metadata
dict
text
stringlengths
60
3.49M
{ "source": "jmencisom/wikastro", "score": 3 }
#### File: wikastro/src/BasicInfo.py ```python import os import urllib as url_op from astropy.coordinates import SkyCoord, get_constellation from astropy import units as u from astropy.cosmology import WMAP9 as cosmo from astropy.coordinates import Distance class BasicInfo: def __init__(self, attributes): """ Receives the attributes in a string and then assigns these values into the class variables. :Param: String that contains basic info separated by '|' :Return: Nothing. """ self.__attributes = attributes self.__objectType = "" self.__nombre="" self.__epoch = "J2000" self.__rightAscension = "" self.__declination = "" self.__helioRadialVelocity = "" self.__redShift = "" self.__morphologicalType = "" self.__apparentMagnitude = "" self.__otherNames = "" self.__namesReferences = [[" UGC", " [[Uppsala General Catalogue|UGC]]"], [" PGC", " [[Principal Galaxies Catalogue|PGC]]"], [" MCG", " [[Morphological Catalogue of Galaxies|MCG]]"], [" GC", " [[Catalogue of Nebulae and Clusters of Stars|GC]]"], [" CGCG", " [[Catalogue of Galaxies and Clusters of Galaxies|CGCG]]"], [" NGC", " [[New General Catalogue|NGC]]"], [" ESO", " [[ESO]]"], [" Tuc", " [[Bayer designation|ξ Tuc]]"], [" 1RXS", " [[1RXS]]"], [" 2MASX", " [[2MASX]]"]] self.__obtainValues() def __obtainValues(self): """ Using the variable 'self.__attributes', a string array is obtained and then each individual string is assigned to differents clas variables. :Param: Nothing. :Returns: Nothing. """ separatedText = self.__attributes.split("|") self.__nombre = separatedText[0] self.__objectType = separatedText[3] self.__rightAscension = separatedText[1] self.__declination = separatedText[2] self.__helioRadialVelocity = separatedText[4] self.__redShift = separatedText[5] self.__morphologicalType = separatedText[7] self.__apparentMagnitude = separatedText[6] self.__otherNames = self.formatOtherNames(separatedText[8]) def setAttributes(self, attributes): """ Assign the attributes received in the parameters into the attributes from the class and then calls the method obtainValues() in order to get a better organization. :Param: attributes obtained from the simbad database. :Returns: nothing. """ self.__attributes = attributes self.__obtainValues() def getAttributes(self): """ Obtain the attributes from the class and returns it. The variable attributes is the text recieved from the simbad database. :Param: nothing. :Returns: attributes from the class. """ return self.__attributes def getObjectType(self): """ If the object type is not empty, returns its containt. Else, it returns a string that contains just a emptiness. :Param: nothing. :Returns: object type. """ if(self.testEmptiness(self.__objectType, "Object Type")): return "" else: return self.__objectType def getEpoch(self): """ Returns the epoch of the NGC object, this variable usually contains J2000 epoch. :Param: nothing. :Returns: epoch. """ return self.__epoch def getRightAscension(self): """ Returns the right ascension inside the coordinates of the ngc object. If the variable is empty, then is return an empty string. :Param: nothing. :Returns: right ascension. """ if(self.testEmptiness(self.__rightAscension, "Right Ascension")): return "" else: return self.__rightAscension def getDeclination(self): """ Returns the declination inside the coordinates of the ngc object. If the variable is empty, then is return an empty string. :Param: nothing. :Returns: declination. """ if(self.testEmptiness(self.__declination, "Declination")): return "" else: return self.__declination def getHelioRadialVelocity(self): """ Returns the helio radial velocity also known as hrv of the ngc object. If the variable is empty, then is return an empty string. :Param: nothing. :Returns: helio radial velocity. """ if(self.testEmptiness(self.__helioRadialVelocity, "Helio Radial Velocity")): return "" else: return self.__helioRadialVelocity def getRedShift(self): """ Returns the red shift also known as z of the ngc object. If the variable is empty, then is return an empty string. :Param: nothing. :Returns: red shift. """ if(self.testEmptiness(self.__redShift, "Red Shift")): return "" else: return self.__redShift def getMorphologicalType(self): """ Returns the morphological type of the ngc object that is usually abreviated by the simbad database as some casual objects like galaxies, stars, etc. :Param: nothing. :Returns: morphological type. """ if(self.testEmptiness(self.__morphologicalType, "Morphological Type")): return "" else: return self.__morphologicalType def getApparentMagnitude(self): """ Returns the apparent magnitude also known as B of the ngc object. If the variable is empty, then is return an empty string. :Param: nothing. :Returns: morphological type. """ if(self.testEmptiness(self.__apparentMagnitude, "Apparent Magnitude")): return "" else: return self.__apparentMagnitude def getOtherNames(self): """ Returns the other names of an ngc object. this variable could contain a lot of different not so known names or could be just one single name. :Param: nothing. :Returns: other names of the ngc object as a string. :rtype: String """ if(self.testEmptiness(self.__otherNames, "Other Names")): return "" else: return self.__otherNames def getCoordinates(self): """ This method concatenates the right ascension and the declination into a single string. :Param: Nothing. :Returns: Coordinates in the form: right_ascension declination. """ return (self.getRightAscension() + " " + self.getDeclination()).split() def getConstellation(self): """ Coming soon... """ ra=self.getRightAscension() dec=self.getDeclination() ra2=ra.split(" ") dec2=dec.split(" ") ra=ra2[0]+"h"+ra2[1]+"m"+ra2[2]+"s" dec=dec2[0]+"d"+dec2[1]+"m"+dec2[2]+"s" constellation = SkyCoord(ra, dec, frame='icrs') return get_constellation(constellation) def getDistance(self): """ This method returns the distance of the object. :Param: Nothing. :Returns: Float with the distance of the object in lightyears units. :rtype: Float """ if (self.getRedShift() != ""): r = float(self.getRedShift()) d2 = Distance(cosmo.comoving_distance(r), u.lightyear) value = float(str(d2).split()[0]) divided = value / 1000000 #1 million if divided > 1: return "{:.2f} M".format(divided) else: return "{:.2f} ".format(value) else: return "" def getDiscovererAndYear(self,ngc_num): """ This method returns the discoverer of the object and the year it was discovered. :Param: the number of the object required. :Returns: String array of two positions that contains the discoverer and the year respectively. :rtype: String """ discoverer="" year="" try: if(os.path.exists('info.txt')): pass else: page = 'http://ngcicproject.org/public_HCNGC/DPublic_HCNGC.txt' url_op.urlretrieve(page, "info.txt") self.ngc_num = int(ngc_num)+9 archivo = open("info.txt") cont=0 while cont != self.ngc_num: linea=archivo.readline() cont+=1 arr = linea.split("|") discoverer = arr[9] year = arr[10] except: print "Error found" return [discoverer, year] def formatOtherNames(self, names): """ This method checks that the main name is not included and also adds the known references. :Param: A string that contains the list of names returned by simbad. :type: String :Returns: A String that contains the referenced names. :rtype: String """ format_names=names[names.find(",")+1:] #elimina primer nombre (NGC) for ref in self.__namesReferences: format_names=format_names.replace(ref[0], ref[1]) return format_names def testEmptiness(self, variable, name): """ This method test the emptiness of a variable. The emptiness is represented by a empty string '' or by this string: '~'. If the variable is empty then True is returned. :Param: Variable to test and name of the variable to print. :Returns: True if variable is empty. """ if(variable == "" or variable == "~"): print("There is no info about " + name + ".") return True return False ```
{ "source": "jmendeth/protobuf-parser", "score": 2 }
#### File: protobuf-parser/protobuf_inspector/core.py ```python import io, struct # Core parsing. This handles the most low-level deserialization. # No guessing going on here. These functions return None on EOF. def read_varint(file): result = 0; pos = 0 while True: b = file.read(1) if not len(b): assert(not pos) return None b = b[0] result |= ((b & 0x7F) << pos) pos += 7 if not (b & 0x80): assert(b != 0 or pos == 7) return result def read_identifier(file): id = read_varint(file) if id is None: return (None, None) return (id >> 3, id & 0x07) def read_value(file, wire_type): if wire_type == 0: return read_varint(file) if wire_type == 1: c = file.read(8) if not len(c): return None assert(len(c) == 8) return c if wire_type == 2: length = read_varint(file) if length is None: return None c = file.read(length) assert(len(c) == length) return io.BytesIO(c) if wire_type == 3 or wire_type == 4: return wire_type == 3 if wire_type == 5: c = file.read(4) if not len(c): return None assert(len(c) == 4) return c raise Exception("Unknown wire type %d" % wire_type) ```
{ "source": "jmendozais/SDSSDepth", "score": 2 }
#### File: SDSSDepth/data/kitti.py ```python import torch import torch.utils.data as data import os import glob import numpy as np import numpy.random as rng from skimage import io, transform from torchvision.transforms import functional as func from PIL import Image from data.dataset import Dataset from eval import kitti_depth_eval_utils as kitti_utils class Kitti(Dataset): def __init__( self, data_dir, frames_file, height=128, width=416, num_scales=4, seq_len=3, is_training=True, load_depth=False, load_intrinsics=True, ): super(Kitti, self).__init__( data_dir, frames_file, height, width, num_scales, seq_len, is_training, load_depth, load_intrinsics=load_intrinsics, ) self.full_res = (375, 1242) ( self.gt_files, self.gt_calib, self.im_sizes, self.im_files, self.cams_ids, ) = kitti_utils.read_file_data(self.filenames, data_dir) def _get_color(self, idx): abs_path = os.path.join(self.data_dir, self.filenames[idx]) assert abs_path[-3:] == "jpg" with open(abs_path, "rb") as f: img = self.reader.decode(f.read(), pixel_format=0) return Image.fromarray(img) def _get_depth(self, idx): camera_id = self.cams_ids[idx] # 2 is left, 3 is right depth = kitti_utils.generate_depth_map( self.gt_calib[idx], self.gt_files[idx], self.im_sizes[idx], camera_id, False, True, ) return depth def read_calib_file(self, filepath): # Borrowed from # https://github.com/utiasSTARS/pykitti/blob/master/pykitti/utils.py data = {} with open(filepath, "r") as f: for line in f.readlines(): key, value = line.split(":", 1) # The only non-float values in these files are dates, which # we don't care about anyway try: data[key] = np.array([float(x) for x in value.split()]) except ValueError: pass return data def _get_intrinsics(self, idx): calib_path = os.path.join(self.gt_calib[idx], "calib_cam_to_cam.txt") calib_data = self.read_calib_file(calib_path) raw_K = np.reshape(calib_data["P_rect_0" + self.cams_ids[idx]], (3, 4)) K = np.zeros(shape=(4, 4), dtype=np.float32) K[:3, :3] = raw_K[:3, :3] K[0, :] *= self.width / self.im_sizes[idx][1] K[1, :] *= self.height / self.im_sizes[idx][0] K[3, 3] = 1 """ K = np.array([[241.2800, 0.0000, 208.0000, 0.0000], [ 0.0000, 245.7600, 64.0000, 0.0000], [ 0.0000, 0.0000, 1.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, 1.0000]]).astype(np.float32) """ return K, None def test_kitti_dataset(): dataset_dir = "/data/ra153646/datasets/KITTI/raw_data/" train_file = "./data/kitti/train.txt" height = 128 width = 416 num_scales = 4 load_intrinsics = False seq_len = 3 dataset = Kitti( dataset_dir, train_file, height, width, num_scales, seq_len, True, True, load_intrinsics=load_intrinsics, ) for i in range(10): snippet, _ = dataset[i] print(snippet["K"]) print(len(snippet)) if __name__ == "__main__": test_kitti_dataset() ``` #### File: SDSSDepth/data/lanczos.py ```python import math import typing import torch from torch.nn import functional as F __all__ = ['imresize'] _I = typing.Optional[int] _D = typing.Optional[torch.dtype] def cubic_contribution(x: torch.Tensor, a: float = -0.5) -> torch.Tensor: ax = x.abs() ax2 = ax * ax ax3 = ax * ax2 range_01 = ax.le(1) range_12 = torch.logical_and(ax.gt(1), ax.le(2)) cont_01 = (a + 2) * ax3 - (a + 3) * ax2 + 1 cont_01 = cont_01 * range_01.to(dtype=x.dtype) cont_12 = (a * ax3) - (5 * a * ax2) + (8 * a * ax) - (4 * a) cont_12 = cont_12 * range_12.to(dtype=x.dtype) cont = cont_01 + cont_12 return cont def _normalized_sinc(x): ones = torch.ones_like(x) x_pi = x * math.pi return torch.where(x != 0, torch.sin(x_pi) / x_pi, ones) def lanczos_contribution(x: torch.Tensor) -> torch.Tensor: sinc_x = _normalized_sinc(x) sinc_x_a = _normalized_sinc(x / a) return sinc_x * sinc_x_a def reflect_padding( x: torch.Tensor, dim: int, pad_pre: int, pad_post: int) -> torch.Tensor: ''' Apply reflect padding to the given Tensor. Note that it is slightly different from the PyTorch functional.pad, where boundary elements are used only once. Instead, we follow the MATLAB implementation which uses boundary elements twice. For example, [a, b, c, d] would become [b, a, b, c, d, c] with the PyTorch implementation, while our implementation yields [a, a, b, c, d, d]. ''' b, c, h, w = x.size() if dim == 2 or dim == -2: padding_buffer = x.new_zeros(b, c, h + pad_pre + pad_post, w) padding_buffer[..., pad_pre:(h + pad_pre), :].copy_(x) for p in range(pad_pre): padding_buffer[..., pad_pre - p - 1, :].copy_(x[..., p, :]) for p in range(pad_post): padding_buffer[..., h + pad_pre + p, :].copy_(x[..., -(p + 1), :]) else: padding_buffer = x.new_zeros(b, c, h, w + pad_pre + pad_post) padding_buffer[..., pad_pre:(w + pad_pre)].copy_(x) for p in range(pad_pre): padding_buffer[..., pad_pre - p - 1].copy_(x[..., p]) for p in range(pad_post): padding_buffer[..., w + pad_pre + p].copy_(x[..., -(p + 1)]) return padding_buffer def padding( x: torch.Tensor, dim: int, pad_pre: int, pad_post: int, padding_type: typing.Optional[str] = 'reflect') -> torch.Tensor: if padding_type is None: return x elif padding_type == 'reflect': x_pad = reflect_padding(x, dim, pad_pre, pad_post) else: raise ValueError('{} padding is not supported!'.format(padding_type)) return x_pad def get_padding( base: torch.Tensor, kernel_size: int, x_size: int) -> typing.Tuple[int, int, torch.Tensor]: base = base.long() r_min = base.min() r_max = base.max() + kernel_size - 1 if r_min <= 0: pad_pre = -r_min pad_pre = pad_pre.item() base += pad_pre else: pad_pre = 0 if r_max >= x_size: pad_post = r_max - x_size + 1 pad_post = pad_post.item() else: pad_post = 0 return pad_pre, pad_post, base def get_weight( dist: torch.Tensor, kernel_size: int, kernel: str = 'cubic', antialiasing_factor: float = 1) -> torch.Tensor: buffer_pos = dist.new_zeros(kernel_size, len(dist)) for idx, buffer_sub in enumerate(buffer_pos): buffer_sub.copy_(dist - idx) buffer_pos *= antialiasing_factor if kernel == 'cubic': weight = cubic_contribution(buffer_pos) if kernel == 'lanczos3': weight = cubic_contribution(buffer_pos) else: raise ValueError('{} kernel is not supported!'.format(kernel)) weight /= weight.sum(dim=0, keepdim=True) return weight def reshape_tensor(x: torch.Tensor, dim: int, kernel_size: int) -> torch.Tensor: # Resize height if dim == 2 or dim == -2: k = (kernel_size, 1) h_out = x.size(-2) - kernel_size + 1 w_out = x.size(-1) # Resize width else: k = (1, kernel_size) h_out = x.size(-2) w_out = x.size(-1) - kernel_size + 1 unfold = F.unfold(x, k) unfold = unfold.view(unfold.size(0), -1, h_out, w_out) return unfold # TODO: # 1. how to define a proper kernel size for images # 2. Analyze antialiasing factor. is antialising == scale(<1) ok? def resize_1d( x: torch.Tensor, dim: int, size: typing.Optional[int], scale: typing.Optional[float], kernel: str = 'cubic', padding_type: str = 'reflect', antialiasing: bool = True) -> torch.Tensor: # Identity case if scale == 1: return x # Default bicubic kernel with antialiasing (only when downsampling) if kernel == 'cubic': kernel_size = 4 if kernel == 'lanczos3': kernel_size = 2 * 3 else: sigma = 2.0 kernel_size = math.floor(6 * sigma) if antialiasing and (scale < 1): antialiasing_factor = scale kernel_size = math.ceil(kernel_size / antialiasing_factor) else: antialiasing_factor = 1 # We allow margin to both sizes kernel_size += 2 # Weights only depend on the shape of input and output, # so we do not calculate gradients here. with torch.no_grad(): pos = torch.linspace( 0, size - 1, steps=size, dtype=x.dtype, device=x.device, ) pos = (pos + 0.5) / scale - 0.5 base = pos.floor() - (kernel_size // 2) + 1 dist = pos - base weight = get_weight( dist, kernel_size, kernel=kernel, antialiasing_factor=antialiasing_factor, ) pad_pre, pad_post, base = get_padding(base, kernel_size, x.size(dim)) # To backpropagate through x x_pad = padding(x, dim, pad_pre, pad_post, padding_type=padding_type) unfold = reshape_tensor(x_pad, dim, kernel_size) # Subsampling first if dim == 2 or dim == -2: sample = unfold[..., base, :] weight = weight.view(1, kernel_size, sample.size(2), 1) else: sample = unfold[..., base] weight = weight.view(1, kernel_size, 1, sample.size(3)) # Apply the kernel x = sample * weight x = x.sum(dim=1, keepdim=True) return x def resize_image( x: torch.Tensor, sizes: typing.Optional[typing.Tuple[int, int]] = None, kernel: str = 'lanczos3', padding_type: str = 'reflect', antialiasing: bool = True) -> torch.Tensor: assert len(x.size()) == 4 assert x.dtype != torch.float32 or x.dtype != torch.float64 b, c, h, w = x.size() x = x.view(-1, 1, h, w) scales = (sizes[0] / h, sizes[1] / w) kwargs = { 'kernel': kernel, 'padding_type': padding_type, 'antialiasing': antialiasing, } # Core resizing module x = resize_1d(x, -2, size=sizes[0], scale=scales[0], **kwargs) x = resize_1d(x, -1, size=sizes[1], scale=scales[1], **kwargs) rh, rw = x.size(-2), x.size(-1) x = x.view(b, c, rh, rw) return x def _lanczos_kernel_integer_positions(a, support): x = torch.linspace(-a, a, int(2 * support + 1)) sinc_x = _normalized_sinc(x) sinc_x_a = _normalized_sinc(x / a) return sinc_x * sinc_x_a def resize_lanczos_exact(x, size): b, c, h, w = x.size() nh, nw = size # scale factors assert h % nh == 0 and w % nw == 0 sfh = h / nh sfw = w / nw LANCZOS_A = 3.0 support = int(sfh * LANCZOS_A) kernel = _lanczos_kernel_integer_positions( LANCZOS_A, support=support).to(x.device) kernel = kernel / kernel.sum() kernel = kernel.unsqueeze(0).unsqueeze(0).repeat(c, 1, 1) x_wview = x.permute(0, 2, 1, 3).reshape(b * h, c, w) x_wview_padded = F.pad(x_wview, (support, support), mode='reflect') out = F.conv1d(x_wview_padded, kernel, stride=int(sfw), groups=c) x_hview = out.view(b, h, c, nw).permute(0, 3, 2, 1).reshape(b * nw, c, h) x_hview_padded = F.pad(x_hview, (support, support), mode='reflect') out2 = F.conv1d(x_hview_padded, kernel, stride=int(sfh), groups=c) out2 = out2.view(b, nw, c, nh).permute(0, 2, 3, 1) return out2 ``` #### File: jmendozais/SDSSDepth/eval_depth.py ```python import os import time import argparse import configargparse import numpy as np import torch import model import data from data import transform as DT from data import create_dataset from eval.kitti_depth_eval_utils import * from eval.depth_eval_utils import * import opts import util def eval_depth(model, test_loader, args): preds = [] depth_metrics = dict() for i, data in enumerate(test_loader, 0): with torch.no_grad(): # [b, sl, 3, h, w] dim[1] = {tgt, src, src ...} data['color'] = data['color'].to(args.device) data = DT.normalize(data) depths_or_disp_pyr, _, _ = model.depth_net( data['color'][:, 0]) # just for tgt images if model.depthnet_out == 'disp': depths = 1 / depths_or_disp_pyr[0] else: depths = depths_or_disp_pyr[0] if args.batchwise: batch_metrics = compute_metrics_batch(depths, data['depth'].to( args.device), min_depth=args.min_depth, crop_eigen=args.crop_eigen) util.accumulate_metrics(depth_metrics, batch_metrics) else: preds.append(depths[0].cpu().numpy()) if args.batchwise: for k, v in depth_metrics.items(): depth_metrics[k] = np.mean(v) print("Ambiguous scale factor (batchwise)") print(' '.join([k for k in depth_metrics.keys()])) print(' '.join(['{:.4f}'.format(depth_metrics[k]) for k in depth_metrics.keys()])) else: assert len(test_loader) == len(preds) assert args.gt_file is not None preds = np.concatenate(preds, axis=0).squeeze(1) gt = np.load(args.gt_file, allow_pickle=True) preds = resize_like(preds, gt) metrics = compute_metrics( preds, gt, args.min_depth, args.max_depth, crop_eigen=args.crop_eigen) print("Ambiguous scale factor") print(' '.join([k for k in metrics.keys()])) print(' '.join(['{:.4f}'.format(metrics[k]) for k in metrics.keys()])) if args.single_scalor: scale_factor = compute_scale_factor( preds, gt, args.min_depth, args.max_depth) metrics = compute_metrics( preds, gt, args.min_depth, args.max_depth, scale_factor, crop_eigen=args.crop_eigen) print("Consistent scale factor") print(' '.join([k for k in metrics.keys()])) print(' '.join(['{:.4f}'.format(metrics[k]) for k in metrics.keys()])) print('time: ', time.perf_counter() - start) if __name__ == '__main__': seq_len = 1 args = opts.parse_args() print(args) start = time.perf_counter() test_set = create_dataset(args.dataset, args.dataset_dir, args.test_file, height=args.height, width=args.width, num_scales=args.num_scales, seq_len=args.seq_len, load_depth=args.batchwise, is_training=False) test_loader = torch.utils.data.DataLoader(test_set, args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True, drop_last=False) checkpoint = torch.load(args.checkpoint) model = checkpoint['model'] model.to(args.device) model.eval() print("Student") eval_depth(model, test_loader, args) if 'teacher' in checkpoint.keys(): teacher = checkpoint['teacher'].ema_model teacher.to(args.device) teacher.eval() print("Teacher") eval_depth(teacher, test_loader, args) ``` #### File: jmendozais/SDSSDepth/normalization.py ```python import numpy as np import torch from torch import nn, Tensor, Size from typing import Union, List _shape_t = Union[int, List[int], Size] def parameterized_truncated_normal(uniform, mu, sigma, a, b): normal = torch.distributions.normal.Normal(0, 1) alpha = (a - mu) / sigma beta = (b - mu) / sigma alpha_normal_cdf = normal.cdf(alpha) p = alpha_normal_cdf + (normal.cdf(beta) - alpha_normal_cdf) * uniform p = p.numpy().astype(np.float32) one = np.array(1, dtype=p.dtype) epsilon = np.array(np.finfo(p.dtype).eps, dtype=p.dtype) v = np.clip(2 * p - 1, -one + epsilon, one - epsilon) x = mu + sigma * np.sqrt(2) * torch.erfinv(torch.from_numpy(v)) x = torch.clamp(x, a, b) return x def truncated_normal(uniform): return parameterized_truncated_normal( uniform, mu=0.0, sigma=1.0, a=-2, b=2) def sample_truncated_normal(shape=()): return truncated_normal(torch.from_numpy(np.random.uniform(0, 1, shape))) class Identity(nn.Module): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, x): return x class RandomLayerNorm(nn.Module): def __init__(self, noise_std: float = 0.5, eps: float = 1e-5, elementwise_affine: bool = True) -> None: super(RandomLayerNorm, self).__init__() self.elementwise_affine = elementwise_affine self.register_parameter('weight', None) self.register_parameter('bias', None) self.noise_std = noise_std self.normalized_shape = None self.eps = eps def reset_parameters(self) -> None: if self.elementwise_affine: nn.init.ones_(self.weight) nn.init.zeros_(self.bias) def forward(self, x): if self.normalized_shape is None: self.normalized_shape = (1,) + x.shape[1:] self.weight = nn.Parameter(torch.ones( *self.normalized_shape).to(x.device)) self.bias = nn.Parameter(torch.zeros( *self.normalized_shape).to(x.device)) var, mean = torch.var_mean(x, [2, 3], keepdim=True) if self.training: mean = mean * \ (1.0 + sample_truncated_normal(mean.shape).to(x.device) * self.noise_std).detach() var = var * \ (1.0 + sample_truncated_normal(var.shape).to(x.device) * self.noise_std).detach() b, c, h, w = var.size() x_norm = (x - mean) / (torch.sqrt(var) + 1e-6) res = x_norm * self.weight + self.bias return res ```
{ "source": "jmenges/yolov1_maxim", "score": 2 }
#### File: jmenges/yolov1_maxim/map.py ```python import numpy as np def calculate_map_main(gt_results, pred_results, iou_gt_thr=0.5, class_num=5): ''' 说明: 此函数用于计算目标检测中的mAP 输入: gt_results: list, 每一个元素对应一个样本中的所有目标的真实值 如gt_gt_result[0] = [ [xmin, ymin, xmax, ymax, label], [xmin, ymin, xamx, yamx, label], ... ] pred_results: list, 每一个元素对应一个样本中的所有目标的预测值 如pred_results[0] = [ [xmin, ymin, xmax, ymax, label, score], [xmin, ymin, xamx, yamx, label, score], ... ] iou_gt_thr: float, 用于判定正负样本, 如iou_gt_thr=0.5, 计算出的就是mAP 0.5 class_num: int, 类别数 输出: calss_ap: array, 各类别的AP mean_ap : float, 各类别平均得到mAP ''' all_tp = [ [] for i in range(class_num) ] # 用于存放各类所有的tp all_fp = [ [] for i in range(class_num) ] # 用于存放各类所有的fp all_score = [ [] for i in range(class_num) ] # 用于存放bbox对应的scores all_gt_num = np.zeros([class_num]) # 用于存放各类的真实目标数, 之后计算recall会用到 data_num = len(gt_results) # 样本总数 # 对于每一个样本, 计算tp, fp, 并且统计预测bbox的score以及真实目标的个数 for i in range(data_num): gt_result = gt_results[i] pred_result = pred_results[i] # print(f'computing {i} tp and fp') tp, fp, score, gt_num = calculate_tpfp_single(gt_result, pred_result, iou_gt_thr, class_num) # 按类别更新到总数中 for n in range(class_num): all_tp[n].extend(tp[n]) all_fp[n].extend(fp[n]) all_score[n].extend(score[n]) all_gt_num[n] += gt_num[n] # 计算出各类的AP,进而得到mAP all_map = calculate_map(all_tp, all_fp, all_score, all_gt_num, class_num) mean_ap = np.mean(all_map[1:]) print('mAP', mean_ap) return all_map, mean_ap def calculate_tpfp_single(gt_result, pred_result, iou_gt_thr, class_num): ''' 说明: 此函数用于计算单个样本的tp和fp, 并且存放对应的score, 统计真实目标的个数 输入: gt_result: list, 一个样本中所有的目标的真实值 如gt_result=[ [xmin, ymin, xmax, ymax, label], [xmin, ymin, xmax, ymax, label], ... ] pred_result: list, 一个样本中所有的目标的预测值 如pred_result=[ [xmin, ymin, xmax, ymax, label, score], [xmin, ymin, xmax, ymax, label, score], ... ] iou_gt_thr: float, 用于判断正负样本的iou阈值 class_num: 类别数 输出: all_tp: list, 每一个元素对应该样本计算出的对应类别的tp all_fp: list, 每一个元素对应该样本计算出的对应类别的fp all_score: list, 每一个元素对应该样本bbox对应类别的score gt_num: list, 每一个元素对应该样本对应类别的真实目标数 ''' all_tp = [[] for i in range(class_num)] all_fp = [[] for i in range(class_num)] all_score = [[] for i in range(class_num)] gt_num = np.zeros([class_num]) # 逐个类别提取真实bbox和预测bbox for i in range(class_num): tp = [] fp = [] score = [] match_gt_bbox = [obj[0:4] for obj in gt_result if int(obj[4]) == i] match_pred_bbox = [obj[0:4] for obj in pred_result if int(obj[4]) == i] match_pred_score = [obj[5] for obj in pred_result if int(obj[4]) == i] len_gt = len(match_gt_bbox) len_pred = len(match_pred_bbox) if len_gt == 0 and len_pred != 0: # 说明不存在该类目标,但是预测出来了,属于误检 score.extend(match_pred_score) for k in range(len_pred): tp.extend([0]) fp.extend([1]) if len_gt != 0 and len_pred != 0: # 说明存在该目标,并且检测出来了,那么计算若干gt与若干pred的iou score.extend(match_pred_score) ious = calculate_iou(match_gt_bbox, match_pred_bbox) max_iou = np.max(ious, axis=0) # [x,x,x...] 每一个预测框与某个gt最大的iou # if any(s > 0.65 for s in max_iou): # print(f"The image has good IOU: {max_iou}") # if any(s < 0.1 for s in max_iou): # print(f"The image has bad IOU: {max_iou}") # 使用iou_gt_thr来进行正负样本的判定,若满足条件,则为tp,否则为fp for k in range(len_pred): if max_iou[k] >= iou_gt_thr: tp.extend([1]) fp.extend([0]) if max_iou[k] < iou_gt_thr: tp.extend([0]) fp.extend([1]) all_tp[i].extend(tp) all_fp[i].extend(fp) all_score[i].extend(score) gt_num[i] += len_gt return all_tp, all_fp, all_score, gt_num def calculate_area(bbox): # 计算一个bbox的面积 w = max(bbox[2] - bbox[0], 0) h = max(bbox[3] - bbox[1], 0) w = max(0, w) h = max(0, h) return w * h def calculate_inter(bbox1, bbox2): # 计算两个bbox的交集面积 xmin = max(bbox1[0], bbox2[0]) ymin = max(bbox1[1], bbox2[1]) xmax = min(bbox1[2], bbox2[2]) ymax = min(bbox1[3], bbox2[3]) return calculate_area([xmin, ymin, xmax, ymax]) def calculate_union(bbox1, bbox2): # 计算两个bbox的并集面积 area1 = calculate_area(bbox1) area2 = calculate_area(bbox2) inter = calculate_inter(bbox1, bbox2) union = area1 + area2 - inter return union def IOU(bbox1, bbox2): # 计算两个bbox的iou inter = calculate_inter(bbox1, bbox2) union = calculate_union(bbox1, bbox2) iou = inter / union return iou def calculate_iou(bbox1, bbox2): ''' 说明: 此函数用于计算M个bbox与N个bbox的iou 输入: bbox1: list, 每一个元素是一个bbox, 如bbox1=[ [xmin, ymin, xamx, ymax], [xmin, ymin, xmax, ymax], ... ] bbox2: list, 每一个元素是一个bbox, 如bbox2=[ [xmin, ymin, xamx, ymax], [xmin, ymin, xmax, ymax], ... ] 输出: ans: array, size=[M, N], 计算出的iou矩阵 ''' len_1 = len(bbox1) len_2 = len(bbox2) ans = np.zeros([len_1, len_2]) for i in range(len_1): for j in range(len_2): # 计算bbox1[i]和bbox2[j]的iou ans[i, j] = IOU(bbox1[i], bbox2[j]) return ans def calculate_map(all_tp, all_fp, all_score, all_gt_num, class_num): ''' 说明: 此函数的输入为所有类别的tp, fp, score和真实目标数, 计算每一个类别的AP 输入: all_tp: list, 每个元素是该类别下的tp all_fp: list, 每个元素是该类别下的fp all_score: list, 每个元素是该类别下预测bbox对应的score all_gt_num: list, 每个元素是该类下真实母目标的个数 class_num: int, 类别数 输出: all_map: array, 每个元素是该类的AP ''' all_map = np.zeros([class_num]) for i in range(class_num): # 首先提取出每一类的信息 class_tp = all_tp[i] class_fp = all_fp[i] class_score = all_score[i] class_gt_num = all_gt_num[i] # 计算每一类的PR曲线 class_P, class_R = calculate_PR(class_tp, class_fp, class_score, class_gt_num) # 计算PR曲线的面积,即AP class_map = calculate_map_single(class_P, class_R) # 写入该类别下 all_map[i] = class_map return all_map def calculate_PR(class_tp, class_fp, class_score, class_gt_num): ''' 说明: 此函数用于计算某一类的PR曲线 输入: class_tp: list, 该类下的tp, 每个元素为0或1, 代表当前样本是否为正样本 class_fp: list, 该类下的fp, 每个元素为0或1, 代表当前样本是否为负样本 class_score: list, 该类下预测bbox对应的score class_gt_num: int, 类别数 输出: P: list, 该类下的查准率曲线 R: list, 该类下的查全率曲线 ''' # 按照score排序 sort_inds = np.argsort(class_score)[::-1].tolist() tp = [class_tp[i] for i in sort_inds] fp = [class_fp[i] for i in sort_inds] # 累加 tp = np.cumsum(tp).tolist() fp = np.cumsum(fp).tolist() # 计算PR P = [tp[i] / (tp[i] + fp[i]) for i in range(len(tp))] R = [tp[i] / class_gt_num for i in range(len(tp))] return P, R def calculate_map_single(P, R): ''' 说明: 此函数用于计算PR曲线的面积, 即AP 输入: P: list, 查准率曲线 R: list, 查全率曲线 输出: single_map: float, 曲线面积, 即AP ''' mpre = np.concatenate(([0.], P, [0.])) mrec = np.concatenate(([0.], R, [1.])) for i in range(np.size(mpre) - 1, 0, -1): # mpre的平整化 mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # 寻找mrec变化的坐标 i = np.where(mrec[1:] != mrec[:-1])[0] # 计算面积 single_map = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return single_map def NMS(bounding_boxes, S=7, img_size=224, confidence_threshold=0.5, iou_threshold=0.5): """Compute non max suppressing to reduce overlapping bounding box. Args: bounding_boxes (list): a list of bounding box. S (int): the number of grid cells. img_size (int): image size confidence_threshold (float): the threshold to select a box on has_obj_prob (has_object_probability). iou_threshold (float): the threshold of IOU to remove bounding boxes. Returns: a list of bounding boxes. bounding box format = [center_x (int), center_y (int), width (int), height (int), has_obj_prob (float), class_probs (float), confident_score (float), class_id (int)]. class_probs is a list of class probability. confident_score = has_obj_prob * max(class_prob). class_id is argmax(class_probs). """ bounding_boxes = bounding_boxes.cpu().detach().numpy().tolist() nms_boxes_buf = [] grid_size = img_size / S for batch in range(len(bounding_boxes)): predict_boxes = [] nms_boxes = [] for i in range(S): for j in range(S): gridX = grid_size * j gridY = grid_size * i if bounding_boxes[batch][i][j][4] < bounding_boxes[batch][i][j][9]: bounding_box = bounding_boxes[batch][i][j][5:10] else: bounding_box = bounding_boxes[batch][i][j][0:5] bounding_box.extend(bounding_boxes[batch][i][j][10:]) if bounding_box[4] >= confidence_threshold: predict_boxes.append(bounding_box) centerX = (int)(gridX + bounding_box[0] * grid_size) centerY = (int)(gridY + bounding_box[1] * grid_size) width = (int)(bounding_box[2] * img_size) height = (int)(bounding_box[3] * img_size) bounding_box[0] = max(0, (int)(centerX - width / 2)) bounding_box[1] = max(0, (int)(centerY - height / 2)) bounding_box[2] = min(img_size - 1, (int)(centerX + width / 2)) bounding_box[3] = min(img_size - 1, (int)(centerY + height / 2)) class_idx = np.argmax(bounding_box[5:]) confident_score = bounding_box[4] * bounding_box[5 + class_idx] # has_obj_prob * class_prob bounding_box.append(confident_score) bounding_box.append(class_idx) while len(predict_boxes) != 0: predict_boxes.sort(key=lambda box: box[4]) assured_box = predict_boxes[0] curr_class = assured_box[-1] temp = [] nms_boxes.append(assured_box) i = 1 while i < len(predict_boxes): compared_box = predict_boxes[i] if compared_box[-1] != curr_class or IOU(assured_box, predict_boxes[i]) <= iou_threshold: temp.append(predict_boxes[i]) i = i + 1 predict_boxes = temp nms_boxes_buf.append(nms_boxes) return nms_boxes_buf def gt_std(gt_results, S=7, B=2, img_size=224): gt_results_all = [] grid_size = img_size / S for instance_index in range(gt_results.shape[0]): # N gt_results_instance = [] for index_i in range(gt_results.shape[1]): # 7 for index_j in range(gt_results.shape[2]): # 7 gridX = grid_size * index_j gridY = grid_size * index_i area = gt_results[instance_index, index_i, index_j, 9] if area > 0: gt_results_patch = gt_results[instance_index, index_i, index_j].tolist() centerX = (int)(gridX + gt_results_patch[0] * grid_size) centerY = (int)(gridY + gt_results_patch[1] * grid_size) width = (int)(gt_results_patch[2] * img_size) height = (int)(gt_results_patch[3] * img_size) class_idx = int(gt_results[instance_index, index_i, index_j, 10:].argmax()) gt_results_patch[0] = max(0, (int)(centerX - width / 2)) gt_results_patch[1] = max(0, (int)(centerY - height / 2)) gt_results_patch[2] = min(img_size - 1, (int)(centerX + width / 2)) gt_results_patch[3] = min(img_size - 1, (int)(centerY + height / 2)) gt_results_patch[4] = class_idx gt_results_instance.append(gt_results_patch[0:5]) gt_results_all.append(gt_results_instance) return gt_results_all ``` #### File: yolov1_maxim/tiny_yolo_v2/train_voc.py ```python import logging import os import random import argparse import sys PROJECT_ROOT = os.path.join(os.path.dirname(__file__), '..') sys.path.insert(0, os.path.join(PROJECT_ROOT, "ai8x-training")) import numpy as np import torch import torch.optim as optim from torch.utils.data import DataLoader from loss import YoloLoss from tiny_yolov2 import TinyYoloV2 from utils import custom_collate_fn, create_exp_dir, get_logger, get_time_str from voc_dataset import VOCDataset import ai8x def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--num_epochs', type=int, default=400, help='Maximum training epoch.') parser.add_argument('--lr', type=float, default=3e-5, help='Learning rate.') parser.add_argument('--batch_size', type=int, default=16, help='Minibatch size.') parser.add_argument('--gpu', type=int, default=1, help='Use which gpu to train the model.') parser.add_argument('--exp', type=str, default="tiny-yolo-v2", help='Experiment name.') parser.add_argument('--seed', type=int, default=7, help='Random seed.') args = parser.parse_args() return args def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.deterministic = True def log_init(): import glob fdir0 = os.path.join("logs", args.exp + '-' + get_time_str()) create_exp_dir(fdir0, scripts_to_save=glob.glob('*.py')) args.output_dir = fdir0 logger = get_logger(logdir=fdir0, tag=args.exp, log_level=logging.INFO) logger.info("args = %s", args) return logger # Initialize the dataset and dataloader def dataset_init(): dataset = VOCDataset(root_path="/data/yiwei/VOCdevkit", image_size=224) data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers=4, collate_fn=custom_collate_fn) return dataset, data_loader # Train def train(logger): dataset, data_loader = dataset_init() # Set ai8x device ai8x.set_device(device=85, simulate=False, round_avg=False) model = TinyYoloV2(num_classes=dataset.num_classes) model = model.cuda() logger.info("NUMBER OF PARAMETERS {}".format(sum(p.numel() for p in model.parameters()))) # Initialize the loss function criterion = YoloLoss(dataset.num_classes, model.anchors) optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=0.0005) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,milestones=[50, 100,200,300,400,500,600,700,800,900,1000,2000,3000,4000,5000,6000,7000,8000,9000,10000,20000,30000,40000],gamma=0.8) # Initialize the quantization policy num_epochs = args.num_epochs # Main training num_iter_per_epoch = len(data_loader) for epoch in range(0, num_epochs): for batch_index, batch_train in enumerate(data_loader): train_data = batch_train[0].float().cuda() train_data.requires_grad = True label_data = batch_train[1] optimizer.zero_grad() logits = model(train_data) loss, loss_coord, loss_conf, loss_cls = criterion(logits, label_data) loss.backward() optimizer.step() logger.info("Epoch: {}/{}, Iteration: {}/{}, Lr: {}, Loss:{:.2f} (Coord:{:.2f} Conf:{:.2f} Cls:{:.2f})".format( epoch + 1, num_epochs, batch_index + 1, num_iter_per_epoch, optimizer.param_groups[0]['lr'], loss, loss_coord, loss_conf, loss_cls)) if epoch % 50 == 0: torch.save(model.state_dict(), os.path.join(args.output_dir, "tiny_yolo_v2_ep{}.pth".format(epoch))) scheduler.step() def main(): # Set GPU setup_seed(args.seed) logger = log_init() # args.device = torch.device('cuda:' + str(args.gpu) if torch.cuda.is_available() else 'cpu') os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) logger.info('Running on device: {}'.format(args.gpu)) train(logger) if __name__ == "__main__": args = get_args() main() ```
{ "source": "jmenglund/pandas-charm", "score": 3 }
#### File: jmenglund/pandas-charm/test_pandascharm.py ```python import pytest import numpy import pandas import dendropy import Bio.Alphabet from Bio.AlignIO import MultipleSeqAlignment from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord from pandas.util.testing import ( assert_categorical_equal, assert_dict_equal, assert_frame_equal, assert_index_equal, assert_produces_warning, assert_series_equal) from pandascharm import ( frame_as_categorical, frame_as_object, from_charmatrix, to_charmatrix, from_bioalignment, to_bioalignment, from_sequence_dict, to_sequence_dict) class TestAsCategorical(): frame = pandas.DataFrame({ 't1': ['T', 'G', 'C', 'A', '?'], 't2': ['T', 'G', 'C', 'A', 'A'], 't3': ['T', 'G', 'C', 'A', 'A'], 't4': ['T', 'G', 'C', 'A', 'A']}, dtype='category') def test_unaltered_categories(self): assert ( set(frame_as_categorical(self.frame)['t1'].cat.categories) == set(self.frame['t1'].cat.categories)) def test_altered_categories(self): assert ( set(frame_as_categorical(self.frame)['t2'].cat.categories) != set(self.frame['t2'].cat.categories)) def test_add_category(self): assert( set( frame_as_categorical(self.frame, ['-'])['t1'].cat.categories ) == {'T', 'G', 'C', 'A', '?', '-'}) class TestAsObject(): frame_cat = pandas.DataFrame({ 't1': ['T', 'G', 'C', 'A', '?'], 't2': ['T', 'G', 'C', 'A', 'A'], 't3': ['T', 'G', 'C', 'A', 'A'], 't4': ['T', 'G', 'C', 'A', 'A']}, dtype='category') frame_obj = pandas.DataFrame({ 't1': ['T', 'G', 'C', 'A', '?'], 't2': ['T', 'G', 'C', 'A', 'A'], 't3': ['T', 'G', 'C', 'A', 'A'], 't4': ['T', 'G', 'C', 'A', 'A']}, dtype='object') def test_conversion(self): assert_frame_equal(frame_as_object(self.frame_cat), self.frame_obj) class TestCharmatrixConversion(): dna_charmatrix_string = '3 5\nt1 TCCAA\nt2 TGCAA\nt3 TG-AA\n' dna_charmatrix = dendropy.DnaCharacterMatrix.get( data=dna_charmatrix_string, schema='phylip') dna_frame = pandas.DataFrame({ 't1': ['T', 'C', 'C', 'A', 'A'], 't2': ['T', 'G', 'C', 'A', 'A'], 't3': ['T', 'G', '-', 'A', 'A']}, dtype='category') rna_charmatrix_string = '3 5\nt1 UCCAA\nt2 UGCAA\nt3 UG-AA\n' rna_charmatrix = dendropy.RnaCharacterMatrix.get( data=rna_charmatrix_string, schema='phylip') rna_frame = pandas.DataFrame({ 't1': ['U', 'C', 'C', 'A', 'A'], 't2': ['U', 'G', 'C', 'A', 'A'], 't3': ['U', 'G', '-', 'A', 'A']}, dtype='category') protein_charmatrix_string = '3 5\nt1 VKYPN\nt2 VLYPN\nt3 VL-PN\n' protein_charmatrix = dendropy.ProteinCharacterMatrix.get( data=protein_charmatrix_string, schema='phylip') protein_frame = pandas.DataFrame({ 't1': ['V', 'K', 'Y', 'P', 'N'], 't2': ['V', 'L', 'Y', 'P', 'N'], 't3': ['V', 'L', '-', 'P', 'N']}, dtype='category') standard_charmatrix_string = '3 5\nt1 01010\nt2 02010\nt3 02-10\n' standard_charmatrix = dendropy.StandardCharacterMatrix.get( data=standard_charmatrix_string, schema='phylip') standard_frame = pandas.DataFrame({ 't1': ['0', '1', '0', '1', '0'], 't2': ['0', '2', '0', '1', '0'], 't3': ['0', '2', '-', '1', '0']}, dtype='category') def test_from_charmatrix_dna(self): assert_frame_equal( from_charmatrix(self.dna_charmatrix), self.dna_frame, check_categorical=False) def test_from_charmatrix_dna_object(self): assert_frame_equal( from_charmatrix(self.dna_charmatrix, categorical=False), frame_as_object(self.dna_frame)) def test_to_charmatrix_dna(self): assert ( to_charmatrix(self.dna_frame, data_type='dna') .as_string('phylip') == self.dna_charmatrix.as_string('phylip')) def test_from_charmatrix_rna(self): assert_frame_equal( from_charmatrix(self.rna_charmatrix), self.rna_frame, check_categorical=False) def test_to_charmatrix_rna(self): assert ( to_charmatrix(self.rna_frame, data_type='rna') .as_string('phylip') == self.rna_charmatrix.as_string('phylip')) def test_from_charmatrix_protein(self): assert_frame_equal( from_charmatrix(self.protein_charmatrix), self.protein_frame, check_categorical=False) def test_to_charmatrix_protein(self): assert ( to_charmatrix(self.protein_frame, data_type='protein') .as_string('phylip') == self.protein_charmatrix .as_string('phylip')) def test_from_charmatrix_standard(self): assert_frame_equal( from_charmatrix(self.standard_charmatrix), self.standard_frame, check_categorical=False) def test_to_charmatrix_standard(self): assert ( to_charmatrix(self.standard_frame, data_type='standard') .as_string('phylip') == self.standard_charmatrix .as_string('phylip')) def test_invalid_data_type(self): with pytest.raises(ValueError): to_charmatrix(self.standard_frame, data_type='unknown') class TestBioalignmentConversion(): def dict_to_bioalignment(d, alphabet='generic_alphabet', sorted=True): """ Create a BioPython MultipleSequenceAlignment from a dict with pairs consisting of id and sequence. """ alignment = MultipleSeqAlignment([]) bio_alphabet = getattr(Bio.Alphabet, alphabet) for id, seq in d.items(): seq_record = SeqRecord(Seq(seq, alphabet=bio_alphabet), id=id) alignment.append(seq_record) if sorted: alignment.sort() return alignment dna_alignment_dict = {'t1': 'TCCAA', 't2': 'TGCAA', 't3': 'TG-AA'} dna_bioalignment = dict_to_bioalignment( dna_alignment_dict, alphabet='generic_dna') dna_frame = pandas.DataFrame({ 't1': ['T', 'C', 'C', 'A', 'A'], 't2': ['T', 'G', 'C', 'A', 'A'], 't3': ['T', 'G', '-', 'A', 'A']}, dtype='category') def test_from_bioalignment_dna(self): assert_frame_equal( from_bioalignment(self.dna_bioalignment), self.dna_frame) def test_to_bioalignment_dna(self): assert ( to_bioalignment(self.dna_frame, alphabet='generic_dna') .format('phylip') == self.dna_bioalignment.format('phylip')) def test_invalid_alphabet(self): with pytest.raises(ValueError): to_bioalignment(self.dna_frame, alphabet='dna') class TestSequenceDictConversion(): dna_frame = pandas.DataFrame({ 't1': ['T', 'C', 'C', 'A', 'A'], 't2': ['T', 'G', 'C', 'A', 'A'], 't3': ['T', 'G', '-', 'A', 'A']}, dtype='object') dna_frame_nan = pandas.DataFrame({ 't1': ['T', 'C', 'C', 'A', 'A'], 't2': ['T', 'G', 'C', 'A', 'A'], 't3': ['T', 'G', '-', 'A', numpy.nan]}, dtype='object') dna_dict = {'t1': 'TCCAA', 't2': 'TGCAA', 't3': 'TG-AA'} def test_from_sequence_dict(self): assert_frame_equal( from_sequence_dict(self.dna_dict, categorical=False), self.dna_frame) def test_to_sequence_dict(self): assert(to_sequence_dict(self.dna_frame) == self.dna_dict) def test_do_sequence_dict_nan(self): with pytest.raises(TypeError): to_sequence_dict(self.dna_frame_nan) ```
{ "source": "jmenglund/pandas-validation", "score": 3 }
#### File: jmenglund/pandas-validation/pandasvalidation.py ```python import os import warnings import datetime import numpy import pandas __author__ = '<NAME>' __license__ = 'MIT' __version__ = '0.5.0' warnings.filterwarnings('default', category=DeprecationWarning) class ValidationWarning(Warning): pass def _datetime_to_string(series, format='%Y-%m-%d'): """ Convert datetime values in a pandas Series to strings. Other values are left as they are. Parameters ---------- series : pandas.Series Values to convert. format : str Format string for datetime type. Default: '%Y-%m-%d'. Returns ------- converted : pandas.Series """ converted = series.copy() datetime_mask = series.apply(type).isin( [datetime.datetime, pandas.Timestamp]) if datetime_mask.any(): converted[datetime_mask] = ( series[datetime_mask].apply(lambda x: x.strftime(format))) return converted.where(datetime_mask, series) def _numeric_to_string(series, float_format='%g'): """ Convert numeric values in a pandas Series to strings. Other values are left as they are. Parameters ---------- series : pandas.Series Values to convert. float_format : str Format string for floating point number. Default: '%g'. Returns ------- converted : pandas.Series """ converted = series.copy() numeric_mask = ( series.apply(lambda x: numpy.issubdtype(type(x), numpy.number)) & series.notnull()) if numeric_mask.any(): converted[numeric_mask] = ( series[numeric_mask].apply(lambda x: float_format % x)) return converted.where(numeric_mask, series) def _get_error_messages(masks, error_info): """ Get list of error messages. Parameters ---------- masks : list List of pandas.Series with masked errors. error_info : dict Dictionary with error messages corresponding to different validation errors. """ msg_list = [] for key, value in masks.items(): if value.any(): msg_list.append(error_info[key]) return msg_list def _get_return_object(masks, values, return_type): mask_frame = pandas.concat(masks, axis='columns') if return_type == 'mask_frame': return mask_frame elif return_type == 'mask_series': return mask_frame.any(axis=1) elif return_type == 'values': return values.where(~mask_frame.any(axis=1)) else: raise ValueError('Invalid return_type') def mask_nonconvertible( series, to_datatype, datetime_format=None, exact_date=True): """ Return a boolean same-sized object indicating whether values cannot be converted. Parameters ---------- series : pandas.Series Values to check. to_datatype : str Datatype to which values should be converted. Available values are 'numeric' and 'datetime'. datetime_format : str strftime to parse time, eg '%d/%m/%Y', note that '%f' will parse all the way up to nanoseconds. Optional. exact_date : bool - If True (default), require an exact format match. - If False, allow the format to match anywhere in the target string. """ if to_datatype == 'numeric': converted = pandas.to_numeric(series, errors='coerce') elif to_datatype == 'datetime': converted = pandas.to_datetime( series, errors='coerce', format=datetime_format, exact=exact_date) else: raise ValueError( 'Invalid \'to_datatype\': {}' .format(to_datatype)) # pragma: no cover notnull = series.copy().notnull() mask = notnull & converted.isnull() return mask def to_datetime( arg, dayfirst=False, yearfirst=False, utc=None, box=True, format=None, exact=True, coerce=None, unit='ns', infer_datetime_format=False): """ Convert argument to datetime and set nonconvertible values to NaT. This function calls :func:`~pandas.to_datetime` with ``errors='coerce'`` and issues a warning if values cannot be converted. """ try: converted = pandas.to_datetime( arg, errors='raise', dayfirst=dayfirst, yearfirst=yearfirst, utc=utc, box=box, format=format, exact=exact) except ValueError: converted = pandas.to_datetime( arg, errors='coerce', dayfirst=dayfirst, yearfirst=yearfirst, utc=utc, box=box, format=format, exact=exact) if isinstance(arg, pandas.Series): warnings.warn( '{}: value(s) not converted to datetime set as NaT' .format(repr(arg.name)), ValidationWarning, stacklevel=2) else: # pragma: no cover warnings.warn( 'Value(s) not converted to datetime set as NaT', ValidationWarning, stacklevel=2) return converted def to_numeric(arg): """ Convert argument to numeric type and set nonconvertible values to NaN. This function calls :func:`~pandas.to_numeric` with ``errors='coerce'`` and issues a warning if values cannot be converted. """ try: converted = pandas.to_numeric(arg, errors='raise') except ValueError: converted = pandas.to_numeric(arg, errors='coerce') if isinstance(arg, pandas.Series): warnings.warn( '{}: value(s) not converted to numeric set as NaN' .format(repr(arg.name)), ValidationWarning, stacklevel=2) else: # pragma: no cover warnings.warn( 'Value(s) not converted to numeric set as NaN', ValidationWarning, stacklevel=2) return converted def to_string(series, float_format='%g', datetime_format='%Y-%m-%d'): """ Convert values in a pandas Series to strings. Parameters ---------- series : pandas.Series Values to convert. float_format : str Format string for floating point number. Default: '%g'. datetime_format : str Format string for datetime type. Default: '%Y-%m-%d' Returns ------- converted : pandas.Series """ converted = _numeric_to_string(series, float_format) converted = _datetime_to_string(converted, format=datetime_format) converted = converted.astype(str) converted = converted.where(series.notnull(), numpy.nan) # missing as NaN return converted def validate_date( series, nullable=True, unique=False, min_date=None, max_date=None, return_type=None): """ Validate a pandas Series with values of type `datetime.date`. Values of a different data type will be replaced with NaN prior to the validataion. Parameters ---------- series : pandas.Series Values to validate. nullable : bool If False, check for NaN values. Default: True. unique : bool If True, check that values are unique. Default: False min_date : datetime.date If defined, check for values before min_date. Optional. max_date : datetime.date If defined, check for value later than max_date. Optional. return_type : str Kind of data object to return; 'mask_series', 'mask_frame' or 'values'. Default: None. """ error_info = { 'invalid_type': 'Value(s) not of type datetime.date set as NaT', 'isnull': 'NaT value(s)', 'nonunique': 'duplicates', 'too_low': 'date(s) too early', 'too_high': 'date(s) too late'} is_date = series.apply(lambda x: isinstance(x, datetime.date)) masks = {} masks['invalid_type'] = ~is_date & series.notnull() to_validate = series.where(is_date) if nullable is not True: masks['isnull'] = to_validate.isnull() if unique: masks['nonunique'] = to_validate.duplicated() & to_validate.notnull() if min_date is not None: masks['too_low'] = to_validate.dropna() < min_date if max_date is not None: masks['too_high'] = to_validate.dropna() > max_date msg_list = _get_error_messages(masks, error_info) if len(msg_list) > 0: msg = repr(series.name) + ': ' + '; '.join(msg_list) + '.' warnings.warn(msg, ValidationWarning, stacklevel=2) if return_type is not None: return _get_return_object(masks, to_validate, return_type) def validate_timestamp( series, nullable=True, unique=False, min_timestamp=None, max_timestamp=None, return_type=None): """ Validate a pandas Series with values of type `pandas.Timestamp`. Values of a different data type will be replaced with NaT prior to the validataion. Parameters ---------- series : pandas.Series Values to validate. nullable : bool If False, check for NaN values. Default: True. unique : bool If True, check that values are unique. Default: False min_timestamp : pandas.Timestamp If defined, check for values before min_timestamp. Optional. max_timestamp : pandas.Timestamp If defined, check for value later than max_timestamp. Optional. return_type : str Kind of data object to return; 'mask_series', 'mask_frame' or 'values'. Default: None. """ error_info = { 'invalid_type': 'Value(s) not of type pandas.Timestamp set as NaT', 'isnull': 'NaT value(s)', 'nonunique': 'duplicates', 'too_low': 'timestamp(s) too early', 'too_high': 'timestamp(s) too late'} is_timestamp = series.apply(lambda x: isinstance(x, pandas.Timestamp)) masks = {} masks['invalid_type'] = ~is_timestamp & series.notnull() to_validate = pandas.to_datetime(series.where(is_timestamp, pandas.NaT)) if nullable is not True: masks['isnull'] = to_validate.isnull() if unique: masks['nonunique'] = to_validate.duplicated() & to_validate.notnull() if min_timestamp is not None: masks['too_low'] = to_validate.dropna() < min_timestamp if max_timestamp is not None: masks['too_high'] = to_validate.dropna() > max_timestamp msg_list = _get_error_messages(masks, error_info) if len(msg_list) > 0: msg = repr(series.name) + ': ' + '; '.join(msg_list) + '.' warnings.warn(msg, ValidationWarning, stacklevel=2) if return_type is not None: return _get_return_object(masks, to_validate, return_type) def validate_datetime( series, nullable=True, unique=False, min_datetime=None, max_datetime=None, return_type=None): """ Validate a pandas Series containing datetimes. .. deprecated:: 0.5.0 `validate_datetime()` will be removed in version 0.7.0. Use `validate_date()` or `validate_timestamp()` instead. Parameters ---------- series : pandas.Series Values to validate. nullable : bool If False, check for NaN values. Default: True. unique : bool If True, check that values are unique. Default: False min_datetime : str If defined, check for values before min_datetime. Optional. max_datetime : str If defined, check for value later than max_datetime. Optional. return_type : str Kind of data object to return; 'mask_series', 'mask_frame' or 'values'. Default: None. """ warnings.warn( 'validate_datetime() is deprecated, use validate_date() or ' 'validate_timestamp() instead.', DeprecationWarning) error_info = { 'nonconvertible': 'Value(s) not converted to datetime set as NaT', 'isnull': 'NaT value(s)', 'nonunique': 'duplicates', 'too_low': 'date(s) too early', 'too_high': 'date(s) too late'} if not series.dtype.type == numpy.datetime64: converted = pandas.to_datetime(series, errors='coerce') else: converted = series.copy() masks = {} masks['nonconvertible'] = series.notnull() & converted.isnull() if not nullable: masks['isnull'] = converted.isnull() if unique: masks['nonunique'] = converted.duplicated() & converted.notnull() if min_datetime is not None: masks['too_low'] = converted.dropna() < min_datetime if max_datetime is not None: masks['too_high'] = converted.dropna() > max_datetime msg_list = _get_error_messages(masks, error_info) if len(msg_list) > 0: msg = repr(series.name) + ': ' + '; '.join(msg_list) + '.' warnings.warn(msg, ValidationWarning, stacklevel=2) if return_type is not None: return _get_return_object(masks, converted, return_type) def validate_numeric( series, nullable=True, unique=False, integer=False, min_value=None, max_value=None, return_type=None): """ Validate a pandas Series containing numeric values. Parameters ---------- series : pandas.Series Values to validate. nullable : bool If False, check for NaN values. Default: True unique : bool If True, check that values are unique. Default: False integer : bool If True, check that values are integers. Default: False min_value : int If defined, check for values below minimum. Optional. max_value : int If defined, check for value above maximum. Optional. return_type : str Kind of data object to return; 'mask_series', 'mask_frame' or 'values'. Default: None. """ error_info = { 'invalid_type': 'Non-numeric value(s) set as NaN', 'isnull': 'NaN value(s)', 'nonunique': 'duplicates', 'noninteger': 'non-integer(s)', 'too_low': 'value(s) too low', 'too_high': 'values(s) too high'} is_numeric = series.apply(pandas.api.types.is_number) masks = {} masks['invalid_type'] = ~is_numeric & series.notnull() to_validate = pandas.to_numeric(series.where(is_numeric)) if not nullable: masks['isnull'] = to_validate.isnull() if unique: masks['nonunique'] = to_validate.duplicated() & to_validate.notnull() if integer: noninteger_dropped = ( to_validate.dropna() != to_validate.dropna().apply(int)) masks['noninteger'] = pandas.Series(noninteger_dropped, series.index) if min_value is not None: masks['too_low'] = to_validate.dropna() < min_value if max_value is not None: masks['too_high'] = to_validate.dropna() > max_value msg_list = _get_error_messages(masks, error_info) if len(msg_list) > 0: msg = repr(series.name) + ': ' + '; '.join(msg_list) + '.' warnings.warn(msg, ValidationWarning, stacklevel=2) if return_type is not None: return _get_return_object(masks, to_validate, return_type) def validate_string( series, nullable=True, unique=False, min_length=None, max_length=None, case=None, newlines=True, trailing_whitespace=True, whitespace=True, matching_regex=None, non_matching_regex=None, whitelist=None, blacklist=None, return_type=None): """ Validate a pandas Series with strings. Non-string values will be converted to strings prior to validation. Parameters ---------- series : pandas.Series Values to validate. nullable : bool If False, check for NaN values. Default: True. unique : bool If True, check that values are unique. Default: False. min_length : int If defined, check for strings shorter than minimum length. Optional. max_length : int If defined, check for strings longer than maximum length. Optional. case : str Check for a character case constraint. Available values are 'lower', 'upper' and 'title'. Optional. newlines : bool If False, check for newline characters. Default: True. trailing_whitespace : bool If False, check for trailing whitespace. Default: True. whitespace : bool If False, check for whitespace. Default: True. matching_regex : str Check that strings matches some regular expression. Optional. non_matching_regex : str Check that strings do not match some regular expression. Optional. whitelist : list Check that values are in `whitelist`. Optional. blacklist : list Check that values are not in `blacklist`. Optional. return_type : str Kind of data object to return; 'mask_series', 'mask_frame' or 'values'. Default: None. """ error_info = { 'invalid_type': 'Non-string value(s) set as NaN', 'isnull': 'NaN value(s)', 'nonunique': 'duplicates', 'too_short': 'string(s) too short', 'too_long': 'string(s) too long', 'wrong_case': 'wrong case letter(s)', 'newlines': 'newline character(s)', 'trailing_space': 'trailing whitespace', 'whitespace': 'whitespace', 'regex_mismatch': 'mismatch(es) for "matching regular expression"', 'regex_match': 'match(es) for "non-matching regular expression"', 'not_in_whitelist': 'string(s) not in whitelist', 'in_blacklist': 'string(s) in blacklist'} is_string = series.apply(lambda x: isinstance(x, str)) masks = {} masks['invalid_type'] = ~is_string & series.notnull() to_validate = series.where(is_string) if not nullable: masks['isnull'] = to_validate.isnull() if unique: masks['nonunique'] = to_validate.duplicated() & to_validate.notnull() if min_length is not None: too_short_dropped = to_validate.dropna().apply(len) < min_length masks['too_short'] = pandas.Series(too_short_dropped, series.index) if max_length is not None: too_long_dropped = to_validate.dropna().apply(len) > max_length masks['too_long'] = pandas.Series(too_long_dropped, series.index) if case: altered_case = getattr(to_validate.str, case)() wrong_case_dropped = ( altered_case.dropna() != to_validate[altered_case.notnull()]) masks['wrong_case'] = pandas.Series(wrong_case_dropped, series.index) if newlines is False: masks['newlines'] = to_validate.str.contains(os.linesep) if trailing_whitespace is False: masks['trailing_space'] = to_validate.str.contains( r'^\s|\s$', regex=True) if whitespace is False: masks['whitespace'] = to_validate.str.contains(r'\s', regex=True) if matching_regex: masks['regex_mismatch'] = ( to_validate.str.contains(matching_regex, regex=True) .apply(lambda x: x is False) & to_validate.notnull()) if non_matching_regex: masks['regex_match'] = to_validate.str.contains( non_matching_regex, regex=True) if whitelist is not None: masks['not_in_whitelist'] = ( to_validate.notnull() & ~to_validate.isin(whitelist)) if blacklist is not None: masks['in_blacklist'] = to_validate.isin(blacklist) msg_list = _get_error_messages(masks, error_info) if len(msg_list) > 0: msg = repr(series.name) + ': ' + '; '.join(msg_list) + '.' warnings.warn(msg, ValidationWarning, stacklevel=2) if return_type is not None: return _get_return_object(masks, to_validate, return_type) ``` #### File: jmenglund/pandas-validation/test_pandasvalidation.py ```python import datetime import warnings import pytest import numpy import pandas from pandas.util.testing import assert_series_equal, assert_frame_equal from pandasvalidation import ( ValidationWarning, _datetime_to_string, _numeric_to_string, _get_return_object, mask_nonconvertible, to_datetime, to_numeric, to_string, validate_datetime, validate_date, validate_timestamp, validate_numeric, validate_string) class TestReturnTypes(): strings = pandas.Series(['1', '1', 'ab\n', 'a b', 'Ab', 'AB', numpy.nan]) masks = [ pandas.Series([False, False, False, True, True, False, False]), pandas.Series([True, True, False, True, True, False, True])] def test_return_mask_series(self): assert_series_equal( _get_return_object(self.masks, self.strings, 'mask_series'), pandas.Series([True, True, False, True, True, False, True])) def test_return_mask_frame(self): assert_frame_equal( _get_return_object(self.masks, self.strings, 'mask_frame'), pandas.concat(self.masks, axis='columns')) def test_return_values(self): assert_series_equal( _get_return_object(self.masks, self.strings, 'values'), pandas.Series([ numpy.nan, numpy.nan, 'ab\n', numpy.nan, numpy.nan, 'AB', numpy.nan])) def test_wrong_return_type(self): with pytest.raises(ValueError): _get_return_object(self.masks, self.strings, 'wrong return type') class TestMaskNonconvertible(): mixed = pandas.Series([ 1, 2.3, numpy.nan, 'abc', pandas.datetime(2014, 1, 7), '2014']) inconvertible_numeric = pandas.Series( [False, False, False, True, True, False]) inconvertible_exact_dates = pandas.Series( [True, True, False, True, True, False]) inconvertible_inexact_dates = pandas.Series( [True, True, False, True, False, False]) def test_numeric(self): assert_series_equal( mask_nonconvertible(self.mixed, 'numeric'), self.inconvertible_numeric) def test_datetime_exact_date(self): assert_series_equal( mask_nonconvertible( self.mixed, 'datetime', datetime_format='%Y', exact_date=True), self.inconvertible_exact_dates) assert_series_equal( mask_nonconvertible( self.mixed, 'datetime', datetime_format='%Y', exact_date=False), self.inconvertible_inexact_dates) class TestToDatetime(): mixed = pandas.Series([ 1, 2.3, numpy.nan, 'abc', pandas.datetime(2014, 1, 7), '2014']) def test_exact(self): assert ( to_datetime(self.mixed, format='%Y', exact=True).tolist() == [ pandas.NaT, pandas.NaT, pandas.NaT, pandas.NaT, pandas.NaT, pandas.Timestamp('2014-01-01 00:00:00')]) assert ( to_datetime(self.mixed, format='%Y', exact=False).tolist() == [ pandas.NaT, pandas.NaT, pandas.NaT, pandas.NaT, pandas.Timestamp('2014-01-01 00:00:00'), pandas.Timestamp('2014-01-01 00:00:00')]) class TestToNumeric(): mixed = pandas.Series([ 1, 2.3, numpy.nan, 'abc', pandas.datetime(2014, 1, 7), '2014']) def test_conversion(self): assert ( to_numeric(self.mixed).sum() == 2017.3) pytest.warns(ValidationWarning, to_numeric, self.mixed) class TestToString(): mixed = pandas.Series( [1, 2.3, numpy.nan, 'abc', pandas.datetime(2014, 1, 7)]) numeric_as_strings = pandas.Series( ['1', '2.3', numpy.nan, 'abc', pandas.datetime(2014, 1, 7)]) datetimes_as_strings = pandas.Series( [1, 2.3, numpy.nan, 'abc', '2014-01-07']) all_values_as_strings = pandas.Series( ['1', '2.3', numpy.nan, 'abc', '2014-01-07']) def test_numeric_to_string(self): assert_series_equal( _numeric_to_string(self.mixed), self.numeric_as_strings) def test_datetime_to_string(self): assert_series_equal( _datetime_to_string(self.mixed, format='%Y-%m-%d'), self.datetimes_as_strings) def test_to_string(self): assert_series_equal( to_string( self.mixed, float_format='%g', datetime_format='%Y-%m-%d'), self.all_values_as_strings) class TestValidateDatetime(): dates_as_strings = pandas.Series([ '2014-01-07', '2014-01-07', '2014-02-28', numpy.nan]) dates = pandas.Series([ datetime.datetime(2014, 1, 7), datetime.datetime(2014, 1, 7), datetime.datetime(2014, 2, 28), numpy.nan]) def test_validation(self): assert_series_equal( validate_datetime(self.dates_as_strings, return_type='values'), validate_datetime(self.dates, return_type='values')) pytest.warns( ValidationWarning, validate_datetime, self.dates, nullable=False) pytest.warns( ValidationWarning, validate_datetime, self.dates, unique=True) pytest.warns( ValidationWarning, validate_datetime, self.dates, min_datetime='2014-01-08') pytest.warns( ValidationWarning, validate_datetime, self.dates, max_datetime='2014-01-08') class TestValidateDate(): dates = pandas.Series([ datetime.datetime(2014, 1, 7), datetime.datetime(2014, 1, 7), datetime.datetime(2014, 2, 28), pandas.NaT]) def test_validation(self): assert_series_equal( validate_date(self.dates, return_type='values'), self.dates) pytest.warns( ValidationWarning, validate_date, self.dates, nullable=False) pytest.warns( ValidationWarning, validate_date, self.dates, unique=True) pytest.warns( ValidationWarning, validate_date, self.dates, min_date=datetime.date(2014, 1, 8)) pytest.warns( ValidationWarning, validate_date, self.dates, max_date=datetime.date(2014, 1, 8)) class TestValidateTimestamp(): timestamps = pandas.Series([ pandas.Timestamp(2014, 1, 7, 12, 0, 5), pandas.Timestamp(2014, 1, 7, 12, 0, 5), pandas.Timestamp(2014, 2, 28, 0, 0, 0), pandas.NaT]) def test_validation(self): assert_series_equal( validate_timestamp(self.timestamps, return_type='values'), self.timestamps) pytest.warns( ValidationWarning, validate_timestamp, self.timestamps, nullable=False) pytest.warns( ValidationWarning, validate_timestamp, self.timestamps, unique=True) pytest.warns( ValidationWarning, validate_timestamp, self.timestamps, min_timestamp=pandas.Timestamp(2014, 1, 8)) pytest.warns( ValidationWarning, validate_timestamp, self.timestamps, max_timestamp=pandas.Timestamp(2014, 1, 8)) class TestValidateNumber(): numeric_with_string = pandas.Series([-1, -1, 2.3, '1']) numeric = pandas.Series([-1, -1, 2.3, numpy.nan]) def test_validation(self): assert_series_equal( validate_numeric(self.numeric_with_string, return_type='values'), self.numeric) pytest.warns( ValidationWarning, validate_numeric, self.numeric, nullable=False) pytest.warns( ValidationWarning, validate_numeric, self.numeric, unique=True) pytest.warns( ValidationWarning, validate_numeric, self.numeric, integer=True) pytest.warns( ValidationWarning, validate_numeric, self.numeric, min_value=0) pytest.warns( ValidationWarning, validate_numeric, self.numeric, max_value=0) class TestValidateString(): mixed = pandas.Series(['ab\n', 'a b', 'Ab', 'Ab', 'AB', 1, numpy.nan]) strings = pandas.Series( ['ab\n', 'a b', 'Ab', 'Ab', 'AB', numpy.nan, numpy.nan]) def test_validation(self): assert_series_equal( validate_string(self.mixed, return_type='values'), self.strings) pytest.warns( ValidationWarning, validate_string, self.strings, nullable=False) pytest.warns( ValidationWarning, validate_string, self.strings, unique=True) pytest.warns( ValidationWarning, validate_string, self.strings, min_length=3) pytest.warns( ValidationWarning, validate_string, self.strings, max_length=2) pytest.warns( ValidationWarning, validate_string, self.strings[3:], case='lower') pytest.warns( ValidationWarning, validate_string, self.strings[3:], case='upper') pytest.warns( ValidationWarning, validate_string, self.strings[3:], case='title') pytest.warns( ValidationWarning, validate_string, self.strings, newlines=False) pytest.warns( ValidationWarning, validate_string, self.strings, trailing_whitespace=False) pytest.warns( ValidationWarning, validate_string, self.strings, whitespace=False) pytest.warns( ValidationWarning, validate_string, self.strings, matching_regex=r'\d') pytest.warns( ValidationWarning, validate_string, self.strings, non_matching_regex=r'[\d\s\w]') pytest.warns( ValidationWarning, validate_string, self.strings, whitelist=self.strings[:4]) pytest.warns( ValidationWarning, validate_string, self.strings, blacklist=['a', 'Ab']) ```
{ "source": "JMensch/reddit-watch", "score": 3 }
#### File: JMensch/reddit-watch/bot.py ```python import praw import time import datetime from multiprocessing import Process def controller(keywords, subreddits, username): """ """ # instantiate praw and request reddit login r = praw.Reddit('Reddit-Watch RedditBot') r.login() # the process queue jobs = [] for subreddit in subreddits: p = Process(target=run, args=(r, keywords, subreddit, username)) jobs.append(p) p.start() def run(reddit, keywords, subreddit, username): """ """ # list of searched posts already_done = [] # the subreddit watcher while True: subreddit = reddit.get_subreddit(subreddit) print "watching %s..." % subreddit # for newest 100 posts for post in subreddit.get_new(limit=100): # get post body and title op_body = post.selftext.lower() op_title = post.title.lower() op = op_body + " " + op_title # check if post title or body has a search value if post.id not in already_done: for keyword in keywords: if keyword in op: # create and send message msg = '[%s](%s)' % (op_title, post.short_link) title = '[Reddit-Watch]['+datetime.datetime.now().strftime("%Y-%m-%d")+'] ' + keyword reddit.send_message(username, title, msg) already_done.append(post.id) # wait for 15mins time.sleep(900) ``` #### File: JMensch/reddit-watch/main.py ```python import optparse from bot import controller def main(): desc = "Reddit-Watch: a subreddit search and notification bot" # the cli p = optparse.OptionParser(description=desc) p.add_option('-s', '--subs', default=[], help="subreddits to search", action="append", dest="subs") p.add_option('-k', '--keywords', default=[], help="keywords to search for", action="append", dest="keys") p.add_option('-u', '--username', default=[], help="username to send notification", action="store", dest="username") opts, args = p.parse_args() # check required params if not opts.subs: p.error('Please enter a subreddit to watch.') if not opts.keys: p.error('Please enter a keyword for watch for.') if not opts.username: p.error('Please enter a username to send the notification.') controller(opts.keys, opts.subs, opts.username) if __name__ == '__main__': main() ```
{ "source": "jmenzelupb/MSMP-xmas", "score": 2 }
#### File: 2019/fourier_xmas/xmas.py ```python import matplotlib.pyplot as plt import numpy as np import matplotlib.animation as animation Box = [0.0, 0.0 + 3.5j, 11.0 + 3.5j, 11.0, 0.0] X=[0.0, -1.0 + -1.0j, 1.0 + 1.0j, 0.0, -1.0 + 1.0j, 1.0 + -1.0j] M=[-1.0 + -1.0j, -1.0 + 1.0j, 0.0, 1.0 + 1.0j, 1.0 + -1.0j] A=[-0.6 + -1.0j, 1.0j,0.6 + -1.0j,-0.8 + -0.1j, 0.8 + -0.1j] S=[0.0 + 1.0j,0.5 + 0.7j, 0.0 + 1.0j, -0.5 + 0.7j, 0.5 + -0.7j, 0.0 - 1.0j, -0.5 + -0.7j] print(A) X_offset=1.75 + 1.75j M_offset=X_offset + 2.5 A_offset=M_offset + 2.5 S_offset=A_offset + 2.5 print(len(A)) for i in range(len(X)): X[i] += X_offset for i in range(len(M)): M[i] += M_offset for i in range(len(A)): A[i] += A_offset for i in range(len(S)): S[i] += S_offset underline=[1.0 +- 0.2j, -9.0 + -0.2j, 2.0 + -0.4j] for i in range(len(underline)): underline[i] += S[-2] endpoints = [11.0 + 0.4j, 11.0, 0.0] func_points = Box + X + M + A + S + underline + endpoints intervals=[50,100,50,100,20,50,100,50,50,100,20,70,50,50,70,20,90,90,50,40,30,20,20,20,40,20,20,20,100,90,20,20,50] print(func_points) T=sum(intervals) print(len(func_points), len(intervals)) x = np.linspace(func_points[0],func_points[1],intervals[0]) for i in range(1,len(func_points)-1): tmp = np.linspace(func_points[i],func_points[i+1],intervals[i]) x = np.concatenate((x,tmp)) t = np.arange(0,T) w0 = 2 * np.pi / T coeff = [] e_func = [] for i in range(-60,60): x_i = 1/T * np.trapz(x*(np.e ** (-1j * w0 * i * t))) e_i = np.e ** (1j * w0 * i * t) print(x_i) coeff.append(x_i) e_func.append(e_i) coeff = np.array(coeff) x_hat = coeff[0] * e_func[0] for i in range(1,len(coeff)): x_hat += coeff[i] * e_func[i] coeff_anim = [] for j in range(T): points = [0] for i in range(len(coeff)): new_point = points[-1] + coeff[i] * e_func[i][j] points.append(new_point) points = np.array(points) coeff_anim.append(points) fig = plt.figure() ax = fig.add_subplot(1,1,1) def animate(i): if(i < T): x_1 = np.real(x_hat[:i]) y_1 = np.imag(x_hat[:i]) x_2 = np.real(coeff_anim[i]) y_2 = np.imag(coeff_anim[i]) ax.clear() #ax.set_xlim([-1.5,7.5]) #ax.set_ylim([-2.2,1.5]) ax.plot(x_1,y_1) ax.plot(x_2,y_2) else: ax.clear() #ax.set_xlim([-1.5,7.5]) #ax.set_ylim([-2.2,1.5]) ax.plot(np.real(x_hat),np.imag(x_hat)) anim = animation.FuncAnimation(fig,animate,interval=20) plt.show() ```
{ "source": "jmeppley/jupy_tools", "score": 3 }
#### File: jme/jupy_tools/filesystem.py ```python import os, re, glob, pandas, numpy from datetime import datetime from collections import namedtuple, defaultdict def find(path, filters=None): """ recursively find files that match executable filters """ for root, dirs, files in os.walk(path, topdown=False): for name in files: if _check_path(root, name, filters): yield os.path.join(root, name) skips = [] for name in dirs: if _check_path(root, name, filters): yield os.path.join(root, name) else: skips.append(name) for name in skips: dirs.remove(name) def get_rexp_filter(rexp): if isinstance(rexp, str): rexp = re.compile(rexp) def check_path_against_rexp(root, name): return rexp.search(os.path.join(root, name)) is not None return check_path_against_rexp def _check_path(root, name, filters=None): if filters: for test in filters: if not test(root, name): return False return True # matches the bracketed names in a wildcard glob string TEMPLATE_REXP = re.compile(r"(?<!{)\{\s*(\w+)\s*\}(?!})") def glob_wildcards(template, constraints=None, as_tuple=False, debug=False): """ should work like the snakemake function: * given a template like path/{variable}.ext * find the values for variable that match files Except the return value is different. Generates for each found file: (file_path, dict(wildcard values)) If as_tuple is True, generates named tuple instead of dict. """ if constraints is None: constraints = {} # simple glob for finding files {xxx} -> * glob_string = TEMPLATE_REXP.sub("*", template) named_patterns = set() def wc_repl(match): """ replace {xxx} with named regex pattern using any constraints """ wc_name = match.group(1) if wc_name in named_patterns: return f"(?P={wc_name})" named_patterns.add(wc_name) wc_patt = constraints.get(wc_name, r".+") return f"(?P<{wc_name}>{wc_patt})" # regex for getting wildcards from path wildcard_pattern = TEMPLATE_REXP.sub(wc_repl, _hide_dots(template)) if debug: print(f"Wildcard regexp: '{wildcard_pattern}'") wildcard_rexp = re.compile(wildcard_pattern) # create named tuple class for returned data if as_tuple: Wildcards = namedtuple( "Wildcards", list(set(m.group(1) for m in TEMPLATE_REXP.finditer(template))) ) # loop over matched files for glob_file in glob.glob(glob_string): m = wildcard_rexp.match(glob_file) if m: # transform dict of names->matches to named tuple, if asked wildcards = Wildcards(**m.groupdict()) if as_tuple else m.groupdict() yield glob_file, wildcards elif debug: print("WARNING: {} doesn match {}".format(glob_file, wildcard_rexp.pattern)) def _hide_dots(path): return re.sub(r"\.", "\.", path) from numpy import log, power, abs LN_BASE = log(power(1024, 1 / 3)) def human_readable_bytes(byt): """ fixed version of https://stackoverflow.com/a/17754143/663466 hybrid of https://stackoverflow.com/a/10171475/2595465 with https://stackoverflow.com/a/5414105/2595465 """ # return bytes if small if byt <= 99: return str(int(byt)) magnitude = int(log(abs(byt)) / LN_BASE) if magnitude > 19: float_fmt = "%i" illion = 20 // 3 else: mag3 = (magnitude + 1) % 3 float_fmt = "%" + str(mag3) + "." + str(3 - mag3) + "f" illion = (magnitude + 1) // 3 format_str = float_fmt + ["", "K", "M", "G", "T", "P", "E"][illion] return (format_str % (byt * 1.0 / (1024 ** illion))).lstrip("0") def get_file_sizes_and_dates_by_uid(volume, users=None, min_age=0, follow_links=False, time_stat='mtime'): """ Collect date and size by user id Params: * users: only consider these users (ids or names) * min_age: only save files at least this old (in seconds) * follow_links: passed to os.walk (default is False) * time_stat: one of 'mtime', 'ctime', 'atime', or 'max' """ # translate user ids to names userid_map = get_user_lookup_table().to_dict() # translate userids to names in include list if users is not None: users = set(userid_map.get(u, u) for u in users) usage_data = defaultdict(lambda: []) min_date = int(datetime.now().timestamp()) now = datetime.now().timestamp() for root_path, folder_list, file_list in os.walk(volume, followlinks=follow_links): for file_name in file_list: try: file_path = os.path.join(root_path, file_name) if not(os.path.isfile(file_path)): # skip broken links continue file_stats = os.stat(file_path) # filter by owner if user list given ownerid = file_stats.st_uid owner = userid_map.get(ownerid, ownerid) if users is not None and owner not in users: continue # get the user selected time stat mtime = file_stats.st_ctime if time_stat == 'ctime' \ else file_stats.st_mtime if time_stat == 'mtime' \ else file_stats.st_atime if time_stat == 'atime' \ else max(file_stats.st_mtime, file_stats.st_ctime, file_stats.st_atime) # keep track of oldest file min_date = min(mtime, min_date) # filter by age file_age = now - mtime if file_age < min_age: continue usage_data[owner].append((file_stats.st_size, mtime, file_path, )) except: pass return usage_data, min_date TIME_SPANS = { 'minutes': 60, 'hours': 3600, 'days': 3600*24, 'weeks': 3600*24*7, 'months': 3600*24*30, 'years': 3600*24*365, } def get_file_size_table(usage_data, min_date, age_bin_size=2, age_bin_type='weeks', min_age=0): """ translate files sizes and dates into table """ now = datetime.now().timestamp() if age_bin_type not in TIME_SPANS: raise Exception("I don't know the time span {}. Please specify one of: {}".format( age_bin_type, ", ".join(TIME_SPANS.keys()), )) age_bins_step = age_bin_size * TIME_SPANS[age_bin_type] oldest_age = now - min_date age_bin_bounds = numpy.arange(0, oldest_age + age_bins_step, age_bins_step) counts = {} now = datetime.now().timestamp() for owner, file_data_list in usage_data.items(): owner_counts = counts.setdefault(owner, {}) for file_data in file_data_list: size = file_data[0] file_age = now - file_data[1] if file_age < min_age: continue age_bin = int(file_age/age_bins_step) owner_counts[age_bin] = owner_counts.get(age_bin, 0) + size # make into a data frame file_size_table = pandas.DataFrame(counts) # headers... #users = get_user_lookup_table() #file_size_table.columns = [users.get(c,c) for c in file_size_table.columns] file_size_table.index = \ [get_bin_bounds_string(i, age_bin_bounds, lambda b: \ str(int(b/TIME_SPANS[age_bin_type])), "{} old".format(age_bin_type)) \ for i in file_size_table.index] return file_size_table def get_bin_bounds_string(bin_index, bin_bounds, to_str=repr, suffix=""): """ retuns, for example: '15 to 20 months' given: bin_index: the location in bin_bounds to find the start value bin_bounds: a list of bounding values suffix: the class of the bounds. EG 'months' or 'days' """ return "{} to {} {}".format(to_str(bin_bounds[bin_index]), to_str(bin_bounds[bin_index + 1]), suffix) def get_user_lookup_table(): """ returns series mapping user id to user name """ return pandas.read_table('/etc/passwd', sep=':', names=['user','code','id','group','home','shell'], index_col=2)['user'] ```
{ "source": "jmeppley/np_read_clustering", "score": 2 }
#### File: np_read_clustering/scripts/choose_mcl_all_clusters.py ```python import pandas, numpy, os from collections import deque from itertools import cycle from scipy import stats from Bio import SeqIO # load the read lengths from the summary file read_lens = pandas.read_csv(snakemake.input.read_lens, sep='\t', names=['read_id','sequence_length_template'], index_col='read_id', header=None).sequence_length_template.to_dict() # process clusters to choose keepers cluster_data = [] read_clusters = {} sigma_cutoff = snakemake.params.sigma_cutoff count_cutoff = snakemake.params.min_cl_size # loop over clusters in mcl_file with open(str(snakemake.input.mcl)) as mcl_lines: for i,line in enumerate(mcl_lines): # get cluster read names reads = set(line.strip().split()) count = len(reads) # get cluster read length dist cluster_lens = numpy.array([read_lens[r] for r in reads]) counts, bins = numpy.histogram(cluster_lens, bins=100) X = numpy.array([numpy.mean((bins[j], bins[j-1])) for j in range(1,len(bins))]) mu, sigma = stats.norm.fit(cluster_lens) keep = (sigma <= sigma_cutoff and count >= count_cutoff) cluster_data.append(dict(num=i, count=count, sigma=sigma, mu=mu, keep=keep)) if keep: """ # write read list if not os.path.exists(str(snakemake.output.reads)): os.makedirs(str(snakemake.output.reads), exist_ok=True) with open(f"{output.reads}/cluster.{i}.reads", 'wt') as reads_out: reads_out.write("\n".join(reads) + "\n") """ # save cluster id for read in reads: read_clusters[read] = i cluster_table = pandas.DataFrame(cluster_data) ## assign groups # this serves 2 purposes: # 1) we limit the number of files in each folder (too many files can slow # down snakemake) # 2) we enable running the workflow in chunks (can perform better in some # cases) keepers = cluster_table.query('keep') num_keepers = keepers.shape[0] # we want the number of groups, but we can get it from group_size if 'group_size' in snakemake.config and 'num_groups' not in snakemake.config: group_size = snakemake.config['group_size'] n_groups = int(numpy.ceil(num_keepers/group_size)) else: n_groups = snakemake.config.get('num_groups', 100) # assigne a group to each cluster (round-robin) groups = cycle(range(n_groups)) cluster_groups = {c:next(groups) for c in keepers['num']} cluster_table['group'] = [cluster_groups.get(c,None) if k else None for c,k in cluster_table[['num','keep']].values] # write fasta files if not os.path.exists(str(snakemake.output.reads)): os.makedirs(str(snakemake.output.reads), exist_ok=True) # limit number of open files with n_open = 250 open_handle_ids = deque([]) handles = {} def open_cluster_fasta(i): """ checks for open handle for this scluster and returns it if found otherwise closes oldest handle and replaes with new handle for this cluster """ # return open handle if it exists try: return handles[i] except KeyError: pass # close handle(s) if we have too many while len(handles) > n_open - 1: # drop oldest drop_id = open_handle_ids.popleft() # close and delete handles[drop_id].close() del handles[drop_id] group = cluster_groups[i] fasta_file = f"{snakemake.output.reads}/group.{group}/cluster.{i}.fasta" fd = os.path.dirname(fasta_file) if not os.path.exists(fd): os.makedirs(fd) handle = open(fasta_file, 'at') handles[i] = handle open_handle_ids.append(i) return handle # loop over all reads and write out skipped_read_count = 0 for read in SeqIO.parse(snakemake.input.fasta, 'fasta'): try: cluster = read_clusters[read.id] except KeyError: # skip if no cluster skipped_read_count += 1 continue open_cluster_fasta(cluster).write(read.format('fasta')) # add row for unclustered reads for k,v in dict(i=-1, count=skipped_read_count, keep=False).items(): cluster_table.loc[-1,k] = v # save cluster table cluster_table.to_csv(str(snakemake.output.stats), sep='\t', index=False) ```
{ "source": "jmeppley/py-metagenomics", "score": 2 }
#### File: py-metagenomics/databases/buildRefSeqAccToTaxidMap.py ```python from optparse import OptionParser import sys, logging, re from edl.taxon import readTaxonomy, getNodeFromHit def main(): usage='%prog [OPTIONS] TAXDUMP_PATH' description='reduce full RefSea catalog (from STDIN) to acc->taxid map using TAXDUMP to verify taxids' parser = OptionParser(usage, description=description) parser.add_option("-g", "--genomic", default=False, action="store_true", help="output genoic accessions instead of proteins") parser.add_option("-v", "--verbose", action="count", dest="verbose", default=1, help="Print log messages. Use twice for debugging") parser.add_option("-q", '--quiet', dest='verbose', action="store_const", const=0, help="Suppress warnings. Only print fatal messages") parser.add_option("-A", "--about", action="store_true", dest="about", default=False, help="Print description") (options, args) = parser.parse_args() if options.about: print (description) exit(0) # check args if options.verbose==0: loglevel=logging.ERROR elif options.verbose==1: loglevel=logging.WARN elif options.verbose==2: loglevel=logging.INFO elif options.verbose>=3: loglevel=logging.DEBUG logging.basicConfig(stream=sys.stderr, level=loglevel) logging.info("Log level set to %r(%d)" % (loglevel,options.verbose)) if len(args) != 1: parser.error("Please supply TAXDUMP path in command line") # parse catalog accToOrg={} accRE=re.compile(r'\b([A-Z]{2}_[A-Z]*\d+)(\.\b)?\b') protRE=re.compile(r'^([ANXWYZ]P_[A-Z]*\d+)$') logging.info("reading catalog from STDIN") for line in sys.stdin: cells=line.rstrip('\r\n').split('\t') (taxid,name,acc)=cells[0:3] try: taxid=int(taxid) except: pass logging.debug(acc) acc=accRE.match(acc).group(1) logging.debug("'%s'" % acc) m=protRE.match(acc) if (m==None)==options.genomic: # will match if acc matches exp and genomic is false OR # if acc doesn't match and genomic is true accToOrg[acc]=(taxid,name) logging.debug("USing acc: %s" % (acc)) else: logging.debug("Skipping acc: %s" % (acc)) # load taxonomy logging.info("loading taxonomy from %s" % (args[0])) taxonomy = readTaxonomy(args[0],namesMap=True) # print table changes=0 for (acc,(taxid,name)) in accToOrg.iteritems(): if taxid not in taxonomy.idMap: node = getNodeFromHit(name, taxonomy.nameMap) logging.debug("Changing %s to %s" % (taxid,node.id)) taxid = node.id changes+=1 print ('\t'.join([acc,str(taxid)])) logging.info("Changed %d taxon ids" % changes) if __name__ =='__main__': main() ``` #### File: py-metagenomics/edl/gtdb.py ```python import os import re import sys import logging from edl.taxon import TaxNode, Taxonomy from edl.silva import writeDumpFiles from edl.util import treeGenerator logger = logging.getLogger(__name__) GTDB = 'gtdb' GTDBTAB = 'gtdb_table' PHYLODB = 'phylodb' def generate_taxdump(fasta=None, table=None, dump=".", **kwargs): """ convert a GTDB faa file to ncbi style taxdumps """ if fasta is not None: tax_file = fasta fmt = 'fasta' elif table is not None: tax_file = table fmt = 'table' else: raise Exception("Please supply 'fasta' or 'table' file") tax_args = {k: v for k, v in kwargs.items() if k in ['style']} taxonomy = parse_lineages(tax_file, fmt, **tax_args) dump_args = {k: v for k, v in kwargs.items() if k in ['map_file_name']} dump_taxonomy(taxonomy, dump, **dump_args) def generate_gtdb_lineages_from_table(tax_file): """ return acc,lineage tuple from file """ with open(tax_file) as table_h: # skip header try: next(table_h) except StopIteration: raise Exception("Table is empty!\n" + tax_file) for line in table_h: org, _species, lineage = \ [x.strip() for x in line.split('\t', 4)[:3]] yield (org, lineage) def generate_gtdb_lineages(fasta_file): """ return acc,lineage tuple from file """ with open(fasta_file) as fasta_h: for line in fasta_h: if line.startswith(">"): # in GTDB headers, lineage is second chunk acc, lineage = line[1:].split(None, 2)[:2] yield (acc, lineage) def generate_phylodb_lineages(fasta_file): """ return acc,lineage tuple from file """ with open(fasta_file) as fasta_h: for line in fasta_h: if line.startswith(">"): # in GTDB headers, lineage is second chunk acc, lineage = line[1:].split("\t", 2)[:2] yield (acc, lineage) def parse_lineages(tax_file, fmt='fasta', style=GTDB): """ returns taxonomy object """ id_map = {} root = TaxNode('root', None, None) tree = {'root': root} logger.debug("Parsing %s", tax_file) if style == GTDB: add_lineage_to_tree = add_gtdb_lineage_to_tree generate_lineages = generate_gtdb_lineages else: add_lineage_to_tree = add_phylodb_lineage_to_tree generate_lineages = generate_phylodb_lineages # generate taxonomy tree for acc, lineage in generate_lineages(tax_file): # create TaxNode node = add_lineage_to_tree(lineage, tree) id_map[acc] = node logger.debug("Adding id numbers to %d nodes", len(tree)) # assign numeric IDs i = 0 for node in treeGenerator(root): i += 1 node.id = i logger.debug("Added %d id numbers", i) return Taxonomy(id_map, None, None, tax_file, root) RANK_LIST = ['domain', 'phylum', 'class', 'order', 'family', 'genus', 'species'] def add_phylodb_lineage_to_tree(lineage, tree): """ parse given lineage create new TaxNode objects as needed assumes that there are 7 elements in lineage, one for each rank return leaf node """ last_node = tree['root'] sub_lineage = [] if lineage.startswith('Euk'): # There is an extra entr in the PhyloDB Euk lineages ranks = [RANK_LIST[0], None] + RANK_LIST[1:] else: ranks = RANK_LIST for rank, taxon_string in zip(ranks, lineage.split(';')): sub_lineage.append(taxon_string) taxon = ';'.join(sub_lineage) try: last_node = tree[taxon] except KeyError: new_node = TaxNode(taxon, last_node.id, rank) new_node.name = taxon_string new_node.setParent(last_node) tree[taxon] = new_node last_node = new_node return last_node RANK_DICT = {'d': 'domain', 'p': 'phylum', 'c': 'class', 'o': 'order', 'f': 'family', 'g': 'genus', 's': 'species'} def add_gtdb_lineage_to_tree(lineage, tree): """ parse given lineage create new TaxNode objects as needed assumes lineage names atart with x__ where x is a rank abbreviation return leaf node """ last_node = tree['root'] sub_lineage = [] for taxon_string in lineage.split(';'): rank_char, taxon_name = taxon_string.split('__') rank_char = re.sub(r'^_', '', rank_char) sub_lineage.append(taxon_string) taxon = ';'.join(sub_lineage) try: last_node = tree[taxon] except KeyError: try: rank = RANK_DICT[rank_char] except KeyError: print(lineage) print(rank_char) exit(-1) new_node = TaxNode(taxon, last_node.id, rank) new_node.name = taxon_name new_node.setParent(last_node) tree[taxon] = new_node last_node = new_node return last_node def dump_taxonomy(taxonomy, dump_path, map_file_name='gtdb.acc.to.taxid'): """ generate nodes.dmp and names.dmp """ # Write dump files if not os.path.exists(dump_path): os.makedirs(dump_path) with open(os.path.sep.join((dump_path, 'nodes.dmp')), 'w') as nodes_h: with open(os.path.sep.join((dump_path, 'names.dmp')), 'w') as names_h: writeDumpFiles(taxonomy.root, nodes_h, names_h) # Write hit->tax mapping file if map_file_name is None: return with open(os.path.sep.join((dump_path, map_file_name)), 'w') as acc_map_h: for (hitid, tax_node) in taxonomy.idMap.items(): acc_map_h.write("%s\t%d\n" % (hitid, tax_node.id)) if __name__ == '__main__': """ convert a GTDB faa file to ncbi style taxdumps kw arguments to generate_taxdump passed as args like: python edl/grdb.py fasta=/path/to/x.faa dump=/path/to/dump for reference: generate_taxdump(fasta=None, table=None, dump="."): """ kwargs = dict(w.split("=", 1) for w in sys.argv[1:]) logging.basicConfig(level=logging.DEBUG) logger.debug("args are: %r from:\n%s", kwargs, sys.argv) # do the work: generate_taxdump(**kwargs) ``` #### File: py-metagenomics/edl/hits.py ```python from edl.util import parseMapFile from edl.taxon import getNodeFromHit, \ getAncestorClosestToRank, \ readTaxonomy, \ add_taxonomy_dir_argument from edl.blastm8 import filterM8Stream, \ FilterParams, \ formatsWithNoDescription, \ add_hit_table_arguments from edl.expressions import accessionRE, nrOrgRE, koRE, giRE, pfamRE import logging logger = logging.getLogger(__name__) ############# # Constants # ############# ACCS = 'accs' ORGS = 'orgs' KEGG = 'kegg' PFAM = 'pfam' GIS = 'gis' HITID = 'hitid' HITDESC = 'hitdesc' parsingREs = { ORGS: nrOrgRE, ACCS: accessionRE, KEGG: koRE, GIS: giRE, PFAM: pfamRE} ALLEQ = 'all' FIRST = 'first' PORTION = 'portion' def translateHits(hitMap, hitTranslation): for (read, hit) in hitMap.items(): if isinstance(hit, type([])): newHits = [] for h in hit: t = hitTranslation.get(h, None) if t is not None: if isinstance(t, type([])): newHits.extend(t) else: newHits.append(t) else: newHits.append(h) hitMap[read] = list(set(newHits)) else: t = hitTranslation.get(hit, None) if t is not None: hitMap[read] = t def translateCounts(counts, translation): for key in counts.keys(): newKey = translation.get(key, None) if newKey is not None: count = counts.pop(key) counts[newKey] = counts.setdefault(newKey, 0) + count def binHits(hitMap): """ return map of assignments to list of reads """ hits = {} for (read, hit) in hitMap.items(): if isinstance(hit, list): for h in hit: hits.setdefault(h, []).append(read) else: hits.setdefault(hit, []).append(read) return hits def binAndMapHits(hitIter): """ return map of assignments to list of reads """ hits = {} hitMap = {} for (read, hit) in hitIter: hitMap[read] = hit if isinstance(hit, list): for h in hit: hits.setdefault(h, []).append(read) else: hits.setdefault(hit, []).append(read) return (hits, hitMap) def loadSequenceWeights(weightFiles): """ Load and merge list of sequence weight maps. """ if len(weightFiles) > 0: sequenceWeights = {} for weightFile in weightFiles: sequenceWeights.update(parseMapFile(weightFiles, valueType=int)) else: sequenceWeights = None return sequenceWeights def add_weight_arguments(parser, multiple=False): action = 'store' default = None helpText = "File listing counting weights by sequence id. This is \ used for clustered or assembled data where each read (or contig) could \ represent any number of raw reads. The file should be a simple two-column \ tab-separated table with sequence-ids in the first column and integer \ weights in the second. " if multiple: action = 'append' default = [] helpText += "For multiple files, supply the flag (-w or \ --sequenceWeights) for each file name. Concatenating all tables into \ one file will have the same net result." parser.add_argument("-w", "--sequenceWeights", dest='weights', action=action, default=default, help=helpText) def add_count_arguments(parser, defaults={}): default = defaults.get('cutoff', 0.01) parser.add_argument( "-c", "--cutoff", dest="cutoff", type=float, default=default, help="Cutoff for showing taxa. If a fractional count for a taxa " "is below this value, it will be folded up into its parent " "domain. Defaults to: %s" % default, metavar="CUTOFF") default = defaults.get('allMethod', ALLEQ) parser.add_argument( "-a", "--allMethod", dest="allMethod", default=default, choices=( FIRST, ALLEQ, PORTION), help="%r means +1 for every hit found for each read. %r means" " +1 to the first hit for each read. %r means +1/(nhits) for all" " hits of each read. Defaults to %r" % (ALLEQ, FIRST, PORTION, default)) def getAllMethod(allMethod): return allMethods[allMethod] def applyFractionalCutoff(counts, threshold=None, cutoff=None, label='Other'): """ For any value in the dict below cutoff, remove and add to 'other' value """ if threshold is None: if cutoff is None: logger.warn("Nothing to do for applyFractionalCutoff") return threshold = float(cutoff) * sum(counts.values()) osum = 0 for key in list(counts.keys()): if key == label: continue count = counts[key] if count < threshold: osum += count del counts[key] counts[label] = osum + counts.get(label, 0) return counts def countIterHits(hitIter, allMethod=ALLEQ, weights=None, returnMap=True): """ bin counts by hit and find total return map from assignments to number of reads and dict of original mappings """ countHitsForRead = getAllMethod(allMethod) total = 0 counts = {} if returnMap: hitMap = {} multiplier = 1 for (read, hit) in hitIter: total += 1 if returnMap: hitMap[read] = hit if weights is not None: multiplier = weights.get(read, 1) if isinstance(hit, type([])): countHitsForRead(hit, counts, multiplier=multiplier) else: counts[hit] = multiplier + counts.get(hit, 0) if returnMap: return (total, counts, hitMap) return (total, counts) def _oneCountPerHit(hits, counts, multiplier=1): for hit in hits: counts[hit] = multiplier + counts.get(hit, 0) def _portionHitCount(hits, counts, multiplier=1): multiplier = multiplier / float(len(hits)) _oneCountPerHit(hits, counts, multiplier=multiplier) def _countFirstHit(hits, counts, multiplier=1): counts[hits[0]] = multiplier + counts.get(hits[0], 0) def countHits(hitMap): """ bin counts by hit and find total return map from assignments to number of reads """ total = 0 counts = {} if isinstance(hitMap, dict): hitIter = hitMap.items() else: hitIter = hitMap for (read, hit) in hitIter: total += 1 if isinstance(hit, type([])): for h in hit: counts[h] = 1 + counts.get(h, 0) else: counts[hit] = 1 + counts.get(hit, 0) return (total, counts) def parseAndFilterM8Stream(inhandle, options): """ runs the input stream through m8 filtering and then through parseM8Hits to get map from each read to all hits """ inhandle = filterM8Stream(inhandle, options, return_lines=False) logger.info("Parsing hits") # since filter already parses hits, use that info infoInDescription = options.parseStyle in [KEGG, ORGS, PFAM] return parseM8Hits(inhandle, infoInDescription) def parseM8File(inhandle, hitStringMap, options, parsingStyle, countMethod, taxonomy=None, rank=None, ignoreEmptyHits=True, ): """ Wrapper method that combines filterM8, parseHits, and process hits to: filter hits using format and scorePct map reads to hits using parseHits translate hits using processHits If taxonomy is not None, hits will be TaxNode objects contMethod can only be LCA if taxonomy given Return a dict from read to hits """ hitIter = parseM8FileIter(inhandle, hitStringMap, options, parsingStyle, countMethod, taxonomy=taxonomy, rank=rank, ignoreEmptyHits=ignoreEmptyHits, ) hitMap = {} for (read, hits) in hitIter: hitMap[read] = hits logger.info("Done counting %d hits" % (len(hitMap))) return hitMap def parseM8FileIter(inhandle, hitStringMap, options, parsingStyle, countMethod, taxonomy=None, rank=None, ignoreEmptyHits=True, ): """ Wrapper method that combines filterM8, parseHits, and process hits to: filter hits using format and scorePct map reads to hits using parseHits translate hits using processHits If taxonomy is not None, hits will be TaxNode objects contMethod can only be LCA if taxonomy given Return an iterator over (read,hits) tuples. """ # get map from reads to lists of hit strings logger.info("Parsing hits") # filters and parses # options.parseStyle = parsingStyle hitIter = filterM8Stream(inhandle, options, return_lines=False) # apply org or acc translation # apply map of hit names if given' # look up taxon node hitIter = processHits( hitIter, hitStringMap=hitStringMap, parseStyle=parsingStyle, taxonomy=taxonomy, rank=rank) # apply count method hitIter = applyCountMethod(hitIter, countMethod, ignoreEmptyHits) return hitIter def parseHitsIter( hitIter, hitStringMap, parsingStyle, countMethod, taxonomy=None, rank=None, ignoreEmptyHits=None): """ Same as parseM8FileIter, but takes in an iterator over Hit objects Simply runs processHits and applyCountMethod """ # apply org or acc translation # apply map of hit names if given' # look up taxon node hitIter = processHits( hitIter, hitStringMap=hitStringMap, parseStyle=parsingStyle, taxonomy=taxonomy, rank=rank) # debugKey="<KEY>" # logger.debug("Hits for %s: %r" % (debugKey,hitMap[debugKey])) # apply count method hitIter = applyCountMethod(hitIter, countMethod, ignoreEmptyHits) return hitIter def sortedHitIterator(hitMap): """ Given a dictionary of reads to hits, return in order """ for read in sorted(hitMap.keys()): yield (read, hitMap[read]) def applyCountMethod(hitIter, method, ignoreEmpty=True): # chose function that applies method if method == 'LCA' or method == 'rLCA': getBestHit = _findLeastCommonAncestor elif method == 'first': getBestHit = _takeFirstHit elif method == 'all': getBestHit = _returnAllHits elif method == 'consensus': getBestHit = _returnConsensus elif method == 'most': getBestHit = _returnMostCommon if ignoreEmpty: removeEmptyFunc = _removeEmpty else: removeEmptyFunc = _return_value # apply method to hit map hitsIn = 0 hitsOut = 0 reads = 0 for (read, hits) in hitIter: reads += 1 hitsIn += len(hits) hits = getBestHit(hits) hits = removeEmptyFunc(hits) if hits is not None: hitsOut += len(hits) yield (read, hits) logger.debug("%s=>%r" % (read, hits)) logger.info( "Collected %d hits into %d hits for %d reads" % (hitsIn, hitsOut, reads)) def _findLeastCommonAncestor(hits): """ Given a list of hits as TaxNode objects, find the least common ancestor. Hits that are not TaxNodes are ignored. """ # check for hits not translated to TaxNode objects i = 0 while i < len(hits): if hits[i] is None: hits.pop(i) elif isinstance(hits[i], type("")): logger.info( "Skipping hit: %s (cannot translate to taxon)" % (hits.pop(i))) else: i += 1 # make sure there are some hits to process if len(hits) == 0: # sys.exit("No hits given!") return None # get LCA for these hits hit = hits[0] for i in range(1, len(hits)): hit = hit.getLCA(hits[i]) return [hit, ] def _returnMostCommon(hits): counts = {} for hit in hits: count = counts.get(hit, 0) count += 1 counts[hit] = count logger.debug(repr(counts)) bestCount = 0 bestHit = None for (hit, count) in counts.items(): if count > bestCount: bestHit = [hit, ] bestCount = count elif count == bestCount: bestHit.append(hit) return bestHit def _takeFirstHit(hits): if len(hits) > 0: return hits[0:1] else: logger.debug("No hits!") return None def _returnAllHits(hits): return list(set(hits)) def _returnConsensus(hits): hits = _returnAllHits(hits) if len(hits) == 1: return hits else: return None def _return_value(value): return value def _removeEmpty(hits): if hits is None: return hits while True: try: hits.remove(None) except ValueError: break while True: try: hits.remove('') except ValueError: break if len(hits) > 0: return hits else: return [] def parseHits(inhandle, readCol, hitCol, skipFirst, hitSep): """ read over lines and pull out (read,[hits]) pairs given: inhandle: iterable set of strings (ie lines in a file) readCol: index of column with read name hitCol: index of column with hit name (-1 => every non-read column) skipFirst: skip first line if True hitSep: if not None, split data in hit column with this separator """ logger.debug("BEGIN parseHits(in, %r, %r, %r, %r)" % (readCol, hitCol, skipFirst, hitSep)) # get line parsing function if hitSep == 'eval': extractReadHits = _getReadHitsEval else: hitCol = int(hitCol) if hitCol < 0: extractReadHits = _getReadHitsAll elif hitSep is not None: extractReadHits = _getReadHitsSep else: extractReadHits = _getReadHitsSimple if skipFirst: next(inhandle) hitCount = 0 lineCount = 0 lastRead = None for line in inhandle: lineCount += 1 cells = line.rstrip('\n\r').split('\t') (read, hits) = extractReadHits(cells, readCol, hitCol, hitSep) if read != lastRead: if lastRead is not None: yield (lastRead, readHits) readHits = list(hits) lastRead = read else: readHits.extend(hits) hitCount += len(hits) if lastRead is not None: yield (lastRead, readHits) logger.info("Read %d hits from %d lines" % (hitCount, lineCount)) def parseM8Hits(hitIter, returnHitDescriptions): logger.debug("BEGIN parseM8Hits()") lastRead = None hitCount = 0 readCount = 0 for read, hits in hitIter: readCount += 1 fields = [] for hit in hits: hitCount += 1 if returnHitDescriptions: fields.append(hit.hitDesc) else: fields.append(hit.hit) yield (read, fields) logger.info("Read %d hits from %d reads" % (hitCount, readCount)) # -- helpers for parseHits -- # # the following functions take a line from a table and return a read name # and an iterable collection of hits def _getReadHitsEval(cells, readCol, hitCol, hitSep): """ use eval to evaluate contents of hit cell. If resulting object is not iterable, put it into a tuple """ read = cells[readCol] hit = cells[hitCol] # try to evaluate expression try: hit = eval(hit) except Exception: logger.warn("exception from 'eval(%r)'" % (hit)) # make it iterable if it's not try: getattr(hit, '__iter__') except AttributeError: hit = (hit,) return (read, hit) def _getReadHitsAll(cells, readCol, hitCol, hitSep): """ every entry in cells (other than read) is a hit """ read = cells.pop(readCol) return(read, cells) def _getReadHitsSep(cells, readCol, hitCol, hitSep): """ use hitSep to divide hit cell in to multipl hits """ read = cells[readCol] hitCell = cells[hitCol] hits = hitCell.strip().split(hitSep) return (read, hits) def _getReadHitsSimple(cells, readCol, hitCol, hitSep): read = cells[readCol] hit = cells[hitCol] return (read, (hit,)) # -- end helpers for parseHits -- # class HitTranslator: """ Given a list of (function,data,returnType) tuples ("mappings") Return an object with translateHit method that will apply the mappings to a hit """ def __init__(self, mappings, useDesc=False, hitsAreObjects=True): self.mappings = mappings if mappings is None or len(mappings) == 0: self.applyMappings = self.returnSame if hitsAreObjects: if useDesc: self.getId = self.getDescription else: self.getId = self.returnSame def getId(self, hit): return hit.hit def getDescription(self, hit): return hit.hitDesc def returnSame(self, hit): return hit def translateHit(self, hit): return self.applyMappings([self.getId(hit), ]) def applyMappings(self, hits): for (mapFunc, mapping, retType) in self.mappings: newHits = [] for hit in hits: mapped = mapFunc(hit, mapping) if retType is list: newHits.extend(mapped) elif retType is str: newHits.append(mapped) else: if isinstance(mapped, list) or isinstance(mapped, tuple): newHits.extend(mapped) else: newHits.append(mapped) hits = newHits return hits def getHitTranslator( hitStringMap=None, parseStyle=ORGS, taxonomy=None, rank=None, defaultToNone=True, hitsAreObjects=True): """ Return a function that will return a list of organsims from a single hit. hitStringMap (None): dictionary mapping hit IDs to something else parseStyle (ORGS): how to process hit data into an identifying string taxonomy (None): An edl.taxon.Taxonomy object or directory conatining taxdmp rank (None): Maximum rank to resolve hits hitsAreObjects: True if hits are edl.blastm8.Hit objects, else strings """ parseRE = parsingREs.get(parseStyle, None) if logger.getEffectiveLevel() <= logging.INFO: if hitStringMap is None: mapstr = 'None' else: mapstr = '%d keys' % (len(hitStringMap)) if parseRE is None: exprstr = 'None' else: exprstr = parseRE.pattern if taxonomy is None: taxstr = 'None' else: taxstr = '%d ids' % (len(taxonomy.idMap)) logger.info( "Creating hit translator:\n default to None: %r\n map: %s\n " "parsing %s: %s\n taxa: %s\n rank: %s" % (defaultToNone, mapstr, parseStyle, exprstr, taxstr, rank)) # set up variables infoInDescription = parseStyle in [KEGG, ORGS, PFAM] mappings = [] if defaultToNone: mapFunction = _simpleMapNoneFunction else: mapFunction = _simpleMapFunction # initial parsing of hit id or description via regular expression if parseRE is not None: mappings.append((_findAllREfunctionSimpler, parseRE, list)) # optional look up table if hitStringMap is not None: mappings.append((mapFunction, hitStringMap, None)) # optional conversion to Taxon objects if taxonomy is not None: if parseStyle == ORGS: if defaultToNone: mappings.append((getNodeFromHit, taxonomy.nameMap, str)) else: mappings.append((_getNodeHitFunction, taxonomy.nameMap, str)) else: mappings.append((mapFunction, taxonomy.idMap, str)) if rank is not None: mappings.append((getAncestorClosestToRank, rank, str)) return HitTranslator( mappings, useDesc=infoInDescription, hitsAreObjects=hitsAreObjects) # turn hit lines into organisms or KOs or anything else def processHits(hitIter, **kwargs): """ Take an in iterator over read,hits tuples and apply mappings using a HitTranslator """ translator = getHitTranslator(**kwargs) # translate hits for (key, hits) in hitIter: logger.debug("%s => %s" % (key, hits)) newHits = [] for h in hits: newHits.extend(translator.translateHit(h)) logger.debug(str(newHits)) yield (key, newHits) def processHitsOld( hitIter, mapping=None, expr=None, taxIdMap=None, taxNameMap=None, defaultToNone=True, rank=None): """ Take a map of reads (or other keys) to lists of hits and translate hits. Can use the following steps in this order with any steps omitted: simpile dictionary translation using 'mapping' regular expression (where every captured group is returned as a hit) a translation to taxNode objects by one of: simple dictionary translation using taxIdMap name based look up using edl.taxon.getNodeFromHit() and taxNameMap if defaultToNone is changed to False, anything not found in one of the mappings (mapping, taxIdMap, or taxNameMap) """ if logger.getEffectiveLevel() <= logging.DEBUG: if mapping is None: mapstr = 'None' else: mapstr = '%d keys' % (len(mapping)) if expr is None: exprstr = 'None' else: exprstr = expr.pattern if taxIdMap is None: if taxNameMap is None: taxstr = 'None' else: taxstr = '%d names' % (len(taxNameMap)) else: taxstr = '%d ids' % (len(taxIdMap)) logger.debug( "Starting processHits:\n default to None: %r\n map: %s\n " "exp: %s\n taxa: %s\n rank: %s" % (defaultToNone, mapstr, exprstr, taxstr, rank)) # set the functions to use: if mapping is None: mapFunction = _passFunction elif defaultToNone: mapFunction = _simpleMapNoneFunction else: mapFunction = _simpleMapFunction exprFunction = _findAllREfunction if taxIdMap is not None: taxMap = taxIdMap if defaultToNone: taxFunction = _simpleMapNoneFunction else: taxFunction = _simpleMapFunction elif taxNameMap is not None: taxMap = taxNameMap if defaultToNone: taxFunction = getNodeFromHit else: taxFunction = _getNodeHitFunction else: taxMap = None taxFunction = _passFunction if taxMap is None or rank is None: rankFunction = _passFunction else: rankFunction = getAncestorClosestToRank # translate hits for (key, hits) in hitIter: logger.debug("%s => %s" % (key, hits)) newHits = [] for h in hits: # find all matches to expr, may be more than one hs = exprFunction(h, expr) logger.debug("%s => %s" % (h, hs)) for hit in hs: hts = mapFunction(hit, mapping) if not (isinstance(hts, list) or isinstance(hts, tuple)): hts = [hts] for hit in hts: hit = taxFunction(hit, taxMap) hit = rankFunction(hit, rank) newHits.append(hit) logger.debug(str(newHits)) yield (key, newHits) # helper functions for processHits # each function takes a hit and something else, and then reutrns a # translated hit def _passFunction(hit, mapping): return hit def _simpleMapFunction(hit, mapping): newHit = mapping.get(hit, hit) logger.debug("%s --> %r" % (hit, newHit)) return newHit def _simpleMapNoneFunction(hit, mapping): newHit = mapping.get(hit, None) logger.debug("%s --> %r" % (hit, newHit)) return newHit def _getNodeHitFunction(hit, taxMap): newHit = getNodeFromHit(hit, taxMap) if newHit is None: return hit else: return newHit def _findAllREfunctionSimpler(hit, expr): hits = expr.findall(hit) if len(hits) == 0: return [hit, ] else: return hits def _findAllREfunction(hit, expr): if expr is None: return (hit,) hits = expr.findall(hit) if len(hits) == 0: return [hit, ] else: return hits # end helper functions for processHits def add_taxon_arguments(parser, defaults={}, choices={}): # get format and filter_top_pct options from blastm8 add_hit_table_arguments(parser, defaults, flags=['format', 'filter_top_pct']) # specific to taxon parsing: parser.add_argument( "-m", "--mapFile", dest="mapFile", default=defaults.get( "mapFile", None), metavar="MAPFILE", help="Location of file containing table of with db hit name " "as first column and taxa or taxonids in second column. " "Defaults to '%s'" % (defaults.get("mapFile", None))) parser.add_argument( "-p", "--parseStyle", default=defaults.get( "parseStyle", ACCS), choices=[ ACCS, GIS, ORGS, HITID, HITDESC], help="What should be parsed from the hit table: accessions('accs'), " "'gis', organsim names in brackets ('orgs'), the full hit " "name('hitid'), or the full hit description('hitdesc'). " "(defaults to '%s')" % (defaults.get("parseStyles", ACCS))) parser.add_argument( "-C", "--countMethod", dest="countMethod", default=defaults.get( "countMethod", "first"), choices=choices.get( 'countMethod', ('first', 'most', 'all', 'LCA', 'consensus')), help="How to deal with counts from multiple hits. (first, most: " "can return multiple hits in case of a tie, LCA: MEGAN-like, " "all: return every hit, consensus: return None unless all " "the same). Default is %s" % (defaults.get("countMethod", "first")), metavar="COUNTMETHOD") add_taxonomy_dir_argument(parser, defaults) def readMaps(options, namesMap=False): """ Load the taxonomy and id->to->taxid maps requested by user """ return (readTaxonomyFiles(options, namesMap=namesMap), readIDMap(options)) def readTaxonomyFiles(options, namesMap=False): """ load the taxonomy specififed by the user. Create a name lookup map if parseStyle is 'orgs' """ # read taxonomy if options.taxdir is not None: getTaxNames = namesMap or options.parseStyle == ORGS taxonomy = readTaxonomy(options.taxdir, namesMap=getTaxNames) logging.info("Read %d nodes from tax dump" % (len(taxonomy.idMap))) else: taxonomy = None if options.countMethod == 'LCA' or options.countMethod == 'rLCA': raise Exception('Cannot use LCA without providng a taxonomy (-n)') logging.info("No taxonomy needed") return taxonomy def readIDMap(options): """ Load the specififed lookup table for hit IDs. If the parseStyle requested is 'gis', convert keys to integers. The values are always convereted to integeres since they are assumed to be taxids """ # map reads to hits if options.parseStyle == GIS: keyType = int else: keyType = None if options.taxdir is not None: valueType = int else: valueType = None return parseMapFile(options.mapFile, valueType=valueType, keyType=keyType) allMethods = {ALLEQ: _oneCountPerHit, FIRST: _countFirstHit, PORTION: _portionHitCount} ############ # Tests ############ def test(): import sys global myAssertEq, myAssertIs from test import myAssertEq, myAssertIs if len(sys.argv) > 2: loglevel = logging.DEBUG else: loglevel = logging.warn logging.basicConfig(stream=sys.stderr, level=loglevel) logger.setLevel(loglevel) hits = testParseHits(sys.argv[1]) testTranslateAndCountHits(hits) def testParseHits(testFile): # test line parsing methods cells = [1, 2, 3, 4, "(4,5)", "6,7"] (read, hitIter) = _getReadHitsSimple(cells, 0, 2, None) hits = [] for h in hitIter: hits.append(h) myAssertEq(read, 1) myAssertEq(len(hits), 1) myAssertEq(hits[0], 3) (read, hitIter) = _getReadHitsSep(cells, 1, 5, ',') hits = [] for h in hitIter: hits.append(h) myAssertEq(read, 2) myAssertEq(hits, ['6', '7']) (read, hitIter) = _getReadHitsAll(list(cells), 3, -1, None) hits = [] for h in hitIter: hits.append(h) myAssertEq(read, 4) myAssertEq(len(hits), 5) myAssertEq(hits, [1, 2, 3, "(4,5)", "6,7"]) # give it a test file hitIter = parseHits(open(testFile), 0, -1, True, None) hits = {} for r, h in hitIter: hits[r] = h logging.debug(repr(hits)) myAssertEq(len(hits), 29) myAssertEq(hits['000023_2435_2174'], ['Prochlorococcus']) myAssertEq(hits['000178_2410_1152'], ['Bacteria <prokaryote>']) myAssertEq(hits['000093_2435_2228'], ['Candidatus Pelagibacter']) return hits def testTranslateAndCountHits(hits): (total, counts) = countHits(hits) myAssertEq(total, 29) myAssertEq(counts["Prochlorococcus"], 10) myAssertEq(counts['root'], 7) translateHits(hits, {'Bacteria <prokaryote>': 'other', 'root': 'other', 'Candidatus Pelagibacter': 'Pelagibacter'}) myAssertEq(hits['000178_2410_1152'], ['other']) myAssertEq(hits['000093_2435_2228'], ['Pelagibacter']) if __name__ == '__main__': test() ``` #### File: py-metagenomics/edl/kegg.py ```python import logging import os import re import sys logger = logging.getLogger(__name__) ############## # Classes # ############## ################ # compiled REs # ################ koRE = re.compile(r'\b(K\d{5})\b') kokoRE = re.compile(r'^ENTRY\s+(K\d{5})\b') endSectionRE = re.compile(r'^\S') definitionRE = re.compile(r'^DEFINITION\s+(\S.*\S)\s*$') classRE = re.compile(r'^CLASS\s+(\S.*)$') ecRE = re.compile(r'^DEFINITION.*\[(EC:[-0-9\.]+)\]') genesRE = re.compile(r'^GENES\s+(\S.*\S)\s*$') trailingBracketRE = re.compile(r'\s*\[[^\[\]]+\]\s*$') kegkoRE = re.compile(r'^D\s+.+\b(K\d{5})(?:<\/a>)?\s*(.*)$') britekoRE = re.compile(r'^[A-Z]\s+(K\d{5})\s*(.*)$') geneListRE = re.compile(r'(?<=\s)([a-zA-Z0-9_.-]+)\b') orgRE = re.compile('^([A-Z]{3,4}):') cogGroupRE = re.compile(r'(.+)\[(.+)\]') cogMapRE = re.compile(r'^\[(\S+)\]\s+(\S+)\s+(\S.+)$') ############# # Functions # ############# def readSEEDTree(treeFile): """ Return nested dictionary where first dict is map from levels (1,2,3) and next dict is map from role to name. This is a simply formatted file with 4 columns: "role\tsubsystem\tlevel 2\t level 1" """ seedTree = {'1': {}, '2': {}, '3': {}} with open(treeFile) as f: for line in f: (role, l3, l2, l1) = line.rstrip().split('\t') seedTree['1'][role] = l1 seedTree['3'][role] = l3 seedTree['2'][role] = l2 return seedTree def readCogTree(mapFile): """ return maps from CDD id to COGID, COG description, and COG category """ cogMap = {'gene': {}, 'description': {}, 'group': {}} with open(mapFile) as f: for line in f: cdd, cog, gene, description, count = line.rstrip().split('\t') description, group = cogGroupRE.match(description).groups() cogMap['gene'][cdd] = cog cogMap['description'][cdd] = description groups = [re.sub(' +', ' ', g.strip()) for g in group.split("/")] cogMap['group'][cdd] = groups # hack to make things work with the previous methods (ie SEED) cogMap['3'] = cogMap['group'] return cogMap def readCogTreeFromWhog(mapFile): """ Return a map from COG id to category """ cogMap = {'gene': {}, 'group': {}} with open(mapFile) as f: for line in f: line.rstrip() m = cogMapRE.maatch(line) if m: category = m.group(1) cog = m.group(2) description = m.group(3) cogMap['gene'][cog] = description cogMap['group'][cog] = category return cogMap def parseSeedMap(mapFile): """ Return a dictionary mapping from accession to subsystem. The SEED map (refseq2md52role.gz) starts with two summary lines followed by three columns (accession\thash/sum\tSubsystem): Mapped roles:9004(subsys.txt 2 subsystems2peg) Unmapped roles:521(s ubsys.txt) YP_9218461b41910965945b806d5defc49ad1a224CO dehydrogenases \ maturation factor, CoxF family YP_0012863261e472ed51c0df8feb03ee296a0 e55de4CO dehydrogenases \ maturation factor, CoxF family """ accMap = {} with open(mapFile) as f: f.next() f.next() for line in f: # logger.debug(line) (acc, code, subsys) = line.rstrip('\r\n').split('\t', 2) # logger.debug("Mapped %s to %s (sum: %s)" % (acc,subsys,code)) accMap.setdefault(acc.strip(), []).append(subsys.strip()) return accMap def _stripKeggKeyPrefix(key): return key.split(":", 1)[1] def parseLinkFile(mapFile, stripKeys=False, stripVals=True): """ Parse the gene_ko.list file from KEGG hsa:10001 ko:K15128 hsa:10002 ko:K08546 hsa:10003 ko:K01301 with the possibility of duplicate records """ if mapFile is None: return None logger.info("parsing map file: %s" % (mapFile)) translation = {} rows = 0 badRows = 0 lastKey = None for line in open(mapFile): cells = line.split('\t') if len(cells) > 1: rows += 1 key = cells[0].strip() if stripKeys: key = _stripKeggKeyPrefix(key) value = cells[1].strip() if stripVals: # strip 'ko:' from start of each value value = _stripKeggKeyPrefix(value) if key == lastKey: translation[key].append(value) else: translation[key] = [value, ] else: badRows += 1 if badRows > 0: logger.warn("%d rows in map file had too few columns!" % (badRows)) logger.info( "Read %d records from %d lines of %s" % (len(translation), rows, mapFile)) return translation def parseModuleMap(mapFile): """ Parse module file to dict """ return parseLinkFile(mapFile, stripKeys=True, stripVals=False) def parseGeneKOMap(koFile): """ scan ko file an build map from gene names to kos """ koMap = {} koCount = 0 inGenes = False logger.info("Reading kos and gene names from %s" % koFile) for line in open(koFile): # find KO first # looking for a KO line match = kokoRE.match(line) if match: ko = match.group(1) logger.debug("Start of %s" % (ko)) koCount += 1 if logger.getEffectiveLevel() >= logging.DEBUG: if koCount % 1000 == 0: logging.debug("Parsed %d KOs" % koCount) continue # look for information on this KO if not inGenes: # looking for a GENE line match = genesRE.match(line) if match: inGenes = True geneString = match.group(1) logger.debug("found genes: %s" % (geneString)) _mapGenes(koMap, ko, geneString) continue # everyline is a gene line until further notice elif not endSectionRE.match(line): # not the end of gene section: reading more genes geneString = line.strip() logger.debug("found genes: %s" % (geneString)) _mapGenes(koMap, ko, geneString) else: # found all gene strings logger.debug("End of genes") inGenes = False ko = None logger.info("Mapped %d genes to %d kos" % (len(koMap), koCount)) return koMap def _mapGenes(koMap, ko, geneString): """ geneString looks like "ORG: geneid(genename) geneid(genename) geneid geneid while ids in KeggGenes look like: "org:geneid" """ org = orgRE.match(geneString).group(1).lower() genes = geneListRE.findall(geneString) for gene in genes: kGene = "%s:%s" % (org, gene) koMap.setdefault(kGene, []).append(ko) def parse_KEGG_file(k_file, kegg_level): """ Checks filename and runs: parse_KO_file if base filename is ko parse_keg_file if file extension is .keg """ if os.path.basename(k_file) == 'ko': return parse_ko_file(k_file, kegg_level) elif len(k_file) > 4 and k_file[-4:] == ".keg": return parse_keg_file(k_file, kegg_level) else: raise Exception("I don't know what to do with file: %s" % (os.path.basename(k_file))) def parse_ko_file(ko_file, level): """ Parse KEGG metadata from the ko metadata file: level: one of * PATH, PATHWAY, or PATHWAYS * NAME, DEFINITION, DESCRIPTION, or FUNCITON * 1,2 or 3 (for a level in the BRITE:ko00001 hier. * EG: ko00002:2 (for level 2 of BRITE:ko00002) """ # synonyms if level in ['PATHWAYS', 'PATH', 'PATHS']: level = 'PATHWAY' if level in ['DESCRIPTION', 'FUNCTION']: level = 'DEFINITION' if level == 'EC': level = 'ko01000:4' if re.match(r'(ko\d\d\d\d\d:)?(\d+)', str(level)): # these are in the BRITE heirachy # eg: k00001:2 for level to of the main hierarchy brite_hier, brite_level = \ re.match(r'(?:(ko\d\d\d\d\d):)?(\d+)', str(level)).groups() brite_level = int(brite_level) if brite_hier is None: # if its just a number, assume k00001 brite_hier = 'ko00001' logger.debug(f"Looking for level {brite_level} in {brite_hier}") with open(ko_file) as ko_handle: # look for single line per entry if level in ['NAME', 'DEFINITION']: kw_expr = re.compile(r'^(ENTRY|{})(\s+)(\S.*)?'.format(level)) try: for i, line in enumerate(ko_handle): m = kw_expr.match(line) if m: keyword, spaces, value = m.groups() if keyword == 'ENTRY': ko = value.split()[0].strip() elif keyword == level: results[ko] = value.strip() except Exception as exc: print(f'Error on line {i}:\n{line}') raise exc # there can be multiple pathways after and including the PATHWAY line elif level == 'PATHWAY': kw_expr = re.compile(r'^(ENTRY|{})(\s+)(\S.*)?'.format(level)) def skip(line, indent, pathways): return def add_pathway(line, indent, pathways): pathways.append(line[indent:-1]) pathways, indent = None, 0 for line in ko_handle: m = kw_expr.match(line) if m: keyword, spaces, value = m.groups() if keyword == 'ENTRY': ko = value.split()[0].strip() indent = 5 + len(spaces) process_line = skip continue elif keyword == level: process_line = add_pathway pathways = results.setdefault(ko, []) else: process_line = skip continue process_line(line, indent, pathways) else: # BRITE entry_rexp = re.compile(r'^ENTRY\s+(K\d+)') brite_rexp = \ re.compile(r'^((?:BRITE)?\s+)(\S.+\S)\s*\[BR:(ko\d+)\]') end_brite_rexp = re.compile(r'^\S') level_rexp = re.compile(r'^(\s+)(\S.+)') lines = iter(enumerate(ko_handle)) try: # outer loop looping over Entries while True: # find next Entry line for i, line in lines: m = entry_rexp.match(line) if m: ko = m.group(1) break else: # no more entries break # find start of BRITE for i, line in lines: m = brite_rexp.match(line) if m: spaces, name, hierarchy = m.groups() if hierarchy == brite_hier: brite_indent = len(spaces) brite_levels = results.setdefault(ko, []) break # process BRITE lines for i, line in lines: if end_brite_rexp.match(line) or \ brite_rexp.match(line): # start of next hierarchy or next keyword section break spaces, level_name = level_rexp.match(line).groups() # level is number of spaces beyond original indent if len(spaces) - brite_indent == brite_level: brite_levels.append(level_name) # end while outer loop except StopIteration: # I don't think we ever get here pass except Exception as exc: print(f"error on line {i}:\n{line}") print(f"found {len(results)} kos so far") raise exc return results def parse_keg_file(keg_file, level): """ Parse KEGG metadata from brite .keg files level: one of * PATH, PATHWAY, or PATHWAYS * 1 - 6 or A - F * DEFINITION, DESCRIPTION, or FUNCITON """ # synonyms if level in ['PATHWAYS', 'PATHWAY', 'PATHS']: level = 'PATH' if level in ['DESCRIPTION', 'FUNCTION']: level = 'DEFINITION' if str(level) in {'1', '2', '3', '4', '5', '6'}: level = 'ABCDEF'[int(level) - 1] ko_def_rexp = re.compile(r'^[B-F]\s+(K\d\d\d\d\d)\s+(\S.+\S)\s*$') level_rexp = re.compile(r'^([A-F])\s*(\S.+)') path_rexp = re.compile(r'\s*\[PATH:\s*ko\d+\s*\]') html_rexp = re.compile(r'</?[a-z]+/?>') results = {} with open(keg_file) as keg_handle: # two types of parsing if level == 'DEFINITION': # just looking for the line with the K# and description # (ignore hierarchy) for line in keg_handle: m = ko_def_rexp.match(line) if m: ko, desc = m.groups() results[ko] = desc elif level in ['A', 'B', 'C', 'D', 'E', 'F', 'PATH']: # looking for level, and all KOs after that print(f"looking for {level}") level_name = None for line in keg_handle: # check for ko first, because it also looks like a level m = ko_def_rexp.match(line) if m: if level_name is not None: # if we've seen a level we like # save ko level ko = m.group(1) results.setdefault(ko, []).append(level_name) continue m = level_rexp.match(line) if m: letter, name = m.groups() if letter == level: # found a header at the target level, remember name level_name = html_rexp.sub('', name) elif (level == 'PATH' and path_rexp.search(name)): # found a header at the target level, remember name level_name = path_rexp.sub('', name) elif letter < level: # we've gone back up a level, don't label anything level_name = None continue # remove duplicates and ensure order results = {ko: sorted(set(paths)) for ko, paths in results.items()} else: if level == 'NAME': raise Exception("I can't parse name from a .keg file. " "Please use the file: ko/ko") if level == 'EC': raise Exception("For EC use the ko/ko file or the EC brite: " "brite/ko/ko01000.keg and choose a level") raise Exception(f"I don't know what level {level} is!") return results def add_path_arguments(parser, defaults={}, choices={}, helps={}): # get format and filter_top_pct arguments from blastm8 from edl.hits import HITID, ACCS, GIS, KEGG, HITDESC, PFAM from edl.blastm8 import add_hit_table_arguments add_hit_table_arguments(parser, defaults, flags=['format', 'filter_top_pct', 'sort' ]) # specific to pathway parsing: pgroup = parser.add_argument_group( "Pathway Arguments", "These arguments control the mapping of hits to gene " "function heirarchies like KEGG or SEED""") pgroup.add_argument( "-m", "--mapFile", dest="mapFile", default=defaults.get( "mapFile", None), metavar="MAPFILE", help="Location of file containing table of with db hit name as " "first column and geneIDs (Knumber) in second column.") pgroup.add_argument( "-M", "--mapStyle", default='auto', choices=[ 'auto', 'kegg', 'tab', 'seed'], help="What type of mapping file are you using: simple tab " "separated list of IDs and kos/subsystems/domains, the " "genes_ko.list file from KEGG (which adds ko: to the K " "numbers and can have multiple records for each gene id), " "or the 3 column file from SEED. By default, this script " "will inspect the file and guess, but you can force 'kegg', " "'seed' or 'tab' with this argument.") default = defaults.get('tab_map_delim', None) pgroup.add_argument("--tab_map_delim", default=default, help=("Delimiter to parse multiple assignments in " "map from ids to ko/path/fam. Only used for " "tabular mapping tables. Defaults to {}" .format(str(default)))) pgroup.add_argument( "-p", "--parseStyle", default=defaults.get( "parseStyle", HITID), choices=[ ACCS, GIS, KEGG, HITID, HITDESC, PFAM], help="What should be parsed from the hit table: accessions('accs'), " "'gis', K numbers in description ('kegg'), the full hit " "name('hitid'), or the full hit description('hitdesc'). " "(defaults to '%s')" % (defaults.get("parseStyle", HITID))) pgroup.add_argument( "-C", "--countMethod", dest="countMethod", default=defaults.get( "countMethod", "first"), choices=choices.get( 'countMethod', ('first', 'most', 'all', 'consensus')), help=helps.get( "countMethod", "How to deal with counts from multiple hits. (first, most: " "can return multiple hits, all: return every hit, consensus: " "return None unless all the same). Do not use most or consensus " "with more than one level at a time. Default is %s" % (defaults.get( "countMethod", "first"))), metavar="COUNTMETHOD") if defaults.get("filter_for_path", False): action = 'store_false' default = True helpstr = 'Consider all hits. By deafult, only hits with path \ assignments are used.' else: action = 'store_true' default = False helpstr = 'Ignore hits with no entry in pathway map (-m). By default \ all hits are used and if the best hit(s) is(are) to sequences with no path, \ then the read will not be assigned to a path' pgroup.add_argument( "-r", "--filter_for_path", action=action, dest="mappedHitsOnly", default=default, help=helpstr) add_pathways_argument(pgroup, defaults) parser.add_argument_group(pgroup) def add_pathways_argument(parser, defaults={}): parser.add_argument( "-T", "--heirarchyType", default=defaults.get( "heirarchyType", 'kegg'), choices=[ 'kegg', 'seed', 'cazy', 'cog', 'kegg_module'], help="What kind of functional heirarchy to use. 'kegg', seed', " "or 'cazy'. Defaults to '%s'" % (defaults.get("heirarchyType", 'kegg'))) parser.add_argument( "-H", "--heirarchyFile", metavar="HEIRARCHY_FILE", default=defaults.get( 'heirarchyFile', None), help="File containing pathway/subsystem/genefaimly heirarchy " "(either ko or ko00001.keg for KEGG or susbsys.txt for SEED). " "Defaults to %s" % (defaults.get('heirarchyFile', None))) ############ # Tests ############ def test(): import sys if len(sys.argv) > 3: loglevel = logging.DEBUG else: loglevel = logging.WARN logging.basicConfig(stream=sys.stderr, level=loglevel) logger.setLevel(logging.INFO) kegg_nosetest(sys.argv[1], sys.argv[2]) def kegg_nosetest(ko_map, kegg_file): global myAssertEq, myAssertIs from edl.test import myAssertEq, myAssertIs testReadKeggFile(kegg_file) testParseGeneLink(ko_map) # testParseGeneKOMap(ko_map) # testReadKoFile(ko_map) def testParseGeneLink(koFile): gkmap = parseLinkFile(koFile) myAssertEq(gkmap['ggo:101148121'], ['K16534']) myAssertEq(gkmap['olu:OSTLU_15108'], ['K11126']) myAssertEq(gkmap['ebt:EBL_c03070'], ['K02879']) myAssertEq(gkmap['pec:W5S_4205'], ['K00363']) myAssertEq(gkmap['buc:BU148'], ['K03101']) myAssertEq(gkmap['smaf:D781_0330'], ['K06925']) myAssertEq(gkmap['nkr:NKOR_05565'], ['K03524']) def testReadKeggFile(keggFile): kDmap = parse_keg_file(keggFile, 'DESCRIPTION') myAssertEq(kDmap['K01623'], 'ALDO; fructose-bisphosphate aldolase, class I [EC:4.1.2.13]') kPmap = parse_keg_file(keggFile, 'PATHWAY') assert('K04519' in kPmap) assert('K15634' in kPmap) myAssertEq(kPmap['K03011'], ['00230 Purine metabolism', '00240 Pyrimidine metabolism', '03020 RNA polymerase', "05016 Huntington's disease", '05169 Epstein-Barr virus infection']) k2map = parse_keg_file(keggFile, 2) myAssertEq(k2map['K13810'][0].lower(), 'Carbohydrate Metabolism'.lower()) myAssertEq(k2map['K13810'][1].lower(), 'Overview'.lower()) myAssertEq(k2map['K00399'][0].lower(), 'Energy Metabolism'.lower()) myAssertEq(k2map['K00399'][1].lower(), 'Overview'.lower()) k3map = parse_keg_file(keggFile, 3) myAssertEq(k3map['K13810'], [ '00010 Glycolysis / Gluconeogenesis [PATH:ko00010]', '00030 Pentose phosphate pathway [PATH:ko00030]', '00500 Starch and sucrose metabolism [PATH:ko00500]', '00520 Amino sugar and nucleotide sugar metabolism [PATH:ko00520]', '01230 Biosynthesis of amino acids [PATH:ko01230]', ]) myAssertEq(k3map['K00399'], [ '00680 Methane metabolism [PATH:ko00680]', '01200 Carbon metabolism [PATH:ko01200]', ]) myAssertEq(k3map['K03404'], [ '00860 Porphyrin and chlorophyll metabolism [PATH:ko00860]', ]) k3mapQ = parse_keg_file(keggFile, '3') for k in k3map.keys(): try: myAssertEq(k3map[k], k3mapQ[k]) except AssertionError: raise AssertionError( "level 3 classes for %s do not match:\n%s\n%s" % (k, k3map[k], k3mapQ[k])) def testReadKoFile(koFile): kPmap = parse_ko_file(koFile, 'PATHWAY') assert('K00397' not in kPmap) myAssertEq(kPmap['K00399'], ['ko00680 Methane metabolism', 'ko01200 Carbon metabolism']) kEmap = parse_ko_file(koFile, 'EC') myAssertEq(kEmap['K00397'], ['EC:1.8.99.-']) myAssertEq(kEmap['K00399'], ['EC:2.8.4.1']) if __name__ == '__main__': test() ``` #### File: py-metagenomics/edl/records.py ```python from edl.util import parse_list_to_set def recordIterator(stream, separatorRE, idRE=None): """ Given: na file-like object (any iterator over strings) 1 or 2 regular expressions that define record boundaries and identifiers Return: an iterator over records that returns a tuple of (id, [recordLines]) If only a separator given, it is assumed to match the record id """ recordId = None recordLines = [] for line in stream: m = separatorRE.search(line) if m: # is there a previous record? if recordId is not None: yield (recordId, recordLines) recordId = None recordLines = [line, ] if idRE is None: recordId = m.group(1) continue recordLines.append(line) if idRE is not None: m = idRE.search(line) if m: recordId = m.group(1) if recordId is not None: yield (recordId, recordLines) def screenRecords( stream, separatorRE, idRE=None, keep=False, screen_set=None, screenFile=None): """ uses recordIterator(strean, separatorRE, idRE) to parse input into records uses screen_set (can be read from screenFile) to identify records identified records are kept or skipped based on the value of keep """ if screen_set is None: if screenFile is None: raise Exception( "Please supply a hash(Python map) or file of record keys") else: screen_set = parse_list_to_set(screenFile) for ( recordId, recordLines) in recordIterator( stream, separatorRE, idRE=idRE): screened = recordId in screen_set if screened == keep: for line in recordLines: yield line ``` #### File: py-metagenomics/edl/test.py ```python import logging import sys def myAssertEq(a, b): myAssert((a == b), "%s is not equal to %s" % (str(a), str(b))) def myAssertIs(a, b): myAssert((a is b), "%s is not %s" % (str(a), str(b))) def myAssert(test, msg): if not test: sys.stderr.write(msg + "\n") raise AssertionError ``` #### File: jmeppley/py-metagenomics/screen_table.py ```python import sys import logging from edl.util import * def main(): import argparse # set up CLI usage = "usage: %prog -l LIST [OPTIONS] TABLE(S)" description = __doc__ parser = argparse.ArgumentParser(description=description) add_screen_arguments(parser, accs=True) add_IO_arguments(parser) parser.add_argument( "-d", "--delim", dest="delim", default="\t", help="Input table delimiter (tab is default). If set to 'None', " "split on any whitespace.", metavar="DELIM") parser.add_argument( "-c", "--col", dest="col", type=int, default=0, help="Column to screen (0 is default)", metavar="INDEX") add_universal_arguments(parser) arguments = parser.parse_args() setup_logging(arguments) # allow funky characters in delim arguments if arguments.delim == 'None': arguments.delim = None elif arguments.delim != '\t': arguments.delim = bytes( arguments.delim, 'utf-8').decode('unicode-escape') logging.debug("Table delim: '%s'" % (arguments.delim)) if arguments.listDelim is not None: arguments.listDelim = bytes( arguments.listDelim, 'utf-8').decode('unicode-escape') # get read list logging.debug("List file: '%s'\nList delim: '%s'" % (arguments.listFile, arguments.listDelim)) screen_set = get_screen_list(arguments, accs=arguments.accs) logging.debug("Got list of %d reads" % (len(screen_set))) if len(screen_set) > 0: logging.debug("For example: %s" % (next(iter(screen_set)))) for (inhandle, outhandle) in inputIterator(arguments): scanFileForReads( screen_set, inhandle, arguments.keep, outhandle, arguments.delim, arguments.col, arguments.accs) ################ # Functions ################ def die(msg): sys.stderr.write("%s\n" % msg) sys.exit(1) def scanFileForReads(reads, inhandle, keep, outhandle, delim, col, accs): lineCount = 0 matchCount = 0 if keep: logging.info("Keeping matched reads") else: logging.info("Discarding matched reads") for line in inhandle: lineCount += 1 read = line.rstrip('\r\n').split(delim)[col] if accs: read = parseAcc(read) logging.debug("looking for %s in %s" % (read, line)) match = read in reads if match == keep: # write line if either # - read matches list AND keep is True # - read not in list AND keep is False outhandle.write(line) matchCount += 1 logging.info("Kept %d of %d lines" % (matchCount, lineCount)) if __name__ == "__main__": main() ``` #### File: py-metagenomics/test/test_02_expressions.py ```python from edl.expressions import * def test_accession_re(): with open('test/data/sample.1.blastx.b50.m8') as F: try: for line in F: acc = accessionRE.search(line).group(1) except AttributeError: # There should have been a match in every line of this file assert False test_data = { 'ref|YP_002498923.1|': 'YP_002498923', 'ref|YP_002498923.1': 'YP_002498923', 'gi|109900248|ref|YP_663503.1|': 'YP_663503', 'YP_663503.1': 'YP_663503', } for data, acc in test_data.items(): new_acc = accessionRE.search(data).group(1) assert acc == new_acc def test_fasta_re(): file_data = { 'test/data/test.gbk.faa': 3941, 'test/data/test.gbk.fna': 3941, 'test/data/createPrimerNextera.fasta': 2, 'test/data/createPrimerTruseq.fasta': 4, 'test/data/HOT_100_reads.8.fasta': 8, 'test/data/HOT_100_reads.fasta': 100, } count=0 for file_name, expected_count in file_data.items(): new_count = _count_re_hits(file_name, fastaRE) assert new_count == expected_count count+=1 assert count == len(file_data) assert count == 6 def _count_re_hits(file_name, regex): count=0 with open(file_name) as INF: for line in INF: if regex.search(line): count+=1 return count ``` #### File: py-metagenomics/test/test_30_assembly.py ```python from edl import assembly import pandas from math import floor fasta_file = 'test/data/HOT_100_reads.fasta' def test_get_stats_from_contigs(): stats = assembly.get_stats_from_contigs(fasta_file) # its a data frame assert isinstance(stats, pandas.core.frame.DataFrame) # 100 x 2 assert stats.shape == (100,2) # test a couple arbitrary values assert stats.loc['000005_1741_3371','GC'] == 32.8125 assert stats.loc['000483_1123_3166','length'] == 269 def test_get_column_stats(): stats = assembly.get_stats_from_contigs(fasta_file) data = stats['GC'] stats = assembly.get_column_stats(data) assert floor(stats['mean'])==39 assert floor(stats['median'])==37 def test_contig_length_stats(): assert isinstance(assembly.calc_stats(fasta_file,return_type='report'),str) data = assembly.calc_stats(fasta_file,return_type='data') assert data['N75'] == 142 assert data['count'] == 100 assert data['mean'] == 157.97 ``` #### File: jmeppley/py-metagenomics/translate_column.py ```python import sys import re import os.path import traceback import logging import argparse from edl.util import * def main(): # set up CLI description = """ This script takes a tab delimited text table and creates a new column from an existing one using an external translation table. """ parser = argparse.ArgumentParser(description=description) add_IO_arguments(parser) parser.add_argument( "-f", "--fillMissing", dest="fill", metavar="FILL", help="Put FILL in column when value not in map. If not used, " "entire line is skipped. If set to 'KEY', value in key " "column is used."), parser.add_argument("-m", "--mapFile", dest="mapFile", metavar="MAPFILE", help="Location of mapping table.") parser.add_argument( "-c", "--column", dest="col", type=int, default=1, help="Column number (first column is 1)", metavar="COLUMN") parser.add_argument( "-C", "--newColumn", dest="newcol", type=int, default=None, help="Column number to insert new column after. Default is the " "after the source column. 0=>make it the first column. " "-1=>make it the last column.", metavar="COLUMN") parser.add_argument( "-D", "--deleteColumn", dest="delcols", default=[], action='append', metavar='COLUMN', help="Delete this column (starting at 1, after new column " "inserted). May be used multiple times for multiple columns") # log level and help add_universal_arguments(parser) arguments = parser.parse_args() setup_logging(arguments) logging.info("Value map from: " + arguments.mapFile) logging.debug("Fill: '%s'" % (arguments.fill)) translation = parseMapFile(arguments.mapFile) for (inhandle, outhandle) in inputIterator(arguments): # setup some counters ncols = 0 total_lines = 0 skipped_lines = 0 lines_kept = 0 first_invalid_line = 0 invalid_line = None # loop over lines for i, line in enumerate(inhandle): total_lines += 1 line = line.rstrip('\r\n') if not line or line.startswith('#'): skipped_lines += 1 continue try: cells = line.split('\t') if ncols == 0: # count columns and check requested column number ncols = len(cells) if arguments.col > ncols: sys.exit("first line has fewer columns (%d) " "than requested column number(%d)!" % (ncols, arguments.col)) # get value from column value = cells[arguments.col - 1] if value in translation: newCol = translation[value] else: if arguments.fill is not None: if arguments.fill == 'KEY': newCol = value else: newCol = arguments.fill else: logging.debug( "skipping value not in translation: %s" % (value)) skipped_lines += 1 continue # insert new value if arguments.newcol is None: cells.insert(arguments.col, newCol) elif arguments.newcol < 0 or arguments.newcol >= ncols: cells.append(newCol) else: cells.insert(arguments.newcol, newCol) # perform any requested column deletions for delcol in sorted( [int(c) for c in arguments.delcols], reverse=True): cells.pop(delcol - 1) new_line = '\t'.join(cells) # print >> outhandle, new_line print(new_line, file=outhandle) lines_kept += 1 except Exception: logging.warn( "Unexpected error (%s): %s" % (sys.exc_info()[0], sys.exc_info()[1])) logging.warn(traceback.format_tb(sys.exc_info()[2])) logging.warn('Skipping %s' % (line)) skipped_lines += 1 if not invalid_line: first_invalid_line = i + 1 invalid_line = line # set insertion column for logging if arguments.newcol is None: inserted = arguments.col + 1 elif arguments.newcol < 0 or arguments.newcol >= ncols: inserted = ncols else: inserted = arguments.newcol + 1 valid_lines = total_lines - skipped_lines message = "Processed: %s\nCreated column %d with mapfile %s \ applied to column %d" % (inhandle, inserted, arguments.mapFile, arguments.col) if valid_lines > 0: message += '\nkept %d of %d lines.' % (lines_kept, total_lines) else: message += '\nNo valid lines found' if skipped_lines > 0: message += '\nSkipped %d lines' % (skipped_lines) logging.info(message) if invalid_line: logging.warn( 'Invalid lines found! EG line #%d: "%s"' % (first_invalid_line, invalid_line)) if (__name__ == '__main__'): main() ```
{ "source": "jmeppley/snakemake_magic", "score": 3 }
#### File: snakemake_magic/prototype/snakemake_magic.py ```python from __future__ import print_function import os import re import tempfile import shlex from IPython.core.magic import (Magics, magics_class, line_magic, cell_magic) from snakemake.workflow import Workflow import snakemake.workflow from snakemake.io import load_configfile, _load_configfile from snakemake.parser import parse from snakemake import get_argument_parser, parse_resources, logger rule_rexp = re.compile(r'^\s*@workflow.rule\s*\(name=\s*\'([^\']+)\'') def get_rule_names(snakefile_name): """ Run snakemake.parser.parse and use regexp to get the rule names This is incredibly inefficient, but a little more stable than trying to parse rules myself. """ for line in parse(snakefile_name)[0].split("\n"): m = rule_rexp.match(line) if m: yield m.group(1) # To register magic, class MUST call this class decorator at creation time @magics_class class SnakemakeMagic(Magics): """ Defines two cell and one line magic: * %%config: load a block of yaml or json into the config object * %%include: load a block of snakefile code into the workflow * %smake: attempt to create a target file """ workflow = None tempfiles = {"cells":[]} updated_rules = [] # TODO: add magic to reset workflow with more options # EG: cluster script, threads, ... def get_workflow(self): """ make sure there is a workflow object TODO: * allow multiple workflows? * what king of options to allow? * allow options every time or just first? """ if self.workflow is None: # create a new workflow object with some basic defaults # create a blank file just so snakemake has something to hang on to # (this file cannot be read from on some Windows systems...) self.tempfiles['root'] = tempfile.NamedTemporaryFile('w') self.workflow = Workflow(snakefile=self.tempfiles['root'].name) return self.workflow @line_magic def snakemake(self, line): """ execute the workflow with the given arguments and targets This uses the snakeamke command line argument parser for now. """ if self.workflow is None: raise Exception("Workflow has no data!") parser = get_argument_parser() args = parser.parse_args(list(shlex.split(line))) logger.debug(repr(args)) resources = parse_resources(args) targets = args.target dryrun = args.dryrun printshellcmds = args.printshellcmds printreason = args.reason printrulegraph = args.rulegraph printd3dag = args.d3dag touch = args.touch forceall = args.forceall forcerun = set(args.forcerun if args.forcerun is not None else [] + self.updated_rules) prioritytargets = args.prioritize until = args.until omit_from = args.omit_from stats = args.stats nocolor = args.nocolor quiet = args.quiet keepgoing = args.keep_going standalone = True ignore_ambiguity = args.allow_ambiguity lock = not args.nolock unlock = args.unlock force_incomplete = args.rerun_incomplete ignore_incomplete = args.ignore_incomplete list_version_changes = args.list_version_changes list_code_changes = args.list_code_changes list_input_changes = args.list_input_changes list_params_changes = args.list_params_changes summary = args.summary detailed_summary = args.detailed_summary print_compilation = args.print_compilation verbose = args.verbose debug = args.debug notemp = args.notemp keep_remote_local = args.keep_remote greediness = args.greediness latency_wait = args.latency_wait benchmark_repeats = args.benchmark_repeats keep_target_files = args.keep_target_files updated_files = list() if greediness is None: greediness = 0.5 if prioritytargets else 1.0 else: if not (0 <= greediness <= 1.0): logger.error("Error: greediness must be a float between 0 and 1.") return False # TODO: set target, check workflow, execute workflow workflow = self.get_workflow() # TODO: keep track of updated rules to set force run # HACK: execute() is leaving directory locked, so I'm disabling locks lock = False workflow.check() success = workflow.execute( targets=targets, dryrun=dryrun, touch=touch, forceall=forceall, forcerun=forcerun, until=until, omit_from=omit_from, quiet=quiet, keepgoing=keepgoing, printshellcmds=printshellcmds, printreason=printreason, printrulegraph=printrulegraph, printd3dag=printd3dag, ignore_ambiguity=ignore_ambiguity, stats=stats, force_incomplete=force_incomplete, ignore_incomplete=ignore_incomplete, list_version_changes=list_version_changes, list_code_changes=list_code_changes, list_input_changes=list_input_changes, list_params_changes=list_params_changes, summary=summary, latency_wait=latency_wait, benchmark_repeats=benchmark_repeats, wait_for_files=None, detailed_summary=detailed_summary, nolock=not lock, unlock=unlock, notemp=notemp, keep_remote_local=keep_remote_local, keep_target_files=keep_target_files, updated_files=updated_files, resources=resources, ) if success: del self.updated_rules[:] return success @cell_magic def sinclude(self, line, cell): "include this cell in workflow" workflow = self.get_workflow() # snakemake does not support blocks of text, so we create a temp # file. cell_snakefile = tempfile.NamedTemporaryFile('w', delete=False) self.tempfiles['cells'].append(cell_snakefile.name) cell_snakefile.write(cell) cell_snakefile.close() # first rule is first rule overwrite_first_rule = len(workflow._rules) == 0 # HACK: remove rules to be replaced: # remove conflicting rules for rule_name in get_rule_names(cell_snakefile.name): workflow._rules.pop(rule_name, None) self.updated_rules.append(rule_name) # include snippet workflow.include(cell_snakefile.name, overwrite_first_rule=overwrite_first_rule, ) os.unlink(cell_snakefile.name) return "Workflow now has {} rules".format(len(workflow._rules)) @cell_magic def sconfig(self, line, cell): " Load JSON or YAML into workflow's config object " workflow = self.get_workflow() # create a temp file, so we can use snakemake.load_configfile # it wouldn't be hard to roll our own to avoid this... cell_config_file = tempfile.NamedTemporaryFile('w', delete=False) cell_config_file.write(cell) cell_config_file.close() snakemake.workflow.config.update(load_configfile(cell_config_file.name)) logger.debug(repr(snakemake.workflow.config)) os.unlink(cell_config_file.name) @line_magic def _workflow(self, line): "backdoor to inspect workflow object" # this wouldn't be in the final version return self.get_workflow() @line_magic def _reset_workflow(self, line): self.workflow = None # In order to actually use these magics, you must register them with a # running IPython. This code must be placed in a file that is loaded once # IPython is up and running: ip = get_ipython() # You can register the class itself without instantiating it. IPython will # call the default constructor on it. ip.register_magics(SnakemakeMagic) ```
{ "source": "jmeppley/stagecache", "score": 2 }
#### File: jme/stagecache/main.py ```python import re import logging from jme.stagecache.target import get_target from jme.stagecache.types import asset_types from jme.stagecache.cache import Cache LOGGER = logging.getLogger(name='main') def cache_target(target_url, cache=None, atype=None, time=None, **kwargs): """ if file not cached, copy to cache. return cached location """ LOGGER.debug("Starting up: c=%s, a=%s, t=%s", cache, atype, time) # initialize the Cache (turn directory name into object) cache = Cache(cache) # initialize the Target if atype is None: atype = 'file' asset_type = asset_types.get(atype, None) if asset_type is None: raise Exception("No asset type defined for '{}!'".format(atype)) target = get_target(target_url, asset_type, cache.config) return cache.add_target(target, cache_time=time, **kwargs) def query_cache(**kwargs): """ return state of cache: total space used free space """ cache = kwargs.get('cache', None) return Cache(cache).inspect_cache(**kwargs) ``` #### File: jme/stagecache/manage.py ```python import os, re from jme.stagecache.cache import Cache def delete_enough_files(gigs_to_free, suffix=None, cache_root=None): """ detlete enough file to free up the requested number of GB of space optinally specify a suffix and only delete matching files """ cache = Cache(cache_root) # assets sorted by requested lock date all_assets = sorted( cache.metadata.iter_cached_files(), key=lambda a: a.get_last_lock_date()) needed_space = gigs_to_free * pow(1024,3) cum_sum = 0 count = 0 for a in all_assets: if suffix is None or a.cached_target.endswith(suffix): cum_sum += a.get_cached_target_size()[0] count += 0 scache.remove_cached_file(a) if cum_sum > needed_space: break return count def find_unlisted_assets(cache_root=None): """ Look in the configured cache to make sure all the files on disk are in the cache's asset_list returns: list of unlisted assets""" cache = Cache(cache_root) assets_on_disk = find_assets_in_dir(cache.cache_root) listed_assets = cache.inspect_cache()['files'] return [a for a in assets_on_disk if a not in listed_assets] def find_assets_in_dir(root_dir): for current_root, dir_list, file_list in os.walk(root_dir): for d in dir_list: if d.startswith('.stagecache.'): if d == '.stagecache.global': continue if os.path.exists(os.path.join(current_root, d, 'cache_lock')): yield os.path.join(current_root, d[12:])[len(root_dir):] def guess_type(asset, root): local_asset = root + asset if os.path.exists(local_asset): if os.path.isfile(local_asset): return "file" else: if re.search('seqdbs', asset): return 'taxdb' else: if os.path.basename(asset) == 'lastdb': return 'lastdb' return None ``` #### File: jme/stagecache/ssh.py ```python import logging import os import paramiko from contextlib import contextmanager LOGGER = logging.getLogger(name='ssh') KEY_TYPES = [paramiko.DSSKey, paramiko.ECDSAKey, paramiko.Ed25519Key, paramiko.RSAKey] def generate_ssh_keys(): """ loop over agent keys and private key files in ~/.ssh """ # start with the agent keys agent = paramiko.Agent() agent_keys = agent.get_keys() LOGGER.debug("Trying %d ssh-agent keys", len(agent_keys)) for agent_key in agent_keys: LOGGER.debug("Trying ssh-agent key: %s", agent_key.get_name()) yield agent_key # next, looop over files and try to load them with no passcode ssh_dir = os.path.join(os.path.expanduser("~"), '.ssh') for keyfile in os.listdir(ssh_dir): # crude filter: starts with id_ does not end with .pub if not keyfile.startswith("id_"): continue if keyfile.endswith(".pub"): continue keypath = os.path.join(ssh_dir, keyfile) ## TODO: check for first line with: # ---BEGIN XXX PRIVATE KEY--- LOGGER.debug("Trying key file: %s", keyfile) # figure out what type of key by brute force for keygen in KEY_TYPES: try: LOGGER.debug("Trying: " + repr(keygen)) pk = keygen.from_private_key_file(keypath) yield pk except paramiko.SSHException as e: # try the next combo continue @contextmanager def passwordless_sftp(host, username): """ attempt to connect to host as user try all the keys in order returned by generate_ssh_keys return sftp session object using the first key that works """ for ssh_key in generate_ssh_keys(): try: transport = paramiko.Transport(host) transport.connect(username=username, pkey=ssh_key) except paramiko.SSHException as e: # try another key continue else: LOGGER.debug("Connected to {}!".format(host)) sftp = paramiko.SFTPClient.from_transport(transport) yield sftp sftp.close() transport.close() break else: # nothing worked raise Exception("Could not connect! Rerun with -d to get more info") ``` #### File: jme/stagecache/text_metadata.py ```python import logging import os import time import stat from contextlib import contextmanager LOGGER = logging.getLogger(name='metadata') def get_cached_target(cache_root, target_path): return os.path.abspath(cache_root + target_path) def makedirs(path, mode=509): if not os.path.exists(path): makedirs(os.path.dirname(path), mode) try: os.mkdir(path) os.chmod(path, mode=mode) except FileExistsError as f_e_e: # competing threads? pass class Lockable(): def __init__(self, cache): self.umask = cache.config['cache_umask'] self.umask_dir = self.umask + 0o111 @contextmanager def lock(self, sleep_interval=3, force=False, dry_run=False): """ Aquire and relase lock as a context manager. EG: with target.lock(): ... see get_write_lock for arguments """ try: self.get_write_lock(sleep_interval, force, dry_run) yield None LOGGER.debug('Done with lock...') finally: # only release lock if it was NOT a dry run if not dry_run: self.release_write_lock() def get_write_lock(self, sleep_interval=3, force=False, dry_run=False): """ mark file as in progress (wait for existing lock) """ LOGGER.debug('Creating lock...') if os.path.exists(self.write_lock): if force: os.remove(self.write_lock) if dry_run: return LOGGER.info('Waiting for lock...') LOGGER.debug("force is "+ str(force)) while os.path.exists(self.write_lock): time.sleep(sleep_interval) if dry_run: return with open(self.write_lock, 'wt') as LOCK: LOCK.write('locked') os.chmod(self.write_lock, self.umask) def release_write_lock(self): """ remove in_progress mark """ LOGGER.debug('Releasing lock (%s)...', self.write_lock) try: os.remove(self.write_lock) except: pass class TargetMetadata(Lockable): def __init__(self, cache, target_path, atype): super().__init__(cache) self.cache_root = os.path.abspath(cache.cache_root) self.target_path = target_path self.atype = atype self.cached_target = get_cached_target(self.cache_root, self.target_path, ) cache_dir, cache_name = os.path.split(self.cached_target) self.md_dir = os.path.join(cache_dir, '.stagecache.' + cache_name) if not os.path.exists(self.md_dir): makedirs(self.md_dir, mode=self.umask_dir) self.write_lock = os.path.join(self.md_dir, 'write_lock') LOGGER.debug("""created TargetMetadata: cache_root=%s target_path=%s cached_target=%s cache_dir=%s md_dir=%s write_lock=%s""", self.cache_root, self.target_path, self.cached_target, cache_dir, self.md_dir, self.write_lock) def get_md_value(self, md_type, delete=False): """ returns mtime of md file and int value from file """ md_file = os.path.join(self.md_dir, md_type) if not os.path.exists(md_file): # file not in cache! return (0, None) mtime = os.path.getmtime(md_file) with open(md_file, 'rt') as md_handle: value = int(md_handle.readlines()[0].strip()) if delete: os.remove(md_file) return value, mtime def set_md_value(self, md_type, value): """ writes value to md file """ md_file = os.path.join(self.md_dir, md_type) if os.path.exists(md_file): self.catalog(md_type) with open(md_file, 'wt') as SIZE: SIZE.write(str(int(value))) os.chmod(md_file, self.umask) def catalog(self, md_type): """ archives old md and returns value """ log_file = os.path.join(self.md_dir, 'log') value, mtime = self.get_md_value(md_type, delete=True) with open(log_file, 'at') as LOG: LOG.write("\t".join(( md_type, str(mtime), time.ctime(mtime), str(value), )) + "\n") os.chmod(log_file, self.umask) return value def get_cached_target_size(self): """ returns size and date """ return self.get_md_value('size') def set_cached_target_size(self, size): """ writes size to file """ self.set_md_value('size', size) def get_last_lock_date(self): """ returns the most recent lock end date """ lock_date = self.get_md_value('cache_lock')[0] return lock_date def set_cache_lock_date(self, date): """ writes new expiration date to file """ self.set_md_value('cache_lock', date) def is_lock_valid(self): """ checks if lock date has passed """ lock_date = self.get_last_lock_date() return lock_date > time.time() def remove_target(self): """ archive metadata for this asset """ self.catalog('cache_lock') return self.catalog('size') class CacheMetadata(Lockable): def __init__(self, cache): super().__init__(cache) self.cache = cache self.md_dir = os.path.abspath( os.path.join(self.cache.cache_root, '.stagecache.global') ) self.write_lock = os.path.join(self.md_dir, "write_lock") self.asset_list = os.path.join(self.md_dir, "asset_list") if not os.path.exists(self.md_dir): makedirs(self.md_dir, self.umask_dir) LOGGER.debug("""created CacheMetadata: cache_root=%s md_dir=%s write_lock=%s""", self.cache.cache_root, self.md_dir, self.write_lock) def iter_cached_files(self, locked=None): """ return list of assets with sizes and lock dates """ LOGGER.debug("Checking asset list: %s", self.asset_list) for target_path, atype in self.list_assets(): target_metadata = TargetMetadata(self.cache, target_path, atype) if locked is None or target_metadata.is_lock_valid() == locked: yield target_metadata def list_assets(self): """ return list of path, type tuples in cache """ LOGGER.debug("Fetching asset list: %s", self.asset_list) if os.path.exists(self.asset_list): asset_list = list() with open(self.asset_list) as assets: for asset_line in assets: asset_line = asset_line.strip() if len(asset_line) == 0: continue asset = tuple(a.strip() for a in asset_line.split('\t')) if len(asset) != 2: raise Exception("Asset tuple is NOT length 2!\n%r" % (asset,)) asset_list.append(asset) LOGGER.debug("Found %d assets in %s", len(asset_list), self.asset_list, ) return asset_list else: return [] def remove_cached_file(self, target_metadata): """ remove record of cached file, return size """ count = 0 # read asset list asset_list = self.list_assets() # write new (edited) asset list with open(self.asset_list, 'wt') as assets: for target_path, atype in asset_list: if target_path != target_metadata.target_path: assets.write(target_path + "\t" + atype + "\n") else: count += 1 os.chmod(self.asset_list, self.umask) if count == 0: LOGGER.error("No match for " + target_metadata.target_path) raise Exception("Error recording assets") if count > 1: LOGGER.warning("Found {} listings for {}".format(count, target_metadata.target_path)) return target_metadata.remove_target() def add_cached_file(self, target_metadata, target_size, lock_end_date): """ add record of asset """ # add to global md paths_in_cache = set(a[0] for a in self.list_assets()) if target_metadata.target_path not in paths_in_cache: LOGGER.debug("%s not in %s, adding...", target_metadata.target_path, paths_in_cache) # add to list if not there yet with open(self.asset_list, 'at') as assets: assets.write(target_metadata.target_path + "\t" \ + target_metadata.atype + "\n") os.chmod(self.asset_list, self.umask) added_to_list = True else: LOGGER.debug("%s alread in asset list", target_metadata.target_path) added_to_list = False # add file specific md target_metadata.set_cached_target_size(target_size) target_metadata.set_cache_lock_date(lock_end_date) return added_to_list ``` #### File: jme/stagecache/util.py ```python import logging import getpass import os import re from math import log from collections import namedtuple from datetime import datetime, timezone power = pow LOGGER = logging.getLogger(name='util') LN_BASE = log(power(1024, 1/3)) def human_readable_bytes(byt): """ fixed version of https://stackoverflow.com/a/17754143/663466 hybrid of https://stackoverflow.com/a/10171475/2595465 with https://stackoverflow.com/a/5414105/2595465 """ # return bytes if small if byt <= 99: return str(int(byt)) magnitude = int(log(abs(byt)) / LN_BASE) if magnitude > 19: float_fmt = '%i' illion = 20 // 3 else: mag3 = (magnitude+1) % 3 float_fmt = '%' + str(mag3) + "." + str(3-mag3) + 'f' illion = (magnitude + 1) // 3 format_str = float_fmt + ['', 'K', 'M', 'G', 'T', 'P', 'E'][illion] return (format_str % (byt * 1.0 / (1024 ** illion))).lstrip('0') def path_up_to_wildcard(full_path): """ If a given path has a wildcard placeholder ( eg {sample} ), return the last directory before that point """ path_fragment = full_path.split('{')[0] if path_fragment == full_path: return full_path if path_fragment.endswith(os.path.pathsep): return path_fragment[:-1] return os.path.dirname(path_fragment) URL_REXP = re.compile(r'^([A-Za-z]+)://(?:([^/@]+)@)?([^/]*)(/.+)$') Remote = namedtuple('Remote', ['protocol', 'user', 'host', 'path']) def parse_url(url, config, use_local=False, has_wildcards=False): """ check if the string is a url or simple path return None if it's a path return named tuple with (protocol, user, host, path) if its a URL """ ## Check 1: is it a full formed URL? EG: # SFTP://server.com/path/to/file # file:///local/path # SCP://[email protected]/some/path match = URL_REXP.search(url) if match: remote = Remote(*match.groups()) if remote.user is None: user = user_from_config(config, remote.host) remote = Remote(remote.protocol, user, remote.host, remote.path) if remote.protocol.lower == 'file': if len(remote.host) > 0: raise Exception("file URL should have no host name") return None return remote # skip check 2 if file exists and we're OK using local files if use_local: if os.path.exists(path_up_to_wildcard(url) \ if has_wildcards else url): return None ## check 2: user configured remote maps for custom_patterns in config \ .get('remote', {}) \ .get('mappings', []): try: mnt_rexp = re.compile(custom_patterns['pattern']) host_repl = custom_patterns['host_repl'] path_repl = custom_patterns['path_repl'] except KeyError: LOGGER.error("custom patterns must contain: pattern, host_repl, " "and path_repl") raise except: LOGGER.error("re cannot compile custom pattern: " + custom_patterns['pattern']) raise LOGGER.debug("Checking remote pattern: %r", custom_patterns['pattern']) if not mnt_rexp.search(url): # skip to next pattern if this doesn't match continue try: source_path = mnt_rexp.sub(path_repl, url) except: LOGGER.error("re cannot understand replacement expression " + path_repl) raise try: host = mnt_rexp.sub(host_repl, url) except: LOGGER.error("re cannot understand replacement expression " + host_repl) raise user = user_from_config(config, host) LOGGER.debug("INFERRED URL SFTP://%s@%s%s", user, host, source_path) return Remote('SFTP', user, host, source_path) ## 3: just a regular, local file # we ge here if there was no match above return None def user_from_config(config, host): """ get username from config for this host. Fall back to local username """ local_user = getpass.getuser() LOGGER.debug("config['remote']: %r", config.get('remote',{})) default_user = config.get('remote', {})\ .get('SFTP', {}) \ .get('default', {}) \ .get('username', local_user) user = config.get('remote', {}).get('SFTP', {}).get(host, {}).get('username', default_user) return user def get_time_string(seconds): """ return a formatted time string """ return datetime.fromtimestamp(seconds, timezone.utc) \ .astimezone() \ .strftime("%Y-%m-%d %H:%M:%S (%Z)") ``` #### File: test/nose/test_util.py ```python from jme.stagecache.util import path_up_to_wildcard, URL_REXP def test_path_up_to_wildcard(): " should return last full dir name before first bracket " assert path_up_to_wildcard('/mnt/server/volume/project/file.{suffix}') \ == '/mnt/server/volume/project' assert path_up_to_wildcard('/path/to/data/{sample}/file.{type}.ext') \ == '/path/to/data' assert path_up_to_wildcard('/simple/path/file.ext') \ == '/simple/path/file.ext' def test_url_rexp_1(): m = \ URL_REXP.search('SFTP://[email protected]/remote/resource/lastdb') assert m is not None print(m.groups()) protocol, user, host, path = m.groups() assert protocol == 'SFTP' assert user == 'readonly' assert host == 'test.hawaii.edu' assert path.startswith('/') def test_url_rexp_2(): m = \ URL_REXP.search('SFTP://test.berkeley.edu/remote/resource/lastdb') assert m is not None print(m.groups()) protocol, user, host, path = m.groups() assert protocol == 'SFTP' assert user is None assert host == 'test.berkeley.edu' assert path.startswith('/') def test_url_rexp_3(): m = \ URL_REXP.search('file:///remote/resource/lastdb') assert m is not None print(m.groups()) protocol, user, host, path = m.groups() assert protocol == 'file' assert user is None assert host == '' assert path.startswith('/') ```
{ "source": "jmeppley/workflows", "score": 3 }
#### File: workflows/python/annotate.py ```python import os def get_db_types(config): """ loop over DBs and: * identify all gene family dbs * identify all taxonomic dbs """ gene_family_dbs = [] taxdbs = [] for db in config["dbs"]: db_type = config["dbs"][db].get("type", "gene") if db_type[0:3] == "tax": taxdbs.append(db) elif db_type == "gene": gene_family_dbs.append(db) return (gene_family_dbs, taxdbs) def get_last_alg(dbformat, extension): """ right now looks for last db type (lastp or lastn) and extension (faa or not) and returns lastp, lastx, or lastn. Support for other dbs can be added on request. """ if dbformat == "lastp": if extension == "faa": search_alg = "lastp" else: search_alg = "lastx" elif dbformat == "lastn": if extension == "faa": raise Exception( "I'm sorry, I don't know how to search for faa " "sequences in a lastp database!" ) else: search_alg = "lastn" elif dbformat == "bwadb": search_alg = "bwa.sam" elif dbformat in ["dmnd", "diamond"]: if extension == "faa": search_alg = "dmndp" else: search_alg = "dmndx" else: raise Exception( ("I'm sorry, but the database format '{}' is not yet " "supported").format( dbformat ) ) return search_alg def get_db_dot_fmt_strings(db_list, config, query_extension="fasta"): """ Return a list of strings that are "{db}.{format}". Where db is the name of the database and format is the extension generated by the search (eg lastx, or tbl). There is a special case for fragmented HMM dbs where we need to add ".dbatch" to the format. """ strings = [] for d in db_list: db_data = config["dbs"][d] format = db_data.get("format", "tbl") if format.startswith("last"): format = get_last_alg(format, query_extension) if "frags" in db_data and int(db_data["frags"]) > 1: format = format + ".dbatch" strings.append("{}.{}".format(d, format)) return strings def get_hit_table_name_from_wildcards_db(wildcards, config): """ Return the hit table name based on the db name using the db config info """ db = wildcards.db db_format = config["dbs"][db].get("format", "hmmer") if db_format == "hmmer": if "frags" in config["dbs"][db]: template = "{name_root}.vs.{db}.tbl.dbatch" else: template = "{name_root}.vs.{db}.tbl" elif db_format == "lastdb": template = "{name_root}.vs.{db}.lastp" else: # Don't know what to do: raise Exception("Unknown database format for {}: {}".format(db, db_format)) name_root = config["annotation_hit_table_map"].get( wildcards.annotation_prefix, wildcards.annotation_prefix ) return template.format(name_root=name_root, **wildcards) def get_db_assignment_params(wildcards, config): """ return the params needed to turn hits from the given db (wildcards.db) into gene family assignments using the assign_paths.py script """ assign_type = config["dbs"][wildcards.db].get("assign_type", "hitid").lower() if assign_type == "kegg": return "-p hitid -C first -M kegg -m %s.kos" % ( config["dbs"].get("KEGG", {"path": ""})["path"] ) if assign_type == "pfam": return "-p pfam -C all" return "-C first -p hitid" def get_path_file(config, db): """ return the ko map for KEGG, NONE for antying else if we add support for a new orthology, well need to add it here """ db_info = config["dbs"][db] if db_info.get("assign_type", "hitid").lower() == "kegg": return db_info["path"] + ".kos" return [] def get_db_frag(config, db, N): full_hmm = config["dbs"][db]["path"] n_frags = config["dbs"][db]["frags"] template = get_db_frag_template(full_hmm, n_frags) return template.format(N=int(N)) def get_db_frag_template(full_hmm, n_frags): n_frag_digits = 3 # unless we can get the hard coded 000 out of the rules # n_frag_digits = len(str(n_frags)) hmm_dir = os.path.dirname(full_hmm) frag_dir = os.path.join(hmm_dir, "frag_{}".format(n_frags)) hmm_base, hmm_ext = os.path.splitext(os.path.basename(full_hmm)) template = "{}{}{}.{{N:0{}d}}{}".format( frag_dir, os.path.sep, hmm_base, n_frag_digits, hmm_ext ) return template def get_db_frags(full_hmm, n_frags): template = get_db_frag_template(full_hmm, n_frags) return [template.format(N) for N in range(1, n_frags + 1)] def get_tax_files(config, database): db_path = config["dbs"][database]["path"] db_dir = os.path.dirname(db_path) return [db_path + ".tax", db_dir + "/nodes.dmp", db_dir + "/names.dmp"] ``` #### File: workflows/python/gene_catalog.py ```python import re import os import json import pandas from Bio import SeqIO from edl import taxon as edltaxon, util, hits as edlhits, blastm8, kegg try: from python.common import parse_stats from snakemake import logger except: # if running as a script from common import parse_stats import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger() REFSEQ = "refseq" GTDB = "GTDB" KEGG = "kegg" #### # RefSeq # # The following methods generate annotations using a REfSeq hit table # Regular Expressions for parsing functional roles desc_RE = re.compile(r"\s*\[[^\[]+$") uninformative_RE = re.compile( r"(:?hypothetical|predicted|conserved\sdomain)\s+protein", ) extra_loaction_info_RE = re.compile( r"^(?:contig)?\d+,\s*\S+_\S+,\s*(\S.+),\s*\d+\s*\-\s*\d+\s*$" ) func_pref_RE = re.compile(r"(?:MULTISPECIES|PREDICTED):\s") func_suff_RE = re.compile(r"\s\((?:plastid|plasmid|chloroplast|chromatophore)\)\s*$") def get_function_trimmed(hit, desc_map, db_type): """ Given a RefSeq hit id return a function stripped of boilerplate """ if db_type == REFSEQ: return func_pref_RE.sub( "", func_suff_RE.sub( "", extra_loaction_info_RE.sub( r"\1", desc_RE.sub( "", desc_map[hit.hit])), ), ) if db_type == GTDB: return desc_map[hit.hit].split(None, 1)[-1] return "NA" # drop the accession version suffix acc_suff_RE = re.compile(r"\.\d+$") def translate_hit(self, hit): hit.hit = acc_suff_RE.sub("", hit.hit) return self.hit_translator.translateHit(hit) # find the least common ancestor of multiple hits def get_lca(hits, translate=lambda x: [x]): orgs = [] for h in hits: orgs.extend(translate(h)) if len(orgs) == 0: return None lca = orgs.pop() while len(orgs) > 0: lca = lca.getLCA(orgs.pop()) return lca # Simplify the list of ranks printed_ranks = [edltaxon.ranks[i] for i in [3, 7, 11, 17, 21, 24]] + ["domain"] major_ranks = [edltaxon.ranks[i] for i in [2, 3, 7, 11, 17, 21, 24, 27, 28]] def get_major_rank(rank): " return the highest major rank below or equal to the given rank " rank_index = edltaxon.ranks.index(rank) for mr in major_ranks: if edltaxon.ranks.index(mr) >= rank_index: return mr def approximate_rank(taxon, use_major_ranks=True): ret_rank = None if taxon.rank != "no rank": ret_rank = taxon.rank else: last_rank = edltaxon.ranks[0] for rank in edltaxon.ranks: if taxon.getAncestorClosestToRank(rank) != taxon: ret_rank = last_rank break last_rank = rank else: return "Unknown" if use_major_ranks: return get_major_rank(ret_rank) else: return rank class TaxDBGeneAnnotator: def __init__( self, db_location, db_type=REFSEQ, taxid_delim=None, bad_refs=set(), genome_clades={}, **kwargs ): self.rsdb = db_location self.parse_db_metadata(taxid_delim, db_type) self.set_m8_params(**kwargs) self.set_bad_refs(bad_refs) def set_m8_params(self, **kwargs): kwargs.setdefault("format", blastm8.BLASTPLUS) kwargs.setdefault("top_pct", 0.0) self.m8_params = edlhits.FilterParams(**kwargs) def set_bad_refs_from_file(self, bad_ref_file, **kwargs): """ Use util.parse_list_to_set() to generate list of bad_refs to exclude during annotation """ self.set_bad_refs(util.parse_list_to_set(bad_ref_file, **kwargs)) def set_bad_refs(self, bad_refs): self.bad_refs = bad_refs try: self.m8_params.bad_refs = bad_refs except: logger.warn("Can't set bad refs for param") def set_genome_clades(self, genome_clades): self.genome_clades = genome_clades def set_genome_clades_from_file(self, genome_clade_file, column="Clade", **kwargs): kwargs.setdefault("index_col", 0) genome_data = pandas.read_csv(genome_clade_file, **kwargs) self.set_genome_clades(genome_data[column]) def parse_db_metadata(self, taxid_delim, db_type): """ Given a refseq database in my style, parse the associated map files """ # taxonomy rsdb_dir = os.path.split(self.rsdb)[0] self.taxonomy = edltaxon.readTaxonomy(rsdb_dir) rsdb_taxid_map = self.rsdb + ".tax" self.taxid_map = util.parseMapFile( rsdb_taxid_map, valueDelim=taxid_delim, valueType=int ) parse_style = edlhits.ACCS if db_type == REFSEQ else edlhits.HITIDS self.hit_translator = edlhits.getHitTranslator( hitStringMap=self.taxid_map, parseStyle=parse_style, taxonomy=self.taxonomy, hitsAreObjects=True, ) # descriptions rsdb_desc_map = self.rsdb + ".ids" self.desc_map = util.parseMapFile(rsdb_desc_map) def annotate_genes_rs_prot(self, hit_table, annotation_table, db_type=REFSEQ): logger.info( "Annotating " + db_type + " taxdb with " + hit_table + " and " + annotation_table ) with open(annotation_table, "w") as tsv_out: tsv_out.write( "Gene\t" + "\t".join(printed_ranks) + "\tfunction\tmin pct ID\thit count" + "\ttop hit\ttop pct ID\ttop score\ttop desc\n" ) for info in self.generate_gene_annotations_rs_prot(hit_table, db_type): ( gene, lca_ranked, function, min_pctid, hit_count, top_hit, top_pctid, top_score, top_desc, ) = info tsv_out.write( "%s\t%s\t%s\t%0.1f\t%d\t%s\t%0.1f\t%0.1f\t%s\n" % ( gene, "\t".join([lca_ranked.get(r, "") for r in printed_ranks]), function, min_pctid, hit_count, top_hit, top_pctid, top_score, top_desc, ) ) def generate_gene_annotations_rs_prot(self, hit_table, db_type=REFSEQ): logger.info("Annotating " + db_type + " taxdb with " + hit_table) species_index = major_ranks.index("species") genus_index = major_ranks.index("genus") phylum_index = major_ranks.index("phylum") total_genes = 0 total_hits = 0 with blastm8.InputFile(hit_table) as blast_m8: for gene, hits in blastm8.filterM8Stream( blast_m8, self.m8_params, return_lines=False ): hits = list(hits) total_hits += len(hits) total_genes += 1 min_pctid = min([h.pctid for h in hits]) lca = get_lca(hits, self.hit_translator.translateHit) lca_rank = approximate_rank(lca) lca_ranked = {"domain": lca.getAncestorClosestToRank("domain").name} if lca_rank in major_ranks: for r in range(phylum_index, species_index - 1, -1): lca_ranked[major_ranks[r]] = \ lca.getAncestorClosestToRank( major_ranks[r] ).name if r <= major_ranks.index(lca_rank): break # get a good functional annotation form the best hit(s) # (that aren't hypothetical) if db_type is not None: fns_by_score = {} for hit in hits: f = get_function_trimmed(hit, self.desc_map, db_type) fns_by_score.setdefault(hit.score, []).append(f) for score in sorted(fns_by_score.keys(), reverse=True): # only consider things with useful annotations useful_functions = set() for f in fns_by_score[score]: if uninformative_RE.search(f) is None: useful_functions.add(f) if len(useful_functions) > 0: functions = useful_functions break else: functions = ["unknown"] function = ";".join(functions) else: function = "NA" top_hit = hits[0] # description of top hit top_desc = self.desc_map[top_hit.hit] if db_type == GTDB: # GTDB headers are too long, take sp name and func top_desc = top_desc.split(";")[-1] top_desc = re.sub(r"^s__", "", top_desc) yield ( gene, lca_ranked, function, min_pctid, len(hits), top_hit.hit, top_hit.pctid, top_hit.score, top_desc, ) logger.info("Parsed %d hits for %d genes" % (total_hits, total_genes)) ko_hit_org_RE = re.compile(r"^([a-z]+):") class KeggGeneAnnotator: kegg20160201 = "/mnt/delong/seqdbs/KEGG/KeggGene.pep.20160201/lastdb" def __init__(self, db_location=kegg20160201): self.keggdb = db_location self.parse_db_metadata() self.m8_params = edlhits.FilterParams( format=blastm8.BLASTPLUS, top_pct=5.0, sort="score" ) def parse_db_metadata(self): """ Given a refseq database in my style, parse the associated map files """ # KO map kegg_kos = "%s.kos" % (self.keggdb) self.ko_map = kegg.parseLinkFile(kegg_kos) # descriptions kegg_ids = "%s.ids" % (self.keggdb) self.desc_map = util.parseMapFile(kegg_ids) def annotate_genes_kg(self, hit_table, annotation_table): header = "Gene\tKO(s)" annot_tuples = self.generate_gene_annotations_kg(hit_table) write_tsv(annotation_table, annot_tuples, header=header) def generate_gene_annotations_kg(self, hit_table): with blastm8.InputFile(hit_table) as blast_m8: for read, hits in blastm8.filterM8Stream( blast_m8, self.m8_params, return_lines=False ): hits = list(hits) kos_so_far = [] org_scores = {} for h in hits: org = ko_hit_org_RE.search(h.hit).group(1) score = h.score if org_scores.get(org, -1) > score: # only take top scoring hits from each organism continue else: org_scores[org] = score kos_so_far.extend(self.ko_map.get(h.hit, [])) # collect uniq hits, dropping "None" or None uniq_kos = set([k for k in kos_so_far if k not in [None, "None", ""]]) yield (read, ";".join(uniq_kos)) def write_tsv(out_file, data_tuples, sep="\t", header=None): with open(out_file, "w") as out_handle: if header is not None: out_handle.write(header) if not header.endswith("\n"): out_handle.write("\n") for data_tuple in data_tuples: out_handle.write(sep.join(data_tuple) + "\n") def parse_clusters(cluster_file): """ expects one line per cluster, tab separated: cluster_1_rep member_1_1 member 1_2 ... cluster_2_rep member_2_1 member_2_2 ... """ cluster_dict = {} with open(cluster_file) as LINES: for line in LINES: genes = line.strip().split("\t") rep = genes[0] for gene in genes: cluster_dict[gene] = rep return cluster_dict def parse_bio_clusters(bio_json, out_tab): """ convert bio cluster format from vsearch to our syle table """ with open(bio_json) as BIO: data = json.load(BIO) # build map from rep to other genes clusters = {} for row, column, value in data["data"]: rep = data["rows"][row]["id"] gene = data["columns"][column]["id"] if rep == gene: # make sure a cluster exists for this rep clusters.setdefault(rep, []) else: # add gene to cluster for this rep clusters.setdefault(rep, []).append(gene) # write table with open(out_tab, "wt") as TAB: for rep, other_genes in clusters.items(): if len(other_genes) > 0: TAB.write("{}\t{}\n".format(rep, "\t".join(other_genes))) def parse_mmseq_clusters(mm_tab, out_tab): """ reformat mmseqs cluster table to our style input: every line maps rep to member output: every non-single cluster listed starting w/rep """ with open(out_tab, "wt") as TAB: with open(mm_tab) as MM: prev_rep = None gene_count = 0 cluster_count = 0 for line in MM: rep, gene = line.strip().split("\t") if rep != prev_rep: if rep != gene: raise Exception( "expected first gene to be same " " as rep. {} != {}".format(rep, gene) ) gene_count = 1 prev_rep = rep continue gene_count += 1 if gene_count == 2: # start writing, by ending previous line if cluster_count != 0: TAB.write("\n") cluster_count += 1 # ... and writing the rep TAB.write(rep) # ... add this gene TAB.write("\t" + gene) # end final cluster TAB.write("\n") def parse_cdhit_clusters(clstr_file, cluster_file): """ reformat cdhit's .clstr file into simple table """ gene_expr = re.compile(r"\s>(\S+)\.\.\.\s\s*(.+)\s*$") with open(cluster_file, "wt") as TAB: with open(clstr_file) as CLSTR: cluster = [] cluster_rep = None for line in CLSTR: if line.startswith(">"): if cluster_rep is not None: TAB.write( "{}\t{}\n".format( cluster_rep, "\t".join(g for g in cluster) ) ) cluster = [] cluster_rep = None continue try: gene, alignment = gene_expr.search(line).groups() except AttributeError: print("can't parse: \n" + line) raise if alignment.strip() == "*": cluster_rep = gene else: cluster.append(gene) if cluster_rep is not None: TAB.write("{}\t{}\n".format(cluster_rep, "\t".join(g for g in cluster))) def merge_cluster_coverages(cluster_file, coverage_tables): """ given a cluster file mapping cluster reps to members and a map from assemblies to coverage tables of member genes generate a table of cluster coverages by assembly """ cluster_map = parse_clusters(cluster_file) cluster_coverages = None for assembly, gene_coverage_table in coverage_tables.items(): gene_coverages = pandas.read_csv(gene_coverage_table, index_col=0) gene_coverages.columns = [ assembly, ] gene_coverages["Cluster"] = [ cluster_map.get(g, g) for g in gene_coverages.index ] _cluster_coverages = gene_coverages.groupby("Cluster").agg(sum) if cluster_coverages is None: cluster_coverages = _cluster_coverages else: cluster_coverages = cluster_coverages.join(_cluster_coverages, how="outer") return cluster_coverages # deprecated def normalize_coverages(input, contig_col="Contig", cov_col="MeanCov"): """ Loop over read stats files and create a normalization factor for each assembly (number of reads/10M) input: the input object from snakemake with two member file lists: input.read_stats: the cleaned read stats from all assemblies input.contig_covs: the contig stats from all assemblies Loop over coverage files, group by assembly (some assemblies have 2), normalize by adjusted number of reads, yield (contig, coverage) tuples """ read_counts = {} for stats_file in input.read_stats: assembly = re.sub(r"/stats/.+$", "", stats_file) reads = parse_stats(stats_file)["reads"] / 10000000 read_counts[assembly] = read_counts.get(assembly, 0) + reads last_assembly = None coverages = None if len(input.contig_covs) == 0: raise Exception("Missing contig coverage files!") for cov_file in sorted(input.contig_covs): assembly = os.path.dirname(cov_file) assembly = re.sub(r"^renamed_dir", "", assembly) if assembly != last_assembly: if coverages is not None: for item in coverages.items(): yield item coverages = None last_assembly = assembly _coverages = ( pandas.read_csv( cov_file, sep="\t", index_col=0, header=0, usecols=[contig_col, cov_col], )[cov_col] / read_counts[assembly] ) if coverages is None: coverages = _coverages else: coverages = coverages + _coverages for item in coverages.items(): yield item def main(): """ Run as a script: gene_catalog.py {hit_table} {lastdb_path} {output_file} """ import argparse description = "annotate genes from refseq or kegg hits" parser = argparse.ArgumentParser(description=description) parser.add_argument( "hit_table", metavar="HIT_TABLE", help="The table of hits in blast format" ) parser.add_argument( "lastdb_path", metavar="LASTDB_PATH", help="The path given to lastal" ) parser.add_argument( "output_table", metavar="OUT_TABLE", help="The file to write the anntations to" ) parser.add_argument( "-t", "--type", default=None, metavar="TYPE", choices=[REFSEQ, KEGG, GTDB], help="The type of database. Either 'refseq'," + "'GTDB', or 'kegg'", ) arguments = parser.parse_args() # try to guess type from DB name/path if arguments.type is None: if re.search(r"kegg", arguments.lastdb_path, flags=re.I): arguments.type = KEGG else: arguments.type = REFSEQ logger.info("Parsing db type: " + arguments.type) # annotate! if arguments.type == KEGG: annotator = KeggGeneAnnotator(arguments.lastdb_path) annotator.annotate_genes_kg(arguments.hit_table, arguments.output_table) else: annotator = TaxDBGeneAnnotator(arguments.lastdb_path) annotator.annotate_genes_rs_prot( arguments.hit_table, arguments.output_table, arguments.type ) def process_for_mcl( input_file, fasta_file, output_file, format="last", pctid=0.95, minbit=0.5 ): """ generates a table of graph edges from an all v all """ params = blastm8.FilterParams(format=format, pctid=pctid) inputm8 = blastm8.M8Stream(input_file) # fake all self bits self_bits = {r.id: 2 * len(r) for r in SeqIO.parse(fasta_file, "fasta")} with open(output_file, "wt") as OUTPUT: for seq, hits in blastm8.filterM8Stream(inputm8, params, returnLines=False): for hit in hits: if hit.hit == seq: # we've faked the self bits for now continue process_hit(hit, OUTPUT, self_bits, minbit) def process_hit(hit, output_handle, self_bits, minbit): """ following mcl parsing used by Anvio, filter hits to feed to mcl """ bitratio = hit.score / min(self_bits[hit.hit], self_bits[hit.read]) if bitratio < minbit: return output_handle.write("{}\t{}\t{}\n".format(hit.hit, hit.read, hit.pctid)) def get_longest_seq(clusters, genes, format="fasta"): """ Given a clsuter file from mcl where each line is a cluster with tab separated gene ids. And given a fasta file of gene sequences. return the ID of the longest gene in each cluster """ gene_lengths = {g.id: len(g) for g in SeqIO.parse(genes, format)} with open(clusters) as CLUSTERS: for line in CLUSTERS: member_genes = line.rstrip().split("\t") yield sorted(member_genes, reverse=True, key=lambda g: gene_lengths[g])[0] if __name__ == "__main__": main() ``` #### File: workflows/python/standards.py ```python import numpy import pandas def calculate_factors(counts_table, spiked_amounts, table_format=None): """ calculate a scaling factor from two input tables """ # load counts of recovered standards from this sample pandas_args = { "header": None, "index_col": None, "skiprows": 1, "names": ["Ref", "Counts"], } if table_format == "bbduk": pandas_args.update({"skiprows": 4, "names": ["Ref", "Counts", "Pct"]}) count_table = pandas.read_table(counts_table, **pandas_args) count_table["Ref"] = [r.split()[0] for r in count_table["Ref"]] count_table.set_index("Ref", inplace=True) # load spiked in amounts spike_table = pandas.read_table( spiked_amounts, header=None, index_col=0, names=["Ref", "Spiked"] ) # get data as lists in same order standard_list = sorted(list(spike_table.index)) counts = [count_table.Counts.get(s, 0) for s in standard_list] spikes = [spike_table.Spiked[s] for s in standard_list] # calculate the scale factor and save scale_factor = get_best_fit(counts, spikes, force_intercept=True)[0] return scale_factor def get_best_fit(xd, yd, force_intercept=False, force_slope=False): """Return coeefs for a line of best fit""" # Calculate trendline if force_intercept: # intercept of 0 x = numpy.array(xd)[:, numpy.newaxis] slope, _, _, _ = numpy.linalg.lstsq(x, yd) coeffs = [slope[0], 0] if force_slope: # We shouldn't get here, but let's just return the fixed values coeffs = (1, 0) elif force_slope: # slope of 1: intercept is average of difference intercept = numpy.mean(yd - xd) coeffs = [1, intercept] else: coeffs = numpy.polyfit(xd, yd, 1) return coeffs ``` #### File: workflows/python/tmatic.py ```python from Bio import Seq primer_templates = { "truseq": """>PrefixTruA/1 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT >PrefixTruA/2 GATCGGAAGAGCACACGTCTGAACTCCAGTCAC{edocrab2}ATCTCGTATGCCGTCTTCTGCTTG >PrefixTruB/1 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT >PrefixTruB/2 GATCGGAAGAGCACACGTCTGAACTCCAGTCAC{edocrab2}CGATCTCGTATGCCGTCTTCTGCTTG""", "scripseq": """>PrefixScript/1 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT >PrefixScript/2 CAAGCAGAAGACGGCATACGAGAT{edocrab2}GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT""", "nextera": """>Prefix25/1 AATGATACGGCGACCACCGAGATCTACAC{barcode1}TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG >Prefix25/2 CAAGCAGAAGACGGCATACGAGAT{edocrab2}GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG""", } def get_primer_template(chemistry): return primer_templates[chemistry] def process_barcode_string(barcode_string): barcodes = barcode_string.split(".") barcode_data = {} for N in [1, 2]: barcode = barcodes[N - 1] if len(barcodes) >= N else barcodes[0] barcode_data["barcode{N}".format(N=N)] = barcode barcode_data["edocrab{N}".format(N=N)] = Seq.reverse_complement(barcode) return barcode_data def get_chemistry_barcodes(sample, config): """ Attempt to work out cleaning params for given sample. Try the following: * look in config[sample_data][{sample}] for * sample_sheet * chemistry and barcodes * use Ns for barcode and use config.get(chemistry, 'scripseq') """ sample_data = config["sample_data"][sample] if "barcode" in sample_data and "chemistry" in sample_data: return sample_data["chemistry"], [sample_data["barcode"],] if "barcodes" in sample_data and "chemistry" in sample_data: return sample_data["chemistry"], sample_data["barcodes"] if "sample_sheet" in sample_data: return parse_sample_sheet(sample, sample_data["sample_sheet"]) else: if config.get("chemistry", "scripseq") == "nextera": return config["chemistry"], ["NNNNNN", "NNNNNN"] return config.get("chemistry", "scripseq"), ["NNNNNN",] def parse_sample_sheet(sample, sample_sheet): """ return chemistry and barcode for this sample """ # TODO raise NotImplementedError( "You'll have to set the barcode and chemsitrya" "manually for now!" ) ```
{ "source": "jmerc77/remix-of-Russian-Doll-Maze-Puzzle-Box", "score": 3 }
#### File: jmerc77/remix-of-Russian-Doll-Maze-Puzzle-Box/main.py ```python import os import configparser import platform from shutil import copy, rmtree import shlex import random as rd import time import numpy as np import math import re from PIL import Image import subprocess as sp skip = -1 # debug: skip all shells up to here (0 to n to enable) halt = -1 # debug: terminate skipping this shell (0 to n to enable) USE_SCAD_THREAD_TRAVERSAL = False STL_DIR = "_files"#name gets tacked on later... PREV_DIR = "maze_previews" #tries to get the path to openscad def openscad(): try: if OPENSCAD_PATH: return OPENSCAD_PATH except NameError: pass if os.getenv("OPENSCAD_PATH"): return os.getenv("OPENSCAD_PATH") if platform.system() == "Darwin": return "/Applications/OpenSCAD.app/Contents/MacOS/OpenSCAD" if platform.system() == "Windows": # Note: Windows allows forward slashes now return "C:/Program Files/OpenSCAD/openscad.com" # Default to linux-friendly CLI program name return "openscad" #prepares folders def prepwd(): # Linux and other systems that use PATH variables don't need an absolute path configured. # if os.path.exists(openscad_exe) == False: # input("ERROR: openscad path not found.") # exit() if os.path.exists(STL_DIR): rmtree(STL_DIR) os.mkdir(STL_DIR) # Default perms: world-writable if os.path.exists(PREV_DIR): rmtree(PREV_DIR) os.mkdir(PREV_DIR) # Default perms: world-writable #checks threading availability def has_scad_threading(): cmd = [openscad(), "--help"] out = str(sp.check_output(cmd)).lower() if "--parallelism" in out: return True return False #checks version def scad_version(): cmd = [openscad(), "--version"] ver=sp.Popen(cmd,stdout=sp.PIPE).stdout.readline().decode("utf-8") ver=ver.replace("\r","").replace("\n","").replace("-",".").replace("OpenSCAD version ","").split(".") for v in range(len(ver)): ver[v]=re.sub('[^0-9]','', ver[v]) return int(ver[0]) if ver else () #runs the scad def execscad(threadid=0): global ext print("Executing OpenSCAD script...") cmd = [openscad()] if USE_SCAD_THREAD_TRAVERSAL: cmd.append("--enable=thread-traversal") cmd.extend( [ "-o", os.path.join(os.getcwd(), STL_DIR, name + "_" + str(shell + 1) + "." + ext), os.path.join(os.getcwd(), "make_shells.scad"), ] ) sp.run(cmd) #updates the possible ways to cut the maze def udnbers(n, vi, nc, mw, mh, stag): #with every tile for y in range(0, mh): for x in range(0, mw): #shift the vertical edge x3 = int((x + stag[y]) % mw) #next tile coords x2 = [x - 1, x + 1, x, x] y2 = [y, y, y - 1, y + 1] #look arround for i in range(0, 4): #did we shift the edge? if stag[y] % mw > 0: #shift the next tile coords too x2[i] = int((x2[i] + mw) % mw) else: #constrain to bounds otherwise if x2[i] < 0: x2[i] = 0 if x2[i] > mw - 1: x2[i] = mw - 1 #is this cuttable and not out of bounds? if ( not ((x3 == 0 and i == 0) or (x3 == mh - 1 and i == 1)) and y2[i] > -1 and y2[i] < mh ): #mark cuttable if we have not been there n[x, y, i] = vi[int(x2[i]), int(y2[i])] == 0 else: #mark not cuttable n[x, y, i] = 0 #update count of cuttable tiles nc[x, y] = len(np.argwhere(n[x, y].astype("int"))) #makes a maze def genmaze(mw, mh, stag): #where we have cut a path already visited = np.zeros(mw * mh) #number of possible ways to cut nbercount = np.zeros(mw * mh) #possible ways to cut nbers = np.ones(mw * mh * 4) #walls of the maze tiles # walls are: 0=L 1=R 2=U 3=D walls = np.ones(mw * mh * 4,dtype="int") #start here r = rd.randint(0, mw*mh-1) #mark start as visited #number of places we have cut a path already vcount = 1 visited[r] = 1 #to make things easier visited = visited.reshape([mw, mh]) nbers = nbers.reshape([mw, mh, 4]) nbercount = nbercount.reshape([mw, mh]) walls = walls.reshape([mw, mh, 4]) #update the possible ways to cut udnbers(nbers, visited, nbercount, mw, mh, stag) #loop until maze is completed while vcount < (mw * mh): #all places we can continue cutting v = np.transpose(np.nonzero(np.logical_and(visited == 1, nbercount > 0))) # choose a tile to cut from if len(v) < 2: r=0 else: r = rd.randint(0, len(v) - 1) c = v[r] #keep cutting until can't or min_branch is reached for i in range(min_branch): # choose wall to cut r = rd.randint(0, nbercount[c[0], c[1]] - 1) n = np.argwhere(nbers[c[0], c[1]])[r] # cut the wall walls[c[0], c[1], n] = 0 #temp for the tile we are cutting c2 = c #the other side of the wall if n == 0: n2 = 1 c2[0] = c[0] - 1 elif n == 1: n2 = 0 c2[0] = c[0] + 1 elif n == 2: n2 = 3 c2[1] = c[1] - 1 else: n2 = 2 c2[1] = c[1] + 1 #wrap horizontally c2[0] = int((c2[0] + mw) % mw) #mark as visited visited[c2[0], c2[1]] = 1 #cut the other side walls[c2[0], c2[1], n2] = 0 #update the possible ways to cut again udnbers(nbers, visited, nbercount, mw, mh, stag) #update the number of places we have cut a path already vcount = np.sum(visited,dtype="int") #prepare cut again... c=c2 #...if we can. otherwise break the for. if nbercount[c[0],c[1]]==0: break return walls #makes and writes the preview image def preview(maze): #a new image im = Image.new("L", [2 * mw + 1, 2 * mh + 1], 0) #start and end im.putpixel((1 + ex * 2, 0), 255)#end im.putpixel((1 + st * 2, mh * 2), 255)#start for y in range(0, mh): for x in range(0, mw): #tile pos imx = 1 + x * 2 imy = 1 + y * 2 #wall pixel coords imnx = [imx - 1, imx + 1, imx, imx] imny = [imy, imy, imy - 1, imy + 1] #center of tile im.putpixel((imx, imy), 255) #check walls for idx in range(0, 4): #no wall? if maze[x, y, idx] == 0: #cut a hole! im.putpixel((imnx[idx], imny[idx]), 255) #fill in answer key ans=ans_solver(maze,st,ex) for y in range(0, mh): for x in range(0, mw): imx = 1 + x * 2 imy = 1 + y * 2 if [x,y] in ans: im.putpixel((imx, imy), 128) else: im.putpixel((imx, imy), 255) #transition shell maze 2? if tpp == 2: #save as maze 2 im.save(os.path.join(os.getcwd(), PREV_DIR, str(shell + 1) + "a.png")) else: #save as maze 1 im.save(os.path.join(os.getcwd(), PREV_DIR, str(shell + 1) + ".png")) #for ans key in previews def ans_solver(maze,s,e): ret=[[s,mh],[s,mh-1]] direction=1#r,u,l,d x=s y=mh-1 direction2wall=[1,2,0,3]#r,u,l,d -> l,r,u,d direction2xy=[[1,0],[0,-1],[-1,0],[0,1]]#r,u,l,d while x!=e or y>0: #walls at x,y in the maze here=maze[x,y] #print(x,y,direction,4-np.sum(here)) if here[direction2wall[(direction+3)%4]]==0: direction=(direction+3)%4 #change direction until no wall in case of front wall if here[direction2wall[direction]]==1: while here[direction2wall[direction]]==1: #change direction #print(direction,here[direction2wall[direction]]) direction=(direction+1)%4 x=(x+direction2xy[direction][0]+mw)%mw y=y+direction2xy[direction][1] #are we backtracking? if x==ret[-2][0] and y==ret[-2][1]: ret=ret[0:-1] #print("backtracking") else: ret.append([x,y]) #print(ret) return ret[1:] #finds the lengths from a start to all ends of a maze def solver(maze,s): #start here branches=[[s,mh-1,0,0,4]]#x,y,length,downcnt,last #return value ret=[] #loop until return value is full while len(ret)<mw: #temporarlily store new branches here temp=[] #loop through all current branches for branch in branches: x=branch[0] y=branch[1] length=branch[2] #count for how many times we go down toward start downcnt=branch[3] #must not back track. last=branch[4] #walls at x,y in the maze here=maze[x,y] #how many openings at x,y in maze opencnt=4-np.sum(here) #is this a posible end? if y==0: #include this length in return value. ret.append(length) #can we move on? if opencnt>0: #move on but do not bactrack. if here[0]==0 and last!=0: #left temp.append([(x+mw-1)%mw,y,length+1,downcnt,1]) if here[1]==0 and last!=1: #right temp.append([(x+1)%mw,y,length+1,downcnt,0]) if here[2]==0 and last!=2: #up temp.append([x,y-1,length+1,downcnt,3]) if here[3]==0 and last!=3: #down temp.append([x,y+1,length+1,downcnt+1,2]) #copy the new branches over the old branches branches=temp.copy() return ret #chooses a maze path (start and end) based on difficulty def choose_path(maze): global st global ex #get path lengths... lengths=[] for s in range(mw): #find the lengths from this start to all ends lengths.append(solver(maze,s)) #get sorted indexes sortedlengthidxs=np.argsort(np.asarray(lengths).flatten()) #choose one chosen=sortedlengthidxs[int(difficulty/101*len(sortedlengthidxs))] #assign start and end st=chosen//mw#start ex=chosen%mw#end #make and write preview image preview(maze) #makes parts def gen(): global shell global d2 global mh global mw global i global tpp global maze_data #are we done yet? if shell < shells: #debug halt if shell >= halt and halt > -1: return True #is the next shell the transition? if shell + 1 < shells and shell + 1 == tp and tpp < 1: tpp = -1 #part status if tpp < 1: print("part: " + str(shell + 1)) #wall thickness wt = mwt #are we not in transitioning stage 2? if tpp < 1: #is this the first? if shell == 0: #set the diameter d = (mw * us * p) / np.pi / 2 - wt - marge * 2 print("diameter:",d) else: #are we transitioning? if shell == tp: #keep the diameter the same d = d2 elif (shell+1 == shells and shells==2): d = d2 + us * td / 2 + wt + marge * 2 else: #set the diameter d = d2 + us * td + wt + marge * 2 print("diameter:",d) #is the maze on the outside? if i == 0: #set the maze width mw = int(math.ceil((d + us) * np.pi / us / p)) else: #set the maze width mw = int(math.ceil((d + us) * np.pi / us / p )) #fix for tpp=1 (maze outside to inside) if (shell!=tp or i==1): #increase maze height mh += 1 #extra height for lid if shell+1==shells: mh += 1 else: #set the diameter d = d2 + us * td + wt + marge * 2 print("diameter:",d) #set the maze width mw = int(math.ceil((d + us) * np.pi / us / p)) #fix for tpp=1 (maze outside to inside) if tpp==2: #increase maze height mh += 1 # shift stag = np.zeros(mh) #is it a random shift? if stagmode in (1, 2): #loop through y for y in range(0, mh): #are we at end or shift mode is random? if y == 0 or stagmode == 1: #random shift stag[y] = rd.randint(0, mh - 1) else: #random shift offset stag[y] = stag[y - 1] + rd.randint(0, mh - 1) #is it a twist shift? elif stagmode == 3: #twist it! stag = np.multiply(np.arange(0, mh), stagconst).astype("int") #do we even have a maze with this part? if ((i == 0 and shell < shells - 1) or (i == 1 and shell > 0)) and tpp != 1: # maze marr = genmaze(int(mw), int(mh), stag) #get the path we want choose_path(marr) #convert to string matrix = [] for y in range(0, mh): row = [] for x in range(0, mw * p): x2 = x % mw r = marr[x2, y, 1] == 0 u = marr[x2, y, 3] == 0 if u and r: row.append("3") elif u: row.append("2") elif r: row.append("1") else: row.append("0") matrix.append(",".join(row)) s = "[["+"],[".join(matrix)+"]];" else: #empty maze s="[];" #write the maze if tpp < 1: maze_num = 1 maze_data="\n".join(["maze"+str(maze_num)+"="+s, "h"+str(maze_num)+"="+str(mh)+";", "w"+str(maze_num)+"="+str(mw*p)+";", "st"+str(maze_num)+"="+str(st)+";", "ex"+str(maze_num)+"="+str(ex)+";", ""]) else: maze_num = 2 maze_data+="\n".join(["maze"+str(maze_num)+"="+s, "h"+str(maze_num)+"="+str(mh)+";", "w"+str(maze_num)+"="+str(mw*p)+";", "st"+str(maze_num)+"="+str(st)+";", "ex"+str(maze_num)+"="+str(ex)+";", ""]) #non lid base = 1 lid = 0 #is it the lid? if shell > shells - 2: #lid lid = 1 base = 0 #no more to go #how many are left to go mos = shells - shell - 2 with open("shell_data.scad", "w") as shell_data: shell_data.write(opt+"\n".join(["p="+str(p)+";", "tpp="+str(tpp)+";", "is="+str(shell)+";", "os="+str(mos)+";", "lid="+str(lid)+";", "base="+str(base)+";", "iw="+str(wt)+";", "id="+str(d)+";", "s="+str(us)+";", "td="+str(td)+";", "i="+str(i)+";", "bd="+str(d + wt * 2 + us * td * 2)+";", "m="+str(marge)+";", ""])+maze_data ) #save diameter of this one for later if shell < shells - 2: d2 = d #was this the transition shell? if shell > 0 and shell < shells-1 and shell == tp and tpp < 1: #get ready for transition stage 2 if i == 0: # double nub transition tpp = 1 i = 1 else: # double maze transition tpp = 2 i = 0 else: tpp = 0 #are we done with this shell? if tpp < 1: #make it! #debug skip if shell >= skip or skip < 0: execscad() #on to the next shell = shell + 1 #not done making parts return False else: #all done! return True #reads opt.ini def readOpt(): global shells global marge global us global mh global mw global mwt global i global p global tp global STL_DIR global stagmode global stagconst global difficulty global min_branch global ext global name global opt global td config = configparser.ConfigParser() config.read("opt.ini") if "DEFAULT" not in config or "MAZE" not in config: print("ERROR: No DEFAULT and/or MAZE section in opt.ini; Must have both.\n") exit(1) mazeconfig=config["MAZE"] looksconfig=config["LOOKS"] embossconfig=config["EMBOSS"] config = config["DEFAULT"] version = scad_version() if config.getboolean("o3mf") and version>=2019: ext="3mf" else: ext="stl" p = abs(config.getint("nubs")-2) + 2 shells = config.getint("levels") + 1 marge = config.getfloat("tolerance") i = int(config.getboolean("maze_inside")) us = config.getfloat("spacing") td = config.getfloat("td") if td<1.0: td=1.0 if td>2.0: td=2.0 mh = config.getint("units_tall") mw = config.getint("units_wide") mwt = config.getfloat("wall_thickness") name = config.get("name") STL_DIR=name+STL_DIR #maze options #seeding... seed=mazeconfig.get("seed").replace("\r","").replace("\n","") if not seed.isnumeric() or "\\" in seed or "." in seed: # Make sure we have a fresh random seed rd.seed() else: #use seed from ini rd.seed(int(seed)) difficulty=abs(mazeconfig.getfloat("diff",100.0)) if difficulty>100: difficulty=100 min_branch=mazeconfig.getint("min_branch",5) if min_branch<1: min_branch=5 stagmode = mazeconfig.getint("shift",1) stagconst = 0 if stagmode == 3: stagconst = abs(mazeconfig.getint("twist",1)) #options opt="" if looksconfig.getboolean("oldnubs",True): opt+="oldnubs=1;\n" else: opt+="oldnubs=0;\n" bs=looksconfig.getint("bs",10) if bs<3: bs=3 opt+="bs="+str(bs)+";\n" bversion=abs(looksconfig.getint("bversion",2))%3 opt+="bversion="+str(bversion)+";\n" if looksconfig.getboolean("lefty",True): opt+="lefty=1;\n" else: opt+="lefty=0;\n" #emboss if embossconfig.getboolean("ense",True): opt+="ense=1;\n" else: opt+="ense=0;\n" opt+='se="'+embossconfig.get("se").replace('"','')+'";\n' be=embossconfig.get("be").replace('"','') if embossconfig.getboolean("enbe",True): opt+="enbe=1;\n" shells=len(be) if embossconfig.getboolean("emboss_inside_only",True): shells+=2 if shells==0: shells+=2 if shells==1: shells+=1 else: opt+="enbe=0;\n" opt+='be="'+be+'";\n' tp = config.getint("transition_shell") if tp > shells-1 or tp < 1: tp = -1 if __name__ == "__main__": #read opt.ini opt="" readOpt() try: #prep folders prepwd() # get scad version: version = scad_version() if version < 2015: print("ERROR: invalid scad version. must be at least 2015.xx.xx .\n") exit(1) #do we have threading? if has_scad_threading(): USE_SCAD_THREAD_TRAVERSAL = ( input("multi-threading available. use it(y/n)?").lower() == "y" ) except FileNotFoundError: print("ERROR: Could not find OpenSCAD: " + openscad()+"\n") exit(1) #init vars st=0 ex=0 d2 = 0 shell = 0 tpp = 0 # make parts: while not gen(): continue print("done!") ```
{ "source": "jmercat/fast-transformers", "score": 3 }
#### File: fast_transformers/attention/causal_linear_attention.py ```python import torch from torch.nn import Module from fast_transformers.causal_product import causal_dot_product def elu_feature_map(x): return torch.nn.functional.elu(x) + 1 def causal_linear(Q, K, V): Q = Q.permute(0,2,1,3).contiguous() K = K.permute(0,2,1,3).contiguous() V = V.permute(0,2,1,3).contiguous() V_new = causal_dot_product(Q, K, V) return V_new.permute(0,2,1,3).contiguous() class CausalLinearAttention(Module): """Implement causally masked attention using dot product of feature maps in O(N D^2) complexity. See fast_transformers.attention.linear_attention.LinearAttention for the general concept of replacing the softmax with feature maps. In addition to that, we also make use of the fact that causal masking is a triangular mask which allows us to apply the masking and still compute the attention in O(N D^2) complexity. Arguments --------- feature_map: callable, a callable that applies the feature map to the last dimension of a tensor (default: elu(x)+1) eps: float, a small number to ensure the numerical stability of the denominator (default: 1e-6) """ def __init__(self, feature_map=None, eps=1e-6): super(CausalLinearAttention, self).__init__() self.feature_map = feature_map or elu_feature_map self.eps = eps def forward(self, queries, keys, values, attn_mask, query_lengths, key_lengths): # Apply the feature map to the queries and keys Q = self.feature_map(queries) K = self.feature_map(keys) # Apply the key padding mask and make sure the attn_mask is a # lower triangular causal mask if not attn_mask.lower_triangular: raise RuntimeError(("CausalLinearAttention only supports full " "lower triangular masks")) K = K * key_lengths.float_matrix[:, :, None, None] # TODO: Shall we divide the Q and K with a relatively large number to # avoid numerical instabilities in computing the denominator? # We used to divide each with the max norm of all q and k but # that seems relatively costly for a simple normalization. # Compute the normalizers Z = 1/(torch.einsum("nlhi,nlhi->nlh", Q, K.cumsum(1)) + self.eps) # Compute the unnormalized result V = causal_linear( Q, K, values ) return V * Z[:, :, :, None] ``` #### File: fast_transformers/builders/transformer_encoder_builder.py ```python from functools import partial from torch.nn import LayerNorm from .base import BaseTransformerBuilder from .common_encoder_builder import CommonEncoderBuilder from .attention_builder import AttentionBuilder from ..attention import AttentionLayer, FullAttention, \ LinearAttention, CausalLinearAttention, \ ClusteredAttention, ImprovedClusteredAttention, \ ImprovedClusteredCausalAttention, \ ReformerAttention, ConditionalFullAttention, \ ExactTopKAttention from ..transformers import TransformerEncoder, \ TransformerEncoderLayer class TransformerEncoderBuilder(BaseTransformerBuilder, CommonEncoderBuilder, AttentionBuilder): """TransformerEncoderBuilder builds transformer encoders (duh). This means that the module returned is going to be an instance of fast_transformer.transformers.TransformerEncoder. """ def __init__(self): CommonEncoderBuilder.__init__(self) AttentionBuilder.__init__(self) def __repr__(self): return ( "TransformerEncoderBuilder.from_kwargs(\n" " n_layers={!r},\n" " n_heads={!r},\n" " feed_forward_dimensions={!r},\n" " query_dimensions={!r},\n" " value_dimensions={!r},\n" " dropout={!r},\n" " activation={!r},\n" " final_normalization={!r},\n" " attention_type={!r},\n" " softmax_temp={!r},\n" " linear_feature_map={!r},\n" " attention_dropout={!r},\n" " clusters={!r},\n" " bits={!r},\n" " hash_bias={!r},\n" " iterations={!r},\n" " topk={!r},\n" " chunk_size={!r},\n" " rounds={!r},\n" " masked={!r},\n" " conditional_attention={!r},\n" " length_limit={!r}\n" ")" ).format( self.n_layers, self.n_heads, self.feed_forward_dimensions, self.query_dimensions, self.value_dimensions, self.dropout, self.activation, self.final_normalization, self.attention_type, self.softmax_temp, self.linear_feature_map, self.attention_dropout, self.clusters, self.bits, self.hash_bias, self.iterations, self.topk, self.chunk_size, self.rounds, self.masked, self.conditional_attention, self.length_limit ) def _get_attention(self): attentions = { "full": partial( FullAttention, softmax_temp=self.softmax_temp, dropout_rate=self.attention_dropout ), "clustered": partial( ClusteredAttention, self.clusters, self.iterations, self.bits, self.hash_bias, self.softmax_temp, self.attention_dropout ), "improved-clustered": partial( ImprovedClusteredAttention, self.clusters, self.iterations, self.bits, self.hash_bias, self.topk, self.softmax_temp, self.attention_dropout ), "improved-causal": partial( ImprovedClusteredCausalAttention, self.clusters, self.iterations, self.bits, self.hash_bias, self.topk, self.softmax_temp, self.attention_dropout ), "reformer": partial( ReformerAttention, self.chunk_size, self.bits, self.rounds, self.masked, self.softmax_temp, self.attention_dropout ), "exact-topk": partial( ExactTopKAttention, self.topk, self.softmax_temp, self.attention_dropout ), "linear": partial(LinearAttention, self.linear_feature_map), "causal-linear": partial( CausalLinearAttention, self.linear_feature_map ) } attention = attentions[self.attention_type]() if self.conditional_attention: attention = ConditionalFullAttention( attention, self.length_limit, self.softmax_temp, self.attention_dropout ) return attention def get(self): model_dimensions = self.value_dimensions*self.n_heads return TransformerEncoder( [ TransformerEncoderLayer( AttentionLayer( self._get_attention(), model_dimensions, self.n_heads, d_keys=self.query_dimensions, d_values=self.value_dimensions ), model_dimensions, self.n_heads, self.feed_forward_dimensions, self.dropout, self.activation ) for _ in range(self.n_layers) ], (LayerNorm(model_dimensions) if self._final_norm else None) ) ``` #### File: recurrent/attention/full_attention.py ```python from math import sqrt import torch from torch.nn import Dropout, Module class RecurrentFullAttention(Module): """Implement the full softmax attention as a recurrent module. Arguments --------- softmax_temp: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) dropout_rate: The dropout rate to apply to the attention (default: 0.1) """ def __init__(self, softmax_temp=None, dropout_rate=0.1): super(RecurrentFullAttention, self).__init__() self.softmax_temp = softmax_temp self.dropout = Dropout(dropout_rate) def forward(self, query, key, value, memory=None): # Extract some shapes and compute the temperature N, H, E = query.shape _, _, D = value.shape softmax_temp = self.softmax_temp or 1./sqrt(E) # Aggregate the list of keys and values if memory is not None: keys, values = memory keys = torch.cat([keys, key[:, :, None]], dim=2) values = torch.cat([values, value[:, :, None]], dim=2) else: keys = key[:, :, None] values = value[:, :, None] # Compute the unnormalized attention QK = torch.einsum("nhe,nhse->nhs", query, keys) # Compute the attention and the weighted average A = self.dropout(torch.softmax(softmax_temp * QK, dim=-1)) V = torch.einsum("nhs,nhsd->nhd", A, values).contiguous() # Make sure that what we return is contiguous return V, [keys, values] ``` #### File: recurrent/attention/linear_attention.py ```python import torch from torch.nn import Module def elu_feature_map(x): return torch.nn.functional.elu(x) + 1 class RecurrentLinearAttention(Module): """Implement fast_transformers.attention.causal_linear_attention as a fixed-dimensional state recurrent model. See fast_transformers.attention.linear_attention and fast_transformers.attention.causal_linear_attention for the general concept of replacing the softmax with feature maps. Arguments --------- feature_map: callable, a callable that applies the feature map to the last dimension of a tensor (default: elu(x)+1) eps: float, a small number to ensure the numerical stability of the denominator (default: 1e-6) """ def __init__(self, feature_map=None, eps=1e-6): super(RecurrentLinearAttention, self).__init__() self.feature_map = feature_map or elu_feature_map self.eps = eps def forward(self, query, key, value, memory=None): # Apply the feature map to the query and key Q = self.feature_map(query) K = self.feature_map(key) # Extract some shapes N, H, D = Q.shape _, _, M = value.shape # Extract the memory or initialize it if memory is None: Si = query.new_zeros((N, H, D, M)) Zi = query.new_zeros((N, H, D)) else: Si, Zi = memory # Ensure the batch size did not change if len(Si) != N: raise ValueError("The batch size changed during iteration") # Update the internal state # # NOTE: The if clause is added due to GitHub PR #10. Simply using lines # 61, 62 does not perform the operation in place which means it is # slower for inference. if K.grad_fn is not None or value.grad_fn is not None: Zi = Zi + K Si = Si + torch.einsum("nhd,nhm->nhdm", K, value) else: Zi += K Si += torch.einsum("nhd,nhm->nhdm", K, value) # Compute the output Z = 1. / (torch.einsum("nhd,nhd->nh", Q, Zi) + self.eps) V = torch.einsum("nhd,nhdm,nh->nhm", Q, Si, Z) return V, [Si, Zi] ``` #### File: fast_transformers/recurrent/transformers.py ```python import torch from torch.nn import Dropout, LayerNorm, Linear, Module, ModuleList import torch.nn.functional as F class RecurrentTransformerEncoderLayer(Module): """Attention to the previous inputs and feed forward with skip connections. This transformer encoder layer is the recurrent dual of fast_transformers.transformers.TransformerEncoderLayer . The results should be identical given the same inputs and a lower triangular mask. Arguments --------- attention: The attention implementation to use given as a nn.Module d_model: The input feature dimensionality n_heads: The number of heads for the multi head attention d_ff: The dimensionality of the intermediate features after the attention (default: d_model*4) dropout: The dropout rate to apply to the intermediate features (default: 0.1) activation: {'relu', 'gelu'} Which activation to use for the feed forward part of the layer (default: relu) """ def __init__(self, attention, d_model, n_heads, d_ff=None, dropout=0.1, activation="relu"): super(RecurrentTransformerEncoderLayer, self).__init__() d_ff = d_ff or 4*d_model self.attention = attention self.linear1 = Linear(d_model, d_ff) self.linear2 = Linear(d_ff, d_model) self.norm1 = LayerNorm(d_model) self.norm2 = LayerNorm(d_model) self.dropout = Dropout(dropout) self.activation = F.relu if activation == "relu" else F.gelu def forward(self, x, memory=None): """Apply the transformer encoder to the input x using the provided memory. Arguments --------- x: The input features of shape (N, E) where N is the batch size and E is d_model passed in the constructor memory: The memory can vary depending on the attention implementation """ # Run the self attention and add it to the input x2, memory = self.attention(x, x, x, memory) x = x + self.dropout(x2) # Run the fully connected part of the layer y = x = self.norm1(x) y = self.dropout(self.activation(self.linear1(y))) y = self.dropout(self.linear2(y)) return self.norm2(x+y), memory class RecurrentTransformerEncoder(Module): """RecurrentTransformerEncoder is a sequence of RecurrentTransformerEncoderLayer instances. RecurrentTransformerEncoder keeps a separate memory per RecurrentTransformerEncoderLayer. Arguments --------- layers: list, RecurrentTransformerEncoderLayer instances or instances that implement the same interface norm_layer: A normalization layer to be applied to the final output (default: None which means no normalization) """ def __init__(self, layers, norm_layer=None): super(RecurrentTransformerEncoder, self).__init__() self.layers = ModuleList(layers) self.norm = norm_layer def forward(self, x, memory=None): """Apply all recurrent transformer layers to the input x using the provided memory. Arguments --------- x: The input features of shape (N, E) where N is the batch size and E is d_model passed in the constructor of each recurrent transformer encoder layer memory: A list of objects to be passed to each recurrent transformer encoder layer """ # Initialize the memory to None if not given if memory is None: memory = [None]*len(self.layers) # Apply all the transformers for i, layer in enumerate(self.layers): x, m = layer(x, memory[i]) memory[i] = m # Apply the normalization if needed if self.norm is not None: x = self.norm(x) return x, memory ``` #### File: fast-transformers/fast_transformers/transformers.py ```python import torch from torch.nn import Dropout, LayerNorm, Linear, Module, ModuleList import torch.nn.functional as F from .masking import FullMask, LengthMask class TransformerEncoderLayer(Module): """Self attention and feed forward network with skip connections. This transformer encoder layer implements the same encoder layer as PyTorch but is a bit more open for extension by receiving the attention implementation as a constructor argument. Arguments --------- attention: The attention implementation to use given as a nn.Module d_model: The input feature dimensionality n_heads: The number of heads for the multi head attention d_ff: The dimensionality of the intermediate features after the attention (default: d_model*4) dropout: The dropout rate to apply to the intermediate features (default: 0.1) activation: {'relu', 'gelu'} Which activation to use for the feed forward part of the layer (default: relu) """ def __init__(self, attention, d_model, n_heads, d_ff=None, dropout=0.1, activation="relu"): super(TransformerEncoderLayer, self).__init__() d_ff = d_ff or 4*d_model self.attention = attention self.linear1 = Linear(d_model, d_ff) self.linear2 = Linear(d_ff, d_model) self.norm1 = LayerNorm(d_model) self.norm2 = LayerNorm(d_model) self.dropout = Dropout(dropout) self.activation = F.relu if activation == "relu" else F.gelu def forward(self, x, attn_mask=None, length_mask=None): """Apply the transformer encoder to the input x. Arguments --------- x: The input features of shape (N, L, E) where N is the batch size, L is the sequence length (padded) and E is d_model passed in the constructor. attn_mask: An implementation of fast_transformers.masking.BaseMask that encodes where each element of x can attend to. length_mask: An implementation of fast_transformers.masking.BaseMask that encodes how many elements each sequence in the batch consists of. """ # Normalize the masks N = x.shape[0] L = x.shape[1] attn_mask = attn_mask or FullMask(L, device=x.device) length_mask = length_mask or \ LengthMask(x.new_full((N,), L, dtype=torch.int64)) # Run self attention and add it to the input x = x + self.dropout(self.attention( x, x, x, attn_mask=attn_mask, query_lengths=length_mask, key_lengths=length_mask )) # Run the fully connected part of the layer y = x = self.norm1(x) y = self.dropout(self.activation(self.linear1(y))) y = self.dropout(self.linear2(y)) return self.norm2(x+y) class TransformerEncoder(Module): """TransformerEncoder is few more than a sequence of transformer encoder layers. It contains an optional final normalization layer as well as the ability to create the masks once and save some computation. Arguments --------- layers: list, TransformerEncoderLayer instances or instances that implement the same interface. norm_layer: A normalization layer to be applied to the final output (default: None which means no normalization) """ def __init__(self, layers, norm_layer=None): super(TransformerEncoder, self).__init__() self.layers = ModuleList(layers) self.norm = norm_layer def forward(self, x, attn_mask=None, length_mask=None): """Apply all transformer encoder layers to the input x. Arguments --------- x: The input features of shape (N, L, E) where N is the batch size, L is the sequence length (padded) and E is d_model passed in the constructor of each transformer encoder layer. attn_mask: An implementation of fast_transformers.masking.BaseMask that encodes where each element of x can attend to. length_mask: An implementation of fast_transformers.masking.BaseMask that encodes how many elements each sequence in the batch consists of. """ # Normalize the masks N = x.shape[0] L = x.shape[1] attn_mask = attn_mask or FullMask(L, device=x.device) length_mask = length_mask or \ LengthMask(x.new_full((N,), L, dtype=torch.int64)) # Apply all the transformers for layer in self.layers: x = layer(x, attn_mask=attn_mask, length_mask=length_mask) # Apply the normalization if needed if self.norm is not None: x = self.norm(x) return x ```
{ "source": "jmerck888/esp8266_deauther", "score": 2 }
#### File: utils/web_converter/webConverter.py ```python import os import gzip import argparse import binascii from pathlib import Path, PurePath try: from css_html_js_minify.minify import process_single_html_file, process_single_js_file, process_single_css_file except ModuleNotFoundError: print("\n[!] Requirements are not satisfied. Please install the 'anglerfish' package by running 'sudo python3 -m pip install anglerfish'.\n") exit() parser = argparse.ArgumentParser(usage="webConverter.py --repopath [path-to-repo]") parser.add_argument("--repopath", type=str, help='Path to the repo, if not set make sure to run the script from [repo]/utils/web_converter_python/ directory') print("\nwebConverter for the deauther2.0 by @xdavidhu\n") args = parser.parse_args() if args.repopath != None: parent = args.repopath print("[+] Using manual path '" + args.repopath + "'\n") else: p = Path.cwd() parent = p.parent.parent license_file_path = str(os.path.join(str(parent), "LICENSE")) q = PurePath('esp8266_deauther') arduino_file_path = str(os.path.join(str(parent / q), "webfiles.h")) datadir = parent / q q = PurePath('web_interface') dir = parent / q q = PurePath('data') datadir = datadir / q if not os.path.exists(str(datadir)): os.mkdir(str(datadir)) q = PurePath('web') compressed = datadir / q if not os.path.exists(str(compressed)): os.mkdir(str(compressed)) html_files = [] css_files = [] js_files = [] lang_files = [] progmem_definitions = "" copy_files_function = "" webserver_events = "" load_lang = "" filelist = Path(dir).glob('**/*') for x in filelist: if x.is_file(): if x.parts[-2] == "compressed" or x.parts[-3] == "compressed": continue if x.suffix == ".html": html_files.append(x) elif x.suffix == ".css": css_files.append(x) elif x.suffix == ".js": js_files.append(x) elif x.suffix == ".lang": lang_files.append(x) for file in html_files: base_file = os.path.basename(str(file)) original_file = str(file) new_file = str(os.path.join(str(compressed), str(base_file))) print("[+] Minifying " + base_file + "...") process_single_html_file(original_file, output_path=new_file) print("[+] Compressing " + base_file + "...") f_in = open(new_file, encoding='UTF-8') content = f_in.read() f_in.close() os.remove(new_file) with gzip.GzipFile(new_file + ".gz", mode='w') as fo: fo.write(content.encode("UTF-8")) f_in = open(new_file + ".gz", 'rb') content = f_in.read() f_in.close() array_name = base_file.replace(".", "") hex_formatted_content = "" hex_content = binascii.hexlify(content) hex_content = hex_content.decode("UTF-8") hex_content = [hex_content[i:i+2] for i in range(0, len(hex_content), 2)] for char in hex_content: hex_formatted_content += "0x" + char + ", " hex_formatted_content = hex_formatted_content[:-2] progmem_definitions += "const char " + array_name + "[] PROGMEM = {" + hex_formatted_content + "};\n" copy_files_function += ' if(!SPIFFS.exists(String(F("/web/' + base_file + '.gz"))) || force) progmemToSpiffs(' + array_name + ', sizeof(' + array_name + '), String(F("/web/' + base_file + '.gz")));\n' webserver_events += 'server.on(String(F("/' + base_file + '")).c_str(), HTTP_GET, [](){\n sendProgmem(' + array_name + ', sizeof(' + array_name + '), W_HTML);\n});\n' for file in css_files: base_file = os.path.basename(str(file)) original_file = str(file) new_file = str(os.path.join(str(compressed), str(base_file))) print("[+] Minifying " + base_file + "...") process_single_css_file(original_file, output_path=new_file) print("[+] Compressing " + base_file + "...") f_in = open(new_file, encoding='UTF-8') content = f_in.read() f_in.close() os.remove(new_file) with gzip.GzipFile(new_file + ".gz", mode='w') as fo: fo.write(content.encode("UTF-8")) f_in = open(new_file + ".gz", 'rb') content = f_in.read() f_in.close() array_name = base_file.replace(".", "") hex_formatted_content = "" hex_content = binascii.hexlify(content) hex_content = hex_content.decode("UTF-8") hex_content = [hex_content[i:i+2] for i in range(0, len(hex_content), 2)] for char in hex_content: hex_formatted_content += "0x" + char + ", " hex_formatted_content = hex_formatted_content[:-2] progmem_definitions += "const char " + array_name + "[] PROGMEM = {" + hex_formatted_content + "};\n" copy_files_function += ' if(!SPIFFS.exists(String(F("/web/' + base_file + '.gz"))) || force) progmemToSpiffs(' + array_name + ', sizeof(' + array_name + '), String(F("/web/' + base_file + '.gz")));\n' webserver_events += 'server.on(String(F("/' + base_file + '")).c_str(), HTTP_GET, [](){\n sendProgmem(' + array_name + ', sizeof(' + array_name + '), W_CSS);\n});\n' for file in js_files: q = PurePath('js') compressed_js = compressed / q if not os.path.exists(str(compressed_js)): os.mkdir(str(compressed_js)) base_file = os.path.basename(str(file)) original_file = str(file) new_file = str(os.path.join(str(compressed_js), str(base_file))) #print("[+] Minifying " + base_file + "...") #process_single_js_file(original_file, output_path=new_file) print("[+] Compressing " + base_file + "...") f_in = open(original_file, encoding='UTF-8') content = f_in.read() f_in.close() #os.remove(new_file) with gzip.GzipFile(new_file + ".gz", mode='w') as fo: fo.write(content.encode("UTF-8")) f_in = open(new_file + ".gz", 'rb') content = f_in.read() f_in.close() array_name = base_file.replace(".", "") hex_formatted_content = "" hex_content = binascii.hexlify(content) hex_content = hex_content.decode("UTF-8") hex_content = [hex_content[i:i+2] for i in range(0, len(hex_content), 2)] for char in hex_content: hex_formatted_content += "0x" + char + ", " hex_formatted_content = hex_formatted_content[:-2] progmem_definitions += "const char " + array_name + "[] PROGMEM = {" + hex_formatted_content + "};\n" copy_files_function += ' if(!SPIFFS.exists(String(F("/web/js/' + base_file + '.gz"))) || force) progmemToSpiffs(' + array_name + ', sizeof(' + array_name + '), String(F("/web/js/' + base_file + '.gz")));\n' webserver_events += 'server.on(String(F("/js/' + base_file + '")).c_str(), HTTP_GET, [](){\n sendProgmem(' + array_name + ', sizeof(' + array_name + '), W_JS);\n});\n' for file in lang_files: q = PurePath('lang') compressed_lang = compressed / q if not os.path.exists(str(compressed_lang)): os.mkdir(str(compressed_lang)) base_file = os.path.basename(str(file)) original_file = str(file) new_file = str(os.path.join(str(compressed_lang), str(base_file))) print("[+] Compressing " + base_file + "...") f_in = open(original_file, encoding='UTF-8') content = f_in.read() f_in.close() with gzip.GzipFile(new_file + ".gz", mode='w') as fo: fo.write(content.encode("UTF-8")) f_in = open(new_file + ".gz", 'rb') content = f_in.read() f_in.close() array_name = base_file.replace(".", "") lang_name = base_file.replace(".lang", "") hex_formatted_content = "" hex_content = binascii.hexlify(content) hex_content = hex_content.decode("UTF-8") hex_content = [hex_content[i:i+2] for i in range(0, len(hex_content), 2)] for char in hex_content: hex_formatted_content += "0x" + char + ", " hex_formatted_content = hex_formatted_content[:-2] progmem_definitions += "const char " + array_name + "[] PROGMEM = {" + hex_formatted_content + "};\n" copy_files_function += ' if(!SPIFFS.exists(String(F("/web/lang/' + base_file + '.gz"))) || force) progmemToSpiffs(' + array_name + ', sizeof(' + array_name + '), String(F("/web/lang/' + base_file + '.gz")));\n' webserver_events += 'server.on(String(F("/lang/' + base_file + '")).c_str(), HTTP_GET, [](){\n sendProgmem(' + array_name + ', sizeof(' + array_name + '), W_JSON);\n});\n' if(len(load_lang) > 0): load_lang += ' else if(settings.getLang() == String(F("'+lang_name+'"))) sendProgmem(' + array_name + ', sizeof(' + array_name + '), W_JSON);\n' else: load_lang += ' if(settings.getLang() == String(F("'+lang_name+'"))) sendProgmem(' + array_name + ', sizeof(' + array_name + '), W_JSON);\n' base_file = os.path.basename(license_file_path) new_file = str(os.path.join(str(compressed), str("LICENSE"))) print("[+] Compressing " + base_file + "...") f_in = open(license_file_path, encoding='UTF-8') content = f_in.read() f_in.close() with gzip.GzipFile(new_file + ".gz", mode='w') as fo: fo.write(content.encode("UTF-8")) f_in = open(new_file + ".gz", 'rb') content = f_in.read() f_in.close() array_name = base_file.replace(".", "") hex_formatted_content = "" hex_content = binascii.hexlify(content) hex_content = hex_content.decode("UTF-8") hex_content = [hex_content[i:i+2] for i in range(0, len(hex_content), 2)] for char in hex_content: hex_formatted_content += "0x" + char + ", " hex_formatted_content = hex_formatted_content[:-2] progmem_definitions += "const char " + array_name + "[] PROGMEM = {" + hex_formatted_content + "};\n" copy_files_function += ' if(!SPIFFS.exists(String(F("/web/' + base_file + '.gz"))) || force) progmemToSpiffs(' + array_name + ', sizeof(' + array_name + '), String(F("/web/' + base_file + '.gz")));\n' print("[+] Saving everything into webfiles.h...") f = open(arduino_file_path, 'w') f.write("#ifndef webfiles_h\n") f.write("#define webfiles_h\n") f.write("\n") f.write("// comment that out if you want to save program memory and know how to upload the web files to the SPIFFS manually\n") f.write("#define USE_PROGMEM_WEB_FILES \n") f.write("\n") f.write("#ifdef USE_PROGMEM_WEB_FILES\n") f.write(progmem_definitions) f.write("#endif\n") f.write("\n") f.write("void copyWebFiles(bool force){\n") f.write("#ifdef USE_PROGMEM_WEB_FILES\n") f.write("if(settings.getWebSettings().use_spiffs){\n") f.write(copy_files_function) f.write("}\n") f.write("#endif\n") f.write("}\n") f.write("\n") f.write("#endif") f.close() print("\n[+] Done, happy uploading :)") print("Here are the updated functions for wifi.h, in case you added or removed files:") print(); print('if(!settings.getWebSpiffs()){') print(' server.on(String(SLASH).c_str(), HTTP_GET, [](){') print(' sendProgmem(indexhtml, sizeof(indexhtml), W_HTML);') print('});') print(webserver_events) print('}') print("server.on(str(W_DEFAULT_LANG).c_str(), HTTP_GET, [](){") print(" if(!settings.getWebSpiffs()){") print(load_lang) print(' else handleFileRead(String(F("/web/lang/"))+settings.getLang()+String(F(".lang")));') print(' } else {') print(' handleFileRead(String(F("/web/lang/"))+settings.getLang()+String(F(".lang")));') print(' }') print("});"); ```
{ "source": "jmercouris/galapagos_volume", "score": 3 }
#### File: jmercouris/galapagos_volume/volume.py ```python import os import subprocess # Python execute sub process, in this case to send osascript commands import urwid # Replacement for curses, used in the Terminal GUI import argparse # Easily parse command line arguments description_string = """Galapagos Volume is a wrapper utility for setting the volume in OSX. It works by calling applescript commands in a subprocess to set the volume. There are a couple of ways to use Galapagos Volume, the first is by just running the program without any parameters this will produce a GUI that allows you to increase or decrease the volume for input and output. The second is with the flags -d -device, and -v -volume. If you specify a "-d output" or a "-d input" the system will return the volume for that device. For example, "volume -d output" will return the output volume. If you specify a device and a volume, the system will SET the volume for that device. Therefore a sample command to set the output would be "volume -d output -v 85", this would set the output volume to 85.""" # Represents an OSX audio device, e.g. input, output class AudioDevice: """ A class responsible for representing & manipulating OSX audio devices """ def __init__(self, name, set_volume_command, get_volume_command): self.name = name self.set_volume_command = set_volume_command self.get_volume_command = get_volume_command self.volume = self.get_volume() def set_volume(self, volume): # Constrain Volume to Valid Range if (volume > 100): volume = 100 if (volume < 0): volume = 0 # Copy Command arguments list into local version for modification local_command = self.set_volume_command[:] local_command[2] = self.set_volume_command[2].format(volume) process = subprocess.Popen(local_command, stdout=subprocess.PIPE) out, err = process.communicate() self.volume = volume def get_volume(self): process = subprocess.Popen( self.get_volume_command, stdout=subprocess.PIPE) out, err = process.communicate() # Set Local volume to reflect system reported volume self.volume = int(out) return self.volume # Represents the Data in the program class VolumeModel: """ Populating the default OSX AudioDevices """ def __init__(self): # List of audio devices audio_devices = self.audio_devices = [] # AudioDevice Output get_volume_command = ['osascript', '-e', 'output volume of (get volume settings)'] set_volume_command = ['osascript', '-e', 'set volume output volume {}'] device = AudioDevice("Output", set_volume_command, get_volume_command) audio_devices.append(device) # AudioDevice Input get_volume_command = ['osascript', '-e', 'input volume of (get volume settings)'] set_volume_command = ['osascript', '-e', 'set volume input volume {}'] device = AudioDevice("Input", set_volume_command, get_volume_command) audio_devices.append(device) def get_audio_devices(self): return self.audio_devices # Class VolumeView, handles drawing and input class VolumeView(urwid.WidgetWrap): """ A class responsible for providing the application's interface and volume display. """ # Colors used for rendering palette = [ ('bg background', 'white', 'white'), ('bg 1', 'black', 'black', 'standout'), ('bg 1 smooth', 'dark blue', 'black'), ('bg 2', 'black', 'dark gray', 'standout'), ('bg 2 smooth', 'dark gray', 'black'), ('button normal', 'black', 'white', 'light gray'), ('button select', 'white', 'black'), ] # Initialization def __init__(self, controller): self.controller = controller self.audio_devices = self.controller.get_audio_devices() urwid.WidgetWrap.__init__(self, self.main_window()) # Bar Graph Configuration def bar_graph(self, smooth=False): satt = None if smooth: satt = {(1, 0): 'bg 1 smooth', (2, 0): 'bg 2 smooth'} w = urwid.BarGraph(['bg background', 'bg 1', 'bg 2'], satt=satt) return w def button(self, t, fn): w = urwid.Button(t, fn) w = urwid.AttrWrap(w, 'button normal', 'button select') return w # Exit Program def exit_program(self, w): raise urwid.ExitMainLoop() # Change Volume def delta_output_up(self, w): device = self.audio_devices[0] device.set_volume(device.get_volume() + 5) self.update_graph() def delta_output_down(self, w): device = self.audio_devices[0] device.set_volume(device.get_volume() - 5) self.update_graph() def delta_input_up(self, w): device = self.audio_devices[1] device.set_volume(device.get_volume() + 5) self.update_graph() def delta_input_down(self, w): device = self.audio_devices[1] device.set_volume(device.get_volume() - 5) self.update_graph() # Update Graph View def update_graph(self, force_update=True): l = [] for index, device in enumerate(self.audio_devices): volume = device.volume # toggle between two bar types if index & 1: l.append([0, volume]) else: l.append([volume, 0]) self.graph.set_data(l, 100) return True # Controls on the right hand side def graph_controls(self): l = [] l.append(urwid.Text("Device Select", align="left")) l.append(urwid.Divider()) l.append(self.button("{} +".format('Output'), self.delta_output_up)) l.append(self.button("{} -".format('Output'), self.delta_output_down)) l.append(urwid.Divider()) l.append(self.button("{} +".format('Input'), self.delta_input_up)) l.append(self.button("{} -".format('Input'), self.delta_input_down)) l.append(urwid.Divider()) l.append(self.button("Quit", self.exit_program)) w = urwid.ListBox(urwid.SimpleListWalker(l)) return w # Configuration of the Main Window, combines controls and bar display def main_window(self): self.graph = self.bar_graph() self.graph_wrap = urwid.WidgetWrap(self.graph) vline = urwid.AttrWrap(urwid.SolidFill(u'\u2502'), 'line') c = self.graph_controls() w = urwid.Columns([('weight', 1, self.graph_wrap), ('fixed', 1, vline), c], dividechars=1, focus_column=2) w = urwid.Padding(w, ('fixed left', 1), ('fixed right', 1)) return w # Class VolumeController, serves as a view Controller class VolumeController: """ A class responsible for setting up the model and view and running the application. """ def __init__(self): self.model = VolumeModel() self.view = VolumeView(self) self.view.update_graph(True) def get_audio_devices(self): return self.model.get_audio_devices() def main(self): self.loop = urwid.MainLoop(self.view, self.view.palette) self.loop.run() # Initialize the VolumeController def main(): # Command line Argument Parameters parser = argparse.ArgumentParser(description=description_string) parser.add_argument('-d', '--device', type=str, help='Break Interval (minutes)', required=False) parser.add_argument('-v', '--volume', type=int, help='Volume Level', required=False) args = parser.parse_args() # User specified a device, but no volume setting, they want info if args.device is not None and args.volume is None: device = args.device if "output" == device: print VolumeModel().get_audio_devices()[0].get_volume() if "input" == device: print VolumeModel().get_audio_devices()[1].get_volume() # Volume specified without a device specified, assume they want to change # output if args.volume is not None and args.device is None: volume = args.volume device = VolumeModel().get_audio_devices()[0] device.set_volume(volume) print device.get_volume() # User specified volume and device if args.volume is not None and args.device is not None: device = args.device volume = args.volume # Assign device to correct device object if "output" == device: device = VolumeModel().get_audio_devices()[0] if "input" == device: device = VolumeModel().get_audio_devices()[1] device.set_volume(volume) print device.get_volume() # Execute GUI if no command line arguments passed if args.device is None and args.volume is None: VolumeController().main() # If Called from the command line if __name__ == "__main__": main() ########################################################################## # Shell Commands to Change the Volume (This program executes/wraps these commands) ########################################################################## # Src: https://coderwall.com/p/22p0ja/set-get-osx-volume-mute-from-the-command-line # Get volume # # Echos a number from 0 to 100 # osascript -e 'output volume of (get volume settings)' # Set volume # # Where 50 is a number from 0 to 100 # osascript -e 'set volume output volume 50' # Get mute state # # Echos a string of 'true' or 'false' # osascript -e 'output muted of (get volume settings)' # Set mute state # # Where 'true' can be 'true' or 'false' # osascript -e 'set volume output muted true' ```
{ "source": "jmercouris/IPSRC", "score": 2 }
#### File: jmercouris/IPSRC/platform_constants.py ```python import platform_disk import platform_git import platform_mqtt def get_broadcast_function(platform_string): if(platform_string == "disk"): return platform_disk.broadcast_data if(platform_string == "git"): return platform_git.broadcast_data if(platform_string == "mqtt"): return platform_mqtt.broadcast_data def get_read_function(platform_string): if(platform_string == "disk"): return platform_disk.read_data if(platform_string == "git"): return platform_git.read_data if(platform_string == "mqtt"): return platform_mqtt.read_data ```
{ "source": "jmerizia/alignment-research-dataset", "score": 3 }
#### File: tools/ebooks/gdrive_ebooks.py ```python import os , gdown , pypandoc , re from .utils import slugify class GDrive: """ Pull .epubs from a Google Drive and convert them to .txt """ def __init__(self , gdrive_adress): self.name = 'gdrive-epubs' self.gdrive_adress = gdrive_adress self.local_path = 'data/ebooks/' self.local_out = self.local_path + 'books_text/' os.makedirs(self.local_path) if not os.path.exists(self.local_path) else '' os.makedirs(self.local_out) if not os.path.exists(self.local_out) else '' self.AIS_scrape_local = os.listdir(self.local_out) self.weblink_pattern = r"(?i)\b((?:https?://|www\d{0,3}[.]|[a-z0-9.\-]+[.][a-z]{2,4}/)(?:[^\s()<>]+|\(([^\s()<>]+|(\([^\s()<>]+\)))*\))+(?:\(([^\s()<>]+|(\([^\s()<>]+\)))*\)|[^\s`!()\[\]{};:'\".,<>?«»“”‘’]))" if os.path.exists(os.getcwd()+'/pandoc/pandoc'): os.environ.setdefault('PYPANDOC_PANDOC', os.getcwd()+'/pandoc/pandoc') def pull_drom_gdrive(self): gdown.download_folder(url=self.gdrive_adress, output=self.local_out, quiet=False) self.AIS_scrape_local = os.listdir(self.local_out) def convert_to_txt(self): for fName in self.AIS_scrape_local: newName = slugify(fName[:20]) if 'epub' in fName and not os.path.exists(self.local_out + newName): os.rename( self.local_out + fName , self.local_out + 'tmp.epub') # convert to plain text output = pypandoc.convert_file(self.local_out + 'tmp.epub', 'plain', outputfile=self.local_out + 'tmp.txt') # remove linebreaks in middle of sentence os.system("awk ' /^$/ { print; } /./ { printf(\"%s \", $0); } ' " + self.local_out + "tmp.txt > " + self.local_out + newName + '.txt') os.system('rm ' + self.local_out + "tmp.txt") os.system('rm ' + self.local_out + "tmp.epub") self.AIS_scrape_local = os.listdir(self.local_out) def clean_txt(self , min_length=10): # remove short lines and replace links for fName in self.AIS_scrape_local: if 'txt' in fName: os.rename(self.local_out + fName , self.local_out + 'tmp.txt') with open(self.local_out + 'tmp.txt') as f, open(self.local_out + fName,'w') as f2: for x in f: stripped_x = re.sub(r'http\S+' , 'ʬ' , x); if len(stripped_x) >= min_length: f2.write(stripped_x) os.system('rm ' + self.local_out + "tmp.txt") def fetch(self): self.pull_drom_gdrive() self.convert_to_txt() self.clean_txt() ```
{ "source": "jmerizia/parallel-pytorch", "score": 3 }
#### File: parallel-pytorch/examples/train_minGPT.py ```python import torch import fire import logging from parallel_pytorch.data import aggregate_gradients, scatter_batch from parallel_pytorch.models.minGPT import configure_optimizers, criterion, make_pipelined_GPT from parallel_pytorch.topology import Topology from parallel_pytorch.utils import set_seed, abort_on_exception logger = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.DEBUG, ) @abort_on_exception def main( dp=1, pp=1, mp=1, batch_size=8, vocab_size=17, block_size=4, n_layer=2, n_head=4, n_embd=4, embd_pdrop=0.1, attn_pdrop=0.1, resid_pdrop=0.1, learning_rate=0.1, weight_decay=0.1, betas=(0.9, 0.95), init_checkpoint_directory=None, out_checkpoint_directory=None, seed=42, ): """ Train a simple minGPT model with 3D parallelism. """ # We first have to create a "topology" which is a slim class which holds information # about the overall shape of the network. topo = Topology(dp=dp, pp=pp, mp=mp) # The total number of workers that participate is dp * pp * mp. # Thus, there may be a few workers that do not participate. if not topo.active: logger.info("I, worker %d, am not active", topo.data_comm.Get_rank()) return # We set the seed in torch/numpy/random to the current rank to ensure that weight initialization # happens differently on all ranks. set_seed(seed * topo.data_comm.Get_rank()) # Here, we load in our pipelined minGPT. The one caveat to be aware of is that # this is not a torch.nn.Module, but rather a "Pipeline" class. # It still has forward/backward functions, so we can use it *almost* normally. pipeline = make_pipelined_GPT( topo=topo, block_size=block_size, vocab_size=vocab_size, n_embd=n_embd, n_layer=n_layer, n_head=n_head, embd_pdrop=embd_pdrop, attn_pdrop=attn_pdrop, resid_pdrop=resid_pdrop, ) if init_checkpoint_directory is not None: # Due to the size of checkpoints of large models, dealing with one large file is unrealistic. # Instead, we collapse along the model-parallel dimension, and then save one file # per block of the neural network. # That allows us to save checkpoints efficiently and agnostically to the parallelization topology. pipeline.load_checkpoint(init_checkpoint_directory) # Generate some fake data. Technically we only need it on the first and last stages of the pipeline, # but text data isn't so expensive to load in on all ranks. data = [ ( torch.randint(0, vocab_size, [batch_size, block_size], dtype=torch.long), torch.randint(0, vocab_size, [batch_size, block_size], dtype=torch.long), ) for _ in range(10) ] # This function also doesn't really change from the original implementation. optimizer = configure_optimizers( pipeline=pipeline, learning_rate=learning_rate, weight_decay=weight_decay, betas=betas, ) running_loss = 0 for it, (x, y) in enumerate(data): # First we want to scatter the batch across all of the data parallel copies. x, y = scatter_batch(topo=topo, inputs=x, labels=y) optimizer.zero_grad() # As usual, forward the model and compute loss. # Under the hood, this is passing our input through the entire pipeline. logits = pipeline(x) loss = criterion(topo, logits, y) # Now we do the backwards pass. As mentioned before, since the pipeline is not technically a module, # when we do backward on the loss, that populates logits.grad normally, # but it doesn't actually propagate the loss down the rest of the pipeline for us. # This means we must call `backward()` manually. loss.backward() pipeline.backward(logits.grad) # Now, for each of our parameters, PyTorch has populated a `.grad` member on each of our parameters. # Since we are doing data parallelism, we must aggregate these gradients now. aggregate_gradients(topo=topo, model=pipeline.stage) # Fortunately, PyTorch aggregates the gradients for us if we call `forward()` multiple times # (which we do in the pipeline with "micro batches"). # Thus, we can just step the optimizer as we normally do. optimizer.step() # This step deserves some explanation. Since we are pipelining the input, we can only use logits/loss # if we're at the last stage of the pipeline. # Additionally, since there might be multiple model-parallel processes, we must make sure # to print on just the root one. # Lastly, since there are multiple data parallel copies, we want to only print on the first one. if topo.is_last_pipeline_stage() and topo.is_root_model_rank() and topo.get_data_parallel_idx() == 0: running_loss += loss.item() logger.info(f'batch {it} loss: {running_loss:.3f}') running_loss = 0.0 if out_checkpoint_directory is not None: # Lastly, we'll save a checkpoint of our pipeline. As mentioned before, checkpoints for pipelines # are saved as multilple files, one per layer in the pipeline. pipeline.save_checkpoint(out_checkpoint_directory) if __name__ == '__main__': fire.Fire(main) ``` #### File: parallel-pytorch/parallel_pytorch/topology.py ```python from typing import Literal from mpi4py import MPI from parallel_pytorch.utils import compute_devices_per_node class Topology(object): """ A tiny class that stores all the MPI communicators and rank relationships. For example, consider if dp = 2, pp = 2, and dp = 4, then these would be the ranks of the communicators: world rank 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 data_comm rank 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pipeline_comm rank 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 model_comm rank 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 per_stage_dp_comm rank 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 GPUs ( cuda:0 ) ( cuda:1 ) ( cuda:2 ) ( cuda:3 ) """ def __init__( self, *, dp: int, pp: int, mp: int, device: Literal['cpu', 'cuda'] = 'cpu', ): assert dp > 0, \ f"dp must be greater than 0, but got {dp}" assert pp > 0, \ f"pp must be greater than 0, but got {pp}" assert mp > 0, \ f"mp must be greater than 0, but got {mp}" self.dp = dp self.pp = pp self.mp = mp self.device = device if device == 'cuda': assert self.mp == compute_devices_per_node(), \ "Topology.mp must be equal to the number of devices on each node, or else deadlocks can occur." world = MPI.COMM_WORLD size = self.dp * self.pp * self.mp assert world.Get_size() >= size, \ "Topology.dp * Topology.pp * Topology.mp must be less than or equal to the number of processes." self.active = world.Get_rank() < size self.data_comm = world.Split(color=0 if self.active else 1, key=world.Get_rank()) data_rank = self.data_comm.Get_rank() self.pipeline_comm = self.data_comm.Split(color=data_rank // (self.pp * self.mp), key=data_rank) pipeline_rank = self.pipeline_comm.Get_rank() self.model_comm = self.pipeline_comm.Split(color=pipeline_rank // self.mp, key=pipeline_rank) self.per_stage_dp_comm = self.data_comm.Split(color=data_rank % (self.pp * self.mp), key=data_rank) ################ # MODEL # ################ def is_root_model_rank(self): return self.model_comm.Get_rank() == 0 ################ # DATA # ################ def get_num_data_parallel_copies(self): return self.data_comm.Get_size() // self.pipeline_comm.Get_size() def get_data_parallel_idx(self): return self.per_stage_dp_comm.Get_rank() ################ # PIPELINE # ################ def get_pipeline_stage_idx(self): return self.pipeline_comm.Get_rank() // self.mp def get_num_pipeline_stages(self): return self.pipeline_comm.Get_size() // self.model_comm.Get_size() def get_pipeline_rank_of_next_stage(self): assert self.get_pipeline_stage_idx() + 1 < self.get_num_pipeline_stages() return self.pipeline_comm.Get_rank() + self.model_comm.Get_size() def get_pipeline_rank_of_prev_stage(self): assert 0 < self.get_pipeline_stage_idx() return self.pipeline_comm.Get_rank() - self.model_comm.Get_size() def get_pipeline_rank_of_last_stage(self): return self.pipeline_comm.Get_size() - 1 def get_pipeline_rank_of_first_stage(self): return 0 def is_first_pipeline_stage(self): return self.get_pipeline_stage_idx() == 0 def is_last_pipeline_stage(self): return self.get_pipeline_stage_idx() == self.get_num_pipeline_stages() - 1 ``` #### File: parallel-pytorch/tests/test_merge.py ```python import torch import numpy as np from mpi4py import MPI from parallel_pytorch.ops import tensor_merge from parallel_pytorch.utils import abort_on_exception @abort_on_exception def test_1(): worker_shape = [2, 2] world = MPI.COMM_WORLD num_workers = np.array(worker_shape).prod() comm = MPI.COMM_WORLD.Split(color=0 if world.Get_rank() < num_workers else 1, key=world.Get_rank()) if world.Get_rank() < num_workers: if comm.Get_rank() == 0: x = torch.tensor([[0, 1], [4, 5]]) elif comm.Get_rank() == 1: x = torch.tensor([[2, 3], [6, 7]]) elif comm.Get_rank() == 2: x = torch.tensor([[8, 9], [12, 13]]) elif comm.Get_rank() == 3: x = torch.tensor([[10, 11], [14, 15]]) x = tensor_merge(x, comm=comm, worker_shape=worker_shape) if comm.Get_rank() == 0: e = torch.tensor([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15], ]) assert torch.allclose(x, e), f'{x} != {e}' @abort_on_exception def test_2(): x_shape = [2, 2] worker_shape = [1, 1] world = MPI.COMM_WORLD num_workers = np.array(worker_shape).prod() comm = MPI.COMM_WORLD.Split(color=0 if world.Get_rank() < num_workers else 1, key=world.Get_rank()) if world.Get_rank() < num_workers: volume = np.array(x_shape).prod() x = torch.arange(volume).view(x_shape) x = tensor_merge(x, comm=comm, worker_shape=worker_shape) e = torch.tensor([[0, 1], [2, 3]]) assert torch.allclose(x, e), f'{x} != {e}' def run_all(): test_1() test_2() if __name__ == '__main__': run_all() ```
{ "source": "jmerizia/plainapi", "score": 3 }
#### File: plainapi/backend/generate.py ```python import sqlite3 from typing import List, Tuple, Optional, Any from parse_sql import parse_query, parse_schema, type_hint2schema_type import os import subprocess import pprint from dotenv import load_dotenv import openai # type: ignore from uuid import uuid4 import sqlite3 import random from models import Endpoint load_dotenv() openai.api_key = os.getenv('OPENAI_API_KEY') DB_NAME = 'generated/demo.sqlite3' CACHE_DIR = 'gpt_cache' def cached_gpt3(prompt: str, stop: str = '\n', use_cache: bool = True) -> str: if not os.path.exists(CACHE_DIR): os.mkdir(CACHE_DIR) if use_cache: # Check the cache separator = '\n===========\n' cache_files = [os.path.join(CACHE_DIR, p) for p in os.listdir(CACHE_DIR)] for fn in cache_files: with open(fn, 'r') as f: query, result = f.read().split(separator) if query == prompt: return result response = openai.Completion.create( engine="davinci", prompt=prompt, max_tokens=64, temperature=0, stop=stop, ) result = response['choices'][0]['text'] print('cache miss, using GPT3') # Add to the cache cache_file = os.path.join(CACHE_DIR, str(uuid4())) with open(cache_file, 'w') as f: f.write(prompt + separator + result) return result def get_db_schema_text(db_name: str) -> str: """ Get the schema of an SQL query. """ return str(subprocess.check_output(['sqlite3', db_name, '.schema']), 'utf-8') def english2sql(english_query: str, schema_text: Optional[str] = None, use_cache: bool = True) -> str: """ Convert a query written in english to an SQL query. """ # generate an English sentence describing the schema if schema_text: tables = parse_schema(schema_text) created_tables = [t for t in tables if 'sqlite_sequence' not in t['table_name']] if len(created_tables) == 0: raise ValueError('Error: there are no tables') db_spec = 'The database contains ' for table_idx, table in enumerate(created_tables): table_name = table['table_name'] db_spec += 'a "' + table_name + '" table with the fields ' for field_idx, field in enumerate(table['fields']): name = field['name'] type = field['type'] if name == 'id': continue db_spec += name + ' (' + type_hint2schema_type(type) + ')'; if field_idx < len(table['fields'])-1: db_spec += ', ' db_spec += '; ' # always add this example table for GPT3 db_spec += 'and an "apples" table with the fields name (VARCHAR), weight (INTEGER), is_green (BOOLEAN).' prompt = ( f'Turn the following English sentences into valid SQLite statements. {db_spec}\n' f'\n' f'English: get all of the apples\n' f'SQL: SELECT * FROM apples;\n' f'\n' f'English: get an apple\'s name by its id\n' f'SQL: SELECT name FROM apples WHERE id = ?;\n' f'\n' f'English: create a new apple that is not green\n' f'SQL: INSERT INTO apples (name, weight, is_green) VALUES (?, ?, false);\n' f'\n' f'English: {english_query.strip()}\n' f'SQL:' ) else: prompt = ( f'Turn the following English sentences into valid SQLite statements.\n' f'\n' f'English: {english_query.strip()}\n' f'SQL:' ) response = cached_gpt3(prompt, use_cache=use_cache).strip() return response def english2summary_name(english_query: str, use_cache: bool = True) -> str: """ Convert a query written in English to a short snake_case name """ prompt = '''Q: Show me all of the users Q: Show me all the users ordered by age ascending A: get all users ordered by age ascending Q: Who is the oldest user? A: get oldest user Q: What are the names of the 10 youngest users? A: get ten youngest users Q: Who is the oldest person? A: get oldest user Q: get all the users that are located in the United Kingdom A: get users from united kingdom Q: get users of ages between 30 and 40? A: get users ages between 30 and 40 Q: How many users are there? A: get number users Q: Where does user Betty live? A: get betty location Q: What is Jennifer's age? A: get jennifer age Q: the average age A: get average user age Q: the age of the oldest user A: get age of oldest user Q: the name of the oldest person A: get name of oldest user Q: the top 10 oldest users A: get ten oldest users Q: how many admin users are there? A: get number admin users Q: retrieve the email of the youngest admin A: get email of youngest admin user Q: get a user by their email A: get user by email Q: get all users' emails that live at a certain location A: get users by location Q: ''' prompt += english_query.strip() prompt += '\nA:' def valid_char(c: str) -> bool: return c.isalnum() or c == ' ' or c == '_' result = cached_gpt3(prompt, use_cache=use_cache) result = ''.join(c for c in result if valid_char(c)) while len(result) > 0 and result[0].isnumeric(): result = result[1:] if len(result) == 0: result = 'untitled' return '_'.join(result.strip().lower().split(' ')) def generate_endpoint(endpoint: Endpoint, schema_text: str, use_cache=True) -> str: """ Generate a FastAPI endpoint from an SQL query. short_name: a name for the query in snake_case sql_query: an SQL query """ sql_query = english2sql(endpoint.value, schema_text, use_cache=use_cache) func_name = english2summary_name(endpoint.value) inputs, outputs = parse_query(sql_query, schema_text) template = ''' <<<RESPONSE_CLASS>>> @app.<<<METHOD>>>("<<<URL>>>", response_model=<<<RESPONSE_MODEL>>>) async def <<<FUNC_NAME>>>(<<<PARAMS>>>) -> <<<RESPONSE_MODEL>>>: \'\'\' <<<ENGLISH_QUERY>>> \'\'\' cur = con.cursor() cur.execute('<<<SQL_QUERY>>>', <<<BINDINGS>>>) res: List[Any] = [] output_names: List[str] = <<<OUTPUT_NAME_LIST>>> for row in cur.fetchall(): row_dict = dict() for k, v in zip(output_names, row): row_dict[k] = v res.append(row_dict) con.commit() <<<RETURN_STATEMENT>>> ''' params = ', '.join(f'{c["name"]}: {c["type"]}' for c in inputs) if len(inputs) > 0: bindings = '(' + ', '.join(c["name"] for c in inputs) + ',)' else: bindings = '' output_name_list = '[' + ', '.join([f'\'{c["name"]}\'' for c in outputs]) + ']' if len(outputs) > 0: response_model = f'List[OutputType_{func_name}]' return_statement = 'return res' response_class = \ f'class OutputType_{func_name}(BaseModel):\n' + \ ' ' + '\n '.join(f'{c["name"]}: {c["type"]}' for c in outputs) else: response_model = 'None' return_statement = 'return None' response_class = '' template = template.replace('<<<FUNC_NAME>>>', func_name) template = template.replace('<<<URL>>>', endpoint.url) template = template.replace('<<<METHOD>>>', endpoint.method.lower()) template = template.replace('<<<SQL_QUERY>>>', sql_query) template = template.replace('<<<PARAMS>>>', params) template = template.replace('<<<ENGLISH_QUERY>>>', endpoint.value) template = template.replace('<<<BINDINGS>>>', bindings) template = template.replace('<<<OUTPUT_NAME_LIST>>>', output_name_list) template = template.replace('<<<RESPONSE_MODEL>>>', response_model) template = template.replace('<<<RETURN_STATEMENT>>>', return_statement) template = template.replace('<<<RESPONSE_CLASS>>>', response_class) return template def generate_app(title: str, endpoints: List[Endpoint], use_cache: bool = True): code = ''' from typing import List, Union, Literal, Optional, Dict, Any from fastapi import FastAPI, Path, HTTPException, Depends, status from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel import os import sqlite3 app = FastAPI( title="<<<TITLE>>>", description="An API generated from English sentences", version="0.1.0", docs_url="/docs" ) app.add_middleware( CORSMiddleware, allow_origins=['http://localhost:3000'], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) con = sqlite3.connect('<<<DB_NAME>>>') ''' schema_text = get_db_schema_text(DB_NAME) code = code.replace('<<<TITLE>>>', title) code = code.replace('<<<DB_NAME>>>', DB_NAME) for endpoint in endpoints: endpoint_code = generate_endpoint(endpoint, schema_text) code += endpoint_code return code def read_plain_txt(input_fn: str) -> Tuple[List[str], List[str]]: """ Parses the input_fn and returns a tuple of two lists of strings, holding the migrations and queries respectively. Formally, ( [ <english str>, ... ], [ <english str>, ... ] ) """ with open(input_fn, 'r') as f: migrations = [] queries = [] mode = 'none' for line in f: stripped = line.strip() if len(stripped) == 0: continue if stripped.lower() == '== migrations': if mode != 'none': raise ValueError(f'Invalid {input_fn}: The migrations section should appear first.') mode = 'migrations' elif stripped.lower() == '== queries': if mode != 'migrations': raise ValueError(f'Invalid {input_fn}: The queries section should appear after the migrations section.') mode = 'queries' elif stripped[0] == '#': pass else: if mode == 'migrations': migrations.append(stripped) elif mode == 'queries': queries.append(stripped) else: pass return migrations, queries def run_necessary_migrations(sql_migrations: List[str], english_migrations: List[str]): """ Given a list of all SQL migrations (can be any valid SQLite statements), this function either determines that the given migrations are invalid because old ones have been modified, or applies the new migrations. Note: The given list should contain all migrations, not just new ones. This function will check the English version, not the sql version. """ con = sqlite3.connect(DB_NAME) cur = con.cursor() cur.execute(''' SELECT name FROM sqlite_master WHERE type='table' AND name = '__plainapi_migrations'; ''') rows = cur.fetchall() existing_migrations: List[Any] = [] if len(rows) == 0: # create the table cur.execute(''' CREATE TABLE __plainapi_migrations ( id INTEGER PRIMARY KEY AUTOINCREMENT, sql_query VARCHAR(500) NOT NULL, english_query VARCHAR(500) NOT NULL ); ''') else: cur.execute(''' SELECT sql_query, english_query FROM __plainapi_migrations ORDER BY id ASC; ''') for sql_query, english_query in cur.fetchall(): existing_migrations.append({'sql': sql_query, 'english': english_query}) # ensure the existing migrations are correct for a, b in zip(existing_migrations, english_migrations): if a['english'] != b: raise ValueError(f'Invalid previously applied migration (it has been changed):\n "{a["english"]}" -> "{b}"') if len(sql_migrations) != len(english_migrations): raise ValueError('Internal: There are more SQL migrations than original English migrations') if len(existing_migrations) < len(sql_migrations): print('Running migrations...') for idx, (sql, english) in enumerate(zip(sql_migrations, english_migrations)): if idx < len(existing_migrations): pass else: print(f' ...{english}') cur.execute(sql) cur.execute(''' INSERT INTO __plainapi_migrations (sql_query, english_query) VALUES (?, ?); ''', (sql, english,)) print('All up to date.') else: print('No migrations to run.') con.commit() # def generate_app_old(input_fn: str = 'plain.txt', output_fn: str = 'api.py', use_cache: bool = True): # """ # Given a file of English sentences, output a file containing a FastAPI web server. # """ # english_migrations, english_queries = read_plain_txt(input_fn) # print('Migrations:') # for english_migration in english_migrations: # print(f' -> {english_migration}') # print('Queries:') # for english_query in english_queries: # print(f' -> {english_query}') # sql_migrations = [english2sql(m, use_cache=use_cache) for m in english_migrations] # run_necessary_migrations(sql_migrations, english_migrations) # code = generate_app_from_english_queries('My API', english_queries) # with open(output_fn, 'w') as f: # f.write(code) # command_to_run = 'uvicorn ' + output_fn.split('.')[0] + ':app' # print(f'Successfully created API! Try running `{command_to_run}`') # if __name__ == '__main__': # with open('migrations.txt', 'r') as f: # english_migrations = [m.strip() for m in f.read().split('\n\n')] # sql_migrations = [english2sql(m) for m in english_migrations] # run_necessary_migrations(sql_migrations, english_migrations) ``` #### File: backend/scripts/gen_queries.py ```python import sys import fire # type: ignore from parse_sql import parse_query, parse_schema from generate import get_db_schema_text def generate_queries(queries_fn: str = './queries.sql', output_fn: str = './queries.py'): schema_text = get_db_schema_text('./db/plainapi.sqlite3') queries = [] with open(queries_fn, 'r') as f: for line in f: query = '' for i in range(len(line)): if i < len(line) - 1 and line[i:i+2] == '--': break query += line[i] query = query.strip() if len(query) > 0: queries.append(query) for query in queries: if not query.startswith('DELETE') and not query.startswith('UPDATE'): print(parse_query(query, schema_text=schema_text)) if __name__ == '__main__': fire.Fire(generate_queries) ``` #### File: plainapi/old_stuff/parse.py ```python from enum import Enum def perror(msg): print("Error:", msg) quit() def tokenize_sql(text): l = 0 r = 0 special_tokens = [ '<>', '<=', '>=', '=', '<', '>', '!=', '(', ')', ';', '+', '-', '*', '/', '\'', '.', ] while r < len(text): # skip whitespace while r < len(text) and text[r].isspace(): r += 1 # EOF if r >= len(text): pass # word token elif text[r].isalpha(): l = r r += 1 while r < len(text) and text[r].isalnum(): r += 1 yield text[l:r] # number token elif text[r].isnumeric() and text[r] != '0': l = r r += 1 while r < len(text) and text[r].isnumeric(): r += 1 yield text[l:r] # special token elif any(text[r:].startswith(tok) for tok in special_tokens): l = r for tok in special_tokens: if text[r:].startswith(tok): r = l + len(tok) yield text[l:r] break else: perror("Invalid token at TODO") class NodeKind(Enum): Select = 'Select' SelectExpression = 'SelectExpression' Token = 'Token' TableExpression = 'TableExpression' Name = 'Name' Expression = 'Expression' AndCondition = 'AndCondition' Condition = 'Condition' Boolean = 'Boolean' Int = 'Int' Decimal = 'Decimal' Number = 'Number' Numeric = 'Numeric' Value = 'Value' Term = 'Term' Factor = 'Factor' Summand = 'Summand' Operand = 'Operand' Long = 'Long' ColumnRef = 'ColumnRef' Compare = 'Compare' class Node: def __init__(self, name, kind, children=None): self.name = name self.kind = kind if children is None: self.children = [] else: self.children = children def consume_token(tokens, idx): if idx == len(tokens): return None, idx else: return tokens[idx], idx + 1 def parse_quoted_name(tokens, idx): print('TODO implement quoted name') return None, idx def parse_name(tokens, idx): child, idx = parse_quoted_name(tokens, idx) if child: return child else: tok, idx = consume_token(tokens, idx) if not tok: perror("Expected token") elif not (tok[0].isalpha() or tok[0] == '_'): idx -= 1 return None, idx else: for c in tok[1:]: if not (c.isalnum() or c == '_'): idx -= 1 return None, idx else: pass node = Node(name=tok, kind=NodeKind.Name) return node, idx def parse_null(tokens, idx): tok, idx = consume_token(tokens, idx) if not tok: return None, idx elif tok.upper() == 'NULL': node = Node(name=tok, kind=NodeKind.Null) return node, idx else: idx -= 1 return None, idx def parse_boolean(tokens, idx): tok, idx = consume_token(tokens, idx) if not tok: return None, idx elif tok.upper() in ['TRUE', 'FALSE']: node = Node(name=tok, kind=NodeKind.Boolean) return node, idx else: idx -= 1 return None, idx def parse_number(tokens, idx): tok, idx = consume_token(tokens, idx) if not tok: return None, idx elif tok.isnumeric(): node = Node(name=tok, kind=NodeKind.Number) return node, idx else: idx -= 1 return None, idx def parse_decimal(tokens, idx): tok, idx = consume_token(tokens, idx) node = Node(name='', kind=NodeKind.Decimal) if tok == '-': child = Node(name=tok, kind=NodeKind.Token) node.children.append(child) multiplier = -1 else: idx -= 1 multiplier = 1 child, idx = parse_number(tokens, idx) if child: node.children.append(child) tok, idx = consume_token(tokens, idx) if not tok: pass elif tok == '.': child = Node(name=tok, kind=NodeKind.Token) node.children.append(child) child, idx = parse_number(tokens, idx) if child: node.children.append(child) else: perror("Expected number following . in decimal") else: idx -= 1 return node, idx else: return None, idx def parse_long(tokens, idx): tok, idx = consume_token(tokens, idx) node = Node(name='', kind=NodeKind.Long) if tok == '-': child = Node(name=tok, kind=NodeKind.Token) node.children.append(child) multiplier = -1 else: idx -= 1 multiplier = 1 child, idx = parse_number(tokens, idx) if child and -9223372036854775808 <= multiplier * int(child.name) <= 9223372036854775807: node.children.append(child) return node, idx else: return None, idx def parse_int(tokens, idx): tok, idx = consume_token(tokens, idx) node = Node(name='', kind=NodeKind.Int) if tok == '-': child = Node(name=tok, kind=NodeKind.Token) node.children.append(child) multiplier = -1 else: idx -= 1 multiplier = 1 child, idx = parse_number(tokens, idx) if child and -2147483648 <= multiplier * int(child.name) <= 2147483647: node.children.append(child) return node, idx else: return None, idx def parse_numeric(tokens, idx): child, idx = parse_int(tokens, idx) if child: node = Node(name='', kind=NodeKind.Numeric) node.children.append(child) return node, idx else: child, idx = parse_long(tokens, idx) if child: node = Node(name='', kind=NodeKind.Numeric) node.children.append(child) return node, idx else: child, idx = parse_decimal(tokens, idx) if child: node = Node(name='', kind=NodeKind.Numeric) node.children.append(child) return node, idx else: return None, idx def parse_string(tokens, idx): tok, idx = consume_token(tokens, idx) if tok[0] == '\'' and tok[-1] == '\'': node = Node(name=tok, kind=NodeKind.String) return node, idx else: idx -= 1 return None, idx def parse_value(tokens, idx): child, idx = parse_string(tokens, idx) node = Node(name='', kind=NodeKind.Value) if child: node.children.append(child) return node, idx else: child, idx = parse_numeric(tokens, idx) if child: node.children.append(child) return node, idx else: child, idx = parse_boolean(tokens, idx) if child: node.children.append(child) return node, idx else: child, idx = parse_null(tokens, idx) if child: node.children.append(child) return node, idx else: return None, idx return None, idx def parse_column_ref(tokens, idx): child, idx = parse_name(tokens, idx) node = Node(name='', kind=NodeKind.ColumnRef) if child: # TODO print('TODO: family name') node.children.append(child) return node, idx else: return None, idx def parse_term(tokens, idx): child, idx = parse_value(tokens, idx) node = Node(name='', kind=NodeKind.Term) if child: node.children.append(child) return node, idx else: print('TODO term: there are a lot of other cases that have not been implemented') child, idx = parse_column_ref(tokens, idx) if child: node.children.append(child) return node, idx else: print('TODO term: there are a lot of other cases that have not been implemented') return None, idx def parse_factor(tokens, idx): child, idx = parse_term(tokens, idx) if child: node = Node(name='', kind=NodeKind.Factor) node.children.append(child) while True: tok, idx = consume_token(tokens, idx) if not tok: return node, idx elif tok in ['*', '/']: child = Node(name=tok, kind=NodeKind.Token) node.children.append(child) child, idx = parse_term(tokens, idx) if child: node.children.append(child) else: perror('Expected factor after + or - token') else: idx -= 1 return node, idx else: return None, idx def parse_summand(tokens, idx): child, idx = parse_factor(tokens, idx) if child: node = Node(name='', kind=NodeKind.Summand) node.children.append(child) while True: tok, idx = consume_token(tokens, idx) if not tok: return node, idx elif tok in ['+', '-']: child = Node(name=tok, kind=NodeKind.Token) node.children.append(child) child, idx = parse_factor(tokens, idx) if child: node.children.append(child) else: perror('Expected factor after + or - token') else: idx -= 1 return node, idx else: return None, idx def parse_operand(tokens, idx): child, idx = parse_summand(tokens, idx) if child: node = Node(name='', kind=NodeKind.Operand) node.children.append(child) while True: tok, idx = consume_token(tokens, idx) if not tok: return node, idx elif tok == '||': child = Node(name=tok, kind=NodeKind.Token) node.children.append(child) child, idx = parse_summand(tokens, idx) if child: node.children.append(child) else: perror('Expected summand after ||') else: idx -= 1 return node, idx else: return None, idx def parse_compare(tokens, idx): compare_tokens = ['<>', '<=', '>=', '=', '<', '>', '!='] tok, idx = consume_token(tokens, idx) if tok in compare_tokens: node = Node(name=tok, kind=NodeKind.Compare) return node, idx else: idx -= 1 return None, idx def parse_condition(tokens, idx): child, idx = parse_operand(tokens, idx) if child: node = Node(name='', kind=NodeKind.Condition) node.children.append(child) child, idx = parse_compare(tokens, idx) if child: node.children.append(child) child, idx = parse_operand(tokens, idx) if child: node.children.append(child) return node, idx else: perror('Expected operand after compare') else: tok, idx = consume_token(tokens, idx) if not tok: print('TODO!') # TODO elif tok.upper() == 'IN': print('TODO!') # TODO elif tok.upper() == 'LIKE': print('TODO!') # TODO elif tok.upper() == 'BETWEEN': print('TODO!') # TODO elif tok.upper() == 'IS': print('TODO!') # TODO elif tok.upper() == 'NOT': print('TODO!') # TODO else: perror('Expected one of IN, LIKE, BETWEEN, IS, or NOT after operand') return node, idx else: tok, idx = consume_token(tokens, idx) if not tok: return None, idx elif tok.upper() == 'NOT': child = Node(name='NOT', kind=NodeKind.Token) node.children.append(child) child, idx = parse_expression(tokens, idx) if child: node.children.append(child) return node, idx else: perror("Expected expression after NOT") elif tok == '(': child, idx = parse_expression(tokens, idx) if child: node.children.append(child) tok, idx = consume_token(tokens, idx) if tok == ')': child = Node(name=tok, kind=NodeKind.Token) node.children.append(child) return node, idx else: perror("Expected closing paren after expression") else: perror('Expected expression after \'(\'.') else: idx -= 1 return None, idx def parse_and_condition(tokens, idx): child, idx = parse_condition(tokens, idx) if not child: return None, idx else: node = Node(name='', kind=NodeKind.AndCondition) node.children.append(child) while True: tok, idx = consume_token(tokens, idx) if not tok: return node, idx elif tok.upper() == 'AND': child, idx = parse_condition(tokens, idx) if child: node.children.append(child) else: perror("Expected condition") else: return node, idx def parse_expression(tokens, idx): child, idx = parse_and_condition(tokens, idx) if child: node = Node(name='', kind=NodeKind.Expression) node.children.append(child) while True: tok, idx = consume_token(tokens, idx) if not tok: return node, idx elif tok.upper() == 'OR': child, idx = parse_and_condition(tokens, idx) if child: node.children.append(child) else: perror("Expected and_condition") else: idx -= 1 return node, idx else: return None, idx def parse_table_expression(tokens, idx): node = Node(name='', kind=NodeKind.TableExpression) child, idx = parse_name(tokens, idx) print('TODO: there are some more cases to check here') # TODO if child: node.children.append(child) return node, idx else: return None, idx def parse_alias(tokens, idx): def parse_select_expression(tokens, idx): tok, idx = consume_token(tokens, idx) node = Node(name='', kind=NodeKind.SelectExpression) if not tok: perror("Expected token") elif tok == '*': child = Node(name='*', kind=NodeKind.Token) node.children.append(child) elif tok == '(': perror('Column families are not yet supported') else: idx -= 1 child, idx = parse_term(tokens, idx) if child: tok, idx = consume_token(tokens, idx) if not tok: return node, idx elif tok.upper() == 'AS': child = Node(name=tok, kind=NodeKind.Token) node.children.append(child) else: pass else: return None, idx def parse_select(tokens, idx): tok = tokens[idx] idx += 1 if tok.upper() != 'SELECT': idx -= 1 return None, idx node = Node(name='SELECT', kind=NodeKind.Select) print('TODO parse hint') # TODO tok, idx = consume_token(tokens, idx) if not tok: perror("Expected token") if tok.upper() == 'DISTINCT': child = Node(name='DISTINCT', kind=NodeKind.Token) node.children.append(child) elif tok.upper() == 'ALL': child = Node(name='ALL', kind=NodeKind.Token) node.children.append(child) else: idx -= 1 tok, idx = consume_token(tokens, idx) if not tok: perror("Expected token") child, idx = parse_select_expression(tokens, idx) if child: node.children.append(child) else: perror('Expected select expression') # TODO: potential repeats if tok.upper() == 'FROM': child = Node(name='FROM', kind=NodeKind.Token) node.children.append(child) child, idx = parse_table_expression(tokens, idx) if child: node.children.append(child) else: perror("Expected table expression") else: perror("Expected FROM token") # TODO: optional column def tok, idx = consume_token(tokens, idx) if not tok: pass else: if tok.upper() == 'WHERE': child = Node(name='token', kind=NodeKind.Token) child, idx = parse_expression(tokens, idx) if child: node.children.append(child) else: perror("Expected expression following WHERE token") else: idx -= 1 return node, idx def print_tree(node, depth=0): if depth > 10: return print('| '*depth, end='') print(f'"{node.name}", {node.kind}') for child in node.children: print_tree(child, depth+1) ``` #### File: plainapi/plainapi/generate_python.py ```python from typing import TypedDict import os from dotenv import load_dotenv import openai # type: ignore from plainapi.parse_endpoint import Endpoint from plainapi.parse_application import Application from plainapi.parse_code import AssignmentStatement, CodeBlock, ExceptionStatement, IfStatement, OutputStatement, PythonStatement, SQLStatement load_dotenv('./.env') OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') if OPENAI_API_KEY is None: raise ValueError('Expected OPENAI_API_KEY environment variable to be set or in `.env` file.') openai.api_key = OPENAI_API_KEY def url2endpoint_function_name(url: str) -> str: clean = ''.join(c if c.isalnum() else ' ' for c in url) parts = [s.strip() for s in clean.split(' ') if s.strip() != ''] return 'endpoint_' + '_'.join(parts) def string2variable_name(s: str) -> str: clean = ''.join(c if c.isalnum() else ' ' for c in s) parts = [s.strip() for s in clean.split(' ') if s.strip() != ''] return '_'.join(parts) def escape_quotes(s: str) -> str: o = '' for c in s: if c == '\'': o += '\\\'' elif c == '\"': o += '\\\"' else: o += c return o def generate_output_statement(block: OutputStatement, indent=0): tab = ' ' * indent value = block['value'] return tab + 'return ' + value + '\n' def generate_sql_statement(block: SQLStatement): sql = block['sql'] return f'execute({sql})' def generate_exception_statement(block: ExceptionStatement, indent=0): tab = ' ' * indent code = block['code'] or 400 message = block['message'] or 'An error has occurred.' return f'{tab}raise HTTPException(status_code={code}, detail={message})\n' def generate_python_statement(block: PythonStatement): return block['code'] def generate_assigment_statement(block: AssignmentStatement, indent=0): tab = ' ' * indent variable_name = string2variable_name(block['name']) value = block['value'] if value['type'] == 'python': value_string = generate_python_statement(value) else: value_string = generate_sql_statement(value) return f'{tab}{variable_name} = {value_string}\n' def generate_if_statement(block: IfStatement, indent=0): tab = ' ' * indent condition = block['condition']['code'] comment = block['condition']['original'] text = tab + 'if ' + condition + ': # ' + comment.strip() + '\n' text += generate_code_block(block['case_true'], indent=indent + 4) if block['case_false'] is not None: text += tab + 'else:\n' text += generate_code_block(block['case_false'], indent=indent + 4) return text def generate_code_block(block: CodeBlock, indent=0) -> str: tab = ' ' * indent text = '' for line in block: if line['type'] == 'if': text += generate_if_statement(line, indent) elif line['type'] == 'function_call': text += tab + 'function_call\n' elif line['type'] == 'exception': text += generate_exception_statement(line, indent) elif line['type'] == 'assignment': text += generate_assigment_statement(line, indent) elif line['type'] == 'python': text += tab + '<python>\n' elif line['type'] == 'sql': text += generate_sql_statement(line) + '\n' elif line['type'] == 'output': text += generate_output_statement(line, indent) return text def generate_endpoint(endpoint: Endpoint, schema_text: str, use_cache=True) -> str: """ Generate a FastAPI endpoint from an SQL query. short_name: a name for the query in snake_case sql_query: an SQL query """ func_name = url2endpoint_function_name(endpoint['header']['url']) url = endpoint['header']['url'].lower() method = endpoint['header']['method'].lower() params = ', '.join(i['name'] + ': ' + (i['type'] if i['name'] != 'current_user' else 'User = Depends(get_current_user)') for i in endpoint['requirements']['inputs']) implementation = generate_code_block(endpoint['implementation'], indent=4) code = \ f'''@app.{method}("{url}", response_model=None) async def {func_name}({params}) -> None: {implementation}''' return code def generate_app(application: Application, schema_text: str, db_name: str, host: str = 'localhost', port: int = 3000): title = application['title'] code_for_endpoints = '\n\n'.join(generate_endpoint(endpoint, schema_text) for endpoint in application['endpoints']) code = \ f'''from typing import List, Union, Literal, Optional, Dict, Any from fastapi import FastAPI, Path, HTTPException, Depends, status from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm from jose import jwt, JWTError import os import sqlite3 ALGORITHM = "HS256" SECRET_KEY = "TODO" app = FastAPI( title="{title}", description="An API generated from English sentences", version="0.1.0", docs_url="/docs" ) app.add_middleware( CORSMiddleware, allow_origins=['http://{host}:{port}'], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) oauth2_scheme = OAuth2PasswordBearer(tokenUrl="/users/login") class User(BaseModel): id: int email: str is_admin: bool def sql(query: str, params: Any): # TODO return None async def get_current_user(token: str = Depends(oauth2_scheme)) -> User: credentials_exception = HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Could not validate credentials", headers={{"WWW-Authenticate": "Bearer"}}, ) try: payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM]) except JWTError: raise credentials_exception email: Optional[str] = payload.get("sub") if email is None: raise credentials_exception user = sql("select * from users where email = ?", [email]) if user is None: raise credentials_exception return user con = sqlite3.connect('{db_name}') {code_for_endpoints}''' return code ``` #### File: plainapi/plainapi/plainapi.py ```python from typing import Optional import os from dotenv import load_dotenv import configparser import argparse from plainapi.utils import get_db_schema_text from plainapi.generate_python import generate_app from plainapi.parse_application import parse_application def main(): parser = argparse.ArgumentParser(description='Generate web APIs with plain English.') parser.add_argument('command', choices=['init', 'gen', 'start', 'restart'], help='Base command') settings_filename = 'plain.ini' args = parser.parse_args() if args.command == 'gen': if not os.path.exists(settings_filename): raise ValueError(f'Could not find settings file: {settings_filename}') config = configparser.ConfigParser() config.read(settings_filename) def read_setting(name: str) -> Optional[str]: settings = config['default'] if name in settings: return settings[name] return None endpoints_filename = read_setting('endpoints_filename') or 'endpoints.plain' migrations_filename = read_setting('migrations_filename') or 'migrations.plain' functions_filename = read_setting('functions_filename') or 'functions.plain' target_filename = read_setting('target_filename') or 'app.py' db_name = read_setting('db_name') or 'my-app.sqlite3' host = read_setting('host') or 'localhost' port = read_setting('port') or '3000' port = int(port) if not os.path.exists(endpoints_filename): raise ValueError(f'Could not find endpoints file: {endpoints_filename}') if not os.path.exists(migrations_filename): raise ValueError(f'Could not find migrations file: {migrations_filename}') if not os.path.exists(functions_filename): raise ValueError(f'Could not find functions file: {functions_filename}') with open(endpoints_filename, 'r') as f: endpoints_code = f.read() with open(migrations_filename, 'r') as f: migrations_code = f.read() with open(functions_filename, 'r') as f: functions_code = f.read() schema_text = get_db_schema_text(db_name) application = parse_application(endpoints_code=endpoints_code, functions_code=functions_code, schema_text=schema_text) code = generate_app(application=application, schema_text=schema_text, db_name=db_name, host=host, port=port) with open(target_filename, 'w') as f: f.write(code) else: raise ValueError(f'Command \'{args.command}\' is not implemented yet!') if __name__ == '__main__': main() ```
{ "source": "jmerizia/sqlgood", "score": 3 }
#### File: sqlgood/tests/test_postgresql.py ```python import unittest import psycopg2 from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT import os from sql2py.generate import generate dbname_entry = 'chad' dbname_test = 'test' user = 'test' password = '<PASSWORD>' def test_code_equal(expected: str, actual: str): a = expected b = actual lines_a, lines_b = a.split('\n'), b.split('\n') for line_idx, (line_a, line_b) in enumerate(zip(lines_a, lines_b)): for col_idx, (c_a, c_b) in enumerate(zip(line_a, line_b)): if c_a != c_b: raise ValueError( f'Code does not match (line {line_idx}, col {col_idx}):\n' + f' {line_b}\n' + f' ' + (f' ' * col_idx) + '^\n' ) if len(line_a) > len(line_b): l = len(line_b) raise ValueError( f'Unexpected end of line (line {line_idx}, col {l}):\n' + f' {line_b}\n' + f' ' + (f' ' * l) + '^\n' ) if len(line_a) < len(line_b): l = len(line_a) raise ValueError( f'Expected end of line (line {line_idx}, col {l}):\n' + f' {line_b}\n' + f' ' + (f' ' * l) + '^\n' ) if len(lines_a) > len(lines_b): raise ValueError(f'Unexpected end of file\n') if len(lines_a) < len(lines_b): raise ValueError(f'Expected end of file\n') class TestPostgresql(unittest.TestCase): def setUp(self): # create test db self.con = psycopg2.connect(f'dbname={dbname_entry} user={user} password={password}') self.con.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT) self.cur = self.con.cursor() self.cur.execute('create database test;') self.con.close() # create tables in test db self.con = psycopg2.connect(f'dbname={dbname_test} user={user} password={password}') self.con.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT) self.cur = self.con.cursor() self.cur.execute(''' CREATE TABLE users ( id INTEGER PRIMARY KEY, email TEXT, nickname TEXT, age INTEGER, is_admin BOOLEAN ); ''') def tearDown(self): # close the test db self.con.close() # delete the text db from the entry db self.con = psycopg2.connect(f'dbname={dbname_entry} user={user} password={password}') self.con.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT) self.cur = self.con.cursor() self.cur.execute('drop database test;') self.con.close() def test_generate_code(self): with open('tests/queries.sql', 'r') as f: queries_sql = f.read() with open('tests/queries.py', 'r') as f: queries_py = f.read() generated_py = generate(queries_sql, dbname=dbname_test, user=user, password=password) test_code_equal(queries_py, generated_py) if __name__ == '__main__': unittest.main() ```
{ "source": "jmerkin/rnaseq", "score": 3 }
#### File: rnaseq/scripts/exon_intron_ratio_processing.py ```python import pandas as pd import sys def single_gene(gene): if gene.intron.all(): return None gene = gene.groupby('intron').sum() retval = pd.Series([gene.loc[False, 'TPM'], gene.loc[False, 'TPM'] / (1e-3 + gene.loc[True, 'TPM'])], index=['total', 'ratio'] ) return retval infile = sys.argv[1] df = pd.read_csv(infile, sep='\t', header=0, index_col=0) df['gene'] = df.index.str.split(':').str.get(0) df['intron'] = df.index.str.endswith('intron') results = df.groupby('gene').apply(single_gene) results = results.sort_values('total') ratios = pd.np.log2(results.iloc[results.shape[0] - 1100:results.shape[0] - 100].ratio) mean = 2 ** ratios.mean() median = 2 ** ratios.median() open(infile.replace('quant.sf', 'mean_intron_ratio'), 'w').write('%.2f' % mean) open(infile.replace('quant.sf', 'median_intron_ratio'), 'w').write('%.2f' % median) #import IPython ; IPython.embed() ```
{ "source": "jmerkow/segmentation_models.pytorch", "score": 3 }
#### File: segmentation_models/common/blocks.py ```python import torch.nn as nn class Conv2dReLU(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, padding=0, stride=1, use_batchnorm=True, activation='relu', negative_slope=1e-2, **batchnorm_params): if activation == 'relu': self._act_fn = lambda: nn.ReLU(inplace=True) elif activation == 'leaky': self._act_fn = lambda: nn.LeakyReLU(negative_slope=negative_slope, inplace=True) super().__init__() layers = [ nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=not (use_batchnorm)), self._act_fn(), ] if use_batchnorm: layers.insert(1, nn.BatchNorm2d(out_channels, **batchnorm_params)) self.block = nn.Sequential(*layers) def forward(self, x): return self.block(x) ``` #### File: segmentation_models/decoders/__init__.py ```python from .deeplab import DeepLabDecoder from .fpn import FPNDecoder from .linknet import LinknetDecoder from .pspnet import PSPDecoder from .unet import UnetDecoder from .unetpp import UNetPPDecoder def get_decoder_cls(decoder_name): map = { 'FPN': FPNDecoder, 'UNET': UnetDecoder, 'LINK': LinknetDecoder, 'PSP': PSPDecoder, 'DEEPLAB': DeepLabDecoder, 'UNETPP': UNetPPDecoder, } return map[decoder_name.upper()] ``` #### File: segmentation_models/encoders/efficientnet.py ```python from efficientnet_pytorch.model import EfficientNet from efficientnet_pytorch.utils import get_model_params, relu_fn, url_map backbone_indices = { 'efficientnet-b0': [0, 2, 4, 10], 'efficientnet-b1': [1, 4, 7, 15], 'efficientnet-b2': [1, 4, 7, 15], 'efficientnet-b3': [1, 4, 7, 17], 'efficientnet-b4': [1, 5, 9, 21], 'efficientnet-b5': [2, 7, 12, 26], 'efficientnet-b6': [2, 8, 14, 30], 'efficientnet-b7': [3, 10, 17, 37] } class EfficientNetEncoder(EfficientNet): def __init__(self, model_name, **override_params): blocks_args, global_params = get_model_params(model_name, override_params) self.backbone_indices = backbone_indices[model_name] super().__init__(blocks_args, global_params) del self._fc def forward(self, inputs): """ Returns output of the final convolution layer """ backbone_indices = getattr(self, 'backbone_indices', None) if not backbone_indices: raise ValueError('no backbone indices, something went wrong!') # Stem x = relu_fn(self._bn0(self._conv_stem(inputs))) features = [] # Blocks for idx, block in enumerate(self._blocks): drop_connect_rate = self._global_params.drop_connect_rate if drop_connect_rate: drop_connect_rate *= float(idx) / len(self._blocks) x = block(x, drop_connect_rate=drop_connect_rate) if idx in backbone_indices: features.insert(0, x) # Head x = relu_fn(self._bn1(self._conv_head(x))) features.insert(0, x) return features def load_state_dict(self, state_dict, **kwargs): state_dict.pop('_fc.bias') state_dict.pop('_fc.weight') super().load_state_dict(state_dict, **kwargs) pretrained_settings = {'efficientnet-b0': {'imagenet': {'url': url_map['efficientnet-b0'], 'input_space': 'RGB', 'input_size': [3, 244, 244], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000, 'scale': 0.8975}}, 'efficientnet-b1': {'imagenet': {'url': url_map['efficientnet-b1'], 'input_space': 'RGB', 'input_size': [3, 244, 244], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000, 'scale': 0.8975}}, 'efficientnet-b2': {'imagenet': {'url': url_map['efficientnet-b2'], 'input_space': 'RGB', 'input_size': [3, 244, 244], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000, 'scale': 0.8975}}, 'efficientnet-b3': {'imagenet': {'url': url_map['efficientnet-b3'], 'input_space': 'RGB', 'input_size': [3, 244, 244], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000, 'scale': 0.8975}}, 'efficientnet-b4': {'imagenet': {'url': url_map['efficientnet-b4'], 'input_space': 'RGB', 'input_size': [3, 244, 244], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000, 'scale': 0.8975}}, 'efficientnet-b5': {'imagenet': {'url': url_map['efficientnet-b5'], 'input_space': 'RGB', 'input_size': [3, 244, 244], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000, 'scale': 0.8975}}, 'efficientnet-b6': {'imagenet': {'url': url_map['efficientnet-b6'], 'input_space': 'RGB', 'input_size': [3, 244, 244], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000, 'scale': 0.8975}}, 'efficientnet-b7': {'imagenet': {'url': url_map['efficientnet-b7'], 'input_space': 'RGB', 'input_size': [3, 244, 244], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000, 'scale': 0.8975}}} efficientnet_encoders = {'efficientnet-b0': {'encoder': EfficientNetEncoder, 'out_shapes': [1280, 112, 40, 24, 16], 'pretrained_settings': pretrained_settings['efficientnet-b0'], 'params': {'model_name': 'efficientnet-b0'}}, 'efficientnet-b1': {'encoder': EfficientNetEncoder, 'out_shapes': [1280, 112, 40, 24, 16], 'pretrained_settings': pretrained_settings['efficientnet-b1'], 'params': {'model_name': 'efficientnet-b1'}}, 'efficientnet-b2': {'encoder': EfficientNetEncoder, 'out_shapes': [1408, 120, 48, 24, 16], 'pretrained_settings': pretrained_settings['efficientnet-b2'], 'params': {'model_name': 'efficientnet-b2'}}, 'efficientnet-b3': {'encoder': EfficientNetEncoder, 'out_shapes': [1536, 136, 48, 32, 24], 'pretrained_settings': pretrained_settings['efficientnet-b3'], 'params': {'model_name': 'efficientnet-b3'}}, 'efficientnet-b4': {'encoder': EfficientNetEncoder, 'out_shapes': [1792, 160, 56, 32, 24], 'pretrained_settings': pretrained_settings['efficientnet-b4'], 'params': {'model_name': 'efficientnet-b4'}}, 'efficientnet-b5': {'encoder': EfficientNetEncoder, 'out_shapes': [2048, 176, 64, 40, 24], 'pretrained_settings': pretrained_settings['efficientnet-b5'], 'params': {'model_name': 'efficientnet-b5'}}, 'efficientnet-b6': {'encoder': EfficientNetEncoder, 'out_shapes': [2304, 200, 72, 40, 32], 'pretrained_settings': pretrained_settings['efficientnet-b6'], 'params': {'model_name': 'efficientnet-b6'}}, 'efficientnet-b7': {'encoder': EfficientNetEncoder, 'out_shapes': [2560, 224, 80, 48, 32], 'pretrained_settings': pretrained_settings['efficientnet-b7'], 'params': {'model_name': 'efficientnet-b7'}}} ```
{ "source": "jmerle/battlecode-2022", "score": 2 }
#### File: battlecode-2022/scripts/run.py ```python import re import signal import subprocess import sys from datetime import datetime from multiprocessing import Pool, Value from pathlib import Path def run_matches(bot1, bot2, maps, timestamp): result = { "bot1": bot1, "bot2": bot2 } winners_by_map = {} current_map = None args = [ str(Path(__file__).parent.parent / "gradlew"), "run", f"-PteamA={bot1}", f"-PteamB={bot2}", f"-Pmaps={','.join(maps)}", f"-PreplayPath=replays/run-{timestamp}-%TEAM_A%-vs-%TEAM_B%.bc22" ] proc = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) lines = [] while True: line = proc.stdout.readline() if not line: break line = line.decode("utf-8").rstrip() lines.append(line) map_match = re.search(r"[^ ]+ vs\. [^ ]+ on ([^ ]+)", line) if map_match is not None: current_map = map_match[1] result_match = re.search(r"([^ ]+) \([AB]\) wins \(round (\d+)\)", line) if result_match is not None: global counter with counter.get_lock(): counter.value += 1 current_match = counter.value total_matches = len(maps) * 2 prefix = f"[{str(current_match).rjust(len(str(total_matches)))}/{total_matches}]" winner_color = "red" if result_match[1] == bot1 else "blue" print(f"{prefix} {result_match[1]} wins in {result_match[2]} rounds as {winner_color} on {current_map}") winners_by_map[current_map] = result_match[1] if proc.wait() != 0: result["type"] = "error" result["message"] = "\n".join(lines) return result result["type"] = "success" result["winners"] = winners_by_map return result def main(): signal.signal(signal.SIGINT, lambda a, b: sys.exit(1)) if len(sys.argv) != 3: print("Usage: python scripts/run.py <bot 1 name> <bot 2 name>") sys.exit(1) bot1 = sys.argv[1] bot2 = sys.argv[2] # Based on SERVER_MAPS in https://github.com/battlecode/battlecode22/blob/main/client/visualizer/src/constants.ts maps = [ # Default # "maptestsmall", "eckleburg", "intersection", # Sprint 1 "colosseum", "fortress", "jellyfish", "nottestsmall", "progress", "rivers", "sandwich", "squer", "uncomfortable", "underground", "valley", # Sprint 2 "chessboard", "collaboration", "dodgeball", "equals", "highway", "nyancat", "panda", "pillars", "snowflake", "spine", "stronghold", "tower", # International qualifier "charge", "definitely_not_league", "fire", "highway_redux", "lotus", "maze", "olympics", "one_river", "planets", "snowflake_redux", "treasure", "walls", # US qualifier "chalice", "cobra", "deer", "desert", "despair", "flowers", "island_hopping", "octopus_game", "rugged", "snowman", "tunnels", "vault" ] timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") global counter counter = Value("i", 0) print(f"Running {len(maps) * 2} matches") with Pool(2) as pool: results = pool.starmap(run_matches, [(bot1, bot2, maps, timestamp), (bot2, bot1, maps, timestamp)]) if any(r["type"] == "error" for r in results): for r in results: if r["type"] == "error": print(f"{r['bot1']} versus {r['bot2']} failed with the following error:") print(r["message"]) sys.exit(1) map_winners = {} bot1_wins = 0 bot2_wins = 0 for r in results: for map, winner in r["winners"].items(): if map in map_winners and map_winners[map] != winner: map_winners[map] = "Tied" else: map_winners[map] = winner if winner == bot1: bot1_wins += 1 else: bot2_wins += 1 tied_maps = [k for k, v in map_winners.items() if v == "Tied"] bot1_superior_maps = [k for k, v in map_winners.items() if v == bot1] bot2_superior_maps = [k for k, v in map_winners.items() if v == bot2] if len(tied_maps) > 0: print(f"Tied maps ({len(tied_maps)}):") for map in tied_maps: print(f"- {map}") else: print(f"There are no tied maps") if len(bot1_superior_maps) > 0: print(f"Maps {bot1} wins on as both red and blue ({len(bot1_superior_maps)}):") for map in bot1_superior_maps: print(f"- {map}") else: print(f"There are no maps {bot1} wins on as both red and blue") if len(bot2_superior_maps) > 0: print(f"Maps {bot2} wins on as both red and blue ({len(bot2_superior_maps)}):") for map in bot2_superior_maps: print(f"- {map}") else: print(f"There are no maps {bot2} wins on as both red and blue") print(f"{bot1} wins: {bot1_wins} ({bot1_wins / (bot1_wins + bot2_wins) * 100:,.2f}% win rate)") print(f"{bot2} wins: {bot2_wins} ({bot2_wins / (bot1_wins + bot2_wins) * 100:,.2f}% win rate)") if __name__ == "__main__": main() ```
{ "source": "jmerle/inkdrop-snippets", "score": 3 }
#### File: inkdrop-snippets/media/demo.py ```python import time import pyautogui def wait(ms): time.sleep(ms / 1000) def click(): pyautogui.click() def simulate_typing(text, wait_after=250): pyautogui.write(text, interval=0.05) wait(wait_after) def shortcut(keys, wait_after=250): pyautogui.press(keys) wait(wait_after) def enter(wait_after=250): shortcut(['enter'], wait_after) def tab(wait_after=250): shortcut(['tab'], wait_after) def new_section(wait_after=250): enter(0) enter(wait_after) wait(5000) click() wait(3500) click() wait(500) simulate_typing('# Snippets plugin for Inkdrop') new_section() simulate_typing('Usage:') enter() simulate_typing('1. Type trigger') enter() simulate_typing('Press Tab') enter() simulate_typing('Magic!') new_section() simulate_typing('Static snippet:') enter() simulate_typing('hello') tab() new_section() simulate_typing('Dynamic snippet:') enter() simulate_typing('date') tab() new_section() simulate_typing('Static snippet with placeholders:') enter() simulate_typing('name') tab() simulate_typing('Jane') tab() simulate_typing('Doe') wait(2000) click() ```
{ "source": "jmerle/inkdrop-table-editor", "score": 3 }
#### File: inkdrop-table-editor/media/autokey.py ```python import time def wait(ms): time.sleep(ms / 1000) def wait_short(): wait(250) def wait_long(): wait(500) def simulate_typing(text): for ch in text: keyboard.send_keys(ch) wait(50) ctrl = '<ctrl>' alt = '<alt>' shift = '<shift>' enter = '<enter>' tab = '<tab>' left = '<left>' right = '<right>' up = '<up>' down = '<down>' def send_shortcut(*keys): wait_short() keyboard.send_keys('+'.join(keys)) wait_short() def escape(): send_shortcut(ctrl, enter) def align_left(): send_shortcut(ctrl, alt, left) def align_right(): send_shortcut(ctrl, alt, right) def align_center(): send_shortcut(ctrl, alt, up) def align_none(): send_shortcut(ctrl, alt, down) def move_left(): send_shortcut(ctrl, left) def move_right(): send_shortcut(ctrl, right) def move_up(): send_shortcut(ctrl, up) def move_down(): send_shortcut(ctrl, down) def move_next_cell(): send_shortcut(tab) def move_previous_cell(): send_shortcut(shift, tab) def move_next_row(): send_shortcut(enter) def move_row_up(): send_shortcut(ctrl, alt, shift, up) def move_row_down(): send_shortcut(ctrl, alt, shift, down) def move_column_left(): send_shortcut(ctrl, alt, shift, left) def move_column_right(): send_shortcut(ctrl, alt, shift, right) wait(2500) mouse.click_relative_self(0, 0, 1) wait(4000) mouse.click_relative_self(0, 0, 1) simulate_typing('| Command') move_next_cell() move_next_row() simulate_typing('Move to next cell') move_next_cell() simulate_typing('Tab') move_up() simulate_typing('Default keybinding') move_down() move_next_row() simulate_typing('Move to previous cell') move_next_cell() simulate_typing('Shift + Tab') move_previous_cell() move_next_cell() move_next_row() simulate_typing('Move to next row') move_next_cell() simulate_typing('Enter') move_next_row() simulate_typing('Move around') move_next_cell() simulate_typing('Cmd/Ctrl + Arrows') move_up() move_left() move_down() move_right() move_next_row() simulate_typing('Move rows around') move_next_cell() simulate_typing('Cmd/Ctrl + Alt + Shift + Up/Down') move_row_up() move_row_up() move_row_down() move_row_down() move_next_row() simulate_typing('Move columns around') move_next_cell() simulate_typing('Cmd/Ctrl + Alt + Shift + Left/Right') move_column_left() move_column_right() move_next_row() simulate_typing('Change alignment') move_next_cell() simulate_typing('Cmd/Ctrl + Alt + Arrows') align_left() align_center() align_right() align_none() move_next_row() simulate_typing('Exit the table') move_next_cell() simulate_typing('Cmd/Ctrl + Enter') wait_long() escape() wait(1000) mouse.click_relative_self(0, 0, 1) ```
{ "source": "jmerle/lean-python-generator", "score": 2 }
#### File: lean-python-generator/integration/pull_repos.py ```python from utils import * # Simple setup script that gets Lean and runtime repos into our workspace # under `generated` directory def main(): ensure_command_availability("git") ensure_command_availability("dotnet") ensure_command_availability("pyright") project_root = Path(__file__).absolute().parent.parent generated_dir = project_root / "generated" lean_dir = generated_dir / "Lean" runtime_dir = generated_dir / "runtime" stubs_dir = generated_dir / "stubs" generator_dir = project_root / "QuantConnectStubsGenerator" generated_dir.mkdir(parents=True, exist_ok=True) ensure_repository_up_to_date("QuantConnect/Lean", lean_dir) ensure_repository_up_to_date("dotnet/runtime", runtime_dir) if __name__ == "__main__": main() ```
{ "source": "jmerone/svgpath2mpl", "score": 3 }
#### File: svgpath2mpl/tests/test_parser.py ```python import matplotlib as mpl import matplotlib.pyplot as plt from svgpath2mpl import parse_path d = "M300,200 h-150 a150,150 0 1,0 150,-150 z" fill = "red" stroke = "blue" stroke_width = 5 def test_parse_path(): path = parse_path(d) patch = mpl.patches.PathPatch(path, facecolor=fill, edgecolor=stroke, linewidth=stroke_width) fig = plt.figure(figsize=(12, 5.25)) ax = fig.add_subplot(111) ax.add_patch(patch) ax.set_aspect(1) ax.set_xlim([0, 1200]) ax.set_ylim([0, 400]) ```
{ "source": "jmerrell93/pynet_work", "score": 2 }
#### File: jmerrell93/pynet_work/telnet_conn.py ```python import telnetlib import time from snmp_helper import snmp_get_oid,snmp_extract TELNET_TIMEOUT = 6 TELNET_PORT = 23 COMMUNITY = 'galileo' SNMP_PORT = 161 username = 'pyclass' password = '<PASSWORD>' OID_NAME = dict() OID_NAME['1.3.6.1.2.1.1.1.0'] = 'DEVICE DESCRIPTION' OID_NAME['1.3.6.1.2.1.1.5.0'] = 'DEVICE NAME' def connect_and_query(ip_address): remote_conn = telnetlib.Telnet(ip_address, TELNET_PORT, TELNET_TIMEOUT) remote_conn.write(username + '\n') time.sleep(1) remote_conn.write(password + '\n') remote_conn.write("terminal length 0" + '\n') time.sleep(1) output = remote_conn.read_very_eager() print output snmp_query('1.3.6.1.2.1.1.1.0', ip_address) snmp_query('1.3.6.1.2.1.1.5.0', ip_address) def snmp_query(OID, ip_address): device = (ip_address, COMMUNITY, SNMP_PORT) snmp_get = snmp_get_oid(device, OID) output = snmp_extract(snmp_get) print "\nFOR DEVICE %s" %ip_address print OID_NAME[OID] print output + '\n' connect_and_query('172.16.58.3') connect_and_query('192.168.127.12') ```
{ "source": "jmerten82/pymfree", "score": 3 }
#### File: pymfree/core/derivative.py ```python import numpy as np import torch from pymfree.core.function import DomainFunction from pymfree.util.utils import check_pymfree_type from pymfree.util.polynomial import count_dim_contrib class LinearDerivative(object): r""" A linear derivative operator in PyMfree. Can have several additive components, stored separately. A functional form of the derivative can be provided via a DomainFunction. Parameters ---------- signature : str The description of the operator via a signature. Must be a string. The actual signature must be between two '$' characters. Each components within the signature starts with a prefactor and then the derivative components within round brackets. See example later on. function : pymfree.core.function.DomainFunction, optional If wanted, a functional form of a derivative can be provided, which is of course not a dreivative operator. Defaults to None. Raises ------ TypeError If function is given and not a DomainFunction or None. See also -------- pymfree.core.derivative.derivative_parser Reads derivative signatures. """ def __init__(self, signature, function=None): self.signature, comps = derivative_parser(signature) if not isinstance(function, DomainFunction) and function is not None: raise TypeError("LinearDerivative: Implementation of\ derivative functional form must be DomainFunction.") self.F = function self.components = [DerivativeComponent(comp) for comp in comps] def __call__(self, x): r""" Applies the eventually provided derivative to a coordinate. This only makes sense if a DomainFunction was provided. Otherwise a 0 scalar is returned. Parameters ---------- x : torch.Tensor The coordinates the derivative should be applied to. Must be pymfree coordinate. Returns ------- torch.Tensor A pymfree scalar with F(x), given a F was provided as DomainFunction at construction. Otherwise Zeroes are returned. Raises ------ TypeError If x is not a pymfree coordinate. """ if not check_pymfree_type(x)['coordinate']: raise TypeError("LinearDerivative: Input is not a coordinate.") return self.F(x) def __len__(self): r""" Length operator. Returns the number of derivative components. Returns ------- int The length of the components vector, so the number of derivative components. """ return len(self.components) def __repr__(self): r""" The class representation. Prints the class string to stdout. Returns ------- stdout Returns class string. """ return self.__str__() def __str__(self): r""" The string representation of the class. Provides information on the total derivative signature and the attached function form. Returns ------- str The string representation of the class. """ one = "Signature\n" one += "---------\n" one += self.signature + "\n\n" if self.F is not None: one += "Function\n" one += "--------" one += str(self.F.F.__name__) return str(one) class DerivativeComponent(object): r""" A representation of derivative components. With component we mean a closed derivative operator of a certain order. E.g. the 1/2*(d^2 / dx^2) in the 2D Laplacian. Parameters ---------- signature : str A valid derivative component signature. E.g. 0.5(0, 0) Attributes ---------- factor : float The factor in front of the derivative. E.g. a 1/2 in 2D Laplacian. component_vector : numpy.ndarray A vector showing the derivative order of in each relevant component. E.g. d^2/dxdz would be [1, 0, ,1] See also -------- pymfree.core.derivative.derivative_component_parser Reads the str signatures of derivative components. """ def __init__(self, signature): self.signature, \ self.factor, \ self.component_vector = derivative_component_parser(signature) self.component_vector = torch.tensor(self.component_vector) self.component_vector = count_dim_contrib( self.component_vector.unsqueeze(0), [0, 1, 2, 3, 4]) def __len__(self): r""" The order of the derivative component. """ return len(self.component_vector) @property def order(self): return np.sum(self.component_vector[:, 1]) @property def max_dim(self): return self.component_vector[-1, 0] def dim_vector(self, dim): dim_vector = torch.zeros(dim, dtype=torch.int64) for line in self.component_vector: dim_vector[line[0]] = torch.from_numpy(line)[1] return dim_vector def max_factor(self): current = self.factor for line in self.component_signature: current *= np.math.factorial(line[1]) return current def derivative_parser(input): if not isinstance(input, str): raise TypeError("derivative_parser: Signature must be a string.") if input.count('$') < 2: raise TypeError("derivative_parser: Input signature format invalid.") # Removing all white spaces input = input.replace(' ', '') # Extracting functional part, according to $-convention signature = input.split('$')[1] if signature.count('(') == 0: raise TypeError("derivative_parser: No derivative in signature.") if not signature.count('(') == signature.count(')'): raise TypeError( "derivative_parser: Bracket count in signature invalid.") # Extracting components, according to ()-convention component_signature = [] component_signature.append(signature[0:signature.find(')')+1]) temp = signature[signature.find(')')+1:] index = temp.find('(') while index > 0: component_signature.append(temp[0:temp.find(')')+1]) temp = temp[temp.find(')')+1:] index = temp.find('(') return signature, component_signature def derivative_component_parser(input): if not isinstance(input, str): raise TypeError( "derivative_component_parser: Signature must be a string.") if input.count('(') != 1 and input.count(')') != 1: raise TypeError( "derivative_component_parser: Input signature contains no brackets.") if input.count(',') == 0: raise TypeError( "derivative_component_parser: Input signature contains no colons.") signature = input.replace(' ', '') factor = float(signature[0:signature.find('(')]) temp = signature[signature.find('(')+1:signature.find(')')] indices = temp.split(',') # Little list comprehension the end and convert indices = [int(element) for element in indices] return signature, factor, indices ``` #### File: pymfree/core/domain.py ```python import torch import faiss import numpy as np from pymfree.core.function import Norm from pymfree.core.function import L1Norm from pymfree.core.function import L2Norm from pymfree.core.function import L2SquaredNorm from pymfree.core.function import LInfNorm from pymfree.core.function import DomainFunction from pymfree.util.utils import check_pymfree_type from pymfree.util.utils import scale_params class Domain(object): r""" A mesh-free domain representation. Implements means to save support coordinates in n-dimensions, together with a function residing on the domain. Establishes norms and nearest neighbours searches on the domain, together with coordinate queries. Parameters ---------- coordinates : list, numpy.ndarray or torch.Tensor The support coordinates of the domain. If provides as a list of floats, also the spatial dimensionality of the domain must be provided (see dim). If torch tensor or numpy array are provided as PyMfree coordinates, the dimensioanlity is directly inferred, otherwise it must also be provided. values : list, numpy.ndarray, torch.Tensor or pymfree.core.function.DomainFunction A function with values on the support points. If provided as numpy array or torch tensor, the input must be scalar. Also, the length of the function values must be equal or longer than the number of support coordinates. Instead of an input vector with values, also a DomainFunction can be provided, which is evaluated at the support coordinates. norm : pymfree.core.function.Norm, optional The norm to calculate distances on the Domain. Default is L2Norm k : int, optional The number of nearest neighbours that are searched within support given a coordinates query. dim : int, optional If scalars are provided at construction for the support coordinates, the dimension provided here is used to infer the number of spatial components of the input. E.g. a scalar of 10 input numbers and dim set to 3 would result in 3 3-d support coordinates. Defaults to 2. device : torch.device, optional The device the domain shall be created on. This means that all data vectors are stored on this device. Default is torch.device('cpu) and it can be changed later via Domain.to(device) Attributes ---------- All of the following live on a specifc device which can be changed via Domain.to(device). node_coordinates : torch.Tensor This is where the domains support points are stored. The format of this is PyMfree coordinate. node_values : torch.Tensor A PyMfree scalar that holds function values at the support coordinates. query : torch.Tensor A PyMfree coordinate which stores the query coordinates the user requested via the call operator. This is None at construction and created after the call operator. neighbour_map : torch.Tensor The index map relating to query search. E.g. if n coordinates are queried and k is set to m, the dimension of this object would be (n, 1, m). This is None at construction and created after the call operator. neighbour_distances :torch.Tensor The distances to the support nodes relating to query search. E.g. if n coordinates are queried and k is set to m, the dimension of this object would be (n, 1, m). This is None at construction and created after the call operator. k : torch.Tensor The number of nearest neigbours for query searches. scale : dict If rescale_coordinates is called this holds the transformation parameters as a dict of torch tensors. Contains keys unit, shift and scale. Finally, this is the index which is used to calculate nearest neighbours fast. index : faiss.FlatIndex or None In most cases this is a faiss flat index, depending which Norm is used on the Domain. If a Norm is used that is unknown to faiss, the index is None and an internal, slower routines is used to calculate neighbour_map and distances. Raises ------ TypeError If coordinates are provided as numpy array or torch tensor but are not scalar or coordinates. TypeError If coordinates are not provided as list, numpy array or torch tensor. TypeError If the values are provided as array but are either too short (< coordinates) or not a scalar. TypeError If values are not a list, numpy array, torch tensor or DomainFunction. TypeError If norm is not a pymfree.core.function.Norm. TypeError If k is not an integer. Notes ----- Thinking about including faiss GPU index in the future. Currently this dodes not support all Norms. See also -------- pymfree.core.function.DomainFunction One way of providing function values on the Domain. pymfree.core.domain.Domain() The call operator which initiates a coordinate query. Here the value k becomes relevant. pymfree.core.domain.Domain.to(device) Changes the device where the domain data is stored. pymfree.core.domain.Domain.rescale_coordinates() Shifts and scales the domain coordinates into a fixed window. pymfree.core.function.Norm.L2Norm The default Norm for the Domain. References ---------- [1] [Faiss](https://github.com/facebookresearch/faiss) Facebook AI Research Similarity Search Examples -------- The following constructs a domain with one 4-d coordinate at (1.,1.,1.,1.) and sets this coordinate to 42. >>> from pymfree.core.domain import Domain >>> my_domain = Domain([1., 1., 1., 1., 666.], [42., 66., 3.14], dim=4) And this constructs a 3-d domain with 10000 random coordinates, uses the L1Norm on the mesh, but sets values at the support nodes to the L2-norm from the origin. >>> import numpy as np >>> from pymfree.core.domain import Domain >>> from pymfree.core.function import L1Norm >>> from pymfree.core.function import DomainFunction >>> from pymfree.util.functional import l2 >>> l2func = DomainFunction(l2) >>> my_domain = Domain(np.random.rand(1000,3), l2func, L1Norm) """ def __init__( self, coordinates, values, norm=L2Norm, k=32, dim=2, device=torch.device('cpu')): if isinstance(coordinates, list): self.node_coordinates = torch.tensor(coordinates, device=device)[ :-(len(coordinates) % dim)].reshape(-1, dim) elif isinstance(coordinates, np.ndarray): if len(coordinates.shape) == 1: self.node_coordinates = torch.tensor( coordinates, device=device)[ :-(len(coordinates) % dim)].reshape(-1, dim) elif len(coordinates.shape) == 2: self.node_coordinates = torch.tensor( coordinates, device=device) else: raise TypeError( "PyMfree Domain: Input array dimensions invalid") elif isinstance(coordinates, torch.Tensor): if len(coordinates.shape) == 1: self.node_coordinates = coordinates[ :-(len(coordinates) % dim)].reshape(-1, dim) elif len(coordinates.shape) == 2: self.node_coordinates = coordinates else: raise TypeError( "PyMfree Domain: Input array dimensions invalid") self.node_coordinates.to(device) else: raise TypeError( "PyMfree Domain: Input coordinates must \ be torch tensor, numpy array or list.") if isinstance(values, DomainFunction): # TO BE SEEN WHAT HAPPENS IF THIS IS CALLED ON CUDA DEVICE self.node_values = values(self.node_coordinates) elif isinstance(values, list): if len(values) < len(self): raise TypeError( "PyMfree Domain: Node value list too short.") else: self.node_values = torch.tensor( values[:len(self)], device=device) elif isinstance(values, np.ndarray): if len(values) < len(self) or len(values.shape != 1): raise TypeError( "PyMfree Domain: Node value array invalid.") else: self.node_values = torch.tensor( values[:len(self)], device=device) elif isinstance(values, torch.Tensor): if len(values) < len(self) or len(values.shape != 1): raise TypeError( "PyMfree Domain: Node value array invalid.") else: self.node_values = values[:len(self)] self.node_values.tol(device) else: raise TypeError( "PyMfree Domain: Input values must come from DomainFunction \ a torch tensor, numpy array or list.") if not isinstance(norm, Norm): raise TypeError("PyMfree Domain: Need a proper Norm on Domain.") self.norm = norm if isinstance(self.norm, L1Norm): self.index = faiss.IndexFlat(self.dim, faiss.METRIC_L1) elif isinstance(self.norm, L2Norm): self.index = faiss.IndexFlatL2(self.dim) elif isinstance(self.norm, L2SquaredNorm): self.index = faiss.IndexFlatL2(self.dim) elif isinstance(self.norm, LInfNorm): self.index = faiss.IndexFlat(self.dim, faiss.METRIC_Linf) else: self.index = None if isinstance(k, int): self.k = k else: raise TypeError("PyMfree Domain: k must be an integer.") if self.index is not None: self.index.add( self.node_coordinates.to(torch.device('cpu')).numpy()) self.query = None self.neighbour_map = None self.neighbour_distances = None self.__counter = 0 self.k = torch.tensor([k], device=device) self.scale = {} self.scale['shift'] = torch.tensor([0.], device=device) self.scale['scale'] = torch.tensor([1.], device=device) self.scale['unit'] = torch.tensor([1.], device=device) self.scale['rescaled'] = False def __len__(self): r""" The length of the domain. Just the number of support points. Returns ------- int Calls len(self.node_coordinates) """ return len(self.node_coordinates) def __iter__(self): return self def __next__(self): r""" The iterator functionality. Moves through the support coordinates and returns them while incrementing an internal counter. Counter is reset as soon as the last coordinate is reached. Returns ------- torch.Tensor, torch.Tensor Single support coordinate with value while being iterated. """ if self.__counter > len(self)-1: self.__counter = 0 raise StopIteration else: self.__counter += 1 return self.node_coordinates[ self.__counter-1], self.node_values[self.__counter-1] def __str__(self): r""" String representation of the class. Shows information on the nodes and dimensons, as well as query information and evetual rescaling. Returns ------- str Essential class information. """ one = str(self.__class__.__name__) one = one[one.rfind('.')+1:one.rfind('\'')] two = str( len(self) + "Nodes; \t" + str(self.dim) + "spatial dimensions.") three = str(self.index.__class__.__name__) + "performs fast nn search." if self.query_ready: four = str(len(self.query)) + " point query established." else: four = "No query in Domain." five = "Coordinates info ---: " + "Unit: " + str(self.scale['unit'].item()) + " Scale: " + str(self.scale['scale'].item()) + " Shift: " + str(self.scale['shift'].item()) print(one+"\n"+two+"\n"+three+"\n"+four+"\n"+five) def __repr__(self): r""" Representation of the class. Shows information on the nodes and dimensons, as well as query information and evetual rescaling. Returns ------- stdout Essential class information. """ return print(self) def __call__(self, x): r""" Call operator for the class, sets a coordinate query. This is the main function for the Domain, which lets the user set a coordinate query. If domain is rescaled via rescale_coordinates, transformation is applied to query coordinates. x -> x*scale +shift. Parameters ---------- x : list, numpy.ndarray or torch.Tensor The coordinates to be queried. If given as a scalar, the spatial dimensionality is set to the one of the Domain (see example). Returns ------- neighbour_distances, neighbour_map : torch.Tensor, torch.Tensor The distances and indeces of the k nearest neighbours in the support domain for the query. k is set at construction. Raises ------ TypeError If query is numpy array or torch tensor but not a PyMfree coordinate. TypeError If query is not a numpy array, torch tensor or list. See also -------- pymfree.core.domain.Domain.rescale_coordinates() Shifts and scales the domain coordinates into a fixed window. Examples -------- The following queries two points on a 3-d Domain: >>> import numpy as np >>> from pymfree.core.domain import Domain >>> my_domain = Domain(np.random.rand(100,3), np.random.rand(100)) >>> my_domain([1., 2., 3., 4., 5., 6.]) and the output will be index map and distances of shape (2, 1, 32), since the domain has k=32 by default. The 1 in the middle is PyMfree convention since the output is not a coordinate. """ if isinstance(x, list): self.query = torch.tensor(x, device=self.device)[ :-(len(x) % self.dim)].reshape(-1, self.dim) elif isinstance(x, np.ndarray): if len(x.shape) == 1: self.query = torch.tensor( x, device=self.device)[ :-(len(x) % self.dim)].reshape(-1, self.dim) elif len(x.shape) == 2: self.query = torch.tensor( x, device=self.device) else: raise TypeError( "PyMfree Domain: Query input array dimensions invalid") elif isinstance(x, torch.Tensor): if len(x.shape) == 1: self.query = x[ :-(len(x) % self.dim)].reshape(-1, self.dim) elif len(x.shape) == 2: self.query = x else: raise TypeError( "PyMfree Domain: Query array dimensions invalid") self.query.to(self.device) else: raise TypeError( "PyMfree Domain: Input query array must \ be torch tensor, numpy array or list.") if self.scale['rescaled']: self.query *= self.scale['scale'] self.query += self.scale['shift'] if self.index is not None: self.neighbour_distances, self.neighbour_map = self.index.search( self.query.numpy(), self.k) self.neighbour_distances = torch.tensor( self.neighbour_distances, device=self.device) self.neighbour_map = torch.tensor( self.neighbour_map, device=self.device) if isinstance(self.index, faiss.IndexFlatL2): self.neighbour_distances = torch.sqrt(self.neighbour_distances) else: self.neighbour_distances, self.neighbour_map = any_norm_nn_search( self.node_coordinates, self.query, self.norm, self.k) self.neighbour_distances.unsqueeze(1) self.neighbour_map.unsqueeze(1) return self.neighbour_distances, self.neighbour_map def __getitem__(self, index): r""" The square bracket opertator Returns the support coordinate at a given index position. Parameters ---------- index : int The index position of the coordinate to be returned. Returns ------- torch.Tensor The coorindate at the queried index. Raises ------ IndexError If index out of bounds. """ if not isinstance(index, int) or index > len(self)-1: raise IndexError("PyMfree Domain: Index out of bounds.") return self.node_coordinates[index] def rescale_coordinates(self, min_in=-1., max_in=1.): r""" Rescales support coordinates into given window. This routines loops through all spatial dimensions and finds the one which has the largest difference between the largest and smallest coorindate component. Then it rescales this distances into the interval max_in - min_in and shifts the minimum to min_in. Parameters ---------- min_in : int, optional The new minimum location for the longest spatial dimension. Defaults to -1. max_in : int, optional The new maximum location for the longest spatial dimension. Defaults to -1. Returns ------- No direct output, but Domain attributr self.scale is set accordingly. Raises ------ TypeError If min_in or max_in are not given as floats. """ if not isinstance(min_in, float) or not isinstance(max_in, float): raise TypeError("PyMfree Domain: domain bounds must be float.") self.scale['scale'], self.scale['shift'] = scale_params( self.coordinates, min_in, max_in) self.scale['unit'] = torch.tensor( max_in - min_in, device=self.device) self.coordinates *= self.scale['scale'] self.coordinates += self.scale['shift'] self.scale['rescale'] = True def to(self, device=torch.device('cpu')): r""" Transfers Domain to a given device. All data attributes are moved to provided device. Parameters ---------- device : torch.device, optional The target torch device. Default is torch.device('cpu'). Raises ------ TypeError If device is not a torch device. """ if not isinstance(device, torch.device): raise TypeError("PyMfree Domain: Device must be torch device.") self.node_coordinates = self.node_coordinates.to(device) self.node_values = self.node_values.to(device) if self.query is not None: self.query = self.query.to(device) if self.neighbour_map is not None: self.neighbour_map = self.neighbour_map.to(device) if self.neighbour_distances is not None: self.neighbour_distances = self.neighbour_distances.to(device) self.k = self.k.to(device) self.scale['shift'] = self.scale['shift'].to(device) self.scale['scale'] = self.scale['scale'].to(device) self.scale['unit'] = self.scale['unit'].to(device) @property def shape(self): r""" Returns base Domain properties. The basic dimensionalities of the Domain. Returns ------- dict Entries are 'nodes', number of support nodes. 'dim', the number of spatial dimensions and 'query', the number of query nodes. """ if self.query_ready: helper = len(self.query_ready) else: helper = 0 return {'nodes': len(self), 'dim': self.dim, 'query': helper} @property def dim(self): r""" The spatial dimension of the domain. Directly derived from the shape of the support coordinates. Returns ------- int The spatial dimension of the support node coordinates. """ return self.node_coordinates.shape[1] @property def query_ready(self): r""" Flag if query coordinates have been set. Returns ------- bool True if query attribute exists, False otherwise. """ return isinstance(self.query, torch.Tensor) @property def device(self): r""" The device the Domain resides on. Most data arrays have to be assigned to a specific device and this routines returns that device. Returns ------- torch.device The Domain device, as inferred from the device of the support coordinate vector. """ return self.node_coordinates.device def any_norm_nn_search(support, query, norm, k=32): r""" Nearest neighbour search for arbitrary norm. Since not all norms are implemented in e.g. faiss, this offers a way of brute-force calculating nearest neighbours with any norm. Please be adviced that this can be orders of magnitude slower than a smart index search, even if that is flat. Parameters ---------- support : torch.Tensor The support coordinates for the search. Must be PyMfree coordinate. query : torch.Tensor The query coordinates. Must be PyMfree coordinates norm : pymfree.core.function.Norm The PyMfree norm to be used. This is not recommended for standard norms auch L2, L1 or Linf, since those are implemented by default in many faster routines such as faiss or sklearn.neighbors.KdTree. k : int, optional The number of nearest neighbours to be searched. Defaults to 32. Returns ------- distances, indices : torch.Tensor, torch.Tensor The distances and index postions of the k nearest neighbours for each query point. Output shape is hence (len(query), k). Raises ------ TypeError If support or query are not PyMfree coordinates. TypeError If norm is not a PyMfree Norm. TypeError If k is not given as int. References ---------- [1] [faiss](https://github.com/facebookresearch/faiss) [2] [Scikit-learn KdTree]( https://scikit-learn.org/stable/modules/generated/\ sklearn.neighbors.KDTree.html#sklearn.neighbors.KDTree) """ if not check_pymfree_type(support)['coordinate']: raise TypeError("PyMfree nn search: Support must be coordinates") if not check_pymfree_type(query)['coordinate']: raise TypeError("PyMfree nn search: Query must be coordinates") if not isinstance(norm, Norm): raise TypeError( "PyMfree nn search: Norm must be PyMfree norm.") if not isinstance(k, int): raise TypeError("PyMfree nn search: k must be integer.") n = len(query) device = support.device result = torch.zeros(n, k, dtype=torch.float32, device=device) indices = torch.zeros(n, k, dtype=torch.int64, device=device) for i, element in enumerate(query): current = torch.sub(support, element) current = norm.no_checks(current) dists, numbers = torch.sort(current) result[i, :] = dists[: k] indices[i, :] = numbers[: k] return result, indices ``` #### File: pymfree/util/polynomial.py ```python import torch class PolynomialSupport(object): r""" ... ... """ def __init__(self, dim, pdeg): if not isinstance(dim, int) or pdeg < 0: raise TypeError("PolynomialSupport: Dim must be int > 0.") if not isinstance(pdeg, int) or pdeg < 0: raise TypeError("PolynomialSupport: Dim must be int > 0.") self.polynomials = get_poynomials(dim, pdeg) def __len__(self): return len(self.polynomials) def shape(self): return {"dim": self.polynomials.shape[1], "pdeg": torch.max(self.polynomials).item(), "terms": len(self)} def embed_AP(self, coords, AP): # Careful, coords must have origin at query point if not isinstance(coords, torch.Tensor): raise TypeError( "PolynomialSupport: Coordinate input must be torch tensor.") if not isinstance(AP, torch.Tensor): raise TypeError( "PolynomialSupport: Coordinate input must be torch tensor.") if len(coords.shape) != 4 and len(AP.shape) != 4: raise TypeError( "PolynomialSupport: Need batches of PyMfree special objects.") if coords.shape[3] != self.shape['dim']: raise TypeError( "PolynomialSupport: Spatial dimensions don't match.") if AP.shape[2] < coords.shape[2] or AP.shape[2] < len(self): raise TypeError("PolynomialSupport: Given AP matrices too small.") AP[:, :, :coords.shape[2], len(self):] = poly_AP_contrib( coords, self.polynomials) return AP def derivative_component(self, derivative): # Keep in mind that this refers to shifted coordinates to query point. pass def get_poynomials(dim, pdeg): dims = torch.range(0, dim-1, dtype=torch.int64) out = torch.zeros(1, 3, dtype=torch.int64) for i in range(1, pdeg+1): out = torch.cat( (out, count_dim_contrib( torch.combinations(dims, with_replacement=True, r=i), dims))) return out def count_dim_contrib(terms, dims): stack = [] for dim in dims: stack.append((terms == dim).sum(axis=1)) return torch.stack(stack, 1) def poly_AP_contrib(coords, polynomials): out = [] for exps in polynomials: out.append(torch.pow(coords, exps).prod(3, keepdim=True)) return torch.cat(out, 3) ```
{ "source": "jmertic/contrib_check", "score": 3 }
#### File: jmertic/contrib_check/tests.py ```python import os import git import unittest from unittest.mock import Mock from contrib_check.org import Org from contrib_check.repo import Repo from contrib_check.commit import Commit class TestCommit(unittest.TestCase): @classmethod def setUpClass(self): self._mock_repo = Mock() self._mock_commit_merge = Mock() self._mock_commit_merge.parents = [1,2,3] self._mock_commit = Mock() self._mock_commit.parents = [1] # test for not having a signoff def testHasNoDCOSignOff(self): commit = Commit(self._mock_commit,self._mock_repo) commit.git_commit_object.message = "has no signoff" self.assertFalse(commit.hasDCOSignOff(), "Commit message didn't have a signoff") # test for having a signoff def testHasDCOSignOff(self): commit = Commit(self._mock_commit,self._mock_repo) commit.git_commit_object.message = "has a signoff Signed-off-by: <NAME> <<EMAIL>>" self.assertTrue(commit.hasDCOSignOff(), "Commit message had a signoff") def testFoundPastDCOSignoff(self): commit = Commit(self._mock_commit,self._mock_repo) commit.git_commit_object.hexsha = '11ac960e1070eacc2fe92ac9a3d1753400e1fd4b' commit.repo_object.past_signoffs = [ "I, personname hereby sign-off-by all of my past commits to this repo subject to the Developer Certificate of Origin (DCO), Version 1.1. In the past I have used emails: [<EMAIL>]\n\n11ac960e1070eacc2fe92ac9a3d1753400e1fd4b This is a commit".encode() ] self.assertTrue(commit.hasDCOPastSignoff(), "Commit message had a past signoff") def testFoundNoPastDCOSignoff(self): commit = Commit(self._mock_commit,self._mock_repo) commit.git_commit_object.hexsha = 'c1d322dfba0ed7a770d74074990ac51a9efedcd0' commit.repo_object.past_signoffs = [ "I, personname hereby sign-off-by all of my past commits to this repo subject to the Developer Certificate of Origin (DCO), Version 1.1. In the past I have used emails: [<EMAIL>]\n\n11ac960e1070eacc2fe92ac9a3d1753400e1fd4b This is a commit".encode() ] self.assertFalse(commit.hasDCOPastSignoff(), "Commit message had a past signoff") def testDCOSignoffRequiredMergeCommit(self): commit = Commit(self._mock_commit_merge,self._mock_repo) self.assertFalse(commit.isDCOSignOffRequired(), "Merge commits don't require a DCO signoff") def testDCOSignoffRequiredNormalCommit(self): commit = Commit(self._mock_commit,self._mock_repo) self.assertTrue(commit.isDCOSignOffRequired(), "All non-merge commits require a DCO signoff") def testDCOSignoffCheckMergeCommit(self): commit = Commit(self._mock_commit_merge,self._mock_repo) commit.git_commit_object.message = "has no signoff" self.assertTrue(commit.checkDCOSignoff(), "Commit message didn't have a signoff, but is a merge commit so that's ok") def testDCOSignoffCheckNormalCommitNoSignoffPastSignoff(self): commit = Commit(self._mock_commit_merge,self._mock_repo) commit.git_commit_object.hexsha = '11ac960e1070eacc2fe92ac9a3d1753400e1fd4b' commit.repo_object.past_signoffs = [ ['dco-signoffs',"I, personname hereby sign-off-by all of my past commits to this repo subject to the Developer Certificate of Origin (DCO), Version 1.1. In the past I have used emails: [<EMAIL>]\n\n11ac960e1070eacc2fe92ac9a3d1753400e1fd4b This is a commit".encode() ] ] commit.git_commit_object.message = "has no signoff" self.assertTrue(commit.checkDCOSignoff(), "Commit message didn't have a signoff, but it has a past DCO signoff so that's ok") class TestOrg(unittest.TestCase): githubOrgRepos = [ type("gh_repo",(object,),{ "html_url": "https://github.com/testorg/repo1", "name":"repo1", "archived":False }), type("gh_repo",(object,),{ "html_url": "https://github.com/testorg/repo2", "name":"repo2", "archived":False }), type("gh_repo",(object,),{ "html_url": "https://github.com/testorg/repo3", "name":"repo3", "archived":True }), ] @classmethod def tearDownClass(cls): if os.path.exists("testorg-repo1.csv"): os.remove("testorg-repo1.csv") if os.path.exists("testorg-repo2.csv"): os.remove("testorg-repo2.csv") if os.path.exists("testorg-repo3.csv"): os.remove("testorg-repo3.csv") def testInitNoLoadRepos(self): org = Org("testorg",load_repos=False) self.assertEqual(org.repos,[]) def testOrgTypeSetGithubNoTokenDefined(self): names_to_remove = {"GITHUB_TOKEN"} modified_environ = { k: v for k, v in os.environ.items() if k not in names_to_remove } with unittest.mock.patch.dict(os.environ, modified_environ, clear=True): self.assertRaisesRegex(Exception,'Github token',Org,'foo') @unittest.mock.patch.dict(os.environ,{'GITHUB_TOKEN':'<PASSWORD>'}) @unittest.mock.patch.object(git.Repo,'clone_from') def testLoadOrgRepos(self,mock_method): with unittest.mock.patch.object(Org,'_getGithubReposForOrg',return_value=self.githubOrgRepos) as mock: org = Org("testorg") self.assertEqual(org.repos[0].name,"repo1") self.assertEqual(org.repos[1].name,"repo2") self.assertEqual(len(org.repos),2) @unittest.mock.patch.dict(os.environ,{'GITHUB_TOKEN':'<PASSWORD>'}) @unittest.mock.patch.object(git.Repo,'clone_from') def testLoadOrgReposIgnoreRepo(self,mock_method): with unittest.mock.patch.object(Org,'_getGithubReposForOrg',return_value=self.githubOrgRepos) as mock: org = Org("testorg",ignore_repos=['repo1']) self.assertEqual(org.repos[0].name,"repo2") self.assertEqual(len(org.repos),1) @unittest.mock.patch.dict(os.environ,{'GITHUB_TOKEN':'<PASSWORD>'}) @unittest.mock.patch.object(git.Repo,'clone_from') def testLoadOrgReposOnlyRepo(self,mock_method): with unittest.mock.patch.object(Org,'_getGithubReposForOrg',return_value=self.githubOrgRepos) as mock: org = Org("testorg",only_repos=['repo1']) self.assertEqual(org.repos[0].name,"repo1") self.assertEqual(len(org.repos),1) @unittest.mock.patch.dict(os.environ,{'GITHUB_TOKEN':'<PASSWORD>'}) @unittest.mock.patch.object(git.Repo,'clone_from') def testLoadOrgReposIncludeArchives(self,mock_method): with unittest.mock.patch.object(Org,'_getGithubReposForOrg',return_value=self.githubOrgRepos) as mock: org = Org("testorg",skip_archived=False) self.assertEqual(org.repos[0].name,"repo1") self.assertEqual(org.repos[1].name,"repo2") self.assertEqual(org.repos[2].name,"repo3") self.assertEqual(len(org.repos),3) class TestRepo(unittest.TestCase): @unittest.mock.patch.object(git.Repo,'clone_from') def testInitGithub(self,mock_method): repo = Repo("https://github.com/foo/bar") self.assertEqual(repo.name,"bar") self.assertEqual(repo.html_url,"https://github.com/foo/bar") self.assertEqual(repo.csv_filename,"foo-bar.csv") self.assertTrue(os.path.isfile("foo-bar.csv")) if os.path.isfile("foo-bar.csv"): os.remove("foo-bar.csv") @unittest.mock.patch.object(git.Repo,'clone_from') def testInitLocal(self,mock_method): repo = Repo(".") self.assertEqual(repo.name,os.path.basename(os.path.realpath("."))) self.assertEqual(repo.html_url,"") self.assertEqual(repo.csv_filename,repo.name+".csv") self.assertTrue(os.path.isfile(repo.name+".csv")) if os.path.isfile(repo.name+".csv"): os.remove(repo.name+".csv") if __name__ == '__main__': unittest.main() ```
{ "source": "jmertic/landscape-tools", "score": 3 }
#### File: landscape-tools/landscape_tools/crunchbasemembers.py ```python import csv import os.path from landscape_tools.members import Members from landscape_tools.member import Member class CrunchbaseMembers(Members): bulkdatafile = 'organizations.csv' def __init__(self, bulkdatafile = None, loadData = False): if bulkdatafile: self.bulkdatafile = bulkdatafile super().__init__(loadData) def loadData(self): if os.path.isfile(self.bulkdatafile): print("--Loading Crunchbase bulk export data--") with open(self.bulkdatafile, newline='') as csvfile: memberreader = csv.reader(csvfile, delimiter=',', quotechar='"') fields = next(memberreader) for row in memberreader: member = Member() try: member.membership = '' except ValueError as e: pass # avoids all the Exceptions for logo try: member.orgname = row[1] except ValueError as e: pass # avoids all the Exceptions for logo try: member.website = row[11] except ValueError as e: pass # avoids all the Exceptions for logo try: member.crunchbase = row[4] except ValueError as e: pass # avoids all the Exceptions for logo self.members.append(member) ``` #### File: landscape-tools/landscape_tools/landscapemembers.py ```python import ruamel.yaml import requests from landscape_tools.members import Members from landscape_tools.member import Member class LandscapeMembers(Members): landscapeListYAML = 'https://raw.githubusercontent.com/cncf/landscapeapp/master/landscapes.yml' landscapeSettingsYAML = 'https://raw.githubusercontent.com/{repo}/master/settings.yml' landscapeLandscapeYAML = 'https://raw.githubusercontent.com/{repo}/master/landscape.yml' landscapeLogo = 'https://raw.githubusercontent.com/{repo}/master/hosted_logos/{logo}' skipLandscapes = ['openjsf'] def __init__(self, landscapeListYAML = None, loadData = True): if landscapeListYAML: self.landscapeListYAML = landscapeListYAML super().__init__(loadData) def loadData(self): print("--Loading other landscape members data--") response = requests.get(self.landscapeListYAML) landscapeList = ruamel.yaml.YAML(typ='unsafe', pure=True).load(response.content) for landscape in landscapeList['landscapes']: if landscape['name'] in self.skipLandscapes: continue print("Loading "+landscape['name']+"...") # first figure out where memberships live response = requests.get(self.landscapeSettingsYAML.format(repo=landscape['repo'])) settingsYaml = ruamel.yaml.YAML(typ='unsafe', pure=True).load(response.content) # skip landscape if not well formed if 'global' not in settingsYaml or settingsYaml['global'] is None or 'membership' not in settingsYaml['global']: continue membershipKey = settingsYaml['global']['membership'] # then load in members only response = requests.get(self.landscapeLandscapeYAML.format(repo=landscape['repo'])) landscapeYaml = ruamel.yaml.YAML(typ='unsafe', pure=True).load(response.content) for category in landscapeYaml['landscape']: if membershipKey in category['name']: for subcategory in category['subcategories']: for item in subcategory['items']: if not item.get('crunchbase'): item['crunchbase'] = '' member = Member() for key, value in item.items(): try: if key != 'enduser': setattr(member, key, value) except ValueError as e: pass try: member.membership = '' except ValueError as e: pass try: member.orgname = item['name'] except ValueError as e: pass try: member.website = item['homepage_url'] except ValueError as e: pass try: member.logo = self.normalizeLogo(item['logo'],landscape['repo']) except ValueError as e: pass try: member.crunchbase = item['crunchbase'] except ValueError as e: pass self.members.append(member) def normalizeLogo(self, logo, landscapeRepo): if logo is None or logo == '': return "" if 'https://' in logo or 'http://' in logo: return logo return self.landscapeLogo.format(repo=landscapeRepo,logo=logo) ``` #### File: landscape-tools/landscape_tools/landscapeoutput.py ```python import csv import re import os import unicodedata from pathlib import Path ## third party modules import ruamel.yaml import requests class LandscapeOutput: landscapefile = 'landscape.yml' landscape = None landscapeMembers = [] missingcsvfile = 'missing.csv' _missingcsvfilewriter = None hostedLogosDir = 'hosted_logos' landscapeMemberCategory = 'LF Member Company' landscapeMemberClasses = [ {"name": "Platinum Membership", "category": "Platinum"}, {"name": "Gold Membership", "category": "Gold"}, {"name": "Silver Membership", "category": "Silver"}, {"name": "Silver Membership - MPSF", "category": "Silver"}, {"name": "Associate Membership", "category": "Associate"} ] membersAdded = 0 membersUpdated = 0 membersErrors = 0 def __init__(self, loadLandscape = False): if loadLandscape: self.loadLandscape() def newLandscape(self): self.landscape = { 'landscape': [{ 'category': None, 'name': self.landscapeMemberCategory, 'subcategories': [] }] } for landscapeMemberClass in self.landscapeMemberClasses: memberClass = { "subcategory": None, "name": landscapeMemberClass['category'], "items" : [] } if memberClass not in self.landscapeMembers: self.landscapeMembers.append(memberClass) for x in self.landscape['landscape']: if x['name'] == self.landscapeMemberCategory: x['subcategories'] = self.landscapeMembers def loadLandscape(self, reset=False): with open(self.landscapefile, 'r', encoding="utf8", errors='ignore') as fileobject: self.landscape = ruamel.yaml.YAML(typ='unsafe', pure=True).load(fileobject) if not self.landscape or not self.landscape['landscape']: self.newLandscape() else: if reset: for landscapeMemberClass in self.landscapeMemberClasses: memberClass = { "subcategory": None, "name": landscapeMemberClass['category'], "items" : [] } if memberClass not in self.landscapeMembers: self.landscapeMembers.append(memberClass) for x in self.landscape['landscape']: if x['name'] == self.landscapeMemberCategory: x['subcategories'] = self.landscapeMembers else: for x in self.landscape['landscape']: if x['name'] == self.landscapeMemberCategory: self.landscapeMembers = x['subcategories'] def writeMissing(self, name, logo, homepage_url, crunchbase): if self._missingcsvfilewriter is None: self._missingcsvfilewriter = csv.writer(open(self.missingcsvfile, mode='w'), delimiter=',', quotechar='"', quoting=csv.QUOTE_ALL) self._missingcsvfilewriter.writerow(['name','logo','homepage_url','crunchbase']) self.membersErrors = self.membersErrors + 1 self._missingcsvfilewriter.writerow([name, logo, homepage_url, crunchbase]) def hostLogo(self,logo,orgname): if 'https://' not in logo and 'http://' not in logo: return logo print("...Hosting logo for "+orgname) filename = str(orgname).strip().replace(' ', '_') filename = filename.replace('.', '') filename = filename.replace(',', '') filename = re.sub(r'(?u)[^-\w.]', '', filename) filename = filename.lower() filenamepath = os.path.normpath(self.hostedLogosDir+"/"+unicodedata.normalize('NFKD',filename).encode('ascii', 'ignore').decode('ascii')+".svg") r = requests.get(logo, allow_redirects=True) with open(filenamepath, 'wb') as fp: fp.write(r.content) return unicodedata.normalize('NFKD',filename).encode('ascii', 'ignore').decode('ascii')+".svg" def _removeNulls(self,yamlout): return re.sub('/(- \w+:) null/g', '$1', yamlout) def updateLandscape(self): # now write it back for x in self.landscape['landscape']: if x['name'] == self.landscapeMemberCategory: x['subcategories'] = self.landscapeMembers landscapefileoutput = Path(self.landscapefile) ryaml = ruamel.yaml.YAML() ryaml.indent(mapping=2, sequence=4, offset=2) ryaml.default_flow_style = False ryaml.allow_unicode = True ryaml.width = 160 ryaml.Dumper = ruamel.yaml.RoundTripDumper ryaml.dump(self.landscape,landscapefileoutput, transform=self._removeNulls) print("Successfully added "+str(self.membersAdded)+" members and skipped "+str(self.membersErrors)+" members") ```
{ "source": "jmertic/OpenColorIO", "score": 2 }
#### File: python/DocStrings/FileTransform.py ```python class FileTransform: """ FileTransform """ def __init__(self): pass def getSrc(self): pass def setSrc(self, src): pass def getCCCId(self): pass def setCCCId(self, cccid): pass def getInterpolation(self): pass def setInterpolation(self, interp): pass def getNumFormats(self): pass def getFormatNameByIndex(self, index): pass def getFormatExtensionByIndex(self, index): pass ``` #### File: python/DocStrings/ProcessorMetadata.py ```python class ProcessorMetadata: """ ProcessorMetadata This contains meta information about the process that generated this processor. The results of these functions do not impact the pixel processing. """ def __init__(self): pass def getFiles(self): """ getFiles() Returns a list of file references used internally by this processor :return: list of filenames :rtype: list """ pass def getLooks(self): """ getLooks() Returns a list of looks used internally by this processor :return: list of look names :rtype: list """ pass ```
{ "source": "jmespath/jmespath-playground", "score": 2 }
#### File: jmespath/jmespath-playground/app.py ```python import os import boto3 from chalice import Chalice, BadRequestError from chalicelib.storage import Config, S3Storage, MaxSizeError, CachingStorage from chalicelib.storage import SemiDBMCache from chalicelib.schema import SavedQuery CACHE_DIR = '/tmp/appcache' app = Chalice(app_name='jmespath-playground') app.debug = True app.context = {} def before_request(app): if 'storage' in app.context: return s3 = boto3.client('s3') config = Config( bucket=os.environ['APP_S3_BUCKET'], prefix=os.environ.get('APP_S3_PREFIX', ''), ) if not os.path.isdir(CACHE_DIR): os.makedirs(CACHE_DIR) cache = SemiDBMCache(CACHE_DIR) storage = S3Storage(client=s3, config=config) app.context['storage'] = CachingStorage(storage, cache) @app.route('/anon', methods=['POST'], cors=True) def new_anonymous_query(): before_request(app) try: body = app.current_request.json_body except ValueError as e: raise BadRequestError("Invalid JSON: %s" % e) _validate_body(body) storage = app.context['storage'] try: uuid = storage.put(body) except MaxSizeError as e: raise BadRequestError(str(e)) return {'uuid': uuid} def _validate_body(body): if body is None: raise BadRequestError("Request body cannot be empty.") data = SavedQuery().load(body) if data.errors: raise BadRequestError(data.errors) @app.route('/anon/{uuid}', methods=['GET'], cors=True) def get_anonymous_query(uuid): before_request(app) storage = app.context['storage'] result = storage.get(uuid) return result # This is just used as a sanity check to make sure # we can hit our API. Could also be used for monitoring. @app.route('/ping', methods=['GET'], cors=True) def ping(): return {'ping': 11} ``` #### File: jmespath-playground/chalicelib/storage.py ```python import os import json import logging from uuid import uuid4 # We're using a fixed name here because chalice will # configure the appropriate handlers for the logger that # matches the app name. LOG = logging.getLogger('jmespath-playground.storage') MAX_BODY_SIZE = 1024 * 100 # Make disk space allowed for cache data. MAX_DISK_USAGE = 500 * 1024 * 1024 class MaxSizeError(Exception): pass class Config: def __init__(self, bucket, prefix='', max_body_size=MAX_BODY_SIZE): self.bucket = bucket self.prefix = prefix self.max_body_size = max_body_size class Storage: def get(self, uuid): raise NotImplementedError("get") def put(self, data): raise NotImplementedError("put") class SemiDBMCache: # This is a small wrapper around semidbm. # It's needed for two reasons: # 1. We store the parsed JSON values as cache data so we need to handle the # JSON load/dump ourself. # # 2. We have a fixed amount of disk storage to work with. semidbm doesn't # support any notion of max disk space usage so this class needs to manage # that. The approach taken here is to simply turn off caching once # the max disk space limit is reached. This isn't the greatest idea, but # we're betting that it's unlikely we'll reach the max disk usage # before the function is shut down. It's worth investigating a proper # eviction strategy in the future. def __init__(self, dbdir, check_frequency=20, max_filesize=MAX_DISK_USAGE): import semidbm self._db = semidbm.open(dbdir, 'c') self._max_filesize = max_filesize # How frequently we check the file size of the cache. # If we check every 20 writes, then at worst case we overshoot # the max size by MAX_BODY_SIZE * check_frequency, or # about 20MB if we use the default values for everything. self._check_frequency = check_frequency self._counter = 0 # When we reach the max disk size, we disable # writing data to the cache. self._writes_enabled = True def get(self, key, default=None): try: return self[key] except KeyError: return default def __getitem__(self, key): d = self._db[key].decode('utf-8') return json.loads(d) def __contains__(self, key): return key in self._db def __setitem__(self, key, value): if not self._writes_enabled: return v = json.dumps(value).encode('utf-8') self._db[key] = v self._counter += 1 if self._counter >= self._check_frequency: self._check_max_size_reached() self._counter = 0 def _check_max_size_reached(self): # There's no public interface for getting the # filename of the db so we have to use an internal # attribute to access the filename. filesize = os.path.getsize(self._db._data_filename) LOG.debug('SemiDBMCache filesize: %s', filesize) if filesize > self._max_filesize: LOG.debug("SemiDBMCache filesize (%s) exceeded %s, " "disabling writes to cache.", filesize, self._max_filesize) self._writes_enabled = False class CachingStorage(Storage): """Wraps a storage object with a disk cache.""" def __init__(self, real_storage, cache): self._real_storage = real_storage self._cache = cache def get(self, uuid): cached = self._cache.get(uuid) if cached is not None: LOG.debug("cache hit for %s", uuid) return cached LOG.debug("cache miss for %s, retrieving from source.", uuid) result = self._real_storage.get(uuid) self._cache[uuid] = result return result def put(self, data): uuid = self._real_storage.put(data) self._cache[uuid] = data return uuid class S3Storage(Storage): def __init__(self, client, config): self._config = config self._client = client def get(self, uuid): bucket = self._config.bucket key = self._create_s3_key(uuid) contents = self._client.get_object( Bucket=bucket, Key=key)['Body'].read() return json.loads(contents) def put(self, data): bucket = self._config.bucket uuid = str(uuid4()) key = self._create_s3_key(uuid) body = json.dumps(data, separators=(',', ':')) if len(body) > self._config.max_body_size: raise MaxSizeError("Request body is too large (%s), " "must be less than %s bytes." % ( len(body), self._config.max_body_size)) self._client.put_object(Bucket=bucket, Key=key, Body=body) return uuid def _create_s3_key(self, uuid): prefix = self._config.prefix if not prefix: return uuid elif prefix.endswith('/'): prefix = prefix[:-1] return '%s/%s' % (prefix, uuid) ``` #### File: jmespath/jmespath-playground/template-fixups.py ```python import argparse import json class CFNTemplate: def __init__(self, data): self._data = data def add_parameters(self, parameters): self._data.setdefault('Parameters', {}).update(parameters) def get_parameter_default(self, name): return self._data.get('Parameters', {}).get(name, {}).get('Default') def resources(self, resource_type=None): for value in self._data['Resources'].values(): if resource_type is not None: if value['Type'] != resource_type: continue yield value def to_json(self): return json.dumps(self._data, indent=2, separators=(',', ': ')) + '\n' def fixup_template(fileobj): template = CFNTemplate(json.load(fileobj)) extract_lambda_env_vars_to_template_params(template) extract_bucket_reference_for_param_reference(template, 'AppS3Bucket') return template def extract_lambda_env_vars_to_template_params(template): # This pulls out the lambda environment variable as # cloudformation parameters. That way they can be # overriden when deploying the stack. This will have # no functional difference if you don't override these # values. extracted_template_params = {} for resource in template.resources('AWS::Serverless::Function'): env = resource['Properties'].get('Environment') if env is None: continue env_vars = resource['Properties']['Environment']['Variables'] for key in env_vars: # This isn't safe in the general case because we # could have name collisions, but in our case # we know we're using UPPER_SNAKE_CASE so # we won't have collisions. param_key = to_camel_case(key) extracted_template_params[param_key] = { 'Default': env_vars[key], 'Type': 'String', } env_vars[key] = {'Ref': param_key} template.add_parameters(extracted_template_params) def to_camel_case(key): return ''.join([k.capitalize() for k in key.split('_')]) def extract_bucket_reference_for_param_reference(template, param_name): # This is a specific change for this app (vs. the pull up lambda # env vars as template params). We want to replace the hard # coded references to our S3 bucket in our IAM policy with # the CFN param value that we've extracted. param_value = template.get_parameter_default(param_name) if param_value is None: return for resource in template.resources('AWS::Serverless::Function'): policies = resource['Properties'].get('Policies') if policies is None: continue for policy in policies: for statement in policy['Statement']: if param_value not in statement.get('Resource', ''): continue old_value = statement['Resource'] parts = list(old_value.partition(param_value)) parts[1] = {'Ref': param_name} new_value = {'Fn::Join': ["", parts]} statement['Resource'] = new_value def main(): parser = argparse.ArgumentParser() parser.add_argument('template', type=argparse.FileType('r')) parser.add_argument('-i', '--inplace', action='store_true', help=('Rewrite the template in place. If this ' 'value is not provided, the new template is ' 'written to stdout.')) args = parser.parse_args() new_template = fixup_template(args.template) template_json = new_template.to_json() if not args.inplace: print(template_json) else: with open(args.template.name, 'w') as f: f.write(template_json) main() ``` #### File: tests/functional/test_storage.py ```python from chalicelib.storage import SemiDBMCache def test_can_cache_through_semidbm(tmpdir): db = SemiDBMCache(str(tmpdir)) for i in range(20): db[str(i)] = {'count': i} for i in range(20): assert db[str(i)] == {'count': i} def test_check_frequency_noop_when_below_size_threshold(tmpdir): db = SemiDBMCache(str(tmpdir), check_frequency=2) for i in range(20): db[str(i)] = {'count': i} for i in range(20): assert db[str(i)] == {'count': i} def test_cache_noop_when_max_size_reached(tmpdir): db = SemiDBMCache(str(tmpdir), check_frequency=1, max_filesize=100) for i in range(20): db[str(i)] = {'count': i} assert db[b'1'] == {'count': 1} # We've exhausted the max_filesize so any setitems will be noops. db[b'100'] = {'count': 100} assert b'100' not in db ```
{ "source": "jMetal/DasDennis", "score": 4 }
#### File: jMetal/DasDennis/das_dennis.py ```python from typing import List import numpy as np class DasDennis: """Class implementing the Das-Dennis method to generate a set of uniformly-spaced weight vectors. The method is described in: <NAME> and <NAME>. Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. S IAM J. on Optimization, 8(3):631–657, March 1998. DOI: http://dx.doi.org/10.1137/S1052623496307510. Attributes ---------- number_of_partitions: int number of divisions in each axis dimension: int dimension of the points (e.g., number of objectives) Methods ------- get_weight_vectors() get_number_of_points() """ def __init__(self, number_of_partitions, dimension): self.number_of_partitions = number_of_partitions self.dimension = dimension def __get_first_level(self, number_of_partitions: int) -> List: return [_ for _ in np.linspace(0, 1, number_of_partitions + 1)] def __get_generic_level(self, first_level, previous_level): next_level = [] for ind0, i in enumerate(previous_level): for ind1, j in enumerate(i[1]): values = [first_level[_] for _ in range(len(first_level) - ind1 - ind0)] next_level.append([i[0] + [i[1][ind1]], values]) return next_level def __get_last_level(self, previous_level): last_level = [] for ind0, i in enumerate(previous_level): for ind1, j in enumerate(i[1]): last_level.append([i[0] + [j, 1.0 - j - sum(i[0])]]) return last_level def get_weight_vectors(self): first_level = self.__get_first_level(self.number_of_partitions) previous_level = [[[], first_level]] for i in range(1, self.dimension - 1): next_level = self.__get_generic_level(first_level, previous_level) previous_level = next_level last_level = self.__get_last_level(previous_level) result = [last_level[i][0] for i in range(len(last_level))] return result def save_to_file(self, file_name, weight_vectors, separator=" "): with open(file_name, 'w+') as output_file: for vector in weight_vectors: output_string = "" for value in vector: output_string += str(value) + separator output_string = output_string[:-1] output_string += "\n" output_file.write(output_string) def __factorial(self, n:int): if (n == 0 or n == 1): return 1 else: return n * self.__factorial(n-1) def __binomial_coefficient(self, n, k): return self.__factorial(n) / (self.__factorial(k) * self.__factorial(n - k)) def get_number_of_points(self): return int(self.__binomial_coefficient(self.number_of_partitions + self.dimension - 1, self.dimension - 1)) ``` #### File: jMetal/DasDennis/test_das_dennis.py ```python import unittest from das_dennis import DasDennis class DasDennisTestCases(unittest.TestCase): def test_should_constructor_create_a_non_null_object(self): das_dennis = DasDennis(4, 3) self.assertIsNotNone(das_dennis) def test_should_constructor_set_the_valid_parameter(self): das_dennis = DasDennis(number_of_partitions=4, dimension=3) self.assertEquals(4, das_dennis.number_of_partitions) self.assertEquals(3, das_dennis.dimension) # Case 1: number of partitions = 12, dimension = 3 def test_should_get_number_of_points_return_the_correct_value_case_1(self): das_dennis = DasDennis(number_of_partitions=12, dimension=3) self.assertEquals(91, das_dennis.get_number_of_points()) # Case 2: number of partitions = 5, dimension = 3 def test_should_get_number_of_points_return_the_correct_value_case_2(self): das_dennis = DasDennis(number_of_partitions=5, dimension=3) self.assertEquals(21, das_dennis.get_number_of_points()) # Case 1: number of partitions = 12, dimension = 3 def test_should_get_weight_vectors_work_properly_case_1(self): """ h: number of partitions, m: dimension""" das_dennis = DasDennis(number_of_partitions=12, dimension=3) points = das_dennis.get_weight_vectors() self.assertEquals(91, len(points)) self.assertEquals([0.0, 0.0, 1.0], points[0]) self.assertEquals([1.0, 0.0, 0.0], points[90]) self.assertEquals([0.75, 0.25, 0.0], points[84]) # Case 2: number of partitions = 5, dimension = 3 def test_should_get_weight_vectors_work_properly_case_2(self): """ h: number of partitions, m: dimension""" das_dennis = DasDennis(number_of_partitions=5, dimension=3) points = das_dennis.get_weight_vectors() self.assertEquals(21, len(points)) self.assertEquals([0.0, 0.0, 1.0], points[0]) self.assertEquals([0.8, 0.2, 0.0], points[19]) self.assertEquals([1.0, 0.0, 0.0], points[20]) ```
{ "source": "jmetancelin/ipython-batch-scheduler-magic", "score": 3 }
#### File: ipython-batch-scheduler-magic/execute_batch_scheduler/execute_magic.py ```python from __future__ import print_function import sys from IPython.core.magic import (Magics, magics_class, cell_magic) from IPython.core import magic_arguments from IPython.utils.process import arg_split from IPython.lib.backgroundjobs import BackgroundJobManager # Import all known backends from .backends import (BasicMgr, SSHMgr, SlurmMgr) from . import _DEFAULT_MGR # The class MUST call this class decorator at creation time @magics_class class ExecuteMagics(Magics): """Magics for cell execution through workload manager List of available workload managers: * :class:`execute_batch_scheduler.backends.BasicMgr` * :class:`execute_batch_scheduler.backends.SSHMgr` * :class:`execute_batch_scheduler.backends.SlurmMgr` """ # Available workload managers _wlmgr = {'': BasicMgr, 'ssh': SSHMgr, 'slurm': SlurmMgr} @magic_arguments.magic_arguments() @magic_arguments.argument( '--wlm', type=str, default=_DEFAULT_MGR, help="""Workload manager.""") @magic_arguments.argument( '--shell', type=str, default='/bin/bash', help="""Shell to use.""") @magic_arguments.argument( '--amgr', type=str, help="""The variable in which to store workload manager instance. If the script is backgrounded, this will be used to get cell output/error using `get_output()` method.""") @magic_arguments.argument( '--bg', action="store_true", help="""Whether to run the script in the background. If given, the only way to see the output of the command is with `--amgr`.""") @cell_magic def execute(self, line, cell): """Execute given cell content through configured workload scheduler. Keep some arguments : ``--wlm``, ``--shell``, ``--bg`` and ``--amgr``. Other arguments are passed to workload manager backend. Get some extra command line arguments from variable that may be overrided in IPython profile configuration file. """ from . import _DEFAULT_LINE_CMD_ARGS args, cmd = self.execute.parser.parse_known_args(arg_split(line)) extra_cmd = [] if args.wlm == _DEFAULT_MGR: if isinstance(_DEFAULT_LINE_CMD_ARGS, dict): if args.wlm in _DEFAULT_LINE_CMD_ARGS.keys(): extra_cmd = arg_split( _DEFAULT_LINE_CMD_ARGS[args.wlm]) else: extra_cmd = arg_split(_DEFAULT_LINE_CMD_ARGS) # Build workload manager instance job_mgr = self._wlmgr[args.wlm]( extra_cmd + cmd, args.shell, userns=self.shell.user_ns) # Submit the cell as job script sub_out, sub_err = job_mgr.submit(cell) sys.stdout.write(sub_out) sys.stdout.flush() sys.stderr.write(sub_err) sys.stderr.flush() if args.amgr: self.shell.user_ns[args.amgr] = job_mgr if args.bg: self.job_manager = BackgroundJobManager() if not args.amgr: sys.stderr.write("""Warning: --bg argument specified without --amgr (only way to get cell output)\n""") sys.stderr.flush() self.job_manager.new(job_mgr.wait_progress, kw=dict(silent=True)) return else: try: job_mgr.wait_progress() except KeyboardInterrupt: job_mgr.interrupt() # Get job output job_out, job_err = job_mgr.get_output() if job_out: sys.stdout.write(job_out) sys.stdout.flush() if job_err: sys.stderr.write(job_err) sys.stderr.flush() def load_ipython_extension(ipython): """Load extension. Registers the ExecuteMagics """ # The `ipython` argument is the currently active `InteractiveShell` # instance, which can be used in any way. This allows you to register # new magics or aliases, for example. ipython.register_magics(ExecuteMagics) # def unload_ipython_extension(ipython): # """Unload extension # Actually doing noting # """ # # If you want your extension to be unloadable, put that logic here. # pass ```
{ "source": "jmettes/PyRate", "score": 2 }
#### File: PyRate/tests/test_refpixel.py ```python import os import copy import shutil from subprocess import run, PIPE from pathlib import Path import pytest import itertools import numpy as np from numpy import nan, mean, std, isnan import pyrate.configuration import pyrate.core.refpixel from pyrate.core import config as cf from pyrate.core.refpixel import ref_pixel, _step, RefPixelError, ref_pixel_calc_wrapper, \ convert_geographic_coordinate_to_pixel_value, convert_pixel_value_to_geographic_coordinate from pyrate.core import shared, ifgconstants as ifc from pyrate import correct, conv2tif, prepifg from pyrate.configuration import Configuration from tests.common import TEST_CONF_ROIPAC, TEST_CONF_GAMMA, SML_TEST_DEM_TIF from tests.common import small_data_setup, MockIfg, copy_small_ifg_file_list, \ copy_and_setup_small_data, manipulate_test_conf, assert_two_dirs_equal, PYTHON3P6 # TODO: figure out how editing resource.setrlimit fixes the error # to fix the open to many files error # https://stackoverflow.com/questions/18280612/ioerror-errno-24-too-many-open-files # default testing values REFNX = 5 REFNY = 7 MIN_FRAC = 0.7 CHIPSIZE = 3 PARALLEL = False class TestReferencePixelInputTests: ''' Verifies error checking capabilities of the reference pixel function ''' @classmethod def setup_method(cls): cls.ifgs = small_data_setup() cls.params = cf.get_config_params(TEST_CONF_ROIPAC) cls.params[cf.REFNX] = REFNX cls.params[cf.REFNY] = REFNY cls.params[cf.REF_CHIP_SIZE] = CHIPSIZE cls.params[cf.REF_MIN_FRAC] = MIN_FRAC cls.params[cf.PARALLEL] = PARALLEL def test_missing_chipsize(self): self.params[cf.REF_CHIP_SIZE] = None with pytest.raises(cf.ConfigException): ref_pixel(self.ifgs, self.params) def test_chipsize_valid(self): for illegal in [0, -1, -15, 1, 2, self.ifgs[0].ncols+1, 4, 6, 10, 20]: self.params[cf.REF_CHIP_SIZE] = illegal with pytest.raises(RefPixelError): ref_pixel(self.ifgs, self.params) def test_minimum_fraction_missing(self): self.params[cf.REF_MIN_FRAC] = None with pytest.raises(cf.ConfigException): ref_pixel(self.ifgs, self.params) def test_minimum_fraction_threshold(self): for illegal in [-0.1, 1.1, 1.000001, -0.0000001]: self.params[cf.REF_MIN_FRAC] = illegal with pytest.raises(RefPixelError): ref_pixel(self.ifgs, self.params) def test_search_windows(self): # 45 is max # cells a width 3 sliding window can iterate over for illegal in [-5, -1, 0, 46, 50, 100]: self.params[cf.REFNX] = illegal with pytest.raises(RefPixelError): ref_pixel(self.ifgs, self.params) # 40 is max # cells a width 3 sliding window can iterate over for illegal in [-5, -1, 0, 71, 85, 100]: self.params[cf.REFNY] = illegal with pytest.raises(RefPixelError): ref_pixel(self.ifgs, self.params) def test_missing_search_windows(self): self.params[cf.REFNX] = None with pytest.raises(cf.ConfigException): ref_pixel(self.ifgs, self.params) self.params[cf.REFNX] = REFNX self.params[cf.REFNY] = None with pytest.raises(cf.ConfigException): ref_pixel(self.ifgs, self.params) class TestReferencePixelTests: """ Tests reference pixel search """ @classmethod def setup_method(cls): cls.params = cf.get_config_params(TEST_CONF_ROIPAC) cls.params[cf.OUT_DIR], cls.ifgs = copy_and_setup_small_data() cls.params[cf.REFNX] = REFNX cls.params[cf.REFNY] = REFNY cls.params[cf.REF_CHIP_SIZE] = CHIPSIZE cls.params[cf.REF_MIN_FRAC] = MIN_FRAC cls.params[cf.PARALLEL] = PARALLEL def test_all_below_threshold_exception(self): # test failure when no valid stacks in dataset # rig mock data to be below threshold mock_ifgs = [MockIfg(i, 6, 7) for i in self.ifgs] for m in mock_ifgs: m.phase_data[:1] = nan m.phase_data[1:5] = 0.1 m.phase_data[5:] = nan self.params[cf.REFNX] = 2 self.params[cf.REFNY] = 2 self.params[cf.REF_CHIP_SIZE] = CHIPSIZE self.params[cf.REF_MIN_FRAC] = MIN_FRAC self.params[cf.PARALLEL] = PARALLEL with pytest.raises(ValueError): ref_pixel(mock_ifgs, self.params) def test_refnxy_step_1(self): # test step of 1 for refnx|y gets the reference pixel for axis centre mock_ifgs = [MockIfg(i, 47, 72) for i in self.ifgs] for m in mock_ifgs: m.phase_data[:1] = 0.2 m.phase_data[1:5] = 0.1 m.phase_data[5:] = 0.3 exp_refpx = (1, 1) self.params[cf.REFNX] = 1 self.params[cf.REFNY] = 1 self.params[cf.REF_CHIP_SIZE] = CHIPSIZE self.params[cf.REF_MIN_FRAC] = MIN_FRAC self.params[cf.PARALLEL] = PARALLEL res = ref_pixel(mock_ifgs, self.params) assert exp_refpx == res def test_large_window(self): # 5x5 view over a 5x5 ifg with 1 window/ref pix search chps = 5 mockifgs = [MockIfg(i, chps, chps) for i in self.ifgs] self.params[cf.REFNX] = 1 self.params[cf.REFNY] = 1 self.params[cf.REF_CHIP_SIZE] = chps self.params[cf.REF_MIN_FRAC] = MIN_FRAC self.params[cf.PARALLEL] = PARALLEL res = ref_pixel(mockifgs, self.params) assert (2, 2) == res def test_step(self): # test different search windows to verify x/y step calculation # convenience testing function def assert_equal(actual, expected): for a, e in zip(actual, expected): assert a == e # start with simple corner only test width = 47 radius = 2 refnx = 2 exp = [2, 25, 44] act = _step(width, refnx, radius) assert_equal(act, exp) # test with 3 windows refnx = 3 exp = [2, 17, 32] act = _step(width, refnx, radius) assert_equal(act, exp) # test 4 search windows refnx = 4 exp = [2, 13, 24, 35] act = _step(width, refnx, radius) assert_equal(act, exp) def test_ref_pixel(self): exp_refpx = (2, 25) self.params[cf.REFNX] = 2 self.params[cf.REFNY] = 2 self.params[cf.REF_CHIP_SIZE] = 5 self.params[cf.REF_MIN_FRAC] = MIN_FRAC self.params[cf.PARALLEL] = PARALLEL res = ref_pixel(self.ifgs, self.params) assert res == exp_refpx # Invalidate first data stack, get new refpix coods & retest for i in self.ifgs: i.phase_data[:30, :50] = nan exp_refpx = (38, 2) res = ref_pixel(self.ifgs, self.params) assert res == exp_refpx def _expected_ref_pixel(ifgs, cs): """Helper function for finding reference pixel when refnx/y=2""" # calculate expected data data = [i.phase_data for i in ifgs] # len 17 list of arrays ul = [i[:cs, :cs] for i in data] # upper left corner stack ur = [i[:cs, -cs:] for i in data] ll = [i[-cs:, :cs] for i in data] lr = [i[-cs:, -cs:] for i in data] ulm = mean([std(i[~isnan(i)]) for i in ul]) # mean std of all the layers urm = mean([std(i[~isnan(i)]) for i in ur]) llm = mean([std(i[~isnan(i)]) for i in ll]) lrm = mean([std(i[~isnan(i)]) for i in lr]) assert isnan([ulm, urm, llm, lrm]).any() is False # coords of the smallest mean is the result mn = [ulm, urm, llm, lrm] class TestLegacyEqualityTest: @classmethod def setup_method(cls): cls.params = cf.get_config_params(TEST_CONF_ROIPAC) cls.params[cf.PARALLEL] = 0 cls.params[cf.OUT_DIR], cls.ifg_paths = copy_small_ifg_file_list() conf_file = Path(cls.params[cf.OUT_DIR], 'conf_file.conf') pyrate.configuration.write_config_file(params=cls.params, output_conf_file=conf_file) cls.params = Configuration(conf_file).__dict__ cls.params_alt_ref_frac = copy.copy(cls.params) cls.params_alt_ref_frac[cf.REF_MIN_FRAC] = 0.5 cls.params_all_2s = copy.copy(cls.params) cls.params_all_2s[cf.REFNX] = 2 cls.params_all_2s[cf.REFNY] = 2 cls.params_chipsize_15 = copy.copy(cls.params_all_2s) cls.params_chipsize_15[cf.REF_CHIP_SIZE] = 15 cls.params_all_1s = copy.copy(cls.params) cls.params_all_1s[cf.REFNX] = 1 cls.params_all_1s[cf.REFNY] = 1 cls.params_all_1s[cf.REF_MIN_FRAC] = 0.7 for p, q in zip(cls.params[cf.INTERFEROGRAM_FILES], cls.ifg_paths): # hack p.sampled_path = q p.tmp_sampled_path = q @classmethod def teardown_method(cls): shutil.rmtree(cls.params[cf.OUT_DIR]) def test_small_test_data_ref_pixel_lat_lon_provided(self): self.params[cf.REFX], self.params[cf.REFY] = 150.941666654, -34.218333314 refx, refy = pyrate.core.refpixel.ref_pixel_calc_wrapper(self.params) assert refx == 38 assert refy == 58 assert 0.8 == pytest.approx(self.params[cf.REF_MIN_FRAC]) def test_small_test_data_ref_pixel(self): refx, refy = pyrate.core.refpixel.ref_pixel_calc_wrapper(self.params) assert refx == 38 assert refy == 58 assert 0.8 == pytest.approx(self.params[cf.REF_MIN_FRAC]) def test_small_test_data_ref_chipsize_15(self): refx, refy = pyrate.core.refpixel.ref_pixel_calc_wrapper(self.params_chipsize_15) assert refx == 7 assert refy == 7 assert 0.5 == pytest.approx(self.params_alt_ref_frac[cf.REF_MIN_FRAC]) def test_metadata(self): refx, refy = pyrate.core.refpixel.ref_pixel_calc_wrapper(self.params_chipsize_15) for i in self.ifg_paths: ifg = shared.Ifg(i) ifg.open(readonly=True) md = ifg.meta_data for k, v in zip([ifc.PYRATE_REFPIX_X, ifc.PYRATE_REFPIX_Y, ifc.PYRATE_REFPIX_LAT, ifc.PYRATE_REFPIX_LON, ifc.PYRATE_MEAN_REF_AREA, ifc.PYRATE_STDDEV_REF_AREA], [str(refx), str(refy), 0, 0, 0, 0]): assert k in md # metadata present # assert values ifg.close() def test_small_test_data_ref_all_1(self): refx, refy = pyrate.core.refpixel.ref_pixel_calc_wrapper(self.params_all_1s) assert 0.7 == pytest.approx(self.params_all_1s[cf.REF_MIN_FRAC]) assert 1 == self.params_all_1s[cf.REFNX] assert 1 == self.params_all_1s[cf.REFNY] assert refx == 2 assert refy == 2 class TestLegacyEqualityTestMultiprocessParallel: @classmethod def setup_method(cls): cls.params = cf.get_config_params(TEST_CONF_ROIPAC) cls.params[cf.PARALLEL] = 1 cls.params[cf.OUT_DIR], cls.ifg_paths = copy_small_ifg_file_list() conf_file = Path(cls.params[cf.OUT_DIR], 'conf_file.conf') pyrate.configuration.write_config_file(params=cls.params, output_conf_file=conf_file) cls.params = Configuration(conf_file).__dict__ cls.params_alt_ref_frac = copy.copy(cls.params) cls.params_alt_ref_frac[cf.REF_MIN_FRAC] = 0.5 cls.params_all_2s = copy.copy(cls.params) cls.params_all_2s[cf.REFNX] = 2 cls.params_all_2s[cf.REFNY] = 2 cls.params_chipsize_15 = copy.copy(cls.params_all_2s) cls.params_chipsize_15[cf.REF_CHIP_SIZE] = 15 cls.params_all_1s = copy.copy(cls.params) cls.params_all_1s[cf.REFNX] = 1 cls.params_all_1s[cf.REFNY] = 1 cls.params_all_1s[cf.REF_MIN_FRAC] = 0.7 for p, q in zip(cls.params[cf.INTERFEROGRAM_FILES], cls.ifg_paths): # hack p.sampled_path = q p.tmp_sampled_path = q @classmethod def teardown_method(cls): shutil.rmtree(cls.params[cf.OUT_DIR]) def test_small_test_data_ref_pixel(self): refx, refy = pyrate.core.refpixel.ref_pixel_calc_wrapper(self.params) assert refx == 38 assert refy == 58 assert 0.8 == pytest.approx(self.params[cf.REF_MIN_FRAC]) def test_more_small_test_data_ref_pixel(self): refx, refy = pyrate.core.refpixel.ref_pixel_calc_wrapper(self.params_alt_ref_frac) assert refx == 38 assert refy == 58 assert 0.5 == pytest.approx(self.params_alt_ref_frac[cf.REF_MIN_FRAC]) def test_small_test_data_ref_pixel_all_2(self): refx, refy = pyrate.core.refpixel.ref_pixel_calc_wrapper(self.params_all_2s) assert refx == 25 assert refy == 2 assert 0.5 == pytest.approx(self.params_alt_ref_frac[cf.REF_MIN_FRAC]) def test_small_test_data_ref_chipsize_15(self): refx, refy = pyrate.core.refpixel.ref_pixel_calc_wrapper(self.params_chipsize_15) assert refx == 7 assert refy == 7 assert 0.5 == pytest.approx(self.params_alt_ref_frac[cf.REF_MIN_FRAC]) def test_small_test_data_ref_all_1(self): refx, refy = pyrate.core.refpixel.ref_pixel_calc_wrapper(self.params_all_1s) assert 0.7 == pytest.approx(self.params_all_1s[cf.REF_MIN_FRAC]) assert 1 == self.params_all_1s[cf.REFNX] assert 1 == self.params_all_1s[cf.REFNY] assert refx == 2 assert refy == 2 @pytest.mark.slow def test_error_msg_refpixel_out_of_bounds(tempdir, gamma_conf): "check correct latitude/longitude refpixel error is raised when specified refpixel is out of bounds" for x, (refx, refy) in zip(['longitude', 'latitude', 'longitude and latitude'], [(150., -34.218333314), (150.941666654, -34.), (150, -34)]): _, err = _get_mlooked_files(gamma_conf, Path(tempdir()), refx=refx, refy=refy) msg = "Supplied {} value is outside the bounds of the interferogram data" assert msg.format(x) in err @pytest.mark.slow def test_gamma_ref_pixel_search_vs_lat_lon(tempdir, gamma_conf): params_1, _ = _get_mlooked_files(gamma_conf, Path(tempdir()), refx=-1, refy=-1) params_2, _ = _get_mlooked_files(gamma_conf, Path(tempdir()), refx=150.941666654, refy=-34.218333314) assert_two_dirs_equal(params_1[cf.OUT_DIR], params_2[cf.OUT_DIR], ["*_ifg.tif", '*_coh.tif', 'dem.tif'], 35) def _get_mlooked_files(gamma_conf, tdir, refx, refy): params = manipulate_test_conf(gamma_conf, tdir) params[cf.REFX] = refx params[cf.REFY] = refy output_conf_file = 'config.conf' output_conf = tdir.joinpath(output_conf_file) pyrate.configuration.write_config_file(params=params, output_conf_file=output_conf) params = Configuration(output_conf).__dict__ conv2tif.main(params) params = Configuration(output_conf).__dict__ prepifg.main(params) err = run(f"pyrate correct -f {output_conf}", shell=True, universal_newlines=True, stderr=PIPE).stderr return params, err class TestRefPixelReuseLoadsSameFileAndPixels: @classmethod def setup_method(cls): cls.conf = TEST_CONF_GAMMA params = Configuration(cls.conf).__dict__ conv2tif.main(params) params = Configuration(cls.conf).__dict__ prepifg.main(params) params = Configuration(cls.conf).__dict__ correct._copy_mlooked(params) cls.params = params @classmethod def teardown_method(cls): shutil.rmtree(cls.params[cf.OUT_DIR]) @pytest.mark.slow() def test_ref_pixel_multiple_runs_reuse_from_disc(self, ref_pixel): params = self.params params[cf.REFX], params[cf.REFY] = ref_pixel params[cf.REF_PIXEL_FILE] = Configuration.ref_pixel_path(params) ref_pixel_calc_wrapper(params) ref_pixel_file = self.params[cf.REF_PIXEL_FILE] time_written = os.stat(ref_pixel_file).st_mtime assert self.params[cf.REFX_FOUND] == 38 assert self.params[cf.REFY_FOUND] == 58 # run again ref_pixel_calc_wrapper(self.params) ref_pixel_file = self.params[cf.REF_PIXEL_FILE] time_written_1 = os.stat(ref_pixel_file).st_mtime assert self.params[cf.REFX_FOUND] == 38 assert self.params[cf.REFY_FOUND] == 58 # run a third time ref_pixel_calc_wrapper(self.params) ref_pixel_file = self.params[cf.REF_PIXEL_FILE] time_written_2 = os.stat(ref_pixel_file).st_mtime assert time_written == time_written_2 == time_written_1 assert self.params[cf.REFX], self.params[cf.REFY] == ref_pixel assert self.params[cf.REFX_FOUND] == 38 assert self.params[cf.REFY_FOUND] == 58 @pytest.fixture(scope='module') def x_y_pixel(): dem = shared.DEM(SML_TEST_DEM_TIF) dem.open() Y = dem.nrows X = dem.ncols x = np.random.choice(range(X), 5) y = np.random.choice(range(Y), 5) return itertools.product(x, y) # returns a matrix of 5x5 random x, y pairs def test_convert_pixel_value_to_geographic_coordinate(x_y_pixel): transform = dem_transform() for x, y in x_y_pixel: lon, lat = convert_pixel_value_to_geographic_coordinate(x, y, transform) out = run(f"gdallocationinfo -geoloc {SML_TEST_DEM_TIF} {lon} {lat}", shell=True, universal_newlines=True, stdout=PIPE).stdout xs = (x, x+1, x-1) ys = (y, y+1, y-1) assert any(f"({xx}P,{yy}L)" in out for xx, yy in itertools.product(xs, ys)) def dem_transform(): dem = shared.DEM(SML_TEST_DEM_TIF) dem.open() transform = dem.dataset.GetGeoTransform() return transform @pytest.mark.skipif(PYTHON3P6, reason='Skipped in python3p6') def test_convert_geographic_coordinate_to_pixel_value(x_y_pixel): transform = dem_transform() for x, y in x_y_pixel: lon, lat = convert_pixel_value_to_geographic_coordinate(x, y, transform) xp, yp = convert_geographic_coordinate_to_pixel_value(lon, lat, transform) assert (xp == x) & (yp == y) ```
{ "source": "jmetteUni/CoTeDe-modified", "score": 3 }
#### File: cotede/fuzzy/fuzzy_core.py ```python import numpy as np from numpy import ma from .membership_functions import smf, zmf, trapmf, trimf from .defuzz import defuzz def fuzzyfy(data, features, output, require="all"): """ Notes ----- In the generalize this once the membership combining rules are defined in the cfg, so I can decide to use mean or max. """ features_list = list(features.keys()) N = max([len(data[f]) for f in features_list]) # The fuzzy set are usually: low, medium, high # The membership of each fuzzy set are each feature scaled. membership = {f: {} for f in output.keys()} mfuncs = {"smf": smf, "trimf": trimf, "trapmf": trapmf, "zmf": zmf} for t in features_list: for m in membership: assert m in features[t], "Missing %s in %s" % (m, features[t]) f = mfuncs[features[t][m]["type"]] membership[m][t] = f(np.asanyarray(data[t]), features[t][m]["params"]) # Rule Set rules = {} # Low: u_low = mean(S_l(spike), S_l(clim)...) # u_low = np.mean([weights['spike']['low'], # weights['woa_relbias']['low']], axis=0) # Medium: u_medium = mean(S_l(spike), S_l(clim)...) # u_medium = np.mean([weights['spike']['medium'], # weights['woa_relbias']['medium']], axis=0) for m in [m for m in membership if m != "high"]: tmp = np.vstack([membership[m][f] for f in membership[m]]) if require == "any": rules[m] = np.nanmean(tmp, axis=0) else: rules[m] = np.mean(tmp, axis=0) # High: u_high = max(S_l(spike), S_l(clim)...) # u_high = np.max([weights['spike']['high'], # weights['woa_relbias']['high']], axis=0) tmp = np.vstack([membership["high"][f] for f in membership["high"]]) if require == "any": rules["high"] = np.nanmax(tmp, axis=0) else: rules["high"] = np.max(tmp, axis=0) return rules def fuzzy_uncertainty(data, features, output, require="all"): """Estimate the Fuzzy uncertainty of the given data Parameters ---------- data : features : output : require : all or any, optional Require all or any of the features to estimate the uncertainty """ # It's not clear at Morello 2014 what is the operator K() # Q is the uncertainty, hence Q_low is the low uncertainty # Seems like K() is just a linear factor, which would give the level of uncertainty, like 0.1 for low, 0.5 for medium and 0.9 for high would define weights for each level?! I'm not sure. But the result would be a composite curve, so when the Qs are joinned it would give a curve with the possible values on Q (maybe multiple dimensions) and the y would be the composite result [0, 1]. # Q_low = 0.1 * u_low # K_low(u_low) # Q_medium = 0.5 * u_medium # K_medium(u_medium) # Q_high = 0.9 *u_high # K_high(u_high) # Bisector # They refer to Q_i x_l, which I understand as the uncertainty for each value for each level # It looks like the uncertainties of all tests of the three levels are groupped and ordered, and the bisector would be the value that would define the half of the area. # Is it x the observed value of hypotetical values? # CQ = bisector(Qs, ... rules = fuzzyfy(data=data, features=features, output=output, require=require) N_out = 100 output_range = np.linspace(0, 1, N_out) Q = {} mfuncs = {"smf": smf, "trimf": trimf, "trapmf": trapmf, "zmf": zmf} for m in output: f = mfuncs[output[m]["type"]] Q[m] = f(output_range, output[m]["params"]) idx = np.isfinite([rules[r] for r in rules]) # This would be the regular fuzzy approach. uncertainty = np.nan * np.ones(np.shape(idx)[1:]) valid = np.nonzero(idx.all(axis=0))[0] for i in valid: aggregated = np.zeros(N_out) for m in rules: aggregated = np.fmax(aggregated, np.fmin(rules[m][i], Q[m])) if aggregated.sum() > 0: uncertainty[i] = defuzz(output_range, aggregated, "bisector") return uncertainty ``` #### File: cotede/qctests/constant_cluster_size.py ```python import numpy as np from numpy import ma from .qctests import QCCheckVar def constant_cluster_size(x, tol=0): """Estimate the cluster size with (nearly) constant value Returns how many consecutive neighbor values are within a given tolerance range. Note that invalid values, like NaN, are ignored. """ assert np.ndim(x) == 1, 'Not ready for more than 1 dimension' # Adding a tolerance to handle roundings due to different numeric types. tol = tol + 1e-5 * tol ivalid = np.nonzero(~ma.getmaskarray(ma.fix_invalid(x)))[0] dx = np.diff(np.atleast_1d(x)[ivalid]) cluster_size = np.zeros(np.shape(x), dtype='i') for i, iv in enumerate(ivalid): idx = np.absolute(dx[i:].cumsum()) > tol if True in idx: cluster_size[iv] += np.nonzero(idx)[0].min() else: cluster_size[iv] += idx.size idx = np.absolute(dx[0:i][::-1].cumsum()) > tol if True in idx: cluster_size[iv] += np.nonzero(idx)[0].min() else: cluster_size[iv] += idx.size return cluster_size class ConstantClusterSize(QCCheckVar): """ Need to implement a check on time. TSG specifies constant value during 6 hrs. """ def set_features(self): cluster_size = constant_cluster_size(self.data[self.varname]) N = ma.compressed(self.data[self.varname]).size cluster_fraction = cluster_size / N self.features = {'constant_cluster_size': cluster_size, 'constant_cluster_fraction': cluster_fraction, } def test(self): self.flags = {} threshold = self.cfg['threshold'] # assert (np.size(threshold) == 1) \ # and (threshold is not None) \ # and (np.isfinite(threshold)) if isinstance(threshold, str) and (threshold[-1] == '%'): threshold = float(threshold[:-1]) * 1e-2 feature_name = 'constant_cluster_fraction' else: feature_name = 'constant_cluster_size' flag = np.zeros(self.data[self.varname].shape, dtype='i1') feature = self.features[feature_name] flag[np.nonzero(feature > threshold)] = self.flag_bad flag[np.nonzero(feature <= threshold)] = self.flag_good flag[ma.getmaskarray(self.data[self.varname])] = 9 self.flags[feature_name] = flag ``` #### File: cotede/qctests/gradient.py ```python import logging import numpy as np from numpy import ma from cotede.qctests import QCCheckVar try: import pandas as pd PANDAS_AVAILABLE = True except ImportError: PANDAS_AVAILABLE = False module_logger = logging.getLogger(__name__) def gradient(x): return curvature(x) def _curvature_pandas(x): """Equivalent to curvature() but using pandas It looks like the numpy implementation is faster even for larger datasets, so the default is with numpy. Note ---- - In the future this will be useful to handle specific window widths. """ if isinstance(x, ma.MaskedArray): x[x.mask] = np.nan x = x.data if not PANDAS_AVAILABLE: return curvature(x) if hasattr(x, "to_series"): x = x.to_series() elif not isinstance(x, pd.Series): x = pd.Series(x) y = np.nan * x y = x - (x.shift(1) + x.shift(-1)) / 2.0 return np.array(y) def curvature(x): """Curvature of a timeseries This test is commonly known as gradient for historical reasons, but that is a bad name choice since it is not the actual gradient, like: d/dx + d/dy + d/dz, but as defined by GTSPP, EuroGOOS and others, which is actually the curvature of the timeseries.. Note ---- - Pandas.Series operates with indexes, so it should be done different. In that case, call for _curvature_pandas. """ if isinstance(x, ma.MaskedArray): x[x.mask] = np.nan x = x.data if PANDAS_AVAILABLE and isinstance(x, pd.Series): return _curvature_pandas(x) x = np.atleast_1d(x) y = np.nan * x y[1:-1] = x[1:-1] - (x[:-2] + x[2:]) / 2.0 return y class Gradient(QCCheckVar): def set_features(self): self.features = {"gradient": curvature(self.data[self.varname])} def test(self): self.flags = {} try: threshold = self.cfg["threshold"] except KeyError: module_logger.debug( "Deprecated cfg format. It should contain a threshold item." ) threshold = self.cfg assert ( (np.size(threshold) == 1) and (threshold is not None) and (np.isfinite(threshold)) ) flag = np.zeros(np.shape(self.data[self.varname]), dtype="i1") feature = np.absolute(self.features["gradient"]) flag[feature > threshold] = self.flag_bad flag[feature <= threshold] = self.flag_good x = np.atleast_1d(self.data[self.varname]) flag[ma.getmaskarray(x) | ~np.isfinite(x)] = 9 self.flags["gradient"] = flag ``` #### File: cotede/qctests/profile_envelop.py ```python import logging import numpy as np from numpy import ma from .qctests import QCCheckVar module_logger = logging.getLogger(__name__) class ProfileEnvelop(QCCheckVar): def test(self): self.flags = {} x = self.data[self.varname] if isinstance(x, ma.MaskedArray): x[x.mask] = np.nan x = x.data x = np.atleast_1d(x) z = self.data["PRES"] if isinstance(z, ma.MaskedArray): if z.mask.any(): mask = np.ones_like(z, dtype="float32") mask[z.mask] = np.nan z = z * mask z = z.data z = np.atleast_1d(z) assert np.shape(z) == np.shape(x) assert "layers" in self.cfg, "Profile envelop cfg requires layers" flag = np.zeros(np.shape(x), dtype="i1") for layer in self.cfg["layers"]: ind = np.nonzero(eval("(z %s) & (z %s)" % (layer[0], layer[1])))[0] f = eval("(x[ind] > %s) & (x[ind] < %s)" % (layer[2], layer[3])) flag[ind[f == True]] = self.flag_good flag[ind[f == False]] = self.flag_bad flag[ma.getmaskarray(x) | ~np.isfinite(x)] = 9 self.flags["profile_envelop"] = flag ``` #### File: tests/qctests/test_qc_deepest_pressure.py ```python import numpy as np from numpy import ma from cotede.qctests import DeepestPressure from ..data import DummyData def test_default(): profile = DummyData() cfg = {'threshold': 1000} y = DeepestPressure(profile, 'TEMP', cfg) y.test() assert 'deepest_pressure' in y.flags assert profile['TEMP'].shape == y.flags['deepest_pressure'].shape idx = ma.getmaskarray(profile['TEMP']) assert idx.any(), "Redefine DummyData to have at least one masked value" assert np.all(y.flags['deepest_pressure'][idx] == 9) x = profile['PRES'][y.flags['deepest_pressure'] == 1] idx = (x <= 1.1 * cfg['threshold']) assert idx.any(), "Redefine cfg to have at least one valid value" assert idx.all() x = profile['PRES'][y.flags['deepest_pressure'] == 3] idx = (x > 1.1 * cfg['threshold']) assert idx.any(), "Redefine cfg to have at least one non-valid value" assert idx.all() ``` #### File: tests/qctests/test_qc_spike_depthconditional.py ```python import numpy as np from cotede.qctests import SpikeDepthConditional from ..data import DummyData from .compare import compare_input_types def test(): profile = DummyData() cfg = { "pressure_threshold": 400, "shallow_max": 6, "deep_max": 0.05, "flag_good": 1, "flag_bad": 4, } y = SpikeDepthConditional(profile, "TEMP", cfg) assert isinstance(y.features, dict) assert "spike" in y.features assert np.allclose( y.flags["spike_depthconditional"], np.array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 0, 9], dtype="i1"), ) def test_input_types(): cfg = { "pressure_threshold": 400, "shallow_max": 9, "deep_max": 2.5, } compare_input_types(SpikeDepthConditional, cfg) ``` #### File: tests/qctests/test_qc_stuck_value.py ```python import numpy as np from numpy import ma from cotede.qctests import StuckValue from ..data import DummyData def test_default(): profile = DummyData() cfg = {'flag_good': 1, 'flag_bad': 4} y = StuckValue(profile, 'TEMP', cfg) assert type(y.features) is dict idx = ma.getmaskarray(profile['TEMP']) assert (y.flags['stuck_value'][idx] == 9).all() assert (y.flags['stuck_value'][~idx] == 1).all() def test_constant(): profile = DummyData() profile['TEMP'][:] = profile['TEMP'] * 0 + 3.14 cfg = {'flag_good': 1, 'flag_bad': 4} y = StuckValue(profile, 'TEMP', cfg) assert type(y.features) is dict idx = ma.getmaskarray(profile['TEMP']) assert (y.flags['stuck_value'][idx] == 9).all() assert (y.flags['stuck_value'][~idx] == 4).all() def test_neglible_difference(): profile = DummyData() profile['TEMP'][:] = profile['TEMP'] * 0 + 3.14 profile['TEMP'][:] += np.random.randn(profile['TEMP'].size) * 1e-10 cfg = {'flag_good': 1, 'flag_bad': 4} y = StuckValue(profile, 'TEMP', cfg) assert type(y.features) is dict idx = ma.getmaskarray(profile['TEMP']) assert (y.flags['stuck_value'][idx] == 9).all() assert (y.flags['stuck_value'][~idx] == 4).all() ``` #### File: tests/qctests/test_qc_valid_geolocation.py ```python import numpy as np from numpy import ma from cotede.qctests.valid_geolocation import valid_geolocation, ValidGeolocation from ..data import DummyData from tests.qctests.compare import compare_feature_input_types, compare_input_types try: import pandas as pd PANDAS_AVAILABLE = True except ImportError: PANDAS_AVAILABLE = False try: import xarray as xr XARRAY_AVAILABLE = True except ImportError: XARRAY_AVAILABLE = False """ Tests to implement: - missing lat, missing lon, missing both - single point - list - array - masked array - single point with NaN (lat, lon, lat & lon) - list with some NaN - lat lon coincident - lat lon non-coincident - masked array with some masked values - Greenwich Tests on class(QCCheck) - lat lon in attrs - lat lon in data - invalid - lat - lon - lat & lon """ def test_valid_single_coordinate(): coords = [[10, -30], [10, 330]] for lat, lon in coords: assert valid_geolocation(lat, lon) == True def test_invalid_single_coordinate(): coords = [[99, 0], [-91.1, 0], [99, 361], [0, -181], [0, 361]] for lat, lon in coords: assert valid_geolocation(lat, lon) == False def test_nan_single_coordinate(): coords = [[np.nan, -30], [10, np.nan]] for lat, lon in coords: assert valid_geolocation(lat, lon) == False def test_valid_coordinate_list(): lat = [10, 10, -15] lon = [-30, 330, 30] assert np.all(valid_geolocation(lat, lon) == True) def test_valid_coordinate_list(): lat = [np.nan, 10, np.nan] lon = [-30, np.nan, 30] assert np.all(valid_geolocation(lat, lon) == False) def test_feature_input_types(): lat = np.array([10, 10, -15, np.nan, 0, np.nan]) lon = np.array([-30, 330, 30, 0, np.nan, np.nan]) compare_feature_input_types(valid_geolocation, lat, lon) def test_standard_dataset(): profile = DummyData() flags = {"valid_geolocation": [1]} y = ValidGeolocation(profile) for f in flags: assert np.allclose(y.flags[f], flags[f], equal_nan=True) def test_standard_dataset_alongtrack(): profile = DummyData() profile.data["lat"] = profile["TEMP"] * 0 profile.data["lon"] = profile["TEMP"] * 0 flags = {"valid_geolocation": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3]} y = ValidGeolocation(profile) for f in flags: assert np.allclose(y.flags[f], flags[f], equal_nan=True) # def test_input_types(): # compare_input_types(ValidGeolocation) def test_compare_tuple(): """Validate the results using a tuple """ profile = DummyData() profile.data["lat"] = profile["TEMP"] * 0 profile.data["lon"] = profile["TEMP"] * 0 tp = {} for v in profile.keys(): if isinstance(profile[v], ma.MaskedArray) and profile[v].mask.any(): profile[v][profile[v].mask] = np.nan profile.data[v] = profile[v].data tp[v] = tuple(profile.data[v]) y = ValidGeolocation(profile) y2 = ValidGeolocation(tp) assert isinstance(y2["lat"], tuple), "It didn't preserve the tuple type" for f in y.features: assert np.allclose(y.features[f], y2.features[f], equal_nan=True) assert y.features[f].dtype == y2.features[f].dtype for f in y.flags: assert type(y.flags[f]) == type(y2.flags[f]) assert y.flags[f].dtype == y2.flags[f].dtype assert np.allclose(y.flags[f], y2.flags[f], equal_nan=True) def test_compare_pandas(): """Validate the results using pandas.DataFrame """ if not PANDAS_AVAILABLE: return profile = DummyData() profile.data["lat"] = profile["TEMP"] * 0 profile.data["lon"] = profile["TEMP"] * 0 df = pd.DataFrame(profile.data) y = ValidGeolocation(profile) y2 = ValidGeolocation(df) for f in y.features: assert np.allclose(y.features[f], y2.features[f], equal_nan=True) for f in y.flags: assert type(y.flags[f]) == type(y2.flags[f]) assert y.flags[f].dtype == y2.flags[f].dtype assert np.allclose(y.flags[f], y2.flags[f], equal_nan=True) def test_compare_xarray(): """Validate the results using pandas.DataFrame """ if not XARRAY_AVAILABLE: return profile = DummyData() profile.data["lat"] = profile["TEMP"] * 0 profile.data["lon"] = profile["TEMP"] * 0 ds = pd.DataFrame(profile.data).to_xarray() y = ValidGeolocation(profile) y2 = ValidGeolocation(ds) for f in y.features: assert np.allclose(y.features[f], y2.features[f], equal_nan=True) for f in y.flags: assert type(y.flags[f]) == type(y2.flags[f]) assert y.flags[f].dtype == y2.flags[f].dtype assert np.allclose(y.flags[f], y2.flags[f], equal_nan=True) ``` #### File: CoTeDe-modified/tests/test_datasets.py ```python from cotede import ProfileQC import cotede.datasets def test_load_ctd(): """Load CTD sample dataset """ ctd_dataset = cotede.datasets.load_ctd() ctd_dataset.keys() varnames = [ "timeS", "PRES", "TEMP", "TEMP2", "CNDC", "CNDC2", "potemperature", "potemperature2", "PSAL", "PSAL2", "flag", ] for v in varnames: assert v in ctd_dataset.keys() assert len(ctd_dataset[v]) == 1014 def test_load_water_level(): """Load water level sample dataset """ water_level_dataset = cotede.datasets.load_water_level() water_level_dataset.keys() varnames = ["epoch", "water_level", "flagged", "time"] for v in varnames: assert v in water_level_dataset.keys() assert len(water_level_dataset[v]) == 21900 def test_qc_sample_ctd(): """Guarantee that ProfileQC can run with a sample dataset Note ---- - Assume that global_range will be always a default test. """ data = cotede.datasets.load_ctd() pqc = ProfileQC(data) # Silly test. The most important is if the previous line didn't crash. assert len(pqc.flags["TEMP"]) > 0 assert len(pqc.flags["TEMP"]["global_range"]) > 0 ``` #### File: CoTeDe-modified/tests/test_load_cfg.py ```python import os.path import pkg_resources from cotede.utils import load_cfg, cotederc from cotede.utils.config import convert_021_to_022 CFG = [f[:-5] for f in pkg_resources.resource_listdir('cotede', 'qc_cfg') if f[-5:] == '.json'] def test_no_local_duplicate_cfg(): """ Avoid local cfg of default procedures Guarantee that there is no local copy of a default cfg json file, otherwise the default cfg could be breaking, and the tests safely escaping into a local, non-distributed, cfg. """ for cfg in CFG: local_cfg = os.path.join(cotederc(), "cfg", "%s.json" % cfg) assert not os.path.exists(local_cfg), \ "Redundant local cfg file: %s" % cfg def test_inout(): """ load_cfg shouldn't modify input variable cfg """ cfg = 'cotede' out = load_cfg(cfg) assert out != cfg def test_dict(): """Test a user dict config It is possible to define a full config instead of choosing one of the builtins. This is done by giving a dictionary with the correct structure. """ cfg = {'common': {'valid_datetime': None}} cfg_out = load_cfg(cfg) assert 'common' in cfg_out, "Missing 'common' in load_cfg output" assert cfg_out['common'] == cfg['common'] def test_default(): cfg_out = load_cfg() assert isinstance(cfg_out, dict) assert len(cfg_out) > 0 def test_factory_cfgs(): """Load all available configs, one at a time CoTeDe comes with builtin config. This test checks if can load all those available configs. """ for cfg in CFG: print("Loading %s" % cfg) try: cfg_out = load_cfg(cfg) except: assert False, "Couldn't load: %s" % cfg assert isinstance(cfg_out, dict) assert len(cfg_out) > 0 # Missing a test to load cfg at ~/.cotede def test_dict_input(): """Test a dictionary input, i.e. manually defined config The output configuration can't miss anything given in the input but can have extra content. """ # Scalar argument cfg = {'temperature': {'spike': 1234}} cfg_out = load_cfg(cfg) assert cfg_out['variables']['temperature']['spike']['threshold'] == 1234 # Dictionary argument cfg = {'temperature': {'global_range': {'minvalue': 0, 'maxvalue': 60}}} cfg_out = load_cfg(cfg) assert 'global_range' in cfg_out['variables']['temperature'] tmp = cfg_out['variables']['temperature']['global_range'] for v in cfg['temperature']['global_range']: assert v in tmp assert cfg['temperature']['global_range'][v] == tmp[v] def test_inheritance(): """Test inheritance """ cfg = load_cfg('cotede') cfg2 = load_cfg({'inherit': 'cotede'}) for c in cfg: assert c in cfg assert cfg[c] == cfg2[c] def test_inheritance_priority(): """Test priority when inheriting When inheritance is a list, the first item has priority over the last one. """ def walk_and_check(cfg, cfg2): for c in cfg: assert c in cfg2, "Missing %s in inherited cfg2" % c if not isinstance(cfg[c], dict): assert cfg[c] == cfg2[c], \ "Missing %s in cfg2" % c else: walk_and_check(cfg[c], cfg2[c]) cfg = load_cfg('cotede') # If is a list, the last is the lowest priority cfg2 = load_cfg({'inherit': ['cotede', 'gtspp']}) walk_and_check(cfg, cfg2) try: cfg2 = load_cfg({'inherit': ['gtspp', 'cotede']}) walk_and_check(cfg, cfg2) failed = False except: failed = True assert failed, "It should fail in inverse priority" def test_convert_021_to_022(): cfg = { "revision": "0.21", "variables": { "myvar": { "fuzzylogic": { "output": { "low": [0.0, 0.225, 0.45], "medium": [0.075, 0.4, 0.725], "high": [0.55, 0.775] }, "features": { "spike": { "weight": 1, "low": [0.07, 0.2], "medium": [0.07, 0.2, 2, 6], "high": [2, 6] } }, "uncertainty": [0.29, 0.34, 0.72] } } }} cfg = convert_021_to_022(cfg) output = cfg["variables"]["myvar"]["fuzzylogic"]["output"] for o in output: assert "type" in output[o] assert "params" in output[o] features = cfg["variables"]["myvar"]["fuzzylogic"]["features"] for f in features: for m in ("low", "medium", "high"): assert "type" in features[f][m] assert "params" in features[f][m] ``` #### File: CoTeDe-modified/tests/test_special_cases.py ```python from datetime import datetime, date from numpy import ma import pytest from cotede.qc import ProfileQC from .data import DummyData def test_single_measurement(): """Evaluate a profile with a single measurement WOD has some profiles with a single measurement. Something certainly went wrong on those profiles, despite that, CoTeDe should be able to do the best assessement possible. Some tests can't be applied, like spike which requires neighbor measurements, but those should return flag 0. """ profile = DummyData() profile.attrs = { "id": 609483, "LATITUDE": 6.977, "LONGITUDE": 79.873, "datetime": datetime(2009, 8, 14, 1, 18, 36), "date": date(2009, 8, 14), "schema": "pfl", } profile.data = { "id": ma.masked_array(data=[51190527], mask=[False], dtype="i"), "PRES": ma.masked_array(data=[1.0], mask=[False], dtype="f"), "TEMP": ma.masked_array(data=[25.81], mask=[False], dtype="f"), "PSAL": ma.masked_array(data=[0.01], mask=[False], dtype="f"), } ProfileQC(profile, saveauxiliary=False) ProfileQC(profile, saveauxiliary=True) @pytest.mark.skip(reason="Requires new generic Anomaly Detection procedure") def test_single_negative_depth(): """Evaluate a profile with a single measurement WOD has some profiles with a single measurement. Something certainly went wrong on those profiles, despite that, CoTeDe should be able to do the best assessement possible. Some tests can't be applied, like spike which requires neighbor measurements, but those should return flag 0. """ profile = DummyData() profile.attrs = { "id": 609483, "LATITUDE": 6.977, "LONGITUDE": 79.873, "datetime": datetime(2009, 8, 14, 1, 18, 36), "date": date(2009, 8, 14), "schema": "pfl", } profile.data = { "id": ma.masked_array(data=[51190527], mask=[False], dtype="i"), "PRES": ma.masked_array(data=[-1.0], mask=[False], dtype="f"), "TEMP": ma.masked_array(data=[25.81], mask=[False], dtype="f"), "PSAL": ma.masked_array(data=[0.01], mask=[False], dtype="f"), } ProfileQC(profile, saveauxiliary=False) ProfileQC(profile, saveauxiliary=True) ```
{ "source": "jmettraux/dotvim", "score": 2 }
#### File: dotvim/scripts/tree.py ```python import os, re, sys, string, subprocess # determine root root = sys.argv[1] if os.path.isfile(root): root = os.path.dirname(root) if root[-1] != '/': root = root + '/' # determine git root gitroot = False try: DEV_NULL = open(os.devnull, 'w') gitroot = subprocess\ .check_output([ 'git', 'rev-parse', '--show-toplevel' ], stderr=DEV_NULL)\ .decode()\ .strip() except: True # not a git repo # gather git stats git = {} if gitroot: cmd = 'git diff --numstat' for line in subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE).stdout: line = line.decode().strip() #print([ 'gdns', line ]) ss = line.split() #print([ gitroot, ss[2] ]) ap = os.path.abspath(os.path.join(gitroot, ss[2])) git[ap] = { 'p': ss[2], 'a': ss[0], 'd': ss[1] } cmd = 'git status -s' for line in subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE).stdout: line = line.decode().strip() #print([ 'gss', line ]) ss = line.split() if len(ss) > 2 and ss[2] == '->': ap = os.path.abspath(ss[3]) g = git.get(ap, { 'p': ss[3] }) git[ap] = g g['s'] = ss[0] else: ap = os.path.abspath(ss[1]) g = git.get(ap, { 'p': ss[1] }) git[ap] = g g['s'] = ss[0] #print(git) #print(git.keys()) #print git['/home/jmettraux/w/sg/ispec/spec/common_spec.rb'] cf = open(os.path.join(os.path.dirname(__file__), 'countable.txt'), 'r') exts = cf.read().split() cf.close() wcl = {} cmd = ( 'find ' + root + ' ' + ' -o '.join( map( lambda x: '-name "*.' + x + '" ', exts)) + ' | xargs wc -l 2>/dev/null') for line in subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE).stdout: ss = line.decode().strip().split() if len(ss) < 2: continue if ss[1] == 'total': continue if re.match(r'\/\.git\/', ss[1]): continue wcl[os.path.abspath(ss[1])] = ss[0] # do the tree fs = [] def to_kmgt(s): # https://stackoverflow.com/questions/12523586 step_unit = 1024.0 for x in [ '', 'K', 'M', 'G', 'T' ]: #if s < step_unit: return "%3.1f%s" % (s, x) if s < step_unit: return "%i%s" % (s, x) s /= step_unit def compute_size(path): m = re.match(r'^([^*]+)', path) if m == None: return '-1' pa = m.group(1) if os.path.exists(pa) == False: return '-1' return to_kmgt(os.path.getsize(pa)) def compute_path(): i = fs[-1]['i'] + 1 d = [] for f in fs[::-1]: if f['i'] < i: d.insert(0, f['n']) i = f['i'] return os.path.join(*d) cmd = 'tree -F ' + root for line in subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE).stdout: line = line.decode().rstrip() d = { 'l': line, 'i': -1 } fs.append(d); m = re.match(r'^([-|` ]+ )?(.*)$', line) if m == None: continue d['i'] = len(m.group(1) or '') d['n'] = m.group(2) d['p'] = compute_path() d['s'] = compute_size(d['p']) d['d'] = os.path.isdir(d['p']) d['L'] = wcl.get(os.path.abspath(d['p'])) def to_s(l): return ' '.join(filter(None, l)) for f in fs: if f['i'] < 0 or f['s'] == '-1': print(f['l']) else: ap = os.path.abspath(f['p']) g = git.get(ap) ls = f['L'] + 'L' if f['L'] else None if g: un = g.get('s') ad = '+' + g.get('a', '0') + '-' + g.get('d', '0') if un == '??': ad = 'untracked' elif un and un[0:1] == 'A': if ad == '+---': ad = 'new' else: ad = ad + ' new' print(to_s([ f['l'], f['s'], ls, ad ])) else: print(to_s([ f['l'], f['s'], ls ])) ```
{ "source": "jmetzen/bayesian_optimization", "score": 3 }
#### File: bayesian_optimization/bayesian_optimization/bayesian_optimization.py ```python from itertools import cycle import numpy as np from sklearn.utils import check_random_state from .utils.optimization import global_optimization class BayesianOptimizer(object): """Bayesian optimization for global black-box optimization Bayesian optimization models the landscape of the function to be optimized internally by a surrogate model (typically a Gaussian process) and evaluates always those parameters which are considered as global optimum of an acquisition function defined over this surrogate model. Different acquisition functions and optimizers can be used internally. Bayesian optimization aims at reducing the number of evaluations of the actual function, which is assumed to be costly. To achieve this, a large computational budget is allocated at modelling the true function and finding potentially optimal positions based on this model. .. seealso:: Brochu, Cora, de Freitas "A tutorial on Bayesian optimization of expensive cost functions, with application to active user modelling and hierarchical reinforcement learning" Parameters ---------- model : surrogate model object The surrogate model which is used to model the objective function. It needs to provide a methods fit(X, y) for training the model and predictive_distribution(X) for determining the predictive distribution (mean, std-dev) at query point X. acquisition_function : acquisition function object When called, this function returns the acquisitability of a query point i.e., how favourable it is to perform an evaluation at the query point. For this, internally the trade-off between exploration and exploitation is handled. optimizer: string, default: "direct" The optimizer used to identify the maximum of the acquisition function. The optimizer is specified by a string which may be any of "direct", "direct+lbfgs", "random", "random+lbfgs", "cmaes", or "cmaes+lbfgs". maxf: int, default: 1000 The maximum number of evaluations of the acquisition function by the optimizer. initial_random_samples: int, default: 5 The number of initial sample, in which random query points are selected without using the acquisition function. Setting this to values larger than 0 might be required if the surrogate model needs to be trained on datapoints before evaluating it. random_state : RandomState or int (default: None) Seed for the random number generator. """ def __init__(self, model, acquisition_function, optimizer="direct", maxf=1000, initial_random_samples=5, random_state=0, *args, **kwargs): self.model = model self.acquisition_function = acquisition_function self.optimizer = optimizer self.maxf = maxf self.initial_random_samples = initial_random_samples self.rng = check_random_state(random_state) self.X_ = [] self.y_ = [] def select_query_point(self, boundaries, incumbent_fct=lambda y: np.max(y)): """ Select the next query point in boundaries based on acq. function. Parameters ---------- boundaries : ndarray-like, shape: [n_dims, 2] Box constraint on allowed query points. First axis corresponds to dimensions of the search space and second axis to minimum and maximum allowed value in the respective dimensions. incumbent_fct: function, default: returns maximum observed value A function which is used to determine the incumbent for the acquisition function. Defaults to the maximum observed value. """ boundaries = np.asarray(boundaries) if len(self.X_) < self.initial_random_samples: X_query = self.rng.uniform(size=boundaries.shape[0]) \ * (boundaries[:, 1] - boundaries[:, 0]) + boundaries[:, 0] else: self.acquisition_function.set_boundaries(boundaries) def objective_function(x): # Check boundaries if not np.all(np.logical_and(x >= boundaries[:, 0], x <= boundaries[:, 1])): return -np.inf incumbent = incumbent_fct(self.y_) return self.acquisition_function(x, incumbent=incumbent) X_query = global_optimization( objective_function, boundaries=boundaries, optimizer=self.optimizer, maxf=self.maxf, random=self.rng) # Clip to hard boundaries return np.clip(X_query, boundaries[:, 0], boundaries[:, 1]) def update(self, X, y): """ Update internal model for observed (X, y) from true function. """ self.X_.append(X) self.y_.append(y) self.model.fit(self.X_, self.y_) def best_params(self): """ Returns the best parameters found so far.""" return self.X_[np.argmax(self.y_)] def best_value(self): """ Returns the optimal value found so far.""" return np.max(self.y_) class REMBOOptimizer(BayesianOptimizer): """ Random EMbedding Bayesian Optimization (REMBO). This extension of Bayesian Optimizer (BO) is better suited for high-dimensional problems with a low effective dimensionality than BO. This is achieved by restricting the optimization to a low-dimensional linear manifold embedded in the higher dimensional space. Theoretical results suggest that even if the manifold is chosen randomly, the optimum on this manifold equals the global optimum if the function is indeed of the same intrinsic dimensionality as the manifold. .. seealso:: Wang, Zoghi, Hutter, Matheson, <NAME> "Bayesian Optimization in High Dimensions via Random Embeddings", International Joint Conferences on Artificial Intelligence (IJCAI), 2013 Parameters ---------- n_dims : int The dimensionality of the actual search space n_embedding_dims : int, default: 2 The dimensionality of the randomly chosen linear manifold on which the optimization is performed data_space: array-like, shape=[n_dims, 2], default: None The boundaries of the data-space. This is used for scaling the mapping from embedded space to data space, which is useful if dimensions of the data space have different ranges or are not centred around 0. n_keep_dims : int, default: 0 The number of dimensions which are not embedded in the manifold but are kept 1-to-1 in the representation. This can be useful if some dimensions are known to be relevant. Note that it is expected that those dimensions come first in the data representation, i.e., the first n_keep_dims dimensions are maintained. Further parameters are the same as in BayesianOptimizer """ def __init__(self, n_dims, n_embedding_dims=2, data_space=None, n_keep_dims=0, *args, **kwargs): super(REMBOOptimizer, self).__init__(*args, **kwargs) self.n_dims = n_dims self.n_embedding_dims = n_embedding_dims self.data_space = data_space self.n_keep_dims = n_keep_dims if self.data_space is not None: self.data_space = np.asarray(self.data_space) if self.data_space.shape[0] != self.n_dims - n_keep_dims: raise Exception("Data space must be specified for all input " "dimensions which are not kept.") # Determine random embedding matrix self.A = self.rng.normal(size=(self.n_dims - self.n_keep_dims, self.n_embedding_dims)) #self.A /= np.linalg.norm(self.A, axis=1)[:, np.newaxis] # XXX self.X_embedded_ = [] self.boundaries_cache = {} def select_query_point(self, boundaries, incumbent_fct=lambda y: np.max(y)): """ Select the next query point in boundaries based on acq. function. Parameters ---------- boundaries : ndarray-like, shape: [n_dims, 2] Box constraint on allowed query points. First axis corresponds to dimensions of the search space and second axis to minimum and maximum allowed value in the respective dimensions. incumbent_fct: function, default: returns maximum observed value A function which is used to determine the incumbent for the acquisition function. Defaults to the maximum observed value. """ boundaries = np.asarray(boundaries) if not boundaries.shape[0] == self.n_dims: raise Exception("Dimensionality of boundaries should be %d" % self.n_dims) # Compute boundaries on embedded space boundaries_embedded = self._compute_boundaries_embedding(boundaries) if len(self.X_) < self.initial_random_samples: # Select query point randomly X_query_embedded = \ self.rng.uniform(size=boundaries_embedded.shape[0]) \ * (boundaries_embedded[:, 1] - boundaries_embedded[:, 0]) \ + boundaries_embedded[:, 0] else: # Select query point by finding optimum of acquisition function # within boundaries def objective_function(x): # Check boundaries if not np.all(np.logical_and(x >= boundaries_embedded[:, 0], x <= boundaries_embedded[:, 1])): return -np.inf incumbent = incumbent_fct(self.y_) return self.acquisition_function(x, incumbent=incumbent) X_query_embedded = global_optimization( objective_function, boundaries=boundaries_embedded, optimizer=self.optimizer, maxf=self.maxf, random=self.rng) self.X_embedded_.append(X_query_embedded) # Map to higher dimensional space and clip to hard boundaries X_query = np.clip(self._map_to_dataspace(X_query_embedded), boundaries[:, 0], boundaries[:, 1]) return X_query def update(self, X, y): """ Update internal model for observed (X, y) from true function. """ self.X_.append(X) self.y_.append(y) self.model.fit(self.X_embedded_, self.y_) def _map_to_dataspace(self, X_embedded): """ Map data from manifold to original data space. """ X_query_kd = self.A.dot(X_embedded[self.n_keep_dims:]) if self.data_space is not None: X_query_kd = (X_query_kd + 1) / 2 \ * (self.data_space[:, 1] - self.data_space[:, 0]) \ + self.data_space[:, 0] X_query = np.hstack((X_embedded[:self.n_keep_dims], X_query_kd)) return X_query def _compute_boundaries_embedding(self, boundaries): """ Approximate box constraint boundaries on low-dimensional manifold""" # Check if boundaries have been determined before boundaries_hash = hash(boundaries[self.n_keep_dims:].tostring()) if boundaries_hash in self.boundaries_cache: boundaries_embedded = \ np.array(self.boundaries_cache[boundaries_hash]) boundaries_embedded[:self.n_keep_dims] = \ boundaries[:self.n_keep_dims] # Overwrite keep-dim's boundaries return boundaries_embedded # Determine boundaries on embedded space boundaries_embedded = \ np.empty((self.n_keep_dims + self.n_embedding_dims, 2)) boundaries_embedded[:self.n_keep_dims] = boundaries[:self.n_keep_dims] for dim in range(self.n_keep_dims, self.n_keep_dims + self.n_embedding_dims): x_embedded = np.zeros(self.n_keep_dims + self.n_embedding_dims) while True: x = self._map_to_dataspace(x_embedded) if np.sum(np.logical_or( x[self.n_keep_dims:] < boundaries[self.n_keep_dims:, 0], x[self.n_keep_dims:] > boundaries[self.n_keep_dims:, 1])) \ > (self.n_dims - self.n_keep_dims) / 2: break x_embedded[dim] -= 0.01 boundaries_embedded[dim, 0] = x_embedded[dim] x_embedded = np.zeros(self.n_keep_dims + self.n_embedding_dims) while True: x = self._map_to_dataspace(x_embedded) if np.sum(np.logical_or( x[self.n_keep_dims:] < boundaries[self.n_keep_dims:, 0], x[self.n_keep_dims:] > boundaries[self.n_keep_dims:, 1])) \ > (self.n_dims - self.n_keep_dims) / 2: break x_embedded[dim] += 0.01 boundaries_embedded[dim, 1] = x_embedded[dim] self.boundaries_cache[boundaries_hash] = boundaries_embedded return boundaries_embedded class InterleavedREMBOOptimizer(BayesianOptimizer): """ Interleaved Random EMbedding Bayesian Optimization (REMBO). In this extension of REMBO, several different random embeddings are chosen and the optimization is performed on all embeddings interleaved (in a round-robin fashion). This way, the specific choice of one random embedding becomes less relevant. On the other hand, less evaluations on each particular embedding can be performed. .. seealso:: Wang, Zoghi, Hutter, Matheson, <NAME> "Bayesian Optimization in High Dimensions via Random Embeddings", International Joint Conferences on Artificial Intelligence (IJCAI), 2013 Parameters ---------- interleaved_runs : int The number of interleaved runs (each on a different random embedding). This parameter is denoted as k by Wang et al. Further parameters are the same as in REMBOOptimizer """ def __init__(self, interleaved_runs=2, *args, **kwargs): random_state = kwargs.pop("random_state", 0) self.rembos = [REMBOOptimizer(random_state=random_state + 100 + run, *args, **kwargs) for run in range(interleaved_runs)] self.rembos = cycle(self.rembos) self.current_rembo = self.rembos.next() self.X_ = [] self.y_ = [] def select_query_point(self, boundaries, incumbent_fct=lambda y: np.max(y)): """ Select the next query point in boundaries based on acq. function. Parameters ---------- boundaries : ndarray-like, shape: [n_dims, 2] Box constraint on allowed query points. First axis corresponds to dimensions of the search space and second axis to minimum and maximum allowed value in the respective dimensions. incumbent_fct: function, default: returns maximum observed value A function which is used to determine the incumbent for the acquisition function. Defaults to the maximum observed value. """ return self.current_rembo.select_query_point(boundaries, incumbent_fct) def update(self, X, y): """ Update internal REMBO responsible for observed (X, y). """ self.X_.append(X) self.y_.append(y) self.current_rembo.update(X, y) self.current_rembo = self.rembos.next() ```
{ "source": "jmetzen/skgp", "score": 2 }
#### File: jmetzen/skgp/setup.py ```python import os def configuration(parent_package='', top_path=None): if os.path.exists('MANIFEST'): os.remove('MANIFEST') from numpy.distutils.misc_util import Configuration config = Configuration(None, parent_package, top_path) # Avoid non-useful msg: # "Ignoring attempt to set 'name' (from ... " config.set_options(ignore_setup_xxx_py=True, assume_default_configuration=True, delegate_options_to_subpackages=True, quiet=True) config.add_subpackage('skgp') return config def setup_package(): metadata = dict( name="skgp", author="<NAME>", author_email="<EMAIL>", description="Extended Gaussian Process functionality for sklearn", long_description=open("README.rst").read(), license="new BSD", url="https://github.com/jmetzen/skgp", version="0.0", classifiers=[ "Intended Audience :: Science/Research", "Intended Audience :: Developers", "Programming Language :: Python", "Operating System :: Microsoft :: Windows", "Operating System :: POSIX", "Operating System :: Unix", "Operating System :: MacOS", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", ], requires=["numpy", "scipy", "sklearn", "emcee"]) metadata['configuration'] = configuration from numpy.distutils.core import setup setup(**metadata) if __name__ == "__main__": setup_package() ``` #### File: skgp/correlation_models/non_stationary.py ```python import numpy as np from scipy.special import gamma, kv from scipy.stats import expon, norm from sklearn.cluster import KMeans from .stationary import l1_cross_differences MACHINE_EPSILON = np.finfo(np.double).eps class LocalLengthScalesCorrelation(object): """ Non-stationary correlation model based on local smoothness estimates. This non-stationary correlation model learns internally point estimates of local smoothness using a second-level Gaussian Process. For this, it selects a subset of the training data and learns length-scales at this specific points. These length scales are generalized using the second-level Gaussian Process. Furthermore, global (isotropic or anisotropic) length scales are learned for both the top-level GP and the length-scale GP. The correlation model is based on the family of (stationary) Matern kernels. The parameter nu of the Matern kernels (governing the smoothness of the GP prior) can either be set or learned jointly with the remaining parameters. Parameters ---------- isotropic : bool, default=True Whether the global length-scales of the top-level GP are isotropic or anisotropic nu: float, default=1.5 The parameter nu of the Matern kernels (governing the smoothness of the GP prior). If None, nu is learned along with the other hyperparameters. l_isotropic : bool, default=True Whether the global length-scales of the length-scale GP are isotropic or anisotropic l_samples: int, default=10 How many datapoints from the training data are selected as support points for learning the length-scale GP prior_b: float, default=inf The variance of the log-normal prior distribution on the length scales. If set to infinity, the distribution is assumed to be uniform. .. seealso:: "Nonstationary Gaussian Process Regression using Point Estimates of Local Smoothness", <NAME>, <NAME>, and <NAME>, ECML 2008 """ def __init__(self, isotropic=True, nu=1.5, l_isotropic=True, l_samples=10, prior_b=np.inf, X_=None): self.isotropic = isotropic self.nu = nu self.l_isotropic = l_isotropic self.l_samples = l_samples self.prior_b = prior_b self.X_ = X_ if self.X_ is not None: assert self.X_.shape[0] == self.l_samples def fit(self, X, nugget=10. * MACHINE_EPSILON): """ Fits the correlation model for training data X Parameters ---------- X : array_like, shape=(n_samples, n_features) An array of training datapoints at which observations were made, i.e., where the outputs y are known nugget : double or ndarray, optional The Gaussian Process nugget parameter The nugget is added to the diagonal of the assumed training covariance; in this way it acts as a Tikhonov regularization in the problem. In the special case of the squared exponential correlation function, the nugget mathematically represents the variance of the input values. Default assumes a nugget close to machine precision for the sake of robustness (nugget = 10. * MACHINE_EPSILON). """ self.X = X self.nugget = nugget self.n_samples = X.shape[0] self.n_dims = X.shape[1] # Determine how many entries in theta belong to the different # categories (used later for parsing theta) self.theta_gp_size = 1 if self.isotropic else self.n_dims self.theta_l_size = 1 if self.l_isotropic else self.n_dims self.nu_size = 1 if not self.nu else 0 self.theta_size = self.theta_gp_size + self.theta_l_size \ + self.l_samples + self.nu_size # Calculate array with shape (n_eval, n_features) giving the # componentwise distances between locations x and x' at which the # correlation model should be evaluated. self.D, self.ij = l1_cross_differences(self.X) if self.X_ is None: # Select subset of X for which length scales are optimized. # Generalization of length scales to other datapoints is acheived # by means of a separate Gaussian Process (gp_l) if self.X.shape[0] >= self.l_samples: kmeans = KMeans(n_clusters=self.l_samples) self.X_ = kmeans.fit(self.X).cluster_centers_ else: # Fallback to select centers using sampling with replacement self.X_ = self.X[np.random.choice(np.arange(self.X.shape[0]), self.l_samples)] return self def __call__(self, theta, X=None): """ Compute correlation for given correlation parameter(s) theta. Parameters ---------- theta : array_like An array giving the autocorrelation parameter(s). X : array_like, shape(n_eval, n_features) An array containing the n_eval query points whose correlation with the training datapoints shall be computed. If None, autocorrelation of the training datapoints is computed instead. Returns ------- r : array_like, shape=(n_eval, n_samples) if X != None (n_samples, n_samples) if X == None An array containing the values of the correlation model. """ # Parse theta into its components theta_gp, theta_l, length_scales, nu = self._parse_theta(theta) # Train length-scale Gaussian Process from skgp.estimators import GaussianProcess self.gp_l = \ GaussianProcess(corr="matern_1.5", theta0=theta_l).fit(self.X_, np.log10(length_scales)) l_train = 10**self.gp_l.predict(self.X) # Prepare distances and length scale information for any pair of # datapoints, whose correlation shall be computed if X is not None: # Get pairwise componentwise L1-differences to the input training # set d = X[:, np.newaxis, :] - self.X[np.newaxis, :, :] d = d.reshape((-1, X.shape[1])) # Predict length scales for query datapoints l_query = 10**self.gp_l.predict(X) l = np.transpose([np.tile(l_train, len(l_query)), np.repeat(l_query, len(l_train))]) else: # No external datapoints given; auto-correlation of training set # is used instead d = self.D l = l_train[self.ij] # Compute general Matern kernel if d.ndim > 1 and theta_gp.size == d.ndim: activation = np.sum(theta_gp.reshape(1, d.ndim) * d ** 2, axis=1) else: activation = theta_gp[0] * np.sum(d ** 2, axis=1) tmp = 0.5*(l**2).sum(1) tmp2 = np.maximum(2*np.sqrt(nu * activation / tmp), 1e-5) r = np.sqrt(l[:, 0]) * np.sqrt(l[:, 1]) / (gamma(nu) * 2**(nu - 1)) r /= np.sqrt(tmp) r *= tmp2**nu * kv(nu, tmp2) # Convert correlations to 2d matrix if X is not None: return r.reshape(-1, self.n_samples) else: # exploit symmetry of auto-correlation R = np.eye(self.n_samples) * (1. + self.nugget) R[self.ij[:, 0], self.ij[:, 1]] = r R[self.ij[:, 1], self.ij[:, 0]] = r return R def log_prior(self, theta): """ Returns the (log) prior probability of parameters theta. The prior is assumed to be uniform over the parameter space except for the length-scales dimensions. These are assumed to be log-normal distributed with mean 0 and variance self.prior_b. If self.prior_b is np.inf, the log length-scales are assumed to be uniformly distributed as well. NOTE: The returned quantity is an improper prior as its integral over the parameter space is not equal to 1. Parameters ---------- theta : array_like An array giving the autocorrelation parameter(s). Returns ------- log_p : float The (log) prior probability of parameters theta. An improper probability. """ if self.prior_b == np.inf: return 0.0 _, _, length_scales, _ = self._parse_theta(theta) squared_dist = (np.log10(length_scales)**2).sum() return -squared_dist / self.prior_b def _parse_theta(self, theta): """ Parse parameter vector theta into its components. Parameters ---------- theta : array_like An array containing all hyperparameters. Returns ------- theta_gp : array_like An array containing the hyperparameters of the main GP. theta_l : array_like An array containing the hyperparameters of the length-scale GP. length_scales : array_like An array containing the length-scales for the length-scale GP. nu : float The parameter nu controlling the smoothness of the Matern kernel. """ theta = np.asarray(theta, dtype=np.float) assert (theta.size == self.theta_size), \ "theta does not have the expected size (expected: %d, " \ "actual size %d). Expected: %d entries for main GP, " \ "%d entries for length-scale GP, %d entries containing the "\ "length scales, and %d entries for nu." \ % (self.theta_size, theta.size, self.theta_gp_size, self.theta_l_size, self.l_samples, self.nu_size) # Split theta in its components theta_gp = theta[:self.theta_gp_size] theta_l = \ theta[self.theta_gp_size:][:self.theta_l_size] length_scales = \ theta[self.theta_gp_size+self.theta_l_size:][:self.l_samples] nu = self.nu if self.nu else theta[-1] return theta_gp, theta_l, length_scales, nu @classmethod def create(cls, dims, isotropic=True, theta0=1e-1, thetaL=None, thetaU=None, l_isotropic=True, theta_l_0=1e-1, theta_l_L=None, theta_l_U=None, l_samples=20, l_0=1.0, l_L=None, l_U=None, nu_0=1.5, nu_L=None, nu_U=None, prior_b=np.inf, *args, **kwargs): """ Factory method for creating non-stationary correlation models. ..note:: In addtion to returning an instance of NonStationaryCorrelation, the specification of the search space for the hyperparameters theta of the Gaussian process is returned. This includes the start point of the search (theta0) as well as the lower and upper boundaries thetaL and thetaU for the values of theta. """ theta0 = [theta0] * (1 if isotropic else dims) thetaL = [thetaL] * (1 if isotropic else dims) thetaU = [thetaU] * (1 if isotropic else dims) theta0 += [theta_l_0] * (1 if l_isotropic else dims) thetaL += [theta_l_L] * (1 if l_isotropic else dims) thetaU += [theta_l_U] * (1 if l_isotropic else dims) theta0 += [l_0] * l_samples thetaL += [l_L] * l_samples thetaU += [l_U] * l_samples if nu_L is not None: theta0 += [nu_0] thetaL += [nu_L] thetaU += [nu_U] corr = cls(isotropic=isotropic, nu=None if nu_L else nu_0, l_isotropic=l_isotropic, l_samples=l_samples, prior_b=prior_b) return corr, theta0, thetaL, thetaU class ManifoldCorrelation(object): """ Non-stationary correlation model based on manifold learning. This non-stationary correlation model consists internally of two parts: a mapping from the actual data space onto a manifold and a stationary correlation model on this manifold. The mapping is realized by a neural network whose architecture can be specified externally. The parameters of this network are learned along with the length scales of the Gaussian process, typically such that the marginal likelihood or the posterior probability of the GP are maximized. Any common stationary correlation model can then be used on top of this manifold. Parameters ---------- base_corr: string or instance of StationaryCorrelation, optional The top-level, stationary autocorrelation function returning the autocorrelation between two points M(x) and M(x') on the manifold. Built-in correlation models are:: 'absolute_exponential', 'squared_exponential', 'generalized_exponential', 'cubic', 'linear' architecture: sequence of tuples Defines the structure of the internal neural network architecture mapping the data from the original data space onto a manifold. Note that different data dimensions can be processed by different networks and that the networks can have different number of layers. For instance, the architecture ((1, 2),(2, 4, 5)) would map a 3-dimensional input space onto a 7-dimensional manifold. For this, the first input dimension would be processed by the network (1, 2) with 1 inputs, 2 outputs, and no hidden layer yielding the first two manifold dimensions. The other two input dimensions would be processed by a network (2, 4, 5) with 2 inputs, 4 hidden units, and 5 outputs yielding the remaining five manifold dimensions. isotropic : bool, default=True Whether the global length-scales of the GP are isotropic or anisotropic prior_nn_scale: float, default=inf The standard deviation of the Gaussian prior distribution on the network parameters. If set to infinity, the distribution is assumed to be uniform. prior_gp_scale: float, default=inf The scale parameter of the exponential prior distribution on the length-scales. If set to infinity, the distribution is assumed to be uniform. transfer_fct: str, default="tanh" The transfer function used in the hidden and output units. Supported are "tanh" and the rectified linear unit ("relu"). Defaults is "tanh" .. seealso:: "Manifold Gaussian Process for Regression", <NAME>, <NAME>, <NAME>, <NAME>, http://arxiv.org/abs/1402.5876 """ def __init__(self, base_corr, architecture, theta_nn_size, isotropic=True, prior_nn_scale=np.inf, prior_gp_scale=np.inf, transfer_fct="tanh"): self.architecture = architecture self.n_inputs = sum([subnet[0] for subnet in architecture]) self.n_outputs = sum([subnet[-1] for subnet in architecture]) self.theta_nn_size = theta_nn_size self.isotropic = isotropic self.prior_nn_scale = prior_nn_scale self.prior_gp_scale = prior_gp_scale self.transfer_fct = transfer_fct self.theta_gp_size = 1 if self.isotropic else self.n_outputs self.theta_size = self.theta_gp_size + self.theta_nn_size self.base_corr = base_corr if not callable(self.base_corr): from skgp.correlation_models import CORRELATION_TYPES if self.base_corr in CORRELATION_TYPES: self.base_corr = CORRELATION_TYPES[self.base_corr]() else: raise ValueError("base_corr should be one of %s or callable, " "%s was given." % (self._correlation_types.keys(), self.base_corr)) def fit(self, X, nugget=10. * MACHINE_EPSILON): """ Fits the correlation model for training data X Parameters ---------- X : array_like, shape=(n_samples, n_features) An array of training datapoints at which observations were made, i.e., where the outputs y are known nugget : double or ndarray, optional The Gaussian Process nugget parameter The nugget is added to the diagonal of the assumed training covariance; in this way it acts as a Tikhonov regularization in the problem. In the special case of the squared exponential correlation function, the nugget mathematically represents the variance of the input values. Default assumes a nugget close to machine precision for the sake of robustness (nugget = 10. * MACHINE_EPSILON). """ assert X.shape[1] == self.n_inputs self.X = X self.nugget = nugget self.n_samples = X.shape[0] return self def __call__(self, theta, X=None): """ Compute correlation for given correlation parameter(s) theta. Parameters ---------- theta : array_like An array giving the autocorrelation parameter(s). X : array_like, shape(n_eval, n_features) An array containing the n_eval query points whose correlation with the training datapoints shall be computed. If None, autocorrelation of the training datapoints is computed instead. Returns ------- r : array_like, shape=(n_eval, n_samples) if X != None (n_samples, n_samples) if X == None An array containing the values of the correlation model. """ # Parse theta into its components theta_gp, theta_nn = self._parse_theta(theta) # Map training data onto manifold if np.any(theta_nn == 0): theta_nn[np.where(theta_nn == 0)] \ += np.random.random((theta_nn == 0).sum()) * 2e-5 - 1e-5 X_train_nn = self._project_manifold(self.X, theta_nn) self.base_corr.fit(X_train_nn, nugget=self.nugget) if X is not None: X_test_nn = self._project_manifold(X, theta_nn) return self.base_corr(theta_gp, X_test_nn) else: return self.base_corr(theta_gp) def _project_manifold(self, X, theta_nn): # Lazila fetch transfer function (to keep object pickable) if self.transfer_fct == "tanh": transfer_fct = np.tanh elif self.transfer_fct == "sin": transfer_fct = np.sin elif self.transfer_fct == "relu": transfer_fct = lambda x: np.maximum(0, x) elif hasattr(self.transfer_fct, "__call__"): transfer_fct = self.transfer_fct y = [] for subnet in self.architecture: y.append(X[:, :subnet[0]]) for layer in range(len(subnet) - 1): W = theta_nn[:subnet[layer]*subnet[layer+1]] W = W.reshape((subnet[layer], subnet[layer+1])) b = theta_nn[subnet[layer]*subnet[layer+1]: (subnet[layer]+1)*subnet[layer+1]] a = y[-1].dot(W) + b y[-1] = transfer_fct(a) # chop off weights of this layer theta_nn = theta_nn[(subnet[layer]+1)*subnet[layer+1]:] X = X[:, subnet[0]:] # chop off used input dimensions return np.hstack(y) def log_prior(self, theta): """ Returns the (log) prior probability of parameters theta. TODO NOTE: The returned quantity is an improper prior as its integral over the parameter space is not equal to 1. Parameters ---------- theta : array_like An array giving the autocorrelation parameter(s). Returns ------- log_p : float The (log) prior probability of parameters theta. An improper probability. """ theta_gp, theta_nn = self._parse_theta(theta) if self.prior_nn_scale == np.inf: prior_nn = 0.0 else: prior_nn = norm.logpdf(theta_nn, scale=self.prior_nn_scale).sum() if self.prior_gp_scale == np.inf: prior_gp = 0.0 else: prior_gp = expon.logpdf(theta_gp, scale=self.prior_gp_scale).sum() return prior_nn + prior_gp def _parse_theta(self, theta): """ Parse parameter vector theta into its components. Parameters ---------- theta : array_like An array containing all hyperparameters. Returns ------- theta_gp : array_like An array containing the hyperparameters of the main GP. theta_nn : array_like An array containing the hyperparameters of the manifold model. """ theta = np.asarray(theta, dtype=np.float) assert (theta.size == self.theta_size), \ "theta does not have the expected size (expected: %d, " \ "actual size %d). Expected: %d entries for main GP and " \ "%d entries for length-scale GP." \ % (self.theta_size, theta.size, self.theta_gp_size, self.theta_nn_size) # Split theta in its components theta_gp = theta[:self.theta_gp_size] theta_nn = theta[self.theta_gp_size:] return theta_gp, np.log10(theta_nn) @classmethod def create(cls, base_corr, architecture, isotropic=True, theta0=1e-1, thetaL=None, thetaU=None, max_nn_weight=5, prior_nn_scale=np.inf, prior_gp_scale=np.inf, transfer_fct="tanh", *args, **kwargs): """ Factory method for creating manifold correlation models. ..note:: In addition to returning an instance of ManifoldCorrelation, the specification of the search space for the hyperparameters theta of the Gaussian process is returned. This includes the start point of the search (theta0) as well as the lower and upper boundaries thetaL and thetaU for the values of theta. """ assert "prior_b" not in kwargs n_outputs, theta_nn_size = cls.determine_network_layout(architecture) theta0 = [theta0] * (1 if isotropic else n_outputs) thetaL = [thetaL] * (1 if isotropic else n_outputs) thetaU = [thetaU] * (1 if isotropic else n_outputs) theta0 += \ list(10**np.random.uniform(-max_nn_weight, max_nn_weight, theta_nn_size)) thetaL += [10**-max_nn_weight] * theta_nn_size thetaU += [10**max_nn_weight] * theta_nn_size corr = cls(base_corr, architecture, theta_nn_size=theta_nn_size, isotropic=isotropic, prior_nn_scale=prior_nn_scale, prior_gp_scale=prior_gp_scale, transfer_fct=transfer_fct) return corr, theta0, thetaL, thetaU @staticmethod def determine_network_layout(architecture): """ Determine number of outputs and params of given architecture.""" n_outputs = 0 n_params = 0 for subnet in architecture: for layer in range(len(subnet) - 1): n_params += (subnet[layer] + 1) * subnet[layer+1] n_outputs += subnet[-1] return n_outputs, n_params ``` #### File: skgp/correlation_models/stationary.py ```python from abc import ABCMeta, abstractmethod import numpy as np from sklearn.utils import check_array from sklearn.externals.six import with_metaclass MACHINE_EPSILON = np.finfo(np.double).eps def l1_cross_differences(X): """ Computes the nonzero componentwise differences between the vectors in X. Parameters ---------- X: array_like An array with shape (n_samples, n_features) Returns ------- D: array with shape (n_samples * (n_samples - 1) / 2, n_features) The array of componentwise differences. ij: arrays with shape (n_samples * (n_samples - 1) / 2, 2) The indices i and j of the vectors in X associated to the cross- distances in D: D[k] = np.abs(X[ij[k, 0]] - Y[ij[k, 1]]). """ X = check_array(X) n_samples, n_features = X.shape n_nonzero_cross_diff = n_samples * (n_samples - 1) // 2 ij = np.zeros((n_nonzero_cross_diff, 2), dtype=np.int) D = np.zeros((n_nonzero_cross_diff, n_features)) ll_1 = 0 for k in range(n_samples - 1): ll_0 = ll_1 ll_1 = ll_0 + n_samples - k - 1 ij[ll_0:ll_1, 0] = k ij[ll_0:ll_1, 1] = np.arange(k + 1, n_samples) D[ll_0:ll_1] = X[k] - X[(k + 1):n_samples] return D, ij.astype(np.int) class StationaryCorrelation(with_metaclass(ABCMeta, object)): """ Base-class for stationary correlation models for Gaussian Processes. Stationary correlation models dependent only on the relative distance and not on the absolute positions of the respective datapoints. We can thus work internally solely on these distances. """ def __init__(self): pass def fit(self, X, nugget=10. * MACHINE_EPSILON): """ Fits the correlation model for training data X Parameters ---------- X : array_like, shape=(n_samples, n_features) An array of training datapoints at which observations were made, i.e., where the outputs y are known nugget : double or ndarray, optional The Gaussian Process nugget parameter The nugget is added to the diagonal of the assumed training covariance; in this way it acts as a Tikhonov regularization in the problem. In the special case of the squared exponential correlation function, the nugget mathematically represents the variance of the input values. Default assumes a nugget close to machine precision for the sake of robustness (nugget = 10. * MACHINE_EPSILON). """ self.X = X self.nugget = nugget self.n_samples = X.shape[0] # Calculate array with shape (n_eval, n_features) giving the # componentwise distances between locations x and x' at which the # correlation model should be evaluated. self.D, self.ij = l1_cross_differences(self.X) if (np.min(np.sum(self.D, axis=1)) == 0. and not isinstance(self, PureNugget)): raise Exception("Multiple input features cannot have the same" " value.") def __call__(self, theta, X=None): """ Compute correlation for given correlation parameter(s) theta. Parameters ---------- theta : array_like An array with giving the autocorrelation parameter(s). Dimensionality depends on the specific correlation model; often shape (1,) corresponds to an isotropic correlation model and shape (n_features,) to a anisotropic one. X : array_like, shape(n_eval, n_features) An array containing the n_eval query points whose correlation with the training datapoints shall be computed. If None, autocorrelation of the training datapoints is computed instead. Returns ------- r : array_like, shape=(n_eval, n_samples) if X != None (n_samples, n_samples) if X == None An array containing the values of the correlation model. """ theta = np.asarray(theta, dtype=np.float) if X is not None: # Get pairwise componentwise L1-differences to the input training # set d = X[:, np.newaxis, :] - self.X[np.newaxis, :, :] d = d.reshape((-1, X.shape[1])) else: # No external datapoints given; auto-correlation of training set # is used instead d = self.D if d.ndim > 1: n_features = d.shape[1] else: n_features = 1 # Compute the correlation for the respective correlation model (handled # by subclass) r = self._compute_corr(theta, d, n_features) if X is not None: # Convert to 2d matrix return r.reshape(-1, self.n_samples) else: # Auto-correlation computed only for upper triangular part of # matrix. Fill diagonal with 1+nugget and the lower triangular # by exploiting symmetry of matrix R = np.eye(self.n_samples) * (1. + self.nugget) R[self.ij[:, 0], self.ij[:, 1]] = r R[self.ij[:, 1], self.ij[:, 0]] = r return R def log_prior(self, theta): """ Returns the (log) prior probability of parameters theta. The prior is assumed to be uniform over the parameter space. NOTE: The returned quantity is an improper prior as its integral over the parameter space is not equal to 1. Parameters ---------- theta : array_like, shape=(1,) or (n_features,) An array with shape 1 (isotropic) or n_features (anisotropic) giving the autocorrelation parameter(s). Returns ------- log_p : float The (log) prior probability of parameters theta. An improper probability. """ return 0 @abstractmethod def _compute_corr(self, theta, d, n_features): """ Correlation for given pairwise, component-wise L1-differences. Parameters ---------- theta : array_like, shape=(1,) or (n_features,) An array with shape 1 (isotropic) or n_features (anisotropic) giving the autocorrelation parameter(s). d : array_like, shape=(n_eval, n_features) An array with the pairwise, component-wise L1-differences of x and x' at which the correlation model should be evaluated. Returns ------- r : array_like, shape=(n_eval, ) An array containing the values of the autocorrelation model. """ class AbsoluteExponential(StationaryCorrelation): """ Absolute exponential autocorrelation model. Absolute exponential autocorrelation model (Ornstein-Uhlenbeck stochastic process):: n theta, d --> r(theta, d) = exp( sum - theta_i * d_i ) i = 1 """ def _compute_corr(self, theta, d, n_features): """ Correlation for given pairwise, component-wise L1-differences. Parameters ---------- theta : array_like, shape=(1,) or (n_features,) An array with shape 1 (isotropic) or n_features (anisotropic) giving the autocorrelation parameter(s). d : array_like, shape=(n_eval, n_features) An array with the pairwise, component-wise L1-differences of x and x' at which the correlation model should be evaluated. Returns ------- r : array_like, shape=(n_eval, ) An array containing the values of the autocorrelation model. """ d = np.asarray(d, dtype=np.float) d = np.abs(d) if theta.size == 1: return np.exp(- theta[0] * np.sum(d, axis=1)) elif theta.size != n_features: raise ValueError("Length of theta must be 1 or %s" % n_features) else: return np.exp(- np.sum(theta.reshape(1, n_features) * d, axis=1)) class SquaredExponential(StationaryCorrelation): """ Squared exponential correlation model. Squared exponential correlation model (Radial Basis Function). (Infinitely differentiable stochastic process, very smooth):: n theta, d --> r(theta, d) = exp( sum - theta_i * (d_i)^2 ) i = 1 """ def _compute_corr(self, theta, d, n_features): """ Correlation for given pairwise, component-wise L1-differences. Parameters ---------- theta : array_like, shape=(1,) [isotropic] (n_features,) [anisotropic] or (k*n_features,) [factor analysis distance] An array encoding the autocorrelation parameter(s). d : array_like, shape=(n_eval, n_features) An array with the pairwise, component-wise L1-differences of x and x' at which the correlation model should be evaluated. Returns ------- r : array_like, shape=(n_eval, ) An array containing the values of the autocorrelation model. """ d = np.asarray(d, dtype=np.float) return np.exp(-self._quadratic_activation(theta, d, n_features)) def _quadratic_activation(self, theta, d, n_features): """ Utility function for computing quadratic activation. Computes the activation activ=d.T * M * d where M is a covariance matrix of size n*n. The hyperparameters theta specify * an isotropic covariance matrix, i.e., M = theta * I with I being the identity, if theta has shape 1 * an automatic relevance determination model if theta has shape n, in which the characteristic length scales of each dimension are learned separately: M = diag(theta) * a factor analysis distance model if theta has shape k*n for k> 1, in which a low-rank approximation of the full matrix M is learned. This low-rank approximation approximates the covariance matrix as low-rank matrix plus a diagonal matrix: M = Lambda * Lambda.T + diag(l), where Lambda is a n*(k-1) matrix and l specifies the diagonal matrix. Parameters ---------- theta : array_like, shape=(1,) [isotropic] (n_features,) [anisotropic] or (k*n_features,) [factor analysis distance] An array encoding the autocorrelation parameter(s). In the case of the factor analysis distance, M is approximated by M = Lambda * Lambda.T + diag(l), where l is encoded in the last n entries of theta and Lambda is encoded row-wise in the first entries of theta. Note that Lambda may contain negative entries while theta is strictly positive; because of this, the entries of Lambda are set to the logarithm with basis 10 of the corresponding entries in theta. array_like, shape=(n_eval, n_features) An array giving the componentwise differences of x and x' at which the quadratic activation should be evaluated. Returns ------- a : array_like, shape=(n_eval, ) An array with the activation values for the respective componentwise differences d. """ if theta.size == 1: # case where M is isotropic: M = diag(theta[0]) return theta[0] * np.sum(d ** 2, axis=1) elif theta.size == n_features: # anisotropic but diagonal case (ARD) return np.sum(theta.reshape(1, n_features) * d ** 2, axis=1) elif theta.size % n_features == 0: # Factor analysis case: M = lambda*lambda.T + diag(l) theta = theta.reshape((1, theta.size)) M = np.diag(theta[0, :n_features]) # the diagonal matrix part l # The low-rank matrix contribution which allows accounting for # correlations in the feature dimensions # NOTE: these components of theta are passed through a log-function # to allow negative values in Lambda Lambda = np.log10(theta[0, n_features:].reshape((n_features, -1))) M += Lambda.dot(Lambda.T) return np.sum(d.dot(M) * d, -1) else: raise ValueError("Length of theta must be 1 or a multiple of %s." % n_features) class Matern_1_5(SquaredExponential): """ Matern correlation model for nu=1.5. Sample paths are once differentiable. Given by:: r(theta, dx) = (1 + np.sqrt(3*activ))*exp(-np.sqrt(3*activ)) where activ=dx.T * M * dx and M is a covariance matrix of size n*n. See Rasmussen and Williams 2006, pp84 for details regarding the different variants of the Matern kernel. """ def _compute_corr(self, theta, d, n_features): """ Correlation for given pairwise, component-wise L1-differences. Parameters ---------- theta : array_like, shape=(1,) [isotropic] (n_features,) [anisotropic] or (k*n_features,) [factor analysis distance] An array encoding the autocorrelation parameter(s). d : array_like, shape=(n_eval, n_features) An array with the pairwise, component-wise L1-differences of x and x' at which the correlation model should be evaluated. Returns ------- r : array_like, shape=(n_eval, ) An array containing the values of the autocorrelation model. """ d = np.asarray(d, dtype=np.float) activ = self._quadratic_activation(theta, d, n_features) tmp = np.sqrt(3 * activ) # temporary variable for preventing # recomputation return (1 + tmp) * np.exp(-tmp) class Matern_2_5(SquaredExponential): """ Matern correlation model for nu=2.5. Sample paths are twice differentiable. Given by:: r(theta, dx) = (1 + np.sqrt(5*activ) + 5/3*activ)*exp(-np.sqrt(5*activ)) where activ=dx.T * M * dx and M is a covariance matrix of size n*n. See Rasmussen and Williams 2006, pp84 for details regarding the different variants of the Matern kernel. """ def _compute_corr(self, theta, d, n_features): """ Correlation for given pairwise, component-wise L1-differences. Parameters ---------- theta : array_like, shape=(1,) [isotropic] (n_features,) [anisotropic] or (k*n_features,) [factor analysis distance] An array encoding the autocorrelation parameter(s). d : array_like, shape=(n_eval, n_features) An array with the pairwise, component-wise L1-differences of x and x' at which the correlation model should be evaluated. Returns ------- r : array_like, shape=(n_eval, ) An array containing the values of the autocorrelation model. """ d = np.asarray(d, dtype=np.float) activ = self._quadratic_activation(theta, d, n_features) tmp = np.sqrt(5 * activ) # temporary variable for preventing # recomputation return (1 + tmp + 5.0 / 3.0 * activ) * np.exp(-tmp) class GeneralizedExponential(StationaryCorrelation): """ Generalized exponential correlation model. Generalized exponential correlation model. (Useful when one does not know the smoothness of the function to be predicted.):: n theta, d --> r(theta, d) = exp( sum - theta_i * |d_i|^p ) i = 1 """ def _compute_corr(self, theta, d, n_features): """ Correlation for given pairwise, component-wise L1-differences. Parameters ---------- theta : array_like, shape=(1+1,) or (n_features+1,) An array with shape 1+1 (isotropic) or n_features+1 (anisotropic) giving the autocorrelation parameter(s) (theta, p). d : array_like, shape=(n_eval, n_features) An array with the pairwise, component-wise L1-differences of x and x' at which the correlation model should be evaluated. Returns ------- r : array_like, shape=(n_eval, ) An array containing the values of the autocorrelation model. """ d = np.asarray(d, dtype=np.float) lth = theta.size if n_features > 1 and lth == 2: theta = np.hstack([np.repeat(theta[0], n_features), theta[1]]) elif lth != n_features + 1: raise Exception("Length of theta must be 2 or %s" % (n_features + 1)) else: theta = theta.reshape(1, lth) td = theta[:, 0:-1].reshape(1, n_features) \ * np.abs(d) ** theta[:, -1] return np.exp(- np.sum(td, 1)) class PureNugget(StationaryCorrelation): """ Spatial independence correlation model (pure nugget). Useful when one wants to solve an ordinary least squares problem!:: n theta, d --> r(theta, dx) = 1 if sum |d_i| == 0 i = 1 0 otherwise """ def _compute_corr(self, theta, d, n_features): """ Correlation for given pairwise, component-wise L1-differences. Parameters ---------- theta : array_like None. d : array_like, shape=(n_eval, n_features) An array with the pairwise, component-wise L1-differences of x and x' at which the correlation model should be evaluated. Returns ------- r : array_like An array with shape (n_eval, ) with the values of the autocorrelation model. """ d = np.asarray(d, dtype=np.float) n_eval = d.shape[0] r = np.zeros(n_eval) r[np.all(d == 0., axis=1)] = 1. return r class Cubic(StationaryCorrelation): """ Cubic correlation model. Cubic correlation model:: theta, d --> r(theta, d) = n prod max(0, 1 - 3(theta_j*d_ij)^2 + 2(theta_j*d_ij)^3) , i = 1,...,m j = 1 """ def _compute_corr(self, theta, d, n_features): """ Correlation for given pairwise, component-wise L1-differences. Parameters ---------- theta : array_like, shape=(1,) or (n_features,) An array with shape 1 (isotropic) or n_features (anisotropic) giving the autocorrelation parameter(s). d : array_like, shape=(n_eval, n_features) An array with the pairwise, component-wise L1-differences of x and x' at which the correlation model should be evaluated. Returns ------- r : array_like, shape=(n_eval, ) An array containing the values of the autocorrelation model. """ d = np.asarray(d, dtype=np.float) lth = theta.size if lth == 1: td = np.abs(d) * theta elif lth != n_features: raise Exception("Length of theta must be 1 or " + str(n_features)) else: td = np.abs(d) * theta.reshape(1, n_features) td[td > 1.] = 1. ss = 1. - td ** 2. * (3. - 2. * td) return np.prod(ss, 1) class Linear(StationaryCorrelation): """ Linear correlation model. Linear correlation model:: theta, d --> r(theta, d) = n prod max(0, 1 - theta_j*d_ij) , i = 1,...,m j = 1 """ def _compute_corr(self, theta, d, n_features): """ Correlation for given pairwise, component-wise L1-differences. Parameters ---------- theta : array_like, shape=(1,) or (n_features,) An array with shape 1 (isotropic) or n_features (anisotropic) giving the autocorrelation parameter(s). d : array_like, shape=(n_eval, n_features) An array with the pairwise, component-wise L1-differences of x and x' at which the correlation model should be evaluated. Returns ------- r : array_like, shape=(n_eval, ) An array containing the values of the autocorrelation model. """ d = np.asarray(d, dtype=np.float) lth = theta.size if lth == 1: td = np.abs(d) * theta elif lth != n_features: raise Exception("Length of theta must be 1 or %s" % n_features) else: td = np.abs(d) * theta.reshape(1, n_features) td[td > 1.] = 1. ss = 1. - td return np.prod(ss, 1) ``` #### File: skgp/estimators/bayesian_gp.py ```python import numpy as np from sklearn.base import BaseEstimator, RegressorMixin, clone class BayesianGaussianProcess(BaseEstimator, RegressorMixin): """The Bayesian Gaussian Process model class. This class wraps a Gaussian Process object and allows to use sampling the hyperparameter from the posterior rather than selecting them using maximum likelihood. It thus accounts better for the uncertainty in hyperparameter selection (when computing the predictive variance) but at the cost of considerably improved computation time - both during fitting, which involves running MCMC with the emcee package, and during prediction, which requires to evaluate the base GP for every hyperparameter sample of the posterior. Parameters ---------- base_gp : instance of Gaussian Process The basic Gaussian process which allows to train and execute a GP for fixed hyperparameters, which can be selected using maximum likelihood n_posterior_samples: int The number of samples taken from the posterior distribution. The more samples, the more accurate the posterior distribution is captured; however, the computational cost during prediction also increases linearly n_burnin: int The number of burn-in steps during MCMC sampling n_sampling_steps: int The number of actual sampling steps during MCMC sampling """ def __init__(self, base_gp, n_posterior_samples=25, n_burnin=500, n_sampling_steps=250, n_jobs=1): self.base_gp = base_gp self.n_posterior_samples = n_posterior_samples self.n_burnin = n_burnin self.n_sampling_steps = n_sampling_steps self.n_jobs = n_jobs self.gps = [] def fit(self, X, y): """ The Bayesian Gaussian Process model fitting method. Parameters ---------- X : double array_like An array with shape (n_samples, n_features) with the input at which observations were made. y : double array_like An array with shape (n_samples, ) or shape (n_samples, n_targets) with the observations of the output to be predicted. Returns ------- gp : self A fitted Bayesian Gaussian Process model object awaiting data to perform predictions. """ try: import emcee except ImportError: raise Exception("BayesianGaussianProcess requires the emcee " "package") # Initialize with ML estimate self.base_gp.fit(X, y) # Initialize the MCMC sampling n_dim = len(self.base_gp.theta_) self.sampler = emcee.EnsembleSampler(nwalkers=2*n_dim, dim=n_dim, lnpostfn=self.lnpostfn, threads=self.n_jobs) # Start ensemble walkers from perturbed ML estimate p0 = [self.base_gp.theta_ * (1 + np.random.randn(n_dim) * 2e-3 - 1e-3) for i in range(2*n_dim)] # Run burn-in p0, _, _ = self.sampler.run_mcmc(p0, self.n_burnin) # Running production chain self.sampler.run_mcmc(p0, self.n_sampling_steps) # Select posterior samples and create clone of GP for these self.theta_ = [] for i in range(self.n_posterior_samples): # Select posterior samples w = np.random.randint(self.sampler.chain.shape[0]) n = np.random.randint(self.n_burnin, self.sampler.chain.shape[1]) self.theta_.append(self.sampler.chain[w, n]) # Create clone of GP with these hyperparameter sample gp = clone(self.base_gp) gp.theta0 = self.theta_[-1] gp.thetaL = None gp.thetaU = None gp.fit(X, y) self.gps.append(gp) self.theta_ = np.array(self.theta_) # Make some of the base_gp's attributes accessible self.X = self.base_gp.X self.y = self.base_gp.y self.corr = self.base_gp.corr return self def predict(self, X, eval_MSE=False): """ Evaluates the Bayesian Gaussian Process model at X. Parameters ---------- X : array_like An array with shape (n_eval, n_features) giving the point(s) at which the prediction(s) should be made. eval_MSE : boolean, optional A boolean specifying whether the Mean Squared Error should be evaluated or not. Default assumes evalMSE = False and evaluates only the BLUP (mean prediction). Returns ------- y : array_like, shape (n_samples, ) or (n_samples, n_targets) An array with shape (n_eval, ) if the Gaussian Process was trained on an array of shape (n_samples, ) or an array with shape (n_eval, n_targets) if the Gaussian Process was trained on an array of shape (n_samples, n_targets) with the Best Linear Unbiased Prediction at x. MSE : array_like, optional (if eval_MSE == True) An array with shape (n_eval, ) or (n_eval, n_targets) as with y, with the Mean Squared Error at x. """ X = np.atleast_2d(X) if self.y.shape[1] > 1: y_pred_means = \ np.empty((self.n_posterior_samples, X.shape[0], self.y.shape[1])) else: y_pred_means = \ np.empty((self.n_posterior_samples, X.shape[0])) if eval_MSE: if self.y.shape[1] > 1: y_pred_variances = \ np.empty((self.n_posterior_samples, X.shape[0], self.y.shape[1])) else: y_pred_variances = \ np.empty((self.n_posterior_samples, X.shape[0])) for i in range(self.n_posterior_samples): if eval_MSE: y_pred_means[i], y_pred_variances[i] = \ self.gps[i].predict(X, eval_MSE=True) else: y_pred_means[i] = self.gps[i].predict(X, eval_MSE=False) first_moments = y_pred_means.mean(0) if eval_MSE: second_moments = (first_moments**2 + y_pred_variances).mean(0) return first_moments, second_moments - first_moments**2 else: return first_moments def lnpostfn(self, theta): """ Returns the log posterior probability of parameter theta. """ theta = np.asarray(theta) if np.any((self.base_gp.thetaL * (1 - 1e-5) > theta) + (theta > self.base_gp.thetaU * (1 + 1e-5))): return -np.inf log_prior = self.base_gp.corr.log_prior(theta) log_likelihood = self.base_gp.reduced_likelihood_function(theta)[0] return log_prior + log_likelihood def __getstate__(self): """ Return a pickable state for this object """ odict = self.__dict__.copy() # copy the dict since we change it odict.pop("sampler", None) return odict ``` #### File: skgp/skgp/setup.py ```python import os from os.path import join import warnings def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration import numpy config = Configuration('skgp', parent_package, top_path) config.add_subpackage('correlation_models') config.add_subpackage('estimators') return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict()) ```
{ "source": "jmetz/momanalysis", "score": 3 }
#### File: momanalysis/mmhelper/plot.py ```python import matplotlib.pyplot as plt from matplotlib import animation def view_stack(data): """ Wrapper around matplotlib to create a simple data viewer """ fig = plt.figure() axis = fig.add_subplot(111) img = axis.imshow(data[0], cmap='gray') img.TMAX = len(data) img.tnow = 0 img.pause = False title = plt.title("Frame %d" % img.tnow) def prevframe(): img.tnow = (img.tnow - 1) % img.TMAX img.set_data(data[img.tnow]) title.set_text("Frame %d" % img.tnow) fig.canvas.draw() def nextframe(stuff=None): if img.pause and (stuff is not None): return img.tnow = (img.tnow + 1) % img.TMAX img.set_data(data[img.tnow]) title.set_text("Frame %d" % img.tnow) fig.canvas.draw() def press(event): if event.key == "left": prevframe() elif event.key == "right": nextframe() elif event.key == " ": img.pause ^= True else: print("Unbound key pressed:", event.key) fig.canvas.mpl_connect('key_press_event', press) animation.FuncAnimation( fig, nextframe, blit=False, interval=10, repeat=True) plt.show() ``` #### File: mmhelper/tests/test_measurements.py ```python import unittest from unittest import mock import mmhelper.measurements as mmeas from mmhelper.measurements_class import BacteriaData, IndividualBacteria import numpy as np from skimage.measure import regionprops class TestFindFilename(unittest.TestCase): """ Class for testing the function for finding the filename """ def setUp(self): self.inputname = 'testinputfilename.test' self.output = 'testinputfilename' @mock.patch('os.makedirs') def test_input_filename(self, mock_osmakedirs): """ Tests the innput filename is found properly """ self.assertEqual( self.output, mmeas.find_input_filename(self.inputname)[1]) # Check that makedirs was called twice self.assertEqual(mock_osmakedirs.call_count, 2) class TestCounts(unittest.TestCase): """ Class for testing counting the number of bacteria in wells """ def setUp(self): self.wells = np.array([ [0, 0, 0, 0, 0], [0, 1, 0, 2, 0], [0, 1, 0, 2, 0], [0, 1, 0, 2, 0], ]) self.bacteria = np.array([ [0, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 0, 3, 0], [0, 2, 0, 0, 0], ]) self.counts = [2, 1] # Using just individual labels self.bacteria_labels = { 1: np.array([[1, 0, 2, 2, 2, 0, 3], ]), 2: np.array([[0, 0, 0], ]), 3: np.array([[1, ], ]) } self.counts2 = [3, 0, 1] def test_counts_just_labels(self): """ Tests function count_bacteria_in_wells """ self.assertEqual( self.counts2, mmeas.count_bacteria_in_wells(self.bacteria_labels)) class TestBacteriaMeasurements(unittest.TestCase): """ Class for testing bacteria measurements """ def setUp(self): self.bacteria_labels = np.array([ [0, 1, 1, 0, 0, 0], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 0], [0, 1, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 2, 2, 0, 0, 0], [2, 2, 2, 2, 0, 0], [2, 2, 2, 2, 0, 0], [2, 2, 2, 2, 0, 0], [0, 2, 2, 0, 0, 0], ]) self.bacteria_fluo = [np.array([ [0, 180, 180, 0, 0, 0], [180, 180, 180, 180, 0, 0], [180, 180, 180, 180, 0, 0], [180, 180, 180, 180, 0, 0], [180, 180, 180, 180, 0, 0], [180, 180, 180, 180, 0, 0], [0, 180, 180, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 200, 200, 0, 0, 0], [200, 200, 200, 200, 0, 0], [200, 200, 200, 200, 0, 0], [200, 200, 200, 200, 0, 0], [0, 200, 200, 0, 0, 0] ])] self.well_label = 42 self.measurements = BacteriaData() self.measurements.bacteria[1] = IndividualBacteria(1) self.measurements.bacteria[1].bacteria_label = '2' self.measurements.bacteria[1].bf_measurements = { "Well label": [self.well_label], "Area": [24], "Width": [4], "Length": [7]} self.measurements.bacteria[1].raw_fluorescence = {(0, 0): 180} self.measurements.bacteria[1].actual_fluorescence = {(0, 0): 170} self.measurements.bacteria[1].integrated_fluorescence = {(0, 0): 4080} self.measurements.bacteria[1].output_line = [] self.measurements.bacteria[1].timepoints = [1] self.measurements.bacteria[1].num_fluo = 0 self.measurements.bacteria[1].headings_line = [ 'well label', 'lineage', 'area', 'length', 'width', 'raw_fluorescence', 'fluorescence', 'integrated_fluorescence'] self.measurements.bacteria[1].measurements_output = [ self.well_label, '1', 24, 7.118052168020874, 4.163331998932266, 180.0, 170.0, 4080.0] self.measurements.bacteria[2] = IndividualBacteria(2) self.measurements.bacteria[2].bacteria_label = '2' self.measurements.bacteria[2].bf_measurements = { "Well label": [self.well_label], "Area": [16], "Width": [4], "Length": [5]} self.measurements.bacteria[2].raw_fluorescence = {(0, 0): 200} self.measurements.bacteria[2].actual_fluorescence = {(0, 0): 190} self.measurements.bacteria[2].integrated_fluorescence = {(0, 0): 3040} self.measurements.bacteria[2].output_line = [] self.measurements.bacteria[2].timepoints = [1] self.measurements.bacteria[2].num_fluo = 0 self.measurements.bacteria[2].headings_line = [ 'well label', 'lineage', 'area', 'length', 'width', 'raw_fluorescence', 'fluorescence', 'integrated_fluorescence'] self.measurements.bacteria[2].measurements_output = [ self.well_label, '2', 16, 4.898979485566356, 4.0, 200.0, 190.0, 3040.0] self.lbl_dict = {1: '1', 2: '2'} self.timepoint = 0 self.fluo_values = [(10, 1), ] def test_bf_measurements(self): """ Tests the measuring of bacteria brightfield measurments """ measurements = BacteriaData() for region in regionprops(self.bacteria_labels): measurements.add_bac_data( region.label, self.lbl_dict, region, self.timepoint, well_label=self.well_label) for bac_num, actual_data in measurements.bacteria.items(): manual_data = self.measurements.bacteria[bac_num] for meas, actual_val in actual_data.bf_measurements.items(): manual_val = manual_data.bf_measurements[meas] self.assertTrue((manual_val[0] - 0.5) <= actual_val[0] <= (manual_val[0] + 0.5)) def test_fluo_measurements(self): """ Tests the measuring of bacteria fluorescence measurements """ measurements = BacteriaData() for region in regionprops(self.bacteria_labels): measurements.add_bac_data( region.label, self.lbl_dict, region, self.timepoint) measurements.measure_fluo( region, self.bacteria_fluo, self.fluo_values, self.timepoint) for bac_num, actual_data in measurements.bacteria.items(): manual_data = self.measurements.bacteria[bac_num] self.assertTrue((manual_data.raw_fluorescence) == (actual_data.raw_fluorescence)) self.assertTrue((manual_data.actual_fluorescence) == (actual_data.actual_fluorescence)) self.assertTrue((manual_data.integrated_fluorescence) == (actual_data.integrated_fluorescence)) def test_measurements_output(self): """ Tests the measurements can be compiled properly for output """ measurements = BacteriaData() for region in regionprops(self.bacteria_labels): measurements.add_bac_data( region.label, self.lbl_dict, region, self.timepoint, well_label=self.well_label) measurements.measure_fluo( region, self.bacteria_fluo, self.fluo_values, self.timepoint) measurements.compile_results(max_tpoint=1) for bac_num, actual_data in measurements.bacteria.items(): manual_data = self.measurements.bacteria[bac_num] # Couldn't use assertListEqual here # because of floating-point inequality self.assertEqual( len(manual_data.measurements_output), len(actual_data.measurements_output)) for item1, item2 in zip( manual_data.measurements_output, actual_data.measurements_output): self.assertAlmostEqual(item1, item2) self.assertListEqual( manual_data.headings_line, actual_data.headings_line) class TestFluoMeasurements(unittest.TestCase): """ Class for testing measuring fluorescence """ def setUp(self): self.bacteria_labels = np.array([ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3], [1, 1, 1, 0, 0, 0, 0, 0, 0, 3, 3, 3], [1, 1, 1, 0, 0, 0, 0, 0, 0, 3, 3, 3], [1, 1, 1, 0, 0, 0, 0, 0, 0, 3, 3, 3], [1, 1, 1, 0, 0, 0, 0, 0, 0, 3, 3, 3], [0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3], [0, 0, 0, 2, 2, 2, 0, 0, 0, 3, 3, 3], [0, 0, 0, 2, 2, 2, 0, 0, 0, 3, 3, 3], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) self.fluo_image = np.array( [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 3000, 3000, 3000], [2000, 2000, 2000, 0, 0, 0, 0, 0, 0, 3000, 3000, 3000], [2100, 2100, 2100, 0, 0, 0, 0, 0, 0, 3800, 3800, 3800], [2100, 2100, 2100, 0, 0, 0, 0, 0, 0, 3000, 3000, 3000], [2200, 2200, 2200, 0, 0, 0, 0, 0, 0, 3000, 3000, 3000], [0, 0, 0, 0, 0, 0, 0, 0, 0, 3000, 3000, 3000], [0, 0, 0, 3200, 3200, 3200, 0, 0, 0, 3000, 3000, 3000], [0, 0, 0, 3300, 3300, 3300, 0, 0, 0, 3000, 3000, 3000], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) self.bkground = 100 self.bkg_sem = 1 self.fluo_results = [2100, 2000, 24000] self.fluo_results2 = [3250, 3150, 18900] self.fluo_results3 = [3100, 3000, 72000] self.fluo_measurements = [self.fluo_results, self.fluo_results2, self.fluo_results3] def test_fluorescentmeasurements(self): """ Tests the function fluorescence_measurements """ fluo_output = [] for region in regionprops(self.bacteria_labels): fluo, background_fluo, integrated_fluorescence = \ mmeas.fluorescence_measurements( region, self.fluo_image, (self.bkground, self.bkg_sem)) fluo_output.append( [fluo, background_fluo, integrated_fluorescence]) self.assertEqual(self.fluo_measurements, fluo_output) class TestFluorescenceBackground(unittest.TestCase): """ Class for testing the measurements of fluorescence background """ def setUp(self): self.wells = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0, 0, 3, 3, 3], [1, 1, 1, 0, 0, 2, 0, 0, 0, 3, 3, 3], [1, 1, 1, 0, 2, 2, 2, 0, 0, 3, 3, 3], [1, 1, 1, 0, 2, 2, 2, 0, 0, 3, 3, 3], [1, 1, 1, 0, 2, 2, 2, 0, 0, 3, 3, 3]]) self.bact = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 4, 4], [0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 4, 4], [0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 4, 4], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4]]) self.fluo_image = np.array( [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [100, 100, 100, 0, 0, 0, 0, 0, 0, 300, 300, 300], [100, 100, 100, 0, 0, 200, 0, 0, 0, 300, 300, 300], [100, 100, 100, 0, 200, 200, 200, 0, 0, 300, 300, 300], [100, 100, 100, 0, 200, 200, 200, 0, 0, 300, 300, 300], [100, 100, 100, 0, 200, 200, 200, 0, 0, 300, 300, 300]]) # Background sum should be 13*100 + 5*200 + 7*300 = 4400 # Mean = 4400 / 25 = 176 self.background = 176 def test_background_fluorescence(self): """ Tests the function for determining the fluorescence_background """ bkground = mmeas.fluorescence_background( self.wells, self.bact, self.fluo_image, )[0] self.assertEqual(bkground, self.background) if __name__ == '__main__': unittest.main() ``` #### File: mmhelper/tests/test_plot.py ```python import unittest from mmhelper import plot import numpy as np class TestViewStack(unittest.TestCase): """ Class for testing view_stack """ def setUp(self): self.t0_ = 100 self.w0_ = 100 self.h0_ = 100 self.input_none = None self.input_empty = np.array(None) self.input_zeros = np.zeros((self.t0_, self.w0_, self.h0_)) plot.plt.switch_backend("agg") def tearDown(self): # Close any opened figures (that might have remained from a failed # call) plot.plt.close("all") def test_none_input(self): """ Tests response to none input """ self.assertRaises(TypeError, plot.view_stack, self.input_none) def test_empty_input(self): """ Tests response to empty input """ self.assertRaises(IndexError, plot.view_stack, self.input_empty) def test_zeros_input(self): """ Tests response to input of zeros """ plot.view_stack(self.input_zeros) figs = plot.plt.get_fignums() self.assertEqual(len(figs), 1) fig = plot.plt.gcf() # Make sure the current figure has 1 axes axes = fig.get_axes() self.assertEqual(len(axes), 1) # Make sure the current figure's axes has 1 image ax0 = axes[0] ims = ax0.get_images() self.assertEqual(len(ims), 1) ```
{ "source": "jmetzz/coffee-chatbot", "score": 2 }
#### File: jmetzz/coffee-chatbot/build.py ```python from pybuilder.core import use_plugin, init use_plugin("python.core") use_plugin("python.unittest") use_plugin("python.install_dependencies") use_plugin("python.flake8") use_plugin("python.coverage") name = "ActionServerPybuilder" default_task = ['install_dependencies', 'analyze', 'publish'] @init def set_properties(project): project.build_depends_on('tblib') project.build_depends_on('mockito') project.build_depends_on('parameterized') project.build_depends_on('responses') @init def initialize_flake8_plugin(project): project.build_depends_on("flake8") project.set_property('unittest_module_glob', 'test_*') project.set_property("flake8_verbose_output", True) project.set_property("flake8_break_build", True) project.set_property("flake8_max_line_length", 120) project.set_property("flake8_exclude_patterns", None) project.set_property("flake8_include_test_sources", False) project.set_property("flake8_include_scripts", False) @init def initialize_coverage_plugin(project): project.set_property('coverage_break_build', False) project.set_property('coverage_threshold_warn', 80) # for now, code coverage does not break the build # as we do Python, a scripted language, you have to aim for 100% coverage! project.set_property("coverage_exceptions", ['endpoint']) ```
{ "source": "jmetzz/ml-fundamentals", "score": 4 }
#### File: src/clustering/kmeans.py ```python import pprint as pp import random from utils import data_helper from common import distance from clustering.clustering import BaseClustering """K-means is often referred to as Lloyd’s algorithm. In basic terms, the algorithm has three steps. The first step chooses the initial centroids, with the most basic method being to choose k samples from the dataset X. After initialization, K-means consists of looping between the two other steps. The first step assigns each sample to its nearest centroid. The second step creates new centroids by taking the mean value of all of the samples assigned to each previous centroid. The difference between the old and the new centroids are computed and the algorithm repeats these last two steps until this value is less than a threshold. In other words, it repeats until the centroids do not move significantly. Given enough time, K-means will always converge, however this may be to a local minimum. This is highly dependent on the initialization of the centroids. As a result, the computation is often done several times, with different initializations of the centroids. Given the inputs x1,x2,x3,…,xn and value of K Step 1 - Pick K random points as cluster centers called centroids. Step 2 - Assign each xi_i to nearest cluster by calculating its distance to each centroid. Step 3 - Find new cluster center by taking the average of the assigned points. Step 4 - Repeat Step 2 and 3 until none of the cluster assignments change. """ class KMeans(BaseClustering): def __init__(self, data, function_dist=distance.euclidean): super().__init__(data) self.function_dist = function_dist def build(self, k=3): clusters = [0] * self.num_features prev_centroids = [[-1] * self.num_features] * k new_centroids = self._initial_centroids(k, self.data) while self._centroids_changed(prev_centroids, new_centroids): clusters = self._find_clusters(self.data, new_centroids) prev_centroids = new_centroids new_centroids = BaseClustering.calculate_centroids(self.data, k, clusters) self._update_model(new_centroids, clusters) def _find_clusters(self, data, centroids, function_dist=distance.euclidean): """Distribute the instances in the clusters represented by the centroids :param data: the dataset of instances :param centroids: the centroid vectors with the same structure as the instances in the dataset :param function_dist: the function used to calculate the distance between two instances :return: a list representing the cluster assignment for each instance in the dataset """ clusters = [0] * self.size for idx in range(self.size): distances = self._dist(data[idx], centroids) cluster = distances.index(min(distances)) clusters[idx] = cluster return clusters def _dist(self, instance, centroids): ncol = len(instance) return [self.function_dist(instance, c, ncol) for c in centroids] @staticmethod def _centroids_changed(prev_centroids, new_centroids): for i in range(len(prev_centroids)): for z1, z2 in zip(prev_centroids[i], new_centroids[i]): if z1 != z2: return True return False @staticmethod def _initial_centroids(k, data): indexes = set(random.sample(range(0, len(data)), k)) return [data[i] for i in indexes] def _update_model(self, clusters): self.clusters = {c: [] for c in set(clusters)} for e in range(len(self.data)): self.clusters.get(clusters[e]).append(e) # def dist(instance, centroids, function_dist=distance.euclidean): # ncol = len(instance) # return [function_dist(instance, c, ncol) for c in centroids] # # def find_clusters(data, centroids, function_dist=distance.euclidean): # """Distribute the instances in the clusters represented by the centroids # # :param data: the dataset of instances # :param centroids: the centroid vectors with the same structure as the instances in the dataset # :param function_dist: the function used to calculate the distance between two instances # :return: a list representing the cluster assignment for each instance in the dataset # """ # clusters = [0] * len(data) # for idx in range(len(data)): # distances = dist(data[idx], centroids) # cluster = distances.index(min(distances)) # clusters[idx] = cluster # return clusters # # def mean(points): # # TODO - Improvements on readability and performance: # # by using vectorization and matrix multiplication formula, we have: # # [\mathbf{1}^T\mathbf{M}]_j= \sum_i \mathbf{1}_i \mathbf{M}_{i,j} =\sum_i \mathbf{M}_{i,j}. # # Hence, the column-wise sum of \mathbf{M} is \mathbf{1}^T\mathbf{M}. # ncols = len(points[0]) # m = [0] * ncols # for col in range(ncols): # for p in points: # m[col] += p[col] # m[col] = m[col] / len(points) # # return m # # # def calculate_centroids(data, k, clusters): # centroids = [0.0] * k # for c in range(k): # points = [data[j] for j in range(len(data)) if clusters[j] == c] # centroids[c] = mean(points) # return centroids # # # def centroids_changed(prev_centroids, new_centroids): # for i in range(len(prev_centroids)): # for z1, z2 in zip(prev_centroids[i], new_centroids[i]): # if z1 != z2: # return True # return False def report(data, new_centroids, clusters): print("\nCentroids:") print(new_centroids) print("clusters: [Clusters | instance]") map = {c: [] for c in set(clusters)} for e in range(len(data)): map.get(clusters[e]).append(data[e]) pp.pprint(map) def main(): data = data_helper.toy_unlabeled_dataset k = 3 clusters = [0] * len(data[0]) prev_centroids = [[-1] * len(data[0])] * k new_centroids = _initial_centroids(k, data) while centroids_changed(prev_centroids, new_centroids): clusters = find_clusters(data, new_centroids) prev_centroids = new_centroids new_centroids = calculate_centroids(data, k, clusters) # print(new_centroids) report(data, new_centroids, clusters) if __name__ == '__main__': main() ``` #### File: src/common/entropy.py ```python import fileinput import string from math import log def _identity(value): return value def range_bytes(): return range(256) def range_binary(): return range(2) def range_printable(): return (ord(c) for c in string.printable) def H(data, iterator=range_bytes, convert=_identity, base=2): if not data: return 0 entropy = 0 for x in iterator(): p_x = float(data.count(convert(x))) / len(data) if p_x > 0: # entropy += - p_x * log(p_x, _resolve_base(data)) entropy += - p_x * log(p_x, base) return entropy def shannon_entropy(data): return H(data, range_binary) def _resolve_base(data): base = len(set(data)) if base < 2: base = 2 return base def column(matrix, i): return [row[i] for row in matrix] def main(): for row in fileinput.input(): stringImput = row.rstrip('\n') print("%s: %f" % (stringImput, H(stringImput, range_printable))) # Tests: for str in ['gargleblaster', 'tripleee', 'magnus', 'lkjasdlk', 'aaaaaaaa', 'sadfasdfasdf', '7&wS/p(', 'aabb']: print("%s: %f" % (str, H(str, range_printable, chr))) # str_data = ''.join(str(e) for e in column(dh.toy_labeled_dataset, 2)) # print("%s: %f" %("dataset", H(column(dh.toy_labeled_dataset, 2), range_binary))) # dataset1 = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] # dataset2 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # print("%s: %f" % ("dataset 1", H(dataset1, range_binary))) # print("%s: %f" % ("dataset 2", H(dataset2, range_binary))) # print("%s: %f" % ("dataset 1", shannon_entropy(dataset1))) # print("%s: %f" % ("dataset 2", shannon_entropy(dataset2))) ```
{ "source": "jmetzz/ml-laboratory", "score": 3 }
#### File: notebooks/numpy/performance_test.py ```python import numpy as np # Create an array with 10^7 elements arr = np.arange(1e7) # Converting ndarray to list larr = arr.tolist() def list_times(alist, scalar): return [val * scalar for val in alist] # Using IPython's magic # timeit command timeit arr * 1.1 # timeit list_times(larr, 1.1) # box(x, y){line=snake} ``` #### File: notebooks/stocks-recommendation/data_generator.py ```python import csv import numpy as np import pandas as pd NUM_OF_PEOPLE = 100 NUMBER_OF_STOCKS = 3 np.random.seed(444) # age, gender, number of children user_Df = pd.DataFrame(index=range(0, NUM_OF_PEOPLE)) number_of_children = np.random.normal(1, 1, 2 * NUM_OF_PEOPLE) realistic_n_of_children = [round(child) for child in number_of_children if (child > -0.5)] random_double_ages = np.random.normal(30, 10, 2 * NUM_OF_PEOPLE) limited_int_ages = [round(age) for age in random_double_ages if (age > 18) and (age < 65)] gender = ["M", "F"] user_Df["gender"] = [gender[np.random.randint(0, 2)] for _ in range(len(user_Df.index))] user_Df["age"] = [limited_int_ages[i] for i in range(len(user_Df.index))] user_Df["numberOfChildren"] = [realistic_n_of_children[i] for i in range(len(user_Df.index))] """ Open the stocks CSV file and assign the labels and stocks lists """ # get CSV into useful format with open("stocks.csv") as csvfile: reader = csv.reader(csvfile, delimiter=";") stocks = [] for index, row in enumerate(reader): if index == 0: labels = row[2:-3] else: specific_trends = [] for tr in range(2, len(row) - 3): if row[tr] == "yes": specific_trends.append(labels[tr - 2]) stocks.append({"name": row[0], "tag": row[1], "trends": specific_trends}) trends = [] for label in labels: stocksArr = [] for stock in stocks: if label in stock["trends"]: stocksArr.append(stock["tag"]) trends.append({"name": label, "stocks": stocksArr}) # Assign top 3 of liked and disliked trends def find_trends(trends, number_of_stocks, young_person): liked_trends = [] disliked_trends = [] trends_copy = trends.copy() for _ in range(0, min(number_of_stocks, len(trends_copy))): liked_trends.append(trends_copy.pop(np.random.randint(0, len(trends_copy)))["name"]) for _ in range(0, min(number_of_stocks, len(trends_copy))): disliked_trends.append(trends_copy.pop(np.random.randint(0, len(trends_copy)))["name"]) trend_arr = [] for trend in trends: if trend["name"] in liked_trends: trend_arr.append(1) elif trend["name"] in disliked_trends: trend_arr.append(-1) else: trend_arr.append(0) # totally legit thing to hard-code here if young_person and (np.random.randint(0, 10) > 3): trend_arr[0] = 1 trend_arr[3] = 1 return trend_arr users = [] for i in range(0, len(user_Df.index)): trends_arr = [] number_of_stocks = NUMBER_OF_STOCKS is_young_user = user_Df["age"][i] < 30 users.append(find_trends(trends, number_of_stocks, is_young_user)) users_transposed = [] for index in range(0, len(labels)): new_line = [] for userId in range(0, len(users)): new_line.append(users[userId][index]) users_transposed.append(new_line) trend_columns = {} for index in range(0, len(labels)): trend_columns[labels[index]] = users_transposed[index] trend_Df = pd.DataFrame(data=trend_columns) complete_Df = user_Df.merge(trend_Df, left_index=True, right_index=True) # print(completeDf) # write to CSV complete_Df.to_csv("./output.csv", sep=",", index=False) """ Assigning stocks to users based on preferences """ tags = [stock["tag"] for stock in stocks] portfolio = pd.DataFrame(index=range(0, NUM_OF_PEOPLE)) for stock in stocks: portfolio[stock["tag"]] = [0 for _ in range(0, len(portfolio.index))] def make_stock_list(user_id): rest = 100 amount_of_stocks = np.random.randint(1, 10) list_of_percentages = [] while rest > 0 and len(list_of_percentages) < amount_of_stocks: portfolio_percentage = np.random.randint(1, 1 + rest) rest = rest - portfolio_percentage minimum = min(portfolio_percentage, rest) if minimum == 0: minimum = 5 list_of_percentages.append(minimum) if sum(list_of_percentages) < 100: list_of_percentages.append(100 - sum(list_of_percentages)) sorted_percentages = sorted(list_of_percentages, reverse=True) # traverse labels liked = [] disliked = [] neutral = [] for label in labels: if complete_Df[label][user_id] == 1: liked.append(label) elif complete_Df[label][user_id] == -1: disliked.append(label) else: neutral.append(label) trends_bought = [] for i in range(0, min(len(liked), round(len(sorted_percentages) / 2))): trends_bought.append(liked[np.random.randint(0, len(liked))]) difference = len(sorted_percentages) - len(trends_bought) for i in range(0, difference): trends_bought.append(neutral[np.random.randint(0, len(neutral))]) stocks_bought = [] for i in range(0, len(trends_bought)): for trend in trends: if trend["name"] == trends_bought[i]: matching_trend = trend break stocks_bought.append(matching_trend["stocks"][np.random.randint(0, len(matching_trend["stocks"]))]) stocks_bought_sorted = [0] * len(stocks) for idx in range(0, len(stocks_bought)): stocks_bought_sorted[tags.index(stocks_bought[idx])] = 1 return stocks_bought_sorted stocks_Df = pd.DataFrame(columns=tags, index=range(0, NUM_OF_PEOPLE)) for index in range(0, NUM_OF_PEOPLE): stocks_Df.loc[index] = make_stock_list(index) stocks_Df.to_csv("./portfolios.csv", sep=",", index=False) ``` #### File: src/common/preprocessing.py ```python import numpy as np class Normalizer: """ Divide each feature by its 2-norm So that the transformed feature has norm 1. """ def __init__(self): self._norms = None def fit(self, features: np.ndarray): self._norms = np.linalg.norm(features, axis=0) return self def transform(self, features: np.ndarray) -> np.ndarray: if self._norms is None: raise ValueError("Model not initialized. Call fit before.") return features / self._norms ``` #### File: src/ensemble/adaboost.py ```python import numpy as np from sklearn.datasets import make_moons from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from ensemble.ensemble_utils import Sampling from utils import datasets class AdaBoostM1Classifier: """The original AdaBoost algorithm This algorithm was proposed by <NAME> Schapire (1996). There are many variations of it. However, this implementation refers to the original AdaBoot.M1 algorithm, which targets binary classification problems, where the class labels are either +1 or -1. Moreover, it uses decision trees as the weak base-learner algorithm. By default, decision trees with only one decision node, also known as Decision Stump (see https://en.wikipedia.org/wiki/Decision_stump). """ def __init__(self, rounds, criterion="gini", max_depth=1, seed=31): self.model = dict() self.model["rounds"] = rounds self.classifiers = [ DecisionTreeClassifier(criterion=criterion, max_depth=max_depth, random_state=seed) for _ in range(rounds) ] def fit(self, instances, true_labels): """Build a binary classification ensemble model based on AdaBoost.M1 algorithm""" label_values = np.unique(true_labels) if label_values.size != 2: raise ValueError(f"Given a non-binary dataset with {label_values.size} labels") self.model["label_map"] = {label_values[0]: -1, label_values[1]: 1} self.model["label_map_inverse"] = {-1: label_values[0], 1: label_values[1]} transformed_labels = [self.model["label_map"][k] for k in true_labels] self._initialize_weights(len(instances)) # alphas_r represents the importance of the # classifier built at round r self.model["alphas"] = np.zeros((self.model["rounds"], 1)) self.model["errors"] = np.zeros((self.model["rounds"], 1)) for step in range(self.model["rounds"]): while True: features, labels = Sampling.subsample(instances, transformed_labels, self.model["weights"]) self.classifiers[step].fit(features, labels) predictions = self.classifiers[step].predict(instances) # store the current prediction in a cache to be used for weights update self.model["prediction_cache"] = list(zip(transformed_labels, predictions)) error = self.calculate_error(self.model["prediction_cache"], self.model["weights"]) # remember: it is binary classification, the weak classifier should be # better than random. if error > 0.5: self._reset_weights() # ignore the current classifier and try build another one # using a new sample data else: self.model["errors"][step] = error self.model["alphas"][step] = alpha = self._calculate_alpha(error) self.model["weights"] = self._update_weights( alpha, self.model["prediction_cache"], self.model["weights"] ) break def predict(self, instances): predictions = np.array([m.predict(instances) for m in self.classifiers]) predictions = np.sign(np.sum(predictions * self.model["alphas"], axis=0)) return [self.model["label_map_inverse"][y_hat] for y_hat in predictions] def _initialize_weights(self, size): self.model["weights"] = np.full((size, 1), 1 / size) def _reset_weights(self): self._initialize_weights(len(self.model["weights"])) @staticmethod def _update_weights(alpha, prediction_pairs, weights): signed_alphas = alpha * np.array( [1 if int(y_hat != y) else -1 for _, (y, y_hat) in enumerate(prediction_pairs)] ).reshape((-1, 1)) new_weights = weights * np.exp(signed_alphas) normalization_factor = np.sum(new_weights) return new_weights / normalization_factor @staticmethod def calculate_error(prediction_pairs, weights): error = sum(weights[i] * int(y != y_hat) for i, (y, y_hat) in enumerate(prediction_pairs)) error.reshape((1, 1)) return error / len(weights) @staticmethod def _calculate_alpha(error): return 1 / 2 * np.log((1 - error) / error) if __name__ == "__main__": # Debug Test with toy 1-dimension dataset train_features = datasets.TOY_1D[:, :-1] train_labels = datasets.TOY_1D[:, -1] boosting = AdaBoostM1Classifier(3) boosting.fit(train_features, train_labels) prediction = boosting.predict(train_features) acc = sum(int(x == train_labels) for (x, train_labels) in zip(prediction, train_labels)) / len(train_labels) print(f"Acc = {acc:.2f}") moon_features, moon_labels = make_moons(n_samples=160, noise=0.3, random_state=101) train_features, test_features, train_labels, test_labels = train_test_split( moon_features, moon_labels, test_size=0.33, random_state=101 ) boosting = AdaBoostM1Classifier(5) boosting.fit(train_features, train_labels) prediction = boosting.predict(test_features) print(prediction) acc = sum(int(x == train_labels) for (x, train_labels) in zip(prediction, test_labels)) / len(test_labels) print(f"Acc = {acc:.2f}") ``` #### File: src/ensemble/bagging.py ```python import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from ensemble.ensemble_utils import Sampling class BaggingClassifier: def __init__(self, size): self.size = size self.models = [DecisionTreeClassifier() for _ in range(size)] def fit(self, instances, true_labels): for idx in range(self.size): features, labels = Sampling.subsample(instances, true_labels, 1.0) self.models[idx].fit(features, labels) def predict(self, instances): ensemble_predictions = np.array([m.predict(instances) for m in self.models]) num_instances = len(instances) predictions = np.zeros((num_instances,), dtype=int) for idx in range(num_instances): labels, votes = np.unique(ensemble_predictions[:, idx], return_counts=True) predictions[idx] = labels[np.argmax(votes)] return predictions if __name__ == "__main__": full_features_set, full_labels_set = load_iris(return_X_y=True) x_train, x_test, y_train, y_test = train_test_split( full_features_set, full_labels_set, test_size=0.33, random_state=42 ) bagging = BaggingClassifier(5) bagging.fit(x_train, y_train) prediction = bagging.predict(x_test) acc = sum(int(x == full_labels_set) for (x, full_labels_set) in zip(prediction, y_test)) / len(y_test) print(f"Acc = {acc:.2f}") ``` #### File: neural_networks/base/networks.py ```python import json import random from pathlib import Path from typing import Any, Iterator, Sequence import numpy as np from neural_networks.base.activations import relu, sigmoid from neural_networks.base.costs import CrossEntropyCost, QuadraticCost from neural_networks.base.initializers import random_gaussian, sqrt_connections_ratio from utils import data_helper class NetworkBase: def __init__(self, sizes: list[int]): """ The biases and weights in the Network object are all initialized randomly, using the Numpy np.random.randn function to generate Gaussian distributions with mean 0 and standard deviation 1. Assumes that the first layer of neurons is an input layer. :param sizes: the number of neurons in the respective layers. Example: >>> net = SimpleNetwork([2, 3, 1]) """ self.num_layers = len(sizes) self.layer_sizes = sizes self.weights, self.biases = [], [] def update_batch(self, *kwargs): raise NotImplementedError("This method must be implemented in a specialization class") def cost_name(self): raise NotImplementedError("This method must be implemented in a specialization class") def load(self, filename): raise NotImplementedError("This method must be implemented in a specialization class") def back_propagate(self, x: np.ndarray, y: float) -> tuple[list[np.ndarray], list[np.ndarray]]: """Pass x through the network and back to calculate the gradient. :param x: the test example to be classified :param y: the true label (as an index of the neuron in the output layer :return: the gradient for the cost function as a tuple (g_biases, g_weights), where the elements of the tuple are layer-by-layer lists of numpy arrays. """ biases_by_layers = [np.zeros(b.shape) for b in self.biases] weights_by_layers = [np.zeros(w.shape) for w in self.weights] # 1- feedforward # the input, x, is the activation of the first layer activation = x activations = [x] # list to store all the activations, layer by layer z_vectors_by_layer = [] # list to store all the z vectors, layer by layer for b, w in zip(self.biases, self.weights): z = np.dot(w, activation) + b z_vectors_by_layer.append(z) activation = sigmoid(z) activations.append(activation) # 2- backward pass delta = self.calculate_delta(activations, z_vectors_by_layer, y) biases_by_layers[-1] = delta weights_by_layers[-1] = np.dot(delta, activations[-2].transpose()) # Since python allow negative index, we use it to # iterate backwards on the network layers. # Note that layer = 1 means the last layer of neurons, # layer = 2 is the second-last layer, and so on. for layer in range(2, self.num_layers): z = z_vectors_by_layer[-layer] sp = self.sigmoid_derivative(z) delta = np.dot(self.weights[-layer + 1].transpose(), delta) * sp biases_by_layers[-layer] = delta weights_by_layers[-layer] = np.dot(delta, activations[-layer - 1].transpose()) return biases_by_layers, weights_by_layers def feed_forward(self, input: np.ndarray) -> np.ndarray: """Pass the input through the network and return it's output. It is assumed that the input a is an (n, 1) Numpy ndarray, not a (n,) vector """ for b, w in zip(self.biases, self.weights): input = sigmoid(np.dot(w, input) + b) return input def calculate_delta(self, activations, z_vectors_by_layer, y): return QuadraticCost.derivative(activations[-1], y) * self.sigmoid_derivative(z_vectors_by_layer[-1]) @staticmethod def sigmoid_derivative(z): """Derivative of the sigmoid function. This function computes the gradient (also called the slope) of the sigmoid function with respect to its input x. It is defined as: sigmoid\\_derivative(x) = \\sigma'(x) = \\sigma(x) (1 - \\sigma(x))\tag{2} :param z: a scalar or numpy array :return the gradient value """ sigmoid_value = sigmoid(z) return sigmoid_value * (1 - sigmoid_value) def export(self, filename): """Save the neural network to the file ``filename``.""" data = { "sizes": self.layer_sizes, "weights": [w.tolist() for w in self.weights], "biases": [b.tolist() for b in self.biases], "cost": str(self.cost_name()), } with Path(filename).open(mode="w") as file_handler: json.dump(data, file_handler) class SimpleNetwork(NetworkBase): def __init__(self, sizes: list[int]): super().__init__(sizes) self.weights, self.biases = random_gaussian(sizes) def cost_name(self): return "Quadratic cost" def load(self, filename): raise NotImplementedError(f"TODO: implement load method in {self.__name__}") def sdg( self, training_data: Iterator[tuple[np.ndarray, np.ndarray]], epochs: int, eta: float = 0.01, batch_size: int = 100, test_data: Iterator[tuple[np.ndarray, Any]] = None, debug=False, ) -> None: """Train the neural network using mini-batch stochastic gradient descent. :param training_data: list of tuples (X, y) :param epochs: number of epochs to run :param eta: learning rate :param batch_size: the size of the batch to use per iteration :param test_data: is provided then the network will be evaluated against the test data after each epoch, and partial progress printed out. :param debug: prints extra information :return: Estimates the gradient ∇C minimizing the cost function Estimates the gradient ∇C by computing ∇Cx for a small sample of randomly chosen training inputs. By averaging over this small sample it turns out that we can quickly get a good estimate of the true gradient ∇C. The update rule is: \begin{eqnarray} w_k & \rightarrow & w_k' = w_k-\frac{\\eta}{m} \\sum_j \frac{\\partial C_{X_j}}{\\partial w_k}\\ b_l & \rightarrow & b_l' = b_l-\frac{\\eta}{m} \\sum_j \frac{\\partial C_{X_j}}{\\partial b_l}, \\end{eqnarray} where the sums are over all the training examples Xj in the current mini-batch. """ train_data = list(training_data) n = len(train_data) if test_data: test_data = list(test_data) n_test = len(test_data) if debug: self._print_configuration(epochs, batch_size, eta, n, n_test) for j in range(epochs): random.shuffle(train_data) batches = [train_data[k : k + batch_size] for k in range(0, n, batch_size)] for batch in batches: self.update_batch(batch, eta) if test_data: evaluation = self.evaluate(test_data) print(f"Epoch {j}: {evaluation} / {n_test}") else: print(f"Epoch {j} complete") def update_batch(self, mini_batch: list[tuple[np.ndarray, np.ndarray]], eta: float) -> None: """Updates the network weights and biases according to a single iteration of gradient descent, using just the training data in mini_batch and back-propagation. :param mini_batch: the batch of instances to process :param eta: the learning rate """ b_hat = [np.zeros(b.shape) for b in self.biases] w_hat = [np.zeros(w.shape) for w in self.weights] for x, y in mini_batch: delta_b_hat, delta_w_hat = self.back_propagate(x, y) b_hat = [nb + dnb for nb, dnb in zip(b_hat, delta_b_hat)] w_hat = [nw + dnw for nw, dnw in zip(w_hat, delta_w_hat)] self.weights = [w - (eta / len(mini_batch)) * nw for w, nw in zip(self.weights, w_hat)] self.biases = [b - (eta / len(mini_batch)) * nb for b, nb in zip(self.biases, b_hat)] @staticmethod def _print_configuration(epochs, batch_size, eta, n, n_test=None): print(f"epochs: {epochs}") print(f"batch_size: {batch_size}") print(f"eta: {eta}") print(f"train set size: {n}") if n_test: print(f"test set size: {n_test}") def evaluate(self, data: Sequence) -> int: """Evaluate the network's prediction on the given test set :param data: the list of instances the evaluate the model :return: the number of test inputs correctly classified """ results = [(np.argmax(self.feed_forward(x)), y) for (x, y) in data] return sum(int(x == y) for (x, y) in results) class ImprovedNetwork(NetworkBase): def __init__( self, layer_sizes, cost_function=CrossEntropyCost, weight_initializer=sqrt_connections_ratio, ): super().__init__(layer_sizes) self.num_classes = layer_sizes[-1] self.weights, self.biases = weight_initializer(layer_sizes) self.cost_function = cost_function def cost_name(self): return self.cost_function.__name__ def load(self, filename): raise NotImplementedError(f"TODO: implement load method in {self.__name__}") def sdg( self, training_data, epochs, batch_size, eta, lmbda=0.0, validation_data=None, monitor=None, debug=False, ): """Train the neural network using mini-batch stochastic gradient descent. The ``training_data`` is a list of tuples ``(x, y)`` representing the training inputs and the desired outputs. The other non-optional parameters are self-explanatory, as is the regularization parameter ``lmbda``. The method also accepts ``evaluation_data``, usually either the validation or test data. We can monitor the cost and accuracy on either the evaluation data or the training data, by setting the appropriate flags. The method returns a tuple containing four lists: the (per-epoch) costs on the evaluation data, the accuracies on the evaluation data, the costs on the training data, and the accuracies on the training data. All values are evaluated at the end of each training epoch. So, for example, if we train for 30 epochs, then the first element of the tuple will be a 30-element list containing the cost on the evaluation data at the end of each epoch. Note that the lists are empty if the corresponding flag is not set. """ train_data = list(training_data) n = len(train_data) validation_costs, validation_acc = [], [] train_costs, train_acc = [], [] if validation_data: validation_data = list(validation_data) # TODO: implement early stopping for epoch in range(epochs): if debug: print(f"\n****\nStarting Epoch: {epoch}") random.shuffle(train_data) batches = [train_data[k : k + batch_size] for k in range(0, n, batch_size)] if debug: batch_num = 0 qtt_batches = len(batches) for batch in batches: if debug: batch_num += 1 print(f"\tProcessing batch {batch_num} of {qtt_batches}") self.update_batch(batch, eta, lmbda, n) if monitor and validation_data is not None: # monitoring the validation accuracy more often, # per mini_batch maybe, or x * mini_batches tr_acc, tr_cost, valid_acc, valid_cost = self._monitor(monitor, lmbda, train_data, validation_data) train_costs.append(tr_cost) train_acc.append(tr_acc) validation_costs.append(valid_cost) validation_acc.append(valid_acc) ImprovedNetwork.print_results(epoch, valid_cost, valid_acc, tr_cost, tr_acc) return validation_costs, validation_acc, train_costs, train_acc def update_batch( self, mini_batch: list[tuple[np.ndarray, np.ndarray]], eta: float, lmbda: float, n: int, ) -> None: """Updates the network weights and biases according to a single iteration of gradient descent, using just the training data in mini_batch and back-propagation. :param mini_batch: a list of tuples, where each tuple is an instance (x, y) to process :param eta: the learning rate :param lmbda: the regularization parameter :param n: the total size of the training data set """ b_hat = [np.zeros(b.shape) for b in self.biases] w_hat = [np.zeros(w.shape) for w in self.weights] for x, y in mini_batch: delta_b_hat, delta_w_hat = self.back_propagate(x, y) b_hat = [nb + dnb for nb, dnb in zip(b_hat, delta_b_hat)] w_hat = [nw + dnw for nw, dnw in zip(w_hat, delta_w_hat)] self.weights = [ (1 - eta * (lmbda / n)) * w - (eta / len(mini_batch)) * nw for w, nw in zip(self.weights, w_hat) ] self.biases = [b - (eta / len(mini_batch)) * nb for b, nb in zip(self.biases, b_hat)] def _monitor(self, monitor, lmbda, train_data, validation_data): train_acc = train_cost = valid_acc = valid_cost = None if "train_acc" in monitor or "train_cost" in monitor: measures = [] if "train_acc" in monitor: measures.append("acc") if "train_cost" in monitor: measures.append("cost") transformed_data = [(x, np.argmax(y)) for x, y in train_data] train_acc, train_cost = self.evaluate(transformed_data, measures, lmbda) if "valid_acc" in monitor or "valid_cost" in monitor: measures = [] if "valid_acc" in monitor: measures.append("acc") if "valid_cost" in monitor: measures.append("cost") valid_acc, valid_cost = self.evaluate(validation_data, measures, lmbda) return train_acc, train_cost, valid_acc, valid_cost def evaluate(self, test_data, measures: list = None, lmbda=5.0): measures = measures or ["acc"] data = list(test_data) acc = cost = None prediction = [self.feed_forward(x) for x, y in data] if "acc" in measures: true_labels = [y for _, y in data] acc = self._accuracy(zip(prediction, true_labels)) if "cost" in measures: true_labels_as_vector = [data_helper.as_vector(y, self.num_classes) for _, y in data] cost = self._total_cost(list(zip(prediction, true_labels_as_vector)), lmbda) return acc, cost def _total_cost(self, data, lmbda): """Return the total cost for the data set ``data``. The flag ``convert`` should be set to False if the data set is the training data (the usual case), and to True if the data set is the validation or test data. See comments on the similar (but reversed) convention for the ``accuracy`` method, above. """ cost = 0.0 for activations, true_label in data: cost += self.cost_function.evaluate(activations, true_label) / len(data) cost += 0.5 * (lmbda / len(data)) * sum(np.linalg.norm(w) ** 2 for w in self.weights) return cost @staticmethod def _accuracy(data) -> float: results = [(np.argmax(activations), true_label) for (activations, true_label) in data] return sum(int(prediction == true_label) for (prediction, true_label) in results) / len(results) @staticmethod def print_results(epoch, valid_cost, valid_acc, training_cost, training_acc): print(f"Epoch {epoch}:") if valid_acc: print(f"\t valid_acc: {valid_acc:.5f}") if valid_cost: print(f"\t valid_cost: {valid_cost:.5f}") if training_acc: print(f"\t training_acc: {training_acc:.5f}") if training_cost: print(f"\t training_cost: {training_cost:.5f}") print("-------") class DidacticCourseraNetwork: def forward(self, features, parameters): """Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation Arguments: X -- data, numpy array of shape (input size, number of examples) parameters -- output of initialize_parameters_deep() Returns: AL -- last post-activation value caches -- list of caches containing: every cache of linear_activation_forward() (there are L-1 of them, indexed from 0 to L-1) """ caches = [] activations = features num_layers = len(parameters) // 2 # number of layers in the neural network # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list. for layer in range(1, num_layers): previous_activations = activations activations, cache = self.linear_activation_forward( previous_activations, parameters[f"W{layer}"], parameters[f"b{layer}"], activation_func=relu ) caches.append(cache) # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list. linear_activation_values, cache = self.linear_activation_forward( activations, parameters[f"W{num_layers}"], parameters[f"b{num_layers}"], activation_func=sigmoid ) caches.append(cache) if linear_activation_values.shape != (1, features.shape[1]): raise Exception("Shape mismatch when processing forward step.") return linear_activation_values, caches def linear_activation_forward(self, previous_activation_values, weights, biases, activation_func=relu): """ Implement the forward propagation for the LINEAR->ACTIVATION layer Args: previous_activation_values: activations from previous layer (or input data) (size of previous layer, number of examples) weights: a numpy array of shape (size of current layer, size of previous layer) biases: numpy array of shape (size of the current layer, 1) activation_func -- the activation to be used in this layer Returns: activation_values: the output of the activation function, also called the post-activation value cache: a python tuple containing "linear_cache" and "activation_cache"; stored for computing the backward pass efficiently """ # Inputs: "A_prev, W, b". Outputs: "A, activation_cache". pre_activations, linear_cache = self.linear_forward(previous_activation_values, weights, biases) activation_values, activation_cache = activation_func(pre_activations) if activation_values.shape != (weights.shape[0], previous_activation_values.shape[1]): raise Exception("Shape mismatch when processing linear activation forward function.") cache = (linear_cache, activation_cache) return activation_values, cache def linear_forward(self, activations, weight_matrix, bias_vector): """ Implement the linear part of a layer's forward propagation. Args: activations: activations from previous layer (or input data): (size of previous layer, number of examples) weight_matrix: numpy array of shape (size of current layer, size of previous layer) bias_vector: numpy array of shape (size of the current layer, 1) Returns: tuple with the pre-activation parameter values (Z) and cache, a python tuple containing "activations", "weights" and "biases"; stored for computing the backward pass efficiently """ pre_activations = np.dot(weight_matrix, activations) + bias_vector if pre_activations.shape != (weight_matrix.shape[0], activations.shape[1]): raise Exception("Shape mismatch when processing linear forward function.") return pre_activations, (activations, weight_matrix, bias_vector) ``` #### File: examples/logistic_regression/basic_algorithm.py ```python import numpy as np def sigmoid(z): return 1.0 / (1.0 + np.exp(-z)) class IterativeBinaryLogisticRegression: def __init__(self, num_features): self.num_features = num_features self.weights = np.zeros((num_features, 1)) self.bias = 0 def run(self, train_data, eta): train_data = list(train_data) n = len(train_data) b_slope = 0 weight_slopes = np.zeros((self.num_features, 1)) cost = 0 # TODO: implement 'm' iterations # Calculate the Logistic Regression Derivatives # 1-step of Gradient Descent for x, y in train_data: # TODO: implement the dot operation with for loops z = np.dot(self.weights, x) + self.bias a = sigmoid(z) cost += -(y * np.log(a) + (1 - y) * np.log(1 - a)) z_slope = a - y b_slope += z_slope for i in range(self.num_features): weight_slopes[i] += x[i] * z_slope cost /= n b_slope /= n weight_slopes = [w / n for w in weight_slopes] # Update the weights and bias for i in range(self.num_features): self.weights[i] -= eta * weight_slopes[i] self.bias -= eta * b_slope class VectorizedBinaryLogisticRegression: def __init__(self, num_features): self.num_features = num_features self.weights = np.zeros((num_features, 1)) self.bias = 0 def run(self, train_data, eta): train_data = list(train_data) n = len(train_data) b_slope = 0 weight_slopes = np.zeros((self.num_features, 1)) cost = 0 # TODO: implement 'm' iterations # Calculate the Logistic Regression Derivatives # 1-step of Gradient Descent # TODO: vectorize the loop for x, y in train_data: z = np.dot(self.weights, x) + self.bias a = sigmoid(z) cost += -(y * np.log(a) + (1 - y) * np.log(1 - a)) z_slope = a - y b_slope += z_slope weight_slopes += x * z_slope cost /= n b_slope /= n weight_slopes /= n # Update the weights and bias # TODO: vectorize for i in range(self.num_features): self.weights[i] -= eta * weight_slopes[i] self.bias -= eta * b_slope @staticmethod def sigmoid(z): return 1.0 / (1.0 + np.exp(-z)) ``` #### File: neural_networks/examples/next_user_action_prediction.py ```python import numpy as np import pandas as pd from sklearn import preprocessing from utils.model_helper import load_pickle_model def prepare_test_data(df, num_features, class_feature): y = df[class_feature].to_numpy() min_max_scaler = preprocessing.MinMaxScaler() X = min_max_scaler.fit_transform(df.drop([class_feature], axis=1)) inputs = [np.reshape(x, (num_features, 1)) for x in X] labels = [label - 1 for label in y] return zip(inputs, labels) if __name__ == "__main__": path_to_data = "../data/raw/user_actions" df_test = pd.read_csv(f"{path_to_data}/test_processed_2.csv", sep="\t") df_test = df_test.drop(["user_id", "timestamp"], axis=1) test_set = prepare_test_data(df_test, 14, "action") net = load_pickle_model("../models/model.pickle") acc, cost = net.evaluate(test_set, ["acc", "cost"]) print("Test performance:") print(f"\tAcc: {acc}") print(f"\tCost: {cost}") ``` #### File: regression/least_squares/multiple_linear_regression.py ```python from math import sqrt import numpy as np from numpy import dot, power from numpy.linalg import inv from regression.base import predict_output, random_init def multiple_linear_regression_closed_form(observations, y_values): """ This operation is very expensive. Calculating the inverse is N^3. There are better solutions for this problem. Notes: - Num of observations must be greater than the number of features - linearly independent - w and y are vectors RSS(w) = -2H^T (y - Hw) Solve for w: RSS(w_hat) = 0 -2H^T (y - H * w_hat) = 0 -2H^T * y + 2H^T * H * w_hat = 0 H^T * H * w_hat = H^T * y inv(H^T * H) * H^T * H * w_hat = H^T * y * inv(H^T * H) # inv(H^T * H) * H^T * H --> I # thus: I * w_hat = H^T * y * inv(H^T * H) w_hat = inv(H^T * H) * H^T * y """ return dot(inv(observations.T @ observations), observations.T.dot(y_values)) def gradient_descent_loop_form( feature_matrix, y_values, step_size: float = 1e-2, tolerance: float = 1e-3, max_iter: int = 1e2, initializer=random_init, ): weights = initializer(feature_matrix.shape[1]) converged = False iteration = 0 while not converged and iteration < max_iter: predictions = predict_output(feature_matrix, weights) residual_errors = predictions - y_values gradient_sum_squares = 0 for i in range(len(weights)): # loop over each weight # Recall that feature_matrix[:, i] is the feature column associated with weights[i] # compute the derivative for weight[i]: derivative = feature_derivative(residual_errors, feature_matrix[:, i]) # add the squared value of the derivative to the gradient sum of squares (for assessing convergence) gradient_sum_squares += derivative ** 2 weights[i] -= step_size * derivative # compute the square-root of the gradient sum of squares to get the gradient magnitude: gradient_magnitude = sqrt(gradient_sum_squares) converged = gradient_magnitude < tolerance iteration += 1 return weights def feature_derivative(feature, errors): return 2 * np.dot(errors, feature) def gradient_descent_vectorized_form( feature_matrix, y_values, step_size: float = 1e-2, tolerance: float = 1e-3, max_iter: int = 1e2, initializer=random_init, ): weights = initializer(feature_matrix.shape[1]) converged = False iteration = 0 while not converged and iteration < max_iter: residual_errors = y_values - feature_matrix.dot(weights.T) partials = -2 * feature_matrix.T.dot(residual_errors) weights += step_size * partials gradient_magnitude = np.sqrt(power(partials, 2).sum()) converged = gradient_magnitude < tolerance iteration += 1 return weights if __name__ == "__main__": # first feature is the constant 1 (intercept) feature_matrix = np.array( [ [1, 10, 3], [1, 2.5, 7], [1, 15, 8], [1, 6, 2], [1, 67, 37], ] ) y_values = np.array([-1, 0.2, 0.9, 3, 0.6]) step_size = 7e-12 tolerance = 2.5e7 closed_w = multiple_linear_regression_closed_form(feature_matrix, y_values) loop_w = gradient_descent_loop_form(feature_matrix, y_values, step_size, tolerance) vectorized_w = gradient_descent_vectorized_form(feature_matrix, y_values, step_size, tolerance) print(closed_w) print(loop_w) print(vectorized_w) ```
{ "source": "jmetzz/speech-to-text", "score": 3 }
#### File: main/python/_2_convert_mic.py ```python import argparse import logging from core.converter import MicCaptureToText def create_argument_parser(): parser = argparse.ArgumentParser(description='parse incoming') parser.add_argument('-l', '--lang', help="The language of the audio", default='en-US', type=str) parser.add_argument('-c', '--converter', help="The language of the audio", choices=['google', 'sphinx'], type=str) parser.add_argument('-v', '--verbose', help="Be verbose. Sets logging level to INFO", action="store_const", dest="loglevel", const=logging.INFO, default=logging.INFO) parser.add_argument('-vv', '--debug', help="Print lots of debugging statements. " "Sets logging level to DEBUG", action="store_const", dest="loglevel", const=logging.DEBUG) parser.add_argument('-q', '--quiet', help="Be quiet! Sets logging level to WARNING", action="store_const", dest="loglevel", const=logging.WARNING) return parser if __name__ == '__main__': cmdline_args = create_argument_parser().parse_args() logging.basicConfig(level=cmdline_args.loglevel) converter = MicCaptureToText(recognizer=cmdline_args.converter, language=cmdline_args.lang) transcription = { "success": None, "error": None, "stack trace": None, "text": "" } print("Using input from mic:") while transcription['text'] != "stop": print("Say something to capture. When you are done just say 'stop'") transcription = converter.convert() if transcription['success']: print(f"Recognizer thinks you said: '{transcription['text']}'") else: print(f"Error: '{transcription['error']}'") print("No more audio to transcribe") ``` #### File: python/core/configuration.py ```python import yaml import logging from collections import namedtuple class Config: logger = logging.getLogger(__name__) @staticmethod def load_from_file(filename): try: with open(filename, 'r') as stream: try: config = yaml.load(stream) return Config._convert(config) except yaml.YAMLError as exc: Config.logger.fatal('config: Cannot load config: {}'.format(filename), exc) except Exception as e: Config.logger.error('config: File not found: {}'.format(filename)) raise e @staticmethod def load_from_db(setting_name): raise NotImplementedError @staticmethod def from_dict(dictionary): if not isinstance(dictionary, dict): raise ValueError('Given argument is not a dictionary') return Config._convert(dictionary) @staticmethod def _convert(dictionary): """Converts a nested dictionary into an accessible object, allowing us to access nested property as simple as object.param.nested :obj: dictionary :returns: NestedObject """ if isinstance(dictionary, dict): for key, value in dictionary.items(): dictionary[key] = Config._convert(value) return namedtuple('VO', dictionary.keys())(**dictionary) elif isinstance(dictionary, list): return [Config._convert(item) for item in dictionary] else: return dictionary ```
{ "source": "jmewes/epages-beyond-payment-app", "score": 3 }
#### File: jmewes/epages-beyond-payment-app/shops.py ```python import psycopg2 import requests class Shop(object): def __init__(self, id, hostname): self.id = id self.hostname = hostname class Shops(object): def __init__(self): pass def get_shop(self, id): return None class PostgresShops(Shops): def __init__(self, database_url): self.database_url = database_url def create_schema(self): with psycopg2.connect(self.database_url) as conn: with conn.cursor() as curs: curs.execute("""CREATE TABLE IF NOT EXISTS SHOPS ( ID varchar(255) UNIQUE NOT NULL, HOSTNAME varchar(255) NOT NULL )""") def create_or_update_shop(self, shop): print("Create/update shop %s (%s)" % (shop.hostname, shop.id)) sql = '' if self.get_shop(shop.id): sql = "UPDATE SHOPS SET HOSTNAME = %s WHERE ID=%s" else: sql = "INSERT INTO SHOPS (HOSTNAME, ID) VALUES(%s, %s)" with psycopg2.connect(self.database_url) as conn: with conn.cursor() as curs: curs.execute(sql, (shop.hostname, shop.id)) def get_shop(self, id): with psycopg2.connect(self.database_url) as conn: with conn.cursor() as curs: curs.execute("SELECT * FROM SHOPS WHERE ID=%s", (id,)) entry = curs.fetchone() if entry: return Shop(id=entry[0], hostname=entry[1]) return None def get_shop_id(installation): return \ requests.get('%s/shop-id' % installation.api_url, \ headers={ "Accept": "application/hal+json", "Authorization": "Bearer %s" % installation.access_token }).json() \ .get('shopId', None) ``` #### File: epages-beyond-payment-app/test/test_signers.py ```python from signers import sign def test_sign(): signature = sign('Hello, unaltered message!', 'ha2e25nfmvo1dgeqsncd3nqsoj') assert signature == 'WJZWs4v/Vgru4X6hdKhI71TmhUM=' ```
{ "source": "jmew/Felix.AI", "score": 3 }
#### File: jmew/Felix.AI/api.py ```python from flask import Flask, request, jsonify from flask_restful import Api from chatbot import chatbot_api app = Flask(__name__) api = Api(app) felix = None @app.route('/', methods=['POST']) #allow both GET and POST requests def form_example(): if request.method == 'POST': #this block is only entered when the form is submitted req_data = request.get_json() sentance = req_data['input'] output = felix.predict(sentance) return jsonify( reply=output, ) if __name__ == '__main__': felix = chatbot_api.Chatbot() felix.run() app.run(port='5002') ``` #### File: Felix.AI/scripts/data_filterer.py ```python import sys import re import os import datetime import argparse import collections class DataFilterer: round = re.compile('\(.+?\)') html = re.compile('\<.+?\>') curly = re.compile('\{.+?\}') square = re.compile('\[.+?\]') speaker = re.compile('^(.+?:|.+?>>)') availableDatatypes = collections.OrderedDict([ # OrderedDict because the first element is the default choice ('subs', "filterSubs"), ('transcript', "filterTranscript"), ]) @staticmethod def dataTypeChoices(): return list(DataFilterer.availableDatatypes.keys()) @staticmethod def getFileContent(filename): lines = None with open(filename, 'r') as f: lines = f.readlines() return lines def __init__(self, args): self.dataType = args.dataType self.keepPunc = args.keepPunctuations self.filterMethod = DataFilterer.availableDatatypes[self.dataType] def _cleanLine(self, s): s = DataFilterer.round.sub('', s) s = DataFilterer.curly.sub('', s) s = DataFilterer.square.sub('', s) s = DataFilterer.html.sub('', s) s = s.strip() s = s.replace('|', ' ') s = s.replace('. . .', '.') s = s.replace('\n', '') s = s.replace('\r', '') if self.keepPunc: s = re.sub(r'[^a-zA-Z,.!? \'-]', u'', s) else: s = re.sub(r'[^a-zA-Z \'-]', u'', s) s = re.sub(r'- ', u'', s) s = re.sub(r' -', u'', s) if len(s) > 0 and (s[0] == '-' or s[0] == '.'): s = s[1:] return s.strip() def filterSubs(self, lines): filtered = [] inlineTiming = None ''' Two ways that subtitles are formatted: 1. inlineTiming {330}{363} some sentence 2. not inlineTiming 1 00:00:02,292 --> 00:00:03,645 X1:197 X2:518 Y1:484 Y2:524 some sentence ''' if lines[0][0] == '{': inlineTiming = True else: inlineTiming = False dialogue = [] # temporary array for a sentence that is written over multiple lines for l in lines: if l.strip().isdigit(): continue if not inlineTiming and ("-->" in l or len(re.findall(r"(?:(?:([01]?\d|2[0-3]):)?([0-5]?\d):)?([0-5]?\d)", l)) > 0): # garbage lines continue if not inlineTiming and l.isspace(): # form one sentence using multiple lines of sentences full_s = "" for s in dialogue: # Merge fragmented sub sentences into one sentence s = self._cleanLine(s) full_s = full_s + " " + s full_s = full_s.strip() if len(full_s) > 0: filtered.append(full_s) dialogue = [] else: # A line of sentence l = l.strip() if inlineTiming or (not inlineTiming and len(l) > 0 and l[0] == '-'): # If begins with -, separate person speaking l = self._cleanLine(l) if len(l) > 0: filtered.append(l) elif not inlineTiming: # It could be one sentence written over multiple lines dialogue.append(l) for s in dialogue: s = self._cleanLine(s) if len(s) > 0: filtered.append(s) return filtered def filterTranscript(self, lines): filtered = [] for l in lines: if l.strip().isdigit(): # if just consists of digits, skip continue l = l.strip() l = DataFilterer.speaker.sub('', l) l = self._cleanLine(l) if len(l) > 0: filtered.append(l) return filtered # Returns a list of filtered lines from the specified subtitle def filterData(self, filename): print("Filtering ", filename, "\r\n") filtered = [] filter = None try: filter = getattr(self, self.filterMethod) except AttributeError: raise NotImplementedError("Class `{}` does not implement `{}`".format(my_cls.__class__.__name__, method_name)) lines = DataFilterer.getFileContent(filename) filtered = filter(lines) return filtered def main(argv=None): if len(argv) < 2: return parser = argparse.ArgumentParser(description='Filter txt data.') parser.add_argument('--dataType', choices=DataFilterer.dataTypeChoices(), default=DataFilterer.dataTypeChoices()[0], help='type of txt files.') parser.add_argument('--dirName', type=str, default='', help='use this for directory name that contains the text files') parser.add_argument('mergeFiles', metavar='mf', type=str, nargs='*', help='Files to be added') parser.add_argument('--keepPunctuations', action='store_true', help='use this if you want train using a different dataset type') parser.add_argument('--mergeMode', action='store_true', help='use this if you want merge text files instead of filtering them') parser.add_argument('--outputName', type=str, default=None, nargs='?', help='use this if you want to specify output file name') # Parse arguments args = parser.parse_args(argv[1:]) print(args) training_data = [] new_filename = "" dataFilterer = DataFilterer(args) # Merge mode if args.mergeMode: for file in args.mergeFiles: new_filename += file.split(".")[0] + "_" training_data.extend(DataFilterer.getFileContent(file)) new_filename = new_filename[:-1] + ".txt" # Filter mode else: # Get names of all text files to filter filenames = [] for file in os.listdir(args.dirName): if file.endswith(".txt"): f = os.path.join(args.dirName, file) filenames.append(f) # Filter each file for filename in filenames: training_data.extend(dataFilterer.filterData(filename)) training_data.append("===") new_filename = args.dirName.replace('/', '') + ".txt" if args.outputName is not None: new_filename = args.outputName with open(new_filename, 'w+') as f: for l in training_data: f.write("%s\n" % l) if __name__== "__main__": main(sys.argv) ```
{ "source": "JMey94/cigar-id", "score": 3 }
#### File: JMey94/cigar-id/plant_input.py ```python import os from PIL import Image import numpy as np import glob def input_data(path): newPath = os.path.join(path,'*.jpg') filePaths = glob.glob(newPath) numImgs = len(filePaths) # get numPixels from one image, all images must be square and same dimension numPixels = np.asarray(Image.open(filePaths[0])).shape[0] labels = np.empty(shape = (numImgs,2)) features = np.empty(shape = (numImgs,numPixels**2)) for i,imagePath in enumerate(filePaths): if 'pinoak' in imagePath: labelVec = [1,0] elif 'sugarmaple' in imagePath: labelVec = [0,1] # if we load one image at a time, this is much faster than load_images() img = np.asarray(Image.open(imagePath)).ravel() features[i,:] = img labels[i,:] = labelVec return features,labels ```
{ "source": "jmeydam/alternative-destinations", "score": 3 }
#### File: app/api/alternative_destinations.py ```python from datetime import datetime from sqlalchemy import desc from flask import request, make_response from flask_cors import cross_origin from . import api from .authentication import auth from app.exceptions import ValidationError from app.models import Airport, Destination, Weather MONTH_NAMES = { 1: 'January', 2: 'February', 3: 'March', 4: 'April', 5: 'May', 6: 'June', 7: 'July', 8: 'August', 9: 'September', 10: 'October', 11: 'November', 12: 'December'} def default_destinations(iata_code_original_destination): """Get three default destinations different from original destination of query.""" # Paris, London, Rome, New York defaults = ['CDG', 'LHR', 'FCO', 'JFK'] if iata_code_original_destination in defaults: defaults.remove(iata_code_original_destination) else: defaults.remove('JFK') return defaults @api.route('/search') @auth.login_required @cross_origin() def get_alternative_destinations(): """Validates query parameters and assembles output.""" # print(request.args) # ImmutableMultiDict([('iata_code', 'LHR'), # ('date', '2019-01-15'), # ('min_temperature_celsius', '5'), # ('max_temperature_celsius', '20'), # ('max_precipitation_mm', '0')]) # max *average* daily rainfall try: iata_code = request.args.get('iata_code') assert iata_code is not None assert len(iata_code) == 3 assert iata_code == iata_code.upper() date = datetime.strptime(request.args.get('date'), '%Y-%m-%d') min_temperature_celsius = float(request.args.get('min_temperature_celsius')) assert min_temperature_celsius >= -50 assert min_temperature_celsius <= 50 max_temperature_celsius = float(request.args.get('max_temperature_celsius')) assert max_temperature_celsius >= -50 assert max_temperature_celsius <= 50 assert min_temperature_celsius <= max_temperature_celsius max_precipitation_mm = float(request.args.get('max_precipitation_mm')) assert max_precipitation_mm >= 0 # avg. daily rainfall normally between 1 and 4 assert max_precipitation_mm <= 10 except Exception as e: #print(e) raise ValidationError('Invalid input') defaults = default_destinations(iata_code) dests = [] dests.append(Destination.query.filter_by(iata_code=defaults[0]).first()) dests.append(Destination.query.filter_by(iata_code=defaults[1]).first()) dests.append(Destination.query.filter_by(iata_code=defaults[2]).first()) # query in "strict mode" query_weather_strict = Weather.query.filter( Weather.month == MONTH_NAMES[date.month], Weather.iata_code != iata_code, Weather.min_temperature_celsius >= min_temperature_celsius, Weather.max_temperature_celsius <= max_temperature_celsius, Weather.daily_precipitation_mm <= max_precipitation_mm).order_by( desc(Weather.min_temperature_celsius)) # print(query_weather_strict) result_strict = query_weather_strict.all() # print('Strict search found ' + str(len(result_strict)) + ' destinations.') # print(result_strict) # query in "fuzzy mode" with tolerances query_weather_fuzzy = Weather.query.filter( Weather.month == MONTH_NAMES[date.month], Weather.iata_code != iata_code, Weather.min_temperature_celsius >= min_temperature_celsius - 5, Weather.max_temperature_celsius <= max_temperature_celsius + 5, Weather.daily_precipitation_mm <= max_precipitation_mm + 3).order_by( desc(Weather.min_temperature_celsius)) result_fuzzy = query_weather_fuzzy.all() # print('Fuzzy search found ' + str(len(result_fuzzy)) + ' destinations.') # print(result_fuzzy) # print(type(result_fuzzy)) # <class 'list'> # append unordered result of fuzzy search to ordered result of strict search # only append elements that are not part of the strict search result result = result_strict + list(set(result_fuzzy) - set(result_strict)) # print('Found ' + str(len(result)) + ' destinations. (Results strict search first.)') # print(result) # overwrite default destinations with search result for index, weather in enumerate(result): if index > 2: break dests[index] = Destination.query.filter_by(iata_code=weather.iata_code).first() line_1 = '{"alternative_destinations":\n' line_2 = ' [\n' line_3 = ' {"iata_code": "%s", "city": "%s"},\n' % (dests[0].iata_code, dests[0].city) line_4 = ' {"iata_code": "%s", "city": "%s"},\n' % (dests[1].iata_code, dests[1].city) line_5 = ' {"iata_code": "%s", "city": "%s"}\n' % (dests[2].iata_code, dests[2].city) line_6 = ' ]\n' line_7 = '}\n' response_string = line_1 + line_2 + line_3 + line_4 + line_5 + line_6 + line_7 response = make_response(response_string) response.mimetype = 'application/json' return response ``` #### File: app/main/views.py ```python from flask import render_template, session, redirect, url_for from ..models import Destination from . import main from .forms import ParameterForm @main.route('/', methods=['GET', 'POST']) def index(): form = ParameterForm() if form.validate_on_submit(): #print(dir(form)) #{'iata_code': 'TLV', 'date': datetime.date(2019, 1, 19), 'min_temperature_celsius': 5, 'max_temperature_celsius': 20, 'max_precipitation_mm': 0, 'submit': True, 'csrf_token': '<KEY>'} #print(form.data) #print(form.iata_code) #print(form.date.data) #print(form.min_temperature_celsius.data) #print(form.max_temperature_celsius.data) #print(form.max_precipitation_mm.data) #test_url = '../api/v1/search?iata_code=LHR&date=2019-01-15&min_temperature_celsius=5&max_temperature_celsius=20&max_precipitation_mm=0' redirect_url = '../api/v1/search' +\ '?iata_code=' + form.iata_code.data +\ '&date=' + form.date.data.strftime('%Y-%m-%d') +\ '&min_temperature_celsius=' + str(form.min_temperature_celsius.data) +\ '&max_temperature_celsius=' + str(form.max_temperature_celsius.data) +\ '&max_precipitation_mm=' + str(form.max_precipitation_mm.data) #http://127.0.0.1:5000/api/v1/search?iata_code=TLV&date=2019-01-19&min_temperature_celsius=5&max_temperature_celsius=20&max_precipitation_mm=0 return redirect(redirect_url) return render_template('index.html', form=form) ```
{ "source": "Jmeyer1292/block_diagram_z3", "score": 3 }
#### File: fbdplc/apps/parse_s7db.py ```python import argparse import fbdplc.s7db import pprint import fbdplc.apps.loggers as loggers def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('paths', nargs='*') parser.add_argument( '--parser', choices=['guess', 'db', 'udt'], default='guess') loggers.add_log_arguments(parser) return parser.parse_args() if __name__ == '__main__': args = parse_args() loggers.configure_logger(args) ACTIONS = { 'db': fbdplc.s7db.parse_db_file, 'udt': fbdplc.s7db.parse_udt_file, } for path in args.paths: print(f'Attempting to load s7db file "{path}"') action = args.parser if action == 'guess': if path.endswith('db'): action = 'db' elif path.endswith('udt'): action = 'udt' else: raise RuntimeError( f'Unable to guess type of file w/ path {path}') parser = ACTIONS[action] result = parser(path) pprint.pprint(result) ``` #### File: block_diagram_z3/fbdplc/modeling.py ```python from fbdplc.functions import Block, Program, Scope from fbdplc.parts import MovePart, PartModel, PartPort, PortDirection from fbdplc.wires import IdentConnection, NamedConnection, Wire, WireConnection from fbdplc.graph import MemoryProxy, ScopeContext, merge_nets from fbdplc.access import LiteralConstantAccess, SymbolAccess, SymbolConstantAccess from typing import List import logging import z3 from z3.z3types import Z3Exception logger = logging.getLogger(__name__) class ProgramModel: def __init__(self, ctx=None): self.assertions = [] self.ctx = ctx if ctx else z3.Context() # We need some kind of static call graph for users to write assertions against # or we need to accumulate annotations from the code itself. self.root: Scope = None self.global_mem = MemoryProxy('', self.ctx) class MemoryAccessProxy: def __init__(self, name, scope): self.name, self.scope = name, scope def __str__(self): return f'MemoryAccessProxy({self.name} from {self.scope})' def hunt_for_type(uid, code: ScopeContext, scope: Scope): result = None for wire_id, wire in code.wires.items(): wire: Wire = wire # Test to see if wire endpoint 'a' is connecting to the part whose # type we wish to infer. a_matches = type( wire.a) == NamedConnection and wire.a.target_uid == uid b_matches = type( wire.b) == NamedConnection and wire.b.target_uid == uid if a_matches: if type(wire.b) == IdentConnection: access = code.accesses[wire.b.target_uid] logger.debug(f'\tOther end is a {access}') if isinstance(access, SymbolAccess) and access.scope == 'LocalVariable': sort = scope.mem.sort(access.symbol) logger.debug(f'\tSort determined to be {sort}') return sort elif b_matches: if type(wire.a) == IdentConnection: access = code.accesses[wire.a.target_uid] logger.debug(f'\tOther end is a {access}') if isinstance(access, SymbolAccess) and access.scope == 'LocalVariable': sort = scope.mem.sort(access.symbol) logger.debug(f'\tSort determined to be {sort}') return sort return result def _model_block(program: Program, program_model: ProgramModel, block: Block, call_stack: List): ns = call_stack[-1].ns logger.info(f'Considering block {block.name} w/ call_stack {call_stack}') logger.info(f'This block has the following scope/namespace: {ns}') # A block consists of an ordered sequence of networks. # Each network could potentially call into other blocks, in which case the translator # recursively descends into them and generates a model. # # Each entity within a scope has a 'uid' associated with it. This uid is unique only to # the scope it is contained within. code = merge_nets(block.networks) logger.debug('--ACCESSES--') # NOTE(Jmeyer): No action should be necessary on these actions at this point in the analysis. # The variables they reference should have already been created. for uid, access in code.accesses.items(): pass # Build a dictionary of instantiated parts callables = {} logger.debug('--PARTS--') for uid, part_template in code.parts.items(): # TODO(Jmeyer): I need a more general way to signal that type inference is required. Right # now I've got one part that needs it, so we just check for that. if isinstance(part_template, MovePart): logger.debug( f'A part requiring type inference was detected: {part_template}') part_template.port_type = hunt_for_type(uid, code, call_stack[-1]) assert part_template.port_type is not None, f'Type inference failed for {part_template}' model: PartModel = part_template.instantiate(ns, program_model.ctx) callables[uid] = model program_model.assertions.extend(model.assertions) # We can generate the logic for all of the primitives first # We can generate function call instances now too. logger.debug('--CALLS--') for uid, call in code.calls.items(): if call.static_memory_access: logger.info( f'Consering call {call} w/ statics = "{call.static_memory_access}"') next_block = program.blocks[call.target] # The interface to a function call in THIS scope. # Acts as a sort of user defined "part" that can be connected to via ports like any of # the primitives. model = call.instantiate( f'{ns}:({uid})', program_model.ctx, next_block) callables[uid] = model # The act of calling a function creates a new scope in which the block variables # associated with that scope are available in the eval of the block and are also # connected to the input/output variables. new_scope = Scope(ns, uid, program_model.ctx, next_block, call_stack[-1]) new_scope.global_mem = call_stack[-1].global_mem if call.static_memory_access: new_scope.static_access_info = call.static_memory_access _model_block(program, program_model, next_block, call_stack + [new_scope]) link_assertions = new_scope.link_call(model) program_model.assertions.extend(link_assertions) # Then wire it all up. # The wires define the program execution order, so translation to something akin to SSA # should be a matter of following this though. logger.debug('--WIRES--') for uid, wire in code.wires.items(): a_is_access = type(wire.a) == IdentConnection b_is_access = type(wire.b) == IdentConnection assert(not(a_is_access and b_is_access)) # The general idea is that every endpoint is resolved to a model variable # When we're connecting ports, all we have to do is assert equality: The signal on the wire is the same at each end # When we connect to symbolic memory, however, things get more complicated: # 1. A symbol may be read from or written to multiple times. # 2. This program translates the input into a new program where each write creates a new variable def _resolve3(conn): assert(isinstance(conn, WireConnection)) if isinstance(conn, IdentConnection): access = code.accesses[conn.target_uid] # 3 types of memory access right now: if isinstance(access, SymbolConstantAccess): if access.scope == 'LocalConstant': return MemoryAccessProxy(access.symbol, call_stack[-1]) else: raise NotImplementedError( f'Unhandled scope {access.scope} in Symbolic Constant Access') elif isinstance(access, LiteralConstantAccess): return access.value elif isinstance(access, SymbolAccess): if access.scope == 'LocalVariable': local: Scope = call_stack[-1] return MemoryAccessProxy(access.symbol, local) elif access.scope == 'GlobalVariable': return MemoryAccessProxy(access.symbol, program_model.global_mem) else: raise RuntimeError( f'Unhandled access scope: {access.scope}') else: raise RuntimeError( f'Unhandled access type: {type(access)}') else: assert isinstance(conn, NamedConnection) part_iface: PartModel = callables[conn.target_uid] port = part_iface.ports[conn.target_port] return port a = _resolve3(wire.a) b = _resolve3(wire.b) write_to_a = a_is_access and b.direction == PortDirection.OUT write_to_b = b_is_access and a.direction == PortDirection.OUT has_write_to_mem = write_to_a or write_to_b def get_var(resolvable): if isinstance(resolvable, MemoryAccessProxy): scope = resolvable.scope return scope.read(resolvable.name) elif isinstance(resolvable, PartPort): return resolvable.external_var() else: return resolvable def get_writeable(resolvable): if isinstance(resolvable, MemoryAccessProxy): scope: Scope = resolvable.scope return scope.write(resolvable.name) else: return get_var(resolvable) if not has_write_to_mem: a_var = get_var(a) b_var = get_var(b) try: program_model.assertions.append(a_var == b_var) except Z3Exception: logger.error( f'An exception occurred while assigning wires {a_var} of {type(a_var)} and {b_var} of {type(b_var)}') raise else: the_access = None the_port = None the_part = None if a_is_access: the_access = a the_port = b the_part: PartModel = callables[wire.b.target_uid] the_port_name = wire.b.target_port else: the_access = b the_port = a the_part: PartModel = callables[wire.a.target_uid] the_port_name = wire.a.target_port _prev = get_var(the_access) _next = get_writeable(the_access) other = get_var(the_port) program_model.assertions.append(_next == other) # NOTE(Jmeyer): This is an important step and an "oddity" in the code base: Functions # in this codebase must be pure, so pass-by-reference is translated into an output var # of the normal name and a *special* input parameter that takes the old value. old = f'_old_{the_port_name}' if old in the_part.ports: old_port = the_part.evar(old) a = _prev == old_port program_model.assertions.append(a) else: logger.debug( f'Mem write does not have associated old part {old}, part: {the_part}') logger.info(f'Done w/ Block: {ns}') def program_model(program: Program, context=None, global_memory=None): # Need to load the "main" entry point and start symbolically translating the program. main: Block = program.blocks[program.entry] program_model = ProgramModel(ctx=context) if global_memory: program_model.global_mem = global_memory call_stack = [Scope('', '', program_model.ctx, main)] program_model.root = call_stack[0] if main.block_type == Block.BLOCK_TYPE_FB: if program.entry_point_db: access = SymbolAccess('GlobalVariable', program.entry_point_db) else: # This clause supports building models without having to specify the (optional) static # memory locations. Most users should call this function via the project module which # will set all of this up in advance. for name, sort in main.variables.statics: program_model.global_mem.create('__main.' + name, sort) access = SymbolAccess('GlobalVariable', '__main') call_stack[-1].static_access_info = access call_stack[-1].global_mem = program_model.global_mem _model_block(program, program_model, main, call_stack) return program_model ``` #### File: block_diagram_z3/fbdplc/sorts.py ```python import typing import z3 import logging logger = logging.getLogger(__name__) class Integer: @staticmethod def make(name: str, ctx: z3.Context): return z3.BitVec(name, 16, ctx=ctx) class ShortInteger: @staticmethod def make(name: str, ctx: z3.Context): return z3.BitVec(name, 8, ctx=ctx) class Boolean: @staticmethod def make(name: str, ctx: z3.Context): return z3.Bool(name, ctx=ctx) class Time: @staticmethod def make(name: str, ctx: z3.Context): return z3.Int(name, ctx=ctx) class AnyType: pass # Primitives SORT_MAP = { 'Bool': Boolean, 'Int': Integer, 'Word': Integer, # TODO(Jmeyer) 'Time': Time # ??? } class UDTSchema: def __init__(self, name: str): self.name = name self.fields = {} def __str__(self): return f'UDTSchema({self.name})' def make(self, name: str, ctx: z3.Context): instance = UDTInstance(self) for key, value in self.fields.items(): n = name + '.' + key instance.fields[key] = value.make(n, ctx=ctx) return instance def iterfields(self, prefix=''): for n, v in self.fields.items(): if isinstance(v, UDTSchema): for _x in v.iterfields(n + '.'): yield _x else: yield (prefix + n, v) class UDTInstance: def __init__(self, schema: UDTSchema): self.schema = schema self.fields = {} def __str__(self): return f'UDTInstance({self.schema.name})' def __eq__(self, other): if self.schema.name != other.schema.name: raise RuntimeError( f'Can not equate UDTs of different schema {self.schema} vs {other.schema}') exprs = [] for name, value in self.fields.items(): other_value = other.fields[name] exprs.append(value == other_value) return z3.And(exprs) def field(self, name: str): return self.fields[name] g_udt_archive = {} def in_archive(sort): if not isinstance(sort, UDTSchema): return False else: return sort.name in g_udt_archive def make_schema(name, parsed_schema): if name in g_udt_archive: # TODO(Jmeyer): Cross check that the types are, in fact, the same logger.debug(f'Schema {name} is already in archive') return g_udt_archive[name] schema = UDTSchema(name) for key, value in parsed_schema.items(): schema.fields[key] = value register_udt(name, schema) return schema def register_udt(name, schema): g_udt_archive[name] = schema SORT_LIKE = typing.Union[UDTSchema, Integer, Boolean, Time] def is_primitive(sort: SORT_LIKE): return sort in SORT_MAP.values() def children(sort: SORT_LIKE): if isinstance(sort, UDTSchema): return [(x, sort.fields[x]) for x in sort.fields] else: return [] def get_sort_factory(name): if name in SORT_MAP: return SORT_MAP[name] if name in g_udt_archive: return g_udt_archive[name] raise RuntimeError(f'Sort "{name}" not known') def clear_archive(): ''' Remove registered types in the singleton archive. This will be refactored shortly, but I want to make some room for getting real feedback outside of this. ''' g_udt_archive.clear() ``` #### File: block_diagram_z3/fbdplc/wires.py ```python class WireConnection: pass class NamedConnection(WireConnection): def __init__(self, target_uid: int, target_port: str): self.target_uid = target_uid self.target_port = target_port def __str__(self): return f'NamedConnection(id={self.target_uid}, port={self.target_port})' class IdentConnection(WireConnection): def __init__(self, target_uid: int): self.target_uid = target_uid def __str__(self): return f'IdentConnection(id={self.target_uid})' class Wire: ''' Wires in TIA's S7 XML format can have more than two terminals, but we always decompose them into a series of two terminal blocks. ''' def __init__(self, a: WireConnection, b: WireConnection): self.a = a self.b = b ``` #### File: tests/integration/test_statics_project.py ```python from fbdplc.sorts import clear_archive import z3 from fbdplc.modeling import ProgramModel from fbdplc.analysis import exec_and_compare import fbdplc.project import glob def unit_test(program_model: ProgramModel): inputs = {} outputs = {} # Test Case #1: invoking MyCounter_DB directly! # Invoke MyCounter_DB0 twice with 1 and 2 respectively # Invoke MyCounter_DB1 once with 3 inputs['MyCounter_DB0.counter'] = 0 inputs['MyCounter_DB1.counter'] = 0 outputs['MyCounter_DB0.counter'] = 3 outputs['MyCounter_DB1.counter'] = 3 # Test Case #2: BlockIncrementer_DB invoked twice in a row # Each invocation: .a += 1 + 2, .b += 1 + 3 inputs['BlockIncrementer_DB.a.counter'] = 0 inputs['BlockIncrementer_DB.b.counter'] = 0 outputs['BlockIncrementer_DB.a.counter'] = 6 outputs['BlockIncrementer_DB.b.counter'] = 8 exec_and_compare(program_model, inputs, outputs) def main(): project = fbdplc.project.ProjectContext() # The source files: project.udt_srcs = glob.glob('testdata/statics_project/PLC_1/**/*.udt') project.db_srcs = glob.glob( 'testdata/statics_project/PLC_1/Program blocks/*.db') project.tag_srcs = glob.glob( 'testdata/statics_project/PLC_1/PLC tags/*.xml') project.fb_srcs = glob.glob( 'testdata/statics_project/PLC_1/Program blocks/*.xml') print(project.udt_srcs) print(project.db_srcs) print(project.tag_srcs) print(project.fb_srcs) # Execution options: project.entry_point = 'Main_Safety_RTG1' model = fbdplc.project.build_program_model(project) unit_test(model) def test(): clear_archive() main() ``` #### File: block_diagram_z3/tests/test_s7db.py ```python import fbdplc.s7db import pprint def test_example0(): parsed = fbdplc.s7db.parse_db_file('testdata/db/example0.db') assert 'name' in parsed assert 'symbols' in parsed assert parsed['name'] == '"DebugData"' symbols = parsed['symbols'] assert len(symbols) == 3 for s in symbols: assert 'name' in symbols[s] assert 'type' in symbols[s] assert 'source' in parsed['initializers'] assert parsed['initializers']['source'] == '1' def test_udt(): parsed = fbdplc.s7db.parse_udt_file( 'testdata/udt_project/PLC_1/PLC data types/Box.udt') assert 'name' in parsed assert 'symbols' in parsed assert parsed['name'] == '"Box"' symbols = parsed['symbols'] assert len(symbols) == 2 assert 'min' in symbols assert 'max' in symbols def test_udt_array_with_defaults(): ''' Parses a data structure with an array with declared defaults like so: v : Array[0..15] of Bool := [false, true]; ''' parsed = fbdplc.s7db.parse_udt_file('testdata/udt/ArrayWithDefault.udt') def test_udt_polygon(): ''' A composite of an integer and an array of UDT ''' parsed = fbdplc.s7db.parse_udt_file('testdata/udt/Polygon.udt') def test_udt_points(): ''' Two simple data structures of template<typename T> { x: T, y: T} where T in {Real, Int} ''' parsed_f = fbdplc.s7db.parse_udt_file('testdata/udt/Pointf.udt') parsed_i = fbdplc.s7db.parse_udt_file('testdata/udt/Pointi.udt') def test_udt_nested_anon(): ''' A data structure with two nested anonymous data structures ''' parsed = fbdplc.s7db.parse_udt_file('testdata/udt/AnonStruct.udt') def test_db_anon(): parsed = fbdplc.s7db.parse_db_file('testdata/db/AnonTestDB.db') def test_db_polygon(): ''' The structure of a DB can be adhoc but it can also be derived from a user defined type. This example contains a DB mapped to the "Polygon" type (defined in "testdata/udt/Polygon.udt") and also has a couple of special initializers. TODO(Jmeyer): Support for the init statements. ''' parsed = fbdplc.s7db.parse_db_file('testdata/db/PolygonDB.db') ``` #### File: block_diagram_z3/tests/test_s7xml.py ```python import fbdplc.s7xml as s7mxl from lxml import etree def _simple_or(networks): assert(len(networks) == 1) def test_simple_or_file(): ''' fdb that computes "a_or_b" := Or(ToSafety.a, ToSafety.b) stored in testdata/blocks/simple_or.xml cut from a larger programs ''' networks = s7mxl.parse_from_file('testdata/blocks/simple_or.xml') _simple_or(networks) def test_simple_or_string(): text = '' with open('testdata/blocks/simple_or.xml', 'r') as fh: text = fh.read() networks = s7mxl.parse_from_string(text) _simple_or(networks) UDT_PARSE_TEST_DATA = ''' <Member Name="status_a" Datatype="&quot;FooBar&quot;" Accessibility="Public"> <Sections> <Section Name="None"> <Member Name="a" Datatype="Bool"/> <Member Name="b" Datatype="Bool"/> <Member Name="c" Datatype="Bool"/> <Member Name="d" Datatype="Bool"/> </Section> </Sections> </Member> ''' def test_udt_parse(): tree = etree.fromstring(UDT_PARSE_TEST_DATA) udt = s7mxl.parse_udt(tree) assert udt.name == '"FooBar"' assert len(udt.fields) == 4 def test_time_parse(): assert s7mxl.parse_time_string('T#2S') == 2000 assert s7mxl.parse_time_string('T#2000MS') == 2000 def test_tags0(): tags = s7mxl.parse_tags_from_file('testdata/tags/tags0.xml') print(tags) ```
{ "source": "jmeyers314/astrophotoreduce", "score": 2 }
#### File: jmeyers314/astrophotoreduce/biweight.py ```python import numpy as np def median_absolute_deviation(x, M=None) : if M is None: M = np.median(x) return np.median(abs(x - M)) def _biweight_location_work(x, M, MAD, c) : u = (x-M) / (c*MAD) w = abs(u) < 1.0 if w.sum() == 0.0: return M term = (1.0 - u[w]**2)**2 num = ((x[w]-M)*term).sum() den = term.sum() CBI = M + num/den return CBI def biweight_location(x, c=6.0, NaN=None, niter=4) : if NaN: x = x[np.isfinite(x)] if len(x) == 0: return np.NaN CBI = np.median(x) for i in xrange(niter): M = CBI MAD = median_absolute_deviation(x, M) CBI = _biweight_location_work(x, M, MAD, c) return CBI def _biweight_scale_work(x, M, MAD, c) : u = (x-M) / (c*MAD) w = abs(u) < 1.0 if w.sum() == 0: return np.NaN term = u[w]**2 num = (len(x) * ((x[w]-M)**2 * (1-term)**4).sum())**0.5 den = abs(((1.0-term)*(1.0-5*term)).sum()) return num/den def biweight_scale(x, zero=None, c=9.0, NaN=None, niter=4) : if NaN: x = x[np.isfinite(x)] if zero is None: M = biweight_location(x) else: M = zero MAD = median_absolute_deviation(x, M) SBI = MAD/0.6745 for i in xrange(niter): MAD = SBI*0.6745 SBI = _biweight_scale_work(x, M, MAD, c) return SBI ``` #### File: jmeyers314/astrophotoreduce/cfa.py ```python import numpy as np def make_cfa(img): cfa = np.zeros_like(img[:,:,0]) y, x = np.mgrid[0:cfa.shape[0], 0:cfa.shape[1]] Rloc = (np.mod(x, 2) == 0) & (np.mod(y, 2) == 0) Gloc = np.mod(x+y, 2) == 1 Bloc = (np.mod(x, 2) == 1) & (np.mod(y, 2) == 1) cfa[Rloc] = img[Rloc,0] cfa[Gloc] = img[Gloc,1] cfa[Bloc] = img[Bloc,2] return cfa ``` #### File: jmeyers314/astrophotoreduce/dark.py ```python import matplotlib.mlab as mlab import matplotlib.pyplot as plt import numpy as np import canont3i import biweight def find_badpixels(fns) : bad_pixels = [] outliers = {} for fn in fns : print "Working on image: ", fn cfa = canont3i.read_CR2_as_CFA(fn) print "Image shape: ", cfa.shape med = np.median(cfa) print "Median: ", med s = biweight.median_absolute_deviation(cfa, med)/0.6745 print "MAD: ", s*0.6745 print "StDev: ", s image_outliers = np.argwhere(cfa > (med + 8*s)) image_outliers = np.concatenate([image_outliers, np.argwhere(cfa < (med - 8*s))]) print "Number of 8-sigma outliers:", image_outliers.shape[0] print print for outlier in image_outliers: key = tuple(outlier) if key in outliers.keys(): outliers[key].append(fn) else: outliers[key] = [fn] print "Bad pixels" print "----------" for pixel in outliers.keys(): if len(outliers[pixel]) > len(fns)**0.5: print pixel, len(outliers[pixel]) bad_pixels.append(pixel) return bad_pixels def make_dark(fns, bad_pixels): cfa0 = canont3i.read_CR2_as_CFA(fns[0]) height, width = cfa0.shape stack = np.empty((height, width, len(fns)), dtype=cfa0.dtype) for i, fn in enumerate(fns) : print 'i: ', i cfa = canont3i.read_CR2_as_CFA(fn) stack[:,:,i] = cfa print 'medianing' med = np.median(stack) print 'layer medianing' dark = np.median(stack, axis=2) for bp in bad_pixels: dark[bp] = med return dark ``` #### File: jmeyers314/astrophotoreduce/hqli.py ```python import numpy as np import scipy.signal as signal # Four kernels to be convolved with CFA array def _G_at_BR(cfa): kernel = [[ 0, 0, -1.0, 0, 0], [ 0, 0, 2, 0, 0], [-1.0, 2, 4, 2, -1.0], [ 0, 0, 2, 0, 0], [ 0, 0, -1.0, 0, 0]] return signal.convolve(cfa, kernel, mode='same')/8. # red value at green pixel in red row and blue col or... # blue value at green pixel in blue row and red col. def _RB_at_G_in_RBrow_BRcol(cfa): kernel = [[ 0, 0, 0.5, 0, 0], [ 0, -1, 0, -1, 0], [-1, 4, 5, 4, -1], [ 0, -1, 0, -1, 0], [ 0, 0, 0.5, 0, 0]] return signal.convolve(cfa, kernel, mode='same')/8. # red value at green pixel in blue row and red col or... # blue value at green pixel in red row and blue col. def _RB_at_G_in_BRrow_RBcol(cfa): kernel = [[ 0, 0, -1, 0, 0], [ 0, -1, 4, -1, 0], [0.5, 0, 5, 0, 0.5], [ 0, -1, 4, -1, 0], [ 0, 0, -1, 0, 0]] return signal.convolve(cfa, kernel, mode='same')/8. # red value at blue pixel or... # blue value at red pixel. def _RB_at_BR(cfa): kernel = [[ 0, 0, -1.5, 0, 0], [ 0, 2, 0, 2, 0], [-1.5, 0, 6, 0, -1.5], [ 0, 2, 0, 2, 0], [ 0, 0, -1.5, 0, 0]] return signal.convolve(cfa, kernel, mode='same')/8. def hqli(cfa): # initialize output arrays R = np.zeros_like(cfa, dtype=np.float64) G = np.zeros_like(cfa, dtype=np.float64) B = np.zeros_like(cfa, dtype=np.float64) # coordinate index arrays y, x = np.mgrid[0:cfa.shape[0], 0:cfa.shape[1]] # create groups of indices based on Bayer pattern Rloc = (np.mod(x, 2) == 0) & (np.mod(y, 2) == 0) Gloc = np.mod(x+y, 2) == 1 Bloc = (np.mod(x, 2) == 1) & (np.mod(y, 2) == 1) G_in_Brow_Rcol = (np.mod(x, 2) == 0) & (np.mod(y, 2) == 1) G_in_Rrow_Bcol = (np.mod(x, 2) == 1) & (np.mod(y, 2) == 0) # copy data that doesn't need interpolation R[Rloc] = cfa[Rloc] G[Gloc] = cfa[Gloc] B[Bloc] = cfa[Bloc] # fill in the green data at the blue/red locations tmp = _G_at_BR(cfa) G[Rloc] = tmp[Rloc] G[Bloc] = tmp[Bloc] # fill in the blue/red data tmp = _RB_at_G_in_BRrow_RBcol(cfa) B[G_in_Rrow_Bcol] = tmp[G_in_Rrow_Bcol] R[G_in_Brow_Rcol] = tmp[G_in_Brow_Rcol] tmp = _RB_at_G_in_RBrow_BRcol(cfa) B[G_in_Brow_Rcol] = tmp[G_in_Brow_Rcol] R[G_in_Rrow_Bcol] = tmp[G_in_Rrow_Bcol] tmp = _RB_at_BR(cfa) B[Rloc] = tmp[Rloc] R[Bloc] = tmp[Bloc] R[R<0] = 0 G[G<0] = 0 B[B<0] = 0 if cfa.dtype == np.uint8: R[R>255] = 255 G[G>255] = 255 B[B>255] = 255 else: R[R>65535] = 65535 G[G>65535] = 65535 B[B>65535] = 65535 return np.array(np.dstack([R, G, B]), dtype=cfa.dtype) ``` #### File: jmeyers314/astrophotoreduce/pgm.py ```python import re import subprocess import numpy as np import matplotlib.image as mpimg # Stole this function from # http://stackoverflow.com/questions/7368739/numpy-and-16-bit-pgm/7369986#7369986 def read_pgm(filename, byteorder='>'): """Return image data from a raw PGM file as numpy array. Format specification: http://netpbm.sourceforge.net/doc/pgm.html """ with open(filename, 'rb') as f: buffer_ = f.read() try: header, width, height, maxval = re.search( b"(^P5\s(?:\s*#.*[\r\n])*" b"(\d+)\s(?:\s*#.*[\r\n])*" b"(\d+)\s(?:\s*#.*[\r\n])*" b"(\d+)\s(?:\s*#.*[\r\n]\s)*)", buffer_).groups() except AttributeError: raise ValueError("Not a raw PGM file: '%s'" % filename) return np.frombuffer(buffer_, dtype='u1' if int(maxval) < 256 else byteorder+'u2', count=int(width)*int(height), offset=len(header) ).reshape((int(height), int(width))) def write_pgm(image, filename): """ Write grayscale image in PGM format to file. """ height, width = image.shape maxval = image.max() with open(filename, 'wb') as f: f.write('P5 {} {} {}\n'.format(width, height, maxval)) # not sure if next line works universally, but seems to work on my mac image.tofile(f) def CR2_to_pgm(filename): """ Use dcraw command line tool to convert Canon RAW format file (.CR2 extension) to PGM file. """ cmd = 'dcraw -D -4 -j -t 0 '+filename subprocess.call(cmd, shell=True) def jpg_to_pgm(filename, Rfile, Gfile, Bfile): """ Use matplotlib to convert color jpg file into three PGM files, one for each color channel. """ img = mpimg.imread(filename) write_pgm(img[:,:,0], Rfile) write_pgm(img[:,:,1], Gfile) write_pgm(img[:,:,2], Bfile) ```
{ "source": "jmeyers314/batoid", "score": 3 }
#### File: batoid/batoid/parse.py ```python import batoid import numpy as np def parse_obscuration(config): typ = config.pop('type') if typ in [ 'ObscCircle', 'ObscAnnulus', 'ObscRay', 'ObscRectangle', 'ObscPolygon' ]: evalstr = "batoid.{}(**config)".format(typ) return eval(evalstr) elif typ == 'ObscNegation': original = parse_obscuration(config['original']) return batoid.ObscNegation(original) elif typ in ['ObscUnion', 'ObscIntersection']: items = [parse_obscuration(c) for c in config['items']] # noqa evalstr = "batoid.{}(items)".format(typ) return eval(evalstr) elif typ.startswith('Clear'): # triggers negation # put type back into config, but with Clear->Obsc config['type'] = typ.replace("Clear", "Obsc") return batoid.ObscNegation(parse_obscuration(config)) else: raise ValueError(f"Unknown obscuration type {typ}") def parse_surface(config): typ = config.pop('type') evalstr = "batoid.{}(**config)".format(typ) return eval(evalstr) def parse_coordSys(config, coordSys=batoid.CoordSys()): """ @param config configuration dictionary @param coordSys sys to which transformations in config are added """ shift = [0.0, 0.0, 0.0] if any(x in config for x in ['x', 'y', 'z']): if 'shift' in config: raise ValueError("Cannot specify both shift and x/y/z") x = config.pop('x', 0.0) y = config.pop('y', 0.0) z = config.pop('z', 0.0) shift = [x, y, z] elif 'shift' in config: shift = config.pop('shift') if shift != [0.0, 0.0, 0.0]: coordSys = coordSys.shiftLocal(shift) # At most one (nonzero) rotation can be included and is applied after the shift. rotXYZ = np.array([config.pop('rot' + axis, 0.0) for axis in 'XYZ']) axes = np.where(rotXYZ != 0)[0] if len(axes) > 1: raise ValueError('Cannot specify rotation about more than one axis.') elif len(axes) == 1: axis, angle = axes[0], rotXYZ[axes[0]] rotator = (batoid.RotX, batoid.RotY, batoid.RotZ)[axis](angle) coordSys = coordSys.rotateLocal(rotator) return coordSys def parse_optic(config, coordSys=batoid.CoordSys(), inMedium=batoid.ConstMedium(1.0), outMedium=None): """ @param config configuration dictionary @param coordSys sys to which transformations in config are added @param inMedium default in Medium, often set by optic parent @param outMedium default out Medium, often set by optic parent """ if 'obscuration' in config: obscuration = parse_obscuration(config.pop('obscuration')) else: obscuration = None name = config.pop('name', "") if 'coordSys' in config: coordSys = parse_coordSys(config.pop('coordSys'), coordSys) inMedium = parse_medium(config.pop('inMedium', inMedium)) outMedium = parse_medium(config.pop('outMedium', outMedium)) if outMedium is None: outMedium = inMedium typ = config.pop('type') if typ == 'Mirror': surface = parse_surface(config.pop('surface')) return batoid.optic.Mirror( surface, name=name, coordSys=coordSys, obscuration=obscuration, inMedium=inMedium, outMedium=outMedium) elif typ == 'RefractiveInterface': surface = parse_surface(config.pop('surface')) return batoid.optic.RefractiveInterface( surface, name=name, coordSys=coordSys, obscuration=obscuration, inMedium=inMedium, outMedium=outMedium) elif typ == 'Baffle': surface = parse_surface(config.pop('surface')) return batoid.optic.Baffle( surface, name=name, coordSys=coordSys, obscuration=obscuration, inMedium=inMedium, outMedium=outMedium) elif typ == 'Detector': surface = parse_surface(config.pop('surface')) return batoid.optic.Detector( surface, name=name, coordSys=coordSys, obscuration=obscuration, inMedium=inMedium, outMedium=outMedium) elif typ == 'Lens': medium = parse_medium(config.pop('medium')) itemsConfig = config.pop('items') items = [ parse_optic( itemsConfig[0], coordSys=coordSys, inMedium=inMedium, outMedium=medium ), parse_optic( itemsConfig[1], coordSys=coordSys, inMedium=medium, outMedium=outMedium ) ] return batoid.optic.Lens( items, name=name, coordSys=coordSys, inMedium=inMedium, outMedium=outMedium) elif typ == 'CompoundOptic': itemsConfig = config.pop('items') items = [ parse_optic( iC, coordSys=coordSys, inMedium=inMedium, outMedium=outMedium ) for iC in itemsConfig ] # Look for a few more possible attributes kwargs = {} for k in ['backDist', 'sphereRadius', 'pupilSize', 'pupilObscuration']: if k in config: kwargs[k] = config[k] if 'stopSurface' in config: kwargs['stopSurface'] = parse_optic(config['stopSurface']) return batoid.optic.CompoundOptic( items, inMedium=inMedium, outMedium=outMedium, name=name, coordSys=coordSys, **kwargs) elif typ == 'Interface': surface = parse_surface(config.pop('surface')) return batoid.optic.Interface( surface, name=name, coordSys=coordSys ) else: raise ValueError("Unknown optic type") def parse_medium(config): from numbers import Real if config is None: return None if isinstance(config, batoid.Medium): return config if isinstance(config, Real): return batoid.ConstMedium(config) # This dict may be referenced again in an ancestor config, so copy it # before parsing config = dict(**config) typ = config.pop('type') # TableMedium, Sellmeier, ConstMedium, SumitaMedium, Air end up here... evalstr = "batoid.{}(**config)".format(typ) return eval(evalstr) def parse_table(config): return batoid.Table(config['args'], config['vals'], config['interp']) ``` #### File: batoid/tests/test_OPDScreen.py ```python import batoid import numpy as np from test_helpers import timer, do_pickle, init_gpu, rays_allclose @timer def test_prescreen(): """Add an OPDScreen in front of LSST entrance pupil. The OPD that comes out should be _negative_ the added phase delay by convention. """ lsst = batoid.Optic.fromYaml("LSST_r.yaml") wavelength = 620e-9 z_ref = batoid.analysis.zernikeGQ( lsst, 0, 0, wavelength, rings=10, reference='chief', jmax=37 ) rng = np.random.default_rng(577) for i in range(4, 38): amplitude = rng.uniform(-1, 1) zern = batoid.Zernike( np.array([0]*i+[amplitude])*wavelength, R_outer=4.18 ) tel = batoid.CompoundOptic( ( batoid.optic.OPDScreen( batoid.Plane(), zern, name='PS', obscuration=batoid.ObscNegation(batoid.ObscCircle(5.0)), coordSys=lsst.stopSurface.coordSys ), *lsst.items ), name='PS0', backDist=lsst.backDist, pupilSize=lsst.pupilSize, inMedium=lsst.inMedium, stopSurface=lsst.stopSurface, sphereRadius=lsst.sphereRadius, pupilObscuration=lsst.pupilObscuration ) do_pickle(tel) z_test = batoid.analysis.zernikeGQ( tel, 0, 0, wavelength, rings=10, reference='chief', jmax=37 ) z_expect = np.zeros_like(z_test) z_expect[i] = -amplitude # Longer OPL => negative OPD np.testing.assert_allclose( (z_test-z_ref)[4:], z_expect[4:], rtol=0, atol=5e-4 ) @timer def test_zeroscreen(): """Add a zero phase OPDScreen in front of LSST entrance pupil. Should have _no_ effect. """ lsst = batoid.Optic.fromYaml("LSST_r.yaml") screens = [ batoid.optic.OPDScreen( batoid.Plane(), batoid.Plane(), name='PS', coordSys=lsst.stopSurface.coordSys ), batoid.optic.OPDScreen( batoid.Paraboloid(100.0), batoid.Plane(), name='PS', coordSys=lsst.stopSurface.coordSys ), batoid.optic.OPDScreen( batoid.Quadric(11.0, -0.5), batoid.Plane(), name='PS', coordSys=lsst.stopSurface.coordSys ), batoid.optic.OPDScreen( batoid.Zernike([0, 0, 0, 0, 300e-9, 0, 0, 400e-9, -600e-9]), batoid.Zernike([0]*22), name='PS', coordSys=lsst.stopSurface.coordSys ) ] for screen in screens: tel = batoid.CompoundOptic( (screen, *lsst.items), name='PS0', backDist=lsst.backDist, pupilSize=lsst.pupilSize, inMedium=lsst.inMedium, stopSurface=lsst.stopSurface, sphereRadius=lsst.sphereRadius, pupilObscuration=lsst.pupilObscuration ) do_pickle(tel) rng = np.random.default_rng(57) thx = np.deg2rad(rng.uniform(-1, 1)) thy = np.deg2rad(rng.uniform(-1, 1)) rays = batoid.RayVector.asPolar( optic=tel, wavelength=620e-9, theta_x=thx, theta_y=thy, nrad=2, naz=6 ) tf1 = tel.traceFull(rays) tf2 = lsst.traceFull(rays) np.testing.assert_allclose( tf1['PS']['in'].v, tf1['PS']['out'].v, rtol=0, atol=1e-14 ) for key in tf2: rays_allclose( tf1[key]['out'], tf2[key]['out'], atol=1e-13 ) if __name__ == '__main__': init_gpu() test_prescreen() test_zeroscreen() ```
{ "source": "jmeyers314/DP_SNe", "score": 3 }
#### File: DP_SNe/dpmm/density.py ```python import numpy as np from scipy.special import gamma def multivariate_t_density(nu, mu, Sig, x): """Return multivariate t distribution: t_nu(x | mu, Sig), in d-dimensions.""" detSig = np.linalg.det(Sig) invSig = np.linalg.inv(Sig) d = len(mu) coef = gamma(nu/2.0+d/2.0) * detSig**(-0.5) coef /= gamma(nu/2.0) * nu**(d/2.0)*np.pi**(d/2.0) if x.ndim == 1: einsum = np.dot(x-mu, np.dot(invSig, x-mu)) else: einsum = np.einsum("...i,ij,...j", x-mu, invSig, x-mu) # (x-mu).T * invSig * (x-mu) return coef * (1.0 + einsum/nu)**(-(nu+d)/2.0) def t_density(nu, mu, sigsqr, x): c = gamma((nu+1.)/2.)/gamma(nu/2.)/np.sqrt(nu*np.pi*sigsqr) return c*(1.0+1./nu*((x-mu)**2/sigsqr))**(-(1.+nu)/2.0) def scaled_IX_density(nu, sigsqr, x): return (1.0/gamma(nu/2.0) * (nu*sigsqr/2.0)**(nu/2.0) * x**(-nu/2.0-1.0) * np.exp(-nu*sigsqr/(2.0*x))) def normal_density(mu, var, x): return np.exp(-0.5*(x-mu)**2/var)/np.sqrt(2*np.pi*var) ``` #### File: DP_SNe/tests/test_plot_samples.py ```python import numpy as np import matplotlib.pyplot as plt import dpmm from test_utils import timer from dpmm.utils import plot_ellipse, random_wish, random_invwish from unittest import skip @skip @timer def test_GaussianMeanKnownVariance(): mu_0 = 1.1 sigsqr_0 = 0.42 sigsqr = 0.21 model = dpmm.GaussianMeanKnownVariance(mu_0, sigsqr_0, sigsqr) samples = model.sample(size=1000) f = plt.figure(figsize=(5, 3)) ax = f.add_subplot(111) ax.hist(samples, bins=30, normed=True, alpha=0.5, color='k') xlim = np.percentile(samples, [1.0, 99.0]) ax.set_xlim(xlim) x = np.linspace(xlim[0], xlim[1], 100) y = model(x) ax.plot(x, y, c='k', lw=3) ax.set_xlabel("$\mu$") ax.set_ylabel("Pr($\mu$)") f.tight_layout() ax.set_title("GaussianMeanKnownVariance") f.savefig("plots/GaussianMeanKnownVariance_samples.png") @skip @timer def test_InvGamma(): alpha = 1.4 beta = 1.3 mu = 1.2 model = dpmm.InvGamma(alpha, beta, mu) samples = model.sample(size=1000) xlim = np.percentile(samples, [0.0, 95.0]) f = plt.figure(figsize=(5, 3)) ax = f.add_subplot(111) ax.hist(samples, bins=30, range=xlim, normed=True, alpha=0.5, color='k') ax.set_xlim(xlim) x = np.linspace(xlim[0], xlim[1], 100) y = model(x) ax.plot(x, y, c='k', lw=3) ax.set_xlabel("$\sigma^2$") ax.set_ylabel("Pr($\sigma^2$)") f.tight_layout() ax.set_title("InvGamma") f.savefig("plots/InvGamma_samples.png") @skip @timer def test_NormInvChi2(): mu_0 = 1.5 kappa_0 = 2.3 sigsqr_0 = 0.24 nu_0 = 2 model = dpmm.NormInvChi2(mu_0, kappa_0, sigsqr_0, nu_0) samples = model.sample(size=1000) mu_samples = np.array([s[0] for s in samples]) var_samples = np.array([s[1] for s in samples]) xlim = np.percentile(mu_samples, [2.5, 97.5]) f = plt.figure(figsize=(5, 3)) ax = f.add_subplot(111) ax.hist(mu_samples, bins=30, range=xlim, normed=True, alpha=0.5, color='k') ax.set_xlim(xlim) x = np.linspace(xlim[0], xlim[1], 100) y = model.marginal_mu(x) ax.plot(x, y, c='k', lw=3) ax.set_xlabel("$\mu$") ax.set_ylabel("Pr($\mu$)") f.tight_layout() ax.set_title("NormInvChi2") f.savefig("plots/NormInvChi2_mu_samples.png") xlim = np.percentile(var_samples, [0.0, 95.0]) f = plt.figure(figsize=(5, 3)) ax = f.add_subplot(111) ax.hist(var_samples, bins=30, range=xlim, normed=True, alpha=0.5, color='k') ax.set_xlim(xlim) x = np.linspace(xlim[0], xlim[1], 100) y = model.marginal_var(x) ax.plot(x, y, c='k', lw=3) ax.set_xlabel("$\sigma^2$") ax.set_ylabel("Pr($\sigma^2$)") f.tight_layout() ax.set_title("NormInvChi2") f.savefig("plots/NormInvChi2_var_samples.png") @skip @timer def test_NormInvGamma(): mu_0 = 1.5 V_0 = 1.2 a_0 = 1.24 b_0 = 1.1 model = dpmm.NormInvGamma(mu_0, V_0, a_0, b_0) samples = model.sample(size=1000) mu_samples = np.array([s[0] for s in samples]) var_samples = np.array([s[1] for s in samples]) xlim = np.percentile(mu_samples, [2.5, 97.5]) f = plt.figure(figsize=(5, 3)) ax = f.add_subplot(111) ax.hist(mu_samples, bins=30, range=xlim, normed=True, alpha=0.5, color='k') ax.set_xlim(xlim) x = np.linspace(xlim[0], xlim[1], 100) y = model.marginal_mu(x) ax.plot(x, y, c='k', lw=3) ax.set_xlabel("$\mu$") ax.set_ylabel("Pr($\mu$)") f.tight_layout() ax.set_title("NormInvGamma") f.savefig("plots/NormInvGamma_mu_samples.png") xlim = np.percentile(var_samples, [0.0, 95.0]) f = plt.figure(figsize=(5, 3)) ax = f.add_subplot(111) ax.hist(var_samples, bins=30, range=xlim, normed=True, alpha=0.5, color='k') ax.set_xlim(xlim) x = np.linspace(xlim[0], xlim[1], 100) y = model.marginal_var(x) ax.plot(x, y, c='k', lw=3) ax.set_xlabel("$\sigma^2$") ax.set_ylabel("Pr($\sigma^2$)") f.tight_layout() ax.set_title("NormInvGamma") f.savefig("plots/NormInvGamma_var_samples.png") @skip @timer def test_NormInvWish(): mu_0 = np.r_[0.3, -0.2] d = len(mu_0) Lam_0 = np.linalg.inv(np.array([[2, 1.1], [1.1, 1.2]])) kappa_0 = 2.1 nu_0 = 8 model = dpmm.NormInvWish(mu_0, kappa_0, Lam_0, nu_0) # First check some numerics Nsample = 5000 samples = model.sample(size=Nsample) mu_samples = [s[0] for s in samples] cov_samples = [s[1] for s in samples] mean = np.mean(mu_samples, axis=0) std = np.std(mu_samples, axis=0)/np.sqrt(Nsample) print "NormInvWish mu_0 = {}".format(mu_0) print "NormInvWish E(mu) = {} +/- {}".format(mean, std) mean_cov = np.mean(cov_samples, axis=0) std_cov = np.std(cov_samples, axis=0)/np.sqrt(Nsample) print "NormInvWish (Lam_0)^(-1)/(nu_0-d-1) = \n{}".format(np.linalg.inv(Lam_0)/(nu_0-d-1)) print "NormInvWish E(Sig) = \n{}\n +/-\n{}".format(mean_cov, std_cov) # Now try some plots with different values of kappa_0 and nu_0 f = plt.figure(figsize=(7, 7)) for i, (kappa_0, nu_0) in enumerate(zip([0.4, 0.4, 6.5, 6.5], [10, 4, 10, 4])): model = dpmm.NormInvWish(mu_0, kappa_0, Lam_0, nu_0) samples = model.sample(size=25) ax = f.add_subplot(2, 2, i+1) for sample in samples: mu, Sig = sample plot_ellipse(mu, Sig, ax=ax, facecolor='none', edgecolor='k', alpha=0.2) plot_ellipse(mu_0, np.linalg.inv(Lam_0)/(nu_0-d-1), ax=ax, facecolor='none', edgecolor='r') ax.set_xlim(-3, 3) ax.set_ylim(-3, 3) ax.axvline(mu_0[0], c='r', alpha=0.1) ax.axhline(mu_0[1], c='r', alpha=0.1) ax.set_title(r"$\kappa_0$={}, $\nu_0$={}".format(kappa_0, nu_0)) print np.mean([s[1] for s in samples], axis=0) f.savefig("plots/NormInvWish_samples.png") @skip @timer def test_random_wish(): dof = 3 S = np.array([[1.0, 0.25], [0.25, 0.5]]) Nsamples = 5000 samples = random_wish(dof, S, size=Nsamples) mean = np.mean(samples, axis=0) std = np.std(samples, axis=0)/np.sqrt(Nsamples) print "E(wish) = \n{}".format(dof * S) print "<wish> = \n{}\n +/-\n{}".format(mean, std) @skip @timer def test_random_invwish(): dof = 6 d = 2 S = np.array([[1.0, 0.25], [0.25, 0.5]]) invS = np.linalg.inv(S) Nsamples = 5000 samples = random_invwish(dof, invS, size=Nsamples) mean = np.mean(samples, axis=0) std = np.std(samples, axis=0)/np.sqrt(Nsamples) print "E(invwish) = \n{}".format(S/(dof-d-1)) print "<invwish> = \n{}\n +/-\n{}".format(mean, std) @skip @timer def test_ellipse_plotter(): f = plt.figure(figsize=(7, 7)) for i, Sig in enumerate([np.array([[1.0, 0.0], [0.0, 0.25]]), np.array([[0.25, 0.0], [0.0, 1.0]]), np.array([[1.0, 0.8], [0.8, 1.0]]), np.array([[1.0, -0.8], [-0.8, 1.0]])]): ax = f.add_subplot(2, 2, i+1) ax.set_xlim(-1, 1) ax.set_ylim(-1, 1) plot_ellipse([0., 0.], Sig) ax.set_title("$\Sigma$={}".format(Sig)) f.tight_layout() f.savefig("plots/ellipse.png") if __name__ == "__main__": test_GaussianMeanKnownVariance() test_InvGamma() test_NormInvChi2() test_NormInvGamma() test_NormInvWish() test_random_wish() test_random_invwish() test_ellipse_plotter() ``` #### File: DP_SNe/tests/test_prior.py ```python import warnings import numpy as np from scipy.integrate import quad, dblquad, tplquad import dpmm from test_utils import timer @timer def test_GaussianMeanKnownVariance(): mu_0 = 0.15 sigsqr_0 = 1.2 sigsqr = 0.15 model = dpmm.GaussianMeanKnownVariance(mu_0, sigsqr_0, sigsqr) D = np.r_[1.0, 2.2, 1.1, -1.13] mus = np.r_[1.1, 2.0, 0.1] # Check prior density r = quad(model, -np.inf, np.inf) np.testing.assert_almost_equal(r[0], 1.0, 10, "GaussianMeanKnownVariance prior density does not integrate to 1.0") # Check prior predictive density r = quad(model.pred, -np.inf, np.inf) np.testing.assert_almost_equal( r[0], 1.0, 10, "GaussianMeanKnownVariance prior predictive density does not integrate to 1.0") # Check posterior density r = quad(model.post(D), -np.inf, np.inf) np.testing.assert_almost_equal( r[0], 1.0, 10, "GaussianMeanKnownVariance posterior density does not integrate to 1.0") # Check posterior predictive density r = quad(model.post(D).pred, -np.inf, np.inf) np.testing.assert_almost_equal( r[0], 1.0, 10, "GaussianMeanKnownVariance posterior predictive density does not integrate to 1.0") # Check that the likelihood integrates to 1. r = quad(lambda x: model.like1(x, mu=1.1), -np.inf, np.inf) np.testing.assert_almost_equal(r[0], 1.0, 10, "GaussianMeanKnownVariance likelihood does not integrate to 1.0") # # Check that evidence (of single data point) integrates to 1. # r = quad(lambda x: model.evidence(x), -np.inf, np.inf) # np.testing.assert_almost_equal(r[0], 1.0, 10, # "GaussianMeanKnownVariance evidence does not integrate to 1.0") # # Check evidence for two data points. # r = dblquad(lambda x, y: model.evidence([x, y]), # -np.inf, np.inf, # lambda x: -np.inf, lambda x: np.inf) # np.testing.assert_almost_equal(r[0], 1.0, 5, # "GaussianMeanKnownVariance evidence does not integrate to 1.0") # # Check that posterior = prior * likelihood / evidence # post = model.post(D) # post1 = [model(mu)*model.likelihood(mu, D=D) / model.evidence(D) for mu in mus] # post2 = [post(mu) for mu in mus] # np.testing.assert_array_almost_equal( # post1, post2, 10, # "GaussianMeanKnownVariance posterior != prior * likelihood / evidence") # Check that posterior is proportional to prior * likelihood # Add some more data points posts = [model.post(D)(mu) for mu in mus] posts2 = [model(mu)*model.likelihood(D, mu) for mu in mus] np.testing.assert_array_almost_equal( posts/posts[0], posts2/posts2[0], 5, "GaussianMeanKnownVariance posterior not proportional to prior * likelihood.") # Check that integrating out theta yields the prior predictive. xs = [0.1, 0.2, 0.3, 0.4] preds1 = np.array([quad(lambda theta: model(theta) * model.like1(x, theta), -np.inf, np.inf)[0] for x in xs]) preds2 = np.array([model.pred(x) for x in xs]) np.testing.assert_array_almost_equal( preds1/preds1[0], preds2/preds2[0], 5, "Prior predictive not proportional to integral of likelihood * prior") @timer def test_InvGamma(): alpha = 1.1 beta = 1.2 mu = 0.1 ig = dpmm.InvGamma(alpha, beta, mu) ig.sample() # Check prior density r = quad(ig, 0.0, np.inf) np.testing.assert_almost_equal(r[0], 1.0, 5, "InvGamma prior density does not integrate to 1.0") # Check prior predictive density r = quad(ig.pred, -np.inf, np.inf) np.testing.assert_almost_equal(r[0], 1.0, 10, "InvGamma prior predictive density does not integrate to 1.0") # Check posterior density D = [1.0, 2.0, 3.0] r = quad(ig.post(D), 0.0, np.inf) np.testing.assert_almost_equal(r[0], 1.0, 7, "InvGamma posterior density does not integrate to 1.0") # Check posterior predictive density r = quad(ig.post(D).pred, -np.inf, np.inf) np.testing.assert_almost_equal( r[0], 1.0, 10, "InvGamma posterior predictive density does not integrate to 1.0") # Check that the likelihood integrates to 1. r = quad(lambda x: ig.like1(x, var=2.1), -np.inf, np.inf) np.testing.assert_almost_equal(r[0], 1.0, 10, "InvGamma likelihood does not integrate to 1.0") # Check that posterior is proportional to prior * likelihood # Add some more data points D = np.array([1.0, 2.0, 3.0, 2.2, 2.3, 1.2]) vars_ = [0.7, 1.1, 1.2, 1.5] posts = [ig.post(D)(var) for var in vars_] posts2 = [ig(var)*ig.likelihood(D, var) for var in vars_] np.testing.assert_array_almost_equal( posts/posts[0], posts2/posts2[0], 5, "InvGamma posterior not proportional to prior * likelihood.") # Check mean and variance mean = 1./beta/(alpha-1.0) np.testing.assert_almost_equal(quad(lambda x: ig(x)*x, 0.0, np.inf)[0], mean, 10, "InvGamma has wrong mean.") var = beta**(-2)/(alpha-1)**2/(alpha-2) with warnings.catch_warnings(): warnings.simplefilter('ignore') np.testing.assert_almost_equal(quad(lambda x: ig(x)*(x-mean)**2, 0.0, np.inf)[0], var, 5, "InvGamma has wrong variance.") # Check that integrating out theta yields the prior predictive. xs = [0.1, 0.2, 0.3, 0.4] preds1 = np.array([quad(lambda theta: ig(theta) * ig.like1(x, theta), 0, np.inf)[0] for x in xs]) preds2 = np.array([ig.pred(x) for x in xs]) np.testing.assert_array_almost_equal( preds1/preds1[0], preds2/preds2[0], 5, "Prior predictive not proportional to integral of likelihood * prior") @timer def test_InvGamma2D(full=False): alpha = 1.1 beta = 1.2 mu = np.r_[0.1, 0.2] ig2d = dpmm.InvGamma2D(alpha, beta, mu) ig2d.sample() # Check prior density r = quad(ig2d, 0.0, np.inf) np.testing.assert_almost_equal( r[0], 1.0, 5, "InvGamma2D prior density does not integrate to 1.0") if __name__ == '__main__' and full: # Check prior predictive density r = dblquad(lambda x, y: ig2d.pred(np.r_[x, y]), -np.inf, np.inf, lambda x: -np.inf, lambda x: np.inf) np.testing.assert_almost_equal( r[0], 1.0, 5, "InvGamma2D prior predictive density does not integrate to 1.0") # Check posterior density D = np.array([[0.1, 0.2], [0.2, 0.3]]) r = quad(ig2d.post(D), 0.0, np.inf) np.testing.assert_almost_equal(r[0], 1.0, 7, "InvGamma2D posterior density does not integrate to 1.0") # Check posterior predictive density r = dblquad(lambda x, y: ig2d.post(D).pred(np.r_[x, y]), -np.inf, np.inf, lambda x: -np.inf, lambda x: np.inf) np.testing.assert_almost_equal( r[0], 1.0, 5, "InvGamma2D posterior predictive density does not integrate to 1.0") # Check that the likelihood integrates to 1. r = dblquad(lambda x, y: ig2d.like1(np.r_[x, y], var=2.1), -np.inf, np.inf, lambda x: -np.inf, lambda x: np.inf) np.testing.assert_almost_equal(r[0], 1.0, 10, "InvGamma2D likelihood does not integrate to 1.0") # Check that posterior is proportional to prior * likelihood vars_ = [0.7, 1.1, 1.2, 1.5] posts = np.array([ig2d.post(D)(var) for var in vars_]) posts2 = np.array([ig2d(var)*ig2d.likelihood(D, var) for var in vars_]) np.testing.assert_array_almost_equal( posts/posts[0], posts2/posts2[0], 5, "InvGamma2D posterior not proportional to prior * likelihood.") # Check mean and variance mean = 1./beta/(alpha-1.0) np.testing.assert_almost_equal(quad(lambda x: ig2d(x)*x, 0.0, np.inf)[0], mean, 10, "InvGamma2D has wrong mean.") var = beta**(-2)/(alpha-1)**2/(alpha-2) with warnings.catch_warnings(): warnings.simplefilter('ignore') np.testing.assert_almost_equal(quad(lambda x: ig2d(x)*(x-mean)**2, 0.0, np.inf)[0], var, 5, "InvGamma2D has wrong variance.") # Check that integrating out theta yields the prior predictive. xs = [np.r_[0.1, 0.2], np.r_[0.2, 0.3], np.r_[0.1, 0.3]] preds1 = np.array([quad(lambda theta: ig2d(theta) * ig2d.like1(x, theta), 0, np.inf)[0] for x in xs]) preds2 = np.array([ig2d.pred(x) for x in xs]) np.testing.assert_array_almost_equal( preds1/preds1[0], preds2/preds2[0], 5, "Prior predictive not proportional to integral of likelihood * prior") @timer def test_NormInvChi2(): mu_0 = -0.1 sigsqr_0 = 1.1 kappa_0 = 2 nu_0 = 3 nix = dpmm.NormInvChi2(mu_0, kappa_0, sigsqr_0, nu_0) D = np.r_[1.0, 2.0, 3.0] mus = np.r_[1.1, 1.2, 1.3] vars_ = np.r_[1.2, 3.2, 2.3] # Check prior density with warnings.catch_warnings(): warnings.simplefilter('ignore') r = dblquad(nix, 0.0, np.inf, lambda x: -np.inf, lambda x: np.inf) np.testing.assert_almost_equal(r[0], 1.0, 5, "NormInvChi2 prior density does not integrate to 1.0") # Check prior predictive density r = quad(nix.pred, -np.inf, np.inf) np.testing.assert_almost_equal(r[0], 1.0, 10, "NormInvChi2 prior predictive density does not integrate to 1.0") # Check posterior density r = dblquad(nix.post(D), 0.0, np.inf, lambda x: -np.inf, lambda x: np.inf) np.testing.assert_almost_equal(r[0], 1.0, 7, "NormInvChi2 posterior density does not integrate to 1.0") # Check posterior predictive density r = quad(nix.post(D).pred, -np.inf, np.inf) np.testing.assert_almost_equal( r[0], 1.0, 10, "NormInvChi2 posterior predictive density does not integrate to 1.0") # Check that the likelihood integrates to 1. r = quad(lambda x: nix.like1(x, 1.1, 2.1), -np.inf, np.inf) np.testing.assert_almost_equal(r[0], 1.0, 10, "NormInvChi2 likelihood does not integrate to 1.0") # Check that evidence (of single data point) integrates to 1. r = quad(lambda x: nix.evidence(x), -np.inf, np.inf) np.testing.assert_almost_equal(r[0], 1.0, 10, "NormInvChi2 evidence does not integrate to 1.0") # Check evidence for two data points. r = dblquad(lambda x, y: nix.evidence([x, y]), -np.inf, np.inf, lambda x: -np.inf, lambda x: np.inf) np.testing.assert_almost_equal(r[0], 1.0, 5, "NormInvChi2 evidence does not integrate to 1.0") # Check that posterior = prior * likelihood / evidence post = nix.post(D) post1 = [nix(mu, var)*nix.likelihood(D, mu, var) / nix.evidence(D) for mu, var in zip(mus, vars_)] post2 = [post(mu, var) for mu, var in zip(mus, vars_)] np.testing.assert_array_almost_equal(post1, post2, 10, "NormInvChi2 posterior != prior * likelihood / evidence") # Test that marginal variance probability method matches integrated result. Pr_var1 = [nix.marginal_var(var) for var in vars_] Pr_var2 = [quad(lambda mu: nix(mu, var), -np.inf, np.inf)[0] for var in vars_] np.testing.assert_array_almost_equal( Pr_var1, Pr_var2, 10, "Pr(var) method calculation does not match integrated result.") # Test that marginal mean probability method matches integrated result. Pr_mu1 = [nix.marginal_mu(mu) for mu in mus] Pr_mu2 = [quad(lambda var: nix(mu, var), 0.0, np.inf)[0] for mu in mus] np.testing.assert_array_almost_equal( Pr_mu1, Pr_mu2, 10, "Pr(mu) method calculation does not match integrated result.") # Check that integrating out theta yields the prior predictive. xs = [0.1, 0.2, 0.3, 0.4] preds1 = np.array([dblquad(lambda mu, var: nix(mu, var) * nix.like1(x, mu, var), 0, np.inf, lambda var: -np.inf, lambda var: np.inf)[0] for x in xs]) preds2 = np.array([nix.pred(x) for x in xs]) np.testing.assert_array_almost_equal( preds1/preds1[0], preds2/preds2[0], 5, "Prior predictive not proportional to integral of likelihood * prior") @timer def test_NormInvGamma(): m_0 = -0.1 V_0 = 1.1 a_0 = 2.0 b_0 = 3.0 nig = dpmm.NormInvGamma(m_0, V_0, a_0, b_0) D = np.r_[1.0, 2.0, 3.0] mus = np.r_[1.1, 1.2, 1.3] vars_ = np.r_[1.2, 3.2, 2.3] # Check prior density with warnings.catch_warnings(): warnings.simplefilter('ignore') r = dblquad(nig, 0.0, np.inf, lambda x: -np.inf, lambda x: np.inf) np.testing.assert_almost_equal(r[0], 1.0, 5, "NormInvGamma prior density does not integrate to 1.0") # Check prior predictive density r = quad(nig.pred, -np.inf, np.inf) np.testing.assert_almost_equal( r[0], 1.0, 10, "NormInvGamma prior predictive density does not integrate to 1.0") # Check posterior density r = dblquad(nig.post(D), 0.0, np.inf, lambda x: -np.inf, lambda x: np.inf) np.testing.assert_almost_equal(r[0], 1.0, 7, "NormInvGamma posterior density does not integrate to 1.0") # Check posterior predictive density r = quad(nig.post(D).pred, -np.inf, np.inf) np.testing.assert_almost_equal( r[0], 1.0, 10, "NormInvGamma posterior predictive density does not integrate to 1.0") # Check that the likelihood integrates to 1. r = quad(lambda x: nig.like1(x, 1.1, 2.1), -np.inf, np.inf) np.testing.assert_almost_equal(r[0], 1.0, 10, "NormInvGamma likelihood does not integrate to 1.0") # Check that evidence (of single data point) integrates to 1. r = quad(lambda x: nig.evidence(x), -np.inf, np.inf) np.testing.assert_almost_equal(r[0], 1.0, 10, "NormInvGamma evidence does not integrate to 1.0") # Check evidence for two data points. r = dblquad(lambda x, y: nig.evidence([x, y]), -np.inf, np.inf, lambda x: -np.inf, lambda x: np.inf) np.testing.assert_almost_equal(r[0], 1.0, 5, "NormInvGamma evidence does not integrate to 1.0") # Check that posterior = prior * likelihood / evidence post = nig.post(D) post1 = [nig(mu, var)*nig.likelihood(D, mu, var) / nig.evidence(D) for mu, var in zip(mus, vars_)] post2 = [post(mu, var) for mu, var in zip(mus, vars_)] np.testing.assert_array_almost_equal(post1, post2, 10, "NormInvGamma posterior != prior * likelihood / evidence") # Test that marginal variance probability method matches integrated result. Pr_var1 = [nig.marginal_var(var) for var in vars_] Pr_var2 = [quad(lambda mu: nig(mu, var), -np.inf, np.inf)[0] for var in vars_] np.testing.assert_array_almost_equal( Pr_var1, Pr_var2, 10, "Pr(var) method calculation does not match integrated result.") # Test that marginal mean probability method matches integrated result. Pr_mu1 = [nig.marginal_mu(mu) for mu in mus] Pr_mu2 = [quad(lambda var: nig(mu, var), 0.0, np.inf)[0] for mu in mus] np.testing.assert_array_almost_equal( Pr_mu1, Pr_mu2, 10, "Pr(mu) method calculation does not match integrated result.") # Check that integrating out theta yields the prior predictive. xs = [0.1, 0.2, 0.3, 0.4] preds1 = np.array([dblquad(lambda mu, var: nig(mu, var) * nig.like1(x, mu, var), 0, np.inf, lambda var: -np.inf, lambda var: np.inf)[0] for x in xs]) preds2 = np.array([nig.pred(x) for x in xs]) np.testing.assert_array_almost_equal( preds1/preds1[0], preds2/preds2[0], 5, "Prior predictive not proportional to integral of likelihood * prior") @timer def test_NormInvChi2_eq_NormInvGamma(): mu_0 = 0.1 sigsqr_0 = 1.1 kappa_0 = 2 nu_0 = 3 m_0 = mu_0 V_0 = 1./kappa_0 a_0 = nu_0/2.0 b_0 = nu_0*sigsqr_0/2.0 model1 = dpmm.NormInvChi2(mu_0, kappa_0, sigsqr_0, nu_0) model2 = dpmm.NormInvGamma(m_0, V_0, a_0, b_0) mus = np.linspace(-2.2, 2.2, 5) vars_ = np.linspace(1.0, 4.0, 5) xs = np.arange(-1.1, 1.1, 5) for x in xs: np.testing.assert_equal( model1.pred(x), model2.pred(x), "NormInvChi2 and NormInvGamma prior predictive densities don't agree at x = ".format(x)) np.testing.assert_equal( model1.post(x).pred(x), model2.post(x).pred(x), "NormInvChi2 and NormInvGamma posterior " + "predictive densities don't agree at x = {}".format(x)) for mu, var in zip(mus, vars_): np.testing.assert_almost_equal( model1(mu, var), model2(mu, var), 10, "NormInvChi2 and NormInvGamma prior densities " + "don't agree at mu, var = {}, {}".format(mu, var)) post1 = model1.post(xs) post2 = model2.post(xs) for mu, var in zip(mus, vars_): np.testing.assert_almost_equal( post1(mu, var), post2(mu, var), 10, "NormInvChi2 and NormInvGamma posterior densities " + "don't agree at mu, var = {}, {}".format(mu, var)) for mu, var, x in zip(mus, vars_, xs): np.testing.assert_almost_equal( model1.like1(x, mu, var), model2.like1(x, mu, var), 10, "NormInvChi2 and NormInvGamma likelihoods don't " + "agree at mu, var, x = {}, {}, {}".format(mu, var, x)) np.testing.assert_almost_equal( model1.evidence(xs), model2.evidence(xs), 10, "NormInvChi2 and NormInvGamma evidences don't agree") @timer def test_NormInvWish(full=False): mu_0 = np.r_[0.2, 0.1] kappa_0 = 2.0 Lam_0 = np.eye(2)+0.1 nu_0 = 3 # Create a Normal-Inverse-Wishart prior. niw = dpmm.NormInvWish(mu_0, kappa_0, Lam_0, nu_0) # Check that we can draw samples from NormInvWish. niw.sample() niw.sample(size=10) # Check that we can evaluate a likelihood given data. theta = np.zeros(1, dtype=niw.model_dtype) theta['mu'] = np.r_[1.0, 1.0] theta['Sig'] = np.eye(2)+0.12 D = np.array([[0.1, 0.2], [0.2, 0.3], [0.1, 0.2], [0.4, 0.3]]) niw.likelihood(D, theta) # Evaluate prior niw(theta) if __name__ == "__main__" and full: # Check prior predictive density with warnings.catch_warnings(): warnings.simplefilter('ignore') r = dblquad(lambda x, y: niw.pred(np.r_[x, y]), -np.inf, np.inf, lambda x: -np.inf, lambda x: np.inf) np.testing.assert_almost_equal(r[0], 1.0, 5, "NormInvWish prior predictive density does not integrate to 1.0") # Check posterior predictive density r = dblquad(lambda x, y: niw.post(D).pred(np.r_[x, y]), -np.inf, np.inf, lambda x: -np.inf, lambda x: np.inf) np.testing.assert_almost_equal( r[0], 1.0, 5, "NormInvWish posterior predictive density does not integrate to 1.0") # Check that the likelihood of a single point in 2 dimensions integrates to 1. r = dblquad(lambda x, y: niw.like1(np.r_[x, y], np.r_[1.2, 1.1], np.eye(2)+0.12), -np.inf, np.inf, lambda x: -np.inf, lambda x: np.inf) np.testing.assert_almost_equal(r[0], 1.0, 10, "NormInvWish likelihood does not integrate to 1.0") if __name__ == "__main__" and full: # Check that likelihood of a single point in 3 dimensions integrates to 1. niw3 = dpmm.NormInvWish(np.r_[1, 1, 1], 2.0, np.eye(3), 3) r = tplquad(lambda x, y, z: niw3.like1(np.r_[x, y, z], np.r_[0.1, 0.2, 0.3], np.eye(3)+0.1), -np.inf, np.inf, lambda x: -np.inf, lambda x: np.inf, lambda x, y: -np.inf, lambda x, y: np.inf) np.testing.assert_almost_equal(r[0], 1.0, 8, "NormInvWish likelihood does not integrate to 1.0") # Check that posterior is proportional to prior * likelihood D = np.array([[0.1, 0.2], [0.2, 0.3], [0.1, 0.2], [0.4, 0.3]]) mus = [np.r_[2.1, 1.1], np.r_[0.9, 1.2], np.r_[0.9, 1.1]] Sigs = [np.eye(2)*1.5, np.eye(2)*0.7, np.array([[1.1, -0.1], [-0.1, 1.2]])] posts = [niw.post(D)(mu, Sig) for mu, Sig in zip(mus, Sigs)] posts2 = [niw(mu, Sig)*niw.likelihood(D, mu, Sig) for mu, Sig, in zip(mus, Sigs)] np.testing.assert_array_almost_equal( posts/posts[0], posts2/posts2[0], 5, "NormInvWish posterior not proportional to prior * likelihood.") # Check that posterior = prior * likelihood / evidence mus = [np.r_[1.1, 1.1], np.r_[1.1, 1.2], np.r_[0.7, 1.3]] Sigs = [np.eye(2)*0.2, np.eye(2)*0.1, np.array([[2.1, -0.1], [-0.1, 2.2]])] post = niw.post(D) post1 = [niw(mu, Sig) * niw.likelihood(D, mu, Sig) / niw.evidence(D) for mu, Sig in zip(mus, Sigs)] post2 = [post(mu, Sig) for mu, Sig in zip(mus, Sigs)] np.testing.assert_array_almost_equal(post1, post2, 10, "NormInvWish posterior != prior * likelihood / evidence") # Would like to check that pred(x) == int prior(theta) * like1(x, theta) d(theta), but I don't # know how to integrate over all covariance matrices. Plus, integrating over a 2D covariance # matrix plus a 2D mean is a 5 dimensional integral, which sounds nasty to do. if __name__ == "__main__": from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument('--full', action='store_true', help="Run full test suite (slow).") args = parser.parse_args() test_GaussianMeanKnownVariance() test_InvGamma() test_InvGamma2D() test_NormInvChi2() test_NormInvGamma() test_NormInvChi2_eq_NormInvGamma() test_NormInvWish(args.full) ``` #### File: DP_SNe/tests/test_utils.py ```python def timer(f): import functools @functools.wraps(f) def f2(*args, **kwargs): import time import inspect t0 = time.time() result = f(*args, **kwargs) t1 = time.time() fname = inspect.stack()[1][4][0].split('(')[0].strip() print 'time for %s = %.2f' % (fname, t1-t0) return result return f2 ```
{ "source": "jmeyers314/jtrace", "score": 4 }
#### File: jtrace/batoid/coordSys.py ```python import numpy as np def RotX(th): sth, cth = np.sin(th), np.cos(th) return np.array([[1,0,0],[0,cth,-sth],[0,sth,cth]]) def RotY(th): sth, cth = np.sin(th), np.cos(th) return np.array([[cth,0,sth],[0,1,0],[-sth,0,cth]]) def RotZ(th): sth, cth = np.sin(th), np.cos(th) return np.array([[cth,-sth,0],[sth,cth,0],[0,0,1]]) class CoordSys: """A coordinate system against which to measure surfaces or rays. Coordinate systems consist of an origin and a rotation. The ``origin`` attribute specifies where in 3D space the current coordinate system's origin lands in the global coordinate system. The rotation ``rot`` specifies the 3D rotation matrix to apply to the global coordinate axes to yield the axes of the this coordinate system. Parameters ---------- origin : ndarray of float, shape (3,) Origin of coordinate system in global coordinates. rot : ndarray of float, shape (3, 3) Rotation matrix taking global axes into current system axes. """ def __init__(self, origin=None, rot=None): if origin is None: origin = np.zeros(3, dtype=float) if rot is None: rot = np.eye(3, dtype=float) self.origin = np.array(origin) self.rot = np.array(rot) @property def xhat(self): """ndarray of float, shape (3,): Orientation of local x vector in global coordinates. """ return self.rot[:, 0] @property def yhat(self): """ndarray of float, shape (3,): Orientation of local y vector in global coordinates. """ return self.rot[:, 1] @property def zhat(self): """ndarray of float, shape (3,): Orientation of local z vector in global coordinates. """ return self.rot[:, 2] def shiftGlobal(self, dr): """Return new CoordSys with origin shifted along global axes. Parameters ---------- dr : ndarray of float, shape (3,) Amount to shift in meters. Returns ------- CoordSys """ return CoordSys(self.origin+dr, self.rot) def shiftLocal(self, dr): """Return new CoordSys with origin shifted along local axes. Parameters ---------- dr : ndarray of float, shape (3,) Amount to shift in meters. Returns ------- CoordSys """ # Rotate the shift into global coordinates, then do the shift globally return self.shiftGlobal(self.rot@dr) def rotateGlobal(self, rot, rotCenter=(0,0,0), coordSys=None): """Return new CoordSys rotated with respect to global axes. Parameters ---------- rot : ndarray of float, shape (3, 3) Rotation matrix to apply. rotCenter : ndarray of float, shape (3,) Point about which to rotate. coordSys : CoordSys Coordinate system in which rotCenter is specified. Returns ------- CoordSys """ if coordSys is None: coordSys = CoordSys() # Find rot center in global coordinates globalRotCenter = coordSys.rot@rotCenter + coordSys.origin # Then rotate about this center return CoordSys( rot@(self.origin-globalRotCenter)+globalRotCenter, [email protected] ) def rotateLocal(self, rot, rotCenter=(0,0,0), coordSys=None): """Return new CoordSys rotated with respect to local axes. Parameters ---------- rot : ndarray of float, shape (3, 3) Rotation matrix to apply. rotCenter : ndarray of float, shape (3,) Point about which to rotate. coordSys : CoordSys Coordinate system in which rotCenter is specified. Returns ------- CoordSys """ if coordSys is None: coordSys = self # Find rot center in global coordinates globalRotCenter = coordSys.rot@rotCenter + coordSys.origin # first rotate rot into global coords: (self.rot rot self.rot.T), # then apply that: (self.rot rot self.rot.T) self.rot = self.rot rot rTmp = self.rot@rot return CoordSys( [email protected]@(self.origin-globalRotCenter)+globalRotCenter, rTmp ) def __getstate__(self): return self.origin, self.rot def __setstate__(self, d): self.origin, self.rot = d def __eq__(self, rhs): if not isinstance(rhs, CoordSys): return False return ( np.array_equal(self.origin, rhs.origin) and np.array_equal(self.rot, rhs.rot) ) def __ne__(self, rhs): return not (self == rhs) def __hash__(self): return hash(( "batoid.CoordSys", tuple(self.origin.tolist()), tuple(self.rot.ravel().tolist()) )) def copy(self): return CoordSys(self.origin, self.rot) def __repr__(self): rotstr = np.array2string(self.rot, separator=', ').replace('\n', '') return f"CoordSys({self.origin!r}, array({rotstr}))" ``` #### File: jtrace/batoid/coordTransform.py ```python from . import _batoid from .coordSys import CoordSys import numpy as np class CoordTransform: """Transformation between two coordinate systems. Parameters ---------- fromSys : CoordSys Origin coordinate systems. toSys : CoordSys Destination coordinate systems. """ def __init__(self, fromSys, toSys): self.fromSys = fromSys self.toSys = toSys self.dr = fromSys.rot.T@(toSys.origin - fromSys.origin) self.drot = [email protected] def __getstate__(self): return self.fromSys, self.toSys def __setstate__(self, d): self.__init__(*d) def __eq__(self, rhs): if not isinstance(rhs, CoordTransform): return False return ( self.fromSys == rhs.fromSys and self.toSys == rhs.toSys ) def __ne__(self, rhs): return not (self == rhs) def applyForward(self, rv): """Apply forward-direction transformation to RayVector. Parameters ---------- rv : RayVector Rays to transform. Returns ------- transformed : RayVector Reference to input RayVector transformed in place. """ from .trace import applyForwardTransform return applyForwardTransform(self, rv) def applyReverse(self, rv): """Apply reverse-direction transformation to RayVector. Parameters ---------- rv : RayVector Rays to transform. Returns ------- transformed : RayVector Reference to input RayVector transformed in place. """ from .trace import applyReverseTransform return applyReverseTransform(self, rv) def applyForwardArray(self, x, y, z): """Apply forward-direction transformation to ndarrays. Parameters ---------- x, y, z : ndarray Coordinates to transform. Returns ------- xyz : ndarray Transformed coordinates. Notes ----- Unlike applyForward, this method does not transform in-place, but returns a newly created ndarray. """ r = np.array([x, y, z], dtype=float).T r -= self.dr return [email protected] def applyReverseArray(self, x, y, z): """Apply reverse-direction transformation to ndarrays. Parameters ---------- x, y, z : ndarray Coordinates to transform. Returns ------- xyz : ndarray Transformed coordinates. Notes ----- Unlike applyReverse, this method does not transform in-place, but returns a newly created ndarray. """ r = np.array([x, y, z], dtype=float) r = (self.drot@r).T r += self.dr return r.T def __repr__(self): return f"CoordTransform({self.fromSys!r}, {self.toSys!r})" def __hash__(self): return hash(("CoordTransform", self.fromSys, self.toSys)) ``` #### File: jtrace/batoid/plotUtils.py ```python from matplotlib.figure import Figure from matplotlib.gridspec import GridSpec def zernikePyramid(xs, ys, zs, figsize=(13, 8), vmin=-1, vmax=1, vdim=True, s=5, title=None, filename=None, fig=None, **kwargs): """Make a multi-zernike plot in a pyramid shape. Subplots show individual Zernikes over a range of x and y (presumably a field of view). Parameters ---------- xs, ys: array of float Field angles (or other spatial coordinate over which to plot Zernikes) zs: array of float, shape (jmax, xymax) Zernike values. First index labels the particular Zernike coefficient, second index labels spatial coordinate. First index implicitly starts at j=4 defocus. """ import warnings import galsim jmax = zs.shape[0]+3 nmax, _ = galsim.zernike.noll_to_zern(jmax) nrow = nmax - 1 ncol = nrow + 2 gridspec = GridSpec(nrow, ncol) def shift(pos, amt): return [pos.x0+amt, pos.y0, pos.width, pos.height] def shiftAxes(axes, amt): for ax in axes: ax.set_position(shift(ax.get_position(), amt)) if fig is None: fig = Figure(figsize=figsize, **kwargs) axes = {} shiftLeft = [] shiftRight = [] for j in range(4, jmax+1): n, m = galsim.zernike.noll_to_zern(j) if n%2 == 0: row, col = n-2, m//2 + ncol//2 else: row, col = n-2, (m-1)//2 + ncol//2 subplotspec = gridspec.new_subplotspec((row, col)) axes[j] = fig.add_subplot(subplotspec) axes[j].set_aspect('equal') if nrow%2==0 and n%2==0: shiftLeft.append(axes[j]) if nrow%2==1 and n%2==1: shiftRight.append(axes[j]) cbar = {} for j, ax in axes.items(): n, _ = galsim.zernike.noll_to_zern(j) ax.set_title("Z{}".format(j)) if vdim: _vmin = vmin/n _vmax = vmax/n else: _vmin = vmin _vmax = vmax scat = ax.scatter( xs, ys, c=zs[j-4], s=s, linewidths=0.5, cmap='Spectral_r', rasterized=True, vmin=_vmin, vmax=_vmax ) cbar[j] = fig.colorbar(scat, ax=ax) ax.set_xticks([]) ax.set_yticks([]) if title: fig.suptitle(title, x=0.1) # Mistakenly raises MatplotlibDeprecationWarning. # See https://github.com/matplotlib/matplotlib/issues/19486 with warnings.catch_warnings(): warnings.simplefilter("ignore") fig.tight_layout() amt = 0.5*(axes[4].get_position().x0 - axes[5].get_position().x0) shiftAxes(shiftLeft, -amt) shiftAxes(shiftRight, amt) shiftAxes([cbar[j].ax for j in cbar.keys() if axes[j] in shiftLeft], -amt) shiftAxes([cbar[j].ax for j in cbar.keys() if axes[j] in shiftRight], amt) if filename: fig.savefig(filename) return fig ``` #### File: jtrace/batoid/utils.py ```python import warnings import numpy as np def normalized(*args): if len(args) == 1: args = np.array(*args) return args/np.linalg.norm(args) def bilinear_fit(ux, uy, kx, ky): a = np.empty((len(ux), 3), dtype=float) a[:,0] = 1 a[:,1] = ux a[:,2] = uy b = np.empty((len(ux), 2), dtype=float) b[:,0] = kx b[:,1] = ky x, _, _, _ = np.linalg.lstsq(a, b, rcond=-1) return x def gnomonicToDirCos(u, v): """Convert gnomonic tangent plane projection u,v to direction cosines. Parameters ---------- u, v : float Gnomonic tangent plane coordinates in radians. Returns ------- alpha, beta, gamma : float Direction cosines (unit vector projected onto x, y, z in order) Notes ----- The tangent plane reference is at (u,v) = (0,0), which corresponds to (alpha, beta, gamma) = (0, 0, -1) (a ray coming directly from above). The orientation is such that vx (vy) is positive when u (v) is positive. """ gamma = 1/np.sqrt(1.0 + u*u + v*v) alpha = u*gamma beta = v*gamma return alpha, beta, -gamma def dirCosToGnomonic(alpha, beta, gamma): """Convert direction cosines to gnomonic tangent plane projection. Parameters ---------- alpha, beta, gamma : float Direction cosines (unit vector projected onto x, y, z in order) Returns ------- u, v : float Gnomonic tangent plane coordinates in radians. Notes ----- The tangent plane reference is at (u,v) = (0,0), which corresponds to (alpha, beta, gamma) = (0, 0, -1) (a ray coming directly from above). The orientation is such that vx (vy) is positive when u (v) is positive. """ u = -alpha / gamma v = -beta / gamma return u, v def postelToDirCos(u, v): """Convert Postel azimuthal equidistant tangent plane projection u,v to direction cosines. Parameters ---------- u, v : float Postel tangent plane coordinates in radians. Returns ------- alpha, beta, gamma : float Direction cosines (unit vector projected onto x, y, z in order) Notes ----- The tangent plane reference is at (u,v) = (0,0), which corresponds to (alpha, beta, gamma) = (0, 0, -1) (a ray coming directly from above). The orientation is such that vx (vy) is positive when u (v) is positive. """ rho = np.sqrt(u*u + v*v) wZero = (rho == 0.0) try: if wZero: return 0.0, 0.0, -1.0 except ValueError: pass srho = np.sin(rho) with warnings.catch_warnings(): warnings.simplefilter("ignore") alpha = u/rho*srho beta = v/rho*srho gamma = -np.cos(rho) if np.any(wZero): alpha[wZero] = 0.0 beta[wZero] = 0.0 gamma[wZero] = -1.0 return alpha, beta, gamma def dirCosToPostel(alpha, beta, gamma): """Convert direction cosines to Postel azimuthal equidistant tangent plane projection. Parameters ---------- alpha, beta, gamma : float Direction cosines (unit vector projected onto x, y, z in order) Returns ------- u, v : float Postel tangent plane coordinates in radians. Notes ----- The tangent plane reference is at (u,v) = (0,0), which corresponds to (alpha, beta, gamma) = (0, 0, -1) (a ray coming directly from above). The orientation is such that vx (vy) is positive when u (v) is positive. """ wZero = (gamma == -1) try: if wZero: return 0.0, 0.0 except ValueError: pass rho = np.arccos(-gamma) srho = np.sin(rho) with warnings.catch_warnings(): warnings.simplefilter("ignore") u = alpha*rho/srho v = beta*rho/srho if np.any(wZero): u[wZero] = 0.0 v[wZero] = 0.0 return u, v def zemaxToDirCos(u, v): """Convert Zemax field angles u,v to direction cosines. Parameters ---------- u, v : float Zemax field angles in radians. Returns ------- alpha, beta, gamma : float Direction cosines (unit vector projected onto x, y, z in order) Notes ----- The tangent plane reference is at (u,v) = (0,0), which corresponds to (alpha, beta, gamma) = (0, 0, -1) (a ray coming directly from above). The orientation is such that vx (vy) is positive when u (v) is positive. The Zemax field angle convention is not rotationally invariant. The z-direction cosine for (u, v) = (0, 1) does not equal the z-direction cosine for (u, v) = (0.6, 0.8). """ tanu = np.tan(u) tanv = np.tan(v) norm = np.sqrt(1 + tanu*tanu + tanv*tanv) return tanu/norm, tanv/norm, -1/norm def dirCosToZemax(alpha, beta, gamma): """Convert direction cosines to Postel azimuthal equidistant tangent plane projection. Parameters ---------- alpha, beta, gamma : float Direction cosines (unit vector projected onto x, y, z in order) Returns ------- u, v : float Postel tangent plane coordinates in radians. Notes ----- The tangent plane reference is at (u,v) = (0,0), which corresponds to (alpha, beta, gamma) = (0, 0, -1) (a ray coming directly from above). The orientation is such that vx (vy) is positive when u (v) is positive. The Zemax field angle convention is not rotationally invariant. The z-direction cosine for (u, v) = (0, 1) does not equal the z-direction cosine for (u, v) = (0.6, 0.8). """ return np.arctan(-alpha/gamma), np.arctan(-beta/gamma) def stereographicToDirCos(u, v): """Convert stereographic tangent plane projection u,v to direction cosines. Parameters ---------- u, v : float Stereographic tangent plane coordinates in radians. Returns ------- alpha, beta, gamma : float Direction cosines (unit vector projected onto x, y, z in order) Notes ----- The tangent plane reference is at (u,v) = (0,0), which corresponds to (alpha, beta, gamma) = (0, 0, -1) (a ray coming directly from above). The orientation is such that vx (vy) is positive when u (v) is positive. """ rho = np.sqrt(u*u + v*v) wZero = (rho == 0.0) try: if wZero: return 0.0, 0.0, -1.0 except ValueError: pass theta = 2*np.arctan(rho/2) stheta = np.sin(theta) with warnings.catch_warnings(): warnings.simplefilter("ignore") alpha = u/rho*stheta beta = v/rho*stheta gamma = -np.cos(theta) if np.any(wZero): alpha[wZero] = 0.0 beta[wZero] = 0.0 gamma[wZero] = -1.0 return alpha, beta, gamma def dirCosToStereographic(alpha, beta, gamma): """Convert direction cosines to stereographic tangent plane projection. Parameters ---------- alpha, beta, gamma : float Direction cosines (unit vector projected onto x, y, z in order) Returns ------- u, v : float Stereographic tangent plane coordinates in radians. Notes ----- The tangent plane reference is at (u,v) = (0,0), which corresponds to (alpha, beta, gamma) = (0, 0, -1) (a ray coming directly from above). The orientation is such that vx (vy) is positive when u (v) is positive. """ wZero = (gamma == -1) try: if wZero: return 0.0, 0.0 except ValueError: pass theta = np.arccos(-gamma) rho = 2*np.tan(theta/2) stheta = np.sin(theta) with warnings.catch_warnings(): warnings.simplefilter("ignore") u = alpha*rho/stheta v = beta*rho/stheta if np.any(wZero): u[wZero] = 0.0 v[wZero] = 0.0 return u, v def orthographicToDirCos(u, v): """Convert orthographic tangent plane projection u,v to direction cosines. Parameters ---------- u, v : float Orthographic tangent plane coordinates in radians. Returns ------- alpha, beta, gamma : float Direction cosines (unit vector projected onto x, y, z in order) Notes ----- The tangent plane reference is at (u,v) = (0,0), which corresponds to (alpha, beta, gamma) = (0, 0, -1) (a ray coming directly from above). The orientation is such that vx (vy) is positive when u (v) is positive. """ rho = np.sqrt(u*u + v*v) theta = np.arcsin(rho) gamma = np.cos(theta) alpha = u beta = v return alpha, beta, -gamma def dirCosToOrthographic(alpha, beta, gamma): """Convert direction cosines to orthographic tangent plane projection. Parameters ---------- alpha, beta, gamma : float Direction cosines (unit vector projected onto x, y, z in order) Returns ------- u, v : float Orthographic tangent plane coordinates in radians. Notes ----- The tangent plane reference is at (u,v) = (0,0), which corresponds to (alpha, beta, gamma) = (0, 0, -1) (a ray coming directly from above). The orientation is such that vx (vy) is positive when u (v) is positive. """ u = alpha v = beta return u, v def lambertToDirCos(u, v): """Convert Lambert azimuthal equal-area tangent plane projection u,v to direction cosines. Parameters ---------- u, v : float Lambert tangent plane coordinates in radians. Returns ------- alpha, beta, gamma : float Direction cosines (unit vector projected onto x, y, z in order) Notes ----- The tangent plane reference is at (u,v) = (0,0), which corresponds to (alpha, beta, gamma) = (0, 0, -1) (a ray coming directly from above). The orientation is such that vx (vy) is positive when u (v) is positive. """ rhosqr = u*u + v*v wZero = rhosqr == 0.0 try: if wZero: return 0.0, 0.0, -1.0 except ValueError: pass rho = np.sqrt(rhosqr) gamma = (2-rhosqr)/2 r = np.sqrt(1-gamma*gamma) with warnings.catch_warnings(): warnings.simplefilter("ignore") alpha = u * r/rho beta = v * r/rho if np.any(wZero): alpha[wZero] = 0.0 beta[wZero] = 0.0 gamma[wZero] = 1.0 return alpha, beta, -gamma def dirCosToLambert(alpha, beta, gamma): """Convert direction cosines to Lambert azimuthal equal-area tangent plane projection. Parameters ---------- alpha, beta, gamma : float Direction cosines (unit vector projected onto x, y, z in order) Returns ------- u, v : float Lambert tangent plane coordinates in radians. Notes ----- The tangent plane reference is at (u,v) = (0,0), which corresponds to (alpha, beta, gamma) = (0, 0, -1) (a ray coming directly from above). The orientation is such that vx (vy) is positive when u (v) is positive. """ wZero = (gamma == -1) try: if wZero: return 0.0, 0.0 except ValueError: pass rho = np.sqrt(2+2*gamma) norm = np.sqrt(1-gamma*gamma) with warnings.catch_warnings(): warnings.simplefilter("ignore") u = alpha*rho/norm v = beta*rho/norm if np.any(wZero): u[wZero] = 0.0 v[wZero] = 0.0 return u, v def fieldToDirCos(u, v, projection='postel'): """Convert field angle to direction cosines using specified projection. Parameters ---------- u, v : float Tangent plane coordinates in radians. projection : {'postel', 'zemax', 'gnomonic', 'stereographic', 'lambert', 'orthographic'} Projection used to convert field angle to direction cosines. Returns ------- alpha, beta, gamma : float Direction cosines (unit vector projected onto x, y, z in order) Notes ----- The tangent plane reference is at (u,v) = (0,0), which corresponds to (alpha, beta, gamma) = (0, 0, -1) (a ray coming directly from above). The orientation is such that vx (vy) is positive when u (v) is positive. """ if projection == 'postel': return postelToDirCos(u, v) elif projection == 'zemax': return zemaxToDirCos(u, v) elif projection == 'gnomonic': return gnomonicToDirCos(u, v) elif projection == 'stereographic': return stereographicToDirCos(u, v) elif projection == 'lambert': return lambertToDirCos(u, v) elif projection == 'orthographic': return orthographicToDirCos(u, v) else: raise ValueError("Bad projection: {}".format(projection)) def dirCosToField(alpha, beta, gamma, projection='postel'): """Convert direction cosines to field angle using specified projection. Parameters ---------- alpha, beta, gamma : float Direction cosines (unit vector projected onto x, y, z in order) projection : {'postel', 'zemax', 'gnomonic', 'stereographic', 'lambert', 'orthographic'} Projection used to convert direction cosines to field angle. Returns ------- u, v : float Tangent plane coordinates in radians. Notes ----- The tangent plane reference is at (u,v) = (0,0), which corresponds to (alpha, beta, gamma) = (0, 0, -1) (a ray coming directly from above). The orientation is such that vx (vy) is positive when u (v) is positive. """ if projection == 'postel': return dirCosToPostel(alpha, beta, gamma) elif projection == 'zemax': return dirCosToZemax(alpha, beta, gamma) elif projection == 'gnomonic': return dirCosToGnomonic(alpha, beta, gamma) elif projection == 'stereographic': return dirCosToStereographic(alpha, beta, gamma) elif projection == 'lambert': return dirCosToLambert(alpha, beta, gamma) elif projection == 'orthographic': return dirCosToOrthographic(alpha, beta, gamma) else: raise ValueError("Bad projection: {}".format(projection)) # http://stackoverflow.com/a/6849299 class lazy_property(object): """ meant to be used for lazy evaluation of an object attribute. property should represent non-mutable data, as it replaces itself. """ def __init__(self, fget): self.fget = fget self.func_name = fget.__name__ def __get__(self, obj, cls): if obj is None: return self value = self.fget(obj) setattr(obj, self.func_name, value) return value ``` #### File: jtrace/tests/test_draw.py ```python import batoid import numpy as np from test_helpers import timer # Use matplotlib with a non-interactive backend. import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D @timer def initialize(ngrid=25, theta_x=1.): telescope = batoid.Optic.fromYaml("DESI.yaml") dirCos = batoid.utils.gnomonicToDirCos(np.deg2rad(theta_x), 0.) rays = batoid.RayVector.asGrid( optic=telescope, theta_x=np.deg2rad(theta_x), theta_y=0.0, wavelength=500e-9, nx=ngrid ) return telescope, telescope.traceFull(rays) @timer def draw2dtelescope(ax, telescope): telescope.draw2d(ax, c='k') @timer def draw2drays(ax, rays, start=None, stop=None): batoid.drawTrace2d(ax, rays, start, stop, c='b', lw=1) def test_draw2d(ngrid=25): telescope, rays = initialize(ngrid) fig = plt.figure(figsize=(20, 20)) ax = fig.add_subplot(111) draw2dtelescope(ax, telescope) draw2drays(ax, rays) def test_draw2d_only(): telescope, rays = initialize(3) fig = plt.figure(figsize=(20, 20)) ax = fig.add_subplot(111) telescope.draw2d(ax, only=batoid.optic.Lens, fc='c', alpha=0.2) telescope.draw2d(ax, only=batoid.optic.Detector, c='b', lw=1) @timer def draw3dtelescope(ax, telescope): telescope.draw3d(ax, c='k') @timer def draw3drays(ax, rays, start=None, stop=None): batoid.drawTrace3d(ax, rays, start, stop, c='b', lw=1) def test_draw3d(ngrid=25): telescope, rays = initialize(ngrid) fig = plt.figure(figsize=(20, 20)) ax = fig.add_subplot(111, projection='3d') draw3dtelescope(ax, telescope) draw3drays(ax, rays) if __name__ == '__main__': test_draw3d() plt.savefig('draw3d.png') test_draw2d() plt.savefig('draw2d.png') test_draw2d_only() ``` #### File: jtrace/tests/test_Lattice.py ```python import numpy as np import batoid from test_helpers import timer, all_obj_diff, do_pickle @timer def test_lattice_coords(): np.random.seed(5) # Check 1D for _ in np.arange(10): N = np.random.randint(1, 2000) arr = np.ones((N,)) primitiveVector = np.random.uniform(-1.0, 1.0) lattice = batoid.Lattice(arr, primitiveVector) np.testing.assert_allclose( np.squeeze(lattice.coords), np.arange(-(N//2), -(-N//2))*primitiveVector ) # Check 2D for _ in np.arange(10): N1 = np.random.randint(1, 200) N2 = np.random.randint(1, 200) arr = np.ones((N1, N2)) pv1 = np.random.uniform(-1.0, 1.0, size=2) pv2 = np.random.uniform(-1.0, 1.0, size=2) lattice = batoid.Lattice(arr, np.vstack([pv1, pv2])) for _ in np.arange(100): i = np.random.randint(0, N1) j = np.random.randint(0, N2) np.testing.assert_allclose( lattice.coords[i,j], (i-N1//2)*pv1 + (j-N2//2)*pv2 ) # Check 3D for _ in np.arange(10): N1 = np.random.randint(1, 20) N2 = np.random.randint(1, 20) N3 = np.random.randint(1, 20) arr = np.ones((N1, N2, N3)) pv1 = np.random.uniform(-1.0, 1.0, size=3) pv2 = np.random.uniform(-1.0, 1.0, size=3) pv3 = np.random.uniform(-1.0, 1.0, size=3) lattice = batoid.Lattice(arr, np.vstack([pv1, pv2, pv3])) with np.printoptions(threshold=20**3): do_pickle(lattice) for __ in np.arange(100): i = np.random.randint(0, N1) j = np.random.randint(0, N2) k = np.random.randint(0, N3) np.testing.assert_allclose( lattice.coords[i,j,k], (i-N1//2)*pv1 + (j-N2//2)*pv2 + (k-N3//2)*pv3 ) @timer def test_ne(): rng = np.random.default_rng(57) N1 = rng.integers(1, 5) N2 = rng.integers(1, 5) N3 = rng.integers(1, 5) arr = np.ones((N1, N2, N3)) pv1 = rng.uniform(-1.0, 1.0, size=3) pv2 = rng.uniform(-1.0, 1.0, size=3) pv3 = rng.uniform(-1.0, 1.0, size=3) lattice1 = batoid.Lattice(arr, np.vstack([pv1, pv2, pv3])) lattice2 = batoid.Lattice(arr[...,0], np.vstack([pv1, pv2, pv3])[:2,:2]) lattice3 = batoid.Lattice(arr, 2*np.vstack([pv1, pv2, pv3])) lattice4 = batoid.Lattice(2*arr, np.vstack([pv1, pv2, pv3])) objs = [ batoid.CoordSys(), lattice1, lattice2, lattice3, lattice4 ] all_obj_diff(objs) if __name__ == '__main__': test_lattice_coords() test_ne() ``` #### File: jtrace/tests/test_Obscuration.py ```python import batoid import numpy as np from test_helpers import timer, do_pickle, all_obj_diff @timer def test_ObscCircle(): rng = np.random.default_rng(5) size = 10_000 for i in range(100): cx = rng.normal(0.0, 1.0) cy = rng.normal(0.0, 1.0) r = rng.uniform(0.5, 1.5) obsc = batoid.ObscCircle(r, cx, cy) for i in range(100): x = rng.normal(0.0, 1.0) y = rng.normal(0.0, 1.0) assert obsc.contains(x, y) == (np.hypot(x-cx, y-cy) <= r) x = rng.normal(0.0, 1.0, size=size) y = rng.normal(0.0, 1.0, size=size) np.testing.assert_array_equal( obsc.contains(x, y), np.hypot(x-cx, y-cy) <= r ) do_pickle(obsc) rv = batoid.RayVector(x, y, 0.0, 0.0, 0.0, 0.0) batoid.obscure(obsc, rv) np.testing.assert_array_equal( obsc.contains(x, y), rv.vignetted ) # Check method syntax too rv = batoid.RayVector(x, y, 0.0, 0.0, 0.0, 0.0) obsc.obscure(rv) np.testing.assert_array_equal( obsc.contains(x, y), rv.vignetted ) @timer def test_ObscAnnulus(): rng = np.random.default_rng(57) size = 10_000 for i in range(100): cx = rng.normal(0.0, 1.0) cy = rng.normal(0.0, 1.0) inner = rng.uniform(0.5, 1.5) outer = rng.uniform(1.6, 1.9) obsc = batoid.ObscAnnulus(inner, outer, cx, cy) for i in range(100): x = rng.normal(0.0, 1.0) y = rng.normal(0.0, 1.0) assert obsc.contains(x, y) == ( inner <= np.hypot(x-cx, y-cy) < outer ) x = rng.normal(0.0, 1.0, size=size) y = rng.normal(0.0, 1.0, size=size) r = np.hypot(x-cx, y-cy) np.testing.assert_array_equal( obsc.contains(x, y), (inner <= r) & (r < outer) ) do_pickle(obsc) rv = batoid.RayVector(x, y, 0.0, 0.0, 0.0, 0.0) batoid.obscure(obsc, rv) np.testing.assert_array_equal( obsc.contains(x, y), rv.vignetted ) @timer def test_ObscRectangle(): rng = np.random.default_rng(577) size = 10_000 for i in range(100): cx = rng.normal(0.0, 1.0) cy = rng.normal(0.0, 1.0) w = rng.uniform(0.5, 2.5) h = rng.uniform(0.5, 2.5) obsc = batoid.ObscRectangle(w, h, cx, cy) for i in range(100): x = rng.normal(0.0, 2.0) y = rng.normal(0.0, 2.0) assert obsc.contains(x, y) == (x > cx-w/2 and x < cx+w/2 and y > cy-h/2 and y < cy+h/2) th = rng.uniform(0.0, np.pi/2) obsc = batoid.ObscRectangle(w, h, cx, cy, th) for i in range(100): x = rng.normal(0.0, 2.0) y = rng.normal(0.0, 2.0) xp = (x-cx)*np.cos(-th) - (y-cy)*np.sin(-th) + cx yp = (x-cx)*np.sin(-th) + (y-cy)*np.cos(-th) + cy assert obsc.contains(x, y) == (xp > cx-w/2 and xp < cx+w/2 and yp > cy-h/2 and yp < cy+h/2) x = rng.normal(0.0, 2.0, size=size) y = rng.normal(0.0, 2.0, size=size) xp = (x-cx)*np.cos(-th) - (y-cy)*np.sin(-th) + cx yp = (x-cx)*np.sin(-th) + (y-cy)*np.cos(-th) + cy np.testing.assert_array_equal( obsc.contains(x, y), (xp > cx-w/2) & (xp < cx+w/2) & (yp > cy-h/2) & (yp < cy+h/2) ) do_pickle(obsc) rv = batoid.RayVector(x, y, 0.0, 0.0, 0.0, 0.0) batoid.obscure(obsc, rv) np.testing.assert_array_equal( obsc.contains(x, y), rv.vignetted ) @timer def test_ObscRay(): rng = np.random.default_rng(5772) size = 10_000 for i in range(100): cx = rng.normal(0.0, 1.0) cy = rng.normal(0.0, 1.0) w = rng.uniform(0.5, 2.5) th = rng.uniform(0.0, np.pi/2) obsc = batoid.ObscRay(w, th, cx, cy) for i in range(100): x = rng.normal(0.0, 2.0) y = rng.normal(0.0, 2.0) xp = (x-cx)*np.cos(-th) - (y-cy)*np.sin(-th) yp = (x-cx)*np.sin(-th) + (y-cy)*np.cos(-th) assert obsc.contains(x, y) == (xp > 0.0 and yp > -w/2 and yp < w/2) x = rng.normal(0.0, 2.0, size=size) y = rng.normal(0.0, 2.0, size=size) xp = (x-cx)*np.cos(-th) - (y-cy)*np.sin(-th) yp = (x-cx)*np.sin(-th) + (y-cy)*np.cos(-th) np.testing.assert_array_equal( obsc.contains(x, y), (xp > 0.0) & (yp > -w/2) & (yp < w/2) ) do_pickle(obsc) rv = batoid.RayVector(x, y, 0.0, 0.0, 0.0, 0.0) batoid.obscure(obsc, rv) np.testing.assert_array_equal( obsc.contains(x, y), rv.vignetted ) @timer def test_ObscPolygon(): rng = np.random.default_rng(57721) size = 10_000 # Test equivalency with ObscRectangle for i in range(100): cx = rng.normal(0.0, 1.0) cy = rng.normal(0.0, 1.0) w = rng.uniform(0.5, 2.5) h = rng.uniform(0.5, 2.5) xs = [cx-w/2, cx+w/2, cx+w/2, cx-w/2] ys = [cy-h/2, cy-h/2, cy+h/2, cy+h/2] obscPoly = batoid.ObscPolygon(xs, ys) obscRect = batoid.ObscRectangle(w, h, cx, cy, 0.0) for i in range(100): x = rng.normal(0.0, 2.0) y = rng.normal(0.0, 2.0) assert obscPoly.contains(x, y) == obscRect.contains(x, y) x = rng.normal(0.0, 2.0, size=size) y = rng.normal(0.0, 2.0, size=size) np.testing.assert_array_equal( obscPoly.contains(x, y), obscRect.contains(x, y) ) do_pickle(obscPoly) rv = batoid.RayVector(x, y, 0.0, 0.0, 0.0, 0.0) batoid.obscure(obscPoly, rv) np.testing.assert_array_equal( obscPoly.contains(x, y), rv.vignetted ) # Try Union of two Rectangles equal to Polygon. # Center of both rectangles at (1, 2) # One is width=4, height=2 # Other is width=2, height=4 r1 = batoid.ObscRectangle(4, 2, 1, 2) r2 = batoid.ObscRectangle(2, 4, 1, 2) o1 = batoid.ObscUnion([r1, r2]) xs = [-2, -1, -1, 1, 1, 2, 2, 1, 1, -1, -1, -2, -2] ys = [ 1, 1, 2, 2, 1, 1, -1, -1, -2, -2, -1, -1, 1] o2 = batoid.ObscPolygon(np.array(xs)+1, np.array(ys)+2) x = rng.normal(0.0, 2.0, size=size) y = rng.normal(0.0, 2.0, size=size) np.testing.assert_array_equal( o1.contains(x, y), o2.contains(x, y) ) # Check containsGrid x = np.linspace(-10.0, 10.0, 25) y = np.linspace(-10.0, 10.0, 25) xx, yy = np.meshgrid(x, y) np.testing.assert_array_equal( o2.contains(xx, yy), o2.containsGrid(x, y) ) @timer def test_ObscNegation(): rng = np.random.default_rng(577215) size = 10_000 for i in range(100): cx = rng.normal(0.0, 1.0) cy = rng.normal(0.0, 1.0) r = rng.uniform(0.5, 1.5) original = batoid.ObscCircle(r, cx, cy) obsc = batoid.ObscNegation(original) do_pickle(obsc) for i in range(100): x = rng.normal(0.0, 1.0) y = rng.normal(0.0, 1.0) assert obsc.contains(x, y) != original.contains(x, y) x = rng.normal(0.0, 1.0, size=size) y = rng.normal(0.0, 1.0, size=size) np.testing.assert_array_equal( obsc.contains(x, y), ~original.contains(x, y) ) do_pickle(obsc) rv = batoid.RayVector(x, y, 0.0, 0.0, 0.0, 0.0) batoid.obscure(obsc, rv) np.testing.assert_array_equal( obsc.contains(x, y), rv.vignetted ) # also test config parsing of "ClearCircle" config = {'type':'ClearCircle', 'x':cx, 'y':cy, 'radius':r} obsc = batoid.parse.parse_obscuration(config) do_pickle(obsc) for i in range(100): x = rng.normal(0.0, 1.0) y = rng.normal(0.0, 1.0) assert obsc.contains(x, y) == (np.hypot(x-cx, y-cy) > r) @timer def test_ObscCompound(): rng = np.random.default_rng(577215) size = 10_000 for i in range(100): rx = rng.normal(0.0, 1.0) ry = rng.normal(0.0, 1.0) w = rng.uniform(0.5, 2.5) h = rng.uniform(0.5, 2.5) th = rng.uniform(0.0, np.pi) rect = batoid.ObscRectangle(w, h, rx, ry, th) cx = rng.normal(0.0, 1.0) cy = rng.normal(0.0, 1.0) r = rng.uniform(0.5, 1.5) circ = batoid.ObscCircle(r, cx, cy) union = batoid.ObscUnion([rect, circ]) do_pickle(union) union2 = batoid.ObscUnion([circ, rect]) assert union == union2 # commutative! assert hash(union) == hash(union2) intersection = batoid.ObscIntersection([rect, circ]) do_pickle(intersection) intersection2 = batoid.ObscIntersection([circ, rect]) assert intersection == intersection2 assert hash(intersection) == hash(intersection2) for i in range(100): x = rng.normal(0.0, 2.0) y = rng.normal(0.0, 2.0) assert (union.contains(x, y) == union2.contains(x, y) == (rect.contains(x, y) or circ.contains(x, y))) assert (intersection.contains(x, y) == intersection2.contains(x, y) == (rect.contains(x, y) and circ.contains(x, y))) x = rng.normal(0.0, 2.0, size=size) y = rng.normal(0.0, 2.0, size=size) np.testing.assert_array_equal( union.contains(x, y), union2.contains(x, y) ) np.testing.assert_array_equal( union.contains(x, y), rect.contains(x, y) | circ.contains(x, y) ) np.testing.assert_array_equal( intersection.contains(x, y), intersection2.contains(x, y) ) np.testing.assert_array_equal( intersection.contains(x, y), rect.contains(x, y) & circ.contains(x, y) ) rv = batoid.RayVector(x, y, 0.0, 0.0, 0.0, 0.0) batoid.obscure(union, rv) np.testing.assert_array_equal( union.contains(x, y), rv.vignetted ) rv = batoid.RayVector(x, y, 0.0, 0.0, 0.0, 0.0) batoid.obscure(intersection, rv) np.testing.assert_array_equal( intersection.contains(x, y), rv.vignetted ) with np.testing.assert_raises(ValueError): batoid.ObscUnion() with np.testing.assert_raises(ValueError): batoid.ObscIntersection() @timer def test_ne(): objs = [ batoid.ObscCircle(1.0), batoid.ObscCircle(2.0), batoid.ObscCircle(1.0, 0.1, 0.1), batoid.ObscAnnulus(0.0, 1.0), batoid.ObscAnnulus(0.1, 1.0), batoid.ObscAnnulus(0.1, 1.0, 0.1, 0.1), batoid.ObscRectangle(1.0, 2.0), batoid.ObscRectangle(1.0, 2.0, 0.1, 0.1), batoid.ObscRectangle(1.0, 2.0, 0.1, 0.1, 1.0), batoid.ObscRay(1.0, 2.0), batoid.ObscRay(1.0, 2.0, 0.1, 0.1), batoid.ObscNegation(batoid.ObscCircle(1.0)), batoid.ObscPolygon([0,1,1,0],[0,0,1,1]), batoid.ObscUnion([batoid.ObscCircle(1.0)]), batoid.ObscUnion([ batoid.ObscCircle(1.0), batoid.ObscCircle(2.0) ]), batoid.ObscUnion([ batoid.ObscCircle(1.0), batoid.ObscCircle(2.2) ]), batoid.ObscUnion([ batoid.ObscCircle(1.0), batoid.ObscCircle(2.2), batoid.ObscAnnulus(1.0, 2.0) ]), batoid.ObscIntersection([batoid.ObscCircle(1.0)]), batoid.ObscIntersection([ batoid.ObscCircle(1.0), batoid.ObscCircle(2.0) ]), batoid.ObscIntersection([ batoid.ObscCircle(1.0), batoid.ObscCircle(2.2) ]), batoid.ObscIntersection([ batoid.ObscCircle(1.0), batoid.ObscCircle(2.2), batoid.ObscAnnulus(1.0, 2.0) ]), ] all_obj_diff(objs) if __name__ == '__main__': test_ObscCircle() test_ObscAnnulus() test_ObscRectangle() test_ObscRay() test_ObscPolygon() test_ObscNegation() test_ObscCompound() test_ne() ``` #### File: jtrace/tests/test_RayVector.py ```python import batoid import numpy as np from test_helpers import timer, init_gpu, rays_allclose, checkAngle, do_pickle @timer def test_properties(): rng = np.random.default_rng(5) size = 10 for i in range(100): x = rng.normal(size=size) y = rng.normal(size=size) z = rng.normal(size=size) vx = rng.normal(size=size) vy = rng.normal(size=size) vz = rng.normal(size=size) t = rng.normal(size=size) w = rng.normal(size=size) fx = rng.normal(size=size) vig = rng.choice([True, False], size=size) fa = rng.choice([True, False], size=size) cs = batoid.CoordSys( origin=rng.normal(size=3), rot=batoid.RotX(rng.normal())@batoid.RotY(rng.normal()) ) rv = batoid.RayVector(x, y, z, vx, vy, vz, t, w, fx, vig, fa, cs) np.testing.assert_array_equal(rv.x, x) np.testing.assert_array_equal(rv.y, y) np.testing.assert_array_equal(rv.z, z) np.testing.assert_array_equal(rv.r[:, 0], x) np.testing.assert_array_equal(rv.r[:, 1], y) np.testing.assert_array_equal(rv.r[:, 2], z) np.testing.assert_array_equal(rv.vx, vx) np.testing.assert_array_equal(rv.vy, vy) np.testing.assert_array_equal(rv.vz, vz) np.testing.assert_array_equal(rv.v[:, 0], vx) np.testing.assert_array_equal(rv.v[:, 1], vy) np.testing.assert_array_equal(rv.v[:, 2], vz) np.testing.assert_array_equal(rv.k[:, 0], rv.kx) np.testing.assert_array_equal(rv.k[:, 1], rv.ky) np.testing.assert_array_equal(rv.k[:, 2], rv.kz) np.testing.assert_array_equal(rv.t, t) np.testing.assert_array_equal(rv.wavelength, w) np.testing.assert_array_equal(rv.flux, fx) np.testing.assert_array_equal(rv.vignetted, vig) np.testing.assert_array_equal(rv.failed, fa) assert rv.coordSys == cs rv._syncToDevice() do_pickle(rv) @timer def test_positionAtTime(): rng = np.random.default_rng(57) size = 10_000 x = rng.uniform(-1, 1, size=size) y = rng.uniform(-1, 1, size=size) z = rng.uniform(-0.1, 0.1, size=size) vx = rng.uniform(-0.05, 0.05, size=size) vy = rng.uniform(-0.05, 0.05, size=size) vz = np.sqrt(1.0 - vx*vx - vy*vy) # Try with default t=0 first rv = batoid.RayVector(x, y, z, vx, vy, vz) np.testing.assert_equal(rv.x, x) np.testing.assert_equal(rv.y, y) np.testing.assert_equal(rv.z, z) np.testing.assert_equal(rv.vx, vx) np.testing.assert_equal(rv.vy, vy) np.testing.assert_equal(rv.vz, vz) np.testing.assert_equal(rv.t, 0.0) np.testing.assert_equal(rv.wavelength, 0.0) for t1 in [0.0, 1.0, -1.1, 2.5]: np.testing.assert_equal( rv.positionAtTime(t1), rv.r + t1 * rv.v ) # Now add some random t's t = rng.uniform(-1.0, 1.0, size=size) rv = batoid.RayVector(x, y, z, vx, vy, vz, t) np.testing.assert_equal(rv.x, x) np.testing.assert_equal(rv.y, y) np.testing.assert_equal(rv.z, z) np.testing.assert_equal(rv.vx, vx) np.testing.assert_equal(rv.vy, vy) np.testing.assert_equal(rv.vz, vz) np.testing.assert_equal(rv.t, t) np.testing.assert_equal(rv.wavelength, 0.0) for t1 in [0.0, 1.4, -1.3, 2.1]: np.testing.assert_equal( rv.positionAtTime(t1), rv.r + rv.v*(t1-rv.t)[:,None] ) @timer def test_propagate(): rng = np.random.default_rng(577) size = 10_000 x = rng.uniform(-1, 1, size=size) y = rng.uniform(-1, 1, size=size) z = rng.uniform(-0.1, 0.1, size=size) vx = rng.uniform(-0.05, 0.05, size=size) vy = rng.uniform(-0.05, 0.05, size=size) vz = np.sqrt(1.0 - vx*vx - vy*vy) # Try with default t=0 first rv = batoid.RayVector(x, y, z, vx, vy, vz) for t1 in [0.0, 1.0, -1.1, 2.5]: rvcopy = rv.copy() r1 = rv.positionAtTime(t1) rvcopy.propagate(t1) np.testing.assert_equal( rvcopy.r, r1 ) np.testing.assert_equal( rvcopy.v, rv.v ) np.testing.assert_equal( rvcopy.t, t1 ) # Now add some random t's t = rng.uniform(-1.0, 1.0, size=size) rv = batoid.RayVector(x, y, z, vx, vy, vz, t) for t1 in [0.0, 1.0, -1.1, 2.5]: rvcopy = rv.copy() r1 = rv.positionAtTime(t1) rvcopy.propagate(t1) np.testing.assert_equal( rvcopy.r, r1 ) np.testing.assert_equal( rvcopy.v, rv.v ) np.testing.assert_equal( rvcopy.t, t1 ) @timer def test_phase(): rng = np.random.default_rng(5772) size = 10_000 for n in [1.0, 1.3]: x = rng.uniform(-1, 1, size=size) y = rng.uniform(-1, 1, size=size) z = rng.uniform(-0.1, 0.1, size=size) vx = rng.uniform(-0.05, 0.05, size=size) vy = rng.uniform(-0.05, 0.05, size=size) vz = np.sqrt(1.0/(n*n) - vx*vx - vy*vy) t = rng.uniform(-1.0, 1.0, size=size) wavelength = rng.uniform(300e-9, 1100e-9, size=size) rv = batoid.RayVector(x, y, z, vx, vy, vz, t, wavelength) # First explicitly check that phase is 0 at position and time of individual # rays for i in rng.choice(size, size=10): np.testing.assert_equal( rv.phase(rv.r[i], rv.t[i])[i], 0.0 ) # Now use actual formula # phi = k.(r-r0) - (t-t0)omega # k = 2 pi v / lambda |v|^2 # omega = 2 pi / lambda # |v| = 1 / n for r1, t1 in [ ((0, 0, 0), 0), ((0, 1, 2), 3), ((-1, 2, 4), -1), ((0, 1, -4), -2) ]: phi = np.einsum("ij,ij->i", rv.v, r1-rv.r) phi *= n*n phi -= (t1-rv.t) phi *= 2*np.pi/wavelength np.testing.assert_allclose( rv.phase(r1, t1), phi, rtol=0, atol=1e-7 ) for i in rng.choice(size, size=10): s = slice(i, i+1) rvi = batoid.RayVector( x[s], y[s], z[s], vx[s], vy[s], vz[s], t[s].copy(), wavelength[s].copy() ) # Move integer number of wavelengths ahead ti = rvi.t[0] wi = rvi.wavelength[0] r1 = rvi.positionAtTime(ti + 5123456789*wi)[0] a = rvi.amplitude(r1, ti) np.testing.assert_allclose(a.real, 1.0, rtol=0, atol=2e-5) np.testing.assert_allclose(a.imag, 0.0, rtol=0, atol=2e-5) # Half wavelength r1 = rvi.positionAtTime(ti + 6987654321.5*wi)[0] a = rvi.amplitude(r1, ti) np.testing.assert_allclose(a.real, -1.0, rtol=0, atol=2e-5) np.testing.assert_allclose(a.imag, 0.0, rtol=0, atol=2e-5) # Quarter wavelength r1 = rvi.positionAtTime(ti + 0.25*wi)[0] a = rvi.amplitude(r1, ti) np.testing.assert_allclose(a.real, 0.0, rtol=0, atol=2e-5) np.testing.assert_allclose(a.imag, 1.0, rtol=0, atol=2e-5) # Three-quarters wavelength r1 = rvi.positionAtTime(ti + 7182738495.75*wi)[0] a = rvi.amplitude(r1, ti) np.testing.assert_allclose(a.real, 0.0, rtol=0, atol=2e-5) np.testing.assert_allclose(a.imag, -1.0, rtol=0, atol=2e-5) # We can also keep the position the same and change the time in # half/quarter integer multiples of the period. a = rvi.amplitude(rvi.r[0], rvi.t[0]+5e9*wi) np.testing.assert_allclose(a.real, 1.0, rtol=0, atol=1e-5) np.testing.assert_allclose(a.imag, 0.0, rtol=0, atol=1e-5) a = rvi.amplitude(rvi.r[0], rvi.t[0]+(5e9+5.5)*wi) np.testing.assert_allclose(a.real, -1.0, rtol=0, atol=1e-5) np.testing.assert_allclose(a.imag, 0.0, rtol=0, atol=1e-5) a = rvi.amplitude(rvi.r[0], rvi.t[0]+(5e9+2.25)*wi) np.testing.assert_allclose(a.real, 0.0, rtol=0, atol=1e-5) np.testing.assert_allclose(a.imag, -1.0, rtol=0, atol=1e-5) a = rvi.amplitude(rvi.r[0], rvi.t[0]+(5e9+1.75)*wi) np.testing.assert_allclose(a.real, 0.0, rtol=0, atol=1e-5) np.testing.assert_allclose(a.imag, 1.0, rtol=0, atol=1e-5) # If we pick a point anywhere along a vector originating at the ray # position, but orthogonal to its direction of propagation, then we # should get phase = 0 (mod 2pi). v1 = np.array([1.0, 0.0, 0.0]) v1 = np.cross(rvi.v[0], v1) p1 = rvi.r[0] + v1 a = rvi.amplitude(p1, rvi.t[0]) np.testing.assert_allclose(a.real, 1.0, rtol=0, atol=1e-5) np.testing.assert_allclose(a.imag, 0.0, rtol=0, atol=1e-5) @timer def test_sumAmplitude(): import time rng = np.random.default_rng(57721) size = 10_000 for n in [1.0, 1.3]: x = rng.uniform(-1, 1, size=size) y = rng.uniform(-1, 1, size=size) z = rng.uniform(-0.1, 0.1, size=size) vx = rng.uniform(-0.05, 0.05, size=size) vy = rng.uniform(-0.05, 0.05, size=size) vz = np.sqrt(1.0/(n*n) - vx*vx - vy*vy) t = rng.uniform(-1.0, 1.0, size=size) wavelength = rng.uniform(300e-9, 1100e-9, size=size) rv = batoid.RayVector(x, y, z, vx, vy, vz, t, wavelength) satime = 0 atime = 0 for r1, t1 in [ ((0, 0, 0), 0), ((0, 1, 2), 3), ((-1, 2, 4), -1), ((0, 1, -4), -2) ]: at0 = time.time() s1 = rv.sumAmplitude(r1, t1) at1 = time.time() s2 = np.sum(rv.amplitude(r1, t1)) at2 = time.time() np.testing.assert_allclose(s1, s2, rtol=0, atol=1e-11) satime += at1-at0 atime += at2-at1 # print(f"sumAplitude() time: {satime}") # print(f"np.sum(amplitude()) time: {atime}") @timer def test_equals(): import time rng = np.random.default_rng(577215) size = 10_000 x = rng.uniform(-1, 1, size=size) y = rng.uniform(-1, 1, size=size) z = rng.uniform(-0.1, 0.1, size=size) vx = rng.uniform(-0.05, 0.05, size=size) vy = rng.uniform(-0.05, 0.05, size=size) vz = np.sqrt(1.0 - vx*vx - vy*vy) t = rng.uniform(-1.0, 1.0, size=size) wavelength = rng.uniform(300e-9, 1100e-9, size=size) flux = rng.uniform(0.9, 1.1, size=size) vignetted = rng.choice([True, False], size=size) failed = rng.choice([True, False], size=size) args = x, y, z, vx, vy, vz, t, wavelength, flux, vignetted, failed rv = batoid.RayVector(*args) rv2 = rv.copy() assert rv == rv2 for i in range(len(args)): newargs = [args[i].copy() for i in range(len(args))] ai = newargs[i] if ai.dtype == float: ai[0] = 1.2+ai[0]*3.45 elif ai.dtype == bool: ai[0] = not ai[0] # else panic! rv2 = batoid.RayVector(*newargs) assert rv != rv2 # Repeat, but force comparison on device rv2 = rv.copy() rv._rv.x.syncToDevice() rv._rv.y.syncToDevice() rv._rv.z.syncToDevice() rv._rv.vx.syncToDevice() rv._rv.vy.syncToDevice() rv._rv.vz.syncToDevice() rv._rv.t.syncToDevice() rv._rv.wavelength.syncToDevice() rv._rv.flux.syncToDevice() rv._rv.vignetted.syncToDevice() rv._rv.failed.syncToDevice() assert rv == rv2 for i in range(len(args)): newargs = [args[i].copy() for i in range(len(args))] ai = newargs[i] if ai.dtype == float: ai[0] = 1.2+ai[0]*3.45 elif ai.dtype == bool: ai[0] = not ai[0] # else panic! rv2 = batoid.RayVector(*newargs) assert rv != rv2 @timer def test_asGrid(): rng = np.random.default_rng(5772156) for _ in range(10): backDist = rng.uniform(9.0, 11.0) wavelength = rng.uniform(300e-9, 1100e-9) nx = 1 while (nx%2) == 1: nx = rng.integers(10, 21) lx = rng.uniform(1.0, 10.0) dx = lx/(nx-2) dirCos = np.array([ rng.uniform(-0.1, 0.1), rng.uniform(-0.1, 0.1), rng.uniform(-1.2, -0.8), ]) dirCos /= np.sqrt(np.dot(dirCos, dirCos)) # Some things that should be equivalent grid1 = batoid.RayVector.asGrid( backDist=backDist, wavelength=wavelength, nx=nx, lx=lx, dirCos=dirCos ) grid2 = batoid.RayVector.asGrid( backDist=backDist, wavelength=wavelength, nx=nx, dx=dx, dirCos=dirCos ) grid3 = batoid.RayVector.asGrid( backDist=backDist, wavelength=wavelength, dx=dx, lx=lx, dirCos=dirCos ) grid4 = batoid.RayVector.asGrid( backDist=backDist, wavelength=wavelength, nx=nx, lx=(lx, 0.0), dirCos=dirCos ) theta_x, theta_y = batoid.utils.dirCosToField(*dirCos) grid5 = batoid.RayVector.asGrid( backDist=backDist, wavelength=wavelength, nx=nx, lx=(lx, 0.0), theta_x=theta_x, theta_y=theta_y ) rays_allclose(grid1, grid2) rays_allclose(grid1, grid3) rays_allclose(grid1, grid4) rays_allclose(grid1, grid5) # Check distance to chief ray cridx = (nx//2)*nx+nx//2 obs_dist = np.sqrt(np.dot(grid1.r[cridx], grid1.r[cridx])) np.testing.assert_allclose(obs_dist, backDist) np.testing.assert_allclose(grid1.t, 0) np.testing.assert_allclose(grid1.wavelength, wavelength) np.testing.assert_allclose(grid1.vignetted, False) np.testing.assert_allclose(grid1.failed, False) np.testing.assert_allclose(grid1.vx, dirCos[0]) np.testing.assert_allclose(grid1.vy, dirCos[1]) np.testing.assert_allclose(grid1.vz, dirCos[2]) # Check distribution of points propagated to entrance pupil pupil = batoid.Plane() pupil.intersect(grid1) np.testing.assert_allclose(np.diff(grid1.x)[0], dx) np.testing.assert_allclose(np.diff(grid1.y)[0], 0, atol=1e-14) np.testing.assert_allclose(np.diff(grid1.x)[nx-1], -dx*(nx-1)) np.testing.assert_allclose(np.diff(grid1.y)[nx-1], dx) # Another set, but with odd nx for _ in range(10): backDist = rng.uniform(9.0, 11.0) wavelength = rng.uniform(300e-9, 1100e-9) while (nx%2) == 0: nx = rng.integers(10, 21) lx = rng.uniform(1.0, 10.0) dx = lx/(nx-1) dirCos = np.array([ rng.uniform(-0.1, 0.1), rng.uniform(-0.1, 0.1), rng.uniform(-1.2, -0.8), ]) dirCos /= np.sqrt(np.dot(dirCos, dirCos)) grid1 = batoid.RayVector.asGrid( backDist=backDist, wavelength=wavelength, nx=nx, lx=lx, dirCos=dirCos ) grid2 = batoid.RayVector.asGrid( backDist=backDist, wavelength=wavelength, nx=nx, dx=dx, dirCos=dirCos ) grid3 = batoid.RayVector.asGrid( backDist=backDist, wavelength=wavelength, nx=nx, lx=(lx, 0), dirCos=dirCos ) # ... but the following is not equivalent, since default is to always # infer an even nx and ny # grid4 = batoid.RayVector.asGrid( # backDist=backDist, wavelength=wavelength, # dx=1/9, lx=1.0, dirCos=dirCos # ) rays_allclose(grid1, grid2) rays_allclose(grid1, grid3) cridx = (nx*nx-1)//2 obs_dist = np.sqrt(np.dot(grid1.r[cridx], grid1.r[cridx])) np.testing.assert_allclose(obs_dist, backDist) np.testing.assert_allclose(grid1.t, 0) np.testing.assert_allclose(grid1.wavelength, wavelength) np.testing.assert_allclose(grid1.vignetted, False) np.testing.assert_allclose(grid1.failed, False) np.testing.assert_allclose(grid1.vx, dirCos[0]) np.testing.assert_allclose(grid1.vy, dirCos[1]) np.testing.assert_allclose(grid1.vz, dirCos[2]) # Check distribution of points propagated to entrance pupil pupil = batoid.Plane() pupil.intersect(grid1) np.testing.assert_allclose(np.diff(grid1.x)[0], dx) np.testing.assert_allclose(np.diff(grid1.y)[0], 0, atol=1e-14) np.testing.assert_allclose(np.diff(grid1.x)[nx-1], -dx*(nx-1)) np.testing.assert_allclose(np.diff(grid1.y)[nx-1], dx) for _ in range(10): # Check nrandom rays = batoid.RayVector.asGrid( backDist=backDist, wavelength=wavelength, lx=1.0, nx=1, nrandom=1000, dirCos=dirCos ) np.testing.assert_allclose(rays.t, 0) np.testing.assert_allclose(rays.wavelength, wavelength) np.testing.assert_allclose(rays.vignetted, False) np.testing.assert_allclose(rays.failed, False) np.testing.assert_allclose(rays.vx, dirCos[0]) np.testing.assert_allclose(rays.vy, dirCos[1]) np.testing.assert_allclose(rays.vz, dirCos[2]) # Check that projected points are inside region pupil = batoid.Plane() pupil.intersect(rays) np.testing.assert_allclose(rays.z, 0.0) np.testing.assert_array_less(rays.x, 0.5) np.testing.assert_array_less(rays.y, 0.5) np.testing.assert_array_less(-0.5, rays.x) np.testing.assert_array_less(-0.5, rays.y) assert len(rays) == 1000 @timer def test_asPolar(): rng = np.random.default_rng(5772156) for _ in range(10): backDist = rng.uniform(9.0, 11.0) wavelength = rng.uniform(300e-9, 1100e-9) inner = rng.uniform(1.0, 3.0) outer = inner + rng.uniform(1.0, 3.0) nrad = rng.integers(1, 11) naz = rng.integers(10, 21) dirCos = np.array([ rng.uniform(-0.1, 0.1), rng.uniform(-0.1, 0.1), rng.uniform(-1.2, -0.8), ]) dirCos /= np.sqrt(np.dot(dirCos, dirCos)) rays = batoid.RayVector.asPolar( backDist=backDist, wavelength=wavelength, outer=outer, inner=inner, nrad=nrad, naz=naz, dirCos=dirCos ) np.testing.assert_allclose(rays.t, 0) np.testing.assert_allclose(rays.wavelength, wavelength) np.testing.assert_allclose(rays.vignetted, False) np.testing.assert_allclose(rays.failed, False) np.testing.assert_allclose(rays.vx, dirCos[0]) np.testing.assert_allclose(rays.vy, dirCos[1]) np.testing.assert_allclose(rays.vz, dirCos[2]) assert len(rays)%6 == 0 # If we set inner=0, then last ray should # intersect the center of the pupil inner = 0.0 rays = batoid.RayVector.asPolar( backDist=backDist, wavelength=wavelength, outer=outer, inner=inner, nrad=nrad, naz=naz, dirCos=dirCos ) assert len(rays)%6 == 1 pupil = batoid.Plane() pupil.intersect(rays) np.testing.assert_allclose(rays.x[-1], 0, atol=1e-14) np.testing.assert_allclose(rays.y[-1], 0, atol=1e-14) np.testing.assert_allclose(rays.z[-1], 0, atol=1e-14) @timer def test_asSpokes(): rng = np.random.default_rng(5772156) for _ in range(10): backDist = rng.uniform(9.0, 11.0) wavelength = rng.uniform(300e-9, 1100e-9) inner = rng.uniform(1.0, 3.0) outer = inner + rng.uniform(1.0, 3.0) rings = rng.integers(1, 11) spokes = rng.integers(10, 21) dirCos = np.array([ rng.uniform(-0.1, 0.1), rng.uniform(-0.1, 0.1), rng.uniform(-1.2, -0.8), ]) dirCos /= np.sqrt(np.dot(dirCos, dirCos)) rays = batoid.RayVector.asSpokes( backDist=backDist, wavelength=wavelength, outer=outer, inner=inner, spokes=spokes, rings=rings, dirCos=dirCos ) np.testing.assert_allclose(rays.t, 0) np.testing.assert_allclose(rays.wavelength, wavelength) np.testing.assert_allclose(rays.vignetted, False) np.testing.assert_allclose(rays.failed, False) np.testing.assert_allclose(rays.vx, dirCos[0]) np.testing.assert_allclose(rays.vy, dirCos[1]) np.testing.assert_allclose(rays.vz, dirCos[2]) assert len(rays) == spokes*rings pupil = batoid.Plane() pupil.intersect(rays) radii = np.hypot(rays.x, rays.y) ths = np.arctan2(rays.y, rays.x) for i in range(spokes): np.testing.assert_allclose( radii[rings*i:rings*(i+1)], np.linspace(inner, outer, rings, endpoint=True) ) for i in range(rings): checkAngle(ths[i::rings], np.linspace(0, 2*np.pi, spokes, endpoint=False)) # Check explicit rings and spokes rings = rng.uniform(inner, outer, rings) spokes = rng.uniform(0, 2*np.pi, spokes) rays = batoid.RayVector.asSpokes( backDist=backDist, wavelength=wavelength, outer=outer, inner=inner, rings=rings, spokes=spokes, dirCos=dirCos ) pupil = batoid.Plane() pupil.intersect(rays) radii = np.hypot(rays.x, rays.y) ths = np.arctan2(rays.y, rays.x) for i in range(len(spokes)): np.testing.assert_allclose( radii[len(rings)*i:len(rings)*(i+1)], rings ) for i in range(len(rings)): checkAngle( ths[i::len(rings)], spokes ) # Check Gaussian Quadrature rings = rng.integers(5, 11) spokes = 2*rings+1 rays = batoid.RayVector.asSpokes( backDist=backDist, wavelength=wavelength, outer=outer, rings=rings, spacing='GQ', dirCos=dirCos ) assert len(rays) == spokes*rings pupil = batoid.Plane() pupil.intersect(rays) radii = np.hypot(rays.x, rays.y) ths = np.arctan2(rays.y, rays.x) Li, w = np.polynomial.legendre.leggauss(rings) rings = np.sqrt((1+Li)/2)*outer flux = w*np.pi/(2*spokes) spokes = np.linspace(0, 2*np.pi, spokes, endpoint=False) for i in range(len(spokes)): np.testing.assert_allclose( radii[len(rings)*i:len(rings)*(i+1)], rings ) np.testing.assert_allclose( rays.flux[len(rings)*i:len(rings)*(i+1)], flux ) for i in range(len(rings)): checkAngle( ths[i::len(rings)], spokes ) # Sanity check GQ grids against literature # Values from Forbes JOSA Vol. 5, No. 11 (1988) Table 1 rings = [1, 2, 3, 4, 5, 6] rad = [ [0.70710678], [0.45970084, 0.88807383], [0.33571069, 0.70710678, 0.94196515], [0.26349923, 0.57446451, 0.81852949, 0.96465961], [0.21658734, 0.48038042, 0.70710678, 0.87706023, 0.97626324], [0.18375321, 0.41157661, 0.61700114, 0.78696226, 0.91137517, 0.98297241] ] w = [ [0.5], [0.25, 0.25], [0.13888889, 0.22222222, 0.13888889], [0.08696371, 0.16303629, 0.16303629, 0.08696371], [0.05923172, 0.11965717, 0.14222222, 0.11965717, 0.05923172], [0.04283112, 0.09019039, 0.11697848, 0.11697848, 0.09019039, 0.04283112] ] for rings_, rad_, w_ in zip(rings, rad, w): rays = batoid.RayVector.asSpokes( backDist=backDist, wavelength=wavelength, outer=1, rings=rings_, spacing='GQ', dirCos=[0,0,-1] ) spokes = rings_*2+1 radii = np.hypot(rays.x, rays.y) for i in range(spokes): np.testing.assert_allclose( radii[rings_*i:rings_*(i+1)], rad_ ) np.testing.assert_allclose( rays.flux[rings_*i:rings_*(i+1)]*spokes/(2*np.pi), w_ ) @timer def test_factory_optic(): telescope = batoid.Optic.fromYaml("LSST_r.yaml") grid1 = batoid.RayVector.asGrid( optic=telescope, wavelength=500e-9, theta_x=0.1, theta_y=0.1, nx=16 ) grid2 = batoid.RayVector.asGrid( wavelength=500e-9, theta_x=0.1, theta_y=0.1, backDist=telescope.backDist, stopSurface=telescope.stopSurface, medium=telescope.inMedium, lx=telescope.pupilSize, nx=16 ) rays_allclose(grid1, grid2) grid1 = batoid.RayVector.asPolar( optic=telescope, wavelength=500e-9, theta_x=0.1, theta_y=0.1, naz=100, nrad=20 ) grid2 = batoid.RayVector.asPolar( wavelength=500e-9, theta_x=0.1, theta_y=0.1, backDist=telescope.backDist, stopSurface=telescope.stopSurface, medium=telescope.inMedium, outer=telescope.pupilSize/2, inner=telescope.pupilSize/2*telescope.pupilObscuration, naz=100, nrad=20 ) rays_allclose(grid1, grid2) grid1 = batoid.RayVector.asSpokes( optic=telescope, wavelength=500e-9, theta_x=0.1, theta_y=0.1, rings=10, spokes=21 ) grid2 = batoid.RayVector.asSpokes( wavelength=500e-9, theta_x=0.1, theta_y=0.1, backDist=telescope.backDist, stopSurface=telescope.stopSurface, medium=telescope.inMedium, outer=telescope.pupilSize/2, rings=10, spokes=21 ) rays_allclose(grid1, grid2) @timer def test_getitem(): telescope = batoid.Optic.fromYaml("LSST_r.yaml") rv = batoid.RayVector.asPolar( optic=telescope, wavelength=625e-9, theta_x=np.deg2rad(1.0), theta_y=np.deg2rad(0.2), nrad=10, naz=60 ) telescope.trace(rv) # Single item indexing for i in range(-len(rv), len(rv)): rv1 = rv[i] np.testing.assert_equal(rv1.r[0], rv.r[i]) np.testing.assert_equal(rv1.x[0], rv.x[i]) np.testing.assert_equal(rv1.y[0], rv.y[i]) np.testing.assert_equal(rv1.z[0], rv.z[i]) np.testing.assert_equal(rv1.v[0], rv.v[i]) np.testing.assert_equal(rv1.vx[0], rv.vx[i]) np.testing.assert_equal(rv1.vy[0], rv.vy[i]) np.testing.assert_equal(rv1.vz[0], rv.vz[i]) np.testing.assert_equal(rv1.t[0], rv.t[i]) np.testing.assert_equal(rv1.wavelength[0], rv.wavelength[i]) np.testing.assert_equal(rv1.flux[0], rv.flux[i]) np.testing.assert_equal(rv1.vignetted[0], rv.vignetted[i]) np.testing.assert_equal(rv1.failed[0], rv.failed[i]) assert rv1.r.flags.f_contiguous assert rv1.v.flags.f_contiguous # slice indexing for i in range(-len(rv)//10, len(rv)//10): slc = slice(i*10, (i+1)*10, 2) rv2 = rv[slc] np.testing.assert_equal(rv2.r, rv.r[slc]) np.testing.assert_equal(rv2.x, rv.x[slc]) np.testing.assert_equal(rv2.y, rv.y[slc]) np.testing.assert_equal(rv2.z, rv.z[slc]) np.testing.assert_equal(rv2.v, rv.v[slc]) np.testing.assert_equal(rv2.vx, rv.vx[slc]) np.testing.assert_equal(rv2.vy, rv.vy[slc]) np.testing.assert_equal(rv2.vz, rv.vz[slc]) np.testing.assert_equal(rv2.t, rv.t[slc]) np.testing.assert_equal(rv2.wavelength, rv.wavelength[slc]) np.testing.assert_equal(rv2.flux, rv.flux[slc]) np.testing.assert_equal(rv2.vignetted, rv.vignetted[slc]) np.testing.assert_equal(rv2.failed, rv.failed[slc]) assert rv2.r.flags.f_contiguous assert rv2.v.flags.f_contiguous # integer array indexing idx = [0, -1, 1, -2, 2, -3, 50] rv3 = rv[idx] np.testing.assert_equal(rv3.r, rv.r[idx]) np.testing.assert_equal(rv3.x, rv.x[idx]) np.testing.assert_equal(rv3.y, rv.y[idx]) np.testing.assert_equal(rv3.z, rv.z[idx]) np.testing.assert_equal(rv3.v, rv.v[idx]) np.testing.assert_equal(rv3.vx, rv.vx[idx]) np.testing.assert_equal(rv3.vy, rv.vy[idx]) np.testing.assert_equal(rv3.vz, rv.vz[idx]) np.testing.assert_equal(rv3.t, rv.t[idx]) np.testing.assert_equal(rv3.wavelength, rv.wavelength[idx]) np.testing.assert_equal(rv3.flux, rv.flux[idx]) np.testing.assert_equal(rv3.vignetted, rv.vignetted[idx]) np.testing.assert_equal(rv3.failed, rv.failed[idx]) assert rv3.r.flags.f_contiguous assert rv3.v.flags.f_contiguous # boolean array indexing idx = np.zeros(len(rv), dtype=bool) idx[[0, -1, 5]] = True rv4 = rv[idx] np.testing.assert_equal(rv4.r, rv.r[idx]) np.testing.assert_equal(rv4.x, rv.x[idx]) np.testing.assert_equal(rv4.y, rv.y[idx]) np.testing.assert_equal(rv4.z, rv.z[idx]) np.testing.assert_equal(rv4.v, rv.v[idx]) np.testing.assert_equal(rv4.vx, rv.vx[idx]) np.testing.assert_equal(rv4.vy, rv.vy[idx]) np.testing.assert_equal(rv4.vz, rv.vz[idx]) np.testing.assert_equal(rv4.t, rv.t[idx]) np.testing.assert_equal(rv4.wavelength, rv.wavelength[idx]) np.testing.assert_equal(rv4.flux, rv.flux[idx]) np.testing.assert_equal(rv4.vignetted, rv.vignetted[idx]) np.testing.assert_equal(rv4.failed, rv.failed[idx]) assert rv4.r.flags.f_contiguous assert rv4.v.flags.f_contiguous # test iteration for i, rv5 in enumerate(rv): np.testing.assert_equal(rv5.r[0], rv.r[i]) np.testing.assert_equal(rv5.x[0], rv.x[i]) np.testing.assert_equal(rv5.y[0], rv.y[i]) np.testing.assert_equal(rv5.z[0], rv.z[i]) np.testing.assert_equal(rv5.v[0], rv.v[i]) np.testing.assert_equal(rv5.vx[0], rv.vx[i]) np.testing.assert_equal(rv5.vy[0], rv.vy[i]) np.testing.assert_equal(rv5.vz[0], rv.vz[i]) np.testing.assert_equal(rv5.t[0], rv.t[i]) np.testing.assert_equal(rv5.wavelength[0], rv.wavelength[i]) np.testing.assert_equal(rv5.flux[0], rv.flux[i]) np.testing.assert_equal(rv5.vignetted[0], rv.vignetted[i]) np.testing.assert_equal(rv5.failed[0], rv.failed[i]) assert rv5.r.flags.f_contiguous assert rv5.v.flags.f_contiguous for i, rv6 in enumerate(reversed(rv)): np.testing.assert_equal(rv6.r[0], rv.r[-i-1]) np.testing.assert_equal(rv6.r[0], rv.r[-i-1]) np.testing.assert_equal(rv6.x[0], rv.x[-i-1]) np.testing.assert_equal(rv6.y[0], rv.y[-i-1]) np.testing.assert_equal(rv6.z[0], rv.z[-i-1]) np.testing.assert_equal(rv6.v[0], rv.v[-i-1]) np.testing.assert_equal(rv6.vx[0], rv.vx[-i-1]) np.testing.assert_equal(rv6.vy[0], rv.vy[-i-1]) np.testing.assert_equal(rv6.vz[0], rv.vz[-i-1]) np.testing.assert_equal(rv6.t[0], rv.t[-i-1]) np.testing.assert_equal(rv6.wavelength[0], rv.wavelength[-i-1]) np.testing.assert_equal(rv6.flux[0], rv.flux[-i-1]) np.testing.assert_equal(rv6.vignetted[0], rv.vignetted[-i-1]) np.testing.assert_equal(rv6.failed[0], rv.failed[-i-1]) assert rv6.r.flags.f_contiguous assert rv6.v.flags.f_contiguous with np.testing.assert_raises(IndexError): rv[len(rv)] with np.testing.assert_raises(IndexError): rv[-len(rv)-1] def test_fromStop(): telescope = batoid.Optic.fromYaml("LSST_r.yaml") rv = batoid.RayVector.asPolar( optic=telescope, wavelength=625e-9, theta_x=np.deg2rad(1.0), theta_y=np.deg2rad(0.2), nrad=4, naz=10 ) rv_traced = telescope.trace(rv.copy()) rv_stop = telescope.stopSurface.interact(rv.copy()) for rv1, rv_traced1, rv_stop1 in zip(rv, rv_traced, rv_stop): rv_test1 = batoid.RayVector.fromStop( rv_stop1.x[0], rv_stop1.y[0], optic=telescope, wavelength=625e-9, theta_x=np.deg2rad(1.0), theta_y=np.deg2rad(0.2) ) rv_test2 = batoid.RayVector.fromStop( rv_stop1.x[0], rv_stop1.y[0], optic=telescope, backDist=telescope.backDist, wavelength=625e-9, theta_x=np.deg2rad(1.0), theta_y=np.deg2rad(0.2) ) rv_test3 = batoid.RayVector.fromStop( rv_stop1.x[0], rv_stop1.y[0], optic=telescope, medium=telescope.inMedium, wavelength=625e-9, theta_x=np.deg2rad(1.0), theta_y=np.deg2rad(0.2) ) rv_test4 = batoid.RayVector.fromStop( rv_stop1.x[0], rv_stop1.y[0], optic=telescope, stopSurface=telescope.stopSurface, wavelength=625e-9, theta_x=np.deg2rad(1.0), theta_y=np.deg2rad(0.2) ) rv_test5 = batoid.RayVector.fromStop( rv_stop1.x[0], rv_stop1.y[0], optic=telescope, stopSurface=telescope.stopSurface, wavelength=625e-9, dirCos=batoid.utils.fieldToDirCos(np.deg2rad(1.0), np.deg2rad(0.2)) ) for rv_test in [rv_test1, rv_test2, rv_test3, rv_test4, rv_test5]: telescope.trace(rv_test) np.testing.assert_allclose( rv_test.x, rv_traced1.x, rtol=0, atol=1e-14 ) np.testing.assert_allclose( rv_test.y, rv_traced1.y, rtol=0, atol=1e-14 ) np.testing.assert_allclose( rv_test.z, rv_traced1.z, rtol=0, atol=1e-14 ) np.testing.assert_allclose( rv_test.vx, rv_traced1.vx, rtol=0, atol=1e-14 ) np.testing.assert_allclose( rv_test.vy, rv_traced1.vy, rtol=0, atol=1e-14 ) np.testing.assert_allclose( rv_test.vz, rv_traced1.vz, rtol=0, atol=1e-14 ) # A few more coverage checks with np.testing.assert_raises(ValueError): rv = batoid.RayVector.fromStop( 0, 0, theta_x=0.0, theta_y=0.0 ) rv = batoid.RayVector.fromStop( 0, 0, theta_x=0.0, theta_y=0.0, wavelength=625e-9 ) rv2 = batoid.RayVector.fromStop( 0, 0, theta_x=0.0, theta_y=0.0, wavelength=625e-9, backDist=40.0, stopSurface=batoid.Interface(batoid.Plane()), medium=batoid.vacuum ) assert rv == rv2 def test_fromFieldAngles(): telescope = batoid.Optic.fromYaml("LSST_r.yaml") thx = np.linspace(-0.5, 0.5, 10) thy = np.linspace(-0.5, 0.5, 10) rv = batoid.RayVector.fromFieldAngles( np.deg2rad(thx), np.deg2rad(thy), optic=telescope, wavelength=625e-9, ) rv_traced = telescope.trace(rv.copy()) rv_stop = telescope.stopSurface.interact(rv.copy()) for rv1, rv_traced1, rv_stop1 in zip(rv, rv_traced, rv_stop): dc = rv_stop1.v[0]/np.sqrt(np.sum(np.square(rv_stop1.v))) thx, thy = batoid.utils.dirCosToField(*dc) rv_test1 = batoid.RayVector.fromStop( 0.0, 0.0, optic=telescope, wavelength=625e-9, theta_x=thx, theta_y=thy ) rv_test2 = batoid.RayVector.fromStop( 0.0, 0.0, optic=telescope, backDist=telescope.backDist, wavelength=625e-9, theta_x=thx, theta_y=thy ) rv_test3 = batoid.RayVector.fromStop( 0.0, 0.0, optic=telescope, medium=telescope.inMedium, wavelength=625e-9, theta_x=thx, theta_y=thy ) rv_test4 = batoid.RayVector.fromStop( 0.0, 0.0, optic=telescope, stopSurface=telescope.stopSurface, wavelength=625e-9, theta_x=thx, theta_y=thy ) rv_tests = [rv_test1, rv_test2, rv_test3, rv_test4] for rv_test in rv_tests: telescope.trace(rv_test) np.testing.assert_allclose( rv_test.x, rv_traced1.x, rtol=0, atol=1e-14 ) np.testing.assert_allclose( rv_test.y, rv_traced1.y, rtol=0, atol=1e-14 ) np.testing.assert_allclose( rv_test.z, rv_traced1.z, rtol=0, atol=1e-14 ) np.testing.assert_allclose( rv_test.vx, rv_traced1.vx, rtol=0, atol=1e-14 ) np.testing.assert_allclose( rv_test.vy, rv_traced1.vy, rtol=0, atol=1e-14 ) np.testing.assert_allclose( rv_test.vz, rv_traced1.vz, rtol=0, atol=1e-14 ) # A few more coverage checks with np.testing.assert_raises(ValueError): # no wavelength rv = batoid.RayVector.fromFieldAngles( 0, 0 ) rv = batoid.RayVector.fromFieldAngles( 0, 0, wavelength=625e-9 ) rv2 = batoid.RayVector.fromFieldAngles( 0, 0, wavelength=625e-9, backDist=40.0, stopSurface=batoid.Interface(batoid.Plane()), medium=batoid.vacuum ) assert rv == rv2 if __name__ == '__main__': init_gpu() test_properties() test_positionAtTime() test_propagate() test_phase() test_sumAmplitude() test_equals() test_asGrid() test_asPolar() test_asSpokes() test_factory_optic() test_getitem() test_fromStop() test_fromFieldAngles() ``` #### File: jtrace/tests/test_Sum.py ```python import batoid import numpy as np from test_helpers import timer, do_pickle, rays_allclose, all_obj_diff, init_gpu @timer def test_properties(): rng = np.random.default_rng(5) for i in range(100): s1 = batoid.Sphere(rng.uniform(1, 3)) s2 = batoid.Paraboloid(rng.uniform(1, 3)) sum = batoid.Sum([s1, s2]) do_pickle(sum) assert s1 is sum.surfaces[0] assert s2 is sum.surfaces[1] s3 = batoid.Quadric(rng.uniform(3, 5), rng.uniform(-0.1, 0.1)) sum2 = batoid.Sum([s1, s2, s3]) do_pickle(sum2) assert s1 is sum2.surfaces[0] assert s2 is sum2.surfaces[1] assert s3 is sum2.surfaces[2] @timer def test_sag(): rng = np.random.default_rng(57) for _ in range(100): s1 = batoid.Sphere(rng.uniform(1, 3)) s2 = batoid.Paraboloid(rng.uniform(1, 3)) sum = batoid.Sum([s1, s2]) x = rng.normal(size=5000) y = rng.normal(size=5000) np.testing.assert_allclose( sum.sag(x, y), s1.sag(x, y) + s2.sag(x, y), rtol=0, atol=1e-12 ) s3 = batoid.Quadric(rng.uniform(3, 5), rng.uniform(-0.1, 0.1)) sum2 = batoid.Sum([s1, s2, s3]) np.testing.assert_allclose( sum2.sag(x, y), s1.sag(x, y) + s2.sag(x, y) + s3.sag(x, y), rtol=0, atol=1e-12 ) @timer def test_normal(): rng = np.random.default_rng(577) for _ in range(100): s1 = batoid.Sphere(rng.uniform(1, 3)) s2 = batoid.Paraboloid(rng.uniform(1, 3)) sum = batoid.Sum([s1, s2]) x = rng.normal(size=5000) y = rng.normal(size=5000) n1 = s1.normal(x, y) n2 = s2.normal(x, y) nx = n1[:, 0]/n1[:, 2] + n2[:, 0]/n2[:, 2] ny = n1[:, 1]/n1[:, 2] + n2[:, 1]/n2[:, 2] nz = 1./np.sqrt(nx*nx + ny*ny + 1) nx *= nz ny *= nz normal = np.array([nx, ny, nz]).T np.testing.assert_allclose( sum.normal(x, y), normal, rtol=0, atol=1e-12 ) s3 = batoid.Quadric(rng.uniform(3, 5), rng.uniform(-0.1, 0.1)) sum2 = batoid.Sum([s1, s2, s3]) n3 = s3.normal(x, y) nx = n1[:, 0]/n1[:, 2] + n2[:, 0]/n2[:, 2] + n3[:, 0]/n3[:, 2] ny = n1[:, 1]/n1[:, 2] + n2[:, 1]/n2[:, 2] + n3[:, 1]/n3[:, 2] nz = 1./np.sqrt(nx*nx + ny*ny + 1) nx *= nz ny *= nz normal = np.array([nx, ny, nz]).T np.testing.assert_allclose( sum2.normal(x, y), normal, rtol=0, atol=1e-12 ) @timer def test_intersect(): rng = np.random.default_rng(5772) size = 10_000 for _ in range(100): s1 = batoid.Sphere(1./rng.normal(0., 0.2)) s2 = batoid.Paraboloid(rng.uniform(1, 3)) sum = batoid.Sum([s1, s2]) sumCoordSys = batoid.CoordSys(origin=[0, 0, -1]) x = rng.uniform(-1, 1, size=size) y = rng.uniform(-1, 1, size=size) z = np.full_like(x, -10.0) # If we shoot rays straight up, then it's easy to predict the intersection vx = np.zeros_like(x) vy = np.zeros_like(x) vz = np.ones_like(x) rv = batoid.RayVector(x, y, z, vx, vy, vz) np.testing.assert_allclose(rv.z, -10.0) rv2 = batoid.intersect(sum, rv.copy(), sumCoordSys) assert rv2.coordSys == sumCoordSys rv2 = rv2.toCoordSys(batoid.CoordSys()) np.testing.assert_allclose(rv2.x, x) np.testing.assert_allclose(rv2.y, y) np.testing.assert_allclose( rv2.z, sum.sag(x, y)-1, rtol=0, atol=1e-12 ) # Check default intersect coordTransform rv2 = rv.copy().toCoordSys(sumCoordSys) batoid.intersect(sum, rv2) assert rv2.coordSys == sumCoordSys rv2 = rv2.toCoordSys(batoid.CoordSys()) np.testing.assert_allclose(rv2.x, x) np.testing.assert_allclose(rv2.y, y) np.testing.assert_allclose( rv2.z, sum.sag(x, y)-1, rtol=0, atol=1e-12 ) @timer def test_reflect(): rng = np.random.default_rng(57721) size = 10_000 for _ in range(100): s1 = batoid.Sphere(1./rng.normal(0., 0.2)) s2 = batoid.Paraboloid(rng.uniform(1, 3)) sum = batoid.Sum([s1, s2]) x = rng.uniform(-1, 1, size=size) y = rng.uniform(-1, 1, size=size) z = np.full_like(x, -10.0) vx = rng.uniform(-1e-5, 1e-5, size=size) vy = rng.uniform(-1e-5, 1e-5, size=size) vz = np.full_like(x, 1) rv = batoid.RayVector(x, y, z, vx, vy, vz) rvr = batoid.reflect(sum, rv.copy()) rvr2 = sum.reflect(rv.copy()) rays_allclose(rvr, rvr2) # print(f"{np.sum(rvr.failed)/len(rvr)*100:.2f}% failed") normal = sum.normal(rvr.x, rvr.y) # Test law of reflection a0 = np.einsum("ad,ad->a", normal, rv.v)[~rvr.failed] a1 = np.einsum("ad,ad->a", normal, -rvr.v)[~rvr.failed] np.testing.assert_allclose( a0, a1, rtol=0, atol=1e-12 ) # Test that rv.v, rvr.v and normal are all in the same plane np.testing.assert_allclose( np.einsum( "ad,ad->a", np.cross(normal, rv.v), rv.v )[~rvr.failed], 0.0, rtol=0, atol=1e-12 ) @timer def test_refract(): rng = np.random.default_rng(577215) size = 10_000 for _ in range(100): s1 = batoid.Sphere(1./rng.normal(0., 0.2)) s2 = batoid.Paraboloid(rng.uniform(1, 3)) sum = batoid.Sum([s1, s2]) m0 = batoid.ConstMedium(rng.normal(1.2, 0.01)) m1 = batoid.ConstMedium(rng.normal(1.3, 0.01)) x = rng.uniform(-1, 1, size=size) y = rng.uniform(-1, 1, size=size) z = np.full_like(x, -10.0) vx = rng.uniform(-1e-5, 1e-5, size=size) vy = rng.uniform(-1e-5, 1e-5, size=size) vz = np.sqrt(1-vx*vx-vy*vy)/m0.n rv = batoid.RayVector(x, y, z, vx, vy, vz) rvr = batoid.refract(sum, rv.copy(), m0, m1) rvr2 = sum.refract(rv.copy(), m0, m1) rays_allclose(rvr, rvr2) # print(f"{np.sum(rvr.failed)/len(rvr)*100:.2f}% failed") normal = sum.normal(rvr.x, rvr.y) # Test Snell's law s0 = np.sum(np.cross(normal, rv.v*m0.n)[~rvr.failed], axis=-1) s1 = np.sum(np.cross(normal, rvr.v*m1.n)[~rvr.failed], axis=-1) np.testing.assert_allclose( m0.n*s0, m1.n*s1, rtol=0, atol=1e-9 ) # Test that rv.v, rvr.v and normal are all in the same plane np.testing.assert_allclose( np.einsum( "ad,ad->a", np.cross(normal, rv.v), rv.v )[~rvr.failed], 0.0, rtol=0, atol=1e-12 ) @timer def test_add_plane(): rng = np.random.default_rng(5772156) for _ in range(100): # Adding a plane should have zero effect on sag or normal vector s1 = batoid.Sphere(rng.uniform(1, 3)) s2 = batoid.Plane() sum = batoid.Sum([s1, s2]) x = rng.normal(size=5000) y = rng.normal(size=5000) np.testing.assert_allclose( sum.sag(x, y), s1.sag(x, y), rtol=0, atol=1e-12 ) np.testing.assert_allclose( sum.normal(x, y), s1.normal(x, y), rtol=0, atol=1e-12, ) @timer def test_sum_paraboloid(): # para_sag = r^2/(2*R^2) # so two paraboloids yields r^2 * (1/(2*R1) + 1/(2*R2)) # so (1/(2*R1) + 1/(2*R2)) = 1/(2*R) # implies # 0.5/(1/(2*R1) + 1/(2*R2)) = R rng = np.random.default_rng(57721566) for _ in range(100): R1 = rng.uniform(1, 2) R2 = rng.uniform(2, 3) Rsum = 0.5/(1/(2*R1) + 1/(2*R2)) para1 = batoid.Paraboloid(R1) para2 = batoid.Paraboloid(R2) paraSum = batoid.Paraboloid(Rsum) paraSum2 = batoid.Sum([para1, para2]) x = rng.normal(size=5000) y = rng.normal(size=5000) np.testing.assert_allclose( paraSum.sag(x, y), paraSum2.sag(x, y), rtol=0, atol=1e-12 ) np.testing.assert_allclose( paraSum.normal(x, y), paraSum2.normal(x, y), rtol=0, atol=1e-12, ) @timer def test_ne(): objs = [ batoid.Sum([batoid.Plane(), batoid.Plane()]), batoid.Sum([batoid.Plane(), batoid.Sphere(1.0)]), batoid.Sum([batoid.Plane(), batoid.Plane(), batoid.Plane()]), batoid.Plane() ] all_obj_diff(objs) @timer def test_fail(): sum = batoid.Sum([batoid.Plane(), batoid.Sphere(1.0)]) rv = batoid.RayVector(0, 10, 0, 0, 0, -1) # Too far to side rv2 = batoid.intersect(sum, rv.copy()) np.testing.assert_equal(rv2.failed, np.array([True])) # This one passes rv = batoid.RayVector(0, 0, -1, 0, 0, +1) rv2 = batoid.intersect(sum, rv.copy()) np.testing.assert_equal(rv2.failed, np.array([False])) if __name__ == '__main__': init_gpu() test_properties() test_sag() test_normal() test_intersect() test_reflect() test_refract() test_add_plane() test_sum_paraboloid() test_ne() test_fail() ``` #### File: jtrace/tests/test_zemax.py ```python import os import pytest import galsim import numpy as np from scipy.optimize import least_squares import batoid from test_helpers import timer, init_gpu directory = os.path.dirname(__file__) @timer def test_HSC_trace(): telescope = batoid.Optic.fromYaml("HSC_old.yaml") # Zemax has a number of virtual surfaces that we don't trace in batoid. # Also, the HSC.yaml above includes Baffle surfaces not in Zemax. The # following lists select out the surfaces in common to both models. HSC_surfaces = [ 3, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 28, 29, 31 ] surface_names = ['PM', 'G1_entrance', 'G1_exit', 'G2_entrance', 'G2_exit', 'ADC1_entrance', 'ADC1_exit', 'ADC2_entrance', 'ADC2_exit', 'G3_entrance', 'G3_exit', 'G4_entrance', 'G4_exit', 'G5_entrance', 'G5_exit', 'F_entrance', 'F_exit', 'W_entrance', 'W_exit', 'D'] for fn in [ "HSC_raytrace_1.txt", "HSC_raytrace_2.txt", "HSC_raytrace_3.txt" ]: filename = os.path.join(directory, "testdata", fn) with open(filename) as f: arr = np.loadtxt(f, skiprows=22, usecols=list(range(0, 12))) arr0 = arr[0] rv = batoid.RayVector( arr0[1]/1000, arr0[2]/1000, 16.0, arr0[4], arr0[5], -arr0[6], t=0, wavelength=750e-9 ) tf = telescope.traceFull(rv) i = 0 for name in surface_names: surface = tf[name] srv = surface['out'] srv.toCoordSys(batoid.CoordSys()) bt_isec = np.array([srv.x, srv.y, srv.z-16.0]).T[0] zx_isec = arr[HSC_surfaces[i]-1][1:4]/1000 # nanometer agreement np.testing.assert_allclose(bt_isec, zx_isec, rtol=0, atol=1e-9) v = srv.v/np.linalg.norm(srv.v) bt_angle = v[0] zx_angle = arr[HSC_surfaces[i]-1][4:7] # direction cosines agree to 1e-9 np.testing.assert_allclose(bt_angle, zx_angle, rtol=0, atol=1e-9) i += 1 @timer def test_HSC_huygensPSF(): fn = os.path.join(directory, "testdata", "HSC_huygensPSF.txt") with open(fn) as f: Zarr = np.loadtxt(f, skiprows=21) Zarr = Zarr[::-1] # Need to invert, probably just a Zemax convention... telescope = batoid.Optic.fromYaml("HSC_no_obsc.yaml") thx = np.deg2rad(0.0) thy = np.deg2rad(0.75) wavelength = 750e-9 nx = 128 dx = 0.25e-6 print("computing Huygens PSF") hPSF = batoid.huygensPSF( telescope, thx, thy, projection='zemax', wavelength=wavelength, nx=nx, dx=dx, nxOut=256, reference='mean' ) print("Done") # Normalize images Zarr /= np.sum(Zarr) hPSF.array /= np.sum(hPSF.array) Zmax = np.max(Zarr) Zarr /= Zmax hPSF.array /= Zmax # Use GalSim InterpolateImage to align and subtract ii = galsim.InterpolatedImage( galsim.Image(hPSF.array, scale=0.25), normalization='sb' ) # Now setup an optimizer to fit for x/y shift def modelimg(params, ii=ii): dx, dy, dlogflux = params model = ii.shift(dx, dy)*np.exp(dlogflux) return model.drawImage(method='sb', scale=0.25, nx=256, ny=256) def resid(params, ii=ii, Zarr=Zarr): img = modelimg(params, ii=ii) r = (img.array - Zarr).ravel() return r kwargs = dict(ii=ii, Zarr=Zarr) print("Aligning") result = least_squares(resid, np.array([0.0, 0.0, 0.0]), kwargs=kwargs) optImg = modelimg(result.x, ii=ii) print("Done") np.testing.assert_allclose(Zarr, optImg.array, rtol=0, atol=3e-2) Zmom = galsim.hsm.FindAdaptiveMom(galsim.Image(Zarr, scale=0.25)) bmom = galsim.hsm.FindAdaptiveMom(optImg) np.testing.assert_allclose( Zmom.observed_shape.g1, bmom.observed_shape.g1, rtol=0, atol=0.01 ) np.testing.assert_allclose( Zmom.observed_shape.g2, bmom.observed_shape.g2, rtol=0, atol=1e-7 ) np.testing.assert_allclose( Zmom.moments_sigma, bmom.moments_sigma, rtol=0, atol=0.1 ) @timer def test_HSC_wf(): fn = os.path.join(directory, "testdata", "HSC_wavefront.txt") with open(fn) as f: Zwf = np.loadtxt(f, skiprows=17) Zwf = Zwf[::-1] # Need to invert, probably just a Zemax convention... telescope = batoid.Optic.fromYaml("HSC_no_obsc.yaml") thx = np.deg2rad(0.0) thy = np.deg2rad(0.75) wavelength = 750e-9 nx = 512 bwf = batoid.wavefront(telescope, thx, thy, wavelength, nx=nx) Zwf = np.ma.MaskedArray(data=Zwf, mask=Zwf==0) # Turn Zwf into masked array # There are unimportant differences in piston, tip, and tilt terms. So # instead of comparing the wavefront directly, we'll compare Zernike # coefficients for j >= 4. x = np.linspace(-1, 1, nx, endpoint=False) x, y = np.meshgrid(x, x) w = ~Zwf.mask # Use the same mask for both Zemax and batoid basis = galsim.zernike.zernikeBasis(37, x[w], y[w]) Zcoefs, _, _, _ = np.linalg.lstsq(basis.T, Zwf[w], rcond=-1) Bcoefs, _, _, _ = np.linalg.lstsq(basis.T, bwf.array[w], rcond=-1) for j in range(1, 38): print("{:<4d} {:8.4f} {:8.4f}".format(j, Zcoefs[j], Bcoefs[j])) np.testing.assert_allclose(Zcoefs[4:], Bcoefs[4:], rtol=0, atol=0.01) # higher order Zernikes match even better np.testing.assert_allclose(Zcoefs[11:], Bcoefs[11:], rtol=0, atol=0.01) @timer def test_HSC_zernike(): ZZernike = [0] with open(os.path.join(directory, "testdata", "HSC_Zernike.txt")) as f: for i, line in enumerate(f): if i > 38: ZZernike.append(float(line[9:20])) ZZernike = np.array(ZZernike) telescope = batoid.Optic.fromYaml("HSC_no_obsc.yaml") thx = np.deg2rad(0.0) thy = np.deg2rad(0.75) wavelength = 750e-9 nx = 256 bZernike = batoid.zernike( telescope, thx, thy, wavelength, jmax=37, nx=nx, projection='zemax', reference='chief' ) print() print("j Zemax batoid diff") print("------------------------------") for j in range(1, 38): print( f"{j:<4d} {ZZernike[j]:8.4f} {bZernike[j]:8.4f} " f"{ZZernike[j]-bZernike[j]:8.4f}" ) # Don't care about piston, tip, or tilt. np.testing.assert_allclose(ZZernike[4:], bZernike[4:], rtol=0, atol=1e-2) np.testing.assert_allclose(ZZernike[11:], bZernike[11:], rtol=0, atol=3e-3) @timer def test_LSST_wf(plot=False): thxs = [0.0, 0.0, 0.0, 1.176] thys = [0.0, 1.225, 1.75, 1.176] fns = ["LSST_wf_0.0_0.0.txt", "LSST_wf_0.0_1.225.txt", "LSST_wf_0.0_1.75.txt", "LSST_wf_1.176_1.176.txt"] for thx, thy, fn in zip(thxs, thys, fns): fn = os.path.join(directory, "testdata", fn) with open(fn, encoding='utf-16-le') as f: Zwf = np.loadtxt(f, skiprows=16) Zwf = Zwf[::-1] # Need to invert, probably just a Zemax convention... telescope = batoid.Optic.fromYaml("LSST_g_500.yaml") thx = np.deg2rad(thx) thy = np.deg2rad(thy) wavelength = 500e-9 nx = 32 bwf = batoid.wavefront( telescope, thx, thy, wavelength, nx=nx, reference='chief', projection='zemax' ) # Turn Zwf into masked array Zwf = np.ma.MaskedArray(data=Zwf, mask=Zwf==0) if plot: import matplotlib.pyplot as plt fig, axes = plt.subplots(ncols=3, figsize=(10,3)) i0 = axes[0].imshow(bwf.array) i1 = axes[1].imshow(Zwf) i2 = axes[2].imshow(bwf.array-Zwf) axes[0].set_title("batoid") axes[1].set_title("Zemax") axes[2].set_title("difference") plt.colorbar(i0, ax=axes[0], label='waves') plt.colorbar(i1, ax=axes[1], label='waves') plt.colorbar(i2, ax=axes[2], label='waves') plt.tight_layout() plt.show() np.testing.assert_allclose( Zwf*wavelength, bwf.array*wavelength, atol=1e-11, rtol=0) # 10 picometer tolerance! @timer def test_LSST_fftPSF(plot=False): thxs = [0.0, 0.0, 0.0, 1.176] thys = [0.0, 1.225, 1.75, 1.176] fns = ["LSST_fftpsf_0.0_0.0.txt", "LSST_fftpsf_0.0_1.225.txt", "LSST_fftpsf_0.0_1.75.txt", "LSST_fftpsf_1.176_1.176.txt"] for thx, thy, fn in zip(thxs, thys, fns): fn = os.path.join(directory, "testdata", fn) with open(fn, encoding='utf-16-le') as f: Zpsf = np.loadtxt(f, skiprows=18) Zpsf = Zpsf[::-1] # Need to invert, probably just a Zemax convention... Zpsf /= np.max(Zpsf) telescope = batoid.Optic.fromYaml("LSST_g_500.yaml") thx = np.deg2rad(thx) thy = np.deg2rad(thy) wavelength = 500e-9 nx = 32 bpsf = batoid.fftPSF( telescope, thx, thy, wavelength, nx=nx, reference='chief', projection='zemax' ) bpsf.array = bpsf.array[::-1,::-1] # b/c primitives are negative bpsf.array /= np.max(bpsf.array) # Use GalSim InterpolateImage to align and subtract ii = galsim.InterpolatedImage( galsim.Image(bpsf.array, scale=1.0), normalization='sb' ) # Now setup an optimizer to fit for x/y shift def modelimg(params, ii=ii): dx, dy, dlogflux = params model = ii.shift(dx, dy)*np.exp(dlogflux) return model.drawImage(method='sb', scale=1.0, nx=64, ny=64) def resid(params, ii=ii, Zpsf=Zpsf): img = modelimg(params, ii=ii) r = (img.array - Zpsf).ravel() return r kwargs = dict(ii=ii, Zpsf=Zpsf) result = least_squares(resid, np.array([0.0, 0.0, 0.0]), kwargs=kwargs) optImg = modelimg(result.x, ii=ii) if plot: import matplotlib.pyplot as plt fig, axes = plt.subplots(ncols=3, figsize=(10,3)) i0 = axes[0].imshow(optImg.array) i1 = axes[1].imshow(Zpsf) i2 = axes[2].imshow(optImg.array-Zpsf) plt.colorbar(i0, ax=axes[0]) plt.colorbar(i1, ax=axes[1]) plt.colorbar(i2, ax=axes[2]) plt.tight_layout() plt.show() @pytest.mark.slow @timer def test_LSST_huygensPSF(plot=False): thxs = [0.0, 0.0, 0.0, 1.176] thys = [0.0, 1.225, 1.75, 1.176] fns = ["LSST_hpsf_0.0_0.0.txt", "LSST_hpsf_0.0_1.225.txt", "LSST_hpsf_0.0_1.75.txt", "LSST_hpsf_1.176_1.176.txt"] if __name__ != "__main__": thxs = thxs[2:3] thys = thys[2:3] fns = fns[2:3] for thx, thy, fn in zip(thxs, thys, fns): fn = os.path.join(directory, "testdata", fn) with open(fn, encoding='utf-16-le') as f: Zpsf = np.loadtxt(f, skiprows=21) Zpsf = Zpsf[::-1] # Need to invert, probably just a Zemax convention... Zpsf /= np.max(Zpsf) telescope = batoid.Optic.fromYaml("LSST_g_500.yaml") thx = np.deg2rad(thx) thy = np.deg2rad(thy) wavelength = 500e-9 bpsf = batoid.huygensPSF( telescope, thx, thy, wavelength, nx=128, # telescope, thx, thy, wavelength, nx=1024, reference='chief', projection='zemax', dx=0.289e-6, nxOut=64 ) bpsf.array /= np.max(bpsf.array) # Use GalSim InterpolateImage to align and subtract ii = galsim.InterpolatedImage( galsim.Image(bpsf.array, scale=1.0), normalization='sb' ) # Now setup an optimizer to fit for x/y shift def modelimg(params, ii=ii): dx, dy, dlogflux = params model = ii.shift(dx, dy)*np.exp(dlogflux) return model.drawImage(method='sb', scale=1.0, nx=64, ny=64) def resid(params, ii=ii, Zpsf=Zpsf): img = modelimg(params, ii=ii) r = (img.array - Zpsf).ravel() return r kwargs = dict(ii=ii, Zpsf=Zpsf) print("Aligning") result = least_squares(resid, np.array([0.0, 0.0, 0.0]), kwargs=kwargs) optImg = modelimg(result.x, ii=ii) print("Done") if plot: import matplotlib.pyplot as plt fig, axes = plt.subplots(ncols=3, figsize=(10,3)) i0 = axes[0].imshow(optImg.array) i1 = axes[1].imshow(Zpsf) i2 = axes[2].imshow(optImg.array-Zpsf) plt.colorbar(i0, ax=axes[0]) plt.colorbar(i1, ax=axes[1]) plt.colorbar(i2, ax=axes[2]) plt.tight_layout() plt.show() if thy not in [0.0, 1.176]: fig, ax = plt.subplots(figsize=(6, 4)) ax.plot(optImg.array[:,32], c='g') ax.plot(Zpsf[:,32], c='b') ax.plot((optImg.array-Zpsf)[:,32], c='r') plt.show() @timer def test_LSST_trace(verbose=False): # The g_500 file uses vacuum instead of air, which is important to match # Zemax for this test. telescope = batoid.Optic.fromYaml("LSST_g_500.yaml") zSurfaces = [4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17] for fn in ["LSST_trace_0.txt", "LSST_trace_1.txt", "LSST_trace_2.txt"]: filename = os.path.join(directory, "testdata", fn) # Get normalized coordinates with open(filename, encoding='utf-16-le') as f: Hx, Hy, Px, Py = np.genfromtxt(f, skip_header=13, max_rows=4, usecols=(6,)) with open(filename, encoding='utf-16-le') as f: arr = np.genfromtxt(f, skip_header=22, max_rows=18, usecols=list(range(1, 12))) ray = batoid.RayVector.fromStop( Px*4.18, Py*4.18, optic=telescope, wavelength=500e-9, theta_x=np.deg2rad(Hx*1.75), theta_y=np.deg2rad(Hy*1.75), projection='zemax' ) tf = telescope.traceFull(ray) for surface, iz in zip(tf.values(), zSurfaces): r = surface['out'].toCoordSys(batoid.globalCoordSys) n = 1./np.sqrt(np.sum(r.v**2)) # Note Zemax has different sign convention for z-coordinates and # direction cosines. The important bits to match are x and y, which # do match, including the signs. if verbose: print(surface['name']) print('x', r.x[0], arr[iz][0]/1e3, r.x-arr[iz][0]/1e3) print('y', r.y[0], arr[iz][1]/1e3, r.y-arr[iz][1]/1e3) print('z', r.z[0], arr[iz][2]/1e3, r.z+arr[iz][2]/1e3) print('vx', r.vx[0]*n, arr[iz][3], np.abs(r.vx*n) - np.abs(arr[iz][3])) print('vy', r.vy[0]*n, arr[iz][4], np.abs(r.vy*n) - np.abs(arr[iz][4])) print('vz', r.vz[0]*n, arr[iz][5], np.abs(r.vz*n) - np.abs(arr[iz][5])) print() np.testing.assert_allclose(r.x, arr[iz][0]/1e3, rtol=0, atol=1e-10) np.testing.assert_allclose(r.y, arr[iz][1]/1e3, rtol=0, atol=1e-10) np.testing.assert_allclose( np.abs(r.z), np.abs(arr[iz][2]/1e3), rtol=0, atol=1e-10 ) np.testing.assert_allclose(np.abs(r.vx*n), np.abs(arr[iz][3]), rtol=0, atol=1e-10) np.testing.assert_allclose(np.abs(r.vy*n), np.abs(arr[iz][4]), rtol=0, atol=1e-10) np.testing.assert_allclose(np.abs(r.vz*n), np.abs(arr[iz][5]), rtol=0, atol=1e-10) @timer def test_DECam_trace(verbose=False): telescope = batoid.Optic.fromYaml("DECam.yaml") for fn in ["DECam_raytrace_0.txt", "DECam_raytrace_1.txt", "DECam_raytrace_2.txt"]: filename = os.path.join(directory, "testdata", fn) # Get normalized coordinates with open(filename, encoding='utf-16-le') as f: Hx, Hy, Px, Py = np.genfromtxt(f, skip_header=13, max_rows=4, usecols=(6,)) with open(filename, encoding='utf-16-le') as f: arr = np.genfromtxt(f, skip_header=22, max_rows=40, usecols=list(range(1, 12))) ray = batoid.RayVector.fromStop( Px*2.005, Py*2.005, optic=telescope, stopSurface=telescope['PM'], wavelength=700e-9, theta_x=np.deg2rad(Hx*1.1), theta_y=np.deg2rad(Hy*1.1), projection='zemax' ) tf = telescope.traceFull(ray) zSurfaces = [ 2, 3, 5, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] for surface, iiz in zip(tf.values(), zSurfaces): iz = iiz-1 r = surface['out'].toCoordSys(batoid.globalCoordSys) n = 1./np.sqrt(np.sum(r.v**2)) # Note Zemax has different sign convention for z-coordinates and # direction cosines. The important bits to match are x and y, which # do match, including the signs. if verbose: print(surface['name']) print('x', r.x[0], arr[iz][0]/1e3, r.x-arr[iz][0]/1e3) print('y', r.y[0], arr[iz][1]/1e3, r.y-arr[iz][1]/1e3) print('z', r.z[0], -arr[iz][2]/1e3, r.z+arr[iz][2]/1e3) print('vx', r.vx[0]*n, arr[iz][3], np.abs(r.vx*n) - np.abs(arr[iz][3])) print('vy', r.vy[0]*n, arr[iz][4], np.abs(r.vy*n) - np.abs(arr[iz][4])) print('vz', r.vz[0]*n, arr[iz][5], np.abs(r.vz*n) - np.abs(arr[iz][5])) print() np.testing.assert_allclose(r.x, arr[iz][0]/1e3, rtol=0, atol=1e-9) np.testing.assert_allclose(r.y, arr[iz][1]/1e3, rtol=0, atol=1e-9) np.testing.assert_allclose( np.abs(r.z), np.abs(arr[iz][2]/1e3), rtol=0, atol=1e-9 ) np.testing.assert_allclose(np.abs(r.vx*n), np.abs(arr[iz][3]), rtol=0, atol=1e-9) np.testing.assert_allclose(np.abs(r.vy*n), np.abs(arr[iz][4]), rtol=0, atol=1e-9) np.testing.assert_allclose(np.abs(r.vz*n), np.abs(arr[iz][5]), rtol=0, atol=1e-9) def test_DECam_exit_pupil_pos(): telescope = batoid.Optic.fromYaml("DECam.yaml") # From the Optics Prescription report, the exit pupil is # -4275.016 mm behind the focal plane. This is with the stop surface set to # the primary mirror though, so make sure to adjust that. telescope.stopSurface = telescope['PM'] np.testing.assert_allclose( batoid.exitPupilPos(telescope, wavelength=700e-9), (0, 0, telescope['D'].coordSys.origin[2]+4275.016/1e3), rtol=0, atol=1e-3 ) if __name__ == '__main__': from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument("--plotWF", action='store_true') parser.add_argument("--plotFFT", action='store_true') parser.add_argument("--plotHuygens", action='store_true') args = parser.parse_args() init_gpu() test_HSC_trace() test_HSC_huygensPSF() test_HSC_wf() test_HSC_zernike() test_LSST_wf(args.plotWF) test_LSST_fftPSF(args.plotFFT) test_LSST_huygensPSF(args.plotHuygens) test_LSST_trace(verbose=False) test_DECam_trace(verbose=False) test_DECam_exit_pupil_pos() ```
{ "source": "jmeyers314/treegp", "score": 3 }
#### File: treegp/treegp/gp_interp.py ```python import treegp import numpy as np import copy from .kernels import eval_kernel from sklearn.gaussian_process.kernels import Kernel from sklearn.neighbors import KNeighborsRegressor from scipy.linalg import cholesky, cho_solve class GPInterpolation(object): """ An interpolator that uses 2-point correlation function informations or Maximum Likelihood informations to do a gaussian process to interpolate a single surface. :param kernel: A string that can be `eval`ed to make a sklearn.gaussian_process.kernels.Kernel object. The reprs of sklearn.gaussian_process.kernels will work, as well as the repr of a custom treegp VonKarman object. [default: 'RBF(1)'] :param optimizer: Indicates which techniques to use for optimizing the kernel. Three options are available. "none" does not optimize hyperparameters and used the one given in the kernel. "two-pcf" optimize the kernel on the 1d 2-point correlation function estimate by treecorr. "anisotropic" optimize the kernel on the 2d 2-point correlation function estimate by treecorr. "log-likelihood" used the classical maximum likelihood method. :param normalize: Whether to normalize the interpolation parameters to have a mean of 0. Normally, the parameters being interpolated are not mean 0, so you would want this to be True, but if your parameters have an a priori mean of 0, then subtracting off the realized mean would be invalid. [default: True] :param white_noise: A float value that indicate the ammount of white noise that you want to use during the gp interpolation. This is an additional uncorrelated noise added to the error of the interpolated parameters. [default: 0.] :param n_neighbors: Number of neighbors to used for interpolating the spatial average using a KNeighbors interpolation. Used only if average_fits is not None. [defaulf: 4] :param nbins: Number of bins (if 1D correlation function) of the square root of the number of bins (if 2D correlation function) used in TreeCorr to compute the 2-point correlation function. [default: 20] :param min_sep: Minimum separation between pairs when computing 2-point correlation function. In the same units as the coordinates of the field. Compute automaticaly if it is not given. [default: None] :param max_sep: Maximum separation between pairs when computing 2-point correlation function. In the same units as the coordinates of the field. Compute automaticaly if it is not given. [default: None] :param average_fits: A fits file that have the spatial average functions of the interpolated parameter build in it. Build using meanify output across different exposures. See meanify documentation. [default: None] """ def __init__(self, kernel='RBF(1)', optimizer='two-pcf', normalize=True, p0=[3000., 0.,0.], white_noise=0., n_neighbors=4, average_fits=None, indice_meanify=None, nbins=20, min_sep=None, max_sep=None): self.normalize = normalize self.optimizer = optimizer self.white_noise = white_noise self.n_neighbors = n_neighbors self.nbins = nbins self.min_sep = min_sep self.max_sep = max_sep if self.optimizer == 'anisotropic': self.robust_fit = True else: self.robust_fit = False self.p0_robust_fit = p0 self.indice_meanify = indice_meanify if isinstance(kernel,str): self.kernel_template = eval_kernel(kernel) else: raise TypeError("kernel should be a string a list or a numpy.ndarray of string") if self.optimizer not in ['anisotropic', 'two-pcf', 'log-likelihood', 'none']: raise ValueError("Only anisotropic, two-pcf, log-likelihood and none are supported for optimizer. Current value: %s"%(self.optimizer)) if average_fits is not None: import fitsio average = fitsio.read(average_fits) X0 = average['COORDS0'][0] y0 = average['PARAMS0'][0] else: X0 = None y0 = None self._X0 = X0 self._y0 = y0 def _fit(self, kernel, X, y, y_err): """Update the Kernel with data. :param kernel: sklearn.gaussian_process kernel. :param X: Coordinates of the field. (n_samples, 1 or 2) :param y: Values of the field. (n_samples) :param y_err: Error of y. (n_samples) """ if self.optimizer is not "none": # Hyperparameters estimation using 2-point correlation # function information. if self.optimizer in ['two-pcf', 'anisotropic']: anisotropic = self.optimizer == 'anisotropic' self._optimizer = treegp.two_pcf(X, y, y_err, self.min_sep, self.max_sep, nbins=self.nbins, anisotropic=anisotropic, robust_fit=self.robust_fit, p0=self.p0_robust_fit) kernel = self._optimizer.optimizer(kernel) # Hyperparameters estimation using maximum likelihood fit. if self.optimizer == 'log-likelihood': self._optimizer = treegp.log_likelihood(X, y, y_err) kernel = self._optimizer.optimizer(kernel) return kernel def predict(self, X, return_cov=False): """ Predict responses to given coordinates. :param X: The coordinates at which to interpolate. (n_samples, 1 or 2). :returns: Regressed parameters (n_samples) """ y_init = copy.deepcopy(self._y) y_err = copy.deepcopy(self._y_err) y_interp, y_cov = self.return_gp_predict(y_init-self._mean-self._spatial_average, self._X, X, self.kernel, y_err=y_err, return_cov=return_cov) y_interp = y_interp.T spatial_average = self._build_average_meanify(X) y_interp += self._mean + spatial_average if return_cov: return y_interp, y_cov else: return y_interp def return_gp_predict(self, y, X1, X2, kernel, y_err, return_cov=False): """Compute interpolation with gaussian process for a given kernel. :param y: Values of the field. (n_samples) :param X1: The coodinates of the field. (n_samples, 1 or 2) :param X2: The coordinates at which to interpolate. (n_samples, 1 or 2) :param kernel: sklearn.gaussian_process kernel. :param y_err: Error of y. (n_samples) """ HT = kernel.__call__(X2, Y=X1) K = kernel.__call__(X1) + np.eye(len(y))*y_err**2 factor = (cholesky(K, overwrite_a=True, lower=False), False) alpha = cho_solve(factor, y, overwrite_b=False) y_predict = np.dot(HT,alpha.reshape((len(alpha),1))).T[0] if return_cov: fact = cholesky(K, lower=True) # I am computing maybe twice the same things... v = cho_solve((fact, True), HT.T) y_cov = kernel.__call__(X2) - HT.dot(v) return y_predict, y_cov else: return y_predict, None def initialize(self, X, y, y_err=None): """Initialize both the interpolator to some state prefatory to any solve iterations and initialize the field values for use with this interpolator. :param X: The coodinates of the field. (n_samples, 1 or 2) :param y: Values of the field. (n_samples) :param y_err: Error of y. (n_samples) """ self.kernel = copy.deepcopy(self.kernel_template) self._X = X self._y = y if y_err is None: y_err = np.zeros_like(y) self._y_err = y_err if self._X0 is None: self._X0 = np.zeros_like(self._X) self._y0 = np.zeros_like(self._y) self._spatial_average = self._build_average_meanify(X) if self.white_noise > 0: y_err = np.sqrt(copy.deepcopy(self._y_err)**2 + self.white_noise**2) self._y_err = y_err if self.normalize: self._mean = np.mean(y - self._spatial_average) else: self._mean = 0. def _build_average_meanify(self, X): """Compute spatial average from meanify output for a given coordinate using KN interpolation. If no average_fits was given, return array of 0. :param X: Coordinates of training coordinates where to interpolate. (n_samples, 1 or 2) """ if np.sum(np.equal(self._X0, 0)) != len(self._X0[:,0])*len(self._X0[0]): neigh = KNeighborsRegressor(n_neighbors=self.n_neighbors) neigh.fit(self._X0, self._y0) average = neigh.predict(X) if self.indice_meanify is not None: average = average[:,self.indice_meanify] return average else: return np.zeros((len(X[:,0]))) def solve(self): """Set up this GPInterp object. Solve for hyperparameters if requested using 2-point correlation function method or maximum likelihood. """ self._init_theta = [] kernel = copy.deepcopy(self.kernel) self._init_theta.append(kernel.theta) self.kernel = self._fit(self.kernel, self._X, self._y-self._mean-self._spatial_average, self._y_err) def return_2pcf(self): """ Return 2-point correlation function and its variance using Bootstrap. """ anisotropic = self.optimizer == "anisotropic" pcf = treegp.two_pcf(self._X, self._y-self._mean-self._spatial_average, self._y_err, self.min_sep, self.max_sep, nbins=self.nbins, anisotropic=anisotropic) xi, xi_weight, distance, coord, mask = pcf.return_2pcf() return xi, xi_weight, distance, coord, mask def return_log_likelihood(self, theta=None): """ Return of log likehood of gaussian process for given hyperparameters. :param theta: Array of hyperparamters. (default: None) """ kernel = copy.deepcopy(self.kernel) if theta is not None: kernel = kernel.clone_with_theta(theta) logl = treegp.log_likelihood(self._X, self._y-self._mean-self._spatial_average, self._y_err) log_likelihood = logl.log_likelihood(kernel) return log_likelihood ``` #### File: treegp/treegp/kernels.py ```python import numpy as np from scipy.spatial.distance import cdist from sklearn.gaussian_process.kernels import StationaryKernelMixin, NormalizedKernelMixin, Kernel from sklearn.gaussian_process.kernels import Hyperparameter from sklearn.gaussian_process.kernels import _check_length_scale def eval_kernel(kernel): """ Some import trickery to get all subclasses of sklearn.gaussian_process.kernels.Kernel into the local namespace without doing "from sklearn.gaussian_process.kernels import *" and without importing them all manually. Example: kernel = eval_kernel("RBF(1)") instead of kernel = sklearn.gaussian_process.kernels.RBF(1) """ def recurse_subclasses(cls): out = [] for c in cls.__subclasses__(): out.append(c) out.extend(recurse_subclasses(c)) return out clses = recurse_subclasses(Kernel) for cls in clses: module = __import__(cls.__module__, globals(), locals(), cls) execstr = "{0} = module.{0}".format(cls.__name__) exec(execstr, globals(), locals()) from numpy import array try: k = eval(kernel) except (KeyboardInterrupt, SystemExit): raise except Exception as e: # pragma: no cover raise RuntimeError("Failed to evaluate kernel string {0!r}. " "Original exception: {1}".format(kernel, e)) if type(k.theta) is property: raise TypeError("String provided was not initialized properly") return k class AnisotropicRBF(StationaryKernelMixin, NormalizedKernelMixin, Kernel): """ A GaussianProcessRegressor Kernel representing a radial basis function (essentially a squared exponential or Gaussian) but with arbitrary anisotropic covariance. While the parameter for this kernel, an inverse covariance matrix, can be specified directly with the `invLam` kwarg, it may be more convenient to instead specify a characteristic scale-length for each axis using the `scale_length` kwarg. Note that a list or array is required so that the dimensionality of the kernel can be determined from its length. For optimization, it's necessary to reparameterize the inverse covariance matrix in such a way as to ensure that it's always positive definite. To this end, we define `theta` (abbreviated `th` below) such that invLam = L * L.T L = [[exp(th[0]) 0 0 ... 0 0 ] [th[n] exp(th[1])] 0 ... 0 0 ] [th[n+1] th[n+2] exp(th[3]) ... 0 0 ] [... ... ... ... ... ... ] [th[] th[] th[] ... exp(th[n-2]) 0 ] [th[] th[] th[] ... th[n*(n+1)/2-1] exp(th[n-1])]] I.e., the inverse covariance matrix is Cholesky-decomposed, exp(theta[0:n]) lie on the diagonal of the Cholesky matrix, and theta[n:n*(n+1)/2] lie in the lower triangular part of the Cholesky matrix. This parameterization invertably maps all valid n x n covariance matrices to R^(n*(n+1)/2). I.e., the range of each theta[i] is -inf...inf. :param invLam: Inverse covariance matrix of radial basis function. Exactly one of invLam and scale_length must be provided. :param scale_length: Axes-aligned scale lengths of the kernel. len(scale_length) must be the same as the dimensionality of the kernel, even if the scale length is the same for each axis (i.e., even if the kernel is isotropic). Exactly one of invLam and scale_length must be provided. :param bounds: Optional keyword indicating fitting bounds on *theta*. Can either be a 2-element iterable, which will be taken to be the min and max value for every theta element, or an [ntheta, 2] array indicating bounds on each of ntheta elements. """ def __init__(self, invLam=None, scale_length=None, bounds=(-5,5)): if scale_length is not None: if invLam is not None: raise TypeError("Cannot set both invLam and scale_length in AnisotropicRBF.") invLam = np.diag(1./np.array(scale_length)**2) self.ndim = invLam.shape[0] self.ntheta = self.ndim*(self.ndim+1)//2 self._d = np.diag_indices(self.ndim) self._t = np.tril_indices(self.ndim, -1) self.set_params(invLam) bounds = np.array(bounds) if bounds.ndim == 1: bounds = np.repeat(bounds[None, :], self.ntheta, axis=0) assert bounds.shape == (self.ntheta, 2) self._bounds = bounds def __call__(self, X, Y=None, eval_gradient=False): from scipy.spatial.distance import pdist, cdist, squareform X = np.atleast_2d(X) if Y is None: dists = pdist(X, metric='mahalanobis', VI=self.invLam) K = np.exp(-0.5 * dists**2) K = squareform(K) np.fill_diagonal(K, 1) else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X, Y, metric='mahalanobis', VI=self.invLam) K = np.exp(-0.5 * dists**2) if eval_gradient: if self.hyperparameter_cholesky_factor.fixed: return K, np.empty((X.shape[0], X.shape[0], 0)) else: # dK_pq/dth_k = -0.5 * K_pq * # ((x_p_i-x_q_i) * dInvLam_ij/dth_k * (x_q_j - x_q_j)) # dInvLam_ij/dth_k = dL_ij/dth_k * L_ij.T + L_ij * dL_ij.T/dth_k # dL_ij/dth_k is a matrix with all zeros except for one element. That element is # L_ij if k indicates one of the theta parameters landing on the Cholesky diagonal, # and is 1.0 if k indicates one of the thetas in the lower triangular region. L_grad = np.zeros((self.ntheta, self.ndim, self.ndim), dtype=float) L_grad[(np.arange(self.ndim),)+self._d] = self._L[self._d] L_grad[(np.arange(self.ndim, self.ntheta),)+self._t] = 1.0 half_invLam_grad = np.dot(L_grad, self._L.T) invLam_grad = half_invLam_grad + np.transpose(half_invLam_grad, (0, 2, 1)) dX = X[:, np.newaxis, :] - X[np.newaxis, :, :] dist_grad = np.einsum("ijk,lkm,ijm->ijl", dX, invLam_grad, dX) K_gradient = -0.5 * K[:, :, np.newaxis] * dist_grad return K, K_gradient else: return K @property def hyperparameter_cholesky_factor(self): return Hyperparameter("CholeskyFactor", "numeric", (1e-5, 1e5), int(self.ntheta)) def get_params(self, deep=True): return {"invLam":self.invLam} def set_params(self, invLam=None): if invLam is not None: self.invLam = invLam self._L = np.linalg.cholesky(self.invLam) self._theta = np.hstack([np.log(self._L[self._d]), self._L[self._t]]) @property def theta(self): return self._theta @theta.setter def theta(self, theta): self._theta = theta self._L = np.zeros_like(self.invLam) self._L[np.diag_indices(self.ndim)] = np.exp(theta[:self.ndim]) self._L[np.tril_indices(self.ndim, -1)] = theta[self.ndim:] self.invLam = np.dot(self._L, self._L.T) def __repr__(self): return "{0}(invLam={1!r})".format(self.__class__.__name__, self.invLam) @property def bounds(self): return self._bounds class VonKarman(StationaryKernelMixin, NormalizedKernelMixin, Kernel): """VonKarman kernel. Parameters ----------- length_scale : float or array with shape (n_features,), default: 1.0 The length scale of the kernel. If a float, an isotropic kernel is used. If an array, an anisotropic kernel is used where each dimension of l defines the length-scale of the respective feature dimension. length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale """ def __init__(self, length_scale=1.0, length_scale_bounds=(1e-5, 1e5)): self.length_scale = length_scale self.length_scale_bounds = length_scale_bounds @property def anisotropic(self): return np.iterable(self.length_scale) and len(self.length_scale) > 1 @property def hyperparameter_length_scale(self): if self.anisotropic: return Hyperparameter("length_scale", "numeric", self.length_scale_bounds, len(self.length_scale)) return Hyperparameter( "length_scale", "numeric", self.length_scale_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ from scipy.spatial.distance import pdist, cdist, squareform from scipy import special X = np.atleast_2d(X) length_scale = _check_length_scale(X, self.length_scale) if Y is None: dists = pdist(X, metric='euclidean') Filter = (dists != 0.) K = np.zeros_like(dists) K[Filter] = ((dists[Filter]/length_scale)**(5./6.) * special.kv(5./6.,2*np.pi*dists[Filter]/length_scale)) K = squareform(K) lim0 = special.gamma(5./6.) / (2 * (np.pi**(5./6.))) np.fill_diagonal(K, lim0) K /= lim0 else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X, Y, metric='euclidean') Filter = (dists != 0.) K = np.zeros_like(dists) K[Filter] = ((dists[Filter]/length_scale)**(5./6.) * special.kv(5./6.,2*np.pi*dists[Filter]/length_scale)) lim0 = special.gamma(5./6.) / (2 * (np.pi**(5./6.))) if np.sum(Filter) != len(K[0])*len(K[:,0]): K[~Filter] = lim0 K /= lim0 if eval_gradient: if self.hyperparameter_length_scale.fixed: # Hyperparameter l kept fixed return K, np.empty((X.shape[0], X.shape[0], 0)) elif not self.anisotropic or length_scale.shape[0] == 1: K_gradient = (K * squareform(dists))[:, :, np.newaxis] return K, K_gradient elif self.anisotropic: raise ValueError( "Gradient can only be evaluated with isotropic VonKarman kernel for the moment.") else: return K def __repr__(self): if self.anisotropic: return "{0}(length_scale=[{1}])".format( self.__class__.__name__, ", ".join(map("{0:.3g}".format, self.length_scale))) else: # isotropic return "{0}(length_scale={1:.3g})".format( self.__class__.__name__, np.ravel(self.length_scale)[0]) class AnisotropicVonKarman(StationaryKernelMixin, NormalizedKernelMixin, Kernel): """ A GaussianProcessRegressor Kernel representing a Von-Karman correlation function with an arbitrary anisotropic covariance. While the parameter for this kernel, an inverse covariance matrix, can be specified directly with the `invLam` kwarg, it may be more convenient to instead specify a characteristic scale-length for each axis using the `scale_length` kwarg. Note that a list or array is required so that the dimensionality of the kernel can be determined from its length. For optimization, it's necessary to reparameterize the inverse covariance matrix in such a way as to ensure that it's always positive definite. To this end, we define `theta` (abbreviated `th` below) such that invLam = L * L.T L = [[exp(th[0]) 0 0 ... 0 0 ] [th[n] exp(th[1])] 0 ... 0 0 ] [th[n+1] th[n+2] exp(th[3]) ... 0 0 ] [... ... ... ... ... ... ] [th[] th[] th[] ... exp(th[n-2]) 0 ] [th[] th[] th[] ... th[n*(n+1)/2-1] exp(th[n-1])]] I.e., the inverse covariance matrix is Cholesky-decomposed, exp(theta[0:n]) lie on the diagonal of the Cholesky matrix, and theta[n:n*(n+1)/2] lie in the lower triangular part of the Cholesky matrix. This parameterization invertably maps all valid n x n covariance matrices to R^(n*(n+1)/2). I.e., the range of each theta[i] is -inf...inf. :param invLam: Inverse covariance matrix of radial basis function. Exactly one of invLam and scale_length must be provided. :param scale_length: Axes-aligned scale lengths of the kernel. len(scale_length) must be the same as the dimensionality of the kernel, even if the scale length is the same for each axis (i.e., even if the kernel is isotropic). Exactly one of invLam and scale_length must be provided. :param bounds: Optional keyword indicating fitting bounds on *theta*. Can either be a 2-element iterable, which will be taken to be the min and max value for every theta element, or an [ntheta, 2] array indicating bounds on each of ntheta elements. """ def __init__(self, invLam=None, scale_length=None, bounds=(-5,5)): if scale_length is not None: if invLam is not None: raise TypeError("Cannot set both invLam and scale_length in AnisotropicVonKarman.") invLam = np.diag(1./np.array(scale_length)**2) self.ndim = invLam.shape[0] self.ntheta = self.ndim*(self.ndim+1)//2 self._d = np.diag_indices(self.ndim) self._t = np.tril_indices(self.ndim, -1) self.set_params(invLam) bounds = np.array(bounds) if bounds.ndim == 1: bounds = np.repeat(bounds[None, :], self.ntheta, axis=0) assert bounds.shape == (self.ntheta, 2) self._bounds = bounds def __call__(self, X, Y=None, eval_gradient=False): from scipy.spatial.distance import pdist, cdist, squareform from scipy import special X = np.atleast_2d(X) if Y is None: dists = pdist(X, metric='mahalanobis', VI=self.invLam) Filter = (dists != 0.) K = np.zeros_like(dists) K[Filter] = dists[Filter] **(5./6.) * special.kv(5./6., 2*np.pi * dists[Filter]) lim0 = special.gamma(5./6.) /(2 * ((np.pi)**(5./6.)) ) K = squareform(K) np.fill_diagonal(K, lim0) K /= lim0 else: if eval_gradient: raise ValueError( "Gradient can not be evaluated.") dists = cdist(X, Y, metric='mahalanobis', VI=self.invLam) Filter = (dists != 0.) K = np.zeros_like(dists) K[Filter] = dists[Filter] **(5./6.) * special.kv(5./6., 2*np.pi * dists[Filter]) lim0 = special.gamma(5./6.) /(2 * ((np.pi)**(5./6.)) ) if np.sum(Filter) != len(K[0])*len(K[:,0]): K[~Filter] = lim0 K /= lim0 if eval_gradient: raise ValueError( "Gradient can not be evaluated.") else: return K @property def hyperparameter_cholesky_factor(self): return Hyperparameter("CholeskyFactor", "numeric", (1e-5, 1e5), int(self.ntheta)) def get_params(self, deep=True): return {"invLam":self.invLam} def set_params(self, invLam=None): if invLam is not None: self.invLam = invLam self._L = np.linalg.cholesky(self.invLam) self._theta = np.hstack([np.log(self._L[self._d]), self._L[self._t]]) @property def theta(self): return self._theta @theta.setter def theta(self, theta): self._theta = theta self._L = np.zeros_like(self.invLam) self._L[np.diag_indices(self.ndim)] = np.exp(theta[:self.ndim]) self._L[np.tril_indices(self.ndim, -1)] = theta[self.ndim:] self.invLam = np.dot(self._L, self._L.T) def __repr__(self): return "{0}(invLam={1!r})".format(self.__class__.__name__, self.invLam) @property def bounds(self): return self._bounds ```
{ "source": "jmeyers314/wfsim", "score": 2 }
#### File: wfsim/wfsim/catalog.py ```python import numpy as np import lsst.sphgeom as sphgeom # Add some missing functionality from sphgeom # See LSSTDESC.Coord for definitions of these def _dsq(pt1, pt2): return ( (pt1.x()-pt2.x())**2 + (pt1.y()-pt2.y())**2 + (pt1.z()-pt2.z())**2 ) def _cross(pt1, pt2): return ( pt1.y() * pt2.z() - pt2.y() * pt1.z(), pt1.z() * pt2.x() - pt2.z() * pt1.x(), pt1.x() * pt2.y() - pt2.x() * pt1.y() ) def _triple(pt1, pt2, pt3): return np.linalg.det( [[ pt2.x(), pt2.y(), pt2.z() ], [ pt1.x(), pt1.y(), pt1.z() ], [ pt3.x(), pt3.y(), pt3.z() ]] ) def _alt_triple(pt1, pt2, pt3): dsq_AC = (pt1.x()-pt2.x())**2 + (pt1.y()-pt2.y())**2 + (pt1.z()-pt2.z())**2 dsq_BC = (pt1.x()-pt3.x())**2 + (pt1.y()-pt3.y())**2 + (pt1.z()-pt3.z())**2 dsq_AB = (pt3.x()-pt2.x())**2 + (pt3.y()-pt2.y())**2 + (pt3.z()-pt2.z())**2 return 0.5 * (dsq_AC + dsq_BC - dsq_AB - 0.5 * dsq_AC * dsq_BC) def distance_to(pt1, pt2): dsq = _dsq(pt1, pt2) if dsq < 3.99: return 2*np.arcsin(0.5 * np.sqrt(dsq)) else: cx, cy, cz = _cross(pt1, pt2) crosssq = cx**2 + cy**2 + cz**2 return np.pi - np.arcsin(np.sqrt(crosssq)) def angle_between(pt1, pt2, pt3): sinC = _triple(pt1, pt2, pt3) cosC = _alt_triple(pt1, pt2, pt3) C = np.arctan2(sinC, cosC) return C def area(poly): vertices = poly.getVertices() s = 0 N = len(vertices) for i in range(N): s += angle_between( vertices[(i+1)%N], vertices[i%N], vertices[(i+2)%N] ) return np.abs(s) - (N-2)*np.pi def _magfunc(m): """Approximate magnitude function between +4 and +25 https://spacemath.gsfc.nasa.gov/stars/6Page103.pdf """ return 10**(-0.0003*m**3 + 0.0019*m**2 + 0.484*m - 3.82) def rotate(axis, angle, vec): ndim = vec.ndim vec = np.atleast_2d(vec) sth, cth = np.sin(angle), np.cos(angle) dot = np.dot(axis, vec.T) cross = np.cross(axis, vec) out = vec * cth out += cross * sth out += axis * dot[:, None] * (1-cth) if ndim == 1: out = out[0] return out class MockStarCatalog: def __init__(self, level=7, seed=57721): self.htm = sphgeom.HtmPixelization(level) self.seed = seed self.bins = np.arange(10.0, 25.1, 0.1) self.bincounts = np.empty(len(self.bins)-1) for i, bin in enumerate(self.bins[:-1]): self.bincounts[i] = _magfunc(bin+0.1) - _magfunc(bin) self.density = np.sum(self.bincounts) # per sq. degree def get_triangle_stars(self, idx): rng = np.random.default_rng(self.seed+idx) triangle = self.htm.triangle(idx) circle = triangle.getBoundingCircle() center = circle.getCenter() opening_angle = circle.getOpeningAngle().asRadians() area = circle.getArea() * (180/np.pi)**2 N = rng.poisson(self.density*area) # uniformly sample cylinder then project to sphere zmin = np.cos(opening_angle) z = rng.uniform(zmin, 1, size=N) ph = rng.uniform(0, 2*np.pi, size=N) r = np.sqrt(1-z**2) x = r*np.cos(ph) y = r*np.sin(ph) # rotate to correct point on the sky axis = sphgeom.UnitVector3d.orthogonalTo(sphgeom.UnitVector3d.Z(), center) angle = np.pi/2 - sphgeom.LonLat.latitudeOf(center).asRadians() xyz = np.array([x, y, z]).T xyz = rotate(axis, angle, xyz) # sample magnitudes magbin = rng.choice( len(self.bincounts), size=N, p=self.bincounts/self.density ) mag = self.bins[magbin] + rng.uniform(0, 0.1, size=N) # only keep points actually within triangle w = triangle.contains(*xyz.T) xyz = xyz[w] mag = mag[w] return xyz, mag def get_stars(self, polygon): ranges = self.htm.envelope(polygon) # For each spherical triangle, seed is index + self.seed # Uniformly populate spherical cap xyzs = [] mags = [] for begin, end in ranges: for idx in range(begin, end): xyz, mag = self.get_triangle_stars(idx) xyzs.append(xyz) mags.append(mag) # trim to polygon xyz = np.vstack(xyzs) mag = np.hstack(mags) w = polygon.contains(*xyz.T) xyz = xyz[w] mag = mag[w] return xyz, mag ``` #### File: wfsim/wfsim/sst.py ```python from ast import Del import galsim import os import numpy as np import astropy.io.fits as fits import batoid import functools from scipy.interpolate import CloughTocher2DInterpolator from scipy.spatial import Delaunay @functools.lru_cache def _fitsCache(fn): from . import datadir return fits.getdata( os.path.join( datadir, fn ) ) def _node_to_grid(nodex, nodey, nodez, grid_coords): interp = CloughTocher2DInterpolator( np.array([nodex, nodey]).T, nodez, fill_value=0.0 ) x, y = grid_coords nx = len(x) ny = len(y) out = np.zeros([4, ny, nx]) dx = np.mean(np.diff(x))*1e-1 dy = np.mean(np.diff(y))*1e-1 x, y = np.meshgrid(x, y) out[0] = interp(x, y) out[1] = (interp(x+dx, y) - interp(x-dx, y))/(2*dx) out[2] = (interp(x, y+dy) - interp(x, y-dy))/(2*dy) out[3] = ( interp(x+dx, y+dy) - interp(x-dx, y+dy) - interp(x+dx, y-dy) + interp(x-dx, y-dy) )/(4*dx*dy) # Zero out the central hole r = np.hypot(x, y) rmin = np.min(np.hypot(nodex, nodey)) w = r < rmin out[:, w] = 0.0 return out class SSTFactory: def __init__(self, fiducial): self.fiducial = fiducial @functools.cached_property def m1m3_fea_coords(self): data = _fitsCache("M1M3_1um_156_grid.fits.gz") idx = data[:, 0] bx = data[:, 1] # (5256,) by = data[:, 2] idx1 = (idx == 1) idx3 = (idx == 3) return bx, by, idx1, idx3 @functools.cached_property def m2_fea_coords(self): data = _fitsCache("M2_1um_grid.fits.gz") # (15984, 75) bx = -data[:, 1] # meters by = data[:, 2] return bx, by @functools.cached_property def m1_grid_coords(self): data = _fitsCache("M1_bend_coords.fits.gz") return data @functools.cached_property def m2_grid_coords(self): data = _fitsCache("M2_bend_coords.fits.gz") return data @functools.cached_property def m3_grid_coords(self): data = _fitsCache("M3_bend_coords.fits.gz") return data def _m1m3_gravity(self, zenith_angle): zdata = _fitsCache("M1M3_dxdydz_zenith.fits.gz") hdata = _fitsCache("M1M3_dxdydz_horizon.fits.gz") dxyz = ( zdata * np.cos(zenith_angle) + hdata * np.sin(zenith_angle) ) dz = dxyz[:,2] # Interpolate these node displacements into z-displacements at # original node x/y positions. bx, by, idx1, idx3 = self.m1m3_fea_coords # M1 zRef = self.fiducial['M1'].surface.sag(bx[idx1], by[idx1]) zpRef = self.fiducial['M1'].surface.sag( (bx+dxyz[:, 0])[idx1], (by+dxyz[:, 1])[idx1] ) dz[idx1] += zRef - zpRef # M3 zRef = self.fiducial['M3'].surface.sag(bx[idx3], by[idx3]) zpRef = self.fiducial['M3'].surface.sag( (bx+dxyz[:, 0])[idx3], (by+dxyz[:, 1])[idx3] ) dz[idx3] += zRef - zpRef # Subtract PTT # This kinda makes sense for M1, but why for combined M1M3? zBasis = galsim.zernike.zernikeBasis( 3, bx, by, R_outer=4.18, R_inner=2.558 ) coefs, _, _, _ = np.linalg.lstsq(zBasis.T, dxyz[:, 2], rcond=None) zern = galsim.zernike.Zernike(coefs, R_outer=4.18, R_inner=2.558) dz -= zern(bx, by) return dz def _m1m3_temperature( self, m1m3TBulk, m1m3TxGrad, m1m3TyGrad, m1m3TzGrad, m1m3TrGrad, ): if m1m3TxGrad is None: m1m3TxGrad = 0.0 bx, by, idx1, idx3 = self.m1m3_fea_coords normX = bx / 4.18 normY = by / 4.18 data = _fitsCache("M1M3_thermal_FEA.fits.gz") delaunay = Delaunay(data[:, 0:2]) tbdz = CloughTocher2DInterpolator(delaunay, data[:, 2])(normX, normY) txdz = CloughTocher2DInterpolator(delaunay, data[:, 3])(normX, normY) tydz = CloughTocher2DInterpolator(delaunay, data[:, 4])(normX, normY) tzdz = CloughTocher2DInterpolator(delaunay, data[:, 5])(normX, normY) trdz = CloughTocher2DInterpolator(delaunay, data[:, 6])(normX, normY) out = m1m3TBulk * tbdz out += m1m3TxGrad * txdz out += m1m3TyGrad * tydz out += m1m3TzGrad * tzdz out += m1m3TrGrad * trdz out *= 1e-6 return out # def _m2_gravity(self, zenith_angle): # # This reproduces ts_phosim with preCompElevInRadian=0, but what is # # that? Also, I have questions regarding the input domain of the Rbf # # interpolation... # bx, by = self.m2_fea_coords # data = _fitsCache("M2_GT_FEA.fits.gz") # from scipy.interpolate import Rbf # zdz = Rbf(data[:, 0], data[:, 1], data[:, 2])(bx/1.71, by/1.71) # hdz = Rbf(data[:, 0], data[:, 1], data[:, 3])(bx/1.71, by/1.71) # out = zdz * (np.cos(zenith_angle) - 1) # out += hdz * np.sin(zenith_angle) # out *= 1e-6 # micron -> meters # return out # def _m2_temperature(self, m2TzGrad, m2TrGrad): # # Same domain problem here as m2_gravity... # bx, by = self.m2_fea_coords # data = _fitsCache("M2_GT_FEA.fits.gz") # from scipy.interpolate import Rbf # tzdz = Rbf(data[:, 0], data[:, 1], data[:, 4])(bx/1.71, by/1.71) # trdz = Rbf(data[:, 0], data[:, 1], data[:, 5])(bx/1.71, by/1.71) # out = m2TzGrad * tzdz # out += m2TrGrad * trdz # out *= 1e-6 # micron -> meters # return out # This is Josh's preferred interpolator, but fails b/c domain issues. def _m2_gravity(self, zenith_angle): bx, by = self.m2_fea_coords data = _fitsCache("M2_GT_FEA.fits.gz") # Hack to get interpolation points inside Convex Hull of input delaunay = Delaunay(data[:, 0:2]/0.95069) zdz = CloughTocher2DInterpolator(delaunay, data[:, 2])(bx/1.71, by/1.71) hdz = CloughTocher2DInterpolator(delaunay, data[:, 3])(bx/1.71, by/1.71) out = zdz * (np.cos(zenith_angle) - 1) out += hdz * np.sin(zenith_angle) out *= 1e-6 # micron -> meters return out def _m2_temperature(self, m2TzGrad, m2TrGrad): # Same domain problem here as m2_gravity... bx, by = self.m2_fea_coords normX = bx / 1.71 normY = by / 1.71 data = _fitsCache("M2_GT_FEA.fits.gz") # Hack to get interpolation points inside Convex Hull of input delaunay = Delaunay(data[:, 0:2]/0.95069) tzdz = CloughTocher2DInterpolator(delaunay, data[:, 4])(normX, normY) trdz = CloughTocher2DInterpolator(delaunay, data[:, 5])(normX, normY) out = m2TzGrad * tzdz out += m2TrGrad * trdz out *= 1e-6 return out def get_telescope( self, zenith_angle=None, # radians rotation_angle=None, # radians m1m3TBulk=0.0, # 2-sigma spans +/- 0.8C m1m3TxGrad=0.0, # 2-sigma spans +/- 0.4C m1m3TyGrad=0.0, # 2-sigma spans +/- 0.4C m1m3TzGrad=0.0, # 2-sigma spans +/- 0.1C m1m3TrGrad=0.0, # 2-sigma spans +/- 0.1C m2TzGrad=0.0, m2TrGrad=0.0, camTB=None, dof=None, doM1M3Pert=False, doM2Pert=False, doCamPert=False, _omit_dof_grid=False, _omit_dof_zk=False, ): optic = self.fiducial if dof is None: dof = np.zeros(50) # order is z, dzdx, dzdy, d2zdxdy # These can get set either through grav/temp perturbations or through # dof m1_grid = np.zeros((4, 204, 204)) m3_grid = np.zeros((4, 204, 204)) m1m3_zk = np.zeros(29) if doM1M3Pert: # hard code for now # indices are over FEA nodes m1m3_fea_dz = np.zeros(5256) if zenith_angle is not None: m1m3_fea_dz = self._m1m3_gravity(zenith_angle) if any([m1m3TBulk, m1m3TxGrad, m1m3TyGrad, m1m3TzGrad, m1m3TrGrad]): m1m3_fea_dz += self._m1m3_temperature( m1m3TBulk, m1m3TxGrad, m1m3TyGrad, m1m3TzGrad, m1m3TrGrad ) if np.any(m1m3_fea_dz): bx, by, idx1, idx3 = self.m1m3_fea_coords zBasis = galsim.zernike.zernikeBasis( 28, -bx, by, R_outer=4.18 ) m1m3_zk, *_ = np.linalg.lstsq(zBasis.T, m1m3_fea_dz, rcond=None) zern = galsim.zernike.Zernike(m1m3_zk, R_outer=4.18) m1m3_fea_dz -= zern(-bx, by) m1_grid = _node_to_grid( bx[idx1], by[idx1], m1m3_fea_dz[idx1], self.m1_grid_coords ) m3_grid = _node_to_grid( bx[idx3], by[idx3], m1m3_fea_dz[idx3], self.m3_grid_coords ) m1_grid *= -1 m3_grid *= -1 m1m3_zk *= -1 # M1M3 bending modes if np.any(dof[10:30] != 0): if not _omit_dof_grid: m1_bend = _fitsCache("M1_bend_grid.fits.gz") m3_bend = _fitsCache("M3_bend_grid.fits.gz") m1_grid += np.tensordot(m1_bend, dof[10:30], axes=[[1], [0]]) m3_grid += np.tensordot(m3_bend, dof[10:30], axes=[[1], [0]]) if not _omit_dof_zk: m1m3_zk += np.dot(dof[10:30], _fitsCache("M13_bend_zk.fits.gz")) if np.any([m1m3_zk]) or np.any(m1_grid): optic = optic.withSurface( 'M1', batoid.Sum([ optic['M1'].surface, batoid.Zernike(m1m3_zk, R_outer=4.18), batoid.Bicubic(*self.m1_grid_coords, *m1_grid) ]) ) if np.any([m1m3_zk]) or np.any(m3_grid): optic = optic.withSurface( 'M3', batoid.Sum([ optic['M3'].surface, batoid.Zernike(m1m3_zk, R_outer=4.18), batoid.Bicubic(*self.m3_grid_coords, *m3_grid) ]) ) m2_grid = np.zeros((4, 204, 204)) m2_zk = np.zeros(29) if doM2Pert: # hard code for now # indices are over FEA nodes m2_fea_dz = np.zeros(15984) if zenith_angle is not None: m2_fea_dz = self._m2_gravity(zenith_angle) if any([m2TzGrad, m2TrGrad]): m2_fea_dz += self._m2_temperature( m2TzGrad, m2TrGrad ) if np.any(m2_fea_dz): bx, by = self.m2_fea_coords zBasis = galsim.zernike.zernikeBasis( 28, -bx, by, R_outer=1.71 ) m2_zk, *_ = np.linalg.lstsq(zBasis.T, m2_fea_dz, rcond=None) zern = galsim.zernike.Zernike(m2_zk, R_outer=1.71) m2_fea_dz -= zern(-bx, by) m3_grid = _node_to_grid( bx, by, m2_fea_dz, self.m2_grid_coords ) m2_grid *= -1 m2_zk *= -1 if np.any(dof[30:50] != 0): if not _omit_dof_grid: m2_bend = _fitsCache("M2_bend_grid.fits.gz") m2_grid += np.tensordot(m2_bend, dof[30:50], axes=[[1], [0]]) if not _omit_dof_zk: m2_zk += np.dot(dof[30:50], _fitsCache("M2_bend_zk.fits.gz")) if np.any([m2_zk]) or np.any(m2_grid): optic = optic.withSurface( 'M2', batoid.Sum([ optic['M2'].surface, batoid.Zernike(m2_zk, R_outer=1.71), batoid.Bicubic(*self.m2_grid_coords, *m2_grid) ]) ) if np.any(dof[0:3] != 0): optic = optic.withGloballyShiftedOptic( "M2", np.array([dof[1], dof[2], -dof[0]])*1e-6 ) if np.any(dof[3:5] != 0): rx = batoid.RotX(np.deg2rad(-dof[3]/3600)) ry = batoid.RotY(np.deg2rad(-dof[4]/3600)) optic = optic.withLocallyRotatedOptic( "M2", rx @ ry ) if np.any(dof[5:8] != 0): optic = optic.withGloballyShiftedOptic( "LSSTCamera", np.array([dof[6], dof[7], -dof[5]])*1e-6 ) if np.any(dof[8:10] != 0): rx = batoid.RotX(np.deg2rad(-dof[8]/3600)) ry = batoid.RotY(np.deg2rad(-dof[9]/3600)) optic = optic.withLocallyRotatedOptic( "LSSTCamera", rx @ ry ) if doCamPert: cam_data = [ ('L1S1', 'L1_entrance', 0.775), ('L1S2', 'L1_exit', 0.775), ('L2S1', 'L2_entrance', 0.551), ('L2S2', 'L2_exit', 0.551), ('L3S1', 'L3_entrance', 0.361), ('L3S2', 'L3_exit', 0.361), ] for tname, bname, radius in cam_data: data = _fitsCache(tname+"zer.fits.gz") grav_zk = data[0, 3:] * (np.cos(zenith_angle) - 1) grav_zk += ( data[1, 3:] * np.cos(rotation_angle) + data[2, 3:] * np.sin(rotation_angle) ) * np.sin(zenith_angle) # subtract pre-compensated grav... TB = np.clip(camTB, data[3, 2], data[10, 2]) fidx = np.interp(camTB, data[3:, 2], np.arange(len(data[3:, 2])))+3 idx = int(np.floor(fidx)) whi = fidx - idx wlo = 1 - whi temp_zk = wlo * data[idx, 3:] + whi * data[idx+1, 3:] # subtract reference temperature zk (0 deg C is idx=5) temp_zk -= data[5, 3:] surf_zk = grav_zk + temp_zk # remap Andy -> Noll Zernike indices zIdxMapping = [ 1, 3, 2, 5, 4, 6, 8, 9, 7, 10, 13, 14, 12, 15, 11, 19, 18, 20, 17, 21, 16, 25, 24, 26, 23, 27, 22, 28 ] surf_zk = surf_zk[[x - 1 for x in zIdxMapping]] surf_zk *= -1e-3 # mm -> m # tsph -> batoid 0-index offset surf_zk = np.concatenate([[0], surf_zk]) optic = optic.withSurface( bname, batoid.Sum([ optic[bname].surface, batoid.Zernike(-surf_zk, R_outer=radius) ]) ) return optic # TODO: # - M1M3 force error... # - actuator forces ``` #### File: wfsim/wfsim/utils.py ```python import numpy as np import galsim def BBSED(T): """(unnormalized) Blackbody SED for temperature T in Kelvin. """ waves_nm = np.arange(330.0, 1120.0, 10.0) def planck(t, w): # t in K # w in m c = 2.99792458e8 # speed of light in m/s kB = 1.3806488e-23 # Boltzmann's constant J per Kelvin h = 6.62607015e-34 # Planck's constant in J s return w**(-5) / (np.exp(h*c/(w*kB*t))-1) flambda = planck(T, waves_nm*1e-9) return galsim.SED( galsim.LookupTable(waves_nm, flambda), wave_type='nm', flux_type='flambda' ) ```
{ "source": "jmeyers314/willitdeblend", "score": 2 }
#### File: jmeyers314/willitdeblend/deblend.py ```python import numpy as np def deblend(image, peaks, interpolate=False, force_interpolate=False): """ Quick and dirty deblender. Args ---- @param image A numpy array representing an image of a blend. @param peaks A list of tuples representing the peak positions of objects in the blend. @param interpolate If at least one component of rot_center is not a half-integer, use GalSim to rotate the image. @param force_interpolate Use GalSim to rotate the image, even if rot_center components are half-integer and rotation via numpy array operations is possible. @returns templates, template_fractions, children """ work_image = image+1.e-20 # avoid zeros which lead to NaNs # Step 1: Make symmetric templates templates = [np.fmin(work_image, rotate(work_image, peak, interpolate=interpolate, force_interpolate=force_interpolate)) for peak in peaks] # Step 2: Calculate relative contribution of each template template_sum = np.sum(templates, axis=0) template_fractions = [template/template_sum * (template_sum != 0) for template in templates] # Step 3: Calculate deblended children children = [t * image for t in template_fractions] return templates, template_fractions, children def rotate(image, rot_center, interpolate=False, force_interpolate=False): """ Rotate an image about a point. Defaults to using numpy array operations, which means that the rotation center is rounded to the nearest half-pixel grid point. Optionally, use GalSim to rotate about arbitrary positions, which requires interpolation since the rotated pixel grid doesn't generally align with the original pixel grid. @param image Image to rotate @param rot_center Tuple indicating point to be rotated about. (0,0) indicates rotate about the geometric center of the image (so at the corner of 4 pixels if the image is even-sized, or at the center of a single pixel if the image is odd-sized image. @param interpolate If at least one component of rot_center is not a half-integer, use GalSim to rotate the image. @param force_interpolate Use GalSim to rotate the image, even if rot_center components are half-integer and rotation via numpy array operations is possible. @returns Rotated image. """ height, width = image.shape # Round rot_center to nearest half-integer rrot_center = [0.5*np.rint(2*p) for p in rot_center] if force_interpolate or (interpolate and rrot_center != rot_center): try: import galsim except: raise ImportError("can't interpolate w/o galsim") imobj = (galsim.InterpolatedImage(galsim.ImageD(image, scale=1), calculate_stepk=False, calculate_maxk=False) .shift(-rot_center[0], -rot_center[1]) .rotate(180*galsim.degrees) .shift(rot_center[0], rot_center[1])) return imobj.drawImage(nx=width, ny=height, scale=1, method='no_pixel').array # image_center is 0-indexed and measured from the lower-left corner of the lower-left pixel. image_center = (width * 0.5, height * 0.5) rot_pix_center = (image_center[0] + rrot_center[0], image_center[1] + rrot_center[1]) # compute boundary of rotate region rot_width = 2.0*min(rot_pix_center[0], width-rot_pix_center[0]) rot_height = 2.0*min(rot_pix_center[1], height-rot_pix_center[1]) rot_bounds = [0,width,0,height] # xmin, xmax, ymin, ymax # handle edges falling outside original postage stamp if rot_pix_center[0] <= image_center[0]: rot_bounds[1] = rot_pix_center[0] + rot_width/2 else: rot_bounds[0] = rot_pix_center[0] - rot_width/2 if rot_pix_center[1] <= image_center[1]: rot_bounds[3] = rot_pix_center[1] + rot_height/2 else: rot_bounds[2] = rot_pix_center[1] - rot_height/2 xmin, xmax, ymin, ymax = rot_bounds # and finally, rotate! newimage = np.ones_like(image)*1.e-20 newimage[ymin:ymax, xmin:xmax] = (image[ymin:ymax, xmin:xmax])[::-1,::-1] return newimage def test_rotate(): # test odd-size array array = np.array([[0, 0, 0, 0, 0], [0, 11, 12, 0, 0], [0, 0, 22, 0, 0], [0, 0, 0, 33, 0], [0, 0, 0, 0, 44]]) rot = rotate(array, (1,1)) # rotating about the 33 value pixel np.testing.assert_array_almost_equal(rot, np.array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 44, 0, 0], [0, 0, 0, 33, 0], [0, 0, 0, 0, 22]]), 5, err_msg="incorrect rotate") rot = rotate(array, (-1,-1)) # rotating about the 11 value pixel np.testing.assert_array_almost_equal(rot, np.array([[22, 0, 0, 0, 0], [12, 11, 0, 0, 0], [ 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0]]), 5, err_msg="incorrect rotate") rot = rotate(array, (0.5,0.5)) # rotating about point between 22 and 33 np.testing.assert_array_almost_equal(rot, np.array([[ 0, 0, 0, 0, 0], [ 0, 44, 0, 0, 0], [ 0, 0, 33, 0, 0], [ 0, 0, 0, 22, 0], [ 0, 0, 0, 12, 11]]), 5, err_msg="incorrect rotate") # test even-size array array = np.array([[0, 0, 0, 0], [0, 11, 12, 0], [0, 0, 22, 0], [0, 0, 0, 33]]) rot = rotate(array, (0.5,0.5)) # rotating about the 22 value pixel np.testing.assert_array_almost_equal(rot, np.array([[ 0, 0, 0, 0], [ 0, 33, 0, 0], [ 0, 0, 22, 0], [ 0, 0, 12, 11]]), 5, err_msg="incorrect rotate") rot = rotate(array, (0.0,0.0)) # rotating about point between 11 and 22 np.testing.assert_array_almost_equal(rot, np.array([[33, 0, 0, 0], [ 0, 22, 0, 0], [ 0, 12, 11, 0], [ 0, 0, 0, 0]]), 5, err_msg="incorrect rotate") # test non-square array array = np.array([[0, 0, 0, 0], [0, 11, 12, 0], [0, 0, 22, 0], [0, 0, 0, 33], [0, 0, 0, 43]]) rot = rotate(array, (0.0,0.0)) # rotating about point 1/2 unit left of 22 np.testing.assert_array_almost_equal(rot, np.array([[43, 0, 0, 0], [33, 0, 0, 0], [ 0, 22, 0, 0], [ 0, 12, 11, 0], [ 0, 0, 0, 0]]), 5, err_msg="incorrect rotate") rot = rotate(array, (0.5,0.5)) # rotating about point 1/2 unit below 22 np.testing.assert_array_almost_equal(rot, np.array([[ 0, 0, 0, 0], [ 0, 43, 0, 0], [ 0, 33, 0, 0], [ 0, 0, 22, 0], [ 0, 0, 12, 11]]), 5, err_msg="incorrect rotate") # test that GalSim rotation agrees with numpy rotation when the rotation axis is a # half-integer. for center in [(0.0, 0.0), (0.5, 0.5), (0.5, -0.5)]: numpy_rot = rotate(array, center) galsim_rot = rotate(array, center, force_interpolate=True) np.testing.assert_array_almost_equal( numpy_rot, galsim_rot, 5, err_msg="numpy rotation disagrees with galsim rotation at {}".format(center)) def test_deblend(): try: import galsim except: print "cant test deblend w/o galsim" # check that children of symmetric image show same symmetry gal1 = galsim.Gaussian(fwhm=5).shift(-5,0) gal2 = galsim.Gaussian(fwhm=5).shift(+5,0) gals = gal1 + gal2 img = gals.drawImage(nx=32, ny=24, scale=1.0) templates, template_fractions, children = deblend(img.array, [(-5, 0), (5, 0)]) xflip = children[1][:,::-1] symdiff = (children[0] - xflip)/img.array np.testing.assert_array_almost_equal(children[0], xflip, 10, "deblend symmetry failed") # check again for non-integer shift img = galsim.ImageD(32, 24) gal1 = galsim.Gaussian(fwhm=5).shift(-5.2,0) gal2 = galsim.Gaussian(fwhm=5).shift(+5.2,0) gals = gal1 + gal2 gals.drawImage(image=img, scale=1) templates, template_fractions, children = deblend(img.array, [(-5.2, 0), (5.2, 0)]) xflip = children[1][:,::-1] symdiff = (children[0] - xflip)/img.array np.testing.assert_array_almost_equal(children[0], xflip, 10, "deblend symmetry failed") # now check that children of transposed image are simliarly transposed # use some noise this time. gals.drawImage(image=img, method='phot', n_photons=10000) _, _, children = deblend(img.array, [(-3, 0), (3, 0)]) transimage = img.array.transpose() _, _, transchildren = deblend(transimage, [(0, -3), (0, 3)]) np.testing.assert_array_almost_equal(children[0], transchildren[0].transpose(), 10, "transposed child of transposed image not equal to child") np.testing.assert_array_almost_equal(children[1], transchildren[1].transpose(), 10, "transposed child of transposed image not equal to child") # compare array operations rotation to Galsim.rotate _, _, children2 = deblend(img.array, [(-3, 0), (3, 0)], interpolate=True, force_interpolate=True) np.testing.assert_array_almost_equal(children[0], children2[0], 9, "array rotate disagrees with galsim.rotate") np.testing.assert_array_almost_equal(children[1], children2[1], 9, "array rotate disagrees with galsim.rotate") if __name__ == '__main__': test_rotate() test_deblend() ```
{ "source": "jmezo/balancy", "score": 2 }
#### File: balancy/app/api.py ```python from fastapi import BackgroundTasks, FastAPI, Response, status from app import balances from app.crud import Crud from app.web3_client import Web3Client w3 = Web3Client() crud = Crud() app = FastAPI() @app.get("/addresses/{address}") async def find_balances( *, address: str, tasks: BackgroundTasks, ): tasks.add_task(balances.fetch_address_token_balances, address, w3=w3, crud=crud) return {"session_id": address} @app.get("/sessions/{id}") async def get_session( *, id: str, response: Response, ): res = crud.get_address_balances(id) if not res: response.status_code = status.HTTP_404_NOT_FOUND return {"message": "Session not found"} return res ``` #### File: balancy/app/cli.py ```python import atexit from typing import Optional import typer import uvicorn from . import tokens from .config import EnvConfig from .crud import Crud from .web3_client import Web3Client app = typer.Typer() @app.command() def fetch_tokens( w3url: str = typer.Option(None), db_uri: str = typer.Option(None), ): """Starts searching the blockchain for ERC20 tokens, and saves their addresses in the given database.""" EnvConfig.set_environment(w3url, db_uri) w3 = Web3Client() crud = Crud() _setup_is_fetch_status(crud) tokens.query_ERC20_tokens(w3=w3, crud=crud) def _setup_is_fetch_status(crud: Crud): crud.set_is_block_fetch(True) atexit.register(crud.set_is_block_fetch, False) @app.command() def api( w3url: str = typer.Option(None), db_uri: str = typer.Option(None), port: int = typer.Option(8000, "--port", "-p"), auto_reload: bool = typer.Option(False, "--auto-reload", "-r"), ): """Starts the web api.""" EnvConfig.set_environment(w3url, db_uri) # With this command uvicorn runs the FastAPI instance # named `app` which is located inside app/api.py uvicorn.run("app.api:app", port=port, reload=auto_reload) @app.command() def set_defaults( w3url: str = typer.Option(None), db_uri: str = typer.Option(None), ): """Sets given w3url and db-uri values as defaults by saving them to a .env file. Creates the file if it doesn't exist""" if w3url or db_uri: EnvConfig.set_defaults(w3url, db_uri) typer.echo("Done.") else: typer.echo("No parameters were given.") @app.command() def say_hello(text: Optional[str] = None): """Example function, this will be removed later.""" message = "General Kenobi!" if text == "Hello there" else "Hi!" typer.echo(message) ``` #### File: balancy/app/crud.py ```python import json from typing import Dict, List, Optional from urllib.parse import urlparse import etcd3 from hexbytes import HexBytes from app.config import EnvConfig KEY_LAST_BLOCK = "last_block" KEY_START_BLOCK = "start_block" KEY_CURRENT_BLOCK = "current_block" KEY_BLOCK_FETCH = "block_fetch" PREFIX_TOKEN_ADDRESS = "token" PREFIX_ADDRESS_BALANCES = "balances" class Crud: def __init__(self): parsed_uri = urlparse(EnvConfig().DB_URI) db_host = parsed_uri.hostname db_port = str(parsed_uri.port) self.db = etcd3.client(host=db_host, port=db_port) def get_is_block_fetch(self) -> bool: return self.db.get(KEY_BLOCK_FETCH)[0] == "1" def set_is_block_fetch(self, is_fetch: bool) -> None: fetch_status = "1" if is_fetch else "0" return self.db.put(KEY_BLOCK_FETCH, fetch_status) def set_start_block(self, block_hash: Optional[HexBytes]) -> None: self._set_block(KEY_START_BLOCK, block_hash) def set_current_block(self, block_hash: Optional[HexBytes]) -> None: self._set_block(KEY_CURRENT_BLOCK, block_hash) def set_last_block(self, block_hash: Optional[HexBytes]) -> None: self._set_block(KEY_LAST_BLOCK, block_hash) def get_start_block_hash(self) -> Optional[HexBytes]: return self._get_block_hash(KEY_START_BLOCK) def get_current_block_hash(self) -> Optional[HexBytes]: return self._get_block_hash(KEY_CURRENT_BLOCK) def get_last_block_hash(self) -> Optional[HexBytes]: return self._get_block_hash(KEY_LAST_BLOCK) def save_token_address(self, token_address: str) -> None: return self.db.put(f"{PREFIX_TOKEN_ADDRESS}::{token_address}", token_address) def get_token_addresses(self) -> List[str]: res = self.db.get_prefix(PREFIX_TOKEN_ADDRESS) return [token.decode("utf-8") for (token, _) in res] def save_address_balances(self, address: str, balances: Dict) -> None: self.db.put(f"{PREFIX_ADDRESS_BALANCES}::{address}", json.dumps(balances)) def get_address_balances(self, address: str) -> Optional[Dict]: res = self.db.get(f"{PREFIX_ADDRESS_BALANCES}::{address}")[0] try: return json.loads(res) except (json.JSONDecodeError, TypeError): return None def _set_block(self, key: str, block_hash: Optional[HexBytes]) -> None: if block_hash: self.db.put(key, block_hash.hex()) else: self.db.delete(key) def _get_block_hash(self, key: str) -> Optional[HexBytes]: address = self.db.get(key)[0] return HexBytes(address.decode("utf-8")) if address else None ``` #### File: balancy/tests/utils.py ```python import json from solcx import compile_standard SOURCE_CODE_ERC20_CONTRACT = """ pragma solidity ^0.8.0; contract TestERC20 { string public greeting; constructor() public { greeting = 'Hello'; } function totalSupply() view public returns (uint256) { return 1; } function balanceOf(address owner) public view returns (uint256) { return 1; } function allowance(address owner, address spender) public view returns (uint256) { return 1; } }""" SOURCE_CODE_NOT_ERC20_CONTRACT = """ pragma solidity ^0.8.0; contract TestERC20 { string public greeting; constructor() public { greeting = 'Hello'; } function totalSupply() view public returns (uint256) { return 1; } function allowance(address owner, address spender) public view returns (uint256) { return 1; } }""" def create_contract(w3, source_code): compiled_sol = compile_standard( { "language": "Solidity", "sources": {"TestERC20.sol": {"content": source_code}}, "settings": { "outputSelection": { "*": {"*": ["metadata", "evm.bytecode", "evm.bytecode.sourceMap"]} } }, } ) w3.eth.default_account = w3.eth.accounts[0] bytecode = compiled_sol["contracts"]["TestERC20.sol"]["TestERC20"]["evm"][ "bytecode" ]["object"] abi = json.loads( compiled_sol["contracts"]["TestERC20.sol"]["TestERC20"]["metadata"] )["output"]["abi"] TestERC20 = w3.eth.contract(abi=abi, bytecode=bytecode) tx_hash = TestERC20.constructor().transact() tx_receipt = w3.eth.waitForTransactionReceipt(tx_hash) contract_address = tx_receipt["contractAddress"] return tx_hash, contract_address ```
{ "source": "jmf11493/MusicDownloader", "score": 2 }
#### File: MusicDownloader/music_dl/song_download_view.py ```python import PyQt5 from PyQt5 import QtCore, QtGui, QtWidgets import datetime import pyperclip #Fixes scaling issues on high res monitors if hasattr(QtCore.Qt, 'AA_EnableHighDpiScaling'): PyQt5.QtWidgets.QApplication.setAttribute(QtCore.Qt.AA_EnableHighDpiScaling, True) if hasattr(QtCore.Qt, 'AA_UseHighDpiPixmaps'): PyQt5.QtWidgets.QApplication.setAttribute(QtCore.Qt.AA_UseHighDpiPixmaps, True) class SongDownloadView(object): ''' classdocs ''' def __init__(self, model, controller, MainWindow): self._model = model self._controller = controller self.setupUi(MainWindow) self._log = '-----Start of Log-----\n' self._song_fail_log = '' self._model.song_total_change.connect(self.on_song_total_change) self._model.skipped_total_change.connect(self.on_skipped_total_change) self._model.song_download_change.connect(self.on_song_download_change) self._model.song_failed_change.connect(self.on_song_failed_change) self._model.song_progress_change.connect(self.on_update_progress) self._model.estimate_change.connect(self.on_estimate_update_change) self._model.log_change.connect(self.on_log_update) self._model.song_failed_name.connect(self.on_song_failed_update) self.start_download_button.clicked.connect(self.start_download_listener) self.normalize_audio.stateChanged.connect(self._controller.normalize_change) self.browse_csv_button.clicked.connect(self.get_csv_path) self.browse_output_button.clicked.connect(self.get_output_path) self.csv_file_location.textChanged.connect(self._controller.csv_file_change) self.output_file_location.textChanged.connect(self._controller.output_dir_change) self.download_retry_spinbox.valueChanged.connect(self._controller.download_try_change) self.retry_wait_time_spinbox.valueChanged.connect(self._controller.time_sleep_change) self.stop_download_button.clicked.connect(self.stop_download_listener) self.copy_log_button.clicked.connect(self.copy_log_listener) def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(758, 500) MainWindow.setMinimumSize(QtCore.QSize(758, 500)) MainWindow.setMaximumSize(QtCore.QSize(758, 500)) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.gridLayoutWidget_4 = QtWidgets.QWidget(self.centralwidget) self.gridLayoutWidget_4.setGeometry(QtCore.QRect(10, 10, 735, 421)) self.gridLayoutWidget_4.setObjectName("gridLayoutWidget_4") self.gridLayout_4 = QtWidgets.QGridLayout(self.gridLayoutWidget_4) self.gridLayout_4.setContentsMargins(5, 0, 5, 0) self.gridLayout_4.setObjectName("gridLayout_4") self.start_download_button = QtWidgets.QPushButton(self.gridLayoutWidget_4) self.start_download_button.setMaximumSize(QtCore.QSize(100, 16777215)) self.start_download_button.setObjectName("start_download_button") self.gridLayout_4.addWidget(self.start_download_button, 4, 0, 1, 1) self.log_output = QtWidgets.QPlainTextEdit(self.gridLayoutWidget_4) self.log_output.setEnabled(True) self.log_output.setReadOnly(True) self.log_output.setObjectName("log_output") self.gridLayout_4.addWidget(self.log_output, 12, 0, 1, 3) self.gridLayout = QtWidgets.QGridLayout() self.gridLayout.setContentsMargins(5, -1, 5, -1) self.gridLayout.setObjectName("gridLayout") self.skipped_songs_count = QtWidgets.QLCDNumber(self.gridLayoutWidget_4) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) self.skipped_songs_count.setPalette(palette) self.skipped_songs_count.setEnabled(True) self.skipped_songs_count.setObjectName("skipped_songs_count") self.gridLayout.addWidget(self.skipped_songs_count, 2, 1, 1, 1) self.total_songs_count = QtWidgets.QLCDNumber(self.gridLayoutWidget_4) self.total_songs_count.setPalette(palette) self.total_songs_count.setObjectName("total_songs_count") self.gridLayout.addWidget(self.total_songs_count, 5, 1, 1, 1) self.total_songs_label = QtWidgets.QLabel(self.gridLayoutWidget_4) font = QtGui.QFont() font.setPointSize(12) self.total_songs_label.setFont(font) self.total_songs_label.setObjectName("total_songs_label") self.gridLayout.addWidget(self.total_songs_label, 5, 0, 1, 1) self.downloaded_songs_count = QtWidgets.QLCDNumber(self.gridLayoutWidget_4) self.downloaded_songs_count.setPalette(palette) self.downloaded_songs_count.setObjectName("downloaded_songs_count") self.gridLayout.addWidget(self.downloaded_songs_count, 1, 1, 1, 1) self.downloaded_songs_label = QtWidgets.QLabel(self.gridLayoutWidget_4) font = QtGui.QFont() font.setPointSize(12) self.downloaded_songs_label.setFont(font) self.downloaded_songs_label.setObjectName("downloaded_songs_label") self.gridLayout.addWidget(self.downloaded_songs_label, 1, 0, 1, 1) self.song_progress_bar = QtWidgets.QProgressBar(self.gridLayoutWidget_4) self.song_progress_bar.setProperty("value", 0) self.song_progress_bar.setObjectName("song_progress_bar") self.gridLayout.addWidget(self.song_progress_bar, 6, 0, 1, 2) self.skipped_songs_label = QtWidgets.QLabel(self.gridLayoutWidget_4) font = QtGui.QFont() font.setPointSize(12) self.skipped_songs_label.setFont(font) self.skipped_songs_label.setObjectName("skipped_songs_label") self.gridLayout.addWidget(self.skipped_songs_label, 2, 0, 1, 1) self.progress_label = QtWidgets.QLabel(self.gridLayoutWidget_4) font = QtGui.QFont() font.setPointSize(18) self.progress_label.setFont(font) self.progress_label.setAlignment(QtCore.Qt.AlignCenter) self.progress_label.setObjectName("progress_label") self.gridLayout.addWidget(self.progress_label, 0, 0, 1, 2) self.failed_songs_count_label = QtWidgets.QLabel(self.gridLayoutWidget_4) font = QtGui.QFont() font.setPointSize(12) self.failed_songs_count_label.setFont(font) self.failed_songs_count_label.setObjectName("failed_songs_count_label") self.gridLayout.addWidget(self.failed_songs_count_label, 3, 0, 1, 1) self.failed_songs_count = QtWidgets.QLCDNumber(self.gridLayoutWidget_4) self.failed_songs_count.setPalette(palette) self.failed_songs_count.setEnabled(True) self.failed_songs_count.setObjectName("failed_songs_count") self.gridLayout.addWidget(self.failed_songs_count, 3, 1, 1, 1) self.gridLayout_4.addLayout(self.gridLayout, 0, 4, 4, 1) self.time_remaining_label = QtWidgets.QLabel(self.gridLayoutWidget_4) font = QtGui.QFont() font.setPointSize(8) self.time_remaining_label.setFont(font) self.time_remaining_label.setObjectName("time_remaining_label") self.gridLayout_4.addWidget(self.time_remaining_label, 4, 4, 1, 1) self.failed_songs_label = QtWidgets.QLabel(self.gridLayoutWidget_4) font = QtGui.QFont() font.setPointSize(12) self.failed_songs_label.setFont(font) self.failed_songs_label.setObjectName("failed_songs_label") self.gridLayout_4.addWidget(self.failed_songs_label, 11, 3, 1, 2) self.log_label = QtWidgets.QLabel(self.gridLayoutWidget_4) font = QtGui.QFont() font.setPointSize(12) self.log_label.setFont(font) self.log_label.setObjectName("log_label") self.gridLayout_4.addWidget(self.log_label, 11, 0, 1, 2) self.stop_download_button = QtWidgets.QPushButton(self.gridLayoutWidget_4) self.stop_download_button.setEnabled(False) self.stop_download_button.setMaximumSize(QtCore.QSize(100, 16777215)) self.stop_download_button.setAutoFillBackground(False) self.stop_download_button.setObjectName("stop_download_button") self.gridLayout_4.addWidget(self.stop_download_button, 4, 2, 1, 1) self.gridLayout_2 = QtWidgets.QGridLayout() self.gridLayout_2.setContentsMargins(5, -1, -1, -1) self.gridLayout_2.setObjectName("gridLayout_2") self.browse_output_button = QtWidgets.QPushButton(self.gridLayoutWidget_4) self.browse_output_button.setMaximumSize(QtCore.QSize(150, 16777215)) self.browse_output_button.setObjectName("browse_output_button") self.gridLayout_2.addWidget(self.browse_output_button, 1, 1, 1, 1) self.setup_label = QtWidgets.QLabel(self.gridLayoutWidget_4) font = QtGui.QFont() font.setPointSize(18) self.setup_label.setFont(font) self.setup_label.setAlignment(QtCore.Qt.AlignCenter) self.setup_label.setObjectName("setup_label") self.gridLayout_2.addWidget(self.setup_label, 0, 1, 1, 2) self.browse_csv_button = QtWidgets.QPushButton(self.gridLayoutWidget_4) self.browse_csv_button.setMaximumSize(QtCore.QSize(150, 16777215)) self.browse_csv_button.setObjectName("browse_csv_button") self.gridLayout_2.addWidget(self.browse_csv_button, 2, 1, 1, 1) self.output_file_location = QtWidgets.QLineEdit(self.gridLayoutWidget_4) self.output_file_location.setReadOnly(True) self.output_file_location.setObjectName("output_file_location") self.gridLayout_2.addWidget(self.output_file_location, 1, 2, 1, 1) self.csv_file_location = QtWidgets.QLineEdit(self.gridLayoutWidget_4) self.csv_file_location.setReadOnly(True) self.csv_file_location.setObjectName("csv_file_location") self.gridLayout_2.addWidget(self.csv_file_location, 2, 2, 1, 1) self.gridLayout_3 = QtWidgets.QGridLayout() self.gridLayout_3.setObjectName("gridLayout_3") self.download_retry_spinbox = QtWidgets.QSpinBox(self.gridLayoutWidget_4) self.download_retry_spinbox.setMinimum(1) self.download_retry_spinbox.setProperty("value", 5) self.download_retry_spinbox.setObjectName("download_retry_spinbox") self.gridLayout_3.addWidget(self.download_retry_spinbox, 2, 4, 1, 1) self.download_retry_label = QtWidgets.QLabel(self.gridLayoutWidget_4) self.download_retry_label.setToolTip("") self.download_retry_label.setObjectName("download_retry_label") self.gridLayout_3.addWidget(self.download_retry_label, 2, 3, 1, 1) self.configuration_label = QtWidgets.QLabel(self.gridLayoutWidget_4) font = QtGui.QFont() font.setPointSize(18) self.configuration_label.setFont(font) self.configuration_label.setAlignment(QtCore.Qt.AlignCenter) self.configuration_label.setObjectName("configuration_label") self.gridLayout_3.addWidget(self.configuration_label, 0, 1, 1, 4) self.retry_wait_time_spinbox = QtWidgets.QSpinBox(self.gridLayoutWidget_4) self.retry_wait_time_spinbox.setMinimum(2) self.retry_wait_time_spinbox.setObjectName("retry_wait_time_spinbox") self.gridLayout_3.addWidget(self.retry_wait_time_spinbox, 2, 2, 1, 1) self.retry_wait_time_label = QtWidgets.QLabel(self.gridLayoutWidget_4) self.retry_wait_time_label.setToolTip("") self.retry_wait_time_label.setObjectName("retry_wait_time_label") self.gridLayout_3.addWidget(self.retry_wait_time_label, 2, 1, 1, 1) self.normalize_audio = QtWidgets.QCheckBox(self.gridLayoutWidget_4) font = QtGui.QFont() font.setPointSize(12) self.normalize_audio.setFont(font) self.normalize_audio.setChecked(True) self.normalize_audio.setObjectName("normalize_audio") self.gridLayout_3.addWidget(self.normalize_audio, 1, 1, 1, 1) self.gridLayout_2.addLayout(self.gridLayout_3, 3, 1, 1, 2) self.gridLayout_4.addLayout(self.gridLayout_2, 0, 0, 1, 4) self.failed_songs_log = QtWidgets.QPlainTextEdit(self.gridLayoutWidget_4) self.failed_songs_log.setEnabled(True) self.failed_songs_log.setReadOnly(True) self.failed_songs_log.setObjectName("failed_songs_log") self.gridLayout_4.addWidget(self.failed_songs_log, 12, 3, 1, 2) self.copy_log_button = QtWidgets.QPushButton(self.gridLayoutWidget_4) self.copy_log_button.setObjectName("copy_log_button") self.gridLayout_4.addWidget(self.copy_log_button, 11, 2, 1, 1) self.version_label = QtWidgets.QLabel(self.centralwidget) self.version_label.setGeometry(QtCore.QRect(330, 460, 81, 16)) self.version_label.setObjectName("version_label") MainWindow.setCentralWidget(self.centralwidget) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "Music Downloader")) self.start_download_button.setText(_translate("MainWindow", "Start Download")) self.total_songs_label.setText(_translate("MainWindow", "Total Songs:")) self.downloaded_songs_label.setText(_translate("MainWindow", "Songs Downloaded:")) self.skipped_songs_label.setText(_translate("MainWindow", "Songs Skipped:")) self.progress_label.setText(_translate("MainWindow", "Progress")) self.failed_songs_count_label.setText(_translate("MainWindow", "Songs Failed:")) self.time_remaining_label.setText(_translate("MainWindow", "Estimated Time Remaining: ")) self.failed_songs_label.setText(_translate("MainWindow", "Failed Songs:")) self.log_label.setText(_translate("MainWindow", "Log:")) self.stop_download_button.setText(_translate("MainWindow", "Stop Download")) self.browse_output_button.setText(_translate("MainWindow", "Select Output Directory")) self.setup_label.setText(_translate("MainWindow", "Setup")) self.browse_csv_button.setText(_translate("MainWindow", "Select CSV File")) self.download_retry_label.setText(_translate("MainWindow", "Download Attempts")) self.configuration_label.setText(_translate("MainWindow", "Configuration")) self.retry_wait_time_label.setText(_translate("MainWindow", "Time to Wait Between Tries")) self.normalize_audio.setText(_translate("MainWindow", "Normalize Audio")) self.copy_log_button.setText(_translate("MainWindow", "Copy Log to Clipboard")) self.version_label.setText(_translate("MainWindow", "Version 1.0.0")) def on_song_total_change(self, value): self.total_songs_count.display(value) def on_skipped_total_change(self, value): self.skipped_songs_count.display(value) def on_song_download_change(self, value): self.downloaded_songs_count.display(value) def on_song_failed_change(self, value): self.failed_songs_count.display(value) def on_update_progress(self, value): self.song_progress_bar.setValue(value) def on_estimate_update_change(self, value): self.time_remaining_label.setText('Estimated Time Remaining: ' + value) def on_log_update(self, value): now = datetime.datetime.now() date = str(now.year) + '-' + str(now.month) + '-' + str(now.day) + ' '+ str(now.hour) + ':' + str(now.minute) + ':' + str(now.second) self._log = self._log +'['+ date +']'+ value + '\n' self.log_output.setPlainText(self._log) self.log_output.verticalScrollBar().setValue(self.log_output.verticalScrollBar().maximum()) def on_song_failed_update(self, value): self._song_fail_log = self._song_fail_log + value + '\n' self.failed_songs_log.setPlainText(self._song_fail_log) self.failed_songs_log.verticalScrollBar().setValue(self.failed_songs_log.verticalScrollBar().maximum()) def get_csv_path(self): file = QtWidgets.QFileDialog().getOpenFileName(None, 'Select CSV', '', '*.csv') file_path = file[0] file_path = file_path.replace('/', '\\' ) self.csv_file_location.setText(file_path) def get_output_path(self): file_path = QtWidgets.QFileDialog().getExistingDirectory() file_path = file_path.replace('/', '\\' ) self.output_file_location.setText(file_path) def start_download_listener(self): self.start_download_button.setDisabled(True) self.stop_download_button.setDisabled(False) self._controller.start_download_click() def stop_download_listener(self): self.start_download_button.setDisabled(False) self.stop_download_button.setDisabled(True) self._controller.stop_download_click() def copy_log_listener(self): copy_value = self.log_output.toPlainText() pyperclip.copy(copy_value) ```
{ "source": "jmfajardod/gym_gazebo_sb3", "score": 3 }
#### File: frobs_rl/common/ros_launch.py ```python import rospy import rospkg import os import subprocess import time def ros_launch_from_pkg(pkg_name, launch_file, args=None, launch_new_term=True) -> bool: """ Function to execute a roslaunch from package with args. :param pkg_name: Name of the package where the launch file is located. :type pkg_name: str :param launch_file: Name of the launch file. :type launch_file: str :param args: Args to pass to the launch file. :type args: list of str :param launch_new_term: Launch the process in a new terminal (Xterm). :type launch_new_term: bool :return: True if the launch file was executed. :rtype: bool """ rospack = rospkg.RosPack() try: pkg_path = rospack.get_path(pkg_name) rospy.logdebug("Package FOUND...") except rospkg.common.ResourceNotFound: rospy.logerr("Package NOT FOUND") return False file_path = pkg_path + "/launch/" + launch_file if os.path.exists(pkg_path + "/launch/" + launch_file) is False: print("Launch file " + launch_file + " in " + file_path + " does not exists") return False term_command = "roslaunch " + pkg_name + " " + launch_file if args is not None: for arg in args: term_command += " " + arg if launch_new_term: term_command = "xterm -e ' " + term_command + "'" subprocess.Popen(term_command, shell=True) time.sleep(5.0) return True def ros_launch_from_path(launch_file_path, args=None, launch_new_term=True) -> bool: """ Function to execute a roslaunch from a path with args. :param launch_file_path: Path of the launch file. :type launch_file_path: str :param args: Args to pass to the launch file. :type args: list str :param launch_new_term: Launch the process in a new terminal (Xterm). :type launch_new_term: bool :return: True if the launch file was executed. :rtype: bool """ if os.path.exists(launch_file_path) is False: print("Launch file " + launch_file_path + " does not exists") return False term_command = "roslaunch " + launch_file_path if args is not None: for arg in args: term_command += " " + arg if launch_new_term: term_command = "xterm -e ' " + term_command + "'" subprocess.Popen(term_command, shell=True) time.sleep(5.0) return True def ros_kill_launch_process() -> bool: """ Function to kill all roslaunch processes. :return: True if the roslaunch processes were killed. :rtype: bool """ term_command = "killall -9 roslaunch" subprocess.Popen("xterm -e ' " + term_command + "'", shell=True).wait() return True ``` #### File: frobs_rl/models/sac.py ```python import os import stable_baselines3 from frobs_rl.common import ros_params from frobs_rl.models import basic_model # ROS packages required import rospy class SAC(basic_model.BasicModel): """ Soft Actor-Critic (SAC) algorithm. Paper: https://arxiv.org/abs/1801.01290 :param env: The environment to be used. :param save_model_path: The path to save the model. :param log_path: The path to save the log. :param load_trained: Whether to load a trained model or not. :param config_file_pkg: The package where the config file is located. Default: frobs_rl. :param config_filename: The name of the config file. Default: sac_config.yaml. :param ns: The namespace of the ROS parameters. Default: "/". """ def __init__(self, env, save_model_path, log_path, load_trained=False, config_file_pkg="frobs_rl", config_filename="sac_config.yaml", ns="/") -> None: """ SAC constructor. """ rospy.loginfo("Init SAC Policy") print("Init SAC Policy") self.env = env self.ns = ns self.save_model_path = save_model_path self.save_trained_model_path = None # Load YAML Config File ros_params.ros_load_yaml_from_pkg(config_file_pkg, config_filename, ns=ns) #--- Init super class super(SAC, self).__init__(env, save_model_path, log_path, load_trained=load_trained) if load_trained: rospy.logwarn("Loading trained model") self.model = stable_baselines3.SAC.load(save_model_path, env=env) else: #--- SDE for SAC if rospy.get_param(ns + "/model_params/use_sde"): model_sde = True model_sde_sample_freq = rospy.get_param(ns + "/model_params/sde_params/sde_sample_freq") model_use_sde_at_warmup = rospy.get_param(ns + "/model_params/sde_params/use_sde_at_warmup") self.action_noise = None else: model_sde = False model_sde_sample_freq = -1 model_use_sde_at_warmup = False #--- SAC model parameters model_learning_rate = rospy.get_param(ns + "/model_params/sac_params/learning_rate") model_buffer_size = rospy.get_param(ns + "/model_params/sac_params/buffer_size") model_learning_starts = rospy.get_param(ns + "/model_params/sac_params/learning_starts") model_batch_size = rospy.get_param(ns + "/model_params/sac_params/batch_size") model_tau = rospy.get_param(ns + "/model_params/sac_params/tau") model_gamma = rospy.get_param(ns + "/model_params/sac_params/gamma") model_gradient_steps = rospy.get_param(ns + "/model_params/sac_params/gradient_steps") model_ent_coef = rospy.get_param(ns + "/model_params/sac_params/ent_coef") model_target_update_interval = rospy.get_param(ns + "/model_params/sac_params/target_update_interval") model_target_entropy = rospy.get_param(ns + "/model_params/sac_params/target_entropy") model_train_freq_freq = rospy.get_param(ns + "/model_params/sac_params/train_freq/freq") model_train_freq_unit = rospy.get_param(ns + "/model_params/sac_params/train_freq/unit") #--- Create or load model if rospy.get_param(ns + "/model_params/load_model"): # Load model model_name = rospy.get_param(ns + "/model_params/model_name") assert os.path.exists(save_model_path + model_name + ".zip"), "Model {} doesn't exist".format(model_name) rospy.logwarn("Loading model: " + model_name) self.model = stable_baselines3.SAC.load(save_model_path + model_name, env=env, verbose=1, action_noise=self.action_noise, use_sde=model_sde, sde_sample_freq=model_sde_sample_freq, use_sde_at_warmup=model_use_sde_at_warmup, learning_rate=model_learning_rate, buffer_size=model_buffer_size, learning_starts=model_learning_starts, batch_size=model_batch_size, tau=model_tau, gamma=model_gamma, gradient_steps=model_gradient_steps, ent_coef=model_ent_coef, target_update_interval=model_target_update_interval, target_entropy=model_target_entropy, train_freq=(model_train_freq_freq, model_train_freq_unit)) if os.path.exists(save_model_path + model_name + "_replay_buffer.pkl"): rospy.logwarn("Loading replay buffer") self.model.load_replay_buffer(save_model_path + model_name + "_replay_buffer") else: rospy.logwarn("No replay buffer found") else: # Create new model rospy.logwarn("Creating new model") self.model = stable_baselines3.SAC("MlpPolicy", env, verbose=1 ,action_noise=self.action_noise, use_sde=model_sde, sde_sample_freq=model_sde_sample_freq, use_sde_at_warmup=model_use_sde_at_warmup, learning_rate=model_learning_rate, buffer_size=model_buffer_size, learning_starts=model_learning_starts, batch_size=model_batch_size, tau=model_tau, gamma=model_gamma, gradient_steps=model_gradient_steps, policy_kwargs=self.policy_kwargs, ent_coef=model_ent_coef, target_update_interval=model_target_update_interval, target_entropy=model_target_entropy, train_freq=(model_train_freq_freq, model_train_freq_unit)) #--- Logger self.set_model_logger() def load_trained(model_path, env=None): """ Load a trained model. Use only with predict function, as the logs will not be saved. :param model_path: The path to the trained model. :type model_path: str :param env: The environment to be used. :type env: gym.Env :return: The trained model. :rtype: frobs_rl.SAC """ model = SAC(env=env, save_model_path=model_path, log_path=model_path, load_trained=True) return model ``` #### File: frobs_rl/templates/CustomTaskEnv.py ```python from gym import spaces from gym.envs.registration import register from frobs_rl.templates import CustomRobotEnv # Replace with your own robot env import rospy #- Uncomment the library modules as neeeed # from frobs_rl.common import ros_gazebo # from frobs_rl.common import ros_controllers # from frobs_rl.common import ros_node # from frobs_rl.common import ros_launch # from frobs_rl.common import ros_params # from frobs_rl.common import ros_urdf # from frobs_rl.common import ros_spawn register( id='CustomTaskEnv-v0', entry_point='frobs_rl.templates.CustomTaskEnv:CustomTaskEnv', max_episode_steps=10000, ) class CustomTaskEnv(CustomRobotEnv.CustomRobotEnv): """ Custom Task Env, use this env to implement a task using the robot defined in the CustomRobotEnv """ def __init__(self): """ Describe the task. """ rospy.loginfo("Starting Task Env") """ Init super class. """ super(CustomTaskEnv, self).__init__() """ Define the action and observation space. """ # self.action_space = spaces.Discrete(n_actions) # self.action_space = spaces.Box(low=0, high=1, shape=(1,), dtype=np.float32) # self.observation_space = spaces.Discrete(n_observations) # self.observation_space = spaces.Box(low=0, high=1, shape=(1,), dtype=np.float32) """ Define subscribers or publishers as needed. """ # self.pub1 = rospy.Publisher('/robot/controller_manager/command', JointState, queue_size=1) # self.sub1 = rospy.Subscriber('/robot/joint_states', JointState, self.callback1) """ Finished __init__ method """ rospy.loginfo("Finished Init of Custom Task env") #-------------------------------------------------------# # Custom available methods for the CustomTaskEnv # def _set_episode_init_params(self): """ Function to set some parameters, like the position of the robot, at the beginning of each episode. """ raise NotImplementedError() def _send_action(self, action): """ Function to send an action to the robot """ raise NotImplementedError() def _get_observation(self): """ Function to get the observation from the environment. """ raise NotImplementedError() def _get_reward(self): """ Function to get the reward from the environment. """ raise NotImplementedError() def _check_if_done(self): """ Function to check if the episode is done. If the episode has a success condition then set done as: self.info['is_success'] = 1.0 """ raise NotImplementedError() ``` #### File: frobs_rl/wrappers/TimeLimitWrapper.py ```python import gym class TimeLimitWrapper(gym.Wrapper): """ Wrapper to limit the number of steps per episode. :param env: (gym.Env) Gym environment that will be wrapped :param max_steps: (int) Max number of steps per episode """ def __init__(self, env, max_steps=100): # Call the parent constructor, so we can access self.env later super(TimeLimitWrapper, self).__init__(env) self.max_steps = max_steps # Counter of steps per episode self.current_step = 0 def reset(self): """ Reset the environment """ # Reset the counter self.current_step = 0 return self.env.reset() def step(self, action): """ :param action: Action taken by the agent :type action: [float] or int :return: observation, reward, is the episode over, additional informations :rtype: (np.ndarray, float, bool, dict) """ self.current_step += 1 obs, reward, done, info = self.env.step(action) # Overwrite the done signal when if self.current_step >= self.max_steps: done = True # Update the info dict to signal that the limit was exceeded info['time_limit_reached'] = True self.info['is_success'] = 0.0 return obs, reward, done, info ```
{ "source": "jmfajardod/tf2_example_rycsv", "score": 2 }
#### File: tf2_example_rycsv/scripts/broadcaster_class.py ```python import rospy import numpy as np from rospy.numpy_msg import numpy_msg from tf.transformations import rotation_matrix import tf2_ros import tf_conversions from geometry_msgs.msg import TransformStamped from ar_track_alvar_msgs.msg import AlvarMarkers, AlvarMarker class Broadcaster: def __init__(self): # Atributos # Para realizar un broadcast self.broadcts = tf2_ros.TransformBroadcaster() self.transform = TransformStamped() # Para realizar la escucha "listener" self.tfBuffer = tf2_ros.Buffer() self.listener = tf2_ros.TransformListener(self.tfBuffer) # Subscribers rospy.Subscriber("/ar_pose_marker", numpy_msg(AlvarMarkers), self.Marker_Callback, queue_size=10 ) #--------------------------------------------------------------------------------------# # Callback o interrupcion def Marker_Callback(self, marker_info): #--------------------------------------------------------------------------------# #--------------------------------------------------------------------------------# #--------------------------------------------------------------------------------# # MTH from base to camera try: trans_mobbase_cam = self.tfBuffer.lookup_transform("base_footprint", "camera_depth_frame", rospy.Time()) except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException): rospy.logwarn("Error trying to look for transform") return # Creater quaternion vector quat_odom_cam = np.array([trans_mobbase_cam.transform.rotation.x, \ trans_mobbase_cam.transform.rotation.y, \ trans_mobbase_cam.transform.rotation.z, \ trans_mobbase_cam.transform.rotation.w]) # MTH with position vector equal to zero rt_mat_odom_cam = tf_conversions.transformations.quaternion_matrix(quat_odom_cam) # Add position vector to MTH MTH_odom_cam = rt_mat_odom_cam.copy() MTH_odom_cam[0,3] = trans_mobbase_cam.transform.translation.x MTH_odom_cam[1,3] = trans_mobbase_cam.transform.translation.y MTH_odom_cam[2,3] = trans_mobbase_cam.transform.translation.z #print(MTH_odom_cam) #print("") #--------------------------------------------------------------------------------# #--------------------------------------------------------------------------------# #--------------------------------------------------------------------------------# # MTH from camera to Alvar marker singleMarker = marker_info.markers[0] # Creater quaternion vector quat_cam_marker = np.array([singleMarker.pose.pose.orientation.x, \ singleMarker.pose.pose.orientation.y, \ singleMarker.pose.pose.orientation.z, \ singleMarker.pose.pose.orientation.w]) # MTH with position vector equal to zero rt_mat_cam_marker = tf_conversions.transformations.quaternion_matrix(quat_cam_marker) # Add position vector to MTH MTH_cam_marker = rt_mat_cam_marker.copy() MTH_cam_marker[0,3] = singleMarker.pose.pose.position.x MTH_cam_marker[1,3] = singleMarker.pose.pose.position.y MTH_cam_marker[2,3] = singleMarker.pose.pose.position.z #print(MTH_cam_marker) #print("") #--------------------------------------------------------------------------------# #--------------------------------------------------------------------------------# #--------------------------------------------------------------------------------# # Comparison between MTH obtained directly from ROS a the one we created using # the two previos MTHs # Transform obtained from ROS try: trans_base_marker = self.tfBuffer.lookup_transform("base_footprint", "ar_marker_5", rospy.Time()) except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException): rospy.logwarn("Error trying to look for transform") return quat_from_ROS = np.array([trans_base_marker.transform.rotation.x, \ trans_base_marker.transform.rotation.y, \ trans_base_marker.transform.rotation.z, \ trans_base_marker.transform.rotation.w]) rt_mat_from_ROS = tf_conversions.transformations.quaternion_matrix(quat_from_ROS) MTH_from_ROS = rt_mat_from_ROS.copy() MTH_from_ROS[0,3] = trans_base_marker.transform.translation.x MTH_from_ROS[1,3] = trans_base_marker.transform.translation.y MTH_from_ROS[2,3] = trans_base_marker.transform.translation.z print("MTH obtained directly from ROS") print(MTH_from_ROS) print("") MTH_from_twoSteps = np.matmul( MTH_odom_cam, MTH_cam_marker) print("MTH obtained by the multiplication of MTHs") print(MTH_from_twoSteps) print("") #Error print("Error between the two") print( MTH_from_ROS - MTH_from_twoSteps ) print("") #--------------------------------------------------------------------------------# #--------------------------------------------------------------------------------# #--------------------------------------------------------------------------------# # Broadcasting of a MTH from the marker to a task frame 0.5m to the right and # 0.2m up of it, and with a rotation of 112.5 degrees around the Z-axis # It is needed to stamp (associate a time) to the MTH self.transform.header.stamp = rospy.Time.now() # It is needed to determine which task frame is the parent (base) # and the name of the new TF self.transform.header.frame_id = "ar_marker_5" # Parent or base frame self.transform.child_frame_id = "custom_tf" # Name of new TF, created by this MTH # Translation part of MTH self.transform.transform.translation.x = 0.5 self.transform.transform.translation.y = 0.2 self.transform.transform.translation.z = 0.0 # Rotation part of MTH des_rotation = np.identity(4) # Even though we only need the rotation matrix # to use the library of transformations it is # needed to define a MTH so we create one with # translational part equal to zero angle2rotate = 5*np.math.pi/8 des_rotation[0,0] = np.math.cos(angle2rotate) des_rotation[0,1] = -np.math.sin(angle2rotate) des_rotation[1,0] = np.math.sin(angle2rotate) des_rotation[1,1] = np.math.cos(angle2rotate) quat_desired = tf_conversions.transformations.quaternion_from_matrix(des_rotation) self.transform.transform.rotation.x = quat_desired[0] self.transform.transform.rotation.y = quat_desired[1] self.transform.transform.rotation.z = quat_desired[2] self.transform.transform.rotation.w = quat_desired[3] self.broadcts.sendTransform(self.transform ) ```
{ "source": "JmfanBU/AdvIBP", "score": 2 }
#### File: AdvIBP/IBP_Adv_Training/train.py ```python import sys import copy import numpy as np import torch.optim as optim from IBP_Adv_Training.models.bound_layers import BoundSequential, \ BoundDataParallel from IBP_Adv_Training.torch.training import Train from IBP_Adv_Training.torch.warm_up_training import Train_with_warmup from IBP_Adv_Training.utils.scheduler import Scheduler from IBP_Adv_Training.utils.config import load_config, get_path, update_dict, \ config_modelloader, config_dataloader, device from IBP_Adv_Training.utils.argparser import argparser class Logger(object): def __init__(self, log_file=None): self.log_file = log_file def log(self, *args, **kwargs): print(*args, **kwargs) if self.log_file: print(*args, **kwargs, file=self.log_file) self.log_file.flush() class optimizer_config(object): def __init__( self, opt_method, model, lr, weight_decay, lr_decay_factor, lr_decay_step=None, lr_decay_milestones=None, lr_decay_milestones_post_layer=None ): self.opt_method = opt_method self.model = model self.lr = lr self.weight_decay = weight_decay self.lr_decay_factor = lr_decay_factor self.lr_decay_step = lr_decay_step self.lr_decay_milestones = lr_decay_milestones if lr_decay_milestones_post_layer is not None: self.lr_decay_milestones_post_layer = ( lr_decay_milestones_post_layer ) else: self.lr_decay_milestones_post_layer = self.lr_decay_milestones def get_opt(self, idxLayer): if self.opt_method == 'adam': opt = optim.Adam( self.model.parameters(), lr=self.lr if idxLayer == 0 else self.lr*self.lr_decay_factor, weight_decay=self.weight_decay ) elif self.opt_method == 'sgd': opt = optim.SGD( self.model.parameters(), lr=self.lr, momentum=0.9, nesterov=True, weight_decay=self.weight_decay ) else: raise ValueError("Unknown optimizer") if self.lr_decay_step: # Use StepLR. Decay by lr_decay_factor every lr_decay_step. lr_scheduler = optim.lr_scheduler.StepLR( opt, step_size=self.lr_decay_step, gamma=self.lr_decay_factor ) elif self.lr_decay_milestones and idxLayer == 0: # Decay learning rate by lr_decay_factor at a few milestones lr_scheduler = optim.lr_scheduler.MultiStepLR( opt, milestones=self.lr_decay_milestones, gamma=self.lr_decay_factor ) elif self.lr_decay_milestones_post_layer and idxLayer != 0: # Decay learning rate by lr_decay_factor at a few milestones lr_scheduler = optim.lr_scheduler.MultiStepLR( opt, milestones=self.lr_decay_milestones_post_layer, gamma=self.lr_decay_factor ) else: raise ValueError( "one of lr_decay_step and" "lr_decay_milestones must be not empty." ) return opt, lr_scheduler def model_train(config, train_config, model, model_id, model_config): if "traininig_params" in model_config: train_config = update_dict(train_config, model_config["training_params"]) model = BoundSequential.convert( model, train_config["method_params"]["bound_opts"] ) # read traininig parameters from config file load_pretrain = config.get("load_pretrain", False) epochs = train_config["epochs"] lr = train_config["lr"] weight_decay = train_config["weight_decay"] starting_epsilon = train_config["starting_epsilon"] end_epsilon = train_config["epsilon"] schedule_start = train_config["schedule_start"] schedule_length = train_config["schedule_length"] optimizer = train_config["optimizer"] method = train_config["method"] verbose = train_config["verbose"] lr_decay_step = train_config["lr_decay_step"] lr_decay_milestones = train_config["lr_decay_milestones"] if "lr_decay_milestones_post_layer" in train_config: lr_decay_milestones_post_layer = train_config[ "lr_decay_milestones_post_layer" ] else: lr_decay_milestones_post_layer = None lr_decay_factor = train_config["lr_decay_factor"] multi_gpu = train_config["multi_gpu"] # parameters for the training method method_params = train_config["method_params"] # adv training warm up if "warm_up" in train_config: warm_up_param = train_config["warm_up"] else: warm_up_param = False # inner max evaluation if "inner_max_eval" in train_config: inner_max_eval = train_config["inner_max_eval"] else: inner_max_eval = False # paramters for attack params attack_params = config["attack_params"] # parameters for evaluation evaluation_params = config["eval_params"] norm = float(train_config["norm"]) train_data, test_data = config_dataloader( config, **train_config["loader_params"] ) opt = optimizer_config(optimizer, model, lr, weight_decay, lr_decay_factor, lr_decay_step, lr_decay_milestones, lr_decay_milestones_post_layer) batch_multiplier = train_config["method_params"].get( "batch_multiplier", 1 ) batch_size = train_data.batch_size * batch_multiplier num_steps_per_epoch = int( np.ceil(1.0 * len(train_data.dataset) / batch_size) ) if not inner_max_eval: epsilon_scheduler = Scheduler( train_config.get("schedule_type", "linear"), schedule_start * num_steps_per_epoch, ((schedule_start + schedule_length) - 1) * num_steps_per_epoch, starting_epsilon if not load_pretrain else end_epsilon, end_epsilon, num_steps_per_epoch ) else: epsilon_scheduler = Scheduler( train_config.get("schedule_type", "linear"), schedule_start * num_steps_per_epoch, ((schedule_start + schedule_length) - 1) * num_steps_per_epoch, starting_epsilon if not load_pretrain else end_epsilon, end_epsilon, num_steps_per_epoch ) inner_max_scheduler = Scheduler( inner_max_eval.get("schedule_type", "linear"), ((schedule_start + schedule_length) - 1 + inner_max_eval.get( "schedule_start", 0 )) * num_steps_per_epoch, ((schedule_start + schedule_length + inner_max_eval.get( "schedule_start", 0 ) - 1 + inner_max_eval.get( "schedule_length", schedule_length )) - 1) * num_steps_per_epoch, inner_max_eval.get("c_max", 1) if not load_pretrain else inner_max_eval.get("c_min", 1e-5), inner_max_eval.get("c_min", 1e-5), num_steps_per_epoch ) if warm_up_param: warm_up_start = ( (schedule_start + schedule_length) + warm_up_param.get("schedule_start", 0) ) warm_up_end = (warm_up_start + warm_up_param.get( "schedule_length", schedule_length ) - 1) post_warm_up_scheduler = Scheduler( warm_up_param.get("schedule_type", "linear"), warm_up_start * num_steps_per_epoch, warm_up_end * num_steps_per_epoch, starting_epsilon if not load_pretrain else end_epsilon, end_epsilon, num_steps_per_epoch ) if inner_max_eval: inner_max_scheduler = Scheduler( inner_max_eval.get("schedule_type", "linear"), (warm_up_end + inner_max_eval.get( "schedule_start", 0 )) * num_steps_per_epoch, ((warm_up_end + inner_max_eval.get("schedule_start", 0) + inner_max_eval.get( "schedule_length", schedule_length)) - 1) * num_steps_per_epoch, inner_max_eval.get("c_max", 1) if not load_pretrain else inner_max_eval.get("c_min", 1e-5), inner_max_eval.get("c_min", 1e-5), num_steps_per_epoch ) max_eps = end_epsilon model_name = get_path(config, model_id, "model", load=False) best_model_name = get_path(config, model_id, "best_model", load=False) model_log = get_path(config, model_id, "train_log") logger = Logger(open(model_log, "w")) logger.log(model_name) logger.log("Command line: ", " ".join(sys.argv[:])) logger.log("training configurations: ", train_config) logger.log("Model structure: ") logger.log(str(model)) logger.log("data std: ", train_data.std) if multi_gpu: logger.log("\nUsing multiple GPUs for computing IBP bounds\n") model = BoundDataParallel(model, device_ids=train_config.get( "device_id", [0, 1, 2, 3] )) model = model.cuda(device) if not inner_max_eval and not warm_up_param: Train( model, model_id, model_name, best_model_name, epochs, train_data, test_data, multi_gpu, schedule_start, schedule_length, lr_decay_step, lr_decay_milestones, epsilon_scheduler, max_eps, norm, logger, verbose, opt, method, method_params, attack_params, evaluation_params ) elif inner_max_eval and not warm_up_param: Train( model, model_id, model_name, best_model_name, epochs, train_data, test_data, multi_gpu, schedule_start, schedule_length, lr_decay_step, lr_decay_milestones, epsilon_scheduler, max_eps, norm, logger, verbose, opt, method, method_params, attack_params, evaluation_params, inner_max_scheduler=inner_max_scheduler ) elif inner_max_scheduler and warm_up_param: Train_with_warmup( model, model_id, model_name, best_model_name, epochs, train_data, test_data, multi_gpu, schedule_start, schedule_length, lr_decay_step, lr_decay_milestones, epsilon_scheduler, max_eps, norm, logger, verbose, opt, method, method_params, attack_params, evaluation_params, inner_max_scheduler=inner_max_scheduler, post_warm_up_scheduler=post_warm_up_scheduler ) def main(args): config = load_config(args) global_train_config = config["training_params"] models, model_names = config_modelloader( config, load_pretrain=config.get('load_pretrain', False) ) for model, model_id, model_config in zip(models, model_names, config["models"]): # make a copy of global training config, and update per-model config train_config = copy.deepcopy(global_train_config) model_train(config, train_config, model, model_id, model_config) if __name__ == "__main__": args = argparser() main(args) ```
{ "source": "JmfanBU/colt", "score": 2 }
#### File: colt/code/milp.py ```python import argparse import numpy as np import os import pickle import time import torch import torch.optim as optim from loaders import get_loaders from utils import get_inputs, get_network from gurobipy import GRB, Model, LinExpr from layers import Linear, ReLU, AveragePooling, Flatten, Conv2d from main import test, get_adv_loss, compute_bounds, compute_bounds_approx from tqdm import tqdm torch.set_printoptions(precision=10) np.random.seed(100) BINARY_THRESHOLD = 0.0 dtype = torch.float32 device = 'cuda' def add_relu_constraints(model, in_lb, in_ub, in_neuron, out_neuron, is_binary): if in_ub <= 0: out_neuron.lb = 0 out_neuron.ub = 0 elif in_lb >= 0: model.addConstr(in_neuron, GRB.EQUAL, out_neuron) else: model.addConstr(out_neuron >= 0) model.addConstr(out_neuron >= in_neuron) if is_binary: relu_ind = model.addVar(vtype=GRB.BINARY) model.addConstr(out_neuron <= in_ub * relu_ind) model.addConstr(out_neuron <= in_neuron - in_lb * (1 - relu_ind)) model.addGenConstrIndicator(relu_ind, True, in_neuron, GRB.GREATER_EQUAL, 0.0) model.addGenConstrIndicator(relu_ind, False, in_neuron, GRB.LESS_EQUAL, 0.0) else: model.addConstr(-in_ub * in_neuron + (in_ub - in_lb) * out_neuron, GRB.LESS_EQUAL, -in_lb * in_ub) def handle_relu(max_binary, lidx, relu_rnk, relu_priority, model, neurons, relu_inds, n_outs, pr_lb, pr_ub, lp=False): unstable, n_binary = 0, 0 neurons[lidx] = [] relu_inds[lidx] = {} binary_left = n_outs if max_binary is None else max_binary if relu_rnk is not None and max_binary is not None: to_bin = {i: False for i in range(n_outs)} for i in range(min(max_binary, n_outs)): to_bin[relu_rnk[lidx][i]] = True for out_idx in range(n_outs): if pr_ub[0, out_idx] <= 0: neurons[lidx] += [model.addVar(0, 0, vtype=GRB.CONTINUOUS, name='n_{}_{}'.format(lidx, out_idx))] elif pr_lb[0, out_idx] >= 0: neurons[lidx] += [neurons[lidx-1][out_idx]] else: neurons[lidx] += [model.addVar(0, pr_ub[0, out_idx], vtype=GRB.CONTINUOUS, name='n_{}_{}'.format(lidx, out_idx))] model.addConstr(neurons[lidx][out_idx] >= 0) model.addConstr(neurons[lidx][out_idx] >= neurons[lidx-1][out_idx]) if lp: is_binary = False elif max_binary is None: is_binary = True else: is_binary = to_bin[out_idx] if relu_rnk is not None else binary_left > 0 if is_binary: binary_left -= 1 n_binary += 1 relu_inds[lidx][out_idx] = model.addVar(vtype=GRB.BINARY, name='ind_relu_{}_{}'.format(lidx, out_idx)) relu_inds[lidx][out_idx].BranchPriority = relu_priority[lidx][out_idx] model.addConstr(neurons[lidx][out_idx] <= pr_ub[0, out_idx] * relu_inds[lidx][out_idx]) model.addConstr(neurons[lidx][out_idx] <= neurons[lidx-1][out_idx] - pr_lb[0, out_idx] * (1 - relu_inds[lidx][out_idx])) model.addGenConstrIndicator(relu_inds[lidx][out_idx], True, neurons[lidx-1][out_idx], GRB.GREATER_EQUAL, 0.0) model.addGenConstrIndicator(relu_inds[lidx][out_idx], False, neurons[lidx-1][out_idx], GRB.LESS_EQUAL, 0.0) else: model.addConstr( -pr_ub[0, out_idx] * neurons[lidx-1][out_idx] + (pr_ub[0, out_idx] - pr_lb[0, out_idx]) * neurons[lidx][out_idx], GRB.LESS_EQUAL, -pr_lb[0, out_idx] * pr_ub[0, out_idx]) unstable += 1 return unstable, n_binary def report(ver_logdir, tot_verified_corr, tot_nat_ok, tot_attack_ok, tot_pgd_ok, test_idx, tot_tests, test_data): if tot_tests % 10 == 0: print('tot_tests: %d, verified: %.5lf [%d/%d], nat_ok: %.5lf [%d/%d], attack_ok: %.5lf [%d/%d], pgd_ok: %.5lf [%d/%d]' % ( tot_tests, tot_verified_corr/tot_tests, tot_verified_corr, tot_tests, tot_nat_ok/tot_tests, tot_nat_ok, tot_tests, tot_attack_ok/tot_tests, tot_attack_ok, tot_tests, tot_pgd_ok/tot_tests, tot_pgd_ok, tot_tests, )) print('=====================================') out_file = os.path.join(ver_logdir, '{}.p'.format(test_idx)) pickle.dump(test_data, open(out_file, 'wb')) def get_diff(outs, targets, i, j, reduction): assert reduction == 'sum' return -(outs[:, i] - outs[:, ]).sum() def learn_slopes(relu_params, bounds, args, n_layers, net, inputs, targets, abs_inputs, i, j): for param in relu_params: param.data = torch.ones(param.size()).to(param.device) relu_opt = optim.Adam(relu_params, lr=0.03, weight_decay=0) ret_verified = False for it in range(args.num_iters): relu_opt.zero_grad() if i is None and j is None: abs_loss, abs_ok = get_adv_loss(device, args.test_eps, args.layer_idx, net, bounds, inputs, targets, args, detach=False) else: abs_out = net(abs_inputs) abs_loss = -abs_out.get_min_diff(i, j) relu_opt.zero_grad() abs_loss.backward() relu_opt.step() for param in relu_params: if param.grad is not None: param.data = torch.clamp(param.data, 0, 1) if ret_verified: break with torch.no_grad(): abs_out = net(abs_inputs) if i is None and j is None: _, verified_corr = abs_out.verify(targets) if verified_corr: ret_verified = True else: abs_loss = -abs_out.get_min_diff(i, j) if abs_loss < 0: ret_verified = True relu_rnk, relu_priority = {}, {} for lidx, layer in enumerate(net.blocks): if isinstance(layer, ReLU): for param in layer.parameters(): relu_priority[lidx] = [] if param.grad is None: for i in range(param.size()[0]): relu_priority[lidx].append(0) _, sorted_ids = torch.sort(param.abs().view(-1), descending=True) else: g_abs = param.grad.abs().view(-1) for i in range(g_abs.size()[0]): relu_priority[lidx].append(int(g_abs[i].item()*1000)) _, sorted_ids = torch.sort(param.grad.abs().view(-1), descending=True) sorted_ids = sorted_ids.cpu().numpy() relu_rnk[lidx] = sorted_ids net.zero_grad() return relu_rnk, ret_verified, relu_priority def callback(model, where): if where == GRB.Callback.MIP: obj_best = model.cbGet(GRB.Callback.MIP_OBJBST) obj_bound = model.cbGet(GRB.Callback.MIP_OBJBND) if obj_bound > 0 or obj_best < 0: model.terminate() def reset_params(args, net, dtype): relu_params = [] for param_name, param_value in net.named_parameters(): if 'deepz' in param_name: relu_params.append(param_value) if args.test_domain == 'zono_iter': param_value.data = torch.ones(param_value.size()).to(param_value.device, dtype=dtype) else: param_value.data = torch.ones(param_value.size()).to(param_value.device, dtype=dtype) param_value.requires_grad_(True) else: param_value.requires_grad_(False) return relu_params def get_flat_idx(img_dim, ch_idx, i, j): return ch_idx * (img_dim) ** 2 + i * img_dim + j def refine(args, bounds, net, refine_i, refine_j, abs_inputs, input_size): dep = {lidx: {} for lidx in range(-1, args.refine_lidx+1)} neurons = {lidx: {} for lidx in range(-1, args.refine_lidx+1)} dep[args.refine_lidx][(refine_i, refine_j)] = True model = Model("refinezono") model.setParam('OutputFlag', 0) model.setParam('TimeLimit', 10) to_refine = [] refine_channels = bounds[args.refine_lidx+1][0].shape[1] for ch_idx in range(refine_channels): out_lb = bounds[args.refine_lidx+1][0][0, ch_idx, refine_i, refine_j] out_ub = bounds[args.refine_lidx+1][1][0, ch_idx, refine_i, refine_j] neurons[args.refine_lidx][(ch_idx, refine_i, refine_j)] = model.addVar(out_lb, out_ub, vtype=GRB.CONTINUOUS) if out_lb < 0 and out_ub > 0: to_refine.append(ch_idx) binary_left = args.refine_milp for lidx in range(args.refine_lidx, 0, -1): lb, ub = bounds[lidx] block = net.blocks[lidx] if isinstance(block, Conv2d): weight, bias = block.conv.weight.cpu().numpy(), block.conv.bias.cpu().numpy() kernel_size, stride = block.kernel_size, block.stride dim = bounds[lidx+1][0].shape[2] out_channels, in_channels = weight.shape[0], weight.shape[1] if kernel_size % 2 == 0: min_kdelta, max_kdelta = -(kernel_size//2-1), kernel_size//2 else: min_kdelta, max_kdelta = -(kernel_size//2), kernel_size//2 for x in range(0, dim): for y in range(0, dim): if (x, y) not in dep[lidx]: continue for out_ch in range(out_channels): expr = LinExpr() expr += bias[out_ch] for kx in range(min_kdelta, max_kdelta+1): for ky in range(min_kdelta, max_kdelta+1): new_x = x*stride + kx new_y = y*stride + ky if new_x < 0 or new_y < 0 or new_x >= dim*stride or new_y >= dim*stride: continue dep[lidx-1][(new_x, new_y)] = True for in_ch in range(in_channels): if (in_ch, new_x, new_y) not in neurons[lidx-1]: in_lb = bounds[lidx][0][0, in_ch, new_x, new_y].item() in_ub = bounds[lidx][1][0, in_ch, new_x, new_y].item() neurons[lidx-1][(in_ch, new_x, new_y)] = model.addVar(in_lb, in_ub, vtype=GRB.CONTINUOUS) expr += neurons[lidx-1][(in_ch, new_x, new_y)] * weight[out_ch, in_ch, kx - min_kdelta, ky - min_kdelta] model.addConstr(expr, GRB.EQUAL, neurons[lidx][(out_ch, x, y)]) elif isinstance(block, ReLU): n_channels, dim = lb.shape[1], lb.shape[2] for x in range(0, dim): for y in range(0, dim): if (x, y) not in dep[lidx]: continue dep[lidx-1][(x, y)] = True for out_ch in range(n_channels): in_lb, in_ub = lb[0, out_ch, x, y].item(), ub[0, out_ch, x, y].item() neurons[lidx-1][(out_ch, x, y)] = model.addVar(in_lb, in_ub, vtype=GRB.CONTINUOUS) if binary_left > 0 and in_lb < 0 and in_ub > 0: is_binary = True binary_left -= 1 else: is_binary = False add_relu_constraints(model, in_lb, in_ub, neurons[lidx-1][(out_ch, x, y)], neurons[lidx][(out_ch, x, y)], is_binary) else: assert False for ch_idx in to_refine: old_lb = bounds[args.refine_lidx+1][0][0, ch_idx, refine_i, refine_j] old_ub = bounds[args.refine_lidx+1][1][0, ch_idx, refine_i, refine_j] model.setObjective(neurons[args.refine_lidx][(ch_idx, refine_i, refine_j)], GRB.MINIMIZE) model.update() model.optimize() new_lb = model.objBound model.setObjective(neurons[args.refine_lidx][(ch_idx, refine_i, refine_j)], GRB.MAXIMIZE) model.update() model.optimize() new_ub = model.objBound if new_lb != -GRB.INFINITY and new_lb >= old_lb: net.blocks[args.refine_lidx+1].bounds[0][0, ch_idx, refine_i, refine_j] = new_lb if new_ub != GRB.INFINITY and new_ub <= old_ub: net.blocks[args.refine_lidx+1].bounds[1][0, ch_idx, refine_i, refine_j] = new_ub def verify_test(args, net, num_relu, inputs, targets, abs_inputs, bounds, refined_triples, test_data, grb_modelsdir, test_idx): ok = True model = None n_layers = len(net.blocks) for adv_idx in range(10): if targets[0] == adv_idx: continue if ('verified', adv_idx) in test_data and test_data[('verified', adv_idx)]: print('label already verified: ', adv_idx) continue relu_params = reset_params(args, net, dtype) if adv_idx in test_data: print(test_data[adv_idx]) if args.obj_threshold is not None: if adv_idx not in test_data: ok = False continue if test_data[adv_idx]['obj_bound'] < args.obj_threshold: print('too far, not considering adv_idx = %d, obj_bound = %.5lf' % (adv_idx, test_data[adv_idx]['obj_bound'])) ok = False continue relu_rnk, relu_priority = None, None if args.test_domain == 'zono_iter': with torch.enable_grad(): relu_rnk, verified, relu_priority = learn_slopes( relu_params, bounds, args, n_layers, net, inputs, targets, abs_inputs, targets[0].item(), adv_idx) if verified: print('adv_idx=%d verified without MILP' % adv_idx) test_data[('verified', adv_idx)] = True continue max_binary = args.max_binary milp_timeout = args.milp_timeout if model is None or (args.test_domain == 'zono_iter'): model = Model("milp") model.setParam('OutputFlag', args.debug) model.setParam('TimeLimit', milp_timeout) abs_curr = net.forward_until(args.layer_idx, abs_inputs) abs_flat = abs_curr if len(abs_curr.head.size()) == 4: n_channels, img_dim = abs_curr.head.size()[1], abs_curr.head.size()[2] flat_dim = n_channels * img_dim * img_dim abs_flat = abs_curr.view((1, flat_dim)) n_inputs = abs_flat.head.size()[1] betas = [model.addVar(-1.0, 1.0, vtype=GRB.CONTINUOUS, name='beta_{}'.format(j)) for j in range(n_inputs)] if abs_flat.errors is not None: n_errors = abs_flat.errors.size()[0] errors = [model.addVar(-1.0, 1.0, vtype=GRB.CONTINUOUS, name='error_{}'.format(j)) for j in range(n_errors)] if net.blocks[args.layer_idx+1].bounds is not None: lb_refine, ub_refine = net.blocks[args.layer_idx+1].bounds lb_refine, ub_refine = lb_refine.view((1, -1)).cpu().numpy(), ub_refine.view((1, -1)).cpu().numpy() lb, ub = abs_flat.concretize() lb, ub = lb.detach().cpu().numpy(), ub.detach().cpu().numpy() neurons, relu_inds = {}, {} neurons[args.layer_idx] = [] for j in range(n_inputs): neuron_lb, neuron_ub = lb[0, j], ub[0, j] if net.blocks[args.layer_idx+1].bounds is not None: neuron_lb = lb_refine[0, j] neuron_ub = ub_refine[0, j] lb[0, j] = neuron_lb ub[0, j] = neuron_ub neurons[args.layer_idx].append(model.addVar(vtype=GRB.CONTINUOUS, lb=neuron_lb, ub=neuron_ub, name='input_{}'.format(j))) expr = LinExpr() expr += abs_flat.head[0, j].item() if abs_flat.beta is not None: expr += abs_flat.beta[0, j].item() * betas[j] if abs_flat.errors is not None: coeffs = abs_flat.errors[:, 0, j].detach().cpu().numpy().tolist() expr += LinExpr(coeffs, errors) model.addConstr(expr, GRB.EQUAL, neurons[args.layer_idx][j]) n_outs = n_inputs relu_done = False for lidx in range(args.layer_idx+1, n_layers): pr_lb, pr_ub = lb, ub abs_curr = net.blocks[lidx](abs_curr) if len(abs_curr.head.size()) == 4: n_channels, img_dim = abs_curr.head.size()[1], abs_curr.head.size()[2] flat_dim = n_channels * img_dim * img_dim abs_flat = abs_curr.view((1, flat_dim)) else: abs_flat = abs_curr lb, ub = abs_flat.concretize() lb, ub = lb.detach().cpu().numpy(), ub.detach().cpu().numpy() if isinstance(net.blocks[lidx], Linear): weight, bias = net.blocks[lidx].linear.weight, net.blocks[lidx].linear.bias neurons[lidx] = [] n_outs = weight.size()[0] for out_idx in range(n_outs): nvar = model.addVar(vtype=GRB.CONTINUOUS, lb=lb[0, out_idx], ub=ub[0, out_idx], name='n_{}_{}'.format(lidx, out_idx)) neurons[lidx].append(nvar) tmp = LinExpr() tmp += -neurons[lidx][out_idx] tmp += bias[out_idx].item() tmp += LinExpr(weight[out_idx].detach().cpu().numpy(), neurons[lidx-1]) model.addConstr(tmp, GRB.EQUAL, 0) elif isinstance(net.blocks[lidx], ReLU): lp = False unstable, n_binary = handle_relu( max_binary, lidx, relu_rnk, relu_priority, model, neurons, relu_inds, n_outs, pr_lb, pr_ub, lp) relu_done = True print('Unstable ReLU: ', unstable, ' binary: ', n_binary) elif isinstance(net.blocks[lidx], AveragePooling): kernel_size = net.blocks[lidx].kernel_size assert img_dim % kernel_size == 0 neurons[lidx] = [] for ch_idx in range(n_channels): for i in range(0, img_dim, kernel_size): for j in range(0, img_dim, kernel_size): new_idx = get_flat_idx(img_dim//kernel_size, ch_idx, i//kernel_size, j//kernel_size) nvar = model.addVar(vtype=GRB.CONTINUOUS, lb=lb[0, new_idx], ub=ub[0, new_idx], name='n_{}_{}'.format(lidx, new_idx)) neurons[lidx].append(nvar) tmp = LinExpr() tmp -= (kernel_size * kernel_size) * nvar for di in range(0, kernel_size): for dj in range(0, kernel_size): old_idx = get_flat_idx(img_dim, ch_idx, i+di, j+dj) tmp += neurons[lidx-1][old_idx] model.addConstr(tmp, GRB.EQUAL, 0) elif isinstance(net.blocks[lidx], Flatten): neurons[lidx] = neurons[lidx-1] elif isinstance(net.blocks[lidx], Conv2d): weight, bias = net.blocks[lidx].conv.weight.cpu().numpy(), net.blocks[lidx].conv.bias.cpu().numpy() kernel_size, stride = net.blocks[lidx].kernel_size, net.blocks[lidx].stride out_channels, in_channels = weight.shape[0], weight.shape[1] if kernel_size % 2 == 0: min_kdelta, max_kdelta = -(kernel_size//2-1), kernel_size//2 else: min_kdelta, max_kdelta = -(kernel_size//2), kernel_size//2 neurons[lidx] = [] for out_ch in range(out_channels): for x in range(0, img_dim): for y in range(0, img_dim): new_idx = get_flat_idx(img_dim, out_ch, x, y) nvar = model.addVar(vtype=GRB.CONTINUOUS, lb=lb[0, new_idx], ub=ub[0, new_idx], name='n_{}_{}'.format(lidx, new_idx)) neurons[lidx].append(nvar) expr = LinExpr() expr += bias[out_ch] for kx in range(min_kdelta, max_kdelta+1): for ky in range(min_kdelta, max_kdelta+1): new_x = x*stride + kx new_y = y*stride + ky if new_x < 0 or new_y < 0 or new_x >= img_dim*stride or new_y >= img_dim*stride: continue for in_ch in range(in_channels): old_idx = get_flat_idx(img_dim*stride, in_ch, new_x, new_y) expr += neurons[lidx-1][old_idx] * weight[out_ch, in_ch, kx - min_kdelta, ky - min_kdelta] model.addConstr(expr, GRB.EQUAL, nvar) else: print('unknown layer type: ', net.blocks[lidx]) assert False model.setObjective(neurons[n_layers-1][targets[0].item()] - neurons[n_layers-1][adv_idx], GRB.MINIMIZE) model.update() if args.save_models: model.write('%s/model_%d_%d.mps' % (grb_modelsdir, test_idx, adv_idx)) ok = False continue model.optimize(callback) print('MILP: ', targets[0].item(), adv_idx, model.objVal, model.objBound, model.RunTime) test_data[adv_idx] = { 'milp_timeout': milp_timeout, 'max_binary': max_binary, 'obj_val': model.objVal, 'obj_bound': model.objBound, 'runtime': model.RunTime, } if model.objBound < 0: ok = False break else: test_data[('verified', adv_idx)] = True return ok def main(): parser = argparse.ArgumentParser(description='Perform greedy layerwise training.') parser.add_argument('--prune_p', default=None, type=float, help='percentage of weights to prune in each layer') parser.add_argument('--dataset', default='cifar10', help='dataset to use') parser.add_argument('--net', required=True, type=str, help='network to use') parser.add_argument('--load_model', type=str, help='model to load') parser.add_argument('--layer_idx', default=1, type=int, help='layer index of flattened vector') parser.add_argument('--n_valid', default=1000, type=int, help='number of test samples') parser.add_argument('--n_train', default=None, type=int, help='number of training samples to use') parser.add_argument('--train_batch', default=1, type=int, help='batch size for training') parser.add_argument('--test_batch', default=128, type=int, help='batch size for testing') parser.add_argument('--test_domain', default='zono', type=str, help='domain to test with') parser.add_argument('--test_eps', default=None, type=float, help='epsilon to verify') parser.add_argument('--debug', action='store_true', help='debug mode') parser.add_argument('--no_milp', action='store_true', help='no MILP mode') parser.add_argument('--no_load', action='store_true', help='verify from scratch') parser.add_argument('--no_smart', action='store_true', help='bla') parser.add_argument('--milp_timeout', default=10, type=int, help='timeout for MILP') parser.add_argument('--eval_train', action='store_true', help='evaluate on training set') parser.add_argument('--test_idx', default=None, type=int, help='specific index to test') parser.add_argument('--start_idx', default=0, type=int, help='specific index to start') parser.add_argument('--end_idx', default=1000, type=int, help='specific index to end') parser.add_argument('--max_binary', default=None, type=int, help='number of neurons to encode as binary variable in MILP (per layer)') parser.add_argument('--num_iters', default=50, type=int, help='number of iterations to find slopes') parser.add_argument('--max_refine_triples', default=0, type=int, help='number of triples to refine') parser.add_argument('--refine_lidx', default=None, type=int, help='layer to refine') parser.add_argument('--save_models', action='store_true', help='whether to only store models') parser.add_argument('--refine_milp', default=0, type=int, help='number of neurons to refine using MILP') parser.add_argument('--obj_threshold', default=None, type=float, help='threshold to consider for MILP verification') parser.add_argument('--attack_type', default='pgd', type=str, help='attack') parser.add_argument('--attack_n_steps', default=10, type=int, help='number of steps for the attack') parser.add_argument('--attack_step_size', default=0.25, type=float, help='step size for the attack (relative to epsilon)') parser.add_argument('--layers', required=False, default=None, type=int, nargs='+', help='layer indices for training') args = parser.parse_args() ver_logdir = args.load_model[:-3] + '_ver' if not os.path.exists(ver_logdir): os.makedirs(ver_logdir) grb_modelsdir = args.load_model[:-3] + '_grb' if not os.path.exists(grb_modelsdir): os.makedirs(grb_modelsdir) num_train, _, test_loader, input_size, input_channel = get_loaders(args) net = get_network(device, args, input_size, input_channel) n_layers = len(net.blocks) # net.to_double() args.test_domains = ['box'] with torch.no_grad(): test(device, 0, args, net, test_loader) args.test_batch = 1 num_train, _, test_loader, input_size, input_channel = get_loaders(args) num_relu = 0 for lidx in range(args.layer_idx+1, n_layers): print(net.blocks[lidx]) if isinstance(net.blocks[lidx], ReLU): num_relu += 1 with torch.no_grad(): tot_verified_corr, tot_nat_ok, tot_attack_ok, tot_pgd_ok, tot_tests = 0, 0, 0, 0, 0 for test_idx, (inputs, targets) in enumerate(test_loader): if test_idx < args.start_idx or test_idx >= args.end_idx or test_idx >= args.n_valid: continue if args.test_idx is not None and test_idx != args.test_idx: continue tot_tests += 1 test_file = os.path.join(ver_logdir, '{}.p'.format(test_idx)) test_data = pickle.load(open(test_file, 'rb')) if (not args.no_load) and os.path.isfile(test_file) else {} print('Verify test_idx =', test_idx) for lidx in range(n_layers): net.blocks[lidx].bounds = None inputs, targets = inputs.to(device), targets.to(device) abs_inputs = get_inputs(args.test_domain, inputs, args.test_eps, device, dtype=dtype) nat_out = net(inputs) nat_ok = targets.eq(nat_out.max(dim=1)[1]).item() tot_nat_ok += float(nat_ok) test_data['ok'] = nat_ok if not nat_ok: report(ver_logdir, tot_verified_corr, tot_nat_ok, tot_attack_ok, tot_pgd_ok, test_idx, tot_tests, test_data) continue with torch.enable_grad(): pgd_loss, pgd_ok = get_adv_loss(device, args.test_eps, -1, net, None, inputs, targets, args) if pgd_ok: test_data['pgd_ok'] = 1 tot_pgd_ok += 1 else: test_data['pgd_ok'] = 0 report(ver_logdir, tot_verified_corr, tot_nat_ok, tot_attack_ok, tot_pgd_ok, test_idx, tot_tests, test_data) continue if 'verified' in test_data and test_data['verified']: tot_verified_corr += 1 tot_attack_ok += 1 report(ver_logdir, tot_verified_corr, tot_nat_ok, tot_attack_ok, tot_pgd_ok, test_idx, tot_tests, test_data) continue relu_params = reset_params(args, net, dtype) bounds = compute_bounds(net, device, args.layer_idx, args, abs_inputs) if args.test_domain == 'zono_iter': with torch.enable_grad(): learn_slopes(relu_params, bounds, args, n_layers, net, inputs, targets, abs_inputs, None, None) with torch.enable_grad(): abs_loss, abs_ok = get_adv_loss(device, args.test_eps, args.layer_idx, net, bounds, inputs, targets, args) refined_triples = [] if args.refine_lidx is not None: bounds = compute_bounds(net, device, args.layer_idx+1, args, abs_inputs) for lidx in range(0, args.layer_idx+2): net.blocks[lidx].bounds = bounds[lidx] print('loss before refine: ', abs_loss) refine_dim = bounds[args.refine_lidx+1][0].shape[2] pbar = tqdm(total=refine_dim*refine_dim, dynamic_ncols=True) for refine_i in range(refine_dim): for refine_j in range(refine_dim): # refine(args, bounds, net, 0, 15, abs_inputs, input_size) refine(args, bounds, net, refine_i, refine_j, abs_inputs, input_size) pbar.update(1) pbar.close() with torch.enable_grad(): abs_loss, abs_ok = get_adv_loss(device, args.test_eps, args.layer_idx, net, bounds, inputs, targets, args) print('loss after refine: ', abs_loss) if abs_ok: tot_attack_ok += 1 abs_out = net(abs_inputs) verified, verified_corr = abs_out.verify(targets) test_data['verified'] = int(verified_corr.item()) print('abs_loss: ', abs_loss.item(), '\tabs_ok: ', abs_ok.item(), '\tverified_corr: ', verified_corr.item()) if verified_corr: tot_verified_corr += 1 report(ver_logdir, tot_verified_corr, tot_nat_ok, tot_attack_ok, tot_pgd_ok, test_idx, tot_tests, test_data) continue if args.no_milp or (not abs_ok): report(ver_logdir, tot_verified_corr, tot_nat_ok, tot_attack_ok, tot_pgd_ok, test_idx, tot_tests, test_data) continue if verify_test(args, net, num_relu, inputs, targets, abs_inputs, bounds, refined_triples, test_data, grb_modelsdir, test_idx): tot_verified_corr += 1 test_data['verified'] = True report(ver_logdir, tot_verified_corr, tot_nat_ok, tot_attack_ok, tot_pgd_ok, test_idx, tot_tests, test_data) if __name__ == '__main__': main() ``` #### File: colt/code/networks.py ```python import torch.nn as nn import torch from loaders import get_mean_sigma from layers import Conv2d, Normalization, ReLU, Flatten, Linear, Sequential class SeqNet(nn.Module): def __init__(self): super(SeqNet, self).__init__() self.is_double = False self.skip_norm = False def forward(self, x, init_lambda=False): if isinstance(x, torch.Tensor) and self.is_double: x = x.to(dtype=torch.float64) x = self.blocks(x, init_lambda, skip_norm=self.skip_norm) return x def reset_bounds(self): for block in self.blocks: block.bounds = None def to_double(self): self.is_double = True for param_name, param_value in self.named_parameters(): param_value.data = param_value.data.to(dtype=torch.float64) def forward_until(self, i, x): """ Forward until layer i (inclusive) """ x = self.blocks.forward_until(i, x) return x def forward_from(self, i, x): """ Forward from layer i (exclusive) """ x = self.blocks.forward_from(i, x) return x class FFNN(SeqNet): def __init__(self, device, dataset, sizes, n_class=10, input_size=32, input_channel=3): super(FFNN, self).__init__() mean, sigma = get_mean_sigma(device, dataset) self.normalizer = Normalization(mean, sigma) layers = [Flatten(), Linear(input_size*input_size*input_channel, sizes[0]), ReLU(sizes[0])] for i in range(1, len(sizes)): layers += [ Linear(sizes[i-1], sizes[i]), ReLU(sizes[i]), ] layers += [Linear(sizes[-1], n_class)] self.blocks = Sequential(*layers) class ConvMed(SeqNet): def __init__(self, device, dataset, n_class=10, input_size=32, input_channel=3, width1=1, width2=1, linear_size=100): super(ConvMed, self).__init__() mean, sigma = get_mean_sigma(device, dataset) layers = [ Normalization(mean, sigma), Conv2d(input_channel, 16*width1, 5, stride=2, padding=2, dim=input_size), ReLU((16*width1, input_size//2, input_size//2)), Conv2d(16*width1, 32*width2, 4, stride=2, padding=1, dim=input_size//2), ReLU((32*width2, input_size//4, input_size//4)), Flatten(), Linear(32*width2*(input_size // 4)*(input_size // 4), linear_size), ReLU(linear_size), Linear(linear_size, n_class), ] self.blocks = Sequential(*layers) class ConvMedBig(SeqNet): def __init__(self, device, dataset, n_class=10, input_size=32, input_channel=3, width1=1, width2=1, width3=1, linear_size=100): super(ConvMedBig, self).__init__() mean, sigma = get_mean_sigma(device, dataset) self.normalizer = Normalization(mean, sigma) layers = [ Normalization(mean, sigma), Conv2d(input_channel, 16*width1, 3, stride=1, padding=1, dim=input_size), ReLU((16*width1, input_size, input_size)), Conv2d(16*width1, 16*width2, 4, stride=2, padding=1, dim=input_size//2), ReLU((16*width2, input_size//2, input_size//2)), Conv2d(16*width2, 32*width3, 4, stride=2, padding=1, dim=input_size//2), ReLU((32*width3, input_size//4, input_size//4)), Flatten(), Linear(32*width3*(input_size // 4)*(input_size // 4), linear_size), ReLU(linear_size), Linear(linear_size, n_class), ] self.blocks = Sequential(*layers) class cnn_2layer(SeqNet): def __init__( self, device, dataset, input_channel, input_size, width, linear_size ): super(cnn_2layer, self).__init__() mean, sigma = get_mean_sigma(device, dataset, IBP=True) self.normalizer = Normalization(mean, sigma) self.layers = [ Normalization(mean, sigma), Conv2d( input_channel, 4 * width, 4, stride=2, padding=1, dim=input_size ), ReLU((4 * width, input_size//2, input_size//2)), Conv2d( 4 * width, 8 * width, 4, stride=2, padding=1, dim=input_size//2 ), ReLU((8 * width, input_size//4, input_size//4)), Flatten(), Linear( 8 * width * (input_size // 4) * (input_size // 4), linear_size ), ReLU(linear_size), Linear(linear_size, 10), ] def converter(self, net): if isinstance(net, nn.Sequential): seq_model = net else: seq_model = net.module for idx, l in enumerate(seq_model): if isinstance(l, nn.Linear): self.layers[idx + 1].linear.weight.data.copy_(l.weight.data) self.layers[idx + 1].linear.bias.data.copy_(l.bias.data) if isinstance(l, nn.Conv2d): self.layers[idx + 1].conv.weight.data.copy_(l.weight.data) self.layers[idx + 1].conv.bias.data.copy_(l.bias.data) self.blocks = Sequential(*self.layers) def model_cnn_2layer(in_ch, in_dim, width, linear_size=128): """ CNN, small 2-layer (default kernel size is 4 by 4) Parameter: in_ch: input image channel, 1 for MNIST and 3 for CIFAR in_dim: input dimension, 28 for MNIST and 32 for CIFAR width: width multiplier """ model = nn.Sequential( nn.Conv2d(in_ch, 4 * width, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(4 * width, 8 * width, 4, stride=2, padding=1), nn.ReLU(), Flatten(), nn.Linear(8 * width * (in_dim // 4) * (in_dim // 4), linear_size), nn.ReLU(), nn.Linear(linear_size, 10) ) return model class cnn_4layer(SeqNet): def __init__( self, device, dataset, input_channel, input_size, width, linear_size ): super(cnn_4layer, self).__init__() mean, sigma = get_mean_sigma(device, dataset, IBP=True) self.normalizer = Normalization(mean, sigma) self.layers = [ Normalization(mean, sigma), Conv2d( input_channel, 4 * width, 3, stride=1, padding=1, dim=input_size ), ReLU((4 * width, input_size, input_size)), Conv2d( 4 * width, 4 * width, 4, stride=2, padding=1, dim=input_size//2 ), ReLU((4 * width, input_size//2, input_size//2)), Conv2d( 4 * width, 8 * width, 3, stride=1, padding=1, dim=input_size//2 ), ReLU((8 * width, input_size//2, input_size//2)), Conv2d( 8 * width, 8 * width, 4, stride=2, padding=1, dim=input_size//4 ), ReLU((8 * width, input_size//4, input_size//4)), Flatten(), Linear( 8 * width * (input_size // 4) * (input_size // 4), linear_size ), ReLU(linear_size), Linear(linear_size, linear_size), ReLU(linear_size), Linear(linear_size, 10), ] def converter(self, net): if isinstance(net, nn.Sequential): seq_model = net else: seq_model = net.module for idx, l in enumerate(seq_model): if isinstance(l, nn.Linear): self.layers[idx + 1].linear.weight.data.copy_(l.weight.data) self.layers[idx + 1].linear.bias.data.copy_(l.bias.data) if isinstance(l, nn.Conv2d): self.layers[idx + 1].conv.weight.data.copy_(l.weight.data) self.layers[idx + 1].conv.bias.data.copy_(l.bias.data) self.blocks = Sequential(*self.layers) def model_cnn_4layer(in_ch, in_dim, width, linear_size): """ CNN, relatively large 4-layer Parameter: in_ch: input image channel, 1 for MNIST and 3 for CIFAR in_dim: input dimension, 28 for MNIST and 32 for CIFAR width: width multiplier """ model = nn.Sequential( nn.Conv2d(in_ch, 4 * width, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(4 * width, 4 * width, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(4 * width, 8 * width, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(8 * width, 8 * width, 4, stride=2, padding=1), nn.ReLU(), Flatten(), nn.Linear(8 * width * (in_dim // 4) * (in_dim // 4), linear_size), nn.ReLU(), nn.Linear(linear_size, linear_size), nn.ReLU(), nn.Linear(linear_size, 10) ) return model class cnn_IBP_large(SeqNet): def __init__( self, device, dataset, input_channel, input_size, linear_size ): super(cnn_IBP_large, self).__init__() mean, sigma = get_mean_sigma(device, dataset, IBP=True) self.normalizer = Normalization(mean, sigma) self.layers = [ Normalization(mean, sigma), Conv2d( input_channel, 64, 3, stride=1, padding=1, dim=input_size ), ReLU((64, input_size, input_size)), Conv2d( 64, 64, 3, stride=1, padding=1, dim=input_size ), ReLU((64, input_size, input_size)), Conv2d( 64, 128, 3, stride=2, padding=1, dim=input_size//2 ), ReLU((128, input_size//2, input_size//2)), Conv2d( 128, 128, 3, stride=1, padding=1, dim=input_size//2 ), ReLU((128, input_size//2, input_size//2)), Conv2d( 128, 128, 3, stride=1, padding=1, dim=input_size//2 ), ReLU((128, input_size//2, input_size//2)), Flatten(), Linear( 128 * (input_size // 2) * (input_size // 2), linear_size ), ReLU(linear_size), Linear(linear_size, 10), ] def converter(self, net): if isinstance(net, nn.Sequential): seq_model = net else: seq_model = net.module for idx, l in enumerate(seq_model): if isinstance(l, nn.Linear): self.layers[idx + 1].linear.weight.data.copy_(l.weight.data) self.layers[idx + 1].linear.bias.data.copy_(l.bias.data) if isinstance(l, nn.Conv2d): self.layers[idx + 1].conv.weight.data.copy_(l.weight.data) self.layers[idx + 1].conv.bias.data.copy_(l.bias.data) self.blocks = Sequential(*self.layers) def IBP_large(in_ch, in_dim, linear_size=512): model = nn.Sequential( nn.Conv2d(in_ch, 64, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(64, 64, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(64, 128, 3, stride=2, padding=1), nn.ReLU(), nn.Conv2d(128, 128, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(128, 128, 3, stride=1, padding=1), nn.ReLU(), Flatten(), nn.Linear((in_dim // 2) * (in_dim // 2) * 128, linear_size), nn.ReLU(), nn.Linear(linear_size, 10) ) return model ```
{ "source": "jmfederico/cookiecutter-php-docker", "score": 3 }
#### File: cookiecutter-php-docker/hooks/post_gen_project.py ```python from urllib.request import urlopen, Request from pathlib import Path def run(): """Actions to be run.""" base_image = "{{ cookiecutter.php_image }}" if base_image == "alpine": Path("php-fpm/default.Dockerfile").unlink() Path("php-fpm/alpine.Dockerfile").rename(Path("php-fpm/Dockerfile")) if base_image == "default": Path("php-fpm/alpine.Dockerfile").unlink() Path("php-fpm/default.Dockerfile").rename(Path("php-fpm/Dockerfile")) req = Request( url="https://www.gitignore.io/api/composer", headers={"User-Agent": "Python"} ) Path("../.gitignore").write_bytes(urlopen(req).read()) # Move root files. _root = Path("_root") project_root = Path("..") for child in _root.iterdir(): child.rename(project_root / child.name) _root.rmdir() # Create example index.php file for tests. Path("../public").mkdir(exist_ok=True) index = Path("../public/index.php") if not index.exists(): index.write_text("<?php\nphpinfo();") run() ```
{ "source": "jmfederico/cookiecutter-silverstripe", "score": 3 }
#### File: cookiecutter-silverstripe/hooks/post_gen_project.py ```python import glob from pathlib import Path from urllib.request import Request, urlopen def run(): """Actions to be run.""" req = Request( url="https://www.gitignore.io/api/node,composer", headers={"User-Agent": "Python"}, ) Path("../.gitignore").write_bytes(urlopen(req).read()) # Move root files. _root = Path("_root") project_root = Path("..") for child in _root.iterdir(): child.rename(project_root / child.name) _root.rmdir() Path("../.gitignore").open("a").write( """ ### Silverstripe ### public/assets/ public/resources/ """ ) for path in glob.glob("../**/.cookiecutter-keep", recursive=True): Path(path).unlink() run() ```
{ "source": "jmfederico/demo-app-django", "score": 3 }
#### File: demo-app-django/pd_django_demo/helpers.py ```python import os import boto3 def get_aws_secret(secret_arn): """Return the secret value from an AWS secret.""" secrets_client = boto3.client("secretsmanager") secret = secrets_client.get_secret_value(SecretId=secret_arn) return secret["SecretString"] def get_environ_or_aws_secret(env_var): """ Return the value of an environment variable or AWS secret. It received the name of an environment variable, and if it points to an AWS secret, retrieve it and return it instead. """ env_var_value = os.environ.get(env_var) if env_var_value and env_var_value[:23] == "arn:aws:secretsmanager:": # Use `get_aws_secret()` from previous example. return get_aws_secret(env_var_value) return env_var_value ``` #### File: demo-app-django/tasks/views.py ```python from uuid import uuid4 import boto3 from django.conf import settings from django.http import HttpRequest, HttpResponse from django.shortcuts import redirect from django.template.loader import render_to_string from django.views.decorators.csrf import csrf_protect from .models import Task client = boto3.client("sqs") @csrf_protect def tasks_view(request: HttpRequest): if request.method == "POST": if "clear" in request.POST: Task.objects.all().delete() return redirect(request.path_info) task = Task.objects.create(uuid=uuid4()) if settings.SQS_URL: client.send_message( QueueUrl=settings.SQS_URL, DelaySeconds=10, MessageBody=str(task.uuid), ) return redirect(request.path_info) return HttpResponse( render_to_string( "tasks/tasks.html", {"tasks": Task.objects.all()}, request, ) ) ```
{ "source": "jmfederico/dotenver", "score": 3 }
#### File: dotenver/dotenver/dotenver.py ```python import io import re import sys from pathlib import Path import colorama from faker import Faker from jinja2 import Environment VARIABLES = {} VARIABLE_REGEX = r""" ^\s* ( (?:export\s)? # Optional export command \s* ([^\s=#]+) # Variable name ) (?: \s*=\s*? # Assignment (.*?) # Verbatim value, no parsing done {0} # Capture placeholder )? \s*$ """ VALUES_REGEX = re.compile(VARIABLE_REGEX.format(""), re.VERBOSE) TEMPLATE_REGEX = re.compile( VARIABLE_REGEX.format( r""" (?: \#\#\ +dotenver: # Start of the dotenver comment (?: ([^\(\s#:]+) # Faker generator to use (?:: ([^\(\s#]+) # Value name )? ) (?:\(( .* # Arguments to pass to the generator )\))? )? # dotenver comment is optional """ ), re.VERBOSE, ) FAKE = Faker() def get_value_key(generator, name): """ Return a key for the given generator and name pair. If name None, no key is generated. """ if name is not None: return f"{generator}+{name}" return None def dotenver(generator, name=None, quotes=None, escape_with="\\", **kwargs): r""" Generate fake data from the given `generator`. If a `name` is given, the value from the given `generator` and `name` will be saved and used for subsequent calls. In those cases only the quotes argument is honored for each call. The returned value will be optionally surrounded with single or double quotes as specified by `quotes`, and escaped with `escape_with`, which is a backslash `\` by default. """ if quotes not in [None, "'", '"']: raise ValueError("quotes must be a single `'` or double `\"` quote") key = get_value_key(generator, name) value = str(VARIABLES.get(key, getattr(FAKE, generator)(**kwargs))) if key and key not in VARIABLES: VARIABLES[key] = value if quotes: value = value.replace(quotes, f"{escape_with}{quotes}") value = f"{quotes}{value}{quotes}" return value def parse_stream(template_stream, current_dotenv): """Parse a dotenver template.""" jinja2_template = io.StringIO() env = Environment(keep_trailing_newline=True) env.globals["dotenver"] = dotenver extra_variables = current_dotenv.copy() for line in template_stream: match = TEMPLATE_REGEX.match(line) if match: left_side, variable, value, generator, name, arguments = match.groups() if variable in current_dotenv: current_value = current_dotenv[variable][1] try: del extra_variables[variable] except KeyError: pass # Keep track of existing named values. key = get_value_key(generator, name) if key: try: VARIABLES[key] except KeyError: VARIABLES[key] = current_value line = ( f"{left_side}={current_value}" if current_value is not None else left_side ) elif generator: dotenver_args = f"'{generator}'" if name: dotenver_args = f"{dotenver_args}, '{name}'" if arguments: dotenver_args = f"{dotenver_args}, {arguments}" line = f"{left_side}={{{{ dotenver({dotenver_args}) }}}}" elif value: line = f"{left_side}={value}" else: line = left_side jinja2_template.write(f"{line.strip()}\n") if extra_variables: jinja2_template.write( """ ###################################### # Variables not in Dotenver template # ###################################### """ ) for left_side, value in extra_variables.values(): template_string = f"{left_side}={value}" if value is not None else left_side jinja2_template.write(f"{template_string}\n") template = env.from_string(jinja2_template.getvalue()) return template def get_dotenv_path(template_path): """Return the .env path for the given template path.""" if template_path.suffix == ".example": return template_path.with_suffix("") return template_path.with_name(".env") def get_dotenv_dict(dotenv_path): """ Read a .env file and return a dictionary of the parsed data. Each item has the VARIABLE as the key, and the value is a tuple: (assignment, value) If the file does not exist, return an empty dict. """ values = dict() try: with open(dotenv_path, "r") as dotenv_file: for line in dotenv_file: match = VALUES_REGEX.match(line) if match: assignment, variable, value = match.groups() values[variable] = (assignment, value) except FileNotFoundError: pass except Exception: print( colorama.Fore.RED, f"The following exception ocurred while reading '{dotenv_path}'", colorama.Fore.YELLOW, sep="", file=sys.stderr, ) raise return values def parse_files(templates_paths, override=False): """Parse multiple dotenver templates and generate or update a .env for each.""" colorama.init() jinja2_templates = {} rendered_templates = {} # First pass will: # - capture all variables form templates and .env files # - capture existing values from .env files # - generate Jinja2 template for _template_path in templates_paths: template_path = Path(_template_path) current_env = ( get_dotenv_dict(get_dotenv_path(template_path)) if not override else {} ) try: with open(template_path, "r") as template_file: jinja2_templates[template_path] = parse_stream( template_file, current_env ) except Exception: print( colorama.Fore.RED, f"The following exception ocurred while processing template" f" '{template_path}'", colorama.Fore.YELLOW, sep="", file=sys.stderr, ) raise # Second pass renders the templates. # Rendering on a second pass ensures all named values from .env files # were captured, and can be assigned to named dotenvers in templates. for template_path, jinja2_template in jinja2_templates.items(): try: rendered_templates[template_path] = jinja2_template.render() except Exception: print( colorama.Fore.RED, f"The following exception ocurred while processing template" f" '{template_path}'", colorama.Fore.YELLOW, sep="", file=sys.stderr, ) raise for template_path, rendered_template in rendered_templates.items(): dotenv_path = get_dotenv_path(template_path) try: with open(dotenv_path, "w") as dotenv_file: dotenv_file.write(rendered_template) except Exception: print( colorama.Fore.RED, f"The following exception ocurred while writing to '{dotenv_path}'", colorama.Fore.YELLOW, sep="", file=sys.stderr, ) raise print( colorama.Fore.GREEN, f"'{template_path}' rendered to '{dotenv_path}'", sep="", file=sys.stderr, ) ```
{ "source": "jmfederico/jinja2-python-version", "score": 3 }
#### File: jinja2-python-version/jinja2_python_version/python_version.py ```python import platform from jinja2.ext import Extension class PythonVersion(): """An object that contains python version information.""" _version = platform.python_version_tuple() major = '{}'.format(_version[0]) minor = '{}.{}'.format(_version[0], _version[1]) micro = '{}.{}.{}'.format(_version[0], _version[1], _version[2]) def __str__(self): """Return Python version up to minor.""" return self.minor class PythonVersionExtension(Extension): """Jinja extension that adds Python versions globals.""" def __init__(self, environment): """Extend environment by adding globals.""" super(PythonVersionExtension, self).__init__(environment) environment.globals['python_version'] = PythonVersion() ```
{ "source": "jmfer1/flagsmith-api", "score": 3 }
#### File: src/app/utils.py ```python import shortuuid def create_hash(): """Helper function to create a short hash""" return shortuuid.uuid() ``` #### File: src/environments/authentication.py ```python from django.conf import settings from django.core.cache import caches from rest_framework.authentication import BaseAuthentication from rest_framework.exceptions import AuthenticationFailed from environments.models import Environment environment_cache = caches[settings.ENVIRONMENT_CACHE_LOCATION] class EnvironmentKeyAuthentication(BaseAuthentication): """ Custom authentication class to add the environment to the request for endpoints used by the clients. """ def authenticate(self, request): try: api_key = request.META.get("HTTP_X_ENVIRONMENT_KEY") environment = Environment.get_from_cache(api_key) except Environment.DoesNotExist: raise AuthenticationFailed("Invalid or missing Environment Key") if not self._can_serve_flags(environment): raise AuthenticationFailed("Organisation is disabled from serving flags.") request.environment = environment # DRF authentication expects a two tuple to be returned containing User, auth return None, None def _can_serve_flags(self, environment): return not environment.project.organisation.stop_serving_flags ``` #### File: integrations/datadog/datadog.py ```python import json import requests from util.logging import get_logger from util.util import postpone logger = get_logger(__name__) EVENTS_API_URI = "api/v1/events" class DataDogWrapper: def __init__(self, base_url: str, api_key: str): self.base_url = base_url self.api_key = api_key self.url = f"{self.base_url}{EVENTS_API_URI}?api_key={self.api_key}" def _track_event(self, event: dict) -> None: response = requests.post(self.url, data=json.dumps(event)) logger.debug( "Sent event to DataDog. Response code was %s" % response.status_code ) @postpone def track_event_async(self, event: dict) -> None: self._track_event(event) @staticmethod def generate_event_data(log: str, email: str, environment_name: str): event_data = { "text": f"{log} by user {email}", "title": "Bullet Train Feature Flag Event", "tags": [f"env:{environment_name}"], } return event_data ``` #### File: src/segments/models.py ```python import hashlib import re import typing from django.core.exceptions import ValidationError from django.db import models from django.utils.encoding import python_2_unicode_compatible from environments.identities.models import Identity from environments.identities.traits.models import Trait from environments.models import BOOLEAN, FLOAT, INTEGER from projects.models import Project # Condition Types EQUAL = "EQUAL" GREATER_THAN = "GREATER_THAN" LESS_THAN = "LESS_THAN" LESS_THAN_INCLUSIVE = "LESS_THAN_INCLUSIVE" CONTAINS = "CONTAINS" GREATER_THAN_INCLUSIVE = "GREATER_THAN_INCLUSIVE" NOT_CONTAINS = "NOT_CONTAINS" NOT_EQUAL = "NOT_EQUAL" REGEX = "REGEX" PERCENTAGE_SPLIT = "PERCENTAGE_SPLIT" @python_2_unicode_compatible class Segment(models.Model): name = models.CharField(max_length=2000) description = models.TextField(null=True, blank=True) project = models.ForeignKey( Project, on_delete=models.CASCADE, related_name="segments" ) def __str__(self): return "Segment - %s" % self.name def does_identity_match( self, identity: Identity, traits: typing.List[Trait] = None ) -> bool: rules = self.rules.all() return rules.count() > 0 and all( rule.does_identity_match(identity, traits) for rule in rules ) def get_identity_percentage_value(self, identity: Identity) -> float: """ Given a segment and an identity, generate a number between 0 and 1 to determine whether the identity falls within a given percentile when using percentage split rules. """ to_hash = f"{self.id},{identity.id}" hashed_value = hashlib.md5(to_hash.encode("utf-8")) hashed_value_as_int = int(hashed_value.hexdigest(), base=16) return (hashed_value_as_int % 9999) / 9998 @python_2_unicode_compatible class SegmentRule(models.Model): ALL_RULE = "ALL" ANY_RULE = "ANY" NONE_RULE = "NONE" RULE_TYPES = ((ALL_RULE, "all"), (ANY_RULE, "any"), (NONE_RULE, "none")) segment = models.ForeignKey( Segment, on_delete=models.CASCADE, related_name="rules", null=True, blank=True ) rule = models.ForeignKey( "self", on_delete=models.CASCADE, related_name="rules", null=True, blank=True ) type = models.CharField(max_length=50, choices=RULE_TYPES) def clean(self): super().clean() parents = [self.segment, self.rule] num_parents = sum(parent is not None for parent in parents) if num_parents != 1: raise ValidationError( "Segment rule must have exactly one parent, %d found", num_parents ) def __str__(self): return "%s rule for %s" % ( self.type, str(self.segment) if self.segment else str(self.rule), ) def does_identity_match( self, identity: Identity, traits: typing.List[Trait] = None ) -> bool: matches_conditions = False conditions = self.conditions.all() if conditions.count() == 0: matches_conditions = True elif self.type == self.ALL_RULE: matches_conditions = all( condition.does_identity_match(identity, traits) for condition in conditions ) elif self.type == self.ANY_RULE: matches_conditions = any( condition.does_identity_match(identity, traits) for condition in conditions ) elif self.type == self.NONE_RULE: matches_conditions = not any( condition.does_identity_match(identity, traits) for condition in conditions ) return matches_conditions and all( rule.does_identity_match(identity, traits) for rule in self.rules.all() ) def get_segment(self): """ rules can be a child of a parent rule instead of a segment, this method iterates back up the tree to find the segment TODO: denormalise the segment information so that we don't have to make multiple queries here in complex cases """ rule = self while not rule.segment: rule = rule.rule return rule.segment @python_2_unicode_compatible class Condition(models.Model): CONDITION_TYPES = ( (EQUAL, "Exactly Matches"), (GREATER_THAN, "Greater than"), (LESS_THAN, "Less than"), (CONTAINS, "Contains"), (GREATER_THAN_INCLUSIVE, "Greater than or equal to"), (LESS_THAN_INCLUSIVE, "Less than or equal to"), (NOT_CONTAINS, "Does not contain"), (NOT_EQUAL, "Does not match"), (REGEX, "Matches regex"), (PERCENTAGE_SPLIT, "Percentage split"), ) operator = models.CharField(choices=CONDITION_TYPES, max_length=500) property = models.CharField(blank=True, null=True, max_length=1000) value = models.CharField(max_length=1000) rule = models.ForeignKey( SegmentRule, on_delete=models.CASCADE, related_name="conditions" ) def __str__(self): return "Condition for %s: %s %s %s" % ( str(self.rule), self.property, self.operator, self.value, ) def does_identity_match( self, identity: Identity, traits: typing.List[Trait] = None ) -> bool: if self.operator == PERCENTAGE_SPLIT: return self._check_percentage_split_operator(identity) # we allow passing in traits to handle when they aren't # persisted for certain organisations traits = identity.identity_traits.all() if traits is None else traits for trait in traits: if trait.trait_key == self.property: if trait.value_type == INTEGER: return self.check_integer_value(trait.integer_value) if trait.value_type == FLOAT: return self.check_float_value(trait.float_value) elif trait.value_type == BOOLEAN: return self.check_boolean_value(trait.boolean_value) else: return self.check_string_value(trait.string_value) def _check_percentage_split_operator(self, identity): try: float_value = float(self.value) / 100.0 except ValueError: return False segment = self.rule.get_segment() return segment.get_identity_percentage_value(identity) <= float_value def check_integer_value(self, value: int) -> bool: try: int_value = int(str(self.value)) except ValueError: return False if self.operator == EQUAL: return value == int_value elif self.operator == GREATER_THAN: return value > int_value elif self.operator == GREATER_THAN_INCLUSIVE: return value >= int_value elif self.operator == LESS_THAN: return value < int_value elif self.operator == LESS_THAN_INCLUSIVE: return value <= int_value elif self.operator == NOT_EQUAL: return value != int_value return False def check_float_value(self, value: float) -> bool: try: float_value = float(str(self.value)) except ValueError: return False if self.operator == EQUAL: return value == float_value elif self.operator == GREATER_THAN: return value > float_value elif self.operator == GREATER_THAN_INCLUSIVE: return value >= float_value elif self.operator == LESS_THAN: return value < float_value elif self.operator == LESS_THAN_INCLUSIVE: return value <= float_value elif self.operator == NOT_EQUAL: return value != float_value return False def check_boolean_value(self, value: bool) -> bool: if self.value in ("False", "false", "0"): bool_value = False elif self.value in ("True", "true", "1"): bool_value = True else: return False if self.operator == EQUAL: return value == bool_value elif self.operator == NOT_EQUAL: return value != bool_value return False def check_string_value(self, value: str) -> bool: try: str_value = str(self.value) except ValueError: return False if self.operator == EQUAL: return value == str_value elif self.operator == NOT_EQUAL: return value != str_value elif self.operator == CONTAINS: return str_value in value elif self.operator == NOT_CONTAINS: return str_value not in value elif self.operator == REGEX: return re.compile(str(self.value)).match(value) is not None ```
{ "source": "jmfernandez/cwltool", "score": 2 }
#### File: cwltool/cwltool/load_tool.py ```python import hashlib import logging import os import re import urllib import uuid from typing import ( Any, Dict, List, MutableMapping, MutableSequence, Optional, Tuple, Union, cast, ) from ruamel.yaml.comments import CommentedMap, CommentedSeq from schema_salad.exceptions import ValidationException from schema_salad.ref_resolver import Loader, file_uri from schema_salad.schema import validate_doc from schema_salad.sourceline import SourceLine, cmap from schema_salad.utils import ( ContextType, FetcherCallableType, IdxResultType, ResolveType, json_dumps, ) from . import CWL_CONTENT_TYPES, process, update from .context import LoadingContext from .errors import WorkflowException from .loghandler import _logger from .process import Process, get_schema, shortname from .update import ALLUPDATES from .utils import CWLObjectType, ResolverType, visit_class jobloaderctx = { "cwl": "https://w3id.org/cwl/cwl#", "cwltool": "http://commonwl.org/cwltool#", "path": {"@type": "@id"}, "location": {"@type": "@id"}, "id": "@id", } # type: ContextType overrides_ctx = { "overrideTarget": {"@type": "@id"}, "cwltool": "http://commonwl.org/cwltool#", "http://commonwl.org/cwltool#overrides": { "@id": "cwltool:overrides", "mapSubject": "overrideTarget", }, "requirements": { "@id": "https://w3id.org/cwl/cwl#requirements", "mapSubject": "class", }, } # type: ContextType def default_loader( fetcher_constructor: Optional[FetcherCallableType] = None, enable_dev: bool = False, doc_cache: bool = True, ) -> Loader: return Loader( jobloaderctx, fetcher_constructor=fetcher_constructor, allow_attachments=lambda r: enable_dev, doc_cache=doc_cache, ) def resolve_tool_uri( argsworkflow: str, resolver: Optional[ResolverType] = None, fetcher_constructor: Optional[FetcherCallableType] = None, document_loader: Optional[Loader] = None, ) -> Tuple[str, str]: uri = None # type: Optional[str] split = urllib.parse.urlsplit(argsworkflow) # In case of Windows path, urlsplit misjudge Drive letters as scheme, here we are skipping that if split.scheme and split.scheme in ["http", "https", "file"]: uri = argsworkflow elif os.path.exists(os.path.abspath(argsworkflow)): uri = file_uri(str(os.path.abspath(argsworkflow))) elif resolver is not None: uri = resolver( document_loader or default_loader(fetcher_constructor), argsworkflow ) if uri is None: raise ValidationException("Not found: '%s'" % argsworkflow) if argsworkflow != uri: _logger.info("Resolved '%s' to '%s'", argsworkflow, uri) fileuri = urllib.parse.urldefrag(uri)[0] return uri, fileuri def fetch_document( argsworkflow: Union[str, CWLObjectType], loadingContext: Optional[LoadingContext] = None, ) -> Tuple[LoadingContext, CommentedMap, str]: """Retrieve a CWL document.""" if loadingContext is None: loadingContext = LoadingContext() loadingContext.loader = default_loader() else: loadingContext = loadingContext.copy() if loadingContext.loader is None: loadingContext.loader = default_loader( loadingContext.fetcher_constructor, enable_dev=loadingContext.enable_dev, doc_cache=loadingContext.doc_cache, ) if isinstance(argsworkflow, str): uri, fileuri = resolve_tool_uri( argsworkflow, resolver=loadingContext.resolver, document_loader=loadingContext.loader, ) workflowobj = cast( CommentedMap, loadingContext.loader.fetch(fileuri, content_types=CWL_CONTENT_TYPES), ) return loadingContext, workflowobj, uri if isinstance(argsworkflow, MutableMapping): uri = ( cast(str, argsworkflow["id"]) if argsworkflow.get("id") else "_:" + str(uuid.uuid4()) ) workflowobj = cast( CommentedMap, cmap(cast(Dict[str, Any], argsworkflow), fn=uri) ) loadingContext.loader.idx[uri] = workflowobj return loadingContext, workflowobj, uri raise ValidationException("Must be URI or object: '%s'" % argsworkflow) def _convert_stdstreams_to_files( workflowobj: Union[ CWLObjectType, MutableSequence[Union[CWLObjectType, str, int]], str ] ) -> None: if isinstance(workflowobj, MutableMapping): if workflowobj.get("class") == "CommandLineTool": with SourceLine( workflowobj, "outputs", ValidationException, _logger.isEnabledFor(logging.DEBUG), ): outputs = workflowobj.get("outputs", []) if not isinstance(outputs, CommentedSeq): raise ValidationException('"outputs" section is not ' "valid.") for out in cast( MutableSequence[CWLObjectType], workflowobj.get("outputs", []) ): if not isinstance(out, CommentedMap): raise ValidationException( f"Output '{out}' is not a valid OutputParameter." ) for streamtype in ["stdout", "stderr"]: if out.get("type") == streamtype: if "outputBinding" in out: raise ValidationException( "Not allowed to specify outputBinding when" " using %s shortcut." % streamtype ) if streamtype in workflowobj: filename = workflowobj[streamtype] else: filename = str( hashlib.sha1( # nosec json_dumps(workflowobj, sort_keys=True).encode( "utf-8" ) ).hexdigest() ) workflowobj[streamtype] = filename out["type"] = "File" out["outputBinding"] = cmap({"glob": filename}) for inp in cast( MutableSequence[CWLObjectType], workflowobj.get("inputs", []) ): if inp.get("type") == "stdin": if "inputBinding" in inp: raise ValidationException( "Not allowed to specify inputBinding when" " using stdin shortcut." ) if "stdin" in workflowobj: raise ValidationException( "Not allowed to specify stdin path when" " using stdin type shortcut." ) else: workflowobj["stdin"] = ( "$(inputs.%s.path)" % cast(str, inp["id"]).rpartition("#")[2] ) inp["type"] = "File" else: for entry in workflowobj.values(): _convert_stdstreams_to_files( cast( Union[ CWLObjectType, MutableSequence[Union[CWLObjectType, str, int]], str, ], entry, ) ) if isinstance(workflowobj, MutableSequence): for entry in workflowobj: _convert_stdstreams_to_files( cast( Union[ CWLObjectType, MutableSequence[Union[CWLObjectType, str, int]], str, ], entry, ) ) def _add_blank_ids( workflowobj: Union[CWLObjectType, MutableSequence[Union[CWLObjectType, str]]] ) -> None: if isinstance(workflowobj, MutableMapping): if ( "run" in workflowobj and isinstance(workflowobj["run"], MutableMapping) and "id" not in workflowobj["run"] and "$import" not in workflowobj["run"] ): workflowobj["run"]["id"] = str(uuid.uuid4()) for entry in workflowobj.values(): _add_blank_ids( cast( Union[CWLObjectType, MutableSequence[Union[CWLObjectType, str]]], entry, ) ) if isinstance(workflowobj, MutableSequence): for entry in workflowobj: _add_blank_ids( cast( Union[CWLObjectType, MutableSequence[Union[CWLObjectType, str]]], entry, ) ) def resolve_and_validate_document( loadingContext: LoadingContext, workflowobj: Union[CommentedMap, CommentedSeq], uri: str, preprocess_only: bool = False, skip_schemas: Optional[bool] = None, ) -> Tuple[LoadingContext, str]: """Validate a CWL document.""" if not loadingContext.loader: raise ValueError("loadingContext must have a loader.") else: loader = loadingContext.loader loadingContext = loadingContext.copy() if not isinstance(workflowobj, MutableMapping): raise ValueError( "workflowjobj must be a dict, got '{}': {}".format( type(workflowobj), workflowobj ) ) jobobj = None if "cwl:tool" in workflowobj: jobobj, _ = loader.resolve_all(workflowobj, uri) uri = urllib.parse.urljoin(uri, workflowobj["https://w3id.org/cwl/cwl#tool"]) del cast(Dict[str, Any], jobobj)["https://w3id.org/cwl/cwl#tool"] workflowobj = fetch_document(uri, loadingContext)[1] fileuri = urllib.parse.urldefrag(uri)[0] cwlVersion = loadingContext.metadata.get("cwlVersion") if not cwlVersion: cwlVersion = workflowobj.get("cwlVersion") if not cwlVersion and fileuri != uri: # The tool we're loading is a fragment of a bigger file. Get # the document root element and look for cwlVersion there. metadata = cast(CWLObjectType, fetch_document(fileuri, loadingContext)[1]) cwlVersion = cast(str, metadata.get("cwlVersion")) if not cwlVersion: raise ValidationException( "No cwlVersion found. " "Use the following syntax in your CWL document to declare " "the version: cwlVersion: <version>.\n" "Note: if this is a CWL draft-3 (pre v1.0) document then it " "will need to be upgraded first using https://pypi.org/project/cwl-upgrader/ . " "'sbg:draft-2' documents can be upgraded using " "https://pypi.org/project/sevenbridges-cwl-draft2-upgrader/ ." ) if not isinstance(cwlVersion, str): with SourceLine( workflowobj, "cwlVersion", ValidationException, loadingContext.debug ): raise ValidationException( f"'cwlVersion' must be a string, got {type(cwlVersion)}" ) # strip out version cwlVersion = re.sub(r"^(?:cwl:|https://w3id.org/cwl/cwl#)", "", cwlVersion) if cwlVersion not in list(ALLUPDATES): # print out all the Supported Versions of cwlVersion versions = [] for version in list(ALLUPDATES): if "dev" in version: version += " (with --enable-dev flag only)" versions.append(version) versions.sort() raise ValidationException( "The CWL reference runner no longer supports pre CWL v1.0 " "documents. Supported versions are: " "\n{}".format("\n".join(versions)) ) if ( isinstance(jobobj, CommentedMap) and "http://commonwl.org/cwltool#overrides" in jobobj ): loadingContext.overrides_list.extend(resolve_overrides(jobobj, uri, uri)) del jobobj["http://commonwl.org/cwltool#overrides"] if ( isinstance(jobobj, CommentedMap) and "https://w3id.org/cwl/cwl#requirements" in jobobj ): if cwlVersion not in ("v1.1.0-dev1", "v1.1"): raise ValidationException( "`cwl:requirements` in the input object is not part of CWL " "v1.0. You can adjust to use `cwltool:overrides` instead; or you " "can set the cwlVersion to v1.1 or greater." ) loadingContext.overrides_list.append( { "overrideTarget": uri, "requirements": jobobj["https://w3id.org/cwl/cwl#requirements"], } ) del jobobj["https://w3id.org/cwl/cwl#requirements"] (sch_document_loader, avsc_names) = process.get_schema(cwlVersion)[:2] if isinstance(avsc_names, Exception): raise avsc_names processobj = None # type: Optional[ResolveType] document_loader = Loader( sch_document_loader.ctx, schemagraph=sch_document_loader.graph, idx=loader.idx, cache=sch_document_loader.cache, fetcher_constructor=loadingContext.fetcher_constructor, skip_schemas=skip_schemas, doc_cache=loadingContext.doc_cache, ) if cwlVersion == "v1.0": _add_blank_ids(workflowobj) document_loader.resolve_all(workflowobj, fileuri) processobj, metadata = document_loader.resolve_ref(uri) if not isinstance(processobj, (CommentedMap, CommentedSeq)): raise ValidationException("Workflow must be a CommentedMap or CommentedSeq.") if not hasattr(processobj.lc, "filename"): processobj.lc.filename = fileuri if loadingContext.metadata: metadata = loadingContext.metadata if not isinstance(metadata, CommentedMap): raise ValidationException( "metadata must be a CommentedMap, was %s" % type(metadata) ) if isinstance(processobj, CommentedMap): uri = processobj["id"] _convert_stdstreams_to_files(workflowobj) if isinstance(jobobj, CommentedMap): loadingContext.jobdefaults = jobobj loadingContext.loader = document_loader loadingContext.avsc_names = avsc_names loadingContext.metadata = metadata if preprocess_only: return loadingContext, uri if loadingContext.do_validate: validate_doc(avsc_names, processobj, document_loader, loadingContext.strict) # None means default behavior (do update) if loadingContext.do_update in (True, None): if "cwlVersion" not in metadata: metadata["cwlVersion"] = cwlVersion processobj = update.update( processobj, document_loader, fileuri, loadingContext.enable_dev, metadata ) document_loader.idx[processobj["id"]] = processobj def update_index(pr: CommentedMap) -> None: if "id" in pr: document_loader.idx[pr["id"]] = pr visit_class( processobj, ("CommandLineTool", "Workflow", "ExpressionTool"), update_index ) return loadingContext, uri def make_tool( uri: Union[str, CommentedMap, CommentedSeq], loadingContext: LoadingContext ) -> Process: """Make a Python CWL object.""" if loadingContext.loader is None: raise ValueError("loadingContext must have a loader") resolveduri, metadata = loadingContext.loader.resolve_ref(uri) processobj = None if isinstance(resolveduri, MutableSequence): for obj in resolveduri: if obj["id"].endswith("#main"): processobj = obj break if not processobj: raise WorkflowException( "Tool file contains graph of multiple objects, must specify " "one of #%s" % ", #".join( urllib.parse.urldefrag(i["id"])[1] for i in resolveduri if "id" in i ) ) elif isinstance(resolveduri, MutableMapping): processobj = resolveduri else: raise Exception("Must resolve to list or dict") tool = loadingContext.construct_tool_object(processobj, loadingContext) if loadingContext.jobdefaults: jobobj = loadingContext.jobdefaults for inp in tool.tool["inputs"]: if shortname(inp["id"]) in jobobj: inp["default"] = jobobj[shortname(inp["id"])] return tool def load_tool( argsworkflow: Union[str, CWLObjectType], loadingContext: Optional[LoadingContext] = None, ) -> Process: loadingContext, workflowobj, uri = fetch_document(argsworkflow, loadingContext) loadingContext, uri = resolve_and_validate_document( loadingContext, workflowobj, uri ) return make_tool(uri, loadingContext) def resolve_overrides( ov: IdxResultType, ov_uri: str, baseurl: str, ) -> List[CWLObjectType]: ovloader = Loader(overrides_ctx) ret, _ = ovloader.resolve_all(ov, baseurl) if not isinstance(ret, CommentedMap): raise Exception("Expected CommentedMap, got %s" % type(ret)) cwl_docloader = get_schema("v1.0")[0] cwl_docloader.resolve_all(ret, ov_uri) return cast(List[CWLObjectType], ret["http://commonwl.org/cwltool#overrides"]) def load_overrides(ov: str, base_url: str) -> List[CWLObjectType]: ovloader = Loader(overrides_ctx) return resolve_overrides(ovloader.fetch(ov), ov, base_url) def recursive_resolve_and_validate_document( loadingContext: LoadingContext, workflowobj: Union[CommentedMap, CommentedSeq], uri: str, preprocess_only: bool = False, skip_schemas: Optional[bool] = None, ) -> Tuple[LoadingContext, str, Process]: """Validate a CWL document, checking that a tool object can be built.""" loadingContext, uri = resolve_and_validate_document( loadingContext, workflowobj, uri, preprocess_only=preprocess_only, skip_schemas=skip_schemas, ) tool = make_tool(uri, loadingContext) return loadingContext, uri, tool ```
{ "source": "jmfernandez/logging2telegram-ng", "score": 2 }
#### File: jmfernandez/logging2telegram-ng/setup.py ```python import os.path from setuptools import setup import sys # In this way, we are sure we are getting # the installer's version of the library # not the system's one setupDir = os.path.dirname(__file__) sys.path.insert(0, setupDir) from log2tg_ng import __version__ as log2tg_ng_version def long_description(): this_dir = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(this_dir, 'README.md'), encoding='utf-8') as f: return f.read() def requirements(): requirements_list = list() with open('requirements.txt') as pc_requirements: for install in pc_requirements: requirements_list.append(install.strip()) return requirements_list setup( name='logging2telegram-ng', version=log2tg_ng_version, packages=['log2tg_ng'], url='https://github.com/jmfernandez/loging2telegram-ng', author='jmfernandez', license='Apache License, Version 2.0, see LICENSE file', description='Telegram logging handler (next generation)', long_description=long_description(), long_description_content_type='text/markdown', install_requires=requirements(), classifiers=[ 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Environment :: Console', 'Development Status :: 3 - Alpha', 'Programming Language :: Python', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: Implementation :: PyPy', ] ) ```
{ "source": "jmfernandez/py_gridfs_fuse", "score": 2 }
#### File: py_gridfs_fuse/gridfs_fuse/main.py ```python import logging import argparse import pyfuse3 import trio import os import sys from pymongo.uri_parser import parse_uri from .operations import operations_factory FUSE_OPTIONS_HELP=''' FUSE options for mount (comma-separated) [default: %(default)s]. debug - turn on detailed debugging. workers=N - number of workers [default: 1]. single - equivalent to workers=1 for pyfuse3 compatibility. log_level=LEVEL - specifies the logging level. log_file=FILE - specifies path for loging to file. foreground - run process in foreground rather than as daemon process. Note: Generic options can be found at: http://man7.org/linux/man-pages/man8/mount.fuse.8.html ''' class HelpFormatter(argparse.HelpFormatter): '''A custom formatter to rearrange order of positionals and hide actions starting with _''' # use defined argument order to display usage def _format_usage(self, usage, actions, groups, prefix): if prefix is None: prefix = 'usage: ' # if usage is specified, use that if usage is not None: usage = usage % dict(prog=self._prog) # if no optionals or positionals are available, usage is just prog elif usage is None and not actions: usage = '%(prog)s' % dict(prog=self._prog) elif usage is None: prog = '%(prog)s' % dict(prog=self._prog) # build full usage string actions_list = [] for a in actions: if len(a.option_strings) > 0: actions_list.append(a) elif a.dest == 'help': actions_list.insert(0, a) elif a.dest.startswith('_'): pass # hide these else: actions_list.insert(1, a) if len(actions_list) else actions_list.append(a) action_usage = self._format_actions_usage(actions_list, groups) # NEW usage = ' '.join([s for s in [prog, action_usage] if s]) # omit the long line wrapping code # prefix with 'usage:' return '%s%s\n\n' % (prefix, usage) def _format_action(self, action): if not action.dest.startswith('_'): return super(self.__class__, self)._format_action(action) class OrderedNamespace(argparse.Namespace): '''Allows argument order to be retained''' def __init__(self, **kwargs): self.__dict__["_arg_order"] = [] self.__dict__["_arg_order_first_time_through"] = True argparse.Namespace.__init__(self, **kwargs) def __setattr__(self, name, value): self.__dict__[name] = value if name in self._arg_order and hasattr(self, "_arg_order_first_time_through"): self.__dict__["_arg_order"] = [] delattr(self, "_arg_order_first_time_through") self.__dict__["_arg_order"].append(name) def _finalize(self): if hasattr(self, "_arg_order_first_time_through"): self.__dict__["_arg_order"] = [] delattr(self, "_arg_order_first_time_through") def _latest_of(self, k1, k2): try: if self._arg_order.index(k1) > self._arg_order.index(k2): return k1 except ValueError: if k1 in self._arg_order: return k1 return k2 def configure_parser(parser): '''Configures CLI options''' parser.add_argument( '-m', '--mount-point', dest='mount_point', help="Path where to mount fuse/gridfs wrapper") parser.add_argument( '-u', '--mongodb-uri', dest='mongodb_uri', default="mongodb://127.0.0.1:27017/gridfs_fuse.fs", help="""Connection string for MongoClient. http://goo.gl/abqY9 " "[default: %(default)s]""") parser.add_argument( '-d', '--database', dest='database', default='gridfs_fuse', help="Name of the database where the filesystem goes [default: %(default)s]") parser.add_argument( '-c', '--collection', dest='collection', default='fs', help='Database collection for GridFS [default: %(default)s]') parser.add_argument( '-o', '--options', dest='mount_opts', action='append', default=['default_permissions'], help=FUSE_OPTIONS_HELP) parser.add_argument( '-l', '--log', dest='logfile', default=os.devnull, const='gridfs_fuse.log', nargs='?', help='Log actions to file [default: %(default)s]') return parser def fuse_configurator(parser): '''Configure parser for mount CLI style of form: <srv> <mnt_pt> [-o <options>]''' parser.add_argument('_script_path') # hack to fix ordering parser.add_argument('mongodb_uri', help="MongoDB connection URI in form " "'mongodb://[user:password@]hostname[:port]/db.collection'") parser.add_argument('mount_point', help="Path to mount fuse gridfs filesystem") parser.add_argument( '-o', dest='mount_opts', action='append', default=['default_permissions'], help=FUSE_OPTIONS_HELP) return parser def validate_options(options): '''Validates parser arguments''' uri = parse_uri(options.mongodb_uri) # These were splitted because we can have a assigned None value database = uri.get('database') if database is not None: options.database = database collection = uri.get('collection') if collection is not None: options.collection = collection if not options.mount_point: raise Exception("mount_point is mandatory") def fuse_validator(options): '''Validates parser arguments using mount interface''' options.database = 'gridfs_fuse' options.collection = 'fs' validate_options(options) opts = dict([opt.split('=', 1) if '=' in opt else (opt, None) for opt in options.mount_opts]) options.logfile = opts.get('log_file', None) # shamelessly *adapted* from the the borg collective (see - borgbackup project) def daemonize(): """Detach process from controlling terminal and run in background Returns: old and new get_process_id tuples """ old_id = os.getpid() pid = os.fork() if pid: os._exit(0) os.setsid() pid = os.fork() if pid: os._exit(0) new_id = os.getpid() return old_id, new_id def run_fuse_mount(ops, options, mount_opts): '''Performs FUSE mount''' mount_opts = ['fsname=gridfs'] + mount_opts opts = dict((opt.split('=', 1) if '=' in opt else (opt, None) for opt in mount_opts)) # strip invalid keys ignored_keys = ['debug', 'foreground', 'log_level', 'log_file', 'workers', 'single'] valid_keys = [k for k in opts if k not in ignored_keys] mount_opts = set(pyfuse3.default_options) for k in valid_keys: if opts[k] is not None: mount_opts.add('='.join([k, opts[k]])) else: mount_opts.add(k) # handle some key options here if 'log_level' in opts: try: log_level = opts['log_level'].upper() try: log_level = int(log_level) except ValueError: pass logging.getLogger().setLevel(getattr(logging, log_level)) except (TypeError, ValueError) as error: logging.warning('Unable to set log_level to {}: {}'.format(opts['log_level'], error)) # start gridfs bindings and run fuse process pyfuse3.init(ops, options.mount_point, mount_opts) # ensure that is single is given then it evaluates to true if 'single' in opts and opts['single'] is None: opts['single'] = True # debug clobbers other log settings such as log_level if 'debug' in opts: logging.basicConfig( format='[%(asctime)s] pid=%(process)s {%(module)s:%(funcName)s():%(lineno)d} %(levelname)s - %(message)s', level=logging.DEBUG) # TODO: Find way of capturing CTRL+C and calling pyfuse3.close() when in foreground # Note: This maybe a bug in pyfuse3 workers = opts.get('workers', opts.get('single', 1)) # fudge for backwards compatibility try: trio.run(pyfuse3.main) # maintain compatibility with single/workers kwarg except KeyboardInterrupt: pass finally: pyfuse3.close() def init(args, configure=configure_parser, validate=validate_options): '''Initialise using specified parser config and validation''' logging.basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", #format='[%(asctime)s] pid=%(process)s {%(module)s:%(funcName)s():%(lineno)d} %(levelname)s - %(message)s', level=logging.INFO) parser = argparse.ArgumentParser(formatter_class=HelpFormatter) configure(parser) options, _ = parser.parse_known_args(args, namespace=OrderedNamespace()) # flatten options list flatten = lambda l: [item for sublist in l for item in sublist.split(',')] options.mount_opts = flatten(options.mount_opts) validate(options) # have to fork process before creating MongoClient object otherwise safety warnings if 'foreground' not in options.mount_opts: pids = daemonize() # make the program run as non-blocking process logging.debug('Daemonized parent process {} with child process {}'.format(*pids)) ops = operations_factory(options) # TODO: Still not sure which options to use # 'allow_other' Regardless who mounts it, all other users can access it # 'default_permissions' Let the kernel do the permission checks # 'nonempty' Allow mount on non empty directory mount_opts = options.mount_opts run_fuse_mount(ops, options, mount_opts) def main(args=sys.argv): '''Default interface''' init(args, configure=configure_parser, validate=validate_options) # defaults def _mount_fuse_main(args=sys.argv): '''Interface for mount.fuse''' init(args, configure=fuse_configurator, validate=fuse_validator) if __name__ == '__main__': try: main() except KeyboardInterrupt: pass ```
{ "source": "jmfife/vedirect-jmfife", "score": 2 }
#### File: vedirect-jmfife/examples/vedirect_mqtt.py ```python import argparse, os import paho.mqtt.client as mqtt from vedirect import VEDirect import logging log = logging.getLogger(__name__) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Process VE.Direct protocol') parser.add_argument('--port', help='Serial port') parser.add_argument('--timeout', help='Serial port read timeout', type=int, default='60') parser.add_argument('--mqttbroker', help='MQTT broker address', type=str, default='test.mosquitto.org') parser.add_argument('--mqttbrokerport', help='MQTT broker port', type=int, default='1883') parser.add_argument('--topicprefix', help='MQTT topic prefix', type=str, default='vedirect_device/') parser.add_argument('--emulate', help='emulate one of [ALL, BMV_600, BMV_700, MPPT, PHX_INVERTER]', default='', type=str) parser.add_argument('--loglevel', help='logging level - one of [DEBUG, INFO, WARNING, ERROR, CRITICAL]', default='ERROR') args = parser.parse_args() logging.basicConfig(level=args.loglevel.upper()) ve = VEDirect(args.port, args.timeout, args.emulate) client = mqtt.Client() client.connect(args.mqttbroker, args.mqttbrokerport, 60) client.loop_start() def mqtt_send_callback(packet): for key, value in packet.items(): if key != 'SER#': # topic cannot contain MQTT wildcards log.info(f"{args.topicprefix + key}: {value}") client.publish(args.topicprefix + key, value) ve.read_data_callback(mqtt_send_callback) ``` #### File: vedirect-jmfife/examples/vedirect_print.py ```python import argparse, os from vedirect import VEDirect def print_data_callback(packet): print(packet) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Process VE.Direct protocol') parser.add_argument('--port', help='Serial port') parser.add_argument('--timeout', help='Serial port read timeout', type=int, default='60') parser.add_argument('--emulate', help='emulate one of [ALL, BMV_600, BMV_700, MPPT, PHX_INVERTER]', default='', type=str) args = parser.parse_args() ve = VEDirect(args.port, args.timeout, args.emulate) print(ve.read_data_callback(print_data_callback)) ```
{ "source": "jmfiz/jpardobl-trastobrain", "score": 2 }
#### File: infrastructure/awsmultiprocess/test_comando_repository.py ```python from trasto.infrastructure.awsmultiprocess.comando_repository import ( COMANDOS_QUEUE_NAME, ComandoRepository) from trasto.infrastructure.memory.repositories import Idefier from trasto.model.commands import (Comando, ComandoNuevaAccion, ComandoNuevaTarea) from trasto.model.entities import Accion, Tarea from trasto.model.value_entities import Idd, TipoAccion def test_comando_nueva_accion(): comando_repo = ComandoRepository() cna = ComandoNuevaAccion( idd=Idd(Idefier()), accion=Accion( idd=Idd(Idefier()), nombre="nombreaccion", script_url="url", tipo=TipoAccion(nombre="buenhumor") ) ) comando_repo.send_comando(cna) count = 0 for ccna in comando_repo.next_comando(): assert not ccna is None assert isinstance(ccna, ComandoNuevaAccion) assert ccna.accion.nombre == "nombreaccion" count = count + 1 break assert count == 1 def test_comando_nueva_tarea(): comando_repo = ComandoRepository() cnt_alta = ComandoNuevaTarea( idd=Idd(Idefier()), tarea=Tarea( idd=Idd(Idefier()), nombre="tareaalta", parametros="parametros", prioridad=1, accionid="accion" ) ) cnt_baja = ComandoNuevaTarea( idd=Idd(Idefier()), tarea=Tarea( idd=Idd(Idefier()), nombre="tareabaja", parametros="parametros", prioridad=0, accionid="accion" ) ) comando_repo.send_comando(cnt_alta) comando_repo.send_comando(cnt_baja) count = 0 for ccnt in comando_repo.next_comando(): assert isinstance(ccnt, ComandoNuevaTarea) assert ccnt.tarea.nombre in ("tareabaja", "tareaalta") print(f"vamos por contador: {count}") count = count + 1 if count == 2: break assert count == 2 ```
{ "source": "JMFlin/auto-preference-finder", "score": 2 }
#### File: frontend/app/app.py ```python import hashlib import tarfile import streamlit as st import logging import os import pandas as pd #import tensorflow as tf import random import time from google.cloud import storage from run import * version = 'v1' # tar -zcvf archive.tar.gz female/ && split -b 250M archive.tar.gz "archive.part" && rm archive.tar.gz # find . -type f | awk -v N=10 -F / 'match($0, /.*\//, m) && a[m[0]]++ < N' | xargs -r -d '\n' tar -rvf backup.tar logging.basicConfig(level=logging.INFO) LOGGER = logging.getLogger(__name__) @st.cache def download_blobs(): """Downloads a blob from the bucket.""" LOGGER.info(f'tf version: {tf.version.VERSION}') if not os.path.exists("./images/"): os.mkdir("./images/") if not os.path.exists("./images/unclassified/"): os.mkdir("./images/unclassified/") if not os.path.exists('./images/unclassified/female'): num = random.randint(1,29) _, bucket = initialize_gcloud() LOGGER.info(f'Beginning to download images from data_partitions/{version}/archive_partition_{num}.tar.gz') blob = bucket.blob(f'data_partitions/{version}/archive_partition_{num}.tar.gz') blob.download_to_filename('./images/unclassified/archive.tar.gz') LOGGER.info(f'Extracting files from archive') my_tar = tarfile.open('./images/unclassified/archive.tar.gz') my_tar.extractall('./images/unclassified/') my_tar.close() time.sleep(1) i = 0 while not os.path.exists('./images/unclassified/female'): try: os.rename(f'./images/unclassified/tmp{num}', './images/unclassified/female') except Exception as e: LOGGER.info(e) pass if i > 5: break i = i + 1 time.sleep(1) LOGGER.info(f'Blobs downloaded\n') def initialize_gcloud(): bucket_name = os.getenv('GCS_BUCKET') storage_client = storage.Client() bucket = storage_client.bucket(bucket_name) return(storage_client, bucket) def download_model(userid): """Downloads a blob from the bucket.""" if not os.path.exists(f'./saved_model/saved_model/model'): _, bucket = initialize_gcloud() try: blob = bucket.blob(f'users/{userid}/saved_model/model.tar.gz') LOGGER.info(f'Beginning to download model from bucket with url users/{userid}/saved_model/model.tar.gz') blob.download_to_filename(f'./saved_model/model.tar.gz') LOGGER.info(f'Blob downloaded') time.sleep(2) tar = tarfile.open('./saved_model/model.tar.gz') tar.extractall(path="./saved_model/.") tar.close() LOGGER.info(f'Model extracted\n') except: pass def initialize(): if not os.path.exists("./files"): os.mkdir("./files") if not os.path.exists("./saved_model"): os.mkdir("./saved_model") if not os.path.exists("./files/image_state_file.txt"): with open("./files/image_state_file.txt", "w") as text_file: print(0, file=text_file) if not os.path.exists("./files/like_temporary_db_file.txt"): open("./files/like_temporary_db_file.txt", "w+") if not os.path.exists("./files/dislike_temporary_db_file.txt"): open("./files/dislike_temporary_db_file.txt", "w+") if not os.path.exists("./files/pass_temporary_file.txt"): open("./files/pass_temporary_file.txt", "w+") source_image_folder = f'./images/unclassified/female' images = [f for f in os.listdir(f'{source_image_folder}') if os.path.isfile(os.path.join(f'{source_image_folder}', f))] images, _, _, _ = sync_likes_dislikes(images) return(images) def like_image(image): LOGGER.info(f'User liked image: {image}') with open("./files/like_temporary_db_file.txt", "a+") as file_object: file_object.write(str(image) + os.linesep) def dislike_image(image): LOGGER.info(f'User disliked image: {image}') with open("./files/dislike_temporary_db_file.txt", "a+") as file_object: file_object.write(str(image) + os.linesep) def pass_image(image): LOGGER.info(f'User passed image: {image}') with open("./files/pass_temporary_file.txt", "a+") as file_object: file_object.write(str(image) + os.linesep) def show_image(result): st.image(image = f'./images/unclassified/female/{result}', width = 400, use_column_width=False) def image_state() -> int: if os.path.exists("./files/image_state_file.txt"): with open('./files/image_state_file.txt') as f: samples_count = int(f.readline()) samples_count = samples_count + 1 with open("./files/image_state_file.txt", "w") as text_file: print(samples_count, file=text_file) else: samples_count = 0 return(samples_count) def restart(): LOGGER.info(f'\nUser restarted image labeling\n') if os.path.exists("./files/image_state_file.txt"): os.remove("./files/image_state_file.txt") if os.path.exists("./files/like_temporary_db_file.txt"): os.remove("./files/like_temporary_db_file.txt") if os.path.exists("./files/dislike_temporary_db_file.txt"): os.remove("./files/dislike_temporary_db_file.txt") if os.path.exists("./files/pass_temporary_file.txt"): os.remove("./files/pass_temporary_file.txt") if os.path.exists("./files/model_load_state.txt"): os.remove("./files/model_load_state.txt") if os.path.exists("./files/preferences.csv"): os.remove("./files/preferences.csv") source_image_folder = "./images/unclassified/female" images = [f for f in os.listdir(f'{source_image_folder}') if os.path.isfile(os.path.join(f'{source_image_folder}', f))] return(images) def prepend_line(file_name, line): """ Insert given string as a new line at the beginning of a file """ # define name of temporary dummy file dummy_file = file_name + '.bak' # open original file in read mode and dummy file in write mode with open(file_name, 'r') as read_obj, open(dummy_file, 'w') as write_obj: # Write given line to the dummy file write_obj.write(line + '\n') # Read lines from original file one by one and append them to the dummy file for line in read_obj: write_obj.write(line) # remove original file os.remove(file_name) # Rename dummy file as the original file os.rename(dummy_file, file_name) def merge_files(userid): prepend_line("./files/like_temporary_db_file.txt", "likes") prepend_line("./files/dislike_temporary_db_file.txt", "dislikes") likes = pd.read_csv('./files/like_temporary_db_file.txt') dislikes = pd.read_csv('./files/dislike_temporary_db_file.txt') merged = pd.concat([likes.reset_index(drop=True), dislikes], axis=1) merged['userid'] = userid merged.to_csv('./files/preferences.csv', sep = ",", index = False) def upload_blob(userid): client = storage.Client() bucket_name = os.getenv('GCS_BUCKET') LOGGER.info(f'\nUser uploading files to {bucket_name}\n') bucket = client.get_bucket(bucket_name) blob = bucket.blob(f'users/{userid}/preferences.csv') blob.upload_from_filename('./files/preferences.csv') LOGGER.info(f'File preferences.csv uploaded to {bucket_name}/users/{userid}/preferences.csv') def hash_identifier(identifier) -> str: identifier = identifier.lower() return hashlib.sha256(identifier.encode()).hexdigest() def sync_likes_dislikes(images): if os.path.exists("./files/dislike_temporary_db_file.txt"): with open('./files/dislike_temporary_db_file.txt') as f: dislikes = [line.rstrip() for line in f] else: dislikes = [] if os.path.exists("./files/like_temporary_db_file.txt"): with open('./files/like_temporary_db_file.txt') as f: likes = [line.rstrip() for line in f] else: likes = [] if os.path.exists("./files/pass_temporary_file.txt"): with open('./files/pass_temporary_file.txt') as f: passes = [line.rstrip() for line in f] else: passes = [] images = [x for x in images if x not in dislikes] images = [x for x in images if x not in likes] images = [x for x in images if x not in passes] return(images, likes, dislikes, passes) def main(): mainHeader = st.empty() st.sidebar.markdown(body = """ ## Information about the app This web app is for creating a training set of your preferences for Tinder. These samples will then be used to train either ResNet50 + FixMatch or VGG16 transfer learning. This is a hobby application and in no way related to Match Groups official Tinder app. """) userid = st.text_input("Please enter your x-auth-token", "", type='password') #if my_profile.email is not None: # userid = my_profile.email # userid = hash_identifier(userid) #else: # logger.error("Failed to get an identifier") # st.write("Unable to connect to your tinder account") if userid: options = ['Do nothing!', 'Set preferences', 'Watch your model play tinder'] selected_option = st.sidebar.selectbox("Select value:", options) if selected_option == options[1]: mainHeader.title(body = 'Preference creator') download_blobs() images = initialize() if os.path.exists("./files/image_state_file.txt"): with open('./files/image_state_file.txt') as f: samples_count = int(f.readline()) else: samples_count = 0 if st.sidebar.button(label='Like'): like_image(images[samples_count]) samples_count = image_state() if st.sidebar.button(label='Dislike'): dislike_image(images[samples_count]) samples_count = image_state() if st.sidebar.button(label='Pass'): pass_image(images[samples_count]) if st.sidebar.button(label='Done'): if len(userid) > 0: merge_files(userid) upload_blob(userid) images = restart() samples_count = 0 st.write("The sample data has been recorded and the training process will begin shortly!") else: st.write("Please enter a user id") if st.sidebar.button(label = 'Restart'): images = restart() samples_count = 0 images, likes, dislikes, passes = sync_likes_dislikes(images) st.write(f'Likes: {len(likes)} Dislikes: {len(dislikes)} Passes: {len(passes)}') LOGGER.info(f'Images: {len(images)} Likes: {len(likes)} Dislikes: {len(dislikes)} Passes: {len(passes)}') st.write(f'{round(samples_count / 250 * 100, 1)}% complete to minimum suggested amount') show_image(images[samples_count]) if selected_option == options[2]: mainHeader.title(body = 'Auto Tinder') token = userid play_num = st.number_input ("Please enter how many profiles to score", min_value=0, max_value=100, value=0, step=1) if play_num >= 1: selected_option = play(token, play_num) def play(token, play_num): api = tinderAPI(token) session_matches = [] total_session_likes = play_num likes = 0 totalSessionMatches = st.empty() sessionMatches = st.empty() end_time = time.time() + 60*60*2 model = tf.keras.models.load_model('./saved_model/saved_model/model') if not os.path.exists("./images/"): os.mkdir("./images/") if not os.path.exists("./images/tmp/"): os.mkdir("./images/tmp/") while time.time() < end_time: persons = api.nearby_persons() #pos_schools = ["Universität Zürich", "University of Zurich", "UZH"] LOGGER.info(f'\nFound {len(persons)} persons nearby') for person in persons: LOGGER.info("#---------------------------------#") LOGGER.info(f'Analyzing {person}') score = person.predict_likeliness(model) #model LOGGER.info(f'Profile has a total score of {score}') #for school in pos_schools: # if school in person.schools: # print() # score *= 1.2 if score > 0.5: res = person.like() st.write('LIKE') LOGGER.info('LIKE') LOGGER.info(f'Is match: {res["is_match"]}') if res["is_match"]: session_matches.append(person.name) else: res = person.dislike() st.write('DISLIKE') LOGGER.info('DISLIKE') likes = likes + 1 LOGGER.info(f'Session likes + dislikes is {likes} / {total_session_likes}') if likes >= total_session_likes: break time.sleep(2) if likes >= total_session_likes: break LOGGER.info(f'Total matches this sessions was {len(session_matches)}') totalSessionMatches.text(f'Total matches this sessions was {len(session_matches)}') if len(session_matches) > 0: LOGGER.info(f'These are {json.dumps(session_matches)}') sessionMatches.text(f'These are {json.dumps(session_matches)}') return('Do nothing!') main() ```
{ "source": "jmfloreszazo/HandsOnIoTAzure", "score": 3 }
#### File: HandsOnIoTAzure/pyAzureServiceBusTest/main.py ```python from azure.servicebus import ServiceBusClient, ServiceBusMessage CONNECTION_STR = "Endpoint=sb://pythontest.servicebus.windows.net/;SharedAccessKeyName=RootManageSharedAccessKey;SharedAccessKey=<KEY> QUEUE_NAME = "testQueue" def send_single_message(sender): message = ServiceBusMessage("Single Message") sender.send_messages(message) print("Sent a single message") def send_a_list_of_messages(sender): messages = [ServiceBusMessage("Message in list") for _ in range(5)] sender.send_messages(messages) print("Sent a list of 5 messages") def send_batch_message(sender): batch_message = sender.create_message_batch() for _ in range(10): try: batch_message.add_message(ServiceBusMessage( "Message inside a ServiceBusMessageBatch")) except ValueError: break sender.send_messages(batch_message) print("Sent a batch of 10 messages") servicebus_client = ServiceBusClient.from_connection_string( conn_str=CONNECTION_STR, logging_enable=True) with servicebus_client: sender = servicebus_client.get_queue_sender(queue_name=QUEUE_NAME) with sender: send_single_message(sender) send_a_list_of_messages(sender) send_batch_message(sender) print("Done sending messages. Now you can review in Azure Portal.") print("----------------------------------------------------------") input("Press Enter to continue...") with servicebus_client: receiver = servicebus_client.get_queue_receiver( queue_name=QUEUE_NAME, max_wait_time=5) with receiver: for msg in receiver: print("Received: " + str(msg)) receiver.complete_message(msg) ``` #### File: HandsOnIoTAzure/pyHelloIoTDevice/iotHelloWorldDevice.py ```python from azure.iot.device import IoTHubDeviceClient, Message from time import sleep CONNECTION_STRING = "[Your Connection String]" RECEIVED_MESSAGES = 0 message_text = "{'Hello World!'}" def connection_client(): try: client = IoTHubDeviceClient.create_from_connection_string( CONNECTION_STRING) return client except KeyboardInterrupt: print("Stopped!") def run_simulation(client): client = client client.on_message_received = message_handler while True: message = Message(message_text) print("Sending message: {}".format(message)) client.send_message(message) print("Message successfully sent") sleep(10) def message_handler(message): global RECEIVED_MESSAGES RECEIVED_MESSAGES += 1 print("") print("Message received:") for property in vars(message).items(): print(" {}".format(property)) print("Total calls received: {}".format(RECEIVED_MESSAGES)) if __name__ == '__main__': print("Started simulated device") print("Press Ctrl-C to exit") run_simulation(connection_client()) ``` #### File: HandsOnIoTAzure/pyHelloWorld/sampleobject.py ```python class SampleObject: @property def TestProperty(self): test = 0 test = 1 return test def __init___(self): # ... print("Need some code for linter.") def __str__(self): return "I'm a sample object." ```
{ "source": "jmflorez/pymatgen", "score": 3 }
#### File: pymatgen/alchemy/materials.py ```python from __future__ import division __author__ = "<NAME>, <NAME>" __copyright__ = "Copyright 2012, The Materials Project" __version__ = "1.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __date__ = "Mar 2, 2012" import os import re import json import datetime from copy import deepcopy from pymatgen.core.structure import Structure from pymatgen.io.cifio import CifParser from pymatgen.io.vaspio.vasp_input import Poscar from pymatgen.serializers.json_coders import MSONable, PMGJSONDecoder from pymatgen.matproj.snl import StructureNL from warnings import warn dec = PMGJSONDecoder() class TransformedStructure(MSONable): """ Container object for new structures that include history of transformations. Each transformed structure is made up of a sequence of structures with associated transformation history. """ def __init__(self, structure, transformations=None, history=None, other_parameters=None): self.final_structure = structure self.history = history or [] self.other_parameters = other_parameters or {} self._undone = [] transformations = transformations or [] for t in transformations: self.append_transformation(t) def undo_last_change(self): """ Undo the last change in the TransformedStructure. Raises: IndexError if already at the oldest change. """ if len(self.history) == 0: raise IndexError("Can't undo. Already at oldest change.") if 'input_structure' not in self.history[-1]: raise IndexError("Can't undo. Latest history has no " "input_structure") h = self.history.pop() self._undone.append((h, self.final_structure)) s = h["input_structure"] if isinstance(s, dict): s = Structure.from_dict(s) self.final_structure = s def redo_next_change(self): """ Redo the last undone change in the TransformedStructure. Raises: IndexError if already at the latest change. """ if len(self._undone) == 0: raise IndexError("Can't redo. Already at latest change.") h, s = self._undone.pop() self.history.append(h) self.final_structure = s def __getattr__(self, name): s = object.__getattribute__(self, 'final_structure') return getattr(s, name) def __len__(self): return len(self.history) def append_transformation(self, transformation, return_alternatives=False, clear_redo=True): """ Appends a transformation to the TransformedStructure. Args: transformation: Transformation to append return_alternatives: Whether to return alternative TransformedStructures for one-to-many transformations. return_alternatives can be a number, which stipulates the total number of structures to return. clear_redo: Boolean indicating whether to clear the redo list. By default, this is True, meaning any appends clears the history of undoing. However, when using append_transformation to do a redo, the redo list should not be cleared to allow multiple redos. """ if clear_redo: self._undone = [] if return_alternatives and transformation.is_one_to_many: ranked_list = transformation.apply_transformation( self.final_structure, return_ranked_list=return_alternatives) input_structure = self.final_structure.to_dict alts = [] for x in ranked_list[1:]: s = x.pop("structure") actual_transformation = x.pop("transformation", transformation) hdict = actual_transformation.to_dict hdict["input_structure"] = input_structure hdict["output_parameters"] = x self.final_structure = s d = self.to_dict d['history'].append(hdict) d['final_structure'] = s.to_dict alts.append(TransformedStructure.from_dict(d)) x = ranked_list[0] s = x.pop("structure") actual_transformation = x.pop("transformation", transformation) hdict = actual_transformation.to_dict hdict["input_structure"] = self.final_structure.to_dict hdict["output_parameters"] = x self.history.append(hdict) self.final_structure = s return alts else: s = transformation.apply_transformation(self.final_structure) hdict = transformation.to_dict hdict["input_structure"] = self.final_structure.to_dict hdict["output_parameters"] = {} self.history.append(hdict) self.final_structure = s def append_filter(self, structure_filter): """ Adds a transformation parameter to the last transformation. """ hdict = structure_filter.to_dict hdict["input_structure"] = self.final_structure.to_dict self.history.append(hdict) def extend_transformations(self, transformations): """ Extends a sequence of transformations to the TransformedStructure. Args: transformations: Sequence of Transformations """ for t in transformations: self.append_transformation(t) def get_vasp_input(self, vasp_input_set, generate_potcar=True): """ Returns VASP input as a dict of vaspio objects. Args: vasp_input_set: pymatgen.io.vaspio_set.VaspInputSet like object that creates vasp input files from structures generate_potcar: Set to False to generate a POTCAR.spec file instead of a POTCAR, which contains the POTCAR labels but not the actual POTCAR. Defaults to True. """ d = vasp_input_set.get_all_vasp_input(self.final_structure, generate_potcar) d["transformations.json"] = json.dumps(self.to_dict) return d def write_vasp_input(self, vasp_input_set, output_dir, create_directory=True): """ Writes VASP input to an output_dir. Args: vasp_input_set: pymatgen.io.vaspio_set.VaspInputSet like object that creates vasp input files from structures output_dir: Directory to output files create_directory: Create the directory if not present. Defaults to True. """ vasp_input_set.write_input(self.final_structure, output_dir, make_dir_if_not_present=create_directory) with open(os.path.join(output_dir, "transformations.json"), "w") as fp: json.dump(self.to_dict, fp) def __str__(self): output = ["Current structure", "------------", str(self.final_structure), "\nHistory", "------------"] for h in self.history: h.pop('input_structure', None) output.append(str(h)) output.append("\nOther parameters") output.append("------------") output.append(str(self.other_parameters)) return "\n".join(output) def set_parameter(self, key, value): self.other_parameters[key] = value @property def was_modified(self): """ Boolean describing whether the last transformation on the structure made any alterations to it one example of when this would return false is in the case of performing a substitution transformation on the structure when the specie to replace isn't in the structure. """ return not self.final_structure == self.structures[-2] @property def structures(self): """ Returns a copy of all structures in the TransformedStructure. A structure is stored after every single transformation. """ hstructs = [Structure.from_dict(s['input_structure']) for s in self.history if 'input_structure' in s] return hstructs + [self.final_structure] @staticmethod def from_cif_string(cif_string, transformations=None, primitive=True, occupancy_tolerance=1.): """ Generates TransformedStructure from a cif string. Args: cif_string: Input cif string. Should contain only one structure. For cifs containing multiple structures, please use CifTransmuter. transformations: Sequence of transformations to be applied to the input structure. primitive: Option to set if the primitive cell should be extracted. Defaults to True. However, there are certain instances where you might want to use a non-primitive cell, e.g., if you are trying to generate all possible orderings of partial removals or order a disordered structure. occupancy_tolerance: If total occupancy of a site is between 1 and occupancy_tolerance, the occupancies will be scaled down to 1. """ parser = CifParser.from_string(cif_string, occupancy_tolerance) raw_string = re.sub("'", "\"", cif_string) cif_dict = parser.to_dict cif_keys = cif_dict.keys() s = parser.get_structures(primitive)[0] partial_cif = cif_dict[cif_keys[0]] if "_database_code_ICSD" in partial_cif: source = partial_cif["_database_code_ICSD"] + "-ICSD" else: source = "uploaded cif" source_info = {"source": source, "datetime": str(datetime.datetime.now()), "original_file": raw_string, "cif_data": cif_dict[cif_keys[0]]} return TransformedStructure(s, transformations, history=[source_info]) @staticmethod def from_poscar_string(poscar_string, transformations=None): """ Generates TransformedStructure from a poscar string. Args: poscar_string: Input POSCAR string. transformations: Sequence of transformations to be applied to the input structure. """ p = Poscar.from_string(poscar_string) if not p.true_names: raise ValueError("Transformation can be craeted only from POSCAR " "strings with proper VASP5 element symbols.") raw_string = re.sub("'", "\"", poscar_string) s = p.structure source_info = {"source": "POSCAR", "datetime": str(datetime.datetime.now()), "original_file": raw_string} return TransformedStructure(s, transformations, history=[source_info]) @property def to_dict(self): """ Returns a dict representation of the TransformedStructure. """ d = self.final_structure.to_dict d["@module"] = self.__class__.__module__ d["@class"] = self.__class__.__name__ d["history"] = deepcopy(self.history) d["version"] = __version__ d["last_modified"] = str(datetime.datetime.utcnow()) d["other_parameters"] = deepcopy(self.other_parameters) return d @classmethod def from_dict(cls, d): """ Creates a TransformedStructure from a dict. """ s = Structure.from_dict(d) return cls(s, history=d["history"], other_parameters=d.get("other_parameters", None)) def to_snl(self, authors, projects=None, references='', remarks=None, data=None, created_at=None): if self.other_parameters: warn('Data in TransformedStructure.other_parameters discarded ' 'during type conversion to SNL') hist = [] for h in self.history: snl_metadata = h.pop('_snl', {}) hist.append({'name' : snl_metadata.pop('name', 'pymatgen'), 'url' : snl_metadata.pop('url', 'http://pypi.python.org/pypi/pymatgen'), 'description' : h}) return StructureNL(self.final_structure, authors, projects, references, remarks, data, hist, created_at) @classmethod def from_snl(cls, snl): """ Create TransformedStructure from SNL. Args: snl: Starting snl copy_metadata: update the authors, projects, references, and remarks in the last history node with the metadata at the root of the SNL object copy_data: copy the contents of snl.data into the last history node Returns: TransformedStructure. """ hist = [] for h in snl.history: d = h.description d['_snl'] = {'url' : h.url, 'name' : h.name} hist.append(d) return cls(snl.structure, history=hist) ``` #### File: analysis/pourbaix/analyzer.py ```python __author__ = "<NAME>" __copyright__ = "Copyright 2012, The Materials Project" __version__ = "0.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" __date__ = "Nov 7, 2012" import numpy as np from pyhull.simplex import Simplex from functools import cmp_to_key from pyhull.halfspace import Halfspace, HalfspaceIntersection from pyhull.convex_hull import ConvexHull class PourbaixAnalyzer(object): """ Class for performing analysis on Pourbaix Diagrams """ numerical_tol = 1e-8 def __init__(self, pd): """ Args: pd: Pourbaix Diagram to analyze. """ self._pd = pd self._keys = ['H+', 'V', '1'] self.chempot_limits = None def get_facet_chempots(self, facet): """ Calculates the chemical potentials for each element within a facet. Args: facet: Facet of the phase diagram. Returns: { element: chempot } for all elements in the phase diagram. """ entrylist = [self._pd.qhull_entries[i] for i in facet] energylist = [self._pd.qhull_entries[i].g0 for i in facet] m = self._make_comp_matrix(entrylist) chempots = np.dot(np.linalg.inv(m), energylist) return dict(zip(self._keys, chempots)) def _make_comp_matrix(self, entrylist): """ Helper function to generates a normalized composition matrix from a list of Pourbaix Entries """ return np.array([[entry.npH, entry.nPhi, 1] for entry in entrylist]) def get_chempot_range_map(self, limits=[[-2,16], [-4,4]]): """ Returns a chemical potential range map for each stable entry. Args: elements: Sequence of elements to be considered as independent variables. E.g., if you want to show the stability ranges of all Li-Co-O phases wrt to uLi and uO, you will supply [Element("Li"), Element("O")] Returns: Returns a dict of the form {entry: [simplices]}. The list of simplices are the sides of the N-1 dim polytope bounding the allowable chemical potential range of each entry. """ tol = PourbaixAnalyzer.numerical_tol all_chempots = [] facets = self._pd.facets entries = self._pd.qhull_entries for facet in facets: chempots = self.get_facet_chempots(facet) chempots["H+"] /= -0.0591 chempots["V"] = -chempots["V"] chempots["1"] = chempots["1"] all_chempots.append([chempots[el] for el in self._keys]) basis_vecs = [] on_plane_points = [] # Create basis vectors for row in self._pd._qhull_data: on_plane_points.append([0, 0, row[2]]) this_basis_vecs = [] norm_vec = [-0.0591 * row[0], -1 * row[1], 1] if abs(norm_vec[0]) > tol: this_basis_vecs.append([-norm_vec[2]/norm_vec[0], 0, 1]) if abs(norm_vec[1]) > tol: this_basis_vecs.append([0, -norm_vec[2]/norm_vec[1], 1]) if len(this_basis_vecs) == 0: basis_vecs.append([[1, 0, 0], [0, 1, 0]]) elif len(this_basis_vecs) == 1: if abs(this_basis_vecs[0][0]) < tol: this_basis_vecs.append([1, 0, 0]) else: this_basis_vecs.append([0, 1, 0]) basis_vecs.append(this_basis_vecs) else: basis_vecs.append(this_basis_vecs) # Find point in half-space in which optimization is desired ph_max_contrib = -1 * max([abs(0.0591 * row[0]) for row in self._pd._qhull_data]) * limits[0][1] V_max_contrib = -1 * max([abs(row[1]) for row in self._pd._qhull_data]) * limits[1][1] g_max = (-1 * max([abs(pt[2]) for pt in on_plane_points]) + ph_max_contrib + V_max_contrib) - 10 point_in_region = [7, 0, g_max] # Append border hyperplanes along limits for i in xrange(len(limits)): for j in xrange(len(limits[i])): basis_vec_1 = [0.0] * 3 basis_vec_2 = [0.0] * 3 point = [0.0] * 3 basis_vec_1[2] = 1.0 basis_vec_2[2] = 0.0 for axis in xrange(len(limits)): if axis is not i: basis_vec_1[axis] = 0.0 basis_vec_2[axis] = 1.0 basis_vecs.append([basis_vec_1, basis_vec_2]) point[i] = limits[i][j] on_plane_points.append(point) # Hyperplane enclosing the very bottom basis_vecs.append([[1, 0, 0], [0, 1, 0]]) on_plane_points.append([0, 0, 2 * g_max]) hyperplane_list = [Halfspace.from_hyperplane(basis_vecs[i], on_plane_points[i], point_in_region) for i in xrange(len(basis_vecs))] hs_int = HalfspaceIntersection(hyperplane_list, point_in_region) int_points = hs_int.vertices pourbaix_domains = {} self.pourbaix_domain_vertices = {} for i in xrange(len(self._pd._qhull_data)): vertices = [[int_points[vert][0], int_points[vert][1]] for vert in hs_int.facets_by_halfspace[i]] if len(vertices) < 1: continue pourbaix_domains[self._pd._qhull_entries[i]] = ConvexHull(vertices).simplices # Need to order vertices for highcharts area plot cx = sum([vert[0] for vert in vertices]) / len(vertices) cy = sum([vert[1] for vert in vertices]) / len(vertices) point_comp = lambda x, y: x[0]*y[1] - x[1]*y[0] vert_center = [[v[0] - cx, v[1] - cy] for v in vertices] vert_center.sort(key=cmp_to_key(point_comp)) self.pourbaix_domain_vertices[self._pd._qhull_entries[i]] =\ [[v[0] + cx, v[1] + cy] for v in vert_center] self.pourbaix_domains = pourbaix_domains return pourbaix_domains def _in_facet(self, facet, entry): """ Checks if a Pourbaix Entry is in a facet. Args: facet: facet to test. entry: Pourbaix Entry to test. """ dim = len(self._keys) if dim > 1: coords = [np.array(self._pd.qhull_data[facet[i]][0:dim - 1]) for i in xrange(len(facet))] simplex = Simplex(coords) comp_point = [entry.npH, entry.nPhi] return simplex.in_simplex(comp_point, PourbaixAnalyzer.numerical_tol) else: return True def _get_facets(self, entry): """ Get the facets that an entry falls into. """ memberfacets = list() for facet in self._pd.facets: if self._in_facet(facet, entry): memberfacets.append(facet) return memberfacets def _get_facet(self, entry): """ Get any facet that a composition falls into. """ for facet in self._pd.facets: if self._in_facet(facet, entry): return facet raise RuntimeError("No facet found for comp = {}".format(entry.name)) def _get_facet_entries(self, facet): """ Get the entries corresponding to a facet """ entries = [] for vertex in facet: entries.append(self._pd.qhull_entries[vertex]) return entries def g(self, entry, pH, V): """ Get free energy for a given pH, and V. """ g0 = entry.g0 npH = -entry.npH * 0.0591 nPhi = -entry.nPhi return g0 - npH * pH - nPhi * V def get_decomposition(self, entry): """ Provides the decomposition at a particular composition Args: comp: A composition Returns: Decomposition as a dict of {PourbaixEntry: amount} """ facet = self._get_facet(entry) entrylist = [self._pd.qhull_entries[i] for i in facet] m = self._make_comp_matrix(entrylist) compm = self._make_comp_matrix([entry]) decompamts = np.dot(np.linalg.inv(m.transpose()), compm.transpose()) decomp = dict() #Scrub away zero amounts for i in xrange(len(decompamts)): if abs(decompamts[i][0]) > PourbaixAnalyzer.numerical_tol: decomp[self._pd.qhull_entries[facet[i]]] = decompamts[i][0] return decomp def get_decomp_and_e_above_hull(self, entry): """ Provides the decomposition and energy above convex hull for an entry Args: entry: A PourbaixEntry Returns: (decomp, energy above convex hull) Stable entries should have energy above hull of 0. """ g0 = entry.g0 decomp = self.get_decomposition(entry) hullenergy = sum([entry.g0 * amt for entry, amt in decomp.items()]) return decomp, g0 - hullenergy def get_e_above_hull(self, entry): """ Provides the energy above convex hull for an entry Args: entry - A PourbaixEntry object Returns: Energy above convex hull of entry. Stable entries should have energy above hull of 0. """ return self.get_decomp_and_e_above_hull(entry)[1] ``` #### File: analysis/pourbaix/entry.py ```python from __future__ import division __author__ = "<NAME>" __copyright__ = "Copyright 2012, The Materials Project" __version__ = "0.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" __date__ = "December 10, 2012" import re import math from pymatgen.core.periodic_table import Element from pymatgen.core.structure import Composition from pymatgen.serializers.json_coders import MSONable from pymatgen.core.ion import Ion from pymatgen.phasediagram.entries import PDEntry PREFAC = 0.0591 class PourbaixEntry(MSONable): """ An object encompassing all data relevant to an ion in a pourbaix diagram. Each bulk solid/ion has a free energy g of the form: g = g0_ref + 0.0591 log10(conc) - nO mu_H2O + (nH - 2nO) pH + phi (-nH + 2nO + q) """ def __init__(self, entry, correction=0.0, entry_id=None): """ Args: entry: An entry object (ComputedEntry/ComputedStructureEntry/PDEntry/IonEntry) energy: Energy of entry """ if isinstance(entry, IonEntry): self._entry = entry self._conc = 1.0e-6 self._phase_type = "Ion" self._charge = entry.composition.charge else: self._entry = entry self._conc = 1.0 self._phase_type = "Solid" self._charge = 0.0 self._npH = None self._nPhi = None self._nH2O = None self._nM = None self.uncorrected_energy = entry.energy self.correction = correction self._calc_coeff_terms() self._name = self._entry.composition.reduced_formula if self._phase_type == "Solid": self._name += "(s)" try: self.entry_id = entry.entry_id except AttributeError: self.entry_id = entry_id @property def _g0(self): return self.energy @property def energy(self): return self.uncorrected_energy + self.correction @property def name(self): """ Returns the entry's name """ return self._name def set_name(self, string): """ Set name of entry Args: string: Input string """ self._name = string @property def npH(self): """ Returns value of npH, the coefficient of pH """ return self._npH @property def nH2O(self): """ Returns coefficient of Mu_H2O """ return self._nH2O @property def nPhi(self): """ Returns nPhi, the coefficient of Phi """ return self._nPhi @property def g0(self): """ Return g0 for the entry. Legacy function. """ return self._g0 @property def conc(self): """ Return concentration of the entry. Returns 1 if solid. """ return self._conc @property def conc_term(self): """ Returns the concentration contribution to the free energy. """ return self.normalization_factor * PREFAC * math.log10(self._conc) @property def phase_type(self): """ Returns whether the entry is a solid/ion. """ return self._phase_type def g0_add(self, term): """ Add a correction term to g0. Args: term: Correction term to add to g0 """ self.correction += term def g0_replace(self, term): """ Replace g0 by a different value. Args: term: New value for g0 """ self.uncorrected_energy = term self.correction = 0.0 @property def to_dict(self): """ Returns dict which contains Pourbaix Entry data. Note that the pH, voltage, H2O factors are always calculated when constructing a PourbaixEntry object. """ d = {"@module": self.__class__.__module__, "@class": self.__class__.__name__} if isinstance(self._entry, IonEntry): d["entry type"] = "Ion" else: d["entry type"] = "Solid" d["entry"] = self._entry.to_dict d["pH factor"] = self._npH d["voltage factor"] = self._nPhi d["concentration"] = self._conc d["H2O factor"] = self._nH2O d["energy"] = self.energy d["correction"] = self.correction d["entry_id"] = self.entry_id return d @classmethod def from_dict(cls, d): """ Returns a PourbaixEntry by reading in an Ion """ entry_type = d["entry type"] if entry_type == "Ion": entry = IonEntry.from_dict(d["entry"]) else: entry = PDEntry.from_dict(d["entry"]) correction = d["correction"] entry_id = d["entry_id"] return PourbaixEntry(entry, correction, entry_id) def _calc_coeff_terms(self): """ Calculates coefficients of pH, V, H2O """ nH = 0 nO = 0 nM = 0 for elt in self._entry.composition.elements: if elt == (Element("H")): nH = self.entry.composition[elt] elif elt == (Element("O")): nO = self.entry.composition[elt] else: nM += self.entry.composition[elt] self._nM = nM self._npH = (nH - 2 * nO) self._nH2O = nO self._nPhi = (nH - 2 * nO - self._charge) @property def normalization_factor(self): """ Normalize each entry by nM """ fact = 1.0 / self._nM return fact def scale(self, factor): """ Normalize all entries by normalization factor. Args: factor: Normalization factor """ self._npH *= factor self._nPhi *= factor self._nH2O *= factor self.uncorrected_energy *= factor self.correction *= factor # self._g0 *= factor def normalize(self, factor): self.scale(factor) @property def charge(self): """ Returns charge of entry """ return self._charge @property def composition(self): """ Returns composition """ return self.entry.composition @property def entry(self): """ Returns IonEntry/PDEntry object """ return self._entry def reduced_entry(self): """ Calculate reduction factor for composition, and reduce parameters by this factor. """ reduction_factor = self.entry.composition.\ get_reduced_composition_and_factor()[1] self._nM /= reduction_factor self.scale(1.0 / reduction_factor) @property def num_atoms(self): """ Return number of atoms in current formula. Useful for normalization """ return self.entry.composition.num_atoms\ / self.entry.composition.get_reduced_composition_and_factor()[1] def set_conc(self, conc): """ Set concentration manually. Args: conc: Input concentration """ self._conc = conc def __repr__(self): return "Pourbaix Entry : {} with energy = {:.4f}, npH = {}, nPhi = {},\ nH2O = {}".format(self._entry.composition, self.g0, self.npH, self.nPhi, self.nH2O) def __str__(self): return self.__repr__() class MultiEntry(PourbaixEntry): """ PourbaixEntry-like object for constructing multi-elemental Pourbaix diagrams. """ def __init__(self, entry_list, weights=None): """ Args: entry_list: List of component PourbaixEntries weights: Weights associated with each entry. Default is None """ if weights is None: self._weights = [1.0] * len(entry_list) else: self._weights = weights self._entrylist = entry_list self.correction = 0.0 self.uncorrected_energy = 0.0 self._npH = 0.0 self._nPhi = 0.0 self._nH2O = 0.0 self._nM = 0.0 self._name = "" self.entry_id = list() for i in xrange(len(entry_list)): entry = entry_list[i] self.uncorrected_energy += self._weights[i] * \ entry.uncorrected_energy self.correction += self._weights[i] * entry.correction self._npH += self._weights[i] * entry.npH self._nPhi += self._weights[i] * entry.nPhi self._nH2O += self._weights[i] * entry.nH2O self._nM += self._weights[i] * entry._nM self._name += entry.name + " + " self.entry_id.append(entry.entry_id) self._name = self._name[:-3] @property def normalization_factor(self): """ Normalize each entry by nM """ norm_fac = 0.0 for i in xrange(len(self._entrylist)): entry = self._entrylist[i] for el in entry.composition.elements: if (el == Element("O")) | (el == Element("H")): continue if entry._phase_type == 'Solid': red_fac = entry.composition.\ get_reduced_composition_and_factor()[1] else: red_fac = 1.0 norm_fac += self._weights[i] * entry.composition[el] / red_fac fact = 1.0 / norm_fac return fact def __repr__(self): str = "Multiple Pourbaix Entry : with energy = {:.4f}, npH = {}, "\ "nPhi = {}, nH2O = {}".format( self.g0, self.npH, self.nPhi, self.nH2O) str += ", species: " for entry in self._entrylist: str += entry.name + " + " return str[:-3] def __str__(self): return self.__repr__() @property def conc_term(self): sum_conc = 0.0 for i in xrange(len(self._entrylist)): entry = self._entrylist[i] sum_conc += self._weights[i] * PREFAC * math.log10(entry.conc) return sum_conc * self.normalization_factor @property def entrylist(self): return self._entrylist class IonEntry(PDEntry): """ Object similar to PDEntry, but contains an Ion object instead of a Composition object. .. attribute:: name A name for the entry. This is the string shown in the phase diagrams. By default, this is the reduced formula for the composition, but can be set to some other string for display purposes. """ def __init__(self, ion, energy, name=None): """ Args: comp: Ion object energy: Energy for composition. name: Optional parameter to name the entry. Defaults to the chemical formula. """ self._energy = energy self._composition = ion self.name = name if name else self._composition.reduced_formula @classmethod def from_dict(cls, d): """ Returns an IonEntry object from a dict. """ return IonEntry(Ion.from_dict(d["composition"]), d["energy"]) @property def to_dict(self): """ Creates a dict of composition, energy, and ion name """ d = {"composition": self._composition.to_dict, "energy": self._energy} return d @property def energy(self): """ Return final energy """ return self._energy @property def energy_per_atom(self): """ Return final energy per atom """ return self._energy / self.composition.num_atoms @property def composition(self): """ Returns the composition """ return self._composition def __repr__(self): return "IonEntry : {} with energy = {:.4f}".format(self.composition, self.energy) def __str__(self): return self.__repr__() class PourbaixEntryIO(object): """ Class to import and export Pourbaix entries from a csv file """ @staticmethod def to_csv(filename, entries, latexify_names=False): """ Exports Pourbaix entries to a csv Args: filename: Filename to write to. entries: Entries to export. latexify_names: Format entry names to be LaTex compatible, e.g., Li_{2}O """ import csv elements = set() map(elements.update, [entry.entry.composition.elements for entry in entries]) elements = sorted(list(elements), key=lambda a: a.X) writer = csv.writer(open(filename, "wb"), delimiter=",", quotechar="\"", quoting=csv.QUOTE_MINIMAL) writer.writerow(["Name"] + elements + ["Energy"] + ["Entry Type"] + ["Charge"] + ["Concentration"]) for entry in entries: row = [entry.name if not latexify_names else re.sub(r"([0-9]+)", r"_{\1}", entry.name)] if entry.phase_type == "Solid": reduction_fac = entry.entry.composition.\ get_reduced_composition_and_factor()[1] else: reduction_fac = 1.0 row.extend([entry.entry.composition[el] / reduction_fac for el in elements]) if entry.phase_type == "Solid": reduction_fac = 1.0 row.append(entry.g0 / reduction_fac) row.append(entry.phase_type) row.append(entry.charge / reduction_fac) row.append(entry.conc) writer.writerow(row) @staticmethod def from_csv(filename): """ Imports PourbaixEntries from a csv. Args: filename - Filename to import from. Returns: List of Entries """ import csv reader = csv.reader(open(filename, "rb"), delimiter=",", quotechar="\"", quoting=csv.QUOTE_MINIMAL) entries = list() header_read = False for row in reader: if not header_read: elements = row[1:(len(row) - 4)] header_read = True else: name = row[0] energy = float(row[-4]) conc = float(row[-1]) comp = dict() for ind in range(1, len(row) - 4): if float(row[ind]) > 0: comp[Element(elements[ind - 1])] = float(row[ind]) phase_type = row[-3] if phase_type == "Ion": PoE = PourbaixEntry(IonEntry(Ion.from_formula(name), energy)) PoE.set_conc(conc) PoE.set_name(name) entries.append(PoE) else: entries.append(PourbaixEntry(PDEntry(Composition(comp), energy))) elements = [Element(el) for el in elements] return elements, entries ``` #### File: pymatgen/core/structure_modifier.py ```python from __future__ import division __author__ = "<NAME>" __copyright__ = "Copyright 2011, The Materials Project" __version__ = "1.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Production" __date__ = "Sep 23, 2011" import abc import itertools import warnings import collections import numpy as np from pymatgen.util.decorators import deprecated from pymatgen.core.periodic_table import Specie, Element from pymatgen.core.lattice import Lattice from pymatgen.core.sites import PeriodicSite, Site from pymatgen.core.structure import Structure, Molecule from pymatgen.util.coord_utils import get_points_in_sphere_pbc class StructureModifier(object): """ Abstract class definition for all classes that modify structures. """ __metaclass__ = abc.ABCMeta @abc.abstractproperty def modified_structure(self): """ Returns the modified structure. """ return @abc.abstractproperty def original_structure(self): """ Returns the original structure. """ return @deprecated(replacement=Structure) class StructureEditor(StructureModifier): """ Editor for adding, removing and changing sites from a structure """ DISTANCE_TOLERANCE = 0.01 def __init__(self, structure): """ Args: structure: pymatgen.core.structure Structure object. """ self._original_structure = structure self._lattice = structure.lattice self._sites = list(structure.sites) def add_site_property(self, property_name, values): """ Adds a property to a site. Args: property_name: The name of the property to add. values: A sequence of values. Must be same length as number of sites. """ if len(values) != len(self._sites): raise ValueError("Values must be same length as sites.") for i in xrange(len(self._sites)): site = self._sites[i] props = site.properties if not props: props = {} props[property_name] = values[i] self._sites[i] = PeriodicSite(site.species_and_occu, site.frac_coords, self._lattice, properties=props) def replace_species(self, species_mapping): """ Swap species in a structure. Args: species_mapping: dict of species to swap. Species can be elements too. e.g., {Element("Li"): Element("Na")} performs a Li for Na substitution. The second species can be a sp_and_occu dict. For example, a site with 0.5 Si that is passed the mapping {Element('Si): {Element('Ge'):0.75, Element('C'):0.25} } will have .375 Ge and .125 C. """ def mod_site(site): new_atom_occu = collections.defaultdict(int) for sp, amt in site.species_and_occu.items(): if sp in species_mapping: if isinstance(species_mapping[sp], (Element, Specie)): new_atom_occu[species_mapping[sp]] += amt elif isinstance(species_mapping[sp], dict): for new_sp, new_amt in species_mapping[sp].items(): new_atom_occu[new_sp] += amt * new_amt else: new_atom_occu[sp] += amt return PeriodicSite(new_atom_occu, site.frac_coords, self._lattice, properties=site.properties) self._sites = map(mod_site, self._sites) def replace_site(self, index, species_n_occu): """ Replace a single site. Takes either a species or a dict of species and occupations. Args: index: The index of the site in the _sites list. species: A species object. """ self._sites[index] = PeriodicSite(species_n_occu, self._sites[index].frac_coords, self._lattice, properties=self._sites[index]. properties) def remove_species(self, species): """ Remove all occurrences of a species from a structure. Args: species: species to remove. """ new_sites = [] for site in self._sites: new_sp_occu = {sp: amt for sp, amt in site.species_and_occu.items() if sp not in species} if len(new_sp_occu) > 0: new_sites.append(PeriodicSite(new_sp_occu, site.frac_coords, self._lattice, properties=site.properties)) self._sites = new_sites def append_site(self, species, coords, coords_are_cartesian=False, validate_proximity=True): """ Append a site to the structure at the end. Args: species: species of inserted site coords: coordinates of inserted site fractional_coord: Whether coordinates are cartesian. Defaults to False. validate_proximity: Whether to check if inserted site is too close to an existing site. Defaults to True. """ self.insert_site(len(self._sites), species, coords, coords_are_cartesian, validate_proximity) def insert_site(self, i, species, coords, coords_are_cartesian=False, validate_proximity=True, properties=None): """ Insert a site to the structure. Args: i: index to insert site species: species of inserted site coords: coordinates of inserted site coords_are_cartesian: Whether coordinates are cartesian. Defaults to False. validate_proximity: Whether to check if inserted site is too close to an existing site. Defaults to True. """ if not coords_are_cartesian: new_site = PeriodicSite(species, coords, self._lattice, properties=properties) else: frac_coords = self._lattice.get_fractional_coords(coords) new_site = PeriodicSite(species, frac_coords, self._lattice, properties=properties) if validate_proximity: for site in self._sites: if site.distance(new_site) < self.DISTANCE_TOLERANCE: raise ValueError("New site is too close to an existing " "site!") self._sites.insert(i, new_site) def delete_site(self, i): """ Delete site at index i. Args: i: index of site to delete. """ del(self._sites[i]) def delete_sites(self, indices): """ Delete sites with at indices. Args: indices: sequence of indices of sites to delete. """ self._sites = [self._sites[i] for i in range(len(self._sites)) if i not in indices] def apply_operation(self, symmop): """ Apply a symmetry operation to the structure and return the new structure. The lattice is operated by the rotation matrix only. Coords are operated in full and then transformed to the new lattice. Args: symmop: Symmetry operation to apply. """ self._lattice = Lattice([symmop.apply_rotation_only(row) for row in self._lattice.matrix]) def operate_site(site): new_cart = symmop.operate(site.coords) new_frac = self._lattice.get_fractional_coords(new_cart) return PeriodicSite(site.species_and_occu, new_frac, self._lattice, properties=site.properties) self._sites = map(operate_site, self._sites) def modify_lattice(self, new_lattice): """ Modify the lattice of the structure. Mainly used for changing the basis. Args: new_lattice: New lattice """ self._lattice = new_lattice new_sites = [] for site in self._sites: new_sites.append(PeriodicSite(site.species_and_occu, site.frac_coords, self._lattice, properties=site.properties)) self._sites = new_sites def apply_strain(self, strain): """ Apply an isotropic strain to the lattice. Args: strain: Amount of strain to apply. E.g., 0.01 means all lattice vectors are increased by 1%. This is equivalent to calling modify_lattice with a lattice with lattice parameters that are 1% larger. """ self.modify_lattice(Lattice(self._lattice.matrix * (1 + strain))) def translate_sites(self, indices, vector, frac_coords=True): """ Translate specific sites by some vector, keeping the sites within the unit cell. Args: sites: List of site indices on which to perform the translation. vector: Translation vector for sites. frac_coords: Boolean stating whether the vector corresponds to fractional or cartesian coordinates. """ for i in indices: site = self._sites[i] if frac_coords: fcoords = site.frac_coords + vector else: fcoords = self._lattice.get_fractional_coords(site.coords + vector) new_site = PeriodicSite(site.species_and_occu, fcoords, self._lattice, to_unit_cell=True, coords_are_cartesian=False, properties=site.properties) self._sites[i] = new_site def perturb_structure(self, distance=0.1): """ Performs a random perturbation of the sites in a structure to break symmetries. Args: distance: distance in angstroms by which to perturb each site. """ def get_rand_vec(): #deals with zero vectors. vector = np.random.randn(3) vnorm = np.linalg.norm(vector) return vector / vnorm * distance if vnorm != 0 else get_rand_vec() for i in range(len(self._sites)): self.translate_sites([i], get_rand_vec(), frac_coords=False) def add_oxidation_state_by_element(self, oxidation_states): """ Add oxidation states to a structure. Args: structure: pymatgen.core.structure Structure object. oxidation_states: dict of oxidation states. E.g., {"Li":1, "Fe":2, "P":5, "O":-2} """ try: for i, site in enumerate(self._sites): new_sp = {} for el, occu in site.species_and_occu.items(): sym = el.symbol new_sp[Specie(sym, oxidation_states[sym])] = occu new_site = PeriodicSite(new_sp, site.frac_coords, self._lattice, coords_are_cartesian=False, properties=site.properties) self._sites[i] = new_site except KeyError: raise ValueError("Oxidation state of all elements must be " "specified in the dictionary.") def add_oxidation_state_by_site(self, oxidation_states): """ Add oxidation states to a structure by site. Args: oxidation_states: List of oxidation states. E.g., [1, 1, 1, 1, 2, 2, 2, 2, 5, 5, 5, 5, -2, -2, -2, -2] """ try: for i, site in enumerate(self._sites): new_sp = {} for el, occu in site.species_and_occu.items(): sym = el.symbol new_sp[Specie(sym, oxidation_states[i])] = occu new_site = PeriodicSite(new_sp, site.frac_coords, self._lattice, coords_are_cartesian=False, properties=site.properties) self._sites[i] = new_site except IndexError: raise ValueError("Oxidation state of all sites must be " "specified in the dictionary.") def remove_oxidation_states(self): """ Removes oxidation states from a structure. """ for i, site in enumerate(self._sites): new_sp = collections.defaultdict(float) for el, occu in site.species_and_occu.items(): sym = el.symbol new_sp[Element(sym)] += occu new_site = PeriodicSite(new_sp, site.frac_coords, self._lattice, coords_are_cartesian=False, properties=site.properties) self._sites[i] = new_site def to_unit_cell(self, tolerance=0.1): """ Returns all the sites to their position inside the unit cell. If there is a site within the tolerance already there, the site is deleted instead of moved. """ new_sites = [] for site in self._sites: if not new_sites: new_sites.append(site) frac_coords = np.array([site.frac_coords]) continue if len(get_points_in_sphere_pbc(self._lattice, frac_coords, site.coords, tolerance)): continue frac_coords = np.append(frac_coords, [site.frac_coords % 1], axis=0) new_sites.append(site.to_unit_cell) self._sites = new_sites @property def original_structure(self): """ The original structure. """ return self._original_structure @property def modified_structure(self): coords = [site.frac_coords for site in self._sites] species = [site.species_and_occu for site in self._sites] props = {} if self._sites[0].properties: for k in self._sites[0].properties.keys(): props[k] = [site.properties[k] for site in self._sites] return Structure(self._lattice, species, coords, False, site_properties=props) @deprecated(replacement=Structure) class SupercellMaker(StructureModifier): """ Makes a supercell. """ def __init__(self, structure, scaling_matrix=((1, 0, 0), (0, 1, 0), (0, 0, 1))): """ Create a supercell. Args: structure: pymatgen.core.structure Structure object. scaling_matrix: a matrix of transforming the lattice vectors. Defaults to the identity matrix. Has to be all integers. e.g., [[2,1,0],[0,3,0],[0,0,1]] generates a new structure with lattice vectors a' = 2a + b, b' = 3b, c' = c where a, b, and c are the lattice vectors of the original structure. """ self._original_structure = structure old_lattice = structure.lattice scale_matrix = np.array(scaling_matrix) new_lattice = Lattice(np.dot(scale_matrix, old_lattice.matrix)) new_sites = [] def range_vec(i): return range(max(scale_matrix[:][:, i]) - min(scale_matrix[:][:, i]) + 1) for site in structure.sites: for (i, j, k) in itertools.product(range_vec(0), range_vec(1), range_vec(2)): fcoords = site.frac_coords + np.array([i, j, k]) coords = old_lattice.get_cartesian_coords(fcoords) new_coords = new_lattice.get_fractional_coords(coords) new_site = PeriodicSite(site.species_and_occu, new_coords, new_lattice, properties=site.properties) contains_site = False for s in new_sites: if s.is_periodic_image(new_site): contains_site = True break if not contains_site: new_sites.append(new_site) self._modified_structure = Structure.from_sites(new_sites) @property def original_structure(self): return self._original_structure @property def modified_structure(self): return self._modified_structure @deprecated(replacement=Structure) class OxidationStateDecorator(StructureModifier): """ .. deprecated:: v2.1.3 Use StructureEditor's add_oxidation_state_by... instead. Given a dictionary of oxidation states, decorate a structure by replacing each Element at a site with a Specie with an oxidation state. Useful for higher level functions. """ def __init__(self, structure, oxidation_states): """ Decorates a structure with oxidation states. Args: structure: pymatgen.core.structure Structure object. oxidation_states: dict of oxidation states. E.g., {"Li":1, "Fe":2, "P":5, "O": -2} """ warnings.warn("OxidationStateDecorator has been deprecated. Use " "StructureEditor.remove_oxidation_states instead.") self._original_structure = structure editor = StructureEditor(structure) editor.add_oxidation_state_by_element(oxidation_states) self._modified_structure = editor.modified_structure @property def original_structure(self): return self._original_structure @property def modified_structure(self): return self._modified_structure @deprecated(replacement=Structure) class OxidationStateRemover(StructureModifier): """ .. deprecated:: v2.1.3 Use StructureEditor's remove_oxidation_states instead. Replace each Specie at a site with an element. Useful for doing structure comparisons after applying higher level functions. """ def __init__(self, structure): """ Removes oxidation states from a structure Args: structure: pymatgen.core.structure Structure object. """ warnings.warn("OxidationStateRemover has been deprecated. Use " "StructureEditor.remove_oxidation_states instead.") self._original_structure = structure new_species = [{Element(el.symbol): occu for el, occu in site.species_and_occu.items()} for site in structure] self._modified_structure = Structure(structure.lattice, new_species, structure.frac_coords, False) @property def original_structure(self): return self._original_structure @property def modified_structure(self): return self._modified_structure @deprecated(replacement=Structure) class BasisChange(StructureModifier): """ Given a new basis, we express the structure in this new basis. """ def __init__(self, structure, new_lattice): """ Express a given structure in a new basis. Args: structure: pymatgen.core.structure Structure object. new_lattice: a pymatgen.core.Lattice object """ self._original_structure = structure sp = [site.species_and_occu for site in structure._sites] coords = [site.coords for site in structure._sites] self._modified_structure = Structure(new_lattice, sp, coords, validate_proximity=False, to_unit_cell=True, coords_are_cartesian=True) @property def original_structure(self): return self._original_structure @property def modified_structure(self): return self._modified_structure @deprecated(replacement=Molecule) class MoleculeEditor(StructureModifier): """ Editor for adding, removing and changing sites from a molecule. """ DISTANCE_TOLERANCE = 0.01 def __init__(self, molecule): """ Args: molecule: pymatgen.core.structure Molecule object. """ self._original_structure = molecule self._sites = list(molecule.sites) def add_site_property(self, property_name, values): """ Adds a property to a site. Args: property_name: The name of the property to add. values: A sequence of values. Must be same length as number of sites. """ if len(values) != len(self._sites): raise ValueError("Values must be same length as sites.") for i in xrange(len(self._sites)): site = self._sites[i] props = site.properties if not props: props = {} props[property_name] = values[i] self._sites[i] = Site(site.species_and_occu, site.coords, properties=props) def replace_species(self, species_mapping): """ Swap species in a molecule. Args: species_mapping: dict of species to swap. Species can be elements too. e.g., {Element("Li"): Element("Na")} performs a Li for Na substitution. The second species can be a sp_and_occu dict. For example, a site with 0.5 Si that is passed the mapping {Element('Si): {Element('Ge'):0.75, Element('C'):0.25} } will have .375 Ge and .125 C. """ def mod_site(site): new_atom_occu = dict() for sp, amt in site.species_and_occu.items(): if sp in species_mapping: if isinstance(species_mapping[sp], (Element, Specie)): if species_mapping[sp] in new_atom_occu: new_atom_occu[species_mapping[sp]] += amt else: new_atom_occu[species_mapping[sp]] = amt elif isinstance(species_mapping[sp], dict): for new_sp, new_amt in species_mapping[sp].items(): if new_sp in new_atom_occu: new_atom_occu[new_sp] += amt * new_amt else: new_atom_occu[new_sp] = amt * new_amt else: if sp in new_atom_occu: new_atom_occu[sp] += amt else: new_atom_occu[sp] = amt return Site(new_atom_occu, site.coords, properties=site.properties) self._sites = map(mod_site, self._sites) def replace_site(self, index, species_n_occu): """ Replace a single site. Takes either a species or a dict of occus. Args: index: The index of the site in the _sites list species: A species object. """ self._sites[index] = Site(species_n_occu, self._sites[index].coords, properties=self._sites[index].properties) def remove_species(self, species): """ Remove all occurrences of a species from a molecule. Args: species: Species to remove. """ new_sites = [] for site in self._sites: new_sp_occu = {sp: amt for sp, amt in site.species_and_occu.items() if sp not in species} if len(new_sp_occu) > 0: new_sites.append(Site(new_sp_occu, site.coords, properties=site.properties)) self._sites = new_sites def append_site(self, species, coords, validate_proximity=True): """ Append a site to the structure at the end. Args: species: species of inserted site. coords: coordinates of inserted site. validate_proximity: Whether to check if inserted site is too close to an existing site. Defaults to True. """ self.insert_site(len(self._sites), species, coords, validate_proximity) def insert_site(self, i, species, coords, validate_proximity=True, properties=None): """ Insert a site to the structure. Args: i: Index to insert site. species: Species of inserted site. coords: Coordinates of inserted site. validate_proximity: Whether to check if inserted site is too close to an existing site. Defaults to True. """ new_site = Site(species, coords, properties=properties) if validate_proximity: for site in self._sites: if site.distance(new_site) < self.DISTANCE_TOLERANCE: raise ValueError("New site is too close to an existing " "site!") self._sites.insert(i, new_site) def delete_site(self, i): """ Delete site at index i. Args: i: index of site to delete. """ del(self._sites[i]) def delete_sites(self, indices): """ Delete sites with at indices. Args: indices: sequence of indices of sites to delete. """ self._sites = [self._sites[i] for i in range(len(self._sites)) if i not in indices] def translate_sites(self, indices, vector): """ Translate specific sites by some vector, keeping the sites within the unit cell. Args: sites: List of site indices on which to perform the translation. vector: Translation vector for sites. """ for i in indices: site = self._sites[i] new_site = Site(site.species_and_occu, site.coords + vector, properties=site.properties) self._sites[i] = new_site def perturb_structure(self, distance=0.1): """ Performs a random perturbation of the sites in a structure to break symmetries. Args: distance: distance in angstroms by which to perturb each site. """ for i in range(len(self._sites)): vector = np.random.rand(3) vector /= np.linalg.norm(vector) / distance self.translate_sites([i], vector) @property def original_structure(self): return self._original_structure @property def modified_structure(self): coords = [site.coords for site in self._sites] species = [site.species_and_occu for site in self._sites] props = {} if self._sites[0].properties: for k in self._sites[0].properties.keys(): props[k] = [site.properties[k] for site in self._sites] return Molecule(species, coords, False, site_properties=props) if __name__ == "__main__": import doctest doctest.testmod() ``` #### File: pymatgen/symmetry/pointgroup.py ```python from __future__ import division __author__ = "<NAME>" __copyright__ = "Copyright 2012, The Materials Project" __version__ = "0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __date__ = "5/8/13" import logging import itertools from collections import defaultdict import numpy as np try: import scipy.cluster as spcluster except ImportError: spcluster = None from pymatgen.core.operations import SymmOp from pymatgen.util.coord_utils import find_in_coord_list from pymatgen.util.decorators import requires logger = logging.getLogger(__name__) class PointGroup(list): """ Defines a point group, which is essentially a sequence of symmetry operations. .. attribute:: sch_symbol Schoenflies symbol of the point group. """ def __init__(self, sch_symbol, operations, tol=0.1): """ Args: sch_symbol: The schoenflies symbol of the point group. operations: An initial set of symmetry operations. It is sufficient to provide only just enough operations to generate the full set of symmetries. tol: Tolerance to generate the full set of symmetry operations. """ self.sch_symbol = sch_symbol super(PointGroup, self).__init__( generate_full_symmops(operations, tol)) def __str__(self): return self.sch_symbol def __repr__(self): return self.__str__() @requires(spcluster is not None, "Cannot import scipy. PointGroupAnalyzer " "requires scipy.cluster") class PointGroupAnalyzer(object): """ A class to analyze the point group of a molecule. The general outline of the algorithm is as follows: 1. Center the molecule around its center of mass. 2. Compute the inertia tensor and the eigenvalues and eigenvectors. 3. Handle the symmetry detection based on eigenvalues. a. Linear molecules have one zero eigenvalue. Possible symmetry operations are C*v or D*v b. Asymetric top molecules have all different eigenvalues. The maximum rotational symmetry in such molecules is 2 c. Symmetric top molecules have 1 unique eigenvalue, which gives a unique rotation axis. All axial point groups are possible except the cubic groups (T & O) and I. d. Spherical top molecules have all three eigenvalues equal. They have the rare T, O or I point groups. .. attribute:: sch_symbol Schoenflies symbol of the detected point group. """ inversion_op = SymmOp.inversion() def __init__(self, mol, tolerance=0.3, eigen_tolerance=0.01, matrix_tol=0.1): """ The default settings are usually sufficient. Args: mol: Molecule tolerance: Distance tolerance to consider sites as symmetrically equivalent. Defaults to 0.3 Angstrom. eigen_tolerance: Tolerance to compare eigen values of the inertia tensor. Defaults to 0.01. matrix_tol: Tolerance used to generate the full set of symmetry operations of the point group. """ self.mol = mol self.centered_mol = mol.get_centered_molecule() self.tol = tolerance self.eig_tol = eigen_tolerance self.mat_tol = matrix_tol self._analyze() def _analyze(self): if len(self.centered_mol) == 1: self.sch_symbol = "Kh" else: inertia_tensor = np.zeros((3, 3)) total_inertia = 0 for site in self.mol: c = site.coords wt = site.species_and_occu.weight for i in xrange(3): inertia_tensor[i, i] += wt * (c[(i + 1) % 3] ** 2 + c[(i + 2) % 3] ** 2) for i, j in itertools.combinations(xrange(3), 2): inertia_tensor[i, j] += -wt * c[i] * c[j] inertia_tensor[j, i] += -wt * c[j] * c[i] total_inertia += wt * np.dot(c, c) # Normalize the inertia tensor so that it does not scale with size # of the system. This mitigates the problem of choosing a proper # comparison tolerance for the eigenvalues. inertia_tensor /= total_inertia eigvals, eigvecs = np.linalg.eig(inertia_tensor) self.principal_axes = eigvecs.T self.eigvals = eigvals v1, v2, v3 = eigvals eig_zero = abs(v1 * v2 * v3) < self.eig_tol ** 3 eig_all_same = abs(v1 - v2) < self.eig_tol and abs( v1 - v3) < self.eig_tol eig_all_diff = abs(v1 - v2) > self.eig_tol and abs( v1 - v2) > self.eig_tol and abs(v2 - v3) > self.eig_tol self.rot_sym = [] self.symmops = [SymmOp(np.eye(4))] if eig_zero: logger.debug("Linear molecule detected") self._proc_linear() elif eig_all_same: logger.debug("Spherical top molecule detected") self._proc_sph_top() elif eig_all_diff: logger.debug("Asymmetric top molecule detected") self._proc_asym_top() else: logger.debug("Symmetric top molecule detected") self._proc_sym_top() def _proc_linear(self): if self.is_valid_op(PointGroupAnalyzer.inversion_op): self.sch_symbol = "D*h" self.symmops.append(PointGroupAnalyzer.inversion_op) else: self.sch_symbol = "C*v" def _proc_asym_top(self): """ Handles assymetric top molecules, which cannot contain rotational symmetry larger than 2. """ self._check_R2_axes_asym() if len(self.rot_sym) == 0: logger.debug("No rotation symmetries detected.") self._proc_no_rot_sym() elif len(self.rot_sym) == 3: logger.debug("Dihedral group detected.") self._proc_dihedral() else: logger.debug("Cyclic group detected.") self._proc_cyclic() def _proc_sym_top(self): """ Handles symetric top molecules which has one unique eigenvalue whose corresponding principal axis is a unique rotational axis. More complex handling required to look for R2 axes perpendicular to this unique axis. """ if abs(self.eigvals[0] - self.eigvals[1]) < self.eig_tol: ind = 2 elif abs(self.eigvals[1] - self.eigvals[2]) < self.eig_tol: ind = 0 else: ind = 1 unique_axis = self.principal_axes[ind] self._check_rot_sym(unique_axis) if len(self.rot_sym) > 0: self._check_perpendicular_r2_axis(unique_axis) if len(self.rot_sym) >= 2: self._proc_dihedral() elif len(self.rot_sym) == 1: self._proc_cyclic() else: self._proc_no_rot_sym() def _proc_no_rot_sym(self): """ Handles molecules with no rotational symmetry. Only possible point groups are C1, Cs and Ci. """ self.sch_symbol = "C1" if self.is_valid_op(PointGroupAnalyzer.inversion_op): self.sch_symbol = "Ci" self.symmops.append(PointGroupAnalyzer.inversion_op) else: for v in self.principal_axes: mirror_type = self._find_mirror(v) if not mirror_type == "": self.sch_symbol = "Cs" break def _proc_cyclic(self): """ Handles cyclic group molecules. """ main_axis, rot = max(self.rot_sym, key=lambda v: v[1]) self.sch_symbol = "C{}".format(rot) mirror_type = self._find_mirror(main_axis) if mirror_type == "h": self.sch_symbol += "h" elif mirror_type == "v": self.sch_symbol += "v" elif mirror_type == "": if self.is_valid_op(SymmOp.rotoreflection(main_axis, angle=180 / rot)): self.sch_symbol = "S{}".format(2 * rot) def _proc_dihedral(self): """ Handles dihedral group molecules, i.e those with intersecting R2 axes and a main axis. """ main_axis, rot = max(self.rot_sym, key=lambda v: v[1]) self.sch_symbol = "D{}".format(rot) mirror_type = self._find_mirror(main_axis) if mirror_type == "h": self.sch_symbol += "h" elif not mirror_type == "": self.sch_symbol += "d" def _check_R2_axes_asym(self): """ Test for 2-fold rotation along the principal axes. Used to handle asymetric top molecules. """ for v in self.principal_axes: op = SymmOp.from_axis_angle_and_translation(v, 180) if self.is_valid_op(op): self.symmops.append(op) self.rot_sym.append((v, 2)) def _find_mirror(self, axis): """ Looks for mirror symmetry of specified type about axis. Possible types are "h" or "vd". Horizontal (h) mirrors are perpendicular to the axis while vertical (v) or diagonal (d) mirrors are parallel. v mirrors has atoms lying on the mirror plane while d mirrors do not. """ mirror_type = "" #First test whether the axis itself is the normal to a mirror plane. if self.is_valid_op(SymmOp.reflection(axis)): self.symmops.append(SymmOp.reflection(axis)) mirror_type = "h" else: # Iterate through all pairs of atoms to find mirror for s1, s2 in itertools.combinations(self.centered_mol, 2): if s1.species_and_occu == s2.species_and_occu: normal = s1.coords - s2.coords if np.dot(normal, axis) < self.tol: op = SymmOp.reflection(normal) if self.is_valid_op(op): self.symmops.append(op) if len(self.rot_sym) > 1: mirror_type = "d" for v, r in self.rot_sym: if not np.linalg.norm(v - axis) < self.tol: if np.dot(v, normal) < self.tol: mirror_type = "v" break else: mirror_type = "v" break return mirror_type def _get_smallest_set_not_on_axis(self, axis): """ Returns the smallest list of atoms with the same species and distance from origin AND does not lie on the specified axis. This maximal set limits the possible rotational symmetry operations, since atoms lying on a test axis is irrelevant in testing rotational symmetryOperations. """ def not_on_axis(site): v = np.cross(site.coords, axis) return np.linalg.norm(v) > self.tol valid_sets = [] origin_site, dist_el_sites = cluster_sites(self.centered_mol, self.tol) for test_set in dist_el_sites.values(): valid_set = filter(not_on_axis, test_set) if len(valid_set) > 0: valid_sets.append(valid_set) return min(valid_sets, key=lambda s: len(s)) def _check_rot_sym(self, axis): """ Determines the rotational symmetry about supplied axis. Used only for symmetric top molecules which has possible rotational symmetry operations > 2. """ min_set = self._get_smallest_set_not_on_axis(axis) max_sym = len(min_set) for i in xrange(max_sym, 0, -1): if max_sym % i != 0: continue op = SymmOp.from_axis_angle_and_translation(axis, 360 / i) rotvalid = self.is_valid_op(op) if rotvalid: self.symmops.append(op) self.rot_sym.append((axis, i)) return i return 1 def _check_perpendicular_r2_axis(self, axis): """ Checks for R2 axes perpendicular to unique axis. For handling symmetric top molecules. """ min_set = self._get_smallest_set_not_on_axis(axis) for s1, s2 in itertools.combinations(min_set, 2): test_axis = np.cross(s1.coords - s2.coords, axis) if np.linalg.norm(test_axis) > self.tol: op = SymmOp.from_axis_angle_and_translation(test_axis, 180) r2present = self.is_valid_op(op) if r2present: self.symmops.append(op) self.rot_sym.append((test_axis, 2)) return True def _proc_sph_top(self): """ Handles Sperhical Top Molecules, which belongs to the T, O or I point groups. """ self._find_spherical_axes() main_axis, rot = max(self.rot_sym, key=lambda v: v[1]) if len(self.rot_sym) == 0 or rot < 3: logger.debug("Accidental speherical top!") self._proc_sym_top() elif rot == 3: mirror_type = self._find_mirror(main_axis) if mirror_type != "": if self.is_valid_op(PointGroupAnalyzer.inversion_op): self.symmops.append(PointGroupAnalyzer.inversion_op) self.sch_symbol = "Th" else: self.sch_symbol = "Td" else: self.sch_symbol = "T" elif rot == 4: if self.is_valid_op(PointGroupAnalyzer.inversion_op): self.symmops.append(PointGroupAnalyzer.inversion_op) self.sch_symbol = "Oh" else: self.sch_symbol = "O" elif rot == 5: if self.is_valid_op(PointGroupAnalyzer.inversion_op): self.symmops.append(PointGroupAnalyzer.inversion_op) self.sch_symbol = "Ih" else: self.sch_symbol = "I" def _find_spherical_axes(self): """ Looks for R5, R4, R3 and R2 axes in speherical top molecules. Point group T molecules have only one unique 3-fold and one unique 2-fold axis. O molecules have one unique 4, 3 and 2-fold axes. I molecules have a unique 5-fold axis. """ rot_present = defaultdict(bool) origin_site, dist_el_sites = cluster_sites(self.centered_mol, self.tol) test_set = min(dist_el_sites.values(), key=lambda s: len(s)) coords = [s.coords for s in test_set] for c1, c2, c3 in itertools.combinations(coords, 3): for cc1, cc2 in itertools.combinations([c1, c2, c3], 2): if not rot_present[2]: test_axis = cc1 + cc2 if np.linalg.norm(test_axis) > self.tol: op = SymmOp.from_axis_angle_and_translation(test_axis, 180) rot_present[2] = self.is_valid_op(op) if rot_present[2]: self.symmops.append(op) self.rot_sym.append((test_axis, 2)) test_axis = np.cross(c2 - c1, c3 - c1) if np.linalg.norm(test_axis) > self.tol: for r in (3, 4, 5): if not rot_present[r]: op = SymmOp.from_axis_angle_and_translation( test_axis, 360/r) rot_present[r] = self.is_valid_op(op) if rot_present[r]: self.symmops.append(op) self.rot_sym.append((test_axis, r)) break if rot_present[2] and rot_present[3] and ( rot_present[4] or rot_present[5]): break def get_pointgroup(self): """ Returns a PointGroup object for the molecule. """ return PointGroup(self.sch_symbol, self.symmops, self.mat_tol) def is_valid_op(self, symmop): """ Check if a particular symmetry operation is a valid symmetry operation for a molecule, i.e., the operation maps all atoms to another equivalent atom. Args: symmop: Symmetry op to test. """ coords = self.centered_mol.cart_coords for site in self.centered_mol: coord = symmop.operate(site.coords) ind = find_in_coord_list(coords, coord, self.tol) if not (len(ind) == 1 and self.centered_mol[ind[0]].species_and_occu == site.species_and_occu): return False return True @requires(spcluster is not None, "Cannot import scipy. cluster_sites require " "scipy.cluster.") def cluster_sites(mol, tol): """ Cluster sites based on distance and species type. Args: mol: Molecule (should be centered at center of mass). tol: Tolerance to use. Returns: (origin_site, clustered_sites). origin_site is a site at the center of mass (None if there are no origin atoms). clustered_sites is a dict of {(avg_dist, species_and_occu): [list of sites]} """ # Cluster works for dim > 2 data. We just add a dummy 0 for second # coordinate. dists = [[np.linalg.norm(site.coords), 0] for site in mol] f = spcluster.hierarchy.fclusterdata(dists, tol, criterion='distance') clustered_dists = defaultdict(list) for i, site in enumerate(mol): clustered_dists[f[i]].append(dists[i]) avg_dist = {label: np.mean(val) for label, val in clustered_dists.items()} clustered_sites = defaultdict(list) origin_site = None for i, site in enumerate(mol): if avg_dist[f[i]] < tol: origin_site = site else: clustered_sites[(avg_dist[f[i]], site.species_and_occu)].append(site) return origin_site, clustered_sites def generate_full_symmops(symmops, tol): """ Recursive algorithm to permute through all possible combinations of the initially supplied symmetry operations to arrive at a complete set of operations mapping a single atom to all other equivalent atoms in the point group. This assumes that the initial number already uniquely identifies all operations. Args: symmops: Initial set of symmetry operations. Returns: Full set of symmetry operations. """ a = [o.affine_matrix for o in symmops] if len(symmops) > 300: logger.debug("Generation of symmetry operations in infinite loop. " + "Possible error in initial operations or tolerance too " "low.") else: for op1, op2 in itertools.product(symmops, symmops): m = np.dot(op1.affine_matrix, op2.affine_matrix) d = np.abs(a - m) < tol if not np.any(np.all(np.all(d, axis=2), axis=1)): return generate_full_symmops(symmops + [SymmOp(m)], tol) return symmops ``` #### File: pymatgen/transformations/advanced_transformations.py ```python from __future__ import division __author__ = "<NAME>, <NAME>" __copyright__ = "Copyright 2012, The Materials Project" __version__ = "1.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __date__ = "Jul 24, 2012" import numpy as np from fractions import gcd, Fraction from pymatgen.core.structure import Specie, Composition from pymatgen.core.periodic_table import smart_element_or_specie from pymatgen.transformations.transformation_abc import AbstractTransformation from pymatgen.transformations.standard_transformations import \ SubstitutionTransformation, OrderDisorderedStructureTransformation from pymatgen.command_line.enumlib_caller import EnumlibAdaptor from pymatgen.analysis.ewald import EwaldSummation from pymatgen.core.structure import Structure from pymatgen.symmetry.finder import SymmetryFinder from pymatgen.structure_prediction.substitution_probability import \ SubstitutionPredictor from pymatgen.analysis.structure_matcher import StructureMatcher, \ SpinComparator from pymatgen.analysis.energy_models import SymmetryModel, \ EwaldElectrostaticModel, NsitesModel from pymatgen.serializers.json_coders import PMGJSONDecoder class ChargeBalanceTransformation(AbstractTransformation): """ This is a transformation that disorders a structure to make it charge balanced, given an oxidation state-decorated structure. """ def __init__(self, charge_balance_sp): """ Args: charge_balance_sp specie to add or remove. Currently only removal is supported """ self._charge_balance_sp = str(charge_balance_sp) def apply_transformation(self, structure): charge = structure.charge specie = smart_element_or_specie(self._charge_balance_sp) num_to_remove = charge / specie.oxi_state num_in_structure = structure.composition[specie] removal_fraction = num_to_remove / num_in_structure if removal_fraction < 0: raise ValueError("addition of specie not yet supported by " "ChargeBalanceTransformation") trans = SubstitutionTransformation({self._charge_balance_sp: {self._charge_balance_sp: 1 - removal_fraction}}) return trans.apply_transformation(structure) def __str__(self): return "Charge Balance Transformation : " + \ "Species to remove = {}".format(str(self._charge_balance_sp)) def __repr__(self): return self.__str__() @property def inverse(self): return None @property def is_one_to_many(self): return False @property def to_dict(self): return {"name": self.__class__.__name__, "version": __version__, "init_args": {"charge_balance_sp": self._charge_balance_sp}, "@module": self.__class__.__module__, "@class": self.__class__.__name__} class SuperTransformation(AbstractTransformation): """ This is a transformation that is inherently one-to-many. It is constructed from a list of transformations and returns one structure for each transformation. The primary use for this class is extending a transmuter object. """ def __init__(self, transformations): """ Args: transformations: list of transformations to apply to a structure. One transformation is applied to each output structure. """ self._transformations = transformations def apply_transformation(self, structure, return_ranked_list=False): if not return_ranked_list: raise ValueError("SuperTransformation has no single best structure" " output. Must use return_ranked_list") structures = [] for t in self._transformations: structures.append({"transformation": t, "structure": t.apply_transformation(structure)}) return structures def __str__(self): return "Super Transformation : Transformations = " + \ "{}".format(" ".join([str(t) for t in self._transformations])) def __repr__(self): return self.__str__() @property def inverse(self): return None @property def is_one_to_many(self): return True @property def to_dict(self): return {"name": self.__class__.__name__, "version": __version__, "init_args": {"transformations": self._transformations}, "@module": self.__class__.__module__, "@class": self.__class__.__name__} class MultipleSubstitutionTransformation(object): """ Performs multiple substitutions on a structure. For example, can do a fractional replacement of Ge in LiGePS with a list of species, creating one structure for each substitution. Ordering is done using a dummy element so only one ordering must be done per substitution oxidation state. Charge balancing of the structure is optionally performed. .. note:: There are no checks to make sure that removal fractions are possible and rounding may occur. Currently charge balancing only works for removal of species. """ def __init__(self, sp_to_replace, r_fraction, substitution_dict, charge_balance_species=None, order=True): """ Performs multiple fractional substitutions on a transmuter. Args: sp_to_replace species to be replaced r_fraction fraction of that specie to replace substitution_dict dictionary of the format {2: ["Mg", "Ti", "V", "As", "Cr", "Ta", "N", "Nb"], 3: ["Ru", "Fe", "Co", "Ce", "As", "Cr", "Ta", "N", "Nb"], 4: ["Ru", "V", "Cr", "Ta", "N", "Nb"], 5: ["Ru", "W", "Mn"] } The number is the charge used for each of the list of elements (an element can be present in multiple lists) charge_balance_species: If specified, will balance the charge on the structure using that specie. """ self._sp_to_replace = sp_to_replace self._r_fraction = r_fraction self._substitution_dict = substitution_dict self._charge_balance_species = charge_balance_species self._order = order def apply_transformation(self, structure, return_ranked_list=False): if not return_ranked_list: raise ValueError("MultipleSubstitutionTransformation has no single" " best structure output. Must use" " return_ranked_list.") outputs = [] for charge, el_list in self._substitution_dict.items(): mapping = {} if charge > 0: sign = "+" else: sign = "-" dummy_sp = "X{}{}".format(str(charge), sign) mapping[self._sp_to_replace] = {self._sp_to_replace: 1 - self._r_fraction, dummy_sp: self._r_fraction} trans = SubstitutionTransformation(mapping) dummy_structure = trans.apply_transformation(structure) if self._charge_balance_species is not None: cbt = ChargeBalanceTransformation(self._charge_balance_species) dummy_structure = cbt.apply_transformation(dummy_structure) if self._order: trans = OrderDisorderedStructureTransformation() dummy_structure = trans.apply_transformation(dummy_structure) for el in el_list: if charge > 0: sign = "+" else: sign = "-" st = SubstitutionTransformation({"X{}+".format(str(charge)): "{}{}{}".format(el, charge, sign)}) new_structure = st.apply_transformation(dummy_structure) outputs.append({"structure": new_structure}) return outputs def __str__(self): return "Multiple Substitution Transformation : Substitution on " + \ "{}".format(self._sp_to_replace) def __repr__(self): return self.__str__() @property def inverse(self): return None @property def is_one_to_many(self): return True @property def to_dict(self): return {"name": self.__class__.__name__, "version": __version__, "init_args": {"sp_to_replace": self._sp_to_replace, "r_fraction": self._r_fraction, "substitution_dict": self._substitution_dict, "charge_balance_species": self._charge_balance_species}, "@module": self.__class__.__module__, "@class": self.__class__.__name__} class EnumerateStructureTransformation(AbstractTransformation): """ Order a disordered structure using enumlib. For complete orderings, this generally produces fewer structures that the OrderDisorderedStructure transformation, and at a much faster speed. """ def __init__(self, min_cell_size=1, max_cell_size=1, symm_prec=0.1, refine_structure=False): """ Args: min_cell_size: The minimum cell size wanted. Must be an int. Defaults to 1. max_cell_size: The maximum cell size wanted. Must be an int. Defaults to 1. symm_prec: Tolerance to use for symmetry. refine_structure: This parameter has the same meaning as in enumlib_caller. If you are starting from a structure that has been relaxed via some electronic structure code, it is usually much better to start with symmetry determination and then obtain a refined structure. The refined structure have cell parameters and atomic positions shifted to the expected symmetry positions, which makes it much less sensitive precision issues in enumlib. If you are already starting from an experimental cif, refinment should have already been done and it is not necessary. Defaults to False. """ self.symm_prec = symm_prec self.min_cell_size = min_cell_size self.max_cell_size = max_cell_size self.refine_structure = refine_structure def apply_transformation(self, structure, return_ranked_list=False): """ Return either a single ordered structure or a sequence of all ordered structures. Args: structure: Structure to order. return_ranked_list: Boolean stating whether or not multiple structures are returned. If return_ranked_list is a number, that number of structures is returned. Returns: Depending on returned_ranked list, either a transformed structure or a list of dictionaries, where each dictionary is of the form {"structure" = .... , "other_arguments"} The list of ordered structures is ranked by ewald energy / atom, if the input structure is an oxidation state decorated structure. Otherwise, it is ranked by number of sites, with smallest number of sites first. """ try: num_to_return = int(return_ranked_list) except ValueError: num_to_return = 1 if structure.is_ordered: raise ValueError("Enumeration can be carried out only on " "disordered structures!") if self.refine_structure: finder = SymmetryFinder(structure, self.symm_prec) structure = finder.get_refined_structure() contains_oxidation_state = False for sp in structure.composition.elements: if hasattr(sp, "oxi_state") and sp._oxi_state != 0: contains_oxidation_state = True break adaptor = EnumlibAdaptor(structure, min_cell_size=self.min_cell_size, max_cell_size=self.max_cell_size, symm_prec=self.symm_prec, refine_structure=False) adaptor.run() structures = adaptor.structures original_latt = structure.lattice inv_latt = np.linalg.inv(original_latt.matrix) ewald_matrices = {} all_structures = [] for s in structures: new_latt = s.lattice transformation = np.dot(new_latt.matrix, inv_latt) transformation = tuple([tuple([int(round(cell)) for cell in row]) for row in transformation]) if contains_oxidation_state: if transformation not in ewald_matrices: s_supercell = Structure.from_sites(structure.sites) s_supercell.make_supercell(transformation) ewald = EwaldSummation(s_supercell) ewald_matrices[transformation] = ewald else: ewald = ewald_matrices[transformation] energy = ewald.compute_sub_structure(s) all_structures.append({"num_sites": len(s), "energy": energy, "structure": s}) else: all_structures.append({"num_sites": len(s), "structure": s}) def sort_func(s): return s["energy"] / s["num_sites"] if contains_oxidation_state \ else s["num_sites"] self._all_structures = sorted(all_structures, key=sort_func) if return_ranked_list: return self._all_structures[0:num_to_return] else: return self._all_structures[0]["structure"] def __str__(self): return "EnumerateStructureTransformation" def __repr__(self): return self.__str__() @property def inverse(self): return None @property def is_one_to_many(self): return True @property def to_dict(self): return {"name": self.__class__.__name__, "version": __version__, "init_args": {"symm_prec": self.symm_prec, "min_cell_size": self.min_cell_size, "max_cell_size": self.max_cell_size, "refine_structure": self.refine_structure}, "@module": self.__class__.__module__, "@class": self.__class__.__name__} class SubstitutionPredictorTransformation(AbstractTransformation): """ This transformation takes a structure and uses the structure prediction module to find likely site substitutions. """ def __init__(self, threshold=1e-2, **kwargs): """ Args: kwargs: args for SubstitutionProbability class lambda_table, alpha """ self._kwargs = kwargs self._threshold = threshold self._substitutor = SubstitutionPredictor(threshold=threshold, **kwargs) def apply_transformation(self, structure, return_ranked_list=False): if not return_ranked_list: raise ValueError("SubstitutionPredictorTransformation doesn't" " support returning 1 structure") preds = self._substitutor.composition_prediction( structure.composition, to_this_composition=False) preds.sort(key=lambda x: x['probability'], reverse=True) outputs = [] for pred in preds: st = SubstitutionTransformation(pred['substitutions']) output = {'structure': st.apply_transformation(structure), 'probability': pred['probability'], 'threshold': self._threshold, 'substitutions': {}} #dictionary keys have to be converted to strings for JSON for key, value in pred['substitutions'].items(): output['substitutions'][str(key)] = str(value) outputs.append(output) return outputs def __str__(self): return "SubstitutionPredictorTransformation" def __repr__(self): return self.__str__() @property def inverse(self): return None @property def is_one_to_many(self): return True @property def to_dict(self): d = {"name": self.__class__.__name__, "version": __version__, "init_args": self._kwargs, "@module": self.__class__.__module__, "@class": self.__class__.__name__} d["init_args"]["threshold"] = self._threshold return d class MagOrderingTransformation(AbstractTransformation): """ This transformation takes a structure and returns a list of magnetic orderings. Currently only works for ordered structures. """ def __init__(self, mag_species_spin, order_parameter=0.5, energy_model=SymmetryModel(), **kwargs): """ Args: mag_elements_spin: A mapping of elements/species to magnetically order to spin magnitudes. E.g., {"Fe3+": 5, "Mn3+": 4} order_parameter: degree of magnetization. 0.5 corresponds to antiferromagnetic order energy_model: Energy model used to rank the structures. Some models are provided in :mod:`pymatgen.analysis.energy_models`. **kwargs: Same keyword args as :class:`EnumerateStructureTransformation`, i.e., min_cell_size, etc. """ self.mag_species_spin = mag_species_spin if order_parameter > 1 or order_parameter < 0: raise ValueError('Order Parameter must lie between 0 and 1') else: self.order_parameter = order_parameter self.emodel = energy_model self.enum_kwargs = kwargs @classmethod def determine_min_cell(cls, structure, mag_species_spin, order_parameter): """ Determine the smallest supercell that is able to enumerate the provided structure with the given order parameter """ def lcm(n1, n2): """ Find least common multiple of two numbers """ return n1 * n2 / gcd(n1, n2) denom = Fraction(order_parameter).limit_denominator(100).denominator atom_per_specie = [structure.composition.get(m) for m in mag_species_spin.keys()] n_gcd = reduce(gcd, atom_per_specie) if not n_gcd: raise ValueError('The specified species do not exist in the structure' ' to be enumerated') return lcm(n_gcd, denom) / n_gcd def apply_transformation(self, structure, return_ranked_list=False): #Make a mutable structure first mods = Structure.from_sites(structure) for sp, spin in self.mag_species_spin.items(): sp = smart_element_or_specie(sp) oxi_state = getattr(sp, "oxi_state", 0) up = Specie(sp.symbol, oxi_state, {"spin": abs(spin)}) down = Specie(sp.symbol, oxi_state, {"spin": -abs(spin)}) mods.replace_species( {sp: Composition({up: self.order_parameter, down: 1 - self.order_parameter})}) enum_args = self.enum_kwargs enum_args["min_cell_size"] = max(int( MagOrderingTransformation.determine_min_cell( structure, self.mag_species_spin, self.order_parameter)), enum_args.get("min_cell_size")) max_cell = self.enum_kwargs.get('max_cell_size') if max_cell: if enum_args["min_cell_size"] > max_cell: raise ValueError('Specified max cell size is smaller' ' than the minimum enumerable cell size') else: enum_args["max_cell_size"] = enum_args["min_cell_size"] t = EnumerateStructureTransformation(**enum_args) alls = t.apply_transformation(mods, return_ranked_list=return_ranked_list) try: num_to_return = int(return_ranked_list) except ValueError: num_to_return = 1 if num_to_return == 1: return alls[0]["structure"] m = StructureMatcher(comparator=SpinComparator()) grouped = m.group_structures([d["structure"] for d in alls]) alls = [{"structure": g[0], "energy": self.emodel.get_energy(g[0])} for g in grouped] self._all_structures = sorted(alls, key=lambda d: d["energy"]) return self._all_structures[0:num_to_return] def __str__(self): return "MagOrderingTransformation" def __repr__(self): return self.__str__() @property def inverse(self): return None @property def is_one_to_many(self): return True @property def to_dict(self): return { "name": self.__class__.__name__, "version": __version__, "init_args": {"mag_species_spin": self.mag_species_spin, "order_parameter": self.order_parameter, "energy_model": self.emodel.to_dict, "enum_kwargs": self.enum_kwargs}, "@module": self.__class__.__module__, "@class": self.__class__.__name__} @classmethod def from_dict(cls, d): init = d["init_args"] return MagOrderingTransformation( init["mag_species_spin"], init["order_parameter"], energy_model=PMGJSONDecoder().process_decoded( init["energy_model"]), **init["enum_kwargs"]) ```
{ "source": "JmFoces/OrderFiles", "score": 2 }
#### File: JmFoces/OrderFiles/main.py ```python import sys import os from os import listdir from queue import Queue from utils.log import log from mtypes.creators.file_factory import FileFactory import multiprocessing from multiprocessing import Process from config import EXCLUDE_ROOT from utils.order.organizer import Organizer from hachoir.core import config config.quiet = True def work(path): ffactory = FileFactory() organizer = Organizer() mfile = ffactory.create_file(path) organizer.organize(mfile) work_queue = Queue() def worker_loop(): path = work_queue.get() log.info("Ordering {}".format(path)) work(path) log.info("Finished {}".format(path)) if __name__ == "__main__": for param in sys.argv[1:]: try: p = Process(target=work, args=(param,)) p.start() p.join() except Exception as e: log.exception(e) log.info("Finished all tasks") ``` #### File: JmFoces/OrderFiles/main_sync.py ```python import sys import os from os import listdir from utils.log import log from mtypes.creators.file_factory import FileFactory from multiprocessing import Process from config import EXCLUDE_ROOT from utils.order.organizer import Organizer from hachoir.core import config config.quiet = True def work(path): ffactory = FileFactory() organizer = Organizer() mfile = ffactory.create_file(path) organizer.organize(mfile) if __name__ == "__main__": procs = [] for param in sys.argv[1:]: try: if param not in EXCLUDE_ROOT : work(param) except Exception as e: log.exception(e) ``` #### File: utils/order/index.py ```python import sh import os import re import config import constants from utils.exceptions import * from utils.command import * class Index: INDEX_PATH = config.INDEX_PATH DEPTH = 2 def __init__(self): self.tmp = os.path.join(self.INDEX_PATH, "tmp") sh.mkdir("-p", self.tmp) self.step = 2 def put_file(self, path): temp_file = str(sh.mktemp("-p", self.tmp).stdout,'utf8').strip() path = path.strip() if "'" in path: returncode, stdout, stderr = launch_command( "dd if=\"{0}\" iflag=nofollow bs=4k | tee {1} | sha1sum".format( path, temp_file ) ) else: returncode, stdout, stderr = launch_command( "dd if='{0}' iflag=nofollow bs=4k | tee {1} | sha1sum".format( path, temp_file ) ) if returncode != 0: print(stdout) print(stderr) raise UnableToHashFile("File : {0}".format(path)) hash_str = re.search("^[0-9a-f]*", str(stdout,'utf8')).group(0) destination_folder = self.create_destination_folder(hash_str) destination_path = os.path.join(destination_folder, hash_str) if not self.is_stored(hash_str): sh.mv(temp_file, destination_path) sh.chmod("444", destination_path) else: sh.rm(temp_file) return destination_path def create_destination_folder(self, hash_str): count = 0 path = self.INDEX_PATH while count < self.DEPTH: path = os.path.join(path, hash_str[count:count+self.step]) sh.mkdir("-p", path) count += self.step return path def is_stored(self, hash_str): count = 0 path = self.INDEX_PATH while count < self.DEPTH: path = os.path.join(path, hash_str[count:count + self.step]) count += self.step path = os.path.join(path, hash_str) return os.path.exists(path) ```
{ "source": "jmframe/mclstm_2021_extrapolate", "score": 2 }
#### File: neuralhydrology/utils/nh_results_ensemble.py ```python import argparse import pickle import sys import glob from collections import defaultdict from pathlib import Path from typing import List import numpy as np import pandas as pd import xarray as xr from tqdm import tqdm sys.path.append(str(Path(__file__).parent.parent.parent)) from neuralhydrology.datautils.utils import get_frequency_factor, sort_frequencies from neuralhydrology.evaluation.metrics import calculate_metrics, get_available_metrics from neuralhydrology.utils.config import Config from neuralhydrology.utils.errors import AllNaNError def create_results_ensemble(run_dirs: List[Path], best_k: int = None, metrics: List[str] = None, period: str = 'test', epoch: int = None) -> dict: """Average the predictions of several runs for the specified period and calculate new metrics. If `best_k` is provided, only the k runs with the best validation NSE will be used in the generated ensemble. Parameters ---------- run_dirs : List[Path] List of directories of the runs to be merged best_k : int, optional If provided, will only merge the k best runs based on validation NSE. metrics : List[str], optional Use this parameter to override the metrics from the config files in the run directories. period : {'test', 'validation', 'train'}, optional One of train, val, test. If best_k is used, only 'test' is allowed. The run_directories must contain results files for the specified period. epoch : int, optional If provided, will ensemble the model predictions of this epoch otherwise of the last epoch Returns ------- dict Dictionary of ensemble predictions and metrics per basin and frequency. """ if len(run_dirs) < 2: raise ValueError('Need to provide at least two run directories to be merged.') if period not in ['train', 'validation', 'test']: raise ValueError(f'Unknown period {period}.') if best_k is not None: if period != 'test': raise ValueError('If best_k is specified, the period must be test.') print('Searching for best validation runs.') best_val_runs = _get_best_validation_runs(run_dirs, best_k, epoch) best_runs = [_get_results_file(run_dir, period, epoch) for run_dir in best_val_runs] else: best_runs = [_get_results_file(run_dir, period, epoch) for run_dir in run_dirs] config = Config(run_dirs[0] / 'config.yml') if metrics is not None: # override metrics from config config.metrics = metrics # get frequencies from a results file. # (they might not be stored in the config if the native data frequency was used) run_results = pickle.load(open(best_runs[0], 'rb')) frequencies = list(run_results[list(run_results.keys())[0]].keys()) return _create_ensemble(best_runs, frequencies, config) def _create_ensemble(results_files: List[Path], frequencies: List[str], config: Config) -> dict: """Averages the predictions of the passed runs and re-calculates metrics. """ lowest_freq = sort_frequencies(frequencies)[0] ensemble_sum = defaultdict(dict) target_vars = config.target_variables print('Loading results for each run.') for run in tqdm(results_files): run_results = pickle.load(open(run, 'rb')) for basin, basin_results in run_results.items(): for freq in frequencies: freq_results = basin_results[freq]['xr'] # sum up the predictions of all basins if freq not in ensemble_sum[basin]: ensemble_sum[basin][freq] = freq_results else: for target_var in target_vars: ensemble_sum[basin][freq][f'{target_var}_sim'] += freq_results[f'{target_var}_sim'] # divide the prediction sum by number of runs to get the mean prediction for each basin and frequency print('Combining results and calculating metrics.') ensemble = defaultdict(lambda: defaultdict(dict)) for basin in tqdm(ensemble_sum.keys()): for freq in frequencies: ensemble_xr = ensemble_sum[basin][freq] # combine date and time to a single index to calculate metrics # create datetime range at the current frequency, removing time steps that are not being predicted frequency_factor = int(get_frequency_factor(lowest_freq, freq)) # make sure the last day is fully contained in the range freq_date_range = pd.date_range(start=ensemble_xr.coords['date'].values[0], end=ensemble_xr.coords['date'].values[-1] \ + pd.Timedelta(days=1, seconds=-1), freq=freq) mask = np.ones(frequency_factor).astype(bool) mask[:-len(ensemble_xr.coords['time_step'])] = False freq_date_range = freq_date_range[np.tile(mask, len(ensemble_xr.coords['date']))] ensemble_xr = ensemble_xr.isel(time_step=slice(-frequency_factor, None)).stack( datetime=['date', 'time_step']) ensemble_xr['datetime'] = freq_date_range for target_var in target_vars: # average predictions ensemble_xr[f'{target_var}_sim'] = ensemble_xr[f'{target_var}_sim'] / len(results_files) # clip predictions to zero sim = ensemble_xr[f'{target_var}_sim'] if target_var in config.clip_targets_to_zero: sim = xr.where(sim < 0, 0, sim) # calculate metrics metrics = config.metrics if isinstance(config.metrics, list) else config.metrics[target_var] if 'all' in metrics: metrics = get_available_metrics() try: ensemble_metrics = calculate_metrics(ensemble_xr[f'{target_var}_obs'], sim, metrics=metrics, resolution=freq) except AllNaNError as err: msg = f'Basin {basin} ' \ + (f'{target_var} ' if len(target_vars) > 1 else '') \ + (f'{freq} ' if len(frequencies) > 1 else '') \ + str(err) print(msg) ensemble_metrics = {metric: np.nan for metric in metrics} # add variable identifier to metrics if needed if len(target_vars) > 1: ensemble_metrics = {f'{target_var}_{key}': val for key, val in ensemble_metrics.items()} for metric, val in ensemble_metrics.items(): ensemble[basin][freq][f'{metric}_{freq}'] = val ensemble[basin][freq]['xr'] = ensemble_xr return dict(ensemble) def _get_medians(results: dict, metric='NSE') -> dict: """Calculates median metric across all basins. """ medians = {} key = metric frequencies = list(results[list(results.keys())[0]].keys()) for freq in frequencies: # if the one freq was resampled, there still is a freq suffix if len(frequencies) > 1 or (len(frequencies) == 1 and f'{metric}_{freq}' in results[list(results.keys())[0]][freq]): key = f'{metric}_{freq}' metric_values = [v[freq][key] for v in results.values() if freq in v.keys() and key in v[freq].keys()] medians[freq] = np.nanmedian(metric_values) return medians def _get_best_validation_runs(run_dirs: List[Path], k: int, epoch: int = None) -> List[Path]: """Returns the k run directories with the best median validation metrics. """ val_files = list(zip(run_dirs, [_get_results_file(run_dir, 'validation', epoch) for run_dir in run_dirs])) # get validation medians median_sums = {} for run_dir, val_file in val_files: val_results = pickle.load(open(val_file, 'rb')) val_medians = _get_medians(val_results) print('validation', val_file, val_medians) median_sums[run_dir] = sum(val_medians.values()) if k > len(run_dirs): raise ValueError(f'best_k k is larger than number of runs {len(val_files)}.') return sorted(median_sums, key=median_sums.get, reverse=True)[:k] def _get_results_file(run_dir: Path, period: str = 'test', epoch: int = None) -> Path: """Returns the path of the results file in the given run directory. """ if epoch is not None: dir_results_files = list(Path(run_dir).glob(f'{period}/model_epoch{str(epoch).zfill(3)}/{period}_results.p')) else: dir_results_files = list(Path(run_dir).glob(f'{period}/model_epoch*/{period}_results.p')) if len(dir_results_files) == 0: raise ValueError(f'{run_dir} is missing {period} results.') return sorted(dir_results_files)[-1] def _main(): parser = argparse.ArgumentParser() parser.add_argument('--run-dir', type=str, help='Parent directory of the runs to be averaged.') parser.add_argument('--period', type=str, choices=['train', 'validation', 'test'], default='test') parser.add_argument('--save-file', type=str, help='Path to target pickle file for averaged results.') parser.add_argument('--metrics', type=str, nargs='+', required=False, help='Option to override the metrics from the config.') parser.add_argument('--best-k', type=int, required=False, help='If provided, will only use the k results files with the best median validation NSEs.') parser.add_argument('--epoch', type=int, required=False, help='If provided, will return results of this specific epoch otherwise of the last epoch') args = vars(parser.parse_args()) run_dirs = [Path(dir) for dir in glob.glob(args['run_dir'] + '/**')] ensemble_results = create_results_ensemble(run_dirs, args['best_k'], metrics=args['metrics'], period=args['period'], epoch=args['epoch']) pickle.dump(ensemble_results, open(args['save_file'], 'wb')) print(f'Successfully written results to {args["save_file"]}.') if __name__ == '__main__': _main() ```
{ "source": "jmfrancklab/proc_scripts", "score": 2 }
#### File: proc_scripts/examples/Hermitian_Phasing_Actual_var_tau.py ```python from pyspecdata import * from pyspecProcScripts import * from pylab import * import sympy as s from collections import OrderedDict init_logging(level='debug') rcParams["image.aspect"] = "auto" # needed for sphinx gallery # sphinx_gallery_thumbnail_number = 1 t2, td, vd, power, ph1, ph2 = s.symbols("t2 td vd power ph1 ph2") f_range = (-400, 400) filename = '201113_TEMPOL_capillary_probe_var_tau_1' signal_pathway = {'ph1':1,'ph2':0} with figlist_var() as fl: for nodename,file_location,postproc,label in [ ('var_tau','ODNP_NMR_comp/var_tau','spincore_var_tau_v1', 'tau is 1 ms'), ]: data = find_file(filename,exp_type=file_location,expno=nodename, postproc=postproc,lookup=lookup_table) data = data['tau',:-7] tau_list = list(data.getaxis('tau')) data.reorder(['ph1','ph2','tau','t2']) data = data['t2':f_range] mytable = [] mytable.append(['programmed tau / ms','estimated tau / ms','difference / ms']) for j in range(len(tau_list)): tablerow = [] alias_slop=3 programmed_tau = tau_list[j] tablerow.append(programmed_tau/1e-3) logger.info(strm("programmed tau:",programmed_tau)) this_data = data['tau',j] this_data.ift("t2") fl.basename = '%0.1f ms'%(programmed_tau/1e-3) best_shift = hermitian_function_test( select_pathway(this_data, signal_pathway), aliasing_slop=alias_slop, fl=fl) logger.info(strm("best shift is:",best_shift)) tablerow.append(best_shift/1e-3) diff = abs(best_shift - programmed_tau) tablerow.append(diff/1e-3) mytable.append(tablerow) def tabulate(mytable): print(' '.join(mytable[0])) strlens = [len(j) for j in mytable[0]] print(' '.join('-'*j for j in strlens)) formatstr = ' '.join(f'%{str(j)}.2f' for j in strlens) for j in mytable[1:]: print(formatstr%tuple(j)) tabulate(mytable) ``` #### File: pyspecProcScripts/first_level/fl_dummy.py ```python class fl_dummy_class (object): def plot(*args): pass def next(*args): pass def push_marker(*args): pass def pop_marker(*args): pass fl_dummy = fl_dummy_class ``` #### File: proc_scripts/pyspecProcScripts/integral_w_error.py ```python from pyspecdata import * from .integrate_limits import integrate_limits from .simple_functions import select_pathway import numpy as np from pylab import * def integral_w_errors(s,sig_path,error_path, convolve_method=None, indirect='vd', direct='t2',fl=None,return_frq_slice=False): """Calculates the propagation of error for the given signal and returns signal with the error associated. Parameters ========== sig_path: dict Dictionary of the path of the desired signal. error_path: dict Dictionary of all coherence pathways that are not the signal pathway. convolve_meth: str method of convolution used in integrating limits indirect: str Indirect axis. direct: str Direct axis. Returns ======= s: nddata Data with error associated with coherence pathways not included in the signal pathway. """ assert s.get_ft_prop(direct), "need to be in frequency domain!" if convolve_method is not None: kwargs = {'convolve_method':convolve_method} else: kwargs = {} frq_slice = integrate_limits(select_pathway(s,sig_path), **kwargs) logging.debug(strm('frq_slice is',frq_slice)) s = s[direct:frq_slice] f = s.getaxis(direct) df = f[1]-f[0] errors = [] all_labels = set(s.dimlabels) all_labels -= set([indirect,direct]) extra_dims = [j for j in all_labels if not j.startswith('ph')] if len(extra_dims) > 0: raise ValueError("You have extra (non-phase cycling, non-indirect) dimensions: " +str(extra_dims)) collected_variance = ndshape( [ndshape(s)[indirect],len(error_path)],[indirect,'pathways']).alloc() avg_error = [] for j in range(len(error_path)): # calculate N₂ Δf² σ², which is the variance of the integral (by error propagation) # where N₂ is the number of points in the indirect dimension s_forerror = select_pathway(s,error_path[j]) # previous line wipes everything out and starts over -- why not use # collected_variance above, as I had originally set up --> part of # issue #44 if j==0: N2 = ndshape(s_forerror)[direct] # mean divides by N₁ (indirect), integrate multiplies by Δf, and the # mean sums all elements (there are N₁N₂ elements) s_forerror -= s_forerror.C.mean_all_but([indirect, direct]).mean(direct) s_forerror.run(lambda x: abs(x)**2/2).mean_all_but([direct,indirect]).mean(direct) s_forerror *= df**2 # Δf s_forerror *= N2 avg_error.append(s_forerror) avg_error = sum(avg_error)/len(avg_error) # {{{ variance calculation for debug #print("(inside automatic routine) the stdev seems to be",sqrt(collected_variance/(df*N2))) #print("automatically calculated integral error:",sqrt(collected_variance.data)) # }}} s = select_pathway(s,sig_path) retval = s.integrate(direct).set_error(sqrt(s_forerror.data)) if not return_frq_slice: return retval elif return_frq_slice: return retval, frq_slice def active_propagation(s, signal_path, indirect='vd', direct='t2',fl=None,offset=500.0): """propagate error from the region `offset` to the right of the peak (where we assume there is only noise), in the signal pathway `signal_path`, which we assume is the active coherence pathway. Include only the real part of the signal. Parameters ========== signal_path: dict Dictionary givin the active CT pathway indirect: str Name of the indirect dimension -- used to check that you don't have directions that are not direct, indirect, or phase cycling. direct: str Name of the direct dimension offset: float Distance (in Hz) between the auto-chosen integration bounds from :func:`integrate_limits` and the start of the "noise region." Returns ======= retval: nddata just a data object with the error that this method predicts """ assert s.get_ft_prop(direct), "need to be in frequency domain!" frq_slice = integrate_limits(select_pathway(s,signal_path),fl=fl) logging.debug(strm('frq_slice is',frq_slice)) s = s[direct:((frq_slice[-1]+offset),None)] # grab all data more than # offset to the right of the # peak df = s.get_ft_prop(direct,'df') all_labels = set(s.dimlabels) all_labels -= set([indirect,direct]) extra_dims = [j for j in all_labels if not j.startswith('ph')] if len(extra_dims) > 0: raise ValueError("You have extra (non-phase cycling, non-indirect) dimensions: " +str(extra_dims)) s_forerror = select_pathway(s, signal_path) N = ndshape(s_forerror)[direct] s_forerror.run(real).run(lambda x: abs(x)**2).mean_all_but([direct,indirect]).mean(direct) s_forerror *= df**2 s_forerror *= N return s_forerror.run(sqrt) ``` #### File: proc_scripts/pyspecProcScripts/simple_functions.py ```python "First order functions for very simple (a few lines) data manipulation" import numpy as np def select_pathway(*args,**kwargs): r"""select a particular CT pathway from the signal `s` Arguments are *either* ``pathway`` -- a dict of key/value pairs indicating the pathway **or** the same set of key/value pairs, just passed as a dict. Parameters ========== s: nddata the data whose coherence pathway you would like to select pathway: dict keys are the names of the coherence transfer dimensions (conj. of phase cycling dimensions) and values are the pathway you want to select """ if len(args) == 2 and len(kwargs) == 0: s,pathway = args elif len(args) == 1 and len(kwargs) > 0 and len(kwargs)%2 == 0: s = args[0] pathway = kwargs else: raise ValueError("your arguments don't make any sense!!") retval = s for k, v in pathway.items(): retval = retval[k,v] return retval def determine_sign(s, direct="t2", fl=None): """Given that the signal resides in `pathway`, determine the sign of the signal. The sign can be used, e.g. so that all data in an inversion-recover or enhancement curve can be aligned together. Parameters ========== s: nddata data with a single (dominant) peak, where you want to return the sign of the integral over all the data. This should only contain **a single coherence pathway**. direct: str (default "t2") Name of the direct dimension, along which the sum/integral is taken Returns ======= data_sgn: nddata A dataset with all +1 or -1 (giving the sign of the original signal). Does *not* include the `direct` dimension """ assert s.get_ft_prop(direct), "this only works on data that has been FT'd along the direct dimension" if fl is not None: fl.push_marker() fl.next('selected pathway') fl.image(s.C.setaxis( 'vd','#').set_units('vd','scan #')) data_sgn = s.C.sum(direct) data_sgn /= data_sgn.max().item() data_sgn.run(np.real).run(lambda x: np.sign(x)) if fl is not None: fl.next('check sign') fl.image((s.C.setaxis( 'vd','#').set_units('vd','scan #'))*data_sgn) fl.pop_marker() return data_sgn ``` #### File: proc_scripts/pyspecProcScripts/slice_FID_from_echo.py ```python from pyspecdata import * from sympy import symbols from .simple_functions import select_pathway def slice_FID_from_echo(s, max_t=None, signal_pathway={'ph1':1, 'ph2':-2}, fl=None): """Automatically slices the FID out of an echo. Determines the proper position for :math:`t=0` from hermitian function test. This is followed by zeroth order phase correcting and slicing from the center of the echo (:math:`t=0` onward to the t_range defined Parameters ========== max_t: int where the slice ends in the time domain. ph1: int the selection of ph1 in the coherence pathway ph2: int selection of ph2 in coherence pathway Returns ======= s: phase corrected and sliced data """ best_shift = hermitian_function_test(select_pathway(s,signal_pathway)) s.setaxis('t2',lambda x: x-best_shift) s.register_axis({'t2':0}, nearest=False) coh_slice = select_pathway(s['t2':0],signal_pathway) print(coh_slice.dimlabels) if len(coh_slice.dimlabels) > 0: assert len(coh_slice.dimlabels) == 1, repr(ndshape(coh_slice.dimlabels))+" has too many dimensions" ph0 = zeroth_order_ph(coh_slice, fl=fl) logger.info(strm('phasing dimension as one')) else: logger.info(strm("there is only one dimension left -- standard 1D zeroth order phasing")) ph0 = coh_slice/abs(coh_slice) s /= ph0 if fl is not None: fl.side_by_side('time domain (after filtering and phasing)\n$\\rightarrow$ use to adjust time range', s, (0,max_t)) s = s['t2':(0,max_t)] s['t2':0] *= 0.5 if 'power' in s.dimlabels: if select_pathway(s['t2':0]['power',0],signal_pathway).real < 0: s *= -1 elif 'vd' in s.dimlabels: if select_pathway(s['t2':0]['vd',-1],signal_pathway).real < 0: s *= -1 return s ``` #### File: pyspecProcScripts/third_level/process_IR.py ```python import pylab as plb from pyspecdata import * from scipy.optimize import minimize, leastsq from sympy import exp as s_exp import numpy as np import matplotlib.pyplot as plt from sympy import symbols, latex, Symbol from proc_scripts import * from .simple_functions import select_pathway t2 = symbols('t2') def as_scan_nbr(d): '''since we need to relabel vd frequently- we make a method''' return d.C.setaxis('vd','#').set_units('vd','scan #') def process_IR(s, label='', fl=None, this_l = 0.032, l = sqrt(np.logspace(-8.0,0.5,35)), signal_pathway = {'ph1':0,'ph2':1}, excluded_pathways = [(0,0)], clock_correction = True, W=6.2, f_range = (None,None), t_range = (None,83e-3), IR = True, flip=False, sign = None, ILT=False): s *= sign s['ph2',0]['ph1',0]['t2':0] = 0 # kill the axial noise s.ift('t2') s.reorder(['ph1','ph2','vd','t2']) #{{{ Applying DC offset s.ift(['ph1','ph2']) t_start = t_range[-1] / 4 t_start *= 3 rx_offset_corr = s['t2':(t_start,None)] rx_offset_corr = rx_offset_corr.data.mean() s -= rx_offset_corr s.ft('t2') s.ft(['ph1','ph2']) #}}} zero_crossing=abs(select_pathway(s,signal_pathway)).sum('t2').argmin('vd',raw_index=True).item() if 'indirect' in s.dimlabels: s.rename('indirect','vd') # no rough centering anymore -- if anything, we should preproc based on τ, # etc, but otherwise let the hermitian test handle it #{{{ phasing the aligned data s = s['t2':f_range] s.ift('t2') if clock_correction: #{{{ clock correction clock_corr = nddata(np.linspace(-3,3,2500),'clock_corr') s.ft('t2') if fl is not None: fl.next('before clock correction') fl.image(as_scan_nbr(s)) s_clock=s['ph1',1]['ph2',0].sum('t2') s.ift(['ph1','ph2']) min_index = abs(s_clock).argmin('vd',raw_index=True).item() s_clock *= np.exp(-1j*clock_corr*s.fromaxis('vd')) s_clock['vd',:min_index+1] *=-1 s_clock.sum('vd').run(abs) if fl is not None: fl.next('clock correction') fl.plot(s_clock,'.',alpha=0.7) clock_corr = s_clock.argmax('clock_corr').item() plt.axvline(x=clock_corr, alpha=0.5, color='r') s *= np.exp(-1j*clock_corr*s.fromaxis('vd')) s.ft(['ph1','ph2']) if fl is not None: fl.next('after auto-clock correction') fl.image(s.C.setaxis('vd','#')) s.ift('t2') #{{{Applying phase corrections best_shift,max_shift = hermitian_function_test(select_pathway(s.C.mean('vd'),signal_pathway)) logger.info(strm("best shift is", best_shift)) s.setaxis('t2', lambda x: x-best_shift).register_axis({'t2':0}) if fl is not None: fl.next('time domain after hermitian test') fl.image(as_scan_nbr(s)) s.ft('t2') if fl is not None: fl.next('frequency domain after hermitian test') fl.image(as_scan_nbr(s)) #}}} s.ift('t2') s.ift(['ph1','ph2']) phasing = s['t2',0].C phasing.data *= 0 phasing.ft(['ph1','ph2']) phasing['ph1',0]['ph2',1] = 1 phasing.ift(['ph1','ph2']) ph0 = s['t2':0]/phasing ph0 /= abs(ph0) s /= ph0 s.ft(['ph1','ph2']) if fl is not None: fl.next('zeroth order corrected') fl.image(as_scan_nbr(s)) s.ft('t2') if fl is not None: fl.next('phased data -- frequency domain') fl.image(as_scan_nbr(s)) #}}} #}}} if 'ph2' in s.dimlabels: s.reorder(['ph1','ph2','vd','t2']) else: s.reorder(['ph1','vd','t2']) #{{{Correlation Alignment s.ift(['ph1','ph2']) fl.basename='correlation subroutine:' #for the following, should be modified so we can pass a mask, rather than specifying ph1 and ph2, as here opt_shift,sigma = correl_align(s,indirect_dim='vd', ph1_selection=signal_pathway['ph1'],ph2_selection=signal_pathway['ph2'], sigma=10) s.ift('t2') s *= np.exp(-1j*2*pi*opt_shift*s.fromaxis('t2')) s.ft('t2') fl.basename = None if fl is not None: fl.next(r'after correlation, $\varphi$ domain') fl.image(as_scan_nbr(s)) s.ift('t2') s.ft(['ph1','ph2']) if fl is not None: fl.next(r'after correlation') fl.image(as_scan_nbr(s)) if 'ph2' in s.dimlabels: s.reorder(['ph1','ph2','vd','t2']) else: s.reorder(['ph1','vd','t2']) #}}} #{{{FID slice s = s['t2':(0,t_range[-1])] s['t2',0] *= 0.5 s.ft('t2') if fl is not None: fl.next('FID sliced -- frequency domain') fl.image(as_scan_nbr(s)) #}}} #s *= sign data = s.C zero_crossing=abs(select_pathway(s,signal_pathway)).sum('t2').argmin('vd',raw_index=True).item() if flip: s['vd',:zero_crossing] *= -1 # {{{ this is the general way to do it for 2 pulses I don't offhand know a compact method for N pulses error_path = (set(((j,k) for j in range(ndshape(s)['ph1']) for k in range(ndshape(s)['ph2']))) - set(excluded_pathways) - set([(signal_pathway['ph1'],signal_pathway['ph2'])])) error_path = [{'ph1':j,'ph2':k} for j,k in error_path] # }}} #{{{Integrating with associated error from excluded pathways s_int,frq_slice,mystd = integral_w_errors(s,signal_pathway,error_path, fl=fl,return_frq_slice=True) x = s_int.get_error() x[:] /= sqrt(2) logger.info(strm("here is what the error looks like",s_int.get_error())) if fl is not None: fl.next('Integrated data - recovery curve') fl.plot(s_int,'o',capsize=6, label='real') fl.plot(s_int.imag,'o',capsize=6,label='imaginary') #}}} #{{{Fitting Routine x = s_int.fromaxis('vd') f = fitdata(s_int) M0,Mi,R1,vd = symbols("M_0 M_inf R_1 vd") if IR: f.functional_form = Mi - 2*Mi*s_exp(-vd*R1) else: f.functional_form = Mi*(1-(2-s_exp(-W*R1))*s_exp(-vd*R1)) f.fit() logger.info(strm("output:",f.output())) logger.info(strm("latex:",f.latex())) T1 = 1./f.output('R_1') if fl is not None: fl.next('fit',legend=True) fl.plot(s_int,'o', capsize=6, label='actual data') fl.plot(s_int.imag,'o',capsize=6,label='actual imaginary') fl.plot(f.eval(100),label='fit') plt.text(0.75, 0.25, f.latex(), transform=plt.gca().transAxes,size='medium', horizontalalignment='center',verticalalignment='center',color='k', position=(0.33,0.95),fontweight='bold') plt.legend(bbox_to_anchor=(1,1.01),loc='upper left') print("YOUR T1 IS:",T1) return T1 #}}} if ILT: T1 = nddata(np.logspace(-3,3,150),'T1') plot_Lcurve = False if plot_Lcurve: def vec_lcurve(l): return s.C.nnls('vd',T1,lambda x,y: 1.0-2*np.exp(-x/y), l=l) x=vec_lcurve(l) x_norm = x.get_prop('nnls_residual').data r_norm = x.C.run(np.linalg.norm,'T1').data with figlist_var() as fl: fl.next('L-Curve') plt.figure(figsize=(15,10)) fl.plot(np.log10(r_norm[:,0]),np.log10(x_norm[:,0]),'.') annotate_plot = True show_lambda = True if annotate_plot: if show_lambda: for j,this_l in enumerate(l): plt.annotate('%0.3f'%this_l, (np.log10(r_norm[j,0]),np.log10(x_norm[j,0])), ha='left',va='bottom',rotation=45) else: for j,this_l in enumerate(l): plt.annotate('%d'%j, (np.log10(r_norm[j,0]),np.log10(x_norm[j,0])), ha='left',va='bottom',rotation=45) d_2d = s*nddata(r_[1,1,1],r'\Omega') offset = s.get_prop('proc')['OFFSET'] o1 = s.get_prop('acq')['O1'] sfo1 = s.get_prop('acq')['BF1'] s.setaxis('t2',lambda x: x+o1) s.setaxis('t2',lambda x: x/(sfo1)).set_units('t2','ppm') s.set_prop('x_inverted',True) soln = s.real.C.nnls('vd',T1, lambda x,y: 1.0-2.*np.exp(-x/y),l=this_l) soln.reorder('t2',first=False) soln.rename('T1','log(T1)') soln.setaxis('log(T1)',np.log10(T1.data)) fl.next('w=3') fl.image(soln) logger.info(strm("SAVING FILE")) if save_npz: np.savez(thisfile+'_'+str(nodename)+'_ILT_inv', data=soln.data, logT1=soln.getaxis('log(T1)'), t2=soln.getaxis('t2')) logger.info(strm("FILE SAVED")) T1_values[i] = T1 ```
{ "source": "jmfranck/pyDiffTools", "score": 3 }
#### File: pyDiffTools/pydifftools/match_spaces.py ```python from difflib import SequenceMatcher def run(arguments): with open(arguments[0], encoding='utf-8') as fp: text1 = fp.read() #text1 = text1.decode('utf-8') fp = open(arguments[1], encoding='utf-8') text2 = fp.read() fp.close() #text2 = text2.decode('utf-8') utf_char = '\u00a0' # unicode no break space text2 = text2.replace(utf_char,' ')# replace it utf_char = '\u2004' # three-per-em space text2 = text2.replace(utf_char,' ')# replace it def parse_whitespace(s): retval = [] white_or_not = [] current_string = '' is_whitespace = True for j in s: if j in [' ','\t','\r','\n']: if not is_whitespace: retval.append(current_string) white_or_not.append(False)# I have switched to whitespace, I was not whitespace current_string = j else: current_string += j is_whitespace = True else: if is_whitespace and len(retval) > 0: retval.append(current_string) if current_string.count('\n')>1: white_or_not.append(False)# double newline is not "whitespace" else: white_or_not.append(True) current_string = j else: current_string += j is_whitespace = False retval.append(current_string) white_or_not.append(is_whitespace) if is_whitespace and current_string.count('\n')>1: white_or_not.append(False)# double newline is not "whitespace" else: white_or_not.append(is_whitespace) return retval,white_or_not #print zip(*tuple(parse_whitespace(text1))) #print zip(*tuple(parse_whitespace(text2))) tokens,iswhitespace = parse_whitespace(text1) def generate_word_lists(input_tokens,input_iswhitespace): retval_words = [] retval_whitespace = [] retval_isdoublenewline = [] j = 0 # go through and add whitespace and words, always in pairs while j < len(input_tokens): if input_iswhitespace[j]: # make it so the whitespace always comes "after" the word retval_words.append('') retval_whitespace.append(input_tokens[j]) j += 1 elif j == len(input_tokens) - 1: # this is the last one, so just add it retval_words.append(input_tokens[j]) retval_whitespace.append('') retval_isdoublenewline.append(False) else:# it's a word retval_words.append(input_tokens[j]) if input_iswhitespace[j+1]: retval_whitespace.append(input_tokens[j+1]) j += 2 else: # this can happen if it's a newline combo or followed by a newline combo #print repr(input_tokens[j]),'is not followed by whitespace but by',repr(input_tokens[j+1]) retval_whitespace.append('') j += 1 if retval_words[-1].count('\n') > 1:# double newline retval_isdoublenewline.append(True) else: retval_isdoublenewline.append(False) return retval_words,retval_whitespace,retval_isdoublenewline text1_words,text1_whitespace,text1_isdoublenewline = generate_word_lists(tokens,iswhitespace) #print "-------------------" #print "align words only with words and whitespace" #print zip(text1_words, text1_words_and_whitespace) #print "-------------------" tokens,iswhitespace = parse_whitespace(text2) text2_words,text2_whitespace,text2_isdoublenewline = generate_word_lists(tokens,iswhitespace) s = SequenceMatcher(None,text1_words,text2_words) diffs = s.get_opcodes() #print diffs final_text = '' newline_debt = 0 last_indent = '' for j in diffs: if j[0] == 'equal': temp_addition = text1_words[j[1]:j[2]] whitespace = text1_whitespace[j[1]:j[2]] for k in range(len(temp_addition)): final_text += temp_addition[k] + whitespace[k] idx = whitespace[k].find('\n') if idx > -1: last_indent = whitespace[k][idx+1:] if j[2] - j[1] > 4:# if five or more words have matched, forgive my newline debt newline_debt = 0 elif j[0] == 'delete': if sum([thisstr.count('\n') for thisstr in text1_whitespace[j[1]:j[2]]]) > 0: newline_debt += 1 #print "delete -- newline debt is now",newline_debt elif j[0] == 'replace': print("newline debt",newline_debt) newline_debt += sum([thisstr.count('\n') for thisstr in text1_whitespace[j[1]:j[2]]]) #print "replace -- newline debt is now",newline_debt print("about to replace",repr(text1_words[j[1]:j[2]]).encode('unicode-escape')) print(" with",repr(text2_words[j[3]:j[4]]).encode('unicode-escape')) print(" whitepace from ",repr(text1_whitespace[j[1]:j[2]]).encode('unicode-escape')) oldver_whitespace = text1_whitespace[j[1]:j[2]] print(" whitepace to ",repr(text2_whitespace[j[3]:j[4]]).encode('unicode-escape')) print(" newline debt",newline_debt) temp_addition = text2_words[j[3]:j[4]] #{{{ check to see if I am adding any double newlines -- if I am use the original version temp_isdoublenewline = text2_isdoublenewline[j[3]:j[4]] tstdbl_i = 0 tstdbl_j = 0 while tstdbl_i < len(temp_isdoublenewline): if temp_isdoublenewline[tstdbl_i]: matched = False while tstdbl_j < len(text1_isdoublenewline[j[1]:j[2]]) and not matched: if text1_isdoublenewline[j[1]:j[2]][tstdbl_j]: temp_addition[tstdbl_i] = text1_words[j[1]:j[2]][tstdbl_j] matched = True tstdbl_j += 1 tstdbl_i += 1 #}}} newver_whitespace = text2_whitespace[j[3]:j[4]] whitespace = [' ' if len(x) > 0 else '' for x in newver_whitespace]# sometimes, the "whitespace" can be nothing if newline_debt > 0: for k in range(len(temp_addition)): if newver_whitespace[k].count('\n') > 0: whitespace[k] = '\n'+last_indent newline_debt -= whitespace[k].count('\n')# shouldn't be more than one but doesn't hurt if newline_debt < 1: break #if I can't make up for the whitespace with the new text, but it where it went in the old text for k in range(min(len(oldver_whitespace),len(whitespace))): if oldver_whitespace[k].count('\n') > 0: whitespace[k] = oldver_whitespace[k] newline_debt -= whitespace[k].count('\n')# shouldn't be more than one but doesn't hurt if newline_debt < 1: break print(" whitepace became",repr(whitespace)) for k in range(len(temp_addition)): final_text += temp_addition[k] + whitespace[k] idx = whitespace[k].find('\n') if idx > -1: last_indent = whitespace[k][idx+1:] elif j[0] == 'insert': temp_addition = text2_words[j[3]:j[4]] newver_whitespace = text2_whitespace[j[3]:j[4]] whitespace = [' ' if len(x) > 0 else '' for x in newver_whitespace]# sometimes, the "whitespace" can be nothing if newline_debt > 0: for k in range(len(temp_addition)): if newver_whitespace[k].count('\n') > 0: whitespace[k] = '\n'+last_indent newline_debt -= whitespace[k].count('\n')# shouldn't be more than one but doesn't hurt if newline_debt < 1: break for k in range(len(temp_addition)): final_text += temp_addition[k] + whitespace[k] idx = whitespace[k].find('\n') if idx > -1: last_indent = whitespace[k][idx+1:] else: raise ValueError("unknown opcode"+j[0]) fp = open(arguments[1],'w',encoding='utf-8') fp.write(final_text) fp.close() ``` #### File: pyDiffTools/pydifftools/unseparate_comments.py ```python import re import sys import codecs sys.stdout = codecs.getwriter("utf-8")(sys.stdout.detach()) from .comment_functions import generate_alphabetnumber,matchingbrackets def tex_unsepcomments(texfile): if texfile[-12:] == '_sepcomm.tex': base_filename = texfile[:-12] print("yes, a _sepcomm.tex file called",base_filename,'.tex') elif texfile[-4:] == '.tex': base_filename = texfile[:-4] print("yes, a .tex file called",base_filename,'.tex') else: raise RuntimeError("not a tex file??") with open(base_filename+'_comments.tex','r',encoding='utf-8') as fp: content = fp.read() #comment_def_re = re.compile(r"\\newcommand\{\%s[A-Z]+") names = ["pdfcommentAG", "pdfcommentAB", "pdfcommentJF", "pdfcommentG"] list_of_names = [] list_of_commands = [] list_of_content = [] for j in range(0,len(names)): comment_def_re = re.compile(r"\\newcommand\{\\(%s[a-z]+)\}\{"%(names[j])) for m in comment_def_re.finditer(content): print("found %d:%d"%(m.start(),m.end()),m.groups()[0]) print("text:",content[m.start():m.end()]) a,b = matchingbrackets(content,m.end()-1,'{') print("found from %d to %d"%(a,b)) print("-----content------") print(content[a:b+1]) print("------------------") list_of_names.append(names[j]) list_of_commands.append(m.groups()[0]) list_of_content.append(content[a+1:b]) with open(texfile,'r', encoding='utf-8') as fp: content = fp.read() for j in range(0,len(list_of_names)): a = content.find("\\%s"%list_of_commands[j]) if a<0: raise RuntimeError("couldn't find command \\%s"%list_of_commands[j]) else: starthighlight,b = matchingbrackets(content,a,'{') highlight = content[starthighlight+1:b] print("found command \\%s with highlight {%s} and going to add content {%s}"%(list_of_commands[j],highlight,list_of_content[j])) if len(highlight) > 0: content = content[:a] + '\\%s[%s]{%s}'%(list_of_names[j],highlight,list_of_content[j]) + content[b+1:] else: content = content[:a] + '\\%s{%s}'%(list_of_names[j],list_of_content[j]) + content[b+1:] content = re.sub('\\\\include{%s_comments}\n'%base_filename,'',content) content = re.sub('%%NUMBER OF COMMENTS [0-9]+ *\n','',content) with open(base_filename+'.tex','w',encoding='utf-8') as fp: fp.write(content) print("wrote output to",base_filename+'.tex') ```
{ "source": "jmftrindade/6.830-project", "score": 2 }
#### File: 6.830-project/FD_CFD_extraction-master/tane.py ```python from pandas import * from collections import defaultdict import numpy as NP import sys def list_duplicates(seq): tally = defaultdict(list) for i,item in enumerate(seq): tally[item].append(i) return ((key,locs) for key,locs in tally.items() if len(locs)>0) def findCplus(x): # this computes the Cplus of x as an intersection of smaller Cplus sets global dictCplus thesets=[] for a in x: if x.replace(a,'') in dictCplus.keys(): temp = dictCplus[x.replace(a,'')] else: temp=findCplus(x.replace(a,'')) # compute C+(X\{A}) for each A at a time #dictCplus[x.replace(a,'')] = temp thesets.insert(0, set(temp)) if list(set.intersection(*thesets)) == []: cplus = [] else: cplus = list(set.intersection(*thesets)) # compute the intersection in line 2 of pseudocode return cplus def compute_dependencies(level, listofcols): global dictCplus global finallistofFDs global listofcolumns for x in level: thesets=[] for a in x: if x.replace(a,'') in dictCplus.keys(): temp = dictCplus[x.replace(a,'')] else: temp=computeCplus(x.replace(a,'')) # compute C+(X\{A}) for each A at a time dictCplus[x.replace(a,'')] = temp thesets.insert(0, set(temp)) if list(set.intersection(*thesets)) == []: dictCplus[x] = [] else: dictCplus[x] = list(set.intersection(*thesets)) # compute the intersection in line 2 of pseudocode for x in level: for a in x: if a in dictCplus[x]: #if x=='BCJ': print "dictCplus['BCJ'] = ", dictCplus[x] if validfd(x.replace(a,''), a): # line 5 finallistofFDs.append([x.replace(a,''), a]) # line 6 dictCplus[x].remove(a) # line 7 listofcols=listofcolumns[:] for j in x: # this loop computes R\X if j in listofcols: listofcols.remove(j) for b in listofcols: # this loop removes each b in R\X from C+(X) if b in dictCplus[x]: dictCplus[x].remove(b) def computeCplus(x): # this computes the Cplus from the first definition in section 3.2.2 of TANE paper. output should be a list of single attributes global listofcolumns listofcols = listofcolumns[:] if x=='': return listofcols # because C+{phi} = R cplus = [] for a in listofcols: for b in x: temp = x.replace(a,'') temp = temp.replace(b,'') if not validfd(temp, b): cplus.append(a) return cplus def validfd(y,z): if y=='' or z=='': return False ey = computeE(y) eyz = computeE(y+z) if ey == eyz : return True else: return False def computeE(x): global totaltuples global dictpartitions doublenorm = 0 for i in dictpartitions[''.join(sorted(x))]: doublenorm = doublenorm + len(i) e = (doublenorm-len(dictpartitions[''.join(sorted(x))]))/float(totaltuples) return e def check_superkey(x): global dictpartitions if ((dictpartitions[x] == [[]]) or (dictpartitions[x] == [])): return True else: return False def prune(level): global dictCplus global finallistofFDs stufftobedeletedfromlevel = [] for x in level: # line 1 if dictCplus[x]==[]: # line 2 level.remove(x) # line 3 if check_superkey(x): # line 4 ### should this check for a key, instead of super key??? Not sure. temp = dictCplus[x][:] for i in x: # this loop computes C+(X) \ X if i in temp: temp.remove(i) for a in temp: # line 5 thesets=[] for b in x: if not( ''.join(sorted((x+a).replace(b,''))) in dictCplus.keys()): dictCplus[''.join(sorted((x+a).replace(b,'')))] = findCplus(''.join(sorted((x+a).replace(b,'')))) thesets.insert(0,set(dictCplus[''.join(sorted((x+a).replace(b,'')))])) if a in list(set.intersection(*thesets)): # line 6 finallistofFDs.append([x, a]) # line 7 #print "adding key FD: ", [x,a] if x in level: stufftobedeletedfromlevel.append(x) # line 8 for item in stufftobedeletedfromlevel: level.remove(item) def generate_next_level(level): nextlevel=[] for i in range(0,len(level)): # pick an element for j in range(i+1, len(level)): # compare it to every element that comes after it. if ((not level[i]==level[j]) and level[i][0:-1]==level[j][0:-1]): # i.e. line 2 and 3 x = level[i]+level[j][-1] #line 4 flag = True for a in x: # this entire for loop is for the 'for all' check in line 5 if not(x.replace(a, '') in level): flag=False if flag==True: nextlevel.append(x) stripped_product(x, level[i] , level[j] ) # compute partition of x as pi_y * pi_z (where y is level[i] and z is level[j]) return nextlevel def stripped_product(x,y,z): global dictpartitions global tableT tableS = ['']*len(tableT) partitionY = dictpartitions[''.join(sorted(y))] # partitionY is a list of lists, each list is an equivalence class partitionZ = dictpartitions[''.join(sorted(z))] partitionofx = [] # line 1 for i in range(len(partitionY)): # line 2 for t in partitionY[i]: # line 3 tableT[t] = i tableS[i]='' #line 4 for i in range(len(partitionZ)): # line 5 for t in partitionZ[i]: # line 6 if ( not (tableT[t] == 'NULL')): # line 7 tableS[tableT[t]] = sorted(list(set(tableS[tableT[t]]) | set([t]))) for t in partitionZ[i]: # line 8 if (not (tableT[t] == 'NULL')) and len(tableS[tableT[t]])>= 2 : # line 9 partitionofx.append(tableS[tableT[t]]) if not (tableT[t] == 'NULL'): tableS[tableT[t]]='' # line 10 for i in range(len(partitionY)): # line 11 for t in partitionY[i]: # line 12 tableT[t]='NULL' dictpartitions[''.join(sorted(x))] = partitionofx def computeSingletonPartitions(listofcols): global data2D global dictpartitions for a in listofcols: dictpartitions[a]=[] for element in list_duplicates(data2D[a].tolist()): # list_duplicates returns 2-tuples, where 1st is a value, and 2nd is a list of indices where that value occurs if len(element[1])>1: # ignore singleton equivalence classes dictpartitions[a].append(element[1]) #------------------------------------------------------- START --------------------------------------------------- if len(sys.argv) > 1: infile=str(sys.argv[1]) # this would be e.g. "testdata.csv" data2D = read_csv(infile) totaltuples = len(data2D.index) listofcolumns = list(data2D.columns.values) # returns ['A', 'B', 'C', 'D', .....] tableT = ['NULL']*totaltuples # this is for the table T used in the function stripped_product L0 = [] dictCplus = {'NULL': listofcolumns} dictpartitions = {} # maps 'stringslikethis' to a list of lists, each of which contains indices computeSingletonPartitions(listofcolumns) finallistofFDs=[] #print dictCplus['NULL'] L1=listofcolumns[:] # L1 is a copy of listofcolumns l=1 L = [L0,L1] while (not (L[l] == [])): compute_dependencies(L[l],listofcolumns[:]) prune(L[l]) temp = generate_next_level(L[l]) L.append(temp) l=l+1 print "List of all FDs: " , finallistofFDs print "Total number of FDs found: ", len(finallistofFDs) ``` #### File: jmftrindade/6.830-project/statistics_plots.py ```python import argparse import pandas as pd import missingno as msno import matplotlib.pyplot as plt import seaborn as sns # For prettier plots. from scipy.cluster import hierarchy as hc import numpy as np def plot_histogram_and_correlation_dendrogram(csv_filename): df = pd.read_csv(csv_filename) # Per column stats (numerical columns only). print df.describe(include='all').transpose() # Histograms for all columns. df.hist() # Correlation dendrogram. corr = 1 - df.corr() corr_condensed = hc.distance.squareform(corr) z = hc.linkage(corr_condensed, method='average') fig = plt.figure(figsize=(20,12)) dendrogram = hc.dendrogram(z, labels=corr.columns, link_color_func=lambda c: 'black') plt.show() # Only use this for datasets with missing values. if df.isnull().values.any(): msno.matrix(df) msno.dendrogram(df) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Plots histograms and correlation dendrogram for a given dataset.") parser.add_argument('-i', '--input_csv', help='Relative path of input CSV filename.', required=True) args = parser.parse_args() plot_histogram_and_correlation_dendrogram(args.input_csv) ``` #### File: 6.830-project/willies_keras_example/nn.py ```python import os import time import numpy as np from keras.models import Model from keras.utils.np_utils import to_categorical from keras.layers import Dense, Input label_names = ['positive', 'negative', 'neutral'] label2ind = { label:ind for ind,label in enumerate(label_names) } def main(): # Get data from notes train_tweets = [] train_labels = [] train_file = os.path.join(os.path.dirname(os.path.abspath(__file__)),'twitter-train-gold-B.tsv') with open(train_file, 'r') as f: for line in f.readlines(): tid,uid,label,text = line.strip().split('\t') if text == 'Not Available': continue #print 'tid: [%s]' % tid #print 'uid: [%s]' % uid #print 'label: [%s]' % label #print 'text: [%s]' % text #print train_tweets.append(text) train_labels.append(label) # vocabulary of all words in training set vocab = list(set(' '.join(train_tweets).split())) # Data -> features train_X = extract_features(train_tweets, vocab) num_samples,input_dim = train_X.shape # e.g. 'positive' -> [1 0 0] num_classes = len(label_names) train_Y = np.array( [label2ind[label] for label in train_labels] ) Y_onehots = to_categorical(train_Y, nb_classes=num_classes) # Fit model (AKA learn model parameters) classifier = create_model(input_dim, 300, 200, num_classes) classifier.fit(train_X,Y_onehots,batch_size=128,nb_epoch=10,verbose=1) #classifier.save_weights('tmp_keras_weights') #classifier.load_weights('tmp_keras_weights') # Predict on test data test_file = os.path.join(os.path.dirname(os.path.abspath(__file__)),'twitter-test-gold-B.tsv') test_tweets = [] test_labels = [] with open(test_file, 'r') as f: for line in f.readlines(): tid,uid,label,text = line.strip().split('\t') if text == 'Not Available': continue test_tweets.append(text) test_labels.append(label) test_X = extract_features(test_tweets, vocab) test_Y = np.array( [label2ind[label] for label in test_labels] ) test_Y_onehots = to_categorical(test_Y, nb_classes=num_classes) pred_prob = classifier.predict(test_X, batch_size=128, verbose=1) test_predictions = pred_prob.argmax(axis=1) # display a couple results print print 'references: ', test_Y[:5] print 'predictions: ', test_predictions[:5] print # compute confusion matrix (rows=predictions, columns=reference) confusion = np.zeros((3,3)) for pred,ref in zip(test_predictions,test_Y): confusion[pred][ref] += 1 print ' '.join(label_names) print confusion print # compute P, R, and F1 of each class for label in label_names: ind = label2ind[label] tp = confusion[ind,ind] tp_plus_fn = confusion[:,ind].sum() tp_plus_fp = confusion[ind,:].sum() precision = float(tp)/tp_plus_fp recall = float(tp)/tp_plus_fn f1 = (2*precision*recall) / (precision+recall+1e-9) print label print '\tprecision: ', precision print '\trecall: ', recall print '\tf1: ', f1 print def extract_features(tweets, vocab): word2ind = { w:i for i,w in enumerate(vocab) } V = len(vocab) X = np.zeros((len(tweets),V)) for i,tweet in enumerate(tweets): for word in tweet.split(): if word not in word2ind: continue dim = word2ind[word] featureval = 1 # indicate this feature is "on" X[i,dim] = featureval return X def create_model(input_dim, embedding_dim, hidden_dim, output_dim): bow = Input(shape=(input_dim,)) embeddings = Dense(output_dim=embedding_dim, activation='sigmoid')(bow) hidden = Dense(output_dim=hidden_dim, activation='sigmoid')(embeddings) prob = Dense(output_dim=output_dim, activation='softmax')(hidden) model = Model(input=bow, output=prob) print print 'compiling model' start = time.clock() model.compile(loss='categorical_crossentropy', optimizer='adam') #print '\tWARNING: skipping compilation' end = time.clock() print 'finished compiling: ', (end-start) print return model if __name__ == '__main__': main() ```
{ "source": "jmftrindade/file_access_monitor", "score": 3 }
#### File: file_access_monitor/scripts/twitter.py ```python import os import sys import time import requests from py2neo import Graph, Node, Relationship graph = Graph() graph.run("CREATE CONSTRAINT ON (u:User) ASSERT u.username IS UNIQUE") graph.run("CREATE CONSTRAINT ON (t:Tweet) ASSERT t.id IS UNIQUE") graph.run("CREATE CONSTRAINT ON (h:Hashtag) ASSERT h.name IS UNIQUE") TWITTER_BEARER = os.environ["TWITTER_BEARER"] headers = dict(accept="application/json", Authorization="Bearer " + TWITTER_BEARER) payload = dict( count=100, result_type="recent", lang="en", q=sys.argv[1] ) base_url = "https://api.twitter.com/1.1/search/tweets.json?" def find_tweets(since_id): payload["since_id"] = since_id url = base_url + "q={q}&count={count}&result_type={result_type}&lang={lang}&since_id={since_id}".format(**payload) r = requests.get(url, headers=headers) tweets = r.json()["statuses"] return tweets def upload_tweets(tweets): for t in tweets: u = t["user"] e = t["entities"] tweet = Node("Tweet", id=t["id"]) graph.merge(tweet) tweet["text"] = t["text"] tweet.push() user = Node("User", username=u["screen_name"]) graph.merge(user) graph.merge(Relationship(user, "POSTS", tweet)) for h in e.get("hashtags", []): hashtag = Node("Hashtag", name=h["text"].lower()) graph.merge(hashtag) graph.merge(Relationship(hashtag, "TAGS", tweet)) for m in e.get('user_mentions', []): mention = Node("User", username=m["screen_name"]) graph.merge(mention) graph.merge(Relationship(tweet, "MENTIONS", mention)) reply = t.get("in_reply_to_status_id") if reply: reply_tweet = Node("Tweet", id=reply) graph.merge(reply_tweet) graph.merge(Relationship(tweet, "REPLY_TO", reply_tweet)) ret = t.get("retweeted_status", {}).get("id") if ret: retweet = Node("Tweet", id=ret) graph.merge(retweet) graph.merge(Relationship(tweet, "RETWEETS", retweet)) since_id = -1 while True: try: tweets = find_tweets(since_id=since_id) if not tweets: print("No tweets found.") time.sleep(60) continue since_id = tweets[0].get("id") upload_tweets(tweets) print("{} tweets uploaded!".format(len(tweets))) time.sleep(60) except Exception as e: print(e) time.sleep(60) continue ```
{ "source": "jmftrindade/miniplaces_challenge", "score": 3 }
#### File: slim/datasets/miniplaces.py ```python import tensorflow as tf import os slim = tf.contrib.slim def get_split(split_name, dataset_dir, file_pattern=None, reader=None): reader = tf.TFRecordReader file_pattern = os.path.join(dataset_dir, 'miniplaces_%s_*.tfrecord' % split_name) keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/format': tf.FixedLenFeature((), tf.string, default_value='jpg'), 'image/class/label': tf.FixedLenFeature( [], tf.int64, default_value=tf.zeros([], dtype=tf.int64)), } items_to_handlers = { 'image': slim.tfexample_decoder.Image(), 'label': slim.tfexample_decoder.Tensor('image/class/label'), } decoder = slim.tfexample_decoder.TFExampleDecoder( keys_to_features, items_to_handlers) num_samples = 100000 if split_name == 'train' else 10000 print num_samples return slim.dataset.Dataset(data_sources=file_pattern, reader=reader, decoder=decoder, num_samples=num_samples, items_to_descriptions={'image': 'A color image of varying size.','label': 'A single integer between 0 and 4'}, num_classes=100, labels_to_names=None) ``` #### File: miniplaces_challenge/weighted_majority/weighted_majority.py ```python import argparse import glob import itertools import math import os from pprint import pprint import sys def get_network_name(filename): # XXX: Network name assumed to be encoded as net_<file_suffix>.txt basename = os.path.splitext(os.path.basename(filename))[0] return basename.split('_')[0] def process_scores_file(filename, class_scores): net = get_network_name(filename) with open(filename) as f: for line in f: # <class> <#t1_guesses> <t1_score> <#t5_guesses> <t5_score> tokens = line.rstrip().split(' ') if len(tokens) < 4: print 'Exiting: not enough class scores in "%s"' % (filename) sys.exit(-1) class_name = int(tokens[0]) top1_score = float(tokens[2]) top5_score = float(tokens[4]) if net not in class_scores: class_scores[net] = {} if class_name not in class_scores[net]: class_scores[net][class_name] = {} class_scores[net][class_name]['top1'] = top1_score class_scores[net][class_name]['top5'] = top5_score return class_scores def process_class_accuracies_file(filename, class_accuracies): net = get_network_name(filename) with open(filename) as f: for line in f: # <class> <t1_acc> <t5_acc> tokens = line.rstrip().split(' ') if len(tokens) < 3: print 'Exiting: not enough class accuracies in "%s"' % (filename) sys.exit(-1) class_name = int(tokens[0]) top1_acc = float(tokens[1]) top5_acc = float(tokens[2]) if net not in class_accuracies: class_accuracies[net] = {} if class_name not in class_accuracies[net]: class_accuracies[net][class_name] = {} class_accuracies[net][class_name]['top1'] = top1_acc class_accuracies[net][class_name]['top5'] = top5_acc return class_accuracies def process_predictions_file(model_weights, predictions_filename, votes, class_scores=None, use_top1_class_scores=None, use_top5_class_scores=None, class_accuracies=None, use_top1_class_accuracies=None, use_top5_class_accuracies=None, decay_type=None): net = get_network_name(predictions_filename) if net not in model_weights: print 'Warning: no majority weight specified for "%s"; returning' % net return votes with open(predictions_filename) as f: for line in f: tokens = line.rstrip().split(' ') # Need at least the image and 1 prediction. if len(tokens) <= 1: print 'Exiting: not enough predictions in "%s".' % ( predictions_filename) sys.exit(-1) image = tokens[0] num_preds = len(tokens) - 1 # first entry is the image name for i in xrange(1, num_preds + 1): prediction = int(tokens[i]) if image not in votes: votes[image] = {} if prediction not in votes[image]: votes[image][prediction] = 0.0 # Default decay is exponential. decay_factor = 1.0 # Only first 5 predictions count. if decay_type == 'constant_first_5': decay_factor = 1.0 if i <= 5 else 0.0 # Only first 10 predictions count. if decay_type == 'constant_first_10': decay_factor = 1.0 if i <= 10 else 0.0 # Linear decay for prediction ranks. elif decay_type == 'linear': decay_factor = num_preds - i # Exponential decay for prediction ranks (default setting). else: decay_factor = math.exp(float(-i) / float(5)) class_score = 1.0 if class_scores and net in class_scores: if use_top1_class_scores: class_score *= class_scores[net][prediction]['top1'] if use_top5_class_scores: class_score *= class_scores[net][prediction]['top5'] class_accuracy = 1.0 if class_accuracies and net in class_accuracies: if use_top1_class_accuracies: class_accuracy *= class_accuracies[ net][prediction]['top1'] if use_top5_class_accuracies: class_accuracy *= class_accuracies[ net][prediction]['top5'] votes[image][prediction] += round(float(model_weights[net] * class_score * class_accuracy * decay_factor), 4) return votes def main(**kwargs): # models = ['alexnet'] models = ['alexnet', 'alexnet02', 'alexnet05', 'resnet', 'inception'] weights = [1.0] output_predictions = False # Only output predictions if we're not dealing with validation data set. if kwargs.get('labels_input_filename') is None: output_predictions = True if kwargs.get('grid_search'): weights = [0.0, 0.7, 1.0] # Remove grid_search from kwargs before passing them along. kw = {k: v for k, v in kwargs.items() if k is not 'grid_search'} grid_search(models, weights, output_predictions, **kw) def has_equal_values(d): s = set(k for k, v in d.items() if d.values().count(v) == len(d.items())) return len(d) == len(s) def grid_search(models, weights, output_predictions, **kwargs): products = [] for m in models: products.append(list(itertools.product([m], weights))) for i in itertools.product(*products): model_weights = dict(i) # Skip configurations with equal weights, except when a weight is ~1.0. w = model_weights[model_weights.keys()[0]] if has_equal_values(model_weights) and w < 0.9: continue compute_majority_predictions(model_weights, output_predictions=output_predictions, **kwargs) def compute_majority_predictions(model_weights, input_dir, labels_input_filename, use_top1_class_scores, use_top5_class_scores, use_top1_class_accuracies, use_top5_class_accuracies, decay_type, output_predictions): config = dict(locals().items()) pprint(config) correct_answers = {} should_compute_acc = False if labels_input_filename is not None: should_compute_acc = True with open(labels_input_filename) as labels: for line in labels: line = line.rstrip().split() correct_answers[line[0]] = int(line[1]) # Only retrieve stuff for models that we care about. models_prefix = (input_dir + '/[' + '|'.join([m for m in model_weights.iterkeys()]) + ']' + '*') # Retrieve class scores if available. class_scores = {} if use_top1_class_scores or use_top5_class_scores: pattern = models_prefix + '_scores.txt' for scores_filename in glob.glob(pattern): class_scores = process_scores_file(scores_filename, class_scores) if len(class_scores) == 0: print 'Exiting: no %s files found.' % pattern sys.exit(-1) # Retrieve class accuracies if available. class_accuracies = {} if use_top1_class_accuracies or use_top5_class_accuracies: pattern = models_prefix + '_class_accuracies.txt' for accuracies_filename in glob.glob(pattern): class_accuracies = process_class_accuracies_file(accuracies_filename, class_accuracies) if len(class_accuracies) == 0: print 'Exiting: no %s files found.' % pattern sys.exit(-1) # XXX: Filename actually matters, yuck >.< votes = {} pattern = models_prefix + '_predictions.txt' for predictions_filename in glob.glob(pattern): votes = process_predictions_file(model_weights, predictions_filename, votes, class_scores, use_top1_class_scores, use_top5_class_scores, class_accuracies, use_top1_class_accuracies, use_top5_class_accuracies, decay_type) if len(votes) == 0: print 'Exiting: no %s files found.' % pattern sys.exit(-1) top_1_acc = 0 top_5_acc = 0 # Iterate over weighted majority votes, printing top 5 results to file. for image in sorted(votes.iterkeys()): image_votes = votes[image] preds = sorted(image_votes.items(), key=lambda x: (-x[1], x[0])) # Output top 5 predictions. top_preds = [] for i in xrange(5): top_preds.append(int(preds[i][0])) # Compute accuracy if class labels available. if should_compute_acc: if correct_answers[image] == top_preds[0]: top_1_acc += 1 if correct_answers[image] in top_preds[:5]: top_5_acc += 1 if output_predictions: print '%s %s' % (image, ' '.join(map(str, top_preds))) if should_compute_acc: print 'top-1 acc: %s' % (float(top_1_acc) / len(votes)) print 'top-5 acc: %s' % (float(top_5_acc) / len(votes)) print 'done.\n' if __name__ == "__main__": parser = argparse.ArgumentParser(description='Combine predictions using' ' weighted majority voting (single pass).') parser.add_argument('-i', '--input_dir', help='Relative path of directory with input files.', required=True) parser.add_argument('-lf', '--labels_input_filename', help='Relative path of input file with class labels.', required=False) parser.add_argument('--use-top1-class-scores', dest='use_top1_class_scores', action='store_true') parser.set_defaults(use_top1_class_scores=False) parser.add_argument('--use-top5-class-scores', dest='use_top5_class_scores', action='store_true') parser.set_defaults(use_top5_class_scores=False) parser.add_argument('--use-top1-class-accuracies', dest='use_top1_class_accuracies', action='store_true') parser.set_defaults(use_top1_class_accuracies=False) parser.add_argument('--use-top5-class-accuracies', dest='use_top5_class_accuracies', action='store_true') parser.set_defaults(use_top5_class_accuracies=False) parser.add_argument('--decay-type', choices=['constant_first_5', 'constant_first_10', 'linear', 'exponential'], dest='decay_type', action='store', help='Type of decay function for prediction ranks.') parser.add_argument('--no-grid-search', dest='grid_search', action='store_false') parser.set_defaults(grid_search=True) args = parser.parse_args() main(**vars(args)) ```
{ "source": "jmfuchs/aws-remediation-workflow", "score": 2 }
#### File: jmfuchs/aws-remediation-workflow/remediation.py ```python from __future__ import print_function from botocore.exceptions import ClientError import boto3 import os import json import datetime import uuid import time import detect # Global Variables channel = '#%s' % os.environ['SLACK_CHANNEL'] token_bot = '%s' % os.environ['SLACK_TOKEN_NAME'] def EC2MaliciousIPCaller(event, context): # Log Event print("log -- Event: %s " % json.dumps(event)) # Set Event Variables gd_vpc_id = event["detail"]["resource"]["instanceDetails"]["networkInterfaces"][0]["vpcId"] gd_instance_id = event["detail"]["resource"]["instanceDetails"]["instanceId"] # Set Initial Remediation Metadata event['remediation'] = {} event['remediation']['success'] = False event['remediation']['title'] = "GuardDog was unable to remediate the Instance" event['remediation']['description'] = "Auto remediation was unsuccessful. Please review the finding and remediate manaully." # Create Forensics Security Group ec2 = boto3.client('ec2') gd_sg_name = 'GuardDuty-Remediation-Workflow-Isolation' try: try: # Create Isolation Security Group gd_sg = ec2.create_security_group( GroupName=gd_sg_name, Description='This Security Group is used to isolate potentially compromised instances.', VpcId=gd_vpc_id ) gd_sg_id = gd_sg['GroupId'] # Remove Default Egress Rule gd_sg = ec2.describe_security_groups( GroupIds=[ gd_sg_id, ] ) ec2.revoke_security_group_egress( GroupId=gd_sg_id, IpPermissions=gd_sg['SecurityGroups'][0]['IpPermissionsEgress'] ) ec2.authorize_security_group_ingress( FromPort=22, CidrIp='10.0.0.0/24', GroupId=gd_sg_id, IpProtocol='tcp', ToPort=22, ) except ClientError as e: print(e) print("log -- Isolation Security Group already exists.") # Get Security Group ID gd_sg = ec2.describe_security_groups( Filters=[ { 'Name': 'vpc-id', 'Values': [ gd_vpc_id, ] }, { 'Name': 'group-name', 'Values': [ gd_sg_name, ] } ] ) gd_sg_id = gd_sg['SecurityGroups'][0]['GroupId'] # Remove existing Security Groups and Attach the Isolation Security Group ec2 = boto3.resource('ec2') gd_instance = ec2.Instance(gd_instance_id) print("log -- %s, %s" % (gd_instance.id, gd_instance.instance_type)) # Get all Security Groups attached to the Instance all_sg_ids = [sg['GroupId'] for sg in gd_instance.security_groups] # Isolate Instance gd_instance.modify_attribute(Groups=[gd_sg_id]) # Set Remediation Metadata event['remediation']['success'] = True event['remediation']['title'] = "GuardDog Successfully Isolated Instance ID: %s" % gd_instance.id event['remediation']['description'] = "Please follow your necessary forensic procedures." except ClientError as e: print(e) print("log -- Error Auto-Remediating Finding") return event def EC2BruteForce(event, context): # Log Event print("log -- Event: %s " % json.dumps(event)) prefix = os.environ['RESOURCE_PREFIX'] gd_instance_id = event["detail"]["resource"]["instanceDetails"]["instanceId"] scan_id = str(uuid.uuid4()) scan_name = '%s-inspector-scan' % prefix target_name = '%s-target-%s' % (prefix, event["id"]) template_name = '%s-template-%s' % (prefix, event["id"]) assess_name = '%s-assessment-%s' % (prefix, event["id"]) # Set Initial Remediation Metadata event['remediation'] = {} event['remediation']['success'] = False event['remediation']['title'] = "GuardDog was unable to remediate the Instance" event['remediation']['description'] = "Auto remediation was unsuccessful. Please review the finding and remediate manaully." # Kick off Inspector Scan try: gd_sev = event['detail']['severity'] # Set Severity Color gd_color = detect.getSevColor(gd_sev) # Set Generic GD Finding Message message = [ { "title": 'Compromised Resource Details', "fields": [ { "title": "Instance ID", "value": gd_instance_id, "short": 'true' }, { "title": "Public IP", "value": event["detail"]["resource"]["instanceDetails"]["networkInterfaces"][0]["publicIp"], "short": 'true' }, { "title": 'Image Description', "value": event["detail"]["resource"]["instanceDetails"]["imageDescription"], "short": 'false' }, { "title": "VPC ID", "value": event["detail"]["resource"]["instanceDetails"]["networkInterfaces"][0]['vpcId'], "short": 'true' }, { "title": "Subnet ID", "value": event["detail"]["resource"]["instanceDetails"]["networkInterfaces"][0]['subnetId'], "short": 'true' } ], "fallback": "Required plain-text summary of the attachment.", "color": gd_color, "text": 'Below are some additional details related to the GuardDuty finding.', }] # Post Slack Message post = detect.PostMessage(channel, token_bot, message, event["ts"]) ec2 = boto3.client('ec2') inspector = boto3.client('inspector') scan_in_progress = False tags = ec2.describe_tags( Filters=[ { 'Name': 'resource-id', 'Values': [ gd_instance_id, ], }, ], MaxResults=100 ) print(tags) for i in tags['Tags']: if i['Key'] == scan_name: print(i['Key']) scan_in_progress = True if scan_in_progress == False: print("log -- Event: Running Scan") ec2.create_tags( Resources=[ gd_instance_id, ], Tags=[ { 'Key': scan_name, 'Value': scan_id } ] ) packages = inspector.list_rules_packages( maxResults=100 ) group = inspector.create_resource_group( resourceGroupTags=[ { 'key': scan_name, 'value': scan_id }, ] ) target = inspector.create_assessment_target( assessmentTargetName=target_name, resourceGroupArn=group['resourceGroupArn'] ) template = inspector.create_assessment_template( assessmentTargetArn=target['assessmentTargetArn'], assessmentTemplateName=template_name, durationInSeconds=900, rulesPackageArns=packages['rulesPackageArns'], userAttributesForFindings=[ { 'key': 'instance-id', 'value': gd_instance_id }, { 'key': 'scan-name', 'value': scan_name }, { 'key': 'scan-id', 'value': scan_id }, { 'key': 'gd-slack-thread', 'value': event["ts"] } ] ) inspector.subscribe_to_event( resourceArn=template['assessmentTemplateArn'], event='ASSESSMENT_RUN_COMPLETED', topicArn=os.environ['SNS_TOPIC_ARN'] ) assessment = inspector.start_assessment_run( assessmentTemplateArn=template['assessmentTemplateArn'], assessmentRunName=assess_name ) # Set Remediation Metadata event['remediation']['title'] = "GuardDog initiated an AWS Inspector assessment on this instance: %s" % gd_instance_id else: print("log -- Event: Scan Already Running") event['remediation']['title'] = "GuardDog has already initiated an AWS Inspector scan on this instance: %s" % gd_instance_id # Set Remediation Metadata event['remediation']['success'] = True event['remediation']['description'] = "Please view the console if you'd like to track the progress of the assessment (%s). A new message will be posted after the assessment has been completed." % assess_name except ClientError as e: print(e) print("log -- Error Starting an AWS Inspector Assessment") return event def EC2CleanupBruteForce(event, context): # Log Event print("log -- Event: %s " % json.dumps(event)) message = json.loads(event['Records'][0]['Sns']['Message']) cleanup = 'Failed' ec2 = boto3.client('ec2') inspector = boto3.client('inspector') try: if message['event'] == 'ASSESSMENT_RUN_COMPLETED': run = inspector.describe_assessment_runs( assessmentRunArns=[ message['run'], ] ) for i in run['assessmentRuns'][0]['userAttributesForFindings']: if i['key'] == 'instance-id': instance_id = i['value'] elif i['key'] == 'scan-name': scan_name = i['value'] elif i['key'] == 'scan-id': scan_id = i['value'] elif i['key'] == 'gd-slack-thread': thread_ts = i['value'] ec2.delete_tags( Resources=[ instance_id, ], Tags=[ { 'Key': scan_name, 'Value': scan_id }, ] ) #inspector.delete_assessment_template( # assessmentTemplateArn=message['template'] #) #inspector.delete_assessment_target( # assessmentTargetArn=message['target'], #) # Set Generic GD Finding Message message = [ { "title": 'Inspector Assessment Complete', "text": 'The assessment has completed and you can view the report in the console.', }] # Post Slack Message post = detect.PostMessage(channel, token_bot, message, thread_ts) else: print("log -- Not a Scan Completion Event") except ClientError as e: print(e) print("log -- Error Cleaning up") return cleanup def InstanceCredentialExfiltration(event, context): # Log Event print("log -- Event: %s " % json.dumps(event)) # Set Initial Remediation Metadata event['remediation'] = {} event['remediation']['success'] = False event['remediation']['title'] = "GuardDog was unable to remediate the Instance" event['remediation']['description'] = "Auto remediation was unsuccessful. Please review the finding and remediate manaully." try: # Set Clients iam = boto3.client('iam') ec2 = boto3.client('ec2') # Set Role Variable role = event['detail']['resource']['accessKeyDetails']['userName'] # Current Time time = datetime.datetime.utcnow().isoformat() # Set Revoke Policy policy = """ { "Version": "2012-10-17", "Statement": { "Effect": "Deny", "Action": "*", "Resource": "*", "Condition": {"DateLessThan": {"aws:TokenIssueTime": "%s"}} } } """ % time # Add policy to Role to Revoke all Current Sessions iam.put_role_policy( RoleName=role, PolicyName='RevokeOldSessions', PolicyDocument=policy.replace('\n', '').replace(' ', '') ) # Set Remediation Metadata event['remediation']['success'] = True event['remediation']['title'] = "GuardDog Successfully Removed all Active Sessions for Role: %s" % role event['remediation']['description'] = "Please follow your necessary forensic procedures." except ClientError as e: print(e) print("log -- Error Auto-Remediating Finding") return event ```
{ "source": "JMFU/QuantEcon.py", "score": 4 }
#### File: QuantEcon.py/quantecon/compute_fp.py ```python import time import numpy as np def _print_after_skip(skip, it=None, dist=None, etime=None): if it is None: # print initial header msg = "{i:<13}{d:<15}{t:<17}".format(i="Iteration", d="Distance", t="Elapsed (seconds)") print(msg) print("-" * len(msg)) return if it % skip == 0: if etime is None: print("After {it} iterations dist is {d}".format(it=it, d=dist)) else: # leave 4 spaces between columns if we have %3.3e in d, t msg = "{i:<13}{d:<15.3e}{t:<18.3e}" print(msg.format(i=it, d=dist, t=etime)) return def compute_fixed_point(T, v, error_tol=1e-3, max_iter=50, verbose=1, print_skip=5, *args, **kwargs): """ Computes and returns :math:`T^k v`, an approximate fixed point. Here T is an operator, v is an initial condition and k is the number of iterates. Provided that T is a contraction mapping or similar, :math:`T^k v` will be an approximation to the fixed point. Parameters ---------- T : callable A callable object (e.g., function) that acts on v v : object An object such that T(v) is defined error_tol : scalar(float), optional(default=1e-3) Error tolerance max_iter : scalar(int), optional(default=50) Maximum number of iterations verbose : bool, optional(default=True) If True then print current error at each iterate. args, kwargs : Other arguments and keyword arguments that are passed directly to the function T each time it is called Returns ------- v : object The approximate fixed point """ iterate = 0 error = error_tol + 1 if verbose: start_time = time.time() _print_after_skip(print_skip, it=None) while iterate < max_iter and error > error_tol: new_v = T(v, *args, **kwargs) iterate += 1 error = np.max(np.abs(new_v - v)) if verbose: etime = time.time() - start_time _print_after_skip(print_skip, iterate, error, etime) try: v[:] = new_v except TypeError: v = new_v return v ```
{ "source": "jmfveneroso/name_extractor", "score": 3 }
#### File: name_extractor/name_extractor/nsnb_extractor.py ```python import os import re import sys from math import log import tokenizer import requests class NsnbExtractor(): """ The Not-so-Naive Bayesian extractor class extracts names from a list of tokens based on the most likely sequence of labels on a sliding window given the prior and conditional probabilities. """ tokenizer = tokenizer.Tokenizer() def __init__(self): # The conditional name P(t|N) and word probabilities P(t|W) were estimated # offline through maximum likelihood over two corpora containing only names # and only words, respectively. self.cond_name_probs = {} self.cond_word_probs = {} # Prior probabilities for each one of these sequences will be estimated # from the test data. This is the only possible source of overfitting. # The possible label sequences for a window of size 4 are (W=word, N=name): # WWWW, WWWN, WWNW, WWNN, WNWW, WNWN, WNNW, WNNN, # NWWW, NWWN, NWNW, NWNN, NNWW, NNWN, NNNW, NNNN # Consider that the corresponding index for a given sequence is the binary # number obtained when W=0 and N=1. For example: WWNN == 0011, so its index # is 3. self.prior_probs = [0] * 32 # Feature probabilities will be calculated on a second run over the # token list. Only structural features are being currently used. self.feature_probs = [{}, {}, {}, {}, {}] # Load the conditional probabilities from a file. self.load_conditional_probs() def laplace_smoothing(self, count, total_count, possibilities): """ Returns a smoothed probability through the Laplace or Additive Smoothing method. More information here: https://en.wikipedia.org/wiki/Additive_smoothing """ return float(count + 1) / (total_count + possibilities) def get_sequence_index(self, seq): """ Get the sequence index in the prior probabilities array. The index of a given sequence of labels is the binary number obtained when word=0 and name=1. For example: WWNN == 0011, so the index is 3. """ return sum([2**j if seq[::-1][j].is_name else 0 for j in range(0, 5)]) def fit(self, docs): """ Estimates the prior probabilities from a list of test documents. """ if len(docs) == 0: self.load_prior_probs() return self.prior_probs = [0] * 32 num_seqs = 0 for doc in docs: i = 0 tkns = NsnbExtractor.tokenizer.tokenize(doc[1]) NsnbExtractor.tokenizer.assign_correct_labels(tkns, doc[2]) while i <= len(tkns) - 5: index = self.get_sequence_index(tkns[i:i+5]) self.prior_probs[index] += 1 num_seqs += 1 i += 1 arr = [ 'WWWWW', 'WWWWN', 'WWWNW', 'WWWNN', 'WWNWW', 'WWNWN', 'WWNNW', 'WWNNN', 'WNWWW', 'WNWWN', 'WNWNW', 'WNWNN', 'WNNWW', 'WNNWN', 'WNNNW', 'WNNNN', 'NWWWW', 'NWWWN', 'NWWNW', 'NWWNN', 'NWNWW', 'NWNWN', 'NWNNW', 'NWNNN', 'NNWWW', 'NNWWN', 'NNWNW', 'NNWNN', 'NNNWW', 'NNNWN', 'NNNNW', 'NNNNN', ] # Compute prior probabilities. for i in range(0, 32): self.prior_probs[i] = log(self.laplace_smoothing( self.prior_probs[i], num_seqs, 32 )) def load_conditional_probs(self, directory = "../probabilities"): """ Loads conditional probabilities P(t|W) and P(t|N) from a file. The P(t|N) probabilities used in this code sample were estimated from a list of author names obtained from the DBLP database. The P(t|W) probabilities were estimated from text extracted from random websites downloaded with a crawler that started from university homepages. All capitalized words were removed as a heuristic to remove all names. """ # Conditional name probabilities. with open(os.path.join(directory, "cond_name_probs.txt")) as f: for line in f: name, prob = line.split(" ") self.cond_name_probs[name] = float(prob.strip()) # Conditional word probabilities. with open(os.path.join(directory, "cond_word_probs.txt")) as f: for line in f: word, prob = line.split(" ") self.cond_word_probs[word] = float(prob.strip()) def load_prior_probs(self, directory = "../probabilities"): """ Loads prior probabilities P(yyyy) from a file. """ with open(os.path.join(directory, "prior_probs.txt")) as f: for i in range(0, 32): prob = f.readline().split(" ")[1] self.prior_probs[i] = float(prob.strip()) def get_tkn_probs(self, tkn, last_el, use_structural_features): """ Returns the conditional probabilities P(t|n)P(f1|n)... and P(t|w)P(f1|w)... for a single token. """ if tkn.tkn == 'linebreak' or re.search('[0-9]', tkn.tkn): return (0, -100) # We are currently only considering names inside the same HTML element. # We obtained better results with a more complex approach, that considered # tokens accross elements, but this implementation is easier to grasp for # the moment. # TODO: this information can be incorporated in a feature. if last_el != None: if tkn.element != last_el: return (0, -100) # The total number of words and names in the corpora used to calculate the # conditional probabilities loaded in load_conditional_probs(). This number # can vary depending on the corpora characteristics. num_words = 84599521 num_names = 3831851 tkn_value = tkn.tkn.strip().lower() prob_word = log(float(1) / (num_words + len(self.cond_word_probs))) if tkn_value in self.cond_word_probs: prob_word = self.cond_word_probs[tkn_value] prob_name = log(float(1) / (num_names + len(self.cond_name_probs))) if tkn_value in self.cond_name_probs: prob_name = self.cond_name_probs[tkn_value] # Structural features are features derived from the HTML structure. if use_structural_features: for i in range(0, len(self.feature_probs)): key = tkn.structural_features[i] if key in self.feature_probs[i]: prob_word += self.feature_probs[i][key][0] prob_name += self.feature_probs[i][key][1] return prob_word, prob_name def get_sequence_probs(self, tkns, use_structural_features): """ Returns the probabilities of the 16 possible label sequences for a sequence of tokens. That is: P(yyyy)P(t1|y)P(t2|y)P(t3|y)P(t4|y), where y is a label (word or name). """ last_el = None tkn_probs = [] for tkn in tkns: tkn_probs.append(self.get_tkn_probs(tkn, last_el, use_structural_features)) last_el = tkn.element sequence_probs = [0] * 32 for i in range(0, 32): selector_array = [1 if ((i & 2**j) == 2**j) else 0 for j in reversed(range(0, 5))] for j in range(0, len(tkns)): sequence_probs[i] += tkn_probs[j][selector_array[j]] sequence_probs[i] += self.prior_probs[i] return sequence_probs def estimate_structural_features(self, tkns): """ Estimates the probabilities associated with a structural feature by a maximum likelihood estimation obtained after the extractor has already assigned provisional labels to the list of tokens. """ # We store the feature counts here. self.feature_probs = [{}, {}, {}, {}, {}] name_count, word_count = 0, 0 for tkn in tkns: if tkn.is_name: name_count += 1 else: word_count += 1 for i in range(0, len(tkn.structural_features)): feature_val = tkn.structural_features[i] if not feature_val in self.feature_probs[i]: self.feature_probs[i][feature_val] = [0, 0] self.feature_probs[i][feature_val][1 if tkn.is_name else 0] += 1 for i in range(0, len(tkn.structural_features)): for key in self.feature_probs[i]: self.feature_probs[i][key][0] = log(self.laplace_smoothing( self.feature_probs[i][key][0], word_count, len(self.feature_probs[i]) )) self.feature_probs[i][key][1] = log(self.laplace_smoothing( self.feature_probs[i][key][1], name_count, len(self.feature_probs[i]) )) def assign_labels(self, tkns, use_structural_features): """ Assigns the most probable labels for a sliding window of tokens and returns the extracted names. """ names = [] i = 0 while i <= len(tkns) - 5: cur_tkns = tkns[i:i+5] # Get the sequence of labels with maximum probability. seq_probs = self.get_sequence_probs(cur_tkns, use_structural_features) index = seq_probs.index(max(seq_probs)) # In sequences: WWWW, WWWN, WWNW, WWNN, WNWW, WNWN, WNNW, WNNN, # NWWW, NWWN, NWNW, NWNN - the first token is a word or, the first # token is a name but the second token is a word. Since we don't # want single names we will discard those as words and slide the window # by one token. if index < 24: tkns[i].is_name = False i += 1 # At least the two first tokens are names. These are the sequences: # NNWW, NNWN, NNNW, NNNN. else: 'NNWWW', 'NNWWN', 'NNWNW', 'NNWNN', 'NNNWW', 'NNNWN', 'NNNNW', 'NNNNN', if index >= 24 and index <= 27: name_length = 2 if index >= 28 and index <= 29: name_length = 3 if index == 30: name_length = 4 if index == 31: name_length = 5 if name_length > len(cur_tkns): name_length = len(cur_tkns) name_start = int(i) name_end = int(i) + int(name_length) name_tkns = tkns[name_start:name_end] for tkn in name_tkns: tkn.is_name = True # Slide window. i += name_length if len(name_tkns) <= 1: continue name_tkns = [t.tkn for t in name_tkns] if len([t for t in name_tkns if len(t) > 1]) == 0: continue # Only add unique names. name = " ".join(name_tkns).encode('utf-8') if not name in names: names.append(name) return names def extract(self, html): """ Extracts names from a list of tokens. """ tkns = NsnbExtractor.tokenizer.tokenize(html) self.feature_probs = [{}, {}, {}, {}, {}] names = self.assign_labels(tkns, False) for i in range(0, 2): self.estimate_structural_features(tkns) names = self.assign_labels(tkns, True) return names if __name__ == "__main__": os.chdir(os.path.dirname(__file__)) extractor = NsnbExtractor() # Will load probabilities from file. extractor.fit([]) if len(sys.argv) < 2: print('nsnb_extractor <url>') quit() r = requests.get(sys.argv[1]) if r.status_code != 200: print('HTTP response not successful') quit() names = extractor.extract(r.text) for n in names: print(n) ```
{ "source": "jmfveneroso/nosce", "score": 2 }
#### File: _drafts/notebooks/unsupervised_hmm.py ```python import sys import numpy as np states = np.array(['H', 'C']) features = np.array(['1', '2', '3']) start = [.5, .5] end = [1, 1] transition_mat = np.array([ [.6, .4], [.4, .6] ]) emission_mat = np.array([ [.2, .5], [.4, .4], [.4, .1] ]) observations = np.array([1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1]) def forward_algorithm(observations): global transition_mat, transition_mat alphas = np.zeros((len(observations), len(states))) alpha = None for i, o in enumerate(observations): idx = o - 1 if alpha is None: alpha = start * emission_mat[idx] alphas[i] = alpha continue alpha = np.matmul(alpha, transition_mat) alpha *= emission_mat[idx] alphas[i] = alpha return alphas, np.matmul(alpha, np.transpose(end)) def backward_algorithm(observations): global transition_mat, transition_mat betas = np.zeros((len(observations), len(states))) beta = end betas[len(observations) - 1] = beta for i, o in enumerate(reversed(observations)): idx = o - 1 beta *= emission_mat[idx] if i < len(observations) - 1: beta = np.matmul(beta, np.transpose(transition_mat)) betas[len(observations) - i - 2] = beta return betas, np.matmul(beta, np.transpose(start)) def viterbi(observations): global states backprobs = np.zeros((len(observations), len(states))) backpointers = np.zeros((len(observations), len(states))) alpha = None for i, o in enumerate(observations): idx = o - 1 if alpha is None: alpha = start * emission_mat[idx] backprobs[i] = alpha continue alpha_mat = transition_mat * emission_mat[idx] alpha_mat = np.transpose(alpha_mat) * alpha alpha = np.amax(alpha_mat, axis=1) pointers = np.argmax(alpha_mat, axis=1) backprobs[i] = np.amax(alpha_mat, axis=1) backpointers[i] = np.argmax(alpha_mat, axis=1) last_state = np.argmax(backprobs[len(observations) - 1]) res = [states[last_state]] for i in range(0, len(observations) - 1): last_state = int(backpointers[len(observations) - i - 1][last_state]) # print last_state res.append(states[last_state]) # print backprobs # print backpointers res.reverse() return res # print forward_algorithm(observations) def forward_backward_algorithm(observations): global emission_mat, transition_mat for i in range(0, 100): alphas, n = forward_algorithm(observations) betas, n = backward_algorithm(observations) # Transition probs. numerator = np.matmul(np.transpose(alphas), betas) * transition_mat denominator = np.sum(numerator, axis=1) new_transition_probs = (numerator.T / denominator).T # Emission probs. unary = np.zeros((len(observations), len(features))) for i, o in enumerate(observations): idx = o - 1 unary[i][idx] = 1 numerator = alphas.T * betas.T denominator = np.sum(numerator, axis=1) numerator = np.matmul(numerator, unary) new_emission_probs = numerator.T / denominator # print np.round(transition_mat, 4) # print np.round(new_transition_probs, 4) # print np.round(emission_mat, 4) # print np.round(new_emission_probs, 4) transition_mat = new_transition_probs emission_mat = new_emission_probs print( np.round(transition_mat, 4)) print( np.round(emission_mat, 4)) # forward_backward_algorithm(observations) # print [str(x) for x in observations] # print viterbi(observations) import numpy as np import re from pathlib import Path def load_raw_dataset(f): with open(f, 'r') as f: data = f.read().strip() sentences = data.split('\n\n') sentences = [s for s in sentences if not s.startswith('-DOCSTART-')] X = [[t.split(' ') for t in s.split('\n') if len(s) > 0] for s in sentences] Y = [] T = [] for i, s in enumerate(X): tkns, labels = [], [] for j, t in enumerate(s): l = ['O', 'I-PER'].index(t[1]) labels.append(l) tkns.append(t[0]) X[i][j] = [X[i][j][0]] + X[i][j][2:] Y.append(labels) T.append(tkns) return X, Y, T class HiddenMarkov: def __init__(self): self.time_steps = 1 self.num_labels = 2 self.num_features = 11 self.num_states = self.num_labels ** self.time_steps self.transition_mat = np.ones((self.num_states, self.num_labels)) self.start = np.zeros((self.num_states, 1)) self.start[0,:] = 1 # All previous states are label O ("other"). self.end = np.ones((self.num_states, 1)) # All ending states are equally probable. self.feature_counts = [] for i in range(self.num_features): self.feature_counts.append([]) for j in range(self.num_labels): self.feature_counts[i].append({'$UNK': 1}) def idx_to_states(self, idx): states = [] multiplier = self.num_labels ** (self.time_steps - 1) for i in range(self.time_steps): states.append(int(idx) // int(multiplier)) idx %= multiplier multiplier /= self.num_labels return states def states_to_idx(self, states): if len(states) < self.time_steps: raise Exception('Wrong states length.') acc = 0 multiplier = 1 for s in reversed(states): acc += int(multiplier) * int(s) multiplier *= self.num_labels return acc def train_features(self, X, Y, which_features=[]): if len(which_features) != self.num_features: which_features = [0] * self.num_features label_count = np.ones((self.num_labels)) for i in range(len(Y)): for j in range(len(Y[i])): label_count += Y[i][j] y = Y[i][j] f = X[i][j][1:1+self.num_features] for k in range(self.num_features): if which_features[k] == 0: continue key = '' if k < len(f): key = f[k] if not key in self.feature_counts[k][y]: self.feature_counts[k][y][key] = 0 self.feature_counts[k][y][key] += 1 # Consolidate vocabularies. feature_maps = [] for i in range(self.num_features): feature_maps.append({}) for j in range(self.num_labels): for k in self.feature_counts[i][j]: feature_maps[i][k] = True for i in range(self.num_features): if which_features[i] == 0: continue for j in range(self.num_labels): for k in feature_maps[i]: if not k in self.feature_counts[i][j]: self.feature_counts[i][j][k] = 1 for i in range(self.num_features): if which_features[i] == 0: continue for j in range(self.num_labels): total_count = sum([self.feature_counts[i][j][k] for k in self.feature_counts[i][j]]) for k in self.feature_counts[i][j]: self.feature_counts[i][j][k] /= float(total_count) def train_transitions(self, X, Y): for i in range(len(Y)): states = [0] * self.time_steps for j in range(len(Y[i])): y = Y[i][j] idx = self.states_to_idx(states) self.transition_mat[idx,y] += 1 states.pop(0) states.append(y) self.transition_mat /= np.expand_dims(np.sum(self.transition_mat, axis=1), axis=1) self.transition_mat = np.nan_to_num(self.transition_mat) def fit(self, X, Y): which_features = [1] * self.num_features self.train_features(X, Y, which_features) self.train_transitions(X, Y) def viterbi(self, X): pointers = np.zeros((len(X), self.num_states), dtype=int) state_probs = self.start for i in range(len(X)): emission = np.ones(self.num_labels) f = X[i][1:1+self.num_features] for k in range(self.num_features): for y in range(self.num_labels): key = '' if k < len(f): key = f[k] if key in self.feature_counts[k][y]: emission[y] *= self.feature_counts[k][y][key] else: emission[y] *= self.feature_counts[k][y]['$UNK'] emission[emission == 1] = 0 p = state_probs * self.transition_mat * emission state_probs = np.zeros((self.num_states, 1)) for s in range(self.num_states): for l in range(self.num_labels): states = self.idx_to_states(s) states.pop(0) states.append(l) idx = self.states_to_idx(states) if p[s,l] > state_probs[idx,0]: pointers[i,idx] = s state_probs[idx,0] = p[s,l] idx = np.argmax(state_probs) labels = [] for i in reversed(range(len(X))): states = self.idx_to_states(idx) labels.append(states[-1]) idx = pointers[i,idx] labels = list(reversed(labels)) return labels def predict(self, X): y = [] for i in range(len(X)): labels = self.viterbi(X[i]) y.append(labels) return y if __name__ == '__main__': print('Fitting...') X, Y, _ = load_raw_dataset('data/ner_on_html/train') hmm = HiddenMarkov() hmm.fit(X, Y) for name in ['train', 'valid', 'test']: print('Predicting ' + name) x, t, w = load_raw_dataset('data/ner_on_html/' + name) p = hmm.predict(x) t = [[['O', 'I-PER'][t__] for t__ in t_] for t_ in t] p = [[['O', 'I-PER'][p__] for p__ in p_] for p_ in p] with Path('results/score/{}.preds.txt'.format(name)).open('wb') as f: for words, preds, tags in zip(w, p, t): f.write(b'\n') for word, pred, tag in zip(words, preds, tags): f.write(' '.join([word, tag, pred]).encode() + b'\n') ```
{ "source": "jmg292/django-smart-filter", "score": 2 }
#### File: django-smart-filter/smart_filter/middleware.py ```python from django.http import HttpResponseForbidden from django.utils.deprecation import MiddlewareMixin from smart_filter.smart_filter import SmartFilter class SmartFilterMiddleware(MiddlewareMixin): def process_request(self, request): if not SmartFilter.request_can_pass(request): session_keys = list(request.session.keys()) for key in session_keys: del request.session[key] return HttpResponseForbidden(''.join([ "Results from probabilistic analysis and machine learning have determined that ", "requests from your IP address may be malicious. As such, your IP address has ", "been temporarily blacklisted.\n\n", "If you are using a VPN or other anonymization service, please disable the service ", "and retry your request." ])) ``` #### File: django-smart-filter/smart_filter/models.py ```python import ipaddress from django.db import models from django.utils import timezone from django.core.exceptions import ValidationError class RateLimitState(models.Model): current_count = models.IntegerField() last_reset_time = models.DateTimeField() class IPCheckResult(models.Model): ip_address = models.GenericIPAddressField(db_index=True) query_result = models.DecimalField(max_digits=8, decimal_places=5) is_authorized = models.BooleanField(default=False) entry_time = models.DateTimeField(db_index=True) def save(self, *args, **kwargs): if not self.id: self.entry_time = timezone.now() super(IPCheckResult, self).save(*args, **kwargs) class WhitelistEntry(models.Model): name = models.CharField(max_length=64) ip_address = models.GenericIPAddressField() subnet = models.IntegerField(default=32) def clean(self): if self.subnet < 1: raise ValidationError("Subnet mask must be greater than or equal to 1.") address = ipaddress.ip_address(self.ip_address) if type(address) is ipaddress.IPv6Address: if self.subnet > 128: raise ValidationError("Invalid IPv6 subnet mask supplied.") elif self.subnet > 32: raise ValidationError("Invalid IPv4 subnet mask supplied.") return super(WhitelistEntry, self).clean() def save(self, *args, **kwargs): super(WhitelistEntry, self).save(*args, **kwargs) ``` #### File: django-smart-filter/smart_filter/whitelist.py ```python import ipaddress import logging import socket import struct import threading import typing from smart_filter.models import WhitelistEntry logger = logging.getLogger(__name__) class Whitelist(object): _instance = None class _Whitelist(object): def __init__(self): self._network_list_lock = threading.Lock() self._whitelisted_networks = {} def append(self, whitelist_entry: WhitelistEntry): network = ipaddress.ip_network("{0}/{1}".format( whitelist_entry.ip_address, whitelist_entry.subnet )) netmask = int(network.netmask) address = int(network.network_address) self._network_list_lock.acquire() if not netmask in self._whitelisted_networks: self._whitelisted_networks[netmask] = [address] else: self._whitelisted_networks[netmask].append(address) self._network_list_lock.release() def load_whitelist(self): logger.debug("(SmartFilter) Loading whitelist from database.") for entry in WhitelistEntry.objects.all(): self.append(entry) logger.info("(SmartFilter) Loaded {0} whitelisted networks from database.".format( len(self._whitelisted_networks) )) def is_whitelisted(self, address): is_whitelisted = False try: ip_address = ipaddress.ip_address(address) except ValueError: logger.error("(SmartFilter) Invalid IP address supplied for whitelist check: {0}".format( address )) return is_whitelisted is_whitelisted = not ip_address.is_global if not is_whitelisted: self._network_list_lock.acquire() whitelisted_networks = dict(self._whitelisted_networks) self._network_list_lock.release() address_dec = struct.unpack("!I", ip_address.packed)[0] for netmask in whitelisted_networks: network_address = address_dec & netmask for network in whitelisted_networks[netmask]: is_whitelisted = network == network_address if is_whitelisted: break return is_whitelisted def __new__(self, *args, **kwargs): if not Whitelist._instance: Whitelist._instance = Whitelist._Whitelist() Whitelist._instance.load_whitelist() return Whitelist._instance ```
{ "source": "jmg292/pyarmoryctl", "score": 3 }
#### File: hayes_command/argument_validation/enum_argument.py ```python from enum import Enum class EnumTypeValidator(object): def __init__(self, enum_type: Enum): self.enum_type = enum_type self.value = None ```
{ "source": "jmg292/r2remote", "score": 3 }
#### File: r2remote/plugins/_base_command_handler.py ```python class BaseCommandHandler(object): def __init__(self, config): self.config = config def handle(self, *args): raise NotImplementedError(f"{self.__class__.__name__} does not implement the handle method.") ``` #### File: r2remote/plugins/r2_info.py ```python import json from ._info_classes import FileInfo, StringInfo from ._pipe_holder import PipeHolder from ._base_command_handler import BaseCommandHandler class GetBinaryInfo(BaseCommandHandler): def handle(self, *args): file_info_json = None try: pipe = PipeHolder.get_pipe() file_info_json = pipe.cmd("ij") except ValueError: return_value = "Pipe must be opened before analyzing." if file_info_json: try: return_value = str(FileInfo.from_string(file_info_json)) except (ValueError, json.JSONDecodeError): return_value = "Unable to decode JSON" return return_value class GetEntrypoints(BaseCommandHandler): def handle(self, *args): try: pipe = PipeHolder.get_pipe() return_value = pipe.cmd("iej") except ValueError: return_value = "Pipe must be opened before analyzing." return return_value class GetMainAddress(BaseCommandHandler): def handle(self, *args): try: pipe = PipeHolder.get_pipe() return_value = pipe.cmd("iMj") except ValueError: return_value = "Pipe must be opened before analyzing." return return_value class GetStrings(BaseCommandHandler): def handle(self, *args): string_data = None try: pipe = PipeHolder.get_pipe() string_data = pipe.cmd("izzj") except ValueError: return_value = "Pipe must be opened before analyzing." if string_data is not None: return_value = json.dumps([x.__dict__ for x in StringInfo.load_all_strings(string_data)]) return return_value class GetExports(BaseCommandHandler): def handle(self, *args): try: pipe = PipeHolder.get_pipe() return_value = pipe.cmd("iEj") except ValueError: return_value = "Pipe must be opened before analyzing." return return_value class GetSymbols(BaseCommandHandler): def handle(self, *args): try: pipe = PipeHolder.get_pipe() return_value = pipe.cmd("isj") except ValueError: return_value = "Pipe must be opened before analyzing." return return_value class GetImports(BaseCommandHandler): def handle(self, *args): try: pipe = PipeHolder.get_pipe() return_value = pipe.cmd("iij") except ValueError: return_value = "Pipe must be opened before analyzing." return return_value class GetRelocations(BaseCommandHandler): def handle(self, *args): try: pipe = PipeHolder.get_pipe() return_value = pipe.cmd("irj").strip() if return_value: unpacked_json = json.loads(return_value) return_value = [] for value in unpacked_json: if value["name"] is None: value["name"] = "" return_value.append(value) return_value = json.dumps(return_value) except ValueError: return_value = "Pipe must be opened before analyzing." return return_value ``` #### File: jmg292/r2remote/r2remote_shell.py ```python import argparse import base64 import io import json import socket from message_wrapper import MessageWrapper from protocol import Message, MessageHandlerMixin class ShellHandler(MessageHandlerMixin): def __init__(self, identity_key, authorized_hosts, secure = True): self.message_wrapper = MessageWrapper(identity_key, authorized_hosts) self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.rfile = io.BytesIO() # Here, hold this for a moment self.secure = secure def _do_handshake(self): print(f"[+] Authenticating . . .") challenge = base64.b64decode(self.rfile.readline().strip()) print(f"[+] Got challenge: {challenge}") self._write_line(self.message_wrapper.get_challenge_response(challenge)) server_response = base64.b64decode(self.rfile.readline().strip()) print(f"[+] Got response: {server_response}") self.message_wrapper.finalize_handshake(server_response) print("[+] Authentication successful!") def connect(self, remote_addr, remote_port): self.socket.connect((remote_addr, remote_port)) self.rfile = self.socket.makefile() if self.secure: self._do_handshake() else: print("[+] Insecure flag is set, skipping authentication") def run(self): command = "" while command != "exit": command = input("> ").lower().strip() if command: for packed_message in Message.packed_from_string(self.message_wrapper, command, secure=self.secure): self._write_line(packed_message) if command != "exit": response = self._get_message(self.message_wrapper, secure=self.secure) try: # Try to pretty print JSON responses response = json.loads(response) response = json.dumps(response, indent=4) except (ValueError, json.JSONDecodeError): pass print(response) if __name__ == "__main__": argument_parser = argparse.ArgumentParser(description="Connect a terminal to an r2remote session.") argument_parser.add_argument("--identity-key", "-i", required=True, help="Path to identity file.") argument_parser.add_argument("--authorized-hosts", "-a", required=True, help="Path to authorized hosts directory.") argument_parser.add_argument("--host", required=True, help="IP address to connect to.") argument_parser.add_argument("--port", "-p", required=True, type=int, help="Port to connect to.") argument_parser.add_argument("--insecure", help="Disable authentication and encryption (Probably shouldn't ever use this.)", required=False, default=False, action="store_true") arguments = argument_parser.parse_args() print("[+] Initializing . . . ", end='') shell = ShellHandler(arguments.identity_key, arguments.authorized_hosts, not arguments.insecure) print("Done.\n[+] Connecting . . . ") shell.connect(arguments.host, arguments.port) print("[+] Starting shell.") shell.run() ```
{ "source": "jmg7173/boiler-plates-and-examples", "score": 2 }
#### File: api-flask/api/app.py ```python import os from flask import Flask from flask_jwt_extended import JWTManager from config import Config, get_config jwt = JWTManager() def create_app(config: Config) -> Flask: app = Flask(config.APP_NAME) app.config.from_object(config) from v1 import api as v1_api app.register_blueprint(v1_api) from models import db, migrate db.init_app(app) migrate.init_app(app, db) jwt.init_app(app) return app if __name__ == '__main__': config: Config = get_config(os.environ.get('APP_MODE')) app: Flask = create_app(config) app.run(host='0.0.0.0', port=8000) ``` #### File: api-flask/api/models.py ```python import base64 import os import urllib.request import uuid from hashlib import md5 from pathlib import Path from typing import Dict from flask import url_for from flask_migrate import Migrate from flask_sqlalchemy import SQLAlchemy from sqlalchemy.sql import func from werkzeug.security import check_password_hash, generate_password_hash from config import Config, get_config config: Config = get_config(os.environ.get('APP_MODE')) db = SQLAlchemy() migrate = Migrate() class PaginatedAPIMixin(object): @staticmethod def to_collection_dict(query, page, page_size, endpoint, **kwargs) -> Dict: resources = query.paginate(page, page_size, error_out=False) return { 'items': [item.to_dict() for item in resources.items], 'pagination': { 'page': page, 'page_size': page_size, 'total_pages': resources.pages, 'total_items': resources.total, }, '_links': { 'self': url_for(endpoint, page=page, page_size=page_size, **kwargs), 'next': ( url_for(endpoint, page=page + 1, page_size=page_size, **kwargs) if resources.has_next else None ), 'prev': ( url_for(endpoint, page=page - 1, page_size=page_size, **kwargs) if resources.has_prev else None ), }, } class User(PaginatedAPIMixin, db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(100)) email = db.Column(db.String(100)) password = db.Column(db.String(150)) created_at = db.Column(db.DateTime, server_default=func.now()) profile_img_path = db.Column(db.String(150)) def set_profile_img(self, username, encoded_img=None, is_default_img=False): profile_img_base_dir = Path('images/profile') profile_img_dir = config.VOLUME_PATH / profile_img_base_dir profile_img_filename = f'{username}_{uuid.uuid4().hex}.png' profile_img_fullpath = profile_img_dir / profile_img_filename profile_img_request_path = profile_img_base_dir / profile_img_filename os.makedirs(profile_img_dir, exist_ok=True) if is_default_img: digest = md5(username.encode('utf-8')).hexdigest() urllib.request.urlretrieve( f'https://www.gravatar.com/avatar/{digest}?d=identicon&s=200', profile_img_fullpath, ) else: img = base64.b64decode(encoded_img) with open(profile_img_fullpath, 'wb') as f: f.write(img) if self.profile_img_path: os.remove(config.VOLUME_PATH / self.profile_img_path) self.profile_img_path = str(profile_img_request_path) def __init__(self, username, email): self.username = username self.email = email self.set_profile_img(self.username, is_default_img=True) def set_password(self, password): self.password = generate_password_hash(password) def check_password(self, password) -> bool: return check_password_hash(self.password, password) def to_dict(self) -> Dict: return { 'id': self.id, 'username': self.username, 'email': self.email, 'created_at': self.created_at.strftime('%Y-%m-%dT%H:%M:%S'), 'profile_img_path': self.profile_img_path, '_links': { 'self': url_for('v1.users.get_user', id=self.id), } } ``` #### File: api/tests/conftest.py ```python import os import shutil import pytest if os.environ.get('IS_LOCAL'): from dotenv import load_dotenv load_dotenv('.env.local.test') from app import create_app from config import Config, get_config from models import db, User config: Config = get_config(os.environ.get('APP_MODE')) @pytest.fixture def app(): app = create_app(config) return app @pytest.fixture(scope='function') def database(app): with app.app_context(): db.drop_all() shutil.rmtree(config.VOLUME_PATH / 'images' / 'profile', ignore_errors=True) db.create_all() yield db @pytest.fixture def client(app): return app.test_client() @pytest.fixture(scope='function') def profile_image(request): shutil.rmtree(config.VOLUME_PATH / 'images' / 'profile', ignore_errors=True) def teardown(): shutil.rmtree(config.VOLUME_PATH / 'images' / 'profile', ignore_errors=True) request.addfinalizer(teardown) @pytest.fixture(scope='function') def user(database): email = '<EMAIL>' username = 'test' password = '<PASSWORD>' user = User( username=username, email=email, ) user.set_password(password) database.session.add(user) database.session.commit() return user ``` #### File: tests/models/test_model.py ```python import base64 import os from models import User def test_create_user(database): email = '<EMAIL>' username = 'test' user = User( username=username, email=email, ) database.session.add(user) database.session.commit() user = User.query.first() assert user.email == email def test_user_dict(database): email = '<EMAIL>' username = 'test' user = User( username=username, email=email, ) database.session.add(user) database.session.commit() assert user.to_dict() == { 'id': user.id, 'username': username, 'email': email, 'created_at': user.created_at.strftime('%Y-%m-%dT%H:%M:%S'), 'profile_img_path': user.profile_img_path, '_links': { 'self': f'/v1/api/users/{user.id}' } } def test_user_password(): email = '<EMAIL>' username = 'test' password = '<PASSWORD>!' wrong_password = '<PASSWORD>!' user = User( username=username, email=email, ) user.set_password(password) assert user.check_password(password) assert not user.check_password(wrong_password) def test_user_profile_image(app, profile_image): email = '<EMAIL>' username = 'test' user = User( username=username, email=email, ) with open(app.config['VOLUME_PATH'] / user.profile_img_path, 'rb') as f: original_profile_img_binary = f.read() with open('tests/profile_images/default.png', 'rb') as f: default_profile_img_binary = f.read() assert default_profile_img_binary == original_profile_img_binary # Update profile image with open('tests/profile_images/new.png', 'rb') as f: new_profile_img_binary = f.read() encoded_new_img = base64.b64encode(new_profile_img_binary) user.set_profile_img(username, encoded_img=encoded_new_img) with open(app.config['VOLUME_PATH'] / user.profile_img_path, 'rb') as f: updated_profile_img_binary = f.read() assert updated_profile_img_binary == new_profile_img_binary assert len(os.listdir(app.config['VOLUME_PATH'] / 'images/profile')) == 1 ``` #### File: api/v1/api.py ```python from typing import Tuple from flask import Blueprint, jsonify, Response from v1.views import ( auth_api, users_api, ) api = Blueprint('v1', __name__, url_prefix='/v1/api') api.register_blueprint(auth_api) api.register_blueprint(users_api) @api.get('/') def api_v1() -> Tuple[Response, int]: return jsonify({'message': 'api v1'}), 200 ``` #### File: boiler-plates-and-examples/api-sanic/app.py ```python from sanic import Sanic from sanic.response import text app = Sanic('App') @app.get("/") async def hello_world(request): return text('Hello, world.') if __name__ == '__main__': app.go_fast(host='0.0.0.0') ```
{ "source": "jmg-74/exam", "score": 2 }
#### File: exam/flowers/stats.py ```python import os import pickle import argparse import datetime import numpy as np from tqdm import tqdm import torch import torch.nn as nn import torch.optim as optim from train import test, train, get_data, hybrid_model def main(): # Pre-trained model VALID_ARCH_CHOICES = ("vgg16", "vgg13", "densenet121") # Parse command line arguments ap = argparse.ArgumentParser() ap.add_argument("data_dir", help="Directory containing the dataset (default: data)", default="data", nargs="?") ap.add_argument("--arch", help="Model architecture from 'torchvision.models' (default: vgg16)", choices=VALID_ARCH_CHOICES, default=VALID_ARCH_CHOICES[0]) # ap.add_argument("--hidden-units", # help="Number of units the hidden layer should consist of (default: 512)", # default=512, # type=int) ap.add_argument("--cpu", help="Use CPU (else GPU) for training (default if not set: GPU)", action="store_true") args = ap.parse_args() device = "cpu" if args.cpu else "cuda" args.device = device args.noise = 0.25 args.clip = 1.0 args.batch_size = 64 args.hidden_units = 256 args.delta = 1e-4 # Build model: chose loss function, optimizer, processor support # # Done later to reset the model # model = hybrid_model(arch=args.arch, hidden_units=args.hidden_units) criterion = nn.NLLLoss() device = "cpu" if args.cpu else "cuda" # ===== TUNING =========================================================== # Hyperparameters to test lr_range = [1e-4] ##### <== choice (enumeration) batch_size_range = [32, 16, 8, 2] #, 32, 128, 8, 4, 1] ##### <== choice (enumeration) epochs = 30 ##### <== choice (1 value=max) # Number of iteration for each parameter iter = 1 ##### <== choice (single value) # DP or not DP, that is the question args.disable_dp = False ##### <== choice (boolean) # ======================================================================== # File to export results dp_or_not = "noDP_" if args.disable_dp else "DP_" file = "experiment_stats/accuracy_data_" + dp_or_not file += str(datetime.datetime.today()).replace(' ','_') + ".csv" steps = len(lr_range) * len(batch_size_range) * iter step = 0 # Write column titles with open(file, 'w') as f: f.write('learning_rate, batch_size, n_epochs, accuracy, n_times_for_avg\n') # Experiment loops for lr in lr_range: args.learning_rate = lr for bs in batch_size_range: args.batch_size = bs # Load the dataset into a dataloader ### default test batch size ### trainloader, testloader, mapping = get_data(data_folder=args.data_dir, batch_size=bs) args.sample_size = len(trainloader.dataset) #for epochs in epochs_range: accuracy_sum = [] for _ in range(iter): # Reset the model model, optimizer = hybrid_model(arch=args.arch, hidden_units=args.hidden_units, args=args) step += 1 _, acc = train(model=model, trainloader=trainloader, testloader=testloader, epochs=epochs, print_every=None, criterion=criterion, optimizer=optimizer, device=device, arch=args.arch, model_dir='', serialize=False, detail=False, args=args, ) acc = np.multiply(acc, 100) accuracy_sum.append(acc) print(f' {step}/{steps}\tlr={lr}, bs={bs},') for n_epoch, accur in enumerate(acc, start=1): line = f'{lr}, {bs}, {n_epoch}, {accur:.2f}, 1\n' with open(file, 'a') as f: f.write(line) print(f'\t. ×{n_epoch} epoch{"s" if n_epoch > 1 else " "}' f' => accuracy = {accur:.2f}%') # Sum up for identical settings, repeted `iter` times if iter > 1: acc_avg = np.average(accuracy_sum, axis=0) for n_epoch, accur in enumerate(acc_avg, start=1): line = f'{lr}, {bs}, {n_epoch}, {accur:.2f}, {iter}\n' with open(file, 'a') as f: f.write(line) print(f'\t\t>>> Average on {iter} iterations >>>\tlr={lr}, bs={bs},' f' ×{n_epoch} epoch{"s" if n_epoch > 1 else " "}' f' => accuracy = {accur:.2f}%') if __name__ == "__main__": main() ``` #### File: exam/flowers/train.py ```python import argparse import os from shutil import copyfile from tqdm import tqdm import torch from torch import nn, optim from torchvision import datasets, models, transforms # To be able to fetch next packages from parent folder import sys sys.path.append("..") from torch.utils.data import DataLoader from torch.cuda import memory_allocated from collections import OrderedDict from torchdp import PrivacyEngine, utils def test(model, testloader, criterion, device): """ Returns (loss, accuracy) of model w.r.t. the given testloader. """ # Switch to evaluation mode, and CUDA if possible ## _mem_monitor("TEST 0", device) model.eval() model.to(device) ## _mem_monitor("TEST 1 (model loaded)", device) losses = 0 correct = 0 with torch.no_grad(): for images, labels in testloader: images, labels = images.to(device), labels.to(device) ## _mem_monitor("TEST 2 (images loaded)", device) # ===== monitoring ===== # Forward step and loss computation output = model(images) # Is Torch([b, 102]) losses += criterion(output, labels).item() _, predicted = torch.max(output.data, 1) # (values, indices) correct += (predicted == labels).sum().item() # Switch back to training mode model.train() testloader_size = len(testloader.dataset) accuracy = correct / testloader_size loss = losses / len(testloader) # consistent with training loss ## _mem_monitor("TEST 3 (END)", device) return loss, accuracy def train(model, trainloader, testloader, epochs, print_every, criterion, optimizer, device, arch="vgg16", model_dir="models", serialize=False, detail=False, args=None): """ Trains the model with given parameters then saves model state (parameters). . These files are serialized (like pickle) if `serialize` is True: checkpoint.pth represents current epoch, best_model.pth is the best one. . Details are printed if boolean parameter `detail` is True. """ # Change to train mode, load on GPU if possible model.train() model.to(device) # In fact, already done best_accuracy = 0 steps_nb = len(trainloader) accuracy_list = [0 for _ in range(epochs)] loss_list = [0 for _ in range(epochs)] # Epoch loop for epoch in range(1, epochs+1): running_loss, running_step = 0, 0 # Batch loop for step, (images, labels) in enumerate(tqdm(trainloader), start=1): images, labels = images.to(device), labels.to(device) ## _mem_monitor("2. TRAIN : images loaded", device) # ===== Monitoring ===== # Forward and backward passes optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) ## _mem_monitor("2.1. TRAIN : forward pass done", device) # ===== Monitoring ===== loss.backward() ## _mem_monitor("3. TRAIN : loss gradient backpropagated", device) # ===== Monitoring ===== optimizer.step() ## _mem_monitor("4. TRAIN :gradient computed", device) # ===== Monitoring ===== running_loss += loss.item() running_step += 1 # Print perf. each `print_every` step, or last one if (detail and (step % print_every == 0 or step == steps_nb) # Cancel printing if it is near the end and not(0.94 * steps_nb < step < steps_nb)): testloss, accuracy = test(model, testloader, criterion, device) # ===== DP =================================================== if not args.disable_dp: epsilon, best_alpha = optimizer.privacy_engine.get_privacy_spent(args.delta) print(f' [DP : ε = {epsilon:.2f}, δ = {args.delta} for α = {best_alpha}]') # ============================================================ print(f'>>> {step}/{steps_nb}, epoch {epoch}/{epochs} >>>\t' f'Training loss: {running_loss/running_step:.3f} -- ' f'Test loss: {testloss:.3f} -- ' f'Test accuracy: {accuracy*100:.1f}%') running_loss, running_step = 0, 0 # End of an epoch ;-) if detail: print() else: testloss, accuracy = test(model, testloader, criterion, device) # One last print if `not detail` if not args.disable_dp: epsilon, best_alpha = optimizer.privacy_engine.get_privacy_spent(args.delta) print(f' [DP : ε = {epsilon:.2f}, δ = {args.delta} for α = {best_alpha}]') # ============================================================ print(f'>>> {step}/{steps_nb}, epoch {epoch}/{epochs} >>>\t' f'Training loss: {running_loss/running_step:.3f} -- ' f'Test loss: {testloss:.3f} -- ' f'Test accuracy: {accuracy*100:.1f}%') accuracy_list[epoch-1] = accuracy loss_list[epoch-1] = testloss # Serialize model state if serialize: torch.save({'epoch': epochs, 'classifier': model.classifier, 'state_dict': model.state_dict(), 'optimizer' : optimizer.state_dict(), 'class_idx_mapping': model.class_idx_mapping, 'arch': arch, 'best_accuracy': best_accuracy*100}, os.path.join(model_dir, 'checkpoint.pth')) if accuracy > best_accuracy: copyfile(os.path.join(model_dir,'checkpoint.pth'), os.path.join(model_dir,'best_model.pth')) best_accuracy = max(accuracy, best_accuracy) return testloss, accuracy_list def get_data(data_folder, batch_size, test_batch_size=1): """ Returns the dataset as a dataloader. Arguments: data_folder: Path to the folder where data resides. Should have two subdirectories named "train" and "valid". batch_size: size of batch for Stochastic Gradient Descent. Returns tuple of: train_dataloader: Train dataloader iterator. test_dataloader: Validation dataloader iterator. train_dataset.class_to_id: dict to map classes to indexes. """ ### TODO: download dataset and unzip if folder is empty ### train_dir = os.path.join(data_folder, "train") valid_dir = os.path.join(data_folder, "valid") # Define transforms for the training and validation sets # Divide side of images by FACT FACT = 2 train_transforms = transforms.Compose([ transforms.RandomRotation(30), transforms.RandomResizedCrop(size=224 // FACT), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) validation_transforms = transforms.Compose([ transforms.Resize(256 // FACT), transforms.CenterCrop(224 // FACT), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # Load the datasets with ImageFolder and previous transforms # (ImageFolder is a generic data loader, for a specific organisation # of images in folders) train_dataset = datasets.ImageFolder(train_dir, transform=train_transforms) test_dataset = datasets.ImageFolder(valid_dir, transform=validation_transforms) # Using the image datasets, define the dataloaders # (DataLoader provides an iterator over a sampled dataset, see # https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader) train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=4) test_dataloader = DataLoader(test_dataset, shuffle=True, batch_size=test_batch_size, num_workers=4) # (class_to_idx is an attribute of any ImageFolder) return train_dataloader, test_dataloader, train_dataset.class_to_idx def hybrid_model(arch="vgg16", hidden_units=4096, class_idx_mapping=None, args=None): """ Return a model based on `arch` pre-trained one and 2 new fully connected layers. """ # Model adapted to chosen architecture, thanks to dynamic execution my_local = dict() exec(f'model = models.{arch}(pretrained=True)', globals(), my_local) model = my_local['model'] ## model = utils.convert_batchnorm_modules(model) # ===== Monitoring ===== # Freeze existing model parameters for training for param in model.parameters(): param.requires_grad = False # Get last child module of imported model last_child = list(model.children())[-1] if type(last_child) == torch.nn.modules.linear.Linear: input_features = last_child.in_features elif type(last_child) == torch.nn.modules.container.Sequential: input_features = last_child[0].in_features # Add some neww layers to train classifier = nn.Sequential(OrderedDict([ ### vgg16 : input_features = 25088 ('fc1', nn.Linear(input_features, hidden_units)), ('relu', nn.ReLU()), ###('dropout', nn.Dropout(p=0.5)), ('fc2', nn.Linear(hidden_units, 102)), ###('relu2', nn.ReLU()), ## Traces of ###('fc3', nn.Linear(256, 102)), ## experiments. ('output', nn.LogSoftmax(dim=1)) ])) model.classifier = classifier model.class_idx_mapping = class_idx_mapping model = model.to(args.device) ## _mem_monitor("1. HYBRID_MODEL : model loaded ", args.device) # ===== Monitoring ===== #optimizer = optim.Adam(model.classifier.parameters(), lr=args.learning_rate) optimizer = optim.SGD(model.classifier.parameters(), lr=args.learning_rate) if not args.disable_dp: privacy_engine = PrivacyEngine( classifier, ### = model, idem with classifier batch_size=args.batch_size, sample_size=args.sample_size, alphas=[1 + x / 10.0 for x in range(1, 100)] + list(range(12, 64)), noise_multiplier=args.noise, max_grad_norm=args.clip, ) privacy_engine.attach(optimizer) ## _mem_monitor("HYBRID_MODEL after DP tranfo. ", args.device) # ===== Monitoring ===== return model, optimizer def _mem_monitor(msg="", device=None, silent=False): ### ===== MONITORING ===== ### """ Print a message showing memory allocated on device. """ if silent: return print("\t>>>", msg, ">>>", f'{memory_allocated(device)/1024/1024:.3f} MB') def main(): # Pre-trained model VALID_ARCH_CHOICES = ("vgg16", "vgg13", "densenet121") # Print perf. PRINT_PER_EPOCH or (PRINT_PER_EPOCH + 1) times per epoch PRINT_PER_EPOCH = 4 # Parse command line arguments ap = argparse.ArgumentParser() ap.add_argument("data_dir", help="Directory containing the dataset (default: data)", default="data", nargs="?") ap.add_argument("--arch", help="Model architecture from 'torchvision.models' (default: vgg16)", choices=VALID_ARCH_CHOICES, default=VALID_ARCH_CHOICES[0]) ap.add_argument("--hidden-units", help="Number of units the hidden layer should consist of (default: 512)", default=512, type=int) ap.add_argument("--batch-size", help="Batch size during training (default: 64)", default=64, type=int) ap.add_argument("--test-batch-size", help="Batch size for test, validation (default: 64)", default=64, type=int) ap.add_argument("--learning-rate", help="Learning rate for optimizer (default: 0.001)", default=0.001, type=float) ap.add_argument("--epochs", help="Number of iterations over the whole dataset (default: 3)", default=3, type=int) ap.add_argument("--cpu", help="Use CPU (else GPU) for training (default if not set: GPU)", action="store_true") ap.add_argument("--model-dir", help="Directory which will contain the model checkpoints (default: models)", default="models") ap.add_argument("--serialize", help="Serialize, save the trained model if set (default: not set)", default=False, action="store_true") ap.add_argument("--no-detail", help="Print details during training if not set (default: not set - slows down training)", default=False, action="store_true") # DP specific ap.add_argument("--disable-dp", help="Disable 'Diffential Privacy' mode if set (default: not set)", default=False, action="store_true") ap.add_argument("--noise", help="Noise multiplier for Gaussian noise added (default: 0.25)", default=0.25, type=float) ap.add_argument("--clip", help="Clip per-sample gradients to this l2-norm (default: 1.0)", default=1.0, type=float) ap.add_argument("--delta", help="Target delta for DP (default: 1e-4)", default=1e-4, type=float) args = ap.parse_args() args.device = "cpu" if args.cpu else "cuda" ## _mem_monitor("INIT", args.device) # ===== Monitoring ===== # Create directory for model files: checkpoint.pth and best_model.pth os.system("mkdir -p " + args.model_dir) # Load the dataset into a dataloader (train / test = 6552 / 818 img) trainloader, testloader, mapping = get_data(data_folder=args.data_dir, batch_size=args.batch_size, test_batch_size=args.test_batch_size) args.sample_size = len(trainloader.dataset) # Build model: chose loss function, optimizer, processor support model , optimizer = hybrid_model(arch=args.arch, hidden_units=args.hidden_units, class_idx_mapping=mapping, args=args) criterion = nn.NLLLoss() ## _mem_monitor("1.1 BEFORE TRAINING", args.device) # ===== Monitoring ===== # Launch training train(model=model, trainloader=trainloader, testloader=testloader, epochs=args.epochs, print_every=int(len(trainloader)/PRINT_PER_EPOCH), criterion=criterion, optimizer=optimizer, device=args.device, arch=args.arch, model_dir=args.model_dir, serialize=args.serialize, detail=not(args.no_detail), args=args, ) if __name__ == '__main__': main() ```
{ "source": "JMGaljaard/fltk-testbed", "score": 2 }
#### File: fltk/core/client.py ```python from typing import Tuple, Any import numpy as np import sklearn import time import torch from fltk.core.node import Node from fltk.schedulers import MinCapableStepLR from fltk.strategy import get_optimizer from fltk.util.config import FedLearningConfig class Client(Node): """ Federated experiment client. """ running = False def __init__(self, identifier: str, rank: int, world_size: int, config: FedLearningConfig): super().__init__(identifier, rank, world_size, config) self.loss_function = self.config.get_loss_function()() self.optimizer = get_optimizer(self.config.optimizer)(self.net.parameters(), **self.config.optimizer_args) self.scheduler = MinCapableStepLR(self.optimizer, self.config.scheduler_step_size, self.config.scheduler_gamma, self.config.min_lr) def remote_registration(self): """ Function to perform registration to the remote. Currently, this will connect to the Federator Client. Future version can provide functionality to register to an arbitrary Node, including other Clients. @return: None. @rtype: None """ self.logger.info('Sending registration') self.message('federator', 'ping', 'new_sender') self.message('federator', 'register_client', self.id, self.rank) self.running = True self._event_loop() def stop_client(self): """ Function to stop client after training. This allows remote clients to stop the client within a specific timeframe. @return: None @rtype: None """ self.logger.info('Got call to stop event loop') self.running = False def _event_loop(self): self.logger.info('Starting event loop') while self.running: time.sleep(0.1) self.logger.info('Exiting node') def train(self, num_epochs: int, round_id: int): """ Function implementing federated learning training loop, allowing to run for a configurable number of epochs on a local dataset. Note that only the last statistics of a run are sent to the caller (i.e. Federator). @param num_epochs: Number of epochs to run during a communication round's training loop. @type num_epochs: int @param round_id: Global communication round ID to be used during training. @type round_id: int @return: Final running loss statistic and acquired parameters of the locally trained network. NOTE that intermediate information is only logged to the STD-out. @rtype: Tuple[float, Dict[str, torch.Tensor]] """ start_time = time.time() running_loss = 0.0 final_running_loss = 0.0 for local_epoch in range(num_epochs): effective_epoch = round_id * num_epochs + local_epoch progress = f'[RD-{round_id}][LE-{local_epoch}][EE-{effective_epoch}]' if self.distributed: # In case a client occurs within (num_epochs) communication rounds as this would cause # an order or data to re-occur during training. self.dataset.train_sampler.set_epoch(effective_epoch) training_cardinality = len(self.dataset.get_train_loader()) self.logger.info(f'{progress}{self.id}: Number of training samples: {training_cardinality}') for i, (inputs, labels) in enumerate(self.dataset.get_train_loader(), 0): inputs, labels = inputs.to(self.device), labels.to(self.device) # zero the parameter gradients self.optimizer.zero_grad() outputs = self.net(inputs) loss = self.loss_function(outputs, labels) loss.backward() self.optimizer.step() running_loss += loss.item() # Mark logging update step if i % self.config.log_interval == 0: self.logger.info( f'[{self.id}] [{local_epoch}/{num_epochs:d}, {i:5d}] loss: {running_loss / self.config.log_interval:.3f}') final_running_loss = running_loss / self.config.log_interval running_loss = 0.0 end_time = time.time() duration = end_time - start_time self.logger.info(f'{progress} Train duration is {duration} seconds') return final_running_loss, self.get_nn_parameters(), def set_tau_eff(self, total): client_weight = self.get_client_datasize() / total n = self.get_client_datasize() # pylint: disable=invalid-name E = self.config.epochs # pylint: disable=invalid-name B = 16 # nicely hardcoded :) # pylint: disable=invalid-name tau_eff = int(E * n / B) * client_weight if hasattr(self.optimizer, 'set_tau_eff'): self.optimizer.set_tau_eff(tau_eff) def test(self) -> Tuple[float, float, np.array]: """ Function implementing federated learning test loop. @return: Statistics on test-set given a (partially) trained model; accuracy, loss, and confusion matrix. @rtype: Tuple[float, float, np.array] """ start_time = time.time() correct = 0 total = 0 targets_ = [] pred_ = [] loss = 0.0 with torch.no_grad(): for (images, labels) in self.dataset.get_test_loader(): images, labels = images.to(self.device), labels.to(self.device) outputs = self.net(images) _, predicted = torch.max(outputs.data, 1) # pylint: disable=no-member total += labels.size(0) correct += (predicted == labels).sum().item() targets_.extend(labels.cpu().view_as(predicted).numpy()) pred_.extend(predicted.cpu().numpy()) loss += self.loss_function(outputs, labels).item() # Calculate learning statistics loss /= len(self.dataset.get_test_loader().dataset) accuracy = 100.0 * correct / total confusion_mat = sklearn.metrics.confusion_matrix(targets_, pred_) end_time = time.time() duration = end_time - start_time self.logger.info(f'Test duration is {duration} seconds') return accuracy, loss, confusion_mat def get_client_datasize(self): # pylint: disable=missing-function-docstring return len(self.dataset.get_train_sampler()) def exec_round(self, num_epochs: int, round_id: int) -> Tuple[Any, Any, Any, Any, float, float, float, np.array]: """ Function as access point for the Federator Node to kick off a remote learning round on a client. @param num_epochs: Number of epochs to run @type num_epochs: int @return: Tuple containing the statistics of the training round; loss, weights, accuracy, test_loss, make-span, training make-span, testing make-span, and confusion matrix. @rtype: Tuple[Any, Any, Any, Any, float, float, float, np.array] """ self.logger.info(f"[EXEC] running {num_epochs} locally...") start = time.time() loss, weights = self.train(num_epochs, round_id) time_mark_between = time.time() accuracy, test_loss, test_conf_matrix = self.test() end = time.time() round_duration = end - start train_duration = time_mark_between - start test_duration = end - time_mark_between # self.logger.info(f'Round duration is {duration} seconds') if hasattr(self.optimizer, 'pre_communicate'): # aka fednova or fedprox self.optimizer.pre_communicate() for k, value in weights.items(): weights[k] = value.cpu() return loss, weights, accuracy, test_loss, round_duration, train_duration, test_duration, test_conf_matrix def __del__(self): self.logger.info(f'Client {self.id} is stopping') ``` #### File: fltk/datasets/dataset.py ```python from abc import abstractmethod import torch from torch.utils.data import DataLoader from torch.utils.data import TensorDataset from fltk.util.config import DistLearningConfig class Dataset: def __init__(self, config, learning_params: DistLearningConfig, rank: int, world_size: int): self.config = config self.learning_params = learning_params self.rank = rank self.world_size = world_size self.train_loader = self.load_train_dataset() self.test_loader = self.load_test_dataset() def get_train_dataset(self): """ Returns the train dataset. :return: tuple """ return self.train_loader def get_test_dataset(self): """ Returns the test dataset. :return: tuple """ return self.test_loader @abstractmethod def load_train_dataset(self): """ Loads & returns the training dataset. :return: tuple """ raise NotImplementedError("load_train_dataset() isn't implemented") @abstractmethod def load_test_dataset(self): """ Loads & returns the test dataset. :return: tuple """ raise NotImplementedError("load_test_dataset() isn't implemented") def get_train_loader(self, **kwargs): """ Return the data loader for the train dataset. :param batch_size: batch size of data loader. :type batch_size: int :return: torch.utils.data.DataLoader. """ return self.train_loader def get_test_loader(self, **kwargs): """ Return the data loader for the test dataset. :param batch_size: batch size of data loader. :type batch_size: int :return: torch.utils.data.DataLoader """ return self.test_loader @staticmethod def get_data_loader_from_data(batch_size, X, Y, **kwargs): """ Get a data loader created from a given set of data. :param batch_size: batch size of data loader. :type batch_size: int :param X: data features, :type X: numpy.Array() :param Y: data labels. :type Y: numpy.Array() :return: torch.utils.data.DataLoader """ X_torch = torch.from_numpy(X).float() # pylint: disable=no-member if "classification_problem" in kwargs and kwargs["classification_problem"] == False: Y_torch = torch.from_numpy(Y).float() # pylint: disable=no-member else: Y_torch = torch.from_numpy(Y).long() # pylint: disable=no-member dataset = TensorDataset(X_torch, Y_torch) kwargs.pop("classification_problem", None) return DataLoader(dataset, batch_size=batch_size, **kwargs) ``` #### File: fltk/nets/__init__.py ```python import logging from typing import Type, Dict import torch from fltk.util.config.definitions.net import Nets from .cifar_100_resnet import Cifar100ResNet from .cifar_100_vgg import Cifar100VGG, vgg11_bn, vgg13_bn, vgg16_bn, vgg19_bn from .cifar_10_cnn import Cifar10CNN from .cifar_10_resnet import Cifar10ResNet, ResNet18, ResNet34, ResNet50, ResNet101, ResNet152 from .fashion_mnist_cnn import FashionMNISTCNN from .fashion_mnist_resnet import FashionMNISTResNet from .mnist_cnn import MNIST_CNN from .reddit_lstm import RNNModel from .simple import SimpleMnist, SimpleNet def _available_nets() -> Dict[Nets, Type[torch.nn.Module]]: """ Function to acquire networks provided by the nets package. @return: Dictionary containing mapping from `Nets` definitions to Typed implementation. @rtype: Dict[Nets, Type[torch.nn.Module]] """ return { Nets.cifar100_resnet: Cifar100ResNet, Nets.cifar100_vgg: Cifar100VGG, Nets.cifar10_cnn: Cifar10CNN, Nets.cifar10_resnet: Cifar10ResNet, Nets.fashion_mnist_cnn: FashionMNISTCNN, Nets.fashion_mnist_resnet: FashionMNISTResNet, Nets.mnist_cnn: MNIST_CNN, } def get_net(name: Nets) -> Type[torch.nn.Module]: """ Helper function to get specific Net implementation. @param name: Network definition to obtain. @type name: Nets @return: Class reference to required Network. @rtype: Type[torch.nn.Module] """ logging.info(f"Getting net: {name}") return _available_nets()[name] def get_net_split_point(name: Nets) -> int: """ @deprecated Function to get split points in a network. @param name: Network definition to get split position/module index. @type name: Nets @return: Index of network split position. @rtype: int """ nets_split_point = { Nets.cifar100_resnet: 48, Nets.cifar100_vgg: 28, Nets.cifar10_cnn: 15, Nets.cifar10_resnet: 39, Nets.fashion_mnist_cnn: 7, Nets.fashion_mnist_resnet: 7, Nets.mnist_cnn: 2, } return nets_split_point[name] ``` #### File: strategy/optimization/__init__.py ```python from typing import Type import torch from fltk.util.config.definitions.optim import Optimizations from .fed_prox import FedProx from .fed_nova import FedNova def get_optimizer(name: Optimizations, federated: bool = True) -> Type[torch.optim.Optimizer]: """ Helper function to get specific Optimization class references. @param name: Optimizer class reference. @type name: Optimizations @return: Class reference corresponding to the requested Optimizations definition. Requires instantiation with pre-defined args and kwargs, depending on the Type of Optimizer. @rtype: Type[torch.optim.Optimizer] """ optimizers = { Optimizations.adam: torch.optim.Adam, Optimizations.adam_w: torch.optim.AdamW, Optimizations.sgd: torch.optim.SGD, } if federated: optimizers.update({ Optimizations.fedprox: FedProx, Optimizations.fednova: FedNova }) return optimizers[name] ``` #### File: util/cluster/worker.py ```python import os from torch import distributed as dist def should_distribute() -> bool: """ Function to check whether distributed execution is needed. Note: the WORLD_SIZE environmental variable needs to be set for this to work (larger than 1). PytorchJobs launched from KubeFlow automatically set this property. @return: Indicator for distributed execution. @rtype: bool """ world_size = int(os.environ.get('WORLD_SIZE', 1)) return dist.is_available() and world_size > 1 ``` #### File: fltk/util/data_container.py ```python import csv import numpy as np import time from dataclasses import dataclass from pathlib import Path from typing import List, Type, TextIO @dataclass class DataRecord: pass @dataclass class FederatorRecord(DataRecord): num_selected_clients: int round_id: int round_duration: int test_loss: float test_accuracy: float # Accuracy per class? timestamp: float = time.time() node_name: str = '' confusion_matrix: np.array = None @dataclass class ClientRecord(DataRecord): round_id: int train_duration: float test_duration: float round_duration: float num_epochs: int trained_items: int accuracy: float train_loss: float test_loss: float # Accuracy per class? timestamp: float = time.time() node_name: str = '' confusion_matrix: np.array = None class DataContainer: """ Datacontainer class for collecting experiment data. By default, an 'Excel' compatible format is used by numpy and the csv library. As such, it is advised to use a library such as `pandas` to load data for analysis purposes. """ records: List[DataRecord] file_name: str file_handle: TextIO file_path: Path append_mode: bool record_type: Type[DataRecord] delimiter = ',' name: str def __init__(self, name: str, output_location: Path, record_type: Type[DataRecord], append_mode: bool = False): # print(f'Creating new Data container for client {name}') self.records = [] self.file_name = f'{name}.csv' self.name = name output_location = Path(output_location) output_location.mkdir(parents=True, exist_ok=True) self.file_path = output_location / self.file_name self.append_mode = append_mode file_flag = 'a' if append_mode else 'w' self.file_handle = open(self.file_path, file_flag) print(f'[<=========>] Creating data container at {self.file_path}') self.record_type = record_type if self.append_mode: open(self.file_path, 'w').close() dw = csv.DictWriter(self.file_handle, self.record_type.__annotations__) dw.writeheader() self.file_handle.flush() def append(self, record: DataRecord): record.node_name = self.name self.records.append(record) if self.append_mode: dw = csv.DictWriter(self.file_handle, self.record_type.__annotations__) dw.writerow(record.__dict__) self.file_handle.flush() def save(self): """ Function to save the encapsulated data to the experiment file. The format is 'excel' compatible, resulting in the capability of loading complex objects such as ndarrays as a field. @return: None @rtype: None """ if self.append_mode: return import numpy as np np.set_printoptions(linewidth=10**6) dw = csv.DictWriter(self.file_handle, self.record_type.__annotations__) dw.writeheader() # print(f'Saving {len(self.records)} for node {self.name}') for record in self.records: record.node_name = self.name dw.writerow(record.__dict__) self.file_handle.flush() ```
{ "source": "JMGama/simple-maths", "score": 3 }
#### File: simple-maths/Python/louville_distance.py ```python from factorial import factorial def louville_distance(precision): """ Finds the distance between in zeroes between 2 '1's in the louville number. Will return distances, so if you sum earlier numbers together you get the index at which there would have been a '1' """ precision += 1 # To get far enough distances = [] for index in range(1, precision): try: distances.append(factorial(index) - factorial(index - 1)) except IndexError: break distances[0] = 1 # Because of the way the list is structured return distances ```
{ "source": "JMGama/Teachers-Evaluation", "score": 2 }
#### File: Teachers-Evaluation/evaluations/admin.py ```python # from django.contrib import admin # from .models import * # # Formulary specifications for the Django admin page. # class EvaluationsDetailExamQuestionAdmin(admin.ModelAdmin): # list_display = ['id', 'idquestion', 'idexam'] # exclude = ['updatedon', 'createdon'] # class EvaluationsQuestionsAdmin(admin.ModelAdmin): # list_display = ['id', 'description', 'type', 'status', 'optional',] # search_fields = ['id', 'description', 'type', 'status', 'optional',] # exclude = ['updatedon', 'createdon'] # class EvaluationsExamsAdmin(admin.ModelAdmin): # list_display = ['id', 'description', 'idcareer', 'status', ] # search_fields = ['id', 'description', 'status', ] # exclude = ['updatedon', 'createdon'] # class EvaluationsTeachersAdmin(admin.ModelAdmin): # list_display = ['idperson', 'enrollment', 'name', 'lastname', # 'lastname2', 'instemail', 'status', ] # search_fields = ['idperson', 'enrollment', 'name', 'lastname', # 'lastname2', 'instemail', 'status', ] # exclude = ['updatedon', 'createdon'] # class EvaluationsStudentsAdmin(admin.ModelAdmin): # def get_career_name(self, obj): # description = ParkingCareer.objects.get( # idcareergissa__exact=obj.idcareer).description # return description # list_display = ['idperson', 'enrollment', 'name', 'lastname', # 'lastname2', 'instemail', 'status', 'get_career_name'] # search_fields = ['idperson', 'enrollment', 'name', 'lastname', # 'lastname2', 'instemail', 'status', ] # exclude = ['updatedon', 'createdon'] # class EvaluationsDetailGroupPeriodSignatureAdmin(admin.ModelAdmin): # list_display = ['id', 'idsignature', 'idteacher', 'idperiod', 'status', ] # search_fields = ['id', 'idsignature__name', 'idteacher__enrollment', # 'idteacher__name', 'idperiod__period', 'status'] # raw_id_fields = ('idsignature', 'idteacher',) # exclude = ['updatedon', 'createdon'] # class EvaluationsDetailStudentGroupAdmin(admin.ModelAdmin): # def get_student_id(self, obj): # return obj.idstudent.enrollment # def get_student_name(self, obj): # return obj.idstudent.name + " " + obj.idstudent.lastname + " " + obj.idstudent.lastname2 # def get_materia(self, obj): # return obj.idgroup.idsignature.name # get_student_id.short_description = 'Matricula' # get_student_name.short_description = 'Alumno' # get_materia.short_description = 'Materia' # list_display = ['id', 'idgroup', 'get_student_id', # 'get_student_name', 'get_materia', 'status',] # search_fields = ['idgroup', 'idstudent__enrollment', 'idstudent__name', # 'idstudent__lastname', 'idstudent__lastname2', 'idgroup__idsignature__name', 'status',] # raw_id_fields = ('idstudent',) # exclude = ['updatedon', 'createdon',] # # Register your models here. # admin.site.register(EvaluationsStudents, EvaluationsStudentsAdmin) # admin.site.register(EvaluationsDetailGroupPeriodSignature, # EvaluationsDetailGroupPeriodSignatureAdmin) # admin.site.register(EvaluationsDetailStudentGroup, # EvaluationsDetailStudentGroupAdmin) # admin.site.register(EvaluationsTeachers, EvaluationsTeachersAdmin) # admin.site.register(EvaluationsExams, EvaluationsExamsAdmin) # admin.site.register(EvaluationsDetailExamQuestion, # EvaluationsDetailExamQuestionAdmin) # admin.site.register(EvaluationsQuestions, EvaluationsQuestionsAdmin) # admin.site.register(EvaluationsSignatures) # # Admin site changes # admin.site.site_url = '/evaluations/' # admin.site.site_header = 'Evaluations Administration' ``` #### File: evaluations/views/logout.py ```python from django.db.models import Q from django.http import HttpResponse from django.shortcuts import get_object_or_404, redirect, render from django.views import View class LogoutView(View): template_login = 'evaluations/login.html' def get(self, request): """Flush the session and redirects to the login page.""" try: request.session.flush() except KeyError: pass return render(request, self.template_login) ``` #### File: evaluations/views/monitoring.py ```python import csv from django.db import connection from django.db.models import Q from django.http import HttpResponse from django.shortcuts import get_object_or_404, redirect, render from django.views import View from evaluations.models import (EvaluationsCareer, EvaluationsCoordinator, EvaluationsDtlCoordinatorCareer) class MonitoringView(View): template_monitoring = 'evaluations/monitoring.html' template_login = 'evaluations/login.html' def get(self, request): """Get the information to show the monitoring page, with the general results""" # Verify if the coordinator is correctly logged in. if not request.session.get('session', False) or not request.session['type'] == 'coordinator': return render(request, self.template_login) # Values for the view and the monitoring navigation bar. coordinator = EvaluationsCoordinator.objects.get( pk__exact=request.session['id_coordinator']) careers_id = EvaluationsDtlCoordinatorCareer.objects.filter( fk_coordinator__exact=coordinator.id).values('fk_career') careers = EvaluationsCareer.objects.filter(pk__in=careers_id) # Get the general result for all the evaluations (total evaluated and average). general_data = self.get_general_results() # Render the home view for the coordintators. context = { 'coordinator': coordinator, 'careers': careers, 'general_data': general_data, } # If the coordinator is admin, set it true in the context to show admin things (reports, actions, etc). if coordinator.type == 'ADMIN': context['admin_user'] = True return render(request, self.template_monitoring, context) def get_general_results(self): """Get the general results for all the evaluations""" data = {} with connection.cursor() as cursor: # Get the total of students in the database. cursor.execute( 'SELECT COUNT(id) FROM evaluations_student WHERE status = "ACTIVE"') data['total_students'] = cursor.fetchone()[0] # Get the total of students evaluated. cursor.execute( 'SELECT COUNT( DISTINCT ( D.fk_student ) ) FROM evaluations_signature_evaluated A JOIN evaluations_student_signature D ON A.fk_student_signature = D.id') data['students_evaluated'] = cursor.fetchone()[0] # Get the total of YES answer in not optional questions for the general average. cursor.execute( 'SELECT COUNT(id) FROM evaluations_answer WHERE answer = "yes"') data['yes_answers'] = cursor.fetchone()[0] # Get the total of NO answer in not optional questions for the general average. cursor.execute( 'SELECT COUNT(id) FROM evaluations_answer WHERE answer = "no"') data['no_answers'] = cursor.fetchone()[0] # Calculatate the total of answers in all the evaluations. data['total_answers'] = data['no_answers'] + data['yes_answers'] return data ``` #### File: evaluations/views/teacher_home.py ```python from django.http import HttpResponse from django.shortcuts import render from django.views import View from evaluations.models import (EvaluationsExam, EvaluationsTeacher, EvaluationsTeacherSignature, EvaluationsTeacherSignatureEvaluated) class TeacherHomeView(View): template_teacher_evaluation = 'evaluations/teacher_home.html' template_login = 'evaluations/login.html' def get(self, request): # Verify if the user loggedin is a teacher, if it isn't return him to the login page. if not request.session.get('session', False) or not request.session['type'] == 'teacher': return render(request, self.template_login) # Get the information for the teacher that is going to make the evaluation. teacher = EvaluationsTeacher.objects.get( pk__exact=request.session['id_teacher'], status='ACTIVE') teacher_exams = EvaluationsExam.objects.filter( type__exact='DOCENTE', status='ACTIVE') # Get the signatures information to be evaluated for each exam. signatures_detail = [] for exam in teacher_exams: signatures_dtl = EvaluationsTeacherSignature.objects.filter( fk_teacher__exact=teacher.id, fk_period__exact=exam.fk_period, status='ACTIVE') signatures_detail.append( {'exam': exam, 'signatures_dtl': signatures_dtl}) # Get the evaluations already made. evaluated_signatures = self.get_teacher_signatures_evaluated( teacher, teacher_exams) # Return the next evaluation to be made for the teacher in the exams. next_evaluation = self.get_teacher_next_eval_signature( signatures_detail, evaluated_signatures) if not next_evaluation: try: request.session.flush() except KeyError: pass context = { 'student': teacher, 'complete': 'YES', } return render(request, self.template_login, context) context = { 'teacher': teacher, 'exams_signatures': signatures_detail, 'next_evaluation': next_evaluation, 'evaluated_signatures': evaluated_signatures, } return render(request, self.template_teacher_evaluation, context) def get_teacher_signatures_evaluated(self, teacher, exams): """Return the exam an the signatures already evaluated for that exam""" data = [] # Get the signatures evaluated for each exam. for exam in exams: teacher_signatures = [] signatures_evaluated = EvaluationsTeacherSignatureEvaluated.objects.filter( fk_exam__exact=exam.id, fk_teacher_signature__fk_teacher=teacher.id, status='ACTIVE') for teacher_signature in signatures_evaluated: teacher_signatures.append(teacher_signature.fk_teacher_signature) data.append({'exam': exam, 'signatures_evaluated': teacher_signatures}) return data def get_teacher_next_eval_signature(self, signatures, evaluated_signatures): """return the exam and group that is the next to evaluate (havent evaluated) for the teacher""" next_evaluation = {} for exam_signatures in signatures: for exam_signatures_eval in evaluated_signatures: if exam_signatures['exam'] == exam_signatures_eval['exam']: for signature in exam_signatures['signatures_dtl']: if not signature in exam_signatures_eval['signatures_evaluated']: return {'exam': exam_signatures['exam'], 'signature_dtl': signature} return next_evaluation ``` #### File: evaluations/views/teacher_results.py ```python import csv import xlsxwriter from django.core.exceptions import ObjectDoesNotExist from django.db.models import Q from django.http import HttpResponse from django.shortcuts import get_object_or_404, redirect, render from django.views import View from evaluations.models import (EvaluationsCareer, EvaluationsCoordinator, EvaluationsDtlCoordinatorCareer, EvaluationsDtlQuestionExam, EvaluationsExam, EvaluationsSignatureQuestionResult, EvaluationsSignatureResult, EvaluationsTeacher, EvaluationsTeacherSignature) class TeacherResultsView(View): template_teacher_results = 'evaluations/teacher_results.html' template_monitoring = 'evaluations/career_monitoring.html' template_login = 'evaluations/login.html' def get(self, request, career_id, teacher_id): # Verify if the coordinator is correctly logged in. if not request.session.get('session', False) or not request.session['type'] == 'coordinator': return render(request, self.template_login) # Values for the view and the monitoring navigation bar. coordinator = EvaluationsCoordinator.objects.get( pk__exact=request.session['id_coordinator']) careers_id = EvaluationsDtlCoordinatorCareer.objects.filter( fk_coordinator__exact=coordinator.id).values('fk_career') careers = EvaluationsCareer.objects.filter(pk__in=careers_id) career = EvaluationsCareer.objects.get( pk__exact=career_id, status="ACTIVE") # Get the teacher. teacher = EvaluationsTeacher.objects.get(pk__exact=teacher_id) # Get the teacher signatures in the career. signatures = [signature_dtl.fk_signature for signature_dtl in EvaluationsTeacherSignature.objects.filter( fk_teacher=teacher.id, fk_signature__fk_career__exact=career.id, status="ACTIVE" ).select_related('fk_signature')] # Get the teacher results average of each exam. teacher_results = self.get_teacher_average_results(career, teacher) # Calculate the general average of the teacher from all the exams. general_average = [] for exam in teacher_results: general_average.append(exam['average']) general_average = round( sum(general_average)/len(general_average) if len(general_average) > 0 else 0) # Render the teacher results view with all the things to show. context = { 'results': teacher_results, 'general_average': general_average, 'signatures': signatures, 'teacher': teacher, 'coordinator': coordinator, 'careers': careers, 'career': career } return render(request, self.template_teacher_results, context) def get_teacher_average_results(self, career, teacher): """Returns a list with the average result of the signature, the questions results and comments in each exam of the career""" data = [] # Get all the exams for the career. exams = EvaluationsExam.objects.filter( type__exact=career.type, status__exact='ACTIVE') # Get a list with all the teacher-signature detail of the teacher in that career. signatures_dtl = EvaluationsTeacherSignature.objects.filter( fk_teacher=teacher.id, fk_signature__fk_career__exact=career.id, status="ACTIVE" ).select_related('fk_signature') # Results for each exam of the career. for exam in exams: # Get the average of all the signatures. average = self.get_signatures_average(signatures_dtl, exam) # If the average is false (dosn't have evaluations) continue to the next exam. if not average: break # Get the averages of all the questions in the exam, for all the signatures. questions = self.get_signatures_questions_averages( signatures_dtl, exam) # Add the result of the exam to the return data. exam_results = { 'exam': exam, 'average': average, 'questions': questions } data.append(exam_results) return data def get_signatures_average(self, signatures_dtl, exam): """Return the final average of the result signatures in the exam""" averages = [] for dtl_signature in signatures_dtl: try: # Get the average of the signature. signature_average = EvaluationsSignatureResult.objects.get( group__exact=dtl_signature.group, fk_signature__exact=dtl_signature.fk_signature.id, fk_exam__exact=exam.id, status="ACTIVE" ).average averages.append(float(signature_average)) except ObjectDoesNotExist: pass # Calculate the general average for the teacher. average = False if len(averages) > 0: average = round((sum(averages)/len(averages))) return average def get_signatures_questions_averages(self, signatures_dtl, exam): """Return a dictionary with the questions as the key and the average or comments as value. This will return a empty dict if there isn't any result for the exam""" # Get all the questions for the exam. questions = [question.fk_question for question in EvaluationsDtlQuestionExam.objects.filter( fk_exam=exam.id, status="ACTIVE").select_related('fk_question')] # Get the average for each question on each signature. data = {} for question in questions: # Get the average or comments of the question for each signature. question_result = [] for dtl_signature in signatures_dtl: try: result = EvaluationsSignatureQuestionResult.objects.get( group__exact=dtl_signature.group, fk_question__exact=question.id, fk_signature__exact=dtl_signature.fk_signature.id, fk_exam__exact=exam.id, ).result question_result.append(result) except ObjectDoesNotExist: pass # If the question is optional calculate the final average in other case return all the comments. if len(question_result) > 0: if question.optional != "YES": # Calculate the final average for the question with all the signature-question results and asign it to the result dict. question_result = list(map(float, question_result)) average = round( (sum(question_result)/len(question_result))) data[question] = average else: # Add all the comments of the signature in the result data. Split the comments and add them to a list, only the ones that are not empty. data['comments'] = list(filter(None, question_result[0].split('|'))) return data ```
{ "source": "jmgao/bfg9000", "score": 3 }
#### File: bfg9000/arguments/windows.py ```python class ArgumentParser(object): _argument_info = {} def __init__(self, prefix_chars='/-', value_delim=':'): self.prefix_chars = prefix_chars self.value_delim = value_delim self._options = [] self._short_names = {} self._long_names = {} self._unnamed_dest = None @classmethod def handler(cls, type): def wrapper(thing): cls._argument_info[type] = thing return thing return wrapper def add(self, *args, **kwargs): dest = kwargs.pop('dest', args[0][1:]) type = kwargs.pop('type', bool) info = self._argument_info[type](dest, **kwargs) for i in args: if i[0] not in self.prefix_chars: raise ValueError('names must begin with a prefix char') if len(i) == 2: self._short_names[i] = info else: self._long_names[i] = info self._options.append(info) return info def add_unnamed(self, dest): self._unnamed_dest = dest def parse_known(self, args): result = {i.name: i.default() for i in self._options} if self._unnamed_dest: result[self._unnamed_dest] = [] extra = [] args = iter(args) while True: i = next(args, None) if i is None: break info = None if i[0] in self.prefix_chars: key, value = i[:2], i[2:] if key in self._short_names: info = self._short_names[key] if info.takes_value: if not value: value = next(args) elif value: raise ValueError('no value expected for option') else: key, colon, value = i.partition(self.value_delim) if key in self._long_names: info = self._long_names[key] if not info.takes_value and colon: raise ValueError('no value expected for option') elif self._unnamed_dest: result[self._unnamed_dest].append(i) continue if info: info.fill_value(result, key, value) continue extra.append(i) return result, extra class ArgumentInfo(object): def __init__(self, name): self.name = name def default(self): return None @property def takes_value(self): return True @ArgumentParser.handler('key') class KeyArgumentInfo(ArgumentInfo): def fill_value(self, results, key, value): results[self.name] = key @ArgumentParser.handler(bool) class BoolArgumentInfo(ArgumentInfo): def __init__(self, name, value=True): ArgumentInfo.__init__(self, name) self.value = value def fill_value(self, results, key, value): results[self.name] = self.value @property def takes_value(self): return False @ArgumentParser.handler(str) class StrArgumentInfo(ArgumentInfo): def __init__(self, name): ArgumentInfo.__init__(self, name) def fill_value(self, results, key, value): if not value: raise ValueError('expected value for option') results[self.name] = value @ArgumentParser.handler(list) class ListArgumentInfo(ArgumentInfo): def __init__(self, name): ArgumentInfo.__init__(self, name) def default(self): return [] def fill_value(self, results, key, value): if not value: raise ValueError('expected value for option') results[self.name].append(value) @ArgumentParser.handler(dict) class DictArgumentInfo(ArgumentInfo): def __init__(self, name): ArgumentInfo.__init__(self, name) self._short_names = {} self._long_names = {} self._options = [] def add(self, *args, **kwargs): dest = kwargs.pop('dest', args[0]) type = kwargs.pop('type', 'key') info = ArgumentParser._argument_info[type](dest, **kwargs) if type in (bool, 'key'): for i in args: self._long_names[i] = info else: for i in args: if len(i) != 1: raise ValueError('short names should be one character') self._short_names[i] = info self._options.append(info) return info def default(self): return {i.name: i.default() for i in self._options} def fill_value(self, results, key, value): if not value: raise ValueError('expected value for option') subkey, subvalue = value[:1], value[1:] if subkey in self._short_names: info = self._short_names[subkey] info.fill_value(results[self.name], subkey, subvalue) elif value in self._long_names: info = self._long_names[value] info.fill_value(results[self.name], value, None) ``` #### File: bfg9000/bfg9000/build.py ```python import errno import os from .arguments.parser import ArgumentParser from .builtins import builtin, init as builtin_init, user_arguments from .build_inputs import BuildInputs from .path import exists, Path, pushd, Root from .iterutils import listify from .tools import init as tools_init bfgfile = 'build.bfg' optsfile = 'options.bfg' user_description = """ These arguments are defined by the options.bfg file in the project's source directory. To disambiguate them from built-in arguments, you may prefix the argument name with `-x`. For example, `--foo` may also be written as `--x-foo`. """ class Toolchain(object): __slots__ = ('target_platform') def __init__(self): self.target_platform = None def is_srcdir(path): return exists(path.append(bfgfile)) def _execute_file(f, filename, builtin_dict): code = compile(f.read(), filename, 'exec') try: exec(code, builtin_dict) except SystemExit: pass def load_toolchain(filename): builtin_init() tools_init() toolchain = Toolchain() builtin_dict = builtin.toolchain.bind(toolchain=toolchain) with open(filename.string(), 'r') as f: _execute_file(f, f.name, builtin_dict) return toolchain def _fill_parser(env, parent=None, filename=optsfile, usage='parse'): builtin_init() optspath = Path(filename, Root.srcdir) prog = parent.prog if parent else filename parser = ArgumentParser(prog=prog, parents=listify(parent), add_help=False) try: with open(optspath.string(env.base_dirs), 'r') as f, \ pushd(env.srcdir.string()): # noqa group = parser.add_argument_group('project-defined arguments', description=user_description) group.usage = usage builtin_dict = builtin.options.bind(env=env, parser=group) _execute_file(f, filename, builtin_dict) builtin.options.run_post(builtin_dict, env=env, parser=group) except IOError as e: if e.errno != errno.ENOENT: raise return parser def print_user_help(env, parent, filename=optsfile, out=None): parser = _fill_parser(env, parent, filename, usage='help') parser.print_help(out) def parse_user_args(env, filename=optsfile): parser = _fill_parser(env, None, filename) return parser.parse_args(env.extra_args) def execute_script(env, argv, filename=bfgfile): builtin_init() bfgpath = Path(filename, Root.srcdir) build = BuildInputs(env, bfgpath) builtin_dict = builtin.build.bind(build_inputs=build, argv=argv, env=env) with open(bfgpath.string(env.base_dirs), 'r') as f, \ pushd(env.srcdir.string()): # noqa _execute_file(f, filename, builtin_dict) builtin.build.run_post(builtin_dict, build_inputs=build, argv=argv, env=env) return build ``` #### File: bfg9000/builtins/file_types.py ```python from contextlib import contextmanager from six import string_types from . import builtin from .find import exclude_globs, filter_by_platform from ..file_types import * from ..iterutils import iterate, uniques from ..path import Path, Root, makedirs as _makedirs def local_file(build, file_type, name, params, kwargs): extra_args = [] for key, default in params: extra_args.append(kwargs.pop(key, default)) if kwargs: raise TypeError("unexpected keyword argument '{}'".format( next(iter(kwargs)) )) return build.add_source(file_type(Path(name, Root.srcdir), *extra_args)) @contextmanager def generated_file(build, env, file, mode='w', makedirs=True): if makedirs: _makedirs(file.path.parent().string(env.base_dirs), exist_ok=True) yield open(file.path.string(env.base_dirs), mode) build['regenerate'].outputs.append(file) @builtin.function('build_inputs') @builtin.type(File) def generic_file(build, name): return build.add_source(File(Path(name, Root.srcdir))) @builtin.function('build_inputs') @builtin.type(SourceFile) def source_file(build, name, lang=None): return build.add_source(SourceFile(Path(name, Root.srcdir), lang)) @builtin.function('build_inputs') @builtin.type(HeaderFile) def header_file(build, name, lang=None): return build.add_source(HeaderFile(Path(name, Root.srcdir), lang)) # These builtins will find all the files in a directory so that they can be # added to the distribution. XXX: Perhaps these could be reworked so that # adding/removing files in directories doesn't force bfg to regenerate build # files. def _find(builtins, name, include, type, exclude, filter, as_object=True): if not include: return None return builtins['find_files'](name, include, type, None, exclude, filter, as_object=as_object) @builtin.function('builtins', 'build_inputs') @builtin.type(Directory, in_type=string_types + (File,)) def directory(builtins, build, name, include=None, exclude=exclude_globs, filter=filter_by_platform): if isinstance(name, File): path = name.path.parent() else: path = Path(name, Root.srcdir) files = _find(builtins, name, include, '*', exclude, filter) return Directory(path, files) @builtin.function('builtins', 'build_inputs') @builtin.type(HeaderDirectory, in_type=string_types + (HeaderFile,)) def header_directory(builtins, build, name, include=None, exclude=exclude_globs, filter=filter_by_platform, system=False, lang=None): if isinstance(name, HeaderFile): path = name.path.parent() lang = name.lang else: path = Path(name, Root.srcdir) files = _find(builtins, name, include, 'f', exclude, filter, lambda p: HeaderFile(p, lang)) langs = (uniques(i.lang for i in files if i.lang) if files else iterate(lang)) return HeaderDirectory(path, files, system, langs) ``` #### File: bfg9000/builtins/toolchain.py ```python import os from six import iteritems from . import builtin from .. import shell from .. import tools from ..iterutils import first, isiterable from ..languages import known_langs from ..shell import posix as pshell _unsafe_builtins = ['file', '__import__', 'input', 'open', 'raw_input', 'reload'] @builtin.getter(name='__builtins__', context='toolchain') def builtins(): return {k: v for k, v in iteritems(__builtins__) if k not in _unsafe_builtins} @builtin.getter(context='toolchain') def environ(): return os.environ @builtin.function('toolchain', context='toolchain') def target_platform(toolchain, platform): toolchain.target_platform = platform @builtin.function(context='toolchain') def which(names, resolve=False, strict=True, kind='executable'): try: return ' '.join(shell.which(names, resolve=resolve, kind=kind)) except IOError: if strict: raise result = first(names) return pshell.join(result) if isiterable(result) else result @builtin.function(context='toolchain') def compiler(names, lang, strict=False): var = known_langs[lang].var('compiler') os.environ[var] = which(names, strict=strict, kind='compiler') @builtin.function(context='toolchain') def compile_options(options, lang): # This only supports strings (and lists of strings) for options, *not* # semantic options. It would be nice if we could support semantic options, # but we'd either need to know the flavor of compiler at this point (we # don't) or we'd have to store the options in some way other than as an # environment variable. if isiterable(options): options = pshell.join(options) os.environ[known_langs[lang].var('cflags')] = options @builtin.function(context='toolchain') def runner(names, lang, strict=False): var = known_langs[lang].var('runner') os.environ[var] = which(names, strict=strict, kind='runner') ``` #### File: bfg9000/bfg9000/languages.py ```python from functools import partial from six import iteritems from .iterutils import listify, iterate class _LanguageInfo(object): def __init__(self, name, vars, exts): self.name = name self._vars = vars self._exts = {k: listify(v) for k, v in iteritems(exts)} def _get(self, attr, desc, key): try: return getattr(self, attr)[key] except KeyError: raise ValueError('language {!r} does not support {} {!r}' .format(self.name, desc, key)) def var(self, name): return self._get('_vars', 'var', name) def exts(self, name): return self._get('_exts', 'file type', name) class _LanguageDefiner(object): def __init__(self, langs, name): self._langs = langs self._name = name self._vars = {} self._exts = {} def __enter__(self): return self def __exit__(self, type, value, traceback): self._langs._add(_LanguageInfo( self._name, self._vars, self._exts )) def vars(self, **kwargs): self._vars = kwargs def exts(self, **kwargs): self._exts = kwargs class Languages(object): def __init__(self): self._langs = {} self._ext2lang = {} def __getitem__(self, name): try: return self._langs[name] except KeyError: raise ValueError('unrecognized language {!r}'.format(name)) def _add(self, info): self._langs[info.name] = info for kind, exts in iteritems(info._exts): for ext in exts: tolang = self._ext2lang.setdefault(ext, {}) if kind in tolang: raise ValueError('{ext!r} already used by {lang!r}'.format( ext=ext, lang=tolang[kind] )) tolang[kind] = info.name def fromext(self, ext, kind): return self._ext2lang.get(ext, {}).get(kind) def make(self, name): return _LanguageDefiner(self, name) known_langs = Languages() ``` #### File: bfg9000/bfg9000/options.py ```python from six import add_metaclass from six.moves import zip from . import path, safe_str from .iterutils import isiterable, iterate from .file_types import * from .platforms.framework import Framework class option_list(object): def __init__(self, *args): self._options = [] self.collect(*args) def append(self, option): if ( isinstance(option, safe_str.stringy_types) or not any(option.matches(i) for i in self._options) ): self._options.append(option) def extend(self, options): for i in options: self.append(i) def collect(self, *args): for i in args: if isiterable(i): for j in i: self.collect(j) elif i is not None: self.append(i) def copy(self): return option_list(self._options) def __iter__(self): return iter(self._options) def __len__(self): return len(self._options) def __eq__(self, rhs): return type(self) == type(rhs) and self._options == rhs._options def __ne__(self, rhs): return not (self == rhs) def __repr__(self): return '<option_list({})>'.format(repr(self._options)) def __add__(self, rhs): x = self.copy() x += rhs return x def __iadd__(self, rhs): if not isinstance(rhs, option_list): raise TypeError('expected an option_list, got a {!r}' .format(type(rhs))) self.extend(rhs) return self # XXX: This is a separate function to make Python 2.7.8 and earlier happy. For # details, see <https://bugs.python.org/issue21591>. def _make_init(slots, attrs): exec('def __init__(self, {0}):\n self._init({0})' .format(', '.join(slots)), globals(), attrs) class OptionMeta(type): def __new__(cls, name, bases, attrs): fields = attrs.pop('_fields', []) slots = tuple(i[0] if isiterable(i) else i for i in fields) types = tuple(i[1] if isiterable(i) else None for i in fields) attrs.update({'__slots__': slots, '_types': types}) if '__init__' not in attrs: _make_init(slots, attrs) return type.__new__(cls, name, bases, attrs) def __init__(cls, name, bases, attrs): is_root = not any(type(i) == OptionMeta for i in bases) if is_root: cls.registry = {} else: cls.registry[name] = cls type.__init__(cls, name, bases, attrs) @add_metaclass(OptionMeta) class Option(object): def _init(self, *args): assert len(args) == len(self.__slots__) for k, t, v in zip(self.__slots__, self._types, args): if t and not isinstance(v, t): raise TypeError('expected {}; but got {}'.format( ', '.join(i.__name__ for i in iterate(t)), type(v).__name__ )) setattr(self, k, v) def matches(self, rhs): return self == rhs def __eq__(self, rhs): return type(self) == type(rhs) and all( getattr(self, i) == getattr(rhs, i) for i in self.__slots__ ) def __ne__(self, rhs): return not (self == rhs) def __repr__(self): return '<{}({})>'.format(self.__class__.__name__, ', '.join( repr(getattr(self, i)) for i in self.__slots__ )) def option(name, fields=()): return type(name, (Option,), {'_fields': fields}) # Compilation options include_dir = option('include_dir', [('directory', HeaderDirectory)]) std = option('std', [('value', str)]) pic = option('pic') pch = option('pch', [('header', PrecompiledHeader)]) class define(Option): _fields = [ ('name', str), ('value', (str, type(None))) ] def __init__(self, name, value=None): Option._init(self, name, value) # Link options lib_dir = option('lib_dir', [('directory', Directory)]) lib = option('lib', [('library', (Library, Framework, str))]) rpath_dir = option('rpath_dir', [('path', path.BasePath)]) rpath_link_dir = option('rpath_link_dir', [('path', path.BasePath)]) lib_literal = option('lib_literal', [('value', safe_str.stringy_types)]) entry_point = option('entry_point', [('value', str)]) # General options pthread = option('pthread') ``` #### File: bfg9000/tools/jvm.py ```python import os import re from itertools import chain from .common import BuildCommand, check_which from .. import options as opts, safe_str, shell from ..builtins.file_types import generated_file from ..exceptions import PackageResolutionError from ..file_types import * from ..iterutils import flatten, iterate, uniques from ..packages import Package from ..path import Path, Root from ..versioning import detect_version class JvmBuilder(object): def __init__(self, env, langinfo, command, version_output): name = langinfo.var('compiler').lower() self.lang = langinfo.name self.object_format = 'jvm' flags_name = langinfo.var('cflags').lower() flags = shell.split(env.getvar(langinfo.var('cflags'), '')) jar_command = check_which(env.getvar('JAR', 'jar'), kind='jar builder') # The default command name to run JVM programs is (usually) the same as # the name of the language, so we'll just use that here as the default. run_name = langinfo.var('runner').lower() run_command = check_which( env.getvar(langinfo.var('runner'), self.lang), kind='{} runner'.format(self.lang) ) self.brand = 'unknown' self.version = None if self.lang == 'java': try: # Get the brand from the run command (rather than the compile # command). output = env.execute( run_command + ['-version'], stdout=shell.Mode.pipe, stderr=shell.Mode.stdout ) if re.search(r'Java\(TM\) (\w+ )?Runtime Environment', output): self.brand = 'oracle' elif 'OpenJDK Runtime Environment' in output: self.brand = 'openjdk' except (OSError, shell.CalledProcessError): pass self.version = detect_version(version_output) elif self.lang == 'scala': if 'EPFL' in version_output: self.brand = 'epfl' self.version = detect_version(version_output) self.compiler = JvmCompiler(self, env, name, command, flags_name, flags) self._linker = JarMaker(self, env, jar_command) self.packages = JvmPackageResolver(self, env, run_command) self.runner = JvmRunner(self, env, run_name, run_command) @staticmethod def check_command(env, command): return env.execute(command + ['-version'], stdout=shell.Mode.pipe, stderr=shell.Mode.stdout) @property def flavor(self): return 'jvm' @property def family(self): return 'jvm' @property def can_dual_link(self): return False def linker(self, mode): if mode == 'static_library': raise ValueError('static linking not supported with {}'.format( self.brand )) if mode not in ('executable', 'shared_library'): raise KeyError(mode) return self._linker class JvmCompiler(BuildCommand): def __init__(self, builder, env, name, command, flags_name, flags): BuildCommand.__init__(self, builder, env, name, name, command, flags=(flags_name, flags)) @property def brand(self): return self.builder.brand @property def version(self): return self.builder.version @property def flavor(self): return 'jvm' @property def deps_flavor(self): return None @property def needs_libs(self): return True @property def accepts_pch(self): return False def _call(self, cmd, input, output, flags=None): jvmoutput = self.env.tool('jvmoutput') result = list(chain( cmd, self._always_flags, iterate(flags), [input] )) return jvmoutput(output, result) @property def _always_flags(self): return ['-verbose', '-d', '.'] def flags(self, options, output=None, mode='normal'): flags, class_path = [], [] for i in options: if isinstance(i, opts.lib): class_path.append(i.library.path) elif isinstance(i, safe_str.stringy_types): flags.append(i) else: raise TypeError('unknown option type {!r}'.format(type(i))) if class_path: flags.extend(['-cp', safe_str.join(uniques(class_path), os.pathsep)]) return flags def output_file(self, name, context): return ObjectFileList(Path(name + '.classlist'), Path(name + '.class'), self.builder.object_format, self.lang) class JarMaker(BuildCommand): flags_var = 'jarflags' def __init__(self, builder, env, command): global_flags = shell.split(env.getvar('JARFLAGS', 'cfm')) BuildCommand.__init__(self, builder, env, 'jar', 'jar', command, flags=('jarflags', global_flags)) @property def brand(self): return self.builder.brand @property def version(self): return self.builder.version @property def flavor(self): return 'jar' def can_link(self, format, langs): return format == 'jvm' @property def needs_libs(self): return False @property def has_link_macros(self): return False def pre_build(self, build, name, context): # Fix up paths for the Class-Path field: escape spaces, use forward # slashes on Windows, and prefix Windows drive letters with '/' to # disambiguate them from URLs. def fix_path(p): if self.env.target_platform.name == 'windows': if p[1] == ':': p = '/' + p p = p.replace('\\', '/') return p.replace(' ', '%20') libs = getattr(context, 'libs', []) + flatten( i.libs for i in getattr(context, 'packages', []) ) dirs = uniques(i.path for i in libs) base = Path(name).parent() context.manifest = File(Path(name + '-manifest.txt')) with generated_file(build, self.env, context.manifest) as out: classpath = ' '.join(fix_path(i.relpath(base)) for i in dirs) if classpath: out.write('Class-Path: {}\n'.format(classpath)) if getattr(context, 'entry_point', None): out.write('Main-Class: {}\n'.format(context.entry_point)) return opts.option_list() def _call(self, cmd, input, output, manifest, libs=None, flags=None): return list(chain( cmd, iterate(flags), [output, manifest], iterate(input) )) def transform_input(self, input): return ['@' + safe_str.safe_str(i) if isinstance(i, ObjectFileList) else i for i in input] def flags(self, options, output=None, mode='normal'): flags = [] for i in options: if isinstance(i, safe_str.stringy_types): flags.append(i) else: raise TypeError('unknown option type {!r}'.format(type(i))) return flags def output_file(self, name, context): if getattr(context, 'entry_point', None): filetype = ExecutableLibrary else: filetype = Library return filetype(Path(name + '.jar'), self.builder.object_format, self.lang) class JvmPackage(Package): def __init__(self, name, format, libs=None): Package.__init__(self, name, format) self.libs = libs or [] def compile_options(self, compiler, output): return opts.option_list(opts.lib(i) for i in self.libs) def link_options(self, linker, output): return opts.option_list() class JvmPackageResolver(object): def __init__(self, builder, env, command): self.builder = builder if self.lang == 'scala': extra_env = {'JAVA_OPTS': '-XshowSettings:properties'} args = ['-version'] returncode = 1 else: extra_env = None args = ['-XshowSettings:properties', '-version'] returncode = 0 try: output = env.execute( command + args, env=extra_env, stdout=shell.Mode.devnull, stderr=shell.Mode.pipe, returncode=returncode ) self.ext_dirs = self._get_dirs('java.ext.dirs', output) self.classpath = self._get_dirs('java.class.path', output) except (OSError, shell.CalledProcessError): self.ext_dirs = [] self.classpath = [] @property def lang(self): return self.builder.lang def _get_dirs(self, key, output): ex = r'^(\s*){} = (.*(?:\n\1\s+.*)*)'.format(re.escape(key)) m = re.search(ex, output, re.MULTILINE) if not m: return [] return [i.strip() for i in m.group(2).split('\n')] def _library(self, name): jarname = name + '.jar' for base in self.ext_dirs: fullpath = os.path.join(base, jarname) if os.path.exists(fullpath): return Library(Path(fullpath, Root.absolute), self.builder.object_format, external=True) for path in self.classpath: if os.path.basename(path) == jarname and os.path.exists(path): return Library(Path(path, Root.absolute), self.builder.object_format, external=True) raise PackageResolutionError("unable to find library '{}'" .format(name)) def resolve(self, name, version, kind, headers, libs): return JvmPackage(name, self.builder.object_format, libs=[self._library(name)]) class JvmRunner(BuildCommand): def __init__(self, builder, env, name, command): BuildCommand.__init__(self, builder, env, name, name, command) def _call(self, cmd, file, cp=None, jar=False): result = list(cmd) if jar and self.lang != 'scala': result.append('-jar') if cp: result.extend(['-cp', cp]) result.append(file) return result def run_arguments(self, file): if isinstance(file, Executable): return self(file, jar=True) elif isinstance(file, ObjectFileList): return self.run_arguments(file.object_file) elif isinstance(file, ObjectFile): return self(file.path.stripext().basename(), cp=file.path.parent()) raise TypeError('expected an executable or object file for {} to run' .format(self.lang)) ``` #### File: bfg9000/tools/setenv.py ```python from . import tool from .common import SimpleCommand from ..platforms import platform_name from ..safe_str import jbos, safe_str, shell_literal from ..shell import escape_line if platform_name() == 'windows': @tool('setenv') class SetEnv(SimpleCommand): def __init__(self, env): SimpleCommand.__init__(self, env, name='setenv', env_var='SETENV', default=env.bfgdir.append('pysetenv')) def _call(self, cmd, env, line): if env: eq = shell_literal('=') env_vars = cmd + [jbos(safe_str(name), eq, safe_str(value)) for name, value in env.iteritems()] + ['--'] else: env_vars = [] return env_vars + escape_line(line, listify=True) ``` #### File: test/integration/test_command.py ```python import os.path import re from six import assertRegex from . import * class TestCommand(IntegrationTest): def __init__(self, *args, **kwargs): IntegrationTest.__init__( self, os.path.join(examples_dir, '07_commands'), *args, **kwargs ) def test_hello(self): assertRegex(self, self.build('hello'), re.compile(r'^\s*hello$', re.MULTILINE)) def test_world(self): assertRegex(self, self.build('world'), re.compile(r'^\s*world$', re.MULTILINE)) def test_script(self): assertRegex(self, self.build('script'), re.compile(r'^\s*hello, world!$', re.MULTILINE)) self.assertExists(output_file('file')) def test_alias(self): output = self.build('hello-world') assertRegex(self, output, re.compile(r'^\s*hello$', re.MULTILINE)) assertRegex(self, output, re.compile(r'^\s*world$', re.MULTILINE)) @skip_if_backend('msbuild') class TestRunExecutable(IntegrationTest): def __init__(self, *args, **kwargs): IntegrationTest.__init__(self, 'run_executable', *args, **kwargs) def test_env_run(self): self.assertExists(output_file('file.txt')) def test_cxx(self): assertRegex(self, self.build('cxx'), re.compile(r'^\s*hello from c\+\+!$', re.MULTILINE)) def test_java(self): assertRegex(self, self.build('java'), re.compile(r'^\s*hello from java!$', re.MULTILINE)) def test_java_classlist(self): assertRegex(self, self.build('java-classlist'), re.compile(r'^\s*hello from java!$', re.MULTILINE)) def test_python(self): assertRegex(self, self.build('python'), re.compile(r'^\s*hello from python!$', re.MULTILINE)) ``` #### File: test/integration/test_depfile.py ```python import os.path import shutil from . import * class TestDepfile(IntegrationTest): def __init__(self, *args, **kwargs): IntegrationTest.__init__(self, 'depfile', stage_src=True, *args, **kwargs) @skip_pred(lambda x: x.backend == 'make' and env.host_platform.name == 'windows', 'xfail on windows + make') def test_build(self): self.build(executable('program')) self.assertOutput([executable('program')], 'hello\n') self.wait() shutil.copy(os.path.join(self.srcdir, 'header_replaced.hpp'), os.path.join(self.srcdir, 'header.hpp')) self.build(executable('program')) self.assertOutput([executable('program')], 'goodbye\n') ``` #### File: test/integration/test_env_vars.py ```python import os.path import re from six import assertRegex from . import * class TestEnvVars(IntegrationTest): def __init__(self, *args, **kwargs): IntegrationTest.__init__(self, 'env_vars', *args, **kwargs) @skip_if_backend('msbuild') def test_test(self): self.build('test') def test_command(self): assertRegex(self, self.build('script'), re.compile('^\s*hello script$', re.MULTILINE)) self.assertExists(output_file('file')) ``` #### File: test/integration/test_extra_deps.py ```python from . import * class TestExtraDeps(IntegrationTest): def __init__(self, *args, **kwargs): IntegrationTest.__init__(self, 'extra_deps', *args, **kwargs) def test_build(self): self.build(executable('program')) self.assertOutput([executable('program')], 'hello, world!\n') self.assertExists(output_file('1')) self.assertExists(output_file('2')) self.assertExists(output_file('3')) def test_touch_3(self): self.build('touch3') self.assertNotExists(output_file('1')) self.assertExists(output_file('2')) self.assertExists(output_file('3')) ``` #### File: test/integration/test_subdirs.py ```python import os import tarfile from . import * pjoin = os.path.join class TestSubdirs(IntegrationTest): def __init__(self, *args, **kwargs): IntegrationTest.__init__(self, pjoin(examples_dir, '05_subdirs'), install=True, *args, **kwargs) def setUp(self): IntegrationTest.setUp(self) cleandir(self.installdir) def test_build(self): self.build() self.assertOutput([executable('sub/program')], 'hello, library!\n') def _check_installed(self): extra = [] if env.target_platform.has_import_library: extra = [pjoin(self.libdir, import_library('sub/library').path)] self.assertDirectory(self.installdir, [ pjoin(self.includedir, 'library.hpp'), pjoin(self.includedir, 'detail', 'export.hpp'), pjoin(self.bindir, executable('sub/program').path), pjoin(self.libdir, shared_library('sub/library').path), ] + extra) @skip_if_backend('msbuild') def test_dist(self): dist = output_file('05_subdirs.tar.gz') self.build('dist') self.assertExists(dist) with tarfile.open(self.target_path(dist)) as t: self.assertEqual(set(t.getnames()), { '05_subdirs/build.bfg', '05_subdirs/include/library.hpp', '05_subdirs/include/detail/export.hpp', '05_subdirs/src/library.cpp', '05_subdirs/src/program.cpp', }) @only_if_backend('make', hide=True) def test_dir_sentinels(self): self.build() self.assertTrue(os.path.isfile('sub/.dir')) @skip_if_backend('msbuild') def test_install(self): self.build('install') self._check_installed() os.chdir(self.srcdir) cleandir(self.builddir) self.assertOutput([pjoin(self.bindir, executable('sub/program').path)], 'hello, library!\n') @skip_if_backend('msbuild') def test_install_existing_paths(self): makedirs(self.includedir, exist_ok=True) makedirs(self.bindir, exist_ok=True) makedirs(self.libdir, exist_ok=True) self.build('install') self._check_installed() os.chdir(self.srcdir) cleandir(self.builddir) self.assertOutput([pjoin(self.bindir, executable('sub/program').path)], 'hello, library!\n') @skip_if_backend('msbuild') def test_uninstall(self): self.build('install') self._check_installed() self.build('uninstall') self.assertDirectory(self.installdir, []) ``` #### File: unit/backends/test_ninja.py ```python import ntpath import os.path import posixpath import unittest from six.moves import cStringIO as StringIO from bfg9000 import path from bfg9000 import safe_str from bfg9000.backends.ninja.syntax import * from bfg9000.platforms import platform_name from bfg9000.platforms.posix import PosixPath from bfg9000.platforms.windows import WindowsPath quote_char = '"' if platform_name() == 'windows' else "'" def quoted(s): return quote_char + s + quote_char class TestVariable(unittest.TestCase): def test_equality(self): self.assertTrue(Variable('foo') == Variable('foo')) self.assertFalse(Variable('foo') != Variable('foo')) self.assertFalse(Variable('foo') == Variable('bar')) self.assertTrue(Variable('foo') != Variable('bar')) class TestWriteString(unittest.TestCase): def test_output(self): out = Writer(StringIO()) out.write('foo: $bar', Syntax.output) self.assertEqual(out.stream.getvalue(), 'foo$:$ $$bar') def test_input(self): out = Writer(StringIO()) out.write('foo: $bar', Syntax.input) self.assertEqual(out.stream.getvalue(), 'foo:$ $$bar') def test_shell(self): out = Writer(StringIO()) out.write('foo: $bar', Syntax.shell) self.assertEqual(out.stream.getvalue(), quoted('foo: $$bar')) def test_clean(self): out = Writer(StringIO()) out.write('foo: $bar', Syntax.clean) self.assertEqual(out.stream.getvalue(), 'foo: $$bar') class TestWriteLiteral(unittest.TestCase): def test_output(self): out = Writer(StringIO()) out.write(safe_str.literal('foo: $bar'), Syntax.output) self.assertEqual(out.stream.getvalue(), 'foo: $bar') def test_input(self): out = Writer(StringIO()) out.write(safe_str.literal('foo: $bar'), Syntax.input) self.assertEqual(out.stream.getvalue(), 'foo: $bar') def test_shell(self): out = Writer(StringIO()) out.write(safe_str.literal('foo: $bar'), Syntax.shell) self.assertEqual(out.stream.getvalue(), 'foo: $bar') def test_clean(self): out = Writer(StringIO()) out.write(safe_str.literal('foo: $bar'), Syntax.clean) self.assertEqual(out.stream.getvalue(), 'foo: $bar') class TestWriteShellLiteral(unittest.TestCase): def test_output(self): out = Writer(StringIO()) out.write(safe_str.shell_literal('foo: $bar'), Syntax.output) self.assertEqual(out.stream.getvalue(), 'foo$:$ $$bar') def test_input(self): out = Writer(StringIO()) out.write(safe_str.shell_literal('foo: $bar'), Syntax.input) self.assertEqual(out.stream.getvalue(), 'foo:$ $$bar') def test_shell(self): out = Writer(StringIO()) out.write(safe_str.shell_literal('foo: $bar'), Syntax.shell) self.assertEqual(out.stream.getvalue(), 'foo: $$bar') def test_clean(self): out = Writer(StringIO()) out.write(safe_str.shell_literal('foo: $bar'), Syntax.clean) self.assertEqual(out.stream.getvalue(), 'foo: $$bar') class TestWriteJbos(unittest.TestCase): def test_output(self): out = Writer(StringIO()) s = safe_str.jbos('$foo', safe_str.literal('$bar')) out.write(s, Syntax.output) self.assertEqual(out.stream.getvalue(), '$$foo$bar') def test_input(self): out = Writer(StringIO()) s = safe_str.jbos('$foo', safe_str.literal('$bar')) out.write(s, Syntax.input) self.assertEqual(out.stream.getvalue(), '$$foo$bar') def test_shell(self): out = Writer(StringIO()) s = safe_str.jbos('$foo', safe_str.literal('$bar')) out.write(s, Syntax.shell) if platform_name() == 'windows': expected = '$$foo$bar' else: expected = quoted('$$foo') + '$bar' self.assertEqual(out.stream.getvalue(), expected) def test_clean(self): out = Writer(StringIO()) s = safe_str.jbos('$foo', safe_str.literal('$bar')) out.write(s, Syntax.clean) self.assertEqual(out.stream.getvalue(), '$$foo$bar') class TestWritePath(unittest.TestCase): Path = path.Path ospath = os.path def test_output(self): out = Writer(StringIO()) out.write(self.Path('foo', path.Root.srcdir), Syntax.output) self.assertEqual(out.stream.getvalue(), self.ospath.join('${srcdir}', 'foo')) def test_input(self): out = Writer(StringIO()) out.write(self.Path('foo', path.Root.srcdir), Syntax.input) self.assertEqual(out.stream.getvalue(), self.ospath.join('${srcdir}', 'foo')) def test_shell(self): out = Writer(StringIO()) out.write(self.Path('foo', path.Root.srcdir), Syntax.shell) self.assertEqual(out.stream.getvalue(), quoted(self.ospath.join('${srcdir}', 'foo'))) def test_clean(self): out = Writer(StringIO()) out.write(self.Path('foo', path.Root.srcdir), Syntax.clean) self.assertEqual(out.stream.getvalue(), self.ospath.join('${srcdir}', 'foo')) class TestWritePosixPath(TestWritePath): Path = PosixPath ospath = posixpath class TestWriteWindowsPath(TestWritePath): Path = WindowsPath ospath = ntpath ``` #### File: unit/builtins/test_packages.py ```python import mock import ntpath import os import re import sys import unittest from collections import namedtuple from .common import BuiltinTest from ... import make_env from bfg9000 import file_types, options as opts from bfg9000.builtins import packages from bfg9000.exceptions import PackageResolutionError, PackageVersionError from bfg9000.file_types import Directory, HeaderDirectory from bfg9000.packages import CommonPackage, Framework from bfg9000.path import abspath from bfg9000.platforms import platform_name from bfg9000.versioning import SpecifierSet, Version if sys.version_info >= (3,): open_name = 'builtins.open' else: open_name = '__builtin__.open' # Fix the mock package's mock_open function to work with iter(); note: this is # already fixed in Python 3.7.1's unittest.mock. def mock_open(*args, **kwargs): mo = mock.mock_open(*args, **kwargs) handle = mo.return_value handle.__iter__.side_effect = lambda: iter(handle.readlines.side_effect()) return mo def mock_which(*args, **kwargs): return [os.path.abspath('/command')] def mock_execute(args, **kwargs): if args[-1] == '--version': return ('gcc (Ubuntu 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609\n' + 'Copyright (C) 2015 Free Software Foundation, Inc.\n') elif args[-1] == '-Wl,--version': return '', '/usr/bin/ld --version\n' elif args[-1] == '-print-search-dirs': return 'libraries: =/usr/lib\n' elif args[-1] == '-print-sysroot': return '/\n' elif args[-1] == '--verbose': return 'SEARCH_DIR("/usr")\n' elif args[-1] == '/?': return ('Microsoft (R) C/C++ Optimizing Compiler Version ' + '19.12.25831 for x86') elif args[-1] == '--modversion': return '1.2.3\n' class TestFramework(unittest.TestCase): def test_framework(self): env = make_env('darwin') self.assertEqual( packages.framework(env, 'name'), CommonPackage('name', env.target_platform.object_format, link_options=opts.option_list(opts.lib( Framework('name') ))) ) def test_framework_suffix(self): env = make_env('darwin') self.assertEqual( packages.framework(env, 'name', 'suffix'), CommonPackage('name,suffix', env.target_platform.object_format, link_options=opts.option_list(opts.lib( Framework('name', 'suffix') ))) ) def test_frameworks_unsupported(self): env = make_env('linux') with self.assertRaises(PackageResolutionError): packages.framework(env, 'name') with self.assertRaises(PackageResolutionError): packages.framework(env, 'name', 'suffix') class TestPackage(BuiltinTest): def test_name(self): with mock.patch('bfg9000.shell.execute', mock_execute), \ mock.patch('bfg9000.shell.which', mock_which): # noqa pkg = packages.package(self.env, 'name') self.assertEqual(pkg.name, 'name') self.assertEqual(pkg.version, Version('1.2.3')) self.assertEqual(pkg.specifier, SpecifierSet()) self.assertEqual(pkg.static, False) def test_version(self): with mock.patch('bfg9000.shell.execute', mock_execute), \ mock.patch('bfg9000.shell.which', mock_which): # noqa pkg = packages.package(self.env, 'name', version='>1.0') self.assertEqual(pkg.name, 'name') self.assertEqual(pkg.version, Version('1.2.3')) self.assertEqual(pkg.specifier, SpecifierSet('>1.0')) self.assertEqual(pkg.static, False) def test_lang(self): with mock.patch('bfg9000.shell.execute', mock_execute), \ mock.patch('bfg9000.shell.which', mock_which): # noqa pkg = packages.package(self.env, 'name', lang='c++') self.assertEqual(pkg.name, 'name') self.assertEqual(pkg.version, Version('1.2.3')) self.assertEqual(pkg.specifier, SpecifierSet()) self.assertEqual(pkg.static, False) def test_kind(self): with mock.patch('bfg9000.shell.execute', mock_execute), \ mock.patch('bfg9000.shell.which', mock_which): # noqa pkg = packages.package(self.env, 'name', kind='static') self.assertEqual(pkg.name, 'name') self.assertEqual(pkg.version, Version('1.2.3')) self.assertEqual(pkg.specifier, SpecifierSet()) self.assertEqual(pkg.static, True) def test_invalid_kind(self): with self.assertRaises(ValueError): packages.package(self.env, 'name', kind='bad') class TestBoostPackage(unittest.TestCase): def test_boost_version(self): data = '#define BOOST_LIB_VERSION "1_23_4"\n' with mock.patch(open_name, mock_open(read_data=data)): hdr = HeaderDirectory(abspath('path')) self.assertEqual(packages._boost_version(hdr, SpecifierSet('')), Version('1.23.4')) def test_boost_version_too_old(self): data = '#define BOOST_LIB_VERSION "1_23_4"\n' with mock.patch(open_name, mock_open(read_data=data)): hdr = HeaderDirectory(abspath('path')) with self.assertRaises(PackageVersionError): packages._boost_version(hdr, SpecifierSet('>=1.30')) def test_boost_version_cant_parse(self): data = 'foobar\n' with mock.patch(open_name, mock_open(read_data=data)): hdr = HeaderDirectory(abspath('path')) with self.assertRaises(PackageVersionError): packages._boost_version(hdr, SpecifierSet('')) def test_posix(self): env = make_env('linux', clear_variables=True) def mock_exists(x): if ( re.search(r'[/\\]boost[/\\]version.hpp$', x) or re.search(r'[/\\]libboost_thread', x) or x in ['/usr/include', '/usr/lib']): return True return False with mock.patch('bfg9000.builtins.packages._boost_version', return_value=Version('1.23')), \ mock.patch('bfg9000.shell.which', return_value=['command']), \ mock.patch('bfg9000.shell.execute', mock_execute), \ mock.patch('os.path.exists', mock_exists): # noqa pkg = packages.boost_package(env, 'thread') self.assertEqual(pkg.name, 'boost(thread)') self.assertEqual(pkg.version, Version('1.23')) def test_windows_default_location(self): env = make_env('windows', clear_variables=True) boost_incdir = r'C:\Boost\include\boost-1.23' def mock_walk(top): yield (top,) + ( [('boost-1.23', ntpath.join(top, 'boost-1.23'))], [] ) def mock_execute(*args, **kwargs): if args[0][1] == '/?': return 'cl.exe' raise ValueError() def mock_exists(x): if re.search(r'[/\\]boost[/\\]version.hpp$', x): return True return False with mock.patch('bfg9000.builtins.find._walk_flat', mock_walk), \ mock.patch('bfg9000.builtins.packages._boost_version', return_value=Version('1.23')), \ mock.patch('bfg9000.shell.which', return_value=['command']), \ mock.patch('bfg9000.shell.execute', mock_execute), \ mock.patch('os.path.exists', mock_exists): # noqa pkg = packages.boost_package(env, 'thread') self.assertEqual(pkg.name, 'boost(thread)') self.assertEqual(pkg.version, Version('1.23')) self.assertEqual(pkg._compile_options, opts.option_list( opts.include_dir(HeaderDirectory(abspath(boost_incdir))) )) self.assertEqual(pkg._link_options, opts.option_list( opts.lib_dir(Directory(abspath(r'C:\Boost\lib'))) )) class TestSystemExecutable(BuiltinTest): def test_name(self): with mock.patch('bfg9000.builtins.packages.which', mock_which): self.assertEqual( packages.system_executable(self.env, 'name'), file_types.Executable(abspath('/command'), self.env.target_platform.object_format) ) def test_format(self): with mock.patch('bfg9000.builtins.packages.which', mock_which): self.assertEqual( packages.system_executable(self.env, 'name', 'format'), file_types.Executable(abspath('/command'), 'format') ) ``` #### File: unit/builtins/test_pkg_config.py ```python import unittest from bfg9000.builtins.pkg_config import * from bfg9000.safe_str import safe_str, shell_literal class TestPkgConfigRequirement(unittest.TestCase): def test_merge_requirements(self): a = Requirement('foo', '>=1.0') b = Requirement('foo', '<=2.0') c = Requirement('bar', '<=2.0') self.assertEqual(a & b, Requirement('foo', '>=1.0,<=2.0')) a &= b self.assertEqual(a, Requirement('foo', '>=1.0,<=2.0')) self.assertRaises(ValueError, lambda: b & c) def test_split_requirement(self): a = Requirement('foo') self.assertEqual(set(a.split()), {SimpleRequirement('foo')}) a = Requirement('foo', '>=1.0') self.assertEqual(set(a.split()), {SimpleRequirement('foo', '>=1.0')}) a = Requirement('foo', '>=1.0,<=2.0') self.assertEqual(set(a.split()), {SimpleRequirement('foo', '>=1.0'), SimpleRequirement('foo', '<=2.0')}) def test_split_requirement_single(self): a = Requirement('foo') self.assertEqual(set(a.split(True)), {SimpleRequirement('foo')}) a = Requirement('foo', '>=1.0') self.assertEqual(set(a.split(True)), {SimpleRequirement('foo', '>=1.0')}) a = Requirement('foo', '>=1.0,<=2.0') self.assertRaises(ValueError, lambda: a.split(True)) def test_equality(self): R, S = Requirement, SimpleRequirement self.assertTrue(R('foo', '>=1.0') == R('foo', '>=1.0')) self.assertFalse(R('foo', '>=1.0') != R('foo', '>=1.0')) self.assertTrue(S('foo', '>=1.0') == S('foo', '>=1.0')) self.assertFalse(S('foo', '>=1.0') != S('foo', '>=1.0')) self.assertFalse(R('foo', '>=1.0') == R('bar', '>=1.0')) self.assertTrue(R('foo', '>=1.0') != R('bar', '>=1.0')) self.assertFalse(R('foo', '>=1.0') == R('foo', '>=2.0')) self.assertTrue(R('foo', '>=1.0') != R('foo', '>=2.0')) self.assertFalse(S('foo', '>=1.0') == S('bar', '>=1.0')) self.assertTrue(S('foo', '>=1.0') != S('bar', '>=1.0')) self.assertFalse(S('foo', '>=1.0') == S('foo', '>=2.0')) self.assertTrue(S('foo', '>=1.0') != S('foo', '>=2.0')) self.assertFalse(R('foo', '>=1.0') == S('foo', '>=1.0')) self.assertTrue(R('foo', '>=1.0') != S('foo', '>=1.0')) self.assertFalse(S('foo', '>=1.0') == R('foo', '>=1.0')) self.assertTrue(S('foo', '>=1.0') != R('foo', '>=1.0')) class TestPkgConfigSimpleRequirement(unittest.TestCase): def test_stringify(self): r = SimpleRequirement('foo', '>=1.0') self.assertEqual(safe_str(r), shell_literal('foo >= 1.0')) def test_stringify_equal(self): r = SimpleRequirement('foo', '==1.0') self.assertEqual(safe_str(r), shell_literal('foo = 1.0')) def test_stringify_no_version(self): r = SimpleRequirement('foo') self.assertEqual(safe_str(r), shell_literal('foo')) class TestPkgConfigRequirementSet(unittest.TestCase): def test_init(self): s = RequirementSet([Requirement('foo', '>=1.0'), Requirement('foo', '<=2.0'), Requirement('bar', '>=3.0')]) self.assertEqual(set(s), {Requirement('foo', '>=1.0,<=2.0'), Requirement('bar', '>=3.0')}) def test_add(self): s = RequirementSet() s.add(Requirement('foo', '>=1.0')) s.add(Requirement('foo', '<=2.0')) s.add(Requirement('bar', '>=3.0')) self.assertEqual(set(s), {Requirement('foo', '>=1.0,<=2.0'), Requirement('bar', '>=3.0')}) def test_remove(self): s = RequirementSet([Requirement('foo', '>=1.0'), Requirement('foo', '<=2.0'), Requirement('bar', '>=3.0')]) s.remove('foo') self.assertEqual(set(s), {Requirement('bar', '>=3.0')}) def test_update(self): a = RequirementSet([Requirement('foo', '>=1.0'), Requirement('bar', '>=3.0')]) b = RequirementSet([Requirement('foo', '<=2.0'), Requirement('baz', '>=4.0')]) a.update(b) self.assertEqual(set(a), {Requirement('foo', '>=1.0,<=2.0'), Requirement('bar', '>=3.0'), Requirement('baz', '>=4.0')}) def test_merge_from(self): a = RequirementSet([Requirement('foo', '>=1.0'), Requirement('bar', '>=3.0')]) b = RequirementSet([Requirement('foo', '<=2.0'), Requirement('baz', '>=4.0')]) a.merge_from(b) self.assertEqual(set(a), {Requirement('foo', '>=1.0,<=2.0'), Requirement('bar', '>=3.0')}) self.assertEqual(set(b), {Requirement('baz', '>=4.0')}) def test_split(self): s = RequirementSet([Requirement('foo', '>=1.0'), Requirement('foo', '<=2.0'), Requirement('bar', '>=3.0')]) self.assertEqual(set(s.split()), {SimpleRequirement('bar', '>=3.0'), SimpleRequirement('foo', '>=1.0'), SimpleRequirement('foo', '<=2.0')}) ``` #### File: unit/builtins/test_version.py ```python import unittest from bfg9000.builtins.version import bfg9000_required_version, bfg9000_version from bfg9000.versioning import bfg_version, VersionError class TestRequiredVersion(unittest.TestCase): def test_bfg_version(self): bfg9000_required_version('>=0.1.0') self.assertRaises(VersionError, bfg9000_required_version, '<=0.1.0') def test_python_version(self): bfg9000_required_version(python_version='>=2.7.0') self.assertRaises(VersionError, bfg9000_required_version, None, '<=2.0.0') def test_both_versions(self): bfg9000_required_version('>=0.1.0', '>=2.7.0') self.assertRaises(VersionError, bfg9000_required_version, '<=0.1.0', '<=2.0.0') class TestVersion(unittest.TestCase): def test_version(self): self.assertEqual(bfg9000_version(), bfg_version) ``` #### File: unit/shell/test_windows.py ```python import unittest from bfg9000.shell.windows import * class TestSplit(unittest.TestCase): def test_single(self): self.assertEqual(split('foo'), ['foo']) def test_multiple(self): self.assertEqual(split('foo bar baz'), ['foo', 'bar', 'baz']) def test_backslash(self): self.assertEqual(split(r'C:\path\to\file'), [r'C:\path\to\file']) def test_quote(self): self.assertEqual(split('foo "bar baz"'), ['foo', 'bar baz']) self.assertEqual(split('foo"bar baz"'), ['foobar baz']) self.assertEqual(split(r'foo "c:\path\\"'), ['foo', 'c:\\path\\']) self.assertEqual(split('foo "it\'s \\"good\\""'), ['foo', 'it\'s "good"']) def test_type(self): self.assertEqual(split('foo bar baz', type=tuple), ('foo', 'bar', 'baz')) def test_invalid(self): self.assertRaises(TypeError, split, 1) class TestListify(unittest.TestCase): def test_string(self): self.assertEqual(listify('foo bar baz'), ['foo', 'bar', 'baz']) def test_list(self): self.assertEqual(listify(['foo bar', 'baz']), ['foo bar', 'baz']) def test_type(self): self.assertEqual(listify('foo bar baz', type=tuple), ('foo', 'bar', 'baz')) self.assertEqual(listify(['foo bar', 'baz'], type=tuple), ('foo bar', 'baz')) class TestQuote(unittest.TestCase): def test_simple(self): self.assertEqual(quote('foo'), 'foo') def test_space(self): self.assertEqual(quote('foo bar'), '"foo bar"') def test_quote(self): self.assertEqual(quote('"foo"'), '"\\"foo\\""') def test_backslash(self): self.assertEqual(quote(r'foo\bar'), r'foo\bar') self.assertEqual(quote('foo\\bar\\'), r'"foo\bar\\"') def test_escaped_quote(self): self.assertEqual(quote(r'foo\"bar'), r'"foo\\\"bar"') ``` #### File: test/unit/test_depfixer.py ```python import unittest from six.moves import cStringIO as StringIO from bfg9000.depfixer import * class TestEmitDeps(unittest.TestCase): def test_empty_deps(self): instream = StringIO('foo:\n') outstream = StringIO() emit_deps(instream, outstream) self.assertEqual(outstream.getvalue(), '') def test_single_dep(self): instream = StringIO('foo: bar\n') outstream = StringIO() emit_deps(instream, outstream) self.assertEqual(outstream.getvalue(), 'bar:\n') def test_multiple_deps(self): instream = StringIO('foo: bar baz\n') outstream = StringIO() emit_deps(instream, outstream) self.assertEqual(outstream.getvalue(), 'bar:\nbaz:\n') def test_multiline_deps(self): instream = StringIO('foo: bar\nbaz: quux\n') outstream = StringIO() emit_deps(instream, outstream) self.assertEqual(outstream.getvalue(), 'bar:\nquux:\n') def test_multiple_targets(self): instream = StringIO('foo bar: baz quux\n') outstream = StringIO() emit_deps(instream, outstream) self.assertEqual(outstream.getvalue(), 'baz:\nquux:\n') def test_windows_paths(self): instream = StringIO('c:\\foo c:\\bar: c:\\baz c:\\quux\n') outstream = StringIO() emit_deps(instream, outstream) self.assertEqual(outstream.getvalue(), 'c:\\baz:\nc:\\quux:\n') def test_trailing_spaces(self): instream = StringIO('foo : bar \n') outstream = StringIO() emit_deps(instream, outstream) self.assertEqual(outstream.getvalue(), 'bar:\n') def test_unexpected_newline(self): instream = StringIO('foo\n') outstream = StringIO() self.assertRaises(UnexpectedTokenError, emit_deps, instream, outstream) instream = StringIO('foo \n') outstream = StringIO() self.assertRaises(UnexpectedTokenError, emit_deps, instream, outstream) def test_unexpected_colon(self): instream = StringIO('foo: :\n') outstream = StringIO() self.assertRaises(UnexpectedTokenError, emit_deps, instream, outstream) instream = StringIO('foo: bar :\n') outstream = StringIO() self.assertRaises(UnexpectedTokenError, emit_deps, instream, outstream) def test_unexpected_eof(self): instream = StringIO('foo: bar') outstream = StringIO() self.assertRaises(ParseError, emit_deps, instream, outstream) ``` #### File: test/unit/test_languages.py ```python import unittest from six import assertRaisesRegex from bfg9000.languages import Languages class TestLanguages(unittest.TestCase): def setUp(self): self.known_langs = Languages() with self.known_langs.make('c') as x: x.vars(compiler='CC') x.exts(source='.c') def test_make(self): with self.known_langs.make('c++') as x: x.vars(compiler='CXX') x.exts(source=['.cxx', '.cpp']) self.assertEqual(self.known_langs['c'].name, 'c') self.assertEqual(self.known_langs['c'].var('compiler'), 'CC') self.assertEqual(self.known_langs['c'].exts('source'), ['.c']) self.assertEqual(self.known_langs['c++'].name, 'c++') self.assertEqual(self.known_langs['c++'].var('compiler'), 'CXX') self.assertEqual(self.known_langs['c++'].exts('source'), ['.cxx', '.cpp']) def test_make_duplicate_ext(self): msg = r"^'\.c' already used by 'c'$" with assertRaisesRegex(self, ValueError, msg): with self.known_langs.make('c++') as x: x.exts(source=['.c', '.cpp']) def test_get_unrecognized_lang(self): msg = r"^unrecognized language 'c\+\+'$" with assertRaisesRegex(self, ValueError, msg): self.known_langs['c++'] def test_get_unrecognized_var(self): msg = r"^language 'c' does not support var 'goofy'$" with assertRaisesRegex(self, ValueError, msg): self.known_langs['c'].var('goofy') def test_get_unrecognized_exts(self): msg = r"^language 'c' does not support file type 'goofy'$" with assertRaisesRegex(self, ValueError, msg): self.known_langs['c'].exts('goofy') def test_fromext(self): self.assertEqual(self.known_langs.fromext('.c', 'source'), 'c') self.assertEqual(self.known_langs.fromext('.c', 'header'), None) self.assertEqual(self.known_langs.fromext('.c', 'goofy'), None) self.assertEqual(self.known_langs.fromext('.foo', 'source'), None) ``` #### File: unit/tools/test_ld.py ```python import mock import unittest from ... import make_env from bfg9000.tools.ld import LdLinker from bfg9000.versioning import Version def mock_execute(args, **kwargs): return 'SEARCH_DIR("/dir1")\nSEARCH_DIR("=/dir2")\n' class TestLdLinker(unittest.TestCase): def setUp(self): self.env = make_env() def test_flavor(self): ld = LdLinker(None, self.env, ['ld'], 'version') self.assertEqual(ld.flavor, 'ld') def test_lang(self): class MockBuilder(object): def __init__(self): self.lang = 'c++' ld = LdLinker(MockBuilder(), self.env, ['ld'], 'version') self.assertEqual(ld.lang, 'c++') def test_gnu_ld(self): version = 'GNU ld (GNU Binutils for Ubuntu) 2.26.1' ld = LdLinker(None, self.env, ['ld'], version) self.assertEqual(ld.brand, 'bfd') self.assertEqual(ld.version, Version('2.26.1')) def test_gnu_gold(self): version = 'GNU gold (GNU Binutils for Ubuntu 2.26.1) 1.11' ld = LdLinker(None, self.env, ['ld'], version) self.assertEqual(ld.brand, 'gold') self.assertEqual(ld.version, Version('1.11')) def test_unknown_brand(self): version = 'unknown' ld = LdLinker(None, self.env, ['ld'], version) self.assertEqual(ld.brand, 'unknown') self.assertEqual(ld.version, None) def test_search_dirs(self): with mock.patch('bfg9000.shell.execute', mock_execute): ld = LdLinker(None, self.env, ['ld'], 'version') self.assertEqual(ld.search_dirs(), ['/dir1', '/dir2']) def test_search_dirs_sysroot(self): with mock.patch('bfg9000.shell.execute', mock_execute): ld = LdLinker(None, self.env, ['ld'], 'version') self.assertEqual(ld.search_dirs(sysroot='/sysroot'), ['/dir1', '/sysroot/dir2']) def test_search_dirs_fail(self): def mock_bad_execute(*args, **kwargs): raise OSError() with mock.patch('bfg9000.shell.execute', mock_bad_execute): ld = LdLinker(None, self.env, ['ld'], 'version') self.assertEqual(ld.search_dirs(), []) self.assertRaises(OSError, lambda: ld.search_dirs(strict=True)) ``` #### File: unit/tools/test_msvc.py ```python import mock import unittest from ... import make_env from bfg9000 import file_types, options as opts from bfg9000.languages import Languages from bfg9000.packages import Framework from bfg9000.path import Path from bfg9000.tools.msvc import MsvcBuilder from bfg9000.versioning import Version known_langs = Languages() with known_langs.make('c++') as x: x.vars(compiler='CXX', cflags='CXXFLAGS') def mock_which(*args, **kwargs): return ['command'] class TestMsvcBuilder(unittest.TestCase): def setUp(self): self.env = make_env() def test_properties(self): with mock.patch('bfg9000.shell.which', mock_which): cc = MsvcBuilder(self.env, known_langs['c++'], ['cl'], 'version') self.assertEqual(cc.flavor, 'msvc') self.assertEqual(cc.compiler.flavor, 'msvc') self.assertEqual(cc.pch_compiler.flavor, 'msvc') self.assertEqual(cc.linker('executable').flavor, 'msvc') self.assertEqual(cc.linker('shared_library').flavor, 'msvc') self.assertEqual(cc.linker('static_library').flavor, 'msvc') self.assertEqual(cc.family, 'native') self.assertEqual(cc.auto_link, True) self.assertEqual(cc.can_dual_link, False) self.assertEqual(cc.compiler.num_outputs, 1) self.assertEqual(cc.pch_compiler.num_outputs, 2) self.assertEqual(cc.linker('executable').num_outputs, 1) self.assertEqual(cc.linker('shared_library').num_outputs, 2) self.assertEqual(cc.compiler.deps_flavor, 'msvc') self.assertEqual(cc.pch_compiler.deps_flavor, 'msvc') self.assertEqual(cc.compiler.needs_libs, False) self.assertEqual(cc.pch_compiler.needs_libs, False) self.assertEqual(cc.compiler.accepts_pch, True) self.assertEqual(cc.pch_compiler.accepts_pch, False) self.assertRaises(KeyError, lambda: cc.linker('unknown')) def test_msvc(self): version = ('Microsoft (R) C/C++ Optimizing Compiler Version ' + '19.12.25831 for x86') with mock.patch('bfg9000.shell.which', mock_which): cc = MsvcBuilder(self.env, known_langs['c++'], ['cl'], version) self.assertEqual(cc.brand, 'msvc') self.assertEqual(cc.compiler.brand, 'msvc') self.assertEqual(cc.pch_compiler.brand, 'msvc') self.assertEqual(cc.linker('executable').brand, 'msvc') self.assertEqual(cc.linker('shared_library').brand, 'msvc') self.assertEqual(cc.version, Version('19.12.25831')) self.assertEqual(cc.compiler.version, Version('19.12.25831')) self.assertEqual(cc.pch_compiler.version, Version('19.12.25831')) self.assertEqual(cc.linker('executable').version, Version('19.12.25831')) self.assertEqual(cc.linker('shared_library').version, Version('19.12.25831')) def test_unknown_brand(self): version = 'unknown' with mock.patch('bfg9000.shell.which', mock_which): cc = MsvcBuilder(self.env, known_langs['c++'], ['c++'], version) self.assertEqual(cc.brand, 'unknown') self.assertEqual(cc.compiler.brand, 'unknown') self.assertEqual(cc.pch_compiler.brand, 'unknown') self.assertEqual(cc.linker('executable').brand, 'unknown') self.assertEqual(cc.linker('shared_library').brand, 'unknown') self.assertEqual(cc.version, None) self.assertEqual(cc.compiler.version, None) self.assertEqual(cc.pch_compiler.version, None) self.assertEqual(cc.linker('executable').version, None) self.assertEqual(cc.linker('shared_library').version, None) class TestMsvcCompiler(unittest.TestCase): def setUp(self): self.env = make_env() with mock.patch('bfg9000.shell.which', mock_which): self.compiler = MsvcBuilder(self.env, known_langs['c++'], ['cl'], 'version').compiler def test_flags_empty(self): self.assertEqual(self.compiler.flags(opts.option_list()), []) def test_flags_include_dir(self): p = Path('/path/to/include') self.assertEqual(self.compiler.flags(opts.option_list( opts.include_dir(file_types.HeaderDirectory(p)) )), ['/I' + p]) self.assertEqual(self.compiler.flags(opts.option_list( opts.include_dir(file_types.HeaderDirectory(p)) ), mode='pkg-config'), ['-I' + p]) def test_flags_define(self): self.assertEqual(self.compiler.flags(opts.option_list( opts.define('NAME') )), ['/DNAME']) self.assertEqual(self.compiler.flags(opts.option_list( opts.define('NAME') ), mode='pkg-config'), ['-DNAME']) self.assertEqual(self.compiler.flags(opts.option_list( opts.define('NAME', 'value') )), ['/DNAME=value']) self.assertEqual(self.compiler.flags(opts.option_list( opts.define('NAME', 'value') ), mode='pkg-config'), ['-DNAME=value']) def test_flags_std(self): self.assertEqual(self.compiler.flags(opts.option_list( opts.std('c++14') )), ['/std:c++14']) def test_flags_include_pch(self): p = Path('/path/to/header.hpp') self.assertEqual(self.compiler.flags(opts.option_list( opts.pch(file_types.MsvcPrecompiledHeader(p, None, 'header', 'native')) )), ['/Yuheader']) def test_flags_string(self): self.assertEqual(self.compiler.flags(opts.option_list('-v')), ['-v']) def test_flags_invalid(self): with self.assertRaises(TypeError): self.compiler.flags(opts.option_list(123)) class TestMsvcLinker(unittest.TestCase): def setUp(self): self.env = make_env() version = ('Microsoft (R) C/C++ Optimizing Compiler Version ' + '19.12.25831 for x86') with mock.patch('bfg9000.shell.which', mock_which): self.linker = MsvcBuilder(self.env, known_langs['c++'], ['cl'], version).linker('executable') def test_flags_empty(self): self.assertEqual(self.linker.flags(opts.option_list()), []) def test_flags_lib_dir(self): libdir = Path('/path/to/lib') lib = Path('/path/to/lib/foo.so') # Lib dir self.assertEqual(self.linker.flags(opts.option_list( opts.lib_dir(file_types.Directory(libdir)) )), ['/LIBPATH:' + libdir]) self.assertEqual(self.linker.flags(opts.option_list( opts.lib_dir(file_types.Directory(libdir)) ), mode='pkg-config'), ['-L' + libdir]) # Shared library self.assertEqual(self.linker.flags(opts.option_list( opts.lib(file_types.SharedLibrary(lib, 'native')) )), ['/LIBPATH:' + libdir]) # Static library self.assertEqual(self.linker.flags(opts.option_list( opts.lib(file_types.StaticLibrary(lib, 'native')) )), ['/LIBPATH:' + libdir]) # Mixed self.assertEqual(self.linker.flags(opts.option_list( opts.lib_dir(file_types.Directory(libdir)), opts.lib(file_types.SharedLibrary(lib, 'native')) )), ['/LIBPATH:' + libdir]) def test_flags_string(self): self.assertEqual(self.linker.flags(opts.option_list('-v')), ['-v']) def test_flags_lib_literal(self): self.assertEqual(self.linker.flags(opts.option_list( opts.lib_literal('-lfoo') )), []) def test_flags_invalid(self): with self.assertRaises(TypeError): self.linker.flags(opts.option_list(123)) def test_lib_flags_empty(self): self.assertEqual(self.linker.lib_flags(opts.option_list()), []) def test_lib_flags_lib(self): lib = Path('/path/to/lib/foo.lib') self.assertEqual(self.linker.lib_flags(opts.option_list( opts.lib(file_types.SharedLibrary(lib, 'native')) )), [lib.basename()]) self.assertEqual(self.linker.lib_flags(opts.option_list( opts.lib(file_types.SharedLibrary(lib, 'native')) ), mode='pkg-config'), ['-lfoo']) self.assertEqual(self.linker.lib_flags(opts.option_list( opts.lib(file_types.WholeArchive( file_types.SharedLibrary(lib, 'native')) ) )), ['/WHOLEARCHIVE:' + lib.basename()]) version = ('Microsoft (R) C/C++ Optimizing Compiler Version ' + '18.00.25831 for x86') with mock.patch('bfg9000.shell.which', mock_which): linker = MsvcBuilder(self.env, known_langs['c++'], ['cl'], version).linker('executable') with self.assertRaises(TypeError): linker.lib_flags(opts.option_list( opts.lib(file_types.WholeArchive( file_types.StaticLibrary(lib, 'native') )) )) with self.assertRaises(TypeError): self.linker.lib_flags(opts.option_list( opts.lib(Framework('cocoa')) )) def test_lib_flags_lib_literal(self): self.assertEqual(self.linker.lib_flags(opts.option_list( opts.lib_literal('/?') )), ['/?']) def test_lib_flags_ignored(self): self.assertEqual(self.linker.lib_flags(opts.option_list('-Lfoo')), []) class TestMsvcStaticLinker(unittest.TestCase): def setUp(self): self.env = make_env() with mock.patch('bfg9000.shell.which', mock_which): self.linker = MsvcBuilder(self.env, known_langs['c++'], ['cl'], 'version').linker('static_library') def test_flags_empty(self): self.assertEqual(self.linker.flags(opts.option_list()), []) def test_flags_string(self): self.assertEqual(self.linker.flags(opts.option_list('-v')), ['-v']) def test_flags_invalid(self): with self.assertRaises(TypeError): self.linker.flags(opts.option_list(123)) ```