metadata
dict
text
stringlengths
60
3.49M
{ "source": "jm-begon/episim", "score": 2 }
#### File: episim/episim/model.py ```python import os import datetime from collections import defaultdict import numpy as np from scipy import sparse from episim.ontology import Ontology from episim.plot.modeling import System, Accumulator from .data import State class EulerSimulator(object): """ Explicit Euler method """ def __init__(self, *dx_dt, step_size=1.): self.step_size = step_size self.dx_dt = dx_dt self.N = len(dx_dt) def __call__(self, *x, dt=1): dx = np.zeros(self.N) h = self.step_size x = np.array(x) n_steps_per_dt = int(1. / self.step_size) for i in range(int(dt)): for t in range(n_steps_per_dt): for i, dxi_dt in enumerate(self.dx_dt): dx[i] = dxi_dt(*x) x = x + h * dx yield x class LinNonLinEulerSimulator(object): """ P : p """ def __init__(self, dx_dt_lin, dx_dt_dict, step_size=1.): if hasattr(M, "tocsr"): dx_dt_lin = dx_dt_lin.tocsr() self.dx_dt_matrix = dx_dt_lin self.dx_dt_dict = dx_dt_dict self.N = len(dx_dt_lin) self.step_size = step_size def __call__(self, *x, dt=1): dx = np.zeros(self.N) x = np.array(x) h = self.step_size n_steps_per_dt = int(1. / self.step_size) for i in range(int(dt)): for t in range(n_steps_per_dt): dx *= 0 # Linear part dx[:] = self.dx_dt_matrix.dot(x) # Non linear for i, f in self.dx_dt_dict.items(): dx[i] += f(*x) x = x + h * dx yield x class F(object): def __init__(self, callable, label): self.label = label self.callable = callable def __call__(self, *args, **kwargs): return self.callable(*args, **kwargs) def __str__(self): return self.label class Dynamic(object): @classmethod def from_nodes(cls, *node_and_time_deriv): nodes = [] dx_dt = [] for node, dxi_dt in node_and_time_deriv: nodes.append(node) dx_dt.append(dxi_dt) sorted_nodes = [x for x in nodes] sorted_nodes.sort(key=lambda n: n.index) names = [x.name for x in sorted_nodes] dynamic = cls(*names) for name, dxi_dt in zip(names, dx_dt): dynamic[name] = dxi_dt return dynamic def __init__(self, *variable_names): self.variable_names = variable_names self.var2idx = {s: i for i, s in enumerate(variable_names)} self.dx_dt = [F(lambda *x: 0, "0") for _ in range(len(variable_names))] def _idx(self, key): try: idx = int(key) except (TypeError, ValueError): idx = self.var2idx[key] return idx def __setitem__(self, key, value): self.dx_dt[self._idx(key)] = value def __getitem__(self, item): return self.dx_dt[self._idx(item)] def long_repr(self): s = "" for idx, name in enumerate(self.variable_names): s += "d{}/dt = {}{}".format(name, self.dx_dt[idx], os.linesep) return s def __iter__(self): return iter(self.dx_dt) class Model(object): @classmethod def compute_parameters(cls, virus, population): return tuple() @classmethod def factory(cls, initial_state, virus, population, resolution=0.1): t = cls.compute_parameters(virus, population) model = cls(*t, resolution=resolution) return model.set_state(initial_state) def __init__(self, resolution=0.1): self.current_state = None self.resolution = resolution self.ontology = Ontology.default_ontology() def _compute_reproduction_number(self, n_susceptible, n_total): return 0 def set_state(self, state): queriable = self.ontology(state) R = self._compute_reproduction_number(queriable.susceptible, queriable.population) state.reproduction_number = R if state.n_infection is None: state.n_infection = queriable.infected self.current_state = state return self def _state2variables(self, state): return tuple() def _variables2state(self, date, *values): return State(date) def run(self, n_steps=1): variables = self._state2variables(self.current_state) date = self.current_state.date plus_one = datetime.timedelta(days=1) for variables in self.simulator(*variables, dt=n_steps): date = date + plus_one state = self._variables2state(date, *variables) self.set_state(state) yield state class SEIRS(Model): """ beta: float transmission coefficient: average number of contact per person per time, multiplied by the probability of disease transmission at a contact between a susceptible person and an infectious person gamma: float 1/D, where D is the average time infectious time ksi: re-susceptibility rate (depends on the fraction of alive, recovered people will not develop a lasting immunity and depends on the time before the immunity drops) """ @classmethod def compute_parameters(cls, virus, population): beta = population.contact_frequency * virus.transmission_rate kappa = 1. / virus.exposed_duration gamma = 1. / virus.infectious_duration ksi = virus.immunity_drop_rate return beta, kappa, gamma, ksi def __init__(self, beta=0, kappa=0, gamma=0, ksi=0, resolution=0.1): if resolution is None: resolution = EulerSimulator super().__init__(resolution=resolution) self.beta = beta self.kappa = kappa self.gamma = gamma self.ksi = ksi self.current_state = None S, E, I, R = System.new("S", "E", "I", "R") N = S + E + I + R N.override_name("N") S2E = self.beta * S * I / N S2E_acc = Accumulator(S2E, self.resolution) E2I = self.kappa * E I2R = self.gamma * I R2S = self.ksi * R dS_dt = -S2E + R2S dE_dt = S2E_acc - E2I dI_dt = E2I - I2R dR_dt = I2R - R2S self.dynamic = Dynamic.from_nodes((S, dS_dt), (E, dE_dt), (I, dI_dt), (R, dR_dt)) self.acc_n_infect = S2E_acc self.simulator = EulerSimulator(*iter(self.dynamic), step_size=resolution) def __repr__(self): s = "{}(beta={}, kappa={}, gamma={}, ksi={}, resolution={})".format( self.__class__.__name__, repr(self.beta), repr(self.kappa), repr(self.gamma), repr(self.ksi), repr(self.resolution), ) if self.current_state is None: return s return s + ".set_state({})".format(repr(self.current_state)) def __str__(self): return "{}(beta={:.2e}, kappa={:.2e}, gamma={:.2e}, ksi={:.2e})" \ "".format(self.__class__.__name__, self.beta, self.kappa, self.gamma, self.ksi) # def __str__(self): # return self.dynamic.long_repr() def _compute_reproduction_number(self, n_susceptible, n_total): return self.beta / self.gamma * n_susceptible / float(n_total) def _state2variables(self, state): zero = lambda x: 0 if x is None else x S = zero(state.susceptible) E = zero(state.exposed) I = zero(state.infectious) R = zero(state.recovered) return S, E, I, R def _variables2state(self, date, *values): S, E, I, R = values n_infection = self.current_state.n_infection n_infection += self.acc_n_infect.value self.acc_n_infect.reset() state = State(date) state.susceptible = S state.exposed = E state.infectious = I state.recovered = R state.n_infection = n_infection return state class SIR(Model): @classmethod def compute_parameters(cls, virus, population): beta = population.contact_frequency * virus.transmission_rate gamma = 1. / (virus.exposed_duration + virus.infectious_duration) return beta, gamma def __init__(self, beta, gamma, resolution=0.1): super().__init__(resolution) self.beta = beta self.gamma = gamma S, I, R = System.new("S", "I", "R") N = S + I + R N.override_name("N") S2I = self.beta * S * I / N I2R = self.gamma * I dS_dt = -S2I dI_dt = S2I - I2R dR_dt = I2R self.dynamic = Dynamic.from_nodes((S, dS_dt), (I, dI_dt), (R, dR_dt)) self.simulator = EulerSimulator(iter(self.dynamic), resolution) def __repr__(self): s = "{}(beta={}, gamma={}, resolution={})".format( self.__class__.__name__, repr(self.beta), repr(self.gamma), repr(self.resolution), ) if self.current_state is None: return s return s + ".set_state({})".format(repr(self.current_state)) def __str__(self): return "{}(beta={:.2e}, gamma={:.2e})" \ "".format(self.__class__.__name__, self.beta, self.gamma) def _compute_reproduction_number(self, n_susceptible, n_total): return self.beta / self.gamma * n_susceptible / float(n_total) def _state2variables(self, state): zero = lambda x: 0 if x is None else x S = zero(state.susceptible) I = zero(state.infectious) R = zero(state.recovered) return S, I, R def _variables2state(self, date, *values): S, I, R = values n_infection = self.current_state.n_infection n_infection += (self.current_state.susceptible - S) state = State(date) state.susceptible = S state.infectious = I state.recovered = R state.n_infection = n_infection return state ``` #### File: episim/plot/single_outcome.py ```python import os import numpy as np from .plot import Plot, Dashboard, TwoAxesPlot class StatePlot(Plot): def plot_outcome(self, outcome, *_): t = np.arange(len(outcome)) N = outcome.population_size # rates s = np.array([s.susceptible for s in outcome]) / N e = np.array([s.exposed for s in outcome]) / N i = np.array([s.infectious for s in outcome]) / N r = np.array([s.recovered for s in outcome]) / N self.axes.plot(t, s, color=self.convention.susceptible_color, label="Susceptible") if e.max() > 0: self.axes.plot(t, e, color=self.convention.exposed_color, label="Exposed") self.axes.plot(t, i, color=self.convention.infectious_color, label="Infectious") self.axes.plot(t, r, color=self.convention.recovered_color, label="Recovered") self.axes.set_ylabel("Percentage of population") self.set_dates(outcome.dates) self.axes.grid(True) self.axes.legend(loc="best") self.axes.set_title("State distribution with respect to time") return self class CumulStatePlot(Plot): def plot_outcome(self, outcome, *_): alpha = .25 t = np.arange(len(outcome)) N = outcome.population_size # rates s = np.array([s.susceptible for s in outcome]) / N e = np.array([s.exposed for s in outcome]) / N i = np.array([s.infectious for s in outcome]) / N r = np.array([s.recovered for s in outcome]) / N lower = 0 higher = lower + s self.axes.plot(t, higher, label="Susceptible", color=self.convention.susceptible_color) self.axes.fill_between(t, lower, higher, color=self.convention.susceptible_color, alpha=alpha) lower = higher higher = higher + e if e.max() > 0: self.axes.plot(t, higher, label="Exposed", color=self.convention.exposed_color) self.axes.fill_between(t, lower, higher, color=self.convention.exposed_color, alpha=alpha) lower = higher higher = higher + i self.axes.plot(t, higher, label="Infectious", color=self.convention.infectious_color) self.axes.fill_between(t, lower, higher, color=self.convention.infectious_color, alpha=alpha) lower = higher higher = higher + r self.axes.plot(t, higher, label="Recovered", color=self.convention.recovered_color) self.axes.fill_between(t, lower, higher, color=self.convention.recovered_color, alpha=alpha) self.axes.set_ylabel("Percentage of population") self.axes.grid(True) self.axes.legend(loc="lower left") self.axes.set_title("Cumulative distribution with respect to time") return self class InfectedPlot(Plot): def plot_outcome(self, outcome, *_): t = np.arange(len(outcome)) # rates e = np.array([s.exposed for s in outcome]) i = np.array([s.infectious for s in outcome]) if e.max() > 0: self.axes.plot(t, e, color=self.convention.exposed_color, label="Exposed") self.axes.plot(t, i, color=self.convention.infectious_color, label="Infectious") self.axes.set_ylabel("Number of infection") self.set_dates(outcome.dates) self.axes.grid(True) self.axes.legend(loc="best") self.axes.set_title("Number of infected people with respect to time") return self class ReproductionNumberPlot(Plot): @property def default_title(self): return "Reproduction number (R)" def plot_outcome(self, outcome, color="k", title=None): t = np.arange(len(outcome)) R = np.array([s.reproduction_number for s in outcome]) self.axes.plot(t, R, color=color) self.axes.set_ylabel("Reproduction number", color=color) self.axes.tick_params(axis='y', labelcolor=color) self.axes.grid(True, color=color, alpha=.25) self.axes.axhline(1, 0, 1, color=color, linestyle="--", alpha=.5) if title is None: title = self.default_title self.axes.set_title(title) return self class InfectionNumberPlot(Plot): @property def default_title(self): return "Percentage of cumulattive infection" def plot_outcome(self, outcome, color="k", title=None): N = outcome.population_size t = np.arange(len(outcome)) R = np.array([s.n_infection for s in outcome]) / N self.axes.plot(t, R, color=color) self.axes.set_ylabel("Perc. cumul. infection", color=color) self.axes.tick_params(axis='y', labelcolor=color) self.axes.axhline(1, 0, 1, color=color, linestyle="--", alpha=.5) self.axes.grid(True, color=color, alpha=.25) if title is None: title = self.default_title self.axes.set_title(title) return self class RiskyContactPlot(Plot): """ Let S be the number of succeptible, I be the number of infected, k be the average number of daily contact between any two people and N be the population size. The number of risky contact is: RC = k S I/N for any succeptible individual, it has a I/N chances to have a contact with a infectious person and there are k of such contacts (assuming independence and uniform distribution) The total number of contact is: TC = k N any person has k contact (well, on average) So the proportion of risky contact is: RC/TC = S I / N^2 """ def plot_outcome(self, outcome, color="k", title=None): t = np.arange(len(outcome)) N = outcome.population_size # N = 1 # rates s = np.array([s.susceptible for s in outcome]) i = np.array([s.infectious for s in outcome]) y = s * i / N**2 self.axes.plot(t, y, color=color) self.axes.set_ylabel("Risky contact rate (pop. level)", color=color) self.axes.tick_params(axis='y', labelcolor=color) self.axes.grid(True, color=color, alpha=.25) if title is None: title = "TODO" self.axes.set_title(title) class DescriptionPlot(Plot): def set_dates(self, dates): return self def plot_outcome(self, outcome, color="k", title=None): # TODO better cut of lines limit = False text = [] tab = " > " contd = " " for date, descr in outcome.date2descr.items(): text.append(date.strftime("%d/%m/%y")) for line in descr.split(os.linesep): suffix = tab while len(line) > 85: limit = True text.append("{}{}".format(suffix, line[:85])) suffix = contd line = line[85:] text.append("{}{}".format(suffix, line)) text = os.linesep.join(text) self.axes.text(0, 0, text, verticalalignment="bottom", color=color) # TODO max size ~90 # TODO https://matplotlib.org/3.1.1/gallery/pyplots/text_layout.html#sphx-glr-gallery-pyplots-text-layout-py if limit: # self.axes.axvline(len(outcome.state_history), linestyle=":", alpha=.1) pass if title is None: title = "Description" self.axes.set_title(title, color=color) self.axes.axis("off") class StateDashboard(Dashboard): def __call__(self, outcome): ax1, ax2, ax3 = self.figure.subplots(3, 1, sharex=True) StatePlot(ax1, self.convention)(outcome) CumulStatePlot(ax2, self.convention)(outcome) TwoAxesPlot(ax3, ReproductionNumberPlot, "dodgerblue", RiskyContactPlot, "orange")(outcome) return self class FullDashboard(Dashboard): def __call__(self, outcome): all_axes = self.figure.subplots(3, 2, sharex=True) # First column StatePlot(all_axes[0, 0], self.convention)(outcome) CumulStatePlot(all_axes[1, 0], self.convention)(outcome) TwoAxesPlot(all_axes[2, 0], ReproductionNumberPlot, "royalblue", RiskyContactPlot, "darkorange")(outcome) # Second column # all_axes[0, 1].axis("off") # all_axes[0, 1].text(0.5, 0.5, "Population size: {}".format(outcome.population_size)) title = "Description" if outcome.name: title = "{} -- {}".format(title, outcome.name) DescriptionPlot(all_axes[0, 1], self.convention)(outcome, title=title) InfectionNumberPlot( all_axes[1, 1], self.convention )(outcome) InfectedPlot(all_axes[2, 1], self.convention)(outcome) self.figure.subplots_adjust(wspace=0.3) return self ``` #### File: episim/mains/strategy_comparison.py ```python import argparse, sys import datetime from episim.data import Outcome, State from episim.ontology import Ontology from episim.parameters import PopulationBehavior, Confine, \ TransmissionRateMultiplier from episim.plot.multi_outcome import ComparatorDashboard from episim.scenario import Scenario from episim.plot import FullDashboard from episim.model import SEIRS, SIR from episim.virus import SARSCoV2Th def main(argv=sys.argv[1:]): parser = argparse.ArgumentParser() parser.add_argument("-N", "--population_size", default=int(7 * 1e6), type=int) parser.add_argument("-I", "--n_infectious", default=20, type=int) parser.add_argument("--n_days_total", default=243, type=int) parser.add_argument("--n_days_before_sanity_measures", default=30, type=int) parser.add_argument("--n_days_before_confinement", default=30, type=int) parser.add_argument("--n_days_confinement_duration", default=60, type=int) parser.add_argument("--sanitary_measure_effect", default=.5, type=float, help="Factor by which the transmission rate is " "multiplied (0 < x < 1") parser.add_argument("--confinement_effect", default=.1, type=float, help="Factor by which the number of average daily" "contact is multiplied (0 < x < 1)") parser.add_argument("-r", "--solver_resolution", default=0.1, type=float) parser.add_argument("--factory", choices=["SIR", "SEIRS"], default="SEIRS") args = parser.parse_args(argv) print(args) if args.factory == "SIR": factory = SIR.factory else: factory = SEIRS.factory N = args.population_size I = args.n_infectious res = args.solver_resolution T = args.n_days_total nd_bs = args.n_days_before_sanity_measures nd_as = T - nd_bs nd_bc = args.n_days_before_confinement nd_cd = args.n_days_confinement_duration nd_adc = T - nd_bc - nd_cd outcomes = [] for scenario in NoIntervention(T, N, I, res), \ SanityMeasure(args.sanitary_measure_effect, nd_bs, nd_as, N, I, res), \ Confinement(args.confinement_effect, nd_bc, nd_cd, nd_adc, N, I, res): outcomes.append(scenario.run_model(factory)) ComparatorDashboard()(*outcomes).show()#.save("comparison.png") for i, outcome in enumerate(outcomes): FullDashboard()(outcome).show()#.save("dashboard_{}.png".format(i)) # ComparatorDashboard()(*outcomes[1:]).show() class BaseScenario(Scenario): def __init__(self, population_size, n_infectious, resolution, virus=None, population=None, initial_date=None): self.resolution = resolution N = population_size I = n_infectious if initial_date is None: initial_date = datetime.date(2020, 1, 1) self.initial_state = State(initial_date, susceptible=N-I, infectious=I, n_infection=I) # self.initial_state = State(N-I, 0, I, 0, initial_date, n_infection=I) if virus is None: virus = SARSCoV2Th() self.virus = virus if population is None: population = PopulationBehavior() self.population = population def get_model(self, factory, state=None, virus=None, population=None, resolution=None): if state is None: state = self.initial_state if virus is None: virus = self.virus if population is None: population = self.population if resolution is None: resolution = self.resolution return factory(state, virus, population, resolution) def starting_description(self, model): ontology = Ontology.default_ontology() state = ontology(self.initial_state) descr_ls = [ "Number of infectious {:d} / {:d} total population size" "".format(state.infectious, state.population), "{}".format(self.virus), "Pop.: {}".format(self.population), "Model: {}".format(model) ] return self.multiline(descr_ls) class NoIntervention(BaseScenario): def __init__(self, n_days, population_size, n_infectious, resolution): super().__init__(population_size, n_infectious, resolution) self.n_days = n_days def run_model(self, model_factory): model = self.get_model(model_factory) outcome = Outcome.from_model(model, self.n_days, self.starting_description(model)) outcome.name = "Do nothing" return outcome class SanityMeasure(BaseScenario): def __init__(self, measure_effect, n_days_before_measures, n_days_after_measures, population_size, n_infectious, resolution): super().__init__(population_size, n_infectious, resolution) self.n_days_1 = n_days_before_measures self.n_days_2 = n_days_after_measures self.measure_effect = measure_effect def run_model(self, model_factory): model = self.get_model(model_factory) outcome = Outcome.from_model(model, self.n_days_1, self.starting_description(model)) virus = TransmissionRateMultiplier(self.virus, 0.5) model = self.get_model(model_factory, virus=virus, state=outcome.last_state) descr_ls = [ "Sanity measures: dividing transmission rate by " "{:.2f}".format(1./self.measure_effect), "New model: {}".format(model) ] outcome = outcome.concat( Outcome.from_model(model, self.n_days_2, self.multiline(descr_ls)) ) outcome.name = "Sanity measure (lower transmission rate)" return outcome class Confinement(BaseScenario): def __init__(self, confinement_effect, n_days_before_confinement, n_days_confinement, n_days_after_confinement, population_size, n_infectious, resolution): super().__init__(population_size, n_infectious, resolution) self.confinement_efficiency = 1 - confinement_effect self.n_days_1 = n_days_before_confinement self.n_days_2 = n_days_confinement self.n_days_3 = n_days_after_confinement def run_model(self, model_factory): model = self.get_model(model_factory) outcome = Outcome.from_model(model, self.n_days_1, self.starting_description(model)) population = Confine(self.population, self.confinement_efficiency) model = self.get_model(model_factory, state=outcome.last_state, population=population) descr_ls = [ "Confinement: {}".format(population), "New model: {}".format(model) ] outcome = outcome.concat( Outcome.from_model(model, self.n_days_2, self.multiline(descr_ls)) ) model = self.get_model(model_factory, state=outcome.last_state) descr_ls = [ "Deconfinement: {}".format(str(population)), "New model: {}".format(model) ] outcome = outcome.concat( Outcome.from_model(model, self.n_days_3, self.multiline(descr_ls)) ) outcome.name = "Confine/deconfine" return outcome if __name__ == '__main__': main() # TODO save in pdf ```
{ "source": "jm-begon/fight_tracker", "score": 3 }
#### File: fight_tracker/fight_tracker/arithmetic.py ```python class Boolable: def __bool__(self): return False class DescriptiveTrue(Boolable): def __init__(self, description): self.description = description def __bool__(self): return True def __str__(self): return f"{self.description}" def __repr__(self): return f"{self.__class__.__name__}({repr(self.description)})" class Intable: def __int__(self): return 0 def __add__(self, other): return Addition(self, other) def __repr__(self): return f"{self.__class__.__name__}()" class DescriptiveInt(Intable): def __init__(self, value, description): self.value = value self.description = description def __int__(self): return self.value def __str__(self): return f"{self.value} ({self.description})" def __repr__(self): return f"{self.__class__.__name__}({repr(self.value)}, " \ f"{repr(self.description)})" class Addition(Intable): def __init__(self, *intables): self.intables = list(intables) def __int__(self): return sum(int(i) for i in self.intables) def __repr__(self): return f"{self.__class__.__name__}(*{repr(self.intables)})" def __str__(self): return " + ".join(str(x) for x in self.intables) class Subtraction(Intable): def __init__(self, left_operand, right_operand): self.left = left_operand self.right = right_operand def __int__(self): return int(self.left) - int(self.right) def __repr__(self): return f"{self.__class__.__name__}({repr(self.left)}, " \ f"{repr(self.right)})" def __str__(self): return f"{self.left} - {self.right}" ``` #### File: fight_tracker/mechanics/ability.py ```python from enum import Enum class Ability(Enum): STR = "strength" DEX = "dexterity" CON = "constitution" INT = "intelligence" WIS = "wisdom" CHA = "charisma" @classmethod def __getitem__(cls, item): if item is None: return None if isinstance(item, cls): return item for ability in cls: if item == ability.value or ability.name: return ability return None ```
{ "source": "jm-begon/globally-induced-forest", "score": 3 }
#### File: gif/datasets/full_dataset.py ```python from abc import ABCMeta, abstractmethod import os import numpy as np from sklearn.model_selection import train_test_split from sklearn.utils import check_random_state from gif.datasets.utils import data_folder class FullDataset(object, metaclass=ABCMeta): @classmethod def get_default_lengths(cls): return 0, 0 @classmethod def get_default_folder_name(cls): return cls.__name__.lower() def __init__(self, folder=None): if folder is None: folder = data_folder(self.__class__.get_default_folder_name()) self.folder = folder self.tr_X_y = None self.ts_X_y = None def __repr__(self): return "{}()".format(self.__class__.__name__) def __len__(self): if self.ts_X_y is None: return sum(self.__class__.get_default_lengths()) return len(self.tr_X_y[-1]) + len(self.ts_X_y[-1]) def load_(self): pass def load(self): if self.tr_X_y is None: self.load_() def partition(self, train_size=None, shuffle=True, random_state=1217): self.load() if train_size is None: # Use default train size train_size = len(self.tr_X_y[-1]) X_tr, y_tr = self.tr_X_y X_ts, y_ts = self.ts_X_y X = np.vstack((X_tr, X_ts)) y = np.hstack((y_tr, y_ts)) X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=train_size, shuffle=shuffle, random_state=random_state ) self.tr_X_y = X_train, y_train self.ts_X_y = X_test, y_test @property def training_set(self): if self.tr_X_y is None: return np.array([]), np.array([]) return self.tr_X_y @property def test_set(self): if self.ts_X_y is None: return np.array([]), np.array([]) return self.ts_X_y def is_artificial(self): return hasattr(self, "random_state") ``` #### File: gif/datasets/__init__.py ```python from .classification import Waveform, Twonorm, Ringnorm, Musk2, Vowel, \ BinaryVowel, Madelon, Hastie, Covertype, BinaryCovertype, Letters, \ BinaryLetters, MNIST, MNIST8vs9, BinaryMNIST from .regression import CTSlice, Friedman1, Cadata, Abalone, OzoneLA, \ Diabetes, Hardware, BostonHousing, MPG __DATASET__ = { # From <NAME>., <NAME>., & <NAME>. (2017, July). Globally induced forest: A prepruning compression scheme. In International Conference on Machine Learning (pp. 420-428). PMLR. "waveform": Waveform, "twonorm": Twonorm, "ringnorm": Ringnorm, "musk2": Musk2, "vowel": Vowel, "binary_vowel": BinaryVowel, "madelon": Madelon, "hastie": Hastie, "covertype": Covertype, "binary_covertype": BinaryCovertype, "letters": Letters, "binary_letters": BinaryLetters, "mnist": MNIST, "mnist8vs9": MNIST8vs9, "binary_mnist": BinaryMNIST, "ct_slice": CTSlice, "friedman1": Friedman1, "cadata": Cadata, "abalone": Abalone, # To compare with <NAME>., <NAME>., <NAME>., & <NAME>. (2021, March). Interpretable random forests via rule extraction. In International Conference on Artificial Intelligence and Statistics (pp. 937-945). PMLR. "ozone": OzoneLA, "diabetes": Diabetes, "hardware": Hardware, "housing": BostonHousing, "mpg": MPG } def is_regression(full_dataset): from .regression import RegressionFullDataset return isinstance(full_dataset, RegressionFullDataset) def is_classification(full_dataset): from .classification import ClassificationFullDataset return isinstance(full_dataset, ClassificationFullDataset) def is_binary_classification(full_dataset): from .classification import ClassificationFullDataset return isinstance(full_dataset, ClassificationFullDataset) and \ full_dataset.n_classes == 2 def download_all(folder=None, verbose=True): for fullset_cls in __DATASET__.values(): fullset = fullset_cls(folder) print("Downloading for {}".format(repr(fullset))) try: fullset.load() if verbose: X, y = fullset.training_set print("\t> Training set shapes: {}, {}".format(X.shape, y.shape)) X, y = fullset.test_set print("\t> Test set shapes: {}, {}".format(X.shape, y.shape)) except Exception as e: if not verbose: raise print("Error while downloading '{}' ({}). " "Skipping...".format(fullset.__class__.__name__, e)) __all__ = ["__DATASET__", "download_all", "is_regression", "is_classification", "is_binary_classification"] ``` #### File: gif/rules/display.py ```python import os from functools import partial from .ruleset import AndCondition, LeqCondition, GrCondition from .utils import fstr class RulesetPrinter(object): def __init__(self, output_name=None, *variable_names, float_format="{:.2f}", ): self.output_name = output_name self.variable_names = variable_names self.float_format = float_format self.str_ = partial(fstr, format=float_format) def __repr__(self): return "{}({}, {}, *{})".format(self.__class__.__name__, repr(self.float_format), repr(self.output_name), repr(self.variable_names)) def intercept_2_str(self, ruleset): return "intercept: {}".format(self.str_(ruleset.intercept)) def and_cond_2_str(self, condition): return " and ".join(self.cond_2_str(cond) for cond in condition) def get_var_name(self, base_condition): index = base_condition.variable_index return self.variable_names[index] \ if index < len(self.variable_names) \ else "x_{}".format(index) def leq_cond_2_str(self, condition): val_str = self.float_format.format(condition.threshold) return "{} <= {}".format(self.get_var_name(condition), val_str) def gr_cond_2_str(self, condition): val_str = self.float_format.format(condition.threshold) return "{} > {}".format(self.get_var_name(condition), val_str) def cond_2_str(self, condition): if isinstance(condition, AndCondition): return self.and_cond_2_str(condition) if isinstance(condition, LeqCondition): return self.leq_cond_2_str(condition) if isinstance(condition, GrCondition): return self.gr_cond_2_str(condition) raise ValueError("Unknown condition class '{}' for '{}'" "".format(condition.__class__.__name__, repr(condition))) def pred_2_str(self, prediction): pred_str = self.str_(prediction) if self.output_name is not None: pred_str = "{} = {}".format(self.output_name, pred_str) return pred_str def rule_2_str(self, rule): prop_str = self.float_format.format(rule.proportion) return "IF {} THEN {} ({})".format(self.cond_2_str(rule.condition), self.pred_2_str(rule.prediction), prop_str) def __call__(self, ruleset): lines = [self.intercept_2_str(ruleset)] for rule in ruleset: lines.append(self.rule_2_str(rule)) return os.linesep.join(lines) ``` #### File: gif/rules/operations.py ```python import numpy as np from .ruleset import AndCondition, LeqCondition, GrCondition # To match <NAME>., <NAME>., <NAME>., & <NAME>. (2021, March). Interpretable random forests via rule extraction. In International Conference on Artificial Intelligence and Statistics (pp. 937-945). PMLR. class AlaSirusIntersector(object): def __init__(self, eps=1e-10): self.eps = eps def same_val(self, x1, x2): return np.sum((x1-x2)**2) < self.eps def __call__(self, rs1, rs2): commons = [] for r1 in rs1: for r2 in rs2: if self.is_same(r1.condition, r2.condition): commons.append(r1) return commons def is_same(self, cond1, cond2): if isinstance(cond1, AndCondition) and isinstance(cond2, AndCondition): if len(cond1) != len(cond2): return False for c1_i, c2_i in zip(cond1, cond2): if not self.is_same(c1_i, c2_i): return False return True if isinstance(cond1, LeqCondition) and isinstance(cond2, LeqCondition): return cond1.variable_index == cond2.variable_index and \ self.same_val(cond1.threshold, cond2.threshold) if isinstance(cond1, GrCondition) and isinstance(cond2, GrCondition): return cond1.variable_index == cond2.variable_index and \ self.same_val(cond1.threshold, cond2.threshold) return False def stability_ala_sirus(rs1, rs2, eps=1e-10): intersect = AlaSirusIntersector(eps) return 2.*len(intersect(rs1, rs2)) / float(len(rs1) + len(rs2)) class SKTraversal(object): """ For scikit-learn trees """ def __init__(self, accumulator_factory, mode="prefix"): self.accumulator_factory = accumulator_factory self.mode = mode def forest_traversal(self, accumulator, forest): for t_idx, tree in enumerate(forest.estimators_): self.tree_traversal(accumulator, tree, t_idx) def tree_traversal(self, accumulator, tree, t_idx=0): if hasattr(tree, "tree_"): tree = tree.tree_ self.tree_traversal_rec(accumulator, tree, t_idx) def tree_traversal_rec(self, accumulator, tree, t_idx=0, index=0, depth=0): if index < 0: return r_index = tree.children_right[index] l_index = tree.children_left[index] if self.mode == "prefix": accumulator(tree, t_idx, index, depth) self.tree_traversal_rec(accumulator, tree, t_idx, l_index, depth + 1) self.tree_traversal_rec(accumulator, tree, t_idx, r_index, depth + 1) elif self.mode == "infix": self.tree_traversal_rec(accumulator, tree, t_idx, l_index, depth + 1) accumulator(tree, t_idx, index, depth) self.tree_traversal_rec(accumulator, tree, t_idx, r_index, depth + 1) else: # postfix self.tree_traversal_rec(accumulator, tree, t_idx, l_index, depth + 1) self.tree_traversal_rec(accumulator, tree, t_idx, r_index, depth + 1) accumulator(tree, t_idx, index, depth) def __call__(self, *somethings, **kwargs): accumulator = self.accumulator_factory(**kwargs) for something in somethings: if hasattr(something, "estimators_"): # sk forest self.forest_traversal(accumulator, something) elif hasattr(something, "tree_"): # sk tree self.tree_traversal(accumulator, something) else: self.tree_traversal_rec(accumulator, something) return accumulator class Accumulator(object): def __call__(self, tree, t_idx, index, depth): pass def finalize(self): pass class RuleCount(Accumulator): def __init__(self): self.count = 0 def __call__(self, tree, t_idx, index, depth): r_index = tree.children_right[index] l_index = tree.children_left[index] if index > 0 and (l_index < 0 or r_index < 0): # Count only a (partial) leaf which is not a root self.count += 1 def finalize(self): return self.count class TotalComplexity(Accumulator): def __init__(self): self.complexity = 0 def __call__(self, tree, t_idx, index, depth): r_index = tree.children_right[index] l_index = tree.children_left[index] if index > 0 and (l_index < 0 or r_index < 0): # Account only for a (partial) leaf which is not a root self.complexity += depth def finalize(self): return self.complexity class BranchingHistogram(Accumulator): def __init__(self, max_depth=15): self.hist = np.zeros(max_depth, dtype=int) def __call__(self, tree, t_idx, index, depth): r_index = tree.children_right[index] l_index = tree.children_left[index] if index > 0 and (l_index < 0 or r_index < 0): # Account only for a (partial) leaf which is not a root self.hist[depth] += 1 def rule_count(self): return self.hist[1:].sum() def complexity(self): return np.sum(np.arange(len(self.hist)) * self.hist) def finalize(self): return self.hist.copy() ``` #### File: gif/rules/ruleset.py ```python import numpy as np class Condition(object): pass class BaseCondition(Condition): def __init__(self, variable_index, threshold): self.variable_index = variable_index self.threshold = threshold def __repr__(self): return "{}(variable_index={}, threshold={})" \ "".format(self.__class__.__name__, repr(self.variable_index), repr(self.threshold)) @property def variable_str(self): return "x_{}".format(self.variable_index) class LeqCondition(BaseCondition): def __str__(self): return "{} <= {:.2f}".format(self.variable_str, self.threshold) def invert(self): return GrCondition(self.variable_index, self.threshold) class GrCondition(BaseCondition): def __str__(self): return "{} > {:.2f}".format(self.variable_str, self.threshold) def invert(self): return LeqCondition(self.variable_index, self.threshold) class AndCondition(Condition): @classmethod def flatten(cls, condition, accumulator=None): if isinstance(condition, AndCondition): for sub_cond in condition: cls.flatten(sub_cond, accumulator) else: accumulator.append(condition) @classmethod def by_flatting(cls, condition): if isinstance(condition, AndCondition): accumulator = [] cls.flatten(condition, accumulator) return cls(*accumulator) return condition def __init__(self, *conditions): self.conditions = tuple(conditions) def __repr__(self): return "{}(*{})".format(self.__class__.__name__, repr(self.conditions)) def __str__(self): return " and ".join(str(cond) for cond in self.conditions) def __iter__(self): return iter(self.conditions) def __len__(self): return len(self.conditions) class Rule(object): def __init__(self, condition, prediction, proportion): self.condition = condition self.prediction = prediction self.proportion = proportion def __repr__(self): return "{}({}, {}, {})".format(self.__class__.__name__, repr(self.condition), repr(self.prediction), repr(self.proportion)) def __str__(self): return "IF {} THEN {} ({})".format(self.condition, self.prediction, self.proportion) class RuleSet(object): @classmethod def tree_2_rules(cls, rules, tree, index=0, condition=None): if index < 0: return # If leaf (at least partially) prediction associated if tree.children_left[index] < 0 or tree.children_right[index] < 0: v = tree.value[index] if np.sum(v**2) > 1e-10: # Node actually holds a value proportion = tree.n_node_samples[index] / tree.n_node_samples[0] rule = Rule(AndCondition.by_flatting(condition), v, proportion) rules.append(rule) # if internal node (at least partially) only part of condition this_condition = LeqCondition(tree.feature[index], tree.threshold[index]) left_cond = this_condition if condition is not None: left_cond = AndCondition(condition, this_condition) cls.tree_2_rules(rules, tree, tree.children_left[index], left_cond) right_cond = this_condition.invert() if condition is not None: right_cond = AndCondition(condition, right_cond) cls.tree_2_rules(rules, tree, tree.children_right[index], right_cond) @classmethod def from_gif(cls, gif): rules = [] intercept = gif.bias for tree in gif.estimators_: cls.tree_2_rules(rules, tree) return cls(intercept, rules) def __init__(self, intercept, rules): self.intercept_ = intercept self.rules_ = tuple(rules) def __repr__(self): return "{}(intercept={}, rules={})" \ "".format(self.__class__.__name__, repr(self.intercept_), repr(self.rules_)) @property def intercept(self): return self.intercept_ def __iter__(self): return iter(self.rules_) def __len__(self): return len(self.rules_) ``` #### File: tree/tests/test_export.py ```python from re import finditer from numpy.testing import assert_equal from nose.tools import assert_raises from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.ensemble import GradientBoostingClassifier from sklearn.tree import export_graphviz from sklearn.externals.six import StringIO from sklearn.utils.testing import assert_in # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] y2 = [[-1, 1], [-1, 1], [-1, 1], [1, 2], [1, 2], [1, 3]] w = [1, 1, 1, .5, .5, .5] def test_graphviz_toy(): # Check correctness of export_graphviz clf = DecisionTreeClassifier(max_depth=3, min_samples_split=2, criterion="gini", random_state=2) clf.fit(X, y) # Test export code out = StringIO() export_graphviz(clf, out_file=out) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test with feature_names out = StringIO() export_graphviz(clf, out_file=out, feature_names=["feature0", "feature1"]) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="feature0 <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test with class_names out = StringIO() export_graphviz(clf, out_file=out, class_names=["yes", "no"]) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]\\nclass = yes"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]\\n' \ 'class = yes"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]\\n' \ 'class = no"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test plot_options out = StringIO() export_graphviz(clf, out_file=out, filled=True, impurity=False, proportion=True, special_characters=True, rounded=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled, rounded", color="black", ' \ 'fontname=helvetica] ;\n' \ 'edge [fontname=helvetica] ;\n' \ '0 [label=<X<SUB>0</SUB> &le; 0.0<br/>samples = 100.0%<br/>' \ 'value = [0.5, 0.5]>, fillcolor="#e5813900"] ;\n' \ '1 [label=<samples = 50.0%<br/>value = [1.0, 0.0]>, ' \ 'fillcolor="#e58139ff"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label=<samples = 50.0%<br/>value = [0.0, 1.0]>, ' \ 'fillcolor="#399de5ff"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test max_depth out = StringIO() export_graphviz(clf, out_file=out, max_depth=0, class_names=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]\\nclass = y[0]"] ;\n' \ '1 [label="(...)"] ;\n' \ '0 -> 1 ;\n' \ '2 [label="(...)"] ;\n' \ '0 -> 2 ;\n' \ '}' assert_equal(contents1, contents2) # Test max_depth with plot_options out = StringIO() export_graphviz(clf, out_file=out, max_depth=0, filled=True, node_ids=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled", color="black"] ;\n' \ '0 [label="node #0\\nX[0] <= 0.0\\ngini = 0.5\\n' \ 'samples = 6\\nvalue = [3, 3]", fillcolor="#e5813900"] ;\n' \ '1 [label="(...)", fillcolor="#C0C0C0"] ;\n' \ '0 -> 1 ;\n' \ '2 [label="(...)", fillcolor="#C0C0C0"] ;\n' \ '0 -> 2 ;\n' \ '}' assert_equal(contents1, contents2) # Test multi-output with weighted samples clf = DecisionTreeClassifier(max_depth=2, min_samples_split=2, criterion="gini", random_state=2) clf = clf.fit(X, y2, sample_weight=w) out = StringIO() export_graphviz(clf, out_file=out, filled=True, impurity=False) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled", color="black"] ;\n' \ '0 [label="X[0] <= 0.0\\nsamples = 6\\n' \ 'value = [[3.0, 1.5, 0.0]\\n' \ '[3.0, 1.0, 0.5]]", fillcolor="#e5813900"] ;\n' \ '1 [label="samples = 3\\nvalue = [[3, 0, 0]\\n' \ '[3, 0, 0]]", fillcolor="#e58139ff"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="X[0] <= 1.5\\nsamples = 3\\n' \ 'value = [[0.0, 1.5, 0.0]\\n' \ '[0.0, 1.0, 0.5]]", fillcolor="#e5813986"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '3 [label="samples = 2\\nvalue = [[0, 1, 0]\\n' \ '[0, 1, 0]]", fillcolor="#e58139ff"] ;\n' \ '2 -> 3 ;\n' \ '4 [label="samples = 1\\nvalue = [[0.0, 0.5, 0.0]\\n' \ '[0.0, 0.0, 0.5]]", fillcolor="#e58139ff"] ;\n' \ '2 -> 4 ;\n' \ '}' assert_equal(contents1, contents2) # Test regression output with plot_options clf = DecisionTreeRegressor(max_depth=3, min_samples_split=2, criterion="mse", random_state=2) clf.fit(X, y) out = StringIO() export_graphviz(clf, out_file=out, filled=True, leaves_parallel=True, rotate=True, rounded=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled, rounded", color="black", ' \ 'fontname=helvetica] ;\n' \ 'graph [ranksep=equally, splines=polyline] ;\n' \ 'edge [fontname=helvetica] ;\n' \ 'rankdir=LR ;\n' \ '0 [label="X[0] <= 0.0\\nmse = 1.0\\nsamples = 6\\n' \ 'value = 0.0", fillcolor="#e5813980"] ;\n' \ '1 [label="mse = 0.0\\nsamples = 3\\nvalue = -1.0", ' \ 'fillcolor="#e5813900"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="True"] ;\n' \ '2 [label="mse = 0.0\\nsamples = 3\\nvalue = 1.0", ' \ 'fillcolor="#e58139ff"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="False"] ;\n' \ '{rank=same ; 0} ;\n' \ '{rank=same ; 1; 2} ;\n' \ '}' assert_equal(contents1, contents2) def test_graphviz_errors(): # Check for errors of export_graphviz clf = DecisionTreeClassifier(max_depth=3, min_samples_split=2) clf.fit(X, y) # Check feature_names error out = StringIO() assert_raises(IndexError, export_graphviz, clf, out, feature_names=[]) # Check class_names error out = StringIO() assert_raises(IndexError, export_graphviz, clf, out, class_names=[]) def test_friedman_mse_in_graphviz(): clf = DecisionTreeRegressor(criterion="friedman_mse", random_state=0) clf.fit(X, y) dot_data = StringIO() export_graphviz(clf, out_file=dot_data) clf = GradientBoostingClassifier(n_estimators=2, random_state=0) clf.fit(X, y) for estimator in clf.estimators_: export_graphviz(estimator[0], out_file=dot_data) for finding in finditer("\[.*?samples.*?\]", dot_data.getvalue()): assert_in("friedman_mse", finding.group()) ```
{ "source": "jm-begon/locmoss", "score": 3 }
#### File: locmoss/locmoss/parser.py ```python import os import pygments.token import pygments.lexers from locmoss.location import Location class Token(object): def __init__(self, symbol, location): self.symbol = symbol self.location = location def __str__(self): return str(self.symbol) def __repr__(self): return "{}({}, {})".format(self.__class__.__name__, repr(self.symbol), repr(self.location)) class Parser(object): def __init__(self, fpath, lexer=None, encoding="latin-1"): self.fpath = fpath self.lexer = lexer self.encoding = encoding def __repr__(self): return "{}({}, {}, {})".format(self.__class__.__name__, repr(self.fpath), repr(self.lexer), repr(self.encoding)) def __iter__(self): with open(self.fpath, "r", encoding=self.encoding) as hdl: text = hdl.read() lexer = pygments.lexers.guess_lexer_for_filename(self.fpath, text) \ if self.lexer is None else self.lexer # Adapted from https://github.com/agranya99/MOSS-winnowing-seqMatcher/blob/master/cleanUP.py for j, line in enumerate(text.split(os.linesep)): line_number = j + 1 column_number = 1 for token_type, original_symbol in lexer.get_tokens(line): symbol = original_symbol if token_type == pygments.token.Text or token_type in pygments.token.Comment: symbol = None elif token_type == pygments.token.Name: symbol = "N" # all variable names as 'N' elif token_type in pygments.token.Literal.String: symbol = "S" # all strings as 'S' elif token_type in pygments.token.Name.Function: symbol = "F" # user defined function names as 'F' if symbol is not None: yield Token(symbol, Location(self.fpath, line_number, column_number)) column_number += len(original_symbol) ``` #### File: locmoss/query/query.py ```python import os from datetime import datetime, timedelta from locmoss.location import LocationIterator from locmoss.query.report import Report, Anchor, Anchorable, Reference, \ SubSection, Section from locmoss.query.similarity import Ranking, CountSimilarity class Query(object): def __init__(self, label=None): self.label = self.__class__.__name__ if label is None else label def header(self, report): report.add_header(self.label) def query_(self, report, invert_index): pass def __call__(self, invert_index): report = Report() self.header(report) self.query_(report, invert_index) return report class MetaData(Query): __HEADER__ = """ __ _ ___ __ __ __ _ / / ___ ___ __ _| | /\/\ /___\/ _\/ _\ /__\ ___ _ __ ___ _ __| |_ / / / _ \ / __/ _` | | / \ // //\ \ \ \ / \/// _ \ '_ \ / _ \| '__| __| / /__| (_) | (_| (_| | | / /\/\ \/ \_// _\ \_\ \ / _ \ __/ |_) | (_) | | | |_ \____/\___/ \___\__,_|_| \/ \/\___/ \__/\__/ \/ \_/\___| .__/ \___/|_| \__| |_| """ def __init__(self, **context): super().__init__() self.dict = context self.creation = datetime.now() def duration_str(self, duration_in_sec): s = str(duration_in_sec) # remove milliseconds and stuff return s.split(".")[0] def header(self, report): for line in self.__HEADER__.split(os.linesep): report.add_raw(line) def query_(self, report, invert_index): now = datetime.now() with report.add_list("Context") as ls: for k,v in self.dict.items(): ls.append("{}: {}".format(k, v)) ls.append("Hash: {}".format(hash(invert_index))) ls.append("Duration: {}".format(self.duration_str(now - self.creation))) class SoftwareList(Query): def query_(self, report, invert_index): softwares = invert_index.get_softwares() for sf in softwares: with report.add_list(sf.name) as report_list: report_list.extend(sf) class CorpusStat(Query): def query_(self, report, invert_index): n_fp = 0 n_skipped = 0 n_collisions = 0 for fingerprint, softwares in invert_index.iter_raw(): n_fp += 1 if invert_index.is_skipped(fingerprint): n_skipped += 1 else: if len(softwares) > 1: n_collisions += 1 n_softwares = len(invert_index.get_softwares()) with report.add_list() as report_list: report_list.append("Number of softwares: {}".format(n_softwares)) report_list.append("Total number of fingerprints: {}".format(n_fp)) report_list.append("Number of active fingerprints: {}" "".format(n_fp - n_skipped)) report_list.append("Number of collisions: {}".format(n_collisions)) class MostSimilar(Query): class AllScores(object): def __init__(self, software_1, software_2, scores): self.software_1 = software_1 self.software_2 = software_2 self.scores = scores def __iter__(self): for score in self.scores: yield score def __init__(self, *rankings, label=None): # Ordering follow the scorers[0] super().__init__(label) self.rankings = rankings self.ranking = () def query_(self, report, invert_index): if len(self.rankings) == 0: ranking = Ranking.from_invert_index(CountSimilarity(), invert_index) self.rankings = (ranking,) header = ["Rank", "Software 1", "Software 2"] + [r.label for r in self.rankings] main_ranking, other_rankings = self.rankings[0], self.rankings[1:] report.add_raw("First {} results".format(len(main_ranking))) with report.add_table(len(header), header) as table: for i, (main_score, software_1, software_2) in enumerate(main_ranking): all_scores = [main_score] + [ranking[(software_1, software_2)] for ranking in other_rankings] s1_name = software_1.name s2_name = software_2.name anchor = Section.create_anchor(Reference.join(s1_name, s2_name)) row = [Reference(str(i + 1), anchor), s1_name, s2_name] for ranking, score in zip(self.rankings, all_scores): row.append(ranking.similarity.format_score(score)) table.append(*row) class MatchingLocations(Query): def __init__(self, ranking, label=None): super().__init__(label) self.ranking = ranking def query_(self, report, invert_index): matching_graph = invert_index.derive_matching_graph() for _, soft_1, soft_2 in self.ranking: s1_name, s2_name = soft_1.name, soft_2.name anchor = Section.create_anchor(Reference.join(s1_name, s2_name)) shareprints = matching_graph[(soft_1, soft_2)] report.add(Section("{} VS. {}".format(s1_name, s2_name), anchor)) report.add_raw("Matching fingerprints: {}".format(len(shareprints))) report.add_newline() for fingerprint in shareprints: with report.add_list(str(fingerprint)) as report_list: for software in (soft_1, soft_2): locations = software[fingerprint] for location in locations: desc = "{}:{}:{}".format(location.source_file, location.start_line, location.start_column) report_list.append(desc) report.add_newline() class MatchingSnippets(Query): def __init__(self, ranking, pre_lines=5, post_lines=5, label=None): super().__init__(label) self.ranking = ranking self.loc_iter = LocationIterator(pre_lines, post_lines) def query_(self, report, invert_index): matching_graph = invert_index.derive_matching_graph() anchors = {} for _, soft_1, soft_2 in self.ranking: s1_name, s2_name = soft_1.name, soft_2.name anchor = Section.create_anchor(Reference.join(s1_name, s2_name)) report.add(Section("{} VS. {}".format(s1_name, s2_name), anchor)) shareprints = matching_graph[(soft_1, soft_2)] with report.add_list("Matching fingerprints: {}".format(len(shareprints))) as li: for fingerprint in shareprints: ref_s = Reference.join(s1_name, s2_name, str(fingerprint)) anchor = SubSection.create_anchor(ref_s) anchors[ref_s] = anchor li.append(Reference(str(fingerprint), anchor)) report.add_newline() for fingerprint in shareprints: s_fp = str(fingerprint) ref_s = Reference.join(s1_name, s2_name, s_fp) report.add(SubSection(s_fp, anchors[ref_s])) for software in (soft_1, soft_2): locations = software[fingerprint] for location in locations: desc = "{}:{}:{}".format(location.source_file, location.start_line, location.start_column) with report.add_snippet(desc) as snippet: for ln, line in self.loc_iter(location): snippet.append(ln, line) ``` #### File: locmoss/locmoss/software.py ```python import glob import os from collections import OrderedDict from collections import defaultdict class Software(object): @classmethod def list_from_globs(cls, patterns, realpath=False): tree = Tree.from_glob_pattern(patterns, realpath) return list(tree.to_software()) def __init__(self, name, files=()): self.name = name self.source_files = tuple(files) self.fingerprints = defaultdict(list) def __iter__(self): for source_file in self.source_files: yield source_file def add_fingerprint(self, fingerprint, location): self.fingerprints[fingerprint].append(location) def yield_fingerprints(self): for fp in self.fingerprints.keys(): yield fp def __getitem__(self, fingerprint): return self.fingerprints[fingerprint] def count_fingerprints(self): return len(self.fingerprints) def __repr__(self): return "{}({}, {})".format(self.__class__.__name__, repr(self.name), repr({x for x in self})) class Tree(object): @classmethod def from_glob_pattern(cls, patterns, realpath=False): tree = cls() for pattern in patterns: for file in glob.glob(pattern): path = os.path.expanduser(file) if realpath: path = os.path.realpath(path) splits = path.split(os.sep) if len(splits[0]) == 0: tup = (os.sep,) + tuple(splits[1:]) else: tup = tuple(splits) tree.insert(tup) return tree def __init__(self): self.children = OrderedDict() def insert(self, tup): if len(tup) == 0: return head, tail = tup[0], tup[1:] child = self.children.get(head) if child is None: child = Tree() self.children[head] = child child.insert(tail) def to_software(self): common = [] children = self.children while len(children) < 2: if len(children) == 0: raise ValueError("No software found.") label, subtree = list(children.items())[0] common.append(label) children = subtree.children prefix = os.sep.join(common) for software_name, subtree in children.items(): software_path = os.path.join(prefix, software_name) files = [] for source_sub_path in subtree: source_path = os.path.join(software_path, source_sub_path) files.append(source_path) software = Software(software_path, files) yield software def __iter__(self): for label, child in self.children.items(): if len(child.children) == 0: yield label else: for x in child: yield os.path.join(label, x) ``` #### File: locmoss/test/test_struct.py ```python from nose.tools import assert_equal, assert_not_equal, assert_false from locmoss.kgram import KGrams def get_kgrams(): kg1 = KGrams("abc") kg1_p = KGrams("abc") kg2 = KGrams("abg") kg3 = KGrams("ab") return kg1, kg1_p, kg2, kg3 def test_kgram_len(): kg1, kg1_p, kg2, kg3 = get_kgrams() assert_equal(len(kg1), 3) assert_equal(len(kg1_p), 3) assert_equal(len(kg2), 3) assert_equal(len(kg3), 2) def test_kgram_hash_eq(): kg1, kg1_p, kg2, kg3 = get_kgrams() assert_equal(hash(kg1), hash(kg1_p)) assert_equal(kg1, kg1_p) assert_false(kg1 is kg1_p) assert_not_equal(hash(kg1), hash(kg2)) assert_not_equal(hash(kg1), hash(kg3)) assert_not_equal(hash(kg2), hash(kg3)) assert_not_equal(kg1, kg2) assert_not_equal(kg1, kg3) assert_not_equal(kg2, kg3) ``` #### File: locmoss/locmoss/winnowing.py ```python from .fingerprint import Fingerprinter from .kgram import KGrams, Buffer class Winnower(Fingerprinter): def __init__(self, parser_factory, window_size, k): super().__init__(parser_factory) self.window_size = window_size self.k = k @property def kgramifier(self): # Can be overriden to change the default hash function return KGrams.kgramify def extract_fingerprints_(self, token_iterator): window = Buffer(self.window_size) selected_grams = [] min_gram = None for location, kgram in self.kgramifier(token_iterator, self.k): window.put(kgram) if window.is_full(): # Note: using built-in `min` should be much faster than # re-impl. it. Moreover, the window is expected to be small # and the cost of deriving and inverting an array should be # small. # `min` keeps the leftmost minima: # >> min([(1, 1), (1, 2)], key=lambda x:x[0]) # (1, 1) window_min = min(list(window)[::-1], key=hash) if window_min is not min_gram: selected_grams.append(window_min) min_gram = window_min yield location, window_min ```
{ "source": "jm-begon/ood_samplefree", "score": 2 }
#### File: ood_samplefree/datasets/custom_transforms.py ```python from copy import copy from functools import partial import torch from torchvision import transforms class Shuffle(object): def __call__(self, tensor): # TODO support gray images n_channel, height, width = tensor.size() perm = torch.randperm(height*width) for c in range(n_channel): tensor[c] = tensor[c].view(width*height)[perm].view(height, width) return tensor def make_shuffle_variant(full_dataset): d2 = copy(full_dataset) d2.ls_transform = transforms.Compose([d2.ls_transform, Shuffle()]) d2.vs_transform = transforms.Compose([d2.vs_transform, Shuffle()]) d2.ts_transform = transforms.Compose([d2.ts_transform, Shuffle()]) return d2 class ShuffleFactory(object): @classmethod def same_as(cls, full_dataset): return make_shuffle_variant(full_dataset) class InverseFactory(object): @classmethod def apply_invert(cls, full_dataset, make_copy=True): try: from PIL.ImageChops import invert except ImportError: from PIL.ImageOps import invert d2 = copy(full_dataset) if make_copy else full_dataset d2.ls_transform = transforms.Compose([invert, d2.ls_transform]) d2.vs_transform = transforms.Compose([invert, d2.vs_transform]) d2.ts_transform = transforms.Compose([invert, d2.ts_transform]) return d2 def __init__(self, full_dataset_factory): self.fdf = full_dataset_factory def __call__(self, *args, **kwargs): full_dataset = self.fdf(*args, **kwargs) return self.__class__.apply_invert(full_dataset, make_copy=False) def same_as(self, ref_full_dataset): fd = self.fdf.same_as(ref_full_dataset) return self.__class__.apply_invert(fd, make_copy=False) # ================================ DATA AUG. ================================= # class DataAugmentation(object): def get_transform(self): return transforms.Compose() def partial(self, full_dataset_factory, **kwargs): return partial(full_dataset_factory, ls_data_augmentation=self.get_transform(), **kwargs) class CropAugmented(DataAugmentation): def __init__(self, size=32, padding=4, padding_mode="reflect"): self.kwargs = {"size": size, "padding":padding, "padding_mode":padding_mode} def get_transform(self): return transforms.RandomCrop(**self.kwargs) class CropHzFlipAugmented(DataAugmentation): def __init__(self, size=32, padding=4, padding_mode="reflect"): self.kwargs = {"size": size, "padding": padding, "padding_mode": padding_mode} def get_transform(self): return transforms.Compose([ transforms.RandomCrop(**self.kwargs), transforms.RandomHorizontalFlip(), ]) class CropHzVFlipAugmented(DataAugmentation): def __init__(self, size=32, padding=4, padding_mode="reflect"): self.kwargs = {"size": size, "padding": padding, "padding_mode": padding_mode} def get_transform(self): return transforms.Compose([ transforms.RandomCrop(**self.kwargs), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), ]) class FlipsAugmented(DataAugmentation): def get_transform(self): return transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), ]) ``` #### File: ood_samplefree/datasets/utils.py ```python from torch.utils.data import DataLoader, ConcatDataset, Subset def get_transform(dataset): if isinstance(dataset, DataLoader): return get_transform(dataset.dataset) if isinstance(dataset, ConcatDataset): return get_transform(dataset.datasets[0]) if isinstance(dataset, Subset): return get_transform(dataset.dataset) return dataset.transform ``` #### File: ood_samplefree/features/latent.py ```python import os import shutil import warnings import numpy as np from .structures import Monitor, MultiHook from .baselines import get_linear_layer def norm_of(X, axis=-1): """ X: array [n_samples, n_features] """ return np.sqrt(np.sum(X**2, axis=axis)) def predicted_class(Z): return Z.argmax(axis=1) def latent_metrics(U, C, W): W_norm = norm_of(W) U_norm = norm_of(U) M_k = U * W[C] A = np.sum(M_k, axis=1) Q = A / W_norm[C] norm = -U_norm proj = -Q ang = 1 - (Q / U_norm) act = -A return norm, act, proj, ang def compute_ang_p(ang, act_p, act): rAct = act_p / act return 1 - ((1 - ang) * rAct) class LatentMonitor(Monitor): def __init__(self, linear_layer_getter=None): super().__init__() if linear_layer_getter is None: linear_layer_getter = get_linear_layer self.linear_layer = linear_layer_getter self.W = None self.W_pos = None self.W_pos_mask = None def create_hook(self): def hook(module, input, output): latents = input[0].data.cpu().numpy() logits = output.data.cpu().numpy() C = predicted_class(logits) norm, act, proj, ang = latent_metrics(latents, C, self.W) self.cache.save("norm", norm) self.cache.save("act", act) self.cache.save("proj", proj) self.cache.save("ang", ang) latents *= self.W_pos_mask[C] norm_p, act_p, proj_p, ang_pp = latent_metrics(latents, C, self.W_pos) self.cache.save("norm+", norm_p) self.cache.save("act+", act_p) self.cache.save("proj+", proj_p) self.cache.save("ang++", ang_pp) self.cache.save("ang+", compute_ang_p(ang, act_p, act)) return hook def watch(self, model): linear_layer = self.linear_layer(model) W = linear_layer.weight.data.cpu().numpy() self.W = W self.W_pos_mask = (W>0).astype(float) self.W_pos = W * self.W_pos_mask handle = linear_layer.register_forward_hook(self.create_hook()) self.register_handle(handle) class LatentSaver(MultiHook): # Hook @classmethod def load_latent_matrix(cls, folder, force=False): files = [] with os.scandir(os.path.expanduser(folder)) as entries: # Get npy files files = [entry for entry in entries if entry.is_file() and entry.name.endswith(".npy")] if len(files) == 0: return list() files.sort(key=(lambda x: x.name)) # Verify timestamp ordering match prev_time = files[0].stat().st_mtime_ns for entry in files[1:]: curr_time = entry.stat().st_mtime_ns if curr_time < prev_time: if force: warnings.warn("Ordering mismatch") else: raise IOError("Ordering mismatch") prev_time = curr_time arrs = [] for entry in files: arrs.append(np.load(entry.path)) return np.vstack(arrs) @classmethod def load_batches_save_whole(cls, folder, force=False): folder = os.path.expanduser(folder) arr = cls.load_latent_matrix(folder, force=force) if len(arr) > 0: np.save(folder, arr) return len(arr) > 0 def __init__(self, folder, linear_layer_getter=None, max_n_batch_order=10, auto_remove=False, fail_fast=True): super().__init__() self.folder = os.path.expanduser(folder) if not os.path.exists(self.folder): os.makedirs(self.folder) if linear_layer_getter is None: linear_layer_getter = get_linear_layer self.linear_layer = linear_layer_getter self.batch_number = 0 self.suffix_length = max_n_batch_order self.auto_remove = auto_remove self.fail_fast = fail_fast def create_hook(self): def hook(module, input, output): latents = input[0].data.cpu().numpy() fname = "batch_{}".format(str(self.batch_number).zfill(self.suffix_length)) fpath = os.path.join(self.folder, fname) np.save(fpath, latents) self.batch_number += 1 return hook def __call__(self, model): linear_layer = self.linear_layer(model) handle = linear_layer.register_forward_hook(self.create_hook()) self.register_handle(handle) return self def concatenate_batches(self, remove_folder=False, force=False): saved = self.__class__.load_batches_save_whole(self.folder, force=force) if saved and remove_folder: shutil.rmtree(self.folder) def __exit__(self, exc_type, exc_val, exc_tb): super().__exit__(exc_type, exc_val, exc_tb) self.concatenate_batches(self.auto_remove, force=not self.fail_fast) def create_latent_saver(folder, linear_layer_getter=None, max_n_batch_order=10, fail_fast=True): if folder is None: return MultiHook() return LatentSaver(folder, linear_layer_getter=linear_layer_getter, max_n_batch_order=max_n_batch_order, fail_fast=fail_fast) ``` #### File: ood_samplefree/features/summary.py ```python from sklearn.preprocessing import StandardScaler class OneClassSum(object): def fit(self, X, y=None, sample_weight=None): self.scaler = StandardScaler() X = self.scaler.fit_transform(X) return self def predict(self, X): X = self.scaler.transform(X) S = X.sum(axis=1) return S ```
{ "source": "jm-begon/progressmonitor", "score": 3 }
#### File: progressmonitor/progressmonitor/callback.py ```python __author__ = "<NAME> <<EMAIL>>" __copyright__ = "3-clause BSD License" __version__ = '1.0' __date__ = "08 January 2015" import sys import os from functools import partial from logging import getLogger, INFO from .util import call_with def _writeln(stream, string, last_com=False): """ Writes and flushes the string on the stream Parameters ---------- stream : :class:`StringIO` The stream to uses string : str The string to write last_com : bool (Default : False) Whether is it the last message or not """ stream.write(string) stream.write(os.linesep) stream.flush() def stdout_callback_factory(): """ :func:`callback_factory` Return ------ callback : callable a callback issuing on stdout """ return partial(_writeln, sys.stdout) def stderr_callback_factory(): """ :func:`callback_factory` Return ------ callback : callable a callback issuing on stderr """ return partial(_writeln, sys.stderr) def overwrite_callback_factory(stream=sys.stdout): """ A :func:`callback_factory` which outputs on a stream and overwrite the previous message (provided the message is monoline) Parameters ---------- stream : :class:`StringIO` (Default : stdout) The stream to uses Return ------ :func:`overwrite_callback` """ string_length = [0] def overwrite_callback(string, last_com=False): """ A :func:`callback` which overwrite the previous message Parameters ---------- string : str The string to process last_com : bool (Default : False) Whether is it the last message or not """ stream.write("\b"*string_length[0]) stream.write(string) new_length = len(string) length_diff = string_length[0] - new_length if length_diff > 0: stream.write(" "*length_diff) stream.write("\b"*length_diff) string_length[0] = new_length if last_com: stream.write("\n") stream.flush() return overwrite_callback def logging_callback_factory(logger_name="", log_level=INFO): """ A :func:`callback_factory` which uses the logging facility Parameters ---------- logger_name : str (Default : '') The name of the logger to use log_level : int (Default : INFO) The logging level Return ------ :func:`logging_callback` """ logger = getLogger(logger_name) def logging_callback(string, last_com=False): """ A :func:`callback` write the string to a logger Parameters ---------- string : str The string to process last_com : bool (Default : False) Whether is it the last message or not """ logger.log(log_level, string) if last_com and hasattr(logger, "flush"): logger.flush() return logging_callback def store_till_end_callback_factory(destination=lambda m: None): """ A :func:`callback_factory` which stores the messages in a list and send them to the destination at the last message Parameters ---------- destination : callable (Default : destination=lambda m: None) A function which takes as input a list of string Return ------ :func:`store_till_end_callback` """ messages = [] def store_till_end_callback(string, last_com=False): """ A :func:`callback` which stores the messages in a list and send them to the destination at the last message Parameters ---------- string : str The string to process last_com : bool (Default : False) Whether is it the last message or not """ messages.append(string) if last_com: destination(messages) return store_till_end_callback def multi_callback_factory(callback_factories, **kwargs): """ A :func:`callback_factory` which multiplexes the messages Parameters ---------- callback_factories : iterable of :func:`callback_factory` The callback to use to issue the message Return ------ :func:`multi_callback` """ callbacks = [] for factory in callback_factories: callbacks.append(call_with(factory, kwargs)) def multi_callback(string, last_com=False): """ A :func:`callback` which multipex messages Parameters ---------- string : str The string to process last_com : bool (Default : False) Whether is it the last message or not """ for callback in callbacks: callback(string, last_com) return multi_callback __callback_factories__ = { "$stdout" : stdout_callback_factory, "$stderr" : stderr_callback_factory, "$overwrite" : overwrite_callback_factory, "$log" : logging_callback_factory, "$store_till_end" : store_till_end_callback_factory, "$multi" : multi_callback_factory } ``` #### File: progressmonitor/progressmonitor/config.py ```python __author__ = "<NAME> <<EMAIL>>" __copyright__ = "3-clause BSD License" __version__ = '1.0' __date__ = "08 January 2015" import re from ast import literal_eval import logging from .factory import monitor_generator_factory from .factory import (monitor_function_factory, formated_code_monitoring) from .formatter import __formatter_factories__ from .rule import __rule_factories__ from .callback import __callback_factories__ from .util import IdProxy # ============================ MANAGER ============================ # class Manager(object): UNKNOWN_MONITOR = 0 GENERATOR_MONITOR = 1 FUNCTION_MONITOR = 2 CODE_MONITOR = 3 _singleton = None def __new__(cls, *args, **kwargs): if cls._singleton is None: cls._singleton = super(Manager, cls).__new__(cls, *args, **kwargs) cls._singleton._meta = dict() return cls._singleton def add_config(self, monitor_name, conf, monitor_type): self._meta[monitor_name] = (conf, monitor_type) def _get_ancestors_conf(self, monitor_name): unknown = Manager.UNKNOWN_MONITOR monitor_type = unknown conf = dict() prefixes = [monitor_name[:m.start()] for m in re.finditer('\.',monitor_name)] prefixes.append(monitor_name) for prefix in prefixes: anc_conf, type_ = self._meta.get(prefix, (dict(), unknown)) if type_ != Manager.UNKNOWN_MONITOR: monitor_type = type_ conf.update(anc_conf) return conf, monitor_type def get_config(self, monitor_name, **kwargs): conf, monitor_type = self._get_ancestors_conf(monitor_name) if len(kwargs) > 0: conf.update(kwargs) return conf, monitor_type # ============================ DICT PARSING ============================ # class Const(object): VERSION = "version" MONITORS = "generator_monitors" FUNC_MONITORS = "function_monitors" CODE_MONITORS = "code_monitors" CALLBACK_SEC = "callbacks" RULE_SEC = "rules" FORMATTER_SEC = "formatters" def _external_load(string): mod_str, obj_str = string.rsplit(".", 1) mod = __import__(mod_str, fromlist=[obj_str]) obj = getattr(mod, obj_str) return obj def _substitute(struct, substit_dict): if hasattr(struct, "startswith"): if struct.startswith("$"): return substit_dict[struct] elif hasattr(struct, "iteritems"): # dict --> inspect for k, v in struct.iteritems(): struct[k] = _substitute(v, substit_dict) else: try: # List -> inspect for i, elem in enumerate(struct): struct[i] = _substitute(elem, substit_dict) except TypeError: pass return struct def _dict_config_v1(config_dict): manager = Manager() # ---- Predefined replacement rules ---- # substit_dict = dict() substit_dict.update(__rule_factories__) substit_dict.update(__formatter_factories__) substit_dict.update(__callback_factories__) # ---- Adding the substitutions ---- # # rules if Const.RULE_SEC in config_dict: for k, v in config_dict[Const.RULE_SEC].iteritems(): if k.startswith("$"): loaded = _external_load(v) substit_dict[k] = loaded __rule_factories__[k] = loaded # hook if Const.FORMATTER_SEC in config_dict: for k, v in config_dict[Const.FORMATTER_SEC].iteritems(): if k.startswith("$"): loaded = _external_load(v) substit_dict[k] = loaded __formatter_factories__[k] = loaded # callback if Const.CALLBACK_SEC in config_dict: for k, v in config_dict[Const.CALLBACK_SEC].iteritems(): if k.startswith("$"): loaded = _external_load(v) substit_dict[k] = loaded __callback_factories__[k] = loaded # ---- Performing the substitutions ---- # config_dict = _substitute(config_dict, substit_dict) # ---- Getting the monitors for generators---- # if Const.MONITORS in config_dict: for name, conf in config_dict[Const.MONITORS].iteritems(): # Adding to the manager manager.add_config(name, conf, Manager.GENERATOR_MONITOR) # ---- Getting the monitors for functions ---- # if Const.FUNC_MONITORS in config_dict: for name, conf in config_dict[Const.FUNC_MONITORS].iteritems(): # Adding to the manager manager.add_config(name, conf, Manager.FUNCTION_MONITOR) # ---- Getting the monitors for functions ---- # if Const.CODE_MONITORS in config_dict: for name, conf in config_dict[Const.CODE_MONITORS].iteritems(): # Adding to the manager manager.add_config(name, conf, Manager.CODE_MONITOR) # ============================ PUBLIC EXPOSURE ============================ # def get_config(monitor_name, **kwargs): conf, _ = Manager().get_config(monitor_name, **kwargs) return conf def get_monitor(monitor_name, **kwargs): conf, monitor_type = Manager().get_config(monitor_name, **kwargs) if monitor_type == Manager.GENERATOR_MONITOR: return monitor_generator_factory(**conf) elif monitor_type == Manager.FUNCTION_MONITOR: return monitor_function_factory(**conf) elif monitor_type == Manager.CODE_MONITOR: return formated_code_monitoring(**conf) else: # If unknown, do not crash caller code logger = logging.getLogger('progressmonitor.config') msg = "Unknown monitor name '%s'. Skipping monitoring." % monitor_name logger.warning(msg) return IdProxy() def get_generator_monitor(monitor_name, **kwargs): conf = get_config(monitor_name, **kwargs) return monitor_generator_factory(**conf) def get_function_monitor(monitor_name, **kwargs): conf = get_config(monitor_name, **kwargs) return monitor_function_factory(**conf) def get_code_monitor(monitor_name, **kwargs): conf = get_config(monitor_name, **kwargs) return formated_code_monitoring(**conf) def parse_dict_config(config_dict): version = config_dict.get(Const.VERSION, 1) if version == 1: _dict_config_v1(config_dict) else: raise AttributeError("Version "+str(version)+" is not supported") def parse_file_config(config_file): with open(config_file) as fp: config_dict = literal_eval(fp.read()) parse_dict_config(config_dict) ``` #### File: progressmonitor/test/testfallback.py ```python __author__ = "<NAME> <<EMAIL>>" __copyright__ = "3-clause BSD License" __version__ = '1.0' __date__ = "15 January 2015" from nose.tools import assert_equal import dis from progressmonitor.formatter import (progressbar_formatter_factory, nb_iterations_formatter_factory, elapsed_time_formatter_factory, remaining_time_formatter_factory) from progressmonitor.rule import (periodic_rule_factory, span_rule_factory, rate_rule_factory) from progressmonitor.util import call_with def test_fb_rate2span(): kwargs = {"rate": 0.1, "span":10} r1 = call_with(rate_rule_factory, kwargs) r2 = call_with(span_rule_factory, kwargs) assert_equal(r1.__name__, r2.__name__) def test_fb_span2period(): kwargs = {"period":1} r1 = call_with(span_rule_factory, kwargs) r2 = call_with(periodic_rule_factory, kwargs) assert_equal(r1.__name__, r2.__name__) def test_fb_pb2nbiter(): kwargs = {} r1 = call_with(progressbar_formatter_factory, kwargs) r2 = call_with(nb_iterations_formatter_factory, kwargs) assert_equal(r1.__name__, r2.__name__) def test_fb_remaining2elapsed(): kwargs = {} r1 = call_with(remaining_time_formatter_factory, kwargs) r2 = call_with(elapsed_time_formatter_factory, kwargs) assert_equal(r1.__name__, r2.__name__) ```
{ "source": "jm-begon/pt_tools", "score": 2 }
#### File: pt_tools/datasets/compute_normalization.py ```python from collections import defaultdict import torch from pt_inspector.stat import Stat def compute_normalization(full_dataset, what="ls"): collector = {} ls, vs, ts = full_dataset.get_ls_vs_ts() if what == "ls": dataset = ls elif what == "vs": dataset = vs elif what == "ts": dataset = ts else: dataset = torch.utils.data.ConcatDataset([ls, vs, ts]) # dataset[0] is a pair (image tensor, label) shape = dataset[0][0].size() if len(shape) == 2: # 1 channel n_channels = 1 get_channel = (lambda x, _: x) else: n_channels = shape[0] get_channel = (lambda x, i: x[i]) stats = [Stat() for _ in range(n_channels)] hist_shape = defaultdict(int) hist_cls = defaultdict(int) n = 0 for n, t in enumerate(dataset): x = t[0].numpy() y = t[1] if not isinstance(y, int): try: y = t[1].item() except Exception: y = int(t[1]) hist_cls[y] += 1 hist_shape[x.shape] += 1 for c in range(n_channels): stats[c].add(get_channel(x, c)) collector["n_samples"] = n + 1 collector["hist_shape"] = hist_shape collector["hist_cls"] = hist_cls means = [] stds = [] for stat in stats: m, s = stat.get_running() means.append(m) stds.append(s) collector["means"] = tuple(means) collector["stds"] = tuple(stds) return collector if __name__ == '__main__': pass ``` #### File: pt_tools/datasets/utils.py ```python from torch.utils.data import DataLoader, ConcatDataset, Subset def get_base_dataset(dataset): if isinstance(dataset, DataLoader): return get_base_dataset(dataset.dataset) if isinstance(dataset, ConcatDataset): return get_base_dataset(dataset.datasets[0]) if isinstance(dataset, Subset): return get_base_dataset(dataset.dataset) return dataset def get_transform(dataset): return get_base_dataset(dataset).transform ```
{ "source": "jm-begon/randconv", "score": 3 }
#### File: randconv/randconv/classifier.py ```python __author__ = "<NAME> <<EMAIL>>" __copyright__ = "3-clause BSD License" __date__ = "20 January 2015" import numpy as np import scipy.sparse as sps from sklearn.metrics import confusion_matrix from sklearn.ensemble import RandomTreesEmbedding from progressmonitor import monitor_with from ._compute_histogram import compute_histogram class Classifier(object): """ ========== Classifier ========== A :class:`Classifier` uses a :class:`Coordinator` to extract data from an :class:`ImageBuffer` and feed it to a **scikit-learn base classifier**. The :class:`Classifier` can take care of multiple feature vectors per object. """ def __init__(self, coordinator, base_classifier): """ Construct a :class:`Classifier` Parameters ---------- coordinator : :class:`Coordinator` The coordinator responsible for the features extraction base_classifier : scikit-learn classifier (:meth:`predict_proba` required) The learning algorithm which will classify the data """ self._classifier = base_classifier self._coord = coordinator self._classif2user_lut = [] self._user2classif_lut = {} def _build_luts(self, y_user): """ Builds the lookup tables for converting user labels to/from classifier label Parameters ---------- y_user : list the list of user labels """ user_labels = np.unique(y_user) self._classif2user_lut = user_labels self._user2classif_lut = {j: i for i, j in enumerate(user_labels)} def _convert_labels(self, y_user): """ Convert labels from the user labels to the internal labels Parameters ---------- y_user : list list of user labels to convert into internal labels Returns ------- y_classif : list the corresponding internal labels """ print self._user2classif_lut return [self._user2classif_lut[x] for x in y_user] def _convert_labels_back(self, y_classif): """ Convert labels back to the user labels Parameters ---------- y_classif : list list of internal labels to convert Returns ------- y_user : list the corresponding user labels """ return [self._classif2user_lut[x] for x in y_classif] @monitor_with("rc.func.RCClassifier", task_name="Learning the model") def fit(self, image_buffer): """ Fits the data contained in the :class:`ImageBuffer` instance Parameters ----------- image_buffer : :class:`ImageBuffer` The data to learn from Return ------- self : :class:`Classifier` This instance """ #Updating the labels y_user = image_buffer.get_labels() self._build_luts(y_user) #Extracting the features X, y_user = self._coord.process(image_buffer, learning_phase=True) #Converting the labels y = self._convert_labels(y_user) #Delegating the classification self._classifier.fit(X, y) #Cleaning up self._coord.clean(X, y_user) return self def predict_predict_proba(self, image_buffer): """ Classify the data contained in the :class:`ImageBuffer` instance Parameters ----------- image_buffer : :class:`ImageBuffer` The data to classify Return ------- pair : (y_proba, y_classif) y_proba: list of list of float each entry is the probability vector of the input of the same index as computed by the base classifier y_classif : a list of int each entry is the classification label corresponding to the input """ y_prob = self.predict_proba(image_buffer) y_classif = np.argmax(y_prob, axis=1) return y_prob, self._convert_labels_back(y_classif) @monitor_with("func.rc.Classifier", task_name="Classifying") def predict(self, image_buffer): """ Classify the data contained in the :class:`ImageBuffer` instance Parameters ----------- image_buffer : :class:`ImageBuffer` The data to classify Return ------- list : list of int each entry is the classification label corresponding to the input """ _, y_classif = self.predict_predict_proba(image_buffer) return y_classif @monitor_with("func.rc.Classifier", task_name="Classifying") def predict_proba(self, image_buffer): """ Classify softly the data contained is the :class:`ImageBuffer` instance. i.e. yields a probability vector of belongin to each class Parameters ----------- image_buffer : :class:`ImageBuffer` The data to classify Return ------- list : list of list of float each entry is the probability vector of the input of the same index as computed by the base classifier """ #Extracting the features X_pred, y = self._coord.process(image_buffer, learning_phase=False) #Cleaning up self._coord.clean(y) del y y = self._predict_proba(X_pred, len(image_buffer)) #Cleaning up self._coord.clean(X_pred) del X_pred return y def _predict_proba(self, X_pred, nb_objects): #Misc. nb_factor = len(X_pred)/nb_objects y = np.zeros((nb_objects, len(self._user2classif_lut))) #Classifying the data _y = self._classifier.predict_proba(X_pred) for i in xrange(nb_objects): y[i] = np.sum(_y[i * nb_factor:(i+1) * nb_factor], axis=0) / nb_factor return y def _predict(self, X_pred, nb_objects): y_classif = np.argmax(self._predict_proba(X_pred, nb_objects), axis=1) return self._convert_labels_back(y_classif) def accuracy(self, y_pred, y_truth): """ Compute the frequency of correspondance between the two vectors Parameters ----------- y_pred : list of int The prediction by the model y_truth : list of int The ground truth Return ------- accuracy : float the accuracy """ s = sum([1 for x, y in zip(y_pred, y_truth) if x == y]) return float(s)/len(y_truth) def confusion_matrix(self, y_pred, y_truth): """ Compute the confusion matrix Parameters ----------- y_pred : list of int The prediction by the model y_truth : list of int The ground truth Return ------- mat : 2D numpy array The confusion matrix """ return confusion_matrix(y_truth, y_pred) class UnsupervisedVisualBagClassifier(Classifier): """ =============================== UnsupervisedVisualBagClassifier =============================== 1. Unsupervised 2. Binary bag of words 3. Totally random trees """ def __init__(self, coordinator, base_classifier, n_estimators=10, max_depth=5, min_samples_split=2, min_samples_leaf=1, n_jobs=-1, random_state=None, verbose=0): Classifier.__init__(self, coordinator, base_classifier) self.histoSize = 0 self._visualBagger = RandomTreesEmbedding(n_estimators=n_estimators, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, n_jobs=n_jobs, random_state=random_state, verbose=verbose) @monitor_with("func.rc.UVBClassif", task_name="Extracting features") def _preprocess(self, image_buffer, learning_phase): X_pred, y = self._coord.process(image_buffer, learning_phase=learning_phase) y_user = self._convert_labels(y) #Cleaning up self._coord.clean(y) del y #Bag-of-word transformation with monitor_with("code.rc.UVBClassif", taskname="Bag-of-word transformation"): X2 = None if learning_phase: X2 = self._visualBagger.fit_transform(X_pred, y_user) self.histoSize = X2.shape[1] else: X2 = self._visualBagger.transform(X_pred) #Cleaning up self._coord.clean(X_pred) del X_pred del y_user nb_factor = X2.shape[0] // len(image_buffer) if not sps.isspmatrix_csr(X2): X2 = X2.tocsr() if nb_factor == 1: return X2 with monitor_with("code.rc.UVBClassif", taskname="Histogram"): nbTrees = self._visualBagger.n_estimators X3 = compute_histogram(len(image_buffer), nb_factor, nbTrees, X2) #Cleaning up del X2 # Should be useless return X3 @monitor_with("func.rc.UVBClassif", task_name="Fitting histogram") def fit_histogram(self, hist, y): #Delegating the classification self._classifier.fit(hist, y) return self def fit(self, image_buffer): """ Fits the data contained in the :class:`ImageBuffer` instance Parameters ----------- image_buffer : :class:`ImageBuffer` The data to learn from Return ------- self : :class:`Classifier` This instance """ #Updating the labels y_user = image_buffer.get_labels() self._build_luts(y_user) y = self._convert_labels(y_user) X = self._preprocess(image_buffer, learning_phase=True) return self.fit_histogram(X, y) def predict(self, image_buffer): """ Classify the data contained in the :class:`ImageBuffer` instance Parameters ----------- image_buffer : :class:`ImageBuffer` The data to classify Return ------- list : list of int each entry is the classification label corresponding to the input """ X = self._preprocess(image_buffer, learning_phase=False) y_classif = self._classifier.predict(X) return self._convert_labels_back(y_classif) def predict_proba(self, image_buffer): """ Classify softly the data contained is the :class:`ImageBuffer` instance. i.e. yields a probability vector of belongin to each class Parameters ----------- image_buffer : :class:`ImageBuffer` The data to classify Return ------- list : list of list of float each entry is the probability vector of the input of the same index as computed by the base classifier """ if not hasattr(self._classifier, "predict_proba"): #Early error self._classifier.predict_proba(np.zeros((1, 1))) X = self._preprocess(image_buffer, learning_phase=False) return self._classifier.predict_proba(X) ``` #### File: randconv/randconv/coordinator_factory.py ```python __author__ = "<NAME> <<EMAIL>>" __copyright__ = "3-clause BSD License" __date__ = "20 January 2015" import math from .image import * from .util import (OddUniformGenerator, NumberGenerator, CustomDiscreteNumberGenerator, GaussianNumberGenerator) from .feature_extractor import ImageLinearizationExtractor, DepthCompressorILE from .coordinator import (RandConvCoordinator, PyxitCoordinator) class Const: RND_RU = "RND_RU" # -1 (real uniform) RND_SET = "RND_SET" # -2 (Discrete set with predifined probabilities) RND_GAUSS = "RND_GAUSS" # (Gaussian distribution) FGEN_ORDERED = "FGEN_ORDERED" # Ordered combination of others FGEN_CUSTOM = "FGEN_CUSTOM" # Custom filters FGEN_ZEROPERT = "FGEN_ZEROPERT" # Perturbation around origin FGEN_IDPERT = "FGEN_IDPERT" # Perturbation around id filter FGEN_IDDIST = "FGEN_IDDIST" # Maximum distance around id filter FGEN_STRAT = "FGEN_STRAT" # Stratified scheme POOLING_NONE = "POOLING_NONE" # 0 POOLING_AGGREG_MIN = "POOLING_AGGREG_MIN" # 1 POOLING_AGGREG_AVG = "POOLING_AGGREG_AVG" # 2 POOLING_AGGREG_MAX = "POOLING_AGGREG_MAX" # 3 POOLING_CONV_MIN = "POOLING_MW_MIN" # 4 POOLING_CONV_AVG = "POOLING_MW_AVG" # 5 POOLING_CONV_MAX = "POOLING_MW_MAX" # 6 POOLING_MORPH_OPENING = "POOLING_MORPH_OPENING" # 7 POOLING_MORPH_CLOSING = "POOLING_MORPH_CLOSING" # 8 FEATEXT_ALL = "FEATEXTRACT_ALL" FEATEXT_SPASUB = "FEATEXTRACT_SPASUB" def pyxit_factory( nb_subwindows=10, sw_min_size_ratio=0.5, sw_max_size_ratio=1., sw_target_width=16, sw_target_height=16, fixed_size=False, sw_interpolation=SubWindowExtractor.INTERPOLATION_BILINEAR, n_jobs=-1, verbosity=10, temp_folder=None, random=True): """ Factory method to create :class:`PyxitCoordinator` Parameters ---------- nb_subwindows : int >= 0 (default : 10) The number of subwindow to extract sw_min_size_ratio : float > 0 (default : 0.5) The minimum size of a subwindow expressed as the ratio of the size of the original image sw_max_size_ratio : float : sw_min_size_ratio <= sw_max_size_ratio <= 1 (default : 1.) The maximim size of a subwindow expressed as the ratio of the size of the original image sw_target_width : int > 0 (default : 16) The width of the subwindows after reinterpolation sw_target_height : int > 0 (default : 16) The height of the subwindows after reinterpolation fixed_size : boolean (default : False) Whether to use fixe size subwindow. If False, subwindows are drawn randomly. If True, the target size is use as the subwindow size and only the position is drawn randomly sw_interpolation : int (default : SubWindowExtractor.INTERPOLATION_BILINEAR) The subwindow reinterpolation algorithm. For more information, see :class:`SubWindowExtractor` n_jobs : int >0 or -1 (default : -1) The number of process to spawn for parallelizing the computation. If -1, the maximum number is selected. See also :mod:`Joblib`. verbosity : int >= 0 (default : 10) The verbosity level temp_folder : string (directory path) (default : None) The temporary folder used for memmap. If none, some default folder will be use (see the :class:`ParallelCoordinator`) random : bool (default : True) Whether to use randomness or use a predefined seed Return ------ coordinator : :class:`Coordinator` The PyxitCoordinator (possibly decorated) corresponding to the set of parameters Notes ----- - Subwindow random generator The subwindow random generator is a :class:`NumberGenerator` base instance (generate real nubers uniformely). - Feature extractor Base instance of :class:`ImageLinearizationExtractor` """ swngSeed = 0 #Randomness if random: swngSeed = None #SubWindowExtractor swNumGenerator = NumberGenerator(seed=swngSeed) if fixed_size: sw_extractor = FixTargetSWExtractor(sw_target_width, sw_target_height, sw_interpolation, swNumGenerator) else: sw_extractor = SubWindowExtractor(sw_min_size_ratio, sw_max_size_ratio, sw_target_width, sw_target_height, sw_interpolation, swNumGenerator) multi_sw_extractor = MultiSWExtractor(sw_extractor, nb_subwindows, True) #FEATURE EXTRACTOR feature_extractor = ImageLinearizationExtractor() #LOGGER autoFlush = verbosity >= 45 logger = ProgressLogger(StandardLogger(autoFlush=autoFlush, verbosity=verbosity)) #COORDINATOR coordinator = PyxitCoordinator(multi_sw_extractor, feature_extractor, logger, verbosity) if n_jobs != 1: coordinator.parallelize(n_jobs, temp_folder) return coordinator def get_multi_poolers(poolings, finalHeight, finalWidth): #Aggregator poolers = [] for height, width, policy in poolings: if policy is Const.POOLING_NONE: poolers.append(IdentityPooler()) elif policy is Const.POOLING_AGGREG_AVG: poolers.append(AverageAggregator(width, height, finalWidth, finalHeight)) elif policy is Const.POOLING_AGGREG_MAX: poolers.append(MaximumAggregator(width, height, finalWidth, finalHeight)) elif policy is Const.POOLING_AGGREG_MIN: poolers.append(MinimumAggregator(width, height, finalWidth, finalHeight)) elif policy is Const.POOLING_CONV_MIN: poolers.append(FastMWMinPooler(height, width)) elif policy is Const.POOLING_CONV_AVG: poolers.append(FastMWAvgPooler(height, width)) elif policy is Const.POOLING_CONV_MAX: poolers.append(FastMWMaxPooler(height, width)) elif policy is Const.POOLING_MORPH_OPENING: poolers.append(MorphOpeningPooler(height, width)) elif policy is Const.POOLING_MORPH_CLOSING: poolers.append(MorphClosingPooler(height, width)) return MultiPooler(poolers) def get_number_generator(genType, min_value, max_value, seed, **kwargs): if genType is Const.RND_RU: value_generatorerator = NumberGenerator(min_value, max_value, seed) elif genType is Const.RND_SET: probLaw = kwargs["probLaw"] value_generatorerator = CustomDiscreteNumberGenerator(probLaw, seed) elif genType is Const.RND_GAUSS: if "outRange" in kwargs: outRange = kwargs["outRange"] value_generatorerator = GaussianNumberGenerator(min_value, max_value, seed, outRange) else: value_generatorerator = GaussianNumberGenerator(min_value, max_value, seed) return value_generatorerator def get_filter_generator(policy, parameters, nb_filterss, random=False): if policy == Const.FGEN_ORDERED: #Parameters is a list of tuples (policy, parameters) ls = [] subNbFilters = int(math.ceil(nb_filterss/len(parameters))) for subPolicy, subParameters in parameters: ls.append(get_filter_generator(subPolicy, subParameters, subNbFilters, random)) return OrderedMFF(ls, nb_filterss) if policy is Const.FGEN_CUSTOM: print "Custom filters" return custom_finite_3_same_filter() #Parameters is a dictionary valSeed = None sizeSeed = None shuffling_seed = None perturbationSeed = None cell_seed = None sparseSeed = 5 if random: valSeed = 1 sizeSeed = 2 shuffling_seed = 3 perturbationSeed = 4 cell_seed = 5 sparseSeed = 6 min_size = parameters["min_size"] max_size = parameters["max_size"] size_generatorerator = OddUniformGenerator(min_size, max_size, seed=sizeSeed) min_val = parameters["min_val"] max_val = parameters["max_val"] value_generator = parameters["value_generator"] value_generatorerator = get_number_generator(value_generator, min_val, max_val, valSeed, **parameters) normalization = None if "normalization" in parameters: normalization = parameters["normalization"] if policy is Const.FGEN_ZEROPERT: print "Zero perturbation filters" baseFilterGenerator = FilterGenerator(value_generatorerator, size_generatorerator, normalisation=normalization) elif policy is Const.FGEN_IDPERT: print "Id perturbation filters" baseFilterGenerator = IdPerturbatedFG(value_generatorerator, size_generatorerator, normalisation=normalization) elif policy is Const.FGEN_IDDIST: print "Id distance filters" max_dist = parameters["max_dist"] baseFilterGenerator = IdMaxL1DistPerturbFG(value_generatorerator, size_generatorerator, max_dist, normalisation=normalization, shuffling_seed=shuffling_seed) elif policy is Const.FGEN_STRAT: print "Stratified filters" nb_cells = parameters["strat_nb_cells"] minPerturbation = 0 if "minPerturbation" in parameters: minPerturbation = parameters["minPerturbation"] maxPerturbation = 1 if "maxPerturbation" in parameters: maxPerturbation = parameters["maxPerturbation"] perturbationGenerator = get_number_generator(value_generator, minPerturbation, maxPerturbation, perturbationSeed) baseFilterGenerator = StratifiedFG(min_val, max_val, nb_cells, perturbationGenerator, size_generatorerator, normalisation=normalization, cell_seed=cell_seed) if "sparse_proba" in parameters: print "Adding sparcity" sparse_proba = parameters["sparse_proba"] baseFilterGenerator = SparsityDecoratorFG(baseFilterGenerator, sparse_proba, sparseSeed) print "Returning filters" return Finite3SameFilter(baseFilterGenerator, nb_filterss) def get_feature_extractor(policy, **kwargs): if policy is Const.FEATEXT_SPASUB: nbCol = kwargs.get("nbCol", 2) return DepthCompressorILE(nbCol) else: # Suupose Const.FEATEXT_ALL return ImageLinearizationExtractor() #TODO : include in randconv : (Const.FEATEXT_ALL, {}), (Const.FEATEXT_SPASUB, {"nbCol":2}) def randconv_factory( nb_filters=5, filter_policy=(Const.FGEN_ZEROPERT, {"min_size": 2, "max_size": 32, "min_val": -1, "max_val": 1, "value_generator": Const.RND_RU, "normalization": FilterGenerator.NORMALISATION_MEANVAR}), poolings=[(3, 3, Const.POOLING_AGGREG_AVG)], extractor=(Const.FEATEXT_ALL, {}), nb_subwindows=10, sw_min_size_ratio=0.5, sw_max_size_ratio=1., sw_target_width=16, sw_target_height=16, sw_interpolation=SubWindowExtractor.INTERPOLATION_BILINEAR, include_original_img=False, n_jobs=-1, verbosity=10, temp_folder=None, random=True): """ Factory method to create :class:`RandConvCoordinator` tuned for RGB images Parameters ---------- nb_filterss : int >= 0 (default : 5) The number of filter filter_policy : pair (policyType, parameters) policyType : one of Const.FGEN_* The type of filter generation policy to use parameters : dict The parameter dictionnary to forward to :func:`get_filter_generator` poolings : iterable of triple (height, width, policy) (default : [(3, 3, Const.POOLING_AGGREG_AVG)]) A list of parameters to instanciate the according :class:`Pooler` height : int > 0 the height of the neighborhood window width : int > 0 the width of the neighborhood window policy : int in {Const.POOLING_NONE, Const.POOLING_AGGREG_MIN, Const.POOLING_AGGREG_AVG, Const.POOLING_AGGREG_MAX, Const.POOLING_CONV_MIN, Const.POOLING_CONV_AVG, Const.POOLING_CONV_MAX} nb_subwindows : int >= 0 (default : 10) The number of subwindow to extract sw_min_size_ratio : float > 0 (default : 0.5) The minimum size of a subwindow expressed as the ratio of the size of the original image sw_max_size_ratio : float : sw_min_size_ratio <= sw_max_size_ratio <= 1 (default : 1.) The maximim size of a subwindow expressed as the ratio of the size of the original image sw_target_width : int > 0 (default : 16) The width of the subwindows after reinterpolation sw_target_height : int > 0 (default : 16) The height of the subwindows after reinterpolation sw_interpolation : int (default : SubWindowExtractor.INTERPOLATION_BILINEAR) The subwindow reinterpolation algorithm. For more information, see :class:`SubWindowExtractor` include_original_img : boolean (default : False) Whether or not to include the original image in the subwindow extraction process n_jobs : int >0 or -1 (default : -1) The number of process to spawn for parallelizing the computation. If -1, the maximum number is selected. See also :mod:`Joblib`. verbosity : int >= 0 (default : 10) The verbosity level temp_folder : string (directory path) (default : None) The temporary folder used for memmap. If none, some default folder will be use (see the :class:`ParallelCoordinator`) random : bool (default : True) Whether to use randomness or use a predefined seed Return ------ coordinator : :class:`Coordinator` The RandConvCoordinator corresponding to the set of parameters Notes ----- - Filter generator Base instance of :class:`Finite3SameFilter` with a base instance of :class:`NumberGenerator` for the values and :class:`OddUniformGenerator` for the sizes - Filter size The filter are square (same width as height) - Convolver Base instance of :class:`RGBConvolver` - Subwindow random generator The subwindow random generator is a :class:`NumberGenerator` base instance (generate real nubers uniformely). - Feature extractor Base instance of :class:`ImageLinearizationExtractor` """ #RANDOMNESS swngSeed = None if random is False: swngSeed = 0 #CONVOLUTIONAL EXTRACTOR #Filter generator #Type/policy parameters, #filters, random filter_policyType, filter_policyParam = filter_policy filter_generator = get_filter_generator(filter_policyType, filter_policyParam, nb_filters, random) #Convolver convolver = RGBConvolver() #Aggregator multi_pooler = get_multi_poolers(poolings, sw_target_height, sw_target_width) #SubWindowExtractor swNumGenerator = NumberGenerator(seed=swngSeed) sw_extractor = SubWindowExtractor(sw_min_size_ratio, sw_max_size_ratio, sw_target_width, sw_target_height, sw_interpolation, swNumGenerator) multi_sw_extractor = MultiSWExtractor(sw_extractor, nb_subwindows, False) #ConvolutionalExtractor convolutional_extractor = ConvolutionalExtractor(filter_generator, convolver, multi_sw_extractor, multi_pooler, include_original_img) #FEATURE EXTRACTOR feature_extractor = get_feature_extractor(extractor[0], **extractor[1]) #COORDINATOR coordinator = RandConvCoordinator(convolutional_extractor, feature_extractor) if n_jobs != 1: coordinator.parallelize(n_jobs, temp_folder) return coordinator ``` #### File: randconv/image/convolutional_extractor.py ```python import numpy as np try: import Image except ImportError: from PIL import Image from .numpy_pil_converter import NumpyPILConvertor __all__ = ["ConvolutionalExtractor"] class ConvolutionalExtractor: """ ====================== ConvolutionalExtractor ====================== A :class:`ConvolutionalExtractor` extract features from images. It proceeds in 3 steps : 1. Filtering It uses a :class:`FiniteFilter` to generate filters. Thoses filters are then applied by a :class:`Convolver` to the given image thus creating several new images (one per filter). Let us call them *image2*. 2. Pooling Each new *image2* is aggregated by a :class:`Aggregator`, yielding one image (let us call them *image3*) by processed *image2*s. 3. Subwindow extraction On each *image3* the same subwindows are extracted giving the set of *image4*. This set contains nb_filter*nb_subwindow images Note ---- - Compatibily The :class:`FiniteFilter` and the :class:`Convolver` must be compatible with the kind of image provided ! Example : the image is a RGB PIL image or RGB numpy array with a :class:`RGBConvolver` and a :class:`Finite3Filter` - Image representation See :mod:`ImageBuffer` for more information - It is also possible to include the original image in the process """ def __init__(self, finite_filter, convolver, multi_sw_extractor, multi_pooler, include_original_image=False): """ Construct a :class:`ConvolutionalExtractor` Parameters ---------- finite_filter : :class:`FiniteFilter` The filter generator and holder convolver : :class:`Convolver` The convolver which will apply the filter. Must correspond with the filter generator and the image type pooler : :class:`MultiPooler` The :class:`MultiPooler`which will carry the spatial poolings **Note** : the spatial poolings must produce ouputs of the same shape ! include_original_image : boolean (default : False) Whether or not to include the original image for the subwindow extraction part """ self._finite_filter = finite_filter self._convolver = convolver self._sw_extractor = multi_sw_extractor self._multi_pooler = multi_pooler self._include_image = include_original_image def extract(self, image): """ Extract feature from the given image Parameters ---------- image : :class:`PIL.Image` or preferably a numpy array The image to process Return ------ all_subwindow : a list of lists of subwindows The element e[i][j] is a numpy array correspond to the ith subwindow of the jth filter. If the original image is included, it correspond to the first (0th) filter. """ #Converting image in the right format convertor = NumpyPILConvertor() image = convertor.pil2numpy(image) filtered = [] #Including the original image if desired if self._include_image: pooled_ls = self._multi_pooler.multipool(image) for pooled in pooled_ls: filtered.append(pooled) #Applying the filters & Aggregating for filt in self._finite_filter: #Filtering npTmp = self._convolver(image, filt) #Aggregating pooled_ls = self._multi_pooler.multipool(npTmp) for pooled in pooled_ls: filtered.append(pooled) #Refreshing the boxes shape = filtered[0].shape self._sw_extractor.refresh(shape[1], shape[0]) # width, height #Extracting the subwindows nb_filterss = len(self._finite_filter) nbSubWindow = len(self._sw_extractor) nbPoolers = len(self._multi_pooler) nbImageFactor = nb_filterss*nbPoolers if self._include_image: nbImageFactor += nbPoolers all_subwindows = [[0] * nbImageFactor for i in xrange(nbSubWindow)] for col, numpies in enumerate(filtered): #converting image to the right format img = convertor.numpy2pil(numpies) #Extracting the subwindows s.s. subwindows = self._sw_extractor.extract(img) for row in xrange(nbSubWindow): all_subwindows[row][col] = convertor.pil2numpy(subwindows[row]) return all_subwindows def get_filters(self): """ Return the filters used to process the image Return ------ filters : iterable of numpy arrays The filters used to process the image, with the exclusion of the identity filter if the raw image was included """ return self._finite_filter def get_poolers(self): """ Return ------ multi_pooler : class:`MultiPooler` The poolers """ return self._multi_pooler def is_image_included(self): """ Whether the raw image was included Return ------ isIncluded : boolean True if the raw image was included """ return self._include_image def get_nb_subwindows(self): """ Return the number of subwindows extracted """ return self._sw_extractor.nb_subwidows() def get_final_size_per_subwindow(self): return self._sw_extractor.get_final_size() ``` #### File: randconv/image/filter_holder.py ```python import numpy as np from math import sqrt from randconv.image import Finite3SameFilter __all__ = ["custom_filters", "custom_finite_3_same_filter"] def shape2D(squareIterable, normalisation=None): """ Return the corresponding 2D filter Parametes --------- squareIterable : iterable of number whose length is a square interger the 1D form of the filter normalization : (default : None) TODO XXX Return ------ filt : 2D numpy array The 2D filter Example ------- >>> sobelHz = [-1,0,1,-2,0,2,-1,0,1] >>> shape2D(sobelHz) # doctest: +SKIP array([[-1., 0., 1.], [-2., 0., 2.], [-1., 0., 1.]]) """ size = int(sqrt(len(squareIterable))) if size*size != len(squareIterable): raise ValueError("The length of the iterable must be a square integer") filt = np.zeros((size, size)) for i, val in enumerate(squareIterable): x = i // size y = i % size filt[x][y] = val return filt def custom_filters(): filters = [] centralEmphasis = shape2D([0.075, 0.125, 0.075, 0.125, 0.2, 0.125, 0.075, 0.125, 0.075]) filters.append(centralEmphasis) #discrete, two-dimensional gaussian 5x5 (which stdev ?) gauss5x5 = shape2D([0, 1, 2, 1, 0, 1, 3, 5, 3, 1, 2, 5, 9, 5, 2, 1, 3, 5, 3, 1, 0, 1, 2, 1, 0]) filters.append(gauss5x5) #Derivative sobelHz = shape2D([-1, 0, 1, -2, 0, 2, -1, 0, 1]) filters.append(sobelHz) sobelV = shape2D([1, 2, 1, 0, 0, 0, -1, -2, -1]) filters.append(sobelV) laplaceIso = shape2D([0, 1, 0, 1, -4, 1, 0, 1, 0]) filters.append(laplaceIso) laplaceFullIso = shape2D([1, 1, 1, 1, -8, 1, 1, 1, 1]) filters.append(laplaceFullIso) bigLaplace = shape2D([0, 0, -1, 0, 0, 0, -1, -2, -1, 0, -1, -2, 16, -2, -1, 0, -1, -2, -1, 0, 0, 0, -1, 0, 0]) filters.append(bigLaplace) bigLaplace2 = shape2D([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 24, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) filters.append(bigLaplace2) #Inverted laplaceIsoInv = shape2D([0, -1, 0, -1, 4, -1, 0, -1, 0]) filters.append(laplaceIsoInv) laplaceFullIsoInv = shape2D([-1, -1, -1, -1, 8, -1, 1, -1, -1]) filters.append(laplaceFullIsoInv) #Prewitt prewittHz = shape2D([-1, 0, 1, -1, 0, 1, -1, 0, 1]) filters.append(prewittHz) prewittV = shape2D([-1, -1, -1, 0, 0, 0, 1, 1, 1]) filters.append(prewittV) #Oriented edges hzEdges = shape2D([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) filters.append(hzEdges) vEdges = shape2D([0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 4, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0]) filters.append(vEdges) plus45Edges = shape2D([-1, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -1]) filters.append(plus45Edges) minus45Edges = shape2D([0, 0, 0, 0, -1, 0, 0, 0, -2, 0, 0, 0, 6, 0, 0, 0, -2, 0, 0, 0, -1, 0, 0, 0, 0]) filters.append(minus45Edges) plus45Edges3x3 = shape2D([1, 1, 1, -1, 0, 1, -1, -1, 0]) # TODO XXX non-symetric ? filters.append(plus45Edges3x3) minus45Edges3x3 = shape2D([1, 1, 1, 1, 0, -1, 1, -1, -1]) filters.append(minus45Edges3x3) #Frequencies lowPass = shape2D([0.25, 0.5, 0.25, 0.5, 1, 0.5, 0.25, 0.5, 0.25]) filters.append(lowPass) highPass = shape2D([1, -2, 1, -2, 5, -2, 1, -2, 1]) filters.append(highPass) highPassMean = shape2D([-1, -1, -1, -1, 9, -1, -1, -1, -1]) filters.append(highPassMean) #Compass gradient masks northCGM = shape2D([1, 1, 1, 1, -2, 1, -1, -1, -1]) filters.append(northCGM) northeastCGM = shape2D([1, 1, 1, -1, -2, 1, -1, -1, 1]) filters.append(northeastCGM) eastCGM = shape2D([-1, 1, 1, -1, -2, 1, -1, 1, 1]) filters.append(eastCGM) southeastCGM = shape2D([-1, -1, 1, -1, -2, 1, 1, 1, 1]) filters.append(southeastCGM) southCGM = shape2D([-1, -1, -1, 1, -2, 1, 1, 1, 1]) filters.append(southCGM) southwestCGM = shape2D([-1, -1, -1, 1, -2, 1, 1, 1, 1]) filters.append(southwestCGM) westCGM = shape2D([-1, 1, -1, 1, -2, -1, 1, 1, -1]) filters.append(westCGM) northwestCGM = shape2D([1, 1, 1, 1, -2, -1, 1, -1, -1]) filters.append(northwestCGM) #log logM = shape2D([0, 0, 1, 0, 0, 0, 1, 2, 1, 0, 1, 2, -16, 2, 1, 0, 1, 2, 1, 0, 0, 0, 1, 0, 0]) filters.append(logM) #application of log and laplacian logLaplacianed = shape2D([0, 0, 1, 1, 1, 0, 0, 0, 1, 4, -4, 4, 1, 0, 1, 4, -18, -25, -18, 4, 1, 1, -4, -25, 140, -25, -4, 1, 1, 4, -18, -25, -18, 4, 1, 0, 1, 4, -4, 4, 1, 0, 0, 0, 1, 1, 1, 0, 0]) filters.append(logLaplacianed) #Misc. #--jahne, pratt misc1 = shape2D([1, -2, 1, -2, 4, -2, 1, -2, 1]) filters.append(misc1) misc2 = shape2D([1, 1, 1, 1, -7, 1, 1, 1, 1]) filters.append(misc2) misc3 = shape2D([0, -1, 0, -1, 5, -1, 0, -1, 0]) filters.append(misc3) #--lines chittineni misc4 = shape2D([-1, -1, -1, 2, 2, 2, -1, -1, -1]) filters.append(misc4) misc5 = shape2D([-1, -1, 2, -1, 2, -1, 2, -1, -1]) filters.append(misc5) misc6 = shape2D([-1, 2, -1, -1, 2, -1, -1, 2, -1]) filters.append(misc6) misc7 = shape2D([2, -1, -1, -1, 2, -1, -1, -1, 2]) filters.append(misc7) return filters def custom_finite_3_same_filter(): return Finite3SameFilter(custom_filters()) if __name__ == "__main__": cuFilt = custom_finite_3_same_filter() print len(cuFilt) ``` #### File: randconv/image/image_converter.py ```python __author__ = "<NAME> <<EMAIL>>" __copyright__ = "3-clause BSD License" __version__ = 'dev' from abc import ABCMeta, abstractmethod import numpy as np try: import Image except ImportError: from PIL import Image import cv def to_numpy(image): if isinstance(image, np.ndarray): return image return np.asarray(image[:]) class OverflowManager: """ =============== OverflowManager =============== An :class:`OverflowManager` is responsible for managing overflow value from the range [0,255]. This base class does nothing (and therefore leaves the default mechanism unchanged, probably letting values wrap around). """ def manage(self, image): """ Enforces the overflow policy Parameters ---------- image : numpy.ndarray The image to process Return ------ processed_image : numpy.ndarray The processed image """ return image def __call__(self, image): """ Enforces the overflow policy Parameters ---------- image : numpy.ndarray The image to process Return ------ processed_image : numpy.ndarray The processed image """ return self.manage(image) class ClipOverflow(OverflowManager): """ ============= ClipOverflow ============= This class thresholds the exceeding values. That is, value below 0 are forced to 0 and values greater than 255 are pushed down to 255. """ def manage(self, image): return image.clip(0, 255) class MaxoutOverflow(OverflowManager): def __init__(self, dtype=np.uint8): try: info = np.iinfo(dtype) except ValueError: info = np.finfo(dtype) self._min = info.min self._max = info.max def manage(self, array): return array.clip(self._min, self._max) class HistogramEqualizer(OverflowManager): """ ================== HistogramEqualizer ================== This class performs an histogram equalization so as to ensures the correct [0,255] range for every color channel """ def __init__(self): raise NotImplementedError("This class is not yet implemented") def manage(self, image): raise NotImplementedError("This class is not yet implemented") class ImageConverter: """ ============== ImageConverter ============== An :class:`ImageConverter` converts images to another internal image representation. If you need a default exchange format, numpy is probably a good choice. """ __metaclass__ = ABCMeta @abstractmethod def convert(self, image): """ Converts, if need be, the given images into another representation specified by the class policy Parameters ---------- image : a supported image representation """ pass class NumpyConverter(ImageConverter): """ ============== NumpyConverter ============== An :class:`ImageConverter` which converts images to numpy 2D arrays. The supported types are PIL images and openCV images. Constructor parameters ---------------------- None. """ def convert(self, image): return to_numpy(image) class PILConverter(ImageConverter): """ ============ PILConverter ============ An :class:`ImageConverter` which converts images to PIL images. The supported types are numpy arrays and openCV images. Note : PIL images works on the range [0, 255] and not with real values. A :class:`OverflowManager` is necessary to enforce a policy for the overflowing values. The default policy is to clip exceeding values. Constructor parameters ---------------------- overflow_manager : OverflowManager (default : :class:`ClipOverflow`) the management policy for the overflow """ def __init__(self, overflow_manager=ClipOverflow()): self.overflow_manager = overflow_manager def convert(self, image): if isinstance(image, Image.Image): return image np_image = to_numpy(image) np_corrected = self.overflow_manager.manage(np_image) return Image.fromarray(np.uint8(np_corrected)) class CVConverter(ImageConverter): """ ============ PILConverter ============ An :class:`ImageConverter` which converts images to openCV images. The supported types are numpy arrays and PIL images. Class constants --------------- CV : int a constant representing the cv version CV2 : int a constant representing the cv2 version Constructor parameters ---------------------- version : int in {CV, CV2} (default : CV) The version of openCV array to convert to """ CV = 1 CV2 = 2 def __init__(self, version=CV): self.version = version def convert(self, image): if self.version == CVConverter.CV2: return to_numpy(image) if isinstance(image, cv.cvmat): return image return cv.fromarray(to_numpy(image)) ```
{ "source": "jm-begon/remote_control", "score": 3 }
#### File: remote_control/python/ser_com.py ```python from functools import partial from enum import Enum import logging import serial class Protocol(Enum): UNKNOWN = 0 NEC = 1 SONY = 2 NECX = 7 NUM_N_BYTES = 4 class Ack(object): def __init__(self, label, nac_info=None): self.label = label self.nac_info = nac_info def __bool__(self): return self.nac_info is None def __repr__(self): return "{}({})".format(self.__class__.__name__, repr(self.label), repr(self.nac_info)) def __str__(self): if self: return "[ACK] {}".format(self.label) return "[NAC] {} -- Reason: {}".format(self.label, self.nac_info) class Message(object): @property def label(self): return self.__class__.__name__ def _write(self, channel, *bytes): channel.write(bytes) def _n2b(self, number, length=NUM_N_BYTES): bytes = number.to_bytes(length, "big") check = (sum(bytes) % 256).to_bytes(length, "big") return bytes, check def _read_check(self, channel, *bytes, label=None): ack = partial(Ack, label=self.label if label is None else label) for i, check_byte in enumerate(bytes): ans = channel.read(1) if len(ans) == 0: return ack(nac_info="Error with {}th byte. Timeout?".format(i)) if ans != check_byte: return ack(nac_info="Error with {}th byte. Expecting {}, got {}" "".format(i, check_byte, ans)) return ack() def send_through(self, channel): yield Ack("Abstract message") class Handshake(Message): def send_through(self, channel): # Send 'syn' # Recieve 'synack' # Send 'ack' self._write(channel, *b'syn') yield self._read_check(channel, *b'synack') self._write(channel, *b'ack') class Command(Message): def __init__(self, code, protocol, size=None): self.code = code self.protocol = protocol self.size = size def send_through(self, channel): # Send protocol # Receive protocol b_protocol, check = self._n2b(self.protocol, length=1) self._write(channel, *b_protocol) p_ack = self._read_check(channel, *check, label="Communicating protocol") yield p_ack # Send size # Receive size b_size, check = self._n2b(self.size, length=1) self._write(channel, *b_size) s_ack = self._read_check(channel, *check, label="Communicating protocol") yield s_ack # Send code bytes, check = self._n2b(self.code) self._write(channel, *bytes) c_ack = self._read_check(channel, *check, label="Giving command") yield c_ack # Confirming if p_ack and s_ack and c_ack: self._write(channel, *b'ok') yield self._read_check(channel, *b'sent') class RemoteController(object): count = 0 @classmethod def gen_name(cls): c = cls.count cls.count += 1 return "RC{}".format(c) def __init__(self, port, baudrate=9600, timeout=1, name=None, fail_fast=True): # self.con_factory = partial(serial.Serial, port=port, baudrate=baudrate, # timeout=timeout, writeTimeout=timeout) self.con_factory = partial(PseudoChannel, port=port, baudrate=baudrate, timeout=timeout, writeTimeout=timeout) self.connection = None name = self.__class__.gen_name() if name is None else name self.logger = logging.getLogger(name) self.fail_fast = fail_fast def __enter__(self): self.connection = self.con_factory() self.connection.open() self.send(Handshake(), fail_fast=True) return self def __exit__(self, exc_type, exc_val, exc_tb): if self.connection is not None: self.connection.close() self.connection = None def send(self, message, fail_fast=False): fail_fast = self.fail_fast or fail_fast if not self.connection or not self.connection.isOpen(): raise ConnectionError(repr(self.connection)) for ack in message.send_through(self.connection): log_to = self.logger.debug if ack else self.logger.warning log_to(str(ack)) if fail_fast and not ack: raise IOError(str(ack)) class PseudoChannel(object): def __init__(self, port, baudrate, timeout, writeTimeout): self.opened = False self.port = port self.baudrate = baudrate self.timeout = timeout self.writeTimeout = writeTimeout self.historic = [] self.read_buffer = [] self.logger = logging.getLogger("Pseudo channel") def __repr__(self): return "{}(port={}, baudrate={}, timeout={}, writeTimeout={}).{}" \ "".format(self.__class__.__name__, repr(self.port), repr(self.baudrate), repr(self.timeout), repr(self.writeTimeout), "open()" if self.opened else "close()") def open(self): self.opened = True def close(self): self.opened = False def isOpen(self): return self.opened def write(self, data): self.historic.append(data) print("[W]", data) self.logger.info("[W] {}".format(data)) if data == b'syn': self.logger.info("[W] SYN") self.read_buffer.append(b'synack') elif data == b'ok': self.logger.info("[W] OK") self.read_buffer.append(b'sent') else: self.logger.info("[W] byte") num = int.from_bytes(data, "big") q = num check = 0 while q >= 256: q, r = int(q / 256), q % 256 check += r check += q self.read_buffer.append(check) def read(self, n): head, tail = self.read_buffer[:n], self.read_buffer[n:] self.read_buffer = tail self.logger.info("[R] {}".format(head)) return head if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) with RemoteController('COM1') as controller: controller.send(Command(3772793023, Protocol.NECX)) ```
{ "source": "jmbhughes/TapeLanguage", "score": 4 }
#### File: jmbhughes/TapeLanguage/TapeLanguage.py ```python import argparse class TapeInterpreter: ''' Inspired by Williams College's Breph language, this is an interpreter for a simple programming language with only a simple tape of one byte values, a data pointer that can move left and right, an instruction pointer to move through input code, and 8 operations: + : increase the the data value on the array - : decrement the data value on the array ( : begin a loop if the data pointer is nonzero ) : end of a loop l : move data pointer the left one position, if at the end of the data array stay put r : move the data pointer to the right one position, if at the end of the data stay put I : take one character of input p : print the character corresponding to the ascii value at the data pointer ''' def __init__(self, code, inputs, array_size=1024, max_iterations=1024, verbose=False): self.verbose = verbose self._max_iterations = max_iterations self._instruction_pointer = 0 self._data_pointer = 0 self._iteration = 0 self._data = [0]*array_size self.input = inputs self.output = "" self.code = code if len(self.code) == 0: raise Exception("Code is empty") if not self._check_parentheses(): raise Exception("Code has unmatching parentheses") self._paren_matching = self._find_parentheses() if self.verbose: print("Passed parentheses matching:") print(self._paren_matching) def interpret(self): ''' runs the code up to the maximum iterations returns true if program terminated''' if self.verbose: print("Beginning run with maximum iterations as {}".format(self._max_iterations)) while self._iteration < self._max_iterations: self._iteration += 1 if self._step(): if self.verbose: print("Finished successfully") return True if self.verbose: print("Did not finish in iterations") return False # did not finish in iterations def _step(self): ''' Execute the next command of the program returns true if the program is finished running naturally''' mapping = {'+':self._oper_plus, '-':self._oper_minus, 'l':self._oper_left, 'r':self._oper_right, 'i':self._oper_input, 'p':self._oper_print, "(":self._oper_lparen, ")":self._oper_rparen } current_instruction = self.code[self._instruction_pointer] if self.verbose: print("iter={}, Performing {}".format(self._iteration, current_instruction)) if current_instruction in mapping: mapping[current_instruction]() # execute command else: self._oper_ignore() return self._instruction_pointer >= len(self.code) def _oper_ignore(self): ''' ignore whatever character is under the instruction pointer ''' self._instruction_pointer += 1 def _oper_lparen(self): ''' operation definition for (''' if self._data[self._data_pointer] == 0: self._instruction_pointer = self._paren_matching[self._instruction_pointer] + 1 else: self._instruction_pointer += 1 def _oper_rparen(self): ''' operation definition for ) ''' if self._data[self._data_pointer] != 0: self._instruction_pointer = self._paren_matching[self._instruction_pointer] + 1 else: self._instruction_pointer += 1 def _oper_plus(self): ''' operation definition for + ''' self._data[self._data_pointer] += 1 self._instruction_pointer += 1 def _oper_minus(self): ''' operation definition for -''' self._data[self._data_pointer] -= 1 self._instruction_pointer += 1 def _oper_left(self): ''' operation definition for l''' self._data_pointer -= 1 if self._data_pointer < 0: self._data_pointer = 0 self._instruction_pointer += 1 def _oper_right(self): ''' operation definition for r''' self._data_pointer += 1 if self._data_pointer >= len(self._data): self._data_pointer = len(self._data) - 1 self._instruction_pointer += 1 def _oper_print(self): ''' operation definition for p, if number is outside ascii definition adds null to output''' try: c = chr(self._data[self._data_pointer]) except: c = '\0' self.output += c self._instruction_pointer += 1 def _oper_input(self): ''' operation definition for I, if no input remains places a null character ''' if len(self.input) > 0: self._data[self._data_pointer] = self.input.pop(0) else: self._data[self._data_pointer] = '\0' self._instruction_pointer += 1 def _check_parentheses(self): """ Return True if the parentheses in code match, otherwise False. Modified from https://scipython.com/blog/parenthesis-matching-in-python/ """ j = 0 for c in self.code: if c == ')': j -= 1 if j < 0: return False elif c == '(': j += 1 return j == 0 def _find_parentheses(self): """ Find and return the location of the matching parentheses pairs in code. Given code as a string return a dictionary of start: end pairs giving the indexes of the matching parentheses. Suitable exceptions are raised if code contains unbalanced parentheses. Modified from https://scipython.com/blog/parenthesis-matching-in-python/ """ # The indexes of the open parentheses are stored in a stack, implemented # as a list stack = [] parentheses_locs = {} for i, c in enumerate(self.code): if c == '(': stack.append(i) elif c == ')': try: parentheses_locs[stack.pop()] = i except IndexError: raise IndexError('Too many close parentheses at index {}'.format(i)) if stack: raise IndexError('No matching close parenthesis to open parenthesis at index {}'.format(stack.pop())) full_parentheses_locs = dict() for i,j in parentheses_locs.items(): full_parentheses_locs[i] = j full_parentheses_locs[j] = i return full_parentheses_locs if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("program", help="path for program") parser.add_argument("--verbose","-v", action='store_true', help="provides helpful feedback") args = vars(parser.parse_args()) with open(args['program']) as f: lines = f.readlines() inputs = [ord(c) for c in list(lines[0][:-1]) + ['\0']] code = "".join(lines[1:]) interpreter = TapeInterpreter(code, inputs, verbose=args['verbose']) if interpreter.interpret(): print("output:",interpreter.output) else: print("***PROGRAM FAILED***") if args['verbose']: print("Full data array:") print(interpreter._data) print("Data pointer at {}".format(interpreter._data_pointer)) ```
{ "source": "jmbjorndalen/aPyCSP_lockver", "score": 2 }
#### File: aPyCSP_lockver/test/net_commstime_client.py ```python import common import apycsp import apycsp.net import asyncio from apycsp.plugNplay import * from apycsp import run_CSP import time args = common.handle_common_args([ (("-s", "--serv"), dict(help="specify server as host:port (use multiple times for multiple servers)", action="append", default=[])) ]) if len(args.serv) < 1: apycsp.net.setup_client() else: for sp in args.serv: apycsp.net.setup_client(sp) loop = asyncio.get_event_loop() @process async def consumer(cin): "Commstime consumer process" #N = 5000 N = 500 ts = time.time t1 = ts() await cin() t1 = ts() for i in range(N): await cin() t2 = ts() dt = t2-t1 tchan = dt / (4 * N) print("DT = %f.\nTime per ch : %f/(4*%d) = %f s = %f us" % \ (dt, dt, N, tchan, tchan * 1000000)) print("consumer done, posioning channel") await cin.poison() return tchan def CommsTimeBM(): # Get access to remote channels. # TODO: we can only run this benchmark once before we need to restart the server side # as we will need to re_create the channels between each benchmark run (the first run will poison them). a = apycsp.net.get_channel_proxy_s("a") b = apycsp.net.get_channel_proxy_s("b") c = apycsp.net.get_channel_proxy_s("c") d = apycsp.net.get_channel_proxy_s("d") print("Running commstime test") # Rather than pass the objects and get the channel ends wrong, or doing complex # addons like in csp.net, i simply pass the write and read functions as channel ends. # Note: c.read.im_self == c, also check im_func, im_class rets = run_CSP(Prefix(c.read, a.write, prefixItem = 0), # initiator Delta2(a.read, b.write, d.write), # forwarding to two Successor(b.read, c.write), # feeding back to prefix consumer(d.read)) # timing process return rets[-1] time = CommsTimeBM() ```
{ "source": "jmbjorndalen/pycsp_classic", "score": 3 }
#### File: pycsp_classic/test/net_t2.py ```python from common import * from pycsp import * from pycsp.plugNplay import * from pycsp.net import * @process def test1(): print("Test1") waitForSignal() c = getNamedChannel("foo1") print("- Trying to write to channel") print("-", c.write("I'm here")) print("- Trying next write (should be poisoned)") c.write("I'm here") print("---poison failed !!!!!") @process def test2(): print("Test2") waitForSignal() c = getNamedChannel("foo2") print("- Trying to write to channel") c.write("I'm here") time.sleep(2) print("- poisoning channel method") time.sleep(1) poisonChannel(c.read) @process def test3(): print("Test3") waitForSignal() ca = getNamedChannel("foo3a") cb = getNamedChannel("foo3b") print("- Trying to write to channel") ca.write("I'm here") print("- Trying to use Alt on channel b") alt = Alternative(cb.read) ret = alt.select() print("- returned from alt.select():", ret) print("- reading :", ret()) print("- Done") def waitForSignal(): "Waits until the other side has registered its channels" global ctrl ctrl.read() ctrl = getNamedChannel("foo") Sequence(test1()) Sequence(test2()) Sequence(test3()) ctrl.read() print("all tests done") time.sleep(1) ```
{ "source": "jmblake/michelin-api", "score": 3 }
#### File: michelin-api/api/utils.py ```python def simplify_edition_name(edition_name): """ The first two words in the edition name are always "MICHELIN Guide". Remove those, make all characters lower case, and replace spaces with hyphens to simplify the URIs. :param edition_name: :return: """ simplified_name = '-'.join(edition_name.split()[2:]).lower() return simplified_name.replace('ñ', 'n') def complicate_edition_name(simplified_name): """ :param simplified_name: :return: """ if simplified_name == 'espana': simplified_name = 'españa' short_edition_name = (simplified_name .replace('-', ' ') .title() .replace(' Of ', ' of ')) return f"MICHELIN Guide {short_edition_name}" ```
{ "source": "jmblake/trade_summary", "score": 3 }
#### File: jmblake/trade_summary/test_summary.py ```python import unittest from summary import Summary class FirstTestCase(unittest.TestCase): def setUp(self): # A simple test case set up on two symbols. The first four elements are # valid test data, but trade_data[4] has a numeric symbol. self.test = Summary("", "") # Each list within the trade_data list has the form: # [timeStamp, symbol, quantity, price] self.test.trade_data = [['1', 'aaa', '1', '0'], ['2', 'aaa', '1', '1'], ['2', 'bbb', '2', '2'], ['5', 'aaa', '1', '3'], ['7', '123', '2', '3'], ['9', '', '1', '1'], ['10', 'ddd', 'large', '10'], ['11', 'ddd', '1.2', '2']] class SecondTestCase(unittest.TestCase): def setUp(self): # A test with a very large input set. self.test = Summary("", "") self.test.trade_data = (10 ^ 9) * [['1', 'aaa', '1', '1']] class SymbolTest(FirstTestCase): def test_invalid_symbol(self): # A KeyError shouldn't occur in operation unless something has # gone very wrong (keys are written before being called). with self.assertRaises(KeyError): _ = self.test.trade_summary['ccc'] def test_numeric_symbol(self): # This could occur in the case that symbols are numeric. # I assume that numeric symbols are permitted, else a Raise statement # should be added to the main code. # Note that all data are initially read from csv as strings. self.test.update_symbol_details(self.test.trade_data[4]) self.assertDictEqual(self.test.trade_summary['123'], {'time_stamp': 7, 'max_gap': 0, 'volume': 2, 'max_price': 3, 'total_price': 6}) def test_empty_symbol(self): # The program accepts any nonempty string as a key for the trade # summary / trade_data dictionary. with self.assertRaises(ValueError): self.test.update_symbol_details(self.test.trade_data[5]) class MaxGapTest(FirstTestCase): # It can be assumed that the time gap will never be negative, so this # cuts down on the necessary tests in this class. def test_row_by_row(self): # Here, we add the "rows" of the test trade data in one-by-one, and # ensure that the values written to each symbol's "max_gap" entry are # as expected. self.test.update_symbol_details(self.test.trade_data[0]) self.assertEqual(self.test.trade_summary['aaa']['max_gap'], 0) self.test.update_symbol_details(self.test.trade_data[1]) self.assertEqual(self.test.trade_summary['aaa']['max_gap'], 1) self.test.update_symbol_details(self.test.trade_data[2]) self.assertEqual(self.test.trade_summary['aaa']['max_gap'], 1) self.assertEqual(self.test.trade_summary['bbb']['max_gap'], 0) self.test.update_symbol_details(self.test.trade_data[3]) self.assertEqual(self.test.trade_summary['aaa']['max_gap'], 3) self.assertEqual(self.test.trade_summary['bbb']['max_gap'], 0) class QuantityTest(FirstTestCase): def test_row_by_row(self): # Checking that we receive the expected volumes. self.test.update_symbol_details(self.test.trade_data[0]) self.assertEqual(self.test.trade_summary['aaa']['volume'], 1) self.test.update_symbol_details(self.test.trade_data[1]) self.assertEqual(self.test.trade_summary['aaa']['volume'], 2) self.test.update_symbol_details(self.test.trade_data[2]) self.assertEqual(self.test.trade_summary['aaa']['volume'], 2) self.assertEqual(self.test.trade_summary['bbb']['volume'], 2) self.test.update_symbol_details(self.test.trade_data[3]) self.assertEqual(self.test.trade_summary['aaa']['volume'], 3) self.assertEqual(self.test.trade_summary['bbb']['volume'], 2) def test_invalid_quantity(self): # Ensuring that a ValueError is raised if the input cannot be passed # to int. with self.assertRaises(ValueError): self.test.update_symbol_details(self.test.trade_data[6]) self.test.update_symbol_details(self.test.trade_data[7]) class MaxPriceTest(FirstTestCase): def test_row_by_row(self): # As before, testing that we receive the expected results. self.test.update_symbol_details(self.test.trade_data[0]) self.assertEqual(self.test.trade_summary['aaa']['max_price'], 0) self.test.update_symbol_details(self.test.trade_data[1]) self.assertEqual(self.test.trade_summary['aaa']['max_price'], 1) self.test.update_symbol_details(self.test.trade_data[2]) self.assertEqual(self.test.trade_summary['aaa']['max_price'], 1) self.assertEqual(self.test.trade_summary['bbb']['max_price'], 2) self.test.update_symbol_details(self.test.trade_data[3]) self.assertEqual(self.test.trade_summary['aaa']['max_price'], 3) self.assertEqual(self.test.trade_summary['bbb']['max_price'], 2) class LargeInputTest(SecondTestCase): def test_large_input(self): # This verifies that the program can handle input files with in the # order of 1 billion rows. This should be sufficient. for elem in self.test.trade_data: self.test.update_symbol_details(elem) self.assertDictEqual(self.test.trade_summary['aaa'], {'time_stamp': 1, 'max_gap': 0, 'volume': 10 ^ 9, 'max_price': 1, 'total_price': 10 ^ 9}) if __name__ == '__main__': unittest.main() ```
{ "source": "JMB-McFarlane/SLICE", "score": 3 }
#### File: materials/pyfiles/check_file_update.py ```python import os def check_file_status(filename): test = str(os.stat(filename)) # print test.split("st_ctime=")[1].split(")")[0] return test.split("st_ctime=")[1].split(")")[0] # print type(test) check_file_status("/storage/home/jmbm87/SLICE_dev/materials/pyfiles/test_inps/text.txt") ``` #### File: materials/pyfiles/prodock1.py ```python import os from operator import itemgetter import math import shutil import timeit import time import subprocess workingdir = str(os.getcwd()) charges = [] def pdb_reader(): for file in os.listdir(workingdir): lines = [] x = [] y = [] z = [] a = [] b = [] c = [] d = [] e = [] f = [] g = [] h = [] o = [] j = [] if "OUT.pdb" in file: inp = open(file,'r') print file for line in inp: if "ATOM" in line: if len(line.split()) >= 6: # print line x.append(line.split()[5]) y.append(line.split()[6]) z.append(line.split()[7]) pout = open("MBP_" + file.split(".pdb.")[1] + "host.pdbqt",'wr') print pout ref = open('MBP.receptor.pdbqt','r') i=0 for line in ref: if "ATOM" in line: a.append(line.split()[0]) b.append(line.split()[1]) c.append(line.split()[2]) d.append(line.split()[3]) e.append(line.split()[4]) f.append(line.split()[8]) g.append(line.split()[9]) h.append(line.split()[10]) o.append(line.split()[11]) # j.append(line.split()[12]) print len(x) print len(y) print len(z) print len(a) print len(b) print len(c) print len(d) print len(e) print len(f) print len(g) for i in range(len(a)): lines.append(a[i]+ ' '+ b[i]+ ' '+ c[i]+ ' '+ d[i]+ ' '+ e[i]+ ' ' + x[i]+ ' '+ y[i]+ ' '+ z[i]+ ' ' + f[i] + ' '+ g[i]+ ' '+ h[i]+ ' '+ o[i]) i = 0 ref.close() ref = open('MBP.receptor.pdbqt','r') for line in ref: if "ATOM" in line: pout.write('{:>4} {:>6} {:<4} {:>3} {:>5} {:>11} {:>7} {:>7} {:>5} {:>5} {:>9} {:<2} ' .format(*lines[i].split())) pout.write('\n') i = i + 1 if "ATOM" not in line: pout.write(line) # print len(a) pdb_reader() def docker(hostname,ligandname,poses): config = open(hostname.split("host.")[0] + ".conf", 'w') #ligandname = raw_input("ligand pdbqt:") #hostname = raw_input("host pdbqt:") #poses = raw_input("number of poses:") config.write('receptor = '+ hostname + '\n') config.write('ligand = ' + ligandname + '\n' + '\n') # Box configuration boxresidues = [] res_x = [] res_y = [] res_z = [] cyx = [] with open('box.in') as file: for line in file: boxresidues = str.split(line) for res in boxresidues: with open(hostname) as file: for line in file: if ' ' + res + ' ' in line: if 'ATOM' in line: clean = line.split() res_x.append(float(clean[5])) res_y.append(float(clean[6])) res_z.append(float(clean[7])) # Disulfide bridge finder with open(hostname) as file: for line in file: if "SG" in line: cyx.append(line.split()) connect_info = [] for i in range(len(cyx)): for j in range(len(cyx)): if j != i: if math.sqrt((float(cyx[i][6]) - float(cyx[j][6]))**2) <= 4: connect_info.append('CONECT ' + cyx[i][1] + ' ' + cyx[j][1]) Cx = str((float(max(res_x)) - float(min(res_x)))/2 +float(min(res_x))) Cy = str((float(max(res_y)) - float(min(res_y)))/2 +float(min(res_y))) Cz = str((float(max(res_z)) - float(min(res_z)))/2 +float(min(res_z))) print Cx,Cy,Cz Sx = str((float(max(res_x)) - float(min(res_x)) +8)) Sy = str((float(max(res_y)) - float(min(res_y)) +8)) Sz = str((float(max(res_z)) - float(min(res_z)) + 8)) print("Box size = ") print Sx,Sy,Sz # Configuration file config.write('center_x = ' + Cx + '\n') config.write('center_y = ' + Cy + '\n') config.write('center_z = ' + Cz + '\n' + '\n') config.write('size_x = ' + Sx + '\n') config.write('size_y = ' + Sy + '\n') config.write('size_z = ' + Sz + '\n' + '\n') config.write('out = ' + hostname +'.out'+ '\n') config.write('exhaustiveness = 7' + '\n') config.write('num_modes = ' + poses + '\n') config.write('cpu = 7') config.close() # print ('Submitting to queue...') #os.popen('/Users/jmbm/Desktop/RA_docking/jdock/vina' + ' --config ' + workingdir + '/conf.txt') def pbs_script(): scr = open("script.pbs",'r') newscr = open(hostname.split('host.')[0] + ".pbs", "wr") for line in scr: newline = line.replace("CONFIG_FILE",hostname.split('host.')[0] + ".conf") newscr.write(newline) arg = str(workingdir+"/"+hostname.split('host.')[0] + ".pbs") #subprocess.Popen("qsub -l nodes=1:ppn=4,mem=2gb,walltime=30:00:00 " + arg, shell =True).wait() #p = subprocess.check_output(["qsub", "-l", "nodes=1:ppn=4,mem=2gb,walltime=0:30:00",arg]) #os.popen('/opt/torque-2.5.13/bin/qsub -q prometheus -l nodes=1:ppn=2,mem=2gb,walltime=1:00:00 ' + hostname.split('host.')[0] + ".pbs") # p.wait() print(arg) print(hostname.split('host.')[0] + ".pbs") pbs_script() # print ('Writing pose pdbs...') # reading outfile and creating list of models and lines # outfile = open(hostname+'.out','r') # lig_poses = [[]] # i = 0 """ for line in outfile: if "ATOM" in line: lig_poses[i].append(line.split()) if "HETATM" in line: lig_poses[i].append(line.split()) if "ENDMDL" in line: lig_poses.append([]) i = i + 1 lig_poses.pop() # generating poses for tleap for n in range(len(lig_poses)): rec_x_coords = [] num = str(n) pdb = open('pose'+ num + "_" + hostname, 'w') rec = open(hostname) for line in rec: if "ATOM" in line: clean = line.split() rec_x_coords.append(clean[5]) if len(rec_x_coords) > 4: if (float(rec_x_coords[-1]) - float(rec_x_coords[-2])) >= 15: pdb.write("TER \n") if ("HG CYX") not in line: pdb.write(line) pdb.write("TER \n") rec.close() lig_poses[n].sort(key=lambda x: int(x[4])) # Rearrange line order for residue number # Writing to pdb format for i in range(len(lig_poses[n])): pdb.write('%-6s' % str(lig_poses[n][i][0])) pdb.write('%5s' % str(lig_poses[n][i][1])) if str(lig_poses[n][i][2][0]).isalpha() == True: pdb.write(' ' + '%-4s' % str(lig_poses[n][i][2])) if str(lig_poses[n][i][2][0]).isalpha() == False: pdb.write(' ' + '%-5s' % str(lig_poses[n][i][2])) pdb.write('%3s' % str(lig_poses[n][i][3])) pdb.write('%6s' % str(lig_poses[n][i][4])) pdb.write('%12s' % str(lig_poses[n][i][5])) pdb.write('%8s' % str(lig_poses[n][i][6])) pdb.write('%8s' % str(lig_poses[n][i][7])) pdb.write('%6s' % str(lig_poses[n][i][8])) pdb.write('%6s' % str(lig_poses[n][i][9])) pdb.write('%10s' % str(lig_poses[n][i][10]) + ' ') pdb.write('%-3s' % str(lig_poses[n][i][11])) pdb.write('\n') for i in range(len(connect_info)): pdb.write(connect_info[i] + '\n') """ # Building tleap script """ def leapscript_gen(): leap_script = open(hostname + '_' + ligandname + '_build.scr','w') for n in range(len(lig_poses)): filename = hostname + '_' + ligandname + '_pose' + str(n) leap_script.write(filename + ' = loadpdb ' + 'pose' + str(n) + hostname +'\n') leap_script.write('addions ' + filename + ' Na+ 0' +'\n') leap_script.write('addions ' + filename + ' Cl- 0' +'\n') leap_script.write('solvatebox ' + filename + ' TIP3PBOX 11' +'\n') leap_script.write('saveamberparm ' + filename + ' ' + filename + '.top ' + filename +'.crd \n\n' ) # leapscript_gen() end_time = timeit.timeit() print('Total run time: ' + str(end_time -start_time) + ' seconds') """ #ligandname = raw_input("ligand pdbqt:") for file in os.listdir(workingdir): if "ligand.pdbqt" in file: ligandname = str(file) for file in os.listdir(workingdir): if "host.pdbqt" in file: start_time = timeit.timeit() print(file) docker(file,ligandname,"10") """ def script_writer(): script = open("leap_script.scr","wr") script.write('source build.scr \n\n') for file in os.listdir(workingdir): if "pose" in file: filename = file.split('.pdbqt')[0] print filename script.write(filename + ' = loadpdb ' + file + '\n') script.write('addions ' + filename + ' Na+ 0' +'\n') script.write('addions ' + filename + ' Cl- 0' +'\n') script.write('solvatebox ' + filename + ' TIP3PBOX 14' +'\n') script.write('saveamberparm ' + filename + ' ' + filename + '.top ' + filename +'.crd \n\n' ) #script_writer() """ ```
{ "source": "jmb/NightLightPi", "score": 3 }
#### File: NightLightPi/tests/test_config.py ```python from unittest import TestCase from unittest.mock import patch from nightlightpi import errorstrings from nightlightpi.config import load_config from nightlightpi.config import ENVCONFIGPATH from nightlightpi.config import ETCPATH class LoadConfigTestCase(TestCase): @patch("nightlightpi.config.load_valid_yaml") def test_loads_from_env_var_if_set(self, mock_load_yaml): mock_load_yaml.return_value = self.test_config with patch.dict("os.environ", {ENVCONFIGPATH: "some.yaml"}): conf = load_config() mock_load_yaml.assert_called_once_with("some.yaml") @patch("nightlightpi.config.load_valid_yaml") def test_falls_back_to_ETCPATH_when_env_var_not_set(self, mock_load_yaml): mock_load_yaml.return_value = self.test_config with patch.dict("os.environ", {}): conf = load_config() mock_load_yaml.assert_called_once_with(ETCPATH) def setUp(self): self.test_config = {'display_modes': [{'background': None, 'menu': 'images/menu_off.ppm', 'name': 'Off'}, {'background': 'images/temperature.ppm', 'menu': 'images/menu_temperature.ppm', 'name': 'Temperature'}, {'background': None, 'menu': 'images/menu_rainbow.ppm', 'name': 'Rainbow'}], 'inputs': {'buttons_display': 24, 'buttons_light': 23}, 'led_strip': {'brightness': 6, 'length': 10, 'light': 10, 'max_brightness': 30}, 'mqtt': {'brightness_topic': 'nightlight/brightness', 'display_topic': 'nightlight/display', 'enable': True, 'humidity_topic': 'nightlight/humidity', 'light_topic': 'nightlight/light', 'password': 'PASSWORD', 'port': 8883, 'server': 'SERVER', 'temperature_topic': 'nightlight/temperature', 'user': 'USERNAME'}, 'temperature': {'sensor_colours': [{'b': 255, 'g': 0, 'r': 20}, {'b': 10, 'g': 200, 'r': 255}, {'b': 0, 'g': 128, 'r': 255}, {'b': 0, 'g': 0, 'r': 255}], 'sensor_ranges': [16, 20, 23.9]}, 'timing': {'menu_button_pressed_time_in_seconds': 0, 'menu_display': 0, 'speed_in_seconds': 1}} ```
{ "source": "jmbo1190/python-click-cli-cookbook", "score": 4 }
#### File: jmbo1190/python-click-cli-cookbook/app.py ```python import click def change(amount): # calculate the resultant change and store the result (res) res = [] coins = [1, 5, 10, 25] # value of pennies, nickels, dimes, quarters coin_lookup = {25: "quarters", 10: "dimes", 5: "nickels", 1: "pennies"} # divide the amount*100 (the amount in cents) by a coin value # record the number of coins that evenly divide and the remainder coin = coins.pop() num, rem = divmod(int(amount * 100), coin) # append the coin type and number of coins that had no remainder res.append({num: coin_lookup[coin]}) # while there is still some remainder, continue adding coins to the result while rem > 0: coin = coins.pop() num, rem = divmod(rem, coin) if num: if coin in coin_lookup: res.append({num: coin_lookup[coin]}) return res @click.command() @click.option( "--amount", prompt="Amount: ", help="Creates change for dollar and cents value: i.e. 1.34", ) def make_change(amount): """Gives Correct Change""" result = change(float(amount)) # click.echo(click.style(f"Change for {amount}:", fg="red")) click.echo("Change for " + click.style(amount, fg="red") + ":") for correct_change in result: for num, coin in correct_change.items(): click.echo(f"{coin}: " + click.style(f"{num}", bold=True, fg="green")) if __name__ == "__main__": # pylint: disable=no-value-for-parameter make_change() ```
{ "source": "jmbo1190/serverless-cookbook", "score": 2 }
#### File: jmbo1190/serverless-cookbook/test_invoke.py ```python from invoke import cli from click.testing import CliRunner def test_app(): runner = CliRunner() result = runner.invoke(cli, ["--version"]) assert result.exit_code == 0 assert "1.0" in result.output ```
{ "source": "jmboettcher/fall2019_sentiment_in_alternative_words", "score": 3 }
#### File: jmboettcher/fall2019_sentiment_in_alternative_words/wordSenseByContext.py ```python from collections import defaultdict from nltk.tokenize import sent_tokenize from nltk.corpus import wordnet as wn from nltk.corpus import semcor as sc from nltk.corpus import stopwords import mywordtokenizer class SenseContextWordDict: def __init__(self): self.dictionary = self._create_dictionary() def _create_dictionary(self): dictionary = defaultdict(lambda: defaultdict(int)) myStopWords = stopwords.words('english') for sentence in sc.tagged_sents(tag='sem'): plainWordSent = [] taggedWordSent = [] self._make_word_lists(plainWordSent, taggedWordSent, sentence) for taggedItemTuple in taggedWordSent: self._update_tagged_item_entry(myStopWords, dictionary, plainWordSent, taggedItemTuple[0],taggedItemTuple[1]) return dictionary def _make_word_lists(self, plainWordSent, taggedWordSent, sentence): for i in range(0,len(sentence)): item = sentence[i] if(type(item)) == list: plainWordSent.append(item[0]) else: if type(item.label()) == str: plainWordSent.append(item.leaves()[0]) else: plainWordSent.append(item.label().name()) taggedWordSent.append([item, i]) def _update_tagged_item_entry(self, myStopWords,dictionary,plainWordSent,taggedItem,taggedItemPosition): for j in range(0,len(plainWordSent)): word = plainWordSent[j] if taggedItem.label().name() != word: taggedSynset = taggedItem.label().synset() splitUp = word.split("_") for thisword in splitUp: wordTokened = mywordtokenizer.simple(thisword) if len(wordTokened) > 0: word = wordTokened[0] if word not in myStopWords: dictionary[taggedSynset][word]+=1 dictionary[taggedSynset][".total."]+=1 dictionary[taggedSynset][".totalNoStops."]+=1 elif abs(j - taggedItemPosition) == 1: dictionary[taggedSynset][word]+=1 dictionary[taggedSynset][".total."]+=1 def getMostLikelySynset(self, word, sentence): """Find the set of a word's synonyms. Parameters ---------- word : str The string representing a given word. Returns ------- a set pf the given word's synonyms. """ myStopWords = stopwords.words('english') highestCoverageSyn = self._synset_search(".totalNoStops.", myStopWords, word, sentence) if highestCoverageSyn is None: highestCoverageSyn = self._synset_search(".total.", [], word, sentence) return highestCoverageSyn def _synset_search(self, totalToUse, exclusionSet, word, sentence): """Find the set of a word's synonyms. Parameters ---------- word : str The string representing a given word. Returns ------- a set pf the given word's synonyms. """ myMap = self.dictionary highestCoverage = 0 highestCoverageSyn = None for syn in wn.synsets(word): totalContextWordMatches = 0 totalSet = myMap[syn][totalToUse] if totalSet > 0: for contextWord in sentence: if contextWord != word and contextWord not in exclusionSet: totalContextWordMatches += myMap[syn][contextWord] coverage = totalContextWordMatches / totalSet if coverage > highestCoverage: highestCoverage = coverage highestCoverageSyn = syn return highestCoverageSyn def listAlternatives(self, word, sentence): synonyms = set([]) mostLikelySynset = self.getMostLikelySynset(word, sentence) if not mostLikelySynset is None: for synonym in mostLikelySynset.lemmas(): synonyms.add(synonym.name()) return synonyms def mostFrequentAlternative(self, word, sentence): mostLikelySynset = self.getMostLikelySynset(word, sentence) highestCount = 0 mostFrequentAlternative = None if not mostLikelySynset is None: for synonym in mostLikelySynset.lemmas(): count = synonym.count() if count > highestCount: mostFrequentAlternative = synonym.name() highestCount = count return mostFrequentAlternative """=================================================================== Place all function calls below the following conditional so that they are called only if this module is called with `python ling278_assign02.py` No functions should execute if it is instead imported with import ling278_assign02 in the interactive shell. """ if __name__ == '__main__': pass ```
{ "source": "jmbohan/python", "score": 3 }
#### File: python/assignSix/HW_6.py ```python import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt grades = { 90: "A", 80: "B", 70: "C", 60: "D", 0: "F", } def grade_mapping(value): for key, letter in grades.items(): if value >= key: return letter df = pd.read_csv('Projects.csv') empty_frame = np.where(pd.isnull(df)) empty_frame = [df.iloc[i, j] for i, j in zip(*np.where(pd.isnull(df)))] # drops rows that have a null value # dropped_nan = df.dropna(axis='index', how='any') dropped_nan = df.fillna(0) print('\nProject one mean: {}'.format(np.mean(dropped_nan['project_one']))) print('Project one Standard Deviation: {}'.format(np.std(dropped_nan['project_one']))) print('\nProject two mean: {}'.format(np.mean(dropped_nan['project_two']))) print('Project two Standard Deviation: {}'.format(np.std(dropped_nan['project_two']))) print('\nProject three mean: {}'.format(np.mean(dropped_nan['project_three']))) print('Project three Standard Deviation: {}'.format(np.std(dropped_nan['project_three']))) letter_grades_one = dropped_nan['project_one'].map(grade_mapping) letter_grades_two = dropped_nan['project_two'].map(grade_mapping) letter_grades_three = dropped_nan['project_three'].map(grade_mapping) dropped_nan['letter_grade_one'] = pd.Categorical(letter_grades_one, categories=grades.values(), ) dropped_nan['letter_grade_two'] = pd.Categorical(letter_grades_two, categories=grades.values(), ) dropped_nan['letter_grade_three'] = pd.Categorical(letter_grades_three, categories=grades.values(), ) # one_letter = dropped_nan.pop('letter_grade') df = pd.DataFrame(dropped_nan, columns=['first_name', 'last_name', 'age', 'project_one', 'letter_grade_one', 'project_two', 'letter_grade_two', 'project_three', 'letter_grade_three']) df.to_csv('LetterGrades.csv') project_grades = df.loc[:, ['letter_grade_one', 'letter_grade_two', 'letter_grade_three']] first_test = pd.Series(project_grades['letter_grade_one']) second_test = pd.Series(project_grades['letter_grade_two']) third_test = pd.Series(project_grades['letter_grade_three']) df = pd.concat([first_test, second_test, third_test], axis=1) # rename df = project_grades.reset_index().melt(id_vars=['index']) sns.catplot( x='value', hue='variable', data=df, kind='count', order=['A', 'B', 'C', 'D', 'F'], palette=['blue', 'red', 'green'], legend=False ) plt.xlabel('Grades') plt.ylabel('Counts') plt.title('Test Grades') plt.legend(['Test One', 'Test Two', 'Test Three']) plt.show() age_plot = pd.DataFrame(dropped_nan, columns=['age', 'project_one', 'project_two', 'project_three']) # age_plot = age_plot.reset_index().melt(id_vars=['age']) # age_plot = age_plot.groupby(['age']) # age_plot = age_plot.unstack() age_plot = age_plot.set_index(['age']) age_plot = age_plot.sort_values(by=['age']) # age_plot = age_plot.pivot_table(index=['age']) # age_plot = age_plot age_plot = age_plot.reset_index().melt(id_vars='age') sns.scatterplot( data=age_plot, y='value', x='age', hue='variable', legend=True ) plt.show() print(age_plot) print(first_test.value_counts()) ``` #### File: python/inClass/week10(MatPlotLIb).py ```python ''' import matplotlib.pyplot as plt days = [5,10,15,20] celcius_values = [24, 16, 16, 23] plt.plot(days, celcius_values, "ob") plt.xlabel('Day') plt.ylabel('Degrees Celsius') plt.show() plt.savefig('plot3.png') ''' ''' import matplotlib.pyplot as plt days = list(range(1,9)) celsius_min = [19.6, 24.1, 26.7, 28.3, 27.5, 30.5, 32.8, 33.1] celsius_max = [24.8, 28.9, 31.3, 33.0, 34.9, 35.6, 38.4, 39.2] plt.xlabel('Day') plt.ylabel('Degrees Celsius') plt.plot(days, celsius_min, days, celsius_min, "oy", days, celsius_max, days, celsius_max, "or") print("The current limits for the axes are:") print(plt.axis()) print("We set the axes to the following values:") xmin, xmax, ymin, ymax = 0, 10, 14, 45 print(xmin, xmax, ymin, ymax) plt.axis([xmin, xmax, ymin, ymax]) plt.show() plt.savefig('maxAndMin.png') ''' ''' import numpy as np import matplotlib.pyplot as plt X = np.linspace(-2 * np.pi, 2 * np.pi, 50, endpoint=True) F1 = 3 * np.sin(X) F2 = np.sin(2*X) F3 = 0.3 * np.sin(X) startx, endx = -2 * np.pi - 0.1, 2*np.pi + 0.1 starty, endy = -3.1, 3.1 plt.axis([startx, endx, starty, endy]) plt.plot(X,F1) plt.plot(X,F2) plt.plot(X,F3) plt.plot(X, F1, 'ro') plt.plot(X, F2, 'bx') plt.show() plt.savefig("plot5.png") ''' ''' import numpy as np import matplotlib.pyplot as plt X = np.linspace(0, 2 * np.pi, 50, endpoint=True) F1 = 3 * np.sin(X) F2 = np.sin(2*X) F3 = 0.3 * np.sin(X) F4 = np.cos(X) plt.plot(X, F1, color="blue", linewidth=2.5, linestyle="-") plt.fill_between(X,0,F1, color='blue', alpha=.1) plt.plot(X, F2, color="red", linewidth=1.5, linestyle="--") plt.plot(X, F3, color="green", linewidth=2, linestyle=":") plt.plot(X, F4, color="grey", linewidth=2, linestyle="-.") plt.show() plt.savefig('plot6.png') ''' # subplots ''' import numpy as np import matplotlib.pyplot as plt for i in range(1,7): plt.subplot(2,3,i) plt.text(0.5, 0.5, str((2, 3, i)), fontsize =18, ha= 'center') plt.show() plt.savefig('plot7.png') ''' ''' import numpy as np import matplotlib.pyplot as plt numerical_data = np.array([1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,4,6,7,8]) plt.hist(numerical_data) plt.title("Numbergram") plt.xlabel("Value") plt.ylabel("Frequency") plt.show() plt.savefig('plot8.png') ''' ''' import numpy as np import matplotlib.pyplot as plt num_data_2 = np.array([-1,-5,-2,-10,-11 ,0,0,0,0,0, 1,2,3,4,5,6,7,8,9]) plt.hist(num_data_2, bins=100,color="#875F9A") plt.title("Number Bins") plt.xlabel("Value") plt.ylabel("Frequency") plt.show() plt.savefig('plot9.png') ''' ''' import matplotlib.pyplot as plt import numpy as np mu, sigma = 0, 0.1 # mean and standard deviation gaussian_numbers = np.random.normal(mu, sigma, 10000) plt.hist(gaussian_numbers, bins=100) plt.title("Gaussian Histogram") plt.xlabel("Value") plt.ylabel("Frequency") plt.show() plt.savefig("plot10.png") ''' ''' import matplotlib.pyplot as plt fig =plt.figure(figsize=(6,4)) fig.subplots_adjust(bottom=0.025, left=0.025, top = 0.975, right=0.975) X = [ (3,3,(1,3)), (3,3,(4,5)), (3,3,(6,9)), (3,3,7),(3,3,8) ] for nrows, ncols, plot_number in X: sub = plt.subplot(nrows, ncols, plot_number) sub.set_xticks([]) sub.set_yticks([]) plt.show() plt.savefig('plot11.png') ''' ''' import matplotlib.pyplot as plt import numpy as np X = np.linspace(-2 * np.pi, 2 * np.pi, 50, endpoint=True) mylist1 = 3 * np.sin(X) mylist2 = np.sin(2*X) mylist3 = 0.3 * np.sin(X) mylist4 = 3 * np.cos(X) mylist5 = np.tan(2*X) mylist6 = 0.3 * np.cos(X) mylist=[mylist1, mylist2,mylist3,mylist4, mylist5,mylist6] mycol=['r','b','y','k','c','m'] fig = plt.figure(figsize=(6, 4)) fig.subplots_adjust(bottom=0.025, left=0.025, top=0.975, right=0.975) Y = [(3, 3, (1, 3)), (3, 3, (4, 5)), (3, 3, (6, 9)), (3, 3, 7), (3, 3, 8)] i=0 for nrows, ncols, plot_number in Y: sub = plt.subplot(nrows, ncols, plot_number) sub.set_xticks([]) sub.set_yticks([]) plt.plot(mylist[i],mycol[i]) i+=1 plt.show() plt.savefig('plot12.png') ''' ''' names = ['group_a', 'group_b', 'group_c'] values = [1, 10, 100] import matplotlib.pyplot as plt import numpy as np plt.figure(figsize=(9, 3)) plt.subplot(131) plt.bar(names, values) plt.subplot(132) plt.scatter(names, values) plt.subplot(133) plt.plot(names, values) plt.suptitle('Categorical Plotting') plt.show() plt.savefig('plot13.png') ''' ''' import matplotlib.pyplot as plt import numpy as np def f(t): return np.exp(-t) * np.cos(2*np.pi*t) t1 = np.arange(0.0, 5.0, 0.1) t2 = np.arange(0.0, 5.0, 0.02) plt.figure() #optional plt.subplot(211) plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k') plt.subplot(212) plt.plot(t2, np.cos(2*np.pi*t2), 'r--') plt.show() plt.savefig('plot14.png') ''' ''' import matplotlib.pyplot as plt import numpy as np labels = ['G1', 'G2', 'G3', 'G4', 'G5'] USA_means = [20, 34, 30, 35, 27] Russia_means = [25, 32, 34, 20, 25] China_means = [25, 32, 34, 20, 25] x = np.arange(len(labels)) # the label locations width = 0.25 # the width of the bars fig , ax = plt.subplots() rects1 = ax.bar(x - width, USA_means, width, label='USA', color="blue",edgecolor="black") rects2 = ax.bar(x , Russia_means, width, label='Russia',color="green",edgecolor="black") rects2 = ax.bar(x + width, China_means, width, label='China',color="red",edgecolor="black") # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylabel('Scores') ax.set_title('Scores by Countries') ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend() plt.show() plt.savefig('plot15.png') # ''' import matplotlib.pyplot as plt import numpy as np last_week_cups = (20, 35, 30, 35, 27) this_week_cups = (25, 32, 34, 20, 25) names = ['Mary', 'Paul', 'Billy', 'Franka', 'Stephan'] fig = plt.figure() left, bottom, width, height = 0.1, 0.3, 0.8, 0.6 ax = fig.add_axes([left, bottom, width, height]) width = 0.35 ticks = np.arange(len(names)) ax.bar(ticks, last_week_cups, width, label='Last week') ax.bar(ticks + width, this_week_cups, width, label='This week') ax.set_ylabel('Cups of Coffee') ax.set_title('Coffee Consummation') ax.set_xticks(ticks + width/2) ax.set_xticklabels(names) ax.legend(loc='best') plt.show() plt.savefig('plot17.png') ``` #### File: python/mid/mid_3.py ```python def palindrome(str): end = len(str) middle = end >> 1 for i in range(middle): end -= 1 if(str[i] != str[end]): return False return True while True: word = input('Enter word: ') if word == 'done' : break palindrome(word) if palindrome(word) == True: print('Palindrome') else: print('No Palindrome') ``` #### File: python/practice/boxplot.py ```python import matplotlib.pylab as pyp import seaborn as sns def custom_legend(colors,labels, legend_location = 'upper left', legend_boundary = (1,1)): # Create custom legend for colors recs = [] for i in range(0,len(colors)): recs.append(mpatches.Rectangle((0,0),1,1,fc=colors[i])) pyp.legend(recs,labels,loc=legend_location, bbox_to_anchor=legend_boundary) # Color boxplots by organ organ_list = sorted(df_unique(grouped_samples,'type')) colors = sns.color_palette("Paired", len(organ_list)) color_dict = dict(zip(organ_list, colors)) organ_palette = grouped_samples.drop_duplicates('id')['type'].map(color_dict) # Plot grouped boxplot g = sns.factorplot("id","num_mutations",data=grouped_samples, order=id_list, kind="box", size=7, aspect=3, palette=organ_palette) sns.despine(left=True) plot_setup_pre() pyp.yscale('log') custom_legend(colors,organ_list) ``` #### File: python/projectThree/PR_3.py ```python import pandas as pd import seaborn as sns import numpy as np from matplotlib import pyplot as plt from sklearn import preprocessing from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, accuracy_score, classification_report from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC # read data df = pd.read_csv('mushrooms.csv') # Label encoder for training data def label_encode_fit(data, columns): result = data.copy() encoders = {} for column in columns: encoder = preprocessing.LabelEncoder() result[column] = encoder.fit_transform(result[column]) encoders[column] = encoder return result, encoders # normalize data df_label, encoders1 = label_encode_fit(df, df.columns) plt.figure(figsize=(15, 18)) # Heatmap to visualize correlation sns.heatmap(df_label.corr(), fmt='.2f', annot=True, cmap="hot") # save plot plt.savefig('shroom_heatmap.png') plt.show() # Drop Target column X = df_label.drop(['bruises'], axis=1) # Target Column for training data y = df_label['bruises'] X_train, X_test, y_train, y_test = train_test_split(X, y) # initialize scaler scaler = StandardScaler() # # # Fit only to the training data scaler.fit(X_train) StandardScaler(copy=True, with_mean=True, with_std=True) # # Now apply the transformations to the data: X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) # Neural Network mlp = MLPClassifier(hidden_layer_sizes=(16, 16), max_iter=2000) mlp.fit(X_train, y_train) predictions = mlp.predict(X_test) y_test_results = np.array(y_test) # confusion matrix to a numpy array cm = np.array(confusion_matrix(y_true=y_test, y_pred=predictions)) # numpy array to pandas Dataframe confusion = pd.DataFrame(cm, index=['poisonous', 'not_poisonous'], columns=['predicted_poisonous', 'predicted_not_poisonous']) disp = ConfusionMatrixDisplay.from_predictions(y_test_results, predictions, ) # Print Accuracy on top on confusion matrix disp.ax_.set_title('Accuracy Score: {}'.format(accuracy_score(y_test, predictions))) # plt.savefig('NNconfusionMatrix.png') # plt.show() print('Mushroom NN predicted poisonous: \n\n', classification_report(y_test, predictions, ), '\n', confusion) # print(len(mlp.coefs_)) # print(len(mlp.coefs_[0])) # print(len(mlp.intercepts_[0])) ##SVM # read data df = pd.read_csv('mushrooms.csv') df_label, encoders1 = label_encode_fit(df, df.columns) # pairplot to view data # sns.pairplot(df_label, hue='class', vars=['cap-shape', 'bruises', 'gill-size', 'odor', 'gill-color']) plt.savefig('shroom_pairplot.png') plt.show() # Drop Target X = df_label.drop(['bruises'], axis=1) # Target for training y = df_label['bruises'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=20) # Use svc because we are using only two features svc_model = SVC() svc_model.fit(X_train, y_train) SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) y_predict = svc_model.predict(X_test) # confusion matrix to numpy array cm = np.array(confusion_matrix(y_test, y_predict, labels=[1, 0])) # numpy array to pandas Dataframe confusion = pd.DataFrame(cm, index=['poisonous', 'not_poisonous'], columns=['predicted_poisonous', 'predicted_not_poisonous']) print('Mushroom poisonous SVM prediction: \n\n', confusion, '\n') print(classification_report(y_test, y_predict)) fig, ax = plt.subplots(figsize=(10, 7)) # Barchart sns.countplot(data=df, x='bruises', hue='class', palette='Purples') # save plot plt.savefig('shroom_bar.png') plt.show() ```
{ "source": "jmborr/ipdflex", "score": 2 }
#### File: ipdflex/idpflex/cluster.py ```python import sys import numpy as np import pickle import scipy from scipy.spatial.distance import squareform from scipy.stats import zscore from scipy.cluster import hierarchy from tqdm import tqdm from collections import namedtuple from idpflex.distances import (rmsd_matrix, extract_coordinates) from idpflex.cnextend import Tree from idpflex.properties import ScalarProperty, propagator_size_weighted_sum class ClusterTrove(namedtuple('ClusterTrove', 'idx rmsd tree')): r"""A namedtuple with a `keys()` method for easy access of fields, which are described below under header `Parameters` Parameters ---------- idx : :class:`list` Frame indexes for the representative structures (indexes start at zero) rmsd : :class:`~numpy:numpy.ndarray` distance matrix between representative structures. tree : :class:`~idpflex.cnextend.Tree` Clustering of representative structures. Leaf nodes associated with each centroid contain property `iframe`, which is the frame index in the trajectory pointing to the atomic structure corresponding to the centroid. """ def keys(self): r"""Return the list of field names""" return self._fields def save(self, filename): r"""Serialize the cluster trove and save to file Parameters ---------- filename: str File name """ with open(filename, 'wb') as outfile: pickle.dump(self, outfile) def trajectory_centroids(a_universe, selection='not name H*', segment_length=1000, n_representatives=1000): r"""Cluster a set of consecutive trajectory segments into a set of representative structures via structural similarity (RMSD) The simulated trajectory is divided into consecutive segments, and hierarchical clustering is performed on each segment to yield a limited number of representative structures (centroids) per segment. Parameters ---------- a_universe : :class:`~MDAnalysis.core.universe.Universe` Topology and trajectory. selection : str atoms for which to calculate RMSD. See the `selections page <https://www.mdanalysis.org/docs/documentation_pages/selections.html>`_ for atom selection syntax. segment_length: int divide trajectory into segments of this length n_representatives : int Desired total number of representative structures. The final number may be close but not equal to the desired number. Returns ------- rep_ifr : list Frame indexes of representative structures (centroids) """ # noqa: E501 group = a_universe.select_atoms(selection) # Fragmentation of the trajectory n_frame = len(a_universe.trajectory) n_segments = int(n_frame / segment_length) nc = max(1, int(n_representatives / n_segments)) # clusters per segment rep_ifr = list() # frame indexes of representative structures info = """Clustering the trajectory: Creating {} representatives by partitioning {} frames into {} segments and retrieving {} representatives from each segment. """.format(nc * n_segments, n_frame, n_segments, nc) sys.stdout.write(info) sys.stdout.flush() # Hierarchical clustering on each trajectory fragment for i_segment in tqdm(range(n_segments)): indexes = range(i_segment * segment_length, (i_segment + 1) * segment_length) xyz = extract_coordinates(a_universe, group, indexes) rmsd = rmsd_matrix(xyz, condensed=True) z = hierarchy.linkage(rmsd, method='complete') for node in Tree(z=z).nodes_at_depth(nc-1): # Find the frame of each representative structure i_frame = i_segment * segment_length + node.representative(rmsd).id rep_ifr.append(i_frame) rep_ifr.sort() return rep_ifr def cluster_with_properties(a_universe, pcls, p_names=None, selection='not name H*', segment_length=1000, n_representatives=1000): r"""Cluster a set of representative structures by structural similarity (RMSD) and by a set of properties The simulated trajectory is divided into segments, and hierarchical clustering is performed on each segment to yield a limited number of representative structures (the centroids). Properties are calculated for each centroid, thus each centroid is described by a property vector. The dimensionality of the vector is related to the number of properties and the dimensionality of each property. The distances between any two centroids is calculated as the Euclidean distance between their respective vector properties. The distance matrix containing distances between all possible centroid pairs is employed as the similarity measure to generate the hierarchical tree of centroids. The properties calculated for the centroids are stored in the leaf nodes of the hierarchical tree. Properties are then propagated up to the tree's root node. Parameters ---------- a_universe : :class:`~MDAnalysis.core.universe.Universe` Topology and trajectory. pcls : list Property classes, such as :class:`~idpflex.properties.Asphericity` of :class:`~idpflex.properties.SaSa` p_names : list Property names. If None, then default property names are used selection : str atoms for which to calculate RMSD. See the `selections page <https://www.mdanalysis.org/docs/documentation_pages/selections.html>`_ for atom selection syntax. segment_length: int divide trajectory into segments of this length n_representatives : int Desired total number of representative structures. The final number may be close but not equal to the desired number. Returns ------- :class:`~idpflex.cluster.ClusterTrove` Hierarchical clustering tree of the centroids """ # noqa: E501 rep_ifr = trajectory_centroids(a_universe, selection=selection, segment_length=segment_length, n_representatives=n_representatives) n_centroids = len(rep_ifr) # can be different than n_representatives # Create names if not passed if p_names is None: p_names = [Property.default_name for Property in pcls] # Calculate properties for each centroid l_prop = list() for p_name, Pcl in zip(p_names, pcls): l_prop.append([Pcl(name=p_name).from_universe(a_universe, index=i) for i in tqdm(rep_ifr)]) # Calculate distances between pair of centroids xyz = np.zeros((len(pcls), n_centroids)) for i_prop, prop in enumerate(l_prop): xyz[i_prop] = [p.y for p in prop] # zero mean and unity variance for each property xyz = np.transpose(zscore(xyz, axis=1)) distance_matrix = squareform(scipy.spatial.distance_matrix(xyz, xyz)) # Cluster the representative structures tree = Tree(z=hierarchy.linkage(distance_matrix, method='complete')) for i_leaf, leaf in enumerate(tree.leafs): prop = ScalarProperty(name='iframe', y=rep_ifr[i_leaf]) leaf[prop.name] = prop # Propagate the properties up the tree [propagator_size_weighted_sum(prop, tree) for prop in l_prop] return ClusterTrove(rep_ifr, distance_matrix, tree) def cluster_trajectory(a_universe, selection='not name H*', segment_length=1000, n_representatives=1000): r"""Cluster a set of representative structures by structural similarity (RMSD) The simulated trajectory is divided into segments, and hierarchical clustering is performed on each segment to yield a limited number of representative structures. These are then clustered into the final hierachical tree. Parameters ---------- a_universe : :class:`~MDAnalysis.core.universe.Universe` Topology and trajectory. selection : str atoms for which to calculate RMSD. See the `selections page <https://www.mdanalysis.org/docs/documentation_pages/selections.html>`_ for atom selection syntax. segment_length: int divide trajectory into segments of this length n_representatives : int Desired total number of representative structures. The final number may be close but not equal to the desired number. distance_matrix: :class:`~numpy:numpy.ndarray` Returns ------- :class:`~idpflex.cluster.ClusterTrove` clustering results for the representatives """ # noqa: E501 rep_ifr = trajectory_centroids(a_universe, selection=selection, segment_length=segment_length, n_representatives=n_representatives) group = a_universe.select_atoms(selection) xyz = extract_coordinates(a_universe, group, rep_ifr) distance_matrix = rmsd_matrix(xyz, condensed=True) # Cluster the representative structures tree = Tree(z=hierarchy.linkage(distance_matrix, method='complete')) for i_leaf, leaf in enumerate(tree.leafs): prop = ScalarProperty(name='iframe', y=rep_ifr[i_leaf]) leaf[prop.name] = prop return ClusterTrove(rep_ifr, distance_matrix, tree) def load_cluster_trove(filename): r"""Load a previously saved :class:`~idpflex.cluster.ClusterTrove` instance Parameters ---------- filename: str File name containing the serialized :class:`~idpflex.cluster.ClusterTrove` Returns ------- :class:`~idpflex.cluster.ClusterTrove` Cluster trove instance stored in file """ with open(filename, 'rb') as infile: t = pickle.load(infile) return t ``` #### File: ipdflex/idpflex/properties.py ```python import os import subprocess import tempfile import fnmatch import functools import numpy as np import numbers from collections import OrderedDict import matplotlib as mpl from matplotlib import pyplot as plt from matplotlib.ticker import FuncFormatter, MaxNLocator, AutoMinorLocator from matplotlib.colors import ListedColormap import MDAnalysis as mda import mdtraj from MDAnalysis.analysis.distances import contact_matrix from idpflex import utils as iutl class PropertyDict(object): r""" A container of properties mimicking some of the behavior of a standard python dictionary, plus methods representing features of the properties when taken as a group. Parameters ---------- properties: list A list of properties to include """ def __init__(self, properties=None): self._properties = dict() if properties is not None: self._properties.update({p.name: p for p in properties}) def __iter__(self): return iter(self._properties.keys()) def __getitem__(self, name): r""" Fetch a property from `_properties` dictionary. Parameters ---------- name: str name of the property Returns ------- property object, or `None` if no property is found with *name* """ self._properties.get(name, None) def __setitem__(self, name, value): r""" Inclue a property in the `_properties` dictionary. Parameters ---------- name: str name of the property value: Property """ self._properties[name] = value def get(self, name, default=None): r""" Mimic get method of a dictionary Parameters ---------- name: str name of the property default: object default value if `name` is not one of the properties stored Returns ------- Property or default object """ return self._properties.get(name, default) def keys(self): r""" Mimic keys method of a dictionary Returns ------- dict_keys of `_properties` """ return self._properties.keys() def items(self): r""" Mimic items method of a dictionary Returns ------- dict_items of `_properties` """ return self._properties.items() def values(self): r""" Mimic values method of a dictionary Returns ------- dict_values of `_properties` """ return self._properties.values() def feature_vector(self, names=None): r""" Feature vector for the specified sequence of names. The feature vector is a concatenation of the feature vectors for each of the properties and the concatenation follows the order of names. If names is None, return all features in the property dict in the order of insertion. Parameters ---------- names: list List of property names Returns ------- numpy.ndarray """ if names is None: return np.concatenate([prop.feature_vector for prop in self.values()]) return np.concatenate([self._properties[n].feature_vector for n in names]) def feature_weights(self, names=None): r""" Feature vector weights for the specified sequence of names. The feature vector weights is a concatenation of the feature vectors weights for each of the properties and the concatenation follows the order of names. If names is None, return all features in the property dict in the order of insertion. Parameters ---------- names: list List of property names Returns ------- numpy.ndarray """ if names is None: return np.concatenate([prop.feature_weights for prop in self.values()]) return np.concatenate([self._properties[n].feature_weights for n in names]) def register_as_node_property(cls, nxye): r"""Endows a class with the node property protocol. | The node property assumes the existence of these attributes | - *name* name of the property | - *x* property domain | - *y* property values | - *e* errors of the property values This function will endow class *cls* with these attributes, implemented through the python property pattern. Names for the corresponding storage attributes must be supplied when registering the class. Parameters ---------- cls : class type The class type nxye : tuple (len==4) nxye is a four element tuple. Its elements are in this order: (property name, 'stores the name of the property'), (domain_storage_attribute_name, description of the domain), (values_storage_attribute_name, description of the values), (errors_storage_attribute_name, description of the errors) Example: (('name', 'stores the name of the property'), ('qvalues', 'momentum transfer values'), ('profile', 'profile intensities'), ('errors', 'intensity errors')) """ def property_item(attr_name, docstring): r"""Factory of the node property items *name*, *x*, *y*, and *e* Parameters ---------- attr_name : str name of the storage attribute holding the info for the respective node property item. docstring : str description of the storage attribute Returns ------- :py:class:`property` A node-property item """ def getter(instance): return instance.__dict__[attr_name] def setter(instance, value): instance.__dict__[attr_name] = value return property(fget=getter, fset=setter, doc='property *{}* : {}'.format(attr_name, docstring)) # Endow the class with properties name, x, y, and e for (prop, storage) in zip(('name', 'x', 'y', 'e'), nxye): setattr(cls, prop, property_item(*storage)) return cls def decorate_as_node_property(nxye): r"""Decorator that endows a class with the node property protocol For details, see :func:`~idpflex.properties.register_as_node_property` Parameters ---------- nxye : list list of (name, description) pairs denoting the property components """ def decorate(cls): return register_as_node_property(cls, nxye) return decorate class ScalarProperty(object): r"""Implementation of a node property for a number plus an error. Instances have *name*, *x*, *y*, and *e* attributes, so they will follow the property node protocol. Parameters ---------- name : str Name associated to this type of property x : float Domain of the property y : float value of the property e: float error of the property's value """ def __init__(self, name=None, x=0.0, y=0.0, e=0.0): r""" """ self.name = name self.x = x self.e = e self.y = y self.node = None def set_scalar(self, y): if not isinstance(y, numbers.Real): raise TypeError("y must be a non-complex number") self.y = y @property def feature_vector(self): return np.array([self.y, ]) @property def feature_weights(self): return np.array([1]) def histogram(self, bins=10, errors=False, **kwargs): r"""Histogram of values for the leaf nodes Parameters ---------- nbins : int number of histogram bins errors : bool estimate error from histogram counts kwargs : dict Additional arguments to underlying :func:`~numpy:numpy.histogram` Returns ------- :class:`~numpy:numpy.ndarray` histogram bin edges :class:`~numpy:numpy.ndarray` histogram values :class:`~numpy:numpy.ndarray` Errors for histogram counts, if `error=True`. Otherwise None. """ ys = [l[self.name].y for l in self.node.leafs] h, edges = np.histogram(ys, bins=bins, **kwargs) e = np.sqrt(h) if errors else None return edges, h, e def plot(self, kind='histogram', errors=False, **kwargs): r""" Parameters ---------- kind : str 'histogram': Gather Rg for the leafs under the node associated to this property, then make a histogram. errors : bool Estimate error from histogram counts kwargs : dict Additional arguments to underlying :meth:`~matplotlib.axes.Axes.hist` Returns ------- :class:`~matplotlib:matplotlib.axes.Axes` Axes object holding the plot """ if kind == 'histogram': ys = [l[self.name].y for l in self.node.leafs] fig, ax = plt.subplots() n, bins, patches = ax.hist(ys, **kwargs) if errors: h, edges = np.histogram(ys, bins=bins) centers = 0.5 * (edges[1:] + edges[:-1]) ax.bar(centers, h, width=0.05, yerr=np.sqrt(h)) ax.set_xlabel(self.name, size=25) ax.set_ylabel('Counts', size=25) return ax class AsphericityMixin(object): r"""Mixin class providing a set of methods to calculate the asphericity from the gyration radius tensor""" def from_universe(self, a_universe, selection=None, index=0): r"""Calculate asphericity from an MDAnalysis universe instance :math:`\frac{(L_1-L_2)^2+(L_1-L_3)^2+L_2-L_3)^2}{2(L_1+L_2+L_3)^2}` where :math:`L_i` are the eigenvalues of the gyration tensor. Units are same as units of a_universe. Does not apply periodic boundary conditions Parameters ---------- a_universe: :class:`~MDAnalysis.core.universe.Universe` Trajectory or single-conformation instance selection: str Atomic selection. All atoms considered if None is passed. See the `selections page <https://www.mdanalysis.org/docs/documentation_pages/selections.html>`_ for atom selection syntax. Returns ------- self: :class:`~idpflex.properties.Asphericity` Instantiated Asphericity object """ # noqa: E501 if selection is None: self.selection = a_universe.atoms else: self.selection = a_universe.select_atoms(selection) a_universe.trajectory[index] # jump to frame r = self.selection.positions - self.selection.centroid() gyr = np.einsum("ij,ik", r, r) / len(self.selection) # gyration tensor eval, evec = np.linalg.eig(gyr) # diagonalize self.y = np.sum(np.square(np.subtract.outer(eval, eval))) / \ np.square(np.sum(eval)) return self def from_pdb(self, filename, selection=None): r"""Calculate asphericity from a PDB file :math:`\frac{(L_1-L_2)^2+(L_1-L_3)^2+L_2-L_3)^2}{2(L_1+L_2+L_3)^2}` where :math:`L_i` are the eigenvalues of the gyration tensor. Units are same as units of a_universe. Does not apply periodic boundary conditions Parameters ---------- filename: str path to the PDB file selection: str Atomic selection. All atoms are considered if None is passed. See the `selections page <https://www.mdanalysis.org/docs/documentation_pages/selections.html>`_ for atom selection syntax. Returns ------- self: :class:`~idpflex.properties.Asphericity` Instantiated Asphericity object """ # noqa: E501 return self.from_universe(mda.Universe(filename), selection) class Asphericity(ScalarProperty, AsphericityMixin): r"""Implementation of a node property to store the asphericity from the gyration radius tensor :math:`\frac{(L_1-L_2)^2+(L_1-L_3)^2+L_2-L_3)^2}{2(L_1+L_2+L_3)^2}` where :math:`L_i` are the eigenvalues of the gyration tensor. Units are same as units of a_universe. Reference: https://pubs.acs.org/doi/pdf/10.1021/ja206839u Does not apply periodic boundary conditions See :class:`~idpflex.properties.ScalarProperty` for initialization """ default_name = 'asphericity' def __init__(self, *args, **kwargs): ScalarProperty.__init__(self, *args, **kwargs) if self.name is None: self.name = Asphericity.default_name @property def asphericity(self): r"""Property to read and set the asphericity""" return self.y @asphericity.setter def asphericity(self, value): self.y = value class SaSaMixin(object): r"""Mixin class providing a set of methods to load and calculate the solvent accessible surface area""" def from_mdtraj(self, a_traj, probe_radius=1.4, **kwargs): r"""Calculate solvent accessible surface for frames in a trajectory SASA units are Angstroms squared Parameters ---------- a_traj: :class:`~mdtraj.Trajectory` mdtraj trajectory instance probe_radius: float The radius of the probe, in Angstroms kwargs: dict Optional arguments for the underlying mdtraj.shrake_rupley algorithm doing the actual SaSa calculation Returns ------- self: :class:`~idpflex.properties.SaSa` Instantiated SaSa property object """ self.y = 100 * mdtraj.shrake_rupley(a_traj, probe_radius=probe_radius/10.0, **kwargs).sum(axis=1)[0] return self def from_pdb(self, filename, selection=None, probe_radius=1.4, **kwargs): r"""Calculate solvent accessible surface area (SASA) from a PDB file If the PBD contains more than one structure, calculation is performed only for the first one. SASA units are Angstroms squared Parameters ---------- filename: str Path to the PDB file selection: str Atomic selection for calculating SASA. All atoms considered if default None is passed. See the `selections page <https://www.mdanalysis.org/docs/documentation_pages/selections.html>`_ for atom selection syntax. probe_radius: float The radius of the probe, in Angstroms kwargs: dict Optional arguments for the underlying mdtraj.shrake_rupley algorithm doing the actual SaSa calculation Returns ------- self: :class:`~idpflex.properties.SaSa` Instantiated SaSa property object """ # noqa: E501 self.selection = selection a_traj = mdtraj.load_pdb(filename) if selection is not None: selection = a_traj.top.select(selection) # atomic indices a_traj = mdtraj.load_pdb(filename, atom_indices=selection) return self.from_mdtraj(a_traj, probe_radius=probe_radius, **kwargs) def from_universe(self, a_universe, selection=None, probe_radius=1.4, index=0, **kwargs): r"""Calculate solvent accessible surface area (SASA) from an MDAnalysis universe instance. This method is a thin wrapper around method `from_pdb()` Parameters ---------- a_universe: :class:`~MDAnalysis.core.universe.Universe` Trajectory or single-conformation instance selection: str Atomic selection for calculating SASA. All atoms considered if default None is passed. See the `selections page <https://www.mdanalysis.org/docs/documentation_pages/selections.html>`_ for atom selection syntax. probe_radius: float The radius of the probe, in Angstroms kwargs: dict Optional arguments for underlying mdtraj.shrake_rupley doing the actual SASA calculation. Returns ------- self: :class:`~idpflex.properties.SaSa` Instantiated SaSa property object """ # noqa: E501 with iutl.temporary_file(suffix='.pdb') as filename: a_universe.trajectory[index] # jump to frame a_universe.atoms.write(filename) sasa = self.from_pdb(filename, selection=selection, probe_radius=probe_radius, **kwargs) return sasa class SaSa(ScalarProperty, SaSaMixin): r"""Implementation of a node property to calculate the Solvent Accessible Surface Area. See :class:`~idpflex.properties.ScalarProperty` for initialization """ default_name = 'sasa' def __init__(self, *args, **kwargs): ScalarProperty.__init__(self, *args, **kwargs) if self.name is None: self.name = SaSa.default_name @property def sasa(self): r"""Property to read and write the SASA value""" return self.y @sasa.setter def sasa(self, value): self.y = value class EndToEndMixin(object): r"""Mixin class providing a set of methods to load and calculate the end-to-end distance for a protein""" def from_universe(self, a_universe, selection='name CA', index=0): r"""Calculate radius of gyration from an MDAnalysis Universe instance Does not apply periodic boundary conditions Parameters ---------- a_universe: :class:`~MDAnalysis.core.universe.Universe` Trajectory or single-conformation instance selection: str Atomic selection. The first and last atoms of the selection are considered for the calculation of the end-to-end distance. See the `selections page <https://www.mdanalysis.org/docs/documentation_pages/selections.html>`_ for atom selection syntax. Returns ------- self: :class:`~idpflex.properties.EndToEnd` Instantiated EndToEnd object """ # noqa: E501 selection = a_universe.select_atoms(selection) self.pair = (selection[0], selection[-1]) a_universe.trajectory[index] # jump to frame r = self.pair[0].position - self.pair[1].position self.y = np.linalg.norm(r) return self def from_pdb(self, filename, selection='name CA'): r"""Calculate end-to-end distance from a PDB file Does not apply periodic boundary conditions Parameters ---------- filename: str path to the PDB file selection: str Atomic selection. The first and last atoms of the selection are considered for the calculation of the end-to-end distance. See the `selections page <https://www.mdanalysis.org/docs/documentation_pages/selections.html>`_ for atom selection syntax. Returns ------- self: :class:`~idpflex.properties.EndToEnd` Instantiated EndToEnd object """ # noqa: E501 return self.from_universe(mda.Universe(filename), selection) class EndToEnd(ScalarProperty, EndToEndMixin): r"""Implementation of a node property to store the end-to-end distance See :class:`~idpflex.properties.ScalarProperty` for initialization """ default_name = 'end_to_end' def __init__(self, *args, **kwargs): ScalarProperty.__init__(self, *args, **kwargs) if self.name is None: self.name = EndToEnd.default_name @property def end_to_end(self): r"""Property to read and set the end-to-end distance""" return self.y @end_to_end.setter def end_to_end(self, value): self.y = value class RadiusOfGyrationMixin(object): r"""Mixin class providing a set of methods to load the Radius of Gyration data into a Scalar property """ def from_universe(self, a_universe, selection=None, index=0): r"""Calculate radius of gyration from an MDAnalysis Universe instance Parameters ---------- a_universe: :class:`~MDAnalysis.core.universe.Universe` Trajectory, or single-conformation instance. selection: str Atomic selection. All atoms considered if None is passed. See the `selections page <https://www.mdanalysis.org/docs/documentation_pages/selections.html>`_ for atom selection syntax. Returns ------- self: :class:`~idpflex.properties.RadiusOfGyration` Instantiated RadiusOfGyration object """ # noqa: E501 if selection is None: self.selection = a_universe.atoms else: self.selection = a_universe.select_atoms(selection) a_universe.trajectory[index] # jump to frame self.y = self.selection.atoms.radius_of_gyration() return self def from_pdb(self, filename, selection=None): r"""Calculate Rg from a PDB file Parameters ---------- filename: str path to the PDB file selection: str Atomic selection for calculating Rg. All atoms considered if default None is passed. See the `selections page <https://www.mdanalysis.org/docs/documentation_pages/selections.html>`_ for atom selection syntax. Returns ------- self: :class:`~idpflex.properties.RadiusOfGyration` Instantiated RadiusOfGyration property object """ # noqa: E501 return self.from_universe(mda.Universe(filename), selection) class RadiusOfGyration(ScalarProperty, RadiusOfGyrationMixin): r"""Implementation of a node property to store the radius of gyration. See :class:`~idpflex.properties.ScalarProperty` for initialization """ default_name = 'rg' def __init__(self, *args, **kwargs): ScalarProperty.__init__(self, *args, **kwargs) if self.name is None: self.name = RadiusOfGyration.default_name @property def rg(self): r"""Property to read and write the radius of gyration value""" return self.y @rg.setter def rg(self, value): self.y = value @decorate_as_node_property((('name', '(str) name of the contact map'), ('selection', '(:class:`~MDAnalysis.core.groups.AtomGroup`) atom selection'), # noqa: E501 ('cmap', '(:class:`~numpy:numpy.ndarray`) contact map between residues'), # noqa: E501 ('errors', '(:class:`~numpy:numpy.ndarray`) undeterminacies in the contact map'))) # noqa: E501 class ResidueContactMap(object): r"""Contact map between residues of the conformation using different definitions of contact. Parameters ---------- name: str Name of the contact map selection: :class:`~MDAnalysis.core.groups.AtomGroup` Atomic selection for calculation of the contact map, which is then projected to a residue based map. See the `selections page <https://www.mdanalysis.org/docs/documentation_pages/selections.html>`_ for atom selection syntax. cmap: :class:`~numpy:numpy.ndarray` Contact map between residues of the atomic selection errors: :class:`~numpy:numpy.ndarray` Underterminacies for every contact of cmap cutoff: float Cut-off distance defining a contact between two atoms """ # noqa: E501 default_name = 'cm' def __init__(self, name=None, selection=None, cmap=None, errors=None, cutoff=None): self.name = ResidueContactMap.default_name if name is None else name self.selection = selection self.cmap = cmap self.errors = errors self.cutoff = cutoff def from_universe(self, a_universe, cutoff, selection=None, index=0): r"""Calculate residue contact map from an MDAnalysis Universe instance Parameters ---------- a_universe: :class:`~MDAnalysis.core.universe.Universe` Trajectory or single-conformation instance cutoff: float Cut-off distance defining a contact between two atoms selection: str Atomic selection for calculating interatomic contacts. All atoms are used if None is passed. See the `selections page <https://www.mdanalysis.org/docs/documentation_pages/selections.html>`_ for atom selection syntax. Returns ------- self: :class:`~idpflex.properties.ResidueContactMap` Instantiated ResidueContactMap object """ # noqa: E501 if selection is None: self.selection = a_universe.atoms else: self.selection = a_universe.select_atoms(selection) n_atoms = len(self.selection) a_universe.trajectory[index] # jump to frame cm = contact_matrix(self.selection.positions, cutoff=cutoff) # Cast the atomic map into a residue based map resids = self.selection.resids unique_resids = list(set(resids)) n_res = len(unique_resids) self.cmap = np.full((n_res, n_res), False) for i in range(n_atoms - 1): k = unique_resids.index(resids[i]) for j in range(i + 1, n_atoms): ll = unique_resids.index(resids[j]) self.cmap[k][ll] = self.cmap[k][ll] or cm[i][j] # self always in contact for k in range(n_res): self.cmap[k][k] = True # symmetrize the contact map for k in range(n_res - 1): for ll in range(k + 1, n_res): self.cmap[ll][k] = self.cmap[k][ll] self.errors = np.zeros(self.cmap.shape) return self def from_pdb(self, filename, cutoff, selection=None): r"""Calculate residue contact map from a PDB file Parameters ---------- filename: str Path to the file in PDB format cutoff: float Cut-off distance defining a contact between two atoms selection: str Atomic selection for calculating interatomic contacts. All atoms are used if None is passed. See the `selections page <https://www.mdanalysis.org/docs/documentation_pages/selections.html>`_ for atom selection syntax. Returns ------- self: :class:`~idpflex.properties.ResidueContactMap` Instantiated ResidueContactMap object """ # noqa: E501 return self.from_universe(mda.Universe(filename), cutoff, selection) def plot(self): r"""Plot the residue contact map of the node""" resids = [str(i) for i in list(set(self.selection.resids))] def format_fn(tick_val, tick_pos): r"""Translates matrix index to residue number""" if int(tick_val) < len(resids): return resids[int(tick_val)] else: return '' fig, ax = plt.subplots() ax.set_xlabel('Residue Numbers', size=16) ax.xaxis.set_major_formatter(FuncFormatter(format_fn)) ax.xaxis.set_major_locator(MaxNLocator(integer=True)) ax.xaxis.set_minor_locator(AutoMinorLocator()) ax.set_ylabel('Residue Numbers', size=16) ax.yaxis.set_major_formatter(FuncFormatter(format_fn)) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) ax.yaxis.set_minor_locator(AutoMinorLocator()) ax.grid(color='r', which='major', linestyle='-', linewidth=1) ax.grid(color='b', which='minor', linestyle=':', linewidth=1) im = ax.imshow(self.cmap, interpolation='none', origin='lower', aspect='auto', cmap='Greys') fig.colorbar(im, ax=ax) plt.tight_layout() plt.show() @decorate_as_node_property((('name', '(str) name of the profile'), ('aa', '(:py:class:`str`) amino-acid sequence'), # noqa: E501 ('profile', '(:class:`~numpy:numpy.ndarray`) secondary structure assignment'), # noqa: E501 ('errors', '(:class:`~numpy:numpy.ndarray`) assignment undeterminacy'))) # noqa: E501 class SecondaryStructureProperty(object): r"""Node property for secondary structure determined by DSSP Every residue is assigned a vector of length 8. Indexes corresponds to different secondary structure assignment: | Index__||__DSSP code__||__ Color__||__Structure__|| | ======================================= | __0__||__H__||__yellow__||__Alpha helix (4-12) | __1__||__B__||__pink__||__Isolated beta-bridge residue | __2__||__E__||__red__||__Strand | __3__||__G__||__orange__||__3-10 helix | __4__||__I___||__green__||__Pi helix | __5__||__T__||__magenta__||__Turn | __6__||__S__||__cyan__||__Bend | __7__||_____||__white__||__Unstructured (coil) We follow here `Bio.PDB.DSSP ordering <http://biopython.org/DIST/docs/api/Bio.PDB.DSSP%27-module.html>`_ For a leaf node (single structure), the vector for any given residue will be all zeroes except a value of one for the corresponding assigned secondary structure. For all other nodes, the vector will correspond to a probability distribution among the different DSSP codes. Parameters ---------- name : str Property name aa : str One-letter amino acid sequence encoded in a single string profile : :class:`~numpy:numpy.ndarray` N x 8 matrix with N number of residues and 8 types of secondary structure errors : :class:`~numpy:numpy.ndarray` N x 8 matrix denoting undeterminacies for each type of assigned secondary residue in every residue """ # noqa: E501 #: Description of single-letter codes for secondary structure elements = OrderedDict([('H', 'Alpha helix'), ('B', 'Isolated beta-bridge'), ('E', 'Strand'), ('G', '3-10 helix'), ('I', 'Pi helix'), ('T', 'Turn'), ('S', 'Bend'), (' ', 'Unstructured')]) #: list of single-letter codes for secondary structure. Last code is a #: blank space denoting no secondary structure (Unstructured) dssp_codes = ''.join(elements.keys()) #: number of distinctive elements of secondary structure n_codes = len(dssp_codes) #: associated colors to each element of secondary structure colors = ('yellow', 'pink', 'red', 'orange', 'green', 'magenta', 'cyan', 'white') @classmethod def code2profile(cls, code): r"""Generate a secondary structure profile vector for a particular DSSP code Parameters ---------- code : str one-letter code denoting secondary structure assignment Returns ------- :class:`~numpy:numpy.ndarray` profile vector """ if code not in cls.dssp_codes: raise ValueError('{} is not a valid DSSP code'.format(code)) v = np.zeros(cls.n_codes) v[cls.dssp_codes.find(code)] = 1.0 return v default_name = 'ss' def __init__(self, name=None, aa=None, profile=None, errors=None): self.name = SecondaryStructureProperty.default_name \ if name is None else name self.aa = aa self.profile = profile self.errors = errors self.node = None def from_dssp_sequence(self, codes): r"""Load secondary structure profile from a single string of DSSP codes Attributes *aa* and *errors* are not modified, only **profile**. Parameters ---------- codes : str Sequence of one-letter DSSP codes Returns ------- self : :class:`~idpflex.properties.SecondaryStructureProperty` """ if self.aa is not None and len(self.aa) != len(codes): raise ValueError('length of {} different than that of the ' 'amino acid sequence'.format(codes)) if self.errors is not None and len(self.errors) != len(codes): raise ValueError('length of {} different than that of the ' 'profile errors'.format(codes)) self.profile = np.asarray([self.code2profile(c) for c in codes]) return self def from_dssp(self, file_name): r"""Load secondary structure profile from a `dssp file <http://swift.cmbi.ru.nl/gv/dssp/>`_ Parameters ---------- file_name : str File path Returns ------- self : :class:`~idpflex.properties.SecondaryStructureProperty` """ # noqa: E501 aa = '' profile = list() start = False with open(file_name) as handle: for line in handle: if '#' in line: start = True if start: aa += line[13:14] profile .append(self.code2profile(line[16:17])) self.aa = aa self.profile = np.asarray(profile) self.errors = np.zeros(self.profile.shape) return self def from_dssp_pdb(self, file_name, command='mkdssp', silent=True): r"""Calculate secondary structure with DSSP Parameters ---------- file_name : str Path to PDB file command : str Command to invoke dssp. You need to have DSSP installed in your machine silent : bool Suppress DSSP standard output and error Returns ------- self : :class:`~idpflex.properties.SecondaryStructureProperty` """ # Generate a temporary DSSP file curr_dir = os.getcwd() temp_dir = tempfile.mkdtemp() os.chdir(temp_dir) call_stack = [command, '-i', file_name, '-o', 'pdb.dssp'] if silent: FNULL = open(os.devnull, 'w') # silence crysol output subprocess.call(call_stack, stdout=FNULL, stderr=subprocess.STDOUT) else: subprocess.call(call_stack) # load the DSSP file self.from_dssp('pdb.dssp') # Delete the temporary directory os.chdir(curr_dir) subprocess.call('/bin/rm -rf {}'.format(temp_dir).split()) return self @property def fractions(self): r"""Output fraction of each element of secondary structure. Fractions are computed summing over all residues. Returns ------- dict Elements of the form {single-letter-code: fraction} """ f = np.sum(self.profile, axis=0) / len(self.profile) return dict(zip(self.dssp_codes, f)) @property def collapsed(self): r"""For every residue, collapse the secondary structure profile onto the component with the highest probability Returns ------- :class:`~numpy:numpy.ndarray` List of indexes corresponding to collapsed secondary structure states """ return self.profile.argmax(axis=1) def disparity(self, other): r"""Secondary Structure disparity of other profile to self, akin to :math:`\chi^2` :math:`\frac{1}{N(n-1)} \sum_{i=1}^{N}\sum_{j=1}^{n} (\frac{p_{ij}-q_ {ij}}{e})^2` with :math:`N` number of residues and :math:`n` number of DSSP codes. Errors :math:`e` are those of *self*, and are set to one if they have not been initialized. We divide by :math:`n-1` because it is implied a normalized distribution of secondary structure elements for each residue. Parameters ---------- other : :class:`~idpflex.properties.SecondaryStructureProperty` Secondary structure property to compare to Returns ------- float disparity measure """ # noqa: E501 n = len(self.profile) if n != len(other.profile): raise ValueError('Profiles have different sizes') dp = self.profile - other.profile e = self.errors if self.errors is not None and np.all(self.errors)\ else np.ones((n, self.n_codes)) return np.sum(np.square(dp/e)) / (n * (self.n_codes - 1)) def plot(self, kind='percents'): r"""Plot the secondary structure of the node holding the property Parameters ---------- kind : str 'percents': bar chart with each bar denoting the percent of a particular secondary structure in all the protein; --- 'node': gray plot of secondary structure element probabilities for each residue; --- 'leafs': color plot of secondary structure for each leaf under the node. Leafs are sorted by increasing disparity to the secondary structure of the node. """ if kind == 'percents': fig, ax = plt.subplots() ind = np.arange(self.n_codes) # the x locations for the groups width = 0.75 # the width of the bars pcs = [100 * self.fractions[c] for c in self.dssp_codes] rects = ax.bar(ind, pcs, width, color='b') for rect in rects: height = rect.get_height() ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * height, '%d' % int(height), ha='center', va='bottom') ax.set_ylabel('Percents') ax.set_xlabel('Secondary Structure') ax.set_xticks(ind) ax.set_xticklabels(list(self.dssp_codes)) elif kind == 'node': fig, ax = plt.subplots() ax.set_xlabel('Residue Index') ax.xaxis.set_major_locator(mpl.ticker.MaxNLocator(integer=True)) ind = np.arange(self.n_codes) # the x locations for the groups im = ax.imshow(self.profile.transpose(), interpolation='none', origin='lower', aspect='auto', cmap='Greys', extent=[0.5, self.profile.shape[0] + 0.5, -0.5, self.profile.shape[1] - 0.5] ) width = 0.5 ax.set_yticks(ind + width / 2 - 0.225) ax.set_yticklabels(list(self.dssp_codes)) fig.colorbar(im, ax=ax) elif kind == 'leafs': fig, ax = plt.subplots() ax.set_xlabel('leaf index sorted by increasing disparity to' ' average profile') ax.set_ylabel('residue index') leafs = self.node.leafs if not leafs: leafs = [self.node] sss = [l[self.name] for l in leafs] # Sec Str props of the leafs sss.sort(key=lambda ss: self.disparity(ss)) collapsed = np.asarray([ss.collapsed for ss in sss]) cm = ListedColormap(self.colors) im = ax.imshow(collapsed.transpose(), interpolation='none', norm=mpl.colors.Normalize(vmin=0, vmax=self.n_codes - 1), origin='lower', aspect='auto', cmap=cm, extent=[0.5, collapsed.shape[0] + 0.5, 0.5, collapsed.shape[1] + 0.5]) # Force integer values in tick labels ax.xaxis.set_major_locator(mpl.ticker.MaxNLocator(integer=True)) ax.yaxis.set_major_locator(mpl.ticker.MaxNLocator(integer=True)) # Color bar tick_positions = 0.5 + np.arange(self.n_codes) *\ (self.n_codes - 1) / self.n_codes cbar = fig.colorbar(im, ticks=tick_positions, ax=ax) tick_lables = ['{}: {}'.format(k, v) for k, v in self.elements.items()] cbar.ax.set_yticklabels(tick_lables) plt.grid() plt.tight_layout() plt.show() @decorate_as_node_property((('name', '(str) name of the profile'), ('qvalues', '(:class:`~numpy:numpy.ndarray`) momentum transfer values'), # noqa: E501 ('profile', '(:class:`~numpy:numpy.ndarray`) profile intensities'), # noqa: E501 ('errors', '(:class:`~numpy:numpy.ndarray`) intensity errors'))) # noqa: E501 class ProfileProperty(object): r"""Implementation of a node property valid for SANS or X-Ray data. Parameters ---------- name : str Property name. qvalues : :class:`~numpy:numpy.ndarray` Momentun transfer domain profile : :class:`~numpy:numpy.ndarray` Intensity values errors : :class:`~numpy:numpy.ndarray` Errors in the intensity values """ default_name = 'profile' def __init__(self, name=None, qvalues=None, profile=None, errors=None): self.name = name self.qvalues = qvalues self.profile = profile self.errors = errors self.node = None @property def feature_vector(self): r""" Each `qvalue` is interpreted as an independent feature, and the related value in `profile` is a particular "measured" value of that feature. Returns ------- numpy.ndarray """ return self.profile @property def feature_weights(self): r""" Weights to be used when calculating the square of the euclidean distance between two feature vectors Returns ------- numpy.ndarray """ return np.ones(len(self.profile)) / np.sqrt(len(self.profile)) class SansLoaderMixin(object): r"""Mixin class providing a set of methods to load SANS data into a profile property """ def from_sassena(self, handle, profile_key='fqt', index=0): """Load SANS profile from sassena output. It is assumed that Q-values are stored under item *qvalues* and listed under the *X* column. Parameters ---------- handle : h5py.File h5py reading handle to HDF5 file profile_key : str item key where profiles are stored in the HDF5 file param index : int profile index, if data contains more than one profile Returns ------- self : :class:`~idpflex.properties.SansProperty` """ q = handle['qvectors'][:, 0] # q values listed in the X component i = handle[profile_key][:, index][:, 0] # profile # q values may be unordered sorting_order = np.argsort(q) q = q[sorting_order] i = i[sorting_order] self.qvalues = np.array(q, dtype=np.float) self.profile = np.array(i, dtype=np.float) self.errors = np.zeros(len(q), dtype=np.float) return self def from_cryson_int(self, file_name): r"""Load profile from a `cryson \*.int <https://www.embl-hamburg.de/biosans/manuals/cryson.html#output>`_ file Parameters ---------- file_name : str File path Returns ------- self : :class:`~idpflex.properties.SansProperty` """ # noqa: E501 contents = np.loadtxt(file_name, skiprows=1, usecols=(0, 1)) self.qvalues = contents[:, 0] self.profile = contents[:, 1] self.errors = np.zeros(len(self.qvalues), dtype=float) return self def from_cryson_fit(self, file_name): r"""Load profile from a `cryson \*.fit <https://www.embl-hamburg.de/biosans/manuals/cryson.html#output>`_ file. Parameters ---------- file_name : str File path Returns ------- self : :class:`~idpflex.properties.SansProperty` """ # noqa: E501 contents = np.loadtxt(file_name, skiprows=1, usecols=(0, 3)) self.qvalues = contents[:, 0] self.profile = contents[:, 1] self.errors = np.zeros(len(self.qvalues), dtype=float) return self def from_cryson_pdb(self, file_name, command='cryson', args='-lm 20 -sm 0.6 -ns 500 -un 1 -eh -dro 0.075', silent=True): r"""Calculate profile with cryson from a PDB file Parameters ---------- file_name : str Path to PDB file command : str Command to invoke cryson args : str Arguments to pass to cryson silent : bool Suppress cryson standard output and standard error Returns ------- self : :class:`~idpflex.properties.SansProperty` """ # Write cryson file within a temporary directory curr_dir = os.getcwd() temp_dir = tempfile.mkdtemp() os.chdir(temp_dir) call_stack = [command] + args.split() + [file_name] if silent: FNULL = open(os.devnull, 'w') # silence cryson output subprocess.call(call_stack, stdout=FNULL, stderr=subprocess.STDOUT) else: subprocess.call(call_stack) # Load the cryson file ext_2_load = dict(int=self.from_cryson_int, fit=self.from_cryson_fit) stop_search = False for name in os.listdir(temp_dir): for ext in ext_2_load: if fnmatch.fnmatch(name, '*.{}'.format(ext)): ext_2_load[ext](name) stop_search = True break if stop_search: break # Delete the temporary directory os.chdir(curr_dir) subprocess.call('/bin/rm -rf {}'.format(temp_dir).split()) return self def from_ascii(self, file_name): r"""Load profile from an ascii file. | Expected file format: | Rows have three items separated by a blank space: | - *col1* momentum transfer | - *col2* profile | - *col3* errors of the profile Parameters ---------- file_name : str File path Returns ------- self : :class:`~idpflex.properties.SansProperty` """ contents = np.loadtxt(file_name, skiprows=0, usecols=(0, 1, 2)) self.qvalues = contents[:, 0] self.profile = contents[:, 1] self.errors = contents[:, 2] return self def to_ascii(self, file_name): r"""Save profile as a three-column ascii file. | Rows have three items separated by a blank space | - *col1* momentum transfer | - *col2* profile | - *col3* errors of the profile """ dir_name = os.path.dirname(file_name) if dir_name and not os.path.isdir(dir_name): os.makedirs(dir_name) xye = np.array([list(self.x), list(self.y), list(self.e)]) np.savetxt(file_name, xye.transpose(), header='Momentum-transfer Profile Profile-errors') class SansProperty(ProfileProperty, SansLoaderMixin): r"""Implementation of a node property for SANS data """ default_name = 'sans' def __init__(self, *args, **kwargs): ProfileProperty.__init__(self, *args, **kwargs) if self.name is None: self.name = SansProperty.default_name class SaxsLoaderMixin(object): r"""Mixin class providing a set of methods to load X-ray data into a profile property """ def from_crysol_int(self, file_name): r"""Load profile from a `crysol \*.int <https://www.embl-hamburg.de/biosaxs/manuals/crysol.html#output>`_ file Parameters ---------- file_name : str File path Returns ------- self : :class:`~idpflex.properties.SaxsProperty` """ # noqa: E501 contents = np.loadtxt(file_name, skiprows=1, usecols=(0, 1)) self.qvalues = contents[:, 0] self.profile = contents[:, 1] self.errors = np.zeros(len(self.qvalues), dtype=float) return self def from_crysol_fit(self, file_name): r"""Load profile from a `crysol \*.fit <https://www.embl-hamburg.de/biosaxs/manuals/crysol.html#output>`_ file. Parameters ---------- file_name : str File path Returns ------- self : :class:`~idpflex.properties.SaxsProperty` """ # noqa: E501 contents = np.loadtxt(file_name, skiprows=1, usecols=(0, 3)) self.qvalues = contents[:, 0] self.profile = contents[:, 1] self.errors = np.zeros(len(self.qvalues), dtype=float) return self def from_crysol_pdb(self, file_name, command='crysol', args='-lm 20 -sm 0.6 -ns 500 -un 1 -eh -dro 0.075', silent=True): r"""Calculate profile with crysol from a PDB file Parameters ---------- file_name : str Path to PDB file command : str Command to invoke crysol args : str Arguments to pass to crysol silent : bool Suppress crysol standard output and standard error Returns ------- self : :class:`~idpflex.properties.SaxsProperty` """ # Write crysol file within a temporary directory curr_dir = os.getcwd() temp_dir = tempfile.mkdtemp() os.chdir(temp_dir) call_stack = [command] + args.split() + [file_name] if silent: FNULL = open(os.devnull, 'w') # silence crysol output subprocess.call(call_stack, stdout=FNULL, stderr=subprocess.STDOUT) else: subprocess.call(call_stack) # Load the crysol file ext_2_load = dict(int=self.from_crysol_int, fit=self.from_crysol_fit) stop_search = False for name in os.listdir(temp_dir): for ext in ext_2_load: if fnmatch.fnmatch(name, '*.{}'.format(ext)): ext_2_load[ext](name) stop_search = True break if stop_search: break # Delete the temporary directory os.chdir(curr_dir) subprocess.call('/bin/rm -rf {}'.format(temp_dir).split()) return self def from_ascii(self, file_name): r"""Load profile from an ascii file. | Expected file format: | Rows have three items separated by a blank space: | - *col1* momentum transfer | - *col2* profile | - *col3* errors of the profile Parameters ---------- file_name : str File path Returns ------- self : :class:`~idpflex.properties.SaxsProperty` """ contents = np.loadtxt(file_name, skiprows=0, usecols=(0, 1, 2)) self.qvalues = contents[:, 0] self.profile = contents[:, 1] self.errors = contents[:, 2] return self def to_ascii(self, file_name): r"""Save profile as a three-column ascii file. | Rows have three items separated by a blank space | - *col1* momentum transfer | - *col2* profile | - *col3* errors of the profile """ dir_name = os.path.dirname(file_name) if dir_name and not os.path.isdir(dir_name): os.makedirs(dir_name) xye = np.array([list(self.x), list(self.y), list(self.e)]) np.savetxt(file_name, xye.transpose(), header='Momentum-transfer Profile Profile-errors') class SaxsProperty(ProfileProperty, SaxsLoaderMixin): r"""Implementation of a node property for SAXS data """ default_name = 'saxs' def __init__(self, *args, **kwargs): ProfileProperty.__init__(self, *args, **kwargs) if self.name is None: self.name = SaxsProperty.default_name def propagator_weighted_sum(values, tree, weights=lambda left_node, right_node: (1.0, 1.0)): r"""Calculate the property of a node as the sum of its two siblings' property values. Propagation applies only to non-leaf nodes. Parameters ---------- values: list List of property values (of same type), one item for each leaf node. tree: :class:`~idpflex.cnextend.Tree` Tree of :class:`~idpflex.cnextend.ClusterNodeX` nodes weights: tuple Callable of two arguments (left-node and right-node) returning a tuple of left and right weights. Default callable returns (1.0, 1.0) always. """ # Insert a property for each leaf if len(values) != tree.nleafs: msg = "len(values)={} but there are {} leafs".format(len(values), tree.nleafs) raise ValueError(msg) for i, leaf in enumerate(tree.leafs): leaf[values[i].name] = values[i] property_class = values[0].__class__ # type of the property name = values[0].name # name of the property # Propagate up the tree nodes for node in tree._nodes[tree.nleafs:]: prop = property_class() prop.name = name left_prop = node.left[name] right_prop = node.right[name] w = weights(node.left, node.right) prop.x = left_prop.x prop.y = w[0] * left_prop.y + w[1] * right_prop.y if left_prop.e is not None and right_prop.e is not None: prop.e = np.sqrt(w[0] * left_prop.e**2 + w[1] * right_prop.e**2) else: prop.e = None node[prop.name] = prop def weights_by_size(left_node, right_node): r"""Calculate the relative size of two nodes Parameters ---------- left_node : :class:`~idpflex.cnextend.ClusterNodeX` One of the two sibling nodes right_node : :class:`~idpflex.cnextend.ClusterNodeX` One of the two sibling nodes Returns ------- tuple Weights representing the relative populations of two nodes """ w = float(left_node.count) / (left_node.count + right_node.count) return w, 1-w #: Calculate a property of the node as the sum of its siblings' property #: values, weighted by the relative cluster sizes of the siblings. #: #: Parameters #: ---------- #: values : list #: List of property values (of same type), one item for each leaf node. #: node_tree : :class:`~idpflex.cnextend.Tree` #: Tree of :class:`~idpflex.cnextend.ClusterNodeX` nodes propagator_size_weighted_sum = functools.partial(propagator_weighted_sum, weights=weights_by_size) propagator_size_weighted_sum.__name__ = 'propagator_size_weighted_sum' propagator_size_weighted_sum.__doc__ = r"""Calculate a property of the node as the sum of its siblings' property values, weighted by the relative cluster sizes of the siblings. Parameters ---------- values : list List of property values (of same type), one item for each leaf node. node_tree : :class:`~idpflex.cnextend.Tree` Tree of :class:`~idpflex.cnextend.ClusterNodeX` nodes """ ``` #### File: ipdflex/tests/test_cnextend.py ```python import pytest import numpy as np from numpy.testing import assert_array_equal from scipy.cluster import hierarchy from idpflex import cnextend as cnx from idpflex.properties import ScalarProperty class TestClusterNodeX(object): def test_property(self): n = cnx.ClusterNodeX(0) n.property_group['prop'] = True assert n['prop'] is True assert n['not_a_key'] is None prop = ScalarProperty(name='some_prop', y=np.array([1, 2, 3])) n[prop.name] = prop assert_array_equal(n[prop.name].y, prop.y) assert prop.node is n with pytest.raises(AttributeError): n['not_a_property'] = 'not a property class' def test_property_group_features(self): n = cnx.ClusterNodeX(0) prop = ScalarProperty(name='some_prop', y=4) n[prop.name] = prop prop2 = ScalarProperty(name='some_prop2', y=2) n[prop2.name] = prop2 fv = n.property_group.feature_vector() assert_array_equal(fv, np.array([4, 2])) ws = n.property_group.feature_weights() assert_array_equal(ws, np.array([1, 1])) def test_leafs(self, benchmark): t = benchmark['tree'] cluster = t[benchmark['nleafs']] # fist cluster that is not a leaf assert [n.id for n in cluster.leafs] == [19167, 19168] cluster = t.root assert cluster.leafs == t.leafs def test_distance_submatrix(self, small_tree): t = small_tree['tree'] a_cluster = t[-4] # leafs have indexes 6, 7, 8 dist_submat = a_cluster.distance_submatrix(small_tree['dist_mat']) reference = np.array([1, 4, 1]) assert_array_equal(dist_submat, reference) def test_representative(self, small_tree): t = small_tree['tree'] a_cluster = t[-4] r = a_cluster.representative(small_tree['dist_mat']) assert r.id == 7 class TestTree(object): def test_from_linkage_matrix(self, benchmark): t = cnx.Tree() t.from_linkage_matrix(benchmark['z'], node_class=hierarchy.ClusterNode) r = t.root assert hasattr(r, 'parent') is False t.from_linkage_matrix(benchmark['z'], node_class=cnx.ClusterNodeX) r = t.root assert r.parent is None assert len(t) == benchmark['nnodes'] def test_leafs(self, benchmark): t = benchmark['tree'] assert len(t.leafs) == benchmark['nleafs'] def test_iter(self, benchmark): t = benchmark['tree'] ids = sorted(range(benchmark['nnodes']), reverse=True) assert ids == list(node.id for node in t) def test_getitem(self, benchmark): t = benchmark['tree'] assert t[-1] is t.root assert list(n.id for n in t[:3]) == list(range(3)) def test_clusters_above_depth(self, benchmark): t = benchmark['tree'] ids = [n.id for n in t.nodes_above_depth(depth=3)] assert ids == [44732, 44748, 44752, 44753, 44754, 44755, 44756] def test_clusters_at_depth(self, benchmark): t = benchmark['tree'] ids = [n.id for n in t.nodes_at_depth(depth=3)] assert ids == [44732, 44748, 44752, 44753] def test_random_distance_tree(): out = cnx.random_distance_tree(9) dm = out.distance_matrix # Indexes of the two leaves with the bigget mutual distance idx = set(np.unravel_index(np.argmax(dm), dm.shape)) # the first partition of the root node cannot contain the indexes # the two leaves with the bigget mutual distance idx not in set(out.tree[-2].leaf_ids) if __name__ == '__main__': pytest.main() ``` #### File: ipdflex/tests/test_properties.py ```python import random import numpy as np import pytest import tempfile import shutil from idpflex import properties as ps from idpflex.properties import SecondaryStructureProperty as SSP class TestRegisterDecorateProperties(object): def test_register_as_node_property(self): class SomeProperty(object): def __init__(self): attrs = dict(id='foo', a='ax', b='by', c='ce') self.__dict__.update(attrs) associations = (('id', 'name of the property'), ('a', 'this is x'), ('b', 'this is y'), ('c', 'this is e')) ps.register_as_node_property(SomeProperty, associations) # Test for class attributes assert isinstance(ps.ProfileProperty.name, property) assert isinstance(ps.ProfileProperty.x, property) assert isinstance(ps.ProfileProperty.y, property) assert isinstance(ps.ProfileProperty.e, property) # Test for managed attributes some_prop = SomeProperty() assert some_prop.name == 'foo' assert some_prop.x == 'ax' assert some_prop.y == 'by' assert some_prop.e == 'ce' def test_decorate_as_node_property(self): associations = (('id', 'name of the property'), ('a', 'this is x'), ('b', 'this is y'), ('c', 'this is e')) @ps.decorate_as_node_property(associations) class SomeProperty(object): def __init__(self): attrs = dict(id='foo', a='ax', b='by', c='ce') self.__dict__.update(attrs) # Test for class attributes assert isinstance(ps.ProfileProperty.name, property) assert isinstance(ps.ProfileProperty.x, property) assert isinstance(ps.ProfileProperty.y, property) assert isinstance(ps.ProfileProperty.e, property) # Test for managed attributes some_prop = SomeProperty() assert some_prop.name == 'foo' assert some_prop.x == 'ax' assert some_prop.y == 'by' assert some_prop.e == 'ce' class TestScalarProperty(object): def test_histogram(self, benchmark): root_prop = benchmark['tree'].root['sc'] edges, h, e = root_prop.histogram(bins=1, errors=True) assert h[0] == benchmark['nleafs'] assert e[0] == np.sqrt(h[0]) def test_plot_histogram(self, benchmark): root_prop = benchmark['tree'].root['sc'] ax = root_prop.plot(kind='histogram', errors=True, bins=1) assert ax.patches[0]._height == benchmark['nleafs'] class TestAsphericity(object): def test_from_pdb(self, ss_benchmark): filename = ss_benchmark['pdb_file'] prop = ps.Asphericity().from_pdb(filename) np.testing.assert_almost_equal(prop.asphericity, 0.71, decimal=2) class TestEndToEnd(object): def test_from_pdb(self, ss_benchmark): filename = ss_benchmark['pdb_file'] prop = ps.EndToEnd().from_pdb(filename) np.testing.assert_almost_equal(prop.end_to_end, 9.244, decimal=3) class TestSaSa(object): def test_from_pdb(self, ss_benchmark): filename = ss_benchmark['pdb_file'] prop = ps.SaSa().from_pdb(filename) np.testing.assert_allclose(prop.sasa, 2964, rtol=0.10) prop = ps.SaSa().from_pdb(filename, n_sphere_points=3) np.testing.assert_allclose(prop.sasa, 2989, rtol=0.10) prop = ps.SaSa().from_pdb(filename, selection='resid 0 to 10') np.testing.assert_allclose(prop.sasa, 1350, rtol=0.16) class TestRadiusOfGyration(object): def test_from_pdb(self, ss_benchmark): filename = ss_benchmark['pdb_file'] prop = ps.RadiusOfGyration().from_pdb(filename, 'name CA') np.testing.assert_almost_equal(prop.rg, 8.75, decimal=2) class TestResidueContactMap(object): def test_from_universe(self, trajectory_benchmark): cm = ps.ResidueContactMap().from_universe(trajectory_benchmark, 8, 'name CA') assert np.sum(cm.y) == 363 cm = ps.ResidueContactMap().from_universe(trajectory_benchmark, 4) assert np.sum(cm.y) == 313 def test_from_pdb(self, ss_benchmark): filename = ss_benchmark['pdb_file'] cm = ps.ResidueContactMap().from_pdb(filename, 8, 'name CA') assert np.sum(cm.y) == 351 @pytest.mark.skip(reason="Plotting not enabled in the CI") def test_plot(self, trajectory_benchmark): cm = ps.ResidueContactMap().from_universe(trajectory_benchmark, 8, 'name CA') cm.plot() class TestSecondaryStructureProperty(object): def test_class_decorated_as_node_property(self): assert isinstance(SSP.name, property) assert isinstance(SSP.x, property) assert isinstance(SSP.y, property) assert isinstance(SSP.e, property) def test_instance_decorated_as_node_property(self): ss = 'GTEL' v = np.random.rand(len(ss), SSP.n_codes) v /= np.sum(v, axis=1)[:, np.newaxis] # normalize rows profile_prop = SSP(name='foo', aa=ss, profile=v, errors=0.1*v) assert profile_prop.name == 'foo' assert np.array_equal(profile_prop.x, ss) assert np.array_equal(profile_prop.y, v) assert np.array_equal(profile_prop.e, 0.1*v) def test_default_name(self): ss_prop = SSP() assert ss_prop.name == 'ss' def test_from_dssp_sequence(self): seq = ''.join(random.sample(SSP.dssp_codes, SSP.n_codes)) ss_prop = SSP().from_dssp_sequence(seq) np.testing.assert_array_equal(ss_prop.y[-1], SSP.code2profile(seq[-1])) def test_from_dssp(self, ss_benchmark): name = ss_benchmark['dssp_file'] ss_prop = SSP().from_dssp(name) np.testing.assert_array_equal(ss_prop.y[-1], SSP.code2profile(' ')) @pytest.mark.skip(reason="DSSP may not be installed in the machine") def test_from_dssp_pdb(self, ss_benchmark): name = ss_benchmark['pdb_file'] ss_prop = SSP().from_dssp_pdb(name) np.testing.assert_array_equal(ss_prop.y[-1], SSP.code2profile(' ')) def test_propagator_size_weighted_sum(self, small_tree): r"""Create random secondary sequences by shufling all codes and assign to the leafs of the tree. Then, propagate the profiles up the tree hiearchy. Finally, compare the profile of the root with expected profile. """ tree = small_tree['tree'] ss_props = list() for i in range(tree.nleafs): seq = ''.join(random.sample(SSP.dssp_codes, SSP.n_codes)) ss_props.append(SSP().from_dssp_sequence(seq)) ps.propagator_size_weighted_sum(ss_props, tree) # Manually calculate the average profile for the last residue y = np.asarray([ss_props[i].y for i in range(tree.nleafs)]) average_profile = np.mean(y, axis=0) np.testing.assert_array_almost_equal(average_profile, tree.root['ss'].y, decimal=12) def test_fractions(self): profile = np.random.rand(42, SSP.n_codes) # not normalized prop = SSP(profile=profile) f = prop.fractions assert f['H'] == np.sum(profile, axis=0)[0] / 42 def test_collapse(self): profile = np.random.rand(42, SSP.n_codes) # not normalized prop = SSP(profile=profile) c = prop.collapsed assert c[0] == np.argmax(profile[0]) def test_disparity(self): p = np.random.rand(42, SSP.n_codes) # not normalized o = np.zeros((42, SSP.n_codes)) pr = SSP(profile=p) assert pr.disparity(SSP(profile=-p)) == 4 * \ pr.disparity(SSP(profile=o)) @pytest.mark.skip(reason="Plotting not enabled in the CI") def test_plot_percents(self): profile = np.random.rand(42, SSP.n_codes) # not normalized profile /= np.sum(profile, axis=1)[:, np.newaxis] # normalized prop = SSP(profile=profile) prop.plot('percents') @pytest.mark.skip(reason="Plotting not enabled in the CI") def test_plot_node(self): profile = np.random.rand(42, SSP.n_codes) # not normalized profile /= np.sum(profile, axis=1)[:, np.newaxis] # normalized prop = SSP(profile=profile) prop.plot('node') @pytest.mark.skip(reason="Plotting not enabled in the CI") def test_plot_leafs(self, small_tree): tree = small_tree['tree'] ss_props = list() for i in range(tree.nleafs): seq = ''.join(random.sample(1000*SSP.dssp_codes, 42)) ss_props.append(SSP().from_dssp_sequence(seq)) ps.propagator_size_weighted_sum(ss_props, tree) tree.root['ss'].plot('leafs') class TestProfileProperty(object): def test_class_decorated_as_node_property(self): assert isinstance(ps.ProfileProperty.name, property) assert isinstance(ps.ProfileProperty.x, property) assert isinstance(ps.ProfileProperty.y, property) assert isinstance(ps.ProfileProperty.e, property) def test_instance_decorated_as_node_property(self): v = np.arange(9) profile_prop = ps.ProfileProperty(name='foo', qvalues=v, profile=10*v, errors=0.1*v) assert profile_prop.name == 'foo' assert np.array_equal(profile_prop.x, v) assert np.array_equal(profile_prop.y, 10*v) assert np.array_equal(profile_prop.e, 0.1*v) class TestSansProperty(object): def test_registered_as_node_property(self): assert isinstance(ps.SansProperty.name, property) assert isinstance(ps.SansProperty.x, property) assert isinstance(ps.SansProperty.y, property) assert isinstance(ps.SansProperty.e, property) def test_default_name(self): sans_prop = ps.SansProperty() assert sans_prop.name == 'sans' def test_from_sassena(self, sans_benchmark): sans_prop = ps.SansProperty() sans_prop.from_sassena(sans_benchmark['profiles'], index=666) assert sans_prop.qvalues[13].item() - 0.0656565651298 < 0.000000001 assert sans_prop.profile[13].item() - 741970.84461578 < 0.000001 def test_from_cryson_int(self, sans_benchmark): sans_prop = ps.SansProperty() sans_prop.from_cryson_int(sans_benchmark['cryson_int']) assert sans_prop.qvalues[8] == 0.08 assert sans_prop.profile[8] == 0.229457E+06 assert sans_prop.errors[8] == 0.0 @pytest.mark.skipif(shutil.which('cryson') is None, reason='Needs cryson') def test_from_cryson_pdb(self, sans_benchmark): sans_prop = ps.SansProperty() sans_prop.from_cryson_pdb(sans_benchmark['cryson_pdb'], args='') sans_prop_ref = ps.SansProperty() sans_prop_ref.from_cryson_int(sans_benchmark['cryson_int']) np.testing.assert_array_almost_equal( sans_prop.qvalues, sans_prop_ref.qvalues) np.testing.assert_array_almost_equal( sans_prop.profile, sans_prop_ref.profile) def test_to_and_from_ascii(self, sans_benchmark): sans_prop_ref = ps.SansProperty() sans_prop_ref.from_cryson_int(sans_benchmark['cryson_int']) sans_prop = ps.SansProperty() with tempfile.NamedTemporaryFile() as f: sans_prop_ref.to_ascii(f.name) sans_prop.from_ascii(f.name) np.testing.assert_array_almost_equal( sans_prop.qvalues, sans_prop_ref.qvalues) class TestSaxsProperty(object): def test_registered_as_node_property(self): assert isinstance(ps.SaxsProperty.name, property) assert isinstance(ps.SaxsProperty.x, property) assert isinstance(ps.SaxsProperty.y, property) assert isinstance(ps.SaxsProperty.e, property) def test_default_name(self): saxs_prop = ps.SaxsProperty() assert saxs_prop.name == 'saxs' def test_from_crysol_int(self, saxs_benchmark): saxs_prop = ps.SaxsProperty() saxs_prop.from_crysol_int(saxs_benchmark['crysol_file']) assert saxs_prop.qvalues[8] == 0.008 assert saxs_prop.profile[8] == 1740900.0 assert saxs_prop.errors[8] == 0.0 @pytest.mark.skipif(shutil.which('crysol') is None, reason='Needs crysol') def test_from_crysol_pdb(self, saxs_benchmark): saxs_prop = ps.SaxsProperty() saxs_prop.from_crysol_pdb(saxs_benchmark['crysol_pdb'], args='') saxs_prop_ref = ps.SaxsProperty() saxs_prop_ref.from_crysol_int(saxs_benchmark['crysol_int']) np.testing.assert_array_almost_equal( saxs_prop.qvalues, saxs_prop_ref.qvalues) np.testing.assert_array_almost_equal( saxs_prop.profile, saxs_prop_ref.profile) def test_to_and_from_ascii(self, saxs_benchmark): saxs_prop_ref = ps.SaxsProperty() saxs_prop_ref.from_crysol_int(saxs_benchmark['crysol_int']) saxs_prop = ps.SaxsProperty() with tempfile.NamedTemporaryFile() as f: saxs_prop_ref.to_ascii(f.name) saxs_prop.from_ascii(f.name) np.testing.assert_array_almost_equal( saxs_prop.qvalues, saxs_prop_ref.qvalues) class TestPropagators(object): def test_propagator_weighted_sum(self, benchmark): tree = benchmark['tree'] ps.propagator_weighted_sum(benchmark['simple_property'], tree) lfs = benchmark['nleafs'] assert tree.root['foo'].bar == int(lfs * (lfs-1) / 2) def test_propagator_size_weighted_sum(self, sans_benchmark): tree = sans_benchmark['tree_with_no_property'] values = sans_benchmark['property_list'] ps.propagator_size_weighted_sum(values, tree) # Test the propagation of the profiles for a node randomly picked node_id = np.random.randint(tree.nleafs, len(tree)) # exclude leafs node = tree[node_id] ln = node.left rn = node.right w = float(ln.count) / (ln.count + rn.count) lnp = ln['sans'] # profile of the "left" sibling node rnp = rn['sans'] y = w * lnp.y + (1 - w) * rnp.y assert np.array_equal(y, node['sans'].y) if __name__ == '__main__': pytest.main() ```
{ "source": "jmborr/LDRDSANS", "score": 2 }
#### File: idpflex/test/test_helper.py ```python from __future__ import print_function, absolute_import import h5py import numpy as np import os import pytest import sys from copy import deepcopy from distutils.version import LooseVersion from scipy.cluster.hierarchy import linkage from idpflex import cnextend as cnx, properties as ps # Resolve if pytest version is modern enough if LooseVersion(pytest.__version__) < LooseVersion('2.10.0'): pytest_yield_fixture = pytest.yield_fixture else: pytest_yield_fixture = pytest.fixture # Resolve the path to the "external data" this_module_path = sys.modules[__name__].__file__ data_dir = os.path.join(os.path.dirname(this_module_path), 'data') @ps.decorate_as_node_property((('name', 'name of the property'), ('domain_bar', 'property domain'), ('bar', 'property_value'), ('error_bar', 'property error'))) class SimpleProperty(object): """ An integer property, only for testing purposes """ def __init__(self, value=0): """ :param value: integer value """ self.name = 'foo' # name of the simple property self.domain_bar = 0.0 self.bar = int(value) # value of the property self.error_bar = 0.0 @pytest.fixture(scope="session") def benchmark(): Z = np.loadtxt(os.path.join(data_dir, 'linkage_matrix')) return {'Z': Z, 'tree': cnx.Tree(Z), 'nnodes': 44757, 'nleafs': 22379, 'simple_property': [SimpleProperty(i) for i in range(22379)], } @pytest_yield_fixture(scope="session") def saxs_benchmark(): r"""Crysol output for one structure Yields ------ dict 'crysol_file': absolute path to file. """ crysol_file = os.path.join(data_dir, 'saxs', 'crysol.dat') yield dict(crysol_file=crysol_file) @pytest_yield_fixture(scope="session") def sans_benchmark(): r"""Sassena output containing 1000 I(Q) profiles for the hiAPP centroids. Yields ------ dict 'profiles' : HDF5 handle to the file containing the I(Q) profiles 'property_list' : list of SansProperty instances, one for each leaf 'tree_with_no_property' : cnextend.Tree with random distances among leafs and without included properties. """ # setup or initialization handle = h5py.File(os.path.join(data_dir, 'sans', 'profiles.h5'), 'r') profiles = handle['fqt'] n_leafs = len(profiles) # Create a node tree. # m is a 1D compressed matrix of distances between leafs m = np.random.random(int(n_leafs * (n_leafs - 1) / 2)) Z = linkage(m) tree = cnx.Tree(Z) # values is a list of SansProperty instances, one for each tree leaf values = list() for i in range(tree.nleafs): sans_property = ps.SansProperty() sans_property.from_sassena(handle, index=i) values.append(sans_property) # yield {'profiles': handle, 'property_list': values, 'tree_with_no_property': tree } # teardown code after finishing the testing session handle.close() @pytest.fixture(scope="session") def sans_fit(sans_benchmark): r""" Parameters ---------- sans_benchmark : pytest fixture Returns ------- dict 'tree': cnextend.Tree with random distances among leafs and endowed with a property. 'experiment_property': SansProperty containing experimental profile 'property_name': 'depth': tree level giving the best fit to experiment 'coefficients': weight of each cluster at tree level 'depth' after fitting. """ tree = deepcopy(sans_benchmark['tree_with_no_property']) values = sans_benchmark['property_list'] name = values[0].name # property name ps.propagator_size_weighted_sum(values, tree) # create a SANS profile as a linear combination of the clusters at a # particular depth depth = 6 coeff = (0.45, 0.00, 0.00, 0.10, 0.25, 0.00, 0.20) # they must add to one clusters = tree.clusters_at_depth(depth) nclusters = 1 + depth # depth=0 corresponds to the root node (nclusters=1) sans_property = clusters[0][name] profile = coeff[0] * sans_property.profile # init with the first cluster flat_background = 0 for i in range(1, nclusters): sans_property = clusters[i][name] profile += coeff[i] * sans_property.profile flat_background += np.mean(sans_property.profile) flat_background /= nclusters profile += flat_background # add a flat background experiment_property = ps.ProfileProperty(qvalues=sans_property.qvalues, profile=profile, errors=0.1*profile) return {'tree': tree, 'property_name': name, 'depth': depth, 'coefficients': coeff, 'background': flat_background, 'experiment_property': experiment_property} ``` #### File: idpflex/test/test_properties.py ```python from __future__ import print_function, absolute_import import numpy as np import pytest from idpflex import properties as ps from idpflex.test.test_helper import benchmark, sans_benchmark, saxs_benchmark class TestRegisterDecorateProperties(object): def test_register_as_node_property(self): class SomeProperty(object): def __init__(self): attrs = dict(id='foo', a='ax', b='by', c='ce') self.__dict__.update(attrs) associations = (('id', 'name of the property'), ('a', 'this is x'), ('b', 'this is y'), ('c', 'this is e')) ps.register_as_node_property(SomeProperty, associations) # Test for class attributes assert isinstance(ps.ProfileProperty.name, property) assert isinstance(ps.ProfileProperty.x, property) assert isinstance(ps.ProfileProperty.y, property) assert isinstance(ps.ProfileProperty.e, property) # Test for managed attributes some_prop = SomeProperty() assert some_prop.name == 'foo' assert some_prop.x == 'ax' assert some_prop.y == 'by' assert some_prop.e == 'ce' def test_decorate_as_node_property(self): associations = (('id', 'name of the property'), ('a', 'this is x'), ('b', 'this is y'), ('c', 'this is e')) @ps.decorate_as_node_property(associations) class SomeProperty(object): def __init__(self): attrs = dict(id='foo', a='ax', b='by', c='ce') self.__dict__.update(attrs) # Test for class attributes assert isinstance(ps.ProfileProperty.name, property) assert isinstance(ps.ProfileProperty.x, property) assert isinstance(ps.ProfileProperty.y, property) assert isinstance(ps.ProfileProperty.e, property) # Test for managed attributes some_prop = SomeProperty() assert some_prop.name == 'foo' assert some_prop.x == 'ax' assert some_prop.y == 'by' assert some_prop.e == 'ce' class TestProfileProperty(object): def test_class_decorated_as_node_property(self): assert isinstance(ps.ProfileProperty.name, property) assert isinstance(ps.ProfileProperty.x, property) assert isinstance(ps.ProfileProperty.y, property) assert isinstance(ps.ProfileProperty.e, property) def test_instance_decorated_as_node_property(self): v = np.arange(9) profile_prop = ps.ProfileProperty(name='foo', qvalues=v, profile=10*v, errors=0.1*v) assert profile_prop.name == 'foo' assert np.array_equal(profile_prop.x, v) assert np.array_equal(profile_prop.y, 10*v) assert np.array_equal(profile_prop.e, 0.1*v) class TestSansProperty(object): def test_registered_as_node_property(self): assert isinstance(ps.SansProperty.name, property) assert isinstance(ps.SansProperty.x, property) assert isinstance(ps.SansProperty.y, property) assert isinstance(ps.SansProperty.e, property) def test_default_name(self): sans_prop = ps.SansProperty() assert sans_prop.name == 'sans' def test_from_sassena(self, sans_benchmark): sans_prop = ps.SansProperty() sans_prop.from_sassena(sans_benchmark['profiles'], index=666) assert sans_prop.qvalues[13].item() - 0.0656565651298 < 0.000000001 assert sans_prop.profile[13].item() - 741970.84461578 < 0.000001 class TestSaxsProperty(object): def test_registered_as_node_property(self): assert isinstance(ps.SaxsProperty.name, property) assert isinstance(ps.SaxsProperty.x, property) assert isinstance(ps.SaxsProperty.y, property) assert isinstance(ps.SaxsProperty.e, property) def test_default_name(self): saxs_prop = ps.SaxsProperty() assert saxs_prop.name == 'saxs' def test_from_crysol_int(self, saxs_benchmark): saxs_prop = ps.SaxsProperty() saxs_prop.from_crysol_int(saxs_benchmark['crysol_file']) assert saxs_prop.qvalues[8] == 0.008 assert saxs_prop.profile[8] == 1740900.0 assert saxs_prop.errors[8] == 0.0 class TestPropagators(object): def test_propagator_weighted_sum(self, benchmark): tree = benchmark['tree'] ps.propagator_weighted_sum(benchmark['simple_property'], tree) l = benchmark['nleafs'] assert tree.root['foo'].bar == int(l * (l-1) / 2) def test_propagator_size_weighted_sum(self, sans_benchmark): tree = sans_benchmark['tree_with_no_property'] values = sans_benchmark['property_list'] ps.propagator_size_weighted_sum(values, tree) # Test the propagation of the profiles for a node randomly picked node_id = np.random.randint(tree.nleafs, len(tree)) # exclude leafs node = tree[node_id] ln = node.left rn = node.right w = float(ln.count) / (ln.count + rn.count) lnp = ln['sans'] # profile of the "left" sibling node rnp = rn['sans'] y = w * lnp.y + (1 - w) * rnp.y assert np.array_equal(y, node['sans'].y) if __name__ == '__main__': pytest.main() ``` #### File: hiAPP/centroids/iprofile.py ```python import h5py import gzip import shutil import tempfile import numpy as np import os from collections import namedtuple import matplotlib.pyplot as plt qi = namedtuple('qi', 'q i') def profile(gzipfile, log10=False): """ Return momentum transfer and intensities :param gzipfile: gzipped sassena file for a single conformation :param log10: return log10 of the intensities :return: namedtuple('qi', 'q i') with 'q' for list of Q values and 'i' for the scattering profile. """ col1 = np.s_[:,0] # first column ft, ftname = tempfile.mkstemp(dir='/tmp') ft2 = open(ftname, 'wb') gt = gzip.open(gzipfile) shutil.copyfileobj(gt, ft2) gt.close() ft2.close() with h5py.File(ftname) as f: i = f['fq'][col1] q = f['qvectors'][col1] reorder = np.argsort(q) q = q[reorder] i = i[reorder] if log10: i = np.log10(i) f.close() os.close(ft) os.remove(ftname) return qi(q, i) def similarity(profile1, profile2, weights = None): """ A measure of similarity between two I(Q) profiles 1/len(profile1) * Sum ((profile1-profile2)/(profile1+profile2))**2) :param profile1: first profile :param profile2: second profile :return: similarity measure :except: profiles of different length """ if weights is None: weights = np.ones(len(profile1)) if len(profile1) != len(profile2): raise IndexError("profiles have different length") return np.sum(weights*((profile1-profile2)/(profile1+profile2))**2)/len(profile1) if __name__ == '__main__': """ For debugging, calculate average intensities """ nframe = 4628 p = list() for iframe in range(1, 1+nframe): p.append(profile('frame{}.h5.gz'.format(iframe)).i) if iframe%100 == 0: print(iframe) p = np.array(p) y = np.mean(p, axis=0) e = np.std(p, axis=0) x = profile('frame1.h5.gz').q plt.errorbar(x, y, yerr=e) plt.show() ```
{ "source": "jmborr/nsc", "score": 3 }
#### File: nsc/nscsim/utilities.py ```python from __future__ import (absolute_import, division, print_function) import logging import functools import numpy as np from collections import namedtuple, Mapping import pathos import multiprocessing import ctypes glog = logging.getLogger('nscsim') glog.addHandler(logging.StreamHandler()) glog.setLevel(logging.INFO) def namedtuplefy(func): r""" Decorator to transform the return dictionary of a function into a namedtuple Parameters ---------- func: Function Function to be decorated name: str Class name for the namedtuple. If None, the name of the function will be used Returns ------- Function """ @functools.wraps(func) def wrapper(*args, **kwargs): res = func(*args, **kwargs) if wrapper.nt is None: if isinstance(res, Mapping) is False: raise ValueError('Cannot namedtuplefy a non-dict') wrapper.nt = namedtuple(func.__name__ + '_nt', res.keys()) return wrapper.nt(**res) wrapper.nt = None return wrapper def shared_array(from_array=None, shape=None, c_type='double'): r""" Read-only array shared by all CPU's Parameters ---------- from_array: numpy.ndarray Create a shared array by copying a non-shared array. will overwrite any values passed through arguments `shape` and `c_type` shape: list desired shape of the array c_type: str One of 'double', 'longdouble, 'float',... See https://docs.python.org/3/library/ctypes.html Returns ------- shared numpy.ndarray """ dtype_to_ctype = {'float64': 'double', 'float32': 'float'} if from_array is not None: shape = from_array.shape dt = str(from_array.dtype) c_type = dtype_to_ctype.get(dt, dt) ctypes_class = getattr(ctypes, 'c_' + c_type) _array_base = multiprocessing.Array(ctypes_class, int(np.prod(shape)), lock=False) _array = np.ctypeslib.as_array(_array_base) _array = _array.reshape(shape) if from_array is not None: _array[:] = from_array return _array def map_parallel(worker, iterator, ncpus, close_pool=True): pool = pathos.pools.ProcessPool(ncpus=ncpus) try: work = pool.map(worker, iterator) finally: if close_pool is True: pool.terminate() return work ```
{ "source": "jmborr/QeF", "score": 2 }
#### File: qef/models/deltadirac.py ```python from __future__ import (absolute_import, division, print_function) from distutils.version import LooseVersion as version import numpy as np import lmfit from lmfit.models import (Model, index_of) def delta_dirac(x, amplitude=1.0, center=0.0): r"""function is zero except for the x-value closest to center. At value-closest-to-center, the function evaluates to the amplitude divided by the x-spacing. Parameters ---------- x :class:`~numpy:numpy.ndarray` domain of the function, energy amplitude : float Integrated intensity of the curve center : float position of the peak """ dx = (x[-1] - x[0]) / (len(x) - 1) # domain spacing y = np.zeros(len(x)) y[np.abs(x - center).argmin()] = amplitude / dx return y class DeltaDiracModel(Model): r"""A function that is zero everywhere except for the x-value closest to the center parameter. At value-closest-to-center, the model evaluates to the amplitude parameter divided by the x-spacing. This last division is necessary to preserve normalization with integrating the function over the X-axis Fitting parameters: - integrated intensity ``amplitude`` :math:`A` - position of the peak ``center`` :math:`E_0` """ def __init__(self, independent_vars=['x'], prefix='', missing=None, name=None, **kwargs): kwargs.update({'prefix': prefix, 'missing': missing, 'independent_vars': independent_vars}) super(DeltaDiracModel, self).__init__(delta_dirac, **kwargs) if version(lmfit.__version__) > version('0.9.5'): __init__.__doc__ = lmfit.models.COMMON_INIT_DOC def guess(self, y, x=None, **kwargs): r"""Guess starting values for the parameters of a model. Parameters ---------- y : :class:`~numpy:numpy.ndarray` Intensities x : :class:`~numpy:numpy.ndarray` energy values kwargs : dict additional optional arguments, passed to model function. Returns ------- :class:`~lmfit.parameter.Parameters` parameters with guessed values """ amplitude = max(y) center = 0.0 if x is not None: center = x[index_of(y, max(y))] dx = (x[-1] - x[0]) / (len(x) - 1) # x-spacing amplitude /= dx return self.make_params(amplitude=amplitude, center=center) ``` #### File: tests/integration/test_water.py ```python from __future__ import (absolute_import, division, print_function) import pytest import os import numpy as np from numpy.testing import assert_almost_equal from lmfit.models import LinearModel, LorentzianModel, ConstantModel import lmfit from lmfit.model import Model from qef.constants import hbar # units of meV x ps or ueV x ns from qef.io.loaders import load_nexus from qef.models.deltadirac import DeltaDiracModel from qef.models.resolution import TabulatedResolutionModel from qef.operators.convolve import Convolve def test_water(io_fix): # Load data res = load_nexus(io_fix['irs_res_f']) dat = load_nexus(io_fix['irs_red_f']) q_vals = io_fix['q_values'] # Define the fitting range e_min = -0.4 e_max = 0.4 # Find indexes of dat['x'] with values in (e_min, e_max) mask = np.intersect1d(np.where(dat['x'] > e_min), np.where(dat['x'] < e_max)) # Drop data outside the fitting range fr = dict() # fitting range. Use in place of 'dat' fr['x'] = dat['x'][mask] fr['y'] = np.asarray([y[mask] for y in dat['y']]) fr['e'] = np.asarray([e[mask] for e in dat['e']]) # Create the model def generate_model_and_params(spectrum_index=None): r"""Produce an LMFIT model and related set of fitting parameters""" sp = '' if spectrum_index is None else '{}_'.format( spectrum_index) # prefix if spectrum_index passed # Model components intensity = ConstantModel(prefix='I_' + sp) # I_amplitude elastic = DeltaDiracModel(prefix='e_' + sp) # e_amplitude, e_center # l_amplitude, l_center, l_sigma (also l_fwhm, l_height) inelastic = LorentzianModel(prefix='l_' + sp) # r_amplitude, r_center (both fixed) resolution = TabulatedResolutionModel(res['x'], res['y'], prefix='r_' + sp) background = LinearModel(prefix='b_' + sp) # b_slope, b_intercept # Putting it all together model = intensity * Convolve(resolution, elastic + inelastic) + background parameters = model.make_params() # model params are a separate entity # Ties and constraints parameters['e_' + sp + 'amplitude'].set(min=0.0, max=1.0) parameters['l_' + sp + 'center'].set( expr='e_' + sp + 'center') # centers tied parameters['l_' + sp + 'amplitude'].set( expr='1 - e_' + sp + 'amplitude') # Some initial sensible values init_vals = {'I_' + sp + 'c': 1.0, 'e_' + sp + 'amplitude': 0.5, 'l_' + sp + 'sigma': 0.01, 'b_' + sp + 'slope': 0, 'b_' + sp + 'intercept': 0} for p, v in init_vals.items(): parameters[p].set(value=v) return model, parameters # Call the function model, params = generate_model_and_params() # Initial guess for first spectrum. Only set free parameters for name, value in dict(I_c=4.0, e_center=0, e_amplitude=0.1, l_sigma=0.03, b_slope=0, b_intercept=0).items(): params[name].set(value=value) # Carry out the fit fit = model.fit(fr['y'][0], x=fr['x'], params=params, weights=1.0 / fr['e'][0]) assert_almost_equal(fit.redchi, 1.72, decimal=2) # Carry out sequential fit n_spectra = len(fr['y']) fits = [None, ] * n_spectra # store fits for all the tried spectra fits[0] = fit # store previous fit for i in range(1, n_spectra): y_exp = fr['y'][i] e_exp = fr['e'][i] fit = model.fit(y_exp, x=fr['x'], params=params, weights=1.0 / e_exp) fits[i] = fit # store fit results assert_almost_equal([f.redchi for f in fits], [1.72, 1.15, 0.81, 0.73, 0.73, 0.75, 0.81, 0.86, 0.75, 0.91], decimal=2) # Fit HWHM(Q^2) with Teixeira model hwhms = 0.5 * np.asarray([fit.params['l_fwhm'].value for fit in fits]) def teixeira(q2s, difcoef, tau): dq2 = difcoef * q2s return hbar * dq2 / (1 + dq2 * tau) teixeira_model = Model(teixeira) # create LMFIT Model instance teixeira_model.set_param_hint('difcoef', min=0) teixeira_model.set_param_hint('tau', min=0) # Carry out the fit from an initial guess teixeira_params = teixeira_model.make_params(difcoef=1.0, tau=1.0) teixeira_fit = teixeira_model.fit(hwhms, q2s=np.square(q_vals), params=teixeira_params) assert_almost_equal([teixeira_fit.best_values['difcoef'], teixeira_fit.best_values['tau']], [0.16, 1.11], decimal=2) # Model for Simultaneous Fit of All Spectra with Teixeira Water Model # # create one model for each spectrum, but collect all parameters under # a single instance of the Parameters class. l_model = list() g_params = lmfit.Parameters() for i in range(n_spectra): # model and parameters for one of the spectra m, ps = generate_model_and_params(spectrum_index=i) l_model.append(m) [g_params.add(p) for p in ps.values()] # Initialize parameter set with optimized parameters from sequential fit for i in range(n_spectra): optimized_params = fits[i].params # these are I_c, e_amplitude,... for name in optimized_params: # for instance, 'e_amplitude' splitted into 'e', and 'amplitude' prefix, base = name.split('_') # i_name is 'e_3_amplitude' for i=3 i_name = prefix + '_{}_'.format(i) + base g_params[i_name].set(value=optimized_params[name].value) # Introduce global parameters difcoef and tau. # Use previous optimized values as initial guess o_p = teixeira_fit.params g_params.add('difcoef', value=o_p['difcoef'].value, min=0) g_params.add('tau', value=o_p['tau'].value, min=0) # Tie each lorentzian l_i_sigma to the teixeira expression for i in range(n_spectra): q2 = q_vals[i] * q_vals[i] fmt = '{hbar}*difcoef*{q2}/(1+difcoef*{q2}*tau)' teixeira_expression = fmt.format(hbar=hbar, q2=q2) g_params['l_{}_sigma'.format(i)].set(expr=teixeira_expression) # Carry out the Simultaneous Fit def residuals(params): l_residuals = list() for i in range(n_spectra): x = fr['x'] # fitting range of energies y = fr['y'][i] # associated experimental intensities e = fr['e'][i] # associated experimental errors model_evaluation = l_model[i].eval(x=x, params=params) l_residuals.append((model_evaluation - y) / e) return np.concatenate(l_residuals) # Minimizer object using the parameter set for all models and the # function to calculate all the residuals. minimizer = lmfit.Minimizer(residuals, g_params) g_fit = minimizer.minimize() assert_almost_equal(g_fit.redchi, 0.93, decimal=2) if __name__ == '__main__': pytest.main([os.path.abspath(__file__)]) ``` #### File: tests/models/test_deltadirac.py ```python import os import pytest import numpy as np from numpy.testing import assert_allclose from lmfit.models import LorentzianModel from qef.models.deltadirac import DeltaDiracModel from qef.operators.convolve import Convolve def test_guess(): x = np.linspace(0, np.pi, 100) # Energies in meV dx = (x[-1] - x[0]) / (len(x) - 1) # x-spacing amplitude = 42.0 offset = np.pi/6.0 y = amplitude * np.sin(x + offset) p = DeltaDiracModel().guess(y, x=x) assert_allclose([amplitude / dx, np.pi/2 - offset], [p['amplitude'], p['center']], rtol=1e-3, atol=1e-5) def test_convolution(): r"""Convolution of function with delta dirac should return the function""" # Reference Lorentzian parameter values amplitude = 42.0 sigma = 0.042 center = 0.0003 c1 = LorentzianModel(prefix='c1_') p = c1.make_params(amplitude=amplitude, center=center, sigma=sigma) c2 = DeltaDiracModel(prefix='c2_') p.update(c2.make_params(amplitude=1.0, center=0.0)) e = 0.0004 * np.arange(-250, 1500) # energies in meV # convolve Lorentzian with delta Dirac y1 = Convolve(c1, c2).eval(params=p, x=e) # should be the lorentzian # reverse order, convolve delta Dirac with Lorentzian y2 = Convolve(c2, c1).eval(params=p, x=e) # should be the lorentzian # We will fit a Lorentzian model against datasets y1 and y2 m = LorentzianModel() all_params = 'amplitude sigma center'.split() for y in (y1, y2): params = m.guess(y, x=e) # Set initial model Lorentzian parameters far from optimal solution params['amplitude'].set(value=amplitude * 10) params['sigma'].set(value=sigma * 4) params['center'].set(value=center * 7) # fit Lorentzian model against dataset y r = m.fit(y, params, x=e) # Compare the reference Lorentzian parameters against # parameters of the fitted model assert_allclose([amplitude, sigma, center], [r.params[p].value for p in all_params], rtol=0.01, atol=0.00001) if __name__ == '__main__': pytest.main([os.path.abspath(__file__)]) ``` #### File: tests/models/test_teixeira.py ```python from __future__ import (absolute_import, division, print_function) import os from numpy.testing import assert_almost_equal import pytest from qef.models.teixeira import TeixeiraWaterModel from qef.constants import hbar def test_init(): tx = TeixeiraWaterModel(prefix='tx_', q=0.3) assert 'tx_dcf*0.09/(1+tx_tau*tx_dcf*0.09)'\ in tx.param_hints['fwhm']['expr'] def test_guess(ltz): tx = TeixeiraWaterModel(q=0.3) p = tx.guess(ltz['y'], x=ltz['x']) assert_almost_equal(p['fwhm'], 2 * ltz['p']['sigma'], decimal=2) assert_almost_equal(hbar / p['tau'], 2 * ltz['p']['sigma'], decimal=2) def test_fit(ltz): tx = TeixeiraWaterModel(q=0.3) p = tx.guess(ltz['y'], x=ltz['x']) p['tau'].value *= 2.0 # get away fro fr = tx.fit(ltz['y'], p, x=ltz['x']) assert_almost_equal(fr.params['fwhm'], 2 * ltz['p']['sigma'], decimal=6) if __name__ == '__main__': pytest.main([os.path.abspath(__file__)]) ```
{ "source": "jmborr/sasmodels", "score": 2 }
#### File: sasmodels/explore/precision.py ```python r""" Show numerical precision of $2 J_1(x)/x$. """ from __future__ import division, print_function import sys import os sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import numpy as np from numpy import pi, inf import scipy.special try: from mpmath import mp except ImportError: # CRUFT: mpmath split out into its own package from sympy.mpmath import mp #import matplotlib; matplotlib.use('TkAgg') import pylab from sasmodels import core, data, direct_model, modelinfo class Comparator(object): def __init__(self, name, mp_function, np_function, ocl_function, xaxis, limits): self.name = name self.mp_function = mp_function self.np_function = np_function self.ocl_function = ocl_function self.xaxis = xaxis self.limits = limits def __repr__(self): return "Comparator(%s)"%self.name def call_mpmath(self, vec, bits=500): """ Direct calculation using mpmath extended precision library. """ with mp.workprec(bits): return [self.mp_function(mp.mpf(x)) for x in vec] def call_numpy(self, x, dtype): """ Direct calculation using numpy/scipy. """ x = np.asarray(x, dtype) return self.np_function(x) def call_ocl(self, x, dtype, platform='ocl'): """ Calculation using sasmodels ocl libraries. """ x = np.asarray(x, dtype) model = core.build_model(self.ocl_function, dtype=dtype) calculator = direct_model.DirectModel(data.empty_data1D(x), model) return calculator(background=0) def run(self, xrange="log", diff="relative"): r""" Compare accuracy of different methods for computing f. *xrange* is:: log: [10^-3,10^5] logq: [10^-4, 10^1] linear: [1,1000] zoom: [1000,1010] neg: [-100,100] *diff* is "relative", "absolute" or "none" *x_bits* is the precision with which the x values are specified. The default 23 should reproduce the equivalent of a single precisio """ linear = not xrange.startswith("log") if xrange == "zoom": lin_min, lin_max, lin_steps = 1000, 1010, 2000 elif xrange == "neg": lin_min, lin_max, lin_steps = -100.1, 100.1, 2000 elif xrange == "linear": lin_min, lin_max, lin_steps = 1, 1000, 2000 elif xrange == "log": log_min, log_max, log_steps = -3, 5, 400 elif xrange == "logq": log_min, log_max, log_steps = -4, 1, 400 else: raise ValueError("unknown range "+xrange) with mp.workprec(500): # Note: we make sure that we are comparing apples to apples... # The x points are set using single precision so that we are # examining the accuracy of the transformation from x to f(x) # rather than x to f(nearest(x)) where nearest(x) is the nearest # value to x in the given precision. if linear: lin_min = max(lin_min, self.limits[0]) lin_max = min(lin_max, self.limits[1]) qrf = np.linspace(lin_min, lin_max, lin_steps, dtype='single') #qrf = np.linspace(lin_min, lin_max, lin_steps, dtype='double') qr = [mp.mpf(float(v)) for v in qrf] #qr = mp.linspace(lin_min, lin_max, lin_steps) else: log_min = np.log10(max(10**log_min, self.limits[0])) log_max = np.log10(min(10**log_max, self.limits[1])) qrf = np.logspace(log_min, log_max, log_steps, dtype='single') #qrf = np.logspace(log_min, log_max, log_steps, dtype='double') qr = [mp.mpf(float(v)) for v in qrf] #qr = [10**v for v in mp.linspace(log_min, log_max, log_steps)] target = self.call_mpmath(qr, bits=500) pylab.subplot(121) self.compare(qr, 'single', target, linear, diff) pylab.legend(loc='best') pylab.subplot(122) self.compare(qr, 'double', target, linear, diff) pylab.legend(loc='best') pylab.suptitle(self.name + " compared to 500-bit mpmath") def compare(self, x, precision, target, linear=False, diff="relative"): r""" Compare the different computation methods using the given precision. """ if precision == 'single': #n=11; plotdiff(x, target, self.call_mpmath(x, n), 'mp %d bits'%n, diff=diff) #n=23; plotdiff(x, target, self.call_mpmath(x, n), 'mp %d bits'%n, diff=diff) pass elif precision == 'double': #n=53; plotdiff(x, target, self.call_mpmath(x, n), 'mp %d bits'%n, diff=diff) #n=83; plotdiff(x, target, self.call_mpmath(x, n), 'mp %d bits'%n, diff=diff) pass plotdiff(x, target, self.call_numpy(x, precision), 'numpy '+precision, diff=diff) plotdiff(x, target, self.call_ocl(x, precision, 0), 'OpenCL '+precision, diff=diff) pylab.xlabel(self.xaxis) if diff == "relative": pylab.ylabel("relative error") elif diff == "absolute": pylab.ylabel("absolute error") else: pylab.ylabel(self.name) pylab.semilogx(x, target, '-', label="true value") if linear: pylab.xscale('linear') def plotdiff(x, target, actual, label, diff): """ Plot the computed value. Use relative error if SHOW_DIFF, otherwise just plot the value directly. """ if diff == "relative": err = np.array([abs((t-a)/t) for t, a in zip(target, actual)], 'd') #err = np.clip(err, 0, 1) pylab.loglog(x, err, '-', label=label) elif diff == "absolute": err = np.array([abs((t-a)) for t, a in zip(target, actual)], 'd') pylab.loglog(x, err, '-', label=label) else: limits = np.min(target), np.max(target) pylab.semilogx(x, np.clip(actual, *limits), '-', label=label) def make_ocl(function, name, source=[]): class Kernel(object): pass Kernel.__file__ = name+".py" Kernel.name = name Kernel.parameters = [] Kernel.source = source Kernel.Iq = function model_info = modelinfo.make_model_info(Kernel) return model_info # =============== FUNCTION DEFINITIONS ================ FUNCTIONS = {} def add_function(name, mp_function, np_function, ocl_function, shortname=None, xaxis="x", limits=(-inf, inf)): if shortname is None: shortname = name.replace('(x)', '').replace(' ', '') FUNCTIONS[shortname] = Comparator(name, mp_function, np_function, ocl_function, xaxis, limits) add_function( name="J0(x)", mp_function=mp.j0, np_function=scipy.special.j0, ocl_function=make_ocl("return sas_J0(q);", "sas_J0", ["lib/polevl.c", "lib/sas_J0.c"]), ) add_function( name="J1(x)", mp_function=mp.j1, np_function=scipy.special.j1, ocl_function=make_ocl("return sas_J1(q);", "sas_J1", ["lib/polevl.c", "lib/sas_J1.c"]), ) add_function( name="JN(-3, x)", mp_function=lambda x: mp.besselj(-3, x), np_function=lambda x: scipy.special.jn(-3, x), ocl_function=make_ocl("return sas_JN(-3, q);", "sas_JN", ["lib/polevl.c", "lib/sas_J0.c", "lib/sas_J1.c", "lib/sas_JN.c"]), shortname="J-3", ) add_function( name="JN(3, x)", mp_function=lambda x: mp.besselj(3, x), np_function=lambda x: scipy.special.jn(3, x), ocl_function=make_ocl("return sas_JN(3, q);", "sas_JN", ["lib/polevl.c", "lib/sas_J0.c", "lib/sas_J1.c", "lib/sas_JN.c"]), shortname="J3", ) add_function( name="JN(2, x)", mp_function=lambda x: mp.besselj(2, x), np_function=lambda x: scipy.special.jn(2, x), ocl_function=make_ocl("return sas_JN(2, q);", "sas_JN", ["lib/polevl.c", "lib/sas_J0.c", "lib/sas_J1.c", "lib/sas_JN.c"]), shortname="J2", ) add_function( name="2 J1(x)/x", mp_function=lambda x: 2*mp.j1(x)/x, np_function=lambda x: 2*scipy.special.j1(x)/x, ocl_function=make_ocl("return sas_2J1x_x(q);", "sas_2J1x_x", ["lib/polevl.c", "lib/sas_J1.c"]), ) add_function( name="J1(x)", mp_function=mp.j1, np_function=scipy.special.j1, ocl_function=make_ocl("return sas_J1(q);", "sas_J1", ["lib/polevl.c", "lib/sas_J1.c"]), ) add_function( name="Si(x)", mp_function=mp.si, np_function=lambda x: scipy.special.sici(x)[0], ocl_function=make_ocl("return sas_Si(q);", "sas_Si", ["lib/sas_Si.c"]), ) #import fnlib #add_function( # name="fnlibJ1", # mp_function=mp.j1, # np_function=fnlib.J1, # ocl_function=make_ocl("return sas_J1(q);", "sas_J1", ["lib/polevl.c", "lib/sas_J1.c"]), #) add_function( name="sin(x)", mp_function=mp.sin, np_function=np.sin, #ocl_function=make_ocl("double sn, cn; SINCOS(q,sn,cn); return sn;", "sas_sin"), ocl_function=make_ocl("return sin(q);", "sas_sin"), ) add_function( name="sin(x)/x", mp_function=lambda x: mp.sin(x)/x if x != 0 else 1, ## scipy sinc function is inaccurate and has an implied pi*x term #np_function=lambda x: scipy.special.sinc(x/pi), ## numpy sin(x)/x needs to check for x=0 np_function=lambda x: np.sin(x)/x, ocl_function=make_ocl("return sas_sinx_x(q);", "sas_sinc"), ) add_function( name="cos(x)", mp_function=mp.cos, np_function=np.cos, #ocl_function=make_ocl("double sn, cn; SINCOS(q,sn,cn); return cn;", "sas_cos"), ocl_function=make_ocl("return cos(q);", "sas_cos"), ) add_function( name="gamma(x)", mp_function=mp.gamma, np_function=scipy.special.gamma, ocl_function=make_ocl("return sas_gamma(q);", "sas_gamma", ["lib/sas_gamma.c"]), limits=(-3.1, 10), ) add_function( name="erf(x)", mp_function=mp.erf, np_function=scipy.special.erf, ocl_function=make_ocl("return sas_erf(q);", "sas_erf", ["lib/polevl.c", "lib/sas_erf.c"]), limits=(-5., 5.), ) add_function( name="erfc(x)", mp_function=mp.erfc, np_function=scipy.special.erfc, ocl_function=make_ocl("return sas_erfc(q);", "sas_erfc", ["lib/polevl.c", "lib/sas_erf.c"]), limits=(-5., 5.), ) add_function( name="arctan(x)", mp_function=mp.atan, np_function=np.arctan, ocl_function=make_ocl("return atan(q);", "sas_arctan"), ) add_function( name="3 j1(x)/x", mp_function=lambda x: 3*(mp.sin(x)/x - mp.cos(x))/(x*x), # Note: no taylor expansion near 0 np_function=lambda x: 3*(np.sin(x)/x - np.cos(x))/(x*x), ocl_function=make_ocl("return sas_3j1x_x(q);", "sas_j1c", ["lib/sas_3j1x_x.c"]), ) add_function( name="(1-cos(x))/x^2", mp_function=lambda x: (1 - mp.cos(x))/(x*x), np_function=lambda x: (1 - np.cos(x))/(x*x), ocl_function=make_ocl("return (1-cos(q))/q/q;", "sas_1mcosx_x2"), ) add_function( name="(1-sin(x)/x)/x", mp_function=lambda x: 1/x - mp.sin(x)/(x*x), np_function=lambda x: 1/x - np.sin(x)/(x*x), ocl_function=make_ocl("return (1-sas_sinx_x(q))/q;", "sas_1msinx_x_x"), ) add_function( name="(1/2+(1-cos(x))/x^2-sin(x)/x)/x", mp_function=lambda x: (0.5 - mp.sin(x)/x + (1-mp.cos(x))/(x*x))/x, np_function=lambda x: (0.5 - np.sin(x)/x + (1-np.cos(x))/(x*x))/x, ocl_function=make_ocl("return (0.5-sin(q)/q + (1-cos(q))/q/q)/q;", "sas_T2"), ) add_function( name="fmod_2pi", mp_function=lambda x: mp.fmod(x, 2*mp.pi), np_function=lambda x: np.fmod(x, 2*np.pi), ocl_function=make_ocl("return fmod(q, 2*M_PI);", "sas_fmod"), ) RADIUS=3000 LENGTH=30 THETA=45 def mp_cyl(x): f = mp.mpf theta = f(THETA)*mp.pi/f(180) qr = x * f(RADIUS)*mp.sin(theta) qh = x * f(LENGTH)/f(2)*mp.cos(theta) be = f(2)*mp.j1(qr)/qr si = mp.sin(qh)/qh background = f(0) #background = f(1)/f(1000) volume = mp.pi*f(RADIUS)**f(2)*f(LENGTH) contrast = f(5) units = f(1)/f(10000) #return be #return si return units*(volume*contrast*be*si)**f(2)/volume + background def np_cyl(x): f = np.float64 if x.dtype == np.float64 else np.float32 theta = f(THETA)*f(np.pi)/f(180) qr = x * f(RADIUS)*np.sin(theta) qh = x * f(LENGTH)/f(2)*np.cos(theta) be = f(2)*scipy.special.j1(qr)/qr si = np.sin(qh)/qh background = f(0) #background = f(1)/f(1000) volume = f(np.pi)*f(RADIUS)**2*f(LENGTH) contrast = f(5) units = f(1)/f(10000) #return be #return si return units*(volume*contrast*be*si)**f(2)/volume + background ocl_cyl = """\ double THETA = %(THETA).15e*M_PI_180; double qr = q*%(RADIUS).15e*sin(THETA); double qh = q*0.5*%(LENGTH).15e*cos(THETA); double be = sas_2J1x_x(qr); double si = sas_sinx_x(qh); double background = 0; //double background = 0.001; double volume = M_PI*square(%(RADIUS).15e)*%(LENGTH).15e; double contrast = 5.0; double units = 1e-4; //return be; //return si; return units*square(volume*contrast*be*si)/volume + background; """%{"LENGTH":LENGTH, "RADIUS": RADIUS, "THETA": THETA} add_function( name="cylinder(r=%g, l=%g, theta=%g)"%(RADIUS, LENGTH, THETA), mp_function=mp_cyl, np_function=np_cyl, ocl_function=make_ocl(ocl_cyl, "ocl_cyl", ["lib/polevl.c", "lib/sas_J1.c"]), shortname="cylinder", xaxis="$q/A^{-1}$", ) lanczos_gamma = """\ const double coeff[] = { 76.18009172947146, -86.50532032941677, 24.01409824083091, -1.231739572450155, 0.1208650973866179e-2,-0.5395239384953e-5 }; const double x = q; double tmp = x + 5.5; tmp -= (x + 0.5)*log(tmp); double ser = 1.000000000190015; for (int k=0; k < 6; k++) ser += coeff[k]/(x + k+1); return -tmp + log(2.5066282746310005*ser/x); """ add_function( name="log gamma(x)", mp_function=mp.loggamma, np_function=scipy.special.gammaln, ocl_function=make_ocl(lanczos_gamma, "lgamma"), ) # Alternate versions of 3 j1(x)/x, for posterity def taylor_3j1x_x(x): """ Calculation using taylor series. """ # Generate coefficients using the precision of the target value. n = 5 cinv = [3991680, -45360, 840, -30, 3] three = x.dtype.type(3) p = three/np.array(cinv, x.dtype) return np.polyval(p[-n:], x*x) add_function( name="3 j1(x)/x: taylor", mp_function=lambda x: 3*(mp.sin(x)/x - mp.cos(x))/(x*x), np_function=taylor_3j1x_x, ocl_function=make_ocl("return sas_3j1x_x(q);", "sas_j1c", ["lib/sas_3j1x_x.c"]), ) def trig_3j1x_x(x): r""" Direct calculation using linear combination of sin/cos. Use the following trig identity: .. math:: a \sin(x) + b \cos(x) = c \sin(x + \phi) where $c = \surd(a^2+b^2)$ and $\phi = \tan^{-1}(b/a) to calculate the numerator $\sin(x) - x\cos(x)$. """ one = x.dtype.type(1) three = x.dtype.type(3) c = np.sqrt(one + x*x) phi = np.arctan2(-x, one) return three*(c*np.sin(x+phi))/(x*x*x) add_function( name="3 j1(x)/x: trig", mp_function=lambda x: 3*(mp.sin(x)/x - mp.cos(x))/(x*x), np_function=trig_3j1x_x, ocl_function=make_ocl("return sas_3j1x_x(q);", "sas_j1c", ["lib/sas_3j1x_x.c"]), ) def np_2J1x_x(x): """ numpy implementation of 2J1(x)/x using single precision algorithm """ # pylint: disable=bad-continuation f = x.dtype.type ax = abs(x) if ax < f(8.0): y = x*x ans1 = f(2)*(f(72362614232.0) + y*(f(-7895059235.0) + y*(f(242396853.1) + y*(f(-2972611.439) + y*(f(15704.48260) + y*(f(-30.16036606))))))) ans2 = (f(144725228442.0) + y*(f(2300535178.0) + y*(f(18583304.74) + y*(f(99447.43394) + y*(f(376.9991397) + y))))) return ans1/ans2 else: y = f(64.0)/(ax*ax) xx = ax - f(2.356194491) ans1 = (f(1.0) + y*(f(0.183105e-2) + y*(f(-0.3516396496e-4) + y*(f(0.2457520174e-5) + y*f(-0.240337019e-6))))) ans2 = (f(0.04687499995) + y*(f(-0.2002690873e-3) + y*(f(0.8449199096e-5) + y*(f(-0.88228987e-6) + y*f(0.105787412e-6))))) sn, cn = np.sin(xx), np.cos(xx) ans = np.sqrt(f(0.636619772)/ax) * (cn*ans1 - (f(8.0)/ax)*sn*ans2) * f(2)/x return -ans if (x < f(0.0)) else ans add_function( name="2 J1(x)/x:alt", mp_function=lambda x: 2*mp.j1(x)/x, np_function=lambda x: np.asarray([np_2J1x_x(v) for v in x], x.dtype), ocl_function=make_ocl("return sas_2J1x_x(q);", "sas_2J1x_x", ["lib/polevl.c", "lib/sas_J1.c"]), ) ALL_FUNCTIONS = set(FUNCTIONS.keys()) ALL_FUNCTIONS.discard("loggamma") # OCL version not ready yet ALL_FUNCTIONS.discard("3j1/x:taylor") ALL_FUNCTIONS.discard("3j1/x:trig") ALL_FUNCTIONS.discard("2J1/x:alt") # =============== MAIN PROGRAM ================ def usage(): names = ", ".join(sorted(ALL_FUNCTIONS)) print("""\ usage: precision.py [-f/a/r] [-x<range>] name... where -f indicates that the function value should be plotted, -a indicates that the absolute error should be plotted, -r indicates that the relative error should be plotted (default), -x<range> indicates the steps in x, where <range> is one of the following log indicates log stepping in [10^-3, 10^5] (default) logq indicates log stepping in [10^-4, 10^1] linear indicates linear stepping in [1, 1000] zoom indicates linear stepping in [1000, 1010] neg indicates linear stepping in [-100.1, 100.1] and name is "all [first]" or one of: """+names) sys.exit(1) def main(): import sys diff = "relative" xrange = "log" options = [v for v in sys.argv[1:] if v.startswith('-')] for opt in options: if opt == '-f': diff = "none" elif opt == '-r': diff = "relative" elif opt == '-a': diff = "absolute" elif opt.startswith('-x'): xrange = opt[2:] else: usage() names = [v for v in sys.argv[1:] if not v.startswith('-')] if not names: usage() if names[0] == "all": cutoff = names[1] if len(names) > 1 else "" names = list(sorted(ALL_FUNCTIONS)) names = [k for k in names if k >= cutoff] if any(k not in FUNCTIONS for k in names): usage() multiple = len(names) > 1 pylab.interactive(multiple) for k in names: pylab.clf() comparator = FUNCTIONS[k] comparator.run(xrange=xrange, diff=diff) if multiple: raw_input() if not multiple: pylab.show() if __name__ == "__main__": main() ``` #### File: sasmodels/sasmodels/alignment.py ```python import numpy as np # type: ignore def align_empty(shape, dtype, alignment=128): """ Return an empty array aligned on the alignment boundary. """ size = np.prod(shape) dtype = np.dtype(dtype) # allocate array with extra space for alignment extra = alignment//dtype.itemsize - 1 result = np.empty(size+extra, dtype) # build a view into allocated array which starts on a boundary offset = (result.ctypes.data%alignment)//dtype.itemsize view = np.reshape(result[offset:offset+size], shape) return view def align_data(x, dtype, alignment=128): """ Return a copy of an array on the alignment boundary. """ # if x is contiguous, aligned, and of the correct type then just return x view = align_empty(x.shape, dtype, alignment=alignment) view[:] = x return view ``` #### File: sasmodels/sasmodels/direct_model.py ```python from __future__ import print_function import numpy as np # type: ignore # TODO: fix sesans module from . import sesans # type: ignore from . import weights from . import resolution from . import resolution2d from .details import make_kernel_args, dispersion_mesh try: from typing import Optional, Dict, Tuple except ImportError: pass else: from .data import Data from .kernel import Kernel, KernelModel from .modelinfo import Parameter, ParameterSet def call_kernel(calculator, pars, cutoff=0., mono=False): # type: (Kernel, ParameterSet, float, bool) -> np.ndarray """ Call *kernel* returned from *model.make_kernel* with parameters *pars*. *cutoff* is the limiting value for the product of dispersion weights used to perform the multidimensional dispersion calculation more quickly at a slight cost to accuracy. The default value of *cutoff=0* integrates over the entire dispersion cube. Using *cutoff=1e-5* can be 50% faster, but with an error of about 1%, which is usually less than the measurement uncertainty. *mono* is True if polydispersity should be set to none on all parameters. """ parameters = calculator.info.parameters if mono: active = lambda name: False elif calculator.dim == '1d': active = lambda name: name in parameters.pd_1d elif calculator.dim == '2d': active = lambda name: name in parameters.pd_2d else: active = lambda name: True #print("pars",[p.id for p in parameters.call_parameters]) vw_pairs = [(get_weights(p, pars) if active(p.name) else ([pars.get(p.name, p.default)], [1.0])) for p in parameters.call_parameters] call_details, values, is_magnetic = make_kernel_args(calculator, vw_pairs) #print("values:", values) return calculator(call_details, values, cutoff, is_magnetic) def call_ER(model_info, pars): # type: (ModelInfo, ParameterSet) -> float """ Call the model ER function using *values*. *model_info* is either *model.info* if you have a loaded model, or *kernel.info* if you have a model kernel prepared for evaluation. """ if model_info.ER is None: return 1.0 elif not model_info.parameters.form_volume_parameters: # handle the case where ER is provided but model is not polydisperse return model_info.ER() else: value, weight = _vol_pars(model_info, pars) individual_radii = model_info.ER(*value) return np.sum(weight*individual_radii) / np.sum(weight) def call_VR(model_info, pars): # type: (ModelInfo, ParameterSet) -> float """ Call the model VR function using *pars*. *model_info* is either *model.info* if you have a loaded model, or *kernel.info* if you have a model kernel prepared for evaluation. """ if model_info.VR is None: return 1.0 elif not model_info.parameters.form_volume_parameters: # handle the case where ER is provided but model is not polydisperse return model_info.VR() else: value, weight = _vol_pars(model_info, pars) whole, part = model_info.VR(*value) return np.sum(weight*part)/np.sum(weight*whole) def call_profile(model_info, **pars): # type: (ModelInfo, ...) -> Tuple[np.ndarray, np.ndarray, Tuple[str, str]] """ Returns the profile *x, y, (xlabel, ylabel)* representing the model. """ args = {} for p in model_info.parameters.kernel_parameters: if p.length > 1: value = np.array([pars.get(p.id+str(j), p.default) for j in range(1, p.length+1)]) else: value = pars.get(p.id, p.default) args[p.id] = value x, y = model_info.profile(**args) return x, y, model_info.profile_axes def get_weights(parameter, values): # type: (Parameter, Dict[str, float]) -> Tuple[np.ndarray, np.ndarray] """ Generate the distribution for parameter *name* given the parameter values in *pars*. Uses "name", "name_pd", "name_pd_type", "name_pd_n", "name_pd_sigma" from the *pars* dictionary for parameter value and parameter dispersion. """ value = float(values.get(parameter.name, parameter.default)) relative = parameter.relative_pd limits = parameter.limits disperser = values.get(parameter.name+'_pd_type', 'gaussian') npts = values.get(parameter.name+'_pd_n', 0) width = values.get(parameter.name+'_pd', 0.0) nsigma = values.get(parameter.name+'_pd_nsigma', 3.0) if npts == 0 or width == 0: return [value], [1.0] value, weight = weights.get_weights( disperser, npts, width, nsigma, value, limits, relative) return value, weight / np.sum(weight) def _vol_pars(model_info, pars): # type: (ModelInfo, ParameterSet) -> Tuple[np.ndarray, np.ndarray] vol_pars = [get_weights(p, pars) for p in model_info.parameters.call_parameters if p.type == 'volume'] #import pylab; pylab.plot(vol_pars[0][0],vol_pars[0][1]); pylab.show() value, weight = dispersion_mesh(model_info, vol_pars) return value, weight class DataMixin(object): """ DataMixin captures the common aspects of evaluating a SAS model for a particular data set, including calculating Iq and evaluating the resolution function. It is used in particular by :class:`DirectModel`, which evaluates a SAS model parameters as key word arguments to the calculator method, and by :class:`bumps_model.Experiment`, which wraps the model and data for use with the Bumps fitting engine. It is not currently used by :class:`sasview_model.SasviewModel` since this will require a number of changes to SasView before we can do it. :meth:`_interpret_data` initializes the data structures necessary to manage the calculations. This sets attributes in the child class such as *data_type* and *resolution*. :meth:`_calc_theory` evaluates the model at the given control values. :meth:`_set_data` sets the intensity data in the data object, possibly with random noise added. This is useful for simulating a dataset with the results from :meth:`_calc_theory`. """ def _interpret_data(self, data, model): # type: (Data, KernelModel) -> None # pylint: disable=attribute-defined-outside-init self._data = data self._model = model # interpret data if hasattr(data, 'isSesans') and data.isSesans: self.data_type = 'sesans' elif hasattr(data, 'qx_data'): self.data_type = 'Iqxy' elif getattr(data, 'oriented', False): self.data_type = 'Iq-oriented' else: self.data_type = 'Iq' if self.data_type == 'sesans': q = sesans.make_q(data.sample.zacceptance, data.Rmax) index = slice(None, None) res = None if data.y is not None: Iq, dIq = data.y, data.dy else: Iq, dIq = None, None #self._theory = np.zeros_like(q) q_vectors = [q] q_mono = sesans.make_all_q(data) elif self.data_type == 'Iqxy': #if not model.info.parameters.has_2d: # raise ValueError("not 2D without orientation or magnetic parameters") q = np.sqrt(data.qx_data**2 + data.qy_data**2) qmin = getattr(data, 'qmin', 1e-16) qmax = getattr(data, 'qmax', np.inf) accuracy = getattr(data, 'accuracy', 'Low') index = ~data.mask & (q >= qmin) & (q <= qmax) if data.data is not None: index &= ~np.isnan(data.data) Iq = data.data[index] dIq = data.err_data[index] else: Iq, dIq = None, None res = resolution2d.Pinhole2D(data=data, index=index, nsigma=3.0, accuracy=accuracy) #self._theory = np.zeros_like(self.Iq) q_vectors = res.q_calc q_mono = [] elif self.data_type == 'Iq': index = (data.x >= data.qmin) & (data.x <= data.qmax) if data.y is not None: index &= ~np.isnan(data.y) Iq = data.y[index] dIq = data.dy[index] else: Iq, dIq = None, None if getattr(data, 'dx', None) is not None: q, dq = data.x[index], data.dx[index] if (dq > 0).any(): res = resolution.Pinhole1D(q, dq) else: res = resolution.Perfect1D(q) elif (getattr(data, 'dxl', None) is not None and getattr(data, 'dxw', None) is not None): res = resolution.Slit1D(data.x[index], qx_width=data.dxl[index], qy_width=data.dxw[index]) else: res = resolution.Perfect1D(data.x[index]) #self._theory = np.zeros_like(self.Iq) q_vectors = [res.q_calc] q_mono = [] elif self.data_type == 'Iq-oriented': index = (data.x >= data.qmin) & (data.x <= data.qmax) if data.y is not None: index &= ~np.isnan(data.y) Iq = data.y[index] dIq = data.dy[index] else: Iq, dIq = None, None if (getattr(data, 'dxl', None) is None or getattr(data, 'dxw', None) is None): raise ValueError("oriented sample with 1D data needs slit resolution") res = resolution2d.Slit2D(data.x[index], qx_width=data.dxw[index], qy_width=data.dxl[index]) q_vectors = res.q_calc q_mono = [] else: raise ValueError("Unknown data type") # never gets here # Remember function inputs so we can delay loading the function and # so we can save/restore state self._kernel_inputs = q_vectors self._kernel_mono_inputs = q_mono self._kernel = None self.Iq, self.dIq, self.index = Iq, dIq, index self.resolution = res def _set_data(self, Iq, noise=None): # type: (np.ndarray, Optional[float]) -> None # pylint: disable=attribute-defined-outside-init if noise is not None: self.dIq = Iq*noise*0.01 dy = self.dIq y = Iq + np.random.randn(*dy.shape) * dy self.Iq = y if self.data_type in ('Iq', 'Iq-oriented'): self._data.dy[self.index] = dy self._data.y[self.index] = y elif self.data_type == 'Iqxy': self._data.data[self.index] = y elif self.data_type == 'sesans': self._data.y[self.index] = y else: raise ValueError("Unknown model") def _calc_theory(self, pars, cutoff=0.0): # type: (ParameterSet, float) -> np.ndarray if self._kernel is None: self._kernel = self._model.make_kernel(self._kernel_inputs) self._kernel_mono = ( self._model.make_kernel(self._kernel_mono_inputs) if self._kernel_mono_inputs else None) Iq_calc = call_kernel(self._kernel, pars, cutoff=cutoff) # Storing the calculated Iq values so that they can be plotted. # Only applies to oriented USANS data for now. # TODO: extend plotting of calculate Iq to other measurement types # TODO: refactor so we don't store the result in the model self.Iq_calc = None if self.data_type == 'sesans': Iq_mono = (call_kernel(self._kernel_mono, pars, mono=True) if self._kernel_mono_inputs else None) result = sesans.transform(self._data, self._kernel_inputs[0], Iq_calc, self._kernel_mono_inputs, Iq_mono) else: result = self.resolution.apply(Iq_calc) if hasattr(self.resolution, 'nx'): self.Iq_calc = ( self.resolution.qx_calc, self.resolution.qy_calc, np.reshape(Iq_calc, (self.resolution.ny, self.resolution.nx)) ) return result class DirectModel(DataMixin): """ Create a calculator object for a model. *data* is 1D SAS, 2D SAS or SESANS data *model* is a model calculator return from :func:`generate.load_model` *cutoff* is the polydispersity weight cutoff. """ def __init__(self, data, model, cutoff=1e-5): # type: (Data, KernelModel, float) -> None self.model = model self.cutoff = cutoff # Note: _interpret_data defines the model attributes self._interpret_data(data, model) def __call__(self, **pars): # type: (**float) -> np.ndarray return self._calc_theory(pars, cutoff=self.cutoff) def simulate_data(self, noise=None, **pars): # type: (Optional[float], **float) -> None """ Generate simulated data for the model. """ Iq = self.__call__(**pars) self._set_data(Iq, noise=noise) def profile(self, **pars): # type: (**float) -> None """ Generate a plottable profile. """ return call_profile(self.model.info, **pars) def main(): # type: () -> None """ Program to evaluate a particular model at a set of q values. """ import sys from .data import empty_data1D, empty_data2D from .core import load_model_info, build_model if len(sys.argv) < 3: print("usage: python -m sasmodels.direct_model modelname (q|qx,qy) par=val ...") sys.exit(1) model_name = sys.argv[1] call = sys.argv[2].upper() if call != "ER_VR": try: values = [float(v) for v in call.split(',')] except Exception: values = [] if len(values) == 1: q, = values data = empty_data1D([q]) elif len(values) == 2: qx, qy = values data = empty_data2D([qx], [qy]) else: print("use q or qx,qy or ER or VR") sys.exit(1) else: data = empty_data1D([0.001]) # Data not used in ER/VR model_info = load_model_info(model_name) model = build_model(model_info) calculator = DirectModel(data, model) pars = dict((k, (float(v) if not k.endswith("_pd_type") else v)) for pair in sys.argv[3:] for k, v in [pair.split('=')]) if call == "ER_VR": ER = call_ER(model_info, pars) VR = call_VR(model_info, pars) print(ER, VR) else: Iq = calculator(**pars) print(Iq[0]) if __name__ == "__main__": main() ``` #### File: sasmodels/sasmodels/__init__.py ```python __version__ = "0.97" def data_files(): """ Return the data files to be installed with the package. The format is a list of (directory, [files...]) pairs which can be used directly in setup(...,data_files=...) for setup.py. """ from os.path import join as joinpath import glob from .generate import EXTERNAL_DIR, DATA_PATH def _expand_patterns(path, patterns): target_path = joinpath(EXTERNAL_DIR, *path) source_path = joinpath(DATA_PATH, *path) files = [] for p in patterns: files.extend(glob.glob(joinpath(source_path, p))) return target_path, files # Place the source for the model tree in the distribution. Minimally we # need the c and cl files for running on OpenCL. Need the py files so # users can easily copy existing models. Need the img files so that we # can build model docs on the fly, including images. return_list = [ _expand_patterns([], ['*.c', '*.cl']), _expand_patterns(['models'], ['*.py', '*.c']), _expand_patterns(['models', 'lib'], ['*.c']), _expand_patterns(['models', 'img'], ['*.*']), ] return return_list ``` #### File: sasmodels/models/broad_peak.py ```python r""" Definition ---------- This model calculates an empirical functional form for SAS data characterized by a broad scattering peak. Many SAS spectra are characterized by a broad peak even though they are from amorphous soft materials. For example, soft systems that show a SAS peak include copolymers, polyelectrolytes, multiphase systems, layered structures, etc. The d-spacing corresponding to the broad peak is a characteristic distance between the scattering inhomogeneities (such as in lamellar, cylindrical, or spherical morphologies, or for bicontinuous structures). The scattering intensity $I(q)$ is calculated as .. math:: I(q) = \frac{A}{q^n} + \frac{C}{1 + (|q - q_0|\xi)^m} + B Here the peak position is related to the d-spacing as $q_0 = 2\pi / d_0$. $A$ is the Porod law scale factor, $n$ the Porod exponent, $C$ is the Lorentzian scale factor, $m$ the exponent of $q$, $\xi$ the screening length, and $B$ the flat background. For 2D data the scattering intensity is calculated in the same way as 1D, where the $q$ vector is defined as .. math:: q = \sqrt{q_x^2 + q_y^2} References ---------- None. Authorship and Verification ---------------------------- * **Author:** <NAME> **Date:** pre 2010 * **Last Modified by:** <NAME> **Date:** July 24, 2016 * **Last Reviewed by:** <NAME> **Date:** March 21, 2016 """ from numpy import inf, errstate name = "broad_peak" title = "Broad Lorentzian type peak on top of a power law decay" description = """\ I(q) = scale_p/pow(q,exponent)+scale_l/ (1.0 + pow((fabs(q-q_peak)*length_l),exponent_l) )+ background List of default parameters: porod_scale = Porod term scaling porod_exp = Porod exponent lorentz_scale = Lorentzian term scaling lorentz_length = Lorentzian screening length [A] peak_pos = peak location [1/A] lorentz_exp = Lorentzian exponent background = Incoherent background""" category = "shape-independent" # pylint: disable=bad-whitespace, line-too-long # ["name", "units", default, [lower, upper], "type", "description"], parameters = [["porod_scale", "", 1.0e-05, [-inf, inf], "", "Power law scale factor"], ["porod_exp", "", 3.0, [-inf, inf], "", "Exponent of power law"], ["lorentz_scale", "", 10.0, [-inf, inf], "", "Scale factor for broad Lorentzian peak"], ["lorentz_length", "Ang", 50.0, [-inf, inf], "", "Lorentzian screening length"], ["peak_pos", "1/Ang", 0.1, [-inf, inf], "", "Peak position in q"], ["lorentz_exp", "", 2.0, [-inf, inf], "", "Exponent of Lorentz function"], ] # pylint: enable=bad-whitespace, line-too-long def Iq(q, porod_scale=1.0e-5, porod_exp=3.0, lorentz_scale=10.0, lorentz_length=50.0, peak_pos=0.1, lorentz_exp=2.0): """ :param q: Input q-value :param porod_scale: Power law scale factor :param porod_exp: Exponent of power law :param lorentz_scale: Scale factor for broad Lorentzian peak :param lorentz_length: Lorentzian screening length :param peak_pos: Peak position in q :param lorentz_exp: Exponent of Lorentz function :return: Calculated intensity """ z = abs(q - peak_pos) * lorentz_length with errstate(divide='ignore'): inten = (porod_scale / q ** porod_exp + lorentz_scale / (1 + z ** lorentz_exp)) return inten Iq.vectorized = True # Iq accepts an array of q values demo = dict(scale=1, background=0, porod_scale=1.0e-05, porod_exp=3, lorentz_scale=10, lorentz_length=50, peak_pos=0.1, lorentz_exp=2) ``` #### File: sasmodels/models/mono_gauss_coil.py ```python r""" This Debye Gaussian coil model strictly describes the scattering from *monodisperse* polymer chains in theta solvents or polymer melts, conditions under which the distances between segments follow a Gaussian distribution. Provided the number of segments is large (ie, high molecular weight polymers) the single-chain form factor P(Q) is that described by Debye (1947). To describe the scattering from *polydisperse* polymer chains see the :ref:`poly-gauss-coil` model. Definition ---------- .. math:: I(q) = \text{scale} \cdot I_0 \cdot P(q) + \text{background} where .. math:: I_0 &= \phi_\text{poly} \cdot V \cdot (\rho_\text{poly} - \rho_\text{solv})^2 P(q) &= 2 [\exp(-Z) + Z - 1] / Z^2 Z &= (q R_g)^2 V &= M / (N_A \delta) Here, $\phi_\text{poly}$ is the volume fraction of polymer, $V$ is the volume of a polymer coil, *M* is the molecular weight of the polymer, $N_A$ is Avogadro's Number, $\delta$ is the bulk density of the polymer, $\rho_\text{poly}$ is the sld of the polymer, $\rho\text{solv}$ is the sld of the solvent, and $R_g$ is the radius of gyration of the polymer coil. The 2D scattering intensity is calculated in the same way as the 1D, but where the *q* vector is redefined as .. math:: q = \sqrt{q_x^2 + q_y^2} References ---------- <NAME>, *J. Phys. Colloid. Chem.*, 51 (1947) 18. <NAME>, *Methods of X-Ray and Neutron Scattering in Polymer Science*, Oxford University Press, New York (2000). http://www.ncnr.nist.gov/staff/hammouda/distance_learning/chapter_28.pdf """ from numpy import inf, exp, errstate name = "mono_gauss_coil" title = "Scattering from monodisperse polymer coils" description = """ Evaluates the scattering from monodisperse polymer chains. """ category = "shape-independent" # pylint: disable=bad-whitespace, line-too-long # ["name", "units", default, [lower, upper], "type", "description"], parameters = [ ["i_zero", "1/cm", 70.0, [0.0, inf], "", "Intensity at q=0"], ["rg", "Ang", 75.0, [0.0, inf], "", "Radius of gyration"], ] # pylint: enable=bad-whitespace, line-too-long # NB: Scale and Background are implicit parameters on every model def Iq(q, i_zero, rg): # pylint: disable = missing-docstring z = (q * rg)**2 with errstate(invalid='ignore'): inten = (i_zero * 2.0) * (exp(-z) + z - 1.0)/z**2 inten[q == 0] = i_zero return inten Iq.vectorized = True # Iq accepts an array of q values demo = dict(scale=1.0, i_zero=70.0, rg=75.0, background=0.0) # these unit test values taken from SasView 3.1.2 tests = [ [{'scale': 1.0, 'i_zero': 70.0, 'rg': 75.0, 'background': 0.0}, [0.0106939, 0.469418], [57.1241, 0.112859]], ] ``` #### File: sasmodels/models/power_law.py ```python r""" This model calculates a simple power law with a flat background. Definition ---------- .. math:: I(q) = \text{scale} \cdot q^{-\text{power}} + \text{background} Note the minus sign in front of the exponent. The exponent *power* should therefore be entered as a **positive** number for fitting. Also note that unlike many other models, *scale* in this model is NOT explicitly related to a volume fraction. Be careful if combining this model with other models. References ---------- None. """ from numpy import inf, errstate name = "power_law" title = "Simple power law with a flat background" description = """ Evaluates the function I(q) = scale * q^(-power) + background NB: enter power as a positive number! """ category = "shape-independent" # ["name", "units", default, [lower, upper], "type", "description"], parameters = [["power", "", 4.0, [-inf, inf], "", "Power law exponent"]] # NB: Scale and Background are implicit parameters on every model def Iq(q, power): # pylint: disable=missing-docstring with errstate(divide='ignore'): result = q**-power return result Iq.vectorized = True # Iq accepts an array of q values demo = dict(scale=1.0, power=4.0, background=0.0) tests = [ [{'scale': 1.0, 'power': 4.0, 'background' : 0.0}, [0.0106939, 0.469418], [7.64644e+07, 20.5949]], ] ``` #### File: sasmodels/models/unified_power_Rg.py ```python r""" Definition ---------- This model employs the empirical multiple level unified Exponential/Power-law fit method developed by Beaucage. Four functions are included so that 1, 2, 3, or 4 levels can be used. In addition a 0 level has been added which simply calculates .. math:: I(q) = \text{scale} / q + \text{background} The Beaucage method is able to reasonably approximate the scattering from many different types of particles, including fractal clusters, random coils (Debye equation), ellipsoidal particles, etc. The model works best for mass fractal systems characterized by Porod exponents between 5/3 and 3. It should not be used for surface fractal systems. Hammouda (2010) has pointed out a deficiency in the way this model handles the transitioning between the Guinier and Porod regimes and which can create artefacts that appear as kinks in the fitted model function. Also see the Guinier_Porod model. The empirical fit function is: .. math:: I(q) = \text{background} + \sum_{i=1}^N \Bigl[ G_i \exp\Bigl(-\frac{q^2R_{gi}^2}{3}\Bigr) + B_i \exp\Bigl(-\frac{q^2R_{g(i+1)}^2}{3}\Bigr) \Bigl(\frac{1}{q_i^*}\Bigr)^{P_i} \Bigr] where .. math:: q_i^* = q \left[\operatorname{erf} \left(\frac{q R_{gi}}{\sqrt{6}}\right) \right]^{-3} For each level, the four parameters $G_i$, $R_{gi}$, $B_i$ and $P_i$ must be chosen. Beaucage has an additional factor $k$ in the definition of $q_i^*$ which is ignored here. For example, to approximate the scattering from random coils (Debye equation), set $R_{gi}$ as the Guinier radius, $P_i = 2$, and $B_i = 2 G_i / R_{gi}$ See the references for further information on choosing the parameters. For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the $q$ vector is defined as .. math:: q = \sqrt{q_x^2 + q_y^2} References ---------- <NAME>, *J. Appl. Cryst.*, 28 (1995) 717-728 <NAME>, *J. Appl. Cryst.*, 29 (1996) 134-146 <NAME>, *Analysis of the Beaucage model, J. Appl. Cryst.*, (2010), 43, 1474-1478 """ from __future__ import division import numpy as np from numpy import inf, exp, sqrt, errstate from scipy.special import erf category = "shape-independent" name = "unified_power_Rg" title = "Unified Power Rg" description = """ The Beaucage model employs the empirical multiple level unified Exponential/Power-law fit method developed by <NAME>. Four functions are included so that 1, 2, 3, or 4 levels can be used. """ # pylint: disable=bad-whitespace, line-too-long parameters = [ ["level", "", 1, [0, 6], "", "Level number"], ["rg[level]", "Ang", 15.8, [0, inf], "", "Radius of gyration"], ["power[level]", "", 4, [-inf, inf], "", "Power"], ["B[level]", "1/cm", 4.5e-6, [-inf, inf], "", ""], ["G[level]", "1/cm", 400, [0, inf], "", ""], ] # pylint: enable=bad-whitespace, line-too-long def Iq(q, level, rg, power, B, G): level = int(level + 0.5) if level == 0: with errstate(divide='ignore'): return 1./q with errstate(divide='ignore', invalid='ignore'): result = np.zeros(q.shape, 'd') for i in range(level): exp_now = exp(-(q*rg[i])**2/3.) pow_now = (erf(q*rg[i]/sqrt(6.))**3/q)**power[i] if i < level-1: exp_next = exp(-(q*rg[i+1])**2/3.) else: exp_next = 1 result += G[i]*exp_now + B[i]*exp_next*pow_now result[q == 0] = np.sum(G[:level]) return result Iq.vectorized = True demo = dict( level=2, rg=[15.8, 21], power=[4, 2], B=[4.5e-6, 0.0006], G=[400, 3], scale=1., background=0., ) ``` #### File: jmborr/sasmodels/sesansdemo.py ```python from __future__ import division from pylab import * from scipy.special import jv as besselj # q-range parameters q = arange(0.0003, 1.0, 0.0003); # [nm^-1] range wide enough for Hankel transform dq=(q[1]-q[0])*1e9; # [m^-1] step size in q, needed for integration nq=len(q); Lambda=2e-10; # [m] wavelength # sample parameters phi=0.1; # volume fraction R=100; # [nm] radius particles DeltaRho=6e14; # [m^-2] V=4/3*pi*R**3 * 1e-27; # [m^3] th=0.002; # [m] thickness sample #2 PHASE SYSTEM st= 1.5*Lambda**2*DeltaRho**2*th*phi*(1-phi)*R*1e-9 # scattering power in sesans formalism # Form factor solid sphere qr=q*R; P=(3.*(sin(qr)-qr*cos(qr)) / qr**3)**2; # Structure factor dilute S=1.; #2 PHASE SYSTEM # scattered intensity [m^-1] in absolute units according to SANS I=phi*(1-phi)*V*(DeltaRho**2)*P*S; clf() subplot(211) # plot the SANS calculation plot(q,I,'k') loglog(q,I) xlim([0.01, 1]) ylim([1, 1e9]) xlabel(r'$Q [nm^{-1}]$') ylabel(r'$d\Sigma/d\Omega [m^{-1}]$') # Hankel transform to nice range for plot nz=61; zz=linspace(0,240,nz); # [nm], should be less than reciprocal from q G=zeros(nz); for i in range(len(zz)): integr=besselj(0,q*zz[i])*I*q; G[i]=sum(integr); G=G*dq*1e9*2*pi; # integr step, conver q into [m**-1] and 2 pi circle integr # plot(zz,G); stt= th*Lambda**2/4/pi/pi*G[0] # scattering power according to SANS formalism PP=exp(th*Lambda**2/4/pi/pi*(G-G[0])); subplot(212) plot(zz,PP,'k',label="Hankel transform") # Hankel transform 1D xlabel('spin-echo length [nm]') ylabel('polarisation normalised') hold(True) # Cosine transformation of 2D scattering patern if False: qy,qz = meshgrid(q,q) qr=R*sqrt(qy**2 + qz**2); # reuse variable names Hankel transform, but now 2D P=(3.*(sin(qr)-qr*cos(qr)) / qr**3)**2; # Structure factor dilute S=1.; # scattered intensity [m^-1] in absolute units according to SANS I=phi*V*(DeltaRho**2)*P*S; GG=zeros(nz); for i in range(len(zz)): integr=cos(qz*zz[i])*I; GG[i]=sum(sum(integr)); GG=4*GG* dq**2; # take integration step into account take 4 quadrants # plot(zz,GG); sstt= th*Lambda**2/4/pi/pi*GG[0] # scattering power according to SANS formalism PPP=exp(th*Lambda**2/4/pi/pi*(GG-GG[0])); plot(zz,PPP,label="cosine transform") # cosine transform 2D # For comparison calculation in SESANS formalism, which overlaps perfectly def gsphere(z,r): """ Calculate SESANS-correlation function for a solid sphere. <NAME> after formulae <NAME> J.Appl.Cryst. 2003 article """ d = z/r g = zeros_like(z) g[d==0] = 1. low = ((d > 0) & (d < 2)) dlow = d[low] dlow2 = dlow**2 print dlow.shape, dlow2.shape g[low] = sqrt(1-dlow2/4.)*(1+dlow2/8.) + dlow2/2.*(1-dlow2/16.)*log(dlow/(2.+sqrt(4.-dlow2))) return g if True: plot(zz,exp(st*(gsphere(zz,R)-1)),'r', label="analytical") legend() show() ``` #### File: jmborr/sasmodels/setup_py2exe.py ```python import os import sys #sys.dont_write_bytecode = True # Force build before continuing os.system('"%s" setup.py build' % sys.executable) # Remove the current directory from the python path here = os.path.abspath(os.path.dirname(__file__)) sys.path = [p for p in sys.path if os.path.abspath(p) != here] import glob from distutils.core import setup from distutils.util import get_platform # Augment the setup interface with the py2exe command and make sure the py2exe # option is passed to setup. import py2exe if len(sys.argv) == 1: sys.argv.append('py2exe') # Put the build lib on the start of the path. # For packages with binary extensions, need platform. If it is a pure # script library, use an empty platform string. platform = '.%s-%s' % (get_platform(), sys.version[:3]) #platform = '' build_lib = os.path.abspath('build/lib' + platform) sys.path.insert(0, build_lib) # print "\n".join(sys.path) import wx import matplotlib matplotlib.use('WXAgg') import periodictable # Retrieve the application version string. import bumps version = bumps.__version__ from bumps.gui.resources import resources as gui_resources # A manifest is required to be included in a py2exe image (or accessible as a # file in the image directory) when wxPython is included so that the Windows XP # theme is used when rendering wx widgets. The manifest must be matched to the # version of Python that is being used. # # Create a manifest for use with Python 2.5 on Windows XP or Vista. It is # adapted from the Python manifest file (C:\Python25\pythonw.exe.manifest). manifest_for_python25 = """ <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0"> <assemblyIdentity version="1.0.0.0" processorArchitecture="x86" name="%(prog)s" type="win32" /> <description>%(prog)s</description> <dependency> <dependentAssembly> <assemblyIdentity type="win32" name="Microsoft.Windows.Common-Controls" version="6.0.0.0" processorArchitecture="X86" publicKeyToken="<KEY>" language="*" /> </dependentAssembly> </dependency> </assembly> """ # Create a manifest for use with Python 2.6 or 2.7 on Windows XP or Vista. manifest_for_python26 = """ <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0"> <assemblyIdentity version="5.0.0.0" processorArchitecture="x86" name="%(prog)s" type="win32"> </assemblyIdentity> <description>%(prog)s</description> <trustInfo xmlns="urn:schemas-microsoft-com:asm.v3"> <security> <requestedPrivileges> <requestedExecutionLevel level="asInvoker" uiAccess="false"> </requestedExecutionLevel> </requestedPrivileges> </security> </trustInfo> <dependency> <dependentAssembly> <assemblyIdentity type="win32" name="Microsoft.VC90.CRT" version="9.0.21022.8" processorArchitecture="x86" publicKeyToken="<KEY>"> </assemblyIdentity> </dependentAssembly> </dependency> <dependency> <dependentAssembly> <assemblyIdentity type="win32" name="Microsoft.Windows.Common-Controls" version="6.0.0.0" processorArchitecture="x86" publicKeyToken="<KEY>" language="*"> </assemblyIdentity> </dependentAssembly> </dependency> </assembly> """ # Select the appropriate manifest to use. if sys.version_info >= (3, 0) or sys.version_info < (2, 5): print("*** This script only works with Python 2.5, 2.6, or 2.7.") sys.exit() elif sys.version_info >= (2, 6): manifest = manifest_for_python26 elif sys.version_info >= (2, 5): manifest = manifest_for_python25 # Create a list of all files to include along side the executable being built # in the dist directory tree. Each element of the data_files list is a tuple # consisting of a path (relative to dist\) and a list of files in that path. data_files = [] # Add resource files that need to reside in the same directory as the image. data_files.append(('.', [os.path.join('.', 'LICENSE.txt')])) data_files.append(('.', [os.path.join('.', 'README.txt')])) data_files.append(('.', [os.path.join('.', 'bin', 'bumps_launch.bat')])) # Add application specific data files from the bumps\bumps-data folder. data_files += gui_resources.data_files() # Add data files from the matplotlib\mpl-data folder and its subfolders. # For matploblib prior to version 0.99 see the examples at the end of the file. data_files += matplotlib.get_py2exe_datafiles() # Add data files from the periodictable\xsf folder. data_files += periodictable.data_files() # Add example directories and their files. An empty directory is ignored. # Note that Inno Setup will determine where these files will be placed such as # C:\My Documents\... instead of the installation folder. for path in glob.glob(os.path.join('examples', '*')): if os.path.isdir(path): for file in glob.glob(os.path.join(path, '*.*')): data_files.append((path, [file])) else: data_files.append(('examples', [path])) for path in glob.glob(os.path.join('doc', 'examples', '*')): if os.path.isdir(path): for file in glob.glob(os.path.join(path, '*.*')): data_files.append((path, [file])) else: data_files.append(('doc', [path])) # Add PDF documentation to the dist staging directory. pdf = os.path.join('doc', 'Bumps.pdf') if os.path.isfile(pdf): data_files.append(('doc', [pdf])) else: print("*** %s not found - building frozen image without it ***" % pdf) # Add the Microsoft Visual C++ 2008 redistributable kit if we are building with # Python 2.6 or 2.7. This kit will be installed on the target system as part # of the installation process for the frozen image. Note that the Python 2.5 # interpreter requires msvcr71.dll which is included in the Python25 package, # however, Python 2.6 and 2.7 require the msvcr90.dll but they do not bundle it # with the Python26 or Python27 package. Thus, for Python 2.6 and later, the # appropriate dll must be present on the target system at runtime. if sys.version_info >= (2, 6): pypath = os.path.dirname(sys.executable) data_files.append(('.', [os.path.join(pypath, 'vcredist_x86.exe')])) # Specify required packages to bundle in the executable image. packages = ['numpy', 'scipy', 'matplotlib', 'pytz', 'pyparsing', 'periodictable', 'bumps', 'sasmodels', 'pyopencl', ] # Specify files to include in the executable image. includes = [] # Specify files to exclude from the executable image. # - We can safely exclude Tk/Tcl and Qt modules because our app uses wxPython. # - We do not use ssl services so they are omitted. # - We can safely exclude the TkAgg matplotlib backend because our app uses # "matplotlib.use('WXAgg')" to override the default matplotlib configuration. # - On the web it is widely recommended to exclude certain lib*.dll modules # but this does not seem necessary any more (but adding them does not hurt). # - Python25 requires mscvr71.dll, however, Win XP includes this file. # - Since we do not support Win 9x systems, w9xpopen.dll is not needed. # - For some reason cygwin1.dll gets included by default, but it is not needed. excludes = ['Tkinter', 'PyQt4', '_ssl', '_tkagg', 'numpy.distutils.test'] dll_excludes = ['libgdk_pixbuf-2.0-0.dll', 'libgobject-2.0-0.dll', 'libgdk-win32-2.0-0.dll', 'tcl84.dll', 'tk84.dll', 'QtGui4.dll', 'QtCore4.dll', 'msvcr71.dll', 'msvcp90.dll', 'w9xpopen.exe', 'cygwin1.dll'] class Target(object): """This class stores metadata about the distribution in a dictionary.""" def __init__(self, **kw): self.__dict__.update(kw) self.version = version clientCLI = Target( name='Bumps', description='Bumps CLI application', # module to run on application start script=os.path.join('bin', 'bumps_cli.py'), dest_base='bumps', # file name part of the exe file to create # also need to specify in data_files icon_resources=[ (1, os.path.join('bumps', 'gui', 'resources', 'bumps.ico'))], bitmap_resources=[], other_resources=[(24, 1, manifest % dict(prog='Bumps'))]) clientGUI = Target( name='Bumps', description='Bumps GUI application', # module to run on application start script=os.path.join('bin', 'bumps_gui.py'), dest_base='bumps_gui', # file name part of the exe file to create # also need to specify in data_files icon_resources=[ (1, os.path.join('bumps', 'gui', 'resources', 'bumps.ico'))], bitmap_resources=[], other_resources=[(24, 1, manifest % dict(prog='Bumps'))]) # Now we do the work to create a standalone distribution using py2exe. # # When the application is run in console mode, a console window will be created # to receive any logging or error messages and the application will then create # a separate GUI application window. # # When the application is run in windows mode, it will create a GUI application # window and no console window will be provided. Output to stderr will be # written to <app-image-name>.log. setup( console=[clientCLI], windows=[clientGUI], options={'py2exe': { 'packages': packages, 'includes': includes, 'excludes': excludes, 'dll_excludes': dll_excludes, 'compressed': 1, # standard compression 'optimize': 0, # no byte-code optimization 'dist_dir': "dist", # where to put py2exe results 'xref': False, # display cross reference (as html doc) 'bundle_files': 1, # bundle python25.dll in library.zip } }, # Since we are building two exe's, do not put the shared library in each # of them. Instead create a single, separate library.zip file. # zipfile=None, # bundle library.zip in exe data_files=data_files # list of files to copy to dist directory ) ```
{ "source": "jmborr/tinydb", "score": 3 }
#### File: tinydb/tinydb/utils.py ```python from collections import OrderedDict, abc from typing import List, Iterator, TypeVar, Generic, Union, Optional K = TypeVar('K') V = TypeVar('V') D = TypeVar('D') class LRUCache(abc.MutableMapping, Generic[K, V]): def __init__(self, capacity=None): self.capacity = capacity self.cache = OrderedDict() # type: OrderedDict[K, V] @property def lru(self) -> List[K]: return list(self.cache.keys()) @property def length(self) -> int: return len(self.cache) def clear(self) -> None: self.cache.clear() def __len__(self) -> int: return self.length def __contains__(self, key: object) -> bool: return key in self.cache def __setitem__(self, key: K, value: V) -> None: self.set(key, value) def __delitem__(self, key: K) -> None: del self.cache[key] def __getitem__(self, key) -> V: value = self.get(key) if value is None: raise KeyError(key) return value def __iter__(self) -> Iterator[K]: return iter(self.cache) def get(self, key: K, default: D = None) -> Optional[Union[V, D]]: value = self.cache.get(key) if value is not None: # Put the key back to the front of the ordered dict by # re-insertig it del self.cache[key] self.cache[key] = value return value return default def set(self, key: K, value: V): if self.cache.get(key): del self.cache[key] self.cache[key] = value else: self.cache[key] = value # Check, if the cache is full and we have to remove old items # If the queue is of unlimited size, self.capacity is NaN and # x > NaN is always False in Python and the cache won't be cleared. if self.capacity is not None and self.length > self.capacity: self.cache.popitem(last=False) class FrozenDict(dict): def __hash__(self): return hash(tuple(sorted(self.items()))) def _immutable(self, *args, **kws): raise TypeError('object is immutable') __setitem__ = _immutable __delitem__ = _immutable clear = _immutable setdefault = _immutable popitem = _immutable def update(self, e=None, **f): raise TypeError('object is immutable') def pop(self, k, d=None): raise TypeError('object is immutable') def freeze(obj): if isinstance(obj, dict): return FrozenDict((k, freeze(v)) for k, v in obj.items()) elif isinstance(obj, list): return tuple(freeze(el) for el in obj) elif isinstance(obj, set): return frozenset(obj) else: return obj ```
{ "source": "jmbowles/kaggle-ashrae-energy-predictor", "score": 3 }
#### File: kaggle-ashrae-energy-predictor/model/als_submit.py ```python from __future__ import print_function """ 0: electricity, 1: chilledwater, 2: steam, 3: hotwater kaggle competitions submit -c ashrae-energy-prediction -f submittal_6.csv.gz -m "Submisssion 6. ALS by meter, month (users), and day (items), rating = meter_reading in log1p" """ from pyspark.ml import PipelineModel import pyspark.sql.functions as F from pyspark.sql import SparkSession spark = SparkSession.builder.appName("ALS Submittal") \ .config("spark.dynamicAllocation.enabled", "true") \ .config("spark.shuffle.service.enabled", "true") \ .enableHiveSupport() \ .getOrCreate() def get_building(df, building_id): return df.where(F.expr("building_id = {0}".format(building_id))) def get_meter(df, meter): return df.where(F.expr("meter = {0}".format(meter))) def get_meters(df): return df.select("meter").distinct().orderBy("meter") def load_model(building_id, meter): model_path = "output/als_model_{0}_{1}".format(building_id, meter) return PipelineModel.load(model_path) def to_csv(submit_id, algo): import os file_name = "submittal_{0}.csv.gzip".format(submit_id) outdir = "./output/submit" if not os.path.exists(outdir): os.mkdir(outdir) path = os.path.join(outdir, file_name) predictions = spark.table("submitted_predictions") submittal = predictions.where(predictions.algo == algo) submittal.select("row_id", "meter_reading").coalesce(1).toPandas().to_csv(path, header=True, index=False, compression="gz") print("Total rows written to '{0}': {1}".format(file_name, submittal.count())) print("Loading test data for prediction submittal") test = spark.table("test") test.cache() submit_id = 6 algo = "als_log1p" buildings = spark.read.load("../datasets/building_metadata.csv", format="csv", sep=",", inferSchema="true", header="true").select("building_id") for row in buildings.toLocalIterator(): building_id = row.building_id building = get_building(test, building_id) meters = get_meters(building) for row in meters.toLocalIterator(): meter_id = row.meter building_meter = get_meter(building, meter_id) print("Predicting meter readings for building {0} meter {1}".format(building_id, meter_id)) model = load_model(building_id, meter_id) predictions = model.transform(building_meter) predictions = predictions.withColumn("prediction", F.expm1(predictions.prediction)) print("Saving submission") predictions = predictions.withColumn("submitted_ts", F.current_timestamp()) predictions = predictions.withColumn("submit_id", F.lit(submit_id)) predictions = predictions.withColumn("algo", F.lit(algo)) predictions = predictions.withColumnRenamed("prediction", "meter_reading").select("row_id", "building_id", "meter", "timestamp", "meter_reading", "submit_id", "submitted_ts", "algo") predictions = predictions.withColumn("meter_reading", F.when(predictions.meter_reading < 0, F.lit(0.0)).otherwise(predictions.meter_reading)) predictions = predictions.fillna(0.0, "meter_reading") predictions.coalesce(1).write.saveAsTable("submitted_predictions", format="parquet", mode="append") to_csv(submit_id, algo) ``` #### File: kaggle-ashrae-energy-predictor/model/linear_submit.py ```python from __future__ import print_function """ 0: electricity, 1: chilledwater, 2: steam, 3: hotwater """ from pyspark.ml import PipelineModel import pyspark.sql.functions as F from pyspark.sql import SparkSession spark = SparkSession.builder.appName("Linear Regression Submittal") \ .config("spark.dynamicAllocation.enabled", "true") \ .config("spark.shuffle.service.enabled", "true") \ .enableHiveSupport() \ .getOrCreate() def get_building(df, building_id): return df.where(F.expr("building_id = {0}".format(building_id))) def get_season(df, months): return df.where(F.expr("month in {0}".format(months))) def load_model(building_id, season): model_path = "output/linear_model_{0}_{1}".format(building_id, season) return PipelineModel.load(model_path) def to_csv(submit_id): import os file_name = "submittal_{0}.csv".format(submit_id) outdir = "./output/submit" if not os.path.exists(outdir): os.mkdir(outdir) path = os.path.join(outdir, file_name) predictions = spark.table("submitted_predictions") predictions.select("row_id", "meter_reading").coalesce(1).toPandas().to_csv(path, header=True, index=False) print("Total rows written to '{0}': {1}".format(file_name, predictions.count())) print("Loading test data for prediction submittal") test = spark.table("test") test.cache() submit_id = 1 algo = "linear" season_months = {"Winter": "(12,1,2)", "Spring": "(3,4,5)", "Summer": "(6,7,8)", "Fall": "(9,10,11)"} buildings = spark.read.load("../datasets/building_metadata.csv", format="csv", sep=",", inferSchema="true", header="true").select("building_id") for row in buildings.toLocalIterator(): building_id = row.building_id for season, months in season_months.items(): print("Predicting meter readings for building {0} season {1}".format(building_id, season)) building = get_building(test, building_id) building = get_season(building, months) model = load_model(building_id, season) predictions = model.transform(building) print("Saving submission") predictions = predictions.withColumn("submitted_ts", F.current_timestamp()) predictions = predictions.withColumn("submit_id", F.lit(submit_id)) predictions = predictions.withColumn("algo", F.lit(algo)) predictions = predictions.withColumnRenamed("prediction", "meter_reading").select("row_id", "building_id", "meter", "timestamp", "meter_reading", "submit_id", "submitted_ts", "algo") predictions.coalesce(1).write.saveAsTable("submitted_predictions", format="parquet", mode="append") to_csv(submit_id) ``` #### File: kaggle-ashrae-energy-predictor/model/weather.py ```python from __future__ import print_function """ """ import pyspark.sql.functions as F from pyspark.sql import SparkSession spark = SparkSession.builder.appName("TransformFeatures") \ .config("spark.dynamicAllocation.enabled", "true") \ .config("spark.shuffle.service.enabled", "true") \ .enableHiveSupport() \ .getOrCreate() def to_gmt(df): return df.withColumn("timestamp", F.to_utc_timestamp("timestamp", df.time_zone)) def split_timestamp(df): df = df.withColumn("month", F.month(df.timestamp)) df = df.withColumn("day", F.dayofmonth(df.timestamp)) df = df.withColumn("hour", F.hour(df.timestamp)) return df def create_table(df, table_name): print("Dropping table '{0}'".format(table_name)) spark.sql("drop table if exists {0}".format(table_name)) print("Saving table '{0}'".format(table_name)) df.coalesce(4).write.saveAsTable(table_name, format="parquet", mode="overwrite") print("Loading and caching data") train = spark.read.load("../datasets/train.csv", format="csv", sep=",", inferSchema="true", header="true") train = train.dropDuplicates(["building_id", "meter", "timestamp"]) train.cache() print("Training dataset row count: {0}".format(train.count())) test = spark.read.load("../datasets/test.csv", format="csv", sep=",", inferSchema="true", header="true") test.cache() print("Test dataset row count: {0}".format(test.count())) meta = spark.read.load("../datasets/building_metadata_tz.csv", format="csv", sep=",", inferSchema="true", header="true") meta = meta.withColumnRenamed("building_id", "building_id_meta") meta = meta.withColumnRenamed("site_id", "site_id_meta") print("Metadata row count: {0}".format(meta.count())) weather = spark.read.load("../datasets/weather_train.csv", format="csv", sep=",", inferSchema="true", header="true") weather = weather.dropDuplicates(["site_id", "timestamp"]) weather = weather.withColumnRenamed("timestamp", "timestamp_wx") weather = weather.withColumnRenamed("site_id", "site_id_wx") print("Weather row count: {0}".format(weather.count())) #weather.withColumn("month_wx", F.month(weather.timestamp_wx)).withColumn("day_wx", F.dayofmonth(weather.timestamp_wx)).groupby("site_id_wx", "month_wx", "day_wx").agg(F.avg(weather.air_temperature).alias("avg_celsius")).withColumn("avg_fahrenheit", F.expr("avg_celsius * 1.8 + 32")).show() #weather.where(F.expr("site_id_wx = 2 and month(timestamp_wx) = 1")).withColumn("month_wx", F.month(weather.timestamp_wx)).withColumn("day_wx", F.dayofmonth(weather.timestamp_wx)).groupby("site_id_wx", "month_wx", "day_wx").agg(F.avg(weather.air_temperature).alias("avg_celsius")).withColumn("avg_fahrenheit", F.expr("avg_celsius * 1.8 + 32")).orderBy("day_wx").show(50) train = train.join(meta, [meta.building_id_meta == train.building_id]) train = to_gmt(train) train = train.join(weather, [train.timestamp == weather.timestamp_wx, train.site_id_meta == weather.site_id_wx], "left_outer") train = train.withColumnRenamed("site_id_meta", "site_id") train = train.drop("building_id_meta", "site_id_wx", "timestamp_wx") print("Training joined row count: {0}".format(train.count())) weather_test = spark.read.load("../datasets/weather_test.csv", format="csv", sep=",", inferSchema="true", header="true") weather_test = weather_test.dropDuplicates(["site_id", "timestamp"]) weather_test = weather_test.withColumnRenamed("timestamp", "timestamp_wx") weather_test = weather_test.withColumnRenamed("site_id", "site_id_wx") print("Weather test row count: {0}".format(weather_test.count())) test = test.join(meta, [meta.building_id_meta == test.building_id]) test = to_gmt(test) test = test.join(weather_test, [test.timestamp == weather_test.timestamp_wx, test.site_id_meta == weather_test.site_id_wx], "left_outer") test = test.withColumnRenamed("site_id_meta", "site_id") test = test.drop("building_id_meta", "site_id_wx", "timestamp_wx") print("Test joined row count: {0}".format(test.count())) print("Transforming datasets") train = split_timestamp(train) test = split_timestamp(test) print("Creating tables") create_table(train, "training") create_table(test, "test") ```
{ "source": "jmbradshaw79/duckdb", "score": 3 }
#### File: fast/pandas/test_pandas_category.py ```python import duckdb import pandas as pd import numpy import pytest def check_category_equal(category): df_in = pd.DataFrame({ 'x': pd.Categorical(category, ordered=True), }) df_out = duckdb.query_df(df_in, "data", "SELECT * FROM data").df() assert df_in.equals(df_out) def check_create_table(category): conn = duckdb.connect() conn.execute ("PRAGMA enable_verification") df_in = pd.DataFrame({ 'x': pd.Categorical(category, ordered=True), 'y': pd.Categorical(category, ordered=True) }) df_out = duckdb.query_df(df_in, "data", "SELECT * FROM data").df() assert df_in.equals(df_out) conn.execute("CREATE TABLE t1 AS SELECT * FROM df_in") conn.execute("CREATE TABLE t2 AS SELECT * FROM df_in") # Do a insert to trigger string -> cat conn.execute("INSERT INTO t1 VALUES ('2','2')") res = conn.execute("SELECT x FROM t1 where x = '1'").fetchall() assert res == [('1',)] res = conn.execute("SELECT t1.x FROM t1 inner join t2 on (t1.x = t2.x)").fetchall() assert res == conn.execute("SELECT x FROM t1").fetchall() # Can't compare different ENUMs with pytest.raises(Exception): conn.execute("SELECT * FROM t1 inner join t2 on (t1.x = t2.y)").fetchall() assert res == conn.execute("SELECT x FROM t1").fetchall() # Triggering the cast with ENUM as a src conn.execute("ALTER TABLE t1 ALTER x SET DATA TYPE VARCHAR") class TestCategory(object): def test_category_simple(self, duckdb_cursor): df_in = pd.DataFrame({ 'float': [1.0, 2.0, 1.0], 'int': pd.Series([1, 2, 1], dtype="category") }) df_out = duckdb.query_df(df_in, "data", "SELECT * FROM data").df() print (duckdb.query_df(df_in, "data", "SELECT * FROM data").fetchall()) print (df_out['int']) assert numpy.all(df_out['float'] == numpy.array([1.0, 2.0, 1.0])) assert numpy.all(df_out['int'] == numpy.array([1, 2, 1])) def test_category_nulls(self, duckdb_cursor): df_in = pd.DataFrame({ 'int': pd.Series([1, 2, None], dtype="category") }) df_out = duckdb.query_df(df_in, "data", "SELECT * FROM data").df() print (duckdb.query_df(df_in, "data", "SELECT * FROM data").fetchall()) assert df_out['int'][0] == 1 assert df_out['int'][1] == 2 assert numpy.isnan(df_out['int'][2]) def test_category_string(self, duckdb_cursor): check_category_equal(['foo','bla','zoo', 'foo', 'foo', 'bla']) def test_category_string_null(self, duckdb_cursor): check_category_equal(['foo','bla',None,'zoo', 'foo', 'foo',None, 'bla']) def test_categorical_fetchall(self, duckdb_cursor): df_in = pd.DataFrame({ 'x': pd.Categorical(['foo','bla',None,'zoo', 'foo', 'foo',None, 'bla'], ordered=True), }) assert duckdb.query_df(df_in, "data", "SELECT * FROM data").fetchall() == [('foo',), ('bla',), (None,), ('zoo',), ('foo',), ('foo',), (None,), ('bla',)] def test_category_string_uint8(self, duckdb_cursor): category = [] for i in range (10): category.append(str(i)) check_create_table(category) def test_category_fetch_df_chunk(self, duckdb_cursor): con = duckdb.connect() categories = ['foo','bla',None,'zoo', 'foo', 'foo',None, 'bla'] result = categories*128 categories = result * 2 df_result = pd.DataFrame({ 'x': pd.Categorical(result, ordered=True), }) df_in = pd.DataFrame({ 'x': pd.Categorical(categories, ordered=True), }) con.register("data", df_in) query = con.execute("SELECT * FROM data") cur_chunk = query.fetch_df_chunk() assert(cur_chunk.equals(df_result)) cur_chunk = query.fetch_df_chunk() assert(cur_chunk.equals(df_result)) cur_chunk = query.fetch_df_chunk() assert(cur_chunk.empty) def test_category_mix(self, duckdb_cursor): df_in = pd.DataFrame({ 'float': [1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 0.0], 'x': pd.Categorical(['foo','bla',None,'zoo', 'foo', 'foo',None, 'bla'], ordered=True), }) df_out = duckdb.query_df(df_in, "data", "SELECT * FROM data").df() assert df_out.equals(df_in) ```
{ "source": "jmbreuer/strainer", "score": 2 }
#### File: strainer/sieve/__init__.py ```python from sievelib import managesieve from .connection import SieveConnectionQueue from .parser import lex, parse, SieveScript __all__ = ('lex', 'parse', 'SieveScript', 'SieveConnectionQueue') # Monkeypatch sievelib#95 old_get_script = managesieve.Client.getscript def getscript(self, name): script = old_get_script.__get__(self)(name) if script is not None: script = script.replace('\n', '\r\n') return script managesieve.Client.getscript = getscript ``` #### File: sieve/semantics/tags.py ```python from __future__ import annotations from dataclasses import dataclass, field from typing import Any, Dict, Sequence class ValueTokens(Dict[bytes, Sequence[str]]): def __init__(self, *args, _: Sequence[str] = (), **kwargs): self._fallback = _ super().__init__(*args, **kwargs) def __getitem__(self, key: Any): try: return super().__getitem__(key) except KeyError: return self._fallback @dataclass class Tag: name: str one_of: Sequence[bytes] = () value_tokens: ValueTokens = field(default_factory=ValueTokens) required: bool = False class Tags: def __init__(self, *specs: Tag): self._specs = specs self._tags = {tag: spec for spec in specs for tag in spec.one_of} def __iter__(self): yield from self._specs def __getitem__(self, key: bytes): return self._tags[key] def __contains__(self, key: bytes): return key in self._tags over_under = Tag('`:over` or `:under`', (b':over', b':under',), ValueTokens(_=('number',)), True) comparator = Tag('comparator', (b':comparator',), ValueTokens(_=('string',))) match_type = Tag('match type', (b':is', b':contains', b':matches',)) address_part = Tag('address part', (b':localpart', b':domain', b':all')) body_transform = Tag('body transform', (b':raw', b':content', b':text'), ValueTokens({b':content': ('string_list',)})) ``` #### File: widgets/tree/widget.py ```python from PyQt5.QtCore import Qt, QSize from PyQt5.QtGui import QContextMenuEvent from PyQt5.QtWidgets import QTreeWidget, QHeaderView from ...actions import EditAccount, OpenScript, ReloadAccount from ...controls import AccountMenu, ScriptMenu from .items import AccountItem class Tree(QTreeWidget): def __init__(self, parent): super().__init__(parent) self.setMinimumSize(QSize(100, 200)) self.setColumnCount(2) self.header().setMinimumSectionSize(0) self.header().setStretchLastSection(False) self.header().setSectionResizeMode(0, QHeaderView.Stretch) self.header().setSectionResizeMode(1, QHeaderView.ResizeToContents) self.setHeaderHidden(True) self.setExpandsOnDoubleClick(False) self._accountMenu = AccountMenu(self.window()) self._scriptMenu = ScriptMenu(self.window()) for action in (*self._accountMenu.actions(), *self._scriptMenu.actions()): try: action.setDefaultArgs(lambda: (self.currentItem(),)) except AttributeError: pass self.currentItemChanged.connect(self.onCurrentItemChanged) self.itemActivated.connect(self.onItemActivated) self.itemChanged.connect(self.onItemChanged) self._updateMenus() def sizeHint(self): return QSize(200, 600) def blockSignals(self, value): super().blockSignals(value) self._updateMenus(None if value else self.currentItem()) def onCurrentItemChanged(self, next, previous): self._updateMenus(next) def _updateMenus(self, item=None): self._accountMenu.update(item) self._scriptMenu.update(item) def contextMenuEvent(self, event: QContextMenuEvent): item = self.itemAt(event.pos()) or self.currentItem() if not item: return if item.parent(): self._scriptMenu.popup(event.globalPos()) else: self._accountMenu.popup(event.globalPos()) def onItemActivated(self, item): if isinstance(item, AccountItem): self.window().action(EditAccount).trigger(item) else: self.window().action(OpenScript).trigger(item) def onItemChanged(self, item): self.onItemsChanged([item]) def onItemsChanged(self, items): self.sortItems(0, Qt.AscendingOrder) for item in items: if item.parent() is None: self.window().action(ReloadAccount).trigger(item) def illegalChildNames(self): return {'', *(self.topLevelItem(i).name for i in range(self.topLevelItemCount()))} def addAccountItem(self, account): return self.addAccountItems([account])[0] def addAccountItems(self, accounts): if not accounts: return [] items = [AccountItem(account) for account in accounts] super().addTopLevelItems(items) self.onItemsChanged(items) return items ``` #### File: strainer/windows/dialogs.py ```python from PyQt5.QtWidgets import QFormLayout from .base import AddOrChangeDialog, DialogTitle from ..controls import StringField, IntegerField, PasswordField, CheckboxField, OptionsField class AccountDialog(AddOrChangeDialog): _addTitle = DialogTitle('mdi.account-plus', 'Add new account') _changeTitle = DialogTitle('mdi.account-edit', 'Change account settings') _defaultValue = ('New account', '', 4190, '', '', False, None) def __init__(self, parent): super().__init__(parent) self._addField('Display name:', StringField()).textChanged.connect(self.onTextChanged) self._addField('Server address:', StringField()).textChanged.connect(self.onTextChanged) self._addField('Server port:', IntegerField()) self._addField('User name:', StringField()) self._addField('Password:', PasswordField()) self._addField('Use STARTTLS:', CheckboxField('enable')) self._addField('Authentication:', OptionsField([ ('Automatic', None), ('Digest MD5', 'DIGEST-MD5'), ('Plain', 'PLAIN'), ('Login', 'LOGIN'), ])) def _setValue(self, values): for i, value in enumerate(values): self._getField(i).setValue(value) self._getField(0).setFocus() def _getValue(self): return [self._getField(i).getValue() for i in range(self.layout().rowCount() - 1)] def onTextChanged(self, _): name = self._getField(0).getValue() address = self._getField(1).getValue() self.setInputValid(self.isNameLegal(name) and bool(address)) class ScriptNameDialog(AddOrChangeDialog): _addTitle = DialogTitle('mdi.file-plus', 'Add new script') _changeTitle = DialogTitle('mdi.file-edit', 'Rename script') _defaultValue = '' def __init__(self, parent): super().__init__(parent) field = self._addField('New script name:', StringField(128)) field.textChanged.connect(lambda name: self.setInputValid(self.isNameLegal(name))) self._getValue = field.getValue def _setValue(self, newValue): field = self.layout().itemAt(0, QFormLayout.FieldRole).widget() field.setValue(newValue) field.setFocus() field.textChanged.emit(newValue) ``` #### File: strainer/windows/mainWindow.py ```python from PyQt5.QtCore import Qt, QSettings, QSize, QTimer from PyQt5.QtWidgets import QFrame, QHBoxLayout, QMainWindow, QSplitter, QStyle from ..controls import ManageMenu, EditMenu, NavigateMenu, ManageToolBar, EditToolBar, NavigateToolBar, StatusBar from ..widgets import Tree, Editor, Reference from .messages import ConfirmCloseMessage class MainWindow(QMainWindow): def __init__(self, all_actions): super().__init__() self._actions = all_actions self._splitter = QSplitter() self.setCentralWidget(QFrame(self)) QHBoxLayout(self.centralWidget()).addWidget(self._splitter) self.menuBar().addMenu(ManageMenu(self)) self.menuBar().addMenu(EditMenu(self)) self.menuBar().addMenu(NavigateMenu(self)) self.addToolBar(ManageToolBar(self)) self.addToolBar(EditToolBar(self)) self.addToolBar(NavigateToolBar(self)) self.setStatusBar(StatusBar(self)) self._tree = Tree(self._splitter) self._editor = Editor(self._splitter) self._reference = Reference(self._splitter) self._parseTimer = QTimer(interval=1000) self.statusBar().gotoError.connect(self._editor.setCursorPosition) self.statusBar().gotoError.connect(lambda *_: self._editor.setFocus(Qt.OtherFocusReason)) self.statusBar().errorChanged.connect(self._editor.setParseError) self._editor.modificationChanged.connect(self.onModificationChanged) self._editor.cursorPositionChanged.connect(self.statusBar().setCursorPosition) self._editor.textChanged.connect(self._parseTimer.start) self._openScript = None self._confirmClose = ConfirmCloseMessage(self).exec self._parseTimer.timeout.connect(self.onParseTimer) self.onModificationChanged() def show(self, desktop): settings = QSettings() try: self.restoreGeometry(settings.value('windows/main/geometry')) except TypeError: geometry = desktop.availableGeometry() size = geometry.size() size = QSize(size.width() * 0.75, size.height() * 0.75) self.setGeometry(QStyle.alignedRect(Qt.LeftToRight, Qt.AlignCenter, size, geometry)) try: self.restoreState(settings.value('windows/main/window-state')) except TypeError: pass try: self._splitter.restoreState(settings.value('windows/main/splitter-state')) except TypeError: pass super().show() def action(self, action_type): return self._actions[action_type] def tree(self): return self._tree def editor(self): return self._editor def reference(self): return self._reference def openScript(self): return self._openScript def setOpenScript(self, item, content='', *, force=False): if self._openScript: if not force and not self._confirmClose(): self._editor.setFocus(Qt.OtherFocusReason) return False self._openScript.open = False self._openScript = None self._editor.close() if item: self._editor.open(content) self._openScript = item self._openScript.open = True self.statusBar().setScript(self._openScript) self.onModificationChanged(False) return True def onModificationChanged(self, isModified=False): title = 'Strainer' if self._openScript: title = f"{title} ({self._openScript.parent().name}: {self._openScript.name}{'*' if isModified else ''})" self.setWindowTitle(title) def onParseTimer(self): self._parseTimer.stop() self.statusBar().parseScript(bytes(self._editor.bytes(0, self._editor.length())[:-1])) def closeEvent(self, event): if self._confirmClose(): settings = QSettings() settings.setValue('windows/main/splitter-state', self._splitter.saveState()) settings.setValue('windows/main/window-state', self.saveState()) settings.setValue('windows/main/geometry', self.saveGeometry()) event.accept() else: event.ignore() ```
{ "source": "jmbriody/bookofnumbers", "score": 3 }
#### File: bookofnumbers/tests/cdnf_tests.py ```python import pytest from collections import namedtuple from cdnf import * def test_quin(): # a = qmc(2078) assert isinstance(canonical("ABC"), ValueError) assert canonical(2077, True, True) == "f(2077) = AB'CD + A'BC'D' + A'B'CD' + A'B'CD + A'B'C'D'" Term = namedtuple('Term', 'termset used ones source generation final') assert quinemc(2078) == "B'CD + A'BC'D' + A'B'D + A'B'C" assert quinemc(2077) == "B'CD + A'C'D' + A'B'D'" assert quinemc(12309, True) == "ABC' + A'C'D' + A'B'D'" assert quinemc(2003) == "B'C' + AB'D' + A'C'D' + A'BC" assert quinemc(255) == "1" assert quinemc(0) == "0" canon_list = ["ABC'D", "A'B'CD'", "ABC'D'", "A'BC'D'", "A'B'C'D'"] canon_string = "ABC'D + A'B'CD' + ABC'D' + A'BC'D' + A'B'C'D'" canon_string_error = "ABCD + A'B'D' + ABC'D' + A'BC'D' + A'B'C'D'" assert quinemc(canon_string) == "ABC' + A'C'D' + A'B'D'" assert quinemc(canon_list) == "ABC' + A'C'D' + A'B'D'" assert isinstance(quinemc({"ABC", "A'C"}), ValueError) assert to_cdnf("B'CD + A'C'D' + A'B'D'") == "AB'CD + A'BC'D' + A'B'CD' + A'B'CD + A'B'C'D'" assert to_cdnf(["B'CD", "A'C'D'", "A'B'D'"]) == "AB'CD + A'BC'D' + A'B'CD' + A'B'CD + A'B'C'D'" assert to_cdnf("C + A") == "AC' + AC + A'C" assert to_cdnf("C + A", 1) == "ABC' + ABC + AB'C' + AB'C + A'BC + A'B'C" assert to_cdnf("ry + t") == "rty' + rty + rt'y + r'ty' + r'ty" assert isinstance(to_cdnf(2077), ValueError) assert isinstance(quinemc(canon_string_error), ValueError) second_result = ["A'D", "AB'C'", "B'CD'"] a, b, c = quinemc(2046, True, True) c1 = c[1] r = ["".join(sorted(ti.termset)) for ti in c1] assert set(r) == set(second_result) assert len(b) == 26 r, s, t = quinemc(743, 1, 1) assert result_to_int(s) == 743 assert alternatives(s, t)[2] == "B'C'D + A'B'D' + A'BC + A'BD" assert quinemc([743, [0, 1]]) == "B'C'D + A'CD' + A'BD" ```
{ "source": "jmbrooks/data_structures_and_algorithms", "score": 4 }
#### File: jmbrooks/data_structures_and_algorithms/coin_game.py ```python from random import randint class Coin(): """Defines the two-sided fair coin.""" def __init__(self): self.state = None def __str__(self): return self.state def get_coin_state(self): return self.state def flip_coin(self): state = randint(0, 1) if state == 1: return 'heads' else: return 'tails' class Player(): """Defines a Player in the coin flip game.""" def __init__(self, name): self.name = name self._coin_choice = '' def __str__(self): return self.name def choose_coin(self): coin_choice = input("Hello, " + self.name + "! Choose heads or tails: ").lower().strip() self._coin_choice = coin_choice return coin_choice def get_coin_choice(self): return self._coin_choice def set_coin_choice(self, coin_choice): self._coin_choice = coin_choice def has_won(self, winning_coin_choice): return self._coin_choice == winning_coin_choice class CoinGame(): """Defines an iteration of the coin toss game.""" def __init__(self, players): self.players = players self.player_one = Player(self.players[0]) self.player_two = Player(self.players[1]) self.coin = Coin() def choose_first_player(self): return randint(0, 1) def start_game(self): if self.choose_first_player() == 0: print(self.player_one.name + " will choose the coin side.") first_player = self.player_one second_player = self.player_two else: print(self.player_two.name + " will choose the coin side.") first_player = self.player_two second_player = self.player_one random_coin = self.coin.flip_coin() first_coin_choice = first_player.choose_coin() print("The winner is {}.".format(random_coin)) if first_coin_choice == 'heads': second_player_choice = second_player.set_coin_choice('tails') else: second_player_choice = second_player.set_coin_choice('heads') print("Player one wins? " + str(first_player.has_won(random_coin))) print("Player two wins? " + str(second_player.has_won(random_coin))) if __name__ == '__main__': game = CoinGame(['james', 'jeff']) print(game.start_game()) ```
{ "source": "jmbrooks/dbtea", "score": 3 }
#### File: dbtea/dbtea/exceptions.py ```python from typing import Any, Dict, Optional import requests class DbteaException(Exception): """Exception related to dbtea configuration, processing or compatibility.""" exit_code = 100 def __init__(self, name: str, title: str, detail: str): self.type: str = "/errors/" + name self.title = title self.detail = detail def __repr__(self) -> str: return self.title def __str__(self) -> str: return self.title + " " + self.detail class GitException(Exception): """Exception related to Git or Git provider configuration or APIs.""" exit_code = 101 def __init__( self, name: str, provider: str, title: str, status: int, detail: str, response: requests.Response, ): request: requests.PreparedRequest = response.request super().__init__("git-errors/" + provider + "/" + name, title, detail) self.status = status self.looker_api_response: Optional[dict] = _details_from_http_error(response) self.request = {"url": request.url, "method": request.method} def _details_from_http_error(response: requests.Response) -> Optional[Dict[str, Any]]: """""" try: details = response.json() # Requests raises a ValueError if the response is invalid JSON except ValueError: details = None return details ``` #### File: dbtea/tests/test_utils.py ```python import os from pathlib import Path from dbtea import utils current_directory = Path(__file__).parent.absolute() def test_assemble_basic_path(): simple_directory = "/Users/SampleUser/" simple_file_name = "profiles.yml" assembled_path = utils.assemble_path(simple_directory, ".dbt", simple_file_name) assert assembled_path == "/Users/SampleUser/.dbt/profiles.yml" def test_assemble_windows_path(): root_windows_directory = r"C:\Program Files (x86)\Python" second_windows_directory = r"root\tests" file_name = "sample.py" assembled_path = utils.assemble_path( root_windows_directory, second_windows_directory, "unit", file_name ) assert assembled_path == "C:/Program Files (x86)/Python/root/tests/unit/sample.py" def test_fetch_dbt_basic_project(): dbt_basic_project_path = os.path.join( current_directory, "resources", "dbt_projects", "basic" ) project_path = utils.fetch_dbt_project_directory( custom_project_directory=dbt_basic_project_path ) assert project_path.endswith("resources/dbt_projects/basic") ```
{ "source": "jmbrooks/SimpleProblems", "score": 4 }
#### File: jmbrooks/SimpleProblems/sum_pairs_to_value.py ```python def has_sum_pair(input_list: list, sum: int) -> list: """Given list and desired integer sum, determines if a pair sums to that value.""" complement_set = set() for number in input_list: if (sum - number) in complement_set: return [True, [number, sum - number]] complement_set.add(number) return [False, []] input_list = [1, 9, 3, 6, 7, 4, 4] input_list_2 = [2, 5, 5, 1, 2, 6, 4] input_list_3 = [] print(has_sum_pair(input_list, 22)) print(has_sum_pair(input_list_2, -5)) print(has_sum_pair(input_list_3, 2)) ```
{ "source": "jmbrunskill/py-advent-of-code", "score": 3 }
#### File: py-advent-of-code/intcode/intcode.py ```python class intcode(): def __init__(self): self.instructionPointer = 0 self.memory = [] self.stopped = False def loadMemory(self, memList): self.memory = memList.copy() def loadProgram(self, programString): numbers = programString.split(",") self.memory = list(map(int,numbers)) def isStopped(self): return self.stopped def add(self,p1_location,p2_location,output_location): self.memory[output_location] = self.memory[p1_location] + self.memory[p2_location] self.instructionPointer += 4 return def mult(self, p1_location, p2_location, output_location): self.memory[output_location] = self.memory[p1_location] * \ self.memory[p2_location] self.instructionPointer += 4 return def stop(self, p1_location, p2_location, output_location): #Stop function doesn't use any of these parameters, but needs them to use the dictionary based case self.stopped = True return def decode(self): opcode = self.memory[self.instructionPointer] p1_location = 0 p2_location = 0 p3_location = 0 if opcode != 99: p1_location = self.memory[self.instructionPointer+1] p2_location = self.memory[self.instructionPointer+2] p3_location = self.memory[self.instructionPointer+3] return opcode,p1_location,p2_location,p3_location def step(self, opcode, p1_location, p2_location, p3_location): funcs = { 1: self.add, 2: self.mult, 99: self.stop } funcs[opcode](p1_location, p2_location, p3_location) def execute(self): while not self.isStopped(): #Interpret the current instruction #Find the parameters opcode, p1_location, p2_location, p3_location = self.decode() #Execute that instruction self.step(opcode, p1_location, p2_location, p3_location) #Update instruction Pointer - This happens automatically in each instruction ```
{ "source": "JMBurley/pandas", "score": 2 }
#### File: tests/frame/test_timeseries.py ```python from datetime import datetime, time from itertools import product import numpy as np import pytest import pytz import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Index, MultiIndex, Series, date_range, period_range, to_datetime, ) import pandas.util.testing as tm import pandas.tseries.offsets as offsets @pytest.fixture(params=product([True, False], [True, False])) def close_open_fixture(request): return request.param class TestDataFrameTimeSeriesMethods: def test_pct_change(self, datetime_frame): rs = datetime_frame.pct_change(fill_method=None) tm.assert_frame_equal(rs, datetime_frame / datetime_frame.shift(1) - 1) rs = datetime_frame.pct_change(2) filled = datetime_frame.fillna(method="pad") tm.assert_frame_equal(rs, filled / filled.shift(2) - 1) rs = datetime_frame.pct_change(fill_method="bfill", limit=1) filled = datetime_frame.fillna(method="bfill", limit=1) tm.assert_frame_equal(rs, filled / filled.shift(1) - 1) rs = datetime_frame.pct_change(freq="5D") filled = datetime_frame.fillna(method="pad") tm.assert_frame_equal( rs, (filled / filled.shift(freq="5D") - 1).reindex_like(filled) ) def test_pct_change_shift_over_nas(self): s = Series([1.0, 1.5, np.nan, 2.5, 3.0]) df = DataFrame({"a": s, "b": s}) chg = df.pct_change() expected = Series([np.nan, 0.5, 0.0, 2.5 / 1.5 - 1, 0.2]) edf = DataFrame({"a": expected, "b": expected}) tm.assert_frame_equal(chg, edf) @pytest.mark.parametrize( "freq, periods, fill_method, limit", [ ("5B", 5, None, None), ("3B", 3, None, None), ("3B", 3, "bfill", None), ("7B", 7, "pad", 1), ("7B", 7, "bfill", 3), ("14B", 14, None, None), ], ) def test_pct_change_periods_freq( self, datetime_frame, freq, periods, fill_method, limit ): # GH 7292 rs_freq = datetime_frame.pct_change( freq=freq, fill_method=fill_method, limit=limit ) rs_periods = datetime_frame.pct_change( periods, fill_method=fill_method, limit=limit ) tm.assert_frame_equal(rs_freq, rs_periods) empty_ts = DataFrame(index=datetime_frame.index, columns=datetime_frame.columns) rs_freq = empty_ts.pct_change(freq=freq, fill_method=fill_method, limit=limit) rs_periods = empty_ts.pct_change(periods, fill_method=fill_method, limit=limit) tm.assert_frame_equal(rs_freq, rs_periods) def test_frame_ctor_datetime64_column(self): rng = date_range("1/1/2000 00:00:00", "1/1/2000 1:59:50", freq="10s") dates = np.asarray(rng) df = DataFrame({"A": np.random.randn(len(rng)), "B": dates}) assert np.issubdtype(df["B"].dtype, np.dtype("M8[ns]")) def test_frame_append_datetime64_column(self): rng = date_range("1/1/2000 00:00:00", "1/1/2000 1:59:50", freq="10s") df = DataFrame(index=np.arange(len(rng))) df["A"] = rng assert np.issubdtype(df["A"].dtype, np.dtype("M8[ns]")) def test_frame_datetime64_pre1900_repr(self): df = DataFrame({"year": date_range("1/1/1700", periods=50, freq="A-DEC")}) # it works! repr(df) def test_frame_append_datetime64_col_other_units(self): n = 100 units = ["h", "m", "s", "ms", "D", "M", "Y"] ns_dtype = np.dtype("M8[ns]") for unit in units: dtype = np.dtype("M8[{unit}]".format(unit=unit)) vals = np.arange(n, dtype=np.int64).view(dtype) df = DataFrame({"ints": np.arange(n)}, index=np.arange(n)) df[unit] = vals ex_vals = to_datetime(vals.astype("O")).values assert df[unit].dtype == ns_dtype assert (df[unit].values == ex_vals).all() # Test insertion into existing datetime64 column df = DataFrame({"ints": np.arange(n)}, index=np.arange(n)) df["dates"] = np.arange(n, dtype=np.int64).view(ns_dtype) for unit in units: dtype = np.dtype("M8[{unit}]".format(unit=unit)) vals = np.arange(n, dtype=np.int64).view(dtype) tmp = df.copy() tmp["dates"] = vals ex_vals = to_datetime(vals.astype("O")).values assert (tmp["dates"].values == ex_vals).all() def test_asfreq(self, datetime_frame): offset_monthly = datetime_frame.asfreq(offsets.BMonthEnd()) rule_monthly = datetime_frame.asfreq("BM") tm.assert_almost_equal(offset_monthly["A"], rule_monthly["A"]) filled = rule_monthly.asfreq("B", method="pad") # noqa # TODO: actually check that this worked. # don't forget! filled_dep = rule_monthly.asfreq("B", method="pad") # noqa # test does not blow up on length-0 DataFrame zero_length = datetime_frame.reindex([]) result = zero_length.asfreq("BM") assert result is not zero_length def test_asfreq_datetimeindex(self): df = DataFrame( {"A": [1, 2, 3]}, index=[datetime(2011, 11, 1), datetime(2011, 11, 2), datetime(2011, 11, 3)], ) df = df.asfreq("B") assert isinstance(df.index, DatetimeIndex) ts = df["A"].asfreq("B") assert isinstance(ts.index, DatetimeIndex) def test_asfreq_fillvalue(self): # test for fill value during upsampling, related to issue 3715 # setup rng = pd.date_range("1/1/2016", periods=10, freq="2S") ts = pd.Series(np.arange(len(rng)), index=rng) df = pd.DataFrame({"one": ts}) # insert pre-existing missing value df.loc["2016-01-01 00:00:08", "one"] = None actual_df = df.asfreq(freq="1S", fill_value=9.0) expected_df = df.asfreq(freq="1S").fillna(9.0) expected_df.loc["2016-01-01 00:00:08", "one"] = None tm.assert_frame_equal(expected_df, actual_df) expected_series = ts.asfreq(freq="1S").fillna(9.0) actual_series = ts.asfreq(freq="1S", fill_value=9.0) tm.assert_series_equal(expected_series, actual_series) @pytest.mark.parametrize( "data,idx,expected_first,expected_last", [ ({"A": [1, 2, 3]}, [1, 1, 2], 1, 2), ({"A": [1, 2, 3]}, [1, 2, 2], 1, 2), ({"A": [1, 2, 3, 4]}, ["d", "d", "d", "d"], "d", "d"), ({"A": [1, np.nan, 3]}, [1, 1, 2], 1, 2), ({"A": [np.nan, np.nan, 3]}, [1, 1, 2], 2, 2), ({"A": [1, np.nan, 3]}, [1, 2, 2], 1, 2), ], ) def test_first_last_valid( self, float_frame, data, idx, expected_first, expected_last ): N = len(float_frame.index) mat = np.random.randn(N) mat[:5] = np.nan mat[-5:] = np.nan frame = DataFrame({"foo": mat}, index=float_frame.index) index = frame.first_valid_index() assert index == frame.index[5] index = frame.last_valid_index() assert index == frame.index[-6] # GH12800 empty = DataFrame() assert empty.last_valid_index() is None assert empty.first_valid_index() is None # GH17400: no valid entries frame[:] = np.nan assert frame.last_valid_index() is None assert frame.first_valid_index() is None # GH20499: its preserves freq with holes frame.index = date_range("20110101", periods=N, freq="B") frame.iloc[1] = 1 frame.iloc[-2] = 1 assert frame.first_valid_index() == frame.index[1] assert frame.last_valid_index() == frame.index[-2] assert frame.first_valid_index().freq == frame.index.freq assert frame.last_valid_index().freq == frame.index.freq # GH 21441 df = DataFrame(data, index=idx) assert expected_first == df.first_valid_index() assert expected_last == df.last_valid_index() @pytest.mark.parametrize("klass", [Series, DataFrame]) def test_first_valid_index_all_nan(self, klass): # GH#9752 Series/DataFrame should both return None, not raise obj = klass([np.nan]) assert obj.first_valid_index() is None assert obj.iloc[:0].first_valid_index() is None def test_first_subset(self): ts = tm.makeTimeDataFrame(freq="12h") result = ts.first("10d") assert len(result) == 20 ts = tm.makeTimeDataFrame(freq="D") result = ts.first("10d") assert len(result) == 10 result = ts.first("3M") expected = ts[:"3/31/2000"] tm.assert_frame_equal(result, expected) result = ts.first("21D") expected = ts[:21] tm.assert_frame_equal(result, expected) result = ts[:0].first("3M") tm.assert_frame_equal(result, ts[:0]) def test_first_raises(self): # GH20725 df = pd.DataFrame([[1, 2, 3], [4, 5, 6]]) with pytest.raises(TypeError): # index is not a DatetimeIndex df.first("1D") def test_last_subset(self): ts = tm.makeTimeDataFrame(freq="12h") result = ts.last("10d") assert len(result) == 20 ts = tm.makeTimeDataFrame(nper=30, freq="D") result = ts.last("10d") assert len(result) == 10 result = ts.last("21D") expected = ts["2000-01-10":] tm.assert_frame_equal(result, expected) result = ts.last("21D") expected = ts[-21:] tm.assert_frame_equal(result, expected) result = ts[:0].last("3M") tm.assert_frame_equal(result, ts[:0]) def test_last_raises(self): # GH20725 df = pd.DataFrame([[1, 2, 3], [4, 5, 6]]) with pytest.raises(TypeError): # index is not a DatetimeIndex df.last("1D") def test_at_time(self): rng = date_range("1/1/2000", "1/5/2000", freq="5min") ts = DataFrame(np.random.randn(len(rng), 2), index=rng) rs = ts.at_time(rng[1]) assert (rs.index.hour == rng[1].hour).all() assert (rs.index.minute == rng[1].minute).all() assert (rs.index.second == rng[1].second).all() result = ts.at_time("9:30") expected = ts.at_time(time(9, 30)) tm.assert_frame_equal(result, expected) result = ts.loc[time(9, 30)] expected = ts.loc[(rng.hour == 9) & (rng.minute == 30)] tm.assert_frame_equal(result, expected) # midnight, everything rng = date_range("1/1/2000", "1/31/2000") ts = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts.at_time(time(0, 0)) tm.assert_frame_equal(result, ts) # time doesn't exist rng = date_range("1/1/2012", freq="23Min", periods=384) ts = DataFrame(np.random.randn(len(rng), 2), rng) rs = ts.at_time("16:00") assert len(rs) == 0 @pytest.mark.parametrize( "hour", ["1:00", "1:00AM", time(1), time(1, tzinfo=pytz.UTC)] ) def test_at_time_errors(self, hour): # GH 24043 dti = pd.date_range("2018", periods=3, freq="H") df = pd.DataFrame(list(range(len(dti))), index=dti) if getattr(hour, "tzinfo", None) is None: result = df.at_time(hour) expected = df.iloc[1:2] tm.assert_frame_equal(result, expected) else: with pytest.raises(ValueError, match="Index must be timezone"): df.at_time(hour) def test_at_time_tz(self): # GH 24043 dti = pd.date_range("2018", periods=3, freq="H", tz="US/Pacific") df = pd.DataFrame(list(range(len(dti))), index=dti) result = df.at_time(time(4, tzinfo=pytz.timezone("US/Eastern"))) expected = df.iloc[1:2] tm.assert_frame_equal(result, expected) def test_at_time_raises(self): # GH20725 df = pd.DataFrame([[1, 2, 3], [4, 5, 6]]) with pytest.raises(TypeError): # index is not a DatetimeIndex df.at_time("00:00") @pytest.mark.parametrize("axis", ["index", "columns", 0, 1]) def test_at_time_axis(self, axis): # issue 8839 rng = date_range("1/1/2000", "1/5/2000", freq="5min") ts = DataFrame(np.random.randn(len(rng), len(rng))) ts.index, ts.columns = rng, rng indices = rng[(rng.hour == 9) & (rng.minute == 30) & (rng.second == 0)] if axis in ["index", 0]: expected = ts.loc[indices, :] elif axis in ["columns", 1]: expected = ts.loc[:, indices] result = ts.at_time("9:30", axis=axis) tm.assert_frame_equal(result, expected) def test_between_time(self, close_open_fixture): rng = date_range("1/1/2000", "1/5/2000", freq="5min") ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(0, 0) etime = time(1, 0) inc_start, inc_end = close_open_fixture filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 assert len(filtered) == exp_len for rs in filtered.index: t = rs.time() if inc_start: assert t >= stime else: assert t > stime if inc_end: assert t <= etime else: assert t < etime result = ts.between_time("00:00", "01:00") expected = ts.between_time(stime, etime) tm.assert_frame_equal(result, expected) # across midnight rng = date_range("1/1/2000", "1/5/2000", freq="5min") ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(22, 0) etime = time(9, 0) filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 assert len(filtered) == exp_len for rs in filtered.index: t = rs.time() if inc_start: assert (t >= stime) or (t <= etime) else: assert (t > stime) or (t <= etime) if inc_end: assert (t <= etime) or (t >= stime) else: assert (t < etime) or (t >= stime) def test_between_time_raises(self): # GH20725 df = pd.DataFrame([[1, 2, 3], [4, 5, 6]]) with pytest.raises(TypeError): # index is not a DatetimeIndex df.between_time(start_time="00:00", end_time="12:00") def test_between_time_axis(self, axis): # issue 8839 rng = date_range("1/1/2000", periods=100, freq="10min") ts = DataFrame(np.random.randn(len(rng), len(rng))) stime, etime = ("08:00:00", "09:00:00") exp_len = 7 if axis in ["index", 0]: ts.index = rng assert len(ts.between_time(stime, etime)) == exp_len assert len(ts.between_time(stime, etime, axis=0)) == exp_len if axis in ["columns", 1]: ts.columns = rng selected = ts.between_time(stime, etime, axis=1).columns assert len(selected) == exp_len def test_between_time_axis_raises(self, axis): # issue 8839 rng = date_range("1/1/2000", periods=100, freq="10min") mask = np.arange(0, len(rng)) rand_data = np.random.randn(len(rng), len(rng)) ts = DataFrame(rand_data, index=rng, columns=rng) stime, etime = ("08:00:00", "09:00:00") msg = "Index must be DatetimeIndex" if axis in ["columns", 1]: ts.index = mask with pytest.raises(TypeError, match=msg): ts.between_time(stime, etime) with pytest.raises(TypeError, match=msg): ts.between_time(stime, etime, axis=0) if axis in ["index", 0]: ts.columns = mask with pytest.raises(TypeError, match=msg): ts.between_time(stime, etime, axis=1) def test_operation_on_NaT(self): # Both NaT and Timestamp are in DataFrame. df = pd.DataFrame({"foo": [pd.NaT, pd.NaT, pd.Timestamp("2012-05-01")]}) res = df.min() exp = pd.Series([pd.Timestamp("2012-05-01")], index=["foo"]) tm.assert_series_equal(res, exp) res = df.max() exp = pd.Series([pd.Timestamp("2012-05-01")], index=["foo"]) tm.assert_series_equal(res, exp) # GH12941, only NaTs are in DataFrame. df = pd.DataFrame({"foo": [pd.NaT, pd.NaT]}) res = df.min() exp = pd.Series([pd.NaT], index=["foo"]) tm.assert_series_equal(res, exp) res = df.max() exp = pd.Series([pd.NaT], index=["foo"]) tm.assert_series_equal(res, exp) def test_datetime_assignment_with_NaT_and_diff_time_units(self): # GH 7492 data_ns = np.array([1, "nat"], dtype="datetime64[ns]") result = pd.Series(data_ns).to_frame() result["new"] = data_ns expected = pd.DataFrame( {0: [1, None], "new": [1, None]}, dtype="datetime64[ns]" ) tm.assert_frame_equal(result, expected) # OutOfBoundsDatetime error shouldn't occur data_s = np.array([1, "nat"], dtype="datetime64[s]") result["new"] = data_s expected = pd.DataFrame( {0: [1, None], "new": [1e9, None]}, dtype="datetime64[ns]" ) tm.assert_frame_equal(result, expected) def test_frame_to_period(self): K = 5 dr = date_range("1/1/2000", "1/1/2001") pr = period_range("1/1/2000", "1/1/2001") df = DataFrame(np.random.randn(len(dr), K), index=dr) df["mix"] = "a" pts = df.to_period() exp = df.copy() exp.index = pr tm.assert_frame_equal(pts, exp) pts = df.to_period("M") tm.assert_index_equal(pts.index, exp.index.asfreq("M")) df = df.T pts = df.to_period(axis=1) exp = df.copy() exp.columns = pr tm.assert_frame_equal(pts, exp) pts = df.to_period("M", axis=1) tm.assert_index_equal(pts.columns, exp.columns.asfreq("M")) msg = "No axis named 2 for object type <class 'pandas.core.frame.DataFrame'>" with pytest.raises(ValueError, match=msg): df.to_period(axis=2) @pytest.mark.parametrize("fn", ["tz_localize", "tz_convert"]) def test_tz_convert_and_localize(self, fn): l0 = date_range("20140701", periods=5, freq="D") l1 = date_range("20140701", periods=5, freq="D") int_idx = Index(range(5)) if fn == "tz_convert": l0 = l0.tz_localize("UTC") l1 = l1.tz_localize("UTC") for idx in [l0, l1]: l0_expected = getattr(idx, fn)("US/Pacific") l1_expected = getattr(idx, fn)("US/Pacific") df1 = DataFrame(np.ones(5), index=l0) df1 = getattr(df1, fn)("US/Pacific") tm.assert_index_equal(df1.index, l0_expected) # MultiIndex # GH7846 df2 = DataFrame(np.ones(5), MultiIndex.from_arrays([l0, l1])) df3 = getattr(df2, fn)("US/Pacific", level=0) assert not df3.index.levels[0].equals(l0) tm.assert_index_equal(df3.index.levels[0], l0_expected) tm.assert_index_equal(df3.index.levels[1], l1) assert not df3.index.levels[1].equals(l1_expected) df3 = getattr(df2, fn)("US/Pacific", level=1) tm.assert_index_equal(df3.index.levels[0], l0) assert not df3.index.levels[0].equals(l0_expected) tm.assert_index_equal(df3.index.levels[1], l1_expected) assert not df3.index.levels[1].equals(l1) df4 = DataFrame(np.ones(5), MultiIndex.from_arrays([int_idx, l0])) # TODO: untested df5 = getattr(df4, fn)("US/Pacific", level=1) # noqa tm.assert_index_equal(df3.index.levels[0], l0) assert not df3.index.levels[0].equals(l0_expected) tm.assert_index_equal(df3.index.levels[1], l1_expected) assert not df3.index.levels[1].equals(l1) # Bad Inputs # Not DatetimeIndex / PeriodIndex with pytest.raises(TypeError, match="DatetimeIndex"): df = DataFrame(index=int_idx) df = getattr(df, fn)("US/Pacific") # Not DatetimeIndex / PeriodIndex with pytest.raises(TypeError, match="DatetimeIndex"): df = DataFrame(np.ones(5), MultiIndex.from_arrays([int_idx, l0])) df = getattr(df, fn)("US/Pacific", level=0) # Invalid level with pytest.raises(ValueError, match="not valid"): df = DataFrame(index=l0) df = getattr(df, fn)("US/Pacific", level=1) ```
{ "source": "jmbyun/urobot", "score": 3 }
#### File: jmbyun/urobot/helper.py ```python from .urobot.direction import Direction from .urobot.drawer import Drawer from .urobot.piece import Piece from .urobot.position import Position from .urobot.robot import Robot as GeneralRobot from .urobot.wall import Wall from .urobot.world import World, load_world_from_save import json def create_world(**kwargs): global __urobots__ __urobots__ = {} __urobots__['world'] = World(**kwargs) def load_world(file_path, drawer=None): global __urobots__ with open(file_path, 'r') as world_file: world_save = json.loads(world_file.read()) __urobots__ = {} __urobots__['world'] = load_world_from_save(world_save) class Robot(GeneralRobot): def __init__(self, **kwargs): global __urobots__ super().__init__(**kwargs) __urobots__['world'].add_piece(self) __all__ = [ 'create_world', 'load_world', 'Robot' ] ``` #### File: jmbyun/urobot/test.py ```python import sys import os sys.path.insert(0, os.path.abspath('..')) import json from urobot.helper import * from urobot import Beeper, World, Wall, Position, JsonDrawer def turn_right(): for i in range(3): robot.turn_left() world = World(walls=[Wall(Position(1, 0), Position(2, 0))], drawer=JsonDrawer()) beeper = Beeper() world.add_piece(beeper) f = open('temp_world.json', 'w') f.write(json.dumps(world.to_save())) f.close() # create_world(walls=[Wall(Position(1, 0), Position(2, 0))]) load_world('temp_world.json') robot = Robot(beepers=3) robot.set_pause(0.5) robot.set_trace('#222') robot.move() robot.drop_beeper() robot.drop_beeper() robot.turn_left() robot.move() robot.drop_beeper() turn_right() robot.move() turn_right() robot.move() robot.turn_left() for i in range(10): robot.move() ``` #### File: urobot/urobot/position.py ```python def load_position_from_save(position_save): return Position(position_save['x'], position_save['y']) class Position(object): def __init__(self, x, y): self.x = x self.y = y def __eq__(self, other): return self.x == other.x and self.y == other.y def __ne__(self, other): return not self == other def __add__(self, other): return Position(self.x + other.x, self.y + other.y) def clone(self): return Position(self.x, self.y) def to_list(self): return [self.x, self.y] def to_save(self): return { 'type': 'position', 'x': self.x, 'y': self.y } ```
{ "source": "jmc0/Classcial_Cipher_Website", "score": 2 }
#### File: Classcial_Cipher_Website/backend/app.py ```python from flask import Flask from flask_cors import CORS from routes import configure_routes import config def create_app(config=config): app.config['SECRET_KEY'] = config.SECRET_KEY app.config['PERMANENT_SESSION_LIFETIME'] = config.PERMANENT_SESSION_LIFETIME configure_routes(app) app = Flask(__name__) create_app() CORS(app) if __name__ == '__main__': app.run() ```
{ "source": "JMC110/License-Plate-Recognition-YOLO-Project", "score": 3 }
#### File: LicensePlateDetector/dl_prediction/predictor.py ```python import cv2 as cv import tensorflow as tf import numpy as np class Predictor: # Darknet and CNN Parameters confidence_threshold = 0.1 # Confidence threshold nms_threshold = 0.6 # Non-maximum suppression threshold yolo_net_width = 416 yolo_net_height = 416 # Load all models and configs plates_yolo_config = "dl_prediction/config/yolov3_plates.cfg" plates_yolo_weights = "dl_prediction/models/yolov3_plates_final.weights" plates_classes = ['Plate'] chars_classes = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'] chars_yolo_config = "dl_prediction/config/yolov3_chars.cfg" chars_yolo_weights = "dl_prediction/models/yolov3_chars_final.weights" def __init__(self): self.plates_yolo_net = self.get_yolo_net(self.plates_yolo_config, self.plates_yolo_weights) self.chars_yolo_net = self.get_yolo_net(self.chars_yolo_config, self.chars_yolo_weights) self.cnn_chars_model = tf.keras.models.load_model('dl_prediction/models/cnn_chars_recognition.h5') @staticmethod def get_yolo_net(config, weights): yolo_net = cv.dnn.readNetFromDarknet(config, weights) yolo_net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV) yolo_net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU) return yolo_net @staticmethod def process_license_plate(license_plate): gray = cv.cvtColor(license_plate, cv.COLOR_BGR2GRAY) ret, thresh = cv.threshold(gray, 127, 255, 0) contours, _ = cv.findContours(thresh, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE) areas = [cv.contourArea(c) for c in contours] if len(areas) != 0: max_index = np.argmax(areas) cnt = contours[max_index] x, y, w, h = cv.boundingRect(cnt) cv.rectangle(license_plate, (x, y), (x + w, y + h), (0, 255, 0), 2) processed_license_plate = license_plate[y: y + h, x: x + w] else: processed_license_plate = license_plate return processed_license_plate @staticmethod def draw_pred(frame, name, conf, left, top, right, bottom, color=(0, 255, 0)): cv.rectangle(frame, (left, top), (right, bottom), color, 3) # label = '{}:{}'.format(name, '%.2f' % conf) label = name label_size, base_line = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1) top = max(top, label_size[1]) cv.rectangle(frame, (left, top - round(1.5 * label_size[1])), (left + round(1.5 * label_size[0]), top + base_line), (0, 0, 255), cv.FILLED) cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 0), 1) def predict_boxes(self, frame, yolo_outputs, is_license_plate=True): classes = [] confidences = [] boxes = [] max_confidence = 0.0 for output in yolo_outputs: for prediction in output: scores = prediction[5:] class_id = np.argmax(scores) confidence = scores[class_id] max_confidence = max(confidence, max_confidence) if confidence > self.confidence_threshold: center_x = int(prediction[0] * frame.shape[1]) center_y = int(prediction[1] * frame.shape[0]) width = int(prediction[2] * frame.shape[1]) height = int(prediction[3] * frame.shape[0]) left = int(center_x - width / 2) top = int(center_y - height / 2) classes.append(class_id) confidences.append(float(confidence)) boxes.append([left, top, width, height]) indices = cv.dnn.NMSBoxes(boxes, confidences, self.confidence_threshold, self.nms_threshold) positions = [] chars = [] for index in indices: index = index[0] box = boxes[index] left = box[0] top = box[1] width = box[2] height = box[3] positions.append(left) if is_license_plate and max_confidence == confidences[index]: # Draw prediction rectangle for License Plate license_plate = frame[top: top + height, left: left + width] cv.rectangle(frame, (left, top), (left + width, top + height), (0, 255, 0), 3) # cv.imshow('License Plate', license_plate) # cv.imwrite('./test_bha.jpg', license_plate.astype(np.uint8)) # Process Licence plate to cover to Gray and to enhance contours processed_license_plate = self.process_license_plate(license_plate) # cv.imshow('Processed License Plate', license_plate) # cv.imwrite('./test_bha2.jpg', processed_license_plate.astype(np.uint8)) self.draw_pred(frame, self.plates_classes[0], confidences[index], left, top, left + width, top + height) return "", processed_license_plate else: char = self.chars_classes[classes[index]] chars.append(char) self.draw_pred(frame, char, confidences[index], left, top, left + width, top + height, color=(90, 0, 255)) sorted_chars = [x for _, x in sorted(zip(positions, chars))] return "".join(sorted_chars), frame def cnn_char_recognition(self, image): gray_char = cv.cvtColor(image, cv.COLOR_BGR2GRAY) gray_char = cv.resize(gray_char, (75, 100)) image = gray_char.reshape((1, 100, 75, 1)) image = image / 255.0 predictions = self.cnn_chars_model.predict(image) max_confidence_index = np.argmax(predictions) return self.chars_classes[max_confidence_index] def canny(self, image, sigma=0.33): lower = int(max(0, (1.0 - sigma) * np.median(image))) upper = int(min(255, (1.0 + sigma) * np.median(image))) edges = cv.Canny(image, lower, upper) return edges def cnn_recognize_plate(self, frame): gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) thresh_inv = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY_INV, 39, 1) edges = self.canny(thresh_inv) contours, _ = cv.findContours(edges.copy(), cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) sorted_ctrs = sorted(contours, key=lambda x: cv.boundingRect(x)[0]) area = frame.shape[0] * frame.shape[1] chars = [] for i, ctr in enumerate(sorted_ctrs): x, y, w, h = cv.boundingRect(ctr) roi_area = w * h non_max_sup = roi_area / area if (non_max_sup >= 0.015) and (non_max_sup < 0.09): if (h > 1.2 * w) and (3 * w >= h): char = frame[y:y + h, x:x + w] chars.append(self.cnn_char_recognition(char)) cv.rectangle(frame, (x, y), (x + w, y + h), (90, 0, 255), 2) licensePlate = "".join(chars) return licensePlate @staticmethod def resize_license_plate(license_plate): scale_percent = 300 # percent of original size width = int(license_plate.shape[1] * scale_percent / 100) height = int(license_plate.shape[0] * scale_percent / 100) return cv.resize(license_plate, (width, height), interpolation=cv.INTER_AREA) def get_image_blob(self, image): return cv.dnn.blobFromImage(image, 1 / 255, (self.yolo_net_width, self.yolo_net_height), [0, 0, 0], 1, crop=False) def predict(self, input_path, output_car_path, output_license_path_original, output_license_path, video_path=None, is_cnn=False, is_image=True): vc = cv.VideoCapture(input_path) FPS = 2 # Limit number of frames per sec vc.set(cv.CAP_PROP_FPS, FPS) if not is_image: vid_writer = cv.VideoWriter(video_path, cv.VideoWriter_fourcc('H','2','6','4'), 30, ( round(vc.get(cv.CAP_PROP_FRAME_WIDTH)), round(vc.get(cv.CAP_PROP_FRAME_HEIGHT)))) # Read Frames from the file if video, else read first frame from image while cv.waitKey(1) < 0: exists, frame = vc.read() if not exists: cv.waitKey(2000) print("End of frames") vid_writer.release() break # DETECT LICENSE PLATE car_image_blob = self.get_image_blob(frame) # Feed the input image to the Yolo Network self.plates_yolo_net.setInput(car_image_blob) # Get All Unconnected Yolo layers plates_yolo_layers = [self.plates_yolo_net.getLayerNames()[i[0] - 1] for i in self.plates_yolo_net.getUnconnectedOutLayers()] # Forward pass the input to yolov3 net and get outputs plates_output = self.plates_yolo_net.forward(plates_yolo_layers) # Remove the bounding boxes with low confidence and draw box for license plate license_num, processed_license_plate = self.predict_boxes(frame, plates_output) if is_image: cv.imwrite(output_license_path_original, processed_license_plate.astype(np.uint8)) if not is_cnn: # IDENTIFY LICENSE PLATE NUMBER USING YOLOV3 # Resize the license plate so we can feed it to the second trained yolo network resized_license_plate = self.resize_license_plate(processed_license_plate) license_plate_image_blob = self.get_image_blob(resized_license_plate) # license_plate_image_blob = np.reshape(license_plate_image_blob, (1, 3, yolo_net_width, # yolo_net_height)) # Feed the input image to the Yolo Network self.chars_yolo_net.setInput(license_plate_image_blob) # Get All Unconnected Yolo layers chars_yolo_layers = [self.chars_yolo_net.getLayerNames()[i[0] - 1] for i in self.chars_yolo_net.getUnconnectedOutLayers()] # Forward pass the input to yolov3 net and get outputs chars_output = self.chars_yolo_net.forward(chars_yolo_layers) license_number, processed_license_plate = self.predict_boxes(processed_license_plate, chars_output, is_license_plate=False) print(license_number) elif is_cnn: # IDENTIFY LICENSE PLATE NUMBER USING CNN license_number = self.cnn_recognize_plate(processed_license_plate) if is_image: cv.imwrite(output_license_path, processed_license_plate.astype(np.uint8)) cv.imwrite(output_car_path, frame.astype(np.uint8)) return license_number else: vid_writer.write(frame.astype(np.uint8)) if __name__ == "__main__": Predictor() # license = Predictor().predict('/Users/moni/projects/LicensePlateDetector/m657_1.jpg', False) # print(license) ``` #### File: tfx_airflow/dags/license_plate_utils.py ```python import absl import tensorflow as tf import tensorflow_model_analysis as tfma import tensorflow_transform as tft from tensorflow.keras import layers, models from tensorflow.keras.optimizers import Adam _IMAGE_KEY = 'img_raw' _LABEL_KEY = 'label' channel = 1 height = 100 width = 75 def _transformed_name(key): return key + '_xf' def _image_parser(image_str): image = tf.image.decode_image(image_str, channels=3) image = tf.image.convert_image_dtype(image, tf.float32) image = tf.reshape(image, (28400, 100, 75, 1)) image = tf.cast(image, tf.float32) / 255.0 return image def _label_parser(label_id): label = tf.one_hot(label_id, 35, dtype=tf.int64) return label def preprocessing_fn(inputs): outputs = {_transformed_name(_IMAGE_KEY): tf.compat.v2.map_fn(_image_parser, tf.squeeze(inputs[_IMAGE_KEY], axis=1), dtype=tf.float32), _transformed_name(_LABEL_KEY): tf.compat.v2.map_fn(_label_parser, tf.squeeze(inputs[_LABEL_KEY], axis=1), dtype=tf.int64) } return outputs # CNN model to predict characters def _model_builder(): cnn_model = models.Sequential() cnn_model.add(layers.Conv2D(32, (3, 3), padding = 'same', activation = 'relu', input_shape = (100, 75, 1))) cnn_model.add(layers.MaxPooling2D((2, 2))) cnn_model.add(layers.Conv2D(64, (3, 3), activation = 'relu')) cnn_model.add(layers.MaxPooling2D((2, 2))) cnn_model.add(layers.Conv2D(128, (3, 3), activation = 'relu')) cnn_model.add(layers.MaxPooling2D((2, 2))) cnn_model.add(layers.Dense(128, activation = 'relu')) cnn_model.add(layers.Flatten()) # 0 - 9 and A-Z => 10 + 25 = 35 -- ignoring O in alphabets. cnn_model.add(layers.Dense(35, activation = 'softmax')) opt = Adam(lr=0.001) cnn_model.compile(optimizer=opt, loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) absl.logging.info(cnn_model.summary()) return cnn_model def _serving_input_receiver_fn(tf_transform_output): raw_feature_spec = tf_transform_output.raw_feature_spec() raw_feature_spec.pop(_LABEL_KEY) raw_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(raw_feature_spec, default_batch_size=None) serving_input_receiver = raw_input_fn() transformed_features = tf_transform_output.transform_raw_features(serving_input_receiver.features) transformed_features.pop(_transformed_name(_LABEL_KEY)) return tf.estimator.export.ServingInputReceiver(transformed_features, serving_input_receiver.receiver_tensors) def _eval_input_receiver_fn(tf_transform_output): raw_feature_spec = tf_transform_output.raw_feature_spec() raw_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(raw_feature_spec, default_batch_size=None) serving_input_receiver = raw_input_fn() transformed_features = tf_transform_output.transform_raw_features(serving_input_receiver.features) transformed_labels = transformed_features.pop(_transformed_name(_LABEL_KEY)) return tfma.export.EvalInputReceiver(features=transformed_features, labels=transformed_labels, receiver_tensors=serving_input_receiver.receiver_tensors) def _input_fn(filenames, tf_transform_output, batch_size): transformed_feature_spec = (tf_transform_output.transformed_feature_spec().copy()) dataset = tf.data.experimental.make_batched_features_dataset(filenames, batch_size, transformed_feature_spec) return dataset.map(lambda features: (features, features.pop(_transformed_name(_LABEL_KEY)))) def trainer_fn(trainer_fn_args, schema): # pylint: disable=unused-argument train_batch_size = 32 eval_batch_size = 32 tf_transform_output = tft.TFTransformOutput(trainer_fn_args.transform_output) train_input_fn = lambda: _input_fn(trainer_fn_args.train_files, tf_transform_output, batch_size=train_batch_size) eval_input_fn = lambda: _input_fn(trainer_fn_args.eval_files, tf_transform_output, batch_size=eval_batch_size) train_spec = tf.estimator.TrainSpec(train_input_fn, max_steps=trainer_fn_args.train_steps) serving_receiver_fn = lambda: _serving_input_receiver_fn(tf_transform_output) exporter = tf.estimator.FinalExporter('license_plate', serving_receiver_fn) eval_spec = tf.estimator.EvalSpec(eval_input_fn, steps=trainer_fn_args.eval_steps, exporters=[exporter], name='license_plate') run_config = tf.estimator.RunConfig(save_checkpoints_steps=999, keep_checkpoint_max=1) run_config = run_config.replace(model_dir=trainer_fn_args.serving_model_dir) estimator = tf.keras.estimator.model_to_estimator(keras_model=_model_builder(), config=run_config) eval_receiver_fn = lambda: _eval_input_receiver_fn(tf_transform_output) return { 'estimator': estimator, 'train_spec': train_spec, 'eval_spec': eval_spec, 'eval_input_receiver_fn': eval_receiver_fn } ```
{ "source": "jmc1283/pwndbg", "score": 3 }
#### File: pwndbg/pwndbg/chain.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import gdb import pwndbg.abi import pwndbg.color.chain as C import pwndbg.color.memory as M import pwndbg.color.theme as theme import pwndbg.enhance import pwndbg.memory import pwndbg.symbol import pwndbg.typeinfo import pwndbg.vmmap LIMIT = pwndbg.config.Parameter('dereference-limit', 5, 'max number of pointers to dereference in a chain') def get(address, limit=LIMIT, offset=0, hard_stop=None, hard_end=0, include_start=True): """ Recursively dereferences an address. For bare metal, it will stop when the address is not in any of vmmap pages to avoid redundant dereference. Arguments: address(int): the first address to begin dereferencing limit(int): number of valid pointers offset(int): offset into the address to get the next pointer hard_stop(int): address to stop at hard_end: value to append when hard_stop is reached include_start(bool): whether to include starting address or not Returns: A list representing pointers of each ```address``` and reference """ limit = int(limit) result = [address] if include_start else [] for i in range(limit): # Don't follow cycles, except to stop at the second occurrence. if result.count(address) >= 2: break if hard_stop is not None and address == hard_stop: result.append(hard_end) break try: address = address + offset # Avoid redundant dereferences in bare metal mode by checking # if address is in any of vmmap pages if not pwndbg.abi.linux and not pwndbg.vmmap.find(address): break address = int(pwndbg.memory.poi(pwndbg.typeinfo.ppvoid, address)) address &= pwndbg.arch.ptrmask result.append(address) except gdb.MemoryError: break return result config_arrow_left = theme.Parameter('chain-arrow-left', '◂—', 'left arrow of chain formatting') config_arrow_right = theme.Parameter('chain-arrow-right', '—▸', 'right arrow of chain formatting') config_contiguous = theme.Parameter('chain-contiguous-marker', '...', 'contiguous marker of chain formatting') def format(value, limit=LIMIT, code=True, offset=0, hard_stop=None, hard_end=0): """ Recursively dereferences an address into string representation, or convert the list representation of address dereferences into string representation. Arguments: value(int|list): Either the starting address to be sent to get, or the result of get (a list) limit(int): Number of valid pointers code(bool): Hint that indicates the value may be an instruction offset(int): Offset into the address to get the next pointer hard_stop(int): Value to stop on hard_end: Value to append when hard_stop is reached: null, value of hard stop, a string. Returns: A string representing pointers of each address and reference Strings format: 0x0804a10 —▸ 0x08061000 ◂— 0x41414141 """ limit = int(limit) # Allow results from get function to be passed to format if isinstance(value, list): chain = value else: chain = get(value, limit, offset, hard_stop, hard_end) arrow_left = C.arrow(' %s ' % config_arrow_left) arrow_right = C.arrow(' %s ' % config_arrow_right) # Colorize the chain rest = [] for link in chain: symbol = pwndbg.symbol.get(link) or None if symbol: symbol = '%#x (%s)' % (link, symbol) rest.append(M.get(link, symbol)) # If the dereference limit is zero, skip any enhancements. if limit == 0: return rest[0] # Otherwise replace last element with the enhanced information. rest = rest[:-1] # Enhance the last entry # If there are no pointers (e.g. eax = 0x41414141), then enhance # the only element there is. if len(chain) == 1: enhanced = pwndbg.enhance.enhance(chain[-1], code=code) # Otherwise, the last element in the chain is the non-pointer value. # We want to enhance the last pointer value. If an offset was used # chain failed at that offset, so display that offset. elif len(chain) < limit + 1: enhanced = pwndbg.enhance.enhance(chain[-2] + offset, code=code) else: enhanced = C.contiguous('%s' % config_contiguous) if len(chain) == 1: return enhanced return arrow_right.join(rest) + arrow_left + enhanced ``` #### File: pwndbg/pwndbg/funcparser.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import collections from pycparser import CParser from pycparser import c_ast def extractTypeAndName(n, defaultName=None): if isinstance(n, c_ast.EllipsisParam): return ('int', 0, 'vararg') t = n.type d = 0 while isinstance(t, c_ast.PtrDecl) or isinstance(t, c_ast.ArrayDecl): d += 1 children = dict(t.children()) t = children['type'] if isinstance(t, c_ast.FuncDecl): return extractTypeAndName(t) if isinstance(t.type, c_ast.Struct) \ or isinstance(t.type, c_ast.Union) \ or isinstance(t.type, c_ast.Enum): typename = t.type.name else: typename = t.type.names[0] if typename == 'void' and d == 0 and not t.declname: return None name = t.declname or defaultName or '' return typename.lstrip('_'),d,name.lstrip('_') Function = collections.namedtuple('Function', ('type', 'derefcnt', 'name', 'args')) Argument = collections.namedtuple('Argument', ('type', 'derefcnt', 'name')) def Stringify(X): return '%s %s %s' % (X.type, X.derefcnt * '*', X.name) def ExtractFuncDecl(node, verbose=False): # The function name needs to be dereferenced. ftype, fderef, fname = extractTypeAndName(node) if not fname: print("Skipping function without a name!") print(node.show()) return fargs = [] for i, (argName, arg) in enumerate(node.args.children()): defname = 'arg%i' % i argdata = extractTypeAndName(arg, defname) if argdata is not None: a = Argument(*argdata) fargs.append(a) Func = Function(ftype, fderef, fname, fargs) if verbose: print(Stringify(Func) + '(' + ','.join(Stringify(a) for a in Func.args) + ');') return Func def ExtractAllFuncDecls(ast, verbose=False): Functions = {} class FuncDefVisitor(c_ast.NodeVisitor): def visit_FuncDecl(self, node, *a): f = ExtractFuncDecl(node, verbose) Functions[f.name] = f FuncDefVisitor().visit(ast) return Functions def ExtractFuncDeclFromSource(source): try: p = CParser() ast = p.parse(source + ';') funcs = ExtractAllFuncDecls(ast) for name, func in funcs.items(): return func except Exception as e: import traceback traceback.print_exc() # eat it ``` #### File: pwndbg/gdbutils/functions.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import functools import gdb import pwndbg.proc functions = [] def GdbFunction(only_when_running=False): return functools.partial(_GdbFunction, only_when_running=only_when_running) class _GdbFunction(gdb.Function): def __init__(self, func, only_when_running): self.name = func.__name__ self.func = func self.only_when_running = only_when_running functions.append(self) super(_GdbFunction, self).__init__(self.name) functools.update_wrapper(self, func) self.__doc__ = func.__doc__ def invoke(self, *args): if self.only_when_running and not pwndbg.proc.alive: # Returning empty string is a workaround that we can't stop e.g. `break *$rebase(offset)` # Thx to that, gdb will print out 'evaluation of this expression requires the target program to be active' return '' return self.func(*args) def __call__(self, *args): return self.invoke(*args) @GdbFunction(only_when_running=True) def rebase(addr): """Return rebased address.""" base = pwndbg.elf.exe().address return base + int(addr) ``` #### File: pwndbg/heap/heap.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import pwndbg.events import pwndbg.symbol class BaseHeap(object): """Heap abstraction layer.""" def breakpoint(event): """Enables breakpoints on the specific event. Arguments: event(str): One of 'alloc','realloc','free' Returns: A gdb.Breakpoint object. """ raise NotImplementedError() def summarize(address, **kwargs): """Returns a textual summary of the specified address. Arguments: address(int): Address of the heap block to summarize. Returns: A string. """ raise NotImplementedError() def containing(address): """Returns the address of the allocation which contains 'address'. Arguments: address(int): Address to look up. Returns: An integer. """ raise NotImplementedError() def is_initialized(self): """Returns whether the allocator is initialized or not. Returns: A boolean. """ raise NotImplementedError() def libc_has_debug_syms(self): """Returns whether the libc has debug symbols or not. Returns: A boolean. """ raise NotImplementedError() ``` #### File: tests/binaries/__init__.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os from . import old_bash path = os.path.dirname(__file__) def get(x): return os.path.join(path, x) ``` #### File: pwndbg/tests/test_go.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import gdb import tests GOSAMPLE_X64 = tests.binaries.get('gosample.x64') GOSAMPLE_X86 = tests.binaries.get('gosample.x86') def test_typeinfo_go_x64(start_binary): """ Tests pwndbg's typeinfo knows about the Go x64 types. Catches: Python Exception <class 'gdb.error'> No type named u8.: Test catches the issue only if the binaries are not stripped. """ gdb.execute('file ' + GOSAMPLE_X64) start = gdb.execute('start', to_string=True) assert 'Python Exception' not in start def test_typeinfo_go_x86(start_binary): """ Tests pwndbg's typeinfo knows about the Go x32 types Catches: Python Exception <class 'gdb.error'> No type named u8.: Test catches the issue only if the binaries are not stripped. """ gdb.execute('file ' + GOSAMPLE_X86) start = gdb.execute('start', to_string=True) assert 'Python Exception' not in start ```
{ "source": "jmc529/BentoML", "score": 2 }
#### File: _internal/adapters/tensorflow_tensor_output.py ```python import json from typing import Sequence from ..adapters.base_output import regroup_return_value from ..adapters.json_output import JsonOutput from ..adapters.utils import TfTensorJsonEncoder from ..types import InferenceError, InferenceResult, InferenceTask from ..utils.lazy_loader import LazyLoader np = LazyLoader("np", globals(), "numpy") def tf_to_numpy(tensor): """ Tensor -> ndarray List[Tensor] -> tuple[ndarray] """ import tensorflow as tf if isinstance(tensor, (list, tuple)): return tuple(tf_to_numpy(t) for t in tensor) if tf.__version__.startswith("1."): with tf.compat.v1.Session(): return tensor.numpy() else: return tensor.numpy() class TfTensorOutput(JsonOutput): """ Output adapters converts returns of user defined API function into specific output, such as HTTP response, command line stdout or AWS Lambda event object. Args: cors (str): DEPRECATED. Moved to the configuration file. The value of the Access-Control-Allow-Origin header set in the HTTP/AWS Lambda response object. If set to None, the header will not be set. Default is None. ensure_ascii(bool): Escape all non-ASCII characters. Default False. """ BATCH_MODE_SUPPORTED = True @property def pip_dependencies(self): """ :return: List of PyPI package names required by this OutputAdapter """ return ["tensorflow"] def pack_user_func_return_value( self, return_result, tasks: Sequence[InferenceTask], ) -> Sequence[InferenceResult[str]]: rv = [] results = tf_to_numpy(return_result) for result, _ in regroup_return_value(results, tasks): try: result_str = json.dumps(result, cls=TfTensorJsonEncoder) rv.append(InferenceResult(data=result_str, http_status=200)) except Exception as e: # pylint: disable=broad-except rv.append(InferenceError(err_msg=str(e), http_status=500)) return rv ``` #### File: server/marshal/dispatcher.py ```python import asyncio import collections import functools import logging import time import traceback from typing import Callable import numpy as np from bentoml.utils import cached_property from bentoml.utils.alg import TokenBucket logger = logging.getLogger(__name__) logger.setLevel(logging.ERROR) class NonBlockSema: def __init__(self, count): self.sema = count def acquire(self): if self.sema < 1: return False self.sema -= 1 return True def is_locked(self): return self.sema < 1 def release(self): self.sema += 1 class Optimizer: """ Analyse historical data to optimize CorkDispatcher. """ N_KEPT_SAMPLE = 50 # amount of outbound info kept for inferring params N_SKIPPED_SAMPLE = 2 # amount of outbound info skipped after init INTERVAL_REFRESH_PARAMS = 5 # seconds between each params refreshing def __init__(self): """ assume the outbound duration follows duration = o_a * n + o_b (all in seconds) """ self.o_stat = collections.deque( maxlen=self.N_KEPT_SAMPLE ) # to store outbound stat data self.o_a = 2 self.o_b = 1 self.wait = 0.01 # the avg wait time before outbound called self._refresh_tb = TokenBucket(2) # to limit params refresh interval self._outbound_counter = 0 def log_outbound(self, n, wait, duration): if ( self._outbound_counter <= self.N_SKIPPED_SAMPLE ): # skip inaccurate info at beginning self._outbound_counter += 1 return self.o_stat.append((n, duration, wait)) if self._refresh_tb.consume(1, 1.0 / self.INTERVAL_REFRESH_PARAMS, 1): self.trigger_refresh() def trigger_refresh(self): x = tuple((i, 1) for i, _, _ in self.o_stat) y = tuple(i for _, i, _ in self.o_stat) _o_a, _o_b = np.linalg.lstsq(x, y, rcond=None)[0] _o_w = sum(w for _, _, w in self.o_stat) * 1.0 / len(self.o_stat) self.o_a, self.o_b = max(0.000001, _o_a), max(0, _o_b) self.wait = max(0, _o_w) logger.info( "optimizer params updated: o_a: %.6f, o_b: %.6f, wait: %.6f", _o_a, _o_b, _o_w, ) class CorkDispatcher: """ A decorator that: * wrap batch function * implement CORK algorithm to cork & release calling of wrapped function The wrapped function should be an async function. """ def __init__( self, max_latency_in_ms: int, max_batch_size: int, shared_sema: NonBlockSema = None, fallback: Callable = None, ): """ params: * max_latency_in_ms: max_latency_in_ms for inbound tasks in milliseconds * max_batch_size: max batch size of inbound tasks * shared_sema: semaphore to limit concurrent outbound tasks * fallback: callable to return fallback result raises: * all possible exceptions the decorated function has """ self.max_latency_in_ms = max_latency_in_ms / 1000.0 self.callback = None self.fallback = fallback self.optimizer = Optimizer() self.max_batch_size = int(max_batch_size) self.tick_interval = 0.001 self._controller = None self._queue = collections.deque() # TODO(hrmthw): maxlen self._sema = shared_sema if shared_sema else NonBlockSema(1) async def shutdown(self): if self._controller is not None: self._controller.cancel() try: while True: _, _, fut = self._queue.pop() fut.cancel() except IndexError: pass @cached_property def _loop(self): return asyncio.get_event_loop() @cached_property def _wake_event(self): return asyncio.Condition() def __call__(self, callback): self.callback = callback @functools.wraps(callback) async def _func(data): if self._controller is None: self._controller = self._loop.create_task(self.controller()) try: r = await self.inbound_call(data) except asyncio.CancelledError: return None if self.fallback is None else self.fallback() if isinstance(r, Exception): raise r return r return _func async def controller(self): """ A standalone coroutine to wait/dispatch calling. """ while True: try: async with self._wake_event: # block until there's any request in queue await self._wake_event.wait_for(self._queue.__len__) n = len(self._queue) dt = self.tick_interval decay = 0.95 # the decay rate of wait time now = time.time() w0 = now - self._queue[0][0] wn = now - self._queue[-1][0] a = self.optimizer.o_a b = self.optimizer.o_b if n > 1 and (w0 + a * n + b) >= self.max_latency_in_ms: self._queue.popleft()[2].cancel() continue if self._sema.is_locked(): if n == 1 and w0 >= self.max_latency_in_ms: self._queue.popleft()[2].cancel() continue await asyncio.sleep(self.tick_interval) continue if n * (wn + dt + (a or 0)) <= self.optimizer.wait * decay: await asyncio.sleep(self.tick_interval) continue n_call_out = min(self.max_batch_size, n,) # call self._sema.acquire() inputs_info = tuple(self._queue.pop() for _ in range(n_call_out)) self._loop.create_task(self.outbound_call(inputs_info)) except asyncio.CancelledError: break except Exception: # pylint: disable=broad-except logger.error(traceback.format_exc()) async def inbound_call(self, data): t = time.time() future = self._loop.create_future() input_info = (t, data, future) self._queue.append(input_info) async with self._wake_event: self._wake_event.notify_all() return await future async def outbound_call(self, inputs_info): _time_start = time.time() _done = False logger.info("outbound function called: %d", len(inputs_info)) try: outputs = await self.callback(tuple(d for _, d, _ in inputs_info)) assert len(outputs) == len(inputs_info) for (_, _, fut), out in zip(inputs_info, outputs): if not fut.done(): fut.set_result(out) _done = True self.optimizer.log_outbound( n=len(inputs_info), wait=_time_start - inputs_info[-1][0], duration=time.time() - _time_start, ) except asyncio.CancelledError: pass except Exception as e: # pylint: disable=broad-except for _, _, fut in inputs_info: if not fut.done(): fut.set_result(e) _done = True finally: if not _done: for _, _, fut in inputs_info: if not fut.done(): fut.cancel() self._sema.release() ``` #### File: _internal/utils/s3.py ```python import logging from urllib.parse import urlparse logger = logging.getLogger(__name__) def is_s3_url(url): """ Check if url is an s3, s3n, or s3a url """ try: return urlparse(url).scheme in ["s3", "s3n", "s3a"] except ValueError: return False def create_s3_bucket_if_not_exists(bucket_name, region): import boto3 from botocore.exceptions import ClientError s3_client = boto3.client("s3", region) try: s3_client.get_bucket_acl(Bucket=bucket_name) logger.debug("Found bucket %s in region %s already exist", bucket_name, region) except ClientError as error: if error.response and error.response["Error"]["Code"] == "NoSuchBucket": logger.debug("Creating s3 bucket: %s in region %s", bucket_name, region) # NOTE: boto3 will raise ClientError(InvalidLocationConstraint) if # `LocationConstraint` is set to `us-east-1` region. # https://github.com/boto/boto3/issues/125. # This issue still show up in boto3 1.13.4(May 6th 2020) try: s3_client.create_bucket( Bucket=bucket_name, CreateBucketConfiguration={"LocationConstraint": region}, ) except ClientError as s3_error: if ( s3_error.response and s3_error.response["Error"]["Code"] == "InvalidLocationConstraint" ): logger.debug( "Special s3 region: %s, will attempt create bucket without " "`LocationConstraint`", region, ) s3_client.create_bucket(Bucket=bucket_name) else: raise s3_error else: raise error ``` #### File: _internal/yatai_client/deployment_api.py ```python import logging import time from bentoml.exceptions import BentoMLException, YataiDeploymentException from bentoml.utils import status_pb_to_error_code_and_message from bentoml.yatai.client.label_utils import generate_gprc_labels_selector from bentoml.yatai.deployment import ALL_NAMESPACE_TAG from bentoml.yatai.deployment_utils import ( deployment_dict_to_pb, deployment_yaml_string_to_pb, ) from bentoml.yatai.proto import status_pb2 from bentoml.yatai.proto.deployment_pb2 import ( ApplyDeploymentRequest, DeleteDeploymentRequest, Deployment, DeploymentSpec, DeploymentState, DescribeDeploymentRequest, GetDeploymentRequest, ListDeploymentsRequest, ) logger = logging.getLogger(__name__) WAIT_TIMEOUT_LIMIT = 600 WAIT_TIME = 5 class DeploymentAPIClient: def __init__(self, yatai_service): self.yatai_service = yatai_service def list( self, limit=None, offset=None, labels=None, namespace=None, is_all_namespaces=False, operator=None, order_by=None, ascending_order=None, ): if is_all_namespaces: if namespace is not None: logger.warning( "Ignoring `namespace=%s` due to the --all-namespace flag presented", namespace, ) namespace = ALL_NAMESPACE_TAG if isinstance(operator, str): if operator == "sagemaker": operator = DeploymentSpec.AWS_SAGEMAKER elif operator == "lambda": operator = DeploymentSpec.AWS_LAMBDA elif operator == DeploymentSpec.AZURE_FUNCTIONS: operator = "azure-functions" elif operator == "ec2": operator = DeploymentSpec.AWS_EC2 else: raise BentoMLException(f"Unrecognized operator {operator}") list_deployment_request = ListDeploymentsRequest( limit=limit, offset=offset, namespace=namespace, operator=operator, order_by=order_by, ascending_order=ascending_order, ) if labels is not None: generate_gprc_labels_selector( list_deployment_request.label_selectors, labels ) return self.yatai_service.ListDeployments(list_deployment_request) def get(self, namespace, name): return self.yatai_service.GetDeployment( GetDeploymentRequest(deployment_name=name, namespace=namespace) ) def describe(self, namespace, name): return self.yatai_service.DescribeDeployment( DescribeDeploymentRequest(deployment_name=name, namespace=namespace) ) def delete(self, deployment_name, namespace, force_delete=False): return self.yatai_service.DeleteDeployment( DeleteDeploymentRequest( deployment_name=deployment_name, namespace=namespace, force_delete=force_delete, ) ) def create(self, deployment_info, wait): from bentoml.yatai.validator import validate_deployment_pb if isinstance(deployment_info, dict): deployment_pb = deployment_dict_to_pb(deployment_info) elif isinstance(deployment_info, str): deployment_pb = deployment_yaml_string_to_pb(deployment_info) elif isinstance(deployment_info, Deployment): deployment_pb = deployment_info else: raise YataiDeploymentException( "Unexpected argument type, expect deployment info to be str in yaml " "format or a dict or a deployment protobuf obj, instead got: {}".format( str(type(deployment_info)) ) ) validation_errors = validate_deployment_pb(deployment_pb) if validation_errors: raise YataiDeploymentException( f"Failed to validate deployment {deployment_pb.name}: " f"{validation_errors}" ) # Make sure there is no active deployment with the same deployment name get_deployment_pb = self.yatai_service.GetDeployment( GetDeploymentRequest( deployment_name=deployment_pb.name, namespace=deployment_pb.namespace ) ) if get_deployment_pb.status.status_code != status_pb2.Status.NOT_FOUND: raise BentoMLException( f'Deployment "{deployment_pb.name}" already existed, use Update or ' f"Apply for updating existing deployment, delete the deployment, " f"or use a different deployment name" ) apply_result = self.yatai_service.ApplyDeployment( ApplyDeploymentRequest(deployment=deployment_pb) ) if apply_result.status.status_code != status_pb2.Status.OK: error_code, error_message = status_pb_to_error_code_and_message( apply_result.status ) raise YataiDeploymentException(f"{error_code}:{error_message}") if wait: self._wait_deployment_action_complete( deployment_pb.name, deployment_pb.namespace ) return self.get(namespace=deployment_pb.namespace, name=deployment_pb.name) def apply(self, deployment_info, wait): from bentoml.yatai.validator import validate_deployment_pb if isinstance(deployment_info, dict): deployment_pb = deployment_dict_to_pb(deployment_info) elif isinstance(deployment_info, str): deployment_pb = deployment_yaml_string_to_pb(deployment_info) elif isinstance(deployment_info, Deployment): deployment_pb = deployment_info else: raise YataiDeploymentException( "Unexpected argument type, expect deployment info to be str in yaml " "format or a dict or a deployment protobuf obj, instead got: {}".format( str(type(deployment_info)) ) ) validation_errors = validate_deployment_pb(deployment_pb) if validation_errors: raise YataiDeploymentException( f"Failed to validate deployment {deployment_pb.name}: " f"{validation_errors}" ) apply_result = self.yatai_service.ApplyDeployment( ApplyDeploymentRequest(deployment=deployment_pb) ) if apply_result.status.status_code != status_pb2.Status.OK: error_code, error_message = status_pb_to_error_code_and_message( apply_result.status ) raise YataiDeploymentException(f"{error_code}:{error_message}") if wait: self._wait_deployment_action_complete( deployment_pb.name, deployment_pb.namespace ) return self.get(namespace=deployment_pb.namespace, name=deployment_pb.name) def _wait_deployment_action_complete(self, name, namespace): start_time = time.time() while (time.time() - start_time) < WAIT_TIMEOUT_LIMIT: result = self.describe(namespace=namespace, name=name) if ( result.status.status_code == status_pb2.Status.OK and result.state.state is DeploymentState.PENDING ): time.sleep(WAIT_TIME) continue else: break return result def create_sagemaker_deployment( self, name, bento_name, bento_version, api_name, instance_type, instance_count, timeout, num_of_gunicorn_workers_per_instance=None, region=None, namespace=None, labels=None, annotations=None, wait=None, data_capture_s3_prefix=None, data_capture_sample_percent=None, ): """Create SageMaker deployment Args: name: bento_name: bento_version: api_name: instance_type: instance_count: timeout: num_of_gunicorn_workers_per_instance: region: namespace: labels: annotations: wait: data_capture_s3_prefix: data_capture_sample_percent: Returns: ApplyDeploymentResponse Raises: BentoMLException """ deployment_pb = Deployment( name=name, namespace=namespace, labels=labels, annotations=annotations ) deployment_pb.spec.bento_name = bento_name deployment_pb.spec.bento_version = bento_version deployment_pb.spec.operator = DeploymentSpec.AWS_SAGEMAKER deployment_pb.spec.sagemaker_operator_config.api_name = api_name deployment_pb.spec.sagemaker_operator_config.instance_count = instance_count deployment_pb.spec.sagemaker_operator_config.instance_type = instance_type deployment_pb.spec.sagemaker_operator_config.timeout = timeout if data_capture_s3_prefix: deployment_pb.spec.sagemaker_operator_config.data_capture_s3_prefix = ( data_capture_s3_prefix ) if data_capture_sample_percent: deployment_pb.spec.sagemaker_operator_config.data_capture_sample_percent = ( data_capture_sample_percent ) if region: deployment_pb.spec.sagemaker_operator_config.region = region if num_of_gunicorn_workers_per_instance: deployment_pb.spec.sagemaker_operator_config.num_of_gunicorn_workers_per_instance = ( # noqa E501 num_of_gunicorn_workers_per_instance ) return self.create(deployment_pb, wait) def update_sagemaker_deployment( self, deployment_name, namespace=None, api_name=None, instance_type=None, instance_count=None, timeout=None, num_of_gunicorn_workers_per_instance=None, bento_name=None, bento_version=None, wait=None, data_capture_s3_prefix=None, data_capture_sample_percent=None, ): """ Update current sagemaker deployment Args: namespace: deployment_name: api_name: instance_type: instance_count: timeout: num_of_gunicorn_workers_per_instance: bento_name: bento_version: wait: data_capture_s3_prefix: data_capture_sample_percent: Returns: Protobuf message Raises: BentoMLException """ get_deployment_result = self.get(namespace, deployment_name) if get_deployment_result.status.status_code != status_pb2.Status.OK: get_deployment_status = get_deployment_result.status raise BentoMLException( f"Failed to retrieve current deployment {deployment_name} in " f"{namespace}. " f"{status_pb2.Status.Code.Name(get_deployment_status.status_code)}" f":{get_deployment_status.error_message}" ) deployment_pb = get_deployment_result.deployment if api_name: deployment_pb.spec.sagemaker_operator_config.api_name = api_name if instance_type: deployment_pb.spec.sagemaker_operator_config.instance_type = instance_type if instance_count: deployment_pb.spec.sagemaker_operator_config.instance_count = instance_count if num_of_gunicorn_workers_per_instance: deployment_pb.spec.sagemaker_operator_config.num_of_gunicorn_workers_per_instance = ( # noqa E501 num_of_gunicorn_workers_per_instance ) if timeout: deployment_pb.spec.sagemaker_operator_config.timeout = timeout if bento_name: deployment_pb.spec.bento_name = bento_name if bento_version: deployment_pb.spec.bento_version = bento_version if data_capture_s3_prefix: deployment_pb.spec.sagemaker_operator_config.data_capture_s3_prefix = ( data_capture_s3_prefix ) if data_capture_sample_percent: deployment_pb.spec.sagemaker_operator_config.data_capture_sample_percent = ( data_capture_sample_percent ) logger.debug( "Updated configuration for sagemaker deployment %s", deployment_pb.name ) return self.apply(deployment_pb, wait) def list_sagemaker_deployments( self, limit=None, offset=None, labels=None, namespace=None, is_all_namespaces=False, order_by=None, ascending_order=None, ): list_result = self.list( limit=limit, offset=offset, labels=labels, namespace=namespace, is_all_namespaces=is_all_namespaces, operator=DeploymentSpec.AWS_SAGEMAKER, order_by=order_by, ascending_order=ascending_order, ) if list_result.status.status_code != status_pb2.Status.OK: return list_result sagemaker_deployments = [ deployment for deployment in list_result.deployments if deployment.spec.operator == DeploymentSpec.AWS_SAGEMAKER ] del list_result.deployments[:] list_result.deployments.extend(sagemaker_deployments) return list_result def create_ec2_deployment( self, name, namespace, bento_name, bento_version, region, min_size, desired_capacity, max_size, instance_type, ami_id, wait=None, ): deployment_pb = Deployment(name=name, namespace=namespace) deployment_pb.spec.bento_name = bento_name deployment_pb.spec.bento_version = bento_version if region: deployment_pb.spec.aws_ec2_operator_config.region = region deployment_pb.spec.operator = DeploymentSpec.AWS_EC2 deployment_pb.spec.aws_ec2_operator_config.autoscale_min_size = min_size deployment_pb.spec.aws_ec2_operator_config.autoscale_desired_capacity = ( desired_capacity ) deployment_pb.spec.aws_ec2_operator_config.autoscale_max_size = max_size deployment_pb.spec.aws_ec2_operator_config.instance_type = instance_type deployment_pb.spec.aws_ec2_operator_config.ami_id = ami_id return self.create(deployment_pb, wait) def update_ec2_deployment( self, deployment_name, bento_name, bento_version, namespace, min_size, desired_capacity, max_size, instance_type, ami_id, wait, ): get_deployment_result = self.get(namespace=namespace, name=deployment_name) if get_deployment_result.status.status_code != status_pb2.Status.OK: error_code = status_pb2.Status.Code.Name( get_deployment_result.status.status_code ) error_message = get_deployment_result.status.error_message raise BentoMLException( f"Failed to retrieve current deployment {deployment_name} " f"in {namespace}. {error_code}:{error_message}" ) # new deloyment info with updated configs deployment_pb = get_deployment_result.deployment if bento_name: deployment_pb.spec.bento_name = bento_name if bento_version: deployment_pb.spec.bento_version = bento_version deployment_pb.spec.aws_ec2_operator_config.autoscale_min_size = min_size deployment_pb.spec.aws_ec2_operator_config.autoscale_desired_capacity = ( desired_capacity ) deployment_pb.spec.aws_ec2_operator_config.autoscale_max_size = max_size deployment_pb.spec.aws_ec2_operator_config.instance_type = instance_type deployment_pb.spec.aws_ec2_operator_config.ami_id = ami_id logger.debug("Updated configuration for Lambda deployment %s", deployment_name) return self.apply(deployment_pb, wait) def list_ec2_deployments( self, limit=None, offset=None, labels=None, namespace=None, order_by=None, ascending_order=None, is_all_namespaces=False, ): return self.list( limit=limit, offset=offset, labels=labels, namespace=namespace, is_all_namespaces=is_all_namespaces, operator=DeploymentSpec.AWS_EC2, order_by=order_by, ascending_order=ascending_order, ) def create_lambda_deployment( self, name, bento_name, bento_version, memory_size, timeout, api_name=None, region=None, namespace=None, labels=None, annotations=None, wait=None, ): """Create Lambda deployment Args: name: bento_name: bento_version: memory_size: timeout: api_name: region: namespace: labels: annotations: wait: Returns: ApplyDeploymentResponse: status, deployment Raises: BentoMLException """ deployment_pb = Deployment( name=name, namespace=namespace, labels=labels, annotations=annotations ) deployment_pb.spec.bento_name = bento_name deployment_pb.spec.bento_version = bento_version deployment_pb.spec.operator = DeploymentSpec.AWS_LAMBDA deployment_pb.spec.aws_lambda_operator_config.memory_size = memory_size deployment_pb.spec.aws_lambda_operator_config.timeout = timeout if api_name: deployment_pb.spec.aws_lambda_operator_config.api_name = api_name if region: deployment_pb.spec.aws_lambda_operator_config.region = region return self.create(deployment_pb, wait) def update_lambda_deployment( self, deployment_name, namespace=None, bento_name=None, bento_version=None, memory_size=None, timeout=None, wait=None, ): get_deployment_result = self.get(namespace=namespace, name=deployment_name) if get_deployment_result.status.status_code != status_pb2.Status.OK: error_code = status_pb2.Status.Code.Name( get_deployment_result.status.status_code ) error_message = status_pb2.status.error_message raise BentoMLException( f"Failed to retrieve current deployment {deployment_name} " f"in {namespace}. {error_code}:{error_message}" ) deployment_pb = get_deployment_result.deployment if bento_name: deployment_pb.spec.bento_name = bento_name if bento_version: deployment_pb.spec.bento_version = bento_version if memory_size: deployment_pb.spec.aws_lambda_operator_config.memory_size = memory_size if timeout: deployment_pb.spec.aws_lambda_operator_config.timeout = timeout logger.debug("Updated configuration for Lambda deployment %s", deployment_name) return self.apply(deployment_pb, wait) def list_lambda_deployments( self, limit=None, offset=None, labels=None, namespace=None, is_all_namespaces=False, order_by=None, ascending_order=None, ): return self.list( limit=limit, offset=offset, labels=labels, namespace=namespace, is_all_namespaces=is_all_namespaces, operator=DeploymentSpec.AWS_LAMBDA, order_by=order_by, ascending_order=ascending_order, ) def create_azure_functions_deployment( self, name, bento_name, bento_version, location, premium_plan_sku=None, min_instances=None, max_burst=None, function_auth_level=None, namespace=None, labels=None, annotations=None, wait=None, ): deployment_pb = Deployment( name=name, namespace=namespace, labels=labels, annotations=annotations ) deployment_pb.spec.bento_name = bento_name deployment_pb.spec.bento_version = bento_version deployment_pb.spec.operator = DeploymentSpec.AZURE_FUNCTIONS deployment_pb.spec.azure_functions_operator_config.location = location deployment_pb.spec.azure_functions_operator_config.premium_plan_sku = ( premium_plan_sku ) deployment_pb.spec.azure_functions_operator_config.min_instances = min_instances deployment_pb.spec.azure_functions_operator_config.function_auth_level = ( function_auth_level ) deployment_pb.spec.azure_functions_operator_config.max_burst = max_burst return self.create(deployment_pb, wait) def update_azure_functions_deployment( self, deployment_name, bento_name=None, bento_version=None, max_burst=None, min_instances=None, premium_plan_sku=None, namespace=None, wait=None, ): get_deployment_result = self.get(namespace=namespace, name=deployment_name) if get_deployment_result.status.status_code != status_pb2.Status.OK: error_code = status_pb2.Status.Code.Name( get_deployment_result.status.status_code ) error_message = status_pb2.status.error_message raise BentoMLException( f"Failed to retrieve current deployment {deployment_name} in " f"{namespace}. {error_code}:{error_message}" ) deployment_pb = get_deployment_result.deployment if bento_name: deployment_pb.spec.bento_name = bento_name if bento_version: deployment_pb.spec.bento_version = bento_version if max_burst: deployment_pb.spec.azure_functions_operator_config.max_burst = max_burst if min_instances: deployment_pb.spec.azure_functions_operator_config.min_instances = ( min_instances ) if premium_plan_sku: deployment_pb.spec.azure_functions_operator_config.premium_plan_sku = ( premium_plan_sku ) return self.apply(deployment_pb, wait) def list_azure_functions_deployments( self, limit=None, offset=None, labels=None, namespace=None, is_all_namespaces=False, order_by=None, ascending_order=None, ): return self.list( limit=limit, offset=offset, labels=labels, namespace=namespace, is_all_namespaces=is_all_namespaces, operator=DeploymentSpec.AZURE_FUNCTIONS, order_by=order_by, ascending_order=ascending_order, ) ``` #### File: _internal/yatai_client/__init__.py ```python class YataiClient: """ Python Client for interacting with YataiService """ pass # def __init__(self, yatai_service: Optional["YataiStub"] = None): # self.yatai_service = yatai_service if yatai_service else get_yatai_service() # self.bento_repository_api_client = None # self.deployment_api_client = None # # @cached_property # def repository(self) -> "BentoRepositoryAPIClient": # return BentoRepositoryAPIClient(self.yatai_service) # def get_yatai_client(yatai_url: str = None) -> "YataiClient": # """ # Args: # yatai_url (`str`): # Yatai Service URL address. # # Returns: # :obj:`~YataiClient`, a python client to interact with :obj:`Yatai` gRPC server. # # Example:: # # from bentoml.yatai.client import get_yatai_client # # custom_url = 'https://remote.yatai:50050' # yatai_client = get_yatai_client(custom_url) # """ # noqa: E501 # # yatai_service = get_yatai_service(channel_address=yatai_url) # return YataiClient(yatai_service=yatai_service) ``` #### File: projects/fastai2/service.py ```python import pathlib import sys import numpy as np import bentoml from bentoml.adapters import DataframeInput from bentoml.fastai import FastaiModelArtifact @bentoml.env(infer_pip_packages=True) @bentoml.artifacts([FastaiModelArtifact("model")]) class FastaiClassifier(bentoml.BentoService): @bentoml.api(input=DataframeInput(), batch=True) def predict(self, df): input_data = df.to_numpy().astype(np.float32) _, _, output = self.artifacts.model.predict(input_data) return output.squeeze().item() if __name__ == "__main__": artifacts_path = sys.argv[1] bento_dist_path = sys.argv[2] service = FastaiClassifier() from model.model import Loss, Model # noqa # pylint: disable=unused-import service.artifacts.load_all(artifacts_path) pathlib.Path(bento_dist_path).mkdir(parents=True, exist_ok=True) service.save_to_dir(bento_dist_path) ``` #### File: general/tests/test_artifact.py ```python import pytest @pytest.mark.asyncio async def test_api_server_with_sklearn(host): await pytest.assert_request( "POST", f"http://{host}/predict_with_sklearn", headers=(("Content-Type", "application/json"),), data="[2.0]", assert_status=200, assert_data=b"2.0", ) ``` #### File: projects/paddle/service.py ```python import pathlib import sys import numpy as np import bentoml from bentoml.adapters import DataframeInput from bentoml.paddle import PaddlePaddleModelArtifact @bentoml.env(infer_pip_packages=True) @bentoml.artifacts([PaddlePaddleModelArtifact("model")]) class PaddleService(bentoml.BentoService): @bentoml.api(input=DataframeInput(), batch=True) def predict(self, df): input_data = df.to_numpy().astype(np.float32) predictor = self.artifacts.model input_names = predictor.get_input_names() input_handle = predictor.get_input_handle(input_names[0]) input_handle.reshape(input_data.shape) input_handle.copy_from_cpu(input_data) predictor.run() output_names = predictor.get_output_names() output_handle = predictor.get_output_handle(output_names[0]) output_data = output_handle.copy_to_cpu() return output_data if __name__ == "__main__": artifacts_path = sys.argv[1] bento_dist_path = sys.argv[2] service = PaddleService() service.artifacts.load_all(artifacts_path) pathlib.Path(bento_dist_path).mkdir(parents=True, exist_ok=True) service.save_to_dir(bento_dist_path) ``` #### File: slo/tests/test_latency.py ```python import sys import time import pytest @pytest.mark.asyncio @pytest.mark.skipif(sys.platform == "darwin", reason="Test being flaky on Mac OS") async def test_SLO(host): await pytest.assert_request( "POST", f"http://{host}/echo_with_delay_max3", data='"0"', headers=(("Content-Type", "application/json"),), assert_status=200, ) SLO = 3 accuracy = 0.01 time_start = time.time() await pytest.assert_request( "POST", f"http://{host}/echo_with_delay_max3", data='"2.9"', timeout=SLO * 2, headers=(("Content-Type", "application/json"),), assert_status=200, ) assert time.time() - time_start < SLO * (1 + accuracy) time_start = time.time() await pytest.assert_request( "POST", f"http://{host}/echo_with_delay_max3", data='"3.5"', timeout=SLO * 2, headers=(("Content-Type", "application/json"),), assert_status=408, ) assert time.time() - time_start < SLO * (1 + accuracy) ``` #### File: tests/integration/test_fasttext_model_artifact.py ```python import contextlib import tempfile import fasttext import pytest import bentoml from bentoml.yatai.client import YataiClient from tests import FasttextClassifier @pytest.fixture() def fasttext_classifier_class(): FasttextClassifier._bento_service_bundle_path = None FasttextClassifier._bento_service_bundle_version = None return FasttextClassifier test_json = {"text": "foo"} def test_fasttext_artifact_pack(fasttext_classifier_class): @contextlib.contextmanager def _temp_filename_with_contents(contents): temporary_file = tempfile.NamedTemporaryFile(suffix=".txt", mode="w+") temporary_file.write(contents) # Set file pointer to beginning to ensure correct read temporary_file.seek(0) yield temporary_file.name temporary_file.close() with _temp_filename_with_contents("__label__bar foo") as filename: model = fasttext.train_supervised(input=filename) svc = fasttext_classifier_class() svc.pack("model", model) assert svc.predict(test_json)[0] == ( "__label__bar", ), "Run inference before saving the artifact" saved_path = svc.save() loaded_svc = bentoml.load(saved_path) assert loaded_svc.predict(test_json)[0] == ( "__label__bar", ), "Run inference after saving the artifact" # clean up saved bundle yc = YataiClient() yc.repository.delete(f"{svc.name}:{svc.version}") ``` #### File: tests/integration/test_keras_artifact.py ```python import json import keras import numpy as np import pytest import tensorflow as tf import bentoml from tests import ( build_api_server_docker_image, export_service_bundle, run_api_server_docker_container, ) TF2 = tf.__version__.startswith("2") if TF2: from tests import KerasClassifier else: from tests import KerasClassifier test_data = [1, 2, 3, 4, 5] @pytest.fixture(params=[tf.keras, keras], scope="session") def keras_model(request): ke = request.param net = ke.Sequential( ( ke.layers.Dense( units=1, input_shape=(5,), use_bias=False, kernel_initializer=ke.initializers.Ones(), ), ) ) net.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) return net @pytest.fixture(scope="session") def svc(keras_model): """Return a TensorFlow2 BentoService.""" # When the ExampleBentoService got saved and loaded again in the test, the # two class attribute below got set to the loaded BentoService class. # Resetting it here so it does not effect other tests KerasClassifier._bento_service_bundle_path = None KerasClassifier._bento_service_bundle_version = None svc = KerasClassifier() keras_model.predict(np.array([test_data])) svc.pack("model", keras_model) svc.pack("model2", keras_model) return svc @pytest.fixture(scope="session") def image(svc, clean_context): with export_service_bundle(svc) as saved_path: yield clean_context.enter_context(build_api_server_docker_image(saved_path)) @pytest.fixture(scope="module") def host(image): with run_api_server_docker_container(image, timeout=500) as host: yield host def test_keras_artifact(svc): assert svc.predict([test_data]) == [ 15.0 ], "Inference on unsaved Keras artifact does not match expected" assert svc.predict2([test_data]) == [ 15.0 ], "Inference on unsaved Keras artifact does not match expected" def test_keras_artifact_loaded(svc): with export_service_bundle(svc) as saved_path: loaded = bentoml.load(saved_path) assert ( loaded.predict([test_data]) == 15.0 ), "Inference on saved and loaded Keras artifact does not match expected" assert ( loaded.predict2([test_data]) == 15.0 ), "Inference on saved and loaded Keras artifact does not match expected" @pytest.mark.asyncio async def test_keras_artifact_with_docker(host): await pytest.assert_request( "POST", f"http://{host}/predict", headers=(("Content-Type", "application/json"),), data=json.dumps(test_data), assert_status=200, assert_data=b"[15.0]", ) await pytest.assert_request( "POST", f"http://{host}/predict2", headers=(("Content-Type", "application/json"),), data=json.dumps(test_data), assert_status=200, assert_data=b"[15.0]", ) ``` #### File: tests/integration/test_locking.py ```python import logging import subprocess import pytest from tests import ExampleBentoService, ThreadWithResult, run_delayed_thread logger = logging.getLogger("bentoml.test") def cli(svc, cmd, *args): bento_tag = f"{svc.name}:{svc.version}" proc = subprocess.Popen( ["bentoml", cmd, bento_tag, *args], stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) return proc.stdout.read().decode("utf-8") @pytest.fixture() def packed_svc(): svc = ExampleBentoService() svc.pack("model", [1, 2, 3]) svc.save() return svc def test_write_lock_on_read_lock(packed_svc): containerize_thread = ThreadWithResult( target=cli, args=(packed_svc, "containerize", "-t", "imagetag") ) delete_thread = ThreadWithResult(target=cli, args=(packed_svc, "delete", "-y")) run_delayed_thread(containerize_thread, delete_thread) assert ( f"Build container image: imagetag:{packed_svc.version}" in containerize_thread.result ) assert ( "Failed to acquire write lock, another lock held. Retrying" in delete_thread.result ) assert f"Deleted {packed_svc.name}:{packed_svc.version}" in delete_thread.result def test_read_lock_on_read_lock(packed_svc): containerize_thread = ThreadWithResult( target=cli, args=(packed_svc, "containerize", "-t", "imagetag") ) get_thread = ThreadWithResult(target=cli, args=(packed_svc, "get")) run_delayed_thread(containerize_thread, get_thread) assert ( f"Build container image: imagetag:{packed_svc.version}" in containerize_thread.result ) assert f'"name": "{packed_svc.name}"' in get_thread.result assert f'"version": "{packed_svc.version}"' in get_thread.result ``` #### File: tests/integration/test_pytorch_model_artifact.py ```python import pandas import pytest import torch from torch import nn import bentoml from bentoml.yatai.client import YataiClient from tests import PytorchClassifier class PytorchModel(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(5, 1, bias=False) torch.nn.init.ones_(self.linear.weight) def forward(self, x): x = self.linear(x) return x @pytest.fixture() def pytorch_classifier_class(): # When the ExampleBentoService got saved and loaded again in the test, the two class # attribute below got set to the loaded BentoService class. Resetting it here so it # does not effect other tests PytorchClassifier._bento_service_bundle_path = None PytorchClassifier._bento_service_bundle_version = None return PytorchClassifier test_df = pandas.DataFrame([[1, 1, 1, 1, 1]]) def test_pytorch_artifact_pack(pytorch_classifier_class): svc = pytorch_classifier_class() model = PytorchModel() svc.pack("model", model) assert svc.predict(test_df) == 5.0, "Run inference before save the artifact" saved_path = svc.save() loaded_svc = bentoml.load(saved_path) assert loaded_svc.predict(test_df) == 5.0, "Run inference from saved artifact" # clean up saved bundle yc = YataiClient() yc.repository.delete(f"{svc.name}:{svc.version}") def test_pytorch_artifact_pack_with_traced_model(pytorch_classifier_class): svc = pytorch_classifier_class() input_for_tracing = torch.ones(5) model = PytorchModel() traced_model = torch.jit.trace(model, input_for_tracing) svc.pack("model", traced_model) assert svc.predict(test_df) == 5.0, "Run inference before save the artifact" saved_path = svc.save() loaded_svc = bentoml.load(saved_path) assert loaded_svc.predict(test_df) == 5.0, "Run inference from saved artifact" # clean up saved bundle yc = YataiClient() yc.repository.delete(f"{svc.name}:{svc.version}") def test_pytorch_artifact_pack_with_scripted_model(pytorch_classifier_class): svc = pytorch_classifier_class() model = PytorchModel() scripted_model = torch.jit.script(model) svc.pack("model", scripted_model) assert svc.predict(test_df) == 5.0, "Run inference before save the artifact" saved_path = svc.save() loaded_svc = bentoml.load(saved_path) assert loaded_svc.predict(test_df) == 5.0, "Run inference from saved artifact" # clean up saved bundle yc = YataiClient() yc.repository.delete(f"{svc.name}:{svc.version}") ``` #### File: integration/yatai_server/utils.py ```python import contextlib import logging import os import subprocess import uuid import docker from bentoml.configuration import LAST_PYPI_RELEASE_VERSION from bentoml.utils import reserve_free_port from bentoml.utils.tempdir import TempDirectory from tests import wait_until_container_ready logger = logging.getLogger("bentoml.test") def build_yatai_service_image(): docker_client = docker.from_env() local_bentoml_repo_path = os.path.abspath(__file__ + "/../../../../") yatai_docker_image_tag = f"bentoml/yatai-service:test-{uuid.uuid4().hex[:6]}" # Note: When set both `custom_context` and `fileobj`, docker api will not use the # `path` provide... docker/api/build.py L138. The solution is create an actual # Dockerfile along with path, instead of fileobj and custom_context. with TempDirectory() as temp_dir: temp_docker_file_path = os.path.join(temp_dir, "Dockerfile") with open(temp_docker_file_path, "w") as f: f.write( f"""\ FROM bentoml/yatai-service:{LAST_PYPI_RELEASE_VERSION} ADD . /bentoml-local-repo RUN pip install -U /bentoml-local-repo""" ) logger.info(f"Building docker image {yatai_docker_image_tag}") docker_client.images.build( path=local_bentoml_repo_path, dockerfile=temp_docker_file_path, tag=yatai_docker_image_tag, ) return yatai_docker_image_tag # Cache the yatai docker image built for each test run session, since the source code # of yatai will not be modified during a test run _yatai_docker_image_tag = None @contextlib.contextmanager def yatai_service_container(db_url=None, repo_base_url=None): global _yatai_docker_image_tag # pylint: disable=global-statement if _yatai_docker_image_tag is None: _yatai_docker_image_tag = build_yatai_service_image() docker_client = docker.from_env() container_name = f"yatai-test-{uuid.uuid4().hex[:6]}" yatai_server_command = ["bentoml", "yatai-service-start", "--no-ui"] if db_url: yatai_server_command.extend(["--db-url", db_url]) if repo_base_url: yatai_server_command.extend(["--repo-base-url", repo_base_url]) host = "127.0.0.1" with reserve_free_port(host) as free_port: # find free port on host port = free_port container = docker_client.containers.run( image=_yatai_docker_image_tag, remove=True, environment=["BENTOML_HOME=/tmp"], ports={"50051/tcp": (host, port)}, command=yatai_server_command, name=container_name, detach=True, ) wait_until_container_ready( container_name, "Starting BentoML YataiService gRPC Server" ) yield f"{host}:{port}" logger.info(f"Shutting down docker container: {container_name}") container.kill() @contextlib.contextmanager def local_yatai_service_from_cli(db_url=None, repo_base_url=None, port=50051): yatai_server_command = [ "bentoml", "yatai-service-start", "--no-ui", "--grpc-port", str(port), ] if db_url: yatai_server_command.extend(["--db-url", db_url]) if repo_base_url: yatai_server_command.extend(["--repo-base-url", repo_base_url]) logger.info(f'Starting local YataiServer {" ".join(yatai_server_command)}') proc = subprocess.Popen( yatai_server_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) yatai_service_url = f"localhost:{port}" logger.info(f"Setting config yatai_service.url to: {yatai_service_url}") yield yatai_service_url proc.kill() ``` #### File: _internal/utils/threading.py ```python import threading import time class ThreadWithResult(threading.Thread): def __init__( self, group=None, target=None, name=None, args=(), kwargs=None, *, daemon=None ): if kwargs is None: kwargs = {} self.result = None def function(): self.result = target(*args, **kwargs) super().__init__(group=group, target=function, name=name, daemon=daemon) def run_delayed_thread(t1, t2, delay=1): t1.start() time.sleep(delay) t2.start() t1.join() t2.join() ``` #### File: unit/adapters/test_string_input.py ```python import json from bentoml.types import HTTPRequest def test_string_input(make_api): from bentoml.adapters import JsonOutput, StringInput api = make_api( input_adapter=StringInput(), output_adapter=JsonOutput(), user_func=lambda i: i, ) body = b'{"a": 1}' request = HTTPRequest(body=body) response = api.handle_request(request) assert json.loads(response.body) == body.decode() responses = api.handle_batch_request([request] * 3) for response in responses: assert json.loads(response.body) == body.decode() ``` #### File: yatai/configuration/__init__.py ```python import os def get_local_config_file(): if "YATAI_CONFIG" in os.environ: # User local config file for customizing Yatai return expand_env_var(os.environ.get("YATAI_CONFIG")) return None def inject_dependencies(): """Inject dependencis and configuration for Yatai package""" from yatai.yatai.configuration.containers import YataiConfiguration, YataiContainer config_file = get_local_config_file() if config_file and config_file.endswith('.yml'): configuration = YataiConfiguration(override_config_file=config_file) else: configuration = YataiConfiguration() YataiContainer.config.set(configuration.as_dict()) def expand_env_var(env_var): """Expands potentially nested env var by repeatedly applying `expandvars` and `expanduser` until interpolation stops having any effect. """ if not env_var: return env_var while True: interpolated = os.path.expanduser(os.path.expandvars(str(env_var))) if interpolated == env_var: return interpolated else: env_var = interpolated ``` #### File: yatai/deployment/docker_utils.py ```python import logging from typing import Dict, Optional from urllib.parse import urlparse import docker from bentoml._internal.exceptions import BentoMLException, MissingDependencyException logger = logging.getLogger(__name__) def ensure_docker_available_or_raise() -> None: """ Ensure docker is available. Raises: :class:`~MissingDependencyException`: for :class:`~docker.errors.APIErrors` or :class:`~docker.errors.DockerException` """ try: client = docker.from_env() client.ping() except docker.errors.APIError as error: raise MissingDependencyException(f"Docker server is not responsive. {error}") except docker.errors.DockerException: raise MissingDependencyException( "Docker is required for this deployment. Please visit " "www.docker.com for instructions" ) def _strip_scheme(url: str) -> str: """ Stripe url's schema. Examples: http://some.url/path -> some.url/path Args: url (`str`) Returns: :obj:`str` """ parsed = urlparse(url) scheme = "%s://" % parsed.scheme return parsed.geturl().replace(scheme, "", 1) def generate_docker_image_tag( image_name: str, version: str = "latest", registry_url=None ): image_tag = f"{image_name}:{version}".lower() if registry_url is not None: return _strip_scheme(f"{registry_url}/{image_tag}") else: return image_tag def build_docker_image( context_path: str, image_tag: str, dockerfile: Optional[str] = "Dockerfile", additional_build_args: Optional[Dict[str, str]] = None, ): docker_client = docker.from_env() try: docker_client.images.build( path=context_path, tag=image_tag, dockerfile=dockerfile, buildargs=additional_build_args, ) except (docker.errors.APIError, docker.errors.BuildError) as error: logger.error(f"Failed to build docker image {image_tag}: {error}") raise BentoMLException(f"Failed to build docker image {image_tag}: {error}") def push_docker_image_to_repository( repository: str, image_tag: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, ): docker_client = docker.from_env() docker_push_kwags = {"repository": repository, "tag": image_tag} if username is not None and password is not None: docker_push_kwags["auth_config"] = {"username": username, "password": password} try: docker_client.images.push(**docker_push_kwags) except docker.errors.APIError as error: raise BentoMLException(f"Failed to push docker image {image_tag}: {error}") ```
{ "source": "jmcabreira/Data_Science_Coursework", "score": 3 }
#### File: webapp/Basic_webapp/webapp1.py ```python import streamlit as st def main(): st.image('CabreiraLogo.png') st.title('Codenation') st.markdown('Button') button = st.button('Button Name') if button: st.markdown('ON') st.markdown('checkbox') check = st.checkbox('Checkbox') if check: st.markdown('ON') st.markdown('Radio') radio = st.radio('Chose Options', ('Option 1', 'Option 2') ) if radio == 'Option 1': st.markdown('Option 1') if radio == 'Option 2': st.markdown('Option 2') st.markdown('SelectBox') select = st.selectbox('Choose option', ('Option 1', 'Option 2')) if select == 'Option 1': st.markdown('Option 1') if select == 'Option 2': st.markdown('Option 2') st.markdown('Multiselect') multi = st.multiselect('Choose:', ('Option 1' , 'Option 2')) if multi == 'Option 1': st.markdown('Option 1') if multi == 'Option 2': st.markdown('Option 2') st.markdown('File Uploader') file = st.file_uploader('Upload File', type ='csv') if file is not None: st.markdown('Not empty') if __name__ == '__main__': main() ``` #### File: exercise_6/starter/run.py ```python import argparse import logging import os import tempfile import pandas as pd import wandb from sklearn.model_selection import train_test_split logging.basicConfig(level=logging.INFO, format="%(asctime)-15s %(message)s") logger = logging.getLogger() def go(args): run = wandb.init(project="exercise_6", job_type="split_data") logger.info("Downloading and reading artifact") artifact = run.use_artifact(args.input_artifact) artifact_path = artifact.file() df = pd.read_csv(artifact_path, low_memory=False) # Split model_dev/test logger.info("Splitting data into train and test") splits = {} splits["train"], splits["test"] = train_test_split( df, test_size=args.test_size, random_state=args.random_state, stratify = df[args.stratify] if args.stratify != 'null' else None # keep the same distribution in both dataframes ) # Now we save the artifacts. We use a temporary directory so we do not leave # any trace behind with tempfile.TemporaryDirectory() as tmp_dir: for split, df in splits.items(): # Make the artifact name from the provided root plus the name of the split artifact_name = f"{args.artifact_root}_{split}.csv" # Get the path on disk within the temp directory temp_path = os.path.join(tmp_dir, artifact_name) logger.info(f"Uploading the {split} dataset to {artifact_name}") # Save then upload to W&B df.to_csv(temp_path) artifact = wandb.Artifact( name=artifact_name, type=args.artifact_type, description=f"{split} split of dataset {args.input_artifact}", ) artifact.add_file(temp_path) logger.info("Logging artifact") run.log_artifact(artifact) # This waits for the artifact to be uploaded to W&B. If you # do not add this, the temp directory might be removed before # W&B had a chance to upload the datasets, and the upload # might fail artifact.wait() if __name__ == "__main__": parser = argparse.ArgumentParser( description="Split a dataset into train and test", fromfile_prefix_chars="@", ) parser.add_argument( "--input_artifact", type=str, help="Fully-qualified name for the input artifact", required=True, ) parser.add_argument( "--artifact_root", type=str, help="Root for the names of the produced artifacts. The script will produce 2 artifacts: " "{root}_train.csv and {root}_test.csv", required=True, ) parser.add_argument( "--artifact_type", type=str, help="Type for the produced artifacts", required=True ) parser.add_argument( "--test_size", help="Fraction of dataset or number of items to include in the test split", type=float, required=True ) parser.add_argument( "--random_state", help="An integer number to use to init the random number generator. It ensures repeatibility in the" "splitting", type=int, required=False, default=42 ) parser.add_argument( "--stratify", help="If set, it is the name of a column to use for stratified splitting", type=str, required=False, default='null' # unfortunately mlflow does not support well optional parameters ) args = parser.parse_args() go(args) ``` #### File: exercise_1/starter/upload_artifact.py ```python import argparse import logging import pathlib import wandb logging.basicConfig(level=logging.INFO, format="%(asctime)-15s %(message)s") logger = logging.getLogger() def go(args): logger.info("Creating run exercise_1") run = wandb.init(project='exercise_1', job_type = 'upload_file') logger.info('Creating an artifcat') artifact = wandb.Artifact( name = args.artifact_name, type = args.artifact_type, description = args.artifact_description ) logger.info('Adding file') artifact.add_file(args.input_file) logger.info('Logging artifact') run.log_artifact(artifact) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Upload an artifact to W&B", fromfile_prefix_chars="@" ) parser.add_argument( "--input_file", type=pathlib.Path, help="Path to the input file", required=True ) parser.add_argument( "--artifact_name", type=str, help="Name for the artifact", required=True ) parser.add_argument( "--artifact_type", type=str, help="Type for the artifact", required=True ) parser.add_argument( "--artifact_description", type=str, help="Description for the artifact", required=True, ) args = parser.parse_args() go(args) ```
{ "source": "jmcabreira/Dynamic-risk-assessment-system", "score": 2 }
#### File: jmcabreira/Dynamic-risk-assessment-system/deployment.py ```python from flask import Flask, session, jsonify, request import pandas as pd import numpy as np import pickle import os from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import json import shutil ##################Load config.json and correct path variable with open('config.json','r') as f: config = json.load(f) ingested_files_path = os.path.join(config['output_folder_path'],'ingestedfiles.txt') model_path = os.path.join(config['output_model_path'], 'trainedmodel.pkl') score_path = os.path.join(config['output_model_path'], 'latestscore.txt') prod_deployment_path = os.path.join(config['prod_deployment_path']) files = [ingested_files_path, model_path, score_path] if not os.path.exists(prod_deployment_path): os.makedirs(prod_deployment_path) ####################function for deployment def store_model_into_pickle(): ''' copy the latest pickle file, the latestscore.txt value, and the ingestfiles.txt file into the deployment directory ''' print('copy the latest pickle file, the latestscore.txt value,and the ingestfiles.txt file into the deployment directory') for file in files: print(f"Copying: {file}") if os.path.isfile(file): shutil.copy(src = file , dst = os.path.join(prod_deployment_path, file.split('/')[-1])) else: pass if __name__ == '__main__': store_model_into_pickle() ``` #### File: jmcabreira/Dynamic-risk-assessment-system/ingestion.py ```python import pandas as pd import numpy as np import os import json from datetime import datetime import glob #############Load config.json and get input and output paths with open('config.json','r') as f: config = json.load(f) input_folder_path = config['input_folder_path'] output_folder_path = config['output_folder_path'] if not os.path.exists(output_folder_path): os.makedirs(output_folder_path) #############Function for data ingestion def merge_multiple_dataframe(): '''check for datasets, compile them together, and write to an output file ''' csv_files = glob.glob(input_folder_path + "/*.csv") # Append files data_list = [] for file in csv_files: print(f'Ingesting file: {file}') data_list.append(pd.read_csv(file, index_col = None)) df = pd.concat(data_list, axis = 0, ignore_index = True) # Drop duplicates df.drop_duplicates(inplace = True) # Save file print(f'Saving finaldata.csv and ingestedfiles.txt in : {output_folder_path} folder') df.to_csv(os.path.join(output_folder_path,'finaldata.csv'), index = False) # ingested_files_pth = os.path.join(output_folder_path, 'ingestedfiles.txt') with open(ingested_files_pth, 'w' ) as file: file.write(json.dumps(csv_files)) if __name__ == '__main__': merge_multiple_dataframe() ```
{ "source": "jmcabreira/Machine-Learning-Devops-Engineer", "score": 3 }
#### File: credit_card_customer_churn/src/churn_script_logging_and_tests.py ```python import os import logging import churn_library as cls logging.basicConfig( filename='./logs/churn_library.log', level = logging.INFO, filemode='w', format='%(name)s - %(levelname)s - %(message)s') def test_import(import_data): ''' test data import ''' try: df = import_data("./data/bank_data.csv") logging.info("Testing import_data: SUCCESS") except FileNotFoundError as err: logging.error("Testing import_eda: The file wasn't found") raise err try: assert df.shape[0] > 0 assert df.shape[1] > 0 except AssertionError as err: logging.error("Testing import_data: The file doesn't appear to have rows and columns") raise err return df def test_eda(perform_eda, df): ''' test perform eda function ''' try: perform_eda(df) path = "./images/eda" except AssertionError as err: logging.error("Error in perform_eda function") raise err # Checking if the list is empty or not try: # Getting the list of directories dir_val = os.listdir(path) assert len(dir_val) > 0 logging.info("Testing perform_eda: SUCCESS") except AssertionError as err: logging.warning("Testing perform_eda function: It seems that the image " "has not been saved in the eda folder.") raise err def test_encoder_helper(encoder_helper,df): ''' test encoder helper ''' try: cat_columns = ['Gender', 'Education_Level', 'Marital_Status', 'Income_Category', 'Card_Category'] df = encoder_helper(df, cat_columns, 'Churn') except AssertionError as err: logging.error("Error in encoder_helper function!") raise err try: for col in cat_columns: assert col in df.columns logging.info("Testing encoder_helper: SUCCESS") except AssertionError as err: logging.error( "Testing encoder_helper: The dataframe appears to be missing the " "categorical columns transformation") return err return df def test_perform_feature_engineering(perform_feature_engineering,df): ''' test perform_feature_engineering ''' try: X_train, X_test, y_train, y_test = perform_feature_engineering(df, 'Churn') except AssertionError as err: logging.error("Error in perform_feature_engineering function") raise err try: assert X_train.shape[0] > 0 assert X_test.shape[0] > 0 assert len(y_train) > 0 assert len(y_test) > 0 logging.info("Testing perform_feature_engineering function: SUCCESS") except AssertionError as err: logging.error("Testing perform_feature_engineering: " "Missing objects that should be returned.") raise err return X_train, X_test, y_train, y_test def test_train_models(train_models, X_train, X_test, y_train, y_test): ''' test train_models ''' try: train_models(X_train, X_test, y_train, y_test) path = "./images/results/" except: logging.error("Error in train_models function!") raise err try: # Getting the list of directories dir_val = os.listdir(path) assert len(dir_val) > 0 except FileNotFoundError as err: logging.error("Testing train_models function: Results image files not found") raise err path = "./models/" try: # Getting the list of directories dir_val = os.listdir(path) assert len(dir_val) > 0 logging.info("Testing train_models function: SUCCESS") except FileNotFoundError as err: logging.error("Testing train_models function: Model files not found") raise err if __name__ == "__main__": DATA_FRAME = test_import(cls.import_data) print(DATA_FRAME.shape) test_eda(cls.perform_eda, DATA_FRAME) DATA_FRAME = test_encoder_helper(cls.encoder_helper, DATA_FRAME) X_TRAIN, X_TEST, Y_TRAIN, Y_TEST = test_perform_feature_engineering( cls.perform_feature_engineering, DATA_FRAME) test_train_models(cls.train_models, X_TRAIN, X_TEST, Y_TRAIN, Y_TEST) ```
{ "source": "jmcadden/rym-extractor", "score": 3 }
#### File: rym-extractor/rym/utility.py ```python def ListToString(arr, sep=''): return sep.join(arr).strip() ```
{ "source": "jmcampanini/django-starter", "score": 3 }
#### File: django-starter/core/planeteer.py ```python import os def string_to_bool(s, default=False): """ Turns a string into a bool, giving a default value preference. """ if len(str(s).strip()) == 0: return default if default: if s[0].upper() == "F": return False else: return True else: if s[0].upper() == "T": return True else: return False def load_the_environment(env=None, verbose=False): """ Loads the environment files into the environment variables. """ if env is None: env = "dev" if env == "prod": env_file = ".env" else: env_file = ".env.%s" % env if os.path.exists(env_file): if verbose: print "Loading ENV File: `%s`" % env_file with open(env_file, "r+") as f: for curline in f: clean_line = str(curline).strip() if len(clean_line) > 0 and clean_line[0] != "#": eqloc = curline.index("=") var = str(curline[:eqloc]).strip() val = str(curline[eqloc + 1:]).strip() os.environ[var] = val if verbose: print "....Adding `%s` with value `%s`" % (var, val) else: if verbose: print "Not Found - ENV File: `%s`" % env_file ```
{ "source": "JMCanning78/Transcrypt", "score": 3 }
#### File: demos/cyclejs_demo/cyclejs_http_demo.py ```python dom, http = CycleDOM, CycleHTTPDriver def render(user): return dom.div('.users', [ dom.button('.get-random', 'Get random user'), None if not user else dom.div('.user-details', [ dom.h1('.user-name' , user.name), dom.h4('.user-email', user.email), dom.a ('.user-website', {'attrs': {'href': user.website}}, user.website) ]) ]) def main(sources): '''This **declares** your app. Evaluated only once(!)''' def get_url_params(): rand = Math.round(Math.random() * 9) + 1 url = { 'url': 'http://jsonplaceholder.typicode.com/users/' + str(rand), 'category': 'users', 'method': 'GET' } console.log(url) return url get_random_user_s = sources.DOM \ .select('.get-random') \ .events('click') \ .map(get_url_params) user_s = sources.HTTP.select('users') \ .flatten() \ .map(lambda res: res.body) \ .startWith(None) vdom_s = user_s.map(render) return { 'DOM' : vdom_s, 'HTTP': get_random_user_s} Cycle.run(main, { 'DOM' : dom.makeDOMDriver('#app'), 'HTTP': http.makeHTTPDriver() }) ``` #### File: parcel_demo/example/main.py ```python from testcontext import Test def main(): '''Main function of the program (called from index.js)''' # sibling module with Test('import sibling') as test: import sibling test.result = sibling.sibling_func(test.random_num) with Test('import sibling as alias_sibling') as test: import sibling as alias_sibling test.result = alias_sibling.sibling_func(test.random_num) with Test('from sibling import sibling_func') as test: from sibling import sibling_func test.result = sibling_func(test.random_num) with Test('from sibling import sibling_func as alias_sibling_func') as test: from sibling import sibling_func as alias_sibling_func test.result = alias_sibling_func(test.random_num) # sibling2 module (using sibling2 because `import * from sibling` would overrride sibling_func above) with Test('from sibling2 import *') as test: from sibling2 import * test.result = sibling2_func(test.random_num) # siblingjs.js (Javascript file import) with Test('import siblingjs') as test: import siblingjs test.result = siblingjs.siblingjs_func(test.random_num) with Test('import siblingjs as alias_siblingjs') as test: import siblingjs as alias_siblingjs test.result = alias_siblingjs.siblingjs_func(test.random_num) with Test('from siblingjs import siblingjs_func') as test: from siblingjs import siblingjs_func test.result = siblingjs_func(test.random_num) with Test('from siblingjs import siblingjs_func as alias_siblingjs_func') as test: from siblingjs import siblingjs_func as alias_siblingjs_func test.result = alias_siblingjs_func(test.random_num) # mymod package (__init__.py file) with Test('import mymod') as test: import mymod test.result = mymod.mymod_func(test.random_num) with Test('import mymod as alias_mymod') as test: import mymod as alias_mymod test.result = alias_mymod.mymod_func(test.random_num) with Test('from mymod import mymod_func') as test: from mymod import mymod_func test.result = mymod_func(test.random_num) with Test('from mymod import mymod_func as alias_mymod_func') as test: from mymod import mymod_func as alias_mymod_func test.result = alias_mymod_func(test.random_num) # mymod.child (subdir module) with Test('import mymod.child') as test: import mymod.child test.result = mymod.child.child_func(test.random_num) with Test('alias_child.child_func') as test: import mymod.child as alias_child test.result = alias_child.child_func(test.random_num) with Test('from mymod.child import child_func') as test: from mymod.child import child_func test.result = child_func(test.random_num) with Test('from mymod.child import child_func as alias_child_func') as test: from mymod.child import child_func as alias_child_func test.result = alias_child_func(test.random_num) with Test('import mymod.grandchildmod') as test: import mymod.grandchildmod test.result = mymod.grandchildmod.grandchildmod_func(test.random_num) with Test('import mymod.grandchildmod as alias_grandchildmod') as test: import mymod.grandchildmod as alias_grandchildmod test.result = alias_grandchildmod.grandchildmod_func(test.random_num) with Test('from mymod.grandchildmod.grandchild import grandchild_func') as test: from mymod.grandchildmod.grandchild import grandchild_func test.result = grandchild_func(test.random_num) with Test('from mymod.grandchildmod.grandchild import grandchild_func as alias_grandchild_func') as test: from mymod.grandchildmod.grandchild import grandchild_func as alias_grandchild_func test.result = alias_grandchild_func(test.random_num) ``` #### File: mymod/grandchildmod/__init__.py ```python from ...constants import ONE_HUNDRED # imported package (__init__.py) two levels deep def grandchildmod_func(val): return val + ONE_HUNDRED ``` #### File: example/mymod/__init__.py ```python from ..constants import ONE_HUNDRED # imported package (__init__.py file) from subdir def mymod_func(val): return val + ONE_HUNDRED ``` #### File: demos/three_demo/three_demo.py ```python from org.threejs import api scene = api.Scene (); camera = api.PerspectiveCamera (30, window.innerWidth/window.innerHeight, 0.1, 1000) renderer = api.WebGLRenderer () renderer.setSize (window.innerWidth, window.innerHeight) document.body.appendChild (renderer.domElement) geometry = api.BoxGeometry (1, 1, 1 ) material = api.MeshLambertMaterial ({'color': 0xffffff}) cube = api.Mesh (geometry, material) scene.add (cube) ambientLight = api.AmbientLight (0x0000ff, 0.5) scene.add (ambientLight ) directionalLight0 = api.DirectionalLight (0xff0000, 0.5) scene.add (directionalLight0); directionalLight1 = api.DirectionalLight (0x00ff00, 0.5) directionalLight1.position.set (50, 50, 50) scene.add (directionalLight1) camera.position.z = 5 def render (): requestAnimationFrame (render) cube.rotation.x += 0.01 cube.rotation.y += 0.01 renderer.render (scene, camera) render () # The above are just examples, all needed constructors can be added to org.threejs.api in this way # THREE is just left in the global namespace, as three.js itself seems to need it ``` #### File: automated_tests/__future__/division.py ```python from __future__ import division def _check(x, test): # Floats have different precision/representation in js and python # Limit precision to 15 digits and convert to int if float is int # See transcrypt/module_math for similar function # 42.0 is 42 if x == int(x): x = int(x) # 15 first digits if isinstance(x, float): x = str(x)[:15] test.check(x) def run(test): check = lambda x: _check(x, test) for i in range(1, 10): check(42 / i) check(i / 42) check(42 // i) check(i // 42) ``` #### File: automated_tests/__future__/nested_scopes.py ```python from __future__ import nested_scopes def run(test): def foo(): x = 42 def bar(): test.check(x) bar() foo() ``` #### File: automated_tests/__future__/unicode_literals.py ```python from __future__ import unicode_literals def run(test): test.check('Hello, world!') test.check(u'Hello, world!') # TODO: byte strings are not supported? # test.check(b'Hello, world!') ``` #### File: automated_tests/time/mult_time.py ```python import time def run (autoTester): t = [2000, 1, 1, 1, 1, 1, 1, 1, 0] def check(fmt): s = time.mktime(tuple(t)) autoTester.check('gmtime' , tuple(time.gmtime(int(s)))) autoTester.check('localtime', tuple(time.localtime(int(s)))) autoTester.check('mktime' , int(s)) autoTester.check('ctime' , int(s)) for hour in (0, 1, 12, 14, 23): t[3] = hour for f in ( '%p %I.%d.%Y' ,'%b .%d.%y' ,'%b .%d.%Y' ,'%d%m%Y%H:%M:%S%p' ,'%b .%d.%Y' ,'M%m.%d.%Y' ,'%m.%d.%Y' ,'%m.%d.%Y' ,'%b .%d.%Y' ,'%m.%d.%Y' ,'%B %d.%Y' ,'%a %b %d %H:%M:%S %Y' ,'%d.%m.%Y %I:%M:%S%p' ,'%a%b %d %H:%M:%S %Y' ,'%a%b%d %H:%M:%S %Y' ,'%a%b%d%H:%Mx%S%Y' ,'%a%b%d%H:%Mxx%S%Y' ,'%a%b%d%H:%Mxx%S%Y +000' ,' %a%b%d%H:%Mxx%S%Y +000 ' ): check(f) autoTester.check('asctime', t) ``` #### File: transcrypt/async_await_UNDER_CONSTRUCTION/__init__.py ```python from org.transcrypt.stubs.browser import __pragma__, __envir__ # Note that CPython will ignore all pragma's # Provide waitAWhile for Transcrypt __pragma__ ('js', '{}', ''' function waitAWhile (aTime) { return new Promise (resolve => { setTimeout (() => { resolve (aTime); }, 1000 * aTime); }); } ''') # Provide waitAWhile for CPython __pragma__ ('skip') # Compile time, needed because import is done compile time import asyncio def waitAWhile (aTime): return asyncio.sleep (aTime) __pragma__ ('noskip') # Actual code to be tested async def run (autoTester): counter = 0 async def f (): autoTester.check ('f0') await waitAWhile (2) autoTester.check ('f1') nonlocal counter counter += 1 async def g (): autoTester.check ('g0') await waitAWhile (2) autoTester.check ('g1') nonlocal counter counter += 1 autoTester.check ('BEGIN async/await test') if __envir__.executor_name == __envir__.transpiler_name: f () g () g () f () else: eventLoop = asyncio.get_event_loop () tasks = [ eventLoop.create_task (f ()), eventLoop.create_task (g ()), eventLoop.create_task (g ()), eventLoop.create_task (f ()), ] waitingTasks = asyncio.wait (tasks) eventLoop.run_until_complete (waitingTasks) eventLoop.close () autoTester.check ('END async/await test') ``` #### File: issue559/mylib/mylib.py ```python def mylibHello (autoTester): autoTester.check ('Hello World Function') class mylibClass: def __init__ (self, autoTester): self.autoTester = autoTester self.autoTester.check ('Hello World Class') def checkSymbols (self): self.autoTester.check (sorted ([x for x in globals () if x.startswith ("my")])) # __: iconv ``` #### File: transcrypt/docstrings/__init__.py ```python from org.transcrypt.stubs.browser import __pragma__ __pragma__ ('docat') def run (autoTester): def f (p): '''Just a function called f''' '''Not visible''' autoTester.check (p) class C: '''Just a class called C''' '''Not visible''' def g (self, q): '''Just a method called g''' '''Not visible''' autoTester.check (q) autoTester.check (__doc__) autoTester.check () autoTester.check (f.__doc__) autoTester.check () autoTester.check (C.__doc__) autoTester.check () autoTester.check (C.g.__doc__) autoTester.check () f ('Doc') C () .g ('strings') ``` #### File: transcrypt/globals_function/sub.py ```python xxa = 'subXxa' xxb = 'subXxb' xxp = None xxq = None xxr = None xxs = None for name in ('xxp', 'xxq'): globals () [name] = 'sub{}'.format (name.capitalize ()) def f (): for name in ('xxr', 'xxs'): globals () [name] = 'sub{}'.format (name.capitalize ()) def run (autoTester): f () autoTester.check ('Check sub 1', xxa, xxb) autoTester.check ('Check sub 2', * [globals () [name] for name in ('xxa', 'xxb', 'xxp', 'xxq', 'xxr', 'xxs')]) autoTester.check ('Check sub 3', * sorted ([value for key, value in globals () .items () if key.startswith ('xx')])) ``` #### File: modules/mod2/mod21.py ```python def f (): return 'London is the town for me\n' ``` #### File: transcrypt/modules/mod3.py ```python x = 'Toen wij uit Rotterdam vertrokken, vertrokken wij uit Rotterdam\n' mod3Hundred = 100 def mod3GetTwoHundred (): return 200 ``` #### File: transcrypt/modules/mod4.py ```python from modules.mod5 import mod5Add2 def mod4Add2FromMod5 (variable): return mod5Add2 (variable) def mod4Add1(variable): return variable + 1 ``` #### File: transcrypt/module_unicodedata/__init__.py ```python from unicodedata import normalize def run(autoTester): autoTester.check('NFC:') # test ç and C+◌̧ autoTester.check(normalize('NFC', 'c' + '\u0327')) autoTester.check(normalize('NFC', '\u00e7')) autoTester.check((normalize('NFC', 'c' + '\u0327') == normalize('NFC', '\u00e7')) == True) # test q+◌̇+◌̣ and q+◌̣+◌̇ autoTester.check(normalize('NFC', 'q\u0307\u0323')) autoTester.check(normalize('NFC', 'q\u0323\u0307')) autoTester.check((normalize('NFC', 'q\u0323\u0307') == normalize('NFC', 'q\u0307\u0323')) == True) # test 가 and ᄀ+ᅡ autoTester.check(normalize('NFC', '가')) autoTester.check(normalize('NFC', 'ᄀ' + 'ᅡ')) autoTester.check((normalize('NFC', '가') == normalize('NFC', 'ᄀ' + 'ᅡ')) == True) # test Ω autoTester.check(normalize('NFC', 'Ω')) autoTester.check('NFD:') # test ç and C+◌̧ autoTester.check(normalize('NFD', 'c' + '\u0327')) autoTester.check(normalize('NFD', '\u00e7')) autoTester.check((normalize('NFD', 'c' + '\u0327') == normalize('NFD', '\u00e7')) == True) # test q+◌̇+◌̣ and q+◌̣+◌̇ autoTester.check(normalize('NFD', 'q\u0307\u0323')) autoTester.check(normalize('NFD', 'q\u0323\u0307')) autoTester.check((normalize('NFD', 'q\u0323\u0307') == normalize('NFD', 'q\u0307\u0323')) == True) # test 가 and ᄀ+ᅡ autoTester.check(normalize('NFD', '가')) autoTester.check(normalize('NFD', 'ᄀ' + 'ᅡ')) autoTester.check((normalize('NFD', '가') == normalize('NFD', 'ᄀ' + 'ᅡ')) == True) # test Ω autoTester.check(normalize('NFD', 'Ω')) ``` #### File: transcrypt/set_comprehensions/__init__.py ```python def run (autoTester): even = {2 * i for i in [0, 9, 1, 7, 2, 8, 3, 6, 4, 5]} autoTester.check (even) odd = {2 * i + 1 for i in [5, 6, 7, 8, 9, 4, 3, 1, 2, 0]} autoTester.check (odd) even.add (12) even.add (12) autoTester.check (even) even.discard (12) even.discard (12) autoTester.check (even) uni = even.union (odd) autoTester.check (uni) autoTester.check (odd.isdisjoint (even)) autoTester.check (uni.isdisjoint (even)) autoTester.check (even.issuperset (uni)) autoTester.check (uni.issuperset (even)) autoTester.check (even.issubset (uni)) autoTester.check (uni.issubset (even)) first = {4, 1, 0, 5, 3, 2, 6} autoTester.check (first) second = {3, 5, 6, 9, 4, 7, 8} autoTester.check (second) inter = first.intersection (second) autoTester.check (inter) diff = first.difference (second) autoTester.check (diff) symDiff = first.symmetric_difference (second) autoTester.check (symDiff) aSet = {200, 4, 5, 100} aSet.update (first, symDiff, second) autoTester.check (aSet) ``` #### File: automated_tests/warnings/basic_tests.py ```python from org.transcrypt.stubs.browser import __pragma__, __envir__ import warnings import logging class TestHandler(logging.Handler): """ This handler is intended to make it easier to test the logging module output without requiring the console or the sys.stderr. """ def __init__(self, test, level): """ """ logging.Handler.__init__(self, level) self._test = test def emit(self, record): """ """ msg = self.format(record) # @note - I'm using strip on the end of the record message # because there are spaces and newlines after the message # that are not substantive but do make the unit test # more difficult # Python includes the line content in the source file at # the specified line which we can't really do in js right now content = msg.split('\n') if ( len(content) > 0 ): checkMsg = content[0].rstrip() self._test.check(checkMsg) else: self._test.check("Invalid Content in Warning message") def run(test): # This message should go to the console - has to be checked manually warnings.warn_explicit( "Console Test Message", UserWarning, "basic_tests.py", 37, "asdf", {} ) # Setup logger so that we can capture test output # and show in the logger. logging.captureWarnings(True) logger = logging.getLogger("py.warnings") logger.setLevel(10) hdlr = TestHandler(test, 10) logger.addHandler(hdlr) msgStr = "Test Message" # The registry info we pass in replaces the # warnings.__warningregistry__ dict so that we # can more accurately test. reg = {} # @note - it is very difficult to compare warnings.warn against # python - python just has more information available and so # the content is much more diverse. #warnings.warn("Invalid asdf asdf asdf") warnings.warn_explicit( msgStr, UserWarning, "basic_tests.py", 50, "asdf", reg ) warnings.warn_explicit( msgStr, UserWarning, "basic_tests.py", 53, "asdf", reg ) warnings.warn_explicit( msgStr, UserWarning, "basic_tests.py", 57, "asdf", reg ) # @note - this message should not generate warnings.warn_explicit( msgStr, UserWarning, "basic_tests.py", 57, "asdf", reg ) # This message should generate warnings.warn_explicit( msgStr + " blarg", UserWarning, "basic_tests.py", 57, "asdf", reg ) # this message should not generate warnings.warn_explicit( msgStr + " blarg", UserWarning, "basic_tests.py", 57, "asdf", reg ) reg = {} class CustomWarning(Warning): """ """ pass if __envir__.executor_name == __envir__.transpiler_name: warnings.addWarningCategory(CustomWarning) # This sets the warnings module to generate an exception # on a particular warning category. warnings.filterwarnings("error", category=CustomWarning) test.check( test.expectException( lambda: warnings.warn_explicit( "This is a custom msg", CustomWarning, "basic_tests.py", 91, "zxcv", reg ))) warnings.filterwarnings("once", category=RuntimeWarning) msg = "This is a once message - should not occur more than once" warnings.warn_explicit( msg, RuntimeWarning, "basic_tests.py", 100, "trew", reg ) # @note- this message should not be generated for i in range(0,10): warnings.warn_explicit( msg, RuntimeWarning, "basic_tests.py", 102+i, "qwerqwer" + str(i), reg ) warnings.filterwarnings("always", message = "asdf", category=DeprecationWarning) # these 3 messages should not generate warnings.warn_explicit( " no Message Here ", DeprecationWarning, "basic_tests.py", 112, "itururue", reg ) warnings.warn_explicit( "Warning - asdf of qwer", DeprecationWarning, "basic_tests.py", 112, "itururue", reg ) warnings.warn_explicit( "Warning - asdfqwer of qwer", DeprecationWarning, "basic_tests.py", 112, "itururue", reg ) # These message should generate warnings.warn_explicit( "asdf of qwer", DeprecationWarning, "basic_tests.py", 112, "itururue", reg ) warnings.warn_explicit( "asdf of qwer", UserWarning, "basic_tests.py", 112, "itururue", reg ) # Warning with object instead of string message warnings.warn_explicit( UserWarning("asdf"), None, "basic_tests.py", 1234, "qwerqwe", reg ) ``` #### File: static_types/mod2/__init__.py ```python def test (i: str) -> str: return 3 ``` #### File: development/shipment/shipment_test.py ```python import os import os.path import sys import datetime import webbrowser import argparse import time import traceback import selenium import selenium.webdriver.chrome.options import pathlib # ======== Command args singleton class CommandArgs: def __init__ (self): self.argParser = argparse.ArgumentParser () self.argParser.add_argument ('-de', '--dextex', help = "show extended exception reports", action = 'store_true') self.argParser.add_argument ('-f', '--fcall', help = 'test fast calls', action = 'store_true') self.argParser.add_argument ('-i', '--inst', help = 'installed version rather than new one', action = 'store_true') self.argParser.add_argument ('-b', '--blind', help = 'don\'t start browser', action = 'store_true') self.argParser.add_argument ('-u', '--unattended', help = 'unattended mode', action = 'store_true') self.__dict__.update (self.argParser.parse_args () .__dict__) commandArgs = CommandArgs () # ======== Browser controller singleton class BrowserController: def __init__ (self): self.options = selenium.webdriver.chrome.options.Options () self.options.add_argument ('start-maximized') if commandArgs.unattended: self.options.add_argument ('--headless') # Runs Chrome in headless mode. self.options.add_argument ('--no-sandbox') # Bypass OS security model self.options.add_argument ('--disable-gpu') # Applicable to windows OS only self.options.add_argument ('disable-infobars') self.options.add_argument ('--disable-extensions') self.webDriver = selenium.webdriver.Chrome (chrome_options = self.options) self.nrOfTabs = 0 def waitForNewTab (self): while len (self.webDriver.window_handles) <= self.nrOfTabs: time.sleep (0.5) self.nrOfTabs = len (self.webDriver.window_handles) def open (self, url, run): print (f'Browser controller is opening URL: {url}') try: if self.nrOfTabs > 0: if commandArgs.unattended: # ---- Show in existing tab self.webDriver.execute_script (f'window.location.href = "{url}";') else: # ---- Open new tab self.webDriver.execute_script (f'window.open ("{url}","_blank");') # !!! Avoid redundant open command self.waitForNewTab () self.webDriver.switch_to.window (self.webDriver.window_handles [-1]) else: # ---- Open browser and default tab self.webDriver.get (url) self.waitForNewTab () except: self.webDriver.switch_to.alert.accept(); if run: while (True): self.message = self.webDriver.find_element_by_id ('message') if 'failed' in self.message.text or 'succeeded' in self.message.text: break time.sleep (0.5) print () print ('=========================================================================') print (f'Back to back autotest, result: {self.message.text.upper ()}') print ('=========================================================================') print () if 'succeeded' in self.message.text: return True else: return False else: print () print ('=========================================================================') print ('No back to back autotest') print ('=========================================================================') print () return True browserController = BrowserController () # ======== Preparations relSourcePrepathsOfErrors = [] host = 'http://localhost:' pythonServerPort = '8000' parcelServerPort = '8001' nodeServerPort = '8002' pythonServerUrl = host + pythonServerPort parcelServerUrl = host + parcelServerPort nodeServerUrl = host + nodeServerPort transpileCommand = 'transcrypt' if commandArgs.inst else 'run_transcrypt' shipDir = os.path.dirname (os.path.abspath (__file__)) .replace ('\\', '/') appRootDir = '/'.join (shipDir.split ('/')[ : -2]) print (f'\nApplication root directory: {appRootDir}\n') def getAbsPath (relPath): return '{}/{}'.format (appRootDir, relPath) os.system ('cls' if os.name == 'nt' else 'clear') # ---- Start an http server in the Transcryp/transcrypt directory if not commandArgs.blind: if commandArgs.unattended: os.system (f'python -m http.server --directory {appRootDir} &') else: os.system (f'start python -m http.server --directory {appRootDir}') # ---- Allow visual check of all command line options os.system (f'{transpileCommand} -h') # ======== Individual test function def test (relSourcePrepath, run, extraSwitches, messagePrename = '', nodeJs = False, parcelJs = False, build = True, pause = 0, needsAttention = False): if commandArgs.unattended and needsAttention: return # This test shouldn't be done, since it can't run unattended print (f'\n\n******** BEGIN TEST {relSourcePrepath} ********\n') time.sleep (pause) # ---- Compute some slugs sourcePrepath = getAbsPath (relSourcePrepath) sourcePrepathSplit = sourcePrepath.split ("/") sourceDir = '/'.join (sourcePrepathSplit [:-1]) moduleName = sourcePrepathSplit [-1] targetDir = f'{sourceDir}/__target__' targetPrepath = f'{targetDir}/{moduleName}' messagePrepath = f'{targetDir}/{messagePrename}' # ---- If there are relevant console messages of the compilation process, # like with the static typechecking tests, write them into a file that can be served for a visual check if not os.path.exists (targetDir): os.makedirs (targetDir) # Transcrypt will make targetDir too late, so it has to happen here redirect = f' > {messagePrepath}.out' if messagePrename else '' # ---- Default switches defaultSwitches = '-da -sf -de -m -n ' if commandArgs.dextex: defaultSwitches += '-de ' if build: defaultSwitches += '-b ' # ---- Run with CPython to generate HTML file with back to back reference info if run: os.system (f'{transpileCommand} -r {defaultSwitches}{extraSwitches}{sourcePrepath}') # ---- Compile with Transcrypt if parcelJs: origDir = os.getcwd () os.chdir (sourceDir) os.system (f'start cmd /k node test {parcelServerPort}') os.chdir (origDir) else: os.system (f'{transpileCommand} {defaultSwitches}{extraSwitches}{sourcePrepath}{redirect}') # ---- If it has to run on node, apply rollup to obtain monolith, since node doesn't support named imports and exports if nodeJs: os.system (f'rollup {targetPrepath}.js --o {targetPrepath}.bundle.js --f cjs') # --- Compute appropriate URL and wait a while if needed if not commandArgs.blind: if parcelJs: time.sleep (20) url = parcelServerUrl elif nodeJs: os.system (f'start cmd /k node {targetPrepath}.bundle.js {nodeServerPort}') time.sleep (5) url = nodeServerUrl else: url = f'{pythonServerUrl}/{relSourcePrepath}.html' success = browserController.open (url, run) if commandArgs.unattended and not success: relSourcePrepathsOfErrors.append (relSourcePrepath) print (f'\n******** END TEST {relSourcePrepath} ********\n\n') # ======== Perform individual tests for switches in (('', '-f ') if commandArgs.fcall else ('',)): test ('development/automated_tests/hello/autotest', True, switches) test ('development/automated_tests/transcrypt/autotest', True, switches + '-c -xr -xg ') test ('development/automated_tests/time/autotest', True, switches, needsAttention = True) test ('development/automated_tests/re/autotest', True, switches) test ('development/manual_tests/async_await/test', False, switches) test ('development/manual_tests/import_export_aliases/test', False, switches + '-am ') test ('development/manual_tests/module_random/module_random', False, switches) test ('development/manual_tests/static_types/static_types', False, switches + '-ds -dc ', messagePrename = 'static_types') test ('development/manual_tests/transcrypt_and_python_results_differ/results', False, switches) test ('development/manual_tests/transcrypt_only/transcrypt_only', False, switches) test ('demos/nodejs_demo/nodejs_demo', False, switches, nodeJs = True) test ('demos/parcel_demo/test_shipment', False, switches, parcelJs = True) test ('demos/terminal_demo/terminal_demo', False, switches, needsAttention = True) test ('demos/hello/hello', False, switches, needsAttention = False) test ('demos/jquery_demo/jquery_demo', False, switches) test ('demos/d3js_demo/d3js_demo', False, switches) test ('demos/ios_app/ios_app', False, switches) test ('demos/react_demo/react_demo', False, switches) test ('demos/riot_demo/riot_demo', False, switches) test ('demos/plotly_demo/plotly_demo', False, switches) test ('demos/three_demo/three_demo', False, switches) test ('demos/pong/pong', False, switches) test ('demos/pysteroids_demo/pysteroids', False, switches) test ('demos/turtle_demos/star', False, switches, pause = 2) test ('demos/turtle_demos/snowflake', False, switches, pause = 2) test ('demos/turtle_demos/mondrian', False, switches, pause = 2) test ('demos/turtle_demos/mandala', False, switches, pause = 2) # test ('demos/cyclejs_demo/cyclejs_demo', False, switches) test ('demos/cyclejs_demo/cyclejs_http_demo', False, switches) test ('demos/cyclejs_demo/component_demos/isolated_bmi_slider/bmi', False, switches) test ('demos/cyclejs_demo/component_demos/labeled_slider/labeled_slider', False, switches) test ('tutorials/baseline/bl_010_hello_world/hello_world', False, switches) test ('tutorials/baseline/bl_020_assign/assign', False, switches) test ('tutorials/baseline/bl_030_if_else_prompt/if_else_prompt', False, switches, needsAttention = True) test ('tutorials/baseline/bl_035_if_else_event/if_else_event', False, switches, needsAttention = True) test ('tutorials/baseline/bl_040_for_simple/for_simple', False, switches) test ('tutorials/baseline/bl_042_for_nested/for_nested', False, switches) test ('tutorials/baseline/bl_045_while_simple/while_simple', False, switches, needsAttention = True) test ('tutorials/static_typing/static_typing', False, switches + '-c -ds ', messagePrename = 'static_typing') if relSourcePrepathsOfErrors: print ('\n\n!!!!!!!!!!!!!!!!!!!!\n') for relSourcePrepathOfError in relSourcePrepathsOfErrors: print (f'SHIPMENT TEST ERROR: {relSourcePrepathOfError}') print ('\n!!!!!!!!!!!!!!!!!!!!\n\n') print ('\nSHIPMENT TEST FAILED\n') sys.exit (1) else: # ---- Make docs, the resulting files are untracked if not commandArgs.unattended: origDir = os.getcwd () sphinxDir = '/'.join ([appRootDir, 'docs/sphinx']) os.chdir (sphinxDir) os.system ('touch *.rst') os.system ('make html') os.chdir (origDir) # ---- Terminate print ('\nSHIPMENT TEST SUCCEEDED\n') sys.exit (0) ``` #### File: modules/math/__init__.py ```python pi = Math.PI e = Math.E exp = Math.exp def expm1 (x): # IE workaround return Math.exp (x) - 1 def log (x, base): return Math.log (x) if base is js_undefined else Math.log (x) / Math.log (base) def log1p (x): # IE workaround return Math.log (x + 1) def log2 (x): # IE workaround return Math.log (x) / Math.LN2 def log10 (x): # IE workaround return Math.log (x) / Math.LN10 pow = Math.pow sqrt = Math.sqrt sin = Math.sin cos = Math.cos tan = Math.tan asin = Math.asin acos = Math.acos atan = Math.atan atan2 = Math.atan2 hypot = Math.hypot def degrees (x): return x * 180 / Math.PI def radians (x): return x * Math.PI / 180 sinh = Math.sinh cosh = Math.cosh tanh = Math.tanh asinh = Math.asinh acosh = Math.acosh atanh = Math.atanh floor = Math.floor ceil = Math.ceil trunc = Math.trunc isnan = js_isNaN inf = js_Infinity nan = js_NaN def modf(n): sign = 1 if n >= 0 else -1 f, mod = divmod (abs(n), 1) return mod * sign, f * sign ``` #### File: pyflakes/test/test_doctests.py ```python import textwrap from pyflakes import messages as m from pyflakes.test.test_other import Test as TestOther from pyflakes.test.test_imports import Test as TestImports from pyflakes.test.test_undefined_names import Test as TestUndefinedNames from pyflakes.test.harness import TestCase, skip class _DoctestMixin(object): withDoctest = True def doctestify(self, input): lines = [] for line in textwrap.dedent(input).splitlines(): if line.strip() == '': pass elif (line.startswith(' ') or line.startswith('except:') or line.startswith('except ') or line.startswith('finally:') or line.startswith('else:') or line.startswith('elif ')): line = "... %s" % line else: line = ">>> %s" % line lines.append(line) doctestificator = textwrap.dedent('''\ def doctest_something(): """ %s """ ''') return doctestificator % "\n ".join(lines) def flakes(self, input, *args, **kw): return super(_DoctestMixin, self).flakes(self.doctestify(input), *args, **kw) class Test(TestCase): withDoctest = True def test_importBeforeDoctest(self): self.flakes(""" import foo def doctest_stuff(): ''' >>> foo ''' """) @skip("todo") def test_importBeforeAndInDoctest(self): self.flakes(''' import foo def doctest_stuff(): """ >>> import foo >>> foo """ foo ''', m.RedefinedWhileUnused) def test_importInDoctestAndAfter(self): self.flakes(''' def doctest_stuff(): """ >>> import foo >>> foo """ import foo foo() ''') def test_offsetInDoctests(self): exc = self.flakes(''' def doctest_stuff(): """ >>> x # line 5 """ ''', m.UndefinedName).messages[0] self.assertEqual(exc.lineno, 5) self.assertEqual(exc.col, 12) def test_offsetInLambdasInDoctests(self): exc = self.flakes(''' def doctest_stuff(): """ >>> lambda: x # line 5 """ ''', m.UndefinedName).messages[0] self.assertEqual(exc.lineno, 5) self.assertEqual(exc.col, 20) def test_offsetAfterDoctests(self): exc = self.flakes(''' def doctest_stuff(): """ >>> x = 5 """ x ''', m.UndefinedName).messages[0] self.assertEqual(exc.lineno, 8) self.assertEqual(exc.col, 0) def test_syntaxErrorInDoctest(self): exceptions = self.flakes( ''' def doctest_stuff(): """ >>> from # line 4 >>> fortytwo = 42 >>> except Exception: """ ''', m.DoctestSyntaxError, m.DoctestSyntaxError, m.DoctestSyntaxError).messages exc = exceptions[0] self.assertEqual(exc.lineno, 4) self.assertEqual(exc.col, 26) exc = exceptions[1] self.assertEqual(exc.lineno, 5) self.assertEqual(exc.col, 16) exc = exceptions[2] self.assertEqual(exc.lineno, 6) self.assertEqual(exc.col, 18) def test_indentationErrorInDoctest(self): exc = self.flakes(''' def doctest_stuff(): """ >>> if True: ... pass """ ''', m.DoctestSyntaxError).messages[0] self.assertEqual(exc.lineno, 5) self.assertEqual(exc.col, 16) def test_offsetWithMultiLineArgs(self): (exc1, exc2) = self.flakes( ''' def doctest_stuff(arg1, arg2, arg3): """ >>> assert >>> this """ ''', m.DoctestSyntaxError, m.UndefinedName).messages self.assertEqual(exc1.lineno, 6) self.assertEqual(exc1.col, 19) self.assertEqual(exc2.lineno, 7) self.assertEqual(exc2.col, 12) def test_doctestCanReferToFunction(self): self.flakes(""" def foo(): ''' >>> foo ''' """) def test_doctestCanReferToClass(self): self.flakes(""" class Foo(): ''' >>> Foo ''' def bar(self): ''' >>> Foo ''' """) def test_noOffsetSyntaxErrorInDoctest(self): exceptions = self.flakes( ''' def buildurl(base, *args, **kwargs): """ >>> buildurl('/blah.php', ('a', '&'), ('b', '=') '/blah.php?a=%26&b=%3D' >>> buildurl('/blah.php', a='&', 'b'='=') '/blah.php?b=%3D&a=%26' """ pass ''', m.DoctestSyntaxError, m.DoctestSyntaxError).messages exc = exceptions[0] self.assertEqual(exc.lineno, 4) exc = exceptions[1] self.assertEqual(exc.lineno, 6) def test_singleUnderscoreInDoctest(self): self.flakes(''' def func(): """A docstring >>> func() 1 >>> _ 1 """ return 1 ''') class TestOther(_DoctestMixin, TestOther): pass class TestImports(_DoctestMixin, TestImports): def test_futureImport(self): """XXX This test can't work in a doctest""" def test_futureImportUsed(self): """XXX This test can't work in a doctest""" class TestUndefinedNames(_DoctestMixin, TestUndefinedNames): def test_doubleNestingReportsClosestName(self): """ Lines in doctest are a bit different so we can't use the test from TestUndefinedNames """ exc = self.flakes(''' def a(): x = 1 def b(): x = 2 # line 7 in the file def c(): x x = 3 return x return x return x ''', m.UndefinedLocal).messages[0] self.assertEqual(exc.message_args, ('x', 7)) ``` #### File: transcrypt/type_check/__init__.py ```python import sys import os import subprocess import traceback try: from mypy import api except: print ('Could not find mypy') from org.transcrypt import utils def run (sourcePath): utils.log (True, 'Performing static type validation on application: {}\n', sourcePath) try: stdOutReport, stdErrReport, exitStatus = api.run ([ sourcePath ]) except Exception as exception: print (exception) if stdOutReport: utils.log (True, 'The following inconsistencies were found:\n') for stdOutLine in stdOutReport.split ('\n'): utils.log (True, '\t{}\n', stdOutLine) if stdErrReport: utils.log (True, 'Problems encountered during static type check\n') for stdErrLine in stdErrReport.split ('\n'): utils.log (True, '\t{}\n', stdErrLine) utils.log (True, '\n') ```
{ "source": "jmcannon/alfred-tureng", "score": 3 }
#### File: jmcannon/alfred-tureng/lookup-turkish.py ```python import sys import urllib from bs4 import BeautifulSoup from workflow import Workflow3, web BASE_URL = u'http://tureng.com/en/turkish-english/' RESULTS_TABLE_CLASS = 'searchResultsTable' ENGLISH_TERM_CLASS = 'en tm' TURKISH_TERM_CLASS = 'tr ts' CATEGORY_CLASS = 'hidden-xs' # Must match exactly def main(wf): query = wf.args[0] raw_url = BASE_URL + query url = urllib.quote(raw_url.encode('utf-8'), safe=":/") r = web.get(url) r.raise_for_status() soup = BeautifulSoup(r.text, 'html.parser') table = soup.find(class_=RESULTS_TABLE_CLASS) if table: categories = [x.get_text().strip() for x in table.find_all(lambda tag: tag.get('class') == [CATEGORY_CLASS])] target_terms = [x.get_text().strip() for x in table.find_all(class_=[ENGLISH_TERM_CLASS, TURKISH_TERM_CLASS])] category_index = 0 for term in target_terms[1::2]: category = categories[category_index] subtitle = category if category != 'General' else '' wf.add_item(title=term, subtitle=subtitle, icon='icon.png', valid=True, arg=query) category_index += 1 else: wf.add_item(title='No Match', valid=True, arg=query) wf.send_feedback() if __name__ == '__main__': wf = Workflow3() sys.exit(wf.run(main)) ```
{ "source": "jmcarbo/docker-compose", "score": 2 }
#### File: tests/unit/cli_test.py ```python from __future__ import unicode_literals from __future__ import absolute_import import logging import os import tempfile import shutil from .. import unittest import mock from compose.cli import main from compose.cli.main import TopLevelCommand from compose.cli.errors import ComposeFileNotFound from six import StringIO class CLITestCase(unittest.TestCase): def test_default_project_name(self): cwd = os.getcwd() try: os.chdir('tests/fixtures/simple-composefile') command = TopLevelCommand() project_name = command.get_project_name(command.get_config_path()) self.assertEquals('simplecomposefile', project_name) finally: os.chdir(cwd) def test_project_name_with_explicit_base_dir(self): command = TopLevelCommand() command.base_dir = 'tests/fixtures/simple-composefile' project_name = command.get_project_name(command.get_config_path()) self.assertEquals('simplecomposefile', project_name) def test_project_name_with_explicit_uppercase_base_dir(self): command = TopLevelCommand() command.base_dir = 'tests/fixtures/UpperCaseDir' project_name = command.get_project_name(command.get_config_path()) self.assertEquals('uppercasedir', project_name) def test_project_name_with_explicit_project_name(self): command = TopLevelCommand() name = 'explicit-project-name' project_name = command.get_project_name(None, project_name=name) self.assertEquals('explicitprojectname', project_name) def test_project_name_from_environment_old_var(self): command = TopLevelCommand() name = 'namefromenv' with mock.patch.dict(os.environ): os.environ['FIG_PROJECT_NAME'] = name project_name = command.get_project_name(None) self.assertEquals(project_name, name) def test_project_name_from_environment_new_var(self): command = TopLevelCommand() name = 'namefromenv' with mock.patch.dict(os.environ): os.environ['COMPOSE_PROJECT_NAME'] = name project_name = command.get_project_name(None) self.assertEquals(project_name, name) def test_filename_check(self): self.assertEqual('docker-compose.yml', get_config_filename_for_files([ 'docker-compose.yml', 'docker-compose.yaml', 'fig.yml', 'fig.yaml', ])) self.assertEqual('docker-compose.yaml', get_config_filename_for_files([ 'docker-compose.yaml', 'fig.yml', 'fig.yaml', ])) self.assertEqual('fig.yml', get_config_filename_for_files([ 'fig.yml', 'fig.yaml', ])) self.assertEqual('fig.yaml', get_config_filename_for_files([ 'fig.yaml', ])) self.assertRaises(ComposeFileNotFound, lambda: get_config_filename_for_files([])) def test_get_project(self): command = TopLevelCommand() command.base_dir = 'tests/fixtures/longer-filename-composefile' project = command.get_project(command.get_config_path()) self.assertEqual(project.name, 'longerfilenamecomposefile') self.assertTrue(project.client) self.assertTrue(project.services) def test_help(self): command = TopLevelCommand() with self.assertRaises(SystemExit): command.dispatch(['-h'], None) def test_setup_logging(self): main.setup_logging() self.assertEqual(logging.getLogger().level, logging.DEBUG) self.assertEqual(logging.getLogger('requests').propagate, False) def get_config_filename_for_files(filenames): project_dir = tempfile.mkdtemp() try: make_files(project_dir, filenames) command = TopLevelCommand() command.base_dir = project_dir return os.path.basename(command.get_config_path()) finally: shutil.rmtree(project_dir) def make_files(dirname, filenames): for fname in filenames: with open(os.path.join(dirname, fname), 'w') as f: f.write('') ```
{ "source": "jmcarcell/django-plotly-dash", "score": 2 }
#### File: django-plotly-dash/django_plotly_dash/dash_wrapper.py ```python import inspect import itertools import json import warnings from typing import Dict, List, Callable import dash from dash import Dash, dependencies from dash._utils import split_callback_id, inputs_to_dict from django.urls import reverse from django.utils.text import slugify from flask import Flask from plotly.utils import PlotlyJSONEncoder from .app_name import app_name, main_view_label from .middleware import EmbeddedHolder from .util import serve_locally as serve_locally_setting from .util import stateless_app_lookup_hook from .util import static_asset_path try: from dataclasses import dataclass @dataclass(frozen=True) class CallbackContext: inputs_list : List inputs: Dict states_list: List states: Dict outputs_list: List outputs: Dict triggered: List except: # Not got python 3.7 or dataclasses yet class CallbackContext: def __init__(self, **kwargs): self._args = kwargs @property def inputs_list(self): return self._args['inputs_list'] @property def inputs(self): return self._args['inputs'] @property def states_list(self): return self._args['states_list'] @property def states(self): return self._args['states'] @property def outputs(self): return self._args['outputs'] @property def outputs_list(self): return self._args['outputs_list'] @property def triggered(self): return self._args['triggered'] uid_counter = 0 usable_apps = {} _stateless_app_lookup_func = None def add_usable_app(name, app): 'Add app to local registry by name' global usable_apps # pylint: disable=global-statement usable_apps[name] = app return name def all_apps(): 'Return a dictionary of all locally registered apps with the slug name as key' return usable_apps def get_local_stateless_list(): """Return a list of all locally registered stateless apps """ return list(usable_apps) def get_local_stateless_by_name(name): ''' Locate a registered dash app by name, and return a DjangoDash instance encapsulating the app. ''' sa = usable_apps.get(name, None) if not sa: global _stateless_app_lookup_func # pylint: disable=global-statement if _stateless_app_lookup_func is None: _stateless_app_lookup_func = stateless_app_lookup_hook() sa = _stateless_app_lookup_func(name) if not sa: # TODO wrap this in raising a 404 if not found raise KeyError("Unable to find stateless DjangoApp called %s"%name) return sa class Holder: 'Helper class for holding configuration options' def __init__(self): self.items = [] def append_css(self, stylesheet): 'Add extra css file name to component package' self.items.append(stylesheet) def append_script(self, script): 'Add extra script file name to component package' self.items.append(script) class DjangoDash: ''' Wrapper class that provides Dash functionality in a form that can be served by Django To use, construct an instance of DjangoDash() in place of a Dash() one. ''' #pylint: disable=too-many-instance-attributes def __init__(self, name=None, serve_locally=None, add_bootstrap_links=False, suppress_callback_exceptions=False, external_stylesheets=None, external_scripts=None, **kwargs): # pylint: disable=unused-argument, too-many-arguments # store arguments to pass them later to the WrappedDash instance self.external_stylesheets = external_stylesheets or [] self.external_scripts = external_scripts or [] self._kwargs = kwargs if kwargs: warnings.warn("You are passing extra arguments {kwargs} that will be passed to Dash(...) " "but may not be properly handled by django-plotly-dash.".format(kwargs=kwargs)) if name is None: global uid_counter # pylint: disable=global-statement uid_counter += 1 self._uid = "djdash_%i" % uid_counter else: self._uid = name self.layout = None self._callback_sets = [] self._clientside_callback_sets = [] self.css = Holder() self.scripts = Holder() add_usable_app(self._uid, self) if serve_locally is None: self._serve_locally = serve_locally_setting() else: self._serve_locally = serve_locally self._suppress_callback_exceptions = suppress_callback_exceptions if add_bootstrap_links: from bootstrap4.bootstrap import css_url bootstrap_source = css_url()['href'] if self._serve_locally: # Ensure package is loaded; if not present then pip install dpd-static-support hard_coded_package_name = "dpd_static_support" base_file_name = bootstrap_source.split('/')[-1] self.css.append_script({'external_url': [bootstrap_source,], 'relative_package_path' : base_file_name, 'namespace': hard_coded_package_name, }) else: self.css.append_script({'external_url':[bootstrap_source,],}) # Remember some caller info for static files caller_frame = inspect.stack()[1] self.caller_module = inspect.getmodule(caller_frame[0]) try: self.caller_module_location = inspect.getfile(self.caller_module) except: self.caller_module_location = None self.assets_folder = "assets" def get_asset_static_url(self, asset_path): module_name = self.caller_module.__name__ return static_asset_path(module_name, asset_path) def as_dash_instance(self, cache_id=None): ''' Form a dash instance, for stateless use of this app ''' return self.do_form_dash_instance(cache_id=cache_id) def handle_current_state(self): 'Do nothing impl - only matters if state present' pass def update_current_state(self, wid, key, value): 'Do nothing impl - only matters if state present' pass def have_current_state_entry(self, wid, key): 'Do nothing impl - only matters if state present' pass def get_base_pathname(self, specific_identifier, cache_id): 'Base path name of this instance, taking into account any state or statelessness' if not specific_identifier: app_pathname = "%s:app-%s"% (app_name, main_view_label) ndid = self._uid else: app_pathname = "%s:%s" % (app_name, main_view_label) ndid = specific_identifier kwargs = {'ident': ndid} if cache_id: kwargs['cache_id'] = cache_id app_pathname = app_pathname + "--args" full_url = reverse(app_pathname, kwargs=kwargs) if full_url[-1] != '/': full_url = full_url + '/' return ndid, full_url def do_form_dash_instance(self, replacements=None, specific_identifier=None, cache_id=None): 'Perform the act of constructing a Dash instance taking into account state' ndid, base_pathname = self.get_base_pathname(specific_identifier, cache_id) return self.form_dash_instance(replacements, ndid, base_pathname) def form_dash_instance(self, replacements=None, ndid=None, base_pathname=None): 'Construct a Dash instance taking into account state' if ndid is None: ndid = self._uid rd = WrappedDash(base_pathname=base_pathname, replacements=replacements, ndid=ndid, serve_locally=self._serve_locally, external_stylesheets=self.external_stylesheets, external_scripts=self.external_scripts, **self._kwargs) rd.layout = self.layout rd.config['suppress_callback_exceptions'] = self._suppress_callback_exceptions for cb, func in self._callback_sets: rd.callback(**cb)(func) for cb in self._clientside_callback_sets: rd.clientside_callback(**cb) for s in self.css.items: rd.css.append_css(s) for s in self.scripts.items: rd.scripts.append_script(s) return rd @staticmethod def get_expanded_arguments(func, inputs, state): """Analyse a callback function signature to detect the expanded arguments to add when called. It uses the inputs and the state information to identify what arguments are already coming from Dash. It returns a list of the expanded parameters to inject (can be [] if nothing should be injected) or None if all parameters should be injected.""" n_dash_parameters = len(inputs or []) + len(state or []) parameter_types = {kind: [p.name for p in parameters] for kind, parameters in itertools.groupby(inspect.signature(func).parameters.values(), lambda p: p.kind)} if inspect.Parameter.VAR_KEYWORD in parameter_types: # there is some **kwargs, inject all parameters expanded = None elif inspect.Parameter.VAR_POSITIONAL in parameter_types: # there is a *args, assume all parameters afterwards (KEYWORD_ONLY) are to be injected # some of these parameters may not be expanded arguments but that is ok expanded = parameter_types.get(inspect.Parameter.KEYWORD_ONLY, []) else: # there is no **kwargs, filter argMap to take only the keyword arguments expanded = parameter_types.get(inspect.Parameter.POSITIONAL_OR_KEYWORD, [])[ n_dash_parameters:] + parameter_types.get(inspect.Parameter.KEYWORD_ONLY, []) return expanded def callback(self, *_args, **_kwargs): '''Form a callback function by wrapping, in the same way as the underlying Dash application would but handling extra arguments provided by dpd. It will inspect the signature of the function to ensure only relevant expanded arguments are passed to the callback. If the function accepts a **kwargs => all expanded arguments are sent to the function in the kwargs. If the function has a *args => expanded arguments matching parameters after the *args are injected. Otherwise, take all arguments beyond the one provided by Dash (based on the Inputs/States provided). ''' output, inputs, state, prevent_initial_call = dependencies.handle_callback_args( _args, _kwargs ) callback_set = {'output': output, 'inputs': inputs, 'state': state, 'prevent_initial_call': prevent_initial_call} def wrap_func(func): self._callback_sets.append((callback_set, func)) # add an expanded attribute to the function with the information to use in dispatch_with_args # to inject properly only the expanded arguments the function can accept # if .expanded is None => inject all # if .expanded is a list => inject only func.expanded = DjangoDash.get_expanded_arguments(func, inputs, state) return func return wrap_func expanded_callback = callback def clientside_callback(self, clientside_function, *_args, **_kwargs): 'Form a callback function by wrapping, in the same way as the underlying Dash application would' output, inputs, state, prevent_initial_call = dependencies.handle_callback_args( _args, _kwargs ) callback_set = { 'clientside_function': clientside_function, 'output': output, 'inputs': inputs, 'state': state, 'prevent_initial_call': prevent_initial_call} self._clientside_callback_sets.append(callback_set) def get_asset_url(self, asset_name): '''URL of an asset associated with this component Use a placeholder and insert later ''' return "assets/" + str(asset_name) #return self.as_dash_instance().get_asset_url(asset_name) class PseudoFlask(Flask): 'Dummy implementation of a Flask instance, providing stub functionality' def __init__(self): self.config = {} self.endpoints = {} self.name = "PseudoFlaskDummyName" self.blueprints = {} # pylint: disable=unused-argument, missing-docstring def after_request(self, *args, **kwargs): pass def errorhandler(self, *args, **kwargs): # pylint: disable=no-self-use def eh_func(f): return args[0] return eh_func def add_url_rule(self, *args, **kwargs): route = kwargs['endpoint'] self.endpoints[route] = kwargs def before_first_request(self, *args, **kwargs): pass def run(self, *args, **kwargs): pass def register_blueprint(self, *args, **kwargs): pass def wid2str(wid): """Convert an python id (str or dict) into its Dash representation. see https://github.com/plotly/dash/blob/c5ba38f0ae7b7f8c173bda10b4a8ddd035f1d867/dash-renderer/src/actions/dependencies.js#L114""" if isinstance(wid, str): return wid data = ",".join(f"{json.dumps(k)}:{json.dumps(v)}" for k, v in sorted(wid.items())) return f"{{{data}}}" class WrappedDash(Dash): 'Wrapper around the Plotly Dash application instance' # pylint: disable=too-many-arguments, too-many-instance-attributes def __init__(self, base_pathname=None, replacements=None, ndid=None, serve_locally=False, **kwargs): self._uid = ndid self._flask_app = Flask(self._uid) self._notflask = PseudoFlask() self._base_pathname = base_pathname kwargs['url_base_pathname'] = self._base_pathname kwargs['server'] = self._notflask super().__init__(__name__, **kwargs) self.css.config.serve_locally = serve_locally self.scripts.config.serve_locally = serve_locally self._adjust_id = False if replacements: self._replacements = replacements else: self._replacements = dict() self._use_dash_layout = len(self._replacements) < 1 self._return_embedded = False def use_dash_dispatch(self): """Return True if underlying dash dispatching should be used. This stub is present to allow older code to work. Following PR #304 (see https://github.com/GibbsConsulting/django-plotly-dash/pull/304/files for details) this function is no longer needed and therefore should always return False""" return False def use_dash_layout(self): ''' Indicate if the underlying dash layout can be used. If application state is in use, then the underlying dash layout functionality has to be augmented with the state information and this function returns False ''' return self._use_dash_layout def augment_initial_layout(self, base_response, initial_arguments=None): 'Add application state to initial values' if self.use_dash_layout() and not initial_arguments and False: return base_response.data, base_response.mimetype # Adjust the base layout response baseDataInBytes = base_response.data baseData = json.loads(baseDataInBytes.decode('utf-8')) # Also add in any initial arguments if not initial_arguments: initial_arguments = {} # Define overrides as self._replacements updated with initial_arguments overrides = dict(self._replacements) overrides.update(initial_arguments) # Walk tree. If at any point we have an element whose id # matches, then replace any named values at this level reworked_data = self.walk_tree_and_replace(baseData, overrides) response_data = json.dumps(reworked_data, cls=PlotlyJSONEncoder) return response_data, base_response.mimetype def walk_tree_and_extract(self, data, target): 'Walk tree of properties and extract identifiers and associated values' if isinstance(data, dict): for key in ['children', 'props']: self.walk_tree_and_extract(data.get(key, None), target) ident = data.get('id', None) if ident is not None: ident = wid2str(ident) idVals = target.get(ident, {}) for key, value in data.items(): if key not in ['props', 'options', 'children', 'id']: idVals[key] = value if idVals: target[ident] = idVals if isinstance(data, list): for element in data: self.walk_tree_and_extract(element, target) def walk_tree_and_replace(self, data, overrides): ''' Walk the tree. Rely on json decoding to insert instances of dict and list ie we use a dna test for anatine, rather than our eyes and ears... ''' if isinstance(data, dict): response = {} replacements = {} # look for id entry thisID = data.get('id', None) if isinstance(thisID, dict): # handle case of thisID being a dict (pattern) => linear search in overrides dict thisID = wid2str(thisID) for k, v in overrides.items(): if thisID == k: replacements = v break elif thisID is not None: # handle standard case of string thisID => key lookup replacements = overrides.get(thisID, {}) # walk all keys and replace if needed for k, v in data.items(): r = replacements.get(k, None) if r is None: r = self.walk_tree_and_replace(v, overrides) response[k] = r return response if isinstance(data, list): # process each entry in turn and return return [self.walk_tree_and_replace(x, overrides) for x in data] return data def flask_app(self): 'Underlying flask application for stub implementation' return self._flask_app def base_url(self): 'Base url of this component' return self._base_pathname def app_context(self, *args, **kwargs): 'Extract application context from underlying flask application' return self._flask_app.app_context(*args, **kwargs) def test_request_context(self, *args, **kwargs): 'Request context for testing from underluying flask application' return self._flask_app.test_request_context(*args, **kwargs) def locate_endpoint_function(self, name=None): 'Locate endpoint function given name of view' if name is not None: ep = "%s_%s" %(self._base_pathname, name) else: ep = self._base_pathname return self._notflask.endpoints[ep]['view_func'] # pylint: disable=no-member @Dash.layout.setter def layout(self, value): 'Overloaded layout function to fix component names as needed' if self._adjust_id: self._fix_component_id(value) return Dash.layout.fset(self, value) def _fix_component_id(self, component): 'Fix name of component ad all of its children' theID = getattr(component, "id", None) if theID is not None: setattr(component, "id", self._fix_id(theID)) try: for c in component.children: self._fix_component_id(c) except: #pylint: disable=bare-except pass def _fix_id(self, name): 'Adjust identifier to include component name' if not self._adjust_id: return name return "%s_-_%s" %(self._uid, name) def _fix_callback_item(self, item): 'Update component identifier' item.component_id = self._fix_id(item.component_id) return item def callback(self, output, inputs, state, prevent_initial_call): 'Invoke callback, adjusting variable names as needed' if isinstance(output, (list, tuple)): fixed_outputs = [self._fix_callback_item(x) for x in output] else: fixed_outputs = self._fix_callback_item(output) return super().callback(fixed_outputs, [self._fix_callback_item(x) for x in inputs], [self._fix_callback_item(x) for x in state], prevent_initial_call=prevent_initial_call) def clientside_callback(self, clientside_function, output, inputs, state, prevent_initial_call): # pylint: disable=dangerous-default-value 'Invoke callback, adjusting variable names as needed' if isinstance(output, (list, tuple)): fixed_outputs = [self._fix_callback_item(x) for x in output] else: fixed_outputs = self._fix_callback_item(output) return super().clientside_callback(clientside_function, fixed_outputs, [self._fix_callback_item(x) for x in inputs], [self._fix_callback_item(x) for x in state], prevent_initial_call=prevent_initial_call) #pylint: disable=too-many-locals def dispatch_with_args(self, body, argMap): 'Perform callback dispatching, with enhanced arguments and recording of response' inputs = body.get('inputs', []) input_values = inputs_to_dict(inputs) states = body.get('state', []) output = body['output'] outputs_list = body.get('outputs') or split_callback_id(output) changed_props = body.get('changedPropIds', []) triggered_inputs = [{"prop_id": x, "value": input_values.get(x)} for x in changed_props] callback_context_info = { 'inputs_list': inputs, 'inputs': input_values, 'states_list': states, 'states': inputs_to_dict(states), 'outputs_list': outputs_list, 'outputs': outputs_list, 'triggered': triggered_inputs, } callback_context = CallbackContext(**callback_context_info) # Overload dash global variable dash.callback_context = callback_context # Add context to arg map, if extended callbacks in use if len(argMap) > 0: argMap['callback_context'] = callback_context single_case = not(output.startswith('..') and output.endswith('..')) if single_case: # single Output (not in a list) outputs = [output] else: # multiple outputs in a list (the list could contain a single item) outputs = output[2:-2].split('...') da = argMap.get('dash_app', None) callback_info = self.callback_map[output] args = [] for c in inputs + states: if isinstance(c, list): # ALL, ALLSMALLER v = [ci.get("value") for ci in c] if da: for ci, vi in zip(c, v): da.update_current_state(ci['id'], ci['property'], vi) else: v = c.get("value") if da: da.update_current_state(c['id'], c['property'], v) args.append(v) # Dash 1.11 introduces a set of outputs outputs_list = body.get('outputs') or split_callback_id(output) argMap['outputs_list'] = outputs_list # Special: intercept case of insufficient arguments # This happens when a property has been updated with a pipe component # TODO see if this can be attacked from the client end if len(args) < len(callback_info['inputs']): return 'EDGECASEEXIT' callback = callback_info["callback"] # smart injection of parameters if .expanded is defined if callback.expanded is not None: parameters_to_inject = {*callback.expanded, 'outputs_list'} res = callback(*args, **{k: v for k, v in argMap.items() if k in parameters_to_inject}) else: res = callback(*args, **argMap) if da: class LazyJson: """A class to allow delayed the evaluation of a dict (returned by `func`) till the first get(...) is called on the dict.""" def __init__(self, func): self._root_value = func def get(self, item, default): if isinstance(self._root_value, Callable): self._root_value = self._root_value() return self._root_value.get(item, default) # wraps the json parsing of the response into LazyJson to avoid unnecessary parsing root_value = LazyJson(lambda: json.loads(res).get('response', {})) for output_item in outputs: if isinstance(output_item, str): output_id, output_property = output_item.split('.') if da.have_current_state_entry(output_id, output_property): value = root_value.get(output_id,{}).get(output_property, None) da.update_current_state(output_id, output_property, value) else: # todo: implement saving of state for pattern matching ouputs raise NotImplementedError("Updating state for dict keys (pattern matching) is not yet implemented") return res def slugified_id(self): 'Return the app id in a slug-friendly form' pre_slugified_id = self._uid return slugify(pre_slugified_id) def extra_html_properties(self, prefix=None, postfix=None, template_type=None): ''' Return extra html properties to allow individual apps to be styled separately. The content returned from this function is injected unescaped into templates. ''' prefix = prefix if prefix else "django-plotly-dash" post_part = "-%s" % postfix if postfix else "" template_type = template_type if template_type else "iframe" slugified_id = self.slugified_id() return "%(prefix)s %(prefix)s-%(template_type)s %(prefix)s-app-%(slugified_id)s%(post_part)s" % {'slugified_id':slugified_id, 'post_part':post_part, 'template_type':template_type, 'prefix':prefix, } def index(self, *args, **kwargs): # pylint: disable=unused-argument scripts = self._generate_scripts_html() css = self._generate_css_dist_html() config = self._generate_config_html() metas = self._generate_meta_html() renderer = self._generate_renderer() title = getattr(self, 'title', 'Dash') if self._favicon: import flask favicon = '<link rel="icon" type="image/x-icon" href="{}">'.format( flask.url_for('assets.static', filename=self._favicon)) else: favicon = '' _app_entry = ''' <div id="react-entry-point"> <div class="_dash-loading"> Loading... </div> </div> ''' index = self.interpolate_index( metas=metas, title=title, css=css, config=config, scripts=scripts, app_entry=_app_entry, favicon=favicon, renderer=renderer) return index def interpolate_index(self, **kwargs): #pylint: disable=arguments-differ if not self._return_embedded: resp = super().interpolate_index(**kwargs) return resp self._return_embedded.add_css(kwargs['css']) self._return_embedded.add_config(kwargs['config']) self._return_embedded.add_scripts(kwargs['scripts']) return kwargs['app_entry'] def set_embedded(self, embedded_holder=None): 'Set a handler for embedded references prior to evaluating a view function' self._return_embedded = embedded_holder if embedded_holder else EmbeddedHolder() def exit_embedded(self): 'Exit the embedded section after processing a view' self._return_embedded = False ``` #### File: django-plotly-dash/django_plotly_dash/tests.py ```python import json from unittest.mock import patch import pytest # pylint: disable=bare-except from dash.dependencies import Input, State, Output from django.urls import reverse from django_plotly_dash import DjangoDash from django_plotly_dash.dash_wrapper import get_local_stateless_list, get_local_stateless_by_name from django_plotly_dash.models import DashApp, find_stateless_by_name from django_plotly_dash.tests_dash_contract import fill_in_test_app, dash_contract_data def test_dash_app(): 'Test the import and formation of the dash app orm wrappers' from django_plotly_dash.models import StatelessApp stateless_a = StatelessApp(app_name="Some name") assert stateless_a assert stateless_a.app_name assert str(stateless_a) == stateless_a.app_name @pytest.mark.django_db def test_dash_stateful_app_client_contract(client): 'Test the state management of a DashApp as well as the contract between the client and the Dash app' from django_plotly_dash.models import StatelessApp # create a DjangoDash, StatelessApp and DashApp ddash = DjangoDash(name="DDash") fill_in_test_app(ddash, write=False) stateless_a = StatelessApp(app_name="DDash") stateless_a.save() stateful_a = DashApp(stateless_app=stateless_a, instance_name="<NAME>", slug="my-app", save_on_change=True) stateful_a.save() # check app can be found back assert "DDash" in get_local_stateless_list() assert get_local_stateless_by_name("DDash") == ddash assert find_stateless_by_name("DDash") == ddash # check the current_state is empty assert stateful_a.current_state() == {} # set the initial expected state expected_state = {'inp1': {'n_clicks': 0, 'n_clicks_timestamp': 1611733453854}, 'inp1b': {'n_clicks': 5, 'n_clicks_timestamp': 1611733454354}, 'inp2': {'n_clicks': 7, 'n_clicks_timestamp': 1611733454554}, 'out1-0': {'n_clicks': 1, 'n_clicks_timestamp': 1611733453954}, 'out1-1': {'n_clicks': 2, 'n_clicks_timestamp': 1611733454054}, 'out1-2': {'n_clicks': 3, 'n_clicks_timestamp': 1611733454154}, 'out1-3': {'n_clicks': 4, 'n_clicks_timestamp': 1611733454254}, 'out1b': {'href': 'http://www.example.com/null', 'n_clicks': 6, 'n_clicks_timestamp': 1611733454454}, 'out2-0': {'n_clicks': 8, 'n_clicks_timestamp': 1611733454654}, 'out3': {'n_clicks': 12, 'n_clicks_timestamp': 1611733455054}, 'out4': {'n_clicks': 16, 'n_clicks_timestamp': 1611733455454}, 'out5': {'n_clicks': 20, 'n_clicks_timestamp': 1611733455854}, '{"_id":"inp-0","_type":"btn3"}': {'n_clicks': 9, 'n_clicks_timestamp': 1611733454754}, '{"_id":"inp-0","_type":"btn4"}': {'n_clicks': 13, 'n_clicks_timestamp': 1611733455154}, '{"_id":"inp-0","_type":"btn5"}': {'n_clicks': 17, 'n_clicks_timestamp': 1611733455554}, '{"_id":"inp-1","_type":"btn3"}': {'n_clicks': 10, 'n_clicks_timestamp': 1611733454854}, '{"_id":"inp-1","_type":"btn4"}': {'n_clicks': 14, 'n_clicks_timestamp': 1611733455254}, '{"_id":"inp-1","_type":"btn5"}': {'n_clicks': 18, 'n_clicks_timestamp': 1611733455654}, '{"_id":"inp-2","_type":"btn3"}': {'n_clicks': 11, 'n_clicks_timestamp': 1611733454954}, '{"_id":"inp-2","_type":"btn4"}': {'n_clicks': 15, 'n_clicks_timestamp': 1611733455354}, '{"_id":"inp-2","_type":"btn5"}': {'n_clicks': 19, 'n_clicks_timestamp': 1611733455754}} ########## test state management of the app and conversion of components ids # search for state values in dash layout stateful_a.populate_values() assert stateful_a.current_state() == expected_state assert stateful_a.have_current_state_entry("inp1", "n_clicks") assert stateful_a.have_current_state_entry({"_type": "btn3", "_id": "inp-0"}, "n_clicks_timestamp") assert stateful_a.have_current_state_entry('{"_id":"inp-0","_type":"btn3"}', "n_clicks_timestamp") assert not stateful_a.have_current_state_entry("checklist", "other-prop") # update a non existent state => no effect on current_state stateful_a.update_current_state("foo", "value", "random") assert stateful_a.current_state() == expected_state # update an existent state => update current_state stateful_a.update_current_state('{"_id":"inp-2","_type":"btn5"}', "n_clicks", 100) expected_state['{"_id":"inp-2","_type":"btn5"}'] = {'n_clicks': 100, 'n_clicks_timestamp': 1611733455754} assert stateful_a.current_state() == expected_state assert DashApp.objects.get(instance_name="Some name").current_state() == {} stateful_a.handle_current_state() assert DashApp.objects.get(instance_name="<NAME>").current_state() == expected_state # check initial layout serve has the correct values injected dash_instance = stateful_a.as_dash_instance() resp = dash_instance.serve_layout() # initialise layout with app state layout, mimetype = dash_instance.augment_initial_layout(resp, {}) assert '"n_clicks": 100' in layout # initialise layout with initial arguments layout, mimetype = dash_instance.augment_initial_layout(resp, { '{"_id":"inp-2","_type":"btn5"}': {"n_clicks": 200}}) assert '"n_clicks": 100' not in layout assert '"n_clicks": 200' in layout ########### test contract between client and app by replaying interactions recorded in tests_dash_contract.json # get update component route url = reverse('the_django_plotly_dash:update-component', kwargs={'ident': 'my-app'}) # for all interactions in the tests_dash_contract.json for scenario in json.load(dash_contract_data.open("r")): body = scenario["body"] response = client.post(url, json.dumps(body), content_type="application/json") assert response.status_code == 200 response = json.loads(response.content) # compare first item in response with first result result = scenario["result"] if isinstance(result, list): result = result[0] content = response["response"].popitem()[1].popitem()[1] assert content == result # handle state stateful_a.handle_current_state() # check final state has been changed accordingly final_state = {'inp1': {'n_clicks': 1, 'n_clicks_timestamp': 1615103027288}, 'inp1b': {'n_clicks': 5, 'n_clicks_timestamp': 1615103033482}, 'inp2': {'n_clicks': 8, 'n_clicks_timestamp': 1615103036591}, 'out1-0': {'n_clicks': 1, 'n_clicks_timestamp': 1611733453954}, 'out1-1': {'n_clicks': 2, 'n_clicks_timestamp': 1611733454054}, 'out1-2': {'n_clicks': 3, 'n_clicks_timestamp': 1611733454154}, 'out1-3': {'n_clicks': 4, 'n_clicks_timestamp': 1611733454254}, 'out1b': {'href': 'http://www.example.com/1615103033482', 'n_clicks': 6, 'n_clicks_timestamp': 1611733454454}, 'out2-0': {'n_clicks': 8, 'n_clicks_timestamp': 1611733454654}, 'out3': {'n_clicks': 12, 'n_clicks_timestamp': 1611733455054}, 'out4': {'n_clicks': 16, 'n_clicks_timestamp': 1611733455454}, 'out5': {'n_clicks': 20, 'n_clicks_timestamp': 1611733455854}, '{"_id":"inp-0","_type":"btn3"}': {'n_clicks': 10, 'n_clicks_timestamp': 1615103039030}, '{"_id":"inp-0","_type":"btn4"}': {'n_clicks': 14, 'n_clicks_timestamp': 1611733455154}, '{"_id":"inp-0","_type":"btn5"}': {'n_clicks': 18, 'n_clicks_timestamp': 1611733455554}, '{"_id":"inp-1","_type":"btn3"}': {'n_clicks': 11, 'n_clicks_timestamp': 1615103039496}, '{"_id":"inp-1","_type":"btn4"}': {'n_clicks': 15, 'n_clicks_timestamp': 1611733455254}, '{"_id":"inp-1","_type":"btn5"}': {'n_clicks': 19, 'n_clicks_timestamp': 1611733455654}, '{"_id":"inp-2","_type":"btn3"}': {'n_clicks': 12, 'n_clicks_timestamp': 1615103040528}, '{"_id":"inp-2","_type":"btn4"}': {'n_clicks': 15, 'n_clicks_timestamp': 1611733455354}, '{"_id":"inp-2","_type":"btn5"}': {'n_clicks': 20, 'n_clicks_timestamp': 1611733455754}} assert DashApp.objects.get(instance_name="Some name").current_state() == final_state def test_dash_callback_arguments(): 'Test the flexibility of the callback arguments order (handling of inputs/outputs/states)' # create a DjangoDash ddash = DjangoDash(name="DashCallbackArguments") # add a callback with the new flexible order of dependencies @ddash.callback( Output("one", "foo"), Output("two", "foo"), Input("one", "baz"), Input("two", "baz"), Input("three", "baz"), State("one", "bil"), ) def new(): pass # add a callback with the old/classical flexible order of dependencies @ddash.callback( [Output("one", "foo"), Output("two", "foo")], [Input("one", "baz"), Input("two", "baz"), Input("three", "baz")], [State("one", "bil")] ) def old(): pass assert ddash._callback_sets == [({'inputs': [Input("one", "baz"), Input("two", "baz"), Input("three", "baz"), ], 'output': [Output("one", "foo"), Output("two", "foo")], 'prevent_initial_call': None, 'state': [State("one", "bil"), ]}, new), ({'inputs': [Input("one", "baz"), Input("two", "baz"), Input("three", "baz"), ], 'output': [Output("one", "foo"), Output("two", "foo")], 'prevent_initial_call': None, 'state': [State("one", "bil"), ]}, old) ] def test_util_error_cases(settings): 'Test handling of missing settings' settings.PLOTLY_DASH = None from django_plotly_dash.util import pipe_ws_endpoint_name, dpd_http_endpoint_root, http_endpoint, insert_demo_migrations assert pipe_ws_endpoint_name() == 'dpd/ws/channel' assert dpd_http_endpoint_root() == "dpd/views" assert http_endpoint("fred") == '^dpd/views/fred/$' assert not insert_demo_migrations() del settings.PLOTLY_DASH assert pipe_ws_endpoint_name() == 'dpd/ws/channel' assert dpd_http_endpoint_root() == "dpd/views" assert http_endpoint("fred") == '^dpd/views/fred/$' assert not insert_demo_migrations() def test_demo_routing(): 'Test configuration options for the demo' from django_plotly_dash.util import pipe_ws_endpoint_name, insert_demo_migrations assert pipe_ws_endpoint_name() == 'ws/channel' assert insert_demo_migrations() def test_local_serving(settings): 'Test local serve settings' from django_plotly_dash.util import serve_locally, static_asset_root, full_asset_path assert serve_locally() == settings.DEBUG assert static_asset_root() == 'dpd/assets' assert full_asset_path('fred.jim', 'harry') == 'dpd/assets/fred/jim/harry' @pytest.mark.django_db def test_direct_access(client): 'Check direct use of a stateless application using demo test data' from django.urls import reverse from .app_name import main_view_label for route_name in ['layout', 'dependencies', main_view_label]: for prefix, arg_map in [('app-', {'ident':'SimpleExample'}), ('', {'ident':'simpleexample-1'}),]: url = reverse('the_django_plotly_dash:%s%s' % (prefix, route_name), kwargs=arg_map) response = client.get(url) assert response.content assert response.status_code == 200 for route_name in ['routes',]: for prefix, arg_map in [('app-', {'ident':'SimpleExample'}), ('', {'ident':'simpleexample-1'}),]: url = reverse('the_django_plotly_dash:%s%s' % (prefix, route_name), kwargs=arg_map) did_fail = False try: response = client.get(url) except: did_fail = True assert did_fail @pytest.mark.django_db def test_updating(client): 'Check updating of an app using demo test data' from django.urls import reverse route_name = 'update-component' for prefix, arg_map in [('app-', {'ident':'SimpleExample'}), ('', {'ident':'simpleexample-1'}),]: url = reverse('the_django_plotly_dash:%s%s' % (prefix, route_name), kwargs=arg_map) response = client.post(url, json.dumps({'output': 'output-size.children', 'inputs':[{'id':'dropdown-color', 'property':'value', 'value':'blue'}, {'id':'dropdown-size', 'property':'value', 'value':'medium'}, ]}), content_type="application/json") assert response.content == b'{"response": {"output-size": {"children": "The chosen T-shirt is a medium blue one."}}, "multi": true}' assert response.status_code == 200 @pytest.mark.django_db def test_injection_app_access(client): 'Check direct use of a stateless application using demo test data' from django.urls import reverse from .app_name import main_view_label for route_name in ['layout', 'dependencies', main_view_label]: for prefix, arg_map in [('app-', {'ident':'dash_example_1'}), #('', {'ident':'simpleexample-1'}), ]: url = reverse('the_django_plotly_dash:%s%s' % (prefix, route_name), kwargs=arg_map) response = client.get(url) assert response.content assert response.status_code == 200 for route_name in ['routes',]: for prefix, arg_map in [('app-', {'ident':'dash_example_1'}),]: url = reverse('the_django_plotly_dash:%s%s' % (prefix, route_name), kwargs=arg_map) did_fail = False try: response = client.get(url) except: did_fail = True assert did_fail @pytest.mark.django_db def test_injection_updating_multiple_callbacks(client): 'Check updating of an app using demo test data for multiple callbacks' from django.urls import reverse route_name = 'update-component' for prefix, arg_map in [('app-', {'ident':'multiple_callbacks'}),]: url = reverse('the_django_plotly_dash:%s%s' % (prefix, route_name), kwargs=arg_map) # output is now a string of id and propery response = client.post(url, json.dumps({'output':'..output-one.children...output-two.children...output-three.children..', 'inputs':[ {'id':'button', 'property':'n_clicks', 'value':'10'}, {'id':'dropdown-color', 'property':'value', 'value':'purple-ish yellow with a hint of greeny orange'}, ]}), content_type="application/json") assert response.status_code == 200 resp = json.loads(response.content.decode('utf-8')) assert 'response' in resp resp_detail = resp['response'] assert 'output-two' in resp_detail assert 'children' in resp_detail['output-two'] assert resp_detail['output-two']['children'] == "Output 2: 10 purple-ish yellow with a hint of greeny orange []" @pytest.mark.django_db def test_flexible_expanded_callbacks(client): 'Check updating of an app using demo test data for flexible expanded callbacks' from django.urls import reverse route_name = 'update-component' for prefix, arg_map in [('app-', {'ident':'flexible_expanded_callbacks'}),]: url = reverse('the_django_plotly_dash:%s%s' % (prefix, route_name), kwargs=arg_map) # output contains all arguments of the expanded_callback response = client.post(url, json.dumps({'output':'output-one.children', 'inputs':[ {'id':'button', 'property':'n_clicks', 'value':'10'}, ]}), content_type="application/json") assert response.status_code == 200 resp = json.loads(response.content.decode('utf-8')) for key in ["dash_app_id", "dash_app", "callback_context"]: assert key in resp["response"]['output-one']['children'] # output contains all arguments of the expanded_callback response = client.post(url, json.dumps({'output':'output-two.children', 'inputs':[ {'id':'button', 'property':'n_clicks', 'value':'10'}, ]}), content_type="application/json") assert response.status_code == 200 resp = json.loads(response.content.decode('utf-8')) assert resp["response"]=={'output-two': {'children': 'ok'}} # output contains all arguments of the expanded_callback response = client.post(url, json.dumps({'output':'output-three.children', 'inputs':[ {'id':'button', 'property':'n_clicks', 'value':'10'}, ]}), content_type="application/json") assert response.status_code == 200 resp = json.loads(response.content.decode('utf-8')) assert resp["response"]=={"output-three": {"children": "flexible_expanded_callbacks"}} @pytest.mark.django_db def test_injection_updating(client): 'Check updating of an app using demo test data' from django.urls import reverse route_name = 'update-component' for prefix, arg_map in [('app-', {'ident':'dash_example_1'}),]: url = reverse('the_django_plotly_dash:%s%s' % (prefix, route_name), kwargs=arg_map) response = client.post(url, json.dumps({#'output':{'id':'test-output-div', 'property':'children'}, 'output': "test-output-div.children", 'inputs':[{'id':'my-dropdown1', 'property':'value', 'value':'TestIt'}, ]}), content_type="application/json") rStart = b'{"response": {"test-output-div": {"children": [{"props": {"id": "line-area-graph2"' assert response.content.startswith(rStart) assert response.status_code == 200 # Single output callback, output=="component_id.component_prop" response = client.post(url, json.dumps({'output':'test-output-div.children', 'inputs':[{'id':'my-dropdown1', 'property':'value', 'value':'TestIt'}, ]}), content_type="application/json") rStart = b'{"response": {"test-output-div": {"children": [{"props": {"id": "line-area-graph2"' assert response.content.startswith(rStart) assert response.status_code == 200 # Single output callback, fails if output=="..component_id.component_prop.." with pytest.raises(KeyError, match="..test-output-div.children.."): client.post(url, json.dumps({'output':'..test-output-div.children..', 'inputs':[{'id':'my-dropdown1', 'property':'value', 'value':'TestIt'}, ]}), content_type="application/json") # Multiple output callback, fails if output=="component_id.component_prop" with pytest.raises(KeyError, match="test-output-div3.children"): client.post(url, json.dumps({'output':'test-output-div3.children', 'inputs':[{'id':'my-dropdown1', 'property':'value', 'value':'TestIt'}, ]}), content_type="application/json") # Multiple output callback, output=="..component_id.component_prop.." response = client.post(url, json.dumps({'output':'..test-output-div3.children..', 'inputs':[{'id':'my-dropdown1', 'property':'value', 'value':'TestIt'}, ]}), content_type="application/json") rStart = b'{"response": {"test-output-div3": {"children": [{"props": {"id": "line-area-graph2"' assert response.content.startswith(rStart) assert response.status_code == 200 with pytest.raises(KeyError, match="django_to_dash_context"): client.post(url, json.dumps({'output': 'test-output-div2.children', 'inputs':[{'id':'my-dropdown2', 'property':'value', 'value':'TestIt'}, ]}), content_type="application/json") session = client.session session['django_plotly_dash'] = {'django_to_dash_context': 'Test 789 content'} session.save() response = client.post(url, json.dumps({'output': 'test-output-div2.children', 'inputs':[{'id':'my-dropdown2', 'property':'value', 'value':'TestIt'}, ]}), content_type="application/json") rStart = b'{"response": {"test-output-div2": {"children": [{"props": {"children": ["You have ' assert response.content.startswith(rStart) assert response.status_code == 200 assert response.content.find(b'Test 789 content') > 0 @pytest.mark.django_db def test_argument_settings(settings, client): 'Test the setting that controls how initial arguments are propagated through to the dash app' from django_plotly_dash.util import initial_argument_location, store_initial_arguments, get_initial_arguments assert initial_argument_location() settings.PLOTLY_DASH = {'cache_arguments': True} assert initial_argument_location() test_value = {"test":"first"} cache_id = store_initial_arguments(None, test_value) assert len(cache_id) > 10 fetched = get_initial_arguments(None, cache_id) assert fetched == test_value settings.PLOTLY_DASH = {'cache_arguments': False} assert not initial_argument_location() cache_id2 = store_initial_arguments(client, test_value) assert len(cache_id2) > 10 assert cache_id != cache_id2 ## For some reason, sessions are continually replaced, so lookup here doesnt work #fetched2 = get_initial_arguments(client, cache_id2) #assert fetched2 == test_value assert store_initial_arguments(None, None) is None assert get_initial_arguments(None, None) is None assert store_initial_arguments(client, None) is None assert get_initial_arguments(client, None) is None def test_stateless_lookup_noop(): 'Test no-op stateless lookup' from django_plotly_dash.util import stateless_app_lookup_hook lh_hook = stateless_app_lookup_hook() assert lh_hook is not None with pytest.raises(ImportError): lh_hook("not an app") def test_middleware_artifacts(): 'Import and vaguely exercise middleware objects' from django_plotly_dash.middleware import EmbeddedHolder, ContentCollector eh = EmbeddedHolder() eh.add_css("some_css") eh.add_config("some_config") eh.add_scripts("some_scripts") assert eh.config == 'some_config' cc = ContentCollector() assert cc._encode("fred") == b'fred' def test_finders(): 'Import and vaguely exercise staticfiles finders' from django_plotly_dash.finders import DashComponentFinder, DashAppDirectoryFinder, DashAssetFinder dcf = DashComponentFinder() dadf = DashAppDirectoryFinder() daf = DashAssetFinder() assert dcf is not None assert dadf is not None assert daf is not None @pytest.mark.django_db def test_app_loading(client): from django_plotly_dash.models import check_stateless_loaded from django.urls import reverse # Function should run wthout raising errors check_stateless_loaded() assert True url = reverse('the_django_plotly_dash:add_stateless_apps') response = client.post(url) # This view redirects to the main admin assert response.status_code == 302 @pytest.mark.django_db def test_external_scripts_stylesheets(client): 'Check external_stylesheets and external_scripts ends up in index' from demo.plotly_apps import external_scripts_stylesheets dash = external_scripts_stylesheets.as_dash_instance() with patch.object(dash, "interpolate_index") as mock: dash.index() _, kwargs = mock.call_args assert "https://codepen.io/chriddyp/pen/bWLwgP.css" in kwargs["css"] assert "https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css" in kwargs["css"] assert "https://www.google-analytics.com/analytics.js" in kwargs["scripts"] assert "https://cdn.polyfill.io/v2/polyfill.min.js" in kwargs["scripts"] assert "https://cdnjs.cloudflare.com/ajax/libs/lodash.js/4.17.10/lodash.core.js" in kwargs["scripts"] def test_callback_decorator(): inputs = [Input("one", "value"), Input("two", "value"), ] states = [Input("three", "value"), Input("four", "value"), ] def callback_standard(one, two, three, four): return assert DjangoDash.get_expanded_arguments(callback_standard, inputs, states) == [] def callback_standard(one, two, three, four, extra_1): return assert DjangoDash.get_expanded_arguments(callback_standard, inputs, states) == ['extra_1'] def callback_args(one, *args): return assert DjangoDash.get_expanded_arguments(callback_args, inputs, states) == [] def callback_args_extra(one, *args, extra_1): return assert DjangoDash.get_expanded_arguments(callback_args_extra, inputs, states) == ['extra_1' ] def callback_args_extra_star(one, *, extra_1): return assert DjangoDash.get_expanded_arguments(callback_args_extra_star, inputs, states) == ['extra_1' ] def callback_kwargs(one, two, three, four, extra_1, **kwargs): return assert DjangoDash.get_expanded_arguments(callback_kwargs, inputs, states) == None def callback_kwargs(one, two, three, four, *, extra_1, **kwargs, ): return assert DjangoDash.get_expanded_arguments(callback_kwargs, inputs, states) == None ```
{ "source": "jmcardle/quiet-editor", "score": 3 }
#### File: quiet-editor/backend/files.py ```python import base64 import os from settings import Settings files = {} def list(): return list_directory(Settings.file_directory) def list_trash(): return list_directory(Settings.trash_directory) def list_directory(directory): return [from_safe_filename(file_name) for file_name in os.listdir(directory) if os.path.isfile(os.path.join(directory, file_name))] def get(file_name): # Copy exists in memory. if file_name in files: return files[file_name] # Copy exists on disk. Load it in memory. elif file_exists(file_name): text = read_file(file_name) files[file_name] = text return text # No copy exists. else: return "" def set(file_name, text): # File doesn't exist or isn't in database. if not file_exists(file_name) or file_name not in files: write_file(file_name, text) # Just text is appended. elif text.startswith(files[file_name]): append_file(file_name, text[len(files[file_name]):]) # Just text is removed. elif files[file_name].startswith(text): truncate_file(file_name, len(text)) # Content added elsewhere. else: write_file(file_name, text) # Update memory. files[file_name] = text def trash(file_name): return move_file(file_name, Settings.file_directory, Settings.trash_directory) def delete(file_name): try: os.remove(to_safe_filename(file_name, Settings.trash_directory)) return True except OSError: return False def restore(file_name): return move_file(file_name, Settings.trash_directory, Settings.file_directory) def move_file(file_name, from_directory, to_directory): # Try moving the file. try: os.rename(to_safe_filename(file_name, from_directory), to_safe_filename(file_name, to_directory)) return True # Indicate failure if the file could not be moved. except OSError: return False def write_file(file_name, content, mode="w"): with open(to_safe_filename(file_name), mode) as file: file.write(content) def append_file(file_name, content): write_file(file_name, content, "a") def read_file(file_name): with open(to_safe_filename(file_name), "r") as file: return file.read() def truncate_file(file_name, size): with open(to_safe_filename(file_name), "w") as file: file.truncate(size) def file_exists(file_name): return os.path.isfile(to_safe_filename(file_name)) def to_safe_filename(file_name, directory=Settings.file_directory): return os.path.join(directory, base64.urlsafe_b64encode(file_name.encode()).decode()) def from_safe_filename(file_name): return base64.urlsafe_b64decode(os.path.basename(file_name)).decode() ```
{ "source": "jmcarlile/website-factory", "score": 2 }
#### File: backend/app_proj/utility.py ```python """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" UTILITY """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" import django.db as DB def ConvertFigureToJson(figure): import json from plotly.utils import PlotlyJSONEncoder redata = json.loads(json.dumps(figure.data, cls=PlotlyJSONEncoder)) relayout = json.loads(json.dumps(figure.layout, cls=PlotlyJSONEncoder)) fig_json=json.dumps({'data': redata,'layout': relayout}) return fig_json class BaseManager(DB.models.Manager): def getOrNone(self, **kwargs): try: return self.get(**kwargs) except DB.models.ObjectDoesNotExist: return None def GetTableCounts(): from django.apps import apps customTables = [] for name, app in apps.app_configs.items(): if name in ['admin', 'auth', 'contenttypes', 'sessions']: continue modelLs = list(app.get_models()) for m in modelLs: customTables.append({ 'Module': name, 'Table': str(m).split('.')[-1].replace("'>", ""), 'Count': m.objects.count(), }) return customTables def InsertSingle(module, table, entryDx): moduleObj = __import__(module) folderObj = getattr(moduleObj, 'models') classObj = getattr(folderObj, table) try: newModel = classObj(**entryDx) newModel.save() print('inserted') except Exception as ex: print(ex) def InsertBulk(module, table, dataLs): moduleObj = __import__(module) folderObj = getattr(moduleObj, 'models') classObj = getattr(folderObj, table) for dx in dataLs: for k, v in dx.items(): if str(v) in ['nan', 'NaT']: dx[k] = None try: modelLs = [classObj(**d) for d in dataLs] classObj.objects.bulk_create(modelLs, ignore_conflicts=True) print('bulk inserted') except Exception as ex: print(ex) def GetTableDictionary(module, table): moduleObj = __import__(module) folderObj = getattr(moduleObj, 'models') classObj = getattr(folderObj, table) selectLs = list(classObj.objects.values()) return selectLs def GetRow(module, table, parameters): moduleObj = __import__(module) folderObj = getattr(moduleObj, 'models') classObj = getattr(folderObj, table) result = classObj.objects.getOrNone(**parameters) resultDx = {} if result: resultDx = result.__dict__ return resultDx def DeleteTable(module, table): moduleObj = __import__(module) folderObj = getattr(moduleObj, 'models') classObj = getattr(folderObj, table) classObj.objects.all().delete() print('table deleted') ``` #### File: business_module/logic/custom.py ```python """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" CUSTOM LOGIC """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" import pandas as PD import app_proj.utility as UT def GetThemeGroups(): setsLs = UT.GetTableDictionary('business_module', 'LegoSet') setsDf = PD.DataFrame(setsLs) themeLs = list(setsDf['ThemeGroup'].unique()) return themeLs ```
{ "source": "jmcarp/filteralchemy", "score": 3 }
#### File: filteralchemy/filteralchemy/operators.py ```python class Operator(object): lookup = None label = None multiple = False def __call__(self, query, model, attr, value): column = getattr(model, attr) condition = getattr(column, self.lookup)(value) return query.filter(condition) class Equal(Operator): lookup = '__eq__' label = 'eq' class NotEqual(Operator): lookup = '__ne__' label = 'ne' class GreaterThan(Operator): lookup = '__gt__' label = 'gt' class GreaterEqual(Operator): lookup = '__ge__' label = 'ge' class LessThan(Operator): lookup = '__lt__' label = 'lt' class LessEqual(Operator): lookup = '__le__' label = 'le' class Like(Operator): lookup = 'like' label = 'like' class ILike(Operator): lookup = 'ilike' label = 'ilike' class In(Operator): lookup = 'in_' label = 'in' multiple = True ```
{ "source": "jmcarp/magic-modules", "score": 3 }
#### File: .ci/magic-modules/extract_from_pr_description_test.py ```python import unittest import extract_from_pr_description class TestExtraction(unittest.TestCase): def setUp(self): self.tree = extract_from_pr_description.PrDescriptionTree(""" A summary of changes goes here! ----------------------------------------------------------------- # all Foo Bar Baz ## terraform Bar ## puppet Baz ### puppet-dns Qux ### puppet-compute ## chef """) def testEmpty(self): self.assertEqual("Foo\nBar\nBaz", self.tree['chef']) def testThreeDeepEmpty(self): self.assertEqual("Baz", self.tree['puppet-compute']) def testThreeDeep(self): self.assertEqual("Qux", self.tree['puppet-dns']) def testTwoDeep(self): self.assertEqual("Bar", self.tree['terraform']) if __name__ == '__main__': unittest.main() ```
{ "source": "jmcarp/marshmallow", "score": 2 }
#### File: marshmallow/tests/test_legacy.py ```python import pytest from marshmallow import Serializer, Schema from tests.base import UserSchema, User, UserMetaSchema def test_serializer_alias(): assert Serializer is Schema def test_serializing_through_contructor(user): s = UserSchema(user) assert s.data['name'] == user.name def test_validate(recwarn): valid = User("Joe", email="<EMAIL>") invalid = User("John", email="john<EMAIL>") assert UserSchema(valid).is_valid() assert UserSchema(invalid).is_valid() is False warning = recwarn.pop() assert issubclass(warning.category, DeprecationWarning) @pytest.mark.parametrize('SerializerClass', [UserSchema, UserMetaSchema]) def test_validate_field(SerializerClass): invalid = User("John", email="john<EMAIL>") assert SerializerClass(invalid).is_valid(["name"]) is True assert SerializerClass(invalid).is_valid(["email"]) is False def test_validating_nonexistent_field_raises_error(user): ser_user = UserSchema(user) with pytest.raises(KeyError): ser_user.is_valid(["foobar"]) ```
{ "source": "jmcarp/python-readability", "score": 2 }
#### File: jmcarp/python-readability/setup.py ```python from __future__ import print_function import codecs import os import re from setuptools import setup import sys lxml_requirement = "lxml" if sys.platform == "darwin": import platform mac_ver = platform.mac_ver()[0] mac_major, mac_minor = mac_ver.split('.')[:2] if int(mac_major) == 10 and int(mac_minor) < 9: print("Using lxml<2.4") lxml_requirement = "lxml<2.4" test_deps = [ # Test timeouts "timeout_decorator", ] extras = { "test": test_deps, } # Adapted from https://github.com/pypa/pip/blob/master/setup.py def find_version(*file_paths): here = os.path.abspath(os.path.dirname(__file__)) # Intentionally *not* adding an encoding option to open, See: # https://github.com/pypa/virtualenv/issues/201#issuecomment-3145690 with codecs.open(os.path.join(here, *file_paths), "r") as fp: version_file = fp.read() version_match = re.search( r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M, ) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") setup( name="readability-lxml", version=find_version("readability", "__init__.py"), author="<NAME>", author_email="<EMAIL>", description="fast html to text parser (article readability tool) with python 3 support", test_suite="tests.test_article_only", long_description=open("README.rst").read(), long_description_content_type='text/x-rst', license="Apache License 2.0", url="http://github.com/buriy/python-readability", packages=["readability", "readability.compat"], install_requires=["chardet", lxml_requirement, "cssselect"], tests_require=test_deps, extras_require=extras, classifiers=[ "Environment :: Web Environment", "Intended Audience :: Developers", "Operating System :: OS Independent", "Topic :: Text Processing :: Indexing", "Topic :: Utilities", "Topic :: Internet", "Topic :: Software Development :: Libraries :: Python Modules", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], ) ```
{ "source": "jmcarp/requests-middleware", "score": 3 }
#### File: requests-middleware/requests_middleware/middleware.py ```python from requests import Response from requests.adapters import HTTPAdapter from requests.packages.urllib3.response import HTTPResponse from requests.packages.urllib3.poolmanager import PoolManager class MiddlewareHTTPAdapter(HTTPAdapter): """An HTTPAdapter onto which :class:`BaseMiddleware <BaseMiddleware>` can be registered. Middleware methods are called in the order of registration. Note: contrib that expose actions called during adapter initialization must be passed to `__init__` rather than `register`, else those actions will not take effect. :param list middlewares: List of :class:`BaseMiddleware <BaseMiddleware>` objects """ def __init__(self, middlewares=None, *args, **kwargs): self.middlewares = middlewares or [] super(MiddlewareHTTPAdapter, self).__init__(*args, **kwargs) def register(self, middleware): """Add a middleware to the middleware stack. :param BaseMiddleware middleware: The middleware object """ self.middlewares.append(middleware) def init_poolmanager(self, connections, maxsize, block=False): """Assemble keyword arguments to be passed to `PoolManager`. Middlewares are called in reverse order, so if multiple middlewares define conflicting arguments, the higher-priority middleware will take precedence. Note: Arguments are passed directly to `PoolManager` and not to the superclass `init_poolmanager` because the superclass method does not currently accept **kwargs. """ kwargs = {} for middleware in self.middlewares[::-1]: value = middleware.before_init_poolmanager( connections, maxsize, block ) kwargs.update(value or {}) self._pool_connections = connections self._pool_maxsize = maxsize self._pool_block = block self.poolmanager = PoolManager( num_pools=connections, maxsize=maxsize, block=block, **kwargs ) def send(self, request, *args, **kwargs): """Send the request. If any middleware in the stack returns a `Response` or `HTTPResponse` value from its `before_send` method, short-circuit; else delegate to `HTTPAdapter::send`. :param request: The :class:`PreparedRequest <PreparedRequest>` being sent. :returns: The :class:`Response <Response>` object. """ for middleware in self.middlewares: value = middleware.before_send(request, **kwargs) if isinstance(value, Response): return value if isinstance(value, HTTPResponse): return self.build_response(request, value) if value: raise ValueError('Middleware "before_send" methods must return ' '`Response`, `HTTPResponse`, or `None`') return super(MiddlewareHTTPAdapter, self).send( request, *args, **kwargs ) def build_response(self, req, resp): """Build the response. Call `HTTPAdapter::build_response`, then pass the response object to the `after_build_response` method of each middleware in the stack, in reverse order. :param req: The :class:`PreparedRequest <PreparedRequest>` used to generate the response. :param resp: The urllib3 response object. :returns: The :class:`Response <Response>` object. """ for middleware in reversed(self.middlewares): req, resp = middleware.before_build_response(req, resp) response = super(MiddlewareHTTPAdapter, self).build_response(req, resp) for middleware in reversed(self.middlewares): response = middleware.after_build_response(req, resp, response) return response class BaseMiddleware(object): def before_init_poolmanager(self, connections, maxsize, block=False): """Called before `HTTPAdapter::init_poolmanager`. Optionally return a dictionary of keyword arguments to `PoolManager`. :returns: `dict` of keyword arguments or `None` """ pass def before_send(self, request, *args, **kwargs): """Called before `HTTPAdapter::send`. If a truthy value is returned, :class:`MiddlewareHTTPAdapter <MiddlewareHTTPAdapter>` will short- circuit the remaining middlewares and `HTTPAdapter::send`, using the returned value instead. :param request: The `PreparedRequest` used to generate the response. :returns: The `Response` object or `None`. """ pass def before_build_response(self, req, resp): """Called before `HTTPAdapter::build_response`. Optionally modify the returned `PreparedRequest` and `HTTPResponse` objects. :param req: The `PreparedRequest` used to generate the response. :param resp: The urllib3 response object. :returns: Tuple of potentially modified (req, resp) """ return req, resp def after_build_response(self, req, resp, response): """Called after `HTTPAdapter::build_response`. Optionally modify the returned `Response` object. :param req: The `PreparedRequest` used to generate the response. :param resp: The urllib3 response object. :param response: The `Response` object. :returns: The potentially modified `Response` object. """ return response ``` #### File: requests-middleware/tests/test_source.py ```python import pytest import requests from requests_middleware.middleware import MiddlewareHTTPAdapter from requests_middleware.contrib import sourceware @pytest.fixture def session(): session = requests.Session() source_middleware = sourceware.SourceMiddleware('localhost', 8080) middlewares = [source_middleware] adapter = MiddlewareHTTPAdapter(middlewares=middlewares) session.mount('http://', adapter) session.mount('https://', adapter) return session # Integration tests @pytest.mark.httpretty def test_source(session, page_fixture): resp = session.get('http://test.com/page') pool_kwargs = resp.connection.poolmanager.connection_pool_kw assert pool_kwargs.get('source_address') == ('localhost', 8080) ``` #### File: requests-middleware/tests/test_throttle.py ```python import pytest import datetime import requests from dateutil.relativedelta import relativedelta from requests_middleware.middleware import MiddlewareHTTPAdapter from requests_middleware.contrib import throttleware from . import utils @pytest.fixture def throttle_delay(): return throttleware.DelayThrottler(5) @pytest.fixture def throttle_per_hour(): return throttleware.RequestsPerHourThrottler(5) def make_session_fixture(throttler): @pytest.fixture def fixture(): session = requests.Session() adapter = MiddlewareHTTPAdapter() throttle_middleware = throttleware.ThrottleMiddleware(throttler) adapter.register(throttle_middleware) session.mount('http://', adapter) session.mount('https://', adapter) return session return fixture throttle_delay_session = make_session_fixture( throttleware.DelayThrottler(5) ) throttle_per_hour_session = make_session_fixture( throttleware.RequestsPerHourThrottler(5) ) # Unit tests def test_throttle_delay(throttle_delay, monkeypatch): throttle_delay.check(None) throttle_delay.store(None, None, None) with pytest.raises(throttleware.ThrottleError): throttle_delay.check(None) now = datetime.datetime.utcnow() + relativedelta(seconds=6) utils.mock_datetime(monkeypatch, utcnow=now) throttle_delay.check(None) def test_throttle_per_hour(throttle_per_hour, monkeypatch): for _ in range(5): throttle_per_hour.check(None) throttle_per_hour.store(None, None, None) with pytest.raises(throttleware.ThrottleError): throttle_per_hour.check(None) now = datetime.datetime.utcnow() + relativedelta(hours=2) utils.mock_datetime(monkeypatch, utcnow=now) throttle_per_hour.check(None) # Integration tests @pytest.mark.httpretty def test_throttle_delay_integration(throttle_delay_session, page_fixture, monkeypatch): throttle_delay_session.get('http://test.com/page') with pytest.raises(throttleware.ThrottleError): throttle_delay_session.get('http://test.com/page') now = datetime.datetime.utcnow() + relativedelta(seconds=6) utils.mock_datetime(monkeypatch, utcnow=now) throttle_delay_session.get('http://test.com/page') @pytest.mark.httpretty def test_throttle_per_hour_integration(throttle_per_hour_session, page_fixture, monkeypatch): for _ in range(5): throttle_per_hour_session.get('http://test.com/page') with pytest.raises(throttleware.ThrottleError): throttle_per_hour_session.get('http://test.com/page') now = datetime.datetime.utcnow() + relativedelta(hours=2) utils.mock_datetime(monkeypatch, utcnow=now) throttle_per_hour_session.get('http://test.com/page') ```
{ "source": "jmcarp/va-court-scraper", "score": 2 }
#### File: va-court-scraper/archived/court_search_web.py ```python from courtreader import readers from courtutils.database import Database from courtutils.email import send_password_reset_email, verify_link from courtutils.logger import get_logger from courtutils.user import User from flask import Flask, render_template, make_response, jsonify, redirect, request, url_for from flask.ext.login import LoginManager, login_required, login_user, logout_user, current_user import datetime import os app = Flask(__name__) login_manager = LoginManager() login_manager.init_app(app) # configure logging log = get_logger() log.info('Web running') @login_manager.user_loader def load_user(user_id): print 'loading user' return User.get(user_id) @app.route('/') def index(): if current_user.is_authenticated: return redirect(url_for('home')) return render_template('index.html') @app.route('/home') @login_required def home(): return render_template('home.html') @app.route('/login') def login(): if current_user.is_authenticated: return redirect(url_for('home')) return render_template('login.html') @app.route('/login', methods=['POST']) def do_login(): email = request.form['email'] password = request.form['password'] if not User.registered(email): return 'Email address is not registered', 409 user = User.login(email, password) if user is None: return 'Wrong password', 409 login_user(user) return url_for('home') @app.route('/logout') @login_required def logout(): logout_user() return redirect(url_for('index')) @app.route('/courtmap') @login_required def court_map(): circuit_courts = list(Database.get_circuit_courts()) district_courts = list(Database.get_district_courts()) return render_template('courtmap.html', circuit_courts=circuit_courts, district_courts=district_courts) @app.route('/court_list/<court_type>/<court_name>/<miles>') @login_required def court_list(court_type, court_name, miles): courts = list(Database.find_courts(court_type, court_name, int(miles))) return jsonify(courts=courts) @app.route('/password') def password(): email = request.args.get('email') expiration = request.args.get('expires') token = request.args.get('token') valid_request = verify_link('password', email, expiration, token) return render_template('password.html', email=email, expiration=expiration, token=token, valid_request=valid_request) @app.route('/password', methods=['POST']) def set_password(): email = request.form['email'] expiration = request.form['expires'] token = request.form['token'] print email, expiration, token valid_request = verify_link('password', email, expiration, token) if not valid_request: return 'This password reset link has expired', 409 if not User.registered(email): return 'Email address is not registered', 409 password = request.form['password'] User.update_password(email, password) return email @app.route('/register', methods=['POST']) def register(): email = request.form['email'] if User.registered(email): return 'Email address already registered', 409 User.create(email) return email @app.route('/reset-password', methods=['POST']) def reset_password(): email = request.form['email'] if not User.registered(email): return 'Email address is not registered', 409 send_password_reset_email(request.form['email']) return email @app.route('/search') def search(): return render_template('search.html') @app.route('/search/<name>') def lookup_search_name(name): return render_template('search_results.html') @app.route('/search/<name>', methods=['POST']) def add_search_name_tasks(name): Database.insert_tasks('circuit', name.upper()) Database.insert_tasks('district', name.upper()) return '' if __name__ == "__main__": # Bind to PORT if defined, otherwise default to 5000. port = int(os.environ.get('PORT', 5000)) app.secret_key = 'doesnt-need-to-be-secret' app.run(host='0.0.0.0', port=port, debug=True) ``` #### File: va-court-scraper/archived/data_collection_web.py ```python import StringIO import csv import datetime import os import pymongo from flask import Flask, Response, render_template, jsonify app = Flask(__name__) @app.route("/") def index(): district_db_client = pymongo.MongoClient(os.environ['DISTRICT_DB']) district_db = district_db_client.va_district_court_cases courts = list(district_db.courts.find()) ten_minutes_ago = datetime.datetime.utcnow() + datetime.timedelta(minutes=-10) one_day_ago = datetime.datetime.utcnow() + datetime.timedelta(days=-1) scrapers = list(district_db.scrapers.find({'last_update': {'$gt': one_day_ago}})) print courts return render_template('data_collection.html', courts=courts, scrapers=scrapers, ten_minutes_ago=ten_minutes_ago) @app.route("/status/<fips_code>") def status(fips_code): district_db_client = pymongo.MongoClient(os.environ['DISTRICT_DB']) district_db = district_db_client.va_district_court_cases court = {'fips_code': fips_code} court['total_count'] = district_db.cases.count({ 'FIPSCode': fips_code }) court['collected_count'] = district_db.cases.count({ 'FIPSCode': fips_code, 'date_collected': {'$exists': True} }) return jsonify(**court) @app.route('/export/<fips_code>/cases.csv') def export_cases(fips_code): district_db_client = pymongo.MongoClient(os.environ['DISTRICT_DB']) district_db = district_db_client.va_district_court_cases cases = district_db.cases.find({ 'FIPSCode': fips_code, 'date_collected': {'$exists': True} }, projection = { '_id': False, 'error': False, 'date_collected': False, 'Hearings': False, 'Services': False, }) fieldnames = [ 'FIPSCode', 'CaseNumber', 'Locality', 'CourtName', 'FiledDate', 'Name', 'AKA1', 'AKA2', 'DOB', 'Gender', 'Race', 'Address', 'OffenseDate', 'ArrestDate', 'Class', 'Status', 'Complainant', 'CaseType', 'Charge', 'CodeSection', 'AmendedCaseType', 'AmendedCharge', 'AmendedCode', 'FinalDisposition', 'DefenseAttorney', 'SentenceTime', 'SentenceSuspendedTime', 'ProbationType', 'ProbationTime', 'ProbationStarts', 'Fine', 'Costs', 'FineCostsDue', 'FineCostsPaid', 'FineCostsPaidDate', 'OperatorLicenseRestrictionCodes', 'OperatorLicenseSuspensionTime', 'RestrictionStartDate', 'RestrictionEndDate', 'VASAP' ] output = StringIO.StringIO() writer = csv.DictWriter(output, fieldnames=fieldnames) writer.writeheader() writer.writerows(cases) return Response(output.getvalue(), mimetype='text/csv') if __name__ == "__main__": # Bind to PORT if defined, otherwise default to 5000. port = int(os.environ.get('PORT', 5000)) app.secret_key = 'doesnt-need-to-be-secret' app.run(host='0.0.0.0', port=port, debug=True) ``` #### File: va-court-scraper/archived/examine_garys_data.py ```python from collections import Counter from courtreader import readers from courtutils.database import Database from courtutils.logger import get_logger from datetime import datetime, timedelta import boto3 import csv import pymongo import os import sys import time import zipfile fieldnames = [ 'court_fips', 'Court', 'CaseNumber', 'Locality', 'Commencedby', 'Filed', 'Defendant', 'AKA', 'AKA2', 'DOB', 'Sex', 'Race', 'Address', 'OffenseDate', 'ArrestDate', 'Class', 'ConcludedBy', 'Charge', 'ChargeType', 'AmendedCharge', 'AmendedChargeType', 'CodeSection', 'AmendedCodeSection', 'DispositionCode', 'DispositionDate', 'LifeDeath', 'SentenceTime', 'SentenceSuspended', 'ConcurrentConsecutive', 'JailPenitentiary', 'ProbationTime', 'ProbationType', 'ProbationStarts', 'RestitutionAmount', 'RestitutionPaid', 'FineAmount', 'Costs', 'FinesCostPaid', 'TrafficFatality', 'DriverImprovementClinic', 'CourtDMVSurrender', 'OperatorLicenseSuspensionTime', 'DrivingRestrictions', 'RestrictionStartDate', 'RestrictionEndDate', 'VAAlcoholSafetyAction', 'ProgramType', 'Military' ] excluded_fields = [ '_id', 'details', 'details_fetched', 'case_number', 'details_fetched_for_hearing_date', 'Hearings', 'defendant' ] def get_db_connection(): return pymongo.MongoClient(os.environ['MONGO_DB'])['va_court_search'] db = get_db_connection() courts = list(Database.get_circuit_courts()) courts_by_fips = {court['fips_code']:court for court in courts} cases_by_court = {} def write_cases_to_file(cases, filename, details, exclude_cases): with open('./' + filename + '.csv', 'w') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=sorted(fieldnames)) writer.writeheader() for case in cases: if case['case_number'] in exclude_cases: continue if 'error' in case['details']: print 'Error getting case details', case['case_number'] continue case['Court'] = courts_by_fips[case['court_fips']]['name'] if case['Court'] not in details: details[case['Court']] = 0 details[case['Court']] += 1 for detail in case['details']: new_key = detail.replace(' ', '') case[new_key] = case['details'][detail] for field in excluded_fields: if field in case: del case[field] writer.writerow(case) def export_data_by_year(year, court, exclude_cases): start = datetime(year, 1, 1) end = datetime(year + 1, 1, 1) print 'From', start, 'to', end cases = db.circuit_court_detailed_cases.find({ 'details_fetched_for_hearing_date': {'$gte': start, '$lt': end}, 'court_fips': court }) filename = 'criminal_circuit_court_cases_' + court + '_' + str(year) details = {} write_cases_to_file(cases, filename, details, exclude_cases) with open(sys.argv[1]) as csvfile: reader = csv.DictReader(csvfile) for row in reader: fips = row['CASE_NUM'][:3] case_number = row['CASE_NUM'][3:-2] + '-' + row['CASE_NUM'][-2:] if fips not in cases_by_court: cases_by_court[fips] = {} cases_by_court[fips][case_number] = row for court in cases_by_court: print '' print '***', courts_by_fips[court]['name'], '***' print 'Cases in Pilot File', len(cases_by_court[court]) all_cases = list(db.circuit_court_detailed_cases.find({ 'court_fips': court }, { 'case_number': True, 'details_fetched_for_hearing_date': True })) matched_cases = [case for case in all_cases if case['case_number'] in cases_by_court[court]] print 'Cases in db and Pilot file', len(matched_cases) all_case_numbers_in_db = [case['case_number'] for case in all_cases] cases_not_in_db = list(set(cases_by_court[court].keys()) - set(all_case_numbers_in_db)) print 'Cases in Pilot file but not db', len(cases_not_in_db) dates = [case['details_fetched_for_hearing_date'].year for case in matched_cases] print 'Last hearing date for cases in VP file', Counter(dates) cases_2012 = [case for case in all_cases if case['details_fetched_for_hearing_date'].year == 2012] print '2012 cases in db', len(cases_2012) unmatched_cases = [case for case in cases_2012 if case['case_number'] not in cases_by_court[court]] print '2012 cases in db but not Pilot file', len(unmatched_cases) export_data_by_year(2012, court, cases_by_court[court].keys()) ``` #### File: va-court-scraper/courtreader/districtcourtparser.py ```python import re from datetime import datetime def handle_parse_exception(soup): print '\nException parsing HTML.', \ 'Probably contained something unexpected.', \ 'Check unexpected_output.html' with open('unexpected_output.html', 'wb') as output: output.write(soup.prettify().encode('UTF-8')) def parse_court_names(soup): try: # Load list of courts and fips codes fips = [tag['value'] for tag in soup.find_all('input', {'name':'courtFips'})] names = [tag['value'] for tag in soup.find_all('input', {'name':'courtName'})] court_names = {} for f, c in zip(fips, names): court_names[f] = c return court_names except: handle_parse_exception(soup) raise def parse_name_search(soup): try: no_results = re.compile(r'No results found for the search criteria') if soup.find('td', text=no_results) is not None: return [] cases = [] rows = soup.find('table', {'class':'tableborder'}).find_all('tr') for row in rows: cells = row.find_all('td') if cells[0]['class'][0] == 'gridheader': continue case_number = cells[1].a.text.strip() defendant = cells[2].string.strip() charge = cells[5].string.strip() cases.append({ 'case_number': case_number, 'defendant': defendant, 'charge': charge }) return cases except: handle_parse_exception(soup) raise def next_names_button_found(soup): try: return soup.find('input', {'title': 'Next'}) is not None except: handle_parse_exception(soup) raise def parse_hearing_date_search(soup, case_type): try: no_results = re.compile(r'No results found for the search criteria') if soup.find('td', text=no_results) is not None: return [] cases = [] rows = soup.find('table', {'class':'tableborder'}).find_all('tr') for row in rows: cells = row.find_all('td') if cells[0]['class'][0] == 'gridheader': continue details_url = cells[1].a['href'] case_number = list(cells[1].a.stripped_strings)[0] defendant_cell_content = list(cells[2].stripped_strings) defendant = defendant_cell_content[0] if len(defendant_cell_content) > 0 else '' if case_type == 'civil': plaintiff_cell_content = list(cells[3].stripped_strings) plaintiff = plaintiff_cell_content[0] if len(plaintiff_cell_content) > 0 else '' civil_case_type_content = list(cells[4].stripped_strings) civil_case_type = civil_case_type_content[0] if len(civil_case_type_content) > 0 else '' hearing_time_content = list(cells[5].stripped_strings) hearing_time = hearing_time_content[0] if len(hearing_time_content) > 0 else '' cases.append({ 'case_number': case_number, 'details_url': details_url, 'defendant': defendant, 'plaintiff': plaintiff, 'civil_case_type': civil_case_type, 'hearing_time': hearing_time }) else: status_cell_content = list(cells[6].stripped_strings) status = status_cell_content[0] if len(status_cell_content) > 0 else '' cases.append({ 'case_number': case_number, 'details_url': details_url, 'defendant': defendant, 'status': status }) return cases except: handle_parse_exception(soup) raise def next_button_found(soup): try: return soup.find('input', {'name': 'caseInfoScrollForward'}) is not None except: handle_parse_exception(soup) raise DATES = [ 'FiledDate', 'DOB', 'OffenseDate', 'ArrestDate', 'RestrictionEffectiveDate', 'RestrictionEndDate', 'FineCostsDue', 'FineCostsPaidDate', 'WritIssuedDate', 'DateSatisfactionFiled', 'AnswerDate', 'AppealDate', 'DateOrdered', 'DateDue', 'DateReceived', 'DateIssued', 'DateReturned' ] TIME_SPANS = [ 'SentenceTime', 'SentenceSuspendedTime', 'ProbationTime', 'OperatorLicenseSuspensionTime' ] MONETARY = [ 'Fine', 'Costs', 'AttorneyFees', 'PrincipalAmount', 'OtherAmount' ] BOOL = [ 'FineCostsPaid', 'VASAP', 'HomesteadExemptionWaived', 'IsJudgmentSatisfied' ] def parse_case_details(soup, case_type): case_details = {} try: #case_details['CourtName'] = soup.find(id='headerCourtName') \ # .string.strip() # Parse grids for label_cell in soup.find_all(class_=re.compile('labelgrid')): value_cell = label_cell.next_sibling while value_cell.name != 'td': value_cell = value_cell.next_sibling label = get_string_from_cell(label_cell, True) value = get_string_from_cell(value_cell) if value != '': case_details[label] = value # Parse tables if case_type == 'civil': # the table names really are backwards here case_details['Plaintiffs'] = parse_table(soup, 'toggleDef') case_details['Defendants'] = parse_table(soup, 'togglePlaintiff') case_details['Reports'] = parse_table(soup, 'toggleReports') case_details['Hearings'] = parse_table(soup, 'toggleHearing') case_details['Services'] = parse_table(soup, 'toggleServices') if 'CaseNumber' not in case_details: raise ValueError('Missing Case Number') if 'DOB' in case_details: case_details['DOB'] = case_details['DOB'].replace('****', '1004') if 'FinalDisposition' in case_details: val = case_details['FinalDisposition'] if val.endswith('-'): case_details['FinalDisposition'] = val[:-1].strip() if 'NumberofChecksReceived' in case_details: case_details['NumberofChecksReceived'] = int(case_details['NumberofChecksReceived']) if 'FineCostsDue' in case_details: case_details['FineCostsPastDue'] = 'PAST DUE' in case_details['FineCostsDue'] for key in DATES: if key in case_details: case_details[key] = case_details[key].replace('PAST DUE', '') case_details[key] = datetime.strptime(case_details[key], '%m/%d/%Y') for key in TIME_SPANS: if key in case_details: case_details[key] = simplify_time_str_to_days(case_details[key]) for key in MONETARY: if key in case_details: try: case_details[key] = float(case_details[key] .replace('$', '') .replace(',', '') .split(' ')[0]) except ValueError: case_details[key] = -1.0 for key in BOOL: if key in case_details: case_details[key] = False if case_details[key].upper() == 'NO' else True except: handle_parse_exception(soup) raise return case_details def get_string_from_cell(cell, is_label=False): values = list(cell.stripped_strings) if len(values) < 1: return '' value = values[0].encode('ascii', 'ignore') \ .replace('\t', '') \ .replace('\r', '') \ .replace('\n', '') \ .replace('\0', '') \ .strip() if is_label: value = value.replace(':', '') \ .replace('/', '') \ .replace(' ', '') return value def parse_table(soup, table_id): table_contents = [] table_section = soup.find(id=table_id) table_headers = [s.replace(' ', '').replace('/', '') for s in table_section.find(class_='gridheader').stripped_strings] for row in table_section.find_all(class_='gridrow'): table_contents.append(parse_table_row(row, table_headers)) for row in table_section.find_all(class_='gridalternaterow'): table_contents.append(parse_table_row(row, table_headers)) return table_contents NO_ATTORNEY = [ 'NONE', 'NOT EMPLOYED' ] def parse_table_row(row, table_headers): data_dict = {} data_list = zip( table_headers, [cell.string.replace('\0', '').strip() if cell.string is not None else '' for cell in row.find_all('td')] ) for item in data_list: if item[1] == '': continue data_dict[item[0]] = item[1] if item[0] in DATES: data_dict[item[0]] = datetime.strptime(item[1], '%m/%d/%Y') if 'Time' in data_dict: full_dt = '{} {}'.format(data_dict['Date'], data_dict['Time']) data_dict['Date'] = datetime.strptime(full_dt, '%m/%d/%Y %I:%M %p') del data_dict['Time'] if 'Attorney' in data_dict and data_dict['Attorney'].upper() in NO_ATTORNEY: del data_dict['Attorney'] return data_dict def simplify_time_str_to_days(time_string): time_string = time_string.replace(' Year(s)', 'Years ') \ .replace(' Month(s)', 'Months ') \ .replace(' Day(s)', 'Days ') days = 0 string_parts = time_string.split(' ') for string_part in string_parts: if 'Years' in string_part: days += int(string_part.replace('Years', '')) * 365 elif string_part == '12Months': days += 365 elif 'Months' in string_part: days += int(string_part.replace('Months', '')) * 30 elif 'Days' in string_part: days += int(string_part.replace('Days', '')) elif 'Hours' in string_part: hours = int(string_part.replace('Hours', '')) if hours > 0: days += 1 return days ``` #### File: courtutils/databases/mongo.py ```python import pymongo import os class MongoDatabase(): def __init__(self, name, court_type): self.client = pymongo.MongoClient(os.environ['MONGO_DB'])[name] self.court_type = court_type def add_court(self, name, fips, location): self.client[self.court_type + '_courts'].insert_one({ 'name': name, 'fips_code': fips, 'location': {'type': 'Point', 'coordinates': [ location.longitude, location.latitude ]} }) def add_court_location_index(self): self.client[self.court_type + '_courts'].create_index( \ [('location', pymongo.GEOSPHERE)], background=True) def drop_courts(self): self.client[self.court_type + '_courts'].drop() def get_courts(self): return self.client[self.court_type + '_courts'].find(None, {'_id':0}) def add_date_tasks(self, tasks): self.client[self.court_type + '_court_date_tasks'].insert_many(tasks) def add_date_task(self, task): self.client[self.court_type + '_court_date_tasks'].insert_one(task) def get_and_delete_date_task(self): return self.client[self.court_type + '_court_date_tasks'].find_one_and_delete({}) def add_date_search(self, search): self.client[self.court_type + '_court_dates_searched'].insert_one(search) def get_date_search(self, search): return self.client[self.court_type + '_court_dates_searched'].find_one(search) def get_more_recent_case_details(self, case, case_type, date): return self.client[self.court_type + '_court_detailed_cases'].find_one({ 'court_fips': case['court_fips'], 'case_number': case['case_number'], 'details_fetched_for_hearing_date': {'$gte': date} }) def replace_case_details(self, case, case_type): self.client[self.court_type + '_court_detailed_cases'].find_one_and_replace({ 'court_fips': case['court_fips'], 'case_number': case['case_number'] }, case, upsert=True) def get_cases_by_hearing_date(self, start, end): return self.client[self.court_type + '_court_detailed_cases'].find({ 'details_fetched_for_hearing_date': {'$gte': start, '$lt': end} }) ``` #### File: va-court-scraper/courtutils/email.py ```python from datetime import timedelta, datetime import hashlib import os import sendwithus import urllib def unix_time_millis(dt): epoch = datetime.utcfromtimestamp(0) return int((dt - epoch).total_seconds()) def generate_token(data): hash = hashlib.sha256() hash.update(os.environ['EMAIL_TOKEN_SALT']) hash.update(data) return hash.hexdigest() def generate_uri(route, email_address, expiration): uri = route uri += '?email=' + email_address uri += '&expires=' + expiration return uri def create_link(email_address, route): expires = datetime.utcnow() + timedelta(days=1) uri = generate_uri(route, urllib.quote(email_address), str(unix_time_millis(expires))) uri += '&token=' + generate_token(uri) return uri def verify_link(route, email_address, expiration, token): if datetime.fromtimestamp(float(expiration)) < datetime.utcnow(): return False uri = generate_uri(route, urllib.quote(email_address), expiration) return token == generate_token(uri) def send_welcome_email(email_address): api_key = os.environ['SEND_WITH_US'] set_password_link = create_link(email_address, 'password') swu = sendwithus.api(api_key) swu.send( email_id='tem_58MQPDcuQvGKoXG3aVp4Zb', recipient={'address': email_address}, email_data={'setPasswordLink': set_password_link}) def send_password_reset_email(email_address): api_key = os.environ['SEND_WITH_US'] set_password_link = create_link(email_address, 'password') swu = sendwithus.api(api_key) swu.send( email_id='tem_shSnhmqCSMAwdLbPhuwY4U', recipient={'address': email_address}, email_data={'setPasswordLink': set_password_link}) ```
{ "source": "jmcarp/webargs", "score": 3 }
#### File: webargs/examples/bottle_example.py ```python import datetime as dt import json from dateutil import parser from bottle import route, run, error, response from webargs import Arg, ValidationError from webargs.bottleparser import use_args, use_kwargs hello_args = { 'name': Arg(str, default='Friend') } @route('/', method='GET') @use_args(hello_args) def index(args): """A welcome page. """ return {'message': 'Welcome, {}!'.format(args['name'])} add_args = { 'x': Arg(float, required=True), 'y': Arg(float, required=True), } @route('/add', method='POST') @use_kwargs(add_args) def add(x, y): """An addition endpoint.""" return {'result': x + y} def string_to_datetime(val): return parser.parse(val) def validate_unit(val): if val not in ['minutes', 'days']: raise ValidationError("Unit must be either 'minutes' or 'days'.") dateadd_args = { 'value': Arg(default=dt.datetime.utcnow, use=string_to_datetime), 'addend': Arg(int, required=True, validate=lambda val: val >= 0), 'unit': Arg(str, validate=validate_unit) } @route('/dateadd', method='POST') @use_kwargs(dateadd_args) def dateadd(value, addend, unit): """A datetime adder endpoint.""" if unit == 'minutes': delta = dt.timedelta(minutes=addend) else: delta = dt.timedelta(days=addend) result = value + delta return {'result': result.isoformat()} # Return validation errors as JSON @error(400) def error400(err): response.content_type = 'application/json' return json.dumps({'message': str(err.body)}) if __name__ == '__main__': run(port=5001, reloader=True, debug=True) ``` #### File: webargs/examples/tornado_example.py ```python import datetime as dt from dateutil import parser import tornado.ioloop from tornado.web import RequestHandler from webargs import Arg, ValidationError from webargs.tornadoparser import use_args, use_kwargs class BaseRequestHandler(RequestHandler): def write_error(self, status_code, **kwargs): """Write errors as JSON.""" self.set_header('Content-Type', 'application/json') if 'exc_info' in kwargs: etype, value, traceback = kwargs['exc_info'] msg = value.log_message or str(value) self.write({'message': msg}) self.finish() class HelloHandler(BaseRequestHandler): """A welcome page.""" hello_args = { 'name': Arg(str, default='Friend') } @use_args(hello_args) def get(self, args): response = {'message': 'Welcome, {}!'.format(args['name'])} self.write(response) class AdderHandler(BaseRequestHandler): """An addition endpoint.""" add_args = { 'x': Arg(float, required=True), 'y': Arg(float, required=True), } @use_kwargs(add_args) def post(self, x, y): self.write({'result': x + y}) def string_to_datetime(val): return parser.parse(val) def validate_unit(val): if val not in ['minutes', 'days']: raise ValidationError("Unit must be either 'minutes' or 'days'.") class DateAddHandler(BaseRequestHandler): """A datetime adder endpoint.""" dateadd_args = { 'value': Arg(default=dt.datetime.utcnow, use=string_to_datetime), 'addend': Arg(int, required=True, validate=lambda val: val >= 0), 'unit': Arg(str, validate=validate_unit) } @use_kwargs(dateadd_args) def post(self, value, addend, unit): """A datetime adder endpoint.""" if unit == 'minutes': delta = dt.timedelta(minutes=addend) else: delta = dt.timedelta(days=addend) result = value + delta self.write({'result': result.isoformat()}) if __name__ == '__main__': app = tornado.web.Application([ (r'/', HelloHandler), (r'/add', AdderHandler), (r'/dateadd', DateAddHandler), ], debug=True) app.listen(5001) tornado.ioloop.IOLoop.instance().start() ``` #### File: webargs/webargs/flaskparser.py ```python import logging from flask import request, abort as flask_abort from werkzeug.exceptions import HTTPException from webargs import core from webargs.core import text_type logger = logging.getLogger(__name__) def abort(http_status_code, **kwargs): """Raise a HTTPException for the given http_status_code. Attach any keyword arguments to the exception for later processing. From Flask-Restful. See NOTICE file for license information. """ try: flask_abort(http_status_code) except HTTPException as err: if len(kwargs): err.data = kwargs raise err class FlaskParser(core.Parser): """Flask request argument parser.""" def parse_json(self, req, name, arg): """Pull a json value from the request.""" # Fail silently so that the webargs parser can handle the error json_data = req.get_json(silent=True) if json_data: return core.get_value(json_data, name, arg.multiple) else: return core.Missing def parse_querystring(self, req, name, arg): """Pull a querystring value from the request.""" return core.get_value(req.args, name, arg.multiple) def parse_form(self, req, name, arg): """Pull a form value from the request.""" try: return core.get_value(req.form, name, arg.multiple) except AttributeError: pass return core.Missing def parse_headers(self, req, name, arg): """Pull a value from the header data.""" return core.get_value(req.headers, name, arg.multiple) def parse_cookies(self, req, name, arg): """Pull a value from the cookiejar.""" return core.get_value(req.cookies, name, arg.multiple) def parse_files(self, req, name, arg): """Pull a file from the request.""" return core.get_value(req.files, name, arg.multiple) def handle_error(self, error): """Handles errors during parsing. Aborts the current HTTP request and responds with a 400 error. """ logger.error(error) status_code = getattr(error, 'status_code', 400) data = getattr(error, 'data', {}) abort(status_code, message=text_type(error), exc=error, **data) def parse(self, argmap, req=None, *args, **kwargs): """Parses the request using the given arguments map. Uses Flask's context-local request object if req=None. """ req_obj = req or request # Default to context-local request return super(FlaskParser, self).parse(argmap, req_obj, *args, **kwargs) parser = FlaskParser() use_args = parser.use_args use_kwargs = parser.use_kwargs ``` #### File: webargs/webargs/tornadoparser.py ```python import json import functools import logging import tornado.web from webargs import core logger = logging.getLogger(__name__) def parse_json(s): if isinstance(s, bytes): s = s.decode('utf-8') return json.loads(s) def get_value(d, name, multiple): """Handle gets from 'multidicts' made of lists It handles cases: ``{"key": [value]}`` and ``{"key": value}`` """ value = d.get(name, core.Missing) if multiple: return [] if value is core.Missing else value if value and isinstance(value, list): return value[0] return value class TornadoParser(core.Parser): """Tornado request argument parser.""" def __init__(self, *args, **kwargs): super(TornadoParser, self).__init__(*args, **kwargs) self.json = None def parse_json(self, req, name, arg): """Pull a json value from the request.""" return get_value(self.json, name, arg.multiple) def parse_querystring(self, req, name, arg): """Pull a querystring value from the request.""" return get_value(req.query_arguments, name, arg.multiple) def parse_form(self, req, name, arg): """Pull a form value from the request.""" return get_value(req.body_arguments, name, arg.multiple) def parse_headers(self, req, name, arg): """Pull a value from the header data.""" return get_value(req.headers, name, arg.multiple) def parse_cookies(self, req, name, arg): """Pull a value from the header data.""" cookie = req.cookies.get(name) if cookie is not None: return [cookie.value] if arg.multiple else cookie.value else: return [] if arg.multiple else None def parse_files(self, req, name, arg): """Pull a file from the request.""" return get_value(req.files, name, arg.multiple) def handle_error(self, error): """Handles errors during parsing. Raises a `tornado.web.HTTPError` with a 400 error. """ logger.error(error) status_code = getattr(error, 'status_code', 400) data = getattr(error, 'data', {}) raise tornado.web.HTTPError(status_code, error.args[0], **data) def _parse_json_body(self, req): content_type = req.headers.get('Content-Type') if content_type and 'application/json' in req.headers.get('Content-Type'): try: self.json = parse_json(req.body) except (TypeError, ValueError): self.json = {} else: self.json = {} def parse(self, argmap, req, *args, **kwargs): """Parses the request using the given arguments map. Initializes :attr:`json` attribute. """ self._parse_json_body(req) return super(TornadoParser, self).parse(argmap, req, *args, **kwargs) def use_args(self, argmap, req=None, targets=core.Parser.DEFAULT_TARGETS, as_kwargs=False, validate=None): """Decorator that injects parsed arguments into a view function or method. :param dict argmap: Dictionary of argument_name:Arg object pairs. :param req: The request object to parse :param tuple targets: Where on the request to search for values. :param as_kwargs: Whether to pass arguments to the handler as kwargs :param callable validate: Validation function that receives the dictionary of parsed arguments. If the function returns ``False``, the parser will raise a :exc:`ValidationError`. """ def decorator(func): @functools.wraps(func) def wrapper(obj, *args, **kwargs): parsed_args = self.parse( argmap, req=obj.request, targets=targets, validate=validate) if as_kwargs: kwargs.update(parsed_args) else: args = (parsed_args,) + args return func(obj, *args, **kwargs) return wrapper return decorator parser = TornadoParser() use_args = parser.use_args use_kwargs = parser.use_kwargs ```
{ "source": "jmcastagnetto/spanish-anagrams-list", "score": 4 }
#### File: jmcastagnetto/spanish-anagrams-list/anagrams.py ```python from collections import defaultdict # change to the path on your system lines = open("/usr/share/dict/spanish", "r").readlines() words = set() for line in lines: line = line.strip().lower() words.add(line) def sig(word): return "".join(sorted(word)) d = defaultdict(set) for w in words: d[sig(w)].add(w) # make a csv file containing the signature, length of set and its elements sig_file = open("anagrams-signature-spanish.csv", "w") print("signature,n,elements", file = sig_file) for s, wrds in d.items(): if len(wrds) > 1: print("{},{},{}".format(s, str(len(wrds)), "|".join(wrds)), file = sig_file) sig_file.close() # make the anagram dictionary file dict_file = open("anagrams-spanish.txt", "w") for w in sorted(words): anas = sorted(d[sig(w)]) if len(anas) > 1: anas.remove(w) print("{}: {}".format(w, ", ".join(anas)), file = dict_file) dict_file.close() ```
{ "source": "JMcB17/cpython", "score": 2 }
#### File: cpython/Modules/getpath.py ```python platlibdir = config.get('platlibdir') or PLATLIBDIR if os_name == 'posix' or os_name == 'darwin': BUILDDIR_TXT = 'pybuilddir.txt' BUILD_LANDMARK = 'Modules/Setup.local' DEFAULT_PROGRAM_NAME = f'python{VERSION_MAJOR}' STDLIB_SUBDIR = f'{platlibdir}/python{VERSION_MAJOR}.{VERSION_MINOR}' STDLIB_LANDMARKS = [f'{STDLIB_SUBDIR}/os.py', f'{STDLIB_SUBDIR}/os.pyc'] PLATSTDLIB_LANDMARK = f'{platlibdir}/python{VERSION_MAJOR}.{VERSION_MINOR}/lib-dynload' BUILDSTDLIB_LANDMARKS = ['Lib/os.py'] VENV_LANDMARK = 'pyvenv.cfg' ZIP_LANDMARK = f'{platlibdir}/python{VERSION_MAJOR}{VERSION_MINOR}.zip' DELIM = ':' SEP = '/' elif os_name == 'nt': BUILDDIR_TXT = 'pybuilddir.txt' BUILD_LANDMARK = r'..\..\Modules\Setup.local' DEFAULT_PROGRAM_NAME = f'python' STDLIB_SUBDIR = 'Lib' STDLIB_LANDMARKS = [f'{STDLIB_SUBDIR}\\os.py', f'{STDLIB_SUBDIR}\\os.pyc'] PLATSTDLIB_LANDMARK = f'{platlibdir}' BUILDSTDLIB_LANDMARKS = ['Lib\\os.py'] VENV_LANDMARK = 'pyvenv.cfg' ZIP_LANDMARK = f'python{VERSION_MAJOR}{VERSION_MINOR}{PYDEBUGEXT or ""}.zip' WINREG_KEY = f'SOFTWARE\\Python\\PythonCore\\{PYWINVER}\\PythonPath' DELIM = ';' SEP = '\\' # ****************************************************************************** # HELPER FUNCTIONS (note that we prefer C functions for performance) # ****************************************************************************** def search_up(prefix, *landmarks, test=isfile): while prefix: if any(test(joinpath(prefix, f)) for f in landmarks): return prefix prefix = dirname(prefix) # ****************************************************************************** # READ VARIABLES FROM config # ****************************************************************************** program_name = config.get('program_name') home = config.get('home') executable = config.get('executable') base_executable = config.get('base_executable') prefix = config.get('prefix') exec_prefix = config.get('exec_prefix') base_prefix = config.get('base_prefix') base_exec_prefix = config.get('base_exec_prefix') ENV_PYTHONPATH = config['pythonpath_env'] use_environment = config.get('use_environment', 1) pythonpath = config.get('module_search_paths') real_executable_dir = None stdlib_dir = None platstdlib_dir = None # ****************************************************************************** # CALCULATE program_name # ****************************************************************************** program_name_was_set = bool(program_name) if not program_name: try: program_name = config.get('orig_argv', [])[0] except IndexError: pass if not program_name: program_name = DEFAULT_PROGRAM_NAME if EXE_SUFFIX and not hassuffix(program_name, EXE_SUFFIX) and isxfile(program_name + EXE_SUFFIX): program_name = program_name + EXE_SUFFIX # ****************************************************************************** # CALCULATE executable # ****************************************************************************** if py_setpath: # When Py_SetPath has been called, executable defaults to # the real executable path. if not executable: executable = real_executable if not executable and SEP in program_name: # Resolve partial path program_name against current directory executable = abspath(program_name) if not executable: # All platforms default to real_executable if known at this # stage. POSIX does not set this value. executable = real_executable elif os_name == 'darwin': # QUIRK: On macOS we may know the real executable path, but # if our caller has lied to us about it (e.g. most of # test_embed), we need to use their path in order to detect # whether we are in a build tree. This is true even if the # executable path was provided in the config. real_executable = executable if not executable and program_name: # Resolve names against PATH. # NOTE: The use_environment value is ignored for this lookup. # To properly isolate, launch Python with a full path. for p in ENV_PATH.split(DELIM): p = joinpath(p, program_name) if isxfile(p): executable = p break if not executable: executable = '' # When we cannot calculate the executable, subsequent searches # look in the current working directory. Here, we emulate that # (the former getpath.c would do it apparently by accident). executable_dir = abspath('.') # Also need to set this fallback in case we are running from a # build directory with an invalid argv0 (i.e. test_sys.test_executable) real_executable_dir = executable_dir if ENV_PYTHONEXECUTABLE or ENV___PYVENV_LAUNCHER__: # If set, these variables imply that we should be using them as # sys.executable and when searching for venvs. However, we should # use the argv0 path for prefix calculation base_executable = executable if not real_executable: real_executable = executable executable = ENV_PYTHONEXECUTABLE or ENV___PYVENV_LAUNCHER__ executable_dir = dirname(executable) # ****************************************************************************** # CALCULATE (default) home # ****************************************************************************** # Used later to distinguish between Py_SetPythonHome and other # ways that it may have been set home_was_set = False if home: home_was_set = True elif use_environment and ENV_PYTHONHOME and not py_setpath: home = ENV_PYTHONHOME # ****************************************************************************** # READ pyvenv.cfg # ****************************************************************************** venv_prefix = None # Calling Py_SetPythonHome(), Py_SetPath() or # setting $PYTHONHOME will override venv detection. if not home and not py_setpath: try: # prefix2 is just to avoid calculating dirname again later, # as the path in venv_prefix is the more common case. venv_prefix2 = executable_dir or dirname(executable) venv_prefix = dirname(venv_prefix2) try: # Read pyvenv.cfg from one level above executable pyvenvcfg = readlines(joinpath(venv_prefix, VENV_LANDMARK)) except FileNotFoundError: # Try the same directory as executable pyvenvcfg = readlines(joinpath(venv_prefix2, VENV_LANDMARK)) venv_prefix = venv_prefix2 except FileNotFoundError: venv_prefix = None pyvenvcfg = [] for line in pyvenvcfg: key, had_equ, value = line.partition('=') if had_equ and key.strip().lower() == 'home': executable_dir = real_executable_dir = value.strip() base_executable = joinpath(executable_dir, basename(executable)) break else: venv_prefix = None # ****************************************************************************** # CALCULATE base_executable, real_executable AND executable_dir # ****************************************************************************** if not base_executable: base_executable = executable or real_executable or '' if not real_executable: real_executable = base_executable try: real_executable = realpath(real_executable) except OSError as ex: # Only warn if the file actually exists and was unresolvable # Otherwise users who specify a fake executable may get spurious warnings. if isfile(real_executable): warn(f'Failed to find real location of {base_executable}') if not executable_dir and os_name == 'darwin' and library: # QUIRK: macOS checks adjacent to its library early library_dir = dirname(library) if any(isfile(joinpath(library_dir, p)) for p in STDLIB_LANDMARKS): # Exceptions here should abort the whole process (to match # previous behavior) executable_dir = realpath(library_dir) real_executable_dir = executable_dir # If we do not have the executable's directory, we can calculate it. # This is the directory used to find prefix/exec_prefix if necessary. if not executable_dir: executable_dir = real_executable_dir = dirname(real_executable) # If we do not have the real executable's directory, we calculate it. # This is the directory used to detect build layouts. if not real_executable_dir: real_executable_dir = dirname(real_executable) # ****************************************************************************** # DETECT _pth FILE # ****************************************************************************** # The contents of an optional ._pth file are used to totally override # sys.path calcualation. Its presence also implies isolated mode and # no-site (unless explicitly requested) pth = None pth_dir = None # Calling Py_SetPythonHome() or Py_SetPath() will override ._pth search, # but environment variables and command-line options cannot. if not py_setpath and not home_was_set: # Check adjacent to the main DLL/dylib/so if library: try: pth = readlines(library.rpartition('.')[0] + '._pth') pth_dir = dirname(library) except FileNotFoundError: pass # Check adjacent to the original executable, even if we # redirected to actually launch Python. This may allow a # venv to override the base_executable's ._pth file, but # it cannot override the library's one. if not pth_dir: try: pth = readlines(executable.rpartition('.')[0] + '._pth') pth_dir = dirname(executable) except FileNotFoundError: pass # If we found a ._pth file, disable environment and home # detection now. Later, we will do the rest. if pth_dir: use_environment = 0 home = pth_dir pythonpath = [] # ****************************************************************************** # CHECK FOR BUILD DIRECTORY # ****************************************************************************** build_prefix = None if not home_was_set and real_executable_dir and not py_setpath: # Detect a build marker and use it to infer prefix, exec_prefix, # stdlib_dir and the platstdlib_dir directories. try: platstdlib_dir = joinpath( real_executable_dir, readlines(joinpath(real_executable_dir, BUILDDIR_TXT))[0], ) build_prefix = joinpath(real_executable_dir, VPATH) except IndexError: # File exists but is empty platstdlib_dir = real_executable_dir build_prefix = joinpath(real_executable_dir, VPATH) except FileNotFoundError: if isfile(joinpath(real_executable_dir, BUILD_LANDMARK)): build_prefix = joinpath(real_executable_dir, VPATH) if os_name == 'nt': # QUIRK: Windows builds need platstdlib_dir to be the executable # dir. Normally the builddir marker handles this, but in this # case we need to correct manually. platstdlib_dir = real_executable_dir if build_prefix: if os_name == 'nt': # QUIRK: No searching for more landmarks on Windows build_stdlib_prefix = build_prefix else: build_stdlib_prefix = search_up(build_prefix, *BUILDSTDLIB_LANDMARKS) # Always use the build prefix for stdlib if build_stdlib_prefix: stdlib_dir = joinpath(build_stdlib_prefix, 'Lib') else: stdlib_dir = joinpath(build_prefix, 'Lib') # Only use the build prefix for prefix if it hasn't already been set if not prefix: prefix = build_stdlib_prefix # Do not warn, because 'prefix' never equals 'build_prefix' on POSIX #elif not venv_prefix and prefix != build_prefix: # warn('Detected development environment but prefix is already set') if not exec_prefix: exec_prefix = build_prefix # Do not warn, because 'exec_prefix' never equals 'build_prefix' on POSIX #elif not venv_prefix and exec_prefix != build_prefix: # warn('Detected development environment but exec_prefix is already set') config['_is_python_build'] = 1 # ****************************************************************************** # CALCULATE prefix AND exec_prefix # ****************************************************************************** if py_setpath: # As documented, calling Py_SetPath will force both prefix # and exec_prefix to the empty string. prefix = exec_prefix = '' else: # Read prefix and exec_prefix from explicitly set home if home: # When multiple paths are listed with ':' or ';' delimiters, # split into prefix:exec_prefix prefix, had_delim, exec_prefix = home.partition(DELIM) if not had_delim: exec_prefix = prefix # Reset the standard library directory if it was already set stdlib_dir = None # First try to detect prefix by looking alongside our runtime library, if known if library and not prefix: library_dir = dirname(library) if ZIP_LANDMARK: if os_name == 'nt': # QUIRK: Windows does not search up for ZIP file if isfile(joinpath(library_dir, ZIP_LANDMARK)): prefix = library_dir else: prefix = search_up(library_dir, ZIP_LANDMARK) if STDLIB_SUBDIR and STDLIB_LANDMARKS and not prefix: if any(isfile(joinpath(library_dir, f)) for f in STDLIB_LANDMARKS): prefix = library_dir stdlib_dir = joinpath(prefix, STDLIB_SUBDIR) # Detect prefix by looking for zip file if ZIP_LANDMARK and executable_dir and not prefix: if os_name == 'nt': # QUIRK: Windows does not search up for ZIP file if isfile(joinpath(executable_dir, ZIP_LANDMARK)): prefix = executable_dir else: prefix = search_up(executable_dir, ZIP_LANDMARK) if prefix: stdlib_dir = joinpath(prefix, STDLIB_SUBDIR) if not isdir(stdlib_dir): stdlib_dir = None # Detect prefix by searching from our executable location for the stdlib_dir if STDLIB_SUBDIR and STDLIB_LANDMARKS and executable_dir and not prefix: prefix = search_up(executable_dir, *STDLIB_LANDMARKS) if prefix: stdlib_dir = joinpath(prefix, STDLIB_SUBDIR) if PREFIX and not prefix: prefix = PREFIX if not any(isfile(joinpath(prefix, f)) for f in STDLIB_LANDMARKS): warn('Could not find platform independent libraries <prefix>') if not prefix: prefix = abspath('') warn('Could not find platform independent libraries <prefix>') # Detect exec_prefix by searching from executable for the platstdlib_dir if PLATSTDLIB_LANDMARK and not exec_prefix: if executable_dir: exec_prefix = search_up(executable_dir, PLATSTDLIB_LANDMARK, test=isdir) if not exec_prefix: if EXEC_PREFIX: exec_prefix = EXEC_PREFIX if not isdir(joinpath(exec_prefix, PLATSTDLIB_LANDMARK)): warn('Could not find platform dependent libraries <exec_prefix>') else: warn('Could not find platform dependent libraries <exec_prefix>') # Fallback: assume exec_prefix == prefix if not exec_prefix: exec_prefix = prefix if not prefix or not exec_prefix: warn('Consider setting $PYTHONHOME to <prefix>[:<exec_prefix>]') # If we haven't set [plat]stdlib_dir already, set them now if not stdlib_dir: if prefix: stdlib_dir = joinpath(prefix, STDLIB_SUBDIR) else: stdlib_dir = '' if not platstdlib_dir: if exec_prefix: platstdlib_dir = joinpath(exec_prefix, PLATSTDLIB_LANDMARK) else: platstdlib_dir = '' # For a venv, update the main prefix/exec_prefix but leave the base ones unchanged # XXX: We currently do not update prefix here, but it happens in site.py #if venv_prefix: # base_prefix = prefix # base_exec_prefix = exec_prefix # prefix = exec_prefix = venv_prefix # ****************************************************************************** # UPDATE pythonpath (sys.path) # ****************************************************************************** if py_setpath: # If Py_SetPath was called then it overrides any existing search path config['module_search_paths'] = py_setpath.split(DELIM) config['module_search_paths_set'] = 1 elif not pythonpath: # If pythonpath was already set, we leave it alone. # This won't matter in normal use, but if an embedded host is trying to # recalculate paths while running then we do not want to change it. pythonpath = [] # First add entries from the process environment if use_environment and ENV_PYTHONPATH: for p in ENV_PYTHONPATH.split(DELIM): pythonpath.append(abspath(p)) # Then add the default zip file if os_name == 'nt': # QUIRK: Windows uses the library directory rather than the prefix if library: library_dir = dirname(library) else: library_dir = executable_dir pythonpath.append(joinpath(library_dir, ZIP_LANDMARK)) elif build_prefix or venv_prefix: # QUIRK: POSIX uses the default prefix when in the build directory # or a venv pythonpath.append(joinpath(PREFIX, ZIP_LANDMARK)) else: pythonpath.append(joinpath(prefix, ZIP_LANDMARK)) if os_name == 'nt' and use_environment and winreg: # QUIRK: Windows also lists paths in the registry. Paths are stored # as the default value of each subkey of # {HKCU,HKLM}\Software\Python\PythonCore\{winver}\PythonPath # where winver is sys.winver (typically '3.x' or '3.x-32') for hk in (winreg.HKEY_CURRENT_USER, winreg.HKEY_LOCAL_MACHINE): try: key = winreg.OpenKeyEx(hk, WINREG_KEY) try: i = 0 while True: try: keyname = winreg.EnumKey(key, i) subkey = winreg.OpenKeyEx(key, keyname) if not subkey: continue try: v = winreg.QueryValue(subkey) finally: winreg.CloseKey(subkey) if isinstance(v, str): pythonpath.append(v) i += 1 except OSError: break finally: winreg.CloseKey(key) except OSError: pass # Then add any entries compiled into the PYTHONPATH macro. if PYTHONPATH: for p in PYTHONPATH.split(DELIM): pythonpath.append(joinpath(prefix, p)) # Then add stdlib_dir and platstdlib_dir if stdlib_dir: pythonpath.append(stdlib_dir) if platstdlib_dir: if os_name == 'nt' and venv_prefix: # QUIRK: Windows appends executable_dir instead of platstdlib_dir # when in a venv pythonpath.append(executable_dir) else: pythonpath.append(platstdlib_dir) config['module_search_paths'] = pythonpath config['module_search_paths_set'] = 1 # ****************************************************************************** # POSIX prefix/exec_prefix QUIRKS # ****************************************************************************** # QUIRK: Non-Windows replaces prefix/exec_prefix with defaults when running # in build directory. This happens after pythonpath calculation. if os_name != 'nt' and build_prefix: prefix = config.get('prefix') or PREFIX exec_prefix = config.get('exec_prefix') or EXEC_PREFIX or prefix # ****************************************************************************** # SET pythonpath FROM _PTH FILE # ****************************************************************************** if pth: config['isolated'] = 1 config['use_environment'] = 0 config['site_import'] = 0 pythonpath = [] for line in pth: line = line.partition('#')[0].strip() if not line: pass elif line == 'import site': config['site_import'] = 1 elif line.startswith('import '): warn("unsupported 'import' line in ._pth file") else: pythonpath.append(joinpath(pth_dir, line)) config['module_search_paths'] = pythonpath config['module_search_paths_set'] = 1 # ****************************************************************************** # UPDATE config FROM CALCULATED VALUES # ****************************************************************************** config['program_name'] = program_name config['home'] = home config['executable'] = executable config['base_executable'] = base_executable config['prefix'] = prefix config['exec_prefix'] = exec_prefix config['base_prefix'] = base_prefix or prefix config['base_exec_prefix'] = base_exec_prefix or exec_prefix config['platlibdir'] = platlibdir config['stdlib_dir'] = stdlib_dir config['platstdlib_dir'] = platstdlib_dir ```
{ "source": "JMcB17/pixels", "score": 2 }
#### File: pixels/pixels/__init__.py ```python import logging from pixels.pixels import app # noqa: F401 Unused import ENDPOINTS_TO_FILTER_OUT = [ "/set_pixel" ] class EndpointFilter(logging.Filter): """Used to filter out unicorn endpoint logging.""" def filter(self, record: logging.LogRecord) -> bool: """Returns true for logs that don't contain anything we want to filter out.""" log = record.getMessage() return all(endpoint not in log for endpoint in ENDPOINTS_TO_FILTER_OUT) # Filter out all endpoints in `ENDPOINTS_TO_FILTER_OUT` logging.getLogger("uvicorn.access").addFilter(EndpointFilter()) ```
{ "source": "jmcb/jquizzyva", "score": 4 }
#### File: jquizzyva/test/test_z___.py ```python import unittest import util.search, util.db class TestZ___Anagram (unittest.TestCase): def setUp (self): with open("test/z___.txt") as f: self.acceptable = set([line.strip() for line in f]) self.search = util.search.AnagramMatch("Z[AEIOU][AEIOU]?") self.db = util.db.csw() def test_search (self): results = self.db.search(self.search) for result in results: word = result["word"] self.assertIn(word, self.acceptable) class TestZ___SubAnagram (unittest.TestCase): def setUp (self): with open("test/sub_z___.txt") as f: self.acceptable = set([line.strip() for line in f]) self.search = util.search.SubanagramMatch("Z[AEIOU][AEIOU]?") self.db = util.db.csw() def test_search (self): results = self.db.search(self.search) for result in results: word = result["word"] self.assertIn(word, self.acceptable) ``` #### File: jquizzyva/util/search.py ```python import json import sqlite3 import util.pattern CALLBACK_FUNCTION = "callback" class SearchError (Exception): """ This error is raised whenever a search fails. """ pass def alphagram (string): """ This converts a string into an 'alphagram': an alphabetically sorted string. """ return "".join(sorted(list(string.upper()))) class SearchType (object): """ This is the basic search type object from which all of our search types derive. Primarily they provide a way of automatically generating SQL WHERE clauses for searching, but in a secondary manner provide limiting and filtering of results. """ negated = False def __init__ (self, negated=False, *args, **kwargs): """ Create a new search type. This provides access for negation of search terms on a general basis, but otherwise all search terms created should be derivatives of this class; it should never be insantiated directly. :param negated: If True, the search term will be negated. Default False. """ super(SearchType, self).__init__(*args, **kwargs) self.negated = negated def negate (self): """ Manually mark the search term as being negated. """ self.negated = True def clause (self): """ Generate a clause or series of clauses to be appended to an SQL statement. It returns False to denote that there is no clause for this constraint. """ return False def limit (result): """ Limit returned results by filtering them according to some specific pattern. It is expected that the limiting will be in-place, and that the new "limited" result list will be returned by this function. :param result: This consists of the list of results from the database; note that this result list may have already been limited by a previous query. """ return result def __repr__ (self): return str(self.__class__) def asdict (self): result = {"search_type": self.__class__.__name__, "negated": self.negated} for key, value in self.__dict__.iteritems(): if key.startswith("search"): result[key] = value return result def asjson (self): return json.dumps(self.asdict()) @classmethod def fromdict (cls, ddict): ddict = dict(ddict) st = ddict.pop("search_type") if not st == cls.__class__.__name__: cls = globals()[st] return cls(**ddict) @classmethod def fromjson (cls, jsond): return cls.fromdict(json.loads(jsond)) class StringSearch (SearchType): """ This is another base-type for string-based searches, and should not be instantiated directly. """ search_string = None def __init__ (self, search_string="", *args, **kwargs): """ Create a new string-based search. :param search_string: This string is the parameter that is stored and is then used when generating WHERE clauses. """ super(StringSearch, self).__init__(*args, **kwargs) self.search_string = search_string def __repr__ (self): return "<%s search_string:%s>" % (self.__class__.__name__, self.search_string) try: from util._search import AnagramMatchBase, SubanagramMatchBase, PatternMatchBase except: class PatternMatch (StringSearch): """ A derivative of StringSearch, this search applies a pattern specifically to the database. """ patternobj = None regexpobj = None column = "words.word" def clause (self): return CALLBACK_FUNCTION def pattern (self): if self.patternobj is None: self.patternobj = util.pattern.Pattern.fromstring(self.search_string) self.regexpobj = self.patternobj.as_regexp() def search_function (word): match = self.regexpobj.match(word) if not match: return (False, 0) blanks = ''.join([x for x in match.groups() if x]) self.patternobj.blank_store.append(blanks) return (True, blanks) return search_function, self.patternobj def bounds (self): return self.patternobj.bounds() class AnagramMatch (StringSearch): """ A derivative of StringSearch, this search looks for anagrams of the string provided. """ patternobj = None column = "words.alphagram" def clause (self): if "?" in self.search_string or "[" in self.search_string or "*" in self.search_string: return CALLBACK_FUNCTION ag = alphagram(self.search_string) return ("words.alphagram=?", (ag, )) def pattern (self): if self.patternobj is None: self.patternobj = util.pattern.AnagramPattern.fromstring(self.search_string) def search_function (word): return self.patternobj.try_word(word) return search_function, self.patternobj def bounds (self): return self.patternobj.bounds() class SubanagramMatch (AnagramMatch): """ A derivative of StringSearch, this search, like AnagramMatch, searches for anagrams of the string provided. However, it will search for anagrams of any length, of any combination of the contained string. """ def clause (self): return CALLBACK_FUNCTION def pattern (self): if self.patternobj is None: self.patternobj = util.pattern.SubAnagramPattern.fromstring(self.search_string) def search_function (word): return self.patternobj.try_word(word) return search_function, self.patternobj else: class PatternMatch (PatternMatchBase, StringSearch): column = "words.word" def asdict (self): return {"search_type": "PatternMatch", "search_string": self.search_string, "negated": self.negated} @classmethod def fromdict (cls, my_dict): my_dict = dict(my_dict) my_dict.pop("search_type") return cls(**my_dict) def asjson (self): return json.dumps(self.asdict()) @classmethod def fromjson (cls, data): return cls.fromdict(json.loads(data)) class _AlphagramMatch (StringSearch): column = "words.alphagram" def clause (self): ag = alphagram(self.search_string) return ("words.alphagram=?", (ag, )) def asdict (self): return {"search_type": "AnagramMatch", "search_string": self.search_string, "negated": self.negated} class _AnagramMatch (AnagramMatchBase, StringSearch): column = "words.alphagram" def asdict (self): return {"search_type": "AnagramMatch", "search_string": self.search_string, "negated": self.negated} @classmethod def fromdict (cls, my_dict): my_dict = dict(my_dict) my_dict.pop("search_type") return cls(**my_dict) def asjson (self): return json.dumps(self.asdict()) @classmethod def fromjson (cls, data): return cls.fromdict(json.loads(data)) def AnagramMatch (search_string, negated=False): if "?" in search_string or "[" in search_string or "*" in search_string: return _AnagramMatch(search_string=search_string, negated=negated) else: return _AlphagramMatch(search_string=search_string, negated=negated) class SubanagramMatch (SubanagramMatchBase, StringSearch): column = "words.alphagram" def asdict (self): return {"search_type": "SubanagramMatch", "search_string": self.search_string, "negated": self.negated} @classmethod def fromdict (cls, my_dict): my_dict = dict(my_dict) my_dict.pop("search_type") return cls(**my_dict) def asjson (self): return json.dumps(self.asdict()) @classmethod def fromjson (cls, data): return cls.fromdict(json.loads(data)) class TakesPrefix (StringSearch): """ This is a limiting search that ensures that the words returned are only words which take a specific prefix. """ column = "words.word" def clause (self): if len(self.search_string) == 1: return ("words.front_hooks LIKE ?", ("%" + self.search_string + "%", )) return ("?||words.word IN (SELECT word AS pos_word FROM words WHERE pos_word=?||MYWORD)", (self.search_string, self.search_string)) class TakesSuffix (StringSearch): """ As per TakesPrefix, only apply to words which take a specific suffix instead. """ column = "words.word" def clause (self): if len(self.search_string) == 1: return ("words.back_hooks LIKE ?", ("%" + self.search_string + "%", )) return ("words.word||? IN (SELECT word AS pos_word FROM words WHERE pos_word=MYWORD||?)", (self.search_string, self.search_string)) class RangeSearch (SearchType): """ This search specifies integer "start" and "stop" values, and limits results to those whose specific column value falls between these two values; if the "start" and "stop" parameters are the same, or the stop value is less than the start value, only results whose column value matches the "start" value will be returned. """ search_range_start = 0 search_range_stop = 0 def __init__ (self, search_range_start=0, search_range_stop=0, *args, **kwargs): """ Create a new RangeSearch. :param search_range_start: The starting range limiter. :param search_range_stop: The stopping range limiter. """ super(RangeSearch, self).__init__(*args, **kwargs) try: self.search_range_start = int(search_range_start) except ValueError: raise SearchError("%s is invalid start" % search_range_start) try: self.search_range_stop = int(search_range_stop) except ValueError: raise SearchError("%s is invalid stop" % search_range_stop) if self.search_range_stop < self.search_range_start: self.search_range_stop = self.search_range_start def clause (self): rt = self.search_range_start rp = self.search_range_stop if rt == rp or rp < rt: return ("%s=?" % self.column, (rt, )) else: return ("%s >= ? AND %s <= ?" % (self.column, self.column), (rt, rp)) def __repr__ (self): return "<%s search_range_start:%s, search_range_stop:%s>" % (self.__class__.__name__, self.search_range_start, self.search_range_stop) class Length (RangeSearch): """ This search limits results to words of a specific length -- either within a range or or a certain value. """ column = "words.length" class NumberOfVowels (RangeSearch): """ This search limits results to words which contain either a specific number of vowels, or a number of vowels that falls between a specified range. """ column = "words.num_vowels" class NumberOfUniqueLetters (RangeSearch): """ This search limits results to words which container either a specific number of unique letters, or whose number of unique letters falls between a specified range. """ column = "words.num_unique_letters" class PointValue (RangeSearch): """ This search limits results to words who have either a specific 'point' value, or whose 'point' value falls between a specified range. """ column = "words.point_value" class NumberOfAnagrams (RangeSearch): """ This search limits results to words who either have a specific number of anagrams possible, or whose number of possible anagrams falls between a specified range. """ column = "words.num_anagrams" class ConsistsOf (StringSearch, RangeSearch): def __repr__ (self): return "<%s search_range_start:%s, search_range_stop:%s, search_string:%s>" % (self.__class__.__name__, self.search_range_start, self.search_range_stop, self.search_string) class StringListSearch (SearchType): search_string_list = None def __init__ (self, search_string_list=None, search_string=None, *args, **kwargs): super(StringListSearch, self).__init__(*args, **kwargs) self.search_string_list = search_string_list if self.search_string_list is None: self.search_string_list = [] if search_string is not None: self.search_string_list.extend(search_string) def __repr__ (self): return "<%s search_string_list:%s>" % (self.__class__.__name__, self.search_string_list) class IncludesLetters (StringListSearch): column = "words.word" def clause (self): args = [] query = "" if self.negated: like = "NOT LIKE" else: like = "LIKE" for character in self.search_string_list: query += "%s %s ?" % (self.column, like) args.append("%"+character+"%") return (query, tuple(args)) class InWordList (StringListSearch): column = "words.word" def clause (self): args = [] query = "" if self.negated: query = "%s NOT IN (" % self.column else: query = "%s IN (" % self.column for word in self.search_string_list: query += "?, " args.append(word) query = query.rstrip(", ") + ")" return (query, tuple(args)) class BelongsToGroup (SearchType): column = "words.word" def __init__ (self, search_term_string, *args, **kwargs): super(BelongsToGroup, self).__init__(*args, **kwargs) self.search_string_list = ["Hook Words", "Front Hooks", "Back Hooks", "High Fives", "Type I Sevens", "Type II Sevens", "Type III Sevens", "Type I Eights", "Type II Eights", "Type III Eights", "Eights From Seven-Letter Stems"] assert search_term_string in self.search_string_list self.search_term_string = search_term_string def clause (self): args = [] query = "" st = self.search_term_string if "Hook" in st: if self.negated: m = "0" else: m = "1" if "Front" in st: query += "words.is_front_hook=?" args.append(m) elif "Back" in st: query += "words.is_back_hook=?" args.append(m) elif "Words" in st: query += "words.is_front_hook=? AND words.is_back_hook=?" args.extend((m, m)) return (query, tuple(args)) else: return False class SearchList (object): searches = None def __init__ (self, *searches): super(SearchList, self).__init__() self.searches = [] if searches: self.searches.extend(searches) def append (self, item): self.searches.append(item) def query (self): args = [] functions = {} query = "SELECT front_hooks, word as MYWORD, back_hooks, definition FROM words WHERE " maybe_query = None for constraint in self.searches: try: squery, subargs = constraint.clause() except ValueError: ind = len(functions)+1 squery = "anagrammer%s(%s)" % (ind, constraint.column) subargs = [] functions["anagrammer%s" % ind] = constraint.pattern() bounds = constraint.bounds() if (maybe_query and int(maybe_query[-1]) < int(bounds[-1])) or not maybe_query: maybe_query = bounds if not query.endswith("WHERE "): query += " AND " query += squery args.extend(subargs) if "words.length" not in query and maybe_query: query += " AND " + maybe_query query += " LIMIT 100" return (query, args, functions) def __repr__ (self): return "<SearchList %s>" % self.searches def asdicts (self): return [item.asdict() for item in self.searches] def asjson (self): return json.dumps(self.asdicts()) @classmethod def fromdicts (cls, items): try: return cls(*[SearchType.fromdict(item) for item in items]) except: return cls(SearchType.fromdict(items)) @classmethod def fromjson (cls, jsond): return cls.fromdicts(json.loads(jsond)) ```
{ "source": "jmcb/murderrl", "score": 2 }
#### File: murderrl/builder/builder.py ```python import random, copy, room from library import shape, collection from library.coord import * from library.random_util import * from library.feature import * # Specific build styles: BASE_SHAPE = "single-corridor" L_LAYOUT = "L-corridors" Z_LAYOUT = "Z-corridors" N_LAYOUT = "N-corridors" H_LAYOUT = "H-corridors" O_LAYOUT = "O-corridors" U_LAYOUT = "U-corridors" class BuilderCollection (collection.ShapeCollection): corridors = None rooms = None legs = None main_corridor = None def __init__ (self, c=[]): if c != [] and isinstance(c, BuilderCollection): self.legs = c.legs collection.ShapeCollection.__init__(self, c) self.rebuild() def copy (self): my_copy = BuilderCollection(copy.copy(self._shapes)) my_copy.legs = copy.deepcopy(self.legs) return my_copy def rebuild (self): self.corridors = [] self.rooms = [] if not self.legs: self.legs = [] for index, sh in enumerate(self): if isinstance(sh.shape, MainCorridor): self.main_corridor = index if isinstance(sh.shape, Corridor): self.corridors.append(index) else: self.rooms.append(index) def corridor (self, index): assert index in self.corridors return self[index] def get_corridors (self): return self.corridors def get_room (self, index): assert index in self.rooms return self[index] def get_rooms (self): if not self.rooms: return None return self.rooms def mark_leg (self, leg): self.legs.append(leg) def count_legs (self): return len(self.legs) def leg_at (self, side, placement): return (side, placement) in self.legs def get_leg (self, side, placement): for leg in self.legs: if leg == (side, placement): return leg return None def _rebuild_wrap (function): def wrapper (self, *args, **kwargs): function(self, *args, **kwargs) self.rebuild() wrapper.__name__ = function.__name__ wrapper.__doc__ = function.__doc__ + "\n\nCalling this function automatically rebuilds the BuilderCollection index." return wrapper __setitem__ = _rebuild_wrap(collection.ShapeCollection.__setitem__) append = _rebuild_wrap(collection.ShapeCollection.append) extend = _rebuild_wrap(collection.ShapeCollection.extend) insert = _rebuild_wrap(collection.ShapeCollection.insert) pop = _rebuild_wrap(collection.ShapeCollection.pop) prioritise = _rebuild_wrap(collection.ShapeCollection.prioritise) reverse = _rebuild_wrap(collection.ShapeCollection.reverse) reversed = _rebuild_wrap(collection.ShapeCollection.reversed) sort = _rebuild_wrap(collection.ShapeCollection.sort) append = _rebuild_wrap(collection.ShapeCollection.append) prioritise = _rebuild_wrap(collection.ShapeCollection.prioritise) class Corridor (shape.Shape): pass class MainCorridor (Corridor): pass def join_row_rooms (row, left_corr=False, right_corr=False, check_offset=False): """ Given a list of rooms, joins them together as a ShapeCollection. :``row``: A list of Room objects that should be placed in a row. *Required*. :``left_corr``: If true, leaves a gap between the first and second rooms to make space for a corridor. *Default False*. :``right_corr``: If true, leaves a gap between the last and second-last rooms to make space for a corridor. *Default False*. :``check_offset``: If true, compares the room heights to see if they need to be offset from the top. *Default False*. """ assert(len(row) > 2) first_room = row[0].as_shape() second_room = row[1].as_shape() # Does some weird stuff to offset everything offset_both = False if check_offset and first_room.height() == second_room.height(): offset_both = True # Join the first two rooms. top_offset = 0 if check_offset: top_offset = 2 overlap = 1 if left_corr: overlap = -1 row_collection = shape.adjoin(first_room, second_room, top_offset=top_offset, overlap=overlap, collect=True, offset_both=offset_both) # Join the middle rooms. for curr in row[2:-1]: room_shape = curr.as_shape() to = top_offset if check_offset and (room_shape.height() == first_room.height() and not offset_both or room_shape.height() > first_room.height()): to = 0 row_collection = shape.adjoin(row_collection, room_shape, top_offset=to, overlap=1, collect=True, offset_both=offset_both) # Join the last room. last_room = row[-1].as_shape() if check_offset and (last_room.height() == first_room.height() and not offset_both or last_room.height() > first_room.height()): top_offset = 0 overlap = 1 if right_corr: overlap = -1 row_collection = shape.adjoin(row_collection, last_room, top_offset=top_offset, overlap=overlap, collect=True) return row_collection ROOM_WIDTH_LIST = [7, 8, 9, 10, 11, 12] def random_room_height (): """ Returns a random value for the height of a room. """ height = 7 if coinflip(): height += 1 elif one_chance_in(3): height -= 1 return height def base_builder (min_rooms=0, top_left=None, top_right=None, bottom_left=None, bottom_right=None, tl_corr=False, tr_corr=False, bl_corr=False, br_corr=False,top_height=None, bottom_height=None): """ Attempts to build a basic rectangular manor. It returns ShapeCollection and a list of Room objects. :``min_rooms``: The minimum number of rooms. *Default None*. :``top_left``: The width of the top left room. Random, if none. *Default None*. :``top_right``: The width of the top right room. Random, if none. *Default None*. :``bottom_left``: The width of the bottom left room. Random, if none. *Default None*. :``bottom_right``: The width of the bottom right room. Random, if none. *Default None*. :``tl_corr``: If true, leaves a gap for a corridor between the top-left two rooms. *Default False*. :``tr_corr``: If true, leaves a gap for a corridor between the top-right two rooms. *Default False*. :``bl_corr``: If true, leaves a gap for a corridor between the bottom-left two rooms. *Default False*. :``br_corr``: If true, leaves a gap for a corridor between the bottom-right two rooms. *Default False*. :``top_height``: The height of the top row rooms. Random, if none. *Default None*. :``bottom_height``: The height of the bottom row rooms. Random, if none. *Default None*. """ if top_left == None: top_left = random.choice(ROOM_WIDTH_LIST) if top_right == None: top_right = random.choice(ROOM_WIDTH_LIST) if bottom_left == None: bottom_left = random.choice(ROOM_WIDTH_LIST) if bottom_right == None: bottom_right = random.choice(ROOM_WIDTH_LIST) # tl_corr = True # tr_corr = True # bl_corr = True # br_corr = True print "tl: %s, tr: %s, bl: %s, br: %s" % (top_left, top_right, bottom_left, bottom_right) print "tl: %s, tr: %s, bl: %s, br: %s" % (tl_corr, tr_corr, bl_corr, br_corr) # Top row of rooms row1 = [] # Corridor, then bottom row of rooms row2 = [] max_length = 6*12 # currently unused # manor_width = random.randint(max_length/2, max_length) # Decide the row heights. if top_height == None: top_height = random_room_height() if bottom_height == None: bottom_height = random_room_height() print "top_height: %s, bottom_height: %s" % (top_height, bottom_height) # first rooms on either row height1 = top_height height2 = bottom_height check_overlap = False if top_left < bottom_left or top_left == bottom_left and coinflip(): height1 += 2 else: height2 += 2 check_overlap = True first = room.Room(width=top_left, height=height1) row1.append(first) first = room.Room(width=bottom_left, height=height2) row2.append(first) # print "first rooms: height1=%s, height2=%s" % (height1, height2) length1 = top_left + top_right - 2 if tl_corr: length1 += 2 if tr_corr: length1 += 2 length2 = bottom_left + bottom_right - 2 if bl_corr: length2 += 2 if br_corr: length2 += 2 print "Row 1:" print "room 1: w=%s, length1: %s" % (top_left, length1) while len(row1) <= 5: # If we have four rooms, one in three chance of not adding any more # rooms. if len(row1) > 3 and one_chance_in(3): break new_room = room.Room(width=random.choice(ROOM_WIDTH_LIST), height=top_height) row1.append(new_room) length1 += new_room.width - 1 print "room %s: w=%s, length1: %s" % (len(row1), new_room.width, length1) print "room %s: w=%s" % (len(row1)+1, top_right) manor_width = length1 print "\nRow 2:" print "room 1: w=%s, length2: %s" % (bottom_left, length2) while length2 < manor_width: dist_left = manor_width - length2 + 1 if dist_left < 14: new_width = dist_left else: new_width = random.choice(ROOM_WIDTH_LIST) next_width = dist_left - new_width if next_width < 7: new_width = random.choice((6,7,8)) new_room = room.Room(width=new_width, height=bottom_height) row2.append(new_room) length2 += new_width - 1 print "room %s: w=%s, length2: %s" % (len(row2), new_width, length2) print "room %s: w=%s" % (len(row2)+1, bottom_right) # last rooms on either row height1 = top_height height2 = bottom_height if top_right < bottom_right or top_right == bottom_right and coinflip(): height1 += 2 check_overlap = False else: height2 += 2 # check_overlap = True # print "last rooms: height1=%s, height2=%s" % (height1, height2) last = room.Room(width=top_right, height=height1) row1.append(last) last = room.Room(width=bottom_right, height=height2) row2.append(last) print "\nrow1: %s rooms, row2: %s rooms, manor width: %s" % (len(row1), len(row2), manor_width) # Try to get the minimum number of rooms. if len(row1) + len(row2) < min_rooms: return base_builder(min_rooms - 1) # Now, start drawing it! YAY! # First row row1_collection = join_row_rooms(row1, tl_corr, tr_corr) # second row row2_collection = join_row_rooms(row2, bl_corr, br_corr, True) # Finally, make a corridor! overlap = 3 if check_overlap: overlap = 1 my_collection = shape.underneath(row1_collection, row2_collection, overlap=overlap, collect=True) m = BuilderCollection(my_collection) noncorr_left = min(top_left, bottom_left) noncorr_right = min(top_right, bottom_right) corridor_length = my_collection.width() - noncorr_left - noncorr_right # print "noncorr_left: %s, noncorr_right: %s, corridor_length: %s" % (noncorr_left, noncorr_right, corridor_length) corridor = MainCorridor(shape.Row(width=corridor_length, fill=".")) m.append(collection.ShapeCoord(corridor, coord.Coord(noncorr_left, top_height))) return m class Placement (object): def __init__ (self, side1, side2, this_side): self.sides = [side1, side2] self.this_side = this_side def opposite (self): return self.sides[self.this_side-1] def __hash__ (self): return hash(str(self)) def __str__ (self): return self.sides[self.this_side] def __repr__ (self): return "<Placement %s>" % self def __cmp__ (self, other): return cmp(str(self), str(other)) SIDE_LEFT = Placement("left", "right", 0) SIDE_RIGHT = Placement("left", "right", 1) PLACE_TOP = Placement("top", "bottom", 0) PLACE_BOTTOM = Placement("top", "bottom", 1) class Leg (object): """ The representation of a manor leg (or "wing") that is attached to the base manor. """ def __init__ (self, h_placement, v_placement, width=None, height=None, leg=None): assert not (leg is None and width is None and height is None) if leg is not None: width, height = leg.size() self.placement = (h_placement, v_placement) self.width = width self.height = height def __repr__ (self): return "<Leg h:%s w:%s %s>" % (self.height, self.width, self.placement) def __cmp__ (self, other): if isinstance(other, Leg): return cmp(self.placement, other.placement) elif isinstance(other, tuple): return cmp(self.placement, other) def attach_leg (base, leg, side=SIDE_LEFT, placement=PLACE_TOP, corr_offset = None, x_offset = None): """ Take a result of base_builder() and attach a leg. :``base``: The base shape collection. :``leg``: The leg shape collection. :``side``: Which side the leg should be placed on. *Default ``SIDE_LEFT``*. :``placement``: Whether the leg should be placed above or below. *Default ``PLACE_TOP``*. :``corr_offset``: A number by which to vertically offset the corridor placement. If none, uses the default room height. *Default None*. :``x_offset``: A number by which to horizontally offset the corridor placement. *Default None*. """ assert not base.leg_at(side, placement) old_leg = leg.copy() no_vert_offset = False vert_offset = 0 if base.leg_at(side.opposite(), placement): l = base.get_leg(side.opposite(), placement) vert_offset = base.height() - l.height no_vert_offset = True else: vert_offset = base.height() - 1 # Find the corridor corridor, start = base.corridor(base.main_corridor) assert corridor is not None # Find the corridor's end point stop = coord.Coord(start) stop.x = corridor.width() if side == SIDE_RIGHT: offs = leg[0].width() - start.x leg.offset(coord.Coord(stop.x-offs-1, 0)) if x_offset == None: x_offset = stop.x + start.x elif side == SIDE_LEFT and x_offset == None: x_offset = start.x print "vert_offset: %s, x_offset: %s, no_vert_offset: %s" % (vert_offset, x_offset, no_vert_offset) if corr_offset == None: corr_offset = room.Room().height ncorr_height = leg.height() + corr_offset - 1 new_corridor = Corridor(shape.Column(height=ncorr_height, fill=".")) corridor_offset = None if placement == PLACE_BOTTOM: if no_vert_offset: base.place_on(leg, offset=coord.Coord(0, vert_offset)) else: left_offset = 0 if side == SIDE_RIGHT: left_offset = base.width()-leg.width() base = shape.underneath(base, leg, left_offset=left_offset, overlap=1, collect=True) new_corridor[coord.Coord(0, new_corridor.height()-1)] = "#" corridor_offset = coord.Coord(x_offset, vert_offset - corr_offset + 1) base.append(new_corridor, corridor_offset) elif placement == PLACE_TOP: if no_vert_offset: base.place_on(leg) else: left_offset = 0 if side == SIDE_RIGHT: left_offset = leg.width()-base.width() # print "leg width (%s) - base width (%s) = left_offset (%s)" % (leg.width(), base.width(), left_offset) base = shape.underneath(leg, base, left_offset=left_offset, overlap=1, collect=True) new_corridor[POS_ORIGIN] = "#" corridor_offset = coord.Coord(x_offset, 0) base.append(new_corridor, corridor_offset) if placement == PLACE_TOP: start = coord.Coord(corridor_offset.x - 1, leg.height() - 1) elif placement == PLACE_BOTTOM: start = coord.Coord(corridor_offset.x - 1, vert_offset - corr_offset + 1) base = BuilderCollection(base) base.mark_leg(Leg(side, placement, leg=old_leg)) return base def build_leg (rooms_tall=2, rooms_wide=2, width_left=12, width_right=12, make_corridor=True, do_cleanup=True): """ Create and return a "leg" to be used with add_leg. :``rooms_tall``: How many rooms tall to make the leg. *Default 2*. :``rooms_wide``: How many rooms wide to make the leg. *Max 2. Default 2*. :``width_left``: The width of the leftmost rooms. *Default 12*. :``width_right``: The width of the rightmost rooms. *Default 12*. :``make_corridor``: Include a corridor when building. *Default True*. :``do_cleanup``: Perform corridor, etc, clean-up when built. *Default True*. """ assert rooms_wide >= 1 and rooms_wide <= 2 assert rooms_tall >= 1 leg_rooms = collection.ShapeCollection() if width_left == None: width_left = random.choice(ROOM_WIDTH_LIST) if width_right == None: width_right = random.choice(ROOM_WIDTH_LIST) heights = [] for r in xrange(rooms_tall): heights.append(7) for column in xrange(rooms_wide): this_col = collection.ShapeCollection() width = width_left if column > 0: width = width_right height_list = heights[:] if len(heights) > 1 and one_chance_in(5): indices = range(len(height_list)) small = random.choice(indices) indices.remove(small) large = random.choice(indices) height_list[small] -= 1 height_list[large] += 2 else: large = random.choice(xrange(len(height_list))) height_list[large] += 1 for row in xrange(rooms_tall): new_room = room.Room(width=width,height=height_list[row]).as_shape() # print "new_room height: %s, this_col height: %s" % (new_room.height(), this_col.height()) this_col = shape.underneath(new_room, this_col, offset_second=False, overlap=1, collect=True) # print "leg_rooms width: %s, this_col width: %s" % (leg_rooms.width(), this_col.width()) leg_rooms = shape.adjoin(leg_rooms, this_col, overlap=-1, collect=True) return leg_rooms def build_L (base=None, min_rooms=0, rooms=2, rooms_wide=2): """ Modifies the results of base_builder() to result in an L shape in any orientation. :``base``: The base shape collection. If None, a new base will be built from base_builder. *Default None*. :``rooms``: How many rooms to build along the sides of the new axis. *Default 2*. :``rooms_wide``: How many rooms wide to make the leg. *Max 2. Default 2*. """ side = random.choice([SIDE_LEFT, SIDE_RIGHT]) placement = random.choice([PLACE_TOP, PLACE_BOTTOM]) tlc = (side == SIDE_LEFT and placement == PLACE_TOP) trc = (side == SIDE_RIGHT and placement == PLACE_TOP) blc = (side == SIDE_LEFT and placement == PLACE_BOTTOM) brc = (side == SIDE_RIGHT and placement == PLACE_BOTTOM) if tlc or blc: # left side tlw = random.choice(ROOM_WIDTH_LIST) blw = random.choice(ROOM_WIDTH_LIST) trw = None brw = None if tlc: if blw < tlw: blw = tlw left = tlw else: if tlw < blw: tlw = blw left = blw right = None else: # right side tlw = None blw = None trw = random.choice(ROOM_WIDTH_LIST) brw = random.choice(ROOM_WIDTH_LIST) if trc: if brw < trw: brw = trw right = trw else: if trw < brw: trw = brw right = brw left = None tht = None bht = None corr_offset = random_room_height() if placement == PLACE_TOP: tht = corr_offset else: bht = corr_offset if base is None: base = base_builder(min_rooms=min_rooms-4, top_left=tlw, top_right=trw, bottom_left=blw, bottom_right=brw, tl_corr=tlc, tr_corr=trc, bl_corr=blc, br_corr=brc, top_height=tht, bottom_height=bht) # Draw the new rooms. new_rooms = build_leg(rooms, rooms_wide, width_left=left, width_right=right) offset = None if side == SIDE_RIGHT: offset = base.width() - right - 1 base = attach_leg(base, new_rooms, side=side, placement=placement, corr_offset=corr_offset, x_offset=offset) return base def build_Z (base=None, min_rooms=0): """ Modifies the results of base_builder() to result in an L shape in any orientation. Not implemented. Currently just returns the base builder results. :``base``: The base shape collection. If None, a new base will be built from base_builder. *Default None*. """ if base is None: base = base_builder(min_rooms=min_rooms) return base def build_N (base=None, min_rooms=0): """ Modifies the results of base_builder() to result in an L shape in any orientation. Not implemented. Currently just returns the base builder results. :``base``: The base shape collection. If None, a new base will be built from base_builder. *Default None*. """ if base is None: base = base_builder(min_rooms=min_rooms) return base def build_O (base=None, min_rooms=0): """ Modifies the results of base_builder() to result in an L shape in any orientation. Not implemented. Currently just returns the base builder results. :``base``: The base shape collection. If None, a new base will be built from base_builder. *Default None*. """ if base is None: base = base_builder(min_rooms=min_rooms) return base def build_H (base=None, min_rooms=0): """ Modifies the results of base_builder() to result in an H-shaped layout. :``base``: The base shape collection. If None, a new base will be built from base_builder. *Default None*. """ outer = random.choice(ROOM_WIDTH_LIST) # outer leg inner = random.choice(ROOM_WIDTH_LIST) # inner leg tht = random_room_height() bht = random_room_height() if base is None: base = base_builder(min_rooms=min_rooms-16, top_left=outer, top_right=outer, bottom_left=outer, bottom_right=outer, tl_corr=True, tr_corr=True, bl_corr=True, br_corr=True, top_height=tht, bottom_height=bht) base = build_U(base, min_rooms=min_rooms, placement=PLACE_TOP, outer=outer, inner=inner, room_height=tht) base = build_U(base, min_rooms=min_rooms, placement=PLACE_BOTTOM, outer=outer, inner=inner, room_height=bht) return base def build_U (base=None, min_rooms=0, rooms=2, rooms_wide=2, placement=None, outer=None, inner=None, room_height=None): """ Modifies the results of base_builder() to result in an U-shaped layout. :``base``: The base shape collection. If None, a new base will be built from base_builder. *Default None*. :``rooms``: How many rooms to build along the sides of the new axis. *Default 2*. :``rooms_wide``: How many rooms wide to make the leg. *Max 2. Default 2*. :``placement``: The vertical orientation of the manor legs. Random, if none. *Default None*. :``inner``: The width of the inner manor legs' rooms. Random, if none. *Default None*. :``outer``: The width of the outer manor legs' rooms. Random, if none. *Default None*. :``room_height``: The height of the base manor rooms on the side facing the legs. Random, if none. *Default None*. """ if placement is None: placement = random.choice([PLACE_TOP, PLACE_BOTTOM]) if outer == None: outer = random.choice(ROOM_WIDTH_LIST) # outer leg if inner == None: inner = random.choice(ROOM_WIDTH_LIST) # inner leg tht = None bht = None if room_height == None: room_height = random_room_height() if placement == PLACE_TOP: tht = room_height else: bht = room_height if base is None: tlc = (placement == PLACE_TOP) trc = tlc blc = not tlc brc = blc noleg = random.choice(ROOM_WIDTH_LIST) # opposite side if noleg < outer: noleg = outer if tlc: # top tlw = outer trw = outer blw = noleg brw = noleg else: # bottom tlw = noleg trw = noleg blw = outer brw = outer base = base_builder(min_rooms=min_rooms-8, top_left=tlw, top_right=trw, bottom_left=blw, bottom_right=brw, tl_corr=tlc, tr_corr=trc, bl_corr=blc, br_corr=brc, top_height=tht, bottom_height=bht) leg_width = outer + inner + 1 distance = base.width() - 2 * leg_width print "base width=%s, outer=%s, inner=%s, leg width=%s, distance=%s" % (base.width(), outer, inner, leg_width, base.width() - 2*leg_width) if distance < 5 and distance != -1: if distance % 2 == 0 or base.width() % 2 == 0: if distance < 0: inner -= 2 + (-distance) inner -= 2 else: inner = base.width()/2 - outer leg_width = outer + inner + 1 distance = base.width() - 2 * leg_width print "base width=%s, outer=%s, inner=%s, leg width=%s, distance=%s" % (base.width(), outer, inner, leg_width, base.width() - 2*leg_width) new_rooms_L = build_leg(rooms, rooms_wide, width_left=outer, width_right=inner) new_rooms_R = build_leg(rooms, rooms_wide, width_left=inner, width_right=outer) base = attach_leg(base, new_rooms_L, side=SIDE_LEFT, placement=placement, corr_offset=room_height) base = attach_leg(base, new_rooms_R, side=SIDE_RIGHT, placement=placement, corr_offset=room_height, x_offset=base.width() - outer - 1) return base def builder_by_type (type = None, min_rooms=0): """ Creates and returns a manor of a given layout type. :``type``: The layout type in a character representation. *Default None*. ``B``: base manor. ``L``: L-shaped layout. ``U``: L-shaped layout. ``H``: L-shaped layout. ``None``: random layout. """ if type == None: return build_random(min_rooms=min_rooms) if type == 'B': return base_builder(min_rooms=min_rooms) if type == 'L': return build_L(min_rooms=min_rooms) if type == 'U': return build_U(min_rooms=min_rooms) if type == 'H': return build_H(min_rooms=min_rooms) # The other types don't exist yet and fall back on the base_builder. if type == 'O': return build_O(min_rooms=min_rooms) if type == 'N': return build_N(min_rooms=min_rooms) if type == 'Z': return build_Z(min_rooms=min_rooms) else: return base_builder(min_rooms=min_rooms) def build_random (base=None, min_rooms=0): """ Creates and returns a manor of a random layout type. :``base``: The base shape collection. If None, a new base will be built from base_builder. *Default None*. """ l_list = [Z_LAYOUT, N_LAYOUT, O_LAYOUT, L_LAYOUT, U_LAYOUT, H_LAYOUT] layout = random.choice(l_list) if min_rooms > 25: layout = H_LAYOUT elif min_rooms > 20: layout = random.choice(l_list[-2:]) elif min_rooms > 15: layout = random.choice(l_list[-3:]) if layout == L_LAYOUT: return build_L(base, min_rooms=min_rooms) elif layout == Z_LAYOUT: return build_Z(base, min_rooms=min_rooms) elif layout == N_LAYOUT: return build_N(base, min_rooms=min_rooms) elif layout == H_LAYOUT: return build_H(base, min_rooms=min_rooms) elif layout == O_LAYOUT: return build_O(base, min_rooms=min_rooms) elif layout == U_LAYOUT: return build_U(base, min_rooms=min_rooms) else: return base_builder(min_rooms=min_rooms) ``` #### File: murderrl/builder/manor.py ```python import random, builder, room from interface.features import * from library.coord import * from library.random_util import * from library.feature import * from library import pathfind class ManorCollection (builder.BuilderCollection): def __init__ (self, c=[]): builder.BuilderCollection.__init__(self, c) def print_corridors (self): """ Debugging method. Iterates over all corridors and prints the location and size of each corridor within the manor. """ for idx in self.corridors: print "Corridor %s: %s" % (idx, self.corridor(idx)) def get_corridor_index (self, pos, single = True): """ Returns the index of the corridor a coordinate belongs to, or None if it doesn't lie in any corridor. If it's part of the overlap region, the first index is returned. :``pos``: A coord. *Required* :``single``: If true, returns the first index encountered. Otherwise, a list containing all matching indices. *Default true*. """ list = [] for idx in self.corridors: corr = self.corridor(idx) c = corr.pos() r = corr.size() - 1 if (pos.x >= c.x and pos.x <= c.x + r.x and pos.y >= c.y and pos.y <= c.y + r.y): if single: return idx list.append(idx) if single: return None return list def get_corridor_indices (self, pos): """ Returns a list of indices of all corridors a coordinate belongs to, or None if it's outside the manor. :``pos``: A coord. *Required*. """ return self.get_corridor_index(pos, False) def print_rooms (self): """ Debugging method. Iterates over all rooms and prints the location and size of each room within the manor. """ for idx in self.rooms: print "Room %s: %s" % (idx, self.get_room(idx)) def get_room_index (self, pos, single = True): """ Returns the index of the room a coordinate belongs to, or None if it's outside the manor. If it's part of the overlap region, the first index is returned. :``pos``: A coord. *Required*. :``single``: If true, returns the first index encountered. Otherwise, a list containing all matching indices. *Default true*. """ list = [] for idx in self.rooms: curr = self.get_room(idx) start = curr.pos() end = start + curr.size() - 1 if (pos.x >= start.x and pos.x <= end.x and pos.y >= start.y and pos.y <= end.y): if single: return idx list.append(idx) if single: return None return list def get_room_indices (self, pos): """ Returns a list of indices of all rooms a coordinate belongs to, or None if it's outside the manor. :``pos``: A coord. *Required*. """ return self.get_room_index(pos, False) def get_room_corridor_indices (self, pos): """ Returns a list of indices of all rooms and corridors a coordinate belongs to, or None if it's outside the manor. :``pos``: A coord. *Required*. """ rooms = self.get_room_index(pos, False) corrs = self.get_corridor_index(pos, False) for c in corrs: rooms.append(c) return rooms def get_room_corridors (self): """ Get a combined list including both room and corridor indices. """ # I might be overly cautious here, but it's so easy to overwrite # existing lists by setting references without meaning to. (jpeg) room_corridors = [] for r in self.rooms: room_corridors.append(r) for c in self.corridors: room_corridors.append(c) room_corridors.sort() return room_corridors def get_corridor_name (self, idx): assert(idx in self.corridors) if idx == self.main_corridor: return "main corridor" corr = self.corridor(idx) start = corr.pos() stop = start + coord.Coord(corr.width(), corr.height()) m_end = self.size() print "corridor %s" % idx print "start=(%s), stop=(%s)" % (start, stop) print "manor size=(%s), 1/4 -> (%s), 3/4 -> (%s)" % (m_end, coord.Coord(m_end.x/4, m_end.y/4), coord.Coord(3*m_end.x/4, 3*m_end.y/4)) dir_horizontal = "" if start.y < max(5, m_end.y/4): dir_horizontal = "north" elif stop.y > min(3*m_end.y/4, m_end.y - 5): dir_horizontal = "south" else: dir_horizontal = "" if start.x < max(5, m_end.x/4): dir_vertical = "west" elif stop.x > min(3*m_end.x/4, m_end.x - 5): dir_vertical = "east" else: dir_vertical = "" # only one other corridor if len(self.corridors) == 2: if dir_horizontal != "" and dir_vertical != "": if coinflip(): dir_horizontal = "" else: dir_vertical = "" # two other corridors elif len(self.corridors) == 3: if corr.width() == 1: # vertical dir_horizontal = "" else: dir_vertical = "" # else just combine both values if dir_horizontal != "" or dir_vertical != "": return "%s%s corridor" % (dir_horizontal, dir_vertical) # If none of these match, just return the number. return "corridor %s" % idx def init_room_properties (self): """ Initialises a list of RoomProp objects for each room and corridor in the manor. """ self.room_props = [] for r in self.get_room_corridors(): if r in self.rooms: curr = self.get_room(r) start = curr.pos() size = curr.size() width = size.x height = size.y room_prop = room.RoomProps("room %s" % r, start, width, height) else: corr = self.corridor(r) start = corr.pos() width = corr.width() height = corr.height() name = self.get_corridor_name(r) room_prop = room.RoomProps(name, start, width, height) room_prop.mark_as_corridor() self.room_props.append(room_prop) def get_roomprop (self, idx): """ Returns a RoomProp object for a given room index. :``idx``: A room or corridor index. *Required*. """ if not self.room_props: return None assert(idx < len(self.room_props)) return self.room_props[idx] def add_features (self): # Translate rooms and corridors into wall and floor features. self.init_features() # Add doors along corridors. self.add_doors() self.maybe_remove_bonus_doors() # Add windows. self.add_windows() # Add doors to rooms still missing them. self.add_missing_doors() def init_features (self): """ Initialise the manor's feature grid, placing floor and walls as defined by the rooms/corridor layout. """ self.init_room_properties() self.features = FeatureGrid(self.size().x, self.size().y) print "Manor size: %s" % self.size() print "Feature size: %s" % self.features.size() # Iterate over all rooms and corridors, and mark positions within # them as floor, and their boundaries as walls. for r in self.get_room_corridors(): is_corridor = False # The "room" is actually a corridor. if r in self.rooms: curr = self.get_room(r) else: is_corridor = True curr = self.corridor(r) start = curr.pos() stop = curr.pos() + curr.size() # Note: Currently, only the main corridor is ever horizontal # but that might change in the future. horizontal = False # If a corridor, it's a horizontal one. # Debugging output, and setting horizontal. if is_corridor: if curr.height() == 1: horizontal = True direction = "horizontal" else: direction = "vertical" # print "Corridor %s: start=%s, stop=%s (%s)" % (r, start, stop, direction) # Iterate over all coordinates within the room. for pos in coord.RectangleIterator(start, stop): # If we've reached the manor boundary, this is a wall. if (pos.x == 0 or pos.x == self.size().x -1 or pos.y == 0 or pos.y == self.size().y - 1): self.set_feature(pos, WALL) # Corridors overwrite walls previously set by rooms. elif is_corridor: self.set_feature(pos, FLOOR) # print pos # Depending on the corridor orientation, mark the # adjacent non-corridor squares as walls. adjacent = [] if horizontal: adjacent = (DIR_NORTH, DIR_SOUTH) else: adjacent = (DIR_WEST, DIR_EAST) for dir in adjacent: pos2 = pos + dir # self.set_feature(pos2, WALL) if pos2 <= 0 or pos2 >= self.size(): continue corridx = self.get_corridor_indices(pos2) # print "pos2: %s -> corridors=%s" % (pos2, corridx), if r in corridx: corridx.remove(r) # print corridx # else: # print if len(corridx) == 0: self.set_feature(pos2, WALL) # The room boundary is always a wall. elif (pos.x == start.x or pos.x == stop.x - 1 or pos.y == start.y or pos.y == stop.y - 1): self.set_feature(pos, WALL) # Otherwise, we are inside the room. # Mark as floor but don't overwrite previously placed walls. elif self.get_feature(pos) != WALL: self.set_feature(pos, FLOOR) def get_feature (self, pos): """ Returns the feature for the given position. :``pos``: A coordinate within the manor. *Required*. """ if pos < DIR_NOWHERE or pos >= self.size(): print "Invalid coord %s in manor of size %s" % (pos, self.size()) return NOTHING return self.features.__getitem__(pos) def set_feature (self, pos, feat): """ Sets the feature at a given position of the feature grid. :``pos``: A coordinate within the manor. *Required*. :``feat``: The feature to set. *Required*. """ if pos < DIR_NOWHERE or pos >= self.size(): print "Invalid coord %s in manor of size %s" % (pos, self.size()) return NOTHING return self.features.__setitem__(pos, feat) def add_doors_along_corridor (self, start, stop, offset = DIR_NOWHERE): """ Walks along a corridor, and for each adjacent room picks a random wall spot to turn into a door. :``start``: The corridor's starting position. *Required* :``stop``: The corridor's end position. *Required*. :``offset``: A coordinate specifying how the door position needs to be shifted. *Default (0,0)*. """ # print "add_doors_along_corridors(start=(%s), stop=(%s), offset=(%s))" % (start, stop, offset) assert stop > start candidates = [] # All valid door spots for the current room. old_room = -1 # The index of the most recent room seen. for p in coord.RectangleIterator(start, stop + 1): pos = p + offset if (pos.x < 2 or pos.x >= self.size().x - 1 or pos.y < 2 or pos.y >= self.size().y - 1): continue if self.get_feature(pos) != WALL: continue # If a room is adjacent to both the main and a leg corridor, # both of them may place doors. This is okay, but they should # not be adjacent to each other. has_adj_door = False for adj in coord.AdjacencyIterator(pos): if feature_is_door(self.get_feature(adj)): has_adj_door = True if has_adj_door: continue rooms = self.get_room_indices(pos) corrs = self.get_corridor_indices(pos - offset) # print "pos: (%s), rooms: %s, corrs: %s" % (pos, rooms, corrs) # Make sure there's only exactly one room for this wall. # There also may be no other corridor except this one. if len(rooms) == 1 and len(corrs) == 1: # print "(%s, %s) -> %s" % (pos.x, pos.y, rooms) curr_room = rooms[0] if old_room != curr_room: # We've reached another room. Time to pick a door spot for the old room. if len(candidates): rand_coord = random.choice(candidates) # print "==> pick %s" % rand_coord self.set_feature(rand_coord, CLOSED_DOOR) self.room_props[old_room].add_adjoining_room(corrs[0]) self.room_props[corrs[0]].add_adjoining_room(old_room) self.doors.append(rand_coord) candidates = [] old_room = curr_room thisroom = self.get_room(curr_room) startx = thisroom.pos().x starty = thisroom.pos().y stopx = startx + thisroom.size().x - 1 stopy = starty + thisroom.size().y - 1 if (pos.x == startx or pos.x == stopx) and (pos.y == starty or pos.y == stopy): pass # print "pos: (%s, %s), room start: (%s, %s), room end: (%s, %s)" % (pos.x, pos.y, startx, starty, stopx, stopy) else: candidates.append(pos) # The corridor has reached an end. Pick a door spot for the last room seen. if len(candidates): rand_coord = random.choice(candidates) # print "==> pick %s" % rand_coord self.set_feature(rand_coord, CLOSED_DOOR) self.doors.append(rand_coord) corrs = self.get_corridor_indices(rand_coord - offset) if len(corrs) > 0: self.room_props[old_room].add_adjoining_room(corrs[0]) self.room_props[corrs[0]].add_adjoining_room(old_room) else: print "no corridor matching doorpos %s of room %s" % (rand_coord, old_room) def add_doors (self): """ For each corridor, adds doors to adjacent rooms. """ # print "Adding doors..." self.doors = [] corr = self.corridors for c in corr: candidates = [] pos = self.corridor(c).pos() w = self.corridor(c).width() h = self.corridor(c).height() # print "Corridor %s: %s" % (c, self.corridor(c)) # Depending on the corridor's orientation, check the parallel runs # to the left and right, or above and below the corridor. # Walls to the left and top of a corridor position are not # considered part of the corridor, so we need to use a shim # to add doors on those sides as well. if w > 1: # vertical corridor self.add_doors_along_corridor(coord.Coord(pos.x, pos.y), coord.Coord(pos.x + w, pos.y), DIR_NORTH) self.add_doors_along_corridor(coord.Coord(pos.x, pos.y), coord.Coord(pos.x + w, pos.y + h), DIR_SOUTH) else: # horizontal corridor self.add_doors_along_corridor(coord.Coord(pos.x, pos.y), coord.Coord(pos.x, pos.y + h), DIR_WEST) self.add_doors_along_corridor(coord.Coord(pos.x, pos.y), coord.Coord(pos.x + w, pos.y + h), DIR_EAST) def maybe_remove_bonus_doors (self): """ For some rooms with exits to more than one corridor, possibly remove one of these exits. """ for r in self.rooms: if coinflip(): continue rp = self.room_props[r] corrs = [] for c in rp.adj_rooms: if c in self.corridors: corrs.append(c) if len(corrs) < 2: continue # Randomly pick a door adjacent to one of the corridors. rm = self.get_room(r) doors = [] for pos in room.RoomWallIterator(rm.pos(), rm.size()): if feature_is_door(self.get_feature(pos)): doors.append(pos) door_pos = random.choice(doors) dirs = [DIR_NORTH, DIR_SOUTH, DIR_EAST, DIR_WEST] corr = None for d in dirs: corr = self.get_corridor_index(door_pos + d) if corr != None: break if corr == None: continue print "Change door pos (%s) to a wall" % door_pos self.features.__setitem__(door_pos, WALL) # Update the adjoining rooms of both room and corridor. rp.adj_rooms.remove(corr) self.room_props[corr].adj_rooms.remove(r) def pick_door_along_wall (self, start, stop, offset): """ Picks a door spot for a wall specified by two coordinates. :``start``: The wall's starting position. *Required* :``stop``: The wall's end position. *Required*. :``offset_check``: A Coord offset to check for adjacent non-walls. *Required*. """ candidates = [] for pos in coord.RectangleIterator(start, stop + 1): if (self.get_feature(pos) != WALL or self.get_feature(pos + offset) != FLOOR): continue # Make sure this wall connects to another room. rooms = self.get_room_indices(pos) if len(rooms) > 1: candidates.append(pos) if len(candidates) == 0: return None door_pos = random.choice(candidates) rooms = self.get_room_indices(door_pos) print "door_pos (%s) of rooms %s" % (door_pos, rooms) for i1 in xrange(len(rooms)): r1 = rooms[i1] for i2 in xrange(i1+1, len(rooms)): r2 = rooms[i2] rp1 = self.room_props[r1] rp2 = self.room_props[r2] print "connect rooms %s and %s" % (rp1.name, rp2.name) rp1.add_adjoining_room(r2) rp2.add_adjoining_room(r1) return door_pos def add_window (self, start, stop, offset_check = DIR_NOWHERE): """ Adds windows to the wall specified by two coordinates. :``start``: The wall's starting position. *Required* :``stop``: The wall's end position. *Required*. :``offset_check``: A Coord offset to check for empty space. *Default (0,0)*. """ if start.x == stop.x: window = WINDOW_V elif start.y == stop.y: window = WINDOW_H else: return # If we got an offset passed in, we need to check whether adjacent # positions are really empty, so the window doesn't look out on # a wall or something. # NOTE: Naturally, should we decide to fill the nothingness with # a garden of some sort, the whole routine will have to be # changed. (jpeg) if offset_check != DIR_NOWHERE: # print "offset: %s, start=%s, stop=%s" % (offset_check, start, stop) seen_nothing = False for pos in coord.RectangleIterator(start, stop + 1): adj_pos = pos + offset_check if self.get_feature(adj_pos) == NOTHING: seen_nothing = True else: if seen_nothing: # start already handled if window == WINDOW_H: stop.x = pos.x - 1 else: stop.y = pos.y - 1 break else: if window == WINDOW_H: start.x = pos.x + 1 else: start.y = pos.y + 1 # print "new start=%s, stop=%s" % (start, stop) full_window = False if start.x == stop.x: length = stop.y - start.y + 1 elif start.y == stop.y: length = stop.x - start.x + 1 # else: # return # print "draw window for wall of length %s at (%s, %s)" % (length, start, stop) if length < 5 or (length < 7 and one_chance_in(3)): full_window = True elif length >= 6 and one_chance_in(3): # For really large windows, make them a bit smaller and # move them into the centre. full_window = True if window == WINDOW_V: start.y += 1 stop.y -= 1 else: start.x += 1 stop.x -= 1 else: # Split larger windows into two smaller ones. midpost = length/2 width = 1 if length == 5: midpost += 1 width = 0 elif length%2 == 1: # midpost -= 1 width = 2 # For full windows, there's a chance of making them smaller # and placing them slightly off-center. if full_window and one_chance_in(3): shift = random.randint(1, max(1,length/3)) if window == WINDOW_H: if coinflip(): start.x += shift else: stop.x -= shift else: if coinflip(): start.y += shift else: stop.y -= shift count = 0 for pos in coord.RectangleIterator(start, stop + 1): count += 1 if full_window or count < midpost or count > midpost + width: self.set_feature(pos, window) def add_windows (self): """ Adds windows to the outer walls of the manor. """ for r in self.rooms: curr = self.get_room(r) start = curr.pos() stop = start + curr.size() print "Room %s: %s" % (r, curr) # left-side vertical windows if start.x == 0: self.add_window(coord.Coord(start.x, start.y + 2), coord.Coord(start.x, stop.y - 3)) self.room_props[r].add_window(DIR_WEST) elif (self.get_feature(coord.Coord(start.x-1, start.y+1)) == NOTHING or self.get_feature(coord.Coord(start.x-1, stop.y-1)) == NOTHING): self.add_window(coord.Coord(start.x, start.y + 2), coord.Coord(start.x, stop.y - 3), DIR_WEST) self.room_props[r].add_window(DIR_WEST) # right-side vertical windows if stop.x == self.size().x: self.add_window(coord.Coord(stop.x - 1, start.y + 2), coord.Coord(stop.x - 1, stop.y - 3)) self.room_props[r].add_window(DIR_EAST) elif (self.get_feature(coord.Coord(stop.x+1, start.y+1)) == NOTHING or self.get_feature(coord.Coord(stop.x+1, stop.y-1)) == NOTHING): self.add_window(coord.Coord(stop.x - 1, start.y + 2), coord.Coord(stop.x - 1, stop.y - 3), DIR_EAST) self.room_props[r].add_window(DIR_EAST) # top horizontal windows if start.y == 0: self.add_window(coord.Coord(start.x + 2, start.y), coord.Coord(stop.x - 3, start.y)) self.room_props[r].add_window(DIR_NORTH) elif (self.get_feature(coord.Coord(start.x+1, start.y-1)) == NOTHING or self.get_feature(coord.Coord(stop.x-1, start.y-1)) == NOTHING): self.add_window(coord.Coord(start.x + 2, start.y), coord.Coord(stop.x - 3, start.y), DIR_NORTH) self.room_props[r].add_window(DIR_NORTH) # bottom horizontal windows if stop.y == self.size().y: self.add_window(coord.Coord(start.x + 2, stop.y - 1), coord.Coord(stop.x - 3, stop.y - 1)) self.room_props[r].add_window(DIR_SOUTH) elif (self.get_feature(coord.Coord(start.x+1, stop.y+1)) == NOTHING or self.get_feature(coord.Coord(stop.x-1, stop.y+1)) == NOTHING): self.add_window(coord.Coord(start.x + 2, stop.y - 1), coord.Coord(stop.x - 3, stop.y - 1), DIR_SOUTH) self.room_props[r].add_window(DIR_SOUTH) def add_missing_doors (self): """ Add doors to rooms that still lack them. """ door_rooms = [] for d in self.doors: rooms = self.get_room_index(d, False) if len(rooms) > 0: for r in rooms: if r not in door_rooms: door_rooms.append(r) rooms = self.rooms[:] random.shuffle(rooms) for r in rooms: if r in door_rooms: continue curr = self.get_room(r) start = curr.pos() stop = start + curr.size() print "Room %s: %s" % (r, curr) door_candidates = [] rp = self.room_props[r] door_dirs = [DIR_NORTH, DIR_SOUTH, DIR_EAST, DIR_WEST] for windir in rp.windows: door_dirs.remove(windir) for dd in door_dirs: if dd == DIR_WEST: dpos = self.pick_door_along_wall(coord.Coord(start.x, start.y + 1), coord.Coord(start.x, stop.y - 2), DIR_WEST) elif dd == DIR_EAST: dpos = self.pick_door_along_wall(coord.Coord(stop.x - 1, start.y + 1), coord.Coord(stop.x - 1, stop.y - 2), DIR_EAST) elif dd == DIR_NORTH: dpos = self.pick_door_along_wall(coord.Coord(start.x + 1, start.y), coord.Coord(stop.x - 2, start.y), DIR_NORTH) elif dd == DIR_SOUTH: dpos = self.pick_door_along_wall(coord.Coord(start.x + 1, stop.y - 1), coord.Coord(stop.x - 2, stop.y - 1), DIR_SOUTH) if dpos != None: door_candidates.append(dpos) # Adding doors to all applicable walls guarantees that # all rooms are fully connected, but does mean that some # rooms get 2-3 doors. for d in door_candidates: print "==> add door at pos %s" % d self.set_feature(d, OPEN_DOOR) self.doors.append(d) # Update door-less rooms. other_rooms = self.get_room_indices(d) for r in other_rooms: if r not in door_rooms: door_rooms.append(r) def assign_adjacent_rooms (self, rid): """ Tries to fill the neighbour rooms of a given room with the same section type (utility or domestic), so matching rooms are neatly grouped together. :``rid``: The room id of a room that's already got a type assigned. *Required*. """ rp = self.room_props[rid] utility = (rp.section == "utility") # print "Room %s of type %s" % (rp.name, rp.section) for adj in rp.adj_rooms: if adj in self.get_corridors(): # print "adjacent room %s is corridor" % adj continue arp = self.room_props[adj] if arp.has_data: # print "adjacent room %s already filled" % arp.name continue print "fill room %s from database" % adj if arp.fill_from_database(utility): self.assign_adjacent_rooms(adj) def add_entrance_portal (self): """ In the entrance hall, replace one set of windows with entrance doors. """ rm = self.get_room(self.entrance_hall) candidates = [] found_window = False for pos in room.RoomWallIterator(rm.pos(), rm.size()): if feature_is_window(self.get_feature(pos)): if not found_window: candidates.append(pos) found_window = True else: found_window = False if len(candidates) == 0: return door_pos = random.choice(candidates) stop = rm.pos() + rm.size() - 1 if self.get_feature(door_pos) == WINDOW_V: corner = coord.Coord(door_pos.x, stop.y) else: corner = coord.Coord(stop.x, door_pos.y) for pos in coord.RectangleIterator(door_pos, corner + 1): if feature_is_window(self.get_feature(pos)): self.features.__setitem__(pos, PORTAL) else: break def init_room_names (self, list = None): """ Sets room names for all rooms within the manor. :``list``: List of people's names that need a bedroom. *Default None*. If this list is non-empty and as long as there are enough available rooms, tries to assign bedrooms, in order. """ owner_list = [] if list != None: owner_list = list # There should be at least 7 rooms available to the public. # This is only really a problem for smallish layouts, if there # are many suspects. (jpeg) max_no_bedrooms = len(self.rooms) - 7 count_bedrooms = 0 print "-------\nallow for max. %s bedrooms" % max_no_bedrooms corrs = self.corridors[:] if len(corrs) > 1: corrs.remove(self.main_corridor) random.shuffle(corrs) utility = True for c in corrs: if utility: section = "utility" elif len(owner_list) > 0: section = "bedrooms" else: section = "domestic" print "-------\nCorridor %s is marked as %s" % (c, section) corrprop = self.room_props[c] rooms = corrprop.adj_rooms[:] random.shuffle(rooms) for r in rooms: if r in self.corridors: continue rp = self.room_props[r] if rp.has_data: continue if (not utility and len(owner_list) > 0 and rp.is_good_bedroom()): owner = owner_list[0] owner_list.remove(owner) rp.make_bedroom(owner) count_bedrooms += 1 self.assign_adjacent_rooms(r) continue if rp.fill_from_database(utility): self.assign_adjacent_rooms(r) utility = False # One of the rooms off the main corridor is the entrance hall. c = self.main_corridor corrprop = self.room_props[c] e_hall_candidates = [] for r in corrprop.adj_rooms: if r in self.corridors: continue rp = self.room_props[r] if rp.has_data or len(rp.windows) == 0: continue e_hall_candidates.append(r) if len(e_hall_candidates) == 0: self.entrance_hall = 0 else: self.entrance_hall = random.choice(e_hall_candidates) self.add_entrance_portal() rp = self.room_props[self.entrance_hall] rp.name = "entrance hall" rp.has_data = True print "-------\nentrance hall: room %s" % self.entrance_hall if len(owner_list) > 0: print "-------\nremaining rooms - allow for max. %s bedrooms" % (max_no_bedrooms - count_bedrooms) rooms = self.rooms[:] random.shuffle(rooms) for r in rooms: rp = self.room_props[r] if rp.has_data: continue if len(owner_list) > 0 and count_bedrooms < max_no_bedrooms: max_size=70 if count_bedrooms < 2: max_size=None if rp.is_good_bedroom(max_size=max_size): owner = owner_list[0] owner_list.remove(owner) rp.make_bedroom(owner) count_bedrooms += 1 self.assign_adjacent_rooms(r) print "-------\nassign remaining rooms" rooms = self.rooms[:] random.shuffle(rooms) for r in rooms: rp = self.room_props[r] if rp.has_data: continue if len(owner_list) > 0 and count_bedrooms < max_no_bedrooms: max_size=60 if count_bedrooms < 5: max_size=70 if rp.is_good_bedroom(check_windows=False, max_size=max_size): owner = owner_list[0] owner_list.remove(owner) rp.make_bedroom(owner) count_bedrooms += 1 self.assign_adjacent_rooms(r) continue if rp.fill_from_database(): self.assign_adjacent_rooms(r) self.update_adjoining_rooms() # Now the room types have been assigned, add the furniture. self.add_furniture() def update_adjoining_rooms (self): """ For each room or corridor within the manor, traverses the list of adjoining rooms/corridors and adds their names to the list of adjoining room names. """ for r in self.get_room_corridors(): rp = self.room_props[r] for adjr in rp.adj_rooms: rp2 = self.room_props[adjr] name = rp2.room_name(True) rp.add_adjoining_room_name(name) def add_furniture (self): """ Places furniture within the manor. Specialcases bedrooms and otherwise uses the database definitions. """ for r in self.rooms: rp = self.room_props[r] bedcount = len(rp.owners) if bedcount > 0: self.add_bedroom_furniture(r, bedcount) else: furniture = rp.want_feats if len(furniture) > 0: self.add_room_furniture(r, furniture) def get_pos_list_within_room (self, r): """ Returns a list of floor coordinates within a room that are not directly adjacent to a door or window. :``r``: The room id. *Required*. """ rm = self.get_room(r) start = rm.pos() + 1 stop = rm.pos() + rm.size() - 1 candidates = [] for pos in coord.RectangleIterator(start, stop): if self.get_feature(pos) != FLOOR: continue # Never block windows or doors with furniture. allowed = True for adj in coord.AdjacencyIterator(pos): feat = self.get_feature(adj) if feature_is_door(feat) or feature_is_window(feat): allowed = False break if not allowed: continue # It's a valid position. candidates.append(pos) return candidates def get_nearby_interesting_feature (self, curr): """ Returns a list of interesting features nearby a given position. :``curr``: The current position in the manor. *Required*. """ curr_room = self.get_room_index(curr) adj_features = [] features = [] for pos in coord.RectangleIterator(curr - 2, curr + 3): if pos == curr: continue if pos.x < 0 or pos.x >= self.size().x or pos.y < 0 or pos.y >= self.size().y: continue nearby_feat = self.get_feature(pos) # Skip boring features. if nearby_feat == NOTHING or nearby_feat == WALL: continue # Make sure we stay within the same room. if self.get_room_index(pos) != curr_room: continue if feature_is_door(nearby_feat) or not nearby_feat.traversable(): if (pos.x >= curr.x - 1 and pos.y >= curr.y - 1 and pos.x <= curr.x + 1 and pos.y <= curr.y + 1): adj_features.append(nearby_feat) else: features.append(nearby_feat) # If there are any directly adjacent features, return those. if len(adj_features) > 0: return adj_features # ... otherwise, the list of nearby features. return features def add_bedroom_furniture (self, r, bedcount=1): """ Places additional furniture in bedrooms. :``r``: The room id. *Required*. :``bedcount``: The number of beds placed. *Default 1*. """ rp = self.room_props[r] # First get a list of eligible positions within the room. candidates = self.get_pos_list_within_room(r) if len(candidates) == 0: return # First, place a (double) bed, then additional furniture. other_furniture = [] for i in range(1, bedcount+1): if coinflip(): other_furniture.append(WARDROBE) if one_chance_in(3): other_furniture.append(FIREPLACE) if one_chance_in(8): other_furniture.append(BOOKSHELF) for i in range(1, bedcount+1): if one_chance_in(6): other_furniture.append(CHAIR) tries = 20 while tries > 0: tries -= 1 pos = random.choice(candidates) if bedcount > 1: # need an adjacent second bed free_adj = [] for adj in coord.AdjacencyIterator(pos): if not adj in candidates: continue feat = self.get_feature(adj) if not feature_is_floor(feat): continue free_adj.append(adj) if len(free_adj) == 0: continue pos2 = random.choice(free_adj) self.set_feature(pos2, BED) candidates.remove(pos2) rp.add_furniture_name("double bed") self.set_feature(pos, BED) candidates.remove(pos) if len(rp.furniture) == 0: rp.add_furniture_name("bed") self.add_furniture_from_list(rp, other_furniture, candidates) break def add_room_furniture (self, r, furniture): """ Places furniture within a room. :``r``: The room id. *Required*. :``furniture``: A list of strings defining the furniture to be placed. *Required*. """ furniture_list = [] for f in furniture: how_many = 1 if f[-1] == '?': if coinflip(): continue else: f = f[:-1] elif f[-1] == '+': how_many = 2 f = f[:-1] elif f[-1] == '!': how_many = 3 f = f[:-1] feat = get_furniture_by_name(f) if feat == NOTHING: continue if feature_is_large_table(feat): self.add_table_and_chairs(r, feat) continue furniture_list.append(feat) if how_many > 1: if how_many == 3: for i in xrange(2): furniture_list.append(feat) # additional chances of placing more for i in xrange(5): if one_chance_in(3): furniture_list.append(feat) # Get a list of eligible positions within the room. candidates = self.get_pos_list_within_room(r) if len(candidates) == 0: return self.add_furniture_from_list(self.room_props[r], furniture_list, candidates) def add_table_and_chairs (self, r, table_type): """ Places a table and, depending on the table type, possibly chairs within a given room. :``r``: The room id. *Required*. :``table_type``: TextFeature representation of the table type. *Required*. """ rm = self.get_room(r) rp = self.room_props[r] start = rm.pos() + 2 stop = rm.pos() + rm.size() - 2 room_width = rm.size().x - 2 room_height = rm.size().y - 2 width = 3 height = 3 if table_type == BILLIARD_TABLE or room_height < 5: height = 2 if rp.section == "utility": if height > 2 and coinflip(): height -= 1 if one_chance_in(4): width -= 1 else: if height > 2 and (stop.y - start.y < 2 or coinflip()): height -= 1 if stop.x - start.x > 2 and coinflip(): width += 1 if width != height and (room_height > room_width or room_height == room_width and coinflip()): tmp = width width = height height = tmp print "table width=%s, height=%s, room size: (%s), section: (%s)" % (width, height, rm.size(), stop - start) if width > stop.x - start.x: width = stop.x - start.x if height > stop.y - start.y: height = stop.y - start.y startx = start.x starty = start.y if width < stop.x - startx: startx = random.randint(start.x, stop.x - width) if height < stop.y - starty: starty = random.randint(start.y, stop.y - height) # Only the dining table has chairs! add_chairs = (table_type == DINING_TABLE) tablestart = coord.Coord(startx, starty) tablestop = coord.Coord(startx + width - 1, starty + height - 1) chairstart = tablestart - 1 chairstop = tablestop + 1 for pos in coord.RectangleIterator(chairstart, chairstop + 1): if self.features.__getitem__(pos) != FLOOR: continue feat = table_type chairx = (pos.x == chairstart.x or pos.x == chairstop.x) chairy = (pos.y == chairstart.y or pos.y == chairstop.y) if chairx or chairy: if add_chairs: if chairx and chairy: continue # skip corners else: feat = CHAIR else: continue self.set_feature(pos, feat) rp.add_furniture_name(table_type.name()) if add_chairs: rp.add_furniture_name("some chairs", False) def stays_in_room (self, pos): """ Returns whether the current position lies in the same room as a previously defined room variable. Used to restrict pathfinding within a single room. :``pos``: A coordinate within the manor. *Required*. """ return self.get_room_index(pos) == self.curr_room def pos_blocks_corridor (self, pos): """ Returns whether placing an intraversable feature at a given position would block the path to any currently traversable place in a room. :``pos``: A coordinate within the manor. *Required*. """ # Temporarily mark the position intraversable to check if this # would block any paths, but remember the original feature. old_feat = self.get_feature(pos) self.features.__setitem__(pos, NOTHING) # Store the current room in a helper variable. self.curr_room = self.get_room_index(pos) found = True north = pos + DIR_NORTH south = pos + DIR_SOUTH east = pos + DIR_EAST west = pos + DIR_WEST north_trav = self.get_feature(north).traversable() south_trav = self.get_feature(south).traversable() if north_trav and south_trav: found = pathfind.Pathfind(self.features, north, south, None, self.stays_in_room).path_exists() if not found: print "pos (%s) blocks N/S path" % pos if found: east_trav = self.get_feature(east).traversable() west_trav = self.get_feature(west).traversable() if east_trav and west_trav: found = pathfind.Pathfind(self.features, east, west, None, self.stays_in_room).path_exists() if not found: print "pos (%s) blocks E/W path" % pos if found and north_trav != south_trav and east_trav != west_trav: if north_trav: if east_trav: found = pathfind.Pathfind(self.features, north, east, None, self.stays_in_room).path_exists() else: found = pathfind.Pathfind(self.features, north, west, None, self.stays_in_room).path_exists() else: if east_trav: found = pathfind.Pathfind(self.features, south, east, None, self.stays_in_room).path_exists() else: found = pathfind.Pathfind(self.features, south, west, None, self.stays_in_room).path_exists() if not found: print "pos (%s) blocks diagonal path" % pos # Reset to original feature. self.features.__setitem__(pos, old_feat) return (not found) def add_furniture_from_list (self, rp, furniture, candidates): """ Places furniture from a list of features within a given room. :``rp``: The RoomProps representation of the current room. *Required*. :``furniture``: A list of TextFeatures representing the furniture to be placed. *Required*. :``candidates``: A list of free coordinates within the room. *Required*. """ tries = 20 for feat in furniture: if len(candidates) == 0: break print "Trying to place %s in %s" % (feat.name(), rp.name) while tries > 0: # For restrictions, only a chance of reducing the counter. reduce_tries = True pos = random.choice(candidates) if feat.needs_wall(): # More tries with wall restriction. if one_chance_in(4): tries -= 1 reduce_tries = False found_wall = False for adj in coord.AdjacencyIterator(pos): if self.get_feature(adj) == WALL: found_wall = True break if not found_wall: continue if not feat.traversable(): if reduce_tries: if one_chance_in(4): tries -= 1 reduce_tries = False if self.pos_blocks_corridor(pos): continue secondary_feat_name = None if feat == DESK or feat == PIANO: # need to place a chair if reduce_tries: if coinflip(): tries -= 1 reduce_tries = False chair_candidates = [] for adj in coord.AdjacencyIterator(pos): if adj not in candidates: continue if feature_is_floor(self.get_feature(adj)): chair_candidates.append(adj) if len(chair_candidates) == 0: continue chairpos = random.choice(chair_candidates) if feat == DESK: chair = CHAIR else: chair = STOOL self.set_feature(chairpos, chair) candidates.remove(chairpos) secondary_feat_name = chair.name() if reduce_tries: tries -= 1 self.set_feature(pos, feat) candidates.remove(pos) rp.add_furniture_name("%s" % feat.name()) if secondary_feat_name != None: rp.add_furniture_name(secondary_feat_name) break def get_bedroom_id (self, owner, rids = None, do_chance = True): """ Given a person id, returns the their bedroom's room index. :``owner``: A person from the suspect list. *Required*. :``rids``: A list of available room indices. If none, all rooms are considered available. *Default None*. :``do_chance``: If true, there's a 75% chance of returning early without checking for the bedroom index. *Default True*. """ if do_chance and not one_chance_in(4): return None if rids == None: rids = self.rooms rp = self.room_props for r in rids: if owner in rp[r].owners: return r return None def pick_random_public_room (self, rids = None, force_adj_corr = False): """ Returns a random non-bedroom room index. :``rids``: A list of available room indices. If none, all rooms are considered available. *Default None*. :``force_adj_corr``: If true, only consider rooms that have an adjoining corridor. *Default False*. """ if rids == None: rids = self.rooms rp = self.room_props candidates = [] for r in rids: if force_adj_corr: found_corr = False for adj in rp[r].adj_rooms: if rp[adj].is_corridor: found_corr = True break if not found_corr: continue if len(rp[r].owners) == 0: candidates.append(r) if len(candidates) == 0: return None return random.choice(candidates) def get_random_pos_in_room (self, rid): """ Returns a random traversable position in a given room. :``rid``: Index of a manor's room. *Required*. """ room = self.get_room(rid) start = room.pos() + 1 stop = room.pos() + room.size() - 2 while True: pos = coord.Coord(random.randint(start.x, stop.x), random.randint(start.y, stop.y)) if self.get_feature(pos).traversable(): return pos def pick_room_for_suspect (self, rids, idx1, idx2 = None, force_adj_corr = False): """ Given a suspect id or pair of suspect ids, returns the index of a room for their current location. :``rids``: A list of available room indices. *Required*. :``idx1``: An index from the suspect list. *Required*. :``idx2``: Another person's suspect index. *Default None*. :``force_adj_corr``: If true, only consider rooms that have an adjoining corridor. *Default False*. """ rp = self.room_props r = self.get_bedroom_id(idx1, rids) if r != None: return r if idx2 != None: r = self.get_bedroom_id(idx2, rids) if r != None: return r r = self.pick_random_public_room(rids, force_adj_corr) if r != None: return r # Try for bedrooms again. r = self.get_bedroom_id(idx1, rids) if r != None: return r if idx2 != None: r = self.get_bedroom_id(idx2, rids) return r ``` #### File: murderrl/database/database.py ```python import sys, os, random, collections, re _dbobjects = [] PATH_DELIM = os.path.sep class DatabaseError (Exception): """ An error class for any and all errors relating to databases. """ pass class DatabaseFolder (object): """ A basic representation of a folder structure. This container does not actually contain any database information, but instead stores copies of the databases equivalent to the database that are found in the specified folder. """ _databases = None spec = None def __init__ (self, folder, spec=None): """ Create a new database folder. :``folder``: The folder path. Example: *names.db/*. This path should contain databases within itself. :``spec``: The default spec for this folder. *Default None* """ self.folder = folder if spec is not None: self.spec = spec self._databases = [] def append (self, db): """ Add a database representation to the folder representation. :``db``: The Database instance. This will be accessible by ``DatabaseFolder.database_name``. """ assert isinstance(db, Database) assert not hasattr(self, db.name) self._databases.append(db) setattr(self, db.name, db) def exists (self, db): """ Boolean function for determining if a database is contained within. :``db``: The database name to search for. """ return hasattr(self, db) and isinstance(getattr(self, db), Database) def extend (self, db_list): """ Append the contents of a list to the DatabaseFolder representation. :``db_list``: The iterable list of databases to store. """ for db in db_list: self.append(db) def get (self, database, default=None): """ Fetch databases from the folder. :``database``: The database name to search for. :``default``: The default value to return if this folder does not contain ``database``. *Default None*. """ if hasattr(self, database): return getattr(self, database) else: return default def __repr__ (self): r = "<DatabaseFolder %s [" % self.folder for d in self._databases: r += d.name + ", " return r.rstrip(", ") + "]>" class Database (list): """ An extremely simplistic type that is nothing more than a wrapper on top of the default list type. """ def __init__ (self, name, data): """ Initialises the database. :``name``: The name of the Database. This is stored and used to describe the database. :``data``: The actual data of the Database. This should be a list of items in any format. """ self.name = name list.__init__(self, data) def copy (self): """ Returns a copy of the database that allows for modification. """ return self.__class__(self.name, self[:]) def random (self, checkfn=None): """ Returns a random element from the Database. :``checkfn``: A function to be applied to results. If this function returns ``true``, the result is allowed; if it returns ``false``, another item is picked. *Default None*. """ if len(self) == 0: return None if checkfn is None: return random.choice(self) else: item = random.choice(self) tries = len(self) * 5 while not checkfn(item): item = random.choice(self) tries = tries - 1 if tries <= 0: return None return item def random_pop (self, checkfn=None): """ Removes a random element from the Database and then returns it. This is an in-place activity. :``checkfn``: A function to be applied to results. If this function returns ``true``, the result is allowed; if it returns ``false``, another item is picked. *Default None*. """ if len(self) == 0: return None item = random.randint(0, len(self)-1) if checkfn is not None: tries = len(self) * 5 while not checkfn(self[item]): item = random.randint(0, len(self)-1) tries = tries - 1 if tries <= 0: return None return self.pop(item) def __repr__ (self): return "Database%s" % (list.__repr__(self)) class WeightedString (str): """ A simple collation of a string and a weight. The default weight of ``10`` means that the string has no higher or lesser chance of being chosen from a WeightedDatabase than any other string. A weight of ``20`` means that it has double the chance, a weight of ``5`` meaning that has half the chance, etc. """ def __init__ (self, string, weight=10): """ Create a new weighted string. :``string``: The actual string contents. :``weight``: The weight of the string. *Default 10*. """ self.weight = weight str.__init__(self, string) class WeightedDatabase (Database): """ A slightly more complicated collection of data stored by weight. The "default" weight of the databse is ``10``. Random choices pick things by weight as well as randomness, etc. """ def total_weight (self, checkfn=None): """ Return the total weight of the database. :``checkfn``: A function to be applied to each item. If the function returns ``false``, the weight of the item is ignored (and the item is discarded). *Default None*. """ weight = 0 for item in self: if checkfn is not None and not checkfn(item): continue assert hasattr(item, "weight") weight += item.weight return weight def random_pick (self, checkfn=None): """ Randomly pick an item from the database based on its weight in comparison to the total weight of the database. Returns a tuple of (``index``, ``item``). :``checkfn``: A function to be applied to the items in the database: if it returns ``false``, the item is not considered. *Default None*. """ tweight = self.total_weight(checkfn=checkfn) if tweight == 0: return None, None n = random.uniform(0, tweight) for num, item in enumerate(self): if checkfn is not None and not checkfn(item): continue if item.weight >= n: return num, item n = n - item.weight return None, None def random (self, checkfn=None): """ Returns a random element from the Database, picked by weight. :``checkfn``: A function to be applied to the items in the database: if it returns ``false``, the item is not considered. *Default None*. """ if len(self) == 0: return None return self.random_pick(checkfn=checkfn)[1] def random_pop (self, checkfn=None): """ Removes a random element from the Database and then returns it. This is an in-place activity. :``checkfn``: A function to be applied to the items in the database: if it returns ``false``, the item is not considered. *Default None*. """ if len(self) == 0: return None index = self.random_pick(checkfn=checkfn)[0] if index == None: return None return self.pop(index) def __repr__ (self): return "WeightedDatabase%s" % (list.__repr__(self)) def get_databases (): """ Returns a list of all Database objects stored. """ return _dbobjects[:] def get_database (name, parent=None): """ Returns a specific Database object. If the Database doesn't exist, will instead return ``None``. :``name``: The name of the Database object being requested. :``parent``: A possible DatabaseFolder instance or name to be searched instead of the global scope. *Default None* """ if "." in name: parent, name = name.split(".") if parent is not None: if not isinstance(parent, DatabaseFolder): parent = globals().get(parent, None) if parent is None or not isinstance(parent, DatabaseFolder): return None return parent.get(name, None) return globals().get(name, None) def database_exists (name, parent=None): """ Checks for the existance of a specific database object. :``name``: The name of the Database. :``parent``: A possible DatabaseFolder instance or name to be searched instead of the global scope. *Default None*. """ return get_database(name, parent) is not None def num_databases (): """ Returns the total number of Databases available. """ return len(_dbobjects) def split_escaped_delim (delimiter, string, count=0): """ Returns the result of splitting ``string`` with ``delimiter``. It is an extension of ``string.split(delimiter, count)`` in that it ignores instances of the delimiter being escaped or contained within a string. :``delimiter``: The delimiter to split the string with. *Required*. :``string``: The string to be split. *Required*. :``count``: How many strings to limit the match to. *Default 0*. """ assert len(delimiter) == 1 split_expression = re.compile(r"""(?<!\\)%s""" % (delimiter)) result = split_expression.split(string, count) return result def parse_spec (spec_file): """ Parses a specification into either a list or a namedtuple constructor. **Example specifications**:: $0 *Would return a single-element list creator that could be applied to all incoming data.*:: %delim , $0 $1 $2 *Would return a three-element list creator using "," as the delimiter.*:: $name $weight 10 *Would return a two-element namedtuple called "(filename)_spec" with a name and weight property. The weight would default to 10 if not supplied.*:: %id room_spec $name $weight *Would return a two-element namedtuple called "room_spec" with a name and weight property.* **Example specification usage**:: (using the "room_spec" above) % name=dining room % name=kitchen weight=20 In this instance, the order doesn't matter, as they are passed by parameter:: (using the first unnamed list example) % dining room % kitchen % As there is just a single set of data, the block is parsed and stripped of whitespace and then stored in a single element:: (using the second unnamed list example) % dining room,10,domestic % kitchen, 50, utility % Here, the provided delimiter of a commas used to convert the incoming block into a three-element list. """ spec_object = None spec_name = spec_file.replace(".", "_") params = [] default_params = {} int_conversion = [] namedtuple = False delimiter = "\n" spec_file = open(spec_file, "r") spec = spec_file.readlines() spec_file.close() for line in spec: line = line.strip() param_name = None default_param = None if line.startswith("%id"): spec_name = line.split(" ", 1)[1] elif line.startswith("%delim"): delimiter = line.split(" ", 1)[1].strip() elif line.startswith("$"): line = line.split(" ", 1) if len(line) >= 1: param_name = line[0].strip("$") if len(line) == 2: default_param = line[1].strip() if param_name and not param_name.isdigit(): namedtuple = True if default_param and param_name.isdigit(): assert param_name != "0" params.append(param_name) if default_param: default_params[param_name]=default_param elif line.startswith("%int"): var = line.split(" ", 1)[1].strip() int_conversion.append(var) if namedtuple: class parent (object): def __init__ (self, *args, **kwargs): self.__name__ = spec_name if len(args) == len(params): # arg for arg for key, value in zip(params, args): self.__dict__[key] = value elif len(kwargs) == len(params): for key, value in kwargs.iteritems(): self.__dict__[key] = value else: assert not "Didn't get the right number of arguments!" def __repr__ (self): values = "" for key in params: values += "%s=%s," % (key, repr(self.__dict__[key])) return "<%s %s>" % (self.__name__, values.strip(", ")) else: parent = list class spec_object (parent): def __init__ (self, block): self.__name__ = spec_name if isinstance(block, str): block = split_escaped_delim(delimiter, block.strip()) assert len(block) + len(default_params) >= len(params) if len(block) < len(params): for key, default in default_params.iteritems(): if key.isdigit(): assert int(key) >= len(block) block.insert(int(key), default) else: block.append("%s=%s" % (key, default)) if not namedtuple: if int_conversion: for conv in int_conversion: block[conv] = int(block[conv]) parent.__init__(self, block) else: new_data = {} for item in block: new_item = split_escaped_delim("=", item, 1) if len(new_item) == 1: new_item = split_escaped_delim(":", item, 1) if len(new_item) == 1: raise DatabaseError, "Corrupted line? %s" % item item = new_item if int_conversion and item[0] in int_conversion: item[1] = int(item[1]) assert len(item) == 2 # Don't overwrite real data with default values! if item[0] not in new_data: new_data[item[0]] = item[1] parent.__init__(self, **new_data) elif isinstance(block, list): if not namedtuple: parent.__init__(self, block) else: parent.__init__(self, *block) elif isinstance(block, dict): assert namedtuple parent.__init__(self, **block) def __repr__ (self): if namedtuple: return parent.__repr__(self) else: return "<%s %s>" % (self.__name__, parent.__repr__(self)) return spec_object def _do_build (): """ Convert the contents of the local directory, or a data directory relevant to the local directory, into a series of Database objects. """ if os.path.exists("./database"): data_path = "./database/" elif os.path.exists("../database"): data_path = "../database/" elif os.path.exists("../../database"): data_path = "../../database/" else: data_path = "." dir_specs = {} databases = [] # first pass over the databases to create complete tree: for dirpath, dirnames, filenames in os.walk(data_path): # all databases are stored for name in filenames: if name.endswith(".db"): databases.append(os.path.join(dirpath, name).replace(data_path, "")) # but we need to store specs here otherwise things could get a bit confusing elif name.endswith(".spec"): possible_dir = os.path.join(dirpath, name[:-5]+".db") if os.path.exists(possible_dir) and os.path.isdir(possible_dir): spec_name = possible_dir.replace(data_path, "") dir_specs[spec_name] = parse_spec(os.path.join(dirpath, name)) # and we create DatabaseFolders for each subfolder for name in dirnames: if name.endswith(".db"): # dump the extension here too obj_name = name[:-3] this_folder = DatabaseFolder(obj_name) if dir_specs.has_key(name): this_folder.spec = dir_specs.pop(name) if dirpath != data_path: search = dirpath.replace(data_path, "").split(PATH_DELIM) try: top_folder = globals()[search[0]] except KeyError: raise DatabaseError, "Subdirectory of a db folder without a DatabaseFolder?" for p in search[1:]: if p == name: break try: top_folder = getattr(top_folder, p) except AttributeError: raise DatabaseError, "Subdirectory of a db subfolder without a DatabaseFolder subfolder!" top_folder.append(this_folder) else: globals()[obj_name] = this_folder for database in databases: build_from_file_name(database, data_path) def build_from_file_name (database, data_path, folder=None, spec=None): """ Converts a database file via a specification into a Database instance and then inserts into into the global scope or a specific parent based on provided information. :``database``: The filename to be opened. If this is in a subfolder, the subfolder name will be removed from the final name and the database will be available globally, unless ``folder`` has been specified, or ``folder`` is already a globally available folder. *Required*. :``data_path``: This will be appended to the beginning of all I/O operations but will not be treated as a ``folder``. *Required*. :``folder``: The folder this database will be appended to. If None and the database contains a folder name, the folder will be looked for globally and if found, the database will be appended to this; if there is no folder available, the database will be inserted into the global scope. *Default None*. :``spec``: A specification object that matches the contents of this database. If not provided, and a specification exists, this specification will be used instead. If not provided and ``folder`` is not none, and the ``folder`` contains a specification, this will be used instead. *Default None*. """ # chop the extension off temp = database.split(PATH_DELIM) name = database[:-3] folder_name = None store_point = None if len(temp) != 1: folder_name = PATH_DELIM.join(temp[:-1]) name = temp[-1][:-3] if folder_name is not None and not folder: search = folder_name if PATH_DELIM in folder_name: # we need to look recursively, but not yet search = folder_name.split(PATH_DELIM)[0] try: store_point = globals()[search.replace(".db", "")] except KeyError: pass if PATH_DELIM in folder_name: # now recurse searches = folder_name.split(PATH_DELIM)[1:] for search in searches: try: store_point = getattr(store_point, search.replace(".db", "")) except AttributeError: break elif folder: store_point = folder if spec is None: if store_point is not None and store_point.spec is not None: spec_obj = store_point.spec else: spec = name + ".spec" if os.path.exists(os.path.join(data_path, spec)): spec_obj = parse_spec(os.path.join(data_path, spec)) else: spec_obj = str else: spec_obj = spec dbfile = open(os.path.join(data_path, database), "r") dbfile_contents = [item.strip() for item in dbfile.read().strip().strip("%").split("%")] dbdata = [spec_obj(item) for item in dbfile_contents if not item.startswith("#")] db = Database if hasattr(dbdata[0], 'weight'): db = WeightedDatabase this_db = db(name, dbdata) dbfile.close() if store_point: store_point.append(this_db) else: globals()[name] = this_db _dbobjects.append(this_db) _do_build() ``` #### File: murderrl/docs/conf.py ```python import inspect from sphinx.ext.autodoc import ClassDocumenter # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.append(os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.autosummary'] # Add any paths that contain templates here, relative to this directory. templates_path = ['.templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # General information about the project. project = u'murderrl' copyright = u'2011, <NAME>, <NAME>' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.0a' # The full version, including alpha/beta/rc tags. release = '0.0a' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = ['.build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['.static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_use_modindex = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'murderrldoc' # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'murderrl.tex', u'murderrl Documentation', u'<NAME>, <NAME>', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. #latex_preamble = '' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_use_modindex = True autodoc_member_order = "groupwise" autoclass_content = "class" def method_info (method): if inspect.ismethod(method): return "%s.%s" % (method.im_class.__name__, method.im_func.__name__) return "%s" % (method.__name__) def _resolve_doc (method): my_docs = [] if hasattr(method, "extends"): extends = method.extends if isinstance(extends, tuple): for exmeth in extends: assert inspect.ismethod(exmeth) doc = _resolve_doc(exmeth) if doc: my_docs.extend(doc) else: my_docs.extend(_resolve_doc(extends)) elif method.__doc__: my_docs.append((method_info(method), inspect.getdoc(method))) return my_docs def resolve_doc (method): lines = _resolve_doc(method) result = [] done_methods = [] for method, line in lines: if method in done_methods: continue result.append("*Documentation inherited from* :meth:`%s`:" % (method)) result.append("") result.extend(line.split("\n")) done_methods.append(method) return result def process_signature (app, what, name, obj, options, signature, return_annotation): if hasattr(obj, "extends") and callable(obj): extends = obj.extends if isinstance(extends, tuple): argspec = inspect.getargspec(extends[0]) else: argspec = inspect.getargspec(extends) if argspec[0] and argspec[0][0] in ('cls', 'self'): del argspec[0][0] signature = inspect.formatargspec(*argspec) return (signature, return_annotation) def process_docstring (app, what, name, obj, options, lines): if hasattr(obj, "extends") and callable(obj): lines.extend(resolve_doc(obj)) return lines class NewClassDocumenter(ClassDocumenter): def format_args(self): # for classes, the relevant signature is the __init__ method's initmeth = self.get_attr(self.object, '__init__', None) # classes without __init__ method, default __init__ or # __init__ written in C? if initmeth is None or initmeth is object.__init__ or not \ (inspect.ismethod(initmeth) or inspect.isfunction(initmeth)): return None try: argspec = inspect.getargspec(initmeth) except TypeError: # still not possible: happens e.g. for old-style classes # with __init__ in C return None if argspec[0] and argspec[0][0] in ('cls', 'self'): del argspec[0][0] args = inspect.formatargspec(*argspec) result = self.env.app.emit_firstresult( 'autodoc-process-signature', self.objtype, self.fullname, initmeth, self.options, args, None) if result: return result[0] else: return args def setup (app): app.add_autodocumenter(NewClassDocumenter) app.connect('autodoc-process-docstring', process_docstring) app.connect('autodoc-process-signature', process_signature) ``` #### File: interface/console/__init__.py ```python import curse, win32 __provides__ = curse, win32 def select (priority="curse"): """ Select a supported interface. """ if not curse.UNAVAILABLE and (priority == "curse" or win32.UNAVAILABLE): return curse if not win32.UNAVAILABLE and (priority == "win32" or curse.UNAVAILABLE): return win32 return None ``` #### File: console/win32/_win32.py ```python import library.coord as coord import library.colour import ctypes from _subprocess import INFINITE, WAIT_OBJECT_0 OLD_SCREEN_SIZE = None COMMON_LVB_UNDERSCORE = 32768 STD_INPUT_HANDLE = -10 STD_OUTPUT_HANDLE = -11 STD_ERROR_HANDLE = -12 WAIT_TIMEOUT = 0x102 WAIT_ABANDONED = 0x80 class _COORD(ctypes.Structure): _fields_ = [ ("X", ctypes.c_short), ("Y", ctypes.c_short)] class _SMALL_RECT(ctypes.Structure): _fields_ = [ ("Left", ctypes.c_short), ("Top", ctypes.c_short), ("Right", ctypes.c_short), ("Bottom", ctypes.c_short)] class _CONSOLE_SCREEN_BUFFER_INFO(ctypes.Structure): _fields_ = [ ("dwSize", _COORD), ("dwCursorPosition", _COORD), ("wAttributes", ctypes.c_ushort), ("srWindow", _SMALL_RECT), ("dwMaximumWindowSize", _COORD)] class _CONSOLE_CURSOR_INFO (ctypes.Structure): _fields_ = [ ("dwSize", ctypes.c_ushort), ("bVisible", ctypes.c_bool)] class _FOCUS_EVENT_RECORD (ctypes.Structure): _fields_ = [ ("bSetFocus", ctypes.c_bool)] class _UCHAR (ctypes.Union): _fields_ = [ ("UnicodeChar", ctypes.c_char), ("AsciiChar", ctypes.c_wchar)] class _KEY_EVENT_RECORD (ctypes.Structure): _fields_ = [ ("bKeyDown", ctypes.c_bool), ("wRepeatCount", ctypes.c_ushort), ("wVirtualKeyCode", ctypes.c_ushort), ("wVirtualScanCode", ctypes.c_ushort), ("uChar", _UCHAR), ("dwControlKeyState", ctypes.c_uint)] class _MENU_EVENT_RECORD (ctypes.Structure): _fields_ = [ ("dwCommandId", ctypes.c_uint)] class _MOUSE_EVENT_RECORD (ctypes.Structure): _fields_ = [ ("dwMousePosition", _COORD), ("dwButtonState", ctypes.c_uint), ("dwControlKeyState", ctypes.c_uint), ("dwEventFlags", ctypes.c_uint)] class _WINDOW_BUFFER_SIZE_RECORD (ctypes.Structure): _fields_ = [ ("dwSize", _COORD)] class _EVENT (ctypes.Union): _fields_ = [ ("KeyEvent", _KEY_EVENT_RECORD), ("MouseEvent", _MOUSE_EVENT_RECORD), ("WindowBufferSizeEvent", _WINDOW_BUFFER_SIZE_RECORD), ("MenuEvent", _MENU_EVENT_RECORD), ("FocusEvent", _FOCUS_EVENT_RECORD)] class _INPUT_RECORD (ctypes.Structure): _fields_ = [ ("EventType", ctypes.c_ushort), ("Event", _EVENT)] class DOSBaseColour (library.colour.BaseColour): def __init__ (self, colour): super(DOSBaseColour, self).__init__(colour._colour, colour._colour_id) def is_background (): if self._colour_id == 0x0000: return True return self._colour_id & 0x0070 def is_foreground (): if self._colour_id == 0x0000: return True return self._colour_id & 0x0007 def as_background (): if self.is_background(): return self._colour_id & 0x0070 return self._colour_id & 0x0007 << 4 def as_foreground (): if self.is_foreground(): return self._colour_id & 0x0007 return self._colour_id & 0x0070 >> 4 class DOSColour (library.colour.Colour): def __init__ (self, colour): super(DOSColour, self).__init__(colour._foreground, colour._background, colour._style) def as_dos (): fg = DOSBaseColour(self._foreground).as_foreground() bg = DOSBaseColour(self._background).as_background() new_col = fg | bg if self._style == "underline": new_col |= COMMON_LVB_UNDERSCORE return new_col def _STDOUT (): return _GetStdHandle(STD_OUTPUT_HANDLE) def _STDIN (): return _GetStdHandle(STD_INPUT_HANDLE) def _STDERR (): return _GetStdHandle(STD_ERROR_HANDLE) def _GetStdHandle (handle): return ctypes.windll.kernel32.GetStdHandle(handle) def _GetColour (): return _GetConsoleScreenBufferInfo().wAttributes def _GetBG (): return _GetConsoleScreenBufferInfo().wAttributes & 0x0070 def _GetFG (): return _GetConsoleScreenBufferInfo().wAttributes & 0x0007 def _WaitForMultipleObjects (handles, wait_all=False, wtime=INFINITE): return ctypes.windll.kernel32.WaitForMultipleObjects(len(handles), (ctypes.c_int*len(handles))(*handles), ctypes.c_bool(wait_all), wtime) def _GetConsoleScreenBufferInfo (): buffer_info = _CONSOLE_SCREEN_BUFFER_INFO() ctypes.windll.kernel32.GetConsoleScreenBufferInfo(_STDOUT(), ctypes.byref(buffer_info)) return buffer_info def _GetConsoleCursorInfo (): cursor_info = _CONSOLE_CURSOR_INFO() ctypes.windll.kernel32.GetConsoleCursorInfo(_STDOUT(), ctypes.byref(cursor_info)) return cursor_info def _SetColour (colour, dos=False): if not dos: colour = DOSColour(colour).as_dos() return ctypes.windll.kernel32.SetConsoleTextAttribute(_STDOUT(), colour) def _SetConsoleCursorInfo (size=1, visible=True): cursor_info = _CONSOLE_CURSOR_INFO() cursor_info.dwSize = size cursor_info.bVisible = ctypes.c_bool(visible) return ctypes.windll.kernel32.SetConsoleCursorInfo(_STDOUT(), cursor_info) def _SetConsoleSize (c=None): if c is None: c = _GetConsoleScreenBufferInfo().dwSize c.Y = 25 if not isinstance(c, _COORD): c = _COORD(c.x, c.y) return ctypes.windll.kernel32.SetConsoleScreenBufferSize(_STDOUT(), c) def _goto (c): if not isinstance(c, _COORD): c = _COORD(c.x, c.y) return ctypes.windll.kernel32.SetConsoleCursorPosition(_STDOUT(), c) def _getxy (): return _GetConsoleScreenBufferInfo().dwCursorPosition def put (char, c, colour=None): _goto(c) old_c = _getxy() old_colour = _GetColour() if colour is not None: _SetColour(colour) print char _goto(old_c) _SetColour(old_colour, True) def get (err=False, block=False): pass def clear (char=None, colour=None): termsize = size() if char is None: char = " " for x in xrange(termsize.width): for y in xrange(termsize.height): put (char, coord.Coord(x, y), colour) def init (): global OLD_SCREEN_SIZE OLD_SCREEN_SIZE = _GetConsoleScreenBufferInfo().dwSize OLD_SCREEN_SIZE = coord.Coord(OLD_SCREEN_SIZE.X, OLD_SCREEN_SIZE.Y) _SetConsoleSize() def deinit (): _SetConsoleSize(OLD_SCREEN_SIZE) def size (): info = _GetConsoleScreenBufferInfo().dwSize size = coord.Size() size.width = info.X size.height = info.Y return size def wrapper (fn): try: fn() except: deinit() raise deinit() ``` #### File: murderrl/interface/screen.py ```python import textwrap from library import shape, coord, viewport class Grid (object): _grid = None def __init__ (self, width=0, height=0): self._grid = [] for row in xrange(height): row = [] for column in xrange(width): row.append(None) self._grid.append(row) def at (self, c, x=None): if x is not None: c = coord.Coord(coord, x) try: return self._grid[c.y][c.x] except IndexError: return None def set (self, c, x=None, grid=None): if x is not None: c = coord.Coord(c, x) else: grid = x try: self._grid[c.y][c.x] = grid except IndexError: return False return True class ScreenGrid (shape.Shape): pass class ColourGrid (Grid): pass class Screen (object): _regions = None _glyphs = None _colours = None _screen = None def __init__ (self, size, phys_screen): width, height = size self._glyphs = ScreenGrid(width=width, height=height, fill=" ") self._colours = ColourGrid(width=width, height=height) self._regions = [] self._screen = phys_screen def region (self, start, stop=None, name=None): if stop is not None: new_region = Region(start, stop, name) else: new_region = start name = stop self._regions.append(new_region) def regions (self, index=None): if index is not None: try: return self._regions[index] except TypeError: return self.region_by_name(index) else: return self._regions[:] def region_by_name (self, name): for region in self.regions(): if region.name == name: return region return None def colours (self): return self._colours def glyphs (self): return self._glyphs def physical (self): return self._screen def blit (self): """ This blits the entire contents of self.glyphs onto the screen -- using colours where appropriate. """ for c, glyph in self.glyphs(): colour = self.colours().at(c) self.physical().put(glyph, c, colour) ``` #### File: murderrl/tests/features.py ```python import curses from builder import builder, manor import library.viewport, library.coord import interface.console from library.feature import * from interface.features import * screen = interface.console.select() def put_text (text, spot): for ind, char in enumerate(text): screen.put(char, library.coord.Coord(spot.x+ind, spot.y)) def main (): screen.init() # First, build the manor. # base_manor = builder.manor.base_builder() base_manor = manor.ManorCollection(builder.build_random()) # Translate rooms and corridors into wall and floor features. base_manor.init_features() # Add doors along corridors, and windows. base_manor.add_doors() base_manor.add_windows() # Combine the room shapes into a canvas mymanor = base_manor.combine() # Debugging output print "Doors:", base_manor.doors print "Rooms:" base_manor.print_rooms() print "#Legs: ", base_manor.count_legs() for i in base_manor.legs: print i print "Corridors:" base_manor.print_corridors() # Draw features on canvas. for pos in library.coord.RectangleIterator(mymanor.size()): feat = base_manor.get_feature(pos) if feat != NOTHING and feat != WALL and feat != FLOOR: mymanor.__setitem__(pos, feat.glyph()) # Initialise the view port. vp = library.viewport.ViewPort(buffer=mymanor, width =min(mymanor.size().width, 70), height=min(mymanor.size().height, 20)) # Initialise a couple of variables. ppos = library.coord.Coord(35, 10) # player (@) position in the viewport last_move = library.coord.Coord(0, 0) # the last step taken by the player placement = True # initial player placement move_was_blocked = False # tried to leave the manor boundaries did_move = True # actually took a step print_features = False # draw manor via the feature grid while True: screen.clear(" ") # The currently visible section of the viewport. sect = vp.sect() # The real player position in the manor. real_pos = library.coord.Coord(vp._left + ppos.x + 1, vp._top + ppos.y + 1) # Depending on the current toggle state (toggle key 't'), either draw # the manor via the feature grid, or via the shape canvas. if print_features: for coord in library.coord.RectangleIterator(sect.size()): if coord >= base_manor.features.size(): continue real_coord = coord + library.coord.Coord(vp._left, vp._top) char = base_manor.features.__getitem__(real_coord).glyph() if (coord == ppos): if placement: ppos.x += 2 elif char == " " or move_was_blocked: ppos = ppos - last_move char = "X" screen.put(char, coord+1) else: for coord, char in sect: if char == None: char = " " # Don't place the player outside the manor. # Initially place him elsewhere, later disallow such movements. if (coord == ppos): # FIXME: Choose a sensible starting position and get # rid of this hack. if placement: ppos.x += 2 elif char == " " or move_was_blocked: ppos = ppos - last_move char = "X" screen.put(char, coord+1) placement = False # Draw the player. screen.put("@", ppos + 1) # Debugging information. put_text("Sect size : %s, Start coord: %s, Stop coord: %s" % (sect.size(), library.coord.Coord(vp._left, vp._top), library.coord.Coord(vp._left + vp._width, vp._top + vp._height)), library.coord.Coord(0, 23)) # Get the current room/corridor id. id = base_manor.get_corridor_index(real_pos) type = "corridor" if id == None: id = base_manor.get_room_index(real_pos) type = "room" put_text("Manor size: %s, Player coord: %s, last_move: %s, %s id: %s" % (mymanor.size(), real_pos, last_move, type, id), library.coord.Coord(0, 24)) # Get a key. ch = screen.get(block=True) # Move the player (@) via the arrow keys. # If we haven't reached the manor boundaries yet, scroll in that direction. # Otherwise, take a step unless it would make us leave the manor. # Reinitialise the relevant variables. last_move = library.coord.Coord(0, 0) move_was_blocked = False did_move = True if ch == curses.KEY_UP: last_move.y = -1 if vp._top > 0: vp.up(1) elif real_pos.y > 2: ppos.y -= 1 else: move_was_blocked = True elif ch == curses.KEY_DOWN: last_move.y = 1 if vp._top + vp._height < mymanor.size().y: vp.down(1) elif real_pos.y < mymanor.size().y - 1: ppos.y += 1 else: move_was_blocked = True elif ch == curses.KEY_LEFT: last_move.x = -1 if vp._left > 0: vp.left(1) elif real_pos.x > 2: ppos.x -= 1 else: move_was_blocked = True elif ch == curses.KEY_RIGHT: last_move.x = 1 if vp._left + vp._width < mymanor.size().x: vp.right(1) elif real_pos.x < mymanor.size().x - 1: ppos.x += 1 else: move_was_blocked = True elif (ch in range(256) and chr(ch) == 't'): # Toggle between feature grid (true) and canvas view (false). print_features = not print_features did_move = False else: break if move_was_blocked: # Reset last_move. last_move = library.coord.Coord(0, 0) did_move = False screen.deinit() if __name__=="__main__": screen.wrapper(main) ```
{ "source": "jmcb/urwidx", "score": 2 }
#### File: urwidx/ux/layout.py ```python import urwid # Taken from http://www.mail-archive.com/<EMAIL>/msg00515.html class OffsetOverlay(urwid.Overlay): def calculate_padding_filler(self, size, focus): l, r, t, b = self.__super.calculate_padding_filler(size, focus) return l+1, max(0, r-1), t+1, max(0, b-1) # A flow widget version of urwid.Frame. class SizedFrame (urwid.BoxAdapter): def __init__ (self, height, body, header=None, footer=None, focus_part='body'): urwid.BoxAdapter.__init__(self, urwid.Frame(body, header, footer, focus_part), height) def get_cursor_coords (self, size): return self.render(size, focus=True).cursor # Walker that interfaces on a list of string values, providing editors for them. # Support in-place editing by setting in_place=True. class ListEditorWalker (urwid.SimpleListWalker): def __init__ (self, contents, editor=urwid.Edit, in_place=True): self.to_update = contents self.editors = [None for i in contents] self.editor = editor self.focus = 0 urwid.MonitoredList.__init__(self, contents) if in_place: urwid.connect_signal(self, "modified", self.update_list) def update_list (self): self.to_update[:] = list(self) def wipe_editors (self): self.editors = [None for i in self.contents] def _get_focus (self, pos): if pos < 0: return None, None if len(self.contents) <= pos: return None, None return self._get_focus_editor(pos), pos def _get_focus_editor (self, pos): if self.editors[pos]: return self.editors[pos] def update_list (pos): def f (editor, new_value): if not self.editors[pos]: self.editors[pos] = None self.contents[pos] = new_value self._modified() return f editor = self.editor(edit_text=self.contents[pos]) urwid.connect_signal(editor, 'change', update_list(pos)) self.editors[pos] = editor return editor def set_focus (self, focus): assert isinstance(focus, int) self.focus = focus self._modified() def get_next (self, pos): return self._get_focus(pos+1) def get_prev (self, pos): return self._get_focus(pos-1) def get_focus (self): if len(self.contents) == 0: return None, None return self._get_focus_editor(self.focus), self.focus def new (self, end=True): if end == True: self.contents.append("") self.editors.append(None) self.focus = len(self.contents)-1 else: self.contents.insert(self.focus, "") self.editors.append(None) self.wipe_editors() def snip (self): del self.contents[self.focus] self.wipe_editors() # An interface to ListEditorWalker. class ListBoxEditor (urwid.ListBox): def __init__ (self, to_edit, editor=urwid.Edit, walker=ListEditorWalker, meta_key="ctrl e", del_key="-", append_key="+", insert_key="insert"): self.to_edit = to_edit self.meta_key = meta_key self.append_key = append_key self.insert_key = insert_key self.delete_key = del_key self.looking_meta = False self.walker = walker(self.to_edit, editor) urwid.ListBox.__init__(self, self.walker) def keypress (self, size, key): if self.looking_meta: self.looking_meta = False if key == self.append_key or key == self.insert_key: self.walker.new(key == self.append_key) return elif key == self.delete_key: self.walker.snip() return self.looking_meta = (key == self.meta_key) return urwid.ListBox.keypress(self, size, key) ```
{ "source": "jmccand/Student_change_web_app", "score": 3 }
#### File: jmccand/Student_change_web_app/updown.py ```python import db class User: def __init__(self, email, cookie_code, activity={}, votes={}, verified_email=False): self.email = email self.cookie_code = cookie_code self.activity = activity self.votes = votes self.verified_email = verified_email class Opinion: def __init__(self, ID, text, activity, approved=None, scheduled=False, committee_jurisdiction=None): self.ID = ID self.text = text self.activity = activity self.approved = approved self.scheduled = scheduled self.committee_jurisdiction = committee_jurisdiction def count_votes(self): up_votes = 0 down_votes = 0 abstains = 0 for user in db.user_cookies.values(): if user.verified_email and str(self.ID) in user.votes: this_vote = user.votes[str(self.ID)][-1][0] #print(f'{user.email} has voted {this_vote}') if this_vote == 'up': up_votes += 1 elif this_vote == 'down': down_votes += 1 elif this_vote == 'abstain': abstains += 1 else: raise ValueError(f'Found a vote other than up, down, or abstain: {this_vote}') return up_votes, down_votes, abstains ``` #### File: jmccand/Student_change_web_app/wsgi_example.py ```python from wsgiref.simple_server import make_server def application(environ, start_response): for key, item in environ.items(): print(f'{key} {item}') path = environ.get('PATH_INFO') if path == '/': response_body = "Index" else: response_body = "Hello" status = "200 OK" response_headers = [("Content-Length", str(len(response_body)))] start_response(status, response_headers) return [response_body.encode('utf8')] httpd = make_server( '10.17.4.17', 8051, application) httpd.serve_forever() ```
{ "source": "jmccand/werewolf", "score": 3 }
#### File: jmccand/werewolf/main.py ```python import random import urllib.parse import webbrowser import os import socket from http.cookies import SimpleCookie from http.server import HTTPServer, SimpleHTTPRequestHandler import json import uuid from datetime import datetime import _thread import time import math class MyHandler(SimpleHTTPRequestHandler): player_usernames = set() def do_GET(self): print('\npath = ' + self.path) host = self.headers.get('Host') print(host) if False and host != 'werewolf.joelmccandless.com:8000': self.send_response(302) self.send_header('Location', 'http://werewolf.joelmccandless.com:8000') self.end_headers() return else: if self.path == '/change_username': return self.change_username() elif self.path.startswith('/set_username'): return self.set_username() elif self.path.startswith('/new_game'): return self.new_game() elif self.path.startswith('/join_game'): return self.join_game() elif self.path == '/': return self.handleHomepage() elif self.path.endswith('.jpg'): return self.load_image() elif self.path.startswith('/waiting_room'): return self.waiting_room() elif self.path.startswith('/game_state'): return self.get_gamestate() elif self.path.startswith('/pick_roles'): return self.pick_roles() elif self.path.startswith('/set_roles'): return self.set_roles() elif self.path.startswith('/view_roles'): return self.view_roles() elif self.path.startswith('/deal_cards'): return self.deal_cards() elif self.path.startswith('/show_cards'): return self.show_cards() elif self.path.startswith('/start_night'): return self.start_night() elif self.path.startswith('/add_selected'): return self.add_selected() elif self.path == '/favicon.ico': self.path = '/Card Backside.ico' return self.load_image() elif self.path.startswith('/vote'): return self.vote() else: raise RuntimeError(f'got a path from {self.path}') def set_username(self): print('set username') arguments = urllib.parse.parse_qs(urllib.parse.urlparse(self.path).query) if 'username' in arguments: username = arguments['username'][0] print(username) else: username = None if 'username' not in arguments or username in MyHandler.player_usernames: self.send_response(200) self.end_headers() self.wfile.write('<html><body>'.encode('utf8')) # if username in MyHandler.player_usernames: # self.wfile.write(f'Sorry, the username "{username}" was already taken. Please choose another username.'.encode('utf8')) self.wfile.write(''' <form method = 'GET' action = '/set_username'> Please enter your username: <input type = 'text' name = 'username'/> <input type = 'submit' value = 'submit'/> </form> </body> </html> '''.encode('utf8')) else: self.send_response(302) self.send_header('Set-Cookie', 'username="%s"' % username) self.send_header('Location', '/') self.end_headers() def change_username(self): print('change username called') self.send_response(302) print('sending expired cookie...') self.send_header('Set-Cookie', 'username=None; expires=Mon, 14 Sep 2020 07:00:00 GMT') print('expired cookie sent!') self.send_header('Location', '/set_username') self.end_headers() cookies = SimpleCookie(self.headers.get('Cookie')) username = cookies['username'].value MyHandler.player_usernames.remove(username) def get_gamestate(self): myID = self.get_game_id() myGame = Game.running_games[myID] self.send_response(200) self.end_headers() print(f'gamestate: {myGame.gamestate}') if myGame.gamestate == 'waiting_room': game_state = {'mode': 'waiting_room', 'players': list(myGame.players)} elif myGame.gamestate == 'pick_roles': game_state = {'mode': 'pick_roles', 'roles': myGame.selected_roles} elif myGame.gamestate == 'show_cards': game_state = {'mode': 'show_cards', 'roles': myGame.position_username_role} elif myGame.gamestate == 'night': #new_selected = myGame.selected[:] #for index, player in enumerate(myGame.selected): #if len(player) > 0 and player[-1] == True: #new_selected[index] = player[:-1] game_state = {'mode': 'night', 'active_roles': myGame.active_roles, 'selected': myGame.selected} print(f'active_roles: {myGame.active_roles}') print(f'selected: {myGame.selected}') #print(f'new selected: {new_selected}') elif myGame.gamestate == 'day': game_state = {'mode': 'day', 'time': math.floor(myGame.day_length - (datetime.now() - myGame.day_start).total_seconds())} elif myGame.gamestate == 'conclusion': game_state = {'mode': 'conclusion', 'winners': myGame.winners} self.wfile.write(json.dumps(game_state).encode('utf8')) def pick_roles(self): myID = self.get_game_id() myGame = Game.running_games[myID] myGame.gamestate = 'pick_roles' print(str(myGame.uuid) + ' GAME: MODE SWITCHED TO PICK ROLES') self.send_response(200) self.end_headers() self.wfile.write(str(''' <html> <head> <style> div.fixed { position : fixed; top : 40%%; left : 38; width : 200px; height : 100px; border: 3px solid #FFFFFF; z-index : 1; `} div.relative { position : relative; left : 110px; width : 1091px; height : 300px; border : 0px solid #FFFFFF; z-index : 0; } </style> </head> <body bgcolor = '#000033' align = 'center'> <div class = 'fixed' align = 'center'> <font id = 'total_role_number' color = '#FFFFFF' size = '32'> 0 / %s </font> <br /> <font color = '#FFFFFF' size = '6'> roles selected </font> </div> <h2> <button id='start_game' onclick='document.location.href = "/deal_cards?id=%s"' type = 'button' style = 'position : fixed; top : 55%%; left : 50; z-index : 1' disabled='true'> <font size = '6'> Start Game </font> </button> </h2> <div class = 'relative' style = 'display : inline-block'> <h1> <font color = '#FFFFFF'> One Night Ultimate Werewolf </font> </h1> <img src = 'sentinel.jpg' id = 'sentinel' width = '215px' height = '300px' style = 'border : 0px solid white' onclick = 'selectCard(this)'/> <img src = 'doppleganger.jpg' id = 'doppleganger' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <img src = 'werewolf.jpg' id = 'werewolf1' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <img src = 'werewolf.jpg' id = 'werewolf2' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <img src = 'alpha wolf.jpg' id = 'alpha wolf' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <br /> <img src = 'mystic wolf.jpg' id = 'mystic wolf' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <img src = 'minion.jpg' id = 'minion' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <img src = 'mason.jpg' id = 'mason1' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <img src = 'mason.jpg' id = 'mason2' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <img src = 'seer.jpg' id = 'seer' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <br /> <img src = 'apprentice seer.jpg' id = 'apprentice seer' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <img src = 'paranormal investigator.jpg' id = 'paranormal investigator' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <img src = 'robber.jpg' id = 'robber' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <img src = 'witch.jpg' id = 'witch' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <img src = 'troublemaker.jpg' id = 'troublemaker' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <br /> <img src = 'village idiot.jpg' id = 'village idiot' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <img src = 'drunk.jpg' id = 'drunk' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <img src = 'insomniac.jpg' id = 'insomniac' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <img src = 'revealer.jpg' id = 'revealer' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <img src = 'curator.jpg' id = 'curator' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <br /> <img src = 'villager.jpg' id = 'villager1' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <img src = 'villager.jpg' id = 'villager2' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <img src = 'villager.jpg' id = 'villager3' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <img src = 'hunter.jpg' id = 'hunter' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <img src = 'tanner.jpg' id = 'tanner' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <br /> <img src = 'dream wolf.jpg' id = 'dream wolf' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> <img src = 'bodyguard.jpg' id = 'bodyguard' width = '215px' height = '300px' style = 'border:0px solid white' onclick = 'selectCard(this)'/> </div> <script> var total_roles_selected = []; var number_of_players = %s; function selectCard(element) { if (element.style.border == '6px solid white') { element.style.border = '0px solid white'; element.width = '215'; element.height = '300'; total_roles_selected.splice(total_roles_selected.indexOf(element.id), 1); } else { element.style.border = '6px solid white'; element.width = '203'; element.height = '288'; total_roles_selected.push(element.id); } updateRoles(total_roles_selected); document.getElementById('total_role_number').innerHTML = total_roles_selected.length + ' / ' + number_of_players; if (total_roles_selected.length == number_of_players) { document.getElementById('start_game').disabled = false; } else { document.getElementById('start_game').disabled = true; } } function updateRoles(roleList) { var xhttp = new XMLHttpRequest(); xhttp.open("GET", "/set_roles?id=%s&roles=" + roleList.join(), true); xhttp.send(); } </script> </body> </html> ''' % (len(myGame.players) + 3, myID, len(myGame.players) + 3, myID)).encode('utf8')) def load_image(self): if self.path.startswith('/werewolf'): self.path = '/werewolf.jpg' elif self.path.startswith('/villager'): self.path = '/villager.jpg' return SimpleHTTPRequestHandler.do_GET(self) def handleHomepage(self, invalidId=False): cookies = SimpleCookie(self.headers.get('Cookie')) self.send_response(200) self.end_headers() if 'username' not in cookies: self.wfile.write('''<html><body>We noticed you are not signed in. To create or join a game, please sign in below.<br /> <button onclick='document.location.href="/set_username"'>SIGN IN</button> <br /><br /><br /> '''.encode('utf8')) else: self.wfile.write('<html><body>'.encode('utf8')) if invalidId != False: self.wfile.write(f'''Error, the ID you entered was not found.<br /> <button onclick='document.location.href="/new_game"'>Host new game</button><br /> <br /> OR <br /> <br /> <form action='/join_game' method='GET'> Game Pin:<br /> <input type='text' name='gamepin' value='{invalidId}'/> <input type='submit' value='Join!'/> </form> '''.encode('utf8')) else: self.wfile.write(''' <button onclick='document.location.href="/new_game"'>Host new game</button><br /> <br /> OR <br /> <br /> <form action='/join_game' method='GET'> Game Pin:<br /> <input type='text' name='gamepin'/> <input type='submit' value='Join!'/> </form> '''.encode('utf8')) self.wfile.write('''<br /> Here is a list of public games that you can join:<br /> <ul> '''.encode('utf8')) for game in Game.running_games.values(): self.wfile.write(f'''<li><a href='/waiting_room?id={game.uuid}'>{len(game.players)} player game</a></li>'''.encode('utf8')) self.wfile.write('</ul></body></html>'.encode('utf8')) def getUsername(self): cookies = SimpleCookie(self.headers.get('Cookie')) if 'username' not in cookies: self.send_response(400) self.end_headers() raise KeyError('username not in cookies; sent response 400') else: return cookies['username'].value def waiting_room(self): myID = self.get_game_id() myGame = Game.running_games[self.get_game_id()] username = self.getUsername() self.send_response(200) self.end_headers() Game.running_games[myID].players.append(username) self.wfile.write(f''' <html> <body> Welcome {username}! <br /> There are <span id='player_number'>{len(myGame.players)}</span> players. <br />'''.encode('utf-8')) self.wfile.write('Here are the current players:<ol id = "player_list">'.encode('utf-8')) for username in myGame.players: self.wfile.write(f'<li>{username}</li>'.encode('utf-8')) self.wfile.write((''' </ol> <button type = 'button' onclick = 'document.location.href = "/change_username"'> Change username </button> <script> function refreshPage() { var xhttp = new XMLHttpRequest(); xhttp.open("GET", "/game_state?id=%s", true); xhttp.send(); xhttp.onreadystatechange = function() { if (this.readyState == 4 && this.status == 200) { var response = JSON.parse(this.responseText); var updatedPlayers = response['players'] if (response['mode'] == 'waiting_room') { var player_list = document.getElementById('player_list'); while (player_list.firstChild) { player_list.removeChild(player_list.firstChild); } for (element = 0; element < updatedPlayers.length; element++) { var player = document.createElement('li'); player.innerHTML = updatedPlayers[element] player_list.appendChild(player); } document.getElementById('player_number').innerHTML = updatedPlayers.length; } else if (response['mode'] == 'pick_roles') { document.location.href = '/view_roles?id=%s' } console.log('updatedPlayerList: ' + this.responseText); } }; setTimeout(refreshPage, 1000); } setTimeout(refreshPage, 1000); </script> ''' % (myID, myID)).encode('utf8')) if myGame.players[0] == username: self.wfile.write((''' <button type = 'button' onclick = 'document.location.href = "/pick_roles?id=%s"'> Select Roles </button> ''' % myID).encode('utf8')) self.wfile.write(''' </body> </html> '''.encode('utf8')) def set_roles(self): myID = self.get_game_id() myGame = Game.running_games[myID] arguments = urllib.parse.parse_qs(urllib.parse.urlparse(self.path).query, keep_blank_values=True) if 'roles' in arguments: if arguments['roles'] == ['']: myGame.selected_roles = [] else: myGame.selected_roles = arguments['roles'][0].split(",") def view_roles(self): myID = self.get_game_id() myGame = Game.running_games[myID] self.send_response(200) self.end_headers() self.wfile.write(str(''' <html> <head> <style> div.fixed { position : fixed; top : 40%%; left : 38; width : 200px; height : 100px; border: 3px solid #FFFFFF; z-index : 1; } div.relative { position : relative; left : 110px; width : 1091px; height : 300px; border : 0px solid #FFFFFF; z-index : 0; } </style> </head> <body bgcolor = '#000033' align = 'center'> <div class = 'fixed' align = 'center'> <font id = 'total_role_number' color = '#FFFFFF' size = '32'> 0 / %s </font> <br /> <font color = '#FFFFFF' size = '6'> roles selected </font> </div> <div class = 'relative' style = 'display : inline-block'> <h1> <font color = '#FFFFFF'> One Night Ultimate Werewolf </font> </h1> <img src = 'sentinel.jpg' id = 'sentinel' width = '215px' height = '300px' style = 'border : 0px solid white'/> <img src = 'doppleganger.jpg' id = 'doppleganger' width = '215px' height = '300px' style = 'border:0px solid white'/> <img src = 'werewolf.jpg' id = 'werewolf1' width = '215px' height = '300px' style = 'border:0px solid white'/> <img src = 'werewolf.jpg' id = 'werewolf2' width = '215px' height = '300px' style = 'border:0px solid white'/> <img src = 'alpha wolf.jpg' id = 'alpha wolf' width = '215px' height = '300px' style = 'border:0px solid white'/> <br /> <img src = 'mystic wolf.jpg' id = 'mystic wolf' width = '215px' height = '300px' style = 'border:0px solid white'/> <img src = 'minion.jpg' id = 'minion' width = '215px' height = '300px' style = 'border:0px solid white'/> <img src = 'mason.jpg' id = 'mason1' width = '215px' height = '300px' style = 'border:0px solid white'/> <img src = 'mason.jpg' id = 'mason2' width = '215px' height = '300px' style = 'border:0px solid white'/> <img src = 'seer.jpg' id = 'seer' width = '215px' height = '300px' style = 'border:0px solid white'/> <br /> <img src = 'apprentice seer.jpg' id = 'apprentice seer' width = '215px' height = '300px' style = 'border:0px solid white'/> <img src = 'paranormal investigator.jpg' id = 'paranormal investigator' width = '215px' height = '300px' style = 'border:0px solid white'/> <img src = 'robber.jpg' id = 'robber' width = '215px' height = '300px' style = 'border:0px solid white'/> <img src = 'witch.jpg' id = 'witch' width = '215px' height = '300px' style = 'border:0px solid white'/> <img src = 'troublemaker.jpg' id = 'troublemaker' width = '215px' height = '300px' style = 'border:0px solid white'/> <br /> <img src = 'village idiot.jpg' id = 'village idiot' width = '215px' height = '300px' style = 'border:0px solid white'/> <img src = 'drunk.jpg' id = 'drunk' width = '215px' height = '300px' style = 'border:0px solid white'/> <img src = 'insomniac.jpg' id = 'insomniac' width = '215px' height = '300px' style = 'border:0px solid white'/> <img src = 'revealer.jpg' id = 'revealer' width = '215px' height = '300px' style = 'border:0px solid white'/> <img src = 'curator.jpg' id = 'curator' width = '215px' height = '300px' style = 'border:0px solid white'/> <br /> <img src = 'villager.jpg' id = 'villager1' width = '215px' height = '300px' style = 'border:0px solid white'/> <img src = 'villager.jpg' id = 'villager2' width = '215px' height = '300px' style = 'border:0px solid white'/> <img src = 'villager.jpg' id = 'villager3' width = '215px' height = '300px' style = 'border:0px solid white'/> <img src = 'hunter.jpg' id = 'hunter' width = '215px' height = '300px' style = 'border:0px solid white'/> <img src = 'tanner.jpg' id = 'tanner' width = '215px' height = '300px' style = 'border:0px solid white'/> <br /> <img src = 'dream wolf.jpg' id = 'dream wolf' width = '215px' height = '300px' style = 'border:0px solid white'/> <img src = 'bodyguard.jpg' id = 'bodyguard' width = '215px' height = '300px' style = 'border:0px solid white'/> </div> <script> var total_roles_selected = []; var number_of_players = %s; function refreshPage() { var xhttp = new XMLHttpRequest(); xhttp.open("GET", "/game_state?id=%s", true); xhttp.send(); xhttp.onreadystatechange = function() { if (this.readyState == 4 && this.status == 200) { var response = JSON.parse(this.responseText); var updatedRoles = response['roles'] if (response['mode'] == 'pick_roles') { console.log('updated roles: ' + updatedRoles); for (var index = 0; index < total_roles_selected.length; index++) { var role = total_roles_selected[index]; if (updatedRoles.indexOf(role) == -1) { var element = document.getElementById(role); element.style.border = '0px solid white'; element.width = '215'; element.height = '300'; } } for (var index = 0; index < updatedRoles.length; index++) { var role = updatedRoles[index]; var element = document.getElementById(role); element.style.border = '6px solid white'; element.width = '203'; element.height = '288'; } total_roles_selected = updatedRoles; document.getElementById('total_role_number').innerHTML = total_roles_selected.length + ' / ' + number_of_players; } else { document.location.href = '/show_cards?id=%s'; } } } setTimeout(refreshPage, 1000); } setTimeout(refreshPage, 1000); </script> </body> </html> ''' % (len(myGame.players) + 3, len(myGame.players) + 3, myID, myID)).encode('utf8')) def deal_cards(self): myID = self.get_game_id() myGame = Game.running_games[myID] if len(myGame.players) + 3 != len(myGame.selected_roles): print('there was an error: incorrect number of roles') self.send_response(200) self.end_headers() self.wfile.write(f'''<html><body>I'm sorry, you must've pressed the start game too fast. The server sees {myGame.players} as players and {myGame.selected_roles} as roles.</body></html>'''.encode('utf8')) else: print('DEALING CARDS') available_roles = myGame.selected_roles[:] for player in myGame.players: choice = random.choice(available_roles) myGame.position_username_role.append((player, choice)) available_roles.remove(choice) for center in range(1, 4): choice = random.choice(available_roles) myGame.position_username_role.append((f'Center{center}', choice)) available_roles.remove(choice) myGame.gamestate = 'show_cards' self.send_response(302) self.send_header('Location', '/show_cards?id=%s' % myID) self.end_headers() def show_cards(self): myID = self.get_game_id() myGame = Game.running_games[myID] self.send_response(200) self.end_headers() cookies = SimpleCookie(self.headers.get('Cookie')) username = cookies['username'].value my_index = None for index, player_role in enumerate(myGame.position_username_role): if player_role[0] == username: my_index = index print(f'{username}\'s index is {my_index}, which matches the role {player_role[1]}') my_role = myGame.position_username_role[my_index][1] self.wfile.write(''' <html> <head> <title>ONUW TABLE</title> <style> body { background-image : url('Table.jpg'); } #clock { color: red; font-size: 50px; font-weight: bold; } </style> </head> <body> <!--<div style = 'position : fixed; height : 1; width : 1; left : 700; top : 360; border : 3px solid #000000'> </div>-->'''.encode('utf8')) if my_index == 0: self.wfile.write(f'''<!--<button id='start_night_button' type='button' onclick='document.location.href="/start_night?id={myID}"'>Start night</button>-->'''.encode('utf8')) self.wfile.write((''' <script> var firstRefresh = true; var player_role_list = %s; var my_index = %s; var my_role; var alreadyRefreshedNight = false; var mySelections = []; var previouslyActive; var turnDeployed = false; var isDay = false; var myVote; function drawBoard() { var total_player_number = player_role_list.length - 3; for (var player = 0; player < total_player_number; player++) { var angle = (360.0 / total_player_number) * (player - my_index) - 90; var y = Math.sin((angle / 360.0) * (2 * Math.PI)) * 280; var x = Math.cos((angle / 360.0) * (2 * Math.PI)) * 280; var image = document.createElement('img'); image.src = 'Card Backside.jpg'; image.id = player_role_list[player][0]; image.width = '71'; image.height = '100'; image.style.transform = 'rotate(' + (-(angle + 90)) + 'deg)'; image.style.position = 'fixed'; image.style.left = 735 + x - 35; image.style.top = 380 - y - 50; //really important onclick for selection: image.setAttribute('onclick', 'select(this)'); document.body.appendChild(image); y *= 13/10; x *= 13/10; var name = document.createElement('div'); name.innerHTML = player_role_list[player][0]; name.style.transform = 'rotate(' + (-(angle + 90)) + 'deg)'; name.style.position = 'fixed'; name.style.width = '300'; name.style.left = 735 + x - 150; name.style.top = 372 - y; name.style.textAlign = 'center'; name.style.fontWeight = 'bold'; name.style.color = 'white'; document.body.appendChild(name); } var centerRotation = my_index * 360 / total_player_number; for (var player = 0; player < 2; player++) { var angle = -(360.0 / 2) * player - centerRotation; var card; y = Math.sin((angle / 360.0) * (2 * Math.PI)) * 80; x = Math.cos((angle / 360.0) * (2 * Math.PI)) * 80; card = document.createElement('img'); card.src = 'Card Backside.jpg'; card.id = 'Center' + (player * 2 + 1); card.width = '71'; card.height = '100'; card.style.transform = 'rotate(' + (-angle + 180 * player) + 'deg)'; card.style.position = 'fixed'; card.style.left = 735 + x - 35; card.style.top = 380 - y - 50; //really important onclick for selection: card.setAttribute('onclick', 'select(this)'); document.body.appendChild(card); } var card = document.createElement('img'); card.src = 'Card Backside.jpg'; card.id = 'Center2'; card.width = '71'; card.height = '100'; card.style.transform = 'rotate(' + (centerRotation) + 'deg)'; card.style.position = 'fixed'; card.style.left = 735 - 35; card.style.top = 380 - 50; //really important onclick for selection: card.setAttribute('onclick', 'select(this)'); document.body.appendChild(card); } function myTurn() { my_role = player_role_list[my_index][1]; switch (my_role) { case 'alpha wolf': alpha_wolf(); case 'mystic wolf': mystic_wolf(); case 'werewolf1': case 'werewolf2': werewolf(); break; case 'apprentice seer': apprentice_seer(); break; case 'bodyguard': bodyguard(); break; case 'curator': curator(); break; case 'doppleganger': doppleganger(); break; case 'dream wolf': dream_wolf(); break; case 'drunk': drunk(); break; case 'hunter': hunter(); break; case 'insomniac': insomniac(); break; case 'mason1': case 'mason2': mason(); break; case 'minion': minion(); break; case 'paranormal investigator': paranormal_investigator(); break; case 'revealer': revealer(); break; case 'robber': robber(); break; case 'seer': seer(); break; case 'sentinel': sentinel(); break; case 'tanner': tanner(); break; case 'troublemaker': troublemaker(); break; case 'village idiot': village_idiot(); break; case 'villager': villager(); break; case 'witch': witch(); break; } turnDeployed = true; } function doDivTextbox(message) { var div = document.createElement('div'); div.id = 'div_textbox'; div.innerHTML = 'Awaken ' + my_role + '!<br />' + message; div.style = 'position: absolute; top: 20px; left: 40%%; background-color: white; border-style: solid; border-color: red; width: 20%%;'; div.align = 'center'; document.body.appendChild(div); } function werewolf() { //console.log('werewolf function called!'); var partnerWolf = false; for (var index = 0; index < player_role_list.length - 3; index++) { if ((player_role_list[index][1].indexOf('wolf') != -1) && player_role_list[index][1] != my_role) { partnerWolf = player_role_list[index][0]; } } if (partnerWolf != false) { doDivTextbox('Your partner is ' + partnerWolf + '.'); } else { doDivTextbox('You are the lone wolf. Select a card in the center to view.'); } } function werewolfSelect(selected) { //console.log('werewolf select function called!'); var partnerWolf = false; for (var index = 0; index < player_role_list.length - 3; index++) { if ((player_role_list[index][1].indexOf('wolf') != -1) && player_role_list[index][1] != my_role) { partnerWolf = player_role_list[index][0]; } } if (partnerWolf == false) { if ((selected.id == 'Center1' || selected.id == 'Center2' || selected.id == 'Center3') && mySelections.length < 1) { reveal(selected); for (var index = 0; index < player_role_list.length; index++) { if (player_role_list[index][0] == selected.id) { return true; } } } } return false; } function minion() { var wolves = []; for (var index = 0; index < player_role_list.length - 3; index++) { if (player_role_list[index][1].indexOf('wolf') != -1) { wolves.push(player_role_list[index][0]); } } if (wolves.length == 0) { doDivTextbox('There are no werewolves in play.'); } else { var message; if (wolves.length > 1) { message = 'There are ' + wolves.length + ' werewolves in play. They are ' + wolves + '.'; } else { message = 'There is ' + wolves.length + ' werewolf in play. They are ' + wolves + '.'; } doDivTextbox(message); } updateAction(-1); } function troublemaker() { doDivTextbox('Choose two players to switch their roles. You do not get to see their roles.'); } function troublemakerSelect(selected) { if (!(selected.id == 'Center1' || selected.id == 'Center2' || selected.id == 'Center3')) { if (mySelections.length < 2) { for (var index = 0; index < player_role_list.length; index++) { if (player_role_list[index][0] == selected.id && mySelections.indexOf(index) == -1) { return true; } } } } return false; } function witch() { doDivTextbox('Choose a center card to view. Then, choose a player to give that card to.'); } function witchSelect(selected) { //console.log('my selections: ' + mySelections); if (mySelections.length < 1) { if (selected.id == 'Center1' || selected.id == 'Center2' || selected.id == 'Center3') { for (var index = 0; index < player_role_list.length; index++) { if (player_role_list[index][0] == selected.id && mySelections.indexOf(index) == -1) { reveal(selected); console.log('1st selection: pushed ' + index); return true; } } } } else if (mySelections.length < 2) { if (!(selected.id == 'Center1' || selected.id == 'Center2' || selected.id == 'Center3')) { for (var index = 0; index < player_role_list.length; index++) { if (player_role_list[index][0] == selected.id && mySelections.indexOf(index) == -1) { console.log('2nd selection pushed ' + index); return true; } } } } return false; } function select(element) { var selected = element; console.log('select got ' + selected); if (isDay) { vote(element); } else { var update = false; switch (my_role) { case 'alpha wolf': update = alpha_wolfSelect(selected); case 'mystic wolf': update = mystic_wolfSelect(selected); case 'werewolf1': case 'werewolf2': update = werewolfSelect(selected); break; case 'apprentice seer': update = apprentice_seerSelect(selected); break; case 'bodyguard': update = bodyguardSelect(selected); break; case 'curator': update = curatorSelect(selected); break; case 'doppleganger': update = dopplegangerSelect(selected); break; case 'dream wolf': update = dream_wolfSelect(selected); break; case 'drunk': update = drunkSelect(selected); break; case 'hunter': update = hunterSelect(selected); break; case 'paranormal investigator': update = paranormal_investigatorSelect(selected); break; case 'revealer': update = revealerSelect(selected); break; case 'robber': update = robberSelect(selected); break; case 'seer': update = seerSelect(selected); break; case 'sentinel': update = sentinelSelect(selected); break; case 'troublemaker': update = troublemakerSelect(selected); break; case 'village idiot': update = village_idiotSelect(selected); break; case 'witch': update = witchSelect(selected); break; } if (update) { for (var index = 0; index < player_role_list.length; index++) { if (player_role_list[index][0] == selected.id) { updateAction(index); } } } } } function reveal(element) { console.log('revealing ' + element); for (var index = 0; index < player_role_list.length; index++) { if (player_role_list[index][0] == element.id) { element.src = player_role_list[index][1] + '.jpg'; } } } function endTurn(mySelected) { for (var index = 0; index < mySelected.length; index++) { document.getElementById(player_role_list[mySelected[index]][0]).src = 'Card Backside.jpg'; } var textbox = document.getElementById('div_textbox'); textbox.parentNode.removeChild(textbox); turnDeployed = false; } function updateAction(index) { console.log('updating action on index ' + index); mySelections.push(index); var xhttp = new XMLHttpRequest(); xhttp.open("GET", "/add_selected?id=%s&selected=" + index, true); xhttp.send(); } function refreshPage() { var xhttp = new XMLHttpRequest(); xhttp.open("GET", "/game_state?id=%s", true); xhttp.send(); xhttp.onreadystatechange = function() { if (this.readyState == 4 && this.status == 200) { var response = JSON.parse(this.responseText); if (firstRefresh) { drawBoard(); firstRefresh = false; } if (response['mode'] == 'show_cards') { document.getElementById(player_role_list[my_index][0]).src = player_role_list[my_index][1] + '.jpg'; if (my_index == 0 && document.getElementById('start_night_button') == null) { var child = document.createElement('button'); child.id = 'start_night_button'; child.type = 'button'; child.setAttribute('onclick', 'document.location.href="/start_night?id=%s"'); child.innerHTML = 'Start Night'; document.body.appendChild(child); } } else if (response['mode'] == 'night') { //console.log('active roles: ' + response['active_roles'] + ' vs previously ' + previouslyActive + ' - ' + (previouslyActive == response['active_roles'])); if (previouslyActive == null || previouslyActive[0] != response['active_roles'][0]) { previouslyActive = response['active_roles']; if (response['active_roles'].indexOf(player_role_list[my_index][1]) != -1) { //console.log('my turn! ' + '- ' + previouslyActive); myTurn(); } } var mySelected = response['selected'][my_index] if (mySelected[mySelected.length - 1] == true) { mySelected.pop(); if (turnDeployed) { //console.log('my selected: ' + mySelected); setTimeout(function(){ if (turnDeployed) { endTurn(mySelected) } }, 5000); } } if (alreadyRefreshedNight == false) { alreadyRefreshedNight = true; mySelections = mySelected; var child = document.getElementById('start_night_button'); if (child != null) { child.parentNode.removeChild(child); } document.getElementById(player_role_list[my_index][0]).src = 'Card Backside.jpg'; for (var item = 0; item < mySelected.length; item++) { var selected = document.getElementById(player_role_list[mySelected[item]][0]); switch (my_role) { case 'alpha wolf': alpha_wolfSelect(selected); case 'mystic wolf': mystic_wolfSelect(selected); case 'werewolf1': case 'werewolf2': werewolfSelect(selected); break; case 'apprentice seer': apprentice_seerSelect(selected); break; case 'bodyguard': bodyguardSelect(selected); break; case 'curator': curatorSelect(selected); break; case 'doppleganger': dopplegangerSelect(selected); break; case 'dream wolf': dream_wolfSelect(selected); break; case 'drunk': drunkSelect(selected); break; case 'hunter': hunterSelect(selected); break; case 'paranormal investigator': paranormal_investigatorSelect(selected); break; case 'revealer': revealerSelect(selected); break; case 'robber': robberSelect(selected); break; case 'seer': seerSelect(selected); break; case 'sentinel': sentinelSelect(selected); break; case 'troublemaker': troublemakerSelect(selected); break; case 'village idiot': village_idiotSelect(selected); break; case 'witch': witchSelect(selected); break; } } } } else if (response['mode'] == 'day') { if (!isDay) { isDay = true; } if (turnDeployed) { endTurn(mySelections); } if (document.getElementById('clock') == null) { var element = document.createElement('div'); element.id = 'clock'; document.body.appendChild(element); } document.getElementById('clock').innerHTML = response['time']; } else if (response['mode'] == 'conclusion') { var winner = false; for (var index = 0; index < response['winners'].length; index++) { if (response['winners'][index] == my_role) { console.log('you are a winner!'); winner = true; } } } } } setTimeout(refreshPage, 1000); } setTimeout(refreshPage, 1000); function vote(element) { if (!(element.id == 'Center1' || element.id == 'Center2' || element.id == 'Center3')) { if (element == myVote) { var xhttp = new XMLHttpRequest(); xhttp.open("GET", "/vote?id=%s&for=-1", true); xhttp.send(); myVote.style.border = '0px solid red'; myVote = null; } else { if (myVote != null) { myVote.style.border = '0px solid red'; } var xhttp = new XMLHttpRequest(); xhttp.open("GET", "/vote?id=%s&for=" + element.id, true); xhttp.send(); element.style.border = '4px solid red'; myVote = element; } } } </script> </body> </html> ''' % ([list(tuplepair) for tuplepair in myGame.position_username_role], my_index, myID, myID, myID, myID, myID)).encode('utf8')) def start_night(self): myID = self.get_game_id() myGame = Game.running_games[myID] myGame.selected = [] for entry in myGame.position_username_role[:-3]: myGame.selected.append([]) myGame.gamestate = 'night' myGame.active_roles = [] myGame.progress_night() myGame.check_completed_section() self.send_response(302) self.send_header('Location', f'/show_cards?id={myID}') self.end_headers() def get_game_id(self): arguments = urllib.parse.parse_qs(urllib.parse.urlparse(self.path).query, keep_blank_values=True) print('get game id arguments: ' + str(arguments)) if 'id' in arguments: if arguments['id'][0] in Game.running_games: return arguments['id'][0] else: self.send_response(400) self.end_headers() self.wfile.write('<html><body>This game is not currently running. Return to the homepage <a href="/">here</a>.'.encode('utf8')) raise ValueError('no running games under pin; sent response 400') else: self.send_response(400) self.end_headers() raise KeyError(f'no ID given in url; sent response 400 (path was {self.path})') def new_game(self): gameID = uuid.uuid1().hex Game.newGame(gameID) self.send_response(302) self.send_header('Location', '/join_game?id=%s' % gameID) self.end_headers() self.wfile.write('You should be redirected'.encode('utf8')) def join_game(self): myID = self.get_game_id() if Game.canJoin(myID): self.send_response(302) self.send_header('Location', '/waiting_room?id=%s' % myID) self.end_headers() else: return self.handleHomepage(myID) def add_selected(self): myID = self.get_game_id() myGame = Game.running_games[myID] cookies = SimpleCookie(self.headers.get('Cookie')) username = cookies['username'].value arguments = urllib.parse.parse_qs(urllib.parse.urlparse(self.path).query, keep_blank_values=True) if 'selected' in arguments: self.send_response(200) self.end_headers() added = int(arguments['selected'][0]) my_index = None for index, player_role in enumerate(myGame.position_username_role): if player_role[0] == username: my_index = index if len(myGame.selected[my_index]) > 0 and myGame.selected[my_index][-1] == True: raise RuntimeError(f'{username} just tried to send extra roles. Uh oh!') if added != -1: myGame.selected[my_index].append(added) if myGame.selection_is_done(my_index): myGame.selected[my_index].append(True) print(f'selection from {myGame.position_username_role[my_index][0]} AKA {myGame.position_username_role[my_index][1]} is complete.') myGame.check_completed_section() def vote(self): myID = self.get_game_id() myGame = Game.running_games[myID] cookies = SimpleCookie(self.headers.get('Cookie')) username = cookies['username'].value arguments = urllib.parse.parse_qs(urllib.parse.urlparse(self.path).query, keep_blank_values=True) if len(myGame.votes) != len(myGame.position_username_role) - 3: myGame.votes = [] for player in myGame.position_username_role[:-3]: myGame.votes.append(None) if 'for' in arguments: for index, values in enumerate(myGame.position_username_role[:-3]): if values[0] == username: if arguments['for'][0] == '-1': print(f'reseting {username}s vote to None') myGame.votes[index] = None else: myGame.votes[index] = arguments['for'][0] self.send_response(200) self.end_headers() for vote in myGame.votes: if vote == None: break else: print('VOTING IS FINISHED!!!') myGame.gamestate = 'conclusion' myGame.calculate_winners() class Game: running_games = {} def __init__(self, uuid, gamestate, players=[], selected_roles=[], position_username_role=[], day_length=5*60, active_roles=None, selected=None, day_start=None, votes=[], winners=[]): self.uuid = uuid self.gamestate = gamestate self.players = players self.selected_roles = selected_roles self.position_username_role = position_username_role self.day_length = day_length self.active_roles = active_roles self.selected = selected self.day_start = day_start self.votes = votes self.winners = winners def newGame(uuid): Game.running_games[uuid] = Game(uuid, 'waiting_room') def canJoin(uuid): if uuid in Game.running_games: myGame = Game.running_games[uuid] else: return False if myGame.gamestate == 'waiting_room': return True else: return False def seed_game(self): choice = 0 if choice == 0: self.gamestate = 'day' self.players = ['Jmccand', 'Safari', 'Firefox'] self.selected_roles = ['werewolf1', 'troublemaker', 'witch', 'werewolf2', 'doppelganger', 'villager2'] self.position_username_role = [('Jmccand', 'witch'), ('Safari', 'troublemaker'), ('Firefox', 'werewolf1'), ('Center1', 'werewolf2'), ('Center2', 'doppelganger'), ('Center3', 'villager2')] self.selected = [[8, 5, True], [5, 4, True], [7, True]] self.day_start = datetime.now() elif choice == 1: self.gamestate = 'day' self.players = ['Jmccand', 'Safari', 'DadMcDadDad', 'Firefox', 'rando1', 'rando2'] self.selected_roles = ['werewolf1', 'minion', 'werewolf2', 'doppelganger', 'villager1', 'villager2', 'villager3', 'troublemaker', 'witch'] self.position_username_role = [('Jmccand', 'witch'), ('Safari', 'troublemaker'), ('Firefox', 'werewolf1'), ('rando1', 'villager3'), ('rando2', 'minion'), ('DadMcDadDad', 'villager1'), ('Center1', 'werewolf2'), ('Center2', 'doppelganger'), ('Center3', 'villager2')] self.selected = [[8, 5, True], [5, 4, True], [7, True], [], [True], []] self.day_start = datetime.now() else: self.gamestate = 'night' self.players = ['Jmccand', 'Safari', 'DadMcDadDad', 'Firefox', 'rando1', 'rando2'] self.selected_roles = ['werewolf1', 'minion', 'werewolf2', 'doppelganger', 'villager1', 'villager2', 'villager3', 'troublemaker', 'witch'] self.position_username_role = [('Jmccand', 'witch'), ('Safari', 'troublemaker'), ('Firefox', 'werewolf1'), ('rando1', 'villager3'), ('rando2', 'minion'), ('DadMcDadDad', 'villager1'), ('Center1', 'werewolf2'), ('Center2', 'doppelganger'), ('Center3', 'villager2')] self.selected = [] for entry in self.position_username_role[:-3]: self.selected.append([]) self.selected[4].append(True) self.active_roles = [] self.progress_night() def check_completed_section(self): completed_section = True for index, others in enumerate(self.position_username_role[:-3]): print(f'evaluating index {index}, which is {others[0]}') this_selection = self.selected[index] print(f'this selection: {this_selection}') if others[1] in self.active_roles and (len(this_selection) < 1 or this_selection[len(this_selection) - 1] != True): completed_section = False if completed_section: print('progressing night to next stage') self.progress_night() def progress_night(self): #this full night order (one at a time) won't be needed. Virtually, a lot of these roles can go concurrently #night_order = ('sentinel', 'doppelganger', 'werewolf', 'alpha wolf', 'mystic wolf', 'minion', 'mason', 'seer', 'apprentice seer', 'paranormal investigator', 'robber', 'witch', 'troublemaker', 'village idiot', 'drunk', 'insomniac', 'revealer', 'curator') group1 = set(['sentinel']) group2 = set(['doppelganger', 'werewolf1', 'werewolf2', 'alpha wolf']) group3 = set(['mystic wolf', 'minion', 'mason1', 'mason2', 'seer', 'apprentice seer', 'paranormal investigator', 'robber', 'witch', 'troublemaker', 'village idiot', 'drunk']) group4 = set(['insomniac', 'revealer', 'curator']) if self.active_roles == []: self.active_roles = list(group1) elif self.active_roles == list(group1): self.active_roles = list(group2) elif self.active_roles == list(group2): self.active_roles = list(group3) elif self.active_roles == list(group3): self.active_roles = list(group4) elif self.active_roles == list(group4): self.active_roles = [] else: raise ValueError(f'when trying to progress the night, the active roles ({self.active_roles}) was not recognized.') if self.active_roles == []: print('NIGHT IS FINISHED!!!!') _thread.start_new_thread(self.change_to_day()) else: for index, others in enumerate(self.position_username_role[:-3]): if self.position_username_role[index] in active_roles: self.selected[index].append(True) print(f'selection from {self.position_username_role[index][0]} AKA {self.position_username_role[index][1]} is complete.') self.check_completed_section() def selection_is_done(self, my_index=None): total_roles = set(['sentinel', 'doppleganger', 'werewolf1', 'werewolf2', 'alpha wolf', 'mystic wolf', 'minion', 'mason1', 'mason2', 'seer', 'apprentice seer', 'paranormal investigator', 'robber', 'witch', 'troublemaker', 'village idiot', 'drunk', 'insomniac', 'revealer', 'curator', 'villager1', 'villager2', 'villager3', 'hunter', 'tanner', 'dream wolf', 'bodyguard']) #select0 won't actually be used, it is only for reference select0 = set(['minion', 'mason1', 'mason2', 'insomniac', 'villager1', 'villager2', 'villager3', 'hunter', 'tanner', 'dream wolf', 'bodyguard']) select1 = set(['sentinel', 'apprentice seer', 'robber', 'village idiot']) select2 = set(['witch', 'troublemaker']) depending_roles = set(['doppleganger', 'werewolf1', 'werewolf2', 'alpha wolf', 'mystic wolf', 'seer', 'paranormal investigator']) if my_index == None: for index, player_role in enumerate(self.position_username_role): if player_role[0] == username: my_index = index my_role = self.position_username_role[my_index][1] number_selected = len(self.selected[my_index]) if my_role in depending_roles: if 'wolf' in my_role: partner = False for player, role in self.position_username_role[:-3]: if 'wolf' in role and role != my_role: partner = True if partner: select0.add(my_role) else: select1.add(my_role) #assert select0 + select1 + select2 == total_roles assert select0.intersection(select1) == set() assert select1.intersection(select2) == set() assert select2.intersection(select0) == set() if my_role in select0: return number_selected == 0 elif my_role in select1: return number_selected == 1 elif my_role in select2: return number_selected == 2 else: raise ValueError('the role that selected has not been placed in a select1, select2, or select3 set') def change_to_day(self): time.sleep(5) self.gamestate = 'day' self.day_start = datetime.now() def calculate_winners(self): total_tally = {} for vote in self.votes: if vote in total_tally: total_tally[vote] += 1 else: total_tally[vote] = 1 max_votes = 0 voted = [] for key, value in total_tally.items(): if value > max_votes: voted = [key] elif value == max_votes: voted.append(key) #total_roles = set(['sentinel', 'doppleganger', 'werewolf1', 'werewolf2', 'alpha wolf', 'mystic wolf', 'minion', 'mason1', 'mason2', 'seer', 'apprentice seer', 'paranormal investigator', 'robber', 'witch', 'troublemaker', 'village idiot', 'drunk', 'insomniac', 'revealer', 'curator', 'villager1', 'villager2', 'villager3', 'hunter', 'tanner', 'dream wolf', 'bodyguard']) werewolves = set(['werewolf1', 'werewolf2', 'mystic wolf', 'alpha wolf', 'dream wolf']) villagers = set(['sentinel', 'mason1', 'mason2', 'seer', 'villager1', 'apprentice seer', 'paranormal investigator', 'robber', 'witch', 'troublemaker', 'village idiot', 'drunk', 'insomniac', 'revealer', 'curator', 'villager2', 'villager3', 'hunter', 'bodyguard']) if 'tanner' in voted: self.winners = 'tanner' print('tanner won!') else: for player in voted: if player in werewolves: self.winners = list(villagers) print('villagers won!') break if self.winners == []: self.winners = list(werewolves) + ['minion'] print('werewolves won!') class ReuseHTTPServer(HTTPServer): def server_bind(self): self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.socket.bind(self.server_address) class Cards: def __init__(self, name, frontside, validation, ability = 1): self.name = name self.frontside = frontside self.validation = validation self.ability = ability # center, edge, werewolves, oneself def validate(self, selected_player, matched_roles): center = selected_player in ("Center1", "Center2", "Center3") werewolves = matched_roles[selected_player].is_a_werewolf() oneself = (matched_roles[selected_player] != self) edge = not center and not werewolves and oneself for factor in range(0, 4): if(list(center, edge, werewolves, oneself)[factor]): if(not self.validation[factor]): return False return True def is_a_werewolf(self): return self.name in ("alpha wolf", "dream wolf", "mystic wolf", "werewolf", "doppelganger-alpha wolf", "doppelganger-dream wolf", "doppelganger-mystic wolf", "doppelganger-werewolf") def switch_cards(self, player1, player2, players): original = players[player1] players[player1] = players[player2] players[player2] = original return players #def place_token(self, player, tokens): # def see(self, player, players): active_roles = { Cards("alpha wolf", None, (False, True, False, False)) : False, Cards("apprentice seer", None, (True, False, False, False)) : False, Cards("bodyguard", None, None) : False, Cards("curator", None, (False, True, True, True)) : False, Cards("doppelganger", None, (False, True, True, False)) : False, Cards("<NAME>", None, None) : False, Cards("drunk", None, (True, False, False, False)) : False, Cards("hunter", None, None) : False, Cards("insomniac", None, None) : False, Cards("mason", None, None) : False, Cards("mason", None, None) : False, Cards("minion", None, None) : False, Cards("<NAME>", None, (False, True, True, False)) : False, Cards("paran<NAME>", None, (False, True, True, False)) : False, Cards("revealer", None, (False, True, True, False)) : False, Cards("robber", None, (False, True, True, False)) : False, Cards("seer", None, (True, True, True, False)) : False, Cards("sentinel", None, (False, True, True, True)) : False, Cards("tanner", None, None) : False, Cards("troublemaker", None, (False, True, True, False)) : False, Cards("village idiot", None, None) : False, Cards("villager", None, None) : False, Cards("villager", None, None) : False, Cards("villager", None, None) : False, Cards("werewolf", None, None) : False, Cards("werewolf", None, None) : False, #!!!!! FIX THE WITCH VALIDATIONS Cards("witch", None, (True, True, True, True)) : False } matched_roles = { } night_order = ( Cards("sentinel", None, (False, True, True, True)), Cards("doppelganger", None, (False, True, True, False)), Cards("werewolf", None, None), Cards("alpha wolf", None, (False, True, False, False)), Cards("mystic wolf", None, (False, True, True, False)), Cards("minion", None, None), Cards("mason", None, None), Cards("seer", None, (True, True, True, False)), Cards("apprentice seer", None, (True, False, False, False)), Cards("paranormal investigator", None, (False, True, True, False)), Cards("robber", None, (False, True, True, False)), Cards("witch", None, (True, True, True, True)), Cards("troublemaker", None, (False, True, True, False)), Cards("village idiot", None, None), Cards("drunk", None, (True, False, False, False)), #These three have the doppelganger after them: Cards("insomniac", None, None), Cards("revealer", None, (False, True, True, False)), Cards("curator", None, (False, True, True, True)) ) def main(): print("One Night Werewolf Web") Game.newGame('16e7691a8f5211eb80a4a683e7b3717c') myGame = Game.running_games['16e7691a8f5211eb80a4a683e7b3717c'] myGame.seed_game() httpd = ReuseHTTPServer(('0.0.0.0', 8000), MyHandler) httpd.serve_forever() if __name__ == '__main__': main() ```
{ "source": "jmccann-REH/aqueduct30_data_download", "score": 2 }
#### File: aqueduct30_data_download/scripts/Y2019M07D11_RH_Aqueduct30_Data_Download.py ```python SCRIPT_NAME = "Y2019M07D11_RH_Aqueduct30_Data_Download" OUTPUT_VERSION = 1 S3_INPUT_PATH = {} S3_INPUT_PATH["master_geom_simplified"] = "s3://wri-projects/Aqueduct30/processData/Y2019M07D09_RH_Simplified_Geometries_V01/output_V02" S3_INPUT_PATH["annual"] = "s3://wri-projects/Aqueduct30/finalData/Y2019M01D14_RH_Aqueduct_Results_V01/output_V04/annual" # We simplified the master_geom using verious keep_percentages. KEEP_PERCENT = 30 INPUT_FILENAME = {} INPUT_FILENAME["master_geom_simplified"] = "mastergeom_mapshaper_visvalingam_keeppercent{:03.0f}_v01.shp".format(KEEP_PERCENT) INPUT_FILENAME["annual"] = "annual_pivot.pkl" ec2_input_path = "/volumes/data/{}/input_V{:02.0f}".format(SCRIPT_NAME,OUTPUT_VERSION) ec2_output_path = "/volumes/data/{}/output_V{:02.0f}".format(SCRIPT_NAME,OUTPUT_VERSION) s3_output_path = "s3://wri-projects/Aqueduct30/processData/{}/output_V{:02.0f}/".format(SCRIPT_NAME,OUTPUT_VERSION) print(s3_output_path) # In[2]: import time, datetime, sys dateString = time.strftime("Y%YM%mD%d") timeString = time.strftime("UTC %H:%M") start = datetime.datetime.now() print(dateString,timeString) sys.version get_ipython().magic('matplotlib inline') # In[3]: get_ipython().system('rm -r {ec2_input_path} ') get_ipython().system('rm -r {ec2_output_path} ') get_ipython().system('mkdir -p {ec2_input_path} ') get_ipython().system('mkdir -p {ec2_output_path} ') # In[4]: get_ipython().system('aws s3 cp {S3_INPUT_PATH["master_geom_simplified"]} {ec2_input_path} --recursive --quiet') # In[5]: get_ipython().system('aws s3 cp {S3_INPUT_PATH["annual"]} {ec2_input_path} --recursive') # In[ ]: # In[50]: import pandas as pd import geopandas as gpd from tqdm import tqdm from shapely.geometry import MultiPolygon, shape # In[51]: input_path_master_geom_simplified = "{}/{}".format(ec2_input_path,INPUT_FILENAME["master_geom_simplified"]) # In[78]: gdf_in = gpd.read_file(filename=input_path_master_geom_simplified) # In[79]: gdf_in.head() # In[85]: gdf_in.shape # In[80]: def convert_row_to_multipolygon(row): if row.type == "Polygon": new_geom = MultiPolygon([row.geometry]) elif row.type == "MultiPolygon": new_geom = row.geometry else: new_geom = -9999 return new_geom def df_force_multipolygon(gdf): """ Force all geometries in a geodataframe to be MultiPolygons. The GeoPackage format does not allow mixing of polygons and multipolygons. Args: gdf(GeoDataFrame) : GeoDataFrame Returns: gdf_mp(GeoDataFrame): GeodataFrame with multipolygons """ gdf_temp = gdf.copy() gdf_temp["type"] = gdf_temp["geometry"].geom_type gdf["geometry"] = gdf_temp.apply(axis=1,func=convert_row_to_multipolygon) return gdf # In[91]: gdf = df_force_multipolygon(gdf_in) # In[92]: # Change column order. See https://github.com/wri/aqueduct_analyze_locations/blob/master/data_download/instructions.md#annual-baseline gdf = gdf[["string_id","aq30_id","pfaf_id","gid_1","aqid","geometry"]] # ## Annual # In[82]: input_path_annual = "{}/{}".format(ec2_input_path,INPUT_FILENAME["annual"]) # In[132]: df_annual = pd.read_pickle(path=input_path_annual) # In[133]: df_annual.head() # In[134]: df_annual.shape # In[135]: def annual_column_order(): """ Create a list of the preferred column order. See https://github.com/wri/aqueduct_analyze_locations/blob/master/data_download/instructions.md#annual-baseline Args: none Returns: columns(list): List of strings with column names """ # Indicator Columns indicators = ["bws", "bwd", "iav", "sev", "gtd", "rfr", "cfr", "drr", "ucw", "cep", "udw", "usa", "rri"] types = ["raw","score","cat","label"] indicator_columns =[] for indicator in indicators: for one_type in types: column = "{}_{}".format(indicator,one_type) indicator_columns.append(column) # Grouped Water Risk Columns industries = ["def", "agr", "che", "con", "elp", "fnb", "min", "ong", "smc", "tex"] groups = ["qan", "qal", "rrr", "tot"] types_awr = ["raw","score","cat","label","weight_fraction"] grouped_water_risk_columns = [] for industry in industries: for group in groups: for one_type_awr in types_awr: column = "w_awr_{}_{}_{}".format(industry,group,one_type_awr) grouped_water_risk_columns.append(column) columns = indicator_columns + grouped_water_risk_columns return columns # In[136]: result_column_names = annual_column_order() # In[137]: extra_column_names = ["string_id","gid_0","name_0","name_1","area_km2"] # In[138]: annual_column_names = extra_column_names + result_column_names # In[139]: df_annual = df_annual[annual_column_names] # In[140]: gdf_annual = gdf.merge(df_annual,on="string_id",how="left") # In[141]: gdf_annual.shape # In[143]: gdf_annual.head() # In[144]: gdf_annual.sort_values(by="aq30_id",inplace=True) # # Monthly # In[ ]: # In[ ]: # In[ ]: # # Export # In[146]: output_filename_annual = "y2019m07d11_aqueduct30_annual_v01" # In[147]: output_path_annual = "{}/{}".format(ec2_output_path,output_filename_annual) # In[ ]: gdf_annual.to_file(driver="GPKG", filename=output_path_annual + ".gpkg", encoding="UTF-8") # In[ ]: get_ipython().system('aws s3 cp {ec2_output_path} {s3_output_path} --recursive') # In[ ]: ``` #### File: aqueduct30_data_download/scripts/Y2019M07D12_RH_Aqueduct30_Data_Download_Monthly_V01.py ```python TESTING = 0 SCRIPT_NAME = "Y2019M07D12_RH_Aqueduct30_Data_Download_Monthly_V01" OUTPUT_VERSION = 3 S3_INPUT_PATH = {} S3_INPUT_PATH["hybas"] = "s3://wri-projects/Aqueduct30/processData/Y2017M08D02_RH_Merge_HydroBasins_V02/output_V04" S3_INPUT_PATH["monthly"] = "s3://wri-projects/Aqueduct30/finalData/Y2019M01D14_RH_Aqueduct_Results_V01/output_V04/monthly" INPUT_FILENAME = {} INPUT_FILENAME["hybas"] = "hybas_lev06_v1c_merged_fiona_V04.shp" ec2_input_path = "/volumes/data/{}/input_V{:02.0f}".format(SCRIPT_NAME,OUTPUT_VERSION) ec2_output_path = "/volumes/data/{}/output_V{:02.0f}".format(SCRIPT_NAME,OUTPUT_VERSION) s3_output_path = "s3://wri-projects/Aqueduct30/processData/{}/output_V{:02.0f}/".format(SCRIPT_NAME,OUTPUT_VERSION) print(s3_output_path) # In[2]: import time, datetime, sys dateString = time.strftime("Y%YM%mD%d") timeString = time.strftime("UTC %H:%M") start = datetime.datetime.now() print(dateString,timeString) sys.version get_ipython().magic('matplotlib inline') # In[3]: get_ipython().system('rm -r {ec2_input_path} ') get_ipython().system('rm -r {ec2_output_path} ') get_ipython().system('mkdir -p {ec2_input_path} ') get_ipython().system('mkdir -p {ec2_output_path} ') # In[4]: get_ipython().system('aws s3 cp {S3_INPUT_PATH["hybas"]} {ec2_input_path} --recursive --quiet') # In[5]: get_ipython().system('aws s3 cp {S3_INPUT_PATH["monthly"]} {ec2_input_path} --recursive --quiet') # In[6]: import pandas as pd import geopandas as gpd from tqdm import tqdm from shapely.geometry import MultiPolygon, shape # In[7]: gpd.__version__ # In[8]: input_path_geom = "{}/{}".format(ec2_input_path,INPUT_FILENAME["hybas"]) # In[9]: def convert_row_to_multipolygon(row): if row.type == "Polygon": new_geom = MultiPolygon([row.geometry]) elif row.type == "MultiPolygon": new_geom = row.geometry else: new_geom = -9999 return new_geom def df_force_multipolygon(gdf): """ Force all geometries in a geodataframe to be MultiPolygons. The GeoPackage format does not allow mixing of polygons and multipolygons. Args: gdf(GeoDataFrame) : GeoDataFrame Returns: gdf_mp(GeoDataFrame): GeodataFrame with multipolygons """ gdf_temp = gdf.copy() gdf_temp["type"] = gdf_temp["geometry"].geom_type gdf["geometry"] = gdf_temp.apply(axis=1,func=convert_row_to_multipolygon) return gdf def process_df(df,indicator,month): """ Process monthly dataframe Args: df(dataframe): input dataframe indicator(string): short name for indicator. in bws bwd iav month(integere): month Return: df_out(dataframe) : output dataframe. simplified, clean, beatiful! """ df_out = df[["pfaf_id","raw","score","cat","label"]] df_out = df_out.rename(columns={"raw":"{}_{:02.0f}_raw".format(indicator,month), "score":"{}_{:02.0f}_score".format(indicator,month), "cat":"{}_{:02.0f}_cat".format(indicator,month), "label":"{}_{:02.0f}_label".format(indicator,month)}) df_out.set_index("pfaf_id",inplace=True) return df_out def process_gdf(gdf): """ Process the hydrobasin level6 geodataframe Dropping a weird polygon that crosses the -180 meridian and has a non unique ID 353020 Args: gdf(geodataframe): hydrobasin level 6 geodataframe Returns: gdf_out(geodataframe): simple, clean beatiful """ gdf_out = gdf.loc[gdf["PFAF_ID"] != 353020] drop_columns = ["HYBAS_ID", "NEXT_DOWN", "NEXT_SINK", "MAIN_BAS", "DIST_SINK", "DIST_MAIN", "SUB_AREA", "UP_AREA", "ENDO", "COAST", "ORDER", "SORT"] gdf_out = gdf_out.drop(drop_columns,axis=1) gdf_out = gdf_out.rename(columns={"PFAF_ID":"pfaf_id"}) gdf_out = df_force_multipolygon(gdf_out) return gdf_out # In[10]: gdf_in = gpd.read_file(filename=input_path_geom) # In[11]: gdf_in.shape # In[12]: gdf = process_gdf(gdf_in) # In[13]: gdf.head() # # Add monthly tabular data, pivot # In[14]: indicators = ["bws",'bwd','iav'] # In[15]: months = range(1,12+1) # In[16]: for indicator in indicators: input_filename = "monthly_{}.pkl".format(indicator) input_path = "{}/{}".format(ec2_input_path,input_filename) df = pd.read_pickle(path=input_path) for month in months: df_month = df.loc[df["month"]==month] df_month = process_df(df_month,indicator,month) gdf = gdf.merge(right=df_month, how="left", left_on="pfaf_id", right_index=True) # In[17]: output_filename= "{}".format(SCRIPT_NAME).lower() # In[18]: output_path = "{}/{}".format(ec2_output_path,output_filename) # In[19]: gdf.to_file(driver="GPKG", filename=output_path + ".gpkg", encoding="UTF-8") # In[20]: get_ipython().system('aws s3 cp {ec2_output_path} {s3_output_path} --recursive') # In[21]: end = datetime.datetime.now() elapsed = end - start print(elapsed) # Previous runs: # 0:02:06.463591 # 0:02:01.624344 # # # In[ ]: ```
{ "source": "jmccarrell/n100tickers", "score": 3 }
#### File: n100tickers/tests/test_n100_tickers.py ```python import datetime from nasdaq_100_ticker_history import tickers_as_of def test_basics() -> None: assert 'AMZN' in tickers_as_of(2020, 6, 1) assert len(tickers_as_of(2020, 6, 1)) >= 100 def _test_one_swap(as_of_date: datetime.date, removed_ticker: str, added_ticker: str, expected_number_of_tickers: int) -> None: tickers_on_change_date = tickers_as_of(as_of_date.year, as_of_date.month, as_of_date.day) assert len(tickers_on_change_date) == expected_number_of_tickers before_change_date = as_of_date - datetime.timedelta(days=1) tickers_before_change_date = tickers_as_of(before_change_date.year, before_change_date.month, before_change_date.day) assert len(tickers_before_change_date) == expected_number_of_tickers assert removed_ticker in tickers_before_change_date assert added_ticker not in tickers_before_change_date assert removed_ticker not in tickers_on_change_date assert added_ticker in tickers_on_change_date def _test_at_year_boundary(year: int) -> None: """prove the tickers at the beginning of the year match the set at the end of the previous year. """ begin_of_current_year = datetime.date.fromisoformat(f"{year}-01-01") end_of_previous_year = begin_of_current_year - datetime.timedelta(days=1) current_tickers = tickers_as_of(begin_of_current_year.year, begin_of_current_year.month, begin_of_current_year.day) previous_tickers = tickers_as_of(end_of_previous_year.year, end_of_previous_year.month, end_of_previous_year.day) assert previous_tickers == current_tickers def test_tickers_2022() -> None: num_tickers_2022 = 101 # On Jan 24, Old Dominion replaces Peloton _test_one_swap(datetime.date.fromisoformat('2022-01-24'), 'PTON', 'ODFL', num_tickers_2022) # On Feb 2, Excelon EXC split off Constellation Energy CEG, which remained in the index tickers_added_2022_02_02 = frozenset(('CEG',)) assert tickers_added_2022_02_02.isdisjoint(tickers_as_of(2022, 2, 1)) assert tickers_added_2022_02_02.issubset(tickers_as_of(2022, 2, 2)) assert len(tickers_as_of(2022, 2, 2)) == num_tickers_2022 + 1 num_tickers_2022 += 1 # AMD completed its acquisition of Xilinx XLNX on or about 14 Feb. # So AstraZeneca AZN replaces XLNX as of 22 Feb 2022. _test_one_swap(datetime.date.fromisoformat('2022-02-22'), 'XLNX', 'AZN', num_tickers_2022) def test_year_boundary_2021_2022() -> None: _test_at_year_boundary(2022) def test_2021_annual_changes() -> None: num_tickers_2021_end_of_year = 101 # Annual 2021 changes # https://www.nasdaq.com/press-release/annual-changes-to-the-nasdaq-100-indexr-2021-12-10-0 # # On December 10, 2021 Nasdaq announced that six new companies would join the index # prior to the market open on December 20, 2021. # They are Airbnb (ABNB), Datadog (DDOG), Fortinet (FTNT), Lucid Group (LCID), # Palo Alto Networks (PANW), and Zscaler (ZS). # They will replace CDW (CDW), Cerner (CERN), Check Point (CHKP), Fox Corporation (FOXA/FOX), # Incyte (INCY), and Trip.com (TCOM). # https://greenstocknews.com/news/nasdaq/lcid/annual-changes-to-the-nasdaq-100-index # This removes 7 tickers while adding 6, so total number of tickers goes to 101 assert len(tickers_as_of(2021, 12, 17)) == num_tickers_2021_end_of_year + 1 tickers_removed_2021_12_20 = frozenset(('CDW', 'CERN', 'CHKP', 'FOX', 'FOXA', 'INCY', 'TCOM')) assert tickers_removed_2021_12_20.issubset(tickers_as_of(2021, 12, 17)) tickers_added_2021_12_20 = frozenset(('ABNB', 'DDOG', 'FTNT', 'LCID', 'PANW', 'ZS')) assert tickers_added_2021_12_20.isdisjoint(tickers_as_of(2021, 12, 17)) assert len(tickers_as_of(2021, 12, 20)) == num_tickers_2021_end_of_year assert tickers_removed_2021_12_20.isdisjoint(tickers_as_of(2021, 12, 20)) assert tickers_added_2021_12_20.issubset(tickers_as_of(2021, 12, 20)) def test_tickers_2021() -> None: num_tickers_2021 = 102 # On July 21, Honeywell replaces Alexion _test_one_swap(datetime.date.fromisoformat('2021-07-21'), 'ALXN', 'HON', num_tickers_2021) # On Aug 26, Crowdstrike replaced Maxim Integrated Products, who is being acquired by Analog Devices. _test_one_swap(datetime.date.fromisoformat('2021-08-26'), 'MXIM', 'CRWD', num_tickers_2021) def test_year_boundary_2020_2021() -> None: _test_at_year_boundary(2021) def test_tickers_2020() -> None: num_tickers_2020: int = 103 _test_at_year_boundary(2020) # On April 20, Dexcom replaced American Airlines Group in the index _test_one_swap(datetime.date.fromisoformat('2020-04-20'), 'AAL', 'DXCM', num_tickers_2020) # On April 30, Zoom Video Communications replaced <NAME> _test_one_swap(datetime.date.fromisoformat('2020-04-30'), 'WLTW', 'ZM', num_tickers_2020) # On June 22, DocuSign, Inc. (DOCU) will replace United Airlines Holdings, Inc. (Nasdaq: UAL) _test_one_swap(datetime.date.fromisoformat('2020-06-22'), 'UAL', 'DOCU', num_tickers_2020) # On Jul 20, Moderna MRNA replaces CoStar Group CGSP # https://www.globenewswire.com/news-release/2020/07/13/2061339/0/en/Moderna-Inc-to-Join-the-NASDAQ-100-Index-Beginning-July-20-2020.html _test_one_swap(datetime.date.fromisoformat('2020-07-20'), 'CSGP', 'MRNA', num_tickers_2020) # On 24 Aug 2020, Pinduoduo, Inc. PDD replaced NetApp, Inc. NTAP in the NASDAQ-100 Index. # https://www.globenewswire.com/news-release/2020/08/15/2078875/0/en/Pinduoduo-Inc-to-Join-the-NASDAQ-100-Index-Beginning-August-24-2020.html _test_one_swap(datetime.date.fromisoformat('2020-08-24'), 'NTAP', 'PDD', 103) # Western Digital Corp (WDC) is replaced by Keurig Dr Pepper Inc. (KDP) as of Oct 19, 2020. # https://www.globenewswire.com/news-release/2020/10/10/2106521/0/en/Keurig-Dr-Pepper-Inc-to-Join-the-NASDAQ-100-Index-Beginning-October-19-2020.html _test_one_swap(datetime.date.fromisoformat('2020-10-19'), 'WDC', 'KDP', 103) def test_2020_annual_changes() -> None: # Annual 2020 changes # https://www.nasdaq.com/press-release/annual-changes-to-the-nasdaq-100-index-2020-12-11 # # 6 companies added; 6 removed. However, Liberty Global PLC has 2 symbols: (Nasdaq: LBTYA/LBTYK) # So total tickers change from 103 to 102. # Effective date: 2020-12-21 assert len(tickers_as_of(2020, 12, 18)) == 103 tickers_removed_12_21 = frozenset(('BMRN', 'CTXS', 'EXPE', 'LBTYA', 'LBTYK', 'TTWO', 'ULTA')) assert tickers_removed_12_21.issubset(tickers_as_of(2020, 12, 18)) tickers_added_12_21 = frozenset(('AEP', 'MRVL', 'MTCH', 'OKTA', 'PTON', 'TEAM')) assert tickers_added_12_21.isdisjoint(tickers_as_of(2020, 12, 18)) assert len(tickers_as_of(2020, 12, 21)) == 102 assert tickers_removed_12_21.isdisjoint(tickers_as_of(2020, 12, 21)) assert tickers_added_12_21.issubset(tickers_as_of(2020, 12, 21)) def test_tickers_2019() -> None: num_tickers_2019: int = 103 _test_at_year_boundary(2019) # 6 tickers added and removed on 12/23/2019 # https://finance.yahoo.com/news/annual-changes-nasdaq-100-index-010510822.html tickers_2019_dec_23 = tickers_as_of(2019, 12, 23) assert len(tickers_2019_dec_23) == num_tickers_2019 dec_23_removals = frozenset(('HAS', 'HSIC', 'JBHT', 'MYL', 'NLOK', 'WYNN')) assert tickers_2019_dec_23.isdisjoint(dec_23_removals) dec_23_additions = frozenset(('ANSS', 'CDW', 'CPRT', 'CSGP', 'SGEN', 'SPLK')) assert dec_23_additions.issubset(tickers_2019_dec_23) tickers_2019_dec_20 = tickers_as_of(2019, 12, 20) assert len(tickers_2019_dec_20) == num_tickers_2019 assert dec_23_removals.issubset(tickers_2019_dec_20) assert tickers_2019_dec_20.isdisjoint(dec_23_additions) # 1 swap Nov 19 # https://www.nasdaq.com/press-release/exelon-corporation-to-join-the-nasdaq-100-index-beginning-november-21-2019-2019-11-18 _test_one_swap(datetime.date.fromisoformat('2019-11-19'), 'CELG', 'EXC', num_tickers_2019) # there was a record of 21st Century Fox changing to Fox Corp. But as near as I can tell, the ticker # symbols were the same. def test_tickers_2018() -> None: num_tickers_2018: int = 103 _test_at_year_boundary(2018) # 6 tickers added and removed on 12/24/2018 # https://www.nasdaq.com/about/press-center/annual-changes-nasdaq-100-index-0 tickers_2018_dec_23 = tickers_as_of(2018, 12, 23) assert len(tickers_2018_dec_23) == num_tickers_2018 tickers_2018_dec_24 = tickers_as_of(2018, 12, 24) assert len(tickers_2018_dec_24) == num_tickers_2018 dec_24_removals = frozenset(('ESRX', 'HOLX', 'QRTEA', 'SHPG', 'STX', 'VOD')) assert dec_24_removals.issubset(tickers_2018_dec_23) assert tickers_2018_dec_24.isdisjoint(dec_24_removals) dec_24_additions = frozenset(('AMD', 'LULU', 'NTAP', 'UAL', 'VRSN', 'WLTW')) assert dec_24_additions.issubset(tickers_2018_dec_24) # 11/19/2018 XEL replaces XRAY # https://www.nasdaq.com/about/press-center/xcel-energy-inc-join-nasdaq-100-index-beginning-november-19-2018 _test_one_swap(datetime.date.fromisoformat('2018-11-19'), 'XRAY', 'XEL', num_tickers_2018) # 11/5/2018 NXPI replaces CA # (link broken): # https://business.nasdaq.com/mediacenter/pressreleases/1831989/nxp-semiconductors-nv-to-join-the-nasdaq-100-index-beginning-november-5-2018 _test_one_swap(datetime.date.fromisoformat('2018-11-05'), 'CA', 'NXPI', num_tickers_2018) # 7/23/2018 PEP replaces DISH _test_one_swap(datetime.date.fromisoformat('2018-07-23'), 'DISH', 'PEP', num_tickers_2018) def test_tickers_2017() -> None: num_tickers_2017: int = 104 # 2/7/2017 JBHT replaced NXPI _test_one_swap(datetime.date.fromisoformat('2017-02-07'), 'NXPI', 'JBHT', num_tickers_2017) # 3/20/2017 IDXX replaced SBAC _test_one_swap(datetime.date.fromisoformat('2017-03-20'), 'SBAC', 'IDXX', num_tickers_2017) # 4/24/2017 WYNN replaced TRIP _test_one_swap(datetime.date.fromisoformat('2017-04-24'), 'TRIP', 'WYNN', num_tickers_2017) # 6/19/2017 MELI replaced YHOO _test_one_swap(datetime.date.fromisoformat('2017-06-19'), 'YHOO', 'MELI', num_tickers_2017) # 10/23/2017 ALGN replaced MAT _test_one_swap(datetime.date.fromisoformat('2017-10-23'), 'MAT', 'ALGN', num_tickers_2017) # annual changes for 2017; effective Dec 18, 2017 # https://www.nasdaq.com/about/press-center/annual-changes-nasdaq-100-index-2 dec_18_removals = frozenset(('AKAM', 'DISCA', 'DISCK', 'NCLH', 'TSCO', 'VIAB')) dec_18_additions = frozenset(('ASML', 'CDNS', 'SNPS', 'TTWO', 'WDAY')) tickers_dec_17 = tickers_as_of(2017, 12, 17) assert len(tickers_dec_17) == num_tickers_2017 assert dec_18_removals.issubset(tickers_dec_17) assert tickers_dec_17.isdisjoint(dec_18_additions) tickers_dec_18 = tickers_as_of(2017, 12, 18) # this was a remove 6 and add 5 change due to two classes of Discovery Communications: DISCA and DISCK assert len(tickers_dec_18) == num_tickers_2017 - 1 assert dec_18_additions.issubset(tickers_dec_18) assert tickers_dec_18.isdisjoint(dec_18_removals) def test_year_boundary_2016_2017() -> None: _test_at_year_boundary(2017) def test_2016_annual_changes() -> None: # annual changes for 2016; effective Dec 19, 2016 announced Dec 9 # https://en.wikipedia.org/wiki/Nasdaq-100#Changes_in_2016 dec_18_tickers = tickers_as_of(2016, 12, 18) dec_19_tickers = tickers_as_of(2016, 12, 19) assert len(dec_18_tickers) == len(dec_19_tickers) dec_19_removals = frozenset(('BBBY', 'NTAP', 'SRCL', 'WFM')) assert dec_19_removals.issubset(dec_18_tickers) assert dec_19_tickers.isdisjoint(dec_19_removals) dec_19_additions = frozenset(('CTAS', 'HAS', 'HOLX', 'KLAC')) assert dec_19_additions.isdisjoint(dec_18_tickers) assert dec_19_additions.issubset(dec_19_tickers) def test_tickers_2016() -> None: num_tickers_2016_boy = 105 # num tickers at the start of 2016 num_tickers_2016_eoy = 104 # number of tickers at the end of 2016 assert len(tickers_as_of(2016, 1, 1)) == num_tickers_2016_boy assert len(tickers_as_of(2016, 12, 31)) == num_tickers_2016_eoy # https://ir.nasdaq.com/news-releases/news-release-details/csx-corporation-join-nasdaq-100-index-beginning-february-22-2016 _test_one_swap(datetime.date.fromisoformat('2016-02-22'), 'KLAC', 'CSX', num_tickers_2016_boy) # https://www.nasdaq.com/about/press-center/netease-inc-join-nasdaq-100-index-beginning-march-16-2016 _test_one_swap(datetime.date.fromisoformat('2016-03-16'), 'SNDK', 'NTES', num_tickers_2016_boy) # adds BATRA, BATRK as of Apr 18; no replacements # https://en.wikipedia.org/wiki/Nasdaq-100#cite_note-37 apr_17_tickers = tickers_as_of(2016, 4, 17) assert len(apr_17_tickers) == 105 apr_18_tickers = tickers_as_of(2016, 4, 18) assert len(apr_18_tickers) == 107 apr_18_additions = frozenset(('BATRA', 'BATRK')) assert apr_18_additions.isdisjoint(apr_17_tickers) assert apr_18_additions.issubset(apr_18_tickers) # https://en.wikipedia.org/wiki/Nasdaq-100#cite_note-38 # this is a 4 for one change as of June 10 jun_09_tickers = tickers_as_of(2016, 6, 9) assert len(jun_09_tickers) == 107 jun_10_tickers = tickers_as_of(2016, 6, 10) assert len(jun_10_tickers) == 104 jun_10_removals = frozenset(('LMCA', 'LMCK', 'BATRA', 'BATRK')) assert jun_10_removals.issubset(jun_09_tickers) assert jun_10_tickers.isdisjoint(jun_10_removals) jun_10_additions = frozenset(('XRAY',)) assert jun_10_additions.isdisjoint(jun_09_tickers) assert jun_10_additions.issubset(jun_10_tickers) # https://en.wikipedia.org/wiki/Nasdaq-100#cite_note-39 _test_one_swap(datetime.date.fromisoformat('2016-07-18'), 'ENDP', 'MCHP', num_tickers_2016_eoy) # https://en.wikipedia.org/wiki/Nasdaq-100#cite_note-40 _test_one_swap(datetime.date.fromisoformat('2016-10-19'), 'LLTC', 'SHPG', num_tickers_2016_eoy) ```
{ "source": "jm-cc/gcvb", "score": 3 }
#### File: gcvb/gcvb/model.py ```python from enum import IntEnum from . import db from .loader import loader as loader import datetime class JobStatus(IntEnum): unlinked = -4 pending = -3 ready = -2 running = -1 exit_success = 0 class AbsoluteMetric: def __init__(self, reference, tolerance, unit = None): self.type = "absolute" self.reference = reference self.tolerance = float(tolerance) self.unit = unit def distance(self, value): return abs(value - self.reference) def within_tolerance(self, value): return self.distance(value) <= self.tolerance class RelativeMetric: def __init__(self, reference, tolerance): self.type = "relative" self.reference = reference self.tolerance = tolerance def distance(self, value): return (abs(value - self.reference) / self.reference) def within_tolerance(self, value): return self.distance(value) <= self.tolerance class Validation: default_type = "relative" default_reference = None def __init__(self, valid_dict, config, task=None): self.raw_dict = valid_dict self.status = JobStatus.unlinked self.executable = valid_dict["executable"] self.type = valid_dict["type"] self.launch_command = valid_dict["launch_command"] self.recorded_metrics = {} self.init_metrics(config) self.start_date = None self.end_date = None self.Task = task def init_metrics(self, config): self.expected_metrics = {} for metric in self.raw_dict.get("Metrics", []): t = metric.get("type", self.default_type) if t not in ["relative", "absolute"]: raise ValueError("'type' must be 'relative' or 'absolute'.") #reference is either a dict or a number. ref = metric.get("reference", self.default_reference) if ref is None: raise ValueError("'reference' must be provided.") if isinstance(ref, dict): if config in ref: if t == "relative": self.expected_metrics[metric["id"]] = RelativeMetric(ref[config], metric["tolerance"]) else: self.expected_metrics[metric["id"]] = AbsoluteMetric(ref[config], metric["tolerance"]) else: if t == "relative": self.expected_metrics[metric["id"]] = RelativeMetric(ref, metric["tolerance"]) else: self.expected_metrics[metric["id"]] = AbsoluteMetric(ref, metric["tolerance"]) def get_missing_metrics(self): e_m = set(self.expected_metrics.keys()) r_m = set(self.recorded_metrics.keys()) return e_m.difference(r_m) def get_untracked_metrics(self): e_m = set(self.expected_metrics.keys()) r_m = set(self.recorded_metrics.keys()) return {m : self.recorded_metrics[m] for m in r_m.difference(e_m)} def get_out_of_tolerance_metrics(self): res = [] for k,v in self.recorded_metrics.items(): if k in self.expected_metrics: if not(self.expected_metrics[k].within_tolerance(v)): res.append((k, self.expected_metrics[k], v)) return res @property def missing_metrics(self): return bool(self.get_missing_metrics()) @property def success(self): if self.missing_metrics: return False for metric_id, metric in self.expected_metrics.items(): if not metric.within_tolerance(self.recorded_metrics[metric_id]): return False return True @property def elapsed(self): return self.end_date-self.start_date class FileComparisonValidation(Validation): default_type = "absolute" default_reference = 0 def __init__(self, valid_dict, config, task=None): super().__init__(valid_dict, config, task) self.base = self.raw_dict["base"] self.ref_id = self.raw_dict["ref"] @property def data(self): return self.Task.Test.data @property def filename(self): ref = self.Task.Test.Run.references[self.data] if self.base in ref: return ref[self.base][self.ref_id]["file"] return "" #The gcvb.db may be used alone, the filename information is lost in this case #FIXME class Task(): def __init__(self, task_dict, config, test=None): self.raw_dict = task_dict self.status = JobStatus.unlinked self.executable = task_dict["executable"] self.options = task_dict.get("options", '') self.launch_command = task_dict["launch_command"] self.nprocs = task_dict["nprocs"] self.nthreads = task_dict["nthreads"] # Validations self.Validations = [] for v in task_dict.get("Validations", []): if v["type"] == "script": self.Validations.append(Validation(v, config, self)) else: self.Validations.append(FileComparisonValidation(v, config, self)) self.start_date = None self.end_date = None self.Test = test @property def completed(self): return bool(self.end_date) @property def success(self): if not self.completed: return False if self.status != JobStatus.exit_success: return False return all([v.success for v in self.Validations]) @property def elapsed(self): return self.end_date-self.start_date def get_failures(self): res = [] if self.completed: if self.status > JobStatus.exit_success: res.append(ExitFailure(self.executable, self.status)) # Missing metric is a failure only if the task is completed for v in self.Validations: missing = v.get_missing_metrics() for mm in missing: res.append(MissingMetric(mm)) for v in self.Validations: oot = v.get_out_of_tolerance_metrics() for m_id,m,v in oot: res.append(OutOfTolerance(m_id,m,v)) return res def hr_result(self): # returns a string representing the first failure f = self.get_failures() if f: return f[0].hr_result() return "Success" def hr_elapsed(self): if self.completed: return str(self.elapsed) return "DNF" #Did not finish class Test(): def __init__(self, test_dict, config, name=None, start_date=None, end_date=None, run=None): self.raw_dict = test_dict # Tasks self.Tasks = [] for t in test_dict.get("Tasks"): self.Tasks.append(Task(t, config, self)) # Steps self.Steps = [] for t in self.Tasks: self.Steps.append(t) for v in t.Validations: self.Steps.append(v) # Infos self.name = name self.start_date = start_date self.end_date = end_date self.data = self.raw_dict["data"] self.Run = run @property def completed(self): return bool(self.end_date) @property def success(self): return all([t.success for t in self.Tasks]) @property def failed(self): #failed if a completed task failed. return any([bool(t.get_failures()) for t in self.Tasks if t.completed]) @property def elapsed(self): return self.end_date-self.start_date def __repr__(self): return f"{{id : {self.name}, status : TODO}}" def get_failures(self): return [t.get_failures() for t in self.Tasks] def hr_result(self): if not(self.completed): return "Not completed yet" failures = self.get_failures() for k,f in enumerate(failures, 1): if f: return f"Step {k} : {f[0].hr_result()}" return "Success" def cpu_time(self): ct = 0 for task in self.Tasks: if task.completed: ct += task.elapsed.total_seconds() * task.nthreads * task.nprocs else: return float('inf') return ct def _strtotimestamp(s): # for backward compatibility with previous database format if isinstance(s, str): return datetime.datetime.strptime(s, "%Y-%m-%d %H:%M:%S") else: return s class Run(): def __test_db_to_objects(self): self.db_tests = db.get_tests(self.run_id) self.base_id = db.get_base_from_run(self.run_id) self.gcvb_base = loader.load_base(self.run_id) self.references = loader.references b = self.gcvb_base["Tests"] self.Tests = {t["name"] : Test(b[t["name"]], self.config, t["name"], t["start_date"], t["end_date"], self) for t in self.db_tests} # Fill infos for every step recorded_metrics = db.load_report_n(self.run_id) steps = db.get_steps(self.run_id) for test_id, test in self.Tests.items(): for step, metrics in recorded_metrics[test_id].items(): test.Steps[step-1].recorded_metrics = metrics for step, step_info in steps[test_id].items(): test.Steps[step-1].start_date = _strtotimestamp(step_info["start_date"]) test.Steps[step-1].end_date = _strtotimestamp(step_info["end_date"]) test.Steps[step-1].status = step_info["status"] def __init__(self, run_id): self.run_id = run_id run_infos = db.get_run_infos(run_id) self.start_date = run_infos["start_date"] self.end_date = run_infos["end_date"] self.config = run_infos["config_id"] self.gcvb_id = run_infos["gcvb_id"] self.__test_db_to_objects() @property def completed(self): return bool(self.end_date) @property def success(self): return all([test.success for test in self.Tests.values()]) @property def failed(self): return any([test.failed for test in self.Tests.values()]) @property def elapsed(self): return self.end_date-self.start_date def get_running_tests(self): return [k for k,v in self.Tests.items() if not v.completed] def get_failures(self): return {test_id : test.get_failures() for test_id, test in self.Tests.items() if any(test.get_failures())} def str_status(self): if self.failed: return "Failed" if self.completed and self.success: return "Success" else: return "In progress" class TaskFailure(): def __init__(self): pass def __repr__(self): pass def __str__(self): pass class ExitFailure(TaskFailure): def __init__(self, executable, return_code): self.executable = executable self.return_code = return_code def __repr__(self): return f"<Exit Failure (return code : {self.return_code})>" def __str__(self): return self.__repr__() def hr_result(self): return f"{self.executable} exited with code {self.return_code}" class MissingMetric(TaskFailure): def __init__(self, metric_id): self.metric_id = metric_id def __repr__(self): return f"<Missing Metric ({self.metric_id})>" def __str__(self): return self.__repr__() def hr_result(self): return f"Metric {self.metric_id} is missing." class OutOfTolerance(TaskFailure): def __init__(self, metric_id, metric, recorded): self.metric_id = metric_id self.metric = metric self.recorded = recorded def __repr__(self): return f"<OutOfTolerance (metric : {self.metric_id})" def __str__(self): return self.__repr__() def hr_result(self): target = self.metric.tolerance #FIXME value = self.recorded #FIXME return f"{self.metric.type.capitalize()} metric {self.metric_id} is out of tolerance. (target : {target}, value : {value})" ```
{ "source": "jmcclare/spin", "score": 3 }
#### File: jmcclare/spin/spin.py ```python import sys from optparse import OptionParser import re usage_text = """\ spin version 1.0 spin takes a text file and outputs a randomly "spun" version of it. The text file should contain phrases marked with alternatives using spintax. Usage: spin filename or spin [optiona] Options -t, --test Skip file processing and run tests.""" def print_usage(): print(usage_text) class Spintax: """ Originally based on simple Spintax class by <NAME> http://ronaldarichardson.com/2011/10/04/recursive-python-spintax-class/ For reference, also see this implementation in C#: http://stackoverflow.com/questions/8004465/spintax-c-sharp-how-can-i-handle-this """ def __init__(self): return None def spin(self, str): while self.incomplete(str): str = self.regex(str) return str def regex(self, str): from random import choice match = self.preg_match("{[^{}]+?}", str) attack = match.split("|") new_str = self.preg_replace("[{}]", "", choice(attack)) str = str.replace(match, new_str) return str def incomplete(self, str): complete = re.search("{[^{}]+?}", str) return complete def preg_match(self, pattern, subject): match = re.search(pattern, subject) return match.group() def preg_match_all(self, pattern, subject): matches = re.findall(pattern, subject) return matches def preg_replace(self, pattern, replacement, subject): result = re.sub(pattern, replacement, subject) return result def run_tests(): spintax = Spintax() print("Test Output:\n") unspun = u"I recently {fried|baked|totaled} my 300GB Seagate {hard drive|hard disk} by accident. I tend to keep my drives unfastened inside my PC cases. My boot drive tipped over and hit the circuit board of my data drive. There was a small flash and a bit of smoke arose. The boot drive survived, but the 300GB drive had a nasty burn mark right on top of one of the chips on it's circuit board. It was done and all of my data was now trapped on the disk." print("\n\nUnspun text:\n\n%s" % unspun) print("\nSpun:\n\n%s" % spintax.spin(unspun)) unspun_nested = u"It turns out that {you can {replace|change} the circuit board on a Seagate hard drive|the circuit board on a Seagate hard drive can be {replaced|changed}} without even soldering. The board is held on with some screws and fasteners. According to some forum posts I read, if your drive's circuit board dies, you can get one from another drive of the same or similar model and it should work." print("\n\nNested unspun text:\n\n%s" % unspun_nested) print("\nSpun:\n\n%s" % spintax.spin(unspun_nested)) unspun_linebreaks = u"""I recently {fried|baked|totaled} my 300GB Seagate {hard drive|hard disk} by accident. I tend to keep my drives unfastened inside my PC cases. My boot drive tipped over and hit the circuit board of my data drive. There was a small flash and a bit of smoke arose. The boot drive survived, but the 300GB drive had a nasty burn mark right on top of one of the chips on it's circuit board. It was done and all of my data was now trapped on the disk.""" # This tests unspun text with linebreaks, including one right in the middle # of a spin set. print("\n\nUnspun text with linebreaks:\n\n%s" % unspun_linebreaks) print("\nSpun:\n\n%s" % spintax.spin(unspun_linebreaks)) unspun_multi_p = u"""I recently {fried|baked|totaled} my 300GB Seagate {hard drive|hard disk} by accident. I tend to keep my drives unfastened inside my PC cases. My boot drive tipped over and hit the circuit board of my data drive. There was a small flash and a bit of smoke arose. The boot drive survived, but the 300GB drive had a nasty burn mark right on top of one of the chips on it's circuit board. It was done and all of my data was now trapped on the disk. It turns out that {you can {replace|change} the circuit board on a Seagate hard drive|the circuit board on a Seagate hard drive can be {replaced|changed}} without even soldering. The board is held on with some screws and fasteners. According to some forum posts I read, if your drive's circuit board dies, you can get one from another drive of the same or similar model and it should work.""" print("\n\nMulti-paragraph unspun text:\n\n%s" % unspun_multi_p) print("\nSpun:\n\n%s" % spintax.spin(unspun_multi_p)) sys.exit(0) if __name__ == '__main__': opt_parser = OptionParser( usage = usage_text, version = "%prog 1.0", ) opt_parser.add_option('-t', '--test', action="store_true", dest="test", default=False, help = "Skip file processing and run tests." ) (options, args) = opt_parser.parse_args() if (options.test == True): run_tests() if (len(args) == 0): opt_parser.error("Please specify a filename.") if (len(args) > 1): opt_parser.error("Wrong number of arguments.") try: f = open(args[0], 'r') except: print("Invalid filename.") print("Could not open: %s" % args[0]) print_usage() sys.exit(1) unspun = f.read() spintax = Spintax() print(spintax.spin(unspun)) ```
{ "source": "jmcclell/easyblog", "score": 2 }
#### File: easyblog/easyblog/managers.py ```python from django.utils import timezone from django.db import models # Because of a circular dependency, we can't import models specifically import easyblog class PostStatusLiveManager(models.Manager): def get_query_set(self): """Return PostStatus objects which are defined as "live" (eg: Published) """ return super(PostStatusLiveManager, self).get_query_set().filter( is_live=True ) class PostLiveManager(models.Manager): def get_query_set(self): """Return posts that are live (ie: their PostStatus is a Live status and their publish date has past)""" return super(PostLiveManager, self).get_query_set().filter(status__in=easyblog.models.PostStatus.live_statuses.all(), publish_date__lte=timezone.now()) ``` #### File: easyblog/views/authors.py ```python from django.shortcuts import get_object_or_404 from django.views.generic.list_detail import object_list from easyblog.models import Author from easyblog import settings def author_detail(request, username, page=None, **kwargs): """Display the entries of an author""" extra_context = kwargs.pop('extra_context', {}) author = get_object_or_404(Author, username=username) #if not kwargs.get('template_name'): # kwargs['template_name'] = template_name_for_entry_queryset_filtered( # 'author', author.username) extra_context.update({'author': author}) kwargs['extra_context'] = extra_context return object_list(request, queryset=author.live_posts, paginate_by=settings.POSTS_PER_PAGE, page=page, **kwargs) ``` #### File: easyblog/sample/dilla_spamlib.py ```python from django.utils import timezone from dilla import spam, spammers import random #@spam.strict_handler('easyblog.Post.title') #def get_blog_post_title(record, field): # return random.choice(string.ascii_letters) @spam.global_handler('DateField') @spam.global_handler('TimeField') @spam.global_handler('DateTimeField') def random_datetime_tz_aware(record, field): """ Calculate random datetime object between last and next month. Django interface is pretty tollerant at this point, so three decorators instead of three handlers here. """ # 1 month ~= 30d ~= 720h ~= 43200min random_minutes = random.randint(-43200, 43200) return timezone.now() + timezone.timedelta(minutes=random_minutes) @spam.strict_handler('easyblog.models.Post.status') def get_default_post_status(record, field): weighted_choices = [1, 1, 1, 2] return random.choice(weighted_choices) @spam.strict_handler('easyblog.models.Post.tags') def get_post_tags(record, field): return spammers.random_words(record, field) ```
{ "source": "jmccormac01/donuts_voyager", "score": 3 }
#### File: donuts_voyager/testing/test_receive_until.py ```python import sys import socket as s import traceback import time import json class Voyager(): """ Voyager interaction class """ def __init__(self, config): """ Initialise the class """ self.socket = None self.socket_ip = config['socket_ip'] self.socket_port = config['socket_port'] self.host = config['host'] self.inst = 1 self.message_overflow = [] # test the new receive_until method self.establish_and_maintain_voyager_connection() def establish_and_maintain_voyager_connection(self): """ Open a connection and maintain it with Voyager """ self.__open_socket() while 1: # keep it alive and listen for jobs polling_str = self.__polling_str() sent = self.__send(polling_str) if sent: print(f"SENT: {polling_str}") # listen for a response rec = self.__receive_until(delim=b'\r\n') if rec: print(f"RECEIVED: {rec}") time.sleep(1) def __open_socket(self): """ Open a connection to Voyager """ self.socket = s.socket(s.AF_INET, s.SOCK_STREAM) self.socket.settimeout(1.0) try: self.socket.connect((self.socket_ip, self.socket_port)) except s.error: print('Voyager socket connect failed!') print('Check the application interface is running!') traceback.print_exc() sys.exit(1) def __close_socket(self): """ Close the socket once finished """ self.socket.close() def __send(self, message): """ Send a message to Voyager """ try: self.socket.sendall(bytes(message, encoding='utf-8')) sent = True self.inst += 1 except: print(f"Error sending message {message} to Voyager") traceback.print_exc() sent = False return sent def __receive(self, n_bytes=2048): """ Receive a message of n_bytes in length from Voyager Parameters ---------- n_bytes : int, optional Number of bytes to read from socket default = 2048 Returns ------- message : dict json parsed response from Voyager Raises ------ None """ # NOTE original code, we have JSON decoding errors, trying to figure it out #try: # message = json.loads(self.socket.recv(n_bytes)) #except s.timeout: # message = {} #return message # load the raw string try: message_raw = self.socket.recv(n_bytes) except s.timeout: message_raw = "" # unpack it into a json object if message_raw != "": # NOTE sometimes a message is truncated, try to stop it crashing... try: message = json.loads(message_raw) except json.decoder.JSONDecodeError: message = {} else: message = {} return message def __receive_until(self, delim=b'\r\n'): """ """ message_buffer = [] n_bytes = 2048 # check if there is any overflow from last time print(f"Message overflow {self.message_overflow}") for msg in self.message_overflow: print("HANDLING OVERFLOW!!!!!!!!!") message_buffer.append(msg) # reset the overflow self.message_overflow = [] print(f"Message overflow {self.message_overflow}") continue_reading = True while continue_reading: try: message_raw = self.socket.recv(n_bytes) except s.timeout: message_raw = b'' print(f"Message raw {message_raw}") if delim in message_raw: print("DELIM FOUND...") continue_reading = False message_end, message_new_start = message_raw.split(b'\r\n') print(f"Message parts {message_end} : {message_new_start}") message_buffer.append(message_end) print(f"Message buffer: {message_buffer}") self.message_overflow.append(message_new_start) print(f"Message overflow: {self.message_overflow}") else: print("DELIM NOT FOUND, CONTINUING READING...") continue_reading = True message_buffer.append(message_raw) print("DONE READING...") message_str = b''.join(message_buffer) print(f"Final message string: {message_str}") return json.loads(message_str) def __polling_str(self): """ Create a polling string """ now = str(time.time()) return f"{{\"Event\":\"Polling\",\"Timestamp\":{now},\"Host\":\"{self.host}\",\"Inst\":{self.inst}}}\r\n" def __guide_str(self): """ Create a guiding string """ return "" if __name__ == "__main__": config = {'socket_ip': '127.0.0.1', 'socket_port': 5950, 'host': 'DESKTOP-CNTF3JR'} voyager = Voyager(config) ``` #### File: jmccormac01/donuts_voyager/voyager_utils.py ```python import os from datetime import ( date, timedelta, datetime) import toml def load_config(filename): """ Load the config file Parameters ---------- filename : string Name of the configuration file to load Returns ------- configuration : dict Configuration information Raises ------ None """ return toml.load(filename) # get evening or morning def get_am_or_pm(): """ Determine if it is morning or afteroon This function uses now instead of utcnow because it is the local time which determines if we are starting or ending the curent night. A local time > midday is the evening A local time < midday is the morning of the day after This is not true for UTC in all places Parameters ---------- None Returns ------- token : int 0 if evening 1 if morning Raises ------ None """ now = datetime.now() if now.hour >= 12: token = 0 else: token = 1 return token def get_tonight(): """ Get tonight's date in YYYY-MM-DD format """ token = get_am_or_pm() d = date.today()-timedelta(days=token) night = "{:d}-{:02d}-{:02d}".format(d.year, d.month, d.day) return night # get tonights directory def get_data_dir(root_dir, windows=True): """ Get tonight's data directory and night string If directory doesn't exist make it Parameters ---------- root_dir : string the path to the data directory data_subdir : stringsubdir inside nightly folder Returns ------- data_loc : string Path to tonight's data directory Raises ------ None """ night = get_tonight() if windows: data_loc = f"{root_dir}\\{night}" else: data_loc = f"{root_dir}/{night}" if not os.path.exists(data_loc): os.mkdir(data_loc) return data_loc ```
{ "source": "jmccormac01/SONG", "score": 3 }
#### File: jmccormac01/SONG/extract_SONG_CCFs.py ```python import sys import os import argparse as ap from astropy.io import fits import matplotlib.pyplot as plt import numpy as np import glob as g iSpec_location = '/Users/jmcc/iSpec_v20161118' sys.path.insert(0, os.path.abspath(iSpec_location)) import ispec strongLines = iSpec_location + '/input/regions/strong_lines/absorption_lines.txt' line_lists_parent = iSpec_location + '/input/linelists/CCF/' telluricLines = line_lists_parent + "Synth.Tellurics.500_1100nm/mask.lst" atomicMaskLines = {'A0': line_lists_parent + 'HARPS_SOPHIE.A0.350_1095nm/mask.lst', 'F0': line_lists_parent + 'HARPS_SOPHIE.F0.360_698nm/mask.lst', 'G2': line_lists_parent + 'HARPS_SOPHIE.G2.375_679nm/mask.lst', 'K0': line_lists_parent + 'HARPS_SOPHIE.K0.378_679nm/mask.lst', 'K5': line_lists_parent + 'HARPS_SOPHIE.K5.378_680nm/mask.lst', 'M5': line_lists_parent + 'HARPS_SOPHIE.M5.400_687nm/mask.lst'} INSTRUMENT = {'RESOLUTION': 90000} def arg_parse(): """ """ p = ap.ArgumentParser() p.add_argument('action', choices=['orders', 'ccfs']) return p.parse_args() def normaliseContinuum(spec): """ Based on example.py normalize_whole_spectrum_strategy1_ignoring_prefixed_strong_lines function """ model = 'Splines' degree = 2 nknots = None from_resolution = INSTRUMENT['RESOLUTION'] # continuum fit order = 'median+max' median_wave_range = 0.01 max_wave_range = 1.0 strong_lines = ispec.read_line_regions(strongLines) continuum_model = ispec.fit_continuum(spec, \ from_resolution=from_resolution, \ nknots=nknots, \ degree=degree, \ median_wave_range=median_wave_range, \ max_wave_range=max_wave_range, \ model=model, \ order=order, \ automatic_strong_line_detection=True, \ strong_line_probability=0.5, \ use_errors_for_fitting=True) # continuum normalisation spec_norm = ispec.normalize_spectrum(spec, \ continuum_model, \ consider_continuum_errors=False) return spec_norm def measureRadialVelocityWithMask(spec, ccf_mask): """ Radial velocity measurement using atomic line list Based on example.py determine_radial_velocity_with_mask() function """ models, ccf = ispec.cross_correlate_with_mask(spec, \ ccf_mask, \ lower_velocity_limit=-200, \ upper_velocity_limit=200, \ velocity_step=0.50, \ mask_depth=0.01, \ fourier=False) # Number of models represent the number of components components = len(models) # First component: try: rv = np.round(models[0].mu(), 2) # km/s rv_err = np.round(models[0].emu(), 2) # km/s except IndexError: print '\n\n\nPROBLEM RV WITH MASK, SKIPPING...\n\n\n' return 0.0, 0.0, components, models, ccf return rv, rv_err, components, models, ccf if __name__ == "__main__": args = arg_parse() data_dir = "/Users/jmcc/Dropbox/data/SONG/20180907" os.chdir(data_dir) fitsfiles = sorted(g.glob("*.fits")) if args.action == 'orders': # loop over all fits files and extract the orders and 1D spectrum for fitsfile in fitsfiles: fits_dir = fitsfile.split('.')[0] if not os.path.exists(fits_dir): os.mkdir(fits_dir) with fits.open(fitsfile) as ff: fluxes = ff[0].data[0] blazes = ff[0].data[2] waves = ff[0].data[3] wave_out, flux_out, error_out = [], [], [] fig, ax = plt.subplots(4, figsize=(20, 20), sharex=True) o = 1 for wave, flux, blaze in zip(waves, fluxes, blazes): # normalise the blaze blazen = blaze / np.average(blaze) error = np.zeros(len(wave)) flux_corr = flux/blazen # keep this for the final spectrum wave_out.append(wave) flux_out.append(flux_corr) error_out.append(error) # save per order files for doing the CCF order_file = "{}/{}_o{:02d}.txt".format(fits_dir, fitsfile.split('.')[0], o) # do nan filtering on the output wave_filt, flux_corr_filt, error_filt = [], [], [] for nw, nf, ne in zip(wave, flux_corr, error): if nw == nw and nf == nf and ne == ne and nf != 0: # also divide wave by 10 to get nm wave_filt.append(nw/10.0) flux_corr_filt.append(nf) error_filt.append(ne) wave_filt = np.array(wave_filt) flux_corr_filt = np.array(flux_corr_filt) error_filt = np.array(error_filt) np.savetxt(order_file, np.c_[wave_filt, flux_corr_filt, error_filt], fmt='%.5f\t%.4f\t%.4f', header='Wave_nm Flux Error') # do the plots _ = ax[0].plot(wave, flux, 'k-') _ = ax[0].set_ylabel('Flux', fontsize=18) _ = ax[1].plot(wave, blaze, 'r-') _ = ax[1].set_ylabel('Blaze Flat', fontsize=18) _ = ax[2].plot(wave, blazen, 'r-') _ = ax[2].set_ylabel('Blaze Flat (norm_avg)', fontsize=18) _ = ax[3].plot(wave, flux_corr, 'g-') _ = ax[3].set_ylabel('Flux / Blaze Flat (norm_avg)', fontsize=18) _ = ax[3].set_xlabel('Wavelength (Angstroms)', fontsize=18) o += 1 fig.subplots_adjust(hspace=0.0) fig.tight_layout() fig.savefig('{}/{}.png'.format(fits_dir, fitsfile.split('.')[0]), dpi=400) # stack and sort the orders wave_out = np.hstack(wave_out) flux_out = np.hstack(flux_out) error_out = np.hstack(error_out) n = np.where(wave_out > 4700)[0] wave_out = wave_out[n] flux_out = flux_out[n] error_out = error_out[n] temp = zip(wave_out, flux_out, error_out) temp = sorted(temp) wave_out_s, flux_out_s, error_out_s = zip(*temp) # save the full 1D spectrum np.savetxt("{}/{}_1D.txt".format(fits_dir, fitsfile.split('.')[0]), np.c_[wave_out_s, flux_out_s, error_out_s], fmt='%.5f\t%.4f\t%.4f', header='Wave_Ang Flux Error') else: mask_type = 'G2' ccf_mask = ispec.read_cross_correlation_mask(atomicMaskLines[mask_type]) for fitsfile in fitsfiles: fits_dir = fitsfile.split('.')[0] os.chdir(fits_dir) orders = sorted(g.glob('*.txt'))[10:-4] fig, ax = plt.subplots(len(orders), figsize=(5, 10), sharex=True) fig_total, ax_total = plt.subplots(2, figsize=(5, 5), sharex=True) for i, order in enumerate(orders): # read in the order spec = ispec.read_spectrum(order) print('{} Loaded...'.format(order)) spec = normaliseContinuum(spec) print('{} Continuum normalised...'.format(order)) # measure the radial velocity using a atomic mask line list mask_rv, mask_rv_err, mask_components, mask_models, \ mask_ccf = measureRadialVelocityWithMask(spec, ccf_mask) ax[i].plot(mask_ccf['x'], mask_ccf['y'], 'k-', lw=1) if i==0: total_ccf = np.zeros(len(mask_ccf['x'])) if mask_rv != 0.0 and mask_rv_err != 0.0: total_ccf += mask_ccf['y'] ax[len(orders)-1].set_xlabel('RV (km/s)') fig.tight_layout() fig.subplots_adjust(hspace=0) fig.savefig('{}_order_ccfs.png'.format(fits_dir), dpi=300) # fit the CCF to normalise the baseline n = np.where(((mask_ccf['x'] < -50) | (mask_ccf['x'] > 50))) coeffs = np.polyfit(mask_ccf['x'][n], total_ccf[n], 1) besty = np.polyval(coeffs, mask_ccf['x']) total_ccf_norm = total_ccf / besty # plot the combined CCF and the final normalised version ax_total[0].plot(mask_ccf['x'], total_ccf, 'k-', lw=1) ax_total[0].plot(mask_ccf['x'], besty, 'r--', lw=1) ax_total[0].set_ylabel('CCF contrast') ax_total[1].plot(mask_ccf['x'], total_ccf_norm, 'k-', lw=1) ax_total[1].set_ylabel('CCF contrast norm') ax_total[1].set_xlabel('RV (km/s)') fig_total.tight_layout() fig_total.subplots_adjust(hspace=0.0) fig_total.savefig('{}_total_ccf.png'.format(fits_dir), dpi=300) # output the final CCF np.savetxt('{}.ccf'.format(fits_dir), np.c_[mask_ccf['x'], total_ccf_norm], fmt='%.3f %.5f', header='RV_kms Contrast') os.chdir('../') ```
{ "source": "jmccrae/irish_saffron", "score": 3 }
#### File: jmccrae/irish_saffron/make_tagged_corpus.py ```python import gzip import xml.etree.ElementTree as ET import json from nltk import word_tokenize def init_variations(word): if len(word) <= 1: return [word] elif word[0] == "b": return [word, word[0] + "h" + word[1:], "m" + word] elif word[0] == "c": return [word, word[0] + "h" + word[1:], "g" + word] elif word[0] == "d": return [word, word[0] + "h" + word[1:], "n" + word] elif word[0] == "f": return [word, word[0] + "h" + word[1:], "bh" + word] elif word[0] == "g": return [word, word[0] + "h" + word[1:], "n" + word] elif word[0] == "m": return [word, word[0] + "h" + word[1:]] elif word[0] == "p": return [word, word[0] + "h" + word[1:], "b" + word] elif word[0] == "s" and word[1] not in ["b","c","d","f","g","l","m","n","p","t"]: return [word, word[0] + "h" + word[1:], "t" + word] elif word[0] == "t": return [word, word[0] + "h" + word[1:], "d" + word] elif word[0] in ["a","e","i","o","u"]: return [word, "h" + word, "n-" + word] else: return [word] def read_morphology(): tree = ET.parse("morphology.xml") morph = {} for entry in tree.getroot().findall("entry"): lemma = entry.findall("src")[0].findall("scope")[0].findall("ortho")[0].findall("token")[0].text.lower() for subentry in entry.findall("subentries"): variants = [lemma] for entry2 in subentry.findall("entry"): variants.append(entry2.findall("src")[0].findall("scope")[0].findall("ortho")[0].findall("token")[0].text.lower()) for v1 in variants: if v1 not in morph: morph[v1] = set([]) morph[v1].add(lemma) return morph morph = read_morphology() morph2 = {k2: v for k, v in morph.items() for k2 in init_variations(k) } morph.update(morph2) terms = [l.strip().split("\t") for l in open("term_freq-sort.tsv").readlines()] terms = set(t[1].strip() for t in terms if len(t) >= 2) def build_trie(words): if len(words) == 0: return {"":""} else: return {words[0]: build_trie(words[1:])} def trie_merge(trie1, trie2): if trie1 == "": return trie2 if trie2 == "": return trie1 m = trie1 for k in trie2.keys(): if k in trie1: m[k] = trie_merge(trie1[k], trie2[k]) else: m[k] = trie2[k] return m def term_trie(): trie = {} for term in terms: words = term.lower().split(" ") trie = trie_merge(trie, build_trie(words)) return trie trie = term_trie() def get_tags(tokens): tags = ["O"] * len(tokens) part_matches = [] for i, token in enumerate(tokens): pm_new = [] for pm in part_matches: t = trie for x in pm: t = t[x] z = [t2 for t2 in morph.get(token.lower(), [token.lower()]) if t2 in t] for z2 in z: if z2 in t: pm_new.append(pm + [z2]) z = [t2 for t2 in morph.get(token.lower(), [token.lower()]) if t2 in trie] for z2 in z: if z2 in trie: pm_new.append([z2]) part_matches = pm_new for pm in part_matches: t = trie for x in pm: t = t[x] if "" in t: if tags[i - len(pm) + 1] == "O": tags[i-len(pm)+1] = "B" for j in range(i - len(pm)+2, i+1): tags[j] = "I" if len(pm) != 1: tags[i] = "I" return tags with gzip.open("gawiki-filt.gz", "rt") as input: line = input.readline() while line: doc = line.strip().split(":") title = doc[0] contents = ":".join(doc[1:]) tokens = word_tokenize(contents) tags = get_tags(tokens) print(" ".join(["%s_%s" % (token, tags[i]) for i, token in enumerate(tokens)])) line = input.readline() ``` #### File: jmccrae/irish_saffron/term_freq.py ```python import gzip import xml.etree.ElementTree as ET import json from nltk import word_tokenize from collections import Counter def read_morphology(): tree = ET.parse("morphology.xml") morph = {} for subentry in tree.getroot().iter(): if subentry.tag == "subentries": variants = [] for entry in subentry.findall("entry"): variants.append(entry.findall("src")[0].findall("scope")[0].findall("ortho")[0].findall("token")[0].text.lower()) for v1 in variants: if v1 not in morph: morph[v1] = set([]) for v2 in variants: morph[v1].add(v2) return morph morph = read_morphology() terms = [l.strip().split("\t") for l in open("19.03.01-tearma.ie-concepts.txt").readlines()] terms = set(t[1] for t in terms if len(t) >= 2) def build_trie(words): if len(words) == 0: return {"":""} else: return {words[0]: build_trie(words[1:])} def trie_merge(trie1, trie2): if trie1 == "": return trie2 if trie2 == "": return trie1 m = trie1 for k in trie2.keys(): if k in trie1: m[k] = trie_merge(trie1[k], trie2[k]) else: m[k] = trie2[k] return m def term_trie(): trie = {} for term in terms: words = term.lower().split(" ") trie = trie_merge(trie, build_trie(words)) return trie trie = term_trie() termfreqs = Counter() def count(tokens): part_matches = [] for i, token in enumerate(tokens): pm_new = [] for pm in part_matches: t = trie for x in pm: t = t[x] z = [t2 for t2 in morph.get(token.lower(), [token.lower()]) if t2 in t] if z: pm_new.append(pm + z[0:1]) z = [t2 for t2 in morph.get(token.lower(), [token.lower()]) if t2 in trie] if z: pm_new.append(z[0:1]) part_matches = pm_new for pm in part_matches: t = trie for x in pm: t = t[x] if "" in t: termfreqs[" ".join(pm)] += 1 with gzip.open("/home/jmccrae/data/wiki/gawiki-filt.gz", "rt") as input: line = input.readline() while line: doc = line.strip().split(":") title = doc[0] contents = ":".join(doc[1:]) tokens = word_tokenize(contents) count(tokens) line = input.readline() for term, freq in termfreqs.items(): print(freq, "\t", term) ```
{ "source": "jmccrae/saffron", "score": 3 }
#### File: jmccrae/saffron/taxonomy-to-dot.py ```python import sys import json def gen_label(taxo, topic_wts): if "root" in taxo: if taxo["root"] in topic_wts: print(" \"%s\" [ weight=%.4f ];" % (taxo["root"], topic_wts[taxo["root"]])) else: print(" \"%s\";" % (taxo["root"])) if "children" in taxo: for child in taxo["children"]: gen_label(child, topic_wts) def gen_link(taxo): if "root" in taxo and "children" in taxo: src = taxo["root"] for child in taxo["children"]: trg = child["root"] print(" \"" + src + "\" -> \"" + trg + "\";") gen_link(child) def main(args): taxonomy = json.load(open(args[0])) if len(args) >= 2: topics = json.load(open(args[1])) topic_wts = { x["topic_string"]: x["score"] for x in topics } else: topic_wts = {} print("digraph G {") gen_label(taxonomy, topic_wts) gen_link(taxonomy) print("}") if __name__ == "__main__": main(sys.argv[1:]) ```
{ "source": "jmccrae/zrtifi", "score": 2 }
#### File: zrtifi/analyzers/gzip.py ```python import gzip import sys from subprocess import Popen, PIPE from os.path import exists from uuid import uuid4 step_id = str(uuid4()) def format_err(lines): for line in lines: yield line.strip() ZRTIFI_ONTOLOGY = "http://www.zrtifi.org/ontology#" if __name__ == "__main__": file = sys.argv[1] if exists(file): if file.endswith(".gz"): p = Popen(["gunzip", file], stderr=PIPE) p.wait() print("<> <%sstep> <#gzip_step_%s> ." % (ZRTIFI_ONTOLOGY, step_id)) print("<#gzip_step_%s> <%sprocess> \"gzip\" ." % (step_id, ZRTIFI_ONTOLOGY)) if p.returncode == 0: print("<#gzip_step_%s> <%sstatus> <http://www.zrtifi.org/ontology#success> ." % (step_id, ZRTIFI_ONTOLOGY)) print("<#file_%s> <http://www.zrtifi.org/internal#next> <sniff> ." % step_id) print("<#file_%s> <http://www.zrtifi.org/internal#nextTarget> <%s> ." % (step_id, file[:-3])) print("<> <%scontains> <#file_%s> ." % (ZRTIFI_ONTOLOGY, step_id)) print("<#file_%s> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.w3.org/ns/dcat#Distribution> ." % (step_id)) else: print("<#gzip_step_%s> <%sstatus> <http://www.zrtifi.org/ontology#error> ." % (step_id, ZRTIFI_ONTOLOGY)) print("<#gzip_step_%s> <%sstatus> \"%s\" ." % (step_id, ZRTIFI_ONTOLOGY, "\\n".join(format_err(p.stderr.readlines())))) else: print("<#gzip_step_%s> <%serror> \"file does not end in .gz\"@en ." % (step_id, ZRTIFI_ONTOLOGY)) print("<#gzip_step_%s> <%sstatus> <http://www.zrtifi.org/ontology#failed> ." % (step_id, ZRTIFI_ONTOLOGY)) else: print("<#gzip_step_%s> <%sstatus> <http://www.zrtifi.org/ontology#failed> ." % (step_id, ZRTIFI_ONTOLOGY)) print("<#gzip_step_%s> <%serror> \"file does not exist\"@en . " % (step_id, ZRTIFI_ONTOLOGY)) ``` #### File: zrtifi/analyzers/xml.py ```python from subprocess import Popen, PIPE from cStringIO import StringIO import sys from uuid import uuid4 step_id = str(uuid4()) ZRTIFI_ONTOLOGY = "http://www.zrtifi.org/ontology#" def format_err(lines): for line in lines: yield line.strip() if __name__ == "__main__": p = Popen(["xmllint","--noouti","--loaddtd ",sys.argv[1]], stdout=PIPE, stderr=PIPE) p.wait() print("<> <%sstep> <#xml_step_%s> ." % (ZRTIFI_ONTOLOGY, step_id)) print("<#xml_step_%s> <%sprocess> \"xml\" ." % (step_id, ZRTIFI_ONTOLOGY)) if p.returncode == 0: print("<#xml_step_%s> <%sstatus> <%ssuccess> ." % (step_id, ZRTIFI_ONTOLOGY, ZRTIFI_ONTOLOGY)) elif p.returncode >= 1: print("<#xml_step_%s> <%sstatus> <%serror> ." % (step_id, ZRTIFI_ONTOLOGY, ZRTIFI_ONTOLOGY)) errmsg = "\\n".join(format_err(p.stderr.readlines())) print("<#xml_step_%s> <%serror> \"%s\" ." % (step_id, ZRTIFI_ONTOLOGY, errmsg)) if p.returncode == 1: print("<#xml_step_%s> <%serror> \"Unclassified\" ." % (step_id, ZRTIFI_ONTOLOGY)) if p.returncode == 2: print("<#xml_step_%s> <%serror> \"Error in DTD\" ." % (step_id, ZRTIFI_ONTOLOGY)) if p.returncode == 3: print("<#xml_step_%s> <%serror> \"Validation error\" ." % (step_id, ZRTIFI_ONTOLOGY)) if p.returncode == 4: print("<#xml_step_%s> <%serror> \"Validation error\" ." % (step_id, ZRTIFI_ONTOLOGY)) if p.returncode == 5: print("<#xml_step_%s> <%serror> \"Error in schema compilation\" ." % (step_id, ZRTIFI_ONTOLOGY)) if p.returncode == 6: print("<#xml_step_%s> <%serror> \"Error writing output\" ." % (step_id, ZRTIFI_ONTOLOGY)) if p.returncode == 7: print("<#xml_step_%s> <%serror> \"Error in pattern (generated when --pattern option is used)\" ." % (step_id, ZRTIFI_ONTOLOGY)) if p.returncode == 8: print("<#xml_step_%s> <%serror> \"Error in Reader registration (generated when --chkregister option is used)\" ." % (step_id, ZRTIFI_ONTOLOGY)) if p.returncode == 9: print("<#xml_step_%s> <%serror> \"Out of memory error\" ." % (step_id, ZRTIFI_ONTOLOGY)) ```
{ "source": "jmccreight/WrfHydroForcing", "score": 2 }
#### File: WrfHydroForcing/core/bias_correction.py ```python import math from math import tau as TWO_PI import os import random import time import ESMF import numpy as np from netCDF4 import Dataset from core import err_handler PARAM_NX = 384 PARAM_NY = 190 NumpyExceptions = (IndexError, ValueError, AttributeError, ArithmeticError) # These come from the netCDF4 module, but they're not exported via __all__ so we put them here: default_fillvals = {'S1': '\x00', 'i1': -127, 'u1': 255, 'i2': -32767, 'u2': 65535, 'i4': -2147483647, 'u4': 4294967295, 'i8': -9223372036854775806, 'u8': 18446744073709551614, 'f4': 9.969209968386869e+36, 'f8': 9.969209968386869e+36} def run_bias_correction(input_forcings, config_options, geo_meta_wrf_hydro, mpi_config): """ Top level calling routine for initiating bias correction on this particular input forcing. This is called prior to downscaling, but after regridding. :param mpi_config: :param geo_meta_wrf_hydro: :param input_forcings: :param config_options: :return: """ # Dictionary for mapping to temperature bias correction. bias_correct_temperature = { 0: no_bias_correct, 1: cfsv2_nldas_nwm_bias_correct, 2: ncar_tbl_correction, 3: ncar_temp_gfs_bias_correct, 4: ncar_temp_hrrr_bias_correct } bias_correct_temperature[input_forcings.t2dBiasCorrectOpt](input_forcings, config_options, mpi_config, 0) err_handler.check_program_status(config_options, mpi_config) # Dictionary for mapping to humidity bias correction. bias_correct_humidity = { 0: no_bias_correct, 1: cfsv2_nldas_nwm_bias_correct, 2: ncar_tbl_correction } bias_correct_humidity[input_forcings.q2dBiasCorrectOpt](input_forcings, config_options, mpi_config, 1) err_handler.check_program_status(config_options, mpi_config) # Dictionary for mapping to surface pressure bias correction. bias_correct_pressure = { 0: no_bias_correct, 1: cfsv2_nldas_nwm_bias_correct } bias_correct_pressure[input_forcings.psfcBiasCorrectOpt](input_forcings, config_options, mpi_config, 7) err_handler.check_program_status(config_options, mpi_config) # Dictionary for mapping to incoming shortwave radiation correction. bias_correct_sw = { 0: no_bias_correct, 1: cfsv2_nldas_nwm_bias_correct, 2: ncar_sw_hrrr_bias_correct } if input_forcings.swBiasCorrectOpt != 2: bias_correct_sw[input_forcings.swBiasCorrectOpt](input_forcings, config_options, mpi_config, 5) else: bias_correct_sw[input_forcings.swBiasCorrectOpt](input_forcings, geo_meta_wrf_hydro, config_options, mpi_config, 5) err_handler.check_program_status(config_options, mpi_config) # Dictionary for mapping to incoming longwave radiation correction. bias_correct_lw = { 0: no_bias_correct, 1: cfsv2_nldas_nwm_bias_correct, 2: ncar_blanket_adjustment_lw, 3: ncar_lwdown_gfs_bias_correct } bias_correct_lw[input_forcings.lwBiasCorrectOpt](input_forcings, config_options, mpi_config, 6) err_handler.check_program_status(config_options, mpi_config) # Dictionary for mapping to wind bias correction. bias_correct_wind = { 0: no_bias_correct, 1: cfsv2_nldas_nwm_bias_correct, 2: ncar_tbl_correction, 3: ncar_wspd_gfs_bias_correct, 4: ncar_wspd_hrrr_bias_correct } # Run for U-Wind bias_correct_wind[input_forcings.windBiasCorrectOpt](input_forcings, config_options, mpi_config, 2) err_handler.check_program_status(config_options, mpi_config) # Run for V-Wind bias_correct_wind[input_forcings.windBiasCorrectOpt](input_forcings, config_options, mpi_config, 3) err_handler.check_program_status(config_options, mpi_config) # Dictionary for mapping to precipitation bias correction. bias_correct_precip = { 0: no_bias_correct, 1: cfsv2_nldas_nwm_bias_correct } bias_correct_precip[input_forcings.precipBiasCorrectOpt](input_forcings, config_options, mpi_config, 4) err_handler.check_program_status(config_options, mpi_config) # Assign the temperature/pressure grids to temporary placeholders here. # these will be used if 2-meter specific humidity is downscaled. if input_forcings.q2dDownscaleOpt != 0: input_forcings.t2dTmp = input_forcings.final_forcings[4, :, :] * 1.0 input_forcings.psfcTmp = input_forcings.final_forcings[6, :, :] * 1.0 else: input_forcings.t2dTmp = None input_forcings.psfcTmp = None def no_bias_correct(input_forcings, config_options, mpi_config, force_num): """ Generic routine to simply pass forcing states through without any bias correction. :param mpi_config: :param input_forcings: :param config_options: :param force_num: :return: """ try: input_forcings.final_forcings[force_num, :, :] = input_forcings.final_forcings[force_num, :, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to set final forcings during bias correction routine: " + str(npe) err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) def ncar_tbl_correction(input_forcings, config_options, mpi_config, force_num): """ Generic NCAR bias correction for forcings based on the forecast hour. A lookup table is used for each different forcing variable. NOTE!!!! - This is based on HRRRv3 analysis and should be used with extreme caution. :param input_forcings: :param config_options: :param mpi_config: :param force_num: :return: """ # Establish lookup tables for each forcing, for each forecast hour. adj_tbl = { 0: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], 1: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], 2: [0.35, 0.18, 0.15, 0.13, 0.12, 0.11, 0.10, 0.08, 0.07, 0.06, 0.05, 0.03, 0.02, 0.01, -0.01, -0.02, -0.03, -0.4, -0.05], 3: [0.35, 0.18, 0.15, 0.13, 0.12, 0.11, 0.10, 0.08, 0.07, 0.06, 0.05, 0.03, 0.02, 0.01, -0.01, -0.02, -0.03, -0.4, -0.05] } if mpi_config.rank == 0: config_options.statusMsg = "Performing table lookup bias correction for: " + \ input_forcings.netcdf_var_names[force_num] + " For input: " + \ input_forcings.productName err_handler.log_msg(config_options, mpi_config) # First check to make sure we are within the accepted forecast range per the above table. For now, this # bias correction only applies to the first 18 forecast hours. if int(input_forcings.fcst_hour2) > 18: config_options.statusMsg = "Current forecast hour for: " + input_forcings.productName + \ " is greater than allowed forecast range of 18 for table lookup bias correction." err_handler.log_warning(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) # Extract local array of values to perform adjustment on. force_tmp = None try: force_tmp = input_forcings.final_forcings[input_forcings.input_map_output[force_num], :, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to extract: " + input_forcings.netcdf_var_names[force_num] + \ " from local forcing object for: " + input_forcings.productName + \ "(" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) ind_valid = None try: ind_valid = np.where(force_tmp != config_options.globalNdv) except NumpyExceptions as npe: config_options.errMsg = "Unable to perform valid search for: " + input_forcings.netcdf_var_names[force_num] + \ " from local forcing object for: " + input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) # Apply the bias correction adjustment based on the current forecast hour. try: force_tmp[ind_valid] = force_tmp[ind_valid] + adj_tbl[force_num][int(input_forcings.fcst_hour2)] except NumpyExceptions as npe: config_options.errMsg = "Unable to apply table bias correction for: " + \ input_forcings.netcdf_var_names[force_num] + \ " from local forcing object for: " + input_forcings.productName + \ " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) try: input_forcings.final_forcings[input_forcings.input_map_output[force_num], :, :] = force_tmp[:, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to place temporary LW array back into forcing object for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) # Reset temporary variables to keep low memory footprint. del force_tmp del ind_valid def ncar_blanket_adjustment_lw(input_forcings, config_options, mpi_config, force_num): """ Generic NCAR bias correction for incoming longwave radiation fluxes. NOTE!!! - This is based off HRRRv3 analysis and should be used with extreme caution..... :param input_forcings: :param config_options: :param mpi_config: :param force_num: :return: """ if mpi_config.rank == 0: config_options.statusMsg = "Performing blanket bias correction on incoming longwave " \ "radiation fluxes for input: " + \ input_forcings.productName err_handler.log_msg(config_options, mpi_config) # Establish blanket adjustment to apply across the board in W/m^2 adj_lw = 9.0 # Perform adjustment. lw_tmp = None try: lw_tmp = input_forcings.final_forcings[input_forcings.input_map_output[force_num], :, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to extract incoming LW from forcing object for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) ind_valid = None try: ind_valid = np.where(lw_tmp != config_options.globalNdv) except NumpyExceptions as npe: config_options.errMsg = "Unable to calculate valid index in incoming LW for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) try: lw_tmp[ind_valid] = lw_tmp[ind_valid] + adj_lw except NumpyExceptions as npe: config_options.errMsg = "Unable to perform LW bias correction for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) try: input_forcings.final_forcings[input_forcings.input_map_output[force_num], :, :] = lw_tmp[:, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to place temporary LW array back into forcing object for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) # Reset temporary variables to keep low memory footprint. del lw_tmp del ind_valid def ncar_sw_hrrr_bias_correct(input_forcings, geo_meta_wrf_hydro, config_options, mpi_config, force_num): """ Function to implement a bias correction to the forecast incoming shortwave radiation fluxes. NOTE!!!! - This bias correction is based on in-situ analysis performed against HRRRv3 fields. It's high discouraged to use this for any other NWP products, or even with the HRRR changes versions in the future. :param input_forcings: :param geo_meta_wrf_hydro: :param config_options: :param mpi_config: :param force_num: :return: """ if mpi_config.rank == 0: config_options.statusMsg = "Performing NCAR bias correction on incoming shortwave " \ "radiation fluxes for input: " + \ input_forcings.productName err_handler.log_msg(config_options, mpi_config) # Establish constant parameters. NOTE!!! - These will change with future HRRR upgrades. c1 = -0.159 c2 = -0.077 # Establish current datetime information, along wth solar constants. f_hr = input_forcings.fcst_hour2 # For now, hard-coding the total number of forecast hours to be 18, since we # are assuming this is HRRR n_fcst_hr = 18 # Trig params d2r = math.pi / 180.0 r2d = 180.0 / math.pi date_current = config_options.current_output_date hh = float(date_current.hour) mm = float(date_current.minute) ss = float(date_current.second) doy = float(time.strptime(date_current.strftime('%Y.%m.%d'), '%Y.%m.%d').tm_yday) frac_year = 2.0 * math.pi / 365.0 * (doy - 1.0 + (hh / 24.0) + (mm / 1440.0) + (ss / 86400.0)) # eqtime is the difference in minutes between true solar time and that if solar noon was at actual noon. # This difference is due to Earth's elliptical orbit around the sun. eqtime = 229.18 * (0.000075 + 0.001868 * math.cos(frac_year) - 0.032077 * math.sin(frac_year) - 0.014615 * math.cos(2.0 * frac_year) - 0.040849 * math.sin(2.0 * frac_year)) # decl is the solar declination angle in radians: how much the Earth is tilted toward or away from the sun decl = 0.006918 - 0.399912 * math.cos(frac_year) + 0.070257 * math.sin(frac_year) - \ 0.006758 * math.cos(2.0 * frac_year) + 0.000907 * math.sin(2.0 * frac_year) - \ 0.002697 * math.cos(3.0 * frac_year) + 0.001480 * math.sin(3.0 * frac_year) # Create temporary grids for calculating the solar zenith angle, which will be used in the bias correction. # time offset in minutes from the prime meridian time_offset = eqtime + 4.0 * geo_meta_wrf_hydro.longitude_grid # tst is the true solar time: the number of minutes since solar midnight tst = hh * 60.0 + mm + ss / 60.0 + time_offset # solar hour angle in radians: the amount the sun is off from due south ha = d2r * ((tst / 4.0) - 180.0) # solar zenith angle is the angle between straight up and the center of the sun's disc # the cosine of the sol_zen_ang is proportional to the solar intensity # (not accounting for humidity or cloud cover) sol_zen_ang = r2d * np.arccos(np.sin(geo_meta_wrf_hydro.latitude_grid * d2r) * math.sin(decl) + np.cos(geo_meta_wrf_hydro.latitude_grid * d2r) * math.cos(decl) * np.cos(ha)) # Check for any values greater than 90 degrees. sol_zen_ang[np.where(sol_zen_ang > 90.0)] = 90.0 # Extract the current incoming shortwave field from the forcing object and set it to # a local grid. We will perform the bias correction on this grid, based on forecast # hour and datetime information. Once a correction has taken place, we will place # the corrected field back into the forcing object. sw_tmp = None try: sw_tmp = input_forcings.final_forcings[input_forcings.input_map_output[force_num], :, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to extract incoming shortwave forcing from object for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) # Calculate where we have valid values. ind_valid = None try: ind_valid = np.where(sw_tmp != config_options.globalNdv) except NumpyExceptions as npe: config_options.errMsg = "Unable to run a search for valid SW values for: " + input_forcings.productName + \ " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) # Perform the bias correction. try: # The second half of this calculation below is the actual calculation of the incoming SW bias, which is then # added (or subtracted if negative) to the original values. sw_tmp[ind_valid] = sw_tmp[ind_valid] + \ (c1 + (c2 * ((f_hr - 1) / (n_fcst_hr - 1)))) * np.cos(sol_zen_ang[ind_valid] * d2r) * \ sw_tmp[ind_valid] except NumpyExceptions as npe: config_options.errMsg = "Unable to apply NCAR HRRR bias correction to incoming shortwave radiation: " + \ str(npe) err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) # Place updated states back into the forcing object. try: input_forcings.final_forcings[7, :, :] = sw_tmp[:, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to place bias-corrected incoming SW radiation fluxes back into the forcing " \ "object: " + str(npe) err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) # Reset variables to keep memory footprints low. del sw_tmp del time_offset del tst del ha del sol_zen_ang del ind_valid def ncar_temp_hrrr_bias_correct(input_forcings, config_options, mpi_config, force_num): if mpi_config.rank == 0: config_options.statusMsg = "Performing NCAR HRRR bias correction on incoming 2m temperature input: " + \ input_forcings.productName err_handler.log_msg(config_options, mpi_config) date_current = config_options.current_output_date hh = float(date_current.hour) MM= float(date_current.month) # determine if we're in AnA or SR configuration if config_options.ana_flag == 1: net_bias_AA = 0.13 diurnal_ampl_AA = -0.18 diurnal_offs_AA = 2.2 monthly_ampl_AA = -0.15 monthly_offs_AA = -2.0 bias_corr = net_bias_AA + diurnal_ampl_AA * math.sin(diurnal_offs_AA + hh / 24 * 2 * math.pi) + \ monthly_ampl_AA * math.sin(monthly_offs_AA + MM / 12 * 2*math.pi) else: net_bias_SR = 0.060 diurnal_ampl_SR = -0.31 diurnal_offs_SR = 2.2 monthly_ampl_SR = -0.21 monthly_offs_SR = -2.4 fhr_mult_SR = -0.016 fhr = config_options.current_output_step bias_corr = net_bias_SR + fhr * fhr_mult_SR + \ diurnal_ampl_SR * math.sin(diurnal_offs_SR + hh / 24 * 2*math.pi) + \ monthly_ampl_SR * math.sin(monthly_offs_SR + MM / 12 * 2*math.pi) # if mpi_config.rank == 0: # config_options.statusMsg = f"\tAnAFlag = {config_options.ana_flag} {bias_corr}" # err_handler.log_msg(config_options, mpi_config) temp_in = None try: temp_in = input_forcings.final_forcings[input_forcings.input_map_output[force_num], :, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to extract incoming temperature from forcing object for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) ind_valid = None try: ind_valid = np.where(temp_in != config_options.globalNdv) except NumpyExceptions as npe: config_options.errMsg = "Unable to calculate valid index in incoming temperature for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) try: temp_in[ind_valid] = temp_in[ind_valid] + bias_corr except NumpyExceptions as npe: config_options.errMsg = "Unable to perform temperature bias correction for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) try: input_forcings.final_forcings[input_forcings.input_map_output[force_num], :, :] = temp_in[:, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to place temporary temperature array back into forcing object for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) del temp_in del ind_valid def ncar_temp_gfs_bias_correct(input_forcings, config_options, mpi_config, force_num): if mpi_config.rank == 0: config_options.statusMsg = "Performing NCAR GFS bias correction on incoming 2m temperature input: " + \ input_forcings.productName err_handler.log_msg(config_options, mpi_config) date_current = config_options.current_output_date hh = float(date_current.hour) net_bias_mr = -0.18 fhr_mult_mr = 0.002 diurnal_ampl_mr = -1.4 diurnal_offs_mr = -2.1 fhr = config_options.current_output_step bias_corr = net_bias_mr + fhr_mult_mr * fhr + diurnal_ampl_mr * math.sin(diurnal_offs_mr + hh / 24 * TWO_PI) temp_in = None try: temp_in = input_forcings.final_forcings[input_forcings.input_map_output[force_num], :, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to extract incoming temperature from forcing object for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) ind_valid = None try: ind_valid = np.where(temp_in != config_options.globalNdv) except NumpyExceptions as npe: config_options.errMsg = "Unable to calculate valid index in incoming temperature for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) try: temp_in[ind_valid] = temp_in[ind_valid] + bias_corr except NumpyExceptions as npe: config_options.errMsg = "Unable to perform temperature bias correction for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) try: input_forcings.final_forcings[input_forcings.input_map_output[force_num], :, :] = temp_in[:, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to place temporary temperature array back into forcing object for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) del temp_in del ind_valid def ncar_lwdown_gfs_bias_correct(input_forcings, config_options, mpi_config, force_num): if mpi_config.rank == 0: config_options.statusMsg = "Performing NCAR bias correction on incoming longwave " \ "radiation fluxes for input: " + \ input_forcings.productName err_handler.log_msg(config_options, mpi_config) date_current = config_options.current_output_date hh = float(date_current.hour) fhr = config_options.current_output_step lwdown_net_bias_mr = 9.9 lwdown_fhr_mult_mr = 0.00 lwdown_diurnal_ampl_mr = -1.5 lwdown_diurnal_offs_mr = 2.8 bias_corr = lwdown_net_bias_mr + lwdown_fhr_mult_mr * fhr + lwdown_diurnal_ampl_mr * \ math.sin(lwdown_diurnal_offs_mr + hh / 24 * TWO_PI) lwdown_in = None try: lwdown_in = input_forcings.final_forcings[input_forcings.input_map_output[force_num], :, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to extract incoming longwave from forcing object for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) ind_valid = None try: ind_valid = np.where(lwdown_in != config_options.globalNdv) except NumpyExceptions as npe: config_options.errMsg = "Unable to calculate valid index in incoming longwave for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) try: lwdown_in[ind_valid] = lwdown_in[ind_valid] + bias_corr except NumpyExceptions as npe: config_options.errMsg = "Unable to perform longwave bias correction for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) try: input_forcings.final_forcings[input_forcings.input_map_output[force_num], :, :] = lwdown_in[:, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to place temporary longwave array back into forcing object for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) del lwdown_in del ind_valid def ncar_wspd_hrrr_bias_correct(input_forcings, config_options, mpi_config, force_num): if mpi_config.rank == 0: config_options.statusMsg = "Performing NCAR bias correction on incoming windspeed for input: " + \ input_forcings.productName + " at step " + str(config_options.current_output_step) err_handler.log_msg(config_options, mpi_config) date_current = config_options.current_output_date hh = float(date_current.hour) fhr = config_options.current_output_step # need to get wind speed from U, V components ugrd_idx = input_forcings.grib_vars.index('UGRD') vgrd_idx = input_forcings.grib_vars.index('VGRD') ugrid_in = input_forcings.final_forcings[input_forcings.input_map_output[ugrd_idx], :, :] vgrid_in = input_forcings.final_forcings[input_forcings.input_map_output[vgrd_idx], :, :] wdir = np.arctan2(vgrid_in, ugrid_in) wspd = np.sqrt(np.square(ugrid_in) + np.square(vgrid_in)) if config_options.ana_flag: wspd_bias_corr = 0.35 # fixed for AnA else: wspd_net_bias_sr = [0.18, 0.15, 0.13, 0.12, 0.11, 0.10, 0.08, 0.07, 0.06, 0.05, 0.03, 0.02, 0.01, -0.01, -0.02, -0.03, -0.04, -0.05] wspd_bias_corr = wspd_net_bias_sr[config_options.current_output_step - 1] wspd = wspd + wspd_bias_corr wspd = np.where(wspd < 0, 0, wspd) ugrid_out = wspd * np.cos(wdir) vgrid_out = wspd * np.sin(wdir) # TODO: cache the "other" value so we don't repeat this calculation unnecessarily bias_corrected = ugrid_out if force_num == ugrd_idx else vgrid_out wind_in = None try: wind_in = input_forcings.final_forcings[input_forcings.input_map_output[force_num], :, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to extract incoming windspeed from forcing object for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) ind_valid = None try: ind_valid = np.where(wind_in != config_options.globalNdv) except NumpyExceptions as npe: config_options.errMsg = "Unable to calculate valid index in incoming windspeed for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) try: wind_in[ind_valid] = bias_corrected[ind_valid] except NumpyExceptions as npe: config_options.errMsg = "Unable to perform windspeed bias correction for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) try: input_forcings.final_forcings[input_forcings.input_map_output[force_num], :, :] = wind_in[:, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to place temporary windspeed array back into forcing object for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) del wind_in del ind_valid def ncar_wspd_gfs_bias_correct(input_forcings, config_options, mpi_config, force_num): if mpi_config.rank == 0: config_options.statusMsg = "Performing NCAR bias correction on incoming windspeed for input: " + \ input_forcings.productName err_handler.log_msg(config_options, mpi_config) date_current = config_options.current_output_date hh = float(date_current.hour) fhr = config_options.current_output_step wspd_net_bias_mr = -0.20 wspd_fhr_mult_mr = 0.00 wspd_diurnal_ampl_mr = -0.32 wspd_diurnal_offs_mr = -1.1 # need to get wind speed from U, V components ugrd_idx = input_forcings.grib_vars.index('UGRD') vgrd_idx = input_forcings.grib_vars.index('VGRD') ugrid_in = input_forcings.final_forcings[input_forcings.input_map_output[ugrd_idx], :, :] vgrid_in = input_forcings.final_forcings[input_forcings.input_map_output[vgrd_idx], :, :] wdir = np.arctan2(vgrid_in, ugrid_in) wspd = np.sqrt(np.square(ugrid_in) + np.square(vgrid_in)) wspd_bias_corr = wspd_net_bias_mr + wspd_fhr_mult_mr * fhr + \ wspd_diurnal_ampl_mr * math.sin(wspd_diurnal_offs_mr + hh / 24 * TWO_PI) wspd = wspd + wspd_bias_corr wspd = np.where(wspd < 0, 0, wspd) ugrid_out = wspd * np.cos(wdir) vgrid_out = wspd * np.sin(wdir) # TODO: cache the "other" value so we don't repeat this calculation unnecessarily bias_corrected = ugrid_out if force_num == ugrd_idx else vgrid_out wind_in = None try: wind_in = input_forcings.final_forcings[input_forcings.input_map_output[force_num], :, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to extract incoming windspeed from forcing object for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) ind_valid = None try: ind_valid = np.where(wind_in != config_options.globalNdv) except NumpyExceptions as npe: config_options.errMsg = "Unable to calculate valid index in incoming windspeed for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) try: wind_in[ind_valid] = bias_corrected[ind_valid] except NumpyExceptions as npe: config_options.errMsg = "Unable to perform windspeed bias correction for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) try: input_forcings.final_forcings[input_forcings.input_map_output[force_num], :, :] = wind_in[:, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to place temporary windspeed array back into forcing object for: " + \ input_forcings.productName + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) del wind_in del ind_valid def cfsv2_nldas_nwm_bias_correct(input_forcings, config_options, mpi_config, force_num): """ Routine to run CDF/PDF bias correction parametric corrections SPECIFIC to the NWM long-range configuration. :param mpi_config: :param input_forcings: :param config_options: :param force_num: :return: """ # TODO: move these into a (.py or .json) configuration file # Create a dictionary that maps forcing numbers to the expected NetCDF variable names, etc. nldas_param1_vars = { 2: 'UGRD10M_PARAM_1', 3: 'VGRD10M_PARAM_1', 6: 'LW_PARAM_1', 4: 'PRATE_PARAM_1', 0: 'T2M_PARAM_1', 1: 'Q2M_PARAM_1', 7: 'PSFC_PARAM_1', 5: 'SW_PARAM_1' } nldas_param2_vars = { 2: 'UGRD10M_PARAM_2', 3: 'VGRD10M_PARAM_2', 6: 'LW_PARAM_2', 4: 'PRATE_PARAM_2', 0: 'T2M_PARAM_2', 1: 'Q2M_PARAM_2', 7: 'PSFC_PARAM_2', 5: 'SW_PARAM_2' } cfs_param_path_vars = { 2: 'ugrd', 3: 'vgrd', 6: 'dlwsfc', 4: 'prate', 0: 'tmp2m', 1: 'q2m', 7: 'pressfc', 5: 'dswsfc' } # Specify the min/max ranges on CDF/PDF values for each variable val_range1 = { 2: -50.0, 3: -50.0, 6: 1.0, 4: 0.01, 0: 200.0, 1: 0.01, 7: 50000.0, 5: 0.0 } val_range2 = { 2: 50.0, 3: 50.0, 6: 800.0, 4: 100.0, 0: 330.0, 1: 40.0, 7: 1100000.0, 5: 0.0 } val_bins = { 2: 1000, 3: 1000, 6: 4000, 4: 2000, 0: 1300, 1: 1000, 7: 3000, 5: 0 } if mpi_config.rank == 0: config_options.statusMsg = "Running NLDAS-CFSv2 CDF/PDF bias correction on variable: " + \ input_forcings.netcdf_var_names[force_num] err_handler.log_msg(config_options, mpi_config) # Check to ensure we are running with CFSv2 here.... if input_forcings.productName != "CFSv2_6Hr_Global_GRIB2": config_options.errMsg = "Attempting to run CFSv2-NLDAS bias correction on: " + input_forcings.productName err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) # Open the necessary parameter grids, which are on the global CFSv2 grid, then scatter them out # to the various processors. id_nldas_param = nldas_param_file = None if mpi_config.rank == 0: nldas_param_file = input_forcings.paramDir + "/NLDAS_Climo/nldas2_" + \ config_options.current_output_date.strftime('%m%d%H') + \ "_dist_params.nc" if not os.path.isfile(nldas_param_file): config_options.errMsg = "Unable to locate necessary bias correction parameter file: " + \ nldas_param_file err_handler.log_critical(config_options, mpi_config) # Open the NetCDF file. try: id_nldas_param = Dataset(nldas_param_file, 'r') except OSError as err: config_options.errMsg = "Unable to open parameter file: " + nldas_param_file + " (" + str(err) + ")" err_handler.log_critical(config_options, mpi_config) raise err # Ensure dimensions/variables are as expected. if 'lat_0' not in id_nldas_param.dimensions.keys(): config_options.errMsg = "Expected to find lat_0 dimension in: " + nldas_param_file err_handler.log_critical(config_options, mpi_config) if 'lon_0' not in id_nldas_param.dimensions.keys(): config_options.errMsg = "Expected to find lon_0 dimension in: " + nldas_param_file err_handler.log_critical(config_options, mpi_config) if id_nldas_param.dimensions['lat_0'].size != PARAM_NY: config_options.errMsg = "Expected lat_0 size is {} - found size of: ".format(PARAM_NY) + \ str(id_nldas_param.dimensions['lat_0'].size) + " in: " + nldas_param_file err_handler.log_critical(config_options, mpi_config) if id_nldas_param.dimensions['lon_0'].size != PARAM_NX: config_options.errMsg = "Expected lon_0 size is {} - found size of: ".format(PARAM_NX) + \ str(id_nldas_param.dimensions['lon_0'].size) + " in: " + nldas_param_file err_handler.log_critical(config_options, mpi_config) if nldas_param1_vars[force_num] not in id_nldas_param.variables.keys(): config_options.errMsg = "Expected variable: " + nldas_param1_vars[force_num] + " not found " + \ "in: " + nldas_param_file err_handler.log_critical(config_options, mpi_config) if nldas_param2_vars[force_num] not in id_nldas_param.variables.keys(): config_options.errMsg = "Expected variable: " + nldas_param2_vars[force_num] + " not found " + \ "in: " + nldas_param_file err_handler.log_critical(config_options, mpi_config) if force_num == 4: if 'ZERO_PRECIP_PROB' not in id_nldas_param.variables.keys(): config_options.errMsg = "Expected variable: ZERO_PRECIP_PROB not found in: " + \ nldas_param_file err_handler.log_critical(config_options, mpi_config) nldas_param_1 = None try: nldas_param_1 = id_nldas_param.variables[nldas_param1_vars[force_num]][:, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to extract: " + nldas_param1_vars[force_num] + \ " from: " + nldas_param_file + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) nldas_param_2 = None try: nldas_param_2 = id_nldas_param.variables[nldas_param2_vars[force_num]][:, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to extract: " + nldas_param2_vars[force_num] + \ " from: " + nldas_param_file + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) if nldas_param_1.shape[0] != PARAM_NY or nldas_param_1.shape[1] != PARAM_NX: config_options.errMsg = "Parameter variable: " + nldas_param1_vars[force_num] + " from: " + \ nldas_param_file + " not of shape [{},{}].".format(PARAM_NY, PARAM_NX) err_handler.log_critical(config_options, mpi_config) if nldas_param_2.shape[0] != PARAM_NY or nldas_param_2.shape[1] != PARAM_NX: config_options.errMsg = "Parameter variable: " + nldas_param2_vars[force_num] + " from: " + \ nldas_param_file + " not of shape [{},{}].".format(PARAM_NY, PARAM_NX) err_handler.log_critical(config_options, mpi_config) # Extract the fill value fill_tmp = None try: try: fill_tmp = id_nldas_param.variables[nldas_param1_vars[force_num]].getncattr('_FillValue') except AttributeError: fill_tmp = default_fillvals[id_nldas_param.variables[nldas_param1_vars[force_num]].dtype.str[1:]] except NumpyExceptions as npe: config_options.errMsg = "Unable to extract _FillValue from: " + nldas_param_file + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) # Read in the zero precip prob grids if we are bias correcting precipitation. nldas_zero_pcp = None if force_num == 4: try: nldas_zero_pcp = id_nldas_param.variables['ZERO_PRECIP_PROB'][:, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to extract ZERO_PRECIP_PROB from: " + nldas_param_file + \ " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) if nldas_zero_pcp.shape[0] != PARAM_NY or nldas_zero_pcp.shape[1] != PARAM_NX: config_options.errMsg = "Parameter variable: ZERO_PRECIP_PROB from: " + nldas_param_file + \ " not of shape [{},{}].".format(PARAM_NY, PARAM_NX) err_handler.log_critical(config_options, mpi_config) # Set missing values accordingly. nldas_param_1[np.where(nldas_param_1 == fill_tmp)] = config_options.globalNdv nldas_param_2[np.where(nldas_param_1 == fill_tmp)] = config_options.globalNdv if force_num == 4: nldas_zero_pcp[np.where(nldas_zero_pcp == fill_tmp)] = config_options.globalNdv # Params are y-mirrored compared to the way WGRIB2 produces output nldas_param_1 = np.flip(nldas_param_1, axis=0) nldas_param_2 = np.flip(nldas_param_2, axis=0) if nldas_zero_pcp is not None: nldas_zero_pcp = np.flip(nldas_zero_pcp, axis=0) else: nldas_param_1 = None nldas_param_2 = None nldas_zero_pcp = None err_handler.check_program_status(config_options, mpi_config) # Scatter NLDAS parameters nldas_param_1_sub = mpi_config.scatter_array(input_forcings, nldas_param_1, config_options) err_handler.check_program_status(config_options, mpi_config) nldas_param_2_sub = mpi_config.scatter_array(input_forcings, nldas_param_2, config_options) err_handler.check_program_status(config_options, mpi_config) if force_num == 4: nldas_zero_pcp_sub = mpi_config.scatter_array(input_forcings, nldas_zero_pcp, config_options) err_handler.check_program_status(config_options, mpi_config) else: nldas_zero_pcp_sub = None id_cfs_param1 = id_cfs_param2 = None cfs_param_path1 = cfs_param_path2 = None if mpi_config.rank == 0: # Read in the CFSv2 parameter files, based on the previous CFSv2 dates cfs_param_path1 = (input_forcings.paramDir + "/CFSv2_Climo/cfs_" + cfs_param_path_vars[force_num] + "_" + input_forcings.fcst_date1.strftime('%m%d') + "_" + input_forcings.fcst_date1.strftime('%H') + '_dist_params.nc') cfs_param_path2 = (input_forcings.paramDir + "/CFSv2_Climo/cfs_" + cfs_param_path_vars[force_num] + "_" + input_forcings.fcst_date2.strftime('%m%d') + "_" + input_forcings.fcst_date2.strftime('%H') + '_dist_params.nc') if not os.path.isfile(cfs_param_path1): config_options.errMsg = "Unable to locate necessary parameter file: " + cfs_param_path1 err_handler.log_critical(config_options, mpi_config) if not os.path.isfile(cfs_param_path2): config_options.errMsg = "Unable to locate necessary parameter file: " + cfs_param_path2 err_handler.log_critical(config_options, mpi_config) # Open the files and ensure they contain the correct information. try: id_cfs_param1 = Dataset(cfs_param_path1, 'r') except OSError as err: config_options.errMsg = "Unable to open parameter file: " + cfs_param_path1 + " (" + str(err) + ")" err_handler.log_critical(config_options, mpi_config) try: id_cfs_param2 = Dataset(cfs_param_path2, 'r') except OSError as err: config_options.errMsg = "Unable to open parameter file: " + cfs_param_path2 + " (" + str(err) + ")" err_handler.log_critical(config_options, mpi_config) config_options.statusMsg = "Checking CFS parameter files." err_handler.log_msg(config_options, mpi_config) if 'DISTRIBUTION_PARAM_1' not in id_cfs_param1.variables.keys(): config_options.errMsg = "Expected DISTRIBUTION_PARAM_1 variable not found in: " + cfs_param_path1 err_handler.log_critical(config_options, mpi_config) if 'DISTRIBUTION_PARAM_2' not in id_cfs_param1.variables.keys(): config_options.errMsg = "Expected DISTRIBUTION_PARAM_1 variable not found in: " + cfs_param_path1 err_handler.log_critical(config_options, mpi_config) if 'DISTRIBUTION_PARAM_1' not in id_cfs_param2.variables.keys(): config_options.errMsg = "Expected DISTRIBUTION_PARAM_1 variable not found in: " + cfs_param_path2 err_handler.log_critical(config_options, mpi_config) if 'DISTRIBUTION_PARAM_2' not in id_cfs_param2.variables.keys(): config_options.errMsg = "Expected DISTRIBUTION_PARAM_1 variable not found in: " + cfs_param_path2 err_handler.log_critical(config_options, mpi_config) param_1 = param_2 = None try: param_1 = id_cfs_param2.variables['DISTRIBUTION_PARAM_1'][:, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to extract DISTRIBUTION_PARAM_1 from: " + cfs_param_path2 + \ " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) try: param_2 = id_cfs_param2.variables['DISTRIBUTION_PARAM_2'][:, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to extract DISTRIBUTION_PARAM_2 from: " + cfs_param_path2 + \ " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) # try: # lat_0 = id_cfs_param2.variables['lat_0'][:] # except NumpyExceptions as npe: # config_options.errMsg = "Unable to extract lat_0 from: " + cfs_param_path2 + " (" + str(npe) + ")" # err_handler.log_critical(config_options, mpi_config) # try: # lon_0 = id_cfs_param2.variables['lon_0'][:] # except NumpyExceptions as npe: # config_options.errMsg = "Unable to extract lon_0 from: " + cfs_param_path2 + " (" + str(npe) + ")" # err_handler.log_critical(config_options, mpi_config) prev_param_1 = prev_param_2 = None try: prev_param_1 = id_cfs_param1.variables['DISTRIBUTION_PARAM_1'][:, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to extract DISTRIBUTION_PARAM_1 from: " + cfs_param_path1 + \ " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) try: prev_param_2 = id_cfs_param1.variables['DISTRIBUTION_PARAM_2'][:, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to extract DISTRIBUTION_PARAM_2 from: " + cfs_param_path1 + \ " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) if param_1.shape[0] != PARAM_NY and param_1.shape[1] != PARAM_NX: config_options.errMsg = "Unexpected DISTRIBUTION_PARAM_1 found in: " + cfs_param_path2 err_handler.log_critical(config_options, mpi_config) if param_2.shape[0] != PARAM_NY and param_2.shape[1] != PARAM_NX: config_options.errMsg = "Unexpected DISTRIBUTION_PARAM_2 found in: " + cfs_param_path2 err_handler.log_critical(config_options, mpi_config) if prev_param_1.shape[0] != PARAM_NY and prev_param_1.shape[1] != PARAM_NX: config_options.errMsg = "Unexpected DISTRIBUTION_PARAM_1 found in: " + cfs_param_path1 err_handler.log_critical(config_options, mpi_config) if prev_param_2.shape[0] != PARAM_NY and prev_param_2.shape[1] != PARAM_NX: config_options.errMsg = "Unexpected DISTRIBUTION_PARAM_2 found in: " + cfs_param_path1 err_handler.log_critical(config_options, mpi_config) config_options.statusMsg = "Reading in zero precip probs." err_handler.log_msg(config_options, mpi_config) # Read in the zero precip prob grids if we are bias correcting precipitation. zero_pcp = prev_zero_pcp = None if force_num == 4: try: zero_pcp = id_cfs_param2.variables['ZERO_PRECIP_PROB'][:, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to locate ZERO_PRECIP_PROB in: " + cfs_param_path2 + \ " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) try: prev_zero_pcp = id_cfs_param2.variables['ZERO_PRECIP_PROB'][:, :] except NumpyExceptions as npe: config_options.errMsg = "Unable to locate ZERO_PRECIP_PROB in: " + cfs_param_path1 + \ " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) if zero_pcp.shape[0] != PARAM_NY and zero_pcp.shape[1] != PARAM_NX: config_options.errMsg = "Unexpected ZERO_PRECIP_PROB found in: " + cfs_param_path2 err_handler.log_critical(config_options, mpi_config) if prev_zero_pcp.shape[0] != PARAM_NY and prev_zero_pcp.shape[1] != PARAM_NX: config_options.errMsg = "Unexpected ZERO_PRECIP_PROB found in: " + cfs_param_path1 err_handler.log_critical(config_options, mpi_config) # Reset any missing values. Because the fill values for these files are all over the map, we # will just do a gross check here. For the most part, there shouldn't be missing values. param_1[np.where(param_1 > 500000.0)] = config_options.globalNdv param_2[np.where(param_2 > 500000.0)] = config_options.globalNdv prev_param_1[np.where(prev_param_1 > 500000.0)] = config_options.globalNdv prev_param_2[np.where(prev_param_2 > 500000.0)] = config_options.globalNdv if force_num == 4: zero_pcp[np.where(zero_pcp > 500000.0)] = config_options.globalNdv prev_zero_pcp[np.where(prev_zero_pcp > 500000.0)] = config_options.globalNdv # Params are y-mirrored compared to the way WGRIB2 produces output param_1 = np.flip(param_1, axis=0) param_2 = np.flip(param_2, axis=0) prev_param_1 = np.flip(prev_param_1, axis=0) prev_param_2 = np.flip(prev_param_2, axis=0) if force_num == 4: zero_pcp = np.flip(zero_pcp, axis=0) prev_zero_pcp = np.flip(prev_zero_pcp, axis=0) else: param_1 = None param_2 = None prev_param_1 = None prev_param_2 = None zero_pcp = None prev_zero_pcp = None err_handler.check_program_status(config_options, mpi_config) if mpi_config.rank == 0: config_options.statusMsg = "Scattering CFS parameter grids" err_handler.log_msg(config_options, mpi_config) # Scatter CFS parameters cfs_param_1_sub = mpi_config.scatter_array(input_forcings, param_1, config_options) err_handler.check_program_status(config_options, mpi_config) cfs_param_2_sub = mpi_config.scatter_array(input_forcings, param_2, config_options) err_handler.check_program_status(config_options, mpi_config) cfs_prev_param_1_sub = mpi_config.scatter_array(input_forcings, prev_param_1, config_options) err_handler.check_program_status(config_options, mpi_config) cfs_prev_param_2_sub = mpi_config.scatter_array(input_forcings, prev_param_2, config_options) err_handler.check_program_status(config_options, mpi_config) if force_num == 4: cfs_zero_pcp_sub = mpi_config.scatter_array(input_forcings, zero_pcp, config_options) err_handler.check_program_status(config_options, mpi_config) cfs_prev_zero_pcp_sub = mpi_config.scatter_array(input_forcings, prev_zero_pcp, config_options) err_handler.check_program_status(config_options, mpi_config) else: cfs_prev_zero_pcp_sub = None cfs_zero_pcp_sub = None if mpi_config.rank == 0: config_options.statusMsg = "Closing CFS bias correction parameter files." err_handler.log_msg(config_options, mpi_config) # Close the parameter files. try: id_nldas_param.close() except OSError as err: config_options.errMsg = "Unable to close parameter file: " + nldas_param_file + " (" + str(err) + ")" err_handler.log_critical(config_options, mpi_config) try: id_cfs_param1.close() except OSError as err: config_options.errMsg = "Unable to close parameter file: " + cfs_param_path1 + " (" + str(err) + ")" err_handler.log_critical(config_options, mpi_config) try: id_cfs_param2.close() except OSError as err: config_options.errMsg = "Unable to close parameter file: " + cfs_param_path2 + " (" + str(err) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) # Now.... Loop through the local CFSv2 grid cells and perform the following steps: # 1.) Interpolate the six-hour values to the current output timestep. # 2.) Calculate the CFSv2 cdf/pdf # 3.) Calculate the NLDAS cdf/pdf # 4.) Adjust CFSv2 values based on the method of pdf matching. # 5.) Regrid the CFSv2 values to the WRF-Hydro domain using the pre-calculated ESMF # regridding object. # 6.) Place the data into the final output arrays for further processing (downscaling). # 7.) Reset variables for memory efficiency and exit the routine. if mpi_config.rank == 0: config_options.statusMsg = "Creating local CFS CDF arrays." err_handler.log_msg(config_options, mpi_config) # Establish local arrays of data. cfs_data = np.empty([input_forcings.ny_local, input_forcings.nx_local], np.float64) # Establish parameters of the CDF matching. vals = np.linspace(val_range1[force_num], val_range2[force_num], val_bins[force_num]) if mpi_config.rank == 0: config_options.statusMsg = "Looping over local arrays to calculate bias corrections." err_handler.log_msg(config_options, mpi_config) # Process each of the pixel cells for this local processor on the CFS grid. for x_local in range(0, input_forcings.nx_local): for y_local in range(0, input_forcings.ny_local): cfs_prev_tmp = input_forcings.coarse_input_forcings1[input_forcings.input_map_output[force_num], y_local, x_local] cfs_next_tmp = input_forcings.coarse_input_forcings2[input_forcings.input_map_output[force_num], y_local, x_local] # Check for any missing parameter values. If any missing values exist, # set this flag to False. Further down, if it's False, we will simply # set the local CFS adjusted value to the interpolated value. correct_flag = True if cfs_param_1_sub[y_local, x_local] == config_options.globalNdv: correct_flag = False if cfs_param_2_sub[y_local, x_local] == config_options.globalNdv: correct_flag = False if cfs_prev_param_1_sub[y_local, x_local] == config_options.globalNdv: correct_flag = False if cfs_prev_param_2_sub[y_local, x_local] == config_options.globalNdv: correct_flag = False if nldas_param_1_sub[y_local, x_local] == config_options.globalNdv: correct_flag = False if nldas_param_2_sub[y_local, x_local] == config_options.globalNdv: correct_flag = False if force_num == 4: if cfs_prev_zero_pcp_sub[y_local, x_local] == config_options.globalNdv: correct_flag = False if cfs_zero_pcp_sub[y_local, x_local] == config_options.globalNdv: correct_flag = False if nldas_zero_pcp_sub[y_local, x_local] == config_options.globalNdv: correct_flag = False # Interpolate the two CFS values (and parameters) in time. dt_from_previous = config_options.current_output_date - input_forcings.fcst_date1 hr_from_previous = dt_from_previous.total_seconds() / 3600.0 interp_factor1 = float(1 - (hr_from_previous / 6.0)) interp_factor2 = float(hr_from_previous / 6.0) # Since this is only for CFSv2 6-hour data, we will assume 6-hour intervals. # This is already checked at the beginning of this routine for the product name. cfs_param_1_interp = (cfs_prev_param_1_sub[y_local, x_local] * interp_factor1 + cfs_param_1_sub[y_local, x_local] * interp_factor2) cfs_param_2_interp = (cfs_prev_param_2_sub[y_local, x_local] * interp_factor1 + cfs_param_2_sub[y_local, x_local] * interp_factor2) cfs_interp_fcst = cfs_prev_tmp * interp_factor1 + cfs_next_tmp * interp_factor2 nldas_nearest_1 = nldas_param_1_sub[y_local, x_local] nldas_nearest_2 = nldas_param_2_sub[y_local, x_local] if correct_flag: if force_num != 4 and force_num != 5 and force_num != 1: # Not incoming shortwave or precip or specific humidity pts = (vals - cfs_param_1_interp) / cfs_param_2_interp spacing = (vals[2] - vals[1]) / cfs_param_2_interp cfs_pdf = (np.exp(-0.5 * (np.power(pts, 2))) / math.sqrt(2 * 3.141592)) * spacing cfs_cdf = np.cumsum(cfs_pdf) pts = (vals - nldas_nearest_1) / nldas_nearest_2 spacing = (vals[2] - vals[1]) / nldas_nearest_2 nldas_pdf = (np.exp(-0.5 * (np.power(pts, 2))) / math.sqrt(2 * 3.141592)) * spacing nldas_cdf = np.cumsum(nldas_pdf) # compute adjusted value now using the CFSv2 forecast value and the two CDFs # find index in vals array diff_tmp = np.absolute(vals - cfs_interp_fcst) cfs_ind = np.where(diff_tmp == diff_tmp.min())[0][0] cfs_cdf_val = cfs_cdf[cfs_ind] # now whats the index of the closest cdf value in the nldas array? diff_tmp = np.absolute(cfs_cdf_val - nldas_cdf) cfs_nldas_ind = np.where(diff_tmp == diff_tmp.min())[0][0] # Adjust the CFS data cfs_data[y_local, x_local] = vals[cfs_nldas_ind] if force_num == 5: # Incoming shortwave radiation flux. # find nearest nldas grid point and then calculate nldas cdf nldas_nearest_1 = nldas_param_1_sub[y_local, x_local] if cfs_interp_fcst > 2.0 and cfs_param_1_interp > 2.0: factor = nldas_nearest_1 / cfs_param_1_interp cfs_data[y_local, x_local] = cfs_interp_fcst * factor else: cfs_data[y_local, x_local] = 0.0 if force_num == 1: # Specific humidity # spacing = vals[2] - vals[1] cfs_interp_fcst = cfs_interp_fcst * 1000.0 # units are now g/kg cfs_cdf = 1 - np.exp(-(np.power((vals / cfs_param_1_interp), cfs_param_2_interp))) nldas_cdf = 1 - np.exp(-(np.power((vals / nldas_nearest_1), nldas_nearest_2))) # compute adjusted value now using the CFSv2 forecast value and the two CDFs # find index in vals array diff_tmp = np.absolute(vals - cfs_interp_fcst) cfs_ind = np.argmin(diff_tmp) cfs_cdf_val = cfs_cdf[cfs_ind] # now whats the index of the closest cdf value in the nldas array? diff_tmp = np.absolute(cfs_cdf_val - nldas_cdf) cfs_nldas_ind = np.argmin(diff_tmp) # Adjust the CFS data cfs_data[y_local, x_local] = vals[cfs_nldas_ind] / 1000.0 # convert back to kg/kg if cfs_data[y_local, x_local] == 0: config_options.statusMsg = "Invalid Q2D bias correction parameter; using original value" err_handler.log_msg(config_options, mpi_config) cfs_data[y_local, x_local] = cfs_interp_fcst if force_num == 4: # Precipitation # precipitation is estimated using a Weibull distribution # valid values range from 3e-6 mm/s (0.01 mm/hr) up to 100 mm/hr # spacing = vals[2] - vals[1] cfs_zero_pcp_interp = cfs_prev_zero_pcp_sub[y_local, x_local] * interp_factor1 + \ cfs_zero_pcp_sub[y_local, x_local] * interp_factor2 cfs_cdf = 1 - np.exp(-(np.power((vals / cfs_param_1_interp), cfs_param_2_interp))) # cfs_cdf_scaled = ((1 - cfs_zero_pcp_interp) + cfs_cdf) / \ # (cfs_cdf.max() + (1 - cfs_zero_pcp_interp)) nldas_nearest_zero_pcp = nldas_zero_pcp_sub[y_local, x_local] if nldas_nearest_2 == 0.0: # if second Weibull parameter is zero, the # distribution has no width, no precipitation outside first bin nldas_cdf = np.empty([2000], np.float64) nldas_cdf[:] = 1.0 nldas_nearest_zero_pcp = 1.0 else: # valid point, see if we need to adjust cfsv2 precip nldas_cdf = 1 - np.exp(-(np.power((vals / nldas_nearest_1), nldas_nearest_2))) if cfs_interp_fcst == 0.0 or nldas_nearest_zero_pcp == 1.0: # if no rain in cfsv2, no rain in bias corrected field cfs_data[y_local, x_local] = 0.0 else: # else there is rain in cfs forecast, so adjust it in some manner # compute adjusted value now using the CFSv2 forecast value and the two CDFs # find index in vals array try: diff_tmp = np.absolute(vals - (cfs_interp_fcst * 3600.0)) cfs_ind = np.where(diff_tmp == diff_tmp.min())[0][0] cfs_cdf_val = cfs_cdf[cfs_ind] # now whats the index of the closest cdf value in the nldas array? diff_tmp = np.absolute(cfs_cdf_val - nldas_cdf) cfs_nldas_ind = np.where(diff_tmp == diff_tmp.min())[0][0] except IndexError: # something's wrong with the parameters, so log it and keep on keeping on... config_options.statusMsg = "Invalid input data for bias correction, continuing..." err_handler.log_msg(config_options, mpi_config) continue pcp_pop_diff = nldas_nearest_zero_pcp - cfs_zero_pcp_interp if cfs_zero_pcp_interp <= nldas_nearest_zero_pcp: # if cfsv2 zero precip probability is less than nldas, # then do one adjustment if cfs_cdf_val <= pcp_pop_diff: # if cfsv2 precip cdf is still less than pop # difference, set precip to zero cfs_data[y_local, x_local] = 0.0 else: # cfsv2 precip cdf > nldas zero precip probability, # so adjust cfsv2 to nldas2 precip cfs_data[y_local, x_local] = vals[cfs_nldas_ind] / 3600.0 # convert back to mm/s # check for unreasonable corrections of cfs rainfall # ad-hoc setting that cfsv2 precipitation should not be corrected by more than 3x # if it is, this indicated nldas2 distribution is unrealistic # and default back to cfsv2 forecast value if (cfs_data[y_local, x_local] / cfs_interp_fcst) >= 3.0: cfs_data[y_local, x_local] = cfs_interp_fcst else: if cfs_cdf_val <= abs(pcp_pop_diff): # if cfsv2 cdf value less than pop difference, need to randomly # generate precip, since we're in the zero portion of the nldas # zero precip prob still randn = random.uniform(0.0, abs(pcp_pop_diff)) diff_tmp = np.absolute(randn - nldas_cdf) new_nldas_ind = np.where(diff_tmp == diff_tmp.min())[0][0] cfs_data[y_local, x_local] = vals[new_nldas_ind] / 3600.0 # ad-hoc setting that cfsv2 precipitation should not be corrected by more than 3x # if it is, this indicated nldas2 distribution is unrealistic # and default back to cfsv2 forecast value if (cfs_data[y_local, x_local] / cfs_interp_fcst) >= 3.0: cfs_data[y_local, x_local] = cfs_interp_fcst else: cfs_data[y_local, x_local] = vals[cfs_nldas_ind] / 3600.0 # convert back to mm/s # ad-hoc setting that cfsv2 precipitation should not be corrected by more than 3x # if it is, this indicated nldas2 distribution is unrealistic # and default back to cfsv2 forecast value if (cfs_data[y_local, x_local] / cfs_interp_fcst) >= 3.0: cfs_data[y_local, x_local] = cfs_interp_fcst else: # No adjustment for this CFS pixel cell as we have missing parameter values. cfs_data[y_local, x_local] = cfs_interp_fcst # Regrid the local CFS slab to the output array try: input_forcings.esmf_field_in.data[...] = cfs_data except NumpyExceptions as npe: config_options.errMsg = "Unable to place CFSv2 forcing data into temporary ESMF field: " + str(npe) err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) try: input_forcings.esmf_field_out = input_forcings.regridObj(input_forcings.esmf_field_in, input_forcings.esmf_field_out) except ValueError as ve: config_options.errMsg = "Unable to regrid CFSv2 variable: " + input_forcings.netcdf_var_names[force_num] + \ " (" + str(ve) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) # Set any pixel cells outside the input domain to the global missing value. try: input_forcings.esmf_field_out.data[np.where(input_forcings.regridded_mask == 0)] = \ config_options.globalNdv except NumpyExceptions as npe: config_options.errMsg = "Unable to run mask calculation on CFSv2 variable: " + \ input_forcings.netcdf_var_names[force_num] + " (" + str(npe) + ")" err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) try: input_forcings.final_forcings[input_forcings.input_map_output[force_num], :, :] = \ input_forcings.esmf_field_out.data except NumpyExceptions as npe: config_options.errMsg = "Unable to extract ESMF field data for CFSv2: " + str(npe) err_handler.log_critical(config_options, mpi_config) err_handler.check_program_status(config_options, mpi_config) ``` #### File: WrfHydroForcing/core/downscale.py ```python import math import os import time import numpy as np from netCDF4 import Dataset from core import err_handler def run_downscaling(input_forcings, config_options, geo_meta_wrf_hydro, mpi_config): """ Top level module function that will downscale forcing variables for this particular input forcing product. :param geo_meta_wrf_hydro: :param mpi_config: :param input_forcings: :param config_options: :return: """ # Dictionary mapping to temperature downscaling. downscale_temperature = { 0: no_downscale, 1: simple_lapse, 2: param_lapse } downscale_temperature[input_forcings.t2dDownscaleOpt](input_forcings, config_options, geo_meta_wrf_hydro, mpi_config) err_handler.check_program_status(config_options, mpi_config) # Dictionary mapping to pressure downscaling. downscale_pressure = { 0: no_downscale, 1: pressure_down_classic } downscale_pressure[input_forcings.psfcDownscaleOpt](input_forcings, config_options, geo_meta_wrf_hydro, mpi_config) err_handler.check_program_status(config_options, mpi_config) # Dictionary mapping to shortwave radiation downscaling downscale_sw = { 0: no_downscale, 1: ncar_topo_adj } downscale_sw[input_forcings.swDowscaleOpt](input_forcings, config_options, geo_meta_wrf_hydro, mpi_config) err_handler.check_program_status(config_options, mpi_config) # Dictionary mapping to specific humidity downscaling downscale_q2 = { 0: no_downscale, 1: q2_down_classic } downscale_q2[input_forcings.q2dDownscaleOpt](input_forcings, config_options, geo_meta_wrf_hydro, mpi_config) err_handler.check_program_status(config_options, mpi_config) # Dictionary mapping to precipitation downscaling. downscale_precip = { 0: no_downscale, 1: nwm_monthly_PRISM_downscale #1: precip_mtn_mapper } downscale_precip[input_forcings.precipDownscaleOpt](input_forcings, config_options, geo_meta_wrf_hydro, mpi_config) err_handler.check_program_status(config_options, mpi_config) def no_downscale(input_forcings, ConfigOptions, GeoMetaWrfHydro, MpiConfig): """ Generic function for passing states through without any downscaling. :param input_forcings: :param ConfigOptions: :return: """ input_forcings.final_forcings = input_forcings.final_forcings def simple_lapse(input_forcings,ConfigOptions,GeoMetaWrfHydro,MpiConfig): """ Function that applies a single lapse rate adjustment to modeled 2-meter temperature by taking the difference of the native input elevation and the WRF-hydro elevation. :param inpute_forcings: :param ConfigOptions: :param GeoMetaWrfHydro: :return: """ if MpiConfig.rank == 0: ConfigOptions.statusMsg = "Applying simple lapse rate to temperature downscaling" err_handler.log_msg(ConfigOptions, MpiConfig) # Calculate the elevation difference. elevDiff = input_forcings.height - GeoMetaWrfHydro.height # Assign existing, un-downscaled temperatures to a temporary placeholder, which # will be used for specific humidity downscaling. if input_forcings.q2dDownscaleOpt > 0: input_forcings.t2dTmp[:,:] = input_forcings.final_forcings[4,:,:] # Apply single lapse rate value to the input 2-meter # temperature values. try: indNdv = np.where(input_forcings.final_forcings == ConfigOptions.globalNdv) except: ConfigOptions.errMsg = "Unable to perform NDV search on input forcings" err_handler.log_critical(ConfigOptions, MpiConfig) return try: input_forcings.final_forcings[4,:,:] = input_forcings.final_forcings[4,:,:] + \ (6.49/1000.0)*elevDiff except: ConfigOptions.errMsg = "Unable to apply lapse rate to input 2-meter temperatures." err_handler.log_critical(ConfigOptions, MpiConfig) return input_forcings.final_forcings[indNdv] = ConfigOptions.globalNdv # Reset for memory efficiency indNdv = None def param_lapse(input_forcings,ConfigOptions,GeoMetaWrfHydro,MpiConfig): """ Function that applies a apriori lapse rate adjustment to modeled 2-meter temperature by taking the difference of the native input elevation and the WRF-hydro elevation. It's assumed this lapse rate grid has already been regridded to the final output WRF-Hydro grid. :param inpute_forcings: :param ConfigOptions: :param GeoMetaWrfHydro: :return: """ if MpiConfig.rank == 0: ConfigOptions.statusMsg = "Applying aprior lapse rate grid to temperature downscaling" err_handler.log_msg(ConfigOptions, MpiConfig) # Calculate the elevation difference. elevDiff = input_forcings.height - GeoMetaWrfHydro.height if input_forcings.lapseGrid is None: #if not np.any(input_forcings.lapseGrid): # We have not read in our lapse rate file. Read it in, do extensive checks, # scatter the lapse rate grid out to individual processors, then apply the # lapse rate to the 2-meter temperature grid. if MpiConfig.rank == 0: while (True): # First ensure we have a parameter directory if input_forcings.paramDir == "NONE": ConfigOptions.errMsg = "User has specified spatial temperature lapse rate " \ "downscaling while no downscaling parameter directory " \ "exists." err_handler.log_critical(ConfigOptions, MpiConfig) break # Compose the path to the lapse rate grid file. lapsePath = input_forcings.paramDir + "/lapse_param.nc" if not os.path.isfile(lapsePath): ConfigOptions.errMsg = "Expected lapse rate parameter file: " + \ lapsePath + " does not exist." err_handler.log_critical(ConfigOptions, MpiConfig) break # Open the lapse rate file. Check for the expected variable, along with # the dimension size to make sure everything matches up. try: idTmp = Dataset(lapsePath,'r') except: ConfigOptions.errMsg = "Unable to open parameter file: " + lapsePath err_handler.log_critical(ConfigOptions, MpiConfig) break if not 'lapse' in idTmp.variables.keys(): ConfigOptions.errMsg = "Expected 'lapse' variable not located in parameter " \ "file: " + lapsePath err_handler.log_critical(ConfigOptions, MpiConfig) break try: lapseTmp = idTmp.variables['lapse'][:,:] except: ConfigOptions.errMsg = "Unable to extracte 'lapse' variable from parameter: " \ "file: " + lapsePath err_handler.log_critical(ConfigOptions, MpiConfig) break # Check dimensions to ensure they match up to the output grid. if lapseTmp.shape[1] != GeoMetaWrfHydro.nx_global: ConfigOptions.errMsg = "X-Dimension size mismatch between output grid and lapse " \ "rate from parameter file: " + lapsePath err_handler.log_critical(ConfigOptions, MpiConfig) break if lapseTmp.shape[0] != GeoMetaWrfHydro.ny_global: ConfigOptions.errMsg = "Y-Dimension size mismatch between output grid and lapse " \ "rate from parameter file: " + lapsePath err_handler.log_critical(ConfigOptions, MpiConfig) break # Perform a quick search to ensure we don't have radical values. indTmp = np.where(lapseTmp < -10.0) if len(indTmp[0]) > 0: ConfigOptions.errMsg = "Found anomolous negative values in the lapse rate grid from " \ "parameter file: " + lapsePath err_handler.log_critical(ConfigOptions, MpiConfig) break indTmp = np.where(lapseTmp > 100.0) if len(indTmp[0]) > 0: ConfigOptions.errMsg = "Found excessively high values in the lapse rate grid from " \ "parameter file: " + lapsePath err_handler.log_critical(ConfigOptions, MpiConfig) break # Close the parameter lapse rate file. try: idTmp.close() except: ConfigOptions.errMsg = "Unable to close parameter file: " + lapsePath err_handler.log_critical(ConfigOptions, MpiConfig) break break else: lapseTmp = None err_handler.check_program_status(ConfigOptions, MpiConfig) # Scatter the lapse rate grid to the other processors. input_forcings.lapseGrid = MpiConfig.scatter_array(GeoMetaWrfHydro,lapseTmp,ConfigOptions) err_handler.check_program_status(ConfigOptions, MpiConfig) # Apply the local lapse rate grid to our local slab of 2-meter temperature data. temperature_grid_tmp = input_forcings.final_forcings[4, :, :] try: indNdv = np.where(input_forcings.final_forcings == ConfigOptions.globalNdv) except: ConfigOptions.errMsg = "Unable to perform NDV search on input " + \ input_forcings.productName + " regridded forcings." err_handler.log_critical(ConfigOptions, MpiConfig) return try: indValid = np.where(temperature_grid_tmp != ConfigOptions.globalNdv) except: ConfigOptions.errMsg = "Unable to perform search for valid values on input " + \ input_forcings.productName + " regridded temperature forcings." err_handler.log_critical(ConfigOptions, MpiConfig) return try: temperature_grid_tmp[indValid] = temperature_grid_tmp[indValid] + \ ((input_forcings.lapseGrid[indValid]/1000.0) * elevDiff[indValid]) except: ConfigOptions.errMsg = "Unable to apply spatial lapse rate values to input " + \ input_forcings.productName + " regridded temperature forcings." err_handler.log_critical(ConfigOptions, MpiConfig) return input_forcings.final_forcings[4,:,:] = temperature_grid_tmp input_forcings.final_forcings[indNdv] = ConfigOptions.globalNdv # Reset for memory efficiency indTmp = None indNdv = None indValid = None elevDiff = None temperature_grid_tmp = None def pressure_down_classic(input_forcings,ConfigOptions,GeoMetaWrfHydro,MpiConfig): """ Generic function to downscale surface pressure to the WRF-Hydro domain. :param input_forcings: :param ConfigOptions: :param GeoMetaWrfHydro: :return: """ if MpiConfig.rank == 0: ConfigOptions.statusMsg = "Performing topographic adjustment to surface pressure." err_handler.log_msg(ConfigOptions, MpiConfig) # Calculate the elevation difference. elevDiff = input_forcings.height - GeoMetaWrfHydro.height # Assign existing, un-downscaled pressure values to a temporary placeholder, which # will be used for specific humidity downscaling. if input_forcings.q2dDownscaleOpt > 0: input_forcings.psfcTmp[:, :] = input_forcings.final_forcings[6, :, :] try: indNdv = np.where(input_forcings.final_forcings == ConfigOptions.globalNdv) except: ConfigOptions.errMsg = "Unable to perform NDV search on input forcings" err_handler.log_critical(ConfigOptions, MpiConfig) return try: input_forcings.final_forcings[6,:,:] = input_forcings.final_forcings[6,:,:] +\ (input_forcings.final_forcings[6,:,:]*elevDiff*9.8)/\ (input_forcings.final_forcings[4,:,:]*287.05) except: ConfigOptions.errMsg = "Unable to downscale surface pressure to input forcings." err_handler.log_critical(ConfigOptions, MpiConfig) return input_forcings.final_forcings[indNdv] = ConfigOptions.globalNdv # Reset for memory efficiency indNdv = None def q2_down_classic(input_forcings,ConfigOptions,GeoMetaWrfHydro,MpiConfig): """ NCAR function for downscaling 2-meter specific humidity using already downscaled 2-meter temperature, unadjusted surface pressure, and downscaled surface pressure. :param input_forcings: :param ConfigOptions: :param GeoMetaWrfHydro: :return: """ if MpiConfig.rank == 0: ConfigOptions.statusMsg = "Performing topographic adjustment to specific humidity." err_handler.log_msg(ConfigOptions, MpiConfig) # Establish where we have missing values. try: indNdv = np.where(input_forcings.final_forcings == ConfigOptions.globalNdv) except: ConfigOptions.errMsg = "Unable to perform NDV search on input forcings" err_handler.log_critical(ConfigOptions, MpiConfig) return # First calculate relative humidity given original surface pressure and 2-meter # temperature try: relHum = rel_hum(input_forcings,ConfigOptions) except: ConfigOptions.errMsg = "Unable to perform topographic downscaling of incoming " \ "specific humidity to relative humidity" err_handler.log_critical(ConfigOptions, MpiConfig) return # Downscale 2-meter specific humidity try: q2Tmp = mixhum_ptrh(input_forcings,relHum,2,ConfigOptions) except: ConfigOptions.errMsg = "Unable to perform topographic downscaling of " \ "incoming specific humidity" err_handler.log_critical(ConfigOptions, MpiConfig) return input_forcings.final_forcings[5,:,:] = q2Tmp input_forcings.final_forcings[indNdv] = ConfigOptions.globalNdv q2Tmp = None indNdv = None def nwm_monthly_PRISM_downscale(input_forcings,ConfigOptions,GeoMetaWrfHydro,MpiConfig): """ NCAR/OWP function for downscaling precipitation using monthly PRISM climatology in a mountain-mapper like fashion. :param input_forcings: :param ConfigOptions: :param GeoMetaWrfHydro: :return: """ if MpiConfig.rank == 0: ConfigOptions.statusMsg = "Performing NWM Monthly PRISM Mountain Mapper " \ "Downscaling of Precipitation" err_handler.log_msg(ConfigOptions, MpiConfig) # Establish whether or not we need to read in new PRISM monthly climatology: # 1.) This is the first output timestep, and no grids have been initialized. # 2.) We have switched months from the last timestep. In this case, we need # to re-initialize the grids for the current month. initialize_flag = False if input_forcings.nwmPRISM_denGrid is None and input_forcings.nwmPRISM_numGrid is None: # We are on situation 1 - This is the first output step. initialize_flag = True # print('WE NEED TO READ IN PRISM GRIDS') if ConfigOptions.current_output_date.month != ConfigOptions.prev_output_date.month: # We are on situation #2 - The month has changed so we need to reinitialize the # PRISM grids. initialize_flag = True # print('MONTH CHANGE.... NEED TO READ IN NEW PRISM GRIDS.') if initialize_flag is True: while (True): # First reset the local PRISM grids to be safe. input_forcings.nwmPRISM_numGrid = None input_forcings.nwmPRISM_denGrid = None # Compose paths to the expected files. numeratorPath = input_forcings.paramDir + "/PRISM_Precip_Clim_" + \ ConfigOptions.current_output_date.strftime('%h') + '_NWM_Mtn_Mapper_Numer.nc' denominatorPath = input_forcings.paramDir + "/PRISM_Precip_Clim_" + \ ConfigOptions.current_output_date.strftime('%h') + '_NWM_Mtn_Mapper_Denom.nc' #print(numeratorPath) #print(denominatorPath) # Make sure files exist. if not os.path.isfile(numeratorPath): ConfigOptions.errMsg = "Expected parameter file: " + numeratorPath + \ " for mountain mapper downscaling of precipitation not found." err_handler.log_critical(ConfigOptions, MpiConfig) break if not os.path.isfile(denominatorPath): ConfigOptions.errMsg = "Expected parameter file: " + denominatorPath + \ " for mountain mapper downscaling of precipitation not found." err_handler.log_critical(ConfigOptions, MpiConfig) break if MpiConfig.rank == 0: # Open the NetCDF parameter files. Check to make sure expected dimension # sizes are in place, along with variable names, etc. try: idNum = Dataset(numeratorPath,'r') except: ConfigOptions.errMsg = "Unable to open parameter file: " + numeratorPath err_handler.log_critical(ConfigOptions, MpiConfig) break try: idDenom = Dataset(denominatorPath,'r') except: ConfigOptions.errMsg = "Unable to open parameter file: " + denominatorPath err_handler.log_critical(ConfigOptions, MpiConfig) break # Check to make sure expected names, dimension sizes are present. if 'x' not in idNum.variables.keys(): ConfigOptions.errMsg = "Expected 'x' variable not found in parameter file: " + numeratorPath err_handler.log_critical(ConfigOptions, MpiConfig) break if 'x' not in idDenom.variables.keys(): ConfigOptions.errMsg = "Expected 'x' variable not found in parameter file: " + denominatorPath err_handler.log_critical(ConfigOptions, MpiConfig) break if 'y' not in idNum.variables.keys(): ConfigOptions.errMsg = "Expected 'y' variable not found in parameter file: " + numeratorPath err_handler.log_critical(ConfigOptions, MpiConfig) break if 'y' not in idDenom.variables.keys(): ConfigOptions.errMsg = "Expected 'y' variable not found in parameter file: " + denominatorPath err_handler.log_critical(ConfigOptions, MpiConfig) break if 'Data' not in idNum.variables.keys(): ConfigOptions.errMsg = "Expected 'Data' variable not found in parameter file: " + numeratorPath err_handler.log_critical(ConfigOptions, MpiConfig) break if 'Data' not in idDenom.variables.keys(): ConfigOptions.errMsg = "Expected 'Data' variable not found in parameter file: " + denominatorPath err_handler.log_critical(ConfigOptions, MpiConfig) break if idNum.variables['Data'].shape[0] != GeoMetaWrfHydro.ny_global: ConfigOptions.errMsg = "Input Y dimension for: " + numeratorPath + \ " does not match the output WRF-Hydro Y dimension size." err_handler.log_critical(ConfigOptions, MpiConfig) break if idDenom.variables['Data'].shape[0] != GeoMetaWrfHydro.ny_global: ConfigOptions.errMsg = "Input Y dimension for: " + denominatorPath + \ " does not match the output WRF-Hydro Y dimension size." err_handler.log_critical(ConfigOptions, MpiConfig) break if idNum.variables['Data'].shape[1] != GeoMetaWrfHydro.nx_global: ConfigOptions.errMsg = "Input X dimension for: " + numeratorPath + \ " does not match the output WRF-Hydro X dimension size." err_handler.log_critical(ConfigOptions, MpiConfig) break if idDenom.variables['Data'].shape[1] != GeoMetaWrfHydro.nx_global: ConfigOptions.errMsg = "Input X dimension for: " + denominatorPath + \ " does not match the output WRF-Hydro X dimension size." err_handler.log_critical(ConfigOptions, MpiConfig) break # Read in the PRISM grid on the output grid. Then scatter the array out to the processors. try: numDataTmp = idNum.variables['Data'][:,:] except: ConfigOptions.errMsg = "Unable to extract 'Data' from parameter file: " + numeratorPath err_handler.log_critical(ConfigOptions, MpiConfig) break try: denDataTmp = idDenom.variables['Data'][:,:] except: ConfigOptions.errMsg = "Unable to extract 'Data' from parameter file: " + denominatorPath err_handler.log_critical(ConfigOptions, MpiConfig) break # Close the parameter files. try: idNum.close() except: ConfigOptions.errMsg = "Unable to close parameter file: " + numeratorPath err_handler.log_critical(ConfigOptions, MpiConfig) break try: idDenom.close() except: ConfigOptions.errMsg = "Unable to close parameter file: " + denominatorPath err_handler.log_critical(ConfigOptions, MpiConfig) break else: numDataTmp = None denDataTmp = None break err_handler.check_program_status(ConfigOptions, MpiConfig) # Scatter the array out to the local processors input_forcings.nwmPRISM_numGrid = MpiConfig.scatter_array(GeoMetaWrfHydro, numDataTmp, ConfigOptions) err_handler.check_program_status(ConfigOptions, MpiConfig) input_forcings.nwmPRISM_denGrid = MpiConfig.scatter_array(GeoMetaWrfHydro, denDataTmp, ConfigOptions) err_handler.check_program_status(ConfigOptions, MpiConfig) # Create temporary grids from the local slabs of params/precip forcings. localRainRate = input_forcings.final_forcings[3,:,:] numLocal = input_forcings.nwmPRISM_numGrid[:,:] denLocal = input_forcings.nwmPRISM_denGrid[:,:] # Establish index of where we have valid data. try: indValid = np.where((localRainRate > 0.0) & (denLocal > 0.0) & (numLocal > 0.0)) except: ConfigOptions.errMsg = "Unable to run numpy search for valid values on precip and " \ "param grid in mountain mapper downscaling" err_handler.log_critical(ConfigOptions, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) # Convert precipitation rate, which is mm/s to mm, which is needed to run the PRISM downscaling. try: localRainRate[indValid] = localRainRate[indValid]*3600.0 except: ConfigOptions.errMsg = "Unable to convert temporary precip rate from mm/s to mm." err_handler.log_critical(ConfigOptions, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) try: localRainRate[indValid] = localRainRate[indValid] * numLocal[indValid] except: ConfigOptions.errMsg = "Unable to multiply precip by numerator in mountain mapper downscaling" err_handler.log_critical(ConfigOptions, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) try: localRainRate[indValid] = localRainRate[indValid] / denLocal[indValid] except: ConfigOptions.errMsg = "Unable to divide precip by denominator in mountain mapper downscaling" err_handler.log_critical(ConfigOptions, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) # Convert local precip back to a rate (mm/s) try: localRainRate[indValid] = localRainRate[indValid]/3600.0 except: ConfigOptions.errMsg = "Unable to convert temporary precip rate from mm to mm/s." err_handler.log_critical(ConfigOptions, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) input_forcings.final_forcings[3, :, :] = localRainRate # Reset variables for memory efficiency idDenom = None idNum = None localRainRate = None numLocal = None denLocal = None def ncar_topo_adj(input_forcings,ConfigOptions,GeoMetaWrfHydro,MpiConfig): """ Topographic adjustment of incoming shortwave radiation fluxes, given input parameters. :param input_forcings: :param ConfigOptions: :return: """ if MpiConfig.rank == 0: ConfigOptions.statusMsg = "Performing topographic adjustment to incoming " \ "shortwave radiation flux." err_handler.log_msg(ConfigOptions, MpiConfig) # Establish where we have missing values. try: indNdv = np.where(input_forcings.final_forcings == ConfigOptions.globalNdv) except: ConfigOptions.errMsg = "Unable to perform NDV search on input forcings" err_handler.log_critical(ConfigOptions, MpiConfig) return # By the time this function has been called, necessary input static grids (height, slope, etc), # should have been calculated for each local slab of data. DEGRAD = math.pi/180.0 DPD = 360.0/365.0 try: DECLIN, SOLCON = radconst(ConfigOptions) except: ConfigOptions.errMsg = "Unable to calculate solar constants based on datetime information." err_handler.log_critical(ConfigOptions, MpiConfig) return try: coszen_loc, hrang_loc = calc_coszen(ConfigOptions,DECLIN,GeoMetaWrfHydro) except: ConfigOptions.errMsg = "Unable to calculate COSZEN or HRANG variables for topographic adjustment " \ "of incoming shortwave radiation" err_handler.log_critical(ConfigOptions, MpiConfig) return try: TOPO_RAD_ADJ_DRVR(GeoMetaWrfHydro,input_forcings,coszen_loc,DECLIN,SOLCON, hrang_loc) except: ConfigOptions.errMsg = "Unable to perform final topographic adjustment of incoming " \ "shortwave radiation fluxes." err_handler.log_critical(ConfigOptions, MpiConfig) return # Assign missing values based on our mask. input_forcings.final_forcings[indNdv] = ConfigOptions.globalNdv # Reset variables to free up memory DECLIN = None SOLCON = None coszen_loc = None hrang_loc = None indNdv = None def radconst(ConfigOptions): """ Function to calculate the current incoming solar constant. :param ConfigOptions: :return: """ dCurrent = ConfigOptions.current_output_date DEGRAD = math.pi/180.0 DPD = 360.0/365.0 # For short wave radiation DECLIN = 0.0 SOLCON = 0.0 # Calculate the current julian day. JULIAN = time.strptime(dCurrent.strftime('%Y.%m.%d'), '%Y.%m.%d').tm_yday # OBECL : OBLIQUITY = 23.5 DEGREE OBECL = 23.5 * DEGRAD SINOB = math.sin(OBECL) # Calculate longitude of the sun from vernal equinox if JULIAN >= 80: SXLONG = DPD * (JULIAN - 80) if JULIAN < 80: SXLONG = DPD * (JULIAN + 285) SXLONG = SXLONG*DEGRAD ARG = SINOB * math.sin(SXLONG) DECLIN = math.asin(ARG) DECDEG = DECLIN / DEGRAD # Solar constant eccentricity factor (Paltridge and Platt 1976) DJUL = JULIAN * 360.0 / 365.0 RJUL = DJUL * DEGRAD ECCFAC = 1.000110 + (0.034221 * math.cos(RJUL)) + (0.001280 * math.sin(RJUL)) + \ (0.000719 * math.cos(2 * RJUL)) + (0.000077 * math.sin(2 * RJUL)) SOLCON = 1370.0 * ECCFAC return DECLIN, SOLCON def calc_coszen(ConfigOptions,declin,GeoMetaWrfHydro): """ Downscaling function to compute radiation terms based on current datetime information and lat/lon grids. :param ConfigOptions: :param input_forcings: :param declin: :return: """ degrad = math.pi / 180.0 gmt = 0 # Calculate the current julian day. dCurrent = ConfigOptions.current_output_date julian = time.strptime(dCurrent.strftime('%Y.%m.%d'), '%Y.%m.%d').tm_yday da = 6.2831853071795862 * ((julian - 1) / 365.0) eot = ((0.000075 + 0.001868 * math.cos(da)) - (0.032077 * math.sin(da)) - \ (0.014615 * math.cos(2 * da)) - (0.04089 * math.sin(2 * da))) * 229.18 xtime = dCurrent.hour * 60.0 # Minutes of day xt24 = int(xtime) % 1440 + eot tloctm = GeoMetaWrfHydro.longitude_grid/15.0 + gmt + xt24/60.0 hrang = ((tloctm - 12.0) * degrad) * 15.0 xxlat = GeoMetaWrfHydro.latitude_grid * degrad coszen = np.sin(xxlat) * math.sin(declin) + np.cos(xxlat) * math.cos(declin) * np.cos(hrang) # Reset temporary variables to free up memory. tloctm = None xxlat = None return coszen, hrang def TOPO_RAD_ADJ_DRVR(GeoMetaWrfHydro,input_forcings,COSZEN,declin,solcon,hrang2d): """ Downscaling driver for correcting incoming shortwave radiation fluxes from a low resolution to a a higher resolution. :param GeoMetaWrfHydro: :param input_forcings: :param COSZEN: :param declin: :param solcon: :param hrang2d: :return: """ degrad = math.pi / 180.0 ny = GeoMetaWrfHydro.ny_local nx = GeoMetaWrfHydro.nx_local xxlat = GeoMetaWrfHydro.latitude_grid*degrad # Sanity checking on incoming shortwave grid. SWDOWN = input_forcings.final_forcings[7,:,:] SWDOWN[np.where(SWDOWN < 0.0)] = 0.0 SWDOWN[np.where(SWDOWN >= 1400.0)] = 1400.0 COSZEN[np.where(COSZEN < 1E-4)] = 1E-4 corr_frac = np.empty([ny, nx], np.int) # shadow_mask = np.empty([ny,nx],np.int) diffuse_frac = np.empty([ny, nx], np.int) corr_frac[:, :] = 0 diffuse_frac[:, :] = 0 # shadow_mask[:,:] = 0 indTmp = np.where((GeoMetaWrfHydro.slope[:,:] == 0.0) & (SWDOWN <= 10.0)) corr_frac[indTmp] = 1 term1 = np.sin(xxlat) * np.cos(hrang2d) term2 = ((0 - np.cos(GeoMetaWrfHydro.slp_azi)) * np.sin(GeoMetaWrfHydro.slope)) term3 = np.sin(hrang2d) * (np.sin(GeoMetaWrfHydro.slp_azi) * np.sin(GeoMetaWrfHydro.slope)) term4 = (np.cos(xxlat) * np.cos(hrang2d)) * np.cos(GeoMetaWrfHydro.slope) term5 = np.cos(xxlat) * (np.cos(GeoMetaWrfHydro.slp_azi) * np.sin(GeoMetaWrfHydro.slope)) term6 = np.sin(xxlat) * np.cos(GeoMetaWrfHydro.slope) csza_slp = (term1 * term2 - term3 + term4) * math.cos(declin) + \ (term5 + term6) * math.sin(declin) csza_slp[np.where(csza_slp <= 1E-4)] = 1E-4 # Topographic shading # csza_slp[np.where(shadow == 1)] = 1E-4 # Correction factor for sloping topographic: the diffuse fraction of solar # radiation is assumed to be unaffected by the slope. corr_fac = diffuse_frac + ((1 - diffuse_frac) * csza_slp) / COSZEN corr_fac[np.where(corr_fac > 1.3)] = 1.3 # Peform downscaling SWDOWN_OUT = SWDOWN * corr_fac # Reset variables to free up memory # corr_frac = None diffuse_frac = None term1 = None term2 = None term3 = None term4 = None term5 = None term6 = None input_forcings.final_forcings[7,:,:] = SWDOWN_OUT # Reset variables to free up memory SWDOWN = None SWDOWN_OUT = None def rel_hum(input_forcings,ConfigOptions): """ Function to calculate relative humidity given original, undownscaled surface pressure and 2-meter temperature. :param input_forcings: :param ConfigOptions: :return: """ tmpHumidity = input_forcings.final_forcings[5,:,:]/(1-input_forcings.final_forcings[5,:,:]) T0 = 273.15 EP = 0.622 ONEMEP = 0.378 ES0 = 6.11 A = 17.269 B = 35.86 EST = ES0 * np.exp((A * (input_forcings.t2dTmp - T0)) / (input_forcings.t2dTmp - B)) QST = (EP * EST) / ((input_forcings.psfcTmp * 0.01) - ONEMEP * EST) RH = 100 * (tmpHumidity / QST) # Reset variables to free up memory tmpHumidity = None return RH def mixhum_ptrh(input_forcings,relHum,iswit,ConfigOptions): """ Functionto convert relative humidity back to a downscaled 2-meter specific humidity :param input_forcings: :param ConfigOptions: :return: """ T0 = 273.15 EP = 0.622 ONEMEP = 0.378 ES0 = 6.11 A = 17.269 B = 35.86 term1 = A * (input_forcings.final_forcings[4,:,:] - T0) term2 = input_forcings.final_forcings[4,:,:] - B EST = np.exp(term1 / term2) * ES0 QST = (EP * EST) / ((input_forcings.final_forcings[6,:,:]/100.0) - ONEMEP * EST) QW = QST * (relHum * 0.01) if iswit == 2: QW = QW / (1.0 + QW) if iswit < 0: QW = QW * 1000.0 # Reset variables to free up memory term1 = None term2 = None EST = None QST = None psfcTmp = None return QW ```
{ "source": "jmccrohan/solarman-dls-utils", "score": 3 }
#### File: solarman-dls-utils/examples/register_scan.py ```python from pysolarmanv5.pysolarmanv5 import PySolarmanV5, V5FrameError import umodbus.exceptions def main(): modbus = PySolarmanV5("192.168.1.24", 123456789, port=8899, mb_slave_id=1, verbose=0) print("Scanning input registers") for x in range(30000, 39999): try: val = modbus.read_input_registers(register_addr=x, quantity=1)[0] print(f"Register: {x:05}\t\tValue: {val:05} ({val:#06x})") except (V5FrameError, umodbus.exceptions.IllegalDataAddressError): continue print("Finished scanning input registers") print("Scanning holding registers") for x in range(40000, 49999): try: val = modbus.read_holding_registers(register_addr=x, quantity=1)[0] print(f"Register: {x:05}\t\tValue: {val:05} ({val:#06x})") except (V5FrameError, umodbus.exceptions.IllegalDataAddressError): continue print("Finished scanning holding registers") if __name__ == "__main__": main() ```
{ "source": "jmccrosky/semanticdist", "score": 2 }
#### File: semanticdist/semanticdist/embeddings.py ```python from semanticdist import utils from sklearn.metrics.pairwise import cosine_similarity # add thumbnail to diagnostrics def get_embeddings(data, part, context, pickle_file=None, type='text'): count_before = 0 if f'{part}_embedding' in data: needed_indexes = data.index[(~data[part].isnull()) & ( data[f'{part}_embedding'].isnull())] count_before = len(data[~data[f'{part}_embedding'].isnull()]) else: needed_indexes = data.index[~data[part].isnull()] data[f'{part}_embedding'] = None elements = list(data.loc[needed_indexes, part]) if type == 'text': embeddings = list(context['language_model'].encode( elements, show_progress_bar=True)) elif type == 'image': embeddings = list(context['image_model'].encode( [Image.open(io.BytesIO(base64.b64decode(t))) for t in elements], show_progress_bar=True)) for i in range(len(needed_indexes)): data.at[needed_indexes[i], f'{part}_embedding'] = embeddings[i] count_after = len(data[~data[f'{part}_embedding'].isnull()]) if count_after != count_before + len(needed_indexes): print( f"Warning: counts are wrong. Pickle not saved. {count_after} {count_before} {len(needed_indexes)}") return data if pickle_file is not None: utils.save_data(data, pickle_file, context) return data def get_similarity_matrix(embeddings): return cosine_similarity(list(embeddings)) ``` #### File: semanticdist/semanticdist/utils.py ```python import pickle import plotly.express as px import numpy as np import gspread_dataframe as gd import pandas as pd from scipy.spatial.distance import pdist, squareform def get_raw_data(context): _query = ''' SELECT * FROM `moz-fx-data-shared-prod.regrets_reporter_analysis.yt_api_data_v7` WHERE takedown = FALSE ''' data = context['bq_client'].query( _query ).result( ).to_dataframe( bqstorage_client=context['bq_storage_client'] ) total_rows = len(data) data.drop_duplicates(subset="video_id", keep='first', inplace=True, ignore_index=True) unique_rows = len(data) if total_rows != unique_rows: print( f"Warning: raw table has {total_rows - unique_rows} duplicate rows or {100 * (total_rows - unique_rows) / unique_rows}%.") return data def update_from_raw_data(data, context): _query = ''' SELECT * FROM `moz-fx-data-shared-prod.regrets_reporter_analysis.yt_api_data_v7` WHERE takedown = FALSE ''' new_data = context['bq_client'].query( _query ).result( ).to_dataframe( bqstorage_client=context['bq_storage_client'] ).loc[lambda d: ~ d.video_id.isin(data.video_id)] if len(new_data) > 0: return pd.concat([data, new_data]) else: print("Warning: no new data acquired.") return data def save_data(data, pickle_file, context): with open(context['gdrive_path'] + pickle_file, 'wb') as handle: pickle.dump(data, handle, protocol=pickle.HIGHEST_PROTOCOL) def load_data(pickle_file, context): with open(context['gdrive_path'] + pickle_file, 'rb') as handle: return pickle.load(handle) def plot_similarity_matrix(m): fig = px.imshow(m, width=1600, height=800) fig.update_layout( margin=dict(l=20, r=20, t=20, b=20), paper_bgcolor="LightSteelBlue", ) return fig def get_indices_of_k_largest(arr, k): arr[np.tril_indices(arr.shape[0], 0)] = np.nan idx = np.argpartition((-arr).ravel(), k) return tuple(np.array(np.unravel_index(idx, arr.shape))[:, range(min(k, 0), max(k, 0))]) def prep_videovote_sheet(data, pairs, tab, context, existing=None): left = data.iloc[pairs[0]].reset_index() right = data.iloc[pairs[1]].reset_index() vvdata = pd.DataFrame({ "title_a": left.title, "channel_a": left.channel, "description_a": left.description, "id_a": left.video_id, "title_b": right.title, "channel_b": right.channel, "description_b": right.description, "id_b": right.video_id, "vote": None, }) for i, r in vvdata.iterrows(): if r.id_a > r.id_b: temp = (r.title_a, r.channel_a, r.description_a, r.id_a) (r.title_a, r.channel_a, r.description_a, r.id_a) = ( r.title_b, r.channel_b, r.description_b, r.id_b) (r.title_b, r.channel_b, r.description_b, r.id_b) = temp if existing != None: vvdata = vvdata[[(r.id_a, r.id_b) not in existing for i, r in vvdata.iterrows()]] ss = context['gspread_client'].open("Videovote backend") try: ws = ss.add_worksheet(tab, rows=len(vvdata), cols="9") except Exception: ws = ss.worksheet(tab) gd.set_with_dataframe(ws, vvdata.reset_index( drop=True), include_index=False) def init_eval_pickle(name, context): temp = {} with open(context['gdrive_path'] + name, 'wb') as handle: pickle.dump(temp, handle, protocol=pickle.HIGHEST_PROTOCOL) def update_eval_data(eval_data, sheet, context): ws = context['gspread_client'].open("Videovote backend").worksheet(sheet) new_eval_data = gd.get_as_dataframe(ws).dropna( axis=1, how='all').dropna(how='all') for i, r in new_eval_data.iterrows(): key = (r.id_a, r.id_b) if key in eval_data: eval_data[key] = eval_data[key] + [r.vote] else: eval_data[key] = [r.vote] return eval_data def get_equality_matrix(data, part): d = pdist([[i] for i in data[part]], lambda x, y: 1 if x == y else 0) return squareform(d) def print_data_diagnostics(data): n = len(data) print(f"Data is length {n}") nt = len(data[data.transcript.str.len() > 0]) print(f"With transcripts: {nt}") possible_parts = ["title", "transcript", "description", "thumbnail"] possible_types = ["embedding", "entities"] dups = len(data[data.video_id.duplicated()]) if dups != 0: print(f"Warning! {dups} dupes detected.") for part in possible_parts: ap_n = nt if part == "transcript" else n for type in possible_types: if f"{part}_{type}" in data: nv = data[f"{part}_{type}"].isnull().sum() print( f"Data has {part}_{type} for {n-nv} rows or {(n-nv)/ap_n * 100}%") ```
{ "source": "jmccrosky/synthpop", "score": 2 }
#### File: synthpop/processor/processor.py ```python import numpy as np import pandas as pd # global variables from synthpop import NUM_COLS_DTYPES, CAT_COLS_DTYPES NAN_KEY = 'nan' NUMTOCAT_KEY = 'numtocat' class Processor: def __init__(self, spop): self.spop = spop self.processing_dict = {NUMTOCAT_KEY: {}, NAN_KEY: {} } def preprocess(self, df, dtypes): for col in self.spop.visited_columns: col_nan_indices = df[col].isna() cont_nan_indices = {v: df[col] == v for v in self.spop.cont_na.get(col, [])} col_nan_series = [(np.nan, col_nan_indices)] + list(cont_nan_indices.items()) col_all_nan_indices = pd.DataFrame({index: value[1] for index, value in enumerate(col_nan_series)}).max(axis=1) col_not_nan_indices = np.invert(col_all_nan_indices) # transform numerical columns in numtocat to categorical if col in self.spop.numtocat: self.processing_dict[NUMTOCAT_KEY][col] = {'dtype': self.spop.df_dtypes[col], 'categories': {} } # Dealing With Non-NaN Values not_nan_values = df.loc[col_not_nan_indices, col].copy() df.loc[col_not_nan_indices, col] = pd.cut(df.loc[col_not_nan_indices, col], self.spop.catgroups[col], labels=range(self.spop.catgroups[col]), include_lowest=True) grouped = pd.DataFrame({'grouped': df.loc[col_not_nan_indices, col], 'real': not_nan_values}).groupby('grouped') self.processing_dict[NUMTOCAT_KEY][col]['categories'] = grouped['real'].apply(np.array).to_dict() # Dealing with NaN for index, (_, bool_series) in enumerate(col_nan_series): nan_cat = self.spop.catgroups[col] + index self.processing_dict[NUMTOCAT_KEY][col]['categories'][nan_cat] = df.loc[bool_series, col].to_numpy() df.loc[bool_series, col] = nan_cat df[col] = df[col].astype('category') self.spop.df_dtypes[col] = 'category' else: # NaNs in category columns # need to process NaNs only as all other categories will be taken care automatically if self.spop.df_dtypes[col] in CAT_COLS_DTYPES: if col_nan_indices.any(): # TODO beware of 'NaN_category' naming col_nan_category = 'NaN_category' self.processing_dict[NAN_KEY][col] = {'dtype': self.spop.df_dtypes[col], 'nan_value': col_nan_category } df[col].cat.add_categories(col_nan_category, inplace=True) df[col].fillna(col_nan_category, inplace=True) # NaNs in numerical columns elif self.spop.df_dtypes[col] in NUM_COLS_DTYPES: if col_all_nan_indices.any(): # insert new column in df # TODO beware of '_NaN' naming col_nan_name = col + '_NaN' df.insert(df.columns.get_loc(col), col_nan_name, 0) self.processing_dict[NAN_KEY][col] = {'col_nan_name': col_nan_name, 'dtype': self.spop.df_dtypes[col], 'nan_flags': {} } for index, (cat, bool_series) in enumerate(col_nan_series): cat_index = index + 1 self.processing_dict[NAN_KEY][col]['nan_flags'][cat_index] = cat df.loc[bool_series, col_nan_name] = cat_index df.loc[col_all_nan_indices, col] = 0 df[col_nan_name] = df[col_nan_name].astype('category') self.spop.df_dtypes[col_nan_name] = 'category' return df def postprocess(self, synth_df): for col, processing_numtocat_col_dict in self.processing_dict[NUMTOCAT_KEY].items(): synth_df[col] = synth_df[col].astype(object) col_synth_df = synth_df[col].copy() for category, category_values in processing_numtocat_col_dict['categories'].items(): category_indices = col_synth_df == category synth_df.loc[category_indices, col] = np.random.choice(category_values, size=category_indices.sum(), replace=True) # cast dtype back to original (float for int column with NaNs) if synth_df[col].isna().any() and processing_numtocat_col_dict['dtype'] == 'int': synth_df[col] = synth_df[col].astype(float) else: synth_df[col] = synth_df[col].astype(processing_numtocat_col_dict['dtype']) # self.spop.df_dtypes[col] = processing_numtocat_col_dict['dtype'] for col, processing_nan_col_dict in self.processing_dict[NAN_KEY].items(): # NaNs in category columns # need to postprocess NaNs only all other categories will be taken care automatically if processing_nan_col_dict['dtype'] in CAT_COLS_DTYPES: col_nan_value = processing_nan_col_dict['nan_value'] synth_df[col] = synth_df[col].astype(object) synth_df.loc[synth_df[col] == col_nan_value, col] = np.nan synth_df[col] = synth_df[col].astype('category') # NaNs in numerical columns elif processing_nan_col_dict['dtype'] in NUM_COLS_DTYPES: for col_nan_flag, col_nan_value in processing_nan_col_dict['nan_flags'].items(): nan_flag_indices = synth_df[processing_nan_col_dict['col_nan_name']] == col_nan_flag synth_df.loc[nan_flag_indices, col] = col_nan_value synth_df.drop(columns=processing_nan_col_dict['col_nan_name'], inplace=True) return synth_df ```
{ "source": "jmcculloch/greendo", "score": 2 }
#### File: jmcculloch/greendo/greendo.py ```python import greendo import json import argparse from getpass import getpass from contextlib import closing def main(): ap = argparse.ArgumentParser(prog="greendo") ap.add_argument("--email", "-u", type=str, help="Email address registered with the GDO app. Default: request from stdin.") ap.add_argument("--pwd", "-p", type=str, help="Password for the registered email. Default: request from stdin.") ap.add_argument("--dry", "-n", action="store_true", help="Dry run - don't execute commands, just display them") ap.add_argument("--dev", "-d", type=int, default=0, help="Door opener device index, if you have more than one.") sub_ap = ap.add_subparsers(dest="target", help="Commands") ap_status = sub_ap.add_parser("status", help="Output status for a given subsystem.") ap_status.add_argument("thing", choices=("config", "charger", "door", "light", "fan"), help="Get status for the given subsystem.") ap_door = sub_ap.add_parser("door", help="Manipulate the door: open, close, preset.") ap_door.add_argument("cmd", choices=("open", "close", "preset")) ap_motion = sub_ap.add_parser("motion", help="Turn the motion sensor on or off.") ap_motion.add_argument("set", choices=("on", "off")) ap_light = sub_ap.add_parser("light", help="Turn the light on or off.") ap_light.add_argument("set", choices=("on", "off")) ap_light_timer = sub_ap.add_parser("lighttimer", help="Set the number of minutes for the light timer.") ap_light_timer.add_argument("minutes", type=int) ap_fan = sub_ap.add_parser("fan", help="Set fan to integer speed 0-100 (0 is off)") ap_fan.add_argument("speed", type=int) ap_vacation = sub_ap.add_parser("vacation", help="Turn vacation mode on or off.") ap_vacation.add_argument("set", choices=("on", "off")) ap_preset_pos = sub_ap.add_parser("preset", help="Set the preset position in integer inches.") ap_preset_pos.add_argument("inches", type=int) args = ap.parse_args() email = args.email pwd = args.pwd if args.email is None: email = input("email: ").strip() if args.pwd is None: pwd = <PASSWORD>("<PASSWORD>() with closing(greendo.Client(email, pwd)) as client: device = client.devices[max(0, min(args.dev, len(client.devices)))] cmd = None if args.target == "status": thing = args.thing if thing == "config": print("Session:\n", json.dumps(client.session.data, indent=2)) print("Devices:\n", json.dumps([{"meta": d.meta, "data": d.data} for d in client.devices], indent=2)) elif thing == "charger": print(json.dumps({ "level": device.charger.level() }, indent=2)) elif thing == "door": door = device.door print(json.dumps({ "status": door.door_status(), "error": door.door_error(), "pos": door.door_pos(), "max": door.door_max(), "preset": door.preset_pos(), "motion": door.motion(), "alarm": door.alarm(), "motor": door.motor(), "sensor": door.sensor(), "vacation": door.vacation(), }, indent=2)) elif thing == "light": light = device.light print(json.dumps({ "light": light.on(), "timer": light.timer(), }, indent=2)) elif thing == "fan": print(json.dumps({ "speed": device.fan.speed(), }, indent=2)) return if args.target == "door": if args.cmd == "open": cmd = device.cmd_open() elif args.cmd == "close": cmd = device.cmd_close() else: cmd = device.cmd_preset() elif args.target == "motion": cmd = device.cmd_motion(args.set == "on") elif args.target == "light": cmd = device.cmd_light(args.set == "on") elif args.target == "lighttimer": cmd = device.cmd_lighttimer(max(0, args.minutes)) elif args.target == "fan": cmd = device.cmd_fan(max(0, min(100, args.speed))) elif args.target == "vacation": cmd = device.cmd_vacation(args.set == "on") elif args.target == "preset": cmd = device.cmd_preset(max(0, args.inches)) if args.dry: print("Dry Run:") print(json.dumps(cmd, indent=2)) return print("Request to {}:".format(client.API_URL_SOCKET)) print(json.dumps(cmd, indent=2)) result = client.send_command(cmd) print("Response:") print(json.dumps(result, indent=2)) if __name__ == '__main__': main() ```
{ "source": "Jmccullough12/simcov-antibodies", "score": 3 }
#### File: simcov-antibodies/scripts/avg_virs.py ```python import sys import numpy as np def generateAverage(name, steps): #listy = [] #for i in range(int(steps)): #listy.append(0.0) listy = np.zeros(int(steps)) for num in range(10): resultFile = num + 1 file = "results_" + name + "_batch/simcov" + str(resultFile) + ".stats" with open(file, 'r') as f: file1 = f.readlines() for i in range(int(steps)): if (i == 0): continue line = file1[i].split('\t') listy[i-1] = listy[i-1] + float(line[8]) #resultFile += 1 #result = [] # if we want to plot for i in range(len(listy)): listy[i] = listy[i] / 10 return listy def saveAverage(name, xs, ys): xs2 = xs.astype(int) #result = np.column_stack((xs2,ys)) #print(result) file = "averaged_results/" + name + ".stats" result = [] with open(file, 'w') as f: for i in range(len(xs)): content = str(xs2[i]) + "\t" + str(ys[i]) + "\n" f.write(content) def main(): name = sys.argv[1] steps = sys.argv[2] virs = generateAverage(name, steps) #print(virs) timesteps = np.zeros(int(steps), dtype=int) for i in range(int(steps)): timesteps[i] = int(i) timesteps = timesteps.astype(int) saveAverage(name, timesteps, virs) if __name__=="__main__": main() ``` #### File: simcov-antibodies/scripts/dynamic_plot_three.py ```python import sys import matplotlib.pyplot as plt from matplotlib import style import numpy as np #plot_subplot(options.compare_file, ax_virus, [8], 'avg virions per cell', lw=4, alpha=0.3, clear=False, # log_scale=options.log_scale, scale=options.virus_scale) def makePlot(xs, ys1, ys2, ys3, label1, label2, label3): fig = plt.figure() ax = plt.axes() #ax.legend(loc='upper left') ax.set_ylabel('Virion Count') ax.set_xlabel('Time (days)') ax.set_ylim(0.5, 10 * np.max(ys1)) ax.set_yscale('log') plt.gca().get_xaxis().set_major_formatter(plt.FuncFormatter(lambda x, p: format(int(x/1440), ','))) colors = ['blue', 'red', 'orange'] plt.locator_params(axis='x',nbins=25) #ax.xaxis.set_ticks(np.linspace(0,len(xs),1)) ax.plot(xs,ys1, label="Not Vaccinated",color=colors[0]) ax.plot(xs,ys2, label="Vaccinated",color=colors[1]) #ax.plot(xs,ys3, label="Scale = 0.10",color=colors[2]) ax.legend(loc='lower left') ax.set_title("Vaccinated vs. Not Vaccinated") plt.savefig('vaccinated.png') def getYs(name, steps): file = "averaged_results/" + name + ".stats" ys = np.zeros(int(steps)) with open(file, 'r') as f: file1 = f.readlines() for i in range(int(steps)): line = file1[i].split('\t') ys[i] = float(line[1]) return ys def main(): name1 = sys.argv[1] name2 = sys.argv[2] name3 = sys.argv[3] steps = sys.argv[4] ys1 = getYs(name1, steps) ys2 = getYs(name2, steps) ys3 = getYs(name3, steps) xs = np.zeros(int(steps), dtype=int) for i in range(int(steps)): xs[i] = int(i) print(ys1) print(ys2) print(ys3) makePlot(xs,ys1,ys2,ys3,name1,name2,name3) if __name__=="__main__": main() ```
{ "source": "jmcda001/sprintBurndown", "score": 2 }
#### File: jmcda001/sprintBurndown/burndown.py ```python import os import csv import sys import ntpath import json import datetime import requests import argparse from config import TRELLO_API_KEY, TRELLO_API_TOKEN from pprint import pprint parser = argparse.ArgumentParser(description='Generate sprint burndown chart from Trello board.') parser.add_argument('boards',help='File containing board(s) and corresponding configurations') querystring = {"actions":"none","boardStars":"none","cards":"all","card_pluginData":"false","checklists":"none","customFields":"false","fields":"name,desc,descData,closed,idOrganization,pinned,url,shortUrl,prefs,labelNames,archive","lists":"open","labels": "all","members":"all","memberships":"none","membersInvited":"none","membersInvited_ields":"all","pluginData":"false","organization":"false","organization_pluginData":"false","myPrefs":"false","tags":"false","key":TRELLO_API_KEY,"token": TRELLO_API_TOKEN} teamKanbanLabels = {} kanbanLists = {} teamPriorityLabels = {} priorityLabels = {} teamSizeLabels = {} sizeLabels = {} boards = [] skipMembers = [] def extractLists(lists): boardLists = {} for boardList in lists: boardLists[boardList.get('id')] = {} boardLists[boardList.get('id')]['name'] = boardList.get('name') if teamKanbanLabels.get(boardList.get('name')) is not None: kanbanLists[teamKanbanLabels.get(boardList.get('name'))] = boardList.get('id') boardLists[boardList.get('id')]['cards'] = [] return boardLists def extractCards(cardsDict,lists,members): cards = {} for card in cardsDict: # card['labels'] -> [] # card['idLabels'] -> [] # card['idList'] -> list ID # card['idMembers'] -> [member ids] if not card.get('closed'): newCard = {'name': card.get('name'), 'idList': card.get('idList'), 'idMembers': card.get('idMembers'), 'labels': card.get('idLabels')} cards[card.get('id')] = newCard if card.get('idList') in lists: lists.get(card.get('idList')).get('cards').append(newCard) return cards def extractLabels(labelsDict): labels = {} for label in labelsDict: labels[label.get('id')] = label.get('name') if label.get('name') in teamSizeLabels: sizeLabels[teamSizeLabels.get(label.get('name'))] = label.get('id') elif label.get('name') in teamPriorityLabels: priorityLabels[teamPriorityLabels.get(label.get('name'))] = label.get('id') return labels def extractMembers(membersDict): members = {} for member in membersDict: if member.get('fullName') not in skipMembers: newMember = {'name': member.get('fullName'), 'cardsDone': { 'Size': {'Size - Small': 0, 'Size - Medium': 0, 'Size - Large': 0, 'Unsized': 0}, 'Shared': { }}} for i in range(1,len(membersDict)+1): newMember['cardsDone']['Shared'][i] = 0 members[member.get('id')] = newMember return members # members is a dict of members to object of their counts def countCardsInListByLabels(listDict,labels,members): for card in listDict.get('cards'): for cardMember in card.get('idMembers'): members[cardMember]['cardsDone']['Shared'][len(card.get('idMembers'))] += 1 sizeAdded = False for labelName,labelId in labels.items(): if labelId in card.get('labels'): members[cardMember]['cardsDone']['Size'][labelName] += 1 sizeAdded = True break if not sizeAdded: members[cardMember]['cardsDone']['Size']['Unsized'] += 1 def countCardsInListByMemberId(cardList,memberId): cardCount = 0 for card in cardList: if memberId in card.get('idMembers'): cardCount += 1 return cardCount # boardDict contains the dict of the JSON file from Trello def analyzeSprint(boardDict): print("Analyzing "+boardDict.get('name')+"...") boardData = {'name': boardDict.get('name'), 'date': boardDict.get('dateLastView')} members = extractMembers(boardDict.get('members')) boardLists = extractLists(boardDict.get('lists')) labels = extractLabels(boardDict.get('labels')) cards = extractCards(boardDict.get('cards'),boardLists,members) return {**boardData,**{'members': members, 'boardLists': boardLists, 'labels': labels, 'cards': cards}} def writeBurndown(csvFilename,burndownDict,memberBreakdown=[]): print("Writing to "+csvFilename+"...") data = [['',burndownDict.get('date')]] for kanbanList in kanbanLists: cardList = burndownDict.get('boardLists').get(kanbanLists.get(kanbanList)).get('cards') cardsInList = len(cardList) data.append([kanbanList,cardsInList]) if kanbanList in memberBreakdown: for memberId,member in burndownDict.get('members').items(): data.append([member.get('name'),countCardsInListByMemberId(cardList,memberId)]) countCardsInListByLabels(burndownDict.get('boardLists').get(kanbanLists.get('Biz/Dev Done')),sizeLabels, burndownDict.get('members')) data.append(['name','hours','small','medium','large','1','2','3','4','5','share average']) for memberId,member in burndownDict.get('members').items(): small = member.get('cardsDone').get('Size').get('Size - Small') medium = member.get('cardsDone').get('Size').get('Size - Medium') large = member.get('cardsDone').get('Size').get('Size - Large') one = member.get('cardsDone').get('Shared').get(1) two = member.get('cardsDone').get('Shared').get(2) three = member.get('cardsDone').get('Shared').get(3) four = member.get('cardsDone').get('Shared').get(4) five = member.get('cardsDone').get('Shared').get(5) try: shareAverage = (one + 2*two + 3*three + 4*four + 5*five) / (one + two + three + four + five) hours = (small * 2 + medium * 4 + large * 8) / shareAverage except ZeroDivisionError: print("Warning: "+member.get('name')+" has not worked on any cards") shareAverage = 0 hours = 0 data.append([member.get('name'),hours,small,medium,large,one,two,three,four,five,shareAverage]) with open(csvFilename,'w') as csvfile: csvwriter = csv.writer(csvfile,delimiter=',',quotechar='|',quoting=csv.QUOTE_MINIMAL) for dataRow in data: csvwriter.writerow(dataRow) def configure(batchFilename): with open(batchFilename,'r') as batchFile: configuration = json.loads(batchFile.read()) if 'skipMembers' in configuration: global skipMembers skipMembers = configuration.get('skipMembers') for newBoard in configuration.get('boards'): boards.append(newBoard) def runBatch(): for board in boards: global teamKanbanLabels global teamPriorityLabels global teamSizeLabels if 'skipMembers' in board: global skipMembers skipMembers = board.get('skipMembers') initializeGlobals() teamKanbanLabels = board.get('teamKanbanLabels') teamPriorityLabels = board.get('teamPriorityLabels') if 'teamPriorityLabels' in board else {} teamSizeLabels = board.get('teamSizeLabels') boardJson = retrieveJsonFromURL(board.get('url')) burndownFilename = "csv/"+boardJson.get('name')+'.csv' writeBurndown(burndownFilename,analyzeSprint(boardJson), ['Biz/Dev Backlog', 'Biz/Dev In Progress', 'Biz/Dev In Review']) def retrieveJsonFromURL(url): return json.loads(requests.request("GET", url, params=querystring).text) def initializeGlobals(): global teamKanbanLabels global kanbanLists global teamPriorityLabels global priorityLabels global teamSizeLabels global sizeLabels teamKanbanLabels = {} kanbanLists = {} teamPriorityLabels = {} priorityLabels = {} teamSizeLabels = {} sizeLabels = {} if __name__ == '__main__': args = parser.parse_args() if args.boards is not None: configure(args.boards) runBatch() ``` #### File: jmcda001/sprintBurndown/configure.py ```python import requests import argparse import re import json from pprint import pprint from config import TRELLO_API_KEY, TRELLO_API_TOKEN parser = argparse.ArgumentParser(description='Generate configuration for sprint burndown for a specific Trello board.') parser.add_argument('--url',dest='url',help='URL for the trello board') parser.add_argument('--id',dest='id',help='ID for the trello board') parser.add_argument('-o',dest='outFilename',help='Output filename for the configuration') APIKeyToken = {"key":TRELLO_API_KEY,"token": TRELLO_API_TOKEN} querystring = {**{"actions":"none","boardStars":"none","cards":"none","card_pluginData":"false","checklists":"none","customFields":"false","fields":"name","lists":"open","labels": "none","members":"none","memberships":"none","membersInvited":"none","membersInvited_ields":"none","pluginData":"false","organization":"false","organization_pluginData":"false","myPrefs":"false","tags":"false"},**APIKeyToken} #https://trello.com/b/wrXzb9ug/checkmates trelloBoardURL = re.compile('https://trello.com/b/(\w+)/\S+') def extractTrelloBoardID(url): if trelloBoardURL.match(url): return trelloBoardURL.match(url).group(1) else: print("Warning: \""+url+"\" is not a URL for a trello board") return None def configureMembers(boardId): print('Configuring tracked members.......') skipMembers = [] members = json.loads(requests.request("GET", "https://api.trello.com/1/boards/"+boardId+"/members", params=APIKeyToken).text) for index,member in enumerate(members): print(str(index)+") "+member.get('fullName')) print() skippedIndices = input("List the indices of members you DON'T want to track: ") for index in skippedIndices.split(','): skipMembers.append(members[int(index)].get('fullName')) return {"skipMembers": skipMembers} def configureTrackedLists(boardId): print('Configuring tracked lists.......') trackedLists = {} lists = json.loads(requests.request("GET", "https://api.trello.com/1/boards/"+boardId+"/lists", params=APIKeyToken).text) for index,boardList in enumerate(lists): print(str(index)+") "+boardList.get('name')) print() usBacklog = input("Which list corresponds to the 'User Story Backlog'? ") usDoing = input("Which list corresponds to the 'User Story In Progress'? ") usDone = input("Which list corresponds to the 'User Story Done'? ") bizDevBacklog = input("Which list corresponds to the 'Biz/Dev Backlog'? ") bizDevDoing = input("Which list corresponds to the 'Biz/Dev In Progress'? ") bizDevReview = input("Which list corresponds to the 'Biz/Dev In Review'? ") bizDevDone = input("Which list corresponds to the 'Biz/Dev Done'? ") print() return { "teamKanbanLabels": {lists[int(usBacklog)].get('name'): "US - Backlog", lists[int(usDoing)].get('name'): "US - In Progress", lists[int(usDone)].get('name'): "US - Done", lists[int(bizDevBacklog)].get('name'): "Biz/Dev Backlog", lists[int(bizDevDoing)].get('name'): "Biz/Dev In Progress", lists[int(bizDevReview)].get('name'): "Biz/Dev In Review", lists[int(bizDevDone)].get('name'): "Biz/Dev Done"}} def configureLabelMapping(boardId): print('Configuring label mapping.......') teamLabels = [] labels = json.loads(requests.request("GET", "https://api.trello.com/1/boards/"+boardId+"/labels", params=APIKeyToken).text) for label in labels: teamLabels.append(label.get('name')) for index,label in enumerate(teamLabels): print(str(index)+") "+label) print() smallIndex = input("Which label corresponds to a 'Size - Small' task? ") mediumIndex = input("Which label corresponds to a 'Size - Medium' task? ") largeIndex = input("Which label corresponds to a 'Size - Large' task? ") print() return {"teamSizeLabels": {teamLabels[int(smallIndex)]: "Size - Small", teamLabels[int(mediumIndex)]: "Size - Medium", teamLabels[int(largeIndex)]: "Size - Large"}} def configure(boardId): boardURL = "https://api.trello.com/1/boards/"+boardId boardName = json.loads(requests.request("GET", "https://api.trello.com/1/boards/"+boardId, params=querystring).text).get('name') skipMembers = configureMembers(boardId) listsMapping = configureTrackedLists(boardId) labelMapping = configureLabelMapping(boardId) return {"boards":[{**{"name":boardName,"url":boardURL},**listsMapping,**skipMembers,**labelMapping}]} if __name__ == '__main__': args = parser.parse_args() if args.url is not None: boardId = extractTrelloBoardID(args.url) elif args.id is not None: boardId = args.id else: boardId = extractTrelloBoardID(input("Input the URL for the Trello board")) if boardId is not None: configuration = configure(boardId) if args.outFilename is not None: print("Writing configuration to \""+args.outFilename+"\"...") with open(args.outFilename,'w') as out: out.write(json.dumps(configuration)) else: pprint(configuration) ```
{ "source": "jmcdona1d/RocketLeague_Bot", "score": 3 }
#### File: RocketLeague_Bot/RLBot/RLBot.py ```python from rlbot.agents.base_agent import BaseAgent, SimpleControllerState from rlbot.utils.structures.game_data_struct import GameTickPacket import math import time class RLBot(BaseAgent): def __init__(self, name, team, index): super().__init__(name, team, index) self.controller = SimpleControllerState() #Initialize controller #Constants self.DODGETIME = 0.2 self.DODGEDISTANCE = 500 self.DISTANCETOBOOST = 1500 self.POWERSLIDEANGLE = math.radians(170) #Game value instance variables self.bot_pos = None self.bot_rot = None #Dodging instance variables self.should_dodge = False self.on_second_jump = False self.next_dodge_time = 0 def get_output(self, packet: GameTickPacket) -> SimpleControllerState: self.bot_yaw = packet.game_cars[self.team].physics.rotation.yaw self.bot_pos = packet.game_cars[self.index].physics.location ball_pos = packet.game_ball.physics.location self.controller.throttle = 1 #Check if opponent's goal is behind the ball if(self.index == 0 and self.bot_pos.y < ball_pos.y or self.index == 1 and self.bot_pos.y > ball_pos.y): self.aim(ball_pos.x, ball_pos.y) #Shoot if close enough to ball if distance(self.bot_pos.x, self.bot_pos.y, ball_pos.x, ball_pos.y) < self.DODGEDISTANCE: self.should_dodge = True #If not then drive towards own goal (until are behind ball) else: if self.team == 0: self.aim(0, -5000) else: self.aim(0,5000) self.controller.jump = False #makes sure jump only lasts one frame self.check_for_dodge() #boost when over threshold away self.controller.boost = distance(self.bot_pos.x, self.bot_pos.y, ball_pos.x, ball_pos.y) > self.DISTANCETOBOOST if ball_pos.x == 0 and ball_pos.y == 0: self.aim(ball_pos.x, ball_pos.y) self.controller.boost = True return self.controller def aim(self, target_x, target_y): angle_between_bot_and_target = math.atan2(target_y - self.bot_pos.y, target_x - self.bot_pos.x) angle_front_to_target = angle_between_bot_and_target - self.bot_yaw # Correct the values if angle_front_to_target < -math.pi: angle_front_to_target += 2 * math.pi if angle_front_to_target > math.pi: angle_front_to_target -= 2 * math.pi if angle_front_to_target < math.radians(-10): # If the target is more than 10 degrees right from the centre, steer left self.controller.steer = -1 elif angle_front_to_target > math.radians(10): # If the target is more than 10 degrees left from the centre, steer right self.controller.steer = 1 else: # If the target is less than 10 degrees from the centre, steer straight self.controller.steer = 0 #powerslide if angle greater than threshold self.controller.handbrake = abs(math.degrees(angle_front_to_target)) < self.POWERSLIDEANGLE def check_for_dodge(self): if self.should_dodge and time.time() > self.next_dodge_time: self.controller.jump = True self.controller.pitch = -1 #tilts stick fully forward if self.on_second_jump: self.on_second_jump = False self.should_dodge else: self.on_second_jump = True self.next_dodge_time = time.time() + self.DODGETIME def distance(x1, y1, x2, y2): return math.sqrt((x2 - x1)**2 + (y2 - y1)**2) ```
{ "source": "jmcdono362/django", "score": 2 }
#### File: management/commands/migrate.py ```python import time from collections import OrderedDict from importlib import import_module from django.apps import apps from django.core.checks import Tags, run_checks from django.core.management.base import BaseCommand, CommandError from django.core.management.sql import ( emit_post_migrate_signal, emit_pre_migrate_signal, ) from django.db import DEFAULT_DB_ALIAS, connections, router from django.db.migrations.autodetector import MigrationAutodetector from django.db.migrations.executor import MigrationExecutor from django.db.migrations.loader import AmbiguityError from django.db.migrations.state import ModelState, ProjectState from django.utils.module_loading import module_has_submodule class Command(BaseCommand): help = "Updates database schema. Manages both apps with migrations and those without." def add_arguments(self, parser): parser.add_argument( 'app_label', nargs='?', help='App label of an application to synchronize the state.', ) parser.add_argument( 'migration_name', nargs='?', help='Database state will be brought to the state after that ' 'migration. Use the name "zero" to unapply all migrations.', ) parser.add_argument( '--noinput', '--no-input', action='store_false', dest='interactive', help='Tells Django to NOT prompt the user for input of any kind.', ) parser.add_argument( '--database', action='store', dest='database', default=DEFAULT_DB_ALIAS, help='Nominates a database to synchronize. Defaults to the "default" database.', ) parser.add_argument( '--fake', action='store_true', dest='fake', help='Mark migrations as run without actually running them.', ) parser.add_argument( '--fake-initial', action='store_true', dest='fake_initial', help='Detect if tables already exist and fake-apply initial migrations if so. Make sure ' 'that the current database schema matches your initial migration before using this ' 'flag. Django will only check for an existing table name.', ) parser.add_argument( '--run-syncdb', action='store_true', dest='run_syncdb', help='Creates tables for apps without migrations.', ) def _run_checks(self, **kwargs): issues = run_checks(tags=[Tags.database]) issues.extend(super()._run_checks(**kwargs)) return issues def handle(self, *args, **options): self.verbosity = options['verbosity'] self.interactive = options['interactive'] # Import the 'management' module within each installed app, to register # dispatcher events. for app_config in apps.get_app_configs(): if module_has_submodule(app_config.module, "management"): import_module('.management', app_config.name) # Get the database we're operating from db = options['database'] connection = connections[db] # Hook for backends needing any database preparation connection.prepare_database() # Work out which apps have migrations and which do not executor = MigrationExecutor(connection, self.migration_progress_callback) # Raise an error if any migrations are applied before their dependencies. executor.loader.check_consistent_history(connection) # Before anything else, see if there's conflicting apps and drop out # hard if there are any conflicts = executor.loader.detect_conflicts() if conflicts: name_str = "; ".join( "%s in %s" % (", ".join(names), app) for app, names in conflicts.items() ) raise CommandError( "Conflicting migrations detected; multiple leaf nodes in the " "migration graph: (%s).\nTo fix them run " "'python manage.py makemigrations --merge'" % name_str ) # If they supplied command line arguments, work out what they mean. target_app_labels_only = True if options['app_label'] and options['migration_name']: app_label, migration_name = options['app_label'], options['migration_name'] if app_label not in executor.loader.migrated_apps: raise CommandError( "App '%s' does not have migrations." % app_label ) if migration_name == "zero": targets = [(app_label, None)] else: try: migration = executor.loader.get_migration_by_prefix(app_label, migration_name) except AmbiguityError: raise CommandError( "More than one migration matches '%s' in app '%s'. " "Please be more specific." % (migration_name, app_label) ) except KeyError: raise CommandError("Cannot find a migration matching '%s' from app '%s'." % ( migration_name, app_label)) targets = [(app_label, migration.name)] target_app_labels_only = False elif options['app_label']: app_label = options['app_label'] if app_label not in executor.loader.migrated_apps: raise CommandError( "App '%s' does not have migrations." % app_label ) targets = [key for key in executor.loader.graph.leaf_nodes() if key[0] == app_label] else: targets = executor.loader.graph.leaf_nodes() plan = executor.migration_plan(targets) run_syncdb = options['run_syncdb'] and executor.loader.unmigrated_apps # Print some useful info if self.verbosity >= 1: self.stdout.write(self.style.MIGRATE_HEADING("Operations to perform:")) if run_syncdb: self.stdout.write( self.style.MIGRATE_LABEL(" Synchronize unmigrated apps: ") + (", ".join(sorted(executor.loader.unmigrated_apps))) ) if target_app_labels_only: self.stdout.write( self.style.MIGRATE_LABEL(" Apply all migrations: ") + (", ".join(sorted({a for a, n in targets})) or "(none)") ) else: if targets[0][1] is None: self.stdout.write(self.style.MIGRATE_LABEL( " Unapply all migrations: ") + "%s" % (targets[0][0],) ) else: self.stdout.write(self.style.MIGRATE_LABEL( " Target specific migration: ") + "%s, from %s" % (targets[0][1], targets[0][0]) ) pre_migrate_state = executor._create_project_state(with_applied_migrations=True) pre_migrate_apps = pre_migrate_state.apps emit_pre_migrate_signal( self.verbosity, self.interactive, connection.alias, apps=pre_migrate_apps, plan=plan, ) # Run the syncdb phase. if run_syncdb: if self.verbosity >= 1: self.stdout.write(self.style.MIGRATE_HEADING("Synchronizing apps without migrations:")) self.sync_apps(connection, executor.loader.unmigrated_apps) # Migrate! if self.verbosity >= 1: self.stdout.write(self.style.MIGRATE_HEADING("Running migrations:")) if not plan: if self.verbosity >= 1: self.stdout.write(" No migrations to apply.") # If there's changes that aren't in migrations yet, tell them how to fix it. autodetector = MigrationAutodetector( executor.loader.project_state(), ProjectState.from_apps(apps), ) changes = autodetector.changes(graph=executor.loader.graph) if changes: self.stdout.write(self.style.NOTICE( " Your models have changes that are not yet reflected " "in a migration, and so won't be applied." )) self.stdout.write(self.style.NOTICE( " Run 'manage.py makemigrations' to make new " "migrations, and then re-run 'manage.py migrate' to " "apply them." )) fake = False fake_initial = False else: fake = options['fake'] fake_initial = options['fake_initial'] post_migrate_state = executor.migrate( targets, plan=plan, state=pre_migrate_state.clone(), fake=fake, fake_initial=fake_initial, ) # post_migrate signals have access to all models. Ensure that all models # are reloaded in case any are delayed. post_migrate_state.clear_delayed_apps_cache() post_migrate_apps = post_migrate_state.apps # Re-render models of real apps to include relationships now that # we've got a final state. This wouldn't be necessary if real apps # models were rendered with relationships in the first place. with post_migrate_apps.bulk_update(): model_keys = [] for model_state in post_migrate_apps.real_models: model_key = model_state.app_label, model_state.name_lower model_keys.append(model_key) post_migrate_apps.unregister_model(*model_key) post_migrate_apps.render_multiple([ ModelState.from_model(apps.get_model(*model)) for model in model_keys ]) # Send the post_migrate signal, so individual apps can do whatever they need # to do at this point. emit_post_migrate_signal( self.verbosity, self.interactive, connection.alias, apps=post_migrate_apps, plan=plan, ) def migration_progress_callback(self, action, migration=None, fake=False): if self.verbosity >= 1: compute_time = self.verbosity > 1 if action == "apply_start": if compute_time: self.start = time.time() self.stdout.write(" Applying %s..." % migration, ending="") self.stdout.flush() elif action == "apply_success": elapsed = " (%.3fs)" % (time.time() - self.start) if compute_time else "" if fake: self.stdout.write(self.style.SUCCESS(" FAKED" + elapsed)) else: self.stdout.write(self.style.SUCCESS(" OK" + elapsed)) elif action == "unapply_start": if compute_time: self.start = time.time() self.stdout.write(" Unapplying %s..." % migration, ending="") self.stdout.flush() elif action == "unapply_success": elapsed = " (%.3fs)" % (time.time() - self.start) if compute_time else "" if fake: self.stdout.write(self.style.SUCCESS(" FAKED" + elapsed)) else: self.stdout.write(self.style.SUCCESS(" OK" + elapsed)) elif action == "render_start": if compute_time: self.start = time.time() self.stdout.write(" Rendering model states...", ending="") self.stdout.flush() elif action == "render_success": elapsed = " (%.3fs)" % (time.time() - self.start) if compute_time else "" self.stdout.write(self.style.SUCCESS(" DONE" + elapsed)) def sync_apps(self, connection, app_labels): """Run the old syncdb-style operation on a list of app_labels.""" with connection.cursor() as cursor: tables = connection.introspection.table_names(cursor) # Build the manifest of apps and models that are to be synchronized. all_models = [ ( app_config.label, router.get_migratable_models(app_config, connection.alias, include_auto_created=False), ) for app_config in apps.get_app_configs() if app_config.models_module is not None and app_config.label in app_labels ] def model_installed(model): opts = model._meta converter = connection.introspection.table_name_converter return not ( (converter(opts.db_table) in tables) or (opts.auto_created and converter(opts.auto_created._meta.db_table) in tables) ) manifest = OrderedDict( (app_name, list(filter(model_installed, model_list))) for app_name, model_list in all_models ) # Create the tables for each model if self.verbosity >= 1: self.stdout.write(" Creating tables...\n") with connection.schema_editor() as editor: for app_name, model_list in manifest.items(): for model in model_list: # Never install unmanaged models, etc. if not model._meta.can_migrate(connection): continue if self.verbosity >= 3: self.stdout.write( " Processing %s.%s model\n" % (app_name, model._meta.object_name) ) if self.verbosity >= 1: self.stdout.write(" Creating table %s\n" % model._meta.db_table) editor.create_model(model) # Deferred SQL is executed when exiting the editor's context. if self.verbosity >= 1: self.stdout.write(" Running deferred SQL...\n") ``` #### File: tests/migrations/test_graph.py ```python import warnings from django.db.migrations.exceptions import ( CircularDependencyError, NodeNotFoundError, ) from django.db.migrations.graph import ( RECURSION_DEPTH_WARNING, DummyNode, MigrationGraph, Node, ) from django.test import SimpleTestCase class GraphTests(SimpleTestCase): """ Tests the digraph structure. """ def test_simple_graph(self): """ Tests a basic dependency graph: app_a: 0001 <-- 0002 <--- 0003 <-- 0004 / app_b: 0001 <-- 0002 <-/ """ # Build graph graph = MigrationGraph() graph.add_node(("app_a", "0001"), None) graph.add_node(("app_a", "0002"), None) graph.add_node(("app_a", "0003"), None) graph.add_node(("app_a", "0004"), None) graph.add_node(("app_b", "0001"), None) graph.add_node(("app_b", "0002"), None) graph.add_dependency("app_a.0004", ("app_a", "0004"), ("app_a", "0003")) graph.add_dependency("app_a.0003", ("app_a", "0003"), ("app_a", "0002")) graph.add_dependency("app_a.0002", ("app_a", "0002"), ("app_a", "0001")) graph.add_dependency("app_a.0003", ("app_a", "0003"), ("app_b", "0002")) graph.add_dependency("app_b.0002", ("app_b", "0002"), ("app_b", "0001")) # Test root migration case self.assertEqual( graph.forwards_plan(("app_a", "0001")), [('app_a', '0001')], ) # Test branch B only self.assertEqual( graph.forwards_plan(("app_b", "0002")), [("app_b", "0001"), ("app_b", "0002")], ) # Test whole graph self.assertEqual( graph.forwards_plan(("app_a", "0004")), [ ('app_b', '0001'), ('app_b', '0002'), ('app_a', '0001'), ('app_a', '0002'), ('app_a', '0003'), ('app_a', '0004'), ], ) # Test reverse to b:0002 self.assertEqual( graph.backwards_plan(("app_b", "0002")), [('app_a', '0004'), ('app_a', '0003'), ('app_b', '0002')], ) # Test roots and leaves self.assertEqual( graph.root_nodes(), [('app_a', '0001'), ('app_b', '0001')], ) self.assertEqual( graph.leaf_nodes(), [('app_a', '0004'), ('app_b', '0002')], ) def test_complex_graph(self): r""" Tests a complex dependency graph: app_a: 0001 <-- 0002 <--- 0003 <-- 0004 \ \ / / app_b: 0001 <-\ 0002 <-X / \ \ / app_c: \ 0001 <-- 0002 <- """ # Build graph graph = MigrationGraph() graph.add_node(("app_a", "0001"), None) graph.add_node(("app_a", "0002"), None) graph.add_node(("app_a", "0003"), None) graph.add_node(("app_a", "0004"), None) graph.add_node(("app_b", "0001"), None) graph.add_node(("app_b", "0002"), None) graph.add_node(("app_c", "0001"), None) graph.add_node(("app_c", "0002"), None) graph.add_dependency("app_a.0004", ("app_a", "0004"), ("app_a", "0003")) graph.add_dependency("app_a.0003", ("app_a", "0003"), ("app_a", "0002")) graph.add_dependency("app_a.0002", ("app_a", "0002"), ("app_a", "0001")) graph.add_dependency("app_a.0003", ("app_a", "0003"), ("app_b", "0002")) graph.add_dependency("app_b.0002", ("app_b", "0002"), ("app_b", "0001")) graph.add_dependency("app_a.0004", ("app_a", "0004"), ("app_c", "0002")) graph.add_dependency("app_c.0002", ("app_c", "0002"), ("app_c", "0001")) graph.add_dependency("app_c.0001", ("app_c", "0001"), ("app_b", "0001")) graph.add_dependency("app_c.0002", ("app_c", "0002"), ("app_a", "0002")) # Test branch C only self.assertEqual( graph.forwards_plan(("app_c", "0002")), [('app_b', '0001'), ('app_c', '0001'), ('app_a', '0001'), ('app_a', '0002'), ('app_c', '0002')], ) # Test whole graph self.assertEqual( graph.forwards_plan(("app_a", "0004")), [ ('app_b', '0001'), ('app_c', '0001'), ('app_a', '0001'), ('app_a', '0002'), ('app_c', '0002'), ('app_b', '0002'), ('app_a', '0003'), ('app_a', '0004'), ], ) # Test reverse to b:0001 self.assertEqual( graph.backwards_plan(("app_b", "0001")), [ ('app_a', '0004'), ('app_c', '0002'), ('app_c', '0001'), ('app_a', '0003'), ('app_b', '0002'), ('app_b', '0001'), ], ) # Test roots and leaves self.assertEqual( graph.root_nodes(), [('app_a', '0001'), ('app_b', '0001'), ('app_c', '0001')], ) self.assertEqual( graph.leaf_nodes(), [('app_a', '0004'), ('app_b', '0002'), ('app_c', '0002')], ) def test_circular_graph(self): """ Tests a circular dependency graph. """ # Build graph graph = MigrationGraph() graph.add_node(("app_a", "0001"), None) graph.add_node(("app_a", "0002"), None) graph.add_node(("app_a", "0003"), None) graph.add_node(("app_b", "0001"), None) graph.add_node(("app_b", "0002"), None) graph.add_dependency("app_a.0003", ("app_a", "0003"), ("app_a", "0002")) graph.add_dependency("app_a.0002", ("app_a", "0002"), ("app_a", "0001")) graph.add_dependency("app_a.0001", ("app_a", "0001"), ("app_b", "0002")) graph.add_dependency("app_b.0002", ("app_b", "0002"), ("app_b", "0001")) graph.add_dependency("app_b.0001", ("app_b", "0001"), ("app_a", "0003")) # Test whole graph with self.assertRaises(CircularDependencyError): graph.forwards_plan(("app_a", "0003")) def test_circular_graph_2(self): graph = MigrationGraph() graph.add_node(('A', '0001'), None) graph.add_node(('C', '0001'), None) graph.add_node(('B', '0001'), None) graph.add_dependency('A.0001', ('A', '0001'), ('B', '0001')) graph.add_dependency('B.0001', ('B', '0001'), ('A', '0001')) graph.add_dependency('C.0001', ('C', '0001'), ('B', '0001')) with self.assertRaises(CircularDependencyError): graph.forwards_plan(('C', '0001')) def test_graph_recursive(self): graph = MigrationGraph() root = ("app_a", "1") graph.add_node(root, None) expected = [root] for i in range(2, 750): parent = ("app_a", str(i - 1)) child = ("app_a", str(i)) graph.add_node(child, None) graph.add_dependency(str(i), child, parent) expected.append(child) leaf = expected[-1] forwards_plan = graph.forwards_plan(leaf) self.assertEqual(expected, forwards_plan) backwards_plan = graph.backwards_plan(root) self.assertEqual(expected[::-1], backwards_plan) def test_graph_iterative(self): graph = MigrationGraph() root = ("app_a", "1") graph.add_node(root, None) expected = [root] for i in range(2, 1000): parent = ("app_a", str(i - 1)) child = ("app_a", str(i)) graph.add_node(child, None) graph.add_dependency(str(i), child, parent) expected.append(child) leaf = expected[-1] with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always', RuntimeWarning) forwards_plan = graph.forwards_plan(leaf) self.assertEqual(len(w), 1) self.assertTrue(issubclass(w[-1].category, RuntimeWarning)) self.assertEqual(str(w[-1].message), RECURSION_DEPTH_WARNING) self.assertEqual(expected, forwards_plan) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always', RuntimeWarning) backwards_plan = graph.backwards_plan(root) self.assertEqual(len(w), 1) self.assertTrue(issubclass(w[-1].category, RuntimeWarning)) self.assertEqual(str(w[-1].message), RECURSION_DEPTH_WARNING) self.assertEqual(expected[::-1], backwards_plan) def test_plan_invalid_node(self): """ Tests for forwards/backwards_plan of nonexistent node. """ graph = MigrationGraph() message = "Node ('app_b', '0001') not a valid node" with self.assertRaisesMessage(NodeNotFoundError, message): graph.forwards_plan(("app_b", "0001")) with self.assertRaisesMessage(NodeNotFoundError, message): graph.backwards_plan(("app_b", "0001")) def test_missing_parent_nodes(self): """ Tests for missing parent nodes. """ # Build graph graph = MigrationGraph() graph.add_node(("app_a", "0001"), None) graph.add_node(("app_a", "0002"), None) graph.add_node(("app_a", "0003"), None) graph.add_node(("app_b", "0001"), None) graph.add_dependency("app_a.0003", ("app_a", "0003"), ("app_a", "0002")) graph.add_dependency("app_a.0002", ("app_a", "0002"), ("app_a", "0001")) msg = "Migration app_a.0001 dependencies reference nonexistent parent node ('app_b', '0002')" with self.assertRaisesMessage(NodeNotFoundError, msg): graph.add_dependency("app_a.0001", ("app_a", "0001"), ("app_b", "0002")) def test_missing_child_nodes(self): """ Tests for missing child nodes. """ # Build graph graph = MigrationGraph() graph.add_node(("app_a", "0001"), None) msg = "Migration app_a.0002 dependencies reference nonexistent child node ('app_a', '0002')" with self.assertRaisesMessage(NodeNotFoundError, msg): graph.add_dependency("app_a.0002", ("app_a", "0002"), ("app_a", "0001")) def test_validate_consistency(self): """ Tests for missing nodes, using `validate_consistency()` to raise the error. """ # Build graph graph = MigrationGraph() graph.add_node(("app_a", "0001"), None) # Add dependency with missing parent node (skipping validation). graph.add_dependency("app_a.0001", ("app_a", "0001"), ("app_b", "0002"), skip_validation=True) msg = "Migration app_a.0001 dependencies reference nonexistent parent node ('app_b', '0002')" with self.assertRaisesMessage(NodeNotFoundError, msg): graph.validate_consistency() # Add missing parent node and ensure `validate_consistency()` no longer raises error. graph.add_node(("app_b", "0002"), None) graph.validate_consistency() # Add dependency with missing child node (skipping validation). graph.add_dependency("app_a.0002", ("app_a", "0002"), ("app_a", "0001"), skip_validation=True) msg = "Migration app_a.0002 dependencies reference nonexistent child node ('app_a', '0002')" with self.assertRaisesMessage(NodeNotFoundError, msg): graph.validate_consistency() # Add missing child node and ensure `validate_consistency()` no longer raises error. graph.add_node(("app_a", "0002"), None) graph.validate_consistency() # Rawly add dummy node. msg = "app_a.0001 (req'd by app_a.0002) is missing!" graph.add_dummy_node( key=("app_a", "0001"), origin="app_a.0002", error_message=msg ) with self.assertRaisesMessage(NodeNotFoundError, msg): graph.validate_consistency() def test_remove_replaced_nodes(self): """ Replaced nodes are properly removed and dependencies remapped. """ # Add some dummy nodes to be replaced. graph = MigrationGraph() graph.add_dummy_node(key=("app_a", "0001"), origin="app_a.0002", error_message="BAD!") graph.add_dummy_node(key=("app_a", "0002"), origin="app_b.0001", error_message="BAD!") graph.add_dependency("app_a.0002", ("app_a", "0002"), ("app_a", "0001"), skip_validation=True) # Add some normal parent and child nodes to test dependency remapping. graph.add_node(("app_c", "0001"), None) graph.add_node(("app_b", "0001"), None) graph.add_dependency("app_a.0001", ("app_a", "0001"), ("app_c", "0001"), skip_validation=True) graph.add_dependency("app_b.0001", ("app_b", "0001"), ("app_a", "0002"), skip_validation=True) # Try replacing before replacement node exists. msg = ( "Unable to find replacement node ('app_a', '0001_squashed_0002'). It was either" " never added to the migration graph, or has been removed." ) with self.assertRaisesMessage(NodeNotFoundError, msg): graph.remove_replaced_nodes( replacement=("app_a", "0001_squashed_0002"), replaced=[("app_a", "0001"), ("app_a", "0002")] ) graph.add_node(("app_a", "0001_squashed_0002"), None) # Ensure `validate_consistency()` still raises an error at this stage. with self.assertRaisesMessage(NodeNotFoundError, "BAD!"): graph.validate_consistency() # Remove the dummy nodes. graph.remove_replaced_nodes( replacement=("app_a", "0001_squashed_0002"), replaced=[("app_a", "0001"), ("app_a", "0002")] ) # Ensure graph is now consistent and dependencies have been remapped graph.validate_consistency() parent_node = graph.node_map[("app_c", "0001")] replacement_node = graph.node_map[("app_a", "0001_squashed_0002")] child_node = graph.node_map[("app_b", "0001")] self.assertIn(parent_node, replacement_node.parents) self.assertIn(replacement_node, parent_node.children) self.assertIn(child_node, replacement_node.children) self.assertIn(replacement_node, child_node.parents) def test_remove_replacement_node(self): """ A replacement node is properly removed and child dependencies remapped. We assume parent dependencies are already correct. """ # Add some dummy nodes to be replaced. graph = MigrationGraph() graph.add_node(("app_a", "0001"), None) graph.add_node(("app_a", "0002"), None) graph.add_dependency("app_a.0002", ("app_a", "0002"), ("app_a", "0001")) # Try removing replacement node before replacement node exists. msg = ( "Unable to remove replacement node ('app_a', '0001_squashed_0002'). It was" " either never added to the migration graph, or has been removed already." ) with self.assertRaisesMessage(NodeNotFoundError, msg): graph.remove_replacement_node( replacement=("app_a", "0001_squashed_0002"), replaced=[("app_a", "0001"), ("app_a", "0002")] ) graph.add_node(("app_a", "0001_squashed_0002"), None) # Add a child node to test dependency remapping. graph.add_node(("app_b", "0001"), None) graph.add_dependency("app_b.0001", ("app_b", "0001"), ("app_a", "0001_squashed_0002")) # Remove the replacement node. graph.remove_replacement_node( replacement=("app_a", "0001_squashed_0002"), replaced=[("app_a", "0001"), ("app_a", "0002")] ) # Ensure graph is consistent and child dependency has been remapped graph.validate_consistency() replaced_node = graph.node_map[("app_a", "0002")] child_node = graph.node_map[("app_b", "0001")] self.assertIn(child_node, replaced_node.children) self.assertIn(replaced_node, child_node.parents) # Ensure child dependency hasn't also gotten remapped to the other replaced node. other_replaced_node = graph.node_map[("app_a", "0001")] self.assertNotIn(child_node, other_replaced_node.children) self.assertNotIn(other_replaced_node, child_node.parents) def test_infinite_loop(self): """ Tests a complex dependency graph: app_a: 0001 <- \ app_b: 0001 <- x 0002 <- / \ app_c: 0001<- <------------- x 0002 And apply squashing on app_c. """ graph = MigrationGraph() graph.add_node(("app_a", "0001"), None) graph.add_node(("app_b", "0001"), None) graph.add_node(("app_b", "0002"), None) graph.add_node(("app_c", "0001_squashed_0002"), None) graph.add_dependency("app_b.0001", ("app_b", "0001"), ("app_c", "0001_squashed_0002")) graph.add_dependency("app_b.0002", ("app_b", "0002"), ("app_a", "0001")) graph.add_dependency("app_b.0002", ("app_b", "0002"), ("app_b", "0001")) graph.add_dependency("app_c.0001_squashed_0002", ("app_c", "0001_squashed_0002"), ("app_b", "0002")) with self.assertRaises(CircularDependencyError): graph.forwards_plan(("app_c", "0001_squashed_0002")) def test_stringify(self): graph = MigrationGraph() self.assertEqual(str(graph), "Graph: 0 nodes, 0 edges") graph.add_node(("app_a", "0001"), None) graph.add_node(("app_a", "0002"), None) graph.add_node(("app_a", "0003"), None) graph.add_node(("app_b", "0001"), None) graph.add_node(("app_b", "0002"), None) graph.add_dependency("app_a.0002", ("app_a", "0002"), ("app_a", "0001")) graph.add_dependency("app_a.0003", ("app_a", "0003"), ("app_a", "0002")) graph.add_dependency("app_a.0003", ("app_a", "0003"), ("app_b", "0002")) self.assertEqual(str(graph), "Graph: 5 nodes, 3 edges") self.assertEqual(repr(graph), "<MigrationGraph: nodes=5, edges=3>") class NodeTests(SimpleTestCase): def test_node_repr(self): node = Node(('app_a', '0001')) self.assertEqual(repr(node), "<Node: ('app_a', '0001')>") def test_dummynode_repr(self): node = DummyNode( key=('app_a', '0001'), origin='app_a.0001', error_message='x is missing', ) self.assertEqual(repr(node), "<DummyNode: ('app_a', '0001')>") def test_dummynode_promote(self): dummy = DummyNode( key=('app_a', '0001'), origin='app_a.0002', error_message="app_a.0001 (req'd by app_a.0002) is missing!", ) dummy.promote() self.assertIsInstance(dummy, Node) self.assertFalse(hasattr(dummy, 'origin')) self.assertFalse(hasattr(dummy, 'error_message')) ```
{ "source": "jmcelve2/cheshire", "score": 3 }
#### File: cheshire/cheshire/Grid.py ```python import numpy as np class Grid1D(object): """ The physical grid for 1D Potentials. Attributes: **n_x (int)**: The number of grid points along the x axis. This number must be a multiple of 2. **n_e (int)**: The number of electrons on the grid. **x_min (float)**: The minimum physical distance (in a.u.) on the potential grid along the x axis. **x_max (float)**: The maximum physical distance (in a.u.) on the potential grid along the x axis. **x (numpy.array)**: A grid of distances (in a.u.) from the center of the grid along the x axis. """ def __init__(self, n_x=128, n_e=2, x_min=-20, x_max=20): """ Grid1D constructor. Args: **n_x (int)**: The number of grid points along the x axis. This number must be a multiple of 2. Default is 128. **n_e (int)**: The number of electrons on the grid. **x_min (float)**: The minimum physical distance (in a.u.) on the potential grid along the x axis. Default is -20. **x_max (float)**: The maximum physical distance (in a.u.) on the potential grid along the x axis. Default is 20. """ if not ((n_x & (n_x - 1)) == 0) and n_x != 0: raise AssertionError('n_x must be must be an integer power of 2.') assert n_e == 2 assert x_min < x_max self.n_x = n_x self.n_e = n_e self.x_min = x_min self.x_max = x_max self.x = np.linspace(start=x_min, stop=x_max, num=n_x) self.params = dict(n_x=n_x, n_e=n_e, x_min=x_min, x_max=x_max, x=self.x) def rescale_by_size(self, val): """ Rescale parameters by the pixel size of the grid. """ return val * self.x_max / 20 def rescale_by_grid(self, val): """ Rescale parameters by the physical size of the grid. """ return val * self.n_x / 256 class Grid2D(object): """ The physical grid for 2D Potentials. Attributes: **n_x (int)**: The number of grid points along the x axis. This number must be a multiple of 2. **n_y (int)**: The number of grid points along the y axis. This number must be a multiple of 2. **n_e (int)**: The number of electrons on the grid. **x_min (float)**: The minimum physical distance (in a.u.) on the potential grid along the x axis. **x_max (float)**: The maximum physical distance (in a.u.) on the potential grid along the x axis. **y_min (float)**: The minimum physical distance (in a.u.) on the potential grid along the y axis. **y_max (float)**: The maximum physical distance (in a.u.) on the potential grid along the y axis. **x (numpy.array)**: A grid of distances (in a.u.) from the center of the grid along the x axis. **y (numpy.array)**: A grid of distances (in a.u.) from the center of the grid along the y axis. """ def __init__(self, n_x=128, n_y=128, n_e=1, x_min=-20, x_max=20, y_min=-20, y_max=20): """ Grid2D constructor. Args: **n_x (int)**: The number of grid points along the x axis. This number must be a multiple of 2. Default is 128. **n_y (int)**: The number of grid points along the y axis. This number must be a multiple of 2. Default is 128. **n_e (int)**: The number of electrons on the grid. **x_min (float)**: The minimum physical distance (in a.u.) on the potential grid along the x axis. Default is -20. **x_max (float)**: The maximum physical distance (in a.u.) on the potential grid along the x axis. Default is 20. **y_min (float)**: The minimum physical distance (in a.u.) on the potential grid along the y axis. Default is -20. **y_max (float)**: The maximum physical distance (in a.u.) on the potential grid along the y axis. Default is 20. """ if not ((n_x & (n_x - 1)) == 0) and n_x != 0: raise AssertionError('n_x must be must be an integer power of 2.') if not ((n_y & (n_y - 1)) == 0) and n_y != 0: raise AssertionError('n_y must be must be an integer power of 2.') assert n_e == 1 assert n_x == n_y assert x_min < x_max assert y_min < y_max assert (x_max - x_min) == (y_max - y_min) self.n_x = n_x self.n_y = n_y self.n_e = n_e self.x_min = x_min self.x_max = x_max self.y_min = y_min self.y_max = y_max self.x = np.tile(np.linspace(start=x_min, stop=x_max, num=n_x), (n_y, 1)) self.y = -np.transpose(np.tile(np.linspace(start=y_min, stop=y_max, num=n_y), (n_x, 1))) self.params = dict(n_x=n_x, n_y=n_y, n_e=n_e, x_min=x_min, x_max=x_max, x=self.x, y_min=y_min, y_max=y_max, y=self.y) def rescale_by_size(self, val): """ Rescale parameters by the pixel size of the grid. """ return val * self.x_max / 20 def rescale_by_grid(self, val): """ Rescale parameters by the physical size of the grid. """ return val * self.n_x / 256 ``` #### File: cheshire/cheshire/ParamSampler.py ```python import math import numpy as np from cheshire.Grid import * class InfiniteWell1DSampler(Grid1D): """ Class that generates parameters for the 1D infinite well. """ def sample_params(self, min_l=5, max_l=23, min_c=-8, max_c=8): """ Random parameter method that generates parameters for infinite square wells. Args: **min_l (float)**: The minimum possible allowed length for the well size. Default is 5. **max_l (float)**: The maximum possible allowed length for the well size. Default is 23. **min_c (float)**: The minimum possible center point for the well. Default is -8. **max_c (float)**: The maximum possible center point for the well. Default is 8. Returns: A dictionary of randomly generated infinite well parameters. """ assert min_l <= max_l assert min_c <= max_c # Rescale arguments based on the size of the grid min_l = self.rescale_by_size(min_l) max_l = self.rescale_by_size(max_l) min_c = self.rescale_by_size(min_c) max_c = self.rescale_by_size(max_c) l_x = np.random.uniform(low=min_l*self.x_max/20, high=max_l*self.x_max/20) c_x = np.random.uniform(low=min_c, high=max_c) return dict(l_x=l_x, c_x=c_x) class InfiniteWell2DSampler(Grid2D): """ Class that generates parameters for the 2D infinite well. """ def sample_params(self, min_l=4, max_l=15, min_c=-8, max_c=8): """ Random parameter method that generates parameters for 2D infinite square wells. Args: **min_l (float)**: The minimum possible allowed length for the well size. Default is 4. **max_l (float)**: The maximum possible allowed length for the well size. Default is 15. **min_c (float)**: The minimum possible center point for the well. Default is -8. **max_c (float)**: The maximum possible center point for the well. Default is 8. Returns: A dictionary of randomly generated infinite well parameters. """ assert min_l <= max_l assert min_c <= max_c # Rescale arguments based on the size of the grid min_l = self.rescale_by_size(min_l) max_l = self.rescale_by_size(max_l) min_c = self.rescale_by_size(min_c) max_c = self.rescale_by_size(max_c) while True: l_x, l_y = self.__sample__(min_l=min_l, max_l=max_l) if (min_l <= l_x) & \ (l_x <= max_l) & \ (min_l <= l_y) & \ (l_y <= max_l): break switch = np.random.uniform(low=0, high=1) if switch > 0.5: temp = l_x l_x = l_y l_y = temp l_x = l_x l_y = l_y c_x = np.random.uniform(low=min_c, high=max_c) c_y = np.random.uniform(low=min_c, high=max_c) return dict(l_x=l_x, l_y=l_y, c_x=c_x, c_y=c_y) def __sample__(self, min_l, max_l): """ Sample parameters. Sampling from the energy first ensures that the desired energy range is obtained """ energy = np.random.uniform(low=0, high=0.4) l_x = np.random.uniform(low=min_l*self.x_max/20, high=max_l*self.x_max/20) if 2*energy/math.pi**2 <= 1/(l_x**2): l_y = np.nan elif 2*energy/math.pi**2 <= 1/(l_x**2) > max_l: l_y = np.nan elif 2*energy/math.pi**2 <= 1/(l_x**2) < min_l: l_y = np.nan else: l_y = 1 / np.sqrt((2*energy)/(math.pi**2) - 1/(l_x**2)) return l_x, l_y class SimpleHarmonicOscillator2DSampler(Grid2D): """ Class that generates parameters for the 2D simple harmonic oscillator. """ def sample_params(self, min_kx=0, max_kx=0.16, min_ky=0, max_ky=0.16, min_cx=-8, max_cx=8, min_cy=-8, max_cy=8): """ Random parameter method that generates parameters for simple harmonic oscillator potentials. Args: **min_kx (float)**: The minimum possible value for the well width along the x axis. Default is 0. **max_kx (float)**: The maximum possible value for the well width along the x axis. Default is 0.16. **min_ky (float)**: The minimum possible value for the well width along the y axis. Default is 0. **max_ky (float)**: The maximum possible value for the well width along the y axis. Default is 0.16. **min_cx (float)**: The minimum possible value for the center (in a.u.) of the simple harmonic oscillator along the x axis. Default is -8. **max_cx (float)**: The maximum possible value for the center (in a.u.) of the simple harmonic oscillator along the x axis. Default is 8. **min_cy (float)**: The minimum possible value for the center (in a.u.) of the simple harmonic oscillator along the y axis. Default is -8. **max_cy (float)**: The maximum possible value for the center (in a.u.) of the simple harmonic oscillator along the y axis. Default is 8. Returns: A dictionary of randomly generated simple harmonic oscillator parameters. """ assert min_kx <= max_kx assert min_ky <= max_ky assert min_cx <= max_cx assert min_cy <= max_cy # Rescale arguments min_kx = self.rescale_by_size(min_kx) max_kx = self.rescale_by_size(max_kx) min_ky = self.rescale_by_size(min_ky) max_ky = self.rescale_by_size(max_ky) min_cx = self.rescale_by_size(min_cx) max_cx = self.rescale_by_size(max_cx) min_cy = self.rescale_by_size(min_cy) max_cy = self.rescale_by_size(max_cy) # Sample parameters k_x = np.random.uniform(low=min_kx, high=max_kx) k_y = np.random.uniform(low=min_ky, high=max_ky) c_x = np.random.uniform(low=min_cx, high=max_cx) c_y = np.random.uniform(low=min_cy, high=max_cy) return dict(k_x=k_x, k_y=k_y, c_x=c_x, c_y=c_y) class DoubleInvertedGaussian2DSampler(Grid2D): """ Class that generates parameters for the 2D double inverted Gaussian. """ def sample_params(self, min_a1=2, max_a1=4, min_a2=2, max_a2=4, min_cx1=-8, max_cx1=8, min_cy1=-8, max_cy1=8, min_cx2=-8, max_cx2=8, min_cy2=-8, max_cy2=8, min_kx1=1.6, max_kx1=8, min_ky1=1.6, max_ky1=8, min_kx2=1.6, max_kx2=8, min_ky2=1.6, max_ky2=8): """ Random parameter method that generates parameters for double inverted Gaussian potentials. Args: **min_a1 (float)**: The minimum possible value of the amplitude of the first Gaussian. Default is 2. Units are in Hartree energy. **max_a1 (float)**: The maximum possible value of the amplitude of the first Gaussian. Default is 4. Units are in Hartree energy. **min_a2 (float)**: The minimum possible value of the amplitude of the second Gaussian. Default is 2. Units are in Hartree energy. **max_a2 (float)**: The maximum possible value of the amplitude of the second Gaussian. Default is 4. Units are in Hartree energy. **min_cx1 (float)**: The minimum possible position of the center along the x axis of the first Gaussian. Default is -8 a.u. **max_cx1 (float)**: The maximum possible position of the center along the x axis of the first Gaussian. Default is 8 a.u. **min_cy1 (float)**: The minimum possible position of the center along the y axis of the first Gaussian. Default is -8 a.u. **max_cy1 (float)**: The maximum possible position of the center along the y axis of the first Gaussian. Default is 8 a.u. **min_cx2 (float)**: The minimum possible position of the center along the x axis of the second Gaussian. Default is -8 a.u. **max_cx2 (float)**: The maximum possible position of the center along the x axis of the second Gaussian. Default is 8 a.u. **min_cy2 (float)**: The minimum possible position of the center along the y axis of the second Gaussian. Default is -8 a.u. **max_cy2 (float)**: The maximum possible position of the center along the y axis of the second Gaussian. Default is 8 a.u. **min_kx1 (float)**: The minimum possible value for the constant that determines the width along the x axis of the first Gaussian. Default is 1.6. **max_kx1 (float)**: The maximum possible value for the constant that determines the width along the x axis of the first Gaussian. Default is 8. **min_ky1 (float)**: The minimum possible value for the constant that determines the width along the y axis of the first Gaussian. Default is 1.6. **max_ky1 (float)**: The maximum possible value for the constant that determines the width along the y axis of the first Gaussian. Default is 8. **min_kx2 (float)**: The minimum possible value for the constant that determines the width along the x axis of the second Gaussian. Default is 1.6. **max_kx2 (float)**: The maximum possible value for the constant that determines the width along the x axis of the second Gaussian. Default is 8. **min_ky2 (float)**: The minimum possible value for the constant that determines the width along the y axis of the second Gaussian. Default is 1.6. **max_ky2 (float)**: The maximum possible value for the constant that determines the width along the y axis of the second Gaussian. Default is 8. Returns: A dictionary of randomly generated double inverted Gaussian parameters. """ assert min_a1 > 0 assert min_a2 > 0 assert min_a1 <= max_a1 assert min_a2 <= max_a2 assert min_cx1 <= max_cx1 assert min_cy1 <= max_cy1 assert min_cx2 <= max_cx2 assert min_cy2 <= max_cy2 assert min_kx1 <= max_kx1 assert min_ky1 <= max_ky1 assert min_kx2 <= max_kx2 assert min_ky2 <= max_ky2 # Rescale arguments min_cx1 = self.rescale_by_size(min_cx1) min_cy1 = self.rescale_by_size(min_cy1) min_cx2 = self.rescale_by_size(min_cx2) min_cy2 = self.rescale_by_size(min_cy2) min_kx1 = self.rescale_by_size(min_kx1) min_ky1 = self.rescale_by_size(min_ky1) min_kx2 = self.rescale_by_size(min_kx2) min_ky2 = self.rescale_by_size(min_ky2) # Sample parameters a1 = np.random.uniform(low=min_a1, high=max_a1) a2 = np.random.uniform(low=min_a2, high=max_a2) c_x1 = np.random.uniform(low=min_cx1, high=max_cx1) c_y1 = np.random.uniform(low=min_cy1, high=max_cy1) c_x2 = np.random.uniform(low=min_cx2, high=max_cx2) c_y2 = np.random.uniform(low=min_cy2, high=max_cy2) k_x1 = np.random.uniform(low=min_kx1, high=max_kx1) k_y1 = np.random.uniform(low=min_ky1, high=max_ky1) k_x2 = np.random.uniform(low=min_kx2, high=max_kx2) k_y2 = np.random.uniform(low=min_ky2, high=max_ky2) return dict(a1=a1, a2=a2, c_x1=c_x1, c_y1=c_y1, c_x2=c_x2, c_y2=c_y2, k_x1=k_x1, k_y1=k_y1, k_x2=k_x2, k_y2=k_y2) class Random2DSampler(Grid2D): """ Class that generates parameters for a random 2D potential. """ def sample_params(self, min_k=2, max_k=7, min_r=80, max_r=180, min_sig1=6, max_sig1=10, min_sig2=10, max_sig2=16, p_range=[0.5, 1.0, 1.5, 2.0]): """ Random parameter method that generates parameters for random potentials. Args: **min_k (int)**: Determines the low end of the number of points used to create the convex hull. Default is 2. **max_k (int)**: Determines the high end of the number of points used to create the convex hull. Default is 7. **min_r (float)**: The minimum possible resolution size of the random blob. Default is 80 pixels (scaled for 256 x 256). **max_r (float)**: The maximum possible resolution size of the random blob. Default is 180 pixels (scaled for 256 x 256). **min_sig1 (float)**: The minimum possible variance of the first Gaussian blur. Default is 6. **max_sig1 (float)**: The maximum possible variance of the first Gaussian blur. Default is 10. **min_sig2 (float)**: The minimum possible variance of the second Gaussian blur. Default is 10. **max_sig2 (float)**: The maximum possible variance of the second Gaussian blur. Default is 16. **p_range (list)**: The range of exponents to sample from when exponentiating the potential for contrasting. Default is [1, 2]. Returns: A dictionary of randomly generated random potential parameters. """ assert min_k <= max_k assert min_r <= max_r assert min_sig1 <= max_sig1 assert min_sig1 > 0 assert min_sig2 <= max_sig2 assert min_sig2 > 0 assert all([isinstance(i, float) for i in p_range]) # Rescale arguments min_r = self.rescale_by_grid(min_r) max_r = self.rescale_by_grid(max_r) min_sig1 = self.rescale_by_grid(min_sig1) max_sig1 = self.rescale_by_grid(max_sig1) min_sig2 = self.rescale_by_grid(min_sig2) max_sig2 = self.rescale_by_grid(max_sig2) # Sample parameters k = np.random.randint(low=min_k, high=max_k+1) r = np.random.uniform(low=min_r, high=max_r) sig1 = np.random.uniform(low=min_sig1, high=max_sig1) sig2 = np.random.uniform(low=min_sig2, high=max_sig2) p = np.random.choice(p_range) return dict(k=k, r=r, sig1=sig1, sig2=sig2, p=p) class Coulomb2DSampler(Grid2D): """ Class that generates parameters for the 2D Coulomb potential. """ def sample_params(self, min_z=1, max_z=118, min_cx=-8, max_cx=8, min_cy=-8, max_cy=8, alpha=10**-9): """ Random parameter method that generates parameters for Coulomb potentials. Args: **min_z (int)**: The minimum number of allowable protons. **max_z (int)**: The maximum number of allowable protons. **min_cx (float)**: The minimum possible value for the center (in a.u.) of the Coulomb potential along the x axis. Default is -8. **max_cx (float)**: The maximum possible value for the center (in a.u.) of the Coulomb potential along the x axis. Default is 8. **min_cy (float)**: The minimum possible value for the center (in a.u.) of the Coulomb potential along the y axis. Default is -8. **max_cy (float)**: The maximum possible value for the center (in a.u.) of the Coulomb potential along the y axis. Default is 8. Returns: A dictionary of randomly generated Coulomb potential parameters. """ assert min_z <= max_z assert min_z >= 1 # Sample parameters z = np.random.randint(low=min_z, high=max_z) c_x = np.random.uniform(low=min_cx, high=max_cx) c_y = np.random.uniform(low=min_cy, high=max_cy) alpha = alpha return dict(z=z, c_x=c_x, c_y=c_y, alpha=alpha) ``` #### File: cheshire/cheshire/Potential.py ```python import numpy as np from scipy import ndimage from scipy.interpolate import spline from scipy.ndimage.filters import gaussian_filter from scipy.spatial import ConvexHull from scipy.spatial import Delaunay from cheshire.Grid import * class Potential(object): """ A potential object containing information about the potential. """ def __init__(self, params): """ A potential object containing information about the potential. Args: **params (dict)**: A dictionary of values specifying the type of potential to create. """ if not "potential" in params.keys(): raise AssertionError("The params dictionary must contain a potential grid.") assert isinstance(params["potential"], np.ndarray) for key in params: setattr(self, key, params[key]) class InfiniteWell1D(Grid1D): """ One dimensional infinite well potential. """ def create(self, c_x=0, l_x=7): """ Generate a Potential object with a 1D infinite well potential. Args: **c_x (float)**: The center of the infinite well along the x axis (in a.u.). Default is 0. **l_x (float)**: The length of the infinite well along the x axis (in a.u.). Default is 7. Returns: An object of class Potential with a potential attribute and attributes corresponding to the parameters used to generate the potential. """ assert self.x_min < c_x-0.5*l_x assert c_x+0.5*l_x < self.x_max v = np.zeros(shape=(1, self.n_x))[0] mask = (c_x-0.5*l_x < self.x) & (self.x <= c_x+0.5*l_x) v[~mask] = 20 params = dict(**self.params, **dict(potential=v, c_x=c_x, l_x=l_x)) return Potential(params=params) class Coulomb1D(Grid1D): """ One dimensional Coulomb potential. """ def create(self, c_x=0, z=1): """ Generate a Potential object with a 1D Coulomb potential. Args: **c_x (float)**: The center of the Coulomb potential along the x axis (in a.u.). Default is 0. **z (int)**: The number of protons determining the strength of the Coulomb attraction. Default is 1. Returns: An object of class Potential with a potential attribute and attributes corresponding to the parameters used to generate the potential. """ assert isinstance(z, int) assert z >= 1 assert (c_x > self.x_min) and (c_x < self.x_max) v = z/np.sqrt((c_x-self.x)**2+alpha**2) v = np.max(v)-v params = dict(**self.params, **dict(potential=v, z=z, c_x=c_x, alpha=alpha)) return Potential(params=params) class InfiniteWell2D(Grid2D): """ Two dimensional infinite well potential. """ def create(self, c_x=0, c_y=0, l_x=7, l_y=7): """ Generate a Potential object with a 2D infinite well potential. Args: **c_x (float)**: The center of the infinite well along the x axis (in a.u.). Default is 0. **c_y (float)**: The center of the infinite well along the y axis (in a.u.). Default is 0. **l_x (float)**: The length of the infinite well along the x axis (in a.u.). Default is 7. **l_y (float)**: The length of the infinite well along the y axis (in a.u.). Default is 7. Returns: An object of class Potential with a potential attribute and attributes corresponding to the parameters used to generate the potential. """ assert (c_x > self.x_min) & (c_x < self.x_max) assert (c_y > self.y_min) & (c_y < self.y_max) assert (l_x > self.x_min) & (l_x < self.x_max) assert (l_y > self.y_min) & (l_y < self.y_max) v = np.zeros(shape=(self.n_y, self.n_x)) mask = (c_x-0.5*l_x < self.x) & (self.x <= c_x+0.5*l_x) & \ (c_y-0.5*l_y < self.y) & (self.y <= c_y+0.5*l_y) v[~mask] = 20 params = dict(**self.params, **dict(potential=v, c_x=c_x, c_y=c_y, l_x=l_x, l_y=l_y)) return Potential(params=params) class SimpleHarmonicOscillator2D(Grid2D): """ Two dimensional simple harmonic oscillator potential. """ def create(self, c_x=0, c_y=0, k_x=2, k_y=2): """ Generate a Potential object with a 2D simple harmonic oscillator potential. Args: **c_x (float)**: The center of the simple harmonic oscillator along the x axis (in a.u.). Default is 0. **c_y (float)**: The center of the simple harmonic oscillator along the y axis (in a.u.). Default is 0. **k_x (float)**: The constant that determines the width of the harmonic oscillator potential along the x axis. Default is 2. **k_y (float)**: The constant that determines the width of the harmonic oscillator potential along the y axis. Default is 2. Returns: An object of class Potential with a potential attribute and attributes corresponding to the parameters used to generate the potential. """ assert (c_x > self.x_min) & (c_x < self.x_max) assert (c_y > self.y_min) & (c_y < self.y_max) assert k_x > 0 assert k_y > 0 v = .5*(k_x*(self.x-c_x)**2+k_y*(self.y-c_y)**2) v[v > 20] = 20 params = dict(**self.params, **dict(potential=v, c_x=c_x, c_y=c_y, k_x=k_x, k_y=k_y)) return Potential(params=params) class DoubleInvertedGaussian2D(Grid2D): """ Two dimensional infinite well potential. """ def create(self, a1=2, a2=2, c_x1=-2, c_x2=2, c_y1=-2, c_y2=2, k_x1=2, k_x2=2, k_y1=2, k_y2=2): """ Generate a Potential object with a 2D double inverted Gaussian potential. Args: **a1 (float)**: The maximum depth of the first Gaussian in units of Hartree Energy. Default is 2. **a2 (float)**: The maximum depth of the first Gaussian in units of Hartree Energy. Default is 2. **c_x1 (float)**: The center of the first Gaussian well along the x axis (in a.u.). Default is -2. **c_y1 (float)**: The center of the first Gaussian well along the y axis (in a.u.). Default is 2. **c_x2 (float)**: The center of the second Gaussian well along the x axis (in a.u.). Default is -2. **c_y2 (float)**: The center of the second Gaussian well along the y axis (in a.u.). Default is 2. **k_x1 (float)**: The constant that determines the width of the first inverted Gaussian along the x axis. Default is 2. **k_x2 (float)**: The constant that determines the width of the second inverted Gaussian along the x axis. Default is 2. **k_y1 (float)**: The constant that determines the width of the first inverted Gaussian along the y axis. Default is 2. **k_y2 (float)**: The constant that determines the width of the second inverted Gaussian along the y axis. Default is 2. Returns: An object of class Potential with a potential attribute and attributes corresponding to the parameters used to generate the potential. """ assert a1 > 0 assert a2 > 0 assert (c_x1 > self.x_min) & (c_x1 < self.x_max) assert (c_x2 > self.x_min) & (c_x2 < self.x_max) assert (c_y1 > self.y_min) & (c_y1 < self.y_max) assert (c_y2 > self.y_min) & (c_y2 < self.y_max) assert k_x1 > 0 assert k_x2 > 0 assert k_y1 > 0 assert k_y2 > 0 v = -a1*np.exp(-((self.x-c_x1)/k_x1)**2 - ((self.y-c_y1)/k_y1)**2) \ - a2*np.exp(-((self.x-c_x2)/k_x2)**2 - ((self.y-c_y2)/k_y2)**2) v = v + np.max(v) params = dict(**self.params, **dict(potential=v, a1=a1, a2=a2, c_x1=c_x1, c_x2=c_x2, c_y1=c_y1, c_y2=c_y2, k_x1=k_x1, k_x2=k_x2, k_y1=k_y1, k_y2=k_y2)) return Potential(params=params) class Random2D(Grid2D): """ Two dimensional random potential. To generate a random potential, a 16 x 16 binary grid of 1s and 0s is generated and upscaled to n x n. A second 16 x 16 binary grid is generated and upscaled to n/2 x n/2. The smaller grid is centered within the larger grid and then the grids are subtracted element-wise. A Gaussian blur is then applied with standard deviation sig1**2. The potential is now random, and smooth, but does not achieve a maximum at the boundary. To achieve this, a mask that smoothly goes to zero at the boundary and 1 in the interior is generated. To generate the desired random mask, k**2 random coordinate pairs are generated on a 200*n/256 x 200*n/256 grid. A convex hull is generated with these points, and the boundary of the convex hull is smoothly interpolated using a cubic spline. A binary mask is then formed by filling the inside of the closed blob with 1s, and the outside with 0s. Resizing the blob to a resolution of r x r, and applying a Gaussian blur with standard deviation sig2 returns the final mask. Element-wise multiplication of the mask with the random-blurred image gives a random potential that approaches zero at the boundary. The “sharpness” of the potential is randomized by then exponentiating by either d = 0.1, 0.5, 1.0, or 2.0, chosen at random with equal probabilities (i.e. V := V**p). The result is then subtracted from its maximum to invert the well. """ def create(self, k=5, r=40, sig1=8, sig2=13, p=2): """ Generate a Potential object with a 2D random potential. Args: **k (int)**: Determines the number of integers (k**2) to use to generate the convex hull that makes the blob. **r (float)**: The resolution size of the blob. **sig1 (float)**: The variance of the first Gaussian blur. **sig2 (float)**: The variance of the second Gaussian blur. **p (float)**: The exponent used to increase the contrast of the potential. Returns: An object of class Potential with a potential attribute and attributes corresponding to the parameters used to generate the potential. """ assert (k >= 2) & (k <= 7) assert (self.rescale_by_grid(r) < self.n_x) & (r > 0) assert sig1 > 0 assert sig2 > 0 assert p in [0.5, 1, 1.5, 2] # Create the n x n and n/2 x n/2 grids v = np.reshape(np.random.randint(low=0, high=2, size=16*16), newshape=(16,16)) v = np.kron(v, np.ones((round(self.n_x/16), round(self.n_y/16)))) subgrid = np.reshape(np.random.randint(low=0, high=2, size=16*16), newshape=(16,16)) subgrid = np.kron(subgrid, np.ones((round(self.n_x/32), round(self.n_y/32)))) # Center and diff the two grids lo_x = round(self.n_x/4) hi_x = round(self.n_x/4*3) lo_y = round(self.n_y/4) hi_y = round(self.n_y/4*3) v[lo_y:hi_y, lo_x:hi_x] = v[lo_y:hi_y, lo_x:hi_x] - subgrid # Run the first Gaussian blur v = gaussian_filter(v, sigma=sig1) # Create the convex hull from k**2 points points = np.random.rand(k**2, 2)*(self.rescale_by_grid(200)) points = points.astype(int) hull = ConvexHull(points) # Get the x and y points of the convex hull x = np.transpose(hull.points[hull.vertices])[0] x = np.append(x, x[0]) y = np.transpose(hull.points[hull.vertices])[1] y = np.append(y, y[0]) # Parameterize the boundary of the hull and interpolate t = np.arange(x.shape[0], dtype=float) t /= t[-1] nt = np.linspace(0, 1, 100) x = spline(t, x, nt) y = spline(t, y, nt) # Create a Delaunay hull for identifying points inside of the hull # The two args of np.zeros need to be scaled independently when n_x and n_y are allowed to vary # independently. hull = ConvexHull(np.transpose(np.array((x, y)))) hull = Delaunay(hull.points[hull.vertices]) coords = np.transpose(np.indices((round(self.rescale_by_grid(200)), round(self.rescale_by_grid(200))))) coords = coords.reshape(round(self.rescale_by_grid(200)**2), 2) in_hull = hull.find_simplex(coords) >= 0 # Rescale the blob # The two args of np.zeros need to be scaled independently when n_x and n_y are allowed to vary # independently. blob = np.zeros(shape=(round(self.rescale_by_grid(200)), round(self.rescale_by_grid(200)))) blob[np.transpose(coords[in_hull])[0], np.transpose(coords[in_hull])[1]] = 1 blob = ndimage.zoom(blob, self.rescale_by_grid(r)/self.rescale_by_grid(200)) # Create the final mask with the second Gaussian blur mask = np.zeros(shape=v.shape) x_offset = round((mask.shape[0]-blob.shape[0])/2) y_offset = round((mask.shape[1]-blob.shape[1])/2) mask[x_offset:blob.shape[0]+x_offset, y_offset:blob.shape[1]+y_offset] = blob mask = gaussian_filter(mask, sigma=sig2) v = np.abs(v) v = v**p v = v*mask v = np.max(v) - v + (1 - np.max(v)) params = dict(**self.params, **dict(potential=v, k=k, r=r, sig1=sig1, sig2=sig2, p=p)) return Potential(params=params) class Coulomb2D(Grid2D): """ Two dimensional Coulomb potential. """ def create(self, z=1, c_x=0, c_y=0, alpha=10**-9): """ Generate a Potential object with a 2D Coulomb potential. Args: **z (int)**: Determines the magnitude of the potential. An effective "proton number" constant. **c_x (float)**: The center of the Coulomb potential along the x axis (in a.u.). Default is 0. **c_y (float)**: The center of the Coulomb potential along the y axis (in a.u.). Default is 0. **alpha (float)**: A value that removes the Coulomb singularity to ensure the solver converges. Returns: An object of class Potential with a potential attribute and attributes corresponding to the parameters used to generate the potential. """ assert isinstance(z, int) assert z >= 1 assert (c_x > self.x_min) and (c_x < self.x_max) assert (c_y > self.y_min) and (c_y < self.y_max) v = z/np.sqrt((c_x-self.x)**2+(c_y-self.y)**2+alpha**2) v = v.max()-v params = dict(**self.params, **dict(potential=v, z=z, c_x=c_x, c_y=c_y, alpha=alpha)) return Potential(params=params) def potential_factory(grid_params, pot_params): """ Infer the Potential to create based on the parameters passed to this method. """ assert isinstance(grid_params, dict) assert isinstance(pot_params, dict) if 'n_x' in grid_params.keys() and 'n_y' not in grid_params.keys(): pass elif 'n_x' in grid_params.keys() and 'n_y' in grid_params.keys(): pass else: raise AssertionError('The parameters passed into the creation method are not supported.') if set(pot_params) == set(['c_x', 'l_x']): potential = InfiniteWell1D(**grid_params) elif set(pot_params) == set(['c_x', 'c_y', 'l_x', 'l_y']): potential = InfiniteWell2D(**grid_params) elif set(pot_params) == set(['c_x', 'c_y', 'k_x', 'k_y']): potential = SimpleHarmonicOscillator2D(**grid_params) elif set(pot_params) == set(['a1', 'a2', 'c_x1', 'c_x2', 'c_y1', 'c_y2', 'k_x1', 'k_y1', 'k_x2', 'k_y2']): potential = DoubleInvertedGaussian2D(**grid_params) elif set(pot_params) == set(['k', 'r', 'sig1', 'sig2', 'p']): potential = Random2D(**grid_params) elif set(pot_params) == set(['z', 'c_x', 'c_y', 'alpha']): potential = Coulomb2D(**grid_params) else: raise AssertionError('None of the supported potentials accept the parameters passed into the creation method.') return potential.create(**pot_params) ```
{ "source": "jmcevoy1984/Phorest-Voucher-Maker", "score": 3 }
#### File: jmcevoy1984/Phorest-Voucher-Maker/helper_functions.py ```python from shared import * #-------------helper functions------------- #Fetch a unique voucher serial number and parse the XML to output as a string. #This is done using the xml.etree (Element Tree) module. This is a standard Python module for parsing XML. def get_voucher_serial(): req = requests.get(get_serial_uri , auth=(username, password), verify=False) print(req.status_code) print(req.content) if req.status_code != 200: abort(req.status_code) else: root = ET.fromstring(req.content) voucher_number = root[0].text return voucher_number #Takes an object and a string that represents the type of object eg 'voucher', 'clientCard' and outputs with xml tags. #This function converts the attributes of an object passed to it into XML tags which surround the attribute value. def to_xml(object, string, *exclude): attrib = object.__dict__ output_xml = '<'+string+'>' for key, val in attrib.items(): if not (key in exclude): open_tag = '<'+str(key)+'>' close_tag = '</'+str(key)+'>' output_xml += open_tag + str(val) + close_tag output_xml += '</'+string+'>' return output_xml def get_voucher(ref): req = requests.get( post_uri +'/'+ ref, auth=(username, password), verify=False) if req.status_code != 200: abort(req.status_code) else: root = ET.fromstring(req.content) voucher = Voucher() setattr(voucher, 'ref', ref) for child in root: if hasattr(voucher, child.tag): setattr(voucher, child.tag, root.find('./'+child.tag).text) return voucher def serialize(object): attributes = object.__dict__ return {key:value for key, value in attributes.items() if key != 'creatingBranchRef'} def get_voucher_list(start, max_results): params = {'start' : start, 'max' : max_results} req = requests.get( voucher_uri, auth=(username, password), params=params, verify=False) if req.status_code != 200: abort(req.status_code) else: root = ET.fromstring(req.content) #print(root.attrib['totalResults']) #print(root) return root def find_voucher(serial): start, max_results = 0 , 50 found = '' count = 0 while not found and count < max_results: vouchers = get_voucher_list(start, max_results) max_results = int(vouchers.attrib['totalResults']) for child in vouchers: count += 1 for subchild in child.iter('serial'): if subchild.text == serial: found = True #print('FOUND!') voucher = Voucher() voucher = xml_to_object(child, voucher) #print(voucher) return voucher break if found: break return False def xml_to_object(xml, object): for child in xml: if hasattr(object, child.tag): setattr(object, child.tag, xml.find('./'+child.tag).text) if child.tag == 'identity': ref_str = child.attrib['id'][::-1].split(':') #ref_str = ref_str.split(':') ref_str = ref_str[0][::-1] #ref_str = ref_str[::-1] #print(ref_str) #print(child.attrib['id'][ref_str:]) setattr(object, 'ref', ref_str) #add unique ref if child.tag == 'clientCardRef': ref_str = child.text[::-1] ref_str = ref_str.split(':') ref_str = ref_str[0] ref_str = ref_str[::-1] setattr(object, 'clientCardRef', ref_str) #print('child: ' + ref_str) return object def convert_vouchers(xml): '''voucher_list = [] for child in xml: if child.tag == 'voucher': voucher_list.append(serialize(xml_to_object(child, Voucher()))) return voucher_list''' return [serialize(xml_to_object(child, Voucher())) for child in xml if child.tag == 'voucher'] def get_client_vouchers(client_vouchers_uri): req = requests.get(client_vouchers_uri, auth=(username, password), verify=False) print(req.status_code) root = ET.fromstring(req.content) return convert_vouchers(root) ``` #### File: jmcevoy1984/Phorest-Voucher-Maker/voucher_api.py ```python from shared import * from helper_functions import * from app import app from flask_restful import Api, Resource, reqparse, fields, marshal_with, marshal #Wraps the flask 'app' with the Api function from flask-RESTful. Assigns this to the 'api' variable. api = Api(app) #---------------MAIN API------------------ #Fields for marshaling output in JSON using the 'marshal_with' decorator/the 'marshal' function of flask-RESTful. #Only the fields listed here will be output as the reponse in JSON format during the specified HTTP request. voucher_post_fields = { 'ref' : fields.String, 'serial' : fields.String, } voucher_get_fields = { 'ref' : fields.String, 'serial' : fields.String, 'expiryDate' : fields.String, 'originalBalance' : fields.String, 'clientCardRef' : fields.String, 'archived' : fields.String, 'remainingBalance' : fields.String, 'issueDate' : fields.String } #Classes that subclass the "Resource" class from flask-RESTful. #These are the resources for the API and contain all HTTP C.R.U.D methods. class VoucherListAPI(Resource): def __init__(self): self.reqparse = reqparse.RequestParser() self.reqparse.add_argument('issueDate', type=str, default="{:%Y-%m-%d}".format(datetime.now()), location = 'json') self.reqparse.add_argument('expiryDate', type=str, default='{:%Y-%m-%d}'.format(datetime.now() + timedelta(days=365)), location='json') self.reqparse.add_argument('originalBalance', type=str, default='50', location='json') self.reqparse.add_argument('clientCardRef', type=str, default='', location='json') self.reqparse.add_argument('creatingBranchRef', type=str, default='urn:x-memento:Branch:'+branch_id, location='json') self.reqparse.add_argument('archived', type=str, default='false', location='json') self.reqparse.add_argument('start', type=str, default='0') self.reqparse.add_argument('max', type=str, default='50') #self.reqparse.add_argument('remainingBalance', type=str, default='', location='json') super(VoucherListAPI, self).__init__() @marshal_with(voucher_post_fields) def post(self): print('we go to post!') args = self.reqparse.parse_args() voucher = Voucher() setattr(voucher, 'serial', get_voucher_serial()) for key, value in args.items(): if hasattr(voucher, key): setattr(voucher, key, value) #setattr(voucher, 'remainingBalance', getattr(voucher, 'originalBalance')) #exl = ['remainingBalance', 'ref'] xml_voucher = to_xml(voucher, 'voucher', 'remainingBalance') print(xml_voucher) headers = { 'content-type' : 'application/vnd.memento.Voucher+xml' } req = requests.post(voucher_uri, headers=headers, auth=(username, password), data=xml_voucher, verify=False) print(req.status_code) print(req.content) if req.status_code != 201: abort(req.status_code) else: root = ET.fromstring(req.content) setattr(voucher, 'ref', root.find('./identity').attrib['id']) #set the newly aquired id/uri for the voucher return voucher, 201 def get(self): args = self.reqparse.parse_args() params = { 'start' : int(args['start']), 'max' : int(args['max']) } req = requests.get( voucher_uri, auth=(username, password), params=params, verify=False) #print(req.content) #print(req.headers) #print(req.status_code) voucher_list = [] if req.status_code != 200: abort(req.status_code) else: root = ET.fromstring(req.content) #voucher = Voucher() #setattr(voucher, 'ref', ref) for child in root: if child.tag == 'voucher': voucher = Voucher() filled_voucher = xml_to_object(child, voucher) voucher_list.append(marshal(filled_voucher, voucher_get_fields)) return { 'voucher_list' : voucher_list }, 200 #to be fixed class VoucherAPI(Resource): def __init__(self): self.reqparse = reqparse.RequestParser() self.reqparse.add_argument('issueDate', type=str, default="{:%Y-%m-%d}".format(datetime.now()), location = 'json') self.reqparse.add_argument('expiryDate', type=str, default='{:%Y-%m-%d}'.format(datetime.now() + timedelta(days=365)), location='json') self.reqparse.add_argument('originalBalance', type=str, default='50', location='json') self.reqparse.add_argument('clientCardRef', type=str, default='', location='json') self.reqparse.add_argument('creatingBranchRef', type=str, default='urn:x-memento:Branch:'+branch_id, location='json') self.reqparse.add_argument('archived', type=str, default='false', location='json') #self.reqparse.add_argument('remainingBalance', type=str, default='', location='json') super(VoucherAPI, self).__init__() #api.add_resource(VoucherAPI, '/api/voucher', endpoint='vouchers') #get a voucher by it's unique reference (id) @marshal_with(voucher_get_fields) def get(self, ref): req = requests.get( voucher_uri +'/'+ ref, auth=(username, password), verify=False) print(req.content) print(req.headers) print(req.status_code) if req.status_code != 200: abort(req.status_code) else: root = ET.fromstring(req.content) voucher = Voucher() setattr(voucher, 'ref', ref) for child in root: if hasattr(voucher, child.tag): setattr(voucher, child.tag, root.find('./'+child.tag).text) print(voucher.__dict__) return voucher, 200 #to be fixed def put(self, ref): original = get_voucher(ref) args = self.reqparse.parse_args() voucher = Voucher() for key, value in original.__dict__.items(): if hasattr(voucher, key): setattr(voucher, key, value) for key, value in args.items(): if hasattr(voucher, key): setattr(voucher, key, value) #setattr(voucher, 'originalBalance', '1000') xml_voucher = to_xml(voucher, 'voucher', 'serial') headers = {'content-type' : 'application/vnd.memento.Voucher+xml' } req = requests.put(post_uri + '/' + ref, headers=headers, auth=(username, password), data=xml_voucher, verify=False) print(req.status_code) print(req.content) if req.status_code != 200: abort(req.status_code) else: print(original.__dict__.items()) print(voucher.__dict__.items()) print(xml_voucher) print(args.items()) return { 'result' : True }, 200 #def archive_voucher(): #pass '''def put(self, ref): original = get_voucher(ref) #print(original) voucher = Voucher() for child in original: if hasattr(voucher, child.tag): setattr(voucher, child.tag, original.find('./'+child.tag).text) for key, value in dict.items(): if hasattr(voucher, key) and dict[key] != False: setattr(voucher, key, value) xml_voucher = to_xml(voucher, 'voucher') headers = {'content-type' : 'application/vnd.memento.Voucher+xml' } req = requests.put(voucher_uri + ref, headers=headers, auth=(username, password), data=xml_voucher, verify=False) return req.status_code''' api.add_resource(VoucherListAPI, '/api/vouchers', endpoint='vouchers') api.add_resource(VoucherAPI, '/api/vouchers/<ref>', endpoint='voucher') #def update_voucher(ref): #req = requests.get('localhost:5000/api/vouchers/'+ref) #original = req.content #print(req) #------------Clients--------------- client_get_fields = { 'firstName' : fields.String, 'lastName' : fields.String, 'mobile' : fields.String, 'email' : fields.String, 'ref' : fields.String, 'vouchers' : fields.String } class ClientAPI(Resource): def __init__(self): self.reqparse = reqparse.RequestParser() self.reqparse.add_argument('firstName', type=str, default='', location = 'json') self.reqparse.add_argument('lastName', type=str, default='', location= 'json') self.reqparse.add_argument('mobile', type=str, location= 'json') super(ClientAPI, self).__init__() @marshal_with(client_get_fields) def get(self, ref): req = requests.get(client_uri + '/' + ref, auth=(username, password), verify=False) #print(req.status_code) #print(req.content) if req.status_code != 200: abort(req.status_code) else: root = ET.fromstring(req.content) client = Client() setattr(client, 'ref', ref) for child in root: if child.tag == 'link' and child.attrib['rel'] == 'vouchers': setattr(client, 'vouchers', child.attrib['href']) if hasattr(client, child.tag): setattr(client, child.tag, root.find('./'+child.tag).text) return client, 200 #to be fixed api.add_resource(ClientAPI, '/api/client/<ref>', endpoint='client') def create_client(): xml = "<clientCard><firstName>Joe</firstName><lastName>Test</lastName><mobile>0833128991</mobile><archived>false</archived></clientCard>" headers = {'content-type' : 'application/vnd.memento.ClientCard+xml' } test_uri = 'https://lbh.eu-dev-0.memento-stacks.phorest.com/memento/rest/business/3Evn8Qqw6pVY4iScdZXWBA/client' req = requests.post(client_uri, headers=headers, auth=(username, password), data=xml, verify=False) print(req.status_code) print('Headers:', req.headers) print(req.content) def update_client(): xml = "<clientCard><firstName>Joe</firstName><lastName>Test</lastName><mobile>083317777</mobile></clientCard>" headers = {'content-type' : 'application/vnd.memento.ClientCard+xml' } test_uri = 'https://lbh.eu-dev-0.memento-stacks.phorest.com/memento/rest/business/3Evn8Qqw6pVY4iScdZXWBA/client/9mkguGy0b6xpUgaBF65CIA' req = requests.put(client_uri + '/' + 'XAzAN9Hwffcqp0cx_v7qJg', headers=headers, auth=(username, password), data=xml, verify=False) print(req.status_code) print('Headers:', req.headers) with open('client_update.xml', 'w') as f: f.write(str(req.content)) f.close() def get_client(ref): req = requests.get(client_uri + '/' + ref, auth=(username, password), verify=False) print(req.status_code) print(req.content) if req.status_code != 200: abort(req.status_code) else: root = ET.fromstring(req.content) client = Client() setattr(client, 'ref', ref) for child in root: if hasattr(client, child.tag): setattr(client, child.tag, root.find('./'+child.tag).text) return client, 200 #to be fixed '''def get_client_vouchers(client_vouchers_uri): test_uri = 'https://lbh1.eu.phorest.com/memento/rest/business/3Evn8Qqw6pVY4iScdZXWBA/client/sH40eB0ICVBgK5KFMrokfA/voucher' req = requests.get(test_uri, auth=(username, password), verify=False) print(req.status_code) with open('client_vouchers.xml', 'w') as f: f.write(str(req.content)) f.close''' def get_clients(): #test_uri = "https://lbh.eu-dev-0.memento-stacks.phorest.com/memento/rest/business/3Evn8Qqw6pVY4iScdZXWBA/voucher" req = requests.get(client_uri + '/' + 'Xbus3AT3eqOEJXsfXr6L_w', auth=(username, password), verify=False) print(req.status_code) print(req.content) if req.status_code != 200: abort(req.status_code) else: root = ET.fromstring(req.content) '''print(len(root)) count = 0 for child in root: if child.tag == 'voucher': count += 1 print (count) #print(child.tag)''' '''else: with open('client_list.xml', 'w') as f: f.write(str(req.content)) f.close''' def vouch_trans(): trans_uri = "https://lbh.eu-dev-0.memento-stacks.phorest.com/memento/rest/business/3Evn8Qqw6pVY4iScdZXWBA/voucher/8tpbJWlBGIB5Z4CC00npvw/transactions" xml = '<voucherTransaction><date>2016-02-17</date><transactionAmount>-100.00</transactionAmount><voucherRef>urn:x-memento:Voucher:8tpbJWlBGIB5Z4CC00npvw</voucherRef><branchRef>urn:x-memento:Branch:nPpLa0UY4UO5dn68TpPsiA</branchRef><creatingUserRef>urn:x-memento:User:ISLX8fGtdKIB8CMLSIlc7g</creatingUserRef><voucherUpdateType>MANUALLY_ADDED</voucherUpdateType><relatedTransactionDeleted>false</relatedTransactionDeleted><compensatingTransaction>false</compensatingTransaction></voucherTransaction>' headers = {'content-type' : 'application/vnd.memento.VoucherTransaction+xm' } req = requests.post(trans_uri, headers=headers, auth=(username, password), data=xml, verify=False) print(req.status_code) print(req.content) ```
{ "source": "jmcgill298/flake8", "score": 3 }
#### File: flake8/plugins/notifier.py ```python from flake8.plugins import _trie class Notifier(object): """Object that tracks and notifies listener objects.""" def __init__(self): """Initialize an empty notifier object.""" self.listeners = _trie.Trie() def listeners_for(self, error_code): """Retrieve listeners for an error_code. There may be listeners registered for E1, E100, E101, E110, E112, and E126. To get all the listeners for one of E100, E101, E110, E112, or E126 you would also need to incorporate the listeners for E1 (since they're all in the same class). Example usage: .. code-block:: python from flake8 import notifier n = notifier.Notifier() # register listeners for listener in n.listeners_for('W102'): listener.notify(...) """ path = error_code while path: node = self.listeners.find(path) listeners = getattr(node, "data", []) for listener in listeners: yield listener path = path[:-1] def notify(self, error_code, *args, **kwargs): """Notify all listeners for the specified error code.""" for listener in self.listeners_for(error_code): listener.notify(error_code, *args, **kwargs) def register_listener(self, error_code, listener): """Register a listener for a specific error_code.""" self.listeners.add(error_code, listener) ``` #### File: tests/unit/test_git.py ```python import mock import pytest from flake8.main import git @pytest.mark.parametrize('lazy', [True, False]) def test_find_modified_files(lazy): """Confirm our logic for listing modified files.""" if lazy: # Here --cached is missing call = [ 'git', 'diff-index', '--name-only', '--diff-filter=ACMRTUXB', 'HEAD' ] else: call = [ 'git', 'diff-index', '--cached', '--name-only', '--diff-filter=ACMRTUXB', 'HEAD' ] mocked_popen = mock.Mock() mocked_popen.communicate.return_value = ('', '') with mock.patch('flake8.main.git.piped_process') as piped_process: piped_process.return_value = mocked_popen git.find_modified_files(lazy) piped_process.assert_called_once_with(call) ``` #### File: tests/unit/test_merged_config_parser.py ```python import os import mock import pytest from flake8.options import config from flake8.options import manager @pytest.fixture def optmanager(): """Generate an OptionManager with simple values.""" return manager.OptionManager(prog='flake8', version='3.0.0a1') @pytest.fixture def config_finder(): """Generate a simple ConfigFileFinder.""" return config.ConfigFileFinder('flake8', [], []) def test_parse_cli_config(optmanager, config_finder): """Parse the specified config file as a cli config file.""" optmanager.add_option('--exclude', parse_from_config=True, comma_separated_list=True, normalize_paths=True) optmanager.add_option('--ignore', parse_from_config=True, comma_separated_list=True) optmanager.add_option('--verbose', parse_from_config=True, action='count') optmanager.add_option('--quiet', parse_from_config=True, action='count') parser = config.MergedConfigParser(optmanager, config_finder) parsed_config = parser.parse_cli_config( 'tests/fixtures/config_files/cli-specified.ini' ) assert parsed_config == { 'ignore': ['E123', 'W234', 'E111'], 'exclude': [ os.path.abspath('foo/'), os.path.abspath('bar/'), os.path.abspath('bogus/'), ], 'verbose': 2, 'quiet': 1, } @pytest.mark.parametrize('filename,is_configured_by', [ ('tests/fixtures/config_files/cli-specified.ini', True), ('tests/fixtures/config_files/no-flake8-section.ini', False), ]) def test_is_configured_by( filename, is_configured_by, optmanager, config_finder): """Verify the behaviour of the is_configured_by method.""" parsed_config, _ = config.ConfigFileFinder._read_config(filename) parser = config.MergedConfigParser(optmanager, config_finder) assert parser.is_configured_by(parsed_config) is is_configured_by def test_parse_user_config(optmanager, config_finder): """Verify parsing of user config files.""" optmanager.add_option('--exclude', parse_from_config=True, comma_separated_list=True, normalize_paths=True) optmanager.add_option('--ignore', parse_from_config=True, comma_separated_list=True) optmanager.add_option('--verbose', parse_from_config=True, action='count') optmanager.add_option('--quiet', parse_from_config=True, action='count') parser = config.MergedConfigParser(optmanager, config_finder) with mock.patch.object(parser.config_finder, 'user_config_file') as usercf: usercf.return_value = 'tests/fixtures/config_files/cli-specified.ini' parsed_config = parser.parse_user_config() assert parsed_config == { 'ignore': ['E123', 'W234', 'E111'], 'exclude': [ os.path.abspath('foo/'), os.path.abspath('bar/'), os.path.abspath('bogus/'), ], 'verbose': 2, 'quiet': 1, } def test_parse_local_config(optmanager, config_finder): """Verify parsing of local config files.""" optmanager.add_option('--exclude', parse_from_config=True, comma_separated_list=True, normalize_paths=True) optmanager.add_option('--ignore', parse_from_config=True, comma_separated_list=True) optmanager.add_option('--verbose', parse_from_config=True, action='count') optmanager.add_option('--quiet', parse_from_config=True, action='count') parser = config.MergedConfigParser(optmanager, config_finder) with mock.patch.object(config_finder, 'local_config_files') as localcfs: localcfs.return_value = [ 'tests/fixtures/config_files/cli-specified.ini' ] parsed_config = parser.parse_local_config() assert parsed_config == { 'ignore': ['E123', 'W234', 'E111'], 'exclude': [ os.path.abspath('foo/'), os.path.abspath('bar/'), os.path.abspath('bogus/'), ], 'verbose': 2, 'quiet': 1, } def test_merge_user_and_local_config(optmanager, config_finder): """Verify merging of parsed user and local config files.""" optmanager.add_option('--exclude', parse_from_config=True, comma_separated_list=True, normalize_paths=True) optmanager.add_option('--ignore', parse_from_config=True, comma_separated_list=True) optmanager.add_option('--select', parse_from_config=True, comma_separated_list=True) parser = config.MergedConfigParser(optmanager, config_finder) with mock.patch.object(config_finder, 'local_config_files') as localcfs: localcfs.return_value = [ 'tests/fixtures/config_files/local-config.ini' ] with mock.patch.object(config_finder, 'user_config_file') as usercf: usercf.return_value = ('tests/fixtures/config_files/' 'user-config.ini') parsed_config = parser.merge_user_and_local_config() assert parsed_config == { 'exclude': [ os.path.abspath('docs/') ], 'ignore': ['D203'], 'select': ['E', 'W', 'F'], } def test_parse_isolates_config(optmanager): """Verify behaviour of the parse method with isolated=True.""" config_finder = mock.MagicMock() parser = config.MergedConfigParser(optmanager, config_finder) assert parser.parse(isolated=True) == {} assert config_finder.local_configs.called is False assert config_finder.user_config.called is False def test_parse_uses_cli_config(optmanager): """Verify behaviour of the parse method with a specified config.""" config_finder = mock.MagicMock() parser = config.MergedConfigParser(optmanager, config_finder) parser.parse(cli_config='foo.ini') config_finder.cli_config.assert_called_once_with('foo.ini') @pytest.mark.parametrize('config_fixture_path', [ 'tests/fixtures/config_files/cli-specified.ini', 'tests/fixtures/config_files/cli-specified-with-inline-comments.ini', 'tests/fixtures/config_files/cli-specified-without-inline-comments.ini', ]) def test_parsed_configs_are_equivalent( optmanager, config_finder, config_fixture_path): """Verify the each file matches the expected parsed output. This is used to ensure our documented behaviour does not regress. """ optmanager.add_option('--exclude', parse_from_config=True, comma_separated_list=True, normalize_paths=True) optmanager.add_option('--ignore', parse_from_config=True, comma_separated_list=True) parser = config.MergedConfigParser(optmanager, config_finder) with mock.patch.object(config_finder, 'local_config_files') as localcfs: localcfs.return_value = [config_fixture_path] with mock.patch.object(config_finder, 'user_config_file') as usercf: usercf.return_value = [] parsed_config = parser.merge_user_and_local_config() assert parsed_config['ignore'] == ['E123', 'W234', 'E111'] assert parsed_config['exclude'] == [ os.path.abspath('foo/'), os.path.abspath('bar/'), os.path.abspath('bogus/'), ] @pytest.mark.parametrize('config_file', [ 'tests/fixtures/config_files/config-with-hyphenated-options.ini' ]) def test_parsed_hyphenated_and_underscored_names( optmanager, config_finder, config_file): """Verify we find hyphenated option names as well as underscored. This tests for options like --max-line-length and --enable-extensions which are able to be specified either as max-line-length or max_line_length in our config files. """ optmanager.add_option('--max-line-length', parse_from_config=True, type='int') optmanager.add_option('--enable-extensions', parse_from_config=True, comma_separated_list=True) parser = config.MergedConfigParser(optmanager, config_finder) with mock.patch.object(config_finder, 'local_config_files') as localcfs: localcfs.return_value = [config_file] with mock.patch.object(config_finder, 'user_config_file') as usercf: usercf.return_value = [] parsed_config = parser.merge_user_and_local_config() assert parsed_config['max_line_length'] == 110 assert parsed_config['enable_extensions'] == ['H101', 'H235'] ``` #### File: tests/unit/test_setuptools_command.py ```python import pytest from setuptools import dist from flake8.main import setuptools_command @pytest.fixture def distribution(): """Create a setuptools Distribution object.""" return dist.Distribution({ 'name': 'foo', 'packages': [ 'foo', 'foo.bar', 'foo_biz', ], }) @pytest.fixture def command(distribution): """Create an instance of Flake8's setuptools command.""" return setuptools_command.Flake8(distribution) def test_package_files_removes_submodules(command): """Verify that we collect all package files.""" package_files = list(command.package_files()) assert sorted(package_files) == [ 'foo', 'foo_biz', ] ```
{ "source": "jmcgill298/nautobot", "score": 2 }
#### File: nautobot/development/nautobot_config.py ```python from distutils.util import strtobool import os import sys from nautobot.core.settings import * ALLOWED_HOSTS = os.environ.get("ALLOWED_HOSTS", "").split(" ") DATABASES = { "default": { "NAME": os.environ.get("NAUTOBOT_DATABASE", "nautobot"), "USER": os.environ.get("NAUTOBOT_USER", ""), "PASSWORD": os.environ.get("NAUTOBOT_PASSWORD", ""), "HOST": os.environ.get("NAUTOBOT_DB_HOST", "localhost"), "PORT": os.environ.get("NAUTOBOT_DB_PORT", ""), "CONN_MAX_AGE": 300, "ENGINE": "django.db.backends.postgresql", } } DEBUG = True LOG_LEVEL = "DEBUG" if DEBUG else "INFO" TESTING = len(sys.argv) > 1 and sys.argv[1] == "test" # Verbose logging during normal development operation, but quiet logging during unit test execution if not TESTING: LOGGING = { "version": 1, "disable_existing_loggers": False, "formatters": { "normal": { "format": "%(asctime)s.%(msecs)03d %(levelname)-7s %(name)s :\n %(message)s", "datefmt": "%H:%M:%S", }, "verbose": { "format": "%(asctime)s.%(msecs)03d %(levelname)-7s %(name)-20s %(filename)-15s %(funcName)30s() :\n %(message)s", "datefmt": "%H:%M:%S", }, }, "handlers": { "normal_console": { "level": "INFO", "class": "rq.utils.ColorizingStreamHandler", "formatter": "normal", }, "verbose_console": { "level": "DEBUG", "class": "rq.utils.ColorizingStreamHandler", "formatter": "verbose", }, }, "loggers": { "django": {"handlers": ["normal_console"], "level": "INFO"}, "nautobot": { "handlers": ["verbose_console" if DEBUG else "normal_console"], "level": LOG_LEVEL, }, "rq.worker": { "handlers": ["verbose_console" if DEBUG else "normal_console"], "level": LOG_LEVEL, }, }, } def is_truthy(arg): """Convert "truthy" strings into Booleans. Examples: >>> is_truthy('yes') True Args: arg (str): Truthy string (True values are y, yes, t, true, on and 1; false values are n, no, f, false, off and 0. Raises ValueError if val is anything else. """ if isinstance(arg, bool): return arg return bool(strtobool(str(arg))) # Redis variables REDIS_HOST = os.getenv("REDIS_HOST", "localhost") REDIS_PORT = os.getenv("REDIS_PORT", 6379) REDIS_PASSWORD = os.getenv("REDIS_PASSWORD", "") # Check for Redis SSL REDIS_SCHEME = "redis" REDIS_SSL = is_truthy(os.environ.get("REDIS_SSL", False)) if REDIS_SSL: REDIS_SCHEME = "rediss" # The django-redis cache is used to establish concurrent locks using Redis. The # django-rq settings will use the same instance/database by default. # # This "default" server is now used by RQ_QUEUES. # >> See: nautobot.core.settings.RQ_QUEUES CACHES = { "default": { "BACKEND": "django_redis.cache.RedisCache", "LOCATION": f"{REDIS_SCHEME}://{REDIS_HOST}:{REDIS_PORT}/0", "TIMEOUT": 300, "OPTIONS": { "CLIENT_CLASS": "django_redis.client.DefaultClient", "PASSWORD": <PASSWORD>IS_PASSWORD, }, } } # RQ_QUEUES is not set here because it just uses the default that gets imported # up top via `from nautobot.core.settings import *`. # REDIS CACHEOPS CACHEOPS_REDIS = f"{REDIS_SCHEME}://:{REDIS_PASSWORD}@{REDIS_HOST}:{REDIS_PORT}/1" HIDE_RESTRICTED_UI = os.environ.get("HIDE_RESTRICTED_UI", False) SECRET_KEY = os.environ.get("SECRET_KEY", "") # Django Debug Toolbar DEBUG_TOOLBAR_CONFIG = {"SHOW_TOOLBAR_CALLBACK": lambda _request: DEBUG and not TESTING} if "debug_toolbar" not in INSTALLED_APPS: INSTALLED_APPS.append("debug_toolbar") if "debug_toolbar.middleware.DebugToolbarMiddleware" not in MIDDLEWARE: MIDDLEWARE.insert(0, "debug_toolbar.middleware.DebugToolbarMiddleware") ```
{ "source": "jmcgill298/nautobot-plugin-golden-config", "score": 2 }
#### File: nautobot_golden_config/nornir_plays/config_intended.py ```python import os import logging from datetime import datetime from nornir import InitNornir from nornir.core.plugins.inventory import InventoryPluginRegister from nornir.core.task import Result, Task from nornir_nautobot.exceptions import NornirNautobotException from nornir_nautobot.plugins.tasks.dispatcher import dispatcher from nornir_nautobot.utils.logger import NornirLogger from nautobot_plugin_nornir.plugins.inventory.nautobot_orm import NautobotORMInventory from nautobot_plugin_nornir.constants import NORNIR_SETTINGS from nautobot_plugin_nornir.utils import get_dispatcher from nautobot_golden_config.models import GoldenConfigSetting, GoldenConfig from nautobot_golden_config.utilities.helper import ( get_job_filter, verify_global_settings, check_jinja_template, ) from nautobot_golden_config.utilities.graphql import graph_ql_query from nautobot_golden_config.nornir_plays.processor import ProcessGoldenConfig InventoryPluginRegister.register("nautobot-inventory", NautobotORMInventory) LOGGER = logging.getLogger(__name__) def run_template( # pylint: disable=too-many-arguments task: Task, logger, global_settings, job_result, jinja_root_path, intended_root_folder ) -> Result: """Render Jinja Template. Only one template is supported, so the expectation is that that template includes all other templates. Args: task (Task): Nornir task individual object Returns: result (Result): Result from Nornir task """ obj = task.host.data["obj"] intended_obj = GoldenConfig.objects.filter(device=obj).first() if not intended_obj: intended_obj = GoldenConfig.objects.create(device=obj) intended_obj.intended_last_attempt_date = task.host.defaults.data["now"] intended_obj.save() intended_path_template_obj = check_jinja_template(obj, logger, global_settings.intended_path_template) output_file_location = os.path.join(intended_root_folder, intended_path_template_obj) jinja_template = check_jinja_template(obj, logger, global_settings.jinja_path_template) status, device_data = graph_ql_query(job_result.request, obj, global_settings.sot_agg_query) if status != 200: logger.log_failure(obj, f"The GraphQL query return a status of {str(status)} with error of {str(device_data)}") raise NornirNautobotException() task.host.data.update(device_data) generated_config = task.run( task=dispatcher, name="GENERATE CONFIG", method="generate_config", obj=obj, logger=logger, jinja_template=jinja_template, jinja_root_path=jinja_root_path, output_file_location=output_file_location, default_drivers_mapping=get_dispatcher(), )[1].result["config"] intended_obj.intended_last_success_date = task.host.defaults.data["now"] intended_obj.intended_config = generated_config intended_obj.save() logger.log_success(obj, "Successfully generated the intended configuration.") return Result(host=task.host, result=generated_config) def config_intended(job_result, data, jinja_root_path, intended_root_folder): """Nornir play to generate configurations.""" now = datetime.now() logger = NornirLogger(__name__, job_result, data.get("debug")) global_settings = GoldenConfigSetting.objects.first() verify_global_settings(logger, global_settings, ["jinja_path_template", "intended_path_template", "sot_agg_query"]) try: with InitNornir( runner=NORNIR_SETTINGS.get("runner"), logging={"enabled": False}, inventory={ "plugin": "nautobot-inventory", "options": { "credentials_class": NORNIR_SETTINGS.get("credentials"), "params": NORNIR_SETTINGS.get("inventory_params"), "queryset": get_job_filter(data), "defaults": {"now": now}, }, }, ) as nornir_obj: nr_with_processors = nornir_obj.with_processors([ProcessGoldenConfig(logger)]) # Run the Nornir Tasks nr_with_processors.run( task=run_template, name="RENDER CONFIG", logger=logger, global_settings=global_settings, job_result=job_result, jinja_root_path=jinja_root_path, intended_root_folder=intended_root_folder, ) except Exception as err: logger.log_failure(None, err) raise ``` #### File: nautobot-plugin-golden-config/nautobot_golden_config/tables.py ```python import copy from django.utils.html import format_html from django_tables2 import Column, LinkColumn, TemplateColumn from django_tables2.utils import A from nautobot.dcim.models import Device from nautobot.utilities.tables import ( BaseTable, ToggleColumn, ) from nautobot_golden_config import models from nautobot_golden_config.utilities.constant import ENABLE_BACKUP, ENABLE_COMPLIANCE, ENABLE_INTENDED, CONFIG_FEATURES ALL_ACTIONS = """ {% if backup == True %} {% if record.configcompliance_set.first.rule.config_type == 'json' %} <i class="mdi mdi-circle-small"></i> {% else %} {% if record.goldenconfig_set.first.backup_config %} <a value="{% url 'plugins:nautobot_golden_config:configcompliance_details' pk=record.pk config_type='backup' %}" class="openBtn" data-href="{% url 'plugins:nautobot_golden_config:configcompliance_details' pk=record.pk config_type='backup' %}?modal=true"> <i class="mdi mdi-file-document-outline" title="Backup Configuration"></i> </a> {% else %} <i class="mdi mdi-circle-small"></i> {% endif %} {% endif %} {% endif %} {% if intended == True %} {% if record.configcompliance_set.first.rule.config_type == 'json' %} <i class="mdi mdi-circle-small"></i> {% else %} {% if record.goldenconfig_set.first.intended_config %} <a value="{% url 'plugins:nautobot_golden_config:configcompliance_details' pk=record.pk config_type='intended' %}" class="openBtn" data-href="{% url 'plugins:nautobot_golden_config:configcompliance_details' pk=record.pk config_type='intended' %}?modal=true"> <i class="mdi mdi-text-box-check-outline" title="Intended Configuration"></i> </a> {% else %} <i class="mdi mdi-circle-small"></i> {% endif %} {% endif %} {% endif %} {% if compliance == True %} {% if record.configcompliance_set.first.rule.config_type == 'json' %} <a value="{% url 'plugins:nautobot_golden_config:configcompliance_details' pk=record.pk config_type='json_compliance' %}" class="openBtn" data-href="{% url 'plugins:nautobot_golden_config:configcompliance_details' pk=record.pk config_type='json_compliance' %}?modal=true"> <i class="mdi mdi-file-compare" title="Compliance Details JSON"></i> </a> {% else %} {% if record.goldenconfig_set.first.compliance_config %} <a value="{% url 'plugins:nautobot_golden_config:configcompliance_details' pk=record.pk config_type='compliance' %}" class="openBtn" data-href="{% url 'plugins:nautobot_golden_config:configcompliance_details' pk=record.pk config_type='compliance' %}?modal=true"> <i class="mdi mdi-file-compare" title="Compliance Details"></i> </a> {% else %} <i class="mdi mdi-circle-small"></i> {% endif %} {% endif %} {% endif %} {% if sotagg == True %} <a value="{% url 'plugins:nautobot_golden_config:configcompliance_details' pk=record.pk config_type='sotagg' %}" class="openBtn" data-href="{% url 'plugins:nautobot_golden_config:configcompliance_details' pk=record.pk config_type='sotagg' %}?modal=true"> <i class="mdi mdi-code-json" title="SOT Aggregate Data"></i> </a> {% if record.configcompliance_set.first.rule.config_type == 'json' %} <i class="mdi mdi-circle-small"></i> {% else %} <a href="{% url 'extras:job' class_path='plugins/nautobot_golden_config.jobs/AllGoldenConfig' %}?device={{ record.pk }}" <span class="text-primary"> <i class="mdi mdi-play-circle" title="Execute All Golden Config Jobs"></i> </span> </a> {% endif %} {% endif %} """ MATCH_CONFIG = """{{ record.match_config|linebreaksbr }}""" def actual_fields(): """Convienance function to conditionally toggle columns.""" active_fields = ["pk", "name"] if ENABLE_BACKUP: active_fields.append("backup_last_success_date") if ENABLE_INTENDED: active_fields.append("intended_last_success_date") if ENABLE_COMPLIANCE: active_fields.append("compliance_last_success_date") active_fields.append("actions") return tuple(active_fields) # # Columns # class PercentageColumn(Column): """Column used to display percentage.""" def render(self, value): """Render percentage value.""" return f"{value} %" class ComplianceColumn(Column): """Column used to display config compliance status (True/False/None).""" def render(self, value): """Render an entry in this column.""" if value == 1: # pylint: disable=no-else-return return format_html('<span class="text-success"><i class="mdi mdi-check-bold"></i></span>') elif value == 0: return format_html('<span class="text-danger"><i class="mdi mdi-close-thick"></i></span>') else: # value is None return format_html('<span class="mdi mdi-minus"></span>') # # Tables # # ConfigCompliance class ConfigComplianceTable(BaseTable): """Table for rendering a listing of Device entries and their associated ConfigCompliance record status.""" pk = ToggleColumn(accessor=A("device")) device = TemplateColumn( template_code="""<a href="{% url 'plugins:nautobot_golden_config:configcompliance_devicedetail' pk=record.device %}" <strong>{{ record.device__name }}</strong></a> """ ) def __init__(self, *args, **kwargs): """Override default values to dynamically add columns.""" # Used ConfigCompliance.objects on purpose, vs queryset (set in args[0]), as there were issues with that as # well as not as expected from user standpoint (e.g. not always the same values on columns depending on # filtering) features = list( models.ConfigCompliance.objects.order_by("rule__feature__name") .values_list("rule__feature__name", flat=True) .distinct() ) extra_columns = [(feature, ComplianceColumn(verbose_name=feature)) for feature in features] kwargs["extra_columns"] = extra_columns # Nautobot's BaseTable.configurable_columns() only recognizes columns in self.base_columns, # so override the class's base_columns to include our additional columns as configurable. self.base_columns = copy.deepcopy(self.base_columns) for feature, column in extra_columns: self.base_columns[feature] = column super().__init__(*args, **kwargs) class Meta(BaseTable.Meta): """Metaclass attributes of ConfigComplianceTable.""" model = models.ConfigCompliance fields = ( "pk", "device", ) # All other fields (ConfigCompliance names) are constructed dynamically at instantiation time - see views.py class ConfigComplianceGlobalFeatureTable(BaseTable): """Table for feature compliance report.""" name = Column(accessor="rule__feature__slug", verbose_name="Feature") count = Column(accessor="count", verbose_name="Total") compliant = Column(accessor="compliant", verbose_name="Compliant") non_compliant = Column(accessor="non_compliant", verbose_name="Non-Compliant") comp_percent = PercentageColumn(accessor="comp_percent", verbose_name="Compliance (%)") class Meta(BaseTable.Meta): """Metaclass attributes of ConfigComplianceGlobalFeatureTable.""" model = models.ConfigCompliance fields = ["name", "count", "compliant", "non_compliant", "comp_percent"] default_columns = [ "name", "count", "compliant", "non_compliant", "comp_percent", ] class ConfigComplianceDeleteTable(BaseTable): """Table for device compliance report.""" feature = Column(accessor="rule__feature__name", verbose_name="Feature") class Meta(BaseTable.Meta): """Metaclass attributes of ConfigComplianceDeleteTable.""" device = Column(accessor="device__name", verbose_name="Device Name") compliance = Column(accessor="compliance", verbose_name="Compliance") model = models.ConfigCompliance fields = ("device", "feature", "compliance") class DeleteGoldenConfigTable(BaseTable): """ Table used in bulk delete confirmation. This is required since there model is different when deleting the record compared to when viewing the records initially via Device. """ pk = ToggleColumn() def __init__(self, *args, **kwargs): """Remove all fields from showing except device .""" super().__init__(*args, **kwargs) for feature in list(self.base_columns.keys()): # pylint: disable=no-member if feature not in ["pk", "device"]: self.base_columns.pop(feature) # pylint: disable=no-member self.sequence.remove(feature) class Meta(BaseTable.Meta): """Meta for class DeleteGoldenConfigTable.""" model = models.GoldenConfig # GoldenConfig class GoldenConfigTable(BaseTable): """Table to display Config Management Status.""" def __init__(self, *args, **kwargs): """Remove custom field columns from showing.""" super().__init__(*args, **kwargs) for feature in list(self.base_columns.keys()): # pylint: disable=no-member if feature.startswith("cf_"): self.base_columns.pop(feature) # pylint: disable=no-member self.sequence.remove(feature) pk = ToggleColumn() name = TemplateColumn( template_code="""<a href="{% url 'dcim:device' pk=record.pk %}">{{ record.name }}</a>""", verbose_name="Device", ) if ENABLE_BACKUP: backup_last_success_date = Column( verbose_name="Backup Status", empty_values=(), order_by="goldenconfig__backup_last_success_date" ) if ENABLE_INTENDED: intended_last_success_date = Column( verbose_name="Intended Status", empty_values=(), order_by="goldenconfig__intended_last_success_date" ) if ENABLE_COMPLIANCE: compliance_last_success_date = Column( verbose_name="Compliance Status", empty_values=(), order_by="goldenconfig__compliance_last_success_date" ) actions = TemplateColumn( template_code=ALL_ACTIONS, verbose_name="Actions", extra_context=CONFIG_FEATURES, orderable=False ) def _render_last_success_date(self, record, column, value): # pylint: disable=no-self-use """Abstract method to get last success per row record.""" entry = record.goldenconfig_set.first() last_success_date = getattr(entry, f"{value}_last_success_date", None) last_attempt_date = getattr(entry, f"{value}_last_attempt_date", None) if not last_success_date or not last_attempt_date: column.attrs = {"td": {"style": "color:black"}} return "--" if not last_success_date and not last_attempt_date: column.attrs = {"td": {"style": "color:black"}} return "--" if last_success_date and last_attempt_date == last_success_date: column.attrs = {"td": {"style": "color:green"}} return last_success_date column.attrs = {"td": {"style": "color:red"}} return last_success_date def render_backup_last_success_date(self, record, column): # pylint: disable=no-self-use """Pull back backup last success per row record.""" return self._render_last_success_date(record, column, "backup") def render_intended_last_success_date(self, record, column): # pylint: disable=no-self-use """Pull back intended last success per row record.""" return self._render_last_success_date(record, column, "intended") def render_compliance_last_success_date(self, record, column): # pylint: disable=no-self-use """Pull back compliance last success per row record.""" return self._render_last_success_date(record, column, "compliance") class Meta(BaseTable.Meta): """Meta for class GoldenConfigTable.""" model = Device fields = actual_fields() # ComplianceFeature class ComplianceFeatureTable(BaseTable): """Table to display Compliance Features.""" pk = ToggleColumn() name = LinkColumn("plugins:nautobot_golden_config:compliancefeature", args=[A("pk")]) class Meta(BaseTable.Meta): """Table to display Compliance Features Meta Data.""" model = models.ComplianceFeature fields = ("pk", "name", "slug", "description") default_columns = ("pk", "name", "slug", "description") # ComplianceRule class ComplianceRuleTable(BaseTable): """Table to display Compliance Rules.""" pk = ToggleColumn() feature = LinkColumn("plugins:nautobot_golden_config:compliancerule", args=[A("pk")]) match_config = TemplateColumn(template_code=MATCH_CONFIG) class Meta(BaseTable.Meta): """Table to display Compliance Rules Meta Data.""" model = models.ComplianceRule fields = ("pk", "feature", "platform", "description", "config_ordered", "match_config", "config_type") default_columns = ("pk", "feature", "platform", "description", "config_ordered", "match_config", "config_type") # ConfigRemove class ConfigRemoveTable(BaseTable): """Table to display Compliance Rules.""" pk = ToggleColumn() name = LinkColumn("plugins:nautobot_golden_config:configremove", args=[A("pk")]) class Meta(BaseTable.Meta): """Table to display Compliance Rules Meta Data.""" model = models.ConfigRemove fields = ("pk", "name", "platform", "description", "regex") default_columns = ("pk", "name", "platform", "description", "regex") # ConfigReplace class ConfigReplaceTable(BaseTable): """Table to display Compliance Rules.""" pk = ToggleColumn() name = LinkColumn("plugins:nautobot_golden_config:configreplace", args=[A("pk")]) class Meta(BaseTable.Meta): """Table to display Compliance Rules Meta Data.""" model = models.ConfigReplace fields = ("pk", "name", "platform", "description", "regex", "replace") default_columns = ("pk", "name", "platform", "description", "regex", "replace") ```
{ "source": "jmcgover/bots", "score": 3 }
#### File: bots/beerdescriber/json_to_txt.py ```python import sys import os import json def main(): data = None with open("bad_beers.json", 'r') as file: data = json.load(file) list = [] list.extend(data["bad_beers"]) with open("bad_beers.txt", 'w') as outfile: for i in list: print(i, file=outfile) return 0 if __name__ == "__main__": rtn = main() sys.exit(rtn) ``` #### File: bots/logios/hyphenate.py ```python import re __version__ = '1.0.20070709' class Hyphenator: def __init__(self, patterns, exceptions=''): self.tree = {} for pattern in patterns.split(): self._insert_pattern(pattern) self.exceptions = {} for ex in exceptions.split(): # Convert the hyphenated pattern into a point array for use later. self.exceptions[ex.replace('-', '')] = [0] + [ int(h == '-') for h in re.split(r"[a-z]", ex) ] def _insert_pattern(self, pattern): # Convert the a pattern like 'a1bc3d4' into a string of chars 'abcd' # and a list of points [ 0, 1, 0, 3, 4 ]. chars = re.sub('[0-9]', '', pattern) points = [ int(d or 0) for d in re.split("[.a-z]", pattern) ] # Insert the pattern into the tree. Each character finds a dict # another level down in the tree, and leaf nodes have the list of # points. t = self.tree for c in chars: if c not in t: t[c] = {} t = t[c] t[None] = points def hyphenate_word(self, word): """ Given a word, returns a list of pieces, broken at the possible hyphenation points. """ # Short words aren't hyphenated. if len(word) <= 4: return [word] # If the word is an exception, get the stored points. if word.lower() in self.exceptions: points = self.exceptions[word.lower()] else: work = '.' + word.lower() + '.' points = [0] * (len(work)+1) for i in range(len(work)): t = self.tree for c in work[i:]: if c in t: t = t[c] if None in t: p = t[None] for j in range(len(p)): points[i+j] = max(points[i+j], p[j]) else: break # No hyphens in the first two chars or the last two. points[1] = points[2] = points[-2] = points[-3] = 0 # Examine the points to build the pieces list. pieces = [''] for c, p in zip(word, points[2:]): pieces[-1] += c if p % 2: pieces.append('') return pieces patterns = ( # Knuth and Liang's original hyphenation patterns from classic TeX. # In the public domain. """ .ach4 .ad4der .af1t .al3t .am5at .an5c .ang4 .ani5m .ant4 .an3te .anti5s .ar5s .ar4tie .ar4ty .as3c .as1p .as1s .aster5 .atom5 .au1d .av4i .awn4 .ba4g .ba5na .bas4e .ber4 .be5ra .be3sm .be5sto .bri2 .but4ti .cam4pe .can5c .capa5b .car5ol .ca4t .ce4la .ch4 .chill5i .ci2 .cit5r .co3e .co4r .cor5ner .de4moi .de3o .de3ra .de3ri .des4c .dictio5 .do4t .du4c .dumb5 .earth5 .eas3i .eb4 .eer4 .eg2 .el5d .el3em .enam3 .en3g .en3s .eq5ui5t .er4ri .es3 .eu3 .eye5 .fes3 .for5mer .ga2 .ge2 .gen3t4 .ge5og .gi5a .gi4b .go4r .hand5i .han5k .he2 .hero5i .hes3 .het3 .hi3b .hi3er .hon5ey .hon3o .hov5 .id4l .idol3 .im3m .im5pin .in1 .in3ci .ine2 .in2k .in3s .ir5r .is4i .ju3r .la4cy .la4m .lat5er .lath5 .le2 .leg5e .len4 .lep5 .lev1 .li4g .lig5a .li2n .li3o .li4t .mag5a5 .mal5o .man5a .mar5ti .me2 .mer3c .me5ter .mis1 .mist5i .mon3e .mo3ro .mu5ta .muta5b .ni4c .od2 .odd5 .of5te .or5ato .or3c .or1d .or3t .os3 .os4tl .oth3 .out3 .ped5al .pe5te .pe5tit .pi4e .pio5n .pi2t .pre3m .ra4c .ran4t .ratio5na .ree2 .re5mit .res2 .re5stat .ri4g .rit5u .ro4q .ros5t .row5d .ru4d .sci3e .self5 .sell5 .se2n .se5rie .sh2 .si2 .sing4 .st4 .sta5bl .sy2 .ta4 .te4 .ten5an .th2 .ti2 .til4 .tim5o5 .ting4 .tin5k .ton4a .to4p .top5i .tou5s .trib5ut .un1a .un3ce .under5 .un1e .un5k .un5o .un3u .up3 .ure3 .us5a .ven4de .ve5ra .wil5i .ye4 4ab. a5bal a5ban abe2 ab5erd abi5a ab5it5ab ab5lat ab5o5liz 4abr ab5rog ab3ul a4car ac5ard ac5aro a5ceou ac1er a5chet 4a2ci a3cie ac1in a3cio ac5rob act5if ac3ul ac4um a2d ad4din ad5er. 2adi a3dia ad3ica adi4er a3dio a3dit a5diu ad4le ad3ow ad5ran ad4su 4adu a3duc ad5um ae4r aeri4e a2f aff4 a4gab aga4n ag5ell age4o 4ageu ag1i 4ag4l ag1n a2go 3agog ag3oni a5guer ag5ul a4gy a3ha a3he ah4l a3ho ai2 a5ia a3ic. ai5ly a4i4n ain5in ain5o ait5en a1j ak1en al5ab al3ad a4lar 4aldi 2ale al3end a4lenti a5le5o al1i al4ia. ali4e al5lev 4allic 4alm a5log. a4ly. 4alys 5a5lyst 5alyt 3alyz 4ama am5ab am3ag ama5ra am5asc a4matis a4m5ato am5era am3ic am5if am5ily am1in ami4no a2mo a5mon amor5i amp5en a2n an3age 3analy a3nar an3arc anar4i a3nati 4and ande4s an3dis an1dl an4dow a5nee a3nen an5est. a3neu 2ang ang5ie an1gl a4n1ic a3nies an3i3f an4ime a5nimi a5nine an3io a3nip an3ish an3it a3niu an4kli 5anniz ano4 an5ot anoth5 an2sa an4sco an4sn an2sp ans3po an4st an4sur antal4 an4tie 4anto an2tr an4tw an3ua an3ul a5nur 4ao apar4 ap5at ap5ero a3pher 4aphi a4pilla ap5illar ap3in ap3ita a3pitu a2pl apoc5 ap5ola apor5i apos3t aps5es a3pu aque5 2a2r ar3act a5rade ar5adis ar3al a5ramete aran4g ara3p ar4at a5ratio ar5ativ a5rau ar5av4 araw4 arbal4 ar4chan ar5dine ar4dr ar5eas a3ree ar3ent a5ress ar4fi ar4fl ar1i ar5ial ar3ian a3riet ar4im ar5inat ar3io ar2iz ar2mi ar5o5d a5roni a3roo ar2p ar3q arre4 ar4sa ar2sh 4as. as4ab as3ant ashi4 a5sia. a3sib a3sic 5a5si4t ask3i as4l a4soc as5ph as4sh as3ten as1tr asur5a a2ta at3abl at5ac at3alo at5ap ate5c at5ech at3ego at3en. at3era ater5n a5terna at3est at5ev 4ath ath5em a5then at4ho ath5om 4ati. a5tia at5i5b at1ic at3if ation5ar at3itu a4tog a2tom at5omiz a4top a4tos a1tr at5rop at4sk at4tag at5te at4th a2tu at5ua at5ue at3ul at3ura a2ty au4b augh3 au3gu au4l2 aun5d au3r au5sib aut5en au1th a2va av3ag a5van ave4no av3era av5ern av5ery av1i avi4er av3ig av5oc a1vor 3away aw3i aw4ly aws4 ax4ic ax4id ay5al aye4 ays4 azi4er azz5i 5ba. bad5ger ba4ge bal1a ban5dag ban4e ban3i barbi5 bari4a bas4si 1bat ba4z 2b1b b2be b3ber bbi4na 4b1d 4be. beak4 beat3 4be2d be3da be3de be3di be3gi be5gu 1bel be1li be3lo 4be5m be5nig be5nu 4bes4 be3sp be5str 3bet bet5iz be5tr be3tw be3w be5yo 2bf 4b3h bi2b bi4d 3bie bi5en bi4er 2b3if 1bil bi3liz bina5r4 bin4d bi5net bi3ogr bi5ou bi2t 3bi3tio bi3tr 3bit5ua b5itz b1j bk4 b2l2 blath5 b4le. blen4 5blesp b3lis b4lo blun4t 4b1m 4b3n bne5g 3bod bod3i bo4e bol3ic bom4bi bon4a bon5at 3boo 5bor. 4b1ora bor5d 5bore 5bori 5bos4 b5ota both5 bo4to bound3 4bp 4brit broth3 2b5s2 bsor4 2bt bt4l b4to b3tr buf4fer bu4ga bu3li bumi4 bu4n bunt4i bu3re bus5ie buss4e 5bust 4buta 3butio b5uto b1v 4b5w 5by. bys4 1ca cab3in ca1bl cach4 ca5den 4cag4 2c5ah ca3lat cal4la call5in 4calo can5d can4e can4ic can5is can3iz can4ty cany4 ca5per car5om cast5er cas5tig 4casy ca4th 4cativ cav5al c3c ccha5 cci4a ccompa5 ccon4 ccou3t 2ce. 4ced. 4ceden 3cei 5cel. 3cell 1cen 3cenc 2cen4e 4ceni 3cent 3cep ce5ram 4cesa 3cessi ces5si5b ces5t cet4 c5e4ta cew4 2ch 4ch. 4ch3ab 5chanic ch5a5nis che2 cheap3 4ched che5lo 3chemi ch5ene ch3er. ch3ers 4ch1in 5chine. ch5iness 5chini 5chio 3chit chi2z 3cho2 ch4ti 1ci 3cia ci2a5b cia5r ci5c 4cier 5cific. 4cii ci4la 3cili 2cim 2cin c4ina 3cinat cin3em c1ing c5ing. 5cino cion4 4cipe ci3ph 4cipic 4cista 4cisti 2c1it cit3iz 5ciz ck1 ck3i 1c4l4 4clar c5laratio 5clare cle4m 4clic clim4 cly4 c5n 1co co5ag coe2 2cog co4gr coi4 co3inc col5i 5colo col3or com5er con4a c4one con3g con5t co3pa cop3ic co4pl 4corb coro3n cos4e cov1 cove4 cow5a coz5e co5zi c1q cras5t 5crat. 5cratic cre3at 5cred 4c3reta cre4v cri2 cri5f c4rin cris4 5criti cro4pl crop5o cros4e cru4d 4c3s2 2c1t cta4b ct5ang c5tant c2te c3ter c4ticu ctim3i ctu4r c4tw cud5 c4uf c4ui cu5ity 5culi cul4tis 3cultu cu2ma c3ume cu4mi 3cun cu3pi cu5py cur5a4b cu5ria 1cus cuss4i 3c4ut cu4tie 4c5utiv 4cutr 1cy cze4 1d2a 5da. 2d3a4b dach4 4daf 2dag da2m2 dan3g dard5 dark5 4dary 3dat 4dativ 4dato 5dav4 dav5e 5day d1b d5c d1d4 2de. deaf5 deb5it de4bon decan4 de4cil de5com 2d1ed 4dee. de5if deli4e del5i5q de5lo d4em 5dem. 3demic dem5ic. de5mil de4mons demor5 1den de4nar de3no denti5f de3nu de1p de3pa depi4 de2pu d3eq d4erh 5derm dern5iz der5s des2 d2es. de1sc de2s5o des3ti de3str de4su de1t de2to de1v dev3il 4dey 4d1f d4ga d3ge4t dg1i d2gy d1h2 5di. 1d4i3a dia5b di4cam d4ice 3dict 3did 5di3en d1if di3ge di4lato d1in 1dina 3dine. 5dini di5niz 1dio dio5g di4pl dir2 di1re dirt5i dis1 5disi d4is3t d2iti 1di1v d1j d5k2 4d5la 3dle. 3dled 3dles. 4dless 2d3lo 4d5lu 2dly d1m 4d1n4 1do 3do. do5de 5doe 2d5of d4og do4la doli4 do5lor dom5iz do3nat doni4 doo3d dop4p d4or 3dos 4d5out do4v 3dox d1p 1dr drag5on 4drai dre4 drea5r 5dren dri4b dril4 dro4p 4drow 5drupli 4dry 2d1s2 ds4p d4sw d4sy d2th 1du d1u1a du2c d1uca duc5er 4duct. 4ducts du5el du4g d3ule dum4be du4n 4dup du4pe d1v d1w d2y 5dyn dy4se dys5p e1a4b e3act ead1 ead5ie ea4ge ea5ger ea4l eal5er eal3ou eam3er e5and ear3a ear4c ear5es ear4ic ear4il ear5k ear2t eart3e ea5sp e3ass east3 ea2t eat5en eath3i e5atif e4a3tu ea2v eav3en eav5i eav5o 2e1b e4bel. e4bels e4ben e4bit e3br e4cad ecan5c ecca5 e1ce ec5essa ec2i e4cib ec5ificat ec5ifie ec5ify ec3im eci4t e5cite e4clam e4clus e2col e4comm e4compe e4conc e2cor ec3ora eco5ro e1cr e4crem ec4tan ec4te e1cu e4cul ec3ula 2e2da 4ed3d e4d1er ede4s 4edi e3dia ed3ib ed3ica ed3im ed1it edi5z 4edo e4dol edon2 e4dri e4dul ed5ulo ee2c eed3i ee2f eel3i ee4ly ee2m ee4na ee4p1 ee2s4 eest4 ee4ty e5ex e1f e4f3ere 1eff e4fic 5efici efil4 e3fine ef5i5nite 3efit efor5es e4fuse. 4egal eger4 eg5ib eg4ic eg5ing e5git5 eg5n e4go. e4gos eg1ul e5gur 5egy e1h4 eher4 ei2 e5ic ei5d eig2 ei5gl e3imb e3inf e1ing e5inst eir4d eit3e ei3th e5ity e1j e4jud ej5udi eki4n ek4la e1la e4la. e4lac elan4d el5ativ e4law elaxa4 e3lea el5ebra 5elec e4led el3ega e5len e4l1er e1les el2f el2i e3libe e4l5ic. el3ica e3lier el5igib e5lim e4l3ing e3lio e2lis el5ish e3liv3 4ella el4lab ello4 e5loc el5og el3op. el2sh el4ta e5lud el5ug e4mac e4mag e5man em5ana em5b e1me e2mel e4met em3ica emi4e em5igra em1in2 em5ine em3i3ni e4mis em5ish e5miss em3iz 5emniz emo4g emoni5o em3pi e4mul em5ula emu3n e3my en5amo e4nant ench4er en3dic e5nea e5nee en3em en5ero en5esi en5est en3etr e3new en5ics e5nie e5nil e3nio en3ish en3it e5niu 5eniz 4enn 4eno eno4g e4nos en3ov en4sw ent5age 4enthes en3ua en5uf e3ny. 4en3z e5of eo2g e4oi4 e3ol eop3ar e1or eo3re eo5rol eos4 e4ot eo4to e5out e5ow e2pa e3pai ep5anc e5pel e3pent ep5etitio ephe4 e4pli e1po e4prec ep5reca e4pred ep3reh e3pro e4prob ep4sh ep5ti5b e4put ep5uta e1q equi3l e4q3ui3s er1a era4b 4erand er3ar 4erati. 2erb er4bl er3ch er4che 2ere. e3real ere5co ere3in er5el. er3emo er5ena er5ence 4erene er3ent ere4q er5ess er3est eret4 er1h er1i e1ria4 5erick e3rien eri4er er3ine e1rio 4erit er4iu eri4v e4riva er3m4 er4nis 4ernit 5erniz er3no 2ero er5ob e5roc ero4r er1ou er1s er3set ert3er 4ertl er3tw 4eru eru4t 5erwau e1s4a e4sage. e4sages es2c e2sca es5can e3scr es5cu e1s2e e2sec es5ecr es5enc e4sert. e4serts e4serva 4esh e3sha esh5en e1si e2sic e2sid es5iden es5igna e2s5im es4i4n esis4te esi4u e5skin es4mi e2sol es3olu e2son es5ona e1sp es3per es5pira es4pre 2ess es4si4b estan4 es3tig es5tim 4es2to e3ston 2estr e5stro estruc5 e2sur es5urr es4w eta4b eten4d e3teo ethod3 et1ic e5tide etin4 eti4no e5tir e5titio et5itiv 4etn et5ona e3tra e3tre et3ric et5rif et3rog et5ros et3ua et5ym et5z 4eu e5un e3up eu3ro eus4 eute4 euti5l eu5tr eva2p5 e2vas ev5ast e5vea ev3ell evel3o e5veng even4i ev1er e5verb e1vi ev3id evi4l e4vin evi4v e5voc e5vu e1wa e4wag e5wee e3wh ewil5 ew3ing e3wit 1exp 5eyc 5eye. eys4 1fa fa3bl fab3r fa4ce 4fag fain4 fall5e 4fa4ma fam5is 5far far5th fa3ta fa3the 4fato fault5 4f5b 4fd 4fe. feas4 feath3 fe4b 4feca 5fect 2fed fe3li fe4mo fen2d fend5e fer1 5ferr fev4 4f1f f4fes f4fie f5fin. f2f5is f4fly f2fy 4fh 1fi fi3a 2f3ic. 4f3ical f3ican 4ficate f3icen fi3cer fic4i 5ficia 5ficie 4fics fi3cu fi5del fight5 fil5i fill5in 4fily 2fin 5fina fin2d5 fi2ne f1in3g fin4n fis4ti f4l2 f5less flin4 flo3re f2ly5 4fm 4fn 1fo 5fon fon4de fon4t fo2r fo5rat for5ay fore5t for4i fort5a fos5 4f5p fra4t f5rea fres5c fri2 fril4 frol5 2f3s 2ft f4to f2ty 3fu fu5el 4fug fu4min fu5ne fu3ri fusi4 fus4s 4futa 1fy 1ga gaf4 5gal. 3gali ga3lo 2gam ga5met g5amo gan5is ga3niz gani5za 4gano gar5n4 gass4 gath3 4gativ 4gaz g3b gd4 2ge. 2ged geez4 gel4in ge5lis ge5liz 4gely 1gen ge4nat ge5niz 4geno 4geny 1geo ge3om g4ery 5gesi geth5 4geto ge4ty ge4v 4g1g2 g2ge g3ger gglu5 ggo4 gh3in gh5out gh4to 5gi. 1gi4a gia5r g1ic 5gicia g4ico gien5 5gies. gil4 g3imen 3g4in. gin5ge 5g4ins 5gio 3gir gir4l g3isl gi4u 5giv 3giz gl2 gla4 glad5i 5glas 1gle gli4b g3lig 3glo glo3r g1m g4my gn4a g4na. gnet4t g1ni g2nin g4nio g1no g4non 1go 3go. gob5 5goe 3g4o4g go3is gon2 4g3o3na gondo5 go3ni 5goo go5riz gor5ou 5gos. gov1 g3p 1gr 4grada g4rai gran2 5graph. g5rapher 5graphic 4graphy 4gray gre4n 4gress. 4grit g4ro gruf4 gs2 g5ste gth3 gu4a 3guard 2gue 5gui5t 3gun 3gus 4gu4t g3w 1gy 2g5y3n gy5ra h3ab4l hach4 hae4m hae4t h5agu ha3la hala3m ha4m han4ci han4cy 5hand. han4g hang5er hang5o h5a5niz han4k han4te hap3l hap5t ha3ran ha5ras har2d hard3e har4le harp5en har5ter has5s haun4 5haz haz3a h1b 1head 3hear he4can h5ecat h4ed he5do5 he3l4i hel4lis hel4ly h5elo hem4p he2n hena4 hen5at heo5r hep5 h4era hera3p her4ba here5a h3ern h5erou h3ery h1es he2s5p he4t het4ed heu4 h1f h1h hi5an hi4co high5 h4il2 himer4 h4ina hion4e hi4p hir4l hi3ro hir4p hir4r his3el his4s hith5er hi2v 4hk 4h1l4 hlan4 h2lo hlo3ri 4h1m hmet4 2h1n h5odiz h5ods ho4g hoge4 hol5ar 3hol4e ho4ma home3 hon4a ho5ny 3hood hoon4 hor5at ho5ris hort3e ho5ru hos4e ho5sen hos1p 1hous house3 hov5el 4h5p 4hr4 hree5 hro5niz hro3po 4h1s2 h4sh h4tar ht1en ht5es h4ty hu4g hu4min hun5ke hun4t hus3t4 hu4t h1w h4wart hy3pe hy3ph hy2s 2i1a i2al iam4 iam5ete i2an 4ianc ian3i 4ian4t ia5pe iass4 i4ativ ia4tric i4atu ibe4 ib3era ib5ert ib5ia ib3in ib5it. ib5ite i1bl ib3li i5bo i1br i2b5ri i5bun 4icam 5icap 4icar i4car. i4cara icas5 i4cay iccu4 4iceo 4ich 2ici i5cid ic5ina i2cip ic3ipa i4cly i2c5oc 4i1cr 5icra i4cry ic4te ictu2 ic4t3ua ic3ula ic4um ic5uo i3cur 2id i4dai id5anc id5d ide3al ide4s i2di id5ian idi4ar i5die id3io idi5ou id1it id5iu i3dle i4dom id3ow i4dr i2du id5uo 2ie4 ied4e 5ie5ga ield3 ien5a4 ien4e i5enn i3enti i1er. i3esc i1est i3et 4if. if5ero iff5en if4fr 4ific. i3fie i3fl 4ift 2ig iga5b ig3era ight3i 4igi i3gib ig3il ig3in ig3it i4g4l i2go ig3or ig5ot i5gre igu5i ig1ur i3h 4i5i4 i3j 4ik i1la il3a4b i4lade i2l5am ila5ra i3leg il1er ilev4 il5f il1i il3ia il2ib il3io il4ist 2ilit il2iz ill5ab 4iln il3oq il4ty il5ur il3v i4mag im3age ima5ry imenta5r 4imet im1i im5ida imi5le i5mini 4imit im4ni i3mon i2mu im3ula 2in. i4n3au 4inav incel4 in3cer 4ind in5dling 2ine i3nee iner4ar i5ness 4inga 4inge in5gen 4ingi in5gling 4ingo 4ingu 2ini i5ni. i4nia in3io in1is i5nite. 5initio in3ity 4ink 4inl 2inn 2i1no i4no4c ino4s i4not 2ins in3se insur5a 2int. 2in4th in1u i5nus 4iny 2io 4io. ioge4 io2gr i1ol io4m ion3at ion4ery ion3i io5ph ior3i i4os io5th i5oti io4to i4our 2ip ipe4 iphras4 ip3i ip4ic ip4re4 ip3ul i3qua iq5uef iq3uid iq3ui3t 4ir i1ra ira4b i4rac ird5e ire4de i4ref i4rel4 i4res ir5gi ir1i iri5de ir4is iri3tu 5i5r2iz ir4min iro4g 5iron. ir5ul 2is. is5ag is3ar isas5 2is1c is3ch 4ise is3er 3isf is5han is3hon ish5op is3ib isi4d i5sis is5itiv 4is4k islan4 4isms i2so iso5mer is1p is2pi is4py 4is1s is4sal issen4 is4ses is4ta. is1te is1ti ist4ly 4istral i2su is5us 4ita. ita4bi i4tag 4ita5m i3tan i3tat 2ite it3era i5teri it4es 2ith i1ti 4itia 4i2tic it3ica 5i5tick it3ig it5ill i2tim 2itio 4itis i4tism i2t5o5m 4iton i4tram it5ry 4itt it3uat i5tud it3ul 4itz. i1u 2iv iv3ell iv3en. i4v3er. i4vers. iv5il. iv5io iv1it i5vore iv3o3ro i4v3ot 4i5w ix4o 4iy 4izar izi4 5izont 5ja jac4q ja4p 1je jer5s 4jestie 4jesty jew3 jo4p 5judg 3ka. k3ab k5ag kais4 kal4 k1b k2ed 1kee ke4g ke5li k3en4d k1er kes4 k3est. ke4ty k3f kh4 k1i 5ki. 5k2ic k4ill kilo5 k4im k4in. kin4de k5iness kin4g ki4p kis4 k5ish kk4 k1l 4kley 4kly k1m k5nes 1k2no ko5r kosh4 k3ou kro5n 4k1s2 k4sc ks4l k4sy k5t k1w lab3ic l4abo laci4 l4ade la3dy lag4n lam3o 3land lan4dl lan5et lan4te lar4g lar3i las4e la5tan 4lateli 4lativ 4lav la4v4a 2l1b lbin4 4l1c2 lce4 l3ci 2ld l2de ld4ere ld4eri ldi4 ld5is l3dr l4dri le2a le4bi left5 5leg. 5legg le4mat lem5atic 4len. 3lenc 5lene. 1lent le3ph le4pr lera5b ler4e 3lerg 3l4eri l4ero les2 le5sco 5lesq 3less 5less. l3eva lev4er. lev4era lev4ers 3ley 4leye 2lf l5fr 4l1g4 l5ga lgar3 l4ges lgo3 2l3h li4ag li2am liar5iz li4as li4ato li5bi 5licio li4cor 4lics 4lict. l4icu l3icy l3ida lid5er 3lidi lif3er l4iff li4fl 5ligate 3ligh li4gra 3lik 4l4i4l lim4bl lim3i li4mo l4im4p l4ina 1l4ine lin3ea lin3i link5er li5og 4l4iq lis4p l1it l2it. 5litica l5i5tics liv3er l1iz 4lj lka3 l3kal lka4t l1l l4law l2le l5lea l3lec l3leg l3lel l3le4n l3le4t ll2i l2lin4 l5lina ll4o lloqui5 ll5out l5low 2lm l5met lm3ing l4mod lmon4 2l1n2 3lo. lob5al lo4ci 4lof 3logic l5ogo 3logu lom3er 5long lon4i l3o3niz lood5 5lope. lop3i l3opm lora4 lo4rato lo5rie lor5ou 5los. los5et 5losophiz 5losophy los4t lo4ta loun5d 2lout 4lov 2lp lpa5b l3pha l5phi lp5ing l3pit l4pl l5pr 4l1r 2l1s2 l4sc l2se l4sie 4lt lt5ag ltane5 l1te lten4 ltera4 lth3i l5ties. ltis4 l1tr ltu2 ltur3a lu5a lu3br luch4 lu3ci lu3en luf4 lu5id lu4ma 5lumi l5umn. 5lumnia lu3o luo3r 4lup luss4 lus3te 1lut l5ven l5vet4 2l1w 1ly 4lya 4lyb ly5me ly3no 2lys4 l5yse 1ma 2mab ma2ca ma5chine ma4cl mag5in 5magn 2mah maid5 4mald ma3lig ma5lin mal4li mal4ty 5mania man5is man3iz 4map ma5rine. ma5riz mar4ly mar3v ma5sce mas4e mas1t 5mate math3 ma3tis 4matiza 4m1b mba4t5 m5bil m4b3ing mbi4v 4m5c 4me. 2med 4med. 5media me3die m5e5dy me2g mel5on mel4t me2m mem1o3 1men men4a men5ac men4de 4mene men4i mens4 mensu5 3ment men4te me5on m5ersa 2mes 3mesti me4ta met3al me1te me5thi m4etr 5metric me5trie me3try me4v 4m1f 2mh 5mi. mi3a mid4a mid4g mig4 3milia m5i5lie m4ill min4a 3mind m5inee m4ingl min5gli m5ingly min4t m4inu miot4 m2is mis4er. mis5l mis4ti m5istry 4mith m2iz 4mk 4m1l m1m mma5ry 4m1n mn4a m4nin mn4o 1mo 4mocr 5mocratiz mo2d1 mo4go mois2 moi5se 4mok mo5lest mo3me mon5et mon5ge moni3a mon4ism mon4ist mo3niz monol4 mo3ny. mo2r 4mora. mos2 mo5sey mo3sp moth3 m5ouf 3mous mo2v 4m1p mpara5 mpa5rab mpar5i m3pet mphas4 m2pi mpi4a mp5ies m4p1in m5pir mp5is mpo3ri mpos5ite m4pous mpov5 mp4tr m2py 4m3r 4m1s2 m4sh m5si 4mt 1mu mula5r4 5mult multi3 3mum mun2 4mup mu4u 4mw 1na 2n1a2b n4abu 4nac. na4ca n5act nag5er. nak4 na4li na5lia 4nalt na5mit n2an nanci4 nan4it nank4 nar3c 4nare nar3i nar4l n5arm n4as nas4c nas5ti n2at na3tal nato5miz n2au nau3se 3naut nav4e 4n1b4 ncar5 n4ces. n3cha n5cheo n5chil n3chis nc1in nc4it ncour5a n1cr n1cu n4dai n5dan n1de nd5est. ndi4b n5d2if n1dit n3diz n5duc ndu4r nd2we 2ne. n3ear ne2b neb3u ne2c 5neck 2ned ne4gat neg5ativ 5nege ne4la nel5iz ne5mi ne4mo 1nen 4nene 3neo ne4po ne2q n1er nera5b n4erar n2ere n4er5i ner4r 1nes 2nes. 4nesp 2nest 4nesw 3netic ne4v n5eve ne4w n3f n4gab n3gel nge4n4e n5gere n3geri ng5ha n3gib ng1in n5git n4gla ngov4 ng5sh n1gu n4gum n2gy 4n1h4 nha4 nhab3 nhe4 3n4ia ni3an ni4ap ni3ba ni4bl ni4d ni5di ni4er ni2fi ni5ficat n5igr nik4 n1im ni3miz n1in 5nine. nin4g ni4o 5nis. nis4ta n2it n4ith 3nitio n3itor ni3tr n1j 4nk2 n5kero n3ket nk3in n1kl 4n1l n5m nme4 nmet4 4n1n2 nne4 nni3al nni4v nob4l no3ble n5ocl 4n3o2d 3noe 4nog noge4 nois5i no5l4i 5nologis 3nomic n5o5miz no4mo no3my no4n non4ag non5i n5oniz 4nop 5nop5o5li nor5ab no4rary 4nosc nos4e nos5t no5ta 1nou 3noun nov3el3 nowl3 n1p4 npi4 npre4c n1q n1r nru4 2n1s2 ns5ab nsati4 ns4c n2se n4s3es nsid1 nsig4 n2sl ns3m n4soc ns4pe n5spi nsta5bl n1t nta4b nter3s nt2i n5tib nti4er nti2f n3tine n4t3ing nti4p ntrol5li nt4s ntu3me nu1a nu4d nu5en nuf4fe n3uin 3nu3it n4um nu1me n5umi 3nu4n n3uo nu3tr n1v2 n1w4 nym4 nyp4 4nz n3za 4oa oad3 o5a5les oard3 oas4e oast5e oat5i ob3a3b o5bar obe4l o1bi o2bin ob5ing o3br ob3ul o1ce och4 o3chet ocif3 o4cil o4clam o4cod oc3rac oc5ratiz ocre3 5ocrit octor5a oc3ula o5cure od5ded od3ic odi3o o2do4 odor3 od5uct. od5ucts o4el o5eng o3er oe4ta o3ev o2fi of5ite ofit4t o2g5a5r og5ativ o4gato o1ge o5gene o5geo o4ger o3gie 1o1gis og3it o4gl o5g2ly 3ogniz o4gro ogu5i 1ogy 2ogyn o1h2 ohab5 oi2 oic3es oi3der oiff4 oig4 oi5let o3ing oint5er o5ism oi5son oist5en oi3ter o5j 2ok o3ken ok5ie o1la o4lan olass4 ol2d old1e ol3er o3lesc o3let ol4fi ol2i o3lia o3lice ol5id. o3li4f o5lil ol3ing o5lio o5lis. ol3ish o5lite o5litio o5liv olli4e ol5ogiz olo4r ol5pl ol2t ol3ub ol3ume ol3un o5lus ol2v o2ly om5ah oma5l om5atiz om2be om4bl o2me om3ena om5erse o4met om5etry o3mia om3ic. om3ica o5mid om1in o5mini 5ommend omo4ge o4mon om3pi ompro5 o2n on1a on4ac o3nan on1c 3oncil 2ond on5do o3nen on5est on4gu on1ic o3nio on1is o5niu on3key on4odi on3omy on3s onspi4 onspir5a onsu4 onten4 on3t4i ontif5 on5um onva5 oo2 ood5e ood5i oo4k oop3i o3ord oost5 o2pa ope5d op1er 3opera 4operag 2oph o5phan o5pher op3ing o3pit o5pon o4posi o1pr op1u opy5 o1q o1ra o5ra. o4r3ag or5aliz or5ange ore5a o5real or3ei ore5sh or5est. orew4 or4gu 4o5ria or3ica o5ril or1in o1rio or3ity o3riu or2mi orn2e o5rof or3oug or5pe 3orrh or4se ors5en orst4 or3thi or3thy or4ty o5rum o1ry os3al os2c os4ce o3scop 4oscopi o5scr os4i4e os5itiv os3ito os3ity osi4u os4l o2so os4pa os4po os2ta o5stati os5til os5tit o4tan otele4g ot3er. ot5ers o4tes 4oth oth5esi oth3i4 ot3ic. ot5ica o3tice o3tif o3tis oto5s ou2 ou3bl ouch5i ou5et ou4l ounc5er oun2d ou5v ov4en over4ne over3s ov4ert o3vis oviti4 o5v4ol ow3der ow3el ow5est ow1i own5i o4wo oy1a 1pa pa4ca pa4ce pac4t p4ad 5pagan p3agat p4ai pain4 p4al pan4a pan3el pan4ty pa3ny pa1p pa4pu para5bl par5age par5di 3pare par5el p4a4ri par4is pa2te pa5ter 5pathic pa5thy pa4tric pav4 3pay 4p1b pd4 4pe. 3pe4a pear4l pe2c 2p2ed 3pede 3pedi pedia4 ped4ic p4ee pee4d pek4 pe4la peli4e pe4nan p4enc pen4th pe5on p4era. pera5bl p4erag p4eri peri5st per4mal perme5 p4ern per3o per3ti pe5ru per1v pe2t pe5ten pe5tiz 4pf 4pg 4ph. phar5i phe3no ph4er ph4es. ph1ic 5phie ph5ing 5phisti 3phiz ph2l 3phob 3phone 5phoni pho4r 4phs ph3t 5phu 1phy pi3a pian4 pi4cie pi4cy p4id p5ida pi3de 5pidi 3piec pi3en pi4grap pi3lo pi2n p4in. pind4 p4ino 3pi1o pion4 p3ith pi5tha pi2tu 2p3k2 1p2l2 3plan plas5t pli3a pli5er 4plig pli4n ploi4 plu4m plum4b 4p1m 2p3n po4c 5pod. po5em po3et5 5po4g poin2 5point poly5t po4ni po4p 1p4or po4ry 1pos pos1s p4ot po4ta 5poun 4p1p ppa5ra p2pe p4ped p5pel p3pen p3per p3pet ppo5site pr2 pray4e 5preci pre5co pre3em pref5ac pre4la pre3r p3rese 3press pre5ten pre3v 5pri4e prin4t3 pri4s pris3o p3roca prof5it pro3l pros3e pro1t 2p1s2 p2se ps4h p4sib 2p1t pt5a4b p2te p2th pti3m ptu4r p4tw pub3 pue4 puf4 pul3c pu4m pu2n pur4r 5pus pu2t 5pute put3er pu3tr put4ted put4tin p3w qu2 qua5v 2que. 3quer 3quet 2rab ra3bi rach4e r5acl raf5fi raf4t r2ai ra4lo ram3et r2ami rane5o ran4ge r4ani ra5no rap3er 3raphy rar5c rare4 rar5ef 4raril r2as ration4 rau4t ra5vai rav3el ra5zie r1b r4bab r4bag rbi2 rbi4f r2bin r5bine rb5ing. rb4o r1c r2ce rcen4 r3cha rch4er r4ci4b rc4it rcum3 r4dal rd2i rdi4a rdi4er rdin4 rd3ing 2re. re1al re3an re5arr 5reav re4aw r5ebrat rec5oll rec5ompe re4cre 2r2ed re1de re3dis red5it re4fac re2fe re5fer. re3fi re4fy reg3is re5it re1li re5lu r4en4ta ren4te re1o re5pin re4posi re1pu r1er4 r4eri rero4 re5ru r4es. re4spi ress5ib res2t re5stal re3str re4ter re4ti4z re3tri reu2 re5uti rev2 re4val rev3el r5ev5er. re5vers re5vert re5vil rev5olu re4wh r1f rfu4 r4fy rg2 rg3er r3get r3gic rgi4n rg3ing r5gis r5git r1gl rgo4n r3gu rh4 4rh. 4rhal ri3a ria4b ri4ag r4ib rib3a ric5as r4ice 4rici 5ricid ri4cie r4ico rid5er ri3enc ri3ent ri1er ri5et rig5an 5rigi ril3iz 5riman rim5i 3rimo rim4pe r2ina 5rina. rin4d rin4e rin4g ri1o 5riph riph5e ri2pl rip5lic r4iq r2is r4is. ris4c r3ish ris4p ri3ta3b r5ited. rit5er. rit5ers rit3ic ri2tu rit5ur riv5el riv3et riv3i r3j r3ket rk4le rk4lin r1l rle4 r2led r4lig r4lis rl5ish r3lo4 r1m rma5c r2me r3men rm5ers rm3ing r4ming. r4mio r3mit r4my r4nar r3nel r4ner r5net r3ney r5nic r1nis4 r3nit r3niv rno4 r4nou r3nu rob3l r2oc ro3cr ro4e ro1fe ro5fil rok2 ro5ker 5role. rom5ete rom4i rom4p ron4al ron4e ro5n4is ron4ta 1room 5root ro3pel rop3ic ror3i ro5ro ros5per ros4s ro4the ro4ty ro4va rov5el rox5 r1p r4pea r5pent rp5er. r3pet rp4h4 rp3ing r3po r1r4 rre4c rre4f r4reo rre4st rri4o rri4v rron4 rros4 rrys4 4rs2 r1sa rsa5ti rs4c r2se r3sec rse4cr rs5er. rs3es rse5v2 r1sh r5sha r1si r4si4b rson3 r1sp r5sw rtach4 r4tag r3teb rten4d rte5o r1ti rt5ib rti4d r4tier r3tig rtil3i rtil4l r4tily r4tist r4tiv r3tri rtroph4 rt4sh ru3a ru3e4l ru3en ru4gl ru3in rum3pl ru2n runk5 run4ty r5usc ruti5n rv4e rvel4i r3ven rv5er. r5vest r3vey r3vic rvi4v r3vo r1w ry4c 5rynge ry3t sa2 2s1ab 5sack sac3ri s3act 5sai salar4 sal4m sa5lo sal4t 3sanc san4de s1ap sa5ta 5sa3tio sat3u sau4 sa5vor 5saw 4s5b scan4t5 sca4p scav5 s4ced 4scei s4ces sch2 s4cho 3s4cie 5scin4d scle5 s4cli scof4 4scopy scour5a s1cu 4s5d 4se. se4a seas4 sea5w se2c3o 3sect 4s4ed se4d4e s5edl se2g seg3r 5sei se1le 5self 5selv 4seme se4mol sen5at 4senc sen4d s5ened sen5g s5enin 4sentd 4sentl sep3a3 4s1er. s4erl ser4o 4servo s1e4s se5sh ses5t 5se5um 5sev sev3en sew4i 5sex 4s3f 2s3g s2h 2sh. sh1er 5shev sh1in sh3io 3ship shiv5 sho4 sh5old shon3 shor4 short5 4shw si1b s5icc 3side. 5sides 5sidi si5diz 4signa sil4e 4sily 2s1in s2ina 5sine. s3ing 1sio 5sion sion5a si2r sir5a 1sis 3sitio 5siu 1siv 5siz sk2 4ske s3ket sk5ine sk5ing s1l2 s3lat s2le slith5 2s1m s3ma small3 sman3 smel4 s5men 5smith smol5d4 s1n4 1so so4ce soft3 so4lab sol3d2 so3lic 5solv 3som 3s4on. sona4 son4g s4op 5sophic s5ophiz s5ophy sor5c sor5d 4sov so5vi 2spa 5spai spa4n spen4d 2s5peo 2sper s2phe 3spher spho5 spil4 sp5ing 4spio s4ply s4pon spor4 4spot squal4l s1r 2ss s1sa ssas3 s2s5c s3sel s5seng s4ses. s5set s1si s4sie ssi4er ss5ily s4sl ss4li s4sn sspend4 ss2t ssur5a ss5w 2st. s2tag s2tal stam4i 5stand s4ta4p 5stat. s4ted stern5i s5tero ste2w stew5a s3the st2i s4ti. s5tia s1tic 5stick s4tie s3tif st3ing 5stir s1tle 5stock stom3a 5stone s4top 3store st4r s4trad 5stratu s4tray s4trid 4stry 4st3w s2ty 1su su1al su4b3 su2g3 su5is suit3 s4ul su2m sum3i su2n su2r 4sv sw2 4swo s4y 4syc 3syl syn5o sy5rin 1ta 3ta. 2tab ta5bles 5taboliz 4taci ta5do 4taf4 tai5lo ta2l ta5la tal5en tal3i 4talk tal4lis ta5log ta5mo tan4de tanta3 ta5per ta5pl tar4a 4tarc 4tare ta3riz tas4e ta5sy 4tatic ta4tur taun4 tav4 2taw tax4is 2t1b 4tc t4ch tch5et 4t1d 4te. tead4i 4teat tece4 5tect 2t1ed te5di 1tee teg4 te5ger te5gi 3tel. teli4 5tels te2ma2 tem3at 3tenan 3tenc 3tend 4tenes 1tent ten4tag 1teo te4p te5pe ter3c 5ter3d 1teri ter5ies ter3is teri5za 5ternit ter5v 4tes. 4tess t3ess. teth5e 3teu 3tex 4tey 2t1f 4t1g 2th. than4 th2e 4thea th3eas the5at the3is 3thet th5ic. th5ica 4thil 5think 4thl th5ode 5thodic 4thoo thor5it tho5riz 2ths 1tia ti4ab ti4ato 2ti2b 4tick t4ico t4ic1u 5tidi 3tien tif2 ti5fy 2tig 5tigu till5in 1tim 4timp tim5ul 2t1in t2ina 3tine. 3tini 1tio ti5oc tion5ee 5tiq ti3sa 3tise tis4m ti5so tis4p 5tistica ti3tl ti4u 1tiv tiv4a 1tiz ti3za ti3zen 2tl t5la tlan4 3tle. 3tled 3tles. t5let. t5lo 4t1m tme4 2t1n2 1to to3b to5crat 4todo 2tof to2gr to5ic to2ma tom4b to3my ton4ali to3nat 4tono 4tony to2ra to3rie tor5iz tos2 5tour 4tout to3war 4t1p 1tra tra3b tra5ch traci4 trac4it trac4te tras4 tra5ven trav5es5 tre5f tre4m trem5i 5tria tri5ces 5tricia 4trics 2trim tri4v tro5mi tron5i 4trony tro5phe tro3sp tro3v tru5i trus4 4t1s2 t4sc tsh4 t4sw 4t3t2 t4tes t5to ttu4 1tu tu1a tu3ar tu4bi tud2 4tue 4tuf4 5tu3i 3tum tu4nis 2t3up. 3ture 5turi tur3is tur5o tu5ry 3tus 4tv tw4 4t1wa twis4 4two 1ty 4tya 2tyl type3 ty5ph 4tz tz4e 4uab uac4 ua5na uan4i uar5ant uar2d uar3i uar3t u1at uav4 ub4e u4bel u3ber u4bero u1b4i u4b5ing u3ble. u3ca uci4b uc4it ucle3 u3cr u3cu u4cy ud5d ud3er ud5est udev4 u1dic ud3ied ud3ies ud5is u5dit u4don ud4si u4du u4ene uens4 uen4te uer4il 3ufa u3fl ugh3en ug5in 2ui2 uil5iz ui4n u1ing uir4m uita4 uiv3 uiv4er. u5j 4uk u1la ula5b u5lati ulch4 5ulche ul3der ul4e u1len ul4gi ul2i u5lia ul3ing ul5ish ul4lar ul4li4b ul4lis 4ul3m u1l4o 4uls uls5es ul1ti ultra3 4ultu u3lu ul5ul ul5v um5ab um4bi um4bly u1mi u4m3ing umor5o um2p unat4 u2ne un4er u1ni un4im u2nin un5ish uni3v un3s4 un4sw unt3ab un4ter. un4tes unu4 un5y un5z u4ors u5os u1ou u1pe uper5s u5pia up3ing u3pl up3p upport5 upt5ib uptu4 u1ra 4ura. u4rag u4ras ur4be urc4 ur1d ure5at ur4fer ur4fr u3rif uri4fic ur1in u3rio u1rit ur3iz ur2l url5ing. ur4no uros4 ur4pe ur4pi urs5er ur5tes ur3the urti4 ur4tie u3ru 2us u5sad u5san us4ap usc2 us3ci use5a u5sia u3sic us4lin us1p us5sl us5tere us1tr u2su usur4 uta4b u3tat 4ute. 4utel 4uten uten4i 4u1t2i uti5liz u3tine ut3ing ution5a u4tis 5u5tiz u4t1l ut5of uto5g uto5matic u5ton u4tou uts4 u3u uu4m u1v2 uxu3 uz4e 1va 5va. 2v1a4b vac5il vac3u vag4 va4ge va5lie val5o val1u va5mo va5niz va5pi var5ied 3vat 4ve. 4ved veg3 v3el. vel3li ve4lo v4ely ven3om v5enue v4erd 5vere. v4erel v3eren ver5enc v4eres ver3ie vermi4n 3verse ver3th v4e2s 4ves. ves4te ve4te vet3er ve4ty vi5ali 5vian 5vide. 5vided 4v3iden 5vides 5vidi v3if vi5gn vik4 2vil 5vilit v3i3liz v1in 4vi4na v2inc vin5d 4ving vio3l v3io4r vi1ou vi4p vi5ro vis3it vi3so vi3su 4viti vit3r 4vity 3viv 5vo. voi4 3vok vo4la v5ole 5volt 3volv vom5i vor5ab vori4 vo4ry vo4ta 4votee 4vv4 v4y w5abl 2wac wa5ger wag5o wait5 w5al. wam4 war4t was4t wa1te wa5ver w1b wea5rie weath3 wed4n weet3 wee5v wel4l w1er west3 w3ev whi4 wi2 wil2 will5in win4de win4g wir4 3wise with3 wiz5 w4k wl4es wl3in w4no 1wo2 wom1 wo5ven w5p wra4 wri4 writa4 w3sh ws4l ws4pe w5s4t 4wt wy4 x1a xac5e x4ago xam3 x4ap xas5 x3c2 x1e xe4cuto x2ed xer4i xe5ro x1h xhi2 xhil5 xhu4 x3i xi5a xi5c xi5di x4ime xi5miz x3o x4ob x3p xpan4d xpecto5 xpe3d x1t2 x3ti x1u xu3a xx4 y5ac 3yar4 y5at y1b y1c y2ce yc5er y3ch ych4e ycom4 ycot4 y1d y5ee y1er y4erf yes4 ye4t y5gi 4y3h y1i y3la ylla5bl y3lo y5lu ymbol5 yme4 ympa3 yn3chr yn5d yn5g yn5ic 5ynx y1o4 yo5d y4o5g yom4 yo5net y4ons y4os y4ped yper5 yp3i y3po y4poc yp2ta y5pu yra5m yr5ia y3ro yr4r ys4c y3s2e ys3ica ys3io 3ysis y4so yss4 ys1t ys3ta ysur4 y3thin yt3ic y1w za1 z5a2b zar2 4zb 2ze ze4n ze4p z1er ze3ro zet4 2z1i z4il z4is 5zl 4zm 1zo zo4m zo5ol zte4 4z1z2 z4zy """ # Extra patterns, from ushyphmax.tex, dated 2005-05-30. # Copyright (C) 1990, 2004, 2005 <NAME>. # Copying and distribution of this file, with or without modification, # are permitted in any medium without royalty provided the copyright # notice and this notice are preserved. # # These patterns are based on the Hyphenation Exception Log # published in TUGboat, Volume 10 (1989), No. 3, pp. 337-341, # and a large number of incorrectly hyphenated words not yet published. """ .con5gr .de5riva .dri5v4 .eth1y6l1 .eu4ler .ev2 .ever5si5b .ga4s1om1 .ge4ome .ge5ot1 .he3mo1 .he3p6a .he3roe .in5u2t .kil2n3i .ko6r1te1 .le6ices .me4ga1l .met4ala .mim5i2c1 .mi1s4ers .ne6o3f .noe1th .non1e2m .poly1s .post1am .pre1am .rav5en1o .semi5 .sem4ic .semid6 .semip4 .semir4 .sem6is4 .semiv4 .sph6in1 .spin1o .ta5pes1tr .te3legr .to6pog .to2q .un3at5t .un5err5 .vi2c3ar .we2b1l .re1e4c a5bolic a2cabl af6fish am1en3ta5b anal6ys ano5a2c ans5gr ans3v anti1d an3ti1n2 anti1re a4pe5able ar3che5t ar2range as5ymptot ath3er1o1s at6tes. augh4tl au5li5f av3iou back2er. ba6r1onie ba1thy bbi4t be2vie bi5d2if bil2lab bio5m bi1orb bio1rh b1i3tive blan2d1 blin2d1 blon2d2 bor1no5 bo2t1u1l brus4q bus6i2er bus6i2es buss4ing but2ed. but4ted cad5e1m cat1a1s2 4chs. chs3hu chie5vo cig3a3r cin2q cle4ar co6ph1o3n cous2ti cri3tie croc1o1d cro5e2co c2tro3me6c 1cu2r1ance 2d3alone data1b dd5a5b d2d5ib de4als. de5clar1 de2c5lina de3fin3iti de2mos des3ic de2tic dic1aid dif5fra 3di1methy di2ren di2rer 2d1lead 2d1li2e 3do5word dren1a5l drif2t1a d1ri3pleg5 drom3e5d d3tab du2al. du1op1o1l ea4n3ies e3chas edg1l ed1uling eli2t1is e1loa en1dix eo3grap 1e6p3i3neph1 e2r3i4an. e3spac6i eth1y6l1ene 5eu2clid1 feb1rua fermi1o 3fich fit5ted. fla1g6el flow2er. 3fluor gen2cy. ge3o1d ght1we g1lead get2ic. 4g1lish 5glo5bin 1g2nac gnet1ism gno5mo g2n1or. g2noresp 2g1o4n3i1za graph5er. griev1 g1utan hair1s ha2p3ar5r hatch1 hex2a3 hite3sid h3i5pel1a4 hnau3z ho6r1ic. h2t1eou hypo1tha id4ios ifac1et ign4it ignit1er i4jk im3ped3a infra1s2 i5nitely. irre6v3oc i1tesima ith5i2l itin5er5ar janu3a japan1e2s je1re1m 1ke6ling 1ki5netic 1kovian k3sha la4c3i5e lai6n3ess lar5ce1n l3chai l3chil6d1 lead6er. lea4s1a 1lec3ta6b le3g6en2dre 1le1noid lith1o5g ll1fl l2l3ish l5mo3nell lo1bot1o1 lo2ges. load4ed. load6er. l3tea lth5i2ly lue1p 1lunk3er 1lum5bia. 3lyg1a1mi ly5styr ma1la1p m2an. man3u1sc mar1gin1 medi2c med3i3cin medio6c1 me3gran3 m2en. 3mi3da5b 3milita mil2l1ag mil5li5li mi6n3is. mi1n2ut1er mi1n2ut1est m3ma1b 5maph1ro1 5moc1ra1t mo5e2las mol1e5c mon4ey1l mono3ch mo4no1en moro6n5is mono1s6 moth4et2 m1ou3sin m5shack2 mu2dro mul2ti5u n3ar4chs. n3ch2es1t ne3back 2ne1ski n1dieck nd3thr nfi6n3ites 4n5i4an. nge5nes ng1ho ng1spr nk3rup n5less 5noc3er1os nom1a6l nom5e1no n1o1mist non1eq non1i4so 5nop1oly. no1vemb ns5ceiv ns4moo ntre1p obli2g1 o3chas odel3li odit1ic oerst2 oke1st o3les3ter oli3gop1o1 o1lo3n4om o3mecha6 onom1ic o3norma o3no2t1o3n o3nou op1ism. or4tho3ni4t orth1ri or5tively o4s3pher o5test1er o5tes3tor oth3e1o1s ou3ba3do o6v3i4an. oxi6d1ic pal6mat parag6ra4 par4a1le param4 para3me pee2v1 phi2l3ant phi5lat1e3l pi2c1a3d pli2c1ab pli5nar poin3ca 1pole. poly1e po3lyph1ono 1prema3c pre1neu pres2pli pro2cess proc3i3ty. pro2g1e 3pseu2d pseu3d6o3d2 pseu3d6o3f2 pto3mat4 p5trol3 pu5bes5c quain2t1e qu6a3si3 quasir6 quasis6 quin5tes5s qui3v4ar r1abolic 3rab1o1loi ra3chu r3a3dig radi1o6g r2amen 3ra4m5e1triz ra3mou ra5n2has ra1or r3bin1ge re2c3i1pr rec5t6ang re4t1ribu r3ial. riv1o1l 6rk. rk1ho r1krau 6rks. r5le5qu ro1bot1 ro5e2las ro5epide1 ro3mesh ro1tron r3pau5li rse1rad1i r1thou r1treu r1veil rz1sc sales3c sales5w 5sa3par5il sca6p1er sca2t1ol s4chitz schro1ding1 1sci2utt scrap4er. scy4th1 sem1a1ph se3mes1t se1mi6t5ic sep3temb shoe1st sid2ed. side5st side5sw si5resid sky1sc 3slova1kia 3s2og1a1my so2lute 3s2pace 1s2pacin spe3cio spher1o spi2c1il spokes5w sports3c sports3w s3qui3to s2s1a3chu1 ss3hat s2s3i4an. s5sign5a3b 1s2tamp s2t1ant5shi star3tli sta1ti st5b 1stor1ab strat1a1g strib5ut st5scr stu1pi4d1 styl1is su2per1e6 1sync 1syth3i2 swimm6 5tab1o1lism ta3gon. talk1a5 t1a1min t6ap6ath 5tar2rh tch1c tch3i1er t1cr teach4er. tele2g tele1r6o 3ter1gei ter2ic. t3ess2es tha4l1am tho3don th1o5gen1i tho1k2er thy4l1an thy3sc 2t3i4an. ti2n3o1m t1li2er tolo2gy tot3ic trai3tor1 tra1vers travers3a3b treach1e tr4ial. 3tro1le1um trof4ic. tro3fit tro1p2is 3trop1o5les 3trop1o5lis t1ro1pol3it tsch3ie ttrib1ut1 turn3ar t1wh ty2p5al ua3drati uad1ratu u5do3ny uea1m u2r1al. uri4al. us2er. v1ativ v1oir5du1 va6guer vaude3v 1verely. v1er1eig ves1tite vi1vip3a3r voice1p waste3w6a2 wave1g4 w3c week1n wide5sp wo4k1en wrap3aro writ6er. x1q xquis3 y5che3d ym5e5try y1stro yes5ter1y z3ian. z3o1phr z2z3w """) exceptions = """ as-so-ciate as-so-ciates dec-li-na-tion oblig-a-tory phil-an-thropic present presents project projects reci-procity re-cog-ni-zance ref-or-ma-tion ret-ri-bu-tion ta-ble """ hyphenator = Hyphenator(patterns, exceptions) hyphenate_word = hyphenator.hyphenate_word del patterns del exceptions if __name__ == '__main__': import sys if len(sys.argv) > 1: for word in sys.argv[1:]: print '-'.join(hyphenate_word(word)) else: import doctest doctest.testmod(verbose=True) ``` #### File: bots/muellerreportbot/parse.py ```python import os import sys import errno import argparse import re from pprint import pprint import json #from nltk.tokenize import sent_tokenize # Logging import logging from logging import handlers LOGGER = logging.getLogger(__name__) SH = logging.StreamHandler() FH = logging.handlers.RotatingFileHandler("log.log", maxBytes=5 * 1000000, backupCount = 5) SH.setFormatter(logging.Formatter("%(asctime)s:%(levelname)s:%(message)s")) FH.setFormatter(logging.Formatter("%(asctime)s:%(lineno)s:%(funcName)s:%(levelname)s:%(message)s")) LOGGER.setLevel(logging.DEBUG) LOGGER.addHandler(SH) LOGGER.addHandler(FH) DEFAULT_FILENAME="MuellerReport.txt" DEFAULT_OUTPUT="cbdq.json" DEFAULT_REPLIES="replies.json" DESCRIPTION = """Parses the MuellerReport file into the appropriate data structures to enable text generation.""" def get_arg_parser(): parser = argparse.ArgumentParser(prog=sys.argv[0], description=DESCRIPTION) parser.add_argument("-f", "--filename", help = "file to parse (default is %s)" % DEFAULT_FILENAME) parser.add_argument("-o", "--output", help = "file to save the Cheap Bots Done Quick JSON to (default is %s)" % DEFAULT_OUTPUT) parser.add_argument("-r", "--replies", help = "file to save the Cheap Bots Done Quick JSON for replies to (default is %s)" % DEFAULT_REPLIES) parser.add_argument("-i", "--info", help = "set console logging output to INFO") parser.add_argument("-d", "--debug", help = "set console logging output to DEBUG") parser.set_defaults( filename = DEFAULT_FILENAME, output = DEFAULT_OUTPUT, replies = DEFAULT_REPLIES ) return parser def ngrams(doc, n=2): return ngrams def get_sents(doc): # Get the Harm To Whatever stuff as their own sentences capture_inbetween = re.sub(r"(?<!\.)\n{2,}", " ` ", doc) # Remove extra whitespace within doc_text = ' '.join(capture_inbetween.split()) # Create a list of sentences sent_split = re.split("((?<!(v|[A-Z]|[0-9]))(?<!(Mr|Ms|MR|MS|Jr|jr|Dr|dr|No))(?<!Mrs)(?<!et al)(?<!(Jan|Feb|Mar|Apr|Jun|Jul|Aug|Oct|Nov|Dec|Doc))[.?!`])(\"?)", doc_text) #sent_split = sent_tokenize(doc_text) # Filter out the empty garbage items non_empty = [s.strip() for s in sent_split if s and len(s.strip()) > 0]; print(non_empty) # Append the punctuation to the previous sentence punct_set = set(".?!") sents = [] if not non_empty: return None sents.append(non_empty[0]) for i in range(1,len(non_empty)): s = non_empty[i] assert(len(s) > 0) if s == "`": continue if s[0] in punct_set or s == '"': sents[-1] += s continue #s = s.replace("!","") sents.append(s) sents = [s.strip() for s in sents if len(s) > 3 or "bad" in s.lower()]; #sents = [s.strip() for s in sents if len(s)]; return sents def filter_replies(sents): replies = [] for s in sents: if 'BAD' in s: replies.append(s) continue if 'harm' in s.lower(): replies.append(s) continue if '?' in s: replies.append(s) continue if '...' in s: replies.append(s) continue return replies def replies_json_dict(sents): return {'.' : '#replies#'} def tracery_json_dict(sents): return {"origin" : sents, "replies" : filter_replies(sents)} def main(): parser = get_arg_parser() args = parser.parse_args() # Logging Information if args.info: SH.setLevel(logging.INFO) if args.debug: SH.setLevel(logging.DEBUG) # Open File LOGGER.info("Opening file at %s", args.filename) raw_doc = None try: with open(args.filename, 'r') as file: LOGGER.info("Opened %s" % args.filename) raw_doc = file.read() except IOError as e: LOGGER.error("Failed to open %s: %s" % (args.filename, e)) return e.errno # Format Doc LOGGER.info("Formatting Document"); sents = get_sents(raw_doc) num_too_long = 0 for i,s in enumerate(sents): print("SENTENCE %d: '%s'" % (i, s)) threshold = 6 if len(s) == threshold: print("WARNING: Exactly %d characters (%d): %s" % (len(s), len(s), s)) num_too_long += 1 #if len(s) > 280: # LOGGER.warning("Too many characters (%d): %s" % (len(s), s)) # num_too_long += 1 LOGGER.info("Sentences: %d" % len(sents)) LOGGER.info("Sentences too long: %s" % num_too_long) # Format sents for CPDQ LOGGER.info("Converting to Cheap Bots Done Quick JSON format") tracery_dict = tracery_json_dict(sents) LOGGER.info("Saving JSON to %s" % args.output) try: with open(args.output, 'w') as file: json.dump(tracery_dict, file, indent=4) except IOError as e: LOGGER.error("Failed to save to %s: %s" % (args.output, e)) return e.errno LOGGER.info("Saving replies JSON to %s" % args.replies) try: with open(args.replies, 'w') as file: json.dump(replies_json_dict(sents), file, indent=4) except IOError as e: LOGGER.error("Failed to save to %s: %s" % (args.output, e)) return e.errno return 0 if __name__ == "__main__": rtn = main() sys.exit(rtn) ```
{ "source": "jmcgroga/turicreate", "score": 2 }
#### File: turicreate/data_structures/gframe.py ```python from __future__ import print_function as _ from __future__ import division as _ from __future__ import absolute_import as _ from .sframe import SFrame from .._cython.context import debug_trace as cython_context from ..util import _is_non_string_iterable from .sarray import SArray, _create_sequential_sarray import copy VERTEX_GFRAME = 0 EDGE_GFRAME = 1 class GFrame(SFrame): """ GFrame is similar to SFrame but is associated with an SGraph. - GFrame can be obtained from either the `vertices` or `edges` attributed in any SGraph: >>> import turicreate >>> g = turicreate.load_sgraph(...) >>> vertices_gf = g.vertices >>> edges_gf = g.edges - GFrame has the same API as SFrame: >>> sa = vertices_gf['pagerank'] >>> # column lambda transform >>> vertices_gf['pagerank'] = vertices_gf['pagerank'].apply(lambda x: 0.15 + 0.85 * x) >>> # frame lambda transform >>> vertices_gf['score'] = vertices_gf.apply(lambda x: 0.2 * x['triangle_count'] + 0.8 * x['pagerank']) >>> del vertices_gf['pagerank'] - GFrame can be converted to SFrame: >>> # extract an SFrame >>> sf = vertices_gf.__to_sframe__() """ def __init__(self, graph, gframe_type): self.__type__ = gframe_type self.__graph__ = graph self.__sframe_cache__ = None self.__is_dirty__ = False def __to_sframe__(self): return copy.copy(self._get_cache()) # /**************************************************************************/ # /* */ # /* Modifiers */ # /* */ # /**************************************************************************/ def add_column(self, data, column_name="", inplace=False): """ Adds the specified column to this SFrame. The number of elements in the data given must match every other column of the SFrame. If inplace == False (default) this operation does not modify the current SFrame, returning a new SFrame. If inplace == True, this operation modifies the current SFrame, returning self. Parameters ---------- data : SArray The 'column' of data. column_name : string The name of the column. If no name is given, a default name is chosen. inplace : bool, optional. Defaults to False. Whether the SFrame is modified in place. """ # Check type for pandas dataframe or SArray? if not isinstance(data, SArray): raise TypeError("Must give column as SArray") if not isinstance(column_name, str): raise TypeError("Invalid column name: must be str") if inplace: self.__is_dirty__ = True with cython_context(): if self._is_vertex_frame(): graph_proxy = self.__graph__.__proxy__.add_vertex_field( data.__proxy__, column_name ) self.__graph__.__proxy__ = graph_proxy elif self._is_edge_frame(): graph_proxy = self.__graph__.__proxy__.add_edge_field( data.__proxy__, column_name ) self.__graph__.__proxy__ = graph_proxy return self else: return super(GFrame, self).add_column(data, column_name, inplace=inplace) def add_columns(self, data, column_names=None, inplace=False): """ Adds columns to the SFrame. The number of elements in all columns must match every other column of the SFrame. If inplace == False (default) this operation does not modify the current SFrame, returning a new SFrame. If inplace == True, this operation modifies the current SFrame, returning self. Parameters ---------- data : list[SArray] or SFrame The columns to add. column_names: list of string, optional A list of column names. All names must be specified. ``column_names`` is ignored if data is an SFrame. inplace : bool, optional. Defaults to False. Whether the SFrame is modified in place. """ datalist = data if isinstance(data, SFrame): other = data datalist = [other.select_column(name) for name in other.column_names()] column_names = other.column_names() my_columns = set(self.column_names()) for name in column_names: if name in my_columns: raise ValueError( "Column '" + name + "' already exists in current SFrame" ) else: if not _is_non_string_iterable(datalist): raise TypeError("datalist must be an iterable") if not _is_non_string_iterable(column_names): raise TypeError("column_names must be an iterable") if not all([isinstance(x, SArray) for x in datalist]): raise TypeError("Must give column as SArray") if not all([isinstance(x, str) for x in column_names]): raise TypeError("Invalid column name in list : must all be str") if inplace: for (data, name) in zip(datalist, column_names): self.add_column(data, name) return self else: return super(GFrame, self).add_column( datalist, column_names, inplace=inplace ) def remove_column(self, column_name, inplace=False): """ Removes the column with the given name from the SFrame. If inplace == False (default) this operation does not modify the current SFrame, returning a new SFrame. If inplace == True, this operation modifies the current SFrame, returning self. Parameters ---------- column_name : string The name of the column to remove. inplace : bool, optional. Defaults to False. Whether the SFrame is modified in place. """ if column_name not in self.column_names(): raise KeyError("Cannot find column %s" % column_name) if inplace: self.__is_dirty__ = True try: with cython_context(): if self._is_vertex_frame(): assert column_name != "__id", 'Cannot remove "__id" column' graph_proxy = self.__graph__.__proxy__.delete_vertex_field( column_name ) self.__graph__.__proxy__ = graph_proxy elif self._is_edge_frame(): assert ( column_name != "__src_id" ), 'Cannot remove "__src_id" column' assert ( column_name != "__dst_id" ), 'Cannot remove "__dst_id" column' graph_proxy = self.__graph__.__proxy__.delete_edge_field( column_name ) self.__graph__.__proxy__ = graph_proxy return self except: self.__is_dirty__ = False raise else: return super(GFrame, self).remove_column(column_name, inplace=inplace) def remove_columns(self, column_names, inplace=False): column_names = list(column_names) existing_columns = dict((k, i) for i, k in enumerate(self.column_names())) for name in column_names: if name not in existing_columns: raise KeyError("Cannot find column %s" % name) if inplace: for c in column_names: self.remove_column(c, inplace=True) else: return super(GFrame, self).remove_columns(column_names, inplace=inplace) def swap_columns(self, column_name_1, column_name_2, inplace=False): """ Swaps the columns with the given names. If inplace == False (default) this operation does not modify the current SFrame, returning a new SFrame. If inplace == True, this operation modifies the current SFrame, returning self. Parameters ---------- column_name_1 : string Name of column to swap column_name_2 : string Name of other column to swap inplace : bool, optional. Defaults to False. Whether the SFrame is modified in place. """ if inplace: self.__is_dirty__ = True with cython_context(): if self._is_vertex_frame(): graph_proxy = self.__graph__.__proxy__.swap_vertex_fields( column_name_1, column_name_2 ) self.__graph__.__proxy__ = graph_proxy elif self._is_edge_frame(): graph_proxy = self.__graph__.__proxy__.swap_edge_fields( column_name_1, column_name_2 ) self.__graph__.__proxy__ = graph_proxy return self else: return super(GFrame, self).swap_columns( column_name_1, column_name_2, inplace=inplace ) def rename(self, names, inplace=False): """ Rename the columns using the 'names' dict. This changes the names of the columns given as the keys and replaces them with the names given as the values. If inplace == False (default) this operation does not modify the current SFrame, returning a new SFrame. If inplace == True, this operation modifies the current SFrame, returning self. Parameters ---------- names : dict[string, string] Dictionary of [old_name, new_name] inplace : bool, optional. Defaults to False. Whether the SFrame is modified in place. """ if type(names) is not dict: raise TypeError("names must be a dictionary: oldname -> newname") if inplace: self.__is_dirty__ = True with cython_context(): if self._is_vertex_frame(): graph_proxy = self.__graph__.__proxy__.rename_vertex_fields( list(names.keys()), list(names.values()) ) self.__graph__.__proxy__ = graph_proxy elif self._is_edge_frame(): graph_proxy = self.__graph__.__proxy__.rename_edge_fields( list(names.keys()), list(names.values()) ) self.__graph__.__proxy__ = graph_proxy return self else: return super(GFrame, self).rename(names, inplace=inplace) def add_row_number(self, column_name="id", start=0, inplace=False): if type(column_name) is not str: raise TypeError("Must give column_name as str") if column_name in self.column_names(): raise RuntimeError("Column name %s already exists" % str(column_name)) if type(start) is not int: raise TypeError("Must give start as int") if inplace: the_col = _create_sequential_sarray(self.num_rows(), start) self[column_name] = the_col return self else: return super(GFrame, self).add_row_number( column_name=column_name, start=start, inplace=inplace ) def __setitem__(self, key, value): """ A wrapper around add_column(s). Key can be either a list or a str. If value is an SArray, it is added to the SFrame as a column. If it is a constant value (int, str, or float), then a column is created where every entry is equal to the constant value. Existing columns can also be replaced using this wrapper. """ if key in ["__id", "__src_id", "__dst_id"]: raise KeyError( "Cannot modify column %s. Changing __id column will\ change the graph structure" % key ) else: self.__is_dirty__ = True super(GFrame, self).__setitem__(key, value) # /**************************************************************************/ # /* */ # /* Read-only Accessor */ # /* */ # /**************************************************************************/ def num_rows(self): """ Returns the number of rows. Returns ------- out : int Number of rows in the SFrame. """ if self._is_vertex_frame(): return self.__graph__.summary()["num_vertices"] elif self._is_edge_frame(): return self.__graph__.summary()["num_edges"] def num_columns(self): """ Returns the number of columns. Returns ------- out : int Number of columns in the SFrame. """ return len(self.column_names()) def column_names(self): """ Returns the column names. Returns ------- out : list[string] Column names of the SFrame. """ if self._is_vertex_frame(): return self.__graph__.__proxy__.get_vertex_fields() elif self._is_edge_frame(): return self.__graph__.__proxy__.get_edge_fields() def column_types(self): """ Returns the column types. Returns ------- out : list[type] Column types of the SFrame. """ if self.__type__ == VERTEX_GFRAME: return self.__graph__.__proxy__.get_vertex_field_types() elif self.__type__ == EDGE_GFRAME: return self.__graph__.__proxy__.get_edge_field_types() # /**************************************************************************/ # /* */ # /* Internal Private Methods */ # /* */ # /**************************************************************************/ def _get_cache(self): if self.__sframe_cache__ is None or self.__is_dirty__: if self._is_vertex_frame(): self.__sframe_cache__ = self.__graph__.get_vertices() elif self._is_edge_frame(): self.__sframe_cache__ = self.__graph__.get_edges() else: raise TypeError self.__is_dirty__ = False return self.__sframe_cache__ def _is_vertex_frame(self): return self.__type__ == VERTEX_GFRAME def _is_edge_frame(self): return self.__type__ == EDGE_GFRAME @property def __proxy__(self): return self._get_cache().__proxy__ ```
{ "source": "jmcguinness11/StockPredictor", "score": 3 }
#### File: jmcguinness11/StockPredictor/create_tweet_classes.py ```python import collections import json import random refined_tweets = collections.defaultdict(list) #returns label for company and time def getLabel(ticker, month, day, hour): return random.randint(-1,1) #parses individual json file def parseJSON(data, month, day, hour): results = [] for tweet in data.itervalues(): text = tweet['text'] label = getLabel(tweet['company'], month, day, hour) results.append([text,label]) return results def loadData(months, days): hours = [10, 11, 12, 13, 14] minutes = [0, 15, 30, 45] output_data = [] for month in months: for day in days: for hour in hours: for minute in minutes: filename = 'tweets_{}_{}_{}_{}.dat'.format(month, day, hour, minute) with open(filename, 'r') as f: try: data = json.load(f) except ValueError as err: print filename exit(1) output_data += parseJSON(data, month, day, hour) f.close() print len(output_data) print output_data[0:10] return output_data def main(): days = [9,10,11,12,13,16,17] loadData([4], days) if __name__=='__main__': main() ```
{ "source": "jmcguire/effortless_bootstrap_web_form_monkey_patch", "score": 2 }
#### File: effortless_bootstrap_web_form_monkey_patch/tests/website.py ```python import web import os, sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import effortless_bootstrap_web_form_monkey_patch effortless_bootstrap_web_form_monkey_patch.patch() render = web.template.render('./') urls = ( '/', 'website', ) class website: # create a complex form form = web.form.Form( web.form.Textbox('a-textbox', web.form.notnull, description="textbox description"), web.form.Password('a-password', description="password description"), web.form.Textarea('a-textarea', description="textarea description"), web.form.Checkbox('a-checkbox', description="checkbox description", checked=False), web.form.Checkbox('another-checkbox', description="checkbox description", checked=True), web.form.Dropdown('a-dropdown', description="dropdown description", args=[('first', 'first value'), ('second', 'second value'), ('third', 'third value')], value='second'), web.form.Radio('a-radio', description="radio description", args=[('alpha', 'alpha value'), ('beta', 'beta value'), ('gamma', 'gamma value')], value='beta'), web.form.File('a-file', description="file upload description"), web.form.Hidden('a-hidden', description="this should be hidden"), web.form.Button('Submit your data'), ) def GET(self): form = self.form() return render.website(form) if __name__ == '__main__': app = web.application(urls, globals()) app.run() ```
{ "source": "jmcguire/jms", "score": 3 }
#### File: jms/jms/db.py ```python from flask import g from jms import app import sqlite3 __all__ = ['get_db'] # connect to db def get_db(): """return the db connection, create it if it doesn't exist yet""" db = getattr(g, 'db', None) if db is None: db = g.db = sqlite3.connect('sqlite3.db') db.row_factory = sqlite3.Row return db def init_if_empty(force=False): """if the database is empty, initialize it""" db = get_db() cursor = db.cursor() cursor.execute("SELECT count(*) FROM sqlite_master WHERE type='table' AND name='posts';") row = cursor.fetchone() cursor.close() if force or row[0] == 0: print "database is empty, initializing it..." with open(app.config['DB_INIT'], 'r') as f: try: db.executescript(f.read()) except: print "...failed to initialize database" db.rollback() raise else: print "...success!" db.commit() else: print "using existing database" @app.teardown_appcontext def close_db(error): if hasattr(g, 'db'): g.db.close() ```
{ "source": "jmcguire/learning", "score": 4 }
#### File: algorithms/misc/best_time_to_sell.py ```python def max_profit(prices): """get the maximum profit from buying and selling stock""" max_profit = None lowest_price = None highest_price = None for price in prices: print "checking ", price # if we have a new lowest price, grab it and reset out highest if not lowest_price or price < lowest_price: lowest_price = price highest_price = None print "\tnew lowest_price ", price # if we have a new highest, grab it and calculate the profit elif not highest_price or price > highest_price: highest_price = price profit = highest_price - lowest_price print "\tnew highest_price ", price print "\tpossible profit ", profit # check for a new max_profit if not max_profit or max_profit < profit: max_profit = profit print "\tnew max_profit ", profit return max_profit or 0 prices = [10, 5, 3, 7, 11, 1, 4] bad_prices = [5, 4, 3, 2, 1] profit = max_profit(prices) print "maximum profit: ", profit ``` #### File: learning/data_structures/binary_search_tree.py ```python class BinaryNode(object): """a single node in a binary search tree""" def __init__(self, e): self.e = e self.left = None self.right = None self.parent = None def add(self, e): """add the new element in the appropriate place""" if e < self.e: if self.left is not None: self.left.add(e) else: node = BinaryNode(e) node.parent = self self.left = node else: if self.right is not None: self.right.add(e) else: node = BinaryNode(e) node.parent = self self.right = node def find_furthest_right(self): if self.right: return self.right.find_furthest_right() else: return self def find_furthest_left(self): if self.left: return self.left.find_furthest_left() else: return self class BinarySearchTree(object): """mostly just holds the root node of a binary tree""" def __init__(self): self.root = None def add(self, new): if self.root is None: node = BinaryNode(new) self.root = node else: self.root.add(new) def __contains__(self, e): """a expressive alias for find()""" if self.find(e): return True else: return False def find(self, e): """return the node with e if it exists""" current = self.root while current is not None: if e == current.e: return current elif e < current.e: current = current.left elif e > current.e: current = current.right return False def rm(self, e): """remove the node with e, if it exists""" """ how to remove a node in a binary tree: we need three nodes: - parent: to_delete's parent - advance: to_delete's most rightmost node on it's left side (with no left children) - advance_parent: that node's parent if we're in the middle of a complicated tree, then we'll make three moves: 1. advance takes the place of to_delete 2. advance's right child is moved to advance_parent.left 3. to_delete's children are moved to advance """ to_delete = self.find(e) if not to_delete: raise Exception("error: can't remove, doesn't exist") parent = to_delete.parent # if there are no children, this will be easy if to_delete.left is None and to_delete.right is None: if parent is None: # it's a root node self.root = None elif parent.left == to_delete: parent.left = None elif parent.right == to_delete: parent.right = None else: raise Exception("parent doesn't think it's related to to_delete") return advance = None advance_parent = None # 2. find advance, and handle its child if to_delete.left is not None: advance = to_delete.left.find_furthest_right() advance_parent = advance.parent advance_parent.right = advance.left if advance.right: advance.right.parent = advance_parent.left elif to_delete.right is not None: advance = to_delete.right.find_furthest_left() advance_parent = advance.parent advance_parent.left = advance.right if advance.left: advance.left.parent = advance_parent.right else: raise Exception("to_delete suddenly has no children, but it did a minute ago") # 1. move advance to delete's spot advance.parent = to_delete.parent if parent is None: # we're a root node self.root = advance elif parent.left == to_delete: to_delete.parent.left = advance elif parent.right == to_delete: to_delete.parent.right = advance else: raise Exception("something has gone wrong") # 3. handle to_delete's children advance.left = to_delete.left advance.right = to_delete.right if to_delete.left: to_delete.left.parent = advance if to_delete.right: to_delete.right.parent = advance def show_all(self): """show all nodes, breadth-first""" nodes = [] nodes.append(self.root) while nodes: node = nodes.pop(0) # basically, shift. print "node:", node.e, if node.parent: print "(parent: %s)" % str(node.parent.e), if node.left: print "- left: ", node.left.e, nodes.append(node.left) if node.right: print "- right:", node.right.e, nodes.append(node.right) print def show_all_visual(self, depth=0, node=None): """show all nodes, nicely formatted, depth-first""" indent = " " * depth if node is None: node = self.root print "%s> %s" % (indent, node.e) if node.left: self.show_all_visual(depth+1, node.left) if node.right: self.show_all_visual(depth+1, node.right) # TODO def show_in_order(self): """left, current, right""" pass def show_post_order(self): """left, right, current""" pass def show_pre_order(self): """current, left, right""" pass def balance(self): pass ``` #### File: learning/data_structures/queue.py ```python from linked_list import LinkedList, Node class Queue(LinkedList): """a FIFO list""" # these two methods are just aliases for the regular LinkedList methods, but # are given the names we'd expect for a Queue def push_e(self, e): self.add_e(e) def push_node(self, node): self.add_node(node) def next_(self): """queues don't have a notion of next, the user only gets the first""" pass def shift(self): """return the first element of the list""" if self.size == 0: return None node = self.first self.first = node.next_ self.size -= 1 if self.is_empty(): self.current = None self.last = None return node ``` #### File: learning/data_structures/test_binary_search_tree.py ```python from binary_search_tree import BinarySearchTree from random import randint, shuffle def check_for(bt, e): if e in bt: print "%s was found" % e else: print "%s was not found" % e def load(bt): # a nicely balanced tree bt.add(10) bt.add(5) bt.add(2) bt.add(1) bt.add(4) bt.add(7) bt.add(6) bt.add(9) bt.add(15) bt.add(12) bt.add(11) bt.add(14) bt.add(17) bt.add(16) bt.add(19) # small tree if False: bt = BinarySearchTree() bt.add('a') bt.add('d') bt.add('e') bt.add('f') bt.add('b') bt.add('c') bt.show_all() bt.show_all_visual() for e in ['a','e','j']: check_for(bt,e) print # deleting if False: bt = BinarySearchTree() load(bt) bt.show_all_visual() print "\ndeleting leafless node 19" bt.rm(19) check_for(bt,19) bt.show_all_visual() print "\nreloading and deleting middle node 15" bt = BinarySearchTree() load(bt) bt.rm(15) bt.show_all_visual() print "\nreloading and deleting root node 10" bt = BinarySearchTree() load(bt) bt.rm(10) bt.show_all_visual() # big tree if False: bt2 = BinarySearchTree() # get ~100 distinct random numbers from 1 to 1000 random_number_hash = {} for i in range(0,100): random_number_hash[randint(0,1000)] = True random_numbers = [e for e in random_number_hash.keys()] shuffle(random_numbers) for e in random_numbers: bt2.add(e) bt2.show_all_visual() # huge tree if False: bt2 = BinarySearchTree() # get ~10,000 distinct random numbers from 1 to 10,000,000 random_number_hash = {} for i in range(0,10000): random_number_hash[randint(0,10000000)] = True random_numbers = [e for e in random_number_hash.keys()] shuffle(random_numbers) for e in random_numbers: bt2.add(e) # todo: look for one number ``` #### File: design_patterns/decorator/starbuzz_original.py ```python class Beverage(object): def __init__(self): self.milk = False self.soy = False self.mocha = False self.whip = False self.description = '' def get_description(self): return self.description def cost(self): cost = 0.89 if self.get_milk(): cost += 0.10 if self.get_soy(): cost += 0.15 if self.get_mocha(): cost += 0.20 if self.get_whip(): cost += 0.10 return cost def get_milk(self): return self.milk def get_soy(self): return self.soy def get_mocha(self): return self.mocha def get_whip(self): return self.whip def set_milk(self): self.milk = True def set_soy(self): self.soy = True def set_mocha(self): self.mocha = True def set_whip(self): self.whip = True # concrete classes class HouseBlend(Beverage): def __init__(self): self.description = "Regular House Blend" super(HouseBlend, self).__init__() class DarkRoast(Beverage): def __init__(self): self.description = "Most Excellent Dark Roast" super(DarkRoast, self).__init__() def cost(self): return super(DarkRoast, self).cost() + 0.10 class Decaf(Beverage): def __init__(self): self.description = "Literally Poison" super(Decaf, self).__init__() def cost(self): return super(Decaf, self).cost() + 0.16 class Espresso(Beverage): def __init__(self): self.description = "Quick Hit Espresso" super(Espresso, self).__init__() def cost(self): return super(Espresso, self).cost() + 1.1 # testing if __name__ == '__main__': def display(beverage): print "%s $%.2f" % (beverage.get_description(), beverage.cost()) b1 = Espresso() display(b1) b2 = DarkRoast() b2.set_mocha() b2.set_whip() display(b2) b3 = HouseBlend() b3.set_soy() b3.set_mocha() b3.set_whip() display(b3) ``` #### File: design_patterns/facade/home_theater_new.py ```python class PopcornMaker(object): def on(self): print "popcorn maker turned on" def off(self): print "popcorn maker turned off" def pop(self): print "popcorn maker popping" class Lights(object): def dim(self): print "light dimmed" def full(self): print "light turned on full bright" class Screen(object): def lower(self): print "screen lowered" def raise_(self): print "screen raised" class DvdPlayer(object): def on(self): print "dvd player turned on" def off(self): print "dvd player turned off" def play(self): print "dvd player playing" # home theatre facade class HomeTheatreFacade(object): def __init__(self, popcorn, lights, screen, dvd): self.popcorn = popcorn self.lights = lights self.screen = screen self.dvd = dvd def watch_movie(self): self.popcorn.on() self.popcorn.pop() self.lights.dim() self.screen.lower() self.dvd.on() self.dvd.play() def end_movie(self): self.dvd.off() self.screen.raise_() self.lights.full() self.popcorn.off() # testing if __name__ == '__main__': popcorn = PopcornMaker() lights = Lights() screen = Screen() dvd = DvdPlayer() home_theatre = HomeTheatreFacade(popcorn, lights, screen, dvd) print "starting movie..." home_theatre.watch_movie() print "\ndone with movie..." home_theatre.end_movie() ``` #### File: design_patterns/factory_method/factory_original.py ```python class Pizza(object): def prepare(self): pass def bake(self): pass def cut(self): pass def box(self): pass class NYCheesePizza(Pizza): pass class NYGreekPizza(Pizza): pass class NYPepperoniPizza(Pizza): pass class NYClamPizza(Pizza): pass class NYVeggiePizza(Pizza): pass class ChicagoCheesePizza(Pizza): pass class ChicagoGreekPizza(Pizza): pass class ChicagoPepperoniPizza(Pizza): pass class ChicagoClamPizza(Pizza): pass class ChicagoVeggiePizza(Pizza): pass # factory class class PizzaFactory(object): """ an abstract factory """ def create_pizza(self, pizza_type): pass class NYPizzaFactory(object): """ figure out what type of NY pizza to make """ def create_pizza(self, pizza_type): pizza = None if pizza_type == 'cheese': pizza = NYCheesePizza() elif pizza_type == 'greek': pizza = NYGreekPizza() elif pizza_type == 'pepperoni': pizza = NYPepperoniPizza() elif pizza_type == 'clam': pizza = NYClamPizza() elif pizza_type == 'veggie': pizza = NYVeggiePizza() return pizza class ChicagoPizzaFactory(object): """ figure out what type of chicago pizza to make """ def create_pizza(self, pizza_type): pizza = None if pizza_type == 'cheese': pizza = ChicagoCheesePizza() elif pizza_type == 'greek': pizza = ChicagoGreekPizza() elif pizza_type == 'pepperoni': pizza = ChicagoPepperoniPizza() elif pizza_type == 'clam': pizza = ChicagoClamPizza() elif pizza_type == 'veggie': pizza = ChicagoVeggiePizza() return pizza # store class class PizzaStore(object): def __init__(self, factory): self.factory = factory def order_pizza(self, pizza_type): pizza = self.factory.create_pizza(pizza_type) pizza.prepare() pizza.bake() pizza.cut() pizza.box() return pizza # sample code if __name__ == '__main__': ny_factory = NYPizzaFactory() ny_store = PizzaStore(ny_factory) ny_store.order_pizza('veggie') chicago_factory = ChicagoPizzaFactory() chicago_store = PizzaStore(chicago_factory) chicago_store.order_pizza('veggie') ``` #### File: design_patterns/iterator/menu_new.py ```python from abc import abstractmethod # iterator classes class Iterator(object): """abstract class for iterators""" @abstractmethod def has_next(self): pass @abstractmethod def get_next(self): pass class PancakeIterator(Iterator): """concrete iterator for our pancake house, or any list-based collection""" def __init__(self, items): self.items = items self.pos = 0 def has_next(self): return bool(self.pos < len(self.items)) def get_next(self): if self.pos < len(self.items): item = self.items[self.pos] self.pos += 1 return item else: raise Exception("iterator is out of bounds: %d" % self.pos) class DinerIterator(Iterator): """concrete iterator for our diner, or any array-based collection""" def __init__(self, items): self.items = items self.pos = 0 def has_next(self): return bool(self.pos < len(self.items) and self.items[self.pos] is not None) def get_next(self): if self.pos < len(self.items) and self.items[self.pos] is not None: item = self.items[self.pos] self.pos += 1 return item else: raise Exception("iterator is out of bounds: %d" % self.pos) # general-use classes class MenuItem(object): def __init__(self, name, desc, veggie, price): self.name = name self.desc = desc self.veggie = veggie self.price = price def get_name(self): return self.name def get_desc(self): return self.desc def get_veggie(self): return self.veggie def get_price(self): return self.price # incompatible collection classes class PancakeHouse(object): """a collection based on a linked list""" def __init__(self): self.name = "Breakfast Menu" self.menu_items = [] self.add_menu_item("Pancakes", "Regular pancakes", 2.99, True) self.add_menu_item("Trucker Pancakes", "Pancakes with eggs", 3.99, None) self.add_menu_item("Waffles", "Waffles with Maple Syrup", 4.99, True) def add_menu_item(self, name, desc, price, veggie): menu_item = MenuItem(name, desc, veggie, price) self.menu_items.append(menu_item) def get_iterator(self): iterator = PancakeIterator(self.menu_items) return iterator class Diner(object): """an collection based on an array, which is pretty hard to do in python""" def __init__(self): self.menu_items = [None, None, None, None, None, None] self.max_items = 6 self.number_of_items = 0 self.name = "Lunch Menu" self.add_menu_item("Soup", "Soup of the Day", 3.29, True) self.add_menu_item("BLT", "Bacon, Lettuce, Tomato, with optional Mutton", 2.99, None) self.add_menu_item("Hot Dog", "World famously cheap-ass hot dog", 0.25, None) def add_menu_item(self, name, desc, price, veggie): if self.number_of_items < self.max_items: menu_item = MenuItem(name, desc, veggie, price) self.menu_items[self.number_of_items] = menu_item self.number_of_items += 1 else: raise Exception("maximum number of items reached!") def get_iterator(self): iterator = DinerIterator(self.menu_items) return iterator class Waitress(object): def __init__(self): self.menus = [] def add_menu(self, menu): self.menus.append(menu) def print_menu(self): """loop thru our iterators to loop thru our menu items""" for menu in self.menus: print "\n%s:" % menu.name iterator = menu.get_iterator() while iterator.has_next(): menu_item = iterator.get_next() print "\t%s. %s -- %.2f" % (menu_item.get_name(), menu_item.get_desc(), menu_item.get_price()) # testing if __name__ == '__main__': breakfast_menu = PancakeHouse() lunch_menu = Diner() waitress = Waitress() waitress.add_menu(breakfast_menu) waitress.add_menu(lunch_menu) waitress.print_menu() ``` #### File: design_patterns/iterator/menu_original.py ```python class MenuItem(object): def __init__(self, name, desc, veggie, price): self.name = name self.desc = desc self.veggie = veggie self.price = price def get_name(self): return self.name def get_desc(self): return self.desc def get_veggie(self): return self.veggie def get_price(self): return self.price # incompatible collection classes class PancakeHouse(object): """a collection based on a linked list""" def __init__(self): self.menu_items = [] self.add_menu_item("Pancakes", "Regular pancakes", 2.99, True) self.add_menu_item("Trucker Pancakes", "Pancakes with eggs", 3.99, None) self.add_menu_item("Waffles", "Waffles with Maple Syrup", 4.99, True) def add_menu_item(self, name, desc, price, veggie): menu_item = MenuItem(name, desc, veggie, price) self.menu_items.append(menu_item) def get_menu_items(self): return self.menu_items class Diner(object): """an collection based on an array, which is pretty hard to do in python""" def __init__(self): self.menu_items = [None, None, None, None, None, None] self.max_items = 6 self.number_of_items = 0 self.add_menu_item("Soup", "Soup of the Day", 3.29, True) self.add_menu_item("BLT", "Bacon, Lettuce, Tomato, with optional Mutton", 2.99, None) self.add_menu_item("Hot Dog", "World famously cheap-ass hot dog", 0.25, None) def add_menu_item(self, name, desc, price, veggie): if self.number_of_items < self.max_items: menu_item = MenuItem(name, desc, veggie, price) self.menu_items[self.number_of_items] = menu_item self.number_of_items += 1 else: raise Exception("maximum number of items reached!") def get_menu_items(self): return self.menu_items # testing if __name__ == '__main__': breakfast_menu = PancakeHouse() breakfast_items = breakfast_menu.get_menu_items() lunch_menu = Diner() lunch_items = lunch_menu.get_menu_items() def print_menu_item(menu_item): print "\t%s. %s -- %.2f" % (menu_item.get_name(), menu_item.get_desc(), menu_item.get_price()) print "Breakfast Menu:" for menu_item in breakfast_items: print_menu_item(menu_item) print "\nLunch Menu:" for i in range(len(lunch_items)): if not lunch_items[i]: continue menu_item = lunch_items[i] print_menu_item(menu_item) ``` #### File: design_patterns/observer/weather_original.py ```python from weather_data import WeatherData class WeatherDisplay(object): """a sample object that pretends to hold weather data""" def update(self): pass class OurWeatherData(WeatherData): """build our weather data class on the vendor-supplied one""" def __init__(self): self.current_conditions_display = WeatherDisplay() self.statistics_display = WeatherDisplay() self.forecast_display = WeatherDisplay() def measurements_changed(self): temp = self.get_temp() humidity = self.get_humidity() pressure = self.get_pressure() self.current_conditions_display.update(temp, humidity, pressure) self.statistics_display.update(temp, humidity, pressure) self.forecast_display.update(temp, humidity, pressure) ``` #### File: design_patterns/proxy/gumball_monitor_new.py ```python from gumball_monitor_original import GumballMonitor, GumballMachine # this is a pretty generic wrapper object class GumballMachineProxy(object): """hold a GumballMachine, and call pass on attribute calls""" def __init__(self, gumball_machine): self.machine = gumball_machine def __getattr__(self, attr): """call the attribute on our gumball machine""" #print "checking for attribute %r remotely" % attr # note that this will fail if it doesn't exist, and that's good check_attr = getattr(self.machine, attr) if callable(check_attr): # it's a method, call it and return it def wrap_remote_call(*args, **kargs): return check_attr(*args, **kargs) return wrap_remote_call else: # it' just an attribute, return it return check_attr if __name__ == '__main__': gumball_machine = GumballMachine("Boston", 112) proxy = GumballMachineProxy(gumball_machine) monitor = GumballMonitor(proxy) monitor.report() ``` #### File: design_patterns/proxy/gumball_monitor_original.py ```python class MachineState(object): """an enum""" sold_out = 0 no_quarter = 1 has_quarter = 2 sold = 3 class GumballMachine(object): def __init__(self, location, inventory): self.location = location self.inventory = inventory self.state = MachineState.no_quarter def get_state(self): if self.state == MachineState.sold_out: return "sold out" elif self.state == MachineState.no_quarter: return "waiting for quarter" elif self.state == MachineState.has_quarter: return "has quarter" elif self.state == MachineState.sold: return "sold" # the main class of this exercise class GumballMonitor(object): def __init__(self, machine): self.machine = machine def report(self): print "Gumball Machine: %s" % self.machine.location print "Current inventory: %d gumballs" % self.machine.inventory print "Current state: %s" % self.machine.get_state() # testing if __name__ == '__main__': gumball_machine = GumballMachine("Boston", 112) monitor = GumballMonitor(gumball_machine) monitor.report() ``` #### File: design_patterns/template/caffeine_original.py ```python class Coffee(object): def prepare(self): self.boil_water() self.brew_grinds() self.pour_in_cup() self.add_sugar_and_milk() def boil_water(self): print "boiling water" def brew_grinds(self): print "dripping coffee through filter" def pour_in_cup(self): print "pouring in cup" def add_sugar_and_milk(self): print "adding sugar and milk" class Tea(object): def prepare(self): self.boil_water() self.steep() self.pour_in_cup() self.add_lemon() def boil_water(self): print "boiling water" def steep(self): print "steeping tea bag" def pour_in_cup(self): print "pouring in cup" def add_lemon(self): print "adding a spot of lemon" # testing if __name__ == '__main__': coffee = Coffee() tea = Tea() print "making coffee..." coffee.prepare() print "\nmaking tea..." tea.prepare() ```
{ "source": "jmcguir/netbox", "score": 2 }
#### File: utilities/forms/utils.py ```python import re from django import forms from django.forms.models import fields_for_model from utilities.querysets import RestrictedQuerySet from .constants import * __all__ = ( 'add_blank_choice', 'expand_alphanumeric_pattern', 'expand_ipaddress_pattern', 'form_from_model', 'parse_alphanumeric_range', 'parse_numeric_range', 'restrict_form_fields', 'parse_csv', 'validate_csv', ) def parse_numeric_range(string, base=10): """ Expand a numeric range (continuous or not) into a decimal or hexadecimal list, as specified by the base parameter '0-3,5' => [0, 1, 2, 3, 5] '2,8-b,d,f' => [2, 8, 9, a, b, d, f] """ values = list() for dash_range in string.split(','): try: begin, end = dash_range.split('-') except ValueError: begin, end = dash_range, dash_range try: begin, end = int(begin.strip(), base=base), int(end.strip(), base=base) + 1 except ValueError: raise forms.ValidationError(f'Range "{dash_range}" is invalid.') values.extend(range(begin, end)) return list(set(values)) def parse_alphanumeric_range(string): """ Expand an alphanumeric range (continuous or not) into a list. 'a-d,f' => [a, b, c, d, f] '0-3,a-d' => [0, 1, 2, 3, a, b, c, d] """ values = [] for dash_range in string.split(','): try: begin, end = dash_range.split('-') vals = begin + end # Break out of loop if there's an invalid pattern to return an error if (not (vals.isdigit() or vals.isalpha())) or (vals.isalpha() and not (vals.isupper() or vals.islower())): return [] except ValueError: begin, end = dash_range, dash_range if begin.isdigit() and end.isdigit(): for n in list(range(int(begin), int(end) + 1)): values.append(n) else: # Value-based if begin == end: values.append(begin) # Range-based else: # Not a valid range (more than a single character) if not len(begin) == len(end) == 1: raise forms.ValidationError(f'Range "{dash_range}" is invalid.') for n in list(range(ord(begin), ord(end) + 1)): values.append(chr(n)) return values def expand_alphanumeric_pattern(string): """ Expand an alphabetic pattern into a list of strings. """ lead, pattern, remnant = re.split(ALPHANUMERIC_EXPANSION_PATTERN, string, maxsplit=1) parsed_range = parse_alphanumeric_range(pattern) for i in parsed_range: if re.search(ALPHANUMERIC_EXPANSION_PATTERN, remnant): for string in expand_alphanumeric_pattern(remnant): yield "{}{}{}".format(lead, i, string) else: yield "{}{}{}".format(lead, i, remnant) def expand_ipaddress_pattern(string, family): """ Expand an IP address pattern into a list of strings. Examples: '192.0.2.[1,2,100-250]/24' => ['192.0.2.1/24', '192.0.2.2/24', '192.0.2.100/24' ... '192.0.2.250/24'] '2001:db8:0:[0,fd-ff]::/64' => ['2001:db8:0:0::/64', '2001:db8:0:fd::/64', ... '2001:db8:0:ff::/64'] """ if family not in [4, 6]: raise Exception("Invalid IP address family: {}".format(family)) if family == 4: regex = IP4_EXPANSION_PATTERN base = 10 else: regex = IP6_EXPANSION_PATTERN base = 16 lead, pattern, remnant = re.split(regex, string, maxsplit=1) parsed_range = parse_numeric_range(pattern, base) for i in parsed_range: if re.search(regex, remnant): for string in expand_ipaddress_pattern(remnant, family): yield ''.join([lead, format(i, 'x' if family == 6 else 'd'), string]) else: yield ''.join([lead, format(i, 'x' if family == 6 else 'd'), remnant]) def add_blank_choice(choices): """ Add a blank choice to the beginning of a choices list. """ return ((None, '---------'),) + tuple(choices) def form_from_model(model, fields): """ Return a Form class with the specified fields derived from a model. This is useful when we need a form to be used for creating objects, but want to avoid the model's validation (e.g. for bulk create/edit functions). All fields are marked as not required. """ form_fields = fields_for_model(model, fields=fields) for field in form_fields.values(): field.required = False return type('FormFromModel', (forms.Form,), form_fields) def restrict_form_fields(form, user, action='view'): """ Restrict all form fields which reference a RestrictedQuerySet. This ensures that users see only permitted objects as available choices. """ for field in form.fields.values(): if hasattr(field, 'queryset') and issubclass(field.queryset.__class__, RestrictedQuerySet): field.queryset = field.queryset.restrict(user, action) def parse_csv(reader): """ Parse a csv_reader object into a headers dictionary and a list of records dictionaries. Raise an error if the records are formatted incorrectly. Return headers and records as a tuple. """ records = [] headers = {} # Consume the first line of CSV data as column headers. Create a dictionary mapping each header to an optional # "to" field specifying how the related object is being referenced. For example, importing a Device might use a # `site.slug` header, to indicate the related site is being referenced by its slug. for header in next(reader): if '.' in header: field, to_field = header.split('.', 1) headers[field] = to_field else: headers[header] = None # Parse CSV rows into a list of dictionaries mapped from the column headers. for i, row in enumerate(reader, start=1): if len(row) != len(headers): raise forms.ValidationError( f"Row {i}: Expected {len(headers)} columns but found {len(row)}" ) row = [col.strip() for col in row] record = dict(zip(headers.keys(), row)) records.append(record) return headers, records def validate_csv(headers, fields, required_fields): """ Validate that parsed csv data conforms to the object's available fields. Raise validation errors if parsed csv data contains invalid headers or does not contain required headers. """ # Validate provided column headers for field, to_field in headers.items(): if field not in fields: raise forms.ValidationError(f'Unexpected column header "{field}" found.') if to_field and not hasattr(fields[field], 'to_field_name'): raise forms.ValidationError(f'Column "{field}" is not a related object; cannot use dots') if to_field and not hasattr(fields[field].queryset.model, to_field): raise forms.ValidationError(f'Invalid related object attribute for column "{field}": {to_field}') # Validate required fields for f in required_fields: if f not in headers: raise forms.ValidationError(f'Required column header "{f}" not found.') ```
{ "source": "jmchandonia/kb_trimmomatic", "score": 2 }
#### File: kb_trimmomatic/test/kb_trimmomatic_server_test.py ```python import unittest import os import json import time import requests requests.packages.urllib3.disable_warnings() from os import environ try: from ConfigParser import ConfigParser # py2 except: from configparser import ConfigParser # py3 from pprint import pprint from requests_toolbelt import MultipartEncoder from biokbase.workspace.client import Workspace as workspaceService from biokbase.AbstractHandle.Client import AbstractHandle as HandleService from kb_trimmomatic.kb_trimmomaticImpl import kb_trimmomatic from kb_trimmomatic.kb_trimmomaticServer import MethodContext from kb_trimmomatic.authclient import KBaseAuth as _KBaseAuth class kb_trimmomaticTest(unittest.TestCase): @classmethod def setUpClass(cls): token = environ.get('KB_AUTH_TOKEN', None) cls.token = token config_file = environ.get('KB_DEPLOYMENT_CONFIG', None) cls.cfg = {} config = ConfigParser() config.read(config_file) for nameval in config.items('kb_trimmomatic'): cls.cfg[nameval[0]] = nameval[1] authServiceUrl = cls.cfg.get('auth-service-url', "https://kbase.us/services/authorization/Sessions/Login") auth_client = _KBaseAuth(authServiceUrl) user_id = auth_client.get_user(cls.token) # WARNING: don't call any logging methods on the context object, # it'll result in a NoneType error cls.ctx = MethodContext(None) cls.ctx.update({'token': token, 'user_id': user_id, 'provenance': [ {'service': 'kb_trimmomatic', 'method': 'please_never_use_it_in_production', 'method_params': [] }], 'authenticated': 1}) cls.wsURL = cls.cfg['workspace-url'] cls.shockURL = cls.cfg['shock-url'] cls.handleURL = cls.cfg['handle-service-url'] cls.serviceWizardURL = cls.cfg['service-wizard-url'] cls.wsClient = workspaceService(cls.wsURL, token=token) cls.serviceImpl = kb_trimmomatic(cls.cfg) @classmethod def tearDownClass(cls): if hasattr(cls, 'wsName'): cls.wsClient.delete_workspace({'workspace': cls.wsName}) print('Test workspace was deleted') if hasattr(cls, 'shock_ids'): for shock_id in cls.shock_ids: print('Deleting SHOCK node: '+str(shock_id)) cls.delete_shock_node(shock_id) def getWsClient(self): return self.__class__.wsClient def getWsName(self): if hasattr(self.__class__, 'wsName'): return self.__class__.wsName suffix = int(time.time() * 1000) wsName = "test_kb_trimmomatic_" + str(suffix) ret = self.getWsClient().create_workspace({'workspace': wsName}) self.__class__.wsName = wsName return wsName def getImpl(self): return self.__class__.serviceImpl def getContext(self): return self.__class__.ctx @classmethod def upload_file_to_shock(cls, file_path): """ Use HTTP multi-part POST to save a file to a SHOCK instance. """ header = dict() header["Authorization"] = "Oauth {0}".format(cls.token) if file_path is None: raise Exception("No file given for upload to SHOCK!") if not file_path.startswith(os.sep): file_path = os.path.join(os.sep, 'kb','module','test',file_path) with open(os.path.abspath(file_path), 'rb') as dataFile: files = {'upload': dataFile} response = requests.post( cls.shockURL + '/node', headers=header, files=files, stream=True, allow_redirects=True, timeout=30) if not response.ok: response.raise_for_status() result = response.json() if result['error']: raise Exception(result['error'][0]) else: shock_id = result['data']['id'] if not hasattr(cls, 'shock_ids'): cls.shock_ids = [] cls.shock_ids.append(shock_id) return result["data"] @classmethod def delete_shock_node(cls, node_id): header = {'Authorization': 'Oauth {0}'.format(cls.token)} requests.delete(cls.shockURL + '/node/' + node_id, headers=header, allow_redirects=True) print('Deleted shock node ' + node_id) def getSingleEndLibInfo(self, read_lib_basename, lib_i=0): if hasattr(self.__class__, 'singleEndLibInfo_list'): try: info = self.__class__.singleEndLibInfo_list[lib_i] name = self.__class__.singleEndLibName_list[lib_i] if info != None: if name != read_lib_basename: self.__class__.singleEndLib_SetInfo[lib_i] = None self.__class__.singleEndLib_SetName[lib_i] = None else: return info except: pass # 1) upload files to shock token = self.ctx['token'] forward_shock_file = self.upload_file_to_shock('data/'+read_lib_basename+'.fwd.fq') #pprint(forward_shock_file) # 2) create handle hs = HandleService(url=self.handleURL, token=token) forward_handle = hs.persist_handle({ 'id' : forward_shock_file['id'], 'type' : 'shock', 'url' : self.shockURL, 'file_name': forward_shock_file['file']['name'], 'remote_md5': forward_shock_file['file']['checksum']['md5']}) # 3) save to WS single_end_library = { 'lib': { 'file': { 'hid':forward_handle, 'file_name': forward_shock_file['file']['name'], 'id': forward_shock_file['id'], 'url': self.shockURL, 'type':'shock', 'remote_md5':forward_shock_file['file']['checksum']['md5'] }, 'encoding':'UTF8', 'type':'fastq', 'size':forward_shock_file['file']['size'] }, 'sequencing_tech':'artificial reads' } new_obj_info = self.wsClient.save_objects({ 'workspace':self.getWsName(), 'objects':[ { 'type':'KBaseFile.SingleEndLibrary', 'data':single_end_library, 'name':'test-'+str(lib_i)+'.se.reads', 'meta':{}, 'provenance':[ { 'service':'kb_trimmomatic', 'method':'test_runTrimmomatic' } ] }] })[0] # store it if not hasattr(self.__class__, 'singleEndLibInfo_list'): self.__class__.singleEndLibInfo_list = [] self.__class__.singleEndLibName_list = [] for i in range(lib_i+1): try: assigned = self.__class__.singleEndLibInfo_list[i] except: self.__class__.singleEndLibInfo_list.append(None) self.__class__.singleEndLibName_list.append(None) self.__class__.singleEndLibInfo_list[lib_i] = new_obj_info self.__class__.singleEndLibName_list[lib_i] = read_lib_basename return new_obj_info def getPairedEndLibInfo(self, read_lib_basename, lib_i=0): if hasattr(self.__class__, 'pairedEndLibInfo_list'): try: info = self.__class__.pairedEndLibInfo_list[lib_i] name = self.__class__.pairedEndLibName_list[lib_i] if info != None: if name != read_lib_basename: self.__class__.singleEndLibInfo_list[lib_i] = None self.__class__.singleEndLibName_list[lib_i] = None else: return info except: pass # 1) upload files to shock token = self.ctx['token'] forward_shock_file = self.upload_file_to_shock('data/'+read_lib_basename+'.fwd.fq') reverse_shock_file = self.upload_file_to_shock('data/'+read_lib_basename+'.rev.fq') #pprint(forward_shock_file) #pprint(reverse_shock_file) # 2) create handle hs = HandleService(url=self.handleURL, token=token) forward_handle = hs.persist_handle({ 'id' : forward_shock_file['id'], 'type' : 'shock', 'url' : self.shockURL, 'file_name': forward_shock_file['file']['name'], 'remote_md5': forward_shock_file['file']['checksum']['md5']}) reverse_handle = hs.persist_handle({ 'id' : reverse_shock_file['id'], 'type' : 'shock', 'url' : self.shockURL, 'file_name': reverse_shock_file['file']['name'], 'remote_md5': reverse_shock_file['file']['checksum']['md5']}) # 3) save to WS paired_end_library = { 'lib1': { 'file': { 'hid':forward_handle, 'file_name': forward_shock_file['file']['name'], 'id': forward_shock_file['id'], 'url': self.shockURL, 'type':'shock', 'remote_md5':forward_shock_file['file']['checksum']['md5'] }, 'encoding':'UTF8', 'type':'fastq', 'size':forward_shock_file['file']['size'] }, 'lib2': { 'file': { 'hid':reverse_handle, 'file_name': reverse_shock_file['file']['name'], 'id': reverse_shock_file['id'], 'url': self.shockURL, 'type':'shock', 'remote_md5':reverse_shock_file['file']['checksum']['md5'] }, 'encoding':'UTF8', 'type':'fastq', 'size':reverse_shock_file['file']['size'] }, 'interleaved':0, 'sequencing_tech':'artificial reads' } new_obj_info = self.wsClient.save_objects({ 'workspace':self.getWsName(), 'objects':[ { 'type':'KBaseFile.PairedEndLibrary', 'data':paired_end_library, 'name':'test-'+str(lib_i)+'.pe.reads', 'meta':{}, 'provenance':[ { 'service':'kb_trimmomatic', 'method':'test_runTrimmomatic' } ] }] })[0] # store it if not hasattr(self.__class__, 'pairedEndLibInfo_list'): self.__class__.pairedEndLibInfo_list = [] self.__class__.pairedEndLibName_list = [] for i in range(lib_i+1): try: assigned = self.__class__.pairedEndLibInfo_list[i] except: self.__class__.pairedEndLibInfo_list.append(None) self.__class__.pairedEndLibName_list.append(None) self.__class__.pairedEndLibInfo_list[lib_i] = new_obj_info self.__class__.pairedEndLibName_list[lib_i] = read_lib_basename return new_obj_info def getSingleEndLib_SampleSetInfo(self, read_libs_basename_list, refresh=False): if hasattr(self.__class__, 'singleEndLib_SampleSetInfo'): try: info = self.__class__.singleEndLib_SampleSetInfo if info != None: if refresh: self.__class__.singleEndLib_SampleSetInfo = None else: return info except: pass sample_ids = list() conditions = list() for lib_i, read_lib_basename in enumerate(read_libs_basename_list): label = read_lib_basename lib_info = self.getSingleEndLibInfo(read_lib_basename, lib_i) lib_ref = str(lib_info[6])+'/'+str(lib_info[0]) print ("LIB_REF["+str(lib_i)+"]: "+lib_ref+" "+read_lib_basename) # DEBUG sample_ids.append(lib_ref) conditions.append(label) desc = "test sample set" name = "TEST_SAMPLE_SET" sampleset_obj = { "sample_ids": sample_ids, "condition": conditions, "sampleset_id": "foo", "sampleset_desc": desc, "domain": "prokaryota", "num_samples": len(sample_ids), "Library_type": "SingleEnd" } sample_set_info = self.wsClient.save_objects({ "workspace": self.getWsName(), "objects": [{ "type": "KBaseRNASeq.RNASeqSampleSet", "data": sampleset_obj, "name": name, "meta": {}, "provenance": [ { "service": "kb_trimmomatic", "method": "test_runTrimmomatic" } ] }] })[0] # store it self.__class__.singleEndLib_SampleSetInfo = sample_set_info return sample_set_info # call this method to get the WS object info of a Single End Library Set (will # upload the example data if this is the first time the method is called during tests) def getSingleEndLib_SetInfo(self, read_libs_basename_list, refresh=False): if hasattr(self.__class__, 'singleEndLib_SetInfo'): try: info = self.__class__.singleEndLib_SetInfo if info != None: if refresh: self.__class__.singleEndLib_SetInfo = None else: return info except: pass # build items and save each PairedEndLib items = [] for lib_i,read_lib_basename in enumerate (read_libs_basename_list): label = read_lib_basename lib_info = self.getSingleEndLibInfo (read_lib_basename, lib_i) lib_ref = str(lib_info[6])+'/'+str(lib_info[0]) print ("LIB_REF["+str(lib_i)+"]: "+lib_ref+" "+read_lib_basename) # DEBUG items.append({'ref': lib_ref, 'label': label #'data_attachment': , #'info': }) # save readsset desc = 'test ReadsSet' readsSet_obj = { 'description': desc, 'items': items } name = 'TEST_READSET' new_obj_info = self.wsClient.save_objects({ 'workspace':self.getWsName(), 'objects':[ { 'type':'KBaseSets.ReadsSet', 'data':readsSet_obj, 'name':name, 'meta':{}, 'provenance':[ { 'service':'kb_trimmomatic', 'method':'test_runTrimmomatic' } ] }] })[0] # store it self.__class__.singleEndLib_SetInfo = new_obj_info return new_obj_info # call this method to get the WS object info of a Paired End Library Set (will # upload the example data if this is the first time the method is called during tests) def getPairedEndLib_SetInfo(self, read_libs_basename_list, refresh=False): if hasattr(self.__class__, 'pairedEndLib_SetInfo'): try: info = self.__class__.pairedEndLib_SetInfo if info != None: if refresh: self.__class__.pairedEndLib_SetInfo[lib_i] = None else: return info except: pass # build items and save each PairedEndLib items = [] for lib_i,read_lib_basename in enumerate (read_libs_basename_list): label = read_lib_basename lib_info = self.getPairedEndLibInfo (read_lib_basename, lib_i) lib_ref = str(lib_info[6])+'/'+str(lib_info[0]) print ("LIB_REF["+str(lib_i)+"]: "+lib_ref+" "+read_lib_basename) # DEBUG items.append({'ref': lib_ref, 'label': label #'data_attachment': , #'info': }) # save readsset desc = 'test ReadsSet' readsSet_obj = { 'description': desc, 'items': items } name = 'TEST_READSET' new_obj_info = self.wsClient.save_objects({ 'workspace':self.getWsName(), 'objects':[ { 'type':'KBaseSets.ReadsSet', 'data':readsSet_obj, 'name':name, 'meta':{}, 'provenance':[ { 'service':'kb_trimmomatic', 'method':'test_runTrimmomatic' } ] }] })[0] # store it self.__class__.pairedEndLib_SetInfo = new_obj_info return new_obj_info ############## # UNIT TESTS # ############## # NOTE: According to Python unittest naming rules test method names should start from 'test'. # # Prepare test objects in workspace if needed using # self.getWsClient().save_objects({'workspace': self.getWsName(), 'objects': []}) # # Run your method by # ret = self.getImpl().your_method(self.getContext(), parameters...) # # Check returned data with # self.assertEqual(ret[...], ...) or other unittest methods # Object Info Contents # 0 - obj_id objid # 1 - obj_name name # 2 - type_string type # 3 - timestamp save_date # 4 - int version # 5 - username saved_by # 6 - ws_id wsid # 7 - ws_name workspace # 8 - string chsum # 9 - int size # 10 - usermeta meta ### TEST 1: run Trimmomatic against just one single end library # # Uncomment to skip this test #HIDE @unittest.skip("skipped test_runTrimmomatic_SingleEndLibrary()") def test_runTrimmomatic_SingleEndLibrary(self): print ("\n\nRUNNING: test_runTrimmomatic_SingleEndLibrary()") print ("===============================================\n\n") # figure out where the test data lives se_lib_info = self.getSingleEndLibInfo('test_quick') pprint(se_lib_info) # run method output_name = 'output_trim.SElib' params = { 'input_ws': se_lib_info[7], 'output_ws': se_lib_info[7], 'input_reads_ref': str(se_lib_info[6])+'/'+str(se_lib_info[0]), 'output_reads_name': output_name, #'read_type': 'SE', #'quality_encoding': 'phred33', 'translate_to_phred33': 1, 'adapter_clip': { 'adapterFa': None, 'seed_mismatches': None, 'palindrom_clip_threshold': None, 'simple_clip_threshold': None }, 'sliding_window': { 'sliding_window_size': 4, 'sliding_window_min_size': 15 }, 'leading_min_quality': 3, 'trailing_min_quality': 3, 'crop_length': 0, 'head_crop_length': 0, 'min_length': 36 } result = self.getImpl().runTrimmomatic(self.getContext(),params) print('RESULT:') pprint(result) # check the output single_output_name = output_name info_list = self.wsClient.get_object_info([{'ref':se_lib_info[7] + '/' + single_output_name}], 1) self.assertEqual(len(info_list),1) trimmed_reads_info = info_list[0] self.assertEqual(trimmed_reads_info[1],single_output_name) self.assertEqual(trimmed_reads_info[2].split('-')[0],'KBaseFile.SingleEndLibrary') ### TEST 2: run Trimmomatic against just one paired end library # # Uncomment to skip this test #HIDE @unittest.skip("skipped test_runTrimmomatic_PairedEndLibrary()") def test_runTrimmomatic_PairedEndLibrary(self): print ("\n\nRUNNING: test_runTrimmomatic_PairedEndLibrary()") print ("\n=============================================\n\n") # figure out where the test data lives pe_lib_info = self.getPairedEndLibInfo('test_quick') pprint(pe_lib_info) # run method output_name = 'output_trim.PElib' params = { 'input_ws': pe_lib_info[7], 'output_ws': pe_lib_info[7], 'input_reads_ref': str(pe_lib_info[6])+'/'+str(pe_lib_info[0]), 'output_reads_name': output_name, #'read_type': 'PE', #'quality_encoding': 'phred33', 'translate_to_phred33': 1, 'adapter_clip': { 'adapterFa': None, 'seed_mismatches': None, 'palindrom_clip_threshold': None, 'simple_clip_threshold': None }, 'sliding_window': { 'sliding_window_size': 4, 'sliding_window_min_size': 15 }, 'leading_min_quality': 3, 'trailing_min_quality': 3, 'crop_length': 0, 'head_crop_length': 0, 'min_length': 36 } result = self.getImpl().runTrimmomatic(self.getContext(),params) print('RESULT:') pprint(result) # check the output paired_output_name = output_name + '_paired' info_list = self.wsClient.get_object_info([{'ref':pe_lib_info[7] + '/' + paired_output_name}], 1) self.assertEqual(len(info_list),1) trimmed_reads_info = info_list[0] self.assertEqual(trimmed_reads_info[1],paired_output_name) self.assertEqual(trimmed_reads_info[2].split('-')[0],'KBaseFile.PairedEndLibrary') ### TEST 3: run Trimmomatic against a Single End Library reads set # # Uncomment to skip this test #HIDE @unittest.skip("skipped test_runTrimmomatic_SingleEndLibrary_ReadsSet()") def test_runTrimmomatic_SingleEndLibrary_ReadsSet(self): print ("\n\nRUNNING: test_runTrimmomatic_SingleEndLibrary_ReadsSet()") print ("========================================================\n\n") # figure out where the test data lives se_lib_set_info = self.getSingleEndLib_SetInfo(['test_quick','small_2']) pprint(se_lib_set_info) # run method output_name = 'output_trim.SElib' params = { 'input_ws': se_lib_set_info[7], 'output_ws': se_lib_set_info[7], 'input_reads_ref': str(se_lib_set_info[6])+'/'+str(se_lib_set_info[0]), 'output_reads_name': output_name, #'read_type': 'SE', #'quality_encoding': 'phred33', 'translate_to_phred33': 1, 'adapter_clip': { 'adapterFa': None, 'seed_mismatches': None, 'palindrom_clip_threshold': None, 'simple_clip_threshold': None }, 'sliding_window': { 'sliding_window_size': 4, 'sliding_window_min_size': 15 }, 'leading_min_quality': 3, 'trailing_min_quality': 3, 'crop_length': 0, 'head_crop_length': 0, 'min_length': 36 } result = self.getImpl().runTrimmomatic(self.getContext(),params) print('RESULT:') pprint(result) # check the output single_output_name = output_name + '_trimm' info_list = self.wsClient.get_object_info([{'ref':se_lib_set_info[7] + '/' + single_output_name}], 1) self.assertEqual(len(info_list),1) trimmed_reads_info = info_list[0] self.assertEqual(trimmed_reads_info[1],single_output_name) self.assertEqual(trimmed_reads_info[2].split('-')[0],'KBaseSets.ReadsSet') ### TEST 4: run Trimmomatic against a Paired End Library reads set # # Uncomment to skip this test #HIDE @unittest.skip("skipped test_runTrimmomatic_PairedEndLibrary_ReadsSet()") def test_runTrimmomatic_PairedEndLibrary_ReadsSet(self): print ("\n\nRUNNING: test_runTrimmomatic_PairedEndLibrary_ReadsSet()") print ("========================================================\n\n") # figure out where the test data lives pe_lib_set_info = self.getPairedEndLib_SetInfo(['test_quick','small_2']) pprint(pe_lib_set_info) # run method output_name = 'output_trim.PElib' params = { 'input_ws': pe_lib_set_info[7], 'output_ws': pe_lib_set_info[7], 'input_reads_ref': str(pe_lib_set_info[6])+'/'+str(pe_lib_set_info[0]), 'output_reads_name': output_name, #'read_type': 'PE', #'quality_encoding': 'phred33', 'translate_to_phred33': 1, 'adapter_clip': { 'adapterFa': None, 'seed_mismatches': None, 'palindrom_clip_threshold': None, 'simple_clip_threshold': None }, 'sliding_window': { 'sliding_window_size': 4, 'sliding_window_min_size': 15 }, 'leading_min_quality': 3, 'trailing_min_quality': 3, 'crop_length': 0, 'head_crop_length': 0, 'min_length': 36 } result = self.getImpl().runTrimmomatic(self.getContext(),params) print('RESULT:') pprint(result) # check the output paired_output_name = output_name + '_trimm_paired' info_list = self.wsClient.get_object_info([{'ref':pe_lib_set_info[7] + '/' + paired_output_name}], 1) self.assertEqual(len(info_list),1) trimmed_reads_info = info_list[0] self.assertEqual(trimmed_reads_info[1],paired_output_name) self.assertEqual(trimmed_reads_info[2].split('-')[0],'KBaseSets.ReadsSet') ### TEST 5: run Trimmomatic against a Single End Library sample set # # Uncomment to skip this test #HIDE @unittest.skip("skipped test_runTrimmomatic_SingleEndLibrary_SampleSet()") def test_runTrimmomatic_SingleEndLibrary_SampleSet(self): print ("\n\nRUNNING: test_runTrimmomatic_SingleEndLibrary_SampleSet()") print ("========================================================\n\n") # figure out where the test data lives se_lib_sampleset_info = self.getSingleEndLib_SampleSetInfo(['test_quick', 'small_2']) pprint(se_lib_sampleset_info) # run method output_name = 'output_trim.SElib' params = { 'input_ws': se_lib_sampleset_info[7], 'output_ws': se_lib_sampleset_info[7], 'input_reads_ref': str(se_lib_sampleset_info[6])+'/'+str(se_lib_sampleset_info[0]), 'output_reads_name': output_name, #'read_type': 'SE', #'quality_encoding': 'phred33', 'translate_to_phred33': 1, 'adapter_clip': { 'adapterFa': None, 'seed_mismatches': None, 'palindrom_clip_threshold': None, 'simple_clip_threshold': None }, 'sliding_window': { 'sliding_window_size': 4, 'sliding_window_min_size': 15 }, 'leading_min_quality': 3, 'trailing_min_quality': 3, 'crop_length': 0, 'head_crop_length': 0, 'min_length': 36 } result = self.getImpl().runTrimmomatic(self.getContext(),params) print('RESULT:') pprint(result) # check the output single_output_name = output_name + '_trimm' info_list = self.wsClient.get_object_info([{'ref':se_lib_sampleset_info[7] + '/' + single_output_name}], 1) self.assertEqual(len(info_list),1) trimmed_reads_info = info_list[0] self.assertEqual(trimmed_reads_info[1],single_output_name) self.assertEqual(trimmed_reads_info[2].split('-')[0],'KBaseSets.ReadsSet') ### TEST 6: run Trimmomatic with data that doesn't get trimmed, check report output. # # Uncomment to skip this test #HIDE @unittest.skip("skipped test_runTrimmomatic_SingleEndLibrary_no_trimming()") def test_runTrimmomatic_SingleEndLibrary_no_trimming(self): print("\n\nRUNNING: test_runTrimmomatic_SingleEndLibrary_no_trimming") print("---------------------------------------------------------\n\n") # figure out where the test data lives se_lib_info = self.getSingleEndLibInfo('small_no_trim') #se_lib_info = self.getSingleEndLibInfo('test_quick') pprint(se_lib_info) # run method output_name = 'output_no_trim.SElib' params = { 'input_ws': se_lib_info[7], 'output_ws': se_lib_info[7], 'input_reads_ref': str(se_lib_info[6])+'/'+str(se_lib_info[0]), 'output_reads_name': output_name, #'read_type': 'SE', #'quality_encoding': 'phred33', 'translate_to_phred33': 1, 'adapter_clip': { 'adapterFa': None, 'seed_mismatches': None, 'palindrom_clip_threshold': None, 'simple_clip_threshold': None }, 'sliding_window': { 'sliding_window_size': 4, 'sliding_window_min_size': 15 }, 'leading_min_quality': 3, 'trailing_min_quality': 3, 'crop_length': 0, 'head_crop_length': 0, 'min_length': 36 } result = self.getImpl().runTrimmomatic(self.getContext(),params) # check the output single_output_name = output_name info_list = self.wsClient.get_object_info([{'ref':se_lib_info[7] + '/' + single_output_name}], 1) self.assertEqual(len(info_list),1) trimmed_reads_info = info_list[0] self.assertEqual(trimmed_reads_info[1],single_output_name) self.assertEqual(trimmed_reads_info[2].split('-')[0],'KBaseFile.SingleEndLibrary') ### TEST 7: run Trimmomatic with data that gets completely trimmed, check report output. # # Uncomment to skip this test #HIDE @unittest.skip("skipped test_runTrimmomatic_SingleEndLibrary_all_trimming()") def test_runTrimmomatic_SingleEndLibrary_all_trimming(self): print("\n\nRUNNING: test_runTrimmomatic_SingleEndLibrary_all_trimming") print("---------------------------------------------------------\n\n") # figure out where the test data lives se_lib_info = self.getSingleEndLibInfo('small_all_trim') #se_lib_info = self.getSingleEndLibInfo('test_quick') pprint(se_lib_info) # run method output_name = 'output_all_trim.SElib' params = { 'input_ws': se_lib_info[7], 'output_ws': se_lib_info[7], 'input_reads_ref': str(se_lib_info[6])+'/'+str(se_lib_info[0]), 'output_reads_name': output_name, #'read_type': 'SE', #'quality_encoding': 'phred33', 'translate_to_phred33': 1, 'adapter_clip': { 'adapterFa': None, 'seed_mismatches': None, 'palindrom_clip_threshold': None, 'simple_clip_threshold': None }, 'sliding_window': { 'sliding_window_size': 4, 'sliding_window_min_size': 15 }, 'leading_min_quality': 3, 'trailing_min_quality': 30, 'crop_length': 0, 'head_crop_length': 0, 'min_length': 1000 } result = self.getImpl().runTrimmomatic(self.getContext(), params) # check the output, ensure it ends as a no-op with self.assertRaises(Exception): self.wsClient.get_object_info([{'ref': se_lib_info[7] + '/' + output_name}], 1) report_obj = self.wsClient.get_objects([{'ref': result[0]['report_ref']}])[0] # moved to separate HTML object, so can't just read buf #self.assertIn('Input Reads', report_obj['data']['direct_html']) #self.assertIn('Surviving', report_obj['data']['direct_html']) #self.assertIn('Dropped', report_obj['data']['direct_html']) ### TEST 8: run Trimmomatic with q64 data that gets translated to q33 # # Uncomment to skip this test #HIDE @unittest.skip("skipped test_runTrimmomatic_SingleEndLibrary_q64_to_q33()") def test_runTrimmomatic_SingleEndLibrary_translate_q64_to_q33(self): print("\n\nRUNNING: test_runTrimmomatic_SingleEndLibrary_translate_q64_to_q33") print("------------------------------------------------------------------\n\n") # figure out where the test data lives se_lib_info = self.getSingleEndLibInfo('small_all_trim') # q64 pprint(se_lib_info) # run method output_name = 'output_trim_q64_to_q33.SElib' params = { 'input_ws': se_lib_info[7], 'output_ws': se_lib_info[7], 'input_reads_ref': str(se_lib_info[6])+'/'+str(se_lib_info[0]), 'output_reads_name': output_name, #'read_type': 'SE', #'quality_encoding': 'phred33', 'translate_to_phred33': 1, 'adapter_clip': { 'adapterFa': None, 'seed_mismatches': None, 'palindrom_clip_threshold': None, 'simple_clip_threshold': None }, 'sliding_window': { 'sliding_window_size': 4, 'sliding_window_min_size': 15 }, 'leading_min_quality': 3, 'trailing_min_quality': 3, 'crop_length': 0, 'head_crop_length': 0, 'min_length': 20 } result = self.getImpl().runTrimmomatic(self.getContext(),params) print('RESULT:') pprint(result) # check the output single_output_name = output_name info_list = self.wsClient.get_object_info([{'ref':se_lib_info[7] + '/' + single_output_name}], 1) self.assertEqual(len(info_list),1) trimmed_reads_info = info_list[0] self.assertEqual(trimmed_reads_info[1],single_output_name) self.assertEqual(trimmed_reads_info[2].split('-')[0],'KBaseFile.SingleEndLibrary') ```
{ "source": "jmchandonia/narrative", "score": 4 }
#### File: narrative/common/kvp.py ```python import re KVP_EXPR = re.compile(r""" (?: \s* # leading whitespace ([0-9a-zA-Z_.\-]+) # Name = (?: # Value: ([^"\s]+) | # - simple value "((?:[^"] | (?<=\\)")*)" # - quoted string ) \s* ) | ([^= ]+) # Text w/o key=value """, flags=re.X) def parse_kvp(msg, record, text_sep=' '): """ Parse key-value pairs, adding to record in-place. :param msg: Input string :param record: In/out dict :param text_sep: Separator for output text pieces :return: All non-KVP as a string, joined by `text_sep` """ text = [] for n, v, vq, txt in KVP_EXPR.findall(msg): if n: if vq: v = vq.replace('\\"', '"') # add this KVP to output dict record[n] = v else: text.append(txt) return text_sep.join(text) ``` #### File: narrative/tests/test_kbtypes.py ```python import unittest import argparse import StringIO import os import re from biokbase.narrative.common import kbtypes from traitlets import HasTraits __author__ = "<NAME> <<EMAIL>>" __date__ = "2013-12-09" class HasVersion(HasTraits): ver = kbtypes.VersionNumber('0.0.0') def skipUnlessCreds(fn): def wrapper(*a, **k): if 'KBASE_CREDS' in os.environ: return fn(*a, **k) else: raise unittest.SkipTest("Environment doesn't have KBASE_CREDS=<user>:<pass>") return wrapper class TestKbaseTypes(unittest.TestCase): """Test basic behavior of KBase types. """ user, password = None, None def setUp(self): self.args = argparse.Namespace(url=None, vb=0, bfile=None) self.args.user = self.user setattr(self.args, 'pass', self.password) @classmethod def setUpClass(cls): cls._types = None if 'KBASE_CREDS' in os.environ: cls.user, cls.password = os.environ['KBASE_CREDS'].split(':') @classmethod def tearDownClass(cls): cls._types = None def _get_types(self, r): """Limit overhead of fetching types to once per test run. """ if self._types is None: TestKbaseTypes._types = r.get_types() return self._types def tearDown(self): pass def test_name(self): """Test type name. """ g = kbtypes.KBaseGenome1() self.assertEqual(str(g), 'KBaseGenomes.Genome-1.0') g = kbtypes.KBaseGenome3() self.assertEqual(str(g), 'KBaseGenomes.Genome-3.0') def test_version_bad(self): for bad_input in ("Mr. Robinson", "a.b.c", "1-2-3", "0.1.-1", (0, 1, -1)): msg = "bad input {} passed validation".format(bad_input) self.shouldRaise(kbtypes.KBTypeError, msg, HasVersion, ver=bad_input) def test_version_good(self): for good_input, value in (("0.1.1", ('0', '1', '1')), ("13.14.97", ('13', '14', '97')), ("2.7.7-a+foo", ('2', '7', '7-a+foo'))): self.assertEqual(value, HasVersion(ver=good_input).ver) def shouldRaise(self, exc, msg, fn, *arg, **kwargs): try: fn(*arg, **kwargs) if msg is None: msg = "{}{} did not raise {}".format(fn.__name__, arg, str(exc)) self.assert_(False, msg) except exc: pass @skipUnlessCreds def test_get_types(self): """Regenerator.get_types """ r = kbtypes.Regenerator(self.args) t = self._get_types(r) self.assert_(t) @skipUnlessCreds def test_multiple_versions(self): """Test multiple versions of the same type. """ r = kbtypes.Regenerator(self.args) t = self._get_types(r) # Insert extra version. for modname in t.keys(): for typename in t[modname].keys(): t[modname][typename]["9_9"] = {'description': "TEST99"} # Capture output classes w = StringIO.StringIO() r.write_types(w, t) # Check if versions are recorded properly # by looking at the output buf, prev_depth, num_ver, cur_mod = w.getvalue(), 0, 0, "?" #print("@@ BUF: {}".format(buf)) for line in buf.split("\n"): match = re.search("\S", line) if match is None: continue # blank line depth = match.span()[0] / 4 # calc. depth by #leading spaces if depth == 0: match = re.match("class (\w+)", line) if match is None: self.fail("junk on line: {}".format(line)) cur_mod = match.group(1) if depth == 2 and re.search("class v\d+_\d+\(.*\):", line): num_ver += 1 # when we finish a class, check that we found at least 2 versions if depth == 0 and prev_depth > 0: self.assertGreaterEqual(num_ver, 2, "{}: Expected >=2 versions, got {:d}" .format(cur_mod, num_ver)) num_ver = 0 prev_depth = depth if __name__ == '__main__': unittest.main() ``` #### File: narrative/tests/test_url_config.py ```python from biokbase.narrative.common.url_config import URLS import unittest class UrlConfigTest(unittest.TestCase): def test_getter(self): url = URLS.workspace self.assertTrue(url.endswith('/services/ws')) def test_get_url(self): url = URLS.get_url('workspace') self.assertTrue(url.endswith('/services/ws')) def test_missing_url(self): with self.assertRaises(Exception): url = URLS.nope if __name__ == "__main__": unittest.main() ``` #### File: test/selenium_scripts/kb-test-narrative-app.py ```python import json import os import re import subprocess import sys import time import uuid import urllib2 import base64 from optparse import OptionParser from selenium import webdriver from selenium.common.exceptions import TimeoutException from selenium.common.exceptions import UnexpectedAlertPresentException from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait # available since 2.4.0 from selenium.webdriver.support import expected_conditions as EC # available since 2.26.0 VERSION = '1' API_URL = "http://api.metagenomics.anl.gov/"+VERSION AUTH_LIST = "<NAME>, <NAME>, <NAME>, <NAME>, <NAME>" PAGE_LOAD_TIMEOUT = 120 # seconds APP_RUN_TIMEOUT = 120 # seconds SUPPORTED_FIELD_TYPES = [ "text", "dropdown" ] prehelp = """ NAME kb-test-narrative-app VERSION %s SYNOPSIS kb-test-narrative-app [ --help, --config_file <json input file>, --user <string>, --passwd <string>, --url <string> --output <png output file> ] DESCRIPTION Tool to test a narrative app. """ posthelp = """ Input 1. A json input file with the ws ID, app name, and app parameters (config_file, required). 2. KBase username (user, required to login to web UI - may be embedded in config_file) 3. KBase password (passwd, required to login to web UI - may be embedded in config_file) 4. The base url for the narrative server (url, default=https://narrative-test.kbase.us) Output 1. A screenshot (png format) of the narrative interface upon app test completion (output, default=<wsid>.<app_name>.png). 2. Test report to STDOUT. EXAMPLES kb-test-narrative-app --help SEE ALSO - AUTHORS %s """ def get_auth_token(opts): if 'KB_AUTH_TOKEN' in os.environ: return os.environ['KB_AUTH_TOKEN'] if opts.user or opts.passwd: if opts.user and opts.passwd: return token_from_login(opts.user, opts.passwd) else: sys.stderr.write("ERROR: both username and password are required\n") sys.exit(1) else: return None def token_from_login(user, passwd): auth = 'kb<PASSWORD>'+base64.b64encode('%s:%s' %(user, passwd)).replace('\n', '') data = obj_from_url(API_URL, auth=auth) return data['token'] # return python struct from JSON output of MG-RAST API def obj_from_url(url, auth=None, data=None, debug=False): header = {'Accept': 'application/json'} if auth: header['Auth'] = auth if data: header['Content-Type'] = 'application/json' if debug: if data: print "data:\t"+data print "header:\t"+json.dumps(header) print "url:\t"+url try: req = urllib2.Request(url, data, headers=header) res = urllib2.urlopen(req) except urllib2.HTTPError, error: if debug: sys.stderr.write("URL: %s\n" %url) try: eobj = json.loads(error.read()) sys.stderr.write("ERROR (%s): %s\n" %(error.code, eobj['ERROR'])) except: sys.stderr.write("ERROR (%s): %s\n" %(error.code, error.read())) finally: sys.exit(1) if not res: if debug: sys.stderr.write("URL: %s\n" %url) sys.stderr.write("ERROR: no results returned\n") sys.exit(1) obj = json.loads(res.read()) if obj is None: if debug: sys.stderr.write("URL: %s\n" %url) sys.stderr.write("ERROR: return structure not valid json format\n") sys.exit(1) if len(obj.keys()) == 0: if debug: sys.stderr.write("URL: %s\n" %url) sys.stderr.write("ERROR: no data available\n") sys.exit(1) if 'ERROR' in obj: if debug: sys.stderr.write("URL: %s\n" %url) sys.stderr.write("ERROR: %s\n" %obj['ERROR']) sys.exit(1) return obj def main(args): OptionParser.format_description = lambda self, formatter: self.description OptionParser.format_epilog = lambda self, formatter: self.epilog parser = OptionParser(usage='', description=prehelp%VERSION, epilog=posthelp%AUTH_LIST) parser.add_option("", "--user", dest="user", default=None, help="OAuth username") parser.add_option("", "--passwd", dest="passwd", default=None, help="OAuth password") parser.add_option("", "--config_file", dest="config_file", default=None, help="A json input file with the app parameters") parser.add_option("", "--url", dest="url", default="https://narrative-test.kbase.us", help="The base url for the narrative server") parser.add_option("", "--output", dest="output", default=None, help="Output filename for screenshot of browser after test completion") (opts, args) = parser.parse_args() if not opts.config_file: sys.stderr.write("ERROR: missing required parameter: config_file\n") return 1 indata = open(opts.config_file, 'r').read() config = json.loads(indata) if config is None: sys.stderr.write("ERROR: config_file structure not valid json format\n") sys.exit(1) for i,j in enumerate(config): if j == 'wsid': opts.wsid = config[j] elif j == 'user': opts.user = config[j] elif j == 'passwd': opts.passwd = config[j] elif j == 'app_name': opts.app_name = config[j] for i,j in enumerate(config["params"]): for k in ['name', 'type', 'value']: if k not in config["params"][i]: sys.stderr.write("ERROR: config_file contains a parameter missing one of the required fields (name, type, value)\n") sys.exit(1) if k == 'type' and config["params"][i][k] not in SUPPORTED_FIELD_TYPES: sys.stderr.write("ERROR: parameter type not supported: %s\n"%config["params"][i][k]) sys.exit(1) for o in ['user', 'passwd', 'wsid', 'app_name']: if not getattr(opts, o): sys.stderr.write("ERROR: missing required parameter: " + o + "\n") return 1 if not opts.output: opts.output = "screenshot." + opts.app_name + "." + opts.wsid + ".png" token = get_auth_token(opts) # create a new instance of the Firefox driver print "Creating Selenium Firefox driver..." driver = webdriver.Firefox() # get login page print "Retrieving KBase login web page: " + opts.url + " ..." driver.get(opts.url) # we have to wait for the login page to be fully loaded WebDriverWait(driver, PAGE_LOAD_TIMEOUT).until(EC.presence_of_element_located((By.ID, "kbase_username"))) print "Retrieved login page with title = " + driver.title # get username and password elements userElement = driver.find_element_by_id("kbase_username") pwdElement = driver.find_element_by_id("kbase_password") # login print "Logging into KBase narrative website..." userElement.send_keys(opts.user) pwdElement.send_keys(opts.passwd) userElement.submit() # we have to wait until the narrative page has loaded WebDriverWait(driver, PAGE_LOAD_TIMEOUT).until(EC.presence_of_element_located((By.ID, "kbase-navbar"))) print "Retrieved default narrative, ready for testing." workspaceTest = str(uuid.uuid1()) print "Setting the current workspace to: " + opts.wsid command = ['ws-workspace', opts.wsid] proc = subprocess.Popen(command, stdout = subprocess.PIPE) stdout, stderr = proc.communicate() if stderr: print "ERROR: " + stderr sys.exit() print "Cloning the template workspace: " + opts.wsid + " into test workspace: " + workspaceTest command = ['ws-clone', '-w', opts.wsid, workspaceTest] proc = subprocess.Popen(command, stdout = subprocess.PIPE) stdout, stderr = proc.communicate() if stderr: print "ERROR: " + stderr sys.exit() output = stdout.split() workspaceId = output[len(output)-1] print "Narrative cloned successfully to: " + workspaceId narrativeUrl = opts.url + "/narrative/ws." + workspaceId + ".obj.1" print "Retrieving narrative url: " + narrativeUrl # Open a new window to avoid narrative popup when leaving a narrative page driver.execute_script("$(window.open('http://www.google.com'))") driver.switch_to_window(driver.window_handles[-1]) driver.get(narrativeUrl) time.sleep(5) # we have to wait until the narrative page has loaded WebDriverWait(driver, PAGE_LOAD_TIMEOUT).until(EC.presence_of_element_located((By.ID, "kb-save-btn"))) print "Identified element specific to narrative interface (kb-save-btn), narrative has been loaded." panel_divs = driver.find_elements_by_class_name("kb-data-list-name") for i,j in enumerate(panel_divs): if j.text == opts.app_name: link = j.find_element_by_link_text(opts.app_name) link.click() time.sleep(5) break source = driver.page_source print source.encode('utf-8').strip() sys.exit() params = driver.find_elements_by_class_name("select2-choice") for i,p in enumerate(params): ptype = config["params"][i]["type"] pval = config["params"][i]["value"] if ptype == "text": p.click() time.sleep(1) p.send_keys(pval + "\n") elif ptype == "dropdown": p.click() time.sleep(1) inputs = driver.find_elements_by_id("select2-drop") for i,j in enumerate(inputs): if j.is_displayed(): values = j.find_elements_by_class_name("select2-result-label") for k,l in enumerate(values): if l.text == pval: l.click() time.sleep(1) break else: continue break appCount = 0 source = driver.page_source for line in source.split('\n'): matches = re.findall('kb-cell-\S+-run', line) for m in matches: button = driver.find_element_by_id(m) print " Identified 'Run' button: " + m button.click() print " Button clicked." appCount = appCount + 1 time.sleep(5) startTime = time.time() appsRunning = 0 appsWithOutput = 0 appsWithError = 0 appsWithAlert = 0 while(appsWithOutput < appCount): currentTime = time.time() if currentTime - startTime > APP_RUN_TIMEOUT: print "Timed out waiting for narrative apps to complete." break appsRunning = 0 appsWithOutput = 0 appsWithError = 0 appsWithAlert = 0 source = driver.page_source delimiter = 'cell text_cell border-box-sizing' divs = source.split(delimiter) for index in range(1, len(divs)): div = divs[index] if re.search('div id="kb-cell-\d+-', div) and re.search('kb-app-step-running', div): appsRunning = appsRunning + 1 elif re.search('div id="kb-cell-out', div): appsWithOutput = appsWithOutput + 1 if re.search('App Error', div): appsWithError = appsWithError + 1 elif re.search('alert-danger', div): appsWithAlert = appsWithAlert + 1 print "Total number of apps in narrative: " + str(appCount) print "Apps still running: " + str(appsRunning) print "Apps with output widget: " + str(appsWithOutput) print "Apps with output widget and App Error: " + str(appsWithError) print "Apps with output widget and Error that is not App Error: " + str(appsWithAlert) driver.set_window_size(1400, 950) driver.execute_script("window.scrollTo(0,0);") driver.get_screenshot_as_file(opts.output) print "Saved screenshot to: " + opts.output + "\n" print "Done." driver.quit() return 0 if __name__ == "__main__": sys.exit( main(sys.argv) ) ```
{ "source": "jmcharter/advent_of_code_2020", "score": 4 }
#### File: advent_of_code_2020/day_05/day_05_part_two.py ```python with open("day_05/day_05.txt") as f: data = f.read().splitlines() def binary_search(line, start, end, lo, hi, char1, char2,): ''' input data, first character to read, last character to read, lowest and highest value, and characters to search for. ''' target = 0 for char in line[start:end]: if char in char1: hi -= (hi - lo) // 2 + 1 target = lo elif char in char2: lo += (hi - lo) // 2 + 1 target = hi return target def find_seat(): for line in data: row = binary_search(line, 0, 7, 0, 127, 'F', 'B') column = binary_search(line, 7, None, 0, 7, 'L','R') id = row * 8 + column yield id seats = sorted([i for i in find_seat()]) adjacent = [] for i in range(1,len(seats)-1): if seats[i] != seats[i-1] + 1 or seats[i] != seats[i+1] - 1: adjacent.append(seats[i]) print((adjacent[0] + adjacent[1]) // 2) # Answer = 699 ```