metadata
dict
text
stringlengths
60
3.49M
{ "source": "joaovcaetano/Algoritmos-Bioinspirados", "score": 3 }
#### File: joaovcaetano/Algoritmos-Bioinspirados/ag.py ```python from random import randint from random import uniform import math import matplotlib.pyplot as plt tamanho_populacao = 50 numero_individuos = 3 taxa_mutacao = 0.05 geracoes = 200 alfa = 0.8 melhores = [] individuo = [] def roleta(porcentagem_individual): roleta = uniform(0.0, 1.0) soma = 0 j = 0 while(soma <= roleta): soma = soma + porcentagem_individual[j] j = j + 1 pos_pai = j - 1 return pos_pai def selecao(total_fit, fit_uni): porcentagem_individual = [] maximiza = [] for i in range(0,len(fit_uni)): maximiza.append(1 / fit_uni[i]) total_fit = sum(maximiza) for i in range(0,len(fit_uni)): porcent = maximiza[i] / total_fit porcentagem_individual.append(porcent) pai1 = roleta(porcentagem_individual) pai2 = roleta(porcentagem_individual) pais = [] pais.append(pai1) pais.append(pai2) return pais def cruzamento(individuo, pais): pos1 = individuo[pais[0]][0] pos2 = individuo[pais[1]][0] pos3 = individuo[pais[0]][1] pos4 = individuo[pais[1]][1] pos5 = individuo[pais[0]][2] pos6 = individuo[pais[1]][2] media1 = (pos1+pos2)/2 media2 = (pos3+pos4)/2 media3 = (pos5+pos6)/2 filho = [] filho.append(media1) filho.append(media2) filho.append(media3) return filho def blend_fator(extrapola, fp1, fp2): d = fp1 - fp2 if (d < 0): menor = fp1 - extrapola maior = fp2 + extrapola else: menor = fp2 - extrapola maior = fp1 + extrapola fator_novo = uniform(float(menor), float(maior)) return fator_novo def cruzamento_blend(individuo, pais): d1 = individuo[pais[0]][0] - individuo[pais[1]][0] d2 = individuo[pais[0]][1] - individuo[pais[1]][1] d3 = individuo[pais[0]][2] - individuo[pais[1]][2] extrapola1 = (abs(d1) * alfa) extrapola2 = (abs(d2) * alfa) extrapola3 = (abs(d3) * alfa) f1 = blend_fator(extrapola1, individuo[pais[0]][0], individuo[pais[1]][0]) f2 = blend_fator(extrapola2, individuo[pais[0]][1], individuo[pais[1]][1]) f3 = blend_fator(extrapola3, individuo[pais[0]][2], individuo[pais[1]][2]) filho = [] filho.append(f1) filho.append(f2) filho.append(f3) return filho def popInicial(): individuo = [] for i in range(0,tamanho_populacao): individuo.append([]) for j in range(0,numero_individuos): a = uniform(-2.0,2.0) individuo[i].append(a) return individuo def plota(melhores): x = [] y = [] for k in range(0,geracoes): x.append(k) y.append(melhores[k]) fig,ax = plt.subplots() ax.plot(x, y) plt.show() y = 0 m = 0 analise = 100 vetor_analise = [] while(m<analise): y = 0 individuo = popInicial() melhores = [] while(y<geracoes): z = [] for i in range(0,len(individuo)): x = 0 for j in range(0,numero_individuos): x += (1.0/(individuo[i][j])**2) x = math.sqrt(x) z.append(x) random = [] ind = [] total_fit = 0 for i in range(0, len(z)): total_fit = total_fit + z[i] filhos = [] for i in range(0,(tamanho_populacao/2)): pais = selecao(total_fit, z) fi = cruzamento_blend(individuo, pais) filhos.append(fi) fi2 = cruzamento_blend(individuo, pais) filhos.append(fi2) fitfilhos = [] for i in range(0,len(filhos)): for j in range(0,numero_individuos): x = uniform(0.0,1.0) if(taxa_mutacao>x): filhos[i][j] = uniform(-2.0,2.0) for i in range(0,len(filhos)): x = 0 for j in range(0,numero_individuos): x += (1.0/(filhos[i][j])**2) x = math.sqrt(x) fitfilhos.append(x) test1 = sorted(z) indice_melhor = z.index(min(z)) aux = individuo[indice_melhor] individuo = [] individuo = filhos individuo[0] = aux melhores.append(test1[0]) y = y + 1 vetor_analise.append(min(melhores)) m = m + 1 #plota(melhores) print m print vetor_analise ``` #### File: joaovcaetano/Algoritmos-Bioinspirados/mochila_ed.py ```python from random import randint from random import uniform import math import matplotlib.pyplot as plt import random tamanho_populacao = 200 numero_individuos = 8 cr = 0.9 f = 1.0 #0.6 geracoes = 100 melhores = [] individuo = [] def mochila(): produtos = [] produtos.append([11,1]) produtos.append([21,11]) produtos.append([31,21]) produtos.append([33,23]) produtos.append([43,33]) produtos.append([53,43]) produtos.append([55,45]) produtos.append([65,55]) return produtos def popInicial(): for i in range(0,tamanho_populacao): individuo.append([]) for j in range(0,numero_individuos): if(random.random()< 0.5): individuo[i].append(0) else: individuo[i].append(1) return individuo def geraPeso(individuo): peso_individuo = 0 utilidade_mochila = 0 for i in range(0,len(individuo)): if(individuo[i] == 1): peso_individuo = peso_individuo + mochila[i][0] utilidade_mochila = utilidade_mochila + mochila[i][1] mochila_individuo = [] mochila_individuo.append(peso_individuo) mochila_individuo.append(utilidade_mochila) return mochila_individuo def fitness(individuo): fit_ind = [] peso_uti = geraPeso(individuo) if(peso_uti[0] > 100): if(peso_uti[0] >= 200): peso_uti[0] = 199 extrapola = peso_uti[0] - 100 porcentagem_extrapolada = float(extrapola) / float(100) reduz_uti = porcentagem_extrapolada * float(peso_uti[1]) peso_uti[0] = 100 peso_uti[1] = peso_uti[1] - reduz_uti fit_ind.append(peso_uti) else: fit_ind.append(peso_uti) return fit_ind def mutacao(individuo): x1 = 0 x2 = 1 x3 = 2 while((x1 != x3) and (x1 != x2) and (x2 != x3)): x1 = uniform(0.0, float(tamanho_populacao)) x2 = uniform(0.0, float(tamanho_populacao)) x3 = uniform(0.0, float(tamanho_populacao)) x1 = int(x1) x2 = int(x2) x3 = int(x3) ind1 = individuo[x1] ind2 = individuo[x2] ind3 = individuo[x3] for i in range(0,numero_individuos): ind1[i] = ind1[i] +(ind3[i] * ind2[i]) if ind1[i] > 1: ind1[i] = 1 return ind1 def cruzamento(individuo, pop_inter): filhos = [] for i in range(0,tamanho_populacao): filho = [] for j in range(0, numero_individuos): random = uniform(0.0, 1.0) if(random < cr): filho.append(individuo[i][j]) else: filho.append(pop_inter[i][j]) filhos.append(filho) return filhos def prox_geracao(individuo, filhos, fit_pai): novo_ind = [] for i in range(0, len(individuo)): fit_filho = fitness(filhos[i]) if (fit_pai[0][0][1] > fit_filho[0][1]): novo_ind.append(individuo[i]) else: novo_ind.append(filhos[i]) return novo_ind def fit_geral(populacao): fit_geral = [0] * tamanho_populacao for i in range(0, len(populacao)): fit_i = fitness(populacao[i]) fit_geral[i] = fit_i return fit_geral mochila = mochila() individuo = popInicial() k = 0 melhor = [] fit_melhor = fit_geral(individuo) while(k<geracoes): pop_int = [] for i in range(0,tamanho_populacao): ind_int = mutacao(individuo) pop_int.append(ind_int) filhos = cruzamento(individuo, pop_int) novo_ind = prox_geracao(individuo, filhos, fit_melhor) util = [] for i in range(0,len(fit_melhor)): util.append(fit_melhor[i][0][1]) index = util.index(max(util)) melhor.append(max(util)) novo_ind[0] = individuo[index] k = k + 1 individuo = novo_ind print melhor ```
{ "source": "JoaoVicente129/GamestonkTerminal", "score": 3 }
#### File: gamestonk_terminal/discovery/disc_controller.py ```python __docformat__ = "numpy" import argparse from typing import List from prompt_toolkit.completion import NestedCompleter from gamestonk_terminal import feature_flags as gtff from gamestonk_terminal.helper_funcs import get_flair from gamestonk_terminal.menu import session from gamestonk_terminal.discovery import ( alpha_vantage_view, ark_view, fidelity_view, finviz_view, seeking_alpha_view, short_interest_view, simply_wallst_view, spachero_view, unusual_whales_view, yahoo_finance_view, ) class DiscoveryController: """ Discovery Controller """ # Command choices CHOICES = [ "help", "q", "quit", "map", "sectors", "gainers", "losers", "orders", "ark_orders", "up_earnings", "high_short", "low_float", "simply_wallst", "spachero", "uwhales", ] def __init__(self): """Constructor""" self.disc_parser = argparse.ArgumentParser(add_help=False, prog="disc") self.disc_parser.add_argument( "cmd", choices=self.CHOICES, ) @staticmethod def print_help(): """ Print help """ print("\nDiscovery Mode:") print(" help show this discovery menu again") print(" q quit this menu, and shows back to main menu") print(" quit quit to abandon program") print("") print(" map S&P500 index stocks map [Finviz]") print(" sectors show sectors performance [Alpha Vantage]") print(" gainers show latest top gainers [Yahoo Finance]") print(" losers show latest top losers [Yahoo Finance]") print(" orders orders by Fidelity Customers [Fidelity]") print(" ark_orders orders by ARK Investment Management LLC") print(" up_earnings upcoming earnings release dates [Seeking Alpha]") print( " high_short show top high short interest stocks of over 20% ratio [www.highshortinterest.com]" ) print( " low_float show low float stocks under 10M shares float [www.lowfloat.com]" ) print(" simply_wallst Simply Wall St. research data [Simply Wall St.]") print(" spachero great website for SPACs research [SpacHero]") print(" uwhales good website for SPACs research [UnusualWhales]") print("") def switch(self, an_input: str): """Process and dispatch input Returns ------- True, False or None False - quit the menu True - quit the program None - continue in the menu """ (known_args, other_args) = self.disc_parser.parse_known_args(an_input.split()) return getattr( self, "call_" + known_args.cmd, lambda: "Command not recognized!" )(other_args) def call_help(self, _): """Process Help command""" self.print_help() def call_q(self, _): """Process Q command - quit the menu""" return False def call_quit(self, _): """Process Quit command - quit the program""" return True def call_map(self, other_args: List[str]): """Process map command""" finviz_view.map_sp500_view(other_args) def call_sectors(self, other_args: List[str]): """Process sectors command""" alpha_vantage_view.sectors_view(other_args) def call_gainers(self, other_args: List[str]): """Process gainers command""" yahoo_finance_view.gainers_view(other_args) def call_losers(self, other_args: List[str]): """Process losers command""" yahoo_finance_view.losers_view(other_args) def call_orders(self, other_args: List[str]): """Process orders command""" fidelity_view.orders_view(other_args) def call_ark_orders(self, other_args: List[str]): """Process ark_orders command""" ark_view.ark_orders_view(other_args) def call_up_earnings(self, other_args: List[str]): """Process up_earnings command""" seeking_alpha_view.earnings_release_dates_view(other_args) def call_high_short(self, other_args: List[str]): """Process high_short command""" short_interest_view.high_short_interest_view(other_args) def call_low_float(self, other_args: List[str]): """Process low_float command""" short_interest_view.low_float_view(other_args) def call_simply_wallst(self, other_args: List[str]): """Process simply_wallst command""" simply_wallst_view.simply_wallst_view(other_args) def call_spachero(self, other_args: List[str]): """Process spachero command""" spachero_view.spachero_view(other_args) def call_uwhales(self, other_args: List[str]): """Process uwhales command""" unusual_whales_view.unusual_whales_view(other_args) def menu(): """Discovery Menu""" disc_controller = DiscoveryController() disc_controller.call_help(None) # Loop forever and ever while True: # Get input command from user if session and gtff.USE_PROMPT_TOOLKIT: completer = NestedCompleter.from_nested_dict( {c: None for c in disc_controller.CHOICES} ) an_input = session.prompt( f"{get_flair()} (disc)> ", completer=completer, ) else: an_input = input(f"{get_flair()} (disc)> ") try: process_input = disc_controller.switch(an_input) if process_input is not None: return process_input except SystemExit: print("The command selected doesn't exist\n") continue ```
{ "source": "joaovicentesouto/INE5416", "score": 3 }
#### File: paradigma_funcional/roteiro8/main.py ```python from vector_operations import * from matrix_operations import * def main(): # Parte 1 v = [1,2,3] w = [10,10,10] print "v: ", v print "w: ", w print "\n||v||: ", norma(v) print "2 * v: ", multiplyByScalar(v, 2) print "v + w: ", additionVectors(v, w) print "v . w: ", scalarProduct(v, w) print "v x w: ", crossProduct(v, w) # Parte 2 A = [[2,0,0], [0,2,0], [0,0,2]] B = [[3,3,2], [1,3,1], [3,3,1]] print "\nMatriz A:\n", A print "\nMatriz B:\n", B print "\nTransposta de A:\n", transpose(A) print "\n10 * A:\n", multiplyMatrixByScalar(A, 10) print "\nA + B:\n", addMatrices(A, B) print "\nA * B:\n", multiplyMatrices(A, B) print "\nMatriz A:\n", A print "\nDeterminante de A: ", determinante(A) print "\nInversa de A: \n", matrixInversa(A) if __name__ == "__main__": main() ``` #### File: paradigma_funcional/roteiro8/matrix_operations.py ```python def transpose(A): B = [[0] * len(A) for i in range(len(A[0]))] for i in range(len(A[0])): for j in range(len(A)): B[i][j] = A[j][i] return B def multiplyMatrixByScalar(A, scalar): B = [[] for i in range(len(A))] for i in range(len(A)): B[i] = map(lambda x: x * scalar, A[i]) return B def addMatrices(A, B): C = [[0] * len(A[0]) for i in range(len(A))] for i in range(len(A)): for j in range(len(B)): C[i][j] = A[i][j] + B[i][j] return C def multiplyMatrices(A, B): C = [[0] * len(B[0]) for i in range(len(A))] for i in range(len(A)): for j in range(len(B[0])): C[i][j] = 0 for k in range(len(B)): C[i][j] += A[i][k] * B[k][j] return C def determinante(A): positive = 0 negative = 0 for k in range(len(A)): j = k aux = 1 for i in range(len(A)): aux = aux * A[i][j] j = (j+1) % len(A) positive += aux i = k aux = 1 for j in range(len(A)-1, -1, -1): aux = aux * A[i][j] i = (i+1) % len(A) negative += aux return (positive - negative) def cofator3x3(i, j, A): i1 = i2 = j1 = j2 = 0 if (i == 0): i1 = i+1 i2 = i+2 elif (i == 1): i1 = i-1 i2 = i+1 else: i1 = i-2 i2 = i-1 if (j == 0): j1 = j+1 j2 = j+2 elif (j == 1): j1 = j-1 j2 = j+1 else: j1 = j-2 j2 = j-1 return A[i1][j1] * A[i2][j2] - A[i1][j2] * A[i2][j1] def matrixInversa(A): Cofatores = [[0] * len(A[0]) for i in range(len(A))] for i in range(len(A)): for j in range(len(A)): Cofatores[i][j] = cofator3x3(i, j, A) Adjunta = transpose(Cofatores) mult = 1.0/determinante(A) Inversa = [[0.0] * len(Adjunta[0]) for i in range(len(Adjunta))] for i in range(len(Adjunta)): for j in range(len(Adjunta[0])): Inversa[i][j] = Adjunta[i][j] * mult return Inversa ```
{ "source": "joaovicentesouto/INE5452", "score": 3 }
#### File: lists/two/test.py ```python import functools def givemaior(m): def mabs(x, y): if x < 0: return -(abs(x) % y) return x % y def maior(a, b): if mabs(a, m) == mabs(b, m): if a == b: return 0 if a % 2 == 0 and b % 2 == 1: return 1 if a % 2 == 0 and b % 2 == 0: return 1 if a > b else -1 return 1 if a < b else -1 if mabs(a, m) > mabs(b, m): return 1 return -1 return maior while True: n, k = [int(k) for k in input().split()] if n == k == 0: break m = abs(k) xs = [] for i in range(n): x = int(input()) xs.append(x) xs = sorted(xs, key = functools.cmp_to_key(givemaior(m))) print(str(n) + ' ' + str(k)) for i in range(n): print(xs[i]) print('0 0') ```
{ "source": "joaovicentesouto/template-ine5410-t2", "score": 4 }
#### File: joaovicentesouto/template-ine5410-t2/aeroporto.py ```python from time import sleep import simulacao as sim class Pista: ''' Definição de apenas uma pista. ''' def __init__(self, id = -1): self.nome = "Pista " + str(id) def overview(self): return self.nome class Portao: ''' Definição de apenas uma portão. ''' def __init__(self, id = -1): self.nome = "Portão " + str(id) def overview(self): return self.nome class Esteira: ''' Definição de apenas uma esteira. ''' def __init__(self, id = -1): self.quant_avioes = 0 self.nome = "Esteira " + str(id) def overview(self): return self.nome + " (" + str(self.quant_avioes) + ")" class Aeroporto: ''' O Aeroporto possui recursos para atender os aviões que trafegarão por ele. É sua responsabilidade CRIAR esses recursos e CONTROLAR a alocação/liberação deles pelos diferentes aviões. A criação dos recursos deve seguir as variáveis globais do arquivo simulacao.py. Você pode utilizá-las assim: 'sim.quant_pistas' Só deve existir uma instância do aeroporto (olhe no final do arquivo) que já está criada. IMPORTANTE: os recursos devem ser únicos e dois aviões nunca podem utilizar o mesmo recurso ao mesmo tempo, tirando casos especiais como a esteira que pode atender uma quantidade limitada de aviões ao mesmo tempo. ''' def __init__(self): self.nome = "Aeroporto" def overview(self): n_entrou = sim.contadores["entrando"] n_aproximando = sim.contadores["aproximando"] n_pousando = sim.contadores["pousando"] n_acoplando = sim.contadores["acoplando"] n_descarregando = sim.contadores["descarregando"] n_carregando = sim.contadores["carregando"] n_desacoplando = sim.contadores["desacoplando"] n_decolando = sim.contadores["decolando"] n_saindo = sim.contadores["saindo"] descricao = self.nome + " (" descricao += str(n_entrou) + ", " descricao += str(n_aproximando) + ", " descricao += str(n_pousando) + ", " descricao += str(n_acoplando) + ", " descricao += str(n_descarregando) + ", " descricao += str(n_carregando) + ", " descricao += str(n_desacoplando) + ", " descricao += str(n_decolando) + ", " descricao += str(n_saindo) + ")" return descricao # Varivável global para armazenar o objeto Aeroporto. # Utilize essa variável dentro das funções de um avião. aeroporto = Aeroporto() ```
{ "source": "joaovictorfonseca/OptionsPricing", "score": 3 }
#### File: dx/derivatives/constant_short_rate.py ```python from derivatives import get_year_deltas import numpy as np class ConstantShortRate: """ Class to generate constant short rate from a datetime list.""" def __init__(self, name, short_rate): self.name = name self.short_rate = short_rate if short_rate < 0: raise ValueError('Short rate negative.') def get_discount_factors(self, date_list, datetime_objects=True): if datetime_objects is True: datetime_list = get_year_deltas(date_list) else: datetime_list = np.array(date_list) disc_factor_list = np.exp(self.short_rate * np.sort(-datetime_list)) return np.array((date_list, disc_factor_list)).T ``` #### File: dx/derivatives/plot_option_stats.py ```python import matplotlib.pyplot as plt def plot_option_stats(s_list, p_list, d_list, v_list): plt.figure(figsize=(9, 7)) sub1 = plt.subplot(311) plt.plot(s_list, p_list, 'ro', label='present value') plt.plot(s_list, p_list, 'b') plt.grid(True) plt.legend(loc=0) plt.setp(sub1.get_xticklabels(), visible=False) sub2 = plt.subplot(312) plt.plot(s_list, d_list, 'go', label='Delta') plt.plot(s_list, d_list, 'b') plt.grid(True) plt.legend(loc=0) plt.ylim(min(d_list) - 0.1, max(d_list) + 0.1) plt.setp(sub2.get_xticklabels(), visible=False) sub3 = plt.subplot(313) plt.plot(s_list, v_list, 'yo', label='Vega') plt.plot(s_list, v_list, 'b') plt.xlabel('initial value of underlying') plt.grid(True) plt.legend(loc=0) ``` #### File: dx/derivatives/simulation_class.py ```python import numpy as np import pandas as pd class SimulationClass: """ Providing base methods for simulation classes.""" def __init__(self, name, mar_env): try: self.name = name self.pricing_date = mar_env.pricing_date self.initial_value = mar_env.get_constant('initial_value') self.volatility = mar_env.get_constant('volatility') self.final_date = mar_env.get_constant('final_date') self.currency = mar_env.get_constant('currency') self.frequency = mar_env.get_constant('frequency') self.paths = mar_env.get_constant('paths') self.discount_curve = mar_env.get_curve('discount_curve') self.time_grid = mar_env.get_list('time_grid') self.special_dates = mar_env.get_list('special_dates') if self.special_dates is None: self.special_dates = [] self.instrument_values = None except Exception as error: print(f"Error parsing market environment.{error}") def generate_time_grid(self): start = self.pricing_date end = self.final_date # pandas date_range function time_grid = pd.date_range(start=start, end=end, freq=self.frequency).to_pydatetime() time_grid = list(time_grid) # enhance time_grid by start, end, and special_dates if start not in time_grid: time_grid.insert(0, start) # insert start date if not in list if end not in time_grid: time_grid.append(end) # insert end date if not in list if len(self.special_dates) > 0: # add all special dates time_grid.extend(self.special_dates) # delete duplicates time_grid = list(set(time_grid)) # sort list time_grid.sort() self.time_grid = np.array(time_grid) def get_instrument_values(self, fixed_seed=True): if self.instrument_values is None: # only initiate simulation if there are no instrument values self.generate_paths(fixed_seed=fixed_seed, day_count=365.) elif fixed_seed is False: # also initiate re-simulation when fixed_seed is False self.generate_paths(fixed_seed=fixed_seed, day_count=365.) return self.instrument_values ```
{ "source": "JoaoVictorLacerda/SafeLanguage", "score": 2 }
#### File: SafeLanguage/telas/descript.py ```python import PySimpleGUI as tela import os import platform var =os.path.expanduser('~') cwd = os.getcwd() if platform.system() == 'Windows': img=f'{cwd}\\img\\01.ico' elif platform.system() =='Linux': img = f'{cwd}/img/01.png' def chama(cont): tela.change_look_and_feel('DarkTeal4') ini=[ [tela.Text('Seja bem-vindo', font=('Consolas',20) ,text_color='#000000', justification='center', size=(53, 0))], [tela.Text(' Cole o código que será descriptografado:', font=('Consolas',20),text_color='#000000', justification='center', size=(53, 0))], [tela.Button('Clique Aqui',size=(27, 1), font=('Consolas', 20),key='bot2',button_color=['#fff','#1a1a1a']), tela.Text(' ←', font=('Consolas', 25),text_color='#33cc33'),tela.Text('Para Criptografar', font=('Consolas', 20),text_color='#33cc33')], [tela.Multiline(cont,font=("Consolas", 12), size=(90, 23), key='codigo1',background_color='#1a1a1a',text_color='#33cc33')], [tela.Button('Descriptografia', font=('Consolas',14),button_color=['#fff','#1a1a1a']), tela.Button('Limpar',font=('Consolas',14), key= 'bot_limpar',button_color=['#fff','#1a1a1a']),tela.Button('Colar', font =('Consolas', 14),button_color=['#fff','#1a1a1a'])] ] return tela.Window( 'Descriptografia', return_keyboard_events=True, layout=ini, location=(250,20), icon=img, finalize=True) def descript(valor): tela.change_look_and_feel('DarkTeal4') init =[ [tela.Multiline(valor,size=(90, 23),font=("Consolas", 14),background_color='#000000',text_color='#33cc33')], [tela.Button('Copiar', font=('Consolas',14 ),button_color=['#fff','#1a1a1a'])] ] return tela.Window( 'Resultado', return_keyboard_events=True, layout=init, icon=img, finalize=True ) def pergunta(): tela.change_look_and_feel('DarkTeal4') init=[ [tela.Text('Deseja salvar sua conta? ',text_color='#33cc33', font=('Consolas, 14'),justification='center')], [tela.Button('SIM', font=('Consolas, 12'),button_color=['#fff','#1a1a1a']),tela.Button('NÃO', font=('Consolas, 12'),button_color=['#fff','#1a1a1a'])] ] return tela.Window( 'Salvar', return_keyboard_events=True, layout=init, icon=img, finalize=True) ```
{ "source": "joaovictor-loureiro/data-science", "score": 4 }
#### File: livro-introducao-a-programacao-com-python/capitulo-8/exercicio8-1.py ```python def maior(x, y): if x > y: print('\nMaior(%d, %d) == %d\n' % (x, y, x)) else: print('\nMaior(%d, %d) == %d\n' % (x, y, y)) maior(5,6) maior(2,1) maior(7,7) ``` #### File: livro-introducao-a-programacao-com-python/capitulo-8/exercicio8-5.py ```python def pesquisa(lista, valor): if valor in lista: n = lista.index(valor) print('\n%d encontrado na posição %d.\n' % (valor, n)) else: print('\n%d não encontrado.\n' % valor) lista = [10, 20, 25, 30] pesquisa(lista, 25) pesquisa(lista, 27) ```
{ "source": "joaovictorsantos/array", "score": 3 }
#### File: array/ArrayComprehension/list_comprehensions.py ```python def fibo(n): return n if n <= 1 else (fibo(n-1) + fibo(n-2)) nums = [1,2,3,4,5,6] [fibo(x) for x in nums] # [1, 1, 2 ,3 ,5, 8] [y for x in nums if (y:= fibo(x)) % 2 == 0] # [2, 8] ``` #### File: array/ArrayComprehension/main.py ```python import math from time import sleep import re #from classsum import sumAll def sort_given_list(): arr = [] num = int(input('How many numbers: '))# take the serie number for n in range(num): numbers = int(input('Enter number: ')) arr.append(numbers)# add to the list the numbers in the serie arr.sort() sleep(0.1) print('The sorted given list is: ' + str(arr)) sm = sum(arr[0:len(arr)]) print('The sum list is: ' + str(sm)) sort_given_list() ``` #### File: array/QuickSort/quick.py ```python def quicksort(arr): if len(arr) < 2: return arr else: pivot = arr[0] less = [i for i in arr[1:] if i <= pivot] greater = [i for i in arr[1:] if i > pivot] return quicksort(less) + [pivot] + quicksort(greater) print('The sorted given list: ' + str(quicksort([90,7,85,13,71,22,67,36,59,45]))) ```
{ "source": "joaovictortr/pypicloud", "score": 2 }
#### File: pypicloud/access/aws_secrets_manager.py ```python import boto3 import json from botocore.exceptions import ClientError from .base_json import IMutableJsonAccessBackend from pypicloud.util import get_settings try: from json.decoder import JSONDecodeError except ImportError: JSONDecodeError = ValueError class AWSSecretsManagerAccessBackend(IMutableJsonAccessBackend): """ This backend allows you to store all user and package permissions in AWS Secret Manager """ def __init__(self, request=None, secret_id=None, kms_key_id=None, client=None, **kwargs): super(AWSSecretsManagerAccessBackend, self).__init__(request, **kwargs) self.secret_id = secret_id self.kms_key_id = kms_key_id self.client = client self.dirty = False @classmethod def configure(cls, settings): kwargs = super(AWSSecretsManagerAccessBackend, cls).configure(settings) kwargs['secret_id'] = settings['auth.secret_id'] kwargs['kms_key_id'] = settings.get('auth.kms_key_id') session = boto3.session.Session(**get_settings( settings, 'auth.', region_name=str, aws_access_key_id=str, aws_secret_access_key=str, aws_session_token=str, profile_name=str, )) kwargs['client'] = session.client('secretsmanager') return kwargs def _get_db(self): """ Hit a server endpoint and return the json response """ try: response = self.client.get_secret_value( SecretId=self.secret_id ) except ClientError as e: if e.response['Error']['Code'] == 'ResourceNotFoundException': return {} elif e.response['Error']['Code'] == 'InvalidRequestException': raise Exception("The request was invalid due to:", e) elif e.response['Error']['Code'] == 'InvalidParameterException': raise Exception("The request had invalid params:", e) raise try: return json.loads(response['SecretString']) except JSONDecodeError as e: raise Exception('Invalid json detected: {}'.format(e)) def _save(self): if not self.dirty: self.dirty = True self.request.tm.get().addAfterCommitHook(self._do_save) def _do_save(self, succeeded): """ Save the auth data to the backend """ if not succeeded: return kwargs = { 'SecretString': json.dumps(self._db), } if self.kms_key_id is not None: kwargs['KmsKeyId'] = self.kms_key_id try: self.client.update_secret( SecretId=self.secret_id, **kwargs ) except ClientError as e: if e.response['Error']['Code'] == 'ResourceNotFoundException': self.client.create_secret( Name=self.secret_id, **kwargs ) raise ``` #### File: pypicloud/access/__init__.py ```python from functools import partial from pyramid.path import DottedNameResolver from .aws_secrets_manager import AWSSecretsManagerAccessBackend from .config import ConfigAccessBackend from .base import (IAccessBackend, IMutableAccessBackend, get_pwd_context, DEFAULT_ROUNDS) from .remote import RemoteAccessBackend from .sql import SQLAccessBackend def includeme(config): """ Configure the app """ settings = config.get_settings() resolver = DottedNameResolver(__name__) dotted_name = settings.get('pypi.auth', 'config') if dotted_name == 'config': dotted_name = ConfigAccessBackend elif dotted_name == 'remote': dotted_name = RemoteAccessBackend elif dotted_name == 'sql': dotted_name = SQLAccessBackend elif dotted_name == 'ldap': dotted_name = "pypicloud.access.ldap_.LDAPAccessBackend" elif dotted_name == 'aws_secrets_manager': dotted_name = AWSSecretsManagerAccessBackend access_backend = resolver.maybe_resolve(dotted_name) kwargs = access_backend.configure(settings) config.add_request_method(partial(access_backend, **kwargs), name='access', reify=True) config.add_postfork_hook(partial(access_backend.postfork, **kwargs)) ``` #### File: pypicloud/pypicloud/models.py ```python import re import pkg_resources import six from datetime import datetime from functools import total_ordering from .util import normalize_name @six.python_2_unicode_compatible @total_ordering class Package(object): """ Representation of a versioned package Parameters ---------- name : str The name of the package (will be normalized) version : str The version number of the package filename : str The name of the package file last_modified : datetime, optional The datetime when this package was uploaded (default now) summary : str, optional The summary of the package **kwargs : dict Metadata about the package """ def __init__(self, name, version, filename, last_modified=None, summary=None, **kwargs): self.name = normalize_name(name) self.version = version self._parsed_version = None self.filename = filename if last_modified is not None: self.last_modified = last_modified else: self.last_modified = datetime.utcnow() self.summary = summary self.data = kwargs def get_url(self, request): """ Create path to the download link """ return request.db.get_url(self) @property def parsed_version(self): """ Parse and cache the version using pkg_resources """ # Use getattr because __init__ isn't called by some ORMs. if getattr(self, '_parsed_version', None) is None: self._parsed_version = pkg_resources.parse_version(self.version) return self._parsed_version @property def is_prerelease(self): """ Returns True if the version is a prerelease version """ return re.match(r'^\d+(\.\d+)*$', self.version) is None def __hash__(self): return hash(self.name) + hash(self.version) def __eq__(self, other): return self.name == other.name and self.version == other.version def __lt__(self, other): return ((self.name, self.parsed_version) < (other.name, other.parsed_version)) def __repr__(self): return self.__str__() def __str__(self): return u'Package(%s)' % (self.filename) def __json__(self, request): return { 'name': self.name, 'filename': self.filename, 'last_modified': self.last_modified, 'version': self.version, 'url': self.get_url(request), 'summary': self.summary, } def search_summary(self): """ Data to return from a pip search """ return { 'name': self.name, 'summary': self.summary or '', # May be None 'version': self.version, } ``` #### File: pypicloud/tests/test_scripts.py ```python from mock import patch from pypicloud import scripts from pypicloud.access import get_pwd_context try: import unittest2 as unittest # pylint: disable=F0401 except ImportError: import unittest class TestScripts(unittest.TestCase): """ Tests for commandline scripts """ @patch.object(scripts, 'getpass') def test_gen_password(self, getpass): """ Generate a password """ pwd_context = get_pwd_context() passwds = ['foo', 'foo', 'bar', 'baz'] getpass.getpass.side_effect = passwds.pop ret = scripts._gen_password() self.assertEqual(len(passwds), 0) self.assertTrue(pwd_context.verify('foo', ret)) @patch.object(scripts, '_gen_password') def test_cli_gen_password(self, genpass): """ Commandline prints generated password """ scripts.gen_password([]) self.assertTrue(genpass.called) @patch('pypicloud.scripts.wrapped_input', return_value='') def test_prompt_default(self, _): """ If user hits 'enter', return default value """ ret = scripts.prompt('', default='abc') self.assertEqual(ret, 'abc') @patch('pypicloud.scripts.wrapped_input') def test_prompt_no_default(self, stdin): """ If no default, require a value """ invals = ['', 'foo'] stdin.side_effect = lambda x: invals.pop(0) ret = scripts.prompt('') self.assertEqual(ret, 'foo') @patch('pypicloud.scripts.wrapped_input') def test_prompt_validate(self, stdin): """ Prompt user until return value passes validation check """ invals = ['foo', 'bar'] stdin.side_effect = lambda x: invals.pop(0) ret = scripts.prompt('', validate=lambda x: x == 'bar') self.assertEqual(ret, 'bar') @patch('pypicloud.scripts.prompt') def test_prompt_choice(self, prompt): """ Prompt the user to choose from a list """ prompt.return_value = 2 ret = scripts.prompt_option('', ['a', 'b', 'c']) self.assertEqual(ret, 'b') @patch('pypicloud.scripts.prompt') def test_prompt_choice_bad_int(self, prompt): """ Bad ints require user to re-input value """ invals = ['a', 'b', 1] prompt.side_effect = lambda *_, **__: invals.pop(0) ret = scripts.prompt_option('', ['a', 'b', 'c']) self.assertEqual(ret, 'a') @patch('pypicloud.scripts.prompt') def test_prompt_choice_index_error(self, prompt): """ Out-of-range ints require user to re-input value """ invals = [44, 4, 0, -1, 3] prompt.side_effect = lambda *_, **__: invals.pop(0) ret = scripts.prompt_option('', ['a', 'b', 'c']) self.assertEqual(ret, 'c') @patch('pypicloud.scripts.prompt') def test_promptyn_yes(self, prompt): """ Prompt user for y/n user says yes """ prompt.return_value = 'y' ret = scripts.promptyn('') self.assertTrue(ret) @patch('pypicloud.scripts.prompt') def test_promptyn_no(self, prompt): """ Prompt user for y/n user says no """ prompt.return_value = 'n' ret = scripts.promptyn('') self.assertFalse(ret) @patch('pypicloud.scripts.prompt') def test_promptyn_no_default(self, prompt): """ Prompt user for y/n requires an answer """ invals = ['', '42', 'yeees', 'wat', '1', 'no'] prompt.side_effect = lambda *_, **__: invals.pop(0) ret = scripts.promptyn('') self.assertEqual(len(invals), 0) self.assertFalse(ret) @patch('pypicloud.scripts.prompt') def test_promptyn_default(self, prompt): """ Prompt user for y/n user default on no input """ prompt.return_value = '' ret = scripts.promptyn('', True) self.assertTrue(ret) ret = scripts.promptyn('', False) self.assertFalse(ret) def test_bucket_validate(self): """ Validate bucket name """ ret = scripts.bucket_validate('bucketname') self.assertTrue(ret) ret = scripts.bucket_validate('bucket.name') self.assertTrue(ret) ret = scripts.bucket_validate('bucketname.') self.assertFalse(ret) ret = scripts.bucket_validate('.bucketname') self.assertFalse(ret) ret = scripts.bucket_validate('bucket..name') self.assertFalse(ret) ```
{ "source": "joaovitocn/pybar", "score": 3 }
#### File: pybar/pybaf/__init__.py ```python import pandas as pd import requests import json class pybaf(): def __init__(self, key: 'api key str' = None): if key is None: raise ValueError('Key must be inserted') self.api_key = key def __version__(): version = '2.0.4' print(version) # checks that will ensure correct variable type is passed def _check_error(self, df_destination, df_origin, destination_id, origin_id): self._check_if_df(df_destination) self._check_if_df(df_origin) self._check_if_column_in_df(df_destination, destination_id, 'df_destination') self._check_if_column_in_df(df_origin, origin_id, 'df_origin') self._check_if_column_in_df(df_destination, 'latitude', 'df_destination') self._check_if_column_in_df(df_origin, 'latitude', 'df_origin') self._check_if_column_in_df(df_destination, 'longitude', 'df_destination') self._check_if_column_in_df(df_origin, 'longitude', 'df_origin') def _check_if_df(self, df): if not isinstance(df, pd.DataFrame): raise ValueError("Value is not a pd.DataFrame") def _check_if_column_in_df(self, df: 'data frame', column_name: 'Column Name', df_name=None): if not column_name in df.columns: print(df.columns) raise ValueError("Column {} is not on DataFrame : {}".format(str(column_name), df_name)) # transforms data received from bing to pd.DataFrame() def _data_to_df(self, data): number = len(data['resourceSets'][0]['resources'][0]['results']) df_data = pd.DataFrame(columns=[ self.origin_id,self.destination_id, "distancia", "duracao"]) for x in range(0, (number)): id_origem = data['resourceSets'][0]['resources'][0]['results'][x]['originIndex'] id_destination = data['resourceSets'][0]['resources'][0]['results'][x]['destinationIndex'] distance = data['resourceSets'][0]['resources'][0]['results'][x]['travelDistance'] duration = data['resourceSets'][0]['resources'][0]['results'][x]['travelDuration'] df_data.loc[x] = [id_origem, id_destination, distance, duration] df_data.reset_index(inplace=True, drop=True) return df_data # get latitude and longitude from pd.DataFrame to API format . def _get_lat_lon(self, df): rows = len(df.index) lat_long = [] lat_long_list = [] for y in range(0, (rows)): lat = df.iloc[y]['latitude'] lon = df.iloc[y]['longitude'] lat_long.append([lat, lon]) return lat_long # post request to API def _post_request(self, payload): url = 'https://dev.virtualearth.net/REST/v1/Routes/DistanceMatrix?key={}'.format(self.api_key) # Adding empty header as parameters are being sent in payload headers = {'Content-Type': 'application/json'} r = requests.post(url, data=json.dumps(payload), headers=headers) return (json.loads(r.text)) # will split pd.DataFrame to ensure API limit of combinations is respect def _split_origin_destination(self, origins, destinations,lista_origin): number = self.api_limit len_origins = len(origins) len_destinations = len(destinations) combinations = len_origins * len_destinations if combinations < number: return True, origins, destinations, lista_origin else: n_origins = number // len_destinations teste = [origins[x:(x + n_origins)] for x in range(0, len(origins), n_origins)] names = [lista_origin[x:(x + n_origins)] for x in range(0, len(lista_origin), n_origins)] print('loops: {} || origens: {} || destinations: {} || limite ={}' .format(len(teste), len(origins), len(destinations), number)) return False, teste, destinations,names # create text that will be used on api request def _create_text(self, origins, destinations): origins_rows = len(origins) rows = len(destinations) if self.starttime == 0: if len(origins) == 1: teste3 = { "origins": [{ "latitude": origins[0][0], "longitude": origins[0][1] } ], "destinations": [{ "latitude": destinations[0][0], "longitude": destinations[0][1] }, ], "travelMode": 'driving', } else: teste3 = { "origins": [{ "latitude": origins[0][0], "longitude": origins[0][1] } ], "destinations": [{ "latitude": destinations[0][0], "longitude": destinations[0][1] }, ], "travelMode": 'driving', } for x in range(1, (origins_rows)): teste3['origins'].append( {'latitude': origins[x][0], 'longitude': origins[x][1]}) for x in range(1, rows): teste3['destinations'].append( {'latitude': destinations[x][0], 'longitude': destinations[x][1]} ) else: if len(origins) == 1: teste3 = { "origins": [{ "latitude": origins[0][0], "longitude": origins[0][1] } ], "destinations": [{ "latitude": destinations[0][0], "longitude": destinations[0][1] }, ], "travelMode": 'driving', "startTime" : self.starttime, } else: teste3 = { "origins": [{ "latitude": origins[0][0], "longitude": origins[0][1] } ], "destinations": [{ "latitude": destinations[0][0], "longitude": destinations[0][1] }, ], "travelMode": 'driving', "startTime" : self.starttime, } for x in range(1, (origins_rows)): teste3['origins'].append( {'latitude': origins[x][0], 'longitude': origins[x][1]}) for x in range(1, rows): teste3['destinations'].append( {'latitude': destinations[x][0], 'longitude': destinations[x][1]} ) return teste3 # attach the api results to the IDs from original pd.DataFrames def _attach_ids(self, df_final, lista_origin, lista_destination): for x in range(0, len(lista_destination)): df_final[self.destination_id] = df_final[self.destination_id].replace(x, lista_destination[x]) for x in range(0, len(lista_origin)): df_final[self.origin_id] = df_final[self.origin_id].replace(x, lista_origin[x]) return df_final # distance matrix will return the combinations of distance between df_destination and df_origin def distance_matrix(self, df_destination, df_origin, destination_id, origin_id,start_time=0,limit = 2500): self.api_limit = limit self.destination_id = destination_id self.origin_id = origin_id self.starttime = start_time df_final = pd.DataFrame() check = self._check_error(df_destination, df_origin, destination_id, origin_id) lista_destination = list(df_destination[self.destination_id]) lista_origin = list(df_origin[self.origin_id]) origins = [x for x in self._get_lat_lon(df_origin)] destinations = self._get_lat_lon(df_destination) var1, origins, destinations,lista_origin = self._split_origin_destination(origins, destinations,lista_origin) try: if var1: payload = self._create_text(origins, destinations) json_text = self._post_request(payload) df = self._data_to_df(json_text) df_final = df_final.append(df) df_final = self._attach_ids(df_final, lista_origin, lista_destination) else: for origin in origins: print('loop number {}'.format(origins.index(origin))) payload = self._create_text(origin, destinations) json_text = self._post_request(payload) df = self._data_to_df(json_text) df_final = df_final.append(df) origin_name = lista_origin[origins.index(origin)] df_final = self._attach_ids(df_final, origin_name, lista_destination) except: print("An error has eccured, here's the json output for debug") print(json_text) return df_final # n_smallest will return the n smallest of calculated distance matrix def n_smallest(self, df_final, origin_id: 'Origin id', destination_id: 'Destination Id', value: 'value that will be considered', n=1): self._check_if_df(df_final) if value is None or origin_id is None or destination_id is None: raise ValueError('id and value must be column names') self._check_if_column_in_df(df_final, origin_id) self._check_if_column_in_df(df_final, value) df_final = df_final.sort_values(by=origin_id) df_groupby = df_final.groupby([origin_id, destination_id])[value].nsmallest(n).reset_index() df_groupby = df_groupby.drop(columns='level_2') result = pd.merge(df_groupby, df_final, on=[origin_id, value], how='inner') ```
{ "source": "joaovitor123jv/rontext", "score": 2 }
#### File: rontext/filesystem_listener/localization.py ```python import time import threading import subprocess import settings import database import helpers def point_inside_circle(point, circle): a = (point["latitude"] - circle["latitude"]) * (point["latitude"] - circle["latitude"]) b = (point["longitude"] - circle["longitude"]) * (point["longitude"] - circle["longitude"]) precision = float(settings.loaded["localization_precision"]) return (a + b) < (precision * precision) def already_in_database(cursor, localization): stored_localizations = database.get_localizations(cursor) if stored_localizations != None: for stored_localization in stored_localizations: temp_localization = { 'latitude': stored_localization[1], 'longitude': stored_localization[2] } if point_inside_circle(localization, temp_localization): return True return False def listener(): # print("**** SIDE_THREAD ID == ", threading.get_ident()) time.sleep(1) connection = database.connect() cursor = connection.cursor() while True: return_data = subprocess.run([settings.loaded['localization_bin']], stdout=subprocess.PIPE) parsed_return = helpers.parse_yaml_string(return_data.stdout.decode('utf8')) settings.add_runtime('localization', parsed_return) if already_in_database(cursor, settings.runtime['localization']): # print("Localization already in database, skipping") pass else: # print("Localization is not in database, inserting") with connection: database.store_localization(cursor, settings.runtime['localization']) time.sleep(settings.loaded['localization_plugin_wait_time']) # Waits 1 second till the next localization check def start_plugin(): try: thread = threading.Thread(target=listener) thread.start() except: print("Failed to start localization plugin") ``` #### File: rontext/filesystem_listener/operations.py ```python import subprocess import settings import time_parser import time import database import helpers import os def isProjectRelated(path): return ( path.startswith( os.environ['HOME'] + "/Documentos/UFG-CDC/PFC/PFC2/Sistema" ) or path.startswith( os.environ['HOME'] + "/.ctxt_search-") ) def shouldIgnore(path): if isProjectRelated(path): return True for ignored_substring in settings.loaded['ignore_occurrences']: if ignored_substring in path: return True return False def created_something(type_names, path): return True if (type_names[0] in ["IN_MOVED_TO", "IN_CREATE"]) and not shouldIgnore(path) else False def accessed_something(type_names, path): return True if (type_names[0] == "IN_OPEN") and not shouldIgnore(path) else False def deleted_something(type_names, path): return True if (type_names[0] in ["IN_MOVED_FROM", "IN_DELETE"]) and not shouldIgnore(path) else False def store_events(connection, events): if events != None: normalized_events = [] for event in events: normalized_events.append(( time_parser.convert_to_python_datetime(event[':start']), time_parser.convert_to_python_datetime(event[':end']), event[':summary'] )) database.store_events(connection, normalized_events) def call_ics_plugin(connection, file): print("PARSING ICS FILE: ", file) return_data = subprocess.run([settings.loaded['ics_parser_bin'], file], stdout=subprocess.PIPE) parsed_return = helpers.parse_yaml_string(return_data.stdout.decode('utf8')) with connection: store_events(connection, parsed_return) print("FILE PARSED") def handle_access(path, filename): file = path + '/' + filename if filename == 'START': print("Starting time monitoring") settings.add_runtime('start_timestamp', time.time()) if os.path.isfile(file): file_id = database.store_file(file) def handle_file_created(connection, path, filename): file = path + '/' + filename if filename.endswith('.ics'): # print("ICS File detected") call_ics_plugin(connection, file) elif file == (settings.loaded['database'] + '-journal'): return else: file_id = database.store_file(file) def handle_file_deleted(connection, path, filename): file = path + '/' + filename if(filename.endswith('.ics')): print("File calendar deleted: ", file) # callIcsPlugin(file) elif file == (settings.loaded['database'] + '-journal'): return else: # print("Deleted file ", file) database.delete_file_reference(connection.cursor(), file) ``` #### File: rontext/localization/settings.py ```python import os def init(): global loaded loaded = {} global runtime runtime = {} global default default = { 'use_mock': True, 'mock': { 'actual_localization': { 'latitude': 50.21, # RANGE: -90 ~ 90 'longitude': -51.11 # RANGE: -180 ~ 180 }, 'precision': 0.001 # In decimal degrees (see table below). Precision relative to neighborhood, street } } # REFERENCE: Decimal degrees -> precision at equator -> precision at 23N/S (mexico, cuba...) # 1.0 111.32km 102.47km # 0.1 11.132km 10.247km # 0.01 1.1132km 1.0247km # 0.001 111.32m 102.47m ```
{ "source": "joaovitor2020/sadchat", "score": 3 }
#### File: joaovitor2020/sadchat/buffer.py ```python import state # Módulo para o buffer do teclado buffer = "" def get_buffer(): global buffer return buffer def set_buffer(new): global buffer buffer = new process_buffer() # 'Corrige' o conteúdo do buffer (acentuação) state.update_buffer() def backspace(): global buffer set_buffer(buffer[0: state.get("cursor_position")-1] + buffer[state.get("cursor_position"):]) state.dec_cursor_position() def append(char): global buffer set_buffer(buffer[0: state.get("cursor_position")] + char + buffer[state.get("cursor_position"):]) state.inc_cursor_position() def clear_buffer(): global buffer set_buffer("") state.zero_cursor_position() # Função para 'corrigir' o buffer, substituindo sequências como # "~a", "~o", "`a", etc. para "ã", "õ", "à" def process_buffer(): global buffer equivalences = [ ["~a", "ã"], ["´a", "á"], ["`a", "ã"], ["^a", "â"], ["¨a", "ä"], ["~A", "Ã"], ["´A", "Á"], ["`A", "À"], ["^A", "Â"], ["¨A", "Ä"], ["~e", "ẽ"], ["´e", "é"], ["`e", "è"], ["^e", "ê"], ["¨e", "ë"], ["~E", "Ẽ"], ["´E", "É"], ["`E", "È"], ["^E", "Ê"], ["¨E", "Ë"], ["~i", "ĩ"], ["´i", "í"], ["`i", "ì"], ["^i", "î"], ["¨i", "ï"], ["~I", "Ĩ"], ["´I", "Í"], ["`I", "Ì"], ["^I", "Î"], ["¨I", "Ï"], ["~o", "õ"], ["´o", "ó"], ["`o", "ò"], ["^o", "ô"], ["¨o", "ö"], ["~O", "Õ"], ["´O", "Ó"], ["`O", "Ò"], ["^O", "Ô"], ["¨O", "Ö"], ["~u", "ũ"], ["´u", "ú"], ["`u", "Ù"], ["^u", "û"], ["¨u", "ü"], ["~U", "Ũ"], ["´U", "Ú"], ["`U", "Ù"], ["^U", "Û"], ["¨U", "Ü"] ] # processed_buffer = buffer for equivalence in equivalences: buffer = buffer.replace(equivalence[0], equivalence[1]) # return processed_buffer ``` #### File: joaovitor2020/sadchat/hmac.py ```python import hashlib md5_block_size = hashlib.md5().block_size ENCODING = 'latin1' INNER = 0 OUTER = 1 def resize_string(s): m = md5_block_size - len(s) for t in range(0,m): s+= chr(0) return s def xor_pad(key,pad): if pad not in [INNER, OUTER]: raise Exception('Param pad must be either INNER or OUTER') x = 0 xored_bytes = [] for c in key: y = (0x36 if pad == INNER else 0x5c) x = ord(c)^ y xored_bytes.append(x) return xored_bytes def convert_int_char(v): result = "" for l in range(0,len(v)): caracter = chr(v[l]) result += caracter return result def hmac_md5(key,text): if(len(key) < md5_block_size): key = resize_string(key) result1 = convert_int_char(xor_pad(key,INNER)) result2 = result1 + text chave1 = hashlib.md5(result2.encode(ENCODING)) result3 = convert_int_char(xor_pad(key,OUTER)) chave2 = hashlib.md5(result3.encode(ENCODING) + chave1.digest()) return (chave2).digest() def verify_hmac(key,text,expected_hash): return hmac_md5(key,text) == expected_hash ```
{ "source": "joaovitor3/readthedocs.org", "score": 2 }
#### File: rtd_tests/tests/test_doc_building.py ```python from itertools import zip_longest import os import tempfile import uuid from unittest import mock from unittest.mock import Mock, PropertyMock, patch import pytest from django.test import TestCase, override_settings from django_dynamic_fixture import get from docker.errors import APIError as DockerAPIError from readthedocs.builds.models import Version from readthedocs.doc_builder.config import load_yaml_config from readthedocs.doc_builder.environments import ( BuildCommand, DockerBuildCommand, DockerBuildEnvironment, LocalBuildEnvironment, ) from readthedocs.doc_builder.exceptions import BuildAppError from readthedocs.doc_builder.python_environments import Conda, Virtualenv from readthedocs.projects.models import Project from readthedocs.rtd_tests.mocks.paths import fake_paths_lookup from readthedocs.rtd_tests.tests.test_config_integration import create_load DUMMY_BUILD_ID = 123 SAMPLE_UNICODE = 'HérÉ îß sömê ünïçó∂é' SAMPLE_UTF8_BYTES = SAMPLE_UNICODE.encode('utf-8') # TODO: these tests need to be re-written to make usage of the Celery handlers # properly to check not recorded/recorded as success. For now, they are # minimally updated to keep working, but they could be improved. class TestLocalBuildEnvironment(TestCase): @patch('readthedocs.doc_builder.environments.api_v2') def test_command_not_recorded(self, api_v2): build_env = LocalBuildEnvironment() with build_env: build_env.run('true', record=False) self.assertEqual(len(build_env.commands), 0) api_v2.command.post.assert_not_called() @patch('readthedocs.doc_builder.environments.api_v2') def test_record_command_as_success(self, api_v2): project = get(Project) build_env = LocalBuildEnvironment( project=project, build={ 'id': 1, }, ) with build_env: build_env.run('false', record_as_success=True) self.assertEqual(len(build_env.commands), 1) command = build_env.commands[0] self.assertEqual(command.exit_code, 0) api_v2.command.post.assert_called_once_with({ 'build': mock.ANY, 'command': command.get_command(), 'output': command.output, 'exit_code': 0, 'start_time': command.start_time, 'end_time': command.end_time, }) # TODO: translate these tests into # `readthedocs/projects/tests/test_docker_environment.py`. I've started the # work there but it requires a good amount of work to mock it properly and # reliably. I think we can skip these tests (3) for now since we are raising # BuildAppError on these cases which we are already handling in other test # cases. # # Once we mock the DockerBuildEnvironment properly, we could also translate the # new tests from `readthedocs/projects/tests/test_build_tasks.py` to use this # mocks. @pytest.mark.skip class TestDockerBuildEnvironment(TestCase): """Test docker build environment.""" fixtures = ['test_data', 'eric'] def setUp(self): self.project = Project.objects.get(slug='pip') self.version = Version(slug='foo', verbose_name='foobar') self.project.versions.add(self.version, bulk=False) def test_container_already_exists(self): """Docker container already exists.""" self.mocks.configure_mock( 'docker_client', { 'inspect_container.return_value': {'State': {'Running': True}}, 'exec_create.return_value': {'Id': b'container-foobar'}, 'exec_start.return_value': b'This is the return', 'exec_inspect.return_value': {'ExitCode': 0}, }, ) build_env = DockerBuildEnvironment( version=self.version, project=self.project, build={'id': DUMMY_BUILD_ID}, ) def _inner(): with build_env: build_env.run('echo', 'test', cwd='/tmp') self.assertRaises(BuildAppError, _inner) self.assertEqual(self.mocks.docker_client.exec_create.call_count, 0) # api() is not called anymore, we use api_v2 instead self.assertFalse(self.mocks.api()(DUMMY_BUILD_ID).put.called) # The build failed before executing any command self.assertFalse(self.mocks.mocks['api_v2.command'].post.called) self.mocks.mocks['api_v2.build']().put.assert_called_with({ 'id': DUMMY_BUILD_ID, 'version': self.version.pk, 'success': False, 'project': self.project.pk, 'setup_error': '', 'exit_code': 1, 'length': 0, 'error': 'A build environment is currently running for this version', 'setup': '', 'output': '', 'state': 'finished', 'builder': mock.ANY, }) def test_container_timeout(self): """Docker container timeout and command failure.""" response = Mock(status_code=404, reason='Container not found') self.mocks.configure_mock( 'docker_client', { 'inspect_container.side_effect': [ DockerAPIError( 'No container found', response, 'No container found', ), {'State': {'Running': False, 'ExitCode': 42}}, ], 'exec_create.return_value': {'Id': b'container-foobar'}, 'exec_start.return_value': b'This is the return', 'exec_inspect.return_value': {'ExitCode': 0}, }, ) build_env = DockerBuildEnvironment( version=self.version, project=self.project, build={'id': DUMMY_BUILD_ID}, ) with build_env: build_env.run('echo', 'test', cwd='/tmp') self.assertEqual(self.mocks.docker_client.exec_create.call_count, 1) # api() is not called anymore, we use api_v2 instead self.assertFalse(self.mocks.api()(DUMMY_BUILD_ID).put.called) # The command was saved command = build_env.commands[0] self.mocks.mocks['api_v2.command'].post.assert_called_once_with({ 'build': DUMMY_BUILD_ID, 'command': command.get_command(), 'description': command.description, 'output': command.output, 'exit_code': 0, 'start_time': command.start_time, 'end_time': command.end_time, }) self.mocks.mocks['api_v2.build']().put.assert_called_with({ 'id': DUMMY_BUILD_ID, 'version': self.version.pk, 'success': False, 'project': self.project.pk, 'setup_error': '', 'exit_code': 1, 'length': 0, 'error': 'Build exited due to time out', 'setup': '', 'output': '', 'state': 'finished', 'builder': mock.ANY, }) # NOTE: these tests should be migrated to not use `LocalBuildEnvironment` # behind the scenes and mock the execution of the command itself by using # `DockerBuildEnvironment`. # # They should be merged with the following test suite `TestDockerBuildCommand`. # # Also note that we require a Docker setting here for the tests to pass, but we # are not using Docker at all. @override_settings(RTD_DOCKER_WORKDIR='/tmp') class TestBuildCommand(TestCase): """Test build command creation.""" def test_command_env(self): """Test build command env vars.""" env = {'FOOBAR': 'foobar', 'BIN_PATH': 'foobar'} cmd = BuildCommand('echo', environment=env) for key in list(env.keys()): self.assertEqual(cmd._environment[key], env[key]) def test_result(self): """Test result of output using unix true/false commands.""" cmd = BuildCommand('true') cmd.run() self.assertTrue(cmd.successful) cmd = BuildCommand('false') cmd.run() self.assertTrue(cmd.failed) def test_missing_command(self): """Test missing command.""" path = os.path.join('non-existant', str(uuid.uuid4())) self.assertFalse(os.path.exists(path)) cmd = BuildCommand(path) cmd.run() self.assertEqual(cmd.exit_code, -1) # There is no stacktrace here. self.assertIsNone(cmd.output) self.assertIsNone(cmd.error) def test_output(self): """Test output command.""" cmd = BuildCommand(['/bin/bash', '-c', 'echo -n FOOBAR']) # Mock BuildCommand.sanitized_output just to count the amount of calls, # but use the original method to behaves as real original_sanitized_output = cmd.sanitize_output with patch('readthedocs.doc_builder.environments.BuildCommand.sanitize_output') as sanitize_output: # noqa sanitize_output.side_effect = original_sanitized_output cmd.run() self.assertEqual(cmd.output, 'FOOBAR') # Check that we sanitize the output self.assertEqual(sanitize_output.call_count, 2) def test_error_output(self): """Test error output from command.""" cmd = BuildCommand(['/bin/bash', '-c', 'echo -n FOOBAR 1>&2']) cmd.run() self.assertEqual(cmd.output, 'FOOBAR') self.assertIsNone(cmd.error) def test_sanitize_output(self): cmd = BuildCommand(['/bin/bash', '-c', 'echo']) checks = ( (b'Hola', 'Hola'), (b'H\x00i', 'Hi'), (b'H\x00i \x00\x00\x00You!\x00', 'Hi You!'), ) for output, sanitized in checks: self.assertEqual(cmd.sanitize_output(output), sanitized) @patch('subprocess.Popen') def test_unicode_output(self, mock_subprocess): """Unicode output from command.""" mock_process = Mock(**{ 'communicate.return_value': (SAMPLE_UTF8_BYTES, b''), }) mock_subprocess.return_value = mock_process cmd = BuildCommand(['echo', 'test'], cwd='/tmp/foobar') cmd.run() self.assertEqual( cmd.output, 'H\xe9r\xc9 \xee\xdf s\xf6m\xea \xfcn\xef\xe7\xf3\u2202\xe9', ) # TODO: translate this tests once we have DockerBuildEnvironment properly # mocked. These can be done together with `TestDockerBuildEnvironment`. @pytest.mark.skip class TestDockerBuildCommand(TestCase): """Test docker build commands.""" def test_wrapped_command(self): """Test shell wrapping for Docker chdir.""" cmd = DockerBuildCommand( ['pip', 'install', 'requests'], cwd='/tmp/foobar', ) self.assertEqual( cmd.get_wrapped_command(), "/bin/sh -c 'pip install requests'", ) cmd = DockerBuildCommand( ['python', '/tmp/foo/pip', 'install', 'Django>1.7'], cwd='/tmp/foobar', bin_path='/tmp/foo', ) self.assertEqual( cmd.get_wrapped_command(), ( '/bin/sh -c ' "'PATH=/tmp/foo:$PATH " r"python /tmp/foo/pip install Django\>1.7'" ), ) def test_unicode_output(self): """Unicode output from command.""" self.mocks.configure_mock( 'docker_client', { 'exec_create.return_value': {'Id': b'container-foobar'}, 'exec_start.return_value': SAMPLE_UTF8_BYTES, 'exec_inspect.return_value': {'ExitCode': 0}, }, ) cmd = DockerBuildCommand(['echo', 'test'], cwd='/tmp/foobar') cmd.build_env = Mock() cmd.build_env.get_client.return_value = self.mocks.docker_client type(cmd.build_env).container_id = PropertyMock(return_value='foo') cmd.run() self.assertEqual( cmd.output, 'H\xe9r\xc9 \xee\xdf s\xf6m\xea \xfcn\xef\xe7\xf3\u2202\xe9', ) self.assertEqual(self.mocks.docker_client.exec_start.call_count, 1) self.assertEqual(self.mocks.docker_client.exec_create.call_count, 1) self.assertEqual(self.mocks.docker_client.exec_inspect.call_count, 1) def test_command_oom_kill(self): """Command is OOM killed.""" self.mocks.configure_mock( 'docker_client', { 'exec_create.return_value': {'Id': b'container-foobar'}, 'exec_start.return_value': b'Killed\n', 'exec_inspect.return_value': {'ExitCode': 137}, }, ) cmd = DockerBuildCommand(['echo', 'test'], cwd='/tmp/foobar') cmd.build_env = Mock() cmd.build_env.get_client.return_value = self.mocks.docker_client type(cmd.build_env).container_id = PropertyMock(return_value='foo') cmd.run() self.assertIn( 'Command killed due to timeout or excessive memory consumption\n', str(cmd.output), ) class TestPythonEnvironment(TestCase): def setUp(self): self.project_sphinx = get(Project, documentation_type='sphinx') self.version_sphinx = get(Version, project=self.project_sphinx) self.project_mkdocs = get(Project, documentation_type='mkdocs') self.version_mkdocs = get(Version, project=self.project_mkdocs) self.build_env_mock = Mock() self.base_requirements = [ 'mock', 'pillow', 'alabaster', ] self.base_conda_requirements = [ 'mock', 'pillow', ] self.pip_install_args = [ mock.ANY, # python path '-m', 'pip', 'install', '--upgrade', '--no-cache-dir', ] def assertArgsStartsWith(self, args, call): """ Assert that each element of args of the mock start with each element of args. """ args_mock, _ = call for arg, arg_mock in zip_longest(args, args_mock): if arg is not mock.ANY: self.assertIsNotNone(arg_mock) self.assertTrue(arg_mock.startswith(arg)) @patch('readthedocs.projects.models.Project.checkout_path') def test_install_core_requirements_sphinx(self, checkout_path): tmpdir = tempfile.mkdtemp() checkout_path.return_value = tmpdir python_env = Virtualenv( version=self.version_sphinx, build_env=self.build_env_mock, ) python_env.install_core_requirements() requirements_sphinx = [ 'commonmark', 'recommonmark', 'sphinx', 'sphinx-rtd-theme', 'readthedocs-sphinx-ext', ] self.assertEqual(self.build_env_mock.run.call_count, 2) calls = self.build_env_mock.run.call_args_list core_args = self.pip_install_args + ['pip', 'setuptools<58.3.0'] self.assertArgsStartsWith(core_args, calls[0]) requirements = self.base_requirements + requirements_sphinx args = self.pip_install_args + requirements self.assertArgsStartsWith(args, calls[1]) @mock.patch('readthedocs.doc_builder.config.load_config') @patch('readthedocs.projects.models.Project.checkout_path') def test_install_core_requirements_sphinx_system_packages_caps_setuptools(self, checkout_path, load_config): config_data = { 'python': { 'use_system_site_packages': True, }, } load_config.side_effect = create_load(config_data) config = load_yaml_config(self.version_sphinx) tmpdir = tempfile.mkdtemp() checkout_path.return_value = tmpdir python_env = Virtualenv( version=self.version_sphinx, build_env=self.build_env_mock, config=config, ) python_env.install_core_requirements() requirements_sphinx = [ 'commonmark', 'recommonmark', 'sphinx', 'sphinx-rtd-theme', 'readthedocs-sphinx-ext', 'setuptools<58.3.0', ] self.assertEqual(self.build_env_mock.run.call_count, 2) calls = self.build_env_mock.run.call_args_list core_args = self.pip_install_args + ['pip', 'setuptools<58.3.0'] self.assertArgsStartsWith(core_args, calls[0]) requirements = self.base_requirements + requirements_sphinx args = self.pip_install_args + ['-I'] + requirements self.assertArgsStartsWith(args, calls[1]) @patch('readthedocs.projects.models.Project.checkout_path') def test_install_core_requirements_mkdocs(self, checkout_path): tmpdir = tempfile.mkdtemp() checkout_path.return_value = tmpdir python_env = Virtualenv( version=self.version_mkdocs, build_env=self.build_env_mock, ) python_env.install_core_requirements() requirements_mkdocs = [ 'commonmark', 'recommonmark', 'mkdocs', ] self.assertEqual(self.build_env_mock.run.call_count, 2) calls = self.build_env_mock.run.call_args_list core_args = self.pip_install_args + ['pip', 'setuptools<58.3.0'] self.assertArgsStartsWith(core_args, calls[0]) requirements = self.base_requirements + requirements_mkdocs args = self.pip_install_args + requirements self.assertArgsStartsWith(args, calls[1]) @patch('readthedocs.projects.models.Project.checkout_path') def test_install_user_requirements(self, checkout_path): """ If a projects does not specify a requirements file, RTD will choose one automatically. First by searching under the docs/ directory and then under the root. The files can be named as: - ``pip_requirements.txt`` - ``requirements.txt`` """ tmpdir = tempfile.mkdtemp() checkout_path.return_value = tmpdir self.build_env_mock.project = self.project_sphinx self.build_env_mock.version = self.version_sphinx python_env = Virtualenv( version=self.version_sphinx, build_env=self.build_env_mock, ) checkout_path = python_env.checkout_path docs_requirements = os.path.join( checkout_path, 'docs', 'requirements.txt', ) root_requirements = os.path.join( checkout_path, 'requirements.txt', ) paths = { os.path.join(checkout_path, 'docs'): True, } args = [ mock.ANY, # python path '-m', 'pip', 'install', '--exists-action=w', '--no-cache-dir', '-r', 'requirements_file', ] # One requirements file on the docs/ dir # should be installed paths[docs_requirements] = True paths[root_requirements] = False with fake_paths_lookup(paths): python_env.install_requirements() args[-1] = 'docs/requirements.txt' self.build_env_mock.run.assert_called_with( *args, cwd=mock.ANY, bin_path=mock.ANY ) # One requirements file on the root dir # should be installed paths[docs_requirements] = False paths[root_requirements] = True with fake_paths_lookup(paths): python_env.install_requirements() args[-1] = 'requirements.txt' self.build_env_mock.run.assert_called_with( *args, cwd=mock.ANY, bin_path=mock.ANY ) # Two requirements files on the root and docs/ dirs # the one on docs/ should be installed paths[docs_requirements] = True paths[root_requirements] = True with fake_paths_lookup(paths): python_env.install_requirements() args[-1] = 'docs/requirements.txt' self.build_env_mock.run.assert_called_with( *args, cwd=mock.ANY, bin_path=mock.ANY ) # No requirements file # no requirements should be installed self.build_env_mock.run.reset_mock() paths[docs_requirements] = False paths[root_requirements] = False with fake_paths_lookup(paths): python_env.install_requirements() self.build_env_mock.run.assert_not_called() @patch('readthedocs.projects.models.Project.checkout_path') def test_install_core_requirements_sphinx_conda(self, checkout_path): tmpdir = tempfile.mkdtemp() checkout_path.return_value = tmpdir python_env = Conda( version=self.version_sphinx, build_env=self.build_env_mock, ) python_env.install_core_requirements() conda_sphinx = [ 'sphinx', 'sphinx_rtd_theme', ] conda_requirements = self.base_conda_requirements + conda_sphinx pip_requirements = [ 'recommonmark', 'readthedocs-sphinx-ext', ] args_pip = [ mock.ANY, # python path '-m', 'pip', 'install', '-U', '--no-cache-dir', ] args_pip.extend(pip_requirements) args_conda = [ 'conda', 'install', '--yes', '--quiet', '--name', self.version_sphinx.slug, ] args_conda.extend(conda_requirements) self.build_env_mock.run.assert_has_calls([ mock.call(*args_conda, cwd=mock.ANY), mock.call(*args_pip, bin_path=mock.ANY, cwd=mock.ANY), ]) @patch('readthedocs.projects.models.Project.checkout_path') def test_install_core_requirements_mkdocs_conda(self, checkout_path): tmpdir = tempfile.mkdtemp() checkout_path.return_value = tmpdir python_env = Conda( version=self.version_mkdocs, build_env=self.build_env_mock, ) python_env.install_core_requirements() conda_requirements = self.base_conda_requirements pip_requirements = [ 'recommonmark', 'mkdocs', ] args_pip = [ mock.ANY, # python path '-m', 'pip', 'install', '-U', '--no-cache-dir', ] args_pip.extend(pip_requirements) args_conda = [ 'conda', 'install', '--yes', '--quiet', '--name', self.version_mkdocs.slug, ] args_conda.extend(conda_requirements) self.build_env_mock.run.assert_has_calls([ mock.call(*args_conda, cwd=mock.ANY), mock.call(*args_pip, bin_path=mock.ANY, cwd=mock.ANY), ]) @patch('readthedocs.projects.models.Project.checkout_path') def test_install_user_requirements_conda(self, checkout_path): tmpdir = tempfile.mkdtemp() checkout_path.return_value = tmpdir python_env = Conda( version=self.version_sphinx, build_env=self.build_env_mock, ) python_env.install_requirements() self.build_env_mock.run.assert_not_called() ```
{ "source": "JoaoVitorBernardino/Sistema-de-locadora-de-filmes", "score": 2 }
#### File: LocadoraDeFilmes/DataBase/dados_aluguel.py ```python from DataBase.gerenc_arquivos import * __aluguel_list = list(lerArquivo(ALUGUEL_PATH)) def add_alugar(alugar): __aluguel_list.append(alugar) salvar_lista(ALUGUEL_PATH, __aluguel_list) def novo_aluguel(alugador): return { "alugador": alugador, "aluguel": [] } def add_aluguel(alugar, aluguel): alugar["aluguel"].append(aluguel) ``` #### File: LocadoraDeFilmes/DataBase/dados_clientes.py ```python from DataBase.gerenc_arquivos import * __clientes_cadastrados = list(lerArquivo(CLIENTES_PATH)) def add_cliente(cliente): __clientes_cadastrados.append(cliente) salvar() def novo_cliente(nome, idade, cpf): return{ 'nome': str(nome), 'idade': int(idade), 'CPF': int(cpf) } def salvar(): salvar_lista(CLIENTES_PATH, __clientes_cadastrados) def get_cliente(): return lerArquivo(CLIENTES_PATH) def set_cliente(endereco, cliente): __clientes_cadastrados[endereco] = cliente salvar() def apagar(endereco): __clientes_cadastrados.pop(int(endereco)) salvar() def apagar(endereco): __clientes_cadastrados.pop(endereco) salvar() ``` #### File: Sistema-de-locadora-de-filmes/LocadoraDeFilmes/funcoes_dos_filmes.py ```python import os from DataBase.dados_filmes import * from DataBase.dados_aluguel import * def cadastrar_filme(): os.system('cls' if os.name == 'nt' else 'clear') nome = input('Digite o nome do filme: ') ano = input('Digite o ano de lançamento do filme: ') codigo = input('Digite o código do filme: ') filmeAlugado = "" filme = novo_filme(nome, ano, codigo, filmeAlugado) add_filme(filme) print(f'O filme {filme} foi cadastrado.') def mostrar_catalogo(): os.system('cls' if os.name == 'nt' else 'clear') filmes = get_filme() for f in filmes: print('-'*80) print(f'{f["nome"]} - {f["ano"]} - {f["codigo"]} - {f["filmeAlugado"]}') print('-'*80) def ver_posicao_Filme(): i = 0 for pos in get_filme(): print('-'*80) print(f'Posição {i}º - {pos["nome"]} - {pos["ano"]} - {pos["codigo"]} - {pos["filmeAlugado"]}') i += 1 print('-' * 80) def alugar(): alugar = novo_aluguel(str(input("Digite seu nome: "))) resposta = "Sim" filme= get_filme() while resposta == 'sim' or resposta == 'Sim': os.system('cls' if os.name == 'nt' else 'clear') ver_posicao_Filme() endereco = int(input("Digite a posição do filme desejado: ")) if filme[endereco]["filmeAlugado"] != "": print("Este filme já foi alugado") else: filme[endereco]["filmeAlugado"] = alugar["alugador"] add_aluguel(alugar, filme[endereco]) set_filme(endereco, filme[endereco]) resposta = input("Deseja alugar outro filme ? (Sim ou Não): ") add_alugar(alugar) def devolver(): devolver = novo_aluguel(str(input("Digite seu nome: "))) resposta = "Sim" filme= get_filme() while resposta == 'sim' or resposta == 'Sim': os.system('cls' if os.name == 'nt' else 'clear') ver_posicao_Filme() endereco = int(input("Digite a posição do filme desejado: ")) if filme[endereco]["filmeAlugado"] == "": print("Este filme ainda não foi alugado") else: filme[endereco]["filmeAlugado"] = "" add_aluguel(devolver, filme[endereco]) set_filme(endereco, filme[endereco]) resposta = input("Você possui outro filme para devolver ? (Sim ou Não): ") add_alugar(devolver) def tabela_de_preco(): preco_por_quant = {"01 Filme": 15, "02 Filmes": 26, "03 Filmes": 33, "04 Filmes": 42, "05 Filmes": 50} print("Tabela de preços da quantidade de filmes alugados: ") print(preco_por_quant) def apagar_Filme(): ver_posicao_Filme() endereco = int(input("Digite a posição do filme desejado: ")) apagar_Filme(endereco) ```
{ "source": "joaovitorblabres/sumo-rl", "score": 3 }
#### File: joaovitorblabres/sumo-rl/results.py ```python import statistics import copy import pandas as pd import argparse import glob from matplotlib import pyplot as plt import os import numpy as np def moving_average(interval, window_size): if window_size == 1: return interval window = np.ones(int(window_size))/float(window_size) return np.convolve(interval, window, 'same') def bests(results): sums = [] means = [] mins = [] moving = [] avg = [] params = {} i = 0 for alpha in results.keys(): for alphaG in results[alpha].keys(): for gamma in results[alpha][alphaG].keys(): for gammaG in results[alpha][alphaG][gamma].keys(): for decay in results[alpha][alphaG][gamma][gammaG].keys(): sums.append(results[alpha][alphaG][gamma][gammaG][decay]['sum']) mins.append(min(results[alpha][alphaG][gamma][gammaG][decay]['values'])) means.append(results[alpha][alphaG][gamma][gammaG][decay]['mean']) avg.append(results[alpha][alphaG][gamma][gammaG][decay]['avgs']) moving.append(sum(results[alpha][alphaG][gamma][gammaG][decay]['values'][-10:])/10) params[i] = "-".join([str(alpha), str(alphaG), str(gamma), str(gammaG), str(decay)]) # print(alpha, alphaG, gamma, gammaG, decay, results[alpha][alphaG][gamma][gammaG][decay]['mean'], results[alpha][alphaG][gamma][gammaG][decay]['sum'], results[alpha][alphaG][gamma][gammaG][decay]['values'][-20:], i) i += 1 original = copy.deepcopy(moving) print(min(moving), moving.index(min(moving))) moving.sort() print(moving[:10], [params[original.index(val)] for val in moving[:10]], [original.index(val) for val in moving[:10]]) print(min(sums), params[sums.index(min(sums))]) # print(avg) print(min(mins), params[mins.index(min(mins))]) print(min(means), params[means.index(min(means))]) prs = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="""Plot Traffic Signal Metrics""") prs.add_argument('-f', nargs='+', required=True, help="Measures files\n") args = prs.parse_args() results = {} for file in args.f: print(file) for alphas in glob.glob(file+"/*"): main_df = pd.DataFrame() params = alphas.split("_") alpha = params[1].split('/')[-1][5:] # alpha = params[1].split('/')[-1][5:] alphaG = 0 # alphaG = params[3][6:] gamma = params[2][5:] # gamma = params[2][5:] gammaG = 0 # gammaG = params[4][6:] eps = params[3][3:] # eps = params[5][3:] print(alpha, gamma, eps, alphaG, gammaG) if alpha not in results.keys(): results[alpha] = {} if alphaG not in results[alpha].keys(): results[alpha][alphaG] = {} if gamma not in results[alpha][alphaG].keys(): results[alpha][alphaG][gamma] = {} if gammaG not in results[alpha][alphaG][gamma].keys(): results[alpha][alphaG][gamma][gammaG] = {} if eps not in results[alpha][alphaG][gamma][gammaG].keys(): results[alpha][alphaG][gamma][gammaG][eps] = {'sum':[],'values': [], 'mean':[], 'avgs': []} for data in glob.glob(alphas+"/*"): for hora in glob.glob(data+"/*"): print(hora) for f in sorted(glob.glob(hora+"/_r*"), key=os.path.getmtime): df = pd.read_csv(f, sep=',') if main_df.empty: main_df = df else: main_df = pd.concat((main_df, df)) # all = df.groupby('step_time').sum()['average_wait_time'] all = df.groupby('step_time').sum()['flow']*-1 results[alpha][alphaG][gamma][gammaG][eps]['values'].append(sum(all)) results[alpha][alphaG][gamma][gammaG][eps]['avgs'].append(statistics.mean(all)) results[alpha][alphaG][gamma][gammaG][eps]['mean'].append(statistics.mean(results[alpha][alphaG][gamma][gammaG][eps]['values'])) results[alpha][alphaG][gamma][gammaG][eps]['sum'].append(sum(results[alpha][alphaG][gamma][gammaG][eps]['values'])) # if any([val < 10000 for val in results[alpha][alphaG][gamma][gammaG][eps]['avgs']]): # meanDF = pd.DataFrame(results[alpha][alphaG][gamma][gammaG][eps]['avgs'][:]) # plt.xlim([-10,910]) # plt.plot(range(0,len(results[alpha][alphaG][gamma][gammaG][eps]['avgs'][:])), moving_average(results[alpha][alphaG][gamma][gammaG][eps]['avgs'][:], 1), 'ro-') # for i in range(0, 3): # plt.axvspan((3*i)*100, (1+(3*i))*100-1, facecolor='lightblue', alpha=0.5) # plt.axvspan((1+(3*i))*100, (2+(3*i))*100-1, facecolor='coral', alpha=0.5) # plt.axvspan((2+(3*i))*100, (3+(3*i))*100-1, facecolor='lawngreen', alpha=0.5) # plt.vlines([100-1, 200-1, 300-1, 400-1, 500-1, 600-1, 700-1, 800-1], -1000, min(results[alpha][alphaG][gamma][gammaG][eps]['avgs'])+1000) # plt.xlabel("Simulated Days") # plt.ylabel("Average Waited Time") # plt.title(f) # plt.show() # yes = input() # if yes == 's': # meanDF.to_csv(hora+"merged.csv") # results[alpha][alphaG][gamma][gammaG][eps] = {'sum':[],'values': [], 'mean':[], 'avgs': []} bests(results) ``` #### File: sumo_rl/agents/pql_agent_non.py ```python import numpy as np from pygmo import hypervolume import random from sumo_rl.exploration.epsilon_greedy import MOSelection def get_non_dominated(solutions): is_efficient = np.ones(solutions.shape[0], dtype=bool) for i, c in enumerate(solutions): if is_efficient[i]: # Remove dominated points, will also remove itself is_efficient[is_efficient] = np.any(solutions[is_efficient] > c, axis=1) # keep this solution as non-dominated is_efficient[i] = 1 return solutions[is_efficient] def compute_hypervolume(q_set, nA, ref): q_values = np.zeros(nA) for i in range(nA): # pygmo uses hv minimization, # negate rewards to get costs points = np.array(q_set[i]) * -1. hv = hypervolume(points) # use negative ref-point for minimization q_values[i] = hv.compute(ref*-1) return q_values class mPQLAgent: def __init__(self, starting_state, state_space, action_space, ref_point=[-10000, -10000], alpha=0.3, gamma=0.95, exploration_strategy=MOSelection(), groupRecommendation=0.2, number_obejctives=2): self.state = starting_state self.state_space = 1 for space in state_space: self.state_space *= space.n self.action_space = action_space self.action = None self.gamma = gamma self.alpha = alpha self.groupAction = None self.groupActing = False self.groupRecommendation = groupRecommendation self.decayGroup = 1 self.minEpsilonGroup = 0.05 self.q_table = {self.state: [[np.zeros(number_obejctives)] for _ in range(action_space.n)]} self.exploration = exploration_strategy self.acc_reward = np.zeros(number_obejctives) self.followed = False self.nO = number_obejctives self.non_dominated = [[[np.zeros(number_obejctives)] for _ in range(self.action_space.n)] for _ in range(self.state_space)] self.avg_r = np.zeros((self.state_space, self.action_space.n, number_obejctives)) self.n_visits = np.zeros((self.state_space, self.action_space.n)) self.ref_point = ref_point # print(self.state_space, self.action_space.n) def compute_q_set(self, s): q_set = [] for a in range(self.action_space.n): nd_sa = self.non_dominated[s][a] rew = self.avg_r[s, a] set = nd_sa * rew # print(set) q = random.choice(set) q_set.append([q + self.alpha*(rew + self.gamma*nd - q) for nd in nd_sa]) return np.array(q_set) def update_non_dominated(self, s, a, s_n): q_set_n = self.compute_q_set(s_n) # update for all actions, flatten solutions = np.concatenate(q_set_n, axis=0) # append to current pareto front # solutions = np.concatenate([solutions, self.non_dominated[s][a]]) # compute pareto front self.non_dominated[s][a] = get_non_dominated(solutions) def act(self): if self.groupActing: # print(self.groupAction, self.state, self.action_space, self.groupRecommendation) if self.followGroup: self.followed = True self.action = self.groupAction # print("GROUP", self.action, self.groupAction) else: self.followed = False self.action = self.exploration.choose(self.q_table, self.state, self.action_space) # print("GREEDY", self.action) self.groupRecommendation = max(self.groupRecommendation*self.decayGroup, self.minEpsilonGroup) else: q_set = self.compute_q_set(self.state) # q_set = self.q_table[self.state] # print(self.compute_q_set(self.state), q_set, self.state, self.action_space) self.action = self.exploration.choose(np.array(q_set), self.state, self.action_space) return self.action def learn(self, next_state, reward, done=False): if next_state not in self.q_table: self.q_table[next_state] = [np.zeros(self.nO) for _ in range(self.action_space.n)] s = self.state s1 = next_state a = self.action self.update_non_dominated(s, a, s1) self.n_visits[s, a] += 1 self.avg_r[s, a] += (reward - self.avg_r[s, a]) / self.n_visits[s, a] # print(s, a, s1, self.q_table[s], self.compute_q_set(self.state), self.action_space.n, self.q_table[s] + self.alpha*(self.compute_q_set(self.state) - self.q_table[s])) # self.q_table[s] = np.array([self.q_table[s] + self.alpha*(self.compute_q_set(self.state) - self.q_table[s])]) self.state = s1 self.acc_reward += reward ``` #### File: sumo_rl/agents/ql_agent.py ```python import numpy as np import random from sumo_rl.exploration.epsilon_greedy import EpsilonGreedy class QLAgent: def __init__(self, starting_state, state_space, action_space, alpha=0.1, gamma=0.95, exploration_strategy=EpsilonGreedy(), groupRecommendation=0.2): self.state = starting_state self.state_space = state_space self.action_space = action_space self.action = None self.alpha = alpha self.gamma = gamma self.groupAction = None self.groupActing = False self.groupRecommendation = groupRecommendation self.decayGroup = 1 self.minEpsilonGroup = 0.05 self.q_table = {self.state: [0 for _ in range(action_space.n)]} self.exploration = exploration_strategy self.acc_reward = 0 self.followed = False def act(self): if self.groupActing: # print(self.groupAction, self.state, self.action_space, self.groupRecommendation) if self.followGroup: self.followed = True self.action = self.groupAction # print("GROUP", self.action, self.groupAction) else: self.followed = False self.action = self.exploration.choose(self.q_table, self.state, self.action_space) # print("GREEDY", self.action) self.groupRecommendation = max(self.groupRecommendation*self.decayGroup, self.minEpsilonGroup) else: self.action = self.exploration.choose(self.q_table, self.state, self.action_space) return self.action def learn(self, next_state, reward, done=False): if next_state not in self.q_table: self.q_table[next_state] = [random.uniform(0, 0) for _ in range(self.action_space.n)] s = self.state s1 = next_state a = self.action # print(s, a, s1, self.action_space.n) self.q_table[s][a] = self.q_table[s][a] + self.alpha*(reward[0] + self.gamma*max(self.q_table[s1]) - self.q_table[s][a]) self.state = s1 self.acc_reward += reward[0] ```
{ "source": "JoaoVitorChaves-05/Netflix-bot", "score": 3 }
#### File: JoaoVitorChaves-05/Netflix-bot/netflixBot.py ```python import time import requests import pandas as pd #from bs4 import BeautifulSoup from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.keys import Keys import json def Catch_User(line): mail = line.split(' ') return mail[len(mail) - 1] def Try_User(user, password): inputUser = driver.find_element_by_name('userLoginId') inputPassword = driver.find_element_by_name('password') inputUser.clear() inputPassword.clear() inputUser.send_keys(user) inputPassword.send_keys(password) time.sleep(5) driver.find_element_by_xpath('/html/body/div[1]/div/div[3]/div/div/div[1]/form/button').click() time.sleep(2) fileName = '5000x Netflix Premium.txt' file = open(fileName, 'r', encoding="utf8") url = 'https://www.netflix.com/br/login?nextpage=https%3A%2F%2Fwww.netflix.com%2Fbrowse' option = Options() option.headless = True driver = webdriver.Chrome("chromedriver.exe") driver.get(url) time.sleep(4) while True: line = file.readline() if line.startswith('║ Mail :'): mail = Catch_User(line) if line.startswith('║ Şifre :'): password = Catch_User(line) Try_User(mail, password) ```
{ "source": "JoaoVitorFernandesVitor/Rede_social", "score": 3 }
#### File: Rede_social/Button_with_variable/__init__.py ```python from tkinter import * from Chat import * class Bt_contact_chat(Button): def __init__(self, user, parent, variable = 0, text = '', font = 0, font_color = 0, image = 0): super().__init__() self['text'] = text if font != 0: self['font'] = font if font_color != 0: self['fg'] = font_color if image != 0: self['image'] = image self['width'] = 60 def call_chat(): Chat(user, variable).place(in_ = parent, x = 0, y = 0) self['command'] = call_chat ```
{ "source": "JoaoVitorLeite/CodeWars", "score": 4 }
#### File: CodeWars/7_kyu/Find_the_divisors!.py ```python def divisors(integer): aux = [i for i in range(2, integer) if integer % i == 0] if len(aux) == 0: return "{} is prime".format(integer) else: return aux ``` #### File: CodeWars/7_kyu/Valid_Spacing.py ```python def valid_spacing(s): if s == '': return True elif len(s.strip()) != len(s): return False else: return not any([len(w.strip()) != len(w) or w == '' for w in s.split(' ')]) ``` #### File: CodeWars/8_kyu/Exclamation_marks_series_#_:_Remove_an_exclamation_mark_from_the_end_of_string.py ```python def remove(s): return s[:-1] if s.endswith("!") else s ``` #### File: CodeWars/8_kyu/Reversed_Words.py ```python def reverse_words(s): return " ".join(reversed(s.split())) ```
{ "source": "joaovitorsilvestre/graphene-mongodb", "score": 3 }
#### File: tests/fields/test_fields_query.py ```python from graphene_mongodb import MongoSchema def test_string_field(schema_builder, mock_person): p = mock_person(name="John") p.save() PersonSchema = MongoSchema(mock_person) schema = schema_builder([(PersonSchema, PersonSchema.single)]) result = schema.execute(""" query testQuery { person { name } }""") assert not result.errors assert result.data == {'person': {'name': p.name}} def test_boolean_field(mock_person, schema_builder): p = mock_person(active=True) p.save() PersonSchema = MongoSchema(mock_person) schema = schema_builder([(PersonSchema, PersonSchema.single)]) result = schema.execute(""" query testQuery { person { active } }""") assert result.data == {'person': {'active': p.active}} def test_int_field(mock_person, schema_builder): p = mock_person(age=20) p.save() PersonSchema = MongoSchema(mock_person) schema = schema_builder([(PersonSchema, PersonSchema.single)]) result = schema.execute(""" query testQuery { person { age } }""") assert result.data == {'person': {'age': p.age}} def test_float_field(mock_person, schema_builder): p = mock_person(score=9.5) p.save() PersonSchema = MongoSchema(mock_person) schema = schema_builder([(PersonSchema, PersonSchema.single)]) result = schema.execute(""" query testQuery { person { score } }""") assert result.data == {'person': {'score': p.score}} def test_datetime_field(mock_person, schema_builder): from datetime import datetime birth = datetime(2017, 1, 1) p = mock_person(birthday=birth).save() p.save() PersonSchema = MongoSchema(mock_person) schema = schema_builder([(PersonSchema, PersonSchema.single)]) result = schema.execute(""" query testQuery { person { birthday } }""") assert result.data == {'person': {'birthday': birth.isoformat()}} assert result.data == {'person': {'birthday': p.birthday.isoformat()}} def test_id_field(mock_person, schema_builder): p = mock_person() p.save() PersonSchema = MongoSchema(mock_person) schema = schema_builder([(PersonSchema, PersonSchema.single)]) result = schema.execute(""" query testQuery { person { id } }""") assert result.data == {'person': {'id': str(p.id)}} def test_url_field(mock_person, schema_builder): site_url = "https://github.com/joaovitorsilvestre/MongographQL" p = mock_person(site_url=site_url) p.save() PersonSchema = MongoSchema(mock_person) schema = schema_builder([(PersonSchema, PersonSchema.single)]) result = schema.execute(""" query testQuery { person { siteUrl } }""") assert result.data == {'person': {'siteUrl': p.site_url}} assert result.data == {'person': {'siteUrl': site_url}} def test_dict_field(mock_person, schema_builder): info = { "author": "João", "date": "2017-01-01" } p = mock_person(book_info=info) p.save() PersonSchema = MongoSchema(mock_person) schema = schema_builder([(PersonSchema, PersonSchema.single)]) result = schema.execute(""" query testQuery { person { bookInfo } }""") assert result.data == {'person': {'bookInfo': info}} assert result.data == {'person': {'bookInfo': p.book_info}} def test_email_field(mock_person, schema_builder): p = mock_person(email="<EMAIL>") p.save() PersonSchema = MongoSchema(mock_person) schema = schema_builder([(PersonSchema, PersonSchema.single)]) result = schema.execute(""" query testQuery { person { email } }""") assert result.data == {'person': {'email': p.email}} def test_long_field(mock_person, schema_builder): long = pow(2, 63) - 1 p = mock_person(super_id=long) p.save() PersonSchema = MongoSchema(mock_person) schema = schema_builder([(PersonSchema, PersonSchema.single)]) result = schema.execute(""" query testQuery { person { superId } }""") assert result.data == {'person': {'superId': long}} assert result.data == {'person': {'superId': p.super_id}} def test_decimal_field(mock_person, schema_builder): p = mock_person(remember_pi=3.14159265359) p.save() PersonSchema = MongoSchema(mock_person) schema = schema_builder([(PersonSchema, PersonSchema.single)]) result = schema.execute(""" query testQuery { person { rememberPi } }""") assert result.data == {'person': {'rememberPi': float(p.remember_pi)}} def test_binary_field(mock_person, schema_builder): p = mock_person(nickname=b"<NAME>") p.save() PersonSchema = MongoSchema(mock_person) schema = schema_builder([(PersonSchema, PersonSchema.single)]) result = schema.execute(""" query testQuery { person { nickname } }""") assert result.data == {'person': {'nickname': p.nickname.decode('utf-8')}} def test_point_field(mock_person, schema_builder): p = mock_person(location=[29.977291, 31.132493]) p.save() PersonSchema = MongoSchema(mock_person) schema = schema_builder([(PersonSchema, PersonSchema.single)]) result = schema.execute(""" query testQuery { person { location } }""") assert result.data == {'person': {'location': { "type": "Point", "coordinates": [29.977291, 31.132493] }} } def test_list_field(mock_person, schema_builder): p = mock_person(favourite_colors=['blue', 'red']) p.save() PersonSchema = MongoSchema(mock_person) schema = schema_builder([(PersonSchema, PersonSchema.single)]) result = schema.execute(""" query testQuery { person { favouriteColors } }""") assert result.data == {'person': {'favouriteColors': p.favourite_colors}} def test_list_reference_field(mock_person, mock_post, schema_builder): post1 = mock_post(text="<NAME>") post2 = mock_post(text="Say my name") post1.save() post2.save() mock_person(posts=[post1, post2]).save() PersonSchema = MongoSchema(mock_person) schema = schema_builder([(PersonSchema, PersonSchema.single)]) result = schema.execute(""" query testQuery { person { posts { text } } }""") assert result.data == {'person': { 'posts': [ {"text": post1.text}, {"text": post2.text} ] }} def test_reference_field(mock_person, mock_post, schema_builder): post = mock_post(text="<NAME>") post.save() mock_person(best_post=post).save() PersonSchema = MongoSchema(mock_person) schema = schema_builder([(PersonSchema, PersonSchema.single)]) result = schema.execute(""" query testQuery { person { bestPost { text } } }""") assert result.data == {'person': { 'bestPost': { 'text': post.text } }} ``` #### File: tests/mutation/test_mutations_query.py ```python import pytest def test_gen_mutation_user_mutation_func(schema_builder, mock_person): from graphene_mongodb import MongoSchema assert mock_person.objects().count() == 0 def mutation_func(args, context): PersonSchema._called_custom_mutate = True p = mock_person(**args) p.save() return p class PersonSchema(MongoSchema): model = mock_person mutate = staticmethod(mutation_func) _called_custom_mutate = False # just to test if the user function mutate was called schema = schema_builder(mutations=[PersonSchema]) result = schema.execute("""mutation testMutation { createPerson(name:"Test") { person { name } } }""") assert not result.errors assert result.data == {'createPerson': {'person': {'name': 'Test'}}} assert mock_person.objects().count() == 1 assert mock_person.objects().first().name == 'Test' assert PersonSchema._called_custom_mutate def test_gen_mutation_generic_mutate(schema_builder, mock_person): from graphene_mongodb import MongoSchema assert mock_person.objects().count() == 0 class PersonSchema(MongoSchema): model = mock_person schema = schema_builder(mutations=[PersonSchema]) result = schema.execute("""mutation testMutation { createPerson(name:"Test") { person { name } } }""") assert not result.errors assert result.data == {'createPerson': {'person': {'name': 'Test'}}} assert mock_person.objects().count() == 1 assert mock_person.objects().first().name == 'Test' def test_gen_mutation_user_mutate_wrong_return(mock_person): import graphene from graphql.execution.base import ResolveInfo from graphene_mongodb.mutation import gen_mutation from graphene_mongodb.model import ModelSchema def mutate(args, context): return False model_schema = ModelSchema(mock_person, mock_person._fields, mutate, None) result = gen_mutation(mock_person, model_schema.schema, model_schema.operators_mutation, model_schema.fields_mutation, model_schema.mutate_func, None) assert issubclass(result, graphene.Mutation) assert hasattr(result, 'mutate') with pytest.raises(Exception) as e_info: context = graphene.types.Context() info = ResolveInfo('name', *[None for i in range(8)], context) result.mutate(None, info, **{'name': "Test"}) assert str(e_info.value) == 'Failed to resolve mutation of the schema {}' \ ' because mutate function must return a instance of {}, and the return type was {}.'\ .format(model_schema.schema.__name__, model_schema.model.__name__, type(False)) ```
{ "source": "joao-vitor-viera-rodacki/Interfase_Grafica_Em_Python", "score": 3 }
#### File: Interfase_Grafica_Em_Python/interfase_materiais/interfase.py ```python import PySimpleGUI as sg class Interfase : def __init__(self): self.produtos = {'bolacha' : 'bolacha', 'leite' : 'leite' } layuot = [ [sg.Text('testando'),sg.Input(size=(20,0))], [self.filtraItens()] ] #janela self.janela_usuario = sg.Window('Dados Bancarios').layout(layuot) def update_usuario(self): while True: #extraindo dados em tempo real do layout self.botton, self.values = self.janela_usuario.read() if self.values == sg.WIN_CLOSED: break def filtraItens (self): for item in self.produtos.keys(): print(item) ''' def list_produtos (self): layout = [ [sg.T('Lista de produtos')], ] ''' self.janela_produtos = sg.Window('Lista').layout(layout) def update_listaPrecos (self): while True: button , values = self.janela_produtos.Read() if values == sg.WINDOW_CLOSED: break janela = Interfase() janela.list_produtos() janela.update_listaPrecos() janela.update_usuario() #--------------------- ```
{ "source": "joaovmalheiros/Exercicios-Python-Curso-Em-Video", "score": 4 }
#### File: Exercicios-Python-Curso-Em-Video/ex069/ex069.py ```python def verificaNumero(): pass class Pessoa(): idade = 0 sexo = None def __init__(self, i, s): self.idade = i self.sexo = s maiorDeIdade = 0 menorDeVinte = 0 homens = 0 continua = 'S' listasDePessoas = list() while continua in 'Ss': idade = int(input('Idade: ')) if idade < 20: menorDeVinte = menorDeVinte + 1 if idade > 18: maiorDeIdade = maiorDeIdade + 1 else: maiorDeIdade = maiorDeIdade + 1 sexo = str(input('Sexo: ')).upper().strip()[0] if sexo == 'M': homens = homens + 1 p = Pessoa(idade, sexo) listasDePessoas.append(p) while True: continua = str(input('Quer continuar? [S/N]')).upper().strip()[0] print(continua) if continua not in 'Ss' and continua not in 'Nn': print('Opção inválida!') else: break print(f'Total de pessoas com mais de 18 anos: {maiorDeIdade}.') print(f'Ao todo temos {homens} homens cadastrados.') print(f'E temos {menorDeVinte} mulheres com menos de 20 anos.') ```
{ "source": "joao-voltarelli/botcity-framework-core-python", "score": 3 }
#### File: botcity/core/mouse.py ```python import pyautogui import random from .utils import ensure_state, only_if_element from . import config @ensure_state @only_if_element def click_on(label, *, state=None): """ Click on the element. Args: label (str): The image identifier state (State, optional): An instance of BaseState. If not provided, the singleton State is used. """ from .display import get_element_coords_centered x, y = get_element_coords_centered(label, state=state) pyautogui.click(x, y) @ensure_state def get_last_x(): """ Get the last X position for the mouse. Returns: x (int): The last x position for the mouse. """ return pyautogui.position().x def get_last_y(): """ Get the last Y position for the mouse. Returns: y (int): The last y position for the mouse. """ return pyautogui.position().y def mouse_move(x, y): """ Mouse the move to the coordinate defined by x and y Args: x (int): The X coordinate y (int): The Y coordinate """ pyautogui.moveTo(x, y) def click_at(x, y): """ Click at the coordinate defined by x and y Args: x (int): The X coordinate y (int): The Y coordinate """ pyautogui.click(x, y) @ensure_state @only_if_element def click(wait_after=config.DEFAULT_SLEEP_AFTER_ACTION, *, clicks=1, interval_between_clicks=0, button='left', state): """ Click on the last found element. Args: wait_after (int, optional): Interval to wait after clicking on the element. clicks (int, optional): Number of times to click. Defaults to 1. interval_between_clicks (int, optional): The interval between clicks in ms. Defaults to 0. button (str, optional): One of 'left', 'right', 'middle'. Defaults to 'left' state (State, optional): An instance of BaseState. If not provided, the singleton State is used. """ from .misc import sleep x, y = state.center() pyautogui.click(x, y, clicks=clicks, button=button, interval=interval_between_clicks) sleep(wait_after) @ensure_state @only_if_element def click_relative(x, y, wait_after=config.DEFAULT_SLEEP_AFTER_ACTION, *, clicks=1, interval_between_clicks=0, button='left', state): """ Click Relative on the last found element. Args: x (int): Horizontal offset y (int): Vertical offset wait_after (int, optional): Interval to wait after clicking on the element. clicks (int, optional): Number of times to click. Defaults to 1. interval_between_clicks (int, optional): The interval between clicks in ms. Defaults to 0. button (str, optional): One of 'left', 'right', 'middle'. Defaults to 'left' state (State, optional): An instance of BaseState. If not provided, the singleton State is used. """ from .misc import sleep x = state.x() + x y = state.y() + y pyautogui.click(x, y, clicks=clicks, button=button, interval=interval_between_clicks) sleep(wait_after) @ensure_state @only_if_element def double_click(wait_after=config.DEFAULT_SLEEP_AFTER_ACTION, *, state): """ Double Click on the last found element. Args: wait_after (int, optional): Interval to wait after clicking on the element. state (State, optional): An instance of BaseState. If not provided, the singleton State is used. """ x, y = state.center() click(x, y, wait_after=wait_after, click=2) @ensure_state @only_if_element def double_click_relative(x, y, interval_between_clicks=0, wait_after=config.DEFAULT_SLEEP_AFTER_ACTION, *, state): """ Double Click Relative on the last found element. Args: x (int): Horizontal offset y (int): Vertical offset interval_between_clicks (int, optional): The interval between clicks in ms. Defaults to 0. wait_after (int, optional): Interval to wait after clicking on the element. state (State, optional): An instance of BaseState. If not provided, the singleton State is used. """ x = state.x() + x y = state.y() + y click_relative(x, y, wait_after=wait_after, click=2, interval_between_clicks=interval_between_clicks) @ensure_state @only_if_element def triple_click(wait_after=config.DEFAULT_SLEEP_AFTER_ACTION, *, state): """ Triple Click on the last found element. Args: wait_after (int, optional): Interval to wait after clicking on the element. state (State, optional): An instance of BaseState. If not provided, the singleton State is used. """ x, y = state.center() click(x, y, wait_after=wait_after, click=3) @ensure_state @only_if_element def triple_click_relative(x, y, interval_between_clicks=0, wait_after=config.DEFAULT_SLEEP_AFTER_ACTION, *, state): """ Triple Click Relative on the last found element. Args: x (int): Horizontal offset y (int): Vertical offset interval_between_clicks (int, optional): The interval between clicks in ms. Defaults to 0. wait_after (int, optional): Interval to wait after clicking on the element. state (State, optional): An instance of BaseState. If not provided, the singleton State is used. """ x = state.x() + x y = state.y() + y click_relative(x, y, wait_after=wait_after, click=3, interval_between_clicks=interval_between_clicks) def scroll_down(clicks): """ Scroll Down n clicks Args: clicks (int): Number of times to scroll down. """ pyautogui.scroll(-1*clicks) def scroll_up(clicks): """ Scroll Up n clicks Args: clicks (int): Number of times to scroll up. """ pyautogui.scroll(clicks) @ensure_state @only_if_element def move(*, state): """ Move to the center position of last found item. Args: state (State, optional): An instance of BaseState. If not provided, the singleton State is used. """ x, y = state.center() pyautogui.moveTo(x, y) def move_relative(x, y): """ Move the mouse relative to its current position. Args: x (int): Horizontal offset y (int): Vertical offset """ x = get_last_x() + x y = get_last_y() + y pyautogui.moveTo(x, y) def move_random(range_x, range_y): """ Move randomly along the given x, y range. Args: range_x (int): Horizontal range range_y (int): Vertical range """ x = int(random.random()*range_x) y = int(random.random()*range_y) pyautogui.moveTo(x, y) @ensure_state @only_if_element def right_click(wait_after=config.DEFAULT_SLEEP_AFTER_ACTION, *, clicks=1, interval_between_clicks=0, state): """ Right click on the last found element. Args: wait_after (int, optional): Interval to wait after clicking on the element. clicks (int, optional): Number of times to click. Defaults to 1. interval_between_clicks (int, optional): The interval between clicks in ms. Defaults to 0. state (State, optional): An instance of BaseState. If not provided, the singleton State is used. """ from .misc import sleep x, y = state.center() pyautogui.click(x, y, clicks=clicks, button='right', interval=interval_between_clicks) sleep(wait_after) def right_click_at(x, y): """ Right click at the coordinate defined by x and y Args: x (int): The X coordinate y (int): The Y coordinate """ pyautogui.click(x, y, button='right') @ensure_state @only_if_element def right_click_relative(x, y, interval_between_clicks=0, wait_after=config.DEFAULT_SLEEP_AFTER_ACTION, *, state): """ Right Click Relative on the last found element. Args: x (int): Horizontal offset y (int): Vertical offset interval_between_clicks (int, optional): The interval between clicks in ms. Defaults to 0. wait_after (int, optional): Interval to wait after clicking on the element. state (State, optional): An instance of BaseState. If not provided, the singleton State is used. """ x = state.x() + x y = state.y() + y click_relative(x, y, wait_after=wait_after, click=3, interval_between_clicks=interval_between_clicks, button='right') # Java API compatibility clickOn = click_on getLastX = get_last_x getLastY = get_last_y mouseMove = mouse_move clickAt = click_at doubleclick = double_click doubleClick = double_click doubleClickRelative = double_click_relative tripleClick = triple_click tripleClickRelative = triple_click_relative scrollDown = scroll_down scrollUp = scroll_up moveTo = mouse_move moveRelative = move_relative moveRandom = move_random moveAndClick = click rightClick = right_click rightClickAt = right_click_at rightClickRelative = right_click_relative moveAndRightClick = right_click ``` #### File: botcity/core/utils.py ```python from functools import wraps import platform import subprocess from .base import SingleState def is_retina(): """ Check whether or not the system is running in "retina" display mode. Returns: (bool) """ if platform.system() == 'Darwin': check = subprocess.call("system_profiler SPDisplaysDataType | grep -i 'retina'", shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if check == 0: return True return False def ensure_state(func): """ Decorator to ensure that a State instance is being provided. If no State instance is provided it uses the singleton SingleState. Args: func (callable): The function to be wrapped Returns: wrapper (callable): The decorated function """ @wraps(func) def wrapper(*args, **kwargs): if 'state' not in kwargs: kwargs['state'] = SingleState() return func(*args, **kwargs) return wrapper def only_if_element(func): """ Decorator which raises if element is None. Args: func (callable): The function to be wrapped Returns: wrapper (callable): The decorated function """ @wraps(func) def wrapper(*args, **kwargs): state = kwargs.get('state', SingleState()) if state.element is None: raise ValueError(f'Element not available. Cannot invoke {func.__name__}.') return func(*args, **kwargs) return wrapper def find_bot_class(module): """ Args: module (module): The module in which to search for the BaseBot class. Returns: klass (type): A class that inherits from BaseBot. """ import inspect from botcity.core import BaseBot klass = [obj for name, obj in inspect.getmembers(module) if inspect.isclass(obj) and issubclass(obj, BaseBot) and 'botcity.core' not in obj.__module__ and module.__name__ in obj.__module__] if not klass: raise ValueError('No BaseBot class could be found. Please add at least one class' 'inheriting from DesktopBot or similar.') return klass ```
{ "source": "joaovpassos/USP-Programs", "score": 2 }
#### File: USP-Programs/files/agentes.py ```python import random # para mt.init_matriz() usada na função sorteie_cidade() import matriz as mt #------------------------------------------------------------------ # CONSTANTES VAZIA = ' ' # para casa vazia AZUL = 'a' # para casa habitada por azul VERMELHO = 'v' # para casa habitada por vermelho # valores para teste/debug DEBUG = False SEMENTE = 10 # para random.seed() TAMANHO = 6 # para a dimensão da cidade PORCENT_A = 40 # porcentagem agentes azuis PORCENT_V = 40 # porcentagem agentes vermelhos DESEJADO = 3 # número de vizinhos que tornam um agente feliz ###################################################################### def main(): # inicialização: teste seu programa inicialmente com # DEBUG = True e depois com Debug = False para # usar outros valores if DEBUG: semente = SEMENTE tamanho = TAMANHO porc_A = PORCENT_A porc_V = PORCENT_V min_viz_desejado = DESEJADO else: print("Bem vindo ao simulador do modelo de segregação de Schelling\n") semente = int(input("Digite a semente para o gerador de números pseudo-aleatórios: ")) tamanho = int(input("Digite o tamanho da matriz cidade: ")) porc_A = int(input("Digite a porcentagem da população azul: ")) porc_V = int(input("Digite a porcentagem da população vermelha: ")) min_viz_desejado = int(input("Digite o número mínimo de vizinhos desejado: ")) # inicialização do gerador de números pseudo-aleatórios random.seed( semente ) # configuração inicial das moradias na cidade mapa = sorteie_cidade( tamanho, porc_A, porc_V ) print() print("Configuração Inicial") for lin in range(tamanho): print(f"linha {lin:3d} - {mapa[lin]}") # simulação do processo fim = False iteracao = 0 while not fim: muda_a, muda_v = ache_infelizes( mapa, min_viz_desejado ) print() print(f"{len(muda_a):3d} moradores azuis querem mudar") print(f"{len(muda_v):3d} moradores vermelhos querem mudar") print(f"Origem dos azuis : {muda_a}") print(f"Origem dos vermelhos: {muda_v}") origem = muda_a + muda_v destino = atualize_mapa(mapa, origem) for i in range(len(origem)): print(f"Morador em {origem[i]} se moveu para {destino[i]}") iteracao += 1 print(f"\nEstado do mapa após {iteracao} iterações") for lin in range(tamanho): print(f"linha {lin:3d} - {mapa[lin]}") if len(muda_a) == 0 and len(muda_v) == 0: print("Todos os moradores estão felizes e ninguém quer se mudar!") fim = True else: op = input("\nDigite fim para terminar, ou enter para mais uma iteração: ") if op == 'fim': fim = True ###################################################################### def conte_vizinhos(M, lin, col): ''' (matriz, int, int) -> int RECEBE uma matriz M que representa uma cidade e um par [lin, col] que indica uma casa [lin][col] de M. RETORNA o número de casas vizinhas da casa [lin][col] de M em que habitam agentes iguais a M[lin][col]. ''' # modifique o código abaixo para conter a sua solução. vizinhos = 0 if (lin-1) >=0 and (col-1) >= 0: if M[lin-1][col-1] == M[lin][col]: vizinhos += 1 if (lin-1) >= 0: if M[lin-1][col] == M[lin][col]: vizinhos += 1 if (col+1) < len(M) and (lin-1) >= 0: if M[lin-1][col+1] == M[lin][col]: vizinhos += 1 if (col-1) >= 0: if M[lin][col-1] == M[lin][col]: vizinhos += 1 if (col+1) < len(M): if M[lin][col+1] == M[lin][col]: vizinhos += 1 if (lin+1) < len(M[0]) and (col-1) >= 0: if M[lin+1][col-1] == M[lin][col]: vizinhos += 1 if (lin+1) < len(M[0]): if M[lin+1][col] == M[lin][col]: vizinhos += 1 if (lin+1) < len(M[0]) and (col+1) < len(M): if M[lin+1][col+1] == M[lin][col]: vizinhos += 1 return vizinhos ###################################################################### def ache_infelizes(M, minviz): ''' (matriz, int) -> lista de listas, lista de listas RECEBE uma matriz M que representa uma cidade e um inteiro minviz. RETORNA duas listas. Cada cada item destas listas é um par [lin, col] que indica uma casa [lin][col] de M habitada por um agente infeliz. A PRIMEIRA lista contém TODOS os pares [lin, col] tais que o agente que habita a casa [lin][col] é AZUL e está INFELIZ. A SEGUNDA lista contém TODOS os pares [lin, col] tais que o agente que habita a casa [lin][col] é VERMELHO e está INFELIZ. Um AGENTE está INFELIZ se o número de vizinhos iguais a ele é menor que minviz. ''' # modifique o código abaixo para conter a sua solução. azuis = [] vermelhos = [] for i in range(len(M)): for j in range(len(M[i])): if conte_vizinhos(M,i,j) < minviz: if M[i][j] == 'a': azuis += [[i, j]] elif M[i][j] == 'v': vermelhos += [[i, j]] return azuis, vermelhos ###################################################################### def atualize_mapa(M, origem): ''' (matriz, list) -> lista de listas RECEBE uma matriz M que representa uma cidade e uma lista origem em que cada item é um par [lin, col] que indica uma casa [lin][col] de M. MODIFICA a matriz M mudando, cada morador de uma casa [lin][col] indicada por um par [lin, col] em origem, para uma casa vazia escolhida de forma aleatória. Para essa escolha aleatoria utilize a função sorteie_casa_vazia() que está totalmente feita mais adiante. Após cada mudança a casa origem fica desocupada/vazia. RETORNA uma lista em que cada item é um par [lin, col] que indica uma casa [lin][col] de M. A lista destino deve ser tal que o agente que habitava a casa origem[i] mudou-se para a casa destino[i]. Estude o enunciado e os exemplos fornecidos no enunciado. A função sortei_casa_vazia também pode ser fonte de inspiração. ''' # modifique o código abaixo para conter a sua solução. new_positions = [] for i in origem: x = sorteie_casa_vazia(M) M[x[0]][x[1]] = M[i[0]][i[1]] M[i[0]][i[1]] = VAZIA new_positions += [[x[0],x[1]]] return new_positions ###################################################################### ###################################################################### ## ## Utilidades para você usar caso desejar ## ###################################################################### def sorteie_cidade(nlins, pa, pv): ''' (int, int, int) -> matriz RECEBE inteiros nlins, pa e pv. RETORNA uma matriz M que representa uma cidade de dimensão nlins x nlins em que o número (provavelmente) de - moradores azuis é (pa/100)*nlins*nlins, - moradores vermelhos é (pv/100)*nlins*nlins, e - casa desabitadas é (1-(pa+pv)/100)*nlins*nlins ''' ncols = nlins # matriz é quadrada # 1 inicialmente todas as casas estão desabitadas = VAZIA M = mt.init_matriz(nlins, ncols, VAZIA) # 2 pecorra a cidade povoando cada casa com um agente azul ou # um agente vermelho ou deixando desabitada for lin in range(nlins): for col in range(ncols): # faça um sorteio para decidir se a casa [lin][col] # será habitada por um agente azul, ou por um agente vermelho # ou ficará desabitada sorteio = random.randrange(100) if sorteio < pa: # sorteio em {0,1,...,pa-1} M[lin][col] = AZUL elif sorteio < pa+pv: # sorteio em {pa,pa+1,...,pa+pv-1} M[lin][col] = VERMELHO return M ###################################################################### def sorteie_casa_vazia( M ): ''' (matriz) -> [int, int] RECEBE uma matriz M que representa uma cidade. RETORNA um par [lin, col] que indica uma casa vazia [lin][col] de M escohida aleatoriamente. ''' # 1 pegue a dimensão da cidade nlins = len(M) ncols = nlins # = len(M[0]), nlins == ncols # 2 crie um lista para armazenar os pares [lin, col] que indicam as # casas [lin][col] de M que estão desabitadas casaVazia = [] # 3 pecorra a cidade a procura de casas desabitadas for lin in range(nlins): for col in range(ncols): # a casa esta desabitada, vazia? if M[lin][col] == VAZIA: # insira o para [lin, col] na nossa lista casaVazia += [ [lin, col] ] # 4 sorteie uma das casas desabitadas aleatoriamente sorteada = random.randrange( len(casaVazia) ) # retorne a casa sorteda. return casaVazia[sorteada] ###################################################################### if __name__ == "__main__": main() ``` #### File: USP-Programs/files/area.py ```python EPSILON = 1.0e-6 #------------------------------------------------------------------ # O import abaixo permite que o programa utilize todas as funções do módulo math, # como por exemplo, math.exp e math.sin. import math #------------------------------------------------------------------ def main(): '''() -> None Modifique essa função, escrevendo outros testes. ''' # escolha a função que desejar e atribuia a f_x f_x = math.cos # f_x = math.sin # f_x = math.exp # etc, para integração com outras funções. # f_x = identidade # identidade() definidas mais adiante # f_x = circunferencia # circunferencia() definida mais adiante # f_x = exp # exp() definida mais adiante print("Início dos testes.") # Testes da f_x nome = f_x.__name__ # nome da f_x usada print(f"A função f_x usada nos testes é {nome}()") print(f"Valor de f_x(0.0)= {f_x( 0.0 )}") print(f"Valor de f_x(0.5)= {f_x( 0.5 )}") print(f"Valor de f_x(1.0)= {f_x( 1.0 )}") # testes da função área_por_retangulos print() print("Área por retângulos:") a, b = 0, 1 # intervalo [a,b] k = 1 # número de retângulos n = 3 # número de iterações i = 0 while i < n: print(f"teste {i+1}: para {k} retângulos no intervalo [{a}, {b}]:") print(f" área aproximada = {area_por_retangulos(f_x, a, b, k):g}") k *= 10 i += 1 # testes da função área_aproximada print() print("Área aproximada:") a, b = 0, 1 # intervalo k, area = area_aproximada(f_x, a, b) # número de retângulos e aproximação print(f"teste 1: para eps = {EPSILON:g} e intervalo [{a}, {b}]:") print(f" com {k} retângulo a área é aproximadamente = {area:g}") eps = 1e-6 # erro relativo aceitável i = 1 n = 4 while i < n: eps *= 10 # aumenta o erro relativo aceitável k, area = area_aproximada(f_x, a, b, eps) print(f"teste {i+1}: para eps = {eps:g} e intervalo [{a}, {b}]:") print(f" com {k} retângulos a área é aproximadamente = {area:g}") i += 1 print("Fim dos testes.") #------------------------------------------------------------------ # FUNÇÃO AUXILIAR PARA TESTE: função f(x)=x def identidade( x ): ''' (float) -> float RECEBE um valor x. RETORNA o valor recebido. EXEMPLOS: In [6]: identidade(3.14) Out[6]: 3.14 In [7]: identidade(1) Out[7]: 1 In [8]: identidade(-3) Out[8]: -3 ''' return x #------------------------------------------------------------------ # FUNÇÃO AUXILIAR PARA TESTE: função f(x)=sqrt(1 - x*x) def circunferencia( x ): ''' (float) -> float RECEBE um valor x. RETORNA um valor y >= 0 tal que (x,y) é um ponto na circunferência de raio 1 e centro (0,0). PRÉ-CONDIÇÃO: a função supõe que x é um valor tal que -1 <= x <= 1. EXEMPLOS: In [9]: circunferencia(-1) Out[9]: 0.0 In [10]: circunferencia(0) Out[10]: 1.0 In [11]: circunferencia(1) Out[11]: 0.0 ''' y = math.sqrt( 1 - x*x ) return y #------------------------------------------------------------------ # FUNÇÃO AUXILIAR PARA TESTE: função f(x) = e^x def exp( x ): ''' (float) -> float RECEBE um valor x. RETORNA (uma aproximação de) exp(x). EXEMPLOS: In [12]: exp(1) Out[12]: 2.718281828459045 In [13]: exp(0) Out[13]: 1.0 In [14]: exp(-1) Out[14]: 0.36787944117144233 ''' y = math.exp( x ) return y # return math.exp( x ) #------------------------------------------------------------------ # def erro_rel(y, x): ''' (float, float) -> float RECEBE dois números x e y. RETORNA o erro relativo entre eles. EXEMPLOS: In [1]: erro_rel(0, 0) Out [1]: 0.0 In [2]: erro_rel(0.01, 0) Out [2]: 1.0 In [3]: erro_rel(1.01, 1.0) Out [3]: 0.01 ''' if x == 0 and y == 0: return 0.0 elif x == 0: return 1.0 erro = (y-x)/x if erro < 0: return -erro return erro #------------------------------------------------------------------ def area_por_retangulos(f, a, b, k): '''(function, float, float, int) -> float RECEBE uma função f, dois números a e b e um inteiro k. RETORNA uma aproximação da área sob a função f no intervalo [a,b] usando k retângulos. PRÉ-CONDIÇÃO: a função supõe que a função f é continua no intervalo [a,b] e que f(x) >= 0 para todo x, a <= x <= b. EXEMPLOS: In [15]area_por_retangulos(identidade, 0, 1, 1) Out[15]: 0.5 In [16]:area_por_retangulos(circunferencia, -1, 0, 1) Out[16]: 0.8660254037844386 ''' # escreva a sua solução a seguir # remova ou modifique a linha abaixo como desejar base = (b-a)/k i = 0 x_meio = ((b-a)/(2*k)) + a soma = 0 while i < k: area = f(x_meio)*base x_meio += base i += 1 soma += area return soma #------------------------------------------------------------------ def area_aproximada(f, a, b, eps=EPSILON): '''(function, float, float, float) -> int, float RECEBE uma função f, dois números a, b, eps. RETORNA um inteiro k e uma aproximação da área sob a função f no intervalo [a,b] usando k retângulo. O valor de k deve ser a __menor potência__ de 2 tal que o erro relativo da aproximação retornada seja menor que eps. Assim, os possíveis valores de k são 1, 2, 4, 8, 16, 32, 64, ... PRÉ-CONDIÇÃO: a função supõe que a função f é continua no intervalo [a,b] e que f(x) >= 0 para todo x, a <= x <= b. EXEMPLOS: In [22]: area_aproximada(identidade, 1, 2) Out[22]: (2, 1.5) In [23]: area_aproximada(exp, 1, 2, 16) Out[23]: (2, 4.6224728167337865) ''' # escreva o corpo da função # remova ou modifique a linha abaixo como desejar k = 1 sub = eps + 1 while sub >= eps: sub = erro_rel(area_por_retangulos(f,a,b,k*2),area_por_retangulos(f,a,b,k)) k *= 2 return k, area_por_retangulos(f,a,b,k) # para retornar um int e um float # basta separá-los por vírgula ####################################################### ### FIM ### ####################################################### # # NÃO MODIFIQUE AS LINHAS ABAIXO # # Esse if serve para executar a função main() apenas quando # este é o módulo a partir do qual a execução foi iniciada. if __name__ == '__main__': main() ```
{ "source": "joaovs2004/Simple-Calculator", "score": 2 }
#### File: Simple-Calculator/interface/mainUi.py ```python from PyQt5 import QtCore, QtGui, QtWidgets class MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(400, 600) MainWindow.setMinimumSize(QtCore.QSize(400, 600)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(43, 43, 43)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(58, 58, 58)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(48, 48, 48)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(19, 19, 19)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(26, 26, 26)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(43, 43, 43)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(39, 39, 39)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(77, 77, 77)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Highlight, brush) brush = QtGui.QBrush(QtGui.QColor(19, 19, 19)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255, 128)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.PlaceholderText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(43, 43, 43)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(58, 58, 58)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(48, 48, 48)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(19, 19, 19)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(26, 26, 26)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(43, 43, 43)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(39, 39, 39)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(77, 77, 77)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Highlight, brush) brush = QtGui.QBrush(QtGui.QColor(19, 19, 19)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255, 128)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.PlaceholderText, brush) brush = QtGui.QBrush(QtGui.QColor(19, 19, 19)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(43, 43, 43)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(58, 58, 58)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(48, 48, 48)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(19, 19, 19)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(26, 26, 26)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(19, 19, 19)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(19, 19, 19)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(39, 39, 39)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(39, 39, 39)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(31, 32, 42)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Highlight, brush) brush = QtGui.QBrush(QtGui.QColor(39, 39, 39)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255, 128)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.PlaceholderText, brush) MainWindow.setPalette(palette) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.verticalLayout = QtWidgets.QVBoxLayout(self.centralwidget) self.verticalLayout.setObjectName("verticalLayout") self.gridLayout = QtWidgets.QGridLayout() self.gridLayout.setObjectName("gridLayout") self.pushButton_10 = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(10) sizePolicy.setHeightForWidth(self.pushButton_10.sizePolicy().hasHeightForWidth()) self.pushButton_10.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(16) self.pushButton_10.setFont(font) self.pushButton_10.setObjectName("pushButton_10") self.buttonGroup = QtWidgets.QButtonGroup(MainWindow) self.buttonGroup.setObjectName("buttonGroup") self.buttonGroup.addButton(self.pushButton_10) self.gridLayout.addWidget(self.pushButton_10, 3, 1, 1, 1) self.pushButton_13 = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(10) sizePolicy.setHeightForWidth(self.pushButton_13.sizePolicy().hasHeightForWidth()) self.pushButton_13.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(16) self.pushButton_13.setFont(font) self.pushButton_13.setObjectName("pushButton_13") self.buttonGroup.addButton(self.pushButton_13) self.gridLayout.addWidget(self.pushButton_13, 4, 0, 1, 1) self.pushButton_12 = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(10) sizePolicy.setHeightForWidth(self.pushButton_12.sizePolicy().hasHeightForWidth()) self.pushButton_12.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(16) self.pushButton_12.setFont(font) self.pushButton_12.setObjectName("pushButton_12") self.buttonGroup.addButton(self.pushButton_12) self.gridLayout.addWidget(self.pushButton_12, 4, 3, 1, 1) self.btnDelete = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(10) sizePolicy.setHeightForWidth(self.btnDelete.sizePolicy().hasHeightForWidth()) self.btnDelete.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(16) self.btnDelete.setFont(font) self.btnDelete.setObjectName("btnDelete") self.gridLayout.addWidget(self.btnDelete, 1, 1, 1, 2) self.pushButton_8 = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(10) sizePolicy.setHeightForWidth(self.pushButton_8.sizePolicy().hasHeightForWidth()) self.pushButton_8.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(16) self.pushButton_8.setFont(font) self.pushButton_8.setObjectName("pushButton_8") self.buttonGroup.addButton(self.pushButton_8) self.gridLayout.addWidget(self.pushButton_8, 3, 3, 1, 1) self.pushButton_5 = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(10) sizePolicy.setHeightForWidth(self.pushButton_5.sizePolicy().hasHeightForWidth()) self.pushButton_5.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(16) self.pushButton_5.setFont(font) self.pushButton_5.setObjectName("pushButton_5") self.buttonGroup.addButton(self.pushButton_5) self.gridLayout.addWidget(self.pushButton_5, 2, 0, 1, 1) self.pushButton_7 = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(10) sizePolicy.setHeightForWidth(self.pushButton_7.sizePolicy().hasHeightForWidth()) self.pushButton_7.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(16) self.pushButton_7.setFont(font) self.pushButton_7.setObjectName("pushButton_7") self.buttonGroup.addButton(self.pushButton_7) self.gridLayout.addWidget(self.pushButton_7, 2, 2, 1, 1) self.pushButton_4 = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(10) sizePolicy.setHeightForWidth(self.pushButton_4.sizePolicy().hasHeightForWidth()) self.pushButton_4.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(16) self.pushButton_4.setFont(font) self.pushButton_4.setObjectName("pushButton_4") self.buttonGroup.addButton(self.pushButton_4) self.gridLayout.addWidget(self.pushButton_4, 2, 3, 1, 1) self.btnClear = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(10) sizePolicy.setHeightForWidth(self.btnClear.sizePolicy().hasHeightForWidth()) self.btnClear.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(16) self.btnClear.setFont(font) self.btnClear.setObjectName("btnClear") self.gridLayout.addWidget(self.btnClear, 1, 0, 1, 1) self.pushButton_17 = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(10) sizePolicy.setHeightForWidth(self.pushButton_17.sizePolicy().hasHeightForWidth()) self.pushButton_17.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(16) self.pushButton_17.setFont(font) self.pushButton_17.setObjectName("pushButton_17") self.buttonGroup.addButton(self.pushButton_17) self.gridLayout.addWidget(self.pushButton_17, 6, 0, 1, 2) self.pushButton_15 = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(10) sizePolicy.setHeightForWidth(self.pushButton_15.sizePolicy().hasHeightForWidth()) self.pushButton_15.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(16) self.pushButton_15.setFont(font) self.pushButton_15.setObjectName("pushButton_15") self.buttonGroup.addButton(self.pushButton_15) self.gridLayout.addWidget(self.pushButton_15, 4, 2, 1, 1) self.Res = QtWidgets.QLineEdit(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(8) sizePolicy.setHeightForWidth(self.Res.sizePolicy().hasHeightForWidth()) self.Res.setSizePolicy(sizePolicy) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(36, 36, 36)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(36, 36, 36)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(39, 39, 39)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) self.Res.setPalette(palette) font = QtGui.QFont() font.setPointSize(16) self.Res.setFont(font) self.Res.setText("") self.Res.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.Res.setReadOnly(True) self.Res.setObjectName("Res") self.gridLayout.addWidget(self.Res, 0, 0, 1, 4) self.pushButton_14 = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(10) sizePolicy.setHeightForWidth(self.pushButton_14.sizePolicy().hasHeightForWidth()) self.pushButton_14.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(16) self.pushButton_14.setFont(font) self.pushButton_14.setObjectName("pushButton_14") self.buttonGroup.addButton(self.pushButton_14) self.gridLayout.addWidget(self.pushButton_14, 4, 1, 1, 1) self.pushButton_18 = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(10) sizePolicy.setHeightForWidth(self.pushButton_18.sizePolicy().hasHeightForWidth()) self.pushButton_18.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(16) self.pushButton_18.setFont(font) self.pushButton_18.setObjectName("pushButton_18") self.buttonGroup.addButton(self.pushButton_18) self.gridLayout.addWidget(self.pushButton_18, 6, 2, 1, 1) self.pushButton_11 = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(10) sizePolicy.setHeightForWidth(self.pushButton_11.sizePolicy().hasHeightForWidth()) self.pushButton_11.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(16) self.pushButton_11.setFont(font) self.pushButton_11.setObjectName("pushButton_11") self.buttonGroup.addButton(self.pushButton_11) self.gridLayout.addWidget(self.pushButton_11, 3, 2, 1, 1) self.pushButton_9 = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(10) sizePolicy.setHeightForWidth(self.pushButton_9.sizePolicy().hasHeightForWidth()) self.pushButton_9.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(16) self.pushButton_9.setFont(font) self.pushButton_9.setObjectName("pushButton_9") self.buttonGroup.addButton(self.pushButton_9) self.gridLayout.addWidget(self.pushButton_9, 3, 0, 1, 1) self.btnResult = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(10) sizePolicy.setHeightForWidth(self.btnResult.sizePolicy().hasHeightForWidth()) self.btnResult.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(16) self.btnResult.setFont(font) self.btnResult.setObjectName("btnResult") self.gridLayout.addWidget(self.btnResult, 6, 3, 1, 1) self.pushButton_6 = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(10) sizePolicy.setHeightForWidth(self.pushButton_6.sizePolicy().hasHeightForWidth()) self.pushButton_6.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(16) self.pushButton_6.setFont(font) self.pushButton_6.setObjectName("pushButton_6") self.buttonGroup.addButton(self.pushButton_6) self.gridLayout.addWidget(self.pushButton_6, 2, 1, 1, 1) self.pushButton_3 = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(10) sizePolicy.setHeightForWidth(self.pushButton_3.sizePolicy().hasHeightForWidth()) self.pushButton_3.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(16) self.pushButton_3.setFont(font) self.pushButton_3.setObjectName("pushButton_3") self.buttonGroup.addButton(self.pushButton_3) self.gridLayout.addWidget(self.pushButton_3, 1, 3, 1, 1) self.verticalLayout.addLayout(self.gridLayout) MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "Calculator")) self.pushButton_10.setText(_translate("MainWindow", "5")) self.pushButton_10.setShortcut(_translate("MainWindow", "5")) self.pushButton_13.setText(_translate("MainWindow", "1")) self.pushButton_13.setShortcut(_translate("MainWindow", "1")) self.pushButton_12.setText(_translate("MainWindow", "-")) self.pushButton_12.setShortcut(_translate("MainWindow", "-")) self.btnDelete.setText(_translate("MainWindow", "⌫")) self.btnDelete.setShortcut(_translate("MainWindow", "Backspace")) self.pushButton_8.setText(_translate("MainWindow", "+")) self.pushButton_8.setShortcut(_translate("MainWindow", "+")) self.pushButton_5.setText(_translate("MainWindow", "7")) self.pushButton_5.setShortcut(_translate("MainWindow", "7")) self.pushButton_7.setText(_translate("MainWindow", "9")) self.pushButton_7.setShortcut(_translate("MainWindow", "9")) self.pushButton_4.setText(_translate("MainWindow", "*")) self.pushButton_4.setShortcut(_translate("MainWindow", "*")) self.btnClear.setText(_translate("MainWindow", "C")) self.btnClear.setShortcut(_translate("MainWindow", "C")) self.pushButton_17.setText(_translate("MainWindow", "0")) self.pushButton_17.setShortcut(_translate("MainWindow", "0")) self.pushButton_15.setText(_translate("MainWindow", "3")) self.pushButton_15.setShortcut(_translate("MainWindow", "3")) self.Res.setPlaceholderText(_translate("MainWindow", "0")) self.pushButton_14.setText(_translate("MainWindow", "2")) self.pushButton_14.setShortcut(_translate("MainWindow", "2")) self.pushButton_18.setText(_translate("MainWindow", ".")) self.pushButton_18.setShortcut(_translate("MainWindow", ".")) self.pushButton_11.setText(_translate("MainWindow", "6")) self.pushButton_11.setShortcut(_translate("MainWindow", "6")) self.pushButton_9.setText(_translate("MainWindow", "4")) self.pushButton_9.setShortcut(_translate("MainWindow", "4")) self.btnResult.setText(_translate("MainWindow", "=")) self.btnResult.setShortcut(_translate("MainWindow", "Return")) self.pushButton_6.setText(_translate("MainWindow", "8")) self.pushButton_6.setShortcut(_translate("MainWindow", "8")) self.pushButton_3.setText(_translate("MainWindow", "÷")) self.pushButton_3.setShortcut(_translate("MainWindow", "/")) ```
{ "source": "Joaovtrs/pygame_examples", "score": 3 }
#### File: src/sandpiles/play.py ```python import numpy as np import pygame from pygame.locals import * def draw(fps): screen.fill(black) for i, colum in enumerate(sandpiles): for j, cell in enumerate(colum): if cell == 1: skin = pygame.Surface((gride_size, gride_size)) skin.fill(red) screen.blit(skin, (i * gride_size, j * gride_size)) elif cell == 2: skin = pygame.Surface((gride_size, gride_size)) skin.fill(green) screen.blit(skin, (i * gride_size, j * gride_size)) elif cell == 3: skin = pygame.Surface((gride_size, gride_size)) skin.fill(blue) screen.blit(skin, (i * gride_size, j * gride_size)) elif cell > 3: skin = pygame.Surface((gride_size, gride_size)) skin.fill(white) screen.blit(skin, (i * gride_size, j * gride_size)) txt2 = font2.render(f"FPS: {fps:.2f}", True, white) txt2_rect = txt2.get_rect() txt2_rect.topleft = (10, 10) screen.blit(txt2, txt2_rect) def next_generation(): global sandpiles new_sandpiles = np.zeros(gride) for i in range(gride[0]): for j in range(gride[1]): new_sandpiles[i][j] = sandpiles[i][j] for i in range(gride[0]): for j in range(gride[1]): if sandpiles[i][j] >= 4: new_sandpiles[i][j] -= 4 if i > 0: new_sandpiles[i - 1][j] += 1 if i < gride[0] - 1: new_sandpiles[i + 1][j] += 1 if j > 0: new_sandpiles[i][j - 1] += 1 if j < gride[1] - 1: new_sandpiles[i][j + 1] += 1 sandpiles = new_sandpiles playing = True clock = pygame.time.Clock() # Colors black = (0, 0, 0) white = (255, 255, 255) gray = (50, 50, 50) red = (255, 0, 0) green = (0, 255, 0) blue = (0, 0, 255) # Control variables window_height = 500 window_length = 700 gride_size = 5 gride = (int(window_length / gride_size), int(window_height / gride_size)) pygame.init() screen = pygame.display.set_mode((window_length, window_height)) pygame.display.set_caption('Name') try: font = pygame.font.Font('RobotoMono-Bold.ttf', 100) font2 = pygame.font.Font('RobotoMono-Bold.ttf', 20) except FileNotFoundError: font = pygame.font.Font(None, 100) font2 = pygame.font.Font(None, 20) sandpiles = np.zeros(gride) sandpiles[gride[0] // 2][gride[1] // 2] = 100000 paused = False while playing: clock.tick(20) for event in pygame.event.get(): if event.type == QUIT: playing = False if event.type == KEYDOWN: if event.key == 32: paused = not paused if not paused: for _ in range(3): next_generation() draw(clock.get_fps()) pygame.display.update() pygame.quit() exit() ```
{ "source": "joapaspe/tesismometro", "score": 3 }
#### File: joapaspe/tesismometro/main.py ```python import os import random import json from flask import Flask import jinja2 import stats from flask import render_template, redirect import tesis_bd from flask import request from google.appengine.api import users # jinja2 configuration. template_dir = os.path.join(os.path.dirname(__file__), 'templates') jinja_env = jinja2.Environment(loader=jinja2.FileSystemLoader(template_dir), autoescape=True) app = Flask(__name__) @app.route('/') def show_results(): """ Main page. :return: The request with the rendered template. """ doctors = tesis_bd.Doctor.query().fetch() results = [] for doctor in doctors: last_record = tesis_bd.LastRecord.query(tesis_bd.LastRecord.doctor == doctor.key).fetch() if last_record: last_record = last_record[0] record = last_record.record.get() res = { 'name': doctor.name } for field in tesis_bd.RECORD_FIELDS: res[field] = getattr(record, field) results.append(res) results.sort(key=lambda x: -x["words"]) # Select the default drawing field. draw_field = request.args.get('draw') if not draw_field or draw_field not in tesis_bd.RECORD_FIELDS[:-1]: draw_field = 'words' draw_data = stats.get_draw_info(draw_field) # Compute the draw standings. week_standings = stats.get_week_standings() return render_template('index.html', results=results, headers=tesis_bd.RECORD_NAMES, fields=tesis_bd.RECORD_FIELDS, draw_data=json.dumps(draw_data), week_standings=week_standings, draw_field=tesis_bd.record_field_to_name[draw_field] ) @app.route('/hist/<username>/') def show_hist(username): """Extracts the histograms and show them to the final user. :param username: Doctor name to show stats about. :return: Rendered template with the doctor data stats. """ draw_field = request.args.get('draw') doctor = tesis_bd.Doctor.query(tesis_bd.Doctor.name == username).fetch() if not doctor: return render_template('hist.html') doctor = doctor[0] records = tesis_bd.Record.query( tesis_bd.Record.doctor == doctor.key).order(-tesis_bd.Record.date).fetch() # Compute the difference with the previous record. diffs = [] for i, record in enumerate(records): record_diff = {} for field in tesis_bd.RECORD_FIELDS[:-1]: if i == len(records) - 1: record_diff[field] = 0 else: act = getattr(record, field) ant = getattr(records[i + 1], field) record_diff[field] = act - ant diffs.append(record_diff) # Default graph field. if not draw_field or draw_field not in tesis_bd.RECORD_FIELDS[:-1]: draw_field = 'words' draw_dates = [x.date.strftime('%Y-%m-%d') for x in records] return render_template('hist.html', records=records, doctor=doctor.name, difs=diffs, fields=tesis_bd.RECORD_FIELDS[:-1], headers=tesis_bd.RECORD_NAMES, draw_dates=draw_dates, draw_field=draw_field) @app.route('/post', methods=['GET', 'POST']) def post_record(): """ Request for adding the data to the database. :return: An http response with the submitted information """ if request.method != 'POST': return render_template( "error.html", message="GET mode not allowed for adding a new record.") params = request.form doctor = tesis_bd.Doctor.query(tesis_bd.Doctor.name == params["name"]).fetch() if not doctor: return render_template("error.html", message="The doctor is not found.") doctor = doctor[0] # Check the token. if "token" not in params or doctor.token != params["token"]: return render_template("error.html", message="Unable to authenticate the doctor.") # Get the record tu update. record_list = tesis_bd.LastRecord.query(tesis_bd.LastRecord.doctor == doctor.key).fetch() if not record_list: # Create an empty record empty_record = tesis_bd.Record(doctor=doctor.key) empty_record.put() last_record = tesis_bd.LastRecord(doctor=doctor.key, record=empty_record.key) last_record.put() else: last_record = record_list[0] # If the record is from the same day we update it. import datetime now = datetime.datetime.now() day, month, year = now.day, now.month, now.year equations = int(params["equations"]) words = int(params["words"]) equations_inline = int(params["equations_inline"]) figures = int(params["figures"]) cites = int(params["cites"]) pages = int(params["pages"]) record = last_record.record.get() last_values = [getattr(record, field) for field in tesis_bd.RECORD_FIELDS[:-1]] if record.date.day == day and record.date.month == month and record.date.year == year: record.equations = equations record.words = words record.equations_inline = equations_inline record.figures = figures record.pages = pages record.cites = cites record.date = datetime.datetime.now() + datetime.timedelta(hours=1) record.put() else: record = tesis_bd.Record(doctor=doctor.key, words=words, equations=equations, equations_inline=equations_inline, figures=figures, cites=cites, pages=pages, date=datetime.datetime.now()+datetime.timedelta(hours=1)) record.put() last_record.record = record.key last_record.put() diff_values = [getattr(record, field) - last_values[i] for i, field in enumerate(tesis_bd.RECORD_FIELDS[:-1])] diff_values.append(record.date.strftime('%Y-%m-%d %H:%M')) stats.update_data() return render_template('show_post.html', doctor=diff_values, fields=tesis_bd.RECORD_FIELDS) @app.route('/user', methods=['GET']) def user_view(): """ User interface (only shows the token). :return: An http response with the submitted information. """ user = users.get_current_user() if not user: return redirect(users.create_login_url("/user")) email = user.email() doctors = tesis_bd.Doctor.query(tesis_bd.Doctor.email == email).fetch() if len(doctors) == 0: return render_template('error.html', message="User not found in the DB.") doctor = doctors[0] name = doctor.name if not doctor.token: doctor.token = "%<PASSWORD>" % random.getrandbits(64) code = doctor.token doctor.put() logout_url = users.create_logout_url("/") return render_template('user_view.html', login=doctor.name, name=name, email=email, code=code, logout_url=logout_url) if __name__ == '__main__': app.run() ```
{ "source": "joapolarbear/byteps", "score": 2 }
#### File: example/mxnet-gluon/train_mnist_byteps.py ```python import time import argparse import logging import mxnet as mx import byteps.mxnet as bps from mxnet import autograd, gluon, nd from mxnet.gluon.data.vision import MNIST from byteps.mxnet.mx_wrapper import BPSDatasetLoader # Higher download speed for chinese users # os.environ['MXNET_GLUON_REPO'] = 'https://apache-mxnet.s3.cn-north-1.amazonaws.com.cn/' # Training settings parser = argparse.ArgumentParser(description='MXNet MNIST Example') parser.add_argument('--batch-size', type=int, default=64, help='training batch size (default: 64)') parser.add_argument('--dtype', type=str, default='float32', help='training data type (default: float32)') parser.add_argument('--epochs', type=int, default=5, help='number of training epochs (default: 5)') parser.add_argument('--j', type=int, default=2, help='number of cpu processes for dataloader') parser.add_argument('--lr', type=float, default=0.01, help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.9, help='SGD momentum (default: 0.9)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disable training on GPU (default: False)') args = parser.parse_args() if not args.no_cuda: # Disable CUDA if there are no GPUs. if mx.context.num_gpus() == 0: args.no_cuda = True logging.basicConfig(level=logging.INFO) logging.info(args) def dummy_transform(data, label): im = data.astype(args.dtype, copy=False) / 255 - 0.5 im = nd.transpose(im, (2, 0, 1)) return im, label # Function to get mnist iterator def get_mnist_iterator(): train_set = MNIST(train=True, transform=dummy_transform) train_iter = gluon.data.DataLoader(train_set, args.batch_size, True, num_workers=args.j, last_batch='discard') val_set = MNIST(train=False, transform=dummy_transform) val_iter = gluon.data.DataLoader(val_set, args.batch_size, False, num_workers=0) return train_iter, val_iter, len(train_set) # Function to define neural network def conv_nets(): net = gluon.nn.HybridSequential() with net.name_scope(): net.add(gluon.nn.Conv2D(channels=20, kernel_size=5, activation='relu')) net.add(gluon.nn.MaxPool2D(pool_size=2, strides=2)) net.add(gluon.nn.Conv2D(channels=50, kernel_size=5, activation='relu')) net.add(gluon.nn.MaxPool2D(pool_size=2, strides=2)) net.add(gluon.nn.Flatten()) net.add(gluon.nn.Dense(512, activation="relu")) net.add(gluon.nn.Dense(10)) return net # Function to evaluate accuracy for a model def evaluate(model, data_iter, context): metric = mx.metric.Accuracy() for _, batch in enumerate(data_iter): data = batch[0].as_in_context(context) label = batch[1].as_in_context(context) output = model(data.astype(args.dtype, copy=False)) metric.update([label], [output]) return metric.get() # Load training and validation data train_data, val_data, train_size = get_mnist_iterator() train_data = BPSDatasetLoader(train_data) # Initialize BytePS bps.init() # BytePS: pin context to local rank context = mx.cpu(bps.local_rank()) if args.no_cuda else mx.gpu(bps.local_rank()) num_workers = bps.size() # Build model model = conv_nets() model.cast(args.dtype) # Initialize parameters model.initialize(mx.init.MSRAPrelu(), ctx=context) # if bps.rank() == 0: model.summary(nd.ones((1, 1, 28, 28), ctx=mx.gpu(bps.local_rank()))) model.hybridize() # BytePS: fetch and broadcast parameters params = model.collect_params() # Create loss function and train metric loss_fn = gluon.loss.SoftmaxCrossEntropyLoss() metric = mx.metric.Accuracy() loss_fn.hybridize(static_alloc=True, static_shape=True) # BytePS: create DistributedTrainer, a subclass of gluon.Trainer optimizer_params = {'momentum': args.momentum, 'learning_rate': args.lr * num_workers} trainer = bps.DistributedTrainer(params, "sgd", optimizer_params, block=model, loss=[loss_fn]) # Train model for epoch in range(args.epochs): tic = time.time() metric.reset() for i, batch in enumerate(train_data): data = batch[0].as_in_context(context) label = batch[1].as_in_context(context) with autograd.record(): output = model(data) loss = loss_fn(output, label) loss.backward() trainer.step(args.batch_size) metric.update([label], [output]) if i % 100 == 0: name, acc = metric.get() logging.info('[Epoch %d Batch %d] Training: %s=%f' % (epoch, i, name, acc)) if bps.rank() == 0: elapsed = time.time() - tic speed = train_size * num_workers / elapsed logging.info('Epoch[%d]\tSpeed=%.2f samples/s\tTime cost=%f', epoch, speed, elapsed) # Evaluate model accuracy _, train_acc = metric.get() name, val_acc = evaluate(model, val_data, context) if bps.rank() == 0: logging.info('Epoch[%d]\tTrain: %s=%f\tValidation: %s=%f', epoch, name, train_acc, name, val_acc) if bps.rank() == 0 and epoch == args.epochs - 1: assert val_acc > 0.96, "Achieved accuracy (%f) is lower than expected\ (0.96)" % val_acc ``` #### File: byteps/launcher/launch.py ```python from __future__ import print_function import os import subprocess import threading import sys import time import traceback COMMON_REQUIRED_ENVS = ["DMLC_ROLE", "DMLC_NUM_WORKER", "DMLC_NUM_SERVER", "DMLC_PS_ROOT_URI", "DMLC_PS_ROOT_PORT"] WORKER_REQUIRED_ENVS = ["DMLC_WORKER_ID"] def check_env(): assert "DMLC_ROLE" in os.environ and \ os.environ["DMLC_ROLE"].lower() in ["worker", "server", "scheduler"] required_envs = COMMON_REQUIRED_ENVS if os.environ["DMLC_ROLE"] == "worker": assert "DMLC_NUM_WORKER" in os.environ num_worker = int(os.environ["DMLC_NUM_WORKER"]) assert num_worker >= 1 if num_worker == 1: required_envs = [] required_envs += WORKER_REQUIRED_ENVS for env in required_envs: if env not in os.environ: print("The env " + env + " is missing") os._exit(0) def worker(local_rank, local_size, command): my_env = os.environ.copy() my_env["BYTEPS_LOCAL_RANK"] = str(local_rank) my_env["BYTEPS_LOCAL_SIZE"] = str(local_size) if int(os.getenv("BYTEPS_ENABLE_GDB", 0)): if command.find("python") != 0: command = "python " + command command = "gdb -ex 'run' -ex 'bt' -batch --args " + command if os.environ.get("BYTEPS_TRACE_ON", "") == "1": print("\n!!!Enable profiling for WORKER_ID: %s and local_rank: %d!!!" % (os.environ.get("DMLC_WORKER_ID"), local_rank)) print("BYTEPS_TRACE_START_STEP: %s\tBYTEPS_TRACE_END_STEP: %s\t BYTEPS_TRACE_DIR: %s" % (os.environ.get("BYTEPS_TRACE_START_STEP", ""), os.environ.get("BYTEPS_TRACE_END_STEP", ""), os.environ.get("BYTEPS_TRACE_DIR", ""))) print("Command: %s\n" % command) sys.stdout.flush() ## To avoid integrating multiple operators into one single events # \TODO: may influence the performance my_env["MXNET_EXEC_BULK_EXEC_TRAIN"] = "0" trace_path = os.path.join(os.environ.get("BYTEPS_TRACE_DIR", "."), str(local_rank)) if not os.path.exists(trace_path): os.makedirs(trace_path) subprocess.check_call(command, env=my_env, stdout=sys.stdout, stderr=sys.stderr, shell=True) if __name__ == "__main__": DMLC_ROLE = os.environ.get("DMLC_ROLE") print("BytePS launching " + (DMLC_ROLE if DMLC_ROLE else 'None')) BYTEPS_SERVER_MXNET_PATH = os.getenv("BYTEPS_SERVER_MXNET_PATH") print("BYTEPS_SERVER_MXNET_PATH: " + (BYTEPS_SERVER_MXNET_PATH if BYTEPS_SERVER_MXNET_PATH else 'None')) sys.stdout.flush() check_env() if os.environ["DMLC_ROLE"] == "worker": if "NVIDIA_VISIBLE_DEVICES" in os.environ: local_size = len(os.environ["NVIDIA_VISIBLE_DEVICES"].split(",")) else: local_size = 1 t = [None] * local_size for i in range(local_size): command = ' '.join(sys.argv[1:]) t[i] = threading.Thread(target=worker, args=[i, local_size, command]) t[i].daemon = True t[i].start() for i in range(local_size): t[i].join() else: import byteps.server ```
{ "source": "joapolarbear/horovod", "score": 2 }
#### File: horovod/examples/tensorflow_resnet50.py ```python import numpy as np import tensorflow as tf from tensorflow import keras import os, sys import argparse import horovod.tensorflow as hvd parser = argparse.ArgumentParser(description='Tensorflow MNIST Example') parser.add_argument('--tensorboard', action='store_true', default=False, help='output summary for tensorboard visualization') parser.add_argument('--amp', action='store_true', default=False, help='use automatically mixed precision') args = parser.parse_args() from google.protobuf.json_format import MessageToJson from tensorflow.python.client import timeline import json import networkx as nx class TimelineSession: def __init__(self, sess): self.sess = sess self.graph = sess.graph self.step_cnt = 0 self.trace_dir = os.path.join(os.environ.get("BYTEPS_TRACE_DIR", "."), str(hvd.local_rank())) if not os.path.exists(self.trace_dir): os.makedirs(self.trace_dir) if os.environ.get("BYTEPS_TRACE_ON", "") != '1': self._end_trace = True return self._end_trace = False self.end_step = int(os.environ.get("BYTEPS_TRACE_END_STEP", "30")) self.start_step = int(os.environ.get("BYTEPS_TRACE_START_STEP", "20")) if not self._end_trace and self.start_step < 1: raise ValueError("BYTEPS_TRACE_START_STEP must be larger than 1") if not self._end_trace and self.end_step <= self.start_step: raise ValueError("BYTEPS_TRACE_END_STEP must be larger than BYTEPS_TRACE_START_STEP") ### Timeline configuratoin self.run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) self.run_metadata = tf.RunMetadata() self.traces = {"traceEvents":[]} self.dag = None def run(self, *args_, **kwargs_): if self._end_trace: ret = self.sess.run(*args_, **kwargs_) elif not self._end_trace and self.step_cnt < self.start_step: ret = self.sess.run(*args_, **kwargs_) self.step_cnt += 1 elif not self._end_trace and self.step_cnt < self.end_step: ret = self.sess.run(*args_, options=self.run_options, run_metadata=self.run_metadata, **kwargs_) # Create the Timeline object, and write it to a json tl = timeline.Timeline(self.run_metadata.step_stats) ctf = json.loads(tl.generate_chrome_trace_format()) self.traces["traceEvents"] += ctf["traceEvents"] print("Add the {}th step of traces".format(self.step_cnt)) self.step_cnt += 1 ### Create the DAG if self.dag is None: self.dag = nx.DiGraph() for trace in ctf["traceEvents"]: if trace["ph"] == "M" or "args" not in trace: continue op = trace["args"]["op"] name = trace["args"]["name"] ### Add nodes to the DAG if name not in self.dag.nodes: self.dag.add_node(name) ### Add dependency info for k, v in trace["args"].items(): if "input" in k: self.dag.add_edge(v, name) try: not_found = False nx.find_cycle(self.dag.cycle) except: not_found = True assert not_found ### Output traces if self.step_cnt == self.end_step: self._end_trace = True self.output_traces() ### Return all fetches return ret def output_traces(self): with open(os.path.join(self.trace_dir, "temp.json"), "w") as f: json.dump(self.traces, f, indent=4) ### collect graph info graphdef = tf.get_default_graph().as_graph_def() graph_str = json.loads(MessageToJson(graphdef)) with open(os.path.join(self.trace_dir, "graph.json"), "w") as f: json.dump(graph_str, f, indent=4) nx.write_gml(self.dag, os.path.join(self.trace_dir, "dag.gml"), lambda x: str(x)) print("Stop tracing, output trace: %s" % self.trace_dir) def should_stop(self): return self.sess.should_stop() hvd.init() sess = TimelineSession(tf.Session()) from keras import backend as K K.set_session(sess) # Load Cifar-10 data-set (train_im, train_lab), (test_im, test_lab) = tf.keras.datasets.cifar10.load_data() #### Normalize the images to pixel values (0, 1) train_im, test_im = train_im/255.0 , test_im/255.0 #### Check the format of the data print ("train_im, train_lab types: ", type(train_im), type(train_lab)) #### check the shape of the data print ("shape of images and labels array: ", train_im.shape, train_lab.shape) print ("shape of images and labels array ; test: ", test_im.shape, test_lab.shape) #### Check the distribution of unique elements (unique, counts) = np.unique(train_lab, return_counts=True) frequencies = np.asarray((unique, counts)).T print (frequencies) print (len(unique)) class_types = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] # from cifar-10 website ### One hot encoding for labels train_lab_categorical = tf.keras.utils.to_categorical( train_lab, num_classes=10, dtype='uint8') test_lab_categorical = tf.keras.utils.to_categorical( test_lab, num_classes=10, dtype='uint8') ### Train -test split from sklearn.model_selection import train_test_split train_im, valid_im, train_lab, valid_lab = train_test_split(train_im, train_lab_categorical, test_size=0.20, stratify=train_lab_categorical, random_state=40, shuffle = True) print ("train data shape after the split: ", train_im.shape) print ('new validation data shape: ', valid_im.shape) print ("validation labels shape: ", valid_lab.shape) from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, ZeroPadding2D,\ Flatten, BatchNormalization, AveragePooling2D, Dense, Activation, Add from tensorflow.keras.models import Model from tensorflow.keras import activations from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.regularizers import l2 ##### Include Little Data Augmentation batch_size = 64 # try several values train_DataGen = tf.keras.preprocessing.image.ImageDataGenerator(zoom_range=0.2, width_shift_range=0.1, height_shift_range = 0.1, horizontal_flip=True) valid_datagen = tf.keras.preprocessing.image.ImageDataGenerator() train_set_conv = train_DataGen.flow(train_im, train_lab, batch_size=batch_size) # train_lab is categorical valid_set_conv = valid_datagen.flow(valid_im, valid_lab, batch_size=batch_size) # so as valid_lab def half_precision(layer_f, input_, *args_, **kwargs_): if args.amp: input_fp16 = tf.keras.backend.cast(input_, dtype="float16") output_fp16 = layer_f(input_fp16, *args_, **kwargs_) output_fp32 = tf.keras.backend.cast(output_fp16, dtype="float32") else: output_fp32 = layer_f(input_, *args_, **kwargs_) return output_fp32 def single_precision(layer_f, input_, *args_, **kwargs_): output_fp32 = layer_f(input_, *args_, **kwargs_) return output_fp32 def res_identity(x, filters): #renet block where dimension doesnot change. #The skip connection is just simple identity conncection #we will have 3 blocks and then input will be added x_skip = x # this will be used for addition with the residual block f1, f2 = filters #first block x = Conv2D(f1, kernel_size=(1, 1), strides=(1, 1), padding='valid', kernel_regularizer=l2(0.001))(x) x = BatchNormalization()(x) x = Activation(activations.relu)(x) #second block # bottleneck (but size kept same with padding) x = Conv2D(f1, kernel_size=(3, 3), strides=(1, 1), padding='same', kernel_regularizer=l2(0.001))(x) x = BatchNormalization()(x) x = Activation(activations.relu)(x) # third block activation used after adding the input x = Conv2D(f2, kernel_size=(1, 1), strides=(1, 1), padding='valid', kernel_regularizer=l2(0.001))(x) x = BatchNormalization()(x) # x = Activation(activations.relu)(x) # add the input x = Add()([x, x_skip]) x = Activation(activations.relu)(x) return x def res_conv(x, s, filters): ''' here the input size changes''' x_skip = x f1, f2 = filters # first block x = Conv2D(f1, kernel_size=(1, 1), strides=(s, s), padding='valid', kernel_regularizer=l2(0.001))(x) # when s = 2 then it is like downsizing the feature map x = BatchNormalization()(x) x = Activation(activations.relu)(x) # second block x = Conv2D(f1, kernel_size=(3, 3), strides=(1, 1), padding='same', kernel_regularizer=l2(0.001))(x) x = BatchNormalization()(x) x = Activation(activations.relu)(x) #third block x = Conv2D(f2, kernel_size=(1, 1), strides=(1, 1), padding='valid', kernel_regularizer=l2(0.001))(x) x = BatchNormalization()(x) # shortcut x_skip = Conv2D(f2, kernel_size=(1, 1), strides=(s, s), padding='valid', kernel_regularizer=l2(0.001))(x_skip) x_skip = BatchNormalization()(x_skip) # add x = Add()([x, x_skip]) x = Activation(activations.relu)(x) return x def resnet50(): input_im = Input(shape=(train_im.shape[1], train_im.shape[2], train_im.shape[3])) # cifar 10 images size x = ZeroPadding2D(padding=(3, 3))(input_im) # 1st stage # here we perform maxpooling, see the figure above x = single_precision(Conv2D, 64, kernel_size=(7, 7), strides=(2, 2))(x) x = BatchNormalization()(x) x = Activation(activations.relu)(x) x = MaxPooling2D((3, 3), strides=(2, 2))(x) #2nd stage # frm here on only conv block and identity block, no pooling x = single_precision(res_conv, x, s=1, filters=(64, 256)) x = res_identity(x, filters=(64, 256)) x = res_identity(x, filters=(64, 256)) # 3rd stage x = single_precision(res_conv, x, s=2, filters=(128, 512)) x = res_identity(x, filters=(128, 512)) x = res_identity(x, filters=(128, 512)) x = res_identity(x, filters=(128, 512)) # 4th stage x = single_precision(res_conv, x, s=2, filters=(256, 1024)) x = res_identity(x, filters=(256, 1024)) x = res_identity(x, filters=(256, 1024)) x = res_identity(x, filters=(256, 1024)) x = res_identity(x, filters=(256, 1024)) x = res_identity(x, filters=(256, 1024)) # 5th stage x = single_precision(res_conv, x, s=2, filters=(512, 2048)) x = res_identity(x, filters=(512, 2048)) x = res_identity(x, filters=(512, 2048)) # ends with average pooling and dense connection x = AveragePooling2D((2, 2), padding='same')(x) x = Flatten()(x) x = Dense(len(class_types), activation='softmax', kernel_initializer='he_normal')(x) #multi-class # define the model model = Model(inputs=input_im, outputs=x, name='Resnet50') return model ### Define some Callbacks def lrdecay(epoch): lr = 1e-3 if epoch > 180: lr *= 0.5e-3 elif epoch > 160: lr *= 1e-3 elif epoch > 120: lr *= 1e-2 elif epoch > 80: lr *= 1e-1 #print('Learning rate: ', lr) return lr # if epoch < 40: # return 0.01 # else: # return 0.01 * np.math.exp(0.03 * (40 - epoch)) lrdecay = tf.keras.callbacks.LearningRateScheduler(lrdecay) # learning rate decay def earlystop(mode): if mode=='acc': estop = tf.keras.callbacks.EarlyStopping(monitor='val_acc', patience=15, mode='max') elif mode=='loss': estop = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=15, mode='min') return estop resnet50_model = resnet50() # resnet50_model.summary() resnet50_model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=1e-3), metrics=['acc']) trace_dir = os.path.join(os.environ.get("BYTEPS_TRACE_DIR", "."), str(0)) if not os.path.exists(trace_dir): os.makedirs(trace_dir) logdir = os.path.join(trace_dir, "board") tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir) batch_size=batch_size # test with 64, 128, 256 resnet_train = resnet50_model.fit(train_set_conv, epochs=160, steps_per_epoch=train_im.shape[0]/batch_size, validation_steps=valid_im.shape[0]/batch_size, validation_data=valid_set_conv, callbacks=[lrdecay, tensorboard_callback]) ```
{ "source": "joaquimcampos/deepsplines", "score": 3 }
#### File: deepsplines/ds_modules/deepspline_base.py ```python import torch import torch.nn as nn from abc import ABC, abstractproperty, abstractmethod from deepsplines.ds_utils import spline_grid_from_range class DeepSplineBase(ABC, nn.Module): """ Abstract class for DeepSpline activations (deepReLUspline/deepBspline*) Args: mode (str): 'conv' (convolutional) or 'fc' (fully-connected). num_activations : number of convolutional filters (if mode='conv'); number of units (if mode='fc'). size (odd int): number of coefficients of spline grid; the number of knots K = size - 2. ---- Mutually exclusive arguments --------------------------- range_ (float): positive range of the B-spline expansion. B-splines range = [-range_, range_]. If it is set, the "grid" argument needs to be None, as it will be computed from size and range_ using ds_utils.spline_grid_from_range(). grid (float): spacing between the spline knots. If given, the "grid" argument needs to be None. ------------------------------------------------------------- init (str): Function to initialize activations as (e.g. 'leaky_relu'). For deepBsplines: 'leaky_relu', 'relu' or 'even_odd'; For deepReLUspline: 'leaky_relu', 'relu'. """ def __init__(self, mode, num_activations, size=51, range_=4, grid=None, init='leaky_relu', **kwargs): if mode not in ['conv', 'fc']: raise ValueError('Mode should be either "conv" or "fc".') if int(num_activations) < 1: raise TypeError('num_activations needs to be a ' 'positive integer...') if int(size) % 2 == 0: raise TypeError('size should be an odd number.') if range_ is None: if grid is None: raise ValueError('One of the two args (range_ or grid) ' 'required.') elif float(grid) <= 0: raise TypeError('grid should be a positive float...') elif grid is not None: raise ValueError('range_ and grid should not be both set.') super().__init__() self.mode = mode self.size = int(size) self.num_activations = int(num_activations) self.init = init if range_ is None: self.grid = torch.Tensor([float(grid)]) else: grid = spline_grid_from_range(size, range_) self.grid = torch.Tensor([grid]) @property def device(self): """ Get the module's device (torch.device) Returns the device of the first found parameter. """ return getattr(self, next(self.parameter_names())).device @staticmethod @abstractmethod def parameter_names(): """ Yield names of the module parameters """ pass @abstractproperty def relu_slopes(self): """ ReLU slopes of activations """ pass def reshape_forward(self, input): """ Reshape inputs for deepspline activation forward pass, depending on mode ('conv' or 'fc'). """ input_size = input.size() if self.mode == 'fc': if len(input_size) == 2: # one activation per conv channel # transform to 4D size (N, num_units=num_activations, 1, 1) x = input.view(*input_size, 1, 1) elif len(input_size) == 4: # one activation per conv output unit x = input.view(input_size[0], -1).unsqueeze(-1).unsqueeze(-1) else: raise ValueError(f'input size is {len(input_size)}D ' 'but should be 2D or 4D...') else: assert len(input_size) == 4, \ 'input to activation should be 4D (N, C, H, W) if mode="conv".' x = input return x def reshape_back(self, output, input_size): """ Reshape back outputs after deepspline activation forward pass, depending on mode ('conv' or 'fc'). """ if self.mode == 'fc': # transform back to 2D size (N, num_units) output = output.view(*input_size) return output def totalVariation(self, **kwargs): """ Computes the second-order total-variation regularization. deepspline(x) = sum_k [a_k * ReLU(x-kT)] + (b1*x + b0) The regularization term applied to this function is: TV(2)(deepsline) = ||a||_1. """ return self.relu_slopes.norm(1, dim=1) def get_epsilon_sparsity(self, eps=1e-4): """ Computes the number of relus for which |a_k| > eps. This function acts as a sanity check on the sparsification. After applying the threshold to the ReLU coefficients, we check that epsilon_sparsity = threshold_sparsity (check apply_threshold()). """ sparsity_mask = ((self.relu_slopes.abs() - eps) > 0.) sparsity = sparsity_mask.sum(dim=1) return sparsity, sparsity_mask def get_threshold_sparsity(self, threshold): """ Computes the number of activated relus (|a_k| > threshold) """ relu_slopes_abs = self.relu_slopes.abs() threshold_sparsity_mask = (relu_slopes_abs > threshold) threshold_sparsity = threshold_sparsity_mask.sum(dim=1) return threshold_sparsity, threshold_sparsity_mask def apply_threshold(self, threshold): """ Applies a threshold to the activations, eliminating the relu slopes smaller than a threshold. deepspline(x) = sum_k [a_k * ReLU(x-kT)] + (b1*x + b0) This function sets a_k to zero if |a_k| < knot_threshold. Operations performed: . [a] = L[c], [a] -> sparsification -> [a_hat]. Args: threshold (float) """ with torch.no_grad(): new_relu_slopes = self.relu_slopes threshold_sparsity, threshold_sparsity_mask = \ self.get_threshold_sparsity(threshold) new_relu_slopes[~threshold_sparsity_mask] = 0. eps = 1e-4 if threshold >= eps: # sanity test: check that the relu slopes below threshold were # indeed eliminated, i.e., smaller than epsilon, where # 0 < epsilon <= threshold. epsilon_sparsity, epsilon_sparsity_mask = \ self.get_epsilon_sparsity(eps) assert epsilon_sparsity.sum() == threshold_sparsity.sum() assert torch.all( ~epsilon_sparsity_mask[~threshold_sparsity_mask]) return new_relu_slopes def fZerofOneAbs(self, **kwargs): """ Computes |f(0)| + |f(1)| where f is a deepspline activation. Required for the BV(2) regularization. """ zero_one_vec = torch.tensor([0, 1]).view(-1, 1).to(self.device) zero_one_vec = zero_one_vec.expand((-1, self.num_activations)) if self.mode == 'conv': zero_one_vec = zero_one_vec.unsqueeze(-1).unsqueeze(-1) # 4D fzero_fone = self.forward(zero_one_vec) if self.mode == 'conv': # (2, num_activations) fzero_fone = fzero_fone.squeeze(-1).squeeze(-1) assert fzero_fone.size() == (2, self.num_activations) return fzero_fone.abs().sum(0) ``` #### File: deepsplines/networks/convnet_mnist.py ```python import torch.nn as nn from deepsplines.ds_modules import BaseModel class ConvNetMnist(BaseModel): """ Simple convolutional network for MNIST digit classification. MNIST input size: N x 1 x 28 x 28. Network (layer type -> output size): conv1 -> (N, c1, 24, 24) pool2d -> (N, c1, 12, 12) conv2 -> (N, c1, 8, 8) pool2d -> (N, c1, 4, 4) reshape -> (N, c1 * 4 * 4) fc1 -> N x 10 The convolutions are valid convolutions with filter size = 5. """ def __init__(self, **params): super().__init__(**params) c1, self.c2 = 2, 2 # conv: number of channels activation_specs = [] # (in_channels, out_channels, kernel_size) self.conv1 = nn.Conv2d(1, c1, 5) activation_specs.append(('conv', c1)) self.pool = nn.MaxPool2d(2, 2) # (kernel_size, stride) self.conv2 = nn.Conv2d(c1, self.c2, 5) activation_specs.append(('conv', self.c2)) self.fc1 = nn.Linear(self.c2 * 4 * 4, 10) self.activations = self.init_activation_list(activation_specs) self.num_params = self.get_num_params() def forward(self, x): """ """ x = self.pool(self.activations[0](self.conv1(x))) x = self.pool(self.activations[1](self.conv2(x))) x = x.view(-1, self.c2 * 4 * 4) x = self.fc1(x) return x ``` #### File: deepsplines/deepsplines/project.py ```python import os import sys import glob import math import collections import itertools import torch from abc import ABC, abstractproperty from deepsplines.datasets import init_dataset from deepsplines.dataloader import DataLoader from deepsplines.ds_utils import size_str from deepsplines.ds_utils import dict_recursive_merge, flatten_structure from deepsplines.ds_utils import json_load, json_dump class Project(ABC): train_results_json_filename = 'train_results.json' test_results_json_filename = 'test_results.json' train_sorting_key = 'latest_valid_acc' test_sorting_key = 'test_acc' def __init__(self, params, user_params): self.params = params self.user_params = user_params self.training = (self.params["mode"] == 'train') self.log_dir_model = os.path.join(self.params["log_dir"], self.params["model_name"]) self.best_train_acc = 0. self.best_valid_acc = 0. if self.training: self.start_epoch, self.global_step = 0, 0 self.dataset = init_dataset(**self.params['dataset']) self.init_dataloader() def init_dataloader(self): """ Initialize dataloader. """ # Load the data print('\n==> Loading the data...') self.dataloader = DataLoader(self.dataset, **self.params['dataloader']) self.trainloader, self.validloader = \ self.dataloader.get_train_valid_loader() self.testloader = self.dataloader.get_test_loader() self.save_train_info() def save_train_info(self): """ """ assert (self.trainloader is not None) if self.dataset.is_user_dataset is True: self.num_train_samples = sum( inputs.size(0) for inputs, _ in self.trainloader) else: self.num_train_samples = len(self.trainloader.sampler) self.num_train_batches = \ math.ceil(self.num_train_samples / self.dataloader.batch_size) # TODO: do this just with the model and optimizer states @abstractproperty def net(self): pass @abstractproperty def main_optimizer(self): pass @abstractproperty def main_scheduler(self): pass @abstractproperty def aux_optimizer(self): pass @abstractproperty def aux_scheduler(self): pass def init_log(self): """ Create Log directory for training the model as self.params["log_dir"]/self.params["model_name"]. """ if not os.path.isdir(self.log_dir_model): os.makedirs(self.log_dir_model) def init_device(self): """ """ if self.params['device'].startswith('cuda'): if torch.cuda.is_available(): self.device = 'cuda:0' # Using GPU0 by default print('\nUsing GPU.') else: self.device = 'cpu' print('\nCUDA not available. Using CPU.') else: self.device = 'cpu' print('\nUsing CPU.') @property def results_json_filename(self): """ Name of json file with logged results. """ if self.training is True: return self.train_results_json_filename else: return self.test_results_json_filename @property def sorting_key(self): """ Key for sorting models in json file. """ if self.training: return self.train_sorting_key else: return self.test_sorting_key def init_json(self): """ Init json file for train/test results. """ # initialize/verify json log file self.results_json = os.path.join(self.params['log_dir'], self.results_json_filename) if not os.path.isfile(self.results_json): results_dict = {} else: results_dict = json_load(self.results_json) if self.params['model_name'] not in results_dict: # initialize model log results_dict[self.params['model_name']] = {} # add minimal information for sorting models in results_json file if self.sorting_key not in results_dict[self.params['model_name']]: results_dict[self.params['model_name']][self.sorting_key] = 0. json_dump(results_dict, self.results_json) comb_list = list( itertools.product(['latest', 'best'], ['train', 'valid'], ['acc', 'loss'])) self.info_list = ['_'.join(k) for k in comb_list] + ['test_acc', 'test_loss'] def update_json(self, info, value): """ Update json file with latest/best validation/test accuracy/loss, if training, and with test accuracy otherwise. Args: info (str): e.g. 'latest_valid_loss', 'best_train_acc'. value (float): value for the given info. """ assert info in self.info_list, \ f'{info} should be in {self.info_list}...' # save in json results_dict = json_load(self.results_json) if isinstance(value, dict): if info not in self.params["model_name"]: results_dict[self.params["model_name"]][info] = {} for key, val in value.items(): results_dict[self.params["model_name"]][info][key] = \ float('{:.3f}'.format(val)) else: results_dict[self.params["model_name"]][info] = \ float('{:.3f}'.format(value)) sorted_acc = sorted(results_dict.items(), key=lambda kv: kv[1][self.sorting_key], reverse=True) sorted_results_dict = collections.OrderedDict(sorted_acc) json_dump(sorted_results_dict, self.results_json) @property def load_ckpt(self): """ Returns True if loading a checkpoint and restoring its parameters, for resuming training or testing a model. Otherwise, returns False. """ if (self.params["ckpt_filename"] is not None) or (self.params["resume"] is True): return True else: return False def restore_ckpt_params(self): """ Attempts to restore a checkpoint if resuming training or testing a model. If successful, it gets the loaded checkpoint and merges the saved parameters. Returns True if a checkpoint was successfully loaded, and False otherwise. """ if self.params["ckpt_filename"] is not None: try: self.load_merge_params(self.params["ckpt_filename"]) except FileNotFoundError: print('\nCheckpoint file not found... Unable to ' 'restore model.\n') raise except BaseException: print('\nUnknown error in restoring model.') raise print('\nSuccessfully loaded ckpt ' + self.params["ckpt_filename"]) return True elif self.params["resume"] is True: log_dir_model = os.path.join(self.params["log_dir"], self.params["model_name"]) if self.params["resume_from_best"] is True: regexp_ckpt = os.path.join(log_dir_model, '*_best_valid_acc.pth') else: regexp_ckpt = os.path.join(log_dir_model, '*_net_*.pth') files = glob.glob(regexp_ckpt) # sort by time from oldest to newest files.sort(key=os.path.getmtime) if len(files) > 0: print('\nRestoring model from {}.'.format(files[-1])) # restore from most recent file self.load_merge_params(files[-1]) return True else: print('\nNo model saved to resume training. ' 'Starting from scratch.') return False else: print('\nStarting from scratch.') return False def load_merge_params(self, ckpt_filename): """ Load and merge the parameters from ckpt_filename into self.params and save the loaded checkpoint (dictionary). The parameters introduced by the user (via command-line arguments) override the corresponding saved parameters. The ones not specified by the user, are loaded from the checkpoint. Args: ckpt_filename (str): Name of checkpoint (.pth) file. """ torch.load(ckpt_filename, map_location=lambda storage, loc: storage) ckpt = self.get_loaded_ckpt(ckpt_filename) self.loaded_ckpt = ckpt # save loaded_ckpt for restore_model saved_params = ckpt['params'] # merge w/ saved params self.params = dict_recursive_merge(self.params, saved_params) # merge w/ user params (precedence over saved) self.params = dict_recursive_merge(self.params, self.user_params) def restore_model(self): """ """ self.load_model(self.loaded_ckpt) if self.training and self.start_epoch == self.params["num_epochs"]: print('\nTraining in this checkpoint is already completed. ' 'Please increase the number of epochs.') sys.exit() def load_model(self, ckpt): """ Load model from a loaded checkpoint. Args: ckpt (dictionary): loaded checkpoint. """ print('\n==> Resuming from checkpoint...') self.net.load_state_dict(ckpt['model_state'], strict=(self.training is True)) self.best_train_acc = ckpt['best_train_acc'] self.best_valid_acc = ckpt['best_valid_acc'] if self.training: self.start_epoch = ckpt['num_epochs_finished'] self.global_step = ckpt['global_step'] self.main_optimizer.load_state_dict(ckpt['main_optimizer_state']) if ckpt['aux_optimizer_state'] is not None: self.aux_optimizer.load_state_dict(ckpt['aux_optimizer_state']) if 'main_scheduler_state' in ckpt: self.main_scheduler.load_state_dict( ckpt['main_scheduler_state']) if ckpt['aux_scheduler_state'] is not None: self.aux_scheduler.load_state_dict( ckpt['aux_scheduler_state']) return @staticmethod def get_loaded_ckpt(ckpt_filename): """ Returns a loaded checkpoint (ckpt dictionary) from ckpt_filename, if it exists. Args: ckpt_filename (str): Name of checkpoint (.pth) file. """ try: # TODO: Check if model is always loaded on cpu. # Use net.to(device) after. ckpt = torch.load(ckpt_filename, map_location=lambda storage, loc: storage) except FileNotFoundError: print('\nCheckpoint file not found... Unable ' 'to load checkpoint.\n') raise except BaseException: print('\nUnknown error in loading checkpoint parameters.') raise return ckpt @classmethod def load_ckpt_params(cls, ckpt_filename, flatten=False): """ Returns the ckpt dictionary and the parameters saved in a checkpoint file. Args: ckpt_filename (str): Name of checkpoint (.pth) file. flatten (bool): whether to flatten the structure of the parameters dictionary into a single level (see structure in struct_default_values.py). """ ckpt = cls.get_loaded_ckpt(ckpt_filename) params = ckpt['params'] if flatten is True: params = flatten_structure(params) return ckpt, params @staticmethod def get_ckpt_from_log_dir_model(log_dir_model): """ Get last ckpt from log_dir_model (log_dir/model_name). """ regexp_ckpt = os.path.join(log_dir_model, '*_net_*.pth') files = glob.glob(regexp_ckpt) files.sort(key=os.path.getmtime) # sort by time from oldest to newest if len(files) > 0: ckpt_filename = files[-1] print(f'Restoring {ckpt_filename}') return ckpt_filename else: print(f'No ckpt found in {log_dir_model}...') return None @classmethod def load_results_dict(cls, log_dir, mode='train'): """ Load train or test results from the corresponding json file in log_dir. Args: log_dir (str): log directory where results json file is located. mode (str): 'train' or 'test'. Returns: results_dict (dict): dictionary with train/test results. """ assert mode in ['train', 'test'], 'mode should be "train" or "test"...' if mode == 'train': results_json_filename = cls.train_results_json_filename else: results_json_filename = cls.test_results_json_filename results_json = os.path.join(log_dir, results_json_filename) results_dict = json_load(results_json) return results_dict @classmethod def dump_results_dict(cls, results_dict, log_dir, mode='train'): """ Dump results dictionary in the train or test results json file in log_dir. Args: results_dict (dict): dictionary with train/test results. log_dir (str): log directory where results json file is located. mode (str): 'train' or 'test'. """ assert mode in ['train', 'test'], 'mode should be "train" or "test"...' if mode == 'train': results_json_filename = cls.train_results_json_filename else: results_json_filename = cls.test_results_json_filename results_json = os.path.join(log_dir, results_json_filename) json_dump(results_dict, results_json) @classmethod def get_best_model(cls, log_dir, mode='train'): """ Get the name and checkpoint filename of the best model (best validation/test) from the train/test results json file. Args: log_dir (str): log directory where results json file is located. mode (str): 'train' or 'test'. """ results_dict = cls.load_results_dict(log_dir, mode) # models are ordered by validation accuracy; choose first one. best_model_name = next(iter(results_dict)) log_dir_best_model = os.path.join(log_dir, best_model_name) ckpt_filename = cls.get_ckpt_from_log_dir_model(log_dir_best_model) return best_model_name, ckpt_filename def train_log_step(self, epoch, batch_idx, train_acc, losses_dict): """ Log the training. Args: epoch (int): current epoch. batch_idx (int): current batch. train_acc (float): computed train accuracy. losses_dict (dict): A dictionary of the form {loss name (str) : loss value (float)} """ print('[{:3d}, {:6d} / {:6d}] '.format(epoch + 1, batch_idx + 1, self.num_train_batches), end='') for key, value in losses_dict.items(): print('{}: {:7.3f} | '.format(key, value), end='') print('train acc: {:7.3f}%'.format(train_acc)) self.update_json('latest_train_loss', losses_dict) self.update_json('latest_train_acc', train_acc) if train_acc > self.best_train_acc: self.best_train_acc = train_acc self.update_json('best_train_acc', train_acc) def valid_log_step(self, epoch, valid_acc, losses_dict): """ Log the validation. Args: epoch (int): current epoch. valid_acc (float): computed validation accuracy. losses_dict (dict): A dictionary of the form {loss name (str) : loss value (float)} """ print('\nvalidation_step : ', end='') for key, value in losses_dict.items(): print('{}: {:7.3f} | '.format(key, value), end='') print('valid acc: {:7.3f}%'.format(valid_acc), '\n') self.update_json('latest_valid_loss', losses_dict) self.update_json('latest_valid_acc', valid_acc) if valid_acc > self.best_valid_acc: self.best_valid_acc = valid_acc self.update_json('best_valid_acc', valid_acc) def ckpt_log_step(self, epoch, valid_acc): """ Save the model in a checkpoint. Only allow at most params['ckpt_nmax_files'] checkpoints. Delete the oldest checkpoint, if necessary. Also log the best results so far in a separate checkpoint. Args: epoch (int): current epoch. valid_acc (float): computed validation accuracy. """ base_ckpt_filename = os.path.join( self.log_dir_model, self.params["model_name"] + '_net_{:04d}'.format(epoch + 1)) regexp_ckpt = os.path.join(self.log_dir_model, "*_net_*.pth") regexp_best_valid_acc_ckpt = os.path.join(self.log_dir_model, "*_best_valid_acc.pth") # save checkpoint as *_net_{epoch+1}.pth ckpt_filename = base_ckpt_filename + '.pth' # remove best_valid_acc ckpt from files files = list( set(glob.glob(regexp_ckpt)) - set(glob.glob(regexp_best_valid_acc_ckpt))) # sort from newest to oldest files.sort(key=os.path.getmtime, reverse=True) if (not self.params["ckpt_nmax_files"] < 0) and \ (len(files) >= self.params["ckpt_nmax_files"]): assert len(files) == (self.params["ckpt_nmax_files"]), \ 'There are more than (ckpt_nmax_files+1) ' \ '*_net_*.pth checkpoints.' filename = files[-1] os.remove(filename) self.save_network(ckpt_filename, epoch, valid_acc) if valid_acc == self.best_valid_acc: # if valid_acc = best_valid_acc, also save checkpoint as # *_net_{global_step}_best_valid_acc.pth # and delete previous best_valid_acc checkpoint best_valid_acc_ckpt_filename = \ base_ckpt_filename + '_best_valid_acc.pth' files = glob.glob(regexp_best_valid_acc_ckpt) if len(files) > 0: assert len(files) == 1, \ 'More than one *_best_valid_acc.pth checkpoint.' os.remove(files[0]) self.save_network(best_valid_acc_ckpt_filename, epoch, valid_acc) return def save_network(self, ckpt_filename, epoch, valid_acc): """ Save the network in a checkpoint. Args: ckpt_filename (str): Name of checkpoint (.pth) file. epoch (int): current epoch. valid_acc (float): computed validation accuracy. """ state = { 'model_state': self.net.state_dict(), 'main_optimizer_state': self.main_optimizer.state_dict(), 'main_scheduler_state': self.main_scheduler.state_dict(), 'params': self.params, 'best_train_acc': self.best_train_acc, 'best_valid_acc': self.best_valid_acc, 'valid_acc': valid_acc, 'num_epochs_finished': epoch + 1, 'global_step': self.global_step } if self.aux_optimizer is not None: state['aux_optimizer_state'] = self.aux_optimizer.state_dict() state['aux_scheduler_state'] = self.aux_scheduler.state_dict() else: state['aux_optimizer_state'] = None state['aux_scheduler_state'] = None torch.save(state, ckpt_filename) return def print_train_info(self): """ """ assert (self.validloader is not None) assert hasattr(self, 'num_train_samples') assert hasattr(self, 'num_train_batches') if self.dataset.is_user_dataset is True: num_valid_samples = sum( inputs.size(0) for inputs, _ in self.validloader) sample_data, sample_target = self.trainloader[0] else: num_valid_samples = len(self.validloader.sampler) # dataloader iterator to get next sample dataiter = iter(self.trainloader) sample_data, sample_target = dataiter.next() num_valid_batches = \ math.ceil(num_valid_samples / self.dataloader.batch_size) print('\n==> Train info:') print('batch (data, target) size : ' f'({size_str(sample_data)}, {size_str(sample_target)}).') print('no. of (train, valid) samples : ' f'({self.num_train_samples}, {num_valid_samples}).') print('no. of (train, valid) batches : ' f'({self.num_train_batches}, {num_valid_batches}).') def print_test_info(self): """ """ assert (self.testloader is not None) if self.dataset.is_user_dataset is True: num_test_samples = sum( inputs.size(0) for inputs, _ in self.testloader) sample_data, sample_target = self.testloader[0] else: num_test_samples = len(self.testloader.dataset) # dataloader iterator to get next sample dataiter = iter(self.testloader) sample_data, sample_target = dataiter.next() num_test_batches = math.ceil(num_test_samples / self.dataloader.batch_size) print('\n==> Test info:') print('batch (data, target) size : ' f'({size_str(sample_data)}, {size_str(sample_target)}).') print(f'no. of test samples : {num_test_samples}.') print(f'no. of test batches : {num_test_batches}.') def print_optimization_info(self): """ """ print('\n==> Optimizer info:') print('--Main Optimizer:') print(self.main_optimizer) if self.aux_optimizer is not None: print('--Aux Optimizer :') print(self.aux_optimizer) # scheduler scheduler_list = [self.main_scheduler, self.aux_scheduler] scheduler_name_list = ['Main', 'Aux'] for scheduler, aux_str in zip(scheduler_list, scheduler_name_list): if scheduler is not None: print('--' + aux_str + ' Scheduler : ') print(f'class - {type(scheduler).__name__}; ' f'milestones - {scheduler.milestones}; ' f'gamma - {scheduler.gamma}.') def log_additional_info(self): """ Log additional information to self.results_json """ # TODO: Review this if not self.params['additional_info']: # empty list return results_dict = json_load(self.results_json) if 'sparsity' in self.params['additional_info']: results_dict[self.params['model_name']]['sparsity'] = \ '{:d}'.format(self.net.compute_sparsity()) if 'lipschitz_bound' in self.params['additional_info']: results_dict[self.params['model_name']]['lipschitz_bound'] = \ '{:.3f}'.format(self.net.lipschitz_bound()) json_dump(results_dict, self.results_json) ``` #### File: deepsplines/scripts/deepsplines_tutorial.py ```python import time import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.nn.functional as F import torch.optim as optim # Need to import dsnn (takes the role of torch.nn for DeepSplines) from deepsplines.ds_modules import dsnn ######################################################################## # ReLU network class Net(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) self.num_params = sum(p.numel() for p in self.parameters()) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = torch.flatten(x, 1) # flatten all dimensions except batch x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x ######################################################################## # Deepspline network # We now show how to replace the ReLUs with DeepSpline activations in # the previous network. # we can use deepspline modules of three types: # - DeepBspline # - DeepBSplineExplicitLinear # - DeepReLUSpline # In this tutorial, we use the first as an example. # The model needs to inherit from dsnn.DSModule. This is a wrap around # nn.Module that contains all the DeepSpline functionality. class DSNet(dsnn.DSModule): def __init__(self): super().__init__() # we put the deepsplines (ds) of the convolutional and fully-connected # layers in two separate nn.ModuleList() for simplicty. self.conv_ds = nn.ModuleList() self.fc_ds = nn.ModuleList() # We define some optional parameters for the deepspline # (see DeepBSpline.__init__()) opt_params = { 'size': 51, 'range_': 4, 'init': 'leaky_relu', 'save_memory': False } self.conv1 = nn.Conv2d(3, 6, 5) # 1st parameter (mode): 'conv' (convolutional) / 'fc' (fully-connected) # 2nd parameter: nb. channels (mode='conv') / nb. neurons (mode='fc') self.conv_ds.append(dsnn.DeepBSpline('conv', 6, **opt_params)) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.conv_ds.append(dsnn.DeepBSpline('conv', 16, **opt_params)) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc_ds.append(dsnn.DeepBSpline('fc', 120, **opt_params)) self.fc2 = nn.Linear(120, 84) self.fc_ds.append(dsnn.DeepBSpline('fc', 84, **opt_params)) self.fc3 = nn.Linear(84, 10) self.initialization(opt_params['init'], init_type='He') self.num_params = self.get_num_params() def forward(self, x): x = self.pool(self.conv_ds[0](self.conv1(x))) x = self.pool(self.conv_ds[1](self.conv2(x))) x = torch.flatten(x, 1) # flatten all dimensions except batch x = self.fc_ds[0](self.fc1(x)) x = self.fc_ds[1](self.fc2(x)) x = self.fc3(x) return x if __name__ == "__main__": ######################################################################## # Load the data transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) batch_size = 4 trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f'\nDevice: {device}') ######################################################################## # Network, optimizer, loss net = Net() # relu network net.to(device) print('ReLU: nb. parameters - {:d}'.format(net.num_params)) optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) dsnet = DSNet() # deepsplines network dsnet.to(device) print('DeepSpline: nb. parameters - {:d}'.format(dsnet.num_params)) # For the parameters of the deepsplines, an optimizer different from "SGD" # is usually required for stability during training (Adam is recommended). # Therefore, when using an SGD optimizer for the network parameters, we # require an auxiliary one for the deepspline parameters. # Inherenting from DSModule allows us to use the parameters_deepspline() # and parameters_no_deepspline() methods for this. main_optimizer = optim.SGD(dsnet.parameters_no_deepspline(), lr=0.001, momentum=0.9) aux_optimizer = optim.Adam(dsnet.parameters_deepspline()) criterion = nn.CrossEntropyLoss() ######################################################################## # Training the ReLU network print('\nTraining ReLU network.') start_time = time.time() for epoch in range(2): # loop over the dataset multiple times running_loss = 0.0 for i, data in enumerate(trainloader, 0): # get the inputs; data is a list of [inputs, labels] inputs, labels = data[0].to(device), data[1].to(device) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.item() if i % 2000 == 1999: # print every 2000 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 end_time = time.time() print('Finished Training ReLU network. \n' 'Took {:d} seconds. '.format(int(end_time - start_time))) ######################################################################## # Training the DeepSpline network # Note: Since the original network is small, the time it takes to train # deepsplines is significantly larger. # Regularization weight for the TV(2)/BV(2) regularization # Needs to be tuned for performance lmbda = 1e-4 # lipschitz control: if True, BV(2) regularization is used instead of TV(2) lipschitz = False print('\nTraining DeepSpline network.') start_time = time.time() for epoch in range(2): # loop over the dataset multiple times running_loss = 0.0 for i, data in enumerate(trainloader, 0): # get the inputs; data is a list of [inputs, labels] inputs, labels = data[0].to(device), data[1].to(device) # zero the parameter gradients main_optimizer.zero_grad() aux_optimizer.zero_grad() # forward + backward + optimize outputs = dsnet(inputs) loss = criterion(outputs, labels) # add regularization loss if lipschitz is True: loss = loss + lmbda * dsnet.BV2() else: loss = loss + lmbda * dsnet.TV2() loss.backward() main_optimizer.step() aux_optimizer.step() # print statistics running_loss += loss.item() if i % 2000 == 1999: # print every 2000 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 end_time = time.time() print('Finished Training DeepSpline network. \n' 'Took {:d} seconds. '.format(int(end_time - start_time))) ######################################################################## # Testing the ReLU and DeepSpline networks for model, name in zip([net, dsnet], ['ReLU', 'DeepSpline']): print(f'\nTesting {name} network.') correct = 0 total = 0 # since we're not training, we don't need to calculate the gradients # for our outputs with torch.no_grad(): for data in testloader: images, labels = data[0].to(device), data[1].to(device) # calculate outputs by running images through the network outputs = model(images) # the class with the highest energy is what we choose # as prediction _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print(f'Accuracy of the {name} network ' 'on the 10000 test images: %d %%' % (100 * correct / total)) ``` #### File: deepsplines/scripts/plot_deepspline_basis.py ```python import os import argparse import matplotlib.pyplot as plt import numpy as np from scipy.interpolate import interp1d def Bspline(x, center=0, grid=1, coeff=1, mode='both'): """ Evaluates a B-spline basis element at x. Args: x (np.array): input locations. center (float): center of the basis function. grid (float): grid spacing (determines width of B-spline). coeff (float): coefficient of the B-spline (height). Returns: y (np.array): of the same size as x. """ assert mode in ['both', 'left', 'right'] y = np.zeros(x.shape) if not (mode == 'right'): left_idx = (x > (center - grid)) * (x <= center) y[left_idx] = (x[left_idx] - (center - grid)) / grid if not (mode == 'left'): right_idx = (x < (center + grid)) * (x >= center) y[right_idx] = ((center + grid) - x[right_idx]) / grid return y * coeff # basis * coefficient def plot_deepspline_basis(args): """ Args: args: verified arguments from arparser """ plt.figure() ax = plt.gca() # (B-spline expansion range, grid spacing, # nb. plot points, extrapolation range) range_, grid, nb_points, extrap = 3, 1, 10001, 2 # the total plot x axis range is then [-5, 5] = [-(range_+extrap), # (range+extrap)] # for B-spline expansion x_middle = np.linspace(-range_, range_, nb_points) # for linear extrapolations outside B-spline range x_left = np.linspace(-(range_ + extrap), -range_, nb_points) x_right = np.linspace(range_, (range_ + extrap), nb_points) # grid for plotting B-spline elements in [-3, 3] grid_points = np.arange(-range_ - 1, range_ + 2, grid) # grid for plotting boundary elements in [-5, -3] and [3, 5] left_grid_points = np.arange(-(range_ + extrap), -range_ + 1, grid) right_grid_points = np.arange(range_, range_ + extrap + 1, grid) # B-spline coefficients coeff = np.array([4.5, 3.3, 5.3, 2.3, 3.3, 1.3, 4.5, 3.5, 3.1]) # left and right linear extrapolations at grid locations in [-5, -3] and # [3, 5] left_extrap = (coeff[0] - coeff[1]) * \ np.array(list(range(0, extrap + 1)))[::-1] + coeff[1] right_extrap = (coeff[-1] - coeff[-2]) * \ np.array(list(range(0, extrap + 1))) + coeff[-2] # values of boundary basis at grid locations in [-5, -3] and [3, 5] right_straight = np.ones(extrap + 1) * coeff[-2] left_straight = np.ones(extrap + 1) * coeff[1] left_relu = (coeff[0] - coeff[1]) * \ np.array(list(range(0, extrap + 1)))[::-1] right_relu = (coeff[-1] - coeff[-2]) * np.array(list(range(0, extrap + 1))) # B-spline expansion function f = interp1d(grid_points, coeff) # extrapolation functions f_left = interp1d(left_grid_points, left_extrap) f_right = interp1d(right_grid_points, right_extrap) # boundary functions f_left_straight = interp1d(left_grid_points, left_straight) f_right_straight = interp1d(right_grid_points, right_straight) f_left_relu = interp1d(left_grid_points, left_relu) f_right_relu = interp1d(right_grid_points, right_relu) # Move left y-axis and bottom x-axis to centre, passing through (0,0) ax.spines['left'].set_position('center') ax.spines['bottom'].set_position('zero') # Eliminate upper and right axes ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') # Show ticks in the left and lower axes only ax.yaxis.set_ticks_position('left') ax.set_yticks([1, 2, 4, 5]) ax.set_xticks([-4, -3, -2, -1, 1, 2, 3, 4]) ax.set_xticklabels(np.concatenate((np.arange(-4, 0), np.arange(1, 5))), fontdict={ 'horizontalalignment': 'center', 'fontsize': 10}, minor=False) ax.tick_params(axis='both', which='major', labelsize=12) ax.tick_params(axis='both', which='minor', labelsize=12) if args.no_ticks is True: ax.tick_params(axis=u'both', which=u'both', length=0) ax.set_xticks([]) ax.set_yticks([]) # draw B-spline (triangular-shaped) basis elements for i, center in enumerate(grid_points): mode = 'both' if i == 0 or i == (grid_points.shape[0] - 1): # skip (boundaries) continue elif i == 1: # first B-spline basis: only right part is drawn mode = 'right' elif i == (grid_points.shape[0] - 2): # last B-spline basis: only left part is drawn mode = 'left' # evaluate B-spline basis element on a grid bspline_x = np.linspace(-(range_ + 2) + i * grid, -(range_ + 2) + (i + 2) * grid, nb_points) bspline_y = Bspline(bspline_x, center, grid, coeff[i], mode=mode) if mode == 'left': center_idx = bspline_x.shape[0] // 2 # draws right part of first B-spline basis elemnt plt.plot(bspline_x[:center_idx:], bspline_y[:center_idx:], color='lightsteelblue', ls='--') elif mode == 'right': center_idx = bspline_x.shape[0] // 2 # draws left part of first B-spline basis elemnt plt.plot(bspline_x[center_idx::], bspline_y[center_idx::], color='lightsteelblue', ls='--') else: # draws full B-spline basis elemnt plt.plot(bspline_x, bspline_y, color='crimson', ls='--') # plot B-spline expansion plt.plot(x_middle, f(x_middle), color='black') # plot linear extrapolations plt.plot(x_left, f_left(x_left), color='black') plt.plot(x_right, f_right(x_right), color='black') # plot boundary elements plt.plot(x_left, f_left_straight(x_left), color='lightsteelblue', ls='--') plt.plot(x_right, f_right_straight(x_right), color='lightsteelblue', ls='--') plt.plot(x_left, f_left_relu(x_left), color='lightsteelblue', ls='--') plt.plot(x_right, f_right_relu(x_right), color='lightsteelblue', ls='--') plt.xlim(-(range_ + extrap - 0.2), (range_ + extrap - 0.2)) plt.ylim(-0.8, 5.5) plt.gca().set_position([0, 0, 1, 1]) if args.save_dir is not None: plt.savefig(os.path.join(args.save_dir, 'deepspline_basis.png')) plt.show() if __name__ == "__main__": # parse arguments parser = argparse.ArgumentParser( description='Plot finite spline representation.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( '--save_dir', metavar='[STR]', type=str, help='directory for saving plots. If not given, plots are not saved.') parser.add_argument( '--no_ticks', action='store_true', help='Do not add ticks to plot.') args = parser.parse_args() if args.save_dir is not None and not os.path.isdir(args.save_dir): raise OSError(f'Save directory {args.save_dir} does not exist.') plot_deepspline_basis(args) ``` #### File: deepsplines/scripts/sparsify_with_optimal_knot_threshold.py ```python import os import sys import argparse import copy import shutil import numpy as np from deepsplines.ds_utils import ArgCheck from deepsplines.project import Project from deepsplines.main import main_prog def delete_model(log_dir, model_name, results_dict): # delete model directory log_dir_model = os.path.join(log_dir, model_name) assert os.path.isdir(log_dir_model) shutil.rmtree(log_dir_model) # delete model entry in train_result.json del results_dict[model_name] Project.dump_results_dict(results_dict, log_dir) def sparsify_with_optimal_knot_threshold(args): """ Args: args: verified arguments from arparser """ ckpt, params = Project.load_ckpt_params(args.ckpt_filename, flatten=True) if 'deep' not in params['activation_type']: raise ValueError('This ckpt contains activations of type ' '{params["activation_type"]} and not deepsplines.') base_model_name = params['model_name'] print('\n=> Compute optimal threshold/sparsity ' f'for model: {base_model_name}.') # take the trained model, do one more epoch with a slope threshold # applied and the model frozen, and compute the train accuracy. params['resume'] = True params['num_epochs'] = ckpt['num_epochs_finished'] params['log_step'] = None # at every epoch params['valid_log_step'] = -1 # at every epoch params['log_dir'] = args.out_log_dir params['ckpt_filename'] = args.ckpt_filename # also log sparsity and lipschitz bound params['additional_info'] = ['sparsity'] if params['lipschitz'] is True: params['additional_info'].append('lipschitz_bound') # variable initialization base_train_acc = 0. prev_model_name = None # previous model name chosen_model, chosen_threshold = None, None # training accuracy maximum allowed percentage drop acc_drop_threshold = args.acc_drop_threshold threshold_list = np.concatenate( (np.zeros(1), np.arange(0.0002, 0.004, 0.0002), np.arange(0.004, 1, 0.05), np.arange(1, 3, 0.2), np.arange(3, 10, 0.5), np.arange(10, 100, 2))) for k in range(threshold_list.shape[0]): threshold = threshold_list[k] params['model_name'] = base_model_name + \ '_knot_threshold_{:.4f}'.format(threshold) params['knot_threshold'] = threshold sys.stdout = open(os.devnull, "w") main_prog(copy.deepcopy(params), isloaded_params=True) sys.stdout = sys.__stdout__ results_dict = Project.load_results_dict(args.out_log_dir) model_dict = results_dict[params['model_name']] if k == 0: assert np.allclose(threshold, 0) # TODO: Abstract from 'latest_train_acc' base_train_acc = model_dict['latest_train_acc'] acc_drop = np.clip((model_dict['latest_train_acc'] - base_train_acc), a_max=100, a_min=-100) print('\nThreshold: {:.4f}'.format(threshold)) print('Accuracy drop: {:.3f}%'.format(acc_drop)) print('Sparsity: {:d}'.format(int(model_dict['sparsity']))) if acc_drop < acc_drop_threshold or model_dict['sparsity'] == 0: # delete current model; chosen_model is the previous one delete_model(args.out_log_dir, params['model_name'], results_dict) break else: if k > 0: # delete previous model delete_model(args.out_log_dir, prev_model_name, results_dict) chosen_model = {params['model_name']: model_dict} chosen_threshold = params['knot_threshold'] prev_model_name = params['model_name'] assert chosen_model is not None assert chosen_threshold is not None print('\nChosen model: ', chosen_model, sep='\n') # test chosen model model_name = next(iter(chosen_model)) log_dir_model = os.path.join(args.out_log_dir, model_name) ckpt_filename = Project.get_ckpt_from_log_dir_model(log_dir_model) _, params = Project.load_ckpt_params(ckpt_filename, flatten=True) # TODO: Check if activations are in fact already sparsified. params['mode'] = 'test' params['ckpt_filename'] = ckpt_filename sys.stdout = open(os.devnull, "w") main_prog(copy.deepcopy(params)) sys.stdout = sys.__stdout__ print(f'\n=> Finished testing chosen model {params["model_name"]}.\n\n') if __name__ == "__main__": # parse arguments parser = argparse.ArgumentParser( description='Sparsify ckpt model using an "optimal" slope ' 'threshold (highest threshold for which the train ' 'accuracy drop is within a specification). ', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('ckpt_filename', metavar='ckpt_filename [STR]', type=str, help='') parser.add_argument('out_log_dir', metavar='out_log_dir [STR]', type=str, help='Output log directory for sparsified model.') parser.add_argument('acc_drop_threshold', metavar='acc_drop_threshold [FLOAT(-1, 0)]', type=ArgCheck.n_float, default=-0.25, help='Maximum train accuracy percentage drop ' 'allowed for sparsification. (default: %(default)s)') args = parser.parse_args() if not os.path.isdir(args.out_log_dir): os.makedirs(args.out_log_dir) if args.acc_drop_threshold <= -1: raise argparse.ArgumentTypeError( f'{args.acc_drop_threshold} should be in (-1, 0).') sparsify_with_optimal_knot_threshold(args) ```
{ "source": "joaquimcampos/HTV-Learn", "score": 3 }
#### File: HTV-Learn/htvlearn/data.py ```python import os import torch import numpy as np import math import scipy from htvlearn.lattice import Lattice from htvlearn.delaunay import Delaunay from htvlearn.grid import Grid class Hex(): """Hexagonal lattice vectors""" v1 = Lattice.hexagonal_matrix[:, 0].numpy() v2 = Lattice.hexagonal_matrix[:, 1].numpy() class BoxSpline(): """Three-directional hexagonal box spline""" center_points = np.array([0., 0.]) border_points = np.array([Hex.v1, Hex.v2, -Hex.v1 + Hex.v2, -Hex.v1, -Hex.v2, -Hex.v2 + Hex.v1]) points = np.vstack((center_points, border_points, 2 * border_points)) values = np.array([math.sqrt(3) / 2, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) htv = 12 class SimplicialSpline(): """Simplicial spline with randomly positioned vertices""" np.random.seed(3) center_points = np.array([0., 0.]) + np.random.uniform(-0.2, 0.2, (2, )) border_points = np.array([Hex.v1, Hex.v2, -Hex.v1 + Hex.v2, -Hex.v1, -Hex.v2, -Hex.v2 + Hex.v1]) + \ np.random.uniform(-0.2, 0.2, (6, 2)) points = np.vstack((center_points, border_points, 2 * border_points)) values = np.array([math.sqrt(3) / 2, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) class CutPyramid(): """Pyramid with flat top""" points = np.vstack((BoxSpline.center_points, BoxSpline.border_points, 2 * BoxSpline.border_points, 3 * BoxSpline.border_points)) values = np.array([1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ]) htv = 16 * math.sqrt(3) class SimpleJunction(): """A simple two-polytope junction""" points = np.array([[0., 0.], [1., 0.], [0., 1.], [1., 1.], [0., 3. / 4], [1., 1. / 4]]) values = np.array([0., 2. / 3, 2. / 3, 0., 1., 1.]) # gradients of each polytope a1_affine_coeff = np.array([2. / 3, 4. / 3., 0.]) a2_affine_coeff = np.array([-2. / 3, -4. / 3., 2.]) htv = 10. / 3 def init_distorted_grid(size_=(3, 3), range_=(-1, 1)): """ Initialize a distorted grid. Args: size (2-tuple): grid size. range (2-tuple): range of points in each dimension before distortion. Returns: points (np.array): distorted grid points. size: (size_[0]*size_[1]) x 2. """ assert isinstance(size_, tuple) assert len(size_) == 2 # initialize undistorted grid points (u, v) vec1 = np.linspace(*range_, size_[0]) * 1. vec2 = np.linspace(*range_, size_[1]) * 1. u, v = np.meshgrid(vec1, vec2) u = u.flatten() v = v.flatten() # add noise to the interior vertices of the grid mask = np.ma.mask_or(np.abs(u) == u.max(), np.abs(v) == v.max()) points = np.hstack((u[:, np.newaxis], v[:, np.newaxis])).copy() # the noise is scaled according to the grid spacing noise = (np.random.rand(*points.shape) - 0.5) * (u[1] - u[0]) # don't add noise to boundary vertices points[~mask] = points[~mask] + noise[~mask] return points class DistortedGrid: """Dataset with random values in a distorted random grid""" points = init_distorted_grid(size_=(3, 3)) values = (np.random.rand(points.shape[0], ) - 0.5) class Data(): """Data class for algorithms""" def __init__(self, data_from_ckpt=None, dataset_name=None, num_train=None, data_dir='./data', valid_fraction=0.2, test_as_valid=False, non_uniform=False, noise_ratio=0., seed=-1, verbose=False, **kwargs): """ Args: data_from_ckpt (dict): dictionary with 'train', 'valid' and 'test' data loaded from a checkpoint. dataset_name (str) num_train (int): number of training+valid samples. The effective number of training samples is a multiple of 1000. Further, if the dataset has gaps the data inside the gaps will also removed. data_dir (int): data directory (for face dataset) valid_fraction (float [0,1]): fraction of num_train samples that is used for validation test_as_valid (bool): if True, use test set in validation. non_uniform (bool): if True, perform non-uniform data sampling (face dataset only). noise_ratio (float >= 0): noise that should be applied to the samples as a fraction of the data range. seed (int): seed for random generation. If negative, no seed is set. verbose (bool): print more info. """ self.data_from_ckpt = data_from_ckpt self.dataset_name = dataset_name self.num_train = num_train if self.data_from_ckpt is None: assert self.dataset_name is not None if not self.dataset_name.startswith('pyramid'): assert self.num_train is not None self.data_dir = data_dir self.valid_fraction = valid_fraction self.test_as_valid = test_as_valid self.non_uniform = non_uniform self.noise_ratio = noise_ratio self.seed = seed self.verbose = verbose # if not overwritten, computed in add_noise_to_values() # from self.noise_ratio and dataset height range self.noise_std = None if self.seed >= 0: # set seed torch.manual_seed(self.seed) torch.cuda.manual_seed_all(self.seed) np.random.seed(self.seed) self.train, self.valid, self.test = {}, {}, {} self.delaunay = {} # points and values for delaunay triangulation if self.data_from_ckpt is not None: # load data from self.data_from_ckpt assert 'train' in self.data_from_ckpt assert 'valid' in self.data_from_ckpt self.train = self.data_from_ckpt['train'] self.valid = self.data_from_ckpt['valid'] if 'delaunay' in self.data_from_ckpt: assert 'points' in self.data_from_ckpt['delaunay'] assert 'values' in self.data_from_ckpt['delaunay'] self.delaunay['points'] = \ self.data_from_ckpt['delaunay']['points'] self.delaunay['values'] = \ self.data_from_ckpt['delaunay']['values'] self.init_data() def init_data(self): """Initialize cpwl dataset, and train/test/valid sets""" if not bool(self.delaunay): if self.dataset_name.startswith('pyramid'): self.delaunay['points'], self.delaunay['values'] = \ self.init_pyramid() # training is made of all pyramid's points except apex self.train['input'] = \ torch.from_numpy(self.delaunay['points'][:-1]).clone() self.train['values'] = \ torch.from_numpy(self.delaunay['values'][:-1]).clone() # force validation set to be equal to test set self.test_as_valid = True elif self.dataset_name.endswith('planes'): self.delaunay['points'], self.delaunay['values'] = \ self.init_planes() elif 'face' in self.dataset_name: self.delaunay['points'], self.delaunay['values'] = \ self.init_face(self.data_dir, cut=True if 'cut' in self.dataset_name else False) self.cpwl = Delaunay(points=self.delaunay['points'], values=self.delaunay['values']) if not self.cpwl.has_rectangular_range: if self.dataset_name.endswith('planes'): h = (self.cpwl.tri.points[:, 0].max() - self.cpwl.tri.points[:, 0].min()) / 400 self.test['input'] = \ Grid(x1_min=self.cpwl.tri.points[:, 0].min(), x1_max=self.cpwl.tri.points[:, 0].max(), x2_min=self.cpwl.tri.points[:, 1].min(), x2_max=self.cpwl.tri.points[:, 1].max(), h=h, to_numpy=False, to_float32=True).x # discard samples outside convex set idx = self.cpwl.tri.find_simplex(self.test['input']) self.test['input'] = self.test['input'][idx >= 0] else: # generate uniformly distributed samples in cpwl convex set # the final number of test samples will be smaller because # samples outside lattice are discarded nb_samples = 160000 # 400*400 self.test['input'] = \ self.generate_random_samples(nb_samples) else: # test set is sampled on a grid inside the convex hull of cpwl # this gives a test grid 500 x 500 samples self.test['input'] = self.cpwl.get_grid(h=0.0025, to_numpy=False, to_float32=True).x self.test['values'] = self.cpwl.evaluate(self.test['input']) print(f'\nnb. of test data points : {self.test["input"].size(0)}') if (not bool(self.valid)) and (self.test_as_valid is True): self.valid['input'] = self.test['input'].clone() self.valid['values'] = self.test['values'].clone() if not bool(self.train): num_train_valid_samples = int(self.num_train) if self.dataset_name.endswith('planes'): # generate grid in lattice reference x_lat = torch.empty((num_train_valid_samples, 2)) x_lat.uniform_(-0.5, 0.5) # convert to standard coordinates x = (Lattice.hexagonal_matrix @ x_lat.t()).t() elif self.non_uniform is True: hull_points = \ self.cpwl.tri.points[self.cpwl.convex_hull_points_idx] # compute largest distance max_dist = np.amax(np.sqrt(np.sum(hull_points ** 2, axis=1))) # radius r = (torch.empty((num_train_valid_samples, 1)) .uniform_(0., max_dist * 0.8)) # angle theta = (torch.empty((num_train_valid_samples, 1)) .uniform_(0., 2 * np.pi)) # points x = torch.cat((r * theta.cos(), r * theta.sin()), dim=1) # Only keep points inside cpwl convex hull x_simplices_idx = self.cpwl.tri.find_simplex(x) x = x[x_simplices_idx >= 0] else: # generate num_train_valid_samples uniformly distributed # in cpwl convex set x = self.generate_random_samples(num_train_valid_samples) # training / validation split indices if not self.test_as_valid: split_idx = int((1 - self.valid_fraction) * x.size(0)) else: # full training set, validation set = test set split_idx = x.size(0) self.train['input'] = x[0:split_idx] self.train['values'] = self.cpwl.evaluate(self.train['input']) if self.dataset_name.endswith('gaps'): # [(gap_x_min, gap_x_max)...] gap_x_range = [[0.108, 0.234], [-0.07, 0.226], [-0.234, -0.108]] # [(gap_y_min, gap_y_max)...] gap_y_range = [[-0.21, 0.07], [0.19, 0.311], [-0.21, 0.063]] # remove data inside gaps for i in range(len(gap_x_range)): gap_mask = ( (self.train['input'][:, 0] >= gap_x_range[i][0]) * (self.train['input'][:, 0] <= gap_x_range[i][1]) * (self.train['input'][:, 1] >= gap_y_range[i][0]) * (self.train['input'][:, 1] <= gap_y_range[i][1])) self.train['input'] = self.train['input'][~gap_mask] self.train['values'] = self.train['values'][~gap_mask] if not np.allclose(self.noise_ratio, 0.): # add noise to training data self.train['values'] = \ self.add_noise_to_values(self.train['values']) if self.train['input'].size(0) >= 3000: # effective number of samples (rounded to 1000) num = int(np.floor(self.train['input'].size(0) / 1000.) * 1000) idx = torch.randperm(self.train['input'].size(0))[:num] self.train['input'] = self.train['input'][idx] self.train['values'] = self.train['values'][idx] print('nb. of training data points : ' f'{self.train["input"].size(0)}') if not bool(self.valid): self.valid['input'] = x[(split_idx + 1)::] self.valid['values'] = \ self.cpwl.evaluate(self.valid['input']) @staticmethod def add_lattice_vertices(points, values, eps=0.): """Add lattice vertices (up to eps distance away) Args: points (torch.Tensor or np.ndarray): size (m, 2) values (torch.Tensor or np.ndarray): size (m,) eps (float): buffer distance from boundaries of lattice. """ nparray = False if isinstance(points, np.ndarray): nparray = True # convert to torch points = torch.from_numpy(points) values = torch.from_numpy(values) # add lattice corners br = Lattice.bottom_right_std ur = Lattice.upper_right_std a, b = eps * np.sqrt(3) / 2., eps * .5 lat_points = \ torch.tensor([[-ur[0] + a, -ur[1] + b], [br[0] - b, br[1] + a], [-br[0] + b, -br[1] - a], [ur[0] - a, ur[1] - b]]) points = torch.cat((points, lat_points), dim=0) values = torch.cat((values, torch.zeros(4))) if nparray is True: # convert to numpy points = points.numpy() values = values.numpy() return points, values def generate_random_samples(self, num_samples): """ Generate uniformly distributed data inside convex set. Works by generating num_samples points and then rejecting the ones outside the convex set. Args: num_samples (int) (before possible rejection) Returns: x (torch.tensor) """ x = torch.empty((num_samples, 2)) x[:, 0].uniform_(self.cpwl.tri.points[:, 0].min(), self.cpwl.tri.points[:, 0].max()) x[:, 1].uniform_(self.cpwl.tri.points[:, 1].min(), self.cpwl.tri.points[:, 1].max()) # reject samples outside convex set idx = self.cpwl.tri.find_simplex(x) x = x[idx >= 0] return x def add_noise_to_values(self, values): """ Add gaussian noise to values. if self.noise_std exists, it is used as the noise standard deviation, otherwise noise_std is computed from self.noise_ratio and the data height range. Args: values (torch.tensor): values to add noise to. Returns the noisy values. """ noise_std = self.noise_std if noise_std is None: noise_std = self.noise_ratio * (values.max() - values.min()) if self.verbose: print('Adding noise of standard deviation ' 'sigma = {:.2E}'.format(noise_std)) noise = torch.empty_like(values).normal_(std=noise_std) return values + noise @staticmethod def init_pyramid(): """ Initialize the pyramid dataset. Returns: points (np.array): size (M, 2). values (np.array): size (M,) """ # points in lattice coordinates h = 0.1 points = torch.tensor([[2 * h, 0.], [0., 2 * h], [2 * h, -2 * h], [0., -2 * h], [-2 * h, 0.], [-2 * h, 2 * h], [h, 0.], [0., h], [h, -h], [0., -h], [-h, 0.], [-h, h], [0., 0.]]) # last element -> apex values = torch.tensor([.0, .0, .0, .0, .0, .0, .1, .1, .1, .1, .1, .1, .2]) # convert to standard coordinates points = (Lattice.hexagonal_matrix @ points.t()).t() return points.numpy(), values.numpy() @classmethod def init_zero_boundary_planes(cls): """ Initialize the planes dataset with zero boundaries. Returns: points (torch.tensor): size (M, 2). values (torch.tensor): size (M,) """ # fit planes function in the lattice pad = 0.08 x_min, _, x_max, _ = cls.get_data_boundaries(hw_ratio=0.01, pad=pad) _, y_min, _, y_max = cls.get_data_boundaries(hw_ratio=100, pad=pad) dx = (x_max - x_min) / 100 # delta x step dy = (y_max - y_min) / 100 # delta y step # control points with values - (x1, x2, val) vert = \ torch.tensor([[x_min + 30 * dx, y_min + 35 * dy, dx * 20], # 0 [x_max - 40 * dx, y_min + 30 * dy, dx * 20], # 1 [x_max - 35 * dx, y_max - 30 * dy, dx * 20], # 2 [x_min + 40 * dx, y_max - 30 * dy, dx * 20], # 3 [x_max - 25 * dx, y_min + 5 * dy, 0.], # 4 [x_min + 25 * dx, y_max - 5 * dy, 0.]]) # 5 # auxiliary triangulation of the function # size (num_simplices, vertices) simplices = torch.tensor([[0, 1, 3], [1, 2, 3], [4, 1, 0], [0, 3, 5], [4, 2, 1], [3, 2, 5]]) # check values of vertices so that there is a seamless plane junction x_v6 = cls.get_zero_loc(vert, simplices, 2, 3) x_v7 = cls.get_zero_loc(vert, simplices, 4, 5) br = Lattice.bottom_right_std ur = Lattice.upper_right_std # add x_v6, x_v7, and lattice corners new_vert = torch.tensor([[x_v6[0], x_v6[1], 0.], # 6 [x_v7[0], x_v7[1], 0.], # 7 [-ur[0], -ur[1], 0.], # 8 [br[0], br[1], 0.], # 9 [-br[0], -br[1], 0.], # 10 [ur[0], ur[1], 0.]]) # 11 vert = torch.cat((vert, new_vert), dim=0) points, values = vert[:, 0:2], vert[:, 2] return points, values @staticmethod def add_linear_func(points, values): """ Add a linear term to the dataset. Args: points (torch.tensor): size (M, 2). values (torch.tensor): size (M,) Returns: values (torch.tensor): size (M,). """ # add linear term to vertices a = torch.tensor([0.1, 0.05]) b = torch.tensor([-0.05]) values += (points * a.unsqueeze(0)).sum(1) + b return values def init_planes(self): """ Initialize the planes dataset. Set self.noise_std. Returns: points (torch.tensor): size (M, 2). values (torch.tensor): size (M,) """ # initialize planes dataset with zero boundaries points, values = self.init_zero_boundary_planes() # overwrite noise standard deviation self.noise_std = (self.noise_ratio * values.max()) # add linear function to dataset values = self.add_linear_func(points, values) # convert to numpy points, values = points.numpy(), values.numpy() return points, values @staticmethod def get_zero_loc(vert, simplices, idx1, idx2): """ Get zero locations of vertices for a seamless junction of the planes. Args: vert (np.array): size: (M, 3) (points in the first two columns, values in the third) simplices (np.array): indexes of vertices for each simplex (row). size: (P, 3). idx1, idx2 (int>=0): indices of simplices to join. Returns: x (torch.tensor): size (2,) """ # size (2, 3, 3) idx_vec = [idx1, idx2] simplices_vert = \ torch.cat(tuple(vert[simplices[i]].unsqueeze(0) for i in idx_vec), dim=0) plane_coeff = Lattice.solve_method(simplices_vert) affine_coeff = Lattice.get_affine_coeff_from_plane_coeff(plane_coeff) assert affine_coeff.size() == (2, 3) B = -affine_coeff[:, -1:] A = affine_coeff[:, 0:2] x = torch.linalg.solve(A, B) return x.squeeze(-1) @staticmethod def read_face(data_dir, cut_eps=0.6): """ Read the 3D face dataset and construct a function from it by cutting and eliminating duplicates. Args: cut_eps (float in [0,1]): what height to cut face relative to its maximum height. Returns: cleaned_vert (np.array): with vertices below cut_eps and duplicates removed and zero mean. size: (M, 3) (points in the first two columns, values in the third) """ obj_file = os.path.join(data_dir, 'obj_free_male_head.obj') V = [] with open(obj_file, "r") as file1: for line in file1.readlines(): f_list = [i for i in line.split(" ") if i.strip()] if len(f_list) == 0: continue if f_list[0] != 'v': continue V += [float(i) for i in f_list[1::]] # vertices vert = np.array(V).reshape(-1, 3) # sort vertices by z coordinates in descending direction sort_vert = vert[vert[:, 2].argsort()][::-1] # get unique_idx of first occurences (largest height) _, unique_dx = np.unique(sort_vert[:, 0:2], return_index=True, axis=0) unique_sort_vert = sort_vert[unique_dx] # eliminate vertices whose height is below cutoff min_height = unique_sort_vert[:, 2].min() max_height = unique_sort_vert[:, 2].max() cutoff_val = min_height + (max_height - min_height) * cut_eps cutoff_mask = np.where(unique_sort_vert[:, 2] > cutoff_val)[0] cleaned_vert = unique_sort_vert[cutoff_mask] cleaned_vert[:, 2] = cleaned_vert[:, 2] - \ cutoff_val # shift z.min() to z = 0 x_mean = cleaned_vert[:, 0].min() / 2. + cleaned_vert[:, 0].max() / 2. y_mean = cleaned_vert[:, 1].min() / 2. + cleaned_vert[:, 1].max() / 2. cleaned_vert[:, 0] = cleaned_vert[:, 0] - x_mean # shift x around 0 cleaned_vert[:, 1] = cleaned_vert[:, 1] - y_mean # shift t around 0 return cleaned_vert @classmethod def init_face(cls, data_dir, cut=False): """ Initialize the face dataset. Args: cut (bool): if True, use only a smaller section of the face. Otherwise, use full face with zero boundaries. Returns: points (torch.tensor): size (M, 2). values (torch.tensor): size (M,) """ vert = cls.read_face(data_dir) # normalize face to fit in [-0.8, 0.8]^2 square max_ = max(np.abs(vert[:, 0]).max(), np.abs(vert[:, 1]).max()) vert = vert / max_ * 0.8 if cut is True: # cut a smaller portion of the face cpwl_aux = Delaunay(points=vert[:, 0:2].copy(), values=vert[:, 2].copy()) x_min, x_max = -0.324, 0.324 y_min, y_max = -0.45, 0.419 mask = (vert[:, 0] > x_min) * (vert[:, 0] < x_max) * \ (vert[:, 1] > y_min) * (vert[:, 1] < y_max) vert = vert[mask] # add extreme points of the convex hull to vertices hull_points = np.array([[x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max]]) hull_values = cpwl_aux.evaluate(hull_points) new_vertices = np.concatenate( (hull_points, hull_values[:, np.newaxis]), axis=1) vert = np.concatenate((vert, new_vertices), axis=0) else: points = vert[:, 0:2] hull = scipy.spatial.ConvexHull(points) hull_points = points[hull.vertices] # add points along the convex hull for i in range(hull_points.shape[0]): frac = np.linspace(0.01, 0.99, num=99)[:, np.newaxis] next_vert = i + 1 if i != hull_points.shape[0] - 1 else 0 new_points = hull_points[next_vert][np.newaxis, :] * frac + \ hull_points[i][np.newaxis, :] * (1 - frac) if cut is True: # evaluate on convex hull of face new_values = cpwl_aux.evaluate(new_points) else: # add zeros around face (to its convex hull contour) new_values = np.zeros(new_points.shape[0]) new_vertices = np.concatenate( (new_points, new_values[:, np.newaxis]), axis=1) vert = np.concatenate((vert, new_vertices), axis=0) if cut is False: # create grid of points with zero value around face h = 0.01 x_r = vert[:, 0].max() * 10. / 8. y_r = vert[:, 1].max() * 9.5 / 8. fine_grid = Grid(x1_min=-x_r, x1_max=x_r + h, x2_min=-y_r, x2_max=y_r + h, h=h, to_float32=True).x # only retain points outside face convex hull aux_delaunay = scipy.spatial.Delaunay(points) fine_grid = fine_grid[aux_delaunay.find_simplex(fine_grid) < 0] # add zeros around face new_vertices = np.concatenate( (fine_grid, np.zeros((fine_grid.shape[0], 1))), axis=1) vert = np.concatenate((vert, new_vertices), axis=0) vert = cls.fit_in_lattice(vert) points, values = vert[:, 0:2], vert[:, 2] return points, values @classmethod def fit_in_lattice(cls, vert): """ Fit points in lattice. Args: vert (np.array): size: (M, 3) (points in the first two columns, values in the third) Returns: vert (np.array): scaled vertices that fit in lattice. """ # normalize face to fit in lattice hw_ratio = (vert[:, 1].max() - vert[:, 1].min()) / \ (vert[:, 0].max() - vert[:, 0].min()) _, _, x_max, y_max = cls.get_data_boundaries(hw_ratio=hw_ratio, pad=0.03) # recenter data x_mean = (vert[:, 0].max() + vert[:, 0].min()) / 2 y_mean = (vert[:, 1].max() + vert[:, 1].min()) / 2 vert[:, 0] = vert[:, 0] - x_mean vert[:, 1] = vert[:, 1] - y_mean # x,y scaling factors # vert[i,0] should be within (-x_max, x_max) # vert[i,1] should be within (-y_max, y_max) x_norm = x_max / vert[:, 0].max() y_norm = y_max / vert[:, 1].max() if x_norm < y_norm: vert = vert * x_norm else: vert = vert * y_norm return vert @staticmethod def get_data_boundaries(hw_ratio=math.sqrt(3), pad=0.1): """ Get the data boundaries that allow fitting the data in centered rectangular region of the lattice with a specified height/width ratio, so as to maximize occupied space within the interior lattice. Pad a given distance from the limits if pad > 0. Takes into account geometry of hexagonal lattice: if hw_ratio > math.sqrt(3), the data touches the upper and bottom interior border; otherwise, it touch the left and right borders. Args: hw_ratio (float>0): height/width ratio of rectangular region. pad (float>=0): distance to pad from the limits of the region. Returns: 4-tuple (x_min, x_max, y_min, y_max): data boundaries """ # requires that lattice is hexagonal and lsize*h = 1 (enforced) bottom_right_std = Lattice.bottom_right_std if hw_ratio > math.sqrt(3): # from geometry maximize space usage y_min = bottom_right_std[1] x_min = y_min * (1. / hw_ratio) else: a = (bottom_right_std[0] * 2) / (1 + hw_ratio * math.sqrt(3) / 3) x_min = -a y_min = x_min * hw_ratio x_min, y_min = x_min + pad, y_min + pad x_max, y_max = -x_min, -y_min return x_min.item(), y_min.item(), x_max.item(), y_max.item() ``` #### File: HTV-Learn/htvlearn/delaunay.py ```python import torch import numpy as np import scipy.spatial from htvlearn.lattice import Lattice from htvlearn.grid import Grid from htvlearn.hessian import ( get_finite_second_diff_Hessian, get_exact_grad_Hessian ) class Delaunay(): """Wrapper around scipy.spatial.Delaunay""" centers_barycentric_coordinates = np.array([0.333, 0.333, 0.334]) def __init__(self, points=None, values=None, npoints=120, points_range=2, values_range=1, add_extreme_points=False, pad_factor=0.05, **kwargs): """ Args: points, values (torch.tensor/np.array): Specific set of points/values to generate Delaunay triangulation from. size: (n, 2), (n,), respectively. if not given, npoints are randomly generated. npoints (int): number of delaunay triangulation points to generate, if ``points`` and ``values`` are not given. points_range (float): range for generated points. values_range (float): range for generated values. add_extreme_points (bool): Add extreme points of the rectangle to triangulation. pad_factor (float): relative pad factor for extreme points (relative to data range). """ super().__init__() if isinstance(points, torch.Tensor): points = points.numpy() values = values.numpy() if isinstance(points, np.ndarray): self._verify_input(points, values) else: interior_npoints = ((npoints - 4) if add_extreme_points is True else npoints) # randomly generate points in [-points_range/2, points_range/2]^2 points = ((np.random.rand(int(interior_npoints), 2) - 0.5) * points_range) # randomly generate values in [-values_range/2, values_range/2] values = ((np.random.rand(int(interior_npoints), ) - 0.5) * values_range) if add_extreme_points: x_min, x_max = points[:, 0].min(), points[:, 0].max() y_min, y_max = points[:, 1].min(), points[:, 1].max() # pf -> absolute padding factor pf = min(x_max - x_min, y_max - y_min) * pad_factor # extreme points of domain extreme_points = np.array([[x_min - pf, y_min - pf], [x_max + pf, y_min - pf], [x_min - pf, y_max + pf], [x_max + pf, y_max + pf]]) points = np.vstack((points, extreme_points)) values = np.concatenate((values, np.zeros(4))) # generate delaunay triangulation self.tri = scipy.spatial.Delaunay(points) for attstr in [ 'values', 'simplices_points', 'simplices_values', 'simplices_affine_coeff' ]: assert not hasattr(self.tri, attstr), \ f'{self.tri} does not have attribute {attstr}...' # idx of convex hull points self.convex_hull_points_idx = np.unique(self.tri.convex_hull.flatten()) # triangulation vertice values self.tri.values = values # sanity check # https://math.stackexchange.com/questions/ # 1097646/number-of-triangles-in-a-triangulation nlinear_regions = self.tri.simplices.shape[0] assert nlinear_regions <= 2 * self.tri.points.shape[0] \ - 2 - self.convex_hull_points_idx.shape[0] # coordinates of points in each simplex. size: (nsimplex, 3, 2). self.tri.simplices_points = self.tri.points[self.tri.simplices] assert self.tri.simplices_points.shape == \ (self.tri.simplices.shape[0], 3, 2) # vertex values of points in each simplex. size: (nsimplex, 3, 2). self.tri.simplices_values = self.tri.values[self.tri.simplices] assert self.tri.simplices_values.shape == \ (self.tri.simplices.shape[0], 3) simplices_centers = ( np.transpose(self.tri.simplices_points, (0, 2, 1)) @ self.centers_barycentric_coordinates[:, np.newaxis] ).squeeze(axis=-1) # affine coefficients of each simplex self.tri.simplices_affine_coeff = \ self.get_affine_coefficients(simplices_centers) assert self.tri.simplices_affine_coeff.shape == \ (self.tri.simplices.shape[0], 3) @property def is_admissible(self): """ Check if the cpwl function is admissible, i.e., is of the form f + ax + b, where f is a zero-boundary function. """ hull_points = self.tri.points[self.convex_hull_points_idx] hull_values = self.tri.values[self.convex_hull_points_idx] # fit a linear function through three non-colinear convex hull # points, i.e. solve f(hull_points) = a^(hull_points) + b, for a and b. # the first two points correspond to the min/max x coordinate first_idx = np.argmin(hull_points[:, 0]) second_idx = np.argmax(hull_points[:, 0]) # to find the third point, we form the matrix # x1 x2 x3 # y1 y2 y3 # 1 1 1 # and check for which (x3, y3) it has the largest determinant: mat = np.ones((hull_points.shape[0], 3, 3)) mat[:, 0:2, 0] = hull_points[first_idx] mat[:, 0:2, 1] = hull_points[second_idx] mat[:, 0:2, 2] = hull_points det = np.abs(np.linalg.det(mat)) third_idx = np.argmax(np.abs(det)) # 3 points points = np.concatenate((hull_points[first_idx][np.newaxis, :], hull_points[second_idx][np.newaxis, :], hull_points[third_idx][np.newaxis, :]), axis=0) values = np.array([hull_values[first_idx], hull_values[second_idx], hull_values[third_idx]]) # vert size: (1, 3, 3) vert = np.concatenate((points, values[:, np.newaxis]), axis=1) # plane_coeff size: (1, 4) plane_coeff = Lattice.solve_method(torch.from_numpy(vert).unsqueeze(0)) # affine_coeff size: (1, 3) affine_coeff = Lattice.get_affine_coeff_from_plane_coeff(plane_coeff) affine_coeff = affine_coeff.numpy() z_linear = ((affine_coeff[:, 0:2] * hull_points).sum(axis=1) + affine_coeff[:, 2]) if np.allclose(z_linear, hull_values): return True return False @property def has_rectangular_range(self): """Check if convex hull of cpwl is rectangular.""" hull_points = self.tri.points[self.convex_hull_points_idx] x_min = hull_points[:, 0].min() x_max = hull_points[:, 0].max() y_min = hull_points[:, 1].min() y_max = hull_points[:, 1].max() # test rectangle rect = np.array([[x_min, y_min], [x_max, y_min], [x_min, y_max], [x_max, y_max]]) # check that hull_points contains the 4 corners of the rectangle for corner in rect: # difference to a corner. diff = hull_points - np.array([corner]) if not np.any(np.all(np.isclose(diff, 0), axis=1)): # there isn't any hull point corresponding to this corner return False # check that all points have # x = x_min, or x = x_max, or y = y_min, or y = ymax if not np.all(np.isclose(hull_points[:, 0], x_min) + np.isclose(hull_points[:, 0], x_max) + np.isclose(hull_points[:, 1], y_min) + np.isclose(hull_points[:, 1], y_max)): return False return True @staticmethod def _verify_input(points, values): """ Verify user input points and values. Args: points: expected np.ndarray of size (n, 2) values: expected np.ndarray of size (n,) """ assert points.shape[1] == 2, f'{points.shape[1]}' assert len(points.shape) == 2, f'{len(points.shape)}' assert isinstance(values, np.ndarray), f'{type(values)}' assert values.shape == (points.shape[0], ), \ f'{values.shape} != ({points.shape[0]},)' def get_affine_coefficients(self, x): """ Get the affine coefficients (a1, a2, d) of simplex where each datapoint leaves, s.t. f(x1, x2) = a1.x1 + a2.x2 + d, using the solve method. We have 3 vertices and 3 unkowns (a1, a2, d) for each datapoint. So, we can solve the system of 3 equations to get (a1, a2, d). Args: x (np.ndarray): locations where to get affine coefficients. size: (n, 2). Returns: affine_coeff (np.ndarray): affine coefficients of simplices where each datapoint lives. size: (n, 3). """ x_simplices, x_simplices_idx = self.get_x_simplices(x) try: affine_coeff = \ self.tri.simplices_affine_coeff[x_simplices_idx].copy() return affine_coeff except AttributeError: pass x_simplices_points = \ self.get_x_simplices_points(x_simplices=x_simplices) # (m, 3, 2) x_simplices_values = \ self.get_x_simplices_values(x_simplices=x_simplices) # (m, 3) # vertices for (x1, x2, z) -> {(x1_K, x2_K, z_K)}, K in {A, B, C} # (x1 - x1_C).a1 + (x2 - x2_C).a2 + (z - z_C) = 0 # plug (x1_A, x2_A, z_A) and (x1_B, x2_B, z_B) above to find a1, a2 z_diff = (x_simplices_values[:, 0:2] - x_simplices_values[:, 2:3])[:, :, np.newaxis] assert z_diff.shape == (x.shape[0], 2, 1) x_diff = x_simplices_points[:, 0:2, :] - x_simplices_points[:, 2:3, :] assert x_diff.shape == (x.shape[0], 2, 2) a1_a2 = np.linalg.solve(x_diff, z_diff) assert a1_a2.shape == (x.shape[0], 2, 1) a1_a2 = a1_a2.squeeze(-1) d = x_simplices_values[:, 2] - \ (a1_a2 * x_simplices_points[:, 2]).sum(axis=1) affine_coeff = np.hstack((a1_a2, d[:, np.newaxis])) return affine_coeff def get_x_simplices(self, x): """ Get simplices where x lives. Args: x (np.ndarray): input locations. size (n, 2). Returns: x_simplices (np.ndarray): indexes of vertices of simplices where x lives. size: (n, 3). x_simplices_idx (np.ndarray): indexes of simplices where x lives. size: (n,). """ assert isinstance(x, np.ndarray), f'x is of type: {type(x)}.' x_simplices_idx = self.tri.find_simplex(x) assert x_simplices_idx.shape == (x.shape[0], ) if np.any(x_simplices_idx < 0): raise ValueError( 'At least one point is outside the triangulation...') x_simplices = self.tri.simplices[x_simplices_idx].copy() assert x_simplices.shape == (x.shape[0], 3) return x_simplices, x_simplices_idx def _check_x_simplices(self, x_simplices, x): """ Verify that either x_simplices is None. If so, returns x_simplices. Otherwise, checks if x is not None and computes x_simplices from x. Args: x (None or np.ndarray): input locations. size (n, 2). x_simplices (np.ndarray): indexes of vertices of simplices where x lives. size: (n, 3). Returns: x_simplices (np.ndarray): indexes of vertices of simplices where x lives. size: (n, 3). """ if x_simplices is not None: return x_simplices elif x is None: raise ValueError('Need to provide either "x" or "x_simplices".') x_simplices, _ = self.get_x_simplices(x) return x_simplices def get_x_simplices_points(self, x_simplices=None, x=None): """ Get locations of vertices from x_simplices (indexes of vertices) or x (input locations). If x_simplices is not given, x has to be given. Args: x_simplices (None or np.ndarray): indexes of vertices of simplices where x lives. size: (n, 3). x (None or np.ndarray): input locations. size (n, 2). Returns: x_simplices_points: locations of vertices. size: (n, 3, 2). """ x_simplices = self._check_x_simplices(x_simplices, x) x_simplices_points = self.tri.points[x_simplices] assert x_simplices_points.shape == (*x_simplices.shape, 2) return x_simplices_points def get_x_simplices_values(self, x_simplices=None, x=None): """ Get values at the vertices from x_simplices (indexes of vertices) or x (input locations). If x_simplices is not given, x has to be given. Args: x_simplices (None or np.ndarray): indexes of vertices of simplices where x lives. size: (n, 3). x (None or np.ndarray): input locations. size (n, 2). Returns: x_simplices_values: values at the vertices. size (n, 3, 2). """ x_simplices = self._check_x_simplices(x_simplices, x) x_simplices_values = self.tri.values[x_simplices] assert x_simplices_values.shape == x_simplices.shape return x_simplices_values def evaluate_bar(self, x): """ Evaluate cpwl function at x, using barycentric coordinates method. Args: x (np.ndarray or torch.Tensor): input locations. size (n, 2). Returns: z (np.ndarray or torch.Tensor): values at x. size (n,). """ torchtensor = False if isinstance(x, torch.Tensor): # convert to numpy torchtensor = True device, dtype = x.device, x.dtype x = x.detach().cpu().numpy() x_bar_coord, x_simplices = self.get_x_baryc_coord(x) x_simplices_values = \ self.get_x_simplices_values(x_simplices=x_simplices) z = (x_simplices_values * x_bar_coord).sum(axis=1) if torchtensor is True: # convert to torch z = torch.from_numpy(z).to(device=device, dtype=dtype) return z def get_x_baryc_coord(self, x): """ Get barycentric coordinates of x. We use affine coordinates to compute barycentric coordinates (more numerically stable): x^T = [p1^T p2^T p3^T] @ [bar1, bar2, bar3]^T (with bar3 = 1-bar1-bar2) x^T = [(p1-p3)^T (p2-p3)^T] @ [bar1, bar2]^T + p3^T <=> (x-p_3)^T = [(p1-p3)^T (p2-p3)^T] @ [bar1, bar2]^T Args: x (np.ndarray or torch.Tensor): input locations. size (n, 2). Returns: bar_coord (np.ndarray): barycentric coordinates of x. size (n, 3). x_simplices (np.ndarray): indexes of vertices of simplices where x lives. size: (n, 3). """ x_simplices, x_simplices_idx = self.get_x_simplices(x) # tri.transform: size: (nsimplex, 3, 2) x_affine_coord = (x - self.tri.transform[x_simplices_idx, 2])[:, :, np.newaxis] assert x_affine_coord.shape == (x.shape[0], 2, 1) p1_p2_affine_coord_inv = self.tri.transform[x_simplices_idx, :2] assert p1_p2_affine_coord_inv.shape == (x.shape[0], 2, 2) bar1_bar2 = (p1_p2_affine_coord_inv @ x_affine_coord).squeeze(axis=-1) assert bar1_bar2.shape == (x.shape[0], 2) bar_coord = np.c_[bar1_bar2, 1 - bar1_bar2.sum(axis=1, keepdims=True)] assert bar_coord.shape == (x.shape[0], 3) return bar_coord, x_simplices def evaluate(self, x): """ Evaluate cpwl function at x, using affine coefficients. Args: x (np.ndarray or torch.Tensor): input locations. size (n, 2). Returns: z (np.ndarray or torch.Tensor): values at x. size (n,). """ torchtensor = False if isinstance(x, torch.Tensor): # convert to numpy torchtensor = True device, dtype = x.device, x.dtype x = x.detach().cpu().numpy() affine_coeff = self.get_affine_coefficients(x) z = (affine_coeff[:, 0:2] * x).sum(axis=1) + affine_coeff[:, 2] if torchtensor is True: # convert to torch z = torch.from_numpy(z).to(device=device, dtype=dtype) return z def evaluate_with_grad(self, x): """ Evaluate cpwl function at x, using affine coefficients, and compute gradient at x. Args: x (np.ndarray or torch.Tensor): input locations. size (n, 2). Returns: z (np.ndarray or torch.Tensor): values at x. size (n,). x_grad (np.ndarray or torch.Tensor): gradients at x. size (n, 2) """ torchtensor = False if isinstance(x, torch.Tensor): # convert to numpy torchtensor = True device, dtype = x.device, x.dtype x = x.detach().cpu().numpy() affine_coeff = self.get_affine_coefficients(x) z = (affine_coeff[:, 0:2] * x).sum(axis=1) + affine_coeff[:, 2] x_grad = affine_coeff[:, 0:2] if torchtensor is True: # convert to torch z = torch.from_numpy(z).to(device=device, dtype=dtype) x_grad = torch.from_numpy(z).to(device=device, dtype=dtype) return z, x_grad def compute_grad(self, x): """ Compute gradient of cpwl function at x. Args: x (np.ndarray or torch.Tensor): input locations. size (n, 2). Returns: x_grad (np.ndarray or torch.Tensor): gradients at x. size (n, 2) """ _, x_grad = self.evaluate_with_grad(x) return x_grad def get_exact_HTV(self): """ Get exact HTV of cpwl function. Returns: htv (float) """ grad = self.tri.simplices_affine_coeff[:, 0:2].copy() assert grad.shape == (self.tri.simplices.shape[0], 2) # size (nsimplex, 3) there are three neighbors of each simplex in 2D. neighbors = self.tri.neighbors.copy() # -1 signals no neighbors # tuple (rows, cols) no_neighbor_idx = np.where(neighbors == -1) has_neighbor_idx = np.where(neighbors > -1) ###################################### # compute norm of gradient differences ###################################### # size: (nsimplex, 3, 2) grad_simplices_expand = grad[:, np.newaxis, :].repeat(3, axis=1) # size: (nsimplex, 3, 2) --- (simplex idx, neighbor idx, neighbor grad) grad_neighbors = grad[neighbors] # do not count junctions with neighbors outside delaunay, so make # both grads equal to zero, so as to not have a contribution from # these. grad_neighbors[no_neighbor_idx] = np.array([0., 0.]) grad_simplices_expand[no_neighbor_idx] = np.array([0., 0.]) # (nsimplex, 3, 2) assert grad_neighbors.shape == (neighbors.shape[0], 3, 2) grad_diff_norm = np.linalg.norm(grad_neighbors - grad_simplices_expand, ord=2, axis=-1) assert grad_diff_norm.shape == neighbors.shape ########################## # compute junction lengths ########################## neighbors_simplices = self.tri.simplices[neighbors].copy() # (nsimplex, 3, 3) assert neighbors_simplices.shape == (neighbors.shape[0], 3, 3) simplices_expand = \ self.tri.simplices[:, np.newaxis, :].repeat(3, axis=1).copy() # (nsimplex, 3, 3) assert simplices_expand.shape == (neighbors.shape[0], 3, 3) # TODO: Comment this section neighbors_simplices[no_neighbor_idx] = \ simplices_expand[no_neighbor_idx] new_idx = (*no_neighbor_idx, no_neighbor_idx[1]) neighbors_simplices[new_idx] = -1 aux_arr = np.concatenate((simplices_expand, neighbors_simplices), axis=-1) aux_arr = np.sort(aux_arr, axis=-1) z = np.diff(aux_arr, axis=-1) edges_idx = aux_arr[np.where(z == 0)].reshape((*aux_arr.shape[0:2], 2)) edges_points = self.tri.points[edges_idx] edges_len = np.linalg.norm(np.subtract(edges_points[:, :, 1, :], edges_points[:, :, 0, :]), ord=2, axis=-1) assert edges_len.shape == neighbors.shape # Divide by 2 but only if repeated edges_htv = grad_diff_norm * edges_len edges_htv[has_neighbor_idx] = edges_htv[has_neighbor_idx] / 2 htv = edges_htv.sum() assert np.allclose(htv, edges_htv[has_neighbor_idx].sum()) return htv def get_grid(self, h=0.001, to_numpy=True, to_float32=False): """ Get a Grid over the rectangular range of the cpwl function. If cpwl does not have rectangular range, throw an Error. Args: h (float): step size. to_numpy (bool): if True, convert grid to numpy array. to_float32 (bool): if True, convert grid to float32 Returns: grid (Grid): Grid instance (see grid.py). """ # if not self.has_rectangular_range: # raise ValueError( # 'The triangulation does not have a rectangular range.') # create image convex_hull_points = self.tri.points[self.convex_hull_points_idx] x1_min, x1_max = \ convex_hull_points[:, 0].min(), convex_hull_points[:, 0].max() x2_min, x2_max = \ convex_hull_points[:, 1].min(), convex_hull_points[:, 1].max() eps = h return Grid(x1_min=x1_min + eps, x1_max=x1_max, x2_min=x2_min + eps, x2_max=x2_max, h=h, to_numpy=to_numpy, to_float32=to_float32) def get_lefkimiattis_schatten_HTV(self, p=1, h=0.001): """ Get the HTV of the cpwl function via finite second differences for computing the Hessian, and then taking its Schatten-p norm. All p's should be equivalent from a small enough step. Args: p (int >= 1): p for Schatten norm. h (float): step size for finite second differences. Returns: htv (float) """ grid = self.get_grid(h=h) Hess = get_finite_second_diff_Hessian(grid, self.evaluate) S = np.linalg.svd(Hess, compute_uv=False, hermitian=True) assert S.shape == (*Hess.shape[0:2], 2) # schatten-p-norm points_htv = np.linalg.norm(S, ord=p, axis=-1) # sum over locations htv = (points_htv * h * h).sum() return htv def get_exact_grad_schatten_HTV(self, p=1, h=0.001): """ Get the trace-HTV of the cpwl function via finite first-differences on the exact gradient for computing the Hessian, and then taking its Schatten-p-norm. Args: p (int >= 1): p for Schatten norm. h (float): step size for finite second differences. Returns: htv (float) """ grid = self.get_grid(h=h) Hess = get_exact_grad_Hessian(grid, self.compute_grad) S = np.linalg.svd(Hess, compute_uv=False, hermitian=False) assert S.shape == (*Hess.shape[0:2], 2) # schatten-p-norm points_htv = np.linalg.norm(S, ord=p, axis=-1) # sum over locations htv = (points_htv * h * h).sum() return htv def get_lefkimiattis_trace_HTV(self, h=0.001): """ Get the trace-HTV of the cpwl function via finite second-differences for computing the Hessian, and then taking its trace. Args: h (float): step size for finite second differences. Returns: htv (float) """ grid = self.get_grid(h=h) Hess = get_finite_second_diff_Hessian(grid, self.evaluate) # trace points_htv = np.abs(Hess[:, :, 0, 0] + Hess[:, :, 1, 1]) # sum over locations htv = (points_htv * h * h).sum() return htv def get_exact_grad_trace_HTV(self, h=0.001): """ Get the trace-HTV of cpwl function via finite first differences on the exact gradient to compute the Hessian, and then taking its trace. Args: h (float): step size for finite second differences. Returns: htv (float) """ grid = self.get_grid(h=h) Hess = get_exact_grad_Hessian(grid, self.compute_grad) # trace points_htv = np.abs(Hess[:, :, 0, 0] + Hess[:, :, 1, 1]) # sum over locations htv = (points_htv * h * h).sum() return htv ``` #### File: HTV-Learn/htvlearn/lattice.py ```python import math import torch from torch import Tensor import numpy as np import warnings from django.utils.functional import classproperty from htvlearn.grid import Grid class Lattice(): r""" Class for cpwl functions ``f:\R² \to \R`` with a uniform hexagonal lattice domain. This class of cpwl functions is in the span of linear hexagonal box splines shifted on the hexagonal lattice. A function in this space is uniquely specified by the values at the lattice vertices (box spline coefficients). The set of lattice vertices A for a centered hexagonal lattice of size (lsize x lsize) with ``(lsize + 1)**2`` vertices is given by: `` A = {a1*v1 + a2*v2: -lsize//2 <= ai < lsize//2, ai \in \Z, v1,v2 in R^2} = {X_mat @ a : -lsize//2 <= ai < lsize//2, ai \in \Z, X_mat in R^{2x2}} `` where ``v1 = h*(1, 0), v2 = h*(1/2, sqrt(3)/2)`` and ``h`` is the grid step. X_mat changes coordinates in the lattice basis v1,v2 \in R^2 to the standard basis e1,e2; X_mat's columns are formed by the lattice vectors v1,v2. Each lattice vertex is associated to a value corresponding to the coefficient of the box spline at that location. Tensor representation formats: . batch format (m,n) (default) - vectors along rows . mat (matrix) format (n,m) - vectors along columns . batch_mat format - batch of matrices (b,n,m) """ ldim = 2 # lattice dimension # barycentric coordinates for simplex centers (approximately) centers_barycentric_coordinates = Tensor([0.333, 0.333, 0.334]) # hexagonal lattice matrix with unit vectors hexagonal_matrix = Tensor([[1., 0.5], [0., 0.5 * math.sqrt(3)]]) def __init__(self, X_mat=None, C_mat=None, lsize=10, C_init='zero', **kwargs): """ Args: Option 1 (direct) --- X_mat (lattice vectors) and the matrix of lattice coefficients C_mat are given directly. These two matrices need to satisfy several conditions (see self.verify_input). X_mat (torch.Tensor): lattice matrix; size (2, 2). C_mat (torch.Tensor): coefficients matrix; size (lsize+1, lsize+1); C_mat(i1, i2) = f(a1*x1 + a2*x2) = f(X_mat @ a), x direction -> rows, y -> columns. Option 2 (indirect) --- define X_mat via lsize and initialize C_mat with zeros or values from a normal distribution. lsize (int): Lattice size; number of vertices is ``(lsize+1)**2``. C_init (str): 'zero' or 'normal' lattice coefficients initialization. """ # C_mat is indexed as (i, j) = (x, y) if X_mat is not None and C_mat is not None: self.verify_input(X_mat, C_mat) else: assert X_mat == C_mat, \ 'X_mat is None and C_mat is not None, or vice-versa.' X_mat, C_mat = self.init_hexagonal_lattice(lsize, C_init, **kwargs) self.init_origin_simplices() self.init_neighborhood() self.update_lattice(X_mat, C_mat) @property def X_mat(self): return self._X_mat @X_mat.setter def X_mat(self, new_X_mat): raise AttributeError('X_mat can only be updated via' 'self.update_lattice().') @property def C_mat(self): return self._C_mat @C_mat.setter def C_mat(self, new_C_mat): raise AttributeError('C_mat can only be updated via self.update_' 'lattice() or self.update_coefficients().') @property def lsize(self): return self._lsize @lsize.setter def lsize(self, new_lsize): raise AttributeError('lsize can only be set in __init__().') @property def h(self): return self._h @h.setter def h(self, new_h): raise AttributeError('h cannot be set directly.') @classmethod def init_hexagonal_lattice(cls, lsize=10, C_init='zero', **kwargs): """ Initialize hexagonal lattice. Args: lsize (int): Lattice size; number of vertices is ``(lsize+1)**2``. C_init (str): 'zero' or 'normal' lattice coefficients initialization. """ assert C_init in ['zero', 'normal'] h = 1. / lsize X_mat = cls.hexagonal_matrix.mul(h) C_mat = torch.zeros((lsize + 1, lsize + 1)) if C_init == 'normal': C_mat.normal_().mul_(0.05) # for visualization purposes. assert cls.is_hexagonal(X_mat), 'Lattice is not hexagonal' return X_mat, C_mat # These two class properties require that lattice # is hexagonal and lsize*h = 1 (both enforced) @classproperty def bottom_right_std(cls): """Get the bottom right corner of lattice in standard coordinates""" return cls.hexagonal_matrix @ Tensor([0.5, -0.5]) @classproperty def upper_right_std(cls): """Get the upper right corner of lattice in standard coordinates""" return cls.hexagonal_matrix @ Tensor([0.5, 0.5]) @staticmethod def is_hexagonal(X_mat): """ Check if lattice is hexagonal. Args: X_mat (torch.Tensor): lattice matrix; size (2, 2). """ if not np.allclose(X_mat[1, 0], 0.): return False if not np.allclose(X_mat[0, 1], X_mat[0, 0] / 2): return False if not np.allclose(X_mat[1, 1], X_mat[0, 1] * math.sqrt(3)): return False return True @classmethod def verify_input(cls, X_mat, C_mat): """ Verify lattice matrix and coefficients. Check if X_mat is hexagonal, that sizes are compatible, and that the resulting lsize * h = 1. Throw an exception if not. Args: X_mat (torch.Tensor): lattice matrix; size (2, 2). C_mat (torch.Tensor): coefficients matrix; size (lsize+1, lsize+1); C_mat(i1, i2) = f(a1*x1 + a2*x2) = f(X_mat @ a), x direction -> rows, y -> columns. """ # verify types if X_mat.dtype != torch.float32 or C_mat.dtype != torch.float32: raise ValueError('Expected float tensors.') # verify if lattice is hexagonal if not cls.is_hexagonal(X_mat): raise ValueError('Invalid X_mat --- lattice not hexagonal.') h, lsize = X_mat[0, 0], C_mat.size(0) - 1 if not np.allclose(lsize * h, 1.): raise ValueError(f'lsize*h = {lsize * h}. Should be 1.') # verify sizes X_mat_size, C_mat_size = tuple(X_mat.size()), tuple(C_mat.size()) ldim = X_mat_size[0] # lattice dimension if ldim != cls.ldim: raise ValueError('Only 2D lattice allowed, for now') if X_mat_size != (ldim, ldim): raise ValueError( f'Expected size ({ldim},{ldim}). Found size {X_mat_size}.') if len(C_mat_size) != ldim or (not all(k == C_mat_size[0] for k in C_mat_size)): raise ValueError( f'Expected size ([k] * {ldim}). Found size {C_mat_size}.') if C_mat_size[0] % 2 != 1: raise ValueError( f'Expected odd dimensions. Found size {C_mat_size}.') # verify consistency if X_mat.det().allclose(Tensor([0.])): raise ValueError( 'X_mat is not invertible or very ill-conditioned.') if not X_mat.allclose(X_mat.clamp(min=0)): # To facilitate computations. raise ValueError('Both lattice vectors should be positive') def init_origin_simplices(self): """ Initialize the first and second origin simplices, their barycentric matrices and respective inverses. The rows of each simplex are the lattice coordinates of the vertices. Some computations, such as computation of barycentric coordinates of x wrt to its simplex can be translated to computation of barycentric coordinates of translated x wrt one of the origin simplices. (see get_barycentric_coordinates()) """ # vertices of origin square vA, vB, vC, vD = [0, 0], [1, 0], [1, 1], [0, 1] self.batch_origin_simplices = torch.tensor([[vA, vB, vD], [vB, vC, vD]]) # (2,3,2) assert self.batch_origin_simplices.size() == (2, 3, 2) # size (2,3,3); for each of the 2 simplices (dim=0), # get barycentric matrices self.batch_origin_simplices_barycentric_mat = \ self.append_ones(self.batch_origin_simplices, dim=-1).transpose(1, 2) # batch inverse - size (2,3,3) self.batch_inv_origin_simplices_barycentric_mat = \ torch.inverse(self.batch_origin_simplices_barycentric_mat) assert self.batch_inv_origin_simplices_barycentric_mat.size() == \ (2, 3, 3) def init_neighborhood(self): """ Initialize neighborhood steps for given vertex, such that ``v + self.neighborhood_diff`` gives the lattice coordinates of its neighbors for the HTV computation. """ v_Ma, v_Mb, v_Mc = [0, 0], [1, 0], [0, 1] v_A, v_B, v_C = [1, 1], [-1, 1], [1, -1] # size: (6,2) self.neighborhood_diff = \ torch.tensor([v_Ma, v_Mb, v_Mc, v_A, v_B, v_C]) self.neighborhood_size = self.neighborhood_diff.size(0) def update_coefficients(self, new_C_mat): """ Update the lattice values and the information concerning the function simplices. Args: new_C_mat (torch.Tensor): new coefficients matrix; size (lsize+1, lsize+1); new_C_mat(i1, i2) = f(a1*x1 + a2*x2) = f(X_mat @ a), x direction -> rows, y -> columns. """ assert new_C_mat.size() == self._C_mat.size() self._C_mat = new_C_mat self.init_unique_simplices() self.init_affine_coefficients() def update_lattice(self, new_X_mat, new_C_mat): """ Update_lattice matrix and coefficients. Also perform updates which are always required when X_mat or C_mat are changed; e.g., after dividing lattice. Args: new_X_mat (torch.Tensor): new lattice matrix; size (2, 2). new_C_mat (torch.Tensor): new coefficients matrix; size (lsize+1, lsize+1); C_mat(i1, i2) = f(a1*x1 + a2*x2) = f(X_mat @ a), x direction -> rows, y -> columns. """ self._h = new_X_mat[0, 0] self._X_mat, self._C_mat = new_X_mat, new_C_mat # so that inversion does not have to be repeated self._X_mat_inv = torch.inverse(new_X_mat) self._lsize = new_C_mat.size(0) - 1 if self._lsize % 2 != 0: raise ValueError(f'lsize {self._lsize} should be even...') # centered lattice; bottom left lattice coordinates: (lmin, lmin) self.lmin = -(self._lsize // 2) self.lmax = self.lmin + self._lsize # list of (x, y) locations of vertices in lattice coordinates self.lattice_grid = Grid(self.lmin, self.lmax + 1, h=1, square=True, to_numpy=False).x assert self.lattice_grid.size() == ((self._lsize + 1)**2, 2) # Now we get three corresponding tensors: # self.unique_simplices[i] <-> self.simplex_centers[i] # <-> self.affine_coeff[i] self.init_unique_simplices() self.init_simplex_centers() self.init_affine_coefficients() def get_lattice_mask(self, x_lat, pad=0): """ Get mask of points inside lattice to access as x_lat[in_lattice_mask]. Args: x_lat (torch.Tensor): input in lattice coordinates; size (m, 2). Returns: lattice_mask (torch.bool): signals which points are inside lattice; size: (m,). """ x_lat_min, _ = x_lat.min(1) # minimum along dim=1 x_lat_max, _ = x_lat.max(1) # maximum along dim=1 lattice_mask = ((x_lat_min >= self.lmin + pad) * (x_lat_max <= self.lmax - pad)) return lattice_mask def inside_lattice(self, x_lat): """ Check that all datapoints in x_lat lie inside lattice. Args: x_lat (torch.Tensor): input in lattice coordinates; size (m, 2). Returns: True if all datapoints in x_lat are inside lattice. """ lattice_mask = self.get_lattice_mask(x_lat) return lattice_mask.all() def init_unique_simplices(self): """ Initialize tensor with lattice simplices, without repetition. saves self.unique_simplices which is of size (k, 3). Each row i gives the indices of the vertices of simplex i <= k. """ # x_lat does not include upper and right boundary vertices. # x_lat goes row-wise (i.e. has x_axis stride = 1); # e.g. lsize=1: x_lat = [(0, 0), (1, 0), (0, 1), (1, 1)] x_lat = Grid(self.lmin, self.lmax, h=1, square=True, to_numpy=False).x m = x_lat.size(0) x_lat_expand = x_lat.view(m, 1, 1, 2).expand(m, 2, 3, 2) # (m, 2, 3, 2) unique_simplices_aux = x_lat_expand + self.batch_origin_simplices self.unique_simplices = unique_simplices_aux.view(m * 2, 3, 2) assert self.unique_simplices.size(0) == (self._lsize**2) * 2 # index relative to bottom left vertice # size (m, 3, 2) unique_simplices_rel = self.unique_simplices.sub(self.lmin) # values of vertices of each unique simplex self.unique_simplices_values = \ self._C_mat[unique_simplices_rel[:, :, 0], unique_simplices_rel[:, :, 1]] assert self.unique_simplices_values.size() == \ (self.unique_simplices.size(0), 3) def init_simplex_centers(self): """ Initialize tensor with centers of the lattice simplices, without repetition, in lattice coordinates. saves self.simplex_centers which is of size (k, 2). Each row i gives the centers of simplex i <= k. """ try: self.simplex_centers = \ self.get_simplex_centers(self.unique_simplices) except AttributeError: print( 'Need to initialize unique_simplices before simplex_centers.') raise @classmethod def get_simplex_centers(cls, simplices): """ Get tensor with centers of the lattice simplices, without repetition, in lattice coordinates. Args: simplices (torch.int64): size: (k, 3). Returns: xcenter (torch.Tensor): Each row i gives the centers of simplex i <= k; size (k, 2). """ # unique_simplices size (k,3,2) k = simplices.size(0) batch_xcenter_barycentric_coordinates = \ cls.centers_barycentric_coordinates.view(1, 3).expand(k, 3) assert batch_xcenter_barycentric_coordinates.size() == (k, 3) simplices_mat = simplices.transpose(1, 2).float() assert simplices_mat.size() == (k, 2, 3) xcenter = ( simplices_mat @ batch_xcenter_barycentric_coordinates.unsqueeze(-1)).squeeze(-1) assert xcenter.size() == (k, 2) return xcenter @classmethod def append_ones(cls, x, dim=0): """ Append ones to ``x`` along dimension ``dim``. Useful for constructing a barycentric matrix. Args: dim (int>=0): dimension along which to concatenate with ones vector. """ if dim not in [0, -1]: raise ValueError( 'Can only append ones to first or last dimension.') x_size = x.size() assert x_size[dim] == cls.ldim, ('concatenation dimension should be ' 'the same as the lattice dimension.') if dim == 0: ones_vec = torch.ones((1, *x_size[1::])) x_out = torch.cat((x.float(), ones_vec), dim=0) elif dim == -1: ones_vec = torch.ones((*x_size[0:-1], 1)) x_out = torch.cat((x.float(), ones_vec), dim=-1) return x_out # ==== Affine subsets coefficients ===================================== # def init_affine_coefficients(self): """ Initialize affine coefficients of each simplex in the lattice. The affine coefficients completely specify the function in each simplex, i.e., f(x1,x2) = a1.x1 + a2.x2 + d, where (a1, a2, d) are the affine coefficients for a given simplex. """ try: x_lat = self.simplex_centers except AttributeError: print('Need to initialize simplex_centers before affine_coeff.') raise self.affine_coeff = \ self.get_affine_coefficients(x_lat, use_saved_affine=False) def get_affine_coefficients(self, x_lat, use_saved_affine=True, **kwargs): """ Get the affine coefficients for the simplex to which x_lat belongs to. Plane equation: a1*x1 + a2*x2 + z + d = 0 (plane coefficients: (a1, a2, 1, d)); Affine space equation: z = f(x1,x2) = -a1*x1 -a2*x2 -d (affine coefficients: (a'1, a'2, d') = (-a1, -a2, -d)); Args: x_lat (torch.Tensor): input in lattice coordinates; size (m, 2). use_saved_affine (bool): use saved self.affine_coeff, resulting in a speedup. Returns: affine_coeff (torch.Tensor): size: (m, 3). """ if use_saved_affine is True: try: lattice_mask = self.get_lattice_mask(x_lat) x_lat_in = x_lat[lattice_mask] idx_unique_simplices, _, _ = \ self.check_my_simplex(x_lat_in, **kwargs) affine_coeff = torch.zeros(x_lat.size(0), 3) affine_coeff[lattice_mask] = \ self.affine_coeff[idx_unique_simplices] except AttributeError: print('affine_coeff attribute still not created...') raise else: plane_coeff = self.get_plane_coefficients(x_lat, **kwargs) affine_coeff = self.get_affine_coeff_from_plane_coeff(plane_coeff) assert affine_coeff.size() == (x_lat.size(0), 3) return affine_coeff @staticmethod def get_affine_coeff_from_plane_coeff(plane_coeff): """ Get affine coefficients from plane coefficients. Plane equation: a1*x1 + a2*x2 + z + d = 0 (plane coefficients (a1, a2, 1, d)); Affine space equation: z = f(x1,x2) = -a1*x1 -a2*x2 -d (affine coefficients: (a'1, a'2, d') = (-a1, -a2, -d)) Args: plane_coeff (torch.Tensor): size: (m, 4). Returns: affine_coeff (torch.Tensor): size: (m, 3). """ return plane_coeff.index_select(1, torch.tensor([0, 1, 3])).mul(-1) # ==== Check My Simplex =============================================== # def check_my_simplex(self, x_lat, **kwargs): """ Get the lattice idx/coordinates of the vertices which form the simplex in which x_lat lives, using the halfplane method. Args: x_lat (torch.Tensor): input in lattice coordinates; size (m, 2). Returns: idx_unique_simplices (torch.int64): indices (in self.unique_simplices) of simplices in which x_lat lives; size (m,). vertices_lat (torch.int64): each element is an array of 3 vertices which constitute the simplex in which x_lat[i] lives; size (m, 3, 2). second_mask (torch.int64): mask which is one for each point belonging to the second possible simplex; size (m,). """ assert x_lat.size(1) == self.ldim, f'found size {x_lat.size(1)}...' if not self.inside_lattice(x_lat): raise ValueError( 'check_my_simplex(): x_lat should lie inside lattice.') # compute fractional part of x_lat x_lat_floor = x_lat.floor() x_lat_fractional = x_lat - x_lat_floor second_mask = self.get_halfplane_mask(x_lat_fractional) base_simplex_idx = \ x_lat_floor[:, 1].long().sub(self.lmin) * (self._lsize * 2) + \ x_lat_floor[:, 0].long().sub(self.lmin) * 2 idx_unique_simplices = base_simplex_idx + second_mask vertices_lat = self.unique_simplices[idx_unique_simplices] return idx_unique_simplices, vertices_lat, second_mask @staticmethod def get_halfplane_mask(x_lat_fractional): """ Use the halfplane method to get the mask which is 1 for the tensors which live in the second simplex and 0 otherwise. Args: x_lat_fractional (torch.Tensor): fractional part of x_lat in lattice basis; size (m, 2). Returns: second_mask (torch.int64): mask which is one for each point belonging to the second possible simplex; size (m,). """ # {x1} + {x2} - 1 >= 0 -> belongs to second simplex; # {xi} - fractional of xi half_plane = x_lat_fractional.sum(1).sub(1) # (m,) second_mask = (half_plane > 0.).long() # (m,) return second_mask # ==== Plane coefficients ============================================== # def get_plane_coefficients(self, x_lat, **kwargs): """ Get the plane coefficients for the simplex to which x_lat belongs to. Plane equation: a1*x1 + a2*x2 + z + d = 0 (plane coefficients: (a1, a2, 1, d)). This function should only be called in get_affine_coefficients() to create self.affine_coeff tensor. After that, it is much faster to call get_affine_coefficients() with use_saved_affine=True to retrieve self.affine_coeff directly. Args: x_lat (torch.Tensor): input in lattice coordinates. size (m, 2) Returns: plane_coeff (torch.Tensor): size: (m, 4). """ lattice_mask = self.get_lattice_mask(x_lat) x_lat_in = x_lat[lattice_mask] _, vertices_lat_in, _ = self.check_my_simplex(x_lat_in, **kwargs) vertices_lat_in_rel = vertices_lat_in.sub(self.lmin) vertices_values_in = \ self._C_mat[vertices_lat_in_rel[:, :, 0], vertices_lat_in_rel[:, :, 1]] vertices_size = vertices_lat_in.size() # (m, 3, 2) # (m*3, 2) to convert all vertices to standard vertices_lat_in_reshape = vertices_lat_in.view(-1, 2) vertices_std_in = \ self.lattice_to_standard( vertices_lat_in_reshape.float()).reshape(vertices_size) vertices_std_in_with_values = \ torch.cat( (vertices_std_in, vertices_values_in.unsqueeze(-1)), dim=-1) plane_coeff_in = self.solve_method(vertices_std_in_with_values) plane_coeff = torch.tensor([0., 0., 1., 0.])\ .unsqueeze(0).expand(x_lat.size(0), -1).clone() plane_coeff[lattice_mask] = plane_coeff_in # check that c = plane_coeff[:, 2] = 1 assert (plane_coeff[:, 2]).allclose(torch.ones_like(plane_coeff[:, 2])) return plane_coeff @classmethod def solve_method(cls, vertices_std_with_values): """ Get plane coefficients for each datapoint from vertices_std_with _values, i.e., (x1,x2,z), using the 'solve' method. Plane equation: a1*x1 + a2*x2 + z + d = 0. We have 3 vertices and 3 unkowns (a1, a2, d) for each datapoint, so we can substitute these and solve the system of 3 equations to get (a1, a2, d). Args: vertices_std_with_values (torch.Tensor): concatenation of datapoint locations in standard coordinates and values; size (m, 3, 3). Returns: plane_coeff (torch.Tensor): size: (m, 4). """ m = vertices_std_with_values.size(0) vertices_std = vertices_std_with_values[:, :, 0:2] vertices_values = vertices_std_with_values[:, :, 2] # vertices for (x1, x2, z) -> {(x1_K, x2_K, z_K)}, K in {A,B,C} # (x1-x1_C).a1 + (x2-x2_C).a2 + (z-z_C) = 0 # plug (x1_A, x2_A, z_A) and (x1_B, x2_B, z_B) above to find a1, a2 z_diff = (vertices_values[:, 0:2] - vertices_values[:, 2:3]).unsqueeze(-1) assert z_diff.size() == (m, 2, 1) x_diff = vertices_std[:, 0:2, :] - vertices_std[:, 2:3, :] assert x_diff.size() == (m, 2, 2) a1_a2 = torch.linalg.solve(x_diff, z_diff.mul(-1)) assert a1_a2.size() == (m, 2, 1) a1_a2 = a1_a2.squeeze(-1) assert a1_a2.size() == (m, 2) # normals are normalized by last coordinate normalized_normals = cls.append_ones(a1_a2, dim=-1) assert normalized_normals.size() == (m, 3) plane_coeff = cls.get_plane_coeffs_from_normals_vertices( normalized_normals, vertices_std_with_values) return plane_coeff @staticmethod def get_plane_coeffs_from_normals_vertices(normalized_normals, vertices_std_with_values): """ Get plane coefficients from the normalized simplex normals and the vertices. Args: normalized_normals (torch.Tensor): normals for each datapoint normalized by last coordinate, i.e., of the form (a1, a2, 1); size (m, 3). vertices_std_with_values (torch.Tensor): concatenation of datapoint locations in standard coordinates and values; size (m, 3, 3). Returns: plane_coeff (torch.Tensor): size: (m, 4). """ m = vertices_std_with_values.size(0) # plug (x1A, x2A, zA) into plane equation to find d d = (normalized_normals * vertices_std_with_values[:, 0, :]).sum(1).mul(-1) assert d.size() == (m, ) plane_coeff = torch.cat((normalized_normals, d.view(-1, 1)), dim=-1) assert plane_coeff.size() == (m, 4) return plane_coeff # ==== Coordinate transformations ====================================== # def lattice_to_standard(self, x_lat): """ Transform x_lat coordinates in lattice basis to coordinates in standard basis. Args: x_lat (torch.Tensor): input in lattice basis; size(m, 2). Returns: x_standard (torch.Tensor): input in standard basis; size(m, 2). The ith output vector corresponds to taking the linear combination of the columns of lattice matrix with scalars forming vector xi: xi[0]X_mat[:, 0] + xi[1]X_mat[:, 1] = X_mat @ xi """ assert len(x_lat.size()) == 2, 'x_lat should be 2D' assert x_lat.size(1) == self.ldim, f'found size {x_lat.size(1)}...' X_mat = self._X_mat.to(x_lat.dtype) x_standard = (X_mat @ x_lat.t()).t() return x_standard def standard_to_lattice(self, x_standard): """ Transform x_standard coordinates in standard basis to coordinates in lattice basis. Args: x_standard (torch.Tensor): input in standard basis; size(m, 2). Returns: x_lat (torch.Tensor): input in lattice basis; size(m, 2). The ith output vector corresponds to taking the linear combination of the columns of lattice matrix with scalars forming vector xi: xi[0]X_mat^(-1)[:, 0] + xi[1]X_mat^(-1)[:, 1] = X_mat^(-1) @ xi """ assert len(x_standard.size()) == 2, 'x_standard should be 2D' assert x_standard.size(1) == self.ldim, \ f'found size {x_standard.size(1)}...' X_mat_inv = self._X_mat_inv.to(x_standard.dtype) x_lat = (X_mat_inv @ x_standard.t()).t() return x_lat # ==== Compute z = f(x1,x2) ============================================ # def get_values_from_interpolation(self, x_lat, **kwargs): """ Get values for each datapoint in x_lat from interpolation via barycentric coordinates in its simplex. Args: x_lat (torch.Tensor): input in lattice basis; size(m, 2). Returns: vertices_lat (torch.int64): each element is an array of 3 vertices which constitute the simplex in which x_lat[i] lives; size (m, 3, 2). x_values (torch.Tensor): size (m,). """ lattice_mask = self.get_lattice_mask(x_lat) x_lat_in = x_lat[lattice_mask] m = x_lat_in.size(0) # sizes: ((m, 3), (m, 3, 3)) x_lat_in_barycentric_coordinates, vertices_lat_in = \ self.get_barycentric_coordinates(x_lat_in, **kwargs) # rel = relative to bottom left corner ("origin") vertices_lat_in_rel = vertices_lat_in.sub(self.lmin) # TODO: Generalize next operation (e.g.) # C_mat[vertices_lat_rel.split(dim=-1)] vertices_values_in = \ self._C_mat[vertices_lat_in_rel[:, :, 0], vertices_lat_in_rel[:, :, 1]] assert vertices_values_in.size() == (m, 3) # batch inner product: # f(xi) = a1f(v1) + a2f(v2) + a3f(v3), i \in {1,...,m} # where v1, v2, v3 are the vertices of the simplex where xi lives x_values_in = (vertices_values_in * x_lat_in_barycentric_coordinates).sum(1) # (m,) assert x_values_in.size() == (m, ) vertices_lat = torch.ones((x_lat.size(0), 3, 2), dtype=torch.int64).mul(-1) vertices_lat[lattice_mask] = vertices_lat_in x_values = torch.zeros(x_lat.size(0)) x_values[lattice_mask] = x_values_in return x_values, vertices_lat def get_barycentric_coordinates(self, x_lat, in_origin=True, **kwargs): """ Get the barycentric coordinates of each datapoint in x_lat. Args: x_lat (torch.Tensor): input in lattice basis; size(m, 2). in_origin (bool): If True, compute barycentric coordinates in origin instead of in original location (should give the same result, but be faster, since we don't need to compute inverses). Returns: x_lat_barycentric_coordinates (torch.Tensor): barycentric coordinates of each datapoint; size (m, 3). vertices_lat (torch.int64): each element is an array of 3 vertices which constitute the simplex in which x_lat[i] lives; size (m, 3, 2). """ if not self.inside_lattice(x_lat): raise ValueError('get_barycentric_coordinates(): ' 'x_lat should lie inside lattice.') m = x_lat.size(0) # vertices size (m, 3, 2), second_mask size (m,) _, vertices_lat, second_mask = self.check_my_simplex(x_lat, **kwargs) if in_origin is True: x_lat_fractional = x_lat - x_lat.floor() batch_r = self.append_ones(x_lat_fractional, dim=-1) # (m, 3) batch_R_mat_inv = \ self.batch_inv_origin_simplices_barycentric_mat[second_mask] else: warnings.warn('in_origin=False is poorly conditioned. ' 'Prefer in_origin=True.') batch_r = self.append_ones(x_lat, dim=-1) # (m, 3) batch_R_mat = self.append_ones(vertices_lat, dim=-1).transpose(1, 2) # (m, 3, 3) batch_R_mat_inv = torch.inverse(batch_R_mat) # (m, 3, 3) assert batch_r.size() == (m, 3) assert batch_R_mat_inv.size() == (m, 3, 3) # (m, 3, 3) x (m, 3, 1) = (m, 3, 1) -> squeeze -> (m, 3) x_lat_barycentric_coordinates = \ (batch_R_mat_inv @ batch_r.unsqueeze(-1)).squeeze(-1) assert x_lat_barycentric_coordinates.size() == (m, 3) return x_lat_barycentric_coordinates, vertices_lat def get_values_from_affine_coefficients(self, x_lat, **kwargs): """ Get values for each datapoint in x_lat from the affine coefficients of its simplex. affine coefficients: (a'1, a'2, d'); z = f(x1,x2) = a'1.x1 + a'2.x2 + d'. Args: x_lat (torch.Tensor): input in lattice basis; size(m, 2). Returns: x_values (torch.Tensor): size (m,). """ affine_coeff = self.get_affine_coefficients(x_lat, **kwargs) # (m, 3) # get (a'1, a'2, d') al1, al2, dl = \ affine_coeff[:, 0], affine_coeff[:, 1], affine_coeff[:, 2] x_std = self.lattice_to_standard(x_lat) x_values = al1 * x_std[:, 0] + al2 * x_std[:, 1] + dl return x_values # ====================================================================== # @property def flattened_C(self): """ Get flattened coefficients from matrix, moving first along rows (x-direction) and then columns (y-direction). """ return self._C_mat.t().flatten() def flattened_C_to_C_mat(self, flattened_C): """ Get coefficients matrix from flattened coefficients. Args: flattened_C (torch.Tensor): flattened coefficients tensor; size (m, ). Returns: C_mat (torch.Tensor): coefficients matrix; size (n, n), such that n * n = m. """ assert flattened_C.size() == (self._C_mat.size(0) * self._C_mat.size(1),) return flattened_C.reshape(self._C_mat.size()).t() def save(self, save_str, lattice_dict=None, **kwargs): """ Save lattice in ``lattice_dict`` under ``save_str`` key. Args: save_str (str): key for saving lattice in dictionary. lattice_dict (dict or None): If not None, save lattice in this dictionary. Otherwise, initialize a new dictionary and save it there. Returns: lattice_dict (dict): dictionary with saved lattice. """ if lattice_dict is None: lattice_dict = {} if save_str not in lattice_dict: lattice_dict[save_str] = {} lattice_dict[save_str]['X_mat'] = self._X_mat.clone() lattice_dict[save_str]['C_mat'] = self._C_mat.clone() return lattice_dict # ====================================================================== # def refine_lattice(self): """Refine the lattice into a finer scale with half the grid size.""" new_X_mat = self._X_mat.div(2) # divide lattice vectors by 2 new_lsize = self._lsize * 2 new_C_mat = self._C_mat.new_zeros((new_lsize + 1, new_lsize + 1)) # fill borders by piecewise linear interpolation xp = np.arange(0, self._lsize + 1) * 2 x = np.arange(0, self._lsize * 2 + 1) new_C_mat[0, :] = \ torch.from_numpy(np.interp(x, xp, self._C_mat[0, :].numpy())) new_C_mat[:, 0] = \ torch.from_numpy(np.interp(x, xp, self._C_mat[:, 0].numpy())) new_C_mat[-1, :] = \ torch.from_numpy(np.interp(x, xp, self._C_mat[-1, :].numpy())) new_C_mat[:, -1] = \ torch.from_numpy(np.interp(x, xp, self._C_mat[:, -1].numpy())) # fill interior by piecewise linear interpolation grid = Grid(self.lmin + 0.5, self.lmax - 0.1, h=0.5, square=True, to_numpy=False, to_float32=True) int_x_values, _ = self.get_values_from_interpolation(grid.x) int_new_C_mat = int_x_values.reshape(grid.meshgrid_size).t() new_C_mat[1:-1, 1:-1] = int_new_C_mat # Apply changes self.update_lattice(new_X_mat, new_C_mat) ``` #### File: HTV-Learn/htvlearn/nn_manager.py ```python import warnings import torch import torch.nn as nn import torch.optim as optim import torch.backends.cudnn as cudnn import numpy as np from functools import partial import torch.autograd.functional as AF from htvlearn.htv_utils import compute_mse_snr from htvlearn.networks import ( ReLUfcNet2D, LeakyReLUfcNet2D, GELUfcNet2D ) from htvlearn.nn_project import NNProject from htvlearn.hessian import ( get_exact_grad_Hessian, get_exact_Hessian, get_finite_second_diff_Hessian ) from htvlearn.lattice import Lattice ######################################################################### # MANAGER class NNManager(NNProject): """ """ def __init__(self, params, log=True): """ Args: params (dict): parameter dictionary. log (bool): if True, log results. """ super().__init__(params, log=log) is_ckpt_loaded = False if self.load_ckpt is True: # is_ckpt_loaded=True if a checkpoint was successfully loaded. is_ckpt_loaded = self.restore_ckpt_params() self.net = self.build_model(self.params, self.device) self.net.double() self.net.dtype = next(self.net.parameters()).dtype self.optimizer, self.scheduler = self.set_optimization() if is_ckpt_loaded is True: self.restore_model_data(self.net) # During testing, average the loss only at the end to get accurate # value of the loss per sample. If using reduction='mean', when # nb_test_samples % batch_size != 0 we can only average the loss per # batch (as in training for printing the losses) but not per sample. self.criterion = nn.MSELoss(reduction='mean') self.test_criterion = nn.MSELoss(reduction='sum') self.criterion.to(self.device) self.test_criterion.to(self.device) # # uncomment for printing network architecture # print(self.net) @classmethod def build_model(cls, params, device, *args, **kwargs): """ Build the network model. Args: params (dict): contains the network name and the model parameters. device (str): 'cpu' or 'cuda:0'. Returns: net (nn.Module) """ print('\n==> Building model..') if params['net_model'] == 'relufcnet2d': NetworkModule = ReLUfcNet2D elif params['net_model'] == 'leakyrelufcnet2d': NetworkModule = LeakyReLUfcNet2D elif params['net_model'] == 'gelufcnet2d': NetworkModule = GELUfcNet2D else: raise ValueError(f'Model {params["net_model"]} not available.') net = NetworkModule(**params['model'], device=device) net = net.to(device) if device == 'cuda': cudnn.benchmark = True print(f'[Network] Total number of parameters : {net.num_params}.') return net def set_optimization(self): """Initialize optimizer and scheduler.""" optimizer = optim.Adam(self.net.parameters(), lr=0.001, weight_decay=self.params['weight_decay']) print('\nOptimizer :', optimizer, sep='\n') scheduler = optim.lr_scheduler.MultiStepLR(optimizer, self.params['milestones']) return optimizer, scheduler @property def model_state(self): """ """ return self.net.state_dict() @property def optimizer_state(self): """ """ return self.optimizer.state_dict() @property def htv_log(self): """ """ return self.htv_dict @property def train_loss_log(self): """ """ return self.train_loss_dict @property def valid_loss_log(self): """ """ return self.valid_loss_dict ######################################################################### # TRAIN def train(self): """Training loop.""" self.net.train() # set the network in training mode if self.params['verbose']: self.print_train_info() if self.params['log_step'] is None: # default # log at every epoch self.params['log_step'] = self.num_train_batches if self.params['valid_log_step'] is None: # default # validation done halfway and at the end of training self.params['valid_log_step'] = int( self.num_train_batches * self.params['num_epochs'] * 1. / 2.) elif self.params['valid_log_step'] < 0: # validation at every epoch self.params['valid_log_step'] = self.num_train_batches self.global_step = 0 ### # initialize log dictionaries self.htv_dict = {} self.train_loss_dict = {} self.valid_loss_dict = {} ### # get initial model performance # -1 signals that training was not performed self.latest_train_loss = -1 self.validation_step(-1) self.net.train() print('\n==> Starting training...') for epoch in range(0, self.params['num_epochs']): self.train_epoch(epoch) # shuffle training data self.trainloader = \ self.dataloader.get_shuffled_trainloader_in_memory() print('\nFinished training.') # test model self.test() def train_epoch(self, epoch): """ Training for one epoch. Args: epoch (int). """ print(f'\nEpoch: {epoch}\n') running_loss = 0. for batch_idx, (inputs, labels) in enumerate(self.trainloader): inputs = inputs.to(device=self.device, dtype=self.net.dtype) labels = labels.to(device=self.device, dtype=self.net.dtype) outputs = self.net(inputs) loss = self.criterion(outputs, labels) self.optimizer.zero_grad() loss.backward() self.optimizer.step() running_loss += loss.item() if batch_idx % self.params['log_step'] == ( self.params['log_step'] - 1): # training log step mse = (running_loss / self.params['log_step']) self.latest_train_loss = mse losses_dict = {'avg. mse': mse} self.train_log_step(epoch, batch_idx, losses_dict) running_loss = 0. # reset running loss if self.global_step % self.params['valid_log_step'] == ( self.params['valid_log_step'] - 1): # validation log step self.validation_step(epoch) self.net.train() self.global_step += 1 if self.scheduler is not None: self.scheduler.step() if self.params['verbose']: lr = [group['lr'] for group in self.optimizer.param_groups] print(f'scheduler: epoch - {self.scheduler.last_epoch}; ' f'learning rate - {lr}') def validation_step(self, epoch): """ Perform one validation step. Saves results on checkpoint. Args: epoch (int). """ train_loss, _ = self.evaluate_results(mode='train') valid_loss, _ = self.evaluate_results(mode='valid') ##### if not self.params['no_htv']: print('\n==> Computing Hessian...') self.htv_dict[str(epoch + 1)] = self.compute_network_htv() print('HTV dict :', self.htv_dict[str(epoch + 1)]) print('Exact HTV :', self.data.cpwl.get_exact_HTV()) print('Finished.') self.update_json('htv', self.htv_dict[str(epoch + 1)]) ##### self.train_loss_dict[str(epoch + 1)] = train_loss self.valid_loss_dict[str(epoch + 1)] = valid_loss print(f'\nvalidation mse : {valid_loss}') losses_dict = {'train_mse': train_loss, 'valid_mse': valid_loss} self.valid_log_step(losses_dict) self.ckpt_log_step(epoch) # save checkpoint def compute_network_htv(self): """ Compute the network's HTV using the 'finite_diff_differential' or 'exact_differential' mode. Returns: htv (float). """ cpwl = True if 'relu' in self.params['net_model'] else False htv = {} if self.params['htv_mode'] == 'finite_diff_differential': # use finite second differences to compute the hessian grid = self.data.cpwl.get_grid(h=0.0002) with torch.no_grad(): Hess = get_finite_second_diff_Hessian( grid, self.evaluate_func) htv = self.get_htv_from_Hess(Hess, grid.h, cpwl=cpwl) elif self.params['htv_mode'] == 'exact_differential': warnings.warn('"exact_differential" mode is computationally ' 'expensive and does not lead to to precise ' 'computations, in general. Prefer setting ' '"htv_mode" to "finite_diff_differential".') grid = self.data.cpwl.get_grid(h=0.01) if self.params['net_model'].endswith('relufcnet2d'): # cpwl function -> exact gradient + finite first differences # to compute hessian Hess = get_exact_grad_Hessian( grid, partial(self.differentiate_func, 'jacobian')) else: # cpwl function -> exact hessian + sum over the grid locations # to compute hessian Hess = get_exact_Hessian( grid, partial(self.differentiate_func, 'hessian')) htv = self.get_htv_from_Hess(Hess, grid.h, cpwl=cpwl) return htv def evaluate_func(self, x, batch_size=2000000): """ Evaluate model function for some input. Args: x (np.ndarray): inputs. size: (n, 2). batch_size (int): batch size for evaluation. Returns: y (np.ndarray): result of evaluating model at x. """ x = torch.from_numpy(x).to(self.device) assert x.dtype == torch.float64 dataloader = x.split(batch_size) if self.params['verbose']: print('Length dataloader: ', len(dataloader)) y = torch.tensor([], device=x.device, dtype=x.dtype) for batch_idx, input in enumerate(dataloader): out = self.net(input) y = torch.cat((y, out), dim=0) return y.detach().cpu().numpy() def differentiate_func(self, mode, x): """ Evaluate model Jacobian/Hessian at some input. Args: mode (str): "jacobian" or "hessian" x (np.ndarray): inputs. size: (n, 2). Returns: x_diff (np.ndarray): result of evaluating model ``mode`` at x. """ assert mode in ['jacobian', 'hessian'] inputs = tuple(torch.from_numpy(x).to(self.device)) autograd_func = AF.jacobian if mode == 'jacobian' else AF.hessian g = partial(autograd_func, lambda x: self.net(x.unsqueeze(0))) x_diff = torch.stack(tuple(map(g, inputs))).detach().cpu().numpy() return x_diff @staticmethod def get_htv_from_Hess(Hess, h, cpwl=False): """ Get the HTV from the hessian at grid locations. Args: h (float): grid size. cpwl (bool): True if network is CPWL. Returns: htv (float). """ if cpwl is False: # schatten-p-norm -> sum S = np.linalg.svd(Hess, compute_uv=False, hermitian=True) assert S.shape == (*Hess.shape[0:2], 2) htv = {} for p in [1, 2, 5, 10]: points_htv = np.linalg.norm(S, ord=p, axis=-1) # schatten norm # value x area (riemman integral) htv[str(p)] = (points_htv * h * h).sum() else: points_htv = np.abs(Hess[:, :, 0, 0] + Hess[:, :, 1, 1]) htv = (points_htv * h * h).sum() return htv def test(self): """Test model.""" if self.params['verbose']: self.print_test_info() test_loss, _ = self.evaluate_results(mode='test') print(f'\ntest mse : {test_loss}') self.update_json('test_mse', test_loss) # save test prediction to last checkpoint self.ckpt_log_step(self.params['num_epochs'] - 1) print('\nFinished testing.') def evaluate_results(self, mode): """ Evaluate train, validation or test results. Args: mode (str): 'train', 'valid' or 'test' Returns: mse (float): ``mode`` mean-squared-error. output (torch.Tensor): result of evaluating model on ``mode`` set. """ assert mode in ['train', 'valid', 'test'] if mode == 'train': dataloader = self.trainloader data_dict = self.data.train elif mode == 'valid': dataloader = self.validloader data_dict = self.data.valid else: dataloader = self.testloader data_dict = self.data.test self.net.eval() running_loss = 0. total = 0 output = torch.tensor([]).to(device=self.device) values = torch.tensor([]).to(device=self.device) with torch.no_grad(): # notation: _b = 'batch' for batch_idx, (inputs_b, labels_b) in enumerate(dataloader): inputs_b = inputs_b.to(device=self.device, dtype=self.net.dtype) labels_b = labels_b.to(device=self.device, dtype=self.net.dtype) outputs_b = self.net(inputs_b) output = torch.cat((output, outputs_b), dim=0) values = torch.cat((values, labels_b), dim=0) loss = self.test_criterion(outputs_b, labels_b) running_loss += loss.item() total += labels_b.size(0) data_dict['predictions'] = output loss = running_loss / total # sanity check mse, _ = compute_mse_snr(values.cpu(), output.cpu()) assert np.allclose(mse, loss), \ '(mse: {:.7f}, loss: {:.7f})'.format(mse, loss) return mse, output def evaluate_lattice(self): """Create and evaluate network on lattice.""" lat = Lattice(**self.params['lattice']) print(f'Sampled lattice lsize: {lat.lsize}.') lattice_grid = lat.lattice_to_standard(lat.lattice_grid.float()) z = self.forward_data(lattice_grid) new_C_mat = lat.flattened_C_to_C_mat(z) lat.update_coefficients(new_C_mat.float()) return lat def forward_data(self, inputs, batch_size=64): """ Compute model output for some input. Args: input (torch.Tensor): size: (n, 2). batch_size (int) """ self.net.eval() predictions = torch.tensor([]) with torch.no_grad(): for batch_idx, inputs in enumerate(inputs.split(batch_size)): inputs = inputs.to(device=self.device, dtype=self.net.dtype) outputs = self.net(inputs) predictions = torch.cat((predictions, outputs.cpu()), dim=0) return predictions @staticmethod def read_htv_log(htv_log): """ Parse htv_log dictionary. Args: htv_log (dict). Returns: epochs (np.ndarray): array with saved epochs. size: (E,). htv: (dict/np.ndarray): saved htv accross training: if non-cpwl: dict('p': array of size: (E,)), if cpwl: array of size: (E,). """ assert isinstance(htv_log, dict) # keys of htv_log are epochs epochs = np.array([int(epoch) for epoch in htv_log.keys()]) idx = np.argsort(epochs) epochs = epochs[idx] # e.g. epoch 1 # non-cpwl network: # htv_log['1'] = {'1': htv_1, '2': htv_2} # relu network: epoch 1: htv_log['1'] = htv # dictio is list of dictionaries containing 'p': htv_p for each epoch # or a single value in the case of CPWL networks dictio = list(htv_log.values()) if isinstance(dictio[0], dict): # p in schatten-p norms p_array = np.array([int(p) for p in dictio[0].keys()]) p_array.sort() # e.g.: # {'1': np.array of size (epochs,), # '2': np.array of size (epochs,)} htv = {} for p in p_array: htv[str(p)] = np.array( [float(dictio[j][str(p)]) for j in range(0, len(dictio))]) htv[str(p)] = htv[str(p)][idx] # sort array according to epoch else: htv = np.array([float(dictio[j]) for j in range(0, len(dictio))]) htv = htv[idx] return epochs, htv @staticmethod def read_loss_log(loss_log): """ Read loss_log (train or valid) dictionary. Returns: epochs (np.ndarray): array with saved epochs. size: (E,). loss (np.ndarray): array with saved loss across training. size: (E,) """ assert isinstance(loss_log, dict) # keys of loss_log are epochs epochs = np.array([int(epoch) for epoch in loss_log.keys()]) idx = np.argsort(epochs) epochs = epochs[idx] # e.g. loss_log = {'1': loss_epoch_1, ..., '300': loss_epoch_300} loss = np.array([float(val) for val in loss_log.values()]) loss = loss[idx] # sort return epochs, loss ``` #### File: htvlearn/plots/base_plot.py ```python import os import copy import numpy as np import plotly.graph_objects as go import plotly.io as pio import matplotlib.cm as cm from htvlearn.data import Data class BasePlot(): colorscale = 'coolwarm' # default colorscale def __init__(self, data_obj=None, log_dir=None, **kwargs): """ Args: data_obj (Data): None (if not plotting data samples) or object of class Data (see htvlearn.data). log_dir (str): Log directory for html images. If None, the images are only shown but not saved in html format. """ self.data = data_obj self.log_dir = log_dir if self.log_dir is not None and not os.path.isdir(self.log_dir): raise NotADirectoryError( f'log_dir "{self.log_dir}" is not a valid directory') def verify_data_obj(self): """Verify that a data object exists and is valid""" if self.data is None: raise ValueError('A data object does not exist.') elif not isinstance(self.data, Data): raise ValueError(f'data_obj is of type {type(self.data)}.') @classmethod def map_val2color(cls, val, vmin, vmax, colorscale=None): """ Map a value to a color in the colormap. Args: val (float): value in [vmin, vmax] to map to color. vmin, vmax (float): min and max ranges for val. colorscale (str): matplotlib colorscale or None (use default). Returns: rgb color. """ colorsc = colorscale if colorscale is not None else cls.colorscale cmap = cm.get_cmap(colorsc) if vmin > vmax: raise ValueError('incorrect relation between vmin and vmax') t = 0. if not np.allclose(vmin, vmax): t = (val - vmin) / float((vmax - vmin)) # normalize val R, G, B, alpha = cmap(t) return 'rgb(' + '{:d}'.format(int(R * 255 + 0.5)) + ',' + '{:d}'\ .format(int(G * 255 + 0.5)) +\ ',' + '{:d}'.format(int(B * 255 + 0.5)) + ')' @classmethod def map_val2color2d(cls, val, vmin, vmax): """ Map a 2D value to an rgb color. The R and G channels have an independent and direct correspondence to each element in the 2D value. The B channel is kept fixed. Args: val (float): value s.t. val[i] in [vmin[i], vmax[i]], i=1,2, to be mapped to an rgb color. The R, G channels are set by val. vmin, vmax (2d array): min and max ranges for each element in val. Returns: rgb color. """ if vmin[0] > vmax[0] or vmin[1] > vmax[1]: raise ValueError('incorrect relation between vmin and vmax') t = np.zeros(2) # normalize val if not np.allclose(vmin[0], vmax[0]): t[0] = (val[0] - vmin[0]) / float((vmax[0] - vmin[0])) if not np.allclose(vmin[1], vmax[1]): t[1] = (val[1] - vmin[1]) / float((vmax[1] - vmin[1])) R, G = t[1], t[0] B = 0.4 return 'rgb(' + '{:d}'.format(int(R * 255 + 0.5)) + ',' + '{:d}'\ .format(int(G * 255 + 0.5)) +\ ',' + '{:d}'.format(int(B * 255 + 0.5)) + ')' @classmethod def map_array2color(cls, array, min=None, max=None): """ Map an array of values to colors. Args: array (1d array): array of values to map to colors. size: (N,) min, max (float): If not None, set the ranges for the values in array. Returns: 1d array of rgb colors. size: (N,) """ if min is None: min = array.min() if max is None: max = array.max() return np.array([cls.map_val2color(val, min, max) for val in array]) @classmethod def map_array2color2d(cls, array, min=None, max=None): """ Map a 2D array of values to colors. Args: array (2d array): array of values to map to colors. size: (N x 2). min, max (2d array): If not None, sets the ranges for the values in array. Returns: 1d array of rgb colors. size: (N,) """ if array.shape[1] != 2: raise ValueError(f"array has shape {array.shape}.") if min is None: if min.shape != (2, ): raise ValueError(f'min has shape {min.shape}') min = array.amin(axis=0) if max is None: if max.shape != (2, ): raise ValueError(f'max has shape {max.shape}') max = array.amax(axis=0) return np.array([cls.map_val2color2d(val, min, max) for val in array]) @classmethod def get_normal_facecolor(cls, affine_coeff, max=None): """ Get facecolor of simplices according to their normals. Args: affine_coeff (array): affine coefficients of the simplices. size: (number of simplices, 3). max (2d array): If not None, sets the max ranges for the values in affine_coeff[:, 0:2]. Returns: facecolor (1d array): 1d array of rgb colors whose size is the number of simplices. """ if not affine_coeff.shape[1] == 3: raise ValueError(f"affine_coeff has shape {affine_coeff.shape}.") if max is None: max = np.array([1.75, 1.75]) facecolor = \ cls.map_array2color2d(-affine_coeff[:, 0:2], min=-max, max=max) return facecolor @staticmethod def get_scatter3d(x, y, z, marker_size=2): r""" Get a scatter 3D plot (f: \R^2 \to \R) Args: x, y (1d array): positions of the samples. z (1d array): values of the samples. Returns: A plotly.graph_objects.Scatter3D object. """ data = go.Scatter3d(x=x, y=y, z=z, mode='markers', marker=dict(size=marker_size, color='black'), opacity=0.8) return data def plot_fig(self, fig, filename=None, num_subplots=1, view=None, **kwargs): """ Plot figure. Args: fig: instance of plotly.graph_objects.Figure to plot. filename (str): Figure filename. num_subplots (int): Number of figure subplots. view (str): If None, a default view is used. Otherwise can be set to "up" "side". """ assert isinstance(fig, go.Figure), f'fig is of type {type(fig)}.' assert view in [None, 'up', 'side'], f'view "{view}" is invalid.' ax_dict = dict(linecolor='#000000', linewidth=4, showgrid=False, showticklabels=False, tickfont=dict(size=15), gridcolor='#000000', gridwidth=0.3, title='', showbackground=True) fig_dict = dict( scene_aspectmode='data', scene=dict(xaxis=copy.deepcopy(ax_dict), yaxis=copy.deepcopy(ax_dict), zaxis=copy.deepcopy(ax_dict), camera=dict(up=dict(x=0, y=0, z=1), center=dict(x=0, y=0, z=0))), font=dict(size=20), ) fig_dict['scene']['xaxis']['title'] = 'x' fig_dict['scene']['yaxis']['title'] = 'y' fig_dict['scene']['zaxis']['title'] = 'z' if view == 'up': fig_dict['scene']['zaxis']['visible'] = False fig_dict['scene']['camera']['eye'] = dict(x=0, y=0, z=3) fig_dict['scene']['camera']['up'] = dict(x=0, y=1, z=0) elif view == 'side': fig_dict['scene']['camera']['eye'] = dict(x=1.2, y=0.3, z=0.4) else: # default fig_dict['scene']['camera']['eye'] = dict(x=1.5, y=1.9, z=1.7) for i in range(2, num_subplots + 1): fig_dict['scene' + str(i)] = fig_dict['scene'].copy() fig.update_layout(**fig_dict) if self.log_dir is None: fig.show() else: self.export_fig(fig, filename, self.log_dir) @staticmethod def export_fig(fig, filename, log_dir): """ Plot html figure and export to log_dir. Args: fig: instance of plotly.graph_objects.Figure to plot. filename (str): Figure filename. log_dir (str): Log directory where figure is exported to. """ assert isinstance(fig, go.Figure), f'fig is of type {type(fig)}.' if not os.path.isdir(log_dir): raise NotADirectoryError( f'log_dir "{log_dir}" is not a valid directory') file_path = os.path.join(f'{log_dir}', f'{filename}') pio.write_html(fig, file=f'{file_path}.html', auto_open=True) ``` #### File: htvlearn/plots/plot_cpwl.py ```python import plotly.figure_factory as ff from plotly.subplots import make_subplots from htvlearn.delaunay import Delaunay from htvlearn.plots.base_plot import BasePlot class Plot(BasePlot): def __init__(self, data_obj=None, **plot_params): """ Args: data_obj (Data): None (if not plotting data samples) or object of class Data (see htvlearn.data). """ super().__init__(data_obj=data_obj, **plot_params) def plot_delaunay(self, *delaunay_obj_list, observations=False, color='normal', opaque=True, constrast=False, filename='trisurf_delaunay', **kwargs): """ Plot a several Delaunay objects from a list. Args: delaunay_obj_list (Delaunay): list of Delaunay objects (see htvlearn.delaunay). observations (bool): True if plotting data observations. color (str): Plot colors according to simplex normals (color="normal") or mean height of vertices (color="z"). opaque (bool): If True, ground truth is made opaque (if True, might make some observations non-visible). constrast (bool): Enhance figure constrast. filename (str): Figure filename. """ specs = [[{'type': 'scene'}] * len(delaunay_obj_list)] num_subplots = len(delaunay_obj_list) fig = make_subplots(cols=num_subplots, specs=specs, shared_xaxes=True, shared_yaxes=True) for i, delaunay in enumerate(delaunay_obj_list): if not isinstance(delaunay, Delaunay): continue delaunay_fig_dict = dict(x=delaunay.tri.points[:, 0], y=delaunay.tri.points[:, 1], simplices=delaunay.tri.simplices, edges_color='rgb(255, 255, 255)', plot_edges=False) if color == 'normal': # affine coefficients of each simplex color_list = self.get_normal_facecolor( delaunay.tri.simplices_affine_coeff) elif color == 'z': z_mean = \ delaunay.tri.values[delaunay.tri.simplices].mean(axis=1) color_list = self.map_array2color(z_mean) else: raise ValueError(f'color {color} should be "normal" or "z".') trisurf_fig = ff.create_trisurf(z=delaunay.tri.values, color_func=color_list, **delaunay_fig_dict) for trisurf_trace in trisurf_fig.data: fig.add_trace(trisurf_trace, row=1, col=i + 1) if opaque is False: fig['data'][-1].update(opacity=0.95) if constrast is True: fig.update_traces(lighting=dict(ambient=0.1, diffuse=1, specular=0.1), lightposition=dict(x=0, y=0, z=4), selector=dict(type='mesh3d')) if observations: fig.add_trace(self.get_observations_plot(**kwargs), row=1, col=1) self.plot_fig(fig, filename=filename, num_subplots=num_subplots, **kwargs) def get_observations_plot(self, mode='train', marker_size=2, **kwargs): """ Get observations plot. Args: mode (str): 'train', 'valid', or 'test' marker_size (float): marker size for observation points. Returns: A plotly.graph_objects.Scatter3D object. """ assert mode in ['train', 'valid', 'test'] self.verify_data_obj() data_dict = { 'train': self.data.train, 'valid': self.data.valid, 'test': self.data.test }[mode] input = data_dict['input'].cpu().numpy() values = data_dict['values'].cpu().numpy() observations = self.get_scatter3d(x=input[:, 0], y=input[:, 1], z=values, marker_size=marker_size) return observations ``` #### File: HTV-Learn/htvlearn/rbf_manager.py ```python import torch import numpy as np import time import datetime import json from htvlearn.rbf_project import RBFProject from htvlearn.rbf import RBF from htvlearn.hessian import get_finite_second_diff_Hessian from htvlearn.htv_utils import compute_mse_snr from htvlearn.lattice import Lattice class RBFManager(RBFProject): """ """ def __init__(self, params, log=True): """ Args: params (dict): parameter dictionary. log (bool): if True, log results. """ # initializes log, lattice, data, json files super().__init__(params, log=log) if self.load_ckpt is True: # is_ckpt_loaded=True if a checkpoint was successfully loaded. is_ckpt_loaded = self.restore_ckpt_params() if is_ckpt_loaded is True: self.restore_data() self.rbf = RBF(self.data, **self.params['rbf']) @property def htv_log(self): """ """ return self.htv_dict def train(self): """Run algorithm and save results.""" self.htv_dict = {} output = self.forward_data(self.data.train['input']) mse, _ = compute_mse_snr(self.data.train['values'].cpu(), output.cpu()) self.update_json('train_mse', mse) print(f'Train mse : {mse}') if not self.params['no_htv']: print('\nComputing Hessian...') self.htv_dict = self.compute_htv() print('HTV dict :', json.dumps(self.htv_dict, indent=4, sort_keys=False)) print('Exact HTV : {:.2f}'.format(self.data.cpwl.get_exact_HTV())) print('Finished.') self.update_json('htv', self.htv_dict) for mode in ['valid', 'test']: mse, _ = self.evaluate_results(mode) self.update_json('_'.join([mode, 'mse']), mse) print(f'{mode} mse : {mse}') # save params, data and htv to checkpoint self.save_to_ckpt() def compute_htv(self): """ Compute the HTV of the model in the data range. Return: htv (dict): dictionary of the form {'p': htv_p} """ grid = self.data.cpwl.get_grid(h=0.0005) Hess = get_finite_second_diff_Hessian(grid, self.evaluate_func) S = np.linalg.svd(Hess, compute_uv=False, hermitian=True) assert S.shape == (*Hess.shape[0:2], 2) htv = {} for p in [1, 2, 5, 10]: points_htv = np.linalg.norm(S, ord=p, axis=-1) # schatten norm # value x area (riemman integral) htv[str(p)] = (points_htv * grid.h * grid.h).sum() return htv def evaluate_results(self, mode): """ Evaluate train, validation or test results. Args: mode (str): 'train', 'valid' or 'test' Returns: mse (float): ``mode`` mean-squared-error. output (torch.Tensor): result of evaluating model on ``mode`` set. """ assert mode in ['train', 'valid', 'test'] if mode == 'train': data_dict = self.data.train elif mode == 'valid': data_dict = self.data.valid else: data_dict = self.data.test output = self.forward_data(data_dict['input']) # save predictions data_dict['predictions'] = output # compute mse mse, _ = compute_mse_snr(data_dict['values'], output) return mse, output def evaluate_func(self, x, batch_size=100000): """ Evaluate model function for some input. Args: x (np.ndarray): inputs. size: (n, 2). batch_size (int): batch size for evaluation. Returns: y (np.ndarray): result of evaluating model at x. """ x = torch.from_numpy(x) assert x.dtype == torch.float64 dataloader = x.split(batch_size) y = torch.tensor([], device=x.device, dtype=x.dtype) # every 5% progress print_step = max(int(len(dataloader) * 1. / 20), 1) print('\n==> Starting evaluation...') if self.params['verbose']: print('=> Length dataloader: ', len(dataloader)) start_time = time.time() for batch_idx, input in enumerate(dataloader): out = self.forward_data(input) y = torch.cat((y, out), dim=0) if batch_idx % print_step == 0: progress = int((batch_idx + 1) * 100. / len(dataloader)) print(f'=> {progress}% complete') end_time = time.time() run_time = str(datetime.timedelta(seconds=int(end_time - start_time))) print(f'==> Finished. Run time: {run_time} (h:min:sec).') return y.numpy() def evaluate_lattice(self): """Create and evaluate network on lattice.""" lat = Lattice(**self.params['lattice']) print(f'Sampled lattice lsize: {lat.lsize}.') lattice_grid = lat.lattice_to_standard(lat.lattice_grid.float()) z = self.forward_data(lattice_grid) new_C_mat = lat.flattened_C_to_C_mat(z) lat.update_coefficients(new_C_mat.float()) return lat def forward_data(self, input, *args, **kwargs): """ Compute model output for some input. Args: input (torch.Tensor): size: (n, 2). """ return self.rbf.evaluate(input) @staticmethod def read_htv_log(htv_log): """ Parse htv_log dictionary. Args: htv_log (dict). Returns: htv (dict): dictionary of the form {'p': np.array([htv_p])}. """ # e.g. htv_log = {'1': htv_1, '2': htv_2} assert isinstance(htv_log, dict) # p in schatten-p norms p_array = np.array([int(p) for p in htv_log.keys()]) p_array.sort() htv = {} for p in p_array: htv[str(p)] = np.array([float(htv_log[str(p)])]) return htv ``` #### File: HTV-Learn/htvlearn/rbf.py ```python import torch import numpy as np class RBF(): def __init__(self, data_obj, eps, lmbda, **params): """ Args: data_obj (Data): instance of Data class (data.py), containing: data_obj['train']['input']: size: (M,2); data_obj['train']['values']: size: (M,). eps (float): rbf kernel shape parameter (the higher, the more localized) lmbda (float): regularization weight """ self.params = params self.data = data_obj self.eps = eps self.lmbda = lmbda self.input = self.data.train['input'] assert self.input.size(1) == 2 self.values = self.data.train['values'] assert self.input.size(0) == self.values.size(0) self.init_gram_mat() self.init_coeffs() @staticmethod def get_sigma_from_eps(eps): """ Get sigma (standard deviation) from rbf shape parameter eps. Args: eps (float): rbf kernel shape parameter (the higher, the more localized). Returns: sigma (float): standard deviation of the kernel. """ return np.sqrt(1. / (2. * eps)) def init_gram_mat(self): """ Init Gram interpolation matrix with gaussian kernels. ``gram_mat = exp(-(eps * distance_pairs)**2)``, where ``distance pairs`` is the gram matrix of parwise distances of training datapoints. """ # (1, M, 2) - (M, 1, 2) = (M, M, 2) # location pairwise differences loc_diff_pairs = self.input.unsqueeze(0) - self.input.unsqueeze(1) assert loc_diff_pairs.size() == (self.input.size(0), self.input.size(0), 2) # distance pairs distance_pairs = torch.norm(loc_diff_pairs, dim=-1) assert distance_pairs.size() == (self.input.size(0), self.input.size(0)) # RBF interpolation matrix with gaussian kernels self.gram_mat = torch.exp(-(self.eps * distance_pairs.double())**2) # check if it is symmetric assert torch.equal(self.gram_mat.T, self.gram_mat) assert self.gram_mat.size() == (self.input.size(0), self.input.size(0)) def init_coeffs(self): """ Solve ``(gram_mat + lambda*I)a = y`` for ``a`` (coefficients), and save the result in self.coeffs. """ A = self.gram_mat + self.lmbda * \ torch.ones_like(self.gram_mat[:, 0]).diag() B = self.values.unsqueeze(-1).to(dtype=self.gram_mat.dtype, device=self.gram_mat.device) # Solve AX = B X = torch.linalg.lstsq(A, B).solution self.coeffs = X.squeeze(-1).float() assert self.coeffs.size() == self.values.size() def construct_H_mat(self, x, **kwargs): """ Construct the forward matrix H from x (the locations where we wish to evaluate the RBF), such that f(x) = H_mat @ self.coeffs. Args: x (torch.Tensor): locations where we wish to evaluate the RBF. Returns: H_mat (torch.Tensor): size: (x.size(0), self.coeffs.size(0)) """ # (N, 1, 2) - (1, M, 2) = (N, M, 2) # location pairwise differences \varphi(\norm{\V x - \V x_i}) loc_diff_pairs = x.unsqueeze(1) - self.input.unsqueeze(0) assert loc_diff_pairs.size() == (x.size(0), self.input.size(0), 2) # distance pairs distance_pairs = torch.norm(loc_diff_pairs, dim=-1) assert distance_pairs.size() == (x.size(0), self.input.size(0)) # x interpolation matrix with gaussian kernels H_mat = torch.exp(-(self.eps * distance_pairs)**2) assert H_mat.size() == (x.size(0), self.coeffs.size(0)) return H_mat def evaluate(self, x, **kwargs): r""" Evaluate RBF output at locations x. f(\V x) = self.H_mat @ self.coeffs, where self.H_mat is constructed from x. Args: x (torch.Tensor): locations where we wish to evaluate the RBF. Returns: output (torch.Tensor): evaluation of the RBF at x. """ try: H_mat = self.construct_H_mat(x) except RuntimeError: print('\nError: need to reduce size of input batches.\n') raise coeffs = self.coeffs.to(dtype=H_mat.dtype) output = torch.mv(H_mat, coeffs) return output ``` #### File: HTV-Learn/scripts/plot_data.py ```python import argparse from htvlearn.data import Data from htvlearn.plots.plot_cpwl import Plot from htvlearn.htv_utils import ArgCheck def plot_data(args): """ Args: args: arguments from argparser """ data_params = { 'dataset_name': args.dataset_name, 'num_train': args.num_train, 'non_uniform': args.non_uniform, 'noise_ratio': args.noise_ratio, 'seed': args.seed } data_obj = Data(**data_params) plot_params = {} plot_params['log_dir'] = '/tmp' plot = Plot(data_obj, **plot_params) plot.plot_delaunay(data_obj.cpwl, observations=False, color='normal', filename='GT_no_data') plot.plot_delaunay(data_obj.cpwl, observations=True, opaque=False, marker_size=(0.65 if 'face' in args.dataset_name else 2), color='normal', filename='GT_data') if __name__ == "__main__": # parse arguments parser = argparse.ArgumentParser( description='Load parameters from checkpoint file.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) # data dataset_choices = { 'face', 'cut_face_gaps', 'pyramid', 'quad_top_planes' } parser.add_argument( '--dataset_name', choices=dataset_choices, type=str, default='face', help=' ') parser.add_argument( '--num_train', metavar='[INT>0]', type=ArgCheck.p_int, default=10000, help=' ') parser.add_argument( '--non_uniform', action='store_true', help=' ') parser.add_argument( '--noise_ratio', metavar='[FLOAT,>0]', type=ArgCheck.nn_float, default=0., help=' ') parser.add_argument( '--seed', metavar='[INT]', type=int, default=-1, help=' ') args = parser.parse_args() plot_data(args) ``` #### File: HTV-Learn/scripts/run_face_rbf.py ```python import os import argparse import copy from htvlearn.main import main_prog def run_face_rbf(args): """ Args: args: verified arguments from arparser """ if not os.path.isdir(args.log_dir): print(f'\nLog directory {args.log_dir} not found. Creating it.') os.makedirs(args.log_dir) params = { 'method': 'rbf', 'lmbda': 1e-2, 'eps': 50, 'log_dir': args.log_dir, 'dataset_name': 'face', 'num_train': 10000, 'data_dir': './data', 'noise_ratio': 0., 'seed': 8, 'lsize': 194, } params['model_name'] = ('face_rbf_lmbda_{:.1E}_'.format(params["lmbda"]) + 'eps_{:d}'.format(params["eps"])) main_prog(copy.deepcopy(params)) if __name__ == "__main__": # parse arguments parser = argparse.ArgumentParser( description='Run RBF on the face dataset.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--log_dir', metavar='[STR]', type=str, default='./ckpt', help='Model log directory.') args = parser.parse_args() run_face_rbf(args) ``` #### File: HTV-Learn/scripts/run_pyramid_htv.py ```python import os import argparse import copy from htvlearn.main import main_prog def run_pyramid_htv(args): """ Args: args: verified arguments from arparser """ if not os.path.isdir(args.log_dir): print(f'\nLog directory {args.log_dir} not found. Creating it.') os.makedirs(args.log_dir) params = { 'method': 'pyramid', 'lmbda': 0., 'log_dir': args.log_dir, 'dataset_name': 'pyramid', 'data_dir': './data', 'noise_ratio': 0., 'lsize': 30, 'admm_iter': 40000, 'simplex': True } params['model_name'] = 'pyramid_htv_lmbda_{:.1E}'.format(params["lmbda"]) main_prog(copy.deepcopy(params)) if __name__ == "__main__": # parse arguments parser = argparse.ArgumentParser( description='Run HTV on the pyramid dataset.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--log_dir', metavar='[STR]', type=str, default='./ckpt', help='Model log directory.') args = parser.parse_args() run_pyramid_htv(args) ``` #### File: HTV-Learn/scripts/run_qtp_rbf.py ```python import os import argparse import copy from htvlearn.main import main_prog def run_qtp_rbf(args): """ Args: args: verified arguments from arparser """ if not os.path.isdir(args.log_dir): print(f'\nLog directory {args.log_dir} not found. Creating it.') os.makedirs(args.log_dir) params = { 'method': 'rbf', 'lmbda': 8e-2, 'eps': 7, 'log_dir': args.log_dir, 'dataset_name': 'quad_top_planes', 'num_train': 250, 'data_dir': './data', 'noise_ratio': 0.05, 'seed': 14, 'lsize': 64, } params['model_name'] = ('qtp_rbf_lmbda_{:.1E}_'.format(params["lmbda"]) + 'eps_{:d}'.format(params["eps"])) main_prog(copy.deepcopy(params)) if __name__ == "__main__": # parse arguments parser = argparse.ArgumentParser( description='Run RBF on the data fitting task.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--log_dir', metavar='[STR]', type=str, default='./ckpt', help='Model log directory.') args = parser.parse_args() run_qtp_rbf(args) ``` #### File: HTV-Learn/tests/conftest.py ```python def pytest_addoption(parser): """Pytest parser""" parser.addoption("--plot", action="store", help="list of pytest fixtures to plot") parser.addoption('--seed', action='store', default=42, help="Set seed") ``` #### File: HTV-Learn/tests/test_delaunay.py ```python import pytest import numpy as np import torch import time from htvlearn.delaunay import Delaunay from htvlearn.plots.plot_cpwl import Plot from htvlearn.data import ( BoxSpline, SimplicialSpline, CutPyramid, SimpleJunction, DistortedGrid, Data ) @pytest.fixture(autouse=True) def set_seed(request): """Set random seed.""" # Code that will run before seed = request.config.getoption("--seed") torch.manual_seed(int(seed)) torch.cuda.manual_seed_all(int(seed)) np.random.seed(int(seed)) # toy datasets that have an htv attribute toy_dataset_list = [BoxSpline, CutPyramid, SimpleJunction] dataset_dict = { 'toy': toy_dataset_list, 'all': toy_dataset_list + [SimplicialSpline, DistortedGrid], 'simple_junction': [SimpleJunction], 'distorted_grid': [DistortedGrid] } # receives dataset as parameter @pytest.fixture(scope="module") def dataset(request): dt = request.param ret_dict = { 'name': dt.__name__, 'points': dt.points.copy(), 'values': dt.values.copy() } if hasattr(dt, 'htv'): ret_dict['htv'] = dt.htv return ret_dict @pytest.fixture(scope='module') def skip_plot(request): if 'plot' not in request.config.getoption("-m"): raise pytest.skip('Skipping!') @pytest.mark.filterwarnings("ignore::UserWarning") class TestDelaunay: @pytest.mark.plot @pytest.mark.parametrize("dataset", dataset_dict["all"], indirect=True) def test_plot_delaunay(self, dataset, request): """ """ plot_arg = request.config.getoption("--plot") if plot_arg is None or plot_arg not in dataset['name']: pytest.skip() cpwl = Delaunay(**dataset) plot = Plot(log_dir='/tmp') plot.plot_delaunay(cpwl) def test_is_admissible(self): points, values = Data.init_zero_boundary_planes() values = Data.add_linear_func(points, values) cpwl = Delaunay(points=points, values=values) assert cpwl.is_admissible is True @pytest.mark.parametrize("dataset", dataset_dict["toy"], indirect=True) def test_exact_htv(self, dataset): """ """ cpwl = Delaunay(**dataset) assert np.allclose(cpwl.get_exact_HTV(), dataset['htv']) @pytest.mark.parametrize("dataset", dataset_dict["all"], indirect=True) def test_exact_grad_trace_htv(self, dataset): """ """ if dataset['name'].endswith('Junction') or \ dataset['name'].endswith('DistortedGrid'): cpwl = Delaunay(**dataset) else: cpwl = Delaunay(**dataset, add_extreme_points=True) h = (cpwl.tri.points[:, 0].max() - cpwl.tri.points[:, 0].min()) / 5000 exact_grad_trace_htv = cpwl.get_exact_grad_trace_HTV(h=h) exact_htv = cpwl.get_exact_HTV() print('(Discrete, Exact) : ({:.4f}, {:.4f})' .format(exact_grad_trace_htv, exact_htv)) assert np.allclose(exact_grad_trace_htv, exact_htv, rtol=1e-3) @pytest.mark.parametrize("dataset", dataset_dict["all"], indirect=True) def test_lefkimiattis_HTV(self, dataset): """ """ if dataset['name'].endswith('Junction') or \ dataset['name'].endswith('DistortedGrid'): cpwl = Delaunay(**dataset) else: cpwl = Delaunay(**dataset, add_extreme_points=True) h = (cpwl.tri.points[:, 0].max() - cpwl.tri.points[:, 0].min()) / 5000 lefkimiattis_htv = cpwl.get_lefkimiattis_schatten_HTV(h=h) exact_htv = cpwl.get_exact_HTV() print('(Discrete, Exact) : ({:.4f}, {:.4f})' .format(lefkimiattis_htv, exact_htv)) assert not np.allclose(lefkimiattis_htv, exact_htv, rtol=1e-3) @pytest.mark.parametrize("dataset", dataset_dict["all"], indirect=True) def test_lefkimiattis_trace_HTV(self, dataset): """ """ if dataset['name'].endswith('Junction') or \ dataset['name'].endswith('DistortedGrid'): cpwl = Delaunay(**dataset) else: cpwl = Delaunay(**dataset, add_extreme_points=True) h = (cpwl.tri.points[:, 0].max() - cpwl.tri.points[:, 0].min()) / 5000 lefkimiattis_trace_htv = cpwl.get_lefkimiattis_trace_HTV(h=h) exact_htv = cpwl.get_exact_HTV() print('(Discrete, Exact) : ({:.4f}, {:.4f})' .format(lefkimiattis_trace_htv, exact_htv)) assert np.allclose(lefkimiattis_trace_htv, exact_htv, rtol=2e-3) @pytest.mark.parametrize("dataset", dataset_dict["all"], indirect=True) def test_exact_grad_schatten_HTV(self, dataset): """ """ if dataset['name'].endswith('Junction') or \ dataset['name'].endswith('DistortedGrid'): cpwl = Delaunay(**dataset) else: cpwl = Delaunay(**dataset, add_extreme_points=True) h = (cpwl.tri.points[:, 0].max() - cpwl.tri.points[:, 0].min()) / 5000 exact_grad_schatten_htv = cpwl.get_exact_grad_schatten_HTV(h=h) exact_htv = cpwl.get_exact_HTV() print('(Discrete, Exact) : ({:.4f}, {:.4f})' .format(exact_grad_schatten_htv, exact_htv)) assert not np.allclose(exact_grad_schatten_htv, exact_htv, rtol=1e-3) @pytest.mark.parametrize("dataset", dataset_dict["simple_junction"], indirect=True) def test_simple_junction(self, dataset): """ """ cpwl = Delaunay(**dataset) assert np.array_equal(cpwl.tri.points, dataset['points']) assert np.array_equal(cpwl.tri.values, dataset['values']) pos_mask = (cpwl.tri.simplices_affine_coeff[:, 0] > 0) assert np.allclose( (cpwl.tri.simplices_affine_coeff[np.where(pos_mask)[0], :] - SimpleJunction.a1_affine_coeff[np.newaxis, :]), np.zeros((np.sum(pos_mask), 3))) assert np.allclose( (cpwl.tri.simplices_affine_coeff[np.where(~pos_mask)[0], :] - SimpleJunction.a2_affine_coeff[np.newaxis, :]), np.zeros((np.sum(pos_mask), 3))) grid = cpwl.get_grid(h=0.01) z, x_grad = cpwl.evaluate_with_grad(grid.x) assert np.allclose( (np.abs(x_grad) - SimpleJunction.a1_affine_coeff[np.newaxis, 0:2]), np.zeros_like(x_grad)) @pytest.mark.parametrize("dataset", dataset_dict["distorted_grid"], indirect=True) def test_evaluate(self, dataset): """ """ cpwl = Delaunay(**dataset, add_extreme_points=True) grid = cpwl.get_grid(h=0.01) t1 = time.time() z, x_grad = cpwl.evaluate_with_grad(grid.x) t2 = time.time() z_bar = cpwl.evaluate_bar(grid.x) t3 = time.time() print('affine_coeff/bar time: {:.3f}' .format((t2 - t1) / (t3 - t2))) assert np.all(np.allclose(z, z_bar)) @pytest.mark.parametrize("dataset", dataset_dict["distorted_grid"], indirect=True) def test_convex_hull_extreme_points(self, dataset): """ """ cpwl = Delaunay(**dataset, add_extreme_points=True) npoints = cpwl.tri.points.shape[0] expected_convex_hull_points_idx = \ np.array([npoints - 4, npoints - 3, npoints - 2, npoints - 1]) assert np.array_equal(cpwl.convex_hull_points_idx, expected_convex_hull_points_idx) ```
{ "source": "JoaquimEsteves/git-format-staged", "score": 3 }
#### File: JoaquimEsteves/git-format-staged/git-format-staged.py ```python from __future__ import print_function import argparse from fnmatch import fnmatch import re import os import subprocess import sys # The string $VERSION is replaced during the publish process. VERSION = "$VERSION" PROG = sys.argv[0] def info(msg): print(msg, file=sys.stderr) def warn(msg): print("{}: warning: {}".format(PROG, msg), file=sys.stderr) def fatal(msg): print("{}: error: {}".format(PROG, msg), file=sys.stderr) exit(1) def format_staged_files( file_patterns, formatter, git_root, update_working_tree=True, write=True ): try: output = subprocess.check_output( [ "git", "diff-index", "--cached", # select only file additions and modifications "--diff-filter=AM", "--no-renames", "HEAD", ] ) for line in output.splitlines(): entry = parse_diff(line.decode("utf-8")) entry_path = normalize_path( entry["src_path"], relative_to=git_root ) if entry["dst_mode"] == "120000": # Do not process symlinks continue if not (matches_some_path(file_patterns, entry_path)): continue if format_file_in_index( formatter, entry, update_working_tree=update_working_tree, write=write, ): info( "Reformatted {} with {}".format( entry["src_path"], formatter ) ) except Exception as err: fatal(str(err)) def format_file_in_index( formatter, diff_entry, update_working_tree=True, write=True ): """ Run formatter on file in the git index. Creates a new git object with the result, and replaces the content of the file in the index with that object. Returns hash of the new object if formatting produced any changes. """ orig_hash = diff_entry["dst_hash"] new_hash = format_object(formatter, orig_hash, diff_entry["src_path"]) # If the new hash is the same then the formatter did not make any changes. if not write or new_hash == orig_hash: return None # If the content of the new object is empty then the formatter did not # produce any output. We want to abort instead of replacing the file with # an empty one. if object_is_empty(new_hash): return None replace_file_in_index(diff_entry, new_hash) if update_working_tree: try: patch_working_file(diff_entry["src_path"], orig_hash, new_hash) except Exception as err: # Errors patching working tree files are not fatal warn(str(err)) return new_hash file_path_placeholder = re.compile("\{\}") def format_object(formatter, object_hash, file_path): """ Run formatter on a git blob identified by its hash. Writes output to a new git blob, and returns the hash of the new blob. """ get_content = subprocess.Popen( ["git", "cat-file", "-p", object_hash], stdout=subprocess.PIPE ) format_content = subprocess.Popen( re.sub(file_path_placeholder, file_path, formatter), shell=True, stdin=get_content.stdout, stdout=subprocess.PIPE, ) write_object = subprocess.Popen( ["git", "hash-object", "-w", "--stdin"], stdin=format_content.stdout, stdout=subprocess.PIPE, ) get_content.stdout.close() format_content.stdout.close() if get_content.wait() != 0: raise ValueError( "unable to read file content from object database: " + object_hash ) if format_content.wait() != 0: raise Exception( "formatter exited with non-zero status" ) # TODO: capture stderr from format command new_hash, _err = write_object.communicate() if write_object.returncode != 0: raise Exception("unable to write formatted content to object database") return new_hash.decode("utf-8").rstrip() def object_is_empty(object_hash): get_content = subprocess.Popen( ["git", "cat-file", "-p", object_hash], stdout=subprocess.PIPE ) content, err = get_content.communicate() if get_content.returncode != 0: raise Exception("unable to verify content of formatted object") return not content def replace_file_in_index(diff_entry, new_object_hash): subprocess.check_call( [ "git", "update-index", "--cacheinfo", "{},{},{}".format( diff_entry["dst_mode"], new_object_hash, diff_entry["src_path"] ), ] ) def patch_working_file(path, orig_object_hash, new_object_hash): patch = subprocess.check_output( ["git", "diff", orig_object_hash, new_object_hash] ) # Substitute object hashes in patch header with path to working tree file patch_b = patch.replace(orig_object_hash.encode(), path.encode()).replace( new_object_hash.encode(), path.encode() ) apply_patch = subprocess.Popen( ["git", "apply", "-"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) apply_patch.communicate(input=patch_b) if apply_patch.returncode != 0: raise Exception( f"could not apply formatting changes to working tree file {path}" ) # Format: src_mode dst_mode src_hash dst_hash status/score? src_path dst_path? diff_pat = re.compile( "^:(\d+) (\d+) ([a-f0-9]+) ([a-f0-9]+) ([A-Z])(\d+)?\t([^\t]+)(?:\t([^\t]+))?$" ) def parse_diff(diff): """ Parse output from `git diff-index` """ m = diff_pat.match(diff) if not m: raise ValueError("Failed to parse diff-index line: " + diff) return { "src_mode": unless_zeroed(m.group(1)), "dst_mode": unless_zeroed(m.group(2)), "src_hash": unless_zeroed(m.group(3)), "dst_hash": unless_zeroed(m.group(4)), "status": m.group(5), "score": int(m.group(6)) if m.group(6) else None, "src_path": m.group(7), "dst_path": m.group(8), } zeroed_pat = re.compile("^0+$") def unless_zeroed(s): """ Returns the argument unless the argument is a string of zeroes, in which case returns `None` """ return s if not zeroed_pat.match(s) else None def get_git_root(): return ( subprocess.check_output(["git", "rev-parse", "--show-toplevel"]) .decode("utf-8") .rstrip() ) def normalize_path(p, relative_to=None): return os.path.abspath(os.path.join(relative_to, p) if relative_to else p) def matches_some_path(patterns, target): is_match = False for signed_pattern in patterns: (is_pattern_positive, pattern) = from_signed_pattern(signed_pattern) if fnmatch(target, normalize_path(pattern)): is_match = is_pattern_positive return is_match # Checks for a '!' as the first character of a pattern, returns the rest of the # pattern in a tuple. The tuple takes the form (is_pattern_positive, pattern). # For example: # from_signed_pattern('!pat') == (False, 'pat') # from_signed_pattern('pat') == (True, 'pat') def from_signed_pattern(pattern): if pattern[0] == "!": return (False, pattern[1:]) else: return (True, pattern) class CustomArgumentParser(argparse.ArgumentParser): def parse_args(self, args=None, namespace=None): args, argv = self.parse_known_args(args, namespace) if argv: msg = argparse._( "unrecognized arguments: %s. Do you need to quote your formatter command?" ) self.error(msg % " ".join(argv)) return args if __name__ == "__main__": parser = CustomArgumentParser( description="Transform staged files using a formatting command that accepts content via stdin and produces a result via stdout.", epilog='Example: %(prog)s --formatter "prettier --stdin" "src/*.js" "test/*.js"', ) parser.add_argument( "--formatter", "-f", required=True, help="Shell command to format files, will run once per file. Occurrences of the placeholder `{}` will be replaced with a path to the file being formatted. (Example: \"prettier --stdin --stdin-filepath '{}'\")", ) parser.add_argument( "--no-update-working-tree", action="store_true", help="By default formatting changes made to staged file content will also be applied to working tree files via a patch. This option disables that behavior, leaving working tree files untouched.", ) parser.add_argument( "--no-write", action="store_true", help='Prevents %(prog)s from modifying staged or working tree files. You can use this option to check staged changes with a linter instead of formatting. With this option stdout from the formatter command is ignored. Example: %(prog)s --no-write -f "eslint --stdin --stdin-filename \'{}\' >&2" "*.js"', ) parser.add_argument( "--version", action="version", version="%(prog)s version {}".format(VERSION), help="Display version of %(prog)s", ) parser.add_argument( "files", nargs="+", help='Patterns that specify files to format. The formatter will only transform staged files that are given here. Patterns may be literal file paths, or globs which will be tested against staged file paths using Python\'s fnmatch function. For example "src/*.js" will match all files with a .js extension in src/ and its subdirectories. Patterns may be negated to exclude files using a "!" character. Patterns are evaluated left-to-right. (Example: "main.js" "src/*.js" "test/*.js" "!test/todo/*")', ) args = parser.parse_args() files = vars(args)["files"] format_staged_files( file_patterns=files, formatter=vars(args)["formatter"], git_root=get_git_root(), update_working_tree=not vars(args)["no_update_working_tree"], write=not vars(args)["no_write"], ) ```
{ "source": "joaquimgomez/BachelorThesis-TextSimilarityMeasures", "score": 3 }
#### File: src/data_management/corpus_for_context2vec.py ```python import argparse from os import listdir, mkdir from os.path import isfile, join from nltk import sent_tokenize def main(org, dest): with open(org, 'r') as o: corpus = o.read() sent_corpus = sent_tokenize(corpus) with open(dest, 'w') as d: for sent in sent_corpus: d.write(sent + '\n') if __name__ == "__main__": parser = argparse.ArgumentParser(description = "Creates the dataset from files in the input directory.") parser.add_argument("--origen", "-o", help = "Directory of folders containing preprocessed files.", default = "./") parser.add_argument("--destination", "-d", help = "Directory where the final document for GloVe goes.", default = "./") args = parser.parse_args() main(args.origen, args.destination) ``` #### File: src/data_management/preprocess_baseline.py ```python import argparse import nltk.data import string import pandas as pd import re from os import listdir, mkdir from os.path import isfile, join from gensim.parsing.porter import PorterStemmer from gensim.parsing.preprocessing import remove_stopwords def saveFiles(documents, dest): mkdir(dest) for doc in documents: with open(dest + str(doc) + '.txt', 'w') as f: f.write(documents[doc]) #for sentence in documents[doc]: # f.write(sentence + '\n') def documentPreprocessing(document): # Filter for non-printable characters filter_printable = lambda x: x in string.printable # Stemmer porter = PorterStemmer() #for i in range(0, len(document)): doc = document # Lowercasing doc = doc.lower() # Remove emails and web addresses doc = re.sub(r'\S*@\S*\s?', '', doc, flags = re.MULTILINE) doc = re.sub(r'http\S+', '', doc, flags = re.MULTILINE) # Erase non-printable characters doc = ''.join(filter(filter_printable, doc)) # Remove Stopwords (using gensim stopwords set) doc = remove_stopwords(doc) # Stemming doc = porter.stem_sentence(doc) return doc def obtainFileContents(index): #tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') documents = {} print("Obtaining content from indexed files.") for ind, row in index.iterrows(): print("Obtaining content from file " + row['file_name'] + ".") f = open(row['file_path']) fContent = f.read() documents[row['id']] = fContent #tokenizer.tokenize(fContent) f.close() print("\n\n") return documents def generateIndex(folders): print("Constructing index from files:") index = pd.DataFrame(columns=['id', 'category', 'file_name', 'file_path']) currentId = 1 for (folderName, path) in folders: print("Indexing files from folder " + folderName + ".") files = [(file, join(path, file)) for file in listdir(path) if isfile(join(path, file)) and not file.startswith('.')] for (file, filePath) in files: #group = file.split("-")[0] index = index.append({'id': str(currentId) + "-" + folderName, 'category': folderName, 'file_name': file, 'file_path': filePath}, ignore_index=True) currentId = currentId + 1 print("\nTotal number of indexed files: " + str(len(index.index))) print("Indexed files:") print(index) print("\n\n") return index def main(org, dest): # Obtain all the folders folders = [(folder, join(org, folder)) for folder in listdir(org) if not isfile(join(org, folder)) and not folder.startswith('.')] # Generate an index for all files index = generateIndex(folders) # Save index to csv mkdir('./meta/') index.to_csv('./meta/pdfs_index.csv', index=False) # Obtain content of all documents in index documents = obtainFileContents(index) # Preprocess documents print("Preprocessing loaded documents:") for doc in documents: print("Preprocessing document with id " + str(doc) + ".") documents[doc] = documentPreprocessing(documents[doc]) print("\n\n") # Save preprocessed files print("Saving preprocessed files.") saveFiles(documents, dest) print("\n\n") if __name__ == "__main__": parser = argparse.ArgumentParser(description = "Creates the dataset from files in the input directory.") parser.add_argument("--origen", "-o", help = "Directory of folders containing files.", default = "./") parser.add_argument("--destination", "-d", help = "Directory where dataset goes. The destination folder must not exist.", default = "./") args = parser.parse_args() main(args.origen, args.destination) ``` #### File: tasks/task2_evaluation_clustering/clustering.py ```python import os import sys module_path = os.path.abspath(os.path.join('..')) if module_path not in sys.path: sys.path.append(module_path) from scipy.cluster.hierarchy import linkage from scipy.cluster.hierarchy import dendrogram as dendro import src.similarities.similarities as sim import numpy as np class Clustering(): def computeDistanceMatrix(self, measure, relaxed): print("Creating condensed distance matrix...") n = len(self.documents) m = n mat = np.zeros((n, m)) for i in range(0, n): for j in range(0, i + 1): print("Computing (" + str(i) + ", " + str(j) + ") of " + "(" + str(n) + ", " + str(m) + ")...") if (relaxed != -1): mat[i,j] = self.embedding.distance(self.documents[i], self.documents[j], measure) else: mat[i,j] = self.embedding.distance(self.documents[i], self.documents[j], measure, relaxed) self.distMat = mat print("Condensed distance matrix created.") return mat def loadDistanceMatrix(self, path): self.distMat = np.loadtxt(path) def saveDistanceMateix(self, path): mat = np.matrix(self.distMat) with open(path, 'wb') as f: for line in mat: np.savetxt(f, line, fmt='%.2f') def hierarchicalClustering(self, type): self.hierClust = linkage(self.distMat, type) def dendrogram(self): return dendro(self.hierClust) def createEmbeddingObject(self, embedding, embeddingModelPath, embeddingSpacyModelPath): if (embedding == "w2v"): return sim.Word2VecSimilarity(embeddingModelPath, embeddingSpacyModelPath) elif (embedding == "fT"): return sim.FastTextSimilarity(embeddingModelPath, embeddingSpacyModelPath) elif (embedding == "GV"): return sim.GloVeSimilarity(embeddingModelPath, embeddingSpacyModelPath) elif (embedding == "d2v"): return sim.Doc2VecSimilarity(embeddingModelPath) def __init__(self, documents, embedding, embeddingModelPath, embeddingSpacyModelPath): print("Creating Clustering object...") self.documents = documents print("Clustering object created.") print("Creating internal objects for the distance computation...") self.embedding = self.createEmbeddingObject(embedding, embeddingModelPath, embeddingSpacyModelPath) print("Internal objects for the distance computation created.") ``` #### File: tasks/task2_evaluation_clustering/distance_matrix_calculation.py ```python import os import sys import time import argparse import numpy as np import pickle from multiprocessing import Pool, cpu_count from functools import partial module_path = os.path.abspath(os.path.join('..')) if module_path not in sys.path: sys.path.append(module_path) import src.similarities.similarities as sim """def parDist(documents, embedding, mesure, relaxed, elem): print("Computing (" + str(elem[0]) + ", " + str(elem[1]) + ") ...") if (measure == 2): return embedding.distance(documents[elem[0]], documents[elem[1]]) else: return embedding.distance(documents[elem[0]], documents[elem[1]], measure, relaxed) def parComputeDistanceMatrix(documents, embedding, measure, relaxed): print("Creating condensed distance matrix...") n = len(documents) m = n #mat = np.zeros((n, m)) lower_triangle = [(i, j) for i in range(0, n) for j in range(0, i + 1)] with Pool(cpu_count() - 1) as pool: funcAndarg = partial(parDist, documents=documents, embedding=embedding, measure=measure, relaxed=relaxed) results = pool.map(funcAndarg, lower_triangle) print(results) with open("./result.pkl", 'wb') as f: pickle.dump(results, f, pickle.HIGHEST_PROTOCOL)""" def computeDistanceMatrix(documents, embedding, measure, relaxed): print("Creating condensed distance matrix...") n = len(documents) m = n mat = np.zeros((n, m)) for i in range(0, n): for j in range(0, i + 1): print("Computing (" + str(i) + ", " + str(j) + ") of " + "(" + str(n) + ", " + str(m) + ")...") if (measure == 2): mat[i,j] = embedding.distance(documents[i], documents[j]) else: mat[i,j] = embedding.distance(documents[i], documents[j], measure, relaxed) print("Condensed distance matrix created.") return mat if __name__ == '__main__': parser = argparse.ArgumentParser(description = "Performs the distance matrix computation.") parser.add_argument("--documents", "-d", help = "Documents path", default = "NONE") parser.add_argument("--embedding", "-e", help = "Embedding type", default = "NONE") parser.add_argument("--modelembedding", "-me", help = "Embedding model path", default = "NONE") parser.add_argument("--scipy", "-s", help = "Embedding Spacy model path", default = "NONE") parser.add_argument("--measure", "-m", help = "Measure to be used", default = "NONE") parser.add_argument("--relaxed", "-r", help = "Relaxed measure", default = "NONE") parser.add_argument("--path", "-p", help = "Distance matrix destination path", default = "NONE") args = parser.parse_args() documents = args.documents embedding = args.embedding model = args.modelembedding scipy = args.scipy measure = int(args.measure) relaxed = int(args.relaxed) destination = args.path print("Retrieving documents...") docs = [] for doc in os.listdir(documents): if doc.endswith(".txt"): docs.append(documents + doc) docs.sort(key = lambda x: int(x.split("/")[-1].split("-")[0])) print(docs) print("Documents retrieved.") print("Creating internal objects for the distance computation...") if (embedding == "w2v"): m = sim.Word2VecSimilarity(model, scipy) elif (embedding == "fT"): m = sim.FastTextSimilarity(model, scipy) elif (embedding == "GV"): m = sim.GloVeSimilarity(model, scipy) elif (embedding == "d2v"): m = sim.Doc2VecSimilarity(model) elif (embedding == "ELMo"): m = sim.ELMoSimilarity(model) elif (embedding == "NRC"): m = sim.NRCSimilarity(model) print("Internal objects for the distance computation created.") start = time.time() #matrix = parComputeDistanceMatrix(docs, m, measure, relaxed) #-- VERSIÓN PARALELA matrix = computeDistanceMatrix(docs, m, measure, relaxed) #-- VERSIÓN NO PARALELA end = time.time() print("The computation taken " + str(end - start) + ".") print("Saving the computed distance matrix...") npMat = np.matrix(matrix) with open(destination, 'wb') as f: for line in npMat: np.savetxt(f, line, fmt='%.2f') print("Distance patrix saved.") print("\n\n") print("The resulted matrix is the following one:") print(npMat) ```
{ "source": "joaquimg/StochOptFormat", "score": 3 }
#### File: StochOptFormat/examples/news_vendor.py ```python import json import jsonschema import math from pulp import * def mathoptformat_to_pulp(node, name): sp = node['subproblem'] # Create the problem sense = LpMaximize if sp['objective']['sense'] == 'max' else LpMinimize prob = LpProblem(name, sense) # Initialize the variables vars = {} for x in sp['variables']: vars[x['name']] = LpVariable(x['name']) # Add the objective function obj = sp['objective']['function'] if obj['head'] == 'SingleVariable': prob += vars[obj['variable']] elif obj['head'] == 'ScalarAffineFunction': prob += lpSum( term['coefficient'] * vars[term['variable']] for term in obj['terms'] ) + obj['constant'] else: raise(Exception('Unsupported objective: ' + str(obj))) # Add the constraints for c in sp['constraints']: f, s = c['function'], c['set'] if f['head'] == 'SingleVariable': x = f['variable'] if s['head'] == 'GreaterThan': vars[x].lowBound = s['lower'] elif s['head'] == 'LessThan': vars[x].upBound = s['upper'] elif s['head'] == 'EqualTo': vars[x].lowBound = s['value'] vars[x].upBound = s['value'] elif s['head'] == 'Interval': vars[x].lowBound = s['lower'] vars[x].upBound = s['upper'] else: raise(Exception('Unsupported set: ' + str(s))) elif f['head'] == 'ScalarAffineFunction': lhs = lpSum( term['coefficient'] * vars[term['variable']] for term in f['terms'] ) + f['constant'] if s['head'] == 'GreaterThan': prob += lhs >= s['lower'] elif s['head'] == 'LessThan': prob += lhs <= s['upper'] elif s['head'] == 'EqualTo': prob += lhs == s['value'] elif s['head'] == 'Interval': prob += lhs <= s['upper'] prob += lhs >= s['lower'] else: raise(Exception('Unsupported set: ' + str(s))) else: raise(Exception('Unsupported function: ' + str(f))) return { 'prob': prob, 'vars': vars, 'state_variables': node['state_variables'], 'realizations': node['realizations'], } def solve_second_stage(node, state, noise): for (name, s) in node['state_variables'].items(): v = node['vars'][s['in']] v.lowBound = state[name] v.upBound = state[name] for (name, w) in noise.items(): p = node['vars'][name] p.lowBound = w p.upBound = w node['prob'].solve() return { 'objective': value(node['prob'].objective), 'pi': { name: node['vars'][s['in']].dj for (name, s) in node['state_variables'].items() } } def solve_first_stage(node): node['prob'].solve() return { name: node['vars'][s['out']].varValue for (name, s) in node['state_variables'].items() } def add_cut(first_stage, x, ret): cut_term = lpSum( p * r['objective'] + p * lpSum( r['pi'][name] * (first_stage['vars'][s['out']] - x[name]) for (name, s) in first_stage['state_variables'].items() ) for (p, r) in ret ) if first_stage['prob'].sense == -1: first_stage['prob'] += first_stage['theta'] <= cut_term else: first_stage['prob'] += first_stage['theta'] >= cut_term def load_two_stage_problem(filename): with open(filename, 'r') as io: data = json.load(io) assert(data['version']['major'] == 0) assert(data['version']['minor'] == 1) assert(len(data['nodes']) == 2) assert(len(data['edges']) == 2) nodes = { name: mathoptformat_to_pulp(node, name) for (name, node) in data['nodes'].items() } first_stage, second_stage = None, None for edge in data['edges']: if edge['from'] == data['root']['name']: first_stage = nodes[edge['to']] else: second_stage = nodes[edge['to']] for (name, init) in data['root']['state_variables'].items(): x = first_stage['vars'][first_stage['state_variables'][name]['in']] x.lowBound = init['initial_value'] x.upBound = init['initial_value'] first_stage['theta'] = LpVariable("theta", -10**6, 10**6) first_stage['prob'].objective += first_stage['theta'] return first_stage, second_stage def benders(first_stage, second_stage, iteration_limit = 20): bounds = [] for iter in range(iteration_limit): x = solve_first_stage(first_stage) ret = [( noise['probability'], solve_second_stage(second_stage, x, noise['support']) ) for noise in second_stage['realizations']] add_cut(first_stage, x, ret) det_bound = value(first_stage['prob'].objective) stat_bound = det_bound - first_stage['theta'].varValue + sum( p * value(r['objective']) for (p, r) in ret ) bounds.append((det_bound, stat_bound)) if abs(det_bound - stat_bound) < 1e-6: break return bounds def validate(filename): with open(filename, 'r') as io: instance = json.load(io) with open('../sof.schema.json', 'r') as io: schema = json.load(io) jsonschema.validate(instance = instance, schema = schema) validate('news_vendor.sof.json') first_stage, second_stage = load_two_stage_problem('news_vendor.sof.json') ret = benders(first_stage, second_stage) # Check solution! x = solve_first_stage(first_stage) assert(x['x'] == 10) print(ret) ```
{ "source": "joaquimjfernandes/Curso-de-Python", "score": 3 }
#### File: Aulas Python/m03/aula20c.py ```python def contador(*num): tam = len(num) print(f'Recebi os valores {num} e ao todo são {tam} números') # Programa Principal contador(2, 1, 7) contador(8, 0) contador(4, 4, 7, 6, 2) ``` #### File: Desafios Python/m02/ex047.py ```python print('\033[32;1mDESAFIO 047 - Contagem dos Pares\033[m') print('\033[32;1mALUNO:\033[m \033[36;1m<NAME>\033[m') print('-' * 50) # ----------------------------------------------------------------------- def Contador(): for n in range(1, 51): if n % 2 == 0: print(n, end=' ') print('Acabou!') # ----------------------------------------------------------------------- # Programa Principal Contador() ``` #### File: Desafios Python/m02/ex050.py ```python print('\033[32;1mDESAFIO 050 - Soma dos Pares\033[m') print('\033[32;1mALUNO:\033[m \033[36;1m<NAME>\033[m') print('-' * 50) # ----------------------------------------------------------------------- def SomaPar(): soma= cont = 0 for n in range(1, 7): n = int(input(f'Digite o {n}º número: ')) if n % 2 == 0: soma += n cont += 1 print(f'Recebemos {cont} Pares e a sua soma foi {soma}') # ----------------------------------------------------------------------- # Programa Principal SomaPar() ```
{ "source": "JoaquimXG/csv-merge", "score": 3 }
#### File: src/merge_csv/merge_files.py ```python import pandas as pd import logging from .validate_options import validate_options from .merge_dataframes import merge_dataframes_multiple_columns, merge_dataframes_single_column def merge_files(left_file: str, right_file: str, columns: list, keep: str = 'none', keep_missing: str = 'none') -> pd.DataFrame: """ Merges two csv files Parameters: left_file (str): Path to first file right_file (str): Path to second file column (str): Name of column to merge files on keep (str): Table to keep values from when no match is found. One of ['left', 'right', 'both', 'none']. Default is 'none' keep_missing (str): Table to keep values from when row contains no value in given oclumn. One of ['left', 'right', 'both', 'none']. Default is 'none' Returns: (pd.DataFrame): Merged DataFrame """ log = logging.getLogger(__name__) dfLeft = pd.read_csv(left_file) dfRight = pd.read_csv(right_file) validate_options(dfLeft, dfRight, columns, keep, keep_missing) log.info("Starting Merge") if len(columns) == 1: return merge_dataframes_single_column(dfLeft, dfRight, columns[0], keep, keep_missing) else: return merge_dataframes_multiple_columns(dfLeft, dfRight, columns, keep) ```
{ "source": "Joaquin6/StockAPI", "score": 2 }
#### File: Joaquin6/StockAPI/algorithm.py ```python from colorama import Fore, Style, init as ColoramaInit import alpaca_trade_api as alpaca from datetime import * import numpy as np import logging from scrape import * import time import threading import sys from config import * ColoramaInit(autoreset=True) #Logging info #ogging.basicConfig(filename='debug.log', level=logging.DEBUG) logging.basicConfig(filename='Misc/trades.log', level=logging.INFO) class algo: def __init__(self): #Initialization of accounts api, account, twelvedataclients self.api = alpaca.REST(TESTAPI_KEY, TESTAPI_SECRET, APCA_API_BASE_URL, 'v2') self.account = self.api.get_account() #Potential Stocks to check self.tickers = [] #Stocks the made it past the initial check self.approved = ['F', 'SPCE', 'RBLX', 'TAL', 'NVDA', 'MFC', 'IOVA', 'VFC', 'BEKE', 'YALA'] self.blacklist = [] self.timeToClose = None #self.importT() #self.test() self.run() def test(self): #RSI indicator #Dead Code """ @:param: :return: """ #under30 is undervalued/oversold and over 70 is overvalued/undersold for stonk in self.approved: print(stonk) alp = self.api.get_barset(stonk,'1D',limit=14).df alp.columns = alp.columns.get_level_values(1) if(len(alp)>0): test5=sum(alp['close'])/len(alp) print("Average closing price {}".format(test5)) #determine if higher or lower if(alp['close'][13]>alp['close'][12]): print("current day is higher") else: print("Previous day is higher") #rsi = 100 - (100/(1+RS)) for x in range(len(alp['close'])-1): print(alp['close'][x]) print(alp['close'][x]-alp['open'][x+1]) else: print("Empty Dataframe FUCKING ALPACA") return def run(self): self.importT() while True: #Calculate time and time to closing as well as sets the positions self.clock = self.api.get_clock() closingTime = self.clock.next_close.replace(tzinfo=timezone.utc).timestamp() currTime = self.clock.timestamp.replace(tzinfo=timezone.utc).timestamp() self.timeToClose = closingTime - currTime positions = self.api.list_positions() #Checks if markets r open if self.clock.is_open: print("MARKET IS OPEN") if (self.timeToClose < (60 * 15)): # Close all positions when 15 minutes til market close. print("Market closing soon. importing tickers.") self.importT() print("Sleeping until market close (15 minutes).") time.sleep(60 * 15) #major bug here need to just clean up this elif elif(self.timeToClose == (60*60)): print("An Hour is Left Importing for end day trading!") self.importT() time.sleep(60) else: #Checking tickers for indicator #When live, on 1 minute interval we check #If stocks are ready to sell self.sma() for position in positions: print("check position") profloss = float(position.unrealized_plpc) * 100 if (profloss > 8 or (profloss < -4)): orderSide = 'sell' qty = abs(int(float(position.qty))) #not entirelly sure was respSO is #Logging, printing, submitting orders logging.info("AT {} SOLD {}".format(time.ctime(),position.symbol)) print("AT {} SOLD {}".format(time.ctime(),position.symbol)) tSubmitOrder = threading.Thread(target=self.submitOrder(qty, position.symbol, orderSide)) tSubmitOrder.start() tSubmitOrder.join() #Checkings the SMA indicator of our tickers for purchases #This needs to be clean up and proper time.sleep(60) else: #When off print("OFF LINE") time.sleep(60*15) logging.info("PROGRAM OFF") return def submitOrder(self,qty,symbol,orderSide): """ :param qty: Quantity of the shares :param symbol: Which specific symbol :param orderSide: Do we purchase or sell it :return: """ x = symbol t = qty self.api.submit_order(symbol=x, qty=t, side=orderSide, type='market',time_in_force='day') return def sma(self): """ Indicator runs through all our tickers for the algorithm :return: void """ barTimeframe = "1D" # 1Min, 5Min, 15Min, 1H, 1D for x in self.tickers: returned_data = self.api.get_barset(x, barTimeframe, limit=100) closeList = [] volumeList = [] #Converting returned data to dataframe and flattening the columns bar = returned_data.df bar.columns = bar.columns.get_level_values(1) # Iterates through the barset thats in a dataframe and puts them into individual lists for index,row in bar.iterrows(): #print(row['open'],row['volume']) closeList.append(row['close']) volumeList.append(row['volume']) #From lists to numpy arrays to use closeList = np.array(closeList, dtype=np.float64) volumeList = np.array(volumeList, dtype=np.float64) # Calculated SMA trading indicator SMA20 = self.moving_average(closeList,20) SMA50 = self.moving_average(closeList,50) final20 = sum(SMA20)/len(SMA20) final50 = sum(SMA50)/len(SMA50) #Now that we have the stocks for the trading indicator #MASSIVE BUG HERE EDIT THE TRY/EXCEPT WHEN GET TO IT if(final20>final50): self.approved.append(x) try: #Throws an error if there is not a position which means we buy it openPosition = self.api.get_position(x) except: #Calculates the price and size of our position price,targetPositionSize = self.calculateQ(x) #logs and prints all the transaction (Put in function for later) print("On {} We are going to buy: {} at {} for a total amount of {}".format(time.ctime(),x,price,round(targetPositionSize)-1)) logging.info("On {} We are going to buy: {} at {} for a total amount of {}".format(time.ctime(), x,price,round(targetPositionSize)-1)) #order examples #Send order #NEEDS TO BE WHOLE NUMBER (Buggy with Fractional Shares self.submitOrder(round(targetPositionSize) - 1, x, 'buy') try: print("Success Buy") except: print("ERROR WITH ORDER PROBABLY ON PRICE") return def moving_average(self,x, w): return np.convolve(x, np.ones(w), 'valid') / w def importT(self): """ Sets the tickers list of all volatile and valid stocks from scrape :return: """ #imprt tickers scrape = YahooScrape() scrape.findVolatile(100) self.tickers.extend(scrape.sortValid(1)) print(self.tickers) logging.info(self.tickers) return def calculateQ(self,stock): """ This calculates the amount we are going to buy with current cash balance :param stock: Ticker of the stock :return: """ # Opens new position if one does not exist # If we havent already bought this stock # Gets our cash balance and the last quote for the stock cashBalance = float(self.api.get_account().cash) quoteL = self.api.get_last_quote(stock)._raw # Then calculates the target position based on our maxpos(.25) and current price price = quoteL['askprice'] if (price == 0): price = quoteL['bidprice'] targetPositionSize = round(cashBalance / (price / maxPos), 2) return price,targetPositionSize ``` #### File: Joaquin6/StockAPI/indicators.py ```python import config import numpy as np import pandas as pd import alpaca_trade_api as alpaca from config import * class indicators(): def __init__(self): #ind determines which indicactor it is """ ind determines which indicator to use 0 is Simple Moving Average 1 is Rsi indicator """ self.tickers = 'BA' self.api = alpaca.REST(TESTAPI_KEY, TESTAPI_SECRET, APCA_API_BASE_URL, 'v2') #actual indiaqctors def sma(self): return #calculations def moving_average(self,x, w): """ Closing Prices :param x:Sequence of closing prices :param w: w is a length for a sequence of ones :return: The moving average of the sequence(x) in a list so we can see """ return np.convolve(x, np.ones(w), 'valid') / w def rsiIndicator(self): return ```
{ "source": "JoaquinAmatRodrigo/skforecaster", "score": 3 }
#### File: ForecasterAutoregCustom/tests/test_init.py ```python import pytest import pandas as pd from skforecast.ForecasterAutoregCustom import ForecasterAutoregCustom from sklearn.linear_model import LinearRegression def create_predictors(y): ''' Create first 5 lags of a time series. ''' lags = y[-1:-6:-1] return lags def test_init_exception_when_window_size_argument_is_string(): ''' ''' with pytest.raises(Exception): forecaster = ForecasterAutoregCustom( regressor = LinearRegression(), fun_predictors = create_predictors, window_size = '5' ) def test_init_exception_when_fun_predictors_argument_is_string(): ''' ''' with pytest.raises(Exception): forecaster = ForecasterAutoregCustom( regressor = LinearRegression(), fun_predictors = 'create_predictors', window_size = 5 ) ``` #### File: ForecasterAutoregCustom/tests/test_predict_interval.py ```python import numpy as np import pandas as pd from skforecast.ForecasterAutoregCustom import ForecasterAutoregCustom from sklearn.linear_model import LinearRegression def create_predictors(y): ''' Create first 5 lags of a time series. ''' lags = y[-1:-6:-1] return lags def test_predict_interval_output_when_forecaster_is_LinearRegression_steps_is_1_in_sample_residuals_is_True(): ''' Test output when regressor is LinearRegression and one step ahead is predicted using in sample residuals. ''' forecaster = ForecasterAutoregCustom( regressor = LinearRegression(), fun_predictors = create_predictors, window_size = 5 ) forecaster.fit(y=pd.Series(np.arange(10))) forecaster.in_sample_residuals = np.full_like(forecaster.in_sample_residuals, fill_value=10) expected = pd.DataFrame( np.array([[10., 20., 20.]]), columns = ['pred', 'lower_bound', 'upper_bound'], index = pd.RangeIndex(start=10, stop=11, step=1) ) results = forecaster.predict_interval(steps=1, in_sample_residuals=True, n_boot=2) pd.testing.assert_frame_equal(results, expected) def test_predict_interval_output_when_forecaster_is_LinearRegression_steps_is_2_in_sample_residuals_is_True(): ''' Test output when regressor is LinearRegression and two step ahead is predicted using in sample residuals. ''' forecaster = ForecasterAutoregCustom( regressor = LinearRegression(), fun_predictors = create_predictors, window_size = 5 ) forecaster.fit(y=pd.Series(np.arange(10))) forecaster.in_sample_residuals = np.full_like(forecaster.in_sample_residuals, fill_value=10) expected = pd.DataFrame( np.array([[10., 20., 20.], [11., 23., 23.]]), columns = ['pred', 'lower_bound', 'upper_bound'], index = pd.RangeIndex(start=10, stop=12, step=1) ) results = forecaster.predict_interval(steps=2, in_sample_residuals=True, n_boot=2) pd.testing.assert_frame_equal(results, expected) def test_predict_interval_output_when_forecaster_is_LinearRegression_steps_is_1_in_sample_residuals_is_False(): ''' Test output when regressor is LinearRegression and one step ahead is predicted using out sample residuals. ''' forecaster = ForecasterAutoregCustom( regressor = LinearRegression(), fun_predictors = create_predictors, window_size = 5 ) forecaster.fit(y=pd.Series(np.arange(10))) forecaster.out_sample_residuals = np.full_like(forecaster.in_sample_residuals, fill_value=10) expected = pd.DataFrame( np.array([[10., 20., 20.]]), columns = ['pred', 'lower_bound', 'upper_bound'], index = pd.RangeIndex(start=10, stop=11, step=1) ) results = forecaster.predict_interval(steps=1, in_sample_residuals=False, n_boot=2) pd.testing.assert_frame_equal(results, expected) def test_predict_interval_output_when_forecaster_is_LinearRegression_steps_is_2_in_sample_residuals_is_False(): ''' Test output when regressor is LinearRegression and two step ahead is predicted using out sample residuals. ''' forecaster = ForecasterAutoregCustom( regressor = LinearRegression(), fun_predictors = create_predictors, window_size = 5 ) forecaster.fit(y=pd.Series(np.arange(10))) forecaster.out_sample_residuals = np.full_like(forecaster.in_sample_residuals, fill_value=10) expected = pd.DataFrame( np.array([[10., 20., 20.], [11., 23., 23.]]), columns = ['pred', 'lower_bound', 'upper_bound'], index = pd.RangeIndex(start=10, stop=12, step=1) ) results = forecaster.predict_interval(steps=2, in_sample_residuals=False) pd.testing.assert_frame_equal(results, expected) ``` #### File: ForecasterAutoregMultiOutput/tests/test_predict.py ```python import numpy as np import pandas as pd from skforecast.ForecasterAutoregMultiOutput import ForecasterAutoregMultiOutput from sklearn.linear_model import LinearRegression def test_predict_output_when_regressor_is_LinearRegression(): ''' Test predict output when using LinearRegression as regressor. ''' forecaster = ForecasterAutoregMultiOutput(LinearRegression(), lags=3, steps=3) forecaster.fit(y=pd.Series(np.arange(50))) results = forecaster.predict() expected = pd.Series( data = np.array([50., 51., 52.]), index = pd.RangeIndex(start=50, stop=53, step=1), name = 'pred' ) pd.testing.assert_series_equal(results, expected) ``` #### File: ForecasterAutoreg/tests/test_create_lags.py ```python import pytest import numpy as np import pandas as pd from skforecast.ForecasterAutoreg import ForecasterAutoreg from sklearn.linear_model import LinearRegression def test_create_lags_output(): ''' Test matrix of lags is created properly when langs=3 and y=np.arange(10). ''' forecaster = ForecasterAutoreg(LinearRegression(), lags=3) results = forecaster._create_lags(y=np.arange(10)) expected = (np.array([[2., 1., 0.], [3., 2., 1.], [4., 3., 2.], [5., 4., 3.], [6., 5., 4.], [7., 6., 5.], [8., 7., 6.]]), np.array([3., 4., 5., 6., 7., 8., 9.])) assert (results[0] == expected[0]).all() assert (results[1] == expected[1]).all() def test_create_lags_exception_when_len_of_y_is_lower_than_maximum_lag(): ''' Test exception is raised when length of y is lower than maximum lag included in the forecaster. ''' forecaster = ForecasterAutoreg(LinearRegression(), lags=10) with pytest.raises(Exception): forecaster._create_lags(y=np.arange(5)) ``` #### File: ForecasterAutoreg/tests/test_get_coef.py ```python from pytest import approx import numpy as np import pandas as pd from skforecast.ForecasterAutoreg import ForecasterAutoreg from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor def test_output_get_coef_when_regressor_is_LinearRegression(): ''' Test output of get_coef when regressor is LinearRegression with lags=3 and it is trained with y=pd.Series(np.arange(5)). ''' forecaster = ForecasterAutoreg(LinearRegression(), lags=3) forecaster.fit(y=pd.Series(np.arange(5))) expected = pd.DataFrame({ 'feature': ['lag_1', 'lag_2', 'lag_3'], 'coef': np.array([0.33333333, 0.33333333, 0.33333333]) }) results = forecaster.get_coef() assert (results['feature'] == expected['feature']).all() assert results['coef'].values == approx(expected['coef'].values) def test_output_get_coef_when_regressor_is_RandomForest(): ''' Test output of get_coef when regressor is RandomForestRegressor with lags=3 and it is trained with y=pd.Series(np.arange(5)). ''' forecaster = ForecasterAutoreg(RandomForestRegressor(n_estimators=1, max_depth=2), lags=3) forecaster.fit(y=pd.Series(np.arange(5))) expected = None results = forecaster.get_coef() assert results is expected ``` #### File: ForecasterAutoreg/tests/test_get_feature_importances.py ```python from pytest import approx import numpy as np import pandas as pd from skforecast.ForecasterAutoreg import ForecasterAutoreg from sklearn.linear_model import Lasso from sklearn.ensemble import RandomForestRegressor def test_output_get_feature_importance_when_regressor_is_RandomForest(): ''' ''' forecaster = ForecasterAutoreg(RandomForestRegressor(n_estimators=1, max_depth=2, random_state=123), lags=3) forecaster.fit(y=pd.Series(np.arange(10))) expected = pd.DataFrame({ 'feature': ['lag_1', 'lag_2', 'lag_3'], 'importance': np.array([0.94766355, 0., 0.05233645]) }) results = forecaster.get_feature_importance() assert (results['feature'] == expected['feature']).all() assert results['importance'].values == approx(expected['importance'].values) def test_output_get_feature_importance_when_regressor_is_linear_model(): ''' ''' forecaster = ForecasterAutoreg(Lasso(), lags=3) forecaster.fit(y=pd.Series(np.arange(5))) expected = None results = forecaster.get_feature_importance() assert results is expected ``` #### File: skforecast/model_selection_statsmodels/model_selection_statsmodels.py ```python from typing import Union, Dict, List, Tuple import numpy as np import pandas as pd import logging from tqdm import tqdm from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_absolute_percentage_error from sklearn.model_selection import ParameterGrid from statsmodels.tsa.statespace.sarimax import SARIMAX from ..model_selection import time_series_splitter logging.basicConfig( format = '%(asctime)-5s %(name)-10s %(levelname)-5s %(message)s', level = logging.INFO, ) def backtesting_sarimax( y: pd.Series, initial_train_size: int, steps: int, metric: str, refit: bool=False, order: tuple=(1, 0, 0), seasonal_order: tuple=(0, 0, 0, 0), trend: str=None, alpha: float= 0.05, exog: Union[pd.Series, pd.DataFrame]=None, sarimax_kwargs: dict={}, fit_kwargs: dict={'disp':0}, verbose: bool=False ) -> Tuple[np.array, pd.DataFrame]: ''' Backtesting (validation) of `SARIMAX` model from statsmodels v0.12. The model is trained using the `initial_train_size` first observations, then, in each iteration, a number of `steps` predictions are evaluated. If refit is `True`, the model is re-fitted in each iteration before making predictions. https://www.statsmodels.org/dev/examples/notebooks/generated/statespace_forecasting.html Parameters ---------- y : pandas Series Time series values. initial_train_size: int Number of samples used in the initial train. steps : int Number of steps to predict. metric : {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error'} Metric used to quantify the goodness of fit of the model. refit: bool, default False Whether to re-fit the model in each iteration. order: tuple The (p,d,q) order of the model for the number of AR parameters, differences, and MA parameters. d must be an integer indicating the integration order of the process, while p and q may either be an integers indicating the AR and MA orders (so that all lags up to those orders are included) or else iterables giving specific AR and / or MA lags to include. Default is an AR(1) model: (1,0,0). seasonal_order: tuple The (P,D,Q,s) order of the seasonal component of the model for the AR parameters, differences, MA parameters, and periodicity. D must be an integer indicating the integration order of the process, while P and Q may either be an integers indicating the AR and MA orders (so that all lags up to those orders are included) or else iterables giving specific AR and / or MA lags to include. s is an integer giving the periodicity (number of periods in season), often it is 4 for quarterly data or 12 for monthly data. Default is no seasonal effect. trend: str {‘n’,’c’,’t’,’ct’} Parameter controlling the deterministic trend polynomial A(t). Can be specified as a string where ‘c’ indicates a constant (i.e. a degree zero component of the trend polynomial), ‘t’ indicates a linear trend with time, and ‘ct’ is both. Can also be specified as an iterable defining the non-zero polynomial exponents to include, in increasing order. For example, [1,1,0,1] denotes a+bt+ct3. Default is to not include a trend component. alpha: float, default 0.05 The significance level for the confidence interval. The default alpha = .05 returns a 95% confidence interval. exog : pd.Series, pd.DataFrame, default `None` Exogenous variable/s included as predictor/s. Must have the same number of observations as `y` and should be aligned so that y[i] is regressed on exog[i]. sarimax_kwargs: dict, default `{}` Additional keyword arguments passed to SARIMAX constructor. See more in https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html#statsmodels.tsa.statespace.sarimax.SARIMAX fit_kwargs: dict, default `{'disp':0}` Additional keyword arguments passed to SARIMAX fit. See more in https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.fit.html#statsmodels.tsa.statespace.sarimax.SARIMAX.fit verbose : bool, default `False` Print number of folds used for backtesting. Returns ------- metric_value: np.ndarray shape (1,) Value of the metric. backtest_predictions: pandas DataFrame Values predicted and their estimated interval: column pred = predictions. column lower = lower bound of the interval. column upper = upper bound interval of the interval. ''' if metric not in ['mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error']: raise Exception( f"Allowed metrics are: 'mean_squared_error', 'mean_absolute_error' and " f"'mean_absolute_percentage_error'. Got {metric}." ) metrics = { 'mean_squared_error': mean_squared_error, 'mean_absolute_error': mean_absolute_error, 'mean_absolute_percentage_error': mean_absolute_percentage_error } metric = metrics[metric] folds = int(np.ceil((len(y) - initial_train_size) / steps)) remainder = (len(y) - initial_train_size) % steps backtest_predictions = [] if verbose: print(f"Number of observations used for training: {initial_train_size}") print(f"Number of observations used for backtesting: {len(y) - initial_train_size}") print(f" Number of folds: {folds}") print(f" Number of steps per fold: {steps}") if remainder != 0: print(f" Last fold only includes {remainder} observations.") if folds > 50 and refit: print( f"Model will be fit {folds} times. This can take substantial amounts of time. " f"If not feasible, try with `refit = False`." ) if refit: # In each iteration (except the last one) the model is fitted before # making predictions. The train size increases by `steps` in each iteration. for i in range(folds): train_size = initial_train_size + i * steps if exog is not None: next_window_exog = exog.iloc[train_size:train_size + steps, ] if i < folds - 1: # from the first step to one before the last one. if exog is None: model = SARIMAX( endog = y.iloc[:train_size], order = order, seasonal_order = seasonal_order, trend = trend, **sarimax_kwargs ).fit(**fit_kwargs) pred = model.get_forecast(steps=steps) pred = pd.concat(( pred.predicted_mean.rename("predicted_mean"), pred.conf_int(alpha=alpha)), axis = 1 ) else: model = SARIMAX( endog = y.iloc[:train_size], exog = exog.iloc[:train_size, ], order = order, seasonal_order = seasonal_order, trend = trend, **sarimax_kwargs ).fit(**fit_kwargs) pred = model.get_forecast(steps=steps, exog=next_window_exog) pred = pd.concat(( pred.predicted_mean.rename("predicted_mean"), pred.conf_int(alpha=alpha)), axis = 1 ) else: if remainder == 0: if exog is None: model = SARIMAX( endog = y.iloc[:train_size], order = order, seasonal_order = seasonal_order, trend = trend, **sarimax_kwargs ).fit(**fit_kwargs) pred = model.get_forecast(steps=steps) pred = pd.concat(( pred.predicted_mean.rename("predicted_mean"), pred.conf_int(alpha=alpha)), axis = 1 ) else: model = SARIMAX( endog = y.iloc[:train_size], exog = exog.iloc[:train_size, ], order = order, seasonal_order = seasonal_order, trend = trend, **sarimax_kwargs ).fit(**fit_kwargs) pred = model.get_forecast(steps=steps, exog=next_window_exog) pred = pd.concat(( pred.predicted_mean.rename("predicted_mean"), pred.conf_int(alpha=alpha)), axis = 1 ) else: # Only the remaining steps need to be predicted steps = remainder if exog is None: model = SARIMAX( endog = y.iloc[:train_size], order = order, seasonal_order = seasonal_order, trend = trend, **sarimax_kwargs ).fit(**fit_kwargs) pred = model.get_forecast(steps=steps) pred = pd.concat(( pred.predicted_mean.rename("predicted_mean"), pred.conf_int(alpha=alpha)), axis = 1 ) else: model = SARIMAX( endog = y.iloc[:train_size], exog = exog.iloc[:train_size, ], order = order, seasonal_order = seasonal_order, trend = trend, **sarimax_kwargs ).fit(**fit_kwargs) pred = model.get_forecast(steps=steps, exog=next_window_exog) pred = pd.concat(( pred.predicted_mean.rename("predicted_mean"), pred.conf_int(alpha=alpha)), axis = 1 ) backtest_predictions.append(pred) else: # Since the model is only fitted with the initial_train_size, the model # must be extended in each iteration to include the data needed to make # predictions. if exog is None: model = SARIMAX( endog = y.iloc[:initial_train_size], order = order, seasonal_order = seasonal_order, trend = trend, **sarimax_kwargs ).fit(**fit_kwargs) else: model = SARIMAX( endog = y.iloc[:initial_train_size], exog = exog.iloc[:initial_train_size], order = order, seasonal_order = seasonal_order, trend = trend, **sarimax_kwargs ).fit(**fit_kwargs) for i in range(folds): last_window_end = initial_train_size + i * steps last_window_start = (initial_train_size + i * steps) - steps last_window_y = y.iloc[last_window_start:last_window_end] if exog is not None: last_window_exog = exog.iloc[last_window_start:last_window_end] next_window_exog = exog.iloc[last_window_end:last_window_end + steps] if i == 0: # No extend is needed for the first fold if exog is None: pred = model.get_forecast(steps=steps) pred = pd.concat(( pred.predicted_mean.rename("predicted_mean"), pred.conf_int(alpha=alpha)), axis = 1 ) else: pred = model.get_forecast(steps=steps, exog=next_window_exog) pred = pd.concat(( pred.predicted_mean.rename("predicted_mean"), pred.conf_int(alpha=alpha)), axis = 1 ) elif i < folds - 1: if exog is None: model = model.extend(endog=last_window_y) pred = model.get_forecast(steps=steps) pred = pd.concat(( pred.predicted_mean.rename("predicted_mean"), pred.conf_int(alpha=alpha)), axis = 1 ) else: model = model.extend(endog=last_window_y, exog=last_window_exog) pred = model.get_forecast(steps=steps, exog=next_window_exog) pred = pd.concat(( pred.predicted_mean.rename("predicted_mean"), pred.conf_int(alpha=alpha)), axis = 1 ) else: if remainder == 0: if exog is None: model = model.extend(endog=last_window_y) pred = model.get_forecast(steps=steps) pred = pd.concat(( pred.predicted_mean.rename("predicted_mean"), pred.conf_int(alpha=alpha)), axis = 1 ) else: model = model.extend(endog=last_window_y, exog=last_window_exog) pred = model.get_forecast(steps=steps, exog=next_window_exog) pred = pd.concat(( pred.predicted_mean.rename("predicted_mean"), pred.conf_int(alpha=alpha)), axis = 1 ) else: # Only the remaining steps need to be predicted steps = remainder if exog is None: model = model.extend(endog=last_window_y) pred = model.get_forecast(steps=steps) pred = pd.concat(( pred.predicted_mean.rename("predicted_mean"), pred.conf_int(alpha=alpha)), axis = 1 ) else: model = model.extend(endog=last_window_y, exog=last_window_exog) pred = model.get_forecast(steps=steps, exog=next_window_exog) pred = pd.concat(( pred.predicted_mean.rename("predicted_mean"), pred.conf_int(alpha=alpha)), axis = 1 ) backtest_predictions.append(pred) backtest_predictions = pd.concat(backtest_predictions) metric_value = metric( y_true = y.iloc[initial_train_size: initial_train_size + len(backtest_predictions)], y_pred = backtest_predictions['predicted_mean'] ) return np.array([metric_value]), backtest_predictions def cv_sarimax( y: pd.Series, initial_train_size: int, steps: int, metric: str, order: tuple=(1, 0, 0), seasonal_order: tuple=(0, 0, 0, 0), trend: str=None, alpha: float= 0.05, exog: Union[pd.Series, pd.DataFrame]=None, allow_incomplete_fold: bool=True, sarimax_kwargs: dict={}, fit_kwargs: dict={'disp':0}, verbose: bool=False ) -> Tuple[np.array, np.array]: ''' Cross-validation of `SARIMAX` model from statsmodels v0.12. The order of data is maintained and the training set increases in each iteration. Parameters ---------- y : pandas Series Time series values. order: tuple The (p,d,q) order of the model for the number of AR parameters, differences, and MA parameters. d must be an integer indicating the integration order of the process, while p and q may either be an integers indicating the AR and MA orders (so that all lags up to those orders are included) or else iterables giving specific AR and / or MA lags to include. Default is an AR(1) model: (1,0,0). seasonal_order: tuple The (P,D,Q,s) order of the seasonal component of the model for the AR parameters, differences, MA parameters, and periodicity. D must be an integer indicating the integration order of the process, while P and Q may either be an integers indicating the AR and MA orders (so that all lags up to those orders are included) or else iterables giving specific AR and / or MA lags to include. s is an integer giving the periodicity (number of periods in season), often it is 4 for quarterly data or 12 for monthly data. Default is no seasonal effect. trend: str {‘n’,’c’,’t’,’ct’} Parameter controlling the deterministic trend polynomial A(t). Can be specified as a string where ‘c’ indicates a constant (i.e. a degree zero component of the trend polynomial), ‘t’ indicates a linear trend with time, and ‘ct’ is both. Can also be specified as an iterable defining the non-zero polynomial exponents to include, in increasing order. For example, [1,1,0,1] denotes a+bt+ct3. Default is to not include a trend component. alpha: float, default 0.05 The significance level for the confidence interval. The default alpha = .05 returns a 95% confidence interval. initial_train_size: int Number of samples in the initial train split. steps : int Number of steps to predict. metric : {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error'} Metric used to quantify the goodness of fit of the model. exog : pandas Series, pandas DataFrame, default `None` Exogenous variable/s included as predictor/s. Must have the same number of observations as `y` and should be aligned so that y[i] is regressed on exog[i]. sarimax_kwargs: dict, default {} Additional keyword arguments passed to SARIMAX initialization. See more in https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html#statsmodels.tsa.statespace.sarimax.SARIMAX fit_kwargs: dict, default `{'disp':0}` Additional keyword arguments passed to SARIMAX fit. See more in https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.fit.html#statsmodels.tsa.statespace.sarimax.SARIMAX.fit verbose : bool, default `False` Print number of folds used for cross-validation. Returns ------- cv_metrics: 1D np.ndarray Value of the metric for each partition. cv_predictions: pandas DataFrame Values predicted and their estimated interval: column pred = predictions. column lower = lower bound of the interval. column upper = upper bound interval of the interval. ''' if metric not in ['mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error']: raise Exception( f"Allowed metrics are: 'mean_squared_error', 'mean_absolute_error' and " f"'mean_absolute_percentage_error'. Got {metric}." ) metrics = { 'mean_squared_error': mean_squared_error, 'mean_absolute_error': mean_absolute_error, 'mean_absolute_percentage_error': mean_absolute_percentage_error } metric = metrics[metric] if isinstance(y, pd.Series): y = y.to_numpy(copy=True) if isinstance(exog, (pd.Series, pd.DataFrame)): exog = exog.to_numpy(copy=True) cv_predictions = [] cv_metrics = [] splits = time_series_splitter( y = y, initial_train_size = initial_train_size, steps = steps, allow_incomplete_fold = allow_incomplete_fold, verbose = verbose ) for train_index, test_index in splits: if exog is None: model = SARIMAX( endog = y.iloc[train_index], order = order, seasonal_order = seasonal_order, trend = trend, **sarimax_kwargs ).fit(**fit_kwargs) pred = model.get_forecast(steps=len(test_index)) pred = np.column_stack((pred.predicted_mean, pred.conf_int(alpha=alpha))) else: model = SARIMAX( endog = y.iloc[train_index], exog = exog.iloc[train_index], order = order, seasonal_order = seasonal_order, trend = trend, **sarimax_kwargs ).fit(**fit_kwargs) pred = model.get_forecast(steps=len(test_index), exog=exog.iloc[test_index]) pred = np.column_stack((pred.predicted_mean, pred.conf_int(alpha=alpha))) metric_value = metric( y_true = y.iloc[test_index], y_pred = pred[:, 0] ) cv_metrics.append(metric_value) cv_predictions.append(pred) return np.array(cv_metrics), np.concatenate(cv_predictions) def grid_search_sarimax( y: pd.Series, param_grid: dict, initial_train_size: int, steps: int, metric: str, exog: Union[pd.Series, pd.DataFrame]=None, refit: bool=False, sarimax_kwargs: dict={}, fit_kwargs: dict={'disp':0}, verbose: bool=False ) -> pd.DataFrame: ''' Exhaustive search over specified parameter values for a `SARIMAX` model from statsmodels v0.12. Validation is done using time series cross-validation or backtesting. Parameters ---------- y : pandas Series Time series values. param_grid : dict Dictionary with parameters names (`str`) as keys and lists of parameter settings to try as values. Allowed parameters in the grid are: order, seasonal_order and trend. initial_train_size: int Number of samples used in the initial train. steps : int Number of steps to predict. metric : {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error'} Metric used to quantify the goodness of fit of the model. exog : np.ndarray, pd.Series, pd.DataFrame, default `None` Exogenous variable/s included as predictor/s. Must have the same number of observations as `y` and should be aligned so that y[i] is regressed on exog[i]. refit: bool, default False Whether to re-fit the model in each iteration. sarimax_kwargs: dict, default `{}` Additional keyword arguments passed to SARIMAX initialization. See more in https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html#statsmodels.tsa.statespace.sarimax.SARIMAX fit_kwargs: dict, default `{'disp':0}` Additional keyword arguments passed to SARIMAX fit. See more in https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.fit.html#statsmodels.tsa.statespace.sarimax.SARIMAX.fit verbose : bool, default `True` Print number of folds used for cv or backtesting. Returns ------- results: pandas DataFrame Metric value estimated for each combination of parameters. ''' params_list = [] metric_list = [] # bic_list = [] # aic_list = [] if 'order' not in param_grid: param_grid['order'] = [(1, 0, 0)] if 'seasonal_order' not in param_grid: param_grid['seasonal_order'] = [(0, 0, 0, 0)] if 'trend' not in param_grid: param_grid['trend'] = [None] keys_to_ignore = set(param_grid.keys()) - {'order', 'seasonal_order', 'trend'} if keys_to_ignore: print( f'Only arguments: order, seasonal_order and trend are allowed for grid search.' f' Ignoring {keys_to_ignore}.' ) for key in keys_to_ignore: del param_grid[key] param_grid = list(ParameterGrid(param_grid)) logging.info( f"Number of models compared: {len(param_grid)}" ) for params in tqdm(param_grid, ncols=90): metric_value = backtesting_sarimax( y = y, exog = exog, order = params['order'], seasonal_order = params['seasonal_order'], trend = params['trend'], initial_train_size = initial_train_size, steps = steps, refit = refit, metric = metric, sarimax_kwargs = sarimax_kwargs, fit_kwargs = fit_kwargs, verbose = verbose )[0] params_list.append(params) metric_list.append(metric_value) # model = SARIMAX( # endog = y, # exog = exog, # order = params['order'], # seasonal_order = params['seasonal_order'], # trend = params['trend'], # **sarimax_kwargs # ).fit(**fit_kwargs) # bic_list.append(model.bic) # aic_list.append(model.aic) results = pd.DataFrame({ 'params': params_list, 'metric': metric_list, #'bic' : bic_list, #'aic' : aic_list }) results = results.sort_values(by='metric', ascending=True) results = pd.concat([results, results['params'].apply(pd.Series)], axis=1) return results ``` #### File: utils/tests/test_preproces_last_window.py ```python import pytest import numpy as np import pandas as pd from skforecast.utils import preprocess_last_window def test_output_preprocess_last_window_when_last_window_index_is_DatetimeIndex_and_has_frequecy(): ''' Test values returned by when last_window is a pandas Series with DatetimeIndex and freq is not None. ''' last_window = pd.Series( data = np.arange(3), index = pd.date_range("1990-01-01", periods=3, freq='D') ) results = preprocess_last_window(last_window) expected = (np.arange(3), pd.DatetimeIndex(['1990-01-01', '1990-01-02', '1990-01-03'], dtype='datetime64[ns]', freq='D') ) assert (results[0] == expected[0]).all() assert (results[1] == expected[1]).all() def test_output_preprocess_last_window_when_last_window_index_is_DatetimeIndex_but_has_not_frequecy(): ''' Test values returned by when last_window is a pandas Series with DatetimeIndex and freq is None. ''' last_window = pd.Series( data = np.arange(3), index = pd.to_datetime(["1990-01-01", "1990-01-02", "1990-01-03"]) ) results = preprocess_last_window(last_window) expected = (np.arange(3), pd.RangeIndex(start=0, stop=3, step=1) ) assert (results[0] == expected[0]).all() assert (results[1] == expected[1]).all() def test_output_preprocess_last_window_when_last_window_index_is_not_DatetimeIndex(): ''' Test values returned by when last_window is a pandas Series without DatetimeIndex. ''' last_window = pd.Series(data=np.arange(3)) results = preprocess_last_window(last_window) expected = (np.arange(3), pd.RangeIndex(start=0, stop=3, step=1) ) assert (results[0] == expected[0]).all() assert (results[1] == expected[1]).all() ```
{ "source": "joaquinbosano/Coberturas-dinamicas", "score": 3 }
#### File: joaquinbosano/Coberturas-dinamicas/dataclass_git.py ```python import quandl import pandas as pd class Dataholder: def __init__(self, subyacente, tiempo_inicio, tiempo_terminal, api_key, cantidad_contratos = 1): self.__api_key = str(api_key) self.__subyacente = subyacente self.__cantidad_contratos = cantidad_contratos self.__tiempo_inicio = tiempo_inicio self.__tiempo_terminal = tiempo_terminal self.__dict_aceptados = {"crudo": "CHRIS/ICE_T", "cobre": "CHRIS/CME_HG", "oro": "CHRIS/CME_GC", "soja":"CHRIS/ICE_IS"} def Crear(self): quandl.ApiConfig.api_key = self.__api_key lista_convencional = [] lista_settle = [] lista_last = [] iterador = 1 if self.__subyacente in list(self.__dict_aceptados.keys()): if self.__subyacente == list(self.__dict_aceptados.keys())[0]: lista_convencional = ["EIA/PET_RWTC_D"] while iterador < self.__cantidad_contratos + 1: nombre_convencional = str(self.__dict_aceptados[self.__subyacente]) + str(iterador) lista_convencional.append(nombre_convencional) lista_settle.append(nombre_convencional + " - Settle") iterador += 1 placeholder = quandl.get(lista_convencional , start_date = self.__tiempo_inicio, end_date = self.__tiempo_terminal) return placeholder.loc[:,lista_settle].dropna(axis = 0, how = "any") else: while iterador < self.__cantidad_contratos + 1: nombre_convencional = str(self.__dict_aceptados[self.__subyacente]) + str(iterador) lista_convencional.append(nombre_convencional) lista_settle.append(nombre_convencional +" - Settle" ) lista_last.append(nombre_convencional + " - Last") iterador += 1 placeholder = quandl.get(lista_convencional, start_date = self.__tiempo_inicio, end_date = self.__tiempo_terminal) try: return placeholder.loc[:,lista_settle].dropna(axis = 0, how = "any") except: return placeholder.loc[:,lista_last].dropna(axis = 0, how = "any") def Cambiar_Diccionario (self, claves, codigos): if type(claves) is type([1,2]): if type (codigos) is type([1,2]): newdict = dict(zip([claves],[codigos])) self.__dict_aceptados.update(newdict) else: self.__dict_aceptados.update({str(claves):str(codigos)}) def ver(self): return self.__dict_aceptados ```
{ "source": "joaquincabezas/pytorch_geometric_temporal", "score": 2 }
#### File: pytorch_geometric_temporal/test/dataset_test.py ```python import numpy as np import networkx as nx from torch_geometric_temporal.signal import temporal_signal_split from torch_geometric_temporal.signal import StaticGraphTemporalSignal from torch_geometric_temporal.signal import DynamicGraphTemporalSignal from torch_geometric_temporal.signal import DynamicGraphStaticSignal from torch_geometric_temporal.dataset import METRLADatasetLoader, PemsBayDatasetLoader, WindmillOutputDatasetLoader from torch_geometric_temporal.dataset import ChickenpoxDatasetLoader, PedalMeDatasetLoader, WikiMathsDatasetLoader, EnglandCovidDatasetLoader def get_edge_array(n_count): return np.array([edge for edge in nx.gnp_random_graph(n_count, 0.1).edges()]).T def generate_signal(snapshot_count, n_count, feature_count): edge_indices = [get_edge_array(n_count) for _ in range(snapshot_count)] edge_weights = [np.ones(edge_indices[t].shape[1]) for t in range(snapshot_count)] features = [np.random.uniform(0,1,(n_count, feature_count)) for _ in range(snapshot_count)] return edge_indices, edge_weights, features def test_dynamic_graph_temporal_signal_real(): snapshot_count = 250 n_count = 100 feature_count = 32 edge_indices, edge_weights, features = generate_signal(250, 100, 32) targets = [np.random.uniform(0,10,(n_count,)) for _ in range(snapshot_count)] dataset = DynamicGraphTemporalSignal(edge_indices, edge_weights, features, targets) for epoch in range(2): for snapshot in dataset: assert snapshot.edge_index.shape[0] == 2 assert snapshot.edge_index.shape[1] == snapshot.edge_attr.shape[0] assert snapshot.x.shape == (100, 32) assert snapshot.y.shape == (100, ) targets = [np.floor(np.random.uniform(0,10,(n_count,))).astype(int) for _ in range(snapshot_count)] dataset = DynamicGraphTemporalSignal(edge_indices, edge_weights, features, targets) for epoch in range(2): for snapshot in dataset: assert snapshot.edge_index.shape[0] == 2 assert snapshot.edge_index.shape[1] == snapshot.edge_attr.shape[0] assert snapshot.x.shape == (100, 32) assert snapshot.y.shape == (100, ) def test_static_graph_temporal_signal(): dataset = StaticGraphTemporalSignal(None, None, [None, None],[None, None]) for snapshot in dataset: assert snapshot.edge_index is None assert snapshot.edge_attr is None assert snapshot.x is None assert snapshot.y is None def test_dynamic_graph_temporal_signal(): dataset = DynamicGraphTemporalSignal([None, None], [None, None], [None, None],[None, None]) for snapshot in dataset: assert snapshot.edge_index is None assert snapshot.edge_attr is None assert snapshot.x is None assert snapshot.y is None def test_static_graph_temporal_signal_typing(): dataset = StaticGraphTemporalSignal(None, None, [np.array([1])],[np.array([2])]) for snapshot in dataset: assert snapshot.edge_index is None assert snapshot.edge_attr is None assert snapshot.x.shape == (1,) assert snapshot.y.shape == (1,) def test_dynamic_graph_static_signal_typing(): dataset = DynamicGraphStaticSignal([None], [None], None, [None]) for snapshot in dataset: assert snapshot.edge_index is None assert snapshot.edge_attr is None assert snapshot.x is None assert snapshot.y is None def test_chickenpox(): loader = ChickenpoxDatasetLoader() dataset = loader.get_dataset() for epoch in range(3): for snapshot in dataset: assert snapshot.edge_index.shape == (2, 102) assert snapshot.edge_attr.shape == (102, ) assert snapshot.x.shape == (20, 4) assert snapshot.y.shape == (20, ) def test_pedalme(): loader = PedalMeDatasetLoader() dataset = loader.get_dataset() for epoch in range(3): for snapshot in dataset: assert snapshot.edge_index.shape == (2, 225) assert snapshot.edge_attr.shape == (225, ) assert snapshot.x.shape == (15, 4) assert snapshot.y.shape == (15, ) def test_wiki(): loader = WikiMathsDatasetLoader() dataset = loader.get_dataset() for epoch in range(1): for snapshot in dataset: snapshot.edge_index.shape == (2, 27079) snapshot.edge_attr.shape == (27079, ) snapshot.x.shape == (1068, 8) snapshot.y.shape == (1068, ) def test_windmill(): loader = WindmillOutputDatasetLoader() dataset = loader.get_dataset() for epoch in range(2): for snapshot in dataset: snapshot.edge_index.shape == (2, 97032) snapshot.edge_attr.shape == (97032, ) snapshot.x.shape == (312, 8) snapshot.y.shape == (312, ) def test_covid(): loader = EnglandCovidDatasetLoader() dataset = loader.get_dataset() for epoch in range(2): for snapshot in dataset: snapshot.edge_index.shape[0] == 2 snapshot.edge_attr.shape[0] == snapshot.edge_index.shape[1] snapshot.x.shape == (129, 8) snapshot.y.shape == (129, ) def test_metrla(): loader = METRLADatasetLoader(raw_data_dir="/tmp/") dataset = loader.get_dataset() for epoch in range(2): for snapshot in dataset: assert snapshot.edge_index.shape == (2, 1722) assert snapshot.edge_attr.shape == (1722, ) assert snapshot.x.shape == (207, 2, 12) assert snapshot.y.shape == (207, 12) def test_metrla_task_generator(): loader = METRLADatasetLoader(raw_data_dir="/tmp/") dataset = loader.get_dataset(num_timesteps_in=6, num_timesteps_out=5) for epoch in range(2): for snapshot in dataset: assert snapshot.edge_index.shape == (2, 1722) assert snapshot.edge_attr.shape == (1722, ) assert snapshot.x.shape == (207, 2, 6) assert snapshot.y.shape == (207, 5) def test_pemsbay(): loader = PemsBayDatasetLoader(raw_data_dir="/tmp/") dataset = loader.get_dataset() for epoch in range(2): for snapshot in dataset: assert snapshot.edge_index.shape == (2, 2694) assert snapshot.edge_attr.shape == (2694, ) assert snapshot.x.shape == (325, 2, 12) assert snapshot.y.shape == (325, 2, 12) def test_pemsbay_task_generator(): loader = PemsBayDatasetLoader(raw_data_dir="/tmp/") dataset = loader.get_dataset(num_timesteps_in=6, num_timesteps_out=5) for epoch in range(2): for snapshot in dataset: assert snapshot.edge_index.shape == (2, 2694) assert snapshot.edge_attr.shape == (2694, ) assert snapshot.x.shape == (325, 2, 6) assert snapshot.y.shape == (325, 2, 5) def test_discrete_train_test_split_static(): loader = ChickenpoxDatasetLoader() dataset = loader.get_dataset() train_dataset, test_dataset = temporal_signal_split(dataset, 0.8) for epoch in range(2): for snapshot in train_dataset: assert snapshot.edge_index.shape == (2, 102) assert snapshot.edge_attr.shape == (102, ) assert snapshot.x.shape == (20, 4) assert snapshot.y.shape == (20, ) for epoch in range(2): for snapshot in test_dataset: assert snapshot.edge_index.shape == (2, 102) assert snapshot.edge_attr.shape == (102, ) assert snapshot.x.shape == (20, 4) assert snapshot.y.shape == (20, ) def test_discrete_train_test_split_dynamic(): snapshot_count = 250 n_count = 100 feature_count = 32 edge_indices, edge_weights, features = generate_signal(250, 100, 32) targets = [np.random.uniform(0,10,(n_count,)) for _ in range(snapshot_count)] dataset = DynamicGraphTemporalSignal(edge_indices, edge_weights, features, targets) train_dataset, test_dataset = temporal_signal_split(dataset, 0.8) for epoch in range(2): for snapshot in test_dataset: assert snapshot.edge_index.shape[0] == 2 assert snapshot.edge_index.shape[1] == snapshot.edge_attr.shape[0] assert snapshot.x.shape == (100, 32) assert snapshot.y.shape == (100, ) for epoch in range(2): for snapshot in train_dataset: assert snapshot.edge_index.shape[0] == 2 assert snapshot.edge_index.shape[1] == snapshot.edge_attr.shape[0] assert snapshot.x.shape == (100, 32) assert snapshot.y.shape == (100, ) def test_train_test_split_dynamic_graph_static_signal(): snapshot_count = 250 n_count = 100 feature_count = 32 edge_indices, edge_weights, features = generate_signal(250, 100, 32) targets = [np.random.uniform(0, 10, (n_count,)) for _ in range(snapshot_count)] dataset = StaticGraphTemporalSignal(edge_indices[0], edge_weights[0], features, targets) train_dataset, test_dataset = temporal_signal_split(dataset, 0.8) for epoch in range(2): for snapshot in test_dataset: assert snapshot.edge_index.shape[0] == 2 assert snapshot.edge_index.shape[1] == snapshot.edge_attr.shape[0] assert snapshot.x.shape == (100, 32) assert snapshot.y.shape == (100, ) for epoch in range(2): for snapshot in train_dataset: assert snapshot.edge_index.shape[0] == 2 assert snapshot.edge_index.shape[1] == snapshot.edge_attr.shape[0] assert snapshot.x.shape == (100, 32) assert snapshot.y.shape == (100, ) def test_discrete_train_test_split_dynamic(): snapshot_count = 250 n_count = 100 feature_count = 32 edge_indices, edge_weights, features = generate_signal(250, 100, 32) feature = features[0] targets = [np.random.uniform(0,10,(n_count,)) for _ in range(snapshot_count)] dataset = DynamicGraphStaticSignal(edge_indices, edge_weights, feature, targets) train_dataset, test_dataset = temporal_signal_split(dataset, 0.8) for epoch in range(2): for snapshot in test_dataset: assert snapshot.edge_index.shape[0] == 2 assert snapshot.edge_index.shape[1] == snapshot.edge_attr.shape[0] assert snapshot.x.shape == (100, 32) assert snapshot.y.shape == (100, ) for epoch in range(2): for snapshot in train_dataset: assert snapshot.edge_index.shape[0] == 2 assert snapshot.edge_index.shape[1] == snapshot.edge_attr.shape[0] assert snapshot.x.shape == (100, 32) assert snapshot.y.shape == (100, ) ```
{ "source": "joaquingb1993/cv-joaquin-galvez-blanco", "score": 2 }
#### File: CV/core/views.py ```python from django.shortcuts import render, HttpResponse from .models import Project # Create your views here. def home(request): projects = Project.objects.all() return render(request,"core/home.html",{'projects':projects}) def about(request): return render(request,"core/about.html") def portfolio(request): return render(request, "core/portfolio.html") def contacto(request): return render(request, "core/contacto.html") ```
{ "source": "JOAQUINGR/DNAshapeValues", "score": 3 }
#### File: DNAshapeValues/scripts/bedcreation.py ```python import pandas import re import sys fasta = sys.argv[1] finalname = str(sys.argv[2]) def correction(line): regular = re.match(r"(.+):([0-9]+)-([0-9]+)", line) return regular.group(1), regular.group(2), regular.group(3) def create_files(filetype, dataframe): with open(filetype+'.bed', 'w') as finalbed: for index, row in dataframe.iterrows(): finalbed.write('{}\t{}\t{}\t{}\n'.format(row.chr, row.start, row.end, row.id)) with open(fasta, 'r') as totalfastafile: df = pandas.read_csv(totalfastafile, sep='>', names=['sequence', 'id']) dfid = df['id'].dropna().reset_index(drop=True) dfsequence = df['sequence'].dropna().reset_index(drop=True) dfasta = pandas.merge(dfid, dfsequence, left_index=True, right_index=True) df = dfasta df['chr'], df['start'], df['end'] = zip(*df['id'].map(correction)) create_files(finalname, df) ```
{ "source": "joaquingv12/Solving-Image-Processing-Problems-with-Python-Part1", "score": 4 }
#### File: Chapter_02/codes/Chapter_02.py ```python from scipy.ndimage import rotate from skimage.io import imread import matplotlib.pylab as plt im = imread('images/Img_02_04.jpg') im = rotate(im, -45) plt.figure(figsize=(5,5)) plt.imshow(im) plt.axis('off') # stop showing the axes plt.show() # ### 1.2 Flipping and Flopping an image with *numpy* import matplotlib.pyplot as plt import numpy as np im = plt.imread('images/Img_02_42.jpg') im_filpped = np.flipud(im) plt.figure(figsize=(10, 12)) plt.subplot(211), plt.imshow(im), plt.axis('off'), plt.title('original', size=20) plt.subplot(212), plt.imshow(im_filpped), plt.axis('off'), plt.title('flipped', size=20) #np.fliplr(im) plt.show() im = plt.imread('images/Img_02_43.jpeg') im_filpped = np.fliplr(im) plt.figure(figsize=(15, 12)) plt.subplot(121), plt.imshow(im), plt.axis('off'), plt.title('original', size=20) plt.subplot(122), plt.imshow(im_filpped), plt.axis('off'), plt.title('flopped', size=20) #np.fliplr(im) plt.show() # ### 1.3 Applying Affine Transformation with *scipy.ndimage* from skimage.io import imread from scipy.ndimage import affine_transform import numpy as np import matplotlib.pylab as plt im = imread("images/Img_02_01.jpg") rot_mat = np.array([[np.cos(np.pi/4),np.sin(np.pi/4), 0],[-np.sin(np.pi/4),np.cos(np.pi/4), 0], [0,0,1]]) shr_mat = np.array([[1, 0.45, 0], [0, 0.75, 0], [0, 0, 1]]) transformed = affine_transform(im, rot_mat@shr_mat, offset=[-im.shape[0]/4+25, im.shape[1]/2-50, 0], output_shape=im.shape) plt.figure(figsize=(20,10)) plt.subplot(121), plt.imshow(im), plt.axis('off'), plt.title('Input image', size=20) plt.subplot(122), plt.imshow(transformed), plt.axis('off'), plt.title('Output image', size=20) plt.show() # ## 2. Implement Image Transformation with Warping / Inverse Warping using scikit-image and scipy.ndimage # ### 2.1 Applying translation on an image using scikit-image warp from skimage.io import imread from skimage.transform import warp import matplotlib.pylab as plt def translate(xy, t_x, t_y): xy[:, 0] -= t_y xy[:, 1] -= t_x return xy im = imread('images/Img_02_01.jpg') im = warp(im, translate, map_args={'t_x':-250, 't_y':200}) # create a dictionary for translation parameters plt.imshow(im) plt.title('Translated image', size=20) plt.show() # ### 2.2 Implementing the Swirl transformation using scikit-image warp def swirl(xy, x0, y0, R): r = np.sqrt((xy[:,1]-x0)**2 + (xy[:,0]-y0)**2) a = np.pi*r / R xy[:, 1] = (xy[:, 1]-x0)*np.cos(a) + (xy[:, 0]-y0)*np.sin(a) + x0 xy[:, 0] = -(xy[:, 1]-x0)*np.sin(a) + (xy[:, 0]-y0)*np.cos(a) + y0 return xy im = imread('images/Img_02_02.jpg') print(im.shape) im1 = warp(im, swirl, map_args={'x0':220, 'y0':360, 'R':650}) plt.figure(figsize=(20,10)) plt.subplot(121), plt.imshow(im), plt.axis('off'), plt.title('Input image', size=20) plt.subplot(122), plt.imshow(im1), plt.axis('off'), plt.title('Output image', size=20) plt.show() # ### 2.3 Implementing Swirl Transform using *scipy.ndimage* from scipy import ndimage as ndi from skimage.io import imread from skimage.color import rgb2gray import matplotlib.pylab as plt, numpy as np def apply_swirl(xy, x0, y0, R): r = np.sqrt((xy[1]-x0)**2 + (xy[0]-y0)**2) a = np.pi*r / R return ((xy[1]-x0)*np.cos(a) + (xy[0]-y0)*np.sin(a) + x0, -(xy[1]-x0)*np.sin(a) + (xy[0]-y0)*np.cos(a) + y0) im = rgb2gray(imread('images/Img_02_06.jpg')) print(im.shape) im1 = ndi.geometric_transform(im, apply_swirl, extra_arguments=(100, 100, 250)) plt.figure(figsize=(20,10)) plt.gray() plt.subplot(121), plt.imshow(im), plt.axis('off'), plt.title('Input image', size=20) plt.subplot(122), plt.imshow(im1), plt.axis('off'), plt.title('Output image', size=20) plt.show() # ### 2.4 Implementing Elastic Deformation import numpy as np import matplotlib.pylab as plt from skimage.color import rgb2gray from scipy.ndimage import gaussian_filter, map_coordinates def elastic_transform(image, alpha, sigma): random_state = np.random.RandomState(None) h, w = image.shape dx = gaussian_filter((random_state.rand(*image.shape) * 2 - 1), sigma, mode="constant", cval=0) * alpha dy = gaussian_filter((random_state.rand(*image.shape) * 2 - 1), sigma, mode="constant", cval=0) * alpha x, y = np.meshgrid(np.arange(w), np.arange(h)) indices = np.reshape(y+dy, (-1, 1)), np.reshape(x+dx, (-1, 1)) distored_image = map_coordinates(image, indices, order=1, mode='reflect') return distored_image.reshape(image.shape) img = rgb2gray(plt.imread('images/Img_02_22.png')) img1 = elastic_transform(img, 100, 4) plt.figure(figsize=(20,10)) plt.subplot(121), plt.imshow(img), plt.axis('off'), plt.title('Original', size=20) plt.subplot(122), plt.imshow(img1), plt.axis('off'), plt.title('Deformed', size=20) plt.tight_layout() plt.show() # ## 3. Image Projection with Homography using scikit-image from skimage.transform import ProjectiveTransform from skimage.io import imread import numpy as np import matplotlib.pylab as plt from matplotlib.path import Path im_src = imread('images/Img_02_04.jpg') im_dst = imread('images/Img_02_03.jpg') print(im_src.shape, im_dst.shape) pt = ProjectiveTransform() width, height = im_src.shape[0], im_src.shape[1] src = np.array([[ 0., 0.], [height-1, 0.], [height-1, width-1], [ 0., width-1]]) dst = np.array([[ 74., 41.], [ 272., 96.], [ 272., 192.], [ 72., 228.]]) pt.estimate(src, dst) width, height = im_dst.shape[0], im_dst.shape[1] polygon = dst poly_path = Path(polygon) x, y = np.mgrid[:height, :width] coors = np.hstack((x.reshape(-1, 1), y.reshape(-1,1))) mask = poly_path.contains_points(coors) mask = mask.reshape(height, width) dst_indices = np.array([list(x) for x in list(zip(*np.where(mask > 0)))]) #print(dst_indices) src_indices = np.round(pt.inverse(dst_indices), 0).astype(int) src_indices[:,0], src_indices[:,1] = src_indices[:,1], src_indices[:,0].copy() im_out = np.copy(im_dst) im_out[dst_indices[:,1], dst_indices[:,0]] = im_src[src_indices[:,0], src_indices[:,1]] plt.figure(figsize=(30,10)) plt.subplot(131), plt.imshow(im_src, cmap='gray'), plt.axis('off'), plt.title('Source image', size=30) plt.subplot(132), plt.imshow(im_dst, cmap='gray'), plt.axis('off'), plt.title('Destination image', size=30) plt.subplot(133), plt.imshow(im_out, cmap='gray'), plt.axis('off'), plt.title('Output image', size=30) plt.tight_layout() plt.show() # ## 4. Detecting Colors and Changing Colors of Objects with opencv-python import cv2 import numpy as np import matplotlib.pylab as plt img = cv2.imread("images/Img_02_05.png") hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv, (0, 70, 25), (15, 255, 255)) imask = mask>0 brown = np.zeros_like(img) brown[imask] = img[imask] black = img.copy() hsv[...,0:3] = hsv[...,0:3] / 3 black[imask] = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)[imask] black = np.clip(black, 0, 255) plt.figure(figsize=(20,10)) plt.subplots_adjust(0,0,1,0.9,0.01,0.075) plt.subplot(131), plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)), plt.axis('off'), plt.title('original', size=20) plt.subplot(132), plt.imshow(cv2.cvtColor(brown, cv2.COLOR_BGR2RGB)), plt.axis('off'), plt.title('only horse', size=20) plt.subplot(133), plt.imshow(cv2.cvtColor(black, cv2.COLOR_BGR2RGB)), plt.axis('off'), plt.title('horse color changed', size=20) plt.suptitle('Detecting and changing object colors with opencv-python', size=25) plt.show() # ### Detecting Covid-19 Virus Objects with Colors in HSV colorspace img = cv2.cvtColor(cv2.imread('covid_19_blood.jpg'), cv2.COLOR_BGR2RGB) img_hsv=cv2.cvtColor(img, cv2.COLOR_RGB2HSV) low_green = np.array([30, 25, 10]) high_green = np.array([80, 255, 255]) green_mask = cv2.inRange(img_hsv, low_green, high_green) green = cv2.bitwise_and(img, img, mask=green_mask) output_img = img.copy() output_img[np.where(green_mask==0)] = (0,0,0) plt.figure(figsize=(20, 8)) plt.gray() plt.subplots_adjust(0,0,1,0.975,0.05,0.05) plt.subplot(131), plt.imshow(img), plt.axis('off'), plt.title('original', size=20) plt.subplot(132), plt.imshow(green_mask), plt.axis('off'), plt.title('mask', size=20) plt.subplot(133), plt.imshow(output_img), plt.axis('off'), plt.title('covi-19 virus cells', size=20) plt.suptitle('Filtering out the covid-19 virus cells', size=30) plt.show() # ## 5. Finding Duplicate and Similar Images with Hashing # ### 5.1 Using Cryptographic (MD5) Hash functions to find duplicate images with hashlib import hashlib, os from glob import glob import matplotlib.pylab as plt from skimage.io import imread from time import time hex_digest = hashlib.md5(open('images/Img_02_01.jpg', 'rb').read()).hexdigest() bin_digest = format(int(str(hex_digest), 16), "040b") print('MD5 digest = {} ({})'.format(hex_digest, bin_digest) ) print('length of hex digest = {} bytes'.format(len(hex_digest))) print('length of bin digest = {} bits'.format(len(bin_digest))) def find_duplicates(dir_name): def is_image(file_name): f = file_name.lower() return f.endswith(".png") or f.endswith(".jpg") hash_keys = dict() for file_name in glob(dir_name): if os.path.isfile(file_name) and is_image(file_name): with open(file_name, 'rb') as f: file_hash = hashlib.md5(f.read()).hexdigest() if file_hash not in hash_keys: hash_keys[file_hash] = [file_name] else: hash_keys[file_hash].append(file_name) return [hash_keys[file_hash] for file_hash in hash_keys if len(hash_keys[file_hash]) > 1] def show_duplicates(duplicates): for duplicated in duplicates: try: plt.figure(figsize=(20,10)) plt.subplots_adjust(0,0,1,0.9,0.05,0.05) for (i, file_name) in enumerate(duplicated): plt.subplot(1, len(duplicated), i+1) plt.imshow(imread(file_name)) plt.title(file_name, size=20) plt.axis('off') plt.suptitle('{} duplicate images found with MD5 hash'.format(len(duplicated)), size=30) plt.show() except OSError as e: continue duplicates = find_duplicates('images/*.*') print(duplicates) show_duplicates(duplicates) # ### 5.2 Using Perceptual Hash function (phash) to find similar images using imagehash #!pip install imagehash from PIL import Image import imagehash from time import time import os from glob import glob import matplotlib.pylab as plt def plot_images_to_compare(imfile1, imfile2, hashfunc = imagehash.phash): img1, img2 = Image.open(imfile1), Image.open(imfile2) print('sizes of images = {}, {}'.format(img1.size, img2.size)) hash1 = hashfunc(img1) hash2 = hashfunc(img2) plt.figure(figsize=(20,10)) plt.subplots_adjust(0,0,1,0.95,0.01,0.01) plt.subplot(121), plt.imshow(img1), plt.title(str(hash1), size=20), plt.axis('off') plt.subplot(122), plt.imshow(img2), plt.title(str(hash2), size=20), plt.axis('off') plt.show() print('hash1 = {} ({}), length = {} bits'.format(format(int(str(hash1), 16), "040b"), str(hash1), len(format(int(str(hash1), 16), "040b")))) print('hash2 = {} ({}), length = {} bits'.format(format(int(str(hash2), 16), "040b"), str(hash2), len(format(int(str(hash2), 16), "040b")))) print('hamming distance =', hash1 - hash2) plot_images_to_compare('images/Img_02_31.jpg', 'images/Img_02_32.jpg') plot_images_to_compare('images/Img_02_31.jpg', 'images/Img_02_43.png') plot_images_to_compare('images/similar/Img_02_41.jpg', 'images/similar/Img_02_41.png') plot_images_to_compare('images/Img_02_31.jpg', 'images/Img_02_35.jpg') def preprocess_images(dir_name, hashfunc = imagehash.phash): image_filenames = sorted(glob(dir_name)) print('number of images to process = {}'.format(len(image_filenames))) images = {} for img_file in sorted(image_filenames): hash = hashfunc(Image.open(img_file)) images[hash] = images.get(hash, []) + [img_file] for hash in images: images[hash] = np.array(images[hash]) return images def query_k_similar_images(image_file, images, k=3, hashfunc = imagehash.phash): hash = hashfunc(Image.open(image_file)) hamming_dists = np.zeros(len(images)) image_files = np.array(list(images.values())) hash_values = list(images.keys()) for i in range(len(image_files)): hamming_dists[i] = hash - hash_values[i] indices = np.argsort(hamming_dists) return np.hstack(image_files[indices][:k]), hamming_dists[indices][:k] start = time() images = preprocess_images('images/*.*') end = time() print('processing time = {} seconds'.format(end-start)) def plot_query_returned_images(query, returned): n = 1 + len(returned) plt.figure(figsize=(20,8)) plt.subplots_adjust(0,0,1,0.95,0.05,0.05) plt.subplot(1,n,1), plt.imshow(Image.open(query)), plt.title('query image', size=20), plt.axis('off') for i in range(len(returned)): plt.subplot(1,n,i+2), plt.imshow(Image.open(returned[i])), plt.title('returned image {}'.format(i+1), size=20) plt.axis('off') plt.show() query = 'images/Img_02_39.jpg' found, dists = query_k_similar_images(query, images, k=4) dists plot_query_returned_images(query, found) ``` #### File: Chapter_05/code/Chapter_05.py ```python get_ipython().run_line_magic('matplotlib', 'inline') import numpy as np import matplotlib.pylab as plt from PIL import Image, ImageFilter from copy import deepcopy def plot_image(image, title=None, sz=20): plt.imshow(image) plt.title(title, size=sz) plt.axis('off') def add_noise(im, prop_noise, salt=True, pepper=True): im = deepcopy(im) n = int(im.width * im.height * prop_noise) x, y = np.random.randint(0, im.width, n), np.random.randint(0, im.height, n) for (x,y) in zip(x,y): im.putpixel((x, y), # generate salt-and-pepper noise ((0,0,0) if np.random.rand() < 0.5 else (255,255,255)) if salt and pepper \ else (255,255,255) if salt \ else (0, 0, 0)) # if pepper return im orig = Image.open('images/Img_05_01.jpg') i = 1 plt.figure(figsize=(12,35)) for prop_noise in np.linspace(0.05,0.3,6): # choose random locations inside image im = add_noise(orig, prop_noise) plt.subplot(6,2,i), plot_image(im, 'Original Image with ' + str(int(100*prop_noise)) + '% added noise') im1 = im.filter(ImageFilter.BLUR) plt.subplot(6,2,i+1), plot_image(im1, 'Blurred Image') i += 2 plt.show() # ### 1.2 Gaussian BLUR Filter to remove Salt & Pepper Noise im = Image.open('images/Img_05_01.jpg') im = add_noise(im, prop_noise = 0.2) plt.figure(figsize=(20,15)) i = 1 for radius in np.linspace(1, 3, 12): im1 = im.filter(ImageFilter.GaussianBlur(radius)) plt.subplot(3,4,i) plot_image(im1, 'radius = ' + str(round(radius,2))) i += 1 plt.suptitle('PIL Gaussian Blur with different Radius', size=30) plt.show() # ### 1.3 Median Filter to remove Salt & Pepper Noise im = Image.open('images/Img_05_02.jpg') im = add_noise(im, prop_noise = 0.1) plt.figure(figsize=(20,10)) plt.subplot(1,4,1) plot_image(im, 'Input noisy image') i = 2 for sz in [3,7,11]: im1 = im.filter(ImageFilter.MedianFilter(size=sz)) plt.subplot(1,4,i), plot_image(im1, 'Output (Filter size=' + str(sz) + ')', 20) i += 1 plt.tight_layout() plt.show() # ### 1.4 Max, Min and Mode filters to remove outliers from image # #### Min filter orig = Image.open('images/Img_05_11.jpg') im = add_noise(orig, prop_noise = 0.2, pepper=False) plt.figure(figsize=(20,10)) plt.subplot(1,4,1) plot_image(im, 'Input noisy image') i = 2 for sz in [3,7,11]: im1 = im.filter(ImageFilter.MinFilter(size=sz)) plt.subplot(1,4,i), plot_image(im1, 'Output (Filter size=' + str(sz) + ')') i += 1 plt.tight_layout() plt.show() # #### Max filter im = add_noise(orig, prop_noise = 0.3, salt=False) plt.figure(figsize=(20,10)) plt.subplot(1,4,1) plot_image(im, 'Input noisy image') i = 2 for sz in [3,7,11]: im1 = im.filter(ImageFilter.MaxFilter(size=sz)) plt.subplot(1,4,i), plot_image(im1, 'Output (Filter size=' + str(sz) + ')') i += 1 plt.show() # #### Mode filter orig = Image.open('images/Img_05_20.jpg') im = add_noise(orig, prop_noise = 0.1) plt.figure(figsize=(20,20)) plt.subplot(1,3,1) plot_image(im, 'Input noisy image', 25) i = 2 for sz in [3,5]: im1 = im.filter(ImageFilter.ModeFilter(size=sz)) plt.subplot(1,3,i), plot_image(im1, 'Output (Filter size=' + str(sz) + ')', 25) i += 1 plt.tight_layout() plt.show() # ### 1.5 Progressive Application of Gaussian Blur, Median, Mode and Max Filters on an image im = Image.open('images/Img_05_02.jpg') plt.figure(figsize=(10,15)) plt.subplots_adjust(0,0,1,0.95,0.05,0.05) im1 = im.copy() sz = 5 for i in range(8): im1 = im1.filter(ImageFilter.GaussianBlur(radius=sz)) if i % 2 == 0: plt.subplot(4,4,4*i//2+1), plot_image(im1, 'Gaussian Blur' if i == 0 else None, 25) im1 = im.copy() for i in range(8): im1 = im1.filter(ImageFilter.MedianFilter(size=sz)) if i % 2 == 0: plt.subplot(4,4,4*i//2+2), plot_image(im1, 'Median' if i == 0 else None, 25) im1 = im.copy() for i in range(8): im1 = im1.filter(ImageFilter.ModeFilter(size=sz)) if i % 2 == 0: plt.subplot(4,4,4*i//2+3), plot_image(im1, 'Mode' if i == 0 else None, 25) im1 = im.copy() for i in range(8): im1 = im1.filter(ImageFilter.MaxFilter(size=sz)) if i % 2 == 0: plt.subplot(4,4,4*i//2+4), plot_image(im1, 'Max' if i == 0 else None, 25) plt.show() # ## 2. Unsharp masking to Sharpen an Image # ### 2.1 With scikit-image filters module #! pip install --upgrade scikit-image #import skimage #skimage.filters.__all__ import numpy as np import matplotlib.pylab as plt from skimage.io import imread from skimage.filters import unsharp_mask im = imread('images/Img_05_04.jpg') im1 = unsharp_mask(im, radius=1, amount=1) im2 = unsharp_mask(im, radius=5, amount=2) im3 = unsharp_mask(im, radius=20, amount=3) fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True, figsize=(20, 12)) axes = axes.ravel() axes[0].set_title('Original image', size=20), axes[0].imshow(im) axes[1].set_title('Enhanced image, radius=1, amount=1.0', size=20), axes[1].imshow(im1) axes[2].set_title('Enhanced image, radius=5, amount=2.0', size=20), axes[2].imshow(im2) axes[3].set_title('Enhanced image, radius=20, amount=3.0', size=20), axes[3].imshow(im3) for ax in axes: ax.axis('off') fig.tight_layout() plt.show() # ### 2.2 With PIL ImageFilter module from PIL import Image, ImageFilter im = Image.open('images/Img_05_05.jpg') plt.figure(figsize=(15,16)) plt.subplot(221), plot_image(im, 'original') im1 = im.filter(ImageFilter.UnsharpMask(radius=2, percent=150)) plt.subplot(222), plot_image(im1, 'unsharp masking, radius=2, percent=150') im1 = im.filter(ImageFilter.UnsharpMask(radius=5, percent=200)) plt.subplot(223), plot_image(im1, 'unsharp masking, radius=5, percent=200') im1 = im.filter(ImageFilter.UnsharpMask(radius=10, percent=250)) plt.subplot(224), plot_image(im1, 'unsharp masking, radius=10, percent=250') plt.tight_layout() plt.show() # ### 2.3 Laplacian Sharpening with SimpleITK import SimpleITK as sitk import numpy as np import matplotlib.pylab as plt image = sitk.ReadImage('images/Img_05_20.jpg', sitk.sitkFloat32) filt = sitk.UnsharpMaskImageFilter() filt.SetAmount(1.5) # typically set between 1 and 2 filt.SetSigmas(0.15) sharpened = filt.Execute(image) np_image = sitk.GetArrayFromImage(image) np_image = np_image / np_image.max() np_sharpened = sitk.GetArrayFromImage(sharpened) np_sharpened = np_sharpened / np_sharpened.max() plt.figure(figsize=(20,10)) plt.gray() plt.subplots_adjust(0,0,1,1,0.05,0.05) plt.subplot(121), plot_image(np_image, 'Original Image') plt.subplot(122), plot_image(np_sharpened, 'Sharpened Image (with UnsharpMask)') plt.show() # ### 2.4 Implementing Unsharp Mask with opencv-python import cv2 im = cv2.imread("images/Img_05_13.png") im_smoothed = cv2.GaussianBlur(im, (11,11), 10, 10) im1 = cv2.addWeighted(im, 1.0 + 3.0, im_smoothed, -3.0, 0) # im1 = im + 3.0*(im - im_smoothed) plt.figure(figsize=(20,25)) plt.subplots_adjust(0,0,1,0.95,0.05,0.05) plt.subplot(211), plot_image(cv2.cvtColor(im, cv2.COLOR_BGR2RGB), 'Original Image') plt.subplot(212), plot_image(cv2.cvtColor(im1, cv2.COLOR_BGR2RGB), 'Sharpened Image') plt.show() # ## 3. Averaging of Images to remove Random Noise from skimage import img_as_float from skimage.util import random_noise from skimage.metrics import peak_signal_noise_ratio from skimage.io import imread import matplotlib.pylab as plt import numpy as np im = img_as_float(imread('images/Img_05_06.jpg')) # original image n = 100 images = np.zeros((n, im.shape[0], im.shape[1], im.shape[2])) sigma = 0.2 for i in range(n): images[i,...] = random_noise(im, var=sigma**2) im_mean = images.mean(axis=0) im_median = np.median(images, axis=0) plt.figure(figsize=(10,10)) plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01) plt.subplot(221), plot_image(im, 'Original image') plt.subplot(222), plot_image(images[0], 'Noisy PSNR: ' + str(round(peak_signal_noise_ratio(im, images[0]),3))) plt.subplot(223), plot_image(im_mean, 'Mean PSNR: ' + str(round(peak_signal_noise_ratio(im, im_mean),3))) plt.subplot(224), plot_image(im_median, 'Median PSNR: ' + str(round(peak_signal_noise_ratio(im, im_median),3))) plt.show() plt.figure(figsize=(10,5)) plt.hist(images[:,100,100,0], color='red', alpha=0.2, label='red') plt.hist(images[:,100,100,1], color='green', alpha=0.2, label='green') plt.hist(images[:,100,100,2], color='blue', alpha=0.2, label='blue') plt.vlines(im[100,100,0], 0, 20, color='red', label='original') plt.vlines(im[100,100,1], 0, 20, color='green', label='original') plt.vlines(im[100,100,2], 0, 20, color='blue', label='original') plt.vlines(im_mean[100,100,0], 0, 20, color='red', linestyles='dashed', label='estimated') plt.vlines(im_mean[100,100,1], 0, 20, color='green', linestyles='dashed', label='estimated') plt.vlines(im_mean[100,100,2], 0, 20, color='blue', linestyles='dashed', label='estimated') plt.legend() plt.grid() plt.show() # ## 4. Image Denoising with Curvature-Driven Algorithms import SimpleITK as sitk import matplotlib.pylab as plt img = sitk.ReadImage('images/Img_05_11.png', sitk.sitkFloat64) normfilter = sitk.NormalizeImageFilter() caster = sitk.CastImageFilter() caster.SetOutputPixelType(sitk.sitkFloat64) tkfilter = sitk.ShotNoiseImageFilter() tkfilter.SetScale(0.2) img_noisy = tkfilter.Execute (img) img_noisy = sitk.RescaleIntensity(img_noisy) tkfilter = sitk.CurvatureFlowImageFilter() tkfilter.SetNumberOfIterations(50) tkfilter.SetTimeStep(0.1) img_res_TK = tkfilter.Execute(img_noisy) tkfilter = sitk.MinMaxCurvatureFlowImageFilter() tkfilter.SetNumberOfIterations(50) tkfilter.SetTimeStep(0.1) tkfilter.SetStencilRadius(4) img_res_TK1 = tkfilter.Execute(img_noisy) img_res_TK1 = sitk.RescaleIntensity(img_res_TK1) # #### Anisotropic Diffusion tkfilter = sitk.CurvatureAnisotropicDiffusionImageFilter() tkfilter.SetNumberOfIterations(100); tkfilter.SetTimeStep(0.05); tkfilter.SetConductanceParameter(3); img_res_TK2 = tkfilter.Execute(img_noisy) #img_res_TK1 = sitk.RescaleIntensity(img_res_TK1) tkfilter = sitk.GradientAnisotropicDiffusionImageFilter() tkfilter.SetNumberOfIterations(100); tkfilter.SetTimeStep(0.05); tkfilter.SetConductanceParameter(3); img_res_TK3 = tkfilter.Execute(img_noisy) plt.figure(figsize=(16,20)) plt.gray() plt.subplots_adjust(0,0,1,1,0.01,0.05) plt.subplot(321), plt.imshow(sitk.GetArrayFromImage(img)), plt.axis('off'), plt.title('Original', size=20) plt.subplot(322), plt.imshow(sitk.GetArrayFromImage(img_noisy)), plt.axis('off'), plt.title('Noisy (with added Shot Noise)', size=20) plt.subplot(323), plt.imshow(sitk.GetArrayFromImage(img_res_TK)), plt.axis('off'), plt.title('Denoised (with CurvatureFlowImageFilter)', size=20) plt.subplot(324), plt.imshow(sitk.GetArrayFromImage(img_res_TK1)), plt.axis('off'), plt.title('Denoised (with MinMaxCurvatureFlowImageFilter)', size=20) plt.subplot(325), plt.imshow(sitk.GetArrayFromImage(img_res_TK2)), plt.axis('off'), plt.title('Denoised (with CurvatureAnisotropicDiffusionImageFilter)', size=20) plt.subplot(326), plt.imshow(sitk.GetArrayFromImage(img_res_TK3)), plt.axis('off'), plt.title('Denoised (with GradientAnisotropicDiffusionImageFilter)', size=20) plt.show() # ## 5. Contrast Strectching / Histogram Equalization with opencv-python import numpy as np import matplotlib.pylab as plt import cv2 def plot_hist(img, col='r'): hist,bins = np.histogram(img.flatten(),256,[0,256]) cdf = hist.cumsum() cdf_normalized = cdf * hist.max()/ cdf.max() plt.plot(cdf_normalized, color = col) plt.hist(img.flatten(),256,[0,256], color = col, alpha = 0.1) plt.xlim([0,256]) plt.title('CDF and histogram of the color channels', size=20) #plt.legend(('cdf','histogram'), loc = 'upper left') return bins, cdf def plot_img_hist(img, title): plt.figure(figsize=(20,10)) plt.subplot(121), plot_image(img, title) plt.subplot(122), plot_hist(img[...,0], 'r'), plot_hist(img[...,1], 'g'), plot_hist(img[...,2], 'b') plt.show() img = cv2.imread('images/Img_05_07.jpg') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img2 = img.copy() for i in range(3): hist,bins = np.histogram(img[...,i].flatten(),256,[0,256]) cdf = hist.cumsum() cdf_m = np.ma.masked_equal(cdf,0) cdf_m = (cdf_m - cdf_m.min())*255/(cdf_m.max()-cdf_m.min()) #cdf_m = 255 * cdf / cdf[-1] # normalize cdf = np.ma.filled(cdf_m,0).astype('uint8') img2[...,i] = cdf[img[...,i]] # use linear interpolation of cdf to find new pixel values #img2[...,i] = np.reshape(np.interp(img[...,i].flatten(),bins[:-1],cdf), img[...,i].shape) img_lab = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) equ = img_lab.copy() equ[...,0] = cv2.equalizeHist(equ[...,0]) equ = np.clip(cv2.cvtColor(equ, cv2.COLOR_LAB2RGB), 0, 255) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) cl = img_lab.copy() cl[...,0] = clahe.apply(cl[...,0]) cl = np.clip(cv2.cvtColor(cl, cv2.COLOR_LAB2RGB), 0, 255) plot_img_hist(img, 'Original Image') plot_img_hist(img2, 'Hist. Equalized') plot_img_hist(equ, 'Hist. Equalized (LAB space)') plot_img_hist(cl, 'Adaptive Hist. Equalized (LAB space)') # ## 6. Fingerprint Cleaning and Minutiaes extraction # ### 6.1 Fingerprint Cleaning with Morphological operations from skimage.io import imread from skimage.color import rgb2gray import numpy as np import matplotlib.pylab as plt from skimage.morphology import binary_opening, binary_closing, skeletonize, square from scipy.ndimage import morphological_gradient from skimage.filters import threshold_otsu im = rgb2gray(imread('images/Img_05_09.jpg')) im[im <= 0.5] = 0 # binarize im[im > 0.5] = 1 im_o = binary_opening(im, square(2)) im_c = binary_closing(im, square(2)) im_oc = binary_closing(binary_opening(im, square(2)), square(3)) im_s = skeletonize(im_oc) im_g = morphological_gradient(im_oc.astype(np.uint8), size=(2,2)) plt.figure(figsize=(20,12)) plt.gray() plt.subplot(231), plot_image(im, 'original') plt.subplot(232), plot_image(im_o, 'opening') plt.subplot(233), plot_image(im_c, 'closing') plt.subplot(234), plot_image(im_oc, 'opening + closing') plt.subplot(235), plot_image(im_s, 'skeletonizing') plt.subplot(236), plot_image(im_g, 'morphological gradient') plt.show() # ### 6.2 Feature (Minutiaes) extraction from an enhanced fingerprint from PIL import Image, ImageDraw cells = [(-1, -1), (-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1)] def minutiae_at(pixels, i, j): values = [pixels[i + k][j + l] for k, l in cells] crossings = 0 for k in range(0, 8): crossings += abs(values[k] - values[k + 1]) crossings /= 2 if pixels[i][j] == 1: if crossings == 1: return "ending" if crossings == 3: return "bifurcation" return "none" def calculate_minutiaes(im): pixels = 255 - np.array(im).T pixels = 1.0*(pixels > 10) (x, y) = im.size result = im.convert("RGB") draw = ImageDraw.Draw(result) colors = {"ending" : (150, 0, 0), "bifurcation" : (0, 150, 0)} ellipse_size = 2 for i in range(1, x - 1): for j in range(1, y - 1): minutiae = minutiae_at(pixels, i, j) if minutiae != "none": draw.ellipse([(i - ellipse_size, j - ellipse_size), (i + ellipse_size, j + ellipse_size)], outline = colors[minutiae]) del draw return result im = Image.open('images/Img_05_10.jpg').convert("L") # covert to grayscale out = calculate_minutiaes(im) plt.figure(figsize=(15,12)) plt.gray() plt.subplot(121), plot_image(im, 'input thinned') plt.subplot(122), plot_image(out, 'with minutiaes extracted') plt.show() # ## 7. Edge Detection with LOG / Zero-Crossing, Canny vs. Holistically-Nested # ### 7.0 Computing the Image Derivatives from scipy.signal import convolve from skimage.io import imread from skimage.color import rgb2gray img = rgb2gray(imread('images/Img_05_38.png')) h, w = img.shape kd1 = [[1, -1]] kd2 = [[1, -2, 1]] imgd1 = convolve(img, kd1, mode='same') imgd2 = convolve(img, kd2, mode='same') plt.figure(figsize=(20,10)) plt.gray() plt.subplot(231), plt.imshow(img), plt.title('image', size=15) plt.subplot(232), plt.imshow(imgd1), plt.title('1st derivative', size=15) plt.subplot(233), plt.imshow(imgd2), plt.title('2nd derivative', size=15) plt.subplot(234), plt.plot(range(w), img[0,:]), plt.title('image function', size=15) plt.subplot(235), plt.plot(range(w), imgd1[0,:]), plt.title('1st derivative function', size=15) plt.subplot(236), plt.plot(range(w), imgd2[0,:]), plt.title('2nd derivative function', size=15) plt.show() # ### 7.1 With LoG / Zero-Crossing import numpy as np from scipy import ndimage from skimage.io import imread import matplotlib.pyplot as plt from skimage.color import rgb2gray def any_neighbor_neg(img, i, j): for k in range(-1,2): for l in range(-1,2): if img[i+k, j+k] < 0: return True, img[i, j] - img[i+k, j+k] return False, None def zero_crossing(img, th): out_img = np.zeros(img.shape) for i in range(1,img.shape[0]-1): for j in range(1,img.shape[1]-1): found, slope = any_neighbor_neg(img, i, j) if img[i,j] > 0 and found and slope > th: out_img[i,j] = 255 return out_img img = rgb2gray(imread('images/Img_05_18.jpg')) #img = misc.imread('../new images/tagore.png')[...,3] print(np.max(img)) fig = plt.figure(figsize=(10,16)) plt.subplots_adjust(0,0,1,0.95,0.05,0.05) plt.gray() # show the filtered result in grayscale for sigma, thres in zip(range(3,10,2), [1e-3, 1e-4, 1e-5, 1e-6]): plt.subplot(3,2,sigma//2) result = ndimage.gaussian_laplace(img, sigma=sigma) result = zero_crossing(result, thres) plt.imshow(result) plt.axis('off') plt.title('LoG with zero-crossing, sigma=' + str(sigma), size=20) plt.tight_layout() plt.show() # ### 7.2 With Canny and Holistically-nested (deep learning model based) import cv2 import numpy as np import matplotlib.pylab as plt image = cv2.imread('images/Img_05_18.jpg') (h, w) = image.shape[:2] gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (5, 5), 0) canny = cv2.Canny(blurred, 80, 150) class CropLayer(object): def __init__(self, params, blobs): self.xstart = 0 self.xend = 0 self.ystart = 0 self.yend = 0 def getMemoryShapes(self, inputs): inputShape, targetShape = inputs[0], inputs[1] batchSize, numChannels = inputShape[0], inputShape[1] height, width = targetShape[2], targetShape[3] self.ystart = (inputShape[2] - targetShape[2]) // 2 self.xstart = (inputShape[3] - targetShape[3]) // 2 self.yend = self.ystart + height self.xend = self.xstart + width return [[batchSize, numChannels, height, width]] def forward(self, inputs): return [inputs[0][:,:,self.ystart:self.yend,self.xstart:self.xend]] prototxt_path = "models/deploy.prototxt" model_path = "models/hed_pretrained_bsds.caffemodel" net = cv2.dnn.readNetFromCaffe(prototxt_path, model_path) cv2.dnn_registerLayer('Crop', CropLayer) blob = cv2.dnn.blobFromImage(image, scalefactor=1.0, size=(w, h), mean=(104.00698793, 116.66876762, 122.67891434), swapRB=False, crop=False) net.setInput(blob) hed = net.forward() hed = cv2.resize(outs[i][0][0,:,:], (w, h)) hed = (255 * hed).astype("uint8") plt.figure(figsize=(20, 8)) plt.gray() plt.subplots_adjust(0,0,1,0.975,0.05,0.05) plt.subplot(131), plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), plt.axis('off'), plt.title('input', size=20) plt.subplot(132), plt.imshow(canny), plt.axis('off'), plt.title('canny', size=20) plt.subplot(133), plt.imshow(hed), plt.axis('off'), plt.title('holistically-nested', size=20) plt.show() ```
{ "source": "joaquingx/extruct", "score": 3 }
#### File: extruct/extruct/w3cmicrodata.py ```python import collections try: from urlparse import urljoin except ImportError: from urllib.parse import urljoin import lxml.etree from w3lib.html import strip_html5_whitespace from extruct.utils import parse_html class LxmlMicrodataExtractor(object): _xp_item = lxml.etree.XPath('descendant-or-self::*[@itemscope]') _xp_prop = lxml.etree.XPath("""set:difference(.//*[@itemprop], .//*[@itemscope]//*[@itemprop])""", namespaces = {"set": "http://exslt.org/sets"}) _xp_clean_text = lxml.etree.XPath('descendant-or-self::*[not(self::script or self::style)]/text()') # ancestor and preceding axes contain all elements before the context node # so counting them gives the "document order" of the context node _xp_item_docid = lxml.etree.XPath("""count(preceding::*[@itemscope]) + count(ancestor::*[@itemscope]) + 1""") def __init__(self, nested=True, strict=False, add_text_content=False, add_html_node=False): self.nested = nested self.strict = strict self.add_text_content = add_text_content self.add_html_node = add_html_node def get_docid(self, node): return int(self._xp_item_docid(node)) def extract(self, htmlstring, base_url=None, encoding="UTF-8"): tree = parse_html(htmlstring, encoding=encoding) return self.extract_items(tree, base_url) def extract_items(self, document, base_url): items_seen = set() return [ item for item in ( self._extract_item(it, items_seen=items_seen, base_url=base_url) for it in self._xp_item(document)) if item] def _extract_item(self, node, items_seen, base_url): itemid = self.get_docid(node) if self.nested: if itemid in items_seen: return items_seen.add(itemid) item = {} if not self.nested: item["iid"] = itemid types = node.get('itemtype', '').split() if types: if not self.strict and len(types) == 1: item["type"] = types[0] else: item["type"] = types itemid = node.get('itemid') if itemid: item["id"] = itemid.strip() properties = collections.defaultdict(list) # start with item references refs = node.get('itemref', '').split() if refs: for refid in refs: for name, value in self._extract_property_refs( node, refid, items_seen=items_seen, base_url=base_url): properties[name].append(value) for name, value in self._extract_properties( node, items_seen=items_seen, base_url=base_url): properties[name].append(value) props = [] for (name, values) in properties.items(): if not self.strict and len(values) == 1: props.append((name, values[0])) else: props.append((name, values)) if props: item["properties"] = dict(props) else: # item without properties; let's use the node itself item["value"] = self._extract_property_value( node, force=True, items_seen=items_seen, base_url=base_url) # below are not in the specs, but can be handy if self.add_text_content: textContent = self._extract_textContent(node) if textContent: item["textContent"] = textContent if self.add_html_node: item["htmlNode"] = node return item def _extract_properties(self, node, items_seen, base_url): for prop in self._xp_prop(node): for p, v in self._extract_property( prop, items_seen=items_seen, base_url=base_url): yield p, v def _extract_property_refs(self, node, refid, items_seen, base_url): for prop in node.xpath("id($refid)/descendant-or-self::*[@itemprop]", refid=refid): for p, v in self._extract_property( prop, items_seen=items_seen, base_url=base_url): yield p, v def _extract_property(self, node, items_seen, base_url): props = node.get("itemprop").split() value = self._extract_property_value( node, items_seen=items_seen, base_url=base_url) return [(p, value) for p in props] def _extract_property_value(self, node, items_seen, base_url, force=False): #http://www.w3.org/TR/microdata/#values if not force and node.get("itemscope") is not None: if self.nested: return self._extract_item( node, items_seen=items_seen, base_url=base_url) else: return {"iid_ref": self.get_docid(node)} elif node.tag == "meta": return node.get("content", "") elif node.tag in ("audio", "embed", "iframe", "img", "source", "track", "video"): return urljoin(base_url, strip_html5_whitespace(node.get("src", ""))) elif node.tag in ("a", "area", "link"): return urljoin(base_url, strip_html5_whitespace(node.get("href", ""))) elif node.tag in ("object",): return urljoin(base_url, strip_html5_whitespace(node.get("data", ""))) elif node.tag in ("data", "meter"): return node.get("value", "") elif node.tag in ("time",): return node.get("datetime", "") # not in W3C specs but used in schema.org examples elif node.get("content"): return node.get("content") else: return self._extract_textContent(node) def _extract_textContent(self, node): return u"".join(self._xp_clean_text(node)).strip() MicrodataExtractor = LxmlMicrodataExtractor ``` #### File: extruct/tests/test_microdata.py ```python import json import unittest from extruct.w3cmicrodata import MicrodataExtractor from tests import get_testdata class TestMicrodata(unittest.TestCase): maxDiff = None def test_schemaorg_CreativeWork(self): for i in [1]: body = get_testdata('schema.org', 'CreativeWork.{:03d}.html'.format(i)) expected = json.loads(get_testdata('schema.org', 'CreativeWork.{:03d}.json'.format(i)).decode('UTF-8')) mde = MicrodataExtractor() data = mde.extract(body) self.assertEqual(data, expected) def test_schemaorg_LocalBusiness(self): for i in [2, 3]: body = get_testdata('schema.org', 'LocalBusiness.{:03d}.html'.format(i)) expected = json.loads(get_testdata('schema.org', 'LocalBusiness.{:03d}.json'.format(i)).decode('UTF-8')) mde = MicrodataExtractor() data = mde.extract(body) self.assertEqual(data, expected) def test_schemaorg_MusicRecording(self): for i in [1]: body = get_testdata('schema.org', 'MusicRecording.{:03d}.html'.format(i)) expected = json.loads(get_testdata('schema.org', 'MusicRecording.{:03d}.json'.format(i)).decode('UTF-8')) mde = MicrodataExtractor() data = mde.extract(body) self.assertEqual(data, expected) def test_schemaorg_Event(self): for i in [1, 2, 3, 4, 8]: body = get_testdata('schema.org', 'Event.{:03d}.html'.format(i)) expected = json.loads(get_testdata('schema.org', 'Event.{:03d}.json'.format(i)).decode('UTF-8')) mde = MicrodataExtractor() data = mde.extract(body) self.assertEqual(data, expected) def test_w3c_textContent_values(self): body = get_testdata('w3c', 'microdata.4.2.strings.html') expected = json.loads(get_testdata('w3c', 'microdata.4.2.strings.json').decode('UTF-8')) mde = MicrodataExtractor(strict=True) data = mde.extract(body) self.assertEqual(data, expected) def test_w3c_textContent_values_unclean(self): body = get_testdata('w3c', 'microdata.4.2.strings.unclean.html') expected = json.loads(get_testdata('w3c', 'microdata.4.2.strings.unclean.json').decode('UTF-8')) mde = MicrodataExtractor(strict=True) data = mde.extract(body) self.assertEqual(data, expected) def test_w3c_5_2(self): body = get_testdata('w3c', 'microdata.5.2.html') expected = json.loads(get_testdata('w3c', 'microdata.5.2.json').decode('UTF-8')) mde = MicrodataExtractor(strict=True) data = mde.extract(body) self.assertEqual(data, expected) def test_w3c_5_3(self): body = get_testdata('w3c', 'microdata.5.3.html') expected = json.loads(get_testdata('w3c', 'microdata.5.3.json').decode('UTF-8')) mde = MicrodataExtractor(strict=True) data = mde.extract(body) self.assertEqual(data, expected) def test_w3c_5_5(self): body = get_testdata('w3c', 'microdata.5.5.html') expected = json.loads(get_testdata('w3c', 'microdata.5.5.json').decode('UTF-8')) mde = MicrodataExtractor(strict=True) data = mde.extract(body) self.assertEqual(data, expected) def test_w3c_7_1(self): body = get_testdata('w3c', 'microdata.7.1.html') expected = json.loads(get_testdata('w3c', 'microdata.7.1.json').decode('UTF-8')) mde = MicrodataExtractor(strict=True) data = mde.extract(body, 'http://blog.example.com/progress-report') self.assertEqual(data, expected) def test_w3c_meter_element(self): body = get_testdata('w3c', 'microdata.4.2.meter.html') expected = json.loads(get_testdata('w3c', 'microdata.4.2.meter.json').decode('UTF-8')) mde = MicrodataExtractor(strict=True) data = mde.extract(body) self.assertEqual(data, expected) def test_w3c_data_element(self): body = get_testdata('w3c', 'microdata.4.2.data.html') expected = json.loads(get_testdata('w3c', 'microdata.4.2.data.json').decode('UTF-8')) mde = MicrodataExtractor(strict=True) data = mde.extract(body) self.assertEqual(data, expected) def test_w3c_object_element(self): body = get_testdata('w3c', 'microdata.object.html') expected = json.loads(get_testdata('w3c', 'microdata.object.json').decode('UTF-8')) mde = MicrodataExtractor(strict=True) data = mde.extract(body, 'http://www.example.com/microdata/test') self.assertEqual(data, expected) class TestMicrodataFlat(unittest.TestCase): maxDiff = None def test_w3c_5_2(self): body = get_testdata('w3c', 'microdata.5.2.html') expected = json.loads(get_testdata('w3c', 'microdata.5.2.flat.json').decode('UTF-8')) mde = MicrodataExtractor(nested=False, strict=True) data = mde.extract(body) self.assertEqual(data, expected) def test_w3c_7_1(self): body = get_testdata('w3c', 'microdata.7.1.html') expected = json.loads(get_testdata('w3c', 'microdata.7.1.flat.json').decode('UTF-8')) mde = MicrodataExtractor(nested=False, strict=True) data = mde.extract(body, 'http://blog.example.com/progress-report') self.assertEqual(data, expected) class TestMicrodataWithText(unittest.TestCase): maxDiff = None def test_w3c_5_2(self): body = get_testdata('w3c', 'microdata.5.2.html') expected = json.loads(get_testdata('w3c', 'microdata.5.2.withtext.json').decode('UTF-8')) mde = MicrodataExtractor(add_text_content=True) data = mde.extract(body) self.assertEqual(data, expected) class TestUrlJoin(unittest.TestCase): maxDiff = None def test_join_none(self): body = get_testdata('schema.org', 'product.html') expected = json.loads(get_testdata('schema.org', 'product.json').decode('UTF-8')) mde = MicrodataExtractor() data = mde.extract(body) self.assertEqual(data, expected) def test_join_custom_url(self): body = get_testdata('schema.org', 'product.html') expected = json.loads(get_testdata('schema.org', 'product_custom_url.json').decode('UTF-8')) mde = MicrodataExtractor() data = mde.extract(body, base_url='http://some-example.com') self.assertEqual(data, expected) ```
{ "source": "joaquingx/questionary", "score": 4 }
#### File: questionary/examples/text.py ```python import re from pprint import pprint import questionary from examples import custom_style_dope from questionary import Validator, ValidationError, prompt class PhoneNumberValidator(Validator): def validate(self, document): ok = re.match( r'^([01])?[-.\s]?\(?(\d{3})\)?' r'[-.\s]?(\d{3})[-.\s]?(\d{4})\s?' r'((?:#|ext\.?\s?|x\.?\s?)(?:\d+)?)?$', document.text) if not ok: raise ValidationError( message='Please enter a valid phone number', cursor_position=len(document.text)) # Move cursor to end def ask_pystyle(**kwargs): # create the question object question = questionary.text( "What's your phone number", validate=PhoneNumberValidator, style=custom_style_dope, **kwargs) # prompt the user for an answer return question.ask() def ask_dictstyle(**kwargs): questions = [ { 'type': 'text', 'name': 'phone', 'message': "What's your phone number", 'validate': PhoneNumberValidator } ] return prompt(questions, style=custom_style_dope, **kwargs) if __name__ == '__main__': pprint(ask_pystyle()) ``` #### File: tests/prompts/test_password.py ```python from tests.utils import feed_cli_with_input def test_password_entry(): message = 'What is your password' text = "<PASSWORD>\r" result, cli = feed_cli_with_input('password', message, text) assert result == 'my password' ``` #### File: questionary/tests/test_examples.py ```python from prompt_toolkit.input.defaults import create_pipe_input from prompt_toolkit.output import DummyOutput from tests.utils import KeyInputs def ask_with_patched_input(q, text): inp = create_pipe_input() try: inp.send_text(text) return q(input=inp, output=DummyOutput()) finally: inp.close() def test_confirm_example(): from examples.confirm import ask_dictstyle, ask_pystyle text = "n" + KeyInputs.ENTER + "\r" result_dict = ask_with_patched_input(ask_dictstyle, text) result_py = ask_with_patched_input(ask_pystyle, text) assert result_dict == {'continue': False} assert result_dict['continue'] == result_py def test_text_example(): from examples.text import ask_dictstyle, ask_pystyle text = "1234567890" + KeyInputs.ENTER + "\r" result_dict = ask_with_patched_input(ask_dictstyle, text) result_py = ask_with_patched_input(ask_pystyle, text) assert result_dict == {'phone': '1234567890'} assert result_dict['phone'] == result_py def test_select_example(): from examples.select import ask_dictstyle, ask_pystyle text = KeyInputs.DOWN + KeyInputs.ENTER + KeyInputs.ENTER + "\r" result_dict = ask_with_patched_input(ask_dictstyle, text) result_py = ask_with_patched_input(ask_pystyle, text) assert result_dict == {'theme': 'Make a reservation'} assert result_dict['theme'] == result_py def test_rawselect_example(): from examples.rawselect import ( ask_dictstyle, ask_pystyle) text = "3" + KeyInputs.ENTER + KeyInputs.ENTER + "\r" result_dict = ask_with_patched_input(ask_dictstyle, text) result_py = ask_with_patched_input(ask_pystyle, text) assert result_dict == {'theme': 'Ask opening hours'} assert result_dict['theme'] == result_py def test_checkbox_example(): from examples.checkbox import ask_dictstyle, ask_pystyle text = "n" + KeyInputs.ENTER + KeyInputs.ENTER + KeyInputs.ENTER + "\r" result_dict = ask_with_patched_input(ask_dictstyle, text) result_py = ask_with_patched_input(ask_pystyle, text) assert result_dict == {'toppings': ['foo']} assert result_dict['toppings'] == result_py def test_password_example(): from examples.password import ask_dictstyle, ask_pystyle text = "asdf" + KeyInputs.ENTER + "\r" result_dict = ask_with_patched_input(ask_dictstyle, text) result_py = ask_with_patched_input(ask_pystyle, text) assert result_dict == {'password': '<PASSWORD>'} assert result_dict['password'] == result_py ``` #### File: questionary/tests/utils.py ```python from prompt_toolkit.input.defaults import create_pipe_input from prompt_toolkit.output import DummyOutput from questionary import prompt from questionary.prompts import prompt_by_name class KeyInputs(object): DOWN = '\x1b[B' UP = '\x1b[A' LEFT = '\x1b[D' RIGHT = '\x1b[C' ENTER = '\x0a' ESCAPE = '\x1b' CONTROLC = '\x03' BACK = '\x7f' SPACE = ' ' def feed_cli_with_input(_type, message, text, **kwargs): """ Create a Prompt, feed it with the given user input and return the CLI object. This returns a (result, Application) tuple. """ inp = create_pipe_input() try: inp.send_text(text) prompter = prompt_by_name(_type) application = prompter(message, input=inp, output=DummyOutput(), **kwargs) result = application.unsafe_ask() return result, application finally: inp.close() def patched_prompt(questions, text, **kwargs): """Create a prompt where the input and output are predefined.""" inp = create_pipe_input() try: inp.send_text(text) result = prompt(questions, input=inp, output=DummyOutput(), **kwargs) return result finally: inp.close() ```
{ "source": "joaquinhernandezg/PyMUSE", "score": 2 }
#### File: PyMUSE/PyMUSE/musecube_old.py ```python import copy import gc import glob import os import warnings import aplpy import linetools.utils as ltu import numpy as np import numpy.ma as ma import pyregion from astropy import units as u from astropy.coordinates import SkyCoord from astropy.io import fits from astropy.io.ascii.sextractor import SExtractor from astropy.modeling import models, fitting from astropy.table import Table from astropy.utils import isiterable from linetools.spectra.xspectrum1d import XSpectrum1D from linetools.utils import name_from_coord from matplotlib import pyplot as plt from scipy import interpolate from scipy import ndimage import PyMUSE.utils as mcu class MuseCube: """ Class to handle VLT/MUSE data """ def __init__(self, filename_cube, filename_white=None, pixelsize=0.2 * u.arcsec, n_fig=1, flux_units=1E-20 * u.erg / u.s / u.cm ** 2 / u.angstrom, vmin=None, vmax=None, wave_cal='air'): """ Parameters ---------- filename_cube: string Name of the MUSE datacube .fits file filename_white: string Name of the MUSE white image .fits file pixel_size : float or Quantity, optional Pixel size of the datacube, if float it assumes arcsecs. Default is 0.2 arcsec n_fig : int, optional XXXXXXXX flux_units : Quantity XXXXXXXXXX """ # init self.color = False self.cmap = "" self.flux_units = flux_units self.n = n_fig plt.close(self.n) self.wave_cal = wave_cal self.filename = filename_cube self.filename_white = filename_white self.load_data() self.white_data = fits.open(self.filename_white)[1].data self.hdulist_white = fits.open(self.filename_white) self.white_data = np.where(self.white_data < 0, 0, self.white_data) if not vmin: self.vmin=np.nanpercentile(self.white_data,0.25) else: self.vmin = vmin if not vmax: self.vmax=np.nanpercentile(self.white_data,98.) else: self.vmax = vmax self.gc2 = aplpy.FITSFigure(self.filename_white, figure=plt.figure(self.n)) self.gc2.show_grayscale(vmin=self.vmin, vmax=self.vmax) # self.gc = aplpy.FITSFigure(self.filename, slices=[1], figure=plt.figure(20)) self.pixelsize = pixelsize gc.enable() # plt.close(20) print("MuseCube: Ready!") def load_data(self): hdulist = fits.open(self.filename) print("MuseCube: Loading the cube fluxes and variances...") # import pdb; pdb.set_trace() self.cube = ma.MaskedArray(hdulist[1].data) self.stat = ma.MaskedArray(hdulist[2].data) print("MuseCube: Defining master masks (this may take a while but it is for the greater good).") # masking self.mask_init = np.isnan(self.cube) | np.isnan(self.stat) self.cube.mask = self.mask_init self.stat.mask = self.mask_init # for ivar weighting ; consider creating it in init ; takes long # self.flux_over_ivar = self.cube / self.stat self.header_1 = hdulist[1].header # Necesito el header para crear una buena copia del white. self.header_0 = hdulist[0].header if self.filename_white is None: print("MuseCube: No white image given, creating one.") w_data = copy.deepcopy(self.create_white(save=False).data) w_header_0 = copy.deepcopy(self.header_0) w_header_1 = copy.deepcopy(self.header_1) # These loops remove the third dimension from the header's keywords. This is neccesary in order to # create the white image and preserve the cube astrometry for i in w_header_0.keys(): if '3' in i: del w_header_0[i] for i in w_header_1.keys(): if '3' in i: del w_header_1[i] # prepare the header hdu = fits.HDUList() hdu_0 = fits.PrimaryHDU(header=w_header_0) hdu_1 = fits.ImageHDU(data=w_data, header=w_header_1) hdu.append(hdu_0) hdu.append(hdu_1) hdu.writeto('new_white.fits', clobber=True) self.filename_white = 'new_white.fits' print("MuseCube: `new_white.fits` image saved to disk.") def color_gui(self, cmap): """ Function to change the cmap of the canvas :param cmap: string. matplotlib's color map. cmap = 'none' to gray scale again :return: """ if cmap == 'none': self.color = False self.cmap = "" else: self.color = True self.cmap = cmap self.reload_canvas() def get_smoothed_white(self, npix=2, save=True, show=False, **kwargs): """Gets an smoothed version (Gaussian of sig=npix) of the white image. If save is True, it writes a file to disk called `smoothed_white.fits`. **kwargs are passed down to scipy.ndimage.gaussian_filter() """ hdulist = self.hdulist_white im = self.white_data if npix > 0: smooth_im = ndimage.gaussian_filter(im, sigma=npix, **kwargs) else: smooth_im = im if save: hdulist[1].data = smooth_im prihdr = hdulist[0].header comment = 'Spatially smoothed with a Gaussian kernel of sigma={} spaxels (by MuseCube)'.format(npix) # print(comment) prihdr['history'] = comment hdulist.writeto('smoothed_white.fits', clobber=True) if show: fig = aplpy.FITSFigure('smoothed_white.fits', figure=plt.figure()) fig.show_grayscale(vmin=self.vmin,vmax=self.vmax) return smooth_im def spec_to_vacuum(self, spectrum): spectrum_vac = spectrum if self.wave_cal == 'air': spectrum_vac.meta['airvac'] = 'air' spectrum_vac.airtovac() return spectrum_vac else: return spectrum_vac def spatial_smooth(self, npix, output="smoothed.fits", test=False, **kwargs): """Applies Gaussian filter of std=npix in both spatial directions and writes it to disk as a new MUSE Cube. Notes: the STAT cube is not touched. Parameters ---------- npix : int Std of Gaussian kernel in spaxel units. output : str, optional Name of the output file test : bool, optional Whether to check for flux being conserved **kwargs are passed down to scipy.ndimage.gaussian_filter() Return ------ Writes a new file to disk. """ if not isinstance(npix, int): raise ValueError("npix must be integer.") cube_new = copy.deepcopy(self.cube) ntot = len(self.cube) for wv_ii in range(ntot): print('{}/{}'.format(wv_ii + 1, ntot)) image_aux = self.cube[wv_ii, :, :] smooth_ii = ma.MaskedArray(ndimage.gaussian_filter(image_aux, sigma=npix, **kwargs)) smooth_ii.mask = image_aux.mask | np.isnan(smooth_ii) # test the fluxes are conserved if test: gd_pix = ~smooth_ii.mask try: med_1 = np.nansum(smooth_ii[gd_pix]) med_2 = np.nansum(image_aux[gd_pix]) print(med_1, med_2, (med_1 - med_2) / med_1) np.testing.assert_allclose(med_1, med_2, decimal=4) except AssertionError: import pdb pdb.set_trace() cube_new[wv_ii, :, :] = smooth_ii # import pdb; pdb.set_trace() hdulist = fits.open(self.filename) hdulist[1].data = cube_new.data prihdr = hdulist[0].header comment = 'Spatially smoothed with a Gaussian kernel of sigma={} spaxels (by MuseCube)'.format(npix) print(comment) prihdr['history'] = comment hdulist.writeto(output, clobber=True) print("MuseCube: new smoothed cube written to {}".format(output)) def get_mini_image(self, center, halfsize=15): """ :param center: tuple of coordinates, in pixels :param size: length of the square around center :return: ndarray which contain the image """ side = 2 * halfsize + 1 image = [[0 for x in range(side)] for y in range(side)] data_white = fits.open(self.filename_white)[1].data center_x = center[0] center_y = center[1] for i in xrange(center_x - halfsize - 1, center_x + halfsize): for j in xrange(center_y - halfsize - 1, center_y + halfsize): i2 = i - (center_x - halfsize) j2 = j - (center_y - halfsize) image[j2][i2] = data_white[j - 1][i - 1] return image def get_gaussian_seeing_weighted_spec(self, x_c, y_c, radius, seeing=4): """ Function to extract the spectrum of a circular aperture defined by x_c, y_c and radius in spaxel space. The spectrum is weighted by a 2d gaussian centered at the center of the aperture, with a std = seeing in spaxels :param x_c: x coordinate of the center of the aperture (spaxel) :param y_c: y coordiante of the center of the aperture (spaxel) :param radius: radius of the circular aperture :param seeing: standard deviation of the gaussian in spaxels :return: XSpectrum1D object """ import scipy.ndimage.filters as fi new_3dmask = self.get_mini_cube_mask_from_ellipse_params(x_c, y_c, radius) w = self.wavelength n = len(w) fl = np.zeros(n) sig = np.zeros(n) self.cube.mask = new_3dmask for wv_ii in range(n): mask = new_3dmask[wv_ii] center = np.zeros(mask.shape) ###Por alguna razon no funciona si cambio la asignacion a np.zeros_like(mask) center[y_c][x_c] = 1 weigths = ma.MaskedArray(fi.gaussian_filter(center, seeing)) weigths.mask = mask weigths = weigths / np.sum(weigths) fl[wv_ii] = np.sum(self.cube[wv_ii] * weigths) sig[wv_ii] = np.sqrt(np.sum(self.stat[wv_ii] * (weigths ** 2))) self.cube.mask = self.mask_init return XSpectrum1D.from_tuple((w, fl, sig)) def get_spec_spaxel(self, x, y, coord_system='pix', n_figure=2, empirical_std=False, save=False): """ Gets the spectrum of a single spaxel (xy) of the MuseCube :param x: x coordinate of the spaxel :param y: y coordinate of the spaxel :param coord_system: 'pix' or 'wcs' :return: spec: XSpectrum1D object """ if coord_system == 'wcs': x_c, y_c = self.w2p(x, y) x_world, y_world = x, y else: x_c, y_c = x, y x_world, y_world = self.p2w(x, y) region_string = self.ellipse_param_to_ds9reg_string(x_c, y_c, 1, 1, 0, coord_system='pix') self.draw_pyregion(region_string) w = self.wavelength n = len(w) spec = np.zeros(n) sigma = np.zeros(n) for wv_ii in range(n): spec[wv_ii] = self.cube.data[wv_ii][int(y_c)][int(x_c)] sigma[wv_ii] = np.sqrt(self.stat.data[wv_ii][int(y_c)][int(x_c)]) spec = XSpectrum1D.from_tuple((self.wavelength, spec, sigma)) if empirical_std: spec = mcu.calculate_empirical_rms(spec) spec = self.spec_to_vacuum(spec) plt.figure(n_figure) plt.plot(spec.wavelength, spec.flux) coords = SkyCoord(ra=x_world, dec=y_world, frame='icrs', unit='deg') name = name_from_coord(coords) plt.title(name) plt.xlabel('Angstroms') plt.ylabel('Flux (' + str(self.flux_units) + ')') if save: spec.write_to_fits(name + '.fits') return spec def get_spec_from_ellipse_params(self, x_c, y_c, params, coord_system='pix', mode='wwm', npix=0, frac=0.1, n_figure=2, empirical_std=False, save=False, color='green'): """ Obtains a combined spectrum of spaxels within a geometrical region defined by x_c, y_c, param :param x_c: x coordinate of the center of the ellipse :param y_c: y coordinate of the center of the ellipse :param params: Either a float that will be interpreted as a radius, or an iterable [a,b,theta] with the ellipse parameters :param coord_system: str. Default = 'pix'. If coord_system = 'wcs' the coordinates will be considered as degrees :param mode: str Mode for combining spaxels: * `ivar` - Inverse variance weighting, variance is taken only spatially, from a "white variance image" * `sum` - Sum of total flux * `gaussian` - Weighted mean. Weights are obtained from a 2D gaussian fit of the bright profile * `wwm` - 'White Weighted Mean'. Weigted mean, weights are obtained from the white image, smoothed using a gaussian filter of sigma = npix. If npix=0, no smooth is done * `ivarwv` - Weighted mean, the weight of every pixel is given by the inverse of it's variance * `mean` - Mean of the total flux * `median` - Median of the total flux * `wwm_ivarwv' - Weights given by both, `ivarwv` and `wwm` * `wwm_ivar` - Weights given by both, `wwm` and `ivar` * `wfrac` - It only takes the fraction `frac` of brightest spaxels (white) in the region (e.g. frac=0.1 means 10% brightest) with equal weight. :param frac. FLoat, default = 0.1 Parameter needed for wfrac mode :param npix: int. Default = 0 Standard deviation of the gaussian filter to smooth (Only in wwm methods) :param n_figure: int. Default = 2. Figure to display the spectrum :param empirical_std: boolean. Default = False. If True, the errors of the spectrum will be determined empirically :param save: boolean. Default = False If True, the spectrum will be saved in hard_disk :return: spec: XSpectrum1D object """ if mode == 'gaussian': spec = self.get_gaussian_profile_weighted_spec(x_c=x_c, y_c=y_c, params=params) else: new_mask = self.get_mini_cube_mask_from_ellipse_params(x_c, y_c, params, coord_system=coord_system,color=color) spec = self.spec_from_minicube_mask(new_mask, mode=mode, npix=npix, frac=frac) if empirical_std: spec = mcu.calculate_empirical_rms(spec) spec = self.spec_to_vacuum(spec) plt.figure(n_figure) plt.plot(spec.wavelength, spec.flux) if coord_system == 'wcs': x_world, y_world = x_c, y_c else: x_world, y_world = self.p2w(x_c, y_c) coords = SkyCoord(ra=x_world, dec=y_world, frame='icrs', unit='deg') name = name_from_coord(coords) plt.title(name) plt.xlabel('Angstroms') plt.ylabel('Flux (' + str(self.flux_units) + ')') if save: spec.write_to_fits(name + '.fits') return spec def get_spec_from_interactive_polygon_region(self, mode='wwm', npix=0, frac=0.1, n_figure=2, empirical_std=False, save=False): """ Function used to interactively define a region and extract the spectrum of that region To use this function, the class must have been initialized in a "ipython --pylab qt" enviroment It's also needed the package roipoly. Installation instructions and LICENSE in: https://github.com/jdoepfert/roipoly.py/ :param mode: str, default = wwm Mode for combining spaxels: * `ivar` - Inverse variance weighting, variance is taken only spatially, from a "white variance image" * `sum` - Sum of total flux * `wwm` - 'White Weighted Mean'. Weigted mean, weights are obtained from the white image, smoothed using a gaussian filter of sigma = npix. If npix=0, no smooth is done * `ivarwv` - Weighted mean, the weight of every pixel is given by the inverse of it's variance * `mean` - Mean of the total flux * `median` - Median of the total flux * `wwm_ivarwv' - Weights given by both, `ivarwv` and `wwm` * `wwm_ivar` - Weghts given by both, `wwm` and `ivar` * `wfrac` - It only takes the fraction `frac` of brightest spaxels (white) in the region (e.g. frac=0.1 means 10% brightest) with equal weight. :param frac. FLoat, default = 0.1 Parameter needed for wfrac mode :param npix: int. Default = 0 Standard deviation of the gaussian filter to smooth (Only in wwm methods) :param n_figure: int. Default = 2. Figure to display the spectrum :param empirical_std: boolean. Default = False If True, the errors of the spectrum will be determined empirically :param save: boolean. Default = False If True, the spectrum will be saved in hard_disk :return: spec: XSpectrum1D object """ from roipoly import roipoly current_fig = plt.figure(self.n) MyROI = roipoly(roicolor='r', fig=current_fig) raw_input("MuseCube: Please select points with left click. Right click and Enter to continue...") print("MuseCube: Calculating the spectrum...") mask = MyROI.getMask(self.white_data) mask_inv = np.where(mask == 1, 0, 1) complete_mask = self.mask_init + mask_inv new_3dmask = np.where(complete_mask == 0, False, True) spec = self.spec_from_minicube_mask(new_3dmask, mode=mode, npix=npix, frac=frac) self.reload_canvas() plt.figure(n_figure) plt.plot(spec.wavelength, spec.flux) plt.ylabel('Flux (' + str(self.flux_units) + ')') plt.xlabel('Wavelength (Angstroms)') plt.title('Polygonal region spectrum ') plt.figure(self.n) MyROI.displayROI() if empirical_std: spec = mcu.calculate_empirical_rms(spec) spec = self.spec_to_vacuum(spec) if save: spec.write_to_fits('Poligonal_region_spec.fits') return spec def params_from_ellipse_region_string(self, region_string, deg=False): """ Function to get the elliptical parameters of a region_string. If deg is True, only will be returned the center in degrees. Otherwise, all parameters will be returned in pixels :param region_string: Region defined as string using ds9 format :param deg: If True, only the center of the ellipse will be returned, in degrees. :return: x_center,y_center,params, parameter of the ellipse defined in region_string """ r = pyregion.parse(region_string) if deg: x_c, y_c = r[0].coord_list[0], r[0].coord_list[1] if r[0].coord_format == 'physical' or r[0].coord_format == 'image': x_world, y_world = self.p2w(x_c - 1, y_c - 1) else: x_world, y_world = x_c, y_c return x_world, y_world else: if r[0].coord_format == 'physical' or r[0].coord_format == 'image': x_c, y_c, params = r[0].coord_list[0], r[0].coord_list[1], r[0].coord_list[2:5] else: x_world = r[0].coord_list[0] y_world = r[0].coord_list[1] par = r[0].coord_list[2:5] x_c, y_c, params = self.ellipse_params_to_pixel(x_world, y_world, params=par) return x_c - 1, y_c - 1, params def get_spec_from_region_string(self, region_string, mode='wwm', npix=0., frac=0.1, empirical_std=False, n_figure=2, save=False): """ Obtains a combined spectrum of spaxels within geametrical region defined by the region _string, interpretated by ds9 :param region_string: str Region defined by a string, using ds9 format (ellipse only in gaussian method) example: region_string = 'physical;ellipse(100,120,10,5,35) # color = green' :param mode: str Mode for combining spaxels: * `ivar` - Inverse variance weighting, variance is taken only spatially, from a "white variance image" * `sum` - Sum of total flux * `gaussian` - Weighted mean. Weights are obtained from a 2D gaussian fit of the bright profile (for elliptical regions only) * `wwm` - 'White Weighted Mean'. Weigted mean, weights are obtained from the white image, smoothed using a gaussian filter of sigma = npix. If npix=0, no smooth is done * `ivarwv` - Weighted mean, the weight of every pixel is given by the inverse of it's variance * `mean` - Mean of the total flux * `median` - Median of the total flux * `wwm_ivarwv' - Weights given by both, `ivarwv` and `wwm` * `wwm_ivar` - Weghts given by both, `wwm` and `ivar` * `wfrac` - It only takes the fraction `frac` of brightest spaxels (white) in the region (e.g. frac=0.1 means 10% brightest) with equal weight. :param frac. Float, default = 0.1 Parameter needed for wfrac mode :param npix: int. Default = 0 Standard deviation of the gaussian filter to smooth (Only in wwm methods) :param n_figure: int. Default = 2. Figure to display the spectrum :param empirical_std: boolean. Default = False. If True, the errors of the spectrum will be determined empirically :param save: boolean. Default = False If True, the spectrum will be saved in hard_disk :return: spec: XSpectrum1D object """ if mode == 'gaussian': spec = self.get_gaussian_profile_weighted_spec(region_string_=region_string) else: new_mask = self.get_mini_cube_mask_from_region_string(region_string) spec = self.spec_from_minicube_mask(new_mask, mode=mode, npix=npix, frac=frac) if empirical_std: spec = mcu.calculate_empirical_rms(spec) self.draw_pyregion(region_string) spec = self.spec_to_vacuum(spec) plt.figure(n_figure) plt.plot(spec.wavelength, spec.flux) x_world, y_world = self.params_from_ellipse_region_string(region_string, deg=True) coords = SkyCoord(ra=x_world, dec=y_world, frame='icrs', unit='deg') name = name_from_coord(coords) plt.title(name) plt.xlabel('Angstroms') plt.ylabel('Flux (' + str(self.flux_units) + ')') if save: spec.write_to_fits(name + '.fits') return spec def draw_ellipse_params(self, xc, yc, params, color='green'): """ Function to draw in the interface the contour of the elliptical region defined by (xc,yc,params) :param xc: x coordinate of the center of the ellipse :param yc: y coordinate of the center of the ellipse :param params: either a single radius or [a,b,theta] iterable :param color: color to draw :return: """ if isinstance(params, (float, int)): params = [params, params, 0] region_string = self.ellipse_param_to_ds9reg_string(xc, yc, params[0], params[1], params[2], color=color) self.draw_pyregion(region_string) def draw_pyregion(self, region_string): """ Function used to draw in the interface the contour of the region defined by region_string :param region_string: str. Region defined by a string using ds9 format :return: None """ hdulist = self.hdulist_white r = pyregion.parse(region_string).as_imagecoord(hdulist[1].header) fig = plt.figure(self.n) ax = fig.axes[0] patch_list, artist_list = r.get_mpl_patches_texts(origin=0) patch = patch_list[0] ax.add_patch(patch) def spec_from_minicube_mask(self, new_3dmask, mode='wwm', npix=0, frac=0.1): """Given a 3D mask, this function provides a combined spectrum of all non-masked voxels. Parameters ---------- new_3dmask : np.array of same shape as self.cube The 3D mask mode : str Mode for combining spaxels: * `ivar` - Inverse variance weighting, variance is taken only spatially, from a "white variance image" * `sum` - Sum of total flux * `wwm` - 'White Weighted Mean'. Weigted mean, weights are obtained from the white image, smoothed using a gaussian filter of sigma = npix. If npix=0, no smooth is done * `ivarwv` - Weighted mean, the weight of every pixel is given by the inverse of it's variance * `mean` - Mean of the total flux * `median` - Median of the total flux * `wwm_ivarwv' - Weights given by both, `ivarwv` and `wwm` * `wwm_ivar` - Weghts given by both, `wwm` and `ivar` * `wfrac` - It only takes the fraction `frac` of brightest spaxels (white) in the region (e.g. frac=0.1 means 10% brightest) with equal weight. Returns ------- An XSpectrum1D object (from linetools) with the combined spectrum. """ if mode not in ['ivarwv', 'ivar', 'mean', 'median', 'wwm', 'sum', 'wwm_ivarwv', 'wwm_ivar', 'wfrac']: raise ValueError("Not ready for this type of `mode`.") if np.shape(new_3dmask) != np.shape(self.cube.mask): raise ValueError("new_3dmask must be of same shape as the original MUSE cube.") n = len(self.wavelength) fl = np.zeros(n) er = np.zeros(n) if mode == 'ivar': var_white = self.create_white(stat=True, save=False) elif mode in ['wwm', 'wwm_ivarwv', 'wwm_ivar', 'wfrac']: smoothed_white = self.get_smoothed_white(npix=npix, save=False) if mode == 'wwm_ivar': var_white = self.create_white(stat=True, save=False) elif mode == 'wfrac': mask2d = new_3dmask[1] self.wfrac_show_spaxels(frac=frac, mask2d=mask2d, smoothed_white=smoothed_white) warn = False for wv_ii in xrange(n): mask = new_3dmask[wv_ii] # 2-D mask im_fl = self.cube[wv_ii][~mask] # this is a 1-d np.array() im_var = self.stat[wv_ii][~mask] # this is a 1-d np.array() if len(im_fl) == 0: fl[wv_ii] = 0 er[wv_ii] = 99 elif mode == 'wwm': im_weights = smoothed_white[~mask] n_weights = len(im_weights) im_weights = np.where(np.isnan(im_weights), 0, im_weights) if np.sum(im_weights) == 0: im_weights[:] = 1. / n_weights warn = True im_weights = im_weights / np.sum(im_weights) fl[wv_ii] = np.sum(im_fl * im_weights) er[wv_ii] = np.sqrt(np.sum(im_var * (im_weights ** 2))) elif mode == 'ivar': im_var_white = var_white[~mask] im_weights = 1. / im_var_white n_weights = len(im_weights) im_weights = np.where(np.isnan(im_weights), 0, im_weights) if np.sum(im_weights) == 0: im_weights[:] = 1. / n_weights warn = True im_weights = im_weights / np.sum(im_weights) fl[wv_ii] = np.sum(im_fl * im_weights) er[wv_ii] = np.sqrt(np.sum(im_var * (im_weights ** 2))) elif mode == 'ivarwv': im_weights = 1. / im_var n_weights = len(im_weights) im_weights = np.where(np.isnan(im_weights), 0, im_weights) if np.sum(im_weights) == 0: im_weights[:] = 1. / n_weights warn = True im_weights = im_weights / np.sum(im_weights) fl[wv_ii] = np.sum(im_fl * im_weights) er[wv_ii] = np.sqrt(np.sum(im_var * (im_weights ** 2))) elif mode == 'wwm_ivarwv': im_white = smoothed_white[~mask] im_weights = im_white / im_var n_weights = len(im_weights) im_weights = np.where(np.isnan(im_weights), 0, im_weights) if np.sum(im_weights) == 0: im_weights[:] = 1. / n_weights warn = True im_weights = im_weights / np.sum(im_weights) fl[wv_ii] = np.sum(im_fl * im_weights) er[wv_ii] = np.sqrt(np.sum(im_var * (im_weights ** 2))) elif mode == 'wwm_ivar': im_white = smoothed_white[~mask] im_var_white = var_white[~mask] im_weights = im_white / im_var_white n_weights = len(im_weights) im_weights = np.where(np.isnan(im_weights), 0, im_weights) if np.sum(im_weights) == 0: im_weights[:] = 1. / n_weights warn = True im_weights = im_weights / np.sum(im_weights) fl[wv_ii] = np.sum(im_fl * im_weights) er[wv_ii] = np.sqrt(np.sum(im_var * (im_weights ** 2))) elif mode == 'sum': im_weights = 1. fl[wv_ii] = np.sum(im_fl * im_weights) er[wv_ii] = np.sqrt(np.sum(im_var * (im_weights ** 2))) elif mode == 'mean': im_weights = 1. / len(im_fl) fl[wv_ii] = np.sum(im_fl * im_weights) er[wv_ii] = np.sqrt(np.sum(im_var * (im_weights ** 2))) elif mode == 'median': fl[wv_ii] = np.median(im_fl) er[wv_ii] = 1.2533 * np.sqrt(np.sum(im_var)) / len(im_fl) # explain 1.2533 elif mode == 'wfrac': if (frac > 1) or (frac < 0): raise ValueError('`frac` must be value within (0,1)') im_white = smoothed_white[~mask] fl_limit = np.percentile(im_white, (1. - frac) * 100.) im_weights = np.where(im_white >= fl_limit, 1., 0.) n_weights = len(im_weights) im_weights = np.where(np.isnan(im_weights), 0., im_weights) if np.sum(im_weights) == 0: im_weights[:] = 1. / n_weights warn = True im_weights = im_weights / np.sum(im_weights) fl[wv_ii] = np.sum(im_fl * im_weights) er[wv_ii] = np.sqrt(np.sum(im_var * (im_weights ** 2))) if warn: warnings.warn( 'Some wavelengths could not be combined using the selected mode (a mean where used only on those cases)') if mode not in ['sum', 'median', 'mean', 'wfrac']: # normalize to match total integrated flux spec_sum = self.spec_from_minicube_mask(new_3dmask, mode='sum') fl_sum = spec_sum.flux.value norm = np.sum(fl_sum) / np.sum(fl) if norm < 0: warnings.warn( "Normalization factor is Negative!! (This probably means that you are extracting the spectrum where flux<0)") fl = fl * norm er = er * abs(norm) print('normalization factor relative to total flux = ' + str(norm)) return XSpectrum1D.from_tuple((self.wavelength, fl, er)) def get_spec_and_image(self, center, halfsize=15, n_figure=3, mode='wwm', coord_system='pix', npix=0, frac=0.1, save=False, empirical_std=False): """ Function to Get a spectrum and an image of the selected source. :param center: Tuple. Contain the coordinates of the source. :param halfsize: flot or list. If int, is the halfsize of the image box and the radius of a circular aperture to get the spectrum If list, contain the [a,b,theta] parameter for an eliptical aperture. The box will be a square with the major semiaxis :param n_fig: Figure number to display the spectrum and the image :param mode: str Mode for combining spaxels: * `ivar` - Inverse variance weighting, variance is taken only spatially, from a "white variance image" * `sum` - Sum of total flux * `gaussian` - Weighted mean. Weights are obtained from a 2D gaussian fit of the bright profile * `wwm` - 'White Weighted Mean'. Weigted mean, weights are obtained from the white image, smoothed using a gaussian filter of sigma = npix. If npix=0, no smooth is done * `ivarwv` - Weighted mean, the weight of every pixel is given by the inverse of it's variance * `mean` - Mean of the total flux * `median` - Median of the total flux * `wwm_ivarwv' - Weights given by both, `ivarwv` and `wwm` * `wwm_ivar` - Weghts given by both, `wwm` and `ivar` * `wfrac` - It only takes the fraction `frac` of brightest spaxels (white) in the region (e.g. frac=0.1 means 10% brightest) with equal weight. :param frac. Float, default = 0.1 Parameter needed for wfrac mode :param npix: int. Default = 0 Standard deviation of the gaussian filter to smooth (Only in wwm methods)m :param empirical_std: boolean. Default = False. If True, the errors of the spectrum will be determined empirically :param save: boolean. Default = False If True, the spectrum will be saved in hard_disk :param coord_system: str. Default = 'pix'. If coord_system = 'wcs' the coordinates will be considered as degrees :return: spec: XSpectrum1D object """ spec = self.get_spec_from_ellipse_params(x_c=center[0], y_c=center[1], params=halfsize, coord_system=coord_system, mode=mode, frac=frac, npix=npix, empirical_std=empirical_std) spec = self.spec_to_vacuum(spec) if isinstance(halfsize, (int, float)): halfsize = [halfsize, halfsize, 0] if coord_system == 'wcs': x_c, y_c, halfsize = self.ellipse_params_to_pixel(center[0], center[1], params=halfsize) center_ = (x_c, y_c) else: center_ = center aux = [halfsize[0], halfsize[1]] halfsize = max(aux) mini_image = self.get_mini_image(center=center_, halfsize=halfsize) plt.figure(n_figure, figsize=(17, 5)) ax1 = plt.subplot2grid((1, 4), (0, 0), colspan=3) if coord_system == 'pix': x_world, y_world = self.p2w(center[0], center[1]) else: x_world, y_world = center[0], center[1] coord = SkyCoord(ra=x_world, dec=y_world, frame='icrs', unit='deg') spec_name = name_from_coord(coord) if save: spec.write_to_fits(spec_name + '.fits') plt.title(spec_name) w = spec.wavelength.value f = spec.flux.value ax1.plot(w, f) plt.ylabel('Flux (' + str(self.flux_units) + ')') plt.xlabel('Wavelength (Angstroms)') n = len(w) ave = np.nanmean(f) std = np.nanstd(f) ymin = ave - 3 * std ymax = ave + 4 * std plt.ylim([ymin, ymax]) plt.xlim([w[0], w[n - 1]]) ax2 = plt.subplot2grid((1, 4), (0, 3), colspan=1) ax2.imshow(mini_image, cmap='gray', vmin=self.vmin, vmax=self.vmax) plt.ylim([0, 2 * halfsize]) plt.xlim([0, 2 * halfsize]) return spec def draw_region(self, r): fig = plt.figure(self.n) ax = fig.axes[0] patch_list, artist_list = r.get_mpl_patches_texts(origin=0) patch = patch_list[0] ax.add_patch(patch) def region_2dmask(self, r): from pyregion.region_to_filter import as_region_filter im_aux = np.ones_like(self.white_data) hdu_aux = fits.open(self.filename_white)[1] hdu_aux.data = im_aux shape = hdu_aux.data.shape region_filter = as_region_filter(r, origin=0) mask_new = region_filter.mask(shape) mask_new_inverse = np.where(~mask_new, True, False) mask2d = mask_new_inverse return mask2d def region_3dmask(self, r): mask2d = self.region_2dmask(r) complete_mask_new = mask2d + self.mask_init complete_mask_new = np.where(complete_mask_new != 0, True, False) mask3d = complete_mask_new return mask3d def compute_kinematics(self, x_c, y_c, params, wv_line_vac, wv_range_size=35, type='abs', debug=False, z=0, cmap='seismic'): ##Get the integrated spec fit, and estimate the 0 velocity wv from there wv_line = wv_line_vac * (1 + z) dwmax = 10 spec_total = self.get_spec_from_ellipse_params(x_c, y_c, params, mode='wwm') wv_t = spec_total.wavelength.value fl_t = spec_total.flux.value sig_t = spec_total.sig.value sig_eff = sig_t[np.where(np.logical_and(wv_t >= wv_line - wv_range_size, wv_t <= wv_line + wv_range_size))] wv_eff = wv_t[np.where(np.logical_and(wv_t >= wv_line - wv_range_size, wv_t <= wv_line + wv_range_size))] fl_eff = fl_t[np.where(np.logical_and(wv_t >= wv_line - wv_range_size, wv_t <= wv_line + wv_range_size))] fl_left = fl_eff[:3] fl_right = fl_eff[-3:] intercept_init = (np.sum(fl_right) + np.sum(fl_left)) / (len(fl_left) + len(fl_right)) if type == 'abs': a_init = np.min(fl_eff) - intercept_init if type == 'emi': a_init = np.max(fl_eff) - intercept_init slope_init = 0 sigma_init = wv_range_size / 3. mean_init = wv_line gaussian = models.Gaussian1D(amplitude=a_init, mean=mean_init, stddev=sigma_init) line = models.Linear1D(slope=slope_init, intercept=intercept_init) model_init = gaussian + line fitter = fitting.LevMarLSQFitter() model_fit = fitter(model_init, wv_eff, fl_eff, weights=sig_eff / np.sum(sig_eff)) mean_total = model_fit[0].mean.value sigma_total = model_fit[0].stddev.value z_line = (mean_total / wv_line_vac) - 1. if isinstance(params, (int, float)): params = [params, params, 0] region_string = self.ellipse_param_to_ds9reg_string(x_c, y_c, params[0], params[1], params[2]) mask2d = self.get_new_2dmask(region_string) ##Find center guessing parameters spec_c = self.get_spec_spaxel(x_c, y_c) fl_c = spec_c.flux.value wv_c = spec_c.wavelength.value sig_c = spec_total.sig.value sig_eff = sig_c[np.where(np.logical_and(wv_c >= wv_line - wv_range_size, wv_c <= wv_line + wv_range_size))] wv_eff = wv_c[np.where(np.logical_and(wv_c >= wv_line - wv_range_size, wv_c <= wv_line + wv_range_size))] fl_eff = fl_c[np.where(np.logical_and(wv_c >= wv_line - wv_range_size, wv_c <= wv_line + wv_range_size))] #### Define central gaussian_mean wv_c_eff = wv_eff fl_c_eff = fl_eff fl_left = fl_eff[:3] fl_right = fl_eff[-3:] intercept_init = (np.sum(fl_right) + np.sum(fl_left)) / (len(fl_left) + len(fl_right)) if type == 'abs': a_init = np.min(fl_eff) - intercept_init if type == 'emi': a_init = np.max(fl_eff) - intercept_init slope_init = 0 sigma_init = sigma_total mean_init = wv_line gaussian = models.Gaussian1D(amplitude=a_init, mean=mean_init, stddev=sigma_init) line = models.Linear1D(slope=slope_init, intercept=intercept_init) model_init = gaussian + line fitter = fitting.LevMarLSQFitter() model_fit = fitter(model_init, wv_eff, fl_eff, weights=sig_eff / np.sum(sig_eff)) mean_center = model_fit[0].mean.value a_center = model_fit[0].amplitude.value sigma_center = model_fit[0].stddev.value ##get spaxel in mask2d y, x = np.where(~mask2d) n = len(x) kine_im = np.where(self.white_data == 0, np.nan, np.nan) sigma_im = np.where(self.white_data == 0, np.nan, np.nan) for i in xrange(n): print(str(i + 1) + '/' + str(n)) spec = self.get_spec_spaxel(x[i], y[i]) wv = spec.wavelength.value fl = spec.flux.value sig = spec_total.sig.value sig_eff = sig[np.where(np.logical_and(wv >= wv_line - wv_range_size, wv <= wv_line + wv_range_size))] wv_eff = wv[np.where(np.logical_and(wv >= wv_line - wv_range_size, wv <= wv_line + wv_range_size))] fl_eff = fl[np.where(np.logical_and(wv >= wv_line - wv_range_size, wv <= wv_line + wv_range_size))] fl_left = fl_eff[:3] fl_right = fl_eff[-3:] intercept_init = (np.sum(fl_right) + np.sum(fl_left)) / (len(fl_left) + len(fl_right)) if type == 'abs': a_init = np.min(fl_eff) - intercept_init if type == 'emi': a_init = np.max(fl_eff) - intercept_init slope_init = 0 sigma_init = sigma_center mean_init = mean_center gaussian = models.Gaussian1D(amplitude=a_init, mean=mean_init, stddev=sigma_init) line = models.Linear1D(slope=slope_init, intercept=intercept_init) model_init = gaussian + line fitter = fitting.LevMarLSQFitter() model_fit = fitter(model_init, wv_eff, fl_eff, weights=sig_eff / np.sum(sig_eff)) m = fitter.fit_info['param_cov'] residual = model_fit(wv_eff) - fl_eff noise = np.std(residual) if debug: plt.figure() plt.plot(wv_c_eff, fl_c_eff, drawstyle='steps-mid', color='grey') plt.plot(wv_eff, fl_eff, drawstyle='steps-mid') plt.plot(wv_eff, model_fit(wv_eff)) plt.plot(wv_eff, residual, color='red') plt.plot(wv_eff, sig_eff, color='yellow', drawstyle='steps-mid') m = fitter.fit_info['param_cov'] if m != None: print('Display Cov Matrix') plt.figure() plt.imshow(m, interpolation='none', vmin=0, vmax=15) plt.colorbar() else: print('Cov Matrix undefined') mean = model_fit[0].mean.value amp = model_fit[0].amplitude.value if abs(amp) >= 2. * noise and (a_center * amp > 0) and abs(mean_center - mean) <= dwmax: if debug: print('Fit Aceptado') print(str(x[i]) + ',' + str(y[i])) units = u.km / u.s vel = ltu.dv_from_z((mean / wv_line_vac) - 1, z_line).to(units).value kine_im[y[i]][x[i]] = vel else: if debug: print('Fit Negado') print(str(x[i]) + ',' + str(y[i])) if debug: print('value of wv_dif = ' + str(mean_center - mean)) print('amplitude = ' + str(amp)) print('noise = ' + str(noise)) raw_input('Enter to continue...') hdulist = self.hdulist_white hdulist[1].data = kine_im hdulist.writeto('kinematics.fits', clobber=True) fig = aplpy.FITSFigure('kinematics.fits', figure=plt.figure()) fig.show_colorscale(cmap=cmap) fig.add_colorbar() fig.colorbar.set_axis_label_text('V (km s$^{-1}$)') xw, yw = self.p2w(x_c, y_c) if isinstance(params, (int, float)): r = params * self.pixelsize else: r = params[0] * self.pixelsize r = r.to(u.deg) fig.recenter(xw, yw, r.value) return kine_im def save_muselet_specs(self, filename, mode='sum', params=4, frac=0.1, npix=0, empirical_std=False, redmonster_format=True, ids='all'): """ :param filename: string, Name of the MUSELET output fits table :param mode: string, mode of extractor for the spectra :param params: int or iterable. Default = 4. Elliptical parameters for the extraction of the spectra in spaxel units :param frac: float. Default = 0.1. Extraction parameter used in 'wfrac' mode. :param npix: int. Default = 0. Extraction parameter used in several modes. stddev of the Gaussian kernel to smooth the white image. If npix = 0, no smooth is done. :param empirical_std: float, Default = False. If True, the stddev of the spectra will be empirically estimated. :param redmonster_format: float. Default = True. If True, the spectra will be saved in a rdeable format for Redmonster software. :param ids: string or iterable. Default = 'all'. If ids = 'all', all the spectra in the MUSELET table will be extracted. if ids is iterable, it must contain the ids in the MUSELET table of the sources to extract (e.g. ids = [1,15,23] will extract only the sources with the ids 1, 15 and 23) :return: """ fits_table = Table.read(fits.open(filename)[1]) ID = fits_table['ID'].data.data RA = fits_table['RA'].data.data DEC = fits_table['DEC'].data.data if ids == 'all': ids = fits_table['ID'].data.data n = len(ids) for i in xrange(n): j = np.where(ids[i] == ID)[0][0] x_world = RA[j] y_world = DEC[j] coord = SkyCoord(ra=x_world, dec=y_world, frame='icrs', unit='deg') str_id = str(ids[i]).zfill(3) spec_fits_name = str_id + '_' + name_from_coord(coord) x, y = self.w2p(x_world, y_world) spec = self.get_spec_from_ellipse_params(x, y, params, mode=mode, npix=npix, frac=frac, empirical_std=empirical_std, save=False) if redmonster_format: mcu.spec_to_redmonster_format(spec=spec, fitsname=spec_fits_name + '_RMF.fits', n_id=ids[i]) else: spec.write_to_fits(spec_fits_name + '.fits') print('ID = ' + str_id + ' Ready!!') def save_ds9regfile_specs(self, regfile, mode='wwm', frac=0.1, npix=0, empirical_std=False, redmonster_format=True, id_start=1, coord_name=False, debug=False): """ Function used to save a set of spectra given by a DS9 regionfile "regfile" :param regfile: str. Name of the DS9 region file :param mode: str. Default = 'wwm'. see more modes and details in self.spec_from_minicube_mask() :param frac. FLoat, default = 0.1 Parameter needed for wfrac mode :param npix: int. Default = 0 Standard deviation of the gaussian filter to smooth (Only in wwm methods) :param empirical_std: boolean. Default = False. If True, the errors of the spectrum will be determined empirically :param redmonster_format: If True, the specta will be saved in a redeable format for redmonster software :param coord_name: Boolean. Default = False. If True, The name of each spectrum will be computed from the coordinates of the first (X,Y) pair in the region string. Otherwhise, the spectra will be named with and ID and the name of the region file. :param id_start: int. Default = 1 Initial id assigned to diferent spectra """ r = pyregion.open(regfile) n = len(r) self.reload_canvas() for i in xrange(n): id_ = id_start + i r_i = pyregion.ShapeList([r[i]]) self.draw_region(r_i) mask3d = self.region_3dmask(r_i) ##Get spec spec = self.spec_from_minicube_mask(mask3d, mode=mode, npix=npix, frac=frac) if empirical_std: spec = mcu.calculate_empirical_rms(spec) spec = self.spec_to_vacuum(spec) str_id = str(id_).zfill(3) spec_fits_name = str_id + '_' + regfile[:-4] if coord_name: r_aux = r[i] x = r_aux.coord_list[0] y = r_aux.coord_list[1] x_world, y_world = self.p2w(x, y) coord = SkyCoord(ra=x_world, dec=y_world, frame='icrs', unit='deg') spec_fits_name = str_id + '_' + name_from_coord(coord) if redmonster_format: if debug: mag_tuple = ['mag_r', '-'] else: mag_tuple = None mcu.spec_to_redmonster_format(spec=spec, fitsname=spec_fits_name + '_RMF.fits', n_id=id_, mag=mag_tuple) else: spec.write_to_fits(spec_fits_name + '.fits') print('ID = ' + str_id + ' Ready!!') def get_spec_from_ds9regfile(self, regfile, mode='wwm', i=0, frac=0.1, npix=0, empirical_std=False, n_figure=2, save=False): """ Function to get the spec of a region defined in a ds9 .reg file The .reg file MUST be in physical coordiantes :param regfile: str. Name of the DS9 region file :param mode: str Mode for combining spaxels: * `ivar` - Inverse variance weighting, variance is taken only spatially, from a "white variance image" * `sum` - Sum of total flux * `wwm` - 'White Weighted Mean'. Weigted mean, weights are obtained from the white image, smoothed using a gaussian filter of sigma = npix. If npix=0, no smooth is done * `ivarwv` - Weighted mean, the weight of every pixel is given by the inverse of it's variance * `mean` - Mean of the total flux * `median` - Median of the total flux * `wwm_ivarwv' - Weights given by both, `ivarwv` and `wwm` * `wwm_ivar` - Weghts given by both, `wwm` and `ivar` * `wfrac` - It only takes the fraction `frac` of brightest spaxels (white) in the region (e.g. frac=0.1 means 10% brightest) with equal weight. :param i: int, default = 0 Index of the region in the region file. i = 0 corresponds to the first region listed. :param frac: Float, default = 0.1 Parameter needed for wfrac mode :param npix: int. Default = 0 Standard deviation of the gaussian filter to smooth (Only in wwm methods) :param n_figure: int. Default = 2. Figure to display the spectrum :param empirical_std: boolean. Default = False. If True, the errors of the spectrum will be determined empirically :return: spec: XSpectrum1D object """ r = pyregion.open(regfile) r = pyregion.ShapeList([r[i]]) self.draw_region(r) mask3d = self.region_3dmask(r) spec = self.spec_from_minicube_mask(mask3d, mode=mode, npix=npix, frac=frac) if empirical_std: spec = mcu.calculate_empirical_rms(spec) spec = self.spec_to_vacuum(spec) if save: spec.write_to_fits(regfile[:-4] + '.fits') plt.figure(n_figure) plt.plot(spec.wavelength, spec.flux) plt.title('Spectrum from ' + regfile) plt.xlabel('Angstroms') plt.ylabel('Flux (' + str(self.flux_units) + ')') return spec @property def wavelength(self): """ Creates the wavelength array for the spectrum. The values of dw, and limits will depend of the data and should be revised. :return: w: array[] array which contain an evenly sampled wavelength range """ dw = self.header_1['CD3_3'] w_ini = self.header_1['CRVAL3'] N = self.header_1['NAXIS3'] w_fin = w_ini + (N - 1) * dw # w_aux = w_ini + dw*np.arange(0, N) #todo: check whether w_aux and w are the same w = np.linspace(w_ini, w_fin, N) # print('wavelength in range ' + str(w[0]) + ' to ' + str(w[len(w) - 1]) + ' and dw = ' + str(dw)) return w def __edit_header(self, hdulist, values_list, keywords_list=['CRPIX1', 'CRPIX2', 'CD1_1', 'CD2_2', 'CRVAL1', 'CRVAL2'], hdu=1): hdu_element = hdulist[hdu] if len(keywords_list) != len(values_list): raise ValueError('Dimensions of keywords_list and values-list does not match') n = len(values_list) for i in xrange(n): keyword = keywords_list[i] value = values_list[i] hdu_element.header[keyword] = value # CSYER1=hdu_element.header['CSYER1'] # hdu_element.header['CSYER1']=1000.0860135214331 hdulist_edited = hdulist hdulist_edited[hdu] = hdu_element return hdulist_edited def __save2fits(self, fitsname, data_to_save, stat=False, type='cube', n_figure=2, edit_header=[]): if type == 'white': hdulist = fits.HDUList.fromfile(self.filename_white) hdulist[1].data = data_to_save if len(edit_header) == 0: hdulist.writeto(fitsname, clobber=True) im = aplpy.FITSFigure(fitsname, figure=plt.figure(n_figure)) im.show_grayscale() elif len(edit_header) == 1: values_list = edit_header[0] hdulist_edited = self.__edit_header(hdulist, values_list=values_list) hdulist_edited.writeto(fitsname, clobber=True) im = aplpy.FITSFigure(fitsname, figure=plt.figure(n_figure)) im.show_grayscale() elif len(edit_header) == 2: values_list = edit_header[0] keywords_list = edit_header[1] hdulist_edited = self.__edit_header(hdulist, values_list=values_list, keywords_list=keywords_list) hdulist_edited.writeto(fitsname, clobber=True) im = aplpy.FITSFigure(fitsname, figure=plt.figure(n_figure)) im.show_grayscale() elif len(edit_header) == 3: values_list = edit_header[0] keywords_list = edit_header[1] hdu = edit_header[2] hdulist_edited = self.__edit_header(hdulist, values_list=values_list, keywords_list=keywords_list, hdu=hdu) hdulist_edited.writeto(fitsname, clobber=True) im = aplpy.FITSFigure(fitsname, figure=plt.figure(n_figure)) im.show_grayscale() if type == 'cube': hdulist = fits.HDUList.fromfile(self.filename) if stat == False: hdulist[1].data = data_to_save if stat == True: hdulist[2].data = data_to_save if len(edit_header) == 0: hdulist.writeto(fitsname, clobber=True) im = aplpy.FITSFigure(fitsname, slices=[1], figure=plt.figure(n_figure)) im.show_grayscale() elif len(edit_header) == 1: values_list = edit_header[0] hdulist_edited = self.__edit_header(hdulist, values_list=values_list) hdulist_edited.writeto(fitsname, clobber=True) im = aplpy.FITSFigure(fitsname, slices=[1], figure=plt.figure(n_figure)) im.show_grayscale() elif len(edit_header) == 2: values_list = edit_header[0] keywords_list = edit_header[1] hdulist_edited = self.__edit_header(hdulist, values_list=values_list, keywords_list=keywords_list) hdulist_edited.writeto(fitsname, clobber=True) im = aplpy.FITSFigure(fitsname, slices=[1], figure=plt.figure(n_figure)) im.show_grayscale() elif len(edit_header) == 3: values_list = edit_header[0] keywords_list = edit_header[1] hdu = edit_header[2] hdulist_edited = self.__edit_header(hdulist, values_list=values_list, keywords_list=keywords_list, hdu=hdu) hdulist_edited.writeto(fitsname, clobber=True) im = aplpy.FITSFigure(fitsname, slices=[1], figure=plt.figure(n_figure)) im.show_grayscale() def ellipse_params_to_pixel(self, xc, yc, params): """ Function to transform the parameters of an ellipse from degrees to pixels :param xc: :param yc: :param radius: :return: """ a = params[0] b = params[1] xaux, yaux, a2 = self.xyr_to_pixel(xc, yc, a) xc2, yc2, b2 = self.xyr_to_pixel(xc, yc, b) params2 = [a2, b2, params[2]] return xc2, yc2, params2 def get_mini_cube_mask_from_region_string(self, region_string): """ Creates a 3D mask where all original masked voxels are masked out, plus all voxels associated to spaxels outside the elliptical region defined by the given parameters. :param region_string: Region defined by ds9 format :return: complete_mask_new: a new mask for the cube """ complete_mask_new = self.get_new_3dmask(region_string) return complete_mask_new def get_mini_cube_mask_from_ellipse_params(self, x_c, y_c, params, coord_system='pix',color='green'): """ Creates a 3D mask where all original masked voxels are masked out, plus all voxels associated to spaxels outside the elliptical region defined by the given parameters. :param x_c: center of the elliptical aperture :param y_c: center of the elliptical aperture :param params: can be a single radius (float) of an circular aperture, or a (a,b,theta) tuple :param coord_system: default: pix, possible values: pix, wcs :return: complete_mask_new: a new mask for the cube """ if not isinstance(params, (int, float, tuple, list, np.array)): raise ValueError('Not ready for this `radius` type.') if isinstance(params, (int, float)): a = params b = params theta = 0 elif isiterable(params) and (len(params) == 3): a = max(params[:2]) b = min(params[:2]) theta = params[2] else: raise ValueError('If iterable, the length of radius must be == 3; otherwise try float.') region_string = self.ellipse_param_to_ds9reg_string(x_c, y_c, a, b, theta, coord_system=coord_system,color=color) complete_mask_new = self.get_new_3dmask(region_string) return complete_mask_new def ellipse_param_to_ds9reg_string(self, xc, yc, a, b, theta, color='green', coord_system='pix'): """Creates a string that defines an elliptical region given by the parameters using the DS9 convention. """ if coord_system == 'wcs': x_center, y_center, radius = self.ellipse_params_to_pixel(xc, yc, params=[a, b, theta]) else: # already in pixels x_center, y_center, radius = xc, yc, [a, b, theta] region_string = 'physical;ellipse({},{},{},{},{}) # color = {}'.format(x_center, y_center, radius[0], radius[1], radius[2], color) return region_string def wfrac_show_spaxels(self, frac, mask2d, smoothed_white): y, x = np.where(~mask2d) n = len(x) im_white = smoothed_white[~mask2d] fl_limit = np.percentile(im_white, (1. - frac) * 100.) for i in xrange(n): if smoothed_white[y[i]][x[i]] >= fl_limit: plt.figure(self.n) plt.plot(x[i] + 1, y[i] + 1, 'o', color='Blue') def _test_3dmask(self, region_string, alpha=0.8, slice=0): complete_mask = self.get_new_3dmask(region_string) mask_slice = complete_mask[int(slice)] plt.figure(self.n) plt.imshow(mask_slice, alpha=alpha) self.draw_pyregion(region_string) def get_new_2dmask(self, region_string): """Creates a 2D mask for the white image that mask out spaxel that are outside the region defined by region_string""" from pyregion.region_to_filter import as_region_filter im_aux = np.ones_like(self.white_data) hdu_aux = fits.open(self.filename_white)[1] hdu_aux.data = im_aux hdulist = self.hdulist_white r = pyregion.parse(region_string).as_imagecoord(hdulist[1].header) shape = hdu_aux.data.shape region_filter = as_region_filter(r, origin=0) mask_new = region_filter.mask(shape) mask_new_inverse = np.where(~mask_new, True, False) return mask_new_inverse def get_new_3dmask(self, region_string): """Creates a 3D mask for the cube that also mask out spaxels that are outside the gemoetrical redion defined by region_string. Parameters ---------- region_string : str A string that defines a geometrical region using the DS9 format (e.g. see http://ds9.si.edu/doc/ref/region.html) Returns ------- A 3D mask that includes already masked voxels from the original cube, plus all spaxels outside the region defined by region_string. Notes: It uses pyregion package. """ mask2d = self.get_new_2dmask(region_string) complete_mask_new = mask2d + self.mask_init complete_mask_new = np.where(complete_mask_new != 0, True, False) self.draw_pyregion(region_string) return complete_mask_new def plot_sextractor_regions(self, sextractor_filename, a_min=3.5, flag_threshold=32, wcs_coords=False, n_id=None, border_thresh=1): self.reload_canvas() x_pix = np.array(self.get_from_table(sextractor_filename, 'X_IMAGE')) y_pix = np.array(self.get_from_table(sextractor_filename, 'Y_IMAGE')) a = np.array(self.get_from_table(sextractor_filename, 'A_IMAGE')) a_new = np.where(a < a_min, a_min, a) b = np.array(self.get_from_table(sextractor_filename, 'B_IMAGE')) ratios = a / b b_new = a_new / ratios b_new = np.where(b_new < 1, 1, b_new) a = a_new b = b_new theta = np.array(self.get_from_table(sextractor_filename, 'THETA_IMAGE')) flags = self.get_from_table(sextractor_filename, 'FLAGS').data id = self.get_from_table(sextractor_filename, 'NUMBER').data mag = self.get_from_table(sextractor_filename, 'MAG_AUTO').data n = len(x_pix) if wcs_coords: x_world = np.array(self.get_from_table(sextractor_filename, 'X_WORLD')) y_world = np.array(self.get_from_table(sextractor_filename, 'Y_WORLD')) a_world = np.array(self.get_from_table(sextractor_filename, 'A_WORLD')) b_world = np.array(self.get_from_table(sextractor_filename, 'B_WORLD')) a_min_wcs = a_min * self.pixelsize a_min_wcs = a_min_wcs.to(u.deg).value a_world_new = np.where(a_world < a_min_wcs, a_min_wcs, a_world) ratios_wcs = a_world / b_world b_world_new = a_world_new / ratios_wcs b_world_new = np.where(b_world_new < self.pixelsize.to(u.deg).value, self.pixelsize.to(u.deg).value, b_world_new) a_world = a_world_new b_world = b_world_new for i in xrange(n): params_wcs = [a_world[i], b_world[i], theta[i]] x_pix[i], y_pix[i], params = self.ellipse_params_to_pixel(x_world[i], y_world[i], params=params_wcs) a[i] = params[0] b[i] = params[1] x2=[] y2=[] a2=[] b2=[] theta2=[] flags2=[] id2=[] mag2=[] ly,lx=self.white_data.shape for i in xrange(n): if x_pix[i]>=border_thresh and y_pix[i]>=border_thresh and x_pix[i]<=lx-border_thresh and y_pix[i]<=ly-border_thresh: x2.append(x_pix[i]) y2.append(y_pix[i]) a2.append(a[i]) b2.append(b[i]) theta2.append(theta[i]) flags2.append(flags[i]) id2.append(id[i]) mag2.append(mag[i]) x_pix=np.array(x2) y_pix=np.array(y2) a=np.array(a2) b=np.array(b2) theta=np.array(theta2) flags=np.array(flags2) id=np.array(id2) mag=np.array(mag2) n=len(x_pix) if n_id != None: j = np.where(id == n_id)[0][0] region_string = self.ellipse_param_to_ds9reg_string(x_pix[j], y_pix[j], a[j], b[j], theta[j], color='Green') self.draw_pyregion(region_string) plt.text(x_pix[j], y_pix[j], id[j], color='Red') return for i in xrange(n): color = 'Green' if flags[i] > flag_threshold: color = 'Red' region_string = self.ellipse_param_to_ds9reg_string(x_pix[i], y_pix[i], a[i], b[i], theta[i], color=color) self.draw_pyregion(region_string) plt.text(x_pix[i], y_pix[i], id[i], color='Red') return x_pix, y_pix, a, b, theta, flags, id, mag def save_sextractor_specs(self, sextractor_filename, flag_threshold=32, redmonster_format=True, a_min=3.5, n_figure=2, wcs_coords=False, mode='wwm', mag_kwrd='mag_r', npix=0, frac=0.1, border_thresh=1): x_pix, y_pix, a, b, theta, flags, id, mag = self.plot_sextractor_regions( sextractor_filename=sextractor_filename, a_min=a_min, flag_threshold=flag_threshold, wcs_coords=wcs_coords, border_thresh=border_thresh) self.reload_canvas() n = len(x_pix) for i in xrange(n): if flags[i] <= flag_threshold: x_world, y_world = self.p2w(x_pix[i], y_pix[i]) coord = SkyCoord(ra=x_world, dec=y_world, frame='icrs', unit='deg') spec_fits_name = name_from_coord(coord) spec = self.get_spec_from_ellipse_params(x_c=x_pix[i], y_c=y_pix[i], params=[a[i], b[i], theta[i]], mode=mode, npix=npix, frac=frac, save=False, n_figure=n_figure) str_id = str(id[i]).zfill(3) spec_fits_name = str_id + '_' + spec_fits_name if redmonster_format: mcu.spec_to_redmonster_format(spec=spec, fitsname=spec_fits_name + '_RMF.fits', n_id=id[i], mag=[mag_kwrd, mag[i]]) else: spec.write_to_fits(spec_fits_name + '.fits') hdulist = fits.open(spec_fits_name + '.fits') hdulist[0].header[mag_kwrd] = mag[i] hdulist.writeto(spec_fits_name + '.fits', clobber=True) print('ID = ' + str_id + ' Ready!!') def __read_files(self, input): path = input files = glob.glob(path) return files def create_movie_wavelength_range(self, initial_wavelength, final_wavelength, width=5., outvid='wave_video.avi', erase=True): """ Function to create a film over a wavelength range of the cube :param initial_wavelength: initial wavelength of the film :param final_wavelength: final wavelength of the film :param width: width of the wavelength range in each frame :param outvid: name of the final video :param erase: if True, the individual frames will be erased after producing the video :return: """ wave = self.wavelength n = len(wave) w_max = wave[n - 1] - width - 1 if initial_wavelength < wave[0]: print(str( initial_wavelength) + ' es menor al limite inferior minimo permitido, se usara en su lugar ' + str( wave[0])) initial_wavelength = wave[0] if final_wavelength > wave[n - 1]: print(str(final_wavelength) + ' es mayor al limite superior maximo permitido, se usara en su lugar ' + str( w_max)) final_wavelength = w_max if final_wavelength <= wave[0] or initial_wavelength >= wave[n - 1]: raise ValueError('Input wavelength is not in valid range') images_names = [] fitsnames = [] for i in xrange(initial_wavelength, final_wavelength): wavelength_range = (i, i + width) filename = 'colapsed_image_' + str(i) + '_' im = self.get_image(wv_input=[wavelength_range], fitsname=filename + '.fits', type='sum', save='True') plt.close(15) image = aplpy.FITSFigure(filename + '.fits', figure=plt.figure(15)) image.show_grayscale() image.save(filename=filename + '.png') fitsnames.append(filename + '.fits') images_names.append(filename + '.png') plt.close(15) video = self.make_video(images=images_names, outvid=outvid) n_im = len(fitsnames) if erase: for i in xrange(n_im): fits_im = fitsnames[i] png_im = images_names[i] command_fits = 'rm ' + fits_im command_png = 'rm ' + png_im os.system(command_fits) os.system(command_png) return video def find_wv_inds(self, wv_array): """ :param wv_array :return: Returns the indices in the cube, that are closest to wv_array """ inds = [np.argmin(np.fabs(wv_ii - self.wavelength)) for wv_ii in wv_array] inds = np.unique(inds) return inds def sub_cube(self, wv_input, stat=False): """ Returns a cube-like object with fewer wavelength elements :param wv_input: tuple or np.array :return: XXXX """ if isinstance(wv_input[0], (tuple, list, np.ndarray)): if len(wv_input[0]) != 2: raise ValueError( "If wv_input is given as tuple, it must be of lenght = 2, interpreted as (wv_min, wv_max)") wv_inds = self.find_wv_inds(wv_input[0]) ind_min = np.min(wv_inds) ind_max = np.max(wv_inds) if stat: sub_cube = self.stat[ind_min:ind_max + 1, :, :] else: sub_cube = self.cube[ind_min:ind_max + 1, :, :] else: # assuming array-like for wv_input wv_inds = self.find_wv_inds(wv_input) if stat: sub_cube = self.stat[wv_inds, :, :] else: sub_cube = self.cube[wv_inds, :, :] return sub_cube def get_filtered_image(self, _filter='r', save=True, n_figure=5, custom_filter=None): """ Function used to produce a filtered image from the cube :param _filter: string, default = r possible values: u,g,r,i,z , sdss filter or Johnson V,r to get the new image :param save: Boolean, default = True If True, the image will be saved :param custom_filter: Default = None. If not, can be a customized filter created by the user formated as [wc,fc], where the first element is the wavelength array of the filter and the second is the corresponding transmission curve. :return: """ w = self.wavelength if not custom_filter: filter_curve = self.get_filter(wavelength_spec=w, _filter=_filter) else: wave_filter = custom_filter[0] flux_filter = custom_filter[1] filter_curve = self.filter_to_MUSE_wavelength(wave_filter, flux_filter, wavelength_spec=w) condition = np.where(filter_curve > 0)[0] fitsname = 'new_image_' + _filter + '_filter.fits' sub_cube = self.cube[condition] filter_curve_final = filter_curve[condition] extra_dims = sub_cube.ndim - filter_curve_final.ndim new_shape = filter_curve_final.shape + (1,) * extra_dims new_filter_curve = filter_curve_final.reshape(new_shape) new_filtered_cube = sub_cube * new_filter_curve new_filtered_image = np.sum(new_filtered_cube, axis=0) if save: self.__save2fits(fitsname, new_filtered_image.data, type='white', n_figure=n_figure) return new_filtered_image def get_image(self, wv_input, fitsname='new_collapsed_cube.fits', type='sum', n_figure=2, save=False, stat=False, maskfile=None, inverse_mask=True): """ Function used to colapse a determined wavelength range in a sum or a median type :param wv_input: tuple or list can be a list of wavelengths or a tuple that will represent a range :param fitsname: str The name of the fits that will contain the new image :param type: str, possible values: 'sum' or 'median' The type of combination that will be done. :param n_figure: int Figure to display the new image if it is saved :return: """ if maskfile: r = pyregion.open(maskfile) n = len(r) masks = [] for i in xrange(n): masks.append(self.region_2dmask(pyregion.ShapeList([r[i]]))) mask_final = masks[0] for i in xrange(n): mask_final = np.logical_and(mask_final, masks[i]) if inverse_mask: mask_final = np.where(~mask_final, True, False) sub_cube = self.sub_cube(wv_input, stat=stat) if type == 'sum': matrix_flat = np.sum(sub_cube, axis=0) elif type == 'median': matrix_flat = np.median(sub_cube, axis=0) else: raise ValueError('Unknown type, please chose sum or median') if maskfile: matrix_flat = np.where(mask_final == 1, matrix_flat, np.nan) if save: self.__save2fits(fitsname, matrix_flat, type='white', n_figure=n_figure) else: if save: self.__save2fits(fitsname, matrix_flat.data, type='white', n_figure=n_figure) return matrix_flat def get_continuum_range(self, range): """ :param range: tuple contain the range of a emission line. Continuum will be computed around this range :return: cont_range_inf: The continuum range at the left of the Emission line, same length than input range cont_range_sup: The continuum range at the right of the Emission line, same length than input range n : The number of element in the wavelength space inside the ranges """ wv_inds = self.find_wv_inds(range) n = wv_inds[1] - wv_inds[0] wv_inds_sup = wv_inds + n wv_inds_inf = wv_inds - n cont_range_inf = self.wavelength[wv_inds_inf] cont_range_sup = self.wavelength[wv_inds_sup] return cont_range_inf, cont_range_sup, n def get_image_wv_ranges(self, wv_ranges, substract_cont=True, fitsname='new_collapsed_cube.fits', save=False, n_figure=3): image_stacker = np.zeros_like(self.white_data) for r in wv_ranges: image = self.get_image([r]) cont_range_inf, cont_range_sup, n = self.get_continuum_range(r) cont_inf_image = self.get_image([cont_range_inf], type='median') cont_sup_image = self.get_image([cont_range_sup], type='median') cont_image = (n + 1) * (cont_inf_image + cont_sup_image) / 2. if substract_cont: image = image - cont_image image_stacker = image_stacker + image.data image_stacker = np.where(image_stacker < 0, 0, image_stacker) if save: self.__save2fits(fitsname, image_stacker, type='white', n_figure=n_figure) return image_stacker def create_white(self, new_white_fitsname='white_from_colapse.fits', stat=False, save=True): """ Function that collapses all wavelengths available to produce a new white image :param new_white_fitsname: Name of the new image :return: """ wave = self.wavelength n = len(wave) wv_input = [[wave[0], wave[n - 1]]] white_image = self.get_image(wv_input, fitsname=new_white_fitsname, stat=stat, save=save) return white_image def calculate_mag(self, wavelength, flux, _filter, zeropoint_flux=9.275222661263278e-07): dw = np.diff(wavelength) new_flux = flux * _filter f_mean = (new_flux[:-1] + new_flux[1:]) * 0.5 total_flux = np.sum(f_mean * dw) * self.flux_units.value mag = -2.5 * np.log10(total_flux / zeropoint_flux) return mag def get_filter(self, wavelength_spec, _filter='r'): wave_u = np.arange(2980, 4155, 25) wave_g = np.arange(3630, 5855, 25) wave_r = np.arange(5380, 7255, 25) wave_i = np.arange(6430, 8655, 25) wave_z = np.arange(7730, 11255, 25) wave_R = np.array([5445., 5450., 5455., 5460., 5465., 5470., 5475., 5480., 5485., 5490., 5495., 5500., 5505., 5510., 5515., 5520., 5525., 5530., 5535., 5540., 5545., 5550., 5555., 5560., 5565., 5570., 5575., 5580., 5585., 5590., 5595., 5600., 5605., 5610., 5615., 5620., 5625., 5630., 5635., 5640., 5645., 5650., 5655., 5660., 5665., 5670., 5675., 5680., 5685., 5690., 5695., 5700., 5705., 5710., 5715., 5720., 5725., 5730., 5735., 5740., 5745., 5750., 5755., 5760., 5765., 5770., 5775., 5780., 5785., 5790., 5795., 5800., 5805., 5810., 5815., 5820., 5825., 5830., 5835., 5840., 5845., 5850., 5855., 5860., 5865., 5870., 5875., 5880., 5885., 5890., 5895., 5900., 5905., 5910., 5915., 5920., 5925., 5930., 5935., 5940., 5945., 5950., 5955., 5960., 5965., 5970., 5975., 5980., 5985., 5990., 5995., 6000., 6005., 6010., 6015., 6020., 6025., 6030., 6035., 6040., 6045., 6050., 6055., 6060., 6065., 6070., 6075., 6080., 6085., 6090., 6095., 6100., 6105., 6110., 6115., 6120., 6125., 6130., 6135., 6140., 6145., 6150., 6155., 6160., 6165., 6170., 6175., 6180., 6185., 6190., 6195., 6200., 6205., 6210., 6215., 6220., 6225., 6230., 6235., 6240., 6245., 6250., 6255., 6260., 6265., 6270., 6275., 6280., 6285., 6290., 6295., 6300., 6305., 6310., 6315., 6320., 6325., 6330., 6335., 6340., 6345., 6350., 6355., 6360., 6365., 6370., 6375., 6380., 6385., 6390., 6395., 6400., 6405., 6410., 6415., 6420., 6425., 6430., 6435., 6440., 6445., 6450., 6455., 6460., 6465., 6470., 6475., 6480., 6485., 6490., 6495., 6500., 6505., 6510., 6515., 6520., 6525., 6530., 6535., 6540., 6545., 6550., 6555., 6560., 6565., 6570., 6575., 6580., 6585., 6590., 6595., 6600., 6605., 6610., 6615., 6620., 6625., 6630., 6635., 6640., 6645., 6650., 6655., 6660., 6665., 6670., 6675., 6680., 6685., 6690., 6695., 6700., 6705., 6710., 6715., 6720., 6725., 6730., 6735., 6740., 6745., 6750., 6755., 6760., 6765., 6770., 6775., 6780., 6785., 6790., 6795., 6800., 6805., 6810., 6815., 6820., 6825., 6830., 6835., 6840., 6845., 6850., 6855., 6860., 6865., 6870., 6875., 6880., 6885., 6890., 6895., 6900., 6905., 6910., 6915., 6920., 6925., 6930., 6935., 6940., 6945., 6950., 6955., 6960., 6965., 6970., 6975., 6980., 6985., 6990., 6995., 7000., 7005., 7010., 7015., 7020., 7025., 7030., 7035., 7040., 7045., 7050., 7055., 7060., 7065., 7070., 7075., 7080., 7085., 7090., 7095., 7100., 7105., 7110., 7115., 7120., 7125., 7130., 7135., 7140., 7145., 7150., 7155., 7160., 7165., 7170., 7175., 7180., 7185., 7190., 7195., 7200., 7205., 7210., 7215., 7220., 7225., 7230., 7235., 7240., 7245., 7250., 7255., 7260., 7265., 7270., 7275., 7280., 7285., 7290., 7295., 7300., 7305., 7310., 7315., 7320., 7325., 7330., 7335., 7340., 7345., 7350., 7355., 7360., 7365., 7370., 7375., 7380., 7385., 7390., 7395., 7400., 7405., 7410., 7415., 7420., 7425., 7430., 7435., 7440., 7445., 7450., 7455., 7460., 7465., 7470., 7475., 7480., 7485., 7490., 7495., 7500., 7505., 7510., 7515., 7520., 7525., 7530., 7535., 7540., 7545., 7550., 7555., 7560., 7565., 7570., 7575., 7580., 7585., 7590., 7595., 7600., 7605., 7610., 7615., 7620., 7625., 7630., 7635., 7640., 7645., 7650., 7655., 7660., 7665., 7670., 7675., 7680., 7685., 7690., 7695., 7700., 7705., 7710., 7715., 7720., 7725., 7730., 7735., 7740., 7745., 7750., 7755., 7760., 7765., 7770., 7775., 7780., 7785., 7790., 7795., 7800., 7805., 7810., 7815., 7820., 7825., 7830., 7835., 7840., 7845., 7850., 7855., 7860., 7865., 7870., 7875., 7880., 7885., 7890., 7895., 7900., 7905., 7910., 7915., 7920., 7925., 7930., 7935., 7940., 7945., 7950., 7955., 7960., 7965., 7970., 7975., 7980., 7985., 7990., 7995., 8000., 8005., 8010., 8015., 8020., 8025., 8030., 8035., 8040., 8045., 8050., 8055., 8060., 8065., 8070., 8075., 8080., 8085., 8090., 8095., 8100., 8105., 8110., 8115., 8120., 8125., 8130., 8135., 8140., 8145., 8150., 8155., 8160., 8165., 8170., 8175., 8180., 8185., 8190., 8195., 8200., 8205., 8210., 8215., 8220., 8225., 8230., 8235., 8240., 8245., 8250., 8255., 8260., 8265., 8270., 8275., 8280., 8285., 8290., 8295., 8300., 8305., 8310., 8315., 8320., 8325., 8330., 8335., 8340., 8345., 8350., 8355., 8360., 8365., 8370., 8375., 8380., 8385., 8390., 8395., 8400., 8405., 8410., 8415., 8420., 8425., 8430., 8435., 8440., 8445., 8450., 8455., 8460., 8465., 8470., 8475., 8480., 8485., 8490., 8495., 8500., 8505., 8510., 8515., 8520., 8525., 8530., 8535., 8540., 8545., 8550., 8555., 8560., 8565., 8570., 8575., 8580., 8585., 8590., 8595., 8600., 8605., 8610., 8615., 8620., 8625., 8630., 8635., 8640., 8645., 8650., 8655., 8660., 8665., 8670., 8675., 8680., 8685., 8690., 8695., 8700., 8705., 8710., 8715., 8720., 8725., 8730., 8735., 8740., 8745., 8750., 8755., 8760., 8765., 8770., 8775., 8780., 8785., 8790., 8795., 8800., 8805., 8810., 8815., 8820., 8825., 8830., 8835., 8840., 8845., 8850., 8855., 8860., 8865., 8870., 8875., 8880., 8885., 8890., 8895., 8900., 8905., 8910., 8915., 8920., 8925., 8930., 8935., 8940., 8945., 8950., 8955., 8960., 8965., 8970., 8975., 8980., 8985., 8990., 8995., 9000., 9005., 9010., 9015., 9020., 9025., 9030., 9035., 9040., 9045., 9050., 9055., 9060., 9065., 9070., 9075., 9080., 9085., 9090., 9095., 9100., 9105., 9110., 9115., 9120., 9125., 9130., 9135., 9140., 9145., 9150., 9155., 9160., 9165., 9170., 9175., 9180., 9185., 9190., 9195., 9200., 9205., 9210., 9215., 9220., 9225., 9230., 9235., 9240., 9245., 9250., 9255., 9260., 9265., 9270., 9275., 9280., 9285., 9290., 9295., 9300., 9305., 9310., 9315., 9320., 9325., 9330., 9335., 9340.]) wave_V = np.array([4760., 4765., 4770., 4775., 4780., 4785., 4790., 4795., 4800., 4805., 4810., 4815., 4820., 4825., 4830., 4835., 4840., 4845., 4850., 4855., 4860., 4865., 4870., 4875., 4880., 4885., 4890., 4895., 4900., 4905., 4910., 4915., 4920., 4925., 4930., 4935., 4940., 4945., 4950., 4955., 4960., 4965., 4970., 4975., 4980., 4985., 4990., 4995., 5000., 5005., 5010., 5015., 5020., 5025., 5030., 5035., 5040., 5045., 5050., 5055., 5060., 5065., 5070., 5075., 5080., 5085., 5090., 5095., 5100., 5105., 5110., 5115., 5120., 5125., 5130., 5135., 5140., 5145., 5150., 5155., 5160., 5165., 5170., 5175., 5180., 5185., 5190., 5195., 5200., 5205., 5210., 5215., 5220., 5225., 5230., 5235., 5240., 5245., 5250., 5255., 5260., 5265., 5270., 5275., 5280., 5285., 5290., 5295., 5300., 5305., 5310., 5315., 5320., 5325., 5330., 5335., 5340., 5345., 5350., 5355., 5360., 5365., 5370., 5375., 5380., 5385., 5390., 5395., 5400., 5405., 5410., 5415., 5420., 5425., 5430., 5435., 5440., 5445., 5450., 5455., 5460., 5465., 5470., 5475., 5480., 5485., 5490., 5495., 5500., 5505., 5510., 5515., 5520., 5525., 5530., 5535., 5540., 5545., 5550., 5555., 5560., 5565., 5570., 5575., 5580., 5585., 5590., 5595., 5600., 5605., 5610., 5615., 5620., 5625., 5630., 5635., 5640., 5645., 5650., 5655., 5660., 5665., 5670., 5675., 5680., 5685., 5690., 5695., 5700., 5705., 5710., 5715., 5720., 5725., 5730., 5735., 5740., 5745., 5750., 5755., 5760., 5765., 5770., 5775., 5780., 5785., 5790., 5795., 5800., 5805., 5810., 5815., 5820., 5825., 5830., 5835., 5840., 5845., 5850., 5855., 5860., 5865., 5870., 5875., 5880., 5885., 5890., 5895., 5900., 5905., 5910., 5915., 5920., 5925., 5930., 5935., 5940., 5945., 5950., 5955., 5960., 5965., 5970., 5975., 5980., 5985., 5990., 5995., 6000., 6005., 6010., 6015., 6020., 6025., 6030., 6035., 6040., 6045., 6050., 6055., 6060., 6065., 6070., 6075., 6080., 6085., 6090., 6095., 6100., 6105., 6110., 6115., 6120., 6125., 6130., 6135., 6140., 6145., 6150., 6155., 6160., 6165., 6170., 6175., 6180., 6185., 6190., 6195., 6200., 6205., 6210., 6215., 6220., 6225., 6230., 6235., 6240., 6245., 6250., 6255., 6260., 6265., 6270., 6275., 6280., 6285., 6290., 6295., 6300., 6305., 6310., 6315., 6320., 6325., 6330., 6335., 6340., 6345., 6350., 6355., 6360., 6365., 6370., 6375., 6380., 6385., 6390., 6395., 6400., 6405., 6410., 6415., 6420., 6425., 6430., 6435., 6440., 6445., 6450., 6455., 6460., 6465., 6470., 6475., 6480., 6485., 6490., 6495., 6500., 6505., 6510., 6515., 6520., 6525., 6530., 6535., 6540., 6545., 6550., 6555., 6560., 6565., 6570., 6575., 6580., 6585., 6590., 6595., 6600., 6605., 6610., 6615., 6620., 6625., 6630., 6635., 6640., 6645., 6650., 6655., 6660., 6665., 6670., 6675., 6680., 6685., 6690., 6695., 6700., 6705., 6710., 6715., 6720., 6725., 6730., 6735., 6740., 6745., 6750., 6755., 6760., 6765., 6770., 6775., 6780., 6785., 6790., 6795., 6800., 6805., 6810., 6815., 6820., 6825., 6830., 6835., 6840., 6845., 6850., 6855., 6860., 6865., 6870., 6875., 6880., 6885., 6890., 6895., 6900., 6905., 6910., 6915., 6920., 6925., 6930., 6935., 6940., 6945., 6950., 6955., 6960., 6965., 6970., 6975., 6980., 6985., 6990., 6995., 7000., 7005., 7010., 7015., 7020., 7025., 7030., 7035., 7040., 7045., 7050., 7055., 7060., 7065., 7070., 7075., 7080., 7085., 7090., 7095., 7100., 7105., 7110., 7115., 7120., 7125., 7130., 7135., 7140., 7145., 7150., 7155., 7160., 7165., 7170., 7175., 7180., 7185., 7190., 7195., 7200., 7205., 7210., 7215., 7220., 7225., 7230., 7235., 7240., 7245., 7250., 7255., 7260., 7265., 7270., 7280.]) flux_V = np.array([9.64320839e-03, 1.17108273e-02, 1.43528032e-02, 1.75631618e-02, 2.11335897e-02, 2.55253673e-02, 3.07395792e-02, 3.66303658e-02, 4.38177156e-02, 5.15626001e-02, 6.09055328e-02, 7.15601015e-02, 8.32171154e-02, 9.64917278e-02, 1.11321487e-01, 1.27047434e-01, 1.45095301e-01, 1.63879433e-01, 1.84025288e-01, 2.05674400e-01, 2.27541790e-01, 2.51783009e-01, 2.76728153e-01, 3.02018051e-01, 3.28636360e-01, 3.54072228e-01, 3.81254387e-01, 4.08208084e-01, 4.34315758e-01, 4.61384430e-01, 4.87483635e-01, 5.12711716e-01, 5.38157120e-01, 5.61274338e-01, 5.85662842e-01, 6.07098885e-01, 6.29042625e-01, 6.51120758e-01, 6.71111679e-01, 6.87856445e-01, 7.05869598e-01, 7.21706085e-01, 7.38656692e-01, 7.51982346e-01, 7.66451569e-01, 7.79320374e-01, 7.91537857e-01, 8.01387253e-01, 8.12644043e-01, 8.21886444e-01, 8.30849152e-01, 8.39123459e-01, 8.45743408e-01, 8.53470001e-01, 8.60292893e-01, 8.66531220e-01, 8.72752762e-01, 8.77110748e-01, 8.82006912e-01, 8.87016678e-01, 8.91045380e-01, 8.94107590e-01, 8.97235336e-01, 9.00786133e-01, 9.03548050e-01, 9.06549301e-01, 9.08831177e-01, 9.11690445e-01, 9.12861023e-01, 9.15185928e-01, 9.17089386e-01, 9.17668686e-01, 9.20558548e-01, 9.21113205e-01, 9.22701874e-01, 9.23237000e-01, 9.24772034e-01, 9.25894012e-01, 9.26325073e-01, 9.27905960e-01, 9.27411652e-01, 9.28828430e-01, 9.28686295e-01, 9.30086288e-01, 9.29822846e-01, 9.30881195e-01, 9.30577240e-01, 9.31094971e-01, 9.30789261e-01, 9.30882034e-01, 9.31607895e-01, 9.31012649e-01, 9.30543594e-01, 9.30507584e-01, 9.30894165e-01, 9.30728226e-01, 9.30551834e-01, 9.30233002e-01, 9.30283814e-01, 9.30285187e-01, 9.29119644e-01, 9.28713150e-01, 9.28867035e-01, 9.28172684e-01, 9.28012314e-01, 9.27614441e-01, 9.26771698e-01, 9.26360092e-01, 9.25508957e-01, 9.24991302e-01, 9.24198074e-01, 9.22970123e-01, 9.22512283e-01, 9.21908951e-01, 9.20856094e-01, 9.20415039e-01, 9.19665604e-01, 9.18579636e-01, 9.17498093e-01, 9.16515350e-01, 9.15503616e-01, 9.14212112e-01, 9.13366013e-01, 9.12551498e-01, 9.11715393e-01, 9.10380325e-01, 9.09479599e-01, 9.07609863e-01, 9.06777115e-01, 9.05421143e-01, 9.04353409e-01, 9.02455139e-01, 9.00539398e-01, 9.00131378e-01, 8.98344574e-01, 8.96168747e-01, 8.94843826e-01, 8.92673111e-01, 8.91329804e-01, 8.90147629e-01, 8.88428879e-01, 8.87021027e-01, 8.85309372e-01, 8.83131332e-01, 8.81392059e-01, 8.78589477e-01, 8.76842956e-01, 8.75344315e-01, 8.73290176e-01, 8.71898727e-01, 8.69045715e-01, 8.67195282e-01, 8.64461823e-01, 8.62905884e-01, 8.60242310e-01, 8.57690887e-01, 8.55785751e-01, 8.53161774e-01, 8.51369553e-01, 8.48543091e-01, 8.46092071e-01, 8.43811874e-01, 8.40855102e-01, 8.38205032e-01, 8.35638428e-01, 8.33058090e-01, 8.29829483e-01, 8.26507950e-01, 8.24152756e-01, 8.21133499e-01, 8.17982101e-01, 8.14945984e-01, 8.11371536e-01, 8.08797302e-01, 8.05465164e-01, 8.02152329e-01, 7.99375458e-01, 7.95579987e-01, 7.91873245e-01, 7.88838119e-01, 7.84947052e-01, 7.82865982e-01, 7.77375183e-01, 7.74711151e-01, 7.71566467e-01, 7.67292709e-01, 7.63668289e-01, 7.60665512e-01, 7.55569534e-01, 7.52378006e-01, 7.48392868e-01, 7.44523621e-01, 7.40757904e-01, 7.36248322e-01, 7.32364731e-01, 7.28448029e-01, 7.23732147e-01, 7.19756775e-01, 7.15782394e-01, 7.11536713e-01, 7.07296219e-01, 7.02669830e-01, 6.98336868e-01, 6.93820877e-01, 6.89229584e-01, 6.85463638e-01, 6.80321579e-01, 6.75755997e-01, 6.71247406e-01, 6.66305160e-01, 6.61537552e-01, 6.56552429e-01, 6.51618576e-01, 6.46831970e-01, 6.42130890e-01, 6.37422791e-01, 6.32663307e-01, 6.26985092e-01, 6.22300797e-01, 6.17429542e-01, 6.11961975e-01, 6.07117996e-01, 6.01615372e-01, 5.96683311e-01, 5.91556473e-01, 5.85764580e-01, 5.81412506e-01, 5.75745583e-01, 5.70708580e-01, 5.65521469e-01, 5.60354004e-01, 5.55104981e-01, 5.49598465e-01, 5.44442787e-01, 5.39409828e-01, 5.34089699e-01, 5.28689613e-01, 5.23753700e-01, 5.18192368e-01, 5.12720947e-01, 5.07284508e-01, 5.01651344e-01, 4.96233330e-01, 4.90987473e-01, 4.85806465e-01, 4.80457954e-01, 4.74516029e-01, 4.69459343e-01, 4.63997955e-01, 4.58108025e-01, 4.52913590e-01, 4.47898445e-01, 4.41578674e-01, 4.36835709e-01, 4.31392746e-01, 4.25792809e-01, 4.20569115e-01, 4.14983521e-01, 4.09441910e-01, 4.04065590e-01, 3.98449898e-01, 3.93368378e-01, 3.88108597e-01, 3.82731361e-01, 3.77610168e-01, 3.72011795e-01, 3.66899109e-01, 3.61709938e-01, 3.56277771e-01, 3.51459427e-01, 3.46341896e-01, 3.41169662e-01, 3.36199074e-01, 3.31208305e-01, 3.26275864e-01, 3.21232452e-01, 3.15962257e-01, 3.11138630e-01, 3.06086445e-01, 3.01351910e-01, 2.96466599e-01, 2.91627788e-01, 2.86797676e-01, 2.81993294e-01, 2.77036629e-01, 2.72600326e-01, 2.67752075e-01, 2.63035870e-01, 2.58718491e-01, 2.53945446e-01, 2.49440594e-01, 2.44970150e-01, 2.40328617e-01, 2.36014404e-01, 2.31458073e-01, 2.27129078e-01, 2.22980728e-01, 2.18599091e-01, 2.14399776e-01, 2.10105076e-01, 2.05955944e-01, 2.01979485e-01, 1.97873592e-01, 1.93701324e-01, 1.89863262e-01, 1.85919723e-01, 1.82102280e-01, 1.78372879e-01, 1.74555264e-01, 1.70942688e-01, 1.67413940e-01, 1.63823414e-01, 1.60374756e-01, 1.56812820e-01, 1.53197708e-01, 1.49876614e-01, 1.46493282e-01, 1.43237667e-01, 1.40090466e-01, 1.36744709e-01, 1.33655767e-01, 1.30583868e-01, 1.27497015e-01, 1.24574251e-01, 1.21548195e-01, 1.18785553e-01, 1.15858727e-01, 1.12972259e-01, 1.10239296e-01, 1.07432098e-01, 1.04911184e-01, 1.02240067e-01, 9.96163654e-02, 9.71846867e-02, 9.46867275e-02, 9.21891499e-02, 8.98626804e-02, 8.74147129e-02, 8.50797844e-02, 8.28987694e-02, 8.06197929e-02, 7.84934664e-02, 7.63682270e-02, 7.41679907e-02, 7.21602154e-02, 7.01406241e-02, 6.82159948e-02, 6.62652016e-02, 6.43459272e-02, 6.24867964e-02, 6.07102966e-02, 5.90227270e-02, 5.73293352e-02, 5.56865645e-02, 5.40774345e-02, 5.24679184e-02, 5.08922577e-02, 4.93965530e-02, 4.79321527e-02, 4.64570713e-02, 4.50907946e-02, 4.36638164e-02, 4.23424053e-02, 4.10112333e-02, 3.97419786e-02, 3.85188985e-02, 3.72569108e-02, 3.61442852e-02, 3.49567914e-02, 3.37763834e-02, 3.27081037e-02, 3.15532732e-02, 3.05547738e-02, 2.96382666e-02, 2.86316228e-02, 2.76253200e-02, 2.67284703e-02, 2.57629275e-02, 2.48762655e-02, 2.40548301e-02, 2.32087660e-02, 2.23887801e-02, 2.16649318e-02, 2.08810973e-02, 2.01191974e-02, 1.93965495e-02, 1.86923802e-02, 1.80622673e-02, 1.73420966e-02, 1.67779624e-02, 1.61432099e-02, 1.55458522e-02, 1.49808991e-02, 1.44260824e-02, 1.38898337e-02, 1.33757555e-02, 1.28895402e-02, 1.24336338e-02, 1.19317114e-02, 1.14778078e-02, 1.10224903e-02, 1.05936778e-02, 1.01979625e-02, 9.80331957e-03, 9.42119420e-03, 9.06843662e-03, 8.70236576e-03, 8.36401224e-03, 8.02174568e-03, 7.69513190e-03, 7.42049038e-03, 7.12957501e-03, 6.81147277e-03, 6.56225324e-03, 6.28752470e-03, 6.03279233e-03, 5.78228355e-03, 5.52640975e-03, 5.31245232e-03, 5.07642031e-03, 4.86187398e-03, 4.66857612e-03, 4.48455602e-03, 4.28951621e-03, 4.10438061e-03, 3.94181907e-03, 3.77903283e-03, 3.61310929e-03, 3.43858838e-03, 3.30562413e-03, 3.16893756e-03, 3.00862283e-03, 2.88184345e-03, 2.75286794e-03, 2.63536334e-03, 2.52844244e-03, 2.39721924e-03, 2.31343344e-03, 2.19719976e-03, 2.09656358e-03, 2.02219427e-03, 1.91874027e-03, 1.81754440e-03, 1.74118712e-03, 1.66113898e-03, 1.58724680e-03, 1.51313767e-03, 1.44662365e-03, 1.39100656e-03, 1.33283704e-03, 1.26319885e-03, 1.18512645e-03, 1.14880271e-03, 1.08921751e-03, 1.04411282e-03, 1.01634525e-03, 9.41211507e-04, 9.03511718e-04, 8.70077759e-04, 8.34191218e-04, 7.73599520e-04, 7.44963065e-04, 7.18376786e-04, 6.85756877e-04, 6.50605410e-04, 6.14275858e-04, 5.89862131e-04, 5.59216291e-04, 5.29026911e-04, 4.99960780e-04, 4.72659841e-04, 4.56626341e-04, 4.29005548e-04, 4.13897783e-04, 3.97251360e-04, 3.70411240e-04, 3.54581289e-04, 3.36891152e-04, 3.18884142e-04, 3.09158638e-04, 2.87089385e-04, 2.75648981e-04, 2.56309062e-04, 2.48264093e-04, 2.32592076e-04, 2.18097549e-04, 2.10234672e-04, 2.01618839e-04, 1.92721710e-04, 1.84358787e-04, 1.78293809e-04, 1.73047427e-04, 1.48465503e-04, 1.50579475e-04, 1.37227150e-04, 1.30995326e-04, 1.18210996e-04, 1.10485023e-04, 1.12393992e-04, 1.07742772e-04, 1.06566232e-04, 8.77865311e-05, 9.66540072e-05, 8.63869675e-05]) flux_R = np.array([1.12660611e-04, 1.33478958e-04, 1.80384908e-04, 2.26182416e-04, 2.96486858e-04, 3.83854918e-04, 4.94274013e-04, 6.20536394e-04, 8.19598287e-04, 1.01240180e-03, 1.29484743e-03, 1.64972723e-03, 2.04623789e-03, 2.60429144e-03, 3.19142252e-03, 3.95557463e-03, 4.87352252e-03, 5.92993259e-03, 7.22202599e-03, 8.75534654e-03, 1.05062985e-02, 1.26144767e-02, 1.49658072e-02, 1.76800156e-02, 2.09657979e-02, 2.44697619e-02, 2.87300396e-02, 3.34529758e-02, 3.85330200e-02, 4.46062708e-02, 5.08374691e-02, 5.79355812e-02, 6.60423279e-02, 7.43976021e-02, 8.39634419e-02, 9.44021988e-02, 1.04971266e-01, 1.16864176e-01, 1.29295054e-01, 1.42394171e-01, 1.56620798e-01, 1.70939655e-01, 1.86083679e-01, 2.02246418e-01, 2.18151264e-01, 2.35699348e-01, 2.52898312e-01, 2.70299339e-01, 2.88551636e-01, 3.06377716e-01, 3.25947761e-01, 3.45086975e-01, 3.63418694e-01, 3.82655678e-01, 4.01391029e-01, 4.19963226e-01, 4.39177132e-01, 4.56956482e-01, 4.75537567e-01, 4.93223953e-01, 5.10155792e-01, 5.27090416e-01, 5.43785629e-01, 5.59207916e-01, 5.75155678e-01, 5.89269867e-01, 6.03433266e-01, 6.18236656e-01, 6.30981636e-01, 6.43544693e-01, 6.55758591e-01, 6.67161560e-01, 6.78610764e-01, 6.89398499e-01, 6.99007721e-01, 7.09150238e-01, 7.17486267e-01, 7.26359787e-01, 7.34181595e-01, 7.41922607e-01, 7.49040909e-01, 7.55139770e-01, 7.61801071e-01, 7.67739029e-01, 7.72209625e-01, 7.77520752e-01, 7.82076034e-01, 7.86005707e-01, 7.90121536e-01, 7.94920044e-01, 7.97914963e-01, 8.01576385e-01, 8.04085770e-01, 8.06881256e-01, 8.09733276e-01, 8.12508926e-01, 8.14496231e-01, 8.16916046e-01, 8.18313217e-01, 8.20173111e-01, 8.21818848e-01, 8.23354797e-01, 8.24062653e-01, 8.25225525e-01, 8.26539078e-01, 8.27467270e-01, 8.28310471e-01, 8.29260254e-01, 8.29644699e-01, 8.29694901e-01, 8.30798569e-01, 8.31418304e-01, 8.31113281e-01, 8.31175461e-01, 8.31436615e-01, 8.31268921e-01, 8.31743851e-01, 8.31236649e-01, 8.31876831e-01, 8.31575623e-01, 8.31600800e-01, 8.31209564e-01, 8.30701218e-01, 8.30457306e-01, 8.29995575e-01, 8.29173889e-01, 8.28681335e-01, 8.28388367e-01, 8.27705078e-01, 8.26961517e-01, 8.26470642e-01, 8.25616913e-01, 8.25088272e-01, 8.24414825e-01, 8.23818588e-01, 8.22574463e-01, 8.21790543e-01, 8.20854645e-01, 8.20430603e-01, 8.19333649e-01, 8.18388138e-01, 8.17239914e-01, 8.16441727e-01, 8.15142059e-01, 8.14114456e-01, 8.13138275e-01, 8.12385178e-01, 8.11399994e-01, 8.10151062e-01, 8.09062042e-01, 8.07826004e-01, 8.06391449e-01, 8.05179291e-01, 8.04337387e-01, 8.02874298e-01, 8.01418991e-01, 8.00320816e-01, 7.99105682e-01, 7.97680512e-01, 7.96293411e-01, 7.94735107e-01, 7.93599701e-01, 7.92142716e-01, 7.90940323e-01, 7.89540253e-01, 7.87977982e-01, 7.86476135e-01, 7.85149383e-01, 7.83683319e-01, 7.82463837e-01, 7.80975647e-01, 7.79384079e-01, 7.77804413e-01, 7.76397171e-01, 7.74585876e-01, 7.73283157e-01, 7.71683350e-01, 7.70116653e-01, 7.68394089e-01, 7.66989212e-01, 7.65374298e-01, 7.63670044e-01, 7.61980438e-01, 7.60181885e-01, 7.58677445e-01, 7.57341537e-01, 7.55792389e-01, 7.54106216e-01, 7.52319260e-01, 7.50747833e-01, 7.48828659e-01, 7.47205200e-01, 7.45405502e-01, 7.43702850e-01, 7.42157440e-01, 7.40391464e-01, 7.38478088e-01, 7.36322479e-01, 7.34597397e-01, 7.32816925e-01, 7.31027298e-01, 7.29303818e-01, 7.27694702e-01, 7.25626068e-01, 7.24098816e-01, 7.22092285e-01, 7.20166626e-01, 7.18592148e-01, 7.16398239e-01, 7.14680633e-01, 7.12456436e-01, 7.10820770e-01, 7.09065247e-01, 7.06785812e-01, 7.05026474e-01, 7.03354034e-01, 7.01381912e-01, 6.99503784e-01, 6.97199249e-01, 6.95120850e-01, 6.93079453e-01, 6.91699600e-01, 6.89639130e-01, 6.88427200e-01, 6.85872650e-01, 6.84145126e-01, 6.81911545e-01, 6.80322800e-01, 6.78288803e-01, 6.76393280e-01, 6.74223022e-01, 6.72408447e-01, 6.70496292e-01, 6.68415146e-01, 6.66331940e-01, 6.64745712e-01, 6.62663345e-01, 6.60627213e-01, 6.58656998e-01, 6.56490936e-01, 6.54593048e-01, 6.52417145e-01, 6.50451279e-01, 6.48244934e-01, 6.46139450e-01, 6.44154511e-01, 6.41925736e-01, 6.39975548e-01, 6.37752533e-01, 6.35898399e-01, 6.33897591e-01, 6.31938820e-01, 6.29536552e-01, 6.27312431e-01, 6.25279121e-01, 6.23031921e-01, 6.20859680e-01, 6.18729477e-01, 6.16721458e-01, 6.14748001e-01, 6.12250404e-01, 6.09872932e-01, 6.07715263e-01, 6.05285225e-01, 6.03101807e-01, 6.01018982e-01, 5.99403038e-01, 5.96835365e-01, 5.94723625e-01, 5.92363167e-01, 5.89933815e-01, 5.86952133e-01, 5.84768906e-01, 5.82397041e-01, 5.80457268e-01, 5.77794266e-01, 5.75973740e-01, 5.73014793e-01, 5.70719414e-01, 5.68651657e-01, 5.66127243e-01, 5.63723564e-01, 5.61353035e-01, 5.58687668e-01, 5.56360054e-01, 5.53829727e-01, 5.51511993e-01, 5.49103394e-01, 5.46937523e-01, 5.44495354e-01, 5.42087212e-01, 5.39432335e-01, 5.37001495e-01, 5.34510727e-01, 5.31703186e-01, 5.29667206e-01, 5.27464333e-01, 5.24670296e-01, 5.22587357e-01, 5.19773483e-01, 5.17762489e-01, 5.14889717e-01, 5.12675095e-01, 5.10391426e-01, 5.07693596e-01, 5.05560875e-01, 5.02788238e-01, 5.00663567e-01, 4.98405113e-01, 4.95754623e-01, 4.93308716e-01, 4.90971375e-01, 4.88512230e-01, 4.85908470e-01, 4.84007683e-01, 4.81591797e-01, 4.79094429e-01, 4.76312561e-01, 4.73944168e-01, 4.71328812e-01, 4.69270897e-01, 4.66906967e-01, 4.64348908e-01, 4.61959457e-01, 4.59419556e-01, 4.57119751e-01, 4.54282990e-01, 4.52030411e-01, 4.49744415e-01, 4.47503815e-01, 4.44987106e-01, 4.42915993e-01, 4.40122299e-01, 4.38269691e-01, 4.35202255e-01, 4.33002968e-01, 4.30703163e-01, 4.28281441e-01, 4.25861244e-01, 4.23408241e-01, 4.21262741e-01, 4.19147110e-01, 4.16939697e-01, 4.14542465e-01, 4.11997719e-01, 4.09688759e-01, 4.07355232e-01, 4.04657173e-01, 4.02887306e-01, 4.00700073e-01, 3.98309898e-01, 3.95669937e-01, 3.93478394e-01, 3.91111298e-01, 3.88895645e-01, 3.86983261e-01, 3.84384155e-01, 3.81797638e-01, 3.79871559e-01, 3.77870216e-01, 3.75476189e-01, 3.73131638e-01, 3.70839462e-01, 3.69031487e-01, 3.66161499e-01, 3.63859253e-01, 3.61430778e-01, 3.59496612e-01, 3.57683106e-01, 3.55424080e-01, 3.52959938e-01, 3.50599556e-01, 3.48366928e-01, 3.46199951e-01, 3.43800392e-01, 3.41833038e-01, 3.39689293e-01, 3.37388229e-01, 3.35983315e-01, 3.33557548e-01, 3.31361923e-01, 3.29263535e-01, 3.27118683e-01, 3.24498863e-01, 3.22609215e-01, 3.20428238e-01, 3.18339233e-01, 3.16222420e-01, 3.14079876e-01, 3.12005463e-01, 3.09681053e-01, 3.07576656e-01, 3.05554867e-01, 3.03675804e-01, 3.01599236e-01, 2.99350357e-01, 2.97287026e-01, 2.95042343e-01, 2.93254433e-01, 2.91312427e-01, 2.89098625e-01, 2.86699619e-01, 2.84973373e-01, 2.82804375e-01, 2.81043167e-01, 2.79479942e-01, 2.76905003e-01, 2.74912872e-01, 2.72875061e-01, 2.71315537e-01, 2.68872356e-01, 2.67071037e-01, 2.64945831e-01, 2.62771225e-01, 2.60814991e-01, 2.59156818e-01, 2.56677303e-01, 2.54789314e-01, 2.53038921e-01, 2.51051693e-01, 2.49118004e-01, 2.46885796e-01, 2.45392628e-01, 2.43349152e-01, 2.41043224e-01, 2.39375744e-01, 2.37449379e-01, 2.35649910e-01, 2.33648262e-01, 2.32286263e-01, 2.30330391e-01, 2.28001060e-01, 2.26452904e-01, 2.24508724e-01, 2.22819996e-01, 2.20511837e-01, 2.19196682e-01, 2.17359448e-01, 2.15409527e-01, 2.13571644e-01, 2.11919060e-01, 2.10245914e-01, 2.08496246e-01, 2.06775856e-01, 2.05235577e-01, 2.03262482e-01, 2.01522713e-01, 1.99663773e-01, 1.97996788e-01, 1.96391239e-01, 1.94632092e-01, 1.92989120e-01, 1.91479111e-01, 1.89962959e-01, 1.87962627e-01, 1.86370125e-01, 1.84920654e-01, 1.83073902e-01, 1.81668034e-01, 1.80077705e-01, 1.78313961e-01, 1.76784782e-01, 1.75110645e-01, 1.73803921e-01, 1.72050915e-01, 1.70811748e-01, 1.68707829e-01, 1.67500534e-01, 1.65955715e-01, 1.64152584e-01, 1.62616043e-01, 1.61383820e-01, 1.59913750e-01, 1.58476162e-01, 1.57111960e-01, 1.55604382e-01, 1.54195471e-01, 1.52868767e-01, 1.51168289e-01, 1.50135088e-01, 1.48432417e-01, 1.46854248e-01, 1.45500660e-01, 1.44040155e-01, 1.43029194e-01, 1.41359615e-01, 1.40144958e-01, 1.38888855e-01, 1.37300205e-01, 1.36141462e-01, 1.34810266e-01, 1.33652449e-01, 1.32385340e-01, 1.30962801e-01, 1.29514580e-01, 1.28492441e-01, 1.26976881e-01, 1.26109915e-01, 1.24681196e-01, 1.23733912e-01, 1.22387972e-01, 1.21014032e-01, 1.19707127e-01, 1.18950415e-01, 1.17601652e-01, 1.16029644e-01, 1.15246582e-01, 1.13969402e-01, 1.12859097e-01, 1.11570110e-01, 1.10585833e-01, 1.09544601e-01, 1.08406753e-01, 1.07325516e-01, 1.05842676e-01, 1.04812813e-01, 1.03711939e-01, 1.02703686e-01, 1.01885681e-01, 1.00853710e-01, 9.96105671e-02, 9.87637615e-02, 9.77460957e-02, 9.68516922e-02, 9.56964302e-02, 9.48740578e-02, 9.36437607e-02, 9.26385784e-02, 9.13605881e-02, 9.08198070e-02, 8.97638321e-02, 8.86697960e-02, 8.77115726e-02, 8.71175385e-02, 8.63109493e-02, 8.48536015e-02, 8.42036724e-02, 8.32233620e-02, 8.23537445e-02, 8.15705395e-02, 8.05418396e-02, 7.98623276e-02, 7.91370583e-02, 7.78403139e-02, 7.73310661e-02, 7.62543249e-02, 7.54598522e-02, 7.44599009e-02, 7.38250256e-02, 7.31048202e-02, 7.23627281e-02, 7.15131903e-02, 7.05549860e-02, 6.98634911e-02, 6.91224623e-02, 6.86638069e-02, 6.76796818e-02, 6.68600273e-02, 6.60720110e-02, 6.53426409e-02, 6.48589230e-02, 6.40281153e-02, 6.31698275e-02, 6.24832773e-02, 6.17807865e-02, 6.11954021e-02, 6.05794573e-02, 5.96689224e-02, 5.90339708e-02, 5.84838772e-02, 5.78847265e-02, 5.68160105e-02, 5.64464664e-02, 5.57960987e-02, 5.50762606e-02, 5.47479629e-02, 5.40395975e-02, 5.31866121e-02, 5.24796009e-02, 5.18524837e-02, 5.13265848e-02, 5.05894184e-02, 5.04498529e-02, 4.95917797e-02, 4.92178106e-02, 4.86410618e-02, 4.78479099e-02, 4.73841429e-02, 4.68996859e-02, 4.65036964e-02, 4.57519102e-02, 4.53436470e-02, 4.48195744e-02, 4.40284443e-02, 4.36079264e-02, 4.33500671e-02, 4.26576328e-02, 4.20515776e-02, 4.15753365e-02, 4.11065292e-02, 4.07284117e-02, 4.01105547e-02, 3.95491576e-02, 3.92478895e-02, 3.86123323e-02, 3.83627343e-02, 3.81744385e-02, 3.72538948e-02, 3.67257714e-02, 3.64651537e-02, 3.61046267e-02, 3.56324434e-02, 3.50495958e-02, 3.47760701e-02, 3.45552087e-02, 3.38934398e-02, 3.36678410e-02, 3.31091881e-02, 3.26658273e-02, 3.23304272e-02, 3.17972445e-02, 3.14868403e-02, 3.11922049e-02, 3.07040787e-02, 3.03110600e-02, 2.99594235e-02, 2.98183370e-02, 2.92352104e-02, 2.89947557e-02, 2.86772442e-02, 2.83287978e-02, 2.79210877e-02, 2.72823572e-02, 2.73149657e-02, 2.69718742e-02, 2.67807961e-02, 2.61144757e-02, 2.57569838e-02, 2.57412481e-02, 2.51048923e-02, 2.50279760e-02, 2.49131537e-02, 2.45391846e-02, 2.42700195e-02, 2.38901758e-02, 2.35897589e-02, 2.28670168e-02, 2.28611231e-02, 2.27534866e-02, 2.24620295e-02, 2.19526005e-02, 2.16079593e-02, 2.14886975e-02, 2.11848760e-02, 2.12790751e-02, 2.06619120e-02, 2.07371426e-02, 2.00993228e-02, 1.95814931e-02, 1.95096111e-02, 1.88129783e-02, 1.91138482e-02, 1.89894068e-02, 1.82900357e-02, 1.82558620e-02, 1.84180438e-02, 1.78343022e-02, 1.79508388e-02, 1.98078752e-02, 2.35607266e-02, 1.64428818e-02, 1.63446629e-02, 1.61414671e-02, 1.59015155e-02, 1.57553589e-02, 1.55644822e-02, 1.53442860e-02, 1.52152765e-02, 1.49248958e-02, 1.47469020e-02, 1.46128261e-02, 1.45537209e-02, 1.43860090e-02, 1.40903854e-02, 1.39411104e-02, 1.37448251e-02, 1.35096633e-02, 1.34330940e-02, 1.32138276e-02, 1.30654049e-02, 1.28928685e-02, 1.27844548e-02, 1.25968790e-02, 1.24387026e-02, 1.23236620e-02, 1.21577203e-02, 1.19817626e-02, 1.18997812e-02, 1.17299104e-02, 1.16228032e-02, 1.13986945e-02, 1.13025677e-02, 1.11602139e-02, 1.10250735e-02, 1.09074187e-02, 1.07202637e-02, 1.06087947e-02, 1.05153501e-02, 1.03730762e-02, 1.02454245e-02, 1.00866878e-02, 9.99053955e-03, 9.78911459e-03, 9.76708233e-03, 9.62086201e-03, 9.47241306e-03, 9.33747649e-03, 9.41326499e-03, 9.13064659e-03, 9.12852585e-03, 9.06752527e-03, 8.93405914e-03, 8.67768466e-03, 8.64216387e-03, 8.60476136e-03, 8.40433478e-03, 8.29408765e-03, 8.28387678e-03, 8.08252513e-03, 8.08622956e-03, 7.89401472e-03, 7.83714354e-03, 7.71972716e-03, 7.65594542e-03, 7.46691644e-03, 7.51844585e-03, 7.36561239e-03, 7.31347740e-03, 7.21074879e-03, 7.17079341e-03, 7.00386226e-03, 7.00467884e-03, 6.87995970e-03, 6.80604935e-03, 6.66877091e-03, 6.58461690e-03, 6.56225383e-03, 6.54657483e-03, 6.29706144e-03, 6.29498184e-03, 6.20202959e-03, 6.14432633e-03, 6.14413202e-03, 6.01232946e-03, 5.90509057e-03, 5.87786853e-03, 5.79836965e-03, 5.70700347e-03, 5.57661533e-03, 5.59826493e-03, 5.52282333e-03, 5.46855211e-03, 5.39687157e-03, 5.30140877e-03, 5.28882802e-03, 5.22834003e-03, 5.12682915e-03, 5.03452301e-03, 4.97473180e-03, 5.00698507e-03, 4.91672516e-03, 4.86153126e-03, 4.76140350e-03, 4.73320752e-03, 4.78468746e-03, 4.58373725e-03, 4.58816707e-03, 4.48710144e-03, 4.41632897e-03, 4.37773258e-03]) flux_u = np.array( [0.00000000e+00, 1.00000000e-04, 5.00000000e-04, 1.30000000e-03, 2.60000000e-03, 5.20000000e-03, 9.30000000e-03, 1.61000000e-02, 2.40000000e-02, 3.23000000e-02, 4.05000000e-02, 4.85000000e-02, 5.61000000e-02, 6.34000000e-02, 7.00000000e-02, 7.56000000e-02, 8.03000000e-02, 8.48000000e-02, 8.83000000e-02, 9.17000000e-02, 9.59000000e-02, 1.00100000e-01, 1.02900000e-01, 1.04400000e-01, 1.05300000e-01, 1.06300000e-01, 1.07500000e-01, 1.08500000e-01, 1.08400000e-01, 1.06400000e-01, 1.02400000e-01, 9.66000000e-02, 8.87000000e-02, 7.87000000e-02, 6.72000000e-02, 5.49000000e-02, 4.13000000e-02, 2.68000000e-02, 1.45000000e-02, 7.50000000e-03, 4.20000000e-03, 2.20000000e-03, 1.00000000e-03, 6.00000000e-04, 4.00000000e-04, 2.00000000e-04, 0.00000000e+00]) flux_g = np.array( [0.00000000e+00, 3.00000000e-04, 8.00000000e-04, 1.30000000e-03, 1.90000000e-03, 2.40000000e-03, 3.40000000e-03, 5.50000000e-03, 1.03000000e-02, 1.94000000e-02, 3.26000000e-02, 4.92000000e-02, 6.86000000e-02, 9.00000000e-02, 1.12300000e-01, 1.34200000e-01, 1.54500000e-01, 1.72200000e-01, 1.87300000e-01, 2.00300000e-01, 2.11600000e-01, 2.21400000e-01, 2.30100000e-01, 2.37800000e-01, 2.44800000e-01, 2.51300000e-01, 2.57400000e-01, 2.63300000e-01, 2.69100000e-01, 2.74700000e-01, 2.80100000e-01, 2.85200000e-01, 2.89900000e-01, 2.94000000e-01, 2.97900000e-01, 3.01600000e-01, 3.05500000e-01, 3.09700000e-01, 3.14100000e-01, 3.18400000e-01, 3.22400000e-01, 3.25700000e-01, 3.28400000e-01, 3.30700000e-01, 3.32700000e-01, 3.34600000e-01, 3.36400000e-01, 3.38300000e-01, 3.40300000e-01, 3.42500000e-01, 3.44800000e-01, 3.47200000e-01, 3.49500000e-01, 3.51900000e-01, 3.54100000e-01, 3.56200000e-01, 3.58100000e-01, 3.59700000e-01, 3.60900000e-01, 3.61300000e-01, 3.60900000e-01, 3.59500000e-01, 3.58100000e-01, 3.55800000e-01, 3.45200000e-01, 3.19400000e-01, 2.80700000e-01, 2.33900000e-01, 1.83900000e-01, 1.35200000e-01, 9.11000000e-02, 5.48000000e-02, 2.95000000e-02, 1.66000000e-02, 1.12000000e-02, 7.70000000e-03, 5.00000000e-03, 3.20000000e-03, 2.10000000e-03, 1.50000000e-03, 1.20000000e-03, 1.00000000e-03, 9.00000000e-04, 8.00000000e-04, 6.00000000e-04, 5.00000000e-04, 3.00000000e-04, 1.00000000e-04, 0.00000000e+00]) flux_r = np.array( [0.00000000e+00, 1.40000000e-03, 9.90000000e-03, 2.60000000e-02, 4.98000000e-02, 8.09000000e-02, 1.19000000e-01, 1.63000000e-01, 2.10000000e-01, 2.56400000e-01, 2.98600000e-01, 3.33900000e-01, 3.62300000e-01, 3.84900000e-01, 4.02700000e-01, 4.16500000e-01, 4.27100000e-01, 4.35300000e-01, 4.41600000e-01, 4.46700000e-01, 4.51100000e-01, 4.55000000e-01, 4.58700000e-01, 4.62400000e-01, 4.66000000e-01, 4.69200000e-01, 4.71600000e-01, 4.73100000e-01, 4.74000000e-01, 4.74700000e-01, 4.75800000e-01, 4.77600000e-01, 4.80000000e-01, 4.82700000e-01, 4.85400000e-01, 4.88100000e-01, 4.90500000e-01, 4.92600000e-01, 4.94200000e-01, 4.95100000e-01, 4.95500000e-01, 4.95600000e-01, 4.95800000e-01, 4.96100000e-01, 4.96400000e-01, 4.96200000e-01, 4.95300000e-01, 4.93100000e-01, 4.90600000e-01, 4.87300000e-01, 4.75200000e-01, 4.47400000e-01, 4.05900000e-01, 3.54400000e-01, 2.96300000e-01, 2.35000000e-01, 1.73900000e-01, 1.16800000e-01, 6.97000000e-02, 3.86000000e-02, 2.15000000e-02, 1.36000000e-02, 1.01000000e-02, 7.70000000e-03, 5.60000000e-03, 3.90000000e-03, 2.80000000e-03, 2.00000000e-03, 1.60000000e-03, 1.30000000e-03, 1.00000000e-03, 7.00000000e-04, 4.00000000e-04, 2.00000000e-04, 0.00000000e+00]) flux_i = np.array( [0.00000000e+00, 1.00000000e-04, 3.00000000e-04, 4.00000000e-04, 4.00000000e-04, 4.00000000e-04, 3.00000000e-04, 4.00000000e-04, 9.00000000e-04, 1.90000000e-03, 3.40000000e-03, 5.60000000e-03, 1.04000000e-02, 1.97000000e-02, 3.49000000e-02, 5.69000000e-02, 8.51000000e-02, 1.18100000e-01, 1.55200000e-01, 1.98000000e-01, 2.44800000e-01, 2.90600000e-01, 3.29000000e-01, 3.56600000e-01, 3.82900000e-01, 4.06700000e-01, 4.24500000e-01, 4.32000000e-01, 4.25200000e-01, 4.02800000e-01, 3.84400000e-01, 3.91100000e-01, 4.01100000e-01, 3.98800000e-01, 3.92400000e-01, 3.91900000e-01, 3.98800000e-01, 3.97900000e-01, 3.93000000e-01, 3.89800000e-01, 3.87200000e-01, 3.84200000e-01, 3.79900000e-01, 3.73700000e-01, 3.68500000e-01, 3.67800000e-01, 3.60300000e-01, 1.52700000e-01, 2.17600000e-01, 2.75200000e-01, 3.43400000e-01, 3.39200000e-01, 3.36100000e-01, 3.31900000e-01, 3.27200000e-01, 3.22100000e-01, 3.17300000e-01, 3.12900000e-01, 3.09500000e-01, 3.07700000e-01, 3.07500000e-01, 3.08600000e-01, 3.09800000e-01, 3.09800000e-01, 3.07600000e-01, 3.02100000e-01, 2.93900000e-01, 2.82100000e-01, 2.59700000e-01, 2.24200000e-01, 1.81500000e-01, 1.37400000e-01, 9.73000000e-02, 6.52000000e-02, 4.10000000e-02, 2.37000000e-02, 1.28000000e-02, 7.40000000e-03, 5.30000000e-03, 3.60000000e-03, 2.20000000e-03, 1.40000000e-03, 1.10000000e-03, 1.00000000e-03, 1.00000000e-03, 9.00000000e-04, 6.00000000e-04, 3.00000000e-04, 0.00000000e+00]) flux_z = np.array( [0., 0., 0.0001, 0.0001, 0.0001, 0.0002, 0.0002, 0.0003, 0.0005, 0.0007, 0.0011, 0.0017, 0.0027, 0.004, 0.0057, 0.0079, 0.0106, 0.0139, 0.0178, 0.0222, 0.0271, 0.0324, 0.0382, 0.0446, 0.0511, 0.0564, 0.0603, 0.0637, 0.0667, 0.0694, 0.0717, 0.0736, 0.0752, 0.0765, 0.0775, 0.0782, 0.0786, 0.0787, 0.0785, 0.078, 0.0772, 0.0763, 0.0751, 0.0738, 0.0723, 0.0708, 0.0693, 0.0674, 0.0632, 0.0581, 0.0543, 0.0526, 0.0523, 0.0522, 0.0512, 0.0496, 0.0481, 0.0473, 0.0476, 0.0482, 0.0476, 0.0447, 0.0391, 0.0329, 0.0283, 0.0264, 0.0271, 0.0283, 0.0275, 0.0254, 0.0252, 0.0256, 0.0246, 0.0244, 0.0252, 0.0258, 0.0265, 0.0274, 0.0279, 0.0271, 0.0252, 0.0236, 0.0227, 0.0222, 0.0216, 0.0208, 0.0196, 0.0183, 0.0171, 0.016, 0.0149, 0.0138, 0.0128, 0.0118, 0.0108, 0.0099, 0.0091, 0.0083, 0.0075, 0.0068, 0.0061, 0.0055, 0.005, 0.0045, 0.0041, 0.0037, 0.0033, 0.003, 0.0027, 0.0025, 0.0023, 0.0021, 0.0019, 0.0018, 0.0017, 0.0016, 0.0015, 0.0014, 0.0013, 0.0012, 0.0011, 0.001, 0.0009, 0.0008, 0.0008, 0.0007, 0.0006, 0.0006, 0.0006, 0.0005, 0.0005, 0.0004, 0.0004, 0.0003, 0.0003, 0.0002, 0.0002, 0.0001, 0.0001, 0., 0.]) if _filter == 'R': wave_filter = wave_R flux_filter = flux_R elif _filter == 'V': wave_filter = wave_V flux_filter = flux_V elif _filter == 'u': wave_filter = wave_u flux_filter = flux_u elif _filter == 'g': wave_filter = wave_g flux_filter = flux_g elif _filter == 'r': wave_filter = wave_r flux_filter = flux_r elif _filter == 'i': wave_filter = wave_i flux_filter = flux_i elif _filter == 'z': wave_filter = wave_z flux_filter = flux_z else: raise ValueError('not implemented transmission curve') # filter es una built-in the python, creo que es mejor cambiarlo a ese nombre para evitar confusiones. final_flux_filter = self.filter_to_MUSE_wavelength(wave_filter, flux_filter, wavelength_spec) return final_flux_filter def filter_to_MUSE_wavelength(self, wave_filter, flux_filter, wavelength_spec): new_filter_wavelength = self.overlap_filter(wave_filter, wavelength_spec) interpolator = interpolate.interp1d(wave_filter, flux_filter) new_filter_flux = interpolator(new_filter_wavelength) final_flux_filter = [] for j, w in enumerate(wavelength_spec): k = mcu.indexOf(new_filter_wavelength, w) if k >= 0: final_flux_filter.append(new_filter_flux[k]) else: final_flux_filter.append(0.) return np.array(final_flux_filter) def overlap_filter(self, wave_filter, wavelength_spec): n = len(wave_filter) w_min = wave_filter[0] w_max = wave_filter[n - 1] w_spec_overlap = [] if wave_filter[1] < wavelength_spec[0] or wave_filter[n - 2] > wavelength_spec[len(wavelength_spec) - 1]: raise ValueError('Filter wavelength range is wider that spectrum range and convolution is not valid') for w in wavelength_spec: if w >= w_min and w <= w_max: w_spec_overlap.append(w) return np.array(w_spec_overlap) def reload_canvas(self, vmin=None, vmax=None): """ Clean everything from the canvas with the white image :param self: :return: """ plt.figure(self.n) plt.clf() if vmin is not None: self.vmin = vmin if vmax is not None: self.vmax = vmax self.gc2 = aplpy.FITSFigure(self.filename_white, figure=plt.figure(self.n)) if self.color: self.gc2.show_colorscale(cmap=self.cmap, vmin=self.vmin, vmax=self.vmax) else: self.gc2.show_grayscale(vmin=self.vmin, vmax=self.vmax) plt.show() def get_from_table(self, input_file, keyword): """ Get a columns that correspond to a given keyword from a SExtractor outputfile :param input_file: string name of the SExtractor output file :param keyword: string keyword in the SExtractor output file :return: data the column associated to the keyword """ sex = SExtractor() table = sex.read(input_file) data = table[keyword] return data def get_gaussian_profile_weighted_spec(self, x_c=None, y_c=None, params=None, region_string_=None, coord_system='pix'): """ Function that extract the spectrum from an aperture defined either by elliptical parameters or by an elliptical region defined by region_string in ds9 format :param x_c: x_coordinate of the center of the aperture :param y_c: y_coordinate of the center of the aperture :param params: Either a single radius or a set of [a,b,theta] params :param region_string: region defined by ds9 format (ellipse) :param coord_system: in the case of defining and aperture using x_c,y_c,params, must indicate the type of this coordiantes. Possible values: 'pix' and 'wcs' :return: XSpectrum1D object """ if max(x_c, y_c, params, region_string_) == None: raise ValueError('Not valid input') if region_string_ != None: x_c, y_c, params = self.params_from_ellipse_region_string(region_string_) if not isinstance(params, (int, float, tuple, list, np.array)): raise ValueError('Not ready for this `radius` type.') if isinstance(params, (int, float)): a = params b = params theta = 0 elif isiterable(params) and (len(params) == 3): a = max(params[:2]) b = min(params[:2]) theta = params[2] else: raise ValueError('If iterable, the length of radius must be == 3; otherwise try float.') if coord_system == 'wcs': x_center, y_center, params = self.ellipse_params_to_pixel(x_c, y_c, params=[a, b, theta]) else: # already in pixels x_center, y_center, params = x_c, y_c, [a, b, theta] xc = x_center yc = y_center new_mask = self.get_mini_cube_mask_from_ellipse_params(x_center, y_center, params) spec_sum = self.spec_from_minicube_mask(new_mask, mode='sum') halfsize = [a, b] if region_string_ == None: region_string = self.ellipse_param_to_ds9reg_string(xc, yc, a, b, theta) else: region_string = region_string_ new_2dmask = self.get_new_2dmask(region_string) masked_white = ma.MaskedArray(self.white_data) masked_white.mask = new_2dmask ###### Define domain matrix: matrix_x = np.zeros_like(self.white_data) matrix_y = np.zeros_like(self.white_data) n = self.white_data.shape[0] m = self.white_data.shape[1] for i in xrange(m): matrix_x[:, i] = i for j in xrange(n): matrix_y[j, :] = j ########### amp_init = masked_white.max() stdev_init_x = 0.33 * halfsize[0] stdev_init_y = 0.33 * halfsize[1] g_init = models.Gaussian2D(x_mean=xc, y_mean=yc, x_stddev=stdev_init_x, y_stddev=stdev_init_y, amplitude=amp_init, theta=theta) fit_g = fitting.LevMarLSQFitter() g = fit_g(g_init, matrix_x, matrix_y, masked_white) weights = ma.MaskedArray(g(matrix_x, matrix_y)) if (g.y_stddev < 0) or (g.x_stddev < 0): raise ValueError('Cannot trust the model, please try other input parameters.') w = self.wavelength n = len(w) fl = np.zeros(n) sig = np.zeros(n) new_3dmask = self.get_new_3dmask(region_string) self.cube.mask = new_3dmask for wv_ii in range(n): mask = new_3dmask[wv_ii] weights.mask = mask # n_spaxels = np.sum(mask) weights = weights / np.sum(weights) fl[wv_ii] = np.sum(self.cube[wv_ii] * weights) # * n_spaxels sig[wv_ii] = np.sqrt(np.sum(self.stat[wv_ii] * (weights ** 2))) # * n_spaxels # reset mask self.cube.mask = self.mask_init # renormalize fl_sum = spec_sum.flux.value norm = np.sum(fl_sum) / np.sum(fl) fl = fl * norm sig = sig * norm return XSpectrum1D.from_tuple((w, fl, sig)) def determinate_seeing_from_white(self, xc, yc, halfsize): """ Function used to estimate the observation seeing of an exposure, fitting a gaussian to a brigth source of the image :param xc: x coordinate in pixels of a bright source :param yc: y coordinate in pixels of a bright source :param halfsize: the radius of the area to fit the gaussian :return: seeing: float the observational seeing of the image defined as the FWHM of the gaussian """ hdulist = self.hdulist_white data = hdulist[1].data matrix_data = np.array(self.get_mini_image([xc, yc], halfsize=halfsize)) x = np.arange(0, matrix_data.shape[0], 1) y = np.arange(0, matrix_data.shape[1], 1) matrix_x, matrix_y = np.meshgrid(x, y) amp_init = np.matrix(matrix_data).max() stdev_init = 0.33 * halfsize def tie_stddev(model): # we need this for tying x_std and y_std xstddev = model.x_stddev return xstddev g_init = models.Gaussian2D(x_mean=halfsize + 0.5, y_mean=halfsize + 0.5, x_stddev=stdev_init, y_stddev=stdev_init, amplitude=amp_init, tied={'y_stddev': tie_stddev}) fit_g = fitting.LevMarLSQFitter() g = fit_g(g_init, matrix_x, matrix_y, matrix_data) if (g.y_stddev < 0) or (g.y_stddev > halfsize): raise ValueError('Cannot trust the model, please try other imput parameters.') seeing = 2.355 * g.y_stddev * self.pixelsize.to('arcsec') # in arcsecs print('FWHM={:.2f}'.format(seeing)) print('stddev from the 2D gaussian = {:.3f}'.format(g.y_stddev * self.pixelsize.to('arcsec'))) return seeing def w2p(self, xw, yw): """ Transform from wcs coordinates system to pixel coordinates :param self: :param xw: float x coordinate in wcs :param yw: float y coordinate in wcs :return: xpix: float x coordinate in pixels ypix: float y coordinate in pixels """ xpix, ypix = self.gc2.world2pixel(xw, yw) if xpix < 0: xpix = 0 if ypix < 0: ypix = 0 return int(round(xpix)), int(round(ypix)) def p2w(self, xp, yp): """ Transform from pixel coordinate system to wcs coordinates :param self: :param xp: float x coordinate in pixels :param yp: float y coordinate in pixels :return: xw: float x coordinate in wcs yw: float y coordinate in wcs """ xw, yw = self.gc2.pixel2world(xp, yp) return xw, yw def xyr_to_pixel(self, x_center, y_center, radius): """ Transform the (x,y) center and radius that define a circular region from wcs system coordinate to pixels :param self: :param x_center: float x coordinate in wcs :param y_center: float y coordinate in wcs :param radius: float radius of the circular region :return: x_center_pix: float x coordinate in pixels y_center_pix: float y coordinate in pixels radius_pix: float radius of the circular region in pixels """ x_r = x_center + radius x_r_pix, y_center_pix = self.w2p(x_r, y_center) x_center, y_center = self.w2p(x_center, y_center) radius = abs(x_r_pix - x_center) x_center = int(round(x_center)) y_center = int(round(y_center)) radius = int(round(radius + 1)) x_center_pix = x_center y_center_pix = y_center radius_pix = radius return x_center_pix, y_center_pix, radius_pix @property def shape(self): """ :param self: :return: """ return self.cube.data.shape def create_movie_redshift_range(self, z_ini=0., z_fin=1., dz=0.001, width=30, outvid='emission_lines_video.avi', erase=True): """ Function to create a film, colapsing diferent wavelength ranges in which some strong emission lines would fall at certain redshifts :param z_ini: initial redshift :param z_fin: final redshift :param dz: delta redshift :param outvid: name of the final video :param width: width of the lines that will be collapsed, in Angstroms :param erase: If true, the individual frames to make the video will be erased after the video is produced :return: """ OII = 3728.483 wave = self.wavelength n = len(wave) w_max = wave[n - 1 - 20] max_z_allowed = (w_max / OII) - 1. if z_fin > max_z_allowed: print('maximum redshift allowed is ' + str(max_z_allowed) + ', this value will be used instead of ' + str( z_fin)) z_fin = max_z_allowed z_array = np.arange(z_ini, z_fin, dz) images_names = [] fitsnames = [] for z in z_array: print('z = ' + str(z)) ranges = self.create_ranges(z, width=width) filename = 'emission_line_image_redshif_' + str(z) + '_' image = self.get_image_wv_ranges(wv_ranges=ranges, fitsname=filename + '.fits', save=True) plt.close(15) image = aplpy.FITSFigure(filename + '.fits', figure=plt.figure(15)) image.show_grayscale() plt.title('Emission lines image at z = ' + str(z)) image.save(filename=filename + '.png') images_names.append(filename + '.png') fitsnames.append(filename + '.fits') plt.close(15) video = self.make_video(images=images_names, outvid=outvid) n_im = len(fitsnames) if erase: for i in xrange(n_im): fits_im = fitsnames[i] png_im = images_names[i] command_fits = 'rm ' + fits_im command_png = 'rm ' + png_im os.system(command_fits) os.system(command_png) return video def collapse_highSN(self, sn_min=5, fitsname='collapsed_emission_image.fits', save=True): """ Function used to sum only voxels in which the signal to noise is greater that sn_min value. This will create a new image :param sn_min: float threshold to signal to noise :param fitsname: string name of the new image :param save: Boolean If True, the new image is saved to the hard disk. :return: """ count_voxel_cube = np.where(self.cube > (self.stat ** 0.5) * sn_min, 1., 0.) count_voxel_im = np.sum(count_voxel_cube, axis=0) + 1 del count_voxel_cube valid_voxel_cube = np.where(self.cube > (self.stat ** 0.5) * sn_min, self.cube, 0.) valid_voxel_im = np.sum(valid_voxel_cube, axis=0) del valid_voxel_cube normalized_im = valid_voxel_im / count_voxel_im normalized_im = np.where(np.isnan(normalized_im), 0, normalized_im) if save: hdulist = self.hdulist_white hdulist[1].data = normalized_im hdulist.writeto(fitsname, clobber=True) return normalized_im def create_ranges(self, z, width=30.): """ Function used to create the wavelength ranges around strong emission lines at a given redshift :param z: redshift :param width: width in Angstroms of the emission lines :return: """ wave = self.wavelength n = len(wave) w_max = wave[n - 1] w_min = wave[0] half = width / 2. OII = 3728.483 Hb = 4862.683 Ha = 6564.613 OIII_4959 = 4960.295 OIII_5007 = 5008.239 lines_wvs = {'OII': OII * (1. + z), 'Hb': Hb * (1. + z), 'OIII_4959': OIII_4959 * (1. + z), 'OIII_5007': OIII_5007 * (1. + z), 'Ha': Ha * (1. + z)} range_OII = np.array([lines_wvs['OII'] - half, lines_wvs['OII'] + half]) range_Hb = np.array([lines_wvs['Hb'] - half, lines_wvs['Hb'] + half]) range_Ha = np.array([lines_wvs['Ha'] - half, lines_wvs['Ha'] + half]) range_OIII_4959 = np.array([lines_wvs['OIII_4959'] - half, lines_wvs['OIII_4959'] + half]) range_OIII_5007 = np.array([lines_wvs['OIII_5007'] - half, lines_wvs['OIII_5007'] + half]) ranges = [range_Ha, range_Hb, range_OII, range_OIII_4959, range_OIII_5007] output_ranges = [] for range in ranges: if range[0] - width >= w_min and range[1] + width <= w_max: output_ranges.append(range) return output_ranges def make_video(self, images, outimg=None, fps=2, size=None, is_color=True, format="XVID", outvid='image_video.avi'): from cv2 import VideoWriter, VideoWriter_fourcc, imread, resize fourcc = VideoWriter_fourcc(*format) vid = None for image in images: if not os.path.exists(image): raise FileNotFoundError(image) img = imread(image) if vid is None: if size is None: size = img.shape[1], img.shape[0] vid = VideoWriter(outvid, fourcc, float(fps), size, is_color) if size[0] != img.shape[1] and size[1] != img.shape[0]: img = resize(img, size) vid.write(img) vid.release() return vid # Un radio de 4 pixeles es equivalente a un radio de 0.0002 en wcs ```
{ "source": "Joaquinhuberto/newspaper", "score": 3 }
#### File: newspaper/news/forms.py ```python from django import forms from newspaper.news.models import News class NewsForm(forms.ModelForm): def clean_title(self): if 'b' in self.cleaned_data['title']: raise forms.ValidationError("El campo titulo no puede contener B <Esto es una validación chorra>") return self.cleaned_data['title'] class Meta: model = News fields = '__all__' ``` #### File: newspaper/news/managers.py ```python from django.db import models from django.db.models.query import QuerySet from datetime import datetime class NewsQuerySet(QuerySet): def news_published(self): return self.filter(publish_date__lte=datetime.now())\ .order_by('publish_date') def news_next_published(self): return self.filter(publish_date__gte=datetime.now())\ .order_by('publish_date') class NewsManager(models.Manager): def get_queryset(self): return NewsQuerySet(self.model, using=self._db) def news_published(self): return self.get_queryset().news_published() def news_next_published(self): return self.get_queryset().news_next_published() ``` #### File: newspaper/news/views.py ```python import json from datetime import datetime from django.conf import settings from django.contrib.auth.decorators import login_required from django.core.urlresolvers import reverse from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from django.http import (HttpResponseRedirect, HttpResponseBadRequest, HttpResponse) from django.shortcuts import get_object_or_404, render_to_response from django.template import RequestContext from newspaper.news.forms import NewsForm from newspaper.news.models import News def news_list(request): news_published = News.objects.news_published() paginator = Paginator(news_published, settings.NUM_ITEMS_PAG) page_default = 1 page_published = request.GET.get('page', page_default) try: news_published = paginator.page(page_published) except PageNotAnInteger: news_published = paginator.page(page_default) except EmptyPage: news_published = paginator.page(paginator.num_pages) news_next_published = News.objects.news_next_published() return render_to_response("news/news_list.html", {'news_published': news_published, "news_next_published": news_next_published}, context_instance=RequestContext(request)) @login_required(login_url='/admin/') def news_add(request): data = None if request.method == 'POST': data = request.POST initial = {'publish_date': datetime.now()} # if 'title' in request.GET: # initial['title'] = request.GET['title'] news_form = NewsForm(data=data, initial=initial) if news_form.is_valid(): news_form.save() return HttpResponseRedirect(reverse('news_list')) return render_to_response('news/news_add.html', {'news_form': news_form}, context_instance=RequestContext(request)) @login_required(login_url='/admin/') def news_edit(request, newsitem_pk): data = None if request.method == 'POST': data = request.POST news_item = get_object_or_404(News, pk=newsitem_pk) news_form = NewsForm(data=data, instance=news_item) if news_form.is_valid(): news_form.save() return HttpResponseRedirect(reverse('news_list')) return render_to_response('news/news_edit.html', {'news_form': news_form}, context_instance=RequestContext(request)) @login_required(login_url='/admin/') def news_delete(request, newsitem_pk): if request.method != 'POST': return HttpResponseBadRequest() news_item = get_object_or_404(News, pk=newsitem_pk) news_item.delete() if request.is_ajax(): return HttpResponse(json.dumps({'status': 'ok'})) return HttpResponseRedirect(reverse('news_list')) ```
{ "source": "JoaquinIglesiasTurina/narxpy", "score": 2 }
#### File: JoaquinIglesiasTurina/narxpy/dataPreprocess.py ```python import pymc3 as pm import numpy as np import theano.tensor as tt import scipy.stats as stats import functools as ft def lagData(data, lags, includeCurrent=False): if includeCurrent: ranger = (0, lags) else: ranger = (1, lags + 1) lagsList = [np.roll(data, lag, 0) for lag in range(*ranger)] return ft.reduce( lambda x, y: np.concatenate([x, y], 1), lagsList )[lags:, :] class RadialBasis(object): def __init__(self, numBasis): self.numBasis = numBasis def fit(self, data): self.nObs, self.nVars = data.shape self.mvNormal = stats.multivariate_normal( np.zeros(self.nVars), np.eye(self.nVars)) self.kernelMatrix = np.quantile( data, np.arange(0, 1.1, 1/(self.numBasis - 1)), axis = 0) def transform(self, data): def helper(array): return np.array([ self.mvNormal.logpdf(array - self.kernelMatrix[x, :]) for x in range(self.numBasis) ]) return np.array([ helper(data[x, :]) for x in range(data.shape[0]) ]) def fitTransform(self, data): return self.fit(data).transform(data) def changeBasis(data, numBasis): def helper(array): return np.array([ mvNormal.logpdf(array - kernelMatrix[x, :]) for x in range(numBasis) ]) nObs, nVars = data.shape mvNormal = stats.multivariate_normal( np.zeros(nVars), np.eye(nVars)) kernelMatrix = np.quantile( data, np.arange(0, 1.1, 1/(numBasis - 1)), axis = 0) return np.array([ helper(data[x, :]) for x in range(data.shape[0]) ]) ```
{ "source": "joaquinkai/smart-thermostat", "score": 3 }
#### File: smart-thermostat/src/outside_weather.py ```python import os from time import time from typing import Optional, NamedTuple, Dict, List, Any import requests from requests.models import Response key = os.environ['OPEN_WEATHER_MAP_KEY'] class WeatherObservation(NamedTuple): local_time: int temperature: float wind_speed: float gust: float wind_dir: int pressure: float humidity: int main_weather: List[Dict[str, str]] def outside_weather(weather_query='q=Oakland') -> Optional[WeatherObservation]: url = f'http://api.openweathermap.org/data/2.5/weather?{weather_query}&units=metric&APPID={key}' try: response: Response = requests.get(url) if response.status_code == 200: weather: Dict[str, Any] = response.json() main: Dict[str, Any] = weather['main'] wind: Dict[str, Any] = weather['wind'] return WeatherObservation( int(time()), float(main['temp']), _mps_to_kph(float(wind['speed'])), _mps_to_kph(float(wind.get('gust', 0))), int(wind['deg']), float(main['pressure']), int(main['humidity']), weather['weather'], ) print(response.status_code, response.text) except requests.RequestException as ex: print(ex) return None def _mps_to_kph(meters_per_second: float) -> float: km_per_second = meters_per_second / 1000 seconds_per_hour = 3600 return km_per_second * seconds_per_hour if __name__ == '__main__': print(outside_weather('zip=94549')) ```
{ "source": "JoaquinKeller/polyadicQML", "score": 2 }
#### File: polyadicQML/examples/example-binary.py ```python from os.path import isdir if not isdir("figures-ex"): from os import mkdir mkdir("figures-ex") ############################################# import numpy as np import matplotlib.pyplot as plt from polyadicqml import Classifier from polyadicqml.manyq import mqCircuitML FIGURES = True SEED = 294 np.random.seed(SEED) ############################## # We create a dataset of 40 points from two gaussian clouds. # We take a random polar point a = 2 * np.pi * np.random.rand() n_pc = 50 # Number of points per cluster scale = 1.25 px, py = scale * np.cos(a), scale * np.sin(a) # Create a matrix on the point and its symmetry and spread apart X = np.asarray(n_pc * [[px, py]] + # Polar point n_pc * [[-px, -py]] # Symmetric point ) # Add gaussian noise X += 0.7 * np.random.randn(*X.shape) # Create target vecor y = np.concatenate((np.zeros(n_pc), np.ones(n_pc))) COLORS = ["tab:blue", "tab:red"] if FIGURES: import seaborn as sns sns.set() fig, ax = plt.subplots(figsize=(5,5)) idx = y == 1 ax.plot(X[~ idx,0], X[~ idx,1], ls="", marker="o", color=COLORS[0], label="Class 0") ax.plot(X[idx,0], X[idx,1], ls="", marker="o", color=COLORS[1], label="Class 1",) graph_args = dict(ls="", marker = "D", ms=10, mec="black", mew=2) ax.plot([px], [py], color=COLORS[0], **graph_args) ax.plot([-px], [-py], color=COLORS[1], **graph_args) ax.set(xlim=[-np.pi,np.pi], ylim=[-np.pi,np.pi]) ax.legend(loc="upper left") plt.savefig("figures-ex/binary-points.svg", bbox_inches="tight") plt.close() ############################## # Now we define the make_circuit function using the builder interface def simple_circuit(bdr, x, params): bdr.allin(x).cz(0,1).allin(params[:2]) bdr.cz(0,1).allin(params[2:4]) return bdr ############################## # Now we instantiate the circuit nbqbits = 2 nbparams = 4 qc = mqCircuitML(make_circuit=simple_circuit, nbqbits=nbqbits, nbparams=nbparams) bitstr = ['00', '11'] # We can use exact probabilities model = Classifier(qc, bitstr) model.fit(X, y, save_loss_progress=True) # Or pass though shots-based estimates model2 = Classifier(qc, bitstr, nbshots=300) model2.fit(X, y, method='COBYLA', save_loss_progress=True) if FIGURES: fig, ax = plt.subplots(figsize=(5,3)) fig.set_tight_layout(True) p0 = model2.__loss_progress__[0] l2, = ax.plot(model2.__loss_progress__, c='tab:green') l1, = ax.plot([p0] + model.__loss_progress__, c="tab:blue") ax.set(ylabel="loss value", xlabel="iteration",) ax.legend((l1, l2), ('BFGS - simulated QPU', 'COBYLA - shots'), loc='upper right') plt.savefig("figures-ex/binary-loss-progress.svg", bbox_inches='tight') plt.close() ############################## # Then we test the model t = np.linspace(-np.pi,np.pi, num = 50) X_test = np.array([[t1, t2] for t1 in t for t2 in t]) y_pred = model.predict(X_test) if FIGURES: fig, ax = plt.subplots(figsize=(5,5)) idx = y_pred == 1 ax.plot(X_test[idx,0], X_test[idx,1], ls="", marker="s", color="coral", alpha=.3) ax.plot(X_test[~ idx,0], X_test[~ idx,1], ls="", marker="s", color="deepskyblue", alpha=.3) idx = y == 1 ax.plot(X[~ idx,0], X[~ idx,1], ls="", marker="o", color=COLORS[0], label="Class 0") ax.plot(X[idx,0], X[idx,1], ls="", marker="o", color=COLORS[1], label="Class 1") graph_args = dict(ls="", marker = "D", ms=10, mec="black", mew=2) ax.plot([px], [py], color=COLORS[0], **graph_args) ax.plot([-px], [-py], color=COLORS[1], **graph_args) ax.plot([5*py, -5*py], [-5*px, 5*px], color="tab:grey") ax.set(xlim=[-np.pi,np.pi], ylim=[-np.pi,np.pi],) ax.legend(loc="upper left") plt.savefig("figures-ex/binary-predictions.svg", bbox_inches="tight") plt.close() ############################################# # We compute the full circuit output on the train set. model.nbshots = 300 full_output = model.run_circuit(X) if FIGURES: fig, ax = plt.subplots(1, 2, figsize=(8,4)) fig.set_tight_layout(True) bitstr = ['00', '10', '01', '11'] x = [0, 1, 2, 3] names= ["Class 0", "Class 1"] colors = ["tab:orange", "tab:green", "tab:blue", "tab:red"] for label in range(2): count = full_output[y==label] for c in count: ax[label].bar(x, height=c, alpha=.07, color=colors) ax[label].boxplot( count, positions=x, sym="_", medianprops=dict(ls="-", lw=3, color="black"), ) ax[label].set_title(f"{names[label]}", fontdict={'color': colors[-label]}) ax[label].set(xticks=x, xticklabels=bitstr, ylim=(0,300), xlim=(-.5,3.5)) ax[1].tick_params(labelleft=False, labelright=True) plt.savefig("figures-ex/binary-counts.svg", bbox_inches="tight") plt.close() ``` #### File: polyadicQML/polyadicqml/circuitML.py ```python from numpy import pi, random, zeros_like, zeros, log2 class circuitML(): """Abstract Quantum ML circuit interface. Provides a unified interface to run multiple parametric circuits with different input and model parameters, agnostic of the backend, implemented in the subclasses. Parameters ---------- make_circuit : callable of signature self.make_circuit Function to generate the circuit corresponding to input `x` and `params`. nbqbits : int Number of qubits. nbparams : int Number of parameters. cbuilder : circuitBuilder Circuit builder class to be used. It must correspond to the subclass implementation. Attributes ---------- nbqbits : int Number of qubits. nbparams : int Number of parameters. """ def __init__(self, make_circuit, nbqbits, nbparams, cbuilder): self.nbqbits = nbqbits self.nbparams = nbparams self.__set_builder__(cbuilder) self.make_circuit = make_circuit def __set_builder__(self, cbuilder): self.__verify_builder__(cbuilder) self._circuitBuilder = cbuilder def __verify_builder__(self, cbuilder): raise NotImplementedError def run(self, X, params, nbshots=None, job_size=None): """Run the circuit with input `X` and parameters `params`. Parameters ---------- X : array-like Input matrix of shape *(nb_samples, nb_features)*. params : vector-like Parameter vector. nbshots : int, optional Number of shots for the circuit run, by default ``None``. If ``None``, uses the backend default. job_size : int, optional Maximum job size, to split the circuit runs, by default ``None``. If ``None``, put all *nb_samples* in the same job. Returns ------- array Bitstring counts as an array of shape *(nb_samples, 2**nbqbits)* """ raise NotImplementedError def random_params(self, seed=None): """Generate a valid vector of random parameters. Parameters ---------- seed : int, optional random seed, by default ``None`` Returns ------- vector Vector of random parameters. """ if seed: random.seed(seed) return random.randn(self.nbparams) def make_circuit(self, bdr, x, params): """Generate the circuit corresponding to input `x` and `params`. NOTE: This function is to be provided by the user, with the present signature. Parameters ---------- bdr : circuitBuilder A circuit builder. x : vector-like Input sample params : vector-like Parameter vector. Returns ------- circuitBuilder Instructed builder """ raise NotImplementedError def __eq__(self, other): return self.make_circuit is other.make_circuit def __repr__(self): return "<circuitML>" def __str__(self): return self.__repr__() def grad(self, X, params, v=None, eps=None, nbshots=None, job_size=None): """Compute the gradient of the circuit w.r.t. parameters *params* on input *X*. Uses finite differences of the circuit runs. Parameters ---------- X : array-like Input matrix of shape *(nb_samples, nb_features)*. params : vector-like Parameter vector of length *nb_params*. v : array-like Vector or matrix to right multiply the Jacobian with. eps : float, optional Epsilon for finite differences. By default uses ``1e-8`` if `nbshots` is not provided, else uses :math:`\\pi / \\sqrt{\\text{nbshots}}` nbshots : int, optional Number of shots for the circuit run, by default ``None``. If ``None``, uses the backend default. job_size : int, optional Maximum job size, to split the circuit runs, by default ``None``. If ``None``, put all *nb_samples* in the same job. Returns ------- array Jacobian matix as an array of shape *(nb_params, 2**nbqbits)* if `v` is None, else Jacobian-vector product: ``J(circuit) @ v`` """ dim_out = 2**self.nbqbits if v is not None: if len(v.shape) > 1: dim_out = v.shape[0] else: dim_out = 1 if eps is None: if nbshots is None: eps = 1e-8 else: max(log2(self.nbqbits)*2*pi/3 * min(.5, 1/nbshots**.25), 1e-8) num = eps if nbshots is None else eps * nbshots out = zeros((self.nbparams, dim_out)) run_out = self.run(X, params, nbshots, job_size) / num for i in range(len(params)): d = zeros_like(params) d[i] = eps pd = self.run(X, params + d, nbshots, job_size) / num - run_out out[i] = pd if v is None else pd @ v return out ``` #### File: polyadicqml/qiskit/qkCircuitML.py ```python import qiskit as qk from qiskit.providers.aer.noise import NoiseModel from qiskit.exceptions import QiskitError from qiskit.providers import JobStatus from sys import exc_info from os.path import isfile import numpy as np from time import asctime, sleep from itertools import cycle import json from .utility.backends import Backends from ..circuitML import circuitML from .qkBuilder import __qiskitGeneralBuilder__, qkBuilder class qkCircuitML(circuitML): """Quantum ML circuit interface for qiskit and IBMQ. Provides a unified interface to run multiple parametric circuits with different input and model parameters. Parameters ---------- make_circuit : callable of signature self.make_circuit Function to generate the circuit corresponding to input `x` and `params`. nbqbits : int Number of qubits. nbparams : int Number of parameters. backend : Union[Backends, list, qiskit.providers.BaseBackend] Backend(s) on which to run the circuits cbuilder : circuitBuilder, optional Circuit builder, by default :class:`qkBuilder` noise_model : Union[list, qiskit.providers.aer.noise.NoiseModel], optional Noise model to be provided to the backend, by default ``None``. Cannot be used with `noise_backend`. coupling_map : list, optional Coupling map to be provided to the backend, by default ``None``. Cannot be used with `noise_backend`. noise_backend : Union[list, qiskit.providers.ibmq.IBMQBackend], optional IBMQ backend from which the noise model should be generated, by default ``None``. save_path : str, optional Where to save the jobs outputs, by default ``None``. Jobs are saved only if a path is specified Attributes ---------- nbqbits : int Number of qubits. nbparams : int Number of parameters. Raises ------ ValueError If both `noise_model` and `noise_backend` are provided. """ def __init__(self, make_circuit, nbqbits, nbparams, backend, cbuilder=qkBuilder, noise_model=None, coupling_map=None, noise_backend=None, save_path=None): super().__init__(make_circuit, nbqbits, nbparams, cbuilder) self.save_path = save_path if isinstance(backend, Backends): self.__backend__ = backend self.backend = self.__backend__.backends self.noise_model = self.__backend__.noise_models self.coupling_map = self.__backend__.coupling_maps self.job_limit = backend.job_limit else: backend = backend if isinstance(backend, list) else [backend] try: self.job_limit = min(map(lambda x: x.job_limit(), backend)) except AttributeError: self.job_limit = None self.backend = cycle(backend) if noise_model is not None and noise_backend is not None: raise ValueError( "Only one between 'noise_model' and 'noise_backend' can \ be passed to the constructor" ) if isinstance(noise_model, list): self.noise_model = cycle(noise_model) else: self.noise_model = cycle([noise_model]) if isinstance(coupling_map, list): self.coupling_map = cycle(coupling_map) else: self.coupling_map = cycle([coupling_map]) if noise_backend is not None: _noise_back = noise_backend if not isinstance(noise_backend, list): _noise_back = [noise_backend] self.noise_model = cycle( [NoiseModel.from_backend(_backend) for _backend in _noise_back] ) self.coupling_map = cycle( [_backend.configuration().coupling_map for _backend in _noise_back] ) def __verify_builder__(self, cbuilder): bdr = cbuilder(1) if isinstance(bdr, __qiskitGeneralBuilder__): return raise TypeError( f"The circuit builder class is not comaptible: provided \ {cbuilder} expected {__qiskitGeneralBuilder__}" ) def run(self, X, params, nbshots=None, job_size=None): if not job_size: if self.job_limit is not None and len(X) > self.job_limit: job_size = self.job_limit elif self.job_limit is not None and job_size > self.job_limit: raise ValueError( f"Job size {job_size} greater that job limit {self.job_limit}" ) try: if not job_size: job, qc_list = self.request(X, params, nbshots) try: return self.result(job, qc_list, nbshots) except: status = job.status() if job.done() or status == JobStatus.DONE: print(f"Completed job {job.job_id()} on {job.backend().name()}") elif status in (JobStatus.CANCELLED, JobStatus.ERROR): print(f"{status} ({job.job_id()}) on {job.backend().name()}") else: print(f"Cancelling job {job.job_id()} on {job.backend().name()}") job.cancel() raise else: if not isinstance(job_size, int): raise TypeError("'job_size' has to be int") n_jobs = len(X) // job_size requests = [ self.request(X[job_size * n : job_size * (n+1)], params, nbshots) for n in range(n_jobs) ] if job_size * n_jobs < len(X): requests.append( self.request(X[job_size * n_jobs :], params, nbshots) ) try: return np.vstack([ self.result(job, qc_list, nbshots) for job, qc_list in requests ]) except: for job, qc_list in requests: status = job.status() if job.done() or status == JobStatus.DONE: print(f"Completed job {job.job_id()} on {job.backend().name()}") elif status in (JobStatus.CANCELLED, JobStatus.ERROR): print(f"{status} ({job.job_id()}) on {job.backend().name()}") else: print(f"Cancelling job {job.job_id()} on {job.backend().name()}") job.cancel() raise except KeyboardInterrupt: cin = input("[r] to reload backends, [ctrl-c] to confirm interrupt :\n") if cin == 'r': self.__backend__.load_beckends() self.backend = self.__backend__.backends self.noise_model = self.__backend__.noise_models self.coupling_map = self.__backend__.coupling_maps return self.run(X, params, nbshots, job_size) except QiskitError as descr: error_str = f"{asctime()} - Error in qkCircuitML.run :{exc_info()[0]}\n\t{descr}\n" print(error_str) with open("error.log", "w") as f: f.write(error_str) sleep(5) return self.run(X, params, nbshots, job_size) def make_circuit_list(self, X, params, nbshots=None): """Generate a circuit for each sample in `X` rows, with parameters `params`. Parameters ---------- X : array-like Input matrix, of shape *(nb_samples, nb_features)* or *(nb_features,)*. In the latter case, *nb_samples* is 1. params : vector-like Parameter vector. nbshots : int, optional Number of nbshots, by default ``None`` Returns ------- list[qiskit.QuantumCircuit] List of *nb_samples* circuits. """ def post(bdr): if nbshots: return bdr.measure_all().circuit() return bdr.circuit() if len(X.shape) < 2: return [post( self.make_circuit( self._circuitBuilder(self.nbqbits), X, params ) )] else: return [ post( self.make_circuit( self._circuitBuilder(self.nbqbits), x, params ) ) for x in X] def request(self, X, params, nbshots=None): """Create circuits corresponding to samples in `X` and parameters `params` and send jobs to the backend for execution. Parameters ---------- X : array-like Input matrix, of shape *(nb_samples, nb_features)* or *(nb_features,)*. In the latter case, *nb_samples* is 1. params : vector-like Parameter vector. nbshots : int, optional Number of nbshots, by default ``None`` Returns ------- (qiskit.providers.BaseJob, list[qiskit.QuantumCircuit]) Job instance derived from BaseJob and list of corresponding circuits. """ qc_list = self.make_circuit_list(X, params, nbshots) # Optional arguments for execute are defined here, if they have been # given at construction. execute_kwargs = {} if nbshots: execute_kwargs['shots'] = nbshots _noise_model = next(self.noise_model) if _noise_model is not None: execute_kwargs['basis_gates'] = _noise_model.basis_gates execute_kwargs['noise_model'] = _noise_model _coupling_map = next(self.coupling_map) if _coupling_map is not None: execute_kwargs['coupling_map'] = _coupling_map return qk.execute( qc_list, next(self.backend), **execute_kwargs, ), qc_list def result(self, job, qc_list, nbshots=None): """Retrieve job results and returns bitstring counts. Parameters ---------- job : qiskit.providers.BaseJob Job instance. qc_list : list[qiskit.circuit.QuantumCircuit] List of quantum circuits executed in `job`, of length *nb_samples*. nbshots : int, optional Number of shots, by default ``None``. If ``None``, raw counts are returned. Returns ------- array Bitstring counts as an array of shape *(nb_samples, 2**nbqbits)*, in the same order as `qc_list`. Raises ------ QiskitError If job status is cancelled or had an error. """ wait = 1 while not job.done(): if job.status() in (JobStatus.CANCELLED, JobStatus.ERROR): raise QiskitError sleep(wait) results = job.result() if not nbshots: out = [results.get_statevector(qc) for qc in qc_list] out = np.abs(out)**2 order = [ int(f"{key:0>{self.nbqbits}b}"[::-1], 2) for key in range(out.shape[1]) ] return out[:, order] else: out = np.zeros((len(qc_list), 2**self.nbqbits)) for n, qc in enumerate(qc_list): for key, count in results.get_counts(qc).items(): # print(f"{key} : {count}") out[n, int(key[::-1], 2)] = count if self.save_path: self.save_job(job) return out def save_job(self, job, save_path=None): """Save job output to json file. Parameters ---------- job : qiskit.providers.BaseJob Job instance. save_path : path, optional Where to save the output, by default ``None``. If None, uses :attr:`qkCircuitML.save_path`. """ save_path = self.save_path if save_path is None else save_path if isfile(save_path): try: with open(save_path) as f: out = json.load(f) except (FileNotFoundError, json.decoder.JSONDecodeError): print(f"ATTENTION: file {save_path} is broken, confirm overwriting!") input("Keybord interrupt ([ctrl-c]) to abort") out = {} else: out = {} with open(save_path, 'w') as f: job_id = job.job_id() try: times = job.time_per_step() info = {key: str(times[key]) for key in times} except AttributeError: info = {} info['results'] = job.result().to_dict() out[job_id] = info json.dump(out, f) ``` #### File: polyadicQML/polyadicqml/quantumClassifier.py ```python import numpy as np import pickle import json from tqdm.auto import tqdm from scipy.optimize import minimize from .circuitML import circuitML from .utility import CE_loss SCIPY_METHODS = { 'bfgs', 'nelder-mead', 'powell', 'cg', 'newton-cg', 'l-bfgs-b', 'tnc', 'cobyla', 'slsqp', 'trust-constr', 'dogleg', } class Classifier(): """Class for quantum classifiers. Defines the API using the scikit-learn format. Parameters ---------- circuit : circuitML Quantum circuit to simulate, how to use and store is defined in child classes. bitstr : list of int or list of str Which bitstrings should correspond to each class. The number of classes for the classification is defined by the number of elements. params : vector, optional Initial model paramters. If ``None`` (default) uses :meth:`circuitML.random_params`. nbshots : int, optional Number of shots for the quantum circuit. If 0, negative or None, then exact proabilities are computed, by default ``None``. nbshots_increment : float, int or callable, optional How to increase the number of shots as optimization progress. If float or int, the increment arise every `nbshots_incr_delay` iterations: if float, then the increment is multiplicative; if int, then it is added. If callable, the new nbshots is computed by calling `nbshots_increment(nbshots, n_iter, loss_value)`. nbshots_incr_delay : int, optional After how many iteration nb_shots has to increse. By default 20, if nbshots_increment is given loss : callable, optional Loss function, by default Negative LogLoss (Cross entropy). job_size : int, optional Number of runs for each circuit job, by default the number of observations. budget : int, optional Maximum number of optimization steps, by default 100 name : srt, optional Name to identify this classifier. save_path : str, optional Where to save intermediate training results, by deafult None. If ``None``, intermediate results are not saved. Attributes ---------- bitstr : list[int] Bitstrings (as int) on which to read the classes nbshots : int Number of shots to run circuit job_size : int Number of circuits to run in each backend job nfev : int Number if times the circuit has been run """ def __init__(self, circuit, bitstr, **kwargs): super().__init__() # Retrieve keyword arguments params = kwargs.get('params') nbshots = kwargs.get('nbshots') nbshots_increment = kwargs.get('nbshots_increment') nbshots_incr_delay = kwargs.get('nbshots_incr_delay') loss = kwargs.get('loss', CE_loss) job_size = kwargs.get('job_size') budget = kwargs.get('budget', 100) name = kwargs.get('name') save_path = kwargs.get('save_path') # Testing circuit and setting it self.set_circuit(circuit) # Setting bitstrings self.set_bitstr(bitstr) # Setting parameters if params is None: self.set_params(circuit.random_params()) else: self.set_params(params) # Testing for nbshots type if not (isinstance(nbshots, int) or (nbshots is None)): raise TypeError("Invalid `nbshots` type") if nbshots is not None and nbshots < 1: nbshots = None self.nbshots = nbshots # Testing for nbshots_incr_delay if not ( isinstance(nbshots_incr_delay, int) or (nbshots_incr_delay is None) ): raise TypeError("Invalid `nbshots_incr_delay` type") self.nbshots_incr_delay = 20 if nbshots_incr_delay is not None: self.nbshots_incr_delay = nbshots_incr_delay self.__set_nbshots_increment__(nbshots_increment) if not isinstance(budget, int): raise TypeError("Invalid `budget` type") self.__budget__ = budget self.job_size = job_size self.__loss__ = loss self.__min_loss__ = np.inf self.__fit_conv__ = False self.__last_loss_value__ = None self.__last_output__ = None self.__last_params__ = None self.__loss_progress__ = [] self.__output_progress__ = [] self.__params_progress__ = [] self.__name__ = name self.__save_path__ = save_path self.nfev = 0 def __verify_circuit__(self, circuit): """Test wheter a circuit is valid and raise TypeError if it is not. Parameters ---------- circuit : circuitML QML circuit Raises ------ TypeError If the circuit is not a circuitML ValueError If self has a circuit and the new circuit does not uses the same make_circuit fuction """ if not isinstance(circuit, circuitML): raise TypeError( f"Circuit was type {type(circuit)} while circuitML was \ expected." ) if hasattr(self, 'circuit'): if self.circuit != circuit: raise ValueError( "Given circuit is different from previous circuit" ) def set_circuit(self, circuit): """Set the circuit after testing for validity. For a circuit to be valid, it has to be an instance of circuitML and, in case self already has a circuit, to use the same make_circuit function. Parameters ---------- circuit : circuitML QML circuit Raises ------ Union[TypeError, ValueError] If the circuit is invalid. """ self.__verify_circuit__(circuit) self.circuit = circuit def set_params(self, params): """Parameters setter Parameters ---------- params : vector Parameters vector """ self.params = params def set_bitstr(self, bitstr): """Bitstring setter Parameters ---------- bitstr : list[str] or list[int] Bitstrings on which to read the class predictions. Raises ------ TypeError If bitstrings are of wrong type or have eterogenous types """ if isinstance(bitstr[0], int): for i in bitstr: if not isinstance(i, int): raise TypeError("All bitstrings must have the same type") self.bitstr = bitstr elif isinstance(bitstr[0], str): for i in bitstr: if not isinstance(i, str): raise TypeError("All bitstrings must have the same type") self.bitstr = [int(bit, 2) for bit in bitstr] else: raise TypeError("Bitstrings must be either int or binary strings") def __set_nbshots_increment__(self, nbshots_increment): __incr__ = nbshots_increment if nbshots_increment is None: def __incr__(nbshots, n_iter, loss_value): return nbshots elif isinstance(nbshots_increment, float): def __incr__(nbshots, n_iter, loss_value): if n_iter % self.nbshots_incr_delay == 0: return int(nbshots_increment * nbshots) else: return nbshots elif isinstance(nbshots_increment, int): def __incr__(nbshots, n_iter, loss_value): if n_iter % self.nbshots_incr_delay == 0: return nbshots + nbshots_increment else: return nbshots self.nbshots_increment = __incr__ def run_circuit(self, X, params=None): """Run the circuit with input `X` and parameters `params`. Parameters ---------- X : array-like Input matrix of shape (nb_samples, nb_features). params : vector-like, optional Parameter vector, by default uses the model :attr:`~polyadicqml.Classifier.params` Returns ------- array Bitstring counts as an array of shape (nb_samples, 2**nbqbits) """ if params is None: params = self.params self.nfev += 1 return self.circuit.run( X, params, self.nbshots, job_size=self.job_size ) def predict_proba(self, X, params=None): """Compute the bitstring probabilities associated to each input point of the design matrix. Parameters ---------- X : array Design matrix of n samples params : vector, optional Circuit parameters, by default None. If not given, model parameters are used. Returns ------- array Predicted bitstring probabilities. Rows correspond to samples and columns to bitstrings, whose order is defined in :attr:`~polyadicqml.quantumClassifier.bitstr`. """ out = self.run_circuit(X, params) if self.nbshots: out = out / float(self.nbshots) return out[:, self.bitstr] def proba_to_label(self, proba) -> np.ndarray: """Transforms a matrix of real values in integer labels. Parameters ---------- proba : array Real valued array Returns ------- vector Labels vector """ return np.argmax(proba, axis=1) def predict(self, X): """Compute the predicted class for each input point of the design matrix. Parameters ---------- X : array Design matrix of n samples Returns ------- vector Labels vector """ return self.proba_to_label(self.predict_proba(X)) def __call__(self, X): """Compute the predicted class for each input point of the design matrix. Equivalent to :meth:`~polyadicqml.quantumClassifier.predict` Parameters ---------- X : array Design matrix of n samples params : vector, optional Circuit parameters, by default None. If not given, model parameters are used. Returns ------- vector Labels vector """ return self.predict(X) def set_loss(self, loss=None): """Loss function setter. Parameters ---------- loss : callable, optional Loss function of the form loss(y_true, y_pred, labels), by default None. If None is given, nothing happens. """ if loss is not None: self.__loss__ = loss def __callback__(self, params, loss=False, output=False, ): """Callback function for optimization. It is called after each step. Parameters ---------- params : vector Current parameter vector loss : bool, optional Wheter to store the loss value, by default False output : bool, optional Wheter to store the current output and parameters , by default False """ self.__n_iter__ += 1 self.pbar.update() if loss or output: self.__loss_progress__.append(self.__last_loss_value__) if output: self.__output_progress__.append(self.__last_output__.tolist()) self.__params_progress__.append(params.tolist()) if self.__save_path__ and self.__n_iter__ % 10 == 0: self.save() # We randomize the indices only after the callback # this is necessary to estimate the gradient by FD self._rnd_indices = np.random.choice( self.__indices, size=self.__batch_size, replace=False) def __scipy_minimize__( self, input_train, target_train, labels, method, save_loss_progress, save_output_progress, **kwargs ): def to_optimize(params): self.nbshots = self.nbshots_increment( self.nbshots, self.__n_iter__, self.__min_loss__) probas = self.predict_proba( input_train[self.__rnd_indices], params ) loss_value = self.__loss__( target_train[self.__rnd_indices], probas, labels=labels ) self.__last_loss_value__ = loss_value self.__last_output__ = probas[np.argsort(self.__rnd_indices)] if loss_value < self.__min_loss__: self.__min_loss__ = loss_value self.set_params(params.copy()) if method.lower() == "cobyla": self.__callback__( params, save_loss_progress, save_output_progress ) return loss_value # SCIPY.MINIMIZE IMPLEMENTATION options = kwargs.get('options', {'maxiter': self.__budget__}) bounds = kwargs.get('bounds') if method == 'L-BFGS-B' and bounds is None: bounds = [(-np.pi, np.pi) for _ in self.params] mini_kwargs = dict( method=method, bounds=bounds, options=options, ) if method.lower() not in ('cobyla'): mini_kwargs["callback"] = lambda xk: self.__callback__( xk, save_loss_progress, save_output_progress, ) mini_out = minimize(to_optimize, self.params, **mini_kwargs) self.set_params(mini_out.x.copy()) self.__fit_conv__ = mini_out.success def __inner_opt__(self): pass def fit(self, input_train, target_train, batch_size=None, **kwargs): """Fit the model according to the given training data. Parameters ---------- input_train : array Training design matrix. target_train : vector Labels corresponding to `input_train`. batch_size : int, optional Minibatches size, by default None. If none uses the full dataset with rndom shuffle at each iteration. method : str, optional Optimization method, by default BFGS bounds : sequence, optional Bounds on variables for L-BFGS-B, TNC, SLSQP, Powell, and trust-constr methods as a sequence of ``(min, max)`` pairs for each element in x. None is used to specify no bound. options : dict, optional Optimizer options, by default {'maxiter': budget} save_loss_progress : bool, optional Whether to store the loss progress, by default False save_output_progress : file path, optional Path where to save the output evolution , by default None. If none is given, the output is not saved. seed : int, optional Random seed, by default None Returns ------- Classifier self """ method = kwargs.pop('method', 'BFGS') save_loss_progress = kwargs.pop('save_loss_progress', None) save_output_progress = kwargs.pop('save_output_progress', None) seed = kwargs.pop('seed', None) if seed is not None: np.random.seed(seed) _nbshots = self.nbshots self.pbar = tqdm(total=self.__budget__, desc="Training", leave=False) self.__n_iter__ = 0 if batch_size: self.__batch_size = batch_size else: self.__batch_size = len(target_train) _labels = np.unique(target_train) if len(_labels) > len(self.bitstr): raise ValueError( f"Too many labels: expected {len(self.bitstr)}, found \ {len(_labels)} in target_train" ) self.__indices = np.arange(len(target_train)) self.__rnd_indices = np.random.choice( self.__indices, size=self.__batch_size, replace=False ) if method.lower() in SCIPY_METHODS: self.__scipy_minimize__( input_train, target_train, _labels, method, save_loss_progress, save_output_progress, **kwargs ) else: raise NotImplementedError self.pbar.close() del self.pbar if self.__n_iter__ < self.__budget__: if self.__fit_conv__: print(f"Early convergence at step {self.__n_iter__}") else: print(f"Optimization failed at step {self.__n_iter__}") if save_output_progress: with open(save_output_progress, "w") as f: _d = dict(output = self.__output_progress__, labels = target_train.tolist(), loss_value = self.__loss_progress__, params = self.__params_progress__) json.dump(_d, f) self.__output_progress__ = [] self.__params_progress__ = [] # we reset the number if nbshots, as we changed it during training. self.nbshots = _nbshots return self def info_dict(self): """Returns a dictionary containing models information. Returns ------- dict Information dictionary """ out = {} model_info = { "parameters": self.params.tolist(), 'circuit': str(self.circuit), 'nbshots': self.nbshots, 'nbshots_increment': str(self.nbshots_increment), 'nbshots_incr_delay': str(self.nbshots_incr_delay), 'bitstr': [bin(bit) for bit in self.bitstr], 'job_size': self.job_size if self.job_size else "FULL", 'nfev': self.nfev, } if self.__loss_progress__: model_info["loss_progress"] = self.__loss_progress__ model_info["n_iter"] = self.__n_iter__ name = "quantumClassifier" if self.__name__ is not None: name = self.__name__ out[str(name)] = model_info return out def save(self, path=None): if path is None: path = self.__save_path__ with open(path, 'wb') as f: pickle.dump(self.info_dict, f) ``` #### File: tests/test_issues/test_issue#1.py ```python if False: import numpy as np from polyadicqml.manyq import mqCircuitML from polyadicqml.qiskit import qkBuilder from polyadicqml import Classifier nbqbits = 2 nbparams = 22 bitstr = ['00', '01', '10'] def block(bdr, x, p): bdr.allin(x[:2]) bdr.cz(0,1).allin(p[:2]) bdr.cz(0,1).allin(x[[2,3]]) bdr.cz(0,1).allin(p[[2,3]]) bdr.cz(0,1).allin(x[[4,5]]) bdr.cz(0,1).allin(p[[4,5]]) bdr.cz(0,1).allin(x[[6,7]]) bdr.cz(0,1).allin(p[[6,7]]) bdr.cz(0,1).allin(x[[8,9]]) bdr.cz(0,1).allin(p[[8,9]]) bdr.cz(0,1).input(0, x[10]) bdr.cz(0,1).input(0, p[10]) def wineCircuit(bdr, x, params): block(bdr, x, params[:11]) bdr.cz(0,1) block(bdr, x, params[11:]) return bdr input_train = np.random.rand(2940,11) target_train = (3*np.random.rand((2940))).astype(int) qc = mqCircuitML(make_circuit=wineCircuit, nbqbits=nbqbits, nbparams=nbparams) model = Classifier(qc, bitstr) model.fit(input_train, target_train) ```
{ "source": "joaquinllopez00/kenzie-twitter", "score": 3 }
#### File: kenzie-twitter/twitteruser/models.py ```python from django.db import models from django.contrib.auth.models import AbstractUser # Create your models here. class TwitterUser(AbstractUser): name = models.CharField(max_length=50) followees = models.ManyToManyField("self", symmetrical=False, related_name="followers") def __str__(self): return self.name ``` #### File: kenzie-twitter/twitteruser/views.py ```python from django.contrib.auth.decorators import login_required from django.shortcuts import render, HttpResponseRedirect, reverse from twitteruser.models import TwitterUser from tweet.models import Tweet from django.contrib.auth.decorators import login_required @login_required def user_view(request, user_name: str=""): following = 0 for user in TwitterUser.objects.all(): if request.user in user.followees.all(): following += 1 print(following) if user_name == "" or user_name == request.user.username: if request.user: user = request.user tweets = Tweet.objects.filter(tweeter=user) count = tweets.count() print(count) else: return HttpResponseRedirect("/login") return render(request, 'user_detail.html', {'user': user, 'tweets': tweets, 'count': count, "userpage": True, "following": following}) user = TwitterUser.objects.get(username=user_name) tweets = Tweet.objects.filter(tweeter=user) count = tweets.count() followees = user.followees.all() # follow = TwitterUser.objects.filter(followees =user) if request.user in followees: print("included") follow = True else: follow = False print(followees, follow, request.user, count) return render(request, "user_detail.html", {'user': user, 'tweets': tweets, 'count': count,'follow': follow, "userpage": False, "following": following}, ) def follow_user(request, followed_user:int): print(followed_user, "int") follow_user = TwitterUser.objects.get(id=followed_user) print(follow_user, "user we are trying to folllow") following_user = request.user follow_user.followees.add(following_user) follow_user.save() print(follow_user.followees.count(), "user_request", following_user,"request.user") return HttpResponseRedirect("/user/%s" % follow_user.username) def unfollow_user(request, unfollowed_user:int): unfollow_user = TwitterUser.objects.get(id=unfollowed_user) unfollowing_user = request.user unfollow_user.followees.remove(unfollowing_user) unfollow_user.save() return HttpResponseRedirect("/user/%s" % unfollow_user.username ) ```
{ "source": "joaquinlpereyra/uno", "score": 4 }
#### File: joaquinlpereyra/uno/cards.py ```python import random import safe_input import players from utils import Colors from exceptions import CantUseThisCard """A module to hold all card-related classes. The most interesting are base classes: Card, _ColoredCard, _SpecialColoredCard, _SpecialCard. Polymorphism is used extensively on SpecialCards (both colored and non-colored) to affect the game. """ class Card: """A base class to represent all cards.""" def __init__(self, game): """A Card is part of a particular game and has a Place: it is either on a Player's Hand or on one of the decks. """ self._game = game self._place = None @property def owner(self): """Return the owner of the card, if it has one. If not, return None.""" return self._place.owner if isinstance(self._place, players.Hand) else None @property def deck(self): """Return the deck of the card, if it has one. If not, return None.""" return self._place if isinstance(self._place, Deck) else None @property def game(self): return self._game def is_compatible_with(self, another_card): """Should return wether the card is _compatible_ (that is, can be put above on the discarded stack) with another card.""" raise NotImplementedError("Every Card should decide what is compatible with!") def use(self): """Remove the card from the hand of the owner and add it to the discarded_deck of the game. If it is a special card, apply its effects to the game as well. Raises CantUseThisCard error if the card is not compatible with the topmost card of the game's discarded deck. """ if not self.is_compatible_with(self.game.discarded_deck.check()): raise CantUseThisCard self.do_effect() self.owner.hand.remove_card(self) self.game.discarded_deck.add(self) def move(self, somewhere): """Moves the card to somewhere. Somewhere should either be a player's hand or a deck. """ self._place = somewhere def do_effect(self): pass class _ColoredCard(Card): """A baseclass to represent all cards which have a color.""" def __init__(self, game, color): Card.__init__(self, game) self._color = color # property decorator makes the color inmutable after creation :) # it is used extensively to create read-only properties @property def color(self): return self._color @property def number(self): # NOTE: this is useful so as to make compatibilities easily symmetric, # without the need to try/except all the methods. # all the cards with no numbers actually have a magic, impossible -1 value return -1 def is_compatible_with(self, another_card): """Should return wether the card is _compatible_ (that is, can be put above on the discarded stack) with another card.""" if self.game.special_active_color is not None: return self.color == self.game.special_active_color return self.color == another_card.color or \ isinstance(another_card, _SpecialCard) def use(self): super().use() self.game.special_active_color = None class _SpecialColoredCard(_ColoredCard): """A class to represent all cards which have special effects and have colors.""" def __init__(self, game, color): _ColoredCard.__init__(self, game, color) class _SpecialCard(Card): """A class to represent all cards which have special effects and dont have colors.""" def __init__(self, game): Card.__init__(self, game) @property def color(self): return None @property def number(self): return -1 def is_compatible_with(self, another_card): # a special card is compatible with everything, really return True class NormalCard(_ColoredCard): def __init__(self, game, number, color): _ColoredCard.__init__(self, game, color) self._number = number @property def number(self): return self._number def is_compatible_with(self, another_card): if self.game.special_active_color is not None: return self.color == self.game.special_active_color return self.number == another_card.number or \ self.color == another_card.color or \ isinstance(another_card, _SpecialCard) def __str__(self): return "{0} {1}".format(self.color, self.number) class SkipPlayerCard(_SpecialColoredCard): def __init__(self, game, color): _SpecialColoredCard.__init__(self, game, color) def do_effect(self): print("A Skip Player card has been played! Next player will be skipped.") self.game.forcibly_skip_next_turn = True def __str__(self): return "{0} Skip Player".format(self.color) class ChangeDirectionCard(_SpecialColoredCard): def __init__(self, game, color): _SpecialColoredCard.__init__(self, game, color) def do_effect(self): print("A Change Direction card has been played! Game will go in reverse now.") self.game.game_going_right = not self.game.game_going_right def __str__(self): return "{0} Change Direction".format(self.color) class Take2Card(_SpecialColoredCard): def __init__(self, game, color): _SpecialColoredCard.__init__(self, game, color) def is_compatible_with(self, another_card): if self.game.special_active_color is not None: return self.color == self.game.special_active_color return self.color == another_card.color or \ isinstance(another_card, Take4Card) or \ isinstance(another_card, Take2Card) def do_effect(self): print("A Take 2 card has been played! Next player will have to take {0} cards " "unless she can defend herself!".format(self.game.cards_to_forcibly_take+2)) self.game.cards_to_forcibly_take += 2 def __str__(self): return "{0} Take 2".format(self.color) class Take4Card(_SpecialCard): def __init__(self, game): _SpecialCard.__init__(self, game) def do_effect(self): print("A Take 4 card has been played! Next player will have to take {0} cards " "unless she can defend herself!".format(self.game.cards_to_forcibly_take+4)) self.game.cards_to_forcibly_take += 4 def __str__(self): return "Take 4" class Take8Card(_SpecialCard): def __init__(self, game): _SpecialCard.__init__(self, game) def do_effect(self): print("A Take 8 card has been played! Next player will have to take {0} cards " "unless she can defend herself!".format(self.game.cards_to_forcibly_take+8)) self.game.cards_to_forcibly_take += 8 def __str__(self): return "Take 8" class ChangeColor(_SpecialCard): def __init__(self, game): _SpecialCard.__init__(self, game) self.colors = {'red': Colors.RED, 'yellow': Colors.YELLOW, 'green': Colors.GREEN, 'blue': Colors.BLUE } def choose_color(self): color_chosen = safe_input.choose_color() return color_chosen def _do_effect(self, color_chosen): self.game.special_active_color = self.colors[color_chosen] print("A Change Color card has been played! The active color is now: {0}".format(color_chosen)) def do_effect(self): if isinstance(self.owner, players.AIPlayer): self.do_ai_effect() else: color_chosen = self.choose_color() self._do_effect(color_chosen) def do_ai_effect(self): color_chosen = random.choice(list(self.colors.keys())) self._do_effect(color_chosen) def __str__(self): return "Change Color" ``` #### File: joaquinlpereyra/uno/decks.py ```python import random from exceptions import CantTakeFromEmptyDeck, CantCheckEmptyDeck """ Holds all the deck related classes. Decks are thought of of mostly as stacks. The DiscardedDeck is special in the sense that we (almost) never take from it, we only keep adding stuff. Class and methods don't have docstrings because of their simplistic nature. """ class Deck: def __init__(self): self.elems = [] @property def is_empty(self): return len(self.elems) == 0 def add(self, elem): self.elems.append(elem) elem.move(self) def take(self): if self.is_empty: raise CantTakeFromEmptyDeck card = self.elems.pop() card.move(None) return card def take_multiple(self, n): cards = [] for _ in range(n): cards.append(self.take()) return cards def shuffle(self): random.shuffle(self.elems) class DiscardedDeck(Deck): def __init__(self): Deck.__init__(self) def check(self): if self.is_empty: raise CantCheckEmptyDeck return self.elems[-1] class MainDeck(Deck): def __init__(self): Deck.__init__(self) ``` #### File: joaquinlpereyra/uno/game.py ```python import cards import decks import players import safe_input from utils import Colors from utils import pretty_print_as_supermarket_list """ THE MODULE. This modules defines an init the Game class, the king of all this project. The game object is a singleton which coordinates all the actions between decks, cards and players, which hold references to it. """ # thank you tuples for being inmutable we should all learn from you COLORS = (Colors.RED, Colors.BLUE, Colors.GREEN, Colors.YELLOW) class Game: def __init__(self): self.main_deck = decks.MainDeck() self.discarded_deck = decks.DiscardedDeck() self.cards_to_forcibly_take = 0 self.game_going_right = True self.forcibly_skip_next_turn = False self.special_active_color = None self.players = [] self._create_players() self._fill_main_deck() self._inital_deal_cards() self._activate_last_card_on_discarded_deck() self._play_game() def _fill_main_deck(self): """Fills the main deck with the corresponding cards.""" # fill the deck up with normal cards. weird range index to avoid # unnecesary ifs to comply with non-zero cards appearing twice per color # but zero-cards only once per color :) for n in range(1, 20): n = n % 10 for color in COLORS: self.main_deck.add(cards.NormalCard(self, n, color)) # the special colored cards, two per color for _ in range(2): for color in COLORS: self.main_deck.add(cards.SkipPlayerCard(self, color)) self.main_deck.add(cards.ChangeDirectionCard(self, color)) self.main_deck.add(cards.Take2Card(self, color)) # and the special not-colored ones for _ in range(4): self.main_deck.add(cards.Take4Card(self)) self.main_deck.add(cards.Take8Card(self)) self.main_deck.add(cards.ChangeColor(self)) def _create_players(self): """Add players to the game. At least one human and one AI. Human can choose up to two extra AI players.""" self.players.append(players.HumanPlayer(self, "You")) self.players.append(players.AIPlayer(self, "AI 1")) print("An AI has been already created and added to the game.") for n in range(2,4): want_to_add_ai_player = safe_input.want_to_add_ai_player() if want_to_add_ai_player: self.players.append(players.AIPlayer(self, "AI {0}".format(n))) else: break def _inital_deal_cards(self): """Shuffle and deal seven cards to each player found on the game. Takes one card from the main deck and adds it to the discarded deck. """ self.main_deck.shuffle() for player in self.players: cards = self.main_deck.take_multiple(7) player.hand.add_multiple_cards(cards) self.discarded_deck.add(self.main_deck.take()) def _activate_last_card_on_discarded_deck(self): """Causes the last card on the discarded deck to do its effect.""" last_card = self.discarded_deck.check() last_card.do_effect() def _add_or_remove(self, n, how_much=1): """Adds or remove 1 from n depending on wether the game is going left or right. """ return n+how_much if self.game_going_right else n-how_much def _grab_players_response_cards(self, player): take_2 = list(filter(lambda card: isinstance(card, cards.Take2Card), player.hand.cards)) take_4 = list(filter(lambda card: isinstance(card, cards.Take4Card), player.hand.cards)) take_8 = list(filter(lambda card: isinstance(card, cards.Take8Card), player.hand.cards)) if take_8: return take_8 elif take_4: return take_4 elif take_2: return list(filter(lambda card: card.is_compatible_with(self.discarded_deck.check()), take_2)) else: return [] def react_empty_deck(self): """When the main deck is empty, fill it up with cards from the discarded deck. When this method is finished, the main deck will have all the cards from the discarded deck except the topmost, which will still be in the discarded deck, and the main deck will be shuffled. """ last_card = self.discarded_deck.take() self.main_deck = self.discarded_deck self.main_deck.shuffle() self.discarded_deck = decks.DiscardedDeck() self.discarded_deck.add(last_card) def make_player_grab_cards(self, player): """Responds to the special Take2 or Take4 cards. If player can respond to this card, the sensible option to automatically respond to it will be chosen automatically. Else, he will have to grab as many cards as necessary.""" player_special_cards = self._grab_players_response_cards(player) if player_special_cards: player.play_specific_card(player_special_cards[0]) return True else: player.grab_n_from_deck(self.cards_to_forcibly_take) self.cards_to_forcibly_take = 0 return False def victory(self, winning_player): """Prints the victory messages.""" print("** VICTORY ** \t" * 3) print("The winning player was: {0}".format(winning_player)) print("This are the hands of the rest of the players: ") for player in self.players: pretty_print_as_supermarket_list("Hand of {0}".format(player), *player.hand.cards) print("Thank you for playing!") def _print_player_HUD(self, active_player): """Prints information for the user on each turn.""" print() print("TURN OF: {0}".format(active_player)) print("TOP CARD: {0}".format(str(self.discarded_deck.check()).upper())) print("============================================") def _play_game(self): """Starts the game itself. A continous loop that will only break when a player wins. """ n = 0 while True: if self.main_deck.is_empty: self.react_empty_deck() if self.forcibly_skip_next_turn: n = self._add_or_remove(n) self.forcibly_skip_next_turn = False continue active_player = self.players[n % len(self.players)] self._print_player_HUD(active_player) if self.cards_to_forcibly_take: self.make_player_grab_cards(active_player) n = self._add_or_remove(n) continue active_player.play_card() if active_player.hand.is_empty(): self.victory(active_player) break n = self._add_or_remove(n) a = input("Press return to advance to next turn. \n") if __name__ == '__main__': Game() ``` #### File: joaquinlpereyra/uno/safe_input.py ```python from exceptions import WrongUserInput from utils import format_input_string _CONVERT_TO_INT = (lambda i: int(i), "Your input doesn't seem to be a number") _LOWER_CASE = (lambda s: s.lower(), "Why wouldn't this work on a string? You beat me.") _STRIP_STRING = (lambda s: s.strip(), "I can't think of a reason why this would fail." "Have you tried turning it off and on again?") # CONDITIONS: def _BETWEEN(min, max): return (lambda n: min <= n <= max, "Your input doesn't seem to be between {0} and {1}".format(min, max)) _NO_SPACES_IN_STRING = (lambda s: " " not in s, "No spaces allowed in this field.") _YES_OR_NO = (lambda s: s.lower() in 'yn', "You must answer Yes (y) or No (n).") _IS_COLOR = (lambda s: s.lower() in ('red', 'yellow', 'blue', 'green'), "Your input doesn't seem to be a color") def _safe_input(input_string, convertions_and_reasons_for_fail, conditions_and_reasons_for_fail): """Keep asking the user for input until he gives an accepted answer. @args: str: input_string = the text displayed to the user when expecting input [(f: a -> b, string)] convertions_and_reasons_for_fail = modifies the user input if it can as first element, possible explanation of why it couldn as second element [(f: a -> bool, string]) conditions_and_reasons_for_fail = conditions that the modified user input should pass as first element, show second element string if it didn't @return: z, if the last function on convertions_and_reasons_for_fail was of type f: w -> z: the user input, validated: it is assured to be of the the correct type after all the convertions and can pass all tests given as conditions. @sideffects: input() function accepted from user. """ while True: user_input = input(format_input_string(input_string)) try: correct_type_and_format_user_input = _converter(user_input, *convertions_and_reasons_for_fail) _condition_checker(correct_type_and_format_user_input, *conditions_and_reasons_for_fail) break except WrongUserInput as e: print("Woho, not so fast! Your input doesn't seem to be valid. \n" "Maybe the problem has something to with this: \n{0}".format(e.reason)) return correct_type_and_format_user_input # YOU SHALL NOT PASS! def _condition_checker(user_input, *test_condition_and_if_it_didnt_work_why_tuples): """Raise a WrongUserInput error if user_input doesn't pass one of the tests with its appropiate reason. @args: str: user_input = the input the user gave *(f: a -> bool, str): test_condition_and_if_it_didnt_work_why_tuples = arbitrary amount of tuples containing a tester function and an explaiation of why it might fail @return: None @raise: WrongUserInput """ for condition, reason in test_condition_and_if_it_didnt_work_why_tuples: if not condition(user_input): raise WrongUserInput(reason) # Wololo. def _converter(user_input, *try_converting_and_if_it_did_not_work_why_tuples): """Tries to convert user_input according as instructed be the functions @args: str: user_input = the input the user gave *(f: a -> bool, str): test_condition_and_if_it_didnt_work_why_tuples = arbitrary amount of tuples containing a tester function and an explaiation of why it might fail @return: z, if the last function on try_converting_and_if_it_did_not_work_why_tuples was of type f: w -> z. @raise: WrongUserInput """ for try_function, reason in try_converting_and_if_it_did_not_work_why_tuples: try: user_input = try_function(user_input) except: raise WrongUserInput(reason) return user_input def choose_card(list_of_cards): convertions_and_reasons_for_fail = [_CONVERT_TO_INT] conditions_and_reasons_for_fail = [_BETWEEN(1, len(list_of_cards))] user_input = _safe_input("Choose the card you want to play from the available cards.", convertions_and_reasons_for_fail, conditions_and_reasons_for_fail) return user_input - 1 def want_to_add_ai_player(): convertions_and_reasons_for_fail = [] conditions_and_reasons_for_fail = [_YES_OR_NO] res = _safe_input("Do you want to add a new AI player? [Y/n]", convertions_and_reasons_for_fail, conditions_and_reasons_for_fail) return res.lower() == 'y' def choose_color(): convertions_and_reasons_for_fail = [_STRIP_STRING] conditions_and_reasons_for_fail = [_IS_COLOR] return _safe_input("Choose a color. Valid colors are RED, YELLOW, GREEN, BLUE", convertions_and_reasons_for_fail, conditions_and_reasons_for_fail) ``` #### File: joaquinlpereyra/uno/utils.py ```python class Colors: RED = 'red' GREEN = 'green' BLUE = 'blue' YELLOW = 'yellow' def format_strings(*strings): """Take an arbitrary number of strings and format them nicely. Returns the nicely formatted string. """ accum_string = "" for str in strings: accum_string = "{0} {1}\n".format(accum_string, str) return accum_string def format_input_string(*strings): """Takes an arbitrary number of strings and format them nicely with a '>>>' added on a new line to show the user the program is waiting for its input. Return the nicely formatted string. """ nice_string = format_strings(*strings) final_string = "{0}\n>>> ".format(nice_string) if nice_string else '>>> ' return final_string def pretty_print(*strings): """Print an arbtrary number of strings. Return None. """ print(format_strings(*strings)) def pretty_print_as_supermarket_list(title, *strings): """Print a title (for no title, give a falsey value on first param) and an arbitrary number of strings like it was a nice supermarket list. """ if title and strings: print('[{0}]'.format(title)) for index, string in enumerate(strings, start=1): print('{0}.\t{1}'.format(index, string)) def pretty_print_as_supermarket_list_a_dictionary(titles_strings_dictionary): if not titles_strings_dictionary: print("No results for this query") for title, strings in titles_strings_dictionary.items(): title = title if title else 'No tag' pretty_print_as_supermarket_list(title, *strings) ```
{ "source": "joaquinOnSoft/gsites2md", "score": 2 }
#### File: src/gsites2md/GoogleDriveWrapper.py ```python import io import logging import os.path import re import shutil # socket.timeout with will cause api client to become unusable # https://github.com/googleapis/google-api-python-client/issues/563#issuecomment-738363829 import socket socket.setdefaulttimeout(4000) from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request from google.oauth2.credentials import Credentials # If modifying these scopes, delete the file token.json. from googleapiclient.errors import HttpError from googleapiclient.http import MediaIoBaseDownload # Authorizing requests with OAuth 2.0 (in Google Drive API v3) # https://developers.google.com/drive/api/v3/about-auth SCOPES = ['https://www.googleapis.com/auth/drive.readonly'] class GoogleDriveWrapper: GOOGLE_DRIVE_URL_START = "https://drive.google.com" GOOGLE_DRIVE_FILE_URL_START = "https://drive.google.com/file" GOOGLE_DRIVE_OPEN_CONTENT_URL_START = "https://drive.google.com/open" INDEX_ID = 0 INDEX_NAME = 1 INDEX_MIME_TYPE = 2 METADATA_FIELD_ID = "id" METADATA_FIELD_NAME = "name" METADATA_FIELD_MIMETYPE = "mimeType" METADATA_FIELD_PARENTS = "parents" MIME_TYPE_FOLDER = "application/vnd.google-apps.folder" CONTENT_TYPE_FILE = "file" CONTENT_TYPE_FOLDER = "folder" HTTP_ERROR_404 = 404 MAX_NUMBER_RETRIES = 5 def __init__(self): """ Shows basic usage of the Drive v3 API. Prints the names and ids of the first 10 files the user has access to. """ creds = None # The file token.json stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists('token.json'): creds = Credentials.from_authorized_user_file('token.json', SCOPES) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: dir_path = os.path.dirname(os.path.realpath(__file__)) credentials_json = os.path.join(dir_path, 'credentials.json') flow = InstalledAppFlow.from_client_secrets_file(credentials_json, SCOPES) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open('token.json', 'w') as token: token.write(creds.to_json()) self.service = build('drive', 'v3', credentials=creds) def get_content_id_from_url(self, content_url: str) -> str: """ Get content (file/folder) identifier from a Google Drive URL :param content_url: Google Drive URL :return: Content (file/folder) identifier in Google Drive """ file_id = None if self.__is_url_type(GoogleDriveWrapper.GOOGLE_DRIVE_FILE_URL_START, content_url): result = re.search(r'(\/file\/d\/)((.)+)(\/)', content_url) if result and len(result.regs) >= 2: file_id = content_url[result.regs[2][0]: result.regs[2][1]] elif self.__is_url_type(GoogleDriveWrapper.GOOGLE_DRIVE_OPEN_CONTENT_URL_START, content_url): result = re.search(r'[?&]id=([^&]+).*$', content_url) if result and len(result.regs) >= 2: file_id = content_url[result.regs[1][0]: result.regs[1][1]] return file_id def __get_content_metadata(self, content_id) -> str: """ Recover the original file/folder metatata (id, name, parents, mimeType) from a Google Drive Identifier :param content_id: Google Drive identifier :return: File/folder metadata map containing 'id', 'name', 'parents' and 'mimeType' or 'None' if not found """ results = None try: results = self.service.files().get(fileId=content_id, fields="id, name, parents, mimeType").execute() except HttpError as e: logging.debug(f"{e.resp.status} - {e.resp.reason} - Recovering content metadata from URL: {e.uri}") except ConnectionResetError as e: logging.debug(f"{e.resp.status} - {e.resp.reason} - Recovering content metadata from URL: {e.uri}") return results def get_content_metadata_by_name(self, content_id: str, field_name: str): """ Recover the original file/folder metadata (id, name, parents, mimeType) from a Google Drive Identifier :param content_id: Google Drive identifier :param field_name: id, name, parents or mimeType :return: File/folder name or None if not found """ field_value = None results = self.__get_content_metadata(content_id) if results and results.get(field_name): field_value = results.get(field_name) return field_value def get_content_name(self, content_id) -> str: """ Recover the original file/folder name from a Google Drive Identifier :param content_id: Google Drive identifier :return: File/folder name or None if not found """ return self.get_content_metadata_by_name(content_id, GoogleDriveWrapper.METADATA_FIELD_NAME) def get_content_type_from_url(self, url: str) -> str: """ Check if a given URL correspond with Google Drive URL linking a file or a folder :param url: string containing an URL :return: 'folder' if is a Google Drive URL that links a folder, 'file' if links a file, or 'None' in in other case """ content_type = None if GoogleDriveWrapper.__is_url_type(self.GOOGLE_DRIVE_FILE_URL_START, url): content_type = GoogleDriveWrapper.CONTENT_TYPE_FILE elif GoogleDriveWrapper.__is_url_type(self.GOOGLE_DRIVE_OPEN_CONTENT_URL_START, url): content_id = self.get_content_id_from_url(url) if content_id: mimetype = self.get_content_metadata_by_name(content_id, GoogleDriveWrapper.METADATA_FIELD_MIMETYPE) if mimetype == GoogleDriveWrapper.MIME_TYPE_FOLDER: content_type = GoogleDriveWrapper.CONTENT_TYPE_FOLDER else: content_type = GoogleDriveWrapper.CONTENT_TYPE_FILE return content_type def get_content_path(self, content_id: str) -> str: path = None results = self.__get_content_metadata(content_id) if results: parents = results.get(GoogleDriveWrapper.METADATA_FIELD_PARENTS) if parents and len(parents) > 0: path = "" while True: results = self.__get_content_metadata(parents[0]) parents = results.get(GoogleDriveWrapper.METADATA_FIELD_PARENTS) if parents is None: break path = os.path.join(results.get(GoogleDriveWrapper.METADATA_FIELD_NAME), path) return path def download_content_from_url(self, url: str, path: str) -> str: download_url = None if self.is_google_drive_url(url): content_id = self.get_content_id_from_url(url) if content_id: if self.is_file_url(url): content_name = self.get_content_name(content_id) download_url = self.download_file_from_id(content_id, path, content_name) elif self.is_folder_url(url): download_url = self.download_folder_from_id(content_id, path) else: logging.warning(f"File name not found for URL: {url}") return download_url def download_file_from_url(self, file_url: str, path: str) -> str: """ Download a shared file from Google Drive and download a copy to the local path defined SEE: https://developers.google.com/drive/api/v3/manage-downloads :param file_url: A google Drive URL to a shared file that looks like this for files https://drive.google.com/file/d/1moXo98Pp6X1hpSUbeql9TMlRO8GIyDBY/view?usp=sharing and like this for folders https://drive.google.com/open?id=0B-t5SY0w2S8icVFyLURtUVNQQVU&authuser=0 :param path: Local path to store the downloaded file :return: Local path of the file downloaded """ downloaded_file_full_path = None file_id = self.get_content_id_from_url(file_url) if file_id: file_name = self.get_content_name(file_id) if file_name: downloaded_file_full_path = self.download_file_from_id(file_id, path, file_name) return downloaded_file_full_path def __replicate_google_drive_folder_structure(self, content_id, path): """ Replicate Google Drive folder structure under the local path :param content_id: Google Drive content identifie (file or folder) :param path: local base path :return: Local path that replicates the Google Drive folder structure under the local base path """ google_drive_path = self.get_content_path(content_id) if google_drive_path is not None: path = os.path.join(path, google_drive_path) # Create folder if not exists if not os.path.exists(path): os.makedirs(path) if not self.is_file(content_id): folder_name = self.get_content_name(content_id) path = os.path.join(path, folder_name) if not os.path.exists(path): os.makedirs(path) return path def download_file_from_id(self, file_id: str, path: str, file_name: str, replicate_google_drive_folder_structure: bool = True) -> str: """ Download a shared file from Google Drive and download a copy to the local path defined :param file_id: file identifier :param path: local path where the file will be downloaded :param file_name: File name to be used to save the file local environment :param replicate_google_drive_folder_structure: Flag to indicate if Google Drive folder structure must be replicated under the local path or not.1 :return: Local path of the downloaded file, None if the file doesn't exist (usually a 404 happens when you try to download the file) """ error_on_download = False number_retries = 0 if replicate_google_drive_folder_structure: path = self.__replicate_google_drive_folder_structure(file_id, path) request = self.service.files().get_media(fileId=file_id, fields="files(id, name)") fh = io.BytesIO() downloader = MediaIoBaseDownload(fh, request) while number_retries < GoogleDriveWrapper.MAX_NUMBER_RETRIES: try: done = False while done is False: status, done = downloader.next_chunk() logging.debug("Download %s: %d%%." % (file_name, int(status.progress() * 100))) # File successfully downloaded. Exit loop break except HttpError as e: logging.error(f"HTTP Error downloading file: {e.uri} - {e.resp.status} - {e.resp.reason}") error_on_download = True if e.status_code == GoogleDriveWrapper.HTTP_ERROR_404: # Retry not needed break except ConnectionResetError as e: logging.error(f"Connection Reset Error downloading file: {e.uri} - {e.resp.status} - {e.resp.reason}") error_on_download = True except Exception as e: logging.error(f"Error downloading file: {str(e)}") error_on_download = True number_retries += 1 logging.info(f"Retrying download: {file_id} - {file_name}") downloaded_file_path = None if not error_on_download: # The file has been downloaded into RAM, now save it in a file # https://stackoverflow.com/questions/60111361/how-to-download-a-file-from-google-drive-using-python-and-the-drive-api-v3 downloaded_file_path = os.path.join(path, file_name) fh.seek(0) with open(downloaded_file_path, 'wb') as f: shutil.copyfileobj(fh, f) return downloaded_file_path def download_folder_from_id(self, folder_id: str, path: str) -> str: download_path = self.__replicate_google_drive_folder_structure(folder_id, path) # Call the Drive v3 API results = self.service.files().list( q=f"'{folder_id}' in parents", pageSize=10, fields="nextPageToken, files(id, name, mimeType)").execute() items = results.get('files', []) if not items: logging.info('No files found.') else: logging.debug('Files:') for item in items: logging.debug(u'{0} ({1}) - {2}'.format(item['name'], item['id'], item['mimeType'])) if item['mimeType'] == self.MIME_TYPE_FOLDER: # Base path DOESN'T CHANGE for FOLDERS (the remote path is replicated under the base path) self.download_folder_from_id(item['id'], path) else: # Base path CHANGES for FILES self.download_file_from_id(item['id'], download_path, item['name'], False) return download_path @staticmethod def __is_url_type(url_type_pattern: str, url: str): is_url_type = False if url is not None: is_url_type = url.startswith(url_type_pattern) return is_url_type def is_google_drive_url(self, url: str) -> bool: """ Check if a given URL correspond with Google Drive URL :param url: string containing an URL :return: True if is a Google Drive URL, false in other case """ return GoogleDriveWrapper.__is_url_type(self.GOOGLE_DRIVE_URL_START, url) def is_file_url(self, url: str) -> bool: """ Check if a given URL correspond with Google Drive URL linking a file :param url: string containing an URL :return: True if is a Google Drive URL that links a file, false in other case """ return self.get_content_type_from_url(url) == GoogleDriveWrapper.CONTENT_TYPE_FILE def is_folder_url(self, url: str) -> bool: """ Check if a given URL correspond with Google Drive URL linking a folder :param url: string containing an URL :return: True if is a Google Drive URL that links a folder, false in other case """ return self.get_content_type_from_url(url) == GoogleDriveWrapper.CONTENT_TYPE_FOLDER def is_file(self, content_id): mimetype = self.get_content_metadata_by_name(content_id, GoogleDriveWrapper.METADATA_FIELD_MIMETYPE) return mimetype != GoogleDriveWrapper.MIME_TYPE_FOLDER def replicate_content_path_from_url(self, url: str, path: str) -> str: download_url = None if self.is_google_drive_url(url): content_id = self.get_content_id_from_url(url) if content_id: if self.is_file_url(url): content_name = self.get_content_name(content_id) download_url = self.replicate_file_path_from_id(content_id, path, content_name) elif self.is_folder_url(url): download_url = self.download_folder_from_id(content_id, path) else: logging.warning(f"File name not found for URL: {url}") return download_url def replicate_file_path_from_id(self, file_id: str, path: str, file_name: str, replicate_google_drive_folder_structure: bool = True) -> str: """ Replicate the Google Drive folder structure (path) in the local drive for a shared file from Google Drive :param file_id: file identifier :param path: local path where the file will be downloaded :param file_name: File name to be used to save the file local environment :param replicate_google_drive_folder_structure: Flag to indicate if Google Drive folder structure must be replicated under the local path or not.1 :return: Local path of the downloaded file, None if the file doesn't exist (usually a 404 happens when you try to download the file) """ downloaded_file_path = None if replicate_google_drive_folder_structure: path = self.__replicate_google_drive_folder_structure(file_id, path) request = self.service.files().get_media(fileId=file_id, fields="files(id, name)") if file_name is not None: downloaded_file_path = os.path.join(path, file_name) return downloaded_file_path def replicate_folder_path_from_id(self, folder_id: str, path: str) -> str: download_path = self.__replicate_google_drive_folder_structure(folder_id, path) # Call the Drive v3 API results = self.service.files().list( q=f"'{folder_id}' in parents", pageSize=10, fields="nextPageToken, files(id, name, mimeType)").execute() items = results.get('files', []) if not items: logging.info('No files found.') else: logging.debug('Files:') for item in items: logging.debug(u'{0} ({1}) - {2}'.format(item['name'], item['id'], item['mimeType'])) if item['mimeType'] == self.MIME_TYPE_FOLDER: # Base path DOESN'T CHANGE for FOLDERS (the remote path is replicated under the base path) self.replicate_folder_path_from_id(item['id'], path) else: # Base path CHANGES for FILES self.replicate_file_path_from_id(item['id'], download_path, item['name'], False) return download_path ``` #### File: src/gsites2md/HTML2md.py ```python import copy import logging import os import shutil from gsites2md.HTML2mdConfig import HTML2mdConfig from gsites2md.URLUtils import URLUtils from gsites2md.HTMLParser2md import HTMLParser2md class HTML2md: @staticmethod def process(config: HTML2mdConfig): """ Convert and HTML file or folder (with all their nested files) in a Markdown file. :param config: Object that contains the following configuration properties: "source": source file or folder "destination": destination file or folder "replace_google_drive_links": (flag) Replace Google Drive links to local links) "google_drive_content_download": (flag) Download Google Drive content to local drive. "downloads": Path to download Google drive content. Default value, "." "timeout": Timeout, in seconds, to use in link validation connections. Default value "-1" (unlimited) """ if os.path.isfile(config.source): HTML2md.__process_file(config) else: HTML2md.__process_folder(config) @staticmethod def __process_folder(config): for dir_path, dirs, files in os.walk(config.source): for d in dirs: d_in_name = os.path.join(config.source, os.path.join(dir_path, d)) d_out_name = d_in_name.replace(config.source, config.destination) if not os.path.exists(d_out_name): logging.debug("Creating folder: " + d_out_name) os.mkdir(d_out_name) for filename in files: f_in_name = os.path.join(dir_path, filename) f_out_name = f_in_name.replace(config.source, config.destination) if URLUtils.is_friendly_url(f_in_name): f_out_name = f_out_name + ".md" logging.debug("HTML2MD: " + f_in_name) config4files = HTML2md.update_cloned_config(f_in_name, f_out_name, config) HTML2md.__process_file(config4files) elif URLUtils.is_html(f_in_name): f_out_name = f_out_name.replace(".html", ".md").replace(".htm", ".md") logging.debug("HTML2MD: " + f_in_name) config4files = HTML2md.update_cloned_config(f_in_name, f_out_name, config) HTML2md.__process_file(config4files) else: logging.debug("Copying: " + f_in_name) shutil.copy2(f_in_name, f_out_name) @staticmethod def update_cloned_config(f_in_name, f_out_name, config): config4files = copy.copy(config) config4files.source = f_in_name config4files.destination = f_out_name return config4files @staticmethod def __process_file(config): """ Convert and HTML file in a Markdown file. :param config: object that contains the following properties: "source": source file or folder "destination": destination file or folder "replace_google_drive_links": (flag) Replace Google Drive links to local links) "google_drive_content_download": (flag) Download Google Drive content to local drive. "downloads": Path to download Google drive content. Default value, "." "timeout": Timeout, in seconds, to use in link validation connections. Default value "-1" (unlimited) """ f = open(config.source, "r") html_txt = f.read() f.close() # Parse html file parser = HTMLParser2md(config) parser.feed(html_txt) md = parser.md md = HTML2md.__remove_useless_md(md) if config.destination is None: config.destination = config.source.replace('.html', '.md').replace('.htm', '.md') f = open(config.destination, "w") f.write(md) f.close() @staticmethod def __remove_useless_md(md: str) -> str: if md is not None: md = md.replace("\n| | \n", "") return md ``` #### File: gsites2md/test/TestGoogleDriveWrapper.py ```python import os import shutil import unittest from ..GoogleDriveWrapper import GoogleDriveWrapper class TestGoogleDriveWrapper(unittest.TestCase): URL = "https://drive.google.com/file/d/1moXo98Pp6X1hpSUbeql9TMlRO8GIyDBY/view?usp=sharing" FILE_ID = '1moXo98Pp6X1hpSUbeql9TMlRO8GIyDBY' FILE_NAME = 'openimaj-tutorial-pdf.pdf' URL_WITH_SPECIAL_CHARACTERS = "https://drive.google.com/file/d/1PIoLKylUslWs1X9ZhSI-jx7i3POmrDii/view?usp=sharing" FILE_ID_WITH_SPECIAL_CHARACTERS = '1PIoLKylUslWs1X9ZhSI-jx7i3POmrDii' GOOGLE_DRIVE_FILE_UNDER_FOLDER_HIERARCHY_URL = \ "https://drive.google.com/file/d/1Vgfp5pWzI1YBBF819HZq5LVyO68z9yeq/view" FILE_UNDER_FOLDER_HIERARCHY_ID = "1Vgfp5pWzI1YBBF819HZq5LVyO68z9yeq" GOOGLE_DRIVE_FILE_URL = "https://drive.google.com/file/d/1moXo98Pp6X1hpSUbeql9TMlRO8GIyDBY/view?usp=sharing" FILE_ID_NOT_EXISTS = "0B-t5SY0w2A9aa9AaAAa9Aa99Aa9" GOOGLE_DRIVE_FOLDER_URL = "https://drive.google.com/open?id=0B-t5SY0w2S8iRXNJU1RPTmZpaEE&authuser=0" FOLDER_ID = "0B-t5SY0w2S8iRXNJU1RPTmZpaEE" FOLDER_NAME = "media" GOOGLE_DRIVE_FOLDER_URL_WITHOUT_EXTRA_PARAMS = "https://drive.google.com/open?id=0B-t5SY0w2S8iXzI1VHE1TUxSRUk" FOLDER_WITHOUT_EXTRA_PARAMS_ID = "0B-t5SY0w2S8iXzI1VHE1TUxSRUk" GOOGLE_DRIVE_FOLDER_UNED_URL = \ "https://drive.google.com/drive/folders/0B" \ <KEY>" FOLDER_UNED_ID = "0B-t5SY0w2S8ifktpVUNVNWJ3NzVoVkZlSXBfWW1pTF9MR2ljVWxYNWNrLVBOZGo3eVFMVms" FOLDER_UNED_NAME = "uned" GOOGLE_DRIVE_FOLDER_WITH_SUBFOLDERS_URL = "https://drive.google.com/drive/folders/0B-t5SY0w2S8iXzI1VHE1TUxSRUk" FOLDER_WITH_SUBFOLDERS_ID = "0B-t5SY0w2S8iXzI1VHE1TUxSRUk" FOLDER_WITH_SUBFOLDERS_NAME = "GradoMedioxComunidades" def setUp(self) -> None: super().setUp() self.wrapper = GoogleDriveWrapper() @staticmethod def remove_folder(path: str): if os.path.isdir(path): shutil.rmtree(path) def test_get_content_id_from_url(self): file_id = self.wrapper.get_content_id_from_url(self.URL) self.assertIsNotNone(file_id) self.assertEqual(self.FILE_ID, file_id) folder_id = self.wrapper.get_content_id_from_url(self.GOOGLE_DRIVE_FOLDER_URL) self.assertIsNotNone(folder_id) self.assertEqual(self.FOLDER_ID, folder_id) def test_get_content_id_from_url_without_extra_params(self): folder_id = self.wrapper.get_content_id_from_url(self.GOOGLE_DRIVE_FOLDER_URL_WITHOUT_EXTRA_PARAMS) self.assertIsNotNone(folder_id) self.assertEqual(self.FOLDER_WITHOUT_EXTRA_PARAMS_ID, folder_id) def test_get_content_id_with_special_characters_from_url(self): file_id = self.wrapper.get_content_id_from_url(self.URL_WITH_SPECIAL_CHARACTERS) self.assertIsNotNone(file_id) self.assertEqual(self.FILE_ID_WITH_SPECIAL_CHARACTERS, file_id) def test_get_content_name(self): file_name = self.wrapper.get_content_name(self.FILE_ID) self.assertIsNotNone(file_name) self.assertEqual(self.FILE_NAME, file_name) # def test_get_content_metadata_by_name(self): # file_name = self.wrapper.get_content_metadata_by_name(self.FILE_ID, GoogleDriveWrapper.METADATA_FIELD_NAME) # self.assertIsNotNone(file_name) # self.assertEqual(self.FILE_NAME, file_name) # # mimetype = self.wrapper.get_content_metadata_by_name(self.FILE_ID, GoogleDriveWrapper.METADATA_FIELD_MIMETYPE) # self.assertIsNotNone(mimetype) # self.assertEqual('application/pdf', mimetype) # # parents = self.wrapper.get_content_metadata_by_name(self.FILE_UNDER_FOLDER_HIERARCHY_ID, # GoogleDriveWrapper.METADATA_FIELD_PARENTS) # self.assertIsNotNone(parents) # self.assertEqual(['1qK_9zEcFePjcGDkX2VayPkQ2XNBTLBoD'], parents) # def test_get_content_path(self): # path = self.wrapper.get_content_path(self.FILE_UNDER_FOLDER_HIERARCHY_ID) # self.assertEqual("OposicionesFQ/Canarias/", path) def test_get_folder_name(self): folder_name = self.wrapper.get_content_name(self.FOLDER_ID) self.assertIsNotNone(folder_name) self.assertEqual(self.FOLDER_NAME, folder_name) def test_is_file_url(self): self.assertTrue(self.wrapper.is_file_url(TestGoogleDriveWrapper.GOOGLE_DRIVE_FILE_URL)) self.assertFalse(self.wrapper.is_file_url("https://www.fiquipedia.es")) self.assertFalse(self.wrapper.is_file_url(TestGoogleDriveWrapper.GOOGLE_DRIVE_FOLDER_URL)) self.assertFalse(self.wrapper.is_file_url(None)) def test_is_folder_url(self): self.assertTrue(self.wrapper.is_folder_url(TestGoogleDriveWrapper.GOOGLE_DRIVE_FOLDER_URL)) self.assertFalse(self.wrapper.is_folder_url("https://www.fiquipedia.es")) self.assertFalse(self.wrapper.is_folder_url(TestGoogleDriveWrapper.GOOGLE_DRIVE_FILE_URL)) self.assertFalse(self.wrapper.is_folder_url(None)) def test_is_google_drive_url(self): self.assertTrue(self.wrapper.is_google_drive_url(TestGoogleDriveWrapper.GOOGLE_DRIVE_FOLDER_URL)) self.assertTrue(self.wrapper.is_google_drive_url(TestGoogleDriveWrapper.GOOGLE_DRIVE_FILE_URL)) self.assertFalse(self.wrapper.is_google_drive_url("https://www.fiquipedia.es")) self.assertFalse(self.wrapper.is_google_drive_url(None)) def __check_file_download(self, file_path: str): self.assertIsNotNone(file_path) self.assertTrue(os.path.isfile(file_path)) folder = os.path.dirname(file_path) if folder != "." and folder != "./": shutil.rmtree(folder) else: os.remove(file_path) def test_download_file_from_id_not_exists(self): file_path = self.wrapper.download_file_from_id(self.FILE_ID_NOT_EXISTS, "./", "file_not_found.pdf") self.assertIsNone(file_path) def test_download_file_from_id(self): file_path = self.wrapper.download_file_from_id(self.FILE_ID, "./", self.FILE_NAME) self.__check_file_download(file_path) def test_download_file_from_url(self): file_path = self.wrapper.download_file_from_url(self.URL, "./") self.__check_file_download(file_path) def test_download_content_from_url(self): file_path = self.wrapper.download_content_from_url(self.URL, "./") self.__check_file_download(file_path) # def test_download_folder_from_id(self): # path = self.wrapper.download_folder_from_id(TestGoogleDriveWrapper.FOLDER_UNED_ID, ".") # # self.assertEqual("./PAUxComunidades/electrotecnia/uned", path) # self.assertTrue(os.path.exists("./PAUxComunidades/electrotecnia/uned")) # self.assertTrue(os.path.isfile("./PAUxComunidades/electrotecnia/uned/2008-06-uned-electrotecnia-exam.pdf")) # self.assertTrue(os.path.isfile("./PAUxComunidades/electrotecnia/uned/2012-mo-uned-electrotecnia-exam.pdf")) # self.assertTrue(os.path.isfile("./PAUxComunidades/electrotecnia/uned/2014-06-09-uned-electrotecnia-exam.pdf")) # self.assertTrue(os.path.isfile("./PAUxComunidades/electrotecnia/uned/2014-mo-uned-electrotecnia-guia.pdf")) # self.assertTrue(os.path.isfile("./PAUxComunidades/electrotecnia/uned/2015-06-uned-electrotecnia-exam.pdf")) # # TestGoogleDriveWrapper.remove_folder("./PAUxComunidades") # def test_download_folder_with_subfolders_from_id(self): # path = self.wrapper.download_folder_from_id(TestGoogleDriveWrapper.FOLDER_WITH_SUBFOLDERS_ID, ".") # # self.assertIsNotNone(path) # self.assertEqual("./GradoMedioxComunidades", path) # self.assertTrue(os.path.exists("./GradoMedioxComunidades")) # # self.assertTrue(os.path.exists("./GradoMedioxComunidades/CastillaLaMancha")) # self.assertTrue( # os.path.isfile("./GradoMedioxComunidades/CastillaLaMancha/2010-CastillaLaMancha-modelo-GM-CT.pdf")) # self.assertTrue( # os.path.isfile("./GradoMedioxComunidades/CastillaLaMancha/2012-CastillaLaMancha-06-GM-CT.pdf")) # self.assertTrue( # os.path.isfile("./GradoMedioxComunidades/CastillaLaMancha/2012-CastillaLaMancha-09-GM-CT.pdf")) # self.assertTrue( # os.path.isfile("./GradoMedioxComunidades/CastillaLaMancha/2013-CastillaLaMancha-06-GM-CT.pdf")) # self.assertTrue( # os.path.isfile("./GradoMedioxComunidades/CastillaLaMancha/2013-CastillaLaMancha-09-GM-CT.pdf")) # # self.assertTrue(os.path.exists("./GradoMedioxComunidades/Madrid")) # self.assertTrue( # os.path.isfile("./GradoMedioxComunidades/Madrid/2004-madrid-GM-CT-exam.doc")) # self.assertTrue( # os.path.isfile("./GradoMedioxComunidades/Madrid/2004-madrid-GM-CT-soluc.doc")) # self.assertTrue( # os.path.isfile("./GradoMedioxComunidades/Madrid/2005-madrid-GM-CT-exam.doc")) # self.assertTrue( # os.path.isfile("./GradoMedioxComunidades/Madrid/2005-madrid-GM-CT-soluc.doc")) # # TestGoogleDriveWrapper.remove_folder(TestGoogleDriveWrapper.FOLDER_WITH_SUBFOLDERS_NAME) def test_replicate_file_path_from_id(self): file_path = self.wrapper.replicate_file_path_from_id(self.FILE_ID, "./", self.FILE_NAME) self.assertIsNotNone(file_path) self.assertEqual("./TV detect ads/openimaj-tutorial-pdf.pdf", file_path) # Cleanup. Remove folder structure created during the test TestGoogleDriveWrapper.remove_folder("./TV detect ads") # def test_replicate_folder__from_id(self): # path = self.wrapper.replicate_folder_path_from_id(TestGoogleDriveWrapper.FOLDER_UNED_ID, ".") # # self.assertEqual("./PAUxComunidades/electrotecnia/uned", path) # self.assertTrue(os.path.exists("./PAUxComunidades/electrotecnia/uned")) # # TestGoogleDriveWrapper.remove_folder("./PAUxComunidades") # def test_replicate_folder_with_subfolders_path_from_id(self): # path = self.wrapper.replicate_folder_path_from_id(TestGoogleDriveWrapper.FOLDER_WITH_SUBFOLDERS_ID, ".") # # self.assertIsNotNone(path) # self.assertEqual("./GradoMedioxComunidades", path) # self.assertTrue(os.path.exists("./GradoMedioxComunidades")) # self.assertTrue(os.path.exists("./GradoMedioxComunidades/CastillaLaMancha")) # self.assertTrue(os.path.exists("./GradoMedioxComunidades/Madrid")) # # TestGoogleDriveWrapper.remove_folder("./GradoMedioxComunidades") ``` #### File: gsites2md/test/TestHTMLParser2md.py ```python from unittest import TestCase from ..HTML2md import HTMLParser2md from ..HTML2mdConfig import HTML2mdConfig class TestHTMLParser2md(TestCase): def setUp(self) -> None: super().setUp() config = HTML2mdConfig() self.parser = HTMLParser2md(config) def test_li(self): self.parser.nested_list.append("ul") self.assertEqual("\n * ", self.parser.li()) self.parser.nested_list.append("ol") self.assertEqual("\n 1. ", self.parser.li()) def test_img(self): attrs = [("src", "img/fiquipedia.png"), ("alt", "Fiquipedia logo")] self.assertEqual("![Fiquipedia logo](img/fiquipedia.png \"Fiquipedia logo\")\n", self.parser.img(attrs)) # The image is inside a link self.parser.href = "htt://www.fiquipedia.es" self.assertEqual("", self.parser.img(attrs)) def test_img_with_title(self): attrs = [("src", "img/fiquipedia.png"), ("alt", "Fiquipedia logo"), ("title", "Fiquipedia")] self.assertEqual("![Fiquipedia logo](img/fiquipedia.png \"Fiquipedia\")\n", self.parser.img(attrs)) def test_md(self): md = "---\n\n| | \n### Recursos\n | | \n" self.parser.md = md md_cleaned = "---\n\n### Recursos\n\n" self.assertEqual(md_cleaned, self.parser.md) ```
{ "source": "joaquinOnSoft/oxint", "score": 3 }
#### File: oxint/scraping/URLReader.py ```python import urllib.request class URLReader: def __init__(self, url): self.url = url # print(url) def read(self): resource = urllib.request.urlopen(self.url) response = resource .read() html = response.decode(resource.headers.get_content_charset()) resource .close() return html ``` #### File: oxint/utils/NameUtils.py ```python class NameUtils: @staticmethod def get_first_name_from_full_name(full_name: str) -> str: first_name = None if full_name is not None: tokens = full_name.split(" ") num_tokens = len(tokens) if num_tokens == 3: first_name = tokens[0] elif num_tokens >= 4: first_name = tokens[0] + " " + tokens[1] return first_name @staticmethod def get_last_name_from_full_name(full_name: str) -> str: last_name = None if full_name is not None: tokens = full_name.split(" ") num_tokens = len(tokens) if num_tokens == 3: last_name = tokens[1] + " " + tokens[2] elif num_tokens >= 4: last_name = "" for count in range(2, num_tokens): last_name += tokens[count] if count < (num_tokens -1): last_name += " " return last_name @staticmethod def get_party_name_from_title(title: str) -> str: name = None if title is not None: index_parenthesis = title.find("(") if index_parenthesis > 0: name = title[0: index_parenthesis].strip() return name @staticmethod def get_party_abbrev_from_title(title: str) -> str: name = None if title is not None: index_parenthesis = title.find("(") + 1 if index_parenthesis > 0: name = title[index_parenthesis:].replace(")", "") return name ``` #### File: utils/test/TestNameUtils.py ```python import unittest from oxint.utils.NameUtils import NameUtils class TestNameUtils(unittest.TestCase): def test_get_first_name_from_full_name(self): name = NameUtils.get_first_name_from_full_name("<NAME>") self.assertEqual("<NAME>", name) name = NameUtils.get_first_name_from_full_name("<NAME>") self.assertEqual("Enrique", name) name = NameUtils.get_first_name_from_full_name("<NAME>") self.assertEqual("<NAME>", name) def test_get_last_name_from_full_name(self): name = NameUtils.get_last_name_from_full_name("<NAME>") self.assertEqual("<NAME>", name) name = NameUtils.get_last_name_from_full_name("<NAME>") self.assertEqual("<NAME>", name) name = NameUtils.get_last_name_from_full_name("<NAME>") self.assertEqual("<NAME>", name) def test_get_party_abbrev_from_title(self): party_abbrev = NameUtils.get_party_abbrev_from_title("TERCERA EDAD EN ACCIÓN (3e en acción)") self.assertEqual("3e en acción", party_abbrev) def test_get_party_name_from_title(self): party_name = NameUtils.get_party_name_from_title("TERCERA EDAD EN ACCIÓN (3e en acción)") self.assertEqual("TERCERA EDAD EN ACCIÓN", party_name) if __name__ == '__main__': unittest.main() ```
{ "source": "joaquinpco/Votaciones-Pinf-19", "score": 2 }
#### File: Votaciones-Pinf-19/UsuarioUca/forms.py ```python from django import forms from django.contrib.auth.forms import UserCreationForm, UserChangeForm, AuthenticationForm from django.forms import ModelForm from .models import UsuarioUca, uvalidonifworld, uvalidonifspain, validonifspain, validonifworld, Estudiante, PASS, \ Profesor from django.core.validators import RegexValidator istextvalidator = RegexValidator("^(?=.{3,15}$)[A-ZÁÉÍÓÚ][a-zñáéíóú]+(?: [A-ZÁÉÍÓÚ][a-zñáéíóú]+)?$", message='El Nombre no debe contener números', code='Nombre/Apellidos incorrectos') isemailvalidator = RegexValidator("^\w+([\.-]?\w+)*@<EMAIL>", message='El email debe pertenecer al dominio de la UCA', code='Email invalido') class CustomUserCreationForm(UserCreationForm): nif = forms.CharField(label='NIF', max_length=9, widget=forms.TextInput(attrs={"placeholder": "Ej:32085090"})) email = forms.EmailField(label='Email', max_length=64, help_text="El correo debe pertener al dominio de la UCA", required=True, validators=[isemailvalidator]) first_name = forms.CharField(label="Nombre", max_length=20, min_length=2, required=True, validators=[istextvalidator]) last_name = forms.CharField(label="Apellidos", max_length=64, min_length=2, required=True, validators=[istextvalidator]) class Meta: model = UsuarioUca fields = '__all__' def clean_nif(self): nif = self.cleaned_data['nif'] nif = "u" + nif if UsuarioUca.objects.filter(nif=nif).exists(): raise forms.ValidationError("Ya existe un usuario con este NIF") return nif class CustomUserChangeForm(UserChangeForm): email = forms.EmailField(label='Email', max_length=64, required=True) nif = forms.CharField(label="Nif", required=True, max_length=10) first_name = forms.CharField(label="Nombre", max_length=20, required=True, validators=[istextvalidator]) last_name = forms.CharField(label="Apellidos", max_length=64, required=True, validators=[istextvalidator]) class Meta: model = UsuarioUca fields = '__all__' class UserLoginForm(AuthenticationForm): def __init__(self, *args, **kwargs): super(UserLoginForm, self).__init__(*args, **kwargs) username = forms.CharField(widget=forms.TextInput( attrs={'class': 'form-control', 'id': 'username', 'autocomplete': 'off'})) password = forms.CharField(widget=forms.PasswordInput( attrs={ 'class': 'form-control', 'id': 'password', } )) class createUserForm(ModelForm): class Meta: model = UsuarioUca fields = ['nif', 'first_name', 'last_name', 'email', 'password', 'rol'] labels = {'first_name': ('Nombre'), 'last_name': ('Apellidos'), 'nif': ('NIF'), 'email': ('Correo electrónico'), 'password': ('<PASSWORD>'), 'rol': ('Rol'), } help_texts = {'first_name': ('Introduce un nombre valido.'), 'last_name': ('Introduce los apellidos válidos.'), 'nif': ('Introduce un nif válido'), 'email': ('Introduce un correo válido y del dominio de la UCA'), 'groups': ('Grupo al que pertenece el usuario'), } widgets = {'first_name': forms.TextInput(attrs={'class': 'form-control'}), 'last_name': forms.TextInput(attrs={'class': 'form-control'}), 'nif': forms.TextInput(attrs={'class': 'form-control'}), 'email': forms.EmailInput(attrs={'class': 'form-control'}), 'password': forms.PasswordInput(attrs={'class': 'form-control'}), } def clean_nif(self): nif = self.cleaned_data['nif'] nif = "u" + nif if UsuarioUca.objects.filter(nif=nif).exists(): raise forms.ValidationError("Ya existe un usuario con este NIF") return nif def save(self, commit=True): user = super(createUserForm, self).save() user.set_password(<PASSWORD>) user.save() return user class editUserForm(ModelForm): class Meta: model = UsuarioUca fields = ['nif', 'first_name', 'last_name', 'email', ] labels = {'first_name': ('Nombre'), 'last_name': ('Apellido'), 'nif': ('NIF'), 'email': ('Correo electrónico'), } widgets = {'first_name': forms.TextInput(attrs={'class': 'form-control'}), 'last_name': forms.TextInput(attrs={'class': 'form-control'}), 'nif': forms.TextInput(attrs={'class': 'form-control'}), 'email': forms.EmailInput(attrs={'class': 'form-control'}), } ``` #### File: Votaciones-Pinf-19/UsuarioUca/views.py ```python from datetime import datetime from django.contrib.auth.mixins import LoginRequiredMixin from django.db.models import Avg from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import redirect from django.urls import reverse, reverse_lazy from django.contrib.auth import authenticate, login, logout from django.views.generic import DetailView from django.views.generic.base import TemplateView from django.utils import timezone from django.views.generic.list import ListView from django.views.generic.edit import UpdateView, CreateView from import_export.formats import base_formats from UsuarioUca.admin import UsuarioUcaResource from UsuarioUca.forms import createUserForm, editUserForm from UsuarioUca.import_export_views import ImportView from UsuarioUca.models import UsuarioUca, Estudiante, Profesor, PASS from import_export import resources, fields from django.contrib import messages from VotacionesUca.models import Votacion, Eleccion, Censo def my_view(request): username = request.POST['username'] password = request.POST['password'] user = authenticate(request, username=username, password=password) if user is not None: login(request, user) # Redirect to a success page. ... else: # Return an 'invalid login' error message. ... class UsuarioUcaListView(LoginRequiredMixin, ListView): model = UsuarioUca paginate_by = 100 # if pagination is desired def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['now'] = timezone.now() return context class UsuarioUcaUpdate(LoginRequiredMixin, UpdateView): model = UsuarioUca form_class = editUserForm template_name_suffix = '_update_form' def get_success_url(self): return reverse('usuariouca_list', ) class UsuarioUcaCreate(LoginRequiredMixin, CreateView): model = UsuarioUca form_class = createUserForm def get_success_url(self): if self.object.rol == "Estudiante": return reverse('estudiante_create') if self.object.rol == "Profesor": return reverse('profesor_create') if self.object.rol == "PASS": return reverse('pass_create') class EstudianteCreate(LoginRequiredMixin, CreateView): model = Estudiante fields = '__all__' def get_success_url(self): return reverse('usuariouca_edit', kwargs={'pk': self.object.pk}) class ProfesorCreate(LoginRequiredMixin,CreateView): model = Profesor fields = '__all__' def get_success_url(self): return reverse('usuariouca_edit', kwargs={'pk': self.object.pk}) class PASSCreate(LoginRequiredMixin, CreateView): model = PASS fields = '__all__' def get_success_url(self): return reverse('usuariouca_edit', kwargs={'pk': self.object.pk}) class UsuarioUcaExportView(LoginRequiredMixin, ImportView, resources.ModelResource): class Meta: model = UsuarioUca def get(self, queryset, *args, **kwargs): queryset = UsuarioUca.objects.all() dataset = UsuarioUcaResource().export(queryset) response = HttpResponse(dataset.csv, content_type="csv") response['Content-Disposition'] = 'attachment; filename=UsuariosUCA' + datetime.now().__str__() + '.csv' return response class MyModelImportView(LoginRequiredMixin, ImportView): model = UsuarioUca template_name = 'usuariouca_upload.html' formats = (base_formats.CSV,) resource_class = UsuarioUcaResource def get_success_url(self): return reverse('usuariouca_list') def create_dataset(self, *args, **kwargs): """ Insert an extra 'source_user' field into the data. """ dataset = super().create_dataset(*args, **kwargs) length = len(dataset._data) dataset.append_col([self.request.user.id] * length, header="source_user") return dataset class VotacionView(LoginRequiredMixin, DetailView): model = Votacion def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) pregunta = Pregunta.objects.get(votacion=self.object.id) context['now'] = datetime.datetime.now() context['opciones'] = Opciones.objects.filter(pregunta=pregunta.pk) return context class HomeView(LoginRequiredMixin, ListView): template_name = "home.html" context_object_name = 'votacion_list' model = Votacion def get_context_data(self, **kwargs): censos_id = Censo.objects.filter(usuario=self.request.user).values_list('eleccion_id', flat=True) context = super(HomeView, self).get_context_data(**kwargs) context.update({ 'eleccion_list': Eleccion.objects.filter(id__in=censos_id), 'more_context': Eleccion.objects.filter(id__in=censos_id), }) return context def get_queryset(self): censos_id = Censo.objects.filter(usuario=self.request.user).values_list('votacion_id', flat=True) return Votacion.objects.filter(id__in=censos_id) class CrearVotacionView(LoginRequiredMixin, TemplateView): template_name = "CrearVotacion.html" class FAQView(LoginRequiredMixin, TemplateView): template_name = "faq2.0.html" class EstadisticasVotacionSimpleView(LoginRequiredMixin, TemplateView): template_name = "votacionSimpleResultados.html" class EstadisticasEleccionView(LoginRequiredMixin, TemplateView): template_name = "votacionEleccionesResultado.html" def logout_request(request): logout(request) return redirect('home') def erase_request(request, pk): UsuarioUca.objects.filter(id=pk).delete() return redirect('usuariouca_list') ```
{ "source": "joaquinquintas/shipwell_backend_ricardo", "score": 3 }
#### File: core/exceptions/conversion_unit_not_implemented.py ```python class ConversionUnitNotImplemented(Exception): ''' raises when tring can not convert a TemperatureUnit ''' def __init__(self, unit_name: str): super().__init__('Conversion unit %s not implemented' % unit_name) ``` #### File: core/primitives/average_temperature.py ```python from statistics import mean from typing import List from core.primitives import Temperature, TemperatureUnit from core.exceptions import ( NoneWeatherServiceDataRetrived, ConversionUnitNotImplemented ) class AverageTemperature: ''' Final message with the average temperature data ''' __service_data: List[Temperature] __conversion_unit: TemperatureUnit def __init__(self, service_data: List[Temperature], conversion_unit: TemperatureUnit) -> None: if not service_data: raise NoneWeatherServiceDataRetrived() self.__service_data = service_data self.__conversion_unit = conversion_unit def __converted_data(self): ''' no need that the original data retrived from services change, only convert to a common unit for achive the average ''' for temperature in self.__service_data: converted = False if self.__conversion_unit.is_celsius: yield temperature.to_celsius() converted = True if self.__conversion_unit.is_fahrenheit: yield temperature.to_fahrenheit() converted = True if not converted: raise ConversionUnitNotImplemented(self.__conversion_unit.unit_name) @property def average(self) -> Temperature: ''' final average temperature value :return: Temperature ''' average = mean([temperature.value for temperature in self.__converted_data()]) return Temperature( 'weather_mi', average, self.__conversion_unit ) @property def service_data(self) -> List[Temperature]: ''' service result data of Temperature's responded from the diferent weather service providers :return: List[Temperature] ''' return self.__service_data ``` #### File: infrastructure/exceptions/weather_service_not_implemented.py ```python class WeatherServiceNotImplemented(Exception): ''' exception type for the weather service not implemented ''' def __init__(self, service_implementation: str) -> None: super().__init__(f'Service: {service_implementation} NOT implemented') ``` #### File: infrastructure/serializers/average_temperature_serializer.py ```python from typing import Dict from core.primitives import AverageTemperature from .dict_serializer import DictSerializer from .temperature_serializer import TemperatureSerializer class AverageTemperatureSerializer(DictSerializer): __temperature_serializer: TemperatureSerializer def __init__(self): self.__temperature_serializer = TemperatureSerializer() def to_dict(self, obj: AverageTemperature) -> Dict: return { 'average': self.__temperature_serializer.to_dict(obj.average), 'service_data': [ self.__temperature_serializer.to_dict(temperature) for temperature in obj.service_data ] } ``` #### File: infrastructure/serializers/validation_error_serializer.py ```python from typing import Dict from django.core.exceptions import ValidationError from .dict_serializer import DictSerializer class ValidationErrorSerializer(DictSerializer): ''' serialize an error validation ''' def to_dict(self, obj: ValidationError) -> Dict: return { 'messages': obj.messages } ``` #### File: shipwell_backend_ricardo/weather_mi/tests.py ```python from django.test import TestCase, Client class AverageTemperatureRequestTest(TestCase): def setUp(self): self.client = Client() def test_full_case(self): response = self.client.get('/average_temperature/', { 'latitude': 12.23, 'longitude': -12.23, 'services[]': ['noaa', 'weatherdotcom', 'accuweather'] }) self.assertEqual(200, response.status_code) data = response.json() self.assertEqual('celsius', data['data']['average']['unit']) self.assertEqual(8.9, data['data']['average']['value']) def test_filtering_some_service(self): response = self.client.get('/average_temperature/', { 'latitude': 12.23, 'longitude': -12.23, 'services[]': ['noaa', 'accuweather'] }) self.assertEqual(200, response.status_code) data = response.json() self.assertEqual('celsius', data['data']['average']['unit']) self.assertEqual(12, data['data']['average']['value']) def test_missing_latitude_validation(self): response = self.client.get('/average_temperature/', { 'longitude': -12.23, 'services[]': ['noaa', 'weatherdotcom', 'accuweather'] }) self.assertEqual(403, response.status_code) error = response.json() self.assertIn('must fill the field: latitude', error['error']['messages']) def test_missing_longitude_validation(self): response = self.client.get('/average_temperature/', { 'latitude': 12.23, 'services[]': ['noaa', 'weatherdotcom', 'accuweather'] }) self.assertEqual(403, response.status_code) error = response.json() self.assertIn('must fill the field: longitude', error['error']['messages']) def test_missing_services_validation(self): response = self.client.get('/average_temperature/', { 'latitude': 12.23, 'longitude': -12.23, }) self.assertEqual(403, response.status_code) error = response.json() self.assertIn('must fill the field: services[]', error['error']['messages']) ``` #### File: shipwell_backend_ricardo/weather_mi/validators.py ```python from django.http.request import QueryDict, HttpRequest from django.core.exceptions import ValidationError def validate_required(fieldname, querydict: QueryDict): ''' validates that a field is present in the request ''' if fieldname not in querydict: raise ValidationError(f'must fill the field: {fieldname}') def validate_list_not_empty(fieldname, querydict: QueryDict): if not querydict.getlist(fieldname): raise ValidationError(f'must pass some option on filter: {fieldname}') def validate_coordinate(fieldname, value): ''' validatates that de field is a float ''' try: float(value) except ValueError: raise ValidationError(f'field {fieldname} -> {value} is not a decimal number') def validate_latitude(request: HttpRequest): ''' validates a latidude field ''' validate_required('latitude', request.GET) validate_coordinate('latitude', request.GET['latitude']) def validate_longitude(request: HttpRequest): ''' validates a longitude field ''' validate_required('longitude', request.GET) validate_coordinate('longitude', request.GET['longitude']) def validate_services(request: HttpRequest): ''' validates a services filter field ''' validate_required('services[]', request.GET) validate_list_not_empty('services[]', request.GET) ```
{ "source": "JoaquinRodriguez2006/RoboCup_Junior_Material", "score": 3 }
#### File: Codigo/ejemplos_erebus/victim_detection_test.py ```python import cv2 import numpy as np def detectVisualSimple(image_data): coords_list = [] # img = np.array(np.frombuffer(image_data, np.uint8).reshape((camera.getHeight(), camera.getWidth(), 4))) # img[:,:,2] = np.zeros([img.shape[0], img.shape[1]]) img = image_data cv2.imshow('Primera Imagen', img) #convert from BGR to HSV color space gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) cv2.imshow('Imagen Grises', gray) #apply threshold thresh = cv2.threshold(gray, 140, 255, cv2.THRESH_BINARY)[1] cv2.imshow('Trhes', thresh) # draw all contours in green and accepted ones in red contours, h = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) for c in contours: if cv2.contourArea(c) > 1000: coords = list(c[0][0]) coords_list.append(coords) return ((int(coords[0])),int(coords[1])) # robot = Robot() timeStep = 32 # camera_centro = robot.getDevice('camera1') # camera_centro.enable(timeStep) img = 'Imagenes/imagenes rombo/imagenes_rombo_gasrombo_2.png' print(detectVisualSimple(img)) cv2.waitKey(0) """" while robot.step(timeStep) != -1: img = camera_centro.getImage() print(detectVisualSimple(img, camera_centro)) img = np.array(np.frombuffer(img, np.uint8).reshape((camera_centro.getHeight(), camera_centro.getWidth(), 4))) cv2.imshow("Imagen", img) img = cv2.waitKey(1) """ ``` #### File: Movimiento/avance_recto/avanzar_baldosa_encoder.py ```python from controller import Robot from controller import Motor from controller import PositionSensor from controller import Robot, DistanceSensor, GPS, Camera, Receiver, Emitter from controller import PositionSensor import math import time robot = Robot() timeStep = 32 tile_size = 0.12 speed = 6.28 media_baldoza = 0.06 estado = 0 start = 0 # Motor initialization ruedaIzquierda = robot.getDevice("wheel1 motor") ruedaDerecha = robot.getDevice("wheel2 motor") ruedaIzquierda.setPosition(float('inf')) ruedaDerecha.setPosition(float('inf')) rIzq_encoder = ruedaIzquierda.getPositionSensor() rDer_encoder = ruedaDerecha.getPositionSensor() rIzq_encoder.enable(timeStep) rDer_encoder.enable(timeStep) # Functions def avanzar(vel): ruedaIzquierda.setVelocity(vel) ruedaDerecha.setVelocity(vel) def girar(vel): ruedaIzquierda.setVelocity(-vel) ruedaDerecha.setVelocity(vel) def girar_izq(vel): ruedaIzquierda.setVelocity(vel) ruedaDerecha.setVelocity(-vel) while robot.step(timeStep) != -1: if estado == 0: start = rDer_encoder.getValue() estado = 1 if estado == 1: avanzar(6.28) if rDer_encoder.getValue() >= start + 2.9: avanzar(0) break ``` #### File: Codigo/Movimiento/ejemplo_navegacion.py ```python from controller import Robot, Motor, DistanceSensor, Camera, Emitter, GPS import struct import numpy as np import cv2 as cv timeStep = 32 # Set the time step for the simulation max_velocity = 6.28 # Set a maximum velocity time constant robot = Robot() # Create an object to control the left wheel wheel_left = robot.getDevice("wheel1 motor") # Create an object to control the right wheel wheel_right = robot.getDevice("wheel2 motor") #[left wheel speed, right wheel speed] speeds = [max_velocity, max_velocity] #Create objects for all robot sensors leftDist = robot.getDevice("leftDist") # Get robot's left distance sensor leftDist.enable(timeStep) # Enable left distance sensor frontDist = robot.getDevice("frontDist") frontDist.enable(timeStep) rightDist = robot.getDevice("rightDist") rightDist.enable(timeStep) cam = robot.getDevice("camera") cam.enable(timeStep) colorSensor = robot.getDevice("color") colorSensor.enable(timeStep) emitter = robot.getDevice("emitter") # Emitter doesn't need enable gps = robot.getDevice("gps") gps.enable(timeStep) wheel_left.setPosition(float("inf")) wheel_right.setPosition(float("inf")) def turn_right(): #set left wheel speed speeds[0] = 0.6 * max_velocity #set right wheel speed speeds[1] = -0.2 * max_velocity def turn_left(): #set left wheel speed speeds[0] = -0.2 * max_velocity #set right wheel speed speeds[1] = 0.6 * max_velocity def spin(): #set left wheel speed speeds[0] = 0.6 * max_velocity #set right wheel speed speeds[1] = -0.6 * max_velocity def delay(ms): initTime = robot.getTime() # Store starting time (in seconds) while robot.step(timeStep) != -1: # If time elapsed (converted into ms) is greater than value passed in if (robot.getTime() - initTime) * 1000.0 > ms: break def getColor(): img = colorSensor.getImage() # Grab color sensor camera's image view # Return grayness of the only pixel (0-255) print("Color: " + str(img[0][0][0])) return colorSensor.imageGetGray(img, colorSensor.getWidth(), 0, 0) def checkVic(img): # Convert img to RGBA format (for OpenCV) img = np.frombuffer(img, np.uint8).reshape( (cam.getHeight(), cam.getWidth(), 4)) img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # Grayscale image # Inverse threshold image (0-80 -> white; 80-255 -> black) img, thresh = cv.threshold(img, 80, 255, cv.THRESH_BINARY_INV) # Find all shapes within thresholded image contours, hierarchy = cv.findContours( thresh, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE) for cnt in contours: x, y, w, h = cv.boundingRect(cnt) # Find width and height of contour contArea = cv.contourArea(cnt) # Area covered by the shape ratio = w / h # Calculate width to height ratio of contour # if the contour area and width to height ratio are within certain ranges if contArea > 300 and contArea < 1000 and ratio > 0.65 and ratio < 0.95: return True return False def report(victimType): # Struct package to be sent to supervisor to report victim/hazard # First four bytes store robot's x coordinate # Second four bytes store robot's z coordinate # Last byte stores type of victim # Victims: H, S, U, T # Hazards: F, P, C, O wheel_left.setVelocity(0) # Stop for 1 second wheel_right.setVelocity(0) delay(1300) # Convert victimType to character for struct.pack victimType = bytes(victimType, "utf-8") posX = int(gps.getValues()[0] * 100) # Convert from cm to m posZ = int(gps.getValues()[2] * 100) message = struct.pack("i i c", posX, posZ, victimType) emitter.send(message) robot.step(timeStep) while robot.step(timeStep) != -1: speeds[0] = max_velocity speeds[1] = max_velocity # Check left and right sensor to avoid walls # for sensor on the left, either if leftDist.getValue() < 0.05: turn_right() # We see a wall on the left, so turn right away from the wall if rightDist.getValue() < 0.05: # for sensor on the right too turn_left() # for front sensor if frontDist.getValue() < 0.05: spin() # if on black, turn away if getColor() < 80: spin() wheel_left.setVelocity(speeds[0]) wheel_right.setVelocity(speeds[1]) delay(600) # if sees victim, report it if checkVic(cam.getImage()): report('T') # Cannot determine type of victim, so always try 'T' for now # Send the speed values we have choosen to the robot wheel_left.setVelocity(speeds[0]) wheel_right.setVelocity(speeds[1]) ``` #### File: pruebas/Joaquin_Rodriguez/prueba_color_sensor.py ```python from controller import Robot from controller import Motor from controller import Robot, GPS import time import math robot = Robot() # Create robot object timeStep = 32 # timeStep = numero de milisegundos entre actualizaciones mundiales (del mundo) tile_size = 0.12 # Tamaño de casilla angulo_actual = 0 tiempo_anterior = 0 media_baldoza = 0.06 speed = 6.28 global start global finalLetter # Distance sensor initialization distancia_sensor1 = robot.getDevice("distance sensor1") distancia_sensor1.enable(timeStep) distancia_sensorDer = robot.getDevice("distance sensor2") distancia_sensorDer.enable(timeStep) distancia_sensorIzq = robot.getDevice("distance sensor2") distancia_sensorIzq.enable(timeStep) maxima_distancia = 0.4 valor_sensor_distancia_Izq = distancia_sensorIzq.getValue() * 1000 # Motor initialization ruedaIzquierda = robot.getDevice("wheel1 motor") ruedaDerecha = robot.getDevice("wheel2 motor") ruedaIzquierda.setPosition(float('inf')) ruedaDerecha.setPosition(float('inf')) # Gyroscope initialization gyro = robot.getDevice("gyro") gyro.enable(timeStep) #Gps initialization gps = robot.getDevice("gps") gps.enable(timeStep) robot.step(timeStep) # Actualizo los valores de los sensores startX = gps.getValues()[0] # Cargo La posicion inicial startY = gps.getValues()[2] offset_xy = [0, 2] x = 0 y = 0 global lista_victim lista_victim = [] # Color sensor initialization colorSensor = robot.getDevice("colour_sensor") colorSensor.enable(timeStep) # Util Functions def avanzar(vel): ruedaIzquierda.setVelocity(vel) ruedaDerecha.setVelocity(vel) def girar(vel): ruedaIzquierda.setVelocity(vel//3) ruedaDerecha.setVelocity(vel) def rotar(angulo): global angulo_actual global tiempo_anterior # iniciar_rotacion girar(0.8) # Mientras no llego al angulo solicitado sigo girando if (abs(angulo - angulo_actual) > 1): tiempo_actual = robot.getTime() # print("Inicio rotacion angulo", angulo, "Angulo actual:",angulo_actual) tiempo_transcurrido = tiempo_actual - tiempo_anterior # tiempo que paso en cada timestep radsIntimestep = abs(gyro.getValues()[1]) * tiempo_transcurrido # rad/seg * mseg * 1000 degsIntimestep = radsIntimestep * 180 / math.pi # print("rads: " + str(radsIntimestep) + " | degs: " + str(degsIntimestep)) angulo_actual += degsIntimestep # Si se pasa de 360 grados se ajusta la rotacion empezando desde 0 grados angulo_actual = angulo_actual % 360 # Si es mas bajo que 0 grados, le resta ese valor a 360 if angulo_actual < 0: angulo_actual += 360 tiempo_anterior = tiempo_actual return False print("Rotacion finalizada.") angulo_actual = 0 return True def type_floor(): image = colorSensor.getImage() r = colorSensor.imageGetRed(image, 1, 0, 0) # print("r: " + str(r) + " g: " + str(g) + " b: " + str(b)) if r == 212 : return 'arena' if r >= 242: return 'checkpoint' if r == 233 : return 'common' if r <= 110: return 'pozo' # Main Code start = robot.getTime() while robot.step(timeStep) != -1: # TYPES OF FLOOR DETERMINE EACH STATE image = colorSensor.getImage() r = colorSensor.imageGetRed(image, 1, 0, 0) floor = type_floor() if floor == 'common': print("Comun") avanzar(3) if floor == 'arena': print("Arena") avanzar(2) rotar(90) if floor == 'checkpoint': print("Checkpoint") avanzar(2) tiempo_anterior = robot.getTime() if robot.getTime() >= start + 14: if rotar(90): break if floor == 'pozo': print('Pozo') avanzar(0) """if r >= 212 : return 'arena' if r >= 242: return 'checkpoint' if r < 240 and r >= 233 : return 'common'""" ``` #### File: pruebas/Jose_Gonzalez/Solucion_PruebaTipoPiso.py ```python from controller import Robot from controller import Motor from controller import PositionSensor from controller import Robot, DistanceSensor, GPS, Camera, Receiver, Emitter import cv2 import numpy as np import math import time robot = Robot() timeStep = 32 tile_size = 0.12 speed = 6.28 media_baldoza = 0.06 estado = 1 start = 0 global r global g global b r = 0 g = 0 b = 0 # start = robot.getTime() # Camera initialization camera = robot.getDevice("camera3") camera.enable(timeStep) # Colour sensor initialization colour_sensor = robot.getDevice("colour_sensor") colour_sensor.enable(timeStep) # Distance sensor initialization distancia_sensor1 = robot.getDevice("distance sensor1") distancia_sensor1.enable(timeStep) # Motor initialization ruedaIzquierda = robot.getDevice("wheel1 motor") ruedaDerecha = robot.getDevice("wheel2 motor") ruedaIzquierda.setPosition(float('inf')) ruedaDerecha.setPosition(float('inf')) rIzq_encoder = ruedaIzquierda.getPositionSensor() rDer_encoder = ruedaDerecha.getPositionSensor() rIzq_encoder.enable(timeStep) rDer_encoder.enable(timeStep) # Functions def leer_sensores(): global r global g global b # Color sensor image = colour_sensor.getImage() r = colour_sensor.imageGetRed(image, 1, 0, 0) g = colour_sensor.imageGetGreen(image, 1, 0, 0) b = colour_sensor.imageGetBlue(image, 1, 0, 0) # azul: r=65 g=65 b=252 # rojo: r=252 g=65 b=65 # print("r: " + str(r) + " g: " + str(g) + " b: " + str(b)) """ # Camara image = camera.getImage() imagen = np.frombuffer(image, np.uint8).reshape((camera.getHeight(), camera.getWidth(), 4)) frame = cv2.cvtColor(imagen, cv2.COLOR_BGRA2BGR) cv2.imshow("frame", frame) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Grayscale cv2.imshow("grayScale", frame) cv2.threshold(frame, 80, 255, cv2.THRESH_BINARY) # Threshold cv2.imshow("thresh", frame) cv2.waitKey(1) # Sensor de Distancia print("Distancia: " + str(distancia_sensor1.getValue())) """ def avanzar(vel): ruedaIzquierda.setVelocity(vel) ruedaDerecha.setVelocity(vel) def retroceder(vel): ruedaIzquierda.setVelocity(-vel) ruedaDerecha.setVelocity(-vel) def girar_der(vel): ruedaIzquierda.setVelocity(-vel) ruedaDerecha.setVelocity(vel) def girar_izq(vel): ruedaIzquierda.setVelocity(vel) ruedaDerecha.setVelocity(-vel) gyro = robot.getDevice("gyro") gyro.enable(timeStep) def rotar(angulo): global angulo_actual global tiempo_anterior # iniciar_rotacion if angulo > 0: girar_der(0.5) else: girar_izq(0.5) # Mientras no llego al angulo solicitado sigo girando if (abs(abs(angulo) - angulo_actual) > 1): tiempo_actual = robot.getTime() # print("Inicio rotacion angulo", angulo, "Angulo actual:",angulo_actual) tiempo_transcurrido = tiempo_actual - \ tiempo_anterior # tiempo que paso en cada timestep # rad/seg * mseg * 1000 radsIntimestep = abs(gyro.getValues()[1]) * tiempo_transcurrido degsIntimestep = radsIntimestep * 180 / math.pi # print("rads: " + str(radsIntimestep) + # " | degs: " + str(degsIntimestep)) angulo_actual += degsIntimestep # Si se pasa de 360 grados se ajusta la rotacion empezando desde 0 grados angulo_actual = angulo_actual % 360 # Si es mas bajo que 0 grados, le resta ese valor a 360 if angulo_actual < 0: angulo_actual += 360 tiempo_anterior = tiempo_actual # print("Angulo actual:", angulo_actual) return False #print("Rotacion finalizada.") angulo_actual = 0 return True def delay(ms): initTime = robot.getTime() # Store starting time (in seconds) while robot.step(timeStep) != -1: print("delay") if (robot.getTime() - initTime) * 1000.0 > ms: # If time elapsed (converted into ms) is greater than value passed in avanzar(0) break def rotar_enclavado(angulo): while robot.step(timeStep) != -1: leer_sensores() # print("r: " + str(r) + " g: " + str(g) + " b: " + str(b)) if rotar(angulo) == True: # If time elapsed (converted into ms) is greater than value passed in avanzar(0) break def avance(tipo_avance): start = rDer_encoder.getValue() velocidad = 0 avance = 0 if tipo_avance == "medio": velocidad = 3 avance = 2.9 elif tipo_avance == "largo": avance = 5.9 velocidad = 5.96 elif tipo_avance == "esquina": avance = 4.1 velocidad = 6.28 while robot.step(timeStep) != -1: avanzar(velocidad) leer_sensores() tipo_pizza() # print("r: " + str(r) + " g: " + str(g) + " b: " + str(b)) if rDer_encoder.getValue() >= start + avance: avanzar(0) break def retroceso(tipo_retroceso): start = rDer_encoder.getValue() velocidad = 0 retroceso = 0 if tipo_retroceso == "medio": velocidad = 6.28 retroceso = 2.9 elif tipo_retroceso == "largo": retroceso = 5.9 velocidad = 5.96 elif tipo_retroceso == "esquina": retroceso = 4.1 velocidad = 6.28 elif tipo_retroceso == "poquito": retroceso = 1.9 velocidad = 6.28 while robot.step(timeStep) != -1: retroceder(velocidad) leer_sensores() # print("r: " + str(r) + " g: " + str(g) + " b: " + str(b)) if start - retroceso >= rDer_encoder.getValue(): avanzar(0) break def tipo_pizza(): #print("valores(1): r:" + str(r) + " , g:" + str(g) + " , b:" + str(b)) if 255 >= r >= 240 and 60 <= b <= 75 and 60 <= g <= 75: print("(Red)pasaje zona 3 a 1") elif 150 >= r >= 100 and 210 <= b <= 230 and 60 <= g <= 75: print("(Vaiolet)pasaje zona 2 a 3") elif 60 <= r <= 75 and 255 >= b >= 245 and 60 <= g <= 75: print("(Blue)pasaje zona 1 a 2") elif 200 <= r <= 220 and 110 >= b >= 100 and 175 <= g <= 180: print("Entered swamp") return "swamp" elif 250 >= r >= 230 and 250 >= b >= 235 and 250 >= g >= 235: print("Found Checkpoint") elif r == 233 and b == 233 and g == 233: print("Azulejo normal") elif 30 <= r <= 50 : print("un agujero negro we") retroceso("medio") rotar_enclavado(90) else: return "prueba" angulo_actual = 0 tiempo_anterior = robot.getTime() contador = 0 while robot.step(timeStep) != -1: avance("medio") ```
{ "source": "joaramirezra/Can-You-Solve-a-Problem", "score": 4 }
#### File: Can-You-Solve-a-Problem/In-house/Factorial of Number.py ```python def factorial(n): if n < 0: return 0 elif n == 0 or n == 1: return 1 else: fact = 1 while(n > 1): fact *= n n -= 1 return fact num = 5; print("Factorial of",num,"is", factorial(num) ``` #### File: Can-You-Solve-a-Problem/In-house/palindrome.py ```python def palindrome_checker(): '''This function converts any string entered to lowercase and checks it against a reversed string''' string = input('Enter a string: ').lower() if (string == string[::-1]): print('This is a palindrome') else: print('Not a palindrome') palindrome_checker() ``` #### File: Can-You-Solve-a-Problem/In-house/romanNumeralConverter.py ```python def convertRomanNumeral(romNumeral): """ converts Roman numerals into ordinary numbers. Params: romNumeral (String) - the Roman numeral string to be converted Returns: num (int): ordinary numbers equivalant of the roman numeral. Examples: >>> num = convertRomanNumeral("M") >>>print(num) 100 >>> num = convertRomanNumeral("DX") >>>print(num) 510 >>> num = convertRomanNumeral("XL") >>>print(num) 40 """ romNumeral = romNumeral.upper() rom_dict = {"M":1000,"D":500,"C":100,"L":50,"X":10,"V":5,"I":1,'IV':4,\ 'IX':9,'XL':40,'XC':90,'CD':400,'CM':900} i = 0 num = 0 while i < len(romNumeral): if i+1<len(romNumeral) and romNumeral[i:i+2] in rom_dict: num+=rom_dict[romNumeral[i:i+2]] i+=2 else: num+=rom_dict[romNumeral[i]] i+=1 return num rom_num = input("Enter the Roman Numeral you would like to convert: ") num = convertRomanNumeral(rom_num) print("The integer representation of %s is %d"%(rom_num,num)) ``` #### File: Can-You-Solve-a-Problem/In-house/X-O.py ```python def displayboard(board): print (f'{board[6]:^7}|{board[7]:^7}|{board[8]:^7}') print ('-----------------------') print (f'{board[3]:^7}|{board[4]:^7}|{board[5]:^7}') print ('-----------------------') print (f'{board[0]:^7}|{board[1]:^7}|{board[2]:^7}') def playermarker(): marker = '' while marker != 'X' and marker != 'O': marker = (input("Choose X or O: ")).upper() if marker == 'X': return ('X','O') else: return ('O','X') def placemaker (board,marker,position): board[position-1] = marker def wincheck(board,mark): return board[0]==board[1]==board[2]==mark or board[3]==board[4]==board[5]==mark or board[6]==board[7]==board[8]==mark or board[0]==board[3]==board[6]==mark or board[4]==board[1]==board[7]==mark or board[5]==board[8]==board[2]==mark or board[0]==board[4]==board[8]==mark or board[6]==board[4]==board[2]==mark def checkfirst(): from random import randint flip = randint(1,2) if flip == 1: return 'player 1' else: return 'player 2' def spacecheck(board,position): return board[position] == ' ' def fullboardcheck(board): return board[0] != ' ' and board[1] != ' ' and board[2] != ' ' and board[3] != ' ' and board[4] != ' ' and board[5] != ' ' and board[6] != ' ' and board[7] != ' ' and board[8] != ' ' def fullboardcheck1(board): for i in range(1,10): if spacecheck(board,i): return False return True def playerchoice(board): position = 0 while position not in range (1,10) or not spacecheck(board,position): position = int(input('Choose a number from 1-9: (1-9)')) return position def replay(): choice = '' while choice.capitalize() != 'Yes' and choice.capitalize() != 'No': choice = (input('Play again? Yes or No: ')) return choice.capitalize() == 'Yes' print ('Welcome to X and O') #Play the game while replay(): ## Set everythin up (board, choose markers and who is first) gameboard = [' ']*9 player1_marker, player2_marker = playermarker() turn = checkfirst() print (turn + ' is the first player') ready = int(input('Ready to play? To answer yes enter 1 to answer no enter 2: ')) if ready == 1: gameon = True else: gameon = False ## Game play while gameon: ### Player one turn if turn == 'player 1': #### Show the Board print ('\n'*100) displayboard(gameboard) ##### Choose position position = playerchoice(gameboard) ##### Place the marker in the position placemaker(gameboard,player1_marker,position) #####Check if they won if wincheck(gameboard,player1_marker): print ('\n'*100) displayboard(gameboard) print ('CONGRATULATIONS, PLAYER ONE YOU HAVE WON THE GAME.') gameon = False #####Or if there is a tie else: if fullboardcheck(gameboard): print ('\n'*100) displayboard(gameboard) print('TIE GAME.') gameon = False #####No win, no tie next players turn else: print ('\n'*100) turn = 'player 2' ### Player two turn else: #### Show the Board displayboard(gameboard) ##### Choose position position = playerchoice(gameboard) ##### Place the marker in the position placemaker(gameboard,player2_marker,position) #####Check if they won if wincheck(gameboard,player2_marker): print ('\n'*100) displayboard(gameboard) print ('CONGRATULATIONS, PLAYER TWO YOU HAVE WON THE GAME.') gameon = False #####Or if there is a tie else: if fullboardcheck(gameboard): print ('\n'*100) displayboard(gameboard) print('TIE GAME.') gameon = False #####No win, no tie next players turn else: print ('\n'*100) turn = 'player 1' if not replay(): break ```
{ "source": "joarch/dmsarchiv", "score": 2 }
#### File: dmsarchiv/src/dmsarchiv.py ```python import configparser import json import os import shutil import sys from datetime import datetime, timedelta from decimal import Decimal from getopt import getopt, GetoptError from typing import List, Dict import requests from requests.auth import HTTPBasicAuth from common import _json_load from export_excel import export_nach_excel DEFAULT_PARAMETER_SECTION = "config.ini:PARAMETER" DEFAULT_EXPORT_PARAMETER_SECTION = "config.ini:EXPORT" PARAM_URL = "dms_api_url" PARAM_USER = "dms_api_benutzer" PARAM_PASSWD = "<PASSWORD>" DEFAULT_EXPORT_VON_DATUM = "01.01.2010" CLASSIFY_ATTRIBUTES_FILENAME = "classify_attributes.json" FOLDERS_FILENAME = "folders.json" TYPES_FILENAME = "types.json" def export(profil=DEFAULT_PARAMETER_SECTION, export_profil=DEFAULT_EXPORT_PARAMETER_SECTION, export_von_datum=None, export_bis_datum=None, max_documents=None, tage_offset=None, debug=None): # TODO LOG File schreiben # TODO timeit Zeit loggen bzw. als info_dauer in ini speichern # DMS API Connect api_url, cookies = _connect(profil) # DMS API Connect Info api_statistics = _get_statistics(api_url, cookies) export_info = dict() export_info["info_api_download_count"] = api_statistics["uploadCount"] export_info["info_api_upload_count"] = api_statistics["downloadCount"] export_info["info_api_max_count"] = api_statistics["maxCount"] # DMS API Klassifizierungsattribute auslesen, wenn noch nicht vorhanden if not os.path.exists(CLASSIFY_ATTRIBUTES_FILENAME): classify_attributes = _get_classify_attributes(api_url, cookies) with open(CLASSIFY_ATTRIBUTES_FILENAME, 'w', encoding='utf-8') as outfile: json.dump(classify_attributes, outfile, ensure_ascii=False, indent=2, sort_keys=True, default=json_serial) # DMS API Order auslesen, wenn noch nicht vorhanden if not os.path.exists(FOLDERS_FILENAME): folders = _get_folders(api_url, cookies) with open(FOLDERS_FILENAME, 'w', encoding='utf-8') as outfile: json.dump(folders, outfile, ensure_ascii=False, indent=2, sort_keys=True, default=json_serial) # DMS API Dokumentenart auslesen, wenn noch nicht vorhanden if not os.path.exists(TYPES_FILENAME): types = _get_types(api_url, cookies) with open(TYPES_FILENAME, 'w', encoding='utf-8') as outfile: json.dump(types, outfile, ensure_ascii=False, indent=2, sort_keys=True, default=json_serial) # Konfiguration lesen parameter_export = _get_config(export_profil) export_von_datum = parameter_export["export_von_datum"] if export_von_datum is None else export_von_datum export_bis_datum = parameter_export["export_bis_datum"] if export_bis_datum is None else export_bis_datum max_documents = int(parameter_export["max_documents"]) if max_documents is None else max_documents tage_offset = int(parameter_export["tage_offset"]) if tage_offset is None else tage_offset export_parameter = _json_load(parameter_export["export_parameter_datei"]) if debug is None: debug = parameter_export.get("debug") == "true" if not export_von_datum: export_von_datum = DEFAULT_EXPORT_VON_DATUM # DMS API Search export_info["info_letzter_export"] = datetime.now().strftime("%d.%m.%Y %H:%M:%S") export_info["info_letzter_export_von_datum"] = export_von_datum documents = _search_documents(api_url, cookies, export_von_datum, export_parameter.get("suchparameter_list"), bis_datum=export_bis_datum, max_documents=max_documents, debug=debug) # Dokumenten Export Informationen auswerten ctimestamps = list(map(lambda d: datetime.strptime(d["classifyAttributes"]["ctimestamp"], "%Y-%m-%d %H:%M:%S"), documents)) ctimestamps.sort() if len(ctimestamps) > 0: min_ctimestamp = ctimestamps[0] max_ctimestamp = ctimestamps[-1] else: min_ctimestamp = None max_ctimestamp = None if export_bis_datum and len(documents) == 0: raise RuntimeError("Achtung es wurden keine Dokumente exportiert. Bitte das Such 'bis_datum' erweitern.") if len(documents) >= max_documents: raise RuntimeError(f"Achtung es wurden evtl. nicht alle Dokumente exportiert, Anzahl >= {max_documents}. " f"Das Such-Datum muss weiter eingeschränkt werden. " f"Es wurde gesucht mit {export_von_datum} - {export_bis_datum}.") if export_bis_datum: # es gab eine Einschränkung bis Datum export_von_datum = max_ctimestamp.strftime("%d.%m.%Y") # - nächste Zeitscheibe in Export-Info schreiben export_bis_datum = datetime.strptime(export_bis_datum, "%d.%m.%Y") + timedelta(days=tage_offset) if export_bis_datum < datetime.now(): export_bis_datum = export_bis_datum.strftime("%d.%m.%Y") else: # Ende erreicht der nächste Export läuft ohne bis Datum export_bis_datum = "" else: export_von_datum = datetime.now().strftime("%d.%m.%Y") export_info["info_letzter_export_anzahl_dokumente"] = len(documents) export_info["info_min_ctimestamp"] = min_ctimestamp.strftime("%d.%m.%Y") if min_ctimestamp else export_von_datum export_info["info_max_ctimestamp"] = max_ctimestamp.strftime("%d.%m.%Y") if max_ctimestamp else "" # - Export Parameter für den nächsten Export export_info["export_von_datum"] = export_von_datum export_info["export_bis_datum"] = export_bis_datum export_info["max_documents"] = max_documents export_info["tage_offset"] = tage_offset # DMS API Disconnect _disconnect(api_url, cookies) # Dokumente als JSON Datei speichern result = { "export_time": datetime.now().strftime("%d.%m.%Y %H:%M:%S"), "documents": documents} json_export_datei = export_parameter["json_export_datei"] json_export_datei_tmp = json_export_datei + "_tmp" with open(json_export_datei_tmp, 'w', encoding='utf-8') as outfile: json.dump(result, outfile, ensure_ascii=False, indent=2, sort_keys=True, default=json_serial) result["anzahl_exportiert"] = len(documents) anzahl_neu = len(documents) # neue und vorhandene Export Ergebnisse zusammenführen, falls vorhanden if os.path.exists(json_export_datei): with open(json_export_datei, encoding="utf-8") as file: result_vorher = json.load(file) doc_ids_new = [document["docId"] for document in result["documents"]] for document in result_vorher["documents"]: if document["docId"] not in doc_ids_new: result["documents"].append(document) else: anzahl_neu -= 1 result["anzahl"] = len(result["documents"]) result["anzahl_neu"] = anzahl_neu # Sortierung nach DocId result["documents"].sort(key=lambda document: document["docId"]) # Speichern in JSON Datei und löschen temp. Export Datei with open(json_export_datei, 'w', encoding='utf-8') as outfile: json.dump(result, outfile, ensure_ascii=False, indent=2, sort_keys=True, default=json_serial) os.remove(json_export_datei_tmp) print( f"Dokumente geladen im Zeitraum: {export_von_datum} - {export_bis_datum}, " f"Anzahl geladen: {result['anzahl_exportiert']}, " f"Anzahl neu: {result['anzahl_neu']}, " f"Anzahl gesamt: {result['anzahl']}.") # wenn alle Dokumente bis zum aktuell Tag exportiert wurden, # wird die Excel Datei geschrieben und die JSON Datei als Temp.-Datei umbenannt if export_von_datum == datetime.now().strftime("%d.%m.%Y"): # Excel Export if export_parameter["export"]["export_format"] == "xlsx": export_nach_excel(result, export_parameter["export"]) else: raise RuntimeError(f"nicht unterstütztes Export Format {export_parameter['export']['export_format']}") # vorhandene JSON Datei als Temp.-Datei sichern splitext = os.path.splitext(json_export_datei) shutil.move(json_export_datei, os.path.join( os.path.dirname(json_export_datei), os.path.basename(splitext[0]) + "_tmp" + splitext[1] )) else: # noch nicht alle Dokumente geladen print("Es wurden noch nicht alle Dokumente bis zum heutigen Tag geladen, der Export wird nicht durchgeführt.") print("Bitte das Programm erneut ausführen.") # Export Info (letzter Export Zeitstempel und DMS API Info) in die Config-Datei zurückschreiben _write_config(export_profil, export_info) def _search_documents(api_url, cookies, von_datum, suchparameter_list=None, bis_datum=None, max_documents=1000, debug=False) -> List[Dict]: suchparameter_list = suchparameter_list or [] von_datum = datetime.strptime(von_datum, "%d.%m.%Y") # Search-Date -1 Tag, vom letzten Lauf aus, # da die DMS API Suche nicht mit einem Zeitstempel umgehen kann # zusätzlich (sicherheitshalber) Vergleich mit >= # von_datum = von_datum.date() - timedelta(days=1) von_datum = von_datum.date() von_datum = von_datum.strftime("%Y-%m-%d") search_parameter = [{"classifyAttribut": "ctimestamp", "searchOperator": ">=", "searchValue": von_datum}] if bis_datum: bis_datum = datetime.strptime(bis_datum, "%d.%m.%Y").strftime("%Y-%m-%d") search_parameter.append({"classifyAttribut": "ctimestamp", "searchOperator": "<=", "searchValue": bis_datum}) for suchparameter in suchparameter_list: search_parameter.append(suchparameter) such_data = json.dumps(search_parameter) if debug: print(f"Suche mit: {json.dumps(search_parameter)}") r = requests.post("{}/searchDocumentsExt?maxDocumentCount={}".format(api_url, max_documents), data=such_data, cookies=cookies, headers=_headers()) _assert_request(r) documents = json.loads(r.text) if debug: print(f"Suche Fertig. Anzahl Dokumente : {len(documents)}") return documents def _get_statistics(api_url, cookies): r = requests.get("{}/apiStatistics".format(api_url), cookies=cookies, headers=_headers()) _assert_request(r) return json.loads(r.text) def _get_classify_attributes(api_url, cookies): r = requests.get("{}/classifyAttributes".format(api_url), cookies=cookies, headers=_headers()) _assert_request(r) return json.loads(r.text) def _get_folders(api_url, cookies): r = requests.get("{}/folders".format(api_url), cookies=cookies, headers=_headers()) _assert_request(r) return json.loads(r.text) def _get_types(api_url, cookies): r = requests.get("{}/types".format(api_url), cookies=cookies, headers=_headers()) _assert_request(r) return json.loads(r.text) def _headers(): return {'Content-Type': 'application/json; charset=utf8'} def _connect(profil): params = _get_config(profil) r = requests.get("{}/connect/1".format(params[PARAM_URL]), auth=HTTPBasicAuth(params[PARAM_USER], params[PARAM_PASSWD])) _assert_request(r) cookies = r.cookies.get_dict() return params[PARAM_URL], cookies def _disconnect(api_url, cookies): r = requests.get("{}/disconnect".format(api_url), cookies=cookies) _assert_request(r) def _assert_request(request): if request.status_code != 200: raise RuntimeError(f"Fehler beim Request: {request.status_code}, Message: {request.text}") def _get_config(profil): split = profil.split(":") config_file = split[0] config_section = split[1] config = configparser.ConfigParser() config.read(config_file) return config[config_section] def _write_config(profil, new_params): """ Aktualisiert die Config-Datei mit neuen Werten. """ split = profil.split(":") config_file = split[0] config_section = split[1] config = configparser.ConfigParser() config.read(config_file) # merge alte und neue Parameter for section in config.sections(): if section == config_section: for key, value in new_params.items(): config[section][key] = str(value) with open(config_file, 'w') as configfile: config.write(configfile) def json_serial(obj): if isinstance(obj, datetime): serial = obj.isoformat() return serial if isinstance(obj, Decimal): serial = str(obj) return serial raise TypeError("Type not serializable") def main(argv): """ Export DMS Dokumenten Infos. Das Zielformat wird über das Export Profil übergeben. Programmargumente: - parameter (INI-Datei und Section): z.B.: 'config.ini:PARAMETER' - export_parameter (INI-Datei und Section): z.B.: 'config.ini:EXPORT' """ hilfe = f"{os.path.basename(__file__)} -p <parameter> -e <export_parameter>" parameter = "" export_parameter = "" try: opts, args = getopt(argv, "hp:e:", ["parameter=", "export_parameter="]) except GetoptError: print(hilfe) sys.exit(2) for opt, arg in opts: if opt in ("-h", "--help"): print(hilfe) sys.exit() elif opt in ("-p", "--parameter"): parameter = arg elif opt in ("-e", "--export_parameter"): export_parameter = arg if not parameter: parameter = DEFAULT_PARAMETER_SECTION if not export_parameter: export_parameter = DEFAULT_EXPORT_PARAMETER_SECTION export(parameter, export_parameter) if __name__ == '__main__': main(sys.argv[1:]) ``` #### File: dmsarchiv/src/export_excel.py ```python import json import os import re import sys from datetime import datetime, date from decimal import Decimal from getopt import getopt, GetoptError from openpyxl import Workbook, load_workbook from openpyxl.styles import PatternFill, Font from openpyxl.utils import get_column_letter from common import _json_load def export_nach_excel(documents, export_profil): # Zieldateiname ermitteln ziel_dateiname = export_profil["dateiname"] postfix = export_profil.get("dateiname_postfix") if postfix: if "%" in postfix: postfix = datetime.now().strftime(postfix) splitext = os.path.splitext(os.path.basename(export_profil["dateiname"])) ziel_dateiname = os.path.join( os.path.dirname(export_profil["dateiname"]), splitext[0] + postfix + splitext[1] ) # letzte fortlaufende Nummer ermitteln fortlaufendes_feld = export_profil.get("fortlaufendes_feld") letzte_fortlaufende_nummer = -1 filename_fortlaufendes_feld = None if fortlaufendes_feld: filename_fortlaufendes_feld = os.path.join( os.path.dirname(export_profil["dateiname"]), os.path.splitext(os.path.basename(export_profil["dateiname"]))[0] + "_" + "fortlaufendes_feld.txt" ) if os.path.exists(filename_fortlaufendes_feld): with open(filename_fortlaufendes_feld, 'r', encoding='utf-8') as outfile: value = outfile.read() if value: letzte_fortlaufende_nummer = int(value) # Datei Mapping Caches datei_mappings = dict() # Zeilen und Spalten aus den Dokumenten anhand Export Profil ermitteln rows = list() for document in documents["documents"]: columns = list() rows.append(columns) for spalte in export_profil["spalten"]: column = dict() columns.append(column) feld_name = spalte["feld"] if spalte.get("alias"): column["feld_name"] = spalte["alias"] else: column["feld_name"] = spalte["feld"] mapped_value = "" if feld_name: # Spalten Wert auslesen und mappen if feld_name in document: value = document[feld_name] elif feld_name in document["classifyAttributes"]: value = document["classifyAttributes"][feld_name] else: raise RuntimeError( f"Die Spalte '{feld_name}' existiert nicht im Dokument. Bitte Export-Profil überprüfen.") # Mapping mapping_def = spalte.get("mapping") if mapping_def is not None: # konfiguriertes Mapping anwenden if mapping_def["typ"] == "re": # Mapping mit RegEx Methode # - zuerst immer in String umwandeln, wegen RegEx Methode auf String mapped_value = map_value(value, "string") re_operation = getattr(re, mapping_def["methode"]) argumente = mapping_def["argumente"] if len(argumente) == 2: mapped_value = re_operation(argumente[0], argumente[1], mapped_value) else: raise RuntimeError( f"Fehler beim Mapping zum Feld '{feld_name}'. " f"Es werden nur 2 Argument unterstützt.") mapped_value = map_value(mapped_value, spalte.get("type")) elif mapping_def["typ"] == "datei": # Mapping aus Datei auslesen # - zuerst immer in String umwandeln, Id wird immer als String normalisiert mapped_value = map_value(value, "string") # - Datei Mapping Cache initialisieren if datei_mappings.get(mapping_def["dateiname"]) is None: datei_mappings[mapping_def["dateiname"]] = _init_mapping_data(mapping_def) # mapping von id zu name mapping_data = datei_mappings[mapping_def["dateiname"]] mapped_value = mapping_data[mapped_value] else: raise RuntimeError(f"Unbekannter Mapping Typ: {mapping_def['type']}") else: mapped_value = map_value(value, spalte.get("type")) else: # keine Feld Name, damit bleibt die Spalte leer pass column["value"] = mapped_value if spalte.get("number_format"): column["number_format"] = spalte["number_format"] else: if isinstance(mapped_value, date): column["number_format"] = 'DD.MM.YYYY' if isinstance(mapped_value, datetime): column["number_format"] = 'DD.MM.YYYY HH:MM:SS' if spalte.get("computed"): column["computed"] = spalte["computed"] # sortieren if export_profil.get("sortierung"): for sort_def in reversed(export_profil["sortierung"]["felder"]): if sort_def["wie"] == "absteigend": reverse = True elif sort_def["wie"] == "aufsteigend": reverse = False else: raise RuntimeError( f"Unbekannte Sortierung zum 'feld'='{sort_def['feld']}' mit 'wie'='{sort_def['wie']}' " f", erlaubt sind nur 'aufsteigend' oder 'absteigend'.") rows.sort( key=lambda r: list(filter(lambda c: c["feld_name"] == sort_def["feld"], r))[0]["value"], reverse=reverse ) # Computed und Format ermitteln for row in rows: for column in row: # computed Wert ermitteln if column.get("computed"): computed = column.get("computed") # bekannte Methoden ersetzen computed = computed \ .replace("nicht_fortlaufend()", "pruefe_is_nicht_fortlaufend(row, fortlaufendes_feld, letzte_fortlaufende_nummer)") column["value"] = eval(computed) # Format ermitteln if export_profil.get("formate"): for format_candidate in export_profil["formate"]: if re.match(format_candidate["match"], str(column["value"])): if "PatternFill" == format_candidate["format"]["format"]: column["fill"] = PatternFill(start_color=format_candidate["format"]["start_color"], end_color=format_candidate["format"]["end_color"], fill_type=format_candidate["format"]["fill_type"]) for column in row: # max. fortlaufendes Feld merken if fortlaufendes_feld and column["feld_name"] == fortlaufendes_feld: letzte_fortlaufende_nummer = column["value"] if not letzte_fortlaufende_nummer: raise RuntimeError("Die fortlaufende Nummer konnte nicht ermittelt werden") # als Excel speichern if not os.path.exists(ziel_dateiname): # neue Excel Datei if not export_profil.get("vorlage_dateiname"): # neu wb = Workbook() ws = wb.active else: # aus Vorlage wb = load_workbook(filename=export_profil["vorlage_dateiname"]) if not export_profil.get("vorlage_sheet_name"): ws = wb.active else: ws = wb[export_profil["vorlage_sheet_name"]] row_idx = 1 # mit Spaltenüberschrifen if export_profil["spaltenueberschrift"].lower() == "ja": column_header_format = export_profil.get("spaltenueberschrift_format") if column_header_format is not None: if "PatternFill" == column_header_format["format"]: column_header = PatternFill(start_color=column_header_format["start_color"], end_color=column_header_format["end_color"], fill_type=column_header_format["fill_type"]) else: raise RuntimeError( f"Unbekanntes Format {column_header_format['format']} in 'spaltenueberschrift_format/format'. " f"Möglich ist nur 'PatternFill'") else: # Standard Format column_header = PatternFill(start_color='AAAAAA', end_color='AAAAAA', fill_type='solid') column_idx = 1 for spalte in export_profil["spalten"]: ws.cell(column=column_idx, row=row_idx, value=spalte["ueberschrift"]) col = ws["{}{}".format(get_column_letter(column_idx), row_idx)] col.font = Font(bold=True) col.fill = column_header column_idx += 1 row_idx += 1 # Zeilen und Spalten ins Excel Dokument schreiben append_rows(row_idx, rows, ws) else: # vorhandene Excel Datei fortschreiben wb = load_workbook(filename=ziel_dateiname) if not export_profil.get("vorlage_sheet_name"): ws = wb.active else: ws = wb[export_profil["vorlage_sheet_name"]] id_feld = export_profil["id_feld"] id_feld_idx = -1 for idx, spalte in enumerate(export_profil["spalten"]): if spalte["feld"] == id_feld: id_feld_idx = idx if id_feld_idx == -1: raise RuntimeError( f"Fehler das id_feld '{id_feld}' existiert nicht als Spalte in der Export Konfiguration.") # update Rows empties = 0 last_row = 0 for row_idx, row in enumerate(ws.iter_rows()): cell = row[id_feld_idx] if cell.value: empties = 0 update_row(cell.value, id_feld_idx, rows, row) rows = remove_row(cell.value, id_feld_idx, rows) else: empties += 1 for cell in row: # evtl. leere Zeile, nur wenn alle Spalten ebenfalls leer sind if cell.value: empties = 0 break if empties == 0: last_row = row_idx + 1 if empties > 100: # fertig, nur noch leere Id Spalten break # neue Rows anhängen row_idx = last_row + 1 append_rows(row_idx, rows, ws) wb.save(filename=ziel_dateiname) print(f"Die Excel-Datei wurde geschrieben: '{ziel_dateiname}'") # letzte fortlaufende Nummer in Datei merken if fortlaufendes_feld: with open(filename_fortlaufendes_feld, 'w', encoding='utf-8') as outfile: outfile.write(str(letzte_fortlaufende_nummer)) def append_rows(row_idx, rows, ws): """ Hängt die rows an das Sheet, beginnend ab Zeile row_idx """ for row in rows: column_idx = 1 for column in row: new_cell = ws.cell(column=column_idx, row=row_idx, value=column["value"]) if column.get("number_format"): new_cell.number_format = column["number_format"] if column.get("fill"): new_cell.fill = column["fill"] column_idx += 1 row_idx += 1 def update_row(id_value, id_feld_idx, rows, row): """ Aktualisiert die row im Sheet, wenn sie innerhalb der neuen rows existiert. Existiert die row nicht in den neuen rows, bleibt sie unverändert. """ existing = list(filter(lambda r: r[id_feld_idx]["value"] == id_value, rows)) if len(existing) == 1: # aktualisieren vorhandene Row for column_idx, column in enumerate(existing[0]): row[column_idx].value = column["value"] if column.get("number_format"): row[column_idx].number_format = column["number_format"] if column.get("fill"): row[column_idx].fill = column["fill"] elif len(existing) > 1: raise RuntimeError(f"Zeile mit Id '{id_value}' ist mehrfach vorhanden. Anzahl: {len(existing)}") # ignorieren, Row nur im Excel Dokument def remove_row(id_value, id_feld_idx, rows): """ Löscht die row mit der id_value aus den rows """ return [row for row in rows if row[id_feld_idx]["value"] != id_value] def map_value(value, mapping_type=None): if mapping_type == "string": return str(value) if mapping_type == "int": try: return int(value) except ValueError: return -1 return map_str_value(value) def map_str_value(value): if type(value) != str: return value if value == "undefined": # clean up value = "" if value == "true": value = "ja" if value == "false": value = "nein" if "€" in value \ and (value[0].isnumeric() or len(value) >= 2 and value[0] == "-" and value[1].isnumeric()): return map_eur(value) eur_pattern = re.compile(r"^-?[0-9]+,?[0-9]* (€|EUR)$") if eur_pattern.match(value): return map_eur(value) datum_pattern = re.compile(r"^[0-9]{2}\.[0-9]{2}\.[0-9]{4}$") if datum_pattern.match(value): return map_datum(value) datum_pattern = re.compile(r"^[0-9]{4}-[0-9]{2}-[0-9]{2}$") if datum_pattern.match(value): return map_datum(value) datum_pattern = re.compile(r"^[0-9]{2}\.[0-9]{2}\.[0-9]{4} [0-9]{2}:[0-9]{2}:[0-9]{2}$") if datum_pattern.match(value): return map_datum_zeit(value) datum_pattern = re.compile(r"^[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}$") if datum_pattern.match(value): return map_datum_zeit(value) decimal_pattern = re.compile(r"^-?[0-9]+,?[0-9]*$") if decimal_pattern.match(value): return map_number(value) return value def map_number(value): if value is None: return None return Decimal(value.replace('.', '').replace(' ', '').replace(',', '.')) def map_eur(value): return map_number(value.replace("€", "").replace("EUR", "")) def map_datum(value): if "-" in value: return datetime.strptime(value, "%Y-%m-%d").date() return datetime.strptime(value, "%d.%m.%Y").date() def map_datum_zeit(value): if "-" in value: return datetime.strptime(value, "%Y-%m-%d %H:%M:%S") return datetime.strptime(value, "%d.%m.%Y %H:%M:%S") def pruefe_is_nicht_fortlaufend(columns, fortlaufendes_feld, previous_fortlaufendes_feld): return not list(filter(lambda c: c["feld_name"] == fortlaufendes_feld, columns))[0][ "value"] == previous_fortlaufendes_feld + 1 def _init_mapping_data(mapping_def): """ List alle Einträge und erzeugt ein neues Dict anhand der 'id' und 'name' Definition """ result = dict() mapping_data = _json_load(mapping_def["dateiname"]) for entry in mapping_data: result[str(entry[mapping_def["id"]])] = entry[mapping_def["name"]] return result def main(argv): """ Export die übergebene JSON Datei (documents_datei) mit den exportierten DMS Dokumenten Feldern nach Excel. Das Export Format wird mit der übergebenen Export Parameter Datei (export_parameter_datei) konfiguriert. """ hilfe = f"{os.path.basename(__file__)} -d <documents_datei> -e <export_parameter_datei>" documents_datei = "" export_parameter_datei = "" try: opts, args = getopt(argv, "hd:e:", ["documents_datei=", "export_parameter_datei="]) except GetoptError: print(hilfe) sys.exit(2) for opt, arg in opts: if opt in ("-h", "--help"): print(hilfe) sys.exit() elif opt in ("-d", "--documents_datei"): documents_datei = arg elif opt in ("-e", "--export_parameter_datei"): export_parameter_datei = arg if not documents_datei or not export_parameter_datei: print("Usage: " + hilfe) sys.exit(2) if not os.path.exists(documents_datei): raise RuntimeError(f"Die Datei '{documents_datei}' existiert nicht.") if not os.path.exists(export_parameter_datei): raise RuntimeError(f"Die Datei '{export_parameter_datei}' existiert nicht.") with open(documents_datei, encoding="utf-8") as file: documents = json.load(file) with open(export_parameter_datei, encoding="utf-8") as file: export_parameter = json.load(file) export_nach_excel(documents, export_parameter["export"]) if __name__ == '__main__': # main(sys.argv[1:]) main(["-d", "../export_documents.json", "-e", "../config/dmsarchiv_vorlage.json"]) ```
{ "source": "joar/disk-usage-exporter", "score": 3 }
#### File: disk-usage-exporter/disk_usage_exporter/logging.py ```python import logging import logging.config import sys from typing import Dict, Any, Optional, List import attr import structlog class Loggable(Dict[str, Any]): def __structlog__(self): if attr.has(type(self)): return attr.asdict(self) return self def add_message(logger, method_name, event_dict): """ Creates a ``message`` value based on the ``hint`` and ``key_hint`` keys. ``key_hint`` : ``Optional[str]`` a '.'-separated path of dictionary keys. ``hint`` : ``Optional[str]`` will be formatted using ``.format(**event_dict)``. """ def from_hint(ed): hint = event_dict.pop('hint', None) if hint is None: return try: return hint.format(**event_dict) except Exception as exc: return f'! error formatting message: {exc!r}' def path_value(start: Loggable, key_path: str) -> Optional[Any]: value = start for key in key_path.split('.'): if value is None: return None if hasattr(value, '__structlog__'): value = value.__structlog__() value = value.get(key) return value def from_key_hint(ed) -> Optional[str]: key_hint = ed.pop('key_hint', None) if key_hint is None: return None value = path_value(ed, key_hint) return f'{key_hint}={value!r}' def from_key_hints(ed) -> List[str]: key_hints = ed.pop('key_hints', None) if key_hints is None: return [] return [ f'{key_hint}={path_value(ed, key_hint)!r}' for key_hint in key_hints ] hints = [ from_hint(event_dict), from_key_hint(event_dict) ] hints += from_key_hints(event_dict) existing_message = event_dict.get('message') # The new message message = None if any(hint is not None for hint in hints): prefix = event_dict['event'] hint = ', '.join(hint for hint in hints if hint is not None) if existing_message is not None: # Use existing message in the new hint-based message message = f'{prefix}: {existing_message}, {hint}' else: message = f'{prefix}: {hint}' elif existing_message is None: # Use "event" as default message message = event_dict.get('event') if message is not None: event_dict['message'] = message return event_dict def add_severity(logger, method_name, event_dict): event_dict = structlog.stdlib.add_log_level(logger, method_name, event_dict) level = event_dict.pop('level') if level is not None: event_dict['severity'] = level.upper() return event_dict def configure_logging(for_humans=False, level=logging.INFO): if not for_humans: renderer = structlog.processors.JSONRenderer() else: renderer = structlog.dev.ConsoleRenderer( colors=structlog.dev._has_colorama ) timestamper = structlog.processors.TimeStamper(fmt='%Y-%m-%d %H:%M:%S') foreign_pre_chain = [ # Add the log level and a timestamp to the event_dict if the log entry # is not from structlog. structlog.processors.StackInfoRenderer(), structlog.processors.format_exc_info, structlog.stdlib.add_log_level, timestamper, ] if for_humans: foreign_pre_chain += [ structlog.processors.format_exc_info, add_message, ] processors = [ structlog.stdlib.filter_by_level, structlog.stdlib.add_logger_name, add_severity, structlog.stdlib.PositionalArgumentsFormatter(), structlog.processors.StackInfoRenderer(), structlog.processors.format_exc_info, timestamper, add_message, structlog.stdlib.ProcessorFormatter.wrap_for_formatter, ] logging.config.dictConfig({ 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'structlog': { '()': structlog.stdlib.ProcessorFormatter, 'processor': renderer, 'foreign_pre_chain': foreign_pre_chain, }, }, 'handlers': { 'default': { 'level': level, 'class': 'logging.StreamHandler', 'stream': sys.stdout, 'formatter': 'structlog', }, }, 'loggers': { '': { 'handlers': ['default'], 'level': 'DEBUG', 'propagate': True, }, } }) structlog.configure( processors=processors, context_class=dict, logger_factory=structlog.stdlib.LoggerFactory(), wrapper_class=structlog.stdlib.BoundLogger, cache_logger_on_first_use=True, ) ``` #### File: disk-usage-exporter/tests/conftest.py ```python import logging import pytest from disk_usage_exporter import logging as _logging @pytest.fixture(scope='session', autouse=True) def configure_logging(): _logging.configure_logging(for_humans=True, level=logging.DEBUG) ```
{ "source": "JoarGruneau/yatal", "score": 3 }
#### File: yatal/yatal/price.py ```python import numpy as np from core import rolling_func, offset, divide, replace_nan def rolling_change(price, window=1): return offset(price[window:] / price[:-window], window) def rolling_diff(series, window=1): return offset(series[window:] / series[:-window], window) def rolling_max(series, window=20): return rolling_func(series, window, [np.max])[0] def rolling_min(series, window=20): return rolling_func(series, window, [np.min])[0] def true_price(high, low, close): return (high + low + close) / 3 def aroon(high, low, window=20): aroon_up = rolling_func(high, window + 1, [np.argmax])[0] / window aroon_down = rolling_func(low, window + 1, [np.argmin])[0] / window return aroon_down * 100, aroon_up * 100 def aroon_oscillator(high, low, window=20): aroon_down, aroon_up = aroon(high, low, window=window) return aroon_up - aroon_down def b_bands(price, window=20, multiplier=2): mean, std = rolling_func(price, window, [np.mean, np.std]) lower = mean - multiplier * std upper = mean + multiplier * std return upper, mean, lower def b_bands_percent(price, window=20, multiplier=2): upper, _, lower = b_bands(price, window=window, multiplier=multiplier) out = divide(price - lower, upper - lower) return replace_nan(out) def vortex_index(high, low, close, window=20): true_range = np.maximum.reduce( [high[1:] - low[1:], high[1:] - close[:-1], low[1:] - close[:-1]]) true_range = offset(rolling_func(true_range, window, [np.sum])[0], 1) uptrend = offset(np.abs(high[1:] - low[:-1]), 1) downtrend = offset(np.abs(low[1:] - high[:-1]), 1) vi_plus = divide(rolling_func(uptrend, window, [np.sum])[0], true_range) vi_minus = divide(rolling_func(downtrend, window, [np.sum])[0], true_range) vi_plus[:window] = np.nan vi_minus[:window] = np.nan return replace_nan(vi_plus), replace_nan(vi_minus) def roc(series, widnow=20): return offset( rolling_diff(series, window)[widnow:] / series[:-widnow], window) ``` #### File: yatal/yatal/volume.py ```python import numpy as np from core import rolling_func, divide, replace_nan def obv(price, volume): obv = volume.copy() obv[1:][price[1:] == price[:-1]] = 0 negative_change = price[1:] < price[:-1] obv[1:][negative_change] = -obv[1:][negative_change] return obv.cumsum() def vwma(price, volume, window=20): volume_sum = rolling_func(volume, window, [np.sum])[0] price_volume = rolling_func(price * volume, window, [np.sum])[0] vwma = divide(price_volume, volume_sum) return replace_nan(vwma) def adl(high, low, close, volume): flow = divide(2 * close - high - low, high - low) * volume flow[np.isnan(flow)] = 0 return np.cumsum(flow) ```
{ "source": "JoaRiski/django-simple-graphql", "score": 2 }
#### File: example/tests/test_mutations.py ```python from textwrap import dedent from example.test_utils.client import GraphQLClient def test_mutation_addition(gclient: GraphQLClient): query = dedent( """ mutation { addition(input: {a: 1, b: 2}) { result } } """ ) response = gclient.query(query) gclient.assert_response_has_no_errors(response) gclient.assert_first_result_matches_expected( response, { "result": 3, }, ) ``` #### File: simple_graphql/auth/middleware.py ```python from typing import Any from django.contrib.auth.models import AnonymousUser from simple_graphql.auth.auth import AUTH_HEADER, TokenAuthentication AUTH = TokenAuthentication() class AuthMiddleware: # TODO: Replace Any types with better types def resolve(self, next: Any, root: Any, info: Any, **kwargs) -> Any: self.authenticate(info) return next(root, info, **kwargs) def authenticate(self, info: Any) -> None: graphql_authenticated = getattr(info.context, "graphql_authenticated", False) if not hasattr(info.context, "user") or ( info.context.user and not graphql_authenticated ): info.context.user = AnonymousUser() if info.context.META.get(AUTH_HEADER) and not graphql_authenticated: auth_result = AUTH.authenticate(info.context) if auth_result: info.context.user = auth_result[0] info.context.graphql_authenticated = True ``` #### File: simple_graphql/auth/models.py ```python import binascii import os from typing import Any, Optional, Tuple from django.conf import settings from django.db import models from django.db.models import Manager from django.utils.translation import gettext_lazy as _ from simple_graphql.auth.exceptions import AuthenticationException class AuthenticationSession(models.Model): objects: "Manager[AuthenticationSession]" key = models.CharField(_("Key"), max_length=40, primary_key=True) user = models.ForeignKey( settings.AUTH_USER_MODEL, related_name="authentication_sessions", on_delete=models.CASCADE, verbose_name=_("User"), ) datetime_created = models.DateTimeField(_("Datetime created"), auto_now_add=True) def __str__(self) -> str: return f"{self.key[:5]}{'*' * len(self.key[5:])}" @classmethod def generate_key(cls) -> str: return binascii.hexlify(os.urandom(20)).decode() @classmethod def create_for_user(cls, user: Any) -> "AuthenticationSession": return cls.objects.create(user=user, key=cls.generate_key()) @classmethod def authenticate(cls, key: str) -> Optional[Tuple[Any, Any]]: try: token = cls.objects.select_related("user").get(key=key) except cls.DoesNotExist: raise AuthenticationException(_("Invalid token.")) if not token.user.is_active: raise AuthenticationException(_("Invalid token.")) return (token.user, token) ``` #### File: django/fields/authorize.py ```python from typing import TYPE_CHECKING, Any from simple_graphql.django.fields.exceptions import AuthorizationError if TYPE_CHECKING: from simple_graphql.django import ModelSchemaConfig def authorize_query(config: "ModelSchemaConfig", info: Any): if config.require_login is True: user = getattr(info.context, "user", None) if user is None or user.is_anonymous: raise AuthorizationError("Unauthorized") ``` #### File: django/schema/exceptions.py ```python from simple_graphql.django.types import ModelClass class ModelAlreadyRegistered(Exception): def __init__(self, model_cls: ModelClass): super().__init__( f"Model {model_cls.__name__} " "has already been registered to the GraphQL schema" ) class MutationAlreadyRegistered(Exception): def __init__(self, name: str): super().__init__( f"Mutation {name} has already been registered to the GraphQL schema" ) class QueryAlreadyRegistered(Exception): def __init__(self, name: str): super().__init__( f"Query {name} has already been registered to the GraphQL schema" ) class SchemaAlreadyBuilt(Exception): pass ```
{ "source": "joarkm/olmonopolet-api", "score": 2 }
#### File: management/commands/update_beer_details.py ```python from django.core.management.base import BaseCommand from beers.models import Product, Beer from olmonopolet.vmp_api import products as vmp_api_products from olmonopolet.vmp_api import utilities as vmp_utils from datetime import datetime import httpx class Command(BaseCommand): help = ''' Update Beer details from Vinmonopolet ''' def handle(self, *args, **options): # Log when the job is executed self.stdout.write(f"Updating Beer details @ {datetime.now()}") start_time = datetime.now() # Instantiate httpx Client with httpx.Client() as client: # Verify that VMP is online before using the VMP api if not vmp_utils.isVMPonline(client): self.stdout.write(f"Vinmonopolet is not available...") return beers = Beer.objects.all() for beer in beers: # Update Beer details from Vinmonopolet beer_details = vmp_api_products.get_product_details(client, beer.pk) # TODO: Add functionality to notify user if beer with stock becomes "buyable:True" try: updated_beer_obj, created = Beer.objects.update_or_create( beer_id = beer, defaults = { 'name' : beer_details["name"], 'alc_volume' : beer_details['alcohol']['value'], 'buyable' : beer_details["buyable"], 'status' : beer_details["status"], 'launch_date' : datetime.strptime(beer_details["expiredDate"],"%Y-%m-%d") } ) self.stdout.write(f"Updating beer details for: {updated_beer_obj.name}") except Exception as err: self.stdout.write(f"Could not update beer details for: {beer.name}") self.stdout.write(err) # Product stock is not to be updated if status is "Utgått" or "Utsolgt" # This is to reduce load on the system as these beers are not available for purchase # if updated_beer_obj.status not in ['utgatt', 'utsolgt']: self.stdout.write(f"Update of beer details took {datetime.now() - start_time} seconds") return ``` #### File: olmonopolet-api/notifications/models.py ```python from django.db import models from django.contrib.auth.models import User from stores.models import Store # Create your models here. class EmailNotification(models.Model): ''' Model containing user preferences with regards to how they receive email notifications. ''' username = models.ForeignKey(User, to_field='username', verbose_name='Users', related_name='notification', on_delete=models.CASCADE) store_id = models.ForeignKey(Store, verbose_name='Stores', to_field='store_id',related_name='notification', on_delete=models.CASCADE, help_text='Store which the user want to receive notifications for') store_updates = models.BooleanField(help_text='Should the user receive email notification when product stock is updated for chosen store?', default=False) class Meta: verbose_name_plural = 'Email Notifications' ordering = ['-username'] def __str__(self): return self.username.username ``` #### File: olmonopolet/untappd_scraper/details.py ```python from bs4 import BeautifulSoup import httpx def get_beer_details(url): ''' Retrieve Untappd beer details Parameters: url: Untappd URL for the beer Returns: dict: Dictionary with rating data ''' untappd_details = {} # Get the web page where the Untappd beer rating data is and parse it using BeautifulSoup raw_untappd_response = httpx.get(url) untappd_html = BeautifulSoup(raw_untappd_response,'html.parser') # Retrieve Data try: untappd_details["brewery"] = untappd_html.find("div",class_="content").find('div', class_='name').find('a').string untappd_details["brewery_url"] = untappd_html.find("div",class_="content").find('div', class_='name').find('a')['href'] untappd_details["style"] = untappd_html.find("div",class_="content").find('div', class_='name').find('p', class_='style').string # TODO: Få inn description korrekt. Per nå er det problematisk å få kun tekst siden det også er en <a> tag i div. untappd_details["description"] = untappd_html.find("div", class_="content").find("div",class_="bottom").find("div",class_="desc").find("div",class_="beer-descrption-read-less").contents untappd_details["img_url"] = untappd_html.find("div",class_="content").find('a',class_ = 'label').find('img')['src'] untappd_details["rating"] = untappd_html.find("div", class_="content").find("div",class_="details").find("div",class_="caps")['data-rating'] # Text is typically 'xxx Ratings', hence I need to split the string and get the first element untappd_details["num_regs"] = untappd_html.find("div", class_="content").find("div",class_="details").find("p",class_="raters").string.split()[0] untappd_details["check_in_total"] = untappd_html.find("div",class_="content").find("div",class_="stats").find("span",class_="count").string untappd_details["check_in_unique"] = untappd_html.find("div",class_="content").find("div",class_="stats").find_all("span",class_="count")[1].string # TODO: Add further validations and try/excepts for arg in ['num_regs', 'check_in_total', 'check_in_unique']: try: # Stripping thousand separator ',' from numbers untappd_details[arg] = int(untappd_details[arg].replace(',','')) except ValueError: untappd_details[arg] = 0 print(f"Error, {arg} is not an integer.") except Exception as err: print(f"Exception cought while updating untappd data: {err}") return untappd_details ``` #### File: olmonopolet/untappd_scraper/mapping.py ```python import httpx from bs4 import BeautifulSoup import json import itertools import time def _get_search_result_count(search_object): ''' get number of results when searching for a beer at Untappd Parameters: BeautifulSoup object Returns: int: Number of search results ''' try: for el in search_object.find_all('p', class_ ='total'): count = el.strong.string return int(count.replace(' beer','')) except UnboundLocalError: return 0 def _get_untappd_mapping_data(search_item): ''' Pass in a Beautifulsoup html object representing a search on Untappd to return details about the search result. Returns data for the first search result on Untappd.com Parameters: Beautifulsoup object Returns: dict: beer id, name and URL ''' # Untappd beer object to return mapping_data = { 'id':'', 'url': '', 'name': '', } _id = search_item.find("a",class_="label")["href"].replace('/beer/','') _url = search_item.find("div",class_="beer-details").find('p',class_ = 'name').find('a')['href'] _name = search_item.find("div",class_="beer-item").find('p',class_ = 'name').find('a').string mapping_data["id"]= int(_id) mapping_data["url"]='https://untappd.com' + _url mapping_data["name"]=_name return mapping_data def clean_beer_name(beer_name): ''' Pre-process beer name before searching for the given name on Untappd.com. Parameters: str: Beer name Returns: list: Processed beer name as list ''' # Words to clean from beer name word_replacements = [ { 'replace': ' x ', 'replace_with': ' ' }, { 'replace': ',', 'replace_with': '' }, { 'replace': ' & ', 'replace_with': ' ' }, { 'replace': '!', 'replace_with': '' }, ] for word in word_replacements: beer_name = beer_name.lower().replace(word['replace'],word['replace_with']) # Limiting number of search words to [6] for long beer names beer_name = beer_name.split()[:6] if len(beer_name.split()) > 7 else beer_name.split() return beer_name def find_untappd_mapping(beer_name, current_search_count, search_limit): ''' Obtain mapping between beer from Vinmonopolet and Untappd. Number of searches are limited according to set parameters. Parameters: string: Vinmonopolet beer name int: Number of searches performed at the time when the method is called int: The maximum number of searches allowed Returns: dict: beer id, name, URL and mapping status for beer at Untappd.com. Returns dictionary with id=0 and empty name and URL if not found. ''' #################################### URL = "https://untappd.com/search" #################################### # Dictionary to return with mapping details on Untappd.com mapping_details = { 'name':'', 'id': 0, 'url':'', 'match': False, 'searches': current_search_count } best_search = { 'results' : 10000, 'words' : [] } beer_name = clean_beer_name(beer_name) word_count = len(beer_name) # Indicates if a mapping is successfully obtained with Untappd.com mapping_success = False for i in range(word_count): # List with all word combinations word_combinations = [list(word) for word in itertools.combinations(beer_name, word_count - i)] for words in word_combinations: query_words = ' '.join(words) # Search param for untappd PARAMS = {"q": query_words } # Check number of searches - exit if search count > limit current_search_count += 1 mapping_details['searches'] = current_search_count if current_search_count > search_limit: return mapping_details print(f"Searching for: {query_words}, count ({current_search_count}/{search_limit})") # Perform query on Untappd using Word combinations from name on VMP response = httpx.get(URL,params=PARAMS) untappd_html = BeautifulSoup(response,'html.parser') if _get_search_result_count(untappd_html) == 1: mapping_details = _get_untappd_mapping_data(untappd_html) mapping_details['searches'] = current_search_count mapping_details['match'] = True mapping_success = True break else: if _get_search_result_count(untappd_html) < best_search['results']: best_search['results'] = _get_search_result_count(untappd_html) best_search['html'] = untappd_html # TODO: add more logic to find beer if it is not possible to find a single search result # Reduce request intensity towards Untappd.com time.sleep(1) if mapping_success: # Break if result is found break # if not mapping_success: # mapping_details = _get_untappd_mapping_data(best_search['html']) # print(f"Using best result with {best_search['results']} search results") return mapping_details ``` #### File: olmonopolet/vmp_api/products.py ```python import os, httpx def get_all_products(): ''' !!!!DEPRECATED!!!! Retrieve all products that are currently in stock by Vinmonopolet. Uses "products/GET accumulated-stock" API endpoint from VMP. Parameters: none Returns: list: List of all products currently in stock at Vinmonopolet in JSON format ''' URL = "https://apis.vinmonopolet.no/products/v0/accumulated-stock" HEADERS = {"Ocp-Apim-Subscription-Key": os.environ.get('VMP_PRIMARY_KEY') } PARAMS = {"maxResults": 100000} # Retrieve all products currently in stock at VMP try: all_products = httpx.get(URL,headers=HEADERS,params=PARAMS).json() except Exception as err: all_products = [] # For testing purposes change this return value to all_products[:X] to slice list return all_products def get_products(client, selection, page): '''Retrieve products, for a selection, that are currently in stock by Vinmonopolet. Each page retrieved returns 100 products Parameters: arg1 obj: httpx Client instance arg2 str: product selection, i.e. 'øl', 'mjød', 'sider' arg3 int: page number to retrieve as results from VMP are paginated Returns: int: HTTP status code from VMP request list: Products on current page int: Total number of pages with products for current selection ''' URL = 'https://www.vinmonopolet.no/api/search' PARAMS = {'q':f':relevance:visibleInSearch:true:mainCategory:{selection}', 'searchType': 'product', 'fields': 'FULL', 'pageSize': 100, 'currentPage': page} HEADERS = { # 'user-agent' : 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_16_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36', 'user-agent' : 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_16_0)' } try: response = client.get(URL, params=PARAMS, headers=HEADERS) response_code = response.status_code content = response.json() products = content['productSearchResult']['products'] total_pages = content['productSearchResult']['pagination']['totalPages'] total_products = content['productSearchResult']['pagination']['totalResults'] except Exception as err: response_code = 500 products = [] total_pages = 0 return response_code, products, total_pages def get_product_details(client, product_id): '''Retrieve product details. Parameters: arg1 obj: httpx Client instance arg2 int: product_id Returns: dict: JSON with product details if success, otherwise returns False (bool). ''' product_url = f"https://www.vinmonopolet.no/api/products/{product_id}" #+ product_id PARAMS = {"fields": 'FULL'} HEADERS = { # 'user-agent' : 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_16_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36', 'user-agent' : 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_16_0)' } # Get details from VMP about product try: product_details = client.get(product_url,params=PARAMS, headers=HEADERS).json() except Exception as err: product_details = False return product_details ``` #### File: olmonopolet/vmp_scraper/product_details.py ```python from bs4 import BeautifulSoup import httpx def test(): return 'test' def get_details_web(url): ''' Retrieve Vinmonopolet beer details from the web Parameters: url: Vinmonopolet URL path for the beer (excl. www.vinmonopolet.no) Returns: dict: Dictionary with beer data - keys: style, alcohol, brewery ''' VMP_BASE_URL = 'https://www.vinmonopolet.no' beer_details = {} # Get the web page of the beer (Vinmonopolet) and parse it using BeautifulSoup raw_vmp_response = httpx.get(f"{VMP_BASE_URL}{url}") untappd_html = BeautifulSoup(raw_vmp_response,'html.parser') # Scrape Data from Product page on Vinmonopolet beer_details['alcohol'] = untappd_html.find("ul", class_="product__contents-list").find("span", class_='product__contents-list__content-percentage').string for tab in untappd_html.find_all("ul", class_="product__tab-list"): for detail in tab.find_all('li'): product_info_category = detail.find('span', class_='product__tab-list__label').string if product_info_category == 'Varetype': beer_details['style'] = detail.find('span', class_='product__tab-list__value').get_text() elif product_info_category == 'Produsent': beer_details["brewery"] = detail.find('span', class_='product__tab-list__value').get_text() # Modify and clean product details beer_details['style'] = beer_details['style'].replace('\n','').replace('\t','').replace('Øl, ','') beer_details['brewery'] = beer_details['brewery'].replace('\n','').replace('\t','') beer_details['alcohol'] = beer_details['alcohol'].replace('%','') return beer_details ``` #### File: olmonopolet-api/profiles/models.py ```python from django.db import models from django.contrib.auth.models import User from stores.models import Store # Create your models here. class Profile(models.Model): ''' Profile associated with User model. Automatically added from signal when User is created. ''' user = models.OneToOneField(User, verbose_name='User',related_name='profiles',on_delete=models.CASCADE) store = models.ForeignKey(Store, verbose_name='Store', related_name='profile_stores', on_delete=models.CASCADE, blank=True, null=True) premium = models.BooleanField(help_text='Is user premium?', default=False) # Untappd Fields untappd_username = models.CharField(help_text='Untappd username', max_length=250, blank=True) untappd_avatar_url = models.URLField(help_text='URL to Avatar used on Untappd', max_length=256, blank=True, default='') untappd_sync_date = models.DateTimeField(help_text='Time when Profile was last synced with Untappd',blank=True, null=True) def __str__(self): return self.user.username ``` #### File: management/commands/map_untappd.py ```python from django.core.management.base import BaseCommand from beers.models import Beer from untappd.models import UntappdMapping from olmonopolet.untappd_scraper import mapping from datetime import datetime class Command(BaseCommand): help = ''' Find mapping between Beers at Vinmonopolet and Untappd. Beers will be automatically matched if a single search result is found on Untappd. A maximum of 100 searches per hour is used to avoid blocking as this equals the rate limiting employed by the Untappd API. Hence, this management command can only be executed once per hour. ''' def handle(self, *args, **options): # Log when the job is executed self.stdout.write(f"Updating Beer mappings @ {datetime.now()}") SEARCH_COUNT = 0 SEARCH_LIMIT = 150 # Retrieve all Beers in DB that does not have an UntappdMapping, using related_name unmapped_beers = Beer.objects.filter(mappings = None) self.stdout.write(f"Number of unmapped beers: {unmapped_beers.count()}") for beer in unmapped_beers: untappd_mapping = mapping.find_untappd_mapping(beer.name, SEARCH_COUNT, SEARCH_LIMIT) SEARCH_COUNT = untappd_mapping['searches'] # Log mapping process and monitor that number of searches does not exceed limit self.stdout.write(f"Mapping '{beer.name}' with matching status: {untappd_mapping['match']}. Number of searches performed: {untappd_mapping['searches']}") mapping_obj = UntappdMapping.objects.create( beer_id = beer, untappd_id = untappd_mapping['id'], name = untappd_mapping['name'], url = untappd_mapping['url'], auto_match = untappd_mapping['match'] ) if SEARCH_COUNT > SEARCH_LIMIT: break return ```
{ "source": "joarndt/ts_telegram_bot", "score": 3 }
#### File: ts_telegram_bot/src/birthday.py ```python from datetime import datetime from sticker import Sticker class Birthday(object): def __init__(self, name, date): self.name = name self.date = date def __str__(self): new = datetime(2000, self.date.month, self.date.day) return new.strftime("%d %B ") + str(self.date.year) + " - *" + self.name + "*" def isToday(self): return self.date.month == datetime.today().month and self.date.day == datetime.today().day def wishHappyBirthday(self, bot, chat_id): if self.isToday(): bot.sendMessage(chat_id, "Happy Birthday *" + self.name + "*", parse_mode="Markdown") bot.sendSticker(chat_id, Sticker.getInstance().getSticker("celebration")) def setName(self, name): self.name = name def setDate(self, date): self.date = date def getName(self): return self.name def getDate(self): return self.date ``` #### File: src/tsclient/connection.py ```python from collections import deque import logging from telnetlib import Telnet from time import time, sleep from message import Command, MessageFactory class TeamspeakConnection(Telnet): def __init__(self, hostname, port, timeout, pipe_in, pipe_out, keep_alive=30, poll_interval=0.125): self.pipe_in = pipe_in self.pipe_out = pipe_out self.logger = logging.getLogger('teamspeak3.TeamspeakConnection') self.commands_unresponded = deque() self.keep_alive = keep_alive self.poll_interval = poll_interval Telnet.__init__(self, hostname, port, timeout) def write_command(self, command): self.logger.info("Sending command %s" % command.__repr__()) self.commands_unresponded.append(command) self.write("%s\n" % command.output) def write_keep_alive(self): self.logger.debug("Sending keepalive message.") self.write("\n") def main_loop(self): while True: incoming = self.receive_message() if incoming: self.pipe_out.put(incoming) else: # Only write messages if we have nothing incoming if not self.pipe_in.empty(): comm = self.pipe_in.get_nowait() if isinstance(comm, Command): self.write_command(comm) elif int(time()) % self.keep_alive == 0: self.write_keep_alive() sleep(self.poll_interval) def receive_message(self): try: incoming_message = self.read_until('\n', self.timeout).strip() if incoming_message.strip(): self.logger.debug("Incoming string \"%s\"" % incoming_message) message = MessageFactory.get_message(incoming_message) if message: if message.is_response(): message.set_origination( self.commands_unresponded.popleft() ) elif message.is_reset_message(): # Command didn't ask for a response if self.commands_unresponded: self.commands_unresponded.popleft() self.logger.info("Received message %s" % message.__repr__()) return message except ValueError as e: pass except IndexError as e: self.logger.warning( "Unable to create message for \"%s\"; %s" % ( incoming_message, e ) ) except Exception as e: return e ```
{ "source": "joaromera/generating-melodies-with-rnn-lstm", "score": 3 }
#### File: joaromera/generating-melodies-with-rnn-lstm/train.py ```python import tensorflow.keras as keras from preprocess import generate_training_sequences, SEQUENCE_LENGTH OUTPUT_UNITS = 38 NUM_UNITS = [256] LOSS = "sparse_categorical_crossentropy" LEARNING_RATE = 0.001 EPOCHS = 90 BATCH_SIZE = 64 SAVE_MODEL_PATH = "model.h5" def build_model(output_units, num_units, loss, learning_rate): """Builds and compiles model :param output_units (int): Num output units :param num_units (list of int): Num of units in hidden layers :param loss (str): Type of loss function to use :param learning_rate (float): Learning rate to apply :return model (tf model): Where the magic happens :D """ # create the model architecture model = keras.Sequential() activation_f = 'relu' n_of_timesteps = 32 kernel_size = 3 # activation_f = 'sigmoid' # activation_f = 'tanh' # Parameters explanation: https://keras.io/api/layers/core_layers/embedding/ # model.add(keras.layers.Embedding(num_units[0], output_units, input_length=n_of_timesteps * 2,trainable=True)) model.add(keras.layers.Input(shape=(None, output_units))) # Parameters explanation: https://keras.io/api/layers/convolution_layers/convolution1d/ model.add(keras.layers.Conv1D(n_of_timesteps*2*2,kernel_size, padding='causal',activation=activation_f)) model.add(keras.layers.Dropout(0.2)) model.add(keras.layers.MaxPool1D(2)) model.add(keras.layers.Conv1D(n_of_timesteps*4*2,kernel_size, activation=activation_f,dilation_rate=2,padding='causal')) model.add(keras.layers.Dropout(0.2)) model.add(keras.layers.MaxPool1D(2)) model.add(keras.layers.Conv1D(n_of_timesteps*8*2,kernel_size, activation=activation_f,dilation_rate=4,padding='causal')) model.add(keras.layers.Dropout(0.2)) model.add(keras.layers.MaxPool1D(2)) #model.add(Conv1D(256,5,activation=activation_f)) model.add(keras.layers.GlobalMaxPool1D()) # Parameters explanation: https://keras.io/api/layers/core_layers/dense/ # 256 -> 512 model.add(keras.layers.Dense(512, activation=activation_f)) model.add(keras.layers.Dense(output_units, activation='softmax')) model.compile(loss='sparse_categorical_crossentropy', optimizer='adam') # compile model model.compile(loss=loss, optimizer=keras.optimizers.Adam(learning_rate=learning_rate), metrics=["accuracy"]) model.summary() return model def train(output_units=OUTPUT_UNITS, num_units=NUM_UNITS, loss=LOSS, learning_rate=LEARNING_RATE): """Train and save TF model. :param output_units (int): Num output units :param num_units (list of int): Num of units in hidden layers :param loss (str): Type of loss function to use :param learning_rate (float): Learning rate to apply """ # generate the training sequences inputs, targets = generate_training_sequences(SEQUENCE_LENGTH) # build the network model = build_model(output_units, num_units, loss, learning_rate) # train the model model.fit(inputs, targets, epochs=EPOCHS, batch_size=BATCH_SIZE) # save the model model.save(SAVE_MODEL_PATH) if __name__ == "__main__": train() ```
{ "source": "joaromi/Spiking-RetinaNet", "score": 3 }
#### File: backends/inisim/temporal_mean_rate_tensorflow.py ```python import os import json import numpy as np import tensorflow as tf from tensorflow.keras.layers import Dense, Flatten, AveragePooling2D, \ MaxPooling2D, Conv2D, DepthwiseConv2D, UpSampling2D, ZeroPadding2D, Reshape, Layer, \ Concatenate from snntoolbox.parsing.utils import get_inbound_layers from snntoolbox.simulation.backends.custom_layers import NormReshape, NormAdd, NormConv2D # Experimental clamp_var = False v_clip = False class SpikeLayer(Layer): """Base class for layer with spiking neurons.""" def __init__(self, **kwargs): self.config = kwargs.pop(str('config'), None) # if self.config is None: # from snntoolbox.bin.utils import load_config # self.config = load_config('<log_dir_of_current_run>/.config') self.layer_type = self.class_name self.dt = self.config.getfloat('simulation', 'dt') self.duration = self.config.getint('simulation', 'duration') self.tau_refrac = self.config.getfloat('cell', 'tau_refrac') self._v_thresh = self.config.getfloat('cell', 'v_thresh') self.v_thresh = None self.time = None self.out_shape = None self.mem = self.spiketrain = self.impulse = self.spikecounts = None self.refrac_until = self.max_spikerate = None if clamp_var: self.spikerate = self.var = None from snntoolbox.utils.utils import get_abs_path path, filename = \ get_abs_path(self.config.get('paths', 'filename_clamp_indices'), self.config) if filename != '': filepath = os.path.join(path, filename) assert os.path.isfile(filepath), \ "File with clamp indices not found at {}.".format(filepath) self.filename_clamp_indices = filepath self.clamp_idx = None self.payloads = None self.payloads_sum = None self.online_normalization = self.config.getboolean( 'normalization', 'online_normalization') allowed_kwargs = {'input_shape', 'batch_input_shape', 'batch_size', 'dtype', 'name', 'trainable', 'weights', 'input_dtype', # legacy } for kwarg in kwargs.copy(): if kwarg not in allowed_kwargs: kwargs.pop(kwarg) Layer.__init__(self, **kwargs) self.stateful = True self._floatx = tf.keras.backend.floatx() def reset(self, sample_idx): """Reset layer variables.""" self.reset_spikevars(tf.constant(sample_idx)) @property def class_name(self): """Get class name.""" return self.__class__.__name__ def update_neurons(self): """Update neurons according to activation function.""" new_mem = self.get_new_mem() if hasattr(self, 'activation_str'): if self.activation_str == 'softmax': output_spikes = self.softmax_activation(new_mem) elif self.activation_str == 'binary_sigmoid': output_spikes = self.binary_sigmoid_activation(new_mem) elif self.activation_str == 'binary_tanh': output_spikes = self.binary_tanh_activation(new_mem) elif '_Q' in self.activation_str: m, f = map(int, self.activation_str[ self.activation_str.index('_Q') + 2:].split('.')) output_spikes = self.quantized_activation(new_mem, m, f) else: output_spikes = self.linear_activation(new_mem) else: output_spikes = self.linear_activation(new_mem) # Store spiking self.set_reset_mem(new_mem, output_spikes) # Store refractory if self.tau_refrac > 0: new_refractory = tf.where(tf.not_equal(output_spikes, 0), self.time + self.tau_refrac, self.refrac_until) self.refrac_until.assign(new_refractory) if self.payloads: residuals = tf.where(tf.not_equal(output_spikes, 0), new_mem - self._v_thresh, new_mem) self.update_payload(residuals, output_spikes) if self.online_normalization: self.spikecounts.assign_add(tf.cast(tf.not_equal(output_spikes, 0), self._floatx)) self.max_spikerate.assign(tf.reduce_max(self.spikecounts) * self.dt / self.time) if self.spiketrain is not None: self.spiketrain.assign(tf.cast(tf.not_equal(output_spikes, 0), self._floatx) * self.time) return tf.cast(output_spikes, self._floatx) def update_payload(self, residuals, spikes): """Update payloads. Uses the residual of the membrane potential after spike. """ idxs = tf.not_equal(spikes, 0) payloads = tf.where(idxs, residuals[idxs] - self.payloads_sum[idxs], self.payloads) payloads_sum = tf.where(idxs, self.payloads_sum + self.payloads, self.payloads_sum) self.payloads.assign(payloads) self.payloads_sum.assign(payloads_sum) def linear_activation(self, mem): """Linear activation.""" return tf.cast(tf.greater_equal(mem, self.v_thresh), self._floatx) * \ self.v_thresh def binary_sigmoid_activation(self, mem): """Binary sigmoid activation.""" return tf.cast(tf.greater(mem, 0), self._floatx) * self.v_thresh def binary_tanh_activation(self, mem): """Binary tanh activation.""" output_spikes = tf.cast(tf.greater(mem, 0), self._floatx) \ * self.v_thresh output_spikes += tf.cast(tf.less(mem, 0), self._floatx) \ * -self.v_thresh return output_spikes def softmax_activation(self, mem): """Softmax activation.""" # spiking_samples = k.less_equal(k.random_uniform([self.config.getint( # 'simulation', 'batch_size'), ]), 300 * self.dt / 1000.) # spiking_neurons = k.repeat(spiking_samples, 10) # activ = k.softmax(mem) # max_activ = k.max(activ, axis=1, keepdims=True) # output_spikes = k.equal(activ, max_activ).astype(self._floatx) # output_spikes = tf.where(k.equal(spiking_neurons, 0), # k.zeros_like(output_spikes), output_spikes) # new_and_reset_mem = tf.where(spiking_neurons, k.zeros_like(mem), # mem) # self.add_update([(self.mem, new_and_reset_mem)]) # return output_spikes output_spikes = tf.less_equal(tf.random.uniform(tf.shape(mem)), tf.nn.softmax(mem)) return tf.cast(output_spikes, self._floatx) * self.v_thresh def quantized_activation(self, mem, m, f): """Activation with precision reduced to fixed point format Qm.f.""" # Todo: Needs to be implemented somehow... return tf.cast(tf.greater_equal(mem, self.v_thresh), self._floatx) * \ self.v_thresh def get_new_mem(self): """Add input to membrane potential.""" # Destroy impulse if in refractory period masked_impulse = self.impulse if self.tau_refrac == 0 else \ tf.where(tf.greater(self.refrac_until, self.time), tf.zeros_like(self.impulse), self.impulse) # Add impulse if clamp_var: # Experimental: Clamp the membrane potential to zero until the # presynaptic neurons fire at their steady-state rates. This helps # avoid a transient response. new_mem = tf.cond(tf.less(tf.reduce_mean(self.var), 1e-4) + tf.greater(self.time, self.duration / 2), lambda: self.mem + masked_impulse, lambda: self.mem) elif hasattr(self, 'clamp_idx'): # Set clamp-duration by a specific delay from layer to layer. new_mem = tf.cond(tf.less(self.time, self.clamp_idx), lambda: self.mem, lambda: self.mem + masked_impulse) elif v_clip: # Clip membrane potential to prevent too strong accumulation. new_mem = tf.clip_by_value(self.mem + masked_impulse, -3, 3) else: new_mem = self.mem + masked_impulse if self.config.getboolean('cell', 'leak'): # Todo: Implement more flexible version of leak! new_mem = tf.where(tf.greater(new_mem, 0), new_mem - 0.1 * self.dt, new_mem) return new_mem def set_reset_mem(self, mem, spikes): """ Reset membrane potential ``mem`` array where ``spikes`` array is nonzero. """ if (hasattr(self, 'activation_str') and self.activation_str == 'softmax'): # Turn off reset (uncomment second line) to get a faster and better # top-1 error. The top-5 error is better when resetting: # new = tf.where(tf.not_equal(spikes, 0), tf.zeros_like(mem), mem) new = tf.identity(mem) elif self.config.get('cell', 'reset') == 'Reset by subtraction': if self.payloads: # Experimental. new = tf.where(tf.not_equal(spikes, 0), tf.zeros_like(mem), mem) else: new = tf.where(tf.greater(spikes, 0), mem - self.v_thresh, mem) new = tf.where(tf.less(spikes, 0), new + self.v_thresh, new) elif self.config.get('cell', 'reset') == 'Reset by modulo': new = tf.where(tf.not_equal(spikes, 0), mem % self.v_thresh, mem) else: # self.config.get('cell', 'reset') == 'Reset to zero': new = tf.where(tf.not_equal(spikes, 0), tf.zeros_like(mem), mem) self.mem.assign(new) def get_new_thresh(self): """Get new threshhold.""" thr_min = self._v_thresh / 100 thr_max = self._v_thresh r_lim = 1 / self.dt return thr_min + (thr_max - thr_min) * self.max_spikerate / r_lim # return tf.cond( # k.equal(self.time / self.dt % settings['timestep_fraction'], 0) * # k.greater(self.max_spikerate, settings['diff_to_min_rate']/1000)* # k.greater(1 / self.dt - self.max_spikerate, # settings['diff_to_max_rate'] / 1000), # lambda: self.max_spikerate, lambda: self.v_thresh) def get_time(self): """Get simulation time variable. Returns ------- time: float Current simulation time. """ return self.time.eval def set_time(self, time): """Set simulation time variable. Parameters ---------- time: float Current simulation time. """ self.time.assign(time) def init_membrane_potential(self, output_shape=None, mode='zero'): """Initialize membrane potential. Helpful to avoid transient response in the beginning of the simulation. Not needed when reset between frames is turned off, e.g. with a video data set. Parameters ---------- output_shape: Optional[tuple] Output shape mode: str Initialization mode. - ``'uniform'``: Random numbers from uniform distribution in ``[-thr, thr]``. - ``'bias'``: Negative bias. - ``'zero'``: Zero (default). Returns ------- init_mem: ndarray A tensor of ``self.output_shape`` (same as layer). """ if output_shape is None: output_shape = self.output_shape if mode == 'uniform': init_mem = tf.random.uniform(output_shape, -self._v_thresh, self._v_thresh) elif mode == 'bias': init_mem = tf.zeros(output_shape, self._floatx) if hasattr(self, 'b'): b = self.get_weights()[1] for i in range(len(b)): init_mem[:, i, Ellipsis] = -b[i] else: # mode == 'zero': init_mem = tf.zeros(output_shape, self._floatx) return init_mem @tf.function def reset_spikevars(self, sample_idx): """ Reset variables present in spiking layers. Can be turned off for instance when a video sequence is tested. """ mod = self.config.getint('simulation', 'reset_between_nth_sample') mod = mod if mod else sample_idx + 1 do_reset = sample_idx % mod == 0 if do_reset: self.mem.assign(self.init_membrane_potential()) self.time.assign(self.dt) if self.tau_refrac > 0: self.refrac_until.assign(tf.zeros(self.output_shape, self._floatx)) if self.spiketrain is not None: self.spiketrain.assign(tf.zeros(self.output_shape, self._floatx)) if self.payloads: self.payloads.assign(tf.zeros(self.output_shape, self._floatx)) self.payloads_sum.assign(tf.zeros(self.output_shape, self._floatx)) if self.online_normalization and do_reset: self.spikecounts.assign(tf.zeros(self.output_shape, self._floatx)) self.max_spikerate.assign(0) self.v_thresh.assign(self._v_thresh) if clamp_var and do_reset: self.spikerate.assign(tf.zeros(self.input_shape, self._floatx)) self.var.assign(tf.zeros(self.input_shape, self._floatx)) @tf.function def init_neurons(self, input_shape): """Init layer neurons.""" from snntoolbox.bin.utils import get_log_keys, get_plot_keys output_shape = self.compute_output_shape(input_shape) if self.v_thresh is None: # Need this check because of @tf.function. self.v_thresh = tf.Variable(self._v_thresh, name='v_thresh', trainable=False) if self.mem is None: self.mem = tf.Variable(self.init_membrane_potential(output_shape), name='v_mem', trainable=False) if self.time is None: self.time = tf.Variable(self.dt, name='dt', trainable=False) # To save memory and computations, allocate only where needed: if self.tau_refrac > 0 and self.refrac_until is None: self.refrac_until = tf.Variable( tf.zeros(output_shape), name='refrac_until', trainable=False) if any({'spiketrains', 'spikerates', 'correlation', 'spikecounts', 'hist_spikerates_activations', 'operations', 'synaptic_operations_b_t', 'neuron_operations_b_t', 'spiketrains_n_b_l_t'} & (get_plot_keys(self.config) | get_log_keys(self.config))) and self.spiketrain is None: self.spiketrain = tf.Variable(tf.zeros(output_shape), trainable=False, name='spiketrains') if self.online_normalization and self.spikecounts is None: self.spikecounts = tf.Variable(tf.zeros(output_shape), trainable=False, name='spikecounts') self.max_spikerate = tf.Variable(tf.zeros([1]), trainable=False, name='max_spikerate') if self.config.getboolean('cell', 'payloads') \ and self.payloads is None: self.payloads = tf.Variable(tf.zeros(output_shape), trainable=False, name='payloads') self.payloads_sum = tf.Variable( tf.zeros(output_shape), trainable=False, name='payloads_sum') if clamp_var and self.spikerate is None: self.spikerate = tf.Variable(tf.zeros(input_shape), trainable=False, name='spikerates') self.var = tf.Variable(tf.zeros(input_shape), trainable=False, name='var') if hasattr(self, 'clamp_idx'): self.clamp_idx = self.get_clamp_idx() def get_layer_idx(self): """Get index of layer.""" label = self.name.split('_')[0] layer_idx = None for i in range(len(label)): if label[:i].isdigit(): layer_idx = int(label[:i]) return layer_idx def get_clamp_idx(self): """Get time step when to stop clamping membrane potential. Returns ------- : int Time step when to stop clamping. """ with open(self.filename_clamp_indices) as f: clamp_indices = json.load(f) clamp_idx = clamp_indices.get(str(self.get_layer_idx())) print("Clamping membrane potential until time step {}.".format( clamp_idx)) return clamp_idx def update_avg_variance(self, spikes): """Keep a running average of the spike-rates and the their variance. Parameters ---------- spikes: Output spikes. """ delta = spikes - self.spikerate spikerate_new = self.spikerate + delta / self.time var_new = self.var + delta * (spikes - spikerate_new) self.var.assign(var_new / self.time) self.spikerate.assign(spikerate_new) @tf.function def update_b(self): """ Get a new value for the bias, relaxing it over time to the true value. """ i = self.get_layer_idx() m = tf.clip_by_value(1 - (1 - 2 * self.time / self.duration) * i / 50, 0, 1) self.bias.assign(self.bias * m) def add_payloads(prev_layer, input_spikes): """Get payloads from previous layer.""" # Get only payloads of those pre-synaptic neurons that spiked payloads = tf.where(tf.equal(input_spikes, 0.), tf.zeros_like(input_spikes), prev_layer.payloads) print("Using spikes with payloads from layer {}".format(prev_layer.name)) return input_spikes + payloads def spike_call(call): @tf.function def decorator(self, x): if clamp_var: # Clamp membrane potential if spike rate variance too high self.update_avg_variance(x) if self.online_normalization: # Modify threshold if firing rate of layer too low self.v_thresh.assign(self.get_new_thresh()) if self.payloads: # Add payload from previous layer x = add_payloads(get_inbound_layers(self)[0], x) self.impulse = call(self, x) return self.update_neurons() return decorator def get_isi_from_impulse(impulse, epsilon): return tf.where(tf.less(impulse, epsilon), tf.zeros_like(impulse), tf.divide(1., impulse)) class SpikeConcatenate(Concatenate): """Spike merge layer""" def __init__(self, axis, **kwargs): kwargs.pop(str('config')) Concatenate.__init__(self, axis, **kwargs) @staticmethod def get_time(): pass @staticmethod def reset(sample_idx): """Reset layer variables.""" pass @property def class_name(self): """Get class name.""" return self.__class__.__name__ class SpikeFlatten(Flatten): """Spike flatten layer.""" def __init__(self, **kwargs): kwargs.pop(str('config')) Flatten.__init__(self, **kwargs) def call(self, x, mask=None): return super(SpikeFlatten, self).call(x) @staticmethod def get_time(): pass @staticmethod def reset(sample_idx): """Reset layer variables.""" pass @property def class_name(self): """Get class name.""" return self.__class__.__name__ class SpikeZeroPadding2D(ZeroPadding2D): """Spike ZeroPadding2D layer.""" def __init__(self, **kwargs): kwargs.pop(str('config')) ZeroPadding2D.__init__(self, **kwargs) def call(self, x, mask=None): return ZeroPadding2D.call(self, x) @staticmethod def get_time(): pass @staticmethod def reset(sample_idx): """Reset layer variables.""" pass @property def class_name(self): """Get class name.""" return self.__class__.__name__ class SpikeUpSampling2D(UpSampling2D): """Spike UpSampling2D layer.""" def __init__(self, **kwargs): kwargs.pop(str('config')) UpSampling2D.__init__(self, **kwargs) def call(self, x, mask=None): return UpSampling2D.call(self, x) @staticmethod def get_time(): pass @staticmethod def reset(sample_idx): """Reset layer variables.""" pass @property def class_name(self): """Get class name.""" return self.__class__.__name__ class SpikeReshape(Reshape): """Spike Reshape layer.""" def __init__(self, **kwargs): kwargs.pop(str('config')) Reshape.__init__(self, **kwargs) def call(self, x, mask=None): return Reshape.call(self, x) @staticmethod def get_time(): pass @staticmethod def reset(sample_idx): """Reset layer variables.""" pass @property def class_name(self): """Get class name.""" return self.__class__.__name__ class SpikeDense(Dense, SpikeLayer): """Spike Dense layer.""" def build(self, input_shape): """Creates the layer neurons and connections. Parameters ---------- input_shape: Union[list, tuple, Any] Keras tensor (future input to layer) or list/tuple of Keras tensors to reference for weight shape computations. """ Dense.build(self, input_shape) self.init_neurons(input_shape.as_list()) if self.config.getboolean('cell', 'bias_relaxation'): self.update_b() @spike_call def call(self, x, **kwargs): return Dense.call(self, x) class SpikeConv2D(Conv2D, SpikeLayer): """Spike 2D Convolution.""" def build(self, input_shape): """Creates the layer weights. Must be implemented on all layers that have weights. Parameters ---------- input_shape: Union[list, tuple, Any] Keras tensor (future input to layer) or list/tuple of Keras tensors to reference for weight shape computations. """ Conv2D.build(self, input_shape) self.init_neurons(input_shape.as_list()) if self.config.getboolean('cell', 'bias_relaxation'): self.update_b() @spike_call def call(self, x, mask=None): return Conv2D.call(self, x) class SpikeDepthwiseConv2D(DepthwiseConv2D, SpikeLayer): """Spike 2D DepthwiseConvolution.""" def build(self, input_shape): """Creates the layer weights. Must be implemented on all layers that have weights. Parameters ---------- input_shape: Union[list, tuple, Any] Keras tensor (future input to layer) or list/tuple of Keras tensors to reference for weight shape computations. """ DepthwiseConv2D.build(self, input_shape) self.init_neurons(input_shape.as_list()) if self.config.getboolean('cell', 'bias_relaxation'): self.update_b() @spike_call def call(self, x, mask=None): return DepthwiseConv2D.call(self, x) class SpikeAveragePooling2D(AveragePooling2D, SpikeLayer): """Spike Average Pooling.""" def build(self, input_shape): """Creates the layer weights. Must be implemented on all layers that have weights. Parameters ---------- input_shape: Union[list, tuple, Any] Keras tensor (future input to layer) or list/tuple of Keras tensors to reference for weight shape computations. """ AveragePooling2D.build(self, input_shape) self.init_neurons(input_shape.as_list()) @spike_call def call(self, x, mask=None): return AveragePooling2D.call(self, x) class SpikeMaxPooling2D(MaxPooling2D, SpikeLayer): """Spike Max Pooling.""" def build(self, input_shape): """Creates the layer neurons and connections.. Parameters ---------- input_shape: Union[list, tuple, Any] Keras tensor (future input to layer) or list/tuple of Keras tensors to reference for weight shape computations. """ MaxPooling2D.build(self, input_shape) self.init_neurons(input_shape.as_list()) @spike_call def call(self, x, mask=None): """Layer functionality.""" print("WARNING: Rate-based spiking MaxPooling layer is not " "implemented in TensorFlow backend. Falling back on " "AveragePooling. Switch to Theano backend to use MaxPooling.") return tf.nn.avg_pool2d(x, self.pool_size, self.strides, self.padding) class SpikeNormAdd(Layer): def __init__(self, activation=None, **kwargs): self._initial_weights = kwargs.pop('weights', None) self.kwargs = kwargs.copy() kwargs.pop(str('config')) super(SpikeNormAdd, self).__init__(**kwargs) def build(self, input_shape): super(SpikeNormAdd, self).build(input_shape) n = len(input_shape) self.filters = input_shape[0][-1] # Weights if self._initial_weights is not None: weights_conv = self._initial_weights[:2] self.b = self._initial_weights[2:] self._initial_weights = None else: self.b = [None]*n for i in range(len(self.b)): self.b[i] = self.add_weight( name="unshift"+str(i), shape = (self.filters,), initializer = "zeros", trainable = True ) weights_conv = ( np.zeros([1, 1, n*self.filters, self.filters]), np.zeros(self.filters) ) for k in range(self.filters): weights_conv[0][:, :, k::self.filters, k] = 1 # Convolution layer self.conv = SpikeConv2D( filters=self.filters, kernel_size=1, weights=weights_conv, **self.kwargs ) del self.kwargs conv_in_shape = tf.TensorShape(np.array(input_shape[0])*[1,1,1,n]) self.conv.build(conv_in_shape) self.conv.data_format = 'channels_last' def call(self, input_data): tensor = [None]*len(self.b) for i,image in enumerate(input_data): tensor[i] = image+self.b[i] out = tf.concat(tensor, axis=-1) out = self.conv.call(out) return out def compute_output_shape(self, input_shape): return input_shape[0] + (self.filters,) def get_config(self): config = super().get_config().copy() config['weights'] = self.get_weights() config.update({ 'activation': None, 'filters': self.filters }) return config def set_weights(self, weights): conv_weights = self.conv.get_weights() if len(weights) == 2: conv_weights[:2] = weights #print('--',self.name,' - Basic Conv2D weights set.') elif len(weights) == 2 + len(self.b): conv_weights[:2] = weights[:2] self.b = weights[2:] #print('--',self.name,' - Basic Conv2D weights and input biases set.') elif len(weights) == len(conv_weights) + len(self.b): conv_weights = weights[:len(conv_weights)] self.b = weights[len(conv_weights):] #print('--',self.name,' - SpikeConv2D weights and input biases set.') elif len(weights) == len(conv_weights): conv_weights = weights #print('--',self.name,' - SpikeConv2D weights set.') else: print('<!!! - ',self.name,'> The weights provided do not match the layer shape. \n \ - SpikeConv2D accepts list of either length 2 or 5. \n \ - Input biases accept list of length',len(self.b),'.\n \ (Always write [SpikeConv2D weights , input biases])') self.conv.set_weights(conv_weights) def get_weights(self): return self.conv.get_weights()[:2]+self.b def get_time(self): return self.conv.time.eval def set_time(self, time): self.conv.time.assign(time) def reset(self, sample_idx): self.conv.reset_spikevars(tf.constant(sample_idx)) @property def class_name(self): """Get class name.""" return self.__class__.__name__ class SpikeNormReshape(NormReshape): """Spike Reshape layer.""" def __init__(self, **kwargs): kwargs.pop(str('config')) NormReshape.__init__(self, **kwargs) self.dt = 1 def build(self, input_shape): super(SpikeNormReshape, self).build(input_shape) self.accum = self.add_weight( name="accumulator", shape = input_shape, initializer = "zeros", trainable = False ) def call(self, x, mask=None): x = x + self.accum out = x*(self.lmbda-self.shift)+(self.shift) out = self.resh(out) self.accum = x return out @staticmethod def get_time(): pass @staticmethod def reset(self, sample_idx): """Reset layer variables.""" self.accum += -self.accum @property def class_name(self): """Get class name.""" return self.__class__.__name__ def set_dt(self, t): self.dt = t class SpikeNormConv2D(NormConv2D, SpikeLayer): """Spike Normalized 2D Convolution.""" def build(self, input_shape): NormConv2D.build(self, input_shape) self.init_neurons(input_shape.as_list()) if self.config.getboolean('cell', 'bias_relaxation'): self.update_b() @spike_call def call(self, x, mask=None): return NormConv2D.call(self, x) custom_layers = { 'SpikeFlatten': SpikeFlatten, 'SpikeReshape': SpikeReshape, 'SpikeZeroPadding2D': SpikeZeroPadding2D, 'SpikeDense': SpikeDense, 'SpikeConv2D': SpikeConv2D, 'SpikeDepthwiseConv2D': SpikeDepthwiseConv2D, 'SpikeAveragePooling2D': SpikeAveragePooling2D, 'SpikeMaxPooling2D': SpikeMaxPooling2D, 'SpikeConcatenate': SpikeConcatenate, 'SpikeUpsampling2D': SpikeUpSampling2D, 'SpikeNormReshape': SpikeNormReshape, 'SpikeNormAdd': SpikeNormAdd } ```
{ "source": "joaroque/sidown", "score": 2 }
#### File: joaroque/sidown/sidown.py ```python try: import os import io import sys import time import urllib import requests except ImportError: exit("Verifica os módulos e tente denovo ...") #-------------COLOR/STYLE-------------# class Color: END = '\033[0m' BOLD = '\33[1m' RED = '\033[91m' PISCA = '\33[5m' BGRED = '\33[41m' BLUE = '\033[94m' GREEN = '\033[92m' BGBLUE = '\33[44m' WARNING = '\033[93m' UNDERLINE = '\033[4m' IMPORTANT = '\33[35m' #atalhos-cores r = '\033[91m' g = '\033[92m' e = '\033[0m' b = '\33[1m' abrir = r+"["+e fechar = r+"]"+e banner = """ .::::::. ::::::::::-. ... .:: . .::::::. :::. ;;;` ` ;;; ;;, `';, .;;;;;;;. ';;, ;; ;;;' `;;;;, `;;; '[==/[[[[,[[[ `[[ [[,[[ \[[,'[[, [[, [[' [[[[[. '[[ ''' $$$$ $$, $$$$$, $$$ Y$c$$$c$P $$$ "Y$c$$ 88b dP888 888_,o8P'"888,_ _,88P "88"888 888 Y88 "YMmMY" MMM MMMMP"` "YMMMMMP" "M "M" MMM YM ╔═════════════════════════════════════════════════════════════╝ ╚[04-2020]═════════════════[HaguacomH]═════════════════[V.1.0]$ """ #-------------FUNÇÕES-------------# #-------------LIMPATELA-------------# def clearScr(): os.system('clear') #-------------SAI-DO-PROGRAMA-------------# def exit(): os.system('exit') #-------------BANNER&MENU-------------# def menu(): ops=[g+"1", g+"2", g+"3", g+"4", g+"5", g+"6", g+"7", g+"8", g+"9", g+"0"+e] print("\t"+abrir+ops[0]+fechar+" start full scan "+abrir+ops[4]+fechar+" find passwds.txt") print("\t"+abrir+ops[1]+fechar+" find css files "+abrir+ops[5]+fechar+" find htaccess") print("\t"+abrir+ops[2]+fechar+" find js files "+abrir+ops[6]+fechar+" find admin") print("\t"+abrir+ops[3]+fechar+" find fonts "+abrir+ops[7]+fechar+" about & exit") #-------------BAIXA-ARQUIVO-------------# def down(m, nome=None): if nome is None: nome = os.path.basename(m.split("?")[0]) file_res = requests.get(m, stream=True) if file_res.status_code == requests.codes.OK: with open(nome, 'wb') as novo_arquivo: for parte in file_res.iter_content(chunk_size=256): novo_arquivo.write(parte) print("\r Download {}".format(nome)) else: file_res.raise_for_status() #-------------ACHA OS DIRECTÓRIOS E ARQUIVOS DENTRO-------------# def find(url,dirs_txt,files_txt): #---LISTA DIR dirs = io.open(dirs_txt , "r", encoding="utf8") dirs_list = dirs.readlines() dirs.close() #print("Number of dirs: "+str(len(dirs_list))) #---ACHA DIR for i in range(len(dirs_list)): search = dirs_list[i].strip() target = (url + "/" + search + "/") response = requests.get(target) if response.status_code == 403: print("\nDIR FOUND: {}".format(target)) #---LISTA ARQUIVO files = io.open(files_txt , "r", encoding="utf8") files_list = files.readlines() files.close() #---ACHA ARQUIVO for x in range(len(files_list)): sub_search = files_list[x].strip() sub_target = (target + sub_search) sub_response = requests.get(sub_target) if sub_response.status_code == 200: print(" File Found ══> {}".format(files_list[x])) down(sub_target) #---BAIXA ARQUVIO else: #print("Bad file") pass pass pass else: #print("Bad dirs") pass pass back2menu = str(input("\nBack to menu(Y/N): ")) if back2menu.upper() == "Y": main() else: exit() pass pass #--------------ACHA ARQUIVOS ÚNICOS-----------# def find_single(url,wordlists): #---LISTA WORDLIST word = io.open(wordlists, "r", encoding="utf-8") word_list = word.readlines() word.close() #---ACHA ARQUIVO for i in range(len(word_list)): search = word_list[i].strip() target = (url + "/" + search) response = requests.get(target) if respnse.status_code == 200: print("\nFILE FOUND: {}".format(target)) else: pass pass back2menu = str(input("\nBack to menu(Y/N): ")) if back2menu.upper() == "Y": main() else: exit() pass pass #-------------ACHA O PAINEL ADMIN-------------# def find_admin(url, wordlists): #---LISTA WORDLIST word = io.open(wordlists, "r", encoding="utf-8") word_list = word.readlines() word.close() for i in range(len(word_list)): search = word_list[i].strip() target = (url + "/" + search + "/") response = requests.get(target) if response.status_code == 200: print("ADMIN FOUND: {}".format(target)) else: pass pass back2menu = str(input("\nBack to menu(Y/N): ")) if back2menu.upper() == "Y": main() else: exit() pass pass #-------------FUNÇÃO-PRINCIPAL-------------# def main(): clearScr() #---banner b = (Color.BOLD+banner+Color.END) print(b) #---inserir url url = str(input("\n[Ex: http://viado.com]\nInsere uma URL: http://")) url = "http://"+url #---função menu clearScr() print(b) menu() #---PROMPT abrir = g+"["+e fechar = g+"]"+e op = int(input("\n"+r+"╔═══"+abrir+"SiDown"+fechar+r+"══"+abrir+url[7:]+fechar+r+"═"+abrir+"menu"+fechar+r+":\n╚═════> "+e)) if op == 1: #full_scan() print("Full scan") elif op == 2: p1 = "wordlists/css_dirs.txt" p2 = "wordlists/css_files.txt" find(url,p1,p2) elif op == 3: p1 = "wordlists/js_dirs.txt" p2 = "wordlists/js_files.txt" find(url,p1,p2) elif op == 4: p1 = "wordlists/fonts_dirs.txt" p2 = "wordlists/fonts_files.txt" find(url,p1,p2) elif op == 5: p1 = "wordlists/psswrd_dirs.txt" find_single(url,p1) elif op == 6: p1 = "wordlists/htaccess.txt" find_single(url,p1) elif op == 7: #about() p1 = "wordlists/admin.txt" find_admin(url,p1) elif op == 8: #find_psswd_txt() clearScr() print(b) print(""" SiDown is a tool for download public files in websites. Sipmle, minimalist and nobbie kkk By: Joa_Roque <NAME> """) time.sleep(10) main() else: main() pass if __name__ == '__main__': try: main() except KeyboardInterrupt: print("\n\nFIM DA EXECUÇÃO...\n") pass pass ```
{ "source": "joar/py-openapilib", "score": 2 }
#### File: source/examples/route-decorator.py ```python import json from typing import Union, GenericMeta, List, get_type_hints from openapilib import serialize_spec, spec def api_route( summary: str=None, description: str=None, request_body_type: Union[type, GenericMeta]=None, response_type: Union[type, GenericMeta]=None, # ... ): def inner(func): # defaults summary_: spec.Skippable[str] = spec.SKIP description_: spec.Skippable[str] = spec.SKIP response_type_: spec.SchemaSourceType = None request_body_type_: spec.SchemaSourceType = None tags_: Set[str] = [] # ... # Argument parsing if description is None: if func.__doc__ is not None: description_ = func.__doc__ else: description_ = spec.SKIP if summary is not None: summary_ = summary else: if description_ is not spec.SKIP: summary_ = description_.strip().splitlines()[0] if response_type is not None: response_type_ = response_type else: response_type_ = get_type_hints(func).get('return') if request_body_type is not None: request_body_type_ = request_body_type # Output responses = {} if response_type_ is not None: responses = { '200': spec.Response( description=description_, content={ 'application/json': spec.MediaType( schema=spec.Schema.from_type( response_type_, ) ) } ) } request_body = spec.SKIP if request_body_type_ is not None: request_body = spec.RequestBody( content={ 'application/json': spec.MediaType( schema=spec.Schema.from_type( request_body_type_, ) ) } ) operation_spec = spec.Operation( summary=summary_, description=description_, request_body=request_body, responses=responses, tags=tags_ ) # Do something with the Operation spec: We'll attach it to the route # handler for now func.operation_spec = operation_spec return func return inner # Our example route handler code # ------------------------------------------------------------------------------ @api_route(request_body_type=List[int]) def example_handler(request) -> int: pass from openapilib.helpers import LazyPretty print( json.dumps(serialize_spec(example_handler.operation_spec)) ) ``` #### File: py-openapilib/openapilib/helpers.py ```python import json from typing import TYPE_CHECKING, TypeVar, Callable, Any if TYPE_CHECKING: from .spec import Skippable T = TypeVar('T') def convert_skippable( convert: Callable[ [ 'Skippable[Any]' ], T ], ) -> Callable[ [ 'Skippable[Any]' ], 'Skippable[T]' ]: def convert_if_not_skip(value: 'Skippable[Any]') -> 'Skippable[T]': from .spec import SKIP if value is SKIP: return SKIP else: return convert(value) return convert_if_not_skip class LazyString: NOTHING = object() def __init__(self, callback): self.callback = callback self._result = self.NOTHING @property def result(self): if self._result is self.NOTHING: self._result = self.callback() return self._result def __str__(self): return self.result class LazyPretty(LazyString): def __str__(self): return '\n' + pretty_json(self.result) class Pretty: def __init__(self, obj): self.obj = obj def __str__(self): return '\n' + pretty_json(self.obj) def pretty_json(obj): return json.dumps( obj, indent=2, default=lambda o: repr(o), ) ```
{ "source": "joarreg/Sherpa.ai-Federated-Learning-Framework", "score": 3 }
#### File: shfl/data_base/data_base.py ```python import abc import numpy as np def split_train_test(data, labels, dim): """ Method that randomly choose the train and test sets from data and labels. # Arguments: data: Numpy matrix with data for extract the validation data labels: Numpy array with labels dim: Size for validation data # Returns: new_data: Data, labels, validation data and validation labels """ randomize = np.arange(len(labels)) np.random.shuffle(randomize) data = data[randomize, ] labels = labels[randomize] test_data = data[0:dim, ] test_labels = labels[0:dim] rest_data = data[dim:, ] rest_labels = labels[dim:] return rest_data, rest_labels, test_data, test_labels class DataBase(abc.ABC): """ Abstract class for data base. Load method must be implemented in order to create a database able to \ interact with the system, in concrete with data distribution methods \ (see: [Data Distribution](../data_distribution)). Load method should save data in the protected Attributes: # Attributes: * **train_data, train_labels, test_data, test_labels** # Properties: train: Returns train data and labels test: Returns test data and labels data: Returns train data, train labels, validation data, validation labels, test data and test labels """ def __init__(self): self._train_data = [] self._test_data = [] self._train_labels = [] self._test_labels = [] @property def train(self): return self._train_data, self._train_labels @property def test(self): return self._test_data, self._test_labels @property def data(self): return self._train_data, self._train_labels, self._test_data, self._test_labels @abc.abstractmethod def load_data(self): """ Abstract method that loads the data """ def shuffle(self): """ Shuffles all data """ randomize = np.arange(len(self._train_labels)) np.random.shuffle(randomize) self._train_data = self._train_data[randomize, ] self._train_labels = self._train_labels[randomize] randomize = np.arange(len(self._test_labels)) np.random.shuffle(randomize) self._test_data = self._test_data[randomize, ] self._test_labels = self._test_labels[randomize] class LabeledDatabase(DataBase): """ Class to create generic labeled database from data and labels vectors # Arguments data: Data features to load labels: Labels for this features train_percentage: float between 0 and 1 to indicate how much data is dedicated to train """ def __init__(self, data, labels, train_percentage=0.8): super(DataBase, self).__init__() self._data = data self._labels = labels self._train_percentage = train_percentage def load_data(self): """ Load data # Returns all_data : train data, train labels, test data and test labels """ test_size = round(len(self._data) * (1 - self._train_percentage)) self._train_data, self._train_labels, \ self._test_data, self._test_labels = split_train_test(self._data, self._labels, test_size) self.shuffle() return self.data ``` #### File: shfl/federated_aggregator/iowa_federated_aggregator.py ```python from shfl.federated_aggregator.weighted_fedavg_aggregator import WeightedFedAvgAggregator import numpy as np class IowaFederatedAggregator(WeightedFedAvgAggregator): """ Class of the IOWA version of [WeightedFedAvgAggregator](../federated_aggregator/#weightedfedavgaggregator-class) """ def __init__(self): super().__init__() self._a = 0 self._b = 0 self._c = 0 self._y_b = 0 self._k = 0 self._performance = None self._dynamic = None def set_ponderation(self, performance, dynamic=True, a=0, b=0.2, c=0.8, y_b=0.4, k=3/4): """ Method which calculate ponderation weights of each client based on the performance vector. # Arguments: performance: vector with the performance of each local client in a validation set dynamic: boolean indicating if we use the dynamic or static version (default True) a: first argument of linguistic quantifier (default 0) b: second argument of linguistic quantifier (default 0.2) c: third argument of linguistic quantifier (default 0.8) y_b: fourth argument of linguistic quantifier (default 0.4) k: distance param of the dynamic version (default 3/4) """ self._a = a self._b = b self._c = c self._y_b = y_b self._k = k self._performance = performance self._dynamic = dynamic self._percentage = self.get_ponderation_weights() def q_function(self, x): """ Method that returns ponderation weights for OWA operator # Arguments: x: value of the ordering function u (orderer performance of each local model) # Returns: ponderation_weights: ponderation of each client. """ if x <= self._a: return 0 elif x <= self._b: return (x - self._a) / (self._b - self._a) * self._y_b elif x <= self._c: return (x - self._b) / (self._c - self._b) * (1 - self._y_b) + self._y_b else: return 1 def get_ponderation_weights(self): """ Method that returns the value of the linguistic quantifier (Q_function) for each value x # Returns: ponderation_weights: ponderation of each client. """ ordered_idx = np.argsort(-self._performance) self._performance = self._performance[ordered_idx] num_clients = len(self._performance) ponderation_weights = np.zeros(num_clients) if self._dynamic: max_distance = self._performance[0] - self._performance[-1] vector_distances = np.array([self._performance[0] - self._performance[i] for i in range(num_clients)]) is_outlier = np.array([vector_distances[i] > self._k * max_distance for i in range(num_clients)]) num_outliers = len(is_outlier[is_outlier is True]) self._c = 1 - num_outliers / num_clients self._b = self._b * self._c for i in range(num_clients): ponderation_weights[i] = self.q_function((i + 1) / num_clients) - self.q_function(i / num_clients) return ponderation_weights ``` #### File: shfl/federated_aggregator/weighted_fedavg_aggregator.py ```python import numpy as np from shfl.federated_aggregator.federated_aggregator import FederatedAggregator class WeightedFedAvgAggregator(FederatedAggregator): """ Implementation of Weighted Federated Avegaring Aggregator. The aggregation of the parameters is based in the number of data \ in every node. It implements [Federated Aggregator](../federated_aggregator/#federatedaggregator-class) """ def aggregate_weights(self, clients_params): """ Implementation of abstract method of class [AggregateWeightsFunction](../federated_aggregator/#federatedaggregator-class) # Arguments: clients_params: list of multi-dimensional (numeric) arrays. Each entry in the list contains the model's parameters of one client. # Returns: aggregated_weights: aggregator weights representing the global learning model """ clients_params_array = np.array(clients_params) num_clients = clients_params_array.shape[0] num_layers = clients_params_array.shape[1] ponderated_weights = np.array([self._percentage[client] * clients_params_array[client, :] for client in range(num_clients)]) aggregated_weights = np.array([np.sum(ponderated_weights[:, layer], axis=0) for layer in range(num_layers)]) return aggregated_weights ``` #### File: shfl/model/logistic_regression_model.py ```python from shfl.model.model import TrainableModel import numpy as np from sklearn.linear_model import LogisticRegression from sklearn import metrics class LogisticRegressionModel(TrainableModel): """ This class offers support for scikit-learn logistic regression model. It implements [TrainableModel](../model/#trainablemodel-class) # Arguments: n_features: integer number of features (independent variables). classes: array of classes to predict. At least 2 classes must be provided. model_inputs: optional dictionary containing the [model input parameters](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) """ def __init__(self, n_features, classes, model_inputs=None): if model_inputs is None: model_inputs = {} self._check_initialization(n_features, classes) self._model = LogisticRegression(**model_inputs) self._n_features = n_features classes = np.sort(np.asarray(classes)) self._model.classes_ = classes n_classes = len(classes) if n_classes == 2: n_classes = 1 self.set_model_params(np.zeros((n_classes, n_features + 1))) def train(self, data, labels): """ Implementation of abstract method of class [TrainableModel](../model/#trainablemodel-class) # Arguments data: Data, array-like of shape (n_samples, n_features) labels: Target classes, array-like of shape (n_samples,) """ self._check_data(data) self._check_labels(labels) self._model.fit(data, labels) def predict(self, data): """ Implementation of abstract method of class [TrainableModel](../model/#trainablemodel-class) Arguments: data: Data, array-like of shape (n_samples, n_features) """ self._check_data(data) prediction = self._model.predict(data) return prediction def evaluate(self, data, labels): """ Implementation of abstract method of class [TrainableModel](../model/#trainablemodel-class) Metrics for evaluating model's performance. Arguments: data: Data, array-like of shape (n_samples, n_features) labels: Target classes, array-like of shape (n_samples,) """ self._check_data(data) self._check_labels(labels) prediction = self.predict(data) bas = metrics.balanced_accuracy_score(labels, prediction) cks = metrics.cohen_kappa_score(labels, prediction) return bas, cks def performance(self, data, labels): """ Implementation of abstract method of class [TrainableModel](../model/#trainablemodel-class) Arguments: data: Data, array-like of shape (n_samples, n_features) labels: Target classes, array-like of shape (n_samples,) """ self._check_data(data) self._check_labels(labels) prediction = self.predict(data) bas = metrics.balanced_accuracy_score(labels, prediction) return bas def get_model_params(self): """ Implementation of abstract method of class [TrainableModel](../model/#trainablemodel-class) """ return np.column_stack((self._model.intercept_, self._model.coef_)) def set_model_params(self, params): """ Implementation of abstract method of class [TrainableModel](../model/#trainablemodel-class) """ self._model.intercept_ = params[:,0] self._model.coef_ = params[:, 1:] def _check_data(self, data): """ Method that checks whether the data dimension is correct. """ if data.ndim == 1: if self._n_features != 1: raise AssertionError("Data need to have the same number of features described by the model, " + str(self._n_features) + ". Current data have only 1 feature.") elif data.shape[1] != self._n_features: raise AssertionError("Data need to have the same number of features described by the model, " + str(self._n_features) + ". Current data has " + str(data.shape[1]) + " features.") def _check_labels(self, labels): """ Method that checks whether the classes are correct. The classes in client's data must be the same as the input ones. # Arguments: labels: array with classes """ classes = np.unique(np.asarray(labels)) if not np.array_equal(self._model.classes_, classes): raise AssertionError("Labels need to have the same classes described by the model, " + str(self._model.classes_) + ". Labels of this node are " + str(classes) + " .") @staticmethod def _check_initialization(n_features, classes): """ Method that checks if model's initialization is correct. The number of features must be an integer equal or greater to one, and there must be at least two classes. # Arguments: n_features: number of features classes: array of classes to predict """ if not isinstance(n_features, int): raise AssertionError("n_features must be a positive integer number. Provided " + str(n_features) + " features.") if n_features < 0: raise AssertionError("It must verify that n_features > 0. Provided value " + str(n_features) + ".") if len(classes) < 2: raise AssertionError("It must verify that the number of classes > 1. Provided " + str(len(classes)) + " classes.") if len(np.unique(classes)) != len(classes): classes = list(classes) duplicated_classes = [i_class for i_class in classes if classes.count(i_class) > 1] raise AssertionError("No duplicated classes allowed. Class(es) duplicated: " + str(duplicated_classes) ) ``` #### File: shfl/private/federated_attack.py ```python import abc from shfl.private.federated_operation import FederatedTransformation import random import numpy as np class FederatedDataAttack(abc.ABC): """ Interface defining method to apply an FederatedAttack over [FederatedData](../federated_operation/#federateddata-class) """ @abc.abstractmethod def apply_attack(self, data): """ This method receives federated data to be modified and performs the required modifications \ (federated_attack) over it simulating the adversarial attack. # Arguments: federated_data: The data of nodes that we attack """ class ShuffleNode(FederatedTransformation): """ Implementation of Federated Transformation for shuffling labels of labeled data in order to implement \ data poisoning attack. This class implements interface [FederatedTransformation](../federated_operation/#federatedtransformation-class). """ def apply(self, labeled_data): """ Method that implements apply abstract method of [FederatedTransformation](../federated_operation/#federatedtransformation-class) \ shuffling labels of labeled_data """ random.shuffle(labeled_data.label) class FederatedPoisoningDataAttack(FederatedDataAttack): """ Class representing poisoning data attack simulation. This simulation consists on shuffling \ the labels of some nodes. For that purpose, it uses class [ShuffleNode](./#shufflenode-class). This class implements interface [FederatedDataAttack](./#federateddataattack-class). # Arguments: percentage: percentage of nodes that are adversarial ones # Properties: adversaries: Returns adversaries value """ def __init__(self, percentage): super().__init__() self._percentage = percentage self._adversaries = [] @property def adversaries(self): return self._adversaries def apply_attack(self, federated_data): """ Method that implements federated attack of data poisoning shuffling training labels of some nodes. # Arguments: federated_data: Instance of Federated Data [Federated Data](../federated_operation#federateddata-class) """ num_nodes = federated_data.num_nodes() list_nodes = np.arange(num_nodes) self._adversaries = random.sample(list(list_nodes), k=int(self._percentage / 100 * num_nodes)) boolean_adversaries = [1 if x in self._adversaries else 0 for x in list_nodes] for node, boolean in zip(federated_data, boolean_adversaries): if boolean: node.apply_data_transformation(ShuffleNode()) ``` #### File: test/differential_privacy/test_composition_dp.py ```python import pytest import numpy as np from shfl.private import DataNode from shfl.private.data import UnprotectedAccess from shfl.differential_privacy.composition_dp import ExceededPrivacyBudgetError from shfl.differential_privacy.composition_dp import AdaptiveDifferentialPrivacy from shfl.differential_privacy.dp_mechanism import GaussianMechanism def test_exception__budget(): exception = ExceededPrivacyBudgetError(epsilon_delta=1) assert str(exception) is not None def test_exception_exceeded_privacy_budget_error(): scalar = 175 dp_mechanism = GaussianMechanism(1, epsilon_delta=(0.1, 1)) data_access_definition = AdaptiveDifferentialPrivacy(epsilon_delta=(1, 0), differentially_private_mechanism=dp_mechanism) node = DataNode() node.set_private_data("scalar", scalar) node.configure_data_access("scalar", data_access_definition) with pytest.raises(ExceededPrivacyBudgetError): node.query("scalar") def test_constructor_bad_params(): with pytest.raises(ValueError): AdaptiveDifferentialPrivacy(epsilon_delta=(1, 2, 3)) with pytest.raises(ValueError): AdaptiveDifferentialPrivacy(epsilon_delta=(-1, 2)) with pytest.raises(ValueError): AdaptiveDifferentialPrivacy(epsilon_delta=(1, -2)) with pytest.raises(ValueError): AdaptiveDifferentialPrivacy(epsilon_delta=(1, 1), differentially_private_mechanism=UnprotectedAccess()) def test_configure_data_access(): data_access_definition = AdaptiveDifferentialPrivacy(epsilon_delta=(1, 1)) data_node = DataNode() data_node.set_private_data("test", np.array(range(10))) with pytest.raises(ValueError): data_node.configure_data_access("test", data_access_definition) data_node.query("test") def test_data_access(): data_access_definition = AdaptiveDifferentialPrivacy(epsilon_delta=(1, 1)) data_node = DataNode() array = np.array(range(10)) data_node.set_private_data("test", array) data_node.configure_data_access("test", data_access_definition) query_result = data_node.query("test", differentially_private_mechanism=GaussianMechanism(1, epsilon_delta=(0.1, 1))) assert query_result is not None def test_exception_no_access_definition(): data_access_definition = AdaptiveDifferentialPrivacy(epsilon_delta=(1, 1)) data_node = DataNode() array = np.array(range(10)) data_node.set_private_data("test", array) data_node.configure_data_access("test", data_access_definition) with pytest.raises(ValueError): data_node.query("test") def test_exception_budget(): dp_mechanism = GaussianMechanism(1, epsilon_delta=(0.1, 1)) data_access_definition = AdaptiveDifferentialPrivacy(epsilon_delta=(1, 1), differentially_private_mechanism=dp_mechanism) data_node = DataNode() array = np.array(range(10)) data_node.set_private_data("test", array) data_node.configure_data_access("test", data_access_definition) with pytest.raises(ExceededPrivacyBudgetError): for i in range(1, 1000): data_node.query("test") def test_exception_budget_2(): data_access_definition = AdaptiveDifferentialPrivacy(epsilon_delta=(1, 0.001)) data_node = DataNode() array = np.array(range(10)) data_node.set_private_data("test", array) data_node.configure_data_access("test", data_access_definition) with pytest.raises(ExceededPrivacyBudgetError): for i in range(1, 1000): data_node.query("test", differentially_private_mechanism=GaussianMechanism(1, epsilon_delta=(0.1, 1))) ``` #### File: test/differential_privacy/test_sensitivity_sampler.py ```python import numpy as np from shfl.private.query import Mean from shfl.differential_privacy.probability_distribution import NormalDistribution from shfl.differential_privacy import SensitivitySampler from shfl.differential_privacy import L1SensitivityNorm from shfl.differential_privacy import L2SensitivityNorm def test_sample_sensitivity_gamma(): distribution = NormalDistribution(0, 1) sampler = SensitivitySampler() _, mean = sampler.sample_sensitivity(Mean(), L1SensitivityNorm(), distribution, n=100, gamma=0.33) assert np.abs(mean - 0) < 0.5 def test_sample_sensitivity_m(): distribution = NormalDistribution(0, 1) sampler = SensitivitySampler() _, mean = sampler.sample_sensitivity(Mean(), L1SensitivityNorm(), distribution, n=100, m=285) assert np.abs(mean - 0) < 0.5 def test_sample_sensitivity_gamma_m(): distribution = NormalDistribution(0, 1) sampler = SensitivitySampler() _, mean = sampler.sample_sensitivity(Mean(), L1SensitivityNorm(), distribution, n=100, m=285, gamma=0.33) assert np.abs(mean - 0) < 0.5 def test_l2_sensitivity_norm(): distribution = NormalDistribution(0, 1) sampler = SensitivitySampler() _, mean = sampler.sample_sensitivity(Mean(), L2SensitivityNorm(), distribution, n=100, m=285, gamma=0.33) assert np.abs(mean - 0) < 0.5 ``` #### File: test/federated_aggregator/test_cluster_fedavg_aggregator.py ```python import numpy as np from unittest.mock import Mock, patch from shfl.federated_aggregator.cluster_fedavg_aggregator import ClusterFedAvgAggregator @patch('shfl.federated_aggregator.cluster_fedavg_aggregator.KMeans') def test_aggregate_weights(mock_kmeans): cfa = ClusterFedAvgAggregator() model_aggregator = Mock() centers = np.random.rand(10) model_aggregator.cluster_centers_ = centers mock_kmeans.return_value = model_aggregator clients_params = np.random.rand(90).reshape((10, 3, 3)) clients_params_array = np.concatenate((clients_params)) n_clusters = clients_params[0].shape[0] res = cfa.aggregate_weights(clients_params) mock_kmeans.assert_called_once_with(n_clusters=n_clusters, init='k-means++') model_aggregator.fit.assert_called_once() np.testing.assert_array_equal(clients_params_array, model_aggregator.fit.call_args[0][0]) assert isinstance(res, np.ndarray) assert np.array_equal(res, centers) ``` #### File: test/federated_government/test_federated_images_classifier.py ```python from shfl.federated_government.federated_images_classifier import FederatedImagesClassifier, ImagesDataBases from shfl.model.deep_learning_model import DeepLearningModel from shfl.federated_aggregator.federated_aggregator import FederatedAggregator from shfl.private.federated_operation import FederatedData from unittest.mock import Mock import pytest import random import string def test_images_classifier_iid(): example_database = list(ImagesDataBases.__members__.keys())[0] fic = FederatedImagesClassifier(example_database) for node in fic._federated_data: assert isinstance(node._model, DeepLearningModel) assert isinstance(fic._model, DeepLearningModel) assert isinstance(fic._aggregator, FederatedAggregator) assert isinstance(fic._federated_data, FederatedData) assert fic._test_data is not None assert fic._test_labels is not None def test_images_classifier_noiid(): example_database = list(ImagesDataBases.__members__.keys())[0] fic = FederatedImagesClassifier(example_database, False) for node in fic._federated_data: assert isinstance(node._model, DeepLearningModel) assert isinstance(fic._model, DeepLearningModel) assert isinstance(fic._aggregator, FederatedAggregator) assert isinstance(fic._federated_data, FederatedData) assert fic._test_data is not None assert fic._test_labels is not None def test_images_classifier_wrong_database(): letters = string.ascii_lowercase wrong_database = ''.join(random.choice(letters) for i in range(10)) fic = FederatedImagesClassifier(wrong_database) assert fic._test_data == None with pytest.raises(AttributeError): fic._model fic._aggregator fic._federated_data def test_run_rounds(): example_database = list(ImagesDataBases.__members__.keys())[0] fic = FederatedImagesClassifier(example_database) fic.deploy_central_model = Mock() fic.train_all_clients = Mock() fic.evaluate_clients = Mock() fic.aggregate_weights = Mock() fic.evaluate_global_model = Mock() fic.run_rounds(1) fic.deploy_central_model.assert_called_once() fic.train_all_clients.assert_called_once() fic.evaluate_clients.assert_called_once_with(fic._test_data, fic._test_labels) fic.aggregate_weights.assert_called_once() fic.evaluate_global_model.assert_called_once_with(fic._test_data, fic._test_labels) def test_run_rounds_wrong_database(): letters = string.ascii_lowercase wrong_database = ''.join(random.choice(letters) for i in range(10)) fic = FederatedImagesClassifier(wrong_database) fic.deploy_central_model = Mock() fic.train_all_clients = Mock() fic.evaluate_clients = Mock() fic.aggregate_weights = Mock() fic.evaluate_global_model = Mock() fic.run_rounds(1) fic.deploy_central_model.assert_not_called() fic.train_all_clients.assert_not_called() fic.evaluate_clients.assert_not_called() fic.aggregate_weights.assert_not_called() fic.evaluate_global_model.assert_not_called() ```
{ "source": "Joarrs/interpolazionedati", "score": 3 }
#### File: Joarrs/interpolazionedati/interpolazione.py ```python import pandas as pd import statistics file_excel = 'dati.xls' def crea_liste(excelFile): #crea le liste dei tempi e delle cordinate t_Action = pd.read_excel(excelFile, index_col=None, na_values=['NA'], usecols = "A").dropna().to_numpy() x_Action = pd.read_excel(excelFile, index_col=None, na_values=['NA'], usecols = "B").dropna().to_numpy() t_Vicon = pd.read_excel(excelFile, index_col=None, na_values=['NA'], usecols = "C").to_numpy() x_Vicon = pd.read_excel(excelFile, index_col=None, na_values=['NA'], usecols = "D").to_numpy() return t_Action, x_Action, t_Vicon, x_Vicon def istantiVicini(tempo_action, t_vicon, x_vicon ): distanze = [] x_vicine = [] print(tempo_action) t_vicon = t_vicon.flatten() x_vicon = x_vicon.flatten() for element in t_vicon: distanze.append(abs(element - tempo_action)) posizione_minima = distanze.index(min(distanze)) x_vicine.append(x_vicon[posizione_minima]) #print("prima ", t_vicon[posizione_minima:]) distanza_prima = abs(t_vicon[posizione_minima - 1] - tempo_action) if posizione_minima + 1 < len(t_vicon): distanza_dopo = abs(t_vicon[posizione_minima + 1] - tempo_action) else: distanza_dopo = distanza_prima if distanza_prima <= distanza_dopo: print("tempi Vicon vicini trovati :", t_vicon[posizione_minima - 1], t_vicon[posizione_minima]) x_vicine.append(x_vicon[posizione_minima - 1]) x_vicine.reverse() else: print("tempi Vicon vicini trovati :", t_vicon[posizione_minima], t_vicon[posizione_minima + 1]) if posizione_minima + 1 < len(t_vicon): x_vicine.append(x_vicon[posizione_minima + 1]) else: x_vicine.append(x_vicon[posizione_minima - 1]) x_vicine.reverse() print(x_vicine) return x_vicine t_Action, x_Action, t_Vicon, x_Vicon = crea_liste(file_excel) coordinate = [] """for tempo in t_Action[0:4]: x_vicini = istantiVicini(tempo, t_Vicon, x_Vicon) #print(len(x_vicini)) #print("primo elemento di x_vicini = ", x_vicini[0], "secondo elemento: ", x_vicini[1], "media =", statistics.median(x_vicini)) coordinate.append(statistics.median(x_vicini))""" for tempo in t_Action: x_vicini = istantiVicini(tempo, t_Vicon, x_Vicon) coordinate.append(statistics.median(x_vicini)) output = 'nuove_coordinate.xls' df = pd.DataFrame(coordinate) df.to_excel(output, index=False) print(coordinate) print("ci sono ", len(coordinate), " elementi interpolati e ", len(x_Action), " coordinate di Action Cam") ```
{ "source": "joar/rust-csv-py", "score": 2 }
#### File: rust-csv-py/rustcsv/__init__.py ```python from __future__ import absolute_import from typing import Union, BinaryIO # Import the Rust extension module from ._rustcsv import CSVReader as _RustCSVReader, CSVWriter, __build__ try: from ._version import version except ImportError: version = "UNKNOWN" __all__ = ["CSVReader", "CSVWriter", "__build__", "version"] CSVReader = _RustCSVReader # Can't subclass for better docstrings: https://github.com/PyO3/pyo3/issues/220 # class CSVReader(_RustCSVReader): # def __new__( # cls, # source: Union[BinaryIO, str], # delimiter: bytes = b",", # terminator: bytes = b"\n", # ): # """ # # Parameters # ---------- # source # :any:`binary file` or string to read CSV from. # delimiter # Byte to use as CSV field delimiter # terminator # Byte to use as CSV record terminator # # Returns # ------- # CSVReader # """ # self = super(CSVReader, cls).__new__( # cls, path_or_fd=source, delimiter=delimiter, terminator=terminator # ) # # return self ``` #### File: rust-csv-py/rustcsv/__main__.py ```python import click from rustcsv import CSVReader @click.group() def cli(): pass @cli.command() @click.argument("file", type=click.File(mode="rb")) def read(file): for row in CSVReader(file): print(row) if __name__ == "__main__": cli() ```
{ "source": "joas77/AnimeMovieDown", "score": 3 }
#### File: AnimeMovieDown/TelegramDownloader/TelegramDownloader.py ```python import json from telethon import TelegramClient, client, events from telethon.tl.types import InputMessagesFilterDocument, InputMessagesFilterVideo from telethon.utils import get_display_name class TelegramDownloader: def __init__(self, api_id, api_hash) -> None: self._api_id = api_id self._api_hash = api_hash self._client = TelegramClient("Downloader", self._api_id, self._api_hash) def run(self): with self._client: self._client.loop.run_until_complete(self._main()) async def _main(self): #TODO: remove dialogs limit dialogs = await self._client.get_dialogs(43) for d in dialogs: name = get_display_name(d.entity) if name in ("Fumetsu No Anata E"): messages = self._client.iter_messages(name, filter=InputMessagesFilterDocument) #InputMessagesFilterVideo) async for msg in messages: print(get_display_name(msg.sender)) if hasattr(msg, "message"): print(msg.message) print("---------------") def get_media(self, channel:str)->list: pass if __name__=="__main__": # TODO: get api id and hash from condig file API_ID = "TELEGRAM_API_ID" API_HASH = "TELEGRAM_API_HASH" teldown = TelegramDownloader(API_ID, API_HASH) teldown.run() # TODO where is the script going to be executed # how to set path cfg_json_path = "./TelegramDownloader/config/channels.json" with open(cfg_json_path) as json_file: channels_cfg = json.load(json_file) print(channels_cfg) ```
{ "source": "joas77/LectorNomina", "score": 3 }
#### File: LectorNomina/src/payroll_reader.py ```python import xml.etree.ElementTree as ET from zipfile import ZipFile import os import argparse from payment import Payment from payroll_plotter import PayrollPlotter def get_concept(node, concept_tag, amount_tag, amount_tax_tag=None): concept = node.get(concept_tag) amount = float(node.get(amount_tag)) amount_taxed = float(node.get(amount_tax_tag)) if amount_tax_tag else 0.0 return (concept, amount + amount_taxed) def get_date(node): # TODO: return a date object date = node.get("Fecha") return date def generate_payment(payroll_path): nomina_path = payroll_path tree = ET.parse(nomina_path) root = tree.getroot() perceptions = {} deductions = {} tag = "{http://www.sat.gob.mx/nomina12}" # TODO code a function to get tag for node in tree.iter(): # TODO: create a dictionary with all strings keys if tag+"Percepcion" == node.tag: concept, amount = get_concept(node, "Concepto", "ImporteExento", "ImporteGravado") perceptions[concept] = amount elif tag+"Deduccion" == node.tag: concept, amount = get_concept(node, "Concepto", "Importe") deductions[concept] = amount date = get_date(root) payment = Payment(date, perceptions, deductions) return payment def find_xml(zipfile): for file in zipfile.filelist: if file.filename.endswith("xml"): return file.filename return None if __name__=="__main__": parser = argparse.ArgumentParser(description="Parsea y gráfica archivos de nomina") parser.add_argument("payroll_folder", type=str, help="<nominas_folder>") args = parser.parse_args() payroll_folder = args.payroll_folder payments = [] for file in os.listdir(payroll_folder): file_path = payroll_folder + file if file_path.endswith(".zip"): zipfile = ZipFile(file_path) xmlfile_path = zipfile.extract(find_xml(zipfile)) payments.append(generate_payment(xmlfile_path)) os.remove(xmlfile_path) payments.sort(key = lambda x : x.date) for payment in payments: print(payment) payroll_plt = PayrollPlotter(payments) payroll_plt.plot() ```
{ "source": "joAschauer/evaluating_methods_for_reconstructing_large_gaps_in_historic_snow_depth_time_series", "score": 2 }
#### File: evaluating_methods_for_reconstructing_large_gaps_in_historic_snow_depth_time_series/src/cv_evaluate_monthly.py ```python """ evaluate monthly means and max """ import os import logging import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl import seaborn as sns from sklearn.metrics import r2_score, mean_squared_error import scoring_utils as scu import cv_results_database as db import plotting_utils as pu sns.set_color_codes(palette='deep') sc = db.get_cv_results_as_df() def scatterplot_true_pred_monthly( methods_used, station_grid='full', filename=None, stn=None, equal_xy_axes=False): fig, axes = plt.subplots(6, len(methods_used), figsize=[len(methods_used)*2.3,6*2.55], sharex=False, sharey=False) #different markers and colors for different station grids: markers={'full': "s", 'only_target_stations': "^"} colors={'full': 'tab:orange', 'only_target_stations': "b"} grids = ['full', 'only_target_stations'] gridlabel = {'full':'dense station network', 'only_target_stations':'evaluation stations only'} months = {11: 'Nov', 12: 'Dez', 1: 'Jan', 2: 'Feb', 3: 'Mar', 4: 'Apr'} for row, month in enumerate([11,12,1,2,3,4]): color = 'k' for column, method in enumerate(methods_used): if stn is None: view = sc.loc[(sc['fill_method']==method) & (sc['station_grid']==station_grid)] else: view = sc.loc[(sc['fill_method']==method) & (sc['station_grid']==station_grid) & (sc['gap_stn']==stn)] hs_true_files = view['HS_true_file'].tolist() hs_pred_files = view['HS_pred_file'].tolist() hs_true = pd.concat([pd.read_pickle(file) for file in hs_true_files], axis=0) hs_pred = pd.concat([pd.read_pickle(file) for file in hs_pred_files], axis=0) # remove nans concated_series = pd.concat([hs_true, hs_pred], axis=1).dropna() # filter month: concated_series = concated_series.loc[concated_series.index.month==month] hs_true = concated_series.iloc[:,0] hs_pred = concated_series.iloc[:,1] # markersize = 0.1 if stn is None else 2 if stn is None: markersize = 0.1 else: if hs_true.max() <= 300: markersize = -0.0133*hs_true.max()+4.1 else: markersize = 0.1 axes[row, column].scatter( hs_true, hs_pred, s=markersize, marker='o', facecolor=color, lw=0, alpha=0.9, label=station_grid) try: # linear fit to the scatterplot: #obtain m (slope) and b(intercept) of linear regression line m, b = np.polyfit(hs_true, hs_pred, 1) # new x-vector x_fitline = np.linspace(hs_true.min(), hs_true.max()) #add linear regression line to scatterplot axes[row,column].plot( x_fitline, m*x_fitline+b, linestyle='--', color='k', lw=0.8) # coefficient of determination r2 = r2_score(hs_true, hs_pred) rmse = np.sqrt(mean_squared_error(hs_true, hs_pred)) maape = scu._maape_score(hs_true, hs_pred) bias = scu._bias_score(hs_true, hs_pred) plt.rcParams.update({ "text.usetex": True}) axes[row,column].text( 0.95, 0.05, f"$r^2$ = {r2:.2f}\nRMSE = {rmse:.1f}\nBIAS = {bias:.2f}", ha='right', va='bottom', transform=axes[row,column].transAxes, fontsize=11 ) plt.rcParams.update({ "text.usetex": False}) except TypeError: # only nans are in y_pred (for some stations/years for IDS) pass # y-labels if column == 0: axes[row, column].set_ylabel(f'modeled [cm] in\n{months[month]}', fontsize=11) else: axes[row, column].set_ylabel(None) axes[row, column].tick_params(labelleft=False) # x-labels if row == 1: axes[row, column].set_xlabel(f'measured [cm]', fontsize=11) else: axes[row, column].set_xlabel(None) axes[row, column].tick_params(labelbottom=False) # titles if row == 0: axes[row, column].set_title(pu.METHOD_NAMES[method], fontsize=13) ygmin = 0.; ygmax = 0. xgmin = 0.; xgmax = 0. for ax in axes.flatten(): #Get global minimum and maximum y values accross all axis ymin, ymax = ax.get_ylim() ygmin = min(ygmin,ymin) ygmax = max(ygmax,ymax) xmin, xmax = ax.get_xlim() xgmin = min(xgmin,xmin) xgmax = max(xgmax,xmax) [ax.set_ylim((ygmin,ygmax)) for ax in axes.flatten()] [ax.set_xlim((xgmin,xgmax)) for ax in axes.flatten()] if equal_xy_axes: gmin = min(xgmin,ygmin) gmax = max(xgmax,ygmax) for ax in axes.flatten(): ax.set_ylim((gmin,gmax)) ax.set_xlim((gmin,gmax)) ax.set_aspect(1, adjustable='box') # draw x=y line: for ax in axes.flatten(): ax.axline([0, 0], [1, 1], linestyle='-', color='k', lw=0.8) plt.tight_layout() if filename is not None: fig.savefig(filename, bbox_inches='tight', dpi=300) plt.close(fig) else: plt.show() return None standard_methods = [ 'SingleStation_best_correlated_mean_ratio', 'Inverse distance squared', 'matiu vertical weighted_min_corr_-1.0', 'Elastic Net Regression', 'RandomForest_V3.5', 'SWE2HS_Snow17_shifted_dates'] scatterplot_true_pred_monthly( methods_used=standard_methods, station_grid='only_target_stations', filename=None, equal_xy_axes=True) ``` #### File: evaluating_methods_for_reconstructing_large_gaps_in_historic_snow_depth_time_series/src/HSmax_date_difference.py ```python import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from cv_results_database import get_cv_results_as_df import plotting_utils as pu sns.set_color_codes(palette='deep') METHODS = [ 'SingleStation_best_correlated_mean_ratio', 'Inverse distance squared', 'matiu vertical weighted_min_corr_-1.0', 'Elastic Net Regression', 'RandomForest_V3.5', 'SWE2HS_Snow17_shifted_dates', # 'ERA5-land_RF_surrounding_gridcells_max_depth_70_n_estimators_200' ] def calculate_HSmax_date_difference(HS_true_file, HS_pred_file): hs_true = pd.read_pickle(HS_true_file) hs_pred = pd.read_pickle(HS_pred_file) true_max_date = hs_true.idxmax() pred_max_date = hs_pred.idxmax() try: datediff = (true_max_date-pred_max_date).days except TypeError: # only nans in predicted series will cause idxmax to be # nan and result in TypeError when nan is subtracted from timestamp datediff = np.nan return datediff if __name__ == '__main__': df = get_cv_results_as_df() df = df.loc[df['gap_type']=='LOWO'] df = df.rename(columns={'bias': 'BIAS'}) df = df.loc[df.fill_method.isin(METHODS), :] df['fill_method'] = df['fill_method'].map(pu.METHOD_NAMES) df['HSmax_datediff'] = df.apply(lambda x: calculate_HSmax_date_difference(x.HS_true_file, x.HS_pred_file), axis=1) # ax = df['HSmax_datediff'].plot.hist(bins=71) # ax.set_xlabel("HSmax date measured - HSmax date predicted") # plt.gcf().set_dpi(250) # plt.show() # g = sns.FacetGrid(df, col='fill_method') # g.map(plt.hist, 'HSmax_datediff', bins=41) # plt.gcf().set_dpi(250) # plt.show() fig, axs = plt.subplots(3,2, figsize=(5, 6), sharex=True, sharey=True) for (method, data) in df.groupby('fill_method', sort=False): if method=='BCS': ax = axs[0,0] if method=='IDW': ax = axs[0,1] if method=='WNR': ax = axs[1,0] if method=='ENET': ax = axs[1,1] if method=='RF': ax = axs[2,0] if method=='SM': ax = axs[2,1] # sns.histplot(data, x='HSmax_datediff', hue='station_grid', ax=ax, bins=21, stat='count', multiple="stack") colors={'full': 'tab:orange', 'only_target_stations': "b"} for grid, griddata in data.groupby('station_grid'): ax.hist(griddata['HSmax_datediff'], bins=31, color=colors[grid], alpha=0.7, label=pu.GRIDLABELS[grid], edgecolor='grey') ax.text(0.05, 0.9, method, ha='left', va='top', transform=ax.transAxes) plt.tight_layout() legend_kw = {} top = axs[0,-1].get_position().ymax right = axs[0,-1].get_position().xmax legend_kw['bbox_to_anchor'] = [right, top+0.01] legend_kw['borderaxespad'] = 0 legend_kw['edgecolor'] = 'black' legend_kw['fancybox'] = False legend_kw['framealpha'] = 1 # legend_kw['bbox_transform'] = fig.transFigure legend_kw['loc'] = 4 legend_kw['ncol'] = 2 # 'fontsize': 11, # 'frameon': False handles, labels = axs[0,0].get_legend_handles_labels() fig.legend(handles, labels, **legend_kw) [ax.set_ylabel('# gaps') for ax in axs[:,0]] fig.text(0.55, 0., 'HSmax date measured - HSmax date predicted [days]', ha='center', va='center') plt.tight_layout() fig.savefig('../results/revision/HSmax_date_differences.png', bbox_inches='tight', dpi=300) plt.show() description = df.groupby(['fill_method','station_grid'])['HSmax_datediff'].describe() # sample = df.sort_values('HSmax_datediff', ascending=False).head(100) # for x in sample.itertuples(): # hs_true = pd.read_pickle(x.HS_true_file) # hs_pred = pd.read_pickle(x.HS_pred_file) # pd.DataFrame({'true':hs_true, 'pred':hs_pred}, index=hs_true.index).plot() # plt.show() ``` #### File: evaluating_methods_for_reconstructing_large_gaps_in_historic_snow_depth_time_series/src/scoring_utils.py ```python import pandas as pd import numpy as np from sklearn.metrics import mean_squared_error, r2_score def get_gap_HS_data(modeling_data, gap_period, gap_station): """ Get original HS data in the gap period. Only winter values (Nov-Apr) will be returned. """ y_true = (modeling_data .loc[modeling_data['stn']==gap_station, 'HS'] .loc[gap_period] ) y_true = y_true.loc[y_true.index.month.isin([11,12,1,2,3,4])] y_true.name = f'Measured HS Data' return y_true def get_station_altitude(modeling_data, gap_period, gap_station): altitude = (modeling_data .loc[modeling_data['stn']==gap_station, 'Z'] .loc[gap_period] .iloc[0]) return altitude def HSavg(series): return series.mean() def dHS1(series): if series.isna().all(): result = np.nan else: result = np.count_nonzero(series.values >= 1) return result def dHSn(series, n): """ count number of days with HS above threshold n. Parameters ---------- series : pd.Series n : float Returns ------- result : float """ if series.isna().all(): result = np.nan else: result = np.count_nonzero(series.values >= n) return result def HSmax(series): return series.max() def _HSavg_diff(y_true, y_hat): return np.mean(y_hat) - np.mean(y_true) def _HSavg_abs_diff(y_true, y_hat): return np.abs(np.mean(y_hat) -np.mean(y_true)) def _HSavg_relative_diff(y_true, y_hat): return (np.mean(y_hat) - np.mean(y_true))/np.mean(y_true) def _HSavg_relative_abs_diff(y_true, y_hat): return np.abs(np.mean(y_hat) - np.mean(y_true))/np.mean(y_true) def _dHS1_diff(y_true, y_hat): return dHS1(y_hat)-dHS1(y_true) def _dHS1_abs_diff(y_true, y_hat): return np.abs(_dHS1_diff(y_true, y_hat)) def _dHS1_relative_diff(y_true, y_hat): return (_dHS1_diff(y_true, y_hat)) / dHS1(y_true) def _dHS1_relative_abs_diff(y_true, y_hat): return (_dHS1_abs_diff(y_true, y_hat)) / dHS1(y_true) def _HSmax_diff(y_true, y_hat): return np.max(y_hat) - np.max(y_true) def _HSmax_abs_diff(y_true, y_hat): return np.abs(np.max(y_hat) -np.max(y_true)) def _HSmax_relative_diff(y_true, y_hat): return (np.max(y_hat) - np.max(y_true))/np.max(y_true) def _HSmax_relative_abs_diff(y_true, y_hat): return np.abs(np.max(y_hat) - np.max(y_true))/np.max(y_true) def _maape_score(y_true, y_hat): """ mean arctangent absolute percentage error (MAAPE) calculated by:: mean(artan(abs(error/y_true)))) Reference: <NAME>., & <NAME>. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32(3), 669-679. """ assert(len(y_true) == len(y_hat)) error = y_true-y_hat # only divide if error is not zero (leave it as zero, avoid 0/0), and dont # divide if y is zero (avoide division by zero): percentage_error = np.divide(error, y_true, out=np.zeros_like(y_true), where=(error!=0) & (y_true!=0)) # if error is not zero and y is zero set percentage error to infinity percentage_error[(error!=0) & (y_true==0)] = np.inf return np.mean(np.arctan(np.abs(percentage_error))) def _bias_score(y_true, y_hat): assert(len(y_true) == len(y_hat)) error = y_hat-y_true return np.average(error) def get_climate_score_value(y_true, y_hat, metric): func = {'HSavg_diff': _HSavg_diff, 'HSavg_abs_diff': _HSavg_abs_diff, 'HSavg_relative_diff': _HSavg_relative_diff, 'HSavg_relative_abs_diff': _HSavg_relative_abs_diff, 'dHS1_diff': _dHS1_diff, 'dHS1_abs_diff': _dHS1_abs_diff, 'dHS1_relative_diff': _dHS1_relative_diff, 'dHS1_relative_abs_diff': _dHS1_relative_abs_diff, 'HSmax_diff': _HSmax_diff, 'HSmax_abs_diff': _HSmax_abs_diff, 'HSmax_relative_diff': _HSmax_relative_diff, 'HSmax_relative_abs_diff': _HSmax_relative_abs_diff} assert metric in func.keys() try: result = func[metric](y_true, y_hat) except ZeroDivisionError: # exception for the relative errors result = np.nan return result def get_daily_score_value(y_true, y_pred, metric): assert metric in ['RMSE', 'RMSE_nonzero', 'RMSE_nonzero_true', 'RMSE_nonzero_pred', 'MAAPE', 'MAAPE_nonzero', 'MAAPE_nonzero_true', 'MAAPE_nonzero_pred', 'bias', 'r2_score', 'r2_score_nonzero', 'r2_score_nonzero_true', 'r2_score_nonzero_pred'] if 'nonzero' in metric: data = pd.DataFrame({'y_true': y_true, 'y_pred': y_pred}, index = y_true.index) if 'true' in metric: data = data.loc[data['y_true']!=0, :] elif 'pred' in metric: data = data.loc[data['y_pred']!=0, :] else: # no zero in true and pred data = data.loc[data.all(axis=1)] y_true = data['y_true'] y_pred = data['y_pred'] if y_true.size == 0 or y_pred.isna().all(): score_value = np.nan elif 'RMSE' in metric: score_value = np.sqrt(mean_squared_error(y_true.values, y_pred.values)) elif 'MAAPE' in metric: score_value = _maape_score(y_true.values, y_pred.values) elif 'bias' in metric: score_value = _bias_score(y_true.values, y_pred.values) elif 'r2_score' in metric: score_value = r2_score(y_true.values, y_pred.values) return score_value ```
{ "source": "Joashc702/depthai-experiments", "score": 2 }
#### File: depthai-experiments/coronamask/main.py ```python import logging import cv2 from depthai_utils import DepthAI, DepthAIDebug from config import MODEL_LOCATION, DEBUG log = logging.getLogger(__name__) class Main: depthai_class = DepthAI def __init__(self): self.depthai = self.depthai_class(MODEL_LOCATION, 'people') def parse_frame(self, frame, results): pass def run(self): try: log.info("Setup complete, parsing frames...") for frame, results in self.depthai.capture(): self.parse_frame(frame, results) finally: del self.depthai class MainDebug(Main): depthai_class = DepthAIDebug def parse_frame(self, frame, results): super().parse_frame(frame, results) cv2.imshow("Frame", frame) key = cv2.waitKey(1) if key == ord("q"): raise StopIteration() if __name__ == '__main__': if DEBUG: log.info("Setting up debug run...") MainDebug().run() else: log.info("Setting up non-debug run...") Main().run() ``` #### File: depthai-experiments/mjpeg-streaming/depthai.py ```python import json from pathlib import Path import platform import os import subprocess from time import time, sleep, monotonic import cv2 import numpy as np import depthai import consts.resource_paths from depthai_helpers import utils from depthai_helpers.cli_utils import cli_print, parse_args, PrintColors import socket import socketserver import threading from PIL import Image from http.server import BaseHTTPRequestHandler, HTTPServer from socketserver import ThreadingMixIn from io import StringIO,BytesIO class Streamer: def __init__(self): self.data_json = None def get_data(self, data_input): self.data_json = data_input return self.data_json def pass_data(self): return json.dumps(self.data_json) # TCPServer class TCPServerRequest(socketserver.BaseRequestHandler): def handle(self): # Handle is called each time a client is connected # When OpenDataCam connects, do not return - instead keep the connection open and keep streaming data # First send HTTP header header = 'HTTP/1.0 200 OK\r\nServer: Mozarella/2.2\r\nAccept-Range: bytes\r\nConnection: close\r\nMax-Age: 0\r\nExpires: 0\r\nCache-Control: no-cache, private\r\nPragma: no-cache\r\nContent-Type: application/json\r\n\r\n[' self.request.send(header.encode()) while True: sleep(0.1) json_string = self.server.mycustomadata json_separator = ',\n' json_to_send = json_string + json_separator self.request.send(json_to_send.encode()) # HTTPServer MJPEG class VideoStreamHandler(BaseHTTPRequestHandler): def do_GET(self): self.send_response(200) self.send_header('Content-type','multipart/x-mixed-replace; boundary=--jpgboundary') self.end_headers() while True: MJPEG_frame_RGB=cv2.cvtColor(MJPEG_frame,cv2.COLOR_BGR2RGB) JPG = Image.fromarray(MJPEG_frame_RGB) stream_file = BytesIO() JPG.save(stream_file,'JPEG') self.wfile.write("--jpgboundary".encode()) self.send_header('Content-type','image/jpeg') self.send_header('Content-length',str(stream_file.getbuffer().nbytes)) self.end_headers() JPG.save(self.wfile,'JPEG') # sleep(0.01) class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): """Handle requests in a separate thread.""" def decode_mobilenet_ssd(nnet_packet): detections = [] # the result of the MobileSSD has detection rectangles (here: entries), and we can iterate threw them for _, e in enumerate(nnet_packet.entries()): # for MobileSSD entries are sorted by confidence # {id == -1} or {confidence == 0} is the stopper (special for OpenVINO models and MobileSSD architecture) if e[0]['id'] == -1.0 or e[0]['confidence'] == 0.0 or e[0]['label'] > len(labels): break # save entry for further usage (as image package may arrive not the same time as nnet package) detections.append(e) return detections def nn_to_depth_coord(x, y): x_depth = int(nn2depth['off_x'] + x * nn2depth['max_w']) y_depth = int(nn2depth['off_y'] + y * nn2depth['max_h']) return x_depth, y_depth def average_depth_coord(pt1, pt2): factor = 1 - config['depth']['padding_factor'] x_shift = int((pt2[0] - pt1[0]) * factor / 2) y_shift = int((pt2[1] - pt1[1]) * factor / 2) avg_pt1 = (pt1[0] + x_shift), (pt1[1] + y_shift) avg_pt2 = (pt2[0] - x_shift), (pt2[1] - y_shift) return avg_pt1, avg_pt2 def show_mobilenet_ssd(entries_prev, frame, is_depth=0): img_h = frame.shape[0] img_w = frame.shape[1] global config # iterate through pre-saved entries & draw rectangle & text on image: for e in entries_prev: # the lower confidence threshold - the more we get false positives if e[0]['confidence'] > config['depth']['confidence_threshold']: if is_depth: pt1 = nn_to_depth_coord(e[0]['left'], e[0]['top']) pt2 = nn_to_depth_coord(e[0]['right'], e[0]['bottom']) color = (255, 0, 0) # bgr avg_pt1, avg_pt2 = average_depth_coord(pt1, pt2) cv2.rectangle(frame, avg_pt1, avg_pt2, color) color = (255, 255, 255) # bgr else: pt1 = int(e[0]['left'] * img_w), int(e[0]['top'] * img_h) pt2 = int(e[0]['right'] * img_w), int(e[0]['bottom'] * img_h) color = (0, 0, 255) # bgr x1, y1 = pt1 cv2.rectangle(frame, pt1, pt2, color) # Handles case where TensorEntry object label is out if range if e[0]['label'] > len(labels): print("Label index=",e[0]['label'], "is out of range. Not applying text to rectangle.") else: pt_t1 = x1, y1 + 20 cv2.putText(frame, labels[int(e[0]['label'])], pt_t1, cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) pt_t2 = x1, y1 + 40 cv2.putText(frame, '{:.2f}'.format(100*e[0]['confidence']) + ' %', pt_t2, cv2.FONT_HERSHEY_SIMPLEX, 0.5, color) if config['ai']['calc_dist_to_bb']: pt_t3 = x1, y1 + 60 cv2.putText(frame, 'x:' '{:7.3f}'.format(e[0]['distance_x']) + ' m', pt_t3, cv2.FONT_HERSHEY_SIMPLEX, 0.5, color) pt_t4 = x1, y1 + 80 cv2.putText(frame, 'y:' '{:7.3f}'.format(e[0]['distance_y']) + ' m', pt_t4, cv2.FONT_HERSHEY_SIMPLEX, 0.5, color) pt_t5 = x1, y1 + 100 cv2.putText(frame, 'z:' '{:7.3f}'.format(e[0]['distance_z']) + ' m', pt_t5, cv2.FONT_HERSHEY_SIMPLEX, 0.5, color) return frame def decode_age_gender_recognition(nnet_packet): detections = [] for _, e in enumerate(nnet_packet.entries()): if e[1]["female"] > 0.8 or e[1]["male"] > 0.8: detections.append(e[0]["age"]) if e[1]["female"] > e[1]["male"]: detections.append("female") else: detections.append("male") return detections def show_age_gender_recognition(entries_prev, frame): # img_h = frame.shape[0] # img_w = frame.shape[1] if len(entries_prev) != 0: age = (int)(entries_prev[0]*100) cv2.putText(frame, "Age: " + str(age), (0, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) gender = entries_prev[1] cv2.putText(frame, "G: " + str(gender), (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) frame = cv2.resize(frame, (300, 300)) return frame def decode_emotion_recognition(nnet_packet): detections = [] for i in range(len(nnet_packet.entries()[0][0])): detections.append(nnet_packet.entries()[0][0][i]) return detections def show_emotion_recognition(entries_prev, frame): # img_h = frame.shape[0] # img_w = frame.shape[1] e_states = { 0 : "neutral", 1 : "happy", 2 : "sad", 3 : "surprise", 4 : "anger" } if len(entries_prev) != 0: max_confidence = max(entries_prev) if(max_confidence > 0.7): emotion = e_states[np.argmax(entries_prev)] cv2.putText(frame, emotion, (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) frame = cv2.resize(frame, (300, 300)) return frame def decode_landmarks_recognition(nnet_packet): landmarks = [] for i in range(len(nnet_packet.entries()[0][0])): landmarks.append(nnet_packet.entries()[0][0][i]) landmarks = list(zip(*[iter(landmarks)]*2)) return landmarks def show_landmarks_recognition(entries_prev, frame): img_h = frame.shape[0] img_w = frame.shape[1] if len(entries_prev) != 0: for i in entries_prev: try: x = int(i[0]*img_h) y = int(i[1]*img_w) except: continue # # print(x,y) cv2.circle(frame, (x,y), 3, (0, 0, 255)) frame = cv2.resize(frame, (300, 300)) return frame # TCPServer initialize server_TCP = socketserver.TCPServer(('127.0.0.1', 8070), TCPServerRequest) th = threading.Thread(target=server_TCP.serve_forever) def json_stream(frame_id, entries_prev): img_h = frame.shape[0] img_w = frame.shape[1] json_dic = {"frame_id": frame_id, "object": []} global config # iterate through pre-saved entries & draw rectangle & text on image: for e in entries_prev: # the lower confidence threshold - the more we get false positives if e[0]['confidence'] > config['depth']['confidence_threshold']: class_id = e[0]['label'] label_name = labels[int(e[0]['label'])] center_x = 1 # replace with actual coordinates center_y = 2 # replace with actual coordinates width = 3 # replace with actual coordinates height = 4 # replace with actual coordinates confidence = e[0]['confidence'] data_json = send_json(json_dic, class_id, label_name, center_x, center_y, width, height, confidence) streamer = Streamer() streamer.get_data(data_json) # start a thread to allow server and video running at the same time server_TCP.mycustomadata = streamer.pass_data() th.daemon = True th.start() def send_json(json_dic, class_id, label_name, center_x, center_y, width, height, confidence): json_dic['object'].append( { 'class_id': class_id, 'name': label_name, 'relative_coordinates': { 'center_x': center_x, 'center_y': center_y, 'width': width, 'height': height }, 'confidence': confidence } ) return json_dic global args try: args = vars(parse_args()) except: os._exit(2) stream_list = args['streams'] if args['config_overwrite']: args['config_overwrite'] = json.loads(args['config_overwrite']) print("Using Arguments=",args) if args['force_usb2']: cli_print("FORCE USB2 MODE", PrintColors.WARNING) cmd_file = consts.resource_paths.device_usb2_cmd_fpath else: cmd_file = consts.resource_paths.device_cmd_fpath if args['dev_debug']: cmd_file = '' print('depthai will not load cmd file into device.') calc_dist_to_bb = True if args['disable_depth']: calc_dist_to_bb = False decode_nn=decode_mobilenet_ssd show_nn=show_mobilenet_ssd if args['cnn_model'] == 'age-gender-recognition-retail-0013': decode_nn=decode_age_gender_recognition show_nn=show_age_gender_recognition calc_dist_to_bb=False if args['cnn_model'] == 'emotions-recognition-retail-0003': decode_nn=decode_emotion_recognition show_nn=show_emotion_recognition calc_dist_to_bb=False if args['cnn_model'] in ['facial-landmarks-35-adas-0002', 'landmarks-regression-retail-0009']: decode_nn=decode_landmarks_recognition show_nn=show_landmarks_recognition calc_dist_to_bb=False if args['cnn_model']: cnn_model_path = consts.resource_paths.nn_resource_path + args['cnn_model']+ "/" + args['cnn_model'] blob_file = cnn_model_path + ".blob" suffix="" if calc_dist_to_bb: suffix="_depth" blob_file_config = cnn_model_path + suffix + ".json" blob_file_path = Path(blob_file) blob_file_config_path = Path(blob_file_config) if not blob_file_path.exists(): cli_print("\nWARNING: NN blob not found in: " + blob_file, PrintColors.WARNING) os._exit(1) if not blob_file_config_path.exists(): cli_print("\nWARNING: NN json not found in: " + blob_file_config, PrintColors.WARNING) os._exit(1) with open(blob_file_config) as f: data = json.load(f) try: labels = data['mappings']['labels'] except: print("Labels not found in json!") print('depthai.__version__ == %s' % depthai.__version__) print('depthai.__dev_version__ == %s' % depthai.__dev_version__) if platform.system() == 'Linux': ret = subprocess.call(['grep', '-irn', 'ATTRS{idVendor}=="03e7"', '/etc/udev/rules.d'], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) if(ret != 0): cli_print("\nWARNING: Usb rules not found", PrintColors.WARNING) cli_print("\nSet rules: \n" """echo 'SUBSYSTEM=="usb", ATTRS{idVendor}=="03e7", MODE="0666"' | sudo tee /etc/udev/rules.d/80-movidius.rules \n""" "sudo udevadm control --reload-rules && udevadm trigger \n" "Disconnect/connect usb cable on host! \n", PrintColors.RED) os._exit(1) if not depthai.init_device(cmd_file, args['device_id']): print("Error initializing device. Try to reset it.") exit(1) print('Available streams: ' + str(depthai.get_available_steams())) # Do not modify the default values in the config Dict below directly. Instead, use the `-co` argument when running this script. config = { # Possible streams: # ['left', 'right','previewout', 'metaout', 'depth_sipp', 'disparity', 'depth_color_h'] # If "left" is used, it must be in the first position. # To test depth use: # 'streams': [{'name': 'depth_sipp', "max_fps": 12.0}, {'name': 'previewout', "max_fps": 12.0}, ], 'streams': stream_list, 'depth': { 'calibration_file': consts.resource_paths.calib_fpath, 'padding_factor': 0.3, 'depth_limit_m': 10.0, # In meters, for filtering purpose during x,y,z calc 'confidence_threshold' : 0.5, #Depth is calculated for bounding boxes with confidence higher than this number }, 'ai': { 'blob_file': blob_file, 'blob_file_config': blob_file_config, 'calc_dist_to_bb': calc_dist_to_bb, 'keep_aspect_ratio': not args['full_fov_nn'], }, 'board_config': { 'swap_left_and_right_cameras': args['swap_lr'], # True for 1097 (RPi Compute) and 1098OBC (USB w/onboard cameras) 'left_fov_deg': args['field_of_view'], # Same on 1097 and 1098OBC 'rgb_fov_deg': args['rgb_field_of_view'], 'left_to_right_distance_cm': args['baseline'], # Distance between stereo cameras 'left_to_rgb_distance_cm': args['rgb_baseline'], # Currently unused 'store_to_eeprom': args['store_eeprom'], 'clear_eeprom': args['clear_eeprom'], 'override_eeprom': args['override_eeprom'], }, #'video_config': #{ # 'rateCtrlMode': 'cbr', # 'profile': 'h265_main', # Options: 'h264_baseline' / 'h264_main' / 'h264_high' / 'h265_main' # 'bitrate': 8000000, # When using CBR # 'maxBitrate': 8000000, # When using CBR # 'keyframeFrequency': 30, # 'numBFrames': 0, # 'quality': 80 # (0 - 100%) When using VBR #} } if args['board']: board_path = Path(args['board']) if not board_path.exists(): board_path = Path(consts.resource_paths.boards_dir_path) / Path(args['board'].upper()).with_suffix('.json') if not board_path.exists(): print('ERROR: Board config not found: {}'.format(board_path)) os._exit(2) with open(board_path) as fp: board_config = json.load(fp) utils.merge(board_config, config) if args['config_overwrite'] is not None: config = utils.merge(args['config_overwrite'],config) print("Merged Pipeline config with overwrite",config) if 'depth_sipp' in config['streams'] and ('depth_color_h' in config['streams'] or 'depth_mm_h' in config['streams']): print('ERROR: depth_sipp is mutually exclusive with depth_color_h') exit(2) # del config["streams"][config['streams'].index('depth_sipp')] # Append video stream if video recording was requested and stream is not already specified video_file = None if args['video'] is not None: # open video file try: video_file = open(args['video'], 'wb') if config['streams'].count('video') == 0: config['streams'].append('video') except IOError: print("Error: couldn't open video file for writing. Disabled video output stream") if config['streams'].count('video') == 1: config['streams'].remove('video') stream_names = [stream if isinstance(stream, str) else stream['name'] for stream in config['streams']] # create the pipeline, here is the first connection with the device p = depthai.create_pipeline(config=config) if p is None: print('Pipeline is not created.') exit(3) nn2depth = depthai.get_nn_to_depth_bbox_mapping() t_start = time() frame_count = {} frame_count_prev = {} for s in stream_names: frame_count[s] = 0 frame_count_prev[s] = 0 entries_prev = [] process_watchdog_timeout=10 #seconds def reset_process_wd(): global wd_cutoff wd_cutoff=monotonic()+process_watchdog_timeout return reset_process_wd() frame_id = 0 # start MJPEG HTTP Server global MJPEG_frame server_HTTP = ThreadedHTTPServer(('localhost', 8090), VideoStreamHandler) print("server started") th2 = threading.Thread(target=server_HTTP.serve_forever) th2.daemon = True th2.start() while True: # retreive data from the device # data is stored in packets, there are nnet (Neural NETwork) packets which have additional functions for NNet result interpretation nnet_packets, data_packets = p.get_available_nnet_and_data_packets() packets_len = len(nnet_packets) + len(data_packets) if packets_len != 0: reset_process_wd() else: cur_time=monotonic() if cur_time > wd_cutoff: print("process watchdog timeout") os._exit(10) for _, nnet_packet in enumerate(nnet_packets): entries_prev = decode_nn(nnet_packet) frame_id += 1 for packet in data_packets: if packet.stream_name not in stream_names: continue # skip streams that were automatically added packetData = packet.getData() if packetData is None: print('Invalid packet data!') continue elif packet.stream_name == 'previewout': # the format of previewout image is CHW (Chanel, Height, Width), but OpenCV needs HWC, so we # change shape (3, 300, 300) -> (300, 300, 3) data0 = packetData[0,:,:] data1 = packetData[1,:,:] data2 = packetData[2,:,:] frame = cv2.merge([data0, data1, data2]) nn_frame = show_nn(entries_prev, frame) cv2.putText(nn_frame, "fps: " + str(frame_count_prev[packet.stream_name]), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0)) cv2.imshow('previewout', nn_frame) # pass MJPEG streaming MJPEG_frame = nn_frame elif packet.stream_name == 'left' or packet.stream_name == 'right' or packet.stream_name == 'disparity': frame_bgr = packetData cv2.putText(frame_bgr, packet.stream_name, (25, 25), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0)) cv2.putText(frame_bgr, "fps: " + str(frame_count_prev[packet.stream_name]), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0)) if args['draw_bb_depth']: show_nn(entries_prev, frame_bgr, is_depth=True) cv2.imshow(packet.stream_name, frame_bgr) elif packet.stream_name.startswith('depth'): frame = packetData if len(frame.shape) == 2: if frame.dtype == np.uint8: # grayscale cv2.putText(frame, packet.stream_name, (25, 25), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255)) cv2.putText(frame, "fps: " + str(frame_count_prev[packet.stream_name]), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255)) else: # uint16 frame = (65535 // frame).astype(np.uint8) #colorize depth map, comment out code below to obtain grayscale frame = cv2.applyColorMap(frame, cv2.COLORMAP_HOT) # frame = cv2.applyColorMap(frame, cv2.COLORMAP_JET) cv2.putText(frame, packet.stream_name, (25, 25), cv2.FONT_HERSHEY_SIMPLEX, 1.0, 255) cv2.putText(frame, "fps: " + str(frame_count_prev[packet.stream_name]), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, 255) else: # bgr cv2.putText(frame, packet.stream_name, (25, 25), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 255)) cv2.putText(frame, "fps: " + str(frame_count_prev[packet.stream_name]), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, 255) if args['draw_bb_depth']: show_nn(entries_prev, frame, is_depth=True) cv2.imshow(packet.stream_name, frame) elif packet.stream_name == 'jpegout': jpg = packetData mat = cv2.imdecode(jpg, cv2.IMREAD_COLOR) cv2.imshow('jpegout', mat) elif packet.stream_name == 'video': videoFrame = packetData videoFrame.tofile(video_file) elif packet.stream_name == 'meta_d2h': str_ = packet.getDataAsStr() dict_ = json.loads(str_) print('meta_d2h Temp', ' CSS:' + '{:6.2f}'.format(dict_['sensors']['temperature']['css']), ' MSS:' + '{:6.2f}'.format(dict_['sensors']['temperature']['mss']), ' UPA:' + '{:6.2f}'.format(dict_['sensors']['temperature']['upa0']), ' DSS:' + '{:6.2f}'.format(dict_['sensors']['temperature']['upa1'])) frame_count[packet.stream_name] += 1 json_stream(frame_id, entries_prev) t_curr = time() if t_start + 1.0 < t_curr: t_start = t_curr for s in stream_names: frame_count_prev[s] = frame_count[s] frame_count[s] = 0 key = cv2.waitKey(1) if key == ord('c'): depthai.request_jpeg() elif key == ord('q'): break del p # in order to stop the pipeline object should be deleted, otherwise device will continue working. This is required if you are going to add code after the main loop, otherwise you can ommit it. depthai.deinit_device() # Close video output file if was opened if video_file is not None: video_file.close() print('py: DONE.') ```
{ "source": "Joash-JW/Auto-DCA", "score": 3 }
#### File: Joash-JW/Auto-DCA/td.py ```python from config import config from broker import Broker from requests import post, get from requests.models import Response class TD(Broker): # TD Ameritrade Implementation. Paper trading is only available via thinkorswim. def __init__(self): self._place_order_url = 'https://api.tdameritrade.com/v1/accounts/{}/orders'.format(config['TD_ID']) self._refresh_token_url = 'https://api.tdameritrade.com/v1/oauth2/token' def print_response(self, response: Response): print('{name} Broker - HTTP_CODE={status_code}&MESSAGE={message}'.format( name=self.name, status_code=response.status_code, message=response.text )) def get_price(self): # Refer to TD API - https://developer.tdameritrade.com/quotes/apis/get/marketdata/%7Bsymbol%7D/quotes query_url = 'https://api.tdameritrade.com/v1/marketdata/{}/quotes' params = {'apikey': config['TD_CONSUMER_KEY'] + '@AMER.OAUTHAP'} headers = { 'Content-Type': 'application/json', 'Authorization': 'Bearer ' + config['TD_ACCESS_TOKEN'] } # Attempt 1 to see response status code. response = get(query_url.format(config['SYMBOL']), params=params, headers=headers) # Refresh token if status code 401. # From TD - indicating the caller must pass a valid Authorization in the HTTP authorization request header. if response.status_code == 401: self.refresh_token() # Resend request using the new access token. headers = { 'Content-Type': 'application/json', 'Authorization': 'Bearer ' + config['TD_ACCESS_TOKEN'] } response = get(query_url.format(config['SYMBOL']), params=params, headers=headers) assert response.status_code == 200 # only status code 200 is able to pass this step return float(response.json()[config['SYMBOL']]['askPrice']) # return ask price def refresh_token(self): # Refer to TD API - https://developer.tdameritrade.com/authentication/apis/post/token-0 data = { 'grant_type': 'refresh_token', 'refresh_token': config['TD_REFRESH_TOKEN'], 'access_type': '', 'code': config['TD_CODE'], 'client_id': config['TD_CONSUMER_KEY'] + '@AMER.OAUTHAP', 'redirect_uri': config['TD_CALLBACK_URL'] } headers = { 'Content-Type': 'application/x-www-form-urlencoded' } response = post(self._refresh_token_url, headers=headers, data=data) self.print_response(response) if response.status_code == 200: # New access token config['TD_ACCESS_TOKEN'] = response.json()['access_token'] def place_order(self, quantity): # Refer to TD API - https://developer.tdameritrade.com/account-access/apis/post/accounts/%7BaccountId%7D/orders-0 headers = { 'Content-Type': 'application/json', 'Authorization': 'Bearer ' + config['TD_ACCESS_TOKEN'] } # This request does not actually place the order. # Test request to ensure status code 200. response = post(self._place_order_url, headers=headers) # Refresh token if status code 401. if response.status_code == 401: self.refresh_token() # Update with new access token after refresh. headers = { 'Content-Type': 'application/json', 'Authorization': 'Bearer ' + config['TD_ACCESS_TOKEN'] } # This specifies the order that will be placed. data = { 'orderType': 'MARKET', 'session': 'NORMAL', 'duration': 'DAY', 'orderStrategyType': 'SINGLE', 'orderLegCollection': [ { 'instruction': 'Buy', 'quantity': quantity, 'instrument': { 'symbol': config['SYMBOL'], 'assetType': 'EQUITY' } } ] } response = post(self._place_order_url, headers=headers, json=data) self.print_response(response) ```
{ "source": "Joash-JW/Boro", "score": 3 }
#### File: Joash-JW/Boro/boro.py ```python from trading_calendar import TradingCalendar as tc from pytz import timezone from datetime import datetime, timedelta class Boro(): def __init__(self): self._dca_date = None self._tc = tc() @property def dca_date(self): return self._dca_date @dca_date.setter def dca_date(self, new_dca_date): if new_dca_date.date() < self.get_lse_time_now().date(): raise ValueError("New DCA date is in the past") print("Next DCA Date: " + new_dca_date.strftime("%Y-%m-%d %H:%M:%S")) self._dca_date = new_dca_date def get_lse_time_now(self): """ Returns current time of the London Stock Exchange. """ return datetime.now(tz=timezone('Europe/London')) def get_est_time_now(self): """ Returns current time of the US Stock Exchange. """ return datetime.now(tz=timezone("US/Eastern")) def set_next_dca_date(self, market): """ Set the next Dollar-Cost Averaging date """ date = self.get_est_time_now() if market.upper() == 'US' else self.get_lse_time_now() while True: try: self.dca_date = self._tc.compute_next_dca_date(date) break except ValueError: print("Calculating next DCA Date based on " + date.strftime("%Y-%m-%d %H:%M:%S")) date += timedelta(days=7) # search the next week is_open = False if market.upper() == 'US': self._tc.set_us_market_calendar_cache(self.dca_date.year, self.dca_date.month) is_open = self._tc.check_us_market_open(self.dca_date) while not is_open: # move DCA date to next earliest market open day self.dca_date += timedelta(days=1) is_open = self._tc.check_us_market_open(self.dca_date) else: # for UK market # TODO: Add check for UK market open on a day pass ``` #### File: Joash-JW/Boro/trading_calendar.py ```python from config import config from calendar import Calendar from datetime import datetime from requests import get class TradingCalendar(): def __init__(self): self._us_market_calendar_cache = None def set_us_market_calendar_cache(self, year, month): """ Set the US market calendar based on the given month and year. This method sets the US market calendar based on the given month and year. Since it is a cache of the calendar, it only queries the api when update is needed. """ if self._us_market_calendar_cache is None or self._us_market_calendar_cache['month'] != month or self._us_market_calendar_cache['year'] != year: while True: try: print("Querying US market calendar date for year={year}, month={month}".format(year=year, month=month)) response = get( 'https://api.tradier.com/v1/markets/calendar', params={'month': str(month), 'year': str(year)}, headers={'Authorization': 'Bearer <TOKEN>', 'Accept': 'application/json'} ) assert response.status_code == 200 break except AssertionError: print("Unable to get US market calendar") self._us_market_calendar_cache = response.json()['calendar'] def compute_next_dca_date(self, previous_date): """ Returns the computed next Dollar-Cost Averaging date. """ next_dca_date = [ date for date in Calendar().itermonthdays4(previous_date.year, previous_date.month) \ if date[1] == previous_date.month and date[3] == config['DCA_DAY']][config['DCA_WEEK'] ] return datetime(next_dca_date[0], next_dca_date[1], next_dca_date[2], config['DCA_HOUR'], config['DCA_MINUTE']) def check_us_market_open(self, date): """ Returns a boolean value true if the market is open on the given date and time, false otherwise. """ calendar = self._us_market_calendar_cache['days']['day'] calendar_index = self.binary_search(calendar, 0, len(calendar)-1, date) day_open = True if calendar[calendar_index]['status'] == 'open' else False if day_open: hour_open = True if date < datetime.strptime( date.strftime("%Y-%m-%d") + " " + calendar[calendar_index]['open']['end'], "%Y-%m-%d %H:%M" ) else False return hour_open else: return False def binary_search(self, date_arr, left, right, search_date): """ Binary search for the date in the calendar cache as it is sorted. This is mainly for my practice. """ mid = (left + right) // 2 mid_date = datetime.strptime(date_arr[mid]['date'], '%Y-%m-%d') if (mid_date.date() == search_date.date()): return mid elif (mid_date.date() < search_date.date()): # mid_date is before search_date, hence look right return self.binary_search(date_arr, mid+1, right, search_date) else: # search left return self.binary_search(date_arr, left, mid-1, search_date) ```
{ "source": "Joash-JW/CZ3004-MDP-Image-Recognition", "score": 3 }
#### File: rpi/woImgReg/ArduinoV3.py ```python import serial import threading import time class ArduinoV3: def __init__(self): self.baudrate = 115200 self.serial = 0 self.connected = False def connect(self): try: self.serial = serial.Serial("/dev/ttyACM0", self.baudrate, write_timeout = 0) print("Connected to Arduino 0 successfully.") self.connected = True return 1 except: try: self.serial = serial.Serial("/dev/ttyACM1", self.baudrate, write_timeout = 0) print("Connected to Arduino 1 successfully.") self.connected = True return 1 except Exception as e2: print("Failed to connect to Arduino: %s" %str(e2)) self.connected = False return 0 def readThread(self, pc, android): while True: try: message = self.serial.readline() print("Read from Arduino: %s" %str(message)) if len(message) <= 1: continue if (message[0] == 80): pc.write(message[1:]) continue if (message[0] == 68): android.write(message[1:]) continue except Exception as e: print("Failed to read from Arduino: %s" %str(e)) self.connected = False return def write(self, message): try: self.serial.write(message) print("Write to Arduino: %s" %str(message)) print() except Exception as e: print("Failed to write to Arduino: %s" %str(e)) ``` #### File: rpi/woImgReg/RpiMainV3.py ```python import _thread import os from ArduinoV3 import * from PCV3 import * from AndroidV3 import * class Main: def __init__(self): os.system("sudo hciconfig hci0 piscan") print("Please wait...") self.arduino = ArduinoV3() self.pc = PCV3() self.android = AndroidV3() def test(self): while True: if self.arduino.connected == False: result = self.arduino.connect() if (result == 0): continue try: _thread.start_new_thread(self.arduino.readThread, (self.pc, self.android)) print("Arduino thread started.") except Exception as e: print("Arduino threading error: %s" %str(e)) if self.pc.connected == False: self.pc.connect() if self.pc.connected == True: try: _thread.start_new_thread(self.pc.readThread, (self.arduino, self.android)) print("PC thread started.") except Exception as e: print("PC threading error: %s" %str(e)) if self.android.connected == False: self.android.connect() if self.android.connected == True: try: _thread.start_new_thread(self.android.readThread, (self.arduino, self.pc)) print("Android thread started.") except Exception as e: print("Android threading error: %s" %str(e)) def disconnectAll(self): try: self.android.disconnect() self.pc.disconnect() except: pass if __name__ == "__main__": a = Main() try: a.test() except KeyboardInterrupt: print("Terminating program...") a.disconnectAll() ```
{ "source": "joasiee/elastix", "score": 2 }
#### File: thesispy/elastix_wrapper/watchdog.py ```python from pathlib import Path import re import shutil import threading import time import wandb import os import pandas as pd import numpy as np class SaveStrategy: def save(self, headers, row, resolution) -> None: pass def save_custom(self, metric, value) -> None: pass def close(self) -> None: pass class SaveStrategyWandb(SaveStrategy): def __init__(self, experiment, run_dir: Path, batch_size: int = 1) -> None: wandb.init(project=experiment.project, name=str(experiment.params), reinit=True) wandb.config.update(experiment.params.params) self.run_dir = run_dir self.batch_size = batch_size self._rowcount = 0 self._sum_time = 0 self._resolution = 0 self._buffer = (None, None) def _reset_state(self): self._rowcount = 0 self._sum_time = 0 self._resolution = 0 self._buffer = (None, None) def _log_buffer(self): if self._rowcount > 0: headers, row = self._buffer row[-1] = self._sum_time headers = [f"R{self._resolution}/{header}" for header in headers] metrics = dict(zip(headers, row)) wandb.log(metrics) self._reset_state() def save(self, headers, row, resolution) -> None: self._rowcount += 1 self._sum_time += row[-1] self._buffer = (headers, row) self._resolution = resolution if self._rowcount == self.batch_size: self._log_buffer() def save_custom(self, metric: str, value) -> None: wandb.log({metric: value}, commit=False) def close(self) -> None: self._log_buffer() print(self.run_dir) wandb.save( str((self.run_dir / "out"/ "*").resolve()), base_path=str(self.run_dir.parents[0].resolve()) ) wandb_dir = Path(wandb.run.dir) wandb.finish() shutil.rmtree(self.run_dir.absolute()) shutil.rmtree(wandb_dir.parent.absolute()) class Watchdog(threading.Thread): def __init__( self, out_dir, n_resolutions, *args, **kwargs, ): super(Watchdog, self).__init__(*args, **kwargs) self._stop_event = threading.Event() self.set_input(out_dir, n_resolutions) def set_strategy(self, strategy: SaveStrategy): self.sv_strategy: SaveStrategy = strategy def set_input(self, out_dir, n_resolutions): self.out_dir = out_dir self.n_resolutions = n_resolutions def run(self): line_counts = [0 for _ in range(self.n_resolutions)] file_names = [ self.out_dir / f"IterationInfo.0.R{r}.txt" for r in range(self.n_resolutions) ] r = 0 while True: if not os.path.exists(file_names[r]): continue try: resolution_results = pd.read_csv(file_names[r], sep=" ") except pd.errors.EmptyDataError: continue if np.count_nonzero(resolution_results.isnull().values) > 1: continue headers = resolution_results.columns.values headers = [re.sub(r"\d:", "", header).lower() for header in headers] values = resolution_results.values len_values = values.shape[0] len_diff = len_values - line_counts[r] line_counts[r] = len_values if len_diff > 0: for row in values[len_values - len_diff :]: self.sv_strategy.save(headers, row, r) elif r < self.n_resolutions - 1 and os.path.exists(file_names[r + 1]): r += 1 elif self._stop_event.is_set(): break time.sleep(0.1) def stop(self): self._stop_event.set() ``` #### File: thesispy/experiments/dataset.py ```python from pathlib import Path from typing import Any, Dict, List import itertools import pickle import numpy as np import pandas as pd import dictquery as dq from thesispy.definitions import ROOT_DIR DATASETS_PATH = ROOT_DIR / Path("datasets") if not DATASETS_PATH.exists(): DATASETS_PATH.mkdir(parents=True) class FinishedRun: def __init__( self, name: str, config: Dict[str, Any], metrics: pd.DataFrame ) -> None: self.name = name self.config = config self.resolutions_train = [] self.resolutions_val = [] nr_resolutions = int(self.config["NumberOfResolutions"]) for r in range(0, nr_resolutions): condition = ( ~np.isnan(metrics[f"R{r}/metric"]) if nr_resolutions > 1 else metrics.index ) indices = metrics.index[condition] columns = ["_step", "_runtime", "_timestamp"] + [ c for c in metrics.columns if f"R{r}/" in c ] metrics_r = metrics[columns] metrics_r.columns = [c.replace(f"R{r}/", "") for c in metrics_r.columns] self.resolutions_train.append(metrics_r.loc[indices].iloc[:-1]) self.resolutions_val.append(metrics_r.loc[indices].iloc[-1]) def query(self, query: str): return dq.match(self.config, query) class Dataset: def __init__(self, project: str, runs: List[FinishedRun]) -> None: self.runs: List[FinishedRun] = runs self.project = project def add_run(self, run: FinishedRun): self.runs.append(run) def filter(self, query: str): return Dataset(self.project, [run for run in self.runs if run.query(query)]) def groupby(self, attrs: List[str]): if len(attrs) == 0: yield (), self.runs else: query_parts = [set() for _ in range(len(attrs))] unique_values = [set() for _ in range(len(attrs))] for i, attr in enumerate(attrs): for run in self.runs: if attr in run.config: value = run.config[attr] if isinstance(value, list): value = tuple(value) unique_values[i].add(value) if isinstance(value, str): query_parts[i].add(f"{attr} == '{run.config[attr]}'") else: query_parts[i].add(f"{attr} == {run.config[attr]}") else: unique_values[i].add(None) query_parts[i].add(f"NOT {attr}") for group, query_tuple in zip( itertools.product(*unique_values), itertools.product(*query_parts) ): query = query_tuple[0] for i in range(1, len(query_tuple) - 1): query += " AND " + query_tuple[i] query += " AND " + query_tuple[-1] yield group, self.filter(query).runs def aggregate( self, attrs: List[str] = [], metrics: List[str] = ["metric"], resolution: int = 0, val: bool = True, ): df = pd.DataFrame(columns=metrics) for group, runs in self.groupby(attrs): df_add = pd.DataFrame(columns=metrics) for run in runs: if val: val_df = run.resolutions_val[resolution][metrics].to_frame() val_df = val_df.transpose() df_add = pd.concat([df_add, val_df]) else: df_add = pd.concat( [df_add, run.resolutions_train[resolution][metrics]] ) for i, attr in enumerate(attrs): df_add[attr] = str(group[i]) df = pd.concat([df, df_add]) return df def save(self): path = DATASETS_PATH / f"{self.project}.pkl" with path.open("wb") as file: pickle.dump(self, file) @staticmethod def load(project: str): path = DATASETS_PATH / f"{project}.pkl" with path.open("rb") as file: return pickle.load(file) ``` #### File: thesispy/experiments/experiment.py ```python import json from pathlib import Path import redis from dotenv import load_dotenv import os from sshtunnel import SSHTunnelForwarder from thesispy.elastix_wrapper import wrapper from thesispy.elastix_wrapper.parameters import Parameters from thesispy.elastix_wrapper.watchdog import SaveStrategyWandb WANDB_ENTITY = "joasiee" class Experiment: def __init__(self, params: Parameters, project: str = None) -> None: params.prune() self.project = project self.params = params @classmethod def from_json(cls, jsondump): pyjson = json.loads(jsondump) params = Parameters(pyjson["params"]).set_paths() return cls(params, pyjson["project"]) def to_json(self): return json.dumps({"project": self.project, "params": self.params.params}) def __str__(self) -> str: return self.to_json() class ExperimentQueue: queue_id = "queue:experiments" def __init__(self) -> None: load_dotenv() self.ssh_forwarding_enable() self.client = redis.Redis(host="localhost", port=self.local_port, db=0) def ssh_forwarding_enable(self): self.sshserver = SSHTunnelForwarder( os.environ["REDIS_HOST"], ssh_username="root", remote_bind_address=("127.0.0.1", 6379), ) self.sshserver.start() self.local_port = self.sshserver.local_bind_port def push(self, experiment: Experiment) -> None: self.client.rpush(ExperimentQueue.queue_id, experiment.to_json()) def pop(self) -> Experiment: packed = self.client.lpop(ExperimentQueue.queue_id) if packed: return Experiment.from_json(packed) return None def peek(self) -> Experiment: return self.client.lrange(ExperimentQueue.queue_id, 0, 0) def size(self) -> int: return self.client.llen(ExperimentQueue.queue_id) def clear(self) -> None: self.client.delete(ExperimentQueue.queue_id) def run_experiment(experiment: Experiment): run_dir = Path("output") / experiment.project / str(experiment.params) batch_size = ( 50 if experiment.params["Optimizer"] == "AdaptiveStochasticGradientDescent" else 1 ) sv_strat = SaveStrategyWandb(experiment, run_dir, batch_size) wrapper.run(experiment.params, run_dir, sv_strat) if __name__ == "__main__": expq = ExperimentQueue() expq.clear() print(expq.size()) ```
{ "source": "joast/wcmatch", "score": 3 }
#### File: wcmatch/tests/test_pathlib.py ```python import contextlib import pytest import unittest import os from wcmatch import pathlib, glob, _wcparse import pathlib as pypathlib import pickle import warnings @contextlib.contextmanager def change_cwd(path, quiet=False): """ Return a context manager that changes the current working directory. Arguments: path: the directory to use as the temporary current working directory. quiet: if False (the default), the context manager raises an exception on error. Otherwise, it issues only a warning and keeps the current working directory the same. """ saved_dir = os.getcwd() try: os.chdir(path) except OSError: if not quiet: raise warnings.warn('tests may fail, unable to change CWD to: ' + path, RuntimeWarning, stacklevel=3) try: yield os.getcwd() finally: os.chdir(saved_dir) class TestGlob(unittest.TestCase): """ Test file globbing. NOTE: We are not testing the actual `glob` library, just the interface on the `pathlib` object and specifics introduced by the particular function. """ def test_relative(self): """Test relative path.""" abspath = os.path.abspath('.') p = pathlib.Path(abspath) with change_cwd(os.path.dirname(abspath)): results = list(p.glob('docs/**/*.md', flags=pathlib.GLOBSTAR)) self.assertTrue(len(results)) self.assertTrue(all([file.suffix == '.md' for file in results])) def test_relative_exclude(self): """Test relative path exclude.""" abspath = os.path.abspath('.') p = pathlib.Path(abspath) with change_cwd(os.path.dirname(abspath)): results = list(p.glob('docs/**/*.md|!**/index.md', flags=pathlib.GLOBSTAR | pathlib.NEGATE | pathlib.SPLIT)) self.assertTrue(len(results)) self.assertTrue(all([file.name != 'index.md' for file in results])) def test_glob(self): """Test globbing function.""" p = pathlib.Path('docs') results = list(p.glob('*.md')) self.assertTrue(not results) results = list(p.glob('**/*.md', flags=pathlib.GLOBSTAR)) self.assertTrue(len(results)) self.assertTrue(all([file.suffix == '.md' for file in results])) def test_rglob(self): """Test globbing function.""" p = pathlib.Path('docs') results = list(p.rglob('*.md')) self.assertTrue(len(results)) self.assertTrue(all([file.suffix == '.md' for file in results])) results = list(p.rglob('*.md')) self.assertTrue(len(results)) self.assertTrue(all([file.suffix == '.md' for file in results])) results = list(p.rglob('markdown/*.md')) self.assertTrue(len(results)) self.assertTrue(all([file.suffix == '.md' for file in results])) def test_integrity(self): """Test glob integrity, or better put, test the path structure comes out sane.""" orig = [pathlib.Path(x) for x in glob.iglob('docs/**/*.md', flags=glob.GLOBSTAR)] results = list(pathlib.Path('docs').glob('**/*.md', flags=glob.GLOBSTAR)) self.assertEqual(orig, results) orig = [pathlib.Path(x) for x in glob.iglob('**/*.md', flags=glob.GLOBSTAR)] results = list(pathlib.Path('').glob('**/*.md', flags=glob.GLOBSTAR)) self.assertEqual(orig, results) class TestPathlibGlobmatch: """ Tests that are performed against `globmatch`. Each case entry is a list of 4 parameters. * Pattern * File name * Expected result (boolean of whether pattern matched file name) * Flags * Force Windows or Unix (string with `windows` or `unix`) The default flags are `NEGATE` | `EXTGLOB` | `BRACE`. Any flags passed through via entry are XORed. So if any of the default flags are passed via an entry, they will be disabled. All other flags will enable the feature. NOTE: We are not testing the actual `globmatch` library, just the interface on the `pathlib` object. """ cases = [ ['some/*/*/match', 'some/path/to/match', True, pathlib.G], ['some/**/match', 'some/path/to/match', False], ['some/**/match', 'some/path/to/match', True, pathlib.G], # `pathlib` doesn't keep trailing slash, so we can't tell it's a directory ['some/**/match/', 'some/path/to/match/', False, pathlib.G], ['.', '.', True], ['.', '', True], # `PurePath` ['some/*/*/match', 'some/path/to/match', True, pathlib.G, "pure"], ['some/**/match', 'some/path/to/match', False, 0, "pure"], ['some/**/match', 'some/path/to/match', True, pathlib.G, "pure"], ['some/**/match/', 'some/path/to/match/', False, pathlib.G, "pure"], ['.', '.', True, 0, "pure"], ['.', '', True, 0, "pure"], # Force a specific platform with a specific `PurePath`. ['//?/C:/**/file.log', r'\\?\C:\Path\path\file.log', True, pathlib.G, "windows"], ['/usr/*/bin', '/usr/local/bin', True, pathlib.G, "unix"] ] @classmethod def setup_class(cls): """Setup default flag options.""" # The tests we scraped were written with this assumed. cls.flags = pathlib.NEGATE | pathlib.EXTGLOB | pathlib.BRACE @classmethod def evaluate(cls, case): """Evaluate case.""" pattern = case[0] name = case[1] goal = case[2] flags = cls.flags path = None platform = "auto" if len(case) > 3: flags ^= case[3] if len(case) > 4: if case[4] == "windows": path = pathlib.PureWindowsPath(name) platform = case[4] elif case[4] == "unix": path = pathlib.PurePosixPath(name) platform = case[4] elif case[4] == "pure": path = pathlib.PurePath(name) if path is None: path = pathlib.Path(name) print('PATH: ', str(path)) print("PATTERN: ", pattern) print("FILE: ", name) print("GOAL: ", goal) print("FLAGS: ", bin(flags)) print("Platform: ", platform) cls.run(path, pattern, flags, goal) @classmethod def run(cls, path, pattern, flags, goal): """Run the command.""" assert path.globmatch(pattern, flags=flags) == goal, "Expression did not evaluate as %s" % goal @pytest.mark.parametrize("case", cases) def test_cases(self, case): """Test ignore cases.""" self.evaluate(case) class TestPathlibMatch(TestPathlibGlobmatch): """ Test match method. NOTE: We are not testing the actual `globmatch` library, just the interface on the `pathlib` object and the additional behavior that match injects (recursive logic). """ cases = [ ['match', 'some/path/to/match', True], ['to/match', 'some/path/to/match', True], ['path/to/match', 'some/path/to/match', True], ['some/**/match', 'some/path/to/match', False], ['some/**/match', 'some/path/to/match', True, pathlib.G] ] @classmethod def run(cls, path, pattern, flags, goal): """Run the command.""" assert path.match(pattern, flags=flags) == goal, "Expression did not evaluate as %s" % goal class TestRealpath(unittest.TestCase): """Test real path of pure paths.""" def test_real_directory(self): """Test real directory.""" p = pathlib.PurePath('wcmatch') self.assertTrue(p.globmatch('*/', flags=pathlib.REALPATH)) self.assertTrue(p.globmatch('*', flags=pathlib.REALPATH)) def test_real_file(self): """Test real file.""" p = pathlib.PurePath('setup.py') self.assertFalse(p.globmatch('*/', flags=pathlib.REALPATH)) self.assertTrue(p.globmatch('*', flags=pathlib.REALPATH)) class TestExceptions(unittest.TestCase): """Test exceptions.""" def test_bad_path(self): """Test bad path.""" with self.assertRaises(NotImplementedError): obj = pathlib.PosixPath if os.name == 'nt' else pathlib.WindowsPath obj('name') def test_bad_realpath(self): """Test bad real path.""" with self.assertRaises(ValueError): obj = pathlib.PurePosixPath if os.name == 'nt' else pathlib.PureWindowsPath p = obj('wcmatch') p.globmatch('*', flags=pathlib.REALPATH) def test_absolute_glob(self): """Test absolute patterns in `pathlib` glob.""" with self.assertRaises(ValueError): p = pathlib.Path('wcmatch') list(p.glob('/*')) def test_inverse_absolute_glob(self): """Test inverse absolute patterns in `pathlib` glob.""" with self.assertRaises(ValueError): p = pathlib.Path('wcmatch') list(p.glob('!/*', flags=pathlib.NEGATE)) class TestComparisons(unittest.TestCase): """Test comparison.""" def test_instance(self): """Test instance.""" p1 = pathlib.Path('wcmatch') p2 = pypathlib.Path('wcmatch') self.assertTrue(isinstance(p1, pathlib.Path)) self.assertTrue(isinstance(p1, pypathlib.Path)) self.assertFalse(isinstance(p2, pathlib.Path)) self.assertTrue(isinstance(p2, pypathlib.Path)) def test_equal(self): """Test equivalence.""" p1 = pathlib.Path('wcmatch') p2 = pypathlib.Path('wcmatch') p3 = pathlib.Path('docs') self.assertTrue(p1 == p2) self.assertFalse(p1 == p3) self.assertFalse(p3 == p2) def test_pure_equal(self): """Test equivalence.""" p1 = pathlib.PureWindowsPath('wcmatch') p2 = pathlib.PurePosixPath('wcmatch') p3 = pypathlib.PureWindowsPath('wcmatch') p4 = pypathlib.PurePosixPath('wcmatch') self.assertTrue(p1 != p2) self.assertTrue(p3 != p4) self.assertTrue(p1 == p3) self.assertTrue(p2 == p4) def test_flavour_equal(self): """Test that the same flavours equal each other, regardless of path type.""" p1 = pathlib.PurePath('wcmatch') p2 = pathlib.Path('wcmatch') p3 = pypathlib.PurePath('wcmatch') p4 = pypathlib.Path('wcmatch') self.assertTrue(p1 == p2) self.assertTrue(p3 == p4) self.assertTrue(p1 == p3) self.assertTrue(p2 == p4) self.assertTrue(p1 == p4) self.assertTrue(p2 == p3) def test_pickle(self): """Test pickling.""" p1 = pathlib.PurePath('wcmatch') p2 = pathlib.Path('wcmatch') p3 = pickle.loads(pickle.dumps(p1)) p4 = pickle.loads(pickle.dumps(p2)) self.assertTrue(type(p1) == type(p3)) self.assertTrue(type(p2) == type(p4)) self.assertTrue(type(p1) != type(p2)) self.assertTrue(type(p3) != type(p4)) class TestExpansionLimit(unittest.TestCase): """Test expansion limits.""" def test_limit_globmatch(self): """Test expansion limit of `globmatch`.""" with self.assertRaises(_wcparse.PatternLimitException): pathlib.PurePath('name').globmatch('{1..11}', flags=pathlib.BRACE, limit=10) def test_limit_match(self): """Test expansion limit of `match`.""" with self.assertRaises(_wcparse.PatternLimitException): pathlib.PurePath('name').match('{1..11}', flags=pathlib.BRACE, limit=10) def test_limit_glob(self): """Test expansion limit of `glob`.""" with self.assertRaises(_wcparse.PatternLimitException): list(pathlib.Path('.').glob('{1..11}', flags=pathlib.BRACE, limit=10)) def test_limit_rglob(self): """Test expansion limit of `rglob`.""" with self.assertRaises(_wcparse.PatternLimitException): list(pathlib.Path('.').rglob('{1..11}', flags=pathlib.BRACE, limit=10)) ```
{ "source": "joathert/Spherical2TreeAttributes", "score": 2 }
#### File: Spherical2TreeAttributes/CompactAll.future/app.py ```python import sys from PyQt5.QtWidgets import * from PyQt5.QtGui import * from PyQt5.QtCore import * from OpenGL.GL import * from OpenGL.GLUT import * from OpenGL.GLU import * from PIL import Image class MainWindow(QMainWindow): ''' MainFrame |-- MenuBar |-- ProjectPanel |-- TabPanel |-- IndividualTab |-- BasalAreaTab |-- PlantFractionTab ''' def __init__(self, parent=None): super().__init__(parent) self.setWindowTitle("Spherical2TreeAttributes (Beta 0.1)") self.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint) screen = QDesktopWidget().screenGeometry() self.resize(screen.width(), screen.height()) self.move(0,0) self.setWindowIcon(QIcon('./img/logo.png')) self.setupUI() self.functionConnector() #self.glWidget = GLWidget() def setupUI(self): # Menu Bar UI self.menuBar = MenuBar() # Project Panel UI self.projectPanel = ProjectPanel() # Tabs UI self.tabs = QTabWidget() self.indTab = IndividualTreePanel() self.baTab = BasalAreaPanel() self.pfTab = PlantFractionPanel() self.tabs.addTab(self.indTab, 'Individual DBH|HT') self.tabs.addTab(self.baTab, 'Basal Area') self.tabs.addTab(self.pfTab, 'Plant Fraction') #self.tabs.setTabPosition(QTabWidget.West) #self.tabs.setStyleSheet("QTabBar::tab {width: 50px}") self.tabs.setStyleSheet("QTabBar::tab {height: 50px}") # Pack these UIs together self.mainWidget = QWidget() wl = QHBoxLayout(self.mainWidget) layout = QVBoxLayout() layout.addWidget(self.menuBar, stretch=1) layout.addLayout(self.projectPanel, stretch=7) wl.addLayout(layout, stretch=1) wl.addWidget(self.tabs, stretch=3) self.setCentralWidget(self.mainWidget) def functionConnector(self): self.menuBar.actionNew.clicked.connect(self.newProject) self.menuBar.actionOpen.clicked.connect(self.openProject) self.menuBar.actionSave.clicked.connect(self.saveProject) self.menuBar.actionQuit.clicked.connect(self.quitSoftware) def newProject(self): self.updateStatus("add new project") def openProject(self): self.updateStatus("open project") def saveProject(self): self.updateStatus("save project") def quitSoftware(self): qApp = QApplication.instance() qApp.quit() def updateStatus(self, string): if len(string) >= 50: self.projectPanel.statusBar.setText(string[:50] + '...') else: self.projectPanel.statusBar.setText(string) class MenuBar(QTabWidget): def __init__(self, parent=None): super().__init__(parent) self.btnStyle=''' QPushButton { background-color:white; border: none; padding: 5px; } QPushButton:hover { border:1px solid; } ''' self.setupUI() def setupUI(self): self.fileTab = QWidget() self.plotTab = QWidget() self.helpTab = QWidget() self.addTab(self.fileTab, 'File') self.addTab(self.plotTab, 'Plot') self.addTab(self.helpTab, 'Help') self.setStyleSheet("QTabBar::tab { height: 50px}") # File Tab self.fileLayout = QGridLayout() self.actionNew = QPushButton("&New") self.actionNew.setIcon(QIcon("./img/new.png")) self.actionNew.setShortcut("Ctrl+N") self.actionNew.setStyleSheet(self.btnStyle) self.actionOpen = QPushButton("&Open") self.actionOpen.setIcon(QIcon("./img/open.png")) self.actionOpen.setShortcut("Ctrl+O") self.actionOpen.setStyleSheet(self.btnStyle) self.actionSave = QPushButton("&Save") self.actionSave.setEnabled(False) self.actionSave.setIcon(QIcon("./img/save.png")) self.actionSave.setShortcut("Ctrl+S") self.actionSave.setStyleSheet(self.btnStyle) self.actionSaveAs = QPushButton("Save As") self.actionSaveAs.setEnabled(False) self.actionSaveAs.setIcon(QIcon("./img/save.png")) self.actionSaveAs.setShortcut("Ctrl+Alt+S") self.actionSaveAs.setStyleSheet(self.btnStyle) self.actionExport = QPushButton("Export") self.actionExport.setEnabled(False) self.actionExport.setIcon(QIcon("./img/export.png")) self.actionExport.setStyleSheet(self.btnStyle) self.actionQuit = QPushButton("Quit") self.actionQuit.setEnabled(True) self.actionQuit.setIcon(QIcon("./img/quit.png")) self.actionQuit.setStyleSheet(self.btnStyle) self.fileLayout.addWidget(self.actionNew, 0, 0, alignment=Qt.AlignLeft) self.fileLayout.addWidget(self.actionOpen, 1, 0, alignment=Qt.AlignLeft) self.fileLayout.addWidget(self.actionSave, 0, 1, alignment=Qt.AlignLeft) self.fileLayout.addWidget(self.actionSaveAs, 1,1, alignment=Qt.AlignLeft) self.fileLayout.addWidget(self.actionExport, 0, 2, alignment=Qt.AlignLeft) self.fileLayout.addWidget(self.actionQuit, 1, 2, alignment=Qt.AlignLeft) #self.fileLayout.addStretch(0) self.fileTab.setLayout(self.fileLayout) # Plot Tab self.plotLayout = QGridLayout() self.actionAdd = QPushButton("Single") self.actionAdd.setIcon(QIcon("./img/add.png")) self.actionAdd.setStyleSheet(self.btnStyle) self.actionBatchAdd = QPushButton("Batch") self.actionBatchAdd.setIcon(QIcon("./img/add.png")) self.actionBatchAdd.setStyleSheet(self.btnStyle) #self.labelAdd = QLabel('Add') #self.labelAdd.setAlignment(Qt.AlignHCenter) self.actionEditName = QPushButton("Name") self.actionEditName.setIcon(QIcon("./img/edit.png")) self.actionEditName.setStyleSheet(self.btnStyle) self.actionEditEle = QPushButton("Elevation") self.actionEditEle.setIcon(QIcon("./img/edit.png")) self.actionEditEle.setStyleSheet(self.btnStyle) self.actionEditImg = QPushButton("Image") self.actionEditImg.setIcon(QIcon("./img/edit.png")) self.actionEditImg.setStyleSheet(self.btnStyle) #self.labelEdit = QLabel('Edit') #self.labelEdit.setAlignment(Qt.AlignHCenter) self.actionDel = QPushButton("Delete") self.actionDel.setIcon(QIcon("./img/delete.png")) self.actionDel.setStyleSheet(self.btnStyle) self.plotLayout.addWidget(self.actionAdd, 0, 0, alignment=Qt.AlignLeft) self.plotLayout.addWidget(self.actionBatchAdd, 1, 0, alignment=Qt.AlignLeft) #self.plotLayout.addWidget(self.labelAdd, 3, 0) self.plotLayout.addWidget(self.actionEditName, 0, 1, alignment=Qt.AlignLeft) self.plotLayout.addWidget(self.actionEditEle, 1, 1, alignment=Qt.AlignLeft) self.plotLayout.addWidget(self.actionEditImg, 0, 2, alignment=Qt.AlignLeft) #self.plotLayout.addWidget(self.labelEdit, 3, 1) self.plotLayout.addWidget(self.actionDel, 1, 2, alignment=Qt.AlignLeft) self.plotTab.setLayout(self.plotLayout) # Help Tab self.helpLayout = QGridLayout() self.actionApp = QPushButton("User Manual") self.actionApp.setIcon(QIcon("./img/file.png")) self.actionApp.setStyleSheet(self.btnStyle) self.actionAuthor = QPushButton("About Author") self.actionAuthor.setIcon(QIcon("./img/file.png")) self.actionAuthor.setStyleSheet(self.btnStyle) self.actionLab = QPushButton("About Lab") self.actionLab.setIcon(QIcon("./img/file.png")) self.actionLab.setStyleSheet(self.btnStyle) self.helpLayout.addWidget(self.actionApp, 0, 0, alignment=Qt.AlignLeft) self.helpLayout.addWidget(self.actionAuthor, 0, 1, alignment=Qt.AlignLeft) self.helpLayout.addWidget(self.actionLab, 0, 2, alignment=Qt.AlignLeft) #self.helpLayout.addStretch(0) self.helpTab.setLayout(self.helpLayout) class ProjectPanel(QVBoxLayout): ''' ProjectPanel |-- ImageInfo(QTreeWidget) |-- PlotInfo(QTableWidget) |-- ControlGroups(HorizontalLayout) |-- AddPlot |-- DelPlot |-- EditPlot ''' def __init__(self, parent=None): super().__init__(parent) self.setupUI() def setupUI(self): # Image Info Panel self.projectTree = QTreeWidget() self.projectTree.setColumnCount(2) self.projectTree.setHeaderLabels(['Plot', 'Elevation', 'Image File Path']) plot1 = QTreeWidgetItem(self.projectTree) plot1.setText(0, 'Plot1') img1 = QTreeWidgetItem(plot1) img1.setText(0, 'Upper') img1.setText(1, '2.6m') img1.setText(2, 'D:/Test/test2.jpg') img1.setIcon(0, QIcon('./img/img.png')) img2 = QTreeWidgetItem(plot1) img2.setText(0, 'Lower') img2.setText(1, '1.6m') img2.setText(2, 'D:/Test/test1.jpg') img2.setIcon(0, QIcon('./img/img.png')) #for i in range(0,3): # self.projectTree.resizeColumnToContents(i) self.projectTree.header().setSectionResizeMode(QHeaderView.ResizeToContents) self.projectTree.header().setStretchLastSection(True) self.projectTree.expandAll() # Plot Info Panel self.projectTableView = QTableView() self.projectModel = QStandardItemModel(0, 5) self.projectModel.setHorizontalHeaderLabels(['Plot', 'meanDBH', 'meanHT', 'standBA', 'PF']) self.projectTableView.setModel(self.projectModel) self.projectTableView.resizeColumnsToContents() self.projectTableView.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) # Control Panel # self.projectButtonLayout = QHBoxLayout() # self.addPlot = QPushButton('Add') # self.delPlot = QPushButton('Del') # self.editPlot = QPushButton('Edit') # self.projectButtonLayout.addWidget(self.addPlot) # self.projectButtonLayout.addWidget(self.delPlot) # self.projectButtonLayout.addWidget(self.editPlot) self.statusBar = QLabel('[AI]: Hello World!') self.addWidget(QLabel('Plot Management')) self.addWidget(self.projectTree, stretch=2) #self.addLayout(self.projectButtonLayout) self.addWidget(QLabel('Plot Overview')) self.addWidget(self.projectTableView, stretch=1) self.addWidget(self.statusBar) class IndividualTreePanel(QWidget): ''' IndividualTreePanel |-- OpenGLContainer(VerticalLayout) |-- UpperHorizontalLayout | |-- VerticalBar(Zenith Angle) | |-- OpenGLPanel(VerticalLayout) | | |-- UpperGL | | |-- LowerGL | |-- VerticalBar(Zoom in/out) | |-- HorzontalBar |-- VertialLayout |-- TreeInfoTable |-- ButtonHorizontalLayout |-- AddBtn |-- DelBtn ''' def __init__(self, parent=None): super().__init__(parent) self.setupUI() self.functionConnector() def setupUI(self): self.layout = QHBoxLayout(self) ### OpenGLCtrl self.openglCtrlLayout = QVBoxLayout() self.xSlider = QSlider(Qt.Horizontal) self.xSlider.setMinimum(0) self.xSlider.setMaximum(360) self.xSlider.setSingleStep(10) self.xSlider.setValue(180) self.xSlider.setTickPosition(QSlider.TicksBelow) self.xSlider.setTickInterval(10) self.ySlider = QSlider(Qt.Vertical) self.ySlider.setMinimum(-90) self.ySlider.setMaximum(90) self.ySlider.setSingleStep(5) self.ySlider.setValue(0) self.ySlider.setTickPosition(QSlider.TicksLeft) self.ySlider.setTickInterval(5) self.zoomSlider = QSlider(Qt.Vertical) self.zoomSlider.setMinimum(100) self.zoomSlider.setMaximum(500) self.zoomSlider.setSingleStep(10) self.zoomSlider.setValue(100) self.zoomSlider.setTickPosition(QSlider.TicksRight) self.zoomSlider.setTickInterval(10) self.glUp = GLWidget() self.glUp.setEnabled(True) #self.glDown = QOpenGLWidget() self.glDown = GLWidget() self.glDown.setEnabled(True) self.upperImgName = QLabel('Upper Image (2.6m): [D:/test/test2.jpg]') self.lowerImgName = QLabel('Lower Image (1.6m): [D:/test/test1.jpg]') self.line = QFrame() self.line.setFrameShape(QFrame.HLine) self.line.setFrameShadow(QFrame.Sunken) self.openglLayout = QVBoxLayout() self.openglLayout.addWidget(self.upperImgName, stretch=1) self.openglLayout.addWidget(self.glUp, stretch=20) self.openglLayout.addWidget(self.line) self.openglLayout.addWidget(self.lowerImgName, stretch=1) self.openglLayout.addWidget(self.glDown, stretch=20) self.openglLR = QHBoxLayout() self.ySliderLabels = QVBoxLayout() self.ySliderLabels.addWidget(QLabel('90°'), 1, Qt.AlignTop) self.ySliderLabels.addWidget(QLabel('Zenith\nAngle'), 10, Qt.AlignVCenter) self.ySliderLabels.addWidget(QLabel('-90°'), 1, Qt.AlignBottom) self.zoomSliderLabels = QVBoxLayout() self.zoomSliderLabels.addWidget(QLabel('500%'), 1, Qt.AlignTop) self.zoomSliderLabels.addWidget(QLabel('Zoom\nRatio'), 10, Qt.AlignVCenter) self.zoomSliderLabels.addWidget(QLabel('100%'), 1, Qt.AlignBottom) self.openglLR.addLayout(self.ySliderLabels,2) self.openglLR.addWidget(self.ySlider,1) self.openglLR.addLayout(self.openglLayout,40) self.openglLR.addWidget(self.zoomSlider,1) self.openglLR.addLayout(self.zoomSliderLabels, 2) self.openglCtrlLayout.addLayout(self.openglLR) self.openglCtrlLayout.addWidget(self.xSlider) self.xSliderLabels = QHBoxLayout() self.xSliderLabels.addWidget(QLabel('0°'), 1, Qt.AlignLeft) self.xSliderLabels.addWidget(QLabel('Azimuth Angle'), 10, Qt.AlignCenter) self.xSliderLabels.addWidget(QLabel('360°'), 1, Qt.AlignRight) self.openglCtrlLayout.addLayout(self.xSliderLabels) ## Results Layouts self.individualTreeInfoLayout = QVBoxLayout() ### IndividualModel self.individualModel = QStandardItemModel(0, 4) self.individualModel.setHorizontalHeaderLabels(['Distance', '△H', 'DBH', 'HT']) self.individualTableView = QTableView() self.individualTableView.setModel(self.individualModel) self.individualTableView.resizeColumnsToContents() self.individualTableView.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) ### DiameterMdoel self.diameterModel = QStandardItemModel(0,2) self.diameterModel.setHorizontalHeaderLabels(['No.', 'Diameter', 'at height']) self.diameterTableView = QTableView() self.diameterTableView.setModel(self.diameterModel) self.diameterTableView.resizeColumnsToContents() self.diameterTableView.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) self.individualTreeInfoLayout.addWidget(QLabel('Individual Tree Panel')) self.individualTreeInfoLayout.addWidget(self.individualTableView, stretch=2) self.individualTreeInfoLayout.addWidget(QLabel('Diameter Panel')) self.individualTreeInfoLayout.addWidget(self.diameterTableView, stretch=1) self.layout.addLayout(self.openglCtrlLayout, stretch=2) self.layout.addLayout(self.individualTreeInfoLayout, stretch=1) def functionConnector(self): self.xSlider.valueChanged.connect(self.glUp.setXRotation) self.xSlider.valueChanged.connect(self.glDown.setXRotation) self.glUp.xRotationChanged.connect(self.xSlider.setValue) self.glDown.xRotationChanged.connect(self.xSlider.setValue) self.ySlider.valueChanged.connect(self.glUp.setYRotation) self.ySlider.valueChanged.connect(self.glDown.setYRotation) self.glUp.yRotationChanged.connect(self.ySlider.setValue) self.glDown.yRotationChanged.connect(self.ySlider.setValue) #self.zSlider.valueChanged.connect(self.glUp.setZRotation) #self.zSlider.valueChanged.connect(self.glDown.setZRotation) #self.glUp.zRotationChanged.connect(self.zSlider.setValue) #self.glDown.zRotationChanged.connect(self.zSlider.setValue) def setXRotation(self): print('setXroataion') def setYRotation(self): print('setYroataion') def setZRotation(self): print('setZroataion') class GLWidget(QOpenGLWidget): xRotationChanged = pyqtSignal(int) yRotationChanged = pyqtSignal(int) zRotationChanged = pyqtSignal(int) def __init__(self, parent=None): super().__init__(parent) self.object = 0 self.xRot = 0 self.yRot = 0 self.zRot = 0 def getOpenglInfo(self): info = f"Renderer: {glGetString(GL_RENDERER)}. Version:{glGetString(GL_VERSION)}" return info def setXRotation(self, angle): window.updateStatus(f'XRoate:{angle}') ''' angle = self.normalizeAngle(angle) if angle != self.xRot: self.xRot = angle self.xRotationChanged.emit(angle) self.update() ''' def setYRotation(self, angle): window.updateStatus(f'YRoate:{angle}') ''' angle = self.normalizeAngle(angle) if angle != self.yRot: self.yRot = angle self.yRotationChanged.emit(angle) self.update() ''' def setZRotation(self, angle): window.updateStatus(f'ZRoate:{angle}') ''' angle = self.normalizeAngle(angle) if angle != self.zRot: self.zRot = angle self.zRotationChanged.emit(angle) self.update() ''' def mousePressEvent(self, event): self.lastPos = event.pos() window.updateStatus(f'LastPosition:{self.lastPos}') def mouseMoveEvent(self, event): dx = event.x() - self.lastPos.x() dy = event.y() - self.lastPos.y() ''' if event.buttons() & Qt.LeftButton: self.setXRotation(self.xRot + 8 * dy) self.setYRotation(self.yRot + 8 * dx) elif event.buttons() & Qt.RightButton: self.setXRotation(self.xRot + 8 * dy) self.setZRotation(self.zRot + 8 * dx) ''' self.lastPos = event.pos() window.updateStatus(f'dx:{dx}, dy:{dy}') def initializeGL(self): window.updateStatus(self.getOpenglInfo()) class BasalAreaPanel(QWidget): def __init__(self, parent=None): super().__init__(parent) baLayout = QHBoxLayout() baLayout.addWidget(QLabel('Under Construction')) self.setLayout(baLayout) class PlantFractionPanel(QWidget): def __init__(self, parent=None): super().__init__(parent) pfLayout = QHBoxLayout() pfLayout.addWidget(QLabel('Under Construction')) self.setLayout(pfLayout) if __name__ == '__main__': app = QApplication(sys.argv) window = MainWindow() window.setStyleSheet("QMainWindow {background: rgba(255,255,255,230);}"); window.showMaximized() sys.exit(app.exec_()) ``` #### File: CompactAll.future/textures/glwf.py ```python from OpenGL.GL import * from OpenGL.GLU import * from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import * from PyQt5.QtOpenGL import * import sys class MainWindow(QWidget): def __init__(self): super(MainWindow, self).__init__() self.widget = GLWidget(self) #self.statusbar = QStatusBar() #self.statusbar.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Fixed) #self.statusbar.showMessage("Click anywhere on the QGLWidget to see a pixel's RGBA value!") layout = QVBoxLayout() layout.addWidget(self.widget) #layout.addWidget(self.statusbar) layout.setContentsMargins(5, 5, 5, 5) self.setLayout(layout) class GLWidget(QGLWidget): def __init__(self, parent): QGLWidget.__init__(self, parent) self.setMinimumSize(640, 480) #LMB = left mouse button #True: fires mouseMoveEvents even when not holding down LMB #False: only fire mouseMoveEvents when holding down LMB self.setMouseTracking(False) def initializeGL(self): glClearColor(0, 0, 0, 1) glClearDepth(1.0) glEnable(GL_DEPTH_TEST) def resizeGL(self, width, height): #glViewport is needed for proper resizing of QGLWidget glViewport(0, 0, width, height) glMatrixMode(GL_PROJECTION) glLoadIdentity() glOrtho(0, width, 0, height, -1, 1) glMatrixMode(GL_MODELVIEW) glLoadIdentity() def paintGL(self): #Renders a triangle... obvious (and deprecated!) stuff w, h = self.width(), self.height() glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) glBegin(GL_TRIANGLES) glColor3f(1, 0, 0) glVertex3f(0, 0, 0) glColor3f(0, 1, 0) glVertex3f(w/2.0, h, 0) glColor3f(0, 0, 1) glVertex3f(w, 0, 0) glEnd() def mousePressEvent(self, event): x, y = event.x(), event.y() w, h = self.width(), self.height() #required to call this to force PyQt to read from the correct, updated buffer #see issue noted by @BjkOcean in comments!!! glReadBuffer(GL_FRONT) data = self.grabFrameBuffer()#builtin function that calls glReadPixels internally data.save("test.png") rgba = QColor(data.pixel(x, y)).getRgb()#gets the appropriate pixel data as an RGBA tuple message = "You selected pixel ({0}, {1}) with an RGBA value of {2}.".format(x, y, rgba) statusbar = self.parent().statusbar#goes to the parent widget (main window QWidget) and gets its statusbar widget statusbar.showMessage(message) def mouseMoveEvent(self, event): pass def mouseReleaseEvent(self, event): pass if __name__ == '__main__': app = QApplication(sys.argv) window = MainWindow() window.setWindowTitle("Color Picker Demo") window.show() app.exec_() ``` #### File: Spherical2TreeAttributes/Individual Tree/app.py ```python import sys import os import numpy as np from PyQt5.QtWidgets import * from PyQt5.QtGui import * from PyQt5.QtCore import * from PIL import Image, ExifTags #from scipy import ndimage #from scipy.interpolate import interp1d #from skimage.exposure import equalize_hist import imageio import random from ba import in_tree_pixel baf20 = in_tree_pixel(baf=20, img_width=5376) class MainWindow(QMainWindow): keyPressed = pyqtSignal(QEvent) vLocked = pyqtSignal(int) def __init__(self, parent=None): super().__init__(parent) self.coordinate = '(x, y)' low = input("Please type the lower camera height in METER, default=1.6\n>>>") try: e1 = float(low) except ValueError: print('No valuable float numbers typed, used default 1.6m') e1 = 1.6 high = input("Please type the higher camera height in METER, default=2.6\n>>>") try: e2 = float(high) except ValueError: print('No valuable float numbers typed, used default 2.6m') e2 = 2.6 if e1 > e2: e1, e2 = e2, e1 sector_func = input('Use Sector Sampling ? [Y/N]\n>>>') sector_intensity = None sector_num = 1 if sector_func in ['Y','y', 'yes']: intense_loop = True while intense_loop: intensity_temp = input('[Sector] Please type the intensity ' '(the percentage of sector width, %, 0-100): ') try: intensity_temp = float(intensity_temp) except ValueError: print(f'[Sector] <{intensity_temp}> is not a valuable float number, please type again.') continue if 0 <= intensity_temp and intensity_temp <= 100: sector_intensity = intensity_temp intense_loop = False else: print(f'[Sector] <{intensity_temp}> should range from 0 to 100, please type again') continue """ num_loop = True while num_loop: number_temp = input('[Sector] Please type the number of sector (0-10, int): ') try: number_temp = int(number_temp) except ValueError: print(f'[Sector] <{number_temp}> is not a valuable integer number, please type again.') continue if 0 <= number_temp and number_temp * sector_intensity <= 50: sector_num = number_temp num_loop = False else: print(f'[Sector] <{number_temp}>*intensity({sector_intensity}) ' f'should range from 0 to 100, please type again') continue """ if sector_intensity is None: self.sector_range = None print(f'App launch! With low camera {e1}m and high camera {e2}m') else: self.sector_range = self.getSectorStarts(sector_num, sector_intensity) print(f'App launch! With low camera {e1}m and high camera {e2}m, ' f'and {sector_num} Sector(s) of {sector_intensity}% width') self.e1 = e1 self.e2 = e2 self.setWindowTitle('IndividualDemo') self.setupUI() self.functionConnector() self.initPlot() self.initTree() self.addTree = -1 # No add def setupUI(self): self.mainWidget = QWidget() self.panel1 = ImgPanel(self, self.e1, self.sector_range) self.panel2 = ImgPanel(self, self.e2, self.sector_range) self.line = QFrame() self.line.setFrameShape(QFrame.VLine) self.line.setFrameShadow(QFrame.Sunken) self.wl = QHBoxLayout(self.mainWidget) self.wl.addWidget(self.panel1) self.wl.addWidget(self.line) self.wl.addWidget(self.panel2) self.setCentralWidget(self.mainWidget) def functionConnector(self): self.panel1.xScrollChanged.connect(self.panel2.setXScroll) self.panel2.xScrollChanged.connect(self.panel1.setXScroll) self.panel1.yScrollChanged.connect(self.panel2.setYScroll) self.panel2.yScrollChanged.connect(self.panel1.setYScroll) self.panel1.exifData.connect(self.updatePlot) self.panel2.exifData.connect(self.updatePlot) self.keyPressed.connect(self.panel1.imgShow.changeDirection) self.keyPressed.connect(self.panel2.imgShow.changeDirection) self.panel1.imgShow.emitPoint.connect(self.addTree) self.panel2.imgShow.emitPoint.connect(self.addTree) self.vLocked.connect(self.panel1.imgShow.changeVLock) self.vLocked.connect(self.panel2.imgShow.changeVLock) def keyPressEvent(self, event): if event.key() == Qt.Key_L: v, okPressed = QInputDialog.getInt(self, "Get integer","Y pixel", 6000, 0, 13000, 1) if okPressed: self.vLocked.emit(v) elif event.key() == Qt.Key_U: self.vLocked.emit(-1) elif event.key() == Qt.Key_N: # Add tree easy mode self.addTree = 0 self.initTree() self.changeDirection('NE') self.showStep(f'[S1:{self.e1}Base]') else: self.keyPressed.emit(event) def initPlot(self): self.plot = {'GCP16':0, 'LatDeg16':0, 'LatMin16':0, 'LatSec16':0.0, 'LonDeg16':0, 'LonMin16':0, 'LonSec16':0.0, 'Altitude16':0.0, 'North16':0.0, 'GCP26':0, 'LatDeg26':0, 'LatMin26':0, 'LatSec26':0.0, 'LonDeg26':0, 'LonMin26':0, 'LonSec26':0.0, 'Altitude26':0.0, 'North26':0.0} def updatePlot(self, ht, data_list): if ht == self.e1: self.plot['GCP16'] = data_list[0] self.plot['LatDeg16'] = data_list[1] self.plot['LatMin16'] = data_list[2] self.plot['LatSec16'] = data_list[3] self.plot['LonDeg16'] = data_list[4] self.plot['LonDeg16'] = data_list[5] self.plot['LonDeg16'] = data_list[6] self.plot['Altitude16'] = data_list[7] self.plot['North16'] = data_list[8] else: self.plot['GCP26'] = data_list[0] self.plot['LatDeg26'] = data_list[1] self.plot['LatMin26'] = data_list[2] self.plot['LatSec26'] = data_list[3] self.plot['LonDeg26'] = data_list[4] self.plot['LonDeg26'] = data_list[5] self.plot['LonDeg26'] = data_list[6] self.plot['Altitude26'] = data_list[7] self.plot['North26'] = data_list[8] print(self.plot) def initTree(self): self.tree = {'16BX':0, '16BY':0, '16TX':0, '16TY':0, '26BX':0, '26BY':0, '26TX':0, '26TY':0, '16LX':0, '16LY':0, '16RX':0, '16RY':0, '26LX':0, '26LY':0, '26RX':0, '26RY':0, 'Dist':0.0, 'DeltaH':0.0, 'HT':0.0, 'DBH':0.0, 'Gamma':0.0, 'Altitude':0.0} def addTree(self, x, y): # 0: Add 16Base # 1: Add 26Base => Calculate Dist, DeltaH, Altitude, Gamma, 1.3m, set panel16, panel 26 # change direction to "W" # 2: Add 16Left => change direction to "E" # 3: Add 16Right => change direction to "W" # 4: Add 26Left => change direction to "E" # 5: Add 26Right => calculate DBH # 6:Add 16Top # 7: Add 26Top => calculate HT, change to -1 if self.addTree == 0: self.tree['16BX'] = x self.tree['16BY'] = y self.addTree += 1 self.showStep(f'[S2: {self.e2}Base]') elif self.addTree == 1: self.tree['26BX'] = x self.tree['26BY'] = y k1 = np.tan(-self.zenithRadians(self.tree['16BY'])) k2 = np.tan(-self.zenithRadians(self.tree['26BY'])) ix, iy = self.interactBase(k1, self.e1, k2, self.e2) self.tree['Dist'] = -ix self.tree['DeltaH'] = iy self.tree['Altitude'] = (self.plot['Altitude16'] + self.plot['Altitude26']) / 2 + iy gamma1 = self.horizonAngle(self.tree['16BX'], self.plot['GCP16'], self.plot['North16']) gamma2 = self.horizonAngle(self.tree['26BX'], self.plot['GCP26'], self.plot['North26']) self.tree['Gamma'] = (gamma1 + gamma2) / 2 dbh16pos = self.getDBHPosition(self.e1, ix, iy) dbh26pos = self.getDBHPosition(self.e2, ix, iy) self.panel1.imgShow.changeVLock(int(dbh16pos)) self.panel2.imgShow.changeVLock(int(dbh26pos)) self.changeDirection('NW') self.showStep(f'[S3:{self.e1}Left]') self.addTree += 1 elif self.addTree == 2: self.tree['16LX'] = x self.tree['16LY'] = y self.changeDirection('NE') self.showStep(f'[S4:{self.e1}Right]') self.addTree += 1 elif self.addTree == 3: self.tree['16RX'] = x self.tree['16RY'] = y self.changeDirection('NW') self.showStep(f'[S5:{self.e2}Left]') self.addTree += 1 elif self.addTree == 4: self.tree['26LX'] = x self.tree['26LY'] = y self.changeDirection('NE') self.showStep(f'[S6:{self.e2}Right]') self.addTree += 1 elif self.addTree == 5: self.tree['26RX'] = x self.tree['26RY'] = y self.changeDirection('NW') dbh16 = self.getDBH(self.tree['16LX'], self.tree['16RX'], self.tree['Dist']) dbh26 = self.getDBH(self.tree['26LX'], self.tree['26RX'], self.tree['Dist']) self.tree['DBH'] = (dbh16 + dbh26) / 2 self.panel1.imgShow.changeVLock(-1) self.panel2.imgShow.changeVLock(-1) self.showStep(f'[S7:{self.e1}Top]') self.addTree += 1 elif self.addTree == 6: self.tree['16TX'] = x self.tree['16TY'] = y self.showStep(f'[S8:{self.e2}Top]') self.addTree += 1 elif self.addTree == 7: self.tree['26TX'] = x self.tree['26TY'] = y k1 = np.tan(-self.zenithRadians(self.tree['16TY'])) k2 = np.tan(-self.zenithRadians(self.tree['26TY'])) ht1 = - self.tree['Dist'] * k1 + self.e1 - self.tree['DeltaH'] ht2 = - self.tree['Dist'] * k2 + self.e2 - self.tree['DeltaH'] self.tree['HT'] = (ht1 + ht2) / 2 self.showStep('[Done&Paste]') text = f'{self.e1}\t{self.e2}\t' for key, value in self.tree.items(): text += f'{value}\t' self.cb = QApplication.clipboard() self.cb.clear(mode=self.cb.Clipboard) self.cb.setText(text[:-1], mode=self.cb.Clipboard) print(text) self.addTree = -1 QMessageBox.information(self, 'Tree Info', f'The info of this measured tree is:\n' f"Distance\t{round(self.tree['Dist'],2)}\n" f"ΔH \t{round(self.tree['DeltaH'],2)}\n" f"HT \t{round(self.tree['HT'],2)}\n" f"DBH \t{round(self.tree['DBH'],2)}\n" f"North \t{round(self.tree['Gamma'],2)}\n" f"Altitude\t{round(self.tree['Altitude'],2)}\n" f"Please open Excel and Ctrl+V to paste the result\n" f"Press 'N' to measure a new tree") def changeDirection(self, direct='NE'): self.panel1.imgShow.corner = direct self.panel2.imgShow.corner = direct self.panel1.imgShow.update() self.panel2.imgShow.update() def showStep(self, string): self.panel1.updateProgress(string) self.panel2.updateProgress(string) @staticmethod def interactBase(k1, b1, k2, b2): x = (b2-b1)/(k1-k2) y = k1*x + b1 return x, y @staticmethod def zenithRadians(ypos): return np.radians((1344 - (ypos - 1))/2688*180) @staticmethod def horizonAngle(xpos, gcp, north): gamma = (xpos+gcp) / 5376 * 360 - north if gamma < 0: gamma += 360 if gamma > 360: gamma -= 360 return gamma @staticmethod def getDBHPosition(e, bx, by): angles = -np.degrees(np.arctan((e-1.3-by)/(0-bx))) pos = 1344 - angles / 180 * 2688 return pos @staticmethod def getDBH(lx, rx, dist): omiga = np.radians(abs(rx-lx) / 5376 * 360) sin_half_omiga = np.sin(omiga / 2) dbh = 2 * sin_half_omiga * dist / (1 - sin_half_omiga) * 100 return dbh @staticmethod def getSectorStarts(num, width): total = 100 """ res = set() sector_range = [] for i in range(num): temp = random.uniform(0, total - width) #print(f'[Sector{i}] -> First guess start point <{temp}> in total {list((idx, idx + width) for idx in res)}') #print(f'[Sector{i}] -> Check if overlapped {[(temp >= idx and temp <= idx + width) or (temp + width >= idx and temp + width <= idx + width) for idx in res]}') while any((temp >= idx and temp <= idx + width) or (temp + width >= idx and temp + width <= idx + width) for idx in res): temp = random.uniform(0, total - width) #print(f"[Sector{i}] -> repeat guess start point <{temp}> in total {list((idx, idx + width) for idx in res)}") res.add(temp) for idx in res: sector_range.append((idx, idx + width)) """ st = random.uniform(0, total) ed = (st + width) % total sector_range = [(st, ed)] return sector_range class ImgPanel(QWidget): xScrollChanged = pyqtSignal(int) yScrollChanged = pyqtSignal(int) exifData = pyqtSignal(float, list) def __init__(self, parent=None, ht=1.6, sector_range=None): super().__init__(parent) self.refX = 0 self.refY = 0 self.scrollX = 0 self.scrollY = 0 self.ht = ht self.sector_range = sector_range self.converter = Converter(self) self.setupUI(ht) self.functionConnector() def setupUI(self, ht): self.layout = QVBoxLayout(self) self.infoLayout = QHBoxLayout() self.htName = QLabel(f"[{ht}m]:") self.imgName = QLabel('D:/xxx.Jpg') self.infoBtn = QPushButton('Info') self.changeImgBtn = QPushButton('OpenImg') self.convertBtn = QPushButton('Convert') self.saveImgBtn = QPushButton('save') self.imgShow = ImgShow(self) #self.scrollArea = QScrollArea() self.scrollArea = Scroller() self.scrollArea.setWidget(self.imgShow) self.hBar = self.scrollArea.horizontalScrollBar() self.vBar = self.scrollArea.verticalScrollBar() self.scrollX = self.hBar.value() self.scrollY = self.vBar.value() self.infoLayout.addWidget(self.htName) self.infoLayout.addWidget(self.imgName) self.infoLayout.addStretch(0) self.infoLayout.addWidget(self.infoBtn) self.infoLayout.addWidget(self.changeImgBtn) self.infoLayout.addWidget(self.convertBtn) self.infoLayout.addWidget(self.saveImgBtn) self.layout.addLayout(self.infoLayout) self.layout.addWidget(self.scrollArea) def functionConnector(self): self.imgShow.mouseClicked.connect(self.updateRef) self.infoBtn.clicked.connect(self.showInfo) self.changeImgBtn.clicked.connect(self.loadImg) self.convertBtn.clicked.connect(self.convertImg) self.saveImgBtn.clicked.connect(self.imgShow.saveImg) self.hBar.valueChanged.connect(self.emitX) self.vBar.valueChanged.connect(self.emitY) self.converter.sigOut.connect(self.updateProgress) self.imgShow.saver.sigOut.connect(self.updateProgress) def emitX(self): self.xScrollChanged.emit(self.hBar.value()) def emitY(self): self.yScrollChanged.emit(self.vBar.value()) def setXScroll(self, value): self.hBar.setValue(min(self.hBar.maximum(),value)) def setYScroll(self, value): self.vBar.setValue(min(self.vBar.maximum(),value)) def wheelEvent(self, event): if event.modifiers() == Qt.ShiftModifier: self.hBar.wheelEvent(event) else: self.vBar.wheelEvent(event) def getExifInfo(self): self.show_str = '' self.clip_str = '' # gcp, lat.D, lat.M, lat.S, Lon.D, Lon.M, Lon.S, Altitude, North # 0, 1, 2, 3, 4, 5, 6, 7, 8 self.data_list = [0, 0, 0, 0.0, 0, 0, 0.0, 0.0, None] if self.imgShow.img_path is not None: img = Image.open(self.imgShow.img_path) exif_human = {ExifTags.TAGS[k]: v for k, v in img._getexif().items() if k in ExifTags.TAGS} gps_info = exif_human['GPSInfo'] self.data_list[0] = self.refX lat_label = gps_info[1] # N lat_exif = gps_info[2] # ((45, 1), (56, 1), (4682, 100)) self.data_list[1] = lat_exif[0][0] self.data_list[2] = lat_exif[1][0] self.data_list[3] = lat_exif[2][0]/lat_exif[2][1] self.show_str += f"{lat_exif[0][0]}°{lat_exif[1][0]}′{self.data_list[3]}″ {lat_label}\n" lon_label = gps_info[3] # W lon_exif = gps_info[4] # ((66, 1), (38, 1), (3938, 100)) self.data_list[4] = lon_exif[0][0] self.data_list[5] = lon_exif[1][0] self.data_list[6] = lon_exif[2][0]/lat_exif[2][1] self.show_str += f"{lon_exif[0][0]}°{lon_exif[1][0]}′{self.data_list[6]}″ {lon_label}\n" alt_exif = gps_info[6] # (3512, 100) self.data_list[7] = alt_exif[0]/alt_exif[1] self.show_str += f"altitude:{self.data_list[7]}\n" if 17 in gps_info.keys(): north_angle = gps_info[17] # (1125, 10) self.data_list[8] = north_angle[0]/north_angle[1] self.show_str += f"north:{self.data_list[8]}°" else: self.show_str += f"north: missing" for i in self.data_list: self.clip_str += f'{i}\t' #self.clip_str = f'{self.refX}\t{lat_exif[0][0]}\t{lat_exif[1][0]}\t{lat_exif[2][0]/lat_exif[2][1]}\t{lon_exif[0][0]}\t{lon_exif[1][0]}\t{lon_exif[2][0]/lon_exif[2][1]}\t{alt_exif[0]/alt_exif[1]}' def showInfo(self): self.getExifInfo() try: QMessageBox.information(self, "GPS Info", self.show_str) self.cb = QApplication.clipboard() self.cb.clear(mode=self.cb.Clipboard) self.cb.setText(self.clip_str[:-1], mode=self.cb.Clipboard) except: QMessageBox.information(self, "GPS Info", "Please use raw images!") def loadImg(self, choose=True): if not isinstance(choose, str): options = QFileDialog.Options() fileName, _ = QFileDialog.getOpenFileName(self, 'QFileDialog.getOpenFileName()', '', 'Images (*.png *.jpeg *.jpg *.bmp *.gif)', options=options) self.convertBtn.setEnabled(True) else: fileName=choose if fileName: image = QImage(fileName) if image.isNull(): QMessageBox.information(self, "Image Viewer", "Cannot load %s." % fileName) return self.imgName.setText(fileName[:10]+'...'+fileName[-20:]) self.imgShow.img_path = fileName self.imgShow.addImg = True self.imgShow.update() if 'converted_imgs/' not in fileName: self.getExifInfo() def convertImg(self): if self.imgShow.img_path is not None: self.converter.set_param(self.imgShow.img_path, append=self.ht, zenith=89, equalize=False, gcp=self.refX, sector_range=self.sector_range) self.data_list[0] = self.refX self.exifData.emit(self.ht, self.data_list) self.converter.start() else: print('empty img') def updateRef(self, X, Y): self.refX = X self.refY = Y def updateProgress(self, percent): if isinstance(percent, str): self.htName.setText(percent) else: # finished processing base = os.path.basename(self.imgShow.img_path) file, ext = os.path.splitext(base) #self.loadImg(f'converted_imgs/{file}_M{self.refX}{ext}') self.loadImg(f'converted_imgs/{file}_D{self.refX}{ext}') self.htName.setText(f"|{self.ht}m|:") self.convertBtn.setEnabled(False) class Scroller(QScrollArea): def __init__(self): QScrollArea.__init__(self) def wheelEvent(self, ev): if ev.type() == QEvent.Wheel: ev.ignore() class Converter(QThread): sigOut = pyqtSignal(object) def __init__(self, parent=None): super().__init__(parent) self.img_path = None self.mode = 'direct' self.append = 1.6 self.zenith = 85 self.equalize = False self.gcp = 0 def set_param(self, img_path, append=1.6, zenith=85, equalize=False, gcp=0, mode='direct', sector_range=None): self.img_path = img_path self.append = append self.zenith = zenith self.equalize = equalize self.gcp = gcp self.mode = mode self.sector_range = sector_range def run(self): '''Document see mercator.py''' img = imageio.imread(self.img_path) h, w, d = img.shape self.sigOut.emit('[10%..]') if self.mode == 'mercator': ''' if self.equalize: img = equalize_hist(img) self.sigOut.emit('[20%..]') h_id = np.arange(h) w_id = np.arange(w) self.sigOut.emit('[30%..]') angle_id = h/2 - h_id - 0.5 angle = angle_id / angle_id.max() * 90 # degree self.sigOut.emit('[40%..]') select = abs(angle) <= self.zenith select_angle = angle[select] self.sigOut.emit('[45%..]') select_img = img[select, :, :] select_h, _, _ = select_img.shape # (2538, 5376, 3) self.sigOut.emit('[50%..]') mecator_coord = h / 2 * np.log(np.tan(np.deg2rad(45 + select_angle / 2))) mecator_coord_zero = mecator_coord.max() - mecator_coord self.sigOut.emit('[55%..]') f = interp1d(mecator_coord_zero, np.arange(select_h), fill_value="extrapolate") self.sigOut.emit('[60%..]') xnew = np.arange(0, np.ceil(mecator_coord.max())*2, 1) mecator_id = f(xnew) # related img_h id in raw image (85 degree selected) self.sigOut.emit('[65%..]') # table to refer mecator_id -> zenith angle f_angle = interp1d(mecator_coord_zero, select_angle, fill_value="extrapolate") mecator_angle = f_angle(xnew) self.sigOut.emit('[70%..]') ww, hh = np.meshgrid(w_id, mecator_id) # shape (8404, 5376) self.sigOut.emit('[75%..]') img_out = np.zeros((*hh.shape, 3)) for i in range(0 ,3): img_out[:,:,i] = ndimage.map_coordinates(select_img[:,:,i], np.array([hh,ww]),output=float,order=1) self.sigOut.emit(f'[{70 + 9*(i+1)}%..]') img_out = np.hstack((img_out[:,self.gcp:, :], img_out[:,0:self.gcp, :])) self.sigOut.emit('[98%..]') base = os.path.basename(self.img_path) file, ext = os.path.splitext(base) imageio.imwrite(f'converted_imgs/{file}_M{self.gcp}{ext}', img_out) self.m2a = mecator_angle''' pass else: self.sigOut.emit('[40%..]') img_out = np.hstack((img[:,self.gcp:, :], img[:,0:self.gcp, :])) # add sector here if self.sector_range is not None: or1 = [197,90,17] or2 = [244,177,131] or3 = [247,203,172] or4 = [257,229,213] for sector in self.sector_range: st, ed = sector st = st * w / 100 ed = ed * w / 100 img_out[:, int(max(st-3, 0)), :] = or4 img_out[:, int(max(st-2, 0)), :] = or3 img_out[:, int(max(st-1, 0)), :] = or2 img_out[:, int(max(st , 0)), :] = or1 img_out[:, int(min(ed+3, w-1)), :] = or4 img_out[:, int(min(ed+2, w-1)), :] = or3 img_out[:, int(min(ed+1, w-1)), :] = or2 img_out[:, int(min(ed, w-1)), :] = or1 self.sigOut.emit('[60%..]') base = os.path.basename(self.img_path) file, ext = os.path.splitext(base) self.sigOut.emit('[80%..]') imageio.imwrite(f'converted_imgs/{file}_D{self.gcp}{ext}', img_out) self.sigOut.emit('[99%..]') self.sigOut.emit(True) class ImgShow(QWidget): mouseClicked = pyqtSignal(object, object) emitPoint = pyqtSignal(object, object) def __init__(self, parent=None): super().__init__(parent) self.x = 0 self.y = 0 self.w = self.frameGeometry().width() # 100 self.h = self.frameGeometry().height() # 30 self.corner = 'NE' # North East(default) self.vLock = -1 self.img_path = None self.addImg = False self.isMoving = True self.leftPressed = False self.setMinimumSize(5376, 2000) self.tempPix = QPixmap(5376, 2000) self.pix = QPixmap(5376, 2000) self.pix.fill(Qt.white) self.saver = Saver(self) self.setMouseTracking(True) self.setCursor(Qt.BlankCursor) self.functionConnector() def functionConnector(self): pass def paintEvent(self, event): painter = QPainter(self) if self.addImg: imgPixmap = QPixmap.fromImage(QImage(self.img_path)) imgH = imgPixmap.height() imgW = imgPixmap.width() self.pix = QPixmap(imgW, imgH) self.tempPix = QPixmap(imgW, imgH) self.resize(imgW, imgH) p = QPainter(self.pix) p.setPen(QColor(255, 255,0)) p.drawPixmap(0, 0, imgPixmap) p.drawLine(0, imgH/2, imgW, imgH/2) self.addImg = False fm = QFontMetrics(QFont('SimSun', 10)) pw = fm.width(f'{self.x},{self.y}') ph = fm.height() if self.corner == 'NE': text_x, text_y = self.x, self.y rect_x, rect_y = self.x-baf20, self.y-20 elif self.corner == 'NW': text_x, text_y = self.x-pw, self.y rect_x, rect_y = self.x, self.y-20 elif self.corner == 'SE': text_x, text_y = self.x, self.y+ph rect_x, rect_y = self.x-baf20, self.y-20 else: text_x, text_y = self.x-pw, self.y+ph rect_x, rect_y = self.x-baf20, self.y-20 if self.isMoving: # 把以前的pix复制一遍(相当于清空) self.tempPix = self.pix.copy() qp = QPainter(self.tempPix) qp.setPen(QColor(255, 0,0)) qp.setFont(QFont('SimSun', 10)) qp.drawLine(self.x, 0, self.x, self.h) qp.drawLine(0, self.y, self.w, self.y) qp.drawText(text_x, text_y, f'{self.x},{self.y}') qp.drawRect(rect_x, rect_y, baf20, 20) painter.drawPixmap(0, 0, self.tempPix) else: qp = QPainter(self.pix) qp.setPen(QColor(255, 0,0)) qp.setFont(QFont('SimSun', 10)) qp.drawLine(self.x, self.y-20, self.x, self.y+20) qp.drawLine(self.x-20, self.y, self.x+20, self.y) qp.drawText(text_x, text_y, f'{self.x},{self.y}') painter.drawPixmap(0, 0, self.pix) def saveImg(self): if self.img_path is not None: self.saver.set_param(self.img_path, self.pix.toImage()) self.saver.start() def mousePressEvent(self, event): if event.button() == Qt.LeftButton: self.leftPressed = True self.x = event.x() if self.vLock == -1: self.y = event.y() else: self.y = self.vLock self.mouseClicked.emit(self.x, self.y) self.w = self.frameGeometry().width() # 100 self.h = self.frameGeometry().height() # 30 self.isMoving=False self.update() def mouseMoveEvent(self,event): if not self.leftPressed: self.x = event.x() if self.vLock == -1: self.y = event.y() else: self.y = self.vLock self.w = self.frameGeometry().width() # 100 self.h = self.frameGeometry().height() # 30 self.update() def mouseReleaseEvent(self, event): if event.button() == Qt.LeftButton: self.leftPressed = False self.isMoving=True if window.addTree == -1: self.copy2Clipboard() else: self.emitPoint.emit(self.x, self.y) def changeDirection(self, event): if event.key() == Qt.Key_W: if 'S' in self.corner: self.corner = self.corner.replace('S', 'N') elif event.key() == Qt.Key_S: if 'N' in self.corner: self.corner = self.corner.replace('N', 'S') elif event.key() == Qt.Key_A: if 'E' in self.corner: self.corner = self.corner.replace('E', 'W') elif event.key() == Qt.Key_D: if 'W' in self.corner: self.corner = self.corner.replace('W', 'E') self.update() def changeVLock(self, value): self.vLock = value self.update() def copy2Clipboard(self): text = f'{self.x}\t{self.y}' self.cb = QApplication.clipboard() self.cb.clear(mode=self.cb.Clipboard) self.cb.setText(text, mode=self.cb.Clipboard) class Saver(QThread): sigOut = pyqtSignal(object) def __init__(self, parent=None): super().__init__(parent) # https://stackoverflow.com/questions/46945997/creating-qpixmaps-in-a-thread # that *QPixmaps* cannot be created outside the main thread. # But it's pretty straightforward to instead use an image loader object, # move it to one or more background threads, in which it loads a QImage, # and then sends that to the main thread for later use self.qimage = QImage() self.img_path = 'result_imgs/rua.png' def set_param(self, img_path, qimage): self.img_path = img_path self.qimage = qimage def run(self): self.sigOut.emit('[20%..]') base = os.path.basename(self.img_path) self.sigOut.emit('[40%..]') file, ext = os.path.splitext(base) self.sigOut.emit('[60%..]') #self.pix.save(f"result_imgs/{file}_C{ext}", "PNG") self.qimage.save(f"result_imgs/{file}_C{ext}", "PNG") self.sigOut.emit('[Saved]') if __name__ == '__main__': app = QApplication(sys.argv) window = MainWindow() window.showMaximized() sys.exit(app.exec_()) ```
{ "source": "joatom/blog-resources", "score": 3 }
#### File: blog-resources/blog_translator/blog_translator.py ```python from transformers import MarianMTModel, MarianTokenizer def translate(blog_in, blog_out, header = []): # load pretrained model and tokenizer model_name = 'Helsinki-NLP/opus-mt-de-en' tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) # load german block post f_in = open(blog_in, "r") src_text = f_in.readlines() f_in.close() # preprocessing ## line break (\n) results to "I don't know." We make it more specific: src_text = [s.replace('\n',' <<eol>>') for s in src_text] ## remove code block code = [] inside_code_block = False for i, line in enumerate(src_text): if line.startswith('```') and not inside_code_block: # entering codeblock inside_code_block = True code += [line] src_text[i] = '<<code_block>>' elif inside_code_block and not line.startswith('```'): code += [line] src_text[i] = '<<code_block>>' elif inside_code_block and line.startswith('```'): # leaving code block code += [line] src_text[i] = '<<code_block>>' inside_code_block = False # translate translated = model.generate(**tokenizer.prepare_seq2seq_batch(src_text, return_tensors="pt")) tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] # postprocessing ## replace code_blog tags with code for i, line in enumerate(tgt_text): if line == '<<code_block>>': tgt_text[i] = code.pop(0) ## remove the eol (but keep empty list entries / lines) tgt_text = [s.replace('<<eol>>', '',) for s in tgt_text] ## remove space between ] ( to get the md link syntax right tgt_text = [s.replace('] (', '](',) for s in tgt_text] # add header tgt_text = header + tgt_text # write english blog post with open(blog_out, 'w') as f_out: for line in tgt_text: f_out.write("%s\n" % line) f_out.close() ```
{ "source": "joatom/watchtrain", "score": 3 }
#### File: app/topics/topic.py ```python from fastapi import WebSocket from app.topics.agent import Agent from app.topics.producer_agent import ProducerAgent from app.topics.consumer_agent import ConsumerAgent class Topic(): """ Defines a topic and setup connection managers for producers and consumers. """ def __init__(self): self.producer_manager = _ConnectionManager() self.consumer_manager = _ConnectionManager() async def connect(self, agent): if isinstance(agent, ProducerAgent): await self.producer_manager.connect(agent) else: await self.consumer_manager.connect(agent) def disconnect(self, agent): if isinstance(agent, ProducerAgent): self.producer_manager.disconnect(agent) else: self.consumer_manager.disconnect(agent) class _ConnectionManager: """ Connection Manager from the fastapi tutorial: https://fastapi.tiangolo.com/advanced/websockets/#handling-disconnections-and-multiple-clients) """ def __init__(self): self.active_connections: List[Agent] = [] async def connect(self, agent: Agent): await agent.websocket.accept() self.active_connections.append(agent) def disconnect(self, agent: Agent): self.active_connections.remove(agent) async def send_personal_message(self, message: str, websocket: WebSocket): await websocket.send_text(message) async def broadcast(self, message: str, verbose: int = 0): for connection in self.active_connections: if connection.verbose >= verbose: await connection.websocket.send_text(message) ```
{ "source": "joatuapp/joatu-django", "score": 2 }
#### File: joatu-django/demands/apps.py ```python from django.apps import AppConfig class DemandsConfig(AppConfig): name = 'demands' def ready(self): import demands.signals super(DemandsConfig, self).ready() ``` #### File: joatu-django/demands/signals.py ```python from django.db.models.signals import post_save from .models import Demand, DemandHub from profiles.models import ProfileHub from hubs.models import HubGeolocation from utils.utils import coordinates_calculation, distance_calculation def demand_created_or_updated(sender, update_fields, **kwargs): instance = kwargs['instance'] if kwargs['created']: lat_cal, lng_cal = coordinates_calculation( instance.number, instance.street, instance.postal_code, instance.city ) DemandHub.objects.create(demand=instance, lat=lat_cal, lng=lng_cal) demand_geo = DemandHub.objects.get(demand=instance) hub_selected = ProfileHub.objects.get(profile=instance.requester).hub hub_geo = HubGeolocation.objects.get(hub=hub_selected) distance = distance_calculation(demand_geo, hub_geo) demand_geo.hub = hub_selected demand_geo.distance_km = distance demand_geo.save() post_save.connect(demand_created_or_updated, sender=Demand) ``` #### File: joatu-django/hubs/apps.py ```python from django.apps import AppConfig class HubsConfig(AppConfig): name = 'hubs' def ready(self): super(HubsConfig, self).ready() import hubs.signals ``` #### File: joatu-django/hubs/signals.py ```python from django.db.models.signals import post_save from utils.utils import coordinates_calculation from profiles.models import ProfileGeolocation from .models import HubGeolocation, Hub def hub_created_or_updated(sender, update_fields, **kwargs): instance = kwargs['instance'] lat_cal, lng_cal = coordinates_calculation( instance.number, instance.street, instance.postal_code, instance.city, instance.country ) if kwargs['created']: HubGeolocation.objects.create(hub=instance, lat=lat_cal, lng=lng_cal) else: a = HubGeolocation.objects.filter(hub=instance) if a.exists(): a.update(lat=lat_cal, lng=lng_cal) else: ProfileGeolocation.objects.create(hub=instance, lat=lat_cal, lng=lng_cal) post_save.connect(hub_created_or_updated, sender=Hub) ``` #### File: joatu-django/joatu/middleware.py ```python import re from django.conf import settings from django.shortcuts import redirect from django.contrib.auth import logout from django.urls import reverse from django.utils.deprecation import MiddlewareMixin EXEMPT_URLS= [re.compile(settings.LOGIN_URL.lstrip('/'))] if hasattr(settings, 'LOGIN_EXEMPT_URLS'): EXEMPT_URLS += [re.compile(url) for url in settings.LOGIN_EXEMPT_URLS] class LoginRequiredMiddleware: def __init__(self, get_response): self.get_response= get_response def __call__(self, request): response = self.get_response(request) return response def process_view(self, request, view_func, view_args, view_kwargs): assert hasattr(request, 'user') path = request.path_info.lstrip('/') #if not request.user.is_authenticated: # if not any(url.match(path) for url in EXEMPT_URLS): # return redirect(settings.LOGIN_URL) url_is_exempt= any(url.match(path) for url in EXEMPT_URLS) if path == reverse('accounts:logout').lstrip('/'): logout(request) if request.user.is_authenticated and url_is_exempt: return redirect(settings.LOGIN_REDIRECT_URL) elif request.user.is_authenticated or url_is_exempt: return None else: return redirect(settings.LOGIN_URL) class ProfileRequiredMiddleware(MiddlewareMixin): def process_request(self, request): if request.path == '/rest-auth/logout/': return None if request.user.is_authenticated: if not request.user.profileIsCreated: if request.path == '/profiles/create/' or request.path =='/api/profiles/create/': return None else: return redirect('/profiles/create') else: return None else: return None #def process_request( self, request ): # print( "func" ) # print(request.user.profileIsCreated) # if request.user.is_authenticated and not request.user.profileIsCreated: # return redirect('/profiles/create/') # else: # return None ``` #### File: joatu-django/ledger/signals.py ```python from django.db.models.signals import post_save from .models import Transaction, TransactionIsOffer, Operations, ProfileWallet, TransactionIsDemand from demands.models import Demand def transaction_created(sender, update_fields, **kwargs): instance = kwargs['instance'] if kwargs['created']: if instance.transaction_type == 'OF': TransactionIsOffer.objects.create(transaction=instance, offer=instance.transaction_id) elif instance.transaction_type == 'DE': a = Demand.objects.get(pk=instance.transaction_id) TransactionIsDemand.objects.create(transaction=instance, demand=a) else: pass wallet_from = ProfileWallet.objects.get(profile=instance.profile_from) wallet_from.wallet -= instance.amount wallet_from.save() wallet_to = ProfileWallet.objects.get(profile=instance.profile_to) wallet_to.wallet += instance.amount wallet_to.save() Operations.objects.create( profile=instance.profile_from, transaction=instance, debit=instance.amount, balance=wallet_from.wallet, ) Operations.objects.create( profile=instance.profile_to, transaction=instance, credit=instance.amount, balance=wallet_to.wallet, ) post_save.connect(transaction_created, sender=Transaction) ``` #### File: joatu-django/ledger/views.py ```python from django.shortcuts import render from django.shortcuts import get_object_or_404 from rest_framework.generics import ListAPIView from ledger.models import Operations from profiles.models import Profile from ledger.serializers import OperationsSerializers # Create your views here. class ListGlobalOperationsView(ListAPIView): queryset=Operations.objects.all().order_by('start') serializer_class=OperationsSerializers def get_queryset(self): operations = Operations.objects.all() return operations class ListUserOperationsView(ListAPIView): queryset=Operations.objects.all().order_by('start') serializer_class=OperationsSerializers def get_queryset(self): user = Profile.objects.get(user= self.request.user) operations = Operations.objects.filter(profile=user) return operations ``` #### File: joatu-django/projects/signals.py ```python from django.db.models.signals import post_save from django.db.models import ObjectDoesNotExist from .models import Project, ProjectStatus, ProjectIsValidated, ProjectHub from profiles.models import ProfileHub from hubs.models import HubGeolocation from utils.utils import coordinates_calculation, distance_calculation def project_created_or_updated(sender, update_fields, **kwargs): instance = kwargs['instance'] if kwargs['created']: ProjectStatus.objects.create(project=instance) ProjectIsValidated.objects.create(project=instance) lat_cal, lng_cal = coordinates_calculation( instance.number, instance.street, instance.postal_code, instance.city ) ProjectHub.objects.create(project=instance, lat=lat_cal, lng=lng_cal) try: project_geo = ProjectHub.objects.get(project=instance) hub_selected = ProfileHub.objects.get(profile=instance.organizer).hub hub_geo = HubGeolocation.objects.get(hub=hub_selected) distance = distance_calculation(project_geo, hub_geo) project_geo.hub = hub_selected project_geo.distance_km = distance project_geo.save() except ObjectDoesNotExist: pass post_save.connect(project_created_or_updated, sender=Project) ``` #### File: rest_api/ledger/views.py ```python from rest_framework.viewsets import ReadOnlyModelViewSet from rest_framework.generics import ListAPIView from ledger.models import Operations from .serializers import OperationsSerializer class OperationsViewSet(ReadOnlyModelViewSet): queryset = Operations.objects.all().order_by('id') serializer_class = OperationsSerializer class ListGlobalOperationsView(ListAPIView): queryset = Operations.objects.all().order_by('start') serializer_class = OperationsSerializer def get_queryset(self): operations = Operations.objects.all() return operations class ListUserOperationsView(ListAPIView): queryset = Operations.objects.all().order_by('start') serializer_class = OperationsSerializer def get_queryset(self): user = Profile.objects.get(user=self.request.user) operations = Operations.objects.filter(profile=user) return operations ``` #### File: rest_api/projects/serializers.py ```python from rest_framework import serializers from projects.models import ( Project, ProjectVolunteers, ProjectVolunteersRegistration, ProjectAttendees, ProjectAttendeesRegistration, ProjectDiscussion, ProjectAnswerDiscussion, ProjectHub, ) class ProjectVolunteersRegistrationSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = ProjectVolunteersRegistration fields = ('url', 'profile', 'project_volunteers', 'project_volunteers_ref') def create(self, validated_data): project_volunteers = ProjectVolunteers.objects.get(pk=validated_data['project_volunteers_ref']) registration = ProjectVolunteersRegistration.objects.create( project_volunteers=project_volunteers, **validated_data ) count = ProjectVolunteersRegistration.objects.filter( project_volunteers=project_volunteers ).count() project_volunteers.registered = count project_volunteers.save() return registration class ProjectVolunteersSerializer(serializers.HyperlinkedModelSerializer): volunteers_registration = ProjectVolunteersRegistrationSerializer(many=True, read_only=True) class Meta: model = ProjectVolunteers fields = ( 'url', 'id', 'project', 'role', 'description', 'seats', 'registered', 'minimum_registration', 'volunteers_registration', ) read_only_fields = ('registered', 'project', 'id') class ProjectAttendeesRegistrationSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = ProjectAttendeesRegistration fields = ('url', 'profile', 'project_attendees', 'project_attendees_ref') def create(self, validated_data): project_attendees = ProjectAttendees.objects.get(pk=validated_data['project_attendees_ref']) registration = ProjectAttendeesRegistration.objects.create(project_attendees=project_attendees, **validated_data) count = ProjectAttendeesRegistration.objects.filter(project_attendees=project_attendees).count() project_attendees.registered = count project_attendees.save() return registration class ProjectAttendeesSerializer(serializers.HyperlinkedModelSerializer): attendees_registration = ProjectAttendeesRegistrationSerializer(many=True, read_only=True) class Meta: model = ProjectAttendees fields = ( 'url', 'id', 'project', 'seats', 'registered', 'attendees_registration', 'minimum_registration', ) read_only_fields = ('registered', 'project',) class ProjectAnswerDiscussionSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = ProjectAnswerDiscussion fields = ('url', 'id', 'discussion_ref', 'discussion', 'text', 'profile', 'created', 'updated') read_only_fields = ('discussion', 'profile') def create(self, validated_data): project_discussion = ProjectDiscussion.objects.get(pk=validated_data['discussion_ref']) answer = ProjectAnswerDiscussion.objects.create(discussion=project_discussion, **validated_data) return answer class ProjectDiscussionSerializer(serializers.HyperlinkedModelSerializer): answer_discussion_project = ProjectAnswerDiscussionSerializer(many=True, read_only=True) class Meta: model = ProjectDiscussion fields = ( 'url', 'id', 'project', 'project_ref', 'title', 'text', 'profile', 'created', 'updated', 'answer_discussion_project', ) read_only_fields = ('profile', 'project', 'id') def create(self, validated_data): project = Project.objects.get(pk=validated_data['project_ref']) new_discussion = ProjectDiscussion.objects.create(project=project, **validated_data) return new_discussion class ProjectSerializer(serializers.HyperlinkedModelSerializer): attendees = ProjectAttendeesSerializer() volunteers = ProjectVolunteersSerializer(many=True) discussion_project = ProjectDiscussionSerializer(many=True, read_only=True) ### cause of the error : #serializers.HyperlinkedRelatedField( # many=True, # view_name='discussion_project', # read_only=True #) class Meta: model = Project fields = ('url', 'id', 'name', 'start', 'end', 'description', 'category', 'sub_category', 'oth_category', 'oth_sub_cat','place_name', 'number', 'street', 'postal_code', 'city', 'organizer', 'created', 'updated', 'project_type', 'attendees', 'volunteers', 'discussion_project') read_only_fields = ('organizer', 'id') def create(self, validated_data): attendees_data = validated_data.pop('attendees') volunteers_data = validated_data.pop('volunteers') new_project = Project.objects.create(**validated_data) if validated_data['project_type'] == 'CO': ProjectAttendees.objects.create(project=new_project, **attendees_data) elif validated_data['project_type'] == 'CP': for volunteer_data in volunteers_data: ProjectVolunteers.objects.create(project=new_project, **volunteer_data) else: ProjectAttendees.objects.create(project=new_project, **attendees_data) for volunteer_data in volunteers_data: ProjectVolunteers.objects.create(project=new_project, **volunteer_data) return new_project class ProjectShortSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Project fields = ('url', 'id', 'name', 'start', 'created', 'updated',) class ProjectHubSerializer(serializers.HyperlinkedModelSerializer): project = ProjectSerializer() class Meta: model = ProjectHub fields = ('project', 'distance_km', 'lat', 'lng') ``` #### File: rest_api/projects/views.py ```python from django_filters import rest_framework as filters from rest_framework.response import Response from rest_framework.viewsets import ModelViewSet from rest_framework.permissions import IsAuthenticatedOrReadOnly from rest_framework.status import HTTP_204_NO_CONTENT from .serializers import ( ProjectSerializer, ProjectVolunteersSerializer, ProjectVolunteersRegistrationSerializer, ProjectAttendeesSerializer, ProjectAttendeesRegistrationSerializer, ProjectDiscussionSerializer, ProjectAnswerDiscussionSerializer, ) from ..permissions import ProjectIsOwnerOrReadOnly from profiles.models import Profile from projects.models import ( Project, ProjectVolunteers, ProjectVolunteersRegistration, ProjectAttendees, ProjectAttendeesRegistration, ProjectDiscussion, ProjectAnswerDiscussion, ) class ProjectViewSet(ModelViewSet): queryset = Project.objects.all().order_by('name') serializer_class = ProjectSerializer filter_backends = (filters.DjangoFilterBackend,) filter_fields = ('organizer', 'name') permission_classes = (IsAuthenticatedOrReadOnly, ProjectIsOwnerOrReadOnly,) def get_context_data(self, *args, **kwargs): ctx = super(ProjectViewSet, self).get_context_data(*args, **kwargs) profile = Profile.objects.get(user=self.request.user) ctx["user_id"] = profile.pk print(ctx) return ctx def create(self, request, *args, **kwargs): response = super(ProjectViewSet, self).create(request, *args, **kwargs) return response def perform_create(self, serializer): profile = Profile.objects.get(user=self.request.user) serializer.save(organizer=profile) def retrieve(self, request, *args, **kwargs): instance = self.get_object() serializer = self.get_serializer(instance) owner = False profile = Profile.objects.get(user=self.request.user) if instance.organizer == profile: owner = True response = {"user_Is_Owner": owner} response.update(serializer.data) return Response(response) class ProjectVolunteersViewSet(ModelViewSet): queryset = ProjectVolunteers.objects.all().order_by('id') serializer_class = ProjectVolunteersSerializer class ProjectVolunteersRegistrationViewSet(ModelViewSet): queryset = ProjectVolunteersRegistration.objects.all().order_by('id') serializer_class = ProjectVolunteersRegistrationSerializer def perform_create(self, serializer): profile = Profile.objects.get(user=self.request.user) serializer.save(profile=profile) def destroy(self, request, *args, **kwargs): try: instance = self.get_object() project_volunteers = ProjectVolunteers.objects.get(pk=instance.project_volunteers_ref) self.perform_destroy(instance) count = ProjectVolunteersRegistration.objects.filter(project_volunteers=project_volunteers).count() project_volunteers.registered = count project_volunteers.save() except Exception as e: print(e) pass return Response(status=HTTP_204_NO_CONTENT) class ProjectAttendeesViewSet(ModelViewSet): queryset = ProjectAttendees.objects.all().order_by('id') serializer_class = ProjectAttendeesSerializer def create(self, request, *args, **kwargs): response = super(ProjectAttendeesViewSet, self).create(request, *args, **kwargs) return response class ProjectAttendeesRegistrationViewSet(ModelViewSet): queryset = ProjectAttendeesRegistration.objects.all().order_by('id') serializer_class = ProjectAttendeesRegistrationSerializer def perform_create(self, serializer): profile = Profile.objects.get(user=self.request.user) serializer.save(profile=profile) def destroy(self, request, *args, **kwargs): try: instance = self.get_object() project_attendees = ProjectAttendees.objects.get(pk=instance.project_attendees_ref) self.perform_destroy(instance) count = ProjectAttendeesRegistration.objects.filter(project_attendees=project_attendees).count() project_attendees.registered = count project_attendees.save() except Exception as e: print(e) pass return Response(status=HTTP_204_NO_CONTENT) class ProjectDiscussionViewSet(ModelViewSet): queryset = ProjectDiscussion.objects.all().order_by('id') serializer_class = ProjectDiscussionSerializer def perform_create(self, serializer): profile = Profile.objects.get(user=self.request.user) serializer.save(profile=profile) class ProjectAnswerDiscussionViewSet(ModelViewSet): queryset = ProjectAnswerDiscussion.objects.all().order_by('id') serializer_class = ProjectAnswerDiscussionSerializer def create(self, request, *args, **kwargs): response = super(ProjectAnswerDiscussionViewSet, self).create(request, *args, **kwargs) return response def perform_create(self, serializer): profile = Profile.objects.get(user=self.request.user) serializer.save(profile=profile) ``` #### File: joatu-django/utils/utils.py ```python from math import pi, acos, cos, sin from decimal import Decimal import requests import urllib.parse from django.conf import settings def coordinates_calculation(number, street, postal_code, city, country=''): api_key = settings.GOOGLE_API_KEY main_api = "https://maps.googleapis.com/maps/api/geocode/json?" address = number + ' ' + street + ' ' + postal_code + ' ' + city + ' ' + country address = address.strip() url = main_api + urllib.parse.urlencode({'address': address}) + '&key=' + api_key json_data = requests.get(url).json() if not json_data['results']: return -1, -1 lat = Decimal(json_data['results'][0]['geometry']['location']['lat']) lng = Decimal(json_data['results'][0]['geometry']['location']['lng']) return lat, lng def distance_calculation(offer, hub): project_lat_conv = offer.lat * Decimal(pi) / 180 project_lng_conv = offer.lng * Decimal(pi) / 180 hub_lat_conv = hub.lat * Decimal(pi) / 180 hub_lng_conv = hub.lng * Decimal(pi) / 180 r = 6371 d = r * acos( cos(project_lat_conv) * cos(hub_lat_conv) * cos(hub_lng_conv - project_lng_conv) + sin(project_lat_conv) * sin(hub_lat_conv) ) distance_km = round(Decimal(d), 3) return distance_km ```
{ "source": "joausaga/appointment-seeker", "score": 3 }
#### File: joausaga/appointment-seeker/notifier.py ```python import logging import smtplib, ssl def notify_appointment(sender_email_address, sender_email_password, email_host_server, email_host_server_port, receiver_email_address): message = """\ Subject: Hi there This message is sent from Python.""" context = ssl.create_default_context() with smtplib.SMTP_SSL(email_host_server, email_host_server_port, context=context) as server: server.login(sender_email_address, sender_email_password) server.sendmail(sender_email_address, receiver_email_address, message) logging.info('Notification email sent') ```
{ "source": "Joaxin/django-vue-stories", "score": 2 }
#### File: lime/api/views.py ```python from rest_framework import generics from ..models import Message from .serializers import MessageSerializer from rest_framework import viewsets class MessageViewSet(viewsets.ModelViewSet): """ API endpoint that allows messages to be viewed or edited. """ queryset = Message.objects.filter(is_public=True) http_method_names = ['get', 'post', 'head'] serializer_class = MessageSerializer from rest_framework.permissions import AllowAny from rest_framework.response import Response from rest_framework.views import APIView class MessageView(APIView): permission_classes = [AllowAny] def get(self, request, format=None): content = { 'status': 'request was permitted' } return Response(content) ```
{ "source": "Joaxin/django-welogs", "score": 2 }
#### File: django-welogs/aphor/models.py ```python from django.db import models from django.utils import timezone from django.conf import settings from django.urls import reverse from taggit.managers import TaggableManager from markdownx.models import MarkdownxField from slugify import slugify # from users.models import CustomUser # Create your models here. # _*_ coding: utf-8 _*_ import os import shutil # Create your models here. from django.db.models.signals import post_delete from django.dispatch import receiver from django.forms import ClearableFileInput, ModelForm, forms, TextInput from django.template import loader from django import forms from django.utils.safestring import mark_safe from skeleton.settings import MEDIA_ROOT, WEB_HOST_MEDIA_URL, TEMP_IMAGE_DIR, MODEL_IMAGE_DIR, MODEL_MEDIA_URL class ImageInput(ClearableFileInput): template_name = "aphor/img_upload.html" def render(self, name, value, attrs=None, renderer=None): context = self.get_context(name, value, attrs) template = loader.get_template(self.template_name).render(context) return mark_safe(template) class UploadImageList(TextInput): template_name = "aphor/img_upload_list.html" def render(self, name, value, attrs=None, renderer=None): context = self.get_context(name, value, attrs) template = loader.get_template(self.template_name).render(context) return mark_safe(template) class UploadModel(models.Model): images = models.FileField('图片', upload_to="static/upload_multi_img/") images_list = models.CharField('', max_length=10000) def save(self, *args, **kwargs): # 阻止images字段的数据保存在数据库中,因为我们不需要 self.images = "" model_images = [] # print(self.images_list) # 将暂存目录中的图片转存到正式目录 for root, dirs, files in os.walk(TEMP_IMAGE_DIR): # print('files:', files) for file in files: if os.path.join(WEB_HOST_MEDIA_URL, file) in self.images_list: shutil.move(TEMP_IMAGE_DIR + file, MODEL_IMAGE_DIR + file) model_images.append(os.path.join(MODEL_MEDIA_URL, file)) # 清空暂存目录下所有图片 shutil.rmtree(TEMP_IMAGE_DIR) os.mkdir(TEMP_IMAGE_DIR) # 将模型原来的图片URL换为存到正式目录后的URL self.images_list = str(model_images).replace('[', "").replace(']', '') # 必须调用父类的方法,否则数据不会保存 super().save(*args, **kwargs) # 删除被删除的模型的图片 @receiver(post_delete, sender=UploadModel) def delete_upload_files(sender, instance, **kwargs): image_list = getattr(instance, 'images_list', '') if not image_list: return else: # 去除image_list中URL存在的''字符 list = image_list.replace("'", "").replace("'", "").split(",") # print("000000", list) # 删除被删除的模型的图片 for image in list: # 获取文件名 delete_image_name = image.split('/')[-1] # print("9999999", delete_image_name) os.remove(MODEL_IMAGE_DIR + delete_image_name) class UploadForm(ModelForm): images = forms.FileField(label="图片", widget=ImageInput, help_text="按住ctrl多选,最多9张", required=False) images_list = forms.CharField(label='', widget=UploadImageList, help_text='', required=False) class Meta: model = UploadModel fields = ['images', 'images_list'] class PublishedManager(models.Manager): def get_queryset(self): return super(PublishedManager, self).get_queryset().filter(status='published') # Create your models here. class Topic(models.Model): topic_name = models.CharField(default="", max_length=50, verbose_name="话题名称") topic_blogs_num = models.IntegerField(verbose_name="相关微博数", default=0, null=True, blank=True) t_publish = models.DateTimeField(default=timezone.now, verbose_name="创建时间") class Meta: verbose_name = "微博话题" verbose_name_plural = verbose_name def __str__(self): return self.topic_name[:20] class MiniBlog(models.Model): user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE, verbose_name="发布用戶", related_name='miniblog_set',default=1) STATUS_CHOICES = (('draft', 'Draft'), ('published', 'Published')) status = models.CharField(verbose_name='发布状态',max_length=10, choices=STATUS_CHOICES, default='published') t_publish = models.DateTimeField(verbose_name='发布时间',default=timezone.now) t_update = models.DateTimeField(verbose_name='修改时间', auto_now=True) content = MarkdownxField(verbose_name="正文 :", blank=True, max_length=2500) tags = TaggableManager() images = models.ForeignKey(UploadModel, on_delete=models.CASCADE, verbose_name="图集", null=True, blank=True ) num_click = models.IntegerField(verbose_name="微博点击数", default=0, null=True, blank=True) num_likes = models.IntegerField(verbose_name="点赞数", default=0, null=True, blank=True) num_comment = models.IntegerField(verbose_name="评论数", default=0, null=True, blank=True) num_fav= models.IntegerField(verbose_name="收藏数", default=0, null=True, blank=True) has_pic = models.IntegerField(verbose_name="是否有图", default=0, null=True, blank=True) need_unfold = models.IntegerField(choices=((0, "不需展开"), (1, "需要展开且未展开"), (2, "需展开且已展开")), default = 0) related_topic = models.ForeignKey(Topic, on_delete=models.CASCADE, null=True, blank=True, verbose_name="微博相关话题") objects = models.Manager() # 默认的管理器 published = PublishedManager() # 自定义管理器 class Meta: verbose_name = "微博" verbose_name_plural = verbose_name ordering = ('-t_publish',) def __str__(self): return '{} - {} : {}'.format(self.user,self.t_publish, self.content[:25]) def shorttext(self): return self.content[:10] + "..." def judgefold(self): foldlen = 5 if len(self.content) < foldlen: self.need_unfold = 0 # 不需展开 else: self.need_unfold = 1 ``` #### File: django-welogs/aphor/views.py ```python import json import os import uuid from django.contrib.auth.decorators import login_required # from django.http import HttpResponse from django.shortcuts import render, HttpResponse, HttpResponseRedirect # Create your views here. from django.views.decorators.csrf import csrf_exempt from skeleton.settings import WEB_HOST_MEDIA_URL, TEMP_IMAGE_DIR @login_required @csrf_exempt def upload_temp_image(request): result = {} if request.method == 'POST': files = request.FILES if files: image_url_list = [] for file_name in files: image_url_list.append(handle_uploaded_file(files.get(file_name))) # 处理上传文件 result = {'msg': 'success', "image_list": image_url_list, } else: result = {'msg': 'failed', "image_list": []} return HttpResponse(json.dumps(result, ensure_ascii=False), content_type="application/json,charset=utf-8") # 返回json # 处理上传的文件 def handle_uploaded_file(file): # 分割文件名,提取拓展名 extension = os.path.splitext(file.name) # 使用uuid4重命名文件,防止重名文件相互覆盖 # 注意首先在项目的根目录下新建media/tempimg,或者自己使用python代码创建目录 file_name = '{}{}'.format(uuid.uuid4(), extension[1]) with open(TEMP_IMAGE_DIR + file_name, 'wb+') as destination: for chunk in file.chunks(): # 防止文件太大导致内存溢出 destination.write(chunk) # 返回图片的URL return os.path.join(WEB_HOST_MEDIA_URL, file_name) import re from django.shortcuts import render, redirect from django.db.models import Q from django.contrib.auth import authenticate, login from itertools import chain # Create your views here. from django.views.generic.base import View from django.http import JsonResponse from django.urls import reverse from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from .models import MiniBlog, Topic # from operations.models import BlogComment # from users.models import UserProfile # from operations.models import UserFollowed, UserFav, UserGood, UserMessage # from .forms import BlogContentForm, SearchContentForm # 当用户登录时,返回其关注的人的微博,没登录返回所有微博 class MainpageView(View): def get(self, request): all_blogs = MiniBlog.published.all().order_by('-t_publish') paginator = Paginator(all_blogs, 5) page = request.GET.get('page') # 进行分页传递 try: blogs = paginator.page(page) except PageNotAnInteger: blogs = paginator.page(1) except EmptyPage: blogs = paginator.page(paginator.num_pages) all_topic = Topic.objects.all().order_by('-topic_blogs_num')[:10] if request.user.is_authenticated: return render(request, 'aphor/stella.html', {'page': page,'blogs': blogs, 'all_topic': all_topic}) else: return render(request, 'aphor/stella.html', {'page': page,'blogs': "请登录", 'all_topic': all_topic}) # from op.models import BlogComment # class BlogTextPageView(View): # def get(self, request, blog_id): # blog = MiniBlog.objects.get(id=int(blog_id)) # blog.num_click += 1 # blog.save() # # return HttpResponse("to be continued for your work微博+评论区") # # (新增) # comments = BlogComment.objects.filter(blog=blog) # return render(request, 'aphor/stella_detail.html', { # 'blog': blog, # 'comments': comments # }) from .forms import BlogContentForm class SendBlogView(View): def post(self, request): blog_form = BlogContentForm(request.POST, request.FILES or None) if blog_form.is_valid(): blog = MiniBlog() print(blog.id) blog.user = request.user blog.content = request.POST.get("content", "") blog.image = blog_form.cleaned_data["image"] if blog.image: blog.has_pic = 1 # 替换@用户 re_str = blog.content users_list = [] users_str = re.findall(r'@(.+?)\s', re_str) users_str_1 = re.findall(r'^(.+?)@', re_str[::-1]) if users_str_1: users_str.append(users_str_1[0][::-1]) for user_str in users_str: user = UserProfile.objects.filter(nickname=user_str) if user: users_list.append(user[0]) re_str = re_str.replace('@' + user_str, '<a href="/user/' + str(user[0].id) + '/">' + '@' + user_str + '</a>') blog.content = re_str blog.save() print(blog.id) # 新建@提醒 for user in users_list: message = UserMessage() message.user = user message.blog_id = blog.id message.save() user.message_nums = UserMessage.objects.filter(user=user, has_read=False).count() user.save() # blog_form.save() # self.topic_test(blog.content, blog) # 替换话题 # re_str = blog.content # topics_str = re.findall(r'#(.+?)#', re_str) # for topic_str in topics_str: # topic = Topic.objects.filter(topic_name=topic_str) # if topic: # re_str = re_str.replace('#' + topic_str + '#', '<a href="/weibo/topic/' + str( # topic[0].id) + '">' + '#' + topic_str + '#' + '</a>') # blog.content = re_str blog.save() return HttpResponseRedirect(reverse('aphor:mainpage')) # # def quote_list(request): # # object_list = Quote.published.all() # # paginator = Paginator(object_list, 3) # 每页显示3篇文章 # # page = request.GET.get('page') # # try: # # quotes = paginator.page(page) # # except PageNotAnInteger: # # # 如果page参数不是一个整数就返回第一页 # # quotes = paginator.page(1) # # except EmptyPage: # # # 如果页数超出总页数就返回最后一页 # # quotes = paginator.page(paginator.num_pages) # # return render(request, 'aphor/quote/list.html', {'page': page, 'quotes': quotes}) # from django.views.generic import ListView # class QuoteListView(ListView): # queryset = Quote.published.all() # 实际上,可以不使用这个变量,通过指定model = Quote,这个CBV就会去进行Quote.objects.all()查询获得全部文章。 # # 如果不设置context_object_name参数,默认的变量名称是object_list # context_object_name = 'quotes' # paginate_by = 10 # template_name = 'aphor/list.html' # def quote_list(request, tag_slug=None): # object_list = Quote.published.all() # tag = None # if tag_slug: # tag = get_object_or_404(Tag, slug=tag_slug) # object_list = object_list.filter(tags__in=[tag]) # paginator = Paginator(object_list, 20) # 3 quotes in each page # page = request.GET.get('page') # try: # quotes = paginator.page(page) # except PageNotAnInteger: # quotes = paginator.page(1) # except EmptyPage: # quotes = paginator.page(paginator.num_pages) # return render(request, 'aphor/list.html', {'page': page, 'quotes': quotes, 'tag': tag}) # from .models import Quote, Comment # from .forms import EmailQuoteForm, CommentForm # from django.db.models import Count # # 一些相同主题的文章会具有相同的标签,可以创建一个功能给用户按照共同标签数量的多少推荐文章。 # # 为了实现该功能,需要如下几步: # # 获得当前文章的所有标签 # # 拿到所有具备这些标签的文章 # # 把当前文章从这个文章列表里去掉以避免重复显示 # # 按照具有相同标签的多少来排列 # # 如果文章具有相同数量的标签,按照时间来排列 # # 限制总推荐文章数目 # def quote_detail(request, quote_id, quote): # quote = get_object_or_404(Quote, slug=quote, status="published", id=quote_id) # # 列出文章对应的所有活动的评论 # comments = quote.comments.filter(active=True) # # 以Comments类中定义的外键的related_name属性的名称作为管理器,对quote对象执行查询从而得到了所需的QuerySet。 # # 新增评论的功能, 初始化了一个new_comment变量为None,用于标记一个新评论是否被创建。 # new_comment = None # if request.method == "POST": # comment_form = CommentForm(data=request.POST) # if comment_form.is_valid(): # # 通过表单直接创建新数据对象,但是不要保存到数据库中 # # commit=False,则数据对象会被创建但不会被写入数据库,便于在保存到数据库之前对对象进行一些操作 # new_comment = comment_form.save(commit=False) # # 设置外键为当前文章 # new_comment.quote = quote # # 将评论数据对象写入数据库 # new_comment.save() # # save()方法仅对ModelForm生效,因为Form类没有关联到任何数据模型。 # else: # comment_form = CommentForm() # 创建空白表单 # # 显示相近Tag的文章列表 # quote_tags_ids = quote.tags.values_list('id',flat=True) # # 选出所有包含上述标签的文章并且排除当前文章 # similar_tags = Quote.published.filter(tags__in=quote_tags_ids).exclude(id=quote.id) # similar_quotes = similar_tags.annotate(same_tags=Count('tags')).order_by('-same_tags','-t_publish')[:4] # return render(request, 'aphor/detail.html', # {'quote': quote, # 'comments': comments, # 'new_comment': new_comment, # 'comment_form': comment_form, # 'similar_quotes': similar_quotes}) # from .forms import EmailQuoteForm,SearchForm # from django.core.mail import send_mail # def quote_share(request, quote_id, quote): # # 通过id 获取 quote 对象 # quote = get_object_or_404(Quote, slug=quote, id=quote_id, status='published') # sent = False # if request.method == "POST": # # 表单被提交 # form = EmailQuoteForm(request.POST) # if form.is_valid(): # # 表单字段通过验证 # cd = form.cleaned_data # quote_url = request.build_absolute_uri(quote.get_absolute_url()) # subject = '{} ({}) recommends you reading "{}"'.format(cd['name'], cd['email'], quote.title) # message = 'Read "{}" at <a href="{}"></a> \n\n{}\'s comments:{}'.format(quote.title, quote_url, cd['name'], cd['comments']) # send_mail(subject, message, '<EMAIL>', [cd['to']], fail_silently=False) # sent = True # else: # form = EmailQuoteForm() # return render(request, 'aphor/share.html', {'quote': quote, 'form': form, 'sent': sent}) # # from django.contrib.quotegres.search import SearchVector, SearchQuery, SearchRank, TrigramSimilarity # # def quote_search(request): # # form = SearchForm() # # query = None # # results = [] # # if 'query' in request.GET: # # form = SearchForm(request.GET) # # if form.is_valid(): # # query = form.cleaned_data['query'] # # results = Quote.objects.annotate( # # similarity=TrigramSimilarity('title', query), # # ).filter(similarity__gt=0.3).order_by('-similarity') # # return render(request, # # 'aphor/search.html', # # {'form': form, # # 'query': query, # # 'results': results}) # # from django.contrib.auth.mixins import LoginRequiredMixin # # from django.urls import reverse_lazy # # from django.views import generic # # from django.contrib.messages.views import SuccessMessageMixin # # from aphor.models import Quote, Person, Category # # Create your views here. # # class Master(generic.ListView): # # def get_context_data(self, *, object_list=None, **kwargs): # # context = super().get_context_data(**kwargs) # # context['persons_widget'] = Person.objects.all() # # context['categories_widget'] = Category.objects.all() # # return context # # class Index(Master): # # model = Quote # # ordering = ['-pk'] # # paginate_by = 1 # # context_object_name = 'quotes_object_list' # # template_name = 'index.html' # # class Persons(Master): # # model = Person # # paginate_by = 1 # # context_object_name = 'persons_object_list' # # template_name = 'persons.html' # # class Random(Index): # # paginate_by = False # # def get_queryset(self): # # return Quote.objects.order_by("?")[:10] # # class QuotesByPerson(Index): # # def get_queryset(self): # # return Quote.objects.filter(person=self.kwargs['person_pk']) # # class QuotesByCategory(Index): # # def get_queryset(self): # # return Quote.objects.filter(category=self.kwargs['category_pk']) # def QuotesByCategory(request, category_pk): # category = get_object_or_404(Category, pk=category_pk) # object_list = Quote.published.filter(category_id = category_pk) # paginator = Paginator(object_list, 20) # 3 quotes in each page # page = request.GET.get('page') # try: # quotes = paginator.page(page) # except PageNotAnInteger: # quotes = paginator.page(1) # except EmptyPage: # quotes = paginator.page(paginator.num_pages) # return render(request, 'aphor/list.html', {'page': page, 'quotes': quotes, 'category': category, 'tag':None}) # # class CategoryCreateView(LoginRequiredMixin, SuccessMessageMixin, generic.CreateView, Master): # # fields = ["title"] # # model = Category # # success_url = '/create/category' # # success_message = "Category was created successfully" # # class PersonCreateView(LoginRequiredMixin, SuccessMessageMixin, generic.CreateView, Master): # # fields = ["full_name", "biography", "picture"] # # model = Person # # success_url = '/create/person' # # success_message = 'Person was created successfully' # # class QuoteCreateView(LoginRequiredMixin, SuccessMessageMixin, generic.CreateView, Master): # # fields = ["person", "category", "content"] # # model = Quote # # success_url = '/create/quote' # # success_message = 'Quote was created successfully' ``` #### File: django-welogs/users/models.py ```python from django.contrib.auth.models import AbstractUser from django.db import models from datetime import datetime #用pillow、django-imagekit模块设置图片,可以处理图片,生成指定大小的缩略图,前端显示src="{{ user.avatar.url }} from imagekit.models import ProcessedImageField from imagekit.processors import ResizeToFill #扩展Django自带的User模型字 #扩展Django自带的User模型字 # 继承 AbstractUser ,django 自带用户类,可扩展用户个人信息,AbstractUser 模块下有:password,username、first_name、last_name、email、last_login,is_superuser,is_staff,is_active,date_joined class CustomUser(AbstractUser): nickname = models.CharField(max_length=30, blank=True, null=True, verbose_name='昵称') birthday = models.DateField(verbose_name="生日", null=True, blank=True) GENDER_CHOICES = ( ('M', '男'), ('F', '女'), ('U','保密') ) gender = models.CharField(max_length=1, choices=GENDER_CHOICES,verbose_name="性别", default='U') address = models.CharField(max_length=200, verbose_name="地址", null=True, blank=True) mobile = models.CharField(max_length=11, null=True, blank=True, verbose_name="手机") # 扩展用户个人网站字段 link = models.URLField('个人网址', blank=True, help_text='提示:网址必须填写以http开头的完整形式') # 扩展用户头像字段,upload_to后必须是相对路径,上传路径已设置为media,保存的是图片地址,前端user.avatar.url获取 avatar = ProcessedImageField(upload_to='avatar',default='avatar/default.png',verbose_name='头像', processors=[ResizeToFill(100, 100)], # 处理后的图像大小 format='JPEG', # 处理后的图片格式 options={'quality': 95} # 处理后的图片质量 ) fans_num = models.IntegerField(verbose_name="粉丝数", default=0) blog_num = models.IntegerField(verbose_name="微博数", default=0) follow_num = models.IntegerField(verbose_name="关注数", default=0) t_publish = models.DateField(default=datetime.now, verbose_name="加入时间") message_nums = models.IntegerField(verbose_name='未读消息数', default=0) #定义手动保存图(IIS下User.save()保存失败) def save_avatar(self,upload_image): import os import uuid from django.conf import settings #创建与用户名的文件夹 upload_path=os.path.join(settings.MEDIA_ROOT,'avatar',self.username) if not upload_path: try: os.makedirs(new_path) except: pass # 生成一个随机字符串 uuid_str_name = uuid.uuid4().hex+'.jpg' #保存 with open(os.path.join(upload_path,uuid_str_name), 'wb+') as file: for chunk in upload_image.chunks(): file.write(chunk) return uuid_str_name #显示用户的邮箱是否验证过,并提醒他们去验证邮箱 def account_verified(self): if self.user.is_authenticated: #django的auth系统功能,只能利用django自己的登陆方法才能判断用户是否登录 result = EmailAddress.objects.filter(email=self.user.email) if len(result): return result[0].verified return False # 定义网站管理后台表名 class Meta: verbose_name = '用户信息' verbose_name_plural = verbose_name #指定模型的复数形式是什么,如果不指定Django会自动在模型名称后加一个’s’ ordering = ['-id'] #admin后台显示名字关联到此表的字段的后天显示名字 def __str__(self): return self.username # 邮箱验证码类 class EmailVerifyRecord(models.Model): code = models.CharField(max_length=20, verbose_name="邮箱验证码") email = models.CharField(max_length=40, verbose_name="邮箱") send_type = models.CharField(choices=(("register", "注册"), ("findback", "找回密码")), max_length=20) send_time = models.DateField(default=datetime.now, verbose_name="发送时间") class Meta: verbose_name = "邮箱验证码" verbose_name_plural = verbose_name def __str__(self): return "{0}({1})".format(self.code, self.email) # 未登录页轮播图 class Banner(models.Model): title = models.CharField(max_length=100, verbose_name="标题") index = models.IntegerField(default=1000, verbose_name="播放顺序") t_publish = models.DateField(default=datetime.now, verbose_name="添加时间") image = models.ImageField(upload_to="banner/%Y/%m", verbose_name="轮播图", max_length=100) jmp_url = models.URLField(max_length=200, verbose_name="跳转地址") class Meta: verbose_name = "轮播图" verbose_name_plural = verbose_name def __str__(self): return self.title ``` #### File: django-welogs/users/views.py ```python import json import base64 from django.shortcuts import render from django.http import HttpResponse from . import models # Create your views here. # auth中用户权限有关的类。auth可以设置每个用户的权限。 from django.contrib.auth.decorators import login_required from django.views.decorators.csrf import csrf_exempt # 使用login_required装饰器,用户只有登录了才能访问其用户资料 @login_required def profile(request): # AUTH_USER_MODEL 类型的对象,表示当前登录的用户。 user = request.user return render(request, 'account/profile.html', {'user': user}) @login_required # 使用login_required装饰器,用户只有登录了才能访问其用户资料 @csrf_exempt # 取消当前函数防跨站请求伪造功能,即便settings中设置了全局中间件。 def profile_update(request): # request.is_ajax(): #判断请求头中是否含有X-Requested-With的值 if request.is_ajax(): # request.POST.get('')不存在默认为空,request.POST[]不存在报错 key = request.POST.get('key') if key == 'link': link = request.POST['link'] username = request.POST['username'] models.CustomUser.objects.filter(email=username).update(link=link) link = models.CustomUser.objects.filter(email=username).first().link linkJson = {'link': link} return HttpResponse(json.dumps(linkJson)) elif key == 'avatar': username = request.POST['username'] # 用ModelForm可代替手动编写代码存储上传文件 user_profile = models.CustomUser.objects.filter(email=username).first() user_profile.avatar = request.FILES.get('avatar') user_profile.save() url = user_profile.avatar.url dataJson = {'url': url} return HttpResponse(json.dumps(dataJson)) ```
{ "source": "Joaxin/GitComments", "score": 3 }
#### File: Crawler/google/google.py ```python URL_SEARCH = "https://{domain}/search?hl={language}&q={query}&btnG=Search&gbv=1" URL_NUM = "https://{domain}/search?hl={language}&q={query}&btnG=Search&gbv=1&num={num}" def search_page(query, language='en', num=None, start=0, pause=2): """ Google search :param query: Keyword :param language: Language :return: result """ time.sleep(pause) domain = self.get_random_domain() if num is None: url = URL_SEARCH url = url.format( domain=domain, language=language, query=quote_plus(query)) else: url = URL_NUM url = url.format( domain=domain, language=language, query=quote_plus(query), num=num) try: requests.packages.urllib3.disable_warnings(InsecureRequestWarning) r = requests.get(url=url, allow_redirects=False, verify=False, timeout=30) charset = chardet.detect(r.content) content = r.content.decode(charset['encoding']) return content except Exception as e: logging.error(e) return None from MagicGoogle import MagicGoogle import pprint # Or PROXIES = None PROXIES = [{ 'http': 'http://192.168.2.207:1080', 'https': 'http://192.168.2.207:1080' }] # Or MagicGoogle() mg = MagicGoogle(PROXIES) # Crawling the whole page result = mg.search_page(query='python') # Crawling url for url in mg.search_url(query='python'): pprint.pprint(url) # Output # 'https://www.python.org/' # 'https://www.python.org/downloads/' # 'https://www.python.org/about/gettingstarted/' # 'https://docs.python.org/2/tutorial/' # 'https://docs.python.org/' # 'https://en.wikipedia.org/wiki/Python_(programming_language)' # 'https://www.codecademy.com/courses/introduction-to-python-6WeG3/0?curriculum_id=4f89dab3d788890003000096' # 'https://www.codecademy.com/learn/python' # 'https://developers.google.com/edu/python/' # 'https://learnpythonthehardway.org/book/' # 'https://www.continuum.io/downloads' # Get {'title','url','text'} for i in mg.search(query='python', num=1): pprint.pprint(i) # Output # {'text': 'The official home of the Python Programming Language.', # 'title': 'Welcome to Python .org', # 'url': 'https://www.python.org/'} 作者:howie6879 链接:https://www.jianshu.com/p/a4d13ba26107 來源:简书 简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。 ``` #### File: Crawler/pyquotes/scraper.py ```python from bs4 import BeautifulSoup import requests import random # website used : parent_link = 'https://www.quoteload.com' # for quote of the day : day_quote = 'https://www.brainyquote.com/quote_of_the_day' def get_quotes(person: (None, str) = None, category: (None, str) = None): """ usage : call with person name and category of quotes returns : a list of tuple (quote,author) """ # function called without any argument: if person is None and category is None: print('too few arguments to get quotes') return None # can be modified to throw some exception instead result = [] if person is not None: # person's name is provided # formatting the name to fit as per URL Person = '-'.join(person.strip().split()) person_link = requests.get( parent_link + '/quotes/authors/' + Person).text soup_obj = BeautifulSoup(person_link, 'lxml') for interest in soup_obj.find_all('div', class_='card-body text-center'): quote = interest.p.find('a', class_='href-noshow').text tag = interest.p.find('a', class_='category-tag').text result.append((quote, person)) if category is not None: : # category's name is provided category_link = requests.get( parent_link + '/quotes/categories/' + category ).text soup_obj = BeautifulSoup(category_link, 'lxml') for interest in soup_obj.find_all('div', class_='card-body text-center'): quote = interest.p.find('a', class_='href-noshow').text tag = interest.p.find('a', class_='category-tag').text author = interest.p.find('a', class_='quote-author').text if (quote, author) not in result: result.append((quote, author)) return result # a list of tuples def get_quote(person: (None, str) = None, category: (None, str) = None): lst = get_quotes(person=person, category=category) # error will be handled when list is empty (codes for the same to be added # soon) return lst[random.randint(0, len(lst))] def random_quote(): """ usage : call without arguments returns : tuple of random quote,author """ link = requests.get(day_quote).text soup_obj = BeautifulSoup(link, 'lxml') for interest in soup_obj.find_all('div', class_='clearfix'): quote = interest.find('a', title='view quote').text author = interest.find('a', title='view author').text # return (quote, author) return (quote, author) # print(get_quote(person="<NAME>",category="legal")) # print(get_quote(input('enter the name : ').strip())) # print(random_quote()) ``` #### File: Crawler/pyquotes/scrapper.py ```python from bs4 import BeautifulSoup import requests import random # website used : parent_link = 'https://www.quoteload.com' def get_quotes(person: (None, str) = None, category: (None, str) = None): # function called without any argument: if isinstance(person, type(None)) and isinstance(category, type(None)): print('too few arguments to get quotes') return None # can be modified to throw some exception instead result = [] if not isinstance(person, type(None)): # person's name is provided # formatting the name to fit as per URL Person = '-'.join(person.strip().split()) person_link = requests.get( parent_link + '/quotes/authors/' + Person).text soup_obj = BeautifulSoup(person_link, 'lxml') for interest in soup_obj.find_all('div', class_='card-body text-center'): quote = interest.p.find('a', class_='href-noshow').text tag = interest.p.find('a', class_='category-tag').text result.append((quote, person)) if not isinstance(category, type(None)): # category's name is provided category_link = requests.get( parent_link + '/quotes/categories/' + category).text soup_obj = BeautifulSoup(category_link, 'lxml') for interest in soup_obj.find_all('div', class_='card-body text-center'): quote = interest.p.find('a', class_='href-noshow').text tag = interest.p.find('a', class_='category-tag').text author = interest.p.find('a', class_='quote-author').text if (quote, author) not in result: result.append((quote, author)) return result # a list of tuples def get_quote(person: (None, str) = None, category: (None, str) = None): lst = get_quotes(person=person, category=category) return lst[random.randint(0, len(lst))] ``` #### File: Intro/Game/Game2.py ```python from abc import ABCMeta, abstractmethod from random import randint, randrange class Fighter(object, metaclass=ABCMeta): """战斗者""" # 通过__slots__魔法限定对象可以绑定的成员变量 __slots__ = ('_name', '_hp') def __init__(self, name, hp): """初始化方法 :param name: 名字 :param hp: 生命值 """ self._name = name self._hp = hp @property def name(self): return self._name @property def hp(self): return self._hp @hp.setter def hp(self, hp): self._hp = hp if hp >= 0 else 0 @property def alive(self): return self._hp > 0 @abstractmethod def attack(self, other): """攻击 :param other: 被攻击的对象 """ pass class Ultraman(Fighter): """奥特曼""" __slots__ = ('_name', '_hp', '_mp') def __init__(self, name, hp, mp): """初始化方法 :param name: 名字 :param hp: 生命值 :param mp: 魔法值 """ super().__init__(name, hp) self._mp = mp def attack(self, other): other.hp -= randint(15, 25) def huge_attack(self, other): """究极必杀技(打掉对方至少50点或四分之三的血) :param other: 被攻击的对象 :return: 使用成功返回True否则返回False """ if self._mp >= 50: self._mp -= 50 injury = other.hp * 3 // 4 injury = injury if injury >= 50 else 50 other.hp -= injury return True else: self.attack(other) return False def magic_attack(self, others): """魔法攻击 :param others: 被攻击的群体 :return: 使用魔法成功返回True否则返回False """ if self._mp >= 20: self._mp -= 20 for temp in others: if temp.alive: temp.hp -= randint(10, 15) return True else: return False def resume(self): """恢复魔法值""" incr_point = randint(1, 10) self._mp += incr_point return incr_point def __str__(self): return '~~~%s奥特曼~~~\n' % self._name + \ '生命值: %d\n' % self._hp + \ '魔法值: %d\n' % self._mp class Monster(Fighter): """小怪兽""" __slots__ = ('_name', '_hp') def attack(self, other): other.hp -= randint(10, 20) def __str__(self): return '~~~%s小怪兽~~~\n' % self._name + \ '生命值: %d\n' % self._hp def is_any_alive(monsters): """判断有没有小怪兽是活着的""" for monster in monsters: if monster.alive > 0: return True return False def select_alive_one(monsters): """选中一只活着的小怪兽""" monsters_len = len(monsters) while True: index = randrange(monsters_len) monster = monsters[index] if monster.alive > 0: return monster def display_info(ultraman, monsters): """显示奥特曼和小怪兽的信息""" print(ultraman) for monster in monsters: print(monster, end='') def main(): u = Ultraman('骆昊', 1000, 120) m1 = Monster('狄仁杰', 250) m2 = Monster('白元芳', 500) m3 = Monster('王大锤', 750) ms = [m1, m2, m3] fight_round = 1 while u.alive and is_any_alive(ms): print('========第%02d回合========' % fight_round) m = select_alive_one(ms) # 选中一只小怪兽 skill = randint(1, 10) # 通过随机数选择使用哪种技能 if skill <= 6: # 60%的概率使用普通攻击 print('%s使用普通攻击打了%s.' % (u.name, m.name)) u.attack(m) print('%s的魔法值恢复了%d点.' % (u.name, u.resume())) elif skill <= 9: # 30%的概率使用魔法攻击(可能因魔法值不足而失败) if u.magic_attack(ms): print('%s使用了魔法攻击.' % u.name) else: print('%s使用魔法失败.' % u.name) else: # 10%的概率使用究极必杀技(如果魔法值不足则使用普通攻击) if u.huge_attack(m): print('%s使用究极必杀技虐了%s.' % (u.name, m.name)) else: print('%s使用普通攻击打了%s.' % (u.name, m.name)) print('%s的魔法值恢复了%d点.' % (u.name, u.resume())) if m.alive > 0: # 如果选中的小怪兽没有死就回击奥特曼 print('%s回击了%s.' % (m.name, u.name)) m.attack(u) display_info(u, ms) # 每个回合结束后显示奥特曼和小怪兽的信息 fight_round += 1 print('\n========战斗结束!========\n') if u.alive > 0: print('%s奥特曼胜利!' % u.name) else: print('小怪兽胜利!') if __name__ == '__main__': main() ``` #### File: Intro/math/quadratic.py ```python import cmath import re def quadratic(): while True: try: L = re.sub(r'[^0-9\.-]', ' ', input('Enter three coefficients a,b,c: ').strip()) # re.sub returns str a, b, c = [float(i) for i in L.split()] if a == 0: print("the equation is linear, not quadratic") else: # str.split returns a list d = (b**2) - (4 * a * c) sol1 = (-b - cmath.sqrt(d)) / (2 * a) sol2 = (-b + cmath.sqrt(d)) / (2 * a) except(TypeError, ValueError): print("You need 3 numbers, e.g '2 5 1'") return quadratic() except: print("Unknown occurred") return return print('{0}\n{1}'.format(sol1, sol2)) ch=input("Please input \'c \' to end or any keys to continue \n") if ch !='c' and ch !='C': pass else: break quadratic() ``` #### File: Intro/oop/foo_inherit.py ```python class A(object): def foo(self): print('foo of A') class B(A): pass class C(A): def foo(self): print('foo fo C') class D(B, C): pass class E(D): def foo(self): print('foo in E') super().foo() super(B, self).foo() super(C, self).foo() if __name__ == '__main__': d = D() d.foo() e = E() e.foo() # foo fo C # foo in E # foo fo C # foo fo C # foo of A ```
{ "source": "jobar8/interpies", "score": 2 }
#### File: interpies/interpies/segy_io.py ```python import numpy as np from obspy.io.segy.segy import _read_segy, BINARY_FILE_HEADER_FORMAT # most useful trace header keys STH_keys=[u'trace_sequence_number_within_line', u'trace_sequence_number_within_segy_file', u'scalar_to_be_applied_to_all_coordinates', u'source_coordinate_x', u'source_coordinate_y', u'group_coordinate_x', u'group_coordinate_y', u'coordinate_units', u'lag_time_A', u'lag_time_B', u'delay_recording_time', u'number_of_samples_in_this_trace', u'sample_interval_in_ms_for_this_trace', u'x_coordinate_of_ensemble_position_of_this_trace', u'y_coordinate_of_ensemble_position_of_this_trace', u'for_3d_poststack_data_this_field_is_for_in_line_number', u'for_3d_poststack_data_this_field_is_for_cross_line_number'] def load_SEGY_header(seis, keys=None): ''' Load headers from an ObsPy SEGYFile object. The headers are read from the so-called `binary header`. The function returns a default selection of useful headers or pick from an optional list (keys). Parameters ---------- seis : ObsPy SEGYFile object This is created using the _read_segy function in obspy.io.segy.segy keys : list of strings List of headers to load. Must correspond to attributes as defined in ObsPy. See BINARY_FILE_HEADER_FORMAT dictionary. Returns ------- SH : dictionary A dictionary with the values associated with the selected headers. ''' # read binary header SHbin = seis.binary_file_header # load selection of most useful headers if none requested already if not keys: keys = [header[1] for header in BINARY_FILE_HEADER_FORMAT if header[2]] SH = {} for key in keys: SH[key] = SHbin.__getattribute__(key) return SH def load_SEGY_trace_header(traces,keys=None): ''' Load trace headers from an ObsPy SEGYTrace object. The function returns a default selection of useful headers or pick from an optional list (keys). Parameters ---------- traces : ObsPy SEGYTrace object This is created from a SEGYFile object. keys : list of strings List of trace headers to load. Must correspond to attributes as defined in ObsPy. See obspy.io.segy.header.TRACE_HEADER_FORMAT for a list of all available trace header attributes or the segyio.STH_keys for a shorter list. Returns ------- STH : dictionary A dictionary with the values associated with the selected headers. The values are provided as Numpy arrays (vectors with ntraces elements). ''' # load selection of most useful headers if none requested already if not keys: keys = STH_keys STH = {} for key in keys: STH[key] = np.hstack([t.header.__getattr__(key) for t in traces]) return STH def load_SEGY(filename, endian=None): """ Read and load data and headers from a SEGY file. Usage ----- data, SH, STH = load_SEGY(filename) """ # read file with obspy seis = _read_segy(filename, endian=endian) traces = seis.traces ntraces = len(traces) # Load SEGY header SH = load_SEGY_header(seis) # additional headers for compatibility with older segy module SH['filename'] = filename SH["ntraces"] = ntraces SH["ns"] = SH['number_of_samples_per_data_trace'] SH["dt"] = SH['sample_interval_in_microseconds'] / 1000 # in milliseconds # Load all the Trace headers in arrays STH = load_SEGY_trace_header(traces) # Load the data data = np.vstack([t.data for t in traces]).T return data, SH, STH def load_SH_and_STH(filename, endian=None): """ Read and load headers from SEGY file. No data is loaded, saving time and memory. Usage ----- SH,STH = load_SH_and_STH(filename) """ # read file with obspy (headers only) seis = _read_segy(filename,endian=endian,headonly=True) traces = seis.traces ntraces = len(traces) # Load SEGY header SH = load_SEGY_header(seis) # additional headers for compatibility with older segy module SH['filename'] = filename SH["ntraces"] = ntraces SH["ns"] = SH['number_of_samples_per_data_trace'] SH["dt"] = SH['sample_interval_in_microseconds'] / 1000 # in milliseconds # Load all the Trace headers in arrays STH = load_SEGY_trace_header(traces) return SH, STH ``` #### File: interpies/interpies/spatial.py ```python import subprocess # import numpy import numpy as np # import GDAL modules from osgeo import osr, ogr def project_points(inputPoints, s_srs=4326, t_srs=23029): ''' Reproject a set of points from one spatial reference to another. Parameters ---------- s_srs : Integer Spatial reference system of the input (source) file. Must be defined as a EPSG code, i.e. 23029 for ED50 / UTM Zone 29N t_srs : Integer Spatial reference system of the output (target) file. Must be defined as a EPSG code, i.e. 23029 for ED50 / UTM Zone 29N Other example: WGS84 = EPSG:4326 See http://epsg.io/ for all the codes. ''' # input SpatialReference inSpatialRef = osr.SpatialReference() inSpatialRef.ImportFromEPSG(s_srs) # output SpatialReference outSpatialRef = osr.SpatialReference() outSpatialRef.ImportFromEPSG(t_srs) # create the CoordinateTransformation coordTrans = osr.CoordinateTransformation(inSpatialRef, outSpatialRef) # Loop through the points outputPoints = [] for XY in inputPoints: point = ogr.CreateGeometryFromWkt("POINT ({} {})".format(*XY)) point.Transform(coordTrans) outputPoints.append([point.GetX(),point.GetY()]) return np.asarray(outputPoints) def extent(xll, yll, cellsize, nrows, ncols, scale=1., registration='gridlines'): ''' Return the extent (xmin,xmax,ymin,ymax) of an image given the coordinates of the lower-left corner, the cellsize and the numbers of rows and columns. Registration option controls whether the coordinates indicate the position of the centre of the pixels ('pixels') or the corner ('gridlines'). Returns ------- (xmin,xmax,ymin,ymax) ''' if registration == 'gridlines': xmin = xll*scale xmax = (xll+(ncols-1)*cellsize)*scale ymin = yll * scale ymax = (yll + (nrows-1)*cellsize)*scale else: # This is the complete footprint of the grid considered as an image xmin = (xll - cellsize/2.) *scale xmax = (xmin + ncols*cellsize) *scale ymin = (yll - cellsize/2.) * scale ymax = (ymin + nrows*cellsize) *scale return (xmin,xmax,ymin,ymax) def grid_to_coordinates(xll, yll, cellsize, nrows, ncols): ''' Return vectors of x and y coordinates of the columns and rows of a grid. The result does not depend on the registration (gridlines or pixels) of the grid. Returns ------- x, y: vectors of length ncols and nrows, respectively. ''' xmax = xll + ncols*cellsize ymax = yll + nrows*cellsize # 1-D arrays of coordinates (use linspace to avoid errors due to floating point rounding) #x = np.arange(xll , xll+ncols*cellsize , cellsize) #y = np.arange(ymax , yll - cellsize , -1*cellsize) x = np.linspace(xll , xmax , num=ncols, endpoint=False) y = np.linspace(yll , ymax , num=nrows, endpoint=False) return x,y def grid_to_points(xll, yll, cellsize, nrows, ncols, flipy=True): ''' Return x and y coordinates of all the points of a grid. The result does not depend on the registration (gridlines or pixels) of the grid. Returns ------- X: numpy array of shape (n,2) where n = nrows * ncols A two column array containing the two output vectors. ''' x,y = grid_to_coordinates(xll,yll,cellsize,nrows,ncols) if flipy: y = np.flipud(y) xGrid,yGrid = np.meshgrid(x,y) return np.column_stack((xGrid.flatten(),yGrid.flatten())) def warp(inputFile, outputFile, xsize, ysize, dst_srs, src_srs=None, doClip=False, xmin=None, xmax=None, ymin=None, ymax=None, method='bilinear'): ''' Image reprojection and warping utility, with option to clip. This function calls a GDAL executable. Parameters ---------- inputFile: path to input file outputFile: path to output file dst_srs: string target spatial reference set, for example .prj filename or "EPSG:n" xsize: float Output cell size in the x direction (in target georeferenced units) ysize: float Output cell size in the y direction (in target georeferenced units) doClip: boolean If True, the extent of the reprojected destination are clipped to the bounding box defined by (xmin,xmax,ymin,ymax). (xmin,xmax,ymin,ymax): floats extents of output file (in target SRS) if clipping is required. method: string, default is 'bilinear' Resampling method to use. Most frequent methods are: 'near': nearest neighbour resampling. 'bilinear': bilinear resampling. 'cubic': cubic resampling. 'cubicspline': cubic spline resampling. 'lanczos': Lanczos windowed sinc resampling. ''' command = 'gdalwarp -overwrite' if src_srs is not None: command = command + ' -s_srs "{}"'.format(src_srs) command = command + ' -t_srs "{}"'.format(dst_srs) if doClip: command = command + ' -te {} {} {} {}'.format(xmin, ymin, xmax, ymax) command = command + ' -tr {} {}'.format(xsize, ysize) command = command + ' -r {}'.format(method) command = command + ' "{}" "{}"'.format(inputFile, outputFile) print('GDAL command\n------------\n'+command) print('\nOutput\n------') # Run the command try: retMessage = subprocess.check_output(command, shell=False) # remove 'b' letter at the beginning of the string retMessage = retMessage.decode("utf-8") except subprocess.CalledProcessError as err: retMessage = "ERROR. GDAL returned code {}.\n{}\n".format(err.returncode, err.output.decode("utf-8")) return retMessage ``` #### File: interpies/interpies/transforms.py ```python import numpy as np from scipy import signal from scipy.ndimage import filters #from scipy import interpolate from scipy import ndimage as nd # Import scikit-learn modules (used for the find_trend function) from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import Pipeline ### definitions pi = np.pi # kernels for convolution filters derfilt3 = np.array([-0.5, 0, 0.5], np.float32) derfilt5 = np.array([1, -8, 0, 8, -1], np.float32)/12 # Five-point stencil vector prewitt1d = np.array([-1, 0, 1], np.float32)/2 #=============================================================================== # miscellaneous functions #=============================================================================== def replace_edges(data, ncells=1): """Replace the values at the edges of an array with the values calculated with reflection padding. Useful to correct edge effects due to convolution filters. """ return np.pad(data[ncells:-ncells, ncells:-ncells], ncells, mode='reflect', reflect_type='odd') def fill_nodata(data, invalid=None): """Replace the value of invalid 'data' cells (indicated by 'invalid') by the value of the nearest valid data cell. Not very pretty but enough for making sure the calculation works. Parameters ---------- data: numpy array of any dimension invalid: a binary array of same shape as 'data'. True cells set where data value should be replaced. If None (default), use: invalid = np.isnan(data) Returns ------- Return a filled array. Credits ------- http://stackoverflow.com/a/9262129 """ if np.any(np.isnan(data)): if invalid is None: invalid = np.isnan(data) ind = nd.distance_transform_edt(invalid, return_distances=False, return_indices=True) return data[tuple(ind)] else: return data def simple_resample(data, sampling=2): ''' Resample grid by simply picking cells at a given sampling rate. The starting point is the lower-left corner of grid so the location of the grid is unchanged. ''' return np.flipud(np.flipud(data)[::sampling, ::sampling]) def find_trend(X, data, degree=1, returnModel=False): ''' Calculate trend in 2D data. The fit is made with a polynomial function of chosen degree. A least-square method is used for the fit. ''' nrows, ncols = data.shape # get location of NaNs mask = np.isnan(data) # Fit data with a polynomial surface (or a plane if degree=1) model = Pipeline([('poly', PolynomialFeatures(degree)), ('linear', LinearRegression())]) model.fit(X[~mask.flatten(), :], data[~mask]) # calculate resulting trend trend = model.predict(X).reshape((nrows, ncols)) if returnModel: return model else: return trend def stats(data): ''' Return a list of descriptive statistical values. ''' mean = np.nanmean(data) sigma = np.nanstd(data) minimum = np.nanmin(data) maximum = np.nanmax(data) return (mean, sigma, minimum, maximum) #============================================================================== # Derivatives with Savitzky-Golay coeficients #============================================================================== #------------------------------------------- # Pre-calculated Savitzky-Golay coeficients #------------------------------------------- # <NAME>, Microsoft Research, August 2001 # # SavGolSize<m>Order<n>X<i>Y<j> is a filter in row-major order for one polynomial with: # filter size m x m # polynomial order n # filter for coefficient of term (x^i)(y^j) # These are grouped by size # http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/KRUMM1/SavGol.htm # Size 2 Order 1 SavGolSize2Order1X0Y0 = np.array([0.25000000,0.25000000, 0.25000000,0.25000000]).reshape((2,2)) SavGolSize2Order1X1Y0 = np.array([-0.50000000,0.50000000, -0.50000000,0.50000000]).reshape((2,2)) SavGolSize2Order1X0Y1 = np.array([-0.50000000,-0.50000000, 0.50000000,0.50000000]).reshape((2,2)) # Size 3 Order 1 SavGolSize3Order1X0Y0 = np.array([0.11111111,0.11111111,0.11111111, 0.11111111,0.11111111,0.11111111, 0.11111111,0.11111111,0.11111111]).reshape((3,3)) SavGolSize3Order1X1Y0 = np.array([-0.16666667,0.00000000,0.16666667, -0.16666667,0.00000000,0.16666667, -0.16666667,0.00000000,0.16666667]).reshape((3,3)) SavGolSize3Order1X0Y1 = np.array([-0.16666667,-0.16666667,-0.16666667, 0.00000000,0.00000000,0.00000000, 0.16666667,0.16666667,0.16666667]).reshape((3,3)) # Size 3 Order 2 ## can be used for quadratic polynomial fit SavGolSize3Order2X0Y0 = np.array([-0.11111111,0.22222222,-0.11111111, 0.22222222,0.55555556,0.22222222, -0.11111111,0.22222222,-0.11111111]).reshape((3,3)) SavGolSize3Order2X1Y0 = np.array([-0.16666667,0.00000000,0.16666667, -0.16666667,0.00000000,0.16666667, -0.16666667,0.00000000,0.16666667]).reshape((3,3)) SavGolSize3Order2X2Y0 = np.array([0.16666667,-0.33333333,0.16666667, 0.16666667,-0.33333333,0.16666667, 0.16666667,-0.33333333,0.16666667]).reshape((3,3)) SavGolSize3Order2X0Y1 = np.array([-0.16666667,-0.16666667,-0.16666667, 0.00000000,0.00000000,0.00000000, 0.16666667,0.16666667,0.16666667]).reshape((3,3)) SavGolSize3Order2X1Y1 = np.array([0.25000000,0.00000000,-0.25000000, 0.00000000,0.00000000,0.00000000, -0.25000000,0.00000000,0.25000000]).reshape((3,3)) SavGolSize3Order2X0Y2 = np.array([0.16666667,0.16666667,0.16666667, -0.33333333,-0.33333333,-0.33333333, 0.16666667,0.16666667,0.16666667]).reshape((3,3)) #---------------------------------------- def savgol2d(degree, window_size): ''' Calculate coefficients of two-dimensional Savitzky-Golay filters. Derived from https://github.com/whatasunnyday/Savitzky-Golay-Filter Checked against Krumm's coefficients (see list above). Parameters ---------- degree: positive integer The degree of the polynomial that is fitted to the data points. The greater the degree, the larger the fitting window must be. window_size: positive odd integer The size of the square window that is used to calculate the fitting polynomial. Returns ------- coeffs : 2D array of shape (n, `window_size**2`), where n is the number of coefficients in a polynomial of degree `degree` with 2 variables (x and y). n is equal to (2+d)! / 2d! Each of the n rows is a kernel of size `window_size` that can be used to smooth 2D data (with the first one) or to calculate derivatives (with the others). ''' if not isinstance(degree, int) or degree < 0: raise ValueError("Degree of polynomial must be a positive integer") if not isinstance(window_size, int) or window_size % 2 == 0 or window_size < 0 : raise ValueError("Window size must be a positive odd integer") if window_size ** 2 < ((degree + 2) * (degree + 1)) / 2.0: raise ValueError("Degree too high for window size") # create dictionary of exponents exps = [ {"x": k - n, "y": n } for k in range(degree + 1) for n in range(k + 1)] # coordinates of points in window n = np.arange(-(window_size - 1)//2, (window_size - 1)//2 + 1, dtype = np.float64) dx = np.tile(n, [window_size, 1]).reshape(window_size ** 2, ) dy = np.repeat(n, window_size) # array A = np.empty((window_size ** 2, len(exps))) for i, exp in enumerate(exps): A[:,i] = (dx ** exp["x"]) * (dy ** exp["y"]) return np.linalg.pinv(A) #---------------------------------------- # Dictionary to associate types of derivative with Savitzky-Golay coeficients # and parameters sg_dicts = {} sg_dicts['dx'] = {'index':1,'factor':1,'exponent':1,'flipfunc':np.fliplr} sg_dicts['dy'] = {'index':2,'factor':-1,'exponent':1,'flipfunc':np.flipud} sg_dicts['dx2'] = {'index':3,'factor':2,'exponent':2,'flipfunc':np.fliplr} sg_dicts['dxdy'] = {'index':4,'factor':-1,'exponent':2,'flipfunc':lambda x: np.flipud(np.fliplr(x))} sg_dicts['dy2'] = {'index':5,'factor':2,'exponent':2,'flipfunc':np.flipud} def savgol_smooth(data, deg=3, win=5, doEdges=False): ''' Smooth an array by 2D convolution with a Savitzky-Golay (SG) filter. It works even if NaNs are present in the data. The SG filter is controlled by two parameters, `deg` (degree) and `win` (window size). The amount of smoothing will increase with `win` and decrease with `deg`. Parameters ---------- data: 2D array Input data deg: positive integer, default 3 The degree of the Savitzky-Golay filter. The greater the degree, the larger the fitting window must be. win: positive odd integer, default 5 The size of the fitting window that is used to calculate the SG coefficients. doEdges: boolean, default True Replace the values at the edges of the output array with values calculated by reflection padding. Useful to correct bad edge effects. ''' # retrieve Savitzky-Golay coeficients and make kernel sg_coeffs = savgol2d(deg,win) sg_kernel = sg_coeffs[0].reshape((win,win)) # calculate filtered result by convolution convResult = signal.convolve2d(data,sg_kernel,mode='same', boundary='symm') # fill edges if doEdges: convResult = replace_edges(convResult, (win-1)//2) return convResult def savgol_deriv(data, cellsize, direction='dx', deg=3, win=5, doEdges=True): ''' Calculate horizontal derivatives by convolution with a Savitzky-Golay (SG) filter. It works even if NaNs are present in the data. Parameters ---------- data : 2D array Input array cellsize: float Size of grid cells. Dimensions are assumed to be identical in both the x and y directions. direction : {'dx','dy','dx2','dxdy','dy2'}, optional Type of derivative. Default is 'dx', first horizontal derivative in the x direction. The x axis is "West to East", i.e. along rows of the array. The y axis is "South to North", i.e. along columns of the array. deg: positive integer, default 3 The degree of the Savitzky-Golay filter. The greater the degree, the larger the fitting window must be. win: positive odd integer, default 5 The size of the fitting window that is used to calculate the SG coefficients. doEdges: boolean, default True Replace the values at the edges of the output array with values calculated by reflection padding. Useful to correct bad edge effects. ''' sg_dict = sg_dicts[direction] index = sg_dict['index'] factor = sg_dict['factor'] exponent = sg_dict['exponent'] flipfunc = sg_dict['flipfunc'] # retrieve Savitzky-Golay coeficients and make kernel sg_coeffs = savgol2d(deg, win) sg_kernel = flipfunc(sg_coeffs[index].reshape((win, win))) # flip for convolution # calculate derivative by convolution convResult = factor*signal.convolve2d(data, sg_kernel, mode='same', boundary='symm')/cellsize**exponent # fill edges if doEdges: convResult = replace_edges(convResult, (win-1)//2) return convResult #============================================================================== # fs_deriv - 5-Tap and 7-tap 1st and 2nd discrete derivatives #============================================================================== # ** Adapted from Matlab code by <NAME> ** # # These functions compute 1st and 2nd derivatives of an image using # coefficients given by <NAME> Simoncelli (2004). The results are significantly # more accurate than MATLAB's GRADIENT function on edges that are at angles # other than vertical or horizontal. This in turn improves gradient orientation # estimation enormously. If you are after extreme accuracy try using the 7-tap # coefficients. # # Reference: <NAME> and <NAME> "Differentiation of Discrete # Multi-Dimensional Signals" IEEE Trans. Image Processing. 13(4): 496-508 (2004) # # Copyright (c) 2010 <NAME> # http://www.peterkovesi.com/matlabfns/index.html # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # The Software is provided "as is", without warranty of any kind. # April 2010 def _conv1(a, h): return np.convolve(a, h, mode='same') def _conv2(h1, h2, A): ''' Performs a 1D convolution down the columns using h1 then a 1D convolution along the rows using h2. ''' result = np.apply_along_axis(_conv1, 0, A, h1) result = np.apply_along_axis(_conv1, 1, result, h2) return result def fs_coefficients(tap=5, direction='dx'): ''' This function returns the 5-tap or 7-tap coefficients given by Farid and Simoncelli (2004). ''' if tap==5: if direction in ['dx', 'dy', 'dxdy']: # 5-tap 1st derivative coefficients. These are optimal if you are just # seeking the 1st deriavtives. p = np.array([0.037659, 0.249153, 0.426375, 0.249153, 0.037659]) d1 = np.array([0.109604, 0.276691, 0.000000, -0.276691, -0.109604]) d2 = 0 elif direction in ['dx2', 'dy2', 'dxdy']: # 5-tap 2nd derivative coefficients. The associated 1st derivative # coefficients are not quite as optimal as the ones above but are # consistent with the 2nd derivative interpolator p and thus are # appropriate to use if you are after both 1st and 2nd derivatives. p = np.array([0.030320, 0.249724, 0.439911, 0.249724, 0.030320]) d1 = np.array([0.104550, 0.292315, 0.000000, -0.292315, -0.104550]) d2 = np.array([0.232905, 0.002668, -0.471147, 0.002668, 0.232905]) elif tap==7: # 7-tap interpolant and 1st and 2nd derivative coefficients p = np.array([0.004711, 0.069321, 0.245410, 0.361117, 0.245410, 0.069321, 0.004711]) d1 = np.array([0.018708, 0.125376, 0.193091, 0.000000, -0.193091, -0.125376, -0.018708]) d2 = np.array([0.055336, 0.137778, -0.056554, -0.273118, -0.056554, 0.137778, 0.055336]) else: raise ValueError('The tap value must be either 5 or 7.') return p, d1, d2 def fs_deriv(data, cellsize, direction='dx', tap=5): ''' Compute 1st or 2nd derivative of an array using the method of Farid and Simoncelli (2004). Parameters ---------- data : 2D array Input array cellsize: float Size of grid cells. Dimensions are assumed to be identical in both the x and y directions. direction : {'dx','dy','dx2','dxdy','dy2'}, optional Type of derivative. Default is 'dx', first horizontal derivative in the x direction. The x axis is "West to East", i.e. along rows of the array. The y axis is "South to North", i.e. along columns of the array. tap: {5, 7}, default 5 Size of the kernel that is used to calculate the derivative by convolution. ''' # Compute coefficients p, d1, d2 = fs_coefficients(tap, direction) # Compute derivatives if direction=='dx': result = _conv2(p,d1,data)/cellsize elif direction=='dy': result = -1 * _conv2(d1,p,data)/cellsize # origin is in lower left corner elif direction=='dx2': result = _conv2(p,d2,data)/cellsize/cellsize elif direction=='dy2': result = _conv2(d2,p,data)/cellsize/cellsize elif direction=='dxdy': result = _conv2(p,d1,data)/cellsize result = -1 * _conv2(d1,p,result)/cellsize return result #============================================================================== # Fourier functions #============================================================================== def getk(nx, ny, dx, dy): ''' Given the size `nx` and `ny` of a FFT and the spacing `dx` and `dy` of the space domain grid, this routine returns the spatial frequency grid components `kx`, `ky` and `k = sqrt(kx.^2 + ky.^2)` Makes use of numpy function `fftfreq`. Returns ------- [kx,ky,k] ''' # Discrete Fourier Transform sample frequencies kx = 2*np.pi*np.fft.fftfreq(nx,dx) ky = 2*np.pi*np.fft.fftfreq(ny,dy) # Create matrices for 2D case kx = np.tile(kx,(ny,1)) ky = np.tile(ky,(nx,1)).T # calculate k k=np.sqrt(kx**2+ky**2) return [kx,ky,k] def next_pow2(x): ''' n = up_to_pow2(x) return the nearest power of 2 going upwards. ''' return int(2.**np.ceil(np.log(x)/np.log(2))) # Padding functions def pad_next_pow2(data, mode='reflect', reflect_type='odd', smooth=False, end_values=0): ''' Pad to a square grid with 2**n number of cells in each dimension, with 2**n being the next power of 2 relative to the size of the input array. Use numpy padding function (same mode, reflect_type_type and end_values arguments). Parameters ---------- data: 2D array Input data. mode : {'reflect', 'linear_ramp'}, optional Mode used by secondary padding after tiling. See numpy pad function for more information. reflect_type : {'even', 'odd'}, optional Used in 'reflect' mode. The 'odd' style is the default with the extented part of the array created by subtracting the reflected values from two times the edge value. For the 'even' style, the reflection is unaltered around the edge value. smooth : boolean, optional option to apply a moving average smoothing function over the edge of the grid. default: False Notes ----- See https://docs.scipy.org/doc/numpy/reference/generated/numpy.pad.html ''' nrows,ncols = data.shape nmax = max([nrows,ncols]) npts = next_pow2(nmax) # next 2^n number cdiff = (npts - ncols) // 2 rdiff = (npts - nrows) // 2 # if (npts-nrows) is odd, add 1 row on the bottom side r_remainder = np.mod((npts - nrows),2) # if (npts-ncols) is odd, add 1 column on the right-hand side c_remainder = np.mod((npts - ncols),2) # apply padding if mode in ['reflect','symmetric']: padded = np.pad(data, ((rdiff, rdiff+r_remainder),(cdiff,cdiff+c_remainder)), mode=mode,reflect_type=reflect_type) else: padded = np.pad(data, ((rdiff, rdiff+r_remainder),(cdiff,cdiff+c_remainder)), mode=mode,end_values=(end_values,)) if smooth: for i in range(-2,3): padded[:,cdiff+i] = smoothing_average(padded, cdiff+i, axis='cols') padded[:,ncols-1+cdiff+i] = smoothing_average(padded, ncols-1+cdiff+i, axis='cols') padded[rdiff+i,:] = smoothing_average(padded, rdiff+i, axis='rows') padded[nrows-1+rdiff+i,:] = smoothing_average(padded, nrows-1+rdiff+i, axis='rows') return padded def pad_full(data, mode='reflect', reflect_type='odd'): ''' Combine tiling and padding. Extend an array first by tiling symmetrical copies of the input to a 3x3 array (in reflect mode) then pad with a linear ramp or by reflection to the next power of 2. Parameters ---------- data: 2D array Input data mode : {'reflect', 'linear_ramp'}, optional Mode used by secondary padding after tiling. See numpy pad function for more information. reflect_type : {'even', 'odd'}, optional Used in 'reflect' mode. The 'odd' style is the default with the extented part of the array created by subtracting the reflected values from two times the edge value. For the 'even' style, the reflection is unaltered around the edge value. See also -------- Numpy pad : https://docs.scipy.org/doc/numpy/reference/generated/numpy.pad.html ''' nrows, ncols = data.shape # first 3x3 padding data_pad = np.pad(data, ((nrows,nrows), (ncols,ncols)), mode='reflect', reflect_type=reflect_type) # additional padding to size = next power of 2 if mode == 'reflect': data_pad = pad_next_pow2(data_pad, mode='reflect', reflect_type=reflect_type) else: data_pad = pad_next_pow2(data_pad, mode='linear_ramp', end_values=int(data_pad.mean())) # linear ramp return data_pad def pad_3x3(data, mode='reflect', reflect_type='odd'): ''' Extend a matrix by tiling symmetrical copies of the input Return a 3*nrows x 3*ncols array ''' nrows, ncols = data.shape # 3x3 padding if mode == 'reflect': data_pad = np.pad(data, ((nrows,nrows), (ncols,ncols)), mode=mode, reflect_type=reflect_type) else: data_pad = np.pad(data, ((nrows,nrows), (ncols,ncols)), mode='linear_ramp', end_values=int(np.nanmean(data))) # linear ramp return data_pad def unpad_next_pow2(data, nrows, ncols): ''' Retrieve the original array after padding with upPow2_pad. (nrows, ncols) is the shape of the array before padding. ''' nmax = max([nrows,ncols]) npts = next_pow2(nmax) cdiff = ((npts - ncols) // 2) rdiff = ((npts - nrows) // 2) return data[rdiff:nrows + rdiff,cdiff:ncols + cdiff] def unpad_3x3(data): ''' Retrieve the original matrix that was padded with 3x3 reflection padding ''' return np.hsplit(np.vsplit(data, 3)[1], 3)[1] def unpad_full(data, nrows, ncols): ''' Retrieve the original matrix that was padded with pad_full reflection padding. (nrows, ncols) is the shape of the array before padding. ''' data_unpad = unpad_next_pow2(data, 3*nrows, 3*ncols) return unpad_3x3(data_unpad) # remove 3x3 padding # put everything together def fourier_transform(data, cellsize, trans='dx', order=1, doEdges=True, ncells=2, padding='full', mode='reflect', reflect_type='odd', eps=1e-6, z=500): ''' Calculate transforms in the frequency domain. Parameters ---------- data : 2D array Input array cellsize: float Size of grid cells. Dimensions are assumed to be identical in both the x and y directions. trans: string One of the following string values: 'dx': horizontal derivative along the x-axis 'dy': horizontal derivative along the y-axis 'dxdy': horizontal derivatives along the x-axis and y-axis 'dz': vertical derivative 'vi': vertical integral 'upcont': upward continuation order: float, default: 1 The order of differentiation or integration doEdges: boolean, default True Replace the values at the edges of the output array with values calculated by reflection padding. Useful to correct bad edge effects. ncells: int, default: 2 Number of cells at the edges of the output grid that are replaced using padding if the `doEdges` option is True. padding: string Type of padding to apply to the input grid before the Fourier calculation. Can be one of the following options: 'full': initial 3x3 padding (reflect) + ramp or reflection to next power of 2 '3x3': The entire array is duplicated and tiled in a 3x3 pattern with the original array in the middle. 'pow2': the size of the array is increased by padding to the next power of 2. mode: string, default: 'reflect' Option for padding the input array. 'reflect': Pads with the reflection of the array 'linear_ramp': Pads with a linear ramp between the array edge value and the mean value of the array. reflect_type: string, default: 'odd' Used in reflection padding. Can be 'even' or 'odd'. See numpy function pad. eps: float Small number to replace zeros in frequency components k with when the vertical integral is calculated. z: float Height used for upward continuation. Default is 500 m. ''' nrows,ncols = data.shape # save array mask before calculation mask = np.isnan(data) # Apply padding padding = padding.lower() if padding == 'full': # initial 3x3 padding (reflect) + ramp or reflection to next power of 2 data_pad = pad_full(fill_nodata(data), mode=mode, reflect_type=reflect_type) elif padding == '3x3': # 3x3 reflection padding data_pad = pad_3x3(fill_nodata(data), mode=mode, reflect_type=reflect_type) elif padding == 'pow2': # ramp or reflection to next power of 2 data_pad = pad_next_pow2(fill_nodata(data), mode=mode, reflect_type=reflect_type, smooth=True, end_values=int(np.nanmean(data))) else: # no padding data_pad = fill_nodata(data) # Calculate the k matrix (ny,nx) = data_pad.shape [kx,ky,k] = getk(nx, ny, cellsize, cellsize) # Apply transformation on padded data trans = trans.lower() if trans == 'dx': fouTrans = np.real(np.fft.ifft2(np.fft.fft2(data_pad)*(1j*kx)**order)) elif trans == 'dy': fouTrans = np.real(np.fft.ifft2(np.fft.fft2(data_pad)*(1j*ky)**order)) elif trans == 'dxdy': fouTrans = np.real(np.fft.ifft2( (np.fft.fft2(data_pad)*(1j*ky)**order)*(1j*kx)**order)) elif trans == 'dz': fouTrans = np.real(np.fft.ifft2(np.fft.fft2(data_pad)*k**order)) elif trans == 'vi': # remove zeros in k to avoid division by zero error k[k==0] = eps fouTrans = np.real(np.fft.ifft2(np.fft.fft2(data_pad)*k**(-1*order))) fouTrans = fouTrans - np.mean(fouTrans) elif trans == 'upcont': fouTrans = np.real(np.fft.ifft2(np.fft.fft2(data_pad)*(np.exp(-z*k)))) # remove padding if padding == 'full': fouTrans = unpad_full(fouTrans, nrows, ncols) elif padding == '3x3': fouTrans = unpad_3x3(fouTrans) elif padding == 'pow2': fouTrans = unpad_next_pow2(fouTrans, nrows, ncols) # fill edges if doEdges: fouTrans = replace_edges(fouTrans, ncells) # re-apply the mask fouTrans[mask] = np.nan return fouTrans #=============================================================================== # ISVD (vertical derivative) #=============================================================================== def isvd(data, cellsize, method='SG', order=1, deg=4, win=5, fs_tap=5, doEdges=True, **kwargs): ''' Vertical derivatives with the ISVD (integrated second vertical derivative) method. Parameters ---------- data: 2D array Input data cellsize: float Size of grid cells. Dimensions are assumed to be identical in both the x and y directions. method: {'SG, 'FS', 'fourier'}, optional The method to use for the calculation of the second horizontal derivatives. The three options are: - 'SG': Savitzky-Golay method - 'FS': Farid and Simoncelli method - 'fourier': fourier method order: scalar, optional, default: 1 Order of differentiation. Must be either 1 or 2. If 1, then vertical integration is first applied to the data. deg: positive integer, default 4 The degree of the Savitzky-Golay filter if the SG method is used. win: positive odd integer, default 5 The size of the fitting window that is used to calculate the SG coefficients. fs_tap: {5, 7}, default 5 Size of the kernel that is used to calculate the derivatives with the FS method. doEdges: boolean, default True Replace the values at the edges of the output array with values calculated by reflection padding. Useful to correct bad edge effects. kwargs : other keywords Options to pass to the fourier transform. Reference --------- <NAME>., <NAME>., 2001. Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophys. Prospect. 49, 40–58. ''' if order not in [1, 2]: raise ValueError('Order must be 1 or 2.') # save array mask before calculation mask = np.isnan(data) # fill no data areas (unchanged if no null cells) data = fill_nodata(data) if order==1: # vertical integral data = fourier_transform(data, cellsize, trans='vi', order=1) # smoothing if kwargs: data = gauss(data, kwargs['sigma']) # second derivatives if method == 'SG': data_dx2 = savgol_deriv(data, cellsize, direction='dx2', deg=deg, win=win, doEdges=doEdges) data_dy2 = savgol_deriv(data, cellsize, direction='dy2', deg=deg, win=win, doEdges=doEdges) elif method == 'FS': data_dx2 = fs_deriv(data, cellsize, direction='dx2', tap=fs_tap) data_dy2 = fs_deriv(data, cellsize, direction='dy2', tap=fs_tap) elif method == 'fourier': data_dx2 = fourier_transform(data, cellsize, trans='dx', order=2, **kwargs) data_dy2 = fourier_transform(data, cellsize, trans='dy', order=2, **kwargs) # return DZ using the Laplace equation data_dz = -1*(data_dx2 + data_dy2) # fill edges if doEdges: data_dz = replace_edges(data_dz, (win-1)//2) # re-apply mask data_dz[mask] = np.nan return data_dz #=============================================================================== # Various filters #=============================================================================== def gauss(data, sigma=1): return filters.gaussian_filter(data, sigma) def smoothing_average(V, i, axis='cols'): if axis == 'cols': Vs = (V[:,i-2]+V[:,i-1]+V[:,i]+V[:,i+1]+V[:,i+2])/5. else: Vs = (V[i-2,:]+V[i-1,:]+V[i,:]+V[i+1,:]+V[i+2,:])/5. return Vs def laplacian(data, cellsize): conv_filter = np.array([[0,-1,0],[-1,4,-1],[0,-1,0]]) convResult = signal.convolve2d(data, conv_filter, mode='valid',boundary='symm')/cellsize return convResult ```
{ "source": "jobar8/segy2segy", "score": 2 }
#### File: segy2segy/core/segy_io.py ```python import numpy as np from obspy.io.segy.segy import _read_segy, BINARY_FILE_HEADER_FORMAT # most useful trace header keys STH_keys = [u'trace_sequence_number_within_line', u'trace_sequence_number_within_segy_file', u'scalar_to_be_applied_to_all_coordinates', u'source_coordinate_x', u'source_coordinate_y', u'group_coordinate_x', u'group_coordinate_y', u'coordinate_units', u'lag_time_A', u'lag_time_B', u'delay_recording_time', u'number_of_samples_in_this_trace', u'sample_interval_in_ms_for_this_trace', u'x_coordinate_of_ensemble_position_of_this_trace', u'y_coordinate_of_ensemble_position_of_this_trace', u'for_3d_poststack_data_this_field_is_for_in_line_number', u'for_3d_poststack_data_this_field_is_for_cross_line_number'] #============================================================================== # loadSEGYHeader #============================================================================== def loadSEGYHeader(seis, keys=None): ''' Load headers from an ObsPy SEGYFile object. The headers are read from the so-called `binary header`. The function returns a default selection of useful headers or pick from an optional list (keys). Parameters ---------- seis : ObsPy SEGYFile object This is created using the _read_segy function in obspy.io.segy.segy keys : list of strings List of headers to load. Must correspond to attributes as defined in ObsPy. See BINARY_FILE_HEADER_FORMAT dictionary. Returns ------- SH : dictionary A dictionary with the values associated with the selected headers. ''' # read binary header SHbin = seis.binary_file_header # load selection of most useful headers if none requested already if not keys: keys = [header[1] for header in BINARY_FILE_HEADER_FORMAT if header[2]] SH = {} for key in keys: SH[key] = SHbin.__getattribute__(key) return SH #=============================================================================== # loadSEGYTraceHeader #=============================================================================== def loadSEGYTraceHeader(traces, keys=None): ''' Load trace headers from an ObsPy SEGYTrace object. The function returns a default selection of useful headers or pick from an optional list (keys). Parameters ---------- traces : ObsPy SEGYTrace object This is created from a SEGYFile object. keys : list of strings List of trace headers to load. Must correspond to attributes as defined in ObsPy. See obspy.io.segy.header.TRACE_HEADER_FORMAT for a list of all available trace header attributes or the segyio.STH_keys for a shorter list. Returns ------- STH : dictionary A dictionary with the values associated with the selected headers. The values are provided as Numpy arrays (vectors with ntraces elements). ''' # load selection of most useful headers if none requested already if not keys: keys = STH_keys STH = {} for key in keys: STH[key] = np.hstack([t.header.__getattr__(key) for t in traces]) return STH #=============================================================================== # loadSEGY #=============================================================================== def loadSEGY(filename, endian=None): """ Read and load data and headers from a SEGY file. Usage ----- data,SH,STH = loadSEGY(filename) """ # read file with obspy seis = _read_segy(filename, endian=endian) traces = seis.traces ntraces = len(traces) # Load SEGY header SH = loadSEGYHeader(seis) # additional headers for compatibility with older segy module SH['filename'] = filename SH["ntraces"] = ntraces SH["ns"] = SH['number_of_samples_per_data_trace'] SH["dt"] = SH['sample_interval_in_microseconds'] / 1000 # in milliseconds # Load all the Trace headers in arrays STH = loadSEGYTraceHeader(traces) # Load the data data = np.vstack([t.data for t in traces]).T return data, SH, STH #=============================================================================== # loadSHandSTH #=============================================================================== def loadSHandSTH(filename, endian=None): """ Read and load headers from SEGY file. No data is loaded, saving time and memory. Usage ----- SH, STH = loadSHandSTH(filename) """ # read file with obspy (headers only) seis = _read_segy(filename, endian=endian, headonly=True) traces = seis.traces ntraces = len(traces) # Load SEGY header SH = loadSEGYHeader(seis) # additional headers for compatibility with older segy module SH['filename'] = filename SH["ntraces"] = ntraces SH["ns"] = SH['number_of_samples_per_data_trace'] SH["dt"] = SH['sample_interval_in_microseconds'] / 1000 # in milliseconds # Load all the Trace headers in arrays STH = loadSEGYTraceHeader(traces) return SH, STH #=============================================================================== # writeSTH #=============================================================================== def writeSTH(seis, STH_Key, newSTH): """ Write new trace header to a SEGY file, replacing the existing one. ***Not tested*** """ traces = seis.traces for i, trace in enumerate(traces): trace.header.__setattr__(STH_Key, newSTH[i]) ```
{ "source": "jobarber/progan", "score": 2 }
#### File: progan/progan/inferences.py ```python import torch from torchvision.utils import save_image def make_inference(gmodelpath, num_inferences=32): generator = torch.load('modeldata/' + gmodelpath).cuda() with torch.no_grad(): for i in range(num_inferences): latent = torch.randn((1, 512)).cuda() sample = generator(latent, alpha=1.) save_image(sample, 'inferences/real_inference{}.png'.format(i)) if __name__ == '__main__': make_inference('gmodel32_744.3274536132812.pt', num_inferences=256) ``` #### File: progan/progan/models.py ```python import torch import torch.nn as nn import torch.nn.functional as F from utils import kaiming_normal_std # ---------------------------------------------------------------------- # Smaller Modules # ---------------------------------------------------------------------- from torch.nn import init class MiniBatchStd(nn.Module): """ Encourages generator to increase variation. """ def __init__(self): super(MiniBatchStd, self).__init__() def forward(self, x, group_size=16): # group_size = tf.minimum(group_size, tf.shape(x)[0]) # Minibatch must be divisible by (or smaller than) group_size. # s = x.shape # [NCHW] Input shape. # y = tf.reshape(x, [group_size, -1, s[1], s[2], s[3]]) # [GMCHW] Split minibatch into M groups of size G. # y = tf.cast(y, tf.float32) # [GMCHW] Cast to FP32. # y -= tf.reduce_mean(y, axis=0, keepdims=True) # [GMCHW] Subtract mean over group. # y = tf.reduce_mean(tf.square(y), axis=0) # [MCHW] Calc variance over group. # y = tf.sqrt(y + 1e-8) # [MCHW] Calc stddev over group. # y = tf.reduce_mean(y, axis=[1,2,3], keepdims=True) # [M111] Take average over fmaps and pixels. # y = tf.cast(y, x.dtype) # [M111] Cast back to original data type. # y = tf.tile(y, [group_size, 1, s[2], s[3]]) # [N1HW] Replicate over group and pixels. # return tf.concat([x, y], axis=1) # [NCHW] Append as new fmap. group_size = min(group_size, x.shape[0]) s = x.shape y = x.view(group_size, -1, s[1], s[2], s[3]).float() y -= torch.mean(y, axis=0, keepdim=True) y = torch.mean(y ** 2, axis=0) y = torch.sqrt(y + 1e-8) y = torch.mean(y, axis=[1, 2, 3], keepdim=True) y = y.repeat(group_size, 1, 1, 1) y = y.expand(-1, 1, s[2], s[3]) return y # or combine here to return new fmap # std = torch.std(x, dim=[0, 1]) # return std.expand(x.shape[0], 1, -1, -1) # returns shape N1HW (with C of 1) class PixelNorm(nn.Module): def __init__(self): super(PixelNorm, self).__init__() def forward(self, x): # x * tf.rsqrt(tf.reduce_mean(tf.square(x), axis=1, keepdims=True) + epsilon) return x / torch.sqrt(torch.mean(x ** 2, dim=1, keepdim=True) + 1e-8) class EqualizedConv2d(nn.Conv2d): def __init__(self, *args, **kwargs): super(EqualizedConv2d, self).__init__(*args, **kwargs) self.weight.data = torch.randn(self.weight.data.shape) self.std = kaiming_normal_std(self.weight.data, mode='fan_in', nonlinearity='relu') self.bias.data = torch.zeros(self.bias.data.shape) def forward(self, x): return super(EqualizedConv2d, self).forward(x.mul(self.std)) class EqualizedLinear(nn.Linear): def __init__(self, *args, **kwargs): super(EqualizedLinear, self).__init__(*args, **kwargs) self.weight.data = torch.randn(self.weight.data.shape) self.std = kaiming_normal_std(self.weight.data, mode='fan_in', nonlinearity='relu') self.bias.data = torch.zeros(self.bias.data.shape) def forward(self, x): return super(EqualizedLinear, self).forward(x.mul(self.std)) # ---------------------------------------------------------------------- # Medium modules # ---------------------------------------------------------------------- class StartingGeneratorStack(nn.Module): def __init__(self, resolution=4): super(StartingGeneratorStack, self).__init__() self.resolution = resolution # layers self.dense = EqualizedLinear(int(min(8192 / resolution, 512)), int(min(8192 / resolution, 512)) * 16) # output 512 × 4 × 4 self.conv1 = EqualizedConv2d(in_channels=512, out_channels=512, kernel_size=(3, 3), stride=1, padding=(1, 1)) self.pixelnorm = PixelNorm() # remember out channels self.out_channels = self.conv1.out_channels def forward(self, x): # block 1 x = self.dense(x) x = x.reshape(-1, 512, 4, 4) x = self.pixelnorm(F.leaky_relu(x, negative_slope=0.2)) # block 2 x = self.pixelnorm(F.leaky_relu(self.conv1(x), negative_slope=0.2)) return x class IntermediateGeneratorStack(nn.Module): def __init__(self, resolution=8, in_channels=512): super(IntermediateGeneratorStack, self).__init__() self.resolution = resolution self.in_channels = in_channels # layers self.upscale = nn.Upsample(scale_factor=2., mode='nearest') self.conv1 = EqualizedConv2d(in_channels=self.in_channels, out_channels=int(min(8192 / resolution, 512)), kernel_size=(3, 3), stride=1, padding=1) self.conv2 = EqualizedConv2d(in_channels=int(min(8192 / resolution, 512)), out_channels=int(min(8192 / resolution, 512)), kernel_size=(3, 3), stride=1, padding=1) self.pixelnorm = PixelNorm() # remember out channels self.out_channels = self.conv2.out_channels def forward(self, x): x = self.upscale(x) # block 1 x = self.pixelnorm(F.leaky_relu(self.conv1(x), negative_slope=0.2)) # block 2 x = self.pixelnorm(F.leaky_relu(self.conv2(x), negative_slope=0.2)) return x class FinalDiscriminatorStack(nn.Module): def __init__(self, resolution=4): super(FinalDiscriminatorStack, self).__init__() self.resolution = resolution # layers self.mini_batch = MiniBatchStd() self.conv1 = EqualizedConv2d(in_channels=int(min(8192 / resolution, 512)) + 1, out_channels=512, kernel_size=(3, 3), stride=1, padding=1) self.conv2 = EqualizedConv2d(in_channels=512, out_channels=512, kernel_size=(4, 4), stride=1, padding=1) # self.dense1 = EqualizedLinear(int(min(8192 / resolution, 512)) * 16, # min(int(8192 / resolution - 1), 512)) self.dense2 = EqualizedLinear(512 * 3 * 3, 1) # remember out channels self.in_channels = self.conv1.in_channels - 1 # remove extra channel added by minibatchstd def forward(self, x): new_channel = self.mini_batch(x) x = torch.cat([x, new_channel], dim=1) # block 1 x = F.leaky_relu(self.conv1(x), negative_slope=0.2) x = F.leaky_relu(self.conv2(x), negative_slope=0.2) x = x.reshape(-1, 512 * 3 * 3) # block 2 # x = F.leaky_relu(self.dense1(x), negative_slope=0.2) # block 3 x = self.dense2(x) return x class IntermediateDiscriminatorStack(nn.Module): def __init__(self, resolution=1024, out_channels=512): super(IntermediateDiscriminatorStack, self).__init__() self.resolution = resolution self.out_channels = out_channels # layers self.conv1 = EqualizedConv2d(in_channels=int(min(8192 / (resolution * 2), 512)), out_channels=int(min(8192 / resolution, 512)), kernel_size=(3, 3), stride=1, padding=1) self.conv2 = EqualizedConv2d(in_channels=int(min(8192 / resolution, 512)), out_channels=self.out_channels, kernel_size=(3, 3), stride=1, padding=1) self.downscale = nn.AvgPool2d(kernel_size=(2, 2)) self.in_channels = self.conv1.in_channels def forward(self, x): # block 1 x = F.leaky_relu(self.conv1(x), negative_slope=0.2) # block 2 x = F.leaky_relu(self.conv2(x), negative_slope=0.2) x = self.downscale(x) return x # ---------------------------------------------------------------------- # Larger modules # ---------------------------------------------------------------------- class Generator(nn.Module): def __init__(self, start_resolution=4): super(Generator, self).__init__() self.resolution = start_resolution start_stack = StartingGeneratorStack(resolution=4) self.modules_ = nn.ModuleList([start_stack]) self.next_in_channels = self.modules_[-1].out_channels self.to_rgb = EqualizedConv2d(in_channels=self.modules_[-1].out_channels, out_channels=3, kernel_size=(1, 1), stride=1, padding=0) # self.equalize_learning(self.to_rgb) self.prior_to_rgb = None def forward(self, x, alpha=1.): # go through the modules to_rgb = False for i, module in enumerate(self.modules_): alpha_applies = alpha < 1. and len(self.modules_) > 1 if alpha_applies: if i == len(self.modules_) - 1: old_x = self.prior_to_rgb(x) old_x = module.upscale(old_x) new_x = module(x) new_x = self.to_rgb(new_x) x = torch.lerp(old_x, new_x, alpha) to_rgb = True else: x = module(x) else: x = module(x) if not to_rgb: x = self.to_rgb(x) return torch.clamp(x, min=0., max=1.) def increase_resolution(self): self.resolution *= 2 new_module = IntermediateGeneratorStack(resolution=int(self.resolution), in_channels=self.next_in_channels) self.next_in_channels = new_module.out_channels self.modules_.append(new_module) self.prior_to_rgb = self.to_rgb self.to_rgb = EqualizedConv2d(in_channels=self.modules_[-1].out_channels, out_channels=3, kernel_size=(1, 1), stride=1, padding=0) if self.to_rgb.in_channels == self.prior_to_rgb.in_channels: self.to_rgb.weight.data = self.prior_to_rgb.weight.data else: approximate_decrease = self.prior_to_rgb.in_channels // self.to_rgb.in_channels new_weight = torch.zeros(self.to_rgb.weight.data.shape) for n in range(self.to_rgb.weight.data.shape[0]): for new_c, c in enumerate(range(0, self.to_rgb.weight.data.shape[1], approximate_decrease)): mean = torch.mean(self.prior_to_rgb.weight.data[n, c:c + approximate_decrease, :, :], dim=0) new_weight[n, new_c] = mean self.to_rgb.weight.data = new_weight @property def newest_params(self): return self.modules_[-1].parameters() class Discriminator(nn.Module): def __init__(self, start_resolution=4): super(Discriminator, self).__init__() self.resolution = start_resolution final_stack = FinalDiscriminatorStack(resolution=4) self.modules_ = nn.ModuleList([final_stack]) self.from_rgb = EqualizedConv2d(in_channels=3, out_channels=final_stack.in_channels, kernel_size=(1, 1), stride=1, padding=0) # self.equalize_learning(self.from_rgb) self.downscale = nn.AvgPool2d(kernel_size=(2, 2)) self.prior_from_rgb = None def forward(self, x, alpha=1.): # go through the modules for i, module in enumerate(self.modules_): if alpha < 1. and len(self.modules_) > 1 and i == 0: old_x = self.downscale(x) old_x = F.leaky_relu(self.prior_from_rgb(old_x), negative_slope=0.2) old_x = old_x * (1 - alpha) new_x = F.leaky_relu(self.from_rgb(x), negative_slope=0.2) new_x = module(new_x) * alpha x = new_x + old_x elif i == 0: x = self.from_rgb(x) x = module(x) else: x = module(x) return x def increase_resolution(self): self.resolution *= 2 new_module = IntermediateDiscriminatorStack(resolution=int(self.resolution), out_channels=int(min(8192 / self.resolution, 512))) self.modules_.insert(0, new_module) self.prior_from_rgb = self.from_rgb self.from_rgb = EqualizedConv2d(in_channels=3, out_channels=self.modules_[0].in_channels, kernel_size=(1, 1), stride=1, padding=0) @property def newest_params(self): return self.modules_[0].parameters() ```
{ "source": "Jobava/mirror-mwclient", "score": 3 }
#### File: mirror-mwclient/mwclient/errors.py ```python class MwClientError(RuntimeError): pass class MediaWikiVersionError(MwClientError): pass class APIDisabledError(MwClientError): pass class MaximumRetriesExceeded(MwClientError): pass class APIError(MwClientError): def __init__(self, code, info, kwargs): self.code = code self.info = info MwClientError.__init__(self, code, info, kwargs) class InsufficientPermission(MwClientError): pass class UserBlocked(InsufficientPermission): pass class EditError(MwClientError): pass class ProtectedPageError(EditError, InsufficientPermission): pass class FileExists(EditError): pass class LoginError(MwClientError): pass class EmailError(MwClientError): pass class NoSpecifiedEmail(EmailError): pass class NoWriteApi(MwClientError): pass class InvalidResponse(MwClientError): def __init__(self, response_text=None): self.message = 'Did not get a valid JSON response from the server. Check that ' + \ 'you used the correct hostname. If you did, the server might ' + \ 'be wrongly configured or experiencing temporary problems.' self.response_text = response_text MwClientError.__init__(self, self.message, response_text) def __str__(self): return self.message ```
{ "source": "Jobava/mirror-pontoon", "score": 2 }
#### File: pontoon/administration/views.py ```python import base64 import json import logging import os import shutil import traceback from django.core.urlresolvers import reverse from django.contrib import messages from django.db import transaction from django.forms.models import inlineformset_factory from django.http import HttpResponse, HttpResponseRedirect, Http404 from django.shortcuts import render from django.template.defaultfilters import slugify from django.utils.datastructures import MultiValueDictKeyError from pontoon.administration import files from pontoon.base import utils from pontoon.base.models import ( Entity, Locale, Project, ProjectForm, Resource, Subpage, Translation, UserProfile, get_projects_with_stats, ) log = logging.getLogger('pontoon') def admin(request, template='admin.html'): """Admin interface.""" log.debug("Admin interface.") if not request.user.has_perm('base.can_manage'): return render(request, '403.html', status=403) projects = Project.objects.all().order_by("name") data = { 'projects': get_projects_with_stats(projects), 'url_prefix': 'admin/projects', } return render(request, template, data) def get_slug(request): """Convert project name to slug.""" log.debug("Convert project name to slug.") if not request.user.has_perm('base.can_manage'): log.error("Insufficient privileges.") return HttpResponse("error") if not request.is_ajax(): log.error("Non-AJAX request") return HttpResponse("error") try: name = request.GET['name'] except MultiValueDictKeyError as e: log.error(str(e)) return HttpResponse("error") log.debug("Name: " + name) slug = slugify(name) log.debug("Slug: " + slug) return HttpResponse(slug) def manage_project(request, slug=None, template='admin_project.html'): """Admin project.""" log.debug("Admin project.") if not request.user.has_perm('base.can_manage'): return render(request, '403.html', status=403) SubpageInlineFormSet = inlineformset_factory( Project, Subpage, extra=1, fields=('project', 'name', 'url')) form = ProjectForm() formset = SubpageInlineFormSet() locales_selected = [] subtitle = 'Add project' pk = None project = None message = 'Please wait while strings are imported from the repository.' autoupdate = False # Save project if request.method == 'POST': locales_selected = Locale.objects.filter( pk__in=request.POST.getlist('locales')) # Update existing project try: pk = request.POST['pk'] project = Project.objects.get(pk=pk) form = ProjectForm(request.POST, instance=project) # Needed if form invalid formset = SubpageInlineFormSet(request.POST, instance=project) subtitle = 'Edit project' # Add a new project except MultiValueDictKeyError: form = ProjectForm(request.POST) # Needed if form invalid formset = SubpageInlineFormSet(request.POST) autoupdate = True if form.is_valid(): if project and set(project.locales.all()) != set(locales_selected): autoupdate = True project = form.save(commit=False) formset = SubpageInlineFormSet(request.POST, instance=project) if formset.is_valid(): project.save() # http://bit.ly/1glKN50 form.save_m2m() formset.save() # Properly displays formset, but removes errors (if valid only) formset = SubpageInlineFormSet(instance=project) subtitle += '. Saved.' pk = project.pk if autoupdate: messages.warning(request, message) else: subtitle += '. Error.' else: subtitle += '. Error.' # If URL specified and found, show edit, otherwise show add form elif slug is not None: try: project = Project.objects.get(slug=slug) pk = project.pk form = ProjectForm(instance=project) formset = SubpageInlineFormSet(instance=project) locales_selected = project.locales.all() subtitle = 'Edit project' if not Resource.objects.filter(project=project).exists(): autoupdate = True messages.warning(request, message) except Project.DoesNotExist: form = ProjectForm(initial={'slug': slug}) # Override default label suffix form.label_suffix = '' data = { 'form': form, 'formset': formset, 'locales_selected': locales_selected, 'locales_available': Locale.objects.exclude(pk__in=locales_selected), 'REPOSITORY_TYPE_CHOICES': Project.REPOSITORY_TYPE_CHOICES, 'subtitle': subtitle, 'pk': pk, 'autoupdate': autoupdate, } # Set locale in Translate link if project and locales_selected: locale = utils.get_project_locale_from_request( request, project.locales) or locales_selected[0].code if locale: data['translate_locale'] = locale if Resource.objects.filter(project=project).exists(): data['ready'] = True return render(request, template, data) def delete_project(request, pk, template=None): """Delete project.""" try: log.debug("Delete project.") if not request.user.has_perm('base.can_manage'): return render(request, '403.html', status=403) with transaction.atomic(): project = Project.objects.get(pk=pk) project.delete() path = files.get_repository_path_master(project) if os.path.exists(path): shutil.rmtree(path) return HttpResponseRedirect(reverse('pontoon.admin')) except Exception as e: log.error( "Admin interface: delete project error.\n%s" % unicode(e), exc_info=True) messages.error( request, "There was an error during deleting this project.") return HttpResponseRedirect(reverse( 'pontoon.admin.project', args=[project.slug])) def update_from_repository(request, template=None): """Update all project locales from repository.""" log.debug("Update all project locales from repository.") if not request.user.has_perm('base.can_manage'): return render(request, '403.html', status=403) if request.method != 'POST': log.error("Non-POST request") raise Http404 try: pk = request.POST['pk'] except MultiValueDictKeyError as e: log.error(str(e)) return HttpResponse(json.dumps({ 'type': 'error', 'message': 'Project primary key not provided.', }), content_type='application/json') try: project = Project.objects.get(pk=pk) except Project.DoesNotExist as e: log.error(str(e)) return HttpResponse(json.dumps({ 'type': 'error', 'message': str(e), }), content_type='application/json') try: files.update_from_repository(project) files.extract_to_database(project) except Exception as e: log.error("Exception: " + str(e)) log.debug(traceback.format_exc()) return HttpResponse(json.dumps({ 'type': 'error', 'message': str(e), }), content_type='application/json') except IOError as e: log.error("IOError: " + str(e)) log.debug(traceback.format_exc()) return HttpResponse(json.dumps({ 'type': 'error', 'message': str(e), }), content_type='application/json') return HttpResponse("200") def update_from_transifex(request, template=None): """Update all project locales from Transifex repository.""" log.debug("Update all project locales from Transifex repository.") if not request.user.has_perm('base.can_manage'): return render(request, '403.html', status=403) if request.method != 'POST': log.error("Non-POST request") raise Http404 try: pk = request.POST['pk'] transifex_project = request.POST['transifex_project'] transifex_resource = request.POST['transifex_resource'] except MultiValueDictKeyError as e: log.error(str(e)) return HttpResponse("error") try: p = Project.objects.get(pk=pk) except Project.DoesNotExist as e: log.error(str(e)) return HttpResponse("error") """Check if user authenticated to Transifex.""" profile = UserProfile.objects.get(user=request.user) username = request.POST.get( 'transifex_username', profile.transifex_username) password = request.POST.get( 'transifex_password', base64.decodestring(profile.transifex_password)) if len(username) == 0 or len(password) == 0: return HttpResponse("authenticate") for l in p.locales.all(): """Make GET request to Transifex API.""" response = utils.req('get', transifex_project, transifex_resource, l.code, username, password) """Save or update Transifex data to DB.""" if hasattr(response, 'status_code') and response.status_code == 200: entities = json.loads(response.content) for entity in entities: _save_entity(project=p, string=entity["key"], comment=entity["comment"]) if len(entity["translation"]) > 0: e = Entity.objects.get(project=p, string=entity["key"]) _save_translation( entity=e, locale=l, string=entity["translation"]) log.debug("Transifex data for " + l.name + " saved to DB.") else: return HttpResponse(response) """Save Transifex username and password.""" if 'remember' in request.POST and request.POST['remember'] == "on": profile.transifex_username = request.POST['transifex_username'] profile.transifex_password = base64.encodestring( request.POST['transifex_password']) profile.save() return HttpResponse(response.status_code) ```
{ "source": "Jobayer-000/CuteNet", "score": 2 }
#### File: CuteNet/efficientnetv2/cutenet_model.py ```python import copy import itertools import math import os from absl import logging import numpy as np import tensorflow as tf import effnetv2_configs import hparams import utils from tensorflow.keras.layers import ( Dropout, Softmax, LayerNormalization, Conv2D, Layer, Dense, Activation ) from tensorflow import keras from tensorflow.keras import Model, Sequential import tensorflow_addons as tfa import collections def to_2tuple(x): if isinstance(x, collections.abc.Iterable): return x return (x, x) class Mlp(tf.keras.layers.Layer): def __init__(self, in_features, hidden_features=None, out_features=None, drop=0., prefix=''): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = Dense(hidden_features, name=f'{prefix}/mlp/fc1') self.fc2 = Dense(out_features, name=f'{prefix}/mlp/fc2') self.drop = Dropout(drop) def call(self, x): x = self.fc1(x) x = tf.keras.activations.gelu(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def window_partition(x, window_size): B, H, W, C = x.shape x = tf.reshape(x, shape=[-1, H // window_size, window_size, W // window_size, window_size, C]) x = tf.transpose(x, perm=[0, 1, 3, 2, 4, 5]) windows = tf.reshape(x, shape=[-1, window_size, window_size, C]) return windows def window_reverse(windows, window_size, H, W, C): x = tf.reshape(windows, shape=[-1, H // window_size, W // window_size, window_size, window_size, C]) x = tf.transpose(x, perm=[0, 1, 3, 2, 4, 5]) x = tf.reshape(x, shape=[-1, H, W, C]) return x class WindowAttention(tf.keras.layers.Layer): def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0., prefix=''): super().__init__() self.dim = dim self.window_size = window_size self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.prefix = prefix self.qkv = Dense(dim * 3, use_bias=qkv_bias, name=f'{self.prefix}/attn/qkv') self.attn_drop = Dropout(attn_drop) self.proj = Dense(dim, name=f'{self.prefix}/attn/proj') self.proj_drop = Dropout(proj_drop) def build(self, input_shape): self.relative_position_bias_table = self.add_weight(f'{self.prefix}/attn/relative_position_bias_table', shape=( (2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), self.num_heads), initializer=tf.initializers.Zeros(), trainable=True) coords_h = np.arange(self.window_size[0]) coords_w = np.arange(self.window_size[1]) coords = np.stack(np.meshgrid(coords_h, coords_w, indexing='ij')) coords_flatten = coords.reshape(2, -1) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] relative_coords = relative_coords.transpose([1, 2, 0]) relative_coords[:, :, 0] += self.window_size[0] - 1 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1).astype(np.int64) self.relative_position_index = tf.Variable(initial_value=tf.convert_to_tensor( relative_position_index), trainable=False, name=f'{self.prefix}/attn/relative_position_index') self.built = True def call(self, x, mask=None): B_, N, C = x.shape qkv = tf.transpose(tf.reshape(self.qkv( x), shape=[-1, N, 3, self.num_heads, C // self.num_heads]), perm=[2, 0, 3, 1, 4]) q, k, v = qkv[0], qkv[1], qkv[2] q = q * self.scale attn = (q @ tf.transpose(k, perm=[0, 1, 3, 2])) relative_position_bias = tf.gather(self.relative_position_bias_table, tf.reshape( self.relative_position_index, shape=[-1])) relative_position_bias = tf.reshape(relative_position_bias, shape=[ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1]) relative_position_bias = tf.transpose( relative_position_bias, perm=[2, 0, 1]) attn = attn + tf.expand_dims(relative_position_bias, axis=0) if mask is not None: nW = mask.get_shape()[0] # tf.shape(mask)[0] attn = tf.reshape(attn, shape=[-1, nW, self.num_heads, N, N]) + tf.cast( tf.expand_dims(tf.expand_dims(mask, axis=1), axis=0), attn.dtype) attn = tf.reshape(attn, shape=[-1, self.num_heads, N, N]) attn = tf.nn.softmax(attn, axis=-1) else: attn = tf.nn.softmax(attn, axis=-1) attn = self.attn_drop(attn) x = tf.transpose((attn @ v), perm=[0, 2, 1, 3]) x = tf.reshape(x, shape=[-1 , N, C]) x = self.proj(x) x = self.proj_drop(x) return x def drop_path(inputs, drop_prob, is_training): if (not is_training) or (drop_prob == 0.): return inputs # Compute keep_prob keep_prob = 1.0 - drop_prob # Compute drop_connect tensor random_tensor = keep_prob shape = (tf.shape(inputs)[0],) + (1,) * \ (len(tf.shape(inputs)) - 1) random_tensor += tf.random.uniform(shape, dtype=inputs.dtype) binary_tensor = tf.floor(random_tensor) output = tf.math.divide(inputs, keep_prob) * binary_tensor return output class DropPath(tf.keras.layers.Layer): def __init__(self, drop_prob=None): super().__init__() self.drop_prob = drop_prob def call(self, x, training=None): return drop_path(x, self.drop_prob, training) class SwinTransformerBlock(tf.keras.layers.Layer): def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path_prob=0., norm_layer=LayerNormalization, prefix=''): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio if min(self.input_resolution) <= self.window_size: self.shift_size = 0 self.window_size = min(self.input_resolution) assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" self.prefix = prefix self.norm1 = norm_layer(epsilon=1e-5, name=f'{self.prefix}/norm1') self.attn = WindowAttention(dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, prefix=self.prefix) self.drop_path = DropPath( drop_path_prob if drop_path_prob > 0. else 0.) self.norm2 = norm_layer(epsilon=1e-5, name=f'{self.prefix}/norm2') mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, drop=drop, prefix=self.prefix) def build(self, input_shape): if self.shift_size > 0: H, W = self.input_resolution img_mask = np.zeros([1, H, W, 1]) h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 img_mask = tf.convert_to_tensor(img_mask) mask_windows = window_partition(img_mask, self.window_size) mask_windows = tf.reshape( mask_windows, shape=[-1, self.window_size * self.window_size]) attn_mask = tf.expand_dims( mask_windows, axis=1) - tf.expand_dims(mask_windows, axis=2) attn_mask = tf.where(attn_mask != 0, -100.0, attn_mask) attn_mask = tf.where(attn_mask == 0, 0.0, attn_mask) self.attn_mask = tf.Variable( initial_value=attn_mask, trainable=False, name=f'{self.prefix}/attn_mask') else: self.attn_mask = None self.built = True def call(self, x): H, W = self.input_resolution B, L, C = x.get_shape().as_list() assert L == H * W, "input feature has wrong size" shortcut = x x = self.norm1(x) x = tf.reshape(x, shape=[-1, H, W, C]) # cyclic shift if self.shift_size > 0: shifted_x = tf.roll( x, shift=[-self.shift_size, -self.shift_size], axis=[1, 2]) else: shifted_x = x # partition windows x_windows = window_partition(shifted_x, self.window_size) x_windows = tf.reshape( x_windows, shape=[-1, self.window_size * self.window_size, C]) # W-MSA/SW-MSA attn_windows = self.attn(x_windows, mask=self.attn_mask) # merge windows attn_windows = tf.reshape( attn_windows, shape=[-1, self.window_size, self.window_size, C]) shifted_x = window_reverse(attn_windows, self.window_size, H, W, C) # reverse cyclic shift if self.shift_size > 0: x = tf.roll(shifted_x, shift=[ self.shift_size, self.shift_size], axis=[1, 2]) else: x = shifted_x x = tf.reshape(x, shape=[-1, H * W, C]) # FFN x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchMerging(tf.keras.layers.Layer): def __init__(self, input_resolution, dim, norm_layer=LayerNormalization, prefix=''): super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = Dense(2 * dim, use_bias=False, name=f'{prefix}/downsample/reduction') self.norm = norm_layer(epsilon=1e-5, name=f'{prefix}/downsample/norm') def call(self, x): H, W = self.input_resolution B, L, C = x.get_shape().as_list() assert L == H * W, "input feature has wrong size" assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." x = tf.reshape(x, shape=[-1, H, W, C]) x0 = x[:, fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b, fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b, :] # B H/2 W/2 C x1 = x[:, fc00:e968:6179::de52:7100, fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b, :] # B H/2 W/2 C x2 = x[:, fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b, fc00:e968:6179::de52:7100, :] # B H/2 W/2 C x3 = x[:, fc00:e968:6179::de52:7100, fc00:e968:6179::de52:7100, :] # B H/2 W/2 C x = tf.concat([x0, x1, x2, x3], axis=-1) x = tf.reshape(x, shape=[-1, (H // 2) * (W // 2), 4 * C]) x = self.norm(x) x = self.reduction(x) return x class BasicLayer(tf.keras.layers.Layer): def __init__(self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path_prob=0., norm_layer=LayerNormalization, downsample=None, use_checkpoint=False, prefix=''): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = tf.keras.Sequential([SwinTransformerBlock(dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if ( i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path_prob=drop_path_prob[i] if isinstance( drop_path_prob, list) else drop_path_prob, norm_layer=norm_layer, prefix=f'{prefix}/blocks{i}') for i in range(depth)]) if downsample is not None: self.downsample = downsample( input_resolution, dim=dim, norm_layer=norm_layer, prefix=prefix) else: self.downsample = None def call(self, x): x = self.blocks(x) if self.downsample is not None: x = self.downsample(x) return x class PatchEmbed(tf.keras.layers.Layer): def __init__(self, img_size=(224, 224), patch_size=(4, 4), in_chans=3, embed_dim=96, norm_layer=None): super().__init__() patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim self.proj = Conv2D(embed_dim, kernel_size=patch_size, strides=patch_size, name='proj') if norm_layer is not None: self.norm = norm_layer(epsilon=1e-5, name='norm') else: self.norm = None def call(self, x): B, H, W, C = x.get_shape().as_list() assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x) x = tf.reshape( x, shape=[-1, (H // self.patch_size[0]) * (W // self.patch_size[0]), self.embed_dim]) if self.norm is not None: x = self.norm(x) return x class ReversedPatchEmbed(Layer): def __init__(self,patch_size=4, dim=256): super().__init__() self.trans_conv2d = tf.keras.layers.Conv2DTranspose(dim, patch_size, patch_size) def call(self,input): B, L, C = input.shape x = tf.reshape(input, [-1, int(np.sqrt(L)), int(np.sqrt(L)), C]) x = self.trans_conv2d(x) return x #-----------------------------------------------------EFFICIENTNET_PART--------------------------------------------------------------------------------- def conv_kernel_initializer(shape, dtype=None, partition_info=None): """Initialization for convolutional kernels. The main difference with tf.variance_scaling_initializer is that tf.variance_scaling_initializer uses a truncated normal with an uncorrected standard deviation, whereas here we use a normal distribution. Similarly, tf.initializers.variance_scaling uses a truncated normal with a corrected standard deviation. Args: shape: shape of variable dtype: dtype of variable partition_info: unused Returns: an initialization for the variable """ del partition_info kernel_height, kernel_width, _, out_filters = shape fan_out = int(kernel_height * kernel_width * out_filters) return tf.random.normal( shape, mean=0.0, stddev=np.sqrt(2.0 / fan_out), dtype=dtype) def dense_kernel_initializer(shape, dtype=None, partition_info=None): """Initialization for dense kernels. This initialization is equal to tf.variance_scaling_initializer(scale=1.0/3.0, mode='fan_out', distribution='uniform'). It is written out explicitly here for clarity. Args: shape: shape of variable dtype: dtype of variable partition_info: unused Returns: an initialization for the variable """ del partition_info init_range = 1.0 / np.sqrt(shape[1]) return tf.random.uniform(shape, -init_range, init_range, dtype=dtype) def round_filters(filters, mconfig, skip=False): """Round number of filters based on depth multiplier.""" multiplier = mconfig.width_coefficient divisor = mconfig.depth_divisor min_depth = mconfig.min_depth if skip or not multiplier: return filters filters *= multiplier min_depth = min_depth or divisor new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor) return int(new_filters) def round_repeats(repeats, multiplier, skip=False): """Round number of filters based on depth multiplier.""" if skip or not multiplier: return repeats return int(math.ceil(multiplier * repeats)) class SE(tf.keras.layers.Layer): """Squeeze-and-excitation layer.""" def __init__(self, mconfig, se_filters, output_filters, name=None): super().__init__(name=name) self._local_pooling = mconfig.local_pooling self._data_format = mconfig.data_format self._act = utils.get_act_fn(mconfig.act_fn) # Squeeze and Excitation layer. self._se_reduce = tf.keras.layers.Conv2D( se_filters, kernel_size=1, strides=1, kernel_initializer=conv_kernel_initializer, padding='same', data_format=self._data_format, use_bias=True, name='conv2d') self._se_expand = tf.keras.layers.Conv2D( output_filters, kernel_size=1, strides=1, kernel_initializer=conv_kernel_initializer, padding='same', data_format=self._data_format, use_bias=True, name='conv2d_1') def call(self, inputs): h_axis, w_axis = [2, 3] if self._data_format == 'channels_first' else [1, 2] if self._local_pooling: se_tensor = tf.nn.avg_pool( inputs, ksize=[1, inputs.shape[h_axis], inputs.shape[w_axis], 1], strides=[1, 1, 1, 1], padding='VALID') else: se_tensor = tf.reduce_mean(inputs, [h_axis, w_axis], keepdims=True) se_tensor = self._se_expand(self._act(self._se_reduce(se_tensor))) logging.info('Built SE %s : %s', self.name, se_tensor.shape) return tf.sigmoid(se_tensor) * inputs class MBConvBlock(tf.keras.layers.Layer): """A class of MBConv: Mobile Inverted Residual Bottleneck. Attributes: endpoints: dict. A list of internal tensors. """ def __init__(self, block_args, mconfig, name=None): """Initializes a MBConv block. Args: block_args: BlockArgs, arguments to create a Block. mconfig: GlobalParams, a set of global parameters. name: layer name. """ super().__init__(name=name) self._block_args = copy.deepcopy(block_args) self._mconfig = copy.deepcopy(mconfig) self._local_pooling = mconfig.local_pooling self._data_format = mconfig.data_format self._channel_axis = 1 if self._data_format == 'channels_first' else -1 self._act = utils.get_act_fn(mconfig.act_fn) self._has_se = ( self._block_args.se_ratio is not None and 0 < self._block_args.se_ratio <= 1) self.endpoints = None # Builds the block accordings to arguments. self._build() @property def block_args(self): return self._block_args def _build(self): """Builds block according to the arguments.""" # pylint: disable=g-long-lambda bid = itertools.count(0) get_norm_name = lambda: 'tpu_batch_normalization' + ('' if not next( bid) else '_' + str(next(bid) // 2)) cid = itertools.count(0) get_conv_name = lambda: 'conv2d' + ('' if not next(cid) else '_' + str( next(cid) // 2)) # pylint: enable=g-long-lambda mconfig = self._mconfig filters = self._block_args.input_filters * self._block_args.expand_ratio kernel_size = self._block_args.kernel_size # Expansion phase. Called if not using fused convolutions and expansion # phase is necessary. if self._block_args.expand_ratio != 1: self._expand_conv = tf.keras.layers.Conv2D( filters=filters, kernel_size=1, strides=1, kernel_initializer=conv_kernel_initializer, padding='same', data_format=self._data_format, use_bias=False, name=get_conv_name()) self._norm0 = utils.normalization( mconfig.bn_type, axis=self._channel_axis, momentum=mconfig.bn_momentum, epsilon=mconfig.bn_epsilon, groups=mconfig.gn_groups, name=get_norm_name()) # Depth-wise convolution phase. Called if not using fused convolutions. self._depthwise_conv = tf.keras.layers.DepthwiseConv2D( kernel_size=kernel_size, strides=self._block_args.strides, depthwise_initializer=conv_kernel_initializer, padding='same', data_format=self._data_format, use_bias=False, name='depthwise_conv2d') self._norm1 = utils.normalization( mconfig.bn_type, axis=self._channel_axis, momentum=mconfig.bn_momentum, epsilon=mconfig.bn_epsilon, groups=mconfig.gn_groups, name=get_norm_name()) if self._has_se: num_reduced_filters = max( 1, int(self._block_args.input_filters * self._block_args.se_ratio)) self._se = SE(self._mconfig, num_reduced_filters, filters, name='se') else: self._se = None # Output phase. filters = self._block_args.output_filters self._project_conv = tf.keras.layers.Conv2D( filters=filters, kernel_size=1, strides=1, kernel_initializer=conv_kernel_initializer, padding='same', data_format=self._data_format, use_bias=False, name=get_conv_name()) self._norm2 = utils.normalization( mconfig.bn_type, axis=self._channel_axis, momentum=mconfig.bn_momentum, epsilon=mconfig.bn_epsilon, groups=mconfig.gn_groups, name=get_norm_name()) def residual(self, inputs, x, training, survival_prob): if (self._block_args.strides == 1 and self._block_args.input_filters == self._block_args.output_filters): # Apply only if skip connection presents. if survival_prob: x = utils.drop_connect(x, training, survival_prob) x = tf.add(x, inputs) return x def call(self, inputs, training, survival_prob=None): """Implementation of call(). Args: inputs: the inputs tensor. training: boolean, whether the model is constructed for training. survival_prob: float, between 0 to 1, drop connect rate. Returns: A output tensor. """ logging.info('Block %s input shape: %s (%s)', self.name, inputs.shape, inputs.dtype) x = inputs if self._block_args.expand_ratio != 1: x = self._act(self._norm0(self._expand_conv(x), training=training)) logging.info('Expand shape: %s', x.shape) x = self._act(self._norm1(self._depthwise_conv(x), training=training)) logging.info('DWConv shape: %s', x.shape) if self._mconfig.conv_dropout and self._block_args.expand_ratio > 1: x = tf.keras.layers.Dropout(self._mconfig.conv_dropout)( x, training=training) if self._se: x = self._se(x) self.endpoints = {'expansion_output': x} x = self._norm2(self._project_conv(x), training=training) x = self.residual(inputs, x, training, survival_prob) logging.info('Project shape: %s', x.shape) return x class FusedMBConvBlock(MBConvBlock): """Fusing the proj conv1x1 and depthwise_conv into a conv2d.""" def _build(self): """Builds block according to the arguments.""" # pylint: disable=g-long-lambda bid = itertools.count(0) get_norm_name = lambda: 'tpu_batch_normalization' + ('' if not next( bid) else '_' + str(next(bid) // 2)) cid = itertools.count(0) get_conv_name = lambda: 'conv2d' + ('' if not next(cid) else '_' + str( next(cid) // 2)) # pylint: enable=g-long-lambda mconfig = self._mconfig block_args = self._block_args filters = block_args.input_filters * block_args.expand_ratio kernel_size = block_args.kernel_size if block_args.expand_ratio != 1: # Expansion phase: self._expand_conv = tf.keras.layers.Conv2D( filters, kernel_size=kernel_size, strides=block_args.strides, kernel_initializer=conv_kernel_initializer, padding='same', use_bias=False, name=get_conv_name()) self._norm0 = utils.normalization( mconfig.bn_type, axis=self._channel_axis, momentum=mconfig.bn_momentum, epsilon=mconfig.bn_epsilon, groups=mconfig.gn_groups, name=get_norm_name()) if self._has_se: num_reduced_filters = max( 1, int(block_args.input_filters * block_args.se_ratio)) self._se = SE(mconfig, num_reduced_filters, filters, name='se') else: self._se = None # Output phase: filters = block_args.output_filters self._project_conv = tf.keras.layers.Conv2D( filters, kernel_size=1 if block_args.expand_ratio != 1 else kernel_size, strides=1 if block_args.expand_ratio != 1 else block_args.strides, kernel_initializer=conv_kernel_initializer, padding='same', use_bias=False, name=get_conv_name()) self._norm1 = utils.normalization( mconfig.bn_type, axis=self._channel_axis, momentum=mconfig.bn_momentum, epsilon=mconfig.bn_epsilon, groups=mconfig.gn_groups, name=get_norm_name()) def call(self, inputs, training, survival_prob=None): """Implementation of call(). Args: inputs: the inputs tensor. training: boolean, whether the model is constructed for training. survival_prob: float, between 0 to 1, drop connect rate. Returns: A output tensor. """ logging.info('Block %s input shape: %s', self.name, inputs.shape) x = inputs if self._block_args.expand_ratio != 1: x = self._act(self._norm0(self._expand_conv(x), training=training)) logging.info('Expand shape: %s', x.shape) self.endpoints = {'expansion_output': x} if self._mconfig.conv_dropout and self._block_args.expand_ratio > 1: x = tf.keras.layers.Dropout(self._mconfig.conv_dropout)(x, training) if self._se: x = self._se(x) x = self._norm1(self._project_conv(x), training=training) if self._block_args.expand_ratio == 1: x = self._act(x) # add act if no expansion. x = self.residual(inputs, x, training, survival_prob) logging.info('Project shape: %s', x.shape) return x class Stem(tf.keras.layers.Layer): """Stem layer at the begining of the network.""" def __init__(self, mconfig, stem_filters, name=None): super().__init__(name=name) self._conv_stem = tf.keras.layers.Conv2D( filters=round_filters(stem_filters, mconfig), kernel_size=3, strides=2, kernel_initializer=conv_kernel_initializer, padding='same', data_format=mconfig.data_format, use_bias=False, name='conv2d') self._norm = utils.normalization( mconfig.bn_type, axis=(1 if mconfig.data_format == 'channels_first' else -1), momentum=mconfig.bn_momentum, epsilon=mconfig.bn_epsilon, groups=mconfig.gn_groups) self._act = utils.get_act_fn(mconfig.act_fn) def call(self, inputs, training): return self._act(self._norm(self._conv_stem(inputs), training=training)) class Head(tf.keras.layers.Layer): """Head layer for network outputs.""" def __init__(self, mconfig, name=None): super().__init__(name=name) self.endpoints = {} self._mconfig = mconfig self._conv_head = tf.keras.layers.Conv2D( filters=round_filters(mconfig.feature_size or 1280, mconfig), kernel_size=1, strides=1, kernel_initializer=conv_kernel_initializer, padding='same', data_format=mconfig.data_format, use_bias=False, name='conv2d') self._norm = utils.normalization( mconfig.bn_type, axis=(1 if mconfig.data_format == 'channels_first' else -1), momentum=mconfig.bn_momentum, epsilon=mconfig.bn_epsilon, groups=mconfig.gn_groups) self._act = utils.get_act_fn(mconfig.act_fn) self._avg_pooling = tf.keras.layers.GlobalAveragePooling2D( data_format=mconfig.data_format) if mconfig.dropout_rate > 0: self._dropout = tf.keras.layers.Dropout(mconfig.dropout_rate) else: self._dropout = None self.h_axis, self.w_axis = ([2, 3] if mconfig.data_format == 'channels_first' else [1, 2]) def call(self, inputs, training): """Call the layer.""" outputs = self._act(self._norm(self._conv_head(inputs), training=training)) self.endpoints['head_1x1'] = outputs if self._mconfig.local_pooling: shape = outputs.get_shape().as_list() kernel_size = [1, shape[self.h_axis], shape[self.w_axis], 1] outputs = tf.nn.avg_pool( outputs, ksize=kernel_size, strides=[1, 1, 1, 1], padding='VALID') self.endpoints['pooled_features'] = outputs if self._dropout: outputs = self._dropout(outputs, training=training) self.endpoints['global_pool'] = outputs if self._fc: outputs = tf.squeeze(outputs, [self.h_axis, self.w_axis]) outputs = self._fc(outputs) self.endpoints['head'] = outputs else: outputs = self._avg_pooling(outputs) self.endpoints['pooled_features'] = outputs if self._dropout: outputs = self._dropout(outputs, training=training) self.endpoints['head'] = outputs return outputs class DenseWithBN(tf.keras.layers.Layer): def __init__(self, units, **kwargs): super().__init__(**kwargs) self.dense_lr = keras.layers.Dense(units) self._norm = keras.layers.BatchNormalization() def call(self, inputs): return tf.nn.silu(self._norm(self.dense_lr(inputs))) #------------------------------------------------------THE_MODEL---------------------------------------------------------------------- class CuteNetModel(tf.keras.Model): """A class implements tf.keras.Model. Reference: https://arxiv.org/abs/1807.11626 """ def __init__(self, effnet_model_name='efficientnetv2-m', effnet_model_config=None, name='cutenet', img_size=(384, 384), window_size=12, embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], patch_size=(4, 4),in_chans=24, mlp_ratio=4., qkv_bias=True, qk_scale=None, num_classes=1000, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=LayerNormalization, ape=False, patch_norm=True, **kwargs): """Initializes an `Model` instance. Args: model_name: A string of model name for efficinetnet model. model_config: A dict of efficientnet model configurations or a string of hparams. name: A string of layer name. Raises: ValueError: when blocks_args is not specified as a list. """ super().__init__(name=name) cfg = copy.deepcopy(hparams.base_config) if effnet_model_name: cfg.override(effnetv2_configs.get_model_config(effnet_model_name)) cfg.model.override(effnet_model_config) self.cfg = cfg self._mconfig = cfg.model self.endpoints = None self.in_chans = in_chans self.img_size = img_size self.patch_size = patch_size self.num_classes = num_classes self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.qk_scale = qk_scale self.drop_rate = drop_rate self.attn_drop_rate = attn_drop_rate self.drop_path_rate = drop_path_rate self.norm_layer = LayerNormalization self.ape = ape self.patch_norm = patch_norm self.depths = depths self.num_heads = num_heads self.window_size = window_size self._build() def _build(self): # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=self.img_size, patch_size=self.patch_size, in_chans=self.in_chans, embed_dim=self.embed_dim, norm_layer=self.norm_layer if self.patch_norm else None) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution self.patch_embed_1 = PatchEmbed( img_size=(192,192), in_chans=self.in_chans, embed_dim=self.embed_dim*2, norm_layer=self.norm_layer if self.patch_norm else None) self.patch_embed_2 = PatchEmbed( img_size=(96,96), in_chans=self.in_chans, embed_dim=self.embed_dim*4, norm_layer=self.norm_layer if self.patch_norm else None) self.patch_embed_3 = PatchEmbed( img_size=(48,48), in_chans=self.in_chans, embed_dim=self.embed_dim*8, norm_layer=self.norm_layer if self.patch_norm else None) self.embeder = [self.patch_embed_1,self.patch_embed_2,self.patch_embed_3] self.swin_concat_1 = tf.keras.layers.Concatenate() self.swin_concat_2 = tf.keras.layers.Concatenate() self.swin_concat_3 = tf.keras.layers.Concatenate() self.swin_concat = [self.swin_concat_1, self.swin_concat_2, self.swin_concat_3] self.effnet_concat_1 = tf.keras.layers.Concatenate() self.effnet_concat_2 = tf.keras.layers.Concatenate() self.effnet_concat_3 = tf.keras.layers.Concatenate() self.effnet_concat = [self.effnet_concat_1, self.effnet_concat_2, self.effnet_concat_3] self.reversed_embed_1 = ReversedPatchEmbed(dim=48) self.reversed_embed_2 = ReversedPatchEmbed(dim=80) self.reversed_embed_3 = ReversedPatchEmbed(dim=176) self.reversed_embed = [self.reversed_embed_1, self.reversed_embed_2, self.reversed_embed_3] self.effnet_dense_1 = DenseWithBN(48) self.effnet_dense_2 = DenseWithBN(80) self.effnet_dense_3 = DenseWithBN(176) self.effnet_dense = [self.effnet_dense_1, self.effnet_dense_2, self.effnet_dense_3] self.swin_dense_1 = DenseWithBN(self.embed_dim*2) self.swin_dense_2 = DenseWithBN(self.embed_dim*4) self.swin_dense_3 = DenseWithBN(self.embed_dim*8) self.swin_dense = [self.swin_dense_1, self.swin_dense_2, self.swin_dense_3] self.final_concat = tf.keras.layers.Concatenate() # absolute position embedding if self.ape: initializer = tf.keras.initializers.TruncatedNormal(mean=0., stddev=.02) # TODO: Check to make sure that this variable is supposed to not be trainable self.absolute_pos_embed = tf.Variable(initializer(shape = (1, num_patches, self.embed_dim)), trainable=False) self.pos_drop = tf.keras.layers.Dropout(rate=self.drop_rate) # stochastic depth dpr = [x for x in np.linspace(0, self.drop_path_rate, sum(self.depths))] # stochastic depth decay rule # build layers self._swin_blocks = [tf.keras.models.Sequential(BasicLayer(dim=int(self.embed_dim * 2 ** i_layer), input_resolution=(patches_resolution[0] // (2 ** i_layer), patches_resolution[1] // (2 ** i_layer)), depth=self.depths[i_layer], num_heads=self.num_heads[i_layer], window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, qk_scale=self.qk_scale, drop=self.drop_rate, attn_drop=self.attn_drop_rate, drop_path_prob=dpr[sum(self.depths[:i_layer]):sum(self.depths[:i_layer + 1])], norm_layer=self.norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None)) for i_layer in range(self.num_layers)] # TODO: Check impact of epsilon self.norm = tf.keras.layers.BatchNormalization() self.avgpool = tf.keras.layers.GlobalAveragePooling1D() """Builds a model.""" self._effnet_blocks = [] # Stem part. self._stem = Stem(self._mconfig, self._mconfig.blocks_args[0].input_filters) # Builds blocks. block_id = itertools.count(0) block_name = lambda: 'blocks_%d' % next(block_id) for block_args in self._mconfig.blocks_args: assert block_args.num_repeat > 0 # Update block input and output filters based on depth multiplier. input_filters = round_filters(block_args.input_filters, self._mconfig) output_filters = round_filters(block_args.output_filters, self._mconfig) repeats = round_repeats(block_args.num_repeat, self._mconfig.depth_coefficient) block_args.update( dict( input_filters=input_filters, output_filters=output_filters, num_repeat=repeats)) # The first block needs to take care of stride and filter size increase. conv_block = {0: MBConvBlock, 1: FusedMBConvBlock}[block_args.conv_type] self._effnet_blocks.append( conv_block(block_args, self._mconfig, name=block_name())) if block_args.num_repeat > 1: # rest of blocks with the same block_arg # pylint: disable=protected-access block_args.input_filters = block_args.output_filters block_args.strides = 1 # pylint: enable=protected-access for _ in range(block_args.num_repeat - 1): self._effnet_blocks.append( conv_block(block_args, self._mconfig, name=block_name())) # Head part. self._head = Head(self._mconfig) def get_model_with_inputs(self, inputs, **kargs): model = tf.keras.Model( inputs=[inputs], outputs=self.call(inputs, training=True)) return model def call(self, inputs, training=False, with_endpoints=False): """Implementation of call(). Args: inputs: input tensors. training: boolean, whether the model is constructed for training. with_endpoints: If true, return a list of endpoints. Returns: output tensors. """ outputs = None self.endpoints = {} reduction_idx = 0 # Calls Stem layers outputs = self._stem(inputs, training) swin_outputs = self.patch_embed(outputs) if self.ape: swin_outputs = swin_outputs + self.absolute_pos_embed swin_outputs = self.pos_drop(swin_outputs) logging.info('Built stem: %s (%s)', outputs.shape, outputs.dtype) self.endpoints['stem'] = outputs # Calls blocks. for idx, block in enumerate(self._effnet_blocks): is_reduction = False # reduction flag for blocks after the stem layer if ((idx == len(self._effnet_blocks) - 1) or self._effnet_blocks[idx + 1].block_args.strides > 1): is_reduction = True reduction_idx += 1 survival_prob = self._mconfig.survival_prob if survival_prob: drop_rate = 1.0 - survival_prob survival_prob = 1.0 - drop_rate * float(idx) / len(self._effnet_blocks) logging.info('block_%s survival_prob: %s', idx, survival_prob) outputs = block(outputs, training=training, survival_prob=survival_prob) self.endpoints['block_%s' % idx] = outputs if is_reduction: self.endpoints['reduction_%s' % reduction_idx] = outputs if reduction_idx > 1: swin_outputs = self._swin_blocks[reduction_idx-2](swin_outputs) if reduction_idx <5: effnet_embed = self.embeder[reduction_idx-2](outputs) reversed_embed = self.reversed_embed[reduction_idx-2](swin_outputs) outputs = self.effnet_concat[reduction_idx-2]([reversed_embed, outputs]) outputs = self.effnet_dense[reduction_idx-2](outputs) swin_outputs = self.swin_concat[reduction_idx-2]([swin_outputs, effnet_embed]) swin_outputs = self.swin_dense[reduction_idx-2](swin_outputs) if block.endpoints: for k, v in block.endpoints.items(): self.endpoints['block_%s/%s' % (idx, k)] = v if is_reduction: self.endpoints['reduction_%s/%s' % (reduction_idx, k)] = v self.endpoints['features'] = outputs # Head to obtain the final feature. outputs = self._head(outputs) swin_outputs = self.avgpool(swin_outputs) outputs = self.final_concat([outputs, swin_outputs]) self.endpoints.update(self._head.endpoints) if with_endpoints: # Use for building sequential models. return [outputs] + list( filter(lambda endpoint: endpoint is not None, [ self.endpoints.get('reduction_1'), self.endpoints.get('reduction_2'), self.endpoints.get('reduction_3'), self.endpoints.get('reduction_4'), self.endpoints.get('reduction_5'), ])) return outputs def get_model(model_name, model_config=None, include_top=True, weights='imagenet', training=True, with_endpoints=False, **kwargs): """Get a EfficientNet V1 or V2 model instance. This is a simply utility for finetuning or inference. Args: model_name: a string such as 'efficientnetv2-s' or 'efficientnet-b0'. model_config: A dict of model configurations or a string of hparams. include_top: whether to include the final dense layer for classification. weights: One of None (random initialization), 'imagenet' (pretrained on ImageNet), 'imagenet21k' (pretrained on Imagenet21k), 'imagenet21k-ft1k' (pretrained on 21k and finetuned on 1k), 'jft' (trained with non-labelled JFT-300), or the path to the weights file to be loaded. Defaults to 'imagenet'. training: If true, all model variables are trainable. with_endpoints: whether to return all intermedia endpoints. **kwargs: additional parameters for keras model, such as name=xx. Returns: A single tensor if with_endpoints if False; otherwise, a list of tensor. """ net = EffNetV2Model(model_name, model_config, include_top, **kwargs) net(tf.keras.Input(shape=(None, None, 3)), training=training, with_endpoints=with_endpoints) if not weights: # pylint: disable=g-bool-id-comparison return net v2url = 'https://storage.googleapis.com/cloud-tpu-checkpoints/efficientnet/v2/' v1url = 'https://storage.googleapis.com/cloud-tpu-checkpoints/efficientnet/advprop/' v1jfturl = 'https://storage.googleapis.com/cloud-tpu-checkpoints/efficientnet/noisystudent/' pretrained_ckpts = { # EfficientNet V2. 'efficientnetv2-s': { 'imagenet': v2url + 'efficientnetv2-s.tgz', 'imagenet21k': v2url + 'efficientnetv2-s-21k.tgz', 'imagenet21k-ft1k': v2url + 'efficientnetv2-s-21k-ft1k.tgz', }, 'efficientnetv2-m': { 'imagenet': v2url + 'efficientnetv2-m.tgz', 'imagenet21k': v2url + 'efficientnetv2-m-21k.tgz', 'imagenet21k-ft1k': v2url + 'efficientnetv2-m-21k-ft1k.tgz', }, 'efficientnetv2-l': { 'imagenet': v2url + 'efficientnetv2-l.tgz', 'imagenet21k': v2url + 'efficientnetv2-l-21k.tgz', 'imagenet21k-ft1k': v2url + 'efficientnetv2-l-21k-ft1k.tgz', }, 'efficientnetv2-xl': { # no imagenet ckpt. 'imagenet21k': v2url + 'efficientnetv2-xl-21k.tgz', 'imagenet21k-ft1k': v2url + 'efficientnetv2-xl-21k-ft1k.tgz', }, 'efficientnetv2-b0': { 'imagenet': v2url + 'efficientnetv2-b0.tgz', 'imagenet21k': v2url + 'efficientnetv2-b0-21k.tgz', 'imagenet21k-ft1k': v2url + 'efficientnetv2-b0-21k-ft1k.tgz', }, 'efficientnetv2-b1': { 'imagenet': v2url + 'efficientnetv2-b1.tgz', 'imagenet21k': v2url + 'efficientnetv2-b1-21k.tgz', 'imagenet21k-ft1k': v2url + 'efficientnetv2-b1-21k-ft1k.tgz', }, 'efficientnetv2-b2': { 'imagenet': v2url + 'efficientnetv2-b2.tgz', 'imagenet21k': v2url + 'efficientnetv2-b2-21k.tgz', 'imagenet21k-ft1k': v2url + 'efficientnetv2-b2-21k-ft1k.tgz', }, 'efficientnetv2-b3': { 'imagenet': v2url + 'efficientnetv2-b3.tgz', 'imagenet21k': v2url + 'efficientnetv2-b3-21k.tgz', 'imagenet21k-ft1k': v2url + 'efficientnetv2-b3-21k-ft1k.tgz', }, # EfficientNet V1. 'efficientnet-b0': { 'imagenet': v1url + 'efficientnet-b0.tar.gz', 'jft': v1jfturl + 'noisy_student_efficientnet-b0.tar.gz', }, 'efficientnet-b1': { 'imagenet': v1url + 'efficientnet-b1.tar.gz', 'jft': v1jfturl + 'noisy_student_efficientnet-b1.tar.gz', }, 'efficientnet-b2': { 'imagenet': v1url + 'efficientnet-b2.tar.gz', 'jft': v1jfturl + 'noisy_student_efficientnet-b2.tar.gz', }, 'efficientnet-b3': { 'imagenet': v1url + 'efficientnet-b3.tar.gz', 'jft': v1jfturl + 'noisy_student_efficientnet-b3.tar.gz', }, 'efficientnet-b4': { 'imagenet': v1url + 'efficientnet-b4.tar.gz', 'jft': v1jfturl + 'noisy_student_efficientnet-b4.tar.gz', }, 'efficientnet-b5': { 'imagenet': v1url + 'efficientnet-b5.tar.gz', 'jft': v1jfturl + 'noisy_student_efficientnet-b5.tar.gz', }, 'efficientnet-b6': { 'imagenet': v1url + 'efficientnet-b6.tar.gz', 'jft': v1jfturl + 'noisy_student_efficientnet-b6.tar.gz', }, 'efficientnet-b7': { 'imagenet': v1url + 'efficientnet-b7.tar.gz', 'jft': v1jfturl + 'noisy_student_efficientnet-b7.tar.gz', }, 'efficientnet-b8': { 'imagenet': v1url + 'efficientnet-b8.tar.gz', }, 'efficientnet-l2': { 'jft': v1jfturl + 'noisy_student_efficientnet-l2_475.tar.gz', }, } if model_name in pretrained_ckpts and weights in pretrained_ckpts[model_name]: url = pretrained_ckpts[model_name][weights] fname = os.path.basename(url).split('.')[0] pretrained_ckpt= tf.keras.utils.get_file(fname, url , untar=True) else: pretrained_ckpt = weights if tf.io.gfile.isdir(pretrained_ckpt): pretrained_ckpt = tf.train.latest_checkpoint(pretrained_ckpt) net.load_weights(pretrained_ckpt) return net ```
{ "source": "Jobayer-000/DOLG-TensorFlow", "score": 2 }
#### File: DOLG-TensorFlow/layers/OrtholFusion.py ```python import tensorflow as tf from tensorflow.keras import layers class OrthogonalFusion(layers.Layer): def __init__(self, **kwargs): super().__init__(name='OrthogonalFusion', **kwargs) def call(self, inputs): local_feat, global_feat = inputs height = local_feat.shape[1] width = local_feat.shape[2] depth = local_feat.shape[3] local_feat = tf.reshape(local_feat, [-1, height*width, depth]) local_feat = tf.transpose(local_feat, perm=[0, 2, 1]) projection = tf.matmul( tf.expand_dims(global_feat, axis=1), local_feat ) projection = tf.matmul( tf.expand_dims(global_feat, axis=2), projection ) projection = tf.reshape(projection, [-1, height, width, depth]) global_feat_norm = tf.norm(global_feat, ord=2, axis=1) projection = projection / tf.reshape(global_feat_norm*global_feat_norm, shape=[-1, 1, 1, 1]) local_feat = tf.transpose(local_feat, perm=[0, 1, 2]) local_feat = tf.reshape(local_feat, [-1, height, width, depth]) orthogonal_comp = local_feat - projection global_feat = tf.expand_dims(tf.expand_dims(global_feat, axis=1), axis=1) global_feat = tf.broadcast_to(global_feat, tf.shape(local_feat)) output = tf.concat([global_feat, orthogonal_comp], axis=-1) return output ```
{ "source": "jobc90/Protein-Resarch", "score": 2 }
#### File: presearch_trrosetta/prepare/create_dsmap.py ```python import logging import os import sys import numpy as np import argparse from PIL import Image from Bio.PDB import MMCIFParser from scipy.spatial import distance_matrix import pdb import tqdm from presearch_trrosetta.utils.vocab import aa_dict def save_fasta(res_name, fasta_path, seq): with open(os.path.join(fasta_path, f'{res_name}.fasta'), mode='w') as obj: obj.write(f'>{res_name}\n') obj.write(seq) def create_dsmap(cif_path, dsmap_path, fasta_path): p = MMCIFParser() for name in tqdm.tqdm(os.listdir(cif_path)): structure = p.get_structure(name, f"{cif_path}/{name}") for model in structure: for chain in model: pdb_id = os.path.splitext(name)[0] res_name = f'{pdb_id.upper()}_{chain.id}' coords = [] seqs = [] # todo : how to treat the hetaatom, UNK case, no ss case # missing part is not in structure line. It is written another line. # anyway in biopython module, not read missing part. It is skipped # todo : in NMR,because of many experiment to identical residue, there is many redundant chain. So it is needed more time. for amino in chain: if amino.get_id()[0] == ' ': coords.append(amino["CA"].get_coord()) if amino.get_resname()!='UNK': seqs.append(aa_dict[amino.get_resname()]) logging.info(f"{res_name} - num of coords : {len(coords)}") if len(coords)>0: # save img try: coords = np.array(coords) gt_distance_matrix = distance_matrix(coords, coords) im = Image.fromarray(gt_distance_matrix.astype(np.int8)) im.save(os.path.join(dsmap_path, f'{res_name}.png')) except : #pdb.set_trace() logging.warning(f"check the {res_name}") # save seq save_fasta(res_name, fasta_path, ''.join(seqs)) def parse_args(args) : parser = argparse.ArgumentParser() parser.add_argument('--cif_path') parser.add_argument('--dsmap_path') parser.add_argument('--fasta_path') return parser.parse_args(args) def make_dirs(*path): for _path in path : os.makedirs(_path, exist_ok=True) def main(args=None): if args is None: args = sys.argv[1:] args = parse_args(args) make_dirs(args.dsmap_path,args.fasta_path) create_dsmap(args.cif_path, args.dsmap_path, args.fasta_path) if __name__ == '__main__' : main() # todo : multiprocessing ? ```
{ "source": "jobcpf/cosy", "score": 2 }
#### File: cosy/bin/cosyd.py ```python import sys sys.path.append("/home/squirrel/dev/cosy/cosy") # append python project directory root # Standard import import time import os.path # Import custom modules from cosy_daemon import Daemon import cosy_run as crun ################## Variables #################################### Variables #################################### Variables ################## from global_config import logging, now_file, BASE_SLEEP, PID_FILE script_file = "%s: %s" % (now_file,os.path.basename(__file__)) func_name = 'cosy_daemon' ################## Classes ###################################### Classes ###################################### Classes #################### class CosyDaemon(Daemon): """ Subclass Daemon class to run cosy scripts. """ def run(self): idst = None token3 = None pol_sleep = BASE_SLEEP while True: # logging now_file = time.strftime('%Y%m%d_%H%M%S') logging.debug('%s:%s: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> DAEMON (%s) <<<<<<<<<<<<<<<<<<<<<<<<<<<<<</n' % (script_file,func_name,now_file)) print '%s: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> DAEMON ( %s) <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<' % (func_name,now_file) # call script run script rbool, idst, token3, pol_sleep = crun.cosy_run(idst, token3) # delay/re-run time.sleep(pol_sleep) ################## Scripts ###################################### Scripts ###################################### Scripts #################### if __name__ == "__main__": daemon = CosyDaemon(PID_FILE) if len(sys.argv) == 2: if 'start' == sys.argv[1]: #logging.debug('%s:%s: Starting COSY Daemon' % (script_file,func_name)) daemon.start() elif 'stop' == sys.argv[1]: #logging.debug('%s:%s: Stopping COSY Daemon' % (script_file,func_name)) daemon.stop() elif 'restart' == sys.argv[1]: #logging.debug('%s:%s: Restarting COSY Daemon' % (script_file,func_name)) daemon.restart() elif 'status' == sys.argv[1]: #logging.debug('%s:%s: Status of COSY Daemon' % (script_file,func_name)) daemon.status() elif 'test' == sys.argv[1]: #logging.debug('%s:%s: Starting COSY Daemon in TEST mode (foreground)' % (script_file,func_name)) daemon.run() else: #logging.error('%s:%s: Unknown daemon command for COSY' % (script_file,func_name)) print "Unknown command" sys.exit(2) sys.exit(0) else: print "usage: %s start|stop|restart|test)" % sys.argv[0] sys.exit(2) ``` #### File: cosy/api/api_access.py ```python import os import sys import time import requests from requests.auth import HTTPBasicAuth # Import custom modules import api.api_auth as apa import data.data_api as datp ################## Variables #################################### Variables #################################### Variables ################## from global_config import logging, now_file script_file = "%s: %s" % (now_file,os.path.basename(__file__)) ################## Functions ###################################### Functions ###################################### Functions #################### def api_call(api_call, user_id = False, token3 = None, method = None, json = False): """ Retrieve data from API using token. > 'api call identifier', [user_id], [token3], [method: PUT|POST|GET], [json data] < response tuple: (True, json data, token3) or (False,http status code, token3) """ func_name = sys._getframe().f_code.co_name # Defines name of function for logging logging.debug('%s:%s: API call (%s): %s' % (script_file,func_name,method,api_call)) try: get_token = False # test if token returned if token3 is not None : # build auth header auth_header = {'Authorization': 'Bearer %s' % token3[1]} # make request if method == 'GET' : #print json r = requests.get(api_call, json=json, headers=auth_header) elif method == 'POST' : #print json r = requests.post(api_call, json=json, headers=auth_header) #print r.json() elif method == 'PUT' : #print json r = requests.put(api_call, json=json, headers=auth_header) #print r.json() else : #print json r = requests.get(api_call, headers=auth_header) #print r.json() # check for unauthorised using token if r.status_code == requests.codes.unauthorized: logging.debug('%s:%s: API data retrieval unauthorised with token. Status Code: %s' % (script_file,func_name,r.status_code)) get_token = True if token3 is None or get_token: # get new token (refresh > u:p) rbool, token3_or_error = apa.get_new_token(token3 = token3, user_id = user_id) # get new token and add to db # check if token returned if rbool: # build auth header auth_header = {'Authorization': 'Bearer %s' % token3_or_error[1]} # make request if method == 'GET' : r = requests.get(api_call, json=json, headers=auth_header) elif method == 'POST' : r = requests.post(api_call, json=json, headers=auth_header) elif method == 'PUT' : r = requests.put(api_call, json=json, headers=auth_header) else : r = requests.get(api_call, headers=auth_header) else: logging.error('%s:%s: Could not retrieve new token. Error: %s' % (script_file,func_name,token3)) return (False, token3_or_error, None) # capture status codes from all calls if r.status_code == requests.codes.unauthorized: # 401 logging.error('%s:%s: API unauthorised with token. Status Code: %s, API Call: %s' % (script_file,func_name,r.status_code,api_call)) #print api_call, r.json() return (False, r.status_code, token3) elif r.status_code == requests.codes.internal_server_error: logging.error('%s:%s: API caused an internal server error. Status Code: %s, API Call: %s' % (script_file,func_name,r.status_code,api_call)) #print api_call, r.json() return (False, r.status_code, token3) elif r.status_code == requests.codes.bad_request: # 400 logging.error('%s:%s: Bad request to API. Status Code: %s, API Call: %s' % (script_file,func_name,r.status_code,api_call)) print api_call, r.json() return (False, r.status_code, token3) elif r.status_code == requests.codes.not_found: # 404 logging.debug('%s:%s: Resource not found at API. Status Code: %s, API Call: %s' % (script_file,func_name,r.status_code,api_call)) #print "ERROR >>>>>>>>>>>>>", api_call, r.json() return (False, r.status_code, token3) elif r.status_code == requests.codes.forbidden: # 403 logging.error('%s:%s: Forbidden to access API. Status Code: %s, API Call: %s' % (script_file,func_name,r.status_code,api_call)) print api_call, r.json() return (False, r.status_code, token3) if r.headers['Content-Type'] in ['application/json'] : # return data return (True,r.json(),token3) else: logging.error('%s:%s: No valid JSON data retrieved from API' % (script_file,func_name)) #print "ERROR >>>>>>>>>>>>>", api_call #print 'r.request.headers:',r.request.headers #print 'r.headers:',r.headers #print 'r.content:',r.content #exit(1) return (False, r.status_code, token3) except requests.exceptions.ConnectionError as e: logging.error('%s:%s: ConnectionError: %s' % (script_file,func_name,e)) return (False, 503, token3) ``` #### File: cosy/data/data_init.py ```python import os import sys import time from datetime import datetime import sqlite3 #print "sqlite3 ", sqlite3.version, "run-time SQLite library version ",sqlite3.sqlite_version # Import custom modules ################## Variables #################################### Variables #################################### Variables ################## from global_config import logging, now_file, DB_API script_file = "%s: %s" % (now_file,os.path.basename(__file__)) # define working database for module db = DB_API # common db operations from data_common import create_connection, execute_sql ################## Functions ###################################### Functions ###################################### Functions #################### def init_db(databases): """ Create databases for COSY. > databases[list of db dict definitions] < True, False """ func_name = sys._getframe().f_code.co_name # Defines name of function for logging logging.debug('%s:%s: Initiate databases' % (script_file,func_name)) # iterate databases & build for db, db_sql_dict in databases.iteritems() : # get execute order list from 'sort' value exec_order = sorted(db_sql_dict, key=lambda x: db_sql_dict[x]['sort']) # Get sorted order table build data for table in exec_order: # initiate CREATE TABLE sql sql_str = "" + "CREATE TABLE IF NOT EXISTS %s (" % table if 'pk' in db_sql_dict[table] : for pk, detail in db_sql_dict[table]['pk'].iteritems(): sql_str = sql_str + "%s %s, " % (pk, detail) if 'vfields' in db_sql_dict[table] : for vfield, detail in db_sql_dict[table]['vfields'].iteritems(): sql_str += "%s %s, " % (vfield, detail) if 'sfields' in db_sql_dict[table] : for sfield, detail in db_sql_dict[table]['sfields'].iteritems(): sql_str += "%s %s, " % (sfield, detail) if 'constraints' in db_sql_dict[table] : for cfield, detail in db_sql_dict[table]['constraints'].iteritems(): sql_str += "%s %s, " % (cfield, detail) # terminate sql statement sql_str = sql_str[:-2] sql_str += ");" # create table execute_sql(db, sql_str) if 'commands' in db_sql_dict[table] : for command, detail in db_sql_dict[table]['commands'].iteritems(): sql_str = "%s %s;" % (command, detail) # create table execute_sql(db, sql_str) return True def init_user(table,auth_json): """ Create initial user credentials for cosy API access. TODO: Access user:password from secure file via ssh... > table, json auth details < user5 {'passwd': '', 'client_secret': '', 'id': , 'client_id': '', 'user': ''} """ func_name = sys._getframe().f_code.co_name # Defines name of function for logging logging.debug('%s:%s: Create initial user credentials in table: %s' % (script_file,func_name,table)) try : # connect to / create db conn = create_connection(db) # generate values to insert user_detail = (auth_json['user'], auth_json['user'], auth_json['passwd'], auth_json['client_id'], auth_json['client_secret'], datetime.now()) # connection object as context manager with conn: cur = conn.cursor() cur.execute("""INSERT OR REPLACE INTO {tn}(id, user, passwd, client_id, client_secret, create_date) VALUES ( (SELECT id FROM {tn} WHERE user = ?), ?, ?, ?, ?, ? )""".format(tn=table),user_detail) # get userID to return userID = cur.lastrowid except sqlite3.OperationalError as e: logging.error('%s:%s: Table does not exist - database file missing?' % (script_file,func_name)) raise e finally: ##### Test #for row in conn.execute('SELECT * FROM {tn}'.format(tn=table)): # print row conn.close() # add user id to auth_json > user5 auth_json['id'] = userID return auth_json ``` #### File: cosy/data/data.py ```python import os import sys import time from datetime import datetime import sqlite3 #print "sqlite3 ", sqlite3.version, "run-time SQLite library version ",sqlite3.sqlite_version # Import custom modules ################## Variables #################################### Variables #################################### Variables ################## from global_config import logging, now_file, DB_DATA, TB_COMM, TB_CEVENT, TB_CECONF script_file = "%s: %s" % (now_file,os.path.basename(__file__)) # define working database for module db = DB_DATA # get database definition dict from db_sql import DATABASES from data_common import create_connection, insert_statement, dict_factory ################## Functions ###################################### Functions ###################################### Functions #################### def insert_data(user_id, table, json): """ Insert or Replace data for database. N.B. Causes id to increment if inserting without id and will reset defaults where fields not passed. > user_id, table name, json data < True, False """ func_name = sys._getframe().f_code.co_name # Defines name of function for logging logging.debug('%s:%s: Insert or Replace data to table: %s.%s' % (script_file,func_name,db,table)) try : # build dynamic insert statement components insert3 = insert_statement(user_id, db, table, json) # connect to / create db conn = create_connection(db) #print insert3[0] #print insert3[1] #print insert3[2] # connection object as context manager with conn: conn.executemany("INSERT OR REPLACE INTO {tn}({tf}) VALUES ({ih})".format(tn=table,tf=insert3[0],ih=insert3[1]),insert3[2]) # connection object using 'with' will rool back db on exception and close on complete except sqlite3.IntegrityError as e: logging.error('%s:%s: SQL IntegrityError: %s' % (script_file,func_name,e)) #raise e return False # e.g. returns false if no control unit discovered... except sqlite3.OperationalError as e: logging.error('%s:%s: SQLite Operational Error: %s' % (script_file,func_name,e)) raise e #return False except sqlite3.ProgrammingError as e: logging.error('%s:%s: SQLite Programming Error: %s' % (script_file,func_name,e)) raise e #return False finally: ##### Test #for row in conn.execute('SELECT * FROM {tn}'.format(tn=table)): # print row conn.close() return True def manage_control(table, sysID = None, method = 'Get idst', data = None): """ Enforce 'self' bool for control unit > user_id, table, sysID, [status] < idst, False idst:{'status': u'OK', 'user_id': 1, 'status_bool': 1, 'URI': u'http://172.16.32.40:8000/api/0.1/env/reg/710011/', 'sysID': 710011, 'system_type': 31, 'last_config: [date],} """ func_name = sys._getframe().f_code.co_name # Defines name of function for logging logging.debug('%s:%s: Manage control unit method: %s' % (script_file,func_name,method)) try : # connect to / create db conn = create_connection(db) # connection object as context manager with conn: if method == 'status': # status update if data is None: conn.execute("UPDATE {tn} SET status_bool = 1, status = 'OK' WHERE sysID = ?;".format(tn=table),(sysID,)) else: conn.execute("UPDATE {tn} SET status_bool = 0, status = ? WHERE sysID = ?;".format(tn=table),(data,sysID)) elif method == 'config': conn.execute("UPDATE {tn} SET last_config = ? WHERE sysID = ?;".format(tn=table),(datetime.now(),sysID)) elif method == 'self': # enforce cuID conn.execute("UPDATE {tn} SET self_bool = 0;".format(tn=table)) conn.execute("UPDATE {tn} SET self_bool = 1 WHERE sysID = ?;".format(tn=table),(sysID,)) ###### Test #for row in conn.execute('SELECT * FROM {tn}'.format(tn=table)): # print row ## get idst to return # over write row_factory to return JSON conn.row_factory = dict_factory cur = conn.cursor() # get data cur.execute("SELECT user_id, sysID, system_type, status_bool, status, URI, last_config from {tn} WHERE self_bool = 1;".format(tn=table)) idst = cur.fetchone() # connection object using 'with' will rool back db on exception and close on complete except sqlite3.IntegrityError as e: logging.error('%s:%s: SQL IntegrityError: %s' % (script_file,func_name,e)) raise e #return False except sqlite3.OperationalError as e: logging.error('%s:%s: SQLite Operational Error: %s' % (script_file,func_name,e)) #raise e return False except sqlite3.ProgrammingError as e: logging.error('%s:%s: SQLite Programming Error: %s' % (script_file,func_name,e)) raise e #return False finally: conn.close() return idst def manage_comms(idst, data_json = False, method = None): """ Get comms for target system > idst, [API sent confirmation transactionID list] < True, (api_put, api_post, api_get) TODO - currently one way - need both ways """ func_name = sys._getframe().f_code.co_name # Defines name of function for logging logging.debug('%s:%s: Manage communications data method %s' % (script_file,func_name,method)) try : # connect to / create db conn = create_connection(db) ####### Update comms queue from API call if method == 'insert' : with conn: for json in data_json : conn.execute("""INSERT OR REPLACE INTO {tn} (id, comm_sent, control_sys, transactionID, source, target, data, priority, URI, complete_req, complete, last_date, user_id) VALUES ( (SELECT id FROM {tn} WHERE control_sys = {cs} AND transactionID = {ti}), ifnull((SELECT comm_sent FROM {tn} WHERE control_sys = {cs} AND transactionID = {ti}),0), ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?); """.format(tn=TB_COMM,cs=json['control_sys'],ti=json['transactionID']),( json['control_sys'], json['transactionID'], json.get('source',None), json.get('target',None), json.get('data',None), json.get('priority',None), json.get('URI',None), json.get('complete_req',0), json.get('complete',0), datetime.now(), idst['user_id'] )) # return true ret_val = True ####### Update comms queue and events elif method == 'updatelist' : # iterate transactions and update sent in comms queue and event TODO: update many without iterator with conn: for ident in data_json: conn.execute("UPDATE {tn} SET comm_sent = 1, URI=?, complete = ? WHERE control_sys = ? AND transactionID = ?;".format(tn=TB_COMM),ident) # remove URI ident = ident[1:] conn.execute("UPDATE {tn} SET link_confirmed = 1, complete = ? WHERE control_sys = ? AND transactionID = ?;".format(tn=TB_CEVENT),ident) # return true ret_val = True ####### Sync events and comms queue else : with conn : ### NEW COMMS QUEUE >> EVENTS # get incomplete items from comms queue & insert into events where targeted conn.execute("""INSERT INTO {tu} (control_sys, source, target, data, transactionID, priority, link_complete_req, last_date, user_id) SELECT control_sys, source, target, data, transactionID, priority, complete_req, last_date, user_id FROM {tn} WHERE control_sys = ? AND target = ? AND NOT EXISTS ( SELECT a.* FROM {tn} AS a INNER JOIN {tu} AS b ON a.transactionID = b.transactionID AND a.control_sys = b.control_sys );""".format(tn=TB_COMM,tu=TB_CEVENT),(idst['sysID'], idst['system_type'])) ### NEW EVENTS >> COMMS QUEUE ## insert sample data #conn.execute("""INSERT INTO {tu} (control_sys, source, target, data, priority, user_id, event_config, link_complete_req) # VALUES # (7010002, 31, 13, "data ish", 1, 1, 1, 1), # (7010002, 31, 13, "more data wee", 1, 1, 1, 1), # (7010002, 31, 13, "bingo even more data", 1, 1, 1, 1) # ;""".format(tu=TB_CEVENT)) # generate transactionID in events # TODO: test consistency of transactionID generated here and in Django # TODO: update fails if no event type # alternative: event['transactionID'] = "3%s%s%s" % (str(event['source']).zfill(2),str(event['event_type']).zfill(2),event['id']) conn.execute("""UPDATE {tn} SET transactionID = '3'||substr('00'||source,-2,2)||(SELECT substr('00'||event_type,-2,2) FROM {tn2} WHERE {tn}.event_config = {tn2}.id)||id WHERE target NOT NULL AND transactionID IS NULL ;""".format(tn=TB_CEVENT,tn2=TB_CECONF)) # get incomplete items from events & insert into comms queue where targeted conn.execute("""INSERT INTO {tu} (control_sys, transactionID, source, target, data, priority, last_date, user_id, complete_req) SELECT control_sys, transactionID, source, target, data, priority, last_date, user_id, link_complete_req FROM {tn} AS a WHERE a.control_sys = ? AND a.source = ? AND NULLIF(a.complete,0) IS NULL AND a.transactionID IS NOT NULL AND NOT EXISTS ( SELECT * FROM {tn} AS b INNER JOIN {tu} AS c ON b.control_sys = c.control_sys AND b.transactionID = c.transactionID WHERE a.transactionID = b.transactionID ) ;""".format(tn=TB_CEVENT,tu=TB_COMM),(idst['sysID'], idst['system_type'])) ### UPDATE EVENTS >> COMMS QUEUE # update comms queue where events completed conn.execute("""UPDATE {tu} SET data = (SELECT data FROM {ts} WHERE {ts}.control_sys = {tu}.control_sys AND {ts}.transactionID = {tu}.transactionID ), complete = 1 WHERE EXISTS ( SELECT * FROM {ts} WHERE {ts}.control_sys = {tu}.control_sys AND {ts}.transactionID = {tu}.transactionID AND {ts}.complete = 1 AND NULLIF({tu}.complete,0) IS NULL ); """.format(tu=TB_COMM, ts=TB_CEVENT)) ### UPDATE COMMS QUEUE >> EVENTS # update comms queue where events completed conn.execute("""UPDATE {tu} SET data = (SELECT data FROM {ts} WHERE {ts}.control_sys = {tu}.control_sys AND {ts}.transactionID = {tu}.transactionID ), complete = 1 WHERE EXISTS ( SELECT * FROM {ts} WHERE {ts}.control_sys = {tu}.control_sys AND {ts}.transactionID = {tu}.transactionID AND {ts}.complete = 1 AND NULLIF({tu}.complete,0) IS NULL ); """.format(tu=TB_CEVENT, ts=TB_COMM)) #### Test #print ">>>>>>>>>>>>>>>>>>>>>> EVENTS" #for row in conn.execute('SELECT * FROM {tn}'.format(tn=TB_CEVENT)): # print row #print ">>>>>>>>>>>>>>>>>>>>>> COMMS QUEUE" #for row in conn.execute('SELECT * FROM {tn}'.format(tn=TB_COMM)): # print row ########### Return JSON comms queue for API PUT (UPDATE) and POST # over write row_factory to return JSON conn.row_factory = dict_factory cur = conn.cursor() ### get JSON comms events that need API GET - e.g. events generated locally requiring completion at API # define fields for select #fields = "control_sys, meter, data, transactionID, source, target, priority, complete_req, complete, URI" fields = "meter, transactionID, complete" # get data for comms sync cur.execute("""SELECT {tf} FROM {tn} WHERE comm_sent = 1 AND complete_req = 1 AND NULLIF(complete,0) IS NULL AND URI NOT NULL AND target < ? ORDER BY priority DESC; """.format(tn=TB_COMM,tf=fields),(idst['system_type'],)) api_get = cur.fetchall() ### get JSON comms events that need API POST (e.g. originating below API) # define fields for select fields = "control_sys, meter, data, transactionID, source, target, priority, complete_req, complete" # get data for comms sync cur.execute("""SELECT {tf} FROM {tn} WHERE NULLIF(comm_sent,0) IS NULL AND URI IS NULL AND target < ? ORDER BY priority DESC; """.format(tn=TB_COMM,tf=fields),(idst['system_type'],)) api_post = cur.fetchall() ### get JSON comms events that need API PUT (UPDATES) (e.g. originating from API) # define fields for select #fields = "sysID, meter, data, transactionID, source, target, priority, complete_req, complete, URI" fields = "control_sys, transactionID, data, complete, complete_req, URI" # get data for comms sync cur.execute("""SELECT {tf} FROM {tn} WHERE complete = 1 AND NULLIF(comm_sent,0) IS NULL AND complete_req = 1 AND URI NOT NULL ORDER BY priority DESC; """.format(tn=TB_COMM,tf=fields)) api_put = cur.fetchall() # return pu and post JSON ret_val = (api_put, api_post, api_get) # connection object using 'with' will rool back db on exception and close on complete except sqlite3.IntegrityError as e: logging.error('%s:%s: SQL IntegrityError: %s' % (script_file,func_name,e)) raise e #return False except sqlite3.OperationalError as e: logging.error('%s:%s: SQLite Operational Error: %s' % (script_file,func_name,e)) raise e #return False except sqlite3.ProgrammingError as e: logging.error('%s:%s: SQLite Programming Error: %s' % (script_file,func_name,e)) raise e #return False except ValueError as e: logging.error('%s:%s: ValueError: %s' % (script_file,func_name,e)) raise e #return False finally: #### Test #for row in conn.execute('SELECT * FROM {tn}'.format(tn=TB_CEVENT)): # print row #for row in conn.execute('SELECT * FROM {tn}'.format(tn=TB_COMM)): # print row conn.close() return ret_val def get_policies(tb_pol, tb_ceconf, idst): """ Get policies associated with control unit > policy table, event config table, idst < policies, eventconfig """ func_name = sys._getframe().f_code.co_name # Defines name of function for logging logging.debug('%s:%s: Get policies (%s) and event config (%s)' % (script_file,func_name,tb_pol,tb_ceconf)) try : # connect to / create db conn = create_connection(db) # over write row_factory to return JSON conn.row_factory = dict_factory cur = conn.cursor() # get data cur.execute("""SELECT id, name, policy_data, default_event FROM {tn} WHERE user_id = ? ;""".format(tn=tb_pol),(idst['user_id'],)) policies = cur.fetchall() cur.execute("""SELECT * FROM {tn} WHERE user_id = ? ;""".format(tn=tb_ceconf),(idst['user_id'],)) eventconfig = cur.fetchall() except sqlite3.OperationalError as e: logging.debug('%s:%s: SQLite Operational Error: %s' % (script_file,func_name,e)) #raise e return False except sqlite3.ProgrammingError as e: logging.error('%s:%s: SQLite Programming Error: %s' % (script_file,func_name,e)) raise e #return False finally: ##### Test #for row in conn.execute('SELECT * FROM {tn}'.format(tn=table)): # print row conn.close() return policies, eventconfig def manage_event(table, user_id, method = None, data = None): """ Manage events > table, method (last_event, ...), data < last event """ func_name = sys._getframe().f_code.co_name # Defines name of function for logging logging.debug('%s:%s: Manage event method %s (%s)' % (script_file,func_name,method,table)) try : # connect to / create db conn = create_connection(db) # over write row_factory to return JSON conn.row_factory = dict_factory # connection object as context manager with conn: cur = conn.cursor() # get last event if method == 'last_event': # get data cur.execute("""SELECT * FROM {tn} WHERE event_config = ? ORDER BY last_date DESC LIMIT 1 ;""".format(tn=table),(data,)) rdata = cur.fetchone() # insert event else: # build dynamic insert statement components insert3 = insert_statement(user_id, db, table, data) #print insert3[0] #print insert3[1] #print insert3[2][0] cur.execute("""INSERT INTO {tn}({tf}) VALUES ({ih}) ;""".format(tn=table,tf=insert3[0],ih=insert3[1]),insert3[2][0]) rdata = cur.lastrowid # connection object using 'with' will rool back db on exception and close on complete except sqlite3.IntegrityError as e: logging.error('%s:%s: SQL IntegrityError: %s' % (script_file,func_name,e)) raise e #return False except sqlite3.OperationalError as e: logging.debug('%s:%s: SQLite Operational Error: %s' % (script_file,func_name,e)) raise e #return False except sqlite3.ProgrammingError as e: logging.error('%s:%s: SQLite Programming Error: %s' % (script_file,func_name,e)) raise e #return False finally: ##### Test #for row in conn.execute('SELECT * FROM {tn}'.format(tn=table)): # print row conn.close() return rdata ```
{ "source": "jobdataexchange/competensor", "score": 3 }
#### File: competensor/utils/db.py ```python from sqlalchemy.orm import Session from contextlib import contextmanager from models.models import engine, Pipeline from copy import deepcopy @contextmanager def jdx_database_session_query_scope(): session = Session(engine) try: yield session session.commit() except: session.rollback() raise finally: session.close() class JDXDatabase(object): def __init__(self, tablename='pipeline', uri="postgresql+psycopg2://postgres:password@jdx-postgres:5432/jdx_reference_backend_application"): self.tablename = tablename self.uri = uri def get_pipeline_from_job_description(self, job_description_id): # I dont' know why this is throwing an error, looks like # querying by uuid can be problematic # # pipeline_query = self.session.query(self.Pipeline)\ # .filter_by(pipeline_id=job_description_id) # pipeline = pipeline_query.one() # for row in session.query(self.Pipeline).all(): # if job_description_id == vars(row)['pipeline_id']: # return vars(row) # return pipeline with jdx_database_session_query_scope() as session: pipeline_query = session.query(Pipeline).filter_by( pipeline_id=job_description_id ) pipeline = pipeline_query.one() pipeline_copy = deepcopy(pipeline) return pipeline_copy def get_raw_text_from_pipeline(self, pipeline_id): pipeline = self.get_pipeline_from_job_description(pipeline_id) with jdx_database_session_query_scope() as session: session.add(pipeline) return pipeline.file_text def get_context_object_json(self, pipeline_id): pipeline = self.get_pipeline_from_job_description(pipeline_id) with jdx_database_session_query_scope() as session: session.add(pipeline) return pipeline.context_object ``` #### File: utils/parser/clearinghouse.py ```python import xlrd from xlrd import open_workbook import numpy as np import pandas as pd import re def read_excel_with_formatting(file_path, sheet_name, skiprows=0, competency_col=2): # adopted from https://stackoverflow.com/a/7991458/3662899 wb = open_workbook(file_path, formatting_info=True) sheet = wb.sheet_by_name(sheet_name) font = wb.font_list value_arr = ['']*sheet.nrows indent = [0]*sheet.nrows numeric = ['']*sheet.nrows bgcol = [0]*sheet.nrows weight = [0]*sheet.nrows tags = [""]*sheet.nrows # cycle through all cells to get colors for idx, row in enumerate(range(sheet.nrows)): if idx < skiprows: continue for column in range(sheet.ncols): cell = sheet.cell(row, column) if xlrd.XL_CELL_EMPTY != cell.ctype: value = str(cell.value) tag = '' if column == competency_col: fmt = wb.xf_list[cell.xf_index] bgcol[row] = fmt.background.background_colour_index weight[row] = font[fmt.font_index].weight indent[row] = fmt.alignment.indent_level match = re.match(r'^([\d\.]*)(.*)', value) if match.lastindex >= 2: value_arr[row] = match.groups()[1].strip() if 0 != match.lastindex: tag = match.groups()[0] numeric[row] = match.groups()[0] prefix = ', ' if not tags[row].strip(): # first tag starts with a value, not a comma prefix = '' if not tag: tag = re.match('^([\d\.]*)', value).group() # some times the numeric tag is repeated in another column # (such as the comptency column) so we do a quick check to avoid # repeating numeric values if tag.strip() and tags[row] != tag: tags[row] += prefix + tag df = pd.DataFrame({"background": bgcol, "weight": weight, "indent": indent, "numeric": numeric, "value": value_arr, "tags": tags }) df.replace('', np.nan, inplace=True) df.dropna(inplace=True, subset=['value']) return df def induce_tags(df, include_section=True): ''' Assuming top level tags we uniquely tag other columns by both forward filling to perserve the top level hierarchy and make each row unique appending the row number. It is possible to do hierarchical tagging by inspecting the weight and indent level but this is good enough for now. ACE might request hierarchical tagging though. ''' ret = df.replace('', np.nan) ret.tags.fillna(method='ffill', inplace=True) ret.tags =\ [', row='.join(elem) for elem in zip(ret.tags.astype(str), (ret.index+1).astype(str))] ret.dropna(subset=['value'], inplace=True) if include_section: ret.tags = 'section ' + ret.tags return ret ```
{ "source": "jobdataexchange/jdx-api", "score": 2 }
#### File: jdxapi/routes/framework_selections.py ```python from jdxapi.app import api, DB from jdxapi.models import Pipeline, FrameworkRecommendation, Framework from jdxapi.utils.logger_resource import LoggerResource from flask import request, jsonify from sqlalchemy.orm.exc import NoResultFound, MultipleResultsFound from jdxapi.utils.error import ApiError from jdxapi.utils.functions import RequestHandler import datetime import jdxapi.utils.constants as c from jdxapi.utils.functions import RequestHandler, ResponseHandler @api.resource("/framework-selections") class FrameworkSelections(LoggerResource): def post(self): req = request.get_json() pipeline_id = RequestHandler.get_pipeline_id(req, True) pipeline = Pipeline.get_pipeline_from_id(pipeline_id) competencies = req[c.FRAMEWORKS].get(c.COMPETENCY) occupations = req[c.FRAMEWORKS].get(c.OCCUPATION) industries = req[c.FRAMEWORKS].get(c.INDUSTRY) self.validate(pipeline_id, competencies) frameworks = self.compile_frameworks(competencies, occupations, industries) self.store_given_frameworks(pipeline, frameworks) resp_data = self.create_response_data(pipeline_id) response = ResponseHandler.create_response(resp_data, 200) return response def validate(self, pipeline_id, competencies): if not pipeline_id: raise ApiError(f"Must have a '{c.PIPELINE_ID}''", 422) if not competencies: raise ApiError("Must have at least one competency", 422) def compile_frameworks(self, *framework_lists): frameworks = [] for framework in framework_lists: if framework: frameworks += [*framework] return frameworks def store_given_frameworks(self, pipeline, frameworks): # Pass frameworks to pipeline given_frameworks = [item[c.FRAMEWORK_ID] for item in frameworks] for framework_id in given_frameworks: that_framework = Framework.get_framework_from_id(framework_id) pipeline.frameworks.append(that_framework) DB.session.commit() def create_response_data(self, pipeline_id): resp_data = { c.PIPELINE_ID: str(pipeline_id), c.TIMESTAMP: str(datetime.datetime.now()), } return resp_data ``` #### File: jdxapi/utils/error.py ```python from flask import jsonify import logging class ApiError(Exception): def __init__(self, message, status_code=400, payload=None): Exception.__init__(self) self.message = message self.status_code = status_code self.payload = payload or () def get_response(self): print(self.payload) logger = logging.getLogger('inputoutput') logger.exception('ApiError:') ret = dict(self.payload) ret['message'] = self.message return jsonify(ret), self.status_code # todo improve this so i can log the api resp ``` #### File: tests/models/test_framework_model.py ```python from pocha import describe, it, before, after from expects import expect, equal, be_none, be, be_above, be_true, have_keys # from ..pocha_setup import application # import uuid from model_setup import setup_environment, restore_environment, get_app, get_db from jdxapi.models import * setup_environment = before(setup_environment) restore_environment = after(restore_environment) @describe('framework model') def _(): # @describe('Pipeline.user_is_authorized_to_access_pipeline') # def _(): # testDB = get_db() # auth_user_token = <PASSWORD>() # unauth_user_token = uuid.uuid4() # new_pipeline = pipeline_model.Pipeline( # user_token=auth_user_token, # file_name="file_name", # file_format="file_format", # file_text="file_text" # ) # testDB.session.add(new_pipeline) # testDB.session.commit() # pipeline_id = new_pipeline.pipeline_id # @it('passes when a user access their pipeline') # def _(): # result = pipeline_model.Pipeline.user_is_authorized_to_access_pipeline( # auth_user_token, # pipeline_id # ) # expect(result).to(equal(True)) # @it('fails when a user access someone elses pipeline') # def _(): # result = pipeline_model.Pipeline.user_is_authorized_to_access_pipeline( # unauth_user_token, # pipeline_id # ) # expect(result).to(equal(False)) @it('does stuff', skip=True) def _(): pass ```
{ "source": "JobDoesburg/landolfio", "score": 2 }
#### File: website/asset_media/admin.py ```python from django.contrib import admin from django.utils.safestring import mark_safe from nested_admin.nested import NestedStackedInline, NestedModelAdmin from asset_media.models import MediaSet, MediaItem class AssetMediaItemInline(NestedStackedInline): model = MediaItem fk_name = "set" extra = 0 fields = ["thumbnail", "media"] readonly_fields = ["thumbnail"] def thumbnail(self, obj): return mark_safe( '<a href={url} target="_blank"><img src="{url}" width="{width}" /></a>'.format( url=obj.media.url, width=400, ) ) @admin.register(MediaSet) class MediaSetAdmin(NestedModelAdmin): inlines = [AssetMediaItemInline] class Media: """Necessary to use AutocompleteFilter.""" @admin.register(MediaItem) class MediaItemAdmin(admin.ModelAdmin): fields = ["set", "media", "file"] readonly_fields = ["file"] def file(self, obj): return mark_safe( '<a href={url} target="_blank"><img src="{url}" width="{width}"/></a>'.format( url=obj.media.url, width=1080, ) ) class Media: """Necessary to use AutocompleteFilter.""" ``` #### File: website/asset_media/models.py ```python import os from django.db import models from django.db.models import CASCADE, SET_NULL from django.utils import timezone from asset_events.models import Event from assets.models import Asset class MediaSet(models.Model): class Meta: verbose_name = "media set" verbose_name_plural = "media sets" date = models.DateTimeField(default=timezone.now, blank=False, null=False) asset = models.ForeignKey(Asset, null=True, blank=True, on_delete=CASCADE) event = models.OneToOneField(Event, null=True, blank=True, on_delete=SET_NULL) remarks = models.TextField(null=True, blank=True) def __str__(self): if self.event: return f"{self.asset} media - {self.event}" return f"{self.asset} media" def save(self, force_insert=False, force_update=False, using=None, update_fields=None): if self.event: self.asset = self.event.asset super().save(force_insert, force_insert, update_fields, update_fields) def get_upload_path(instance, filename): return f"asset_media/{instance.set.asset.category}/{instance.set.asset.number}/{instance.set.asset.number}_{timezone.now().strftime('%Y-%m-%d_%H-%M-%S')}_{filename}" class MediaItem(models.Model): class Meta: verbose_name = "media item" verbose_name_plural = "media items" set = models.ForeignKey(MediaSet, null=False, blank=False, on_delete=CASCADE) media = models.FileField(null=False, blank=False, upload_to=get_upload_path) def __str__(self): return self.media.name ``` #### File: maintenance/models/maintenance_ticket.py ```python from django.db import models from django.db.models import PROTECT from asset_events.models import SingleStatusChangingEvent from assets.models import Asset from maintenance.models import MaintenanceProvider class AssetMaintenanceTicket(SingleStatusChangingEvent): class Meta: verbose_name = "maintenance ticket" verbose_name_plural = "maintenance tickets" input_statuses = [ Asset.UNDER_REVIEW, Asset.AVAILABLE, Asset.ISSUED_UNPROCESSED, Asset.ISSUED_LOAN, Asset.ISSUED_RENT, ] def get_output_status(self): return Asset.MAINTENANCE_EXTERNAL if self.maintenance_provider else Asset.MAINTENANCE_IN_HOUSE maintenance_provider = models.ForeignKey(MaintenanceProvider, null=True, blank=True, on_delete=PROTECT) class AssetMaintenanceReturn(SingleStatusChangingEvent): class Meta: verbose_name = "maintenance return" verbose_name_plural = "maintenance returns" input_statuses = [Asset.MAINTENANCE_IN_HOUSE, Asset.MAINTENANCE_EXTERNAL] output_status = Asset.AVAILABLE # TODO add FK to a maintenance invoice/report? ``` #### File: moneybird_accounting/models/tax_rate.py ```python from django.db import models from moneybird_accounting.models import MoneybirdReadOnlyResourceModel class TaxRate(MoneybirdReadOnlyResourceModel): class Meta: verbose_name = "tax rate" verbose_name_plural = "tax rates" moneybird_resource_path_name = "tax_rates" moneybird_resource_name = "tax_rate" moneybird_data_fields = [ "name", "percentage", "show_tax", "active", ] # TODO add taxratetype name = models.CharField(blank=True, null=True, max_length=100) percentage = models.DecimalField(blank=True, null=True, max_digits=5, decimal_places=2) show_tax = models.BooleanField(blank=True, null=True) active = models.BooleanField(blank=True, null=True) def __str__(self): return self.name ``` #### File: moneybird_accounting/models/workflow.py ```python from django.db import models from moneybird_accounting.models import MoneybirdReadOnlyResourceModel class Workflow(MoneybirdReadOnlyResourceModel): class Meta: verbose_name = "workflow" verbose_name_plural = "workflows" moneybird_resource_path_name = "workflows" moneybird_resource_name = "workflow" moneybird_data_fields = [ "type", "name", "default", "active", "prices_are_incl_tax", ] WORKFLOW_TYPE_INVOICE_WORKFLOW = "InvoiceWorkflow" WORKFLOW_TYPE_ESTIMATE_WORKFLOW = "EstimateWorkflow" WORKFLOW_TYPES = ( (WORKFLOW_TYPE_INVOICE_WORKFLOW, "Invoice Workflow"), (WORKFLOW_TYPE_ESTIMATE_WORKFLOW, "Estimate Workflow"), ) type = models.CharField(blank=True, null=True, choices=WORKFLOW_TYPES, max_length=20) name = models.CharField(blank=True, null=True, max_length=100) default = models.BooleanField(blank=True, null=True) active = models.BooleanField(blank=True, null=True) prices_are_incl_tax = models.BooleanField(blank=True, null=True) def __str__(self): return self.name ``` #### File: website/moneybird_accounting/moneybird_sync.py ```python import logging from typing import List, Type import moneybird from django.core.exceptions import ValidationError from django.db import IntegrityError from moneybird import MoneyBird, TokenAuthentication from moneybird_accounting.models import * class MoneyBirdSynchronizationError(ValidationError): pass # TODO implement webhooks! class MoneyBirdAPITalker: _logger = logging.getLogger("django.moneybird") _token = settings.MONEYBIRD_API_TOKEN _administration_id = settings.MONEYBIRD_ADMINISTRATION_ID _moneybird = MoneyBird(TokenAuthentication(_token)) @property def moneybird(self): """An Moneybird API instance (can be adapted to support API sessions).""" return self._moneybird @property def administration_id(self): """The administration_id to work with.""" return self._administration_id def sync_objects(self, cls: Type[MoneybirdSynchronizableResourceModel]): """Synchronize all objects of a MoneybirdSynchronizableResourceModel.""" self._logger.info(f"Getting Moneybird {cls.get_moneybird_resource_path_name()} for synchronization") data = self.moneybird.get(f"{cls.get_moneybird_resource_path_name()}/synchronization", self.administration_id,) self._logger.info(f"Moneybird returned {len(data)} {cls.get_moneybird_resource_path_name()}") to_delete = cls.objects.exclude(id__in=[x["id"] for x in data]) if len(to_delete) > 0: self._logger.info( f"Found {len(to_delete)} {cls.get_moneybird_resource_path_name()} to delete: {to_delete}" ) for delete_object in to_delete: delete_object.processed = True delete_object.delete() update_or_create = [] for obj_data in data: try: obj = cls.objects.get(id=obj_data["id"]) except cls.DoesNotExist: self._logger.info(f"Found new {cls.get_moneybird_resource_name()} to create with id {obj_data['id']}") update_or_create.append(obj_data["id"]) else: if obj.version != obj_data["version"]: self._logger.info(f"Found {obj} to be updated") update_or_create.append(obj_data["id"]) return self.update_or_create_objects(cls, update_or_create) def sync_objects_hard(self, cls: Type[MoneybirdSynchronizableResourceModel]): self._logger.info(f"Performing hard sync on {cls} objects, setting version to None.") cls.objects.update(version=None) self.sync_objects(cls) def sync_readonly_objects(self, cls: Type[MoneybirdReadOnlyResourceModel]): data = self.moneybird.get(f"{cls.get_moneybird_resource_path_name()}", self.administration_id,) ids = [] for obj in data: ids.append(obj["id"]) cls.update_or_create_object_from_moneybird(obj) for obj in cls.objects.all(): if obj.id not in ids: obj.processed = True obj.delete() def sync_readwrite_objects(self, cls: Type[MoneybirdReadWriteResourceModel]): data = self.moneybird.get(f"{cls.get_moneybird_resource_path_name()}", self.administration_id,) ids = [] for obj in data: ids.append(obj["id"]) cls.update_or_create_object_from_moneybird(obj) for obj in cls.objects.all(): if obj.id not in ids: obj.processed = True obj.delete() def update_or_create_objects(self, cls: Type[MoneybirdSynchronizableResourceModel], ids: List[str]): """Update or create Moneybird objects with certain ids.""" chunks = [ids[i : i + 100] for i in range(0, len(ids), 100)] for chunk in chunks: self._logger.info( f"Getting {len(chunk)} Moneybird {cls.get_moneybird_resource_path_name()} by id to sync: {chunk}" ) data = self.moneybird.post( f"{cls.get_moneybird_resource_path_name()}/synchronization", {"ids": chunk}, self.administration_id, ) self._logger.info( f"Moneybird returned {len(data)} {cls.get_moneybird_resource_path_name()} to create or update: {data}" ) for object_data in data: self._logger.info( f"Updating or creating {cls.get_moneybird_resource_path_name()} {object_data['id']}: {object_data}" ) cls.update_or_create_object_from_moneybird(object_data) return cls.objects.filter(id__in=ids) def create_moneybird_resource(self, cls: Type[MoneybirdReadWriteResourceModel], data: Dict[str, Any]): """Create a new resource on Moneybird.""" data_filtered = dict([(x, data[x]) for x in data if x not in cls.get_moneybird_readonly_fields()]) try: self._logger.info(f"Creating Moneybird {cls.get_moneybird_resource_path_name()} {id}: {data_filtered}") reply = self.moneybird.post( cls.get_moneybird_resource_path_name(), {cls.get_moneybird_resource_name(): data_filtered}, self.administration_id, ) self._logger.info(f"Moneybird returned {cls.get_moneybird_resource_name()}: {reply}") return reply except moneybird.api.MoneyBird.InvalidData as e: raise IntegrityError(e.response["error"] if e.response["error"] else e.response) def patch_moneybird_resource( self, cls: Type[MoneybirdReadWriteResourceModel], id: str, data: Dict[str, Any], ): """Patch an existing Moneybird resource.""" data_filtered = dict([(x, data[x]) for x in data if x not in cls.get_moneybird_readonly_fields()]) try: self._logger.info(f"Patching Moneybird {cls.get_moneybird_resource_path_name()} {id}: {data_filtered}") reply = self.moneybird.patch( f"{cls.get_moneybird_resource_path_name()}/{id}", {cls.get_moneybird_resource_name(): data_filtered}, self.administration_id, ) self._logger.info(f"Moneybird returned {cls.get_moneybird_resource_name()}: {reply}") return reply except moneybird.api.MoneyBird.InvalidData as e: raise IntegrityError(e.response["error"] if e.response["error"] else e.response) def delete_moneybird_resource(self, cls: Type[MoneybirdReadWriteResourceModel], id: str): """Delete an existing Moneybird resource.""" try: self._logger.info(f"Deleting Moneybird {cls.get_moneybird_resource_path_name()} {id}") return self.moneybird.delete(f"{cls.get_moneybird_resource_path_name()}/{id}", self.administration_id,) except moneybird.api.MoneyBird.APIError as e: if e.status_code == 204: pass else: raise IntegrityError(e.response["error"] if e.response["error"] else e.response) def full_sync(self, hard=False): for cls in MoneybirdReadOnlyResourceModel.__subclasses__(): if not cls._meta.abstract: self.sync_readonly_objects(cls) for cls in MoneybirdReadWriteResourceModel.__subclasses__(): if not cls._meta.abstract: self.sync_readwrite_objects(cls) for cls in MoneybirdSynchronizableResourceModel.__subclasses__(): if not cls._meta.abstract: if hard: self.sync_objects_hard(cls) else: self.sync_objects(cls) ``` #### File: website/moneybird_accounting/tests.py ```python from django.test import TestCase from moneybird_accounting.models import Contact from moneybird_accounting.moneybird_sync import MoneyBirdAPITalker class MoneyBirdAPITalkerTest(TestCase): def setUp(self): self.mb = MoneyBirdAPITalker() def test_sync_contacts(self): """ - No contacts, after sync there are - No updates, nothing touched - Remove contact from Django, reappears - Delete contact from Moneybird, disappears - Update contact, after synced change cascaded :return: """ self.mb.sync_objects(Contact) # TODO write a lot of tests... ``` #### File: rentals/models/issuance_loan.py ```python from django.db import models from django.db.models import PROTECT from asset_events.models import StatusChangingEvent, MultiAssetEvent from assets.models import Asset from moneybird_accounting.models import Contact class SingleAssetLoan(StatusChangingEvent): class Meta: verbose_name = "asset loan" verbose_name_plural = "asset loans" input_statuses = [Asset.AVAILABLE, Asset.ISSUED_UNPROCESSED] output_status = Asset.ISSUED_LOAN loan = models.ForeignKey("AssetLoan", null=False, blank=False, on_delete=PROTECT) @property def contact(self): return self.sale.contact def date(self): return self.sale.date class AssetLoan(MultiAssetEvent): class Meta: verbose_name = "loan" verbose_name_plural = "loans" contact = models.ForeignKey(Contact, null=True, blank=True, on_delete=PROTECT) assets = models.ManyToManyField(Asset, through=SingleAssetLoan) def __str__(self): return f"Loan {', '.join(self.assets.values_list('number', flat=True))}" ```