = filename_root.copy() roccols.append("Delta") # Read input dataset information spreadsheet dsl = pd.read_excel(SPREAD) # Initialize output data frames summary = pd.DataFrame(columns = fields1) detail = pd.DataFrame(columns = fields2) MARTvXGB = pd.DataFrame(columns = fields3) TNRGBM0 = pd.DataFrame(columns = fields3) TNRGBM1 = pd.DataFrame(columns = fields3) BestTN = pd.DataFrame(columns = fields3) for i in dsl.index: # For each input dataset dataname = dsl.loc[i, "Name"] reptdir = REPTDIR + SLASH + dataname + MODSET # Directory containing model results if not os.path.isdir(reptdir): # If it does not exist, then skip it continue nrepl = dsl.loc[i, "N_data_samples"] datadir = DATADIR + SLASH + dataname + SLASH + "SAMPLES4" # Directory containing partioned data trainfile1 = datadir + SLASH + "data_train_1.csv" # Training dataset (file) holdfile1 = datadir + SLASH + "data_hold_1.csv" # Holdout dataset (file) rept = REPTDIR + SLASH + dataname + "_summary_report" + MODSET + ".txt" # Initialize summary report row row = dict() row["Name"] = dataname row["N Replications"] = nrepl row["N Features"] = dsl.loc[i, "N_features"] # Extract record counts from the input datasets traindata = pd.read_csv(trainfile1, low_memory=False) # Training data frame holddata = pd.read_csv(holdfile1, low_memory=False) # Holdout data frame row["N Learn"] = len(traindata.index) row["N Holdout"] = len(holddata.index) del traindata, holddata # These can be quite large, so free up the memory now row_mart = row.copy() # Determine best performing TN model besttn = -1 with open(rept) as fh: for line in fh: if re.match("^Mean ", line): values = line.split() values.pop(0) nval = len(values) maxroc_tn = 0 for i in range(nval): if i == 3: continue value = float(values[i]) if value > maxroc_tn: besttn = i maxroc_tn = value break # Define ROC data frame roc = pd.DataFrame(columns=roccols) for irepl in range(1, nrepl + 1): roc_row = dict() for rootname in filename_root: score_file = reptdir + SLASH + rootname + "_score_test_" + str(irepl) + ".csv" modscores = pd.read_csv(score_file, names=scorenames) roc_row[rootname] = roc_auc_score(modscores["Class"], modscores["Prob"]) roc_row["Delta"] = roc_row[filename_root[besttn]] - roc_row["xgb"] roc = roc.append(roc_row, ignore_index=True) # Add ROC statistics to summary report row["Avg ROC (TN; MART)"] = roc["mart"].mean() row["Avg ROC (TN; RGBOOST, MHESS=0)"] = roc["treenet"].mean() row["Avg ROC (TN; RGBOOST, MHESS=1)"] = roc["treenet2"].mean() row["Avg ROC (XGB)"] = roc["xgb"].mean() row["StdDev ROC (TN; MART)"] = roc["mart"].std() row["StdDev ROC (TN; RGB MHESS=0)"] = roc["treenet"].std() row["StdDev ROC (TN; RGB MHESS=1)"] = roc["treenet2"].std() row["StdDev ROC (XGB)"] = roc["xgb"].std() row["Avg Delta_ROC (Best TN vs XGB)"] = roc["Delta"].mean() row["Min Delta ROC (Best TN vs XGB)"] = roc["Delta"].min() row["Max Delta ROC (Best TN vs XGB)"] = roc["Delta"].max() row["StdDev Delta ROC (Best TN vs XGB)"] = roc["Delta"].std() summary = summary.append(row, ignore_index=True) # Add by model type descriptive stats to the detail report mean_row = dict({"Name":dataname, "Stat":"Mean", fields2[2]:row["Avg ROC (TN; MART)"], fields2[3]:row["Avg ROC (TN; RGBOOST, MHESS=0)"], fields2[4]:row["Avg ROC (TN; RGBOOST, MHESS=1)"], fields2[5]:row["Avg ROC (XGB)"]}) min_row = dict({"Name":dataname, "Stat":"Min", fields2[2]:roc["mart"].min(), fields2[3]:roc["treenet"].min(), fields2[4]:roc["treenet2"].min(), fields2[5]:roc["xgb"].min()}) max_row = dict({"Name":dataname, "Stat":"Max", fields2[2]:roc["mart"].max(), fields2[3]:roc["treenet"].max(), fields2[4]:roc["treenet2"].max(), fields2[5]:roc["xgb"].min()}) range_row = dict({"Name":dataname, "Stat":"Range", fields2[2]:rng(roc["mart"]), fields2[3]:rng(roc["treenet"]), fields2[4]:rng(roc["treenet2"]), fields2[5]:rng(roc["xgb"])}) std_row = dict({"Name":dataname, "Stat":"Std", fields2[2]:row["StdDev ROC (TN; MART)"], fields2[3]:row["StdDev ROC (TN; RGB MHESS=0)"], fields2[4]:row["StdDev ROC (TN; RGB MHESS=1)"], fields2[5]:row["StdDev ROC (XGB)"]}) detail = detail.append(pd.DataFrame([mean_row, min_row, max_row, range_row, std_row]), ignore_index=True) row_mart["Avg ROC (XGB)"] = mean_row[fields2[5]] row_mart["Min ROC (XGB)"] = min_row[fields2[5]] row_mart["Max ROC (XGB)"] = max_row[fields2[5]] row_mart["StdDev ROC (XGB)"] = std_row[fields2[5]] row_rgb0 = row_mart.copy() row_rgb1 = row_mart.copy() row_best = row_mart.copy() row_mart["Avg ROC (TN)"] = mean_row[fields2[2]] row_mart["Min ROC (TN)"] = min_row[fields2[2]] row_mart["Max ROC (TN)"] = max_row[fields2[2]] row_mart["StdDev ROC (TN)"] = std_row[fields2[2]] delta_mart = roc["mart"].subtract(roc["xgb"]) row_mart["Avg Delta ROC"] = delta_mart.mean() row_mart["Min Delta ROC"] = delta_mart.min() row_mart["Max Delta ROC"] = delta_mart.max() row_mart["StdDev Delta ROC"] = delta_mart.std() row_mart["# times TN beats XGB"] = gtct(roc["mart"], roc["xgb"]) MARTvXGB = MARTvXGB.append(row_mart, ignore_index=True) row_rgb0["Avg ROC (TN)"] = mean_row[fields2[3]] row_rgb0["Min ROC (TN)"] = min_row[fields2[3]] row_rgb0["Max ROC (TN)"] = max_row[fields2[3]] row_rgb0["StdDev ROC (TN)"] = std_row[fields2[3]] delta_rgb0 = roc["treenet"].subtract(roc["xgb"]) row_rgb0["Avg Delta ROC"] = delta_rgb0.mean() row_rgb0["Min Delta ROC"] = delta_rgb0.min() row_rgb0["Max Delta ROC"] = delta_rgb0.max() row_rgb0["StdDev Delta ROC"] = delta_rgb0.std() row_rgb0["# times TN beats XGB"] = gtct(roc["treenet"], roc["xgb"]) TNRGBM0 = TNRGBM0.append(row_rgb0, ignore_index=True) row_rgb1["Avg ROC (TN)"] = mean_row[fields2[4]] row_rgb1["Min ROC (TN)"] = min_row[fields2[4]] row_rgb1["Max ROC (TN)"] = max_row[fields2[4]] row_rgb1["StdDev ROC (TN)"] = std_row[fields2[4]] delta_rgb1 = roc["treenet2"].subtract(roc["xgb"]) row_rgb1["Avg Delta ROC"] = delta_rgb1.mean() row_rgb1["Min Delta ROC"] = delta_rgb1.min() row_rgb1["Max Delta ROC"] = delta_rgb1.max() row_rgb1["StdDev Delta ROC"] = delta_rgb1.std() row_rgb1["# times TN beats XGB"] = gtct(roc["treenet2"], roc["xgb"]) TNRGBM1 = TNRGBM1.append(row_rgb1, ignore_index=True) index = besttn + 2 row_best["Avg ROC (TN)"] = mean_row[fields2[index]] row_best["Min ROC (TN)"] = min_row[fields2[index]] row_best["Max ROC (TN)"] = max_row[fields2[index]] row_best["StdDev ROC (TN)"] = std_row[fields2[index]] delta_best = roc[filename_root[besttn]].subtract(roc["xgb"]) row_best["Avg Delta ROC"] = delta_best.mean() row_best["Min Delta ROC"] = delta_best.min() row_best["Max Delta ROC"] = delta_best.max() row_best["StdDev Delta ROC"] = delta_best.std() row_best["# times TN beats XGB"] = gtct(roc[filename_root[besttn]], roc["xgb"]) BestTN = BestTN.append(row_best, ignore_index=True) # Write frames to the output spreadsheet with pd.ExcelWriter(path = OUTFILE) as outwrite: summary.to_excel(outwrite, sheet_name = "Summary", index = False, float_format = fltfmt) detail.to_excel(outwrite, sheet_name = "ByDataset", index = False, float_format = fltfmt) MARTvXGB.to_excel(outwrite, sheet_name = "TreeNet-MART vs XGB", index = False, float_format = fltfmt) TNRGBM0.to_excel(outwrite, sheet_name = "TreeNet-RGBOOST (MHESS=0) vs XGB", index = False, float_format = fltfmt) TNRGBM1.to_excel(outwrite, sheet_name = "TreeNet-RGBOOST (MHESS=1) vs XGB", index = False, float_format = fltfmt) BestTN.to_excel(outwrite, sheet_name = "Best TreeNet vs XGB", index = False, float_format = fltfmt) ```
{ "source": "Jlrine2/aws-cdk-python-constructs", "score": 2 }
#### File: aws-cdk-python-constructs/python_constructs/python_lambda_api.py ```python from dataclasses import dataclass from typing import Mapping, Optional, Union from aws_cdk import ( Duration, aws_lambda_python_alpha as lambda_python, aws_logs as logs, aws_apigateway as apigateway ) from constructs import Construct @dataclass class LambdaApiPythonParams: function_code_location: str function_handler: str function_index: str function_environment: Optional[Mapping[str, str]] = None function_log_retention: Optional[logs.RetentionDays] = None function_memory_size: Union[int, float, None] = None funtion_timeout: Optional[Duration] = Duration.seconds(30) api_deploy: Optional[bool] = None api_deploy_options: Optional[apigateway.StageOptions] = None api_domain_name: Optional[apigateway.DomainNameOptions] = None api_headers_parameters: Optional[Mapping[str, str]] = None class LambdaApiPython(Construct): def __init__(self, scope: Construct, _id: str, params: LambdaApiPythonParams = None): super().__init__(scope, _id) if params is None: raise ValueError('Argument params is required') function = lambda_python.PythonFunction( self, f'{_id}_function', entry=params.function_code_location, handler=params.function_handler, index=params.function_index, environment=params.function_environment, log_retention=params.function_log_retention, memory_size=params.function_memory_size, timeout=params.funtion_timeout ) api = apigateway.LambdaRestApi( self, f'{_id}-api', handler=function, proxy=True, deploy=params.api_deploy, deploy_options=params.api_deploy_options, domain_name=params.api_domain_name, parameters=params.api_headers_parameters, ) ```
{ "source": "Jlrine2/GameManagement", "score": 3 }
#### File: status/src/main.py ```python import json from os import environ from pickletools import stringnl_noescape_pair from urllib import response from flask import make_response, Request import google.cloud.compute_v1 as compute_v1 SERVER = environ['SERVER'] PROJECT = environ['PROJECT_ID'] ZONE = f"{environ['REGION']}-a" def get_server_status(request: Request): instance_client = compute_v1.InstancesClient() print(f"Stopping {SERVER}") instance = instance_client.get( project=PROJECT, zone=ZONE, instance=SERVER ) response = make_response(json.dumps({"status": instance.status})) response.headers = { 'Access-Control-Allow-Origin': '*' } return response ```
{ "source": "Jlrine2/hyp3", "score": 2 }
#### File: tests/test_api/test_api_spec.py ```python from http import HTTPStatus from test_api.conftest import AUTH_COOKIE, JOBS_URI, SUBSCRIPTIONS_URI, USER_URI, login from hyp3_api import auth, routes ENDPOINTS = { JOBS_URI: {'GET', 'HEAD', 'OPTIONS', 'POST'}, JOBS_URI + '/foo': {'GET', 'HEAD', 'OPTIONS'}, USER_URI: {'GET', 'HEAD', 'OPTIONS'}, SUBSCRIPTIONS_URI: {'GET', 'HEAD', 'OPTIONS', 'POST'}, SUBSCRIPTIONS_URI + '/foo': {'GET', 'HEAD', 'OPTIONS', 'PATCH'}, } def test_options(client): all_methods = {'GET', 'HEAD', 'OPTIONS', 'POST', 'PUT', 'DELETE', 'PATCH'} login(client) for uri, good_methods in ENDPOINTS.items(): response = client.options(uri) assert response.status_code == HTTPStatus.OK allowed_methods = response.headers['allow'].split(', ') assert set(allowed_methods) == good_methods for bad_method in all_methods - good_methods: response = client.open(uri, method=bad_method) assert response.status_code == HTTPStatus.METHOD_NOT_ALLOWED def test_not_logged_in(client): for uri, methods in ENDPOINTS.items(): for method in methods: response = client.open(uri, method=method) if method == 'OPTIONS': assert response.status_code == HTTPStatus.OK else: assert response.status_code == HTTPStatus.UNAUTHORIZED def test_invalid_cookie(client): for uri in ENDPOINTS: client.set_cookie('localhost', AUTH_COOKIE, 'garbage I say!!! GARGBAGE!!!') response = client.get(uri) assert response.status_code == HTTPStatus.UNAUTHORIZED def test_expired_cookie(client): for uri in ENDPOINTS: client.set_cookie('localhost', AUTH_COOKIE, auth.get_mock_jwt_cookie('user', -1)) response = client.get(uri) assert response.status_code == HTTPStatus.UNAUTHORIZED def test_no_route(client): response = client.get('/no/such/path') assert response.status_code == HTTPStatus.NOT_FOUND def test_cors_no_origin(client): for uri in ENDPOINTS: response = client.get(uri) assert 'Access-Control-Allow-Origin' not in response.headers assert 'Access-Control-Allow-Credentials' not in response.headers def test_cors_bad_origins(client): bad_origins = [ 'https://www.google.com', 'https://www.alaska.edu', ] for uri in ENDPOINTS: for origin in bad_origins: response = client.get(uri, headers={'Origin': origin}) assert 'Access-Control-Allow-Origin' not in response.headers assert 'Access-Control-Allow-Credentials' not in response.headers def test_cors_good_origins(client): good_origins = [ 'https://search.asf.alaska.edu', 'https://search-test.asf.alaska.edu', 'http://local.asf.alaska.edu', ] for uri in ENDPOINTS: for origin in good_origins: response = client.get(uri, headers={'Origin': origin}) assert response.headers['Access-Control-Allow-Origin'] == origin assert response.headers['Access-Control-Allow-Credentials'] == 'true' def test_hyp3_unavailable(client, monkeypatch): monkeypatch.setenv('SYSTEM_AVAILABLE', 'false') for uri, methods in ENDPOINTS.items(): for method in methods: response = client.open(uri, method=method) assert response.status_code == HTTPStatus.SERVICE_UNAVAILABLE def test_redirect_root(client): response = client.get('/') assert response.location.endswith('/ui/') assert response.status_code == HTTPStatus.FOUND def test_ui_location(client): response = client.get('/ui') assert response.status_code == HTTPStatus.PERMANENT_REDIRECT assert response.location.endswith('/ui/') response = client.get('/ui/') assert response.status_code == HTTPStatus.OK def test_wkt_validator(client): validator = routes.WKTValidator() assert not validator.validate('foo') assert validator.validate('POLYGON((-5 2, -3 2, -3 5, -5 5, -5 2))') def test_banned_ip_address(client, monkeypatch): monkeypatch.setenv('BANNED_CIDR_BLOCKS', '1.1.1.0/24,2.2.2.2/32') good_addresses = ['2.2.2.1', '2.2.2.3', '1.1.2.1', ' 192.168.3.11'] for good_address in good_addresses: client.environ_base = {'REMOTE_ADDR': good_address} response = client.get('/ui/') assert response.status_code == HTTPStatus.OK bad_addresses = ['1.1.1.1', '1.1.1.255', '2.2.2.2'] for bad_address in bad_addresses: client.environ_base = {'REMOTE_ADDR': bad_address} response = client.get('/ui/') assert response.status_code == HTTPStatus.FORBIDDEN def test_error_format(client): response = client.post(JOBS_URI) assert response.status_code == HTTPStatus.UNAUTHORIZED assert response.headers['Content-Type'] == 'application/problem+json' assert response.json['status'] == HTTPStatus.UNAUTHORIZED assert response.json['title'] == 'Unauthorized' assert response.json['type'] == 'about:blank' assert 'detail' in response.json login(client) response = client.post(JOBS_URI) assert response.status_code == HTTPStatus.BAD_REQUEST assert response.headers['Content-Type'] == 'application/problem+json' assert response.json['status'] == HTTPStatus.BAD_REQUEST assert response.json['title'] == 'Bad Request' assert response.json['type'] == 'about:blank' assert 'detail' in response.json ```
{ "source": "JLRipley314/cheb-fftw-py", "score": 3 }
#### File: cheb-fftw-py/cheb/cheb.py ```python import os, ctypes, pathlib, glob import numpy as np # path of the shared library _path_cheb = glob.glob(str(pathlib.Path(__file__).parent.parent)+'/build/*/*/cheb.so')[0] _lib_cheb = ctypes.CDLL(str(_path_cheb)) _cheb_initialized = False #============================================================================= _cheb_init = _lib_cheb.init _cheb_init.restype = None _cheb_init.argtypes = [ ctypes.c_size_t, ctypes.c_double, ctypes.c_double ] def init(n:int, lower:float, upper:float) -> None: """ Initialize internal FFTW pointers, etc. """ global _cheb_initialized _cheb_initialized = True _cheb_init( ctypes.c_size_t(n), ctypes.c_double(lower), ctypes.c_double(upper) ) #============================================================================= _cheb_cleanup = _lib_cheb.cleanup _cheb_cleanup.restype = None _cheb_cleanup.argtypes = [] def cleanup() -> None: """ Free internal FFTW pointers, etc. """ global _cheb_initialized assert(_cheb_initialized) _cheb_initialized = False _cheb_cleanup() #============================================================================= _cheb_n = _lib_cheb.n _cheb_n.restype = ctypes.c_size_t _cheb_n.argtypes = [] def n() -> int: """ Number of Chebyshev collocation points. """ assert(_cheb_initialized) return _cheb_n() #============================================================================= _cheb_lower = _lib_cheb.lower _cheb_lower.restype = ctypes.c_double _cheb_lower.argtypes = [] def lower() -> float: """ Lower boundary of domain in real space. """ assert(_cheb_initialized) return _cheb_lower() #============================================================================= _cheb_upper = _lib_cheb.upper _cheb_upper.restype = ctypes.c_double _cheb_upper.argtypes = [] def upper() -> float: """ Upper boundary of domain in real space. """ assert(_cheb_initialized) return _cheb_upper() #============================================================================= _cheb_pt = _lib_cheb.pt _cheb_pt.restype = ctypes.c_double _cheb_pt.argtypes = [ ctypes.c_size_t ] def pt(i:int) -> float: """ Location of ith Chebyshev point in real space. """ assert(_cheb_initialized) assert(i>=0 and i<n()) return _cheb_pt(ctypes.c_size_t(i)) #============================================================================= _cheb_der = _lib_cheb.der _cheb_der.restype = None _cheb_der.argtypes = [ np.ctypeslib.ndpointer(ctypes.c_double), np.ctypeslib.ndpointer(ctypes.c_double) ] def der(v:np.array, dv:np.array) -> None: """ Derivative over interval [lower, upper]. """ assert(_cheb_initialized) assert(v.size==n() and dv.size==n()) _cheb_der(v,dv) #============================================================================= _cheb_filter = _lib_cheb.filter _cheb_filter.restype = None _cheb_filter.argtypes = [ np.ctypeslib.ndpointer(ctypes.c_double) ] def filter(v:np.array) -> None: """ Low pass filter in Chebyshev space. """ assert(_cheb_initialized) assert(v.size==n()) _cheb_filter(v) ```
{ "source": "JLRipley314/one-dim-amr", "score": 3 }
#### File: examples/massless_scalar_collapse/write_run_data.py ```python import shutil ############################################################################# def write_initial_data(run_data: dict) -> None: with open("{}/initial_data.txt".format(run_data["home_dir"]), "w") as f: f.write("amp={}\n".format(run_data["amp"])) f.write("width={}\n".format(run_data["width"])) f.write("center={}\n".format(run_data["center"])) f.write("direction={}\n".format(run_data["direction"])) f.write("initial_data={}\n".format(run_data["initial_data"])) f.write("initial_black_hole_mass={}\n".format(run_data["initial_black_hole_mass"])) shutil.copyfile( "{}/initial_data.txt".format(run_data["home_dir"]), "{}/initial_data.txt".format(run_data["output_dir"]) ) return ############################################################################# def write_run_data(run_data: dict) -> str: with open("{}/run_data.txt".format(run_data["home_dir"]), "w") as f: f.write("output_dir={}\n".format(run_data["output_dir"])) f.write("param_search={}\n".format(run_data["param_search"])) f.write("theory={}\n".format(run_data["theory"])) f.write("solver_Ze={}\n".format(run_data["solver_Ze"])) f.write("use_excision={}\n".format(run_data["use_excision"])) f.write("Nx={}\n".format(run_data["Nx"])) f.write("Nt={}\n".format(run_data["Nt"])) f.write("t_step_save={}\n".format(run_data["t_step_save"])) f.write("stereographic_L={}\n".format(run_data["stereographic_L"])) f.write("coupling_gbs={}\n".format(run_data["coupling_gbs"])) f.write("cfl_num={}\n".format(run_data["cfl_num"])) f.write("err_tolerance={}\n".format(run_data["err_tolerance"])) shutil.copyfile( "{}/run_data.txt".format(run_data["home_dir"]), "{}/run_data.txt".format(run_data["output_dir"]) ) return ############################################################################# def write_slurm_script(run_data: dict) -> None: run_data["var_name"] = "output" outputName = "{}/{}".format(run_data["output_dir"],"output.out") with open("{}/run_TEdGB_collapse.slurm".format(run_data["home_dir"]), "w") as f: f.write("#!/bin/sh\n") f.write("#SBATCH -N 1\t\t# nodes=1\n") f.write("#SBATCH --ntasks-per-node=1\t\t# ppn=1\n") f.write("#SBATCH -J g{:.2f}\t\t# job name\n".format(float(run_data["coupling_gbs"]))) f.write("#SBATCH -t {}\t\t# walltime (dd:hh:mm:ss)\n".format(run_data["walltime"])) f.write("#SBATCH -p dept\t\t# partition/queue name\n") f.write("#SBATCH --mem={}MB\t\t# memory in MB\n".format(run_data["memory_usage_MB"])) f.write("#SBATCH --output={}\t\t# file for STDOUT\n".format(outputName)) f.write("#SBATCH --mail-user=<EMAIL>\t\t# Mail id of the user\n") # f.write("#SBATCH --mail-type=begin\t\t# Slurm will send mail at the beginning of the job\n") # f.write("#SBATCH --mail-type=end\t\t# Slurm will send at the completion of your job\n") f.write("\n./collapse\n\n") shutil.copyfile( "{}/run_TEdGB_collapse.slurm".format(run_data["home_dir"]), "{}/run_TEdGB_collapse.slurm".format(run_data["output_dir"]) ) return ```
{ "source": "JLRipley314/scalar-field-kerr", "score": 2 }
#### File: JLRipley314/scalar-field-kerr/sim_class.py ```python import subprocess, os, sys, time, shutil from typing import List from math import log #============================================================================= class Sim: #============================================================================= def __init__(self)->None: self.home_dir= str(os.getcwd()) #============================================================================= def make_output_dir(self)->None: if self.output_dir is None: time_of_day= time.asctime().split() self.output_stem= '/'+str( time_of_day[1] + '_'+time_of_day[2] + '_'+time_of_day[3].replace(':','_') + '_m'+str(self.black_hole_mass) + '_s'+str(self.black_hole_spin) + '_nx'+str(self.nx) + '_nl'+str(self.nl) + '_nm'+str(self.nm) ) else: self.output_stem = self.output_dir if (self.computer=='home'): self.output_dir= self.home_dir+'/Output'+self.output_stem else: self.output_dir=self.out_stem+self.output_stem os.makedirs(self.output_dir) #============================================================================= ## stereographic projection def compactification(self, r:float)->float: return r/(1.0 + (r/self.compactification_length)) #============================================================================= def set_derived_params(self)->None: #----------------------------------------------------------------------------- sqrt_term= pow( (self.black_hole_mass - self.black_hole_spin) * (self.black_hole_mass + self.black_hole_spin) ,0.5) self.horizon= self.black_hole_mass+sqrt_term self.rl= self.horizon*self.rl_0 self.ru= self.horizon*self.ru_0 #----------------------------------------------------------------------------- self.Rmin= self.compactification(self.horizon) self.Rmax= self.compactification_length #----------------------------------------------------------------------------- if (self.use_cheb==True): self.dt= float( 6.*pow(max([self.nx,self.nlat,self.nphi]),-2) ) else: self.dt= min( float( 6.*pow(max([self.nlat,self.nphi]),-2) ) , self.cfl/(self.nx-1.0) ) #----------------------------------------------------------------------------- self.nt= int( self.evolve_time*self.black_hole_mass/self.dt ) #----------------------------------------------------------------------------- self.t_step_save= int( self.nt/float(self.num_saved_times) ) if (self.t_step_save==0): self.t_step_save= 1 #============================================================================= def write_sim_params(self)->None: self.parameter_file = 'params.txt' with open(self.output_dir+'/'+self.parameter_file,'w') as f: attrs= vars(self) for param in attrs: if type(attrs[param])==list: vals = '' for val in attrs[param]: vals+= ' '+str(val) f.write('{}{}\n'.format(param,vals)) else: f.write('{} {}\n'.format(param,attrs[param])) #============================================================================= def write_slurm_script(self): with open('{}/run.slurm'.format(self.output_dir), 'w') as f: f.write('#!/bin/sh\n') f.write('#SBATCH -J scalar\t\t# job name\n') f.write('#SBATCH -t {}\t\t# walltime (dd:hh:mm:ss)\n'.format(self.walltime)) f.write('#SBATCH -p physics\t\t# partition/queue name\n') f.write('#SBATCH --mem={}MB\n'.format(self.memory)) f.write('#SBATCH --output={}\t\t# file for STDOUT\n'.format(self.output_file)) f.write('#SBATCH --mail-user={}\t\t# Mail id of the user\n'.format(self.email)) #------------ ## for openmp #------------ f.write('#SBATCH --nodes=1\n') f.write('#SBATCH --ntasks-per-node=1\n') f.write('#SBATCH --cpus-per-task={}\n'.format(self.num_threads)) f.write('\nexport OMP_MAX_ACTIVE_LEVELS={}\n'.format(self.num_omp_levels)) f.write('\nexport OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK\n') #------------ ## executable #------------ f.write('chmod 755 '+self.bin_name+'\n') ## make sure binary is executable f.write('\n'+self.run_str+'\n') #============================================================================= def launch_run(self)->None: self.set_derived_params() self.make_output_dir() if self.recompile==True: self.then_recompile() self.write_sim_params() shutil.copyfile( 'Bin/{}'.format(self.bin_name), '{}/{}'.format(self.output_dir, self.bin_name) ) self.output_file= 'out.txt' self.run_str= ( './'+self.bin_name +' '+self.parameter_file +' .' +' 2>&1 | tee '+self.output_file ) if (self.time_it): self.run_str = 'time '+self.run_str if (self.computer=='home'): os.environ['OMP_MAX_ACTIVE_LEVELS']= str(self.num_omp_levels) os.environ['OMP_NUM_THREADS']= str(self.num_threads) os.chdir(self.output_dir) subprocess.call('chmod 755 '+self.bin_name, shell=True) ## make sure binary is executable subprocess.call(self.run_str, shell=True) os.chdir(self.home_dir) else: self.write_slurm_script() os.chdir(self.output_dir) subprocess.call('sbatch {}/run.slurm'.format(self.output_dir), shell=True) os.chdir(self.home_dir) #============================================================================= def then_recompile(self)->None: subprocess.call('make clean_obj'+self.bin_name,shell=True) subprocess.call('make '+self.bin_name,shell=True) ```
{ "source": "JLRipley314/teuk-fortran", "score": 3 }
#### File: src/tables/tables_cheb.py ```python import mpmath as mp from typing import List mp.prec= +mp.inf #============================================================================= def cheb_pts(n:int)->List[mp.mpf]: return [mp.cos(mp.pi*i/(n-1)) for i in range(n)] #============================================================================= def diff_cheb(n:int,x:float)->mp.mpf: return mp.diff(lambda x: mp.chebyt(n,x), x) #============================================================================= def pm(m:int) -> mp.mpf: if m==0: return mp.mpf(1) else: return mp.mpf(2) #============================================================================= def compute_to_cheb_to_real(n:int)->(List[mp.mpf],List[mp.mpf]): to_cheb= [[0 for i in range(n)] for j in range(n)] to_real= [[0 for i in range(n)] for j in range(n)] N = n-1 for i in range(0,N+1): to_cheb[i][0]= pm(i)*mp.fdiv(0.5,N)*mp.power(-1,i) to_cheb[i][N]= mp.fdiv(pm(i),(2.0*N)) for i in range(1,N): for j in range(1,N): to_cheb[i][j]= pm(i)*mp.cos(mp.fdiv(i*j*mp.pi,N)) for i in range(0,N+1): for j in range(0,N+1): to_real[i][j]= mp.cos(mp.fdiv(i*j*mp.pi,N)) return (to_cheb,to_real) #============================================================================= def cheb_D(n:int)->List[mp.mpf]: pts= cheb_pts(n) Dmat = [[0 for i in range(n)] for j in range(n)] N = n-1 Dmat[0][0] = mp.fdiv(mp.mpf(2)*mp.power(N,2)+mp.mpf(1),mp.mpf(6)) Dmat[N][N] = - mp.fdiv(mp.mpf(2)*mp.power(N,2)+mp.mpf(1),mp.mpf(6)) Dmat[0][N] = mp.mpf(0.5) * mp.power(-1,N) Dmat[N][0] = - mp.mpf(0.5) * mp.power(-1,N) for i in range(1,N): Dmat[0][i] = mp.mpf(2.0) * mp.power(-1,i ) * mp.fdiv(1,mp.mpf(1)-pts[i]) Dmat[N][i] = - mp.mpf(2.0) * mp.power(-1,i+N) * mp.fdiv(1,mp.mpf(1)+pts[i]) Dmat[i][0] = - mp.mpf(0.5) * mp.power(-1,i ) * mp.fdiv(1,mp.mpf(1)-pts[i]) Dmat[i][N] = mp.mpf(0.5) * mp.power(-1,i+N) * mp.fdiv(1,mp.mpf(1)+pts[i]) Dmat[i][i] = - 0.5 * pts[i] * mp.fdiv(1,mp.mpf(1)-mp.power(pts[i],2)) for j in range(1,N): if i!=j: Dmat[i][j] = mp.power(-1,i+j) * mp.fdiv(1,pts[i]-pts[j]) return Dmat #============================================================================= def save_cheb(dir_name:str,n:int)->None: pts= cheb_pts(n) cheb_D_matrix= cheb_D(n) to_cheb, to_real = compute_to_cheb_to_real(n) with open(dir_name+"/cheb_to_real.txt","w") as f: for line in to_real: for val in line: f.write(mp.nstr(val,32)+' ') f.write('\n') with open(dir_name+"/real_to_cheb.txt","w") as f: for line in to_cheb: for val in line: f.write(mp.nstr(val,32)+' ') f.write('\n') with open(dir_name+"/cheb_pts.txt","w") as f: for val in pts: f.write(mp.nstr(val,32)+'\n') with open(dir_name+"/cheb_D.txt","w") as f: for line in cheb_D_matrix: for val in line: f.write(mp.nstr(val,32)+' ') f.write('\n') ```
{ "source": "JLRitch/wigeon", "score": 3 }
#### File: test/unit/test_packages.py ```python import unittest import pathlib as pl import time import json import shutil # external imports # project imports from wigeon import packages class TestPackage(unittest.TestCase): cur_dir = pl.Path().cwd() def test_create_dir(self): """ Checks that directory was created """ # inputs package = packages.Package("example") # cleanup folders before test shutil.rmtree(package.pack_path, ignore_errors=True) package.create( env_list=["dev", "qa"], db_engine="sqlite" ) self.assertTrue( self.cur_dir.joinpath("packages", "example").exists() ) self.assertTrue( self.cur_dir.joinpath("packages", "example", "manifest.json").exists() ) expect_init_mani = { "db_engine": "sqlite", "environments": { "dev": { "connectionstring": None, "server": None, "database": None, "username": None, "password": <PASSWORD> }, "qa": { "connectionstring": None, "server": None, "database": None, "username": None, "password": <PASSWORD> } }, "migrations": [] } with open(self.cur_dir.joinpath("packages", "example", "manifest.json"), "r") as f: out_man_js = json.load(f) self.assertEqual(out_man_js, expect_init_mani) # cleanup folders after test shutil.rmtree(package.pack_path, ignore_errors=True) def test_exists(self): """ tests package existence methods """ # inputs package_exist = packages.Package("exist") package_no_exist = packages.Package("noexist") # cleanup folders before test shutil.rmtree(package_exist.pack_folder, ignore_errors=True) shutil.rmtree(package_no_exist.pack_folder, ignore_errors=True) package_exist.pack_path.mkdir(parents=True) # assertions self.assertRaises( FileExistsError, package_exist.exists, raise_error_on_exists=True, raise_error_on_not_exist=False ) self.assertRaises( FileExistsError, package_no_exist.exists, raise_error_on_exists=False, raise_error_on_not_exist=True ) self.assertTrue(package_exist.exists( raise_error_on_exists=False, raise_error_on_not_exist=False ) ) self.assertFalse(package_no_exist.exists( raise_error_on_exists=False, raise_error_on_not_exist=False ) ) # cleanup folders after test shutil.rmtree(package_exist.pack_folder, ignore_errors=True) shutil.rmtree(package_no_exist.pack_folder, ignore_errors=True) def test_find_current_migration(self): """ test returns 1 for None or sting value of migration name prefix + 1 """ # inputs package = packages.Package("example") self.assertEqual( package.find_current_migration(migration_list=[]), "0001" ) self.assertEqual( package.find_current_migration(migration_list=[pl.Path("0001-migration.sql")]), "0002" ) self.assertRaises( ValueError, package.find_current_migration, migration_list=[pl.Path("9999-migration.sql")] ) def test_list_migrations(self): """ test migration file reads """ self.maxDiff = None no_migrations = packages.Package("no_migrations") with_migrations = packages.Package("with_migrations") # cleanup folders before test shutil.rmtree(no_migrations.pack_folder, ignore_errors=True) shutil.rmtree(with_migrations.pack_folder, ignore_errors=True) # create migrations with_migrations.pack_path.mkdir(parents=True, exist_ok=True) no_migrations.pack_path.mkdir(parents=True, exist_ok=True) mig_path = with_migrations.pack_path.joinpath("0001-migration1.sql") with open(mig_path, 'w') as f: f.write('emptyfile') # assertions self.assertEqual( no_migrations.list_local_migrations(), [] ) self.assertEqual( with_migrations.list_local_migrations(), [mig_path] ) # cleanup folders after test shutil.rmtree(no_migrations.pack_folder, ignore_errors=True) shutil.rmtree(with_migrations.pack_folder, ignore_errors=True) def test_delete_dir(self): """ Checks that directory was created """ # inputs package = packages.Package("example") # cleanup folders after test shutil.rmtree(package.pack_path, ignore_errors=True) package.pack_path.mkdir(parents=True, exist_ok=True) # sleep to ensure files are given time to create time.sleep(1) package.delete() # sleep to ensure files are given time to delete time.sleep(1) self.assertFalse( self.cur_dir.joinpath("packages", "example").exists() ) if __name__ == '__main__': unittest.main() ``` #### File: wigeon/wigeon/levels.py ```python import random names = [ "Reveille", "AI Constructs and Cyborgs First!", "Flawless Cowboy", "Reunion Tour", "The Truth and Reconciliation", "Into the Belly of the Beast", "Shut Up and Get Behind me... Sir", "The Silent Cartographer", "It's Quiet...", "Shafted", "I Would Have Been Your Daddy...", "Rolling Thunder", "If I had a Super Weapon...", "Well Enough Alone", "The Flood", "343 Guilty Spark", "The Library", "Wait, It Gets Worse!", "But I Don't Want to Ride the Elevator!", "Fourth Floor: Tools, Guns, Keys to Super Weapons", "The Gun Point at the Head of the Universe", "Breaking Stuff to Look Tough", "The Tunnels Below", "Final Run", "Under New Management", "Upstairs, Downstairs", "The Captain", "...And the Horse You Rode in on", "Light Fuse, Run Away", "Warning: Hitchhikers May be Escaping Convicts" ] def get_level(): return names[random.randrange(len(names))] ```
{ "source": "jlrpnbbngtn/brewtils", "score": 2 }
#### File: brewtils/brewtils/decorators.py ```python import functools import inspect import os import sys from types import MethodType from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Type, Union import six from brewtils.choices import process_choices from brewtils.display import resolve_form, resolve_schema, resolve_template from brewtils.errors import PluginParamError, _deprecate from brewtils.models import Command, Parameter, Resolvable if sys.version_info.major == 2: from funcsigs import signature, Parameter as InspectParameter # noqa else: from inspect import signature, Parameter as InspectParameter # noqa __all__ = [ "client", "command", "parameter", "parameters", "system", ] def client( _wrapped=None, # type: Type bg_name=None, # type: Optional[str] bg_version=None, # type: Optional[str] ): # type: (...) -> Type """Class decorator that marks a class as a beer-garden Client Using this decorator is no longer strictly necessary. It was previously required in order to mark a class as being a Beer-garden Client, and contained most of the logic that currently resides in the ``parse_client`` function. However, that's no longer the case and this currently exists mainly for back-compatibility reasons. Applying this decorator to a client class does have the nice effect of preventing linters from complaining if any special attributes are used. So that's something. Those special attributes are below. Note that these are just placeholders until the actual values are populated when the client instance is assigned to a Plugin: * ``_bg_name``: an optional system name * ``_bg_version``: an optional system version * ``_bg_commands``: holds all registered commands * ``_current_request``: Reference to the currently executing request Args: _wrapped: The class to decorate. This is handled as a positional argument and shouldn't be explicitly set. bg_name: Optional plugin name bg_version: Optional plugin version Returns: The decorated class """ if _wrapped is None: return functools.partial(client, bg_name=bg_name, bg_version=bg_version) # noqa # Assign these here so linters don't complain _wrapped._bg_name = bg_name _wrapped._bg_version = bg_version _wrapped._bg_commands = [] _wrapped._current_request = None return _wrapped def command( _wrapped=None, # type: Union[Callable, MethodType] description=None, # type: Optional[str] parameters=None, # type: Optional[List[Parameter]] command_type="ACTION", # type: str output_type="STRING", # type: str schema=None, # type: Optional[Union[dict, str]] form=None, # type: Optional[Union[dict, list, str]] template=None, # type: Optional[str] icon_name=None, # type: Optional[str] hidden=False, # type: Optional[bool] metadata=None, # type: Optional[Dict] ): """Decorator for specifying Command details For example: .. code-block:: python @command(output_type='JSON') def echo_json(self, message): return message Args: _wrapped: The function to decorate. This is handled as a positional argument and shouldn't be explicitly set. description: The command description. If not given the first line of the method docstring will be used. parameters: A list of Command parameters. It's recommended to use @parameter decorators to declare Parameters instead of declaring them here, but it is allowed. Any Parameters given here will be merged with Parameters sourced from decorators and inferred from the method signature. command_type: The command type. Valid options are Command.COMMAND_TYPES. output_type: The output type. Valid options are Command.OUTPUT_TYPES. schema: A custom schema definition. form: A custom form definition. template: A custom template definition. icon_name: The icon name. Should be either a FontAwesome or a Glyphicon name. hidden: Flag controlling whether the command is visible on the user interface. metadata: Free-form dictionary Returns: The decorated function """ if _wrapped is None: return functools.partial( command, description=description, parameters=parameters, command_type=command_type, output_type=output_type, schema=schema, form=form, template=template, icon_name=icon_name, hidden=hidden, metadata=metadata, ) new_command = Command( description=description, parameters=parameters, command_type=command_type, output_type=output_type, schema=schema, form=form, template=template, icon_name=icon_name, hidden=hidden, metadata=metadata, ) # Python 2 compatibility if hasattr(_wrapped, "__func__"): _wrapped.__func__._command = new_command else: _wrapped._command = new_command return _wrapped def parameter( _wrapped=None, # type: Union[Callable, MethodType, Type] key=None, # type: str type=None, # type: Optional[Union[str, Type]] multi=None, # type: Optional[bool] display_name=None, # type: Optional[str] optional=None, # type: Optional[bool] default=None, # type: Optional[Any] description=None, # type: Optional[str] choices=None, # type: Optional[Union[Callable, Dict, Iterable, str]] parameters=None, # type: Optional[List[Parameter]] nullable=None, # type: Optional[bool] maximum=None, # type: Optional[int] minimum=None, # type: Optional[int] regex=None, # type: Optional[str] form_input_type=None, # type: Optional[str] type_info=None, # type: Optional[dict] is_kwarg=None, # type: Optional[bool] model=None, # type: Optional[Type] ): """Decorator for specifying Parameter details For example:: @parameter( key="message", description="Message to echo", optional=True, type="String", default="Hello, World!", ) def echo(self, message): return message Args: _wrapped: The function to decorate. This is handled as a positional argument and shouldn't be explicitly set. key: String specifying the parameter identifier. If the decorated object is a method the key must match an argument name. type: String indicating the type to use for this parameter. multi: Boolean indicating if this parameter is a multi. See documentation for discussion of what this means. display_name: String that will be displayed as a label in the user interface. optional: Boolean indicating if this parameter must be specified. default: The value this parameter will be assigned if not overridden when creating a request. description: An additional string that will be displayed in the user interface. choices: List or dictionary specifying allowed values. See documentation for more information. parameters: Any nested parameters. See also: the 'model' argument. nullable: Boolean indicating if this parameter is allowed to be null. maximum: Integer indicating the maximum value of the parameter. minimum: Integer indicating the minimum value of the parameter. regex: String describing a regular expression constraint on the parameter. form_input_type: Specify the form input field type (e.g. textarea). Only used for string fields. type_info: Type-specific information. Mostly reserved for future use. is_kwarg: Boolean indicating if this parameter is meant to be part of the decorated function's kwargs. Only applies when the decorated object is a method. model: Class to be used as a model for this parameter. Must be a Python type object, not an instance. Returns: The decorated function """ if _wrapped is None: return functools.partial( parameter, key=key, type=type, multi=multi, display_name=display_name, optional=optional, default=default, description=description, choices=choices, parameters=parameters, nullable=nullable, maximum=maximum, minimum=minimum, regex=regex, form_input_type=form_input_type, type_info=type_info, is_kwarg=is_kwarg, model=model, ) new_parameter = Parameter( key=key, type=type, multi=multi, display_name=display_name, optional=optional, default=default, description=description, choices=choices, parameters=parameters, nullable=nullable, maximum=maximum, minimum=minimum, regex=regex, form_input_type=form_input_type, type_info=type_info, is_kwarg=is_kwarg, model=model, ) # Python 2 compatibility if hasattr(_wrapped, "__func__"): _wrapped.__func__.parameters = getattr(_wrapped, "parameters", []) _wrapped.__func__.parameters.insert(0, new_parameter) else: _wrapped.parameters = getattr(_wrapped, "parameters", []) _wrapped.parameters.insert(0, new_parameter) return _wrapped def parameters(*args, **kwargs): """ .. deprecated:: 3.0 Will be removed in version 4.0. Please use ``@command`` instead. Decorator for specifying multiple Parameter definitions at once This can be useful for commands which have a large number of complicated parameters but aren't good candidates for a Model. .. code-block:: python @parameter(**params[cmd1][param1]) @parameter(**params[cmd1][param2]) @parameter(**params[cmd1][param3]) def cmd1(self, **kwargs): pass Can become: .. code-block:: python @parameters(params[cmd1]) def cmd1(self, **kwargs): pass Args: *args (iterable): Positional arguments The first (and only) positional argument must be a list containing dictionaries that describe parameters. **kwargs: Used for bookkeeping. Don't set any of these yourself! Returns: func: The decorated function """ # This is the first invocation if not kwargs.get("_partial"): # Need the callable check to prevent applying the decorator with no parenthesis if len(args) == 1 and not callable(args[0]): return functools.partial(parameters, args[0], _partial=True) raise PluginParamError("@parameters takes a single argument") # This is the second invocation else: if len(args) != 2: raise PluginParamError( "Incorrect number of arguments for parameters partial call. Did you " "set _partial=True? If so, please don't do that. If not, please let " "the Beergarden team know how you got here!" ) _deprecate( "Looks like you're using the '@parameters' decorator. This is now deprecated - " "for passing bulk parameter definitions it's recommended to use the @command " "decorator parameters kwarg, like this: @command(parameters=[...])" ) params = args[0] _wrapped = args[1] if not callable(_wrapped): raise PluginParamError("@parameters must be applied to a callable") try: for param in params: parameter(_wrapped, **param) except TypeError: raise PluginParamError("@parameters arg must be an iterable of dictionaries") return _wrapped def _parse_client(client): # type: (object) -> List[Command] """Get a list of Beergarden Commands from a client object This will iterate over everything returned from dir, looking for metadata added by the decorators. """ bg_commands = [] for attr in dir(client): method = getattr(client, attr) method_command = _parse_method(method) if method_command: bg_commands.append(method_command) return bg_commands def _parse_method(method): # type: (MethodType) -> Optional[Command] """Parse a method object as a Beer-garden command target If the method looks like a valid command target (based on the presence of certain attributes) then this method will initialize things: - The command will be initialized. - Every parameter will be initialized. Initializing a parameter is recursive - each nested parameter will also be initialized. - Top-level parameters are validated to ensure they match the method signature. Args: method: Method to parse Returns: Beergarden Command targeting the given method """ if (inspect.ismethod(method) or inspect.isfunction(method)) and ( hasattr(method, "_command") or hasattr(method, "parameters") ): # Create a command object if there isn't one already method_command = _initialize_command(method) try: # Need to initialize existing parameters before attempting to add parameters # pulled from the method signature. method_command.parameters = _initialize_parameters( method_command.parameters + getattr(method, "parameters", []) ) # Add and update parameters based on the method signature _signature_parameters(method_command, method) # Verify that all parameters conform to the method signature _signature_validate(method_command, method) except PluginParamError as ex: six.raise_from( PluginParamError( "Error initializing parameters for command '%s': %s" % (method_command.name, ex) ), ex, ) return method_command def _initialize_command(method): # type: (MethodType) -> Command """Initialize a Command This takes care of ensuring a Command object is in the correct form. Things like: - Assigning the name from the method name - Pulling the description from the method docstring, if necessary - Resolving display modifiers (schema, form, template) Args: method: The method with the Command to initialize Returns: The initialized Command """ cmd = getattr(method, "_command", Command()) cmd.name = _method_name(method) cmd.description = cmd.description or _method_docstring(method) try: base_dir = os.path.dirname(inspect.getfile(method)) cmd.schema = resolve_schema(cmd.schema, base_dir=base_dir) cmd.form = resolve_form(cmd.form, base_dir=base_dir) cmd.template = resolve_template(cmd.template, base_dir=base_dir) except PluginParamError as ex: six.raise_from( PluginParamError("Error initializing command '%s': %s" % (cmd.name, ex)), ex, ) return cmd def _method_name(method): # type: (MethodType) -> str """Get the name of a method This is needed for Python 2 / 3 compatibility Args: method: Method to inspect Returns: Method name """ if hasattr(method, "func_name"): command_name = method.func_name else: command_name = method.__name__ return command_name def _method_docstring(method): # type: (MethodType) -> str """Parse out the first line of the docstring from a method This is needed for Python 2 / 3 compatibility Args: method: Method to inspect Returns: First line of docstring """ if hasattr(method, "func_doc"): docstring = method.func_doc else: docstring = method.__doc__ return docstring.split("\n")[0] if docstring else None def _sig_info(arg): # type: (InspectParameter) -> Tuple[Any, bool] """Get the default and optionality of a method argument This will return the "default" according to the method signature. For example, the following would return "foo" as the default for Parameter param: .. code-block:: python def my_command(self, param="foo"): ... The "optional" value returned will be a boolean indicating the presence of a default argument. In the example above the "optional" value will be True. However, in the following example the value would be False (and the "default" value will be None): .. code-block:: python def my_command(self, param): ... A separate optional return is needed to indicate when a default is provided in the signature, but the default is None. In the following, the default will still be None, but the optional value will be True: .. code-block:: python def my_command(self, param=None): ... Args: arg: The method argument Returns: Tuple of (signature default, optionality) """ if arg.default != InspectParameter.empty: return arg.default, True return None, False def _initialize_parameter( param=None, key=None, type=None, multi=None, display_name=None, optional=None, default=None, description=None, choices=None, parameters=None, nullable=None, maximum=None, minimum=None, regex=None, form_input_type=None, type_info=None, is_kwarg=None, model=None, ): # type: (...) -> Parameter """Initialize a Parameter This exists to move logic out of the @parameter decorator. Previously there was a fair amount of logic in the decorator, which meant that it wasn't feasible to create a Parameter without using it. This made things like nested models difficult to do correctly. There are also some checks and translation that need to happen for every Parameter, most notably the "choices" attribute. This method also ensures that these checks and translations occur for child Parameters. Args: param: An already-created Parameter. If this is given all the other Parameter-creation kwargs will be ignored Keyword Args: Will be used to construct a new Parameter """ param = param or Parameter( key=key, type=type, multi=multi, display_name=display_name, optional=optional, default=default, description=description, choices=choices, parameters=parameters, nullable=nullable, maximum=maximum, minimum=minimum, regex=regex, form_input_type=form_input_type, type_info=type_info, is_kwarg=is_kwarg, model=model, ) # Every parameter needs a key, so stop that right here if param.key is None: raise PluginParamError("Attempted to create a parameter without a key") # Type and type info # Type info is where type specific information goes. For now, this is specific # to file types. See #289 for more details. param.type = _format_type(param.type) param.type_info = param.type_info or {} if param.type in Resolvable.TYPES: param.type_info["storage"] = "gridfs" # Also nullify default parameters for safety param.default = None # Process the raw choices into a Choices object param.choices = process_choices(param.choices) # Now deal with nested parameters if param.parameters or param.model: if param.model: # Can't specify a model and parameters - which should win? if param.parameters: raise PluginParamError( "Error initializing parameter '%s': A parameter with both a model " "and nested parameters is not allowed" % param.key ) param.parameters = param.model.parameters param.model = None param.type = "Dictionary" param.parameters = _initialize_parameters(param.parameters) return param def _format_type(param_type): # type: (Any) -> str """Parse Parameter type Args: param_type: Raw Parameter type, usually from a decorator Returns: Properly formatted string describing the parameter type """ if param_type == str: return "String" elif param_type == int: return "Integer" elif param_type == float: return "Float" elif param_type == bool: return "Boolean" elif param_type == dict: return "Dictionary" elif str(param_type).lower() == "datetime": return "DateTime" elif not param_type: return "Any" else: return str(param_type).title() def _initialize_parameters(parameter_list): # type: (Iterable[Parameter, object, dict]) -> List[Parameter] """Initialize Parameters from a list of parameter definitions This exists for backwards compatibility with the old way of specifying Models. Previously, models were defined by creating a class with a ``parameters`` class attribute. This required constructing each parameter manually, without using the ``@parameter`` decorator. This function takes a list where members can be any of the following: - A Parameter object - A class object with a ``parameters`` attribute - A dict containing kwargs for constructing a Parameter The Parameters in the returned list will be initialized. See the function ``_initialize_parameter`` for information on what that entails. Args: parameter_list: List of parameter precursors Returns: List of initialized parameters """ initialized_params = [] for param in parameter_list: # This is already a Parameter. Only really need to interpret the choices # definition and recurse down into nested Parameters if isinstance(param, Parameter): initialized_params.append(_initialize_parameter(param=param)) # This is a model class object. Needed for backwards compatibility # See https://github.com/beer-garden/beer-garden/issues/354 elif hasattr(param, "parameters"): _deprecate( "Constructing a nested Parameters list using model class objects " "is deprecated. Please pass the model's parameter list directly." ) initialized_params += _initialize_parameters(param.parameters) # This is a dict of Parameter kwargs elif isinstance(param, dict): initialized_params.append(_initialize_parameter(**param)) # No clue! else: raise PluginParamError("Unable to generate parameter from '%s'" % param) return initialized_params def _signature_parameters(cmd, method): # type: (Command, MethodType) -> Command """Add and/or modify a Command's parameters based on the method signature This will add / modify the Command's parameter list: - Any arguments in the method signature that were not already known Parameters will be added - Any arguments that WERE already known (most likely from a @parameter decorator) will potentially have their default and optional values updated: - If either attribute is already defined (specified in the decorator) then that value will be used. Explicit values will NOT be overridden. - If the default attribute is not already defined then it will be set to the value of the default parameter from the method signature, if any. - If the optional attribute is not already defined then it will be set to True if a default value exists in the method signature, otherwise it will be set to False. The parameter modification is confusing - see the _sig_info docstring for examples. A final note - I'm not super happy about this. It makes sense - positional arguments are "required", so mark them as non-optional. It's not *wrong*, but it's unexpected. A @parameter that doesn't specify "optional=" will have a different optionality based on the function signature. Regardless, we went with this originally. If we want to change it we need to go though a deprecation cycle and *loudly* publicize it since things wouldn't break loudly for plugin developers, their plugins would just be subtly (but importantly) different. Args: cmd: The Command to modify method: Method to parse Returns: Command with modified parameter list """ # Now we need to reconcile the parameters with the method signature for index, arg in enumerate(signature(method).parameters.values()): # Don't want to include special parameters if (index == 0 and arg.name in ("self", "cls")) or arg.kind in ( InspectParameter.VAR_KEYWORD, InspectParameter.VAR_POSITIONAL, ): continue # Grab default and optionality according to the signature. We'll need it later. sig_default, sig_optional = _sig_info(arg) # Here the parameter was not previously defined so just add it to the list if arg.name not in cmd.parameter_keys(): cmd.parameters.append( _initialize_parameter( key=arg.name, default=sig_default, optional=sig_optional ) ) # Here the parameter WAS previously defined. So we potentially need to update # the default and optional values (if they weren't explicitly set). else: param = cmd.get_parameter_by_key(arg.name) if param.default is None: param.default = sig_default if param.optional is None: param.optional = sig_optional return cmd def _signature_validate(cmd, method): # type: (Command, MethodType) -> None """Ensure that a Command conforms to the method signature This will do some validation and will raise a PluginParamError if there are any issues. It's expected that this will only be called for Parameters where this makes sense (aka top-level Parameters). It doesn't make sense to call this for model Parameters, so you shouldn't do that. Args: cmd: Command to validate method: Target method object Returns: None Raises: PluginParamError: There was a validation problem """ for param in cmd.parameters: sig_param = None has_kwargs = False for p in signature(method).parameters.values(): if p.name == param.key: sig_param = p if p.kind == InspectParameter.VAR_KEYWORD: has_kwargs = True # Couldn't find the parameter. That's OK if this parameter is meant to be part # of the **kwargs AND the function has a **kwargs parameter. if sig_param is None: if not param.is_kwarg: raise PluginParamError( "Parameter was not not marked as part of kwargs and wasn't found " "in the method signature (should is_kwarg be True?)" ) elif not has_kwargs: raise PluginParamError( "Parameter was declared as a kwarg (is_kwarg=True) but the method " "signature does not declare a **kwargs parameter" ) # Cool, found the parameter. Just verify that it's not pure positional and that # it's not marked as part of kwargs. else: if param.is_kwarg: raise PluginParamError( "Parameter was marked as part of kwargs but was found in the " "method signature (should is_kwarg be False?)" ) # I don't think this is even possible in Python < 3.8 if sig_param.kind == InspectParameter.POSITIONAL_ONLY: raise PluginParamError( "Sorry, positional-only type parameters are not supported" ) # Alias the old names for compatibility # This isn't deprecated, see https://github.com/beer-garden/beer-garden/issues/927 system = client def command_registrar(*args, **kwargs): """ .. deprecated: 3.0 Will be removed in 4.0. Use ``@system`` instead. """ _deprecate( "Looks like you're using the '@command_registrar' decorator. Heads up - this " "name will be removed in version 4.0, please use '@system' instead. Thanks!" ) return system(*args, **kwargs) def register(*args, **kwargs): """ .. deprecated: 3.0 Will be removed in 4.0. Use ``@command`` instead. """ _deprecate( "Looks like you're using the '@register' decorator. Heads up - this name will " "be removed in version 4.0, please use '@command' instead. Thanks!" ) return command(*args, **kwargs) def plugin_param(*args, **kwargs): """ .. deprecated: 3.0 Will be removed in 4.0. Use ``@parameter`` instead. """ _deprecate( "Looks like you're using the '@plugin_param' decorator. Heads up - this name " "will be removed in version 4.0, please use '@parameter' instead. Thanks!" ) return parameter(*args, **kwargs) ``` #### File: brewtils/brewtils/plugin.py ```python import json import logging import logging.config import os import signal import sys import threading import appdirs from box import Box from packaging.version import Version from pathlib import Path from requests import ConnectionError as RequestsConnectionError import brewtils from brewtils.config import load_config from brewtils.decorators import _parse_client from brewtils.display import resolve_template from brewtils.errors import ( ConflictError, DiscardMessageException, PluginValidationError, RequestProcessingError, RestConnectionError, ValidationError, _deprecate, ) from brewtils.log import configure_logging, default_config, find_log_file, read_log_file from brewtils.models import Instance, System from brewtils.request_handling import ( AdminProcessor, HTTPRequestUpdater, RequestConsumer, RequestProcessor, ) from brewtils.resolvers.manager import ResolutionManager from brewtils.rest.easy_client import EasyClient from brewtils.specification import _CONNECTION_SPEC # This is what enables request nesting to work easily request_context = threading.local() request_context.current_request = None # Global config, used to simplify BG client creation and sanity checks. CONFIG = Box(default_box=True) class Plugin(object): """A Beer-garden Plugin This class represents a Beer-garden Plugin - a continuously-running process that can receive and process Requests. To work, a Plugin needs a Client instance - an instance of a class defining which Requests this plugin can accept and process. The easiest way to define a ``Client`` is by annotating a class with the ``@system`` decorator. A Plugin needs certain pieces of information in order to function correctly. These can be grouped into two high-level categories: identifying information and connection information. Identifying information is how Beer-garden differentiates this Plugin from all other Plugins. If you already have fully-defined System model you can pass that directly to the Plugin (``system=my_system``). However, normally it's simpler to pass the pieces directly: - ``name`` (required) - ``version`` (required) - ``instance_name`` (required, but defaults to "default") - ``namespace`` - ``description`` - ``icon_name`` - ``metadata`` - ``display_name`` Connection information tells the Plugin how to communicate with Beer-garden. The most important of these is the ``bg_host`` (to tell the plugin where to find the Beer-garden you want to connect to): - ``bg_host`` - ``bg_port`` - ``bg_url_prefix`` - ``ssl_enabled`` - ``ca_cert`` - ``ca_verify`` - ``client_cert`` An example plugin might look like this: .. code-block:: python Plugin( name="Test", version="1.0.0", instance_name="default", namespace="test plugins", description="A Test", bg_host="localhost", ) Plugins use `Yapconf <https://github.com/loganasherjones/yapconf>`_ for configuration loading, which means that values can be discovered from sources other than direct argument passing. Config can be passed as command line arguments:: python my_plugin.py --bg-host localhost Values can also be specified as environment variables with a "\\BG_" prefix:: BG_HOST=localhost python my_plugin.py Plugins service requests using a :py:class:`concurrent.futures.ThreadPoolExecutor`. The maximum number of threads available is controlled by the ``max_concurrent`` argument. .. warning:: Normally the processing of each Request occurs in a distinct thread context. If you need to access shared state please be careful to use appropriate concurrency mechanisms. .. warning:: The default value for ``max_concurrent`` is 5, but setting it to 1 is allowed. This means that a Plugin will essentially be single-threaded, but realize this means that if the Plugin invokes a Command on itself in the course of processing a Request then the Plugin **will** deadlock! Args: client: Instance of a class annotated with ``@system``. bg_host (str): Beer-garden hostname bg_port (int): Beer-garden port bg_url_prefix (str): URL path that will be used as a prefix when communicating with Beer-garden. Useful if Beer-garden is running on a URL other than '/'. ssl_enabled (bool): Whether to use SSL for Beer-garden communication ca_cert (str): Path to certificate file containing the certificate of the authority that issued the Beer-garden server certificate ca_verify (bool): Whether to verify Beer-garden server certificate client_cert (str): Path to client certificate to use when communicating with Beer-garden api_version (int): Beer-garden API version to use client_timeout (int): Max time to wait for Beer-garden server response username (str): Username for Beer-garden authentication password (str): <PASSWORD> <PASSWORD> access_token (str): Access token for Beer-garden authentication refresh_token (str): Refresh token for Beer-garden authentication system (:py:class:`brewtils.models.System`): A Beer-garden System definition. Incompatible with name, version, description, display_name, icon_name, max_instances, and metadata parameters. name (str): System name version (str): System version description (str): System description display_name (str): System display name icon_name (str): System icon name max_instances (int): System maximum instances metadata (dict): System metadata instance_name (str): Instance name namespace (str): Namespace name logger (:py:class:`logging.Logger`): Logger that will be used by the Plugin. Passing a logger will prevent the Plugin from preforming any additional logging configuration. worker_shutdown_timeout (int): Time to wait during shutdown to finish processing max_concurrent (int): Maximum number of requests to process concurrently max_attempts (int): Number of times to attempt updating of a Request before giving up. Negative numbers are interpreted as no maximum. max_timeout (int): Maximum amount of time to wait between Request update attempts. Negative numbers are interpreted as no maximum. starting_timeout (int): Initial time to wait between Request update attempts. Will double on subsequent attempts until reaching max_timeout. mq_max_attempts (int): Number of times to attempt reconnection to message queue before giving up. Negative numbers are interpreted as no maximum. mq_max_timeout (int): Maximum amount of time to wait between message queue reconnect attempts. Negative numbers are interpreted as no maximum. mq_starting_timeout (int): Initial time to wait between message queue reconnect attempts. Will double on subsequent attempts until reaching mq_max_timeout. working_directory (str): Path to a preferred working directory. Only used when working with bytes parameters. """ def __init__(self, client=None, system=None, logger=None, **kwargs): self._client = None self._instance = None self._admin_processor = None self._request_processor = None self._shutdown_event = threading.Event() # Need to set up logging before loading config self._custom_logger = False self._logger = self._setup_logging(logger=logger, **kwargs) # Now that logging is configured we can load the real config self._config = load_config(**kwargs) # If global config has already been set that's a warning global CONFIG if len(CONFIG): self._logger.warning( "Global CONFIG object is not empty! If multiple plugins are running in " "this process please ensure any [System|Easy|Rest]Clients are passed " "connection information as kwargs as auto-discovery may be incorrect." ) CONFIG = Box(self._config.to_dict(), default_box=True) # Now set up the system self._system = self._setup_system(system, kwargs) # Make sure this is set after self._system if client: self.client = client # Now that the config is loaded we can create the EasyClient self._ez_client = EasyClient(logger=self._logger, **self._config) # With the EasyClient we can determine if this is an old garden self._legacy = self._legacy_garden() if not self._legacy: # Namespace setup depends on self._system and self._ez_client self._setup_namespace() # And with _system and _ez_client we can ask for the real logging config self._initialize_logging() def run(self): if not self._client: raise AttributeError( "Unable to start a Plugin without a Client. Please set the 'client' " "attribute to an instance of a class decorated with @brewtils.system" ) self._startup() self._logger.info("Plugin %s has started", self.unique_name) try: # Need the timeout param so this works correctly in Python 2 while not self._shutdown_event.wait(timeout=0.1): pass except KeyboardInterrupt: self._logger.debug("Received KeyboardInterrupt - shutting down") except Exception as ex: self._logger.exception("Exception during wait, shutting down: %s", ex) self._shutdown() self._logger.info("Plugin %s has terminated", self.unique_name) @property def client(self): return self._client @client.setter def client(self, new_client): if self._client: raise AttributeError("Sorry, you can't change a plugin's client once set") if new_client is None: return # Several _system properties can come from the client, so update if needed if not self._system.name: self._system.name = getattr(new_client, "_bg_name") if not self._system.version: self._system.version = getattr(new_client, "_bg_version") if not self._system.description and new_client.__doc__: self._system.description = new_client.__doc__.split("\n")[0] # Now roll up / interpret all metadata to get the Commands self._system.commands = _parse_client(new_client) try: # Put some attributes on the Client class client_clazz = type(new_client) client_clazz.current_request = property( lambda _: request_context.current_request ) # Add for back-compatibility client_clazz._bg_name = self._system.name client_clazz._bg_version = self._system.version client_clazz._bg_commands = self._system.commands client_clazz._current_request = client_clazz.current_request except TypeError: if sys.version_info.major != 2: raise self._logger.warning( "Unable to assign attributes to Client class - current_request will " "not be available. If you're using an old-style class declaration " "it's recommended to switch to new-style if possible." ) self._client = new_client @property def system(self): return self._system @property def instance(self): return self._instance @property def unique_name(self): return "%s:%s[%s]-%s" % ( self._system.namespace, self._system.name, self._config.instance_name, self._system.version, ) @staticmethod def _set_signal_handlers(): """Ensure that SIGINT and SIGTERM will gracefully stop the Plugin""" def _handler(_signal, _frame): raise KeyboardInterrupt signal.signal(signal.SIGINT, _handler) signal.signal(signal.SIGTERM, _handler) @staticmethod def _set_exception_hook(logger): """Ensure uncaught exceptions are logged instead of being written to stderr""" def _hook(exc_type, exc_value, traceback): logger.error( "An uncaught exception was raised in the plugin process:", exc_info=(exc_type, exc_value, traceback), ) sys.excepthook = _hook def _startup(self): """Plugin startup procedure This method actually starts the plugin. When it completes the plugin should be considered in a "running" state - listening to the appropriate message queues, connected to the Beer-garden server, and ready to process Requests. This method should be the first time that a connection to the Beer-garden server is *required*. """ self._logger.debug("About to start up plugin %s", self.unique_name) if not self._ez_client.can_connect(): raise RestConnectionError("Cannot connect to the Beer-garden server") # If namespace couldn't be determined at init try one more time if not self._legacy and not self._config.namespace: self._setup_namespace() self._system = self._initialize_system() self._instance = self._initialize_instance() if self._config.working_directory is None: app_parts = [self._system.name, self._instance.name] if self._system.namespace: app_parts.insert(0, self._system.namespace) self._config.working_directory = appdirs.user_data_dir( appname=os.path.join(*app_parts), version=self._system.version ) workdir = Path(self._config.working_directory) if not workdir.exists(): workdir.mkdir(parents=True) self._logger.debug("Initializing and starting processors") self._admin_processor, self._request_processor = self._initialize_processors() self._admin_processor.startup() self._request_processor.startup() self._logger.debug("Setting signal handlers") self._set_signal_handlers() def _shutdown(self): """Plugin shutdown procedure This method gracefully stops the plugin. When it completes the plugin should be considered in a "stopped" state - the message processors shut down and all connections closed. """ self._logger.debug("About to shut down plugin %s", self.unique_name) self._shutdown_event.set() self._logger.debug("Shutting down processors") self._request_processor.shutdown() self._admin_processor.shutdown() try: self._ez_client.update_instance(self._instance.id, new_status="STOPPED") except Exception: self._logger.warning( "Unable to notify Beer-garden that this plugin is STOPPED, so this " "plugin's status may be incorrect in Beer-garden" ) self._logger.debug("Successfully shutdown plugin {0}".format(self.unique_name)) def _initialize_logging(self): """Configure logging with Beer-garden's configuration for this plugin. This method will ask Beer-garden for a logging configuration specific to this plugin and will apply that configuration to the logging module. Note that this method will do nothing if the logging module's configuration was already set or a logger kwarg was given during Plugin construction. Returns: None """ if self._custom_logger: self._logger.debug("Skipping logging init: custom logger detected") return try: log_config = self._ez_client.get_logging_config( local=bool(self._config.runner_id) ) except Exception as ex: self._logger.warning( "Unable to retrieve logging configuration from Beergarden, the default " "configuration will be used instead. Caused by: {0}".format(ex) ) return try: configure_logging( log_config, namespace=self._system.namespace, system_name=self._system.name, system_version=self._system.version, instance_name=self._config.instance_name, ) except Exception as ex: # Reset to default config as logging can be seriously wrong now logging.config.dictConfig(default_config(level=self._config.log_level)) self._logger.exception( "Error encountered during logging configuration. This most likely " "indicates an issue with the Beergarden server plugin logging " "configuration. The default configuration will be used instead. Caused " "by: {0}".format(ex) ) return # Finally, log uncaught exceptions using the configuration instead of stderr self._set_exception_hook(self._logger) def _initialize_system(self): """Let Beergarden know about System-level info This will attempt to find a system with a name and version matching this plugin. If one is found this will attempt to update it (with commands, metadata, etc. from this plugin). If a System is not found this will attempt to create one. Returns: Definition of a Beergarden System this plugin belongs to. Raises: PluginValidationError: Unable to find or create a System for this Plugin """ # Make sure that the system is actually valid before trying anything self._validate_system() # Do any necessary template resolution self._system.template = resolve_template(self._system.template) existing_system = self._ez_client.find_unique_system( name=self._system.name, version=self._system.version, namespace=self._system.namespace, ) if not existing_system: try: # If this succeeds can just finish here return self._ez_client.create_system(self._system) except ConflictError: # If multiple instances are starting up at once and this is a new system # the create can return a conflict. In that case just try the get again existing_system = self._ez_client.find_unique_system( name=self._system.name, version=self._system.version, namespace=self._system.namespace, ) # If we STILL can't find a system something is really wrong if not existing_system: raise PluginValidationError( "Unable to find or create system {0}".format(self._system) ) # We always update with these fields update_kwargs = { "new_commands": self._system.commands, "metadata": self._system.metadata, "description": self._system.description, "display_name": self._system.display_name, "icon_name": self._system.icon_name, "template": self._system.template, } # And if this particular instance doesn't exist we want to add it if not existing_system.has_instance(self._config.instance_name): update_kwargs["add_instance"] = Instance(name=self._config.instance_name) return self._ez_client.update_system(existing_system.id, **update_kwargs) def _initialize_instance(self): """Let Beer-garden know this instance is ready to process Requests""" # Sanity check to make sure an instance with this name was registered if not self._system.has_instance(self._config.instance_name): raise PluginValidationError( "Unable to find registered instance with name '%s'" % self._config.instance_name ) return self._ez_client.initialize_instance( self._system.get_instance_by_name(self._config.instance_name).id, runner_id=self._config.runner_id, ) def _initialize_processors(self): """Create RequestProcessors for the admin and request queues""" # If the queue connection is TLS we need to update connection params with # values specified at plugin creation connection_info = self._instance.queue_info["connection"] if "ssl" in connection_info: connection_info["ssl"].update( { "ca_cert": self._config.ca_cert, "ca_verify": self._config.ca_verify, "client_cert": self._config.client_cert, } ) # Each RequestProcessor needs a RequestConsumer, so start with those common_args = { "connection_type": self._instance.queue_type, "connection_info": connection_info, "panic_event": self._shutdown_event, "max_reconnect_attempts": self._config.mq.max_attempts, "max_reconnect_timeout": self._config.mq.max_timeout, "starting_reconnect_timeout": self._config.mq.starting_timeout, } admin_consumer = RequestConsumer.create( thread_name="Admin Consumer", queue_name=self._instance.queue_info["admin"]["name"], max_concurrent=1, **common_args ) request_consumer = RequestConsumer.create( thread_name="Request Consumer", queue_name=self._instance.queue_info["request"]["name"], max_concurrent=self._config.max_concurrent, **common_args ) # Both RequestProcessors need an updater updater = HTTPRequestUpdater( self._ez_client, self._shutdown_event, max_attempts=self._config.max_attempts, max_timeout=self._config.max_timeout, starting_timeout=self._config.starting_timeout, ) # Finally, create the actual RequestProcessors admin_processor = AdminProcessor( target=self, updater=updater, consumer=admin_consumer, plugin_name=self.unique_name, max_workers=1, ) request_processor = RequestProcessor( target=self._client, updater=updater, consumer=request_consumer, validation_funcs=[self._correct_system, self._is_running], plugin_name=self.unique_name, max_workers=self._config.max_concurrent, resolver=ResolutionManager(easy_client=self._ez_client), system=self._system, ) return admin_processor, request_processor def _start(self): """Handle start Request""" self._instance = self._ez_client.update_instance( self._instance.id, new_status="RUNNING" ) def _stop(self): """Handle stop Request""" # Because the run() method is on a 0.1s sleep there's a race regarding if the # admin consumer will start processing the next message on the queue before the # main thread can stop it. So stop it here to prevent that. self._request_processor.consumer.stop_consuming() self._admin_processor.consumer.stop_consuming() self._shutdown_event.set() def _status(self): """Handle status Request""" try: self._ez_client.instance_heartbeat(self._instance.id) except (RequestsConnectionError, RestConnectionError): pass def _read_log(self, **kwargs): """Handle read log Request""" log_file = find_log_file() if not log_file: raise RequestProcessingError( "Error attempting to retrieve logs - unable to determine log filename. " "Please verify that the plugin is writing to a log file." ) try: return read_log_file(log_file=log_file, **kwargs) except IOError as e: raise RequestProcessingError( "Error attempting to retrieve logs - unable to read log file at {0}. " "Root cause I/O error {1}: {2}".format(log_file, e.errno, e.strerror) ) def _correct_system(self, request): """Validate that a request is intended for this Plugin""" request_system = getattr(request, "system") or "" if request_system.upper() != self._system.name.upper(): raise DiscardMessageException( "Received message for system {0}".format(request.system) ) def _is_running(self, _): """Validate that this plugin is still running""" if self._shutdown_event.is_set(): raise RequestProcessingError( "Unable to process message - currently shutting down" ) def _legacy_garden(self): """Determine if this plugin is connected to a legacy garden""" legacy = False try: # Need to be careful since v2 doesn't have "beer_garden_version" raw_version = self._ez_client.get_version() if "beer_garden_version" in raw_version: bg_version = Version(raw_version["beer_garden_version"]) else: bg_version = Version(raw_version["brew_view_version"]) if bg_version < Version("3"): legacy = True _deprecate( "Looks like your plugin is using version 3 brewtils but connecting " "to a version 2 Beer Garden. Please be aware that this " "functionality will stop being officially supported in the next " "brewtils minor release." ) self._logger.warning( "This plugin is using brewtils version {0} but is connected to a " "legacy Beer Garden (version {1}). Please be aware that certain " "features such as namespaces and logging configuration will not " "work correctly until the Beer Garden is upgraded.".format( brewtils.__version__, bg_version ) ) except Exception as ex: self._logger.warning( "An exception was raised while attempting to determine Beer Garden " "version, assuming non-legacy." ) self._logger.debug("Underlying exception: %s" % ex, exc_info=True) return legacy def _setup_logging(self, logger=None, **kwargs): """Set up logging configuration and get a logger for the Plugin This method will configure Python-wide logging for the process if it has not already been configured. Whether or not logging has been configured is determined by the root handler count - if there aren't any then it's assumed logging has not already been configured. The configuration applied (again, if no configuration has already happened) is a stream handler with elevated log levels for libraries that are verbose. The overall level will be loaded as a configuration option, so it can be set as a keyword argument, command line option, or environment variable. A logger to be used by the Plugin will be returned. If the ``logger`` keyword parameter is given then that logger will be used, otherwise a logger will be generated from the standard ``logging`` module. Finally, if a the ``logger`` keyword parameter is supplied it's assumed that logging is already configured and no further configuration will be applied. Args: logger: A custom logger **kwargs: Will be used to load the bootstrap config Returns: A logger for the Plugin """ if logger or len(logging.root.handlers) != 0: self._custom_logger = True else: # log_level is the only bootstrap config item boot_config = load_config(bootstrap=True, **kwargs) logging.config.dictConfig(default_config(level=boot_config.log_level)) self._custom_logger = False return logger or logging.getLogger(__name__) def _setup_namespace(self): """Determine the namespace the Plugin is operating in This function attempts to determine the correct namespace and ensures that the value is set in the places it needs to be set. First, look in the resolved system (self._system) to see if that has a namespace. If it does, either: - A complete system definition with a namespace was provided - The namespace was resolved from the config In the latter case nothing further needs to be done. In the former case we need to set the global config namespace value to the system's namespace value so that any SystemClients created after the plugin will have the correct value. Because we have no way to know which case is correct we assume the former and always set the config value. If the system does not have a namespace then we attempt to use the EasyClient to determine the "default" namespace. If successful we set both the global config and the system namespaces to the default value. If the attempt to determine the default namespace is not successful we log a warning. We don't really want to *require* the connection to Beer-garden until Plugin.run() is called. Raising an exception here would do that, so instead we just log the warning. Another attempt will be made to determine the namespace in Plugin.run() which will raise on failure (but again, SystemClients created before the namespace is determined will have potentially incorrect namespaces). """ try: ns = self._system.namespace or self._ez_client.get_config()["garden_name"] self._system.namespace = ns self._config.namespace = ns CONFIG.namespace = ns except Exception as ex: self._logger.warning( "Namespace value was not resolved from config sources and an exception " "was raised while attempting to determine default namespace value. " "Created SystemClients may have unexpected namespace values. " "Underlying exception was:\n%s" % ex ) def _setup_system(self, system, plugin_kwargs): helper_keywords = { "name", "version", "description", "icon_name", "display_name", "max_instances", "metadata", "namespace", "template", } if system: if helper_keywords.intersection(plugin_kwargs.keys()): raise ValidationError( "Sorry, you can't provide a complete system definition as well as " "system creation helper kwargs %s" % helper_keywords ) if not system.instances: raise ValidationError( "Explicit system definition requires explicit instance " "definition (use instances=[Instance(name='default')] for " "default behavior)" ) if not system.max_instances: system.max_instances = len(system.instances) else: # Commands are not defined here - they're set in the client property setter system = System( name=self._config.name, version=self._config.version, description=self._config.description, namespace=self._config.namespace, metadata=json.loads(self._config.metadata), instances=[Instance(name=self._config.instance_name)], max_instances=self._config.max_instances, icon_name=self._config.icon_name, display_name=self._config.display_name, template=self._config.template, ) return system def _validate_system(self): """Make sure the System definition makes sense""" if not self._system.name: raise ValidationError("Plugin system must have a name") if not self._system.version: raise ValidationError("Plugin system must have a version") client_name = getattr(self._client, "_bg_name", None) if client_name and client_name != self._system.name: raise ValidationError( "System name '%s' doesn't match name from client decorator: " "@system(bg_name=%s)" % (self._system.name, client_name) ) client_version = getattr(self._client, "_bg_version", None) if client_version and client_version != self._system.version: raise ValidationError( "System version '%s' doesn't match version from client decorator: " "@system(bg_version=%s)" % (self._system.version, client_version) ) # These are provided for backward-compatibility @property def bg_host(self): """ .. deprecated:: 3.0 bg_host is now in ``_config`` (``plugin._config.bg_host``) Provided for backward-comptibility """ _deprecate("bg_host is now in _config (plugin._config.bg_host)") return self._config.bg_host @property def bg_port(self): """ .. deprecated:: 3.0 bg_port is now in _config (``plugin._config.bg_port``) Provided for backward-comptibility """ _deprecate("bg_port is now in _config (plugin._config.bg_port)") return self._config.bg_port @property def ssl_enabled(self): """ .. deprecated:: 3.0 ssl_enabled is now in ``_config`` (``plugin._config.ssl_enabled``) Provided for backward-comptibility """ _deprecate("ssl_enabled is now in _config (plugin._config.ssl_enabled)") return self._config.ssl_enabled @property def ca_cert(self): """ .. deprecated:: 3.0 ca_cert is now in ``_config`` (``plugin._config.ca_cert``) Provided for backward-comptibility """ _deprecate("ca_cert is now in _config (plugin._config.ca_cert)") return self._config.ca_cert @property def client_cert(self): """ .. deprecated:: 3.0 client_cert is now in ``_config`` (``plugin._config.client_cert``) Provided for backward-comptibility """ _deprecate("client_cert is now in _config (plugin._config.client_cert)") return self._config.client_cert @property def bg_url_prefix(self): """ .. deprecated:: 3.0 bg_url_prefix is now in ``_config`` (``plugin._config.bg_url_prefix``) Provided for backward-comptibility """ _deprecate("bg_url_prefix is now in _config (plugin._config.bg_url_prefix)") return self._config.bg_url_prefix @property def ca_verify(self): """ .. deprecated:: 3.0 ca_verify is now in ``_config`` (``plugin._config.ca_verify``) Provided for backward-comptibility """ _deprecate("ca_verify is now in _config (plugin._config.ca_verify)") return self._config.ca_verify @property def max_attempts(self): """ .. deprecated:: 3.0 max_attempts is now in ``_config`` (``plugin._config.max_attempts``) Provided for backward-comptibility """ _deprecate("max_attempts is now in _config (plugin._config.max_attempts)") return self._config.max_attempts @property def max_timeout(self): """ .. deprecated:: 3.0 max_timeout is now in ``_config`` (``plugin._config.max_timeout``) Provided for backward-comptibility """ _deprecate("max_timeout has moved into _config (plugin._config.max_timeout)") return self._config.max_timeout @property def starting_timeout(self): """ .. deprecated:: 3.0 starting_timeout is now in ``_config`` (``plugin._config.starting_timeout``) Provided for backward-comptibility """ _deprecate( "starting_timeout is now in _config (plugin._config.starting_timeout)" ) return self._config.starting_timeout @property def max_concurrent(self): """ .. deprecated:: 3.0 max_concurrent is now in ``_config`` (``plugin._config.max_concurrent``) Provided for backward-comptibility """ _deprecate("max_concurrent is now in _config (plugin._config.max_concurrent)") return self._config.max_concurrent @property def instance_name(self): """ .. deprecated:: 3.0 instance_name is now in ``_config`` (``plugin._config.instance_name``) Provided for backward-comptibility """ _deprecate("instance_name is now in _config (plugin._config.instance_name)") return self._config.instance_name @property def connection_parameters(self): """ .. deprecated:: 3.0 connection_parameters has been removed. Please use ``_config`` Provided for backward-comptibility """ _deprecate("connection_parameters attribute was removed, please use '_config'") return {key: self._config[key] for key in _CONNECTION_SPEC} @property def metadata(self): """ .. deprecated:: 3.0 metadata is now part of the ``system`` attribute (``plugin.system.metadata``) Provided for backward-comptibility """ _deprecate("metadata is a part of the system attribute (plugin.system.metadata") return self._system.metadata @property def bm_client(self): """ .. deprecated:: 3.0 bm_client attribute has been renamed to ``_ez_client``. Provided for backward-comptibility """ _deprecate("bm_client attribute has been renamed to _ez_client") return self._ez_client @property def shutdown_event(self): """ .. deprecated:: 3.0 shutdown_event attribute has been renamed to ``_shutdown_event``. Provided for backward-comptibility """ _deprecate("shutdown_event attribute has been renamed to _shutdown_event") return self._shutdown_event @property def logger(self): """ .. deprecated:: 3.0 logger attribute has been renamed to ``_logger``. Provided for backward-comptibility """ _deprecate("logger attribute has been renamed to _logger") return self._logger # Alias old names class PluginBase(Plugin): """ .. deprecated:: 3.0 Will be removed in version 4.0. Please use ``Plugin`` instead. ``Plugin`` alias Provided for backward-comptibility """ def __init__(self, *args, **kwargs): _deprecate( "Looks like you're creating a 'PluginBase'. Heads up - this name will be " "removed in version 4.0, please use 'Plugin' instead. Thanks!" ) super(PluginBase, self).__init__(*args, **kwargs) class RemotePlugin(Plugin): """ .. deprecated:: 3.0 Will be removed in version 4.0. Please use ``Plugin`` instead. ``Plugin`` alias Provided for backward-comptibility """ def __init__(self, *args, **kwargs): _deprecate( "Looks like you're creating a 'RemotePlugin'. Heads up - this name will be " "removed in version 4.0, please use 'Plugin' instead. Thanks!" ) super(RemotePlugin, self).__init__(*args, **kwargs) ``` #### File: brewtils/test/schema_test.py ```python import pytest from mock import Mock from pytest_lazyfixture import lazy_fixture from brewtils.models import System from brewtils.schemas import ( BaseSchema, DateTime, SystemSchema, _deserialize_model, _serialize_model, model_schema_map, ) from brewtils.schema_parser import SchemaParser class TestSchemas(object): def test_make_object(self): base_schema = BaseSchema() assert "input" == base_schema.make_object("input") def test_make_object_with_model(self): schema = SystemSchema(context={"models": {"SystemSchema": System}}) value = schema.make_object({"name": "name"}) assert isinstance(value, System) def test_get_attributes(self): attributes = SystemSchema.get_attribute_names() assert "id" in attributes assert "name" in attributes assert "__model__" not in attributes class TestFields(object): @pytest.mark.parametrize( "dt,localtime,expected", [ (lazy_fixture("ts_dt"), False, lazy_fixture("ts_epoch")), (lazy_fixture("ts_dt"), True, lazy_fixture("ts_epoch")), (lazy_fixture("ts_dt_eastern"), False, lazy_fixture("ts_epoch_eastern")), (lazy_fixture("ts_dt_eastern"), True, lazy_fixture("ts_epoch")), (lazy_fixture("ts_epoch"), False, lazy_fixture("ts_epoch")), (lazy_fixture("ts_epoch"), True, lazy_fixture("ts_epoch")), ], ) def test_to_epoch(self, dt, localtime, expected): assert DateTime.to_epoch(dt, localtime) == expected @pytest.mark.parametrize( "epoch,expected", [ (lazy_fixture("ts_epoch"), lazy_fixture("ts_dt")), (lazy_fixture("ts_dt"), lazy_fixture("ts_dt")), ], ) def test_from_epoch(self, epoch, expected): assert DateTime.from_epoch(epoch) == expected def test_modelfield_serialize_invalid_type(self): with pytest.raises(TypeError): _serialize_model( "ignored", Mock(payload_type="INVALID"), type_field="payload_type" ) def test_modelfield_serialize_unallowed_type(self): with pytest.raises(TypeError): _serialize_model( "ignored", Mock(payload_type="foo"), type_field="payload_type", allowed_types=["bar"], ) def test_modelfield_deserialize_invalid_type(self): with pytest.raises(TypeError): _deserialize_model( "ignored", {"payload_type": "INVALID"}, type_field="payload_type" ) def test_modelfield_deserialize_unallowed_type(self): with pytest.raises(TypeError): _deserialize_model( "ignored", {"payload_type": "foo"}, type_field="payload_type", allowed_types=["bar"], ) def test_deserialize_mapping(self): models = list(set(model_schema_map[dic] for dic in model_schema_map)) assert len(models) == len( SchemaParser._models ), "Missing mapped schema for deserialization" ```
{ "source": "jlrussin/RL_project", "score": 3 }
#### File: RL_project/models/CNN.py ```python import torch.nn as nn class CNN(nn.Module): def __init__(self,in_channels,embedding_size,in_height,in_width): super(CNN, self).__init__() self.in_height = in_height self.in_width = in_width self.conv1 = nn.Conv2d(in_channels,32,kernel_size=4,stride=2) self.conv2 = nn.Conv2d(32,64,kernel_size=4,stride=2) self.conv3 = nn.Conv2d(64,64,kernel_size=3,stride=1) fc1_in_channels = self.calculate_FC_in(in_height,in_width) self.fc = nn.Linear(fc1_in_channels,512) self.out = nn.Linear(512,embedding_size) self.relu = nn.ReLU() def calculate_FC_in(self,H,W): def conv2d_out_shape(H_in,W_in,kernel_size,stride): H_out = int((H_in + 2*0 - 1*(kernel_size - 1) - 1)/stride) + 1 W_out = int((W_in + 2*0 - 1*(kernel_size - 1) - 1)/stride) + 1 return (H_out,W_out) H,W = conv2d_out_shape(H,W,4,2) H,W = conv2d_out_shape(H,W,4,2) H,W = conv2d_out_shape(H,W,3,1) fc1_in_channels = H*W*64 return fc1_in_channels def forward(self,observation): N = observation.size(0) # batch size embedding = self.relu(self.conv1(observation)) embedding = self.relu(self.conv2(embedding)) embedding = self.relu(self.conv3(embedding)) embedding = self.relu(self.fc(embedding.view(N,-1))) embedding = self.relu(self.out(embedding)) return embedding ```
{ "source": "jlrussin/syntactic_attention", "score": 2 }
#### File: jlrussin/syntactic_attention/evaluate_bleu.py ```python import os import argparse import json import numpy as np from nltk.translate import bleu_score import torch import torch.nn as nn from torch.utils.data import DataLoader from data import ScanDataset,MTDataset,SCAN_collate from SyntacticAttention import * from utils import * parser = argparse.ArgumentParser() # Data parser.add_argument('--dataset', choices=['MT'], default='MT', help='MT only') parser.add_argument('--flip', type=str2bool, default=False, help='Flip source and target for MT dataset') parser.add_argument('--train_data_file', default='data/MT/train', help='Path to test set') parser.add_argument('--val_data_file', default='data/MT/test_no_unk.txt', help='Path to test set') parser.add_argument('--test_data_file', default='data/MT/test', help='Path to test set') parser.add_argument('--load_vocab_json',default='vocab_eng_MT_all.json', help='Path to vocab json file') # Model hyperparameters parser.add_argument('--rnn_type', choices=['GRU', 'LSTM'], default='LSTM', help='Type of rnn to use.') parser.add_argument('--m_hidden_dim', type=int, default=120, help='Number of hidden units in semantic embeddings') parser.add_argument('--x_hidden_dim', type=int, default=200, help='Number of hidden units in syntax rnn') parser.add_argument('--n_layers', type=int, default=1, help='Number of layers in RNNs') parser.add_argument('--dropout_p', type=float, default=0.5, help='Dropout rate') parser.add_argument('--seq_sem', type=str2bool, default=False, help='Semantic embeddings also processed with RNN.') parser.add_argument('--syn_act', type=str2bool, default=False, help='Syntactic information also used for action') parser.add_argument('--sem_mlp', type=str2bool, default=False, help='Nonlinear semantic layer with ReLU') parser.add_argument('--load_weights_from', default=None, help='Path to saved weights') # Output options #parser.add_argument('--results_dir', default='results', # help='Results subdirectory to save results') #parser.add_argument('--out_data_file', default='results.json', # help='Name of output data file') def get_reference_dict(dataset): reference_dict = {} for sample in dataset: src = sample[2] tar = sample[3] assert src[0] == '<SOS>' assert src[-1] == '<EOS>' assert tar[0] == '<SOS>' assert tar[-1] == '<EOS>' src = src[1:-1] tar = tar[1:-1] key = '_'.join(src) if key not in reference_dict: reference_dict[key] = [tar] else: reference_dict[key].append(tar) return reference_dict def evaluate_bleu(dataloader,vocab,reference_dict,model,max_len,device): # Setup out_idx_to_token = vocab['out_idx_to_token'] model.max_len = max_len print("Getting predictions...") hypotheses = [] references_list = [] with torch.no_grad(): for sample_count,sample in enumerate(dataloader): # Forward pass instructions, true_actions, ins_tokens, act_tokens = sample instructions = [ins.to(device) for ins in instructions] true_actions = [ta.to(device) for ta in true_actions] if len(true_actions[0]) < 6: continue # Don't include if less than 4 words (without SOS, EOS) actions,padded_true_actions = model(instructions,true_actions) # Get hypothesis max_actions = torch.argmax(actions,dim=1) max_actions = max_actions.squeeze(0).cpu().numpy() out_tokens = [out_idx_to_token[str(a)] for a in max_actions] if '<EOS>' in out_tokens: eos_index = out_tokens.index('<EOS>') else: eos_index = len(out_tokens) hypothesis = out_tokens[:eos_index] hypotheses.append(hypothesis) # Get references ins_words = ins_tokens[0][1:-1] # Remove <EOS> and <SOS> key = '_'.join(ins_words) references = reference_dict[key] references_list.append(references) # Compute BLEU print("Computing BLEU score...") bleu = bleu_score.corpus_bleu(references_list,hypotheses) bleu = bleu*100 # Return model max_len to None model.max_len = None return bleu def main(args): # CUDA use_cuda = torch.cuda.is_available() device = torch.device("cuda:0" if use_cuda else "cpu") # Vocab with open(args.load_vocab_json,'r') as f: vocab = json.load(f) in_vocab_size = len(vocab['in_token_to_idx']) out_vocab_size = len(vocab['out_idx_to_token']) # Dataset batch_size = 1 train_data = MTDataset(args.train_data_file,vocab,args.flip) val_data = MTDataset(args.val_data_file,vocab,args.flip) test_data = MTDataset(args.test_data_file,vocab,args.flip) train_loader = DataLoader(train_data,batch_size, shuffle=True,collate_fn=SCAN_collate) val_loader = DataLoader(val_data,batch_size, shuffle=True,collate_fn=SCAN_collate) test_loader = DataLoader(test_data,batch_size, shuffle=True,collate_fn=SCAN_collate) # Max lengths train_max_len = max([len(b[3]) for b in train_data]) val_max_len = max([len(b[3]) for b in val_data]) test_max_len = max([len(b[3]) for b in test_data]) # Reference dicts train_ref_dict = get_reference_dict(train_data) val_ref_dict = get_reference_dict(val_data) test_ref_dict = get_reference_dict(test_data) # Model model = Seq2SeqSynAttn(in_vocab_size, args.m_hidden_dim, args.x_hidden_dim, out_vocab_size, args.rnn_type, args.n_layers, args.dropout_p, args.seq_sem, args.syn_act, args.sem_mlp, None, device) if args.load_weights_from is not None: model.load_state_dict(torch.load(args.load_weights_from)) model.to(device) model.eval() # Get BLEU scores train_bleu = evaluate_bleu(train_loader,vocab,train_ref_dict,model, train_max_len, device) print("Training set: %s" % args.train_data_file) print("Train BLEU: %f" % train_bleu) val_bleu = evaluate_bleu(val_loader,vocab,val_ref_dict,model, val_max_len, device) print("Validation set: %s" % args.val_data_file) print("Validation BLEU: %f" % val_bleu) test_bleu = evaluate_bleu(test_loader,vocab,test_ref_dict,model, test_max_len, device) print("Test set: %s" % args.test_data_file) print("Test BLEU: %f" % test_bleu) if __name__ == '__main__': args = parser.parse_args() print(args) main(args) ``` #### File: jlrussin/syntactic_attention/utils.py ```python from data import ScanDataset,MTDataset import json def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def generate_vocab_json(dataset,data_file,flip,vocab_out_json): if dataset == 'SCAN': data = ScanDataset(data_file) elif dataset == 'MT': data = MTDataset(data_file,vocab=None,flip=flip) vocab = data.vocab with open(vocab_out_json,'w') as f: json.dump(vocab,f) ```
{ "source": "jlrzarcor/ITAM-dpa2021", "score": 2 }
#### File: src/api/flask_cfi.py ```python from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_restplus import Api, Resource, fields # gral libraries import os #import psycopg2 # Special routing for importing custom libraries # Modify path old_path = os.getcwd() path = os.path.realpath('../..') # Get imports from src.utils.general import get_pg_service pg = get_pg_service(path + '/conf/local/credentials.yaml') #import src.utils.constants as ks #from src.utils.general import get_db_conn_sql_alchemy # Reset path os.path.realpath(old_path) # ================================= API ================================= # # Connection to RDS-Postgress chicagofoodinsp db #db_conn_str = 'postgresql://jl:alan_turing.13@rds-dpa-project.cudydvgqgf80.us-west-2.rds.amazonaws.com:5432/chicagofoodinsp' # Connection to RDS-Postgress chicagofoodinsp db #pg = get_pg_service('../../conf/local/credential.yaml') #db_conn_str = 'postgresql://' + pg['user'] + ':' + pg['password'] + '@' + pg['host'] + ':' + str(pg['port']) + '/' + pg['dbname'] db_conn_str = 'postgresql://{}:{}@{}:{}/{}'.format(pg['user'], pg['password'], pg['host'], str(pg['port']), pg['dbname']) # create flask app app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = db_conn_str api = Api(app) db = SQLAlchemy(app) # deploy.scores class Match(db.Model): __table_args__ = {'schema':'api'} __tablename__ = 'scores' ingest_date = db.Column(db.DateTime) index = db.Column(db.Integer, primary_key = True) aka_name = db.Column(db.String) license = db.Column(db.String) score = db.Column(db.Float) prediction = db.Column(db.Integer) def __repr__(self): return(u'<{self,__class__,__name__}:{self.id}>'.format(self=self)) # ======= ======= ======= Models ======= ======= ======= # swagger model, marshall outputs model = api.model("scores_table", { 'ingest_date' : fields.DateTime, 'index' : fields.Integer, 'aka_name' : fields.String, 'license' : fields.String, 'score' : fields.Float, 'prediction' : fields.Integer }) # outputs model_customer = api.model("search_by_customer", { 'predictions' : fields.Nested(model) }) model_insp_dates = api.model("search_by_insp_date", { 'ingest_date' : fields.DateTime, 'predictions' : fields.Nested(model) }) # ======= ======= ======= Endpoints ======= ======= ======= @api.route('/cfi') class Chicago(Resource): def get(self): return{'Hello':'Hello World'} @api.route('/cfi_license/<string:license>') class Chicago(Resource): @api.marshal_with(model_customer, as_list = True) def get(self, license): match = Match.query.filter_by(license=license).order_by(Match.score.desc()).limit(1).all() predictions = [] for element in match: predictions.append({'ingest_date' : element.ingest_date, 'index' : element.index, 'aka_name' : element.aka_name, 'license' : element.license, 'score' : element.score, 'prediction' : element.prediction}) return{'license':license,'predictions':predictions} @api.route('/cfi_prediction_date/<string:ingest_date>') class Chicago(Resource): @api.marshal_with(model_insp_dates, as_list = True) def get(self, ingest_date): match = Match.query.filter_by(ingest_date=ingest_date).order_by(Match.score.desc()) predictions = [] for element in match: predictions.append({'ingest_date' : element.ingest_date, 'index' : element.index, 'aka_name' : element.aka_name, 'license' : element.license, 'score' : element.score, 'prediction' : element.prediction}) return{'license':license,'predictions':predictions} if __name__ == '__main__': app.run(debug = True) ``` #### File: src/etl/task_almacenamiento.py ```python import luigi import luigi.contrib.s3 import json import os import pickle as pkl import pandas as pd from datetime import datetime # importing custom libraries and modules from src.etl.task_ingesta import TaskIngest from src.etl.task_ingestion_metadata import TaskIngestMeta import src.pipeline.ingesta_almacenamiento as ial # ================================= LUIGI TASK ================================= # class TaskStore(luigi.Task): bucket = luigi.Parameter(default = "data-product-architecture-equipo-5") # bucket = luigi.Parameter(default = "temp-dev-dpa") prc_path = luigi.Parameter(default = "ingestion") todate = datetime.date(datetime.today()) year = luigi.IntParameter(default = todate.year) month = luigi.IntParameter(default = todate.month) day = luigi.IntParameter(default = todate.day) flg_i0_c1 = luigi.IntParameter(default = 1) def requires(self): return {'a' : TaskIngest(self.year, self.month, self.day, self.flg_i0_c1), 'b' : TaskIngestMeta(self.year, self.month, self.day, self.flg_i0_c1)} def run(self): data = json.load(self.input()['a'].open('r')) with self.output().open('w') as f: pkl.dump(data, f) # Lineage. Creating Metadata @ .csv file str_date = str(datetime.date(datetime(self.year, self.month, self.day))) if self.flg_i0_c1 == 0: flag = "initial" str_file = "historic-inspections-" + str_date + ".pkl" path_S3 = "s3://{}/{}/{}/YEAR={}/MONTH={}/DAY={}/{}".\ format(self.bucket, self.prc_path, flag, self.year, self.month, self.day, str_file) else: flag = "consecutive" str_file = "consecutive-inspections-" + str_date + ".pkl" path_S3 = "s3://{}/{}/{}/YEAR={}/MONTH={}/DAY={}/{}".\ format(self.bucket, self.prc_path, flag, self.year, self.month, self.day, str_file) str_file_csv = str_date + ".csv" output_path = "src/temp/metadata/almacenamiento/type={}/".format(self.flg_i0_c1) os.makedirs(output_path, exist_ok = True) dic_par = {'year':str(self.year),'month':str(self.month),'day':str(self.day),'flg_i0_c1':str(self.flg_i0_c1)} df = pd.DataFrame({'fecha': [self.todate], 'param_exec': [json.dumps(dic_par)],'usuario': ['luigi'], 'num_regs_almac': [len(data)], 'ruta_S3': [path_S3]}) df.to_csv(output_path + str_file_csv, index=False, header=False) def output(self): # Formatting date parameters into date-string str_date = str(datetime.date(datetime(self.year, self.month, self.day))) # Set path to S3 if self.flg_i0_c1 == 0: flag = "initial" str_file = "historic-inspections-" + str_date + ".pkl" output_path = "s3://{}/{}/{}/YEAR={}/MONTH={}/DAY={}/{}".\ format(self.bucket, self.prc_path, flag, self.year, self.month, self.day, str_file) else: flag = "consecutive" str_file = "consecutive-inspections-" + str_date + ".pkl" output_path = "s3://{}/{}/{}/YEAR={}/MONTH={}/DAY={}/{}".\ format(self.bucket, self.prc_path, flag, self.year, self.month, self.day, str_file) s3 = ial.get_luigi_s3client() return luigi.contrib.s3.S3Target(path = output_path, client = s3, format = luigi.format.Nop) ``` #### File: src/pipeline/ingesta_almacenamiento.py ```python import boto3 import pickle as pkl from sodapy import Socrata from luigi.contrib.s3 import S3Client from datetime import datetime import src.utils.constants as ks from src.utils.general import get_api_token, get_s3_credentials # Variables de entorno que se cargan por default al cargar la librería # ingesta_almacenamiento.py # ================================= FUNCTION ================================= # def get_client(): ''' Función que recoge el Token de la API Chicago food inspections (contenida en el archivo credencials.yaml), se conecta a ella y devuelve el cliente con el que se harán las consultas. outputs: Cliente para conectarse a la API Chicago food inspections ''' token = get_api_token(ks.path) client = Socrata(ks.socrata_domain, token['api_token']) #timeout=10) return client # ================================= FUNCTION 2 ================================= # def ingesta_inicial(client, delta_date = '2021-02-15T00:00:00.000', limit = 300000): ''' Función que utiliza el cliente de la API Chicago food inspections, realiza una consulta histórica de tamaño "limit" y devuelve una lista con los resultados de la consulta. Si no hay ese número de registros devolverá el máximo que encuentre en la BD. inputs: client: objeto con el cliente para conectarse a la API Chicago food inspections limit: integer con el máximo de registros a consultar outputs: Lista con el resultado de la consulta inicial (histórica) a la BD ''' return client.get(ks.socrata_ds_id, where = "inspection_date <= " + "'" + delta_date + "'", limit = limit) # ================================= FUNCTION 3 ================================= # def get_s3_resource(): ''' Función que se crea un objeto "s3" para conectarse al servicio s3 de AWS a partir de las crdenciales que se encuentran en credentials.yaml outputs: Objeto s3 de AWS ''' s3_credentials = get_s3_credentials(ks.path) session = boto3.Session( aws_access_key_id = s3_credentials['aws_access_key_id'], aws_secret_access_key = s3_credentials['aws_secret_access_key'] ) s3 = session.resource('s3') return s3 def get_luigi_s3client(): ''' Función que se crea un objeto client de luigi para conectarse al servicio s3 de AWS a partir de las crdenciales que se encuentran en credentials.yaml outputs: Objeto S3Client de BOTO3 ''' s3_credentials = get_s3_credentials(ks.path) client_s3_luigi = S3Client( aws_access_key_id = s3_credentials['aws_access_key_id'], aws_secret_access_key = s3_credentials['aws_secret_access_key'] ) return client_s3_luigi # ================================= FUNCTION 4 ================================= # # DEPRECATED FUNCTION def guardar_ingesta(my_bucket, bucket_path, data): ''' Función que recibe de argumentos el nombre del bucket s3 en el que se quiere almacenar la consulta, la ruta en la que se guardará la información que se consulte de la API Chicago food inspections y la consulta que se haya realizado previamente (inicial o consecutiva). Pueden existir dos casos: bucket_path = ingestion/initial/: Se hará la consulta de todo lo que se encuentre en la BD, desde la fecha en que se corre la función y hasta el valor de registros que se estableció en la variable -limit- de la función -ingesta_inicial-. bucket_path = ingestion/consecutive/: Se hará la consulta de todo lo que se encuentre en la BD, desde la fecha que se establezca en la variable -delta_date- y hasta el valor de registros que se estableció en la variable -limit- de la función -ingesta_consecutiva-. inputs: my_bucket: string con el nombre del bucket bucket_path: string con la ruta donde se guardaran los datos en el bucket data: lista con la consulta realizada outputs: Almacenamiento en el bucket de s3 de la consulta realizada ''' s3 = get_s3_resource() pickle_buffer = pkl.dumps(data) fecha = str(datetime.date(datetime.now())) if bucket_path == "ingestion/initial": nom_file = "ingestion/initial/" + "historic-inspections-" + fecha + ".pkl" else: nom_file = "ingestion/consecutive/" + "consecutive-inspections-" + fecha + ".pkl" s3.Object(my_bucket, nom_file).put(Body = pickle_buffer) return # ================================= FUNCTION 5 ================================= # def ingesta_consecutiva(client, delta_date = '2021-02-15T00:00:00.000', limit = 1000): ''' Función que utiliza el cliente de la API Chicago food inspections, realiza una consulta de tamaño "limit" a partir de la fecha establecida en la variable -delta_date- y devuelve una lista con los resultados de la consulta. Si no hay ese número de registros devolverá el máximo que haya en la BD. inputs: client: objeto con el cliente para conectarse a la API Chicago food inspections delta_date: date con la fecha desde la cual se desea hacer la consulta limit: integer con el número de registros que se desean consultar outputs: Lista con el resultado de la consulta consecutiva a la BD ''' return client.get(ks.socrata_ds_id, where = "inspection_date > " + "'" + delta_date + "'", limit = limit) ``` #### File: src/test/test_modelo.py ```python import pandas as pd import marbles.core import pickle import json import boto3 from datetime import datetime import os # importing especific functions from luigi.contrib.s3 import S3Target from sklearn.model_selection import GridSearchCV, TimeSeriesSplit from sklearn.tree import DecisionTreeClassifier # importing custom libraries import src.utils.constants as ks from src.utils.general import get_pg_service import src.pipeline.ingesta_almacenamiento as ial # Requires... # ================================= FUNCTION: testing DF ================================= # class TestModel(marbles.core.TestCase): # Variables todate = datetime.date(datetime.today()) test_meth = '' status = '' err_msg = '' __name__ = 'TestModel' def test_score(self): S3_targ = pd.read_csv('src/test/trans_file.csv', header = None).iloc[0,0] # Path from S3 client to open data @ S3 S3_targ_splt = S3_targ.split("/") buck_path = S3_targ_splt[2] key_path = '/'.join(S3_targ_splt[3:]) # Create a DataFrame from S3 data s3 = ial.get_s3_resource() datos = s3.meta.client.get_object(Bucket = buck_path, Key = key_path) body = datos['Body'].read() model_cfi = pickle.loads(body) A = str(type(model_cfi)) comp_val = "" if pd.read_csv('src/test/trans_file.csv', header = None).iloc[0,1] == 1: comp_val = "<class 'sklearn.tree._classes.DecisionTreeClassifier'>" print("\n\n", A, "\n\n",comp_val) self.assertEqual(A, comp_val, note = "^^^^^^^^ El mejor modelo seleccionado no coincide con <class 'sklearn.tree._classes.DecisionTreeClassifier'>. ^^^^^^^^\n") self.status = "TestPassed:)" self.test_meth = "test_score" ``` #### File: src/utils/bias_fairness.py ```python import pickle import pandas as pd import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from aequitas.group import Group from aequitas.bias import Bias from aequitas.fairness import Fairness from aequitas.plotting import Plot def bias_fair(modelo,df_train_test,df_fe): # Separamos los sets de entrenamiento y prueba # Entrenamiento X_train = df_train_test[df_train_test.Set == 'entrenamiento'] y_train = X_train.etiqueta X_train = X_train.iloc[:,0:df_train_test.shape[1]-2] # Prueba X_test = df_train_test[df_train_test.Set == 'prueba'] y_test = X_test.etiqueta X_test = X_test.iloc[:,0:df_train_test.shape[1]-2] predicted_scores = modelo.predict_proba(X_test) # Se conforma el DataFrame que necesita Aequitas para el sesgo e inequidad de la variable facility_type (class) y_test2 = y_test.reset_index(drop=True) df_dummy = pd.DataFrame() df_dummy['scores'] = pd.Series(predicted_scores[:,1]) df_dummy['predic'] = np.where(df_dummy['scores'] < 0.7,0,1) df_aeq = pd.DataFrame() df_aeq['real'] = y_test2 df_aeq['prediccion'] = df_dummy.predic df_aeq['faciliy_type'] = df_fe['class'].tail(len(df_dummy.predic)).reset_index(drop=True) # Asignamos nuevos índices y los nombres de las columnas para que los reconozca la función df_aeq = df_aeq.reset_index(drop=True) df_aeq.columns = ['label_value','score','class'] # Se obtienen las métricas g = Group() xtab, attrbs = g.get_crosstabs(df_aeq) absolute_metrics = g.list_absolute_metrics(xtab) metrics1 = xtab[['attribute_name', 'attribute_value']+[col for col in xtab.columns if col in absolute_metrics]].round(2) # Se conforma el DataFrame que necesita Aequitas para el sesgo e inequidad de la variable zip (level) df_aeq2 = pd.DataFrame() df_aeq2['real'] = y_test2 df_aeq2['prediccion'] = df_dummy.predic df_aeq2['zip'] = df_fe['level'].tail(len(df_dummy.predic)).reset_index(drop=True) # Asignamos nuevos índices y los nombres de las columnas para que los reconozca la función df_aeq2 = df_aeq2.reset_index(drop=True) df_aeq2.columns = ['label_value','score','level'] # Se obtienen las métricas g2 = Group() xtab2, attrbs2 = g2.get_crosstabs(df_aeq2) absolute_metrics2 = g2.list_absolute_metrics(xtab2) metrics2 = xtab2[['attribute_name', 'attribute_value']+[col for col in xtab2.columns if col in absolute_metrics2]].round(2) df_labels = pd.DataFrame() df_labels['scores'] = pd.Series(predicted_scores[:,1]) df_labels['predicted'] = np.where(df_dummy['scores'] < 0.7,0,1) df_labels['label'] = y_test2 metrics = pd.concat([metrics1,metrics2]).reset_index(drop = True) metrics = metrics.fillna(0) # Metadata n_groups = len(metrics1.attribute_value) + len(metrics2.attribute_value) n_attribute = metrics.attribute_name.nunique() prop_pos_pred = df_labels.predicted.sum()/len(df_labels.predicted) prop_pos_real = df_labels.label.sum()/len(df_labels.label) return df_labels, metrics, n_groups, n_attribute, prop_pos_pred, prop_pos_real ``` #### File: src/utils/predict.py ```python import numpy as np import pandas as pd from sklearn.preprocessing import OneHotEncoder from sklearn.tree import DecisionTreeClassifier def predict(df_fe, model): var = df_fe[['aka_name', 'license']] df_fe.drop(['ingest_date', 'aka_name', 'license'], axis=1, inplace=True) data_input_ohe = pd.get_dummies(df_fe) etiqueta = data_input_ohe.label_results data_input_ohe= data_input_ohe.drop('label_results', axis = 1) base = pd.DataFrame({'label_risk':0,'level_downtown':0,'level_high':0,'level_low-mid':0,'level_other':0, "class_children's services facility":0,'class_daycare':0,'class_grocery store':0, 'class_other':0,'class_restaurant':0,'class_school':0}, index = [0]) b = list(base.columns) orig = data_input_ohe.columns.tolist() miss_col = [] cont = 0 for item in b: if item not in orig: miss_col.append(cont) cont = cont + 1 else: cont = cont + 1 for index in miss_col: data_input_ohe.insert(index,base.columns[index],0) predicted_scores = pd.DataFrame(model.predict_proba(data_input_ohe)) predicted_scores['predic'] = np.where(predicted_scores[1] < 0.7,0,1) salida = var.loc[data_input_ohe.index,['aka_name','license']].reset_index() salida['score'] = predicted_scores.iloc[:,1] salida['prediction'] = predicted_scores.iloc[:,2] return salida ```
{ "source": "jls713/jfactors", "score": 2 }
#### File: jfactors/flattened/process_data.py ```python import numpy as np import pandas as pd import sys import os.path sys.path.append('/home/jls/work/data/jfactors/spherical/') from J_D_table import posh_latex_names ## ============================================================================ def load_files(name): ''' Load in three sample files for dwarf <name> ''' name='triaxial_results/'+name if os.path.isfile(name+'_nop') and os.path.isfile(name+'_ma') and os.path.isfile(name+'_sj'): return np.genfromtxt(name+'_nop'),np.genfromtxt(name+'_ma'),np.genfromtxt(name+'_sj') else: return None,None,None def write(l): ''' Output median and \pm 1\sigma errors for correction factors in ascii form ''' l = l.T[4] return r'$%0.2f^{+%0.2f}_{-%0.2f}$'%(np.median(l),np.percentile(l,84.1)-np.median(l),np.median(l)-np.percentile(l,15.9)) def write_ascii(l): ''' Output median and \pm 1\sigma errors for correction factors in latex form ''' l = l.T[4] return '%0.2f %0.2f %0.2f '%(np.median(l),np.percentile(l,84.1)-np.median(l),np.median(l)-np.percentile(l,15.9)) ## ============================================================================ ## 1. Read in data file and write headers to tables data = pd.read_csv('../data/data.dat',sep=' ') ff = open('corr_triax_table.dat','w') ffa = open('corr_triax_table_ascii.dat','w') ff.write('\\begin{tabular}{lcccc}\n') ff.write('\\hline\n\\hline\n') ff.write('Name & Ellipticity & $\mathcal{F}_{\mathrm{J},U}$& $\mathcal{F}_{\mathrm{J},R}$& $\mathcal{F}_{\mathrm{J},T}$\\\\ \n') ff.write('\\hline\n') ## 2. Loop over dwarfs and compute median and \pm 1 \sigma for correction factors for i in data.ellip.argsort(): d,e,f=load_files(data.Name[i]) ellip_string='&$%0.2f^{+%0.2f}_{-%0.2f}$&'%(data.ellip[i],data.ellip_e1[i],data.ellip_e2[i]) if(data.ellip_e1[i]!=data.ellip_e1[i]): ellip_string='&$<%0.2f$&'%(data.ellip[i]) if(d==None): ff.write(posh_latex_names[data['Name'][i]]+ellip_string+'NaN&NaN&NaN\\\\\n') ffa.write(data['Name'][i]+' %0.2f %0.2f %0.2f '%(data.ellip[i],data.ellip_e1[i],data.ellip_e2[i])+'NaN '*9+'\n') else: ff.write(posh_latex_names[data['Name'][i]]+ellip_string +write(d)+'&'+write(e)+'&'+write(f)+'\\\\\n') ffa.write(data['Name'][i]+' %0.2f %0.2f %0.2f '%(data.ellip[i],data.ellip_e1[i],data.ellip_e2[i])+write_ascii(d)+write_ascii(e)+write_ascii(f)+'\n') ff.write('\\hline\n\\end{tabular}\n') ff.close() ffa.close() ## ============================================================================ ``` #### File: jfactors/flattened/triax_cusps.py ```python import matplotlib.pyplot as plt import numpy as np from scipy.integrate import quad from matplotlib.patches import Ellipse import flattened as fJ from scipy.optimize import curve_fit import seaborn as sns ## ============================================================================ def geometric_factor(q,gamma): ''' Geometric factor for infinite axisymmetric cusp ''' ## \int dt (cos^2(t)+sin^2(t)/q^2)^{1/2-gamma} return quad(lambda t: np.power(np.power(np.cos(t),2.)+np.power(np.sin(t),2.)/q/q,0.5-gamma),0.,2.*np.pi)[0] def f1(p,q,gamma): ''' Virial ratio for infinite triaxial cusp ''' return quad(lambda phi:quad(lambda t: np.cos(phi)**2*np.sin(t)**3*(np.sin(t)**2*np.cos(phi)**2+np.sin(t)**2*np.sin(phi)**2/p/p+np.cos(t)**2./q/q)**(-gamma/2.),0.,np.pi)[0],0.,2.*np.pi)[0]/quad(lambda phi:quad(lambda t: np.sin(t)*np.cos(t)**2*(np.sin(t)**2*np.cos(phi)**2+np.sin(t)**2*np.sin(phi)**2/p/p+np.cos(t)**2./q/q)**(-gamma/2.),0.,np.pi)[0],0.,2.*np.pi)[0] def f2(p,q,gamma): ''' Virial ratio for infinite triaxial cusp ''' return quad(lambda phi:quad(lambda t: np.sin(phi)**2*np.sin(t)**3*(np.sin(t)**2*np.cos(phi)**2+np.sin(t)**2*np.sin(phi)**2/p/p+np.cos(t)**2./q/q)**(-gamma/2.),0.,np.pi)[0],0.,2.*np.pi)[0]/quad(lambda phi:quad(lambda t: np.sin(t)*np.cos(t)**2*(np.sin(t)**2*np.cos(phi)**2+np.sin(t)**2*np.sin(phi)**2/p/p+np.cos(t)**2./q/q)**(-gamma/2.),0.,np.pi)[0],0.,2.*np.pi)[0] def jkin(p,q,gamma,th,ph): ''' Kinematic factor for infinite triaxial cusp ''' P = p/fJ.qpot_from_q(p) Q = q/fJ.qpot_from_q(q) ff1 = f1(P,Q,gamma) ff2 = f2(P,Q,gamma) return ((1.+ff1+ff2)/(np.cos(th)**2+ff1*np.sin(th)**2*np.cos(ph)**2+ff2*np.sin(th)**2*np.sin(ph)**2)/3.)**2 ## ============================================================================ def jgeo_x(p,q,gamma): return p/q/q*geometric_factor(q/p,gamma) def jgeo_y(p,q,gamma): return 1./p/q/q*geometric_factor(q,gamma) def jgeo_z(p,q,gamma): return 1./p/p/q*geometric_factor(p,gamma) def jkin_x(p,q,gamma): return jkin(p,q,gamma,.5*np.pi,0.) def jkin_y(p,q,gamma): return jkin(p,q,gamma,.5*np.pi,.5*np.pi) def jkin_z(p,q,gamma): return jkin(p,q,gamma,0.,0.) def jtot_x(p,q,gammaDM,gammaST): return jgeo_x(p,q,gammaDM)*jkin_x(p,q,gammaST) def jtot_y(p,q,gammaDM,gammaST): return jgeo_y(p,q,gammaDM)*jkin_y(p,q,gammaST) def jtot_z(p,q,gammaDM,gammaST): return jgeo_z(p,q,gammaDM)*jkin_z(p,q,gammaST) if __name__ == '__main__': q = 0.7 p = 0.8 gg = np.linspace(0.,5.,10) ggst = 3. qq = np.linspace(0.1,p,10) # plt.plot(gg,map(lambda g:jgeo_x(p,q,g),gg)) # plt.plot(gg,map(lambda g:jgeo_y(p,q,g),gg)) # plt.plot(gg,map(lambda g:jgeo_z(p,q,g),gg)) plt.plot(qq,map(lambda g:jgeo_x(p,g,1.),qq)) plt.plot(qq,map(lambda g:jgeo_y(p,g,1.),qq)) plt.plot(qq,map(lambda g:jgeo_z(p,g,1.),qq)) # plt.plot(gg,map(lambda g:jkin_x(p,g,ggst),qq)) # plt.plot(gg,map(lambda g:jkin_y(p,g,ggst),qq)) # plt.plot(gg,map(lambda g:jkin_z(p,g,ggst),qq)) # plt.plot(gg,map(lambda g:jtot_x(p,q,g,ggst),gg)) # plt.plot(gg,map(lambda g:jtot_y(p,q,g,ggst),gg)) # plt.plot(gg,map(lambda g:jtot_z(p,q,g,ggst),gg)) plt.savefig('tmp.pdf',bbox_inches='tight') ``` #### File: jfactors/flattened/unit_sphere.py ```python import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import matplotlib.tri as mtri import sys sys.path.append('../../../code/jfactors/') sys.path.append('../../../code/m2m/') import jfactors_py as cJ import seaborn as sns from matplotlib import _cntr as cntr from collections import namedtuple ## ============================================================================ ## Ret 2 properties ## Need to repeat this here rather than importing from ret_2 because there ## is some problem with the 3D plotting otherwise... DwarfProperties = namedtuple("DwarfProperties","r_maj_exp r_maj Distance Velocity_dispersion e") RetII = DwarfProperties(3.37,3.37*1.67,30.,3.22,0.6) ## in arcmin, kpc, km/s r_maj_exp = RetII.r_maj_exp ## arcmin r_maj = RetII.r_maj #arcmin D = RetII.Distance #kpc slos = RetII.Velocity_dispersion #km/s rh= (r_maj/60./180.*np.pi)*D ## in units kpc ## ============================================================================ def unit_sphere(outfile,gf=True,ell=False): ''' Compute stuff on a unit sphere ''' ''' If ell = True, computes observed ellipticity ''' ''' If ell = False, computes correction factors ''' ''' Here we have specialized to the triaxial case ''' ## ======================================================================= ## 1. Create maps of the correction factor and ellipticity over sphere ## Using T = 0.55 ba=0.733 ca=0.4 ang = 0.5 (n, m) = (160,160) fac=1. # Meshing a unit sphere according to n, m phi = np.linspace(0, 2 * np.pi, num=n, endpoint=False) theta = np.linspace(np.pi * 1./(m+1), np.pi*(1-1./(m+1)), num=m, endpoint=False) phi, theta = np.meshgrid(phi, theta) phi, theta = phi.ravel(), theta.ravel() phi = np.append(phi, [0.]) # Adding the north pole... theta = np.append(theta, [0.]) phi = np.append(phi, [0.]) # Adding the south pole... theta = np.append(theta, [np.pi]) mesh_x, mesh_y = (theta*np.cos(phi), theta*np.sin(phi)) triangles = mtri.Triangulation(mesh_x, mesh_y).triangles x, y, z = fac*np.sin(theta)*np.cos(phi), fac*np.sin(theta)*np.sin(phi), fac*np.cos(theta) # Defining a custom color scalar field sphM = cJ.PaperModel(1.,0.999,rh,slos,True) sph = sphM.J_factor(0.,0.,D,ang,False,False)[0] pM = cJ.PaperModel(ba,ca,rh,slos,True) ## We have the option of colouring the sphere according to J-factor or ## ellipticity -- if ell = True colour by ellipticity def fnn(M,Th,Ph): if(ell): return M.ellipticity(Th,Ph) else: sphl = sph if(gf): sm = cJ.PaperModel(1.,1.,rh*np.sqrt(M.ellipticity(Th,Ph)),slos,True) sphl = sm.J_factor(Th,Ph,D,ang,False,False)[0] print Th,Ph,sphl return M.J_factor(Th,Ph,D,ang,False,False)[0]/sphl ## Create a mesh that only covers an octant of the sphere -- as triaxial phi2 = np.linspace(0, np.pi/2., num=n/4+1, endpoint=True) theta2 = np.linspace(np.pi * 1./(m+1), np.pi/2., num=m/2+1, endpoint=True) phi2, theta2 = np.meshgrid(phi2, theta2) phi2, theta2 = phi2.ravel(), theta2.ravel() phi2 = np.append(phi2, [0.]) # Adding the north pole... theta2 = np.append(theta2, [0.]) vals = np.array(map(lambda t,p:fnn(pM,t,p),theta2,phi2)) ## Now stack the results to cover the whole sphere allvals= np.reshape(vals[:-1],(m/2+1,n/4+1)) allvals = np.hstack((allvals,allvals[:,::-1][:,1:])) allvals = np.hstack((allvals,allvals[:,1:-1])) allvals = np.vstack((allvals,allvals[::-1,:][1:-1,:])) allvals = np.append(np.append(allvals,vals[-1]),vals[-1]) allvals = allvals.ravel() ## The colour is the average over the values on the triangle colors = np.mean(np.log10(allvals[triangles]), axis=1) if(ell): colors = np.mean(allvals[triangles], axis=1) ## Create a map of the ellipticity on the sphere ellip = np.array(map(lambda t,p:pM.ellipticity(t,p),theta2,phi2)) ellip_all= np.reshape(ellip[:-1],(m/2+1,n/4+1)) ellip_all = np.hstack((ellip_all,ellip_all[:,::-1][:,1:])) ellip_all = np.hstack((ellip_all,ellip_all[:,1:-1])) ellip_all = np.vstack((ellip_all,ellip_all[::-1,:][1:-1,:])) ellip_all = np.append(np.append(ellip_all,ellip[-1]),ellip[-1]) ellip_all = ellip_all.ravel() ## ======================================================================= ## 2. Plot the colour map fig = plt.figure(figsize=[3.5,4.]) ax = fig.gca(projection='3d') ax.set_aspect('equal') cmap = sns.cubehelix_palette(8,start=.5,rot=-.75,as_cmap=True) triang = mtri.Triangulation(x, y, triangles) collec = ax.plot_trisurf(triang, z, cmap=cmap, shade=False, linewidth=0.,zorder=0) collec.set_array(colors) collec.autoscale() lbl = r'$\mathcal{F}_\mathrm{J}$' if(ell): lbl = r'$1-e$' plt.colorbar(collec,orientation='horizontal',label=lbl) # ax = plt.gca() ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_zticklabels([]) ax.dist=7. max_range = np.array([x.max()-x.min(), y.max()-y.min(), z.max()-z.min()]).max() / 2.0 mean_x = x.mean() mean_y = y.mean() mean_z = z.mean() ax.set_xlim(mean_x - max_range, mean_x + max_range) ax.set_ylim(mean_y - max_range, mean_y + max_range) ax.set_zlim(mean_z - max_range, mean_z + max_range) ## ======================================================================= ## 3. Add axes #draw a vector from matplotlib.patches import FancyArrowPatch from mpl_toolkits.mplot3d import proj3d class Arrow3D(FancyArrowPatch): def __init__(self, xs, ys, zs, *args, **kwargs): FancyArrowPatch.__init__(self, (0,0), (0,0), *args, **kwargs) self._verts3d = xs, ys, zs def draw(self, renderer): xs3d, ys3d, zs3d = self._verts3d xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M) self.set_positions((xs[0],ys[0]),(xs[1],ys[1])) FancyArrowPatch.draw(self, renderer) a = Arrow3D([-.8,-.8],[-.85,-.85],[.85,1.2], mutation_scale=40, lw=1, arrowstyle="-|>", color="k") ax.add_artist(a) ax.text(-.83,-.95,1.125, r"$z$") a = Arrow3D([-.8,-.45],[-.85,-.85],[.85,.85], mutation_scale=40, lw=1, arrowstyle="-|>", color="k") ax.text(-.62,-.9,0.77, r"$x$") ax.add_artist(a) a = Arrow3D([-.8,-.8],[-.85,-.5],[.85,.85], mutation_scale=40, lw=1, arrowstyle="-|>", color="k") ax.text(-.83,-.62,0.9, r"$y$") ax.add_artist(a) ## ======================================================================= ## 4. Make a small ellipsoidal inset that shows isodensity phis = np.linspace(0, 2 * np.pi, num=n/(n/40), endpoint=False) thetas = np.linspace(np.pi * 1./(m+1), np.pi*(1-1./(m+1)), num=m/(m/40), endpoint=False) phis, thetas = np.meshgrid(phis, thetas) phis, thetas = phis.ravel(), thetas.ravel() phis = np.append(phis, [0.]) # Adding the north pole... thetas = np.append(thetas, [0.]) phis = np.append(phis, [0.]) # Adding the south pole... thetas = np.append(thetas, [np.pi]) xs, ys, zs = fac*np.sin(thetas)*np.cos(phis), fac*np.sin(thetas)*np.sin(phis), fac*np.cos(thetas) mesh_xs, mesh_ys = (thetas*np.cos(phis)-.7, thetas*np.sin(phis)*ba-.7) triangles = mtri.Triangulation(mesh_xs, mesh_ys).triangles fac = 0.3 triangs = mtri.Triangulation(fac*xs-.7, fac*ba*ys-.7, triangles) collec = ax.plot_trisurf(triangs, fac*ca*zs-.9, color=sns.color_palette()[0],shade=True, linewidth=0.1,zorder=1) ax.view_init(28,-62) ax.dist=7. ## ======================================================================= ## 5. Plot contours of constant observed ellipticity -- note we need to ## mask out those behind the sphere ae = ax.azim,ax.elev ae = np.deg2rad(ae) ae[1] = np.pi/2.-ae[1] ae[0] = ae[0]-np.pi def dotpp(Th,Ph): r = np.array([np.sin(ae[1])*np.cos(ae[0]),np.sin(ae[1])*np.sin(ae[0]),np.cos(ae[1])]) vv = np.array([np.sin(Th)*np.cos(Ph),np.sin(Th)*np.sin(Ph),np.cos(Th)]) return np.dot(r,vv) phi = np.reshape(phi[:-2],(n,m)) ellip_all = np.reshape(ellip_all[:-2],(n,m)) theta = np.reshape(theta[:-2],(n,m)) phi = phi[:,3*n/40:25*n/40] theta = theta[:,3*n/40:25*n/40] ellip_all = ellip_all[:,3*n/40:25*n/40] ## add contours C=cntr.Cntr(phi,theta,ellip_all) contour_list = [0.5,0.6,0.7,0.8,0.9] def plot_contour(th,ph): doo = np.array(map(lambda t,p:dotpp(t,p),th,ph)) th = th[doo>0.] ph = ph[doo>0.] fac = 1. x,y,z = fac*np.sin(th)*np.cos(ph-np.pi), fac*np.sin(th)*np.sin(ph-np.pi), fac*np.cos(th) ax.plot(x,y,z,color='k',zorder=1,lw=0.5) for cc in contour_list: res = C.trace(cc) nseg = len(res) // 2 segs, codes = res[:nseg], res[nseg:] ss = segs[0] ss = res[0] for j in ss: th,ph=ss.T[1],ss.T[0] plot_contour(th,ph) plot_contour(np.pi-th,ph) plot_contour(th,np.pi-ph) plot_contour(np.pi-th,np.pi-ph) # plot_contour(th,ph+np.pi) plot_contour(np.pi-th,ph+np.pi) plot_contour(th,2.*np.pi-ph) plot_contour(np.pi-th,2.*np.pi-ph) th,ph = np.pi/2.-0.03,-np.pi/2.-0.3 ax.text3D(np.sin(th)*np.cos(ph),np.sin(th)*np.cos(ph),np.cos(th),r'$e=0.5$',zdir=np.array([-np.sin(ph),np.cos(ph),0.1]),fontsize=6,color='k') th,ph = np.pi/2.-0.4,-np.pi/2.-0.3 ax.text3D(np.sin(th)*np.cos(ph),np.sin(th)*np.cos(ph),np.cos(th),r'$e=0.4$',zdir=np.array([-np.sin(ph),np.cos(ph),0.]),fontsize=6,color='k') th,ph = np.pi/2.-0.68,-np.pi/2.-0.1 ax.text3D(np.sin(th)*np.cos(ph),np.sin(th)*np.cos(ph),np.cos(th),r'$e=0.3$',zdir=np.array([-np.sin(ph),np.cos(ph),-0.65]),fontsize=6,color='k') th,ph = np.pi/2.-0.6,-np.pi/2.+0.22 ax.text3D(np.sin(th)*np.cos(ph),np.sin(th)*np.cos(ph),np.cos(th),r'$e=0.2$',zdir=np.array([-np.sin(ph),np.cos(ph),-1.85]),fontsize=6,color='k') th,ph = np.pi/2.-0.5,-np.pi/2.+0.36 ax.text3D(np.sin(th)*np.cos(ph),np.sin(th)*np.cos(ph),np.cos(th),r'$e=0.1$',zdir=np.array([-np.sin(ph),np.cos(ph),-1.8]),fontsize=6,color='k') plt.savefig(outfile,bbox_inches='tight',dpi=1000) ## =========================================================================== if __name__ == '__main__': unit_sphere('triax_figure_gf.png',gf=True,ell=False) unit_sphere('triax_figure_ell.png',ell=True) ## =========================================================================== ``` #### File: jfactors/spherical/J_D_table.py ```python import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from scipy.special import gamma as Gamma from spherical_Jfactors import * ### A set of strings to convert pandas table names into nicer display names posh_names= {'BootesI':u'Boötes I', 'Carina':'Carina', 'Coma':'Coma Berenices', 'CVnI':'Canes Venatici I', 'CVnII':'Canes Venatici II', 'Draco':'Draco', 'Fornax':'Fornax', 'Hercules':'Hercules', 'LeoI':'Leo I', 'LeoII':'Leo II', 'LeoIV':'Leo IV', 'LeoV':'Leo V', 'LeoT':'Leo T', 'Sculptor':'Sculptor', 'Segue1':'Segue 1', 'Segue2':'Segue 2', 'Sextans':'Sextans', 'UrsaMajorI':'Ursa Major I', 'UrsaMajorII':'Ursa Major II', 'UrsaMinor':'Ursa Minor', 'ReticulumII': 'Reticulum II', 'TucanaII':'Tucana II', 'HydraII':'Hydra II', 'HorologiumI':'Horologium I', 'PiscesII':'Pisces II', 'GruI':'Grus I', 'Willman1':'Willman 1'} posh_latex_names= {'BootesI':u'Bo\\"otes I', 'Carina':'Carina', 'Coma':'Coma Berenices', 'CVnI':'Canes Venatici I', 'CVnII':'Canes Venatici II', 'Draco':'Draco', 'Fornax':'Fornax', 'Hercules':'Hercules', 'LeoI':'Leo I', 'LeoII':'Leo II', 'LeoIV':'Leo IV', 'LeoV':'Leo V', 'LeoT':'Leo T', 'Sculptor':'Sculptor', 'Segue1':'Segue 1', 'Segue2':'Segue 2', 'Sextans':'Sextans', 'UrsaMajorI':'Ursa Major I', 'UrsaMajorII':'Ursa Major II', 'UrsaMinor':'Ursa Minor', 'ReticulumII': 'Reticulum II', 'TucanaII':'Tucana II', 'HydraII':'Hydra II', 'HorologiumI':'Horologium I', 'PiscesII':'Pisces II', 'GruI':'Grus I', 'Willman1':'<NAME>'} bonnivard_names = {'BootesI':'boo1', 'Carina':'car', 'Coma':'coma', 'CVnI':'cvn1', 'CVnII':'cvn2', 'Draco':'dra', 'Fornax':'for', 'Hercules':'her', 'LeoI':'leo1', 'LeoII':'leo2', 'LeoIV':'leo4', 'LeoV':'leo5', 'LeoT':'leot', 'Sculptor':'scl', 'Segue1':'seg1', 'Segue2':'seg2', 'Sextans':'sex', 'UrsaMajorI':'uma1', 'UrsaMajorII':'uma2', 'UrsaMinor':'umi', 'Willman1':'wil1'} def read_bonnivard_table(Name): ''' Reads annihilation data from Bonnivard (2015) ''' GEV2cm5toMsol2kpc5 = 2.2482330e-07 if Name in bonnivard_names: data = np.genfromtxt('../data/bonnivard/'+bonnivard_names[Name]+'_Jalphaint_cls.output', skip_header=5) data = np.delete(data,[2,5],1) df = pd.DataFrame(data,columns=['alpha','J','eJm68','eJp68','eJm95','eJp95']) df['J']=np.log10(df['J']/GEV2cm5toMsol2kpc5) df['eJm68']=np.log10(df['eJm68']/GEV2cm5toMsol2kpc5) df['eJp68']=np.log10(df['eJp68']/GEV2cm5toMsol2kpc5) df['eJm95']=np.log10(df['eJm95']/GEV2cm5toMsol2kpc5) df['eJp95']=np.log10(df['eJp95']/GEV2cm5toMsol2kpc5) return df else: return pd.DataFrame() def read_bonnivard_table_decay(Name): ''' Reads decay data from Bonnivard (2015)''' GEVcm2toMsolkpc2 = 8.5358230e-15 if Name in bonnivard_names: data = np.genfromtxt('../data/bonnivard/'+bonnivard_names[Name]+'_Dalphaint_cls.output', skip_header=5) data = np.delete(data,[2,5],1) df = pd.DataFrame(data,columns=['alpha','D','eDm68','eDp68','eDm95','eDp95']) df['D']=np.log10(df['D']/GEVcm2toMsolkpc2 ) df['eDm68']=np.log10(df['eDm68']/GEVcm2toMsolkpc2) df['eDp68']=np.log10(df['eDp68']/GEVcm2toMsolkpc2) df['eDm95']=np.log10(df['eDm95']/GEVcm2toMsolkpc2) df['eDp95']=np.log10(df['eDp95']/GEVcm2toMsolkpc2) return df else: return pd.DataFrame() def read_ackermann_data(): ''' Reads data from the Ackermann Fermi-LAT paper ''' names = np.genfromtxt('../data/ackermann/ackermann_dwarfs.dat',skip_header=2,usecols=0,dtype=str) data = np.genfromtxt('../data/ackermann/ackermann_dwarfs.dat',skip_header=2)[:,4:6] df = pd.DataFrame(data,columns=['J','eJ']) df['name']=names return df def make_table(data,geo_factor=True): ''' Outputs two tables of J- and D-factors for the dwarfs using the NFW formula with rs = 5 R_half. geo_factor multiplies the half-light radii by a factor sqrt(1-e) to ellipticity correct them for use in the spherical formulae ''' geof = np.ones(len(data)) if(geo_factor): geof = np.sqrt(1.-data['ellip']) rnfwrs = 5. N=100000 WEJ2 = wyns_formulaJ_error_sample(data,gamma=1.,angle='Half_05',N=N, nfw=rnfwrs*data['R_half']*geof/1000., geo_factor=geo_factor, walker_or_wolf="walker") WED2 = wyns_formulaD_error_sample(data,gamma=1.,angle='Half_05',N=N, nfw=rnfwrs*data['R_half']*geof/1000., geo_factor=geo_factor, walker_or_wolf="walker") WEJ3 = wyns_formulaJ_error_sample(data,gamma=1.,angle='Max',N=N, nfw=rnfwrs*data['R_half']*geof/1000., geo_factor=geo_factor, walker_or_wolf="walker") WED3 = wyns_formulaD_error_sample(data,gamma=1.,angle='Max',N=N, nfw=rnfwrs*data['R_half']*geof/1000., geo_factor=geo_factor, walker_or_wolf="walker") outfile=open('dwarfs_Jfactors.dat','w') outfile.write('\\begin{tabular}{llccccc}\n') outfile.write('\\hline\n\\hline\n') outfile.write('Name & Distance & $\\theta_\mathrm{max}$ & $\log_{10} J(\\theta_\mathrm{max})$ & $\log_{10} J(0.5^\circ)$ & $\log_{10} D(\\theta_\mathrm{max})$ & $\log_{10} D(0.5^\circ)$\\\\ \n') outfile.write('&[$\mathrm{kpc}$]& [$^\circ$] & [$\mathrm{GeV^2\,cm}^{-5}$] & [$\mathrm{GeV^2\,cm}^{-5}$] & [$\mathrm{GeV\,cm}^{-2}$] & [$\mathrm{GeV\,cm}^{-2}$]\\\\\n') outfile.write('\\hline\n') for i in range(len(WEJ2)): string= posh_latex_names[data['Name'][i]]+\ "&$%0.0f\pm%0.0f$"%(data['D'][i],data['eD'][i])+" & $"+\ str(data['theta_max'][i])+"$&"+\ "$%0.2f_{-%0.2f}^{+%0.2f}$&"%(WEJ3[i][0],WEJ3[i][1],WEJ3[i][2]) if(i>22): string+="-&" else: string+="$%0.2f_{-%0.2f}^{+%0.2f}$&"%(WEJ2[i][0],WEJ2[i][1],WEJ2[i][2]) string+="$%0.2f_{-%0.2f}^{+%0.2f}$&"%(WED3[i][0],WED3[i][1],WED3[i][2]) if(i>22): string+="-"+"\\\\\n" else: string+="$%0.2f_{-%0.2f}^{+%0.2f}$"%(WED2[i][0],WEJ3[i][1],WEJ3[i][2])+"\\\\\n" if(i==8 or i==23): outfile.write('\\hline\n') outfile.write(string) outfile.write('\\hline\n') outfile.write('\end{tabular}\n') outfile.close() outfile=open('dwarfs_Jfactors_ascii.dat','w') outfile.write('#Name D eD thetamax Jmax eJmax1 eJmax2 J05 eJ051 eJ052 Dmax eDmax1 eDmax2 D05 eD051 eD052\n') for i in range(len(WEJ2)): string= data['Name'][i]+\ " %0.0f %0.0f "%(data['D'][i],data['eD'][i])+\ str(data['theta_max'][i])+" "+\ "%0.2f %0.2f %0.2f "%(WEJ3[i][0],WEJ3[i][1],WEJ3[i][2]) if(i>22): string+="%0.2f %0.2f %0.2f "%(WEJ3[i][0],WEJ3[i][1],WEJ3[i][2]) else: string+="%0.2f %0.2f %0.2f "%(WEJ2[i][0],WEJ2[i][1],WEJ2[i][2]) string+="%0.2f %0.2f %0.2f "%(WED3[i][0],WED3[i][1],WED3[i][2]) if(i>22): string+="%0.2f %0.2f %0.2f\n"%(WED3[i][0],WED3[i][1],WED3[i][2]) else: string+="%0.2f %0.2f %0.2f\n"%(WED2[i][0],WEJ3[i][1],WEJ3[i][2]) outfile.write(string) outfile.close() def add_thetas(ax,xrang,thetalist): ''' Add theta values to a plot ''' ylim=ax.get_ylim() ax.set_ylim(ylim[0]-0.5,ylim[1]) for x,t in zip(xrang,thetalist): ax.annotate(str(t)+r'$^\circ$',xy=(x,ylim[0]),horizontalalignment='center',verticalalignment='bottom',rotation=90) def summary_data_plot(): ''' Makes plots of data -- half-light radii, velocity dispersions and distances, along with J-factor estimates from the various methods ''' gs_gammas=np.genfromtxt('geringer_sameth_gamma.dat',skip_header=49) cd=data[data.Class=='CD'] uf=data[data.Class=='UF'] labelrange=np.linspace(0.,len(data),len(data)) labelscd=labelrange[:len(cd)] labelsuf=labelrange[len(cd):] f,a=plt.subplots(2,4,figsize=(16,8)) plt.subplots_adjust(hspace=0.5) for ai in a: for aj in ai: aj.set_xticks(labelrange) aj.set_xticklabels(data.Name.values,rotation=90) aj.set_xlim(labelrange[0]-1,labelrange[-1]+1) for i in a[1]: ls=i.axvline(labelscd[-1]+.5,c='k',ls='dashed') ls.set_dashes((2,1)) ls=i.axvline(labelsuf[13]+.5,c='k',ls='dashed') ls.set_dashes((2,1)) a[0][0].errorbar(labelscd,cd.D,yerr=cd.eD,fmt='.') a[0][0].errorbar(labelsuf,uf.D.values,yerr=uf.eD.values,fmt='.') a[0][0].set_ylabel(r'Distance/kpc') a[0][1].errorbar(labelscd,cd.R_half,yerr=[cd.eR_half2,cd.eR_half1],fmt='.') a[0][1].errorbar(labelsuf,uf.R_half,yerr=[uf.eR_half2,uf.eR_half1],fmt='.') a[0][1].set_ylabel(r'$R_{\mathrm{half}}/\mathrm{pc}$') a[0][2].errorbar(labelscd,cd.sigma_los,yerr=[cd.esigma_los2,cd.esigma_los1],fmt='.') a[0][2].errorbar(labelsuf,uf.sigma_los,yerr=[uf.esigma_los2,uf.esigma_los1],fmt='.') a[0][2].arrow(labelsuf[9],uf.sigma_los.values[9],0.,-0.5,fc=sns.color_palette()[1],ec=sns.color_palette()[1],head_length=0.2,head_width=0.3) a[0][2].arrow(labelsuf[15],uf.sigma_los.values[15],0.,-0.5,fc=sns.color_palette()[1],ec=sns.color_palette()[1],head_length=0.2,head_width=0.3) a[0][2].arrow(labelsuf[17],uf.sigma_los.values[17],0.,-0.5,fc=sns.color_palette()[1],ec=sns.color_palette()[1],head_length=0.2,head_width=0.3) a[0][2].set_ylabel(r'$\sigma_{\mathrm{los}}/\mathrm{km\,s}^{-1}$') a[1][0].errorbar(labelscd,cd.Jmax,yerr=[cd.eJmax2,cd.eJmax1],fmt='.',color='k') a[1][0].errorbar(labelsuf,uf.Jmax,yerr=[uf.eJmax2,uf.eJmax1],fmt='.',color='k') WE = wyns_formulaJ_error_sample(data,gamma=1.) for i in range(len(data)): a[1][0].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[2]) WE = wyns_formulaJ_error_sample(data,gamma=0.51) for i in range(len(data)): a[1][0].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[4]) WE = wyns_formulaJ_error_sample(data,gamma=1.,nfw=5.*data['R_half']/1000.) for i in range(len(data)): a[1][0].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[0]) add_thetas(a[1][0],labelrange,data.theta_max) a[1][0].set_ylabel(r'$\log_{10}(J_\mathrm{max}/\,\mathrm{GeV^2\,cm}^{-5})$') a[1][1].errorbar(labelscd,cd.Jmax.values-np.log10(2.),yerr=[cd.eJmax2,cd.eJmax1],fmt='.',label="",color='k') a[1][1].errorbar(labelsuf,uf.Jmax.values-np.log10(2.),yerr=[uf.eJmax2,uf.eJmax1],fmt='.',label="",color='k') WE = wyns_formulaJ_error_sample(data,gamma=1.,angle='Half') for i in range(len(data)): label=None if(i==0): label=r'$\gamma=1$' a[1][1].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[2],label=label) WE = wyns_formulaJ_error_sample(data,gamma=0.51,angle='Half') for i in range(len(data)): label=None if(i==0): label=r'$\gamma=0.51$' a[1][1].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[4],label=label) WE = wyns_formulaJ_error_sample(data,gamma=1.,angle='Half',nfw=5.*data['R_half']/1000.) for i in range(len(data)): label=None if(i==0): label=r'NFW' a[1][1].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[0],label=label) gammas = gs_gammas.T[23] while(len(gammas)<len(data)): gammas = np.append(gammas,0.8) WE = wyns_formulaJ_error_sample(data,gammaarray=gammas,angle='Half') for i in range(len(data)): label=None if(i==0): label=r'$\gamma_\mathrm{GS}$' a[1][1].fill_between([labelrange[i]-0.3,labelrange[i]+0.3], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=1.,facecolor="None",label=label) add_thetas(a[1][1],labelrange,data.theta_half) a[1][1].legend(loc="lower center",ncol=2, bbox_to_anchor=(0.5, 1.0)) a[1][1].set_ylabel(r'$\log_{10}(J_\mathrm{half}/\,\mathrm{GeV^2\,cm}^{-5})$') a[1][2].errorbar(labelscd,cd.dJmax.values-np.log10(2.),yerr=[cd.eJmax2,cd.edJmax1],fmt='.',color='k') a[1][2].errorbar(labelsuf,uf.dJmax.values-np.log10(2.),yerr=[uf.edJmax2,uf.edJmax1],fmt='.',color='k') WE = wyns_formulaD_error_sample(data,gamma=1.) for i in range(len(data)): label=None if(i==0): label=r'$\gamma=1.$' a[1][2].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[2],label=label) WE = wyns_formulaD_error_sample(data,gamma=1.49) for i in range(len(data)): label=None if(i==0): label=r'$\gamma=1.49$' a[1][2].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[4],label=label) WE = wyns_formulaD_error_sample(data,gamma=1.,nfw=5.*data['R_half']/1000.) for i in range(len(data)): label=None if(i==0): label=r'NFW' a[1][2].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[0],label=label) WE = wyns_formulaD_error_sample(data,gammaarray=gammas,angle='Half') for i in range(len(data)): label=None if(i==0): label=r'$\gamma_\mathrm{GS}$' a[1][2].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=1.,facecolor="None",label=label) add_thetas(a[1][2],labelrange,data.dtheta_half) a[1][2].legend(loc="lower center",ncol=2, bbox_to_anchor=(0.5, 1.0)) a[1][2].set_ylabel(r'$\log_{10}(D_\mathrm{half}/\,\mathrm{GeV\,cm}^{-2})$') a[1][3].errorbar(labelscd,cd.Jhalf.values,yerr=[cd.eJhalf2,cd.eJhalf1],fmt='.',label="",color='k') a[1][3].errorbar(labelsuf,uf.Jhalf.values,yerr=[uf.eJhalf2,uf.eJhalf1],fmt='.',label="",color='k') WE = wyns_formulaJ_error_sample(data,gamma=1.,angle='Half' ) for i in range(len(data)): label=None if(i==0): label=r'$\gamma=1$' a[1][3].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[2],label=label) WE = wyns_formulaJ_error_sample(data,gamma=0.51,angle='Half_05') for i in range(len(data)): label=None if(i==0): label=r'$\gamma=0.51$' a[1][3].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[4],label=label) WE = wyns_formulaJ_error_sample(data,gamma=1.,angle='Half_05',nfw=5.*data['R_half']/1000.) for i in range(len(data)): label=None if(i==0): label=r'NFW' a[1][3].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[0],label=label) gammas = gs_gammas.T[23] while(len(gammas)<len(data)): gammas = np.append(gammas,0.8) WE = wyns_formulaJ_error_sample(data,gammaarray=gammas,angle='Half_05') for i in range(len(data)): label=None if(i==0): label=r'$\gamma_\mathrm{GS}$' a[1][3].fill_between([labelrange[i]-0.3,labelrange[i]+0.3], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=1.,facecolor="None",label=label) add_thetas(a[1][3],labelrange,np.ones(0.5)*len(data)) a[1][3].legend(loc="lower center",ncol=2, bbox_to_anchor=(0.5, 1.0)) a[1][3].set_ylabel(r'$\log_{10}(J(0.5^\circ)/\,\mathrm{GeV^2\,cm}^{-5})$') plt.savefig('dwarfs_data.pdf',bbox_inches='tight') if __name__ == '__main__': data = pd.read_csv('../data/data.dat',sep=' ') make_table(data) exit() ``` #### File: jfactors/spherical/spherical_Jfactors.py ```python import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from scipy.special import gamma as Gamma from scipy.integrate import quad G = 4.300918e-6 ## in units solar mass, km/s kpc GEV2cm5toMsol2kpc5 = 2.2482330e-07 GEVcm2toMsolkpc2 = 8.5358230e-15 def integrate_J_spherical_alphabetagamma(thetamax,D,rho0,rs,alpha,beta,gamma,rt): ''' J for spherical alpha,beta,gamma model ''' def rho(r): return np.power(r/rs,-gamma)*np.power(1+np.power(r/rs,alpha),((gamma-beta)/alpha))*np.sqrt(1-np.tanh(r/rt)**2) def J(ll,th): z = ll b = np.tan(th)*D x = np.sqrt(b*b+z*z) return np.sin(th)*(rho(x)**2) return np.log10(rho0*rho0*2.*np.pi*quad(lambda y: quad(lambda z: J(y,z), 0., thetamax)[0],-np.inf,np.inf)[0]/GEV2cm5toMsol2kpc5) def integrate_J_farfield_spherical_alphabetagamma(thetamax,D,rho0,rs,alpha,beta,gamma,rt): ''' J for spherical alpha,beta,gamma model in far-field limit''' def rho(r): return np.power(r/rs,-gamma)*np.power(1+np.power(r/rs,alpha),((gamma-beta)/alpha))*np.sqrt(1-np.tanh(r/rt)**2) def J(ll,b): z = ll x = np.sqrt(b*b+z*z) return b*(rho(x)**2) return np.log10(rho0*rho0*2.*np.pi*quad(lambda y: quad(lambda z: J(y,z), 0., thetamax*D)[0],-np.inf,np.inf)[0]/D/D/GEV2cm5toMsol2kpc5) def integrate_D_spherical_alphabetagamma(thetamax,D,rho0,rs,alpha,beta,gamma,rt): ''' D for spherical alpha,beta,gamma model''' def rho(r): return np.power(r/rs,-gamma)*np.power(1+np.power(r/rs,alpha),((gamma-beta)/alpha))*np.sqrt(1-np.tanh(r/rt)**2) def J(ll,th): z = ll b = np.tan(th)*D x = np.sqrt(b*b+z*z) return np.sin(th)*rho(x) return np.log10(rho0*2.*np.pi*quad(lambda y: quad(lambda z: J(y,z), 0., thetamax)[0],-np.inf,np.inf)[0]/GEVcm2toMsolkpc2) def integrate_D_farfield_spherical_alphabetagamma(thetamax,D,rho0,rs,alpha,beta,gamma,rt): ''' D for spherical alpha,beta,gamma model in far-field limit''' def rho(r): return np.power(r/rs,-gamma)*np.power(1+np.power(r/rs,alpha),((gamma-beta)/alpha))*np.sqrt(1-np.tanh(r/rt)**2) def J(ll,b): z = ll x = np.sqrt(b*b+z*z) return b*rho(x) return np.log10(rho0*2.*np.pi*quad(lambda y: quad(lambda z: J(y,z), 0., thetamax*D)[0],-np.inf,np.inf)[0]/D/D/GEVcm2toMsolkpc2) def integrate_rho_spherical_alphabetagamma(R,rho0,rs,alpha,beta,gamma,rt): def rho(r): return np.power(r/rs,-gamma)*np.power(1+np.power(r/rs,alpha),((gamma-beta)/alpha))*np.sqrt(1-np.tanh(r/rt)**2) def J(x): return x*x*rho(x) return 4.*np.pi*rho0*quad(J, 0., R)[0] def asymmetric_gaussian_samples(mean,sigma,N=1): ''' sigmas = [lower error bar, upper error bar] ''' updown=(np.random.uniform(size=N)>0.5) sigmas=[sigma[i] for i in updown] return mean+(2*updown-1.)*np.fabs(np.random.normal(loc=0.,scale=sigmas)) def barlow_asymmetric_gaussian_samples(mean,sigma,N=1): ## Taken from Barlow (2003) ## This produces very asymmetric looking distributions with sharp cut-offs ## on the smaller error side ## The bifurcated (or dimidated as Barlow corrects us) Gaussian ## (implemented above) is in my mind better. alpha = .5*(sigma[1]-sigma[0]) sig = .5*(sigma[1]+sigma[0]) u = np.random.normal(loc=0.,scale=1.,size=N) return sig*u+mean+alpha*u*u def HernquistX(s): """ Computes X function from equations (33) & (34) of Hernquist (1990) """ if(s<0.): raise ValueError("s must be positive in Hernquist X function") elif(s<1.): return np.log((1+np.sqrt(1-s*s))/s)/np.sqrt(1-s*s) elif(s==1.): return 1. else: return np.arccos(1./s)/np.sqrt(s*s-1) def wyns_formulaJ_NFW(rho0,r_s,distance,angle): ''' Analytic integration of J factor for NFW ''' Delta2 = r_s**2-distance**2*angle**2 X = distance*angle/r_s J = 2.*distance*angle*(7.*distance*r_s**3*angle-4.*distance**3*r_s*angle**3+3.*np.pi*Delta2**2)+6./r_s*(2*Delta2**3-2*r_s**4*Delta2-distance**4*r_s**2*angle**4)*np.array(map(lambda s:HernquistX(s),X)) J *= np.pi*rho0**2*r_s**2/(3.*distance**2*Delta2**2) return np.log10(J/GEV2cm5toMsol2kpc5) def wyns_formulaJ_NFW_data(sigma_los,r_half,distance,angle,r_s,walker_or_wolf="wolf"): ''' J factor from M_half for NFW profile sigma_los in km/s, r_half in pc, distance in kpc, angle in deg, r_s in kpc ''' r_half=0.001*r_half angle=np.deg2rad(angle) delta_Omega = 2.*np.pi*(1-np.cos(angle)) if(walker_or_wolf=="wolf"): Mhalf = 4.*sigma_los**2*r_half/G r_half=4./3.*r_half rho0 = Mhalf/4./np.pi/r_s**3/(np.log((r_s+r_half)/r_s)-r_half/(r_s+r_half)) return wyns_formulaJ_NFW(rho0,r_s,distance,angle) else: Mhalf = 2.5*sigma_los**2*r_half/G rho0 = Mhalf/4./np.pi/r_s**3/(np.log((r_s+r_half)/r_s)-r_half/(r_s+r_half)) return wyns_formulaJ_NFW(rho0,r_s,distance,angle) def wyns_formulaD_NFW(rho0,r_s,distance,angle): ''' Analytic integration of J factor for NFW ''' X = distance*angle/r_s D = np.log(X/2.)+np.array(map(lambda s:HernquistX(s),X)) D *= 4.*np.pi*rho0*r_s**3/distance**2 return np.log10(D/GEVcm2toMsolkpc2) def wyns_formulaD_NFW_data(sigma_los,r_half,distance,angle,r_s,walker_or_wolf="wolf"): ''' D factor from M_half for NFW profile sigma_los in km/s, r_half in pc, distance in kpc, angle in deg, r_s in kpc ''' r_half=0.001*r_half angle=np.deg2rad(angle) delta_Omega = 2.*np.pi*(1-np.cos(angle)) if(walker_or_wolf=="wolf"): Mhalf = 4.*sigma_los**2*r_half/G r_half=4./3.*r_half rho0 = Mhalf/4./np.pi/r_s**3/(np.log((r_s+r_half)/r_s)-r_half/(r_s+r_half)) return wyns_formulaD_NFW(rho0,r_s,distance,angle) else: Mhalf = 2.5*sigma_los**2*r_half/G rho0 = Mhalf/4./np.pi/r_s**3/(np.log((r_s+r_half)/r_s)-r_half/(r_s+r_half)) return wyns_formulaD_NFW(rho0,r_s,distance,angle) def wyns_formulaJ(sigma_los,r_half,distance,angle,gamma=1.,walker_or_wolf="wolf"): ''' J factor from M_half for power-law profile (slope = gamma) sigma_los in km/s, r_half in pc, distance in kpc, angle in deg, r_s in kpc ''' r_half=0.001*r_half angle=np.deg2rad(angle) delta_Omega = 2.*np.pi*(1-np.cos(angle)) fac = (2.5/4.)**2 if(walker_or_wolf=="wolf"): fac=(0.25*(27./16.)*(4./3.)**gamma)**2 if(gamma!=1. and gamma>.5 and gamma<1.5): factor = 2.*(3.-gamma)**2*Gamma(gamma-0.5)/(np.pi**(2-gamma)*(3.-2*gamma)*Gamma(gamma)) return np.log10(factor*sigma_los**4*delta_Omega**(1.5-gamma)/G**2*distance**(1-2.*gamma)*r_half**(2*gamma-4.)/GEV2cm5toMsol2kpc5)+np.log10(fac) else: return np.log10(8./np.sqrt(np.pi)*sigma_los**4*np.sqrt(delta_Omega)/G**2/distance/(r_half**2)/GEV2cm5toMsol2kpc5)+np.log10(fac) def wyns_formulaD(sigma_los,r_half,distance,angle,gamma=1.,walker_or_wolf="wolf"): ''' D factor from M_half for power-law profile (slope = gamma) sigma_los in km/s, r_half in pc, distance in kpc, angle in deg, r_s in kpc ''' r_half=0.001*r_half angle=np.deg2rad(angle) delta_Omega = 2.*np.pi*(1-np.cos(angle)) fac = (2.5/4.) if(walker_or_wolf=="wolf"): fac=(0.25*(27./16.)*(4./3.)**gamma) if(gamma>1. and gamma<3.): factor = 2.*Gamma(gamma*0.5-0.5)/(np.pi**(1-0.5*gamma)*Gamma(gamma*0.5)) return np.log10(factor*sigma_los**2*delta_Omega**(1.5-gamma*0.5)/G*distance**(1.-gamma)*r_half**(gamma-2.)/GEVcm2toMsolkpc2)+np.log10(fac) def sample_errorsJ(sigma_los,esigma_los,r_half,er_half,distance,edistance,angle,eangle,gamma=1.,N=1000,nfw=-1.,walker_or_wolf="wolf"): ''' Samples from sigma_los (km/s), r_half (pc), distance (kpc) and angle (deg) pdfs (gaussians) and returns median J value and pm 1 sigma ''' if(esigma_los[0]==0.): ## In this case sigma_los is the 95% upper limit. We sample from a uniform distribution from 0.1 km/s to sigma_los/0.95 s=np.random.uniform(0.1,sigma_los/0.95,N) else: # s=asymmetric_gaussian_samples(sigma_los,esigma_los,N) s=np.exp(asymmetric_gaussian_samples(np.log(sigma_los),esigma_los/sigma_los,N)) # r=asymmetric_gaussian_samples(r_half,er_half,N) r=np.exp(asymmetric_gaussian_samples(np.log(r_half),er_half/r_half,N)) a=np.exp(asymmetric_gaussian_samples(np.log(angle),eangle/angle,N)) d=np.random.normal(loc=distance,scale=edistance,size=N) if(nfw>0.): wf = wyns_formulaJ_NFW_data(s,r,d,a,nfw,walker_or_wolf) else: wf = wyns_formulaJ(s,r,d,a,gamma,walker_or_wolf) mean=np.nanmedian(wf) return np.array([mean,mean-np.nanpercentile(wf,15.87),np.nanpercentile(wf,84.13)-mean]) def wyns_formulaJ_error_sample(data,gamma=1.,gammaarray=None,angle='Max',nfw=[0.],N=1000,geo_factor=True,walker_or_wolf="wolf"): ''' Performs J sampling for a set of data ''' if(len(nfw)<len(data)): nfw=-1.*np.ones(len(data)) angles=data.theta_max angerrs=[[1e-15,1e-15] for i in range(len(data))] if(angle=='Half'): angles=data.theta_half angerrs=[[data.etheta_half2[i],data.etheta_half1[i]] for i in range(len(data))] if(angle=='Half_05'): angles=0.5*np.ones(len(data)) angerrs=[[1e-15,1e-15] for i in range(len(data))] geof=np.ones(len(data)) if geo_factor: geof = np.sqrt(1.-data.ellip) if(isinstance(gammaarray,np.ndarray)): return np.array([ sample_errorsJ(data.sigma_los[i], [data.esigma_los2[i],data.esigma_los1[i]], data.R_half[i]*geof[i], [data.eR_half2[i]*geof[i], data.eR_half1[i]*geof[i]], data.D[i], data.eD[i], angles[i], angerrs[i], gammaarray[i], N=N, nfw=nfw[i], walker_or_wolf=walker_or_wolf) for i in range(len(data))]) return np.array([sample_errorsJ(data.sigma_los[i], [data.esigma_los2[i],data.esigma_los1[i]], data.R_half[i]*geof[i], [data.eR_half2[i]*geof[i], data.eR_half1[i]*geof[i]], data.D[i], data.eD[i], angles[i], angerrs[i], gamma, N=N, nfw=nfw[i], walker_or_wolf=walker_or_wolf) for i in range(len(data))]) def sample_errorsD(sigma_los,esigma_los,r_half,er_half,distance,edistance,angle,eangle,gamma=1.,N=1000,nfw=-1.,walker_or_wolf="wolf"): ''' Samples from sigma_los (km/s), r_half (pc), distance (kpc) and angle (deg) pdfs (gaussians) and returns median D value and pm 1 sigma ''' if(esigma_los[0]==0.): ## In this case sigma_los is the 95% upper limit. We sample from a uniform distribution from 0.1 km/s to sigma_los/0.95 s=np.random.uniform(0.1,sigma_los,N) else: # s=asymmetric_gaussian_samples(sigma_los,esigma_los,N) s=np.exp(asymmetric_gaussian_samples(np.log(sigma_los),esigma_los/sigma_los,N)) # r=asymmetric_gaussian_samples(r_half,er_half,N) r=np.exp(asymmetric_gaussian_samples(np.log(r_half),er_half/r_half,N)) a=np.exp(asymmetric_gaussian_samples(np.log(angle),eangle/angle,N)) d=np.random.normal(loc=distance,scale=edistance,size=N) if(nfw>0.): wf = wyns_formulaD_NFW_data(s,r,d,a,nfw,walker_or_wolf) else: wf = wyns_formulaD(s,r,d,a,gamma,walker_or_wolf) mean=np.nanmedian(wf) return np.array([mean,mean-np.nanpercentile(wf,15.87),np.nanpercentile(wf,84.13)-mean]) def wyns_formulaD_error_sample(data,gamma=1.,gammaarray=None,angle='Max',nfw=[0.],N=1000,geo_factor=True,walker_or_wolf="wolf"): ''' Performs D sampling for a set of data ''' if(len(nfw)<len(data)): nfw=-1.*np.ones(len(data)) angles=data.theta_max angerrs=[[1e-15,1e-15] for i in range(len(data))] if(angle=='Half'): angles=data.dtheta_half angerrs=[[data.edtheta_half2[i],data.edtheta_half1[i]] for i in range(len(data))] if(angle=='Half_05'): angles=0.5*np.ones(len(data)) angerrs=[[1e-15,1e-15] for i in range(len(data))] geof=np.ones(len(data)) if geo_factor: geof = np.sqrt(1.-data.ellip) if(isinstance(gammaarray,np.ndarray)): return np.array([ sample_errorsD(data.sigma_los[i], [data.esigma_los2[i],data.esigma_los1[i]], data.R_half[i]*geof[i], [data.eR_half2[i]*geof[i], data.eR_half1[i]*geof[i]], data.D[i], data.eD[i], angles[i], angerrs[i], gammaarray[i], N=N, nfw=nfw[i], walker_or_wolf=walker_or_wolf) for i in range(len(data))]) return np.array([sample_errorsD(data.sigma_los[i], [data.esigma_los2[i],data.esigma_los1[i]], data.R_half[i]*geof[i], [data.eR_half2[i]*geof[i], data.eR_half1[i]*geof[i]], data.D[i], data.eD[i], angles[i], angerrs[i], gamma, N=N, nfw=nfw[i], walker_or_wolf=walker_or_wolf) for i in range(len(data))]) # def add_thetas(ax,xrang,thetalist): # ylim=ax.get_ylim() # ax.set_ylim(ylim[0]-0.5,ylim[1]) # for x,t in zip(xrang,thetalist): # ax.annotate(str(t)+r'$^\circ$',xy=(x,ylim[0]),horizontalalignment='center',verticalalignment='bottom',rotation=90) # def make_table(data): # WEJ2 = wyns_formulaJ_error_sample(data,gamma=1.,angle='Half_05',N=10000,nfw=5.*data['R_half']/1000.) # WED2 = wyns_formulaD_error_sample(data,gamma=1.,angle='Half_05',N=10000,nfw=5.*data['R_half']/1000.) # WEJ3 = wyns_formulaJ_error_sample(data,gamma=1.,angle='Max',N=10000,nfw=5.*data['R_half']/1000.) # WED3 = wyns_formulaD_error_sample(data,gamma=1.,angle='Max',N=10000,nfw=5.*data['R_half']/1000.) # # outfile=open('dwarfs_Jfactors.dat','w') # # outfile.write('\\begin{tabular}{lccccccc}\n') # # outfile.write('\\hline\n\\hline\n') # # outfile.write('Name & $\\theta_\mathrm{max}$ & $\\theta_{0.5}$ & $\\theta_{0.5, \mathrm{decay}}$ & $\log_{10} J(\\theta_\mathrm{max})$ & $\log_{10} J(0.5^\circ)$ & $\log_{10} D(\\theta_\mathrm{max})$ & $\log_{10} D(0.5^\circ)$\\\\ \n') # # outfile.write('& [$^\circ$] & [$^\circ$] & [$^\circ$] & [$\mathrm{GeV^2\,cm}^{-5}$] & [$\mathrm{GeV^2\,cm}^{-5}$] & [$\mathrm{GeV\,cm}^{-2}$] & [$\mathrm{GeV\,cm}^{-2}$]\\\\\n') # # outfile.write('\\hline\n') # # for i in range(len(WEJ)): # # string= str(data['Name'][i])+" & $"+\ # # str(data['theta_max'][i])+"$&$"+\ # # str(data['theta_half'][i])+"$&$"+\ # # str(data['dtheta_half'][i])+"$&"+\ # # "$%0.2f_{-%0.2f}^{+%0.2f}$&"%(WEJ3[i][0],WEJ3[i][1],WEJ3[i][2]) # # if(i>21): # # string+="-&" # # else: # # string+="$%0.2f_{-%0.2f}^{+%0.2f}$&"%(WEJ2[i][0],WEJ2[i][1],WEJ2[i][2]) # # string+="$%0.2f_{-%0.2f}^{+%0.2f}$&"%(WED3[i][0],WED3[i][1],WED3[i][2]) # # if(i>21): # # string+="-&" # # else: # # string+="$%0.2f_{-%0.2f}^{+%0.2f}$"%(WED2[i][0],WEJ3[i][1],WEJ3[i][2])+"\\\\\n" # # if(i==7 or i==22): # # outfile.write('\\hline\n') # # outfile.write(string) # # outfile.write('\\hline\n') # # outfile.write('\end{tabular}\n') # # outfile.close() # outfile=open('dwarfs_Jfactors.dat','w') # outfile.write('\\begin{tabular}{lccccc}\n') # outfile.write('\\hline\n\\hline\n') # outfile.write('Name & $\\theta_\mathrm{max}$ & $\log_{10} J(\\theta_\mathrm{max})$ & $\log_{10} J(0.5^\circ)$ & $\log_{10} D(\\theta_\mathrm{max})$ & $\log_{10} D(0.5^\circ)$\\\\ \n') # outfile.write('& [$^\circ$] & [$\mathrm{GeV^2\,cm}^{-5}$] & [$\mathrm{GeV^2\,cm}^{-5}$] & [$\mathrm{GeV\,cm}^{-2}$] & [$\mathrm{GeV\,cm}^{-2}$]\\\\\n') # outfile.write('\\hline\n') # for i in range(len(WEJ2)): # string= str(data['Name'][i])+" & $"+\ # str(data['theta_max'][i])+"$&"+\ # "$%0.2f_{-%0.2f}^{+%0.2f}$&"%(WEJ3[i][0],WEJ3[i][1],WEJ3[i][2]) # if(i>21): # string+="-&" # else: # string+="$%0.2f_{-%0.2f}^{+%0.2f}$&"%(WEJ2[i][0],WEJ2[i][1],WEJ2[i][2]) # string+="$%0.2f_{-%0.2f}^{+%0.2f}$&"%(WED3[i][0],WED3[i][1],WED3[i][2]) # if(i>21): # string+="-"+"\\\\\n" # else: # string+="$%0.2f_{-%0.2f}^{+%0.2f}$"%(WED2[i][0],WEJ3[i][1],WEJ3[i][2])+"\\\\\n" # if(i==7 or i==22): # outfile.write('\\hline\n') # outfile.write(string) # outfile.write('\\hline\n') # outfile.write('\end{tabular}\n') # outfile.close() # if __name__ == '__main__': # data = pd.read_csv('data.dat',sep=' ') # make_table(data) # gs_gammas=np.genfromtxt('geringer_sameth_gamma.dat',skip_header=49) # # for i in range(len(gs_gammas)): # # if(gs_gammas[i][23]<0.5): # # gs_gammas[i][23]=0.50005 # cd=data[data.Class=='CD'] # uf=data[data.Class=='UF'] # labelrange=np.linspace(0.,len(data),len(data)) # labelscd=labelrange[:len(cd)] # labelsuf=labelrange[len(cd):] # f,a=plt.subplots(2,4,figsize=(16,8)) # plt.subplots_adjust(hspace=0.5) # for ai in a: # for aj in ai: # aj.set_xticks(labelrange) # aj.set_xticklabels(data.Name.values,rotation=90) # aj.set_xlim(labelrange[0]-1,labelrange[-1]+1) # for i in a[1]: # ls=i.axvline(labelscd[-1]+.5,c='k',ls='dashed') # ls.set_dashes((2,1)) # ls=i.axvline(labelsuf[13]+.5,c='k',ls='dashed') # ls.set_dashes((2,1)) # a[0][0].errorbar(labelscd,cd.D,yerr=cd.eD,fmt='.') # a[0][0].errorbar(labelsuf,uf.D.values,yerr=uf.eD.values,fmt='.') # a[0][0].set_ylabel(r'Distance/kpc') # a[0][1].errorbar(labelscd,cd.R_half,yerr=[cd.eR_half2,cd.eR_half1],fmt='.') # a[0][1].errorbar(labelsuf,uf.R_half,yerr=[uf.eR_half2,uf.eR_half1],fmt='.') # a[0][1].set_ylabel(r'$R_{\mathrm{half}}/\mathrm{pc}$') # a[0][2].errorbar(labelscd,cd.sigma_los,yerr=[cd.esigma_los2,cd.esigma_los1],fmt='.') # a[0][2].errorbar(labelsuf,uf.sigma_los,yerr=[uf.esigma_los2,uf.esigma_los1],fmt='.') # a[0][2].arrow(labelsuf[9],uf.sigma_los.values[9],0.,-0.5,fc=sns.color_palette()[1],ec=sns.color_palette()[1],head_length=0.2,head_width=0.3) # a[0][2].arrow(labelsuf[15],uf.sigma_los.values[15],0.,-0.5,fc=sns.color_palette()[1],ec=sns.color_palette()[1],head_length=0.2,head_width=0.3) # a[0][2].arrow(labelsuf[17],uf.sigma_los.values[17],0.,-0.5,fc=sns.color_palette()[1],ec=sns.color_palette()[1],head_length=0.2,head_width=0.3) # a[0][2].set_ylabel(r'$\sigma_{\mathrm{los}}/\mathrm{km\,s}^{-1}$') # a[1][0].errorbar(labelscd,cd.Jmax,yerr=[cd.eJmax2,cd.eJmax1],fmt='.',color='k') # a[1][0].errorbar(labelsuf,uf.Jmax,yerr=[uf.eJmax2,uf.eJmax1],fmt='.',color='k') # WE = wyns_formulaJ_error_sample(data,gamma=1.) # for i in range(len(data)): # a[1][0].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[2]) # # WE = wyns_formulaJ_error_sample(data,gamma=0.75) # # for i in range(len(data)): # # a[1][0].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[3]) # WE = wyns_formulaJ_error_sample(data,gamma=0.51) # for i in range(len(data)): # a[1][0].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[4]) # WE = wyns_formulaJ_error_sample(data,gamma=1.,nfw=5.*data['R_half']/1000.) # for i in range(len(data)): # a[1][0].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[0]) # add_thetas(a[1][0],labelrange,data.theta_max) # a[1][0].set_ylabel(r'$\log_{10}(J_\mathrm{max}/\,\mathrm{GeV^2\,cm}^{-5})$') # a[1][1].errorbar(labelscd,cd.Jmax.values-np.log10(2.),yerr=[cd.eJmax2,cd.eJmax1],fmt='.',label="",color='k') # a[1][1].errorbar(labelsuf,uf.Jmax.values-np.log10(2.),yerr=[uf.eJmax2,uf.eJmax1],fmt='.',label="",color='k') # WE = wyns_formulaJ_error_sample(data,gamma=1.,angle='Half') # for i in range(len(data)): # label=None # if(i==0): # label=r'$\gamma=1$' # a[1][1].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[2],label=label) # # WE = wyns_formulaJ_error_sample(data,gamma=0.75,angle='Half') # # for i in range(len(data)): # # label=None # # if(i==0): # # label=r'$\gamma=0.75$' # # a[1][1].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[3],label=label) # WE = wyns_formulaJ_error_sample(data,gamma=0.51,angle='Half') # for i in range(len(data)): # label=None # if(i==0): # label=r'$\gamma=0.51$' # a[1][1].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[4],label=label) # WE = wyns_formulaJ_error_sample(data,gamma=1.,angle='Half',nfw=5.*data['R_half']/1000.) # for i in range(len(data)): # label=None # if(i==0): # label=r'NFW' # a[1][1].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[0],label=label) # gammas = gs_gammas.T[23] # while(len(gammas)<len(data)): # gammas = np.append(gammas,0.8) # WE = wyns_formulaJ_error_sample(data,gammaarray=gammas,angle='Half') # for i in range(len(data)): # label=None # if(i==0): # label=r'$\gamma_\mathrm{GS}$' # a[1][1].fill_between([labelrange[i]-0.3,labelrange[i]+0.3], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=1.,facecolor="None",label=label) # add_thetas(a[1][1],labelrange,data.theta_half) # a[1][1].legend(loc="lower center",ncol=2, bbox_to_anchor=(0.5, 1.0)) # a[1][1].set_ylabel(r'$\log_{10}(J_\mathrm{half}/\,\mathrm{GeV^2\,cm}^{-5})$') # a[1][2].errorbar(labelscd,cd.dJmax.values-np.log10(2.),yerr=[cd.eJmax2,cd.edJmax1],fmt='.',color='k') # a[1][2].errorbar(labelsuf,uf.dJmax.values-np.log10(2.),yerr=[uf.edJmax2,uf.edJmax1],fmt='.',color='k') # WE = wyns_formulaD_error_sample(data,gamma=1.) # for i in range(len(data)): # label=None # if(i==0): # label=r'$\gamma=1.$' # a[1][2].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[2],label=label) # # WE = wyns_formulaD_error_sample(data,gamma=1.25) # # for i in range(len(data)): # # label=None # # if(i==0): # # label=r'$\gamma=1.25$' # # a[1][2].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[3],label=label) # WE = wyns_formulaD_error_sample(data,gamma=1.49) # for i in range(len(data)): # label=None # if(i==0): # label=r'$\gamma=1.49$' # a[1][2].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[4],label=label) # WE = wyns_formulaD_error_sample(data,gamma=1.,nfw=5.*data['R_half']/1000.) # for i in range(len(data)): # label=None # if(i==0): # label=r'NFW' # a[1][2].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[0],label=label) # WE = wyns_formulaD_error_sample(data,gammaarray=gammas,angle='Half') # for i in range(len(data)): # label=None # if(i==0): # label=r'$\gamma_\mathrm{GS}$' # a[1][2].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=1.,facecolor="None",label=label) # add_thetas(a[1][2],labelrange,data.dtheta_half) # a[1][2].legend(loc="lower center",ncol=2, bbox_to_anchor=(0.5, 1.0)) # a[1][2].set_ylabel(r'$\log_{10}(D_\mathrm{half}/\,\mathrm{GeV\,cm}^{-2})$') # a[1][3].errorbar(labelscd,cd.Jhalf.values,yerr=[cd.eJhalf2,cd.eJhalf1],fmt='.',label="",color='k') # a[1][3].errorbar(labelsuf,uf.Jhalf.values,yerr=[uf.eJhalf2,uf.eJhalf1],fmt='.',label="",color='k') # WE = wyns_formulaJ_error_sample(data,gamma=1.,angle='Half' ) # for i in range(len(data)): # label=None # if(i==0): # label=r'$\gamma=1$' # a[1][3].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[2],label=label) # # WE = wyns_formulaJ_error_sample(data,gamma=0.75,angle='Half_05') # # for i in range(len(data)): # # label=None # # if(i==0): # # label=r'$\gamma=0.75$' # # a[1][3].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[3],label=label) # WE = wyns_formulaJ_error_sample(data,gamma=0.51,angle='Half_05') # for i in range(len(data)): # label=None # if(i==0): # label=r'$\gamma=0.51$' # a[1][3].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[4],label=label) # WE = wyns_formulaJ_error_sample(data,gamma=1.,angle='Half_05',nfw=5.*data['R_half']/1000.) # for i in range(len(data)): # label=None # if(i==0): # label=r'NFW' # a[1][3].fill_between([labelrange[i]-0.2,labelrange[i]+0.2], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=0.5,edgecolor="None",color=sns.color_palette()[0],label=label) # gammas = gs_gammas.T[23] # while(len(gammas)<len(data)): # gammas = np.append(gammas,0.8) # WE = wyns_formulaJ_error_sample(data,gammaarray=gammas,angle='Half_05') # for i in range(len(data)): # label=None # if(i==0): # label=r'$\gamma_\mathrm{GS}$' # a[1][3].fill_between([labelrange[i]-0.3,labelrange[i]+0.3], [WE[i][0]-WE[i][1],WE[i][0]-WE[i][1]], [WE[i][0]+WE[i][2],WE[i][0]+WE[i][2]],alpha=1.,facecolor="None",label=label) # add_thetas(a[1][3],labelrange,np.ones(0.5)*len(data)) # a[1][3].legend(loc="lower center",ncol=2, bbox_to_anchor=(0.5, 1.0)) # a[1][3].set_ylabel(r'$\log_{10}(J(0.5^\circ)/\,\mathrm{GeV^2\,cm}^{-5})$') # plt.savefig('dwarfs_data.pdf',bbox_inches='tight') ```
{ "source": "jls943/sponge_evol_dynamics", "score": 4 }
#### File: jls943/sponge_evol_dynamics/matching_orthos.py ```python import argparse import re import Bio.SeqIO def matching_orthos(): #! /usr/bin/env python3 #a function to pull the gene tree files that correspond to a list of gene trees of interest #could be anything of interest in a list of gene trees. #this script pulls gene trees based on identity number, but pull_short_gene_trees.py will work on order number within the directory import argparse import os import shutil import re def psgt(): #creating the set I'll need inside the loop certain_set = set() #putting all of the numbers of interest into a set for easy comparison try: with open("{0}".format(args.tree_nums), "r") as interesting: print("opened interesting gene tree num file") for line in interesting: tree = line.strip() certain_set.add(tree) print("made set of gene tree nums") try: os.mkdir("{0}".format(args.new_dir)) except FileExistsError: print("This directory already exists. Please provide a different name") #scanning through the directory of gene trees and finding the ones that match up with the numbers #in the list file provided. Copying these trees to a new directory for item in os.scandir("{0}".format(args.tree_dir)): just_name = re.match("(Mus_musculus\|\d+_rename)\.phylip\.treefile", "{0}".format(item.name)) if just_name.group(1) in certain_set: #copy the ones that match into the directory you made earlier destination = os.path.join(args.new_dir, item.name) shutil.copy(item.path, destination) except IOError: print("problem reading file") parser = argparse.ArgumentParser(description = "arguments for filtering OGs to only those with a given number of taxa") parser.add_argument("-t", "--tree_nums", required = True, help = "list of gene tree numbers of interest") parser.add_argument("-d", "--tree_dir", required = True, help = "path to a directory with gene trees in it") parser.add_argument("-n", "--new_dir", required = True, help = "path to a directory for the desired gene trees") args = parser.parse_args() psgt() #/mnt/lustre/macmaneslab/jlh1023/pipeline_dev/pipeline_scripts/pull_certain_gene_trees.py \ #-t /mnt/lustre/macmaneslab/jlh1023/phylo_qual/actual_final/comparisons/common_to_both.txt \ #-d /mnt/lustre/macmaneslab/jlh1023/phylo_qual/actual_final/good/trees/gene_trees/ \ #-n /mnt/lustre/macmaneslab/jlh1023/phylo_qual/actual_final/good/trees/good_common_gene_trees #! /usr/bin/env python3 import argparse import Bio.SeqIO #function to pull members of one-to-one orthogroups from a protein fasta file def pull(): try: #creating an empty set and dictionary to hold orthogroups ogs = set() ols = {} prot_set = set() with open("{}".format(args.cluster), "r") as cluster_file: with open("{}".format(args.ortho), "r") as ortho_file: #saving all the orthogroup names in a set print("Getting orthogroup names from kinfin file") for line in cluster_file: line = line.split("\t") if line[0].startswith("OG"): ogs.add(line[0]) print("Pulled orthogroup names from kinfin file") #populating the dictionary with keys = orthogroup names, #and values = a list of the proteins in that orthogroup #also making a set that contains all the protein names print("Getting protein names from orthofinder file") for line in ortho_file: if line.startswith("OG"): #stripping of white space and splitting on tabs line = line.rstrip() line = line.lstrip() line = line.split("\t") #if the OG name is in the set, put all the proteins into a new set (and dictionary) if line[0] in ogs: ols.setdefault(line[0], line[1:]) for protein in line[1:]: protein = protein.split(", ") for indv in protein: if indv != "": prot_set.add(indv) print("Pulled {0} protein names from orthofinder file".format(len(prot_set))) print("Parsing the fasta file") #running through the catted fasta of all the proteins and pulling those seqs that #match the ones in the set. prot_seqs = [] prot_names = set() for record in Bio.SeqIO.parse("{}".format(args.prots), "fasta"): if record.id in prot_set: cur_prot = Bio.SeqRecord.SeqRecord(id = record.id, seq = record.seq, description = "") cur_prot_name = record.id prot_seqs.append(cur_prot) prot_names.add(cur_prot_name) test_set = prot_set.difference(prot_names) print(len(test_set)) print(test_set) Bio.SeqIO.write(prot_seqs, "{}".format(args.out), "fasta") except IOError: print("Problem reading files") parser = argparse.ArgumentParser(description = "arguments for pulling 1-to-1 orthologues from a fasta") parser.add_argument("-c", "--cluster", required = True, help = "all.all.cluster_1to1s.txt provided by kinfin") parser.add_argument("-r", "--ortho", required = True, help = "Orthogroups.csv provided by orthofinder") parser.add_argument("-p", "--prots", required = True, help = "fasta file containing all proteins in the orthofinder analysis") parser.add_argument("-o", "--out", required = True, help = "name of the output fasta file") args = parser.parse_args() pull() ```
{ "source": "jlsajfj/NBT", "score": 3 }
#### File: NBT/examples/map.py ```python import os, sys import math from struct import pack # local module try: import nbt except ImportError: # nbt not in search path. Let's see if it can be found in the parent folder extrasearchpath = os.path.realpath(os.path.join(__file__,os.pardir,os.pardir)) if not os.path.exists(os.path.join(extrasearchpath,'nbt')): raise sys.path.append(extrasearchpath) from nbt.region import RegionFile from nbt.chunk import Chunk from nbt.world import WorldFolder,McRegionWorldFolder # PIL module (not build-in) try: from PIL import Image except ImportError: # PIL not in search path. Let's see if it can be found in the parent folder sys.stderr.write("Module PIL/Image not found. Pillow (a PIL fork) can be found at http://python-imaging.github.io/\n") # Note: it may also be possible that PIL is installed, but JPEG support is disabled or broken sys.exit(70) # EX_SOFTWARE def get_heightmap_image(chunk, buffer=False, gmin=False, gmax=False): points = chunk.blocks.generate_heightmap(buffer, True) # Normalize the points hmin = min(points) if (gmin == False) else gmin # Allow setting the min/max explicitly, in case this is part of a bigger map hmax = max(points) if (gmax == False) else gmax hdelta = hmax-hmin+0.0 pixels = "" for y in range(16): for x in range(16): # pix X => mc -Z # pix Y => mc X offset = (15-x)*16+y height = int((points[offset]-hmin)/hdelta*255) if (height < 0): height = 0 if (height > 255): height = 255 pixels += pack(">B", height) im = Image.fromstring('L', (16,16), pixels) return im # List of blocks to ignore # Uncomment all the lines to show underground structures # TODO: move this list into a separate config file block_ignore = [ 'air', # At least this one # 'cave_air', 'water', 'lava', 'snow', 'ice', # 'grass', 'tall_grass', 'dead_bush', # 'seagrass', 'tall_seagrass', 'kelp', 'kelp_plant', # 'dandelion', 'poppy', 'oxeye_daisy', 'white_tulip', # 'azure_bluet', 'lilac', 'rose_bush', 'peony', 'blue_orchid', # 'lily_pad', 'sugar_cane', 'vine', 'pumpkin', 'cactus', # 'wheat', 'potatoes', 'beetroots', 'carrots', # 'oak_leaves', 'dark_oak_leaves', 'birch_leaves', # 'acacia_leaves', 'spruce_leaves', # 'oak_log', 'dark_oak_log', 'birch_log', # 'acacia_log', 'spruce_log', # 'brown_mushroom', 'red_mushroom', # 'brown_mushroom_block', 'red_mushroom_block', 'mushroom_stem', # 'grass_block', 'grass_path', 'farmland', 'dirt', # 'stone', 'sand', 'gravel', 'clay', # 'sandstone', 'diorite', 'andesite', 'granite', 'obsidian', # 'coal_ore', 'iron_ore', 'gold_ore', 'diamond_ore', # 'redstone_ore', 'lapis_ore', 'emerald_ore', # 'cobweb', ] # Map of block colors from names # Legacy block numeric identifiers are now hidden by Block class # and mapped to alpha identifiers in best effort # TODO: move this map into a separate config file block_colors = { 'acacia_leaves': {'h':114, 's':64, 'l':22 }, 'acacia_log': {'h':35, 's':93, 'l':30 }, 'air': {'h':0, 's':0, 'l':0 }, 'andesite': {'h':0, 's':0, 'l':32 }, 'azure_bluet': {'h':0, 's':0, 'l':100}, 'bedrock': {'h':0, 's':0, 'l':10 }, 'birch_leaves': {'h':114, 's':64, 'l':22 }, 'birch_log': {'h':35, 's':93, 'l':30 }, 'blue_orchid': {'h':0, 's':0, 'l':100}, 'bookshelf': {'h':0, 's':0, 'l':100}, 'brown_mushroom': {'h':0, 's':0, 'l':100}, 'brown_mushroom_block': {'h':0, 's':0, 'l':100}, 'cactus': {'h':126, 's':61, 'l':20 }, 'cave_air': {'h':0, 's':0, 'l':0 }, 'chest': {'h':0, 's':100, 'l':50 }, 'clay': {'h':7, 's':62, 'l':23 }, 'coal_ore': {'h':0, 's':0, 'l':10 }, 'cobblestone': {'h':0, 's':0, 'l':25 }, 'cobblestone_stairs': {'h':0, 's':0, 'l':25 }, 'crafting_table': {'h':0, 's':0, 'l':100}, 'dandelion': {'h':60, 's':100, 'l':60 }, 'dark_oak_leaves': {'h':114, 's':64, 'l':22 }, 'dark_oak_log': {'h':35, 's':93, 'l':30 }, 'dark_oak_planks': {'h':35, 's':93, 'l':30 }, 'dead_bush': {'h':0, 's':0, 'l':100}, 'diorite': {'h':0, 's':0, 'l':32 }, 'dirt': {'h':27, 's':51, 'l':15 }, 'end_portal_frame': {'h':0, 's':100, 'l':50 }, 'farmland': {'h':35, 's':93, 'l':15 }, 'fire': {'h':55, 's':100, 'l':50 }, 'flowing_lava': {'h':16, 's':100, 'l':48 }, 'flowing_water': {'h':228, 's':50, 'l':23 }, 'glass_pane': {'h':0, 's':0, 'l':100}, 'granite': {'h':0, 's':0, 'l':32 }, 'grass': {'h':94, 's':42, 'l':25 }, 'grass_block': {'h':94, 's':42, 'l':32 }, 'gravel': {'h':21, 's':18, 'l':20 }, 'ice': {'h':240, 's':10, 'l':95 }, 'infested_stone': {'h':320, 's':100, 'l':50 }, 'iron_ore': {'h':22, 's':65, 'l':61 }, 'iron_bars': {'h':22, 's':65, 'l':61 }, 'ladder': {'h':35, 's':93, 'l':30 }, 'lava': {'h':16, 's':100, 'l':48 }, 'lilac': {'h':0, 's':0, 'l':100}, 'lily_pad': {'h':114, 's':64, 'l':18 }, 'lit_pumpkin': {'h':24, 's':100, 'l':45 }, 'mossy_cobblestone': {'h':115, 's':30, 'l':50 }, 'mushroom_stem': {'h':0, 's':0, 'l':100}, 'oak_door': {'h':35, 's':93, 'l':30 }, 'oak_fence': {'h':35, 's':93, 'l':30 }, 'oak_fence_gate': {'h':35, 's':93, 'l':30 }, 'oak_leaves': {'h':114, 's':64, 'l':22 }, 'oak_log': {'h':35, 's':93, 'l':30 }, 'oak_planks': {'h':35, 's':93, 'l':30 }, 'oak_pressure_plate': {'h':35, 's':93, 'l':30 }, 'oak_stairs': {'h':114, 's':64, 'l':22 }, 'peony': {'h':0, 's':0, 'l':100}, 'pink_tulip': {'h':0, 's':0, 'l':0 }, 'poppy': {'h':0, 's':100, 'l':50 }, 'pumpkin': {'h':24, 's':100, 'l':45 }, 'rail': {'h':33, 's':81, 'l':50 }, 'red_mushroom': {'h':0, 's':50, 'l':20 }, 'red_mushroom_block': {'h':0, 's':50, 'l':20 }, 'rose_bush': {'h':0, 's':0, 'l':100}, 'sugar_cane': {'h':123, 's':70, 'l':50 }, 'sand': {'h':53, 's':22, 'l':58 }, 'sandstone': {'h':48, 's':31, 'l':40 }, 'seagrass': {'h':94, 's':42, 'l':25 }, 'sign': {'h':114, 's':64, 'l':22 }, 'spruce_leaves': {'h':114, 's':64, 'l':22 }, 'spruce_log': {'h':35, 's':93, 'l':30 }, 'stone': {'h':0, 's':0, 'l':32 }, 'stone_slab': {'h':0, 's':0, 'l':32 }, 'tall_grass': {'h':94, 's':42, 'l':25 }, 'tall_seagrass': {'h':94, 's':42, 'l':25 }, 'torch': {'h':60, 's':100, 'l':50 }, 'snow': {'h':240, 's':10, 'l':85 }, 'spawner': {'h':180, 's':100, 'l':50 }, 'vine': {'h':114, 's':64, 'l':18 }, 'wall_torch': {'h':60, 's':100, 'l':50 }, 'water': {'h':228, 's':50, 'l':23 }, 'wheat': {'h':123, 's':60, 'l':50 }, 'white_wool': {'h':0, 's':0, 'l':100}, } def get_map(chunk): # Show an image of the chunk from above pixels = b"" for z in range(16): for x in range(16): # Find the highest block in this column max_height = chunk.get_max_height() ground_height = max_height tints = [] for y in range(max_height,-1,-1): block_id = chunk.get_block(x, y, z) if block_id != None: #block_data = 0 # TODO: use block properties #if (block_id == 'water' or block_id == 'water'): #tints.append({'h':228, 's':50, 'l':23}) # Water #elif (block_id == 'leaves'): # TODO: old id - update #if (block_data == 1): #tints.append({'h':114, 's':64, 'l':22}) # Redwood Leaves #elif (block_data == 2): #tints.append({'h':93, 's':39, 'l':10}) # Birch Leaves #else: #tints.append({'h':114, 's':64, 'l':22}) # Normal Leaves #elif (block_id == 'ice'): #tints.append({'h':240, 's':5, 'l':95}) # Ice #elif (block_id == 'fire'): #tints.append({'h':55, 's':100, 'l':50}) # Fire #elif (block_id != 'air' or block_id != 'cave_air' or y == 0): if (block_id not in block_ignore or y == 0): # Here is ground level ground_height = y break if block_id != None: if block_id in block_colors: color = block_colors[block_id] else: color = {'h':0, 's':0, 'l':100} print("warning: unknown color for block id: %s" % block_id) print("hint: add that block to the 'block_colors' map") else: color = {'h':0, 's':0, 'l':0} height_shift = 0 #(ground_height-64)*0.25 final_color = {'h':color['h'], 's':color['s'], 'l':color['l'] + height_shift} if final_color['l'] > 100: final_color['l'] = 100 if final_color['l'] < 0: final_color['l'] = 0 # Apply tints from translucent blocks for tint in reversed(tints): final_color = hsl_slide(final_color, tint, 0.4) rgb = hsl2rgb(final_color['h'], final_color['s'], final_color['l']) pixels += pack("BBB", rgb[0], rgb[1], rgb[2]) im = Image.frombytes('RGB', (16,16), pixels) return im ## Color functions for map generation ## # Hue given in degrees, # saturation and lightness given either in range 0-1 or 0-100 and returned in kind def hsl_slide(hsl1, hsl2, ratio): if (abs(hsl2['h'] - hsl1['h']) > 180): if (hsl1['h'] > hsl2['h']): hsl1['h'] -= 360 else: hsl1['h'] += 360 # Find location of two colors on the H/S color circle p1x = math.cos(math.radians(hsl1['h']))*hsl1['s'] p1y = math.sin(math.radians(hsl1['h']))*hsl1['s'] p2x = math.cos(math.radians(hsl2['h']))*hsl2['s'] p2y = math.sin(math.radians(hsl2['h']))*hsl2['s'] # Slide part of the way from tint to base color avg_x = p1x + ratio*(p2x-p1x) avg_y = p1y + ratio*(p2y-p1y) avg_h = math.atan(avg_y/avg_x) avg_s = avg_y/math.sin(avg_h) avg_l = hsl1['l'] + ratio*(hsl2['l']-hsl1['l']) avg_h = math.degrees(avg_h) #print('tint: %s base: %s avg: %s %s %s' % (tint,final_color,avg_h,avg_s,avg_l)) return {'h':avg_h, 's':avg_s, 'l':avg_l} # From http://www.easyrgb.com/index.php?X=MATH&H=19#text19 def hsl2rgb(H,S,L): H = H/360.0 S = S/100.0 # Turn into a percentage L = L/100.0 if (S == 0): return (int(L*255), int(L*255), int(L*255)) var_2 = L * (1+S) if (L < 0.5) else (L+S) - (S*L) var_1 = 2*L - var_2 def hue2rgb(v1, v2, vH): if (vH < 0): vH += 1 if (vH > 1): vH -= 1 if ((6*vH)<1): return v1 + (v2-v1)*6*vH if ((2*vH)<1): return v2 if ((3*vH)<2): return v1 + (v2-v1)*(2/3.0-vH)*6 return v1 R = int(255*hue2rgb(var_1, var_2, H + (1.0/3))) G = int(255*hue2rgb(var_1, var_2, H)) B = int(255*hue2rgb(var_1, var_2, H - (1.0/3))) return (R,G,B) def main(world_folder, show=True): world = WorldFolder(world_folder) bb = world.get_boundingbox() world_map = Image.new('RGB', (16*bb.lenx(),16*bb.lenz())) t = world.chunk_count() try: i =0.0 for chunk in world.iter_chunks(): if i % 50 ==0: sys.stdout.write("Rendering image") elif i % 2 == 0: sys.stdout.write(".") sys.stdout.flush() elif i % 50 == 49: sys.stdout.write("%5.1f%%\n" % (100*i/t)) i +=1 chunkmap = get_map(chunk) x,z = chunk.get_coords() world_map.paste(chunkmap, (16*(x-bb.minx),16*(z-bb.minz))) print(" done\n") filename = os.path.basename(world_folder)+".png" world_map.save(filename,"PNG") print("Saved map as %s" % filename) except KeyboardInterrupt: print(" aborted\n") filename = os.path.basename(world_folder)+".partial.png" world_map.save(filename,"PNG") print("Saved map as %s" % filename) return 75 # EX_TEMPFAIL if show: world_map.show() return 0 # NOERR if __name__ == '__main__': if (len(sys.argv) == 1): print("No world folder specified!") sys.exit(64) # EX_USAGE if sys.argv[1] == '--noshow' and len(sys.argv) > 2: show = False world_folder = sys.argv[2] else: show = True world_folder = sys.argv[1] # clean path name, eliminate trailing slashes. required for os.path.basename() world_folder = os.path.normpath(world_folder) if (not os.path.exists(world_folder)): print("No such folder as "+world_folder) sys.exit(72) # EX_IOERR sys.exit(main(world_folder, show)) ``` #### File: NBT/examples/regionfile_analysis.py ```python import locale, os, sys import collections from optparse import OptionParser import gzip import zlib from struct import unpack # local module try: import nbt except ImportError: # nbt not in search path. Let's see if it can be found in the parent folder extrasearchpath = os.path.realpath(os.path.join(__file__,os.pardir,os.pardir)) if not os.path.exists(os.path.join(extrasearchpath,'nbt')): raise sys.path.append(extrasearchpath) from nbt.region import RegionFile, RegionFileFormatError class ChunkMetadata(object): def __init__(self, x, z): self.x = x self.z = z self.sectorstart = None self.sectorlen = None self.timestamp = None self.length = None self.compression = None self.status = None def __repr__(self): return "chunk %02s,%02s [%d] @%-5d %2d %-5s %-5s %d" % (self.x, self.z, self.status, self.sectorstart, self.sectorlen, self.length, self.compression, self.timestamp) class Statuses(object): """Keep track of the number of statuses for all chunks. The different types of status are defined in RegionFile""" def __init__(self): self.counts = {} self.names = {} # Read status names from STATUS_CHUNK_* constants in RegionFile. for var in dir(RegionFile): if var.startswith("STATUS_CHUNK_"): name = var[13:].title().replace("_"," ") value = getattr(RegionFile, var) self.counts[value] = 0 self.names[value] = name def count(self, status, count=1): if status not in self.counts: self.counts[status] = 0 self.names = "Status %s" % status self.counts[status] += count def get_name(self, status): if status in self.names: return self.names[status] else: return "Status %s" % status def results(self): for value in sorted(self.counts.keys()): yield value, self.counts[value], self.get_name(value) def total(self): return sum(self.counts.values()) class ByteCounter(object): """Keep track of types of bytes in a binary stream.""" def __init__(self): self.counts = {} def count(self, bytestream): if isinstance(bytestream, collections.Iterable): for byte in bytestream: if byte not in self.counts: self.counts[byte] = 0 self.counts[byte] += 1 else: if bytestream not in self.counts: self.counts[bytestream] = 0 self.counts[bytestream] += 1 def results(self): for value in sorted(self.counts.keys()): yield value, self.counts[value] def analyse_regionfile(filename, warnings=True): region = RegionFile(filename) statuscounts = Statuses() errors = [] if region.size % 4096 != 0: errors.append("File size is %d bytes, which is not a multiple of 4096" % region.size) sectorsize = region._bytes_to_sector(region.size) sectors = sectorsize*[None] if region.size == 0: errors.append("File size is 0 bytes") sectors = [] elif sectorsize < 2: errors.append("File size is %d bytes, too small for the 8192 byte header" % region.size) else: sectors[0] = "locations" sectors[1] = "timestamps" chunks = {} for x in range(32): for z in range(32): c = ChunkMetadata(x,z) (c.sectorstart, c.sectorlen, c.timestamp, status) = region.header[x,z] (c.length, c.compression, c.status) = region.chunk_headers[x,z] c.uncompressedlength = 0 chunks[x,z] = c statuscounts.count(c.status) if c.status < 0: errors.append("chunk %d,%d has status %d: %s" % \ (x, z, c.status, statuscounts.get_name(c.status))) try: if c.sectorstart == 0: if c.sectorlen != 0: errors.append("chunk %d,%d is not created, but is %d sectors in length" % (x, z, c.sectorlen)) if c.timestamp != 0: errors.append("chunk %d,%d is not created, but has timestamp %d" % (x, z, c.timestamp)) raise RegionFileFormatError('') allocatedbytes = 4096 * c.sectorlen if c.timestamp == 0: errors.append("chunk %d,%d has no timestamp" % (x, z)) if c.sectorstart < 2: errors.append("chunk %d,%d starts at sector %d, which is in the header" % (x, z, c.sectorstart)) raise RegionFileFormatError('') if 4096 * c.sectorstart >= region.size: errors.append("chunk %d,%d starts at sector %d, while the file is only %d sectors" % (x, z, c.sectorstart, sectorsize)) raise RegionFileFormatError('') elif 4096 * c.sectorstart + 5 > region.size: # header of chunk only partially fits errors.append("chunk %d,%d starts at sector %d, but only %d bytes of sector %d are present in the file" % (x, z, c.sectorstart, sectorsize)) raise RegionFileFormatError('') elif not c.length: errors.append("chunk %d,%d length is undefined." % (x, z)) raise RegionFileFormatError('') elif c.length == 1: errors.append("chunk %d,%d has length 0 bytes." % (x, z)) elif 4096 * c.sectorstart + 4 + c.length > region.size: # header of chunk fits, but not the complete chunk errors.append("chunk %d,%d is %d bytes in length, which is behind the file end" % (x, z, c.length)) requiredsectors = region._bytes_to_sector(c.length + 4) if c.sectorlen <= 0: errors.append("chunk %d,%d is %d sectors in length" % (x, z, c.sectorlen)) raise RegionFileFormatError('') if c.compression == 0: errors.append("chunk %d,%d is uncompressed. This is deprecated." % (x, z)) elif c.compression == 1: errors.append("chunk %d,%d uses GZip compression. This is deprecated." % (x, z)) elif c.compression > 2: errors.append("chunk %d,%d uses an unknown compression type (%d)." % (x, z, c.compression)) if c.length + 4 > allocatedbytes: # TODO 4 or 5? errors.append("chunk %d,%d is %d bytes (4+1+%d) and requires %d sectors, " \ "but only %d %s allocated" % \ (x, z, c.length+4, c.length-1, requiredsectors, c.sectorlen, \ "sector is" if (c.sectorlen == 1) else "sectors are")) elif c.length + 4 + 4096 == allocatedbytes: # If the block fits in exactly n sectors, Minecraft seems to allocated n+1 sectors # Threat this as a warning instead of an error. if warnings: errors.append("chunk %d,%d is %d bytes (4+1+%d) and requires %d %s, " \ "but %d sectors are allocated" % \ (x, z, c.length+4, c.length-1, requiredsectors, \ "sector" if (requiredsectors == 1) else "sectors", c.sectorlen)) elif c.sectorlen > requiredsectors: errors.append("chunk %d,%d is %d bytes (4+1+%d) and requires %d %s, " \ "but %d sectors are allocated" % \ (x, z, c.length+4, c.length-1, requiredsectors, \ "sector" if (requiredsectors == 1) else "sectors", c.sectorlen)) # Decompress chunk, check if that succeeds. # Check if the header and footer indicate this is a NBT file. # (without parsing it in detail) compresseddata = None data = None try: if 0 <= c.compression <= 2: region.file.seek(4096*c.sectorstart + 5) compresseddata = region.file.read(c.length - 1) except Exception as e: errors.append("Error reading chunk %d,%d: %s" % (x, z, str(e))) if (c.compression == 0): data = compresseddata if (c.compression == 1): try: data = gzip.decompress(compresseddata) except Exception as e: errors.append("Error decompressing chunk %d,%d using gzip: %s" % (x, z, str(e))) elif (c.compression == 2): try: data = zlib.decompress(compresseddata) except Exception as e: errors.append("Error decompressing chunk %d,%d using zlib: %s" % (x, z, str(e))) if data: c.uncompressedlength = len(data) if data[0] != 10: errors.append("chunk %d,%d is not a valid NBT file: outer object is not a TAG_Compound, but %r" % (x, z, data[0])) elif data[-1] != 0: errors.append("chunk %d,%d is not a valid NBT file: files does not end with a TAG_End." % (x, z)) else: (length, ) = unpack(">H", data[1:3]) name = data[3:3+length] try: name.decode("utf-8", "strict") except Exception as e: errors.append("Error decompressing chunk %d,%d using unknown compression: %s" % (x, z, str(e))) if warnings: # Read the unused bytes in a sector and check if all bytes are zeroed. unusedlen = 4096*c.sectorlen - (c.length+4) if unusedlen > 0: try: region.file.seek(4096*c.sectorstart + 4 + c.length) unused = region.file.read(unusedlen) zeroes = unused.count(b'\x00') if zeroes < unusedlen: errors.append("%d of %d unused bytes are not zeroed in sector %d after chunk %d,%d" % \ (unusedlen-zeroes, unusedlen, c.sectorstart + c.sectorlen - 1, x, z)) except Exception as e: errors.append("Error reading tail of chunk %d,%d: %s" % (x, z, str(e))) except RegionFileFormatError: pass if c.sectorlen and c.sectorstart: # Check for overlapping chunks for b in range(c.sectorlen): m = "chunk %-2d,%-2d part %d/%d" % (x, z, b+1, c.sectorlen) p = c.sectorstart + b if p > sectorsize: errors.append("%s outside file" % (m)) break if sectors[p] != None: errors.append("overlap in sector %d: %s and %s" % (p, sectors[p], m)) if (b == 0): if (c.uncompressedlength > 0): m += " (4+1+%d bytes compressed: %d bytes uncompressed)" % (c.length-1, c.uncompressedlength) elif c.length: m += " (4+1+%d bytes compressed)" % (c.length-1) else: m += " (4+1+0 bytes)" if sectors[p] != None: m += " (overlapping!)" sectors[p] = m e = sectors.count(None) if e > 0: if warnings: errors.append("Fragmentation: %d of %d sectors are unused" % (e, sectorsize)) for sector, content in enumerate(sectors): if content == None: sectors[sector] = "empty" if warnings: region.file.seek(4096*sector) unused = region.file.read(4096) zeroes = unused.count(b'\x00') if zeroes < 4096: errors.append("%d bytes are not zeroed in unused sector %d" % (4096-zeroes, sector)) return errors, statuscounts, sectors, chunks def debug_regionfile(filename, warnings=True): print(filename) errors, statuscounts, sectors, chunks = analyse_regionfile(filename, warnings) print("File size is %d sectors" % (len(sectors))) print("Chunk statuses (as reported by nbt.region.RegionFile):") for value, count, name in statuscounts.results(): print("status %2d %-21s%4d chunks" % (value, ("(%s):" % name), count)) print("%d chunks in total" % statuscounts.total()) #q should be 1024 if len(errors) == 0: print("No errors or warnings found") elif warnings: print("Errors and Warnings:") else: print("Errors:") for error in errors: print(error) print("File content by sector:") for i,s in enumerate(sectors): print("sector %03d: %s" % (i, s)) def print_errors(filename, warnings=True): errors, statuscounts, sectors, chunks = analyse_regionfile(filename, warnings) print(filename) for error in errors: print(error) if __name__ == '__main__': parser = OptionParser() parser.add_option("-v", "--verbose", dest="verbose", default=False, action="store_true", help="Show detailed info about region file") parser.add_option("-q", "--quiet", dest="warnings", default=True, action="store_false", help="Only show errors, no warnings") (options, args) = parser.parse_args() if (len(args) == 0): print("No region file specified! Use -v for verbose results; -q for errors only (no warnings)") sys.exit(64) # EX_USAGE for filename in args: try: if options.verbose: debug_regionfile(filename, options.warnings) else: print_errors(filename, options.warnings) except IOError as e: sys.stderr.write("%s: %s\n" % (e.filename, e.strerror)) # sys.exit(72) # EX_IOERR sys.exit(0) ``` #### File: NBT/nbt/__init__.py ```python __all__ = ["nbt", "world", "region", "chunk"] from . import * # Documentation only automatically includes functions specified in __all__. # If you add more functions, please manually include them in doc/index.rst. VERSION = (1, 5, 0) """NBT version as tuple. Note that the major and minor revision number are always present, but the patch identifier (the 3rd number) is only used in 1.4.""" def _get_version(): """Return the NBT version as string.""" return ".".join([str(v) for v in VERSION]) ``` #### File: NBT/tests/alltests.py ```python import sys import logging import unittest try: from unittest import skip as _skip except ImportError: # Python 2.6 has an older unittest API. The backported package is available from pypi. import unittest2 as unittest testmodules = ['examplestests', 'nbttests', 'regiontests'] """Files to check for test cases. Do not include the .py extension.""" def get_testsuites_in_module(module): """ Return a list of unittest.TestSuite subclasses defined in module. """ suites = [] for name in dir(module): obj = getattr(module, name) if isinstance(obj, type) and issubclass(obj, unittest.TestSuite): suites.append(obj) return suites def load_tests_in_modules(modulenames): """ Given a list of module names, import the modules, load and run the test cases in these modules. The modules are typically files in the current directory, but this is not a requirement. """ loader = unittest.TestLoader() suites = [] for name in modulenames: module = __import__(name) suite = loader.loadTestsFromModule(module) for suiteclass in get_testsuites_in_module(module): # Wrap suite in TestSuite classes suite = suiteclass(suite) suites.append(suite) suite = unittest.TestSuite(suites) return suite if __name__ == "__main__": logger = logging.getLogger("nbt.tests") if len(logger.handlers) == 0: # Logging is not yet configured. Configure it. logging.basicConfig(level=logging.INFO, stream=sys.stderr, format='%(levelname)-8s %(message)s') testresult = unittest.TextTestRunner(verbosity=2).run(load_tests_in_modules(testmodules)) sys.exit(0 if testresult.wasSuccessful() else 1) ``` #### File: NBT/tests/downloadsample.py ```python import sys import os try: import urllib.request as urllib # Python 3 except ImportError: import urllib2 as urllib # Python 2 import logging import subprocess import tarfile import hashlib import glob import tempfile import shutil URL = "https://github.com/downloads/twoolie/NBT/Sample_World.tar.gz" """URL to retrieve""" workdir = os.path.dirname(__file__) """Directory for download and extracting the sample files""" worlddir = os.path.join(workdir, 'Sample World') """Destination folder for the sample world.""" checksums = { 'Sample World': None, 'Sample World/data': None, 'Sample World/level.dat': 'f252cf8b938fa1e41c9335ea1bdc70fca73ac5c63c2cf2db4b2ddc4cb2fa4d91', 'Sample World/level.dat_mcr': '933238e89a9f7f94c72f236da0d81d44d966c7a1544490e51e682ab42ccc50ff', 'Sample World/level.dat_old': 'c4b5a5c355d4f85c369604ca27ee349dba41adc4712a43a6f8c8399fe44071e7', 'Sample World/region': None, 'Sample World/region/r.-1.0.mca': '6e8ec8698e2e68ca3ee2090da72e4f24c85f9db3f36191e5e33ebc8cafb209f2', 'Sample World/region/r.-1.0.mcr': '3a9ccafc6f64b98c0424814f44f1d0d3429cbb33448ff97e2e84ca649bfa16ae', 'Sample World/region/r.-1.1.mca': 'c5f6fb5c72ca534d0f73662f2199dca977d2de1521b4823f73384aa6826c4b74', 'Sample World/region/r.-1.1.mcr': '8e8b545b412a6a2bb519aee0259a63e6a918cd25a49538451e752e3bf90d4cf1', 'Sample World/region/r.0.0.mca': 'd86e51c2adf35f82492e974f75fe83e9e5db56a267a3fe76150dc42f0aeb07c7', 'Sample World/region/r.0.0.mcr': 'a8e7fea4e40a70e0d70dea7ebb1328c7623ed01b77d8aff34d01e530fbdad9d5', 'Sample World/region/r.0.1.mca': '8a03d910c7fd185ae5efb1409c592e4a9688dfab1fbd31f8c736461157a7675d', 'Sample World/region/r.0.1.mcr': '08fcd50748d4633a3b1d52e1b323c7dd9c4299a28ec095d0261fd195d3c9a537', 'Sample World/session.lock': 'd05da686dd04cd2ad1f660ddaa7645abc9fd9af396357a5b3256b437af0d7dba', } """SHA256 checksums for each file in the tar file. Directories MUST also be included (without trailing slash), with None as the checksum""" def download(url, destination): """ Download the file from the specified URL, and extract the contents. Uses urllib2. WARNING: urllib2 does not verify the certificate for Python earlier than 2.7.9 or 3.4.2 (!). Verify the checksums before using the downloaded files. Warning: Before Python 2.7.9, urllib2 can't download over HTTPS, since it effectively only supports SSLv3, which is nowadays deprecated by websites. In these cases, the following SSLError is raised: error:14077410:SSL routines:SSL23_GET_SERVER_HELLO:sslv3 alert handshake failure May raise an IOError or SSLError. """ logger = logging.getLogger("nbt.tests.downloadsample") localfile = None remotefile = None try: logger.info("Downloading %s" % url) request = urllib.Request(url) remotefile = urllib.urlopen(request) localfile = open(destination, 'wb') chunksize = 524288 # 0.5 MiB size = 0 while True: data = remotefile.read(chunksize) if not data: break localfile.write(data) size += len(data) logging.info("Downloaded %0.1f MiByte..." % (float(size)/1048576)) finally: try: localfile.close() except (IOError, AttributeError): pass logging.info("Download complete") def download_with_external_tool(url, destination): """ Download the file from the specified URL, and extract the contents. Uses the external curl program. wget fails if it is compiled with older version of OpenSSL. Hence we use curl. May raise an OSError (or one of it's subclasses). """ logger = logging.getLogger("nbt.tests.downloadsample") logger.info("Downloading %s (with curl)" % url) # command = ['wget', '-O', destination, url] command = ['curl', '-o', destination, '-L', '-#', url] # Open a subprocess, wait till it is done, and get the STDOUT result exitcode = subprocess.call(command) if exitcode != 0: raise OSError("%s returned exit code %d" % (" ".join(command), exitcode)) def extract(filename, workdir, filelist): """ Extract contents of a tar file in workdir. The tar file may be compressed using gzip or bzip2. For security, only files listed in filelist are extracted. Extraneous files will be logged as warning. """ logger = logging.getLogger("nbt.tests.downloadsample") logger.info("Extracting %s" % filename) def filefilter(members): for tarinfo in members: if tarinfo.name in filelist: logger.info("Extract %s" % tarinfo.name) yield tarinfo else: logger.warning("Skip %s" % tarinfo.name) # r:* means any compression (gzip or bz2 are supported) files = tarfile.open(filename, 'r:*') files.extractall(workdir, filefilter(files.getmembers())) files.close() def verify(checksums): """ Verify if all given files are present and their SHA256 checksum is correct. Any files not explicitly listed are deleted. checksums is a dict of file => checksum, with file a file relative to dir. Returns a boolean indicating that all checksums are correct, and all files are present. Any warnings and errors are printer to logger. Errors or exceptions result in a return value of False. """ logger = logging.getLogger("nbt.tests.downloadsample") success = True for path in checksums.keys(): try: check = checksums[path] if check == None: continue # Skip folders localfile = open(path, 'rb') h = hashlib.sha256() chunksize = 524288 # 0.5 MiB while True: data = localfile.read(chunksize) if not data: break h.update(data) localfile.close() calc = h.hexdigest() if calc != check: logger.error("Checksum failed %s: %s found, %s expected" % (path, calc, check)) success = False except IOError as e: if e.errno == 2: logger.error('Checksum verificiation failed: file %s not found' % e.filename) else: logger.error('Checksum verificiation of %s failed: errno %d: %s' % \ (e.filename, e.errno, e.strerror)) return False logger.info("Checksum of %d files verified" % len(checksums)) return success def install(url=URL, workdir=workdir, checksums=checksums): """ Download and extract a sample world, used for testing. The download file and sample world are stored in workdir. Verifies the checksum of all files. Files without a checksum are not extracted. """ # the paths in checksum are relative to the working dir, and UNIX-based. # Normalise them to support Windows; and create the following three derivates: # - posixpaths: list of relative posix paths -- to filter tar extraction # - nchecksums: as checksum, but with normalised absolute paths # - files: list of normalised absolute path of files (non-directories) logger = logging.getLogger("nbt.tests.downloadsample") posixpaths = checksums.keys() nchecksums = dict([(os.path.join(workdir, os.path.normpath(path)), checksums[path]) \ for path in posixpaths if checksums[path] != None]) files = nchecksums.keys() tar_file = os.path.join(workdir, os.path.basename(url)) if not any(map(os.path.exists, files)): # none of the destination files exist. We can safely download/extract without overwriting. if not os.path.exists(tar_file): has_ssl_error = False try: download(url=URL, destination=tar_file) except urllib.URLError as e: # e.reason may be a socket.error. If so, print e.reason.strerror. logger.error('Download %s failed: %s' % \ (url, e.reason.strerror if hasattr(e.reason, "strerror") else e.reason)) has_ssl_error = "sslv3" in ("%s" % e) except urllib.HTTPError as e: # urllib.HTTPError.reason does not have a reason in Python 2.6 (perhaps neither in 2.7). logger.error('Download %s failed: HTTP Error %d: %s' % (url, e.code, \ e.reason if hasattr(e, "reason") else e)) return False except Exception as e: logger.error('Download %s failed: %s' % (url, e)) return False if has_ssl_error: try: download_with_external_tool(url=URL, destination=tar_file) except Exception as e: logger.error('Download %s failed: %s' % (url, e)) return False try: extract(filename=tar_file, workdir=workdir, filelist=posixpaths) except tarfile.TarError as e: logger.error('Extract %s failed: %s' % (tar_file, e.message)) return False except Exception as e: logger.error('Extract %s failed: %s' % (tar_file, e)) return False return verify(checksums=nchecksums) def _mkdir(dstdir, subdir): """Helper function: create folder /dstdir/subdir""" os.mkdir(os.path.join(dstdir, os.path.normpath(subdir))) def _copyglob(srcdir, destdir, pattern): """Helper function: copies files from /srcdir/pattern to /destdir/pattern. pattern is a glob pattern.""" for fullpath in glob.glob(os.path.join(srcdir, os.path.normpath(pattern))): relpath = os.path.relpath(fullpath, srcdir) shutil.copy2(fullpath, os.path.join(destdir, relpath)) def _copyrename(srcdir, destdir, src, dest): """Helper function: copy file from /srcdir/src to /destdir/dest.""" shutil.copy2(os.path.join(srcdir, os.path.normpath(src)), \ os.path.join(destdir, os.path.normpath(dest))) def temp_mcregion_world(worldfolder=worlddir): """Create a McRegion worldfolder in a temporary directory, based on the files in the given mixed worldfolder. Returns the temporary directory path.""" logger = logging.getLogger("nbt.tests.downloadsample") tmpfolder = tempfile.mkdtemp(prefix="nbtmcregion") logger.info("Create temporary McRegion world folder at %s" % tmpfolder) _mkdir(tmpfolder, 'region') _copyglob(worldfolder, tmpfolder, "region/*.mcr") _copyrename(worldfolder, tmpfolder, "level.dat_mcr", "level.dat") return tmpfolder def temp_anvil_world(worldfolder=worlddir): """Create a Anvil worldfolder in a temporary directory, based on the files in the given mixed worldfolder. Returns the temporary directory path.""" logger = logging.getLogger("nbt.tests.downloadsample") tmpfolder = tempfile.mkdtemp(prefix="nbtanvil") logger.info("Create temporary Anvil world folder at %s" % tmpfolder) _mkdir(tmpfolder, 'region') _copyglob(worldfolder, tmpfolder, "region/*.mca") _copyrename(worldfolder, tmpfolder, "level.dat", "level.dat") return tmpfolder def cleanup_temp_world(tmpfolder): """Remove a temporary directory""" logger = logging.getLogger("nbt.tests.downloadsample") logger.info("Remove temporary world folder at %s" % tmpfolder) shutil.rmtree(tmpfolder, ignore_errors=True) if __name__ == '__main__': logger = logging.getLogger("nbt.tests.downloadsample") if len(logger.handlers) == 0: # Logging is not yet configured. Configure it. logging.basicConfig(level=logging.INFO, stream=sys.stderr, format='%(levelname)-8s %(message)s') success = install() sys.exit(0 if success else 1) ```
{ "source": "jlsanders/genfunc", "score": 2 }
#### File: jlsanders/genfunc/toy_potentials.py ```python import numpy as np from scipy.optimize import fmin_bfgs, leastsq, fmin_powell,fmin # in units kpc, km/s and 10^11 M_solar Grav = 430091.5694 # Triaxial harmonic def H_ho(x,omega): """ Simple harmonic oscillator Hamiltonian = 0.5 * omega**2 * x**2""" return 0.5*np.sum(x[3:]**2+(omega*x[:3])**2) def angact_ho(x,omega): """ Calculate angle and action variable in sho potential with parameter omega """ action = (x[3:]**2+(omega*x[:3])**2)/(2.*omega) angle = np.array([np.arctan(-x[3+i]/omega[i]/x[i]) if x[i]!=0. else -np.sign(x[3+i])*np.pi/2. for i in range(3)]) for i in range(3): if(x[i]<0): angle[i]+=np.pi return np.concatenate((action,angle % (2.*np.pi))) def deltaH_ho(omega,xsamples): if(np.any(omega<1e-5)): return np.nan H = 0.5*np.sum(xsamples.T[3:]**2,axis=0)+0.5*np.sum((omega[:3]*xsamples.T[:3].T)**2,axis=1) return H-np.mean(H) def Jac_deltaH_ho(omega,xsamples): dHdparams = omega[:3]*xsamples.T[:3].T**2 return dHdparams-np.mean(dHdparams,axis=0) def findbestparams_ho(xsamples): """ Minimize sum of square differences of H_sho-<H_sho> for timesamples """ return np.abs(leastsq(deltaH_ho,np.array([10.,10.,10.]), Dfun = Jac_deltaH_ho, args=(xsamples,))[0])[:3] # Isochrone def cart2spol(X): """ Performs coordinate transformation from cartesian to spherical polar coordinates with (r,phi,theta) having usual meanings. """ x,y,z,vx,vy,vz=X r=np.sqrt(x*x+y*y+z*z) p=np.arctan2(y,x) t=np.arccos(z/r) vr=(vx*np.cos(p)+vy*np.sin(p))*np.sin(t)+np.cos(t)*vz vp=-vx*np.sin(p)+vy*np.cos(p) vt=(vx*np.cos(p)+vy*np.sin(p))*np.cos(t)-np.sin(t)*vz return np.array([r,p,t,vr,vp,vt]) def H_iso(x,params): """ Isochrone Hamiltonian = -GM/(b+sqrt(b**2+(r-r0)**2))""" #r = (np.sqrt(np.sum(x[:3]**2))-params[2])**2 r = np.sum(x[:3]**2) return 0.5*np.sum(x[3:]**2)-Grav*params[0]/(params[1]+np.sqrt(params[1]**2+r)) def angact_iso(x,params): """ Calculate angle and action variable in isochrone potential with parameters params = (M,b) """ GM = Grav*params[0] E = H_iso(x,params) r,p,t,vr,vphi,vt=cart2spol(x) st=np.sin(t) Lz=r*vphi*st L=np.sqrt(r*r*vt*vt+Lz*Lz/st/st) if(E>0.): # Unbound return (np.nan,np.nan,np.nan,np.nan,np.nan,np.nan) Jr=GM/np.sqrt(-2*E)-0.5*(L+np.sqrt(L*L+4*GM*params[1])) action = np.array([Jr,Lz,L-abs(Lz)]) c=GM/(-2*E)-params[1] e=np.sqrt(1-L*L*(1+params[1]/c)/GM/c) eta=np.arctan2(r*vr/np.sqrt(-2.*E),params[1]+c-np.sqrt(params[1]**2+r*r)) OmR=np.power(-2*E,1.5)/GM Omp=0.5*OmR*(1+L/np.sqrt(L*L+4*GM*params[1])) thetar=eta-e*c*np.sin(eta)/(c+params[1]) if(abs(vt)>1e-10): psi=np.arctan2(np.cos(t),-np.sin(t)*r*vt/L) else: psi=np.pi/2. a=np.sqrt((1+e)/(1-e)) ap=np.sqrt((1+e+2*params[1]/c)/(1-e+2*params[1]/c)) F = lambda x,y: np.pi/2.-np.arctan(np.tan(np.pi/2.-0.5*y)/x) if y>np.pi/2. \ else -np.pi/2.+np.arctan(np.tan(np.pi/2.+0.5*y)/x) if y<-np.pi/2. \ else np.arctan(x*np.tan(0.5*y)) thetaz=psi+Omp*thetar/OmR-F(a,eta)-F(ap,eta)/np.sqrt(1+4*GM*params[1]/L/L) LR=Lz/L sinu = LR/np.sqrt(1.-LR**2)/np.tan(t) u = 0 if(sinu>1.): u=np.pi/2. elif(sinu<-1.): u = -np.pi/2. else: u = np.arcsin(sinu) if(vt>0.): u=np.pi-u thetap=p-u+np.sign(Lz)*thetaz angle = np.array([thetar,thetap,thetaz]) return np.concatenate((action,angle % (2.*np.pi))) def deltaH_iso(params,p,r): deltaH = p-Grav*params[0]/(params[1]+np.sqrt(params[1]**2+r)) if(params[0]<0. or params[1]<0. or np.any(deltaH>0.)): return np.nan return (deltaH-np.mean(deltaH)) # return JR-np.mean(JR) def Jac_deltaH_iso(params,p,r): H_o = -Grav/(params[1]+np.sqrt(params[1]**2+r)) H_1 = Grav*params[0]*(1.+params[1]/np.sqrt(params[1]**2+r))/(params[1]+np.sqrt(params[1]**2+r))**2 return np.array([(H_o-np.mean(H_o)),(H_1-np.mean(H_1))]) def findbestparams_iso(xsamples): """ Minimize sum of square differences of H_iso-<H_iso> for timesamples""" p = 0.5*np.sum(xsamples.T[3:]**2,axis=0) r = np.sum(xsamples.T[:3]**2,axis=0) return np.abs(leastsq(deltaH_iso,np.array([10.,10.]), Dfun = None , col_deriv=1,args=(p,r,))[0]) #Jac_deltaH_iso ```
{ "source": "JlsBssmnn/ALiPy", "score": 3 }
#### File: alipy/index/multi_label_tools.py ```python import collections import numpy as np from ..utils.interface import BaseCollection from ..utils.misc import check_matrix __all__ = ['check_index_multilabel', 'infer_label_size_multilabel', 'flattern_multilabel_index', 'integrate_multilabel_index', 'get_labelmatrix_in_multilabel', 'get_Xy_in_multilabel', ] def check_index_multilabel(index): """check if the given indexes are legal. Parameters ---------- index: list or np.ndarray index of the data. """ if isinstance(index, BaseCollection): return index if not isinstance(index, (list, np.ndarray)): index = [index] datatype = collections.Counter([type(i) for i in index]) if len(datatype) != 1: raise TypeError("Different types found in the given indexes.") if not datatype.popitem()[0] == tuple: raise TypeError("Each index should be a tuple.") return index def infer_label_size_multilabel(index_arr, check_arr=True): """Infer the label size from a set of index arr. raise if all index are example index only. Parameters ---------- index_arr: list or np.ndarray index array. Returns ------- label_size: int the inferred label size. """ if check_arr: index_arr = check_index_multilabel(index_arr) data_len = np.array([len(i) for i in index_arr]) if np.any(data_len == 2): label_size = np.max([i[1] for i in index_arr if len(i) == 2]) + 1 elif np.all(data_len == 1): raise Exception( "Label_size can not be induced from fully labeled set, label_size must be provided.") else: raise ValueError( "All elements in indexes should be a tuple, with length = 1 (example_index, ) " "to query all labels or length = 2 (example_index, [label_indexes]) to query specific labels.") return label_size def flattern_multilabel_index(index_arr, label_size=None, check_arr=True): """ Falt the multilabel_index to one-dimensional. Parameters ---------- index_arr: list or np.ndarray index array. label_size: int the inferred label size. check_arr: bool if True,check the index_arr is a legal multilabel_index. Returns ------- decomposed_data: list the decomposed data after falting. """ if check_arr: index_arr = check_index_multilabel(index_arr) if label_size is None: label_size = infer_label_size_multilabel(index_arr) else: assert (label_size > 0) decomposed_data = [] for item in index_arr: if len(item) == 1: for i in range(label_size): decomposed_data.append((item[0], i)) else: if isinstance(item[1], collections.Iterable): label_ind = [i for i in item[1] if 0 <= i < label_size] else: assert (0 <= item[1] < label_size) label_ind = [item[1]] for j in range(len(label_ind)): decomposed_data.append((item[0], label_ind[j])) return decomposed_data def integrate_multilabel_index(index_arr, label_size=None, check_arr=True): """ Integrated the indexes of multi-label. Parameters ---------- index_arr: list or np.ndarray multi-label index array. label_size: int, optional (default = None) the size of label set. If not provided, an inference is attempted. raise if the inference is failed. check_arr: bool, optional (default = True) whether to check the validity of index array. Returns ------- array: list the integrated array. """ if check_arr: index_arr = check_index_multilabel(index_arr) if label_size is None: label_size = infer_label_size_multilabel(index_arr) else: assert (label_size > 0) integrated_arr = [] integrated_dict = {} for index in index_arr: example_ind = index[0] if len(index) == 1: integrated_dict[example_ind] = set(range(label_size)) else: # length = 2 if example_ind in integrated_dict.keys(): integrated_dict[example_ind].update( set(index[1] if isinstance(index[1], collections.Iterable) else [index[1]])) else: integrated_dict[example_ind] = set( index[1] if isinstance(index[1], collections.Iterable) else [index[1]]) for item in integrated_dict.items(): if len(item[1]) == label_size: integrated_arr.append((item[0],)) else: # ------------------------------------------------------------------------------------------- # integrated_arr.append((item[0], tuple(item[0]))) integrated_arr.append((item[0], tuple(item[1]))) return integrated_arr def get_labelmatrix_in_multilabel(index, data_matrix, unknown_element=0): """get data matrix by giving index in multi-label setting. Note: Each index should be a tuple, with the first element representing instance index. e.g. queried_index = (1, [3,4]) # 1st instance, 3rd,4t _labels queried_index = (1, [3]) # 1st instance, 3rd _labels queried_index = (1, 3) queried_index = (1, (3)) queried_index = (1, (3,4)) queried_index = (1, ) # query all _labels Parameters ---------- index: {list, np.ndarray, tuple, MultiLabelIndexCollection} if only one index, a tuple is expected. Otherwise, it should be a list type with n tuples. data_matrix: array-like matrix with [n_samples, n_features] or [n_samples, n_classes]. unknown_element: object value to fill up the unknown part of the matrix_clip. Returns ------- Matrix_clip: np.ndarray data matrix given index index_arr: list index of examples correspond to the each row of Matrix_clip """ # check validity index = check_index_multilabel(index) data_matrix = check_matrix(data_matrix) ins_bound = data_matrix.shape[0] ele_bound = data_matrix.shape[1] index_arr = [] # record if a row is already constructed current_rows = 0 # record how many rows have been constructed label_indexed = None for k in index: # k is a tuple with 2 elements k_len = len(k) if k_len != 1 and k_len != 2: raise ValueError( "A single index should only have 1 element (example_index, ) to query all _labels or" "2 elements (example_index, [label_indexes]) to query specific _labels. But found %d in %s" % (len(k), str(k))) example_ind = k[0] assert (example_ind < ins_bound) if example_ind in index_arr: ind_row = index_arr.index(example_ind) else: index_arr.append(example_ind) ind_row = -1 # new row current_rows += 1 if k_len == 1: # all _labels label_ind = [i for i in range(ele_bound)] else: if isinstance(k[1], collections.Iterable): label_ind = [i for i in k[1] if 0 <= i < ele_bound] else: assert (0 <= k[1] < ele_bound) label_ind = [k[1]] # construct mat if ind_row == -1: tmp = np.zeros((1, ele_bound)) + unknown_element tmp[0, label_ind] = data_matrix[example_ind, label_ind] if label_indexed is None: label_indexed = tmp.copy() else: label_indexed = np.append(label_indexed, tmp, axis=0) else: label_indexed[ind_row, label_ind] = data_matrix[example_ind, label_ind] return label_indexed, index_arr def get_Xy_in_multilabel(index, X, y, unknown_element=0): """get data matrix by giving the indexes of known instance-label pairs in multi-label setting. Note: Each index should be a tuple, with the first element representing instance index. e.g. queried_index = (1, [3,4]) # 1st instance, 3rd,4th labels queried_index = (1, [3]) # 1st instance, 3rd labels queried_index = (1, 3) queried_index = (1, (3)) queried_index = (1, (3,4)) queried_index = (1, ) # query all labels Parameters ---------- index: {list, np.ndarray, tuple, MultiLabelIndexCollection} The indexes of known instance-label pairs. if only one index, a tuple is expected. Otherwise, it should be a list type with n tuples or MultiLabelIndexCollection object. X: array-like array with [n_samples, n_features]. y: array-like array with [n_samples, n_classes]. unknown_element: object value to fill up the unknown part of the matrix_clip. Returns ------- X_clip: np.ndarray Data matrix of the retrieved data. y_clip: np.ndarray Label matrix of the retrieved data. ins_index: np.ndarray Index of each retrieved data. """ # check validity X = check_matrix(X) if not len(X) == len(y): raise ValueError("Different length of instances and labels found.") label_matrix, ins_index = get_labelmatrix_in_multilabel(index, y, unknown_element=unknown_element) return X[ins_index, :], label_matrix, ins_index # np.unravel_index # np.ravel_multi_index ``` #### File: alipy/query_strategy/noisy_oracles.py ```python from __future__ import division import collections from abc import ABCMeta, abstractmethod import copy import numpy as np import scipy.stats from sklearn.linear_model import LogisticRegression from sklearn.neighbors import NearestNeighbors from .base import BaseNoisyOracleQuery from .query_labels import QueryInstanceUncertainty from .query_labels import _get_proba_pred from ..oracle import Oracles, Oracle __all__ = ['majority_vote', 'get_query_results', 'get_majority_vote', 'QueryNoisyOraclesCEAL', 'QueryNoisyOraclesIEthresh', 'QueryNoisyOraclesAll', 'QueryNoisyOraclesRandom', ] def majority_vote(labels, weight=None): """Perform majority vote to determine the true label from multiple noisy oracles. Parameters ---------- labels: list A list with length=k, which contains the labels provided by k noisy oracles. weight: list, optional (default=None) The weights of each oracle. It should have the same length with labels. Returns ------- vote_count: int The number of votes. vote_result: object The label of the selected_instance, produced by majority voting of the selected oracles. """ oracle_weight = np.ones(len(labels)) if weight is None else weight assert len(labels) == len(oracle_weight) vote_result = collections.Counter(labels) most_votes = vote_result.most_common(n=1) return most_votes[0][1], most_votes[0][0] def get_query_results(selected_instance, oracles, names=None): """Get the query results from oracles of the selected instance. Parameters ---------- selected_instance: int The indexes of selected samples. Should be a member of unlabeled set. oracles: {list, alipy.oracle.Oracles} An alipy.oracle.Oracle object that contains all the available oracles or a list of oracles. Each oracle should be a alipy.oracle.Oracle object. names: list, optional (default=None) A list of str which contains the names of oracles to query from. If not provided, it will query from all oracles. Each name should in oracles.names(). Returns ------- query_labels: list The queried labels. query_costs: list The total cost of query. """ costs = [] if isinstance(oracles, list): oracle_type = 'list' for oracle in oracles: assert isinstance(oracle, Oracle) elif isinstance(oracles, Oracles): oracle_type = 'oracles' else: raise TypeError("The type of parameter oracles must be a list or alipy.oracle.Oracles object.") labeling_results = [] if oracle_type == 'list': for i in oracles.names() if oracle_type == 'oracles' else range(len(oracles)): lab, co = oracles[i].query_by_index(selected_instance) labeling_results.append(lab[0]) costs.append(np.sum(co)) else: results = oracles.query_from_s(selected_instance, oracles_name=names) labeling_results = [res[0][0] for res in results] costs = [np.sum(res[1]) for res in results] return labeling_results, costs def get_majority_vote(selected_instance, oracles, names=None): """Get the majority vote results of the selected instance. Parameters ---------- selected_instance: int The indexes of selected samples. Should be a member of unlabeled set. oracles: {list, alipy.oracle.Oracles} An alipy.oracle.Oracle object that contains all the available oracles or a list of oracles. Each oracle should be a alipy.oracle.Oracle object. names: list, optional (default=None) A list of str which contains the names of oracles to query from. If not provided, it will query from all oracles. Each name should in oracles.names(). Returns ------- vote_count: int The number of votes. vote_result: object The label of the selected_instance, produced by majority voting of the selected oracles. query_costs: int The total cost of query. """ labeling_results, cost = get_query_results(selected_instance, oracles, names) majority_vote_result = majority_vote(labeling_results) return majority_vote_result[0], majority_vote_result[1], np.sum(cost) class QueryNoisyOraclesCEAL(BaseNoisyOracleQuery): """Cost-Effective Active Learning from Diverse Labelers (CEAL) method assumes that different oracles have different expertise. Even the very noisy oracle may perform well on some kind of examples. The cost of a labeler is proportional to its overall labeling quality and it is thus necessary to query from the right oracle according to the selected instance. This method will select an instance-labeler pair (x, a), and queries the label of x from a, where the selection of both the instance and labeler is based on a evaluation function Q(x, a). The selection of instance is depend on its uncertainty. The selection of oracle is depend on the oracle's performance on the nearest neighbors of selected instance. The cost of each oracle is proportional to its overall labeling quality. Parameters ---------- X: 2D array, optional (default=None) Feature matrix of the whole dataset. It is a reference which will not use additional memory. y: array-like, optional (default=None) Label matrix of the whole dataset. It is a reference which will not use additional memory. oracles: {list, alipy.oracle.Oracles} An alipy.oracle.Oracle object that contains all the available oracles or a list of oracles. Each oracle should be a alipy.oracle.Oracle object. initial_labeled_indexes: {list, np.ndarray, IndexCollection} The indexes of initially labeled samples. Used for initializing the scores of each oracle. References ---------- [1] <NAME>, <NAME>, <NAME>, <NAME>. 2017. Cost-Effective Active Learning from Diverse Labelers. In The Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI-17), 1879-1885. """ def __init__(self, X, y, oracles, initial_labeled_indexes): super(QueryNoisyOraclesCEAL, self).__init__(X, y, oracles=oracles) # ytype = type_of_target(self.y) # if 'multilabel' in ytype: # warnings.warn("This query strategy does not support multi-label.", # category=FunctionWarning) assert (isinstance(initial_labeled_indexes, collections.Iterable)) self._ini_ind = np.asarray(initial_labeled_indexes) # construct a nearest neighbor object implemented by scikit-learn self._nntree = NearestNeighbors(metric='euclidean') self._nntree.fit(self.X[self._ini_ind]) def select(self, label_index, unlabel_index, eval_cost=False, model=None, **kwargs): """Query from oracles. Return the index of selected instance and oracle. Parameters ---------- label_index: {list, np.ndarray, IndexCollection} The indexes of labeled samples. unlabel_index: {list, np.ndarray, IndexCollection} The indexes of unlabeled samples. eval_cost: bool, optional (default=False) To evaluate the cost of oracles or use the cost provided by oracles. model: object, optional (default=None) Current classification model, should have the 'predict_proba' method for probabilistic output. If not provided, LogisticRegression with default parameters implemented by sklearn will be used. n_neighbors: int, optional (default=10) How many neighbors of the selected instance will be used to evaluate the oracles. Returns ------- selected_instance: int The index of selected instance. selected_oracle: int or str The index of selected oracle. If a list is given, the index of oracle will be returned. If a Oracles object is given, the oracle name will be returned. """ if model is None: model = LogisticRegression(solver='liblinear') model.fit(self.X[label_index], self.y[label_index]) pred_unlab, _ = _get_proba_pred(self.X[unlabel_index], model) n_neighbors = min(kwargs.pop('n_neighbors', 10), len(self._ini_ind) - 1) return self.select_by_prediction_mat(label_index, unlabel_index, pred_unlab, n_neighbors=n_neighbors, eval_cost=eval_cost) def select_by_prediction_mat(self, label_index, unlabel_index, predict, **kwargs): """Query from oracles. Return the index of selected instance and oracle. Parameters ---------- label_index: {list, np.ndarray, IndexCollection} The indexes of labeled samples. unlabel_index: {list, np.ndarray, IndexCollection} The indexes of unlabeled samples. predict: : 2d array, shape [n_samples, n_classes] The probabilistic prediction matrix for the unlabeled set. n_neighbors: int, optional (default=10) How many neighbors of the selected instance will be used to evaluate the oracles. eval_cost: bool, optional (default=False) To evaluate the cost of oracles or use the cost provided by oracles. Returns ------- selected_instance: int The index of selected instance. selected_oracle: int or str The index of selected oracle. If a list is given, the index of oracle will be returned. If a Oracles object is given, the oracle name will be returned. """ n_neighbors = min(kwargs.pop('n_neighbors', 10), len(self._ini_ind)-1) eval_cost = kwargs.pop('n_neighbors', False) Q_table, oracle_ind_name_dict = self._calc_Q_table(label_index, unlabel_index, self._oracles, predict, n_neighbors=n_neighbors, eval_cost=eval_cost) # get the instance-oracle pair selected_pair = np.unravel_index(np.argmax(Q_table, axis=None), Q_table.shape) sel_ora = oracle_ind_name_dict[selected_pair[0]] if not isinstance(sel_ora, list): sel_ora = [sel_ora] return [unlabel_index[selected_pair[1]]], sel_ora def _calc_Q_table(self, label_index, unlabel_index, oracles, pred_unlab, n_neighbors=10, eval_cost=False): """Query from oracles. Return the Q table and the oracle name/index of each row of Q_table. Parameters ---------- label_index: {list, np.ndarray, IndexCollection} The indexes of labeled samples. unlabel_index: {list, np.ndarray, IndexCollection} The indexes of unlabeled samples. oracles: {list, alipy.oracle.Oracles} An alipy.oracle.Oracle object that contains all the available oracles or a list of oracles. Each oracle should be a alipy.oracle.Oracle object. predict: : 2d array, shape [n_samples, n_classes] The probabilistic prediction matrix for the unlabeled set. n_neighbors: int, optional (default=10) How many neighbors of the selected instance will be used to evaluate the oracles. eval_cost: bool, optional (default=False) To evaluate the cost of oracles or use the cost provided by oracles. Returns ------- Q_table: 2D array The Q table. oracle_ind_name_dict: dict The oracle name/index of each row of Q_table. """ # Check parameter and initialize variables if self.X is None or self.y is None: raise Exception('Data matrix is not provided, use select_by_prediction_mat() instead.') assert (isinstance(unlabel_index, collections.Iterable)) assert (isinstance(label_index, collections.Iterable)) unlabel_index = np.asarray(unlabel_index) label_index = np.asarray(label_index) num_of_neighbors = n_neighbors if len(unlabel_index) <= 1: return unlabel_index Q_table = np.zeros((len(oracles), len(unlabel_index))) # row:oracle, col:ins spv = np.shape(pred_unlab) # calc least_confident rx = np.partition(pred_unlab, spv[1] - 1, axis=1) rx = 1 - rx[:, spv[1] - 1] for unlab_ind, unlab_ins_ind in enumerate(unlabel_index): # evaluate oracles for each instance nn_dist, nn_of_selected_ins = self._nntree.kneighbors(X=self.X[unlab_ins_ind].reshape(1, -1), n_neighbors=num_of_neighbors, return_distance=True) nn_dist = nn_dist[0] nn_of_selected_ins = nn_of_selected_ins[0] nn_of_selected_ins = self._ini_ind[nn_of_selected_ins] # map to the original population oracles_score = [] for ora_ind, ora_name in enumerate(self._oracles_iterset): # calc q_i(x), expertise of this instance oracle = oracles[ora_name] labels, cost = oracle.query_by_index(nn_of_selected_ins) oracles_score.append(sum([nn_dist[i] * (labels[i] == self.y[nn_of_selected_ins[i]]) for i in range(num_of_neighbors)]) / num_of_neighbors) # calc c_i, cost of each labeler labels, cost = oracle.query_by_index(label_index) if eval_cost: oracles_cost = sum([labels[i] == self.y[label_index[i]] for i in range(len(label_index))]) / len(label_index) else: oracles_cost = cost[0] Q_table[ora_ind, unlab_ind] = oracles_score[ora_ind] * rx[unlab_ind] / max(oracles_cost, 0.0001) return Q_table, self._oracle_ind_name_dict class QueryNoisyOraclesSelectInstanceUncertainty(BaseNoisyOracleQuery, metaclass=ABCMeta): """This class implement select and select_by_prediction_mat by uncertainty.""" def __init__(self, X=None, y=None, oracles=None): super(QueryNoisyOraclesSelectInstanceUncertainty, self).__init__(X=X, y=y, oracles=oracles) def select(self, label_index, unlabel_index, model=None, **kwargs): """Select an instance and a batch of oracles to label it. The instance is selected by uncertainty, the oracles is selected by the difference between their labeling results and the majority vote results. Parameters ---------- label_index: {list, np.ndarray, IndexCollection} The indexes of labeled samples. unlabel_index: {list, np.ndarray, IndexCollection} The indexes of unlabeled samples. Returns ------- selected_instance: int The index of selected instance. Selected by uncertainty. selected_oracles: list The selected oracles for querying. """ if model is None: model = LogisticRegression(solver='liblinear') model.fit(self.X[label_index], self.y[label_index]) pred_unlab, _ = _get_proba_pred(self.X[unlabel_index], model) return self.select_by_prediction_mat(label_index, unlabel_index, pred_unlab) def select_by_prediction_mat(self, label_index, unlabel_index, predict): """Query from oracles. Return the index of selected instance and oracle. Parameters ---------- label_index: {list, np.ndarray, IndexCollection} The indexes of labeled samples. unlabel_index: {list, np.ndarray, IndexCollection} The indexes of unlabeled samples. predict: : 2d array, shape [n_samples, n_classes] The probabilistic prediction matrix for the unlabeled set. Returns ------- selected_instance: int The index of selected instance. Selected by uncertainty. selected_oracles: list The selected oracles for querying. """ # Check parameter and initialize variables assert (isinstance(unlabel_index, collections.Iterable)) assert (isinstance(label_index, collections.Iterable)) unlabel_index = np.asarray(unlabel_index) label_index = np.asarray(label_index) if len(unlabel_index) <= 1: return unlabel_index # select instance and oracle unc = QueryInstanceUncertainty(measure='least_confident') selected_instance = unc.select_by_prediction_mat(unlabel_index=unlabel_index, predict=predict, batch_size=1)[0] return [selected_instance], self.select_by_given_instance(selected_instance) @abstractmethod def select_by_given_instance(self, selected_instance): pass class QueryNoisyOraclesIEthresh(QueryNoisyOraclesSelectInstanceUncertainty): """IEthresh will select a batch of oracles to label the selected instance. It will score for each oracle according to the difference between their labeling results and the majority vote results. At each iteration, a batch of oracles whose scores are larger than a threshold will be selected. Oracle with a higher score is more likely to be selected. Parameters ---------- X: 2D array, optional (default=None) Feature matrix of the whole dataset. It is a reference which will not use additional memory. y: array-like, optional (default=None) Label matrix of the whole dataset. It is a reference which will not use additional memory. oracles: {list, alipy.oracle.Oracles} An alipy.oracle.Oracle object that contains all the available oracles or a list of oracles. Each oracle should be a alipy.oracle.Oracle object. initial_labeled_indexes: {list, np.ndarray, IndexCollection} The indexes of initially labeled samples. Used for initializing the scores of each oracle. epsilon: float, optional (default=0.1) The value to determine how many oracles will be selected. S_t = {a|UI(a) >= epsilon * max UI(a)} References ---------- [1] <NAME> , <NAME> , <NAME> . Efficiently learning the accuracy of labeling sources for selective sampling.[C] ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2009. """ def __init__(self, X, y, oracles, initial_labeled_indexes, **kwargs): super(QueryNoisyOraclesIEthresh, self).__init__(X, y, oracles=oracles) self._ini_ind = np.asarray(initial_labeled_indexes) # record the labeling history of each oracle self._oracles_history = dict() for i in range(len(self._oracles_iterset)): self._oracles_history[i] = dict() # record the results of majority vote self._majority_vote_results = dict() # calc initial QI(a) for each oracle a self._UI = np.ones(len(self._oracles_iterset)) self.epsilon = kwargs.pop('epsilon', 0.8) def _calc_uia(self, oracle_history, majority_vote_result, alpha=0.05): """Calculate the UI(a) by providing the labeling history and the majority vote results. Parameters ---------- oracle_history: dict The labeling history of an oracle. The key is the index of instance, the value is the label given by the oracle. majority_vote_result: dict The results of majority vote of instances. The key is the index of instance, the value is the label given by the oracle. alpha: float, optional (default=0.05) Used for calculating the critical value for the Student’s t-distribution with n−1 degrees of freedom at the alpha/2 confidence level. Returns ------- uia: float The UI(a) value. """ n = len(self._oracles_iterset) t_crit_val = scipy.stats.t.isf([alpha / 2], n - 1)[0] reward_arr = [] for ind in oracle_history.keys(): if oracle_history[ind] == majority_vote_result[ind]: reward_arr.append(1) else: reward_arr.append(0) mean_a = np.mean(reward_arr) std_a = np.std(reward_arr) uia = mean_a + t_crit_val * std_a / np.sqrt(n) return uia def select_by_given_instance(self, selected_instance): """Select oracle to query by providing the index of selected instance. Parameters ---------- selected_instance: int The indexes of selected samples. Should be a member of unlabeled set. Returns ------- selected_oracles: list The selected oracles for querying. """ selected_oracles = np.nonzero(self._UI >= self.epsilon * np.max(self._UI)) selected_oracles = selected_oracles[0] # update UI(a) for each selected oracle labeling_results = [] for i in selected_oracles: lab, _ = self._oracles[self._oracle_ind_name_dict[i]].query_by_index(selected_instance) labeling_results.append(lab[0]) self._oracles_history[i][selected_instance] = copy.copy(lab[0]) _, majority_vote_result = majority_vote(labeling_results) reward_arr = np.zeros(len(selected_oracles)) same_ind = np.nonzero(labeling_results == majority_vote_result)[0] reward_arr[same_ind] = 1 self._majority_vote_results[selected_instance] = majority_vote_result for i in selected_oracles: self._UI[i] = self._calc_uia(self._oracles_history[i], self._majority_vote_results) # return results return [self._oracle_ind_name_dict[i] for i in selected_oracles] class QueryNoisyOraclesAll(QueryNoisyOraclesSelectInstanceUncertainty): """This strategy will select instance by uncertainty and query from all oracles and return the majority vote result. Parameters ---------- X: 2D array, optional (default=None) Feature matrix of the whole dataset. It is a reference which will not use additional memory. y: array-like, optional (default=None) Label matrix of the whole dataset. It is a reference which will not use additional memory. oracles: {list, alipy.oracle.Oracles} An alipy.oracle.Oracle object that contains all the available oracles or a list of oracles. Each oracle should be a alipy.oracle.Oracle object. """ def __init__(self, oracles, X=None, y=None): super(QueryNoisyOraclesAll, self).__init__(X=X, y=y, oracles=oracles) def select_by_given_instance(self, selected_instance): """Select oracle to query by providing the index of selected instance. Parameters ---------- selected_instance: int The indexes of selected samples. Should be a member of unlabeled set. Returns ------- oracles_ind: list The indexes of selected oracles. """ return self._oracle_ind_name_dict.values() class QueryNoisyOraclesRandom(QueryNoisyOraclesSelectInstanceUncertainty): """Select a random oracle to query.""" def select_by_given_instance(self, selected_instance): """Select oracle to query by providing the index of selected instance. Parameters ---------- selected_instance: int The indexes of selected samples. Should be a member of unlabeled set. Returns ------- oracles_ind: list The indexes of selected oracles. """ return [self._oracle_ind_name_dict[np.random.randint(0, len(self._oracles), 1)[0]]] ``` #### File: examples/AL_settings/cost_sensitive.py ```python import numpy as np import copy from sklearn.datasets import make_multilabel_classification from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from alipy import ToolBox from alipy.index.multi_label_tools import get_Xy_in_multilabel from alipy.query_strategy.cost_sensitive import QueryCostSensitiveHALC, QueryCostSensitivePerformance, QueryCostSensitiveRandom from alipy.query_strategy.cost_sensitive import hierarchical_multilabel_mark # the num of classes of the classification problem NUM_CLASS = 5 NUM_SAMPLES = 2000 X, y = make_multilabel_classification(n_samples=NUM_SAMPLES, n_features=20, n_classes=NUM_CLASS, n_labels=3, length=50, allow_unlabeled=True, sparse=False, return_indicator='dense', return_distributions=False, random_state=None) y[y == 0] = -1 # the cost of each class cost = [1, 3, 3, 7, 10] # if node_i is the parent of node_j , then label_tree(i,j)=1 else 0 label_tree = np.zeros((5,5),dtype=np.int) label_tree[0, 1] = 1 label_tree[0, 2] = 1 label_tree[1, 3] = 1 label_tree[2, 4] = 1 alibox = ToolBox(X=X, y=y, query_type='PartLabels') # Split data alibox.split_AL(test_ratio=0.3, initial_label_rate=0.1, split_count=10, all_class=True) # train one model for each label on dataset # the base model using SVC in sklearn models = [] for __ in range(NUM_CLASS): models.append(SVC(decision_function_shape='ovr', gamma='auto')) # The budget of query budget = 40 # The cost budget is 500 stopping_criterion = alibox.get_stopping_criterion('cost_limit', 500) performance_result = [] halc_result = [] random_result = [] def main_loop(alibox, strategy, round): # Get the data split of one fold experiment train_idx, test_idx, label_ind, unlab_ind = alibox.get_split(round) # Get intermediate results saver for one fold experiment saver = alibox.get_stateio(round) # initalizing the models train_traget = label_ind.get_matrix_mask((NUM_SAMPLES, NUM_CLASS), sparse=False) for j in np.arange(NUM_CLASS): j_target = train_traget[:, j] i_samples = np.where(j_target!=0)[0] m = models[j] m.fit(X[i_samples, :], y[i_samples, j]) while not stopping_criterion.is_stop(): # Select a subset of Uind according to the query strategy select_ind = strategy.select(label_ind, unlab_ind, cost=cost, budget=budget, models=models) select_ind = hierarchical_multilabel_mark(select_ind, label_ind, label_tree, y) label_ind.update(select_ind) unlab_ind.difference_update(select_ind) # Update model and calc performance according to the model you are using train_traget = label_ind.get_matrix_mask((NUM_SAMPLES, NUM_CLASS), sparse=False) for j in np.arange(NUM_CLASS): j_target = train_traget[:, j] i_samples = np.where(j_target!=0)[0] m = models[j] m.fit(X[i_samples, :], y[i_samples, j]) pred = None for j in np.arange(NUM_CLASS): model = models[j] pred_j = model.predict(X[test_idx]) if pred is None: pred = pred_j.reshape((len(test_idx), 1)) else: pred = np.hstack((pred, pred_j.reshape((len(test_idx), 1)))) performance = alibox.calc_performance_metric(y_true=y[test_idx], y_pred=pred, performance_metric='hamming_loss') # Save intermediate results to file st = alibox.State(select_index=select_ind.index, performance=performance, cost=budget) saver.add_state(st) # Passing the current progress to stopping criterion object stopping_criterion.update_information(saver) # Reset the progress in stopping criterion object stopping_criterion.reset() return saver for round in range(5): train_idx, test_idx, label_ind, unlab_ind = alibox.get_split(round) # Use pre-defined strategy random = QueryCostSensitiveRandom(X,y) perf = QueryCostSensitivePerformance(X, y) halc = QueryCostSensitiveHALC(X, y,label_tree=label_tree) random_result.append(copy.deepcopy(main_loop(alibox, random, round))) performance_result.append(copy.deepcopy(main_loop(alibox, perf, round))) halc_result.append(copy.deepcopy(main_loop(alibox, halc, round))) analyser = alibox.get_experiment_analyser(x_axis='cost') analyser.add_method(method_name='random', method_results=random_result) analyser.add_method(method_name='performance', method_results=performance_result) analyser.add_method(method_name='HALC', method_results=halc_result) print(analyser) analyser.plot_learning_curves(title='Example of cost-sensitive', std_area=False) ``` #### File: examples/tools/aceThreading_usage.py ```python from sklearn.datasets import load_iris from alipy.data_manipulate import split from alipy.utils.multi_thread import aceThreading # Get the data X, y = load_iris(return_X_y=True) # Split the data train, test, lab, unlab = split(X=X, y=y, test_ratio=0.3, initial_label_rate=0.05, split_count=10) # init the aceThreading acethread = aceThreading(examples=X, labels=y, train_idx=train, test_idx=test, label_index=lab, unlabel_index=unlab, max_thread=None, refresh_interval=1, saving_path='.') # You can also use a ToolBox object to initialize an aceThreading() object without passing redundant parameters. # # initializing a ToolBox object first here. # acethread = alibox.get_ace_threading(target_function=target_func) # acethread.start_all_threads() from sklearn import linear_model from alipy.experiment import State from alipy.query_strategy import QueryInstanceQBC # define the custom function # Specifically, the parameters of the custom function must be: # (round, train_id, test_id, Ucollection, Lcollection, saver, examples, labels, global_parameters) def target_func(round, train_id, test_id, Lcollection, Ucollection, saver, examples, labels, global_parameters): # your query strategy qs = QueryInstanceQBC(examples, labels, disagreement='vote_entropy') # your model reg = linear_model.LogisticRegression(solver='liblinear') reg.fit(X=examples[Lcollection.index, :], y=labels[Lcollection.index]) # stopping criterion while len(Ucollection) > 30: select_index = qs.select(Lcollection, Ucollection, reg, n_jobs=1) Ucollection.difference_update(select_index) Lcollection.update(select_index) # update model reg.fit(X=examples[Lcollection.index, :], y=labels[Lcollection.index]) pred = reg.predict(examples[test_id, :]) accuracy = sum(pred == labels[test_id]) / len(test_id) # save intermediate results st = State(select_index=select_index, performance=accuracy) saver.add_state(st) saver.save() # set the target function acethread.set_target_function(target_func) # start the all threads acethread.start_all_threads(global_parameters=None) # get the result,return list of stateIO stateIO_list = acethread.get_results() # save the state of multi_thread to the saving_path in pkl form acethread.save() # or Recover the multi_thread_state from path. recover_acethread = aceThreading.recover("./multi_thread_state.pkl") ``` #### File: ALiPy/test/test_repository.py ```python from __future__ import division import numpy as np import pytest from alipy.oracle.knowledge_repository import ElementRepository, MatrixRepository from alipy.utils.ace_warnings import * # initialize X = np.array(range(100)) # 100 instances in total with 2 features X = np.tile(X, (2, 1)) X = X.T # print(X) y = np.array([0] * 50 + [1] * 50) # 0 for first 50, 1 for the others. # print(y) label_ind = [11, 32, 0, 6, 74] ele_exa = ElementRepository(labels=y[label_ind], indexes=label_ind, examples=X[label_ind]) ele = ElementRepository(labels=y[label_ind], indexes=label_ind) def test_ele_raise_no_example(): with pytest.warns(ValidityWarning, match=r'.*is not in the repository.*'): ele.discard(index=7) with pytest.raises(ValueError, match=r'Different length of parameters found.*'): ele.update_query(labels=[1], indexes=[10, 9]) with pytest.warns(ValidityWarning, match=r'.*is not in the repository.*'): ele.retrieve_by_indexes(indexes=7) with pytest.raises(Exception, match=r'This repository do not have the instance information.*'): ele.retrieve_by_examples(examples=[4,4]) def test_ele_raise_example(): with pytest.raises(Exception, match=r'This repository has the instance information.*'): ele_exa.update_query(labels=[1], indexes=[9]) with pytest.warns(ValidityWarning, match=r'.*is not in the repository.*'): ele_exa.discard(index=7) with pytest.raises(ValueError, match=r'Different length of parameters found.*'): ele_exa.update_query(labels=[1], indexes=[10, 9]) with pytest.warns(ValidityWarning, match=r'.*is not in the repository.*'): ele_exa.retrieve_by_indexes(indexes=7) with pytest.warns(ValidityWarning, match=r'Example for retrieving is not in the repository.*'): ele_exa.retrieve_by_examples(examples=[4,4]) def test_ele_basic_no_example(): ele.add(select_index=1, label=0) assert (1 in ele) ele.update_query(labels=[1], indexes=[60]) ele.update_query(labels=[1], indexes=61) assert (60 in ele) assert (61 in ele) ele.update_query(labels=[1, 1], indexes=[63, 64]) assert (63 in ele) assert (64 in ele) ele.discard(index=61) assert (61 not in ele) _, a = ele.retrieve_by_indexes(60) assert (a == 1) _, b = ele.retrieve_by_indexes([63, 64]) assert (np.all(b == [1, 1])) print(ele.get_training_data()) print(ele.full_history()) """ (array([], dtype=float64), array([0, 0, 0, 0, 1, 0, 1, 1, 1]), array([11, 32, 0, 6, 74, 1, 60, 63, 64])) +----------------+----------------+----------------------+---------------------+ | 0 | 1 | 2 | in all | +----------------+----------------+----------------------+---------------------+ | query_index:60 | query_index:61 | query_index:[63, 64] | number_of_queries:3 | | response:1 | response:1 | response:[1, 1] | cost:0 | | cost:None | cost:None | cost:None | | +----------------+----------------+----------------------+---------------------+ """ def test_ele_basic_example(): ele_exa.add(select_index=1, label=0, example=X[1]) assert 1 in ele_exa exa,lab = ele_exa.retrieve_by_indexes(1) assert np.all(exa == [1, 1]) assert lab == [0] exa, lab = ele_exa.retrieve_by_examples(examples=[1,1]) assert np.all(exa == [1, 1]) assert lab == [0] ################################# # Test MatrixRepository ################################# mr = MatrixRepository(labels=y[label_ind], indexes=label_ind, examples=X[label_ind]) mr2 = MatrixRepository(labels=y[label_ind], indexes=label_ind, examples=X[label_ind]) def test_mat_raise_example(): with pytest.raises(ValueError, match=r'Different length of the given parameters found.*'): mr3 = MatrixRepository(labels=y[label_ind], indexes=label_ind, examples=X[label_ind[0:3]]) with pytest.raises(Exception, match=r'This repository has the instance information.*'): mr2.update_query(labels=[1], indexes=[9]) with pytest.warns(ValidityWarning, match=r'.*is not in the repository.*'): mr2.discard(index=7) with pytest.raises(ValueError, match=r'Different length of parameters found.*'): mr2.update_query(labels=[1], indexes=[10, 9]) with pytest.warns(ValidityWarning, match=r'.*is not in the repository.*'): mr2.retrieve_by_indexes(indexes=7) with pytest.warns(ValidityWarning, match=r'.*or retrieving is not in the repository.*'): mr2.retrieve_by_examples(examples=[4,4]) def test_mat_basic_example(): mr.add(select_index=1, label=0, example=[1, 1]) assert (1 in mr) mr.update_query(labels=[1], indexes=[60], examples=[[60,60]]) mr.update_query(labels=[1], indexes=61, examples=[[61, 61]]) assert (60 in mr) assert (61 in mr) mr.update_query(labels=[1, 1], indexes=[63, 64], examples=X[[63,64]]) assert (63 in mr) assert (64 in mr) mr.discard(index=61) assert (61 not in mr) _, a = mr.retrieve_by_indexes(60) assert (a == 1) _, b = mr.retrieve_by_indexes([63, 64]) assert (np.all(b == [1, 1])) print(mr.get_training_data()) print(mr.full_history()) exa,lab = mr.retrieve_by_indexes(1) assert np.all(exa == [1, 1]) assert lab == [0] exa, lab = mr.retrieve_by_examples(examples=[1,1]) assert np.all(exa == [1, 1]) assert lab == [0] cost1 = ElementRepository(labels=y[label_ind], indexes=label_ind, examples=X[label_ind]) cost2 = MatrixRepository(labels=y[label_ind], indexes=label_ind, examples=X[label_ind]) def test_cost(): cost1.add(select_index=2, label=0, example=[2,2], cost=1) cost2.add(select_index=2, label=0, example=[2,2], cost=1) cost1.discard(index=2) cost1.update_query(labels=[1, 1], indexes=[63, 64], examples=X[[63, 64]], cost=[1, 1]) cost2.update_query(labels=[1, 1], indexes=[63, 64], examples=X[[63,64]], cost=[1,1]) # if __name__ == '__main__': # test_mat_basic_example() ```
{ "source": "jlsche/data.taipei.tagConceptionize", "score": 3 }
#### File: jlsche/data.taipei.tagConceptionize/dataset_getter.py ```python import json import codecs import pandas as pd import sys from collections import defaultdict df = pd.read_csv('./input.csv', encoding='big5') df = df.drop_duplicates(subset='fieldDescription', take_last=True) df = df[(df['category']==u'求學及進修') | (df['category']==u'交通及通訊') | (df['category']==u'生活安全及品質') | (df['category']==u'就醫') | (df['category']==u'休閒旅遊')] def matchAttri(tag_defs): #counter = 0 for idx, row in df.iterrows(): # iterate all datasets try: field_description = row['fieldDescription'].encode('big5') field_description = field_description.replace(', ', '`') field_description = field_description.replace(',', '`') field_description = field_description.replace('\r', '') field_description = field_description.replace('\n', '') field_description = field_description.replace(',', '`') field_description = field_description.replace('、 ', '`') field_description = field_description.replace('、', '`') field_description = field_description.replace(' ', '`') field_description = field_description.replace(' ', '`') except: print 'error when encode row to big5' split_result = field_description.split('`') for field in split_result: # iterate all attribute in a dataset for tag in tag_defs: # tag is now unicode, encode('utf8') # field is now string encode('utf8') or decode('big5') try: if tag in field.decode('big5'): #counter += 1 f.write(row['title']) f.write(',') f.write(row['data_link']) f.write(',') f.write(field.decode('big5')) f.write('\n') except: print 'error' #print counter, 'attributes matched' ########################################## geo_def_list = [u'緯度',u'經度',u'經緯度',u'地址',u'區域',u'座標',u'位置','lat','latitude','Lat','Latitude','lng','longitude','Lng','Longitude'] price_def_list = [u'價錢',u'權利金',u'利息',u'費用',u'收入'] ########################################## f_r = codecs.open('./wish_list', 'r', encoding='utf8') input_str = f_r.read() wish_list = [ele for ele in input_str.split(',')] for ele in wish_list: print ele.encode('utf8'), print '\n' #''' f = codecs.open('./tagMatchingResult.csv', 'w', encoding='utf8') f.write('dataset_title,dataset_link,attri_matched\n') matchAttri(wish_list) f.close() temp_df = pd.read_csv('./tagMatchingResult.csv') temp_df = temp_df.drop_duplicates() temp_df.to_csv('./tagMatchingResult.csv',index=False) #''' ```
{ "source": "JLSchoolWork/12SDD-FinanceHelper", "score": 4 }
#### File: 12SDD-FinanceHelper/Python/compound.py ```python import cmd import math import random class InterestCalculator(cmd.Cmd): # MARK Global Variables validArgFlags = ["i", "p", "r", "n", "c"] # MARK Convenience Functions def arrayContains(self, array, item): """ Check to see if an item exists in an array. :param array: Any list of values :param item: A value to check if exists in array. :return: Boolean, if exists: True, else False """ try: array.index(item) return True except: return False # MARK Print Functions def printNumberOfPeriods(self, argDict): """ Reads the number of periods from the dictionary and prints it. :param argDict: {"flag":value} """ print "Number of Periods: " + str(argDict["n"]) def printInterestRate(self, argDict): """ Reads the interest rate from the dictionary and prints it. :param argDict: {"flag":value} """ print "Interest Rate: " + str(argDict["r"]) + "%" def printAmountLoaned(self, argDict): """ Reads the amount loaned (principle) from the dictionary and prints it. :param argDict: {"flag":value} """ print "Amount Loaned: $" + str(argDict["p"]) def printAmountOwed(self, argDict): """ Reads the amount owed from the dictionary and prints it. :param argDict: {"flag":value} """ print "Amount Owed: $" + str(round(argDict["i"], 2)) def printAllCompound(self, argDict): """ Calls all of the print functions to print all 4 pro-numerals. This is just a convenience method. :param argDict: {"flag":value} """ self.printAmountLoaned(argDict) self.printInterestRate(argDict) self.printNumberOfPeriods(argDict) self.printAmountOwed(argDict) def printLine(self): """ Prints a line with 50 -s. Used for visually separating lines of prints. """ line = "" for _ in range(0, 50): line += "-" print line # MARK Calculations def getRate(self, argDict): """ Corrects the % inputted by the user to a number usable by the formulas. :rtype: float :param argDict: {"flag":value} :return: The rate to be used in formulas. """ return (argDict["r"] / 100) + 1 def calculateInterestRate(self, argDict): """ Calculates the interest rate by reading the other 3 values from the dictionary. :rtype: float :param argDict: {"flag":value} :return: The interest rate as a float """ amountBorrowed = argDict["p"] amountOwed = argDict["i"] numPeriods = math.floor(argDict["n"]) return ((math.e ** (math.log(amountOwed / amountBorrowed) / numPeriods)) - 1) * 100 def calculateNumberOfPeriods(self, argDict): """ Calculates the interest rate by reading the other 3 values from the dictionary. :rtype: float :param argDict: {"flag":value} :return: The interest rate as a float """ amountBorrowed = argDict["p"] rate = self.getRate(argDict) amountOwed = argDict["i"] return math.ceil(math.log(amountOwed / amountBorrowed) / math.log( rate)) # Round up to the nearest whole as cannot have half periods def calculateAmountBorrowed(self, argDict): """ Calculates the interest rate by reading the other 3 values from the dictionary. :rtype: float :param argDict: {"flag":value} :return: The interest rate as a float """ amountOwed = argDict["i"] rate = self.getRate(argDict) numPeriods = math.floor(argDict["n"]) return amountOwed * (rate ** -numPeriods) def calculateAmountOwed(self, argDict): """ Calculates the interest rate by reading the other 3 values from the dictionary. :rtype: float :param argDict: {"flag":value} :return: The interest rate as a float """ amountBorrowed = argDict["p"] rate = self.getRate(argDict) numPeriods = math.floor(argDict["n"]) return amountBorrowed * (rate ** numPeriods) # MARK Parsing Input def adjustDateFormat(self, value, currentFormat, targetFormat): """ Converts a given time unit to another one, and rounds down. i.e. 7 days = 1 week :rtype: float :param value: The number of units to be converted to another unit. :param currentFormat: The unit of the value being passed in. i.e. D, W, M :param targetFormat: The date unit which we want the value to be changed to. i.e. D, W, M :return: A floored adjusted date, ie 8 days -> 1 week, as compounding only occurs every full number. """ adjustmentValues = { "s": 60.0, "m": 60.0, "h": 24.0, "D": 7.0, "W": 2.0, "F": 30.0 / 14.0, "M": 3.0, "Q": 4.0, "Y": 1.0, } keys = "<KEY>".split(" ") currentIndex = keys.index(currentFormat) targetIndex = keys.index(targetFormat) adjustedValue = float(value) if currentIndex < targetIndex: for i in range(currentIndex, targetIndex): adjustedValue /= adjustmentValues[keys[i]] elif currentIndex > targetIndex: for i in range(currentIndex, targetIndex, -1): adjustedValue *= adjustmentValues[keys[i - 1]] return math.floor(adjustedValue) def argDictFromInput(self, input): """ Parses the argument string from the command to a dictionary and also checks for any abnormalities. Also converts the time units if need be. :rtype: Dictionary :param input: The string argument from the command. :return: {"flag":value} """ args = input.replace(" ", "").split("-") # A coathanger fix to stitch back together arguments that have a hyphen which is meant to be a negative sign for i in range(0, len(args)): try: int(args[i][0]) args[i - 1] = args[i - 1] + "-" + args[i] del args[i] except: pass dict = {} shouldAdjust = None adjustTo = None for arg in args: if arg != "": try: if arg[0] == "n": try: dict[arg[0]] = float(arg[1:]) except: dict[arg[0]] = float(arg[1:-1]) shouldAdjust = arg[-1:] elif arg[0] == "c": adjustTo = arg[1:] elif self.arrayContains(self.validArgFlags, arg[0]): dict[arg[0]] = float(arg[1:]) else: print "Invalid Argument Flag: " + arg[0] return None except: print arg[1:] + " is not a valid number." return None # If the number of arguments is not right if len(dict) != 3: print "Invalid amount of arguments." return None # Check for any negative argument values. for key, value in dict.iteritems(): if key != "c": if value < 0: print "Cannot have value for argument " + key + " be less than 0." return None # If amount owed is less that principle if self.isOwedgtPrinciple(dict): print "Principle cannot be greater than amount owed." return None # Adjusting the time format if required if shouldAdjust != None and adjustTo != None: try: dict["n"] = self.adjustDateFormat(dict["n"], shouldAdjust, adjustTo) except: print "Invalid time flag, refer to 'help' for all of the valid time flags." return None elif shouldAdjust != None and adjustTo == None: pass # No need to adjust, assuming the user was being verbose elif shouldAdjust == None and adjustTo != None: print "Period time format not specified. Add either a d,m,q,y after the number to specify." return None return dict def isOwedgtPrinciple(self, argDict): """ Just moving the kind of ugly try, except block out of an :param argDict: {"flag":value} :return: Boolean """ try: return argDict["p"] > argDict["i"] except: return False # MARK Commands def do_compound(self, line): """ Called when the command 'compound' is entered into the terminal. Calls other functions to parse the input, then finds which parameter of the 4 is missing and calculates it. Prints all the parameters and the calculated value. :param line: The argument string following the command. """ argDict = self.argDictFromInput(line) if argDict == None: print "Invalid Input" return if not argDict.has_key("p"): print "Calculating Principle..." argDict["p"] = self.calculateAmountBorrowed(argDict) if not argDict.has_key("r"): print "Calculating Rate..." argDict["r"] = self.calculateInterestRate(argDict) if not argDict.has_key("n"): print "Calculating Number of Periods..." argDict["n"] = self.calculateNumberOfPeriods(argDict) if not argDict.has_key("i"): print "Caclulating Amount Owed..." argDict["i"] = self.calculateAmountOwed(argDict) self.printAllCompound(argDict) def do_test(self, arg): """ Called when the command 'test' is typed into the terminal. It will generate a random set of numbers and run all of the calculations ofn them and will print them. :param arg: The string of arguments after the command. Does not do anything in this function. """ rate = float(random.randrange(1, 100, 1)) / 10 numPeriods = random.randrange(1, 40, 1) principle = float(random.randrange(1000, 100000, 1)) / 100 argDict = { "r": rate, "n": numPeriods, "p": principle } owed = self.calculateAmountOwed(argDict) print "Starting Test...." self.printLine() print "Preset Rate: " + str(rate) print "Preset Periods: " + str(numPeriods) print "Preset Principle: " + str(principle) print "Preset Owed: " + str(round(owed, 2)) command = "p " + str(principle) + " -r " + str(rate) + " -n " + str(numPeriods) + " -i " + str(owed) for i in range(0, 4): parts = command.split("-") parts.remove(parts[i]) newCommand = "" for part in parts: newCommand += "-" + part self.printLine() print "compound " + newCommand self.do_compound(newCommand) self.printLine() print "Now check to see if all of the calculated numbers match or are extremely close to the original." def do_help(self, arg): """ Called when the command 'help' is typed into the terminal. :param arg: The string of arguments after the command. Does not do anything in this function. """ print "compound -i <float> -p <float> -r <float> -n <float><s,m,h,D,W,F,M,Q,Y> -f <s,m,h,D,W,F,M,Q,Y>" print "-i : How much owed at the end." print "-p : The principle amount loaned." print "-r : The interest rate, in %." print "-n : The amount of time." print "-c : How often the interest is compounded" print " s : Seconds" print " m : Minutes" print " h : Hours" print " D : Days" print " W : Weeks" print " F : Fortnights" print " M : Months" print " Q : Quarters" print " Y : Years" print "Enter 3 of the first 4 flags to find the value of the missing one. -f is optional, if it is not used, this will use the amount of time as the number of periods." print "Type quit to exit the program." def do_quit(self, args): """ Register the command 'quit' so that it can terminate the command line process. :param args: The string of arguments after the command. Does not do anything in this function. :return: True to stop the command line app """ return True def emptyline(self): """ Overriden to stop the default action of repeating the previous command if there is an empty line. """ pass def do_EOF(self, line): """ When there is an end of line character, kill the current command line process. :param line: The string of arguments after the command. Does not do anything in this function. :return: True """ return True if __name__ == '__main__': print "Type 'help' to show the list of flags and how to use this command line tool." InterestCalculator().cmdloop() ``` #### File: Python/tax/ClothingSection.py ```python from TkHelper import * from Section import * from GridLocation import * class ClothingDeductionSection(Section): def onChangeDoOwnLaundry(self): self.doesLaundryAtHome = not self.doesLaundryAtHome self.toggleField(self.doesLaundryAtHome, self.workLaundry, self.workLaundryLabel) self.toggleField(self.doesLaundryAtHome, self.combinedLaundry, self.combinedLaundryLabel) def onChangePaidForLaundry(self): self.doesLaundryOutside = not self.doesLaundryOutside self.toggleField(self.doesLaundryOutside, self.totalLaundryExpenses, self.totalLaundryExpensesLabel) def __init__(self, controller): super(self.__class__, self).__init__(controller, "Clothing Deductions") helper = TkHelper() # Create the UI Elements helper.createCheckBox(self, "Do you do the laundry yourself?", True, GridLocation(0, 1), self.onChangeDoOwnLaundry) (self.workLaundryLabel, self.workLaundry) = helper.createNumericalField(self, "Number of work laundry only runs:", (0, 999), GridLocation(0, 2), "Home work laundry") (self.combinedLaundryLabel, self.combinedLaundry) = helper.createNumericalField(self, "Number of mixed (work & personal) laundry runs:", (0, 999), GridLocation(0, 3), "Home combined laundry") helper.createCheckBox(self, "Have you paid for any work related laundry?", False, GridLocation(0, 4), self.onChangePaidForLaundry) (self.totalLaundryExpensesLabel, self.totalLaundryExpenses) = helper.createNumericalField(self, "Total external laundry expenses:", (0, 9999999), GridLocation(0, 5), "External laundry expenses") helper.createListBox(self, "Did you buy any of the following?", [ "Compulsory Work Uniform", "Non-compulsory Work Uniform", "Occupation Specific Clothing", "Protective Clothing" ], GridLocation(0, 6)) # Apply any rules such as requiring ints or floats and also if fields are required or hidden self.doesLaundryAtHome = True self.doesLaundryOutside = False self.toggleField(self.doesLaundryOutside, self.totalLaundryExpenses, self.totalLaundryExpensesLabel) self.requiredInt.append(self.workLaundry) self.requiredInt.append(self.combinedLaundry) self.requiredFloat.append(self.totalLaundryExpenses) ``` #### File: Python/tax/CompletionSection.py ```python from Section import * from TkHelper import * class CompletedSection(Section): def calculateTaxable(self, income): if income <= 18200: return 0 if 18201 <= income <= 37000: return (income - 18200) * 0.19 if 37001 <= income <= 80000: return ((income - 37000) * 0.325) + 3572 if 80001 <= income <= 180000: return ((income - 80000) * 0.37) + 17547 if income >= 180001: return ((income - 180000) * 0.47) + 54547 def doPersonal(self): self.statements.append("First Name: " + self.allData["fname"]) self.statements.append("Last Name: " + self.allData["lname"]) self.statements.append("Phone Number: " + self.allData["phone"]) self.statements.append("Bank Account Number: " + self.allData["bank"]) self.statements.append("Medicare Number: " + self.allData["medi"]) def doAddress(self): self.statements.append("Street Address 1: " + self.allData["str1"]) self.statements.append("Street Address 2: " + self.allData["str2"]) self.statements.append("Suburb: " + self.allData["Suburb"]) self.statements.append("Post Code: " + self.allData["post"]) self.statements.append("State: " + self.allData["State"]) def doTransit(self): try: kms = int(self.allData["How many kms total?"]) self.totalDeductible += kms * 0.66 del self.allData["How many kms total?"] self.statements.append("Total deductible from driving for work: $" + str(kms * 0.66)) except: pass self.statements.append("Claimable from Public Transport Costs: $" + self.allData["public transport"]) try: self.totalDeductible += float(self.allData["public transport"]) except: pass self.statements.append("Claimable from Other Expenses: $" + self.allData["Other Transport Expenses"]) try: self.totalDeductible += float(self.allData["Other Transport Expenses"]) except: pass def doUniform(self): selectedValues = self.allData["Did you buy any of the following?"] del self.allData["Did you buy any of the following?"] boughtClothingCodes = "" codes = { "Compulsory Work Uniform": "C", "Non-compulsory Work Uniform": "N", "Occupation Specific Clothing": "S", "Protective Clothing": "P", } for value in selectedValues: key = codes.keys()[value] boughtClothingCodes += codes[key] + ", " self.statements.append("Clothing letters for items bought: " + boughtClothingCodes[:-2]) try: numWorkOnly = int(self.allData["Home work laundry"]) self.totalDeductible += numWorkOnly del self.allData["Home work laundry"] numComb = int(self.allData["Home combined laundry"]) self.totalDeductible += numComb * 0.5 del self.allData["Home combined laundry"] self.statements.append("Total deductible from laundry: $" + str(numWorkOnly + (numComb * 0.5))) except: pass self.statements.append("Claimable from external laundry: $" + self.allData["External laundry expenses"]) try: self.totalDeductible += float(self.allData["External laundry expenses"]) except: print "Failed to add total external laundry expenses into total deductible!!!" def doDonations(self): self.statements.append("Claimable from donations: $" + self.allData["donated"]) try: self.totalDeductible += float(self.allData["donated"]) except: pass def doTotalClaimable(self): totalIncome = float(self.allData["income"]) taxableIncome = totalIncome - self.totalDeductible if taxableIncome < 0: helper = TkHelper() helper.showAlert("You have more deductions than your income.") self.statements.append("Total Income: $" + str(totalIncome)) self.statements.append("Total Amount Deductible: $" + str(self.totalDeductible)) self.statements.append("Taxable Income: $" + str(taxableIncome)) self.statements.append("Tax Payable: $" + str(self.calculateTaxable(taxableIncome))) self.statements.append("Medicare Levy: $" + str(taxableIncome * 0.02)) def addLine(self): line = '' for _ in range (0, 20): line += "-" self.statements.append(line) def processData(self): self.statements = [] self.totalDeductible = 0.0 print self.allData self.doPersonal() self.addLine() self.doAddress() self.addLine() self.doTransit() self.addLine() self.doUniform() self.addLine() self.doDonations() self.addLine() self.doTotalClaimable() print self.statements helper = TkHelper() for i in range(0, len(self.statements)): helper.createLabel(self, self.statements[i], GridLocation(0, i)) def __init__(self, controller, dataDict): super(self.__class__, self).__init__(controller, "Receipt") self.allData = dataDict self.processData() ``` #### File: Python/tax/DonationSection.py ```python from TkHelper import * from Section import * from GridLocation import * class DonationDeductionSection(Section): def onChangeDonated(self): """ Called when the "has donated > $2" is checked or unchecked """ self.hasDonated = not self.hasDonated self.toggleField(self.hasDonated, self.donated, self.donatedLabel) def __init__(self, controller): super(self.__class__, self).__init__(controller, "Donation Deductions") helper = TkHelper() # Create the UI Elements helper.createCheckBox(self, "Have you donated $2 or more to an approved organisation?", False, GridLocation(0, 1), self.onChangeDonated) (self.donatedLabel, self.donated) = helper.createNumericalField(self, "How much have you donated in total? $", (2, 99999999999999),GridLocation(0, 2), "donated") # Apply any rules such as requiring ints or floats and also if fields are required or hidden self.hasDonated = False self.toggleField(self.hasDonated, self.donated, self.donatedLabel) self.requiredFloat.append(self.donated) ``` #### File: Python/tax/TkHelper.py ```python from Tkinter import * from GridLocation import * import tkMessageBox class TkHelper(object): _wraplength = 350 def showAlert(self, message): """ Show a new window as an alert. :param message: The message in the label to be shown """ tkMessageBox.showinfo("Error", message) def createHeading(self, parent, title, location=GridLocation(0, 0)): """ Creates and adds a heading label to the top of a frame :param parent: A class containing the parent frame of the header label as a variable 'frame' :param title: The header text :param location: The GridLocation to place the header if it should not be at the top by default :return: The created label instance """ label = Label(parent.frame, text=title) label.pack(side=LEFT) label.grid(row=location.row, column=location.column) return label def createField(self, parent, name, location, key=None): """ Creates and adds a textfield and a label :param parent: A class containing the parent frame of the textfield as a variable 'frame' :param name: The name of the field, will be used as a key if key is not explicitly assigned :param location: The GridLocation to place the textfield :param key: An optional shorter key if the name is too long or inappropriate to use :return: (instance of label, instance of the textfield) """ label = self.createLabel(parent, name, location) field = Entry(parent.frame) field.grid(row=location.row, column=location.column + 1) if key == None: parent.widgetsDict[name] = field else: parent.widgetsDict[key] = field return (label, field) def createLabel(self, parent, title, location): """ Creates a label and adds it to the parent's frame :param parent: A class containing the parent frame of the label as a variable 'frame' :param title: The context of the label :param location: The GridLocation to place the location :return: An instance of the label that was created """ label = Label(parent.frame, text=title, wraplength=self._wraplength, anchor=W, justify=RIGHT) label.grid(row=location.row, column=location.column) return label def createNumericalField(self, parent, name, bounds, location, key=None): """ Creates and adds a spinbox and a label :param parent: A class containing the parent frame of the spinbox as a variable 'frame' :param name: The name of the field, will be used as a key if key is not explicitly assigned :param location: The GridLocation to place the textfield :param key: An optional shorter key if the name is too long or inappropriate to use :return: (instance of label, instance of the spinbox) """ label = self.createLabel(parent, name, location) field = Spinbox(parent.frame, from_=bounds[0], to=bounds[1], width=18) field.grid(row=location.row, column=location.column + 1) if key == None: parent.widgetsDict[name] = field else: parent.widgetsDict[key] = field return label, field def createDropdown(self, parent, name, options, location): """ Creates and adds a dropdown menu and a label to a frame :param parent: A class containing the parent frame of the dropdown menu as a variable 'frame' :param name: THe name of the dropdown menu, it is also :param options: An array of strings which will become shown as options in the dropdown menu :param location: The GridLocation to place the dropdown menu :return: (instance of the label, a string variable bound to the value of the selected item in the dropdown menu. """ label = self.createLabel(parent, name, location) value = StringVar(parent.frame) value.set(options[0]) dropdown = apply(OptionMenu, (parent.frame, value) + tuple(options)) dropdown.grid(row=location.row, column=location.column + 1) parent.widgetsDict[name] = dropdown return label, value def createCheckBox(self, parent, name, default, location, onChange): """ Creates and adds a checkbox to a frame :param parent: A class containing the parent frame of the checkbox as a variable 'frame' :param name: The label text for the checkbox :param default: The default value of the checkbox, True for ticked and vice versa. :param location: The GridLocation to place the checkbox :param onChange: The function to be called when the value of the checkbox changes. :return: An instance of the checkbox which was added to the frame """ checkBox = Checkbutton(parent.frame, text=name, command=onChange, wraplength=self._wraplength) checkBox.grid(row=location.row, column=location.column, columnspan=2) if default: checkBox.select() return checkBox def createButton(self, parent, title, action, location): """ Creates and adds a button to a frame :param parent: A class containing the parent frame of the button as a variable 'frame' :param title: The title of the button :param action: The function ot be called when the value of the checkbox changes. :param location: The GridLocation to place the button :return: An instance of the button that was added to the frame """ button = Button(parent.frame, text=title, command=action) button.grid(row=location.row, column=location.column) return button def createListBox(self, parent, title, options, location): """ Creates and adds a listbox to a frame :param parent: A class containing the parent frame of the listbox as a variable 'frame' :param title: The heading/title of the list box :param options: An array of strings to be the available options to pick from :param location: The GridLocation to place the listbox :return: Instance of the listbox """ label = self.createLabel(parent, title, location) list = Listbox(parent.frame, selectmode=MULTIPLE, height=len(options)) for i in range(0, len(options)): list.insert(i, options[i]) list.grid(row=location.row, column=location.column + 1) parent.widgetsDict[title] = list return list ```
{ "source": "jlscs/FastNN", "score": 2 }
#### File: image_models/datasets/dataset_factory.py ```python from __future__ import division from __future__ import print_function import tensorflow as tf import cifar10 import flowers import mnist from flags import FLAGS from utils import dataset_utils datasets_map = { 'cifar10': cifar10, 'flowers': flowers, 'mnist': mnist, } def get_dataset_iterator(dataset_name, train_image_size, preprocessing_fn=None, data_sources=None, reader=None): with tf.device("/cpu:0"): if not dataset_name: raise ValueError('expect dataset_name not None.') if dataset_name not in datasets_map: raise ValueError('Name of network unknown %s' % dataset_name) if dataset_name == 'mock': return dataset_utils._create_mock_iterator(train_image_size) def parse_fn(example): with tf.device("/cpu:0"): image, label = datasets_map[dataset_name].parse_fn(example) if preprocessing_fn is not None: image = preprocessing_fn(image, train_image_size, train_image_size) if FLAGS.use_fp16: image = tf.cast(image, tf.float16) label -= FLAGS.labels_offset return image, label return dataset_utils._create_dataset_iterator(data_sources, parse_fn, reader) ``` #### File: image_models/utils/cluster_utils.py ```python from __future__ import division from __future__ import print_function import tensorflow as tf from flags import FLAGS def create_config_proto(): """Returns session config proto.""" config = tf.ConfigProto( log_device_placement=FLAGS.log_device_placement, inter_op_parallelism_threads=FLAGS.inter_op_parallelism_threads, intra_op_parallelism_threads=FLAGS.intra_op_parallelism_threads, allow_soft_placement=True, gpu_options=tf.GPUOptions( force_gpu_compatible=True, allow_growth=True)) return config def get_cluster_manager(): """Returns the cluster manager to be used.""" return GrpcClusterManager(create_config_proto()) class BaseClusterManager(object): """The manager for the cluster of servers running the fast-nn.""" def __init__(self): assert FLAGS.job_name in ['worker'], 'job_name must be worker' if FLAGS.job_name and FLAGS.worker_hosts: cluster_dict = {'worker': FLAGS.worker_hosts.split(',')} else: cluster_dict = {'worker': ['127.0.0.1:0']} self._num_workers = len(cluster_dict['worker']) self._cluster_spec = tf.train.ClusterSpec(cluster_dict) self._device_exp = tf.train.replica_device_setter( worker_device="/job:worker/task:%d/" % FLAGS.task_index, cluster=self._cluster_spec) def get_target(self): """Returns a target to be passed to tf.Session().""" raise NotImplementedError('get_target must be implemented by subclass') def get_cluster_spec(self): return self._cluster_spec def num_workers(self): return self._num_workers def device_exp(self): return self._device_exp class GrpcClusterManager(BaseClusterManager): """A cluster manager for a cluster networked with gRPC.""" def __init__(self, config_proto): super(GrpcClusterManager, self).__init__() self._server = tf.train.Server(self._cluster_spec, job_name=FLAGS.job_name, task_index=FLAGS.task_index, config=config_proto, protocol=FLAGS.protocol) self._target = self._server.target def get_target(self): return self._target ```
{ "source": "jlsepulveda/dynamodb-copy-table", "score": 2 }
#### File: jlsepulveda/dynamodb-copy-table/dynamodb-data-transformation.py ```python import boto3 import json import decimal import base64 import os import sys if len(sys.argv) != 3: print 'Usage: %s <source_table_name>' \ ' <destination_table_name>' % sys.argv[0] sys.exit(1) src_table = sys.argv[1] dst_table = sys.argv[2] # Helper class to convert a DynamoDB item to JSON. class DecimalEncoder(json.JSONEncoder): def default(self, o): if isinstance(o, decimal.Decimal): if o % 1 > 0: return float(o) else: return int(o) return super(DecimalEncoder, self).default(o) dynamodb = boto3.resource('dynamodb', region_name='us-east-1') src=dynamodb.Table(src_table) dest=dynamodb.Table(dst_table) response = src.scan() for i in response['Items']: json.dumps(i,cls=DecimalEncoder) new_item = {} for f in i.keys(): new_item[f] = i[f] new_item['classroomCourseUUID'] = base64.b64encode(i['classroomId'] + '|0') dest.put_item(Item=new_item) while 'LastEvaluatedKey' in response: response = src.scan(ExclusiveStartKey=response['LastEvaluatedKey']) for i in response['items']: print (json.dumps(i, cls=DecimalEncoder)) ```
{ "source": "jlsheehan/pybuilder-docker-build", "score": 2 }
#### File: jlsheehan/pybuilder-docker-build/build.py ```python from pybuilder.core import use_plugin, init, Project, Author use_plugin("python.core") use_plugin("python.flake8") use_plugin("python.distutils") use_plugin("pypi:pybuilder_pytest") use_plugin('pypi:pybuilder_pytest_coverage') use_plugin("pypi:pybuilder_git_version") authors = [Author("<NAME>", "<EMAIL>")] summary = "A Docker build plugin for PyBuilder" url = "https://github.com/jlsheehan/pybuilder-docker-build" license = "MIT License" name = "pybuilder-docker-build" default_task = "publish" @init def set_properties(project: Project): project.depends_on("docker") project.set_property("distutils_readme_description", True) project.set_property("distutils_description_overwrite", True) ``` #### File: python/pybuilder_docker_build/util.py ```python import os from docker import DockerClient from pybuilder.core import Project, Logger docker_client_singleton = None def _full_image_tag(project): return "{docker_image_repo}:{docker_image_tag}".format( docker_image_repo=project.get_property("docker_image_repo"), docker_image_tag=project.get_property("docker_image_tag") ) def _build_args(project: Project, logger: Logger): build_args_dict = { "PROJECT_NAME": project.name, "PROJECT_VERSION": project.version, "PROJECT_DIST_VERSION": project.dist_version, "PROJECT_DIST": os.path.relpath(project.expand_path(project.get_property("dir_dist")), start=project.get_property("docker_build_path")) } if project.has_property("docker_build_args"): build_args_dict.update(project.get_property("docker_build_args")) logger.debug("Created build args: %s", build_args_dict) return build_args_dict def _get_docker_client(): global docker_client_singleton if docker_client_singleton is None: docker_client_singleton = DockerClient.from_env() return docker_client_singleton ```
{ "source": "jlshix/nowcoder", "score": 3 }
#### File: nowcoder/python/09_jump_stage_2.py ```python class Solution: def jumpFloorII(self, number): # write code here res = 1 if number >= 2: for _ in range(number-1): res *= 2 return res ``` #### File: nowcoder/python/13_odd_before_even.py ```python class Solution: def reOrderArray(self, array): # write code here # key 作为排序依据 return sorted(array, key=lambda x: x%2==0) ```
{ "source": "jlskuz/otio-drp-adapter", "score": 3 }
#### File: otio_drp_adapter/adapters/drp.py ```python import json import opentimelineio as otio from os.path import basename def read_from_file(filepath, main_mix=False, full_tracks=False): # We read the .drp file directly with open(filepath) as source: # First line contains metadata and the starting settings metadata = json.loads(source.readline().strip()) # Next ones are the scene switches, let's decode them right away timeline_data = [] for line in source: timeline_data += [json.loads(line.strip())] # We use the filename as the timeline name (without the .drp suffix) timeline_name = basename(filepath[:-4]) track_name = "Main Mix" timeline = otio.schema.Timeline(timeline_name) # We will use the masterTimecode as a 0 reference mt = metadata["masterTimecode"] # BlackMagic's ATEM seems to be only 1080p25, but well widths, rates = metadata["videoMode"].split("p") rate = int(rates) # For now, the timeline is a single track. main_track = otio.schema.Track(track_name) # If we don't have sources, the .drp file is probably broken. if "sources" not in metadata: raise Exception("No sources in drp file") tc_ref = otio.opentime.from_timecode(mt, rate) current_tc = otio.opentime.RationalTime(value=0, rate=rate) # Let's compute the duration of the full scene based on the last switch last_tc = timeline_data[-1]["masterTimecode"] end_frame = otio.opentime.from_timecode(last_tc, rate) duration = end_frame - tc_ref # And make it available for the ext ref available_range = otio.opentime.TimeRange( start_time=current_tc, duration=duration, ) # Let's create an hash with all the indices as the key for later # and create the external reference for the files # (it may be more clever to generate one for each source) extrefs = dict() for src in metadata["sources"]: src["ref"] = None # If it's an actual file, generate a ref for it if "file" in src: ref = otio.schema.ExternalReference( target_url=src["file"], available_range=available_range ) # add it to the src dict from JSON src["ref"] = ref src_track = otio.schema.Track(src["name"]) src["track"] = src_track # add our entry to extrefs, with _index_ as the key (it's an int.) extrefs[src["_index_"]] = src # Let's append the interesting tracks in reverse order for k, src in sorted( extrefs.items(), key=lambda x: x[1]["name"], reverse=True ): if "track" in src: timeline.tracks.append(src["track"]) if full_tracks: sclip = otio.schema.Clip( src["name"], media_reference=src["ref"], source_range=available_range, ) src["track"].append(sclip) # Loosely try to get the scene chosen before the show starts try: current_source = metadata["mixEffectBlocks"][0]["source"] except KeyError: current_source = 0 if main_mix: timeline.tracks.append(main_track) # Let's loop over the switches in the timeline for c in timeline_data: # End of current clip is there, and it has that many frames next_clip_tc = otio.opentime.from_timecode( c["masterTimecode"], rate ) next_clip_frames = next_clip_tc - tc_ref tr = otio.opentime.TimeRange( current_tc, next_clip_frames, ) # So let's figure out its name and ext ref from our hash # and compute its length in frames clip = otio.schema.Clip( extrefs[current_source]["name"], media_reference=extrefs[current_source]["ref"], source_range=tr, ) gap = otio.schema.Gap(source_range=tr) # Add it to the track if main_mix: main_track.append(clip) if not full_tracks: for name, source in extrefs.items(): if "track" in source: if name == current_source: source["track"].append(clip.clone()) else: source["track"].append(gap.clone()) # Prepare for the next round, let's move on at the end # of the added clip, and set the sources for the next clip. current_tc += next_clip_frames if "source" in c["mixEffectBlocks"][0]: current_source = c["mixEffectBlocks"][0]["source"] else: break return timeline ``` #### File: otio-drp-adapter/tests/test_otio_drp_adapter.py ```python import os import opentimelineio as otio SAMPLE_DATA_DIR = os.path.join(os.path.dirname(__file__), "sample_data") DRP_EXAMPLE_PATH = os.path.join(SAMPLE_DATA_DIR, "sample.drp") def test_adapter(): timeline = otio.adapters.read_from_file( DRP_EXAMPLE_PATH, "otio_drp_adapter" ) assert isinstance(timeline, otio.schema.Timeline) ```
{ "source": "jlsneto/cerejeira", "score": 2 }
#### File: cereja/utils/_utils.py ```python import ast import gc import math import os import threading import time from collections import OrderedDict, defaultdict from importlib import import_module import importlib import sys import types import random from typing import Any, Union, List, Tuple, Sequence, Iterable, Dict import logging import itertools from copy import copy import inspect # Needed init configs from ..config.cj_types import ClassType, FunctionType, Number __all__ = ['CjTest', 'camel_to_snake', 'combine_with_all', 'fill', 'get_attr_if_exists', 'get_implements', 'get_instances_of', 'import_string', 'install_if_not', 'invert_dict', 'logger_level', 'module_references', 'set_log_level', 'time_format', 'string_to_literal', 'rescale_values', 'Source', 'sample', 'obj_repr', 'truncate', 'type_table_of', 'list_methods', 'can_do', 'chunk', 'is_iterable', 'is_indexable', 'is_sequence', 'is_numeric_sequence', 'clipboard', 'sort_dict', 'dict_append', 'to_tuple', 'dict_to_tuple', 'list_to_tuple', 'group_by', 'dict_values_len', 'dict_max_value', 'dict_min_value', 'dict_filter_value', 'get_zero_mask', 'get_batch_strides', 'Thread', 'prune_values'] logger = logging.getLogger(__name__) _DICT_ITEMS_TYPE = type({}.items()) class Thread(threading.Thread): def __init__(self, target, args=None, kwargs=None, name=None, daemon=None, callback=None): while threading.active_count() > os.cpu_count() * 2: time.sleep(0.1) super().__init__(daemon=daemon, name=name) if args is None: args = () if kwargs is None: kwargs = {} self._func = target self._args = args self._kwargs = kwargs self._callback = callback def run(self): res = self._func(*self._args, **self._kwargs) if self._callback: self._callback(res) def is_indexable(v): return hasattr(v, '__getitem__') def chunk(data: Sequence, batch_size: int = None, fill_with: Any = None, is_random: bool = False, max_batches: int = None) -> List[Union[Sequence, List, Tuple, Dict]]: """ e.g: >>> import cereja as cj >>> data = list(range(15)) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] >>> cj.chunk(data, batch_size=4) [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14]] >>> cj.chunk(data, batch_size=4, is_random=True, fill_with=0) [[7, 2, 11, 4], [10, 6, 1, 13], [12, 9, 5, 0], [8, 3, 14, 0]] >>> data = {"key1": 'value1', "key2": 'value2', "key3": 'value3', "key4": 'value4'} >>> cj.chunk(data, batch_size=2,is_random=True) [{'key3': 'value3', 'key2': 'value2'}, {'key1': 'value1', 'key4': 'value4'}] @param data: Iterable data @param batch_size: number of items per batch @param fill_with: Any, but isn't valid for dict @param is_random: shuffle data @param max_batches: limit number of batches @return: list of batches """ assert is_iterable(data) and len(data) > 0, f"Chunk isn't possible, because value {data} isn't valid." if batch_size is None and max_batches is None: return [data] # used to return the same data type __parser = None if isinstance(data, (dict, tuple, set)): __parser = type(data) data = data.items() if isinstance(data, dict) else data data = list(data) if isinstance(data, (set, tuple, str, bytes, bytearray, _DICT_ITEMS_TYPE)) else copy(data) if not batch_size or batch_size > len(data) or batch_size < 1: if isinstance(max_batches, (int, float)) and max_batches > 0: batch_size = math.ceil(len(data) / max_batches) else: batch_size = len(data) if is_random: random.shuffle(data) if max_batches is None: max_batches = len(data) // batch_size if len(data) % batch_size == 0 else len(data) // batch_size + 1 batches = [] for i in range(0, len(data), batch_size): result = data[i:i + batch_size] if fill_with is not None and len(result) < batch_size: result += [fill_with] * (batch_size - len(result)) batches.append(__parser(result) if __parser is not None else result) max_batches -= 1 if not max_batches: break return batches def _get_tkinter(): try: from tkinter import Tk except ImportError: raise ValueError("Sorry. Isn't possible.") return Tk() def clipboard() -> str: return _get_tkinter().clipboard_get() def truncate(text: Union[str, bytes], k=15): """ Truncate text. eg.: >>> import cereja as cj >>> cj.utils.truncate("Cereja is fun.", k=3) 'Cer...' @param text: string or bytes @param k: natural numbers, default is 4 """ assert isinstance(text, (str, bytes)), TypeError(f"{type(text)} isn't valid. Expected str or bytes") if k > len(text) or k <= 4: return text n = int((k - 4) / 2) # k is the max length of text, 4 is the length of truncate symbol trunc_chars = '....' if isinstance(text, str) else b'....' return text[:n] + trunc_chars + text[-n:] def obj_repr(obj_, attr_limit=10, val_limit=3, show_methods=False, show_private=False, deep=3): try: if isinstance(obj_, (str, bytes)): return truncate(obj_, k=attr_limit) if isinstance(obj_, (bool, float, int, complex)): return obj_ rep_ = [] if deep > 0: for attr_ in dir(obj_): if attr_.startswith('_') and not show_private: continue obj = obj_.__getattribute__(attr_) if isinstance(obj, (str, bool, float, int, complex, bytes, bytearray)): rep_.append(f'{attr_} = {obj_repr(obj)}') continue if callable(obj) and not show_methods: continue if is_iterable(obj): temp_v = [] for k in obj: if isinstance(obj, dict): k = f'{k}:{type(obj[k])}' elif is_iterable(k): k = obj_repr(k, deep=deep) deep -= 1 else: k = str(k) temp_v.append(k) if len(temp_v) == val_limit: break temp_v = ', '.join(temp_v) # fix me, if bytes ... obj = f'{obj.__class__.__name__}({temp_v} ...)' rep_.append(f'{attr_} = {obj}') if len(rep_) >= attr_limit: rep_.append('...') break else: return repr(obj_) except Exception as err: logger.error(err) rep_ = [] rep_ = ',\n '.join(rep_) __repr_template = f""" {rep_} """ return f"{obj_.__class__.__name__} ({__repr_template})" def can_do(obj: Any) -> List[str]: """ List methods and attributes of a Python object. It is essentially the builtin `dir` function without the private methods and attributes @param obj: Any @return: list of attr names sorted by name """ return sorted([i for i in filter(lambda attr: not attr.startswith('_'), dir(obj))]) def sample(v: Sequence, k: int = None, is_random: bool = False) -> Union[list, dict, set, Any]: """ Get sample of anything @param v: Any @param k: int @param is_random: default False @return: sample iterable """ return chunk(v, batch_size=k, is_random=is_random, max_batches=1)[0] def type_table_of(o: Union[list, tuple, dict]): if isinstance(o, (list, tuple)): type_table = {i: type(i) for i in o} elif isinstance(o, dict): type_table = {} for k, v in o.items(): if isinstance(o, dict): v = type_table_of(v) type_table[k] = (v, type(v)) else: type_table = {o: type(o)} return type_table def camel_to_snake(value: str): snaked_ = [] for i, char in enumerate(value): if not i == 0 and char.isupper(): char = f'_{char}' snaked_.append(char) return ''.join(snaked_).lower() def get_implements(klass: type): classes = klass.__subclasses__() collected_classes = [] for k in classes: k_classes = k.__subclasses__() if k_classes: collected_classes += get_implements(k) if not k.__name__.startswith('_'): collected_classes.append(k) return collected_classes def get_instances_of(klass: type): return filter(lambda x: isinstance(x, klass), gc.get_objects()) def _invert_parser_key(key): return to_tuple(key) if isinstance(key, (list, set, dict)) else key def _invert_append(obj, k, v): dict_append(obj, k, v) if len(obj[k]) == 1: obj[k] = obj[k][0] def invert_dict(dict_: Union[dict, set]) -> dict: """ Inverts the key by value e.g: >>> example = {"a": "b", "c": "d"} >>> invert_dict(example) {"b" : "a", "d": "c"} :return: dict """ if not isinstance(dict_, dict): raise TypeError("Send a dict object.") new_dict = {} for key, value in dict_.items(): key = _invert_parser_key(key) if isinstance(value, dict): if key not in new_dict: new_dict.update({key: invert_dict(value)}) else: _invert_append(new_dict, key, invert_dict(value)) continue if isinstance(value, (tuple, list, set)): for k in dict_[key]: k = _invert_parser_key(k) _invert_append(new_dict, k, key) continue if value not in new_dict: new_dict[value] = key else: value = _invert_parser_key(value) _invert_append(new_dict, value, key) return new_dict def group_by(values, fn) -> dict: """ group items by result of fn (function) eg. >>> import cereja as cj >>> values = ['joab', 'leite', 'da', 'silva', 'Neto', 'você'] >>> cj.group_by(values, lambda x: 'N' if x.lower().startswith('n') else 'OTHER') # {'OTHER': ['joab', 'leite', 'da', 'silva', 'você'], 'N': ['Neto']} @param values: list of values @param fn: a function """ d = defaultdict(list) for el in values: d[fn(el)].append(el) return dict(d) def import_string(dotted_path): """ Import a dotted module path and return the attribute/class designated by the last name in the path. Raise ImportError if the import failed. """ try: module_path, class_name = dotted_path.rsplit('.', 1) except ValueError as err: raise ImportError(f"{dotted_path} doesn't look like a module path") from err module = import_module(module_path) try: return getattr(module, class_name) except AttributeError as err: raise ImportError(f'Module {module_path} does not define a {class_name} attribute/class') from err def get_attr_if_exists(obj: Any, attr: str) -> Union[object, None]: if hasattr(obj, attr): return getattr(obj, attr) return None def time_format(seconds: float, format_='%H:%M:%S') -> Union[str, float]: """ Default format is '%H:%M:%S' >>> time_format(3600) '01:00:00' """ # this because NaN if seconds >= 0 or seconds < 0: time_ = time.strftime(format_, time.gmtime(abs(seconds))) if seconds < 0: return f"-{time_}" return time_ return seconds # NaN def fill(value: Union[list, str, tuple], max_size, with_=' ') -> Any: """ Calculates and adds value """ fill_values = [with_] * (max_size - len(value)) if isinstance(value, str): fill_values = ' '.join(fill_values) value = f"{value}{fill_values}" elif isinstance(value, list): value += fill_values elif isinstance(value, tuple): value += tuple(fill_values) return value def list_methods(klass) -> List[str]: methods = [] for i in dir(klass): if i.startswith('_') or not callable(getattr(klass, i)): continue methods.append(i) return methods def string_to_literal(val: Union[str, bytes]): if isinstance(val, (str, bytes)): try: return ast.literal_eval(val) except: pass return val def module_references(instance: types.ModuleType, **kwargs) -> dict: """ dict of all functions and classes defined in the module. To also list the variables it is necessary to define explicitly with the special variable on your module _include **kwargs: _include -> to includes any definition and variables _exclude -> to exclude any definition :param instance: :return: List[str] """ assert isinstance(instance, types.ModuleType), "You need to submit a module instance." logger.debug(f"Checking module {instance.__name__}") definitions = {} for i in dir(instance): if i.startswith('_'): continue exclude = get_attr_if_exists(instance, "_exclude") or kwargs.get("_exclude") or [] include = get_attr_if_exists(instance, "_include") or kwargs.get("_include") or [] obj = get_attr_if_exists(instance, i) if i in include: definitions[i] = obj if obj is not None and i not in exclude and callable(obj): if obj.__module__ == instance.__name__: definitions[i] = obj logger.debug(f"Collected: {definitions}") return definitions def install_if_not(lib_name: str): from ..display import console try: importlib.import_module(lib_name) output = 'Alredy Installed' except ImportError: from ..system.commons import run_on_terminal command_ = f"{sys.executable} -m pip install {lib_name}" output = run_on_terminal(command_) console.log(output) def set_log_level(level: Union[int, str]): """ Default log level is INFO CRITICAL = 50 FATAL = CRITICAL ERROR = 40 WARNING = 30 WARN = WARNING INFO = 20 DEBUG = 10 NOTSET = 0 """ log = logging.getLogger() log.setLevel(level) logger.info(f"Update log level to {level}") def logger_level(): import logging return logging.getLogger().level def combine_with_all(a: list, b: list, n_a_combinations: int = 1, is_random: bool = False) -> List[Tuple[Any, ...]]: """ >>> a = [1, 2, 3] >>> b = ['anything_a', 'anything_b'] >>> combine_with_all(a, b) [(1, 'anything_a'), (1, 'anything_b'), (2, 'anything_a'), (2, 'anything_b'), (3, 'anything_a'), (3, 'anything_b')] >>> combine_with_all(a, b, n_a_combinations=2) [((1, 2), 'anything_a'), ((1, 2), 'anything_b'), ((1, 3), 'anything_a'), ((1, 3), 'anything_b'), ((2, 3), 'anything_a'), ((2, 3), 'anything_b')] """ if not isinstance(n_a_combinations, int): raise TypeError(f"Please send {int}.") n_a_combinations = len(a) if n_a_combinations > len(a) else abs(n_a_combinations) combination = itertools.combinations(a, n_a_combinations) if n_a_combinations > 1 else a product_with_b = list(itertools.product(combination, b)) if is_random: random.shuffle(product_with_b) return product_with_b class CjTest(object): __template_unittest_function = """ def test_{func_name}(self): pass """ __template_unittest_class = """ class {class_name}Test(unittest.TestCase): {func_tests} """ __template_unittest = """import unittest {tests} if __name__ == '__main__': unittest.main() """ __prefix_attr_err = "Attr Check Error {attr_}." def __init__(self, instance_obj: object): self._prefix_attr = f"__{instance_obj.__class__.__name__}__" self._instance_obj = instance_obj self._set_attr_current_values() self._checks = [] self._n_checks_passed = 0 @property def checks(self): return self._checks @property def n_checks(self): return len(self._checks) @property def _instance_obj_attrs(self): return filter(lambda attr_: attr_.__contains__('__') is False, dir(self._instance_obj)) def _get_attr_obj(self, attr_: str): if not hasattr(self._instance_obj, attr_): raise ValueError(f"Attr {attr_} not found.") value = getattr(self._instance_obj, attr_) return self._Attr(attr_, value) def _set_attr_current_values(self): for attr_ in self._instance_obj_attrs: attr_obj = self._get_attr_obj(attr_) attr_name = self.parse_attr(attr_) setattr(self, attr_name, attr_obj) def parse_attr(self, attr_: str): attr_ = self._valid_attr(attr_) return f'{self._prefix_attr}{attr_}' def __getattr__(self, item): return self.__getattribute__(self.parse_attr(item)) class _Attr(object): def __init__(self, name: str, value: Any): self.name = name self.is_callable = callable(value) self.is_private = self.name.startswith('_') self.is_bool = value is True or value is False self.is_class = isinstance(value, ClassType) self.is_function = isinstance(value, FunctionType) self.class_of_attr = value.__class__ self._operator_repr = None self.tests_case = [] def __repr__(self): return f"{self.name}" def __str__(self): return f"{self.name}" def __len__(self): return len(self.tests_case) def __eq__(self, other): """ ==value """ if isinstance(other, self.__class__): return NotImplemented self.tests_case = (other, self.class_of_attr.__eq__, '==') return self def __ge__(self, other): """>=value """ if isinstance(other, self.__class__): return NotImplemented self.tests_case = (other, self.class_of_attr.__ge__, '>=') return self def __gt__(self, other): """>value """ if isinstance(other, self.__class__): return NotImplemented self.tests_case = (other, self.class_of_attr.__gt__, '>') return self def __le__(self, other): """ <=value. """ if isinstance(other, self.__class__): return NotImplemented self.tests_case = (other, self.class_of_attr.__le__, '<=') return self def __lt__(self, other): """ <value. """ if isinstance(other, self.__class__): return NotImplemented self.tests_case = (other, self.class_of_attr.__lt__, '<') return self def __ne__(self, other): """ !=value. """ if isinstance(other, self.__class__): return NotImplemented self.tests_case = (other, self.class_of_attr.__ne__, '!=') return self def copy(self): return copy(self) def run(self, current_value): expected, operator, _ = self.tests_case if not operator(current_value, expected): return [f"{repr(current_value)} not {_} {repr(expected)}"] return [] def _valid_attr(self, attr_name: str): assert hasattr(self._instance_obj, attr_name), f"{self.__prefix_attr_err.format(attr_=repr(attr_name))} isn't defined." return attr_name def add_check(self, *check_: _Attr): for i in check_: if i not in self._checks: self._checks.append(i) def remove_check(self, index: int): self._checks.pop(index) def check_attr(self, attr_name: Union[str, _Attr]): if isinstance(attr_name, str): stored_test = self.__getattribute__(self.parse_attr(attr_name)) else: stored_test = attr_name current_value = getattr(self._instance_obj, stored_test.name) if not stored_test.is_callable: tests_ = stored_test.run(current_value) passed = not any(tests_) self._n_checks_passed += len(stored_test) - len(tests_) msg_err = f"{self.__prefix_attr_err.format(attr_=repr(stored_test.name))} {' '.join(tests_)}" assert passed, msg_err def check_all(self): for attr_ in self._checks: self.check_attr(attr_) @classmethod def _get_class_test(cls, ref): func_tests = ''.join(cls.__template_unittest_function.format(func_name=i) for i in list_methods(ref)) return cls.__template_unittest_class.format(class_name=ref.__name__, func_tests=func_tests) @classmethod def _get_func_test(cls, ref): return cls.__template_unittest_function.format(func_name=ref.__name__) @classmethod def _get_test(cls, ref): if isinstance(ref, (FunctionType, types.MethodType)): return cls._get_func_test(ref) if isinstance(ref, type): return cls._get_class_test(ref) raise TypeError("send a function or class reference") @classmethod def build_test(cls, reference): module_func_test = [] tests = [] if isinstance(reference, types.ModuleType): for _, ref in module_references(reference).items(): if isinstance(ref, type): tests.append(cls._get_test(ref)) continue module_func_test.append(cls._get_test(ref)) else: if isinstance(reference, type): tests.append(cls._get_test(reference)) else: module_func_test.append(cls._get_test(reference)) if module_func_test: module_func_test = ''.join(module_func_test) tests = [cls.__template_unittest_class.format(class_name='Module', func_tests=module_func_test)] + tests return cls.__template_unittest.format(tests='\n'.join(tests)) def _add_license(base_dir, ext='.py'): from cereja.file import FileIO from cereja.config import BASE_DIR licence_file = FileIO.load(BASE_DIR) for file in FileIO.load_files(base_dir, ext=ext, recursive=True): if 'Copyright (c) 2019 The Cereja Project' in file.string: continue file.insert('"""\n' + licence_file.string + '\n"""') file.save(exist_ok=True) def _rescale_down(input_list, size): assert len(input_list) >= size, f'{len(input_list), size}' skip = len(input_list) // size for n, i in enumerate(range(0, len(input_list), skip), start=1): if n > size: break yield input_list[i] def _rescale_up(values, k, fill_with=None, filling='inner'): size = len(values) assert size <= k, f'Error while resizing: {size} < {k}' clones = (math.ceil(abs(size - k) / size)) refill_values = abs(k - size * clones) if filling == 'pre': for i in range(abs(k - size)): yield fill_with if fill_with is not None else values[0] for value in values: # guarantees that the original value will be returned yield value if filling != 'inner': continue for i in range(clones - 1): # -1 because last line. # value original or fill_with. yield fill_with if fill_with is not None else value if refill_values > 0: refill_values -= 1 yield fill_with if fill_with is not None else value k -= 1 if k < 0: break if filling == 'post': for i in range(abs(k - size)): yield fill_with if fill_with is not None else values[-1] def _interpolate(values, k): if isinstance(values, list): from ..array import Matrix # because true_div ... values = Matrix(values) size = len(values) first_position = 0 last_position = size - 1 step = (last_position - first_position) / (k - 1) positions = [first_position] previous_position = positions[-1] for _ in range(k - 2): positions.append(previous_position + step) previous_position = positions[-1] positions.append(last_position) for position in positions: previous_position = math.floor(position) next_position = math.ceil(position) if previous_position == next_position: yield values[previous_position] else: delta = position - previous_position yield values[previous_position] + (values[next_position] - values[previous_position]) / ( next_position - previous_position) * delta def rescale_values(values: List[Any], granularity: int, interpolation: bool = False, fill_with=None, filling='inner') -> \ List[Any]: """ Resizes a list of values eg. >>> import cereja as cj >>> cj.rescale_values(values=list(range(100)),granularity=12) [0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88] >>> cj.rescale_values(values=list(range(5)),granularity=10) [0, 0, 1, 1, 2, 2, 3, 3, 4, 4] >>> cj.rescale_values(values=list(range(5)),granularity=10, filling='pre') [0, 0, 0, 0, 0, 0, 1, 2, 3, 4] >>> cj.rescale_values(values=list(range(5)),granularity=10, filling='post') [0, 1, 2, 3, 4, 4, 4, 4, 4, 4] @note if you don't send any value for filling a value will be chosen arbitrarily depending on the filling type. If interpolation is set to True, then the resized values are calculated by interpolation, otherwise they are sub- ou upsampled from the original list @param values: Sequence of anything @param granularity: is a integer @param interpolation: is a boolean @param fill_with: only scale up, send any value for filling @param filling: in case of scale up, you can define how the filling will be (pre, inner, post). 'inner' is default. @return: rescaled list of values. """ if interpolation: result = list(_interpolate(values, granularity)) else: if len(values) >= granularity: result = list(_rescale_down(values, granularity)) else: result = list(_rescale_up(values, granularity, fill_with=fill_with, filling=filling)) assert len(result) == granularity, f"Error while resizing the list size {len(result)} != {granularity}" return result class Source: def __init__(self, reference: Any): self._name = None self._doc = inspect.getdoc(reference) self._source_code = inspect.getsource(reference) if hasattr(reference, '__name__'): self._name = reference.__name__ @property def source_code(self): return self._source_code.lstrip() @property def name(self): return self._name @property def doc(self): return self._doc def save(self, path_, **kwargs): from cereja import FileIO, Path path_ = Path(path_) if path_.is_dir: path_ = path_.join(f'{self.name}.py') assert path_.suffix == '.py', "Only python source code." FileIO.create(path_, self._source_code).save(**kwargs) def is_iterable(obj: Any) -> bool: """ Return whether an object is iterable or not. :param obj: Any object for check """ return isinstance(obj, Iterable) def is_sequence(obj: Any) -> bool: """ Return whether an object a Sequence or not, exclude strings and empty obj. :param obj: Any object for check """ return not isinstance(obj, (str, dict, bytes)) and is_iterable(obj) def is_numeric_sequence(obj: Sequence[Number]) -> bool: try: from cereja.array import flatten sum(flatten(obj)) except (TypeError, ValueError): return False return True def sort_dict(obj: dict, by_keys=False, by_values=False, reverse=False, by_len_values=False, func_values=None, func_keys=None) -> OrderedDict: func_values = (lambda v: len(v) if by_len_values else v) if func_values is None else func_values func_keys = (lambda k: k) if func_keys is None else func_keys key_func = None if (by_keys and by_values) or (not by_keys and not by_values): key_func = (lambda x: (func_keys(x[0]), func_values(x[1]))) elif by_keys: key_func = (lambda x: func_keys(x[0])) elif by_values: key_func = (lambda x: func_values(x[1])) return OrderedDict(sorted(obj.items(), key=key_func, reverse=reverse)) def list_to_tuple(obj): assert isinstance(obj, (list, set, tuple)), f"Isn't possible convert {type(obj)} into {tuple}" result = [] for i in obj: if isinstance(i, list): i = list_to_tuple(i) elif isinstance(i, (set, dict)): i = dict_to_tuple(i) result.append(i) return tuple(result) def dict_values_len(obj, max_len=None, min_len=None, take_len=False): return {i: len(obj[i]) if take_len else obj[i] for i in obj if (max_len is None or len(obj[i]) <= max_len) and (min_len is None or len(obj[i]) >= min_len)} def dict_to_tuple(obj): assert isinstance(obj, (dict, set)), f"Isn't possible convert {type(obj)} into {tuple}" result = [] if isinstance(obj, set): return tuple(obj) for k, v in obj.items(): if isinstance(v, (dict, set)): v = dict_to_tuple(v) elif isinstance(v, list): v = list_to_tuple(v) result.append((k, v)) return tuple(result) def to_tuple(obj): if isinstance(obj, (set, dict)): return dict_to_tuple(obj) if isinstance(obj, (list, tuple)): return list_to_tuple(obj) return tuple(obj) def dict_append(obj: Dict[Any, Union[list, tuple]], key, *v): """ Add items to a key, if the key is not in the dictionary it will be created with a list and the value sent. e.g: >>> import cereja as cj >>> my_dict = {} >>> cj.utils.dict_append(my_dict, 'key_eg', 1,2,3,4,5,6) {'key_eg': [1, 2, 3, 4, 5, 6]} >>> cj.utils.dict_append(my_dict, 'key_eg', [1,2]) {'key_eg': [1, 2, 3, 4, 5, 6, [1, 2]]} @param obj: Any dict of list values @param key: dict key @param v: all values after key @return: """ assert isinstance(obj, dict), 'Error on append values. Please send a dict object.' if key not in obj: obj[key] = [] if not isinstance(obj[key], (list, tuple)): obj[key] = [obj[key]] if isinstance(obj[key], tuple): obj[key] = (*obj[key], *v,) else: for i in v: obj[key].append(i) return obj def dict_filter_value(obj: Dict[Any, Any], f) -> Any: """ Results is a filtered dict by f func result @param obj: is a dict @param f: function filter @return: """ inv_dict = invert_dict(obj) filter_val = f(inv_dict) res = inv_dict[filter_val] if isinstance(res, list): return dict(map(lambda x: (x, filter_val), res)) return {res: filter_val} def dict_max_value(obj: Dict[Any, Any]) -> Any: """ Results is a filtered dict by max value >>> import cereja as cj >>> cj.dict_max_value({'oi': 10, 'aqui': 20, 'sei': 20}) {'aqui': 20, 'sei': 20} @param obj: is a dict @return: dict filtered """ return dict_filter_value(obj, max) def dict_min_value(obj: Dict[Any, Any]) -> Any: """ Results is a filtered dict by min value >>> import cereja as cj >>> cj.dict_min_value({'oi': 10, 'aqui': 20, 'sei': 20}) {'oi': 10} @param obj: is a dict @return: dict filtered """ return dict_filter_value(obj, min) def get_zero_mask(number: int, max_len: int = 3) -> str: """ Returns string of numbers formated with zero mask eg. >>> get_zero_mask(100, 4) '0100' >>> get_zero_mask(101, 4) '0101' >>> get_zero_mask(101, 4) '0101' """ return f'%0.{max_len}d' % number def get_batch_strides(data, kernel_size, strides=1, fill_=True, take_index=False): """ Returns batches of fixed window size (kernel_size) with a given stride @param data: iterable @param kernel_size: window size @param strides: default is 1 @param take_index: add number of index on items @param fill_: padding last batch if it needs """ batches = [] for index, item in enumerate(data): batches.append(item if not take_index else [index, item]) if index % strides == 0 and len(batches) >= kernel_size: yield batches[:kernel_size] batches = batches[strides:] if len(batches): yield rescale_values(batches, granularity=kernel_size, filling='post') if fill_ else batches def prune_values(values: Sequence, factor=2): assert is_indexable(values), TypeError('object is not subscriptable') if len(values) <= factor: return values w = round(len(values) / 2) k = int(round(w / factor)) res = values[w - k:w + k] if len(res) == 0: return values[k] return res ```
{ "source": "jlsneto/hmr", "score": 3 }
#### File: src/datasets/common.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import numpy as np class ImageCoder(object): """Helper class that provides TensorFlow image coding utilities. Taken from https://github.com/tensorflow/models/blob/master/inception/inception/data/build_image_data.py """ def __init__(self): # Create a single Session to run all image coding calls. self._sess = tf.Session() # Initializes function that converts PNG to JPEG data. self._png_data = tf.placeholder(dtype=tf.string) image = tf.image.decode_png(self._png_data, channels=3) self._png_to_jpeg = tf.image.encode_jpeg( image, format='rgb', quality=100) # Initializes function that decodes RGB JPEG data. self._decode_jpeg_data = tf.placeholder(dtype=tf.string) self._decode_jpeg = tf.image.decode_jpeg( self._decode_jpeg_data, channels=3) self._encode_jpeg_data = tf.placeholder(dtype=tf.uint8) self._encode_jpeg = tf.image.encode_jpeg( self._encode_jpeg_data, format='rgb') self._decode_png_data = tf.placeholder(dtype=tf.string) self._decode_png = tf.image.decode_png( self._decode_png_data, channels=3) self._encode_png_data = tf.placeholder(dtype=tf.uint8) self._encode_png = tf.image.encode_png(self._encode_png_data) def png_to_jpeg(self, image_data): return self._sess.run( self._png_to_jpeg, feed_dict={ self._png_data: image_data }) def decode_jpeg(self, image_data): image = self._sess.run( self._decode_jpeg, feed_dict={ self._decode_jpeg_data: image_data }) assert len(image.shape) == 3 assert image.shape[2] == 3 return image def encode_jpeg(self, image): image_data = self._sess.run( self._encode_jpeg, feed_dict={ self._encode_jpeg_data: image }) return image_data def encode_png(self, image): image_data = self._sess.run( self._encode_png, feed_dict={ self._encode_png_data: image }) return image_data def decode_png(self, image_data): image = self._sess.run( self._decode_png, feed_dict={ self._decode_png_data: image_data }) assert len(image.shape) == 3 assert image.shape[2] == 3 return image def int64_feature(value): """Wrapper for inserting int64 features into Example proto.""" if not isinstance(value, list) and not isinstance(value, np.ndarray): value = [value] return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def float_feature(value): """Wrapper for inserting float features into Example proto.""" if not isinstance(value, list) and not isinstance(value, np.ndarray): value = [value] return tf.train.Feature(float_list=tf.train.FloatList(value=value)) def bytes_feature(value): """Wrapper for inserting bytes features into Example proto.""" return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def convert_to_example(image_data, image_path, height, width, label, center): """Build an Example proto for an image example. Args: image_data: string, JPEG encoding of RGB image; image_path: string, path to this image file labels: 3 x 14 joint location + visibility --> This could be 3 x 19 height, width: integers, image shapes in pixels. center: 2 x 1 center of the tight bbox Returns: Example proto """ from os.path import basename image_format = 'JPEG' add_face = False if label.shape[1] == 19: add_face = True # Split and save facepts on it's own. face_pts = label[:, 14:] label = label[:, :14] feat_dict = { 'image/height': int64_feature(height), 'image/width': int64_feature(width), 'image/center': int64_feature(center.astype(np.int)), 'image/x': float_feature(label[0, :].astype(np.float)), 'image/y': float_feature(label[1, :].astype(np.float)), 'image/visibility': int64_feature(label[2, :].astype(np.int)), 'image/format': bytes_feature(tf.compat.as_bytes(image_format)), 'image/filename': bytes_feature( tf.compat.as_bytes(basename(image_path))), 'image/encoded': bytes_feature(tf.compat.as_bytes(image_data)), } if add_face: # 3 x 5 feat_dict.update({ 'image/face_pts': float_feature(face_pts.ravel().astype(np.float)) }) example = tf.train.Example(features=tf.train.Features(feature=feat_dict)) return example def convert_to_example_wmosh(image_data, image_path, height, width, label, center, gt3d, pose, shape, scale_factors, start_pt, cam): """Build an Example proto for an image example. Args: image_data: string, JPEG encoding of RGB image; image_path: string, path to this image file labels: 3 x 14 joint location + visibility height, width: integers, image shapes in pixels. center: 2 x 1 center of the tight bbox gt3d: 14x3 3D joint locations scale_factors: 2 x 1, scale factor used to scale image. start_pt: the left corner used to crop the _scaled_ image to 300x300 cam: (3,), [f, px, py] intrinsic camera parameters. Returns: Example proto """ from os.path import basename image_format = 'JPEG' if label.shape[0] != 3: label = label.T if label.shape[1] > 14: print('This shouldnt be happening') import ipdb ipdb.set_trace() if pose is None: has_3d = 0 # Use -1 to save. pose = -np.ones(72) shape = -np.ones(10) else: has_3d = 1 example = tf.train.Example( features=tf.train.Features(feature={ 'image/height': int64_feature(height), 'image/width': int64_feature(width), 'image/center': int64_feature(center.astype(np.int)), 'image/x': float_feature(label[0, :].astype(np.float)), 'image/y': float_feature(label[1, :].astype(np.float)), 'image/visibility': int64_feature(label[2, :].astype(np.int)), 'image/format': bytes_feature(tf.compat.as_bytes(image_format)), 'image/filename': bytes_feature(tf.compat.as_bytes(basename(image_path))), 'image/encoded': bytes_feature(tf.compat.as_bytes(image_data)), 'mosh/pose': float_feature(pose.astype(np.float)), 'mosh/shape': float_feature(shape.astype(np.float)), 'mosh/gt3d': float_feature(gt3d.ravel().astype(np.float)), 'meta/scale_factors': float_feature(np.array(scale_factors).astype(np.float)), 'meta/crop_pt': int64_feature(start_pt.astype(np.int)), 'meta/has_3d': int64_feature(has_3d), 'image/cam': float_feature(cam.astype(np.float)), })) return example def resize_img(img, scale_factor): import cv2 import numpy as np new_size = (np.floor(np.array(img.shape[0:2]) * scale_factor)).astype(int) new_img = cv2.resize(img, (new_size[1], new_size[0])) # This is scale factor of [height, width] i.e. [y, x] actual_factor = [ new_size[0] / float(img.shape[0]), new_size[1] / float(img.shape[1]) ] return new_img, actual_factor def read_images_from_tfrecords(tf_path, img_size=224, sess=None): """ Returns image, kp, and gt3d from the tf_paths This returns a preprocessed image, cropped around img_size. """ from time import time from os.path import exists if not exists(tf_path): print('%s doesnt exist!' % tf_path) exit(1) if sess is None: sess = tf.Session() t0 = time() all_images, all_kps, all_gt3ds = [], [], [] itr = 0 # Decode op graph image_data_pl = tf.placeholder(dtype=tf.string) decode_op = tf.image.decode_jpeg(image_data_pl) for serialized_ex in tf.python_io.tf_record_iterator(tf_path): example = tf.train.Example() example.ParseFromString(serialized_ex) image_data = example.features.feature['image/encoded'].bytes_list.value[0] image = sess.run(decode_op, feed_dict={image_data_pl: image_data}) x = example.features.feature['image/x'].float_list.value y = example.features.feature['image/y'].float_list.value vis = example.features.feature['image/visibility'].int64_list.value center = example.features.feature['image/center'].int64_list.value x = np.array(x) y = np.array(y) vis = np.array(vis, dtype='bool') center = np.array(center) # Crop img_size. # Pad in case. margin = int(img_size/2) image_pad = np.pad(image, ((margin,), (margin,), (0,)), mode='edge') # figure out starting point start_pt = center end_pt = center + 2*margin x_crop = x + margin - start_pt[0] y_crop = y + margin - start_pt[1] kp_crop = np.vstack([x_crop, y_crop]) kp_final = 2 * (kp_crop / img_size) - 1 kp_final = np.vstack((vis * kp_final, vis)).T # crop: crop = image_pad[start_pt[1]:end_pt[1], start_pt[0]:end_pt[0], :] # Normalize image to [-1, 1] crop = 2 * ((crop / 255.) - 0.5) # Note: This says mosh but gt3d is the gt H3.6M joints & not from mosh. gt3d = example.features.feature['mosh/gt3d'].float_list.value gt3d = np.array(gt3d).reshape(-1, 3) all_images.append(crop) all_kps.append(kp_final) all_gt3ds.append(gt3d) itr += 1 images = np.stack(all_images) kps = np.stack(all_kps) gt3ds = np.stack(all_gt3ds) print('Read %d images, %g secs' % (images.shape[0], time()-t0)) return images, kps, gt3ds ``` #### File: hmr/src/models.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import tensorflow.contrib.slim as slim from tensorflow.contrib.layers.python.layers.initializers import variance_scaling_initializer def Encoder_resnet(x, is_training=True, weight_decay=0.001, reuse=False): """ Resnet v2-50 Assumes input is [batch, height_in, width_in, channels]!! Input: - x: N x H x W x 3 - weight_decay: float - reuse: bool->True if test Outputs: - cam: N x 3 - Pose vector: N x 72 - Shape vector: N x 10 - variables: tf variables """ from tensorflow.contrib.slim.python.slim.nets import resnet_v2 with tf.name_scope("Encoder_resnet", values=[x]): with slim.arg_scope( resnet_v2.resnet_arg_scope(weight_decay=weight_decay)): net, end_points = resnet_v2.resnet_v2_50( x, num_classes=None, is_training=is_training, reuse=reuse, scope='resnet_v2_50') net = tf.squeeze(net, axis=[1, 2]) variables = tf.contrib.framework.get_variables('resnet_v2_50') return net, variables def Encoder_fc3_dropout(x, num_output=85, is_training=True, reuse=False, name="3D_module"): """ 3D inference module. 3 MLP layers (last is the output) With dropout on first 2. Input: - x: N x [|img_feat|, |3D_param|] - reuse: bool Outputs: - 3D params: N x num_output if orthogonal: either 85: (3 + 24*3 + 10) or 109 (3 + 24*4 + 10) for factored axis-angle representation if perspective: 86: (f, tx, ty, tz) + 24*3 + 10, or 110 for factored axis-angle. - variables: tf variables """ if reuse: print('Reuse is on!') with tf.variable_scope(name, reuse=reuse) as scope: net = slim.fully_connected(x, 1024, scope='fc1') net = slim.dropout(net, 0.5, is_training=is_training, scope='dropout1') net = slim.fully_connected(net, 1024, scope='fc2') net = slim.dropout(net, 0.5, is_training=is_training, scope='dropout2') small_xavier = variance_scaling_initializer( factor=.01, mode='FAN_AVG', uniform=True) net = slim.fully_connected( net, num_output, activation_fn=None, weights_initializer=small_xavier, scope='fc3') variables = tf.contrib.framework.get_variables(scope) return net, variables def get_encoder_fn_separate(model_type): """ Retrieves diff encoder fn for image and 3D """ encoder_fn = None threed_fn = None if 'resnet' in model_type: encoder_fn = Encoder_resnet else: print('Unknown encoder %s!' % model_type) exit(1) if 'fc3_dropout' in model_type: threed_fn = Encoder_fc3_dropout if encoder_fn is None or threed_fn is None: print('Dont know what encoder to use for %s' % model_type) import ipdb ipdb.set_trace() return encoder_fn, threed_fn def Discriminator_separable_rotations( poses, shapes, weight_decay, ): """ 23 Discriminators on each joint + 1 for all joints + 1 for shape. To share the params on rotations, this treats the 23 rotation matrices as a "vertical image": Do 1x1 conv, then send off to 23 independent classifiers. Input: - poses: N x 23 x 1 x 9, NHWC ALWAYS!! - shapes: N x 10 - weight_decay: float Outputs: - prediction: N x (1+23) or N x (1+23+1) if do_joint is on. - variables: tf variables """ data_format = "NHWC" with tf.name_scope("Discriminator_sep_rotations", values=[poses, shapes]): with tf.variable_scope("D") as scope: with slim.arg_scope( [slim.conv2d, slim.fully_connected], weights_regularizer=slim.l2_regularizer(weight_decay)): with slim.arg_scope([slim.conv2d], data_format=data_format): poses = slim.conv2d(poses, 32, [1, 1], scope='D_conv1') poses = slim.conv2d(poses, 32, [1, 1], scope='D_conv2') theta_out = [] for i in range(0, 23): theta_out.append( slim.fully_connected( poses[:, i, :, :], 1, activation_fn=None, scope="pose_out_j%d" % i)) theta_out_all = tf.squeeze(tf.stack(theta_out, axis=1)) # Do shape on it's own: shapes = slim.stack( shapes, slim.fully_connected, [10, 5], scope="shape_fc1") shape_out = slim.fully_connected( shapes, 1, activation_fn=None, scope="shape_final") """ Compute joint correlation prior!""" nz_feat = 1024 poses_all = slim.flatten(poses, scope='vectorize') poses_all = slim.fully_connected( poses_all, nz_feat, scope="D_alljoints_fc1") poses_all = slim.fully_connected( poses_all, nz_feat, scope="D_alljoints_fc2") poses_all_out = slim.fully_connected( poses_all, 1, activation_fn=None, scope="D_alljoints_out") out = tf.concat([theta_out_all, poses_all_out, shape_out], 1) variables = tf.contrib.framework.get_variables(scope) return out, variables ``` #### File: src/util/image.py ```python import numpy as np import cv2 def resize_img(img, scale_factor): new_size = (np.floor(np.array(img.shape[0:2]) * scale_factor)).astype(int) new_img = cv2.resize(img, (new_size[1], new_size[0])) # This is scale factor of [height, width] i.e. [y, x] actual_factor = [ new_size[0] / float(img.shape[0]), new_size[1] / float(img.shape[1]) ] return new_img, actual_factor def scale_and_crop(image, scale, center, img_size): image_scaled, scale_factors = resize_img(image, scale) # Swap so it's [x, y] scale_factors = [scale_factors[1], scale_factors[0]] center_scaled = np.round(center * scale_factors).astype(np.int) margin = int(img_size / 2) image_pad = np.pad( image_scaled, ((margin, ), (margin, ), (0, )), mode='edge') center_pad = center_scaled + margin # figure out starting point start_pt = center_pad - margin end_pt = center_pad + margin # crop: crop = image_pad[start_pt[1]:end_pt[1], start_pt[0]:end_pt[0], :] proc_param = { 'scale': scale, 'start_pt': start_pt, 'end_pt': end_pt, 'img_size': img_size } return crop, proc_param ```
{ "source": "JLSteenwyk/BioKIT", "score": 2 }
#### File: BioKIT/biokit/biokit.py ```python import logging import sys import textwrap from .version import __version__ from argparse import ( ArgumentParser, SUPPRESS, RawDescriptionHelpFormatter, ) from .services.alignment import ( AlignmentLength, AlignmentRecoding, AlignmentSummary, ConsensusSequence, ConstantSites, ParsimonyInformativeSites, PositionSpecificScoreMatrix, VariableSites, ) from .services.coding_sequences import ( GCContentFirstPosition, GCContentSecondPosition, GCContentThirdPosition, GeneWiseRelativeSynonymousCodonUsage, RelativeSynonymousCodonUsage, TranslateSequence, ) from .services.fastq import ( FastQReadLengths, SubsetPEFastQReads, SubsetSEFastQReads, TrimPEAdaptersFastQ, TrimPEFastQ, TrimSEAdaptersFastQ, TrimSEFastQ, ) from .services.genome import ( GCContent, GenomeAssemblyMetrics, L50, L90, LongestScaffold, N50, N90, NumberOfLargeScaffolds, NumberOfScaffolds, SumOfScaffoldLengths, ) from .services.text import ( CharacterFrequency, Faidx, FileFormatConverter, MultipleLineToSingleLineFasta, RemoveFastaEntry, RemoveShortSequences, RenameFastaEntries, ReorderBySequenceLength, SequenceComplement, SequenceLength, SingleLineToMultipleLineFasta, ) logger = logging.getLogger(__name__) ch = logging.StreamHandler() ch.setLevel(logging.INFO) logger.addHandler(ch) help_header = fr""" ____ _ _ _______ _______ | _ \(_) | |/ /_ _|__ __| | |_) |_ ___ | ' / | | | | | _ <| |/ _ \| < | | | | | |_) | | (_) | . \ _| |_ | | |____/|_|\___/|_|\_\_____| |_| Version: {__version__} Citation: Steenwyk et al. 2021, bioRxiv. DOI: 10.1101/2021.10.02.462868 https://www.biorxiv.org/content/10.1101/2021.10.02.462868v1 """ # noqa translation_table_codes = f""" Codes for which translation table to use ===================================================== 1. The Standard Code 2. The Vertebrate Mitochondrial Code 3. The Yeast Mitochondrial Code 4. The Mold, Protozoan, and Coelenterate Mitochondrial Code and the Mycoplasma/Spiroplasma Code 5. The Invertebrate Mitochondrial Code 6. The Ciliate, Dasycladacean and Hexamita Nuclear Code 9. The Echinoderm and Flatworm Mitochondrial Code 10. The Euplotid Nuclear Code 11. The Bacterial, Archaeal and Plant Plastid Code 12. The Alternative Yeast Nuclear Code 13. The Ascidian Mitochondrial Code 14. The Alternative Flatworm Mitochondrial Code 16. Chlorophycean Mitochondrial Code 21. Trematode Mitochondrial Code 22. Scenedesmus obliquus Mitochondrial Code 23. Thraustochytrium Mitochondrial Code 24. Rhabdopleuridae Mitochondrial Code 25. Candidate Division SR1 and Gracilibacteria Code 26. Pachysolen tannophilus Nuclear Code 27. Karyorelict Nuclear Code 28. Condylostoma Nuclear Code 29. Mesodinium Nuclear Code 30. Peritrich Nuclear Code 31. Blastocrithidia Nuclear Code 33. Cephalodiscidae Mitochondrial UAA-Tyr Code 50. CUG-Ala Code More information about genetic codes can be obtained from NCBI: https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?chapter=tgencodes. The only codon table not described by NCBI is 50, CUG-Ala wherein CUG encodes for alanine. """ # noqa adapters_available = f""" Adapaters available ===================================================== NexteraPE-PE TruSeq2-PE TruSeq2-SE TruSeq3-PE-2 TruSeq3-PE TruSeq3-SE """ # noqa class Biokit(object): help_header = fr""" ____ _ _ _______ _______ | _ \(_) | |/ /_ _|__ __| | |_) |_ ___ | ' / | | | | | _ <| |/ _ \| < | | | | | |_) | | (_) | . \ _| |_ | | |____/|_|\___/|_|\_\_____| |_| Version: {__version__} Citation: Steenwyk et al. 2021, bioRxiv. DOI: 10.1101/2021.10.02.462868 https://www.biorxiv.org/content/10.1101/2021.10.02.462868v1 """ # noqa def __init__(self): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {self.help_header} BioKIT is a broadly applicable command-line toolkit for bioinformatics research. Usage: biokit <command> [optional command arguments] Command specific help messages can be viewed by adding a -h/--help argument after the command. For example, to see the to see the help message for the command 'get_entry', execute "biokit get_entry -h" or "biokit get_entry --help". Lastly, each function comes with aliases to save the user some key strokes. For example, to get the help message for the 'get_entry' function, you can type "biokit ge -h". All aliases are specified in parentheses after the long form of the function name. Commands for alignments ======================= alignment_length (alias: aln_len) - calculates the length of an alignment alignment_recoding (alias: aln_recoding, recode) - recode alignments using reduced character schemes alignment_summary (alias: aln_summary) - calculate summary statistics for an alignment consensus_sequence (alias: con_seq) - create a consensus sequence from an alignment constant_sites (alias: con_sites) - calculate the number of constant sites in an alignment parsimony_informative_sites (alias: pi_sites, pis) - calculate the number of parsimony informative sites in an alignment position_specific_score_matrix (alias: pssm) - create a position specific score matrix for an alignment variable_sites (alias: var_sites, vs) - calculate the number of variable sites in an alignment Commands for coding sequences ============================= gc_content_first_position (alias: gc1) - calculate the GC content of the first position among coding sequences gc_content_second_position (alias: gc2) - calculate the GC content of the second position among coding sequences gc_content_third_position (alias: gc3) - calculate the GC content of the third position among coding sequences gene_wise_relative_synonymous_codon_usage (alias: gene_wise_rscu; gw_rscu; grscu) - calculates relative synonymous codon usage that has been adapted for single genes to assess codon usage bias on individual genes relative_synonymous_codon_usage (alias: rscu) - calculate relative synonymous codon usage to evaluate potential codon usage biases translate_sequence (alias: translate_seq, trans_seq) - translate coding sequences to amino acids Commands for fastq files ======================== fastq_read_lengths (alias: fastq_read_lens) - determine the lengths of fastq reads subset_pe_fastq_reads (alias: subset_pe_fastq) - subset paired-end fastq reads and maintain pairing information subset_se_fastq_reads (alias: subset_se_fastq) - subset single-end fastq reads trim_pe_adapters_fastq - trim adapters from paired-end fastq reads trim_pe_fastq - quality trim paired-end fastq reads and maintain pairing information trim_se_adapters_fastq - trim adapters from single-end fastq reads trim_se_fastq - quality trim single-end fastq reads Commands for genomes ==================== gc_content (alias: gc) - calculate the GC content of a FASTA file genome_assembly_metrics (alias: assembly_metrics) - calculate various genome assembly metrics l50 - calculate the L50 of a genome assembly l90 - calcualte the L90 of a genome assembly longest_scaffold (alias: longest_scaff, longest_contig, longest_cont) - determine the length of the longest scaffold of a genome assembly n50 - calculate the N50 of a genome assembly n90 - calculate the N90 of a genome assembly number_of_scaffolds (alias: num_of_scaffolds, number_of_contigs, num_of_cont) - calculate the number of scaffolds in a genome assembly number_of_large_scaffolds (alias: num_of_lrg_scaffolds, number_of_large_contigs, num_of_lrg_cont) - calculate the number of large scaffolds sum_of_scaffold_lengths (alias: sum_of_contig_lengths) - calculate sum of scaffold/contig lengths Commands for sequence files =========================== character_frequency (alias: char_freq) - determine the frequency of all observed characters faidx (alias: get_entry; ge) - extract query fasta entry from multi-fasta file file_format_converter (alias: format_converter; ffc) - convert a multiple sequence file from one format to another multiple_line_to_single_line_fasta (alias: ml2sl) - reformats sequences that occur on multiple lines to be represented in a single line remove_short_sequences (alias: remove_short_seqs) - remove short sequences from a FASTA file remove_fasta_entry - remove entry in a FASTA file rename_fasta_entries (alias: rename_fasta) - rename entries in a FASTA file reorder_by_sequence_length (alias: reorder_by_seq_len) - reorder sequences from longest to shortest in a FASTA file sequence_complement (alias: seq_comp) - generate the complementary sequence for an alignment sequence_length (alias: seq_len) - calculate the length of each FASTA entry single_line_to_multiple_line_fasta (alias: sl2ml) - reformats sequences so that there are 60 characters per sequence line """ # noqa ), ) parser.add_argument("command", help=SUPPRESS) args = parser.parse_args(sys.argv[1:2]) # if command is part of the possible commands (i.e., the long form # commands, run). Otherwise, assume it is an alias and look to the # run_alias function try: if hasattr(self, args.command): getattr(self, args.command)(sys.argv[2:]) else: self.run_alias(args.command, sys.argv[2:], parser) except NameError as e: print(e) sys.exit() # aliases # noqa def run_alias(self, command, argv, parser): # version if command in ["v"]: return self.version() # aliases for alignments elif command in ["aln_len"]: return self.alignment_length(argv) elif command in ["aln_recoding", "recode"]: return self.alignment_recoding(argv) elif command in ["aln_summary"]: return self.alignment_summary(argv) elif command in ["con_seq"]: return self.consensus_sequence(argv) elif command in ["con_sites"]: return self.constant_sites(argv) elif command in ["parsimony_informative_sites", "pi_sites", "pis"]: return self.parsimony_informative_sites(argv) elif command in ["pssm"]: return self.position_specific_score_matrix(argv) elif command in ["var_sites", "vs"]: return self.variable_sites(argv) # aliases for coding sequences elif command in ["gc1"]: return self.gc_content_first_position(argv) elif command in ["gc2"]: return self.gc_content_second_position(argv) elif command in ["gc3"]: return self.gc_content_third_position(argv) elif command in ["gene_wise_rscu", "gw_rscu", "grscu"]: return self.gene_wise_relative_synonymous_codon_usage(argv) elif command in ["rscu"]: return self.relative_synonymous_codon_usage(argv) elif command in ["translate_seq", "trans_seq"]: return self.translate_sequence(argv) # aliases for fastq files elif command in ["fastq_read_lens"]: return self.fastq_read_lengths(argv) elif command in ["subset_pe_fastq"]: return self.subset_pe_fastq_reads(argv) elif command in ["subset_se_fastq"]: return self.subset_se_fastq_reads(argv) elif command in ["trim_pe_adapters_fastq_reads"]: return self.trim_pe_adapters_fastq(argv) elif command in ["trim_pe_fastq_reads"]: return self.trim_pe_fastq(argv) elif command in ["trim_se_adapters_fastq_reads"]: return self.trim_se_adapters_fastq(argv) elif command in ["trim_se_fastq_reads"]: return self.trim_se_fastq(argv) # aliases for genomes elif command in ["gc"]: return self.gc_content(argv) elif command in ["assembly_metrics"]: return self.genome_assembly_metrics(argv) elif command in ["longest_scaff", "longest_contig", "longest_cont"]: return self.longest_scaffold(argv) elif command in [ "num_of_lrg_scaffolds", "number_of_large_contigs", "num_of_lrg_cont", ]: return self.number_of_large_scaffolds(argv) elif command in ["num_of_scaffolds", "number_of_contigs", "num_of_cont"]: return self.number_of_scaffolds(argv) elif command in ["sum_of_contig_lengths"]: return self.sum_of_scaffold_lengths(argv) # alias for sequence files elif command in ["char_freq"]: return self.character_frequency(argv) elif command in ["get_entry", "ge"]: return self.faidx(argv) elif command in ["format_converter", "ffc"]: return self.file_format_converter(argv) elif command in ["ml2sl"]: return self.multiple_line_to_single_line_fasta(argv) elif command in ["remove_short_seqs"]: return self.remove_short_sequences(argv) elif command in ["rename_fasta"]: return self.rename_fasta_entries(argv) elif command in ["reorder_by_seq_len"]: return self.reorder_by_sequence_length(argv) elif command in ["seq_comp"]: return self.sequence_complement(argv) elif command in ["seq_len"]: return self.sequence_length(argv) elif command in ["sl2ml"]: return self.single_line_to_multiple_line_fasta(argv) else: print( "Invalid command option. See help for a complete list of commands and aliases." ) parser.print_help() sys.exit(1) # print version def version(self): print( textwrap.dedent( f"""\ {self.help_header} """ ) ) # alignment functions @staticmethod def alignment_length(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Calculate the length of an alignment. Aliases: alignment_length, aln_len Command line interfaces: bk_alignment_length, bk_aln_len Usage: biokit alignment_length <fasta> Options ===================================================== <fasta> first argument after function name should be a fasta file """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) args = parser.parse_args(argv) AlignmentLength(args).run() @staticmethod def alignment_recoding(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Recode alignments using reduced character states. Alignments can be recoded using established or custom recoding schemes. Recoding schemes are specified using the -c/--code argument. Custom recoding schemes can be used and should be formatted as a two column file wherein the first column is the recoded character and the second column is the character in the alignment. Aliases: alignment_recoding, aln_recoding, recode Command line interfaces: bk_alignment_recoding, bk_aln_recoding, bk_recode Usage: biokit alignment_recoding <fasta> -c/--code <code> Options ===================================================== <fasta> first argument after function name should be a fasta file -c/--code recoding scheme to use Codes for which recoding scheme to use ===================================================== RY-nucleotide R = purines (i.e., A and G) Y = pyrimidines (i.e., T and C) Dayhoff-6 0 = A, G, P, S, and T 1 = D, E, N, and Q 2 = H, K, and R 3 = I, L, M, and V 4 = F, W, and Y 5 = C SandR-6 0 = A, P, S, and T 1 = D, E, N, and G 2 = Q, K, and R 3 = M, I, V, and L 4 = W and C 5 = F, Y, and H KGB-6 0 = A, G, P, and S 1 = D, E, N, Q, H, K, R, and T 2 = M, I, and L 3 = W 4 = F and Y 5 = C and V """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument("-c", "--code", type=str, help=SUPPRESS) args = parser.parse_args(argv) AlignmentRecoding(args).run() @staticmethod def alignment_summary(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Summary statistics for an alignment. Reported statistics include alignment length, number of taxa, number of parsimony sites, number of variable sites, number of constant sites, frequency of each character (including gaps, which are considered to be '-' or '?'). Aliases: alignment_summary, aln_summary Command line interfaces: bk_alignment_summary, bk_aln_summary Usage: biokit alignment_summary <fasta> Options ===================================================== <fasta> first argument after function name should be a fasta file """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) args = parser.parse_args(argv) AlignmentSummary(args).run() @staticmethod def consensus_sequence(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Generates a consequence from a multiple sequence alignment file in FASTA format. Aliases: consensus_sequence, con_seq Command line interfaces: bk_consensus_sequence, bk_con_seq Usage: biokit consensus_sequence <fasta> [-t/--threshold <threshold> -ac/--ambiguous_character <ambiguous character>] Options ===================================================== <fasta> first argument after function name should be a fasta file -t/--threshold threshold for how common a residue must be to be represented -ac/--ambiguous_character the ambiguity character to use. Default is 'N' """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument("-t", "--threshold", type=str, help=SUPPRESS) parser.add_argument("-ac", "--ambiguous_character", type=str, help=SUPPRESS) args = parser.parse_args(argv) ConsensusSequence(args).run() @staticmethod def constant_sites(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Calculate the number of constant sites in an alignment. Constant sites are defined as a site in an alignment with the same nucleotide or amino acid sequence (excluding gaps) among all taxa. Aliases: constant_sites, con_sites Command line interfaces: bk_constant_sites, bk_con_sites Usage: biokit constant_sites <fasta> [-v/--verbose] Options ===================================================== <fasta> first argument after function name should be a fasta file -v/--verbose optional argument to print site-by-site categorization """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument("-v", "--verbose", action="store_true", required=False, help=SUPPRESS) args = parser.parse_args(argv) ConstantSites(args).run() @staticmethod def parsimony_informative_sites(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Calculate the number of parsimony informative sites in an alignment. Parsimony informative sites are defined as a site in an alignment with at least two nucleotides or amino acids that occur at least twice. To obtain site-by-site summary of an alignment, use the -v/--verbose option. Aliases: parsimony_informative_sites, pi_sites, pis Command line interfaces: bk_parsimony_informative_sites, bk_pi_sites, bk_pis Usage: biokit parsimony_informative_sites <fasta> [-v/--verbose] Options ===================================================== <fasta> first argument after function name should be a fasta file -v/--verbose optional argument to print site-by-site categorization """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument("-v", "--verbose", action="store_true", required=False, help=SUPPRESS) args = parser.parse_args(argv) ParsimonyInformativeSites(args).run() @staticmethod def position_specific_score_matrix(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Generates a position specific score matrix for an alignment. Aliases: position_specific_score_matrix, pssm Command line interfaces: bk_position_specific_score_matrix, bk_pssm Usage: biokit position_specific_score_matrix <fasta> [-ac/--ambiguous_character <ambiguous character>] Options ===================================================== <fasta> first argument after function name should be a fasta file -ac/--ambiguous_character the ambiguity character to use. Default is 'N' """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument("-ac", "--ambiguous_character", type=str, help=SUPPRESS) args = parser.parse_args(argv) PositionSpecificScoreMatrix(args).run() @staticmethod def variable_sites(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Calculate the number of variable sites in an alignment. Variable sites are defined as a site in an alignment with at least two nucleotide or amino acid characters among all taxa. Aliases: variable_sites, var_sites, vs Command line interfaces: bk_variable_sites, bk_var_sites, bk_vs Usage: biokit variable_sites <fasta> [-v/--verbose] Options ===================================================== <fasta> first argument after function name should be a fasta file -v/--verbose optional argument to print site-by-site categorization """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument("-v", "--verbose", action="store_true", required=False, help=SUPPRESS) args = parser.parse_args(argv) VariableSites(args).run() # coding sequence functions @staticmethod def gc_content_first_position(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Calculate GC content of the first codon position. The input must be the coding sequence of a gene or genes. All genes are assumed to have sequence lengths divisible by three. Aliases: gc_content_first_position, gc1 Command line interfaces: bk_gc_content_first_position, bk_gc1 Usage: biokit gc_content_first_position <fasta> [-v/--verbose] Options ===================================================== <fasta> first argument after function name should be a fasta file -v, --verbose optional argument to print the GC content of each fasta entry """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument( "-v", "--verbose", action="store_true", required=False, help=SUPPRESS ) args = parser.parse_args(argv) GCContentFirstPosition(args).run() @staticmethod def gc_content_second_position(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Calculate GC content of the second codon position. The input must be the coding sequence of a gene or genes. All genes are assumed to have sequence lengths divisible by three. Aliases: gc_content_second_position, gc2 Command line interfaces: bk_gc_content_second_position, bk_gc2 Usage: biokit gc_content_second_position <fasta> [-v/--verbose] Options ===================================================== <fasta> first argument after function name should be a fasta file -v, --verbose optional argument to print the GC content of each fasta entry """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument( "-v", "--verbose", action="store_true", required=False, help=SUPPRESS ) args = parser.parse_args(argv) GCContentSecondPosition(args).run() @staticmethod def gc_content_third_position(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Calculate GC content of the third codon position. The input must be the coding sequence of a gene or genes. All genes are assumed to have sequence lengths divisible by three. Aliases: gc_content_third_position, gc3 Command line interfaces: bk_gc_content_third_position, bk_gc3 Usage: biokit gc_content_third_position <fasta> [-v/--verbose] Options ===================================================== <fasta> first argument after function name should be a fasta file -v, --verbose optional argument to print the GC content of each fasta entry """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument( "-v", "--verbose", action="store_true", required=False, help=SUPPRESS ) args = parser.parse_args(argv) GCContentThirdPosition(args).run() @staticmethod def gene_wise_relative_synonymous_codon_usage(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Calculate gene-wise relative synonymous codon usage (gw-RSCU). Codon usage bias examines biases for codon usage of a particular gene. We adapted RSCU to be applied to individual genes rather than only codons. Specifically, gw-RSCU is the mean (or median) RSCU value observed in a particular gene. This provides insight into how codon usage bias influences codon usage for a particular gene. This function also outputs the standard deviation of RSCU values for a given gene. The output is col 1: the gene identifier; col 2: the gw-RSCU based on the mean RSCU value observed in a gene; col 3: the gw-RSCU based on the median RSCU value observed in a gene; and the col 4: the standard deviation of RSCU values observed in a gene. Custom genetic codes can be used as input and should be formatted with the codon in first column and the resulting amino acid in the second column. Aliases: gene_wise_relative_synonymous_codon_usage; gene_wise_rscu; gw_rscu; grscu Command line interfaces: bk_gene_wise_relative_synonymous_codon_usage; bk_gene_wise_rscu; bk_gw_rscu; bk_grscu Usage: biokit gene_wise_relative_synonymous_codon_usage <fasta> [-tt/--translation_table <code>] Options ===================================================== <fasta> first argument after function name should be a fasta file -tt/--translation_table Code for the translation table to be used. Default: 1, which is the standard code. {translation_table_codes} """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument( "-tt", "--translation_table", type=str, required=False, help=SUPPRESS ) args = parser.parse_args(argv) GeneWiseRelativeSynonymousCodonUsage(args).run() @staticmethod def relative_synonymous_codon_usage(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Calculate relative synonymous codon usage. Relative synonymous codon usage is the ratio of the observed frequency of codons over the expected frequency given that all the synonymous codons for the same amino acids are used equally. Custom genetic codes can be used as input and should be formatted with the codon in first column and the resulting amino acid in the second column. Aliases: relative_synonymous_codon_usage, rscu Command line interfaces: bk_relative_synonymous_codon_usage, bk_rscu Usage: biokit relative_synonymous_codon_usage <fasta> [-tt/--translation_table <code>] Options ===================================================== <fasta> first argument after function name should be a fasta file -tt/--translation_table Code for the translation table to be used. Default: 1, which is the standard code. {translation_table_codes} """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument( "-tt", "--translation_table", type=str, required=False, help=SUPPRESS ) args = parser.parse_args(argv) RelativeSynonymousCodonUsage(args).run() @staticmethod def translate_sequence(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Translates coding sequences to amino acid sequences. Sequences can be translated using diverse genetic codes. For codons that can encode two amino acids (e.g., TAG encodes Glu or STOP in the Blastocrithidia Nuclear Code), the standard genetic code is used. Custom genetic codes can be used as input and should be formatted with the codon in first column and the resulting amino acid in the second column. Aliases: translate_sequence, translate_seq, trans_seq Command line interfaces: bk_translate_sequence, bk_translate_seq, bk_trans_seq Usage: biokit translate_sequence <fasta> [-tt/--translation_table <code> -o/--output <output_file>] Options ===================================================== <fasta> first argument after function name should be a fasta file -tt/--translation_table Code for the translation table to be used. Default: 1, which is the standard code. -o/--output optional argument to write the translated fasta file to. Default output has the same name as the input file with the suffix ".translated.fa" added to it. {translation_table_codes} """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument( "-tt", "--translation_table", type=str, required=False, help=SUPPRESS ) parser.add_argument("-o", "--output", type=str, required=False, help=SUPPRESS) args = parser.parse_args(argv) TranslateSequence(args).run() # fastq file functions @staticmethod def fastq_read_lengths(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Determine lengths of fastq reads. Using default arguments, the average and standard deviation of read lengths in a fastq file will be reported. To obtain the lengths of all fastq reads, use the verbose option. Aliases: fastq_read_lengths, fastq_read_lens Command line interfaces: bk_fastq_read_lengths, bk_fastq_read_lens Usage: biokit fastq_read_lengths <fastq> [-v/--verbose] Options ===================================================== <fastq> first argument after function name should be a fastq file -v/--verbose print length of each fastq read """ # noqa ), ) parser.add_argument("fastq", type=str, help=SUPPRESS) parser.add_argument( "-v", "--verbose", action="store_true", required=False, help=SUPPRESS ) args = parser.parse_args(argv) FastQReadLengths(args).run() @staticmethod def subset_pe_fastq_reads(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Subset paired-end FASTQ data. Subsetting FASTQ data may be helpful for running test scripts or achieving equal coverage between samples. A percentage of total reads in paired-end FASTQ data can be obtained with this function. Random subsamples are obtained using seeds for reproducibility. If no seed is specified, a seed is generated based off of the date and time. Output files will have the suffice "_subset.fq" Aliases: subset_pe_fastq_reads, subset_pe_fastq Command line interfaces: bk_subset_pe_fastq_reads, bk_subset_pe_fastq Usage: biokit subset_pe_fastq_reads <fastq1> <fastq2> [-p/--percent <percent> -s/--seed <seed>] Options ===================================================== <fastq1> first argument after function name should be a fastq file <fastq2> second argument after function name should be a fastq file -p/--percent percentage of reads to maintain in subsetted data. Default: 10 -s/--seed seed for random sampling. Default: date and time """ # noqa ), ) parser.add_argument("fastq1", type=str, help=SUPPRESS) parser.add_argument("fastq2", type=str, help=SUPPRESS) parser.add_argument("-p", "--percent", type=str, required=False, help=SUPPRESS) parser.add_argument("-s", "--seed", type=str, required=False, help=SUPPRESS) args = parser.parse_args(argv) SubsetPEFastQReads(args).run() @staticmethod def subset_se_fastq_reads(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Subset single-end FASTQ data. Output file will have the suffice "_subset.fq" Aliases: subset_se_fastq_reads, subset_se_fastq Command line interfaces: bk_subset_se_fastq_reads, bk_subset_se_fastq Usage: biokit subset_se_fastq_reads <fastq> Options ===================================================== <fastq> first argument after function name should be a fastq file -p/--percent percentage of reads to maintain in subsetted data. Default: 10 -s/--seed seed for random sampling. Default: date and time -o/--output_file output file name """ # noqa ), ) parser.add_argument("fastq", type=str, help=SUPPRESS) parser.add_argument("-p", "--percent", type=str, required=False, help=SUPPRESS) parser.add_argument("-s", "--seed", type=str, required=False, help=SUPPRESS) parser.add_argument( "-o", "--output_file", type=str, required=False, help=SUPPRESS ) args = parser.parse_args(argv) SubsetSEFastQReads(args).run() @staticmethod def trim_pe_adapters_fastq(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Trim adapters from paired-end FastQ data. FASTQ data will be trimmed according to exact match to known adapter sequences. Output file has the suffix "_adapter_removed.fq" or can be named by the user with the output_file argument. Aliases: trim_pe_adapters_fastq_reads, trim_pe_adapters_fastq Command line interfaces: bk_trim_pe_adapters_fastq_reads, bk_trim_pe_adapters_fastq Usage: biokit trim_pe_adapters_fastq <fastq> [-a/--adapters TruSeq2-PE -l/--length 20] Options ===================================================== <fastq> first argument after function name should be a fastq file -a/--adapters adapter sequences to trim. Default: TruSeq2-PE -l/--length minimum length of read to be kept. Default: 20 {adapters_available} """ # noqa ), ) parser.add_argument("fastq1", type=str, help=SUPPRESS) parser.add_argument("fastq2", type=str, help=SUPPRESS) parser.add_argument("-a", "--adapters", type=str, required=False, help=SUPPRESS) parser.add_argument("-l", "--length", type=str, required=False, help=SUPPRESS) args = parser.parse_args(argv) TrimPEAdaptersFastQ(args).run() @staticmethod def trim_pe_fastq(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Quality trim paired-end FastQ data. FASTQ data will be trimmed according to quality score and length of the reads. Specifically, the program will iterate over a read and once a base with a quality below quality threshold, the remainder of the read will be trimmed. Thereafter, the read is ensured to be long enough to kept. Users can specify quality and length thresholds. Paired reads that are maintained and saved to files with the suffix "_paired_trimmed.fq." Single reads that passed quality thresholds are saved to files with the suffix "_unpaired_trimmed.fq." Aliases: trim_pe_fastq_reads, trim_pe_fastq Command line interfaces: bk_trim_pe_fastq_reads, bk_trim_pe_fastq Usage: biokit trim_pe_fastq_reads <fastq1> <fastq2> [-m/--minimum 20 -l/--length 20] Options ===================================================== <fastq1> first argument after function name should be a fastq file <fastq2> second argument after function name should be a fastq file -m/--minimum minimum quality of read to be kept. Default: 20 -l/--length minimum length of read to be kept. Default: 20 """ # noqa ), ) parser.add_argument("fastq1", type=str, help=SUPPRESS) parser.add_argument("fastq2", type=str, help=SUPPRESS) parser.add_argument("-m", "--minimum", type=str, required=False, help=SUPPRESS) parser.add_argument("-l", "--length", type=str, required=False, help=SUPPRESS) args = parser.parse_args(argv) TrimPEFastQ(args).run() @staticmethod def trim_se_adapters_fastq(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Trim adapters from single-end FastQ data. FASTQ data will be trimmed according to exact match to known adapter sequences. Output file has the suffix "_adapter_removed.fq" or can be named by the user with the output_file argument. Aliases: trim_se_adapters_fastq_reads, trim_se_adapters_fastq Command line interfaces: bk_trim_se_adapters_fastq_reads, bk_trim_se_adapters_fastq Usage: biokit trim_se_adapters_fastq <fastq> [-a/--adapters TruSeq2-SE -l/--length 20] Options ===================================================== <fastq> first argument after function name should be a fastq file -a/--adapters adapter sequences to trim. Default: TruSeq2-SE -l/--length minimum length of read to be kept. Default: 20 -o/--output_file output file name {adapters_available} """ # noqa ), ) parser.add_argument("fastq", type=str, help=SUPPRESS) parser.add_argument("-a", "--adapters", type=str, required=False, help=SUPPRESS) parser.add_argument("-l", "--length", type=str, required=False, help=SUPPRESS) parser.add_argument( "-o", "--output_file", type=str, required=False, help=SUPPRESS ) args = parser.parse_args(argv) TrimSEAdaptersFastQ(args).run() @staticmethod def trim_se_fastq(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Quality trim single-end FastQ data. FASTQ data will be trimmed according to quality score and length of the reads. Specifically, the program will iterate over a read and once a base with a quality below quality threshold, the remainder of the read will be trimmed. Thereafter, the read is ensured to be long enough to kept. Users can specify quality and length thresholds. Output file has the suffix "_trimmed.fq" or can be named by the user with the output_file argument. Aliases: trim_se_fastq_reads, trim_se_fastq Command line interfaces: bk_trim_se_fastq_reads, bk_trim_se_fastq Usage: biokit trim_se_fastq_reads <fastq> [-m/--minimum 20 -l/--length 20] Options ===================================================== <fastq> first argument after function name should be a fastq file -m/--minimum minimum quality of read to be kept. Default: 20 -l/--length minimum length of read to be kept. Default: 20 -o/--output_file output file name """ # noqa ), ) parser.add_argument("fastq", type=str, help=SUPPRESS) parser.add_argument("-m", "--minimum", type=str, required=False, help=SUPPRESS) parser.add_argument("-l", "--length", type=str, required=False, help=SUPPRESS) parser.add_argument( "-o", "--output_file", type=str, required=False, help=SUPPRESS ) args = parser.parse_args(argv) TrimSEFastQ(args).run() # genome functions @staticmethod def gc_content(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Calculate GC content of a fasta file. GC content is the fraction of bases that are either guanines or cytosines. Aliases: gc_content, gc Command line interfaces: bk_gc_content, bk_gc Usage: biokit gc_content <fasta> [-v/--verbose] Options ===================================================== <fasta> first argument after function name should be a fasta file -v, --verbose optional argument to print the GC content of each fasta entry """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument( "-v", "--verbose", action="store_true", required=False, help=SUPPRESS ) args = parser.parse_args(argv) GCContent(args).run() @staticmethod def genome_assembly_metrics(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Calculate L50, L90, N50, N90, GC content, assembly size, number of scaffolds, number and sum length of large scaffolds, frequency of A, T, C, and G. L50: The smallest number of contigs whose length sum makes up half of the genome size. L90: The smallest number of contigs whose length sum makes up 90% of the genome size. N50: The sequence length of the shortest contig at half of the genome size. N90: The sequence length of the shortest contig at 90% of the genome size. GC content: The fraction of bases that are either guanines or cytosines. Assembly size: The sum length of all contigs in an assembly. Number of scaffolds: The total number of scaffolds in an assembly. Number of large scaffolds: The total number of scaffolds that are greater than the threshold for small scaffolds. Sum length of large scaffolds: The sum length of all large scaffolds. Frequency of A: The number of occurences of A corrected by assembly size. Frequency of T: The number of occurences of T corrected by assembly size. Frequency of C: The number of occurences of C corrected by assembly size. Frequency of G: The number of occurences of G corrected by assembly size. Aliases: genome_assembly_metrics, assembly_metrics Command line interfaces: bk_genome_assembly_metrics, bk_assembly_metrics Usage: biokit genome_assembly_metrics <fasta> Options ===================================================== <fasta> first argument after function name should be a fasta file -t/--threshold threshold for what is considered a large scaffold. Only scaffolds with a length greater than this value will be counted. Default: 500 """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument("-t", "--threshold", type=str, help=SUPPRESS) args = parser.parse_args(argv) GenomeAssemblyMetrics(args).run() @staticmethod def l50(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Calculates L50 for a genome assembly. L50 is the smallest number of contigs whose length sum makes up half of the genome size. Aliases: l50 Command line interfaces: bk_l50 Usage: biokit l50 <fasta> Options ===================================================== <fasta> first argument after function name should be a fasta file """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) args = parser.parse_args(argv) L50(args).run() @staticmethod def l90(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Calculates L90 for a genome assembly. L90 is the smallest number of contigs whose length sum makes up 90% of the genome size. Aliases: l90 Command line interfaces: bk_l90 Usage: biokit l90 <fasta> Options ===================================================== <fasta> first argument after function name should be a fasta file """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) args = parser.parse_args(argv) L90(args).run() @staticmethod def longest_scaffold(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Determine the length of the longest scaffold in a genome assembly. Aliases: longest_scaffold, longest_scaff, longest_contig, longest_cont Command line interfaces: bk_longest_scaffold, bk_longest_scaff, bk_longest_contig, bk_longest_cont Usage: biokit longest_scaffold <fasta> Options ===================================================== <fasta> first argument after function name should be a fasta file """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) args = parser.parse_args(argv) LongestScaffold(args).run() @staticmethod def n50(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Calculates N50 for a genome assembly. N50 is the sequence length of the shortest contig at half of the genome size. Aliases: n50 Command line interfaces: bk_n50 Usage: biokit n50 <fasta> Options ===================================================== <fasta> first argument after function name should be a fasta file """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) args = parser.parse_args(argv) N50(args).run() @staticmethod def n90(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Calculates N90 for a genome assembly. N90 is the sequence length of the shortest contig at 90% of the genome size. Aliases: n90 Command line interfaces: bk_n90 Usage: biokit n90 <fasta> Options ===================================================== <fasta> first argument after function name should be a fasta file """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) args = parser.parse_args(argv) N90(args).run() @staticmethod def number_of_large_scaffolds(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Calculate number and total sequence length of large scaffolds. Each value is represented as column 1 and column 2 in the output, respectively. Aliases: number_of_large_scaffolds, num_of_lrg_scaffolds, number_of_large_contigs, num_of_lrg_cont Command line interfaces: bk_number_of_large_scaffolds, bk_num_of_lrg_scaffolds, bk_number_of_large_contigs, bk_num_of_lrg_cont Usage: biokit number_of_large_scaffolds <fasta> [-t/--threshold <int>] Options ===================================================== <fasta> first argument after function name should be a fasta file -t/--threshold threshold for what is considered a large scaffold. Only scaffolds with a length greater than this value will be counted. Default: 500 """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument("-t", "--threshold", type=str, help=SUPPRESS) args = parser.parse_args(argv) NumberOfLargeScaffolds(args).run() @staticmethod def number_of_scaffolds(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Calculate the number of scaffolds or entries in a FASTA file. In this way, a user can also determine the number of predicted genes in a coding sequence or protein FASTA file with this function. Aliases: number_of_scaffolds, num_of_scaffolds, number_of_contigs, num_of_cont Command line interfaces: bk_number_of_scaffolds, bk_num_of_scaffolds, bk_number_of_contigs, bk_num_of_cont Usage: biokit number_of_scaffolds <fasta> Options ===================================================== <fasta> first argument after function name should be a fasta file """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) args = parser.parse_args(argv) NumberOfScaffolds(args).run() @staticmethod def sum_of_scaffold_lengths(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Determine the sum of scaffold lengths. The intended use of this function is to determine the length of a genome assembly, but can also be used, for example, to determine the sum length of all coding sequences. Aliases: sum_of_scaffold_lengths, sum_of_contig_lengths Command line interfaces: bk_sum_of_scaffold_lengths, bk_sum_of_contig_lengths Usage: biokit sum_of_scaffold_lengths <fasta> Options ===================================================== <fasta> first argument after function name should be a fasta file """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) args = parser.parse_args(argv) SumOfScaffoldLengths(args).run() # text functions @staticmethod def character_frequency(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Calculate the frequency of characters in a FASTA file. Aliases: character_frequency, char_freq Command line interfaces: bk_character_frequency, bk_char_freq Usage: biokit character_frequency <fasta> Options ===================================================== <fasta> first argument after function name should be a fasta file """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) args = parser.parse_args(argv) CharacterFrequency(args).run() @staticmethod def faidx(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Extracts sequence entry from fasta file. This function works similarly to the faidx function in samtools, but does not requiring an indexing the sequence file. Aliases: faidx, get_entry, ge Command line interfaces: bk_faidx, bk_get_entry, bk_ge Usage: biokit faidx <fasta> -e/--entry <fasta entry> Options ===================================================== <fasta> first argument after function name should be a query fasta file -e/--entry entry name to be extracted from the inputted fasta file """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument("-e", "--entry", type=str, help=SUPPRESS) args = parser.parse_args(argv) Faidx(args).run() @staticmethod def file_format_converter(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Converts a multiple sequence file from one format to another. Acceptable file formats include FASTA, Clustal, MAF, Mauve, Phylip, Phylip-sequential, Phylip-relaxed, and Stockholm. Input and output file formats are specified with the --input_file_format and --output_file_format arguments; input and output files are specified with the --input_file and --output_file arguments. Aliases: file_format_converter, format_converter, ffc Command line interfaces: bk_file_format_converter, bk_format_converter, bk_ffc Usage: biokit file_format_converter -i/--input_file <input_file> -iff/--input_file_format <input_file_format> -o/--output_file <output_file> -off/--output_file_format <output_file_format> Options ===================================================== -i/--input_file input file name -iff/--input_file_format input file format -o/--output_file output file name -off/--output_file_format output file format Input and output file formats are specified using one of the following strings: fasta, clustal, maf, mauve, phylip, phylip_sequential, phylip_relaxed, & stockholm. """ # noqa ), ) parser.add_argument("-i", "--input_file", type=str, help=SUPPRESS) parser.add_argument("-off", "--output_file_format", type=str, help=SUPPRESS) parser.add_argument("-iff", "--input_file_format", type=str, help=SUPPRESS) parser.add_argument("-o", "--output_file", type=str, help=SUPPRESS) args = parser.parse_args(argv) FileFormatConverter(args).run() @staticmethod def multiple_line_to_single_line_fasta(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Converts FASTA files with multiple lines per sequence to a FASTA file with the sequence represented on one line. Aliases: multiple_line_to_single_line_fasta, ml2sl Command line interfaces: bk_multiple_line_to_single_line_fasta, bk_ml2sl Usage: biokit multiple_line_to_single_line_fasta <fasta> [-o/--output <output_file>] Options ===================================================== <fasta> first argument after function name should be a fasta file -o/--output optional argument to name the output file """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) args = parser.parse_args(argv) MultipleLineToSingleLineFasta(args).run() @staticmethod def remove_fasta_entry(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Remove FASTA entry from multi-FASTA file. Output will have the suffix "pruned.fa" unless the user specifies a different output file name. Aliases: remove_fasta_entry Command line interfaces: bk_remove_fasta_entry Usage: biokit remove_fasta_entry <fasta> -e/--entry <entry> [-o/--output <output_file>] Options ===================================================== <fasta> first argument after function name should be a fasta file -e/--entry entry name to be removed from the inputted fasta file -o/--output optional argument to write the renamed fasta file to. Default output has the same name as the input file with the suffix "pruned.fa" added to it. """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument("-e", "--entry", type=str, help=SUPPRESS) parser.add_argument("-o", "--output", type=str, help=SUPPRESS) args = parser.parse_args(argv) RemoveFastaEntry(args).run() @staticmethod def remove_short_sequences(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Remove short sequences from a multi-FASTA file. Short sequences are defined as having a length less than 500. Users can specify their own threshold. All sequences greater than the threshold will be kept in the resulting file. Output will have the suffix "long_seqs.fa" unless the user specifies a different output file name. Aliases: remove_short_sequences; remove_short_seqs Command line interfaces: bk_remove_short_sequences; bk_remove_short_seqs Usage: biokit remove_short_sequences <fasta> -t/--threshold <threshold> [-o/--output <output_file>] Options ===================================================== <fasta> first argument after function name should be a fasta file -t/--threshold threshold for short sequences. Sequences greater than this value will be kept -o/--output optional argument to write the renamed fasta file to. Default output has the same name as the input file with the suffix "long_seqs.fa" added to it. """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument("-t", "--threshold", type=str, help=SUPPRESS) parser.add_argument("-o", "--output", type=str, help=SUPPRESS) args = parser.parse_args(argv) RemoveShortSequences(args).run() @staticmethod def rename_fasta_entries(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Renames fasta entries. Renaming fasta entries will follow the scheme of a tab-delimited file wherein the first column is the current fasta entry name and the second column is the new fasta entry name in the resulting output alignment. Aliases: rename_fasta_entries, rename_fasta Command line interfaces: bk_rename_fasta_entries, bk_rename_fasta Usage: biokit rename_fasta_entries <fasta> -i/--idmap <idmap> [-o/--output <output_file>] Options ===================================================== <fasta> first argument after function name should be a fasta file -i/--idmap identifier map of current FASTA names (col1) and desired FASTA names (col2) -o/--output optional argument to write the renamed fasta file to. Default output has the same name as the input file with the suffix ".renamed.fa" added to it. """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument("-i", "--idmap", type=str, help=SUPPRESS) parser.add_argument("-o", "--output", type=str, required=False, help=SUPPRESS) args = parser.parse_args(argv) RenameFastaEntries(args).run() @staticmethod def reorder_by_sequence_length(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Reorder FASTA file entries from the longest entry to the shortest entry. Aliases: reorder_by_sequence_length, reorder_by_seq_len Command line interfaces: bk_reorder_by_sequence_length, bk_reorder_by_seq_len Usage: biokit reorder_by_sequence_length <fasta> [-o/--output <output_file>] Options ===================================================== <fasta> first argument after function name should be a fasta file -o/--output optional argument to write the reordered fasta file to. Default output has the same name as the input file with the suffix ".reordered.fa" added to it. """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument("-o", "--output", type=str, required=False, help=SUPPRESS) args = parser.parse_args(argv) ReorderBySequenceLength(args).run() @staticmethod def sequence_complement(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Generates the sequence complement for all entries in a multi-FASTA file. To generate a reverse sequence complement, add the -r/--reverse argument. Aliases: sequence_complement, seq_comp Command line interfaces: bk_sequence_complement, bk_seq_comp Usage: biokit sequence_complement <fasta> [-r/--reverse] Options ===================================================== <fasta> first argument after function name should be a fasta file -r/--reverse if used, the reverse complement sequence will be generated """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) parser.add_argument( "-r", "--reverse", action="store_true", required=False, help=SUPPRESS ) args = parser.parse_args(argv) SequenceComplement(args).run() @staticmethod def sequence_length(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Calculate sequence length of each FASTA entry. Aliases: sequence_length, seq_len Command line interfaces: bk_sequence_length, bk_seq_len Usage: biokit sequence_length <fasta> Options ===================================================== <fasta> first argument after function name should be a fasta file """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) args = parser.parse_args(argv) SequenceLength(args).run() @staticmethod def single_line_to_multiple_line_fasta(argv): parser = ArgumentParser( add_help=True, usage=SUPPRESS, formatter_class=RawDescriptionHelpFormatter, description=textwrap.dedent( f"""\ {help_header} Converts FASTA files with single lines per sequence to a FASTA file with the sequence on multiple lines. Each line with have 60 characters following standard NCBI format. Aliases: single_line_to_multiple_line_fasta, sl2ml Command line interfaces: bk_single_line_to_multiple_line_fasta, bk_sl2ml Usage: biokit single_line_to_multiple_line_fasta <fasta> Options ===================================================== <fasta> first argument after function name should be a fasta file """ # noqa ), ) parser.add_argument("fasta", type=str, help=SUPPRESS) args = parser.parse_args(argv) SingleLineToMultipleLineFasta(args).run() def main(argv=None): Biokit() # Alignment-based functions def alignment_length(argv=None): Biokit.alignment_length(sys.argv[1:]) def alignment_recoding(argv=None): Biokit.alignment_recoding(sys.argv[1:]) def alignment_summary(argv=None): Biokit.alignment_summary(sys.argv[1:]) def consensus_sequence(argv=None): Biokit.consensus_sequence(sys.argv[1:]) def constant_sites(argv=None): Biokit.constant_sites(sys.argv[1:]) def parsimony_informative_sites(argv=None): Biokit.parsimony_informative_sites(sys.argv[1:]) def position_specific_score_matrix(argv=None): Biokit.position_specific_score_matrix(sys.argv[1:]) def variable_sites(argv=None): Biokit.variable_sites(sys.argv[1:]) # Coding sequences-based functions def gc_content_first_position(argv=None): Biokit.gc_content_first_position(sys.argv[1:]) def gc_content_second_position(argv=None): Biokit.gc_content_second_position(sys.argv[1:]) def gc_content_third_position(argv=None): Biokit.gc_content_third_position(sys.argv[1:]) def gene_wise_relative_synonymous_codon_usage(argv=None): Biokit.gene_wise_relative_synonymous_codon_usage(sys.argv[1:]) def relative_synonymous_codon_usage(argv=None): Biokit.relative_synonymous_codon_usage(sys.argv[1:]) def translate_sequence(argv=None): Biokit.translate_sequence(sys.argv[1:]) # FASTQ-based functions def fastq_read_lengths(argv=None): Biokit.fastq_read_lengths(sys.argv[1:]) def subset_pe_fastq_reads(argv=None): Biokit.subset_pe_fastq_reads(sys.argv[1:]) def subset_se_fastq_reads(argv=None): Biokit.subset_se_fastq_reads(sys.argv[1:]) def trim_pe_adapters_fastq(argv=None): Biokit.trim_pe_adapters_fastq(sys.argv[1:]) def trim_pe_fastq(argv=None): Biokit.trim_pe_fastq(sys.argv[1:]) def trim_se_adapters_fastq(argv=None): Biokit.trim_se_adapters_fastq(sys.argv[1:]) def trim_se_fastq(argv=None): Biokit.trim_se_fastq(sys.argv[1:]) # genome-based functions def gc_content(argv=None): Biokit.gc_content(sys.argv[1:]) def genome_assembly_metrics(argv=None): Biokit.genome_assembly_metrics(sys.argv[1:]) def l50(argv=None): Biokit.l50(sys.argv[1:]) def l90(argv=None): Biokit.l90(sys.argv[1:]) def longest_scaffold(argv=None): Biokit.longest_scaffold(sys.argv[1:]) def n50(argv=None): Biokit.n50(sys.argv[1:]) def n90(argv=None): Biokit.n90(sys.argv[1:]) def number_of_large_scaffolds(argv=None): Biokit.number_of_large_scaffolds(sys.argv[1:]) def number_of_scaffolds(argv=None): Biokit.number_of_scaffolds(sys.argv[1:]) def sum_of_scaffold_lengths(argv=None): Biokit.sum_of_scaffold_lengths(sys.argv[1:]) # sequence-based functions def character_frequency(argv=None): Biokit.character_frequency(sys.argv[1:]) def faidx(argv=None): Biokit.faidx(sys.argv[1:]) def file_format_converter(argv=None): Biokit.file_format_converter(sys.argv[1:]) def multiple_line_to_single_line_fasta(argv=None): Biokit.multiple_line_to_single_line_fasta(sys.argv[1:]) def remove_fasta_entry(argv=None): Biokit.remove_fasta_entry(sys.argv[1:]) def remove_short_sequences(argv=None): Biokit.remove_short_sequences(sys.argv[1:]) def rename_fasta_entries(argv=None): Biokit.rename_fasta_entries(sys.argv[1:]) def reorder_by_sequence_length(argv=None): Biokit.reorder_by_sequence_length(sys.argv[1:]) def sequence_complement(argv=None): Biokit.sequence_complement(sys.argv[1:]) def sequence_length(argv=None): Biokit.sequence_length(sys.argv[1:]) def single_line_to_multiple_line_fasta(argv=None): Biokit.single_line_to_multiple_line_fasta(sys.argv[1:]) ``` #### File: services/alignment/base.py ```python from ..base import BaseService class Alignment(BaseService): def __init__( self, *args, code=None, fasta=None, ambiguous_character=None, threshold=None, verbose=None, ): self.code = code self.fasta = fasta self.ambiguous_character = ambiguous_character self.threshold = threshold self.verbose = verbose def determine_pis_vs_cs(self, alignment, alignment_length): """ determine number of parsimony informative, variable, and constant sites in an alignment """ parsimony_informative_sites = 0 variable_sites = 0 constant_sites = 0 site_summary = [] for i in range(0, alignment_length): temp = [] temp.append(i) seq_at_position = "" seq_at_position += alignment[:, i] seq_at_position = seq_at_position.upper() seq_at_position = seq_at_position.replace("?", "") seq_at_position = seq_at_position.replace("-", "") num_occurences = {} for char in set(seq_at_position): num_occurences[char] = seq_at_position.count(char) d = dict((k, v) for k, v in num_occurences.items() if v >= 2) # two characters that occur at least twice if len(d) >= 2: parsimony_informative_sites += 1 temp.append("parsimony_informative_site") # if one character occurs at least twice and is the only character, # the site is not parismony informative but it is constant elif len(d) == 1 and len(num_occurences) >= 1: constant_sites += 1 temp.append("constant_site") else: temp.append("Not_pis_vs_cs") if len(d) > 1 and len(num_occurences) >= 2: variable_sites += 1 if temp[1]: new_str = temp[1] + "_and_variable_site" temp[1] = new_str else: temp.append("variable_site") site_summary.append(temp) return parsimony_informative_sites, variable_sites, constant_sites, site_summary ``` #### File: services/alignment/consensus_sequence.py ```python import re from Bio.Align import AlignInfo from .base import Alignment from ...helpers.files import read_alignment_alignio class ConsensusSequence(Alignment): def __init__(self, args) -> None: super().__init__(**self.process_args(args)) def run(self): alignment = read_alignment_alignio(self.fasta) summary_align = AlignInfo.SummaryInfo(alignment) if not self.ambiguous_character: ambiguous_character = "N" else: ambiguous_character = self.ambiguous_character if not self.threshold: threshold = 0.7 else: threshold = float(self.threshold) consensus = summary_align.dumb_consensus( threshold=threshold, ambiguous=ambiguous_character ) header = ">" + re.sub("^.*/", "", str(self.fasta)) + ".consensus" print(f"{header}\n{consensus}") def process_args(self, args): return dict( fasta=args.fasta, threshold=args.threshold, ambiguous_character=args.ambiguous_character, ) ``` #### File: services/fastq/trim_pe_adapters_fastq.py ```python from os import path import re from Bio.SeqIO.QualityIO import FastqGeneralIterator from .base import FastQ here = path.dirname(__file__) class TrimPEAdaptersFastQ(FastQ): def __init__(self, args) -> None: super().__init__(**self.process_args(args)) def run(self): adapter_table = self.read_adapter_table(self.adapters) # noqa good_reads_paired_1 = [] good_reads_paired_2 = [] good_reads_unpaired_1 = [] good_reads_unpaired_2 = [] cnt = 0 kept = 0 removed = 0 adapter_removed = 0 with open(self.fastq1) as in_handle1, open(self.fastq2) as in_handle2: for (title1, seq1, qual1), (title2, seq2, qual2) in zip( FastqGeneralIterator(in_handle1), FastqGeneralIterator(in_handle2) ): # logic for keeping a read or not keep_1 = True keep_2 = True seq_record_len = len(seq1) # cache this for later if seq_record_len < self.length: # Too short to keep keep_1 = False for _, adapter_seq in adapter_table.items(): try: if index1 < seq1.find(adapter_seq) and index1 != -1: # noqa index1 = seq1.find(adapter_seq) len_adaptor = len(adapter_seq) except UnboundLocalError: index1 = seq1.find(adapter_seq) len_adaptor = len(adapter_seq) if seq_record_len - index1 - len_adaptor < self.length: keep_1 = False seq_record_len = len(seq2) # cache this for later if seq_record_len < self.length: # Too short to keep keep_2 = False for _, adapter_seq in adapter_table.items(): try: if index2 < seq2.find(adapter_seq) and index1 != -1: # noqa index2 = seq2.find(adapter_seq) len_adaptor = len(adapter_seq) except UnboundLocalError: index2 = seq2.find(adapter_seq) len_adaptor = len(adapter_seq) if seq_record_len - index2 - len_adaptor < self.length: keep_2 = False # keep both reads if keep_1 and keep_2: if index1 == -1: # adaptor not found, so won't trim good_reads_paired_1.append("@" + title1) good_reads_paired_1.append(seq1) good_reads_paired_1.append("+" + title1) good_reads_paired_1.append(qual1) kept += 1 elif seq_record_len - index1 - len_adaptor >= self.length: # after trimming this will still be long enough good_reads_paired_1.append("@" + title1) good_reads_paired_1.append(seq1[index1 + len_adaptor:]) good_reads_paired_1.append("+" + title1) good_reads_paired_1.append(qual1) kept += 1 adapter_removed += 1 if index2 == -1: # adaptor not found, so won't trim good_reads_paired_2.append("@" + title2) good_reads_paired_2.append(seq2) good_reads_paired_2.append("+" + title2) good_reads_paired_2.append(qual2) kept += 1 elif seq_record_len - index2 - len_adaptor >= self.length: # after trimming this will still be long enough good_reads_paired_2.append("@" + title2) good_reads_paired_2.append(seq2[index2 + len_adaptor:]) good_reads_paired_2.append("+" + title2) good_reads_paired_2.append(qual2) kept += 1 adapter_removed += 1 # keep 1 but not 2 elif keep_1 and not keep_2: if index1 == -1: # adaptor not found, so won't trim good_reads_unpaired_1.append("@" + title1) good_reads_unpaired_1.append(seq1) good_reads_unpaired_1.append("+" + title1) good_reads_unpaired_1.append(qual1) kept += 1 elif seq_record_len - index1 - len_adaptor >= self.length: # after trimming this will still be long enough good_reads_unpaired_1.append("@" + title1) good_reads_unpaired_1.append(seq1[index1 + len_adaptor:]) good_reads_unpaired_1.append("+" + title1) good_reads_unpaired_1.append(qual1) kept += 1 adapter_removed += 1 # keep 2 but not 1 else: if index2 == -1: # adaptor not found, so won't trim good_reads_unpaired_2.append("@" + title2) good_reads_unpaired_2.append(seq2) good_reads_unpaired_2.append("+" + title2) good_reads_unpaired_2.append(qual2) kept += 1 elif seq_record_len - index2 - len_adaptor >= self.length: # after trimming this will still be long enough good_reads_unpaired_2.append("@" + title2) good_reads_unpaired_2.append(seq2[index2 + len_adaptor:]) good_reads_unpaired_2.append("+" + title2) good_reads_unpaired_2.append(qual2) kept += 1 adapter_removed += 1 cnt += 1 print( f"Reads processed: {cnt}\nReads kept: {kept}\nReads removed: {removed}\nAdapaters removed: {adapter_removed}" ) # write output files # write paired output files if len(good_reads_paired_1) != 0: output_file_paired_1 = re.sub( ".fastq$|.fq$", "_paired_adapter_trimmed.fq", self.fastq1 ) with open(output_file_paired_1, "w") as output_fastq_file_name_1: output_fastq_file_name_1.write("\n".join(good_reads_paired_1)) if len(good_reads_paired_2) != 0: output_file_paired_2 = re.sub( ".fastq$|.fq$", "_paired_adapter_trimmed.fq", self.fastq2 ) with open(output_file_paired_2, "w") as output_fastq_file_name_2: output_fastq_file_name_2.write("\n".join(good_reads_paired_2)) # write unpaired output files if len(good_reads_unpaired_1) != 0: output_file_unpaired_1 = re.sub( ".fastq$|.fq$", "_unpaired_adapter_trimmed.fq", self.fastq1 ) with open(output_file_unpaired_1, "w") as output_fastq_file_name_1: output_fastq_file_name_1.write("\n".join(good_reads_unpaired_1)) if len(good_reads_unpaired_2) != 0: output_file_unpaired_2 = re.sub( ".fastq$|.fq$", "_unpaired_adapter_trimmed.fq", self.fastq2 ) with open(output_file_unpaired_2, "w") as output_fastq_file_name_2: output_fastq_file_name_2.write("\n".join(good_reads_unpaired_2)) def process_args(self, args): if args.adapters is None: adapters = "TruSeq2-PE" else: adapters = args.adapters if args.length is None: length = 20 else: length = int(args.length) return dict( fastq1=args.fastq1, fastq2=args.fastq2, adapters=adapters, length=length, ) ``` #### File: services/text/remove_fasta_entry.py ```python from Bio import SeqIO from .base import Text from ...helpers.files import read_and_parse_fasta_seqio class RemoveFastaEntry(Text): def __init__(self, args) -> None: super().__init__(**self.process_args(args)) def run(self): record_dict = read_and_parse_fasta_seqio(self.fasta) out_records = [] for i in record_dict: if i.name != self.entry: out_records.append(i) SeqIO.write(out_records, self.output, "fasta") def process_args(self, args): if args.output is None: output = args.fasta + ".pruned.fa" else: output = args.output if output == "-.pruned.fa": output = "pruned.fa" return dict(fasta=args.fasta, entry=args.entry, output=output) ``` #### File: services/text/remove_short_sequences.py ```python from Bio import SeqIO from .base import Text from ...helpers.files import read_and_parse_fasta_seqio class RemoveShortSequences(Text): def __init__(self, args) -> None: super().__init__(**self.process_args(args)) def run(self): record_dict = read_and_parse_fasta_seqio(self.fasta) out_records = [] for i in record_dict: if len(i.seq) > self.threshold: out_records.append(i) SeqIO.write(out_records, self.output, "fasta") def process_args(self, args): if args.threshold is None: threshold = 500 else: threshold = int(args.threshold) if args.output is None: output = args.fasta + ".long_seqs.fa" else: output = args.output return dict( fasta=args.fasta, output=output, threshold=threshold ) ``` #### File: services/text/sequence_complement.py ```python from .base import Text from ...helpers.files import read_and_parse_fasta_seqio class SequenceComplement(Text): def __init__(self, args) -> None: super().__init__(**self.process_args(args)) def run(self): records = read_and_parse_fasta_seqio(self.fasta) if not self.reverse: for seq_record in records: print(f">{seq_record.id}\n{seq_record.seq.complement()}") else: for seq_record in records: print(f">{seq_record.id}\n{seq_record.seq.reverse_complement()}") def process_args(self, args): return dict( fasta=args.fasta, reverse=args.reverse, ) ``` #### File: BioKIT/tests/conftest.py ```python from pathlib import Path here = Path(__file__) def pytest_configure(config): config.addinivalue_line("markers", "integration: mark as integration test") ``` #### File: integration/alignment/test_parsimony_informative_sites.py ```python import pytest from mock import patch, call from pathlib import Path import sys from biokit.biokit import Biokit here = Path(__file__) @pytest.mark.integration class TestParsimonyInformativeSites(object): @patch("builtins.print") def test_parsimony_informative_sites_invalid_input(self, mocked_print): # noqa with pytest.raises(SystemExit) as pytest_wrapped_e: Biokit() assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == 2 @patch("builtins.print") def test_parsimony_informative_sites_simple(self, mocked_print): expected_result = 3 testargs = [ "biokit", "parsimony_informative_sites", f"{here.parent.parent.parent}/sample_files/simple.fa", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_parsimony_informative_sites_alias0(self, mocked_print): expected_result = 3 testargs = [ "biokit", "pi_sites", f"{here.parent.parent.parent}/sample_files/simple.fa", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_parsimony_informative_sites_alias1(self, mocked_print): expected_result = 3 testargs = [ "biokit", "pis", f"{here.parent.parent.parent}/sample_files/simple.fa", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] ``` #### File: integration/coding_sequences/test_gene_wise_relative_synonymous_codon_usage.py ```python import pytest from mock import patch, call from pathlib import Path import sys from biokit.biokit import Biokit here = Path(__file__) @pytest.mark.integration class TestGeneWiseRelativeSynonymousCodonUsage(object): @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_invalid_input(self, mocked_print): # noqa with pytest.raises(SystemExit) as pytest_wrapped_e: Biokit() assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == 2 @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1543\t1.2233\t0.4166\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.166\t1.2411\t0.4201\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1321\t1.2233\t0.3879\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1782\t1.2411\t0.4411\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.2074\t1.2749\t0.4157\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1584\t1.2411\t0.4245\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1528\t1.2411\t0.419\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1722\t1.2411\t0.4286\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1532\t1.2411\t0.4178\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.167\t1.2411\t0.4159\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1703\t1.2411\t0.4139\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1522\t1.2411\t0.4257" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt1(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1543\t1.2233\t0.4166\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.166\t1.2411\t0.4201\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1321\t1.2233\t0.3879\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1782\t1.2411\t0.4411\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.2074\t1.2749\t0.4157\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1584\t1.2411\t0.4245\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1528\t1.2411\t0.419\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1722\t1.2411\t0.4286\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1532\t1.2411\t0.4178\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.167\t1.2411\t0.4159\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1703\t1.2411\t0.4139\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1522\t1.2411\t0.4257" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "1", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt2(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1751\t1.2411\t0.424\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1774\t1.2411\t0.4238\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1396\t1.2411\t0.3906\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1954\t1.2587\t0.4469\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.2245\t1.3265\t0.4233\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1806\t1.2411\t0.4346\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1724\t1.2411\t0.4257\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.188\t1.2411\t0.4351\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1757\t1.2411\t0.4283\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.188\t1.2587\t0.426\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.187\t1.2411\t0.4226\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1665\t1.2411\t0.4291" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "2", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt3(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1479\t1.2233\t0.394\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1449\t1.2233\t0.3953\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1216\t1.2233\t0.362\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1606\t1.2411\t0.4179\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.1726\t1.2411\t0.3888\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1449\t1.2233\t0.3983\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1502\t1.2411\t0.4032\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1508\t1.2233\t0.4085\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1506\t1.2233\t0.4003\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.1546\t1.2411\t0.3951\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1591\t1.2411\t0.3938\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.134\t1.2233\t0.4009" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "3", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt4(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1688\t1.2411\t0.428\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1732\t1.2411\t0.4257\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1349\t1.2411\t0.3906\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1846\t1.2411\t0.4462\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.2126\t1.2952\t0.42\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1692\t1.2411\t0.4327\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1655\t1.2411\t0.4291\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1817\t1.2411\t0.4361\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1674\t1.2411\t0.429\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.1776\t1.2411\t0.424\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1815\t1.2411\t0.4224\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1585\t1.2411\t0.4307" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "4", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt5(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1468\t1.2411\t0.3763\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1477\t1.2411\t0.3749\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1253\t1.2411\t0.3636\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.157\t1.2411\t0.3817\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.1989\t1.2749\t0.3887\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1496\t1.2411\t0.3868\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.141\t1.2411\t0.3778\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1562\t1.2411\t0.3854\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1489\t1.2411\t0.3831\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.1626\t1.2411\t0.3848\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.156\t1.2411\t0.3711\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1365\t1.2411\t0.3804" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "5", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt6(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.2\t1.2233\t0.4932\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1959\t1.2411\t0.4703\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1704\t1.2233\t0.4683\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.212\t1.2411\t0.4952\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.2459\t1.2749\t0.4784\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.205\t1.2411\t0.4982\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.2022\t1.2411\t0.5036\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.2189\t1.2411\t0.4998\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1855\t1.2411\t0.4706\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.2091\t1.2411\t0.487\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.2087\t1.2411\t0.4787\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1884\t1.2411\t0.4876" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "6", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt9(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1452\t1.2463\t0.3785\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1447\t1.2463\t0.3772\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1309\t1.2463\t0.3609\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1575\t1.2587\t0.3832\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.2017\t1.2946\t0.3885\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1476\t1.2463\t0.389\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.142\t1.2463\t0.3785\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.157\t1.2587\t0.3863\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1498\t1.2587\t0.3843\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.1637\t1.2587\t0.3851\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1566\t1.2587\t0.3727\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.135\t1.2463\t0.3825" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "9", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt10(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1629\t1.2411\t0.4194\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.173\t1.2411\t0.4243\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1371\t1.2411\t0.3892\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1838\t1.2411\t0.4442\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.2117\t1.2952\t0.4168\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1634\t1.2411\t0.4266\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1591\t1.2411\t0.4223\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1756\t1.2411\t0.4311\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1584\t1.2411\t0.4203\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.1708\t1.2411\t0.4169\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1759\t1.2411\t0.4169\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1586\t1.2411\t0.4289" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "10", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt11(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1543\t1.2233\t0.4166\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.166\t1.2411\t0.4201\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1321\t1.2233\t0.3879\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1782\t1.2411\t0.4411\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.2074\t1.2749\t0.4157\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1584\t1.2411\t0.4245\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1528\t1.2411\t0.419\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1722\t1.2411\t0.4286\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1532\t1.2411\t0.4178\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.167\t1.2411\t0.4159\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1703\t1.2411\t0.4139\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1522\t1.2411\t0.4257" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "11", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt12(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1484\t1.2233\t0.4063\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1612\t1.2411\t0.4111\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1289\t1.2233\t0.3797\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1728\t1.2411\t0.4325\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.1992\t1.2749\t0.4044\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1516\t1.2411\t0.4137\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1475\t1.2411\t0.4115\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1677\t1.2411\t0.419\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1506\t1.2411\t0.4089\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.1611\t1.2411\t0.4071\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1646\t1.2411\t0.4053\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1477\t1.2411\t0.4171" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "12", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt13(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.149\t1.2411\t0.38\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1508\t1.2411\t0.3782\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1251\t1.2411\t0.3658\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1621\t1.2411\t0.3873\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.1971\t1.3265\t0.3862\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1548\t1.2411\t0.3903\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1439\t1.2411\t0.3795\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.158\t1.2411\t0.3879\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1492\t1.2411\t0.3858\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.1623\t1.2411\t0.3861\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1588\t1.2411\t0.3753\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1398\t1.2411\t0.3835" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "13", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt14(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1643\t1.2587\t0.3864\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1623\t1.2587\t0.3865\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1515\t1.2749\t0.3696\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1756\t1.2749\t0.392\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.2114\t1.3265\t0.3912\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1649\t1.2587\t0.3951\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1578\t1.2587\t0.388\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1715\t1.2749\t0.3911\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1684\t1.2587\t0.3935\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.1778\t1.2749\t0.3913\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1703\t1.2587\t0.3803\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.153\t1.2587\t0.3905" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "14", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt16(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.181\t1.2233\t0.4423\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1918\t1.2411\t0.4451\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1546\t1.2233\t0.4087\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.2023\t1.2411\t0.4626\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.2363\t1.2749\t0.4442\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1853\t1.2411\t0.4504\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1765\t1.2411\t0.4382\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1951\t1.2411\t0.4528\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1736\t1.2411\t0.438\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.191\t1.2411\t0.4389\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1935\t1.2411\t0.4366\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1752\t1.2411\t0.4497" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "16", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt21(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1455\t1.2463\t0.3766\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1443\t1.2463\t0.3753\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1302\t1.2463\t0.3596\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1571\t1.2587\t0.3815\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.2\t1.2946\t0.3868\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1477\t1.2463\t0.3872\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.142\t1.2463\t0.3765\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1559\t1.2587\t0.3848\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1497\t1.2587\t0.3823\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.1628\t1.2587\t0.3838\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1561\t1.2587\t0.3708\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1342\t1.2463\t0.3805" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "21", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt22(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.222\t1.2233\t0.5161\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.2511\t1.2411\t0.5485\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1965\t1.2233\t0.4882\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.2394\t1.2411\t0.525\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.265\t1.2749\t0.491\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.2187\t1.2411\t0.5099\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.2093\t1.2411\t0.4965\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.2326\t1.2411\t0.5159\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.2193\t1.2411\t0.5214\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.2258\t1.2411\t0.5005\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.2274\t1.2411\t0.4974\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.2249\t1.2411\t0.5354" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "22", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt23(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.2586\t1.2233\t0.6873\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.2623\t1.2411\t0.6688\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.2078\t1.2233\t0.5957\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.2717\t1.2411\t0.6768\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.321\t1.2749\t0.6996\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.2636\t1.2411\t0.692\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.2313\t1.2411\t0.6184\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.2649\t1.2411\t0.6736\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.2357\t1.2411\t0.6451\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.259\t1.2411\t0.6581\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.2609\t1.2411\t0.656\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.2435\t1.2411\t0.6674" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "23", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt24(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.165\t1.2233\t0.3934\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1596\t1.2233\t0.3882\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1533\t1.2233\t0.3768\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1721\t1.2587\t0.3937\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.2147\t1.3397\t0.3981\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1645\t1.2233\t0.4006\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1588\t1.2233\t0.3941\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1738\t1.2587\t0.3984\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1654\t1.2587\t0.3972\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.1824\t1.2587\t0.3974\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.181\t1.2587\t0.3891\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1475\t1.2233\t0.3938" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "24", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt25(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1643\t1.2411\t0.4235\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1743\t1.2411\t0.4255\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1377\t1.2411\t0.3903\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1889\t1.2411\t0.4505\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.2228\t1.2749\t0.4338\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1653\t1.2411\t0.43\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1638\t1.2411\t0.4296\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1844\t1.2411\t0.4395\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1655\t1.2411\t0.4276\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.1799\t1.2411\t0.4278\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1813\t1.2411\t0.4212\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1606\t1.2411\t0.4323" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "25", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt26(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1473\t1.2233\t0.4041\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1589\t1.2411\t0.4085\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.128\t1.2233\t0.377\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1719\t1.2411\t0.4308\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.1997\t1.2749\t0.4033\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1517\t1.2411\t0.4119\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1468\t1.2411\t0.4096\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1662\t1.2411\t0.4172\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1493\t1.2411\t0.4069\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.1605\t1.2411\t0.4057\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1632\t1.2411\t0.4037\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1455\t1.2411\t0.4151" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "26", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt27(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.2\t1.2233\t0.4932\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1959\t1.2411\t0.4703\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1704\t1.2233\t0.4683\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.212\t1.2411\t0.4952\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.2459\t1.2749\t0.4784\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.205\t1.2411\t0.4982\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.2022\t1.2411\t0.5036\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.2189\t1.2411\t0.4998\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1855\t1.2411\t0.4706\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.2091\t1.2411\t0.487\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.2087\t1.2411\t0.4787\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1884\t1.2411\t0.4876" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "27", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt28(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1543\t1.2233\t0.4166\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.166\t1.2411\t0.4201\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1321\t1.2233\t0.3879\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1782\t1.2411\t0.4411\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.2074\t1.2749\t0.4157\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1584\t1.2411\t0.4245\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1528\t1.2411\t0.419\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1722\t1.2411\t0.4286\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1532\t1.2411\t0.4178\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.167\t1.2411\t0.4159\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1703\t1.2411\t0.4139\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1522\t1.2411\t0.4257" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "28", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt29(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1928\t1.2411\t0.4513\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.2015\t1.2587\t0.455\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1729\t1.2411\t0.4287\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.2144\t1.2587\t0.4747\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.2268\t1.3265\t0.432\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1926\t1.2587\t0.4542\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1839\t1.2411\t0.4543\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.2013\t1.2587\t0.4523\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1906\t1.2411\t0.4554\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.1952\t1.2587\t0.4435\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1979\t1.2411\t0.4427\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1876\t1.2587\t0.4591" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "29", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt30(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.2261\t1.2233\t0.5256\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.2285\t1.2411\t0.5159\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.2633\t1.2233\t0.5909\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.2625\t1.2411\t0.5581\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.3005\t1.2749\t0.5519\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.2359\t1.2411\t0.5469\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.2391\t1.2411\t0.5448\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.2569\t1.2411\t0.5531\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.2309\t1.2411\t0.5401\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.2727\t1.2411\t0.5754\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.2404\t1.2411\t0.5208\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.2196\t1.2411\t0.5323" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "30", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt31(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1688\t1.2411\t0.428\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1732\t1.2411\t0.4257\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.1349\t1.2411\t0.3906\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1846\t1.2411\t0.4462\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.2126\t1.2952\t0.42\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1692\t1.2411\t0.4327\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1655\t1.2411\t0.4291\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1817\t1.2411\t0.4361\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1674\t1.2411\t0.429\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.1776\t1.2411\t0.424\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1815\t1.2411\t0.4224\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1585\t1.2411\t0.4307" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "31", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt33(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1841\t1.2587\t0.4\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1773\t1.2587\t0.3966\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.174\t1.2749\t0.3839\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1902\t1.2749\t0.4016\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.2244\t1.3627\t0.4004\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1817\t1.2587\t0.4058\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1745\t1.2587\t0.4026\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1883\t1.2749\t0.4025\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.184\t1.2587\t0.4054\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.1964\t1.2749\t0.4028\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1946\t1.2587\t0.3955\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1654\t1.2587\t0.401" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "33", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt50(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1473\t1.2233\t0.4041\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1589\t1.2411\t0.4085\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.128\t1.2233\t0.377\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1719\t1.2411\t0.4308\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.1997\t1.2749\t0.4033\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1517\t1.2411\t0.4119\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1468\t1.2411\t0.4096\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1662\t1.2411\t0.4172\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1493\t1.2411\t0.4069\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.1605\t1.2411\t0.4057\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1632\t1.2411\t0.4037\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1455\t1.2411\t0.4151" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", "50", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt_custom(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1473\t1.2233\t0.4041\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1589\t1.2411\t0.4085\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.128\t1.2233\t0.377\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1719\t1.2411\t0.4308\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.1997\t1.2749\t0.4033\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1517\t1.2411\t0.4119\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1468\t1.2411\t0.4096\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1662\t1.2411\t0.4172\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1493\t1.2411\t0.4069\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.1605\t1.2411\t0.4057\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1632\t1.2411\t0.4037\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1455\t1.2411\t0.4151" testargs = [ "biokit", "gene_wise_relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", f"{here.parent.parent.parent}/sample_files/CUG_ala_code.txt", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt_custom_alias0(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1473\t1.2233\t0.4041\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1589\t1.2411\t0.4085\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.128\t1.2233\t0.377\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1719\t1.2411\t0.4308\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.1997\t1.2749\t0.4033\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1517\t1.2411\t0.4119\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1468\t1.2411\t0.4096\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1662\t1.2411\t0.4172\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1493\t1.2411\t0.4069\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.1605\t1.2411\t0.4057\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1632\t1.2411\t0.4037\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1455\t1.2411\t0.4151" testargs = [ "biokit", "gene_wise_rscu", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", f"{here.parent.parent.parent}/sample_files/CUG_ala_code.txt", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gene_wise_relative_synonymous_codon_usage_tt_custom_alias1(self, mocked_print): expected_result = "lcl|NC_001134.8_cds_NP_009465.2_119\t1.1473\t1.2233\t0.4041\nlcl|NC_001134.8_cds_NP_009698.3_345\t1.1589\t1.2411\t0.4085\nlcl|NC_001136.10_cds_NP_010434.1_1057\t1.128\t1.2233\t0.377\nlcl|NC_001136.10_cds_NP_010745.3_1362\t1.1719\t1.2411\t0.4308\nlcl|NC_001139.9_cds_NP_011320.3_1926\t1.1997\t1.2749\t0.4033\nlcl|NC_001140.6_cds_NP_011967.1_2560\t1.1517\t1.2411\t0.4119\nlcl|NC_001143.9_cds_NP_012980.1_3530\t1.1468\t1.2411\t0.4096\nlcl|NC_001144.5_cds_NP_013060.1_3608\t1.1662\t1.2411\t0.4172\nlcl|NC_001144.5_cds_NP_013188.1_3730\t1.1493\t1.2411\t0.4069\nlcl|NC_001144.5_cds_NP_013207.1_3749\t1.1605\t1.2411\t0.4057\nlcl|NC_001144.5_cds_NP_013559.1_4092\t1.1632\t1.2411\t0.4037\nlcl|NC_001147.6_cds_NP_014560.1_5058\t1.1455\t1.2411\t0.4151" testargs = [ "biokit", "gw_rscu", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.long_sequences.fa.long_seqs.fa", "-tt", f"{here.parent.parent.parent}/sample_files/CUG_ala_code.txt", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] ``` #### File: integration/coding_sequences/test_relative_synonymous_codon_usage.py ```python import pytest from mock import patch, call from pathlib import Path import sys from biokit.biokit import Biokit here = Path(__file__) @pytest.mark.integration class TestRelativeSynonymousCodonUsage(object): @patch("builtins.print") def test_relative_synonymous_codon_usage_invalid_input(self, mocked_print): # noqa with pytest.raises(SystemExit) as pytest_wrapped_e: Biokit() assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == 2 @pytest.mark.slow @patch("builtins.print") def test_relative_synonymous_codon_usage(self, mocked_print): expected_result = "AGA\t2.8477\nGGU\t1.8214\nUUA\t1.6781\nUUG\t1.6693\nCCA\t1.6278\nUCU\t1.5612\nGUU\t1.5466\nGCU\t1.4788\nGAA\t1.4019\nUAA\t1.3971\nAUU\t1.3842\nCAA\t1.3716\nACU\t1.3709\nGAU\t1.3034\nCAU\t1.2854\nAGG\t1.2769\nUCA\t1.2765\nUGU\t1.2441\nCCU\t1.2432\nACA\t1.2332\nAAU\t1.1952\nUUU\t1.1904\nGCA\t1.1875\nAAA\t1.1703\nUAU\t1.1366\nAUG\t1.0\nUGG\t1.0\nAGU\t0.9766\nUCC\t0.9386\nUGA\t0.929\nGGA\t0.9028\nGCC\t0.8833\nGUA\t0.8741\nUAC\t0.8634\nCUA\t0.853\nCGU\t0.848\nACC\t0.8439\nAUA\t0.84\nAAG\t0.8297\nUUC\t0.8096\nGUC\t0.8073\nAAC\t0.8048\nGGC\t0.7874\nCUU\t0.7781\nAUC\t0.7758\nGUG\t0.772\nUGC\t0.7559\nCAC\t0.7146\nGAC\t0.6966\nUAG\t0.6739\nCUG\t0.6719\nAGC\t0.6655\nCCC\t0.6323\nCAG\t0.6284\nGAG\t0.5981\nUCG\t0.5817\nACG\t0.552\nCCG\t0.4967\nGGG\t0.4885\nGCG\t0.4504\nCGA\t0.4208\nCGC\t0.358\nCUC\t0.3497\nCGG\t0.2485" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.fna", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt1(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nAGA\t2.2941\nUUA\t2.1892\nGCU\t2.0\nUCU\t1.9355\nAUU\t1.9\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nUUG\t1.5405\nAAA\t1.5\nAGG\t1.4118\nCAA\t1.3636\nGUU\t1.2881\nAGU\t1.2581\nUUU\t1.2558\nGAU\t1.2432\nCAU\t1.1667\nAAU\t1.0769\nCGU\t1.0588\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAU\t1.0\nUAC\t1.0\nUGG\t1.0\nUCC\t0.9677\nUCA\t0.9677\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nCCU\t0.8571\nCAC\t0.8333\nGCA\t0.8148\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nCGG\t0.7059\nCUA\t0.6486\nCAG\t0.6364\nCUU\t0.5676\nCUG\t0.5676\nGGA\t0.5263\nGGG\t0.5263\nAAG\t0.5\nCUC\t0.4865\nUCG\t0.4839\nCCG\t0.4286\nAGC\t0.3871\nCGA\t0.3529\nAUA\t0.35\nUGC\t0.3333\nGGC\t0.3158\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nCGC\t0.1765\nUAA\t0\nUAG\t0\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "1", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt2(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nUUA\t2.1892\nAGA\t2.1667\nGCU\t2.0\nUGG\t2.0\nUCU\t1.9355\nCGU\t1.8462\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nUUG\t1.5405\nAAA\t1.5\nAUU\t1.434\nAUG\t1.3913\nCAA\t1.3636\nAGG\t1.3333\nGUU\t1.2881\nAGU\t1.2581\nUUU\t1.2558\nGAU\t1.2432\nCGG\t1.2308\nCAU\t1.1667\nAAU\t1.0769\nACC\t1.0435\nGUG\t1.0169\nUAU\t1.0\nUAC\t1.0\nUCC\t0.9677\nUCA\t0.9677\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nCCU\t0.8571\nCAC\t0.8333\nGCA\t0.8148\nGAC\t0.7568\nGUA\t0.7458\nUUC\t0.7442\nCUA\t0.6486\nCAG\t0.6364\nCGA\t0.6154\nAUA\t0.6087\nCUU\t0.5676\nCUG\t0.5676\nAUC\t0.566\nGGA\t0.5263\nGGG\t0.5263\nAAG\t0.5\nCUC\t0.4865\nUCG\t0.4839\nCCG\t0.4286\nAGC\t0.3871\nUAG\t0.3333\nUGC\t0.3333\nGGC\t0.3158\nCGC\t0.3077\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nUAA\t0.1667\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "2", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt3(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nAGA\t2.2941\nACU\t2.1622\nGCU\t2.0\nUGG\t2.0\nUCU\t1.9355\nGAA\t1.7714\nUGU\t1.6667\nAAA\t1.5\nAUU\t1.434\nAGG\t1.4118\nAUG\t1.3913\nCAA\t1.3636\nUAG\t1.3333\nACC\t1.2973\nGUU\t1.2881\nAGU\t1.2581\nUUU\t1.2558\nGAU\t1.2432\nACA\t1.1892\nUUA\t1.1739\nCAU\t1.1667\nAAU\t1.0769\nCGU\t1.0588\nGUG\t1.0169\nUAU\t1.0\nUAC\t1.0\nUCC\t0.9677\nUCA\t0.9677\nGCC\t0.963\nGUC\t0.9492\nAAC\t0.9231\nCUA\t0.8649\nCCU\t0.8571\nCAC\t0.8333\nUUG\t0.8261\nGCA\t0.8148\nCUU\t0.7568\nCUG\t0.7568\nGAC\t0.7568\nGUA\t0.7458\nUUC\t0.7442\nCGG\t0.7059\nUAA\t0.6667\nCUC\t0.6486\nCAG\t0.6364\nAUA\t0.6087\nAUC\t0.566\nGGA\t0.5263\nGGG\t0.5263\nAAG\t0.5\nUCG\t0.4839\nCCG\t0.4286\nAGC\t0.3871\nCGA\t0.3529\nUGC\t0.3333\nACG\t0.3243\nGGC\t0.3158\nCCC\t0.2857\nGAG\t0.2286\nGCG\t0.2222\nCGC\t0.1765\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "3", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt4(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nAGA\t2.2941\nUUA\t2.1892\nGCU\t2.0\nUGG\t2.0\nUCU\t1.9355\nAUU\t1.9\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nUUG\t1.5405\nAAA\t1.5\nAGG\t1.4118\nCAA\t1.3636\nUAG\t1.3333\nGUU\t1.2881\nAGU\t1.2581\nUUU\t1.2558\nGAU\t1.2432\nCAU\t1.1667\nAAU\t1.0769\nCGU\t1.0588\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAU\t1.0\nUAC\t1.0\nUCC\t0.9677\nUCA\t0.9677\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nCCU\t0.8571\nCAC\t0.8333\nGCA\t0.8148\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nCGG\t0.7059\nUAA\t0.6667\nCUA\t0.6486\nCAG\t0.6364\nCUU\t0.5676\nCUG\t0.5676\nGGA\t0.5263\nGGG\t0.5263\nAAG\t0.5\nCUC\t0.4865\nUCG\t0.4839\nCCG\t0.4286\nAGC\t0.3871\nCGA\t0.3529\nAUA\t0.35\nUGC\t0.3333\nGGC\t0.3158\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nCGC\t0.1765\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "4", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt5(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nUUA\t2.1892\nGCU\t2.0\nUGG\t2.0\nUCU\t1.9277\nCGU\t1.8462\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nUUG\t1.5405\nAAA\t1.5\nAUU\t1.434\nAUG\t1.3913\nCAA\t1.3636\nUAG\t1.3333\nGUU\t1.2881\nUUU\t1.2558\nAGU\t1.253\nAGA\t1.253\nGAU\t1.2432\nCGG\t1.2308\nCAU\t1.1667\nAAU\t1.0769\nACC\t1.0435\nGUG\t1.0169\nUAU\t1.0\nUAC\t1.0\nUCC\t0.9639\nUCA\t0.9639\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nCCU\t0.8571\nCAC\t0.8333\nGCA\t0.8148\nAGG\t0.7711\nGAC\t0.7568\nGUA\t0.7458\nUUC\t0.7442\nUAA\t0.6667\nCUA\t0.6486\nCAG\t0.6364\nCGA\t0.6154\nAUA\t0.6087\nCUU\t0.5676\nCUG\t0.5676\nAUC\t0.566\nGGA\t0.5263\nGGG\t0.5263\nAAG\t0.5\nCUC\t0.4865\nUCG\t0.4819\nCCG\t0.4286\nAGC\t0.3855\nUGC\t0.3333\nGGC\t0.3158\nCGC\t0.3077\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "5", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt6(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nCAA\t2.4\nAGA\t2.2941\nUUA\t2.1892\nGCU\t2.0\nUCU\t1.9355\nAUU\t1.9\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nUUG\t1.5405\nAAA\t1.5\nAGG\t1.4118\nGUU\t1.2881\nAGU\t1.2581\nUUU\t1.2558\nGAU\t1.2432\nCAU\t1.1667\nCAG\t1.12\nAAU\t1.0769\nCGU\t1.0588\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAU\t1.0\nUAC\t1.0\nUGG\t1.0\nUCC\t0.9677\nUCA\t0.9677\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nCCU\t0.8571\nCAC\t0.8333\nGCA\t0.8148\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nCGG\t0.7059\nCUA\t0.6486\nCUU\t0.5676\nCUG\t0.5676\nGGA\t0.5263\nGGG\t0.5263\nAAG\t0.5\nCUC\t0.4865\nUCG\t0.4839\nCCG\t0.4286\nAGC\t0.3871\nCGA\t0.3529\nAUA\t0.35\nUGC\t0.3333\nUAG\t0.32\nGGC\t0.3158\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nCGC\t0.1765\nUAA\t0.16\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "6", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt9(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nUUA\t2.1892\nGCU\t2.0\nUGG\t2.0\nUCU\t1.9277\nAUU\t1.9\nCGU\t1.8462\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nUUG\t1.5405\nAAA\t1.44\nCAA\t1.3636\nUAG\t1.3333\nGUU\t1.2881\nUUU\t1.2558\nAGU\t1.253\nAGA\t1.253\nGAU\t1.2432\nCGG\t1.2308\nCAU\t1.1667\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAU\t1.0\nUAC\t1.0\nAAG\t1.0\nUCC\t0.9639\nUCA\t0.9639\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nCCU\t0.8571\nAAU\t0.84\nCAC\t0.8333\nGCA\t0.8148\nAGG\t0.7711\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nAAC\t0.72\nUAA\t0.6667\nCUA\t0.6486\nCAG\t0.6364\nCGA\t0.6154\nCUU\t0.5676\nCUG\t0.5676\nGGA\t0.5263\nGGG\t0.5263\nCUC\t0.4865\nUCG\t0.4819\nCCG\t0.4286\nAGC\t0.3855\nAUA\t0.35\nUGC\t0.3333\nGGC\t0.3158\nCGC\t0.3077\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "9", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt10(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nAGA\t2.2941\nUUA\t2.1892\nGCU\t2.0\nUCU\t1.9355\nAUU\t1.9\nGAA\t1.7714\nACU\t1.7391\nUUG\t1.5405\nAAA\t1.5\nAGG\t1.4118\nCAA\t1.3636\nUAG\t1.3333\nGUU\t1.2881\nAGU\t1.2581\nUUU\t1.2558\nGAU\t1.2432\nCAU\t1.1667\nAAU\t1.0769\nCGU\t1.0588\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAU\t1.0\nUAC\t1.0\nUGG\t1.0\nUCC\t0.9677\nUCA\t0.9677\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nCCU\t0.8571\nCAC\t0.8333\nGCA\t0.8148\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nCGG\t0.7059\nUAA\t0.6667\nCUA\t0.6486\nCAG\t0.6364\nCUU\t0.5676\nCUG\t0.5676\nGGA\t0.5263\nGGG\t0.5263\nAAG\t0.5\nCUC\t0.4865\nUCG\t0.4839\nCCG\t0.4286\nAGC\t0.3871\nCGA\t0.3529\nAUA\t0.35\nGGC\t0.3158\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nCGC\t0.1765\nUGU\t0\nUGC\t0\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "10", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt11(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nAGA\t2.2941\nUUA\t2.1892\nGCU\t2.0\nUCU\t1.9355\nAUU\t1.9\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nUUG\t1.5405\nAAA\t1.5\nAGG\t1.4118\nCAA\t1.3636\nGUU\t1.2881\nAGU\t1.2581\nUUU\t1.2558\nGAU\t1.2432\nCAU\t1.1667\nAAU\t1.0769\nCGU\t1.0588\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAU\t1.0\nUAC\t1.0\nUGG\t1.0\nUCC\t0.9677\nUCA\t0.9677\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nCCU\t0.8571\nCAC\t0.8333\nGCA\t0.8148\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nCGG\t0.7059\nCUA\t0.6486\nCAG\t0.6364\nCUU\t0.5676\nCUG\t0.5676\nGGA\t0.5263\nGGG\t0.5263\nAAG\t0.5\nCUC\t0.4865\nUCG\t0.4839\nCCG\t0.4286\nAGC\t0.3871\nCGA\t0.3529\nAUA\t0.35\nUGC\t0.3333\nGGC\t0.3158\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nCGC\t0.1765\nUAA\t0\nUAG\t0\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "11", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt12(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nAGA\t2.2941\nUCU\t2.029\nUUA\t2.0149\nGCU\t2.0\nAUU\t1.9\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nAAA\t1.5\nUUG\t1.4179\nAGG\t1.4118\nCAA\t1.3636\nAGU\t1.3188\nGUU\t1.2881\nUUU\t1.2558\nGAU\t1.2432\nCAU\t1.1667\nAAU\t1.0769\nCGU\t1.0588\nACC\t1.0435\nGUG\t1.0169\nUCC\t1.0145\nUCA\t1.0145\nAUG\t1.0\nUAU\t1.0\nUAC\t1.0\nUGG\t1.0\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nCCU\t0.8571\nCAC\t0.8333\nGCA\t0.8148\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nCUG\t0.7101\nCGG\t0.7059\nCAG\t0.6364\nCUA\t0.597\nGGA\t0.5263\nGGG\t0.5263\nCUU\t0.5224\nUCG\t0.5072\nAAG\t0.5\nCUC\t0.4478\nCCG\t0.4286\nAGC\t0.4058\nCGA\t0.3529\nAUA\t0.35\nUGC\t0.3333\nGGC\t0.3158\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nCGC\t0.1765\nUAA\t0\nUAG\t0\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "12", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt13(self, mocked_print): expected_result = "GGU\t2.5424\nCCA\t2.4286\nUUA\t2.1892\nGCU\t2.0\nUGG\t2.0\nUCU\t1.9355\nCGU\t1.8462\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nUUG\t1.5405\nAAA\t1.5\nAUU\t1.434\nAUG\t1.3913\nCAA\t1.3636\nUAG\t1.3333\nAGA\t1.322\nGUU\t1.2881\nAGU\t1.2581\nUUU\t1.2558\nGAU\t1.2432\nCGG\t1.2308\nCAU\t1.1667\nAAU\t1.0769\nACC\t1.0435\nGUG\t1.0169\nUAU\t1.0\nUAC\t1.0\nUCC\t0.9677\nUCA\t0.9677\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nCCU\t0.8571\nCAC\t0.8333\nGCA\t0.8148\nAGG\t0.8136\nGAC\t0.7568\nGUA\t0.7458\nUUC\t0.7442\nUAA\t0.6667\nCUA\t0.6486\nCAG\t0.6364\nCGA\t0.6154\nAUA\t0.6087\nCUU\t0.5676\nCUG\t0.5676\nAUC\t0.566\nGGA\t0.5085\nGGG\t0.5085\nAAG\t0.5\nCUC\t0.4865\nUCG\t0.4839\nCCG\t0.4286\nAGC\t0.3871\nUGC\t0.3333\nCGC\t0.3077\nGGC\t0.3051\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "13", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt14(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nUUA\t2.1892\nGCU\t2.0\nUGG\t2.0\nUCU\t1.9277\nAUU\t1.9\nCGU\t1.8462\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nUUG\t1.5405\nUAU\t1.4681\nUAC\t1.4681\nAAA\t1.44\nCAA\t1.3636\nGUU\t1.2881\nUUU\t1.2558\nAGU\t1.253\nAGA\t1.253\nGAU\t1.2432\nCGG\t1.2308\nCAU\t1.1667\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAG\t1.0\nAAG\t1.0\nUCC\t0.9639\nUCA\t0.9639\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nCCU\t0.8571\nAAU\t0.84\nCAC\t0.8333\nGCA\t0.8148\nAGG\t0.7711\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nAAC\t0.72\nCUA\t0.6486\nCAG\t0.6364\nCGA\t0.6154\nCUU\t0.5676\nCUG\t0.5676\nGGA\t0.5263\nGGG\t0.5263\nCUC\t0.4865\nUCG\t0.4819\nCCG\t0.4286\nAGC\t0.3855\nAUA\t0.35\nUGC\t0.3333\nGGC\t0.3158\nCGC\t0.3077\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nUAA\t0.0638\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "14", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt16(self, mocked_print): expected_result = "GGU\t2.6316\nUUA\t2.4868\nCCA\t2.4286\nAGA\t2.2941\nGCU\t2.0\nUCU\t1.9355\nAUU\t1.9\nGAA\t1.7714\nUUG\t1.75\nACU\t1.7391\nUGU\t1.6667\nAAA\t1.5\nAGG\t1.4118\nCAA\t1.3636\nGUU\t1.2881\nAGU\t1.2581\nUUU\t1.2558\nGAU\t1.2432\nCAU\t1.1667\nAAU\t1.0769\nCGU\t1.0588\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAU\t1.0\nUAC\t1.0\nUGG\t1.0\nUCC\t0.9677\nUCA\t0.9677\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nCCU\t0.8571\nCAC\t0.8333\nGCA\t0.8148\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nCUA\t0.7368\nCGG\t0.7059\nCUU\t0.6447\nCUG\t0.6447\nCAG\t0.6364\nCUC\t0.5526\nGGA\t0.5263\nGGG\t0.5263\nAAG\t0.5\nUCG\t0.4839\nCCG\t0.4286\nAGC\t0.3871\nCGA\t0.3529\nAUA\t0.35\nUGC\t0.3333\nGGC\t0.3158\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nUAG\t0.1842\nCGC\t0.1765\nUAA\t0\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "16", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt21(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nUUA\t2.1892\nGCU\t2.0\nUGG\t2.0\nUCU\t1.9277\nCGU\t1.8462\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nUUG\t1.5405\nAAA\t1.44\nAUU\t1.434\nAUG\t1.3913\nCAA\t1.3636\nUAG\t1.3333\nGUU\t1.2881\nUUU\t1.2558\nAGU\t1.253\nAGA\t1.253\nGAU\t1.2432\nCGG\t1.2308\nCAU\t1.1667\nACC\t1.0435\nGUG\t1.0169\nUAU\t1.0\nUAC\t1.0\nAAG\t1.0\nUCC\t0.9639\nUCA\t0.9639\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nCCU\t0.8571\nAAU\t0.84\nCAC\t0.8333\nGCA\t0.8148\nAGG\t0.7711\nGAC\t0.7568\nGUA\t0.7458\nUUC\t0.7442\nAAC\t0.72\nUAA\t0.6667\nCUA\t0.6486\nCAG\t0.6364\nCGA\t0.6154\nAUA\t0.6087\nCUU\t0.5676\nCUG\t0.5676\nAUC\t0.566\nGGA\t0.5263\nGGG\t0.5263\nCUC\t0.4865\nUCG\t0.4819\nCCG\t0.4286\nAGC\t0.3855\nUGC\t0.3333\nGGC\t0.3158\nCGC\t0.3077\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "21", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt22(self, mocked_print): expected_result = "GGU\t2.6316\nUUA\t2.4868\nCCA\t2.4286\nAGA\t2.2941\nGCU\t2.0\nUCU\t1.9231\nAUU\t1.9\nGAA\t1.7714\nUUG\t1.75\nACU\t1.7391\nUGU\t1.6667\nAAA\t1.5\nAGG\t1.4118\nCAA\t1.3636\nGUU\t1.2881\nUUU\t1.2558\nAGU\t1.25\nGAU\t1.2432\nCAU\t1.1667\nAAU\t1.0769\nCGU\t1.0588\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAU\t1.0\nUAC\t1.0\nUGG\t1.0\nGCC\t0.963\nUCC\t0.9615\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nCCU\t0.8571\nCAC\t0.8333\nGCA\t0.8148\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nCUA\t0.7368\nCGG\t0.7059\nCUU\t0.6447\nCUG\t0.6447\nCAG\t0.6364\nCUC\t0.5526\nGGA\t0.5263\nGGG\t0.5263\nAAG\t0.5\nUCG\t0.4808\nCCG\t0.4286\nAGC\t0.3846\nCGA\t0.3529\nAUA\t0.35\nUGC\t0.3333\nGGC\t0.3158\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nUAG\t0.1842\nCGC\t0.1765\nUCA\t0\nUAA\t0\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "22", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt23(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nAGA\t2.2941\nUUG\t2.0213\nGCU\t2.0\nUCU\t1.9355\nAUU\t1.9\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nAAA\t1.5\nAGG\t1.4118\nCAA\t1.3636\nGUU\t1.2881\nAGU\t1.2581\nUUU\t1.2558\nGAU\t1.2432\nCAU\t1.1667\nAAU\t1.0769\nCGU\t1.0588\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAU\t1.0\nUAC\t1.0\nUGG\t1.0\nUCC\t0.9677\nUCA\t0.9677\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nCCU\t0.8571\nCUA\t0.8511\nCAC\t0.8333\nGCA\t0.8148\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nCUU\t0.7447\nCUG\t0.7447\nUUC\t0.7442\nCGG\t0.7059\nCUC\t0.6383\nCAG\t0.6364\nGGA\t0.5263\nGGG\t0.5263\nAAG\t0.5\nUCG\t0.4839\nCCG\t0.4286\nAGC\t0.3871\nCGA\t0.3529\nAUA\t0.35\nUGC\t0.3333\nGGC\t0.3158\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nCGC\t0.1765\nUUA\t0\nUAA\t0\nUAG\t0\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "23", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt24(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nUUA\t2.1892\nGCU\t2.0\nUGG\t2.0\nAAA\t1.9286\nAUU\t1.9\nUCU\t1.8667\nCGU\t1.8462\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nUUG\t1.5405\nCAA\t1.3636\nUAG\t1.3333\nGUU\t1.2881\nUUU\t1.2558\nGAU\t1.2432\nCGG\t1.2308\nAGU\t1.2133\nAGA\t1.2133\nCAU\t1.1667\nAAU\t1.0769\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAU\t1.0\nUAC\t1.0\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nUCC\t0.9333\nUCA\t0.9333\nAAC\t0.9231\nCCU\t0.8571\nCAC\t0.8333\nGCA\t0.8148\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nUAA\t0.6667\nCUA\t0.6486\nAAG\t0.6429\nCAG\t0.6364\nCGA\t0.6154\nCUU\t0.5676\nCUG\t0.5676\nGGA\t0.5263\nGGG\t0.5263\nCUC\t0.4865\nUCG\t0.4667\nCCG\t0.4286\nAGG\t0.4286\nAGC\t0.3733\nAUA\t0.35\nUGC\t0.3333\nGGC\t0.3158\nCGC\t0.3077\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "24", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt25(self, mocked_print): expected_result = "GGU\t3.2895\nCCA\t2.4286\nAGA\t2.2941\nUUA\t2.1892\nGCU\t2.0\nUCU\t1.9355\nAUU\t1.9\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nUUG\t1.5405\nAAA\t1.5\nAGG\t1.4118\nCAA\t1.3636\nUAG\t1.3333\nGUU\t1.2881\nAGU\t1.2581\nUUU\t1.2558\nGAU\t1.2432\nCAU\t1.1667\nAAU\t1.0769\nCGU\t1.0588\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAU\t1.0\nUAC\t1.0\nUGG\t1.0\nUCC\t0.9677\nUCA\t0.9677\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nCCU\t0.8571\nCAC\t0.8333\nGCA\t0.8148\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nCGG\t0.7059\nUAA\t0.6667\nGGA\t0.6579\nGGG\t0.6579\nCUA\t0.6486\nCAG\t0.6364\nCUU\t0.5676\nCUG\t0.5676\nAAG\t0.5\nCUC\t0.4865\nUCG\t0.4839\nCCG\t0.4286\nGGC\t0.3947\nAGC\t0.3871\nCGA\t0.3529\nAUA\t0.35\nUGC\t0.3333\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nCGC\t0.1765\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "25", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt26(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nAGA\t2.2941\nGCU\t2.2131\nUUA\t2.0149\nUCU\t1.9355\nAUU\t1.9\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nAAA\t1.5\nUUG\t1.4179\nAGG\t1.4118\nCAA\t1.3636\nGUU\t1.2881\nAGU\t1.2581\nUUU\t1.2558\nGAU\t1.2432\nCAU\t1.1667\nAAU\t1.0769\nGCC\t1.0656\nCGU\t1.0588\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAU\t1.0\nUAC\t1.0\nUGG\t1.0\nUCC\t0.9677\nUCA\t0.9677\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nGCA\t0.9016\nCCU\t0.8571\nCAC\t0.8333\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nCGG\t0.7059\nCAG\t0.6364\nCUA\t0.597\nCUG\t0.5738\nGGA\t0.5263\nGGG\t0.5263\nCUU\t0.5224\nAAG\t0.5\nUCG\t0.4839\nCUC\t0.4478\nCCG\t0.4286\nAGC\t0.3871\nCGA\t0.3529\nAUA\t0.35\nUGC\t0.3333\nGGC\t0.3158\nCCC\t0.2857\nACG\t0.2609\nGCG\t0.2459\nGAG\t0.2286\nCGC\t0.1765\nUAA\t0\nUAG\t0\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "26", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt27(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nCAA\t2.4\nAGA\t2.2941\nUUA\t2.1892\nGCU\t2.0\nUCU\t1.9355\nAUU\t1.9\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nUUG\t1.5405\nAAA\t1.5\nAGG\t1.4118\nGUU\t1.2881\nAGU\t1.2581\nUUU\t1.2558\nGAU\t1.2432\nCAU\t1.1667\nCAG\t1.12\nAAU\t1.0769\nCGU\t1.0588\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAU\t1.0\nUAC\t1.0\nUGG\t1.0\nUCC\t0.9677\nUCA\t0.9677\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nCCU\t0.8571\nCAC\t0.8333\nGCA\t0.8148\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nCGG\t0.7059\nCUA\t0.6486\nCUU\t0.5676\nCUG\t0.5676\nGGA\t0.5263\nGGG\t0.5263\nAAG\t0.5\nCUC\t0.4865\nUCG\t0.4839\nCCG\t0.4286\nAGC\t0.3871\nCGA\t0.3529\nAUA\t0.35\nUGC\t0.3333\nUAG\t0.32\nGGC\t0.3158\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nCGC\t0.1765\nUAA\t0.16\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "27", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt28(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nAGA\t2.2941\nUUA\t2.1892\nGCU\t2.0\nUCU\t1.9355\nAUU\t1.9\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nUUG\t1.5405\nAAA\t1.5\nAGG\t1.4118\nCAA\t1.3636\nGUU\t1.2881\nAGU\t1.2581\nUUU\t1.2558\nGAU\t1.2432\nCAU\t1.1667\nAAU\t1.0769\nCGU\t1.0588\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAU\t1.0\nUAC\t1.0\nUGG\t1.0\nUCC\t0.9677\nUCA\t0.9677\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nCCU\t0.8571\nCAC\t0.8333\nGCA\t0.8148\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nCGG\t0.7059\nCUA\t0.6486\nCAG\t0.6364\nCUU\t0.5676\nCUG\t0.5676\nGGA\t0.5263\nGGG\t0.5263\nAAG\t0.5\nCUC\t0.4865\nUCG\t0.4839\nCCG\t0.4286\nAGC\t0.3871\nCGA\t0.3529\nAUA\t0.35\nUGC\t0.3333\nGGC\t0.3158\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nCGC\t0.1765\nUAA\t0\nUAG\t0\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "28", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt29(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nAGA\t2.2941\nUUA\t2.1892\nGCU\t2.0\nUCU\t1.9355\nAUU\t1.9\nUAU\t1.8776\nUAC\t1.8776\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nUUG\t1.5405\nAAA\t1.5\nAGG\t1.4118\nCAA\t1.3636\nGUU\t1.2881\nAGU\t1.2581\nUUU\t1.2558\nGAU\t1.2432\nCAU\t1.1667\nAAU\t1.0769\nCGU\t1.0588\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUGG\t1.0\nUCC\t0.9677\nUCA\t0.9677\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nCCU\t0.8571\nCAC\t0.8333\nGCA\t0.8148\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nCGG\t0.7059\nCUA\t0.6486\nCAG\t0.6364\nCUU\t0.5676\nCUG\t0.5676\nGGA\t0.5263\nGGG\t0.5263\nAAG\t0.5\nCUC\t0.4865\nUCG\t0.4839\nCCG\t0.4286\nAGC\t0.3871\nCGA\t0.3529\nAUA\t0.35\nUGC\t0.3333\nGGC\t0.3158\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nCGC\t0.1765\nUAG\t0.1633\nUAA\t0.0816\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "29", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt30(self, mocked_print): expected_result = "GAA\t3.2632\nGGU\t2.6316\nCCA\t2.4286\nAGA\t2.2941\nUUA\t2.1892\nGCU\t2.0\nUCU\t1.9355\nAUU\t1.9\nACU\t1.7391\nUGU\t1.6667\nUUG\t1.5405\nAAA\t1.5\nAGG\t1.4118\nCAA\t1.3636\nGUU\t1.2881\nAGU\t1.2581\nUUU\t1.2558\nGAU\t1.2432\nCAU\t1.1667\nAAU\t1.0769\nCGU\t1.0588\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAU\t1.0\nUAC\t1.0\nUGG\t1.0\nUCC\t0.9677\nUCA\t0.9677\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nCCU\t0.8571\nCAC\t0.8333\nGCA\t0.8148\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nCGG\t0.7059\nCUA\t0.6486\nCAG\t0.6364\nCUU\t0.5676\nCUG\t0.5676\nGGA\t0.5263\nGGG\t0.5263\nAAG\t0.5\nCUC\t0.4865\nUCG\t0.4839\nCCG\t0.4286\nGAG\t0.4211\nAGC\t0.3871\nCGA\t0.3529\nAUA\t0.35\nUGC\t0.3333\nGGC\t0.3158\nCCC\t0.2857\nACG\t0.2609\nGCG\t0.2222\nUAG\t0.2105\nCGC\t0.1765\nUAA\t0.1053\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "30", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt31(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nAGA\t2.2941\nUUA\t2.1892\nGCU\t2.0\nUGG\t2.0\nUCU\t1.9355\nAUU\t1.9\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nUUG\t1.5405\nAAA\t1.5\nAGG\t1.4118\nCAA\t1.3636\nUAG\t1.3333\nGUU\t1.2881\nAGU\t1.2581\nUUU\t1.2558\nGAU\t1.2432\nCAU\t1.1667\nAAU\t1.0769\nCGU\t1.0588\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAU\t1.0\nUAC\t1.0\nUCC\t0.9677\nUCA\t0.9677\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nCCU\t0.8571\nCAC\t0.8333\nGCA\t0.8148\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nCGG\t0.7059\nUAA\t0.6667\nCUA\t0.6486\nCAG\t0.6364\nCUU\t0.5676\nCUG\t0.5676\nGGA\t0.5263\nGGG\t0.5263\nAAG\t0.5\nCUC\t0.4865\nUCG\t0.4839\nCCG\t0.4286\nAGC\t0.3871\nCGA\t0.3529\nAUA\t0.35\nUGC\t0.3333\nGGC\t0.3158\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nCGC\t0.1765\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "31", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt33(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nUUA\t2.1892\nGCU\t2.0\nUGG\t2.0\nAAA\t1.9286\nAUU\t1.9\nUCU\t1.8667\nCGU\t1.8462\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nUUG\t1.5405\nUAU\t1.4681\nUAC\t1.4681\nCAA\t1.3636\nGUU\t1.2881\nUUU\t1.2558\nGAU\t1.2432\nCGG\t1.2308\nAGU\t1.2133\nAGA\t1.2133\nCAU\t1.1667\nAAU\t1.0769\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAG\t1.0\nGCC\t0.963\nACA\t0.9565\nGUC\t0.9492\nUCC\t0.9333\nUCA\t0.9333\nAAC\t0.9231\nCCU\t0.8571\nCAC\t0.8333\nGCA\t0.8148\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nCUA\t0.6486\nAAG\t0.6429\nCAG\t0.6364\nCGA\t0.6154\nCUU\t0.5676\nCUG\t0.5676\nGGA\t0.5263\nGGG\t0.5263\nCUC\t0.4865\nUCG\t0.4667\nCCG\t0.4286\nAGG\t0.4286\nAGC\t0.3733\nAUA\t0.35\nUGC\t0.3333\nGGC\t0.3158\nCGC\t0.3077\nCCC\t0.2857\nACG\t0.2609\nGAG\t0.2286\nGCG\t0.2222\nUAA\t0.0638\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "33", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt50(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nAGA\t2.2941\nGCU\t2.2131\nUUA\t2.0149\nUCU\t1.9355\nAUU\t1.9\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nAAA\t1.5\nUUG\t1.4179\nAGG\t1.4118\nCAA\t1.3636\nGUU\t1.2881\nAGU\t1.2581\nUUU\t1.2558\nGAU\t1.2432\nCAU\t1.1667\nAAU\t1.0769\nGCC\t1.0656\nCGU\t1.0588\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAU\t1.0\nUAC\t1.0\nUGG\t1.0\nUCC\t0.9677\nUCA\t0.9677\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nGCA\t0.9016\nCCU\t0.8571\nCAC\t0.8333\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nCGG\t0.7059\nCAG\t0.6364\nCUA\t0.597\nCUG\t0.5738\nGGA\t0.5263\nGGG\t0.5263\nCUU\t0.5224\nAAG\t0.5\nUCG\t0.4839\nCUC\t0.4478\nCCG\t0.4286\nAGC\t0.3871\nCGA\t0.3529\nAUA\t0.35\nUGC\t0.3333\nGGC\t0.3158\nCCC\t0.2857\nACG\t0.2609\nGCG\t0.2459\nGAG\t0.2286\nCGC\t0.1765\nUAA\t0\nUAG\t0\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", "50", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt_custom(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nAGA\t2.2941\nGCU\t2.2131\nUUA\t2.0149\nUCU\t1.9355\nAUU\t1.9\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nAAA\t1.5\nUUG\t1.4179\nAGG\t1.4118\nCAA\t1.3636\nGUU\t1.2881\nAGU\t1.2581\nUUU\t1.2558\nGAU\t1.2432\nCAU\t1.1667\nAAU\t1.0769\nGCC\t1.0656\nCGU\t1.0588\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAU\t1.0\nUAC\t1.0\nUGG\t1.0\nUCC\t0.9677\nUCA\t0.9677\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nGCA\t0.9016\nCCU\t0.8571\nCAC\t0.8333\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nCGG\t0.7059\nCAG\t0.6364\nCUA\t0.597\nCUG\t0.5738\nGGA\t0.5263\nGGG\t0.5263\nCUU\t0.5224\nAAG\t0.5\nUCG\t0.4839\nCUC\t0.4478\nCCG\t0.4286\nAGC\t0.3871\nCGA\t0.3529\nAUA\t0.35\nUGC\t0.3333\nGGC\t0.3158\nCCC\t0.2857\nACG\t0.2609\nGCG\t0.2459\nGAG\t0.2286\nCGC\t0.1765\nUAA\t0\nUAG\t0\nUGA\t0" testargs = [ "biokit", "relative_synonymous_codon_usage", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", f"{here.parent.parent.parent}/sample_files/CUG_ala_code.txt", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_relative_synonymous_codon_usage_tt_custom_alias(self, mocked_print): expected_result = "GGU\t2.6316\nCCA\t2.4286\nAGA\t2.2941\nGCU\t2.2131\nUUA\t2.0149\nUCU\t1.9355\nAUU\t1.9\nGAA\t1.7714\nACU\t1.7391\nUGU\t1.6667\nAAA\t1.5\nUUG\t1.4179\nAGG\t1.4118\nCAA\t1.3636\nGUU\t1.2881\nAGU\t1.2581\nUUU\t1.2558\nGAU\t1.2432\nCAU\t1.1667\nAAU\t1.0769\nGCC\t1.0656\nCGU\t1.0588\nACC\t1.0435\nGUG\t1.0169\nAUG\t1.0\nUAU\t1.0\nUAC\t1.0\nUGG\t1.0\nUCC\t0.9677\nUCA\t0.9677\nACA\t0.9565\nGUC\t0.9492\nAAC\t0.9231\nGCA\t0.9016\nCCU\t0.8571\nCAC\t0.8333\nGAC\t0.7568\nAUC\t0.75\nGUA\t0.7458\nUUC\t0.7442\nCGG\t0.7059\nCAG\t0.6364\nCUA\t0.597\nCUG\t0.5738\nGGA\t0.5263\nGGG\t0.5263\nCUU\t0.5224\nAAG\t0.5\nUCG\t0.4839\nCUC\t0.4478\nCCG\t0.4286\nAGC\t0.3871\nCGA\t0.3529\nAUA\t0.35\nUGC\t0.3333\nGGC\t0.3158\nCCC\t0.2857\nACG\t0.2609\nGCG\t0.2459\nGAG\t0.2286\nCGC\t0.1765\nUAA\t0\nUAG\t0\nUGA\t0" testargs = [ "biokit", "rscu", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", f"{here.parent.parent.parent}/sample_files/CUG_ala_code.txt", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] ``` #### File: integration/coding_sequences/test_translate_sequence.py ```python import pytest from mock import patch, call # noqa from pathlib import Path import sys from biokit.biokit import Biokit here = Path(__file__) @pytest.mark.integration class TestRelativeSynonymousCodonUsage(object): @patch("builtins.print") def test_translate_sequence_invalid_input(self, mocked_print): # noqa with pytest.raises(SystemExit) as pytest_wrapped_e: Biokit() assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == 2 @pytest.mark.slow @patch("builtins.print") def test_translate_sequence(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.fna" testargs = [ "biokit", "translate_sequence", input_file, ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.fna_trans_seq_default", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt1(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "1", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt1", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt2(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "2", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt2", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt3(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "3", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt3", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt4(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "4", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt4", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt5(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "5", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt5", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt6(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "6", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt6", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt9(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "9", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt9", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt10(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "10", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt10", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt11(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "11", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt11", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt12(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "12", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt12", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt13(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "13", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt13", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt14(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "14", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt14", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt16(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "16", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt16", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt21(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "21", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt21", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt22(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "22", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt22", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt23(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "23", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt23", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt24(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "24", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt24", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt25(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "25", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt25", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt26(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "26", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt26", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt27(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "27", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt27", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt28(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "28", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt28", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt29(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "29", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt29", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt30(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "30", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt30", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt31(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "31", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt31", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt33(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "33", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt33", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt50(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", input_file, "-tt", "50", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt50", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt_custom(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_sequence", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", f"{here.parent.parent.parent}/sample_files/CUG_ala_code.txt", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt50", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt_custom_alias0(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "translate_seq", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", f"{here.parent.parent.parent}/sample_files/CUG_ala_code.txt", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt50", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content @patch("builtins.print") def test_translate_sequence_tt_custom_alias1(self, mocked_print): input_file = f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna" testargs = [ "biokit", "trans_seq", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-tt", f"{here.parent.parent.parent}/sample_files/CUG_ala_code.txt", ] with patch.object(sys, "argv", testargs): Biokit() with open( f"{here.parent.parent}/expected/GCF_000146045.2_R64_cds_from_genomic.small.fna.tt50", "r", ) as expected_fa: expected_fa_content = expected_fa.read() with open(f"{input_file}.translated.fa", "r") as out_fa: out_fa_content = out_fa.read() assert expected_fa_content == out_fa_content ``` #### File: integration/genome/test_gc_content.py ```python import pytest from mock import patch, call from pathlib import Path import sys from biokit.biokit import Biokit here = Path(__file__) @pytest.mark.integration class TestGCContent(object): @patch("builtins.print") def test_gc_content_invalid_input(self, mocked_print): # noqa with pytest.raises(SystemExit) as pytest_wrapped_e: Biokit() assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == 2 @patch("builtins.print") def test_gc_content_simple(self, mocked_print): expected_result = 0.2273 testargs = [ "biokit", "gc_content", f"{here.parent.parent.parent}/sample_files/simple.fa", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] @patch("builtins.print") def test_gc_content_verbose(self, mocked_print): expected_result_0 = "lcl|NC_001133.9_cds_NP_009332.1_1\t0.4959" expected_result_1 = "lcl|NC_001133.9_cds_NP_878038.1_2\t0.4123" expected_result_2 = "lcl|NC_001133.9_cds_NP_009333.1_3\t0.3608" testargs = [ "biokit", "gc_content", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_cds_from_genomic.small.fna", "-v", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [ call(expected_result_0), call(expected_result_1), call(expected_result_2), ] @pytest.mark.slow @patch("builtins.print") def test_gc_content_verbose_slow(self, mocked_print): expected_result_00 = "NC_001133.9\t0.3927" expected_result_01 = "NC_001134.8\t0.3834" expected_result_02 = "NC_001135.5\t0.3853" expected_result_03 = "NC_001136.10\t0.3791" expected_result_04 = "NC_001137.3\t0.3851" expected_result_05 = "NC_001138.5\t0.3873" expected_result_06 = "NC_001139.9\t0.3806" expected_result_07 = "NC_001140.6\t0.385" expected_result_08 = "NC_001141.2\t0.389" expected_result_09 = "NC_001142.9\t0.3837" expected_result_10 = "NC_001143.9\t0.3807" expected_result_11 = "NC_001144.5\t0.3848" expected_result_12 = "NC_001145.3\t0.382" expected_result_13 = "NC_001146.8\t0.3864" expected_result_14 = "NC_001147.6\t0.3816" expected_result_15 = "NC_001148.4\t0.3806" expected_result_16 = "NC_001224.1\t0.1711" testargs = [ "biokit", "gc_content", f"{here.parent.parent.parent}/sample_files/GCF_000146045.2_R64_genomic.fna", "-v", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [ call(expected_result_00), call(expected_result_01), call(expected_result_02), call(expected_result_03), call(expected_result_04), call(expected_result_05), call(expected_result_06), call(expected_result_07), call(expected_result_08), call(expected_result_09), call(expected_result_10), call(expected_result_11), call(expected_result_12), call(expected_result_13), call(expected_result_14), call(expected_result_15), call(expected_result_16), ] @patch("builtins.print") def test_gc_content_simple_alias(self, mocked_print): expected_result = 0.2273 testargs = [ "biokit", "gc", f"{here.parent.parent.parent}/sample_files/simple.fa", ] with patch.object(sys, "argv", testargs): Biokit() assert mocked_print.mock_calls == [call(expected_result)] ```
{ "source": "JLSteenwyk/ClipKIT", "score": 2 }
#### File: ClipKIT/clipkit/clipkit.py ```python import getopt import logging import os.path import sys import time from Bio import AlignIO, SeqIO from Bio.Align import MultipleSeqAlignment from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord import numpy as np from .args_processing import process_args from .files import get_alignment_and_format, FileFormat from .helpers import ( keep_trim_and_log, write_keepD, write_trimD ) from .modes import TrimmingMode from .parser import create_parser from .smart_gap_helper import smart_gap_threshold_determination from .warnings import ( check_if_all_sites_were_trimmed, check_if_entry_contains_only_gaps, ) from .write import write_determining_smart_gap_threshold, write_user_args, write_output_stats logger = logging.getLogger(__name__) ch = logging.StreamHandler() ch.setLevel(logging.INFO) logger.addHandler(ch) def execute( input_file: str, input_file_format: FileFormat, output_file: str, output_file_format: FileFormat, gaps: float, complement: bool, mode: TrimmingMode, use_log: bool, ): """ Master execute Function This function executes the main functions and calls other subfunctions to trim the input file """ # logic for whether or not to create a log file if use_log: # write INFO level logging to file for user logger.setLevel(logging.DEBUG) fh = logging.FileHandler(f"{output_file}.log", mode="w") fh.setLevel(logging.DEBUG) logger.addHandler(fh) # create start time logger start_time = time.time() # read in alignment and save the format of the alignment alignment, input_file_format = get_alignment_and_format( input_file, file_format=input_file_format ) # set output file format if not specified if not output_file_format: output_file_format = input_file_format else: output_file_format = FileFormat[output_file_format] # determine smart_gap threshold if mode in {TrimmingMode.smart_gap, TrimmingMode.kpi_smart_gap, TrimmingMode.kpic_smart_gap}: write_determining_smart_gap_threshold() gaps = smart_gap_threshold_determination(alignment) # Print to stdout the user arguments write_user_args( input_file, input_file_format, output_file, output_file_format, gaps, mode, complement, use_log, ) # create dictionaries of sequences to keep or trim from the alignment keepD, trimD = keep_trim_and_log( alignment, gaps, mode, use_log, output_file, complement ) # check if resulting alingment length is 0 check_if_all_sites_were_trimmed(keepD) # checking if any sequence entry contains only gaps check_if_entry_contains_only_gaps(keepD) # convert keepD and trimD to multiple sequence alignment objects # and write out file write_keepD(keepD, output_file, output_file_format) # if the -c/--complementary argument was used, # create an alignment of the trimmed sequences if complement: write_trimD(trimD, output_file, output_file_format) # print out output statistics write_output_stats(alignment, keepD, trimD, start_time) def main(argv=None): """ Function that parses and collects arguments """ # parse and assign arguments parser = create_parser() args = parser.parse_args() # pass to master execute function execute(**process_args(args)) if __name__ == "__main__": main(sys.argv[1:]) ``` #### File: ClipKIT/clipkit/smart_gap_helper.py ```python from collections import Counter import numpy as np from .helpers import get_sequence_at_position_and_report_features def smart_gap_threshold_determination( alignment ) -> float: # loop through alignment and determine site-wise gappyness alignment_length = alignment.get_alignment_length() # get distribution of gaps rounded to the fourth decimal place gaps_dist = get_gaps_distribution(alignment, alignment_length) # count freq of gaps and convert to sorted np array gaps_arr = count_and_sort_gaps(gaps_dist) # calculate gap-to-gap slope slopes = gap_to_gap_slope(gaps_arr, alignment_length) # find the greatest difference in slopes and set # gaps to y1 return greatest_diff_in_slopes(slopes, gaps_arr) def greatest_diff_in_slopes( slopes, gaps_arr ): diffs = [] # if there is only one slope, use that value to determine # the threshold. Otherwise, calculate the greatest difference # in slopes if len(slopes) > 1: for val0, val1 in zip(slopes, slopes[1:]): diff0 = abs(val0-val1) diffs.append(diff0) elif len(slopes) == 0: return 1 else: diffs = slopes return gaps_arr[diffs.index(max(diffs))][0] def gap_to_gap_slope( gaps_arr, alignment_length ): sum_sites_current = gaps_arr[0][1]/alignment_length sum_sites_previous = 0 slopes = [] for previous, current in zip(gaps_arr, gaps_arr[1:]): sum_sites_previous+=(previous[1]/alignment_length) sum_sites_current+=(current[1]/alignment_length) slopes.append(abs((sum_sites_current-sum_sites_previous)/(current[0] - previous[0]))) # only use first half of slopes return slopes[:(len(slopes)//2)] def get_gaps_distribution(alignment, alignment_length: int): gaps_dist = [] for i in range(0, alignment_length): seqAtPosition, gappyness = get_sequence_at_position_and_report_features(alignment, i) gappyness = round(gappyness, 4) gaps_dist.append(gappyness) return gaps_dist def count_and_sort_gaps(gaps_dist: list): gaps_count = dict(Counter(gaps_dist)) gaps_arr = np.array(list(gaps_count.items())) return gaps_arr[np.argsort(-gaps_arr[:,0])].tolist() ``` #### File: tests/integration/test_gappy_mode.py ```python import pytest from pathlib import Path from clipkit.clipkit import execute from clipkit.files import FileFormat from clipkit.modes import TrimmingMode here = Path(__file__) @pytest.mark.integration class TestGappyMode(object): def test_simple_no_change(self): """ test gappy where no changes are expected in the resulting output alignment. usage: clipkit simple.fa """ input_file = f"{here.parent}/samples/simple.fa" output_file = "output/simpla.fa.clipkit" kwargs = dict( input_file=input_file, output_file=output_file, input_file_format='fasta', output_file_format='fasta', complement=False, gaps=0.9, mode=TrimmingMode.gappy, use_log=False, ) execute(**kwargs) with open(input_file, "r") as expected: expected_content = expected.read() with open(output_file, "r") as out_file: output_content = out_file.read() assert expected_content == output_content def test_12_YIL115C_Anc_2_253_codon_aln(self): """ test gappy with codon alignment of yeast sequences usage: clipkit 12_YIL115C_Anc_2.253_codon_aln.fasta """ input_file = f"{here.parent}/samples/12_YIL115C_Anc_2.253_codon_aln.fasta" output_file = "output/12_YIL115C_Anc_2.253_codon_aln.fasta.clipkit" in_file_format = 'fasta' out_file_format = 'fasta' kwargs = dict( input_file=input_file, output_file=output_file, input_file_format='fasta', output_file_format='fasta', complement=False, gaps=0.9, mode=TrimmingMode.gappy, use_log=False, ) execute(**kwargs) with open( f"{here.parent}/expected/12_YIL115C_Anc_2.253_codon_aln.fasta_gappy", "r" ) as expected: expected_content = expected.read() with open(output_file, "r") as out_file: output_content = out_file.read() assert expected_content == output_content def test_12_YIL115C_Anc_2_253_aa_aln(self): """ test gappy with amino acid alignment of yeast sequences usage: clipkit 12_YIL115C_Anc_2.253_aa_aln.fasta """ input_file = f"{here.parent}/samples/12_YIL115C_Anc_2.253_aa_aln.fasta" output_file = "output/12_YIL115C_Anc_2.253_aa_aln.fasta.clipkit" in_file_format = 'fasta' out_file_format = 'fasta' kwargs = dict( input_file=input_file, output_file=output_file, input_file_format='fasta', output_file_format='fasta', complement=False, gaps=0.9, mode=TrimmingMode.gappy, use_log=False, ) execute(**kwargs) with open( f"{here.parent}/expected/12_YIL115C_Anc_2.253_aa_aln.fasta_gappy", "r" ) as expected: expected_content = expected.read() with open(output_file, "r") as out_file: output_content = out_file.read() assert expected_content == output_content def test_24_ENSG00000163519_aa_aln(self): """ test gappy with amino acid alignment of mammalian sequences usage: clipkit 24_ENSG00000163519_aa_aln.fasta """ input_file = f"{here.parent}/samples/24_ENSG00000163519_aa_aln.fasta" output_file = "output/24_ENSG00000163519_aa_aln.fasta.clipkit" in_file_format = 'fasta' out_file_format = 'fasta' kwargs = dict( input_file=input_file, output_file=output_file, input_file_format='fasta', output_file_format='fasta', complement=False, gaps=0.9, mode=TrimmingMode.gappy, use_log=False, ) execute(**kwargs) with open( f"{here.parent}/expected/24_ENSG00000163519_aa_aln.fasta_gappy", "r" ) as expected: expected_content = expected.read() with open(output_file, "r") as out_file: output_content = out_file.read() assert expected_content == output_content def test_24_ENSG00000163519_codon_aln(self): """ test gappy with codon alignment of mammalian sequences usage: clipkit 24_ENSG00000163519_codon_aln.fasta """ input_file = f"{here.parent}/samples/24_ENSG00000163519_codon_aln.fasta" output_file = "output/24_ENSG00000163519_codon_aln.fasta.clipkit" in_file_format = 'fasta' out_file_format = 'fasta' kwargs = dict( input_file=input_file, output_file=output_file, input_file_format='fasta', output_file_format='fasta', complement=False, gaps=0.9, mode=TrimmingMode.gappy, use_log=False, ) execute(**kwargs) with open( f"{here.parent}/expected/24_ENSG00000163519_codon_aln.fasta_gappy", "r" ) as expected: expected_content = expected.read() with open(output_file, "r") as out_file: output_content = out_file.read() assert expected_content == output_content def test_EOG091N44M8_aa(self): """ test gappy with amino acid alignment of Penicillium sequences usage: clipkit EOG091N44M8_aa.fa """ input_file = f"{here.parent}/samples/EOG091N44M8_aa.fa" output_file = "output/EOG091N44M8_aa.fa.clipkit" in_file_format = 'fasta' out_file_format = 'fasta' kwargs = dict( input_file=input_file, output_file=output_file, input_file_format='fasta', output_file_format='fasta', complement=False, gaps=0.9, mode=TrimmingMode.gappy, use_log=False, ) execute(**kwargs) with open(f"{here.parent}/expected/EOG091N44M8_aa.fa_gappy", "r") as expected: expected_content = expected.read() with open(output_file, "r") as out_file: output_content = out_file.read() assert expected_content == output_content def test_EOG091N44M8_nt(self): """ test gappy with nucleotide alignment of Penicillium sequences usage: clipkit EOG091N44M8_nt.fa """ input_file = f"{here.parent}/samples/EOG091N44M8_nt.fa" output_file = "output/EOG091N44M8_nt.fa.clipkit" in_file_format = 'fasta' out_file_format = 'fasta' kwargs = dict( input_file=input_file, output_file=output_file, input_file_format='fasta', output_file_format='fasta', complement=False, gaps=0.9, mode=TrimmingMode.gappy, use_log=False, ) execute(**kwargs) with open(f"{here.parent}/expected/EOG091N44M8_nt.fa_gappy", "r") as expected: expected_content = expected.read() with open(output_file, "r") as out_file: output_content = out_file.read() assert expected_content == output_content @pytest.mark.slow def test_EOG092C0CZK_aa(self): """ test gappy with amino alignment of fungal sequences usage: clipkit EOG092C0CZK_aa_aln.fasta """ input_file = f"{here.parent}/samples/EOG092C0CZK_aa_aln.fasta" output_file = "output/EOG092C0CZK_aa_aln.fasta.clipkit" in_file_format = 'fasta' out_file_format = 'fasta' kwargs = dict( input_file=input_file, output_file=output_file, input_file_format='fasta', output_file_format='fasta', complement=False, gaps=0.9, mode=TrimmingMode.gappy, use_log=False, ) execute(**kwargs) with open( f"{here.parent}/expected/EOG092C0CZK_aa_aln.fasta_gappy", "r" ) as expected: expected_content = expected.read() with open(output_file, "r") as out_file: output_content = out_file.read() assert expected_content == output_content def test_EOG092C4VOX_aa(self): """ test gappy with amino alignment of fungal sequences usage: clipkit EOG092C4VOX_aa_aln.fasta """ input_file = f"{here.parent}/samples/EOG092C4VOX_aa_aln.fasta" output_file = "output/EOG092C4VOX_aa_aln.fasta.clipkit" in_file_format = 'fasta' out_file_format = 'fasta' kwargs = dict( input_file=input_file, output_file=output_file, input_file_format='fasta', output_file_format='fasta', complement=False, gaps=0.9, mode=TrimmingMode.gappy, use_log=False, ) execute(**kwargs) with open( f"{here.parent}/expected/EOG092C4VOX_aa_aln.fasta_gappy", "r" ) as expected: expected_content = expected.read() with open(output_file, "r") as out_file: output_content = out_file.read() assert expected_content == output_content @pytest.mark.integration class TestGappyModeCustomGapsParameter(object): def test_simple(self): """ test gappy with a custom gaps parameter usage: clipkit simple.fa -g 0.2 """ input_file = f"{here.parent}/samples/simple.fa" output_file = "output/simpla.fa.clipkit" in_file_format = 'fasta' out_file_format = 'fasta' kwargs = dict( input_file=input_file, output_file=output_file, input_file_format='fasta', output_file_format='fasta', complement=False, gaps=0.2, mode=TrimmingMode.gappy, use_log=False, ) execute(**kwargs) with open( f"{here.parent}/expected/simple.fa_gappy_gaps_set_to_0.2", "r" ) as expected: expected_content = expected.read() with open(output_file, "r") as out_file: output_content = out_file.read() assert expected_content == output_content def test_12_YIL115C_Anc_2_253_codon_aln(self): """ test gappy with codon alignment of yeast sequences usage: clipkit 12_YIL115C_Anc_2.253_codon_aln.fasta -g 0.3 """ input_file = f"{here.parent}/samples/12_YIL115C_Anc_2.253_codon_aln.fasta" output_file = "output/12_YIL115C_Anc_2.253_codon_aln.fasta.clipkit" in_file_format = 'fasta' out_file_format = 'fasta' kwargs = dict( input_file=input_file, output_file=output_file, input_file_format='fasta', output_file_format='fasta', complement=False, gaps=0.3, mode=TrimmingMode.gappy, use_log=False, ) execute(**kwargs) with open( f"{here.parent}/expected/12_YIL115C_Anc_2.253_codon_aln.fasta_gappy_custom_gaps", "r", ) as expected: expected_content = expected.read() with open(output_file, "r") as out_file: output_content = out_file.read() assert expected_content == output_content def test_24_ENSG00000163519_codon_aln(self): """ test gappy with codon alignment of mammalian sequences usage: clipkit 24_ENSG00000163519_codon_aln.fasta -g .4 """ input_file = f"{here.parent}/samples/24_ENSG00000163519_codon_aln.fasta" output_file = "output/24_ENSG00000163519_codon_aln.fasta.clipkit" kwargs = dict( input_file=input_file, output_file=output_file, input_file_format='fasta', output_file_format='fasta', complement=False, gaps=0.4, mode=TrimmingMode.gappy, use_log=False, ) execute(**kwargs) with open( f"{here.parent}/expected/24_ENSG00000163519_codon_aln.fasta_gappy_custom_gaps", "r", ) as expected: expected_content = expected.read() with open(output_file, "r") as out_file: output_content = out_file.read() assert expected_content == output_content def test_EOG091N44M8_nt(self): """ test gappy with nucleotide alignment of Penicillium sequences usage: clipkit EOG091N44M8_nt.fa -g .1 """ input_file = f"{here.parent}/samples/EOG091N44M8_nt.fa" output_file = "output/EOG091N44M8_nt.fa.clipkit" kwargs = dict( input_file=input_file, output_file=output_file, input_file_format='fasta', output_file_format='fasta', complement=False, gaps=0.1, mode=TrimmingMode.gappy, use_log=False, ) execute(**kwargs) with open( f"{here.parent}/expected/EOG091N44M8_nt.fa_gappy_custom_gaps", "r" ) as expected: expected_content = expected.read() with open(output_file, "r") as out_file: output_content = out_file.read() assert expected_content == output_content @pytest.mark.slow def test_EOG092C0CZK_aa(self): """ test gappy with amino alignment of fungal sequences usage: clipkit EOG092C0CZK_aa_aln.fasta -g .5 """ input_file = f"{here.parent}/samples/EOG092C0CZK_aa_aln.fasta" output_file = "output/EOG092C0CZK_aa_aln.fasta.clipkit" kwargs = dict( input_file=input_file, output_file=output_file, input_file_format='fasta', output_file_format='fasta', complement=False, gaps=0.5, mode=TrimmingMode.gappy, use_log=False, ) execute(**kwargs) with open( f"{here.parent}/expected/EOG092C0CZK_aa_aln.fasta_gappy_custom_gaps", "r" ) as expected: expected_content = expected.read() with open(output_file, "r") as out_file: output_content = out_file.read() assert expected_content == output_content def test_EOG092C4VOX_aa(self): """ test gappy with amino alignment of fungal sequences usage: clipkit EOG092C4VOX_aa_aln.fasta -g .25 """ input_file = f"{here.parent}/samples/EOG092C4VOX_aa_aln.fasta" output_file = "output/EOG092C4VOX_aa_aln.fasta.clipkit" kwargs = dict( input_file=input_file, output_file=output_file, input_file_format='fasta', output_file_format='fasta', complement=False, gaps=0.25, mode=TrimmingMode.gappy, use_log=False, ) execute(**kwargs) with open( f"{here.parent}/expected/EOG092C4VOX_aa_aln.fasta_gappy_custom_gaps", "r" ) as expected: expected_content = expected.read() with open(output_file, "r") as out_file: output_content = out_file.read() assert expected_content == output_content ``` #### File: tests/unit/test_args_parsing.py ```python import pytest from argparse import Namespace from clipkit.modes import TrimmingMode from clipkit.args_processing import process_args @pytest.fixture def args(): kwargs = dict( complementary=False, gaps=None, input="tests/integration/samples/simple.fa", input_file_format=None, log=False, mode=None, output="output/simple", output_file_format=None, ) return Namespace(**kwargs) class TestArgsProcessing(object): def test_process_args_input_file_dne(self, args): args.input = "some/file/that/doesnt/exist" with pytest.raises(SystemExit): process_args(args) def test_process_args_in_equals_out(self, args): args.output = args.input with pytest.raises(SystemExit): process_args(args) def test_process_args_default_mode(self, args): res = process_args(args) assert res["mode"] == TrimmingMode.smart_gap def test_process_args_default_complementary(self, args): args.complementary = None res = process_args(args) assert res["complement"] is False def test_process_args_default_gaps(self, args): res = process_args(args) assert res["gaps"] == 0.9 def test_process_args_default_use_logs(self, args): args.log = None res = process_args(args) assert res["use_log"] is False def test_process_args_default_output_file(self, args): args.output = None res = process_args(args) assert res["output_file"] == f"{args.input}.clipkit" def test_process_args_expected_keywords(self, args): res = process_args(args) expected_keys = [ "input_file", "output_file", "input_file_format", "output_file_format", "complement", "gaps", "mode", "use_log", ] assert sorted(res.keys()) == sorted(expected_keys) ``` #### File: tests/unit/test_modes.py ```python import pytest from pathlib import Path import numpy as np from Bio import AlignIO from clipkit.modes import TrimmingMode, trim, shouldKeep here = Path(__file__) class TestModes(object): def test_shouldKeep_kpi_gappy_keep(self): ## setup mode = TrimmingMode.kpi_gappy gappyness = 0.00 gaps = 0.9 parsimony_informative = True constant_site = False assert True == shouldKeep( mode, parsimony_informative, constant_site, gappyness, gaps ) def test_shouldKeep_kpi_gappy_trim(self): ## setup mode = TrimmingMode.kpi_gappy gappyness = 0.00 gaps = 0.9 parsimony_informative = False constant_site = False assert False == shouldKeep( mode, parsimony_informative, constant_site, gappyness, gaps ) def test_shouldKeep_gappy_keep(self): ## setup mode = TrimmingMode.gappy gappyness = 0.00 gaps = 0.9 parsimony_informative = True constant_site = False assert True == shouldKeep( mode, parsimony_informative, constant_site, gappyness, gaps ) def test_shouldKeep_gappy_trim(self): ## setup mode = TrimmingMode.gappy gappyness = 0.95 gaps = 0.9 parsimony_informative = True constant_site = False assert False == shouldKeep( mode, parsimony_informative, constant_site, gappyness, gaps ) def test_shouldKeep_kpi_keep(self): ## setup mode = TrimmingMode.kpi gappyness = 0.00 gaps = 0.9 parsimony_informative = True constant_site = False assert True == shouldKeep( mode, parsimony_informative, constant_site, gappyness, gaps ) def test_shouldKeep_kpi_trim(self): ## setup mode = TrimmingMode.kpi gappyness = 0.95 gaps = 0.9 parsimony_informative = False constant_site = False assert False == shouldKeep( mode, parsimony_informative, constant_site, gappyness, gaps ) def test_shouldKeep_kpic_keep(self): ## setup mode = TrimmingMode.kpic gappyness = 0.95 gaps = 0.9 parsimony_informative = False constant_site = True assert True == shouldKeep( mode, parsimony_informative, constant_site, gappyness, gaps ) def test_shouldKeep_kpic_trim(self): ## setup mode = TrimmingMode.kpic gappyness = 0.95 gaps = 0.9 parsimony_informative = False constant_site = False assert False == shouldKeep( mode, parsimony_informative, constant_site, gappyness, gaps ) def test_shouldKeep_kpic_gappy_keep(self): ## setup mode = TrimmingMode.kpic_gappy gappyness = 0.70 gaps = 0.9 parsimony_informative = False constant_site = True assert True == shouldKeep( mode, parsimony_informative, constant_site, gappyness, gaps ) def test_shouldKeep_kpic_gappy_trim(self): ## setup mode = TrimmingMode.kpic_gappy gappyness = 0.95 gaps = 0.9 parsimony_informative = False constant_site = True assert False == shouldKeep( mode, parsimony_informative, constant_site, gappyness, gaps ) def test_gappy_mode(self): ## setup gappyness = 0.00 parsimony_informative = True keepD = {} trimD = {} i = 2 gaps = 0.9 alignment = AlignIO.read(f"{here.parent}/examples/simple.fa", "fasta") use_log = False constant_site = False for entry in alignment: keepD[entry.id] = np.empty([6], dtype=str) trimD = {} for entry in alignment: trimD[entry.id] = np.empty([6], dtype=str) ## execution keepD, trimD = trim( gappyness, parsimony_informative, constant_site, keepD, trimD, i, gaps, alignment, TrimmingMode.gappy, use_log, ) ## check results expected_keepD = { "1": np.array(["", "", "G", "", "", ""]), "2": np.array(["", "", "G", "", "", ""]), "3": np.array(["", "", "G", "", "", ""]), "4": np.array(["", "", "A", "", "", ""]), "5": np.array(["", "", "a", "", "", ""]), } expected_trimD = { "1": np.array(["", "", "", "", "", ""]), "2": np.array(["", "", "", "", "", ""]), "3": np.array(["", "", "", "", "", ""]), "4": np.array(["", "", "", "", "", ""]), "5": np.array(["", "", "", "", "", ""]), } assert expected_keepD.keys() == keepD.keys() assert all( np.array_equal(expected_keepD[key], keepD[key]) for key in expected_keepD ) assert expected_trimD.keys() == trimD.keys() assert all( np.array_equal(expected_trimD[key], trimD[key]) for key in expected_trimD ) def test_kpi_gappy_mode(self): ## setup gappyness = 0.6 parsimony_informative = False constant_site = True keepD = {} trimD = {} i = 1 gaps = 0.9 alignment = AlignIO.read(f"{here.parent}/examples/simple.fa", "fasta") use_log = False for entry in alignment: keepD[entry.id] = np.empty([6], dtype=str) trimD = {} for entry in alignment: trimD[entry.id] = np.empty([6], dtype=str) ## execution keepD, trimD = trim( gappyness, parsimony_informative, constant_site, keepD, trimD, i, gaps, alignment, TrimmingMode.kpi_gappy, use_log, ) ## check results expected_keepD = { "1": np.array(["", "", "", "", "", ""]), "2": np.array(["", "", "", "", "", ""]), "3": np.array(["", "", "", "", "", ""]), "4": np.array(["", "", "", "", "", ""]), "5": np.array(["", "", "", "", "", ""]), } expected_trimD = { "1": np.array(["", "-", "", "", "", ""]), "2": np.array(["", "-", "", "", "", ""]), "3": np.array(["", "-", "", "", "", ""]), "4": np.array(["", "G", "", "", "", ""]), "5": np.array(["", "C", "", "", "", ""]), } assert expected_keepD.keys() == keepD.keys() assert all( np.array_equal(expected_keepD[key], keepD[key]) for key in expected_keepD ) assert expected_trimD.keys() == trimD.keys() assert all( np.array_equal(expected_trimD[key], trimD[key]) for key in expected_trimD ) def test_kpi_mode(self): ## setup gappyness = 0.2 parsimony_informative = True constant_site = False keepD = {} trimD = {} i = 5 gaps = 0.9 alignment = AlignIO.read(f"{here.parent}/examples/simple.fa", "fasta") use_log = False for entry in alignment: keepD[entry.id] = np.empty([6], dtype=str) trimD = {} for entry in alignment: trimD[entry.id] = np.empty([6], dtype=str) ## execution keepD, trimD = trim( gappyness, parsimony_informative, constant_site, keepD, trimD, i, gaps, alignment, TrimmingMode.kpi, use_log, ) ## check results expected_keepD = { "1": np.array(["", "", "", "", "", "T"]), "2": np.array(["", "", "", "", "", "T"]), "3": np.array(["", "", "", "", "", "A"]), "4": np.array(["", "", "", "", "", "A"]), "5": np.array(["", "", "", "", "", "-"]), } expected_trimD = { "1": np.array(["", "", "", "", "", ""]), "2": np.array(["", "", "", "", "", ""]), "3": np.array(["", "", "", "", "", ""]), "4": np.array(["", "", "", "", "", ""]), "5": np.array(["", "", "", "", "", ""]), } assert expected_keepD.keys() == keepD.keys() assert all( np.array_equal(expected_keepD[key], keepD[key]) for key in expected_keepD ) assert expected_trimD.keys() == trimD.keys() assert all( np.array_equal(expected_trimD[key], trimD[key]) for key in expected_trimD ) def test_kpic_mode(self): ## setup gappyness = 0.2 parsimony_informative = False constant_site = True keepD = {} trimD = {} i = 0 gaps = 0.9 alignment = AlignIO.read(f"{here.parent}/examples/simple.fa", "fasta") use_log = False for entry in alignment: keepD[entry.id] = np.empty([6], dtype=str) trimD = {} for entry in alignment: trimD[entry.id] = np.empty([6], dtype=str) ## execution keepD, trimD = trim( gappyness, parsimony_informative, constant_site, keepD, trimD, i, gaps, alignment, TrimmingMode.kpic, use_log, ) ## check results expected_keepD = { "1": np.array(["A", "", "", "", "", ""]), "2": np.array(["A", "", "", "", "", ""]), "3": np.array(["A", "", "", "", "", ""]), "4": np.array(["A", "", "", "", "", ""]), "5": np.array(["A", "", "", "", "", ""]), } expected_trimD = { "1": np.array(["", "", "", "", "", ""]), "2": np.array(["", "", "", "", "", ""]), "3": np.array(["", "", "", "", "", ""]), "4": np.array(["", "", "", "", "", ""]), "5": np.array(["", "", "", "", "", ""]), } assert expected_keepD.keys() == keepD.keys() assert all( np.array_equal(expected_keepD[key], keepD[key]) for key in expected_keepD ) assert expected_trimD.keys() == trimD.keys() assert all( np.array_equal(expected_trimD[key], trimD[key]) for key in expected_trimD ) def test_kpic_gappy_mode(self): ## setup gappyness = 0.2 parsimony_informative = False constant_site = False keepD = {} trimD = {} i = 3 gaps = 0.9 alignment = AlignIO.read(f"{here.parent}/examples/simple.fa", "fasta") use_log = False for entry in alignment: keepD[entry.id] = np.empty([6], dtype=str) trimD = {} for entry in alignment: trimD[entry.id] = np.empty([6], dtype=str) ## execution keepD, trimD = trim( gappyness, parsimony_informative, constant_site, keepD, trimD, i, gaps, alignment, TrimmingMode.kpic_gappy, use_log, ) ## check results expected_keepD = { "1": np.array(["", "", "", "", "", ""]), "2": np.array(["", "", "", "", "", ""]), "3": np.array(["", "", "", "", "", ""]), "4": np.array(["", "", "", "", "", ""]), "5": np.array(["", "", "", "", "", ""]), } expected_trimD = { "1": np.array(["", "", "", "T", "", ""]), "2": np.array(["", "", "", "-", "", ""]), "3": np.array(["", "", "", "-", "", ""]), "4": np.array(["", "", "", "-", "", ""]), "5": np.array(["", "", "", "-", "", ""]), } assert expected_keepD.keys() == keepD.keys() assert all( np.array_equal(expected_keepD[key], keepD[key]) for key in expected_keepD ) assert expected_trimD.keys() == trimD.keys() assert all( np.array_equal(expected_trimD[key], trimD[key]) for key in expected_trimD ) ```
{ "source": "JLSteenwyk/orthofisher", "score": 2 }
#### File: tests/unit/test_args_parsing.py ```python import pytest from argparse import Namespace from orthofisher.args_processing import process_args from orthofisher.parser import create_parser @pytest.fixture def args(): kwargs = dict( fasta="tests/samples/input.txt", hmm="tests/samples/hmms.txt", evalue=0.001, bitscore=0.85 ) return Namespace(**kwargs) class TestArgsProcessing(object): def test_process_args_fasta_file_dne(self, args): args.fasta = "some/file/that/doesnt/exist" with pytest.raises(SystemExit): process_args(args) def test_process_args_hmm_file_dne(self, args): args.hmm = "some/file/that/doesnt/exist" with pytest.raises(SystemExit): process_args(args) def test_process_args_default_evalue(self, args): args.evalue = None res = process_args(args) assert res["evalue"] == 0.001 def test_process_args_custom_evalue(self, args): args.evalue = 1e-5 res = process_args(args) assert res["evalue"] == 0.00001 def test_process_args_default_bitscore(self, args): args.bitscore = None res = process_args(args) assert res["percent_bitscore"] == 0.85 def test_process_args_custom_bitscore(self, args): args.bitscore = 0.5 res = process_args(args) assert res["percent_bitscore"] == 0.5 def test_process_args_expected_keywords(self, args): res = process_args(args) expected_keys = [ "fasta_file_list", "hmms_file_list", "evalue", "percent_bitscore" ] assert sorted(res.keys()) == sorted(expected_keys) class TestParser(object): def test_create_parser(self, args): parser = create_parser() assert parser.add_help == False assert parser.conflict_handler == 'error' assert parser.prog == '__main__.py' ``` #### File: tests/unit/test_entrypoint.py ```python import os import pytest import subprocess class TestEntrypoint(object): @pytest.mark.slow def test_help(self): cmd = "orthofisher --help" exit_status = os.system(cmd) assert exit_status == 0 @pytest.mark.slow def test_no_args(self): cmd = "orthofisher" exit_status = os.system(cmd) assert exit_status == 0 @pytest.mark.slow def test_run(self): cmd = "orthofisher -m tests/samples/hmms.txt -f tests/samples/input.txt" exit_status = os.system(cmd) assert exit_status == 0 @pytest.mark.slow def test_hmm_list_input_error(self): cmd = "orthofisher -m /file/doesnt/exist -f tests/samples/input.txt" response = subprocess.check_output([cmd], stderr=subprocess.STDOUT, shell=True) assert response == b"HMM file does not exist\n" @pytest.mark.slow def test_fasta_list_input_error(self): cmd = "orthofisher -f /file/doesnt/exist -m tests/samples/hmms.txt" response = subprocess.check_output([cmd], stderr=subprocess.STDOUT, shell=True) assert response == b"Fasta file list does not exist\n" @pytest.mark.slow def test_evalue_input_error(self): cmd = "orthofisher -f tests/samples/input.txt -m tests/samples/hmms.txt -e error" exit_status = os.system(cmd) assert exit_status == 0 @pytest.mark.slow def test_bitscore_input_error(self): cmd = "orthofisher -f tests/samples/input.txt -m tests/samples/hmms.txt -b error" exit_status = os.system(cmd) assert exit_status == 512 ```
{ "source": "JLSteenwyk/orthosnap", "score": 3 }
#### File: orthosnap/orthosnap/helper.py ```python from collections import Counter import copy import re from Bio import Phylo from Bio import SeqIO def collapse_low_support_bipartitions(newtree, support: float): """ collapse bipartitions with support less than threshold """ newtree.collapse_all(lambda c: c.confidence is not None and c.confidence < support) return newtree def determine_if_dups_are_sister(subtree_tips: list): """ determine if dups are sister to one another """ # get first set of subtree tips first_set_of_subtree_tips = subtree_tips[0] # set if duplicate sequences are sister as True are_sisters = True # check if duplicate sequences are sister for set_of_subtree_tips in subtree_tips[1:]: if first_set_of_subtree_tips != set_of_subtree_tips: are_sisters = False if not are_sisters: break return are_sisters def get_all_tips_and_taxa_names(tree): """ get all taxa and tip names in a phylogeny return lists with information from each """ taxa = [] all_tips = [] # loop through the tree and collect terminal names for term in tree.get_terminals(): taxa_name = term.name[:term.name.index("|")] if taxa_name not in taxa: taxa.append(taxa_name) all_tips.append(term.name) return taxa, all_tips def get_tips_and_taxa_names_and_taxa_counts_from_subtrees(inter): """ get taxa, counts of each taxa, and all terminal names """ taxa_from_terms = [] terms = [] # get taxa and terminal names from subtree for term in inter.get_terminals(): taxa_from_terms.append(term.name.split("|", 1)[0]) terms.append(term.name) # count number of taxa in subtree counts_of_taxa_from_terms = Counter(taxa_from_terms) counts = [] # count number of times each taxon is present for count in counts_of_taxa_from_terms.values(): counts.append(count) return taxa_from_terms, terms, counts_of_taxa_from_terms, counts def get_subtree_tips(terms: list, name: str, tree): """ get lists of subsubtrees from subtree """ # get the duplicate sequences dups = [e for e in terms if e.startswith(name)] subtree_tips = [] # for individual sequence among duplicate sequences for dup in dups: # create a copy of the tree temptree = copy.deepcopy(tree) # get the node path for the duplicate sequence node_path = temptree.get_path(dup) # for the terminals of the parent of the duplicate sequence # get the terminal names and append them to temp temp = [] for term in node_path[-2].get_terminals(): temp.append(term.name) subtree_tips.append(temp) return subtree_tips, dups def handle_multi_copy_subtree( all_tips: list, terms: list, newtree, subgroup_counter: int, fasta: str, support: float, fasta_dict: dict, assigned_tips: list, counts_of_taxa_from_terms, tree, ): """ handling case where subtree contains all single copy genes """ # prune subtree to get subtree of interest newtree = prune_subtree(all_tips, terms, newtree) # collapse bipartition with low support newtree = collapse_low_support_bipartitions(newtree, support) # remove duplicate sequences if they are sister to one another # following the approach in PhyloTreePruner for name in counts_of_taxa_from_terms: # if the taxon is represented by more than one sequence if counts_of_taxa_from_terms[name] > 1: # get subtree tips subtree_tips, dups = get_subtree_tips(terms, name, tree) # check if subtrees are sister to one another are_sisters = determine_if_dups_are_sister(subtree_tips) # if duplicate sequences are sister, get the longest sequence if are_sisters: # trim short sequences and keep long sequences in newtree newtree, terms = keep_long_sequences(newtree, fasta_dict, dups, terms) # if the resulting subtree has only single copy genes # create a fasta file with sequences from tip labels _, _, _, counts = get_tips_and_taxa_names_and_taxa_counts_from_subtrees(newtree) if set(counts) == set([1]): ( subgroup_counter, assigned_tips, ) = write_output_fasta_and_account_for_assigned_tips_single_copy_case( fasta, subgroup_counter, terms, fasta_dict, assigned_tips ) return subgroup_counter, assigned_tips def handle_single_copy_subtree( all_tips: list, terms: list, newtree, subgroup_counter: int, fasta: str, support: float, fasta_dict: dict, assigned_tips: list, ): """ handling case where subtree contains all single copy genes """ # prune subtree to get subtree of interest newtree = prune_subtree(all_tips, terms, newtree) # collapse bipartition with low support newtree = collapse_low_support_bipartitions(newtree, support) # add list of terms to assigned_tips list # and create subgroup fasta files ( subgroup_counter, assigned_tips, ) = write_output_fasta_and_account_for_assigned_tips_single_copy_case( fasta, subgroup_counter, terms, fasta_dict, assigned_tips ) return subgroup_counter, assigned_tips def keep_long_sequences(newtree, fasta_dict: dict, dups: list, terms: list): """ remove_short_sequences_among_duplicates_that_are_sister """ seq_lengths = dict() for dup in dups: seq_lengths[dup] = len(re.sub("-", "", str(fasta_dict[dup].seq))) longest_seq = max(seq_lengths, key=seq_lengths.get) # trim shorter sequences from the tree for seq_name, _ in seq_lengths.items(): if seq_name != longest_seq: newtree.prune(seq_name) terms.remove(seq_name) return newtree, terms def prune_subtree(all_tips: list, terms: list, newtree): """ prune tips not of interest for subtree """ tips_to_prune = [i for i in all_tips + terms if i not in all_tips or i not in terms] for tip in tips_to_prune: newtree.prune(tip) return newtree def read_input_files(tree: str, fasta: str): """ read input files and midpoint root tree """ tree = Phylo.read(tree, "newick") tree.root_at_midpoint() fasta = SeqIO.to_dict(SeqIO.parse(fasta, "fasta")) return tree, fasta def write_output_fasta_and_account_for_assigned_tips_single_copy_case( fasta: str, subgroup_counter: int, terms: list, fasta_dict: dict, assigned_tips: list, ): # write output output_file_name = f"{fasta}.orthosnap.{subgroup_counter}.fa" with open(output_file_name, "w") as output_handle: for term in terms: SeqIO.write(fasta_dict[term], output_handle, "fasta") assigned_tips.append(term) subgroup_counter += 1 return subgroup_counter, assigned_tips ``` #### File: tests/unit/test_parser.py ```python import pytest from orthosnap.parser import create_parser @pytest.fixture def parser(): return create_parser() class TestParser(object): def test_required_only(self, parser): fasta = "my/input/file.fa" tree = "my/input/tree.tree" parsed = parser.parse_args(["-f", fasta, "-t", tree]) assert parsed.fasta == fasta assert parsed.tree == tree def test_occupancy(self, parser): fasta = "my/input/file.fa" tree = "my/input/tree.tree" occupancy = ".2" parsed = parser.parse_args(["-f", fasta, "-t", tree, "-o", occupancy]) assert parsed.fasta == fasta assert parsed.tree == tree assert parsed.occupancy == float(occupancy) def test_support(self, parser): fasta = "my/input/file.fa" tree = "my/input/tree.tree" support = "70" parsed = parser.parse_args(["-f", fasta, "-t", tree, "-s", support]) assert parsed.fasta == fasta assert parsed.tree == tree assert parsed.support == float(support) ```
{ "source": "JLSteenwyk/PhyKIT", "score": 2 }
#### File: integration/tree/test_root_tree.py ```python import pytest import sys from math import isclose from mock import patch, call from pathlib import Path from textwrap import dedent from phykit.phykit import Phykit here = Path(__file__) @pytest.mark.integration class TestRootTree(object): @patch("builtins.print") def test_root_tree(self, mocked_print): testargs = [ "phykit", "root_tree", f"{here.parent.parent.parent}/sample_files/tree_simple.tre", "-r", f"{here.parent.parent.parent}/sample_files/tree_simple.outgroup.txt", ] with patch.object(sys, "argv", testargs): Phykit() with open(f"{here.parent.parent}/expected/tree_simple.tre.rooted", "r") as expected_tree: expected_tree_content = expected_tree.read() with open(f"{here.parent.parent.parent}/sample_files/tree_simple.tre.rooted", "r") as out_tree: out_tree_content = out_tree.read() assert expected_tree_content == out_tree_content @patch("builtins.print") def test_root_tree_alias0(self, mocked_print): testargs = [ "phykit", "root", f"{here.parent.parent.parent}/sample_files/tree_simple.tre", "-r", f"{here.parent.parent.parent}/sample_files/tree_simple.outgroup.txt", ] with patch.object(sys, "argv", testargs): Phykit() with open(f"{here.parent.parent}/expected/tree_simple.tre.rooted", "r") as expected_tree: expected_tree_content = expected_tree.read() with open(f"{here.parent.parent.parent}/sample_files/tree_simple.tre.rooted", "r") as out_tree: out_tree_content = out_tree.read() assert expected_tree_content == out_tree_content @patch("builtins.print") def test_root_tree_alias1(self, mocked_print): testargs = [ "phykit", "rt", f"{here.parent.parent.parent}/sample_files/tree_simple.tre", "-r", f"{here.parent.parent.parent}/sample_files/tree_simple.outgroup.txt", ] with patch.object(sys, "argv", testargs): Phykit() with open(f"{here.parent.parent}/expected/tree_simple.tre.rooted", "r") as expected_tree: expected_tree_content = expected_tree.read() with open(f"{here.parent.parent.parent}/sample_files/tree_simple.tre.rooted", "r") as out_tree: out_tree_content = out_tree.read() assert expected_tree_content == out_tree_content @patch("builtins.print") def test_root_tree_incorrect_tree_path(self, mocked_print): testargs = [ "phykit", "root_tree", f"{here.parent.parent.parent}/sample_files/tree_simple.tr", "-r", f"{here.parent.parent.parent}/sample_files/tree_simple.outgroup.txt", ] with pytest.raises(SystemExit) as pytest_wrapped_e: Phykit() assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == 2 @patch("builtins.print") def test_root_tree_incorrect_root_path(self, mocked_print): testargs = [ "phykit", "root_tree", f"{here.parent.parent.parent}/sample_files/tree_simple.tre", "-r", f"{here.parent.parent.parent}/sample_files/tree_simple.outgroup.tx", ] with patch.object(sys, "argv", testargs): with pytest.raises(SystemExit) as pytest_wrapped_e: Phykit() assert pytest_wrapped_e.type == SystemExit mocked_print.assert_has_calls([ call("Please check file name and pathing"), ]) @patch("builtins.print") def test_root_tree_custom_output(self, mocked_print): testargs = [ "phykit", "root_tree", f"{here.parent.parent.parent}/sample_files/tree_simple.tre", "-r", f"{here.parent.parent.parent}/sample_files/tree_simple.outgroup.txt", "-o", f"{here.parent.parent.parent}/sample_files/tree_simple_rooted_custom_out.tre" ] with patch.object(sys, "argv", testargs): Phykit() with open(f"{here.parent.parent}/expected/tree_simple.tre.rooted", "r") as expected_tree: expected_tree_content = expected_tree.read() with open(f"{here.parent.parent.parent}/sample_files/tree_simple_rooted_custom_out.tre", "r") as out_tree: out_tree_content = out_tree.read() assert expected_tree_content == out_tree_content ``` #### File: services/alignment/test_alignment_length.py ```python import pytest from argparse import Namespace from mock import patch, call from phykit.services.alignment.alignment_length import AlignmentLength from phykit.services.alignment.base import Alignment @pytest.fixture def args(): kwargs = dict(alignment="/some/path/to/file.fa") return Namespace(**kwargs) class TestAlignmentLength(object): def test_init_sets_alignment_file_path(self, args): aln = AlignmentLength(args) assert aln.alignment_file_path == args.alignment assert aln.output_file_path is None def test_alignment_length_is_printed(self, mocker, args): expected_length = "6" aln = mocker.MagicMock( get_alignment_length=mocker.MagicMock(return_value=expected_length) ) mocked_print = mocker.patch("builtins.print") mocked_get_alignment_and_format = mocker.patch("phykit.services.alignment.alignment_length.AlignmentLength.get_alignment_and_format", return_value=(aln, '')) aln_len = AlignmentLength(args) res = aln_len.run() assert mocked_get_alignment_and_format.called assert mocked_print.mock_calls == [ call(expected_length) ] ```
{ "source": "jlstevens/awesome-panel", "score": 3 }
#### File: templates/bootstrap_dashboard/bootstrap_dashboard.py ```python import pathlib import panel as pn import awesome_panel.express as pnx from awesome_panel.express.assets import SCROLLBAR_PANEL_EXPRESS_CSS BOOTSTRAP_DASHBOARD_CSS = pathlib.Path(__file__).parent / "bootstrap_dashboard.css" BOOTSTRAP_DASHBOARD_TEMPLATE = pathlib.Path(__file__).parent / "bootstrap_dashboard.html" HEADER_HEIGHT = 58 SIDEBAR_WIDTH = 200 # Hack to make dynamically adding plotly work: # See https://github.com/holoviz/panel/issues/840 pn.extension("plotly") class BootstrapDashboardTemplate(pn.Template): """A Basic App Template""" def __init__(self, app_title: str = "App Name", app_url="#"): pn.config.raw_css.append(BOOTSTRAP_DASHBOARD_CSS.read_text()) pn.config.raw_css.append(SCROLLBAR_PANEL_EXPRESS_CSS.read_text()) pnx.Code.extend() pnx.bootstrap.extend() pnx.fontawesome.extend() template = BOOTSTRAP_DASHBOARD_TEMPLATE.read_text() app_title = pn.Row( pn.layout.HSpacer(), pn.pane.Markdown(f"[{app_title}]({app_url})", css_classes=["app-title"],), pn.layout.HSpacer(), width=SIDEBAR_WIDTH, ) header = pn.Row( app_title, pn.layout.HSpacer(), sizing_mode="stretch_width", height=HEADER_HEIGHT, ) top_spacer = pn.layout.HSpacer(height=15) self.header = header self.sidebar = pn.Column(top_spacer, height_policy="max", width=SIDEBAR_WIDTH) self.main = pn.Column(sizing_mode="stretch_width", margin=(25, 50, 25, 50)) items = {"header": header, "sidebar": self.sidebar, "main": self.main} super().__init__(template=template, items=items) ``` #### File: scripts/ddd/algo.py ```python from typing import Dict, List, Optional class Person: def __init__(self, name: str, drunk_factor: int, leader_name: Optional[str]): self.name = name self.drunk_factor = drunk_factor self.leader_name = leader_name self.subs: List["Person"] = [] self._max_drunk_factor_tree = None self._max_communication_time_tree = None @staticmethod def create_from_line(line: str) -> "Person": split = line.split(" ") if len(split) == 2: return Person(split[0], int(split[1]), None) if len(split) == 3: return Person(split[0], int(split[1]), split[2]) @staticmethod def create_from_lines(lines: str) -> Dict[str, "Person"]: persons = {} for person in (Person.create_from_line(line) for line in lines.splitlines()): persons[person.name] = person for person in persons.values(): if person.leader_name: persons[person.leader_name].subs.append(person) return persons @classmethod def create_from_input(cls) -> Dict[str, "Person"]: n = int(input()) lines = [] for _ in range(n): lines.append(input()) return cls.create_from_lines("\n".join(lines)) @property def max_drunk_factor_tree(self) -> int: if self._max_drunk_factor_tree: return self._max_drunk_factor_tree if not self.subs: return self.drunk_factor self._max_drunk_factor_tree = self.drunk_factor + max( (person.max_drunk_factor_tree) for person in self.subs ) return self._max_drunk_factor_tree @property def max_communication_time_tree(self) -> int: if self._max_communication_time_tree: return self._max_communication_time_tree if not self.subs: return 0 if len(self.subs) == 1: if self.subs[0].max_communication_time_tree > 0: return self.subs[0].max_communication_time_tree return self.max_drunk_factor_tree drunk_factor_highest = 0 drunk_factor_second_highest = 0 max_communication_time_sub_tree = 0 for person in self.subs: if person.max_drunk_factor_tree > drunk_factor_highest: drunk_factor_second_highest = drunk_factor_highest drunk_factor_highest = person.max_drunk_factor_tree elif person.max_drunk_factor_tree > drunk_factor_second_highest: drunk_factor_second_highest = person.max_drunk_factor_tree if person.max_communication_time_tree > max_communication_time_sub_tree: max_communication_time_sub_tree = person.max_communication_time_tree max_communication_time_two_subs = ( self.drunk_factor + drunk_factor_highest + drunk_factor_second_highest ) self._max_communication_time_tree = max( max_communication_time_sub_tree, max_communication_time_two_subs ) return self._max_communication_time_tree @property def is_leader(self) -> bool: return self.leader_name is None def __str__(self): if self.is_leader: return self.name + " " + str(self.drunk_factor) return self.name + " " + str(self.drunk_factor) + " " + self.leader_name def __repr__(self): return self.__str__() if __name__ == "__main__": persons = Person.create_from_input() leader_name = list(persons)[0] leader = persons[leader_name] print(leader.max_communication_time_tree) ``` #### File: gallery/awesome_panel_express_tests/test_bootstrap_alerts.py ```python import panel as pn import awesome_panel.express as pnx from awesome_panel.express.testing import TestApp pnx.bootstrap.extend() def test_info_alert(): """We can show an InfoAlert - Blue Div with normal and bold text - Curently not full width """ return TestApp( test_info_alert, pnx.InfoAlert("This is an **Info Alert**!"), sizing_mode="stretch_width", ) def test_warning_alert(): """We can show a Warning Alert - Yellow Div with normal and bold text - Curently not full width """ return TestApp( test_warning_alert, pnx.WarningAlert("This is a **Warning Alert**!"), sizing_mode="stretch_width", ) def test_error_alert(): """We can show an Error Alert - Red Div with normal and bold text - Curently not full width """ return TestApp( test_error_alert, pnx.ErrorAlert("This is an **Error Alert**!"), sizing_mode="stretch_width", ) def test_info_alert_height_problem(): """The Bokeh Layout Engine does not layout the height of the Markdown Alerts very well. We see that the height of the InfoAlert is much greater than it needs to be. This is a general problem for the Panel Markdown pane. See [Issue 829](https://github.com/holoviz/panel/issues/829) """ text = """\ Navigate to the **Dashboard Page** via the **Sidebar** to see the result. Or Navigate to the **Limitations Page** to learn of some of the limitations of Panel that I've experienced.""" return TestApp( test_info_alert_height_problem, pnx.InfoAlert(text, sizing_mode="stretch_width"), sizing_mode="stretch_width", ) def view() -> pn.Column: """Wraps all tests in a Column that can be included in the Gallery or served independently Returns: pn.Column -- An Column containing all the tests """ return pn.Column( pnx.Markdown(__doc__), test_info_alert(), test_error_alert(), test_warning_alert(), test_info_alert_height_problem(), sizing_mode="stretch_width", ) if __name__.startswith("bk"): view().servable() ``` #### File: gallery/awesome_panel_express_tests/test_markdown.py ```python import pathlib import panel as pn import awesome_panel.express as pnx from awesome_panel.express.testing import TestApp TEST_MD_FILE = pathlib.Path(__file__).parent / "data" / "test.md" pnx.Code.extend() def test_markdown(): """We test that - A "Header is shown" - The background is blue - The sizing_mode is "stretch_width" by default. DOES NOT WORK CURRENTLY """ return TestApp( test_markdown, pnx.Markdown("# Header", name="basic", background="lightblue"), sizing_mode="stretch_width", background="lightgray", max_width=600, ) def test_markdown_from_file(): """We test that - A path to a markdown file can used directly in one line """ return TestApp( test_markdown_from_file, pnx.Markdown(path=TEST_MD_FILE, name="file", background="lightblue"), ) def test_markdown_indendation(): """We test the Markdown pane - can handle leading spaces, i.e. this line shows as a bullited list and not in mono-space """ return TestApp(test_markdown_indendation, sizing_mode="stretch_width",) def test_markdown_code_block(): """We test that - A code blocks are supported. Sort of. BUT THE INDENTATION IS CURRENTLY LOST! - Indented markdown test from editors is supported. The Panel Markdown does not support this. """ code_block = """ This is not indented ```python print("Hello Awesome Panel World") return TestApp( test_markdown_code_block, pnx.Markdown(code_block, name="code block", background="lightblue"), ``` This is indented``` """ return TestApp( test_markdown_code_block, pnx.Markdown(code_block, name="code block", background="lightblue"), ) def view() -> pn.Column: """Wraps all tests in a Column that can be included in the Gallery or served independently Returns: pn.Column -- An Column containing all the tests """ return pn.Column( pnx.Markdown(__doc__), test_markdown, test_markdown_from_file, test_markdown_indendation, test_markdown_code_block, ) if __name__.startswith("bk"): view().servable("test_markdown") ``` #### File: src/pages/home.py ```python import pathlib from panel import Column from awesome_panel.express._pane._panes import Markdown HOME_PATH = pathlib.Path(__file__).parent / "home.md" def view() -> Column: """The home view of awesome-panel.org""" return Column(Markdown(path=HOME_PATH), name="Home", sizing_mode="stretch_width") ``` #### File: src/pages/resources.py ```python import pathlib from panel import Column from awesome_panel.express._pane._panes import Markdown RESOURCES_PATH = pathlib.Path(__file__).parent / "resources.md" def view() -> Column: """The resources view of awesome-panel.org""" return Column(Markdown(path=RESOURCES_PATH), sizing_mode="stretch_width", name="Resources") ```
{ "source": "jlstevens/constructor", "score": 3 }
#### File: constructor/tests/test_utils.py ```python from ..utils import make_VIProductVersion, fill_template, preprocess def test_make_VIProductVersion(): f = make_VIProductVersion assert f('3') == '3.0.0.0' assert f('1.5') == '1.5.0.0' assert f('2.71.6') == '2.71.6.0' assert f('5.2.10.7') == '5.2.10.7' assert f('5.2dev') == '5.0.0.0' assert f('5.26.8.9.3') == '5.26.8.9' assert f('x') == '0.0.0.0' def test_fill_template(): template = """\ My name is __NAME__! I am __AGE__ years old. Sincerely __NAME__ """ res = """\ My name is Hugo! I am 44 years old. Sincerely Hugo """ info = {'NAME': 'Hugo', 'AGE': '44', 'SEX': 'male'} assert fill_template(template, info) == res def test_preprocess(): code = """\ A #if True always True another line #endif B #if False never see this #endif C #if x == 0 x = 0 #else x != 0 #endif D #if x != 0 x != 0 #endif E """ res = """\ A always True another line B C x != 0 D x != 0 E """ assert preprocess(code, dict(x=1)) == res def main(): test_make_VIProductVersion() test_fill_template() test_preprocess() if __name__ == '__main__': main() ```
{ "source": "jlstrick83/stix-shifter", "score": 3 }
#### File: modules/dummy/data_mapping.py ```python from os import path import json from stix_shifter.stix_translation.src.exceptions import DataMappingException def _fetch_mapping(): try: basepath = path.dirname(__file__) filepath = path.abspath( path.join(basepath, "json", "from_stix_map.json")) map_file = open(filepath).read() map_data = json.loads(map_file) return map_data except Exception as ex: print('exception in main():', ex) return {} class DataMapper: def __init__(self, options): mapping_json = options['mapping'] if 'mapping' in options else {} self.map_data = mapping_json or _fetch_mapping() def map_field(self, stix_object_name, stix_property_name): if stix_object_name in self.map_data and stix_property_name in self.map_data[stix_object_name]["fields"]: return self.map_data[stix_object_name]["fields"][stix_property_name] else: raise DataMappingException("Unable to map property `{}:{}` into data source query".format( stix_object_name, stix_property_name)) ``` #### File: stix_shifter/stix_translation/stix_translation_error_mapper.py ```python from ..utils.error_mapper_base import ErrorMapperBase from ..utils.error_response import ErrorCode from .src.exceptions import DataMappingException from ..stix_translation.stix_translation import StixValidationException from .src.patterns.errors import SearchFeatureNotSupportedError from ..stix_translation.stix_translation import TranslationResultException error_mapping = { NotImplementedError.__name__: ErrorCode.TRANSLATION_NOTIMPLEMENTED_MODE, DataMappingException.__name__: ErrorCode.TRANSLATION_MAPPING_ERROR, StixValidationException.__name__: ErrorCode.TRANSLATION_STIX_VALIDATION, SearchFeatureNotSupportedError.__name__: ErrorCode.TRANSLATION_NOTSUPPORTED, TranslationResultException.__name__: ErrorCode.TRANSLATION_RESULT } class ErrorMapper(): DEFAULT_ERROR = ErrorCode.TRANSLATION_MODULE_DEFAULT_ERROR @staticmethod def set_error_code(data_dict, return_obj): exception = None if 'exception' in data_dict: exception = data_dict['exception'] error_code = ErrorMapper.DEFAULT_ERROR error_message = 'Error when converting STIX pattern to data source query' if exception is not None: exception_type = type(exception).__name__ print("received exception => {}: {}".format(exception_type, exception)) if exception_type in error_mapping: error_code = error_mapping[exception_type] error_message = str(exception) ErrorMapperBase.set_error_code(return_obj, error_code, message=error_message) ``` #### File: modules/async_dummy/apiclient.py ```python from ..utils.RestApiClient import RestApiClient class APIClient(): def __init__(self, connection, configuration): self.client = "data source API client" def ping_data_source(self): # Pings the data source return "async ping" def create_search(self, query_expression): # Queries the data source return { "code": 200, "query_id": "uuid_1234567890" } def get_search_status(self, search_id): # Check the current status of the search return {"code": 200, "search_id": search_id, "status": "COMPLETED"} def get_search_results(self, search_id, range_start=None, range_end=None): # Return the search results. Results must be in JSON format before being translated into STIX return {"code": 200, "search_id": search_id, "data": "Results for search"} def delete_search(self, search_id): # Optional since this may not be supported by the data source API # Delete the search return "Deleted query: {}".format(search_id) ``` #### File: tests/stix_translation/test_splunk_stix_to_spl.py ```python from stix_shifter.stix_translation import stix_translation from stix_shifter.stix_translation.src.exceptions import DataMappingException from stix_shifter.stix_translation.src.modules.splunk import stix_to_splunk from stix_shifter.utils.error_response import ErrorCode import unittest import random protocols = { "tcp": "6", "udp": "17", "icmp": "1", "idpr-cmtp": "38", "ipv6": "40", "rsvp": "46", "gre": "47", "esp": "50", "ah": "51", "narp": "54", "ospfigp": "89", "ipip": "94", "any": "99", "sctp": "132" } default_timerange_spl = '-' + str(stix_to_splunk.DEFAULT_TIMERANGE) + 'minutes' translation = stix_translation.StixTranslation() class TestStixToSpl(unittest.TestCase, object): def test_ipv4_query(self): stix_pattern = "[ipv4-addr:value = '192.168.122.83' OR ipv4-addr:value = '192.168.122.84']" query = translation.translate('splunk', 'query', '{}', stix_pattern) queries = 'search (((src_ip = "192.168.122.84") OR (dest_ip = "192.168.122.84")) OR ((src_ip = "192.168.122.83") OR (dest_ip = "192.168.122.83"))) earliest="-5minutes" | head 10000 | fields src_ip, src_port, src_mac, src_ipv6, dest_ip, dest_port, dest_mac, dest_ipv6, file_hash, user, url, protocol' parsed_stix = [{'attribute': 'ipv4-addr:value', 'comparison_operator': '=', 'value': '192.168.122.84'}, {'attribute': 'ipv4-addr:value', 'comparison_operator': '=', 'value': '192.168.122.83'}] assert query == {'queries': queries, 'parsed_stix': parsed_stix} def test_ipv6_query(self): stix_pattern = "[ipv6-addr:value = 'fe80::8c3b:a720:dc5c:2abf%19']" query = translation.translate('splunk', 'query', '{}', stix_pattern) queries = 'search ((src_ipv6 = "fe80::8c3b:a720:dc5c:2abf%19") OR (dest_ipv6 = "fe80::8c3b:a720:dc5c:2abf%19")) earliest="-5minutes" | head 10000 | fields src_ip, src_port, src_mac, src_ipv6, dest_ip, dest_port, dest_mac, dest_ipv6, file_hash, user, url, protocol' parsed_stix = [{'attribute': 'ipv6-addr:value', 'comparison_operator': '=', 'value': 'fe80::8c3b:a720:dc5c:2abf%19'}] assert query == {'queries': queries, 'parsed_stix': parsed_stix} def test_url_query(self): stix_pattern = "[url:value = 'http://www.testaddress.com']" query = translation.translate('splunk', 'query', '{}', stix_pattern) parsed_stix = [{'attribute': 'url:value', 'comparison_operator': '=', 'value': 'http://www.testaddress.com'}] queries = 'search (url = "http://www.testaddress.com") earliest="-5minutes" | head 10000 | fields src_ip, src_port, src_mac, src_ipv6, dest_ip, dest_port, dest_mac, dest_ipv6, file_hash, user, url, protocol' assert query == {'queries': queries, 'parsed_stix': parsed_stix} def test_mac_address_query(self): stix_pattern = "[mac-addr:value = '00-00-5E-00-53-00']" query = translation.translate('splunk', 'query', '{}', stix_pattern) queries = 'search ((src_mac = "00-00-5E-00-53-00") OR (dest_mac = "00-00-5E-00-53-00")) earliest="-5minutes" | head 10000 | fields src_ip, src_port, src_mac, src_ipv6, dest_ip, dest_port, dest_mac, dest_ipv6, file_hash, user, url, protocol' parsed_stix = [{'attribute': 'mac-addr:value', 'comparison_operator': '=', 'value': '00-00-5E-00-53-00'}] assert query == {'queries': queries, 'parsed_stix': parsed_stix} def test_domain_query(self): stix_pattern = "[domain-name:value = 'example.com']" query = translation.translate('splunk', 'query', '{}', stix_pattern) queries = 'search (url = "example.com") earliest="-5minutes" | head 10000 | fields src_ip, src_port, src_mac, src_ipv6, dest_ip, dest_port, dest_mac, dest_ipv6, file_hash, user, url, protocol' parsed_stix = [{'attribute': 'domain-name:value', 'comparison_operator': '=', 'value': 'example.com'}] assert query == {'queries': queries, 'parsed_stix': parsed_stix} def test_query_from_multiple_observation_expressions_joined_by_AND(self): stix_pattern = "[domain-name:value = 'example.com'] AND [mac-addr:value = '00-00-5E-00-53-00']" query = translation.translate('splunk', 'query', '{}', stix_pattern) # Expect the STIX AND to convert to an SPL OR. queries = 'search (url = "example.com") OR ((src_mac = "00-00-5E-00-53-00") OR (dest_mac = "00-00-5E-00-53-00")) earliest="-5minutes" | head 10000 | fields src_ip, src_port, src_mac, src_ipv6, dest_ip, dest_port, dest_mac, dest_ipv6, file_hash, user, url, protocol' parsed_stix = [{'attribute': 'domain-name:value', 'comparison_operator': '=', 'value': 'example.com'}, {'attribute': 'mac-addr:value', 'comparison_operator': '=', 'value': '00-00-5E-00-53-00'}] assert query == {'queries': queries, 'parsed_stix': parsed_stix} def test_query_from_multiple_comparison_expressions_joined_by_AND(self): stix_pattern = "[domain-name:value = 'example.com' AND mac-addr:value = '00-00-5E-00-53-00']" query = translation.translate('splunk', 'query', '{}', stix_pattern) # Expect the STIX AND to convert to an AQL AND. queries = 'search (((src_mac = "00-00-5E-00-53-00") OR (dest_mac = "00-00-5E-00-53-00")) AND (url = "example.com")) earliest="-5minutes" | head 10000 | fields src_ip, src_port, src_mac, src_ipv6, dest_ip, dest_port, dest_mac, dest_ipv6, file_hash, user, url, protocol' parsed_stix = [{'attribute': 'mac-addr:value', 'comparison_operator': '=', 'value': '00-00-5E-00-53-00'}, {'attribute': 'domain-name:value', 'comparison_operator': '=', 'value': 'example.com'}] assert query == {'queries': queries, 'parsed_stix': parsed_stix} def test_file_query(self): stix_pattern = "[file:name = 'some_file.exe']" query = translation.translate('splunk', 'query', '{}', stix_pattern) queries = 'search (file_name = "some_file.exe") earliest="-5minutes" | head 10000 | fields src_ip, src_port, src_mac, src_ipv6, dest_ip, dest_port, dest_mac, dest_ipv6, file_hash, user, url, protocol' parsed_stix = [{'attribute': 'file:name', 'comparison_operator': '=', 'value': 'some_file.exe'}] assert query == {'queries': queries, 'parsed_stix': parsed_stix} def test_port_queries(self): stix_pattern = "[network-traffic:src_port = 12345 OR network-traffic:dst_port = 23456]" query = translation.translate('splunk', 'query', '{}', stix_pattern) queries = 'search ((dest_port = 23456) OR (src_port = 12345)) earliest="-5minutes" | head 10000 | fields src_ip, src_port, src_mac, src_ipv6, dest_ip, dest_port, dest_mac, dest_ipv6, file_hash, user, url, protocol' parsed_stix = [{'attribute': 'network-traffic:dst_port', 'comparison_operator': '=', 'value': 23456}, {'attribute': 'network-traffic:src_port', 'comparison_operator': '=', 'value': 12345}] assert query == {'queries': queries, 'parsed_stix': parsed_stix} def test_unmapped_attribute(self): stix_pattern = "[network-traffic:some_invalid_attribute = 'whatever']" result = translation.translate('splunk', 'query', '{}', stix_pattern) assert False == result['success'] assert ErrorCode.TRANSLATION_MAPPING_ERROR.value == result['code'] assert result['error'].startswith('Unable to map property') def test_invalid_stix_pattern(self): stix_pattern = "[not_a_valid_pattern]" result = translation.translate('splunk', 'query', '{}', stix_pattern) assert False == result['success'] assert ErrorCode.TRANSLATION_STIX_VALIDATION.value == result['code'] assert stix_pattern[1:-1] in result['error'] def test_network_traffic_protocols(self): for key, value in protocols.items(): # Test for both upper and lower case protocols in the STIX pattern if random.randint(0, 1) == 0: key = key.upper() stix_pattern = "[network-traffic:protocols[*] = '" + key + "']" query = translation.translate('splunk', 'query', '{}', stix_pattern) queries = 'search (protocol = "'+key+'") earliest="{}" | head {} | fields src_ip, src_port, src_mac, src_ipv6, dest_ip, dest_port, dest_mac, dest_ipv6, file_hash, user, url, protocol'.format(default_timerange_spl, stix_to_splunk.DEFAULT_LIMIT) parsed_stix = [{'attribute': 'network-traffic:protocols[*]', 'comparison_operator': '=', 'value': key}] assert query == {'queries': queries, 'parsed_stix': parsed_stix} def test_network_traffic_start_stop(self): stix_pattern = "[network-traffic:'start' = '2018-06-14T08:36:24.000Z' OR network-traffic:end = '2018-06-14T08:36:24.000Z']" query = translation.translate('splunk', 'query', '{}', stix_pattern) queries = 'search ((latest = "2018-06-14T08:36:24.000Z") OR (earliest = "2018-06-14T08:36:24.000Z")) earliest="-5minutes" | head 10000 | fields src_ip, src_port, src_mac, src_ipv6, dest_ip, dest_port, dest_mac, dest_ipv6, file_hash, user, url, protocol' parsed_stix = [{'attribute': 'network-traffic:end', 'comparison_operator': '=', 'value': '2018-06-14T08:36:24.000Z'}, {'attribute': 'network-traffic:start', 'comparison_operator': '=', 'value': '2018-06-14T08:36:24.000Z'}] assert query == {'queries': queries, 'parsed_stix': parsed_stix} def test_start_stop_qualifiers(self): stix_pattern = "[network-traffic:src_port = 37020] START t'2016-06-01T01:30:00.000Z' STOP t'2016-06-01T02:20:00.000Z' OR [ipv4-addr:value = '192.168.122.83'] START t'2016-06-01T03:55:00.000Z' STOP t'2016-06-01T04:30:00.000Z'" query = translation.translate('splunk', 'query', '{}', stix_pattern) queries = 'search (src_port = 37020) earliest="06/01/2016:01:30:00" latest="06/01/2016:02:20:00" OR ((src_ip = "192.168.122.83") OR (dest_ip = "192.168.122.83")) earliest="06/01/2016:03:55:00" latest="06/01/2016:04:30:00" | head 10000 | fields src_ip, src_port, src_mac, src_ipv6, dest_ip, dest_port, dest_mac, dest_ipv6, file_hash, user, url, protocol' parsed_stix = [{'attribute': 'network-traffic:src_port', 'comparison_operator': '=', 'value': 37020}, {'attribute': 'ipv4-addr:value', 'comparison_operator': '=', 'value': '192.168.122.83'}] assert query == {'queries': queries, 'parsed_stix': parsed_stix} def test_start_stop_qualifiers_one_time(self): stix_pattern = "[network-traffic:src_port = 37020] START t'2016-06-01T01:30:00.000Z' STOP t'2016-06-01T02:20:00.000Z'" query = translation.translate('splunk', 'query', '{}', stix_pattern) queries = 'search (src_port = 37020) earliest="06/01/2016:01:30:00" latest="06/01/2016:02:20:00" | head 10000 | fields src_ip, src_port, src_mac, src_ipv6, dest_ip, dest_port, dest_mac, dest_ipv6, file_hash, user, url, protocol' parsed_stix = [{'attribute': 'network-traffic:src_port', 'comparison_operator': '=', 'value': 37020}] assert query == {'queries': queries, 'parsed_stix': parsed_stix} def test_issubset_operator(self): stix_pattern = "[ipv4-addr:value ISSUBSET '198.51.100.0/24']" query = translation.translate('splunk', 'query', '{}', stix_pattern) queries = 'search ((src_ip = "198.51.100.0/24") OR (dest_ip = "198.51.100.0/24")) earliest="-5minutes" | head 10000 | fields src_ip, src_port, src_mac, src_ipv6, dest_ip, dest_port, dest_mac, dest_ipv6, file_hash, user, url, protocol' parsed_stix = [{'attribute': 'ipv4-addr:value', 'comparison_operator': 'ISSUBSET', 'value': '198.51.100.0/24'}] assert query == {'queries': queries, 'parsed_stix': parsed_stix} def test_custom_time_limit_and_result_count(self): stix_pattern = "[ipv4-addr:value = '192.168.122.83']" timerange = 25 result_limit = 5000 options = {"timerange": timerange, "result_limit": result_limit} query = translation.translate('splunk', 'query', '{}', stix_pattern, options) queries = 'search ((src_ip = "192.168.122.83") OR (dest_ip = "192.168.122.83")) earliest="-25minutes" | head 5000 | fields src_ip, src_port, src_mac, src_ipv6, dest_ip, dest_port, dest_mac, dest_ipv6, file_hash, user, url, protocol' parsed_stix = [{'attribute': 'ipv4-addr:value', 'comparison_operator': '=', 'value': '192.168.122.83'}] assert query == {'queries': queries, 'parsed_stix': parsed_stix} def test_custom_mapping(self): stix_pattern = "[ipv4-addr:value = '192.168.122.83' AND mac-addr:value = '00-00-5E-00-53-00']" timerange = 15 result_limit = 1000 options = { "timerange": timerange, "result_limit": result_limit, "mapping": { "mac-addr": { "cim_type": "flow", "fields": { "value": "mac" } }, "ipv4-addr": { "cim_type": "flow", "fields": { "value": ["src_ip", "dest_ip"] } } }, "select_fields": { "default": [ "src_ip", "src_port", ] } } query = translation.translate('splunk', 'query', '{}', stix_pattern, options) queries = 'search ((mac = "00-00-5E-00-53-00") AND ((src_ip = "192.168.122.83") OR (dest_ip = "192.168.122.83"))) earliest="-15minutes" | head 1000 | fields src_ip, src_port' parsed_stix = [{'attribute': 'mac-addr:value', 'comparison_operator': '=', 'value': '00-00-5E-00-53-00'}, {'attribute': 'ipv4-addr:value', 'comparison_operator': '=', 'value': '192.168.122.83'}] assert query == {'queries': queries, 'parsed_stix': parsed_stix} def test_free_search(self): stix_pattern = "[x-readable-payload:value = 'malware']" timerange = 25 result_limit = 5000 options = {"timerange": timerange, "result_limit": result_limit} query = translation.translate('splunk', 'query', '{}', stix_pattern, options) queries = 'search _raw=*malware* earliest="-25minutes" | head 5000 | fields src_ip, src_port, src_mac, src_ipv6, dest_ip, dest_port, dest_mac, dest_ipv6, file_hash, user, url, protocol' parsed_stix = [{'attribute': 'x-readable-payload:value', 'comparison_operator': '=', 'value': 'malware'}] assert query == {'queries': queries, 'parsed_stix': parsed_stix} ```
{ "source": "jlsutherland/gpo_tools", "score": 3 }
#### File: lib/gpo_tools/scrape.py ```python import json import re from urllib.request import urlopen import psycopg2 from bs4 import BeautifulSoup from psycopg2 import IntegrityError from psycopg2.extras import Json class Scraper: def __init__(self, db, user, password, api_key, min_congress, max_congress, host='localhost', update_stewart_meta=False): """ GPO scraper class, which also handles database setup. """ self.con = psycopg2.connect('dbname={} user={} password={} host={}'.format(db, user, password, host)) self.cur = self.con.cursor(cursor_factory=psycopg2.extras.DictCursor) self._execute("SELECT table_name FROM information_schema.tables WHERE table_schema = 'public' ") table_names = [t[0] for t in self.cur.fetchall()] if len(set(table_names)) == 0: self._execute(""" CREATE TABLE members( id integer PRIMARY KEY, metadata json, committee_membership json); CREATE TABLE hearings( id text PRIMARY KEY, transcript text, congress integer, session integer, chamber text, date date, committees text[], subcommittees text[], uri text, url text, sudoc text, number text, witness_meta json, member_meta json, parsed json); """) elif set(table_names) != {'members', 'hearings'}: raise ValueError(""" Improperly configured postgresql database given! Please give either a blank database or one that has been previously configured by this package. """) if update_stewart_meta: self._update_stewart_meta() self._execute('SELECT url FROM hearings;') self.searched = [e[0] for e in self.cur.fetchall()] self.api_key = api_key self.congresses = range(int(min_congress), int(max_congress) + 1) def scrape(self): """ Scrape data from the GPO website. Loops through the list of results until all pages are exhausted. """ print("Crawling and scraping the GPO website. As pages are scraped, page URLs will be printed in terminal. If " "you're running the scraper for the first time, the initial crawl will take some time.") results_page = 'https://api.govinfo.gov/collections/CHRG/1776-01-28T20%3A18%3A10Z?offset=0&pageSize=10000&' + \ 'congress={1}&api_key={0}' for congress in self.congresses: hearings_list = json.loads(urlopen(results_page.format(self.api_key, congress)).read()) for hearing in hearings_list['packages']: if hearing['packageLink'] not in self.searched: print(hearing['packageLink']) self._save_data(hearing) self.searched.append(hearing['packageLink']) def _extract_nav(self, url_element): """ Helper function - grabs all unobserved links out of a given HTML element. """ url = 'http://www.gpo.gov' + re.search('(?<=\').*?(?=\')', url_element.get('onclick')).group(0) if url not in self.searched: page = urlopen('http://www.gpo.gov' + re.search('(?<=\').*?(?=\')', url_element.get('onclick')).group(0)) soup = BeautifulSoup(page.read(), 'lxml') elements = [l for l in soup.find_all('a') if l.get('onclick') is not None] self.searched.append(url) return elements else: return [] def _save_data(self, hearing_json): """ Dumps scraped text and metadata to the appropriate location in the document file structure. """ def extract_doc_meta(meta_html): """ Function to extract hearing metadata from the metadata file. Program searches through the HTML metadata and locates various features, and combines them into a json object. """ def locate_string(key, name=False): """ Helper function. Checks for a unique match on a given metadata element, and returns the value. """ elements_from_meta = meta_html.find(key) if elements_from_meta is not None: elements = list(set(elements_from_meta)) if len(elements) == 1 and name is False: return elements[0].string elif len(elements) == 1 and name is True: return elements[0].find('name').string else: return '' else: return '' # gathering a few unusual variables uri = [link.string for link in meta_html.find_all('identifier') if link.get('type') == 'uri'][0] congress = re.search('(?<=-)[0-9]+', uri).group(0) committee_meta = meta_html.find_all('congcommittee') committee_names = [] subcommittee_names = [] # first pass, using short committee names for committee in committee_meta: if committee.find('name', type='authority-short') is not None: committee_names.append(committee.find('name', type='authority-short').string) if committee.find('subcommittee') is not None: try: subcommittee = committee.find('subcommittee') subcommittee_names.append(subcommittee.find('name', type='authority-short').string) except: pass # occasionally, short names are missing - fall back standard names if no short ones are found if len(committee_names) == 0: for committee in committee_meta: if committee.find('name', type='authority-standard') is not None: committee_names.append(committee.find('name', type='authority-standard').string) if meta_html.find('congserial') is not None: serials = meta_html.find_all('congserial') numbers = [serial.get('number') for serial in serials if serial.get('number') is not None] else: numbers = [] # the main variable collection and output construction. meta_dictionary = {'Identifier': locate_string('recordidentifier'), 'Congress': congress, 'Session': locate_string('session'), 'Chamber': locate_string('chamber'), 'Date': locate_string('helddate'), 'Committees': committee_names, 'Subcommittees': subcommittee_names, 'Title': locate_string('title'), 'uri': uri, 'url': url, 'sudoc': locate_string('classification'), 'Number': numbers} return meta_dictionary def extract_member_meta(meta_html): """ Function to extract member metadata from the metadata file. This information is often absent. """ import re member_dictionary = {} member_elements = [link for link in meta_html.find_all('congmember')] # loop over all of the member elements in a given page, and get relevant data for member in member_elements: party = member.get('party') state_short = member.get('state') chamber = member.get('chamber') bio_id = member.get('bioguideid') name_elements = member.find_all('name') name_parsed = [link.string for link in name_elements if link.get('type') == 'parsed'][0] state_long = re.search('(?<= of ).*', name_parsed).group(0) member_dictionary[name_parsed] = {'Name': name_parsed, 'State_Short': state_short, 'State_Long': state_long, 'Party': party, 'Chamber': chamber, 'GPO_ID': bio_id} return member_dictionary def extract_witness_meta(meta_html): """ Function to extract witness metadata from the metadata file. This information is often absent. """ witness_list = [w.string for w in meta_html.find_all('witness') if w.string is not None] return witness_list htm_page = 'https://api.govinfo.gov/packages/{1}/htm?api_key={0}' mods_page = 'https://api.govinfo.gov/packages/{1}/mods?api_key={0}' hearing_id = hearing_json['packageId'] transcript = urlopen(htm_page.format(self.api_key, hearing_id)).read() meta = urlopen(mods_page.format(self.api_key, hearing_id)).read() transcript = re.sub('\x00', '', transcript.decode('utf8')) meta_soup = BeautifulSoup(meta) url = hearing_json['packageLink'] # Metadata is divided into three pieces: hearing info, member info, and witness info. # See functions for details on each of these metadata elements. hearing_meta = extract_doc_meta(meta_soup) witness_meta = extract_witness_meta(meta_soup) member_meta = extract_member_meta(meta_soup) try: self._execute('INSERT INTO hearings VALUES (' + ','.join(['%s'] * 14) + ')', (hearing_meta['Identifier'], transcript, hearing_meta['Congress'], hearing_meta['Session'], hearing_meta['Chamber'], hearing_meta['Date'], hearing_meta['Committees'], hearing_meta['Subcommittees'], hearing_meta['uri'], hearing_meta['url'], hearing_meta['sudoc'], hearing_meta['Number'], Json(witness_meta), Json(member_meta))) except IntegrityError: print('Duplicate key. Link not included.') self.con.rollback() def _update_stewart_meta(self): """ Generate the member table. The member table lists party seniority, majority status, leadership, committee membership, congress, and state. All member data are drawn from Stewart's committee assignments data (assumed to be saved as CSV files), which are available at the link below. http://web.mit.edu/17.251/www/data_page.html """ import csv def update(inputs, table, chamber): """ Helper function, which updates a given member table with metadata from Stewart's metadata. Given data from a csv object, the function interprets that file and adds the data to a json output. See Stewart's data and codebook for descriptions of the variables. """ def update_meta(meta_entry, datum): meta_entry.append(datum) meta_entry = [e for e in list(set(meta_entry)) if e != ''] return meta_entry for row in inputs: name = str(row[3].lower()) name = name.translate(str.maketrans(dict.fromkeys('!"#$%&\'()*+-./:;<=>?[\\]_`{|}~'))) congress = row[0].lower() committee_code = row[1] member_id = row[2] majority = row[4].lower() party_seniority = row[5].lower() leadership = row[9] committee_name = row[15] state = row[18] if row[6] == '100': party = 'D' elif row[6] == '200': party = 'R' else: party = 'I' entry = {'Party Seniority': party_seniority, 'Majority': majority, 'Leadership': leadership, 'Chamber': chamber, 'Party': party, 'State': state, 'Committee Name': committee_name} if committee_code != '' and member_id != '': if member_id in table: member_meta = table[member_id]['Metadata'] member_membership = table[member_id]['Membership'] member_meta['Name'] = update_meta(member_meta['Name'], name) member_meta['State'] = update_meta(member_meta['State'], state) member_meta['Chamber'] = update_meta(member_meta['Chamber'], chamber) member_meta['Party'] = update_meta(member_meta['Party'], party) member_meta['Committee'] = update_meta(member_meta['Committee'], committee_name) if congress in table[member_id]['Membership']: member_membership[congress][committee_code] = entry else: member_membership[congress] = {committee_code: entry} else: table[member_id] = {'Metadata': {'Name': [name], 'State': [state], 'Chamber': [chamber], 'Party': [party], 'Committee': [committee_name]}, 'Membership': {congress: {committee_code: entry}}} self._execute('DELETE FROM members;') member_table = {} house_path = eval(input('Path to Stewart\'s House committee membership data (as csv): ')) senate_path = eval(input('Path to Stewart\'s Senate committee membership data (as csv): ')) # Loop through the house and senate assignment files, and save the output. with open(house_path, 'r', encoding='ascii', errors='ignore') as f: house_inputs = list(csv.reader(f))[2:] with open(senate_path, 'r', encoding='ascii', errors='ignore') as f: senate_inputs = list(csv.reader(f))[2:] update(house_inputs, member_table, 'HOUSE') update(senate_inputs, member_table, 'SENATE') for k, v in list(member_table.items()): self._execute('INSERT INTO members VALUES (%s, %s, %s)', (k, Json(v['Metadata']), Json(v['Membership'])), errors='strict') def _execute(self, cmd, data=None, errors='strict'): """ Wrapper function for pyscopg2 commands. """ if errors not in ['strict', 'ignore']: raise ValueError("""errors argument must be \'strict\' (raise exception on bad command) or \'ignore\' (return None on bad command). '""") self.cur = self.con.cursor() if errors == 'ignore': try: self.cur.execute(cmd, data) except: self.con.rollback() elif errors == 'strict': self.cur.execute(cmd, data) self.con.commit() ```
{ "source": "JLTastet/autolux", "score": 3 }
#### File: autolux/autolux/opts.py ```python import os import time import models # BRIGHTNESS LEVELS (should be between 1 and 100) MIN_LEVEL=5 MAX_LEVEL=100 # interpolate over our threshold (should be between 1 and 65K) MAX_WHITE=60000 MIN_WHITE=5000 # interval between screenshots SLEEP_TIME=67 SCREENSHOT_TIME=1200 TRANSITION_MS=800 RECALIBRATE_MS=60 * 1000 # EXAMPLE: 100x200+300+400 # 100 width, 200 height, 300 offset from left, 400 offset from top CROP_SCREEN="10x100%+400+0" HORIZ_CROP_SCREEN="90%x10+200+400" SCREENSHOT_CMD='import -silent -colorspace gray -screen -w root -quality 20' BRIGHTNESS_CMD='-format "%[mean]" info:' # change brightness when PID changes or # change brightness when window changes CHECK_PID=False CHECK_PID_CMD='xdotool getwindowfocus getwindowpid' # change brightness when window name changes CHECK_TITLE_CMD='xdotool getwindowfocus getwindowname' # default to True, now that we can skip using xbacklight LEARN_MODE=True VIZ_LUMA_MAP=False PLOT_LUMA=True PLOT_BRIGHT=False RUN_AS_DAEMON=False # do we use software dimming or not XRANDR_OUTPUT = None ADJUSTMENT = None RESET = False VERBOSE=False def load_options(): global MIN_LEVEL, MAX_LEVEL, MAX_WHITE, MIN_WHITE, CROP_SCREEN global SLEEP_TIME, TRANSITION_MS, RECALIBRATE_MS, SCREENSHOT_TIME global VERBOSE, CHECK_PID, LEARN_MODE,VIZ_LUMA_MAP global PLOT_LUMA, PLOT_BRIGHT global RUN_AS_DAEMON, XRANDR_OUTPUT global ADJUSTMENT, RESET from optparse import OptionParser parser = OptionParser() parser.add_option("--daemon", dest="run_as_daemon", help="run autolux as a daemon", default=RUN_AS_DAEMON, action="store_true") parser.add_option("--file", dest="luma_file", help="luma file to load", default=models.LUMA_FILE_DEFAULT) parser.add_option("--sleep-interval", dest="sleep_interval", type="int", default=SLEEP_TIME, help="check for window change ever SLEEP_INTERVAL ms, default is %s" % SLEEP_TIME) parser.add_option("--interval", dest="interval", type="int", default=SCREENSHOT_TIME, help="take screen snapshot every INTERVAL ms and readjust the screen brightness, default is %s" % SCREENSHOT_TIME) parser.add_option("--min", "--min-level", dest="min_level", type="int", default=MIN_LEVEL, help="min brightness level (from 1 to 100, default is %s)" % MIN_LEVEL) parser.add_option("--max", "--max-level", dest="max_level", type="int", default=MAX_LEVEL, help="max brightness level (from 1 to 100, default is %s)" % MAX_LEVEL) parser.add_option("--lower", "--lower-threshold", dest="min_white", type="int", default=MIN_WHITE, help="lower whiteness threshold before setting screen to highest brightness (1K to 15K, default is %s)" % MIN_WHITE) parser.add_option("--upper", "--upper-threshold", dest="max_white", type="int", default=MAX_WHITE, help="upper whiteness threshold before setting screen to lowest brightness (45K to 65K, default is %s)" % MAX_WHITE) parser.add_option("--recalibrate-time", dest="recalibrate", type="int", default=RECALIBRATE_MS, help="ms before recalibrating even if the window hasn't changed. set to 0 to disable, default is 60K") parser.add_option("--fade-time", dest="fade_time", type="int", default=TRANSITION_MS, help="time to fade backlight in ms, default is %s" % TRANSITION_MS) parser.add_option("--crop", dest="crop_screen", type='str', default=CROP_SCREEN, help="area to inspect, use imagemagick geometry style string (f.e. 50%x20%+400+100 means 50% width, 20% height at offset 400x and 100y)") parser.add_option("--pid", dest="check_pid", action="store_true", help="check screen brightness when PID changes") parser.add_option("--title", dest="check_pid", action="store_false", help="check screen brightness when window changes") parser.add_option("--horizontal", dest="horizontal", action="store_true", help="take a horizontal screenshot instead of vertical") parser.add_option("--no-learn", dest="learn", action="store_false", help="disable learning", default=LEARN_MODE) parser.add_option("--verbose", dest="verbose", action="store_true", help="turn on verbose output, including screenshot timing info") parser.add_option("--visualize", dest="visualize", action="store_true", help="visualize your brightness model", default=VIZ_LUMA_MAP) parser.add_option("--plot-luma", dest="plot_luma", action="store_true", help="plot screen luminence on y axis and predicted brightness as color, good for observing prefered brightness by time of day", default=PLOT_LUMA) parser.add_option("--plot-brightness", dest="plot_luma", action="store_false", help="plot predicted brightness on y axis and input luminence as color, good for observing eye strain", default=not PLOT_LUMA) parser.add_option("--xrandr", dest="xrandr_output", type="str", default=None) parser.add_option("--adjust", dest="adjustment", type="float", default=None) parser.add_option("--reset", dest="reset", action="store_true", default=None) options, args = parser.parse_args() MIN_LEVEL = options.min_level MAX_LEVEL = options.max_level RUN_AS_DAEMON = options.run_as_daemon SCREENSHOT_TIME = options.interval SLEEP_TIME = options.sleep_interval MAX_LEVEL = options.max_level TRANSITION_MS = options.fade_time CROP_SCREEN = options.crop_screen VERBOSE = options.verbose RECALIBRATE_MS = options.recalibrate CHECK_PID = options.check_pid LEARN_MODE=options.learn VIZ_LUMA_MAP=options.visualize models.LUMA_FILE=options.luma_file PLOT_BRIGHT=not options.plot_luma PLOT_LUMA=options.plot_luma XRANDR_OUTPUT=options.xrandr_output ADJUSTMENT=options.adjustment RESET=options.reset MIN_WHITE = options.min_white MAX_WHITE = options.max_white if options.horizontal: CROP_SCREEN = HORIZ_CROP_SCREEN global SCREENSHOT_CMD if CROP_SCREEN is not None: SCREENSHOT_CMD += ' -crop %s' % CROP_SCREEN def print_config(): print "DAEMON MODE:", not not RUN_AS_DAEMON print "CROPPING:", not not CROP_SCREEN print "FADE TIME:", TRANSITION_MS print "SLEEP TIME:", SCREENSHOT_TIME print "DISPLAY RANGE:", MIN_LEVEL, MAX_LEVEL print "LEARNING MODE:", LEARN_MODE print "BRIGHTNESS RANGE:", MIN_WHITE, MAX_WHITE print "RECALIBRATE EVERY:", RECALIBRATE_MS print "FOLLOW WINDOW PID:", not not CHECK_PID print "FOLLOW WINDOW TITLE:", not CHECK_PID print "SCREENSHOT CMD", SCREENSHOT_CMD ```
{ "source": "JLTastet/scalar_portal", "score": 2 }
#### File: scalar_portal/api/branching_ratios.py ```python from __future__ import absolute_import, division from future.utils import viewitems, with_metaclass import abc # Abstract Base Classes # We use OrderedDict to obtain stable, deterministic results, and to make sure # particle definitions always come before decay channel ones. from collections import OrderedDict import numpy as np from ..api.channel import Channel from ..data.constants import second, c_si, default_scalar_id def format_pythia_particle_string( pdg_id, name, antiname, spin_type, charge_type, mass, lifetime_si, new=True, may_decay=True, is_visible=False): lifetime_mm = 1e3 * lifetime_si * c_si all_prop = '{}:{} = {} {} {} {} 0 {} 0.0 0.0 0.0 {:.12}'.format( pdg_id, 'new' if new else 'all', name, antiname, spin_type, charge_type, mass, lifetime_mm) is_resonance = '{}:isResonance = false'.format(pdg_id) may_decay = '{}:mayDecay = {}'.format(pdg_id, str(may_decay).lower()) is_visible = '{}:isVisible = {}'.format(pdg_id, str(is_visible).lower()) return '\n'.join([all_prop, is_resonance, may_decay, is_visible]) class BranchingRatios(with_metaclass(abc.ABCMeta, object)): ''' Represents a set of computed branching ratios. ''' def __init__(self, channels, mass, couplings, ignore_invalid=False, scalar_id=default_scalar_id): self._channels = OrderedDict((str(ch), ch) for ch in channels) self._mS = np.asarray(mass, dtype='float') try: self._couplings = { k: np.array(v, dtype='float') for k, v in viewitems(couplings) } except AttributeError: raise(ValueError("'couplings' should be a dictionary (e.g. `{'theta': 1}`).")) try: bc = np.broadcast(self._mS, *self._couplings.values()) except ValueError: raise(ValueError('Mass and coupling arrays could not be broadcast together.')) self._ndim = bc.nd self._scalar_id = scalar_id self._widths = OrderedDict((str(ch), ch.width(mass, self._couplings)) for ch in channels) if ignore_invalid: for w in self._widths.values(): w[np.isnan(w)] = 0 @property def widths(self): return self._widths @property @abc.abstractmethod def branching_ratios(self): pass # pragma: no cover def pythia_strings(self): if self._ndim > 0: raise(ValueError('Can only generate PYTHIA strings for a single mass and coupling.')) for ch, br in viewitems(self.branching_ratios): if not np.isfinite(br): raise(ValueError('Cannot generate PYTHIA string: invalid channel {} for m = {}.'.format(ch, self._mS))) return OrderedDict( (ch_str, channel.pythia_string(self.branching_ratios[ch_str], self._scalar_id)) for ch_str, channel in viewitems(self._channels)) class DecayBranchingRatios(BranchingRatios): ''' Represents a set of decay branching ratios for the scalar. ''' def __init__(self, *args, **kwargs): super(DecayBranchingRatios, self).__init__(*args, **kwargs) self._total_width = sum(self.widths.values()) with np.errstate(invalid='ignore'): self._br = OrderedDict( (ch_str, w / self._total_width) for ch_str, w in viewitems(self.widths)) @property def total_width(self): return self._total_width @property def lifetime_si(self): tau = 1 / self._total_width return tau / second @property def branching_ratios(self): return self._br def pythia_particle_string(self, new=True): ''' Returns a string which can be directly read by the PYTHIA event generator to add the scalar particle. ''' if self._mS.ndim > 0: raise(ValueError('Can only generate a PYTHIA string for a single scalar mass.')) return format_pythia_particle_string( pdg_id=self._scalar_id, name='S', antiname='void', spin_type=1, charge_type=0, mass=self._mS, lifetime_si=self.lifetime_si, new=new, may_decay=True, is_visible=False) class ProductionBranchingRatios(BranchingRatios): ''' Represents a set of production branching ratios for the scalar. ''' def __init__(self, *args, **kwargs): super(ProductionBranchingRatios, self).__init__(*args, **kwargs) self._br = OrderedDict( (st, w / self._channels[st].parent_width) for st, w in viewitems(self.widths)) @property def branching_ratios(self): return self._br class BranchingRatiosResult(object): ''' Utility class wrapping the result of a computation of both production and decay branching ratios. Aggregates `ProductionBranchingRatios` and `DecayBranchingRatios`, and provides shortcuts for methods related to the scalar particle itself. ''' def __init__(self, prod, decay): self._prod = prod self._decay = decay @property def production(self): return self._prod @property def decay(self): return self._decay @property def total_width(self): return self._decay.total_width @property def lifetime_si(self): return self._decay.lifetime_si def pythia_particle_string(self, new=True): return self._decay.pythia_particle_string(new) def pythia_full_string(self): particle_str = self.pythia_particle_string() production_strs = self.production.pythia_strings() decay_strs = self.decay.pythia_strings() full_string = '\n'.join( [particle_str] + list(st for st in production_strs.values() if st is not None) + list(st for st in decay_strs.values() if st is not None)) return full_string ``` #### File: scalar_portal/data/particles.py ```python from __future__ import division import os import pandas import numpy as np from particletools.tables import PYTHIAParticleData from . import constants as cst from . import qcd _srcdir = os.path.dirname(__file__) # Meson properties # ---------------- # Special cases for K_S0 and K_L0 _k0_codes = {'K_S': 310, 'K_L': 130} _k0_names = {val: key for key, val in _k0_codes.items()} _meson_df = pandas.read_csv(os.path.join(_srcdir, 'meson_properties.dat'), delim_whitespace=True) _meson_names = list(_meson_df.Name) + list(_k0_codes.keys()) def _get_meson(feature, value): query = _meson_df[_meson_df[feature] == value] assert(len(query) <= 1) if len(query) < 1: raise(ValueError('No meson with {} == {}'.format(feature, value))) return query.iloc[0] def _split_meson_charge(meson_name): # Separates the name of the QCD state and its charge if len(meson_name) >= 4 and meson_name[-4:] == 'bar0': qcd_state, charge = meson_name[:-4], meson_name[-4:] elif len(meson_name) >= 1 and meson_name[-1:] in ['0', '+', '-']: qcd_state, charge = meson_name[:-1], meson_name[-1:] else: raise(ValueError('Unrecognised meson name {}'.format(meson_name))) return qcd_state, charge def _get_meson_by_name(meson_name): # Special case for neutral kaons if meson_name in ['K_S0', 'K_L0']: return _get_meson_by_name('K') try: # Handle mesons specified without the electric charge (e.g. `K*`) return _get_meson('Name', meson_name) except: # Handle mesons specified with the charge (e.g. `K*0`) qcd_state, charge = _split_meson_charge(meson_name) return _get_meson('Name', qcd_state) def _get_meson_by_id(pdg_id): # Handle the special case of K_S0 and K_L0 if pdg_id in _k0_names: return _k0_names[pdg_id] + '0' # Handle the general case query = _meson_df[(_meson_df['IdZero'] == abs(pdg_id)) | (_meson_df['IdPlus'] == abs(pdg_id))] assert(len(query) <= 1) if len(query) < 1: raise(ValueError('No meson corresponding to PDG code {}'.format(pdg_id))) else: record = query.iloc[0] qcd_state = record.Name # Infer the charge (and 'bar') from the PDG code if +record.IdZero == pdg_id: charge = '0' elif -record.IdZero == pdg_id: charge = 'bar0' elif +record.IdPlus == pdg_id: charge = '+' elif -record.IdPlus == pdg_id: charge = '-' else: assert(False) # pragma: no cover fullname = qcd_state + charge return fullname def _get_meson_pdg_id(meson_name): qcd_state, charge = _split_meson_charge(meson_name) # Handle special PDG codes for K_S0 and K_L0 if qcd_state in _k0_codes: if charge != '0': raise(ValueError('Invalid particle string {}'.format(meson_name))) return _k0_codes[qcd_state] # Now handle the generic case record = _get_meson_by_name(qcd_state) # Infer the PDG code from the charge (and the 'bar') if charge == '0': code = +record.IdZero elif charge == 'bar0': if record.SelfConjugate: raise(ValueError('{}0 is self-conjugate!'.format(qcd_state))) code = -record.IdZero elif charge == '+': code = +record.IdPlus elif charge == '-': code = -record.IdPlus else: assert(False) # pragma: no cover if code == 0: raise(ValueError('No PDG code for {}.'.format(meson_name))) return code def _get_meson_mass(meson_name): record = _get_meson_by_name(meson_name) return record.Mass def _get_meson_spin_code(meson_name): record = _get_meson_by_name(meson_name) return record.SpinCode _charges = { '0' : 0, 'bar0': 0, '+' : +1, '-' : -1, } def _get_meson_charge(meson_name): _, charge_str = _split_meson_charge(meson_name) return _charges[charge_str] def _get_meson_parity(meson_name): record = _get_meson_by_name(meson_name) return record.Parity def _get_abs_meson_strangeness(meson_name): record = _get_meson_by_name(meson_name) return abs(record.S) def _get_abs_meson_charm(meson_name): record = _get_meson_by_name(meson_name) return abs(record.C) def _get_abs_meson_beauty(meson_name): record = _get_meson_by_name(meson_name) return abs(record.B) def _get_meson_lifetime(meson_name): try: return cst.meson_lifetimes[meson_name] except KeyError: raise(ValueError('Lifetime of {} is unknown.'.format(meson_name))) # Lepton properties # ----------------- _lepton_masses = { 'e' : cst.m_e , 'mu' : cst.m_mu , 'tau': cst.m_tau, } def _get_lepton_mass(lepton_name): if len(lepton_name) >= 1 and lepton_name[-1] in ['-', '+']: basename = lepton_name[:-1] else: basename = lepton_name try: return _lepton_masses[basename] except KeyError: raise(ValueError('Unknown lepton {}.'.format(lepton_name))) def _get_lepton_spin_code(lepton_name): return 2 # Generic particle properties # --------------------------- _pdata = PYTHIAParticleData() def _get_generic_pdg_id(particle): try: return _pdata.pdg_id(particle) except: raise(ValueError("Particle '{}' not found in PYTHIA database.".format(particle))) def _get_generic_mass(particle): try: return _pdata.mass(particle) except: raise(ValueError("Particle '{}' not found in PYTHIA database.".format(particle))) # Public API # ---------- def is_meson(particle): if particle in _meson_names: return True else: try: basename, charge = _split_meson_charge(particle) if basename in _meson_names: return True except: return False return False def get_qcd_state(particle): if is_meson(particle): qcd_state, charge = _split_meson_charge(particle) return qcd_state else: raise(ValueError('{} is not a meson.'.format(particle))) def is_lepton(particle): if particle in _lepton_masses: return True elif len(particle) >= 1 and particle[:-1] in _lepton_masses: return True else: return False def get_pdg_id(particle): if is_meson(particle): # The PYTHIA database is sometimes inaccurate for mesons, so we # manually override it in this specific case. return _get_meson_pdg_id(particle) else: return _get_generic_pdg_id(particle) def get_name(pdg_id): # NOTE: Only mesons are handled so far. return _get_meson_by_id(pdg_id) def get_mass(particle): if is_lepton(particle): return _get_lepton_mass(particle) elif is_meson(particle): return _get_meson_mass(particle) else: try: return _get_generic_mass(particle) except ValueError: raise(ValueError('Mass of {} is unknown.'.format(particle))) def get_lifetime(particle): """ Returns the particle lifetime (average lifetime in its rest frame), in natural units (GeV⁻¹). """ # NOTE: Only mesons are handled so far. if is_meson(particle): return _get_meson_lifetime(particle) else: raise(ValueError('Operation not supported for {}.'.format(particle))) def get_spin_code(particle): """ Returns a positive integer 2S+1 representing the spin S of the particle. """ if is_lepton(particle): return _get_lepton_spin_code(particle) elif is_meson(particle): return _get_meson_spin_code(particle) else: raise(ValueError('Spin of {} is unknown.'.format(particle))) def get_charge(particle): # NOTE: Only mesons are handled so far. if is_meson(particle): return _get_meson_charge(particle) else: raise(ValueError('Operation not supported for {}.'.format(particle))) def get_parity(particle): # NOTE: Only mesons are handled so far. if is_meson(particle): return _get_meson_parity(particle) else: raise(ValueError('Operation not supported for {}.'.format(particle))) def get_abs_strangeness(particle): # NOTE: Only mesons are handled so far. if is_meson(particle): return _get_abs_meson_strangeness(particle) else: raise(ValueError('Operation not supported for {}.'.format(particle))) def get_abs_charm(particle): # NOTE: Only mesons are handled so far. if is_meson(particle): return _get_abs_meson_charm(particle) else: raise(ValueError('Operation not supported for {}.'.format(particle))) def get_abs_beauty(particle): # NOTE: Only mesons are handled so far. if is_meson(particle): return _get_abs_meson_beauty(particle) else: raise(ValueError('Operation not supported for {}.'.format(particle))) # Quark masses and strong coupling constant # ----------------------------------------- def alpha_s(mu, nf): """ Computes the strong coupling constant α_s at scale μ with nf dynamical flavors using the `rundec` package, through the `qcd` wrapper from Wilson. Note: we use the *non-squared* scale μ, which has dimension +1, instead of μ². Running is computed at 5 loops, and decoupling at 4 loops. numpy.vectorize is used to emulate NumPy broadcast rules in `mu`, but is not as fast as native vectorization. RunDec references: * <NAME>., <NAME>, and <NAME>. “RunDec: A Mathematica Package for Running and Decoupling of the Strong Coupling and Quark Masses.” Computer Physics Communications 133, no. 1 (December 2000): 43–65. https://doi.org/10.1016/S0010-4655(00)00155-7. * Schmidt, Barbara, and <NAME>. “CRunDec: A C++ Package for Running and Decoupling of the Strong Coupling and Quark Masses.” Computer Physics Communications 183, no. 9 (September 2012): 1845–48. https://doi.org/10.1016/j.cpc.2012.03.023. * Herren, Florian, and <NAME>. “Version 3 of {\tt RunDec} and {\tt CRunDec}.” Computer Physics Communications 224 (March 2018): 333–45. https://doi.org/10.1016/j.cpc.2017.11.014. Wilson references: * Website: https://wilson-eft.github.io/ * Source code: https://github.com/wilson-eft/wilson * Paper (for the Wilson RG running & matching, not used here): Aebischer, Jason, <NAME>, and <NAME>. : “: A Python Package for the Running and Matching of Wilson Coefficients above and below the Electroweak Scale.” The European Physical Journal C 78, no. 12 (December 19, 2018): 1026. https://doi.org/10.1140/epjc/s10052-018-6492-7. """ return np.vectorize(lambda _mu: qcd.alpha_s(_mu, nf, alphasMZ=cst.alpha_s_MZ, loop=5), cache=True)(mu) _pole_masses = { 'u': None, 'd': None, 's': None, 'c': 1.5, 'b': 4.8, 't': cst.m_t_os } def on_shell_mass(q): """ Returns the approximate pole mass of the chosen quark. This really only makes sense for the top quark. """ try: M_q = _pole_masses[q] except KeyError: raise(ValueError('Unknown quark {}.'.format(q))) if M_q is None: raise(ValueError('The pole mass is ill-defined for {}.'.format(q))) else: return M_q def msbar_mass(q, mu, nf): """ Returns the running quark mass in the MSbar scheme at a scale μ, in a theory with nf dynamical flavors. We use CRunDec through a slightly modified version of the `wilson.util.qcd` wrapper. """ if q in ['u', 'd', 't']: raise(ValueError('MSbar mass not implemented for {} quark.'.format(q))) elif q == 's': return np.vectorize( lambda _mu: qcd.m_s(cst.m_s_msbar_2GeV, _mu, nf, alphasMZ=cst.alpha_s_MZ, loop=5), cache=True)(mu) elif q == 'c': return np.vectorize( lambda _mu: qcd.m_c(cst.m_c_si, _mu, nf, alphasMZ=cst.alpha_s_MZ, loop=5), cache=True)(mu) elif q == 'b': return np.vectorize( lambda _mu: qcd.m_b(cst.m_b_si, _mu, nf, alphasMZ=cst.alpha_s_MZ, loop=5), cache=True)(mu) else: raise(ValueError('Unknown quark {}.'.format(q))) _si_masses = { 'c': cst.m_c_si, 'b': cst.m_b_si, 't': cst.m_t_si, } def scale_invariant_mass(q): """ Returns the scale-invariant mass of the heavy quark, in the MS-bar scheme. For the c and b quarks, we use the 2018 PDG values [1], while for the top quark we look for the fixed point of the MS-bar mass with Nf=6, using the calculation from [2], which is accurate to order O(αs³) + O(α) + O(α αs), and the Higgs mass from the PDG [1]. [1] <NAME> al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) DOI: 10.1103/PhysRevD.98.030001 [2] Jegerlehner, Fred, <NAME>, and <NAME>. “On the Difference between the Pole and the MSbar Masses of the Top Quark at the Electroweak Scale.” Physics Letters B 722, no. 1–3 (May 2013): 123–29. https://doi.org/10.1016/j.physletb.2013.04.012. """ if q in ['u', 'd', 's']: raise(ValueError('Scale-invariant mass not implemented for the {} quark.'.format(q))) elif q in ['c', 'b', 't']: return _si_masses[q] else: raise(ValueError('Unknown quark {}.'.format(q))) ``` #### File: scalar_portal/decay/two_pions.py ```python from __future__ import division from __future__ import absolute_import import os import numpy as np import scipy.interpolate as si from ..api.channel import DecayChannel _srcdir = os.path.dirname(__file__) # Load the table containing the normalized S -> π π decay width. # Source: # <NAME>., 2019. # Decay and Detection of a Light Scalar Boson Mixing with the Higgs. # Physical Review D 99. https://doi.org/10.1103/PhysRevD.99.015018 # First column: scalar mass m_S in GeV. # Second column: Γ(S -> π π) ratio evaluated at m_S. # Note: The first column should not be assumed to be increasing. _decay_width_table = np.loadtxt(os.path.join(_srcdir, 'winkler_pi.txt')) # The calculation is not valid above 2.0 GeV, so we return NaN above this value. _upper_lim = 2.0 # GeV # Make sure the upper limit makes sense assert(np.max(_decay_width_table[:,0]) >= _upper_lim) # Workaround for SciPy 0.15.1 _itp = si.interp1d( _decay_width_table[:,0], _decay_width_table[:,1], kind='linear', bounds_error=False, fill_value=0., assume_sorted=False ) def normalized_total_width(mS): """ Total decay width Γ(S → π π) = Γ(S → π⁰ π⁰) + Γ(S → π⁺ π⁻). """ return np.where(mS <= _upper_lim, _itp(mS), float('nan')) def normalized_decay_width(final_state, mS): """ Decay width to two pions, for a specific final state. Possible values for `final_state`: `neutral`: Γ(S → π⁰ π⁰) = 1/3×Γ(S → π π) `charged`: Γ(S → π⁺ π⁻) = 2/3×Γ(S → π π) """ if final_state == 'neutral': fraction = 1/3 elif final_state == 'charged': fraction = 2/3 else: raise(ValueError('Unknown final state {}.'.format(final_state))) return fraction * normalized_total_width(np.asarray(mS, dtype='float')) class TwoPions(DecayChannel): ''' Decay channel 'S -> π⁰ π⁰' or 'S -> π⁺ π⁻'. ''' def __init__(self, final_state): if final_state == 'neutral': children = ['pi0', 'pi0'] elif final_state == 'charged': children = ['pi+', 'pi-'] else: raise(ValueError("Final state must be either 'neutral' (2 pi0) or 'charged' (pi+ pi-).")) super(TwoPions, self).__init__(children) self._final_state = final_state def normalized_width(self, mS): return normalized_decay_width(self._final_state, mS) ``` #### File: scalar_portal/decay/two_quarks.py ```python from __future__ import division from __future__ import absolute_import import numpy as np from ..data.constants import * from ..data.particles import * from ..api.channel import DecayChannel, format_pythia_string def _beta(mq, mS): """ Perturbative "velocity" of the two outgoing quarks. """ return (1 - 4*(mq/mS)**2)**(1/2) def _Delta_QCD(aS, Nf): "QCD corrections away from the threshold." x = aS/pi return 5.67*x + (35.94-1.36*Nf)*x**2 + (164.14-25.77*Nf+0.259*Nf**2)*x**3 def _Delta_t(aS, mq, mS): "QCD correction arising from the top triangle, away from the threshold." # We have to use the pole mass for the top quark. mt = on_shell_mass('t') return (aS/pi)**2 * (1.57 - (4/3)*np.log(mS/mt) + (4/9)*np.log(mq/mS)**2) _lower_validity_bound = 2.0 # GeV # Number of dynamical quarks # Nf = 4 throughout the considered mass range. _Nf = 4 # q qbar thresholds _thresholds = { 's': 2 * get_mass('K'), 'c': 2 * get_mass('D'), 'b': 2 * get_mass('B'), } def _normalized_decay_width_large_mass(q, mS): """ Approximates the decay width of S -> q qbar above the Hq Hq threshold (where Hq=K for q=s, D for c, B for b). """ mq = msbar_mass(q, mu=mS, nf=_Nf) aS = alpha_s(mu=mS, nf=_Nf) # It seems that Spira forgot the β³ in the paper, but it is needed to # reproduce figure 4, on page 213, so we put it back. # Moreover, to get the correct threshold in the full QCD, it makes sense to # replace the phase-space factor β(m_q) (obtained from pQCD) with β(m_Hq). beta = _beta(_thresholds[q]/2, mS) w = 3*mS*mq**2/(8*pi*v**2) * beta**3 * (1 + _Delta_QCD(aS, _Nf) + _Delta_t(aS, mq, mS)) return w def normalized_decay_width(q, mS): """ Computes the decay width into two quarks: S -> q qbar, for q ∈ {s, c}. This computation is only valid above 2 GeV and below the b threshold. This function will return NaNs outside this range. """ mS = np.asarray(mS, dtype='float') if q not in ['s', 'c']: raise(ValueError('S -> {} {}bar not implemented.'.format(q, q))) w = np.zeros_like(mS, dtype='float') valid = (mS >= _lower_validity_bound) & (mS < _thresholds['b']) w[~valid] = np.nan open_channels = valid & (mS >= _thresholds[q]) # Only do the calculation for open channels mS_open = mS[open_channels] if np.any(open_channels): w[open_channels] = _normalized_decay_width_large_mass(q, mS_open) return w def normalized_total_width(mS): return sum(normalized_decay_width(q, mS) for q in ['s', 'c']) class TwoQuarks(DecayChannel): ''' Decay channel 'S -> q qbar'. ''' def __init__(self, flavor): if not flavor in ['s', 'c']: raise(ValueError('S -> {} {}bar not implemented.'.format(flavor, flavor))) super(TwoQuarks, self).__init__([flavor, flavor+'bar']) self._q = flavor def normalized_width(self, mS): return normalized_decay_width(self._q, mS) def pythia_string(self, branching_ratio, scalar_id): id_q = get_pdg_id(self._q) return format_pythia_string( scalar_id, [id_q, -id_q], branching_ratio, matrix_element=pythia_me_mode_hadronize) def is_open(self, mS): return mS > _thresholds[self._q] ``` #### File: scalar_portal/test/test_api_wildcard.py ```python from __future__ import absolute_import from nose.tools import assert_equals, assert_raises from .. import * def test_api_wildcard(): assert('Model' in globals()) assert('Channel' in globals()) assert('ProductionChannel' in globals()) assert('DecayChannel' in globals()) assert('ActiveProcesses' in globals()) assert('BranchingRatios' in globals()) assert('DecayBranchingRatios' in globals()) assert('ProductionBranchingRatios' in globals()) assert('format_pythia_string' in globals()) assert('format_pythia_particle_string' in globals()) ``` #### File: scalar_portal/test/test_channel.py ```python from __future__ import absolute_import from nose.tools import assert_equals, assert_raises import numpy as np from ..api import channel as ch from ..production import two_body_hadronic as hh from ..production import two_body_quartic as q2 from ..production import three_body_quartic as q3 from ..decay import leptonic as lp from ..decay import two_pions as pi from ..decay import two_kaons as kk from ..decay import multimeson as mm from ..decay import two_gluons as gg from ..decay import two_quarks as qq def test_string(): assert_equals(ch._to_channel_str('B', ['S', 'K*']), 'B -> S K*') assert_equals(ch._to_channel_str('S', ['c', 'cbar']), 'S -> c cbar') assert_equals(ch._from_channel_str('B -> S K*_0(700)'), ('B', ['S', 'K*_0(700)'])) assert_raises(ValueError, lambda: ch._from_channel_str('e+ e- -> t tbar')) assert_raises(ValueError, lambda: ch._from_channel_str('B -> S K* -> S K gamma')) def test_lt(): assert(lp.Leptonic('mu') < lp.Leptonic('e')) assert(not (lp.Leptonic('e') < lp.Leptonic('e'))) assert(hh.TwoBodyHadronic('B0', 'K0') < hh.TwoBodyHadronic('B+', 'K+')) assert(not (hh.TwoBodyHadronic('B+', 'K+') < hh.TwoBodyHadronic('B0', 'K0'))) assert(hh.TwoBodyHadronic('B0', 'K0') < lp.Leptonic('e')) def test_leptonic(): ch = lp.Leptonic('mu') mS = np.array([0.1, 0.5, 1, 5, 10]) assert(np.all(ch.normalized_width(mS) == lp.normalized_decay_width('mu', mS))) assert(np.all(ch.width(mS, {'theta': 0.25}) == 0.25**2 * lp.normalized_decay_width('mu', mS))) assert(np.all(ch.is_open(mS) == [False, True, True, True, True])) assert(np.all(ch.is_valid(mS))) assert_equals(str(ch), 'S -> mu+ mu-') assert_equals(ch.pythia_string(0.42, 9900025), '9900025:addChannel = 1 0.42 0 -13 13') assert_raises(ValueError, lambda: lp.Leptonic("tau'")) assert_raises(ValueError, lambda: lp.Leptonic('pi0' )) def test_two_pions(): ch0 = pi.TwoPions('neutral') ch1 = pi.TwoPions('charged') mS = np.array([0.1, 0.25, 0.3, 1, 2]) assert(np.all(ch0.normalized_width(mS) == pi.normalized_decay_width('neutral', mS))) assert(np.all(ch1.normalized_width(mS) == pi.normalized_decay_width('charged', mS))) assert(np.all(ch0.is_open(mS) == [False, False, True, True, True])) assert(np.all(ch0.is_valid(mS))) assert(np.all(~ch0.is_valid([2.5, 5]))) assert_equals(str(ch0), 'S -> pi0 pi0') assert_equals(str(ch1), 'S -> pi+ pi-') assert_equals(ch0.pythia_string(0.42, 9900025), '9900025:addChannel = 1 0.42 0 111 111' ) assert_equals(ch1.pythia_string(0.42, 9900025), '9900025:addChannel = 1 0.42 0 211 -211') assert_raises(ValueError, lambda: pi.TwoPions('pi0 pi0')) def test_two_kaons(): ch0 = kk.TwoKaons('neutral') ch1 = kk.TwoKaons('charged') mS = np.array([0.9, 1, 1.4, 2]) assert(np.all(ch0.normalized_width(mS) == kk.normalized_decay_width(mS))) # The widths should be equal since we use the same mass for K0 and K+. assert(np.all(ch0.normalized_width(mS) == ch1.normalized_width(mS))) assert(np.all(ch0.is_open(mS) == [False, True, True, True])) assert(np.all(ch0.is_valid(mS))) assert(np.all(~ch0.is_valid([2.5, 5]))) assert_equals(str(ch0), 'S -> K0 Kbar0') assert_equals(str(ch1), 'S -> K+ K-' ) assert_equals(ch0.pythia_string(0.42, 9900025), '9900025:addChannel = 1 0.42 0 311 -311') assert_equals(ch1.pythia_string(0.42, 9900025), '9900025:addChannel = 1 0.42 0 321 -321') assert_raises(ValueError, lambda: kk.TwoKaons('K+ K-')) def test_multimeson(): ch = mm.Multimeson() mS = np.array([0, 0.5, 0.6, 1, 1.4, 1.7, 2]) assert(np.all(ch.normalized_width(mS) == mm.normalized_decay_width(mS))) assert(np.all(ch.is_open(mS) == [False, False, True, True, True, True, True])) assert(np.all(ch.is_valid(mS))) assert(np.all(~ch.is_valid([2.5, 4]))) assert_equals(str(ch), 'S -> mesons...') assert_equals(ch.pythia_string(0.42, 9900025), None) def test_two_gluons(): ch = gg.TwoGluons() mS = np.array([2, 3, 5, 10]) assert(np.all(ch.normalized_width(mS) == gg.normalized_decay_width(mS))) assert(np.all(ch.is_open(mS))) assert(np.all(ch.is_valid(mS))) assert(np.all(~ch.is_valid([0.5, 1, 1.5]))) assert_equals(str(ch), 'S -> g g') assert_equals(ch.pythia_string(0.42, 9900025), '9900025:addChannel = 1 0.42 91 21 21') def test_two_quarks(): ch_s = qq.TwoQuarks('s') mS = np.array([2, 3, 4, 10]) assert(np.all(ch_s.normalized_width(mS) == qq.normalized_decay_width('s', mS))) assert(np.all(ch_s.is_open(mS))) assert(np.all(ch_s.is_valid(mS))) assert(np.all(~ch_s.is_valid([0.5, 1, 1.5, 11]))) assert_equals(str(ch_s), 'S -> s sbar') assert_equals(ch_s.pythia_string(0.42, 9900025), '9900025:addChannel = 1 0.42 91 3 -3') ch_c = qq.TwoQuarks('c') assert(np.all(ch_c.is_open(mS) == [False, False, True, True])) assert_raises(ValueError, lambda: qq.TwoQuarks('t')) def test_hadronic_production(): ch = hh.TwoBodyHadronic('B+', 'K*+') mS = np.array([0, 0.1, 0.5, 1, 2, 3, 5]) assert(np.all(ch.normalized_width(mS) == hh.normalized_decay_width('B', 'K*', mS))) assert(np.all(ch.width(mS, {'theta': 0.25}) == 0.25**2 * hh.normalized_decay_width('B', 'K*', mS))) assert(np.all(ch.is_open(mS) == [True, True, True, True, True, True, False])) assert(np.all(ch.is_valid(mS))) assert_equals(str(ch), 'B+ -> S K*+') assert_equals(ch.pythia_string(0.42, 9900025), '521:addChannel = 1 0.42 0 9900025 323') assert_raises(ValueError, lambda: hh.TwoBodyHadronic('B+', 'e+' )) assert_raises(ValueError, lambda: hh.TwoBodyHadronic('B+', 'K*' )) assert_raises(ValueError, lambda: hh.TwoBodyHadronic('B' , 'K*0')) tau = hh.get_lifetime('B+') wtot = 1 / tau epsilon = 1e-14 assert(abs(ch.parent_width - wtot) <= epsilon * wtot) br1 = ch.normalized_branching_ratio(mS) w1 = ch.normalized_width(mS) assert(np.all(np.abs(wtot*br1 - w1) <= epsilon * w1)) br = ch.branching_ratio(mS, {'theta': 0.25}) w = ch.width(mS, {'theta': 0.25}) assert(np.all(np.abs(wtot*br - w) <= epsilon * w)) def test_quartic_2body(): ch = q2.TwoBodyQuartic('B_s0') mS = np.array([0, 0.1, 0.5, 1, 2.5, 3, 10]) assert(np.all(ch.normalized_width(mS) == q2.normalized_decay_width('B_s', mS))) assert(np.all(ch.is_open(mS) == [True, True, True, True, True, False, False])) assert(np.all(ch.is_valid(mS))) assert_equals(str(ch), 'B_s0 -> S S') assert_equals(ch.pythia_string(0.42, 9900025), '531:addChannel = 1 0.42 0 9900025 9900025') assert_raises(ValueError, lambda: q2.TwoBodyQuartic('Z')) assert_raises(ValueError, lambda: q2.TwoBodyQuartic('B+')) assert(np.all(ch.width(mS, {'alpha': 0.5}) == 0.5**2 * ch.normalized_width(mS))) assert(np.all(ch.branching_ratio(mS, {'alpha': 0.5}) == 0.5**2 * ch.normalized_branching_ratio(mS))) # Test internals assert_raises(ValueError, lambda: q2._get_decay_constant('D')) def test_quartic_3body(): ch = q3.ThreeBodyQuartic('B+', 'K+') mS = np.array([0, 0.5, 2.3, 2.5]) assert(np.all(ch.normalized_width(mS) == q3.normalized_decay_width('B', 'K', mS))) assert(np.all(ch.is_open(mS) == [True, True, True, False])) assert(np.all(ch.is_valid(mS))) assert_equals(str(ch), 'B+ -> S S K+') # FIXME: find correct matrix element. assert_equals(ch.pythia_string(0.42, 9900025), '521:addChannel = 1 0.42 0 9900025 9900025 321') assert_raises(ValueError, lambda: q3.ThreeBodyQuartic('B+', 'e+' )) assert_raises(ValueError, lambda: q3.ThreeBodyQuartic('B+', 'K*' )) assert_raises(ValueError, lambda: q3.ThreeBodyQuartic('B' , 'K*0')) def test_neutral_kaons(): ch1 = hh.TwoBodyHadronic('K_L0', 'pi0', weak_eigenstate='K0') mS = np.array([0, 0.1, 0.5, 1, 2, 3, 5]) assert(np.all(ch1.normalized_width(mS) == hh.normalized_decay_width('K', 'pi', mS))) ch2 = hh.TwoBodyHadronic('B0', 'K0') assert(np.all(ch2.normalized_width(mS) == hh.normalized_decay_width('B', 'K', mS))) ch3 = q2.TwoBodyQuartic('K_L0', weak_eigenstate='K0') assert(np.all(ch3.normalized_width(mS) == q2.normalized_decay_width('K', mS))) ch4 = q3.ThreeBodyQuartic('K_L0', 'pi0', weak_eigenstate='K0') assert(ch4.normalized_width(0.15) == q3.normalized_decay_width('K', 'pi', 0.15)) def test_vectorization(): # Check that lists are handled as well as NumPy arrays def check_vectorization(channel, mS): assert(np.all(channel.normalized_width(mS) == \ channel.normalized_width(np.asarray(mS, dtype='float')))) for m in mS: assert(channel.normalized_width(m) == \ channel.normalized_width(np.asarray(m, dtype='float'))) mS = [0.1, 0.5, 1, 2, 5, 10] check_vectorization(hh.TwoBodyHadronic('B+', 'pi+' ), mS) check_vectorization(hh.TwoBodyHadronic('B+', 'K+' ), mS) check_vectorization(hh.TwoBodyHadronic('B+', 'K*_0(700)+' ), mS) check_vectorization(hh.TwoBodyHadronic('B+', 'K*+' ), mS) check_vectorization(hh.TwoBodyHadronic('B+', 'K_1(1270)+' ), mS) check_vectorization(hh.TwoBodyHadronic('B+', 'K*_2(1430)+'), mS) check_vectorization(q2.TwoBodyQuartic('B0') , mS) check_vectorization(lp.Leptonic('e') , mS) check_vectorization(q3.ThreeBodyQuartic('B+', 'K+'), [0, 1]) mS = [0.1, 0.5, 1] check_vectorization(pi.TwoPions('neutral'), mS) mS = [2, 3, 5] check_vectorization(gg.TwoGluons() , mS) check_vectorization(qq.TwoQuarks('c'), mS) ``` #### File: scalar_portal/test/test_constants.py ```python from __future__ import absolute_import from nose.tools import assert_equals, assert_raises from ..data import constants as c def test_ckm(): assert_equals(c.ckm(1,1), c.Vud) assert_equals(c.ckm(1,2), c.Vus) assert_equals(c.ckm(1,3), c.Vub) assert_equals(c.ckm(2,1), c.Vcd) assert_equals(c.ckm(2,2), c.Vcs) assert_equals(c.ckm(2,3), c.Vcb) assert_equals(c.ckm(3,1), c.Vtd) assert_equals(c.ckm(3,2), c.Vts) assert_equals(c.ckm(3,3), c.Vtb) assert_raises(ValueError, lambda: c.ckm(0,1)) assert_raises(ValueError, lambda: c.ckm(4,1)) assert_raises(ValueError, lambda: c.ckm(1,0)) assert_raises(ValueError, lambda: c.ckm(1,4)) def test_VUD(): assert_equals(c.VUD('u','d'), c.Vud) assert_equals(c.VUD('u','s'), c.Vus) assert_equals(c.VUD('u','b'), c.Vub) assert_equals(c.VUD('c','d'), c.Vcd) assert_equals(c.VUD('c','s'), c.Vcs) assert_equals(c.VUD('c','b'), c.Vcb) assert_equals(c.VUD('t','d'), c.Vtd) assert_equals(c.VUD('t','s'), c.Vts) assert_equals(c.VUD('t','b'), c.Vtb) assert_raises(ValueError, lambda: c.VUD('d', 'u')) assert_raises(ValueError, lambda: c.VUD('a', 'd')) assert_raises(ValueError, lambda: c.VUD('u', 'z')) ``` #### File: scalar_portal/test/test_decay.py ```python from __future__ import absolute_import from nose.tools import assert_equals, assert_raises import numpy as np from ..data.particles import * from ..decay import leptonic as lp from ..decay import two_pions as tp from ..decay import two_kaons as kk from ..decay import multimeson as mm from ..decay import two_gluons as gg from ..decay import two_quarks as qq def test_leptonic_width(): eps = 1e-12 mS = np.array([0.01, 0.1, 0.5, 1.0, 2.0, 4.0, 10.0]) w = lp.normalized_decay_width('e' , mS) assert(all(w[mS > 2*get_mass('e' )] > 0)) assert(all(w[mS < 2*get_mass('e' )] == 0)) target = np.array([ 1.6900126864964634e-15, 1.7165714271571945e-14, 8.584148208244031e-14, 1.7168377110602744e-13, 3.433679456830234e-13, 6.867360931015804e-13, 1.7168403739688331e-12]) assert(np.all(np.abs(w - target) <= eps * target)) w = lp.normalized_decay_width('mu' , mS) assert(all(w[mS > 2*get_mass('mu' )] > 0)) assert(all(w[mS < 2*get_mass('mu' )] == 0)) target = np.array([ 0, 0, 2.732025043654036e-9, 6.853907708050072e-9, 1.443491869260822e-8, 2.9237286606176158e-8, 7.335112420583204e-8]) assert(np.all(np.abs(w - target) <= eps * target)) w = lp.normalized_decay_width('tau', mS) assert(all(w[mS > 2*get_mass('tau')] > 0)) assert(all(w[mS < 2*get_mass('tau')] == 0)) target = np.array([ 0, 0, 0, 0, 0, 8.028575393027576e-7, 0.00001695364846943955]) assert(np.all(np.abs(w - target) <= eps * target)) assert_raises(ValueError, lambda: lp.normalized_decay_width('K', mS)) def test_two_pion_width(): mS = np.array([0.01, 0.2, 0.3, 0.5, 0.9, 1.0, 1.5, 2.0, 2.5, 4.0, 10.0]) wn = tp.normalized_decay_width('neutral', mS) assert(all(wn[mS < 2*get_mass('pi')] == 0)) assert(all(wn[(mS > 2*get_mass('pi')) & (mS <= 2.0)] > 0)) assert(all(np.isnan(wn[mS > 2.0]))) wc = tp.normalized_decay_width('charged', mS) assert(all(wc[mS < 2*get_mass('pi')] == 0)) assert(all(wc[(mS > 2*get_mass('pi')) & (mS <= 2.0)] > 0)) assert(all(np.isnan(wc[mS > 2.0]))) # Now test that Γ(S -> pi+ pi-) = 2 Γ(S -> pi0 pi0) eps = 1e-12 finite = np.isfinite(wn) assert(np.all(np.abs(wc - 2*wn)[finite] <= eps * wc[finite])) assert_raises(ValueError, lambda: tp.normalized_decay_width('test', mS)) # To test the numerical values, we use the masses at the interpolation knots. # This way, the different interpolations between scipy and Mathematica do not # introduce an additional error. mS = np.array([ 0.2808915847265062, 0.5011797711548195, 1.0036678784980348, 1.4995286492412911, 1.9618148657454992]) w = tp.normalized_decay_width('charged', mS) target = np.array([ 4.880143779482717e-10, 1.4857373356991338e-8, 3.604336514028455e-7, 2.319233832129673e-9, 2.310540370746613e-9]) assert(np.all(np.abs(w - target) <= eps * target)) # Test masses away from the interpolation knots. # If using linear interpolation, we actually expect the same result as the # Mathematica version. eps = 1e-12 mS = np.array([0.2, 0.3, 0.5, 1.0, 1.4, 2.0]) w = tp.normalized_decay_width('charged', mS) target = np.array([ 0, 1.8927616589680657e-9, 1.475091932044681e-8, 4.019482951592148e-7, 6.6426603227451354e-9, 2.39245459053496e-9]) assert(np.all(np.abs(w - target) <= eps * target)) def test_two_kaon_width(): mS = np.array([0.01, 0.2, 0.3, 0.5, 0.9, 1.0, 1.5, 2.0, 2.5, 4.0, 10.0]) w = kk.normalized_decay_width(mS) assert(np.all(w[ mS < 2*get_mass('K') ] == 0)) assert(np.all(w[(mS > 2*get_mass('K')) & (mS <= 2.0)] > 0)) assert(np.all(np.isnan(w[mS > 2.0]))) # Test numerical values at the interpolation knots. eps = 1e-12 mS = np.array([1.0029956973063714, 1.5221480119166657, 1.992527315035567]) w = kk.normalized_decay_width(mS) target = np.array([ 5.3034678644569654e-8, 4.121879878937285e-8, 1.7589704763603936e-8]) assert(np.all(np.abs(w - target) <= eps * target)) # Test masses away from the interpolation knots. eps = 1e-12 # For linear interpolation, we can use a small ε mS = np.array([0.9, 1.0, 1.4, 2.0]) w = kk.normalized_decay_width(mS) target = np.array([ 0, 3.25398123949564e-8, 4.558339609849428e-8, 1.743794584685908e-8]) assert(np.all(np.abs(w - target) <= eps * target)) def test_multimeson(): threshold = 4 * get_mass('pi') assert_equals(mm.normalized_decay_width(threshold), 0) Lambda_S = 2.0 eps = 1e-14 total_width_below = ( tp.normalized_decay_width('neutral', Lambda_S) + tp.normalized_decay_width('charged', Lambda_S) + kk.normalized_decay_width(Lambda_S) * 2 + mm.normalized_decay_width(Lambda_S) ) total_width_above = ( gg.normalized_decay_width(Lambda_S) + qq.normalized_decay_width('s', Lambda_S) + qq.normalized_decay_width('c', Lambda_S) ) assert(abs(total_width_below - total_width_above) <= eps * total_width_above) mS = np.array([0.1, 0.5, 0.6, 1, 1.4, 1.7, 2]) w = mm.normalized_decay_width(mS) assert(np.all(mm.normalized_total_width(mS) == w)) eps = 1e-8 target = np.array([ 0, 0, 6.842325342810394e-10, 6.507037347327064e-9, 1.9642598915115103e-8, 3.6178523573490095e-8, 5.985102812537482e-8]) assert(np.all(np.abs(w - target) <= eps * target)) def test_two_gluon_width(): mS = np.array([0.01, 0.1, 0.5, 1.0, 2.0, 4.0, 10.0]) w = gg.normalized_decay_width(mS) assert(all(w[mS >= 2.0] > 0)) assert(all(np.isnan(w[mS < 2.0]))) eps = 1e-8 target = np.array([ 5.346506003380509e-8,3.366555346862895e-7,1.7387372280010782e-6]) # Here we compute the error relative to the maximum value, in order to # account for numerical cancellations in small decay widths, which reduce # the relative precision. assert(np.all(np.abs(w[mS >= 2] - target) <= eps * np.max(target))) def test_two_quark_width(): mS = np.array([0.01, 0.1, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0, 11.0]) valid = (mS >= 2.0) & (mS < 2*get_mass('B')) # Test S -> s sbar (always far from the threshold). w = qq.normalized_decay_width('s', mS) assert(np.all(w[valid] > 0)) assert(np.all(np.isnan(w[~valid]))) eps = 1e-8 target = np.array([ 4.485054167109034e-8, 6.273213385478923e-8, 7.557563898011938e-8, 8.669975909774289e-8, 1.339576192802357e-7]) assert(np.all(np.abs(w[valid] - target) <= eps * target)) # Test the range of validity of the formula for S -> c cbar. w = qq.normalized_decay_width('c', mS) assert(np.all(w[valid & (mS > 2*get_mass('D'))] > 0)) assert(np.all(np.isnan(w[~valid]))) # Test S -> c cbar, both near and away from the physical threshold. mS = np.array([3.5, 3.75, 4, 4.5, 5, 10]) w = qq.normalized_decay_width('c', mS) eps = 1e-8 target = np.array([ 0, 8.653439606661616e-9, 5.215462624791676e-7, 2.071975664654039e-6, 3.6864436285061025e-6, 0.000014785007585122307]) assert(np.all(np.abs(w - target) <= eps * target)) assert_raises(ValueError, lambda: qq.normalized_decay_width('b', mS)) ``` #### File: scalar_portal/test/test_form_factors.py ```python from __future__ import absolute_import, division from nose.tools import assert_equals, assert_raises from ..data.form_factors import * def test_form_factors_at_zero(): # Scalar form factors f = get_form_factor('B', 'K') assert(abs(f(0) - 0.33) < 1e-2) f = get_form_factor('B', 'pi') assert(abs(f(0) - 0.258) < 1e-3) f = get_form_factor('K', 'pi') assert(abs(f(0) - 0.96) < 1e-2) # Pseudoscalar form factors f = get_form_factor('B', 'K*_0(700)') assert(abs(f(0) - 0.46) < 1e-2) f = get_form_factor('B', 'K*_0(1430)') assert(abs(f(0) - 0.17) < 1e-2) # Vector form factors f = get_form_factor('B', 'K*') assert(abs(f(0) - 0.374) < 0.033) f = get_form_factor('B', 'K*(1410)') assert(abs(f(0) - 0.300) < 0.036) f = get_form_factor('B', 'K*(1680)') assert(abs(f(0) - 0.22) < 0.04) # Pseudo-vector form factors f = get_form_factor('B', 'K_1(1270)') assert(abs(f(0) - (-0.52)) < 0.13) f = get_form_factor('B', 'K_1(1400)') assert(abs(f(0) - (-0.07)) < 0.033) # Tensor form factors f = get_form_factor('B', 'K*_2(1430)') assert(abs(f(0) - 0.23) < 1e-2) # Exceptions assert_raises(ValueError, lambda: get_form_factor('K', 'B')) assert_raises(ValueError, lambda: get_form_factor('B', 'D')) ``` #### File: scalar_portal/test/test_model.py ```python from __future__ import absolute_import from nose.tools import assert_equals, assert_raises import numpy as np from ..api.model import Model from ..api.branching_ratios import BranchingRatiosResult from ..data.constants import default_scalar_id def test_model(): m = Model() assert_equals(m.scalar_pdg_id, default_scalar_id) m.decay.enable('LightScalar') m.production.disable('K -> S pi') def test_groups(): m_ref = Model() m_ref.production.enable_all() m_ref.decay.enable_all() m = Model() m.production.enable('K -> S pi') m.production.enable('B -> S pi') m.production.enable('B -> S K?') m.production.enable('K -> S S') m.production.enable('B -> S S') m.production.enable('B -> S S pi') m.production.enable('B -> S S K?') m.decay.enable('LightScalar') m.decay.enable('HeavyScalar') lp = m.production.list_enabled() lp_ref = m_ref.production.list_enabled() assert_equals(set(lp), set(lp_ref)) ld = m.decay.list_enabled() ld_ref = m_ref.decay.list_enabled() assert_equals(set(ld), set(ld_ref)) def test_channels(): m = Model() m.production.enable_all() m.decay.enable_all() prod_ch = m.production.get_active_processes() decay_ch = m.decay.get_active_processes() mS = np.array([0.5, 1.5, 3]) for ch in prod_ch: ch.normalized_width(mS) for ch in decay_ch: ch.normalized_width(mS) def test_result(): m = Model() m.production.enable_all() m.decay.enable('LightScalar') mS = np.array([0.1, 0.5, 1]) res = m.compute_branching_ratios(mS, theta=0.25, alpha=0) assert(isinstance(res, BranchingRatiosResult)) res2 = m.compute_branching_ratios(mS, {'theta': 0.25, 'alpha': 0}) assert(np.all(res.total_width == res2.total_width)) def test_toy_model_matching(): m = Model() Lambda = 2.0 # Matching scale in GeV m.production.enable_all() m.decay.enable('LightScalar') res_low = m.compute_branching_ratios(Lambda, theta=1, alpha=0) m.decay.disable_all() m.decay.enable('HeavyScalar') res_high = m.compute_branching_ratios(Lambda, theta=1, alpha=0) eps = 1e-8 assert(abs(res_low.total_width - res_high.total_width) <= eps * res_high.total_width) ```
{ "source": "Jlthompson96/Simple-BMI-Calculator", "score": 4 }
#### File: Jlthompson96/Simple-BMI-Calculator/bmi.py ```python weight = input("What is your weight (in lbs)? ") height = input("What is your height (in inches)? ") def calcBMI(): return 703 * weight/pow(height,2) bmi = calcBMI() def output(): if bmi > 30: print("You are obese") elif bmi > 25: print("You are overweight") elif bmi > 18.5: print("You are normal") elif bmi < 18.5: print("You are underweight") output() ```
{ "source": "jltipton/tiptoe", "score": 3 }
#### File: tiptoe/tiptoe/localfiles.py ```python import os def list_files(folder_path): list_of_files = list() for (dirpath, dirnames, filenames) in os.walk(folder_path): list_of_files += [os.path.join(dirpath, file) for file in filenames] return list_of_files def setup_path(folder_path): if not os.path.exists(folder_path): try: os.makedirs(folder_path) except OSError: logging.info('failed to create {}'.format(folder_path)) else: logging.info('created directory(s) {}'.format(folder_path)) return folder_path ``` #### File: tiptoe/tiptoe/twofactor.py ```python import requests import time import json def check_2factor_submit(browser): try: otp_submit = browser.find_element_by_id("auth-send-code") except NoSuchElementException: return "" otp_submit.click() def check_2factor_field(browser): try: otp_field = browser.find_element_by_id("auth-mfa-otpcode") except NoSuchElementException: return "" otp = get_2factor() time.sleep(8) otp_field.send_keys(otp) time.sleep(3) otp_field.submit() def check_2factor(browser): check_2factor_submit(browser) time.sleep(15) check_2factor_field(browser) return "" def get_2factor(): msgs = json.loads(response.content) latest_msg = msgs["messages"][0]["body"] otp_code = latest_msg.split(" ")[0] loggit("2factor code: {}".format(otp_code)) return otp_code ```
{ "source": "JLTrincado/MxFinder", "score": 3 }
#### File: JLTrincado/MxFinder/extract_orfs.py ```python __author__="jruiz" __date__ ="$Sep 08, 2015 12:24:43 PM$" '''Extract all ORFs in a transcript FASTA ''' import sys import os from Bio import SeqIO from Bio.Seq import Seq fasta = sys.argv[1] try: threshold = sys.argv[2] #nucleotides except: threshold = 75 #OBJECTS class orf_object: def __init__(self, sequence, start, end): self.sequence = sequence self.start = start self.end = end #FUNCTIONS def find_all(sequence, subsequence): ''' Returns a list of indexes within sequence that are the start of subsequence''' start = 0 idxs = [] next_idx = sequence.find(subsequence, start) while next_idx != -1: idxs.append(next_idx) start = next_idx + 1# Move past this on the next time around next_idx = sequence.find(subsequence, start) return idxs def find_orfs(sequence, threshold): """ Finds all valid open reading frames in the string 'sequence', and returns them as a list""" starts = find_all(sequence, 'ATG') stop_amber = find_all(sequence, 'TAG') stop_ochre = find_all(sequence, 'TAA') stop_umber = find_all(sequence, 'TGA') stops = stop_amber + stop_ochre + stop_umber stops.sort() orfs = [] for start in starts: for stop in stops: if start < stop \ and (start - stop) % 3 == 0: # Stop is in-frame if len(sequence[start:stop+3]) >= int(threshold): orf_obj = orf_object(sequence[start:stop+3], start, stop+3) orfs.append(orf_obj) break orfs.sort(key=lambda x: len(x.sequence), reverse=True) return orfs cdna = SeqIO.index(fasta, "fasta") for sequence in cdna: ends = [] orfs = find_orfs(cdna[sequence].seq, threshold) n = 1 for orf in orfs: if orf.end in ends: continue ends.append(orf.end) print(">" + sequence + "_" + str(n) + ":" + str(orf.start) + "-" + str(orf.end) + "\n" + str(orf.sequence)) n += 1 exit(0) ```
{ "source": "jltwheeler/fullstackfomo", "score": 2 }
#### File: architecture/architecture/api.py ```python from diagrams import Cluster, Diagram from diagrams.aws.compute import ECS, AutoScaling from diagrams.aws.network import Route53, ElbApplicationLoadBalancer from .utils import create_kwargs def api(graph_attr: dict = None, path: str = None) -> None: name = "NodeJS GraphQL API" kwargs = create_kwargs(name, graph_attr, path) with Diagram(**kwargs): with Cluster("VPC"): route53 = Route53("DNS") elb = ElbApplicationLoadBalancer("ALB") asg = AutoScaling("ASG") with Cluster("ECS Tasks"): ecs = [ECS("API 1"), ECS("API 2")] route53 >> elb >> asg >> ecs ``` #### File: architecture/architecture/worker.py ```python from diagrams import Diagram, Cluster from diagrams.aws.analytics import ElasticsearchService from diagrams.aws.compute import Lambda from diagrams.aws.database import Dynamodb from diagrams.aws.integration import SimpleQueueServiceSqs from diagrams.aws.management import CloudwatchEventTimeBased from diagrams.saas.social import Twitter from .utils import create_kwargs def worker(graph_attr=None, path=None) -> None: name = "Data retrieval worker" kwargs = create_kwargs(name, graph_attr, path) with Diagram(**kwargs): source = Twitter("Data source") event = CloudwatchEventTimeBased("CloudWatch (1 min)") _lambda = Lambda("Python lambdas") dynamodb = Dynamodb("DynamoDB") sqs = SimpleQueueServiceSqs("SQS") es = ElasticsearchService("ElasticSearch") source >> event >> sqs >> _lambda >> dynamodb >> es ``` #### File: workers/functions/reddit_handler.py ```python from concurrent.futures import ThreadPoolExecutor from datetime import datetime import json import os import time import boto3 from dotenv import load_dotenv import praw from .constants import ENDPOINT_URL, MAIN_TABLE_NAME from .utils import ( compose_expression_attr_vals, compose_update_expression, copy_dict_partial, ) if os.environ.get("PYTHON_ENV", "prod") == "dev": load_dotenv() dynamo_db = boto3.resource( "dynamodb", endpoint_url=ENDPOINT_URL, aws_access_key_id="secret", aws_secret_access_key="secret", ) else: dynamo_db = boto3.resource("dynamodb", region_name="eu-west-1") client_id = os.environ["REDDIT_CLIENT_ID"] client_secret = os.environ["REDDIT_CLIENT_SECRET"] user_agent = "fullstack fomo" reddit = praw.Reddit( client_id=client_id, client_secret=client_secret, user_agent=user_agent ) print("Connected to DynamoDB and Reddit client") def _get_subreddit_data(subreddit: str) -> dict: return [ { "id": submission.id, "title": submission.title, "dataSource": "reddit", "score": submission.score, "longText": submission.selftext, "link": submission.shortlink, "numComments": submission.num_comments, "thumbnail": submission.url, "author": submission.author_fullname, "subreddit": submission.subreddit_name_prefixed, } for submission in reddit.subreddit(subreddit).hot(limit=5) ] def main(event, context) -> None: start_time = time.time() reddit_table = dynamo_db.Table("FomoSubreddits") main_table = dynamo_db.Table(MAIN_TABLE_NAME) items = [ item["subreddit"] for item in reddit_table.scan().get("Items", []) ] if not items: return { "statusCode": 500, "body": json.dumps({"message": "Not tracking any subreddits"}), } print("Fetching latest reddit data...") with ThreadPoolExecutor(max_workers=8) as executor: iterator = executor.map(_get_subreddit_data, items[:1]) results = [item for result in iterator for item in result] print("Checking for updated data and updating main DynamoDB table.") now_time = datetime.utcnow().isoformat() for result in results: key = {"id": result["id"], "dataSource": result["dataSource"]} existing_item = main_table.get_item(Key=key).get("Item", False) if existing_item: print( f"Updating entry for item ID: {result['id']}, source: {result['dataSource']}" ) updated_item = copy_dict_partial( result, exclude_keys=["id", "dataSource"] ) updated_item["updatedAt"] = now_time main_table.update_item( Key=key, UpdateExpression=compose_update_expression(updated_item), ExpressionAttributeValues=compose_expression_attr_vals( updated_item ), ) else: print( f"Creating entry for item ID: {result['id']}, source: {result['dataSource']}" ) result["createdAt"] = now_time result["updatedAt"] = now_time main_table.put_item(Item=result) delta_time = time.time() - start_time message = f"Function took {delta_time:.2f}secs to run" if os.environ.get("PYTHON_ENV", "prod") == "dev": return {"statusCode": 200, "body": json.dumps({"message": message})} ``` #### File: scripts/lib/config.py ```python import os import json from decimal import Decimal REGION_NAME = "eu-west-1" FOMO_TABLES = [ { "name": "FomoMain", "definitions": [ {"AttributeName": "id", "AttributeType": "S"}, {"AttributeName": "dataSource", "AttributeType": "S"}, ], "key_schema": [ {"AttributeName": "id", "KeyType": "HASH"}, {"AttributeName": "dataSource", "KeyType": "RANGE"}, ], "units": { "ReadCapacityUnits": 5, "WriteCapacityUnits": 5, }, }, { "name": "FomoTwitterUsers", "definitions": [ {"AttributeName": "userName", "AttributeType": "S"}, ], "key_schema": [ {"AttributeName": "userName", "KeyType": "HASH"}, ], "units": { "ReadCapacityUnits": 1, "WriteCapacityUnits": 1, }, "file": "twitter.json", }, { "name": "FomoSubreddits", "definitions": [ {"AttributeName": "subreddit", "AttributeType": "S"}, ], "key_schema": [ {"AttributeName": "subreddit", "KeyType": "HASH"}, ], "units": { "ReadCapacityUnits": 1, "WriteCapacityUnits": 1, }, "file": "reddit.json", }, ] def get_data(json_file: str) -> dict: with open(os.path.join(os.getcwd(), "data", json_file), "rb") as file: users = json.load(file, parse_float=Decimal) return users ``` #### File: scripts/lib/drop_local_db.py ```python import boto3 def main(): ENDPOINT_URL = "http://localhost:8000" dynamo_db = boto3.resource( "dynamodb", endpoint_url=ENDPOINT_URL, aws_access_key_id="secret", aws_secret_access_key="secret", region_name="eu-west-1", ) print(f"Connected to local dynamodb database on {ENDPOINT_URL}") existing_tables = list(dynamo_db.tables.all()) for table in existing_tables: table.delete() print(f"Deleted {table.name}.") print(f"Finished dropping {len(existing_tables)} tables.") if __name__ == "__main__": main() ```
{ "source": "jlu5/Limnoria", "score": 2 }
#### File: plugins/NickAuth/test.py ```python import supybot.ircdb as ircdb from supybot.test import * class NickAuthTestCase(PluginTestCase): plugins = ('NickAuth', 'User') prefix1 = '[email protected]' def _procedure(self, nickserv_reply): self.assertNotError('register foobar 123') self.assertResponse('user list', 'foobar') self.assertNotError('hostmask remove foobar %s' % self.prefix) self.assertNotError('identify foobar 123') self.assertNotError('nick add foobar baz') self.assertNotError('unidentify') self.prefix = self.prefix1 self.assertError('nick add foobar qux') self.nick = self.prefix.split('!')[0] self.assertError('hostmask list') self.irc.feedMsg(ircmsgs.privmsg(self.irc.nick, 'auth', prefix=self.prefix)) self.assertEqual(self.irc.takeMsg().command, 'WHOIS') self.assertError('hostmask list') self.irc.feedMsg(ircmsgs.privmsg(self.irc.nick, 'auth', prefix=self.prefix)) self.assertEqual(self.irc.takeMsg().command, 'WHOIS') if nickserv_reply: self.irc.feedMsg(ircmsgs.IrcMsg(':leguin.freenode.net 330 pgjrgrg ' '%s baz :is logged in as' % self.nick)) msg = self.irc.takeMsg() self.assertNotEqual(msg, None) self.assertEqual(msg.args[1], 'You are now authenticated as foobar.') self.assertResponse('hostmask list', 'foobar has no registered hostmasks.') else: msg = self.irc.takeMsg() self.assertEqual(msg, None) self.assertError('hostmask list') def testAuth(self): self._procedure(True) def testNoAuth(self): self._procedure(False) def testList(self): self.assertNotError('register foobar 123') self.assertRegexp('nick list', 'You have no recognized nick') self.assertNotError('nick add foo') self.assertRegexp('nick list', 'foo') self.assertNotError('nick add %s bar' % self.nick) self.assertRegexp('nick list', 'foo and bar') self.assertNotError('nick add %s %s baz' % (self.irc.network, self.nick)) self.assertRegexp('nick list', 'foo, bar, and baz') self.assertRegexp('nick list %s' % self.irc.network, 'foo, bar, and baz') self.assertRegexp('nick list %s foobar' % self.irc.network, 'foo, bar, and baz') # vim:set shiftwidth=4 tabstop=4 expandtab textwidth=79: ```
{ "source": "jlu5/Supybot-UrbanDictionary", "score": 2 }
#### File: jlu5/Supybot-UrbanDictionary/plugin.py ```python from __future__ import unicode_literals # my libs import json import re # supybot libs import supybot.utils as utils from supybot.commands import * import supybot.plugins as plugins import supybot.ircutils as ircutils import supybot.callbacks as callbacks from supybot.i18n import PluginInternationalization, internationalizeDocstring _ = PluginInternationalization('UrbanDictionary') @internationalizeDocstring class UrbanDictionary(callbacks.Plugin): """Add the help for "@plugin help UrbanDictionary" here This should describe *how* to use this plugin.""" threaded = True ###################### # INTERNAL FUNCTIONS # ###################### def _red(self, string): """return a red string.""" return ircutils.mircColor(string, 'red') def _bu(self, string): """bold and underline string.""" return ircutils.bold(ircutils.underline(string)) def cleanjson(self, s): """clean up json and return.""" s = s.replace('\n', '') s = s.replace('\r', '') s = s.replace('\t', '') s = s.strip() # return return s #################### # PUBLIC FUNCTIONS # #################### def urbandictionary(self, irc, msg, args, optlist, optterm): """[--disableexamples | --showvotes | --num # | --showtags] <term> Fetches definition for <term> on UrbanDictionary.com Use --disableexamples to not display examples. Use --showvotes to show votes [default: off] Use --num # to limit the number of definitions. [default:10] Use --showtags to display tags (if available) """ # default args for output. can manip via --getopts. args = {'showExamples': True, 'numberOfDefinitions':self.registryValue('maxNumberOfDefinitions'), 'showVotes': False, 'showTags':False } # optlist to change args. if optlist: for (key, value) in optlist: if key == 'disableexamples': args['showExamples'] = False if key == 'showvotes': args['showVotes'] = True if key == 'showtags': args['showTags'] = True if key == 'num': # if number is >, default to config var. if 0 <= value <= self.registryValue('maxNumberOfDefinitions'): args['numberOfDefinitions'] = value # build and fetch url. url = 'http://api.urbandictionary.com/v0/define?term=%s' % utils.web.urlquote(optterm) try: html = utils.web.getUrl(url) except utils.web.Error as e: self.log.error("ERROR opening {0} message: {1}".format(url, e)) irc.error("could not open {0} message: {1}".format(url, e), Raise=True) # try parsing json. #irc.reply("{0}".format(self._repairjson(html.decode('utf-8')))) try: #jsondata = self._repairjson(html.decode('utf-8')) # decode utf-8. fix \r\n that ud puts in below. jsondata = html.decode('utf-8') jsondata = json.loads(jsondata) # odds chars in UD. except Exception as e: self.log.error("Error parsing JSON from UD: {0}".format(e)) irc.error("Failed to parse json data. Check logs for error", Raise=True) # process json. results = jsondata.get('result_type') # exact, no_results, fulltext . if not results: # assume exact i guess... results = 'exact' definitions = jsondata.get('list') # prep output now depending on results. if results == "exact": # we did not find anything. outdefs = [] for i in definitions[0:args['numberOfDefinitions']]: # iterate through each def. # clean these up. definition = self.cleanjson(''.join(i['definition'])) #.encode('utf-8') example = self.cleanjson(''.join(i['example'])) # now add outputstring = "{0}".format(definition) # default string. if args['showExamples']: # show examples? outputstring += " {0} {1} {2}".format(self._bu("[ex:]"), example, self._bu("[/ex]")) if args['showVotes']: # show votes? outputstring += " (+{0}/-{1})".format(i['thumbs_up'], i['thumbs_down']) outdefs.append(outputstring) # add to our list. output = " | ".join([item for item in outdefs]) # create string with everything. elif results == "fulltext": # not direct. yields related terms. output = " | ".join(sorted(set([item['word'] for item in definitions]))) # sorted, unique words. # output time. if results == "no_results" or len(definitions) == 0: # NOTHING FOUND. irc.error("'{0}' not defined on UrbanDictionary.".format(optterm), Raise=True) else: # we have definitions, so we're gonna output. # check if we should add tags. if args['showTags']: # display tags. tags = jsondata.get('tags') if tags: # we have tags. add it to optterm. tags = " | ".join([i for i in tags]) else: tags = False else: tags = False # now lets output. if self.registryValue('disableANSI'): # disable formatting. if tags: irc.reply("{0} :: {1} :: {2}".format(optterm, tags, ircutils.stripFormatting(output))) else: irc.reply("{0} :: {1}".format(optterm, ircutils.stripFormatting(output))) else: # colors. if tags: irc.reply("{0} :: {1} :: {2}".format(self._red(optterm), tags, output)) else: irc.reply("{0} :: {1}".format(self._red(optterm), output)) urbandictionary = wrap(urbandictionary, [getopts({'showtags':'', 'showvotes':'', 'num':('int'), 'disableexamples':''}), ('text')]) Class = UrbanDictionary # vim:set shiftwidth=4 softtabstop=4 expandtab textwidth=250: ```
{ "source": "jlu5/terrabot", "score": 3 }
#### File: terrabot/terrabot/bot.py ```python from . import packets from . import client from terrabot.data.player import Player from terrabot.data.world import World from .events import Events, EventManager class TerraBot(object): """A class that handles basic functions of a terraria bot like movement and login""" # Defaults to 7777, because that is the default port for the server def __init__(self, ip, port=7777, protocol=194, name="Terrabot", password=''): super(TerraBot, self).__init__() self.protocol = protocol self.world = World() self.player = Player(name) self.password = password self.evman = EventManager() self.client = client.Client(ip, port, self.player, self.world, self.evman) self.evman.method_on_event(Events.PlayerID, self.received_player_id) self.evman.method_on_event(Events.Initialized, self.initialized) self.evman.method_on_event(Events.Login, self.logged_in) self.evman.method_on_event(Events.ItemOwnerChanged, self.item_owner_changed) self.evman.method_on_event(Events.PasswordRequested, self.send_password) # self.event_manager.method_on_event(events.Events.) def start(self): self.client.start() self.client.add_packet(packets.Packet1(self.protocol)) def item_owner_changed(self, id, data): if self.player.logged_in: self.client.add_packet(packets.Packet16(data[0], data[1])) def received_player_id(self, event_id, data): self.client.add_packet(packets.Packet4(self.player)) self.client.add_packet(packets.Packet10(self.player)) self.client.add_packet(packets.Packet2A(self.player)) self.client.add_packet(packets.Packet32(self.player)) for i in range(0, 83): self.client.add_packet(packets.Packet5(self.player, i)) self.client.add_packet(packets.Packet6()) def initialized(self, event, data): self.client.add_packet(packets.Packet8(self.player, self.world)) def logged_in(self, event, data): self.client.add_packet(packets.PacketC(self.player, self.world)) def send_password(self, event, data): if self.password: self.client.add_packet(packets.Packet26(self.password)) else: print('ERROR: Server needed password to login but none was given!') self.stop() def message(self, msg, color=None): if self.player.logged_in: if color: hex_code = '%02x%02x%02x' % color msg = "[c/" + hex_code + ":" + msg + "]" self.client.add_packet(packets.Packet19(self.player, msg)) def get_event_manager(self): return self.evman def stop(self): self.client.stop() ``` #### File: terrabot/packets/packet31.py ```python import struct class Packet31Parser(object): def parse(self, world, player, data, ev_man): player.x = world.spawnX player.y = world.spawnY ```
{ "source": "jluastro/nirc2", "score": 3 }
#### File: nirc2/reduce/align_rms.py ```python import numpy as np import argparse from gcwork import starset import pdb import sys def main(argv=None): if argv is None: argv = sys.argv[1:] run(argv) return def run(args=None): """ align_rms main routine. """ options = parse_options(args) _run = open(options.out_root + '.run', 'w') _run.write('RUN: python nirc2.reduce.align_rms() run with args:\n') _run.write(' '.join(args) + '\n\n') _run.write('OPTIONS:\n') _run.write('root_name = ' + options.root_name + '\n') _run.write('N_required = ' + str(options.N_required) + '\n') _run.write('out_root = ' + options.out_root + '\n') _run.write('calc_err_mean = ' + str(options.calc_err_mean) + '\n') _run.write('calc_rel_err = ' + str(options.calc_rel_err) + '\n') _run.write('idx_min = ' + str(options.idx_min) + '\n') _run.write('idx_max = ' + str(options.idx_max) + '\n') _run.write('idx_ref = ' + str(options.idx_ref) + '\n') _run.close() # Read in the align output. Determine the number of # individual starlists are in the stack. s = starset.StarSet(options.root_name) N_lists = len(s.years) if options.idx_min == None: options.idx_min = N_lists if options.idx_max == None: options.idx_max = N_lists # Trim down the starlist to just those that are # in the desired number of epochs and are detected # in the reference epoch. s.stars = trim_stars(s, options) # Fetch the data off the starset name = s.getArray('name') x = s.getArrayFromAllEpochs('xpix') y = s.getArrayFromAllEpochs('ypix') m = s.getArrayFromAllEpochs('mag') f = 10**(m/-2.5) flux_dn = s.getArrayFromAllEpochs('fwhm') corr = s.getArrayFromAllEpochs('corr') nimg = s.getArrayFromAllEpochs('nframes') snr = s.getArrayFromAllEpochs('snr') # Identify where we have measurements and where are non-detections. good = ((x > -1000) & (y > -1000) & (m != 0)) # Calculate the number of epochs the stars are detected in. cnt = good[options.idx_min : options.idx_max, :].sum(axis=0) # Mask the bad data. x_msk = np.ma.masked_where(good == False, x, copy=True) y_msk = np.ma.masked_where(good == False, y, copy=True) f_msk = np.ma.masked_where(good == False, f, copy=True) m_msk = np.ma.masked_where(good == False, m, copy=True) flux_dn = np.ma.masked_where(good == False, flux_dn, copy=True) corr_msk = np.ma.masked_where(good == False, corr, copy=True) nimg_msk = np.ma.masked_where(good == False, nimg, copy=True) snr_msk = np.ma.masked_where(good == False, snr, copy=True) # Calculate the average x, y, m, f if options.idx_ref != None: print(( 'Using epoch {0} as average pos/flux'.format(options.idx_ref) )) x_avg = x[options.idx_ref, :] y_avg = y[options.idx_ref, :] m_avg = m[options.idx_ref, :] f_avg = f[options.idx_ref, :] year = s.years[options.idx_ref] corr_avg = corr[options.idx_ref, :] flux_dn_avg = flux_dn[options.idx_ref, :] nimg_avg = nimg[options.idx_ref, :] snr_orig = snr[options.idx_ref, :] else: print( 'Calculate average pos/flux ' ) print(( 'from epochs {0} - {1}'.format(options.idx_min, options.idx_max) )) x_avg = x_msk[options.idx_min : options.idx_max, :].mean(axis=0) y_avg = y_msk[options.idx_min : options.idx_max, :].mean(axis=0) f_avg = f_msk[options.idx_min : options.idx_max, :].mean(axis=0) m_avg = -2.5 * np.log10(f_avg) year = s.years[options.idx_min : options.idx_max].mean() corr_avg = corr_msk[options.idx_min : options.idx_max, :].mean(axis=0) flux_dn_avg = flux_dn[options.idx_min : options.idx_max, :].mean(axis=0) nimg_avg = cnt snr_orig = None # Calculate the error on x, y, m, f x_std = calc_error(x_msk, x_avg, cnt, options) y_std = calc_error(y_msk, y_avg, cnt, options) f_std = calc_error(f_msk, f_avg, cnt, options) m_std = f_std / f_avg # Estimate a new signal to noise ratio new_snr = f_avg / f_std if ((options.calc_rel_err == False) and (isinstance(snr_orig, (list, tuple, np.ndarray)))): new_snr = 1.0 / np.hypot(1.0/new_snr, 1.0/snr_orig) # Fix up any infinities in the SNR. Set them to 0. new_snr[np.isinf(new_snr)] = 0.0 ## Check if new_snr has a mask before using it if np.ma.is_masked(new_snr): new_snr[new_snr.mask] = 0.0 _out = open(options.out_root + '.lis', 'w') hdr = '{name:13s} {mag:>6s} {year:>8s} ' hdr += '{x:>9s} {y:>9s} {xe:>9s} {ye:>9s} ' hdr += '{snr:>20s} {corr:>6s} {nimg:>8s} {flux:>20s}\n' _out.write(hdr.format(name='# name', mag='m', year='t', x='x', y='y', xe='xe', ye='ye', snr='snr', corr='corr', nimg='N_frames', flux='flux')) fmt = '{name:13s} {mag:6.3f} {year:8.3f} ' fmt += '{x:9.3f} {y:9.3f} {xe:9.3f} {ye:9.3f} ' fmt += '{snr:20.4f} {corr:6.2f} {nimg:8d} {flux:20.0f}\n' for ss in range(len(x_avg)): _out.write(fmt.format(name=name[ss], mag=m_avg[ss], year=float(year), x=x_avg[ss], y=y_avg[ss], xe=x_std[ss], ye=y_std[ss], snr=new_snr[ss], corr=corr_avg[ss], nimg=int(nimg_avg[ss]), flux=flux_dn_avg[ss])) _out.close() return s def trim_stars(s, options): # Get the relevant variables off the starset x = s.getArrayFromAllEpochs('xpix') y = s.getArrayFromAllEpochs('ypix') m = s.getArrayFromAllEpochs('mag') # Mask where we have null detections and # ID good stars where we have detections. good = ((x > -1000) & (y > -1000) & (m != 0)) # Figure out the number of epochs each star is detected in. # Trim out the stars that don't have enough detections. cnt = good[options.idx_min : options.idx_max, :].sum(axis=0) # Figure out if a stars is not detected in the reference epoch # and set it for trimming (cnt = 0). if options.idx_ref != None: cnt[good[options.idx_ref, :] == False] = 0 # Trim our arrays to only the "good" stars that meet our number # of epochs criteria. idx = np.where(cnt >= options.N_required)[0] new_stars = [s.stars[ii] for ii in idx] return new_stars def calc_error(v_msk, v_avg, cnt, options): v_tmp = (v_msk[options.idx_min : options.idx_max, :] - v_avg)**2 v_tmp = v_tmp.sum(axis=0) Ndof = cnt if options.idx_ref == None: Ndof -= 1 v_tmp /= Ndof v_std = np.sqrt(v_tmp) if options.calc_err_mean: v_std /= np.sqrt(Ndof) idx = np.where(cnt <= 1)[0] v_std[idx] = 0.0 return v_std def parse_options(args): purpose = 'Combine a stack of aligned starlists to produce a new "average"\n' purpose += 'starlist with astrometric and photometric errors estimated from\n' purpose += 'the RMS error (or error on the mean) of the stack.\n' purpose += '\n' purpose += '' ########## # Setup a Parser ########## parser = argparse.ArgumentParser(description=purpose) # root_name help_str = 'The root of the align output files.' parser.add_argument('root_name', type=str, help=help_str) # N_required help_str = 'The minimum number of starlists a star must be in to be included ' help_str += 'in the output list.' parser.add_argument('N_required', type=int, help=help_str) # out_root help_str = 'Output root of files. Default is the input align ' help_str += 'root_name + "_rms".' parser.add_argument('-o', '--outroot', dest='out_root', help=help_str) # calc_err_mean help_str = 'Include to calculate the error on the mean rather than the ' help_str += 'RMS error.' parser.add_argument('--errOnMean', '-e', dest='calc_err_mean', action='store_true', help=help_str) # calc_rel_err help_str = 'Include to calculate the relative pohtometric error ' help_str += '(no zero-point error).' parser.add_argument('--relPhotErr', '-r', dest='calc_rel_err', action='store_true', help=help_str) # stack_min help_str = 'The index of the starlist that starts the stack over which ' help_str += 'to calculate averages and errors (def=1). Note that the ' help_str += 'default use is that the first image (idx=0) contains the' help_str += '"average" star positions/fluxes and that the first stack' help_str += 'image is at --stackMin=1.' parser.add_argument('--stackMin', dest='idx_min', help=help_str, action='store', default=1, type=int) # stack_max help_str = 'The index of the starlist that ends the stack over which ' help_str += 'to calculate averages and errors (def=last). Note that the ' help_str += 'default use is that the first image (idx=0) contains the' help_str += '"average" star positions/fluxes and that the last stack' help_str += 'image is at --stackMax=max.' parser.add_argument('--stackMax', dest='idx_max', help=help_str, type=int) # reference_list help_str = 'Specify the index number (0-based) of the starlist that should be ' help_str += 'adopted as the reference. If a reference list is specified, the average ' help_str += 'positions and fluxes will come from this list and only the astrometric ' help_str += 'and photometric errors will be calculated from the remaining stack ' help_str += 'of images. If None is specified, then the average positions and fluxes ' help_str += 'will come from stacking the remaining set of images.' parser.add_argument('--refList', dest='idx_ref', help=help_str, action='store', default=0) options = parser.parse_args(args) # Define the root file name for the output files. if options.out_root == None: options.out_root = options.root_name + '_rms' # Fix the reference epoch. if options.idx_ref == 'None': options.idx_ref = None return options if __name__ == "__main__": main() ``` #### File: nirc2/reduce/calib.py ```python import os, sys from . import util from astropy.io import fits from astropy import stats from pyraf import iraf as ir from nirc2 import instruments import numpy as np from astropy import stats import astropy from datetime import datetime module_dir = os.path.dirname(__file__) def makedark(files, output, raw_dir=None, instrument=instruments.default_inst): """ Make dark image for imaging data. Makes a calib/ directory and stores all output there. All output and temporary files will be created in a darks/ subdirectory. Parameters ---------- files : list of int Integer list of the files. Does not require padded zeros. output : str Output file name. Include the .fits extension. raw_dir : str, optional Directory where raw files are stored. By default, assumes that raw files are stored in '../raw' instrument : instruments object, optional Instrument of data. Default is `instruments.default_inst` """ redDir = os.getcwd() + '/' # Reduce directory. curDir = redDir + 'calib/' darkDir = util.trimdir(curDir + 'darks/') # Set location of raw data rawDir = util.trimdir(os.path.abspath(redDir + '../raw') + '/') # Check if user has specified a specific raw directory if raw_dir is not None: rawDir = util.trimdir(os.path.abspath(raw_dir) + '/') util.mkdir(curDir) util.mkdir(darkDir) _out = darkDir + output _outlis = darkDir + 'dark.lis' util.rmall([_out, _outlis]) darks = instrument.make_filenames(files, rootDir=rawDir) # Write out the sources of the dark files data_sources_file = open(redDir + 'data_sources.txt', 'a') data_sources_file.write( '---\n# Dark Files for {0} \n'.format(output)) for cur_file in darks: out_line = '{0} ({1})\n'.format(cur_file, datetime.now()) data_sources_file.write(out_line) data_sources_file.close() f_on = open(_outlis, 'w') f_on.write('\n'.join(darks) + '\n') f_on.close() ir.unlearn('imcombine') ir.imcombine.combine = 'median' ir.imcombine.reject = 'sigclip' ir.imcombine.nlow = 1 ir.imcombine.nhigh = 1 ir.imcombine('@' + _outlis, _out) def makeflat(onFiles, offFiles, output, normalizeFirst=False, raw_dir=None, instrument=instruments.default_inst): """ Make flat field image for imaging data. Makes a calib/ directory and stores all output there. All output and temporary files will be created in a flats/ subdirectory. If only twilight flats were taken (as in 05jullgs), use these flats as the onFiles, and use 0,0 for offFiles. So the reduce.py file should look something like this: onFiles = range(22, 26+1) and offFiles = range(0,0) The flat will then be made by doing a median combine using just the twilight flats. Parameters ---------- onFiles : list of int Integer list of lamps ON files. Does not require padded zeros. offFiles : list of int Integer list of lamps OFF files. Does not require padded zeros. output : str Output file name. Include the .fits extension. normalizeFirst : bool, default=False If the individual flats should be normalized first, such as in the case of twilight flats. raw_dir : str, optional Directory where raw files are stored. By default, assumes that raw files are stored in '../raw' instrument : instruments object, optional Instrument of data. Default is `instruments.default_inst` """ redDir = os.getcwd() + '/' curDir = redDir + 'calib/' flatDir = util.trimdir(curDir + 'flats/') # Set location of raw data rawDir = util.trimdir(os.path.abspath(redDir + '../raw') + '/') # Check if user has specified a specific raw directory if raw_dir is not None: rawDir = util.trimdir(os.path.abspath(raw_dir) + '/') util.mkdir(curDir) util.mkdir(flatDir) _on = flatDir + 'lampsOn.fits' _off = flatDir + 'lampsOff.fits' _norm = flatDir + 'flatNotNorm.fits' _out = flatDir + output _onlis = flatDir + 'on.lis' _offlis = flatDir + 'off.lis' _onNormLis = flatDir + 'onNorm.lis' util.rmall([_on, _off, _norm, _out, _onlis, _offlis, _onNormLis]) lampson = instrument.make_filenames(onFiles, rootDir=rawDir) lampsoff = instrument.make_filenames(offFiles, rootDir=rawDir) lampsonNorm = instrument.make_filenames(onFiles, rootDir=flatDir + 'norm') util.rmall(lampsonNorm) # Write out the sources of the dark files data_sources_file = open(redDir + 'data_sources.txt', 'a') data_sources_file.write( '---\n# Flat Files for {0}, Lamps On\n'.format(output)) for cur_file in lampson: out_line = '{0} ({1})\n'.format(cur_file, datetime.now()) data_sources_file.write(out_line) data_sources_file.write( '---\n# Flat Files for {0}, Lamps Off\n'.format(output)) for cur_file in lampsoff: out_line = '{0} ({1})\n'.format(cur_file, datetime.now()) data_sources_file.write(out_line) data_sources_file.close() if (len(offFiles) != 0): f_on = open(_onlis, 'w') f_on.write('\n'.join(lampson) + '\n') f_on.close() f_on = open(_offlis, 'w') f_on.write('\n'.join(lampsoff) + '\n') f_on.close() f_onn = open(_onNormLis, 'w') f_onn.write('\n'.join(lampsonNorm) + '\n') f_onn.close() # Combine to make a lamps on and lamps off ir.unlearn('imcombine') ir.imcombine.combine = 'median' ir.imcombine.reject = 'sigclip' ir.imcombine.nlow = 1 ir.imcombine.nhigh = 1 ir.imcombine('@' + _offlis, _off) # Check if we should normalize individual flats first # such as in the case of twilight flats. if normalizeFirst: f_on = open(_offlis, 'w') f_on.write('\n'.join(lampsoff) + '\n') f_on.close() # Subtract "off" from individual frames ir.imarith('@'+_onlis, '-', _off, '@'+_onNormLis) # Scale them and combine ir.imcombine.scale = 'median' ir.imcombine('@' + _onNormLis, _norm) else: # Combine all "on" frames ir.imcombine('@' + _onlis, _on) # Now do lampsOn - lampsOff ir.imarith(_on, '-', _off, _norm) # Normalize the final flat ir.module.load('noao', doprint=0, hush=1) ir.module.load('imred', doprint=0, hush=1) ir.module.load('generic', doprint=0, hush=1) orig_img = fits.getdata(_norm) orig_size = (orig_img.shape)[0] if (orig_size >= 1024): flatRegion = '[100:900,513:950]' else: flatRegion = '' ir.normflat(_norm, _out, sample=flatRegion) else: f_on = open(_onlis, 'w') f_on.write('\n'.join(lampson) + '\n') f_on.close() # Combine twilight flats ir.unlearn('imcombine') ir.imcombine.combine = 'median' ir.imcombine.reject = 'sigclip' ir.imcombine.nlow = 1 ir.imcombine.nhigh = 1 if normalizeFirst: # Scale them ir.imcombine.scale = 'median' ir.imcombine('@' + _onlis, _norm) # Normalize the flat ir.module.load('noao', doprint=0, hush=1) ir.module.load('imred', doprint=0, hush=1) ir.module.load('generic', doprint=0, hush=1) flatRegion = '[100:900,513:950]' ir.normflat(_norm, _out, sample=flatRegion) def makemask(dark, flat, output, instrument=instruments.default_inst): """ Make bad pixel mask for imaging data. Makes a calib/ directory and stores all output there. All output and temporary files will be created in a masks/ subdirectory. Parameters ---------- dark : str The filename of the dark file (must be in the calib/darks/ directory). This is used to construct a hot pixel mask. Use a long (t>20sec) exposure dark. flat : str The filename of a flat file (must be in the calib/flats/ directory). This is used to construct a dead pixel mask. The flat should be normalized. output : str The output file name. This will be created in the masks/ subdirectory. instrument : instruments object, optional Instrument of data. Default is `instruments.default_inst` """ redDir = os.getcwd() + '/' calDir = redDir + 'calib/' maskDir = util.trimdir(calDir + 'masks/') flatDir = util.trimdir(calDir + 'flats/') darkDir = util.trimdir(calDir + 'darks/') util.mkdir(calDir) util.mkdir(maskDir) _out = maskDir + output _dark = darkDir + dark _flat = flatDir + flat _inst_mask = module_dir + '/masks/' + instrument.get_bad_pixel_mask_name() util.rmall([_out]) ########## # Make hot pixel mask ########## whatDir = redDir + dark print(whatDir) # Get the sigma-clipped mean and stddev on the dark img_dk = fits.getdata(_dark) if float(astropy.__version__) < 3.0: dark_stats = stats.sigma_clipped_stats(img_dk, sigma=3, iters=10) else: dark_stats = stats.sigma_clipped_stats(img_dk, sigma=3, maxiters=10) dark_mean = dark_stats[0] dark_stddev = dark_stats[2] # Clip out the very hot pixels. hi = dark_mean + (10.0 * dark_stddev) hot = img_dk > hi ########## # Make dead pixel mask ########## img_fl = fits.getdata(_flat) if float(astropy.__version__) < 3.0: flat_stats = stats.sigma_clipped_stats(img_dk, sigma=3, iters=10) else: flat_stats = stats.sigma_clipped_stats(img_fl, sigma=3, maxiters=10) flat_mean = flat_stats[0] flat_stddev = flat_stats[2] # Clip out the dead pixels lo = 0.5 hi = flat_mean + (15.0 * flat_stddev) dead = np.logical_or(img_fl > hi, img_fl < lo) # We also need the original instrument mask (with cracks and such) inst_mask = fits.getdata(_inst_mask) # Combine into a final supermask. Use the flat file just as a template # to get the header from. ofile = fits.open(_flat) if ((hot.shape)[0] == (inst_mask.shape)[0]): mask = hot + dead + inst_mask else: mask = hot + dead mask = (mask != 0) unmask = (mask == 0) ofile[0].data[unmask] = 0 ofile[0].data[mask] = 1 ofile[0].writeto(_out, output_verify='silentfix') return def make_instrument_mask(dark, flat, outDir, instrument=instruments.default_inst): """Make the static bad pixel mask for the instrument. This only needs to be run once. This creates a file called nirc2mask.fits or osiris_img_mask.fits which is subsequently used throughout the pipeline. The dark should be a long integration dark. Parameters ---------- dark : str The full absolute path to a medianed dark file. This is used to construct a hot pixel mask (4 sigma detection thresh). flat : str The full absolute path to a medianed flat file. This is used to construct a dead pixel mask. outDir : str full path to output directory with '/' at the end. instrument : instruments object, optional Instrument of data. Default is `instruments.default_inst` """ _out = outDir + instrument.get_bad_pixel_mask_name() _dark = dark _flat = flat util.rmall([_out]) ########## # Make hot pixel mask ########## # Get the sigma-clipped mean and stddev on the dark img_dk = fits.getdata(_dark) if float(astropy.__version__) < 3.0: dark_stats = stats.sigma_clipped_stats(img_dk, sigma=3, iters=10) else: dark_stats = stats.sigma_clipped_stats(img_dk, sigma=3, maxiters=10) dark_mean = dark_stats[0] dark_stddev = dark_stats[2] # Clip out the very hot pixels. hi = dark_mean + (15.0 * dark_stddev) hot = img_dk > hi print(('Found %d hot pixels' % (hot.sum()))) ########## # Make dead pixel mask ########## img_fl = fits.getdata(_flat) if float(astropy.__version__) < 3.0: flat_stats = stats.sigma_clipped_stats(img_dk, sigma=3, iters=10) else: flat_stats = stats.sigma_clipped_stats(img_fl, sigma=3, maxiters=10) flat_mean = flat_stats[0] flat_stddev = flat_stats[2] # Clip out the dead pixels lo = 0.5 hi = flat_mean + (15.0 * flat_stddev) dead = np.logical_or(img_fl > hi, img_fl < lo) print(('Found %d dead pixels' % (dead.sum()))) # Combine into a final supermask new_file = fits.open(_flat) mask = hot + dead mask = (mask != 0) unmask = (mask == 0) new_file[0].data[unmask] = 0 new_file[0].data[mask] = 1 new_file[0].writeto(_out, output_verify='silentfix') def analyzeDarkCalib(firstFrame, skipcombo=False): """ Reduce data from the dark_calib script that should be run once a summer in order to test the dark current and readnoise. This should be run in the reduce/calib/ directory for a particular run. """ redDir = os.getcwd() + '/' # Reduce directory. curDir = redDir + 'calib/' darkDir = util.trimdir(curDir + 'darks/') rawDir = util.trimdir(os.path.abspath(redDir + '../raw') + '/') util.mkdir(curDir) util.mkdir(darkDir) def printStats(frame, tint, sampmode, reads): files = list(range(frame, frame+3)) fileName = 'dark_%ds_1ca_%d_%dsm.fits' % (tint, sampmode, reads) if (skipcombo == False): makedark(files, fileName) # Get the sigma-clipped mean and stddev on the dark img_dk = fits.getdata(darkDir + fileName) if float(astropy.__version__) < 3.0: dark_stats = stats.sigma_clipped_stats(img_dk, sigma=3, iters=10) else: dark_stats = stats.sigma_clipped_stats(img_dk, sigma=3, maxiters=10) darkMean = dark_stats[0] darkStdv = dark_stats[2] return darkMean, darkStdv frame = firstFrame lenDarks = 11 tints = np.zeros(lenDarks) + 12 tints[-3] = 10 tints[-2] = 50 tints[-1] = 100 reads = np.zeros(lenDarks) reads[0] = 1 reads[1] = 2 reads[2] = 4 reads[3] = 8 reads[4] = 16 reads[5] = 32 reads[6] = 64 reads[7] = 92 reads[-3:] = 16 samps = np.zeros(lenDarks) + 3 samps[0] = 2 dMeans = np.zeros(lenDarks, dtype=float) dStdvs = np.zeros(lenDarks, dtype=float) for ii in range(lenDarks): (dMeans[ii], dStdvs[ii]) = printStats(frame, tints[ii],samps[ii], reads[ii]) dStdvs[ii] *= np.sqrt(3) frame += 3 # Calculate the readnoise rdnoise = dStdvs * 4.0 * np.sqrt(reads) / (np.sqrt(2.0)) print(('READNOISE per read: ', rdnoise)) ########## # Print Stuff Out ########## outFile = darkDir + 'analyzeDarkCalib.out' util.rmall([outFile]) _out = open(outFile,'w') hdr = '%8s %5s &9s %9s %4s %6s' print('Sampmode Reads Noise(DN) Noise(e-) Tint Coadds') print('-------- ----- --------- --------- ---- ------') _out.write('Sampmode Reads Noise(DN) Noise(e-) Tint Coadds\n') _out.write('-------- ----- --------- --------- ---- ------\n') for ii in range(lenDarks): print(('%8d %5d %9.1f %9.1f %4d 1' % \ (samps[ii], reads[ii], dStdvs[ii], dStdvs[ii] * 4.0, tints[ii]))) for ii in range(lenDarks): _out.write('%8d %5d %9.1f %9.1f %4d 1\n' % \ (samps[ii], reads[ii], dStdvs[ii], dStdvs[ii] * 4.0, tints[ii])) _out.close() return ``` #### File: nirc2/reduce/dar.py ```python from pyraf import iraf import glob import numpy as np import pylab as py import math from astropy.io import fits as pyfits import datetime try: import urllib.request, urllib.parse, urllib.error p2 = False except: import urllib p2 = True # Python 2 is running, so the urllib command is different import os, sys from nirc2.reduce import nirc2_util from nirc2.reduce import util from nirc2.reduce import slalib from nirc2 import instruments from astropy.table import Table module_dir = os.path.dirname(__file__) def get_atm_conditions(year): """ Retrieve atmospheric conditions from CFHT archive website, then calls dar.splitAtmosphereCFHT() to separate the data by months. """ yearStr = str(year) if p2: # Python 2 command, necessary for IRAF _atm = urllib.urlopen("http://mkwc.ifa.hawaii.edu/archive/wx/cfht/cfht-wx.%s.dat" % yearStr) else: _atm = urllib.request.urlopen("http://mkwc.ifa.hawaii.edu/archive/wx/cfht/cfht-wx.%s.dat" % yearStr) atm = _atm.read() _atm.close() root = module_dir + '/weather/' if type(atm) == bytes: # this is for python 3 atmfile = open(root + 'cfht-wx.' + yearStr + '.dat','wb') else: atmfile = open(root + 'cfht-wx.' + yearStr + '.dat','w') atmfile.write(atm) atmfile.close() splitAtmosphereCFHT(str(year)) def keckDARcoeffs(lamda, year, month, day, hour, minute): """ Calculate the differential atmospheric refraction for two objects observed at Keck. Input: lamda -- Effective wavelength (microns) assumed to be the same for both year, month, day, hour, minute of observation (HST) Output: refA refB """ iraf.noao() # Set up Keck observatory info foo = iraf.noao.observatory(command="set", obsid="keck", Stdout=1) obs = iraf.noao.observatory #################### # Setup all the parameters for the atmospheric refraction # calculations. Typical values obtained from the Mauna Kea # weather pages and from the web. #################### # # Temperature Lapse Rate (Kelvin/meter) tlr = 0.0065 # Precision required to terminate the iteration (radian) eps = 1.0e-9 # Height above sea level (meters) hm = obs.altitude # Latitude of the observer (radian) phi = math.radians(obs.latitude) # Pull from atmosphere logs. logDir = module_dir + '/weather/' logFile = logDir +'cfht-wx.'+ str(year) +'.'+ str(month).zfill(2) +'.dat' _atm = Table.read(logFile, format='ascii', header_start=None) atmYear = _atm['col1'] atmMonth = _atm['col2'] atmDay = _atm['col3'] atmHour = _atm['col4'] atmMin = _atm['col5'] # HST times atmTemp = _atm['col8'] # Celsius atmHumidity = _atm['col9'] # percent atmPressure = _atm['col10'] # mb pressure # Find the exact time match for year, month, day, hour idx = (np.where((atmYear == year) & (atmMonth == month) & (atmDay == day) & (atmHour == hour)))[0] if (len(idx) == 0): print(( 'Could not find DAR data for %4d-%2d-%2d %2d:%2d in %s' % \ (year, month, day, hour, minute, logFile))) atmMin = atmMin[idx] atmTemp = atmTemp[idx] atmHumidity = atmHumidity[idx] atmPressure = atmPressure[idx] # Find the closest minute minDiff = abs(atmMin - minute) sdx = minDiff.argsort() # Select out the closest in time. # Ambient Temperature (Kelvin) # Should be around 274.0 Kelvin tdk = atmTemp[sdx[0]] + 272.15 # Pressure at the observer (millibar) # Should be around 760.0 millibars pmb = atmPressure[sdx[0]] # Relative humidity (%) # Should be around 0.1 % rh = atmHumidity[sdx[0]] / 100.0 #relative humidity should be between 0 and 1 print(hm, tdk, pmb, rh, lamda, phi, tlr, eps) return slalib.refco(hm, tdk, pmb, rh, lamda, phi, tlr, eps) def nirc2dar(fitsFile, instrument=instruments.default_inst): """ Use the FITS header to extract date, time, wavelength, elevation, and image orientation information. This is everything that is necessary to calculate the differential atmospheric refraction. The differential atmospheric refraction is applicable only along the zenith direction of an image. This code calculates the predicted DAR using archived CFHT atmospheric data and the elevation and wavelength of the observations. Then the DAR correction is transformed into image coefficients that can be applied in image coordinates. """ # Get header info img, hdr = pyfits.getdata(fitsFile, header=True) effWave = instrument.get_central_wavelength(hdr) elevation = hdr[instrument.hdr_keys['elevation']] airmass = hdr['AIRMASS'] parang = hdr['PARANG'] date = hdr['DATE-OBS'].split('-') year = int(date[0]) month = int(date[1]) day = int(date[2]) utc = hdr['UTC'].split(':') hour = int(utc[0]) minute = int(utc[1]) second = int(math.floor(float(utc[2]))) utc = datetime.datetime(year, month, day, hour, minute, second) utc2hst = datetime.timedelta(hours=-10) hst = utc + utc2hst (refA, refB) = keckDARcoeffs(effWave, hst.year, hst.month, hst.day, hst.hour, hst.minute) tanz = math.tan(math.radians(90.0 - elevation)) tmp = 1.0 + tanz**2 darCoeffL = tmp * (refA + 3.0 * refB * tanz**2) darCoeffQ = -tmp * (refA*tanz + 3.0 * refB * (tanz + 2.0*tanz**3)) # Convert DAR coefficients for use with units of NIRC2 pixels scale = instrument.get_plate_scale(hdr) darCoeffL *= 1.0 darCoeffQ *= 1.0 * scale / 206265.0 # Lets determine the zenith and horizon unit vectors for # this image. pos_ang = instrument.get_position_angle(hdr) pa = math.radians(parang + pos_ang) zenithX = -math.sin(pa) zenithY = math.cos(pa) # Compute the predicted differential atmospheric refraction # over a 10'' seperation along the zenith direction. # Remember coeffecicents are only for deltaZ in pixels deltaZ = img.shape[0] * scale deltaR = darCoeffL * (deltaZ/scale) + darCoeffQ * (deltaZ/scale)**2 deltaR *= scale # now in arcseconds magnification = (deltaZ + deltaR) / deltaZ print(( 'DAR FITS file = %s' % (fitsFile))) print(('DAR over 10": Linear dR = %f" Quad dR = %f"' % \ (darCoeffL * deltaZ, darCoeffQ * deltaZ**2))) print(('DAR Magnification = %f' % (magnification))) print(('DAR Vertical Angle = %6.1f' % (math.degrees(pa)))) return (pa, darCoeffL, darCoeffQ) def darPlusDistortion(inputFits, outputRoot, xgeoim=None, ygeoim=None, instrument=instruments.default_inst): """ Create lookup tables (stored as FITS files) that can be used to correct DAR. Optionally, the shifts due to DAR can be added to existing NIRC2 distortion lookup tables if the xgeoim/ygeoim input parameters are set. Inputs: inputFits - a NIRC2 image for which to determine the DAR correction outputRoot - the root name for the output. This will be used as the root name of two new images with names, <outputRoot>_x.fits and <outputRoot>_y.fits. Optional Inputs: xgeoim/ygeoim - FITS images used in Drizzle distortion correction (lookup tables) will be modified to incorporate the DAR correction. The order of the correction is 1. distortion, 2. DAR. """ # Get the size of the image and the half-points hdr = pyfits.getheader(inputFits) imgsizeX = int(hdr['NAXIS1']) imgsizeY = int(hdr['NAXIS2']) halfX = int(round(imgsizeX / 2.0)) halfY = int(round(imgsizeY / 2.0)) # First get the coefficients (pa, darCoeffL, darCoeffQ) = nirc2dar(inputFits, instrument=instrument) #(a, b) = nirc2darPoly(inputFits) # Create two 1024 arrays (or read in existing ones) for the # X and Y lookup tables if ((xgeoim == None) or (xgeoim == '')): x = np.zeros((imgsizeY, imgsizeX), dtype=float) else: x = pyfits.getdata(xgeoim) if ((ygeoim == None) or (ygeoim == '')): y = np.zeros((imgsizeY, imgsizeX), dtype=float) else: y = pyfits.getdata(ygeoim) # Get proper header info. fits = pyfits.open(inputFits) axisX = np.arange(imgsizeX, dtype=float) - halfX axisY = np.arange(imgsizeY, dtype=float) - halfY xcoo2d, ycoo2d = np.meshgrid(axisX, axisY) xnew1 = xcoo2d + x ynew1 = ycoo2d + y # Rotate coordinates clockwise by PA so that zenith is along +ynew2 # PA = parallactic angle (angle from +y to zenith going CCW) sina = math.sin(pa) cosa = math.cos(pa) xnew2 = xnew1 * cosa + ynew1 * sina ynew2 = -xnew1 * sina + ynew1 * cosa # Apply DAR correction along the y axis xnew3 = xnew2 ynew3 = ynew2*(1 + darCoeffL) + ynew2*np.abs(ynew2)*darCoeffQ # Rotate coordinates counter-clockwise by PA back to original xnew4 = xnew3 * cosa - ynew3 * sina ynew4 = xnew3 * sina + ynew3 * cosa #xnew2 = a[0] + a[1]*xnew1 + a[2]*ynew1 + \ # a[3]*xnew1**2 + a[4]*xnew1*ynew1 + a[5]*ynew1**2 #ynew2 = b[0] + b[1]*xnew1 + b[2]*ynew1 + \ # b[3]*xnew1**2 + b[4]*xnew1*ynew1 + b[5]*ynew1**2 x = xnew4 - xcoo2d y = ynew4 - ycoo2d xout = outputRoot + '_x.fits' yout = outputRoot + '_y.fits' util.rmall([xout, yout]) fits[0].data = x fits[0].writeto(xout, output_verify='silentfix') fits[0].data = y fits[0].writeto(yout, output_verify='silentfix') return (xout, yout) def applyDAR(inputFits, spaceStarlist, plot=False, instrument=instruments.default_inst): """ inputFits: (str) name if fits file associated with this starlist Input a starlist in x=RA (+x = west) and y=Dec (arcseconds) taken from space and introduce differential atmospheric refraction (DAR). The amount of DAR that is applied depends on the header information in the input fits file. The resulting output starlist should contain what was observed after the starlight passed through the atmosphere, but before the starlight passed through the telescope. Only achromatic DAR is applied in this code. The output file has the name <fitsFile>_acs.lis and is saved to the current directory. """ # Get header info #hdr = pyfits.getheader(fits) #effWave = hdr['EFFWAVE'] #elevation = hdr['EL'] #lamda = hdr['CENWAVE'] #airmass = hdr['AIRMASS'] #parang = hdr['PARANG'] # #date = hdr['DATE-OBS'].split('-') #year = int(date[0]) #month = int(date[1]) #day = int(date[2]) #utc = hdr['UTC'].split(':') #hour = int(utc[0]) #minute = int(utc[1]) #second = int(math.floor(float(utc[2]))) #utc = datetime.datetime(year, month, day, hour, minute, second) #utc2hst = datetime.timedelta(hours=-10) #hst = utc + utc2hst #(refA, refB) = keckDARcoeffs(effWave, hst.year, hst.month, hst.day, # hst.hour, hst.minute) #tanz = math.tan(math.radians(90.0 - elevation)) #tmp = 1.0 + tanz**2 #darCoeffL = tmp * (refA + 3.0 * refB * tanz**2) #darCoeffQ = -tmp * (refA*tanz + # 3.0 * refB * (tanz + 2.0*tanz**3)) # Convert DAR coefficients for use with arcseconds #darCoeffL *= 1.0 #darCoeffQ *= 1.0 / 206265.0 # Lets determine the zenith and horizon unit vectors for # this image. The angle we need is simply the parallactic # (or vertical) angle since ACS images are North Up already. #pa = math.radians(parang) #MS: presumably the above code is all replacable with this call (which uses the intrument object (pa, darCoeffL, darCoeffQ) = nirc2dar(inputFits, instrument=instrument) ########## # # Read in the starlist # ########## _list = Table.read(spaceStarlist, format='ascii') cols = list(_list.columns.keys()) names = [_list[ss][0].strip() for ss in range(len(_list))] mag = _list[cols[1]] date = _list[cols[2]] x = _list[cols[3]] # RA in arcsec y = _list[cols[4]] xe = _list[cols[5]] ye = _list[cols[6]] # Magnify everything in the y (zenith) direction. Do it relative to # the first star. Even though dR depends on dzObs (ground observed dz), # it is a small mistake and results in less than a 10 micro-arcsec # change in dR. dx = x - x[0] dy = y - y[0] # Rotate coordinates CW so that the zenith angle is at +ynew sina = math.sin(pa) cosa = math.cos(pa) xnew1 = dx * cosa + dy * sina ynew1 = -dx * sina + dy * cosa # Apply DAR xnew2 = xnew1 ynew2 = ynew1 * (1.0 - darCoeffL) - ynew1 * np.abs(ynew1) * darCoeffQ # Rotate coordinates CCW back to original angle xnew3 = xnew2 * cosa - ynew2 * sina ynew3 = xnew2 * sina + ynew2 * cosa xnew = xnew3 + x[0] ynew = ynew3 + y[0] ########## # # Write out the starlist # ########## # Save the current directory newFits = fits.replace('.fits', '').split('/')[-1] newList = newFits + '_acs.lis' print(newList) _new = open(newList, 'w') for i in range(len(names)): _new.write('%10s %7.3f %7.2f %10.4f %10.4f 0 0 10 1 1 8\n' % \ (names[i], mag[i], date[i], xnew[i], ynew[i])) _new.close() if (plot==True): py.clf() py.quiver(x, y, xnew - x, ynew - y, scale=0.02) py.quiver([0], [0], [0.001], [0], color='r', scale=0.02) py.axis([-5, 5, -5, 5]) py.show() def splitAtmosphereCFHT(year): """ Take an original archive file containing atmospheric parameters and split it up into seperate files for individual months. This makes later calls to calculate DAR parameters MUCH faster. """ yearStr = str(year) logDir = module_dir + '/weather/' logFile = logDir + '/cfht-wx.' + yearStr + '.dat' _infile = open(logFile, 'r') outfiles = [] for ii in range(1, 12+1): monthStr = str(ii).zfill(2) _month = open(logDir + '/cfht-wx.' +yearStr+ '.' +monthStr+ '.dat', 'w') outfiles.append( _month ) for line in _infile: fields = line.split() month = int(fields[1]) # Check for wrong month number if not (month > 0 and month <= 12): continue _outfile = outfiles[month-1] _outfile.write(line) for _month in outfiles: _month.close() def test_darPlusDistortion(): data_dir = module_dir + '/distortion/' file_geox_darunfix = data_dir + 'nirc2dist_xgeoim.fits' file_geoy_darunfix = data_dir + 'nirc2dist_ygeoim.fits' data_dir = '/u/ghezgroup/data/m92_test/08jul_new_on/' file_geox_darfix = data_dir + 'reduce/kp/gc_f1/ce0249geo_x.fits' file_geoy_darfix = data_dir + 'reduce/kp/gc_f1/ce0249geo_y.fits' xon = pyfits.getdata(file_geox_darfix) yon = pyfits.getdata(file_geoy_darfix) xoff = pyfits.getdata(file_geox_darunfix) yoff = pyfits.getdata(file_geoy_darunfix) # Make arrays with the coordinates for each imgsize = 1024 axisX = np.arange(imgsize, dtype=float) axisY = np.arange(imgsize, dtype=float) xcoo2d, ycoo2d = np.meshgrid(axisX, axisY) # Lets trim so that we only keep every 20th pixel idx = np.arange(25, imgsize, 50) xon = xon.take(idx, axis=0).take(idx, axis=1) yon = yon.take(idx, axis=0).take(idx, axis=1) xoff = xoff.take(idx, axis=0).take(idx, axis=1) yoff = yoff.take(idx, axis=0).take(idx, axis=1) xcoo2d = xcoo2d.take(idx, axis=0).take(idx, axis=1) ycoo2d = ycoo2d.take(idx, axis=0).take(idx, axis=1) # Calculate differences xdiff = xon - xoff ydiff = yon - yoff # Make vector plots py.clf() qvr = py.quiver2([xcoo2d], [ycoo2d], [xdiff], [ydiff], units='width', scale=5, width=0.005, headwidth=3, headlength=3, headaxislength=3) py.quiverkey(qvr, 100, 1120, 1.0, '1 pixel', coordinates='data', color='r') py.xlabel('NIRC2 X (pixel)') py.ylabel('NIRC2 Y (pixel)') py.title('Arrows point to DAR Fix') #py.savefig('plots/vector_daroffon.png') py.show() ```
{ "source": "jlubbersgeo/general_geochem", "score": 2 }
#### File: jlubbersgeo/general_geochem/magmatrace_current.py ```python """magmatrace is a python module for doing high temperature geochemistry calculations """ # import the dependencies we'll need in these functions: import numpy as np import pandas as pd import warnings import re #%% Mixing model related functions def mixing(c1, c2, f): """ mixing creates a mixing model between two endmembers Inputs: c1 = concentration of endmember 1 c2 = concentration of endmember 2 f = fraction of endmember 1 in the model Returns: cm = concnetration of the mixture """ cm = c1 * f + c2 * (1 - f) return cm # isotopic mixing model. # fix this to add in a conditional to choose either one or two ratios def isomix(rationum, c1, r1, c2, r2, *data): """ isomix uses equations 18.24-18.26 from Faure 1998 to calculate isotopic mixing compositions for a given isotopic pair Inputs: rationum: use the input 'oneratio' or 'tworatios' to define how many isotopic systems you are interested in c1 = concentration of element for endmember 1 c2 = concentration of element for endmember 2 r1 = isotopic ratio for endmember 1 r2 = isotopic ratio for endmember 2 *data = repeat the first 4 inputs for the second isotopic system of interest Returns: cm = concentrations of mixture for various values of 'f' where f is the fraction of endmember 1 in the mixture rm = isotopic ratios of mixture for various values of 'f' """ # array of fractions of component 1 f = np.linspace(0, 1, 11) # concentration of the mixture # eq. 18.19 if rationum == "oneratio": cm = c1 * f + c2 * (1 - f) # eq. 18.25 a = (c1 * c2 * (r2 - r1)) / (c1 - c2) # eq. 18.26 b = (c1 * r1 - c2 * r2) / (c1 - c2) # eq. 18.24 rm = a / cm + b return cm, rm elif rationum == "tworatios": cm = c1 * f + c2 * (1 - f) # eq. 18.25 a = (c1 * c2 * (r2 - r1)) / (c1 - c2) # eq. 18.26 b = (c1 * r1 - c2 * r2) / (c1 - c2) # eq. 18.24 rm = a / cm + b cm2 = data[0] * f + data[2] * (1 - f) # eq 18.25 c = (data[0] * data[2] * (data[3] - data[1])) / (data[0] - data[2]) # eq 18.26 d = (data[0] * data[1] - data[2] * data[3]) / (data[0] - data[2]) rm2 = c / cm2 + d return cm, rm, cm2, rm2 else: print( "Check your input. Ensure to specify rattionum and the correct amount of concentrations or ratios" ) def ratio_mixing(df, n_components, resolution=0.1): """ Mixing of ratios as described by Albarede 1995 Introduction to Geochemical Modeling equation 1.3.1 Inputs: df | pandas DataFrame DataFrame of inputs. should be formatted as follows: For 2 component mixing: Index|Element1_c|Element1_r|Element2_c|Element2_r ------------------------------------------------- A | | | | ------------------------------------------------- B | | | | For 3 component mixing: Index|Element1_c|Element1_r|Element2_c|Element2_r ------------------------------------------------- A | | | | ------------------------------------------------- B | | | | ------------------------------------------------- C | | | | Where the name of each component is the index of the dataframe and the concentration and ratio columns for each elemental species contain "_c" and "_r" somewhere in the column header, respectively. n_components | int Number of end-member components (either 2 or 3) resolution | float The resolution you want to run your mixing model at. This is a number between 0.01 and 0.5. This is how far apart to space points in the eventual mixing mesh (e.g. .1 will return a mixing mesh spaced by 1O% increments for each component) Default is 0.1 Returns: results | pandas DataFrame The results of the mixing model that is n x 7 in shape: f_A|f_B|f_C|Element1_c_mix|Element2_c_mix|Element1_r_mix|Element2_r_mix ----------------------------------------------------------------------- Where f columns are fraction of each component in the mixture and other columns Are for the concentrations and ratios of the mixture for each respective combination of f values """ if n_components == 2: if resolution < 0.01: print( "Please pick a lower resolution (e.g., bigger number).\nYou don't need it and it your computer may explode" ) if resolution > 0.5: print("Please pick a higher resolution (e.g., number < 0.5). \n") else: # generate an array for fraction of each component f = np.arange(0, 1 + resolution, resolution) # all possible combinations for three f arrays a = np.array(np.meshgrid(f, f)).T.reshape(-1, 2) # where the combinations sum to 1 f_vals = a[a.sum(axis=1) == 1] # get names of components components = df.index.tolist() # get names of columns where concentrations and ratios are held # IMPORTANT TO HAVE DATAFRAME IN THIS FORMAT elements = [col for col in df.columns if "_c" in col] ratios = [col for col in df.columns if "_r" in col] # Concentration of mixture if len(elements) == 1: el1_mix_concentrations = ( df.loc[components[0], elements[0]] * f_vals[:, 0] + df.loc[components[1], elements[0]] * f_vals[:, 1] ) # ratio values of the mixture using Albarede 1995 eq. 1.3.1 el1_mix_ratios = df.loc[components[0], ratios[0]] * ( (f_vals[:, 0] * df.loc[components[0], elements[0]]) / el1_mix_concentrations ) + df.loc[components[1], ratios[0]] * ( (f_vals[:, 1] * df.loc[components[1], elements[0]]) / el1_mix_concentrations ) results = pd.DataFrame( { "f_{}".format(components[0]): f_vals[:, 0], "f_{}".format(components[1]): f_vals[:, 1], "{}_mix".format(elements[0]): el1_mix_concentrations, "{}_mix".format(ratios[0]): el1_mix_ratios, } ) else: el1_mix_concentrations = ( df.loc[components[0], elements[0]] * f_vals[:, 0] + df.loc[components[1], elements[0]] * f_vals[:, 1] ) el2_mix_concentrations = ( df.loc[components[0], elements[1]] * f_vals[:, 0] + df.loc[components[1], elements[1]] * f_vals[:, 1] ) # ratio values of the mixture using Albarede 1995 eq. 1.3.1 el1_mix_ratios = df.loc[components[0], ratios[0]] * ( (f_vals[:, 0] * df.loc[components[0], elements[0]]) / el1_mix_concentrations ) + df.loc[components[1], ratios[0]] * ( (f_vals[:, 1] * df.loc[components[1], elements[0]]) / el1_mix_concentrations ) el2_mix_ratios = df.loc[components[0], ratios[1]] * ( (f_vals[:, 0] * df.loc[components[0], elements[1]]) / el2_mix_concentrations ) + df.loc[components[1], ratios[1]] * ( (f_vals[:, 1] * df.loc[components[1], elements[1]]) / el2_mix_concentrations ) results = pd.DataFrame( { "f_{}".format(components[0]): f_vals[:, 0], "f_{}".format(components[1]): f_vals[:, 1], "{}_mix".format(elements[0]): el1_mix_concentrations, "{}_mix".format(elements[1]): el2_mix_concentrations, "{}_mix".format(ratios[0]): el1_mix_ratios, "{}_mix".format(ratios[1]): el2_mix_ratios, } ) if n_components == 3: if resolution < 0.01: print( "Please pick a lower resolution (e.g., bigger number).\nYou don't need it and it your computer may explode" ) if resolution > 0.5: print("Please pick a higher resolution (e.g., number < 0.5). \n") else: # generate an array for fraction of each component f = np.arange(0, 1 + resolution, resolution) # all possible combinations for three f arrays a = np.array(np.meshgrid(f, f, f)).T.reshape(-1, 3) # where the combinations sum to 1 f_vals = a[a.sum(axis=1) == 1] # get names of components components = df.index.tolist() # get names of columns where concentrations and ratios are held # IMPORTANT TO HAVE DATAFRAME IN THIS FORMAT elements = [col for col in df.columns if "_c" in col] ratios = [col for col in df.columns if "_r" in col] if len(elements) == 1: # Concentration of mixture using basic 3 component mixing # of concentrations el1_mix_concentrations = ( df.loc[components[0], elements[0]] * f_vals[:, 0] + df.loc[components[1], elements[0]] * f_vals[:, 1] + df.loc[components[2], elements[0]] * f_vals[:, 2] ) # ratio values of the mixture using Albarede 1995 eq. 1.3.1 el1_mix_ratios = ( df.loc[components[0], ratios[0]] * ( (f_vals[:, 0] * df.loc[components[0], elements[0]]) / el1_mix_concentrations ) + df.loc[components[1], ratios[0]] * ( (f_vals[:, 1] * df.loc[components[1], elements[0]]) / el1_mix_concentrations ) + df.loc[components[2], ratios[0]] * ( (f_vals[:, 2] * df.loc[components[2], elements[0]]) / el1_mix_concentrations ) ) results = pd.DataFrame( { "f_{}".format(components[0]): f_vals[:, 0], "f_{}".format(components[1]): f_vals[:, 1], "f_{}".format(components[2]): f_vals[:, 2], "{}_mix".format(elements[0]): el1_mix_concentrations, "{}_mix".format(ratios[0]): el1_mix_ratios, } ) else: # Concentration of mixture using basic 3 component mixing # of concentrations el1_mix_concentrations = ( df.loc[components[0], elements[0]] * f_vals[:, 0] + df.loc[components[1], elements[0]] * f_vals[:, 1] + df.loc[components[2], elements[0]] * f_vals[:, 2] ) el2_mix_concentrations = ( df.loc[components[0], elements[1]] * f_vals[:, 0] + df.loc[components[1], elements[1]] * f_vals[:, 1] + df.loc[components[2], elements[1]] * f_vals[:, 2] ) # ratio values of the mixture using Albarede 1995 eq. 1.3.1 el1_mix_ratios = ( df.loc[components[0], ratios[0]] * ( (f_vals[:, 0] * df.loc[components[0], elements[0]]) / el1_mix_concentrations ) + df.loc[components[1], ratios[0]] * ( (f_vals[:, 1] * df.loc[components[1], elements[0]]) / el1_mix_concentrations ) + df.loc[components[2], ratios[0]] * ( (f_vals[:, 2] * df.loc[components[2], elements[0]]) / el1_mix_concentrations ) ) el2_mix_ratios = ( df.loc[components[0], ratios[1]] * ( (f_vals[:, 0] * df.loc[components[0], elements[1]]) / el2_mix_concentrations ) + df.loc[components[1], ratios[1]] * ( (f_vals[:, 1] * df.loc[components[1], elements[1]]) / el2_mix_concentrations ) + df.loc[components[2], ratios[1]] * ( (f_vals[:, 2] * df.loc[components[2], elements[1]]) / el2_mix_concentrations ) ) results = pd.DataFrame( { "f_{}".format(components[0]): f_vals[:, 0], "f_{}".format(components[1]): f_vals[:, 1], "f_{}".format(components[2]): f_vals[:, 2], "{}_mix".format(elements[0]): el1_mix_concentrations, "{}_mix".format(elements[1]): el2_mix_concentrations, "{}_mix".format(ratios[0]): el1_mix_ratios, "{}_mix".format(ratios[1]): el2_mix_ratios, } ) return results def isoassim(modeltype, rationum, r, D, cp, ca, ep, ea, *data): """ isoassim uses equation 15B from DePaolo (1981) in order to look at the evolution of one or two isotopic ratios and their associated trace element concentrations during combined assimilation and fractionation Inputs: modeltype == DePaolo15b; this is the only one currently and is by far the most useful rationum = the number of isotopic systems you are interested in. List 'oneratio' or 'tworatios' r = the r value, defined as the rate of fractionation to the rate of assimilation by mass D = the bulk D value for the first isotopic system cp = concentration of trace element in parental magma ca = concentration of trace element in assimilant ep = isotopic ratio of parental magma ea = isotopic ratio of assimilant *data = if you are interested in two ratios as opposed to one then you must input new values for D through ea for the second isotopic system """ # array of fractions of component 1 f = np.linspace(0, 1, 11) if modeltype == "DePaolo15b" and rationum == "oneratio": # mix the trace elements cm = cp * f + ca * (1 - f) # get the effective distribution coefficient z = (r + D - 1) / (r - 1) # calculate the isotopic ratio of the daughter that has undergone assimilation em = ((r / (r - 1)) * (ca / z) * (1 - f ** (-z)) * ea + cp * f ** (-z) * ep) / ( (r / (r - 1)) * (ca / z) * (1 - f ** (-z)) + (cp * f ** (-z)) ) return cm, em elif modeltype == "DePaolo15b" and rationum == "tworatios": # get mixes of both trace elements associated with the isotopic systems of interest cm = cp * f + ca * (1 - f) cm2 = data[1] * f + data[2] * (1 - f) # get the effective distribution coefficents for both isotopic systems z1 = (r + D - 1) / (r - 1) z2 = (r + data[0] - 1) / (r - 1) # calculate the isotopic ratios of the daughter for both systems em = ((r / (r - 1)) * (ca / z) * (1 - f ** (-z)) * ea + cp * f ** (-z) * ep) / ( (r / (r - 1)) * (ca / z) * (1 - f ** (-z)) + (cp * f ** (-z)) ) em2 = ( (r / (r - 1)) * (data[2] / z2) * (1 - f ** (-z2)) * data[4] + data[1] * f ** (-z2) * data[3] ) / ((r / (r - 1)) * (data[2] / z1) * (1 - f ** (-z1)) + (data[1] * f ** (-z1))) return cm, cm2, em, em2 else: print( "You must specify the modeltype as DePaolo15b, number of ratios as one or two, r, D, and/or D2, then your ratios" ) # Equations by Aitcheson & Forrest (1994) used to estimate the degree of assimilation independent of # Depaolo's (1981) variable r # equations based on isotopic compositions def crustfraciso(eq, systems, D, c0m, e0m, em, ea, *data): """ This model will give either equation 5 or 7 of the Aitcheson & Forrest (1994) equations that are used for estimating the fraction of assimilated crust without the requirement of guessing at the r value required for the DePaolo (1981) equations. The user should be familiar about what needs to be input - in short, this is estimated basement compositions as the assimilant, measured compositions for the 'daughter', and a thoroughly educated guess at intital magma composition. An example of this applicability can be seen in Kay et al. (2010). Inputs: eq: 'five' for equation five and 'seven' for equation 'seven'. Equation five is independent of erupted magma composition and degree of melting F Equation seven is independent of the trace element composition in the assimilant systems: Up to four isotopic systems can be considered. These are designated by the input 'one', 'two', 'threee', or 'four'. There is a caveat to putting in more than one isotopic system explained by teh input parameter *data seen below D: The bulk partition coefficient of the element associated with the isotopic system of interest in the host magma c0m: Estimated trace element composition of the element associated with the isotopic system of interest in the original parent magma. e0m: Estimated isotopic ratio for the system of interest in the original parent magma. em: Measured isotpic ratio of hte daughter magma that has undergone assimilation. ea: Estimated isotopic ratio of the assimilant. *data: If you wish to do more than one isotpic system, you must input values for D thorugh ea in exactly the same order as defined in the function above Outputs: crustfrac 1, 2, 3, or 4 depending on how many isotpic systems you are interested in. This is equivalent to the value 'rho' in Aitcheson & Forrest (1994) """ import numpy as np r = np.linspace(0, 1, 11) if eq == "five" and systems == "one": wave = (e0m - em) / (em - ea) ca = data[0] gamma = ca / c0m crustfrac = (r / (r - 1)) * ( (1 + ((wave * (r + D - 1)) / (r * gamma))) ** ((r - 1) / (r + D - 1)) - 1 ) return crustfrac elif eq == "five" and systems == "two": wave1 = (e0m - em) / (em - ea) ca1 = data[0] gamma1 = ca / c0m crustfrac1 = (r / (r - 1)) * ( (1 + ((wave1 * (r + D - 1)) / (r * gamma1))) ** ((r - 1) / (r + D - 1)) - 1 ) wave2 = (data[3] - data[4]) / (data[4] - data[5]) ca2 = data[6] gamma2 = ca2 / data[2] crustfrac2 = (r / (r - 1)) * ( (1 + ((wave2 * (r + data[1] - 1)) / (r * gamma2))) ** ((r - 1) / (r + data[1] - 1)) - 1 ) return crustfrac1, crustfrac2 elif eq == "five" and systems == "three": wave1 = (e0m - em) / (em - ea) ca1 = data[0] gamma1 = ca / c0m crustfrac1 = (r / (r - 1)) * ( (1 + ((wave1 * (r + D - 1)) / (r * gamma1))) ** ((r - 1) / (r + D - 1)) - 1 ) wave2 = (data[3] - data[4]) / (data[4] - data[5]) ca2 = data[6] gamma2 = ca2 / data[2] crustfrac2 = (r / (r - 1)) * ( (1 + ((wave2 * (r + data[1] - 1)) / (r * gamma2))) ** ((r - 1) / (r + data[1] - 1)) - 1 ) wave3 = (data[9] - data[10]) / (data[10] - data[11]) ca3 = data[12] gamma3 = ca3 / data[8] crustfrac3 = (r / (r - 1)) * ( (1 + ((wave3 * (r + data[7] - 1)) / (r * gamma3))) ** ((r - 1) / (r + data[7] - 1)) - 1 ) return crustfrac1, crustfrac2, crustfrac3 elif eq == "five" and systems == "four": wave1 = (e0m - em) / (em - ea) ca1 = data[0] gamma1 = ca / c0m crustfrac1 = (r / (r - 1)) * ( (1 + ((wave1 * (r + D - 1)) / (r * gamma1))) ** ((r - 1) / (r + D - 1)) - 1 ) wave2 = (data[3] - data[4]) / (data[4] - data[5]) ca2 = data[6] gamma2 = ca2 / data[2] crustfrac2 = (r / (r - 1)) * ( (1 + ((wave2 * (r + data[1] - 1)) / (r * gamma2))) ** ((r - 1) / (r + data[1] - 1)) - 1 ) wave3 = (data[9] - data[10]) / (data[10] - data[11]) ca3 = data[12] gamma3 = ca3 / data[8] crustfrac3 = (r / (r - 1)) * ( (1 + ((wave3 * (r + data[7] - 1)) / (r * gamma3))) ** ((r - 1) / (r + data[7] - 1)) - 1 ) wave4 = (data[15] - data[16]) / (data[16] - data[17]) ca4 = data[18] gamma4 = ca4 / data[14] crustfrac4 = (r / (r - 1)) * ( (1 + ((wave4 * (r + data[13] - 1)) / (r * gamma4))) ** ((r - 1) / (r + data[13] - 1)) - 1 ) return crustfrac1, crustfrac2, crustfrac3, crustfrac4 elif eq == "seven" and systems == "one": cm = data[0] crustfrac = (r / (r - 1)) * ( ((c0m / cm) * ((ea - e0m) / (ea - em))) ** ((r - 1) / (r + D - 1)) - 1 ) return crustfrac elif eq == "seven" and systems == "two": cm1 = data[0] crustfrac1 = (r / (r - 1)) * ( ((c0m / cm1) * ((ea - e0m) / (ea - em))) ** ((r - 1) / (r + D - 1)) - 1 ) cm2 = data[6] crustfrac2 = (r / (r - 1)) * ( ((data[2] / cm1) * ((data[5] - data[3]) / (data[5] - data[4]))) ** ((r - 1) / (r + data[1] - 1)) - 1 ) return crustfrac1, crustfrac2 elif eq == "seven" and systems == "three": cm1 = data[0] crustfrac1 = (r / (r - 1)) * ( ((c0m / cm1) * ((ea - e0m) / (ea - em))) ** ((r - 1) / (r + D - 1)) - 1 ) cm2 = data[6] crustfrac2 = (r / (r - 1)) * ( ((data[2] / cm2) * ((data[5] - data[3]) / (data[5] - data[4]))) ** ((r - 1) / (r + data[1] - 1)) - 1 ) cm3 = data[12] crustfrac3 = (r / (r - 1)) * ( ((data[8] / cm3) * ((data[11] - data[9]) / (data[11] - data[10]))) ** ((r - 1) / (r + data[7] - 1)) - 1 ) cm4 = data[18] crustfrac4 = (r / (r - 1)) * ( ((data[14] / cm4) * ((data[17] - data[15]) / (data[17] - data[16]))) ** ((r - 1) / (r + data[13] - 1)) - 1 ) return crustfrac1, crustfrac2, crustfrac3, crustfrac4 else: print("Check your input") # equations independent of the isotopic composition def crustfracele(systems, D, c0m, cm, ca, *data): """ This model will give either equation 6of the Aitcheson & Forrest (1994) equations that are used for estimating the fraction of assimilated crust without the requirement of guessing at the r value required for the DePaolo (1981) equations. The user should be familiar about what needs to be input - in short, this is estimated basement compositions as the assimilant, measured compositions for the 'daughter', and a thoroughly educated guess at intital magma composition. An example of this applicability can be seen in Kay et al. (2010). This particular equation uses trace elements only and is independent of isotopic ratios. This equation is best used in combination with the function crustfraciso. Inputs: systems: Up to four systems can be considered. These are designated by the input 'one', 'two', 'threee', or 'four'. There is a caveat to putting in more than one isotopic system explained by teh input parameter *data seen below D: The bulk partition coefficient of the element associated with the isotopic system of interest in the host magma c0m: Estimated trace element composition of the element associated with the isotopic system of interest in the original parent magma. cm: Measured trace element composition of the 'daughter' magma that has undergone assimilation ca: Estimated trace element composition of the assimilant *data: If you wish to do more than one isotpic system, you must input values for D thorugh ea in exactly the same order as defined in the function above Outputs: crustfrac 1, 2, 3, or 4 depending on how many systems you are interested in. This is equivalent to the value 'rho' in Aitcheson & Forrest (1994) """ import numpy as np r = np.linspace(0, 1, 11) if systems == "one": crustfrac = (r / (r - 1)) * ( ((c0m * (r + D - 1) - r * ca) / (cm * (r + D - 1) - r * ca)) ** ((r - 1) / (r + D - 1)) - 1 ) return (crustfrac,) elif systems == "two": crustfrac1 = (r / (r - 1)) * ( ((c0m * (r + D - 1) - r * ca) / (cm * (r + D - 1) - r * ca)) ** ((r - 1) / (r + D - 1)) - 1 ) crustfrac2 = (r / (r - 1)) * ( ( (data[1] * (r + data[0] - 1) - r * data[3]) / (data[2] * (r + data[0] - 1) - r * data[3]) ) ** ((r - 1) / (r + data[0] - 1)) - 1 ) return crustfrac1, crustfrac2 elif systems == "three": crustfrac1 = (r / (r - 1)) * ( ((c0m * (r + D - 1) - r * ca) / (cm * (r + D - 1) - r * ca)) ** ((r - 1) / (r + D - 1)) - 1 ) crustfrac2 = (r / (r - 1)) * ( ( (data[1] * (r + data[0] - 1) - r * data[3]) / (data[2] * (r + data[0] - 1) - r * data[3]) ) ** ((r - 1) / (r + data[0] - 1)) - 1 ) crustfrac3 = (r / (r - 1)) * ( ( (data[5] * (r + data[4] - 1) - r * data[7]) / (data[6] * (r + data[4] - 1) - r * data[7]) ) ** ((r - 1) / (r + data[4] - 1)) - 1 ) return crustfrac1, crustfrac2, crustfrac3 elif systems == "four": crustfrac1 = (r / (r - 1)) * ( ((c0m * (r + D - 1) - r * ca) / (cm * (r + D - 1) - r * ca)) ** ((r - 1) / (r + D - 1)) - 1 ) crustfrac2 = (r / (r - 1)) * ( ( (data[1] * (r + data[0] - 1) - r * data[3]) / (data[2] * (r + data[0] - 1) - r * data[3]) ) ** ((r - 1) / (r + data[0] - 1)) - 1 ) crustfrac3 = (r / (r - 1)) * ( ( (data[5] * (r + data[4] - 1) - r * data[7]) / (data[6] * (r + data[4] - 1) - r * data[7]) ) ** ((r - 1) / (r + data[4] - 1)) - 1 ) crustfrac4 = (r / (r - 1)) * ( ( (data[9] * (r + data[8] - 1) - r * data[11]) / (data[10] * (r + data[8] - 1) - r * data[11]) ) ** ((r - 1) / (r + data[8] - 1)) - 1 ) return crustfrac1, crustfrac2, crustfrac3, crustfrac3 else: print("Check your input") #%% Thermometry related functions def plag_kd_calc(element, An, temp, method): """ calculates the partition coefficient for a given element in plagioclase based on its anorthite content according to the Arrhenius relationship as originally defined by Blundy and Wood (1991) This function gives the user an option of three experimental papers to choose from when calculating partition coefficient: Bindeman et al., 1998 = ['Li','Be','B','F','Na','Mg','Al','Si','P','Cl','K','Ca','Sc', 'Ti','Cr','Fe','Co','Rb','Sr','Zr','Ba','Y','La','Ce','Pr','Nd','Sm','Eu','Pb'] Nielsen et al., 2017 = ['Mg','Ti','Sr','Y','Zr','Ba','La','Ce','Pr','Nd','Pb'] Tepley et al., 2010 = ['Sr','Rb','Ba','Pb','La','Nd','Sm','Zr','Th','Ti'] Inputs: ------- element : string The element you are trying to calculate the partition coefficient for. See Bindeman 1998 for supported elements An : array-like Anorthite content (between 0 and 1) of the plagioclase. This can be a scalar value or Numpy array temp: scalar Temperature in Kelvin to calculate the partition coefficient at method : string choice of 'Bindeman', 'Nielsen', 'Tepley'. This uses then uses the Arrhenius parameters from Bindeman et al., 1998, Nielsen et al., 2017, or Tepley et al., 2010, respectively. Returns: -------- kd_mean : array-like the mean partition coefficient for the inputs listed kd_std : array-like standard deviation of the partition coefficient calculated via Monte Carlo simulation of 1000 normally distributed random A and B parameters based on their mean and uncertainties """ if method == "Bindeman": # Table 4 from Bindeman et al 1998 elements = [ "Li", "Be", "B", "F", "Na", "Mg", "Al", "Si", "P", "Cl", "K", "Ca", "Sc", "Ti", "Cr", "Fe", "Co", "Rb", "Sr", "Zr", "Ba", "Y", "La", "Ce", "Pr", "Nd", "Sm", "Eu", "Pb", ] a = ( np.array( [ -6.9, 28.2, -0.61, -37.8, -9.4, -26.1, -0.3, -2, -30.7, -24.5, -25.5, -15.2, -94.2, -28.9, -44, -35.2, -59.9, -40, -30.4, -90.4, -55, -48.1, -10.8, -17.5, -22.5, -19.9, -25.7, -15.1, -60.5, ] ) * 1e3 ) a_unc = ( np.array( [ 1.9, 6.1, 0.5, 11.5, 1, 1.1, 0.8, 0.2, 4.6, 9.5, 1.2, 0.6, 28.3, 1.5, 6.3, 1.9, 10.8, 6.7, 1.1, 5.5, 2.4, 3.7, 2.6, 2.3, 4.1, 3.6, 6.3, 16.1, 11.8, ] ) * 1e3 ) b = ( np.array( [ -12.1, -29.5, 9.9, 23.6, 2.1, -25.7, 5.7, -0.04, -12.1, 11, -10.2, 17.9, 37.4, -15.4, -9.3, 4.5, 12.2, -15.1, 28.5, -15.3, 19.1, -3.4, -12.4, -12.4, -9.3, -9.4, -7.7, -14.2, 25.3, ] ) * 1e3 ) b_unc = ( np.array( [ 1, 4.1, 3.8, 7.1, 0.5, 0.7, 0.4, 0.08, 2.9, 5.3, 0.7, 0.3, 18.4, 1, 4.1, 1.1, 7, 3.8, 0.7, 3.6, 1.3, 1.9, 1.8, 1.4, 2.7, 2.0, 3.9, 11.3, 7.8, ] ) * 1e3 ) plag_kd_params = pd.DataFrame( [a, a_unc, b, b_unc], columns=elements, index=["a", "a_unc", "b", "b_unc"] ) R = 8.314 elif method == "Nielsen": elements = ["Mg", "Ti", "Sr", "Y", "Zr", "Ba", "La", "Ce", "Pr", "Nd", "Pb"] a = ( np.array([-10, -32.5, -25, -65.7, -25, -35.1, -32, -33.6, -29, -31, -50]) * 1e3 ) a_unc = np.array([3.3, 1.5, 1.1, 3.7, 5.5, 4.5, 2.9, 2.3, 4.1, 3.6, 11.8]) * 1e3 b = np.array([-35, -15.1, 25.5, 2.2, -50, 10, -5, -6.8, 8.7, -8.9, 22.3]) * 1e3 b_unc = np.array([2.1, 1, 0.7, 1.9, 3.6, 2.4, 2.3, 1.4, 2.7, 2.0, 7.8]) * 1e3 plag_kd_params = pd.DataFrame( [a, a_unc, b, b_unc], columns=elements, index=["a", "a_unc", "b", "b_unc"] ) R = 8.314 elif method == "Tepley": elements = ["Sr", "Rb", "Ba", "Pb", "La", "Nd", "Sm", "Zr", "Th", "Ti"] a = ( np.array( [-50.18, -35.7, -78.6, -13.2, -93.7, -84.3, -108.0, -70.9, -58.1, -30.9] ) * 1e3 ) a_unc = ( np.array([6.88, 13.8, 16.1, 44.4, 12.2, 8.1, 17.54, 58.2, 35.5, 8.6]) * 1e3 ) b = np.array( [44453, -20871, 41618, -15761, 37900, 24365, 35372 - 7042, -60465, -14204] ) b_unc = np.array([1303, 2437, 2964, 5484, 2319, 1492, 3106, 101886073493]) plag_kd_params = pd.DataFrame( [a, a_unc, b, b_unc], columns=elements, index=["a", "a_unc", "b", "b_unc"] ) if np.percentile(An, q=50) < 0.6: warnings.warn( "Over half your An values are significantly below the calibration range in Tepley et al., (2010)" "and most likely will produce partition coefficient values that are significantly overestimated", stacklevel=2, ) R = 8.314 if element in elements: a = np.random.normal( plag_kd_params[element].a, plag_kd_params[element].a_unc, 1000 ) b = np.random.normal( plag_kd_params[element].b, plag_kd_params[element].b_unc, 1000 ) kds = np.exp((a[:, np.newaxis] * An + b[:, np.newaxis]) / (R * temp)) kd_mean = np.mean(kds, axis=0) kd_std = np.std(kds, axis=0) else: raise Exception( "The element you have selected is not supported by this function. Please choose another one" ) return kd_mean, kd_std def amp_kd_calc(amph_sites_ff, element): """ aem_calc calculates the partition coefficient for a specified trace element that is in equilibrium with a given amphibole composition according to Humphreys et al., 2019. supported elements = ['Rb','Sr','Pb','Zr','Nb','La','Ce','Nd','Sm', 'Eu','Gd','Dy','Ho','Yb','Lu','Y'] Parameters ---------- amph_sites_ff : pandas DataFrame Amphibole site allocations that incorporate ferric ferrous iron. This should be the output from the get_amp_sites_ferric_ferrous function element : string The element you want to calculate the partition coefficient for Raises ------ Exception If you do not choose a supported element from Humphreys et al., 2019 an error will be thrown prompting you to choose a supported element Returns ------- aem_kd : array-like partition coefficient between amphibole and its equilibrium melt aem_kd_se : scalar the one sigma uncertainty on your partition coefficient taken from table 2 in Humphreys et al., 2019 """ # Building table 2 from Humphreys et al 2019 elements = [ "Rb", "Sr", "Pb", "Zr", "Nb", "La", "Ce", "Nd", "Sm", "Eu", "Gd", "Dy", "Ho", "Yb", "Lu", "Y", ] constants = np.array( [ 9.1868, 3.41585, -4.2533, -25.6167, -22.27, -20.0493, -21.1078, -20.3082, -11.3625, -35.6604, -19.0583, -16.0687, -20.4148, -15.8659, -19.3462, -36.2514, ] ) si = np.array( [ -1.3898, -0.75281, 0, 2.6183, 2.3241, 2.0732, 2.4749, 2.5162, 1.6002, 4.1452, 2.4417, 2.3858, 2.3654, 2.281, 2.1142, 3.6078, ] ) al = np.array([0, 0, 2.715, 2.6867, 0, 0, 0, 0, 0, 2.6886, 0, 0, 0, 0, 0, 3.78]) ti = np.array( [ -3.6797, 0, 1.69, 4.838, 3.7633, 2.5498, 2.4717, 2.5863, 0, 6.4057, 1.9786, 1.8255, 2.484, 1.5905, 2.8478, 7.513, ] ) fe3 = np.array( [ -1.5769, 0, 0.7065, 2.6591, 2.9786, 1.5317, 1.5722, 1.9459, 1.2898, 3.8508, 1.8765, 1.9741, 3.2601, 2.1534, 2.7011, 4.8366, ] ) fe2 = np.array( [ -0.6938, 0.36529, 0, 0.6536, 1.44, 1.117, 0.952, 0.9566, 1.2376, 0.7255, 0.9943, 0.6922, 1.2922, 0.7867, 1.0402, 0.814, ] ) ca = np.array( [ 0, 0, 0, 2.5248, 1.8719, 2.2771, 1.5311, 1.2763, 0, 3.0679, 1.3577, 0, 3.1762, 0, 2.9625, 4.60, ] ) naa = np.array( [0, 0, -1.0433, 0, 0, -1.4576, 0, 0, 0, 0, 0, 0, -4.9224, 0, -3.2356, 0] ) se = np.array( [ 0.29, 0.19, 0.23, 0.49, 0.45, 0.34, 0.32, 0.36, 0.43, 0.37, 0.4, 0.33, 0.4, 0.43, 0.39, 0.32, ] ) columns = [ "element", "constant", "Si", "Al_vi", "Ti", "Fe3", "Fe2", "Ca", "Na_A", "se", ] aem_params = pd.DataFrame( dict( constant=constants, Si=si, Al_vi=al, Ti=ti, Fe3=fe3, Fe2=fe2, Ca=ca, Na_a=naa, SE=se, ), index=elements, ) if element in elements: aem_kd = np.exp( aem_params.loc[element].constant + (aem_params.loc[element].Si * amph_sites_ff["Si_T"]) + (aem_params.loc[element].Al_vi * amph_sites_ff["Al_D"]) + (aem_params.loc[element].Ti * amph_sites_ff["Ti_D"]) + (aem_params.loc[element].Fe3 * amph_sites_ff["Fe3_D"]) + ( aem_params.loc[element].Fe2 * (amph_sites_ff["Fe2_C"] + amph_sites_ff["Fe2_B"]) ) + (aem_params.loc[element].Ca * amph_sites_ff["Ca_B"]) + (aem_params.loc[element].Na_a * amph_sites_ff["Na_A"]) ) aem_kd_se = aem_params.loc[element].SE else: raise Exception( "The element you have selected is not supported by this function. Please choose another one" ) return aem_kd, aem_kd_se # function to calculate zr saturation temperature def t_zr_sat(M, zrmelt, model): """ t_zr_sat calculates the zircon saturation temperature using the relationships found in both Watson and Harrison 1983 as well as Boehnke et al., 2013 Inputs: M = (Na + K + 2Ca)/(Al*Si) in normalized cation fraction zrmelt = concentration of Zr in the melt model = 'watson' or 'boehnke'. This will govern the equation used to calculate zircon saturation temperature based on the equations from watson and harrison 1983 or boehnke et al., 2013, respectively Returns: t = zircon saturation temperature for the chosen model BOTH TEMPERATURES ARE IN DEGREES CELSIUS """ if model == "watson": t = 12900 / (2.95 + 0.85 * M + np.log(496000 / zrmelt)) - 273.15 elif model == "boehnke": t = 10108 / (0.32 + 1.16 * M + np.log(496000 / zrmelt)) - 273.15 return t # titanium in quartz thermometry def titaniq(Ti, P): """ titaniq calculates the quartz crystallization temperature based on a known concentration of titanium in quartz and pressure of crystallization. This is based on the work of Huang and Audetát (2012). Inputs: Ti = array-like concentration of Ti in quartz (ppm) P = array-like pressure of crystallization (kbar) Returns: temp = array-like temperature of quartz crystallization (C) """ temp = ((-2794.3 - (660.53 * P ** 0.35)) / (np.log10(Ti) - 5.6459)) - 273.15 return temp #%% melting and crystallization related functions # partition coefficient def kd(Cs, Cl): """ kd calculates a partition coefficient for a given set of measurements. For igneous petrology, this is commonly the concentration of a trace element in the mineral divided by the concentration of the same trace element in the melt (e.g. Rollinson 1993 Eq. 4.3) Inputs: Cs = concnetration in the mineral Cl = concentration in the melt Returns: kd = partition coefficient for the given input parameters """ kd = Cs / Cl return kd # Distribution coefficient def bulk_kd(kds, f_s): """ bulk_kd generates a distribution coefficient that is the weighted sum of partition coefficients for an element in a given mineral assemblage. Based off Rollinson 1993 Eq. 4.5 Parameters ---------- kds : array-like the individual partition coefficients of the mineral assemblage f_s : array-like the individual fractions of each mineral in the overall assemblage between 0 and 1 Returns ------- bulk_kd : the bulk partition coefficient for a given trace element for the mineral assemblage """ D = np.sum(kds * f_s) return D # melting equations def non_modal_batch_melt(Co, Do, F, P): """ non_modal_batch calculates the concentration of a given trace element in a melt produced from non modal batch melting of a source rock as described by Shaw (1970) equation 15. Inputs: Co = Concentration of trace element in the original solid Do = Bulk distribution coefficient for element when F = 0 F = Fraction of original solid melted (fraction of melt) P = Bulk distribution coefficient of the melting mineral assemblage Returns: Cl = concentration in the newly formed liquid Note: if Do and P are the same, then you effectively have modal batch melting """ Cl = Co * (1 / (F * (1 - P) + Do)) return Cl def non_modal_frac_melt(Co, Do, F, P): """ non_modal_frac_melt calculates the composition of a trace element in a melt produced from non modal fractional melting of a source rock as described by Rollinson 1993 Eq. 4.13 and 4.14. Inputs: Co = Concentration of trace element in the original solid Do = Bulk distribution coefficient for element when F = 0 F = Fraction of original solid melted (fraction of melt) P = Bulk distribution coefficient of melting mineral assemblage Returns: Cl = concentration in the extracted liquid. This is different from the concentration of the instantaneous liquid. Cs = concentration in the residual solid Note: if Do and P are the same, then you effectively have modal fractional melting """ Cl = (Co / F) * (1 - (1 - F * (P / Do)) ** (1 / P)) return Cl # dynamic melting def non_modal_dynamic_melt(Co, Do, F, P, phi): """ non_modal_dynamic_melt calculates the concentration of a liquid extracted via dynamic melting as described in McKenzie (1985) and Zou (2007) Eq. 3.18. This is applicable for a sitiuation in which melt is in equilibrium when the fraction is below a critical value and then fractional when it is above that value. Parameters ---------- Co : array-like Concentration of trace element in original solid Do : array-like Bulk distribution coefficient for element when F = 0 F : array-like fraction of original solid melted (fraction of melt) P : array-like Bulk distribution coefficient of melting mineral assemblage phi : array-like critical mass porosity of residue Returns ------- Cl : array-like Concentration of trace element in the liquid """ X = (F - phi) / (1 - phi) Cl = (Co / X) * ( 1 - (1 - ((X * (P + phi * (1 - P))) / (Do + phi * (1 - P)))) ** (1 / (phi + (1 - phi) * P)) ) return Cl # crystallization equations def eq_xtl( Cl, D, F, ): """ eq_xtl calculates the composition of a trace element in the remaining liquid after a certain amount of crystallization has occured from a source melt when the crystal remeains in equilibrium with the melt as described by White (2013) Chapter 7 eq. 7.81. It then calculates the concentration of that trace element in a specific solid phase based on partition coefficient input. Inputs: Cl = concentration of trace element in original liquid D = bulk distribution coefficient for trace element of crystallizing assemblage F = fraction of melt remaining Returns: Cl_new = concentration of trace element in the remaining liquid """ Cl_new = Cl / (D + F * (1 - D)) return Cl_new # fractional crystallization def frac_xtl( Cl, D, F, ): """ frac_xtl calculates the composition of a trace element in the remaining liquid after a certain amount of crystallization has occured from a source melt when the crystal is removed from being in equilibrium with the melt as described by White (2013) Chapter 7 eq. 7.82. It also calculates the concentration of the trace element in the mean cumulate assemblage as described by Rollinson 1993 Eq. 4.20 Inputs: Cl = concentration of trace element in original liquid D = bulk distribution coefficient for trace element of crystallizing assemblage F = fraction of melt remaining Returns: Cl_new = concentration of trace element in the remaining liquid Cr = concentration in the cumulate """ Cl_new = Cl * (F) ** (D - 1) Cr = Cl * ((1 - F ** D) / (1 - F)) return Cl_new, Cr # in situ crystallization def insitu_xtl(Cl, D, F, f, fa): """ insitu_xtl calculates the concentration of the remaining melt as described in Langmuir (1989) and Rollinson 1993 Eq. 4.21 whereby crystallization predominantly takes place at the sidewalls of a magma reservoir. Rather than crystals being extracted from the liquid, liquid is extracted from a sidewall 'mush' in situ. The solidification zone progressively moves through the magma chamber until crystallization is complete. In general this amounts in less enrichment of incompatible elements and less depletion of compatible elements than fractional crystallization Parameters ---------- Cl : array-like concentration of trace element in original liquid D : array-like bulk partition coefficient of crystallizing of crystallizing assemblage F : array-like fraction of melt remaining (between >0 and 1). If 0 is in this array, error message will be thrown because python does not do division by 0 f : array-like the fraction of interstitial liquid remaining after crystallization within the solidification zone. It is assumed that some of this is trapped in the cumulate (ft) and some is returned to the magma (fa). therefore f = ft + fa fa : fraction of interstitial liquid that returns to the magma.f = fa would be an example where there is no interstital liquid in the crystallization front Returns ------- Cl_new : array like concentration of extracted liquid from crystallization front """ E = 1.0 / (D * (1.0 - f) + f) Cl_new = Cl * (F ** ((fa * (E - 1)) / (fa - 1))) return Cl_new def fraclin_xtl(Cl, a, b, F): """ fraclin_xtl calculates the composition of the liquid remaining after it has experienced fractional crystallization where the distribution coefficient varies linearly with melt fraction. This was originally described by Greenland 1970. Parameters ---------- Cl : array-like concentration of the trace element in the original liquid a : array-like intercept of the relationship describing the linear change in D with melt fraction b : array-like slope of the relationship describing the linear change in D with melt fraction F : array-like fraction of melt remaining (between 0 and 1). Returns ------- Cl_new : TYPE DESCRIPTION. """ Cl_new = Cl * np.exp((a - 1) * np.log(F) + b * (F - 1)) return Cl_new #%% General mineral recalculation. def mineral_formula_calc(df, n_oxygens, mineral, normalized,index): """ mineral_formula_calc is a function that calculates the stoichiometry for a mineral based on a set of major element oxide analyses as described by Deer et al., 1966 Appendix 1 Inputs: df : pandas dataframe object of major element analyses. Column headers must have the the element somewhere in the name ** if a column containing 'Total' in the name exists, it will be removed so that only the individual analyses are present ** your dataframe should have a column that pertains to sample, analysis number, etc. This will be set as the index of the dataframe so that chemical formulas can be accessed easily upon calculation EXAMPLE OF INPUT DATAFRAME: |sample|SiO2|TiO2|Al2O3|Cr2O3|FeO|BaO|SrO|MnO|CaO|Na2O|K2O|NiO|Total| <---- currently supported elements n_oxygens : number of ideal oxygens in the chemical formula (e.g., for feldspars this would be 8) mineral : 'feldspar','olivine','pyroxene' if 'pyroxene' is chosen, the function will calculate the proportions of Fe2+ and Fe3+ based off stoichiometry and charge balance as described by Droop 1987. If 'feldspar', all Fe is assumed to be Fe3+. If 'olivine', all Fe is assumed to be 2+ normalized: boolean if True, will normalize your geochemical analyses. If false, mineral formulas will be calculated using raw geochemical data index: string column denoting which column to be used as the index for the dataframe. Suggested that this is a column that denotes sample name or spot name or something similar Returns: norm_cations: pandas dataframe object that contains the calculated number of cations in the chemical formula normalized to the amount of ideal oxygens specified by 'n_oxygens'. """ data = df.copy() data.set_index(index,inplace = True) data.fillna(0, inplace=True) # if index is not None: # data.set_index(index,inplace = True) # else: # data.index = np # Removes the 'total column' from the list columns = list(data.columns) elements = [] for column in columns: if "Total" in column: columns.remove(column) # can make this a delimeter variable for the user to choose from # dropping anything after the underscore for column in columns: if "Si" in column: elements.append(column.split("_")[0]) if "Ti" in column: elements.append(column.split("_")[0]) if "Al" in column: elements.append(column.split("_")[0]) if "Cr" in column: elements.append(column.split("_")[0]) if "Fe" in column: elements.append(column.split("_")[0]) if "Ba" in column: elements.append(column.split("_")[0]) if "Sr" in column: elements.append(column.split("_")[0]) if "Mn" in column: elements.append(column.split("_")[0]) if "Mg" in column: elements.append(column.split("_")[0]) if "Na" in column: elements.append(column.split("_")[0]) if "K" in column: elements.append(column.split("_")[0]) if "Ca" in column: elements.append(column.split("_")[0]) if "Ni" in column: elements.append(column.split("_")[0]) if "Cl" in column: elements.append(column.split("_")[0]) if "P2O5" in column: elements.append(column.split("_")[0]) # create new dataframe that is just the analyses without the total oxides = data.loc[:, columns] oxides.columns = elements if normalized == True: # normalize the wt% oxides_normalized = 100 * (oxides.div(oxides.sum(axis="columns"), axis="rows")) elif normalized == False: oxides_normalized = oxides.copy() # create an array filled with zeros such that it is the same shape of our input # data mol_cations = np.zeros(oxides_normalized.shape) # these loops are saying that: for each element in my list of elements (e.g., columns) # check to see if the given string (e.g., Si) is in it. If it is, then populate that column # of the array with the appropriate math # Here we call on the mendeleev package module 'element' to get the mass from a given element # e.g.(el(element).mass) for i, element in zip(range(len(elements)), elements): if "Si" in element: mol_cations[:, i] = oxides_normalized[element] / (28.09 + (16 * 2)) elif "Ti" in element: mol_cations[:, i] = oxides_normalized[element] / (47.87 + (16 * 2)) elif "Al" in element: mol_cations[:, i] = (2 * oxides_normalized[element]) / ( (26.98 * 2) + (16 * 3) ) elif "Cr" in element: mol_cations[:, i] = (2 * oxides_normalized[element]) / ((52 * 2) + (16 * 3)) elif "Fe" in element: mol_cations[:, i] = oxides_normalized[element] / (55.85 + 16) elif "Ba" in element: mol_cations[:, i] = oxides_normalized[element] / (137.33 + 16) elif "Sr" in element: mol_cations[:, i] = oxides_normalized[element] / (87.62 + 16) elif "Mn" in element: mol_cations[:, i] = oxides_normalized[element] / (54.94 + 16) elif "Mg" in element: mol_cations[:, i] = oxides_normalized[element] / (24.31 + 16) elif "Ca" in element: mol_cations[:, i] = oxides_normalized[element] / (40.08 + 16) elif "Na" in element: mol_cations[:, i] = (2 * oxides_normalized[element]) / ((23 * 2) + 16) elif "K" in element: mol_cations[:, i] = (2 * oxides_normalized[element]) / ((39.1 * 2) + 16) elif "Ni" in element: mol_cations[:, i] = oxides_normalized[element] / (58.69 + 16) mol_cations = pd.DataFrame(mol_cations, columns=elements) # Calculating the number of oxygens per cation in the formula mol_oxygens = np.zeros(mol_cations.shape) for i, element in zip(range(len(elements)), elements): if "Si" in element: mol_oxygens[:, i] = mol_cations[element] * 2 elif "Ti" in element: mol_oxygens[:, i] = mol_cations[element] * 2 elif "Al" in element: mol_oxygens[:, i] = mol_cations[element] * (3 / 2) elif "Cr" in element: mol_oxygens[:, i] = mol_cations[element] * (3 / 2) elif "Fe" in element: mol_oxygens[:, i] = mol_cations[element] * 1 elif "Ba" in element: mol_oxygens[:, i] = mol_cations[element] * 1 elif "Sr" in element: mol_oxygens[:, i] = mol_cations[element] * 1 elif "Mn" in element: mol_oxygens[:, i] = mol_cations[element] * 1 elif "Mg" in element: mol_oxygens[:, i] = mol_cations[element] * 1 elif "Ca" in element: mol_oxygens[:, i] = mol_cations[element] * 1 elif "Na" in element: mol_oxygens[:, i] = mol_cations[element] * (1 / 2) elif "K" in element: mol_oxygens[:, i] = mol_cations[element] * (1 / 2) elif "Ni" in element: mol_oxygens[:, i] = mol_cations[element] * 1 mol_oxygens = pd.DataFrame(mol_oxygens, columns=elements) # number of oxygens per cation, normalized to the ideal number of oxygens specified above norm_oxygens = (mol_oxygens * n_oxygens).div( mol_oxygens.sum(axis="columns"), axis="rows" ) # calculate the mole cations of each oxide normalized to the number of ideal oxygens norm_cations = np.zeros(norm_oxygens.shape) for i, element in zip(range(len(elements)), elements): if "Si" in element: norm_cations[:, i] = norm_oxygens[element] / 2 elif "Ti" in element: norm_cations[:, i] = norm_oxygens[element] / 2 elif "Al" in element: norm_cations[:, i] = norm_oxygens[element] / (3 / 2) elif "Cr" in element: norm_cations[:, i] = norm_oxygens[element] / (3 / 2) elif "Fe" in element: norm_cations[:, i] = norm_oxygens[element] elif "Ba" in element: norm_cations[:, i] = norm_oxygens[element] elif "Sr" in element: norm_cations[:, i] = norm_oxygens[element] elif "Mn" in element: norm_cations[:, i] = norm_oxygens[element] elif "Mg" in element: norm_cations[:, i] = norm_oxygens[element] elif "Ca" in element: norm_cations[:, i] = norm_oxygens[element] elif "Na" in element: norm_cations[:, i] = norm_oxygens[element] / (1 / 2) elif "K" in element: norm_cations[:, i] = norm_oxygens[element] / (1 / 2) elif "Ni" in element: norm_cations[:, i] = norm_oxygens[element] cations = [] # Get the cations by taking the first two characters [cations.append(element[:2]) for element in elements] # since some elements are only one letter (e.g., K) this # strips the number from it r = re.compile("([a-zA-Z]+)([0-9]+)") for i in range(len(cations)): m = r.match(cations[i]) if m != None: cations[i] = m.group(1) norm_cations = pd.DataFrame(norm_cations,columns = cations) norm_cations['Total_cations'] = norm_cations.sum(axis = 'columns') norm_cations[data.index.name] = data.index.tolist() if mineral == "pyroxene": # ideal cations T = 4 # calculated cations based on oxide measurements # S = norm_cations['Total_cations'] # step 2 and 3 from Droop 1987 norm_cations.loc[norm_cations["Total_cations"] > T, "Fe_3"] = ( 2 * n_oxygens * (1 - (T / norm_cations["Total_cations"])) ) norm_cations.loc[norm_cations["Total_cations"] <= T, "Fe_3"] = 0 # step 4 from Droop 1987 norm_cations.set_index(data.index.name, inplace=True) ts = T / norm_cations["Total_cations"].to_numpy() norm_cations = norm_cations * ts[:, np.newaxis] norm_cations["Fe_2"] = norm_cations["Fe"] - norm_cations["Fe_3"] else: norm_cations.set_index(data.index.name, inplace=True) return norm_cations def hb_plag_amph_temp(plag_cations, amp_sites_fe, P, thermometer): """ hb_plag_amph_temp uses the Holland and Blundy (1994) equations to calculate temperatures of formation for plagioclase - amphibole pairs. Thermometer A: for use in assemblages where plagiocalse and amphibole are co crystallizing with quartz Thermometer B: for use in assemblages where plagioclase and amphibole are crystallizing without quartz Inputs: plag_cations : pandas DataFrame a dataframe consisting of plagioclase cation values. amp_sites_fe : pandas DataFrame a dataframe consiting of ideal site assignments that includes ferric and ferrous iron. This is the output from the "get_amp_sites_ferric_ferrous" function and does not need any tweaking P : scalar Pressure of formation in kbar thermometer : string Which thermometer you would like to use: Either "A" or "B" Returns: T_df: pandas DataFrame dataframe of temperature calculation results for each grain in the input dataframes. Where there are multiple analyses per phase per grain, every possible temperature will be calculated (e.g., 4 amphibole analyes and 3 plag analyses per grain/sample would yield 12 temperatures) """ # thermodynamic parameters R = 0.0083144 # kJ/K Ab = ( plag_cations["Na"] / (plag_cations["Na"] + plag_cations["Ca"] + plag_cations["K"]) ).to_numpy() An = ( plag_cations["Ca"] / (plag_cations["Na"] + plag_cations["Ca"] + plag_cations["K"]) ).to_numpy() plag_cations["An"] = An plag_cations["Ab"] = Ab # Calculating Yab for Thermometer A Y = np.empty(An.shape) # Yab-an parameters for each thermometer for i in range(len(An)): # Calculating Yab for Thermometer A if thermometer == "A": if Ab[i] > 0.5: Y[i] = 0 else: Y[i] = 12.01 * (1 - Ab[i]) ** 2 - 3 elif thermometer == "B": # Calculating Yab-an for Thermometer B if Ab[i] > 0.5: Y[i] = 3 else: Y[i] = 12.0 * (2 * Ab[i] - 1) + 3 else: raise Exception( 'This alphabet is only two letters long. Please choose "A" or "B" for your thermometer' ) plag_cations["Y"] = Y # cummingtonite substitution cm = ( amp_sites_fe["Si_T"] + (amp_sites_fe["Al_T"] + amp_sites_fe["Al_D"]) + amp_sites_fe["Ti_D"] + amp_sites_fe["Fe3_D"] + (amp_sites_fe["Fe2_C"] + amp_sites_fe["Fe2_B"]) + (amp_sites_fe["Mg_D"] + amp_sites_fe["Mg_C"]) + amp_sites_fe["Mn_C"] + amp_sites_fe["Mn_B"] - 13 ) # site terms for the thermometer Si_T1 = (amp_sites_fe["Si_T"] - 4) / 4 Al_T1 = (8 - amp_sites_fe["Si_T"]) / 4 Al_M2 = (amp_sites_fe["Al_T"] + amp_sites_fe["Al_D"] + amp_sites_fe["Si_T"] - 8) / 2 K_A = amp_sites_fe["K_A"] box_A = ( 3 - amp_sites_fe["Ca_B"] - (amp_sites_fe["Na_B"] + amp_sites_fe["Na_A"]) - amp_sites_fe["K_A"] - cm ) Na_A = amp_sites_fe["Ca_B"] + amp_sites_fe["Na_B"] + amp_sites_fe["Na_A"] + cm - 2 Na_M4 = (2 - amp_sites_fe["Ca_B"] - cm) / 2 Ca_M4 = amp_sites_fe["Ca_B"] / 2 hbl_plag_params = pd.DataFrame( { "Si_T1": Si_T1, "Al_T1": Al_T1, "Al_M2": Al_M2, "K_A": K_A, "box_A": box_A, "Na_A": Na_A, "Na_M4": Na_M4, "Ca_M4": Ca_M4, } ) # put the index back in for the sample labels hbl_plag_params.index = amp_sites_fe.index # checks for the same unique index names in your plag and amphibole dataframes sameset = set(hbl_plag_params.index.unique().to_list()) samegrains = list(sameset.intersection(plag_cations.index.unique().to_list())) # empty list to fill with individual temperature dataframes T_df_list = [] for grain in samegrains: # this extracts each individual grain from the respective dataframes # for plag and amphibole data amp = hbl_plag_params.loc[grain, :] plag = plag_cations.loc[grain, :] # This conditional checks how many plag analyses there are for a given grain. # if there is more than one it will follow the first option and use array broadcasting # to calculate every possible temperature for a given amphibole - plagioclase pair. # e.g. if you have two plag analyses and 4 amphibole analyses you will get 8 total temperatures if len(amp.shape) == 2: if len(plag.shape) == 2: if thermometer == "A": # numerator for thermometer A top = ( -76.95 + (0.79 * P) + plag["Y"].to_numpy()[:, np.newaxis] + 39.4 * amp["Na_A"].to_numpy() + 22.4 * amp["K_A"].to_numpy() + (41.5 - 2.89 * P) * amp["Al_M2"].to_numpy() ) # denominator for thermometer A bottom = -0.0650 - R * np.log( ( 27 * amp["box_A"].to_numpy() * amp["Si_T1"].to_numpy() * plag["Ab"].to_numpy()[:, np.newaxis] ) / (256 * amp["Na_A"].to_numpy() * amp["Al_T1"].to_numpy()) ) # final thermometer A T = (top / bottom) - 273.15 elif thermometer == "B": # thermometer B whole thing T = ( ( 78.44 + plag["Y"].to_numpy()[:, np.newaxis] - 33.6 * amp["Na_M4"].to_numpy() - (66.8 - 2.92 * P) * amp["Al_M2"].to_numpy() + 78.5 * amp["Al_T1"].to_numpy() + 9.4 * amp["Na_A"].to_numpy() ) / ( 0.0721 - R * np.log( ( 27 * amp["Na_M4"].to_numpy() * amp["Si_T1"].to_numpy() * plag["An"].to_numpy()[:, np.newaxis] ) / ( 64 * amp["Ca_M4"].to_numpy() * amp["Al_T1"].to_numpy() * plag["Ab"].to_numpy()[:, np.newaxis] ) ) ) ) - 273.15 # making the temperatures for a given grain dataframe for ease of use later on T_df_list.append( pd.DataFrame({"grain": grain, "T": np.concatenate(T, axis=None),}) ) # This is triggered if there is only one plag analysis per amphibole. In this case # we don't need array broadcasting because the plag An/Ab variables are scalars. All the # equations are the same as above else: if thermometer == "A": top = ( -76.95 + (0.79 * P) + plag["Y"] + 39.4 * amp["Na_A"].to_numpy() + 22.4 * amp["K_A"].to_numpy() + (41.5 - 2.89 * P) * amp["Al_M2"].to_numpy() ) bottom = -0.0650 - R * np.log( ( 27 * amp["box_A"].to_numpy() * amp["Si_T1"].to_numpy() * plag["Ab"] ) / (256 * amp["Na_A"].to_numpy() * amp["Al_T1"].to_numpy()) ) T = (top / bottom) - 273.15 elif thermometer == "B": T = ( ( 78.44 + plag["Y"] - 33.6 * amp["Na_M4"].to_numpy() - (66.8 - 2.92 * P) * amp["Al_M2"].to_numpy() + 78.5 * amp["Al_T1"].to_numpy() + 9.4 * amp["Na_A"].to_numpy() ) / ( 0.0721 - R * np.log( ( 27 * amp["Na_M4"].to_numpy() * amp["Si_T1"].to_numpy() * plag["An"] ) / ( 64 * amp["Ca_M4"].to_numpy() * amp["Al_T1"].to_numpy() * plag["Ab"] ) ) ) ) - 273.15 T_df_list.append( pd.DataFrame({"grain": grain, "T": np.concatenate(T, axis=None),}) ) # This is triggered if there is only one amphibole analysis per plag. In this case # we don't need array broadcasting or the .to_numpy() function because the amphibole # values are already scalars else: if len(plag.shape) == 2: if thermometer == "A": # numerator for thermometer A top = ( -76.95 + (0.79 * P) + plag["Y"][:, np.newaxis] + 39.4 * amp["Na_A"] + 22.4 * amp["K_A"] + (41.5 - 2.89 * P) * amp["Al_M2"] ) # denominator for thermometer A bottom = -0.0650 - R * np.log( (27 * amp["box_A"] * amp["Si_T1"] * plag["Ab"][:, np.newaxis]) / (256 * amp["Na_A"].to_numpy() * amp["Al_T1"]) ) # final thermometer A T = (top / bottom) - 273.15 elif thermometer == "B": # thermometer B whole thing T = ( ( 78.44 + plag["Y"][:, np.newaxis] - 33.6 * amp["Na_M4"] - (66.8 - 2.92 * P) * amp["Al_M2"] + 78.5 * amp["Al_T1"] + 9.4 * amp["Na_A"] ) / ( 0.0721 - R * np.log( ( 27 * amp["Na_M4"] * amp["Si_T1"] * plag["An"][:, np.newaxis] ) / ( 64 * amp["Ca_M4"] * amp["Al_T1"] * plag["Ab"][:, np.newaxis] ) ) ) ) - 273.15 # making the temperatures for a given grain dataframe for ease of use later on T_df_list.append( pd.DataFrame({"grain": grain, "T": np.concatenate(T, axis=None),}) ) # This is triggered if there is only one plag analysis per amphibole. In this case # we don't need array broadcasting because the plag An/Ab variables are scalars. All the # equations are the same as above else: if thermometer == "A": top = ( -76.95 + (0.79 * P) + plag["Y"] + 39.4 * amp["Na_A"] + 22.4 * amp["K_A"] + (41.5 - 2.89 * P) * amp["Al_M2"] ) bottom = -0.0650 - R * np.log( (27 * amp["box_A"] * amp["Si_T1"] * plag["Ab"]) / (256 * amp["Na_A"] * amp["Al_T1"]) ) T = (top / bottom) - 273.15 elif thermometer == "B": T = ( ( 78.44 + plag["Y"] - 33.6 * amp["Na_M4"] - (66.8 - 2.92 * P) * amp["Al_M2"] + 78.5 * amp["Al_T1"] + 9.4 * amp["Na_A"] ) / ( 0.0721 - R * np.log( (27 * amp["Na_M4"] * amp["Si_T1"] * plag["An"]) / (64 * amp["Ca_M4"] * amp["Al_T1"] * plag["Ab"]) ) ) ) - 273.15 T_df_list.append(pd.DataFrame({"grain": grain, "T_calc": [T],},)) # overall temperature dataframe for every grain T_df = pd.concat(T_df_list) return T_df #%% Cation fraction calculation for barometry based on Putirka 2008 ```
{ "source": "jlubcke/django-pycharm-breakpoint", "score": 2 }
#### File: django-pycharm-breakpoint/django_pycharm_breakpoint/django_app.py ```python import sys import threading from django.apps import AppConfig from django.conf import settings from django.core.handlers import exception class DjangoPycharmBreakpointConfig(AppConfig): name = 'django_pycharm_breakpoint' verbose_name = 'Django PyCharm breakpoint' def ready(self): if not settings.DEBUG: return original_response_for_exception = exception.response_for_exception def monkey_patched_response_for_exception(request, exc): breakpoint_on_exception() return original_response_for_exception(request, exc) exception.response_for_exception = monkey_patched_response_for_exception try: import rest_framework from rest_framework.views import APIView except ImportError: pass else: APIView.original_handle_exception = APIView.handle_exception def monkey_patched_handle_exception(self, exc): breakpoint_on_exception() return self.original_handle_exception(exc) APIView.handle_exception = monkey_patched_handle_exception def breakpoint_on_exception(): try: import pydevd from pydevd import pydevd_tracing except ImportError: pass else: exctype, value, traceback = sys.exc_info() frames = [] while traceback: frames.append(traceback.tb_frame) traceback = traceback.tb_next thread = threading.current_thread() frames_by_id = dict([(id(frame), frame) for frame in frames]) frame = frames[-1] if hasattr(thread, "additional_info"): thread.additional_info.pydev_message = "Uncaught exception" try: debugger = pydevd.debugger except AttributeError: debugger = pydevd.get_global_debugger() pydevd_tracing.SetTrace(None) # no tracing from here debugger.stop_on_unhandled_exception(thread, frame, frames_by_id, (exctype, value, traceback)) ```
{ "source": "jlubken/cfgenvy", "score": 3 }
#### File: cfgenvy/test/test_cfgenvy.py ```python from io import StringIO from typing import Optional from pytest import mark from cfgenvy import Parser, yaml_dumps, yaml_type class Service(Parser): """Service.""" YAML = "!test" @classmethod def _yaml_init(cls, loader, node): """Yaml init.""" return cls(**loader.construct_mapping(node, deep=True)) @classmethod def _yaml_repr(cls, dumper, self, *, tag: str): """Yaml repr.""" return dumper.represent_mapping(tag, self.as_yaml()) @classmethod def as_yaml_type(cls, tag: Optional[str] = None): """As yaml type.""" yaml_type( cls, tag or cls.YAML, init=cls._yaml_init, repr=cls._yaml_repr, ) @classmethod def yaml_types(cls): """Yaml types.""" cls.as_yaml_type() def __init__(self, password, username): """__init__.""" self.password = password self.username = username def as_yaml(self): """As yaml.""" return { "password": <PASSWORD>, "username": self.username, } CONFIG_FILE = "./test/test.yaml" ENV_FILE = "./test/test.env" CONFIGS = """ !test password: ${PASSWORD} username: ${USERNAME} """.strip() ENVS = """ PASSWORD=password USERNAME=username """.strip() EXPECTED = """ !test password: password username: username """.strip() def build(expected=EXPECTED): """Build.""" Service.as_yaml_type() return ( Service, { "password": "password", "username": "username", }, expected, ) def deserialize_args( config_file=CONFIG_FILE, env_file=ENV_FILE, expected=EXPECTED, ): """Deserialize override env.""" return ( Service.parse, { "argv": ["-c", config_file, "-e", env_file], "env": { "PASSWORD": "nope", "USERNAME": "nope", }, }, expected, ) def deserialize_env( config_file=CONFIG_FILE, expected=EXPECTED, ): """Deserialize env.""" return ( Service.parse, { "env": { "CONFIG": config_file, "PASSWORD": "password", "USERNAME": "username", } }, expected, ) def deserialize_file( config_file=CONFIG_FILE, env_file=ENV_FILE, expected=EXPECTED, ): """Deserialize file.""" return ( Service.load, { "config_file": config_file, "env_file": env_file, }, expected, ) def deserialize_streams( configs=CONFIGS, envs=ENVS, expected=EXPECTED, ): """Deserialize string.""" return ( Service.loads, { "configs": StringIO(configs), "envs": StringIO(envs), }, expected, ) @mark.parametrize( "cls,kwargs,expected", ( build(), deserialize_streams(), deserialize_file(), deserialize_env(), deserialize_args(), ), ) def test_product(cls, kwargs, expected): """Test product.""" product = cls(**kwargs) actual = yaml_dumps(product).strip() assert actual == expected ```
{ "source": "jlubken/dsdk", "score": 2 }
#### File: src/dsdk/asset.py ```python from __future__ import annotations from argparse import Namespace from logging import getLogger from os import listdir from os.path import isdir from os.path import join as joinpath from os.path import splitext from typing import Any, Dict, Optional from cfgenvy import yaml_type logger = getLogger(__name__) class Asset(Namespace): """Asset.""" YAML = "!asset" @classmethod def as_yaml_type(cls, tag: Optional[str] = None): """As yaml type.""" yaml_type( cls, tag or cls.YAML, init=cls._yaml_init, repr=cls._yaml_repr, ) @classmethod def build(cls, *, path: str, ext: str): """Build.""" kwargs = {} for name in listdir(path): if name[0] == ".": continue child = joinpath(path, name) if isdir(child): kwargs[name] = cls.build(path=child, ext=ext) continue s_name, s_ext = splitext(name) if s_ext != ext: continue with open(child, encoding="utf-8") as fin: kwargs[s_name] = fin.read() return cls(path=path, ext=ext, **kwargs) @classmethod def _yaml_init(cls, loader, node): """Yaml init.""" return cls.build(**loader.construct_mapping(node, deep=True)) @classmethod def _yaml_repr(cls, dumper, self, *, tag: str): """Yaml repr.""" return dumper.represent_mapping(tag, self.as_yaml()) def __init__( self, *, path: str, ext: str, **kwargs: Asset, ): """__init__.""" self._path = path self._ext = ext super().__init__(**kwargs) def as_yaml(self) -> Dict[str, Any]: """As yaml.""" return { "ext": self._ext, "path": self._path, } def __call__(self, *args): """__call__. Yield (path, values). """ for key, value in vars(self).items(): if key.startswith("_"): continue if value.__class__ == Asset: yield from value(*args, key) continue yield ".".join((*args, key)), value ``` #### File: src/dsdk/profile.py ```python from contextlib import contextmanager from logging import getLogger from time import perf_counter_ns from typing import Any, Dict, Generator, Optional from cfgenvy import yaml_type logger = getLogger(__name__) class Profile: """Profile.""" YAML = "!profile" @classmethod def as_yaml_type(cls, tag: Optional[str] = None): """As yaml type.""" yaml_type( cls, tag or cls.YAML, init=cls._yaml_init, repr=cls._yaml_repr, ) @classmethod def _yaml_init(cls, loader, node): """Yaml init.""" return cls(**loader.construct_mapping(node, deep=True)) @classmethod def _yaml_repr(cls, dumper, self, *, tag: str): """Yaml repr.""" return dumper.represent_mapping(tag, self.as_yaml()) def __init__(self, on: int, end: Optional[int] = None): """__init__.""" self.end = end self.on = on def as_yaml(self) -> Dict[str, Any]: """As yaml.""" return {"end": self.end, "on": self.on} def __repr__(self): """__repr__.""" return f"Profile(end={self.end}, on={self.on})" def __str__(self): """__str__.""" return str( { "end": self.end, "on": self.on, } ) @contextmanager def profile(key: str) -> Generator[Profile, None, None]: """Profile.""" # Replace return type with ContextManager[Profile] when mypy is fixed. i = Profile(perf_counter_ns()) logger.info('{"key": "%s.on", "ns": "%s"}', key, i.on) try: yield i finally: i.end = perf_counter_ns() logger.info( '{"key": "%s.end", "ns": "%s", "elapsed": "%s"}', key, i.end, i.end - i.on, ) ``` #### File: src/dsdk/service.py ```python from __future__ import annotations import pickle from collections import OrderedDict from contextlib import contextmanager from datetime import date, datetime, tzinfo from json import dumps from logging import getLogger from typing import ( Any, Callable, Dict, Generator, Mapping, Optional, Sequence, ) from cfgenvy import Parser, YamlMapping from numpy import allclose from pandas import DataFrame from pkg_resources import DistributionNotFound, get_distribution from .asset import Asset from .interval import Interval from .utils import configure_logger, get_tzinfo, now_utc_datetime try: __version__ = get_distribution("dsdk").version except DistributionNotFound: # package is not installed pass logger = getLogger(__name__) class Delegate: """Delegate.""" def __init__(self, parent: Any): """__init__.""" self.parent = parent @property def duration(self) -> Interval: """Return duration.""" return self.parent.duration @duration.setter def duration(self, value: Interval): """Duration setter.""" self.parent.duration = value @property def as_of_local_datetime(self) -> datetime: """Return as of local datetime.""" return self.parent.as_of_local_datetime @property def as_of(self) -> datetime: """Return as of utc datetime.""" return self.parent.as_of @as_of.setter def as_of(self, value: datetime): """Set as_of.""" self.parent.as_of = value @property def as_of_local_date(self) -> date: """Return as of local date.""" return self.parent.as_of_local_date @property def evidence(self) -> Evidence: """Return evidence.""" return self.parent.evidence @property def id(self) -> int: """Return id.""" return self.parent.id @id.setter def id(self, value: int): """Set id.""" self.parent.id = value @property def predictions(self) -> DataFrame: """Return predictions.""" return self.parent.predictions @predictions.setter def predictions(self, value: DataFrame) -> None: """Predictions setter.""" self.parent.predictions = value @property def time_zone(self) -> str: """Return time zone.""" return self.parent.time_zone @time_zone.setter def time_zone(self, value: str): """Time zone setter.""" self.parent.time_zone = value @property def tz_info(self) -> tzinfo: """Return tzinfo.""" return self.parent.tz_info def as_insert_sql(self) -> Dict[str, Any]: """As insert sql.""" return self.parent.as_insert_sql() class Batch: """Batch.""" def __init__( # pylint: disable=too-many-arguments self, as_of: Optional[datetime], duration: Optional[Interval], time_zone: Optional[str], microservice_version: str, ) -> None: """__init__.""" self.id: Optional[int] = None self.as_of = as_of self.duration = duration self.evidence = Evidence() self.time_zone = time_zone self.microservice_version = microservice_version self.predictions: Optional[DataFrame] = None @property def as_of_local_datetime(self) -> datetime: """Return as of local datetime.""" assert self.as_of is not None assert self.tz_info is not None return self.as_of.astimezone(self.tz_info) @property def as_of_local_date(self) -> date: """Return as of local date.""" return self.as_of_local_datetime.date() @property def tz_info(self) -> tzinfo: """Return tz_info.""" assert self.time_zone is not None return get_tzinfo(self.time_zone) @property def parent(self) -> Any: """Return parent.""" raise ValueError() def as_insert_sql(self) -> Dict[str, Any]: """As insert sql.""" # duration comes from the database clock. return { "as_of": self.as_of, "microservice_version": self.microservice_version, "time_zone": self.time_zone, } class Evidence(OrderedDict): """Evidence.""" def __setitem__(self, key, value): """__setitem__.""" if key in self: raise KeyError(f"{key} has already been set") super().__setitem__(key, value) class Service( # pylint: disable=too-many-instance-attributes Parser, YamlMapping, ): """Service.""" ON = dumps({"key": "%s.on"}) END = dumps({"key": "%s.end"}) BATCH_OPEN = dumps({"key": "batch.open", "as_of": "%s", "time_zone": "%s"}) BATCH_CLOSE = dumps({"key": "batch.close"}) TASK_ON = dumps({"key": "task.on", "task": "%s"}) TASK_END = dumps({"key": "task.end", "task": "%s"}) PIPELINE_ON = dumps({"key": "pipeline.on", "pipeline": "%s"}) PIPELINE_END = dumps({"key": "pipeline.end", "pipeline": "%s"}) COUNT = dumps( {"key": "validate.count", "scores": "%s", "test": "%s", "status": "%s"} ) MATCH = dumps({"key": "validate.match", "status": "%s"}) YAML = "!baseservice" VERSION = __version__ @classmethod def yaml_types(cls): """Yaml types.""" Asset.as_yaml_type() Interval.as_yaml_type() cls.as_yaml_type() @classmethod @contextmanager def context( cls, key: str, argv: Optional[Sequence[str]] = None, env: Optional[Mapping[str, str]] = None, ): """Context.""" configure_logger("dsdk") logger.info(cls.ON, key) try: yield cls.parse(argv=argv, env=env) except BaseException as e: logger.error(e) raise logger.info(cls.END, key) @classmethod def create_gold(cls): """Create gold.""" with cls.context("create_gold") as service: service.on_create_gold() @classmethod def main(cls): """Main.""" with cls.context("main") as service: service() @classmethod def validate_gold(cls): """Validate gold.""" with cls.context("validate_gold") as service: service.on_validate_gold() def __init__( self, *, pipeline: Sequence[Task], as_of: Optional[datetime] = None, gold: Optional[str] = None, time_zone: Optional[str] = None, batch_cls: Callable = Batch, ) -> None: """__init__.""" self.gold = gold self.pipeline = pipeline self.duration: Optional[Interval] = None self.as_of = as_of self.time_zone = time_zone self.batch_cls = batch_cls def __call__(self) -> Batch: """Run.""" with self.open_batch() as batch: # if one of the mixins didn't set these properties... if batch.as_of is None: batch.as_of = now_utc_datetime() if batch.time_zone is None: batch.time_zone = "America/New_York" if batch.duration is None: batch.duration = Interval( on=batch.as_of, end=None, ) logger.info(self.PIPELINE_ON, self.__class__.__name__) for task in self.pipeline: logger.info(self.TASK_ON, task.__class__.__name__) task(batch, self) logger.info(self.TASK_END, task.__class__.__name__) logger.info(self.PIPELINE_END, self.__class__.__name__) # if one of the mixins did not set this property... if batch.duration.end is None: batch.duration.end = now_utc_datetime() return batch @property def tz_info(self) -> tzinfo: """Return tz_info.""" assert self.time_zone is not None return get_tzinfo(self.time_zone) def dependency(self, key, cls, kwargs): """Dependency.""" dependency = getattr(self, key) if dependency is not None: return logger.debug( "Injecting dependency: %s, %s, %s", key, cls.__name__, kwargs.keys(), ) dependency = cls(**kwargs) setattr(self, key, dependency) def as_yaml(self) -> Dict[str, Any]: """As yaml.""" return { "as_of": self.as_of, "duration": self.duration, "gold": self.gold, "time_zone": self.time_zone, } def on_create_gold(self) -> Batch: """On create gold.""" path = self.gold assert path is not None run = self() scores = self.scores(run.id) n_scores = scores.shape[0] logger.info("Write %s scores to %s", n_scores, path) # pylint: disable=no-member model_version = self.model.version # type: ignore[attr-defined] with open(path, "wb") as fout: pickle.dump( { "as_of": run.as_of, "microservice_version": self.VERSION, "model_version": model_version, "scores": scores, "time_zone": run.time_zone, }, fout, ) return run def on_validate_gold(self) -> Batch: """On validate gold.""" path = self.gold assert path is not None with open(path, "rb") as fin: gold = pickle.load(fin) # just set as_of and time_zone from gold # do not trust that config parameters match self.as_of = gold["as_of"] self.time_zone = gold["time_zone"] scores = gold["scores"] n_scores = scores.shape[0] run = self() test = self.scores(run.id) n_test = test.shape[0] n_tests = 0 n_passes = 0 n_tests += 1 try: assert n_scores == n_test logger.info(self.COUNT, n_scores, n_test, "pass") n_passes += 1 except AssertionError: logger.error(self.COUNT, n_scores, n_test, "FAIL") n_tests += 1 try: assert allclose(scores, test) logger.info(self.MATCH, "pass") n_passes += 1 except AssertionError: logger.error(self.MATCH, "FAIL") assert n_tests == n_passes return run @contextmanager def open_batch(self) -> Generator[Any, None, None]: """Open batch.""" logger.info( self.BATCH_OPEN, self.as_of, self.time_zone, ) yield self.batch_cls( as_of=self.as_of, duration=self.duration, microservice_version=self.VERSION, time_zone=self.time_zone, ) logger.info(self.BATCH_CLOSE) def scores(self, run_id): """Get scores.""" raise NotImplementedError() class Task: # pylint: disable=too-few-public-methods """Task.""" def __call__(self, batch: Batch, service: Service) -> None: """__call__.""" raise NotImplementedError() ``` #### File: dsdk/test/test_time_conversions.py ```python from dsdk.utils import ( epoch_ms_from_utc_datetime, now_utc_datetime, utc_datetime_from_epoch_ms, ) def test_conversions(): """Test conversions.""" expected = now_utc_datetime() epoch_ms = epoch_ms_from_utc_datetime(expected) actual = utc_datetime_from_epoch_ms(epoch_ms) assert expected == actual ```
{ "source": "jlubo/memory-consolidation-stc", "score": 2 }
#### File: memory-consolidation-stc/analysis/assemblyAvalancheStatistics.py ```python import numpy as np import os import time import sys from pathlib import Path from shutil import copy2 from overlapParadigms import * from utilityFunctions import * # main properties (most can be adjusted via commandline parameters, see at the end of the script) paradigm = "NOOVERLAP" # paradigm of overlaps between assemblies period_duration = 0.01 # binning period (in units of seconds) n_thresh = 10 # number of spikes in a binning period to consider them an avalanche new_plots = True # defines if new spike raster plots shall be created using gnuplot exc_pop_size = 2500 # number of neurons in the excitatory population core_size = 600 # total size of one cell assembly # cell assemblies coreA, coreB, coreC = coreDefinitions(paradigm, core_size) # control population mask_coreA = np.in1d(np.arange(exc_pop_size), coreA) mask_coreB = np.in1d(np.arange(exc_pop_size), coreB) mask_coreC = np.in1d(np.arange(exc_pop_size), coreC) ctrl = np.arange(exc_pop_size)[np.logical_not(np.logical_or(mask_coreA, np.logical_or(mask_coreB, mask_coreC)))] # control neurons (neurons that are not within a cell assembly) ctrl_size = len(ctrl) #################################### # timeSeries # Computes the time series of avalanche occurrence and saves it to a file # timestamp: the timestamp of the simulation data # spike_raster_file: the name of the spike raster file # output_dir: relative path to the output directory # return: the time series as a list of characters def timeSeries(timestamp, spike_raster_file, output_dir): t0 = time.time() # read the last line and compute number of periods with open(spike_raster_file, 'rb') as f: f.seek(-2, os.SEEK_END) while f.read(1) != b'\n': # seek last line f.seek(-2, os.SEEK_CUR) last_line = f.readline().decode() num_periods_tot = np.int(np.double(last_line.split('\t\t')[0]) / period_duration) + 1 # count lines with open(spike_raster_file) as f: num_rows = sum(1 for _ in f) print("num_rows =", num_rows) # counters per period for the different cell assemblies counterA = np.zeros(num_periods_tot, dtype=np.int) counterB = np.zeros(num_periods_tot, dtype=np.int) counterC = np.zeros(num_periods_tot, dtype=np.int) counterOverall = np.zeros(num_periods_tot, dtype=np.int) counterCtrl = np.zeros(num_periods_tot, dtype=np.int) series = ["-" for i in range(num_periods_tot)] # read all data f = open(spike_raster_file) for line in f: row = line.split('\t\t') t = np.double(row[0]) n = np.int(row[1]) current_period = np.int(np.floor(t / period_duration)) if n < exc_pop_size: counterOverall[current_period] += 1 if n in coreA: counterA[current_period] += 1 if n in coreB: counterB[current_period] += 1 if n in coreC: counterC[current_period] += 1 if n in ctrl: counterCtrl[current_period] += 1 f.close() # determine active CAs for each period and write data to file fout = open(os.path.join(output_dir, timestamp + '_CA_time_series.txt'), 'w') for i in range(num_periods_tot): fout.write(str(round((i+0.5)*period_duration,4)) + "\t\t") # write time at 1/2 of a period if counterOverall[i] > n_thresh: series[i] = "o" if counterC[i] > n_thresh: series[i] = "C" + series[i] if counterB[i] > n_thresh: series[i] = "B" + series[i] if counterA[i] > n_thresh: series[i] = "A" + series[i] fout.write(series[i] + "\t\t" + str(counterA[i]) + "\t\t" + str(counterB[i]) + "\t\t" + str(counterC[i]) + "\t\t" + str(counterOverall[i]) + "\n") fout.close() time_el = round(time.time()-t0) # elapsed time in seconds time_el_str = "Elapsed time: " if time_el < 60: time_el_str += str(time_el) + " s" else: time_el_str += str(time_el // 60) + " m " + str(time_el % 60) + " s" print(time_el_str) # write firing rates to file fout = open(os.path.join(output_dir, timestamp + '_firing_rates.txt'), 'w') fout.write("nu(A) = " + str(np.sum(counterA) / (num_periods_tot*period_duration) / core_size) + "\n") fout.write("nu(B) = " + str(np.sum(counterB) / (num_periods_tot*period_duration) / core_size) + "\n") fout.write("nu(C) = " + str(np.sum(counterC) / (num_periods_tot*period_duration) / core_size) + "\n") fout.write("nu(ctrl) = " + str(np.sum(counterCtrl) / (num_periods_tot*period_duration) / ctrl_size) + "\n") fout.write("core_size = " + str(core_size) + "\n") fout.write("ctrl_size = " + str(ctrl_size) + "\n") fout.close() return series #################################### # transitionProbabilities # Computes the likelihood of avalanche occurrence for each assembly, as well as and the likelihoods of "transitions"/triggering # of assemblies, and saves the results to a file # timestamp: the timestamp of the simulation data # series: the time series as provided by timeSeries(...) # output_dir: relative path to the output directory def transitionProbabilities(timestamp, series, output_dir): np.seterr(divide='ignore', invalid='ignore') num_periods_tot = len(series) nA, nB, nC, nO, nN = 0, 0, 0, 0, 0 # frequencies of avalanches in different assemblies/overall nAA, nBB, nCC, nAB, nBA, nAC, nCA, nBC, nCB = 0, 0, 0, 0, 0, 0, 0, 0, 0 # frequencies of transitions nOO, nOA, nOB, nOC, nAO, nBO, nCO = 0, 0, 0, 0, 0, 0, 0 # frequencies of transitions involving "overall" nAN, nBN, nCN, nON, nNA, nNB, nNC, nNO, nNN = 0, 0, 0, 0, 0, 0, 0, 0, 0 # frequencies of transitions into/from void for i in range(num_periods_tot-1): if series[i] == "-": # there is no avalanche in this period nN += 1 if series[i+1] == "-": nNN += 1 else: nNO += 1 if "A" in series[i+1]: nNA += 1 if "B" in series[i+1]: nNB += 1 if "C" in series[i+1]: nNC += 1 else: # there is an avalanche in this period nO += 1 if series[i+1] == "-": nON += 1 else: nOO += 1 if "A" in series[i+1]: nOA += 1 if "B" in series[i+1]: nOB += 1 if "C" in series[i+1]: nOC += 1 if "A" in series[i]: # there is an avalanche in A nA += 1 if series[i+1] == "-": nAN += 1 else: nAO += 1 if "A" in series[i+1]: nAA += 1 if "B" in series[i+1]: nAB += 1 if "C" in series[i+1]: nAC += 1 if "B" in series[i]: # there is an avalanche in B nB += 1 if series[i+1] == "-": nBN += 1 else: nBO += 1 if "A" in series[i+1]: nBA += 1 if "B" in series[i+1]: nBB += 1 if "C" in series[i+1]: nBC += 1 if "C" in series[i]: # there is an avalanche in C nC += 1 if series[i+1] == "-": nCN += 1 else: nCO += 1 if "A" in series[i+1]: nCA += 1 if "B" in series[i+1]: nCB += 1 if "C" in series[i+1]: nCC += 1 # human-readable output fout = open(os.path.join(output_dir, timestamp + '_CA_probabilities.txt'), 'w') fout.write("Timestamp: " + timestamp) fout.write("\nTotal number of periods: " + str(num_periods_tot)) fout.write("\n\nTotal probabilities:") fout.write("\np(A) = " + str(nA / num_periods_tot)) # likelihood of avalanche in A fout.write("\np(B) = " + str(nB / num_periods_tot)) # likelihood of avalanche in B fout.write("\np(C) = " + str(nC / num_periods_tot)) # likelihood of avalanche in C fout.write("\np(overall) = " + str(nO / num_periods_tot)) # probability of avalanche in overall population fout.write("\np(-) = " + str(nN / num_periods_tot)) # probability of no avalanche fout.write("\n\nTrigger probabilities:") fout.write("\np_A(A) = " + str(np.divide(nAA, num_periods_tot))) # likelihood of triggering A fout.write("\np_A(B) = " + str(np.divide(nAB, num_periods_tot))) # likelihood of triggering B fout.write("\np_A(C) = " + str(np.divide(nAC, num_periods_tot))) # likelihood of triggering C fout.write("\np_A(overall) = " + str(np.divide(nAO, nAO+nAN))) # probability of triggering something fout.write("\np_A(-) = " + str(np.divide(nAN, nAO+nAN))) # probability of triggering nothing fout.write("\np_B(A) = " + str(np.divide(nBA, num_periods_tot))) # likelihood of triggering A fout.write("\np_B(B) = " + str(np.divide(nBB, num_periods_tot))) # likelihood of triggering B fout.write("\np_B(C) = " + str(np.divide(nBC, num_periods_tot))) # likelihood of triggering C fout.write("\np_B(overall) = " + str(np.divide(nBO, nBO+nBN))) # probability of triggering something fout.write("\np_B(-) = " + str(np.divide(nBN, nBO+nBN))) # probability of triggering nothing fout.write("\np_C(A) = " + str(np.divide(nCA, num_periods_tot))) # likelihood of triggering A fout.write("\np_C(B) = " + str(np.divide(nCB, num_periods_tot))) # likelihood of triggering B fout.write("\np_C(C) = " + str(np.divide(nCC, num_periods_tot))) # likelihood of triggering C fout.write("\np_C(overall) = " + str(np.divide(nCO, nCO+nCN))) # probability of triggering something fout.write("\np_C(-) = " + str(np.divide(nCN, nCO+nCN))) # probability of triggering nothing fout.write("\np_overall(A) = " + str(np.divide(nOA, num_periods_tot))) # likelihood of triggering A fout.write("\np_overall(B) = " + str(np.divide(nOB, num_periods_tot))) # likelihood of triggering B fout.write("\np_overall(C) = " + str(np.divide(nOC, num_periods_tot))) # likelihood of triggering C fout.write("\np_overall(overall) = " + str(np.divide(nOO, nOO+nON))) # probability of triggering something fout.write("\np_overall(-) = " + str(np.divide(nON, nOO+nON))) # probability of triggering nothing fout.write("\np_-(A) = " + str(np.divide(nNA, num_periods_tot))) # likelihood of triggering A fout.write("\np_-(B) = " + str(np.divide(nNB, num_periods_tot))) # likelihood of triggering B fout.write("\np_-(C) = " + str(np.divide(nNC, num_periods_tot))) # likelihood of triggering C fout.write("\np_-(overall) = " + str(np.divide(nNO, nNO+nNN))) # probability of triggering something fout.write("\np_-(-) = " + str(np.divide(nNN, nNO+nNN))) # probability of triggering nothing fout.close() # output for facilitated machine readability fout = open(os.path.join(output_dir, timestamp + '_CA_probabilities_raw.txt'), 'w') fout.write(timestamp + "\n\n\n") fout.write(str(nA / num_periods_tot) + "\n") fout.write(str(nB / num_periods_tot) + "\n") fout.write(str(nC / num_periods_tot) + "\n") fout.write(str(nO / num_periods_tot) + "\n") fout.write(str(nN / num_periods_tot) + "\n") fout.close() n_transitions = sum((nOO, nON, nNO, nNN)) if n_transitions == num_periods_tot-1: print("Normalization check suceeeded.") else: print("Normalization check failed:", n_transitions, "triggerings found, as compared to", num_periods_tot-1, "expected.") #################################### # spikeRasterPlot # Creates two spike raster plots in the data directory and copies them to the output directory # timestamp: the timestamp of the data # data_dir: the directory containing the simulation data # output_dir: relative path to the output directory # new_plots: specifies if new plots shall be created def spikeRasterPlot(timestamp, data_dir, output_dir, new_plots): plot_file1 = timestamp + "_spike_raster.png" plot_file2 = timestamp + "_spike_raster2.png" work_dir = os.getcwd() # get the current working directory if data_dir == "": os.chdir(".") else: os.chdir(data_dir) # change to data directory if new_plots: fout = open("spike_raster.gpl", "w") fout.write("set term png enhanced font Sans 20 size 1280,960 lw 2.5\n") fout.write("set output '" + plot_file1 + "'\n\n") fout.write("Ne = 2500\n") fout.write("Ni = 625\n") fout.write("set xlabel 'Time (s)'\n") fout.write("unset ylabel\n") fout.write("set yrange [0:1]\n") fout.write("set ytics out ('#0' 0.05, '#625' 0.23, '#1250' 0.41, '#1875' 0.59, '#2500' 0.77)\n") fout.write("plot [x=100:120] '" + timestamp + "_spike_raster.txt' using 1:($2 < Ne ? (0.9*$2/(Ne+Ni) + 0.05) : 1/0) notitle with dots lc 'blue', \\\n") fout.write(" '" + timestamp + "_spike_raster.txt' using 1:($2 >= Ne ? (0.9*$2/(Ne+Ni) + 0.05) : 1/0) notitle with dots lc 'red'\n\n") fout.write("###########################################\n") fout.write("set output '" + plot_file2 + "'\n") fout.write("plot [x=100:180] '" + timestamp + "_spike_raster.txt' using 1:($2 < Ne ? (0.9*$2/(Ne+Ni) + 0.05) : 1/0) notitle with dots lc 'blue', \\\n") fout.write(" '" + timestamp + "_spike_raster.txt' using 1:($2 >= Ne ? (0.9*$2/(Ne+Ni) + 0.05) : 1/0) notitle with dots lc 'red'\n") fout.close() os.system("gnuplot spike_raster.gpl") if os.path.exists(plot_file1) and os.path.exists(plot_file2): copy2(plot_file1, os.path.join(work_dir, output_dir)) # copy spike raster plot #1 to output directory copy2(plot_file2, os.path.join(work_dir, output_dir)) # copy spike raster plot #2 to output directory else: print("Warning: " + data_dir + ": plot files not found.") os.chdir(work_dir) # change back to previous working directory ###################################### # dirRecursion # Walks recursively through a directory looking for spike raster data; # if data are found, computes time series, avalanche likelihoods (and, if specified, creates spike raster plots) # directory: the directory to consider # output_dir: relative path to the output directory # new_plots: specifies if new plots shall be created def dirRecursion(directory, output_dir, new_plots): rawpaths = Path(directory) print("Reading directory " + directory) rawpaths = Path(directory) for x in sorted(rawpaths.iterdir()): dest_file = "" full_path = str(x) hpath = os.path.split(full_path)[0] # take head tpath = os.path.split(full_path)[1] # take tail if not x.is_dir(): if "_spike_raster.txt" in tpath: timestamp = tpath.split("_spike_raster.txt")[0] series = timeSeries(timestamp, full_path, output_dir) transitionProbabilities(timestamp, series, output_dir) spikeRasterPlot(timestamp, hpath, output_dir, new_plots) params_file = os.path.join(hpath, timestamp + "_PARAMS.txt") if os.path.exists(params_file): copy2(params_file, output_dir) else: print("Warning: " + hpath + ": no parameter file found.") else: if hasTimestamp(tpath): dirRecursion(directory + os.sep + tpath, output_dir, new_plots) ############################################### # main: ### example call from shell: python3 assemblyAvalancheStatistics.py "OVERLAP10 no AC, no ABC" 0.01 10 False if len(sys.argv) > 1: # if there is at least one additional commandline arguments paradigm = sys.argv[1] try: coreA, coreB, coreC = coreDefinitions(paradigm, core_size) # re-define cell assemblies except: raise if len(sys.argv) > 2: # if there are at least 2 additional commandline arguments period_duration = float(sys.argv[2]) if len(sys.argv) > 3: # if there are at least 3 additional commandline arguments n_thresh = int(sys.argv[3]) if len(sys.argv) > 4: # if there are at least 4 additional commandline arguments if sys.argv[4] == "0" or sys.argv[4] == "False": new_plots = False print("Creation of new plots switched off") else: new_plots = True output_dir = "./avalanche_statistics_" + str(period_duration) + "_" + str(n_thresh) # output directory for analysis results if not os.path.exists(output_dir): os.mkdir(output_dir) print("Output directory:", output_dir) print("Paradigm:", paradigm) print("Bin size:", str(period_duration), "s") print("Detection threshold:", str(n_thresh)) dirRecursion('.', output_dir, new_plots) # walk through directories and analyze data mergeRawData(output_dir, "_CA_probabilities_raw.txt", "all_trials_raw.txt", remove_raw=True) # merge machine-readable output ``` #### File: memory-consolidation-stc/analysis/calculateMIa.py ```python from utilityFunctions import * from valueDistributions import * import numpy as np from pathlib import Path np.set_printoptions(threshold=1e10, linewidth=200) # extend console print range for numpy arrays # calculateMIa # Calculates mutual information of the activity distribution of the network at two timesteps and returns it along with the self-information of # the reference distribution # nppath: path to the network_plots directory to read the data from # timestamp: a string containing date and time (to access correct paths) # Nl_exc: the number of excitatory neurons in one line of a quadratic grid # time_for_activity: the time that at which the activites shall be read out (some time during recall) # time_ref: the reference time (for getting the activity distribution during learning) # core: the neurons in the cell assembly (for stipulation; only required if no activity distribution during learning is available) def calculateMIa(nppath, timestamp, Nl_exc, time_for_activity, time_ref = "11.0", core = np.array([])): if time_ref: # use reference firing rate distribution from data (for learned cell assembly) times_for_readout_list = [time_ref, time_for_activity] # the simulation times at which the activities shall be read out print("Using reference distribution at " + time_ref + "...") else: # use model firing rate distribution (for stipulated cell assembly) times_for_readout_list = [time_for_activity] v_model = np.zeros(Nl_exc**2) v_model[core] = 1 # entropy/MI of this distribution for Nl_exc=40: 0.4689956 v_model = np.reshape(v_model, (Nl_exc,Nl_exc)) print("Using stipulated reference distribution...") connections = [np.zeros((Nl_exc**2,Nl_exc**2)) for x in times_for_readout_list] h = [np.zeros((Nl_exc**2,Nl_exc**2)) for x in times_for_readout_list] z = [np.zeros((Nl_exc**2,Nl_exc**2)) for x in times_for_readout_list] v = [np.zeros((Nl_exc,Nl_exc)) for x in times_for_readout_list] v_array = np.zeros(Nl_exc*Nl_exc) # data array rawpaths = Path(nppath) for i in range(len(times_for_readout_list)): time_for_readout = times_for_readout_list[i] path = "" # look for data file [timestamp]_net_[time_for_readout].txt for x in rawpaths.iterdir(): tmppath = str(x) if (timestamp + "_net_" + time_for_readout + ".txt") in tmppath: path = tmppath if path == "": raise FileNotFoundError('"' + timestamp + '_net_' + time_for_readout + '.txt" was not found') try: connections[i], h[i], z[i], v[i] = readWeightMatrixData(path, Nl_exc) except ValueError: raise except OSError: raise ### Activity ### if time_ref: # use reference firing rate distribution from data (for learned cell assembly) margEntropyActL = marginalEntropy(v[0]) print("margEntropyActL = " + str(margEntropyActL)) margEntropyActR = marginalEntropy(v[1]) print("margEntropyActR = " + str(margEntropyActR)) jointEntropyAct = jointEntropy(v[0],v[1]) print("jointEntropyAct = " + str(jointEntropyAct)) else: # use model firing rate distribution (for stipulated cell assembly) margEntropyActL = marginalEntropy(v_model) print("margEntropyActL = " + str(margEntropyActL)) margEntropyActR = marginalEntropy(v[0]) print("margEntropyActR = " + str(margEntropyActR)) jointEntropyAct = jointEntropy(v_model,v[0]) print("jointEntropyAct = " + str(jointEntropyAct)) ### Results and Output ### MIa = mutualInformation(margEntropyActL, margEntropyActR, jointEntropyAct) print("MIa = " + str(MIa)) return MIa, margEntropyActL # marginalEntropy # Computes the marginal entropy of an array # a: array of outcomes (e.g., array of activities of all neurons in a network or array of weights of all synapses in a network) # return: the Shannon entropy of a def marginalEntropy(a): val, p = marginalProbDist(a) p = p[p > 0] entropy = - np.sum(p * np.log2(p)) return entropy # jointEntropy # Computes the joint entropy of two arrays # a1: first array of outcomes (e.g., array of activities of all neurons in a network or array of weights of all synapses in a network) # a2: second array of outcomes # return: the joint Shannon entropy of (a1, a2) def jointEntropy(a1, a2): val, p = jointProbDist(a1, a2) p = p[p > 0] entropy = - np.sum(p * np.log2(p)) return entropy # mutualInformation # Computes the mutual information of two arrays # margEntropy1: marginal entropy of the first array of outcomes # margEntropy2: marginal entropy of the second array of outcomes # jEntropy: joint entropy of both arrays of outcomes # return: the mutual information of (a1, a2) def mutualInformation(margEntropy1, margEntropy2, jEntropy): #margEntropy1 = marginalEntropy(a1) #margEntropy2 = marginalEntropy(a2) #jEntropy = jointEntropy(a1, a2) MI = margEntropy1 + margEntropy2 - jEntropy return MI ``` #### File: memory-consolidation-stc/analysis/overlapParadigms.py ```python import numpy as np # coreDefinitions # Returns the neuron numbers belonging to each of three assemblies in a given paradigm # paradigm: name of the paradigm to consider # core_size: the size of one assembly # return: the three assemblies def coreDefinitions(paradigm, core_size = 600): # full_overlap # Returns the neuron number belonging to each of three assemblies with equal overlaps # overlap: overlap between each two cell assemblies (0.1 equals "OVERLAP10" and so on) # return: the three assemblies def full_overlap(overlap): tot_wo_overlap = 1-overlap half_overlap = overlap / 2 tot2_wo_overlap_oh = 2-overlap-half_overlap core1 = np.arange(core_size) core2 = np.arange(int(np.round(tot_wo_overlap*core_size)), int(np.round(tot_wo_overlap*core_size))+core_size) core3 = np.concatenate(( np.arange(int(np.round(tot2_wo_overlap_oh*core_size)), int(np.round(tot2_wo_overlap_oh*core_size))+int(np.round(tot_wo_overlap*core_size))), \ np.arange(int(np.round(half_overlap*core_size))), \ np.arange(int(np.round(tot_wo_overlap*core_size)), int(np.round(tot_wo_overlap*core_size))+int(np.round(half_overlap*core_size))) )) return (core1, core2, core3) # no_ABC_overlap # Returns the neuron number belonging to each of three assemblies with equal overlaps but no common overlap # overlap: overlap between each two cell assemblies (0.1 equals "OVERLAP10 no ABC" and so on) # return: the three assemblies def no_ABC_overlap(overlap): tot_wo_overlap = 1-overlap tot2_wo_overlap_oh = 2 - 2*overlap core1 = np.arange(core_size) core2 = np.arange(int(np.round(tot_wo_overlap*core_size)), int(np.round(tot_wo_overlap*core_size))+core_size) core3 = np.concatenate(( np.arange(int(np.round(tot2_wo_overlap_oh*core_size)), int(np.round(tot2_wo_overlap_oh*core_size))+int(np.round(tot_wo_overlap*core_size))), \ np.arange(int(np.round(overlap*core_size))) )) return (core1, core2, core3) # no_AC_no_ABC_overlap # Returns the neuron number belonging to each of three assemblies with "no AC, no ABC" overlap # overlap: overlap between each two cell assemblies (0.1 equals "OVERLAP10 no AC, no ABC" and so on) # return: the three assemblies def no_AC_no_ABC_overlap(overlap): tot_wo_overlap = 1-overlap tot2_wo_overlap_oh = 2 - 2*overlap core1 = np.arange(core_size) core2 = np.arange(int(np.round(tot_wo_overlap*core_size)), int(np.round(tot_wo_overlap*core_size))+core_size) core3 = np.arange(int(np.round(tot2_wo_overlap_oh*core_size)), int(np.round(tot2_wo_overlap_oh*core_size))+core_size) return (core1, core2, core3) # no_BC_no_ABC_overlap # Returns the neuron number belonging to each of three assemblies with "no BC, no ABC" overlap # overlap: overlap between each two cell assemblies (0.1 equals "OVERLAP10 no BC, no ABC" and so on) # return: the three assemblies def no_BC_no_ABC_overlap(overlap): tot_wo_overlap = 1-overlap core1 = np.arange(core_size) core2 = np.arange(int(np.round(tot_wo_overlap*core_size)), int(np.round(tot_wo_overlap*core_size))+core_size) core3 = np.concatenate(( np.arange(int(np.round(tot_wo_overlap*core_size))+core_size, 2*int(np.round(tot_wo_overlap*core_size))+core_size), \ np.arange(int(np.round(overlap*core_size))) )) return (core1, core2, core3) # handling the different overlap paradigms: if paradigm == "NOOVERLAP": core1 = np.arange(core_size) core2 = np.arange(core_size, 2*core_size) core3 = np.arange(2*core_size, 3*core_size) elif paradigm == "OVERLAP10": core1, core2, core3 = full_overlap(0.1) elif paradigm == "OVERLAP10 no ABC": core1, core2, core3 = no_ABC_overlap(0.1) elif paradigm == "OVERLAP10 no AC, no ABC": core1, core2, core3 = no_AC_no_ABC_overlap(0.1) elif paradigm == "OVERLAP10 no BC, no ABC": core1, core2, core3 = no_BC_no_ABC_overlap(0.1) elif paradigm == "OVERLAP15": core1, core2, core3 = full_overlap(0.15) elif paradigm == "OVERLAP15 no ABC": core1, core2, core3 = no_ABC_overlap(0.15) elif paradigm == "OVERLAP15 no AC, no ABC": core1, core2, core3 = no_AC_no_ABC_overlap(0.15) elif paradigm == "OVERLAP15 no BC, no ABC": core1, core2, core3 = no_BC_no_ABC_overlap(0.15) elif paradigm == "OVERLAP20": core1, core2, core3 = full_overlap(0.2) elif paradigm == "OVERLAP20 no ABC": core1, core2, core3 = no_ABC_overlap(0.2) elif paradigm == "OVERLAP20 no AC, no ABC": core1, core2, core3 = no_AC_no_ABC_overlap(0.2) elif paradigm == "OVERLAP20 no BC, no ABC": core1, core2, core3 = no_BC_no_ABC_overlap(0.2) else: raise ValueError("Unknown paradigm: " + paradigm) return (core1, core2, core3) ``` #### File: run_binary_paper2/priming_and_activation/mergeRawData.py ```python from pathlib import Path import os ###################################### # mergeRawData # Looks in a specified directory for files with a certain substring in the filename and merges them # (merging the content of the lines) to a single file # rootpath: relative path to the output directory # substr: string that the filename of files to be merged has to contain # output_file: name of the output file # remove_raw [optional]: removes the raw data files # sep_str [optional]: the character or string by which to separate the lines in the output file def mergeRawData(rootpath, substr, output_file, remove_raw=False, sep_str='\t\t'): path = Path(rootpath) num_rows = -1 all_data = [] for x in sorted(path.iterdir()): # loop through files in the output directory x_str = str(x) if not x.is_dir() and substr in x_str: f = open(x_str) single_trial_data = f.read() f.close() single_trial_data = single_trial_data.split('\n') if single_trial_data[-1] == "": del single_trial_data[-1] # delete empty line if len(single_trial_data) != num_rows: if num_rows == -1: num_rows = len(single_trial_data) all_data = single_trial_data else: raise Exception("Wrong number of rows encountered in: " + x_str) else: for i in range(num_rows): all_data[i] += sep_str + single_trial_data[i] if remove_raw: os.remove(x_str) fout = open(os.path.join(rootpath, output_file), "w") for i in range(num_rows): fout.write(all_data[i] + '\n') fout.close() ```
{ "source": "jlucangelio/adventofcode-2017", "score": 3 }
#### File: jlucangelio/adventofcode-2017/day20_2.py ```python from collections import namedtuple Vector = namedtuple("Vector", "x y z") Particle = namedtuple("Particle", "pos v a") def vector_from_s(s): cs = s.split('=')[1][1:-1] x, y, z = [int(c) for c in cs.split(',')] return Vector(x, y, z) def move_once(part): new_v = Vector(part.v.x + part.a.x, part.v.y + part.a.y, part.v.z + part.a.z) new_pos = Vector(part.pos.x + new_v.x, part.pos.y + new_v.y, part.pos.z + new_v.z) return part._replace(pos=new_pos, v=new_v) def distance(part): return sum([int(abs(c)) for c in part.pos]) particles = {} with open("day20.input") as f: for i, line in enumerate(f.readlines()): # p=<2366,784,-597>, v=<-12,-41,50>, a=<-5,1,-2> sp, sv, sa = line.strip().split(", ") pos = vector_from_s(sp) v = vector_from_s(sv) a = vector_from_s(sa) particles[i] = Particle(pos, v, a) for i in range(1000): collisions = {} for j in particles: # print i, j part = move_once(particles[j]) particles[j] = part if part.pos not in collisions: collisions[part.pos] = set() collisions[part.pos].add(j) for c, indexes in collisions.iteritems(): if len(indexes) > 1: for index in indexes: del particles[index] print len(particles) ``` #### File: jlucangelio/adventofcode-2017/day23_2.py ```python import time INSTRUCTIONS = [] with open("day23.input") as f: for line in f.readlines(): tokens = line.strip().split() op = tokens[0] dst = tokens[1] src = None if len(tokens) > 2: src = tokens[2] INSTRUCTIONS.append((op, dst, src)) # print INSTRUCTIONS regs = { 'a': 1, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': 0, 'g': 0, 'h': 0, } def get_operand(operand): if operand in regs: return regs[operand] else: return int(operand) pc = 0 mul_count = 0 its = 0 while pc >= 0 and pc < len(INSTRUCTIONS): its += 1 if its % 1000000 == 0: print pc print regs time.sleep(2) op, dst, src = INSTRUCTIONS[pc] if op == "set": regs[dst] = get_operand(src) if op == "inc": regs[dst] += 1 elif op == "sub": regs[dst] -= get_operand(src) if dst == 'h': print regs elif op == "mul": regs[dst] = regs[dst] * get_operand(src) # mul_count += 1 elif op == "jnz": if get_operand(dst) != 0: pc += get_operand(src) else: pc += 1 if op != "jnz": pc += 1 print pc print regs time.sleep(2) # print mul_count print regs['h'] ``` #### File: jlucangelio/adventofcode-2017/day7.py ```python def calculate_weights(node, programs): weight, programs_above = programs[node] child_weights = [] stack_weights = [] total_weights = [] for child in programs_above: child_weight, stack_weight = calculate_weights(child, programs) child_weights.append(child_weight) stack_weights.append(stack_weight) total_weights.append(child_weight + stack_weight) if len(programs_above) > 0: first_total_weight = total_weights[0] if any([tweight != first_total_weight for tweight in total_weights]): print child_weights print stack_weights print total_weights for i, wi in enumerate(total_weights): if all([wi != wj for j, wj in enumerate(total_weights) if j != i]): # wi is different from all other weights wj = total_weights[(i + 1) % 2] print child_weights[i] + wj - wi print return weight, sum(total_weights) programs = {} programs_above_others = set() with open("day7.input") as f: for line in f.readlines(): tokens = line.strip().split() name = tokens[0] weight = int(tokens[1][1:-1]) programs_above = [] if len(tokens) > 3: for token in tokens[3:]: if token[-1] == ',': programs_above.append(token[:-1]) else: programs_above.append(token) programs_above_others.update(programs_above) programs[name] = (weight, programs_above) root = (set(programs.keys()) - programs_above_others).pop() print root print calculate_weights(root, programs) ```
{ "source": "jlucangelio/adventofcode-2018", "score": 3 }
#### File: jlucangelio/adventofcode-2018/day08.py ```python from collections import namedtuple Node = namedtuple("Node", "children metadata value") def parse_tree(numbers, index): nchildren = numbers[index] nmetadata = numbers[index + 1] cur_index = index + 2 children = [] metadata = [] metadata_sum = 0 value = 0 for _ in range(nchildren): (tree, new_index, partial_metadata_sum) = parse_tree(numbers, cur_index) cur_index = new_index children.append(tree) metadata_sum += partial_metadata_sum for mindex in range(nmetadata): datum = numbers[cur_index + mindex] metadata.append(datum) metadata_sum += sum(metadata) if len(children) == 0: value = metadata_sum else: for datum in metadata: if datum <= len(children): value += children[datum - 1].value return (Node(children, metadata, value), cur_index + nmetadata, metadata_sum) # with open("day08.small.input") as f: with open("day08.input") as f: numbers = [int(n) for n in f.read().split()] print parse_tree(numbers, 0) ``` #### File: jlucangelio/adventofcode-2018/day16.py ```python import copy import re functions = {} def addr(a, b, c, regs): regs[c] = regs[a] + regs[b] def addi(a, b, c, regs): regs[c] = regs[a] + b functions[0] = addr functions[1] = addi def mulr(a, b, c, regs): regs[c] = regs[a] * regs[b] def muli(a, b, c, regs): regs[c] = regs[a] * b functions[2] = mulr functions[3] = muli def banr(a, b, c, regs): regs[c] = regs[a] & regs[b] def bani(a, b, c, regs): regs[c] = regs[a] & b functions[4] = banr functions[5] = bani def borr(a, b, c, regs): regs[c] = regs[a] | regs[b] def bori(a, b, c, regs): regs[c] = regs[a] | b functions[6] = borr functions[7] = bori def setr(a, b, c, regs): regs[c] = regs[a] def seti(a, b, c, regs): regs[c] = a functions[8] = setr functions[9] = seti def gt(a, b): if a > b: return 1 else: return 0 def gtir(a, b, c, regs): regs[c] = gt(a, regs[b]) def gtri(a, b, c, regs): regs[c] = gt(regs[a], b) def gtrr(a, b, c, regs): regs[c] = gt(regs[a], regs[b]) functions[10] = gtir functions[11] = gtri functions[12] = gtrr def eq(a, b): if a == b: return 1 else: return 0 def eqir(a, b, c, regs): regs[c] = eq(a, regs[b]) def eqri(a, b, c, regs): regs[c] = eq(regs[a], b) def eqrr(a, b, c, regs): regs[c] = eq(regs[a], regs[b]) functions[13] = eqir functions[14] = eqri functions[15] = eqrr count = 0 possible_functions = dict([(i, set(range(16))) for i in range(16)]) with open("day16.input") as f: # with open("day16.small.input") as f: lines = f.readlines() for i in range(0, len(lines), 4): # Before: [0, 2, 0, 2] # 6 0 1 1 # After: [0, 1, 0, 2] before = lines[i].strip() m = re.match("Before: \[([0-9]), ([0-9]), ([0-9]), ([0-9])\]", before) regs_before = {} for j in range(4): regs_before[j] = int(m.groups()[j]) operation = [int(t) for t in lines[i + 1].strip().split()] after = lines[i + 2].strip() m = re.match("After: \[([0-9]), ([0-9]), ([0-9]), ([0-9])\]", after) regs_after = {} for j in range(4): regs_after[j] = int(m.groups()[j]) cur_possible_functions = set([]) for fnum, function in functions.iteritems(): cur_regs = copy.copy(regs_before) function(operation[1], operation[2], operation[3], cur_regs) if cur_regs == regs_after: cur_possible_functions.add(fnum) if len(cur_possible_functions) >= 3: count += 1 possible_functions[operation[0]].intersection_update(cur_possible_functions) print count while sum([len(s) for s in possible_functions.values()]) > 16: for op1, s in possible_functions.iteritems(): if len(s) == 1: for op2, t in possible_functions.iteritems(): if op1 != op2: e = s.pop() t.discard(e) s.add(e) opcodes = {} for op, s in possible_functions.iteritems(): opcodes[op] = functions[s.pop()] print opcodes regs = dict([(i, 0) for i in range(4)]) with open("day16.2.input") as f: for line in f: operation = [int(t) for t in line.strip().split()] opcodes[operation[0]](operation[1], operation[2], operation[3], regs) print regs[0] ``` #### File: jlucangelio/adventofcode-2018/day19.py ```python INPUT = """#ip 3 addi 3 16 3 seti 1 0 4 seti 1 0 1 mulr 4 1 5 eqrr 5 2 5 addr 5 3 3 addi 3 1 3 addr 4 0 0 addi 1 1 1 gtrr 1 2 5 addr 3 5 3 seti 2 9 3 addi 4 1 4 gtrr 4 2 5 addr 5 3 3 seti 1 2 3 mulr 3 3 3 addi 2 2 2 mulr 2 2 2 mulr 3 2 2 muli 2 11 2 addi 5 4 5 mulr 5 3 5 addi 5 16 5 addr 2 5 2 addr 3 0 3 seti 0 8 3 setr 3 2 5 mulr 5 3 5 addr 3 5 5 mulr 3 5 5 muli 5 14 5 mulr 5 3 5 addr 2 5 2 seti 0 0 0 seti 0 0 3 """.splitlines() MNEMONICS = """goto 17 r4 = 1 r1 = 1 r5 = r4 * r1 if r5 == r2 goto 07 <nop> goto 8 r0 = r4 + r0 r1 = r1 + 1 if r1 > r2 goto 12 <nop> goto 3 r4 = r4 + 1 if r4 > r2 goto 07 <nop> goto 2 r3 = r3 * r3 r2 = r2 + 2 r2 = r2 * r2 r2 = r3 * r2 r2 = r2 * 11 r5 = r5 + 4 r5 = r5 * r3 r5 = r5 + 16 r2 = r2 + r5 r3 = r3 + r0 goto 1 r5 = r3 r5 = r5 * r3 r5 = r3 + r5 r5 = r3 * r5 r5 = r5 * 14 r5 = r5 * r3 r2 = r2 + r5 r0 = 0 goto 1 """.splitlines() functions = {} def addr(a, b, c, regs): regs[c] = regs[a] + regs[b] def addi(a, b, c, regs): regs[c] = regs[a] + b functions["addr"] = addr functions["addi"] = addi def mulr(a, b, c, regs): regs[c] = regs[a] * regs[b] def muli(a, b, c, regs): regs[c] = regs[a] * b functions["mulr"] = mulr functions["muli"] = muli def banr(a, b, c, regs): regs[c] = regs[a] & regs[b] def bani(a, b, c, regs): regs[c] = regs[a] & b functions["banr"] = banr functions["bani"] = bani def borr(a, b, c, regs): regs[c] = regs[a] | regs[b] def bori(a, b, c, regs): regs[c] = regs[a] | b functions["borr"] = borr functions["bori"] = bori def setr(a, b, c, regs): regs[c] = regs[a] def seti(a, b, c, regs): regs[c] = a functions["setr"] = setr functions["seti"] = seti def gt(a, b): if a > b: return 1 else: return 0 def gtir(a, b, c, regs): regs[c] = gt(a, regs[b]) def gtri(a, b, c, regs): regs[c] = gt(regs[a], b) def gtrr(a, b, c, regs): regs[c] = gt(regs[a], regs[b]) functions["gtir"] = gtir functions["gtri"] = gtri functions["gtrr"] = gtrr def eq(a, b): if a == b: return 1 else: return 0 def eqir(a, b, c, regs): regs[c] = eq(a, regs[b]) def eqri(a, b, c, regs): regs[c] = eq(regs[a], b) def eqrr(a, b, c, regs): regs[c] = eq(regs[a], regs[b]) functions["eqir"] = eqir functions["eqri"] = eqri functions["eqrr"] = eqrr instructions = [] for line in INPUT[1:]: opcode, a, b, c = line.strip().split() instructions.append((opcode, int(a), int(b), int(c))) regs = dict([(i, 0) for i in range(6)]) # regs[0] = 1 ip = 0 ip_binding = int(INPUT[0].split()[1]) cycle = 0 while ip < len(instructions): if cycle % 1000000 == 0: print cycle regs[ip_binding] = ip opcode, a, b, c = instructions[ip] # s = "%2d %s" % (ip, MNEMONICS[ip]) # if "r3" in s and s.rfind("r3") > s.find("="): # l, r = s.split("=") # s = l + "=" + r.replace("r3", str(ip)) # s += " " * (40 - len(s)) + str(regs) # print s functions[opcode](a, b, c, regs) ip = regs[ip_binding] ip +=1 cycle += 1 print regs[0] ``` #### File: jlucangelio/adventofcode-2018/day20.py ```python from collections import namedtuple, deque INPUT = "WSSEESWWWNW(S|NENNEEEENN(ESSSSW(NWSW|SSEN)|WSWWN(E|WWS(E|SS))))" INPUT = "ESSWWN(E|NNENN(EESS(WNSE|)SSS|WWWSSSSE(SW|NNNE)))" # INPUT = "ENNWSWW(NEWS|)SSSEEN(WNSE|)EE(SWEN|)NNN" # INPUT = "ENWWW(NEEE|SSE(EE|N))" class Pos(namedtuple("Pos", "x y")): __slots__ = () def __add__(self, other): return Pos(self.x + other.x, self.y + other.y) N = Pos(0, -1) S = Pos(0, 1) W = Pos(-1, 0) E = Pos(1, 0) DIRS = {} DIRS["N"] = N DIRS["S"] = S DIRS["E"] = E DIRS["W"] = W def parse(regex, begin, end): # print "parse", regex[begin:end] if begin == end: return 0 if regex.find("(", begin, end) == -1 and regex.find(")", begin, end): branches = regex[begin:end].split("|") return max([len(b) for b in branches]) first_branch_begin = regex.find("(", begin, end) first_branch_end = -1 stack = [] cur_branch_begin = -1 branches = [] for i in range(first_branch_begin, end): c = regex[i] # print c if c == "(": # print i, "open paren" stack.append(i) if len(stack) == 1: cur_branch_begin = i + 1 elif c == ")": # print i, "close paren" stack.pop() if len(stack) == 0: first_branch_end = i # print "begin", cur_branch_begin, "end", i branches.append(parse(regex, cur_branch_begin, i)) break elif c == "|": if len(stack) > 1: continue else: # print "begin", cur_branch_begin, "end", i branches.append(parse(regex, cur_branch_begin, i)) cur_branch_begin = i + 1 return len(regex[begin:first_branch_begin]) + max(branches) + parse(regex, first_branch_end + 1, end) def walk(regex, begin, end): if begin == end: return [] if regex.find("(", begin, end) == -1 and regex.find(")", begin, end): branches = regex[begin:end].split("|") # print "branches", branches return branches first_branch_begin = regex.find("(", begin, end) first_branch_end = -1 stack = [] cur_branch_begin = -1 branches = [] for i in range(first_branch_begin, end): c = regex[i] # print c if c == "(": # print i, "open paren" stack.append(i) if len(stack) == 1: cur_branch_begin = i + 1 elif c == ")": # print i, "close paren" stack.pop() if len(stack) == 0: first_branch_end = i # print "begin", cur_branch_begin, "end", i branches.extend(walk(regex, cur_branch_begin, i)) break elif c == "|": if len(stack) > 1: continue else: # print "begin", cur_branch_begin, "end", i branches.extend(walk(regex, cur_branch_begin, i)) cur_branch_begin = i + 1 res = [] prefix = regex[begin:first_branch_begin] suffixes = walk(regex, first_branch_end + 1, end) # print "prefix", prefix for b in branches: # print "b", b if len(suffixes) > 0: for c in suffixes: # print "c", c res.append(prefix + b + c) else: res.append(prefix + b) return res # print parse(INPUT, 0, len(INPUT)) # for w in walk(INPUT, 0, len(INPUT)): # print w # directions = walk(INPUT, 0, len(INPUT)) with open("day20.input") as f: regex = f.read() directions = walk(regex, 1, len(regex) - 1) maze = {} neighbors = {} for route in directions: cur = Pos(0, 0) for direction in route: if cur not in neighbors: neighbors[cur] = set() n = cur + DIRS[direction] neighbors[cur].add(n) cur = n # print neighbors # BFS out from 0,0 visiting = deque() visiting.append((Pos(0, 0), 0)) visited = set() distances = {} while len(visiting) > 0: pos, dist = visiting.popleft() if pos in visited: continue if pos in neighbors: for n in neighbors[pos]: visiting.append((n, dist + 1)) visited.add(pos) distances[pos] = dist # print distances # print distances[Pos(0,0)] print max(distances.values()) print sum([1 for d in distances.values() if d >= 1000]) ``` #### File: jlucangelio/adventofcode-2018/day24.py ```python import copy import re IMMUNE = 0 INFECTION = 1 SIDE = { "immune": IMMUNE, "infection": INFECTION } SIDE_NAME = { IMMUNE: "immune", INFECTION: "infection" } FIRE = 0 BLUDGEONING = 1 COLD = 2 RADIATION = 3 SLASHING = 4 ATTACK_TYPE = { "fire": FIRE, "bludgeoning": BLUDGEONING, "cold": COLD, "radiation": RADIATION, "slashing": SLASHING } class Group(object): def __init__(self, side, index, nunits, unit_hp, attack_damage, attack_type, initiative, immunities, weaknesses): self.side = side self.index = index self.nunits = nunits self.unit_hp = unit_hp self.attack_damage = attack_damage self.attack_type = attack_type self.initiative = initiative self.immunities = immunities self.weaknesses = weaknesses self.target = None def ep(self): return self.nunits * self.attack_damage def alive(self): return self.nunits > 0 def select_target(self, target): self.target = target def tentative_damage(self, target): if self.attack_type in target.immunities: return 0 elif self.attack_type in target.weaknesses: return self.ep() * 2 else: return self.ep() def attack(self): if not self.target: return False damage = self.tentative_damage(self.target) if damage == 0: return False units_killed = min(damage // self.target.unit_hp, self.target.nunits) self.target.nunits -= units_killed # template = "%s group %d attacks defending group %d with damage %d killing %d units" # print template % (SIDE_NAME[self.side], self.index, self.target.index, damage, units_killed) return True def __str__(self): return "Group %d contains %d units, ep %d" % (self.index, self.nunits, self.ep()) def battle(infection, immune, boost=0): # infection = copy.deepcopy(orig_infection) # immune = copy.deepcopy(orig_immune) for g in immune: g.attack_damage += boost while len(immune) > 0 and len(infection) > 0: sides = {} sides[IMMUNE] = immune sides[INFECTION] = infection targets = {} targets[IMMUNE] = set() targets[INFECTION] = set() infection_sorted = sorted(infection, key=lambda g: (g.ep(), g.initiative), reverse=True) immune_sorted = sorted(immune, key=lambda g: (g.ep(), g.initiative), reverse=True) for team in [infection_sorted, immune_sorted]: for g in team: if not g.alive(): continue g.select_target(None) possible_targets = sorted(sides[1 - g.side], key=lambda t: (g.tentative_damage(t), t.ep(), t.initiative), reverse=True) chosen_target = None for pt in possible_targets: if g.tentative_damage(pt) > 0 and pt.alive and pt not in targets[g.side]: # print "%s group %d would deal defending group %d %d damage" % (SIDE_NAME[g.side], g.index, pt.index, g.tentative_damage(pt)) chosen_target = pt break if chosen_target: g.select_target(chosen_target) targets[g.side].add(chosen_target) attack_happened = False groups = immune + infection attack_order = sorted(groups, key=lambda g: g.initiative, reverse=True) for g in attack_order: if g.alive(): did_attack = g.attack() attack_happened = attack_happened or did_attack if not attack_happened: break # print sum([g.nunits for g in immune if g.alive()]) # print sum([g.nunits for g in infection if g.alive()]) # print "infection" # for ing in sorted(infection, key=lambda g: (g.ep(), g.initiative), reverse=True): # if ing.alive(): # print ing # print "immune" # for img in sorted(immune, key=lambda g: (g.ep(), g.initiative), reverse=True): # if img.alive(): # print img immune = [g for g in immune if g.alive()] infection = [g for g in infection if g.alive()] return infection, immune groups = {} groups["immune"] = [] groups["infection"] = [] for filename in ["day24.immune.input", "day24.infection.input"]: # for filename in ["day24.immune.small.input", "day24.infection.small.input"]: with open(filename) as file: side = filename.split(".")[1] for i, line in enumerate(file): # 3020 units each with 3290 hit points with an attack that does 10 radiation damage at initiative 16 # 1906 units each with 37289 hit points (immune to radiation; weak to fire) with an attack that does 28 radiation damage at initiative 3 m = re.match("(?P<nunits>[0-9]+) units each with (?P<unit_hp>[0-9]+) hit points(?: \((?P<modifier>[a-z ,;]+)\))? with an attack that does (?P<attack_damage>[0-9]+) (?P<attack_type>[a-z]+) damage at initiative (?P<initiative>[0-9]+)", line.strip()) modifiers = {} modifiers["immune"] = [] modifiers["weak"] = [] if m.group("modifier"): for section in m.group("modifier").split("; "): modifier_type = section.split()[0] types = [ATTACK_TYPE[t] for t in section.split(" ", 2)[2].split(", ")] modifiers[modifier_type] = set(types) nunits = int(m.group("nunits")) unit_hp = int(m.group("unit_hp")) attack_damage = int(m.group("attack_damage")) attack_type = ATTACK_TYPE[m.group("attack_type")] initiative = int(m.group("initiative")) groups[side].append(Group(SIDE[side], i + 1, nunits, unit_hp, attack_damage, attack_type, initiative, modifiers["immune"], modifiers["weak"])) immune = copy.deepcopy(groups["immune"]) infection = copy.deepcopy(groups["infection"]) infection, immune = battle(infection, immune) print sum([g.nunits for g in immune if g.alive()]) print sum([g.nunits for g in infection if g.alive()]) print for boost in xrange(1, 1000000): # print boost infection, immune = battle(copy.deepcopy(groups["infection"]), copy.deepcopy(groups["immune"]), boost) remaining_infection = sum([g.nunits for g in infection if g.alive()]) remaining_immune = sum([g.nunits for g in immune if g.alive()]) print remaining_infection, remaining_immune if remaining_immune > 0 and remaining_infection == 0: # print boost break ```
{ "source": "jlucangelio/adventofcode-2019", "score": 3 }
#### File: jlucangelio/adventofcode-2019/day02.py ```python import copy import sys INPUT = "1,0,0,3,1,1,2,3,1,3,4,3,1,5,0,3,2,1,10,19,1,6,19,23,1,10,23,27,2,27,13,31,1,31,6,35,2,6,35,39,1,39,5,43,1,6,43,47,2,6,47,51,1,51,5,55,2,55,9,59,1,6,59,63,1,9,63,67,1,67,10,71,2,9,71,75,1,6,75,79,1,5,79,83,2,83,10,87,1,87,5,91,1,91,9,95,1,6,95,99,2,99,10,103,1,103,5,107,2,107,6,111,1,111,5,115,1,9,115,119,2,119,10,123,1,6,123,127,2,13,127,131,1,131,6,135,1,135,10,139,1,13,139,143,1,143,13,147,1,5,147,151,1,151,2,155,1,155,5,0,99,2,0,14,0" def execute(program, noun, verb): memory = copy.copy(program) memory[1] = noun memory[2] = verb pc = 0 while (memory[pc] != 99): opcode = memory[pc] op1 = memory[pc+1] op2 = memory[pc+2] dest = memory[pc+3] # print pc, op1, op2, dest if opcode == 1: memory[dest] = memory[op1] + memory[op2] elif opcode == 2: memory[dest] = memory[op1] * memory[op2] else: print "invalid opcode ", opcode break pc += 4 return memory[0] program = [int(t) for t in INPUT.split(',')] print execute(program, 12, 2) for noun in range(0, 100): print noun for verb in range(0, 100): if execute(program, noun, verb) == 19690720: print noun, verb, 100*noun + verb sys.exit(0) ``` #### File: jlucangelio/adventofcode-2019/day12.py ```python import copy from collections import namedtuple from fractions import gcd Position = namedtuple("Position", "x y z") Velocity = namedtuple("Velocity", "x y z") X = 0 Y = 1 Z = 2 POS = 1 VEL = 2 x_states = set([]) y_states = set([]) z_states = set([]) states = [x_states, y_states, z_states] def lcm(a, b, c): return (a * b * c) // gcd(gcd(a, b), c) // gcd(gcd(a, b), c) def input_to_position(s): x, y, z = s[1:-1].split(",") _, x = x.split("=") _, y = y.split("=") _, z = z.split("=") return Position(int(x), int(y), int(z)) def move(moon): new_pos = [] for c in range(3): new_pos.append(moon[POS][c] + moon[VEL][c]) moon[POS] = Position(new_pos[X], new_pos[Y], new_pos[Z]) def print_moons(step, moons): print "After step", step + 1 for m in moons: print m print def moons_to_tuple(moons, coord): return tuple([(m[POS][coord], m[VEL][coord]) for m in moons]) def add_state(states, moons): for i in range(len(states)): states[i].add(moons_to_tuple(moons, i)) INPUT = """<x=-15, y=1, z=4> <x=1, y=-10, z=-8> <x=-5, y=4, z=9> <x=4, y=6, z=-2>""".splitlines() moons = [] moons.append(["Io", input_to_position(INPUT[0]), Velocity(0, 0, 0)]) moons.append(["Europa", input_to_position(INPUT[1]), Velocity(0, 0, 0)]) moons.append(["Ganymede", input_to_position(INPUT[2]), Velocity(0, 0, 0)]) moons.append(["Callisto", input_to_position(INPUT[3]), Velocity(0, 0, 0)]) print moons add_state(states, moons) step = 1 x_cycle = None y_cycle = None z_cycle = None while x_cycle is None or y_cycle is None or z_cycle is None: for idx in range(len(moons)): for jdx in range(len(moons)): if idx < jdx: pos_i = moons[idx][POS] pos_j = moons[jdx][POS] vel_i = moons[idx][VEL] vel_j = moons[jdx][VEL] new_veli = [] new_velj = [] for coord in range(3): if pos_i[coord] < pos_j[coord]: ic = 1 jc = -1 elif pos_i[coord] > pos_j[coord]: ic = -1 jc = 1 else: ic = 0 jc = 0 new_veli.append(vel_i[coord] + ic) new_velj.append(vel_j[coord] + jc) moons[idx][VEL] = Velocity(new_veli[X], new_veli[Y], new_veli[Z]) moons[jdx][VEL] = Velocity(new_velj[X], new_velj[Y], new_velj[Z]) for idx in range(len(moons)): m = moons[idx] move(m) # check for cycles # x if x_cycle is None and moons_to_tuple(moons, X) in states[X]: x_cycle = step print "x", x_cycle # y if y_cycle is None and moons_to_tuple(moons, Y) in states[Y]: y_cycle = step print "y", y_cycle # z if z_cycle is None and moons_to_tuple(moons, Z) in states[Z]: z_cycle = step print "z", z_cycle add_state(states, moons) # print x_cycle, y_cycle, z_cycle step += 1 print x_cycle, y_cycle, z_cycle print lcm(x_cycle, y_cycle, z_cycle) # total = 0 # for m in moons: # p = 0 # k = 0 # for i in range(3): # p += abs(m[1][i]) # k += abs(m[2][i]) # total += p * k # print total ``` #### File: jlucangelio/adventofcode-2019/intcode.py ```python import copy POS = 0 IMM = 1 REL = 2 def calculate_addr(param, mode, base): offset = param if mode == REL: offset += base return offset def read_param(memory, param, mode, base): if mode == IMM: return param else: return memory[calculate_addr(param, mode, base)] def execute(program, input_values): memory = copy.copy(program) cur_input_index = 0 rel_base = 0 outputs = [] pc = 0 while (memory[pc] != 99): v = str(memory[pc]) opcode = int(v[-2:]) opmode_1 = POS opmode_2 = POS opmode_3 = POS if len(v) > 2: opmode_1 = int(v[-3]) if len(v) > 3: opmode_2 = int(v[-4]) if len(v) > 4: opmode_3 = int(v[-5]) param1 = memory[pc+1] if opcode == 3: if opmode_1 == IMM: print "error, input instruction opmode IMM" op1 = calculate_addr(param1, opmode_1, rel_base) else: op1 = read_param(memory, param1, opmode_1, rel_base) if opcode == 1 or opcode == 2 or opcode == 5 or opcode == 6 or opcode == 7 or opcode == 8: param2 = memory[pc+2] op2 = read_param(memory, param2, opmode_2, rel_base) if opcode == 1 or opcode == 2 or opcode == 7 or opcode == 8: # Third operand is the destination operand, always in position/relative mode. if opmode_3 == IMM: print "error, destination operand specified IMM" param3 = memory[pc+3] dest = calculate_addr(param3, opmode_3, rel_base) # Instructions if opcode == 1: memory[dest] = op1 + op2 pc += 4 elif opcode == 2: memory[dest] = op1 * op2 pc += 4 elif opcode == 3: # input memory[op1] = input_values[cur_input_index] print "[", pc, "]", "<-", input_values[cur_input_index] cur_input_index += 1 pc += 2 elif opcode == 4: # output output = op1 print "[", pc, "]", output, "->" outputs.append(output) pc += 2 elif opcode == 5: # jump-if-true if op1 != 0: pc = op2 else: pc += 3 elif opcode == 6: # jump-if-false if op1 == 0: pc = op2 else: pc += 3 elif opcode == 7: if op1 < op2: memory[dest] = 1 else: memory[dest] = 0 pc += 4 elif opcode == 8: if op1 == op2: memory[dest] = 1 else: memory[dest] = 0 pc += 4 elif opcode == 9: rel_base += op1 pc += 2 else: print "invalid opcode", opcode break print "halt" return outputs def execute_until_output(name, program, starting_pc, input_values, starting_rel_base): memory = copy.copy(program) cur_input_index = 0 rel_base = starting_rel_base outputs = [] pc = starting_pc while (memory[pc] != 99): v = str(memory[pc]) opcode = int(v[-2:]) opmode_1 = POS opmode_2 = POS opmode_3 = POS if len(v) > 2: opmode_1 = int(v[-3]) if len(v) > 3: opmode_2 = int(v[-4]) if len(v) > 4: opmode_3 = int(v[-5]) param1 = memory[pc+1] if opcode == 3: if opmode_1 == IMM: print "error, input instruction opmode IMM" op1 = calculate_addr(param1, opmode_1, rel_base) else: op1 = read_param(memory, param1, opmode_1, rel_base) if opcode == 1 or opcode == 2 or opcode == 5 or opcode == 6 or opcode == 7 or opcode == 8: param2 = memory[pc+2] op2 = read_param(memory, param2, opmode_2, rel_base) if opcode == 1 or opcode == 2 or opcode == 7 or opcode == 8: # Third operand is the destination operand, always in position/relative mode. if opmode_3 == IMM: print "error, destination operand specified IMM" param3 = memory[pc+3] dest = calculate_addr(param3, opmode_3, rel_base) # Instructions if opcode == 1: memory[dest] = op1 + op2 pc += 4 elif opcode == 2: memory[dest] = op1 * op2 pc += 4 elif opcode == 3: # input memory[op1] = input_values[cur_input_index] print "[", pc, "]", "<-", input_values[cur_input_index] cur_input_index += 1 pc += 2 elif opcode == 4: # output output = op1 print "[", pc, "]", output, "->" return output, memory, pc + 2, rel_base elif opcode == 5: # jump-if-true if op1 != 0: pc = op2 else: pc += 3 elif opcode == 6: # jump-if-false if op1 == 0: pc = op2 else: pc += 3 elif opcode == 7: if op1 < op2: memory[dest] = 1 else: memory[dest] = 0 pc += 4 elif opcode == 8: if op1 == op2: memory[dest] = 1 else: memory[dest] = 0 pc += 4 elif opcode == 9: rel_base += op1 pc += 2 else: print "[", pc, "]", "invalid opcode", opcode break print "halt" return None, memory, pc, rel_base ```
{ "source": "jlucangelio/adventofcode-2020", "score": 3 }
#### File: jlucangelio/adventofcode-2020/day05.py ```python import math # BOARDING_PASSES = ["FBFBBFFRLR"] BOARDING_PASSES = [line.strip() for line in open("day05.in").readlines()] NROWS = 128 NCOLS = 8 def binary_search(floor_inc, ceil_exc, directions): temp_f = floor_inc temp_c = ceil_exc for i in range(len(directions)): pivot = (temp_f + temp_c) // 2 if directions[i] == "F" or directions[i] == "L": temp_c = pivot elif directions[i] == "B" or directions[i] == "R": temp_f = pivot # print(temp_f, temp_c, directions[i]) if temp_f == temp_c - 1: return temp_f else: return None def seat_id(boarding_pass): row = binary_search(0, NROWS, boarding_pass[0:7]) col = binary_search(0, NCOLS, boarding_pass[7:]) return row * 8 + col seat_ids = [seat_id(bp) for bp in BOARDING_PASSES] print(max(seat_ids)) prev = None for seat_id in sorted(seat_ids): if prev != None: if seat_id == prev + 2: print(prev + 1) break prev = seat_id ``` #### File: jlucangelio/adventofcode-2020/day12.py ```python from collections import namedtuple with open("day12.in") as f: INSTRUCTIONS = [line.strip() for line in f.readlines()] Pos = namedtuple("Pos", "x y") Dir = namedtuple("Dir", "x y") N = Dir(0, 1) S = Dir(0, -1) E = Dir(1, 0) W = Dir(-1, 0) directions = {"N": N, "S": S, "E": E, "W": W} rotations = {"L90": Dir(0, 1), "L180": Dir(-1, 0), "L270": Dir(0, -1), "R90": Dir(0, -1), "R180": Dir(-1, 0), "R270": Dir(0, 1)} def scale(k, d): return Dir(k * d.x, k * d.y) def move(p, d): return Pos(p.x + d.x, p.y + d.y) def rotate(d, r): a = d.x b = d.y c = r.x d = r.y return Dir(a*c - b*d, a*d + b*c) pos = Pos(0, 0) direction = E for ins in INSTRUCTIONS: a = ins[0] val = int(ins[1:]) if a == "N" or a == "S" or a == "E" or a == "W" or a == "F": if a == "F": d = direction else: d = directions[a] pos = move(pos, scale(val, d)) elif a == "L" or a == "R": direction = rotate(direction, rotations[ins]) print(abs(pos.x) + abs(pos.y)) pos = Pos(0, 0) waypoint = Dir(10, 1) for ins in INSTRUCTIONS: a = ins[0] val = int(ins[1:]) if a == "N" or a == "S" or a == "E" or a == "W": d = directions[a] waypoint = move(waypoint, scale(val, d)) elif a == "F": pos = move(pos, scale(val, waypoint)) elif a == "L" or a == "R": waypoint = rotate(waypoint, rotations[ins]) print(abs(pos.x) + abs(pos.y)) ``` #### File: jlucangelio/adventofcode-2020/day13.py ```python DEPART = 1000677 SCHEDULE = "29,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,41,x,x,x,x,x,x,x,x,x,661,x,x,x,x,x,x,x,x,x,x,x,x,13,17,x,x,x,x,x,x,x,x,23,x,x,x,x,x,x,x,521,x,x,x,x,x,37,x,x,x,x,x,x,x,x,x,x,x,x,19" buses = [int(t) for t in SCHEDULE.split(",") if t != "x"] waits = [(((DEPART // b) + 1) * b - DEPART, b) for b in buses] earliest = min(waits, key=lambda v: v[0]) print(earliest[0] * earliest[1]) buses = SCHEDULE.split(",") a_s = [] n_s = [] for i, b in enumerate(buses): if b != "x": b = int(b) if i == 0: print("x = %d mod %d" % (i, b)) a_s.append(i) n_s.append(b) else: if b - i < 0: r = -i % b else: r = b - i print("x = %d mod %d" % (r, b)) a_s.append(r) n_s.append(b) from functools import reduce def chinese_remainder(n, a): sum = 0 prod = reduce(lambda a, b: a*b, n) for n_i, a_i in zip(n, a): p = prod // n_i sum += a_i * mul_inv(p, n_i) * p return sum % prod def mul_inv(a, b): b0 = b x0, x1 = 0, 1 if b == 1: return 1 while a > 1: q = a // b a, b = b, a%b x0, x1 = x1 - q * x0, x0 if x1 < 0: x1 += b0 return x1 print(chinese_remainder(n_s, a_s)) ``` #### File: jlucangelio/adventofcode-2020/day19.py ```python import re rules = {} with open("day19.in") as f: LINES = f.read().splitlines() for i, l in enumerate(LINES): if l == "": break # 58: 127 99 | 105 36 number, r = l.split(": ") if "\"" in r: rule = r[1] else: rule = {tuple([int(r) for r in opt.split()]) for opt in r.split(" | ")} rules[int(number)] = rule def build_regexp(n, rules, part2=False): rule = rules[n] if type(rule) == str: return rule if part2: #8: 42 | 42 8 #11: 42 31 | 42 11 31 r_42 = build_regexp(42, rules) if n == 8: return "(" + r_42 + "+" + ")" if n == 11: r_31 = build_regexp(31, rules) #42{1}31{1}|42{2}31{2}|... return "(" + "|".join([r_42 + "{%d}" % i + r_31 + "{%d}" % i for i in range(1, 10)]) + ")" return "(" + "|".join(["".join([build_regexp(c, rules, part2) for c in opt]) for opt in rule]) + ")" r = re.compile(build_regexp(0, rules)) r_part2 = re.compile(build_regexp(0, rules, part2=True)) count = 0 count_part2 = 0 for l in LINES[i+1:]: if r.fullmatch(l) is not None: count += 1 if r_part2.fullmatch(l) is not None: count_part2 += 1 print(count) print(count_part2) ```
{ "source": "jlucangelio/adventofcode-2021", "score": 3 }
#### File: jlucangelio/adventofcode-2021/day15.py ```python import heapq with open("day15.in") as f: risk_level = [[int(l) for l in row] for row in f.read().splitlines()] # print(len(risk_level), len(risk_level[0])) # SMALL_INPUT = """1163751742 # 1381373672 # 2136511328 # 3694931569 # 7463417111 # 1319128137 # 1359912421 # 3125421639 # 1293138521 # 2311944581""".splitlines() # risk_level = [[int(l) for l in row] for row in SMALL_INPUT] class Pos(object): def __init__(self, x, y, max_x, max_y): self.x = x self.y = y self.max_x = max_x self.max_y = max_y def neighbors(self): if self.x > 0: yield Pos(self.x - 1, self.y, self.max_x, self.max_y) if self.y > 0: yield Pos(self.x, self.y - 1, self.max_x, self.max_y) if self.x < self.max_x: yield Pos(self.x + 1, self.y, self.max_x, self.max_y) if self.y < self.max_y: yield Pos(self.x, self.y + 1, self.max_x, self.max_y) def as_tuple(self): return (self.x, self.y) def __str__(self): return "(%d, %d)" % (self.x, self.y) def shortest_path(m, source): q = [] # q = set() dist = {} prev = {} l = len(m) for i in range(l): for j in range(l): p = (i, j) # q.add(p) dist[p] = 9 * 2 * l + 1 prev[p] = None heapq.heappush(q, (0, source)) # dist[source] = 0 while len(q) > 0: pri, u = heapq.heappop(q) # u = min(q, key=lambda x: dist[x]) # q.remove(u) if pri <= dist[u]: dist[u] = pri for v in Pos(u[0], u[1], l - 1, l - 1).neighbors(): vt = v.as_tuple() # if vt in q: alt = dist[u] + m[v.x][v.y] if alt < dist[vt]: dist[vt] = alt prev[vt] = u heapq.heappush(q, (dist[vt], vt)) return dist, prev def increase_and_wrap(rl, i, j, l): shift = i // l + j // l # print(i, j, shift) if rl + shift > 9: return (rl + shift) % 10 + 1 else: return rl + shift dist, prev = shortest_path(risk_level, (0, 0)) print(dist[(99, 99)]) new_m = [] l = len(risk_level) for i in range(5*l): row = [0 for _ in range(5*l)] for j in range(5*l): row[j] = increase_and_wrap(risk_level[i % l][j % l], i, j, l) new_m.append(row) dist, prev = shortest_path(new_m, (0, 0)) print(dist[(l * 5 - 1, l * 5 - 1)]) ``` #### File: jlucangelio/adventofcode-2021/day22.py ```python from copy import copy from collections import defaultdict, namedtuple with open("day22.in") as f: # with open("day22.small.in") as f: lines = f.read().splitlines() reactor = defaultdict(bool) for line in lines[:20]: # on x=0..45,y=-21..27,z=-28..20 # print(line) switch, coords = line.split() x, y, z = coords.split(",") xmin, xmax = [int(v) for v in x.split("=")[1].split("..")] ymin, ymax = [int(v) for v in y.split("=")[1].split("..")] zmin, zmax = [int(v) for v in z.split("=")[1].split("..")] for x in range(xmin, xmax + 1): for y in range(ymin, ymax + 1): for z in range(zmin, zmax + 1): reactor[(x, y, z)] = True if switch == "on" else False print(sum([1 if v else 0 for v in reactor.values()])) class Range(object): def __init__(self, rmin, rmax): self.rmin = rmin self.rmax = rmax def span(self): return abs(self.rmax - self.rmin + 1) def contains(self, block): return self.rmin <= block <= self.rmax def overlaps(self, other): return self.contains(other.rmin) or self.contains(other.rmax) def includes(self, other): return self.contains(other.rmin) and self.contains(other.rmax) def intersection(self, other): if self.includes(other): return other if other.includes(self): return self if not self.overlaps(other): return None if self.contains(other.rmin) and self.contains(other.rmax): return Range(other.rmin, other.rmax) elif self.contains(other.rmin): return Range(other.rmin, self.rmax) elif self.contains(other.rmax): return Range(self.rmin, other.rmax) def __str__(self): return "%d..%d" % (self.rmin, self.rmax) class Cuboid(object): def __init__(self, xrange, yrange, zrange, on): self.xrange = xrange self.yrange = yrange self.zrange = zrange self.on = on self.exclusions = [] def volume(self): return self.xrange.span() * self.yrange.span() * self.zrange.span() def exclusive_volume(self): return (self.xrange.span() * self.yrange.span() * self.zrange.span() - sum([e.exclusive_volume() for e in self.exclusions])) def contains(self, other): return all([self.xrange.includes(other.xrange), self.yrange.includes(other.yrange), self.zrange.includes(other.zrange)]) def intersect(self, other): xint = self.xrange.intersection(other.xrange) yint = self.yrange.intersection(other.yrange) zint = self.zrange.intersection(other.zrange) if all([intersection is not None for intersection in [xint, yint, zint]]): overlap = Cuboid(xint, yint, zint, other.on) return overlap else: return None def exclude(self, other): overlap = self.intersect(other) if not overlap: return for e in self.exclusions: e.exclude(overlap) self.exclusions.append(overlap) return overlap def num_on(self): return self.exclusive_volume() if self.on else 0 def __str__(self): return "Cuboid(x=%s,y=%s,z=%s,%s)" % (self.xrange, self.yrange, self.zrange, self.on) original_cubes = [] for line in lines: # on x=0..45,y=-21..27,z=-28..20 # print(line) switch, coords = line.split() x, y, z = coords.split(",") xmin, xmax = [int(v) for v in x.split("=")[1].split("..")] ymin, ymax = [int(v) for v in y.split("=")[1].split("..")] zmin, zmax = [int(v) for v in z.split("=")[1].split("..")] c = Cuboid(Range(xmin, xmax), Range(ymin, ymax), Range(zmin, zmax), switch == "on") original_cubes.append(c) for i, ic in enumerate(original_cubes): for j, jc in enumerate(original_cubes): if i < j: original_cubes[i].exclude(original_cubes[j]) print(sum([c.num_on() for c in original_cubes])) ```
{ "source": "jlucangelio/adventofcode", "score": 3 }
#### File: jlucangelio/adventofcode/day12.py ```python import sys def print_regs(regs): print "A:%d B:%d C:%d D:%d" % (regs["a"],regs["b"],regs["c"],regs["d"]) regs = { "a": 0, "b": 0, "c": 1, "d": 0 } pc = 0 instructions = [] steps = 0 with open(sys.argv[1]) as f: lines = f.readlines() instructions = [line.strip().split() for line in lines] while pc < len(instructions): tokens = instructions[pc] op = tokens[0] # print_regs(regs) # print pc, " ".join(tokens) if op == "cpy": src = tokens[1] dst = tokens[2] if src in regs: regs[dst] = regs[src] else: regs[dst] = int(src) offset = 1 elif op == "inc": regs[tokens[1]] += 1 offset = 1 elif op == "dec": regs[tokens[1]] -= 1 offset = 1 elif op == "jnz": val = tokens[1] offset = int(tokens[2]) if val in regs: if regs[val] == 0: offset = 1 elif int(val) == 0: offset = 1 pc += offset steps += 1 print regs["a"] ``` #### File: jlucangelio/adventofcode/day14.py ```python import hashlib SEED = "yjdafjpo" # SEED = "abc" # hashlib.sha224("Nobody inspects the spammish repetition").hexdigest() def all_equal(str): return all([c == str[0] for c in str]) def repeat_hash(s): h = hashlib.md5(s).hexdigest() for _ in range(2016): h = hashlib.md5(h).hexdigest() return h hashes = {} index = 0 triplets = {} quintets = {} keys = {} while len(keys) < 64: if index % 1000 == 0: print "at index %d" % index if index in hashes: h = hashes[index] else: message = SEED + str(index) h = repeat_hash(message) for i, char in enumerate(h): if i < 2: continue possible_run = h[i-2:i+1] if all_equal(possible_run): first_triplet = possible_run if first_triplet in quintets: for qindex in quintets[first_triplet]: if qindex > index and qindex - index <= 1000: print index, first_triplet, qindex keys[index] = first_triplet break if index not in keys: for qindex in range(index + 1, index + 1001): if qindex in hashes: newh = hashes[qindex] else: newmessage = SEED + str(qindex) newh = repeat_hash(newmessage) for i, char in enumerate(newh): if i < 4: continue possible_run = newh[i-4:i+1] # if all_equal(possible_run): # prefix = possible_run[:3] # if prefix in quintets: # quintets[prefix].add(qindex) # else: # quintets[prefix] = set([qindex]) if possible_run[0] != first_triplet[0]: continue if all_equal(possible_run): quintet = possible_run print index, first_triplet, qindex, quintet keys[index] = first_triplet if first_triplet in quintets: quintets[first_triplet].add(qindex) else: quintets[first_triplet] = set([qindex]) break # only consider first triplet break index += 1 print "final index", index - 1 ``` #### File: jlucangelio/adventofcode/day15.py ```python import sys # Disc #1 has 13 positions; at time=0, it is at position 1. # Disc #2 has 19 positions; at time=0, it is at position 10. # Disc #3 has 3 positions; at time=0, it is at position 2. # Disc #4 has 7 positions; at time=0, it is at position 1. # Disc #5 has 5 positions; at time=0, it is at position 3. # Disc #6 has 17 positions; at time=0, it is at position 5. def chinese_remainder(n, a): s = 0 prod = reduce(lambda a, b: a*b, n) for n_i, a_i in zip(n, a): p = prod / n_i s += a_i * mul_inv(p, n_i) * p return s % prod def mul_inv(a, b): b0 = b x0, x1 = 0, 1 if b == 1: return 1 while a > 1: q = a / b a, b = b, a%b x0, x1 = x1 - q * x0, x0 if x1 < 0: x1 += b0 return x1 discs = {} with open(sys.argv[1]) as f: lines = f.readlines() for line in lines: tokens = line.strip().split() discnum = int(tokens[1][1:]) npositions = int(tokens[3]) starting_pos = int(tokens[11][:-1]) print discnum, "npositions", npositions, "starting_pos", starting_pos discs[discnum] = (npositions, starting_pos) print delays = [] for i in range(1, len(discs) + 1): npos, start = discs[i] delay = (npos - (start + i)) % npos if delay == 0: delay = npos print i, "delay", delay delays.append(delay) delay = 0 while True: if all([delay % discs[i][0] == delays[i-1] for i in range(1, len(discs) + 1)]): print delay break delay += 1 if delay % 100000 == 0: print delay print chinese_remainder([discs[i][0] for i in range(1, len(discs) + 1)], delays) ``` #### File: jlucangelio/adventofcode/day3.py ```python count = 0 def is_triangle(a, b, c): return a + b > c and a + c > b and b + c > a with open("day3.input") as f: lines = f.readlines() # for line in lines: # a, b, c = line.strip().split() # a = int(a) # b = int(b) # c = int(c) for i in range(len(lines) / 3): line1 = lines[3*i].strip().split() line2 = lines[3*i+1].strip().split() line3 = lines[3*i+2].strip().split() line1a = int(line1[0]) line1b = int(line1[1]) line1c = int(line1[2]) line2a = int(line2[0]) line2b = int(line2[1]) line2c = int(line2[2]) line3a = int(line3[0]) line3b = int(line3[1]) line3c = int(line3[2]) if is_triangle(line1a, line2a, line3a): count += 1 if is_triangle(line1b, line2b, line3b): count += 1 if is_triangle(line1c, line2c, line3c): count += 1 print count ``` #### File: jlucangelio/adventofcode/day4.py ```python def is_real(name, checksum): frequencies = {} for letter in name: if letter not in frequencies: frequencies[letter] = 1 continue frequencies[letter] += 1 sorted_letters = sorted(frequencies.keys(), key=lambda k: (frequencies[k], ord("z") - ord(k)), reverse=True) return checksum in "".join(sorted_letters) def rotate(name, sector_id): decrypted_name = "" for token in name.split("-"): for letter in token: decrypted_name += chr((ord(letter) - ord("a") + int(sector_id)) % 26 + ord("a")) decrypted_name += " " print decrypted_name, sector_id s = 0 with open("day4.input") as f: lines = f.readlines() for line in lines: tokens = line.strip().split("-") name = "".join(tokens[:-1]) sector_id, checksum = tokens[-1].split("[") checksum = checksum[:-1] if is_real(name, checksum): s += int(sector_id) rotate(name, sector_id) # print name, sector_id, checksum print s ``` #### File: jlucangelio/adventofcode/day9p2.py ```python import sys def decompress_line(line): if "(" not in line: # print "not in", line return len(line), 1 # There's at least one (marker). length = 0 in_marker = False collecting_rep = False marker = "" rep = "" nchars = 0 nreps = 0 for char in line: if collecting_rep: rep += char nchars -= 1 if nchars == 0: collecting_rep = False # print "rep", rep sub_nchars, sub_nreps = decompress_line(rep) length += sub_nchars * sub_nreps * nreps nreps = 0 rep = "" continue if in_marker: # Markers don't count for length. if char == ")": in_marker = False nchars, nreps = marker.split("x") nchars = int(nchars) nreps = int(nreps) collecting_rep = True else: marker += char elif not in_marker: if char == "(": in_marker = True marker = "" else: length += 1 assert(nchars == 0) return length, 1 length = 0 with open(sys.argv[1]) as f: lines = f.readlines() count = 0 for line in lines: line = line.strip() # print line l, reps = decompress_line(line) print l * reps print ```
{ "source": "jlucangelio/matasano-crypto-challenges", "score": 2 }
#### File: jlucangelio/matasano-crypto-challenges/ecb_cut-n-paste.py ```python import utils from collections import OrderedDict KEY = utils.ByteArray.random(16) def parse(s): res = OrderedDict() fields = s.split("&") for field in fields: k, v = field.split("=") res[k] = v return res def unparse(d): res = [] for k in d: v = d[k] if type(v) == str and ("=" in v or "&" in v): continue res.append("%s=%s" % (k, v)) return "&".join(res) def profile_for(email): return unparse(OrderedDict([("email", email), ("uid", 10), ("role", "user")])) def encrypt_profile(email): ptext = utils.ByteArray.fromString(profile_for(email)) ptext.pkcs7pad(utils.AES_BLOCKSIZE_BYTES) return utils.aes_ecb_encrypt(ptext, KEY) def decrypt_profile(p): ptext = utils.aes_ecb_decrypt(p, KEY).asString() last_byte = ord(ptext[-1]) if last_byte >= 1 and last_byte <= 15: ptext = ptext[:-last_byte] return parse(ptext) if __name__ == "__main__": s = "foo=bar&baz=qux&zap=zazzle" print parse(s) print s == unparse(parse(s)) print "profile_for", profile_for("<EMAIL>") == "email=<EMAIL>&uid=10&role=user" print decrypt_profile(encrypt_profile("<EMAIL>")) # len("email=<EMAIL>") == 16 first_block = "<EMAIL>" role = "admin" nbytes = 16 - len(role) ptext = role + (chr(nbytes) * nbytes) print repr(ptext), len(ptext) admin_block = encrypt_profile(first_block + ptext).blocksAsHexStrings(16)[1] # "email=<EMAIL>&uid=10&role=" + "admin" + padding ptext = "<EMAIL>&uid=10&role=" s = "A" * (16 - (len(ptext) % 16)) print s, len(s + ptext) blocks = encrypt_profile(s + "@bar.com").blocksAsHexStrings(16) p = blocks[:-1] + [admin_block] print decrypt_profile(utils.ByteArray.fromHexString("".join(p))) ``` #### File: jlucangelio/matasano-crypto-challenges/ecb_decryption.py ```python import utils import ecb_cbc_detection UNKNOWN_STRING = """<KEY>""" KEY = utils.ByteArray.random(16) def oracle(input_data): input_ba = utils.ByteArray.fromString(input_data) input_ba.extend(utils.ByteArray.fromBase64(UNKNOWN_STRING)) input_ba.pkcs7pad(utils.AES_BLOCKSIZE_BYTES) ret = utils.aes_ecb_encrypt(input_ba, KEY) return ret if __name__ == "__main__": bs = None padding = None l = len(oracle("")) for i in range(64): ctext = oracle("A" * (i+1)) if len(ctext) != l: bs = len(ctext) - l padding = i break print "block size", bs print "padding", padding if ecb_cbc_detection.detect_ecb_cbc(oracle) != "ECB": print "Not ECB" unknown_string = "" blocks = {} for unknown_block in range(l / bs): print unknown_block for i in range(bs): blocks.clear() for c in range(256): attempt = "A" * (bs - i - 1) + unknown_string + chr(c) ctext = oracle(attempt) block = ctext.block(bs, unknown_block).asHexString() blocks[block] = attempt input_data = "A" * (bs - i - 1) ctext = oracle(input_data).block(bs, unknown_block).asHexString() block = blocks[ctext] unknown_string += block[-1] if len(unknown_string) == l - padding: break print unknown_string ```
{ "source": "jlucartc/MetodosNumericos20182", "score": 4 }
#### File: MetodosNumericos20182/etapa 1/metodo_newton_raphson.py ```python from sympy import* import math import time #import matplotlib.pyplot as plt #plot x = symbols('x') print("\n\n-- Método de Newton-Raphson --\n") fx = sympify((str)(input("Digite f(x): "))) # recebe a função dfx = diff(fx,x) # calcula a derivada da função recebida x0 = (float)(input("Digite x0: ")) # recebe o ponto inicial def phix(a, b, c): # define função phi(x) return a - (b.subs(x,x0)/c.subs(x,x0)) e = (float)(input("Digite o valor da precisão: ")) # recebe o valor da precisão c = 0 # inicia contador de iterações start = time.time() end = 0 str_k = 'k' str_x = 'x' str_fx = 'f(x)' print("\n{0:^2}".format(str_k) + "|{0:^14}".format(str_x) + "|{0:^14}".format(str_fx)) while (c < 30) : print("{0:^2}".format(c) + "|{0:^14.6e}".format(x0) + "|{0:^14.6e}".format(fx.subs(x,x0))) phi = phix(x0,fx,dfx) # calcula phi(x0) if(abs(fx.subs(x,x0)) < e): # checa se a função em x0 é menor ou igual à precisão desejada end = time.time() # calcula tempo final print("-> Raiz = "+str(float(phi))) # imprime a raiz encontrada print("-> iterações: "+str(c)) # imprime o número de iterações break # sai do laço x0 = phi # caso f(x) não seja perto de 0 o suficiente, x0 recebe o valor de phi(x0) e segue no laço if(c == 29): end = time.time() # calcula tempo final print("-> Número máximo de iterações atingido") c+=1 print("-> Tempo de execução: "+str(end - start)+" segundos\n\n") # imprime o tempo de execução na tela ``` #### File: MetodosNumericos20182/etapa 1/secant_method.py ```python import sys import math from timeit import default_timer as timer """ " Para executar este método no caso de teste no qual f(x) = x³ - 9x + 3 e a " precisão vale 0.0005 (exemplo apresentado nos slides), deve-se definir os " dois pontos do intervalo (0 e 1) e o número de interações (50) no ato do " chamamento da função, bem como escrever a seguinte passagem no terminal: " python .\secant_method.py "x**3 - 9*x + 3" 0.0005 """ f = lambda x:eval(sys.argv[1]) # recebe a função e = float(sys.argv[2]) # recebe a precisão def q(x0, x1): # define a função phi(x) return (x0 * f(x1) - x1 * f(x0)) / (f(x1) - f(x0)) start = timer() def secant_method(x0, x1, max_interactions): # função que realiza as iterações fx0 = f(x0) fx1 = f(x1) if abs(fx0) <= e: return x0 if abs(fx1) <= e: return x1 else: k = 1 str_k = 'k' str_x = 'x' str_fx = 'f(x)' print("{0:^2}".format(str_k) + "|{0:^14}".format(str_x) + "|{0:^14}".format(str_fx)) while k <= max_interactions: x2 = q(x0, x1) fx2 = f(x2) print("{0:^2}".format(k) + "|{0:^14.6e}".format(x2) + "|{0:^14.6e}".format(fx2)) if abs(fx2) <= e: return x2 x0 = x1 x1 = x2 k += 1 return x2 end = timer() root = secant_method(0,1, 50) # definindo os pontos iniciais e o número máximo de iterações print("Root: %.6e." % root) print("Runtime: %.6e seconds." % (end - start)) ``` #### File: MetodosNumericos20182/etapa 2/gaussJacobi.py ```python import numpy as np from sympy import * from math import * from timeit import default_timer as timer start = None end = None def maxXi(Xn,X): n = None d = None for i in range(Xn.shape[0]): if(np.copy(Xn[i,0]) != 0): nk = abs(np.copy(Xn[i,0]) - np.copy(X[i,0]))/abs(np.copy(Xn[i,0])) dk = abs(np.copy(Xn[i,0])) if n == None or nk > n: n = nk if d == None or dk > d: d = dk return n/d A = np.matrix(eval(input("Digite uma matriz : "))) A = A.astype(float) X = np.matrix(eval(input("Digite X : "))) e = float(input("Digite a precisão: ")) B = np.copy(A[:,A.shape[1]-1]) A = np.delete(np.copy(A),A.shape[1]-1,1) C = np.asmatrix(np.zeros([A.shape[0],A.shape[1]])) C = C.astype(float) G = np.copy(B) for i in range(C.shape[0]): for j in range(C.shape[1]): if i != j: C[i,j] = (np.copy(A[i,j])/np.copy(A[i,i]))*(-1) G[i,0] = (np.copy(G[i,0]))/(np.copy(A[i,i])) C[i,i] = 0 Xn = None z = True print("Matriz C:\n",C) print("Matriz G:\n",G) start = timer() while(z): Xn = (np.copy(C) @ np.copy(X)) + np.copy(G) d = maxXi(np.copy(Xn),np.copy(X)) if(d < e): z = False else: X = np.copy(Xn) end = timer() print("Resposta de Gauss-Jacobi: ") print(Xn) print("Tempo de execucao total: %e segundos" % (end - start)) ```
{ "source": "jlucartc/MetodosNumericosTrabalhoExtra20182", "score": 4 }
#### File: jlucartc/MetodosNumericosTrabalhoExtra20182/1_3_simpson.py ```python import numpy as np from sympy import * from math import * def regra_1_3_Simpson(fx,a,h,x): return ((h)*(fx.subs(x,a) + 4*fx.subs(x,a+h) + fx.subs(x,a+2*h)))/3 x = symbols('x') fx = sympify(str(input("\n\n Digite a função f(x): "))) a = float(input(" Digite o começo do intervalo de integração: ")) b = float(input(" Digite o fim do intervalo de integração: ")) t = float(input(" Digite o modo de integração: (0 - sem repetição, 1 - com repetição): ")) if(t == 0): Ir = integrate(fx,(x,a,b)) Ia = regra_1_3_Simpson(fx,a,abs(b-a)/2,x) print(" Integral aproximada: "+str(Ia)+"\n\n") elif(t == 1): m = int(input(" Digite a quantidade m de intervalos: ")) h = float(abs(b-a)/m) Et = -(h**5/90)*diff(diff(diff(diff(fx,x),x),x),x) Es = Et.subs(x,a) if(m%2 == 0 and m*h == (b-a)): Ia = 0 for i in range(0,m-1,2): Es += Et.subs(x,a+h) Ia += regra_1_3_Simpson(fx,a,h,x) a += 2*h print(" Integral aproximada: "+str(Ia)+"\n\n") else: print(" Erro: m não é múltiplo de 2\n\n") ``` #### File: jlucartc/MetodosNumericosTrabalhoExtra20182/interpolacao_sistema_linear.py ```python import numpy as np from sympy import * from math import * from timeit import default_timer as timer def resolveTriangular(A): R = np.asmatrix([0]*A.shape[0]) # matriz de valores das icógnitas R = R.astype(float) for i in range(A.shape[0]-1,-1,-1): R[0,i] = np.copy(R[0,i]) + np.copy(A[i,A.shape[0]]) for j in range(A.shape[0]-1,i,-1): R[0,i] = np.copy(R[0,i]) - np.copy(A[i,j]) R[0,i] = (np.copy(R[0,i])/np.copy(A[i,i])) A[:,i] = np.copy(A[:,i])*np.copy(R[0,i]) return [A,R] def pivotacaoParcial(A): p = 0 m = None for i in range(0,A.shape[0]): for j in range(i+1,A.shape[0]): if A[i,i] < A[j,i]: p += 1 Temp = np.copy(A[i]) A[i] = np.copy(A[j]) A[j] = np.copy(Temp) for k in range(i+1,A.shape[0]): d = np.copy(A[k,i]) d = d/np.copy(A[i,i]) A[k,:] = np.copy(A[k,:]) - (np.copy(A[i,:])*d) return [A,p] start = None end = None x = np.matrix(eval(input("\n\n Digite o vetor de pontos x0;x1;x1;{...};xn : "))) x = x.astype(float) y = np.matrix(eval(input(" Digite o vetor de pontos f(x0);f(x1);{...};f(xn) :"))) x = x.astype(float) n = x.shape[0] # quantidade de linhas de x = quantidade de pontos v = np.zeros([n,n]) v[:,0] = 1 for i in range(1,n): v[:,i] = np.transpose(np.power(np.copy(x),i)) v = np.hstack((np.copy(v),np.copy(y))) start = timer() r = resolveTriangular(pivotacaoParcial(v)[0])[1] end = timer() st = "" for j in range(0,r.shape[1]): if(j == 0): # se for o termo independente if(r[0,j] > 0): st += " + "+str(r[0,j]) elif(r[0,j] < 0): st += " "+str(r[0,j]) elif(j != r.shape[0]-1): if(r[0,j] > 0): st += " + "+str(r[0,j])+"*x**"+str(j) elif(r[0,j] < 0): st += " "+str(r[0,j])+"*x**"+str(j) x = symbols('x') st = sympify(str(st)) x0 = float(input(" Digite um valor de x para ser testado no polinômio da interpolação: ")) print(" y(x) = "+str(st)) print(" y("+str(x0)+"): "+str(st.subs(x,x0))) print(" Tempo de execucao total: %e segundos\n\n" % (end - start)) ``` #### File: jlucartc/MetodosNumericosTrabalhoExtra20182/regra_dos_trapezios.py ```python import numpy as np from sympy import * from math import * def regraDosTrapezios(fx,a,b,x): return ((b-a)*(fx.subs(x,a) + fx.subs(x,b)))/2 x = symbols('x') fx = sympify(str(input("\n\n Digite a função f(x): "))) a = float(input(" Digite o começo do intervalo de integração: ")) b = float(input(" Digite o fim do intervalo de integração: ")) t = float(input(" Digite o modo de integração: (0 - sem repetição, 1 - com repetição): ")) if(t == 0): Ia = regraDosTrapezios(fx,a,b,x) print(" Integral aproximada: "+str(Ia)+"\n\n") elif(t == 1): m = int(input(" Digite a quantidade m de divisões: ")) h = abs(b-a)/m Et = (-h**3/12)*diff(diff(fx,x),x).subs(x,a) if(m*h < (b-a)): hEx = (b-a) - h*m Ia = 0 xk = a for i in range(0,m+1): if(i == m): Et += -(h**3/12)*diff(diff(fx,x),x).subs(x,a+hEx) Ia += regraDosTrapezios(fx,a,(a+hEx),x) a += hEx else: Et += -(h**3/12)*diff(diff(fx,x),x).subs(x,a+h) Ia += regraDosTrapezios(fx,a,(a+h),x) a += h print(" Integral aproximada: "+str(Ia)+"\n\n") else: Ia = 0 xk = a for i in range(0,m): Et += -(h**3/12)*(diff(diff(fx,x),x).subs(x,a+h)) Ia += regraDosTrapezios(fx,a,(a+h),x) a += h print(" Integral aproximada: "+str(Ia)+"\n\n") ```
{ "source": "jlucas-esri/Geospatial-Center-Code", "score": 3 }
#### File: misc/dataFrameToDatabase/dataFrameToDatabase.py ```python import logging import time import pandas as pd from pandas.errors import EmptyDataError import sqlalchemy from typing import Union, List class DataFrameToDatabase: def __init__(self, df:Union[pd.DataFrame, pd.io.parsers.TextFileReader], dbTableName:str, driver:str, username:str=None, password:str=<PASSWORD>, address:str=None, dbName:str=None, port:Union[int, str]=None, query:dict={}, dbEcho:bool=True, if_exists:str='fail', index:bool=True, index_label:str=None, chunksize:int=None, dtype:dict=None, ): #private self._logger = logging.getLogger('DataFrameToDatabase') self._logger.setLevel(logging.INFO) #default value updated in self._validateDataFrame self._isIterable = False #pd.DataFrame.to_sql variables self._index = index self._index_label = index_label self._chunksize = chunksize self._dtype = dtype self._dbTableName = dbTableName if if_exists not in ['fail', 'append', 'replace']: raise ValueError('if_exists must be set to "fails", "replace", or "append"') elif if_exists == 'replace': self._logger.warning(f'Table "{dbTableName}" will be overwritten.') self._if_exists = if_exists #validating and categorizing it as iterable or not self._logger.info('Validating DataFrame...') if self._validateDataFrame(df): self._df = df self._logger.info('Valid DataFrame') #validating db params self._logger.info('Validating database parameters...') if self._validateDbParameters(driver, username, password, address, port, dbName, query): #sqlalchemy.create_engine parameters self._dbEcho = dbEcho self._driver = driver self._username = username self._password = password self._address = address self._port = port self._dbName = dbName self._query = query self._logger.info('Valid database parameters') # self._logger.info('Inserting data...') # self.insertData() def _validateDataFrame(self, df): """ Validates that the df isn't empty and categorizes it as iterable (TextFileReader) or not iterable (DataFrame) """ #if the df is a standard DataFrame if type(df) == pd.DataFrame: self._logger.info('Using regular dataframe') if df.empty: self._logger.error('Empty dataframe') raise EmptyDataError('DataFrame is empty') self.colsAndTypes = {name: df.dtypes[name] for name in list(df.columns)} self._isIterable = False #if the df is a large file read in through chunks elif type(df) == pd.io.parsers.TextFileReader: self._logger.info('Using large dataframe') for chunk in df: self.colsAndTypes = {name: chunk.dtypes[name] for name in list(chunk.columns)} if chunk.empty: self._logger.error('Empty dataframe') raise EmptyDataError('DataFrame is empty') break self._isIterable = True else: raise TypeError(f'Invalid df type. Type "{type(df)}" is not a DataFrame or TextFileReader') return True def _validateDbParameters(self, driver, username, password, address, port, dbName, query): """ Validates database parameters by passing it into create_engine. If it succeeds, the parameters are valid """ try: # if driver: # driver = '+' + driver # if port: # port = ':' + str(port) # if password: # password = ':' + password # if address: # address = '@' + address dbUrl = sqlalchemy.engine.URL.create(drivername=driver, username=username, password=password, host=address, port=port, database=dbName, query=query) self._engine = sqlalchemy.create_engine(dbUrl, echo=self._dbEcho) except Exception as e: self._logger.exception(e) raise e else: return True def insertData(self): """ Inserts data into the database depending on the type of DataFrame given """ if self._isIterable: #boolean tracking if function DataFrame.to_sql has been run for any chunk updated = False for chunk in self._df: start = time.time() if not updated: chunk.to_sql(name=self._dbTableName, con=self._engine, if_exists=self._if_exists, index=self._index, index_label=self._index_label, chunksize=self._chunksize, dtype=self._dtype) updated = True elif updated: chunk.to_sql(name=self._dbTableName, con=self._engine, if_exists='append', index=self._index, index_label=self._index_label, chunksize=self._chunksize, dtype=self._dtype) end = time.time() self._logger.info(f'Chunk inserted in {end-start:.3f} seconds') elif not self._isIterable: start = time.time() self._df.to_sql(name=self._dbTableName, con=self._engine, if_exists=self._if_exists, index=self._index, index_label=self._index_label, chunksize=self._chunksize, dtype=self._dtype) end = time.time() self._logger.info(f'DataFrame inserted in {end-start:.3f} seconds') def main(self): self._logger.info('Inserting data...') self.insertData() ```
{ "source": "jlucas-esri/GrantsWebScraper", "score": 2 }
#### File: src/scraper/htmlRetriever.py ```python import requests class HtmlRetriever: def __init__(self, driver): self.content = driver.page_source @staticmethod def main(driver): retriever = HtmlRetriever(driver) return retriever.content ``` #### File: src/scraper/iteratePages.py ```python import time import logging from selenium.common.exceptions import NoSuchElementException class IteratePages: _logger = logging.getLogger(__name__) _logger.setLevel(logging.DEBUG) handler = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(name)s - %(message)s', '%Y-%m-%d %H:%M:%S') handler.setFormatter(formatter) _logger.addHandler(handler) def __init__(self, driver): self.driver = driver self.driver.switch_to.default_content() self.driver.switch_to_frame('embeddedIframe') # @staticmethod # def run(): # pass def __iter__(self): self.iteratedOnce = False return self def __next__(self): try: if not self.iteratedOnce: self.iteratedOnce = True return self.driver nextButton = self.driver.find_element_by_css_selector('a[title=\"Click Next Page\"]') nextButton.click() #leaving time for the page to load time.sleep(3) self.driver.switch_to.default_content() self.driver.switch_to_frame('embeddedIframe') return self.driver except NoSuchElementException as e: self._logger.debug('No more pages left') raise StopIteration def _iterate(self): pass ```
{ "source": "JlucasS777/Aprendendo-Python", "score": 3 }
#### File: Aprendendo Python/cursopythonudamy/aula_29_funcao_4.py ```python variavel = 'valor' def func(): print(variavel) func() def func2(): global variavel variavel = 'Outro valor' print(variavel) func() func2() print(variavel) ``` #### File: uteis/numeros/__init__.py ```python def fatorial(n): f=1 for c in range (1,n+1): f*=c return f def dobro(n): return n*2 def triplo(n): return n*3 ```
{ "source": "jlucete/ParallelWaveGAN-AutoVC", "score": 2 }
#### File: autovc/bin/train.py ```python import argparse import logging import os import sys from collections import defaultdict import matplotlib import numpy as np import soundfile as sf import torch import yaml from tensorboardX import SummaryWriter from torch.utils.data import DataLoader from tqdm import tqdm import autovc from autovc.datasets import AudioMelDataset from autovc.datasets import AudioMelSCPDataset from parallel_wavegan.utils import read_hdf5 import autovc.models import autovc.optimizers # set to avoid matplotlib error in CLI environment matplotlib.use("Agg") class Trainer(object): """Customized trainer module for AutoVC training.""" def __init__(self, steps, epochs, data_loader, sampler, model, criterion, optimizer, scheduler, config, device=torch.device("cpu"), ): """Initialize trainer. Args: steps (int): Initial global steps. epochs (int): Initial global epochs. data_loader (dict): Dict of data loaders. It must contrain "train" and "dev" loaders. model (dict): Dict of models. It must contain "generator" and "discriminator" models. criterion (dict): Dict of criterions. It must contrain "stft" and "mse" criterions. optimizer (dict): Dict of optimizers. It must contrain "generator" and "discriminator" optimizers. scheduler (dict): Dict of schedulers. It must contrain "generator" and "discriminator" schedulers. config (dict): Config dict loaded from yaml format configuration file. device (torch.deive): Pytorch device instance. """ self.steps = steps self.epochs = epochs self.data_loader = data_loader self.sampler = sampler self.model = model self.criterion = criterion self.optimizer = optimizer self.scheduler = scheduler self.config = config self.device = device self.writer = SummaryWriter(config["outdir"]) self.finish_train = False self.total_train_loss = defaultdict(float) self.total_eval_loss = defaultdict(float) def run(self): """Run training.""" self.tqdm = tqdm(initial=self.steps, total=self.config["train_max_steps"], desc="[train]") while True: # train one epoch self._train_epoch() # check whether training is finished if self.finish_train: break self.tqdm.close() logging.info("Finished training.") def save_checkpoint(self, checkpoint_path): """Save checkpoint. Args: checkpoint_path (str): Checkpoint path to be saved. """ state_dict = { "optimizer": { "generator": self.optimizer["generator"].state_dict(), }, "scheduler": { "generator": self.scheduler["generator"].state_dict(), }, "steps": self.steps, "epochs": self.epochs, } if self.config["distributed"]: state_dict["model"] = { "generator": self.model["generator"].module.state_dict(), } else: state_dict["model"] = { "generator": self.model["generator"].state_dict(), } if not os.path.exists(os.path.dirname(checkpoint_path)): os.makedirs(os.path.dirname(checkpoint_path)) torch.save(state_dict, checkpoint_path) def load_checkpoint(self, checkpoint_path, load_only_params=False): """Load checkpoint. Args: checkpoint_path (str): Checkpoint path to be loaded. load_only_params (bool): Whether to load only model parameters. """ state_dict = torch.load(checkpoint_path, map_location="cpu") if self.config["distributed"]: self.model["generator"].module.load_state_dict(state_dict["model"]["generator"]) else: self.model["generator"].load_state_dict(state_dict["model"]["generator"]) if not load_only_params: self.steps = state_dict["steps"] self.epochs = state_dict["epochs"] self.optimizer["generator"].load_state_dict(state_dict["optimizer"]["generator"]) self.scheduler["generator"].load_state_dict(state_dict["scheduler"]["generator"]) def _train_step(self, batch): """Train model one step.""" # parse batch x, y = batch x = tuple([x_.to(self.device) for x_ in x]) y = y.to(self.device) x_real = x[-2] emb_org = x[-1] ####################### # Generator # ####################### x_real = x_real.transpose(1,2) # Identity mapping loss x_identic, x_identic_psnt, code_real = self.model["generator"](x_real, emb_org, emb_org) g_loss_id = self.criterion["mse"](x_real, x_identic) g_loss_id_psnt = self.criterion["mse"](x_real, x_identic_psnt) self.total_train_loss["train/identity_mapping_loss"] += g_loss_id.item() self.total_train_loss["train/identity_mapping_loss_psnt"] += g_loss_id_psnt.item() # Code Semantic loss code_reconst = self.model["generator"](x_identic_psnt, emb_org, None) g_loss_cd = self.criterion["l1"](code_real, code_reconst) self.total_train_loss["train/code_semantic_loss"] += g_loss_cd.item() # Total generator loss g_loss = g_loss_id + g_loss_id_psnt + self.config["lambda_cd"] * g_loss_cd self.total_train_loss["train/generator_loss"] += g_loss.item() # update generator self.optimizer["generator"].zero_grad() g_loss.backward() if self.config["generator_grad_norm"] > 0: torch.nn.utils.clip_grad_norm_( self.model["generator"].parameters(), self.config["generator_grad_norm"]) self.optimizer["generator"].step() self.scheduler["generator"].step() # update counts self.steps += 1 self.tqdm.update(1) self._check_train_finish() def _train_epoch(self): """Train model one epoch.""" for train_steps_per_epoch, batch in enumerate(self.data_loader["train"], 1): # train one step self._train_step(batch) # check interval if self.config["rank"] == 0: self._check_log_interval() self._check_eval_interval() self._check_save_interval() # check whether training is finished if self.finish_train: return # update self.epochs += 1 self.train_steps_per_epoch = train_steps_per_epoch logging.info(f"(Steps: {self.steps}) Finished {self.epochs} epoch training " f"({self.train_steps_per_epoch} steps per epoch).") # needed for shuffle in distributed training if self.config["distributed"]: self.sampler["train"].set_epoch(self.epochs) @torch.no_grad() def _eval_step(self, batch): """Evaluate model one step.""" # parse batch x, y = batch x = tuple([x_.to(self.device) for x_ in x]) y = y.to(self.device) x_real = x[-2] emb_org = x[-1] ####################### # Generator # ####################### x_real = x_real.transpose(1,2) x_identic, x_identic_psnt, code_real = self.model["generator"](x_real, emb_org, emb_org) # Identity mapping loss g_loss_id = self.criterion["mse"](x_real, x_identic) g_loss_id_psnt = self.criterion["mse"](x_real, x_identic_psnt) self.total_eval_loss["eval/identity_mapping_loss"] += g_loss_id.item() self.total_eval_loss["eval/identity_mapping_loss_psnt"] += g_loss_id_psnt.item() # Code Semantic loss code_reconst = self.model["generator"](x_identic_psnt, emb_org, None) g_loss_cd = self.criterion["l1"](code_real, code_reconst) self.total_eval_loss["eval/code_semantic_loss"] += g_loss_cd.item() # Total generator loss g_loss = g_loss_id + g_loss_id_psnt + self.config["lambda_cd"] * g_loss_cd self.total_eval_loss["eval/generator_loss"] += g_loss.item() def _eval_epoch(self): """Evaluate model one epoch.""" logging.info(f"(Steps: {self.steps}) Start evaluation.") # change mode for key in self.model.keys(): self.model[key].eval() # calculate loss for each batch for eval_steps_per_epoch, batch in enumerate(tqdm(self.data_loader["dev"], desc="[eval]"), 1): # eval one step self._eval_step(batch) # save intermediate result if eval_steps_per_epoch == 1: self._genearete_and_save_intermediate_result(batch) logging.info(f"(Steps: {self.steps}) Finished evaluation " f"({eval_steps_per_epoch} steps per epoch).") # average loss for key in self.total_eval_loss.keys(): self.total_eval_loss[key] /= eval_steps_per_epoch logging.info(f"(Steps: {self.steps}) {key} = {self.total_eval_loss[key]:.4f}.") # record self._write_to_tensorboard(self.total_eval_loss) # reset self.total_eval_loss = defaultdict(float) # restore mode for key in self.model.keys(): self.model[key].train() @torch.no_grad() def _genearete_and_save_intermediate_result(self, batch): """Generate and save intermediate result.""" # FIXME(Jaegeon): implement ParallelWaveGAN-AutoVC end-to-end intermediate result. ''' # delayed import to avoid error related backend error import matplotlib.pyplot as plt # generate x_batch, y_batch = batch x_batch = tuple([x.to(self.device) for x in x_batch]) y_batch = y_batch.to(self.device) y_batch_ = self.model["generator"](*x_batch) # check directory dirname = os.path.join(self.config["outdir"], f"predictions/{self.steps}steps") if not os.path.exists(dirname): os.makedirs(dirname) for idx, (y, y_) in enumerate(zip(y_batch, y_batch_), 1): # convert to ndarray y, y_ = y.view(-1).cpu().numpy(), y_.view(-1).cpu().numpy() # plot figure and save it figname = os.path.join(dirname, f"{idx}.png") plt.subplot(2, 1, 1) plt.plot(y) plt.title("groundtruth speech") plt.subplot(2, 1, 2) plt.plot(y_) plt.title(f"generated speech @ {self.steps} steps") plt.tight_layout() plt.savefig(figname) plt.close() # save as wavfile y = np.clip(y, -1, 1) y_ = np.clip(y_, -1, 1) sf.write(figname.replace(".png", "_ref.wav"), y, self.config["sampling_rate"], "PCM_16") sf.write(figname.replace(".png", "_gen.wav"), y_, self.config["sampling_rate"], "PCM_16") if idx >= self.config["num_save_intermediate_results"]: break ''' def _write_to_tensorboard(self, loss): """Write to tensorboard.""" for key, value in loss.items(): self.writer.add_scalar(key, value, self.steps) def _check_save_interval(self): if self.steps % self.config["save_interval_steps"] == 0: self.save_checkpoint( os.path.join(self.config["outdir"], f"checkpoint-{self.steps}steps.pkl")) logging.info(f"Successfully saved checkpoint @ {self.steps} steps.") def _check_eval_interval(self): if self.steps % self.config["eval_interval_steps"] == 0: self._eval_epoch() def _check_log_interval(self): if self.steps % self.config["log_interval_steps"] == 0: for key in self.total_train_loss.keys(): self.total_train_loss[key] /= self.config["log_interval_steps"] logging.info(f"(Steps: {self.steps}) {key} = {self.total_train_loss[key]:.4f}.") self._write_to_tensorboard(self.total_train_loss) # reset self.total_train_loss = defaultdict(float) def _check_train_finish(self): if self.steps >= self.config["train_max_steps"]: self.finish_train = True class Collater(object): """Customized collater for Pytorch DataLoader in training.""" def __init__(self, batch_max_steps=20480, hop_size=256, aux_context_window=0, use_noise_input=False, len_crop=128, ): """Initialize customized collater for PyTorch DataLoader. Args: batch_max_steps (int): The maximum length of input signal in batch. hop_size (int): Hop size of auxiliary features. aux_context_window (int): Context window size for auxiliary feature conv. use_noise_input (bool): Whether to use noise input. len_crop (int): Length of single crop. """ if batch_max_steps % hop_size != 0: batch_max_steps += -(batch_max_steps % hop_size) assert batch_max_steps % hop_size == 0 self.batch_max_steps = batch_max_steps self.batch_max_frames = batch_max_steps // hop_size self.hop_size = hop_size self.aux_context_window = aux_context_window self.use_noise_input = use_noise_input self.len_crop = len_crop # set useful values in random cutting self.start_offset = 0 self.end_offset = -(self.batch_max_frames) self.mel_threshold = self.batch_max_frames def __call__(self, batch): """Convert into batch tensors. Args: batch (list): list of tuple of the pair of audio, features and speaker embedding. Returns: Tensor: Gaussian noise batch (B, 1, T). Tensor: Auxiliary feature batch (B, C, T'), where T = (T' - 2 * aux_context_window) * hop_size. Tensor: Speaker Embedding (B, spk_emb_dim, 1) Tensor: Target signal batch (B, 1, T). """ # check length batch = [self._adjust_length(*b) for b in batch if len(b[1]) > self.mel_threshold] xs, cs, es = [b[0] for b in batch], [b[1] for b in batch], [b[2] for b in batch] # make batch with random cut c_lengths = [len(c) for c in cs] start_frames = np.array([np.random.randint( self.start_offset, cl + self.end_offset) for cl in c_lengths]) x_starts = start_frames * self.hop_size x_ends = x_starts + self.batch_max_steps y_batch = [x[start: end] for x, start, end in zip(xs, x_starts, x_ends)] c_batch = [] for tmp in cs: tmp = np.array(tmp) if tmp.shape[0] < self.len_crop: len_pad = self.len_crop - tmp.shape[0] c_batch.append(np.pad(tmp, ((0,len_pad),(0,0)), 'constant')) elif tmp.shape[0] > self.len_crop: left = np.random.randint(tmp.shape[0]-self.len_crop) c_batch.append(tmp[left:left+self.len_crop, :]) else: c_batch.append(tmp) e_batch = es # convert each batch to tensor, asuume that each item in batch has the same length y_batch = torch.tensor(y_batch, dtype=torch.float).unsqueeze(1) # (B, 1, T) c_batch = torch.tensor(c_batch, dtype=torch.float).transpose(2, 1) # (B, C, T') e_batch = torch.tensor(e_batch, dtype=torch.float) # (B, E, 1) # make input noise signal batch tensor if self.use_noise_input: z_batch = torch.randn(y_batch.size()) # (B, 1, T) return (z_batch, c_batch, e_batch), y_batch else: return (c_batch, e_batch,), y_batch def _adjust_length(self, x, c, e): """Adjust the audio and feature lengths. Note: Basically we assume that the length of x and c are adjusted through preprocessing stage, but if we use other library processed features, this process will be needed. """ if len(x) < len(c) * self.hop_size: x = np.pad(x, (0, len(c) * self.hop_size - len(x)), mode="edge") elif len(x) > len(c) * self.hop_size: x = x[:-(len(x)-len(c)*self.hop_size)] # check the legnth is valid if len(x) != len(c) * self.hop_size: logging.warning(f"len x : {len(x)}, len c : {len(c)}") #assert len(x) == len(c) * self.hop_size return x, c, e def main(): """Run training process.""" parser = argparse.ArgumentParser( description="Train Parallel WaveGAN (See detail in parallel_wavegan/bin/train.py).") parser.add_argument("--train-wav-scp", default=None, type=str, help="kaldi-style wav.scp file for training. " "you need to specify either train-*-scp or train-dumpdir.") parser.add_argument("--train-feats-scp", default=None, type=str, help="kaldi-style feats.scp file for training. " "you need to specify either train-*-scp or train-dumpdir.") parser.add_argument("--train-spkemb-scp", default=None, type=str, help="kaldi-style spkemb.scp file for training. " "you need to specify either train-*-scp or train-dumpdir.") parser.add_argument("--train-segments", default=None, type=str, help="kaldi-style segments file for training.") parser.add_argument("--train-dumpdir", default=None, type=str, help="directory including training data. " "you need to specify either train-*-scp or train-dumpdir.") parser.add_argument("--dev-wav-scp", default=None, type=str, help="kaldi-style wav.scp file for validation. " "you need to specify either dev-*-scp or dev-dumpdir.") parser.add_argument("--dev-feats-scp", default=None, type=str, help="kaldi-style feats.scp file for vaidation. " "you need to specify either dev-*-scp or dev-dumpdir.") parser.add_argument("--dev-spkemb-scp", default=None, type=str, help="kaldi-style spkemb.scp file for vaidation. " "you need to specify either dev-*-scp or dev-dumpdir.") parser.add_argument("--dev-segments", default=None, type=str, help="kaldi-style segments file for validation.") parser.add_argument("--dev-dumpdir", default=None, type=str, help="directory including development data. " "you need to specify either dev-*-scp or dev-dumpdir.") parser.add_argument("--outdir", type=str, required=True, help="directory to save checkpoints.") parser.add_argument("--config", type=str, required=True, help="yaml format configuration file.") parser.add_argument("--pretrain", default="", type=str, nargs="?", help="checkpoint file path to load pretrained params. (default=\"\")") parser.add_argument("--resume", default="", type=str, nargs="?", help="checkpoint file path to resume training. (default=\"\")") parser.add_argument("--verbose", type=int, default=1, help="logging level. higher is more logging. (default=1)") parser.add_argument("--rank", "--local_rank", default=0, type=int, help="rank for distributed training. no need to explictly specify.") args = parser.parse_args() args.distributed = False if not torch.cuda.is_available(): device = torch.device("cpu") else: device = torch.device("cuda") # effective when using fixed size inputs # see https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936 torch.backends.cudnn.benchmark = True torch.cuda.set_device(args.rank) # setup for distributed training # see example: https://github.com/NVIDIA/apex/tree/master/examples/simple/distributed if "WORLD_SIZE" in os.environ: args.world_size = int(os.environ["WORLD_SIZE"]) args.distributed = args.world_size > 1 if args.distributed: torch.distributed.init_process_group(backend="nccl", init_method="env://") # suppress logging for distributed training if args.rank != 0: sys.stdout = open(os.devnull, "w") # set logger if args.verbose > 1: logging.basicConfig( level=logging.DEBUG, stream=sys.stdout, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s") elif args.verbose > 0: logging.basicConfig( level=logging.INFO, stream=sys.stdout, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s") else: logging.basicConfig( level=logging.WARN, stream=sys.stdout, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s") logging.warning("Skip DEBUG/INFO messages") # check directory existence if not os.path.exists(args.outdir): os.makedirs(args.outdir) # check arguments if (args.train_feats_scp is not None and args.train_dumpdir is not None) or \ (args.train_feats_scp is None and args.train_dumpdir is None): raise ValueError("Please specify either --train-dumpdir or --train-*-scp.") if (args.dev_feats_scp is not None and args.dev_dumpdir is not None) or \ (args.dev_feats_scp is None and args.dev_dumpdir is None): raise ValueError("Please specify either --dev-dumpdir or --dev-*-scp.") if (args.train_spkemb_scp is not None and args.train_dumpdir is not None) or \ (args.train_spkemb_scp is None and args.train_dumpdir is None): raise ValueError("Please specify either --train-dumpdir or --train-*-scp.") if (args.dev_spkemb_scp is not None and args.dev_dumpdir is not None) or \ (args.dev_spkemb_scp is None and args.dev_dumpdir is None): raise ValueError("Please specify either --dev-dumpdir or --dev-*-scp.") # load and save config with open(args.config) as f: config = yaml.load(f, Loader=yaml.Loader) config.update(vars(args)) config["version"] = autovc.__version__ # add version info with open(os.path.join(args.outdir, "config.yml"), "w") as f: yaml.dump(config, f, Dumper=yaml.Dumper) for key, value in config.items(): logging.info(f"{key} = {value}") # get dataset if config["remove_short_samples"]: #FIXME(<NAME>): This is not for AutoVC mel_length_threshold = config["batch_max_steps"] // config["hop_size"] + \ 2 * config["autovc_generator_params"].get("aux_context_window", 0) else: mel_length_threshold = None if args.train_wav_scp is None or args.dev_wav_scp is None: if config["format"] == "hdf5": audio_query, mel_query, spkemb_query = "*.h5", "*.h5", "*.h5" audio_load_fn = lambda x: read_hdf5(x, "wave") # NOQA mel_load_fn = lambda x: read_hdf5(x, "feats") # NOQA spkemb_load_fn = lambda x: read_hdf5(x, "spkemb") elif config["format"] == "npy": audio_query, mel_query, spkemb_query = "*-wave.npy", "*-feats.npy", "*-spkemb.npy" audio_load_fn = np.load mel_load_fn = np.load spkemb_load_fn = np.load else: raise ValueError("support only hdf5 or npy format.") if args.train_dumpdir is not None: train_dataset = AudioMelDataset( root_dir=args.train_dumpdir, audio_query=audio_query, mel_query=mel_query, spkemb_query=spkemb_query, audio_load_fn=audio_load_fn, mel_load_fn=mel_load_fn, spkemb_load_fn=spkemb_load_fn, mel_length_threshold=mel_length_threshold, allow_cache=config.get("allow_cache", False), # keep compatibility ) else: train_dataset = AudioMelSCPDataset( wav_scp=args.train_wav_scp, feats_scp=args.train_feats_scp, spkemb_scp=args.train_spkemb_scp, segments=args.train_segments, mel_length_threshold=mel_length_threshold, allow_cache=config.get("allow_cache", False), # keep compatibility ) logging.info(f"The number of training files = {len(train_dataset)}.") if args.dev_dumpdir is not None: dev_dataset = AudioMelDataset( root_dir=args.dev_dumpdir, audio_query=audio_query, mel_query=mel_query, spkemb_query=spkemb_query, audio_load_fn=audio_load_fn, mel_load_fn=mel_load_fn, spkemb_load_fn=spkemb_load_fn, mel_length_threshold=mel_length_threshold, allow_cache=config.get("allow_cache", False), # keep compatibility ) else: dev_dataset = AudioMelSCPDataset( wav_scp=args.dev_wav_scp, feats_scp=args.dev_feats_scp, spkemb_scp=args.dev_spkemb_scp, segments=args.dev_segments, mel_length_threshold=mel_length_threshold, allow_cache=config.get("allow_cache", False), # keep compatibility ) logging.info(f"The number of development files = {len(dev_dataset)}.") dataset = { "train": train_dataset, "dev": dev_dataset, } # get data loader collater = Collater( batch_max_steps=config["batch_max_steps"], hop_size=config["hop_size"], # keep compatibility aux_context_window=config["autovc_generator_params"].get("aux_context_window", 0), # keep compatibility use_noise_input=config.get( "generator_type", "ParallelWaveGANGenerator") != "MelGANGenerator", len_crop=config["len_crop"], ) sampler = {"train": None, "dev": None} if args.distributed: # setup sampler for distributed training from torch.utils.data.distributed import DistributedSampler sampler["train"] = DistributedSampler( dataset=dataset["train"], num_replicas=args.world_size, rank=args.rank, shuffle=True, ) sampler["dev"] = DistributedSampler( dataset=dataset["dev"], num_replicas=args.world_size, rank=args.rank, shuffle=False, ) data_loader = { "train": DataLoader( dataset=dataset["train"], shuffle=False if args.distributed else True, collate_fn=collater, batch_size=config["batch_size"], num_workers=config["num_workers"], sampler=sampler["train"], pin_memory=config["pin_memory"], ), "dev": DataLoader( dataset=dataset["dev"], shuffle=False if args.distributed else True, collate_fn=collater, batch_size=config["batch_size"], num_workers=config["num_workers"], sampler=sampler["dev"], pin_memory=config["pin_memory"], ), } # define models and optimizers generator_class = getattr( autovc.models, # keep compatibility config.get("generator_type", "AutoVCGenerator"), ) setattr(generator_class, 'num_mels', config["num_mels"]) model = { "generator": generator_class( **config["autovc_generator_params"]).to(device), } criterion = { "l1": torch.nn.L1Loss().to(device), "mse": torch.nn.MSELoss().to(device), } generator_optimizer_class = getattr( autovc.optimizers, # keep compatibility config.get("generator_optimizer_type", "RAdam"), ) optimizer = { "generator": generator_optimizer_class( model["generator"].parameters(), **config["generator_optimizer_params"], ), } generator_scheduler_class = getattr( torch.optim.lr_scheduler, # keep compatibility config.get("generator_scheduler_type", "StepLR"), ) scheduler = { "generator": generator_scheduler_class( optimizer=optimizer["generator"], **config["generator_scheduler_params"], ), } if args.distributed: # wrap model for distributed training try: from apex.parallel import DistributedDataParallel except ImportError: raise ImportError("apex is not installed. please check https://github.com/NVIDIA/apex.") model["generator"] = DistributedDataParallel(model["generator"]) logging.info(model["generator"]) # define trainer trainer = Trainer( steps=0, epochs=0, data_loader=data_loader, sampler=sampler, model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, config=config, device=device, ) # load pretrained parameters from checkpoint if len(args.pretrain) != 0: trainer.load_checkpoint(args.pretrain, load_only_params=True) logging.info(f"Successfully load parameters from {args.pretrain}.") # resume from checkpoint if len(args.resume) != 0: trainer.load_checkpoint(args.resume) logging.info(f"Successfully resumed from {args.resume}.") # run training loop try: trainer.run() except KeyboardInterrupt: trainer.save_checkpoint( os.path.join(config["outdir"], f"checkpoint-{trainer.steps}steps.pkl")) logging.info(f"Successfully saved checkpoint @ {trainer.steps}steps.") if __name__ == "__main__": main() ```
{ "source": "jlucier/6.S062-car-swarm", "score": 3 }
#### File: 6.S062-car-swarm/test/tests.py ```python import sys sys.path.append('../') from car import Car from driver import Preset def test_collisions(): car = Car() car._vicon_client.start() time.sleep(2) print "Running..." try: car._detect_collisions() except KeyboardInterrupt: car._kill = True time.sleep(.5) print "Done" def test_system(): straight = raw_input("Drive straight? ") path = Preset.STRAIGHT if straight == 'y' else None if not path: path = Preset.COUNTER_CLOCKWISE_CIRCLE if raw_input("Counter clockwise? ") == 'y' else path car = Car(path=path) car.start() try: raw_input("Running... press enter to start driving\n") car._driver.go() raw_input('Press enter to stop...') except KeyboardInterrupt: pass car.stop() print "Done" def test_bystander(): # no collision detection car = Car() car._vicon_client.start() car._talker.start() car._message_worker.start() car._main_worker.start() try: raw_input("Running... press enter to stop\n") except KeyboardInterrupt: pass car._driver.stop() car._driver.destroy() car._kill = True car._vicon_client.stop() car._talker.stop() car._message_worker.join() car._main_worker.join() print "Done" def main(): if len(sys.argv) < 2: test_system() elif sys.argv[1] == 'collisions': test_collision() elif sys.argv[1] == 'bystander': test_bystander() else: print "Usage: collisions / cp / mp" if __name__ == '__main__': main() ```
{ "source": "jluckenbaugh2/Deepcut", "score": 3 }
#### File: Deepcut/src/SendFinal.py ```python import socket import numpy as np # also I had to open the port on the rpi and on my computer # for opening ports on linux (rpi) see https://raspberrypi.stackexchange.com/questions/69123/how-to-open-a-port # for opening ports on windows see https://www.tomshardware.com/news/how-to-open-firewall-ports-in-windows-10,36451.html # for opening ports on macos see https://www.macworld.co.uk/how-to/how-open-specific-ports-in-os-x-1010-firewall-3616405/ def sendRPI(filename): s = socket.socket() host = socket.gethostbyname("192.168.1.7") # ip address of rpi port = 3333 s.connect((host, port)) print("Connected") filename_s = filename.split('_') for i in range(len(filename_s)): if 'bpm' in filename_s[i]: temp = filename_s[i].split('=') bpm = int(temp[-1]) bpmB = bpm.to_bytes(64, 'big') s.send(bpmB) ## Send file after connecting numB = 1024 # filename = "TTSRap.mp4" filenameA = "Accepted.txt" file = open(filename, 'rb') file_data = file.read() lengthB = len(file_data) numkB = int(np.ceil(lengthB/numB)) numkB_inB = numkB.to_bytes(64, 'big') s.send(numkB_inB) for k in range(numkB): if (k+1)*numB < lengthB: data = file_data[k*numB:((k+1)*numB)] else: data = file_data[k*numB:lengthB] s.send(data) print("%d/%d Sent" % (k, numkB)) fileA = open(filenameA, 'wb') file_dataA = s.recv(1024) fileA.write(file_dataA) fileA.close() print("%d/%d Accepted" % (k, numkB)) print("File has been sent") ```
{ "source": "Jluct/PyMassMailer", "score": 3 }
#### File: PyMassMailer/PyMassMailer/ConfigData.py ```python from configparser import ConfigParser import os import sys class ConfigData: conf = '' parser = '' def __init__(self, conf='conf.ini'): if os.path.exists(conf): self.conf = conf else: print("Config not exist for path: " + conf) sys.exit(1) self.parser = ConfigParser() self.parser.read(self.conf) def __del__(self): pass def get(self, section, field): if not self.parser.has_section(section): return False return self.parser.get(section, field) def get_section(self, section): section_data = {} options = self.parser.options(section) for option in options: if self.parser.get(section, option): section_data[option] = self.parser.get(section, option) else: section_data[option] = None return section_data ```
{ "source": "jludvice/django-exchange", "score": 2 }
#### File: django-exchange/exchange/managers.py ```python from django.db import models class ExchangeRateManager(models.Manager): def get_query_set(self): return super(ExchangeRateManager, self).get_query_set()\ .select_related('source', 'target') def get_rate(self, source_currency, target_currency): return self.get(source__code=source_currency, target__code=target_currency).rate ```
{ "source": "jludwiczak/rossmann-toolbox", "score": 3 }
#### File: rossmann_toolbox/utils/dssp.py ```python from Bio.PDB.DSSP import _make_dssp_dict import pandas as pd import gzip, os def run_dssp(pdb_path, dssp_bin=None): dssp_path = f'{pdb_path.rstrip(".pdb")}.dssp' os.system(f'{dssp_bin} {pdb_path} > {dssp_path}') dssp_data = parse_dssp_output(dssp_path) return dssp_data def parse_dssp_output(dssp_fn, use_gzip=False): ''' extracts secondary structure labels frm dssp file ''' if use_gzip: f = gzip.open(dssp_fn, 'rt') else: f = open(dssp_fn, 'r') lines = [line.rstrip() for line in f.readlines()[28:]] f.close() dssp = {int(line[0:5].strip()): {'pdb_num': line[5:11].strip(), 'pdb_chain': line[11:12].strip(), 'pdb_resn': line[13].strip(), 'pdb_ss': line[16:17]} for line in lines} dssp = pd.DataFrame.from_dict(dssp, orient='index') return dssp ``` #### File: rossmann_toolbox/utils/embedder.py ```python import pandas as pd #import h5py class Embedder: def __init__(self, cuda_device=-1, tokens_per_batch=16000): """ Wrapper for efficient embedding of protein sequences with various embedding methods :param cuda_device: Index of the CUDA device to use when embedding (-1 if CPU) :param tokens_per_batch: Number of tokens (amino acids per encoded sequence batch) - depends on available GPU VRAM """ self.cuda_device = cuda_device self.tokens_per_batch = tokens_per_batch @staticmethod def _validate_input(data): """ Validates input pd.DataFrame with sequences that are to embedded :param data: input pd.DataFrame :return: """ # Validate input DataFrame if not isinstance(data, pd.DataFrame): raise TypeError('Data must be a pandas DataFrame!') if 'sequence' not in data.columns: raise KeyError('DataFrame must contain sequence column!') def _batch_df(self, data): """ Mark the input DataFrame so that each batch contains not more than 'self.tokens_per_batch' amino acids. :param data: input DataFrame :return: copy of the input DataFrame with additional 'batch' column """ b_df = data.copy() b_df['seq_len'] = b_df['sequence'].apply(len) # Calculate length of each sequence in DataFrame b_df = b_df.sort_values(by='seq_len') # Sort sequences by length b_df['cum_seq_len'] = b_df['seq_len'].cumsum() # Calculate cumulative sequence lengths to split into batches b_df['batch'] = b_df['cum_seq_len'] // self.tokens_per_batch return b_df def _encode_batch_api(self, sequences): raise NotImplementedError('Fetching embedding via API is not available for the selected model!') def encode(self, data, out_fn=None, api=False): if out_fn is not None: f = h5py.File(out_fn, 'w') self._validate_input(data) df = self._batch_df(data) results = {} for batch in df['batch'].unique(): b_df = df[df['batch'] == batch] sequences = b_df['sequence'].tolist() embs = self._encode_batch_api(sequences) if api else self._encode_batch(sequences) for emb, idx in zip(embs, b_df.index.values): if out_fn is not None: f.create_dataset(idx, data=emb) else: results[idx] = emb if out_fn is not None: f.close() else: return results ``` #### File: rossmann_toolbox/utils/graph_loader_opt.py ```python import copy import random from packaging import version import torch import dgl import numpy as np import pandas as pd import networkx as nx from .bio_params import LABEL_DICT, ACIDS_MAP_DEF, SS_MAP_EXT, CM_THRESHOLD def collate(samples): (graphs, labels) = map(list, zip(*samples)) batched_graph = dgl.batch(graphs) return batched_graph, torch.tensor(labels) class GraphECMLoaderBalanced(torch.utils.data.Dataset): needed_columns = {'seq', 'secondary'} threshold = CM_THRESHOLD FLOAT_DTYPE = np.float32 counter = 0 res_info = {}; graphs = {}; edge_features = {}; node_features = {}; labels_encoded = {} def __init__(self, frame, contact_maps, edge_features, foldx_info, balance_classes=False, **kw_args): ''' params: frame (pd.DataFrame) with columns: seq, alnpositions, simplified_cofactor(can be none) ss (np.ndarray) with locations of ss adjecency_matrix (np.ndarray) regular adjecency matrix used in defining graph structure device (str) cpu default cofactor (str) use_ohe_features (bool) tells if add one hot encoding residue to node features add_epsilon (False, or float) if float adds add_epsilon value to empty alignment field ''' columns = frame.columns.tolist() assert not (self.needed_columns - set(columns)), f'no column(s) {self.needed_columns - set(columns)}' assert isinstance(frame, pd.DataFrame), 'frame should be DataFrame' assert isinstance(contact_maps, dict) assert isinstance(edge_features, dict) assert isinstance(foldx_info, dict) assert frame.shape[0] != 0, 'given empty frame' available_indices = list(foldx_info.keys()) if 'simplified_cofactor' not in frame.columns.tolist(): frame['simplified_cofactor'] = 'NAD' self.balance_classes = balance_classes self.indices = [] frame = frame[frame.index.isin(available_indices)] for i, (idx, row) in enumerate(frame.iterrows()): seq_emb = np.asarray([ACIDS_MAP_DEF[s] for s in row['seq']], dtype=np.int64) sec_emb = np.asarray([SS_MAP_EXT[s] for s in row['secondary']], dtype=np.int64) self.res_info[idx] = (seq_emb, sec_emb) self.graphs[idx] = contact_maps[idx][0] < self.threshold edge_dist_based = np.nan_to_num(edge_features[idx]) edge_foldx_based = foldx_info[idx]['edge_data'] self.edge_features[idx] = np.concatenate([edge_dist_based, edge_foldx_based], axis=1).astype(self.FLOAT_DTYPE) self.node_features[idx] = foldx_info[idx]['node_data'].astype(self.FLOAT_DTYPE) #print(self.node_features[idx], foldx_info) self.labels_encoded[idx] = LABEL_DICT[row['simplified_cofactor']] self.indices.append(idx) self.NAD_indices, self.non_NAD_indices = [], [] for idx, cof in self.labels_encoded.items(): if cof == 0: self.NAD_indices.append(idx) else: self.non_NAD_indices.append(idx) #self._validate_dicts() self._map_new_() #self._fix_samples_balancing_() self.num_samples_per_epoch = len(self.indices) if self.num_samples_per_epoch == 0: print(len(self.labels_encoded)) print(len(self.NAD_indices), len(self.non_NAD_indices)) raise ValueError('zero length loader') def __len__(self): return self.num_samples_per_epoch def __getitem__(self, idx): idx_m = self.index_map[idx] features_edge = self.edge_features[idx_m] features_node = self.node_features[idx_m] g = dgl.from_networkx(nx.Graph(self.graphs[idx_m])) seq_res_nb, sec_res_nb = self.res_info[idx_m] if self.balance_classes: if self.counter == self.num_samples_per_epoch: self._fix_samples_balancing_() else: self.counter += 1 g.ndata['residues'] = torch.from_numpy(seq_res_nb) g.ndata['secondary'] = torch.from_numpy(sec_res_nb) g.edata['features'] = torch.from_numpy(features_edge) g.ndata['features'] = torch.from_numpy(features_node) return g, self.labels_encoded[idx_m] def _fix_samples_balancing_(self): if self.balance_classes: NAD_subsample = len(self.NAD_indices) NAD_subsample = int(self.SUBSAMPLE*len(self.NAD_indices)) random.shuffle(self.NAD_indices) NAD_subsamples = self.NAD_indices[:NAD_subsample] self.indices = NAD_subsamples + self.non_NAD_indices random.shuffle(self.indices) self.counter = 0 else: self.indices = list(self.res_info.keys()) self._map_new_() def _map_new_(self): self.index_map = {num : idx for num, idx in enumerate(self.indices)} def _validate_dicts(self): pass ''' for idx in self.adjecency_matrix.keys(): if self.embeddings[idx].shape[0] != self.res_info[idx][0].size: raise ValueError(f'shape mismatch for idx {idx} between emb and res_info') ''' ``` #### File: rossmann_toolbox/utils/struct_loader.py ```python import os import sys import torch import dgl import pandas as pd import numpy as np import networkx as nx import matplotlib.pyplot as plt from torch.utils.data import DataLoader from ..models import GatLit from .graph_loader_opt import GraphECMLoaderBalanced def collate(samples): ''' dgl batch to gpu https://discuss.dgl.ai/t/best-way-to-send-batched-graphs-to-gpu/171/9 ''' (graphs, labels) = map(list, zip(*samples)) batched_graph = dgl.batch(graphs) return batched_graph, torch.tensor(labels) def sigmoid(x): return 1/(1 + np.exp(-x)) class Deepligand3D: NUM_WORKERS = 4 LABEL_DICT = {'NAD' : 0, 'NADP' : 1, 'SAM' : 2, 'FAD' : 3} LABEL_DICT_R = {0 :'NAD', 1 :'NADP', 2 :'SAM', 3:'FAD' } COFACTORS = list(LABEL_DICT.keys()) CM_THRESHOLD = None # assigned when data loader is initialized def __init__(self, weights_dir, device='cpu', **kw_args): """ Monte carlo Deepligand version params: path_model (str) path to model weights device (str) 'cpu' or 'cuda' """ assert device in ['cuda', 'cpu'] self.device_type = device self.COFACTORS_STD = [f'{cof}_std' for cof in self.COFACTORS] self.CLASSES = len(self.COFACTORS) self.list_of_model_paths = [f'{weights_dir}/struct_ensemble/model{i}.ckpt' for i in range(1, 5)] self.list_of_hp_paths = [f'{weights_dir}/struct_ensemble//hp{i}.ckpt' for i in range(1, 5)] self.device = torch.device(device) self.model_list = torch.nn.ModuleList() for path, hp_path in zip(self.list_of_model_paths, self.list_of_hp_paths): conf = torch.load(path) hps = torch.load(hp_path) model = GatLit(hps) model.load_state_dict(conf) self.model_list.append(model.eval().to(self.device)) def predict(self, dataframe, contact_maps, edge_feats, foldx_info, raw_scores = False, verbose=False): """ params: dataframe (pd.DataFrame) with 'seq' and 'secondary' columns contact_maps (dict) similar as above edge_feats (dict) similar as above raw_scores (bool) if True probabilities are replaced with raw scores verbose (bool) default False returns: pd.DataFrame """ available_sequences = foldx_info.keys() & contact_maps.keys() & edge_feats.keys() self.sequences = dataframe['seq'].tolist() indices = dataframe.index.tolist() num_sequences = len(self.sequences) available_sequences = available_sequences & set(indices) if verbose and (len(available_sequences) == 0): raise ValueError('mismatched keys') else: pass #print('seq to process:', len(available_sequences), num_sequences) indices_with_embeddings = [i for i, seq in enumerate(indices) if seq in available_sequences] mask_with_embeddings = [True if idx in indices_with_embeddings else False for idx in indices] sequences_without_embeddings = set(indices) - available_sequences if verbose and (len(sequences_without_embeddings) > 0): print(f'found {len(sequences_without_embeddings)} sequences without embeddings/contact maps') dataframe_no_missings = dataframe[~dataframe.index.isin(sequences_without_embeddings)].copy() else: dataframe_no_missings = dataframe.copy() loader = self._prepare_samples(dataframe_no_missings, contact_maps, edge_feats, foldx_info) single_preds = [] for x, _ in loader: if self.device_type == 'cuda': x = x.to(self.device) storage = [model(x, scores=raw_scores).detach().unsqueeze(0) for model in self.model_list] storage = torch.cat(storage, axis=0) single_preds.append(storage) # (num_models, loader_len, 4) del loader # (num_rounds, num_models, loader_len, 4) results = torch.cat(single_preds, axis=1) cofactors_means = []; cofactors_std = [] means_with_nans = np.empty((num_sequences, 4)) means_with_nans[:] = np.nan stds_with_nans = means_with_nans.copy() mean = results.view(-1, num_sequences, 4).mean(0) std = results.view(-1, num_sequences, 4).std(0) mean, std = mean.cpu().numpy(), std.cpu().numpy() means_with_nans[indices_with_embeddings, :] = mean stds_with_nans[indices_with_embeddings, :] = std df_results = pd.DataFrame(means_with_nans, columns=self.COFACTORS) df_results_std = pd.DataFrame(stds_with_nans, columns=self.COFACTORS_STD) df_results['seq'] = self.sequences df_output = pd.concat([df_results, df_results_std], axis=1).round(8) del df_results, df_results_std return df_output def _prepare_samples(self, dataframe, contact_maps, edge_feats, foldx_info, BATCH_SIZE=64): self.CM_THRESHOLD = GraphECMLoaderBalanced.threshold dataset = GraphECMLoaderBalanced(frame=dataframe, contact_maps=contact_maps, edge_features=edge_feats, foldx_info=foldx_info) if len(dataset) == 0: raise ValueError('dataset is empty') kw_args = {'batch_size' : BATCH_SIZE, 'shuffle' : False, 'num_workers' : self.NUM_WORKERS, 'drop_last' : False } dataset_loaded = [] #pin dataset to class instance for futher use self.dataset = dataset loader = DataLoader(dataset, collate_fn=collate, **kw_args) return loader def generate_embeddings(self, dataframe, contact_maps, edge_feats, foldx_info, verbose=False, as_array=False, **kw_args): """ params: dataframe (pd.DataFrame) with 'seq' and 'secondary' columns contact_maps (dict) similar as above edge_feats (dict) similar as above raw_scores (bool) if True probabilities are replaced with raw scores verbose (bool) default False as_array (bool) if True returns numpy array returns: np.ndarray/dict """ available_sequences = foldx_info.keys() & contact_maps.keys() & edge_feats.keys() self.sequences = dataframe['seq'].tolist() indices = dataframe.index.tolist() num_sequences = len(self.sequences) available_sequences = available_sequences & set(indices) if verbose and (len(available_sequences) == 0): raise ValueError('mismatched keys') else: pass #print('seq to process:', len(available_sequences), num_sequences) indices_with_embeddings = [i for i, seq in enumerate(indices) if seq in available_sequences] mask_with_embeddings = [True if idx in indices_with_embeddings else False for idx in indices] sequences_without_embeddings = set(indices) - available_sequences if verbose and (len(sequences_without_embeddings) > 0): print(f'found {len(sequences_without_embeddings)} sequences without embeddings/contact maps') dataframe_no_missings = dataframe[~dataframe.index.isin(sequences_without_embeddings)].copy() else: dataframe_no_missings = dataframe.copy() loader = self._prepare_samples(dataframe_no_missings, contact_maps, edge_feats, foldx_info, BATCH_SIZE=1) single_preds = [] with torch.no_grad(): for x, _ in loader: if self.device_type == 'cuda': x = x.to(self.device) storage = [self.forward_pass(x, model).unsqueeze(0) for model in self.model_list] storage = torch.cat(storage, axis=0).cpu().numpy() if not as_array: storage = {cof_name : storage[:, :, i].mean(0)[:, np.newaxis] for i, cof_name in enumerate(self.COFACTORS)} single_preds.append(storage) del loader return single_preds def forward_pass(self, g, model): """ execute custom DL forward pass to extract node scores """ features = model(g, nodes=True) g.ndata['sum'] = features h = dgl.sum_nodes(g, 'sum') ######### attention block ############### attn = h.clone() attn = torch.nn.functional.relu(attn) attn = model.affine(attn) attn = torch.sigmoid(attn) features = features*attn feats = features.cpu().detach() feats = feats.reshape(-1, 4) return feats class ShowNxGraph: #default cmap ''' base class for graph plots ''' def __init__(self, cmap=plt.cm.GnBu, figsize=(10, 10)): ''' optional params: cmap - plt.cm object figsize - tuple(int, int) size of a plot ''' self.cmap = cmap self.figsize = figsize def color_nodes(self, nodes): colored = [] for node in nodes: colored.append(self.cmap(node)) return colored def draw(self, g, residue_scores, node_labels, node_positions = 'default', node_size=150, ax = None): ''' draw params: g (nx.graph) residue_scores (np.ndarray, dict) - if array color nodes with default cmap if dict ( in form of {nude_nb : (R,G,B)}) used given values node_labels (list) node names node_positions (str or nx.layout) position of residues node_size (int) node size ax (None or plt.figure) if None creates plt.subplots instance if figure fits to ax return: fig, ax ''' assert isinstance(residue_scores, (dict, np.ndarray)), 'wrong type of residue_scores' assert node_labels is None or isinstance(node_labels, (list, str)), 'wrong arg type' assert isinstance(node_positions, (str, dict)), 'wrong arg type' assert isinstance(node_size, int), 'wrong arg type' if node_labels is not None: sec_labels = {i: s for i,s in enumerate(node_labels)} #define topology #if len(set(secondary) - {'C1','C2', 'C3', 'C4', 'E1', 'E2', 'H1', 'H2'}) > 0: # secondary = reduce_ss_alphabet(secondary, True) #else: # secondary = {i : s for i,s in enumerate(secondary)} if isinstance(node_positions, str): p = Positions(list(secondary.values())) p._find_changes() positions = p.get_positions(p._new_sec_as_dict()) else: positions = node_positions #define colors if isinstance(residue_scores, np.ndarray): node_colors = self.color_nodes(residue_scores) elif isinstance(residue_scores, dict): node_colors = list(residue_scores.values()) if ax is None: fig, ax = plt.subplots(1,1,figsize=self.figsize) else: fig = None nx.draw_networkx_nodes(g, positions, node_color=node_colors, ax=ax, alpha=0.9, node_size=node_size) nx.draw_networkx_edges(g, positions, ax=ax, alpha=0.4) if node_labels is not None: nx.draw_networkx_labels(g, positions, labels = sec_labels,ax=ax) return fig, ax ``` #### File: rossmann-toolbox/tests/test_hhsearch.py ```python import pytest import os import numpy as np from Bio import SeqIO from rossmann_toolbox import RossmannToolbox class TestHHSearch: @pytest.mark.hhsearch def test_core_detection_evaluation_hhsearch(self): data = {str(entry.id): str(entry.seq) for entry in SeqIO.parse('test-data/fasta/full_length.fas', 'fasta')} rtb = RossmannToolbox(use_gpu=False, hhsearch_loc=os.environ['HHSEARCH']) preds = rtb.predict(data, mode='seq', core_detect_mode='hhsearch', importance=False) assert preds['3m6i_A']['sequence'] == 'VLICGAGPIGLITMLCAKAAGACPLVITDIDE' pr_arr = np.asarray(list(preds['3m6i_A'].values())[0:-1]) ref_arr = np.load('test-data/ref/seq_full_length_detect_eval_hhsearch.npy') assert np.square(pr_arr.flatten() - ref_arr.flatten()).mean(axis=0) < 10e-5 ```
{ "source": "jludwig79/dota-stats", "score": 3 }
#### File: dota_stats/server/server.py ```python import json import os import plotly import plotly.graph_objs as go from flask import Flask, render_template from flask_sqlalchemy import SQLAlchemy from dota_stats import win_rate_pick_rate, fetch_summary app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = os.environ['DOTA_DB_URI'] app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db = SQLAlchemy(app) def get_health_chart(days, timezone, hour=True): """Fetches a statistics health summary table and formats into a plotly chart.""" df_summary, rows = fetch_summary.get_health_summary(days, timezone, hour) # For plot fig = go.Figure(data=[ go.Bar(name='Normal', x=df_summary.index.values, y=df_summary['normal']), go.Bar(name='High', x=df_summary.index.values, y=df_summary['high']), go.Bar(name='Very High', x=df_summary.index.values, y=df_summary['very_high']), ]) fig.update_layout(barmode='stack') record_count_plot = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) return record_count_plot, rows @app.route('/') def status(): """Index page for server, currently contains everything on the site""" # Win rate / pick rate by skill level df_sql = win_rate_pick_rate.get_current_win_rate_table(3) radiant_vs_dire = [] pick_vs_win = {} time_range = list(set(df_sql['time_range']))[0] for skill in list(set(df_sql['skill'])): df_sub = df_sql[df_sql['skill'] == skill] radiant_vs_dire.append( 100 * (df_sub.sum()['radiant_win'] / (df_sub.sum()['radiant_total']))) pick_vs_win[skill] = go.Figure( go.Scatter( x=df_sub['total'].values, y=df_sub['win_pct'].values, text=df_sub['hero'].values, mode='markers+text', textposition='top center')) pick_vs_win[skill].update_layout( title="Skill {0}: {1}".format(skill, time_range), margin=dict(l=20, r=0, t=50, b=20), height=550, width=550) pick_vs_win[skill].update_xaxes({'title': 'Number of Games'}) pick_vs_win[skill].update_yaxes({'title': 'Win %'}) win_rate_1 = json.dumps(pick_vs_win[1], cls=plotly.utils.PlotlyJSONEncoder) win_rate_2 = json.dumps(pick_vs_win[2], cls=plotly.utils.PlotlyJSONEncoder) win_rate_3 = json.dumps(pick_vs_win[3], cls=plotly.utils.PlotlyJSONEncoder) # --------------------------------------------------------------- # Health metrics # --------------------------------------------------------------- rec_plot30, _ = get_health_chart(30, 'US/Eastern', hour=False) rec_plot3, rec_count_table = get_health_chart(3, 'US/Eastern') return render_template("index.html", radiant_vs_dire=radiant_vs_dire, win_rate_1=win_rate_1, win_rate_2=win_rate_2, win_rate_3=win_rate_3, rec_count_table=rec_count_table, rec_plot3=rec_plot3, rec_plot30=rec_plot30, ) if __name__ == '__main__': app.run(host='0.0.0.0', port=5000, debug=True) ```
{ "source": "jluech/PGAcloud_Client", "score": 3 }
#### File: client/provider_drivers/abstract_driver.py ```python from abc import ABC, abstractmethod class AbstractDriver(ABC): name = "" @abstractmethod def __init__(self, configuration, logger): self._configuration = configuration self._logger = logger @abstractmethod def setup_cloud_environment(self): pass ``` #### File: PGAcloud_Client/utilities/docker_utils.py ```python import os import docker __docker_client = None __management_network = None def get_docker_client(cert_path, host_addr, host_port): global __docker_client if __docker_client: return __docker_client tls_config = docker.tls.TLSConfig( ca_cert=os.path.join(cert_path, "ca.pem"), client_cert=( os.path.join(cert_path, "cert.pem"), os.path.join(cert_path, "key.pem") ), verify=True ) __docker_client = docker.DockerClient( base_url="tcp://{addr_}:{port_}".format( addr_=host_addr, port_=host_port ), tls=tls_config, version="auto", ) return __docker_client def get_management_network(): global __management_network if __management_network: return __management_network if not __docker_client: raise Exception("Create a docker client first, before creating a network...") # Creates a new docker network to bridge the manager to the runners. __management_network = __docker_client.networks.create( name="pga-management", driver="overlay", check_duplicate=True, attachable=True, scope="swarm", labels={"PGAcloud": "PGA-Management"}, ) return __management_network ```
{ "source": "jluech/PGAcloud_Crossover", "score": 3 }
#### File: PGAcloud_Crossover/crossover/crossers.py ```python import logging import random from abc import ABC, abstractmethod from enum import Enum from population.individual import Individual class Crossers(Enum): OnePoint = "one_point", MultiPoint = "multi_point", Uniform = "uniform", class AbstractCrossover(ABC): @ abstractmethod def perform_crossover(self, individual1, individual2, crossover_rate): # Perform the crossover on two Individual's. # Returns a Pair of two Individual's. pass class OnePointCrossover(AbstractCrossover): def perform_crossover(self, individual1, individual2, crossover_rate): crossover_chance = random.randint(0, 100) / 100 # logging.info("Crossover chance = " + str(crossover_chance)) crossover_occurred = (crossover_rate >= crossover_chance) if crossover_occurred: solution_length = individual1.solution.__len__() if solution_length != individual2.solution.__len__(): raise Exception("Crossover aborted: Individuals' solution strings are of different length!") logging.info("Crossover occurred between individuals {ind1_} and {ind2_}.".format( ind1_=individual1, ind2_=individual2, )) crossover_point = random.randint(1, solution_length-1) crossed1 = Individual("{ind1_}{ind2_}".format( ind1_=individual1.solution[:crossover_point], # first part of 1 ind2_=individual2.solution[crossover_point:], # second part of 2 )) crossed2 = Individual("{ind2_}{ind1_}".format( ind2_=individual2.solution[:crossover_point], # first part of 2 ind1_=individual1.solution[crossover_point:], # second part of 1 )) return [crossed1, crossed2] else: logging.info("Crossover did not occur between individuals {ind1_} and {ind2_}.".format( ind1_=individual1, ind2_=individual2, )) return [individual1, individual2] class MultiPointCrossover(AbstractCrossover): def perform_crossover(self, individual1, individual2, crossover_rate): pass class UniformCrossover(AbstractCrossover): def perform_crossover(self, individual1, individual2, crossover_rate): pass ``` #### File: PGAcloud_Crossover/crossover/crossover.py ```python import logging from crossover.crossers import Crossers, OnePointCrossover, MultiPointCrossover, UniformCrossover from utilities.utils import forward_crosser, get_property def apply_crossover(individual1, individual2): # Applies the chosen crossover operator on the two individuals and returns a pair {p1: x, p2: y} logging.info("Performing crossover on individuals {ind1_} and {ind2_}".format( ind1_=individual1, ind2_=individual2, )) crosser = get_crosser() crossover_rate = get_crossover_rate() return crosser.perform_crossover(individual1, individual2, crossover_rate) def get_crosser(): crosser = forward_crosser() if crosser == Crossers.OnePoint: return OnePointCrossover() elif crosser == Crossers.MultiPoint: __crosser = MultiPointCrossover() raise Exception("MultiPointCrossover not implemented yet!") elif crosser == Crossers.Uniform: __crosser = UniformCrossover() raise Exception("UniformCrossover not implemented yet!") else: raise Exception("No valid Crosser defined!") def get_crossover_rate(): rate = float(get_property("CROSSOVER_RATE")) logging.info("CROSSOVER_RATE={_rate} retrieved.".format(_rate=rate)) return rate ```
{ "source": "jluech/PGAcloud_Fitness_Agent", "score": 2 }
#### File: PGAcloud_Fitness_Agent/agent/operator.py ```python import json import logging import os from population.individual import Individual, IndividualEncoder from utilities import utils def call_operator(individual): # Write individual to file in input_path. # https://docs.python-guide.org/scenarios/serialization/#json-file-nested-data input_path = utils.get_custom_setting("input_path") with open(input_path, "x") as f: json.dump(individual, f, sort_keys=True, cls=IndividualEncoder) # Call operator with provided command. command_str = utils.get_custom_setting("command") logging.info("Retrieved command string: {cmdstr_}".format(cmdstr_=command_str)) fixed_command = "" marker_open = 0 marker_close = -1 idx = 0 for char in command_str: if char == "{": marker_open = idx elif char == "}": prev_marker = marker_close+1 # initially 0 fixed_command += command_str[prev_marker:marker_open] marker_close = idx key = command_str[marker_open+1:marker_close] value = utils.get_property(key) if type(value) is list: param_string = ",".join(value) else: param_string = str(value) fixed_command += param_string idx += 1 logging.info("Calling operator with: {cmd_}".format(cmd_=fixed_command)) logs, error = utils.execute_command( command=fixed_command, working_directory=None, environment_variables=None, executor="AGENT", livestream=True, ) logging.info(logs) # Retrieve individual from file in output_path. # https://docs.python-guide.org/scenarios/serialization/#json-file-nested-data output_path = utils.get_custom_setting("output_path") with open(output_path, "r") as f: ind_dict = json.load(f) resulting_individual = Individual(ind_dict["solution"], ind_dict["fitness"]) logging.info("Reading from output file: {}".format(resulting_individual)) # Delete the files that were created to ensure fresh start. os.remove(input_path) os.remove(output_path) return resulting_individual ```
{ "source": "jluech/PGAcloud_Initializer", "score": 2 }
#### File: PGAcloud_Initializer/message_handler/rabbit_message_queue.py ```python import json import logging import pika from initializer.initialization import apply_initialization from message_handler.message_handler import MessageHandler from population.individual import IndividualEncoder from utilities import utils def receive_initialization_callback(channel, method, properties, body): queue_name = utils.get_messaging_source() payload_dict = json.loads(body) amount = int(payload_dict.get("amount")) individual_id = int(payload_dict.get("id")) logging.info("rMQ:{queue_}: Received initialization request for {amount_} individual(s).".format( queue_=queue_name, amount_=amount, )) generated_individuals = apply_initialization(amount, individual_id) for individual in generated_individuals: send_message_to_queue( channel=channel, payload=individual ) def send_message_to_queue(channel, payload): # Route the message to the next queue in the model. next_recipient = utils.get_messaging_target() channel.queue_declare(queue=next_recipient, auto_delete=True, durable=True) # Send message to given recipient. logging.info("rMQ: Sending {ind_} to {dest_}.".format( ind_=payload, dest_=next_recipient, )) channel.basic_publish( exchange="", routing_key=next_recipient, body=json.dumps(payload, cls=IndividualEncoder), # Delivery mode 2 makes the broker save the message to disk. # This will ensure that the message be restored on reboot even # if RabbitMQ crashes before having forwarded the message. properties=pika.BasicProperties( delivery_mode=2, ), ) class RabbitMessageQueue(MessageHandler): def __init__(self, pga_id): # Establish connection to rabbitMQ. self.connection = pika.BlockingConnection(pika.ConnectionParameters( host="rabbitMQ--{id_}".format(id_=pga_id), socket_timeout=30, )) def receive_messages(self): # Define communication channel. channel = self.connection.channel() # Create queue for initialization. queue_name = utils.get_messaging_source() channel.queue_declare(queue=queue_name, auto_delete=True, durable=True) # Actively listen for messages in queue and perform callback on receive. channel.basic_consume( queue=queue_name, on_message_callback=receive_initialization_callback, ) logging.info("rMQ:{queue_}: Waiting for initialization requests.".format( queue_=queue_name )) channel.start_consuming() def send_message(self, individuals): # Define communication channel. channel = self.connection.channel() send_message_to_queue( channel=channel, payload=individuals ) ``` #### File: PGAcloud_Initializer/population/pair.py ```python class Pair(object): def __init__(self, individual1, individual2): self.ind1 = individual1 self.ind2 = individual2 ```
{ "source": "jluech/PGAcloud_Manager", "score": 2 }
#### File: PGAcloud_Manager/manager/__main__.py ```python import logging import os from flask import Flask, jsonify, request from werkzeug.utils import secure_filename from orchestrator.docker_orchestrator import DockerOrchestrator from utilities import utils logging.basicConfig(level=logging.INFO) # App initialization. mgr = Flask(__name__) # Create a directory in a known location to save files to. utils.__set_files_dir(mgr.instance_path) @mgr.route("/status", methods=["GET"]) def status(): return "OK" @mgr.route("/files/<int:pga_id>", methods=["GET"]) def get_files(pga_id): """ Get all uploaded YAML files as a dictionary. :return: dict of uploaded YAML files as JSON """ files_dict = utils.get_uploaded_files_dict(pga_id) return jsonify(files_dict) @mgr.route("/pga", methods=["POST"]) def create_pga(): """ Creates a new Parallel Genetic Algorithm in the cloud. :arg master_host: the ip address or hostname of the master node. :type master_host: str :arg orchestrator: the chosen cloud orchestrator. :type orchestrator: str :return (dict): id [int] and model [str] of new pga """ # Recognizes the correct orchestrator. master_host = request.args.get("master_host") orchestrator_name = request.args.get("orchestrator") if not orchestrator_name: raise Exception("No cloud orchestrator provided! Aborting deployment.") orchestrator = get_orchestrator(orchestrator_name, master_host) pga_id = orchestrator.pga_id logging.info("Creating new PGA: {}.".format(pga_id)) # Saves all the files that were uploaded with the request. file_keys = [*request.files] utils.create_pga_subdir(pga_id) files_dir = utils.get_uploaded_files_path(pga_id) file_names = [] if "config" not in file_keys: raise Exception("No PGA configuration provided! Aborting deployment.") for file_key in file_keys: file = request.files[file_key] if file_key == "config": file_name = secure_filename("config.yml") elif file_key == "population": file_name = secure_filename("population.yml") else: file_name = secure_filename(file.filename) file_names.append(file_name) file.save(os.path.join(files_dir, file_name)) # Retrieves the configuration and appends the current PGAs id. config_path = os.path.join(files_dir, "config.yml") config_file = open(config_path, mode="a") config_file.write("\npga_id: {id_}\n".format(id_=pga_id)) config_file.close() configuration = utils.parse_yaml(config_path) # Determines the model to deploy. model = configuration.get("model") if not model: raise Exception("No PGA model provided! Aborting deployment.") if model == "Master-Slave": # Retrieves the configuration details. services = {} services_config = configuration.get("services") for service_key in [*services_config]: service = services_config.get(service_key) services[service.get("name")] = service setups = {} images_config = configuration.get("setups") for service_key in [*images_config]: service = images_config.get(service_key) setups[service.get("name")] = service operators = {} operators_config = configuration.get("operators") for service_key in [*operators_config]: service = operators_config.get(service_key) operators[service.get("name")] = service population = {} population_config = configuration.get("population") for population_key in [*population_config]: population[population_key] = population_config.get(population_key) properties = {} properties_config = configuration.get("properties") for property_key in [*properties_config]: properties[property_key] = properties_config.get(property_key) # Creates the new PGA. all_services = utils.merge_dict(services, utils.merge_dict(setups, utils.merge_dict( operators, utils.merge_dict(population, properties)))) model_dict = construct_model_dict(model, all_services) orchestrator.setup_pga(model_dict=model_dict, services=services, setups=setups, operators=operators, population=population, properties=properties, file_names=file_names) logging.info("Distribute properties:") orchestrator.distribute_properties(properties=properties) logging.info("Initialize properties:") orchestrator.initialize_population(population=population) elif model == "Island": raise Exception("Island model not implemented yet. Aborting deployment.") # TODO 204: implement island model else: raise Exception("Custom model detected.") # TODO 205: implement for custom models return jsonify({ "id": orchestrator.pga_id, "model": model, "status": "created" }) @mgr.route("/pga/<int:pga_id>/start", methods=["PUT"]) def start_pga(pga_id): """ Starts the PGA identified by the pga_id route param. :param pga_id: the PGA id of the PGA to be started. :type pga_id: int :arg orchestrator: the chosen cloud orchestrator. :type orchestrator: str """ # Recognizes the correct orchestrator. master_host = request.args.get("master_host") orchestrator_name = request.args.get("orchestrator") if not orchestrator_name: raise Exception("No cloud orchestrator provided! Aborting deployment.") orchestrator = get_orchestrator(orchestrator_name, master_host, pga_id) # Starts the chosen PGA. logging.info("Starting PGA {}.".format(orchestrator.pga_id)) response = orchestrator.start_pga() # Makes a blocking call to Runner. result_json = response.json() fittest_dict = result_json["fittest"] return jsonify({ "id": orchestrator.pga_id, "status": "finished", "fittest": fittest_dict, }) @mgr.route("/pga/<int:pga_id>/stop", methods=["PUT"]) def stop_pga(pga_id): # Recognizes the correct orchestrator. master_host = request.args.get("master_host") orchestrator_name = request.args.get("orchestrator") if not orchestrator_name: raise Exception("No cloud orchestrator provided! Aborting deployment.") orchestrator = get_orchestrator(orchestrator_name, master_host, pga_id) # Stops the chosen PGA. logging.info("Terminating PGA {}.".format(orchestrator.pga_id)) exit_code = orchestrator.stop_pga() if exit_code != 202: logging.error("Terminating PGA {id_} finished with unexpected exit code: {code_}".format( id_=orchestrator.pga_id, code_=exit_code, )) status_code = "error_{}".format(exit_code) else: status_code = "removed" # Removes the PGA components. logging.info("Removing components of PGA {}.".format(orchestrator.pga_id)) orchestrator.remove_pga() return jsonify({ "id": orchestrator.pga_id, "status": status_code }) def get_orchestrator(orchestrator_name, master_host, pga_id=None): if orchestrator_name == "docker": return DockerOrchestrator(master_host, pga_id) elif orchestrator_name == "kubernetes": logging.error("Kubernetes orchestrator not yet implemented! Falling back to docker orchestrator.") return DockerOrchestrator(master_host, pga_id) # TODO 202: implement kubernetes orchestrator else: raise Exception("Unknown orchestrator requested!") def construct_model_dict(model, all_services): if model == "Master-Slave": # init = RUN/(INIT/)FE/RUN # model = RUN/SEL/CO/MUT/FE/RUN model_dict = { "runner": { "source": "generation", "init_gen": "initializer", "init_eval": "fitness", "pga": "selection" }, "initializer": { "source": "initializer", "target": "fitness" }, "selection": { "source": "selection", "target": "crossover" }, "crossover": { "source": "crossover", "target": "mutation" }, "mutation": { "source": "mutation", "target": "fitness" }, "fitness": { "source": "fitness", "target": "generation" } } elif model == "Island": model_dict = {} raise Exception("Island model not implemented yet!") else: model_dict = {} raise Exception("Custom models not implemented yet!") return model_dict if __name__ == "__main__": mgr.run(host="0.0.0.0") ``` #### File: PGAcloud_Manager/orchestrator/docker_orchestrator.py ```python import json import logging import os import time import traceback import warnings import docker from orchestrator.orchestrator import Orchestrator from utilities import utils WAIT_FOR_CONFIRMATION_DURATION = 45.0 WAIT_FOR_CONFIRMATION_EXCEEDING = 15.0 WAIT_FOR_CONFIRMATION_TROUBLED = 30.0 WAIT_FOR_CONFIRMATION_SLEEP = 2 # seconds class DockerOrchestrator(Orchestrator): def __init__(self, master_host, pga_id): super().__init__(pga_id) self.host = master_host self.docker_master_client = self.__create_docker_client( host_ip=master_host, host_port=2376 # default docker port; Note above https://docs.docker.com/engine/security/https/#secure-by-default ) # Common orchestrator functionality. def setup_pga(self, model_dict, services, setups, operators, population, properties, file_names): self.__create_network() configs = self.__create_configs(file_names) deploy_init = (not population.get("use_initial_population") or properties.get("USE_INIT")) self.__deploy_stack(services=services, setups=setups, operators=operators, configs=configs, model_dict=model_dict, deploy_initializer=deploy_init) def scale_component(self, service_name, scaling): if service_name.__contains__(Orchestrator.name_separator): effective_name = service_name.split(Orchestrator.name_separator)[0] else: effective_name = service_name if effective_name in ("runner", "manager"): warnings.warn("Scaling aborted: Scaling of runner or manager services not permitted!") else: found_services = self.docker_master_client.services.list(filters={"name": service_name}) if not found_services.__len__() > 0: raise Exception("No service {name_} found for scaling!".format(name_=service_name)) service = found_services[0] service.scale(replicas=scaling) def remove_pga(self): # Removes the docker services of this PGA. pga_filter = {"label": "PGAcloud=PGA-{id_}".format(id_=self.pga_id)} current_services = self.docker_master_client.services.list(filters=pga_filter) if current_services.__len__() > 0: for service in current_services: service.remove() duration = 0.0 start = time.perf_counter() while current_services.__len__() > 0 and duration < WAIT_FOR_CONFIRMATION_DURATION: current_services = self.docker_master_client.services.list(filters=pga_filter) time.sleep(WAIT_FOR_CONFIRMATION_SLEEP) # avoid network overhead duration = time.perf_counter() - start if duration >= WAIT_FOR_CONFIRMATION_DURATION: logging.info("Exceeded waiting time of {time_} seconds. It may have encountered an error. " "Please verify or try again shortly.".format(time_=WAIT_FOR_CONFIRMATION_DURATION)) else: logging.info("Successfully removed docker services for PGA {}.".format(self.pga_id)) else: logging.info("No docker services of PGA {} running that could be removed.".format(self.pga_id)) # Removes the docker configs used for file sharing. current_configs = self.docker_master_client.configs.list(filters=pga_filter) if current_configs.__len__() > 0: for conf in current_configs: conf.remove() timer = 0 start = time.perf_counter() while current_configs.__len__() > 0 and timer < WAIT_FOR_CONFIRMATION_DURATION: current_configs = self.docker_master_client.configs.list(filters=pga_filter) time.sleep(WAIT_FOR_CONFIRMATION_SLEEP) # avoid network overhead timer = time.perf_counter() - start if timer >= WAIT_FOR_CONFIRMATION_DURATION: logging.info("We seem to have encountered an error when removing the docker configs. " "Please verify or try again shortly.") else: logging.info("Successfully removed docker configs for PGA {}.".format(self.pga_id)) else: logging.info("No matching docker configs found that could be removed.") # Removes the docker network. pga_networks = self.docker_master_client.networks.list(filters=pga_filter) if pga_networks.__len__() > 0: for network in pga_networks: network.remove() timer = 0 start = time.perf_counter() while pga_networks.__len__() > 0 and timer < WAIT_FOR_CONFIRMATION_DURATION: pga_networks = self.docker_master_client.networks.list(filters=pga_filter) time.sleep(WAIT_FOR_CONFIRMATION_SLEEP) # avoid network overhead timer = time.perf_counter() - start if timer >= WAIT_FOR_CONFIRMATION_DURATION: logging.info("We seem to have encountered an error when removing the docker network. " "Please verify or try again shortly.") else: logging.info("Successfully removed docker network for PGA {}.".format(self.pga_id)) else: logging.info("No PGA docker network found that could be removed.") # Commands to control the orchestrator. def __deploy_stack(self, services, setups, operators, configs, model_dict, deploy_initializer): # Creates a service for each component defined in the configuration. # Deploy the support services (e.g., MSG and DB). supports = {} for support_key in [*services]: support = services.get(support_key) new_service = self.__create_docker_service(service_dict=support, network=self.pga_network) self.__update_service_with_configs(configs=configs, service_name=new_service.name) supports[support.get("name")] = new_service # Ensure services are starting up in the background while waiting for them. for support_key in [*supports]: support = supports.get(support_key) # actual docker service self.__wait_for_service(service_name=support.name) # Deploy the setup services (e.g., RUN or INIT). setup_services = {} for setup_key in [*setups]: setup = setups.get(setup_key) setup_name = setup.get("name") if setup_name == "runner": # Creates the runner service with bridge network. new_service = self.docker_master_client.services.create( image=setup.get("image"), name="runner{sep_}{id_}".format( sep_=Orchestrator.name_separator, id_=self.pga_id ), hostname=setup.get("name"), networks=[self.pga_network.name, "pga-management"], labels={"PGAcloud": "PGA-{id_}".format(id_=self.pga_id)}, endpoint_spec={ "Mode": "dnsrr" }, ) elif setup_name == "initializer": if deploy_initializer: new_service = self.__create_docker_service(service_dict=setup, network=self.pga_network) else: continue # no need to deploy initializer if initial population is provided. else: new_service = self.__create_docker_service(service_dict=setup, network=self.pga_network) self.scale_component(service_name=new_service.name, scaling=setup.get("scaling")) container_config_name = self.__create_container_config(new_service.name, setup_key, model_dict) self.__update_service_with_configs(configs=configs, service_name=new_service.name, container_config=container_config_name) setup_services[setup_name] = new_service # Deploy the genetic operator services. for operator_key in [*operators]: operator = operators.get(operator_key) new_service = self.__create_docker_service(service_dict=operator, network=self.pga_network) self.scale_component(service_name=new_service.name, scaling=operator.get("scaling")) container_config_name = self.__create_container_config(new_service.name, operator_key, model_dict) self.__update_service_with_configs(configs=configs, service_name=new_service.name, container_config=container_config_name) # Wait for setups before initiating properties or population. if deploy_initializer: initializer = setup_services.get("initializer") self.__wait_for_service(service_name=initializer.name) for setup_key in [*setup_services]: if setup_key == "initializer": continue # no need to wait for initializer if not deployed, or already waited for setup = setup_services.get(setup_key) # actual docker service self.__wait_for_service(service_name=setup.name) # Commands for docker stuff. def __create_docker_client(self, host_ip, host_port): tls_config = docker.tls.TLSConfig( ca_cert="/run/secrets/SSL_CA_PEM", client_cert=( "/run/secrets/SSL_CERT_PEM", "/run/secrets/SSL_KEY_PEM" ), verify=True ) docker_client = docker.DockerClient( base_url="tcp://{host_}:{port_}".format( host_=host_ip, port_=host_port ), tls=tls_config, ) return docker_client def __create_network(self): # Creates a new docker network. self.pga_network = self.docker_master_client.networks.create( name="pga-overlay-{id_}".format(id_=self.pga_id), driver="overlay", check_duplicate=True, attachable=True, scope="swarm", labels={"PGAcloud": "PGA-{id_}".format(id_=self.pga_id)}, ) def __create_configs(self, file_names): # Creates docker configs for file sharing. configs = [] stored_files_path = utils.get_uploaded_files_path(self.pga_id) for file_name in file_names: try: file_path = os.path.join(stored_files_path, file_name) file = open(file_path, mode="rb") file_content = file.read() file.close() config_name = "{id_}{sep_}{name_}".format( id_=self.pga_id, sep_=Orchestrator.name_separator, name_=file_name ) self.docker_master_client.configs.create( name=config_name, data=file_content, labels={"PGAcloud": "PGA-{id_}".format(id_=self.pga_id)} ) configs.append(config_name) except Exception as e: traceback.print_exc() logging.error(traceback.format_exc()) return configs def __create_container_config(self, service_name, service_key, model_dict): effective_name = service_name.split(Orchestrator.name_separator)[0] config_name = "{id_}{sep_}{name_}-config.yml".format( id_=self.pga_id, sep_=Orchestrator.name_separator, name_=effective_name ) config_content = model_dict[service_key] config_content["pga_id"] = self.pga_id self.docker_master_client.configs.create( name=config_name, data=json.dumps(config_content), labels={"PGAcloud": "PGA-{id_}".format(id_=self.pga_id)} ) return config_name def __create_docker_service(self, service_dict, network): return self.docker_master_client.services.create( image=service_dict.get("image"), name="{name_}{sep_}{id_}".format( name_=service_dict.get("name"), sep_=Orchestrator.name_separator, id_=self.pga_id ), hostname=service_dict.get("name"), networks=[network.name], labels={"PGAcloud": "PGA-{id_}".format(id_=self.pga_id)}, endpoint_spec={ "Mode": "dnsrr" }, ) def __update_service_with_configs(self, configs, service_name, container_config=None): # Updates the given service with the new configs. logging.info("Updating {name_} with docker configs.".format(name_=service_name)) config_param = self.__prepare_array_as_script_param(configs, container_config) script_path = os.path.join(os.getcwd(), "utilities/docker_service_update_configs.sh") script_args = "--service {service_} --host {host_} --configs {confs_}" utils.execute_command( command=script_path + " " + script_args.format( service_=service_name, host_=self.host, confs_=config_param, ), working_directory=os.curdir, environment_variables=None, executor="StackDeploy", ) def __wait_for_service(self, service_name): # Waits until the given service has at least one instance which is running and ready. logging.info("Waiting for {name_} service.".format(name_=service_name)) script_path = os.path.join(os.getcwd(), "utilities/docker_service_wait_until_running.sh") script_args = "--service {service_} --host {host_}" utils.execute_command( command=script_path + " " + script_args.format( service_=service_name, host_=self.host, ), working_directory=os.curdir, environment_variables=None, executor="StackDeploy", ) # Auxiliary commands. def __prepare_array_as_script_param(self, general_configs, container_config): param = "" for conf in general_configs: param += "{} ".format(conf) if container_config is None: param += "--" else: param += container_config param += " --" return param ``` #### File: PGAcloud_Manager/utilities/utils.py ```python import logging import os import subprocess import sys import yaml files_dir = "" # --- General util commands --- def execute_command( command, working_directory, environment_variables, executor, logger=logging, livestream=False ): logger_prefix = "" if executor: logger_prefix = executor + ": " process = subprocess.Popen( command, cwd=working_directory, env=environment_variables, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True, ) logger.debug(logger_prefix + "command: " + command) stdout = "" for line in iter(process.stdout.readline, b''): line = str(line, "utf-8") stdout += line if livestream: sys.stdout.write(line) else: logger.debug(logger_prefix + "command output: " + line.rstrip()) return_code = process.wait() stdout = stdout.rstrip() return stdout, return_code def merge_dict(dict1, dict2): res = {**dict1, **dict2} return res def parse_yaml(yaml_file_path): with open(yaml_file_path, mode="r", encoding="utf-8") as yaml_file: content = yaml.safe_load(yaml_file) or {} return content # --- File and path handling commands --- def get_uploaded_files_path(pga_id): return os.path.join(files_dir, str(pga_id)) def get_uploaded_files_dict(pga_id): files_dict = {} directory = get_uploaded_files_path(pga_id) files = os.listdir(directory) for filename in files: name = filename.split(".")[0] yaml_dict = parse_yaml(os.path.join(directory, filename)) yaml_dict["_filename"] = filename files_dict[name] = yaml_dict return files_dict def get_filename_from_path(file_path): if file_path.__contains__("\\"): filename = file_path.split("\\")[-1].split(".")[0] else: filename = file_path.split("/")[-1].split(".")[0] return filename def create_pga_subdir(pga_id): os.makedirs(os.path.join(files_dir, str(pga_id))) def __set_files_dir(path): global files_dir files_dir = os.path.join(path, 'files') os.makedirs(files_dir, exist_ok=True) ```
{ "source": "jluech/PGAcloud_Mutation", "score": 2 }
#### File: PGAcloud_Mutation/mutation/__main__.py ```python import logging import time from database_handler.handlers import DatabaseHandlers from database_handler.redis_handler import RedisHandler from message_handler.handlers import MessageHandlers from message_handler.rabbit_message_queue import RabbitMessageQueue from mutation.mutators import Mutators from utilities import utils logging.basicConfig(level=logging.INFO) DATABASE_HANDLER = DatabaseHandlers.Redis MESSAGE_HANDLER = MessageHandlers.RabbitMQ MUTATOR = Mutators.BitFlip RELEVANT_PROPERTIES = ["MUTATION_RATE"] def listen_for_mutation(): pga_id = utils.get_pga_id() database_handler = get_database_handler(pga_id) for prop in RELEVANT_PROPERTIES: value = database_handler.retrieve(prop) timer = 0 start = time.perf_counter() while value is None and timer < 45: time.sleep(1) value = database_handler.retrieve(prop) timer = time.perf_counter() - start if timer >= 10: raise Exception("Could not load property: {key_}".format(key_=prop)) utils.set_property( property_key=prop, property_value=value.decode("utf-8") ) message_handler = get_message_handler(pga_id) message_handler.receive_messages() def get_database_handler(pga_id): if DATABASE_HANDLER == DatabaseHandlers.Redis: return RedisHandler(pga_id) else: raise Exception("No valid DatabaseHandler defined!") def get_message_handler(pga_id): if MESSAGE_HANDLER == MessageHandlers.RabbitMQ: return RabbitMessageQueue(pga_id) else: raise Exception("No valid MessageHandler defined!") if __name__ == "__main__": utils.__set_mutator(MUTATOR) listen_for_mutation() ```
{ "source": "jluech/PGAcloud_Runner", "score": 3 }
#### File: PGAcloud_Runner/database_handler/redis_handler.py ```python import json import logging import redis from database_handler.database_handler import DatabaseHandler from population.individual import IndividualEncoder class RedisHandler(DatabaseHandler): def __init__(self, pga_id): self.redis = redis.Redis(host="redis--{id_}".format(id_=pga_id)) def store_properties(self, properties_dict): prop_keys = [*properties_dict] for prop_key in prop_keys: value = properties_dict[prop_key] if not type(value) in [str, int, list]: value = str(value) logging.info("redis: Storing property '{prop_}'={val_}".format( prop_=prop_key, val_=value, )) if type(value) is list: for val in value: self.redis.lpush(prop_key, val) else: self.redis.set(prop_key, value) def store_population(self, population): logging.info("redis: Storing population.") self.redis.delete("population") for individual in population: serialized_individual = json.dumps(individual, cls=IndividualEncoder) self.redis.lpush("population", serialized_individual) def retrieve_item(self, property_name): return self.redis.get(property_name) def retrieve_list(self, property_name): return self.redis.lrange(property_name, 0, -1) ``` #### File: PGAcloud_Runner/utilities/utils.py ```python import logging import operator import os from re import match import yaml PGA_NAME_SEPARATOR = "--" __CONTAINER_CONF = None __PROPERTIES = {} __EVALUATED_INDIVIDUALS = [] # YAML command def parse_yaml(yaml_file_path): with open(yaml_file_path, mode="r", encoding="utf-8") as yaml_file: content = yaml.safe_load(yaml_file) or {} return content # Commands for population and individuals def collect_and_reset_received_individuals(): global __EVALUATED_INDIVIDUALS received = sort_population_by_fitness(__EVALUATED_INDIVIDUALS) __EVALUATED_INDIVIDUALS = [] return received def save_received_individual(individual): global __EVALUATED_INDIVIDUALS __EVALUATED_INDIVIDUALS.append(individual) current_length = __EVALUATED_INDIVIDUALS.__len__() return current_length >= int(get_property("POPULATION_SIZE")), current_length def sort_population_by_fitness(population): # Sorts and returns population by fitness, in descending order (fittest first). return sorted(population, key=operator.attrgetter("fitness"), reverse=True) # Commands for properties def get_messaging_source(): if not __CONTAINER_CONF: __retrieve_container_config() return __CONTAINER_CONF["source"] def get_messaging_init_gen(): if not __CONTAINER_CONF: __retrieve_container_config() return __CONTAINER_CONF["init_gen"] def get_messaging_init_eval(): if not __CONTAINER_CONF: __retrieve_container_config() return __CONTAINER_CONF["init_eval"] def get_messaging_pga(): if not __CONTAINER_CONF: __retrieve_container_config() return __CONTAINER_CONF["pga"] def get_pga_id(): if not __CONTAINER_CONF: __retrieve_container_config() return __CONTAINER_CONF["pga_id"] def __retrieve_container_config(): # Retrieve locally saved config file. files = [f for f in os.listdir("/") if match(r'[0-9]+--runner-config\.yml', f)] # https://stackoverflow.com/questions/2225564/get-a-filtered-list-of-files-in-a-directory/2225927#2225927 # https://regex101.com/ if not files.__len__() > 0: raise Exception("Error retrieving the container config: No matching config file found!") config = parse_yaml("/{}".format(files[0])) global __CONTAINER_CONF __CONTAINER_CONF = { "pga_id": config.get("pga_id"), "source": config.get("source"), "init_gen": config.get("init_gen"), "init_eval": config.get("init_eval"), "pga": config.get("pga") } logging.info("Container config retrieved: {conf_}".format(conf_=__CONTAINER_CONF)) def get_property(property_key): return __PROPERTIES[property_key] def set_property(property_key, property_value): __PROPERTIES[property_key] = property_value ```
{ "source": "jluech/PGAcloud_Selection", "score": 3 }
#### File: PGAcloud_Selection/selection/selectors.py ```python import logging import math import random from abc import ABC, abstractmethod from enum import Enum class Selectors(Enum): RouletteWheel = "roulette", Tournament = "tournament", Rank = "rank", class AbstractSelection(ABC): @ abstractmethod def perform_selection(self, population): # Perform the selection on the population, a list of Individual's. # Returns a list of Pair's. pass class RouletteWheelSelection(AbstractSelection): def perform_selection(self, population): size = population.__len__() iterations = math.ceil(size / 2) parents = [] fitness_sum = 0 for individual in population: fitness_sum += individual.fitness for i in range(iterations): parent1 = self.__spin_the_wheel(population, fitness_sum) parent2 = self.__spin_the_wheel(population, fitness_sum) selected_parents = [parent1, parent2] parents.append(selected_parents) logging.info("Selected parents: {sel_}.".format(sel_=selected_parents)) return parents @staticmethod def __spin_the_wheel(population, fitness_sum): partial_fitness_sum = 0.0 wheel_spin = random.uniform(0, fitness_sum) # select individual at random selected = population[0] # select first individual if wheel_spin=0 for individual in population: # retrieve selected individual if partial_fitness_sum >= wheel_spin: # consider fitness boundaries can also be selected break selected = individual partial_fitness_sum += individual.fitness return selected class TournamentSelection(AbstractSelection): def perform_selection(self, population): pass class RankSelection(AbstractSelection): def perform_selection(self, population): pass class Pair(object): def __init__(self, parent1, parent2): self.p1 = parent1 self.p2 = parent2 ```
{ "source": "jluethi/ForkStitcher", "score": 3 }
#### File: ForkStitcher/fork-stitcher/gui.py ```python from pathlib import Path import tkinter as tk import tkinter.messagebox import tkinter.filedialog from tkinter.scrolledtext import ScrolledText import _tkinter import time import logging import threading import queue import tkinter.font as font from stitch_MAPS_annotations import Stitcher from sites_of_interest_parser import MapsXmlParser # TODO: Figure out how to run pyimagej and tkinter at the same time on Macs, see suggestions here: # https://github.com/imagej/pyimagej/issues/39 # import imagej # ij = imagej.init('/Applications/Fiji.app') class QueueHandler(logging.Handler): """Class that accepts logs and adds them to a queue """ # Based on: https://github.com/beenje/tkinter-logging-text-widget def __init__(self, logging_queue): super().__init__() self.logging_queue = logging_queue def emit(self, log_statement): self.logging_queue.put(log_statement) class LoggingWindow: # Based on: https://github.com/beenje/tkinter-logging-text-widget def __init__(self, master): self.master = master self.scrolled_text = ScrolledText(master=master, state='disabled', height=15) self.scrolled_text.grid(row=0, column=0) self.scrolled_text.configure(font='TkFixedFont') self.scrolled_text.tag_config('INFO', foreground='black') self.scrolled_text.tag_config('DEBUG', foreground='gray') self.scrolled_text.tag_config('WARNING', foreground='orange') self.scrolled_text.tag_config('ERROR', foreground='red') # Get the logger self.logger = logging.getLogger() self.log_queue = queue.Queue() self.queue_handler = QueueHandler(self.log_queue) formatter = logging.Formatter('%(asctime)s : %(levelname)s : %(message)s') self.queue_handler.setFormatter(formatter) self.logger.addHandler(self.queue_handler) # Start polling messages from the queue self.master.after(100, self.poll_log_queue) self.autoscroll = tk.BooleanVar() tk.Checkbutton(master, text='Autoscroll Log', variable=self.autoscroll).\ grid(row=1, column=0, sticky=tk.W) self.autoscroll.set(True) def display(self, record): msg = self.queue_handler.format(record) self.scrolled_text.configure(state='normal') self.scrolled_text.insert(tk.END, msg + '\n', record.levelname) self.scrolled_text.configure(state='disabled') # Autoscroll to the bottom if self.autoscroll.get(): self.scrolled_text.yview(tk.END) def poll_log_queue(self): # Check every 100ms if there is a new message in the queue to display while True: try: record = self.log_queue.get(block=False) except queue.Empty: break else: self.display(record) self.master.after(100, self.poll_log_queue) class Gui: def __init__(self, master): self.master = master frame = tk.Frame(master) self.font = font.Font() # ***** Menu ***** menu = tk.Menu(master) master.config(menu=menu) file_menu = tk.Menu(menu) edit_menu = tk.Menu(menu) menu.add_cascade(label='File', menu=file_menu) # file_menu.add_separator() file_menu.add_command(label='Quit', command=frame.quit) menu.add_cascade(label='Edit', menu=edit_menu) edit_menu.add_command(label='Reset to default', command=self.reset_parameters) # ***** User Inputs ***** file_picker_label = tk.Label(master, text='Project folder:') self.project_path = tk.StringVar() self.file_picker_entry = tk.Entry(master, textvariable=self.project_path, width=30) file_picker_button = tk.Button(master, text='Choose Directory', command=self.ask_for_path) file_picker_label.grid(row=0, column=0, sticky=tk.E, pady=(10, 0), padx=(25,5)) self.file_picker_entry.grid(row=0, column=1, sticky=tk.W, pady=(10, 0)) file_picker_button.grid(row=0, column=2, sticky=tk.W, pady=(10, 0)) self.classifier_input = tk.BooleanVar() tk.Checkbutton(master, text='Load input from classifier', variable=self.classifier_input, command=self.display_csv_picker).grid(row=1, column=1, pady=(6, 0), sticky=tk.W) self.csv_picker_label = tk.Label(master, text='Classifier CSV file:') self.csv_path = tk.StringVar() self.csv_picker_entry = tk.Entry(master, textvariable=self.csv_path, width=30) self.csv_picker_button = tk.Button(master, text='Choose CSV file', command=self.ask_for_file) grid_pos = 4 tk.Label(master, text='Advanced Options', font=(self.font, 14, 'bold')).grid(row=grid_pos, column=1, pady=(20, 0), sticky=tk.W) # TODO: Find out how to hide advanced options by default self.output_folder = tk.StringVar() tk.Label(master, text='Output folder name images:').grid(row=grid_pos + 1, column=0, sticky=tk.E, padx=(25,5)) tk.Entry(master, textvariable=self.output_folder).grid(row=grid_pos + 1, column=1, sticky=tk.W) self.csv_folder_name = tk.StringVar() tk.Label(master, text='Output folder name CSVs:').grid(row=grid_pos + 2, column=0, sticky=tk.E, padx=(25,5)) tk.Entry(master, textvariable=self.csv_folder_name).grid(row=grid_pos + 2, column=1, sticky=tk.W) self.max_processes = tk.IntVar() tk.Label(master, text='Number of parallel processes:').grid(row=grid_pos + 3, column=0, sticky=tk.E, padx=(25,5)) tk.Entry(master, textvariable=self.max_processes).grid(row=grid_pos + 3, column=1, sticky=tk.W) self.batch_size = tk.IntVar() tk.Label(master, text='Batch size:').grid(row=grid_pos + 4, column=0, sticky=tk.E, padx=(25,5)) tk.Entry(master, textvariable=self.batch_size).grid(row=grid_pos + 4, column=1, sticky=tk.W) self.highmag_layer = tk.StringVar() tk.Label(master, text='MAPS high magnification layer:').grid(row=grid_pos + 5, column=0, sticky=tk.E, padx=(25,5)) tk.Entry(master, textvariable=self.highmag_layer).grid(row=grid_pos + 5, column=1, sticky=tk.W) self.stitch_threshold = tk.IntVar() tk.Label(master, text='Stitch threshold:').grid(row=grid_pos + 6, column=0, sticky=tk.E, padx=(25,5)) tk.Entry(master, textvariable=self.stitch_threshold).grid(row=grid_pos + 6, column=1, sticky=tk.W) self.eight_bit = tk.BooleanVar() tk.Checkbutton(master, text='8 bit output', variable=self.eight_bit).grid(row=grid_pos + 7, column=1, sticky=tk.W) self.arrow_overlay = tk.BooleanVar() tk.Checkbutton(master, text='Add an arrow overlay that points to the fork', variable=self.arrow_overlay). \ grid(row=grid_pos + 8, column=1, sticky=tk.W) self.contrast_enhance = tk.BooleanVar() tk.Checkbutton(master, text='Produce contrast enhanced images', variable=self.contrast_enhance). \ grid(row=grid_pos + 9, column=1, sticky=tk.W) self.continue_processing = tk.BooleanVar() tk.Checkbutton(master, text='Continue processing an experiment', variable=self.continue_processing).\ grid(row=grid_pos + 10, column=1, sticky=tk.W) # Run button self.run_button_text = tk.StringVar() self.run_button = tk.Button(master, textvariable=self.run_button_text, width=10) self.run_button_ready() self.run_button.grid(row=15, column=2, sticky=tk.W, pady=10, padx=10) # Reset button self.reset_button = tk.Button(master, text='Reset Parameters', width=20, command=self.reset_parameters) self.reset_button.grid(row=15, column=0, sticky=tk.E, pady=10, padx=10) # Stop button (available during run) self.reset_parameters() def reset_parameters(self): self.project_path.set('') self.max_processes.set(5) self.eight_bit.set(True) self.batch_size.set(5) self.output_folder.set('stitchedForks') self.csv_folder_name.set('annotations') self.highmag_layer.set('highmag') self.stitch_threshold.set(1000) self.arrow_overlay.set(True) self.contrast_enhance.set(True) self.continue_processing.set(False) self.classifier_input.set(False) self.csv_path.set('') def run(self): project_dir = Path(self.project_path.get()) base_path = project_dir.parent project_name = project_dir.name params_set = self.check_all_parameters_set() if params_set and not self.continue_processing.get() and not self.classifier_input.get(): self.create_logging_window() self.run_button_to_running() log_file_path = str(Path(project_dir) / (project_name + '.log')) logger = MapsXmlParser.create_logger(log_file_path) logger.info('Process experiment {}'.format(project_name)) # thread = threading.Thread(target=self.dummy, args=(10, )) # thread.daemon = True # thread.start() thread = threading.Thread(target=self.run_from_beginning, args=(base_path, project_name,)) thread.daemon = True thread.start() elif params_set and self.continue_processing.get(): self.create_logging_window() self.run_button_to_running() logging.info('Continuing to process experiment {}'.format(project_name)) thread = threading.Thread(target=self.continue_run, args=(base_path, project_name,)) thread.daemon = True thread.start() elif params_set and self.classifier_input.get(): self.create_logging_window() self.run_button_to_running() logging.info('Load classifier output for experiment {} from the csv file: {}'.format(project_name, self.csv_path.get())) thread = threading.Thread(target=self.classifier_input_run, args=(base_path, project_name, self.csv_path.get(),)) thread.daemon = True thread.start() else: tkinter.messagebox.showwarning(title='Warning: parameters missing', message='You need to enter the correct kind of parameters in all the ' 'required fields and then try again') def run_button_to_running(self): self.run_button_text.set('Running...') self.run_button.config(height=2, fg='gray', command=self.nothing) def run_button_ready(self): self.run_button_text.set('Run') self.run_button.config(height=2, fg='green', command=self.run, font=(self.font, 24, 'bold')) def run_from_beginning(self, base_path, project_name): # TODO: Catch issues when wrong path is provided or another error/warning occurs in the stitcher => catch my custom Exception, display it to the user stitcher = Stitcher(base_path, project_name, self.csv_folder_name.get(), self.output_folder.get()) stitcher.parse_create_csv_batches(batch_size=self.batch_size.get(), highmag_layer=self.highmag_layer.get()) stitcher.manage_batches(self.stitch_threshold.get(), self.eight_bit.get(), show_arrow=self.arrow_overlay.get(), max_processes=self.max_processes.get(), enhance_contrast=self.contrast_enhance.get()) stitcher.combine_csvs(delete_batches=True) logging.info('Finished processing the experiment') self.run_button_ready() def continue_run(self, base_path, project_name): stitcher = Stitcher(base_path, project_name, self.csv_folder_name.get(), self.output_folder.get()) stitcher.manage_batches(self.stitch_threshold.get(), self.eight_bit.get(), show_arrow=self.arrow_overlay.get(), max_processes=self.max_processes.get(), enhance_contrast=self.contrast_enhance.get()) stitcher.combine_csvs(delete_batches=True) logging.info('Finished processing the experiment') self.run_button_ready() def classifier_input_run(self, base_path, project_name, csv_path): stitcher = Stitcher(base_path, project_name, self.csv_folder_name.get(), self.output_folder.get()) stitcher.parse_create_classifier_csv_batches(batch_size=self.batch_size.get(), classifier_csv_path=csv_path, highmag_layer=self.highmag_layer.get()) stitcher.manage_batches(self.stitch_threshold.get(), self.eight_bit.get(), show_arrow=self.arrow_overlay.get(), max_processes=self.max_processes.get(), enhance_contrast=self.contrast_enhance.get()) stitcher.combine_csvs(delete_batches=True) logging.info('Finished processing the experiment') self.run_button_ready() def create_logging_window(self): # TODO: Check if the window already exists. Only make a new window if it doesn't exist yet log_window = tk.Toplevel(self.master) log_window.title('Log') LoggingWindow(log_window) def dummy(self, iterations): """Dummy run function to test the interface, e.g. locally on my Mac Function just does some logging so that the interface can be tested. Args: iterations (int): Number of log messages to be produced """ logger = logging.getLogger(__name__) for i in range(iterations): logger.info('Running Dummy') time.sleep(1) for i in range(iterations): logger.info('Running Dummy 2! =D') time.sleep(1) self.run_button_ready() @staticmethod def nothing(): """If the run button has already been pressed, just do nothing on future presses until the function finishes """ pass def ask_for_path(self): path = tkinter.filedialog.askdirectory(title='Select folder containing the MapsProject.xml file') self.project_path.set(path) def ask_for_file(self): path = tkinter.filedialog.askopenfilename(title='Select the classifier output', filetypes=(("csv files", "*.csv"), ("all files", "*.*"))) self.csv_path.set(path) def display_csv_picker(self): if self.classifier_input.get(): self.csv_picker_label.grid(row=2, column=0, sticky=tk.E) self.csv_picker_entry.grid(row=2, column=1, sticky=tk.W) self.csv_picker_button.grid(row=2, column=2, sticky=tk.W) else: self.csv_picker_label.grid_remove() self.csv_picker_entry.grid_remove() self.csv_picker_button.grid_remove() def check_all_parameters_set(self): try: params_set = len(self.project_path.get()) > 0 params_set = params_set and type(self.max_processes.get()) == int params_set = params_set and type(self.eight_bit.get()) == bool params_set = params_set and type(self.batch_size.get()) == int params_set = params_set and len(self.output_folder.get()) > 0 params_set = params_set and len(self.csv_folder_name.get()) > 0 params_set = params_set and len(self.highmag_layer.get()) > 0 params_set = params_set and type(self.stitch_threshold.get()) == int if self.classifier_input.get(): params_set = params_set and len(self.csv_path.get()) > 0 params_set = params_set and self.csv_path.get().endswith('.csv') except _tkinter.TclError: params_set = False return params_set def shutdown(self): # Helper function to shut down all stitching processes when the interface is quit if tk.messagebox.askokcancel("Quit", "Do you want to stop processing the experiment?"): self.master.destroy() ``` #### File: ForkStitcher/fork-stitcher/multiprocessing_imagej.py ```python import imagej from multiprocessing import Pool def f(x): # ij = imagej.init('/Applications/Fiji.app') print(x) # ij = imagej.init('/Applications/Fiji.app') with Pool(processes=2) as pool: for i in range(10): pool.apply_async(f, args=(i,)) pool.close() pool.join() ```
{ "source": "jlugao/elephant-bot", "score": 2 }
#### File: handlers/bookmarks/handlers.py ```python from telegram import ParseMode, Update from telegram.ext import CallbackContext from tgbot.models import User from bookmarks.models import Bookmark def return_bookmarks(update: Update, context: CallbackContext) -> None: """Show help info about all secret admins commands""" user = User.get_user(update, context) tags = context.args bookmarks = Bookmark.objects.filter(user=user) reply = "Bookmarks:\n" for bookmark in bookmarks: tags = "[" tags += ", ".join([str(tag) for tag in bookmark.tags.all()]) tags += "]" reply += f" - <a href='{bookmark.url}'>{bookmark.url}</a>\n" update.message.reply_text( reply, parse_mode=ParseMode.HTML, ) ``` #### File: handlers/raw_text/handlers.py ```python from datetime import timedelta from django.utils.timezone import now from telegram import ParseMode, Update from telegram.ext import CallbackContext from . import static_text from tgbot.models import User from bookmarks.models import Bookmark import re URL_REGEX = r"[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b([-a-zA-Z0-9()@:%_\+.~#?&//=]*)" TAGS_REGEX = r"\[(.*)\]" def raw_message(update: Update, context: CallbackContext) -> None: """Show help info about all secret admins commands""" user = User.get_user(update, context) if url := re.search(URL_REGEX, update.message.text, re.IGNORECASE): url = url.group(0) tags = re.findall(TAGS_REGEX, update.message.text) if tags: tags = tags[0].split(",") bookmark, created = Bookmark.objects.get_or_create(url=url, user=user) existing_tags = bookmark.tags.all() new_tags = set(tags) - set(existing_tags) bookmark.tags.add(*list(new_tags)) if not created: update.message.reply_text("Bookmark already existed") else: update.message.reply_text("bookmark created") tags = "[" tags += ", ".join([str(tag) for tag in bookmark.tags.all()]) tags += "]" update.message.reply_text(f"Bookmark: {bookmark.url} \n Tags: {tags}") else: update.message.reply_text(static_text.raw_message_reply) update.message.reply_text(update.message.text) ```
{ "source": "jlugomar/hypergraphlet-kernels", "score": 3 }
#### File: hypergraphlet_kernel_single_hypergraph/examples/runHypergraphletsRegressionSuite.py ```python import os, sys, glob, copy, math, random def runHypergraphletsRegressionSuite(): dataPATH = './data/' outputPATH = './results/' testCaseName = 'example' node2nodeID = {'R':'0', 'A':'1', 'B':'2', 'C':'3'} MAX_NODE_LABELS = 'NNNNN' MAX_HYPEREDGE_LABELS = 'EEEEEEEEEEEEE' HYPERGRAPHLETS_TYPES = 472 SAMPLES = 50 FLAG_rijk = '\t0\t1\t2\t3\t4' FLAG_ijk = '\t1\t2\t3\t4' SUBGRAPH_TEST = False infilename = 'hypergraphlets_description.txt' try: #Open input file infile = open(infilename, "r") except IOError as e: print ("<<ERROR>> Unable to open the file", infilename, "\nThis program will be quiting now.", e) sys.exit() hypergraph = {} rijkHypergraphlets = [] ijkHypergraphlets = [] rijk_ijkHypergraphlets = [] #Iterate over file for line in infile: #Eliminate any unnecessary white spaces line = line.strip() hgType = int(line.split(':')[0]) hyperedges_desc = line.split(':')[1] hyperedgesDesc = hyperedges_desc.split('|') totalHyperedges = 0 temp = [] if hgType == 1: totalNodes = 2 elif hgType > 1 and hgType < 11: totalNodes = 3 else: totalNodes = 4 for currHyperedge in hyperedgesDesc: hyperedge = '' for currNode in currHyperedge.split(','): nodeID = node2nodeID[currNode] hyperedge += '\t' + nodeID temp.append(hyperedge) totalHyperedges += 1 if currHyperedge == 'R,A,B,C' or currHyperedge == 'A,B,C': totalNodes = 5 if currHyperedge == 'R,A,B,C': temp.append(FLAG_rijk) totalHyperedges += 1 rijkHypergraphlets.append(hgType) else: temp.append(FLAG_ijk) totalHyperedges += 1 ijkHypergraphlets.append(hgType) if (hgType in rijkHypergraphlets) and (hgType in ijkHypergraphlets): rijk_ijkHypergraphlets.append(hgType) hypergraph[hgType] = copy.copy(temp) #Output test case for current hypergraphlet type #Output hypergraph file outfilenameHG = dataPATH + testCaseName + str(hgType) + '.hypergraph' outfileHG = open(outfilenameHG, "w") hyperedges = hypergraph[hgType] random.shuffle(hyperedges) for i in range(0, len(hyperedges)): temp = hyperedges[i].strip().split('\t') random.shuffle(temp) permutedHyperedge = '' for nodeID in temp: permutedHyperedge += '\t' + nodeID outlineHG = str(i) + permutedHyperedge + '\n' outfileHG.writelines(outlineHG) outfileHG.close() #Output node labels file outfilenameNL = dataPATH + testCaseName + str(hgType) + '.nlabels' outfileNL = open(outfilenameNL, "w") outlineNL = MAX_NODE_LABELS[0:totalNodes] + '\n' outfileNL.writelines(outlineNL) outfileNL.close() #Output hyperedge labels file outfilenameEL = dataPATH + testCaseName + str(hgType) + '.elabels' outfileEL = open(outfilenameEL, "w") outlineEL = MAX_HYPEREDGE_LABELS[0:totalHyperedges] + '\n' outfileEL.writelines(outlineEL) outfileEL.close() #Close input file infile.close() print (len(rijkHypergraphlets), len(ijkHypergraphlets), len(rijk_ijkHypergraphlets)) casesFailed = 0 notFound = 0 for hgType in range(1, HYPERGRAPHLETS_TYPES): failed = 0 for sampleRun in range(0, SAMPLES): #Output hypergraph file outfilenameHG = dataPATH + testCaseName + str(hgType) + '.hypergraph' outfileHG = open(outfilenameHG, "w") hyperedges = hypergraph[hgType] random.shuffle(hyperedges) for i in range(0, len(hyperedges)): temp = hyperedges[i].strip().split('\t') random.shuffle(temp) permutedHyperedge = '' for nodeID in temp: permutedHyperedge += '\t' + nodeID outlineHG = str(i) + permutedHyperedge + '\n' outfileHG.writelines(outlineHG) outfileHG.close() #Run hyperkernel code command = './run_hyperkernel -p examples.pos -n examples.neg -g ' + dataPATH + testCaseName + str(hgType) + ' -l ' + dataPATH + testCaseName + str(hgType) + ' -e ' + dataPATH + testCaseName + str(hgType) + ' -t 2 -z 0 -s ' + outputPATH + testCaseName + str(hgType) + '_shgk.svml ' os.system(command) #Open SVML results file resultFilename = outputPATH + testCaseName + str(hgType) + '_shgk.svml' infileSVML = open(resultFilename, "r") temp = infileSVML.readline().strip() pairs = temp.split(' ') typeFound = False for i in range(1, (len(pairs) - 1)): EXPECTED_COUNT = 1.0 countType = int(pairs[i].split(':')[0]) count = float(pairs[i].split(':')[1]) # print ("\t", sampleRun, hgType, countType, count) if countType == hgType: typeFound = True if count != EXPECTED_COUNT and not SUBGRAPH_TEST: failed += 1 print ('Type ', hgType, ' ... MISMATCH', pairs) break if (typeFound == False): print ('Type ', hgType, ' ... NOT FOUND', countType, count) failed += 1 notFound += 1 print (pairs) return infileSVML.close() if failed > 0: print ('Type ', hgType, ' ... FAILED on', (float(failed)/float(SAMPLES) * 100.0), '% of inputs.') casesFailed += 1 else: print ('Type ', hgType, ' ... PASSED on', SAMPLES, 'different inputs.') print ("FAILED test cases ... ", casesFailed) print ("Hypergraphlets NOT FOUND ... ", notFound) return if __name__ == '__main__': runHypergraphletsRegressionSuite() #Alternate call, if you are using IDLE. ## runHypergraphletsRegressionSuite(sys.argv) ```
{ "source": "JLUiceman/djangoServer", "score": 2 }
#### File: webServer/api/views.py ```python from .models import Article, Friend from .serializers import ArticleSerializer, ArticleDetailSerializer, FriendSerializer from django.http import Http404 from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import status from rest_framework import mixins from rest_framework import generics class ArticleList(generics.ListCreateAPIView): lookup_field = 'article_type' queryset = Article.objects.all() serializer_class = ArticleSerializer # def get_queryset(self): # return Article.objects.get(article_type = self.request.GET.get('type', 'javascript')) class ArticleDetail(generics.RetrieveUpdateDestroyAPIView): lookup_field = 'id' queryset = Article.objects.all() serializer_class = ArticleDetailSerializer class FriendList(generics.RetrieveUpdateDestroyAPIView): lookup_field = 'fullname' queryset = Friend.objects.all() serializer_class = FriendSerializer # class ArticleList(mixins.ListModelMixin, mixins.CreateModelMixin, generics.GenericAPIView): # queryset = Article.objects.all() # serializer_class = ArticleSerializer # def get(self, request, *args, **kwarg): # return self.list(request, *args, **kwargs) # def post(self, request, *args, **kwargs): # return self.create(request, *args, **kwargs) # class FriendList(APIView): # """ # Retrieve, update or delete a snippet instance. # """ # def get_object(self, pk): # try: # return Friend.objects.get(pk=pk) # except Friend.DoesNotExist: # raise Http404 # def get(self, request, pk, format=None): # friend = self.get_object(pk) # serializer = FriendSerializer(friend) # return Response(serializer.data) # @csrf_exempt # def article_list(request, pk): # """ # List all code snippets, or create a new snippet. # """ # if request.method == 'GET': # article = Article.objects.all() # serializer = ArticleSerializer(article, many=True) # return JsonResponse(serializer.data, safe=False) # elif request.method == 'POST': # data = JSONParser().parse(request) # serializer = ArticleSerializer(data=data) # if serializer.is_valid(): # serializer.save() # return JsonResponse(serializer.data, status=201) # return JsonResponse(serializer.errors, status=400) # @csrf_exempt # def article_detail(request, pk): # """ # Retrieve, update or delete a code snippet. # """ # try: # article = Article.objects.get(pk=pk) # except Article.DoesNotExist: # return HttpResponse(status=404) # if request.method == 'GET': # serializer = ArticleSerializer(article) # return JsonResponse(serializer.data) # elif request.method == 'PUT': # data = JSONParser().parse(request) # serializer = ArticleSerializer(article, data=data) # if serializer.is_valid(): # serializer.save() # return JsonResponse(serializer.data) # return JsonResponse(serializer.errors, status=400) # elif request.method == 'DELETE': # article.delete() # return HttpResponse(status=204) ```
{ "source": "jlu-ilr-hydro/IPCC-Repots-Focus-Overview", "score": 4 }
#### File: jlu-ilr-hydro/IPCC-Repots-Focus-Overview/count_temp_ipcc.py ```python import numpy as np import pandas as pd import os def create_temp_dict(): """Creates a dictionary for all the single temperatures to count and returns it""" temp_dict = {} for i in np.arange(0.5,10.5, 0.5): # Test if it is a float or not to format it right if i == int(i): # Add an empty space at the beginnign to make sure this is not counting e.g. 1.5°C as 5°C key = " " + str(int(i)) + "°C" else: key = " " + str(i )+ "°C" temp_dict[key] = 0 return temp_dict def get_all_string(report): with open(os.getcwd() + os.sep + "Raw IPCC Strings" + os.sep + report, 'r', encoding='utf-8') as f: return f.read() def count_temperatures(report): """counts all temperatures between 0.5°C and 10°C in 0.5°C steps""" temp_dict = create_temp_dict() report_df = pd.read_csv(os.getcwd() + os.sep + "Raw IPCC Strings" + os.sep + report, sep="\t", usecols=[0]) report_list = report_df[report_df.columns[0]].tolist() report_str = " ".join([str(item) for item in report_list]) # count how often a temperature occures for temp in temp_dict.keys(): number_of_occurences = report_str.count(temp) print("Found " + temp + " " + str(number_of_occurences) + " time(s)") temp_dict[temp] += number_of_occurences # Save the results for the single pdf temp_counts_pdf = pd.DataFrame.from_dict(temp_dict, orient="index") temp_counts_pdf.to_csv("Results" + os.sep + "temperatures" + os.sep + "counts_" + report[:-4] + ".csv", sep=";") def count_all_reports(): """iterates over all reports""" reports = [file for file in os.listdir(os.getcwd() + os.sep + "Raw IPCC Strings") if file[-4:] == ".csv" ] for report in reports: print("Starting with " + report) count_temperatures(report) count_all_reports() ``` #### File: jlu-ilr-hydro/IPCC-Repots-Focus-Overview/read_prepare_data.py ```python import os import pandas as pd import numpy as np def read_ipcc_counts_temp(): """reads all counts of temperatures for all reports and makes on df""" files = os.listdir(os.getcwd()+os.sep+"Results"+ os.sep + "temperatures") all_df = pd.DataFrame() for file in files: file_df = pd.read_csv("Results" + os.sep + "temperatures" + os.sep + file, sep=";", index_col=0) file_df.columns = [file[:-4]] all_df = pd.concat([all_df, file_df], axis=1) return all_df.transpose() def read_ipcc_counts_rfc(): """reads all counts of reasons of concern for all reports and makes on df""" files = os.listdir(os.getcwd()+os.sep+"Results"+ os.sep + "reasons_for_concern") all_df = pd.DataFrame() for file in files: file_df = pd.read_csv("Results" + os.sep + "reasons_for_concern" + os.sep + file, sep=";", index_col=0) file_df.columns = [file[:-4]] all_df = pd.concat([all_df, file_df], axis=1) return all_df.transpose() def read_false_positive(): """reads in all the counted false/true positive rates for the temperatres in the IPCC and calculates a true positive rate for each entry""" files = os.listdir(os.getcwd()+os.sep+"Results"+ os.sep + "false_positive_check_files") all_df = pd.DataFrame() for file in files: # only read those files that contains the counting results if "results" not in file: continue file_df = pd.read_csv("Results" + os.sep + "false_positive_check_files" + os.sep + file, sep=",", index_col=0) # calculate the true positive rate file_df["True Positive Rate [%]"] = (file_df["n true positive"]/(file_df["n true positive"]+file_df["n false positive"]))*100 # Arange the df for seaborn file_df["Temperature [°C]"] = file_df.index file_df.reset_index(inplace=True, drop=True) all_df = pd.concat([all_df, file_df]) return all_df def scale_counts(ipcc_counts): """scale the counts by overall sum""" sums = ipcc_counts.sum(axis=1) for col in ipcc_counts: ipcc_counts[col] = ipcc_counts[col]/sums*100 return ipcc_counts def read_meta(): """reads in the meta data of the reports""" meta = pd.read_csv("Reports" + os.sep + "meta_data_reports.tsv", sep="\t") meta["Year"] = meta["Year"].astype("str") return meta def group_temps(ipcc_counts): """groups the temperatures into three categories""" ipcc_counts["0.5°C - 2°C"] = ipcc_counts[" 0.5°C"] + ipcc_counts[" 1°C"] + ipcc_counts[" 1.5°C"] +ipcc_counts[" 2°C"] ipcc_counts["2.5°C - 4°C"] = ipcc_counts[" 2.5°C"] + ipcc_counts[" 3°C"] + ipcc_counts[" 3.5°C"] +ipcc_counts[" 4°C"] ipcc_counts["≥ 4.5°C"] = ipcc_counts[" 4.5°C"] + ipcc_counts[" 5°C"] + ipcc_counts[" 5.5°C"] +ipcc_counts[" 6°C"] +ipcc_counts[" 6.5°C"] + ipcc_counts[" 7°C"] + ipcc_counts[" 7.5°C"] +ipcc_counts[" 8°C"] + ipcc_counts[" 8.5°C"] + ipcc_counts[" 9°C"] + ipcc_counts[" 9.5°C"] +ipcc_counts[" 10°C"] return ipcc_counts.iloc[:,20:] def merge_counts_meta(ipcc_counts, meta): """merges the df with the counted temperatures/rfcs with the metadata""" return pd.merge(meta, ipcc_counts, right_index=True, left_on="count_names") def lookup_names(): """"Returns lookup dict for different files names to merge them""" lookup_dict = { "IPCC_AR6_WGI_Full_Report":"counts_IPCC_AR6_WGI_Full_Report_parsed", "SROCC_FullReport_FINAL":"counts_SROCC_FullReport_FINAL_parsed", "210714-IPCCJ7230-SRCCL-Complete-BOOK-HRES":"counts_210714-IPCCJ7230-SRCCL-Complete-BOOK-HRES_parsed", "SR15_Full_Report_Low_Res":"counts_SR15_Full_Report_Low_Res_parsed", "SYR_AR5_FINAL_full":"counts_SYR_AR5_FINAL_full_wcover_parsed", "ipcc_wg3_ar5_full":"counts_ipcc_wg3_ar5_full_parsed", "WGIIAR5-PartA_FINAL":"counts_WGIIAR5-PartA_FINAL_parsed", "WGIIAR5-PartB_FINAL":"counts_WGIIAR5-PartB_FINAL_parsed", "WG1AR5_all_final":"counts_WG1AR5_all_final_parsed", "SREX_Full_Report-1":"counts_SREX_Full_Report-1_parsed", "SRREN_Full_Report-1":"counts_SRREN_Full_Report-1_parsed", "ar4_syr_full_report":"counts_ar4_syr_full_report_parsed", "ar4_wg2_full_report":"counts_ar4_wg2_full_report_parsed", "ar4_wg1_full_report-1":"counts_ar4_wg1_full_report-1_parsed", "ar4_wg3_full_report-1":"counts_ar4_wg3_full_report-1_parsed", "sroc_full-1":"counts_sroc_full-1_parsed", "srccs_wholereport-1":"counts_srccs_wholereport-1_parsed", "SYR_TAR_full_report":"counts_SYR_TAR_full_report_parsed", "WGII_TAR_full_report-2":"counts_WGII_TAR_full_report-2_parsed", "WGI_TAR_full_report":"counts_WGI_TAR_full_report_parsed", "WGIII_TAR_full_report":"counts_WGIII_TAR_full_report_parsed", "srl-en-1":"counts_srl-en-1_parsed", "srtt-en-1":"counts_srtt-en-1_parsedd", "emissions_scenarios-1":"counts_emissions_scenarios-1_parsed", "av-en-1":"counts_av-en-1_parsed", "The-Regional-Impact":"counts_The-Regional-Impact_parsed", "2nd-assessment-en-1":"counts_2nd-assessment-en-1_parsed", "ipcc_sar_wg_III_full_report":"counts_ipcc_sar_wg_III_full_report_parsed", "ipcc_sar_wg_II_full_report":"counts_ipcc_sar_wg_II_full_report_parsed", "ipcc_sar_wg_I_full_report":"counts_ipcc_sar_wg_I_full_report_parsed", "climate_change_1994-2":"counts_climate_change_1994-2_parsed", # "ipcc-technical-guidelines-1994n-1":"", # could not read in, but also contains no temp mentions "ipcc_wg_I_1992_suppl_report_full_report":"counts_ipcc_wg_I_1992_suppl_report_full_report_parsed", "ipcc_wg_II_1992_suppl_report_full_report":"counts_ipcc_wg_II_1992_suppl_report_full_report_parsed", "ipcc_90_92_assessments_far_full_report":"counts_ipcc_90_92_assessments_far_full_report_parsed", "ipcc_far_wg_III_full_report":"counts_ipcc_far_wg_III_full_report_parsed", "ipcc_far_wg_II_full_report":"counts_ipcc_far_wg_II_full_report_parsed", "ipcc_far_wg_I_full_report":"counts_ipcc_far_wg_I_full_report_parsed", } return lookup_dict def create_temp_keys(): """Creates a list of strings for all temperatures the paper looked at""" temps = [] for i,temp in enumerate(np.arange(0.5,10.1,0.5)): if i % 2 != 0: temps.append(" "+str(int(temp))+"°C") else: temps.append(" "+str(temp)+"°C" ) return temps def combine_all_raw_strings(): """combines all raw strings into one big file to search through""" reports = [file for file in os.listdir(os.getcwd() + os.sep + "Raw IPCC Strings") if file[-4:] == ".csv" ] all_reports = " " for report in reports: print("Starting with " + report) report_df = pd.read_csv(os.getcwd() + os.sep + "Raw IPCC Strings" + os.sep + report, sep="\t", usecols=[0]) report_list = report_df[report_df.columns[0]].tolist() report_str = " ".join([str(item) for item in report_list]) all_reports += report_str with open(os.getcwd() + os.sep + "Raw IPCC Strings" + os.sep + "all_ipcc_strings.csv", 'w', encoding='utf-8') as f: # this file is not included in the repository, as it is too large for Github f.write(all_reports) if __name__ == "__main__": combine_all_raw_strings() ```
{ "source": "jlu-ilr-hydro/odmf", "score": 2 }
#### File: odmf/bin/interactive.py ```python from odmf.config import conf from odmf.tools import Path from odmf import db import pandas as pd import os import time import numpy as np import contextlib import logging logging.basicConfig( level=logging.DEBUG, format='%(asctime)s | %(name)s | %(levelname)s | %(message)s' ) @contextlib.contextmanager def timeit(name='action'): tstart = time.time() yield d = time.time() - tstart print(f'------------ {name} took {d:0.3f} seconds') session: db.orm.Session = db.Session() q = session.query person = db.base.ObjectGetter(db.Person, session) ds = db.base.ObjectGetter(db.Dataset, session) # Set default user from odmf.webpage import auth auth.users.load() auth.users.set_default('philipp') ``` #### File: odmf/odmf/config.py ```python import yaml from pathlib import Path import sys import os from logging import getLogger from . import prefix, __version__ logger = getLogger(__name__) class ConfigurationError(RuntimeError): pass def static_locations(*from_config): paths = [Path(__file__).parent / 'static'] + [Path(p) for p in from_config] filtered = [] [filtered.append(str(p)) for p in paths if p and p.exists() and p not in filtered] return filtered class Configuration: """ The configuration class. Change the configuration by providing a config.yml in the home directory Mandatory fields are defined as (...), optional as None or with a default value """ datetime_default_timezone = 'Europe/Berlin' database_type = 'postgres' database_name = '' database_username = '' database_password = '' database_host = '127.0.0.1' static = [prefix] media_image_path = 'webpage/media' nav_background = '/media/gladbacherhof.jpg' nav_left_logo = '/media/lfe-logo.png' manual_measurements_pattern = '(.+\\/)*datafiles\\/lab\\/([a-zA-Z0-9]+\\/)*.*\\.(xls|xlsx)$' map_default = {'lat': 50.5, 'lng': 8.55, 'type': 'hybrid', 'zoom': 15} utm_zone = '32N' upload_max_size = 25000000 server_port = 8080 google_maps_api_key = '' woftester_receiver_mail = ['<EMAIL>'] woftester_sender_mail = '<EMAIL>' cuahsi_wsdl_endpoint = 'http://fb09-pasig.umwelt.uni-giessen.de/wof/index.php/cuahsi_1_1.asmx?WSDL' smtp_serverurl = 'mailout.uni-giessen.de' root_url = '/' datafiles = './datafiles' preferences = './preferences' description = 'A server for data-management for quantitative field research' user = os.environ.get('USER') or os.environ.get('USERNAME') def __bool__(self): return ... not in vars(self).values() def to_dict(self): return { k: v for k, v in vars(self).items() if ( not callable(v) and not k.startswith('_') and type(v) is not property ) } def update(self, conf_dict: dict): unknown_keys = [] for k in conf_dict: if hasattr(self, k): setattr(self, k, conf_dict[k]) else: unknown_keys.append(k) if unknown_keys: raise ConfigurationError(f'Your configuration contains unknown keys: {",".join(unknown_keys)}') return self def __init__(self, **kwargs): vars(self).update({ k: v for k, v in vars(type(self)).items() if not k.startswith('_') and not callable(v) }) self.update(kwargs) self.home = str(Path(prefix).absolute()) self.static = static_locations(self.home, *self.static) def abspath(self, relative_path: Path): """ Returns a pathlib.Path from the first fitting static location :param relative_path: A relative path to a static ressource """ for static_home in reversed(self.static): p = Path(static_home) / relative_path if p.exists(): return p.absolute() raise FileNotFoundError(f'{relative_path} not found in the static ressources') def to_yaml(self, stream=sys.stdout): """ Exports the current configuration to a yaml file :param stream: A stream to write to """ d = self.to_dict() yaml.safe_dump(d, stream) def google_maps_api(self, callback: str): return f'https://maps.googleapis.com/maps/api/js?key={self.google_maps_api_key}&callback={callback}' @property def version(self): return __version__ def load_config(): conf_file = Path(prefix) / 'config.yml' logger.debug('Found config file:' + str(conf_file.absolute())) if not conf_file.exists(): logger.warning(f'{conf_file.absolute().as_posix()} ' f'not found. Create a template with "odmf configure". Using incomplete configuration') conf_dict = {} else: conf_dict = yaml.safe_load(conf_file.open()) or {} logger.debug(f'loaded {conf_file.resolve()}') conf = Configuration(**conf_dict) if not conf: logger.warning(', '.join(k for k, v in conf.to_dict().items() if v is ...) + ' are undefined') return conf def import_module_configuration(conf_module_filename): """ Migration utitlity to create a conf.yaml from the old ODMF 0.x conf.py module configuration :param conf_module_filename: The conf.py configuration file """ code = compile(open(conf_module_filename).read(), 'conf.py', 'exec') config = {} exec(code, config) def c(s: str): return s.replace('CFG_', '').lower() config = { c(k): v for k, v in config.items() if k.upper() == k and k[0] != '_' and not callable(v) } config['database_type'] = config.pop('database', 'postgres') conf = Configuration(**config) return conf conf = load_config() ``` #### File: odmf/dataimport/importlog.py ```python import pandas as pd from .. import db import datetime class LogImportError(RuntimeError): pass class LogImportStructError(LogImportError): pass class LogImportRowError(LogImportError): """ Error with additional information of the row in the log file """ def __init__(self, row, msg, is_valuetype_error=False): RuntimeError.__init__( self, "Could not import row %i:%s" % (row + 1, msg)) self.row = row self.text = msg self.is_valuetype_error = is_valuetype_error def make_time_column_as_datetime(df: pd.DataFrame): """ Converts the time column to a datetime Possible case: 1. The 'time' column contains 'datetime.time' objects -> Add to date column 2. A 'date' column exists 'time' column contains strings like '13:30' or a datetime like 2020-01-01 13:30 (wrong date) -> convert and add to date column 3. No 'date' column, and the 'time' column contains already a datetime or a string representation of a datetime -> convert to datetime """ def convert_time_column(c: pd.Series) -> pd.Series: """ Converts a column to_datetime and raises a LogImportStructError on failure """ try: return pd.to_datetime(c, dayfirst=True) except: raise LogImportStructError(f'The column {c.name} is not convertible to a date') if type(df.time[0]) is datetime.time: df['date'] = convert_time_column(df['date']) df['time'] = [pd.Timestamp(datetime.datetime.combine(d, t)) for d, t in zip(df['date'], df['time'])] elif 'date' in df.columns: df['date'] = convert_time_column(df['date']) df['time'] = convert_time_column(df['time']) df['time'] = df.date + (df.time - df.time.dt.normalize()) else: df['time'] = convert_time_column(df['time']) class LogbookImport: """ Imports from a defined xls file messages to the logbook and append values to datasets Structure of the table (case insensitve): [Date] | Time | Site | Dataset | Value | Message | [LogType] | [Sample] """ def __init__(self, filename, user, sheetname=0): self.filename = filename self.dataframe = df = pd.read_excel(filename, sheetname) # Convert all column captions to lower case self.dataframe.columns = [c.lower() for c in self.dataframe.columns] # Check if all columns are present if not all(c in df.columns for c in "time|site|dataset|value|logtype|message".split('|')): raise LogImportStructError('The log excel sheet misses some of the follwing columns: ' 'time|site|dataset|value|logtype|message') make_time_column_as_datetime(df) # Convert site and dataset to int, just to be sure for c in ('site', 'dataset'): df[c] = df[c].astype('Int64') with db.session_scope() as session: _user: db.Person = session.query(db.Person).get(user) if not _user: raise RuntimeError('%s is not a valid user' % user) else: self.user = _user.username def __call__(self, commit=False): logs = [] has_error = False with db.session_scope() as session: with session.no_autoflush: for row, data in self.dataframe.iterrows(): try: log = dict(row=row + 1, error=False, log=self.importrow(session, row + 1, data, commit) ) except LogImportRowError as e: has_error = True log = dict(row=row + 1, error=True, log=e.text) logs.append(log) if commit: session.commit() else: session.rollback() return logs, not has_error def recordexists(self, timeseries, time, timetolerance=30): """ Checks if a record at time exists in dataset :param timeseries: A timeseries to be checked :param time: The time for the record :param timetolerance: the tolerance of the time in seconds """ td = datetime.timedelta(seconds=timetolerance) return timeseries.records.filter( db.sql.between(db.Record.time, time - td, time + td)).count() > 0 def logexists(self, session, site, time, timetolerance=30): """ Checks if a log at site and time exists in db session: an open sqlalchemy session site: A site time: The time for the log timetolerance: the tolerance of the time in seconds """ td = datetime.timedelta(seconds=timetolerance) return session.query(db.Log)\ .filter(db.Log._site == site, db.sql.between(db.Log.time, time - td, time + td)).count() > 0 def get_dataset(self, session, row, data) -> db.Timeseries: """Loads the dataset from a row and checks if it is manually measured and at the correct site""" ds = session.query(db.Dataset).get(data.dataset) if not ds: raise LogImportRowError(row, f'Dataset {data.dataset} does not exist') # check dataset is manual measurement if ds.source is None or ds.source.sourcetype != 'manual': raise LogImportRowError(row, f'{ds} is not a manually measured dataset, ' 'if the dataset is correct please change ' 'the type of the datasource to manual' ) # check site if ds.site.id != data.site: raise LogImportRowError(row, f'Dataset ds:{ds.id} is not located at #{data.site}') return ds def row_to_record(self, session, row, data): """ Creates a new db.Record object from a row of the log format data file """ # load and check dataset ds = self.get_dataset(session, row, data) time = data.time.to_pydatetime() value = data.value # Check for duplicate if self.recordexists(ds, time): raise LogImportRowError(row, f'{ds} has already a record at {time}') # Check if the value is in range if not ds.valuetype.inrange(value): raise LogImportRowError(row, f'{value:0.5g}{ds.valuetype.unit} is not accepted for {ds.valuetype}') # Create Record comment = data.message if pd.notna(data.message) else None sample = data.get('sample') record = db.Record(value=value, time=time, dataset=ds, comment=comment, sample=sample) # Extend dataset timeframe if necessary ds.start, ds.end = min(ds.start, time), max(ds.end, time) return record, f'Add value {value:g} {ds.valuetype.unit} to {ds} ({time})' def row_to_log(self, session, row, data): """ Creates a new db.Log object from a row without dataset """ time = data.time.to_pydatetime() site = session.query(db.Site).get(data.site) user = session.query(db.Person).get(self.user) if not site: raise LogImportRowError(row, f'Log: Site #{data.site} not found') if pd.isnull(data.get('message')): raise LogImportRowError(row, 'No message to log') if self.logexists(session, data.site, time): raise LogImportRowError( row, f'Log for {time} at {site} exists already') else: log = db.Log(user=user, time=time, message=data.get('message'), type=data.get('logtype'), site=site) return log, f'Log: {log}' def importrow(self, session: db.Session, row, data, commit=False): """ Imports a row from the log-excelfile, either as record to a dataset or as a log entry. The decision is made on the basis of the data given. """ # Get time from row if pd.isnull(data.time): raise LogImportRowError(row, 'Time not readable') if pd.isnull(data.site): raise LogImportRowError(row, 'Site is missing') result = msg = None if pd.notna(data.dataset): if pd.isnull(data.value): raise LogImportRowError(row, f'No value given to store in ds:{data.dataset}') # Dataset given, import as record result, msg = self.row_to_record(session, row, data) elif pd.notna(data.value): raise LogImportRowError(row, 'A value is given, but no dataset to store it') elif pd.notna(data.message): # No dataset but Message is given -> import as log result, msg = self.row_to_log(session, row, data) if result and commit: session.add(result) return msg if __name__ == '__main__': import os os.chdir('instances/schwingbach') from odmf.dataimport import importlog as il li = il.LogbookImport('datafiles/test_log.xls', 'philipp') res, is_ok = li() print(len(res), 'OK' if is_ok else 'NOT OK!') ``` #### File: odmf/dataimport/pandas_import.py ```python from .base import ImportDescription, ImportColumn import typing from .. import db import pandas as pd import re import datetime from ..config import conf from odmf.tools import Path from logging import getLogger logger = getLogger(__name__) class DataImportError(RuntimeError): ... class ColumnDataset: """ A combination of an ImportColumn and a Dataset, used for import. The datasets are created in the db if the column is not for appending. The datasets start and end time is already adjusted """ id: int dataset: db.Dataset column: ImportColumn idescr: ImportDescription record_count: int = 0 def __init__(self, session, idescr: ImportDescription, col: ImportColumn, id: int, user: db.Person, site: db.Site, inst: db.Datasource, valuetypes: typing.Dict[int, db.ValueType], raw: db.Quality, start: datetime.datetime, end: datetime.datetime, filename: typing.Optional[str] = None ): self.column = col self.idescr = idescr assert not col.ds_column, "Cannot create a ColumnDataset for a column with variable dataset target" if col.append: try: self.dataset: db.Timeseries = session.query(db.Dataset).get(int(col.append)) assert self.dataset.type == 'timeseries' self.dataset.start = min(start, self.dataset.start) self.dataset.end = max(end, self.dataset.end) self.record_count = self.dataset.maxrecordid() except (TypeError, ValueError): raise DataImportError( f'{idescr.filename}:{col.name} wants to append data ds:{col.append}. This dataset does not exist') else: # New dataset with metadata from above self.dataset = db.Timeseries( id=id, measured_by=user, valuetype=valuetypes[col.valuetype], site=site, name=col.name, filename=filename, comment=col.comment, source=inst, quality=raw, start=start, end=end, level=col.level, access=col.access if col.access is not None else 1, # Get timezone from descriptor or, if not present from global conf timezone=idescr.timezone or conf.datetime_default_timezone, project=idescr.project) session.add(self.dataset) self.id = self.dataset.id def to_record_dataframe(self, df: pd.DataFrame) -> pd.DataFrame: """ Prepares nad populates a dataframe with the layout of the db.Record-Table df: The dataframe containing all data to import """ # Remove all values, where one of the columns is outside its minvalue / maxvalue range values_ok = check_column_values(self.column, df) col_df = pd.DataFrame(df.time) col_df = col_df[values_ok] col_df['dataset'] = self.id col_df['id'] = df[values_ok].index + self.record_count + 1 col_df['value'] = df[self.column.name] if 'sample' in df.columns: col_df['sample'] = df['sample'] return col_df def __repr__(self): return f'ColumnDataset: {self.column} -> ds:{self.dataset.id}' def columndatasets_from_description( session, idescr: ImportDescription, user: str, siteid: int, filepath: Path = None, start: datetime.datetime = None, end: datetime.datetime = None ) -> typing.List[ColumnDataset]: """ Creates fitting ColumnDataset combinations for an ImportDescription """ with session.no_autoflush: # Get instrument, user and site object from db inst = session.query(db.Datasource).get(idescr.instrument) user = session.query(db.Person).get(user) site = session.query(db.Site).get(siteid) # Get "raw" as data quality, to use as a default value raw = session.query(db.Quality).get(0) # Get all the relevant valuetypes (vt) from db as a dict for fast look up valuetypes = { vt.id: vt for vt in session.query(db.ValueType).filter( db.ValueType.id.in_([col.valuetype for col in idescr.columns]) ) } newid = db.newid(db.Dataset, session) newdatasets = [] appendatasets = [] for col in idescr.columns: if col.append: appendatasets.append( ColumnDataset( session, idescr, col, None, user, site, inst, valuetypes, raw, start, end, filepath.name ) ) elif not col.ds_column: newdatasets.append( ColumnDataset( session, idescr, col, newid + len(newdatasets), user, site, inst, valuetypes, raw, start, end, filepath.name ) ) return appendatasets + newdatasets def _make_time_column_as_datetime(df: pd.DataFrame, fmt=None): """ Converts the time column to a datetime Possible cases: 1. The 'time' column contains 'datetime.time' objects -> Add to date column 2. A 'date' column exists 'time' column contains strings like '13:30' or like 2020-01-01 13:30 (wrong date) -> convert and add to date column 3. No 'date' column, and the 'time' column contains already a datetime or a string representation of a datetime -> convert to datetime """ def convert_time_column(c: pd.Series) -> pd.Series: """ Converts a column to_datetime and raises a LogImportStructError on failure """ # First try the given format, second try with a "free" format. Needed eg. for a two column format for timeformat in [fmt, None]: try: return pd.to_datetime(c, dayfirst=True, infer_datetime_format=True, format=timeformat) except Exception as e: # difficult to get more specific, as Pandas Exception model is a bit strange # Some sensors believe 24:00 is a valid time, pandas not if any('24:' in a for a in e.args): # Checks if the error message contains 24 # Deal with 24:00 in a datetime string problems = c.str.contains('24:00') # Mark the problems # Make dates by replacing 24:00 with 00:00 changed = pd.to_datetime(c.str.replace('24:00', '00:00')) # Convert to datetime # Change date from eg. 2.12.2020 24:00 -> 3.12.2020 00:00 changed[problems] += datetime.timedelta(days=1) return changed raise DataImportError(f'The column {c.name} is not convertible to a date') if 'time' in df.columns: if type(df['time'][0]) is datetime.time: df['date'] = convert_time_column(df['date']) df['time'] = [pd.Timestamp(datetime.datetime.combine(d, t)) for d, t in zip(df['date'], df['time'])] else: df['date'] = convert_time_column(df['date']) df['time'] = convert_time_column(df['time']) df['time'] = df['date'] + (df['time'] - df['time'].dt.normalize()) else: df['time'] = convert_time_column(df['date']) del df['date'] def check_column_values(col: ImportColumn, df: pd.DataFrame): try: return df[col.name].between(col.minvalue, col.maxvalue) except TypeError: return pd.Series(False, index=df.index) def _load_excel(idescr: ImportDescription, filepath: Path) -> pd.DataFrame: """ loads data from excel, called by load_dataframe """ columns, names = idescr.get_column_names() try: df = pd.read_excel( filepath.absolute, sheet_name=idescr.worksheet or 0, header=None, skiprows=idescr.skiplines, skipfooter=idescr.skipfooter, na_values=idescr.nodata ) df = df[columns] df.columns = names return df except FileNotFoundError: raise DataImportError(f'{filepath} does not exist') except Exception as e: raise DataImportError(f'{filepath} read error. Is this an excel file? Underlying message: {str(e)}') def _load_csv(idescr: ImportDescription, filepath: Path) -> pd.DataFrame: """ Loads the data from a csv like file called by load_dataframe """ encoding = idescr.encoding or 'utf-8' columns, names = idescr.get_column_names() try: df = pd.read_csv( filepath.absolute, header=None, skiprows=idescr.skiplines, skipfooter=idescr.skipfooter or 0, delimiter=idescr.delimiter, decimal=idescr.decimalpoint, na_values=idescr.nodata, skipinitialspace=True, encoding=encoding, engine='python', quotechar='"' ) df = df[columns] df.columns = names return df except FileNotFoundError: raise DataImportError(f'{filepath} does not exist') except UnicodeDecodeError: raise DataImportError( f'{filepath} could not be read as {encoding} encoding. Specify correct encoding (eg. windows-1252) in {idescr.filename}' ) except Exception as e: raise DataImportError(f'{filepath} read error. Is this a seperated text file? Underlying message: {str(e)}') def load_dataframe( idescr: ImportDescription, filepath: typing.Union[Path, str] ) -> pd.DataFrame: """ Loads a pandas dataframe from a data file (csv or xls[x]) using an import description """ if type(filepath) is not Path: filepath = Path(filepath) if re.match(r'.*\.xls[xmb]?$', filepath.name): df = _load_excel(idescr, filepath) if df.empty: raise DataImportError( f'No data to import found in {filepath}. If this file was generated by a third party program ' f'(eg. logger software), open in excel and save as a new .xlsx - file') else: df = _load_csv(idescr, filepath) _make_time_column_as_datetime(df, idescr.dateformat) for col in idescr.columns: # Apply the difference operation if col.difference: df[col.name] = df[col.name].diff() try: df[col.name] *= col.factor except TypeError: ... return df def get_statistics(idescr: ImportDescription, df: pd.DataFrame) \ -> typing.Tuple[typing.Dict[str, typing.Dict[str, float]], datetime.datetime, datetime.datetime]: """ Creates some statistics for a dataframe """ res = {} startdate = df['time'].min().to_pydatetime() enddate = df['time'].max().to_pydatetime() for col in idescr.columns: s = df[col.name] res[col.name] = {} # If the column is not float some of the stats don't make sense, just skip them try: res[col.name]['start'] = startdate res[col.name]['end'] = enddate res[col.name]['n'] = s.size res[col.name]['n_out_of_range'] = len(s) - check_column_values(col, df).sum() res[col.name]['min'] = s.min() res[col.name]['max'] = s.max() res[col.name]['sum'] = s.sum() res[col.name]['mean'] = s.mean() except (TypeError, ValueError): ... return res, startdate, enddate def get_dataframe_for_ds_column(session, column: ImportColumn, data: pd.DataFrame): """ To be used for columns with ds_column: Creates a dataframe in the layout of the record table and adjusts all start / end dates of the fitting datasets ------------- Untested ----------------- """ assert column.ds_column, "no ds_column available" missing_ds = [] ds_ids = data['dataset for ' + column.name] newids = {} def get_newid_range(ds: db.Timeseries): start = ds.maxrecordid() + 1 end = start + (ds_ids == ds.id).sum() return range(start, end) for dsid in ds_ids.unique(): # type(dsid) --> np.int64 dsid = int(dsid) # int conversion is necessary to prevent # (psycopg2.ProgrammingError) can't adapt type 'numpy.int64' ds = session.query(db.Dataset).get(dsid) if ds: # Filter data for the current ds ds_data = data[ds_ids == dsid] newids[dsid] = get_newid_range(ds) ds.start = min(ds.start, ds_data.date.min().to_pydatetime()) ds.end = max(ds.end, ds_data.date.max().to_pydatetime()) else: missing_ds.append(dsid) if missing_ds: raise DataImportError(f'{column.name} misses the following datasets {missing_ds!s}.') col_df = pd.DataFrame(data.time) col_df['dataset'] = data['dataset for ' + column.name] col_df['id'] = data.index col_df['value'] = data[column.name] if 'sample' in data.columns: col_df['sample'] = data['sample'] return col_df[~pd.isna(col_df['value'])] def _get_recordframe(session: db.Session, idescr: ImportDescription, datasets: typing.List[ColumnDataset], df: pd.DataFrame): """ Returns a single dataframe in the Layout of the record table including all records to export """ return pd.concat([ cds.to_record_dataframe(df) for cds in datasets ] + [ get_dataframe_for_ds_column(session, col, df) for col in idescr.columns if col.ds_column ]) def submit(session: db.Session, idescr: ImportDescription, filepath: Path, user: str, siteid: int): """ Loads tabular data from a file, creates or loads necessary datasets and imports the data as records """ messages = [] df = load_dataframe(idescr, filepath) logger.debug(f'loaded {filepath}, got {len(df)} rows with {len(df.columns)} columns') if len(df) == 0: raise DataImportError(f'No records to import from {filepath} with {idescr.filename}.') # Load all datasets for appending and create new datasets datasets = columndatasets_from_description( session, idescr, user=user, siteid=siteid, filepath=filepath, start=df.time.min().to_pydatetime(), end=df.time.max().to_pydatetime() ) # make datasets available in the session session.flush() logger.debug(f'created or referenced {len(datasets)} datasets') messages.extend( f'ds{cds.id} : Import {cds.column} from file:{filepath}' for cds in datasets ) recordframe = _get_recordframe(session, idescr, datasets, df) logger.info(f'insert {len(recordframe)} records into {len(recordframe.dataset.unique())} datasets') conn = session.connection() recordframe.to_sql('record', conn, if_exists='append', index=False, method='multi', chunksize=1000) return messages ``` #### File: odmf/db/base.py ```python import sqlalchemy as sql import sqlalchemy.orm as orm from sqlalchemy.ext.declarative import declarative_base import os.path as op from ..config import conf from contextlib import contextmanager from logging import info from functools import total_ordering def newid(cls, session): """Creates a new id for all mapped classes with an field called id, which is of integer type""" max_id = session.query(sql.func.max(cls.id)).select_from(cls).scalar() if max_id is not None: return max_id + 1 else: return 1 def connect(): info(f"Connecting with database {conf.database_name} at {conf.database_host} ..." ) import psycopg2 return psycopg2.connect(user=conf.database_username, host=conf.database_host, password=conf.database_password, database=conf.database_name) # FIXME: allow test suite to load sqlite # TODO: allow test suite to load postgres and import all sql files (compliance test for sql) if conf.database_type == 'postgres': engine = sql.create_engine('postgresql://', creator=connect) elif conf.database_type == 'postgres-local': engine = sql.create_engine(f'postgresql:///{conf.database_name}') elif conf.database_type == 'sqlite': if op.exists(conf.sqlite_path): engine = sql.create_engine('sqlite:///%s' % conf.sqlite_path) else: raise RuntimeError('Couldn\'t find offline database at \'%s\'.' % conf.sqlite_path) Session = orm.sessionmaker(bind=engine) @contextmanager def session_scope() -> orm.Session: """Provide a transactional scope around a series of operations.""" session = Session() try: yield session session.commit() except: session.rollback() raise finally: session.close() def table(obj) -> sql.Table: """ Returns the sql.Table of a ORM object """ try: return getattr(obj, '__table__') except AttributeError: raise TypeError(f'{obj!r} is not a mapper class') @total_ordering class Base(object): """Hooks into SQLAlchemy's magic to make :meth:`__repr__`s.""" def __repr__(self): def reprs(): for col in table(self).c: try: yield col.name, str(getattr(self, col.name)) except Exception as e: yield col.name, f'<unknown value: {type(e)}>' def formats(seq): for key, value in seq: yield f'{key}={value}' args = ', '.join(formats(reprs())) classy = type(self).__name__ return f'{classy}({args})' def __lt__(self, other): if isinstance(other, type(self)) and hasattr('id', self): return self.id < other.id else: raise TypeError( f'\'<\' not supported between instances of {self.__class__.__name__} and {other.__class__.__name__}') def __eq__(self, other): return hash(self) == hash(other) def __hash__(self): return hash(repr(self.__class__.__name__)) def session(self): return Session.object_session(self) @classmethod def query(cls, session): return session.query(cls) @classmethod def get(cls, session, id): return session.query(cls).get(id) Base = declarative_base(cls=Base) metadata = Base.metadata def primarykey(): return sql.Column(sql.Integer, primary_key=True) def stringcol(): return sql.Column(sql.String) class ObjectGetter: """ A helper class for interactive environments for simple access to orm-objects Usage: >>> ds = ObjectGetter(db.Dataset, session) >>> print(ds[10]) >>> ds.q.filter_by(measured_by='philipp') """ def __init__(self, cls: type, session: orm.Session): self.cls = cls self.session = session @property def q(self) -> orm.Query: return self.session.query(self.cls) def __getitem__(self, item): return self.q.get(item) def __repr__(self): return 'ObjectGetter(' + self.cls.__name__ + ')' ``` #### File: odmf/odmf/odmf.py ```python import click import humanize import sys import os from textwrap import dedent import logging logger = logging.getLogger(__name__) @click.group() def cli(): ... @cli.command() @click.argument('workdir', default='.') @click.option('--autoreload/--no-autoreload', '-a', default=False, show_default=True, help='Switch autoreload on for an automatic restart of the server if the code changes') def start(workdir, autoreload): """ Starts a cherrypy server, with WORKDIR as the working directory (local ressources and configuration) """ os.chdir(workdir) # coloredlogs.install(level='DEBUG', stream=sys.stdout) logger.info(f"interpreter: {sys.executable}") logger.info(f"workdir: {os.getcwd()}") from .tools import server server.prepare_workdir() server.start(autoreload) @cli.command() @click.option('--dbname', help='Name of the database', prompt='database name') @click.option('--dbuser', help='Name of the database user', prompt='database user', default='') @click.option('--dbpass', help='Password for the user', prompt='database password', default='') @click.option('--dbhost', default='', help='IP-Adress or DNS-Hostname of the database host. Default: localhost', prompt='database hostname:') @click.option('--port', default=8080, help='Port to run the standalone server', type=int, prompt='server port') def configure(dbname, dbuser, dbpass, dbhost, port): """ Creates a new configuraton file (./config.yml) using the given database credentials. """ if dbuser and not dbhost: dbhost = '127.0.0.1' new_config = dict(database_name=dbname, database_username=dbuser, database_password=<PASSWORD>, database_host=dbhost, server_port=port) import yaml from pathlib import Path conf_file = Path('config.yml') with conf_file.open('w') as f: yaml.dump(new_config, stream=f) from .config import conf conf.to_yaml(conf_file.open('w')) print('New config.yml written') @cli.command() def systemd_unit(): """ Creates a systemd service file and a /etc/sudoers.d file to allow non-sudoers to start / restart / stop the service """ from .tools.systemctl import make_service # Writes the service files and returns a text explaining how to install the systemd service print(make_service()) @cli.command() @click.option('--new_admin_pass', '-p', help='Password of the new admin', prompt=True, hide_input=True, confirmation_prompt=True) def make_db(new_admin_pass): """ Creates in the database: all tables, a user odmf.admin and fills the data-quality table with some usable input """ from .tools import create_db as cdb cdb.create_all_tables() print('created tables') cdb.add_admin(new_admin_pass) print('created admin user odmf.admin') cdb.add_quality_data(cdb.quality_data) print('added quality levels') @cli.command() def apache2_conf(): """ Creates an apache2 .conf file to run this odmf instance as a wsgi server. Use as: """ from config import conf name = conf.root_url.replace('/', '') txt = dedent(f''' ProxyPass {conf.root_url} http://127.0.0.1:{conf.server_port}{conf.root_url} ProxyPassReverse /{conf.root_url}/ http://127.0.0.1:{conf.server_port}{conf.root_url} ''') with open(f'odmf-{name}.conf') as f: f.write(txt) @cli.command() def test_config(): """ Tests the configuration and prints it, if it works """ from .config import conf conf.to_yaml() @cli.command() def test_db(): """ Tests if the system can be connected to the database """ from . import db import sqlalchemy.orm as orm with db.session_scope() as session: tables = [ (n, c) for n, c in vars(db).items() if (isinstance(c, type) and issubclass(c, db.Base) and c is not db.Base ) ] for name, table in tables: print(f'db.{name}: ', end='') q: orm.Query = session.query(table) print(f'{humanize.intword(q.count())} {name} objects in database', end=' - ') print(repr(q.first())) @cli.command() def test_static(): from pathlib import Path from .config import conf candidates = Path(sys.prefix), Path(__file__).parents[2], Path(conf.static) for c in candidates: p = c / 'odmf.static' if p.exists(): if all((p / d).exists() for d in ('templates', 'datafiles', 'media')): logger.info(f'OK: Global static files found at: {p}\n') break else: logger.warning(f'Incomplete static file directory found at: {p}, searching further\n') else: logger.warning(f'{p} - does not exist\n') @cli.command() @click.argument('filename') def import_config(filename): """ Imports a configuration from a conf.py file """ from .config import import_module_configuration conf = import_module_configuration(filename) conf.to_yaml(open('config.yml', 'w')) @cli.command() @click.option('--only_navigatable/--any', '-n', default=False) @click.option('--level', '-l', type=int, help='Admission level (0-4)', default=0) def uri_tree(only_navigatable, level): """ Prints the tree of available resources of odmf """ import yaml from .webpage import Root from .webpage.lib import Resource if not only_navigatable: level = None res = Resource(Root()).create_tree(navigatable_for=level, recursive=True) for r in res.walk(): print(f'{r.uri}: {r.doc}') @cli.command() def interactive(): """ Launches an IPython shell with odmf related symbols. Needs IPython """ from textwrap import dedent from IPython import embed from .config import conf from . import db import pandas as pd import numpy as np greeting = """ Imported modules ---------------- pd, np, conf, db Defined symbols --------------- session: a SQLAlchemy session to load Database objects q: a shortcut for session.query ds: An ObjectGetter for datasets person: An ObjectGetter for persons site: An ObjectGetter for sites Usage of a ObjectGetters: Get dataset with id=1 >>>ds_one = ds[1] Query sites: >>>site.q.filter(db.Site.lat > 50.5).count() """ with db.session_scope() as session: q = session.query ds = db.base.ObjectGetter(db.Dataset, session) person = db.base.ObjectGetter(db.Person, session) site = db.base.ObjectGetter(db.Site, session) embed(colors='Neutral', header=dedent(greeting)) @cli.command() @click.option('--verbose/--terse', '-v', default=False) def version(verbose: bool): """ Prints the actual odmf version """ from . import __version__ print('odmf', __version__) if verbose: import sys print('Python executable:', sys.executable) print('Python version:', sys.version) if __name__ == '__main__': cli() ``` #### File: odmf/plot/draw_plotly.py ```python from plotly.subplots import make_subplots import plotly.graph_objects as go import io from . import Plot, Line from ..config import conf def _draw_line(line: Line, start, end) -> go.Scatter: data = line.load(start, end) mode = '' linestyle = None marker = None if line.linestyle: mode = 'lines' dash_dict = {'-': 'solid', ':': 'dot', '.': 'dot', '--': 'dash', '-.': 'dashdot'} linestyle = {'color': line.color, 'dash': dash_dict[line.linestyle], 'width': line.linewidth} if line.marker: mode = 'lines+markers' if mode else 'markers' symboldict = {'o': 'circle', 'x': 'x-thin', ',': 'line-ns', '+': 'cross-thin', '*': 'asterisk', '.': 'circle'} if line.marker in symbols: symbol = line.marker else: symbol = symboldict.get(line.marker, 'circle') marker = {'color': line.color, 'symbol': symbol} return go.Scatter(x=data.index, y=data, mode=mode, line=linestyle, marker=marker, name=line.name) def _make_figure(plot: Plot) -> go.Figure: rows = -(-len(plot.subplots) // plot.columns) fig = make_subplots(rows, plot.columns, shared_xaxes=True) subplot_positions = sum(([i] * len(sp.lines) for i, sp in enumerate(plot.subplots)), []) rows = [1 + i // plot.columns for i in subplot_positions] cols = [1 + i % plot.columns for i in subplot_positions] for i, sp in enumerate(plot.subplots): row, col = 1 + i // plot.columns, 1 + i % plot.columns if sp.ylim: fig.update_yaxes(range=list(sp.ylim), row=row, col=col) fig.update_yaxes() fig.add_traces( [ _draw_line(l, plot.start, plot.end) for l in plot.lines() ], rows=rows, cols=cols ) fig.update_yaxes() fig.update_layout(width=plot.size[0], height=plot.size[1], template='none') return fig def to_image(plot: Plot, format: str) -> bytes: """ Draws the plot and returns a byte string containing the image """ fig = _make_figure(plot) return fig.to_image(format=format) def to_html(plot: Plot)->bytes: """ Draws the plot to include into an html page, here as svg. Alternative could be as an <img> element with base64 data """ fig = _make_figure(plot) return fig.to_html(include_plotlyjs=conf.root_url + '/media/lib/plotly.min.js').encode('utf-8') symbols = [ "circle", "circle-open", "circle-dot", "circle-open-dot", "square", "square-open", "square-dot", "square-open-dot", "diamond", "diamond-open", "diamond-dot", "diamond-open-dot", "cross", "cross-open", "cross-dot", "cross-open-dot", "x", "x-open", "x-dot", "x-open-dot", "triangle-up", "triangle-up-open", "triangle-up-dot", "triangle-up-open-dot", "triangle-down", "triangle-down-open", "triangle-down-dot", "triangle-down-open-dot", "triangle-left", "triangle-left-open", "triangle-left-dot", "triangle-left-open-dot", "triangle-right", "triangle-right-open", "triangle-right-dot", "triangle-right-open-dot", "triangle-ne", "triangle-ne-open", "triangle-ne-dot", "triangle-ne-open-dot", "triangle-se", "triangle-se-open", "triangle-se-dot", "triangle-se-open-dot", "triangle-sw", "triangle-sw-open", "triangle-sw-dot", "triangle-sw-open-dot" , "triangle-nw", "triangle-nw-open", "triangle-nw-dot" , "triangle-nw-open-dot", "pentagon", "pentagon-open", "pentagon-dot", "pentagon-open-dot", "hexagon", "hexagon-open", "hexagon-dot", "hexagon-open-dot", "hexagon2", "hexagon2-open", "hexagon2-dot", "hexagon2-open-dot", "octagon", "octagon-open", "octagon-dot", "octagon-open-dot", "star", "star-open", "star-dot", "star-open-dot", "hexagram", "hexagram-open", "hexagram-dot", "hexagram-open-dot", "star-triangle-up", "star-triangle-up-open", "star-triangle-up-dot", "star-triangle-up-open-dot" , "star-triangle-down", "star-triangle-down-open", "star-triangle-down-dot", "star-triangle-down-open-dot", "star-square", "star-square-open", "star-square-dot", "star-square-open-dot", "star-diamond" , "star-diamond-open", "star-diamond-dot", "star-diamond-open-dot" , "diamond-tall", "diamond-tall-open", "diamond-tall-dot" , "diamond-tall-open-dot", "diamond-wide", "diamond-wide-open" , "diamond-wide-dot", "diamond-wide-open-dot", "hourglass" , "hourglass-open", "bowtie", "bowtie-open", "circle-cross" , "circle-cross-open", "circle-x", "circle-x-open", "square-cross" , "square-cross-open", "square-x", "square-x-open", "diamond-cross", "diamond-cross-open", "diamond-x", "diamond-x-open", "cross-thin", "cross-thin-open", "x-thin", "x-thin-open", "asterisk", "asterisk-open", "hash", "hash-open", "hash-dot", "hash-open-dot", "y-up", "y-up-open", "y-down", "y-down-open", "y-left", "y-left-open", "y-right", "y-right-open", "line-ew", "line-ew-open", "line-ns", "line-ns-open", "line-ne", "line-ne-open", "line-nw" , "line-nw-open", "arrow-up", "arrow-up-open", "arrow-down" , "arrow-down-open", "arrow-left", "arrow-left-open", "arrow-right" , "arrow-right-open", "arrow-bar-up", "arrow-bar-up-open" , "arrow-bar-down", "arrow-bar-down-open", "arrow-bar-left" , "arrow-bar-left-open", "arrow-bar-right", "arrow-bar-right-open" ] ``` #### File: odmf/plot/plot.py ```python from datetime import datetime, timedelta from .. import db def asdict(obj): """ Creates a dictionary representation from an object """ if hasattr(obj, '__jdict__'): return obj.__jdict__() elif (not type(obj) is dict) and hasattr(obj, '__iter__'): return [asdict(o) for o in obj] elif hasattr(obj, 'isoformat'): return obj.isoformat() else: return obj class Line: """ Represents a single line of a subplot """ def __init__(self, subplot, valuetype, site, instrument=None, level=None, color='', marker='', linestyle='-', linewidth=1, transformation=None, aggregatefunction='mean', name=None): """ Create a Line: @param subplot: The Subplot to which this line belongs @param valuetype: The valuetype id of the line @param site: the site id of the line @param instrument: the instrument of the line @param color: the color of the line (k,b,g,r,y,m,c) @param linestyle: the line style (-,--,:,-.) @param marker: the marker of the line data points (o,x,+,|,. etc.) @param transformation: Not used """ self.subplot = subplot self.marker = marker self.color = color self.linewidth = linewidth self.linestyle = linestyle self.valuetypeid = valuetype self.siteid = site self.instrumentid = instrument self.level = level self.transformation = transformation self.aggregatefunction = aggregatefunction self.name = name or self.generate_name() if not (linestyle or marker): raise ValueError('Lines need either a linestyle or a marker for the creation') def generate_name(self): """ Generates a name for the line from its meta data """ with db.session_scope() as session: instrument = self.instrument(session) valuetype = self.valuetype(session) if instrument: name = '%s at #%i%s using %s' % (valuetype, self.siteid, '(%gm)' % self.level if self.level is not None else '', instrument.name) else: name = '%s at #%i%s' % (valuetype, self.siteid, '(%gm)' % self.level if self.level is not None else '') if self.subplot.plot.aggregate: name += ' (%s/%s)' % (self.aggregatefunction, self.subplot.plot.aggregate) return name def getdatasets(self, session, userlevel=10): """ Loads the datasets for this line """ datasets = session.query(db.Dataset).filter( db.Dataset._valuetype == self.valuetypeid, db.Dataset._site == self.siteid, db.Dataset.start <= self.subplot.plot.end, db.Dataset.end >= self.subplot.plot.start, db.Dataset.access <= userlevel ) if self.instrumentid: datasets = datasets.filter(db.Dataset._source == self.instrumentid) if self.level is not None: datasets = datasets.filter(db.Dataset.level == self.level) return datasets.order_by(db.Dataset.start).all() def load(self, start=None, end=None): """ Loads the records into an array """ with db.session_scope() as session: start = start or self.subplot.plot.start end = end or self.subplot.plot.end datasets = self.getdatasets(session) if not datasets: raise ValueError("No data to compute") group = db.DatasetGroup([ds.id for ds in datasets], start, end) series = group.asseries(session, self.name) if self.subplot.plot.aggregate: sampler = series.resample(self.subplot.plot.aggregate) series = sampler.aggregate(self.aggregatefunction or 'mean') # There were problems with arrays from length 0 if series.empty: raise ValueError("No data to compute") series.name = str(self) return series def valuetype(self, session): return session.query(db.ValueType).get( int(self.valuetypeid)) if self.valuetypeid else None def site(self, session): return session.query(db.Site).get(int(self.siteid)) if self.siteid else None def instrument(self, session): return session.query(db.Datasource).get( int(self.instrumentid)) if self.instrumentid else None def export_csv(self, stream, start=None, end=None): """ Exports the line as csv file """ data = self.load(start, end) data.to_csv(stream, encoding='utf-8-sig', index_label='time') def __jdict__(self): """ Returns a dictionary of the line """ return dict(valuetype=self.valuetypeid or None, site=self.siteid or None, instrument=self.instrumentid or None, level=self.level, color=self.color, linestyle=self.linestyle, marker=self.marker, linewidth=self.linewidth, transformation=self.transformation, aggregatefunction=self.aggregatefunction, name=self.name) def __str__(self): """ Returns a string representation """ return self.name def __repr__(self): return f"plot.Line({self.valuetypeid}@#{self.siteid},'{self.color}{self.linestyle}{self.marker}')" class Subplot: """ Represents a subplot of the plot """ def __init__(self, plot, ylim=None, logsite: int=None, ylabel=None, lines=None): """ Create the subplot with Plot.addtimeplot """ self.plot = plot self.lines = [ Line(self, **ldict) for ldict in lines ] self.ylim = ylim self.logsite = logsite self.ylabel = ylabel def __iter__(self): return iter(self.lines) def get_logs(self): with db.session_scope() as session: # Get logbook entries for logsite during the plot-time logs = session.query(db.Log).filter_by(_site=self.logsite).filter( db.Log.time >= self.plot.start).filter(db.Log.time <= self.plot.end) return [ (log.time, log.type, str(log)) for log in logs ] def get_ylabel(self): """ Gets the label for the y axis of the subplot """ if self.ylabel: return self.ylabel elif self.lines: with db.session_scope() as session: l = self.lines[0] valuetype = session.query(db.ValueType).get(l.valuetypeid) return f'{valuetype.name} [{valuetype.unit}]' else: return 'unknown' def __jdict__(self): """ Returns a dictionary with the properties of this plot """ return dict(lines=asdict(self.lines), ylim=self.ylim, logsite=self.logsite) class Plot: """ Represents a full plot (matplotlib figure) """ def __init__(self, height=None, width=None, columns=None, start=None, end=None, **kwargs): """ @param size: A tuple (width,height), the size of the plot in inches (with 100dpi) @param columns: number of subplot columns @param start: Date for the beginning x axis @param end: Date of the end of the x axis """ self.start = start or datetime.today() - timedelta(days=365) self.end = end or datetime.today() self.size = (width or 640, height or 480) self.columns = columns or 1 self.subplots = [] self.name = kwargs.pop('name', '') self.aggregate = kwargs.pop('aggregate', '') self.description = kwargs.pop('description', '') self.subplots = [ Subplot(self, **spargs) for i, spargs in enumerate(kwargs.pop('subplots', [])) ] self.args = kwargs def lines(self): return [line for sp in self.subplots for line in sp.lines] def fontsize(self, em): """ Returns the fontsize relative to the figure height. 1 em equals 1/60 of the height """ return em * self.size[1] / 60 def __jdict__(self): """ Creates a dictionary with all properties of the plot, the subplots and their lines """ return dict(width=self.size[0], height=self.size[1], columns=self.columns, start=self.start, end=self.end, subplots=asdict(self.subplots), aggregate=self.aggregate, description=self.description) ``` #### File: odmf/tools/create_db.py ```python import sys sys.path.append('.') from odmf import db from getpass import getpass from logging import warning def create_all_tables(): """ Creates all database table necessary for the database from the codebase :return: """ db.Base.metadata.create_all(db.engine) def add_admin(password=None): """ Add an odmf.admin role to the person table :param password: The password of the admin. If missing you will be prompted :return: """ from odmf.webpage.auth import hashpw password = password or getpass("Enter admin password:") with db.session_scope() as session: if session.query(db.Person).get('odmf.admin'): warning('odmf.admin exists already') else: user = db.Person(username='odmf.admin', firstname='odmf', surname='admin', access_level=4) user.password = <PASSWORD>(password) session.add(user) def add_quality_data(data): """ Adds the data quality items to the Quality Table :param data: A list of dicts (quality_data below) """ with db.session_scope() as session: for q in data: session.add(db.Quality(**q)) quality_data = [ { "comment": "Raw, unprocessed data", "name": "raw", "id": 0 }, { "comment": "Raw data, but with adjustments to the data format (eg. date and timestamps corrected, NoData changed to Null)", "name": "formal checked", "id": 1 }, { "comment": "Checked and recommended for further processing", "name": "quality checked ok", "id": 2 }, { "comment": "Calculated value", "name": "derived value", "id": 10 }, { "comment": "Dataset is calibrated against manual measurements", "name": "calibrated", "id": 3 } ] if __name__ == '__main__': create_all_tables() add_admin() add_quality_data(quality_data) ``` #### File: odmf/tools/__init__.py ```python from __future__ import annotations import os import os.path as op import typing from ..config import conf __all__ = ['mail', 'Path'] class Path(object): def __init__(self, *path: str): self.datapath = op.realpath(conf.datafiles) if path: if str(path[0]).startswith('/'): self.absolute = op.realpath(op.join(*path)) else: self.absolute = op.realpath(op.join(self.datapath, *path)) self.name = op.relpath(self.absolute, self.datapath).replace('\\', '/') else: self.absolute = self.datapath self.name = '/' @property def basename(self)->str: return op.basename(self.absolute) @property def href(self)->str: return f'{conf.root_url}/download/{self.name}' @property def markdown(self)->str: if self.islegal(): return 'file:' + str(self) else: return '' @property def raw_url(self)->str: return f'{conf.root_url}/datafiles/{self.name}' def __bool__(self): return op.exists(self.absolute) def __str__(self): return self.name def formatsize(self)->str: size = op.getsize(self.absolute) unit = 0 units = "B KB MB GB".split() while size > 1024 and unit < 3: size = size / 1024. unit += 1 return "%5.4g %s" % (size, units[unit]) def islegal(self) -> bool: return self.absolute.startswith(self.datapath) def __lt__(self, other): return ('%s' % self) < ('%s' % other) def __eq__(self, other): return ('%s' % self) == ('%s' % other) def __gt__(self, other): return ('%s' % self) > ('%s' % other) def __add__(self, fn): return Path(op.join(self.absolute, fn)) def make(self): os.makedirs(self.absolute, mode=0o770) def breadcrumbs(self) -> str: res = [self] p = op.dirname(self.absolute) while self.datapath in p: res.insert(0, Path(p)) p = op.dirname(p) return res def child(self, filename): return Path(op.join(self.absolute, filename)) def isdir(self): return op.isdir(self.absolute) def isroot(self): return self.absolute == self.datapath def isfile(self): return op.isfile(self.absolute) def exists(self): return op.exists(self.absolute) def parent(self): return Path(op.dirname(self.absolute)) def ishidden(self): return self.basename.startswith('.') or self.basename == 'index.html' def listdir(self) -> (typing.List[Path], typing.List[Path]): """ Lists all members of the path in 2 lists: directories, files: The subdirectories and the files in path """ files = [] directories = [] if self.isdir() and self.islegal(): for fn in os.listdir(self.absolute): if not fn.startswith('.'): child = self.child(fn) if child.isdir(): directories.append(child) elif child.isfile(): files.append(child) return directories, files else: return [], [] def isempty(self) -> bool: """ Returns True, if self isdir and has no entries """ dirs, files = self.listdir() files = [f for f in files if not f.ishidden() ] return not bool(dirs or files) def up(self) -> str: return op.dirname(self.name) def delete(self): os.unlink(self.absolute) ``` #### File: webpage/filemanager/filehandlers.py ```python from ...tools import Path from .. import lib as web import re from ...config import conf from ..markdown import MarkDown markdown = MarkDown() class BaseFileHandler: def __init__(self, pattern: str = ''): self.pattern = re.compile(pattern, re.IGNORECASE) def matches(self, path: Path): """ Checks if a path matches the file pattern """ return bool(self.pattern.search(path.absolute)) def to_html(self, path) -> str: """ Converts a string to a html text Overwrite for different handles """ raise NotImplementedError def __call__(self, path: Path): return self.to_html(path) class TextFileHandler(BaseFileHandler): def __init__(self, pattern: str): super().__init__(pattern) def render(self, source) -> str: return '\n<pre>\n' + source + '\n</pre>\n' def to_html(self, path) -> str: """ Converts a string to a html text by creating surrounding pre tags. Overwrite for different handles """ with open(path.absolute) as f: source = f.read() return web.render('textfile_editor.html', html=self.render(source), source=source, path=path).render() class PlotFileHandler(BaseFileHandler): def render(self, source) -> str: return '\n<pre>\n' + source + '\n</pre>\n' def to_html(self, path) -> str: """ redirects to plot using the plot file """ raise web.redirect(conf.root_url + '/plot', f=str(path)) class MarkDownFileHandler(TextFileHandler): def render(self, source) -> str: return markdown(source) class ExcelFileHandler(BaseFileHandler): def to_html(self, path: Path) -> str: import pandas as pd with open(path.absolute, 'rb') as f: df = pd.read_excel(f) html = df.to_html(classes=['table']) return html class CsvFileHandler(BaseFileHandler): def to_html(self, path: Path) -> str: import pandas as pd try: df = pd.read_csv(path.absolute, sep=None) return df.to_html(classes=['table']) except: with open(path.absolute, 'r') as f: return '\n<pre>\n' + f.read() + '\n</pre>\n' class ImageFileHandler(BaseFileHandler): def to_html(self, path: Path) -> str: return f''' <img class="handler-generated" src="{path.raw_url}" style="max-width: 100%"/> ''' class PdfFileHandler(BaseFileHandler): def to_html(self, path) -> str: return f''' <object id="pdf-iframe" data="{path.raw_url}" type="application/pdf"></iframe> ''' class MultiHandler(BaseFileHandler): handlers = [ MarkDownFileHandler(r'\.(md|wiki)$'), PlotFileHandler(r'\.plot$'), ExcelFileHandler(r'\.xls.?$'), CsvFileHandler(r'\.csv$'), PdfFileHandler(r'\.pdf$'), ImageFileHandler(r'\.(jpg|jpeg|png|svg|gif)$'), TextFileHandler(''), ] def to_html(self, path: Path) -> str: for h in self.handlers: if h.matches(path): try: return h(path) except web.HTTPRedirect: raise except UnicodeDecodeError as e: pass return None ```
{ "source": "jluini/habla-taller", "score": 3 }
#### File: habla-taller/01_acustica/ej1.py ```python import numpy as np # Definimos una función senoidal simple. def ondasimple(t): A = 1.0 # amplitud f = 500.0 # frequencia Phi = 0.0 # fase return A * np.sin(2 * np.pi * f * t + Phi) # Generamos 16000 puntos a 16kHz. ts = np.arange(16000.0) / 16000.0 # Armamos una onda senoidal discretizada. mionda = [] for t in ts: mionda.append(ondasimple(t)) mionda = np.array(mionda) # Graficamos la onda. import matplotlib.pyplot as pyplot pyplot.clf() pyplot.plot(ts[0:100], mionda[0:100]) pyplot.savefig('mionda.png') # La guardamos como wav. import scipy.io.wavfile #MAL: wavdata = np.array(mionda, dtype=np.int16) * 10000 wavdata = np.array(mionda * 10000.0, dtype=np.int16) scipy.io.wavfile.write('mionda.wav', 16000, wavdata) # Ejercicios: # # 1. Generar un archivo wav para cada nota musical Do, Re, Mi, # Fa, Sol, La, Si. Consultar las frecuencias en # http://www.phy.mtu.edu/~suits/notefreqs.html # Tomar como referencia La = 440Hz. # # 2. Buscar la frecuencia más aguda y más grave que pueden percibir. # # 3. Percepcion relativa. Escuchar la diferencia entre dos tonos graves # separados por 100Hz (ej: 200 y 300Hz) y dos tonos agudos separados # también por 100Hz (ej: 1200 y 1300Hz). # # 4. Crear una onda cuadrada a 500 Hz, modificando ondasimple(t) de modo # que devuelva solamente 1 o -1. Generar un wav y comparar con una # senoidal de la misma frecuencia. # # 5. Repetir el punto anterior para 100Hz y para 1000Hz. ¿En algún caso # suenan parecidas las ondas senoidales y cuadradas? (Más allá de las # diferencias de volumen). ```