metadata
dict
text
stringlengths
60
3.49M
{ "source": "JobDoesburg/PUC-admin", "score": 2 }
#### File: pucadmin/frontoffice/forms.py ```python from django import forms from django.conf import settings from django.forms import models, inlineformset_factory from django.utils.safestring import mark_safe from django.utils.translation import gettext_lazy as _ from competitions.models import ( Submission, Competition, Student as CompetitionStudent, Supervisor as CompetitionSupervisor, ) from questions.models import Question, Student as QuestionStudent from schools.models import School class SubmissionForm(models.ModelForm): class Meta: model = Submission fields = [ "competition", "title", "course", "abstract", "document", "school_text", ] privacy_policy = forms.BooleanField(required=True,) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields["competition"].queryset = Competition.open_for_registration() self.fields["competition"].initial = Competition.open_for_registration().first() self.fields["competition"].required = True self.fields["title"].required = True self.fields["title"].help_text = _("The title of your research") self.fields["course"].required = True self.fields["course"].help_text = _( "The course to which your research relates most" ) self.fields["abstract"].required = True self.fields["abstract"].help_text = _( "Provide a brief summary of your research (50 to 300 words)" ) self.fields["document"].required = True self.fields["school_text"].required = True self.fields["school_text"].label = _("School") self.fields["privacy_policy"].label = mark_safe( _( 'The Radboud Pre-University College of Science processes the above data for the purpose of participation in the contest. The personal data will not be stored after processing. I agree with the <a href="%s" target="_blank">privacy regulations of Radboud University</a> and with the processing of the data provided by me for the purposes described above.' ) % settings.PRIVACY_STATEMENT_URL ) def save(self, commit=True): instance = super().save(commit=False) schools = School.objects.filter(name=self.cleaned_data["school_text"].lower()) if schools.exists(): instance.school = schools.first() if commit: instance.save() return instance class CompetitionStudentForm(models.ModelForm): class Meta: model = CompetitionStudent fields = [ "first_name", "last_name", "address_1", "address_2", "zip", "town", "phone", "email", ] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields["first_name"].required = True self.fields["last_name"].required = True self.fields["address_1"].required = True self.fields["zip"].required = True self.fields["town"].required = True self.fields["email"].required = True class CompetitionSupervisorForm(models.ModelForm): class Meta: model = CompetitionSupervisor fields = ["first_name", "last_name", "phone", "email", "course"] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields["first_name"].required = True self.fields["last_name"].required = True self.fields["email"].required = True self.fields["course"].required = True CompetitionStudentFormset = inlineformset_factory( parent_model=Submission, model=CompetitionStudent, form=CompetitionStudentForm, extra=1, can_delete=False, max_num=3, validate_max=True, min_num=1, validate_min=True, ) CompetitionSupervisorFormSet = inlineformset_factory( parent_model=Submission, model=CompetitionSupervisor, form=CompetitionSupervisorForm, extra=0, can_delete=False, max_num=2, validate_max=True, min_num=1, validate_min=True, ) class QuestionSubmissionForm(models.ModelForm): class Meta: model = Question fields = [ "school_text", "course", "research_question", "sub_questions", "message", "expected_end_date", ] widgets = { "research_question": forms.Textarea(attrs={"rows": 2,}), "sub_questions": forms.Textarea(attrs={"rows": 5,}), "message": forms.Textarea(attrs={"rows": 8,}), } privacy_policy = forms.BooleanField(required=True,) expected_end_date = forms.DateField( label=_("Expected end date") ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields["school_text"].required = True self.fields["school_text"].label = _("School") self.fields["course"].required = True self.fields["course"].help_text = _( "The course to which your research relates most" ) self.fields["research_question"].required = True self.fields["sub_questions"].required = True self.fields["message"].required = True self.fields["message"].help_text = _( "Try to be as specific as possible. The more clearly the question is asked, the more specifically the answer can be formulated and the faster you will receive an answer. Also clearly state your subject and research plan in the question. We can help you with the following issues: Choosing a specific topic; Arranging a meeting with an expert; Borrowing material from Radboud University; Conducting an experiment at Radboud University; Collection of literature. Of course, other questions are also welcome, we can always give advice." ) self.fields["privacy_policy"].label = mark_safe( _( 'The Radboud Pre-University College of Science processes the above data for the purpose of answering the questions. The personal data will not be stored after processing. I agree with the <a href="%s" target="_blank">privacy regulations of Radboud University</a> and with the processing of the data provided by me for the purposes described above.' ) % settings.PRIVACY_STATEMENT_URL ) self.fields["expected_end_date"].required = True self.fields["expected_end_date"].help_text = _( "DD-MM-YYYY. When do you expect to be finished with your research." ) self.fields["expected_end_date"].widget.input_type = "date" def save(self, commit=True): instance = super().save(commit=False) schools = School.objects.filter(name=self.cleaned_data["school_text"].lower()) if schools.exists(): instance.school = schools.first() if commit: instance.save() return instance class QuestionStudentForm(models.ModelForm): class Meta: model = QuestionStudent fields = ["first_name", "last_name", "email"] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields["first_name"].required = True self.fields["last_name"].required = True self.fields["email"].required = True QuestionStudentFormset = inlineformset_factory( parent_model=Question, model=QuestionStudent, form=QuestionStudentForm, extra=1, can_delete=False, max_num=3, validate_max=True, min_num=1, validate_min=True, ) ``` #### File: pucadmin/frontoffice/tests.py ```python from django.contrib.auth import get_user_model from django.core.files.uploadedfile import SimpleUploadedFile from django.utils import timezone from django.test import Client, TestCase, RequestFactory from frontoffice import views from frontoffice.forms import ( QuestionStudentFormset, QuestionSubmissionForm, SubmissionForm, CompetitionStudentFormset, CompetitionSupervisorFormSet, ) from organisations.models import Course, Organisation from competitions.models import ( Submission, Competition, Student as CompetitionStudent, Supervisor as CompetitionSupervisor, ) from questions.models import Question, Student as QuestionStudent def _instantiate_formset(formset_class, data, instance=None, initial=None): prefix = formset_class().prefix formset_data = {} for i, form_data in enumerate(data): for name, value in form_data.items(): if isinstance(value, list): for j, inner in enumerate(value): formset_data["{}-{}-{}_{}".format(prefix, i, name, j)] = inner else: formset_data["{}-{}-{}".format(prefix, i, name)] = value formset_data["{}-TOTAL_FORMS".format(prefix)] = len(data) formset_data["{}-INITIAL_FORMS".format(prefix)] = 0 if instance: return formset_class(formset_data, instance=instance, initial=initial) else: return formset_class(formset_data, initial=initial) class QuestionFrontOfficeTest(TestCase): def setUp(self): self.organisation = Organisation.objects.create(name="PUC of Science") self.course = Course.objects.create( name="natuurkunde", slug="nat", organisation=self.organisation ) self.form_data = { "school_text": "Test college Nijmegen", "course": self.course, "research_question": "Lorem ipsum dolor sit amet", "sub_questions": "Test test test", "message": "Test test test", "expected_end_date": timezone.datetime(year=2022, month=1, day=1), "privacy_policy": 1, } self.formset_data = [ { "first_name": "Firstname1", "last_name": "Lastname1", "email": "<EMAIL>", }, { "first_name": "Firstname2", "last_name": "Lastname2", "email": "<EMAIL>", }, ] self.user = get_user_model().objects.create_user( username="test1", email="<EMAIL>" ) self.rf = RequestFactory() self.view = views.QuestionSubmissionView() self.client = Client() self.client.force_login(self.user) def test_privacy_policy_checked(self): with self.subTest("Form is valid"): form = QuestionSubmissionForm(self.form_data) self.assertTrue(form.is_valid(), msg=dict(form.errors)) with self.subTest("Form is not valid"): self.form_data["privacy_policy"] = 0 form = QuestionSubmissionForm(self.form_data) self.assertFalse(form.is_valid(), msg=dict(form.errors)) def test_formset(self): formset = _instantiate_formset(QuestionStudentFormset, self.formset_data) self.assertTrue(formset.is_valid()) def test_submit_form(self): self.form_data["course"] = self.course.id self.form_data["expected_end_date"] = "01-01-2022" formset = _instantiate_formset(QuestionStudentFormset, self.formset_data) data = {**self.form_data, **formset.data} response = self.client.post(f"/frontoffice/question/", data=data, follow=True) self.assertEqual(response.status_code, 200) self.assertEqual(Question.objects.count(), 1) self.assertEqual(QuestionStudent.objects.count(), 2) question = Question.objects.first() student1 = QuestionStudent.objects.first() student2 = QuestionStudent.objects.last() self.assertEqual(question.school_text, self.form_data["school_text"]) self.assertEqual(question.course, self.course) self.assertEqual( question.research_question, self.form_data["research_question"] ) self.assertEqual(question.sub_questions, self.form_data["sub_questions"]) self.assertEqual(question.message, self.form_data["message"]) self.assertEqual( question.expected_end_date, timezone.datetime(year=2022, month=1, day=1).date(), ) self.assertEqual(student1.first_name, self.formset_data[0]["first_name"]) self.assertEqual(student1.last_name, self.formset_data[0]["last_name"]) self.assertEqual(student1.email, self.formset_data[0]["email"]) self.assertEqual(student1.question, question) self.assertEqual(student2.first_name, self.formset_data[1]["first_name"]) self.assertEqual(student2.last_name, self.formset_data[1]["last_name"]) self.assertEqual(student2.email, self.formset_data[1]["email"]) self.assertEqual(student2.question, question) class CompetitionFrontOfficeTest(TestCase): def setUp(self): self.organisation = Organisation.objects.create(name="PUC of Science") self.competition = Competition.objects.create( name="<NAME> 2022", organisation=self.organisation, registration_start=timezone.now() - timezone.timedelta(days=1), registration_end=timezone.now() + timezone.timedelta(days=1), ) self.course = Course.objects.create( name="natuurkunde", slug="nat", organisation=self.organisation ) self.test_file = SimpleUploadedFile( "test_document.pdf", b"\x00\x00\x00", content_type="application/pdf" ) self.form_data = { "title": "Test title", "competition": self.competition, "course": self.course, "abstract": "Lorem ipsum dolor sit amet", "school_text": "Test test", "privacy_policy": 1, } self.student_formset_data = [ { "first_name": "Firstname1", "last_name": "Lastname1", "address_1": "Address 11", "address_2": "Address 12", "zip": "1234 AB", "town": "Nijmegen", "phone": "76543210", "email": "<EMAIL>", }, { "first_name": "Firstname2", "last_name": "Lastname2", "address_1": "Address 12", "address_2": "Address 22", "zip": "4321 AB", "town": "Nijmegen", "phone": "01234567", "email": "<EMAIL>", }, ] self.supervisor_formset_data = [ { "first_name": "Firstname1", "last_name": "Lastname1", "phone": "76543210", "email": "<EMAIL>", "course": self.course, }, ] self.user = get_user_model().objects.create_user( username="test1", email="<EMAIL>" ) self.rf = RequestFactory() self.view = views.CompetitionSubmissionView() self.client = Client() self.client.force_login(self.user) def test_privacy_policy_checked(self): with self.subTest("Form is valid"): form = SubmissionForm(self.form_data, {"document": self.test_file}) self.assertTrue(form.is_valid(), msg=dict(form.errors)) with self.subTest("Form is not valid"): self.form_data["privacy_policy"] = 0 form = SubmissionForm(self.form_data, {"document": self.test_file}) self.assertFalse(form.is_valid(), msg=dict(form.errors)) def test_formset(self): student_formset = _instantiate_formset( CompetitionStudentFormset, self.student_formset_data ) self.assertTrue(student_formset.is_valid()) supervisor_formset = _instantiate_formset( CompetitionSupervisorFormSet, self.supervisor_formset_data ) self.assertTrue(supervisor_formset.is_valid()) def test_submit_form(self): self.form_data["course"] = self.course.id self.form_data["competition"] = self.competition.id self.supervisor_formset_data[0]["course"] = self.course.id student_formset = _instantiate_formset( CompetitionStudentFormset, self.student_formset_data ) supervisor_formset = _instantiate_formset( CompetitionSupervisorFormSet, self.supervisor_formset_data ) data = {**self.form_data, **student_formset.data, **supervisor_formset.data} response = self.client.post(f"/frontoffice/competition/", data, follow=True) # Test does not work because uploading a file does not work properly in test cases # self.assertEqual(response.status_code, 200) # self.assertEqual(Submission.objects.count(), 1) # self.assertEqual(CompetitionStudent.objects.count(), 2) # self.assertEqual(CompetitionSupervisor.objects.count(), 1) # submission = Submission.objects.first() # student1 = CompetitionStudent.objects.first() # student2 = CompetitionStudent.objects.last() # supervisor = CompetitionSupervisor.objects.first() # # self.assertEqual(submission.competition, self.competition) # self.assertEqual(submission.title, self.form_data["title"]) # self.assertEqual(submission.course, self.course) # self.assertEqual(submission.abstract, self.form_data["abstract"]) # self.assertEqual(submission.school_text, self.form_data["school_text"]) # self.assertEqual( # student1.first_name, self.student_formset_data[0]["first_name"] # ) # self.assertEqual(student1.last_name, self.student_formset_data[0]["last_name"]) # self.assertEqual(student1.address_1, self.student_formset_data[0]["address_1"]) # self.assertEqual(student1.address_2, self.student_formset_data[0]["address_2"]) # self.assertEqual(student1.zip, self.student_formset_data[0]["zip"]) # self.assertEqual(student1.town, self.student_formset_data[0]["town"]) # self.assertEqual(student1.phone, self.student_formset_data[0]["phone"]) # self.assertEqual(student1.email, self.student_formset_data[0]["email"]) # self.assertEqual(student1.submission, submission) # self.assertEqual( # student2.first_name, self.student_formset_data[1]["first_name"] # ) # self.assertEqual(student2.last_name, self.student_formset_data[1]["last_name"]) # self.assertEqual(student2.address_1, self.student_formset_data[1]["address_1"]) # self.assertEqual(student2.address_2, self.student_formset_data[1]["address_2"]) # self.assertEqual(student2.zip, self.student_formset_data[1]["zip"]) # self.assertEqual(student2.town, self.student_formset_data[1]["town"]) # self.assertEqual(student2.phone, self.student_formset_data[1]["phone"]) # self.assertEqual(student2.email, self.student_formset_data[1]["email"]) # self.assertEqual(student2.submission, submission) # self.assertEqual( # supervisor.first_name, self.supervisor_formset_data[0]["first_name"] # ) # self.assertEqual( # supervisor.last_name, self.supervisor_formset_data[0]["last_name"] # ) # self.assertEqual(supervisor.phone, self.supervisor_formset_data[0]["phone"]) # self.assertEqual(supervisor.email, self.supervisor_formset_data[0]["email"]) # self.assertEqual(supervisor.course, self.course) # self.assertEqual(supervisor.submission, submission) ``` #### File: pucadmin/organisations/admin.py ```python from django.contrib import admin from django.contrib.admin import register from django.utils.translation import gettext_lazy as _ from .models import Organisation, Course, User @register(Organisation) class OrganisationAdmin(admin.ModelAdmin): pass @register(Course) class CourseAdmin(admin.ModelAdmin): radio_fields = {"organisation": admin.VERTICAL} list_display = ( "name", "slug", "_num_schools", ) def _num_schools(self, obj): return obj.schools.count() _num_schools.short_description = _("#schools") @register(User) class UserAdmin(admin.ModelAdmin): fieldsets = ( ( "Personal", { "fields": ( "username", "first_name", "last_name", "email", "alternative_email", ) }, ), ( "Administration", { "fields": ( "organisation", "date_joined", "last_login", "is_staff", "is_active", "is_superuser", "groups", "user_permissions", ), }, ), ) filter_horizontal = ( "groups", "user_permissions", ) list_display_links = ("username", "__str__") list_display = ( "username", "__str__", "email", "alternative_email", "organisation", "is_active", "is_staff", "last_login", ) list_filter = ( "organisation", "is_active", "is_staff", "last_login", ) search_fields = ( "username", "first_name", "last_name", ) ``` #### File: pucadmin/questions/tests.py ```python from django.contrib.auth import get_user_model from django.core import mail from django.test import TestCase from organisations.models import Course, Organisation from questions.models import Question, CourseAssignee class QuestionModelTest(TestCase): def setUp(self): self.organisation = Organisation.objects.create(name="PUC of Science") self.assignee1 = get_user_model().objects.create_user( username="test1", email="<EMAIL>" ) self.assignee2 = get_user_model().objects.create_user( username="test2", email="<EMAIL>" ) self.course = Course.objects.create( name="natuurkunde", slug="nat", organisation=self.organisation ) def test_set_first_assignee(self): self.question = Question(course=self.course) CourseAssignee.objects.create(assignee=self.assignee1, course=self.course) self.question.save() self.assertEqual(self.question.assignee, self.assignee1) self.assertEqual(len(mail.outbox), 1) self.assertEqual(mail.outbox[0].to, [self.assignee1.email]) def test_change_assignee(self): self.question = Question(assignee=self.assignee1, course=self.course) self.question.save() self.question.assignee = self.assignee2 self.question.save() self.assertEqual(len(mail.outbox), 2) self.assertEqual(mail.outbox[0].to, [self.assignee1.email]) self.assertEqual(mail.outbox[1].to, [self.assignee2.email]) ``` #### File: pucadmin/secondments/models.py ```python from django.core.exceptions import ValidationError from django.db import models from django.urls import reverse from django.utils.translation import gettext_lazy as _ from organisations.models import Course from schools.models import School class TimePeriod(models.Model): class Meta: verbose_name = _("time period") verbose_name_plural = _("time periods") name = models.CharField( verbose_name=_("name"), max_length=20, help_text=_("For example, 2019-2020") ) start = models.DateField() end = models.DateField() def clean(self): super().clean() errors = {} if self.start > self.end: errors.update({"end": _("End date cannot be before start date.")}) if errors: raise ValidationError(errors) def __str__(self): return self.name class Daypart(models.Model): class Meta: verbose_name = _("daypart") verbose_name_plural = _("dayparts") name = models.CharField(verbose_name=_("name"), max_length=20) def __str__(self): return self.name class StudyProgram(models.Model): class Meta: verbose_name = _("study program") verbose_name_plural = _("study program") name = models.CharField(verbose_name=_("name"), max_length=20) def __str__(self): return self.name class Employee(models.Model): class Meta: verbose_name = _("employee") verbose_name_plural = _("employees") time_period = models.ForeignKey( TimePeriod, verbose_name=_("time period"), on_delete=models.CASCADE, related_query_name="employees", related_name="employees", ) first_name = models.CharField(verbose_name=_("first name"), max_length=20) last_name = models.CharField(verbose_name=_("last name"), max_length=20) phone = models.CharField( # django-doctor: disable=nullable-string-field verbose_name=_("phone"), max_length=20, blank=True, null=True ) email = models.EmailField( verbose_name=_("email"), blank=True, null=True ) # django-doctor: disable=nullable-string-field # django-doctor: disable=nullable-string-field study_program = models.ForeignKey( StudyProgram, verbose_name=_("study program"), on_delete=models.PROTECT, related_query_name="employees", related_name="employees", ) study_year = models.PositiveSmallIntegerField( verbose_name=_("study year"), null=True, blank=True ) courses = models.ManyToManyField(Course, verbose_name=_("courses"),) hours_available = models.PositiveSmallIntegerField( verbose_name=_("hours available"), null=True, blank=True ) dayparts = models.ManyToManyField( Daypart, verbose_name=_("dayparts"), related_query_name="dayparts", related_name="dayparts", ) drivers_license = models.BooleanField(verbose_name=_("drivers license")) contract = models.BooleanField(verbose_name=_("contract")) def __str__(self): return f"{self.first_name} {self.last_name} ({self.time_period})" class SecondmentSchool(models.Model): class Meta: verbose_name = _("school") verbose_name_plural = _("schools") time_period = models.ForeignKey( TimePeriod, verbose_name=_("time period"), on_delete=models.CASCADE, related_query_name="secondment_schools", related_name="secondment_schools", ) school = models.ForeignKey( School, verbose_name=_("school"), on_delete=models.PROTECT, related_query_name="secondment_schools", related_name="secondment_schools", ) contact_person = models.CharField( verbose_name=_("contact person"), max_length=100, blank=True, null=True ) phone = models.CharField( # django-doctor: disable=nullable-string-field verbose_name=_("phone"), max_length=20, blank=True, null=True ) email = models.EmailField( verbose_name=_("email"), blank=True, null=True ) # django-doctor: disable=nullable-string-field # django-doctor: disable=nullable-string-field drivers_license_required = models.BooleanField( verbose_name=_("drivers license required") ) remarks = models.TextField(blank=True, null=True) def __str__(self): return f"{str(self.school)} ({self.contact_person}) ({self.time_period})" class Request(models.Model): class Meta: verbose_name = _("request") verbose_name_plural = _("requests") school = models.ForeignKey( SecondmentSchool, verbose_name=_("school"), on_delete=models.PROTECT, related_query_name="requests", related_name="requests", ) course = models.ForeignKey( Course, verbose_name=_("course"), on_delete=models.PROTECT, related_query_name="secondment_requests", related_name="secondment_requests", ) num_hours = models.PositiveSmallIntegerField( verbose_name=_("num. hours"), null=False, blank=False ) dayparts = models.ManyToManyField( Daypart, verbose_name=_("dayparts"), related_name="requests", related_query_name="requests", ) employee = models.ForeignKey( Employee, verbose_name=_("employee"), on_delete=models.PROTECT, blank=True, null=True, related_query_name="secondments", related_name="secondments", ) remarks = models.TextField(verbose_name=_("remarks"), blank=True, null=True) @property def candidates_url(self): url = reverse("admin:secondments_employee_changelist") url += "?" url += f"time_period__id__exact={self.school.time_period.id}" url += f"&courses__id__exact={self.course.id}" dayparts = [str(x.id) for x in self.dayparts.all()] url += f"&dayparts={','.join(dayparts)}" if self.school.drivers_license_required: url += "&drivers_license__exact=1" return url def __str__(self): return _("Secondment request for %(course)s by %(school)s.") % { "course": self.course, "school": self.school, } ``` #### File: pucadmin/sp/utils.py ```python import datetime from django.conf import settings from django.contrib import auth from django.core.exceptions import ImproperlyConfigured from django.shortcuts import get_object_or_404 from django.utils.module_loading import import_string from .models import IdP IDP_SESSION_KEY = "_idpid" NAMEID_SESSION_KEY = "_nameid" def authenticate(request, idp, saml): return auth.authenticate(request, idp=idp, saml=saml) def login(request, user, idp, saml): auth.login(request, user) # Store the authenticating IdP and actual (not mapped) SAML nameid in the session. set_session_idp(request, idp, saml.get_nameid()) if idp.respect_expiration: if not settings.SESSION_SERIALIZER.endswith("PickleSerializer"): raise ImproperlyConfigured( "IdP-based session expiration is only supported with the " "PickleSerializer SESSION_SERIALIZER." ) try: dt = datetime.datetime.fromtimestamp( saml.get_session_expiration(), tz=datetime.timezone.utc ) request.session.set_expiry(dt) except TypeError: pass def logout(request, idp): auth.logout(request) clear_session_idp(request) def get_request_idp(request, **kwargs): custom_loader = getattr(settings, "SP_IDP_LOADER", None) if custom_loader: return import_string(custom_loader)(request, **kwargs) else: return get_object_or_404(IdP, url_params=kwargs, is_active=True) def get_session_idp(request): return IdP.objects.filter(pk=request.session.get(IDP_SESSION_KEY)).first() def get_session_nameid(request): return request.session.get(NAMEID_SESSION_KEY) def set_session_idp(request, idp, nameid): request.session[IDP_SESSION_KEY] = idp.pk request.session[NAMEID_SESSION_KEY] = nameid def clear_session_idp(request): for key in (IDP_SESSION_KEY, NAMEID_SESSION_KEY): try: del request.session[key] except KeyError: pass ``` #### File: pucadmin/sp/views.py ```python from django.contrib.auth import REDIRECT_FIELD_NAME from django.core import signing from django.http import HttpResponse from django.http.response import HttpResponseBase from django.shortcuts import redirect, render from django.utils import timezone from django.views.decorators.csrf import csrf_exempt from django.views.decorators.http import require_POST from onelogin.saml2.auth import OneLogin_Saml2_Auth from onelogin.saml2.settings import OneLogin_Saml2_Settings from .utils import get_request_idp, get_session_nameid def metadata(request, **kwargs): idp = get_request_idp(request, **kwargs) saml_settings = OneLogin_Saml2_Settings( settings=idp.sp_settings, sp_validation_only=True ) return HttpResponse(saml_settings.get_sp_metadata(), content_type="text/xml") @csrf_exempt @require_POST def acs(request, **kwargs): idp = get_request_idp(request, **kwargs) if request.POST.get("RelayState"): try: # Login with state relayed from our application. state = signing.loads(request.POST["RelayState"], max_age=idp.state_timeout) except (signing.BadSignature, signing.SignatureExpired) as ex: return render( request, "sp/error.html", { "idp": idp, "state": None, "errors": [str(ex)], "reason": "Invalid SSO request signature.", }, status=500, ) else: # IdP-initiated login. state = {"test": False, "verify": False, "redir": ""} saml = OneLogin_Saml2_Auth(idp.prepare_request(request), old_settings=idp.settings) saml.process_response() errors = saml.get_errors() if errors: return render( request, "sp/error.html", { "idp": idp, "state": state, "errors": errors, "reason": saml.get_last_error_reason(), }, status=500, ) else: if state.get("test", False): attrs = [] for saml_attr, value in saml.get_attributes().items(): attr, created = idp.attributes.get_or_create(saml_attribute=saml_attr) attrs.append((attr, "; ".join(value))) return render( request, "sp/test.html", { "idp": idp, "attrs": attrs, "nameid": saml.get_nameid(), "nameid_format": saml.get_nameid_format(), }, ) elif state.get("verify", False): user = idp.authenticate(request, saml) if user == request.user: return redirect(idp.get_login_redirect(state.get("redir"))) else: return render( request, "sp/unauth.html", {"nameid": idp.get_nameid(saml), "idp": idp, "verify": True}, status=401, ) else: user = idp.authenticate(request, saml) if user: if isinstance(user, HttpResponseBase): return user else: idp.login(request, user, saml) idp.last_login = timezone.now() idp.save(update_fields=("last_login",)) return redirect(idp.get_login_redirect(state.get("redir"))) else: return render( request, "sp/unauth.html", {"nameid": idp.get_nameid(saml), "idp": idp, "verify": False}, status=401, ) def slo(request, **kwargs): idp = get_request_idp(request, **kwargs) saml = OneLogin_Saml2_Auth(idp.prepare_request(request), old_settings=idp.settings) state = request.GET.get("RelayState") redir = saml.process_slo() errors = saml.get_errors() if errors: return render( request, "sp/error.html", { "idp": idp, "state": state, "errors": errors, "reason": saml.get_last_error_reason(), }, status=500, ) else: idp.logout(request) if not redir: redir = idp.get_logout_redirect(state) return redirect(redir) def login(request, test=False, verify=False, **kwargs): idp = get_request_idp(request, **kwargs) saml = OneLogin_Saml2_Auth(idp.prepare_request(request), old_settings=idp.settings) reauth = verify or "reauth" in request.GET state = signing.dumps( { "test": test, "verify": verify, "redir": request.GET.get(REDIRECT_FIELD_NAME, ""), } ) # When verifying, we want to pass the (unmapped) SAML nameid, stored in the session. # TODO: do we actually want UPN here, or some other specified mapped field? At least # Auth0 is pre-populating the email field with nameid, which is not what we want. nameid = get_session_nameid(request) if verify else None return redirect(saml.login(state, force_authn=reauth, name_id_value_req=nameid)) def logout(request, **kwargs): idp = get_request_idp(request, **kwargs) redir = idp.get_logout_redirect(request.GET.get(REDIRECT_FIELD_NAME)) saml = OneLogin_Saml2_Auth(idp.prepare_request(request), old_settings=idp.settings) if saml.get_slo_url() and idp.logout_triggers_slo: # If the IdP supports SLO, send it a logout request (it will call our SLO). return redirect(saml.logout(redir)) else: # Handle the logout "locally", i.e. log out via django.contrib.auth by default. idp.logout(request) return redirect(redir) ```
{ "source": "jobe3774/raspend", "score": 3 }
#### File: raspend/utils/workerthreads.py ```python import threading from abc import ABC, abstractmethod from enum import Enum from datetime import datetime, date, time, timedelta class ThreadHandlerBase(ABC): """ This abstract class describes the basic structure of a raspend thread handler. Derive this class and implement the 'prepare' and 'invoke' methods. 'prepare' is called prior to running the thread's loop and 'invoke' is called for every loop iteration. Every thread and therefore every handler instance uses the same shared dictionary to read and write it's data. """ def __init__(self): return super().__init__() def setSharedDict(self, sharedDict): """ Sets the shared dictionary. """ self.sharedDict = sharedDict def setShutdownFlag(self, shutdownFlag): """ Supplies the handler with the application's shutdown flag. Use this shutdown flag for aborting loops within 'invoke'. For example if you are reading a serial port in a loop, you should always check this flag. """ self.shutdownFlag = shutdownFlag def aborted(self): """ Convenience function for checking the shutdown flag. """ return self.shutdownFlag.is_set() @abstractmethod def prepare(self): """ This method is called prior to running the thread's loop. """ pass @abstractmethod def invoke(self): """ This method is called for every loop iteration. """ pass class WorkerThreadBase(ABC, threading.Thread): """ The base class for every worker thread. """ def __init__(self, shutdownEvent, accessLock, threadHandler): """ Parameters: shutdownEvent - an 'Event' object for gracefully shutting down this thread. accessLock - a 'Lock' object for synchronizing access to the thread handler. threadHandler - an instance of a class deriving 'ThreadHandlerBase'. """ threading.Thread.__init__(self) self.shutdownEvent = shutdownEvent self.accessLock = accessLock if not isinstance(threadHandler, ThreadHandlerBase): raise TypeError("'threadHandler' must be a derivative of 'ThreadHandlerBase'.") self.threadHandler = threadHandler return @abstractmethod def run(self): pass class WorkerThread(WorkerThreadBase): """ A worker thread. It sleeps for 'waitTimeout' seconds before doing the next iteration. The run - loop runs until 'shutdownEvent' has been signaled. """ def __init__(self, shutdownEvent, accessLock, threadHandler, waitTimeout): super().__init__(shutdownEvent, accessLock, threadHandler) self.waitTimeout = waitTimeout return def run(self): self.accessLock.acquire() self.threadHandler.prepare() self.accessLock.release() while not self.shutdownEvent.is_set(): self.accessLock.acquire() self.threadHandler.invoke() self.accessLock.release() self.shutdownEvent.wait(self.waitTimeout) return class ScheduleRepetitionType(Enum): """ Constants describing the repetition rate of a scheduled worker thread. """ WEEKLY = 1 DAILY = 2 HOURLY = 3 MINUTELY = 4 SECOND = 5 class ScheduledWorkerThread(WorkerThreadBase): """ A worker thread using a schedule date and time for doing an iteration. 'repetitionType' and 'repetitionFactor' describe the frequency iterations take place. """ def __init__(self, shutdownEvent, accessLock, threadHandler, scheduledTime=None, scheduledDate=None, repetitionType=None, repetitionFactor=1): super().__init__(shutdownEvent, accessLock, threadHandler) if scheduledTime is None: scheduledTime = datetime.now().time() if scheduledDate is None: scheduledDate = datetime.now().date() self.scheduledStart = datetime.combine(scheduledDate, scheduledTime) if repetitionType and not isinstance(repetitionType, ScheduleRepetitionType): raise TypeError("'repetionType' must be of type 'ScheduleRepetitionType' or None.") elif repetitionType is None: repetitionType = ScheduleRepetitionType.DAILY if repetitionFactor < 1: raise ValueError("'repetitionFactor' must be 1 or greater.") self.repetitionType = repetitionType self.repetitionFactor = repetitionFactor return def getTimedeltaFactors(self): weeks = days = hours = minutes = seconds = 0 if self.repetitionType == ScheduleRepetitionType.WEEKLY: weeks = self.repetitionFactor if self.repetitionType == ScheduleRepetitionType.DAILY: days = self.repetitionFactor if self.repetitionType == ScheduleRepetitionType.HOURLY: hours = self.repetitionFactor if self.repetitionType == ScheduleRepetitionType.MINUTELY: minutes = self.repetitionFactor if self.repetitionType == ScheduleRepetitionType.SECOND: seconds = self.repetitionFactor return weeks, days, hours, minutes, seconds def run(self): self.accessLock.acquire() self.threadHandler.prepare() self.accessLock.release() weeks, days, hours, minutes, seconds = self.getTimedeltaFactors() tNow = datetime.now() t0 = self.scheduledStart timeout = (t0 - tNow).total_seconds() # If timeout is negative, then we already passed start time. # In that case we calculate the timeout for the coming iteration. while timeout < 0.0: t1 = t0 + timedelta(days = days, weeks = weeks, hours = hours, minutes = minutes, seconds = seconds) timeout = (t1 - datetime.now()).total_seconds() t0 = t1 while not self.shutdownEvent.wait(timeout): self.accessLock.acquire() self.threadHandler.invoke() self.accessLock.release() t1 = t0 + timedelta(days = days, weeks = weeks, hours = hours, minutes = minutes, seconds = seconds) timeout = (t1 - datetime.now()).total_seconds() t0 = t1 return ```
{ "source": "jobe3774/smartmeter", "score": 3 }
#### File: jobe3774/smartmeter/smartmeter.py ```python import RPi.GPIO as GPIO import logging import json import os import argparse import serial import re from tzlocal import get_localzone from datetime import datetime, timedelta, time, timezone from raspend import RaspendApplication, ThreadHandlerBase from collections import namedtuple class SmartMeterKeys: """ OBIS codes of the EBZ DD3. """ POWER_IMPORT = "1.8.0" POWER_EXPORT = "2.8.0" CURRENT_POWER_SUM = "16.7.0" CURRENT_POWER_L1 = "36.7.0" CURRENT_POWER_L2 = "56.7.0" CURRENT_POWER_L3 = "76.7.0" class SmartMeterConstants: """ Some constants used for identifying begin and end of a datagram. """ DATAGRAM_INITIATOR = '/' DATAGRAM_TERMINATOR = '!' class ReadSmartMeter(ThreadHandlerBase): """ This class reads the datagrams of the EBZ DD3 from the USB device attached to the 'Info-DSS' of the smart meter. """ def __init__(self, sectionName, serialPort, localTimeZone): self.sectionName = sectionName self.serialPort = serialPort self.localTimeZone = localTimeZone self.datagramBuffer = list() self.OBISCodeMap = dict() self.OBISCodeMap[SmartMeterKeys.POWER_IMPORT] = "POWER_IMPORT" self.OBISCodeMap[SmartMeterKeys.POWER_EXPORT] = "POWER_EXPORT" self.OBISCodeMap[SmartMeterKeys.CURRENT_POWER_SUM] = "CURRENT_POWER_SUM" self.OBISCodeMap[SmartMeterKeys.CURRENT_POWER_L1] = "CURRENT_POWER_L1" self.OBISCodeMap[SmartMeterKeys.CURRENT_POWER_L2] = "CURRENT_POWER_L2" self.OBISCodeMap[SmartMeterKeys.CURRENT_POWER_L3] = "CURRENT_POWER_L3" return def extractSmartMeterValues(self, datagram): """ This method extracts only the relevant parts of the datagram and writes them into the shared dictionary. """ regex = r"1-0:(\d+.[8|7].0)\*255\((-?\d+.\d+)\*(\w+)\)" matches = re.finditer(regex, datagram) thisDict = self.sharedDict[self.sectionName] thisDict["timestampUTC"] = datetime.now(timezone.utc).isoformat() for match in matches: strOBISCode = match.group(1) if strOBISCode in self.OBISCodeMap: thisDict[self.OBISCodeMap[strOBISCode]] = {"OBIS_Code": strOBISCode, "value": round(float(match.group(2)), 3), "unit" : match.group(3)} return def prepare(self): """ Open the connected USB device for reading. """ if not self.sectionName in self.sharedDict: self.sharedDict[self.sectionName] = dict() self.serial = serial.Serial(self.serialPort, baudrate = 9600, parity=serial.PARITY_EVEN, stopbits=serial.STOPBITS_ONE, bytesize=serial.SEVENBITS, timeout=1) return def invoke(self): """ Reads one datagram per invocation. Since the smart meter pushes one datagram every second, this should be the minimal timeout for this method. Currently this method is invoked every 5 seconds. """ readDatagram = True beginDatagram = False endDatagram = False self.datagramBuffer.clear() while not self.aborted() and readDatagram: c = self.serial.read().decode("utf-8") if c == SmartMeterConstants.DATAGRAM_INITIATOR: beginDatagram = True endDatagram = False if c == SmartMeterConstants.DATAGRAM_TERMINATOR and beginDatagram: beginDatagram = False endDatagram = True if beginDatagram and not endDatagram: self.datagramBuffer.append(c) if endDatagram and not beginDatagram: self.datagramBuffer.append(c) self.extractSmartMeterValues(''.join(self.datagramBuffer)) readDatagram = beginDatagram = endDatagram = False return class S0InterfaceReader(): """ This class counts the pulses of the Finder smart meter. On every rising edge detected, the GPIO interface invokes the ISR method below. """ def __init__(self, sectionName, sharedDict, accessLock): self.sectionName = sectionName self.sharedDict = sharedDict if sectionName not in self.sharedDict: self.sharedDict[sectionName] = {"count" : 0.0, "timestampUTC": datetime.now(timezone.utc).isoformat()} self.accessLock = accessLock def setValue(self, value): """ This method is used to set the initial counter value of the smart meter. """ success = False self.accessLock.acquire() try: thisDict = self.sharedDict[self.sectionName] thisDict["count"] = float(value) thisDict["timestampUTC"] = datetime.now(timezone.utc).isoformat() success = True except Exception as e: print(e) finally: self.accessLock.release() return success def ISR(self, channel): """ This is the interrupt service routine invoked by the GPIO interface when a rising edge has been detected. """ self.accessLock.acquire() try: thisDict = self.sharedDict[self.sectionName] thisDict["count"] = thisDict["count"] + 0.001 thisDict["timestampUTC"] = datetime.now(timezone.utc).isoformat() except Exception as e: print (e) finally: self.accessLock.release() def main(): localTimeZone = get_localzone() logging.basicConfig(filename='smartmeter.log', level=logging.INFO) logging.info("Starting at {} (PID={})".format(datetime.now(localTimeZone), os.getpid())) # Check commandline arguments. cmdLineParser = argparse.ArgumentParser(prog="smartmeter", usage="%(prog)s [options]") cmdLineParser.add_argument("--port", help="The port number the server should listen on", type=int, required=True) cmdLineParser.add_argument("--serialPort", help="The serial port to read from", type=str, required=True) cmdLineParser.add_argument("--s0Pin", help="The BCM number of the pin connected to the S0 interface", type=int, required=False) try: args = cmdLineParser.parse_args() except SystemExit: return try: myApp = RaspendApplication(args.port) myApp.createWorkerThread(ReadSmartMeter("smartmeter_d0", args.serialPort, localTimeZone), 5) s0Interface = S0InterfaceReader("smartmeter_s0", myApp.getSharedDict(), myApp.getAccessLock()) if args.s0Pin is not None: # Making this method available as a command enables us to set the initial value via HTTP GET. # http://<IP-OF-YOUR-RPI>:<PORT>/cmd?name=s0Interface.setValue&value=<COUNT> myApp.addCommand(s0Interface.setValue); # Setup the GPIO pin for detecting rising edges. GPIO.setmode(GPIO.BCM) GPIO.setup(args.s0Pin, GPIO.IN, pull_up_down = GPIO.PUD_DOWN) GPIO.add_event_detect(args.s0Pin, GPIO.RISING, callback = s0Interface.ISR, bouncetime = 200) myApp.run() logging.info("Stopped at {} (PID={})".format(datetime.now(localTimeZone), os.getpid())) except Exception as e: logging.exception("Unexpected error occured!", exc_info = True) finally: if args.s0Pin is not None: GPIO.cleanup() if __name__ == "__main__": main() ```
{ "source": "jobechoi/bazel", "score": 2 }
#### File: testdata/config_apis_test/input.bzl ```python def exercise_the_api(): _var6 = configuration_field("foo", "bar") exercise_the_api() def transition_func(settings): """A no-op transition function.""" return settings my_transition = transition(implementation = transition_func, inputs = [], outputs = []) def _build_setting_impl(ctx): return [] string_flag = rule( implementation = _build_setting_impl, build_setting = config.string(flag = True), ) int_setting = rule( implementation = _build_setting_impl, build_setting = config.int(flag = False), ) ``` #### File: testdata/proto_format_test/input.bzl ```python def check_function(foo): """Runs some checks on the given function parameter. This rule runs checks on a given function parameter. Use `bazel build` to run the check. Args: foo: A unique name for this rule. """ pass example = provider( doc = "Stores information about an example.", fields = { "foo": "A string representing foo", "bar": "A string representing bar", "baz": "A string representing baz", }, ) def _rule_impl(ctx): print("Hello World") my_example = rule( implementation = _rule_impl, doc = "Small example of rule.", attrs = { "useless": attr.string( doc = "This argument will be ignored.", default = "ignoreme", ), }, ) ``` #### File: py/bazel/bazel_workspace_test.py ```python import os import unittest from src.test.py.bazel import test_base class BazelWorkspaceTest(test_base.TestBase): def testWorkspaceDotBazelFileInMainRepo(self): workspace_dot_bazel = self.ScratchFile("WORKSPACE.bazel") self.ScratchFile("BUILD", [ "py_binary(", " name = 'bin',", " srcs = ['bin.py'],", ")", ]) self.ScratchFile("bin.py") exit_code, _, stderr = self.RunBazel(["build", "//:bin"]) self.AssertExitCode(exit_code, 0, stderr) # If WORKSPACE.bazel is deleted and no WORKSPACE exists, # the build should fail. os.remove(workspace_dot_bazel) exit_code, _, stderr = self.RunBazel(["build", "//:bin"]) self.AssertExitCode(exit_code, 2, stderr) def testWorkspaceDotBazelFileWithExternalRepo(self): self.ScratchDir("A") self.ScratchFile("A/WORKSPACE.bazel") self.ScratchFile("A/BUILD", [ "py_library(", " name = 'lib',", " srcs = ['lib.py'],", " visibility = ['//visibility:public'],", ")", ]) self.ScratchFile("A/lib.py") work_dir = self.ScratchDir("B") # Test WORKSPACE.bazel takes priority over WORKSPACE self.ScratchFile("B/WORKSPACE") workspace_dot_bazel = self.ScratchFile( "B/WORKSPACE.bazel", ["local_repository(name = 'A', path='../A')"]) self.ScratchFile("B/bin.py") self.ScratchFile("B/BUILD", [ "py_binary(", " name = 'bin',", " srcs = ['bin.py'],", " deps = ['@A//:lib'],", ")", ]) exit_code, _, stderr = self.RunBazel(args=["build", ":bin"], cwd=work_dir) self.AssertExitCode(exit_code, 0, stderr) # Test WORKSPACE takes effect after deleting WORKSPACE.bazel os.remove(workspace_dot_bazel) exit_code, _, stderr = self.RunBazel(args=["build", ":bin"], cwd=work_dir) self.AssertExitCode(exit_code, 1, stderr) self.assertIn("no such package '@A//'", "".join(stderr)) # Test a WORKSPACE.bazel directory won't confuse Bazel self.ScratchFile("B/WORKSPACE", ["local_repository(name = 'A', path='../A')"]) self.ScratchDir("B/WORKSPACE.bazel") exit_code, _, stderr = self.RunBazel(args=["build", ":bin"], cwd=work_dir) self.AssertExitCode(exit_code, 0, stderr) if __name__ == "__main__": unittest.main() ``` #### File: py/bazel/query_test.py ```python import unittest from src.test.py.bazel import test_base class QueryTest(test_base.TestBase): def testSimpleQuery(self): self.ScratchFile('WORKSPACE') self.ScratchFile('foo/BUILD', [ 'exports_files(["exported.txt"])', 'filegroup(name = "top-rule", srcs = [":dep-rule"])', 'filegroup(name = "dep-rule", srcs = ["src.txt"])', ]) self.ScratchFile('foo/src.txt') self.ScratchFile('foo/exported.txt') self.ScratchFile('foo/non-exported.txt') self._AssertQueryOutput('//foo:top-rule', '//foo:top-rule') self._AssertQueryOutput('//foo:*', '//foo:top-rule', '//foo:dep-rule', '//foo:src.txt', '//foo:exported.txt', '//foo:BUILD') self._AssertQueryOutput('deps(//foo:top-rule)', '//foo:top-rule', '//foo:dep-rule', '//foo:src.txt') self._AssertQueryOutput('deps(//foo:top-rule, 1)', '//foo:top-rule', '//foo:dep-rule') def _AssertQueryOutput(self, query_expr, *expected_results): exit_code, stdout, stderr = self.RunBazel(['query', query_expr]) self.AssertExitCode(exit_code, 0, stderr) stdout = sorted(x for x in stdout if x) self.assertEqual(len(stdout), len(expected_results)) self.assertListEqual(stdout, sorted(expected_results)) if __name__ == '__main__': unittest.main() ``` #### File: absl/testing/_bazelize_command.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os def get_executable_path(py_binary_path): """Returns the executable path of a py_binary. This returns the executable path of a py_binary that is in another Bazel target's data dependencies. On Linux/macOS, it's the same as the py_binary_path. On Windows, the py_binary_path points to a zip file, and Bazel 0.5.3+ generates a .cmd file that can be used to execute the py_binary. Args: py_binary_path: string, the path of a py_binary that is in another Bazel target's data dependencies. """ if os.name == 'nt': executable_path = py_binary_path + '.cmd' if executable_path.startswith('\\\\?\\'): # In Bazel 0.5.3 and Python 3, the paths starts with "\\?\". # However, Python subprocess doesn't support those paths well. # Strip them as we don't need the prefix. # See this page for more informaton about "\\?\": # https://msdn.microsoft.com/en-us/library/windows/desktop/aa365247. executable_path = executable_path[4:] return executable_path else: return py_binary_path ``` #### File: tools/android/instrumentation_test_check_test.py ```python import unittest from tools.android.instrumentation_test_check import _ExtractTargetPackageName from tools.android.instrumentation_test_check import _ExtractTargetPackageToInstrument from tools.android.instrumentation_test_check import _ValidateManifestPackageNames from tools.android.instrumentation_test_check import ManifestError INSTRUMENTATION_MANIFEST = """<?xml version="1.0" encoding="utf-8"?> <manifest xmlns:android="http://schemas.android.com/apk/res/android" package="com.example.test" > <instrumentation android:targetPackage="com.example" android:name="android.support.test.runner.AndroidJUnitRunner"/> <application android:label="Test"/> </manifest> """ INCORRECT_INSTRUMENTATION_MANIFEST = """<?xml version="1.0" encoding="utf-8"?> <manifest xmlns:android="http://schemas.android.com/apk/res/android" package="com.example.test" > <instrumentation android:targetPackage="not.com.example" android:name="android.support.test.runner.AndroidJUnitRunner"/> <application android:label="Test"/> </manifest> """ TARGET_MANIFEST = """<?xml version="2.0" encoding="utf-8"?> <manifest xmlns:android="http://schemas.android.com/apk/res/android" package="com.example" > <application android:label="App" /> </manifest> """ class InstrumentationTestCheckTest(unittest.TestCase): def test_extract_instrumentation_target_package(self): self.assertEqual( _ExtractTargetPackageToInstrument(INSTRUMENTATION_MANIFEST, ""), "com.example") def test_extract_target_package(self): self.assertEqual( _ExtractTargetPackageName(TARGET_MANIFEST, "unused"), "com.example") def test_target_package_check(self): self.assertEqual( _ValidateManifestPackageNames(INSTRUMENTATION_MANIFEST, "unused", TARGET_MANIFEST, "unused"), ("com.example", "com.example")) def test_target_package_check_failure(self): with self.assertRaises(ManifestError): _ValidateManifestPackageNames(INCORRECT_INSTRUMENTATION_MANIFEST, "unused", TARGET_MANIFEST, "unused") if __name__ == "__main__": unittest.main() ``` #### File: aquery_differ/resolvers/dep_set_resolver.py ```python import copy class DepSetResolver(object): """Utility class to resolve the dependency nested set.""" def __init__(self, dep_set_of_files, artifact_id_to_path): self.dep_set_to_artifact_ids = {} self.id_to_dep_set = {dep_set.id: dep_set for dep_set in dep_set_of_files} self.artifact_id_to_path = artifact_id_to_path def resolve(self, dep_set): """Given a dep set, return the flattened list of input artifact ids. Args: dep_set: the dep set object to be resolved. Returns: The flattened list of input artifact ids. """ if dep_set.id in self.dep_set_to_artifact_ids: return self.dep_set_to_artifact_ids[dep_set.id] artifact_ids = copy.copy([ self.artifact_id_to_path[artifact_id] for artifact_id in dep_set.direct_artifact_ids ]) for transitive_dep_set_id in dep_set.transitive_dep_set_ids: artifact_ids.extend( self.resolve(self.id_to_dep_set[transitive_dep_set_id])) self.dep_set_to_artifact_ids[dep_set.id] = artifact_ids return self.dep_set_to_artifact_ids[dep_set.id] ``` #### File: ctexplain/analyses/summary.py ```python from typing import Tuple # Do not edit this line. Copybara replaces it with PY2 migration helper. from dataclasses import dataclass from tools.ctexplain.types import ConfiguredTarget # Do not edit this line. Copybara replaces it with PY2 migration helper..third_party.bazel.tools.ctexplain.util as util @dataclass(frozen=True) class _Summary(): """Analysis result.""" # Number of configurations in the build's configured target graph. configurations: int # Number of unique target labels. targets: int # Number of configured targets. configured_targets: int # Number of targets that produce multiple configured targets. This is more # subtle than computing configured_targets - targets. For example, if # targets=2 and configured_targets=4, that could mean both targets are # configured twice. Or it could mean the first target is configured 3 times. repeated_targets: int def analyze(cts: Tuple[ConfiguredTarget, ...]) -> _Summary: """Runs the analysis on a build's configured targets.""" configurations = set() targets = set() label_count = {} for ct in cts: configurations.add(ct.config_hash) targets.add(ct.label) label_count[ct.label] = label_count.setdefault(ct.label, 0) + 1 configured_targets = len(cts) repeated_targets = sum([1 for count in label_count.values() if count > 1]) return _Summary( len(configurations), len(targets), configured_targets, repeated_targets) def report(result: _Summary) -> None: """Reports analysis results to the user. We intentionally make this its own function to make it easy to support other output formats (like machine-readable) if we ever want to do that. Args: result: the analysis result """ ct_surplus = util.percent_diff(result.targets, result.configured_targets) print(f""" Configurations: {result.configurations} Targets: {result.targets} Configured targets: {result.configured_targets} ({ct_surplus} vs. targets) Targets with multiple configs: {result.repeated_targets} """) ``` #### File: tools/ctexplain/bazel_api.py ```python import json import os import subprocess from typing import Callable from typing import List from typing import Tuple # Do not edit this line. Copybara replaces it with PY2 migration helper. from frozendict import frozendict from tools.ctexplain.types import Configuration from tools.ctexplain.types import ConfiguredTarget from tools.ctexplain.types import HostConfiguration from tools.ctexplain.types import NullConfiguration def run_bazel_in_client(args: List[str]) -> Tuple[int, List[str], List[str]]: """Calls bazel within the current workspace. For production use. Tests use an alternative invoker that goes through test infrastructure. Args: args: the arguments to call Bazel with Returns: Tuple of (return code, stdout, stderr) """ result = subprocess.run( ["blaze"] + args, cwd=os.getcwd(), stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=False) return (result.returncode, result.stdout.decode("utf-8").split(os.linesep), result.stderr) class BazelApi(): """API that accepts injectable Bazel invocation logic.""" def __init__(self, run_bazel: Callable[[List[str]], Tuple[int, List[str], List[str]]] = run_bazel_in_client): self.run_bazel = run_bazel def cquery(self, args: List[str]) -> Tuple[bool, str, Tuple[ConfiguredTarget, ...]]: """Calls cquery with the given arguments. Args: args: A list of cquery command-line arguments, one argument per entry. Returns: (success, stderr, cts), where success is True iff the query succeeded, stderr contains the query's stderr (regardless of success value), and cts is the configured targets found by the query if successful, empty otherwise. ct order preserves cquery's output order. This is topologically sorted with duplicates removed. So no unique configured target appears twice and if A depends on B, A appears before B. """ base_args = ["cquery", "--show_config_fragments=transitive"] (returncode, stdout, stderr) = self.run_bazel(base_args + args) if returncode != 0: return (False, stderr, ()) cts = [] for line in stdout: if not line.strip(): continue ctinfo = _parse_cquery_result_line(line) if ctinfo is not None: cts.append(ctinfo) return (True, stderr, tuple(cts)) def get_config(self, config_hash: str) -> Configuration: """Calls "bazel config" with the given config hash. Args: config_hash: A config hash as reported by "bazel cquery". Returns: The matching configuration or None if no match is found. Raises: ValueError: On any parsing problems. """ if config_hash == "HOST": return HostConfiguration() elif config_hash == "null": return NullConfiguration() base_args = ["config", "--output=json"] (returncode, stdout, stderr) = self.run_bazel(base_args + [config_hash]) if returncode != 0: raise ValueError("Could not get config: " + stderr) config_json = json.loads(os.linesep.join(stdout)) fragments = frozendict({ _base_name(entry["name"]): tuple(_base_name(clazz) for clazz in entry["fragmentOptions"]) for entry in config_json["fragments"] }) options = frozendict({ _base_name(entry["name"]): frozendict(entry["options"]) for entry in config_json["fragmentOptions"] }) return Configuration(fragments, options) # TODO(gregce): have cquery --output=jsonproto support --show_config_fragments # so we can replace all this regex parsing with JSON reads. def _parse_cquery_result_line(line: str) -> ConfiguredTarget: """Converts a cquery output line to a ConfiguredTarget. Expected input is: "<label> (<config hash>) [configFragment1, configFragment2, ...]" or: "<label> (null)" Args: line: The expected input. Returns: Corresponding ConfiguredTarget if the line matches else None. """ tokens = line.split(maxsplit=2) label = tokens[0] if tokens[1][0] != "(" or tokens[1][-1] != ")": raise ValueError(f"{tokens[1]} in {line} not surrounded by parentheses") config_hash = tokens[1][1:-1] if config_hash == "null": fragments = () else: if tokens[2][0] != "[" or tokens[2][-1] != "]": raise ValueError(f"{tokens[2]} in {line} not surrounded by [] brackets") # The fragments list looks like '[Fragment1, Fragment2, ...]'. Split the # whole line on ' [' to get just this list, then remove the final ']', then # split again on ', ' to convert it to a structured tuple. fragments = tuple(line.split(" [")[1][0:-1].split(", ")) return ConfiguredTarget( label=label, config=None, # Not yet available: we'll need `bazel config` to get this. config_hash=config_hash, transitive_fragments=fragments) def _base_name(full_name: str) -> str: """Strips a fully qualified Java class name to the file scope. Examples: - "A.B.OuterClass" -> "OuterClass" - "A.B.OuterClass$InnerClass" -> "OuterClass$InnerClass" Args: full_name: Fully qualified class name. Returns: Stripped name. """ return full_name.split(".")[-1] ``` #### File: tools/ctexplain/bazel_api_test.py ```python import os import unittest from src.test.py.bazel import test_base from tools.ctexplain.bazel_api import BazelApi from tools.ctexplain.types import HostConfiguration from tools.ctexplain.types import NullConfiguration class BazelApiTest(test_base.TestBase): _bazel_api: BazelApi = None def setUp(self): test_base.TestBase.setUp(self) self._bazel_api = BazelApi(self.RunBazel) self.ScratchFile('WORKSPACE') self.CreateWorkspaceWithDefaultRepos('repo/WORKSPACE') def tearDown(self): test_base.TestBase.tearDown(self) def testBasicCquery(self): self.ScratchFile('testapp/BUILD', [ 'filegroup(name = "fg", srcs = ["a.file"])', ]) res = self._bazel_api.cquery(['//testapp:all']) success = res[0] cts = res[2] self.assertTrue(success) self.assertEqual(len(cts), 1) self.assertEqual(cts[0].label, '//testapp:fg') self.assertIsNone(cts[0].config) self.assertGreater(len(cts[0].config_hash), 10) self.assertIn('PlatformConfiguration', cts[0].transitive_fragments) def testFailedCquery(self): self.ScratchFile('testapp/BUILD', [ 'filegroup(name = "fg", srcs = ["a.file"])', ]) (success, stderr, cts) = self._bazel_api.cquery(['//testapp:typo']) self.assertFalse(success) self.assertEqual(len(cts), 0) self.assertIn("target 'typo' not declared in package 'testapp'", os.linesep.join(stderr)) def testTransitiveFragmentsAccuracy(self): self.ScratchFile('testapp/BUILD', [ 'filegroup(name = "fg", srcs = ["a.file"])', 'filegroup(name = "ccfg", srcs = [":ccbin"])', 'cc_binary(name = "ccbin", srcs = ["ccbin.cc"])' ]) cts1 = self._bazel_api.cquery(['//testapp:fg'])[2] self.assertNotIn('CppConfiguration', cts1[0].transitive_fragments) cts2 = self._bazel_api.cquery(['//testapp:ccfg'])[2] self.assertIn('CppConfiguration', cts2[0].transitive_fragments) def testGetTargetConfig(self): self.ScratchFile('testapp/BUILD', [ 'filegroup(name = "fg", srcs = ["a.file"])', ]) cts = self._bazel_api.cquery(['//testapp:fg'])[2] config = self._bazel_api.get_config(cts[0].config_hash) expected_fragments = ['PlatformConfiguration', 'JavaConfiguration'] for exp in expected_fragments: self.assertIn(exp, config.fragments.keys()) core_options = config.options['CoreOptions'] self.assertIsNotNone(core_options) self.assertIn(('stamp', 'false'), core_options.items()) def testGetHostConfig(self): self.ScratchFile('testapp/BUILD', [ 'genrule(', ' name = "g",', ' srcs = [],', ' cmd = "",', ' outs = ["g.out"],', ' tools = [":fg"])', 'filegroup(name = "fg", srcs = ["a.file"])', ]) query = ['//testapp:fg', '--universe_scope=//testapp:g'] cts = self._bazel_api.cquery(query)[2] config = self._bazel_api.get_config(cts[0].config_hash) self.assertIsInstance(config, HostConfiguration) # We don't currently populate or read a host configuration's details. self.assertEqual(len(config.fragments), 0) self.assertEqual(len(config.options), 0) def testGetNullConfig(self): self.ScratchFile('testapp/BUILD', [ 'filegroup(name = "fg", srcs = ["a.file"])', ]) cts = self._bazel_api.cquery(['//testapp:a.file'])[2] config = self._bazel_api.get_config(cts[0].config_hash) self.assertIsInstance(config, NullConfiguration) # Null configurations have no information by definition. self.assertEqual(len(config.fragments), 0) self.assertEqual(len(config.options), 0) def testConfigFragmentsMap(self): self.ScratchFile('testapp/BUILD', [ 'filegroup(name = "fg", srcs = ["a.file"])', ]) cts = self._bazel_api.cquery(['//testapp:fg'])[2] fragments_map = self._bazel_api.get_config(cts[0].config_hash).fragments self.assertIn('PlatformOptions', fragments_map['PlatformConfiguration']) self.assertIn('ShellConfiguration$Options', fragments_map['ShellConfiguration']) def testConfigWithDefines(self): self.ScratchFile('testapp/BUILD', [ 'filegroup(name = "fg", srcs = ["a.file"])', ]) cquery_args = ['//testapp:fg', '--define', 'a=b'] cts = self._bazel_api.cquery(cquery_args)[2] config = self._bazel_api.get_config(cts[0].config_hash) user_defined_options = config.options['user-defined'] self.assertIsNotNone(user_defined_options) self.assertDictEqual(user_defined_options._dict, {'--define:a': 'b'}) def testConfigWithStarlarkFlags(self): self.ScratchFile('testapp/defs.bzl', [ 'def _flag_impl(settings, attr):', ' pass', 'string_flag = rule(', ' implementation = _flag_impl,', ' build_setting = config.string(flag = True)' ')' ]) self.ScratchFile('testapp/BUILD', [ 'load(":defs.bzl", "string_flag")', 'string_flag(name = "my_flag", build_setting_default = "nada")', 'filegroup(name = "fg", srcs = ["a.file"])', ]) cquery_args = ['//testapp:fg', '--//testapp:my_flag', 'algo'] cts = self._bazel_api.cquery(cquery_args)[2] config = self._bazel_api.get_config(cts[0].config_hash) user_defined_options = config.options['user-defined'] self.assertIsNotNone(user_defined_options) self.assertDictEqual(user_defined_options._dict, {'//testapp:my_flag': 'algo'}) if __name__ == '__main__': unittest.main() ``` #### File: tools/ctexplain/lib.py ```python from typing import Tuple # Do not edit this line. Copybara replaces it with PY2 migration helper..third_party.bazel.tools.ctexplain.bazel_api as bazel_api from tools.ctexplain.types import ConfiguredTarget def analyze_build(bazel: bazel_api.BazelApi, labels: Tuple[str, ...], build_flags: Tuple[str, ...]) -> Tuple[ConfiguredTarget, ...]: """Gets a build invocation's configured targets. Args: bazel: API for invoking Bazel. labels: The targets to build. build_flags: The build flags to use. Returns: Configured targets representing the build. Raises: RuntimeError: On any invocation errors. """ cquery_args = [f'deps({",".join(labels)})'] cquery_args.extend(build_flags) (success, stderr, cts) = bazel.cquery(cquery_args) if not success: raise RuntimeError("invocation failed: " + stderr.decode("utf-8")) # We have to do separate calls to "bazel config" to get the actual configs # from their hashes. hashes_to_configs = {} cts_with_configs = [] for ct in cts: # Don't use dict.setdefault because that unconditionally calls get_config # as one of its parameters and that's an expensive operation to waste. if ct.config_hash not in hashes_to_configs: hashes_to_configs[ct.config_hash] = bazel.get_config(ct.config_hash) config = hashes_to_configs[ct.config_hash] cts_with_configs.append( ConfiguredTarget(ct.label, config, ct.config_hash, ct.transitive_fragments)) return tuple(cts_with_configs) ``` #### File: tools/distributions/system_repo.bzl ```python def _system_repo_impl(ctx): symlinks = ctx.attr.symlinks for link in symlinks: target = symlinks[link] ctx.symlink(target, link) ctx.file("WORKSPACE", "workspace(name = \"{name}\")\n".format(name = ctx.name)) ctx.file("BUILD.bazel", ctx.read(ctx.attr.build_file)) system_repo = repository_rule( implementation = _system_repo_impl, attrs = { "symlinks": attr.string_dict( doc = """ Symlinks to create for this system repo. The key is the link path under this repo, the value should be an absolute target path on the system that we want to link. """, ), "build_file": attr.label( allow_single_file = True, mandatory = True, doc = "The file to use as the BUILD file for this repository.", ), }, doc = "A repository rule for providing system libraries for Bazel build", ) ``` #### File: tools/sh/sh_configure.bzl ```python def _is_windows(repository_ctx): """Returns true if the host OS is Windows.""" return repository_ctx.os.name.startswith("windows") def _sh_config_impl(repository_ctx): """sh_config rule implementation. Detects the path of the shell interpreter on the local machine and stores it in a sh_toolchain rule. Args: repository_ctx: the repository rule context object """ sh_path = repository_ctx.os.environ.get("BAZEL_SH") if not sh_path: if _is_windows(repository_ctx): sh_path = repository_ctx.which("bash.exe") if sh_path: # repository_ctx.which returns a path object, convert that to # string so we can call string.startswith on it. sh_path = str(sh_path) # When the Windows Subsystem for Linux is installed there's a # bash.exe under %WINDIR%\system32\bash.exe that launches Ubuntu # Bash which cannot run native Windows programs so it's not what # we want. windir = repository_ctx.os.environ.get("WINDIR") if windir and sh_path.startswith(windir): sh_path = None else: sh_path = repository_ctx.which("bash") if not sh_path: sh_path = repository_ctx.which("sh") if not sh_path: sh_path = "" if sh_path and _is_windows(repository_ctx): sh_path = sh_path.replace("\\", "/") repository_ctx.file("BUILD", """ load("@bazel_tools//tools/sh:sh_toolchain.bzl", "sh_toolchain") sh_toolchain( name = "local_sh", path = "{sh_path}", visibility = ["//visibility:public"], ) toolchain( name = "local_sh_toolchain", toolchain = ":local_sh", toolchain_type = "@bazel_tools//tools/sh:toolchain_type", ) """.format(sh_path = sh_path)) sh_config = repository_rule( environ = [ "WINDIR", "PATH", ], local = True, implementation = _sh_config_impl, ) def sh_configure(): """Detect the local shell interpreter and register its toolchain.""" sh_config(name = "local_config_sh") native.register_toolchains("@local_config_sh//:local_sh_toolchain") ```
{ "source": "jobeckham7/pear-admin-flask", "score": 3 }
#### File: common/script/initdb.py ```python from dotenv import dotenv_values import sqlparse import pymysql config = dotenv_values('.env') # MySql配置信息 HOST = config.get('MYSQL_HOST') or '127.0.0.1' PORT = config.get('MYSQL_PORT') or 3306 DATABASE = config.get('MYSQL_DATABASE') or 'PearAdminFlask' USERNAME = config.get('MYSQL_USERNAME') or 'root' PASSWORD = config.get('MYSQL_PASSWORD') or '<PASSWORD>' def is_exist_database(): db = pymysql.connect(host=HOST, port=int(PORT), user=USERNAME, password=PASSWORD, charset='utf8mb4') cursor1 = db.cursor() sql = "select * from information_schema.SCHEMATA WHERE SCHEMA_NAME = '%s' ; " % DATABASE res = cursor1.execute(sql) db.close() return res def init_database(): db = pymysql.connect(host=HOST, port=int(PORT), user=USERNAME, password=PASSWORD, charset='utf8mb4') cursor1 = db.cursor() sql = "CREATE DATABASE IF NOT EXISTS %s" % DATABASE res = cursor1.execute(sql) db.close() return res def execute_fromfile(filename): db = pymysql.connect(host=HOST, port=int(PORT), user=USERNAME, password=PASSWORD, database=DATABASE, charset='utf8mb4') fd = open(filename, 'r', encoding='utf-8') cursor = db.cursor() sqlfile = fd.read() sqlfile = sqlparse.format(sqlfile, strip_comments=True).strip() sqlcommamds = sqlfile.split(';') for command in sqlcommamds: try: cursor.execute(command) db.commit() except Exception as msg: db.rollback() db.close() def init_db(): if is_exist_database(): print('数据库已经存在,为防止误初始化,请手动删除 %s 数据库' % str(DATABASE)) return if init_database(): print('数据库%s创建成功' % str(DATABASE)) execute_fromfile('test/pear.sql') print('表创建成功') print('欢迎使用pear-admin-flask,请使用 flask run 命令启动程序') ``` #### File: applications/schemas/admin_user.py ```python from applications.extensions import ma from marshmallow import fields from applications.models import Dept # 用户models的序列化类 class UserSchema(ma.Schema): id = fields.Integer() username = fields.Str() realname = fields.Str() enable = fields.Integer() create_at = fields.DateTime() update_at = fields.DateTime() dept = fields.Method("get_dept") def get_dept(self, obj): if obj.dept_id != None: return Dept.query.filter_by(id=obj.dept_id).first().dept_name else: return None ``` #### File: view/admin/dict.py ```python from flask import Blueprint, render_template, request, jsonify from applications.common import curd from applications.common.helper import ModelFilter from applications.common.utils.http import table_api, success_api, fail_api from applications.common.utils.rights import authorize from applications.common.utils.validate import xss_escape from applications.extensions import db from applications.models import DictType, DictData from applications.schemas import DictTypeSchema, DictDataSchema admin_dict = Blueprint('adminDict', __name__, url_prefix='/admin/dict') # 数据字典 @admin_dict.get('/') @authorize("admin:dict:main", log=True) def main(): return render_template('admin/dict/main.html') @admin_dict.get('/dictType/data') @authorize("admin:dict:main", log=True) def dict_type_data(): # 获取请求参数 type_name = xss_escape(request.args.get('typeName', type=str)) # 查询参数构造 mf = ModelFilter() if type_name: mf.vague(field_name="type_name", value=type_name) # orm查询 # 使用分页获取data需要.items dict_all = DictType.query.filter(mf.get_filter(DictType)).layui_paginate() count = dict_all.total data = curd.model_to_dicts(schema=DictTypeSchema, data=dict_all.items) return table_api(data=data, count=count) @admin_dict.get('/dictType/add') @authorize("admin:dict:add", log=True) def dict_type_add(): return render_template('admin/dict/add.html') @admin_dict.post('/dictType/save') @authorize("admin:dict:add", log=True) def dict_type_save(): req_json = request.json description = xss_escape(req_json.get("description")) enable = xss_escape(req_json.get("enable")) type_code = xss_escape(req_json.get("typeCode")) type_name = xss_escape(req_json.get("typeName")) d = DictType(type_name=type_name, type_code=type_code, enable=enable, description=description) db.session.add(d) db.session.commit() if d.id is None: return fail_api(msg="增加失败") return success_api(msg="增加成功") # 编辑字典类型 @admin_dict.get('/dictType/edit') @authorize("admin:dict:edit", log=True) def dict_type_edit(): _id = request.args.get('dictTypeId', type=int) dict_type = DictType.query.filter_by(id=_id).first() return render_template('admin/dict/edit.html', dict_type=dict_type) # 编辑字典类型 @admin_dict.put('/dictType/update') @authorize("admin:dict:edit", log=True) def dict_type_update(): req_json = request.json id = xss_escape(req_json.get("id")) description = xss_escape(req_json.get("description")) enable = xss_escape(req_json.get("enable")) type_code = xss_escape(req_json.get("typeCode")) type_name = xss_escape(req_json.get("typeName")) DictType.query.filter_by(id=id).update({ "description": description, "enable": enable, "type_code": type_code, "type_name": type_name }) db.session.commit() return success_api(msg="更新成功") # 启用字典 @admin_dict.put('/dictType/enable') @authorize("admin:dict:edit", log=True) def dict_type_enable(): _id = request.json.get('id') if id: res = curd.enable_status(DictType,_id) if not res: return fail_api(msg="出错啦") return success_api("启动成功") return fail_api(msg="数据错误") # 禁用字典 @admin_dict.put('/dictType/disable') @authorize("admin:dict:edit", log=True) def dict_type_dis_enable(): _id = request.json.get('id') if id: res = curd.disable_status(DictType,_id) if not res: return fail_api(msg="出错啦") return success_api("禁用成功") return fail_api(msg="数据错误") # 删除字典类型 @admin_dict.delete('/dictType/remove/<int:_id>') @authorize("admin:dict:remove", log=True) def dict_type_delete(_id): res = curd.delete_one_by_id(DictType,_id) if not res: return fail_api(msg="删除失败") return success_api(msg="删除成功") @admin_dict.get('/dictData/data') @authorize("admin:dict:main", log=True) def dict_code_data(): type_code = xss_escape(request.args.get('typeCode', type=str)) dict_data = DictData.query.filter_by(type_code=type_code).layui_paginate() count = dict_data.total data = curd.model_to_dicts(schema=DictDataSchema, data=dict_data.items) return table_api(data=data, count=count) # 增加字典数据 @admin_dict.get('/dictData/add') @authorize("admin:dict:add", log=True) def dict_data_add(): type_code = request.args.get('typeCode', type=str) return render_template('admin/dict/data/add.html', type_code=type_code) # 增加字典数据 @admin_dict.post('/dictData/save') @authorize("admin:dict:add", log=True) def dict_data_save(): req_json = request.json data_label = xss_escape(req_json.get("dataLabel")) data_value = xss_escape(req_json.get("dataValue")) enable = xss_escape(req_json.get("enable")) remark = xss_escape(req_json.get("remark")) type_code = xss_escape(req_json.get("typeCode")) d = DictData(data_label=data_label, data_value=data_value, enable=enable, remark=remark, type_code=type_code) db.session.add(d) db.session.commit() if not d.id: return jsonify(success=False, msg="增加失败") return jsonify(success=True, msg="增加成功") # 编辑字典数据 @admin_dict.get('/dictData/edit') @authorize("admin:dict:edit", log=True) def dict_data_edit(): _id = request.args.get('dataId', type=str) dict_data = curd.get_one_by_id(DictData, _id) return render_template('admin/dict/data/edit.html', dict_data=dict_data) # 编辑字典数据 @admin_dict.put('/dictData/update') @authorize("admin:dict:edit", log=True) def dict_data_update(): req_json = request.json id = req_json.get("dataId") DictData.query.filter_by(id=id).update({ "data_label": xss_escape(req_json.get("dataLabel")), "data_value": xss_escape(req_json.get("dataValue")), "enable": xss_escape(req_json.get("enable")), "remark": xss_escape(req_json.get("remark")), "type_code": xss_escape(req_json.get("typeCode")) }) db.session.commit() return success_api(msg="更新成功") # 启用字典数据 @admin_dict.put('/dictData/enable') @authorize("admin:dict:edit", log=True) def dict_data_enable(): _id = request.json.get('dataId') if _id: res = curd.enable_status(model=DictData, id=_id) if not res: return fail_api(msg="出错啦") return success_api(msg="启动成功") return fail_api(msg="数据错误") # 禁用字典数据 @admin_dict.put('/dictData/disable') @authorize("admin:dict:edit", log=True) def dict_data_disenable(): _id = request.json.get('dataId') if _id: res = curd.disable_status(model=DictData, id=_id) if not res: return fail_api(msg="出错啦") return success_api(msg="禁用成功") return fail_api(msg="数据错误") # 删除字典类型 @admin_dict.delete('dictData/remove/<int:id>') @authorize("admin:dict:remove", log=True) def dict_data_delete(id): res = curd.delete_one_by_id(model=DictData, id=id) if not res: return fail_api(msg="删除失败") return success_api(msg="删除成功") ```
{ "source": "jobec/rfc5424-logging-handler", "score": 2 }
#### File: rfc5424-logging-handler/rfc5424logging/transport.py ```python import io import socket import ssl import sys if sys.version_info.major == 3: text_stream_types = io.TextIOBase bytes_stream_types = io.BufferedIOBase else: text_stream_types = io.TextIOBase bytes_stream_types = io.BufferedIOBase, file # noqa: F821 SYSLOG_PORT = 514 # RFC6587 framing FRAMING_OCTET_COUNTING = 1 FRAMING_NON_TRANSPARENT = 2 class TCPSocketTransport: def __init__(self, address, timeout, framing): self.socket = None self.address = address self.timeout = timeout self.framing = framing self.open() def open(self): error = None host, port = self.address addrinfo = socket.getaddrinfo(host, port, 0, socket.SOCK_STREAM) if not addrinfo: raise OSError("getaddrinfo returns an empty list") for entry in addrinfo: family, socktype, _, _, sockaddr = entry try: self.socket = socket.socket(family, socktype) self.socket.settimeout(self.timeout) self.socket.connect(sockaddr) # Connected successfully. Erase any previous errors. error = None break except OSError as e: error = e if self.socket is not None: self.socket.close() if error is not None: raise error def transmit(self, syslog_msg): # RFC6587 framing if self.framing == FRAMING_NON_TRANSPARENT: syslog_msg = syslog_msg.replace(b"\n", b"\\n") syslog_msg = b"".join((syslog_msg, b"\n")) else: syslog_msg = b" ".join((str(len(syslog_msg)).encode("ascii"), syslog_msg)) try: self.socket.sendall(syslog_msg) except (OSError, IOError): self.close() self.open() self.socket.sendall(syslog_msg) def close(self): self.socket.close() class TLSSocketTransport(TCPSocketTransport): def __init__( self, address, timeout, framing, tls_ca_bundle, tls_verify, tls_client_cert, tls_client_key, tls_key_password, ): self.tls_ca_bundle = tls_ca_bundle self.tls_verify = tls_verify self.tls_client_cert = tls_client_cert self.tls_client_key = tls_client_key self.tls_key_password = tls_key_password super(TLSSocketTransport, self).__init__(address, timeout, framing=framing) def open(self): super(TLSSocketTransport, self).open() context = ssl.create_default_context( purpose=ssl.Purpose.SERVER_AUTH, cafile=self.tls_ca_bundle ) context.verify_mode = ssl.CERT_REQUIRED if self.tls_verify else ssl.CERT_NONE server_hostname, _ = self.address if self.tls_client_cert: context.load_cert_chain( self.tls_client_cert, self.tls_client_key, self.tls_key_password ) self.socket = context.wrap_socket(self.socket, server_hostname=server_hostname) class UDPSocketTransport: def __init__(self, address, timeout): self.socket = None self.address = address self.timeout = timeout self.open() def open(self): error = None host, port = self.address addrinfo = socket.getaddrinfo(host, port, 0, socket.SOCK_DGRAM) if not addrinfo: raise OSError("getaddrinfo returns an empty list") for entry in addrinfo: family, socktype, _, _, sockaddr = entry try: self.socket = socket.socket(family, socktype) self.socket.settimeout(self.timeout) self.address = sockaddr break except OSError as e: error = e if self.socket is not None: self.socket.close() if error is not None: raise error def transmit(self, syslog_msg): try: self.socket.sendto(syslog_msg, self.address) except (OSError, IOError): self.close() self.open() self.socket.sendto(syslog_msg, self.address) def close(self): self.socket.close() class UnixSocketTransport: def __init__(self, address, socket_type): self.socket = None self.address = address self.socket_type = socket_type self.open() def open(self): if self.socket_type is None: socket_types = [socket.SOCK_DGRAM, socket.SOCK_STREAM] else: socket_types = [self.socket_type] for type_ in socket_types: # Syslog server may be unavailable during handler initialisation. # So we ignore connection errors try: self.socket = socket.socket(socket.AF_UNIX, type_) self.socket.connect(self.address) self.socket_type = type_ break except OSError: if self.socket is not None: self.socket.close() def transmit(self, syslog_msg): try: self.socket.send(syslog_msg) except (OSError, IOError): self.close() self.open() self.socket.send(syslog_msg) def close(self): self.socket.close() class StreamTransport: def __init__(self, stream): if isinstance(stream, text_stream_types): self.text_mode = True elif isinstance(stream, bytes_stream_types): self.text_mode = False else: raise ValueError("Stream is not of a valid stream type") if not stream.writable(): raise ValueError("Stream is not a writeable stream") self.stream = stream def transmit(self, syslog_msg): syslog_msg = syslog_msg + b"\n" if self.text_mode: syslog_msg = syslog_msg.decode(self.stream.encoding, "replace") self.stream.write(syslog_msg) def close(self): # Closing the stream is left up to the user. pass ```
{ "source": "jobedylbas/querido-diario", "score": 3 }
#### File: gazette/spiders/rj_rio_de_janeiro.py ```python import datetime import scrapy from dateutil.rrule import DAILY, rrule from gazette.items import Gazette from gazette.spiders.base import BaseGazetteSpider class RjRioDeJaneiroSpider(BaseGazetteSpider): TERRITORY_ID = "3304557" name = "rj_rio_de_janeiro" allowed_domains = ["doweb.rio.rj.gov.br"] start_date = datetime.date(2006, 3, 16) def start_requests(self): for date in rrule( freq=DAILY, dtstart=self.start_date, until=datetime.date.today() ): day = str(date.day).zfill(2) month = str(date.month).zfill(2) url = f"https://doweb.rio.rj.gov.br/apifront/portal/edicoes/edicoes_from_data/{date.year}-{month}-{day}.json" yield scrapy.Request(url=url, cb_kwargs={"gazette_date": date.date()}) def parse(self, response, gazette_date): gazette_data = response.json() if gazette_data["erro"]: return items = gazette_data.get("itens", []) for item in items: gazette_id = item["id"] gazette_url = ( f"https://doweb.rio.rj.gov.br/portal/edicoes/download/{gazette_id}" ) is_extra_edition = item["suplemento"] == 1 yield Gazette( date=gazette_date, file_urls=[gazette_url], is_extra_edition=is_extra_edition, power="executive", ) ``` #### File: gazette/spiders/rr_boa_vista.py ```python import scrapy import w3lib.url from dateparser import parse from gazette.items import Gazette from gazette.spiders.base import BaseGazetteSpider class RrBoaVistaSpider(BaseGazetteSpider): TERRITORY_ID = "1400100" name = "rr_boa_vista" allowed_domains = ["boavista.rr.gov.br"] start_urls = ["https://www.boavista.rr.gov.br/diario-oficial"] def parse(self, response): options = response.xpath('//*[@id="Periodo"]/optgroup/option/@value') for option in options: data = option.extract() url = w3lib.url.add_or_replace_parameter(response.url, "Periodo", data) yield scrapy.Request(url, self.parse_period) def parse_period(self, response): div_list = response.xpath('//*[@class="bldownload"]') for div in div_list: content = div.xpath("./div/text()").extract() date = parse(content[1], languages=["pt"]).date() url = div.xpath("./a/@href").extract_first() url = response.urljoin(url) power = "executive_legislature" yield Gazette( date=date, file_urls=[url], is_extra_edition=False, power=power, ) ``` #### File: gazette/spiders/sc_florianopolis.py ```python import re from datetime import date from dateparser import parse from dateutil.rrule import MONTHLY, rrule from scrapy import FormRequest from gazette.items import Gazette from gazette.spiders.base import BaseGazetteSpider class ScFlorianopolisSpider(BaseGazetteSpider): name = "sc_florianopolis" TERRITORY_ID = "4205407" start_date = date(2009, 6, 1) def start_requests(self): end_date = date.today() periods_of_interest = [ (date.year, date.month) for date in rrule(freq=MONTHLY, dtstart=self.start_date, until=end_date) ] for year, month in periods_of_interest: data = dict(ano=str(year), mes=str(month), passo="1", enviar="") yield FormRequest( "http://www.pmf.sc.gov.br/governo/index.php?pagina=govdiariooficial", formdata=data, ) def parse(self, response): for link in response.css("ul.listagem li a"): url = self.get_pdf_url(response, link) if not url: continue gazette_date = self.get_date(link) gazette_edition_number = link.css("::attr(title)").re_first(r"Edição (\d+)") yield Gazette( date=gazette_date, edition_number=gazette_edition_number, file_urls=(url,), is_extra_edition=self.is_extra(link), power="executive_legislature", ) @staticmethod def get_pdf_url(response, link): relative_url = link.css("::attr(href)").extract_first() if not relative_url.lower().endswith(".pdf"): return None return response.urljoin(relative_url) @staticmethod def get_date(link): text = " ".join(link.css("::text").extract()) pattern = r"\d{1,2}\s+de\s+\w+\s+de\s+\d{4}" match = re.search(pattern, text) if not match: return None return parse(match.group(), languages=("pt",)).date() @staticmethod def is_extra(link): text = " ".join(link.css("::text").extract()) return "extra" in text.lower() ```
{ "source": "Jobegiar99/Garden-Palooza", "score": 3 }
#### File: game/levelGenerator/grassDecorator.py ```python from .orientationDictionary import OrientationDictionary from copy import deepcopy class GrassDecorator: def updateCells( self, matrix, spriteIndexes, createdPath, groundList, GRASS_SPRITE_INDEX, GROUND_SPRITE_INDEX, ): orientationDictionary = OrientationDictionary(spriteIndexes) spriteDict = orientationDictionary.spriteDict cornerDict = orientationDictionary.cornerDict tempMatrix = deepcopy(matrix) for cell in createdPath: cellInfo = [[0, 0, 0], [0, 1, 0], [0, 0, 0]] self.fillCellInfo(cellInfo, cell, matrix, GROUND_SPRITE_INDEX) self.updateSprite( cellInfo, spriteDict, cell[0], cell[1], tempMatrix, GRASS_SPRITE_INDEX ) self.groundSpriteUpdate( cell, matrix, cornerDict, tempMatrix, cellInfo, GROUND_SPRITE_INDEX ) self.checkDiagonals(cellInfo, cell, matrix, GROUND_SPRITE_INDEX) for info in cornerDict: if cellInfo in info: tempMatrix[cell[0]][cell[1]] = info[1] return tempMatrix def fillCellInfo(self, cellInfo, cell, matrix, spriteToCheck): row, col = cell if ( 0 <= row - 1 < len(matrix) and 0 <= col < len(matrix[0]) and matrix[row - 1][col] == spriteToCheck ): cellInfo[0][1] = 1 if ( 0 <= row + 1 < len(matrix) and 0 <= col < len(matrix[0]) and matrix[row + 1][col] == spriteToCheck ): cellInfo[2][1] = 1 if ( 0 <= row < len(matrix) and 0 <= col + 1 < len(matrix[0]) and matrix[row][col + 1] == spriteToCheck ): cellInfo[1][2] = 1 if ( 0 <= row < len(matrix) and 0 <= col - 1 < len(matrix[0]) and matrix[row][col - 1] == spriteToCheck ): cellInfo[1][0] = 1 def checkDiagonals(self, cellInfo, cell, matrix, spriteToCheck): row, col = cell if ( 0 <= row - 1 < len(matrix) and 0 <= col - 1 < len(matrix[0]) and matrix[row - 1][col - 1] == spriteToCheck ): cellInfo[0][0] = 1 if ( 0 <= row - 1 < len(matrix) and 0 <= col + 1 < len(matrix[0]) and matrix[row - 1][col + 1] == spriteToCheck ): cellInfo[0][2] = 1 if ( 0 <= row + 1 < len(matrix) and 0 <= col + 1 < len(matrix[0]) and matrix[row + 1][col + 1] == spriteToCheck ): cellInfo[2][2] = 1 if ( 0 <= row + 1 < len(matrix) and 0 <= col - 1 < len(matrix[0]) and matrix[row + 1][col - 1] == spriteToCheck ): cellInfo[2][0] = 1 def updateSprite( self, cellInfo, spriteDict, row, column, tempMatrix, defaultSprite ): found = False for spriteInfo in spriteDict: if cellInfo in spriteInfo[0]: tempMatrix[row][column] = spriteInfo[1] found = True if not found: tempMatrix[row][column] = defaultSprite def groundSpriteUpdate( self, cell, matrix, cornerDict, tempMatrix, cellInfo, GROUND_SPRITE_INDEX ): row, column = cell if cellInfo == cornerDict[0][0]: if ( row + 1 < len(matrix) and column + 1 < len(matrix[0]) and matrix[row + 1][column - 1] == GROUND_SPRITE_INDEX ): if ( matrix[row][column + 1] == GROUND_SPRITE_INDEX and matrix[row + 1][column + 1] == GROUND_SPRITE_INDEX ): tempMatrix[row + 1][column + 1] = cornerDict[0][1] if cellInfo == cornerDict[1][1]: if ( row + 1 < len(matrix) and 0 <= column - 1 and matrix[row + 1][column - 1] == GROUND_SPRITE_INDEX ): if ( matrix[row][column - 1] == GROUND_SPRITE_INDEX and matrix[row + 1][column - 1] == GROUND_SPRITE_INDEX ): tempMatrix[row + 1][column - 1] = cornerDict[1][1] if cellInfo == cornerDict[2][0]: if ( 0 <= row - 1 < len(matrix) and 0 <= column - 1 and matrix[row - 1][column - 1] == GROUND_SPRITE_INDEX ): if ( matrix[row][column - 1] == GROUND_SPRITE_INDEX and matrix[row - 1][column - 1] == GROUND_SPRITE_INDEX ): tempMatrix[row - 1][column - 1] = cornerDict[2][1] if cellInfo == cornerDict[3][0]: if ( 0 <= row - 1 < len(matrix) and column + 1 < len(matrix[0]) and matrix[row - 1][column - 1] == GROUND_SPRITE_INDEX ): if ( matrix[row - 1][column + 1] == GROUND_SPRITE_INDEX and matrix[row][column + 1] == GROUND_SPRITE_INDEX ): tempMatrix[row - 1][column + 1] = cornerDict[3][0] ``` #### File: game/levelGenerator/levelGenerator.py ```python from .skeletonGenerator import SkeletonGenerator from .grassDecorator import GrassDecorator from .riverSkeletonGenerator import RiverSkeletonGenerator from .riverDecorator import RiverDecorator from .groundDecorator import GroundDecorator from .waterExtraDecorator import WaterExtraDecorator from .grassExtraDecorator import GrassExtraDecorator from .groundExtraDecorator import GroundExtraDecorator from copy import deepcopy import random def GenerateLevel(): GROUND_SPRITE_INDEX = 2363 GRASS_SPRITE_INDEX = 2420 WATER_SPRITE_INDEX = 2717 # up,down,left,right,upperCornerLeft, upperCornerRight, lowerCornerRight, lowerCornerLeft # edge cases sprites: upperCornerLeft, upperCornerRight, lowerCornerRight, lowerCornerLeft GRASS_SPRITE_MAP = [ 2361, 2479, 2419, 2421, 2480, 2478, 2362, 2360, 2422, 2423, 2482, 2481, ] # up,down,left,right,upperCornerLeft, upperCornerRight, lowerCornerRight, lowerCornerLeft # edge cases sprites: upperCornerLeft, upperCornerRight, lowerCornerRight, lowerCornerLeft WATER_SPRITE_MAP = [ 2715, 2833, 2773, 2775, 2834, 2832, 2716, 2714, 2776, 2777, 2836, 2835, ] GROUND_SPRITE_MAP = [GROUND_SPRITE_INDEX, 2483, 2484, 2485] WATER_EXTRA_SPRITE_MAP = [2896, 2897, 2898, 2899] GRASS_EXTRA_SPRITE_MAP = [2609, 2610, 2611] GRASS_EXTRA_SPRITE_MAP2 = [2186, 2187, 2306, 2307, 2308, 2309, 2310] GROUND_EXTRA_SPRITE_MAP = [2491, 2550] levelSkeleton = SkeletonGenerator(GROUND_SPRITE_INDEX, GRASS_SPRITE_INDEX) firstLayer = levelSkeleton.matrix firstLayer = GrassDecorator().updateCells( firstLayer, GRASS_SPRITE_MAP, levelSkeleton.createdPath, levelSkeleton.ground, GRASS_SPRITE_INDEX, GROUND_SPRITE_INDEX, ) waterSkeleton = RiverSkeletonGenerator( firstLayer, WATER_SPRITE_INDEX, GROUND_SPRITE_INDEX ) if len(waterSkeleton.waterSpot) > 0: firstLayer = RiverDecorator().updateCells( firstLayer, WATER_SPRITE_INDEX, waterSkeleton.waterSpot, GROUND_SPRITE_INDEX, WATER_SPRITE_MAP, ) WaterExtraDecorator(firstLayer, waterSkeleton.waterSpot, WATER_EXTRA_SPRITE_MAP) GroundDecorator(firstLayer, GROUND_SPRITE_MAP) secondLayer = deepcopy(firstLayer) GrassExtraDecorator( secondLayer, GRASS_EXTRA_SPRITE_MAP, GRASS_EXTRA_SPRITE_MAP2, levelSkeleton.createdPath, GRASS_SPRITE_INDEX, ) GroundExtraDecorator( secondLayer, GROUND_EXTRA_SPRITE_MAP, levelSkeleton.ground, GROUND_SPRITE_MAP ) spawnPoint = levelSkeleton.createdPath[ random.randint(0, len(levelSkeleton.createdPath) - 1) ] return { "firstLayer": firstLayer, "secondLayer": secondLayer, "playerRow": spawnPoint[1] * 16, "playerColumn": spawnPoint[0] * 16, } ``` #### File: game/levelGenerator/orientationDictionary.py ```python class OrientationDictionary: def __init__(self, spriteIndexes): up = [[[0, 1, 0], [0, 1, 0], [0, 0, 0]], [[0, 1, 0], [1, 1, 1], [0, 0, 0]]] down = [[[0, 0, 0], [0, 1, 0], [0, 1, 0]], [[0, 0, 0], [1, 1, 1], [0, 1, 0]]] left = [[[0, 0, 0], [1, 1, 0], [0, 0, 0]], [[0, 1, 0], [1, 1, 0], [0, 1, 0]]] right = [[[0, 0, 0], [0, 1, 1], [0, 0, 0]], [[0, 1, 0], [0, 1, 1], [0, 1, 0]]] upperCornerLeft = [[[0, 0, 0], [0, 1, 1], [0, 1, 0]]] upperCornerRight = [[[0, 0, 0], [1, 1, 0], [0, 1, 0]]] lowerCornerRight = [[[0, 1, 0], [1, 1, 0], [0, 0, 0]]] lowerCornerLeft = [[[0, 1, 0], [0, 1, 1], [0, 0, 0]]] self.spriteDict = [ [up, spriteIndexes[0]], [down, spriteIndexes[1]], [left, spriteIndexes[2]], [right, spriteIndexes[3]], [upperCornerLeft, spriteIndexes[4]], [upperCornerRight, spriteIndexes[5]], [lowerCornerLeft, spriteIndexes[6]], [lowerCornerRight, spriteIndexes[7]], ] leftUpperCorner = [[0, 0, 0], [0, 1, 0], [0, 0, 1]] rightUpperCorner = [[0, 0, 0], [0, 1, 0], [1, 0, 0]] rightLowerCorner = [[1, 0, 0], [0, 1, 0], [0, 0, 0]] leftLowerCorner = [[0, 0, 1], [0, 1, 0], [0, 0, 0]] self.cornerDict = [ [leftUpperCorner, spriteIndexes[-4]], [rightUpperCorner, spriteIndexes[-3]], [rightLowerCorner, spriteIndexes[-2]], [leftLowerCorner, spriteIndexes[-1]], ] ``` #### File: game/levelGenerator/riverSkeletonGenerator.py ```python from copy import deepcopy from collections import deque import random class RiverSkeletonGenerator: def __init__(self, matrix, WATER_SPRITE_INDEX, GROUND_SPRITE_INDEX): self.matrix = [] self.waterSpot = [] groundSpots = [] for row in range(len(matrix)): for column in range(len(matrix)): if ( matrix[row][column] == GROUND_SPRITE_INDEX and [row, column] not in groundSpots ): currentArea = [] queue = deque() queue.append([row, column]) self.BFS(deepcopy(matrix), GROUND_SPRITE_INDEX, currentArea, queue) groundPercentage = (len(currentArea) * 100) / ( len(matrix) * len(matrix[0]) ) if 1 <= groundPercentage: groundSpots.append(currentArea) if len(groundSpots) > 0: self.waterSpot = groundSpots[random.randint(0, len(groundSpots) - 1)] self.createRiver( matrix, self.waterSpot, WATER_SPRITE_INDEX, GROUND_SPRITE_INDEX ) def BFS(self, matrix, GROUND_SPRITE_INDEX, currentArea, queue): while len(queue) > 0: row, column = queue.pop() currentArea.append([row, column]) self.BFSHelper( matrix, row - 1, column, GROUND_SPRITE_INDEX, currentArea, queue ) self.BFSHelper( matrix, row + 1, column, GROUND_SPRITE_INDEX, currentArea, queue ) self.BFSHelper( matrix, row, column - 1, GROUND_SPRITE_INDEX, currentArea, queue ) self.BFSHelper( matrix, row, column + 1, GROUND_SPRITE_INDEX, currentArea, queue ) def BFSHelper(self, matrix, row, column, GROUND_SPRITE_INDEX, currentArea, queue): if ( 0 <= row < len(matrix) and 0 <= column < len(matrix[0]) and matrix[row][column] == GROUND_SPRITE_INDEX ): matrix[row][column] = -1 queue.append([row, column]) def createRiver(self, matrix, waterSpot, WATER_SPRITE_INDEX, GROUND_SPRITE_INDEX): for point in waterSpot: row, column = point if matrix[row][column] == GROUND_SPRITE_INDEX: matrix[row][column] = WATER_SPRITE_INDEX ``` #### File: game/levelGenerator/waterExtraDecorator.py ```python import random class WaterExtraDecorator: def __init__(self, matrix, waterSpot, WATER_EXTRA_SPRITE_MAP): for point in waterSpot: row, column = point if random.uniform(0, 100) < 0.4: matrix[row][column] = WATER_EXTRA_SPRITE_MAP[ random.randint(0, len(WATER_EXTRA_SPRITE_MAP) - 1) ] ```
{ "source": "jobel-code/python-arango", "score": 2 }
#### File: python-arango/arango/wal.py ```python from __future__ import absolute_import, unicode_literals __all__ = ['WAL'] from arango.api import APIWrapper from arango.exceptions import ( WALFlushError, WALPropertiesError, WALConfigureError, WALTransactionListError ) from arango.request import Request class WAL(APIWrapper): # pragma: no cover """WAL (Write-Ahead Log) API wrapper. :param connection: HTTP connection. :type connection: arango.connection.Connection :param executor: API executor. :type executor: arango.executor.Executor """ def __init__(self, connection, executor): super(WAL, self).__init__(connection, executor) # noinspection PyMethodMayBeStatic def _format_properties(self, body): """Format WAL properties. :param body: Response body. :type body: dict :return: Formatted body. :rtype: dict """ if 'allowOversizeEntries' in body: body['oversized_ops'] = body.pop('allowOversizeEntries') if 'logfileSize' in body: body['log_size'] = body.pop('logfileSize') if 'historicLogfiles' in body: body['historic_logs'] = body.pop('historicLogfiles') if 'reserveLogfiles' in body: body['reserve_logs'] = body.pop('reserveLogfiles') if 'syncInterval' in body: body['sync_interval'] = body.pop('syncInterval') if 'throttleWait' in body: body['throttle_wait'] = body.pop('throttleWait') if 'throttleWhenPending' in body: body['throttle_limit'] = body.pop('throttleWhenPending') return body def properties(self): """Return WAL properties. :return: WAL properties. :rtype: dict :raise arango.exceptions.WALPropertiesError: If retrieval fails. """ request = Request( method='get', endpoint='/_admin/wal/properties' ) def response_handler(resp): if not resp.is_success: raise WALPropertiesError(resp, request) return self._format_properties(resp.body) return self._execute(request, response_handler) def configure(self, oversized_ops=None, log_size=None, historic_logs=None, reserve_logs=None, throttle_wait=None, throttle_limit=None): """Configure WAL properties. :param oversized_ops: If set to True, operations bigger than a single log file are allowed to be executed and stored. :type oversized_ops: bool :param log_size: Size of each write-ahead log file in bytes. :type log_size: int :param historic_logs: Max number of historic log files to keep. :type historic_logs: int :param reserve_logs: Max number of reserve log files to allocate. :type reserve_logs: int :param throttle_wait: Wait time before aborting when write-throttled in milliseconds. :type throttle_wait: int :param throttle_limit: Number of pending garbage collector operations that, when reached, activates write-throttling. Value of 0 means no throttling is triggered. :type throttle_limit: int :return: New WAL properties. :rtype: dict :raise arango.exceptions.WALConfigureError: If operation fails. """ data = {} if oversized_ops is not None: data['allowOversizeEntries'] = oversized_ops if log_size is not None: data['logfileSize'] = log_size if historic_logs is not None: data['historicLogfiles'] = historic_logs if reserve_logs is not None: data['reserveLogfiles'] = reserve_logs if throttle_wait is not None: data['throttleWait'] = throttle_wait if throttle_limit is not None: data['throttleWhenPending'] = throttle_limit request = Request( method='put', endpoint='/_admin/wal/properties', data=data ) def response_handler(resp): if not resp.is_success: raise WALConfigureError(resp, request) return self._format_properties(resp.body) return self._execute(request, response_handler) def transactions(self): """Return details on currently running WAL transactions. Fields in the returned details are as follows: .. code-block:: none "last_collected" : ID of the last collected log file (at the start of each running transaction) or None if no transactions are running. "last_sealed" : ID of the last sealed log file (at the start of each running transaction) or None if no transactions are running. "count" : Number of currently running transactions. :return: Details on currently running WAL transactions. :rtype: dict :raise arango.exceptions.WALTransactionListError: If retrieval fails. """ request = Request( method='get', endpoint='/_admin/wal/transactions' ) def response_handler(resp): if not resp.is_success: raise WALTransactionListError(resp, request) if 'minLastCollected' in resp.body: resp.body['last_collected'] = resp.body.pop('minLastCollected') if 'minLastSealed' in resp.body: resp.body['last_sealed'] = resp.body.pop('minLastSealed') if 'runningTransactions' in resp.body: resp.body['count'] = resp.body.pop('runningTransactions') return resp.body return self._execute(request, response_handler) def flush(self, sync=True, garbage_collect=True): """Synchronize WAL to disk. :param sync: Block until the synchronization is complete. :type sync: bool :param garbage_collect: Block until flushed data is garbage collected. :type garbage_collect: bool :return: True if WAL was flushed successfully. :rtype: bool :raise arango.exceptions.WALFlushError: If flush operation fails. """ request = Request( method='put', endpoint='/_admin/wal/flush', params={ 'waitForSync': sync, 'waitForCollector': garbage_collect } ) def response_handler(resp): if not resp.is_success: raise WALFlushError(resp, request) return True return self._execute(request, response_handler) ```
{ "source": "Jobenland/MFC-WebApp", "score": 2 }
#### File: app/api/api_routes.py ```python from flask import jsonify from flask_login import login_required from . import api from ..utils import timestamp @api.route('/now') @login_required def get_current_time(): """ Get Current Time """ return jsonify(results='success', time=timestamp()) ```
{ "source": "Joberman/process_sat", "score": 3 }
#### File: process_sat/process_sat/out_geo.py ```python import sys from itertools import izip import datetime import warnings import pdb import numpy import netCDF4 import utils def vsnmsg(version): return "This file was generated using WHIPS v{0}".format(version) def ValidOutfuncs(): '''Return a list of valid output function names''' currentModule = sys.modules[__name__] names = dir(currentModule) return [el[:-9] for el in names if el.endswith("_out_func")] class out_func: '''Abstract class to for <>_out_geo classes''' def __init__(self, parmDict=None): self.parmDict = parmDict def __call__(self, map_geo, griddef, outfilenames, verbose, version): raise NotImplementedError @staticmethod def parm_list(): raise NotImplementedError @staticmethod def required_parms(): raise NotImplementedError def _OMNO2e_formula(cloudFrac, fieldOfView): eps = 1.5*pow(10,15)*(1+3*cloudFrac) capE = pow(10,-16)*(18.5+2.8*pow(10,-4)*pow(abs(fieldOfView-29.7), 3.5)) return pow((eps*capE), -2) class invalidPixCeption(Exception): pass tai93conv = lambda(timestring):utils.timestr_to_nsecs(timestring, '00:00:00_01-01-1993', '%H:%M:%S_%m-%d-%Y') def boolCaster(boolStr): if boolStr == 'True': return True elif boolStr == 'False': return False else: msg = 'Attempt to cast invalid string %s to boolean' % boolStr raise TypeError(msg) # currently borked. No immediate plans to fix #class OMNO2e_wght_avg_out_func(out_func): class OMNO2e_wght_avg_BORKED(out_func): ''' Weighted avg based on OMNO2e algorithm Note: this algorithm doesn't note what to do when the weight for a term is nonzero, but the term itself contains a fillValue. This assumption is checked by an assert statement in the code, so it won't be checked if optimization is requested OMNO2e algorithm and theoretical basis laid out at <http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omno2e_v003.shtml> Set up to work specifically for OMI instruments. parameters dict must contain keys: toAvg overallQualFlag cloudFrac solarZenithAngle cloudFractUpperCutoff solarZenAngUpperCutoff pixIndXtrackAxis fillVal writes out a single file of name outfilename when called. That file is an ASCII representation weighted averages for each gridcell. It is a csv file with all numbers in e-format scientific notation. Cells without valid measurements contain the fillvalue. ''' @staticmethod def parm_list(): return ['toAvg', 'overallQualFlag', 'cloudFrac', 'solarZenithAngle', 'cloudFractUpperCutoff', 'pixIndXtrackAxis', 'fillVal'] @staticmethod def required_parms(): return {'toAvg' : ('The name of the field to be averaged',None), 'overallQualFlag' : ('The name of the field containing' \ ' the overall quality flag for the' \ ' pixels. This flag should be true' \ ' (1) for invalid pixels and false' \ ' (0) for valid pixels.\n{ OMI KNMI' \ ' - TroposphericColumnFlag\n OMI NASA' \ ' - vcdQualityFlags }',None), 'cloudFrac' : ('The name of the field containing the ' \ 'cloud fractions.\n{ OMI KNMI - CloudFraction' \ '\n OMI NASA - CloudFraction }',None), 'solarZenithAngle' : ('The name of the field containing the ' \ 'solar zenith angles in degrees.\n{ ' \ 'OMI KNMI - SolarZenithAngle\n OMI' \ ' NASA - SolarZenithAngle }',None), 'cloudFractUpperCutoff' : ('The maximum cloud fraction to ' \ 'allow before excluding pixel ' \ 'from average. Suggested value ' \ 'from NASA is 0.3','decimal'), 'solarZenAngUpperCutoff' : ('The maximum solar zenith angle ' \ 'to allow before excluding pixel ' \ 'from average. Suggested value ' \ 'from NASA is 85. Must be in ' \ 'degrees.','decimal'), 'pixIndXtrackAxis' : ('The dimension order (0 based) of the ' \ 'of the "cross-track" dimension (which' \ 'ever dimension has size 60). For all' \ ' currently known cases should be 1 ' \ ' (may change in future versions of ' \ 'OMI products).','int'), 'fillVal' : ('The value to use as a fill value in the output ' \ 'netCDF file. This value will replace any missing '\ ' or invalid output values','decimal')} # userKeys not necessary, so 'filler' field used instead __userKeys__ = "filetype" def __call__(self, maps, griddef, outfilename, verbose, version): # function is broken until it can be refactored such that # _OMNO2e_func doesn't require totFlag. Needs to have pixel # loop to check each BORKED = 2 print('THIS FUNCTION IS BORKED. ABORT! ABORT! ABORT!') sys.exit(BORKED) # even though IO interface handles casting already # a catchblock has been added here for safety # in case someone wants to use this class directly castDict = {'toAvg':str, 'overallQualFlag':str, 'cloudFrac':str, 'solarZenithAngle':str, 'cloudFractUpperCutoff':float, 'solarZenAngUpperCutoff':float, 'pixIndXtrackAxis':int, 'fillVal':float} for (k,func) in castDict.items(): self.parmDict[k] = func(self.parmDict[k]) '''Write out single weighted-avg file''' numpy.seterr(over='raise') nRows = griddef.indLims()[1] - griddef.indLims()[0] + 1 nCols = griddef.indLims()[3] - griddef.indLims()[2] + 1 sum_weights = numpy.zeros((nRows, nCols)) sum_weighted_vals = numpy.zeros((nRows, nCols)) if not isinstance(maps, list): maps = [maps] # create list if we didn't get one for map in maps: with map.pop('parser') as p: # pop out so we can loop if verbose: print('Processing {0} for output at {1}.'.format(\ p.name, str(datetime.datetime.now()))) for (k,v) in map.iteritems(): sumFlag = numpy.array([p.get_cm(self.parmDict['overallQualFlag'], pxind) for (pxind, unused_weight) in v]) sumFlag = numpy.mod(sumFlag, 2) cFrac = numpy.array([p.get_cm(self.parmDict['cloudFrac'], pxind) for (pxind, unused_weight) in v]) cFracFlag = cFrac > self.parmDict['cloudFractUpperCutoff'] solZen = numpy.array([p.get_cm(self.parmDict['solarZenithAngle'], pxind) for (pxind, unused_weight) in v]) solZenFlag = solZen > self.parmDict['solarZenAngUpperCutoff'] totFlag = numpy.logical_or(numpy.logical_or(sumFlag, cFracFlag), solZenFlag) fov = numpy.array([pxind[self.parmDict['pixIndXtrackAxis']] for (pxind, unused_weight) in v]) toAvg = numpy.array([p.get_cm(self.parmDict['toAvg'], pxind) for (pxind, unused_weight) in v]) # BORKED weights = 0 # weights = _OMNO2e_formula(cFrac, fov) assert ~any(numpy.logical_and(~numpy.isnan(weights), numpy.isnan(toAvg))) sumWeight = numpy.nansum(weights) sumWeightVals = numpy.nansum(toAvg*weights) # only add if we had some element (otherwise we fill # sum_weights with nans) if ~numpy.isnan(sumWeight) and ~numpy.isnan(sumWeightVals): sum_weights[k] += sumWeight sum_weighted_vals[k] += sumWeightVals map['parser'] = p # return parser to map oldsettings = numpy.seterr(divide='ignore') # ignore any div by zero errors avgs = numpy.where(sum_weights != 0, numpy.divide(sum_weighted_vals, sum_weights), self.parmDict['fillVal']) numpy.seterr(divide=oldsettings['divide']) # reset to default numpy.savetxt(outfilename, avgs, delimiter=',', fmt='%7e') return avgs class OMNO2e_netCDF_avg_out_func(out_func): ''' Weighted average for a given set of filtered values based on OMNO2e algorithm. Assumptions: - this algorithm assumes that fields to be averaged will have, at most, 1 extra dimension. If not, an assertion error is raised. - this algorithm is undefined for cases where the weight of a term is nonzero, but the term contains a fillValue. If this condition is met, unexpected results may occur. This assumption is NOT checked - The timestamp of the file is assumed to be in the TAI93 standard. OMNO2e algorithm and theoretical basis laid out at <http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omno2e_v003.shtml> Set up to work specifically for OMI instruments. parameters dict must contain keys: overallQualFlag: Flag used as overall quality. Assumed that when this flag is set, the data is BAD and the pixel is ignored cloudFrac: field with cloud fraction (0 to 1). When this field is GREATER than the cutoff value the pixel is ignored. solarZenithAngle: Field with solar zenith angle (in degrees). When this field is GREATER than the cutoff value the pixel is ignored. time: Field with the timestamps for each pixel. Assumed to be in TAI-93 format. When this field is less than the timeStart parameter or greater than the timeStop parameter the pixel is ignored. longitude: Field with the longitudes at cell centers. Used to estimate timezones of the pixels if 'local' is selected for timeComparison. Not used when timeComparison is 'UTC' inFieldNames: List of fields to process. Each of these is output as a separate variable in the netcdf output file. outFieldNames: List of desired output names. Must be of the same length and co-indexed to the list above. These will be the actual variable names in the netcdf file. outUnits: List of string labels for the units of each output quantity. Must be of the same length and co-indexed to the lists above. extraDimLabel: List of the labels for the above extra dimensions. 1 per variable. Only used if the coindexed field has an extra dim. Must be of the same length and co-indexed to the lists above. extraDimSize: List of the sizes of the above extra dimensions. 1 per variable. If the coindexed field does not have an extra dim, put in 0 or 1. Must be of the same length and co-indexed to the lists above. timeComparison: Determines how the timeStart and timeStop arguments are interpreted. If the user selects 'local', these arguments are interpreted as local times. Only those pixels whose timestamps indicate they lie in the desired span in local time will be included. Daylight savings time is not considered and time zone calculations are only approximate. If the users selects 'UTC' a straight comparison is done between the pixel timestamp and the timeStart and timeStop arguments to see if the pixel is valid. timeStart: Initial time we want included in file. Times must be in TAI93 standard format. *format hh:mm:ss_MM-DD-YYYY will also be converted automatically. timeStop: Final Time we want in included in file. Times must be in TAI93 standard format. *format hh:mm:ss_MM-DD-YYYY will also be converted automatically. cloudFractUpperCutoff: Pixels with a higher cloud fraction than this value will be ignored. solarZenAngUpperCutoff: Pixels with a higher solar zenith angle than this value will be ignored. pixIndXtrackAxis: The axis (IE which dimension in memory order) that specifies the pixels cross-track position. This way, the cross-track index number can be retrieved safely and used in the weighting function. fillVal: The value we want to use to denote missing data in the output file. This will be documented within the output file itself. includePixelCount: If this parameter is True, WHIPS will include a field 'ValidPixelCount' in the output file that will include the number of valid pixels for each grid cell. Outputs a netcdf file with name determined by outFileName parameter. This netcdf file contains as many variables as there are inFieldNames passed. Each variable is output as an average over the range of values where it was valid acccording to the averaging scheme dedfined in the NASA document linked above. ''' @staticmethod def parm_list(): return ['overallQualFlag', 'cloudFrac', 'solarZenithAngle', 'time', 'longitude', 'inFieldNames', 'outFieldNames', 'outUnits', 'extraDimLabel', 'extraDimSize', 'timeComparison', 'timeStart', 'timeStop', 'cloudFractUpperCutoff', 'solarZenAngUpperCutoff', 'pixIndXtrackAxis', 'fillVal', 'includePixelCount'] @staticmethod def required_parms(): return {'overallQualFlag' : ('The name of the field containing ' \ 'the overall quality flag for the ' \ 'pixels. This flag should be true (1) ' \ 'for invalid pixels and false (0) for ' \ 'valid pixels.\n{ OMI KNMI - Tropo' \ 'sphericColumnFlag\n OMI NASA - vcd' \ 'QualityFlags }',None), 'cloudFrac' : ('The name of the field containing the ' \ 'cloud fractions\n{ OMI KNMI - CloudFraction' \ '\n OMI NASA - CloudFraction }',None), 'solarZenithAngle' : ('The name of the field containing the '\ 'solar zenith angles in degrees.\n{ ' \ 'OMI KNMI - SolarZenithAngle\n OMI ' \ 'NASA - SolarZenithAngle }',None), 'time' : ('The name of the field containing the timestamps. '\ ' Timestamps are assumed to be the in TAI-93 ' \ 'format.\n{ OMI KNMI - Time\n OMI NASA - TIME }', \ None), 'longitude' : ('The name of the field containing longitudes ' \ 'at cell centers. Longitudes should be in ' \ 'degrees east.\n{ OMI KNMI - Longitude\n ' \ 'OMI NASA - Longitude }',None), 'inFieldNames' : ('The names of the fields desired to be ' \ 'output. Input as comma-delimited list ', \ 'list'), 'outFieldNames' : ('The names of the output variables (even ' \ 'if they are to be the same as the input ' \ 'variables). Should be a comma-delimited ' \ 'list co-indexed to inFieldNames','list'), 'outUnits' : ('The units of the variables to be written out. ' \ 'Should be a comma-delimited list co-indexed ' \ 'to inFieldNames','list'), 'extraDimLabel' : ('The label for the extra dimension ' \ '(should the variable have an extra ' \ 'dimension). Ignored in the case of a ' \ '2D variable. Should be a comma-delimited '\ 'list co-indexed to inFieldNames','list'), 'extraDimSize' : ('The size of the extra dimensions (should ' \ 'the variable have an extra dimension). ' \ 'For 2D variables, must be set to 0. (zero)' \ ' Should be a comma-delimited list ' \ 'co-indexed to inFieldNames.','list'), 'timeComparison' : ('Must be set to either "local" or "UTC". ' \ ' Determines how the file timestamps are ' \ 'compared to the start/stop time. If set '\ 'to "local", then the file timestamps are '\ 'converted to local time on a pixel-by-'\ 'pixel basis (using longitude to estimate '\ 'time zone) before being compared to time '\ 'boundaries. If set to "UTC" the file ' \ 'timestamps (which are assumed to be in ' \ 'UTC) are compared against the start/stop '\ 'time directly.',None), 'timeStart' : ('The earliest time for which data should be ' \ 'recorded into the output file. All times in ' \ 'input files before this time will be filtered '\ 'out. Must be in the format hh:mm:ss_MM-DD-' \ 'YYYY','time'), 'timeStop' : ('The latest time for which data should be ' \ 'recorded into the output files. All times in '\ 'input files after this time will be filtered ' \ 'out. Must be in the format hh:mm:ss_MM-DD-' \ 'YYYY','time'), 'cloudFractUpperCutoff' : ('The maximum cloud fraction to ' \ 'allow before excluding pixel from '\ 'average. Suggested value from ' \ 'NASA is 0.3','decimal'), 'solarZenAngUpperCutoff' : ('The maximum solar zenith angle to'\ ' allow before excluding pixel ' \ 'from average, in degrees. ' \ 'Suggested value from NASA is 85.',\ 'int'), 'pixIndXtrackAxis' : ('The dimension order (0 based) of the ' \ '"cross-track" dimension (whichever ' \ 'dimension has size 60). For all ' \ 'currently known cases set equal to 1 ' \ '(depends on the construction of the ' \ 'parser function. If you rewrite the ' \ 'parser, check this).','int'), 'fillVal' : ('The value to use as a fill value in the output ' \ 'netCDF file. This value will replace any missing '\ 'or invalid output values','decimal'), 'includePixelCount' : ('If set to true, the output will include '\ 'a field "ValidPixelCount" that contains '\ 'the number of vlaid pixels in each grid '\ 'cell. Only pixels with nonzero weight '\ 'are considered valid.', 'bool')} # variable signifying which list is to act as the master list index __userKeys__ = "inFieldNames" def __call__(self, maps, griddef, outfilename, verbose, version): '''Write out a weighted-average file in netcdf format.''' #Make sure non-string parameters are in the correct format dimsizes = self.parmDict['extraDimSize'] for i in range(len(dimsizes)): try: dimsizes[i] = int(dimsizes[i]) except ValueError: print ("Warning: {0} is not a valid extraDimSize value. " \ "Using 0 instead").format(dimsizes[i]) dimsizes[i] = 0 continue self.parmDict['extraDimSize'] = dimsizes # even though IO interface handles casting already, # a catchblock has been added here for safety # in case someone wants to use this class directly castDict = {'overallQualFlag':str, 'cloudFrac':str, 'solarZenithAngle':str, 'time':str, 'longitude':str, 'inFieldNames':list, 'outFieldNames':list, 'outUnits':list, 'extraDimLabel':list, 'extraDimSize':list, 'timeComparison':str, 'timeStart':tai93conv, 'timeStop':tai93conv, 'cloudFractUpperCutoff':float, 'solarZenAngUpperCutoff':int, 'pixIndXtrackAxis':int, 'fillVal':float, 'includePixelCount':boolCaster} for (k,func) in castDict.items(): try: self.parmDict[k] = func(self.parmDict[k]) except TypeError: pass #Perform some basic sanity checks with parameters if self.parmDict['timeStart'] > self.parmDict['timeStop']: msg = 'Input start time must come before stop time.' raise IOError(msg) if (len(self.parmDict['inFieldNames']) != \ len(self.parmDict['outFieldNames']) or len(self.parmDict['inFieldNames']) != \ len(self.parmDict['outUnits']) or len(self.parmDict['inFieldNames']) != \ len(self.parmDict['extraDimLabel'])): msg = 'All field/unit inputs ' + \ 'should have the same number of elements.' raise IOError(msg) # create numpy arrays to hold our data (minRow, maxRow, minCol, maxCol) = griddef.indLims() nRows = maxRow - minRow + 1 nCols = maxCol - minCol + 1 nValidPixels = numpy.zeros((nRows, nCols)) sumWght = numpy.zeros((nRows, nCols, 1)) # needs extra dim to generalize for 3D vars sumVars = dict() for field, size in zip(self.parmDict['inFieldNames'], self.parmDict['extraDimSize']): if size: sumVars[field] = numpy.zeros((nRows, nCols, size)) else: # pad with a singlet dim if it was 2D sumVars[field] = numpy.zeros((nRows, nCols, 1)) # loop over maps if not isinstance(maps, list): maps = [maps] # create list if we only got a single map for map in maps: # open up context manager with map.pop('parser') as parser: # remove parser for looping if verbose: print('Processing {0} for output at {1}.'.format(\ parser.name, str(datetime.datetime.now()))) # loop over gridboxes in map and calculate weights for (gridCell, pixTup) in map.iteritems(): # translate gridCell to account for possible non-zero ll corner gridRow = gridCell[0] gridCol = gridCell[1] gridInd = (gridRow - minRow, gridCol - minCol) # get the values needed to calculate weight for (pxInd, unused_weight) in pixTup: # check summary flag sumFlag = parser.get_cm(self.parmDict['overallQualFlag'], pxInd) if sumFlag % 2: continue # check cloud fraction flag cFrac = parser.get_cm(self.parmDict['cloudFrac'], pxInd) if not (cFrac <= self.parmDict['cloudFractUpperCutoff']): continue # check solar zenith angle flag solZenAng = parser.get_cm(self.parmDict['solarZenithAngle'], pxInd) if solZenAng > self.parmDict['solarZenAngUpperCutoff']: continue # check time flag time = parser.get_cm(self.parmDict['time'], pxInd) # calculate and factor in offset if the user wanted us to if self.parmDict['timeComparison'] == 'local': pixLon = parser.get_cm(self.parmDict['longitude'], pxInd) offset = utils.UTCoffset_from_lon(pixLon) time += offset if time < self.parmDict['timeStart'] or time > self.parmDict['timeStop']: continue # read in all the data, abandon ship if data is all NaN rawDataDict = {} try: for field in self.parmDict['inFieldNames']: rawData = parser.get_cm(field, pxInd) if numpy.isnan(rawData).all(): raise invalidPixCeption rawDataDict[field] = rawData except invalidPixCeption: continue # compute the weight fov = pxInd[self.parmDict['pixIndXtrackAxis']] weight = _OMNO2e_formula(cFrac, fov) assert weight != numpy.NaN if weight > 0: nValidPixels[gridInd] += 1 # add the weight tot the total for this cell sumWght[gridInd] += weight for field in self.parmDict['inFieldNames']: weightVals = rawDataDict[field] * weight if weightVals.size > 1: sumVars[field][gridInd] = numpy.nansum([sumVars[field][gridInd], weightVals], axis=0) else: sumVars[field][gridInd] = numpy.nansum([sumVars[field][gridInd][0], weightVals]) map['parser'] = parser # return parser to map # divide out variables by weights to get avgs. oldSettings = numpy.seterr(divide='ignore') avgs = dict() with warnings.catch_warnings(): warnings.simplefilter("ignore") for (field,var) in sumVars.iteritems(): unfiltAvgs = var/sumWght filtAvgs = numpy.where(sumWght != 0, unfiltAvgs, \ self.parmDict['fillVal']) # strip trailing singlet for 2D arrays if filtAvgs.shape[-1] == 1: avgs[field] = filtAvgs.reshape(filtAvgs.shape[0:2]) else: avgs[field] = filtAvgs numpy.seterr(divide=oldSettings['divide']) # associate coindexed parameters into dicts # so we can loop by field outFnames = dict(izip(self.parmDict['inFieldNames'], self.parmDict['outFieldNames'])) units = dict(izip(self.parmDict['inFieldNames'], self.parmDict['outUnits'])) extraDim = dict(izip(self.parmDict['inFieldNames'], self.parmDict['extraDimLabel'])) # write out results to a netcdf file outFid = netCDF4.Dataset(outfilename, 'w', format='NETCDF3_CLASSIC') # create the 2 dimensions all files use outFid.createDimension('row', nRows) outFid.createDimension('col', nCols) # write global attributes setattr(outFid, 'Version', vsnmsg(version)) setattr(outFid, 'File_start_time', utils.nsecs_to_timestr(self.parmDict['timeStart'], '00:00:00 01-01-1993')) setattr(outFid, 'File_end_time', utils.nsecs_to_timestr(self.parmDict['timeStop'], '00:00:00 01-01-1993')) setattr(outFid, 'Max_valid_cloud_fraction', self.parmDict['cloudFractUpperCutoff']) setattr(outFid, 'Max_valid_solar_zenith_angle', self.parmDict['solarZenAngUpperCutoff']) setattr(outFid, 'Time_comparison_scheme', self.parmDict['timeComparison']) fileListStr = ' '.join([map['parser'].name for map in maps]) setattr(outFid, 'Input_files', fileListStr) setattr(outFid, 'Projection', griddef.__class__.__name__[:-8]) for (k,v) in griddef.parms.iteritems(): setattr(outFid, k, v) # loop over fields and write variables for field in self.parmDict['inFieldNames']: # create tuple of dimensions, defining new dim # if necessary if len(avgs[field].shape) == 2: # only row/cols varDims = ('row', 'col') elif len(avgs[field].shape) == 3: # has extra dim dimName = extraDim[field] dimSize = avgs[field].shape[2] if dimName not in outFid.dimensions.keys(): outFid.createDimension(dimName, dimSize) varDims = ('row', 'col', dimName) # create and assign value to variable varHandle = outFid.createVariable(outFnames[field], 'd', varDims, fill_value=self.parmDict['fillVal']) varHandle[:] = avgs[field] # assign variable attributes setattr(varHandle, 'Units', units[field]) # Write out the pixel counts if the user requested them if self.parmDict['includePixelCount']: varDims = ('row', 'col') varHandle = outFid.createVariable('ValidPixelCount', 'i', varDims, fill_value=self.parmDict['fillVal']) varHandle[:] = nValidPixels outFid.close() # create a dict with teh same data as avgs, but diff names outAvg = dict() for (k,v) in avgs.iteritems(): outAvg[outFnames[k]] = v if self.parmDict['includePixelCount']: outAvg['ValidPixelCount'] = nValidPixels return outAvg class wght_avg_netCDF(out_func): ''' Generalized weighted average algorithm Designed to compute the average of an arbitrary number of desired parameters, with the value weights based on an arbitrary number of input parameters. Note that values may be weighted according to their own value. The output will be in the form of a netcdf file with name determined by the outFileName parameter. This netCDF file will have dimensions determined by the grid_geo file, as well as additional dimensions as required by the input fields. Owing to the complexity of the inputs required for this function and the security problems posed by allowing users to input functions to be evaluated, this output function does not support the I/O interface at this time. It is designed to subclassed. This function (and therefore subclasses of this function) at present can only handle a single input map. It may be extended to properly handle multiple input maps at some point in the future, but this is difficult because the filter function is expected to apply to all pixels in the cell (which would require looping over all the maps to find all the pixels) but also requires a reference to the parser (which would require those parsers be held open) parmDict must contain the following keys: time: The field associated with the timestamps. Timestamps may be in any format so long as a function is provided to convert them to Unix timestamp values (as this is what the function will use internally) longitude: Field with the longitudes at cell centers. Used to estimate timezones of the pixels if local is selected for timeComparison. Not used when timeComparison is 'UTC' inFieldNames: List of strings corresponding to fields for which output is desired. These must be valid keys for the parser. Each is output as a seperate variable in the netcdf output file. outFieldNames: List of strings corresponding to the names the output variables should have in the final netCDF file. Must be of the same length and co-indexed to the list above. outUnits: List of strings corresponding to the labels for the units of each output variable. These will be attached as the "units" attribute for each variable in the output netCDF file. Must be of the same length and co-indexed to the lists above. logNormal: Vector indicating whether or not we want to take the lognormal mean (as opposed to the simple, arithmetic mean). If this parameter is set to "True", the mean will be taken as follows: logData = log(data) logAvg = sum(logData*wghts)/sum(wghts) avg = 10^logAvg whereas if this parameter is set to "False" the mean will be simply: avg = sum(data*wghts)/sum(wghts) To allow finer-grained control of the output, logNormal must be set individually for each output field (as it may be appropriate to use the log normal distribution only for select fields). Thus, logNormal must be of the same length and co-indexed to the lists above. dimLabels: List of tuple-like strings(delimited by periods with no whitespace), each of which contains as many strings as there are extra dimensions in the corresponding field. IE, if a field has dimensions (xtrack, time, layer, quant) and we allocate along xtrack and time, then the tuple-like string for that field should be "(layer.quant)" so that the dimensions are named properly in the otuput netCDF file. The list (not the individual tuples) must be of the same length and co-indexed to the lists above. Note that the dimensions looped over and allocated to cells in the map_geo function DO NOT need to be represented here. dimSizes: List of tuple-like strings (delimited by periods with no whitespace), each of which contains as many strings (castable to ints) as there are extra dimensions in the corresponding field. IE if the field described in dimLabels had dimensions (60, 1300, 9, 4) then the tuple-like string for that field should be "(9.4)". The list (not the individual tuples) must be of the same length and co-indexed to the lists above. If the field has no extra dimensions, then an empty tuple should be used as a placeholder.Note that the dimensions looped over and allocated to cells in the map_geo function DO NOT need to be represented here. timeComparison: Determines how the timeStart and timeStop parameters are interpreted. Must be either 'local' or 'UTC'. If 'local' is selected, only those pixels in the desired timespan in in local time will be included. Daylight savings time is not considered and time zone calculations are approximate based on longitude. If 'UTC' is selected, the raw timestamps are compared directly to the timeStart and timeStop parameters, without attempting to account for timezone. timeStart: Initial time we want included in the output file. All measurements taken before this time will be discarded, even if they are included in the files passed to output function. Must be a string of the the format hh:mm:ss_MM-DD-YYYY. timeStop: Final time to be included in the output file. All measurements taken after this time will be discarded. Must be a string of the format hh:mm:ss_MM-DD-YYYY. timeConv: Function that converts timeStart and timeStop (both of which are strings of the format hh:mm:ss_MM-DD-YYYY) into the format used to store time within the parser. IE if the parser returns time in TAI93, then this function should convert a string hh:mm:ss_MM-DD-YYYY to TAI93. fillVal: The value with which we want to denote missing data in the output file. This value must be castable to the type of all output variables. Each variable will document the fill value in its attributes. notes: String to be included in the output attributes of the final file. Use this to hold any extra if you you'd like to be packaged with the data. weightFunction: Function that computes the weight of a value. This can be as simple as assigning a weight of 1 to that value (creating an unweighted average) or using multiple fields to generate a weight for each pixel. The function must be of the form: weight = weightFunction(parser, index, prevWght) where parser is the parser for the file under consideration, ind is the tuple of indices for the pixel under consideration, and prevWght is the weight as computed by the mapping function. Note that in authoring these functions it is safe to use both the get() and get_cm() functions of the parser argument. The function may return either 0 or NaN for pixels that should not be considered in the average. Either will be handled appropriately. The docstring for this function will be included as a global attribute in the output file, so the docstring should be sufficient to describe the function in it's entirety. filterFunction: Function that looks at the entire stack of pixels for a cell and selects any pixels that need to be filtered out. Note that for efficiency reasons this should not be used to catch filter conditions unique to each pixel. Those sort of filters should be applied in the weightFunction. This function is strictly intended for operations that can only be performed once the entire stack for a particular cell is available (IE if a value is checked for each pixel in the cell and those pixels not matching the majority value are rejected). The function must be of the form flagVec = filterFunction(parser, indStack) where indStack is an iterable of index tuples and parser is the parser for the file under consideration. flagVec (the return vector) should be boolean and true for those values that should NOT be included in the final average. It should be the same length as indStack. To reiterate: flagVec should true for those values that should be REMOVED, and false for those values to be kept. The docstring of this function will be included as a global attribute in the final output file, so the docstring should be sufficient to describe the function in it's entirety. Note that it is safe to use both get and get_cm functions within this function - it is guaranteed to be called within a context manager. ''' def __init__(self, parmDict=None): # call ancestor method out_func.__init__(self, parmDict) # check that all the lists are the same length lists = ['outFieldNames', 'outUnits', 'dimLabels', 'dimSizes', 'logNormal'] canonicalLength = len(self.parmDict['inFieldNames']) isCorrectLength = [len(self.parmDict[list]) == canonicalLength for list in lists] if not all(isCorrectLength): wrongLength = [name for (name, corr) in izip(lists,isCorrectLength) if not corr] msg = "All lists must be the same length. The following list lengths do " \ "not match the length of inFieldNames: " + ' '.join(wrongLength) raise ValueError(msg) # process lists of tuple-like objects into lists of appropriately-typed tuples labelTups = self.parmDict['dimLabels'] sizeTups = self.parmDict['dimSizes'] # confirm that each tuple is the same size tupsMatch = [len(l) == len(s) for (l,s) in izip(labelTups, sizeTups)] if not all(tupsMatch): misMatch = [l + ' does not match ' + s for (l,s,m) in izip(labelTups,sizeTups,tupsMatch) if not m] msg = "All tuple-like strings must correspond to tuples of corresponding size. " \ "The following sets do not correspond: \n" + '\n'.join(misMatch) raise ValueError(msg) # convert sizes to integers try: sizeIntTups = [[int(s) for s in strTup] for strTup in sizeTups] except ValueError as err: messageWords = err.message.split() uncastable = messageWords[-1].strip("'") msg = "The value %s in the dimSizes argument was not castable to " \ "an integer." % uncastable raise ValueError(msg) # put back into parameter dictionary self.parmDict['dimLabels'] = labelTups self.parmDict['dimSizes'] = sizeIntTups # process logNormal try: self.parmDict['logNormal'] = [boolCaster(el) for el in self.parmDict['logNormal']] except TypeError: print('Bad string in logNormal. Must be either "True" or "False". Exiting.') raise # convert all the parameters co-indexed to inFieldNames to dictionaries # keyed off of inFieldNames inFnames = self.parmDict['inFieldNames'] for key in lists: self.parmDict[key] = dict(zip(inFnames, self.parmDict[key])) def __call__(self, maps, griddef, outfilename, verbose, version): '''Write out a weighted-average file in netcdf format.''' # create a dictionary of numpy arrays that will hold the data for all # our variables, keyed to inFieldNames (minRow, maxRow, minCol, maxCol) = griddef.indLims() nRows = maxRow - minRow + 1 nCols = maxCol - minCol + 1 outputArrays = dict() for field in self.parmDict['inFieldNames']: dims = [nRows, nCols] + self.parmDict['dimSizes'][field] outputArrays[field] = numpy.zeros(dims) # prep for computing weights wghtDict = dict() # we only want to compute each weight once wghtFunc = self.parmDict['weightFunction'] filtFunc = self.parmDict['filterFunction'] # convert the times to the proper format tConvFunc = self.parmDict['timeConv'] timeStart = tConvFunc(self.parmDict['timeStart']) timeStop = tConvFunc(self.parmDict['timeStop']) # loop over maps if not isinstance(maps, list): maps = [maps] # create list if we didn't get one # check to see that we were given exactly one map. If we aren't # explain that this function only works for one map and exit if len(maps) != 1: msg = "Though in general output functions are designed to handle" \ " multiple input files, this function currently can only " \ "process individual input files. Please only provide one " \ "input file or use a different output function. This " \ "limitation may be fixed if there is a convincing reason " \ "to rewrite the function to accomodate more inputs" raise NotImplementedError(msg) for map in maps: with map.pop('parser') as p: if verbose: print('Processing %s for output at %s' % (p.name, str(datetime.datetime.now()))) # loop over the cells in the map, processing each for (cellInd, pixTups) in map.iteritems(): # compute the weight only if we haven't already. In either # case, put the weights in array. wghts = [wghtDict.setdefault(ind, wghtFunc(p, ind, wgt)) for (ind, wgt) in pixTups] # create the time array we'll be using to filter tArray = numpy.array([p.get_cm(self.parmDict['time'], ind) for (ind, wgt) in pixTups]).squeeze() if self.parmDict['timeComparison'] == 'local': offsets = numpy.array([utils.UTCoffset_from_lon( p.get_cm(self.parmDict['longitude'], ind)) for (ind, wgt) in pixTups]).squeeze() tArray += offsets tFlag = numpy.logical_or(tArray < timeStart, tArray > timeStop) # use the filter function on the stack to apply user-defined # filter conditions pixIndStack = [pInd for (pInd, unused_weight) in pixTups] uFlag = numpy.array(filtFunc(p, pixIndStack)) # combine time filter and user filter into a single, global flag gFlag = numpy.logical_or(uFlag, tFlag) # filter the weights so that values that will be rejected don't # have their weights included in the denominator of the final # average. wghts = numpy.where(gFlag, numpy.NaN, wghts) # loop over fields. For each, compute avg and save for field in self.parmDict['inFieldNames']: # create the array of weighted values vals = numpy.array([p.get_cm(field, ind) for (ind, wgt) in pixTups]).squeeze() if self.parmDict['logNormal'][field]: vals = numpy.log(vals) # work with logarithm of data # create a slice object that will allow us to broadcast # weights against the values extraDims = self.parmDict['dimSizes'][field] # handle the special case where we put in 0 for extradims if len(extraDims) == 1 and extraDims == [0]: nExtraDims = 0 else: nExtraDims = len(extraDims) wghtSlice = [Ellipsis]+[numpy.newaxis]*nExtraDims # handle special case where there were no pixels in # cell if vals.size == 0: vals = vals.reshape([0]+extraDims) # compute weighted values wghtVals = vals*wghts[wghtSlice] # average the weighted Values wghtValSum = numpy.nansum(wghtVals, axis=0) wghtSum = numpy.nansum(wghts, axis=0) # avoid hassle with div/0 warnings if wghtSum != 0: wghtValAvg = wghtValSum/wghtSum else: wghtValAvg = numpy.NaN # re-exponentiate if we took log average if self.parmDict['logNormal'][field]: wghtValAvg = numpy.exp(wghtValAvg) # mask nan's with fillVal, then slot into output array wghtValAvg = numpy.where(numpy.isnan(wghtValAvg), self.parmDict['fillVal'], wghtValAvg) outputArrays[field][cellInd] = wghtValAvg # done looping over fields # done looping over cells # done with context manager on parser # return the parser to the map so it can be used elsewhere map['parser'] = p if verbose: print('Done processing %s at %s' % (p.name, str(datetime.datetime.now()))) # done looping over maps # set up the parts of the netcdf file that AREN'T field specific outFid = netCDF4.Dataset(outfilename, 'w', format='NETCDF3_CLASSIC') outFid.createDimension('row', nRows) outFid.createDimension('col', nCols) # set global attributes setattr(outFid, 'Version', vsnmsg(version)) setattr(outFid, 'File_start_time', utils.nsecs_to_timestr(self.parmDict['timeStart'], epoch='00:00:00 01-01-1993', format='%H:%M:%S %m-%d-%Y')) setattr(outFid, 'File_stop_time', utils.nsecs_to_timestr(self.parmDict['timeStop'], epoch='00:00:00 01-01-1993', format='%H:%M:%S %m-%d-%Y')) setattr(outFid, 'Time_comparison_scheme', self.parmDict['timeComparison']) flistStr = ' '.join([map['parser'].name for map in maps]) setattr(outFid, 'Input_files', flistStr) setattr(outFid, 'Weighting_function_description', wghtFunc.__doc__) setattr(outFid, 'Filter_function_description', filtFunc.__doc__) # add in attributes for the projection setattr(outFid, 'Projection', griddef.__class__.__name__[:-8]) setattr(outFid, 'Notes', self.parmDict['notes']) for k in griddef.parm_list(): setattr(outFid, k, griddef.parms[k]) # loop over fields and write all information for each field for field in self.parmDict['inFieldNames']: # create the dimensions in the file extraDimSizes = self.parmDict['dimSizes'][field] extraDimLabels = self.parmDict['dimLabels'][field] for (size, label) in zip(extraDimSizes, extraDimLabels): if label not in outFid.dimensions.keys(): outFid.createDimension(label, size) # write the variable to file vDims = ['row', 'col'] + extraDimLabels outFieldName = self.parmDict['outFieldNames'][field] varHand = outFid.createVariable(outFieldName, 'd', vDims, fill_value=self.parmDict['fillVal']) varHand[:] = outputArrays[field] # write variable attributes setattr(varHand, 'Units', self.parmDict['outUnits'][field]) # close the output file outFid.close() # create an output dictionary keyed to output field names finalOutArrays = dict() for (k,v) in outputArrays.iteritems(): finalOutArrays[self.parmDict['outFieldNames'][k]] = v return finalOutArrays class unweighted_filtered_MOPITT_avg_netCDF_out_func(wght_avg_netCDF): ''' Output averager designed to work with MOPITT Level 2 data. Emulates the NASA developed averaging algorithm for level 3 (mostly) faithfully. Following the NASA precedent, data are separated into either daytime or nighttime values according to solar zenith angle. Unfortunately, since none of the NASA documentation actually specifies what cutoff value was used for solar zenith angle, the value is left up to the user with a default of 85. Also, in contrast to the NASA product, only one time (day or night) is actually included. Which one is left to the user and noted in the attributes of the output file. Also following NASA precedent, data are filtered based on surface type. For cells where one surface type makes up more than 75% of the pixels, that surface type is used exclusively. For cells where no surface type reaches the 75% threshold, all pixels are included. Again following the NASA algorithm, if pixels containing differing numbers of valid levels are present in a single grid cell, only the pixels comprising the majority are retained. This is tested using the retrieved CO mixing ratio profile field. Note that this applies to BOTH 3D AND NON-3D FIELDS. That is, a surface measurement will still be filtered if the corresponding column measurement does not have the majority number of layers present, EVEN IF NO COLUMN MEASUREMENTS ARE REQUESTED. Furthermore, all columns are filtered based on the chosen column measurement, even if they have information present in an 'invalid' layer The user is given the option of averaging each field assuming either a normal or log-normal distribution. This is left to the user's discretion so make sure you know which fields it is appropriate to average and which should be log-averaged. For further details (don't get your hopes up) on the NASA algorithm, refer to <NAME> (2009). MOPITT (Measurements of Pollution in the Troposphere) Validated Version 4 Product Users Guide. Available from <http://www.acd.ucar.edu/mopitt/products.shtml> The output will be a netCDF file with the name determined in the standard way. Will have the appropriate dimensions for those input fields being processed, as well as the fundamental rows/cols determined by grid_geo This class subclasses the generic wght_avg_netCDF. It handles all changes in interface in it's __init__ method and lets any actual calls filter up to the parent. The parameters dictionary must contain the following keys: time: SEE DOCUMENTATION FOR wght_avg_vals_netCDF_out_func NOTE: must be in TAI93 format longitude: SEE DOCUMENTATION FOR wght_avg_vals_netCDF_out_func inFieldNames: SEE DOCUMENTATION FOR wght_avg_vals_netCDF_out_func outFieldNames: SEE DOCUMENTATION FOR wght_avg_vals_netCDF_out_func outUnits: SEE DOCUMENTATION FOR wght_avg_vals_netCDF_out_func logNormal: SEE DOCUMENTATION FOR wght_avg_vals_netCDF_out_func dimLabels: SEE DOCUMENTATION FOR wght_avg_vals_netCDF_out_func dimSizes: SEE DOCUMENTATION FOR wght_avg_vals_netCDF_out_func timeStart: SEE DOCUMENTATION FOR wght_avg_vals_netCDF_out_func timeStop: SEE DOCUMENTATION FOR wght_avg_vals_netCDF_out_func timeComparison: SEE DOCUMENTATION FOR wght_avg_vals_netCDF_out_func fillVal: SEE DOCUMENTATION FOR wght_avg_vals_netCDF_out_func solZenAng: The string for the field associated with the solar zenith angle. Must be in degrees solZenAngCutoff: The cutoff solar zenith angle value dividing night from day. Pixels with SZA > solZenAngCutoff will be considered nighttime pixels. 90 is mathematically correct, values between are typeically used in practice. In degrees. If SZA is exactly equal to the cutoff, it is included regardless of whether day or night was selected. dayTime: Boolean variable setting whether the desired output file will be for the daytime or nighttime. If set to "True", the output file will feature daylight retrievals only. If set to "False", the output will feature night retrievals only. Note that by most estimates, daylight retrievals are higher quality. surfTypeField: The string for the field associated with the surface type. This field is assumed to have integers corresponding to different surface types. No effort is made to distinguish between surface types (only to ensure they are consistent) so the mapping of integers to physical surface types is irrelevant. colMeasField: The string for the field associated with a column measurement. This can be any field with exactly one extra dimension, provided it has NaN's at the same levels as other fields where appropriate. The canonical field to use here is the retrieved CO mixing ratio profile. ''' @staticmethod def parm_list(): return ['time', 'longitude', 'inFieldNames', 'outFieldNames', 'outUnits', 'logNormal', 'dimLabels', 'dimSizes', 'timeStart', 'timeStop', 'timeComparison', 'fillVal', 'solZenAngCutoff', 'solZenAng', 'dayTime', 'surfTypeField', 'colMeasField'] @staticmethod def required_parms(): return {'time' : ('The name of the field containing timestamps. ' \ 'Timestamps are assumed to be in the TAI-93 format.' \ '\n{ MOPITT - TIME }', None), 'longitude' : ('The name of the field containing longitudes ' \ 'at cell centers. Longitudes should be in ' \ 'degrees east.\n{ MOPITT - Longitude }', None), 'inFieldNames' : ('The names of the fields desired to be ' \ 'output. Input as comma-delimited list.', \ 'list'), 'outFieldNames': ('The names of the output variables. (even ' \ 'if they are to be the same as input ' \ 'variables). Should be a comma-delimited ' \ 'list co-indexed to inFieldNames', 'list'), 'outUnits' : ('The units of the variables to be written out.' \ ' Should be a comma-delimited list co-indexed '\ 'to inFieldNames', 'list'), 'logNormal' : ('List of boolean strings that specify how to ' \ 'take the averages of the corresponding fields.'\ ' If the string is "True" that field is ' \ 'averaged assuming a lognormal distribution. ' \ 'If the string is "False" that field is ' \ 'averaged assuming a normal distribution. ' \ 'Should be a comma-delimited list co-indexed ' \ 'to inFieldNames', 'list'), 'dimLabels' : ('List of names of the extra dimensions in the ' \ 'output file. Must be a semicolon-delimited ' \ 'list of comma-delimited strings. Fields with no'\ 'extra dimensions may be left blank. ' \ 'For example, if there are four inFields, the ' \ 'first and third of which have no extra ' \ 'dimensions, the second of which has one ("foo"),'\ ' and the fourth has two ("foo" and "bar"), the '\ 'dimLabels entry should look like this: '\ ';foo;;foo,bar The outer (semicolon-delimited) '\ 'list must be co-indexed to inFieldNames', 'listoflists'), 'dimSizes' : ('List of the sizes of the extra dimensions in the' \ ' output file. Must be a semicolon-delimited list'\ ' of comma-delimited lists of integers. Fields'\ 'with no extra dimensions may be left blank. ' \ 'For example, if there are four inFields, the ' \ 'first and third of which have no extra ' \ 'dimensions, the second of which has one (which ' \ 'has length four), and the fourth has two (which '\ 'have lengths four and five, respectively), the '\ 'dimSizes entry should look like this: ;4;;4,5 ' \ 'The outer (semicolon-delimited) list must be ' \ 'co-indexed to inFieldNames and all sub-lists ' \ 'should be the same size as the corresponding ' \ 'sublist in dimLabels.', 'listoflists'), 'timeStart' : ('The earliest time for which data should be ' \ 'recorded into the output file. All times ' \ 'before this time in the input file(s) will ' \ 'be filtered out. Must be in the format: hh:' \ 'mm:ss_MM-DD-YYYY', 'time'), 'timeStop' : ('The latest time for which data should be ' \ 'recorded into the output file. All times after'\ ' this time in the input file(s) will be ' \ 'filtered out. Must be in the format: ' \ 'hh:mm:ss_MM-DD-YYYY','time'), 'timeComparison' : ('Must be set to either "local" or "UTC". '\ 'Determines how the file timestamps are ' \ 'compared to the start/stop time. If set '\ 'to "local", then the file timestamps are ' \ 'converted to local time on a pixel-by-pixel'\ ' basis (using longitude to estimate time ' \ 'zone) before being compared to time ' \ 'boundaries. If set to "UTC" the file ' \ 'timestamps (which are assumed to be in UTC)'\ ' are compared against the start/stop time '\ 'directly.', None), 'fillVal' : ('The value to use as a fill value in the output '\ 'netCDF file. This value will replace any '\ 'missing or invalid output values', 'decimal'), 'solZenAngCutoff' : ('The solar zenith angle that defines the '\ 'day to night transition (we use the SZA '\ 'to separate day and night pixels, which '\ 'should not be averaged together), in ' \ 'degrees. The geometric value here would ' \ 'be 90. Recommended value is 85.', 'decimal'), 'solZenAng' : ('The name of the field containing the solar' \ ' zenith angle in degrees. { MOPITT - Solar ' \ 'Zenith Angle }', None), 'dayTime' : ('Boolean variable that indicates ' \ 'whether the output file should contain ' \ 'values from day or night. If set to ' \ '"True" the output file will have ' \ 'daylight values. If set to "False" ' \ 'the output file will have night ' \ 'values.', 'bool'), 'surfTypeField' : ('The name of the field containing the ' \ 'surface type index.\n{ MOPITT - Surface ' \ 'Index }', None), 'colMeasField' : ('The name of the field containing the ' \ 'column measurement that will be used to ' \ 'determine which levels are valid in a ' \ 'cell. Canonically the retrieved CO mixing' \ ' ratio profile field. It is assumed that ' \ 'the field will have a layer dimension first' \ ' and a 2-element second dimension (for ' \ 'values and std devs) of which we want the ' \ 'first slice.\n{ MOPITT - Retrieved CO Mixing '\ 'Ratio Profile }', None)} # variable signifying which list is to act as the master list index __userKeys__ = "inFieldNames" def __init__(self, pDict): '''Convert input to format of parent input''' # make a shallow copy to the parameter dict, as we'll be making changes # and we don't want to mutate the argument parmDict = dict(pDict) # even though IO interface handles casting already, # a catchblock has been added here for safety # in case someone wants to use this class directly castDict = {'time':str, 'longitude':str, 'inFieldNames':list, 'outFieldNames':list, 'outUnits':list, 'logNormal':list, 'dimLabels':list, 'dimSizes':list, 'timeStart':tai93conv, 'timeStop':tai93conv, 'timeComparison':str, 'fillVal':float, 'solZenAngCutoff':float, 'solZenAng':str, 'dayTime':bool, 'surfTypeField':str, 'colMeasField':str} for (k,func) in castDict.items(): try: parmDict[k] = func(parmDict[k]) except TypeError: pass # by this point times are already converted to TAI93 standard # no need to convert here parmDict['timeConv'] = lambda(x):x # remove extraneous entries in parmDict. They will be incorporated in # weighting and filtering functions SZAcut = parmDict.pop('solZenAngCutoff') SZAfield = parmDict.pop('solZenAng') dayTime = parmDict.pop('dayTime') surfField = parmDict.pop('surfTypeField') colMeasField = parmDict.pop('colMeasField') dayBool = dayTime # note which was chosen parmDict['notes'] = 'All values %s with cutoff at %6.2f' % \ ('daytime' if dayBool else 'nighttime', SZAcut) # create weighting function def wghtFunc(parser, index, prevWght): ''' Values not explicitly weighted. Values not in desired part of diurnal cycle (as determined by solar zenith angle) are given weight of 0 and therefore not included in final average ''' SZA = parser.get_cm(SZAfield, index) if dayBool and SZA <= SZAcut: # we want day and it's day return 1 elif not dayBool and SZA >= SZAcut: # we want night and it's night return 1 else: return 0 parmDict['weightFunction'] = wghtFunc # create filtering function def filterFunc(parser, indStack): ''' Filter is twofold. First filter checks if any surface type makes up 75% of the pixels in the cell. If it does, all other surface types are rejected. Second filter checks if column retrievals have different numbers of valid retrievals. If they do, then the pixels in the minority are rejected. In the case of a tie the pixels with more levels present are retained. ''' # short-circuit an empty indstack because it's a common case that's # difficult to efficiently code for if len(indStack) == 0: return numpy.array([]) # first filter sTypes = numpy.array([parser.get_cm(surfField, ind) for ind in indStack]).squeeze() uniques = numpy.unique(sTypes) uniqueFracs = [float((sTypes == un).sum())/sTypes.size for un in uniques] cellType = None for (type,frac) in izip(uniques,uniqueFracs): # at most one value can meet threshold if frac >= .75: cellType = type if cellType is None: # none met threshold, all are used sFlag = numpy.array([False]*len(sTypes)) else: # one met threshold sFlag = sTypes != cellType # second filter columns = [parser.get_cm(colMeasField, ind)[:,0] for ind in indStack] nValidInCol = numpy.array([col.size - numpy.isnan(col).sum() for col in columns]) uniqueNvals = set(nValidInCol) uniqueCounts = numpy.array([(nValidInCol == val).sum() for val in uniqueNvals]) maxCount = uniqueCounts.max() maxNVals = [nv for (nv,c) in izip(uniqueNvals,uniqueCounts) if c == maxCount] # if there are multiples with same count, we want the highest number of valid # values, so we take the largest maxNVal = max(maxNVals) cFlag = numpy.array([nValid != maxNVal for nValid in nValidInCol]) # combine the filters and return return numpy.logical_or(cFlag, sFlag) parmDict['filterFunction'] = filterFunc # invoke parent's constructor wght_avg_netCDF.__init__(self, parmDict) ```
{ "source": "joberthrogers18/TIL", "score": 3 }
#### File: python/multithreading/index.py ```python from utils import thread_delay import threading import _thread import time def start_and_wait_thread_finish(*args): for thr in args: thr.start() for thr in args: # wait thread finish to execute the next lines thr.join() def volume_cube(a): print('Volume of cube: ', a**3) def volume_square(a): print('Volume of Square: ', a*a) if __name__ == '__main__': _thread.start_new_thread(thread_delay, ('t1', 1)) _thread.start_new_thread(thread_delay, ('t2', 5)) t3 = threading.Thread(target=thread_delay, args=('t3', 2)) t4 = threading.Thread(target=thread_delay, args=('t4', 3)) start_and_wait_thread_finish(t3, t4) print('\n\nThread execution is complete!\n') th_volume_1 = threading.Thread(target=volume_cube, args=(2,)) th_volume_2 = threading.Thread(target=volume_square, args=(3,)) start_and_wait_thread_finish(th_volume_1, th_volume_2) print('\n\nVolumes threading are complete!\n') time.sleep(12000) ``` #### File: python/multithreading/utils.py ```python import time def thread_delay(thread_name, delay): count = 0 while count < 3: time.sleep(delay) count += 1 print(thread_name, '--------->', time.time()) ```
{ "source": "jobes/modoboa-installer", "score": 2 }
#### File: modoboa_installer/scripts/nginx.py ```python import os from .. import package from .. import system from .. import utils from . import base from .uwsgi import Uwsgi class Nginx(base.Installer): """Nginx installer.""" appname = "nginx" packages = { "deb": ["nginx", "ssl-cert"], "rpm": ["nginx"] } def get_template_context(self, app): """Additionnal variables.""" context = super(Nginx, self).get_template_context() context.update({ "app_instance_path": ( self.config.get(app, "instance_path")), "uwsgi_socket_path": Uwsgi(self.config).get_socket_path(app) }) return context def _setup_config(self, app, hostname=None, extra_config=None): """Custom app configuration.""" if hostname is None: hostname = self.config.get("general", "hostname") context = self.get_template_context(app) context.update({"hostname": hostname, "extra_config": extra_config}) src = self.get_file_path("{}.conf.tpl".format(app)) if package.backend.FORMAT == "deb": dst = os.path.join( self.config_dir, "sites-available", "{}.conf".format(hostname)) utils.copy_from_template(src, dst, context) link = os.path.join( self.config_dir, "sites-enabled", os.path.basename(dst)) if os.path.exists(link): return os.symlink(dst, link) group = self.config.get(app, "user") user = "www-data" else: dst = os.path.join( self.config_dir, "conf.d", "{}.conf".format(hostname)) utils.copy_from_template(src, dst, context) group = "uwsgi" user = "nginx" system.add_user_to_group(user, group) def post_run(self): """Additionnal tasks.""" extra_modoboa_config = "" if self.config.getboolean("automx", "enabled"): hostname = "autoconfig.{}".format( self.config.get("general", "domain")) self._setup_config("automx", hostname) extra_modoboa_config = """ location ~* ^/autodiscover/autodiscover.xml { include uwsgi_params; uwsgi_pass automx; } location /mobileconfig { include uwsgi_params; uwsgi_pass automx; } """ if self.config.get("radicale", "enabled"): extra_modoboa_config += """ location /radicale/ { proxy_pass http://localhost:5232/; # The / is important! proxy_set_header X-Script-Name /radicale; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_pass_header Authorization; } """ self._setup_config( "modoboa", extra_config=extra_modoboa_config) if not os.path.exists("{}/dhparam.pem".format(self.config_dir)): cmd = "openssl dhparam -dsaparam -out dhparam.pem 4096" utils.exec_cmd(cmd, cwd=self.config_dir) ```
{ "source": "jobevers/diagonal-crop", "score": 3 }
#### File: diagonal-crop/diagonal_crop/__init__.py ```python from diagonal_crop.point import * # pylint: disable=wildcard-import from diagonal_crop.util import * # pylint: disable=wildcard-import def crop(im, base, angle, height, width): """Return a new, cropped image. Args: im: a PIL.Image instance base: a (x,y) tuple for the upper left point of the cropped area angle: angle, in radians, for which the cropped area should be rotated height: height in pixels of cropped area width: width in pixels of cropped area """ base = Point(*base) points = getRotatedRectanglePoints(angle, base, height, width) return _cropWithPoints(im, angle, points) def _cropWithPoints(im, angle, points): bounds = getBounds(points) im2 = im.crop(roundint(bounds)) bound_center = getBoundsCenter(bounds) crop_center = getCenter(im2) # in the cropped image, this is where our points are crop_points = [pt.recenter(bound_center, crop_center) for pt in points] # this is where the rotated points would end up without expansion rotated_points = [pt.rotate(crop_center, angle) for pt in crop_points] # expand is necessary so that we don't lose any part of the picture im3 = im2.rotate(-angle * 180 / math.pi, expand=True) # but, since the image has been expanded, we need to recenter im3_center = getCenter(im3) rotated_expanded_points = [pt.recenter(crop_center, im3_center) for pt in rotated_points] im4 = im3.crop(roundint(getBounds(rotated_expanded_points))) return im4 ```
{ "source": "jobevers/flask-uwsgi-nginx-docker", "score": 2 }
#### File: flask-uwsgi-nginx-docker/app/util.py ```python import collections import datetime import functools import logging import sys import flask import flask_jwt import users def standardConsoleHandler(): result = logging.StreamHandler(sys.stdout) format_ = "%(asctime)s %(levelname)-8s %(name)s: %(message)s" formatter = logging.Formatter(format_) result.setFormatter(formatter) return result def configureJWT(app, db_session): jwt = flask_jwt.JWT(app, functools.partial(users.authenticate, db_session), users.identity) # this is nearly identical to the default except that # they use the `id` property and I use the `id_` property def jwt_payload_handler(user): iat = datetime.datetime.utcnow() exp = iat + app.config.get('JWT_EXPIRATION_DELTA') nbf = iat + app.config.get('JWT_NOT_BEFORE_DELTA') return {'exp': exp, 'iat': iat, 'nbf': nbf, 'identity': user.id_} jwt.jwt_payload_handler(jwt_payload_handler) return jwt ```
{ "source": "jobevers/python-keepasshttp", "score": 3 }
#### File: python-keepasshttp/keepasshttp/crypto.py ```python import base64 import os from cryptography.hazmat.primitives import padding from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes from cryptography.hazmat.backends import default_backend from keepasshttp import util KEY_SIZE = 32 # this is in bytes IV_SIZE = 16 PAD_SIZE = 128 # in bits def pad(data, size=PAD_SIZE): # size is in bits; 16 bytes = 128 bits padder = padding.PKCS7(size).padder() padded_data = padder.update(data) return padded_data + padder.finalize() def unpad(padded_data, size=PAD_SIZE): unpadder = padding.PKCS7(size).unpadder() data = unpadder.update(padded_data) return data + unpadder.finalize() def getCipher(key, iv): backend = default_backend() return Cipher( algorithms.AES(base64.b64decode(key)), modes.CBC(base64.b64decode(iv)), backend ) def encrypt(data, key, iv): cipher = getCipher(key, iv) encryptor = cipher.encryptor() p = pad(data) res = encryptor.update(p) + encryptor.finalize() return base64.b64encode(res) def decrypt(data, key, iv): cipher = getCipher(key, iv) decryptor = cipher.decryptor() padded_data = decryptor.update(base64.b64decode(data)) + decryptor.finalize() return unpad(padded_data) def getRandomBytes(size): return base64.b64encode(os.urandom(size)) def getRandomKey(): return getRandomBytes(KEY_SIZE) def getRandomIV(): return getRandomBytes(IV_SIZE) def encryptDict(dct, key, iv): def _encrypt(v): return encrypt(v, key, iv) return util.jsonMap(_encrypt, dct) def decryptDict(encrypted_dict, key, iv): def _decrypt(v): return decrypt(v, key, iv) return util.jsonMap(_decrypt, encrypted_dict) ``` #### File: python-keepasshttp/keepasshttp/password.py ```python class Password(object): """A simple object that stores a password but prints '***' This helps prevent accidentally printing a password to the terminal. """ def __init__(self, password): self.value = password def __str__(self): return '*****' def __repr__(self): return '{}(*****)'.format(self.__class__.__name__) def _isPassword(key): return key.lower() == 'password' def replace(mapping): """Replaces the values for keys that look like passwords""" return {k: Password(v) if _isPassword(k) else v for k, v in mapping.items()} ```
{ "source": "jobevers/vex", "score": 3 }
#### File: vex/vex/exceptions.py ```python import sys class InvalidArgument(Exception): """Raised by anything under main() to propagate errors to user. """ def __init__(self, message): self.message = message Exception.__init__(self, message) class NoVirtualenvName(InvalidArgument): """No virtualenv name was given (insufficient arguments). """ pass class NoVirtualenvsDirectory(InvalidArgument): """There is no directory to find named virtualenvs in. """ pass class OtherShell(InvalidArgument): """The given argument to --shell-config is not recognized. """ pass class UnknownArguments(InvalidArgument): """Unknown arguments were given on the command line. This is a byproduct of having to use parse_known_args. """ pass class InvalidVexrc(InvalidArgument): """config file specified or required but absent or unparseable. """ pass class InvalidVirtualenv(InvalidArgument): """No usable virtualenv was found. """ pass class InvalidCommand(InvalidArgument): """No runnable command was found. """ pass class InvalidCwd(InvalidArgument): """cwd specified or required but unusable. """ pass class BadConfig(InvalidArgument): """raised to halt on fatal conditions on the way to run. """ pass class VirtualenvAlreadyMade(InvalidArgument): """could not make virtualenv as one already existed. """ pass class VirtualenvNotMade(InvalidArgument): """could not make virtualenv. """ pass class VirtualenvNotRemoved(InvalidArgument): """raised when virtualenv could not be removed. """ pass if sys.version_info > (3, 3): CommandNotFoundError = FileNotFoundError else: CommandNotFoundError = OSError ``` #### File: vex/vex/main.py ```python import sys import os from vex import config from vex.options import get_options from vex.run import get_environ, run from vex.shell_config import handle_shell_config from vex.make import handle_make from vex.remove import handle_remove from vex import exceptions from vex._version import VERSION def get_vexrc(options, environ): """Get a representation of the contents of the config file. :returns: a Vexrc instance. """ # Complain if user specified nonexistent file with --config. # But we don't want to complain just because ~/.vexrc doesn't exist. if options.config and not os.path.exists(options.config): raise exceptions.InvalidVexrc("nonexistent config: {0!r}".format(options.config)) filename = options.config or os.path.expanduser('~/.vexrc') vexrc = config.Vexrc.from_file(filename, environ) return vexrc def get_cwd(options): """Discover what directory the command should run in. """ if not options.cwd: return None if not os.path.exists(options.cwd): raise exceptions.InvalidCwd( "can't --cwd to invalid path {0!r}".format(options.cwd)) return options.cwd def get_virtualenv_name(options): if options.path: return os.path.dirname(options.path) else: ve_name = options.rest.pop(0) if options.rest else '' if not ve_name: raise exceptions.NoVirtualenvName( "could not find a virtualenv name in the command line." ) return ve_name def get_virtualenv_path(ve_base, ve_name): """Check a virtualenv path, raising exceptions to explain problems. """ if not ve_base: raise exceptions.NoVirtualenvsDirectory( "could not figure out a virtualenvs directory. " "make sure $HOME is set, or $WORKON_HOME," " or set virtualenvs=something in your .vexrc") # Using this requires get_ve_base to pass through nonexistent dirs if not os.path.exists(ve_base): message = ( "virtualenvs directory {0!r} not found. " "Create it or use vex --make to get started." ).format(ve_base) raise exceptions.NoVirtualenvsDirectory(message) if not ve_name: raise exceptions.InvalidVirtualenv("no virtualenv name") # n.b.: if ve_name is absolute, ve_base is discarded by os.path.join, # and an absolute path will be accepted as first arg. # So we check if they gave an absolute path as ve_name. # But we don't want this error if $PWD == $WORKON_HOME, # in which case 'foo' is a valid relative path to virtualenv foo. ve_path = os.path.join(ve_base, ve_name) if ve_path == ve_name and os.path.basename(ve_name) != ve_name: raise exceptions.InvalidVirtualenv( 'To run in a virtualenv by its path, ' 'use "vex --path {0}"'.format(ve_path)) ve_path = os.path.abspath(ve_path) if not os.path.exists(ve_path): raise exceptions.InvalidVirtualenv( "no virtualenv found at {0!r}.".format(ve_path)) return ve_path def get_command(options, vexrc, environ): """Get a command to run. :returns: a list of strings representing a command to be passed to Popen. """ command = options.rest if not command: command = vexrc.get_shell(environ) if command and command[0].startswith('--'): raise exceptions.InvalidCommand( "don't put flags like '%s' after the virtualenv name." % command[0]) if not command: raise exceptions.InvalidCommand("no command given") return command def handle_version(): sys.stdout.write(VERSION + "\n") return 0 def handle_list(ve_base, prefix=""): if not os.path.isdir(ve_base): sys.stderr.write("no virtualenvs directory at {0!r}\n".format(ve_base)) return 1 text = "\n".join( sorted( relative_path for relative_path in os.listdir(ve_base) if (not relative_path.startswith("-")) and relative_path.startswith(prefix) and os.path.isdir(os.path.join(ve_base, relative_path)) ) ) sys.stdout.write(text + "\n") return 0 def _main(environ, argv): """Logic for main(), with less direct system interaction. Routines called here raise InvalidArgument with messages that should be delivered on stderr, to be caught by main. """ options = get_options(argv) if options.version: return handle_version() vexrc = get_vexrc(options, environ) # Handle --shell-config as soon as its arguments are available. if options.shell_to_configure: return handle_shell_config(options.shell_to_configure, vexrc, environ) if options.list is not None: return handle_list(vexrc.get_ve_base(environ), options.list) # Do as much as possible before a possible make, so errors can raise # without leaving behind an unused virtualenv. # get_virtualenv_name is destructive and must happen before get_command cwd = get_cwd(options) ve_base = vexrc.get_ve_base(environ) ve_name = get_virtualenv_name(options) command = get_command(options, vexrc, environ) # Either we create ve_path, get it from options.path or find it # in ve_base. if options.make: if options.path: make_path = os.path.abspath(options.path) else: make_path = os.path.abspath(os.path.join(ve_base, ve_name)) handle_make(environ, options, make_path) ve_path = make_path elif options.path: ve_path = os.path.abspath(options.path) if not os.path.exists(ve_path) or not os.path.isdir(ve_path): raise exceptions.InvalidVirtualenv( "argument for --path is not a directory") else: try: ve_path = get_virtualenv_path(ve_base, ve_name) except exceptions.NoVirtualenvName: options.print_help() raise # get_environ has to wait until ve_path is defined, which might # be after a make; of course we can't run until we have env. env = get_environ(environ, vexrc['env'], ve_path) returncode = run(command, env=env, cwd=cwd) if options.remove: handle_remove(ve_path) if returncode is None: raise exceptions.InvalidCommand( "command not found: {0!r}".format(command[0])) return returncode def main(): """The main command-line entry point, with system interactions. """ argv = sys.argv[1:] returncode = 1 try: returncode = _main(os.environ, argv) except exceptions.InvalidArgument as error: if error.message: sys.stderr.write("Error: " + error.message + '\n') else: raise sys.exit(returncode) ``` #### File: vex/vex/make.py ```python import os import sys import distutils.spawn from vex.run import run from vex import exceptions PYDOC_SCRIPT = """#!/usr/bin/env python from pydoc import cli cli() """.encode('ascii') PYDOC_BATCH = """ @python -m pydoc %* """.encode('ascii') def handle_make(environ, options, make_path): if os.path.exists(make_path): # Can't ignore existing virtualenv happily because existing one # might have different parameters and --make implies nonexistent raise exceptions.VirtualenvAlreadyMade( "virtualenv already exists: {0!r}".format(make_path) ) ve_base = os.path.dirname(make_path) if not os.path.exists(ve_base): os.mkdir(ve_base) elif not os.path.isdir(ve_base): raise exceptions.VirtualenvNotMade( "could not make virtualenv: " "{0!r} already exists but is not a directory. " "Choose a different virtualenvs path using ~/.vexrc " "or $WORKON_HOME, or remove the existing file; " "then rerun your vex --make command.".format(ve_base) ) # TODO: virtualenv is usually not on PATH for Windows, # but finding it is a terrible issue. if os.name == 'nt' and not os.environ.get('VIRTUAL_ENV', ''): ve = os.path.join( os.path.dirname(sys.executable), 'Scripts', 'virtualenv' ) else: ve = 'virtualenv' args = [ve, make_path] if options.python: if os.name == 'nt': python = distutils.spawn.find_executable(options.python) if python: options.python = python args += ['--python', options.python] if options.site_packages: args += ['--system-site-packages'] if options.always_copy: args+= ['--always-copy'] returncode = run(args, env=environ, cwd=ve_base) if returncode != 0: raise exceptions.VirtualenvNotMade("error creating virtualenv") if os.name != 'nt': pydoc_path = os.path.join(make_path, 'bin', 'pydoc') with open(pydoc_path, 'wb') as out: out.write(PYDOC_SCRIPT) perms = os.stat(pydoc_path).st_mode os.chmod(pydoc_path, perms | 0o0111) else: pydoc_path = os.path.join(make_path, 'Scripts', 'pydoc.bat') with open(pydoc_path, 'wb') as out: out.write(PYDOC_BATCH) ```
{ "source": "jobez/tinkerpop", "score": 2 }
#### File: tests/driver/test_driver_remote_connection.py ```python import pytest from tornado import ioloop, gen from gremlin_python import statics from gremlin_python.driver.protocol import GremlinServerError from gremlin_python.statics import long from gremlin_python.driver.driver_remote_connection import ( DriverRemoteConnection) from gremlin_python.process.traversal import Traverser from gremlin_python.process.traversal import TraversalStrategy from gremlin_python.process.traversal import Bindings from gremlin_python.process.traversal import P from gremlin_python.process.graph_traversal import __ from gremlin_python.process.anonymous_traversal import traversal from gremlin_python.structure.graph import Vertex from gremlin_python.process.strategies import SubgraphStrategy, ReservedKeysVerificationStrategy __author__ = '<NAME> (http://markorodriguez.com)' class TestDriverRemoteConnection(object): def test_traversals(self, remote_connection): statics.load_statics(globals()) g = traversal().withRemote(remote_connection) assert long(6) == g.V().count().toList()[0] # # assert Vertex(1) == g.V(1).next() assert 1 == g.V(1).id().next() assert Traverser(Vertex(1)) == g.V(1).nextTraverser() assert 1 == len(g.V(1).toList()) assert isinstance(g.V(1).toList(), list) results = g.V().repeat(out()).times(2).name results = results.toList() assert 2 == len(results) assert "lop" in results assert "ripple" in results # # assert 10 == g.V().repeat(both()).times(5)[0:10].count().next() assert 1 == g.V().repeat(both()).times(5)[0:1].count().next() assert 0 == g.V().repeat(both()).times(5)[0:0].count().next() assert 4 == g.V()[2:].count().next() assert 2 == g.V()[:2].count().next() # # results = g.withSideEffect('a', ['josh', 'peter']).V(1).out('created').in_('created').values('name').where(P.within('a')).toList() assert 2 == len(results) assert 'josh' in results assert 'peter' in results # # results = g.V().out().profile().toList() assert 1 == len(results) assert 'metrics' in results[0] assert 'dur' in results[0] # # results = g.V().has('name', 'peter').as_('a').out('created').as_('b').select('a', 'b').by( __.valueMap()).toList() assert 1 == len(results) assert 'peter' == results[0]['a']['name'][0] assert 35 == results[0]['a']['age'][0] assert 'lop' == results[0]['b']['name'][0] assert 'java' == results[0]['b']['lang'][0] assert 2 == len(results[0]['a']) assert 2 == len(results[0]['b']) # # results = g.V(1).inject(g.V(2).next()).values('name').toList() assert 2 == len(results) assert 'marko' in results assert 'vadas' in results # # results = g.V().has('person', 'name', 'marko').map(lambda: ("it.get().value('name')", "gremlin-groovy")).toList() assert 1 == len(results) assert 'marko' in results # # # this test just validates that the underscored versions of steps conflicting with Gremlin work # properly and can be removed when the old steps are removed - TINKERPOP-2272 results = g.V().filter_(__.values('age').sum_().and_( __.max_().is_(gt(0)), __.min_().is_(gt(0)))).range_(0, 1).id_().next() assert 1 == results # # # test binding in P results = g.V().has('person', 'age', Bindings.of('x', lt(30))).count().next() assert 2 == results def test_lambda_traversals(self, remote_connection): statics.load_statics(globals()) assert "remoteconnection[ws://localhost:45940/gremlin,gmodern]" == str(remote_connection) g = traversal().withRemote(remote_connection) assert 24.0 == g.withSack(1.0, lambda: ("x -> x + 1", "gremlin-groovy")).V().both().sack().sum().next() assert 24.0 == g.withSack(lambda: ("{1.0d}", "gremlin-groovy"), lambda: ("x -> x + 1", "gremlin-groovy")).V().both().sack().sum().next() assert 48.0 == g.withSack(1.0, lambda: ("x, y -> x + y + 1", "gremlin-groovy")).V().both().sack().sum().next() assert 48.0 == g.withSack(lambda: ("{1.0d}", "gremlin-groovy"), lambda: ("x, y -> x + y + 1", "gremlin-groovy")).V().both().sack().sum().next() def test_iteration(self, remote_connection): statics.load_statics(globals()) g = traversal().withRemote(remote_connection) t = g.V().count() assert t.hasNext() assert t.hasNext() assert t.hasNext() assert t.hasNext() assert t.hasNext() assert 6 == t.next() assert not(t.hasNext()) assert not(t.hasNext()) assert not(t.hasNext()) assert not(t.hasNext()) assert not(t.hasNext()) t = g.V().has('name', P.within('marko', 'peter')).values('name').order() assert "marko" == t.next() assert t.hasNext() assert t.hasNext() assert t.hasNext() assert t.hasNext() assert t.hasNext() assert "peter" == t.next() assert not(t.hasNext()) assert not(t.hasNext()) assert not(t.hasNext()) assert not(t.hasNext()) assert not(t.hasNext()) try: t.next() assert False except StopIteration: assert True def test_strategies(self, remote_connection): statics.load_statics(globals()) g = traversal().withRemote(remote_connection). \ withStrategies(TraversalStrategy("SubgraphStrategy", {"vertices": __.hasLabel("person"), "edges": __.hasLabel("created")}, "org.apache.tinkerpop.gremlin.process.traversal.strategy.decoration.SubgraphStrategy")) assert 4 == g.V().count().next() assert 0 == g.E().count().next() assert 1 == g.V().label().dedup().count().next() assert 4 == g.V().filter(lambda: ("x -> true", "gremlin-groovy")).count().next() assert "person" == g.V().label().dedup().next() # g = traversal().withRemote(remote_connection). \ withStrategies(SubgraphStrategy(vertices=__.hasLabel("person"), edges=__.hasLabel("created"))) assert 4 == g.V().count().next() assert 0 == g.E().count().next() assert 1 == g.V().label().dedup().count().next() assert "person" == g.V().label().dedup().next() # g = traversal().withRemote(remote_connection). \ withStrategies(SubgraphStrategy(edges=__.hasLabel("created"))) assert 6 == g.V().count().next() assert 4 == g.E().count().next() assert 1 == g.E().label().dedup().count().next() assert "created" == g.E().label().dedup().next() # g = g.withoutStrategies(SubgraphStrategy). \ withComputer(vertices=__.has("name", "marko"), edges=__.limit(0)) assert 1 == g.V().count().next() assert 0 == g.E().count().next() assert "person" == g.V().label().next() assert "marko" == g.V().name.next() # g = traversal().withRemote(remote_connection).withComputer() assert 6 == g.V().count().next() assert 6 == g.E().count().next() # g = traversal().withRemote(remote_connection). \ withStrategies(ReservedKeysVerificationStrategy(throw_exception=True)) try: g.addV("person").property("id", "please-don't-use-id").iterate() assert False except GremlinServerError as gse: assert gse.status_code == 500 def test_clone(self, remote_connection): g = traversal().withRemote(remote_connection) t = g.V().count() assert 6 == t.next() assert 6 == t.clone().next() assert 6 == t.clone().next() ```
{ "source": "job-hax/agentv1", "score": 3 }
#### File: src/accounts/linkedin_utils.py ```python import requests from bs4 import BeautifulSoup as bs from bs4.element import Comment, NavigableString from .gmail_utils import find_nth from django.core import serializers from datetime import datetime def parse_job_detail(body): """Parse html body and get job posting details Args: body: email html body Returns: String values which represent details of job post in JSON format. """ try: #start = datetime.utcnow().timestamp() #print(start) link = body[find_nth(body, 'https://www.linkedin.com/comm/jobs/view/', 1) : find_nth(body, '?trk', 1)] print(link) url = requests.get(link) htmltext = url.text s = find_nth(htmltext, '<code id="viewJobMetaTagModule">', 1) e = htmltext.rfind('--></code>') + 10 plainData = htmltext[s : e] plainData = plainData.replace('<!--','') plainData = plainData.replace('-->','') #print(plainData) soup = bs(plainData, "html.parser") try: posterInformation = soup.find('code', id='posterInformationModule') posterInformationJSON = posterInformation.getText() except: posterInformationJSON = '{}' try: decoratedJobPosting = soup.find('code', id='decoratedJobPostingModule') decoratedJobPostingJSON = decoratedJobPosting.getText() except: decoratedJobPostingJSON = '{}' try: topCardV2 = soup.find('code', id='topCardV2Module') topCardV2JSON = topCardV2.getText() except: topCardV2JSON = '{}' #end = datetime.utcnow().timestamp() #print(end) return posterInformationJSON, decoratedJobPostingJSON, topCardV2JSON except Exception as e: print(e) return '{}','{}','{}' ``` #### File: accounts/tests/test_views.py ```python from django.test import TestCase from django.urls import reverse import json # Create your tests here. from accounts.models import ApplicationStatus, JobApplication, Profile, JobPostDetail from django.contrib.auth.models import User class LoginViewTest(TestCase): def setUp(self): test_user1 = User.objects.create_user(username='testuser1', password='<PASSWORD>') test_user1.save() def test_login(self): response = self.client.post(reverse('login'), {'username': 'testuser1', 'password': '<PASSWORD>'}) self.assertEqual(response.status_code, 302) self.assertRedirects(response, '/accounts/dashboard') class RegisterViewTest(TestCase): def test_register(self): response = self.client.post(reverse('register'), {'first_name': 'firstname', 'last_name': 'lastname','username': 'usernametest','email': '<EMAIL>','password': '<PASSWORD>' , 'password2': '<PASSWORD>'}) self.assertEqual(response.status_code, 302) self.assertRedirects(response, '/accounts/login') class AddJobApplicationViewTest(TestCase): def setUp(self): status = ApplicationStatus.objects.create(pk=1, value='N/A') status.save() test_user1 = User.objects.create_user(username='testuser1', password='<PASSWORD>') test_user1.save() login = self.client.login(username='testuser1', password='<PASSWORD>') def test_add_job_application(self): response = self.client.post(reverse('addJobApplication'), json.dumps({"job_title":"test","company":"testcompany","applicationdate":"2018-01-01","status":"1","source":"testsource"}),content_type='application/json') self.assertEqual(response.status_code, 200) class ProfileViewTest(TestCase): def setUp(self): test_user1 = User.objects.create_user(username='testuser1', password='<PASSWORD>') test_user1.save() login = self.client.login(username='testuser1', password='<PASSWORD>') def test_open_profile(self): response = self.client.post(reverse('profile')) self.assertEqual(response.status_code, 200) ``` #### File: src/accounts/views.py ```python from django.shortcuts import render, redirect from django.contrib import messages, auth from django.contrib.auth.models import User from .models import JobApplication from .models import ApplicationStatus from .models import Profile from .models import JobPostDetail from .gmail_lookup import fetchJobApplications from .linkedin_lookup import get_profile from django.http import HttpResponseRedirect from background_task import background from django.db.models import Q import datetime from dateutil import tz from django.db.models import Count from django.core import serializers import json from django.http import JsonResponse def register(request): if request.method == 'POST': # Get form values first_name = request.POST['first_name'] last_name = request.POST['last_name'] username = request.POST['username'] email = request.POST['email'] password = request.POST['password'] password2 = request.POST['<PASSWORD>'] # Check if passwords match if password == <PASSWORD>: # Check username if User.objects.filter(username=username).exists(): messages.error(request, 'That username is taken') return redirect('register') else: if User.objects.filter(email=email).exists(): messages.error(request, 'That email is being used') return redirect('register') else: # Looks good user = User.objects.create_user(username=username, password=password,email=email, first_name=first_name, last_name=last_name) # Login after register # auth.login(request, user) # messages.success(request, 'You are now logged in') # return redirect('index') user.save() messages.success(request, 'You are now registered and can log in') return redirect('login') else: messages.error(request, 'Passwords do not match') return redirect('register') else: return render(request, 'accounts/register.html') def update_user(request): user = request.user user.username = request.POST['newusername'] user.first_name = request.POST['newuserfirstname'] user.last_name = request.POST['newuserlastname'] user.save() return HttpResponseRedirect(request.META.get('HTTP_REFERER')) def delete_account(request): request.user.delete() auth.logout(request) return redirect('index') def login(request): if request.method == 'POST': username = request.POST['username'] password = request.POST['password'] user = auth.authenticate(username=username, password=password) if user is not None: auth.login(request, user) return redirect('dashboard') else: messages.error(request, 'Invalid credentials') return redirect('login') else: return render(request, 'accounts/login.html') def logout(request): if request.method == 'POST': auth.logout(request) return redirect('index') def social_user(backend, uid, user=None, *args, **kwargs): '''OVERRIDED: It will logout the current user instead of raise an exception ''' provider = backend.name social = backend.strategy.storage.user.get_social_auth(provider, uid) if social: if user and social.user != user: logout(backend.strategy.request) #msg = 'This {0} account is already in use.'.format(provider) #raise AuthAlreadyAssociated(backend, msg) elif not user: user = social.user return {'social': social, 'user': user, 'is_new': user is None, 'new_association': False} def updateJobApplication(request): if request.method == 'POST': user_job_app = JobApplication.objects.get(pk=request.POST['pk']) status = request.POST['ddStatus'] user_job_app.applicationStatus = ApplicationStatus.objects.get(pk=status) user_job_app.save() return HttpResponseRedirect(request.META.get('HTTP_REFERER')) else: return dashboard(request) def deleteJobApplication(request): if request.method == 'POST': user_job_app = JobApplication.objects.get(pk=request.POST['pk']) user_job_app.delete() return HttpResponseRedirect(request.META.get('HTTP_REFERER')) else: return dashboard(request) @background(schedule=1) def scheduleFetcher(user_id): user = User.objects.get(pk=user_id) if user.social_auth.filter(provider='google-oauth2'): fetchJobApplications(user) def getStatuses(request): statuses = ApplicationStatus.objects.all() data = serializers.serialize("json", statuses) return JsonResponse(data) def dashboard(request): user_job_apps = JobApplication.objects.filter(user_id=request.user.id).order_by('-applyDate') statuses = ApplicationStatus.objects.all() if len(statuses) == 0: dummyStatus = ApplicationStatus(value = 'N/A') dummyStatus.save() dummyStatus = ApplicationStatus(value = 'Planning') dummyStatus.save() dummyStatus = ApplicationStatus(value = 'In Progress') dummyStatus.save() dummyStatus = ApplicationStatus(value = 'Offer') dummyStatus.save() dummyStatus = ApplicationStatus(value = 'Fail') dummyStatus.save() statuses = ApplicationStatus.objects.all() #it'll be used for background tasking in production #refs. https://medium.com/@robinttt333/running-background-tasks-in-django-f4c1d3f6f06e #https://django-background-tasks.readthedocs.io/en/latest/ #https://stackoverflow.com/questions/41205607/how-to-activate-the-process-queue-in-django-background-tasks #scheduleFetcher.now(request.user.id) scheduleFetcher(request.user.id) if request.user.social_auth.filter(provider='linkedin-oauth2'): get_profile(request.user) profile = Profile.objects.get(user_id= request.user.id) if(profile.gmail_last_update_time == 0): last_sync_time = "Syncing..." else: last_sync_time = datetime.datetime.utcfromtimestamp(profile.gmail_last_update_time) context = { 'job_apps': user_job_apps, 'last_sync_time': last_sync_time, 'statuses': statuses } return render(request, 'accounts/dashboard.html', context) def addJobApplication(request): if request.method == 'POST': body = json.loads(request.body) job_title = body['job_title'] company = body['company'] applicationdate = body['applicationdate'] status = int(body['status']) source = body['source'] japp = JobApplication(jobTitle=job_title, company=company, applyDate=applicationdate, msgId='', source =source, user = request.user, companyLogo = '/static/images/JobHax-logo-black.svg') japp.applicationStatus = ApplicationStatus.objects.get(pk=status) japp.save() return JsonResponse({'success':True}) def filterJobApplications(request): if request.method == 'POST': start = request.POST['start'] end = request.POST['end'] query = JobApplication.objects.filter(user_id=request.user.id) if start != '': query = query.filter(applyDate__gte=start) if end != '': query = query.filter(applyDate__lte=end) user_job_apps = query.order_by('-applyDate') statuses = ApplicationStatus.objects.all() profile = Profile.objects.get(user_id = request.user.id) if(profile.gmail_last_update_time == 0): last_sync_time = "Syncing..." else: last_sync_time = datetime.datetime.fromtimestamp(profile.gmail_last_update_time) context = { 'job_apps': user_job_apps, 'last_sync_time': last_sync_time, 'statuses': statuses } return render(request, 'accounts/dashboard.html', context) else: return dashboard(request) def metrics(request): context = { } return render(request, 'accounts/metrics.html', context) def job_board(request): context = { } return render(request, 'accounts/job_board.html', context) def profile(request): context = { } if request.user.social_auth.filter(provider='google-oauth2'): context['google'] = True else: context['google'] = False if request.user.social_auth.filter(provider='linkedin-oauth2'): context['linkedin'] = True profile = Profile.objects.get(user_id= request.user.id) context['linkedin_info'] = json.dumps(profile.linkedin_info) else: context['linkedin'] = False return render(request, 'accounts/profile.html', context) def settings(request): context = { } return render(request, 'accounts/settings.html', context) def jobdetails(request): context = { } return render(request, 'accounts/jobdetails.html', context) def wordcloud(request): context = { } return render(request, 'accounts/metrics/wordcloud.html', context) def get_job_detail(request): id = request.GET['pk'] app = JobApplication.objects.all().get(pk = id) try: details = JobPostDetail.objects.all().get(job_post = app) context = { 'posterInformation': json.dumps(details.posterInformation), 'decoratedJobPosting': json.dumps(details.decoratedJobPosting), 'topCardV2': json.dumps(details.topCardV2), 'job': app } except: context = { 'posterInformation': '{}', 'decoratedJobPosting': '{}', 'topCardV2': '{}', 'job': app } print(context) return render(request, 'accounts/jobdetails.html', context) def get_total_application_count(request): count = JobApplication.objects.filter(user_id=request.user.id).count() return JsonResponse({'count':count}) def get_application_count_by_month(request): response = [] sources = ['Hired.com','LinkedIn','Indeed', 'Others'] for i in sources: if i != 'Others': appsByMonths = JobApplication.objects.filter(user_id=request.user.id,source=i,applyDate__year='2018').values('applyDate__year', 'applyDate__month').annotate(count=Count('pk')) else: appsByMonths = JobApplication.objects.filter(~Q(source = 'LinkedIn'),~Q(source = 'Hired.com'),~Q(source = 'Indeed'),user_id=request.user.id,applyDate__year='2018').values('applyDate__year', 'applyDate__month').annotate(count=Count('pk')) item = {} item['source'] = i data = [0] * 12 for app in appsByMonths: data[app['applyDate__month'] - 1] = app['count'] item['data'] = data response.append(item) return JsonResponse(response, safe=False) def get_application_count_by_month_with_total(request): response = [] sources = ['Hired.com','LinkedIn','Indeed', 'Others', 'Total'] for i in sources: if i == 'Total': appsByMonths = JobApplication.objects.filter(user_id=request.user.id,applyDate__year='2018').values('applyDate__year', 'applyDate__month').annotate(count=Count('pk')) elif i != 'Others': appsByMonths = JobApplication.objects.filter(user_id=request.user.id,source=i,applyDate__year='2018').values('applyDate__year', 'applyDate__month').annotate(count=Count('pk')) else: appsByMonths = JobApplication.objects.filter(~Q(source = 'LinkedIn'),~Q(source = 'Hired.com'),~Q(source = 'Indeed'),user_id=request.user.id,applyDate__year='2018').values('applyDate__year', 'applyDate__month').annotate(count=Count('pk')) item = {} item['source'] = i data = [0] * 12 for app in appsByMonths: data[app['applyDate__month'] - 1] = app['count'] item['data'] = data response.append(item) return JsonResponse(response, safe=False) def get_count_by_statuses(request): statuses = JobApplication.objects.filter(~Q(applicationStatus = None),user_id=request.user.id).values('applicationStatus').annotate(count=Count('pk')) response = [] for i in statuses: item = {} item['name'] = ApplicationStatus.objects.get(pk=i['applicationStatus']).value item['value'] = i['count'] response.append(item) return JsonResponse(response, safe=False) def get_word_count(request): response = [] """ job_titles = JobApplication.objects.filter(user_id=request.user.id).values('jobTitle').annotate(count=Count('pk')) for i in job_titles: item = {} item['word'] = i['jobTitle'] item['value'] = i['count'] response.append(item) statuses = JobApplication.objects.filter(~Q(applicationStatus__value = 'N/A'),user_id=request.user.id).values('applicationStatus').annotate(count=Count('pk')) for i in statuses: item = {} item['word'] = ApplicationStatus.objects.get(pk=i['applicationStatus']).value item['value'] = i['count'] response.append(item) """ companies = JobApplication.objects.filter(user_id=request.user.id).values('company').annotate(count=Count('pk')) for i in companies: item = {} item['word'] = i['company'] item['value'] = i['count'] response.append(item) """ sources = JobApplication.objects.filter(user_id=request.user.id).values('source').annotate(count=Count('pk')) for i in sources: item = {} item['word'] = i['source'] item['value'] = i['count'] response.append(item) """ return JsonResponse(response, safe=False) def get_count_by_jobtitle_and_statuses(request): response = {} job_titles = JobApplication.objects.filter(~Q(applicationStatus = None),user_id=request.user.id).values('jobTitle').annotate(count=Count('pk')) jobs = [] statuses_data = [] status_data = [] for job_title in job_titles: jobs.append(job_title['jobTitle']) response['jobs'] = jobs statuses = ApplicationStatus.objects.all() for status in statuses: statuses_data.append(status.value) item = {} item['name'] = status.value data = [0] * len(job_titles) for i,job_title in enumerate(job_titles): data[i] = JobApplication.objects.filter(user_id=request.user.id, jobTitle=job_title['jobTitle'], applicationStatus=status).count() item['data'] = data status_data.append(item) response['statuses'] = statuses_data response['data'] = status_data return JsonResponse(response, safe=False) ``` #### File: src/pages/views.py ```python from django.shortcuts import render from django.http import HttpResponse def index(request): context = { #put your content for binding to html } return render(request, 'pages/index.html', context) def about(request): context = { #put your content for binding to html } return render(request, 'pages/about.html', context) ```
{ "source": "job-hax/be_ai", "score": 4 }
#### File: be_ai/src/data_loader.py ```python import csv import numpy as np def load_data(filename,data_type): # load the data from a .csv file named as filename a = [] with open(filename) as csv_file: data_file = csv.reader(csv_file) for row in data_file: a.append(row) # convert to numpy array arr = np.array(a) # load the training data if data_type=='train': # separate the example data X (without ID column) and the label data y X = arr[1:, 1:-1] y = arr[1:, -1] return X, y elif data_type=='test': # the partial dataset Y (w/o the ID and label columns) Y = arr[1:, 1:-1] # return the entire dataset arr and the partial dataset Y return arr, Y ``` #### File: be_ai/src/decision_tree_classifier.py ```python from sklearn import tree # supervised learning (classification/prediction) # decision tree classification/prediction # This is done based on most significant attributes (independent variables) to make as distinct groups as possible def DecisionTree(x_train, y_train, x_test, criterion_name): # x_train - train input values # y_train - train target values # x_test - test input values # Default criterion is gini; otherwise, entropy to create Decision Tree model = tree.DecisionTreeClassifier(criterion = criterion_name) # Train model model.fit(x_train, y_train) # Predict y_test=model.predict(x_test) return y_test ``` #### File: be_ai/src/svm_classifier.py ```python from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score def SVM_Classifier(kernel_name,x_train,y_train,x_test,x_train_num,x_test_num): # x_train - train input values # y_train - train target values # x_test - test input values # Create SVM classification object model = svm.SVC(kernel=kernel_name) for i in range(10): valid_set_size = 0.10 # divide the original training set into training set and validation set XTrain, XTest, yTrain, yTest = train_test_split(x_train_num, y_train, test_size=valid_set_size) # Train the model model.fit(XTrain, yTrain) # Use the model to predict on the test set yPred = model.predict(XTest) print('the validation set size: ' + str(valid_set_size)) # Get accuracy score = accuracy_score(yTest, yPred) print('the validation accuracy: ' + str(score)) y_test = model.predict(x_test_num) return y_test ```
{ "source": "Jobhdez/classes", "score": 4 }
#### File: Jobhdez/classes/lalg.py ```python from math import sqrt from operator import ( add, sub, mul, ) class Number: def __add__(self, other): return self.add(other) def __sub__(self, other): return self.sub(other) def __mul__(self, other): return self.mul(other) class Vector(Number): def add(self, other): """ Vector Vector -> Vector given two Vectors 'add' adds them together. given: Vector([2,3,5]) + Vector([4,5,6]) expect: Vector([6,8,11]) """ if isinstance(other, Vector): return [s + t for s, t in zip(self.contents, other.contents)] else: raise ValueError("{} is not type Vector.".format(other)) def sub(self, other): """ Vector Vector -> Vector given two Vectors 'sub' substracts them. given: Vector([2,3,5]) Vector([4,6,7]) expect: Vector([-2,-3,-2]) """ if isinstance(other, Vector): return [s - t for s, t in zip(self.contents, other.contents)] else: raise ValueError("{} is not type Vector.".format(other)) def mul(self, other): """ Vector Vector -> Scalar or Vector Scalar -> Vector computes the DOT-PRODUCT of the two given Vectors if other is of type VECTOR; otherwise, if other is of type INT, it multiplies Vector by a scalar. given: Vector([-6, 8]) * Vector([5, 12]) expect: 66 given: Vector([2,3,4,5]) * 3 expect: [6,9,12,15] """ if isinstance(other, Vector): return sum([t * u for t, u in zip(self.contents, other.contents)]) elif isinstance(other, int): return [other * t for t in self.contents] else: raise ValueError("{} is not of type VECTOR or INT.".format(other)) class M(Number): def add(self, other): """ M M -> M returns the SUM of the two given matrices. given: M([[2,3,5], [5,6,7]]) + M([[3,4,5], [5,6,7]]) expect: [[5,7,10], [10,12,14]] """ if isinstance(other, M): return [list(map(add,t,u)) for t, u in zip(self.contents, other.contents)] else: raise ValueError("{} is not of type M.".format(other)) def sub(self, other): """ M M -> M returns the DIFFERENCE of the given two matrices. given: M([[4,5,6], [5,6,7]]) - M([[2,3,4], [2,3,4]]) expect: [[2,2,2], [3,3,3]] """ if isinstance(other, M): return [list(map(sub, t, u)) for t, u in zip(self.contents, other.contents)] else: raise ValueError("{} is not of type M.".format(other)) def mul(self, other): """ M M -> M or M Scalar -> M returns the product of two matrices if the type of other is M; otherwise if the type of other is INT then it returns the matrix multplied by a scalar. given: M([[1,2,3], [4,5,6]]) * M([[7,8], [9,10], [11,12]]) expect: [[58,64], [139, 154]] given: M([[2,3,4], [3,4,5]) * 4 expect: [[8,12,16], [12,16,20]] """ if isinstance(other, M): return [compute_ith_vector(self.contents, other.contents, i) for i in range(len(self.contents))] elif isinstance(other, int): return [[other * i for i in x] for x in self.contents] else: raise ValueError("{} is not of type M.".format(other)) class Vec(Vector): def __init__(self, contents): self.contents = contents def magnitude(self): """ Vec -> Scalar given a Vec 'magnitude' returns the magnitude. given: Vec([6,8]) expect: 10 """ return sqrt(sum([x * x for x in self.contents])) def is_unit_vector(self): """ Vector -> Bool check if the Vector is a UNIT-VECTOR. given: Vec([6,8]) expect: False given: Vec([1,0,0]) expect: True """ return self.magnitude() == 1 class Matrix(M): def __init__(self, contents): self.contents = contents def transpose(self): return [get_first(self.contents, i) for i in range(len(self.contents[0]))] def compute_ith_vector(m, m2, i): return [sum([a * b for a, b in zip(m[i], get_column(m2, j))]) for j in range(len(m2[0]))] def get_column(m, index): c = [] for k in range(len(m)): c.append(m[k][index]) return c def get_first(m, index): firsts = [] for i in range(len(m)): firsts.append(m[i][index]) return firsts ```
{ "source": "Jobhdez/mnsit_classifier", "score": 3 }
#### File: src/model/net.py ```python import torch import torch.nn as nn import torch.nn.init as init class Net(nn.Module): """A representation of a convolutional neural network comprised of VGG blocks.""" def __init__(self, n_channels): super(Net, self).__init__() # VGG block 1 self.conv1 = nn.Conv2d(n_channels, 64, (3,3)) self.act1 = nn.ReLU() self.pool1 = nn.MaxPool2d((2,2), stride=(2,2)) self.dropout = nn.Dropout(0.2) # VGG block 2 self.conv2 = nn.Conv2d(64, 64, (3,3)) self.act2 = nn.ReLU() self.pool2 = nn.MaxPool2d((2,2), stride=(2,2)) self.dropout2 = nn.Dropout(0.2) # VGG block 3 self.conv3 = nn.Conv2d(64, 128, (3,3)) self.act3 = nn.ReLU() self.pool3 = nn.MaxPool2d((2,2), stride=(2,2)) self.dropout3 = nn.Dropout(0.2) # Fully connected layer self.f1 = nn.Linear(128 * 1 * 1, 1000) self.dropout4 = nn.Dropout(0.5) self.act4 = nn.ReLU() # Output layer self.f2 = nn.Linear(1000, 10) self.act5 = nn.Softmax(dim=1) def forward(self, X): """This function forward propagates the input.""" # VGG block 1 X = self.conv1(X) X = self.act1(X) X = self.pool1(X) X = self.dropout(X) # VGG block 2 X = self.conv2(X) X = self.act2(X) X = self.pool2(X) X = self.dropout2(X) # VGG block 3 X = self.conv3(X) X = self.act3(X) X = self.pool3(X) X = self.dropout3(X) # Flatten X = X.view(-1, 128) # Fully connected layer X = self.f1(X) X = self.act4(X) X = self.dropout4(X) # Output layer X = self.f2(X) X = self.act5(X) return X ``` #### File: mnsit_classifier/src/train.py ```python import datetime def training_loop( n_epochs, optimizer, model, loss_fn, train_loader, device): for epoch in range(1, n_epochs + 1): loss_train = 0.0 for i, (imgs, labels) in enumerate(train_loader): imgs = imgs.to(device=device) labels = labels.to(device=device) outputs = model(imgs) loss = loss_fn(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() loss_train += loss.item() if epoch == 1 or epoch % 10 == 0: print('{} Epoch {}, Training loss {}'.format( datetime.datetime.now(), epoch, loss_train / len(train_loader))) ```
{ "source": "JobHeroOne/jeroenhobo", "score": 3 }
#### File: JobHeroOne/jeroenhobo/application.py ```python from flask import Flask from flask import render_template app = Flask(__name__) @app.route("/") def index(): return render_template("index.html") @app.route("/trips") def trips(): return render_template("trips.html") @app.route("/heartrate") def heartrate(): return render_template("heartrate.html") if __name__ == "__main__": app.run() ```
{ "source": "jobic10/crmwithdjango", "score": 2 }
#### File: crmwithdjango/account/views.py ```python from django.contrib import messages from django.shortcuts import get_object_or_404, redirect, render from django.urls import reverse from django.forms import inlineformset_factory from django.contrib.auth.models import Group from django.contrib.auth.decorators import login_required from django.contrib.auth.forms import UserCreationForm from django.contrib.auth import authenticate, login as LOGIN, logout as LOGOUT from .forms import * from .models import * from .filters import * from .decorators import * @login_required @admin_only def home(request): orders = Order.objects.all() customers = Customer.objects.all() total_customers = customers.count() total_orders = orders.count() delivered = orders.filter(status='Delivered').count() pending = orders.filter(status='Pending').count() context = { 'orders': orders, 'customers': customers, 'total_customers': total_customers, 'total_orders': total_orders, 'delivered': delivered, 'pending': pending } return render(request, "account/dashboard.html", context) @login_required @admin_only def products(request): products = Product.objects.all() context = {'products': products} return render(request, "account/products.html", context) @login_required @admin_only def customer(request, customer_id): customer = get_object_or_404(Customer, id=customer_id) orders = customer.order_set.all() filter = OrderFilter(request.GET, queryset=orders) orders = filter.qs context = { 'customer': customer, 'orders': orders, 'total_orders': orders.count(), 'filter': filter } return render(request, "account/customer.html", context) @login_required def order(request): OrderFormSet = inlineformset_factory( Customer, Order, fields=('product',), form=CustomerOrderForm) customer = get_object_or_404(Customer, user=request.user) # form = OrderForm(request.POST or None, initial={'customer': customer}) formset = OrderFormSet(request.POST or None, instance=customer, queryset=Order.objects.none()) context = {'form': formset, 'title': 'Create Order'} if request.method == 'POST': if formset.is_valid(): formset.save() messages.success(request, "Order created successfully!") return redirect(reverse('userpage')) else: messages.error(request, "Invalid Form Submitted") return render(request, 'account/form.html', context) @login_required @allowed_users(allowed_roles=['admin']) def create_order(request, customer_id): OrderFormSet = inlineformset_factory( Customer, Order, fields=('product', 'status')) customer = get_object_or_404(Customer, id=customer_id) # form = OrderForm(request.POST or None, initial={'customer': customer}) formset = OrderFormSet(request.POST or None, instance=customer, queryset=Order.objects.none()) context = {'form': formset, 'title': 'Create Order'} if request.method == 'POST': if formset.is_valid(): formset.save() messages.success(request, "Order created successfully!") return redirect(reverse('customer', args=[customer.id])) else: messages.error(request, "Invalid Form Submitted") return render(request, 'account/form.html', context) @login_required def create_general_order(request): form = OrderForm(request.POST or None) context = {'form': form} if request.method == 'POST': if form.is_valid(): form.save() messages.success(request, "Order created successfully!") return redirect(reverse('create_general_order')) else: messages.error(request, "Invalid Form Submitted") return render(request, 'account/form.html', context) @login_required @admin_only def update_order(request, order_id): instance = get_object_or_404(Order, id=order_id) form = OrderForm(request.POST or None, instance=instance) context = {'form': form} if request.method == 'POST': if form.is_valid(): form.save() messages.success(request, "Order updated successfully!") return redirect(reverse('update_order', args=[order_id])) else: messages.error(request, "Invalid Form Submitted") return render(request, 'account/form.html', context) @login_required @admin_only def delete_order(request, order_id): item = get_object_or_404(Order, id=order_id) context = {'item': item} if request.method == 'POST': item.delete() messages.success(request, 'Order deleted!') return redirect('/') return render(request, 'account/delete.html', context) @unauthenticated_user def login(request): if request.method == 'POST': username = request.POST.get('username') password = <PASSWORD>.POST.get('password') user = authenticate(request, username=username, password=password) if user is None: messages.error(request, "Invalid credentials") else: LOGIN(request, user) messages.success(request, "Welcome back!") return redirect(reverse('home')) return render(request, 'account/login.html') @unauthenticated_user def register(request): if request.user.is_authenticated: return redirect(reverse('home')) form = CreateUserForm(request.POST or None) context = {'form': form, 'title': 'Sign up '} if request.method == 'POST': if form.is_valid(): user = form.save() messages.success(request, "You are now registered!") return redirect(reverse('login')) else: messages.error(request, "Please fix form errors!") return render(request, 'account/register.html', context) def logout(request): if request.user.is_authenticated: LOGOUT(request) messages.success(request, "Thanks for the time!") else: messages.error(request, 'You need to be signed in to sign out') return redirect(reverse('login')) @login_required @allowed_users(allowed_roles=['customer']) def userpage(request): orders = request.user.customer.order_set.all() total_orders = orders.count() delivered = orders.filter(status='Delivered').count() pending = orders.filter(status='Pending').count() context = { 'orders': orders, 'total_orders': total_orders, 'delivered': delivered, 'pending': pending } return render(request, "account/user.html", context) @login_required @allowed_users(allowed_roles=['customer']) def account_settings(request): form = CustomerForm(request.POST or None, request.FILES or None, instance=request.user.customer) context = {'form': form} if request.method == 'POST': if form.is_valid(): form.save() messages.success(request, "Profile Updated!") return redirect(reverse('account')) else: messages.error(request, 'Form has error(s), please fix!') return render(request, 'account/account_settings.html', context) @login_required @allowed_users(allowed_roles=['admin']) def create_customer(request): form = CreateUserForm(request.POST or None) context = {'form': form, 'title': 'Create Customer'} if request.method == 'POST': if form.is_valid(): form.save() messages.success(request, "New Customer added successfully!") return redirect(reverse('create_customer')) else: messages.error(request, "Please fix form errors!") return render(request, 'account/form.html', context) @login_required @allowed_users(allowed_roles=['admin']) def create_product(request): form = CreateProductForm(request.POST or None) context = {'form': form, 'title': 'Create Product'} if request.method == 'POST': if form.is_valid(): form.save() messages.success(request, "New Product added successfully!") return redirect(reverse('create_product')) else: messages.error(request, "Please fix form errors!") return render(request, 'account/form.html', context) ```
{ "source": "jobic10/e-banking-django", "score": 2 }
#### File: e-banking-django/account/context_processors.py ```python from .models import Customer def this(request): customer = Customer.objects.get(user=request.user) return {'this': customer} ``` #### File: e-banking-django/account/forms.py ```python from django import forms from django.forms.widgets import DateInput from .models import * from django.contrib.auth.forms import UserCreationForm class FormSettings(forms.ModelForm): def __init__(self, *args, **kwargs): super(FormSettings, self).__init__(*args, **kwargs) # Here make some changes such as: for field in self.visible_fields(): field.field.widget.attrs['class'] = 'form-control' class CustomerForm(FormSettings): def __init__(self, *args, **kwargs): super(CustomerForm, self).__init__(*args, **kwargs) if self.instance.pk: self.fields['balance'].disabled = True class Meta: model = Customer fields = ('phone', 'date_of_birth', 'account_type', 'balance', ) widgets = { 'date_of_birth': DateInput(attrs={'type': 'date'}) } class UserForm(UserCreationForm, FormSettings): def __init__(self, *args, **kwargs): super(UserForm, self).__init__(*args, **kwargs) for fieldname in ['password1', 'password2']: self.fields[fieldname].help_text = None class Meta: model = User fields = ('last_name', 'first_name', 'email', 'gender', 'profile_pic', 'address') class UserEditForm(FormSettings): class Meta: model = User fields = ('last_name', 'first_name', 'email', 'gender', 'profile_pic', 'address') ``` #### File: e-banking-django/account/models.py ```python from django.contrib.auth.models import UserManager, AbstractUser from django.db import models from django.contrib.auth.hashers import make_password class CustomUserManager(UserManager): def _create_user(self, email, password, **extra_fields): email = self.normalize_email(email) user = User(email=email, **extra_fields) user.password = make_password(password) user.save(using=self._db) return user def create_user(self, email, password=None, **extra_fields): extra_fields.setdefault("is_staff", False) extra_fields.setdefault("is_superuser", False) return self._create_user(email, password, **extra_fields) def create_superuser(self, email, password=None, **extra_fields): extra_fields.setdefault("is_staff", True) extra_fields.setdefault("user_type", 1) extra_fields.setdefault("gender", 'M') extra_fields.setdefault("is_superuser", True) assert extra_fields["is_staff"] assert extra_fields["is_superuser"] return self._create_user(email, password, **extra_fields) class User(AbstractUser): USER_TYPE = ((1, "Manager"), (2, "Staff"), (3, "Customer")) GENDER = [("M", "Male"), ("F", "Female")] last_name = models.CharField(max_length=30, null=False) first_name = models.CharField(max_length=30, null=False) username = None # Removed username, using email instead email = models.EmailField(unique=True) user_type = models.IntegerField(choices=USER_TYPE) gender = models.CharField(max_length=1, choices=GENDER) profile_pic = models.ImageField(null=False) address = models.TextField() updated_at = models.DateTimeField(auto_now=True) USERNAME_FIELD = "email" REQUIRED_FIELDS = [] objects = CustomUserManager() def __str__(self): return self.last_name + ", " + self.first_name # Customers class Customer(models.Model): ACCOUNT_TYPE = [ ('Savings', 'Savings'), ('Current', 'Current'), ] user = models.OneToOneField( User, on_delete=models.CASCADE, limit_choices_to={'user_type': 3}) account_type = models.CharField(max_length=8, choices=ACCOUNT_TYPE) account_number = models.CharField(max_length=15) pin = models.CharField(max_length=4) date_of_birth = models.DateField() balance = models.FloatField() phone = models.CharField(max_length=11) def __str__(self): return str(self.user) ```
{ "source": "jobin05/Python", "score": 3 }
#### File: jobin05/Python/TelnetSever.py ```python import logging import socket import select HOSTNAME = 'localhost' PORT = '3001' MAXIMUM_QUEUED_CONNECTIONS = 5 RECEIVING_BUFFER_SIZE = 4096 logger = logging.getLogger(__name__) def start_server(hostname, port): # Get all possible binding addresses for given hostname and port. possible_addresses = socket.getaddrinfo( hostname, port ) server_socket = None # Look for an address that will actually bind. for family, socket_type, protocol, name, address in possible_addresses: try: # Create socket. server_socket = socket.socket(family, socket_type, protocol) # Make socket port reusable. server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # Bind socket to the address. server_socket.bind(address) except OSError: # Try another address. continue break if server_socket is None: logger.error("No suitable address available.") return # Listen for incoming connections. server_socket.listen(MAXIMUM_QUEUED_CONNECTIONS) logger.info("Listening on %s port %d." % server_socket.getsockname()[:2]) monitored_sockets = [server_socket] try: while True: # Wait for any of the monitored sockets to become readable. ready_to_read_sockets = select.select( monitored_sockets, tuple(), tuple() )[0] for ready_socket in ready_to_read_sockets: if ready_socket == server_socket: # If server socket is readable, accept new client # connection. client_socket, client_address = server_socket.accept() monitored_sockets.append(client_socket) logger.info("New connection #%d on %s:%d." % ( client_socket.fileno(), client_address[0], client_address[1] )) else: message = ready_socket.recv(RECEIVING_BUFFER_SIZE) if message: # Client send correct message. Echo it. #ready_socket.sendall(message) print(message) else: # Client connection is lost. Handle it. logger.info( "Lost connection #%d." % ready_socket.fileno() ) monitored_sockets.remove(ready_socket) except KeyboardInterrupt: pass logger.info("Shutdown initiated.") # Close client connections. monitored_sockets.remove(server_socket) for client_socket in monitored_sockets: logger.info("Closing connection #%d." % client_socket.fileno()) client_socket.close() # Close server socket. logger.info("Shutting server down...") server_socket.close() if __name__ == '__main__': # Configure logging. logger.setLevel(logging.INFO) logger.addHandler(logging.StreamHandler()) # Start server. start_server(HOSTNAME, PORT) ```
{ "source": "jobine/codelet", "score": 3 }
#### File: codelet/util/retryrequests.py ```python import time import requests RETRY_COUNT = 3 RETRY_INTERVAL = 1000 class RetryRequests(object): def __init__(self, count=RETRY_COUNT, interval=RETRY_INTERVAL): ''' @param count: int, max retry count @param interval: int, retry interval in mille seconds ''' self.count = count self.interval = interval def get(self, *args, **kwargs): with requests.session() as session: for n in range(self.count - 1, -1, -1): try: r = session.get(*args, **kwargs) if not 100 <= r.status_code < 300: raise Exception('status code: {}, message: {}'.format(r.status_code, r.content)) return r except (Exception, requests.exceptions.RequestException) as e: if n > 0: time.sleep(self.interval * 0.001) else: raise e def post(self, *args, **kwargs): with requests.session() as session: for n in range(self.count - 1, -1, -1): try: r = session.post(*args, **kwargs) if not 100 <= r.status_code < 300: raise Exception('status code: {}, message: {}'.format(r.status_code, r.content)) return r except (Exception, requests.exceptions.RequestException) as e: if n > 0: time.sleep(self.interval * 0.001) else: raise e def put(self, *args, **kwargs): with requests.session() as session: for n in range(self.count - 1, -1, -1): try: r = session.put(*args, **kwargs) if not 100 <= r.status_code < 300: raise Exception('status code: {}, message: {}'.format(r.status_code, r.content)) return r except (Exception, requests.exceptions.RequestException) as e: if n > 0: time.sleep(self.interval * 0.001) else: raise e def delete(self, *args, **kwargs): with requests.session() as session: for n in range(self.count - 1, -1, -1): try: r = session.delete(*args, **kwargs) if not 100 <= r.status_code < 300: raise Exception('status code: {}, message: {}'.format(r.status_code, r.content)) return r except (Exception, requests.exceptions.RequestException) as e: if n > 0: time.sleep(self.interval * 0.001) else: raise e ```
{ "source": "jobine/HGN", "score": 2 }
#### File: HGN/csr_mhqa/data_processing.py ```python import gzip import pickle import json import torch import numpy as np import os from os.path import join from tqdm import tqdm from numpy.random import shuffle from envs import DATASET_FOLDER IGNORE_INDEX = -100 def get_cached_filename(f_type, config): assert f_type in ['examples', 'features', 'graphs'] return f"cached_{f_type}_{config.model_type}_{config.max_seq_length}_{config.max_query_length}.pkl.gz" class Example(object): def __init__(self, qas_id, qas_type, question_tokens, doc_tokens, sent_num, sent_names, sup_fact_id, sup_para_id, ques_entities_text, ctx_entities_text, para_start_end_position, sent_start_end_position, ques_entity_start_end_position, ctx_entity_start_end_position, question_text, question_word_to_char_idx, ctx_text, ctx_word_to_char_idx, edges=None, orig_answer_text=None, answer_in_ques_entity_ids=None, answer_in_ctx_entity_ids=None, answer_candidates_in_ctx_entity_ids=None, start_position=None, end_position=None): self.qas_id = qas_id self.qas_type = qas_type self.question_tokens = question_tokens self.doc_tokens = doc_tokens self.question_text = question_text self.sent_num = sent_num self.sent_names = sent_names self.sup_fact_id = sup_fact_id self.sup_para_id = sup_para_id self.ques_entities_text = ques_entities_text self.ctx_entities_text = ctx_entities_text self.para_start_end_position = para_start_end_position self.sent_start_end_position = sent_start_end_position self.ques_entity_start_end_position = ques_entity_start_end_position self.ctx_entity_start_end_position = ctx_entity_start_end_position self.question_word_to_char_idx = question_word_to_char_idx self.ctx_text = ctx_text self.ctx_word_to_char_idx = ctx_word_to_char_idx self.edges = edges self.orig_answer_text = orig_answer_text self.answer_in_ques_entity_ids = answer_in_ques_entity_ids self.answer_in_ctx_entity_ids = answer_in_ctx_entity_ids self.answer_candidates_in_ctx_entity_ids= answer_candidates_in_ctx_entity_ids self.start_position = start_position self.end_position = end_position class InputFeatures(object): """A single set of features of data.""" def __init__(self, qas_id, doc_tokens, doc_input_ids, doc_input_mask, doc_segment_ids, query_tokens, query_input_ids, query_input_mask, query_segment_ids, para_spans, sent_spans, entity_spans, q_entity_cnt, sup_fact_ids, sup_para_ids, ans_type, token_to_orig_map, edges=None, orig_answer_text=None, answer_in_entity_ids=None, answer_candidates_ids=None, start_position=None, end_position=None): self.qas_id = qas_id self.doc_tokens = doc_tokens self.doc_input_ids = doc_input_ids self.doc_input_mask = doc_input_mask self.doc_segment_ids = doc_segment_ids self.query_tokens = query_tokens self.query_input_ids = query_input_ids self.query_input_mask = query_input_mask self.query_segment_ids = query_segment_ids self.para_spans = para_spans self.sent_spans = sent_spans self.entity_spans = entity_spans self.q_entity_cnt = q_entity_cnt self.sup_fact_ids = sup_fact_ids self.sup_para_ids = sup_para_ids self.ans_type = ans_type self.edges = edges self.token_to_orig_map = token_to_orig_map self.orig_answer_text = orig_answer_text self.answer_in_entity_ids = answer_in_entity_ids self.answer_candidates_ids = answer_candidates_ids self.start_position = start_position self.end_position = end_position class DataIteratorPack(object): def __init__(self, features, example_dict, graph_dict, bsz, device, para_limit, sent_limit, ent_limit, ans_ent_limit, mask_edge_types, sequential=False): self.bsz = bsz self.device = device self.features = features self.example_dict = example_dict self.graph_dict = graph_dict self.sequential = sequential self.para_limit = para_limit self.sent_limit = sent_limit self.ent_limit = ent_limit self.ans_ent_limit = ans_ent_limit self.graph_nodes_num = 1 + para_limit + sent_limit + ent_limit self.example_ptr = 0 self.mask_edge_types = mask_edge_types self.max_seq_length = 512 if not sequential: shuffle(self.features) def refresh(self): self.example_ptr = 0 if not self.sequential: shuffle(self.features) def empty(self): return self.example_ptr >= len(self.features) def __len__(self): return int(np.ceil(len(self.features)/self.bsz)) def __iter__(self): # BERT input context_idxs = torch.LongTensor(self.bsz, self.max_seq_length) context_mask = torch.LongTensor(self.bsz, self.max_seq_length) segment_idxs = torch.LongTensor(self.bsz, self.max_seq_length) # Mappings if 'CUDA_VISIBLE_DEVICES' in os.environ and os.environ['CUDA_VISIBLE_DEVICES'] == '-1': query_mapping = torch.Tensor(self.bsz, self.max_seq_length) para_start_mapping = torch.Tensor(self.bsz, self.para_limit, self.max_seq_length) para_end_mapping = torch.Tensor(self.bsz, self.para_limit, self.max_seq_length) para_mapping = torch.Tensor(self.bsz, self.max_seq_length, self.para_limit) sent_start_mapping = torch.Tensor(self.bsz, self.sent_limit, self.max_seq_length) sent_end_mapping = torch.Tensor(self.bsz, self.sent_limit, self.max_seq_length) sent_mapping = torch.Tensor(self.bsz, self.max_seq_length, self.sent_limit) ent_start_mapping = torch.Tensor(self.bsz, self.ent_limit, self.max_seq_length) ent_end_mapping = torch.Tensor(self.bsz, self.ent_limit, self.max_seq_length) ent_mapping = torch.Tensor(self.bsz, self.max_seq_length, self.ent_limit) # Mask para_mask = torch.FloatTensor(self.bsz, self.para_limit) sent_mask = torch.FloatTensor(self.bsz, self.sent_limit) ent_mask = torch.FloatTensor(self.bsz, self.ent_limit) ans_cand_mask = torch.FloatTensor(self.bsz, self.ent_limit) # Label tensor y1 = torch.LongTensor(self.bsz) y2 = torch.LongTensor(self.bsz) q_type = torch.LongTensor(self.bsz) is_support = torch.FloatTensor(self.bsz, self.sent_limit) is_gold_para = torch.FloatTensor(self.bsz, self.para_limit) is_gold_ent = torch.FloatTensor(self.bsz) # Graph related graphs = torch.Tensor(self.bsz, self.graph_nodes_num, self.graph_nodes_num) else: query_mapping = torch.Tensor(self.bsz, self.max_seq_length).cuda(self.device) para_start_mapping = torch.Tensor(self.bsz, self.para_limit, self.max_seq_length).cuda(self.device) para_end_mapping = torch.Tensor(self.bsz, self.para_limit, self.max_seq_length).cuda(self.device) para_mapping = torch.Tensor(self.bsz, self.max_seq_length, self.para_limit).cuda(self.device) sent_start_mapping = torch.Tensor(self.bsz, self.sent_limit, self.max_seq_length).cuda(self.device) sent_end_mapping = torch.Tensor(self.bsz, self.sent_limit, self.max_seq_length).cuda(self.device) sent_mapping = torch.Tensor(self.bsz, self.max_seq_length, self.sent_limit).cuda(self.device) ent_start_mapping = torch.Tensor(self.bsz, self.ent_limit, self.max_seq_length).cuda(self.device) ent_end_mapping = torch.Tensor(self.bsz, self.ent_limit, self.max_seq_length).cuda(self.device) ent_mapping = torch.Tensor(self.bsz, self.max_seq_length, self.ent_limit).cuda(self.device) # Mask para_mask = torch.FloatTensor(self.bsz, self.para_limit).cuda(self.device) sent_mask = torch.FloatTensor(self.bsz, self.sent_limit).cuda(self.device) ent_mask = torch.FloatTensor(self.bsz, self.ent_limit).cuda(self.device) ans_cand_mask = torch.FloatTensor(self.bsz, self.ent_limit).cuda(self.device) # Label tensor y1 = torch.LongTensor(self.bsz).cuda(self.device) y2 = torch.LongTensor(self.bsz).cuda(self.device) q_type = torch.LongTensor(self.bsz).cuda(self.device) is_support = torch.FloatTensor(self.bsz, self.sent_limit).cuda(self.device) is_gold_para = torch.FloatTensor(self.bsz, self.para_limit).cuda(self.device) is_gold_ent = torch.FloatTensor(self.bsz).cuda(self.device) # Graph related graphs = torch.Tensor(self.bsz, self.graph_nodes_num, self.graph_nodes_num).cuda(self.device) while True: if self.example_ptr >= len(self.features): break start_id = self.example_ptr cur_bsz = min(self.bsz, len(self.features) - start_id) cur_batch = self.features[start_id: start_id + cur_bsz] cur_batch.sort(key=lambda x: sum(x.doc_input_mask), reverse=True) ids = [] for mapping in [para_mapping, para_start_mapping, para_end_mapping, \ sent_mapping, sent_start_mapping, sent_end_mapping, \ ent_mapping, ent_start_mapping, ent_end_mapping, \ ans_cand_mask, query_mapping]: mapping.zero_() is_support.fill_(IGNORE_INDEX) is_gold_para.fill_(IGNORE_INDEX) is_gold_ent.fill_(IGNORE_INDEX) for i in range(len(cur_batch)): case = cur_batch[i] context_idxs[i].copy_(torch.Tensor(case.doc_input_ids)) context_mask[i].copy_(torch.Tensor(case.doc_input_mask)) segment_idxs[i].copy_(torch.Tensor(case.doc_segment_ids)) if len(case.sent_spans) > 0: for j in range(case.sent_spans[0][0] - 1): query_mapping[i, j] = 1 for j, para_span in enumerate(case.para_spans[:self.para_limit]): is_gold_flag = j in case.sup_para_ids start, end, _ = para_span if start <= end: end = min(end, self.max_seq_length-1) is_gold_para[i, j] = int(is_gold_flag) para_mapping[i, start:end+1, j] = 1 para_start_mapping[i, j, start] = 1 para_end_mapping[i, j, end] = 1 for j, sent_span in enumerate(case.sent_spans[:self.sent_limit]): is_sp_flag = j in case.sup_fact_ids start, end = sent_span if start <= end: end = min(end, self.max_seq_length-1) is_support[i, j] = int(is_sp_flag) sent_mapping[i, start:end+1, j] = 1 sent_start_mapping[i, j, start] = 1 sent_end_mapping[i, j, end] = 1 for j, ent_span in enumerate(case.entity_spans[:self.ent_limit]): start, end = ent_span if start <= end: end = min(end, self.max_seq_length-1) ent_mapping[i, start:end+1, j] = 1 ent_start_mapping[i, j, start] = 1 ent_end_mapping[i, j, end] = 1 ans_cand_mask[i, j] = int(j in case.answer_candidates_ids) is_gold_ent[i] = case.answer_in_entity_ids[0] if len(case.answer_in_entity_ids) > 0 else IGNORE_INDEX if case.ans_type == 0 or case.ans_type == 3: if len(case.end_position) == 0: y1[i] = y2[i] = 0 elif case.end_position[0] < self.max_seq_length and context_mask[i][case.end_position[0]+1] == 1: # "[SEP]" is the last token y1[i] = case.start_position[0] y2[i] = case.end_position[0] else: y1[i] = y2[i] = 0 q_type[i] = case.ans_type if is_gold_ent[i] > 0 else 0 elif case.ans_type == 1: y1[i] = IGNORE_INDEX y2[i] = IGNORE_INDEX q_type[i] = 1 elif case.ans_type == 2: y1[i] = IGNORE_INDEX y2[i] = IGNORE_INDEX q_type[i] = 2 # ignore entity loss if there is no entity if case.ans_type != 3: is_gold_ent[i].fill_(IGNORE_INDEX) tmp_graph = self.graph_dict[case.qas_id] graph_adj = torch.from_numpy(tmp_graph['adj']).to(self.device) for k in range(graph_adj.size(0)): graph_adj[k, k] = 8 for edge_type in self.mask_edge_types: graph_adj = torch.where(graph_adj == edge_type, torch.zeros_like(graph_adj), graph_adj) graphs[i] = graph_adj ids.append(case.qas_id) input_lengths = (context_mask[:cur_bsz] > 0).long().sum(dim=1) max_c_len = int(input_lengths.max()) para_mask = (para_mapping > 0).any(1).float() sent_mask = (sent_mapping > 0).any(1).float() ent_mask = (ent_mapping > 0).any(1).float() self.example_ptr += cur_bsz yield { 'context_idxs': context_idxs[:cur_bsz, :max_c_len].contiguous().to(self.device), 'context_mask': context_mask[:cur_bsz, :max_c_len].contiguous().to(self.device), 'segment_idxs': segment_idxs[:cur_bsz, :max_c_len].contiguous().to(self.device), 'context_lens': input_lengths.contiguous().to(self.device), 'y1': y1[:cur_bsz], 'y2': y2[:cur_bsz], 'ids': ids, 'q_type': q_type[:cur_bsz], 'is_support': is_support[:cur_bsz, :].contiguous(), 'is_gold_para': is_gold_para[:cur_bsz, :].contiguous(), 'is_gold_ent': is_gold_ent[:cur_bsz].contiguous(), 'query_mapping': query_mapping[:cur_bsz, :max_c_len].contiguous(), 'para_mapping': para_mapping[:cur_bsz, :max_c_len, :], 'para_start_mapping': para_start_mapping[:cur_bsz, :, :max_c_len], 'para_end_mapping': para_end_mapping[:cur_bsz, :, :max_c_len], 'para_mask': para_mask[:cur_bsz, :], 'sent_mapping': sent_mapping[:cur_bsz, :max_c_len, :], 'sent_start_mapping': sent_start_mapping[:cur_bsz, :, :max_c_len], 'sent_end_mapping': sent_end_mapping[:cur_bsz, :, :max_c_len], 'sent_mask': sent_mask[:cur_bsz, :], 'ent_mapping': ent_mapping[:cur_bsz, :max_c_len, :], 'ent_start_mapping': ent_start_mapping[:cur_bsz, :, :max_c_len], 'ent_end_mapping': ent_end_mapping[:cur_bsz, :, :max_c_len], 'ent_mask': ent_mask[:cur_bsz, :], 'ans_cand_mask': ans_cand_mask[:cur_bsz, :], 'graphs': graphs[:cur_bsz, :, :] } class DataHelper: def __init__(self, gz=True, config=None): self.DataIterator = DataIteratorPack self.gz = gz self.suffix = '.pkl.gz' if gz else '.pkl' self.data_dir = join(DATASET_FOLDER, 'data_feat') self.__train_features__ = None self.__dev_features__ = None self.__train_examples__ = None self.__dev_examples__ = None self.__train_graphs__ = None self.__dev_graphs__ = None self.__train_example_dict__ = None self.__dev_example_dict__ = None self.config = config def get_feature_file(self, tag): cached_filename = get_cached_filename('features', self.config) return join(self.data_dir, tag, cached_filename) def get_example_file(self, tag): cached_filename = get_cached_filename('examples', self.config) return join(self.data_dir, tag, cached_filename) def get_graph_file(self, tag): cached_filename = get_cached_filename('graphs', self.config) return join(self.data_dir, tag, cached_filename) @property def train_feature_file(self): return self.get_feature_file('train') @property def dev_feature_file(self): return self.get_feature_file('dev_distractor') @property def train_example_file(self): return self.get_example_file('train') @property def dev_example_file(self): return self.get_example_file('dev_distractor') @property def train_graph_file(self): return self.get_graph_file('train') @property def dev_graph_file(self): return self.get_graph_file('dev_distractor') def get_pickle_file(self, file_name): if self.gz: return gzip.open(file_name, 'rb') else: return open(file_name, 'rb') def __get_or_load__(self, name, file): if getattr(self, name) is None: with self.get_pickle_file(file) as fin: print('loading', file) setattr(self, name, pickle.load(fin)) return getattr(self, name) # Features @property def train_features(self): return self.__get_or_load__('__train_features__', self.train_feature_file) @property def dev_features(self): return self.__get_or_load__('__dev_features__', self.dev_feature_file) # Examples @property def train_examples(self): return self.__get_or_load__('__train_examples__', self.train_example_file) @property def dev_examples(self): return self.__get_or_load__('__dev_examples__', self.dev_example_file) # Graphs @property def train_graphs(self): return self.__get_or_load__('__train_graphs__', self.train_graph_file) @property def dev_graphs(self): return self.__get_or_load__('__dev_graphs__', self.dev_graph_file) # Example dict @property def train_example_dict(self): if self.__train_example_dict__ is None: self.__train_example_dict__ = {e.qas_id: e for e in self.train_examples} return self.__train_example_dict__ @property def dev_example_dict(self): if self.__dev_example_dict__ is None: self.__dev_example_dict__ = {e.qas_id: e for e in self.dev_examples} return self.__dev_example_dict__ # Feature dict @property def train_feature_dict(self): return {e.qas_id: e for e in self.train_features} @property def dev_feature_dict(self): return {e.qas_id: e for e in self.dev_features} # Load def load_dev(self): return self.dev_features, self.dev_example_dict, self.dev_graphs def load_train(self): return self.train_features, self.train_example_dict, self.train_graphs @property def dev_loader(self): return self.DataIterator(*self.load_dev(), bsz=self.config.eval_batch_size, device=self.config.device, para_limit=self.config.max_para_num, sent_limit=self.config.max_sent_num, ent_limit=self.config.max_entity_num, ans_ent_limit=self.config.max_ans_ent_num, mask_edge_types=self.config.mask_edge_types, sequential=True) @property def train_loader(self): return self.DataIterator(*self.load_train(), bsz=self.config.batch_size, device=self.config.device, para_limit=self.config.max_para_num, sent_limit=self.config.max_sent_num, ent_limit=self.config.max_entity_num, ans_ent_limit=self.config.max_ans_ent_num, mask_edge_types=self.config.mask_edge_types, sequential=False) ``` #### File: HGN/csr_mhqa/utils.py ```python import pickle import torch import json import numpy as np import string import re import os import shutil import collections import logging import torch.nn.functional as F from torch import nn from tqdm import tqdm from model_envs import MODEL_CLASSES, ALL_MODELS # from transformers.tokenization_bert import whitespace_tokenize, BasicTokenizer, BertTokenizer from transformers import BasicTokenizer, BertTokenizer from transformers.models.bert.tokenization_bert import whitespace_tokenize from transformers import AdamW from eval.hotpot_evaluate_v1 import normalize_answer, eval as hotpot_eval from csr_mhqa.data_processing import IGNORE_INDEX logger = logging.getLogger(__name__) def load_encoder_model(encoder_name_or_path, model_type): if encoder_name_or_path in [None, 'None', 'none']: raise ValueError('no checkpoint provided for model!') config_class, model_encoder, tokenizer_class = MODEL_CLASSES[model_type] config = config_class.from_pretrained(encoder_name_or_path) if config is None: raise ValueError(f'config.json is not found at {encoder_name_or_path}') # check if is a path if os.path.exists(encoder_name_or_path): if os.path.isfile(os.path.join(encoder_name_or_path, 'pytorch_model.bin')): encoder_file = os.path.join(encoder_name_or_path, 'pytorch_model.bin') else: encoder_file = os.path.join(encoder_name_or_path, 'encoder.pkl') encoder = model_encoder.from_pretrained(encoder_file, config=config) else: encoder = model_encoder.from_pretrained(encoder_name_or_path, config=config) return encoder, config def get_optimizer(encoder, model, args, learning_rate, remove_pooler=False): """ get BertAdam for encoder / classifier or BertModel :param model: :param classifier: :param args: :param remove_pooler: :return: """ param_optimizer = list(encoder.named_parameters()) param_optimizer += list(model.named_parameters()) if remove_pooler: param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]] no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=learning_rate, eps=args.adam_epsilon) return optimizer def compute_loss(args, batch, start, end, para, sent, ent, q_type): criterion = nn.CrossEntropyLoss(reduction='mean', ignore_index=IGNORE_INDEX) binary_criterion = nn.BCEWithLogitsLoss(reduction='mean') loss_span = args.ans_lambda * (criterion(start, batch['y1']) + criterion(end, batch['y2'])) loss_type = args.type_lambda * criterion(q_type, batch['q_type']) sent_pred = sent.view(-1, 2) sent_gold = batch['is_support'].long().view(-1) loss_sup = args.sent_lambda * criterion(sent_pred, sent_gold.long()) loss_ent = args.ent_lambda * criterion(ent, batch['is_gold_ent'].long()) loss_para = args.para_lambda * criterion(para.view(-1, 2), batch['is_gold_para'].long().view(-1)) loss = loss_span + loss_type + loss_sup + loss_ent + loss_para return loss, loss_span, loss_type, loss_sup, loss_ent, loss_para def eval_model(args, encoder, model, dataloader, example_dict, feature_dict, prediction_file, eval_file, dev_gold_file): encoder.eval() model.eval() answer_dict = {} answer_type_dict = {} answer_type_prob_dict = {} dataloader.refresh() thresholds = np.arange(0.1, 1.0, 0.05) N_thresh = len(thresholds) total_sp_dict = [{} for _ in range(N_thresh)] for batch in tqdm(dataloader): with torch.no_grad(): inputs = {'input_ids': batch['context_idxs'], 'attention_mask': batch['context_mask'], 'token_type_ids': batch['segment_idxs'] if args.model_type in ['bert', 'xlnet'] else None} # XLM don't use segment_ids outputs = encoder(**inputs) batch['context_encoding'] = outputs[0] batch['context_mask'] = batch['context_mask'].float().to(args.device) start, end, q_type, paras, sent, ent, yp1, yp2 = model(batch, return_yp=True) type_prob = F.softmax(q_type, dim=1).data.cpu().numpy() answer_dict_, answer_type_dict_, answer_type_prob_dict_ = convert_to_tokens(example_dict, feature_dict, batch['ids'], yp1.data.cpu().numpy().tolist(), yp2.data.cpu().numpy().tolist(), type_prob) answer_type_dict.update(answer_type_dict_) answer_type_prob_dict.update(answer_type_prob_dict_) answer_dict.update(answer_dict_) predict_support_np = torch.sigmoid(sent[:, :, 1]).data.cpu().numpy() for i in range(predict_support_np.shape[0]): cur_sp_pred = [[] for _ in range(N_thresh)] cur_id = batch['ids'][i] for j in range(predict_support_np.shape[1]): if j >= len(example_dict[cur_id].sent_names): break for thresh_i in range(N_thresh): if predict_support_np[i, j] > thresholds[thresh_i]: cur_sp_pred[thresh_i].append(example_dict[cur_id].sent_names[j]) for thresh_i in range(N_thresh): if cur_id not in total_sp_dict[thresh_i]: total_sp_dict[thresh_i][cur_id] = [] total_sp_dict[thresh_i][cur_id].extend(cur_sp_pred[thresh_i]) def choose_best_threshold(ans_dict, pred_file): best_joint_f1 = 0 best_metrics = None best_threshold = 0 for thresh_i in range(N_thresh): prediction = {'answer': ans_dict, 'sp': total_sp_dict[thresh_i], 'type': answer_type_dict, 'type_prob': answer_type_prob_dict} tmp_file = os.path.join(os.path.dirname(pred_file), 'tmp.json') with open(tmp_file, 'w') as f: json.dump(prediction, f) metrics = hotpot_eval(tmp_file, dev_gold_file) if metrics['joint_f1'] >= best_joint_f1: best_joint_f1 = metrics['joint_f1'] best_threshold = thresholds[thresh_i] best_metrics = metrics shutil.move(tmp_file, pred_file) return best_metrics, best_threshold best_metrics, best_threshold = choose_best_threshold(answer_dict, prediction_file) json.dump(best_metrics, open(eval_file, 'w')) return best_metrics, best_threshold def get_weights(size, gain=1.414): weights = nn.Parameter(torch.zeros(size=size)) nn.init.xavier_uniform_(weights, gain=gain) return weights def get_bias(size): bias = nn.Parameter(torch.zeros(size=size)) return bias def get_act(act): if act.startswith('lrelu'): return nn.LeakyReLU(float(act.split(':')[1])) elif act == 'relu': return nn.ReLU() else: raise NotImplementedError def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False): """Project the tokenized prediction back to the original text.""" # When we created the data, we kept track of the alignment between original # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So # now `orig_text` contains the span of our original text corresponding to the # span that we predicted. # # However, `orig_text` may contain extra characters that we don't want in # our prediction. # # For example, let's say: # pred_text = <NAME> # orig_text = <NAME> # # We don't want to return `orig_text` because it contains the extra "'s". # # We don't want to return `pred_text` because it's already been normalized # (the SQuAD eval script also does punctuation stripping/lower casing but # our tokenizer does additional normalization like stripping accent # characters). # # What we really want to return is "<NAME>". # # Therefore, we have to apply a semi-complicated alignment heruistic between # `pred_text` and `orig_text` to get a character-to-charcter alignment. This # can fail in certain cases in which case we just return `orig_text`. def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return (ns_text, ns_to_s_map) # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tokenizer = BasicTokenizer(do_lower_case=do_lower_case) tok_text = " ".join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: if verbose_logging: print("Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): if verbose_logging: logger.info("Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text, tok_ns_text) return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for (i, tok_index) in tok_ns_to_s_map.items(): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if verbose_logging: print("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if verbose_logging: print("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position:(orig_end_position + 1)] return output_text def convert_to_tokens(examples, features, ids, y1, y2, q_type_prob): answer_dict, answer_type_dict = {}, {} answer_type_prob_dict = {} q_type = np.argmax(q_type_prob, 1) def get_ans_from_pos(qid, y1, y2): feature = features[qid] example = examples[qid] tok_to_orig_map = feature.token_to_orig_map orig_all_tokens = example.question_tokens + example.doc_tokens final_text = " " if y1 < len(tok_to_orig_map) and y2 < len(tok_to_orig_map): orig_tok_start = tok_to_orig_map[y1] orig_tok_end = tok_to_orig_map[y2] ques_tok_len = len(example.question_tokens) if orig_tok_start < ques_tok_len and orig_tok_end < ques_tok_len: ques_start_idx = example.question_word_to_char_idx[orig_tok_start] ques_end_idx = example.question_word_to_char_idx[orig_tok_end] + len(example.question_tokens[orig_tok_end]) final_text = example.question_text[ques_start_idx:ques_end_idx] else: orig_tok_start -= len(example.question_tokens) orig_tok_end -= len(example.question_tokens) ctx_start_idx = example.ctx_word_to_char_idx[orig_tok_start] ctx_end_idx = example.ctx_word_to_char_idx[orig_tok_end] + len(example.doc_tokens[orig_tok_end]) final_text = example.ctx_text[example.ctx_word_to_char_idx[orig_tok_start]:example.ctx_word_to_char_idx[orig_tok_end]+len(example.doc_tokens[orig_tok_end])] return final_text for i, qid in enumerate(ids): feature = features[qid] answer_text = '' if q_type[i] in [0, 3]: answer_text = get_ans_from_pos(qid, y1[i], y2[i]) elif q_type[i] == 1: answer_text = 'yes' elif q_type[i] == 2: answer_text = 'no' else: raise ValueError("question type error") answer_dict[qid] = answer_text answer_type_prob_dict[qid] = q_type_prob[i].tolist() answer_type_dict[qid] = q_type[i].item() return answer_dict, answer_type_dict, answer_type_prob_dict def count_parameters(model, trainable_only=True, is_dict=False): """ Count number of parameters in a model or state dictionary :param model: :param trainable_only: :param is_dict: :return: """ if is_dict: return sum(np.prod(list(model[k].size())) for k in model) if trainable_only: return sum(p.numel() for p in model.parameters() if p.requires_grad) else: return sum(p.numel() for p in model.parameters()) ```
{ "source": "jobine/smartAI-plugin", "score": 2 }
#### File: smartAI-plugin/common/plugin_model_api.py ```python import time from telemetry import log from flask import Flask, request, g, jsonify, make_response from flask_restful import Resource, Api from common.plugin_service import PluginService from common.util.constant import STATUS_SUCCESS, STATUS_FAIL import logging app = Flask(__name__) api = Api(app) logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) def try_except(fn): def wrapped(*args, **kwargs): try: return fn(*args, **kwargs) except Exception as e: log.error("-----Exception-----") return make_response(jsonify(dict(result=STATUS_FAIL, message='Unknown error, please check your request. ' + str(e))), 502) return wrapped @app.route('/', methods=['GET']) def index(): return "Welcome to TSANA Computing Platform" @app.before_request def before_request(): g.start = time.time() @app.after_request def after_request(response): total_time = (time.time() - g.start) * 1e6 rule = str(request.url_rule) status = str(response.status_code) # TODO log here request_log = '\nRequest begin-----------------------------' request_log += '\n' request_log += ' url: ' + str(request.url) request_log += '\n' request_log += ' body: ' + str(request.data) request_log += '\n' request_log += ' response status: ' + str(response.status) request_log += '\n' request_log += ' response data: ' + str(response.data) request_log += '\n' request_log += 'Request end-----------------------------' log.info(request_log) return response class PluginModelIndexAPI(Resource): def put(self): return "Welcome to TSANA Computing Platform" api.add_resource(PluginModelIndexAPI, '/') class PluginModelAPI(Resource): # The API class that handles a single user def __init__(self, plugin_service: PluginService): self.__plugin_service = plugin_service @try_except def get(self, model_id): return self.__plugin_service.state(request, model_id) @try_except def post(self, model_id): pass @try_except def put(self, model_id): pass @try_except def delete(self, model_id): return self.__plugin_service.delete(request, model_id) class PluginModelTrainAPI(Resource): def __init__(self, plugin_service: PluginService): self.__plugin_service = plugin_service @try_except def post(self): return self.__plugin_service.train(request) class PluginModelInferenceAPI(Resource): def __init__(self, plugin_service: PluginService): self.__plugin_service = plugin_service @try_except def post(self, model_id): return self.__plugin_service.inference(request, model_id) class PluginModelParameterAPI(Resource): def __init__(self, plugin_service: PluginService): self.__plugin_service = plugin_service @try_except def post(self): return self.__plugin_service.verify(request) class PluginModelListAPI(Resource): def __init__(self, plugin_service: PluginService): self.__plugin_service = plugin_service @try_except def get(self): return self.__plugin_service.list_models(request) ``` #### File: common/util/timeutil.py ```python from dateutil import parser, tz import datetime import dateutil from .constant import MINT_IN_SECONDS, HOUR_IN_SECONDS, DAY_IN_SECONDS from .gran import Gran DT_FORMAT = '%Y-%m-%dT%H:%M:%SZ' DT_FILENAME_FORMAT = '%Y-%m-%dT_%H_%M_%SZ' def convert_freq(gran, custom_in_seconds): if gran == Gran.Yearly: return 'Y' if gran == Gran.Monthly: return 'M' if gran == Gran.Weekly: return 'W' if gran == Gran.Daily: return 'D' if gran == Gran.Hourly: return 'H' if gran == Gran.Minutely: return 'T' if gran == Gran.Secondly: return 'S' return '{}S'.format(custom_in_seconds) def str_to_dt(s): return parser.parse(s).replace(tzinfo=tz.UTC) def dt_to_str(dt): return dt.strftime(DT_FORMAT) def dt_to_str_file_name(dt): return dt.strftime(DT_FILENAME_FORMAT) def get_diff(start, graninfo, end): (gran_str, custom_in_seconds) = graninfo delta = dateutil.relativedelta.relativedelta(end, start) if gran_str == 'Daily': diff = (end - start).total_seconds() / DAY_IN_SECONDS elif gran_str == 'Weekly': diff = (end - start).total_seconds() / (DAY_IN_SECONDS * 7) elif gran_str == 'Monthly': diff = delta.years * 12 + delta.months elif gran_str == 'Yearly': diff = delta.years elif gran_str == 'Hourly': diff = (end - start).total_seconds() / HOUR_IN_SECONDS elif gran_str == 'Minutely': diff = (end - start).total_seconds() / MINT_IN_SECONDS elif gran_str == 'Secondly': diff = (end - start).total_seconds() elif gran_str == 'Custom': diff = (end - start).total_seconds() / custom_in_seconds else: raise Exception('Granularity not supported: {}|{}'.format(*graninfo)) return int(diff) def get_time_offset(timestamp, graninfo, offset): (gran_str, custom_in_seconds) = graninfo if gran_str == 'Daily': return timestamp + datetime.timedelta(days=offset) elif gran_str == 'Weekly': return timestamp + datetime.timedelta(weeks=offset) elif gran_str == 'Monthly': return timestamp + dateutil.relativedelta.relativedelta(months=offset) elif gran_str == 'Yearly': return timestamp + dateutil.relativedelta.relativedelta(years=offset) elif gran_str == 'Hourly': return timestamp + datetime.timedelta(hours=offset) elif gran_str == 'Minutely': return timestamp + datetime.timedelta(minutes=offset) elif gran_str == 'Secondly': return timestamp + datetime.timedelta(seconds=offset) elif gran_str == 'Custom': return timestamp + datetime.timedelta(seconds=custom_in_seconds * offset) else: raise Exception('Granularity not supported: {}|{}'.format(*graninfo)) def get_time_list(start_time, end_time, graninfo): time_list = [] (gran_str, custom_in_seconds) = graninfo offset = 1 if gran_str == 'Daily': timedelta = datetime.timedelta(days=offset) elif gran_str == 'Weekly': timedelta = datetime.timedelta(weeks=offset) elif gran_str == 'Monthly': timedelta = dateutil.relativedelta.relativedelta(months=offset) elif gran_str == 'Yearly': timedelta = dateutil.relativedelta.relativedelta(years=offset) elif gran_str == 'Hourly': timedelta = datetime.timedelta(hours=offset) elif gran_str == 'Minutely': timedelta = datetime.timedelta(minutes=offset) elif gran_str == 'Secondly': timedelta = datetime.timedelta(seconds=offset) elif gran_str == 'Custom': timedelta = datetime.timedelta(seconds=custom_in_seconds * offset) else: raise Exception('Granularity not supported: {}|{}'.format(*graninfo)) while start_time < end_time: time_list.append(start_time) start_time = start_time + timedelta return time_list ``` #### File: forecast/util/univariate_forecast_item.py ```python from common.util.constant import TIMESTAMP FORECAST_VALUE = 'forecastValue' CONFIDENCE = 'confidence' UPPER_BOUNDARY = 'upperBoundary' LOWER_BOUNDARY = 'lowerBoundary' class UnivariateForecastItem: def __init__(self, forecast_value, lower_boundary, upper_boundary, confidence, timestamp): self.forecast_value = float(forecast_value) self.confidence = float(confidence) self.upper_boundary = float(upper_boundary) self.lower_boundary = float(lower_boundary) self.timestamp = timestamp.strftime('%Y-%m-%d %H:%M:%S') def to_dict(self): return {FORECAST_VALUE: self.forecast_value, CONFIDENCE: self.confidence, UPPER_BOUNDARY: self.upper_boundary, LOWER_BOUNDARY: self.lower_boundary, TIMESTAMP: self.timestamp} ```
{ "source": "JobinH0od/C-O-D-E-S", "score": 4 }
#### File: Python/OtherProjects/aboutMePrompt.py ```python def allQuestions(): print("What's your name?") name = input() print("Hello", name, "!") print("What country do you live in?") country = input() print("I love", country, "!") print("How old are you?") age = input() if age >= str(18): print("I hope you've already gone to a bar!") elif age < str(18): print("I hope you didn't go to any bar yet!") allQuestions() input() ``` #### File: Python/OtherProjects/emailDefault.py ```python import datetime import smtplib def emailDefault(): server = smtplib.SMTP('smtp.gmail.com', 587) server.starttls() server.login("<EMAIL>","Iact1v1ty") server.sendmail("<EMAIL>", "<EMAIL>", "TEST") server.quit emailDefault() ``` #### File: Python/OtherProjects/PigLatin.py ```python import time def PygLatin(): pyg = "ay" print("Welcome to my Pig Latin program!") original = input("Enter a simple word : ") if len(original) > 0 and original.isalpha(): print(original) word = original.lower() first = original[0] else: print("Enter a valid word please") newWord = word + first + pyg newWord = newWord[1:] print(newWord) print() PygLatin() time.sleep(4) ``` #### File: Python/OtherProjects/sendAtTime.py ```python import datetime import smtplib while True: def emailDefault(): server = smtplib.SMTP('smtp.gmail.com', 587) server.starttls() server.login("<EMAIL>","Iact1v1ty") server.sendmail("<EMAIL>", "<EMAIL>", "It's 2:45 o' clock!") server.quit now = str(datetime.datetime.utcnow().strftime("%H:%M")) if now == "19:45": print("Sending...") emailDefault() print("Stopping...") quit() else: pass ```
{ "source": "jobini/tic_tac_toe", "score": 4 }
#### File: jobini/tic_tac_toe/classes.py ```python from random import sample class Grid: played_pos = set() def __init__(self): self.cells = [" " for i in range(0,9)] self.cell_states = [0 for i in range(0,9)] self.empty_win = False def display(self): for i in range(0,7,3): print " __ __ __" print "|{0} |{1} |{2} |\n".format(self.cells[i],self.cells[i+1],self.cells[i+2]) def win(self): if (self.row_win()[0] or self.column_win()[0] or self.diagonal_win()[0]) and (not self.empty_win): return True else: return False def row_win(self): for i in range(0,7,3): if ((self.cells[i] == self.cells[i+1]) and (self.cells[i+1] == self.cells[i+2])): if self.cells[i] == " ": self.empty_win = True else: self.empty_win = False return True,self.cell_states[i] return False,None def column_win(self): for i in range(0,3): if ((self.cells[i] == self.cells[i+3]) and (self.cells[i+3] == self.cells[i+6])): if self.cells[i] == " ": self.empty_win = True else: self.empty_win = False return True,self.cell_states[i] return False,None def diagonal_win(self): if ((self.cells[0] == self.cells[4]) and (self.cells[4] == self.cells[8])): if self.cells[0] == " ": self.empty_win = True else: self.empty_win = False return True,self.cell_states[0] if ((self.cells[2] == self.cells[4]) and (self.cells[4] == self.cells[6])): if self.cells[2] == " ": self.empty_win = True else: self.empty_win = False return True,self.cell_states[2] return False,None def draw(self): if (not self.win() and 0 not in self.cell_states): return True else: return False def is_valid(self,pos): try: pos = int(pos) except: print "Invalid entry! Try again." return False if pos > 0 and pos < 10: if pos not in Grid.played_pos: return True else: print "Position already played! Try again." return False else: print "Positions must be from 1-9! Try again." return False class Player: p_num = 1 def __init__(self,token,name): self.token = token self.name = name self.number = Player.p_num Player.p_num += 1 def play(self,pos,g): Grid.played_pos.add(int(pos)) g.cells[int(pos)-1] = self.token g.cell_states[int(pos)-1] = self.number def ask_action(self): pos = raw_input("{0}'s turn (Player {1}): ".format(self.name,self.number)) return pos class Computer(Player): def ask_action(self): pos = sample({i for i in range(1,10)}.difference(Grid.played_pos),1)[0] print "{0}'s turn: {1}".format(self.name,pos) return pos ```
{ "source": "jobino/carla_control_joystick", "score": 3 }
#### File: modules/joystick/ControlSystem.py ```python from modules.joystick import SystemController from modules.button import button from modules.joystick import PrintText from modules.client import Connection import pygame import random import os import sys import subprocess SystemController = SystemController TextOutput = PrintText.TextPrint() os.environ["SDL_VIDEO_CENTERED"] = '1' pygame.init() RED = (255,0,0) BLUE = (0,0,255) GREEN = (0,255,0) BLACK = (0,0,0) WHITE = (255,255,255) ORANGE = (255,180,0) joystick = [] i = 0 #The button can be styled in a manner similar to CSS. BUTTON_STYLE = {"hover_color" : BLUE , "clicked_color" : GREEN , "clicked_font_color" : BLACK , "hover_font_color" : ORANGE , "hover_sound" : pygame.mixer.Sound(os.getcwd()+"/sound.wav") } clock = pygame.time.Clock() class Control(object): def __init__(self): self.screen = pygame.display.set_mode((500,500)) self.screen_rect = self.screen.get_rect() self.clock = pygame.time.Clock() self.done = False self.fps = 60.0 self.color = WHITE self.startClient = False message = "Start Carla Server" self.buttonStartCarlaServer = button.Button((0,0,110,25),RED, ServerController().start_server_carla,text=message, **BUTTON_STYLE) self.buttonStartCarlaServer.rect.center = (70, self.screen_rect.height - 50) self.buttonStartJoystick = button.Button((0,0,110,25),RED, self.start_joystick,text="Start Joystick", **BUTTON_STYLE) self.buttonStartJoystick.rect.center = (190, self.screen_rect.height - 50) self.buttonStartClient = button.Button((0,0,110,25),RED, self.connect_client,text="Start Client", **BUTTON_STYLE) self.buttonStartClient.rect.center = (310, self.screen_rect.height - 50) self.buttonAutoPilot = button.Button((0,0,110,25),RED, self.autopilot,text="Auto Pilot", **BUTTON_STYLE) self.buttonAutoPilot.rect.center = (430, self.screen_rect.height - 50) def connect_client(self): Connection.ControlClient().start() self.startClient = True def autopilot(self): if self.startClient: Connection.ControlClient().set_autopilot() def event_loop(self): for event in pygame.event.get(): if event.type == pygame.QUIT: self.done = True SystemController.event_buttons_pressed(event) self.buttonStartCarlaServer.check_event(event) self.buttonStartJoystick.check_event(event) self.buttonStartClient.check_event(event) self.buttonAutoPilot.check_event(event) def start_joystick(self): joystick_count = pygame.joystick.get_count() if joystick_count < 1: return 0 if self.startClient: for i in range(joystick_count): joystick.append(pygame.joystick.Joystick(i)) joystick[i].init() def joystick_loop(self): if len(joystick) != 0: for x in range(len(joystick)): SystemController.get_axes_buttons_control(joystick[x], self.screen) pygame.display.flip() else: TextOutput.reset() TextOutput.plint(self.screen, "Joystick not found".format()) def main_loop(self): while not self.done: self.event_loop() self.screen.fill(self.color) self.buttonStartCarlaServer.update(self.screen) self.buttonStartJoystick.update(self.screen) self.buttonStartClient.update(self.screen) self.buttonAutoPilot.update(self.screen) self.joystick_loop() pygame.display.update() self.clock.tick(self.fps) class ServerController(object): def __init__(self): pass def start_server_carla(self): exec(open(os.getcwd()+"/modules/client/StartCarlaServer.py").read()) ```
{ "source": "jobin-sun/Local-Codeskulptor", "score": 3 }
#### File: Local-Codeskulptor/bin/gen_module.py ```python import glob import os path="..\src" def fun(path): if path != "": path = path + os.sep for file in glob.glob(path+'*'): print file if os.path.isdir(file): fun(file) elif file.endswith('.py'): fd = open(file,"r") cnt = fd.read() fd.close() cnt=cnt.replace("\r","") cnt=cnt.replace("\n","\\n") cnt=cnt.replace("\"","\\\"") modName=file.replace("\\","/") fdLib.write("myModule[\"src/lib/"+modName+"\"]=\""+cnt+"\";\n") os.chdir(path) fd = open("codeskulptor.py","r") cnt = fd.read() fd.close() cnt=cnt.replace("\r","") cnt=cnt.replace("\n","\\n") cnt=cnt.replace("\"","\\\"") fdMain = open("../Temp/main.js","w") fdMain.write("prog=\""+cnt+"\"") fdMain.close() fdLib = open("../Temp/skulpt-mylib.js","w") fdLib.write("myModule={};\n") fun("") fdLib.close() ```
{ "source": "jobiols/odoo-env", "score": 2 }
#### File: odoo-env/odoo_env/test_oe.py ```python import unittest from odoo_env.command import Command, MakedirCommand, CreateNginxTemplate from odoo_env.client import Client from odoo_env.odooenv import OdooEnv from odoo_env.config import OeConfig from odoo_env.repos import Repo, Repo2 from odoo_env.images import Image, Image2 class TestRepository(unittest.TestCase): def test_install(self): """ ################################################# TEST INSTALLATION """ options = { 'debug': False, 'no-repos': False, 'nginx': True, } base_dir = '/odoo_ar/' oe = OdooEnv(options) cmds = oe.install('test_client') self.assertEqual( cmds[0].args, base_dir) self.assertEqual( cmds[0].command, 'sudo mkdir ' + base_dir) self.assertEqual( cmds[0].usr_msg, 'Installing client test_client') self.assertEqual( cmds[2].args, '{}odoo-9.0/test_client/postgresql'.format(base_dir)) self.assertEqual( cmds[2].command, 'mkdir -p {}odoo-9.0/test_client/postgresql'.format(base_dir)) self.assertEqual( cmds[2].usr_msg, False) self.assertEqual( cmds[3].args, '/odoo_ar/odoo-9.0/test_client/config') self.assertEqual( cmds[3].command, 'mkdir -p /odoo_ar/odoo-9.0/test_client/config') self.assertEqual( cmds[3].usr_msg, False) self.assertEqual( cmds[4].args, '/odoo_ar/odoo-9.0/test_client/data_dir') self.assertEqual( cmds[4].command, 'mkdir -p /odoo_ar/odoo-9.0/test_client/data_dir') self.assertEqual( cmds[4].usr_msg, False) self.assertEqual( cmds[5].args, '/odoo_ar/odoo-9.0/test_client/backup_dir') self.assertEqual( cmds[5].command, 'mkdir -p /odoo_ar/odoo-9.0/test_client/backup_dir') self.assertEqual( cmds[5].usr_msg, False) self.assertEqual( cmds[6].args, '/odoo_ar/odoo-9.0/test_client/log') self.assertEqual( cmds[6].command, 'mkdir -p /odoo_ar/odoo-9.0/test_client/log') self.assertEqual( cmds[6].usr_msg, False) self.assertEqual( cmds[7].args, '/odoo_ar/odoo-9.0/test_client/sources') self.assertEqual( cmds[7].command, 'mkdir -p /odoo_ar/odoo-9.0/test_client/sources') self.assertEqual( cmds[7].usr_msg, False) self.assertEqual( cmds[8].args, False) self.assertEqual( cmds[8].command, 'chmod o+w /odoo_ar/odoo-9.0/test_client/config' ) self.assertEqual( cmds[8].usr_msg, False) self.assertEqual( cmds[9].args, False) self.assertEqual( cmds[9].command, 'chmod o+w /odoo_ar/odoo-9.0/test_client/data_dir' ) self.assertEqual( cmds[9].usr_msg, False) self.assertEqual( cmds[10].args, False) self.assertEqual( cmds[10].command, 'chmod o+w /odoo_ar/odoo-9.0/test_client/log') self.assertEqual( cmds[10].usr_msg, False) self.assertEqual( cmds[11].args, False) self.assertEqual( cmds[11].command, 'chmod o+w /odoo_ar/odoo-9.0/test_client/backup_dir') self.assertEqual( cmds[11].usr_msg, False) self.assertEqual( cmds[12].args, '/odoo_ar/nginx/cert') self.assertEqual( cmds[12].command, 'mkdir -p /odoo_ar/nginx/cert') self.assertEqual( cmds[12].usr_msg, False) self.assertEqual( cmds[13].args, '/odoo_ar/nginx/conf') self.assertEqual( cmds[13].command, 'mkdir -p /odoo_ar/nginx/conf') self.assertEqual( cmds[13].usr_msg, False) self.assertEqual( cmds[14].args, '/odoo_ar/nginx/log') self.assertEqual( cmds[14].command, 'mkdir -p /odoo_ar/nginx/log') self.assertEqual( cmds[14].usr_msg, False) self.assertEqual( cmds[15].args, '/odoo_ar/nginx/conf/nginx.conf') self.assertEqual( cmds[15].command, '/odoo_ar/nginx/conf/nginx.conf') self.assertEqual( cmds[15].usr_msg, 'Generating nginx.conf template') self.assertEqual( cmds[16].args, '/odoo_ar/odoo-9.0/test_client/sources/cl-test-client') self.assertEqual( cmds[16].command, 'git -C /odoo_ar/odoo-9.0/test_client/sources/ clone --depth 1 ' '-b 9.0 https://github.com/jobiols/cl-test-client') self.assertEqual( cmds[16].usr_msg, 'cloning b 9.0 jobiols/cl-test-client ') self.assertEqual( cmds[17].args, '/odoo_ar/odoo-9.0/test_client/sources/cl-test-client') self.assertEqual( cmds[17].command, 'git -C /odoo_ar/odoo-9.0/test_client/sources/cl-test-client pull') self.assertEqual( cmds[17].usr_msg, 'pulling b 9.0 jobiols/cl-test-client ') self.assertEqual( cmds[18].args, '/odoo_ar/odoo-9.0/test_client/sources/odoo-addons') self.assertEqual( cmds[18].command, 'git -C /odoo_ar/odoo-9.0/test_client/sources/ clone --depth 1 ' '-b 9.0 https://github.com/jobiols/odoo-addons') self.assertEqual( cmds[18].usr_msg, 'cloning b 9.0 jobiols/odoo-addons ') self.assertEqual( cmds[19].args, '/odoo_ar/odoo-9.0/test_client/sources/odoo-addons') self.assertEqual( cmds[19].command, 'git -C /odoo_ar/odoo-9.0/test_client/sources/odoo-addons pull') self.assertEqual( cmds[19].usr_msg, 'pulling b 9.0 jobiols/odoo-addons ') def test_install2(self): """ ################################################# TEST INSTALLATION """ options = { 'debug': False, 'no-repos': False, 'nginx': True, } base_dir = '/odoo_ar/' oe = OdooEnv(options) cmds = oe.install('test2_client') self.assertEqual( cmds[0].args, base_dir) self.assertEqual( cmds[0].command, 'sudo mkdir ' + base_dir) self.assertEqual( cmds[0].usr_msg, 'Installing client test2_client') self.assertEqual( cmds[2].args, '{}odoo-9.0/test2_client/postgresql'.format(base_dir)) self.assertEqual( cmds[2].command, 'mkdir -p {}odoo-9.0/test2_client/postgresql'.format(base_dir)) self.assertEqual( cmds[2].usr_msg, False) self.assertEqual( cmds[3].args, '/odoo_ar/odoo-9.0/test2_client/config') self.assertEqual( cmds[3].command, 'mkdir -p /odoo_ar/odoo-9.0/test2_client/config') self.assertEqual( cmds[3].usr_msg, False) self.assertEqual( cmds[4].args, '/odoo_ar/odoo-9.0/test2_client/data_dir') self.assertEqual( cmds[4].command, 'mkdir -p /odoo_ar/odoo-9.0/test2_client/data_dir') self.assertEqual( cmds[4].usr_msg, False) self.assertEqual( cmds[5].args, '/odoo_ar/odoo-9.0/test2_client/backup_dir') self.assertEqual( cmds[5].command, 'mkdir -p /odoo_ar/odoo-9.0/test2_client/backup_dir') self.assertEqual( cmds[5].usr_msg, False) self.assertEqual( cmds[6].args, '/odoo_ar/odoo-9.0/test2_client/log') self.assertEqual( cmds[6].command, 'mkdir -p /odoo_ar/odoo-9.0/test2_client/log') self.assertEqual( cmds[6].usr_msg, False) self.assertEqual( cmds[7].args, '/odoo_ar/odoo-9.0/test2_client/sources') self.assertEqual( cmds[7].command, 'mkdir -p /odoo_ar/odoo-9.0/test2_client/sources') self.assertEqual( cmds[7].usr_msg, False) self.assertEqual( cmds[8].args, False) self.assertEqual( cmds[8].command, 'chmod o+w /odoo_ar/odoo-9.0/test2_client/config' ) self.assertEqual( cmds[8].usr_msg, False) self.assertEqual( cmds[9].args, False) self.assertEqual( cmds[9].command, 'chmod o+w /odoo_ar/odoo-9.0/test2_client/data_dir' ) self.assertEqual( cmds[9].usr_msg, False) self.assertEqual( cmds[10].args, False) self.assertEqual( cmds[10].command, 'chmod o+w /odoo_ar/odoo-9.0/test2_client/log') self.assertEqual( cmds[10].usr_msg, False) self.assertEqual( cmds[11].args, False) self.assertEqual( cmds[11].command, 'chmod o+w /odoo_ar/odoo-9.0/test2_client/backup_dir') self.assertEqual( cmds[11].usr_msg, False) self.assertEqual( cmds[12].args, '/odoo_ar/nginx/cert') self.assertEqual( cmds[12].command, 'mkdir -p /odoo_ar/nginx/cert') self.assertEqual( cmds[12].usr_msg, False) self.assertEqual( cmds[13].args, '/odoo_ar/nginx/conf') self.assertEqual( cmds[13].command, 'mkdir -p /odoo_ar/nginx/conf') self.assertEqual( cmds[13].usr_msg, False) self.assertEqual( cmds[14].args, '/odoo_ar/nginx/log') self.assertEqual( cmds[14].command, 'mkdir -p /odoo_ar/nginx/log') self.assertEqual( cmds[14].usr_msg, False) self.assertEqual( cmds[15].args, '/odoo_ar/nginx/conf/nginx.conf') self.assertEqual( cmds[15].command, '/odoo_ar/nginx/conf/nginx.conf') self.assertEqual( cmds[15].usr_msg, 'Generating nginx.conf template') self.assertEqual( cmds[16].args, '/odoo_ar/odoo-9.0/test2_client/sources/odoo-addons') self.assertEqual( cmds[16].command, 'git -C /odoo_ar/odoo-9.0/test2_client/sources/ clone --depth 1 ' '-b 9.0 https://github.com/jobiols/odoo-addons.git') self.assertEqual( cmds[16].usr_msg, 'cloning b 9.0 https://github.com/jobiols/odoo-addons.git') self.assertEqual( cmds[17].args, '/odoo_ar/odoo-9.0/test2_client/sources/odoo-addons') self.assertEqual( cmds[17].command, 'git -C /odoo_ar/odoo-9.0/test2_client/sources/odoo-addons pull') self.assertEqual( cmds[17].usr_msg, 'pulling b 9.0 https://github.com/jobiols/odoo-addons.git') self.assertEqual( cmds[18].args, '/odoo_ar/odoo-9.0/test2_client/sources/adhoc-odoo-argentina') self.assertEqual( cmds[18].command, 'git -C /odoo_ar/odoo-9.0/test2_client/sources/ clone --depth 1 ' '-b 9.0 https://github.com/ingadhoc/odoo-argentina.git adhoc-odoo-argentina') self.assertEqual( cmds[18].usr_msg, 'cloning b 9.0 https://github.com/ingadhoc/odoo-argentina.git >> adhoc-odoo-argentina') self.assertEqual( cmds[19].args, '/odoo_ar/odoo-9.0/test2_client/sources/adhoc-odoo-argentina') self.assertEqual( cmds[19].command, 'git -C /odoo_ar/odoo-9.0/test2_client/sources/adhoc-odoo-argentina pull') self.assertEqual( cmds[19].usr_msg, 'pulling b 9.0 https://github.com/ingadhoc/odoo-argentina.git >> adhoc-odoo-argentina') def test_install2_enterprise(self): """ ################################### TEST INSTALLATION v2 ENTERPRISE """ options = { 'debug': True, 'no-repos': False, 'nginx': True, 'extract_sources': False, } base_dir = '/odoo_ar/' oe = OdooEnv(options) cmds = oe.install('test2e_client') self.assertEqual( cmds[0].args, base_dir) self.assertEqual( cmds[0].command, 'sudo mkdir ' + base_dir) self.assertEqual( cmds[0].usr_msg, 'Installing client test2e_client') self.assertEqual( cmds[2].args, '{}odoo-9.0e/test2e_client/postgresql'.format(base_dir)) self.assertEqual( cmds[2].command, 'mkdir -p {}odoo-9.0e/test2e_client/postgresql'.format(base_dir)) self.assertEqual( cmds[2].usr_msg, False) self.assertEqual( cmds[8].args, '/odoo_ar/odoo-9.0e/dist-packages') self.assertEqual( cmds[8].command, 'mkdir -p /odoo_ar/odoo-9.0e/dist-packages' ) self.assertEqual( cmds[8].usr_msg, False) def test_cmd(self): """ ########################################################## TEST CMD """ options = { 'debug': False, 'no-repos': False, 'nginx': False, } oe = OdooEnv(options) # si no tiene argumentos para chequear no requiere chequeo c = Command(oe, command='cmd', usr_msg='hola') self.assertEqual(c.command, 'cmd') self.assertEqual(c.usr_msg, 'hola') self.assertEqual(c.args, False) self.assertEqual(c.check(), True) c = MakedirCommand(oe, command='cmd', args='no_existe_este_directorio') self.assertEqual(c.check_args(), True) c = CreateNginxTemplate(oe, command='cmd', args='no_exist', usr_msg='Testing msg') self.assertEqual(c.usr_msg, 'Testing msg') def test_qa(self): """ ########################################################### TEST QA """ options = { 'debug': False } client_name = 'test_client' database = 'cliente_test' modules = 'modulo_a_testear' oe = OdooEnv(options) client = Client(oe, client_name) cmds = oe.qa(client_name, database, modules, client_test=client) cmd = cmds[0] self.assertEqual(cmd.usr_msg, 'Performing tests on module ' 'modulo_a_testear for client ' 'test_client and database cliente_test') command = \ "sudo docker run --rm -it " \ "-v /odoo_ar/odoo-9.0/test_client/config:/opt/odoo/etc/ " \ "-v /odoo_ar/odoo-9.0/test_client/data_dir:/opt/odoo/data " \ "-v /odoo_ar/odoo-9.0/test_client/log:/var/log/odoo " \ "-v /odoo_ar/odoo-9.0/test_client/sources:" \ "/opt/odoo/custom-addons " \ "-v /odoo_ar/odoo-9.0/test_client/backup_dir:/var/odoo/backups/ " \ "--link wdb " \ "-e WDB_SOCKET_SERVER=wdb " \ "-e ODOO_CONF=/dev/null " \ "--link pg-test_client:db jobiols/odoo-jeo:9.0.debug -- " \ "-d cliente_test " \ "--stop-after-init " \ "--log-level=test " \ "--test-enable " \ "-u modulo_a_testear " self.assertEqual(cmd.command, command) def test_run_cli(self): """ ###################################################### TEST RUN CLI """ options = { 'debug': False, 'nginx': False, } client_name = 'test_client' oe = OdooEnv(options) cmds = oe.run_client(client_name) cmd = cmds[0] self.assertEqual(cmd.usr_msg, 'Starting Odoo image for client ' 'test_client on port 8069') command = \ "sudo docker run -d " \ "--link aeroo:aeroo " \ "-p 8069:8069 " \ "-p 8072:8072 " \ "-v /odoo_ar/odoo-9.0/test_client/config:/opt/odoo/etc/ " \ "-v /odoo_ar/odoo-9.0/test_client/data_dir:/opt/odoo/data " \ "-v /odoo_ar/odoo-9.0/test_client/log:/var/log/odoo " \ "-v /odoo_ar/odoo-9.0/test_client/sources:" \ "/opt/odoo/custom-addons " \ "-v /odoo_ar/odoo-9.0/test_client/backup_dir:/var/odoo/backups/ " \ "--link pg-test_client:db " \ "--restart=always " \ "--name test_client " \ "-e ODOO_CONF=/dev/null " \ "jobiols/odoo-jeo:9.0 " \ "--logfile=/var/log/odoo/odoo.log " self.assertEqual(cmd.command, command) def test_run_cli_debug(self): """ ############################################## TEST RUN CLI W/DEBUG """ options = { 'debug': True, 'nginx': False, } client_name = 'test_client' oe = OdooEnv(options) cmds = oe.run_client(client_name) cmd = cmds[0] self.assertEqual(cmd.usr_msg, 'Starting Odoo image for client ' 'test_client on port 8069') command = \ 'sudo docker run --rm -it ' \ '--link aeroo:aeroo ' \ '--link wdb ' \ '-p 8069:8069 -p 8072:8072 ' \ '-v /odoo_ar/odoo-9.0/test_client/config:/opt/odoo/etc/ ' \ '-v /odoo_ar/odoo-9.0/test_client/data_dir:/opt/odoo/data ' \ '-v /odoo_ar/odoo-9.0/test_client/log:/var/log/odoo ' \ '-v /odoo_ar/odoo-9.0/test_client/sources:' \ '/opt/odoo/custom-addons ' \ '-v /odoo_ar/odoo-9.0/test_client/backup_dir:/var/odoo/backups/ ' \ '-v /odoo_ar/odoo-9.0/extra-addons:/opt/odoo/extra-addons ' \ '-v /odoo_ar/odoo-9.0/dist-packages:' \ '/usr/lib/python2.7/dist-packages ' \ '-v /odoo_ar/odoo-9.0/dist-local-packages:' \ '/usr/local/lib/python2.7/dist-packages ' \ '--link pg-test_client:db ' \ '--name test_client ' \ '-e ODOO_CONF=/dev/null ' \ '-e WDB_SOCKET_SERVER=wdb jobiols/odoo-jeo:9.0.debug ' \ '--logfile=/dev/stdout ' self.assertEqual(cmd.command, command) def test_pull_images(self): """ ################################################## TEST PULL IMAGES """ options = { 'debug': False, 'nginx': False, } client_name = 'test_client' oe = OdooEnv(options) cmds = oe.pull_images(client_name) cmd = cmds[0] self.assertEqual(cmd.usr_msg, 'Pulling Image aeroo') command = 'sudo docker pull jobiols/aeroo-docs' self.assertEqual(cmd.command, command) cmd = cmds[1] self.assertEqual(cmd.usr_msg, 'Pulling Image odoo') command = 'sudo docker pull jobiols/odoo-jeo:9.0' self.assertEqual(cmd.command, command) cmd = cmds[2] self.assertEqual(cmd.usr_msg, 'Pulling Image postgres') command = 'sudo docker pull postgres:9.5' self.assertEqual(cmd.command, command) cmd = cmds[3] self.assertEqual(cmd.usr_msg, 'Pulling Image nginx') command = 'sudo docker pull nginx:latest' self.assertEqual(cmd.command, command) def test_update(self): """ ################################################## TEST PULL UPDATE """ options = { 'debug': False, 'nginx': False, } client_name = 'test_client' oe = OdooEnv(options) cmds = oe.update(client_name, 'client_prod', ['all']) command = \ "sudo docker run --rm -it " \ "-v /odoo_ar/odoo-9.0/test_client/config:/opt/odoo/etc/ " \ "-v /odoo_ar/odoo-9.0/test_client/data_dir:/opt/odoo/data " \ "-v /odoo_ar/odoo-9.0/test_client/log:/var/log/odoo " \ "-v /odoo_ar/odoo-9.0/test_client/sources:" \ "/opt/odoo/custom-addons " \ "-v /odoo_ar/odoo-9.0/test_client/backup_dir:/var/odoo/backups/ " \ "--link pg-test_client:db " \ "-e ODOO_CONF=/dev/null jobiols/odoo-jeo:9.0 " \ "-- " \ "--stop-after-init " \ "--logfile=false " \ "-d client_prod " \ "-u all " self.assertEqual(cmds[0].command, command) def test_restore(self): """ ################################################# TEST PULL RESTORE """ options = { 'debug': False, 'nginx': False, } client_name = 'test_client' database = 'client_prod' backup_file = 'bkp.zip' oe = OdooEnv(options) cmds = oe.restore(client_name, database, backup_file, deactivate=True) command = \ 'sudo docker run --rm -i ' \ '--link pg-test_client:db ' \ '-v /odoo_ar/odoo-9.0/test_client/backup_dir/:/backup ' \ '-v /odoo_ar/odoo-9.0/test_client/data_dir/filestore:/filestore ' \ '--env NEW_DBNAME=client_prod ' \ '--env ZIPFILE=bkp.zip ' \ '--env DEACTIVATE=True ' \ 'jobiols/dbtools:1.1.0 ' self.assertEqual(cmds[0].command, command) def test_download_image_sources(self): """ ####################################### TEST DOWNLOAD IMAGE SOURCES """ options = { 'debug': True, 'no-repos': False, 'nginx': False, 'extract_sources': True, } oe = OdooEnv(options) cmds = oe.install('test_client') command = 'sudo mkdir /odoo_ar/' self.assertEqual(cmds[0].command, command) #command = 'sudo chown jobiols:jobiols /odoo_ar/' #self.assertEqual(cmds[1].command, command) command = 'mkdir -p /odoo_ar/odoo-9.0/test_client/postgresql' self.assertEqual(cmds[2].command, command) command = 'mkdir -p /odoo_ar/odoo-9.0/test_client/config' self.assertEqual(cmds[3].command, command) command = 'mkdir -p /odoo_ar/odoo-9.0/test_client/data_dir' self.assertEqual(cmds[4].command, command) command = 'mkdir -p /odoo_ar/odoo-9.0/test_client/backup_dir' self.assertEqual(cmds[5].command, command) command = 'mkdir -p /odoo_ar/odoo-9.0/test_client/log' self.assertEqual(cmds[6].command, command) command = 'mkdir -p /odoo_ar/odoo-9.0/test_client/sources' self.assertEqual(cmds[7].command, command) command = 'mkdir -p /odoo_ar/odoo-9.0/dist-packages' self.assertEqual(cmds[8].command, command) command = 'mkdir -p /odoo_ar/odoo-9.0/dist-local-packages' self.assertEqual(cmds[9].command, command) command = 'mkdir -p /odoo_ar/odoo-9.0/extra-addons' self.assertEqual(cmds[10].command, command) command = 'chmod og+w /odoo_ar/odoo-9.0/dist-packages' self.assertEqual(cmds[11].command, command) command = 'chmod og+w /odoo_ar/odoo-9.0/dist-local-packages' self.assertEqual(cmds[12].command, command) command = 'chmod og+w /odoo_ar/odoo-9.0/extra-addons' self.assertEqual(cmds[13].command, command) command = 'chmod o+w /odoo_ar/odoo-9.0/test_client/config' self.assertEqual(cmds[14].command, command) command = 'chmod o+w /odoo_ar/odoo-9.0/test_client/data_dir' self.assertEqual(cmds[15].command, command) command = 'chmod o+w /odoo_ar/odoo-9.0/test_client/log' self.assertEqual(cmds[16].command, command) command = 'chmod o+w /odoo_ar/odoo-9.0/test_client/backup_dir' self.assertEqual(cmds[17].command, command) command = 'sudo docker run -it --rm ' \ '--entrypoint=/extract_dist-packages.sh ' \ '-v /odoo_ar/odoo-9.0/dist-packages/:/mnt/dist-packages ' \ 'jobiols/odoo-jeo:9.0.debug ' self.assertEqual(cmds[18].command, command) command = 'sudo docker run -it --rm ' \ '--entrypoint=/extract_dist-local-packages.sh ' \ '-v /odoo_ar/odoo-9.0/dist-local-packages/:' \ '/mnt/dist-local-packages ' \ 'jobiols/odoo-jeo:9.0.debug ' self.assertEqual(cmds[19].command, command) command = 'sudo docker run -it --rm ' \ '--entrypoint=/extract_extra-addons.sh ' \ '-v /odoo_ar/odoo-9.0/extra-addons/:/mnt/extra-addons ' \ 'jobiols/odoo-jeo:9.0.debug ' self.assertEqual(cmds[20].command, command) command = 'sudo chmod -R og+w /odoo_ar/odoo-9.0/dist-packages/' self.assertEqual(cmds[21].command, command) command = 'sudo chmod -R og+w /odoo_ar/odoo-9.0/dist-local-packages/' self.assertEqual(cmds[22].command, command) command = 'sudo chmod -R og+w /odoo_ar/odoo-9.0/extra-addons/' self.assertEqual(cmds[23].command, command) command = '/odoo_ar/odoo-9.0/dist-packages/.gitignore' self.assertEqual(cmds[24].command, command) command = '/odoo_ar/odoo-9.0/dist-local-packages/.gitignore' self.assertEqual(cmds[25].command, command) command = '/odoo_ar/odoo-9.0/extra-addons/.gitignore' self.assertEqual(cmds[26].command, command) command = 'git -C /odoo_ar/odoo-9.0/dist-packages/ init ' self.assertEqual(cmds[27].command, command) command = 'git -C /odoo_ar/odoo-9.0/dist-local-packages/ init ' self.assertEqual(cmds[28].command, command) command = 'git -C /odoo_ar/odoo-9.0/extra-addons/ init ' self.assertEqual(cmds[29].command, command) command = 'git -C /odoo_ar/odoo-9.0/dist-packages/ add . ' self.assertEqual(cmds[30].command, command) command = 'git -C /odoo_ar/odoo-9.0/dist-local-packages/ add . ' self.assertEqual(cmds[31].command, command) command = 'git -C /odoo_ar/odoo-9.0/extra-addons/ add . ' self.assertEqual(cmds[32].command, command) command = 'git -C /odoo_ar/odoo-9.0/dist-packages/ commit -m inicial ' self.assertEqual(cmds[33].command, command) command = 'git -C /odoo_ar/odoo-9.0/dist-local-packages/ ' \ 'commit -m inicial ' self.assertEqual(cmds[34].command, command) command = 'git -C /odoo_ar/odoo-9.0/extra-addons/ commit -m inicial ' self.assertEqual(cmds[35].command, command) command = 'git -C /odoo_ar/odoo-9.0/test_client/sources/ ' \ 'clone --depth 1 -b 9.0 ' \ 'https://github.com/jobiols/cl-test-client' self.assertEqual(cmds[36].command, command) command = 'git -C ' \ '/odoo_ar/odoo-9.0/test_client/sources/cl-test-client ' \ 'pull' self.assertEqual(cmds[37].command, command) command = 'git -C /odoo_ar/odoo-9.0/test_client/sources/ ' \ 'clone --depth 1 ' \ '-b 9.0 https://github.com/jobiols/odoo-addons' self.assertEqual(cmds[38].command, command) command = 'git -C ' \ '/odoo_ar/odoo-9.0/test_client/sources/odoo-addons ' \ 'pull' self.assertEqual(cmds[39].command, command) def test_check_version(self): """ ##################################################### CHECK VERSION """ self.assertTrue(OeConfig().check_version()) def test_environment(self): """ ##################################################### CHECK VERSION """ env = OeConfig().get_environment() OeConfig().save_environment('prod') env = OeConfig().get_environment() self.assertEqual(env, 'prod') OeConfig().save_environment('debug') env = OeConfig().get_environment() self.assertEqual(env, 'debug') def test_save_multiple_clients(self): OeConfig().save_client_path('test_clientx', 'multiple_path1') OeConfig().save_client_path('test_clientx', 'multiple_path2') self.assertEqual(OeConfig().get_client_path('test_clientx'), 'multiple_path1') def test_repo_clone(self): repo = Repo({'usr': 'jobiols', 'repo': 'project', 'branch': '9.0'}) self.assertEqual(repo.clone, 'clone --depth 1 -b 9.0 https://github.com/jobiols/project') def test_repo2_clone(self): repo = Repo2('https://github.com/jobiols/project.git', '9.0') self.assertEqual(repo.dir_name, 'project') self.assertEqual(repo.branch, '9.0') self.assertEqual(repo.url, 'https://github.com/jobiols/project.git') self.assertEqual(repo.formatted, 'b 9.0 https://github.com/jobiols/project.git') self.assertEqual(repo.clone, 'clone --depth 1 -b 9.0 https://github.com/jobiols/project.git') self.assertEqual(repo.pull, 'pull') def test_repo2_clone_branch(self): repo = Repo2('https://github.com/jobiols/project.git -b 9.0', '8.0') self.assertEqual(repo.dir_name, 'project') self.assertEqual(repo.branch, '9.0') self.assertEqual(repo.url, 'https://github.com/jobiols/project.git') self.assertEqual(repo.formatted, 'b 9.0 https://github.com/jobiols/project.git') self.assertEqual(repo.clone, 'clone --depth 1 -b 9.0 https://github.com/jobiols/project.git') self.assertEqual(repo.pull, 'pull') def test_repo2_clone_dir(self): repo = Repo2('https://github.com/jobiols/project.git adhoc-project', '9.0') self.assertEqual(repo.dir_name, 'adhoc-project') self.assertEqual(repo.branch, '9.0') self.assertEqual(repo.url, 'https://github.com/jobiols/project.git adhoc-project') self.assertEqual(repo.formatted, 'b 9.0 https://github.com/jobiols/project.git >> adhoc-project') self.assertEqual(repo.clone, 'clone --depth 1 -b 9.0 https://github.com/jobiols/project.git adhoc-project') self.assertEqual(repo.pull, 'pull') def test_repo2_clone_branch_dir(self): repo = Repo2('https://github.com/jobiols/project.git adhoc-project -b 9.0', '8.0') self.assertEqual(repo.dir_name, 'adhoc-project') self.assertEqual(repo.branch, '9.0') self.assertEqual(repo.url, 'https://github.com/jobiols/project.git adhoc-project') self.assertEqual(repo.formatted, 'b 9.0 https://github.com/jobiols/project.git >> adhoc-project') self.assertEqual(repo.clone, 'clone --depth 1 -b 9.0 https://github.com/jobiols/project.git adhoc-project') self.assertEqual(repo.pull, 'pull') def test_image(self): image = Image({'name': 'odoo', 'usr': 'jobiols', 'img': 'odoo-jeo', 'ver': '9.0'}) self.assertEqual(image.name, 'jobiols/odoo-jeo:9.0') self.assertEqual(image.version, '9.0') self.assertEqual(image.short_name, 'odoo') def test_image2(self): image = Image2('odoo jobiols/odoo-jeo:9.0') self.assertEqual(image.name, 'jobiols/odoo-jeo:9.0') self.assertEqual(image.version, '9.0') self.assertEqual(image.short_name, 'odoo') ```
{ "source": "jobirk/pulse_simulation", "score": 3 }
#### File: jobirk/pulse_simulation/cavity.py ```python import numpy as np import matplotlib.pyplot as plt # from scipy import signal from matplotlib import animation # import scipy.constants as con from IPython.display import HTML from tqdm import tqdm # import matplotlib.cm as cm c = 1 def resonator_modes(t, z, n_modes=3, random_phases=False, plot=True, figuresize=(10, 4), spectrum_std=1000, save_in=""): # length of the resonator L = z.max() - z.min() # calculate the frequency difference between two neighbouring modes of # the resonator delta_nu = c / (2 * L) frequencies = np.array([delta_nu * i for i in range(1, n_modes+1)]) phases = np.zeros(n_modes) if random_phases is True: phases = np.random.uniform(0, 200, n_modes) # spectrum = signal.gaussian(n_modes, std=spectrum_std) spectrum = np.ones(n_modes) if plot is True: fig, axs = plt.subplots(2, 1, figsize=figuresize, dpi=100, frameon=False) axs[0].axis('off') axs[1].axis('off') axs.flatten() axs[0].set_xlim(z.min(), z.max()) axs[1].set_xlim(z.min(), z.max()) # axs[2].plot(frequencies, spectrum) # calculate the sum... E_i = np.zeros([n_modes, len(z)]) for i in range(n_modes): omega = 2 * np.pi * frequencies[i] k = omega / c E_i[i, :] = spectrum[i] * np.sin(2 * omega * t - phases[i]) * np.sin(k * z) if plot is True: fig_2, ax2 = plt.subplots(figsize=(10, 2), dpi=100, frameon=False) ax2.set_ylim(-1.1, 1.1) ax2.axis('off') ax2.plot(z, E_i[i]) axs[0].plot(z, E_i[i], label=str(i)) if save_in != "": fig_2.savefig(save_in+"_mode_"+str(i)+".pdf") plt.close() else: pass if plot is True: E_total = np.sum(E_i, axis=0) maximum = np.max(np.abs(E_total)) axs[1].set_ylim(- 1.2 * maximum, 1.2 * maximum) # axs[0].legend() axs[1].plot(z, E_total) fig_3, ax3 = plt.subplots(figsize=(10, 2), dpi=100, frameon=False) ax3.axis('off') ax3.plot(z, E_total) if save_in != "": fig.savefig(save_in+"_both.pdf") fig_3.savefig(save_in+"_sum.pdf") plt.close() else: pass return E_i def animate_resonator(z, times, n_modes, ms_between_frames=60, figuresize=(11, 4), saveas=""): """Animates the time evolution of the wave packet Parameters ---------- z : array_like Array of the z-axis your wave packet is propagating on. times : array_like Times you want to include in the animation. n_modes: int Number of modes included in the calculation. ms_between_frames : int, optional Milliseconds of pause between two frames in the animation. Default is 30. figuresize : tuple of ints, optional Size of the figure when plotting the wave. Default is (11, 4). saveas : string, optional Path where you want to save the animation as .gif-file. """ modes = [resonator_modes(t, z, n_modes, plot=False) for t in tqdm(times)] pulses = [E_i.sum(axis=0) for E_i in tqdm(modes)] fig, ax = plt.subplots(figsize=figuresize) ax.set_xlim(z.min(), z.max()) maximum = np.max(np.abs(np.array(pulses))) ax.set_ylim(-1.2 * maximum, 1.2 * maximum) ax.set_xlabel(r"position $z$") lines = [ax.plot([], [], color="forestgreen")[0] for i in pulses] def init(): for line in lines: line.set_data([], []) return lines def animate(i): for j in range(len(lines)): lines[j].set_data(z, pulses[i]) return lines plt.close() anim = animation.FuncAnimation(fig, animate, init_func=init, blit=True, frames=len(pulses), interval=ms_between_frames) if saveas != "": anim.save(saveas, writer='imagemagick', fps=int(1000/ms_between_frames)) return HTML(anim.to_html5_video()) ```
{ "source": "Jobkanis/Battleport", "score": 3 }
#### File: Jobkanis/Battleport/class_Game.py ```python import random import math import time import copy import pygame import class_Player import class_Boats import class_Positions import class_Visual import class_Menu import database class Game: def __init__(self, gameDisplay, clock, width, height): #creating classes self.Sound_enabled = True self.Music_enabled = True self.Players = [] self.Positions = [] self.EmptyBoat = NotImplemented self.EmptyPosition = NotImplemented self.EmptyPlayer = NotImplemented self.Player1 = NotImplemented self.Player2 = NotImplemented self.Visual = class_Visual.Visual(self, gameDisplay, clock, width, height) self.Database = database.Database() def setupgame(self, player1name, player2name): if self.Music_enabled == True: pygame.mixer.music.load("sound/bgm_ingame.wav") pygame.mixer.music.set_volume(1) pygame.mixer.music.play(-1) ######### Empty Variables ########### ########## Empty Classes ########## self.EmptyPlayer = class_Player.Player(self, "empty") self.Players.append(self.EmptyPlayer) self.EmptyPosition = class_Positions.Position(self, -1, -1) self.Positions.append(self.EmptyPosition) self.EmptyBoat = class_Boats.Boat(self, self.EmptyPlayer, "empty") self.EmptyPlayer.Boats.append(self.EmptyBoat) ################ Players ################### self.CreatePositions() #Create all positions self.att_sound = pygame.mixer.Sound('ship_att.wav') self.sink_sound = pygame.mixer.Sound('ship_dead.wav') self.goal_sound = pygame.mixer.Sound('ship_dead.wav') self.move_sound = pygame.mixer.Sound('ship_move.wav') self.ship_select_sound = pygame.mixer.Sound('ship_select.wav') self.game_won = pygame.mixer.Sound('game_won.wav') self.game_over = pygame.mixer.Sound('game_over.wav') self.Player1 = class_Player.Player(self, player1name) self.Players.append(self.Player1) self.Player2 = class_Player.Player(self, player2name) self.Players.append(self.Player2) self.Winner = self.EmptyPlayer self.Player_Playing = self.Player1 self.Visual.show_nextturn(self.Player_Playing) self.Player1.CreateBoats() self.Player_Playing = self.Player2 self.Visual.show_nextturn(self.Player_Playing) self.Player2.CreateBoats() self.Play() return self.Winner #sounds def Play(self): self.Player_Playing = self.Player2 while self.Winner == self.EmptyPlayer: self.Visual.drawscreen() time.sleep(1) self.Player_Playing = self.NextPlayer() self.Visual.show_nextturn(self.Player_Playing) self.Player_Playing.PlayTurn() self.Visual.drawscreen() time.sleep(1) if self.Sound_enabled: self.game_over.play() self.Visual.DrawWinnerScreen() ############# USEABLE GAME FUNCTIONS ############# def GetPosition(self, x, y): for Pos in self.Positions: if Pos.X == x and Pos.Y == y: return Pos return self.EmptyPosition def GetBoat(self, x, y): for LocalBoats in GetBoatPositions(self): if LocalBoats.X == x and LocalBoats.Y == y: return LocalBoats for LocalPlayers in self.Players: for boat in LocalPlayers.Boats: if boat.X == x and boat.Y == y: return boat else: return self.EmptyBoat ############### SPECIFIC GAME FUNCTIONS ################### def NextPlayer(self): if self.Player_Playing == self.Player1: return self.Player2 else: return self.Player1 def CreatePositions(self): print("Creating positions") for y in range (0,20): for x in range (0,20): LocalPosition = class_Positions.Position(self, x, y) self.Positions.append(LocalPosition) def GetAllBoatPositions(self, exception): #exception is list BoatPositions = [] BoatPositions += self.Player1.GetPlayerBoatPositions(exception) #exception BoatPositions += self.Player2.GetPlayerBoatPositions(exception) #exception return BoatPositions def ToughUpdateBoats(self): positions = self.Positions Player1Boats = self.Player1.Boats Player2Boats = self.Player2.Boats for localpositions in positions: localpositions.Boat = self.EmptyBoat for p1boats in Player1Boats: allboatpositions = p1boats.GetLocalBoatsPositions(True, -1, -1, "inactive") for p1allboats in allboatpositions: if p1allboats.X == localpositions.X and p1allboats.Y == localpositions.Y: localpositions.Boat = p1boats for p2boats in Player2Boats: allboatpositions = p2boats.GetLocalBoatsPositions(True, -1, -1, "inactive") for p2allboats in allboatpositions: if p2allboats.X == localpositions.X and p2allboats.Y == localpositions.Y: localpositions.Boat = p2boats ``` #### File: Jobkanis/Battleport/class_Player.py ```python import random import math import time import copy import pygame import class_Boats import class_Positions import class_Game class Player: def __init__(self, gameclass, playername): #################################################### #For educational purposes self.Game = gameclass Visual = self.Game.Visual Players = self.Game.Players EmptyPlayer= self.Game.EmptyPlayer Player1 = self.Game.Player1 Player2 = self.Game.Player2 Positions = self.Game.Positions EmptyPosition = self.Game.EmptyPosition EmptyBoat = self.Game.EmptyPosition ################################################### self.Name = playername self.Cards = [] self.Boats = [] def PlayTurn(self): print("It is " + self.Name + "'s turn") #Creating possibleaction value #for keeping track what the user did and can still do AvaibleBoatsToMove = [] for LocalBoat in self.Boats: AvaibleBoatsToMove.append(LocalBoat.Name) AvaibleAttacks_No = 2 AvaibleBoatsToAttack = [] for LocalBoat in self.Boats: AvaibleBoatsToAttack.append(LocalBoat.Name) #AvaiblePlayCards_No = 2 #Taking a card #if len(self.Cards) < 7: # ("Takecard: yet to be implemented") #The actual possible moves the player can do (loop) LocalDone = False while LocalDone == False and self.Game.Winner == self.Game.EmptyPlayer: Actions = ["boataction", "play cards", "end turn"] ################# GETTING EASY TRUE/FALSE STATEMENTS ############################### # ATTACK AND MOVE BoatsAbleToAttack = self.GetBoatsAbleToAttack(AvaibleBoatsToAttack) #return list of boats able to attack - boat classes! AbleToAttack = False if AvaibleAttacks_No > 0: if len(BoatsAbleToAttack) > 0: AbleToAttack = True BoatsAbleToMove = self.GetBoatsAbleToMove(AvaibleBoatsToMove) #return list of boats able to move - boat classes! AbleToMove = False if len(BoatsAbleToMove) > 0: AbleToMove = True # BOAT SELECT BoatsAbleForAction = [] BoatsAbleForAction += BoatsAbleToMove for LocalBoatsAbleToAttack in BoatsAbleToAttack: if LocalBoatsAbleToAttack not in BoatsAbleForAction: BoatsAbleForAction.append(LocalBoatsAbleToAttack) AbleToBoatAction = False if len(BoatsAbleForAction) >0 : AbleToBoatAction = True # PLAY CARDS #AbleToPlayCards = False #if AvaiblePlayCards_No > 0: # AbleToPlayCards = True ######## PHASE 1: PICKING A BOAT FOR ACTION OR CHOOSING CARD PLAY ####### if AbleToBoatAction == True: #or AbleToPlayCards == True: #PossibleActions = ["end turn"] #if AbleToBoatActoin == True: # PossibleActions.append("boataction") #if AbleToPlayCards == True: # PossibleActions.append("play cards") if AbleToMove == True and AbleToAttack == True: MessageBox1Tekst = "Choose a boat to move or attack" elif AbleToMove == True and AbleToAttack == False: MessageBox1Tekst = "Choose a boat to move" elif AbleToMove == False and AbleToAttack == True: MessageBox1Tekst = "Choose a boat to attack" MessageBox2Tekst = "Actions left: " + str(len(BoatsAbleToMove)) + " movement actions | " + str(AvaibleAttacks_No) + " potential attacks" length = len(MessageBox1Tekst) spacenum = 120 - length halfspacenum = int(spacenum / 2) MessageBox1Tekst = " " * halfspacenum + MessageBox1Tekst length = len(MessageBox2Tekst) spacenum = 66 - length halfspacenum = int(spacenum / 2) MessageBox2Tekst = " " * halfspacenum + MessageBox2Tekst ActionPhase1 = self.Game.Visual.ChooseActionPhase1(BoatsAbleForAction, BoatsAbleToMove, BoatsAbleToAttack, MessageBox1Tekst, MessageBox2Tekst) #AvaiblePlayCards_No) #returns boatclass for boataction, returns 'play cards' or 'end turn' if ActionPhase1 in BoatsAbleToAttack or ActionPhase1 in BoatsAbleToMove: #returned a boat to move ############# PHASE 2: PICKING A BOAT ACTION ######################### print("Boat chosen: " + ActionPhase1.Name) if self.Game.Sound_enabled: self.Game.ship_select_sound.play() LocalBoat = ActionPhase1 PositionsToAttack = LocalBoat.GetPositionsInreachToAttack() BoatsToAttack = LocalBoat.GetBoatsInReachToAttack() AbleToMove = False if LocalBoat.Name in AvaibleBoatsToMove: BoatsPossibleMovement = LocalBoat.GetPossibleMovement() if len(BoatsPossibleMovement) > 0: AbleToMove = True BoatsPossibleStance = LocalBoat.GetPossibleDefensiveStance() if len(BoatsPossibleStance) > 0: AbleToMove = True AbleToAttackBoats = False if AvaibleAttacks_No > 0: if LocalBoat.Name in AvaibleBoatsToAttack: if len(BoatsToAttack) > 0: AbleToAttackBoats = True CheckPoint = False while CheckPoint == False: MessageBox1Tekst = " " * 20 + "Choose an action (" + "Actions left: " + str(len(BoatsAbleToMove)) + " movements | " + str(AvaibleAttacks_No) + " attacks)" MessageBox2Tekst = "Selected: " + LocalBoat.Name + " | health: " + str(LocalBoat.Health) + "/" + str(LocalBoat.MaxHealth) + " | movementrange: " + str(LocalBoat.MovementRange) length = len(MessageBox2Tekst) spacenum = 64 - length halfspacenum = int(spacenum / 2) MessageBox2Tekst = " " * halfspacenum + MessageBox2Tekst BoatAction = self.Game.Visual.ChooseBoatActionPhase2(LocalBoat, AbleToMove, AbleToAttackBoats, PositionsToAttack, MessageBox1Tekst, MessageBox2Tekst) #returns 'attack when pressed attack, returns 'move' when pressed move, returns 'cancel' when cancled if self.Game.Sound_enabled: self.Game.ship_select_sound.play() if BoatAction == "attack": ######################### PHASE 3: ATTACKING A BOAT ##################################### print("Attacking with " + LocalBoat.Name) AvaibleAttacks_No -= 1 AvaibleBoatsToAttack.remove(LocalBoat.Name) self.Attack(LocalBoat) CheckPoint = True elif BoatAction == "move": ######################### PHASE 3: MOVING A BOAT ##################################### print("Moveing " + LocalBoat.Name) AvaibleBoatsToMove.remove(LocalBoat.Name) self.MoveBoat(LocalBoat) CheckPoint = True elif BoatAction == "cancel": print("Canceled boataction") #move back to phase 1 CheckPoint = True #elif ActionPhase1 == "play cards": #returned "Play cards"\ ####### PHASE 2 ############## # print("Play cards") # AvaiblePlayCards_No elif ActionPhase1 == "end turn": #returned "end turn" # END TURN print("ended turn") LocalDone = True else: #TURN DONE LocalDone = True def CreateBoats(self): self.Boats = [] self.Boats.append(class_Boats.Boat(self.Game, self, "size2")) self.Boats.append(class_Boats.Boat(self.Game, self, "size31")) self.Boats.append(class_Boats.Boat(self.Game, self, "size32")) self.Boats.append(class_Boats.Boat(self.Game, self, "size4")) ################## ACTIONS (Phase 3) ######################### #def PlayCards(self): # print("Choose a card to play: yet to be implemented") # print("Play the card: yet to be implemented") def Attack(self, Boat): BoatPositionsAbleToAttack = Boat.GetPositionsInreachToAttack() BoatsAbleToAttack = Boat.GetBoatsInReachToAttack() MessageBox1Tekst = " " * 49 + "Choose a boat to attack" MessageBox2Tekst = "Selected: " + Boat.Name + " | health: " + str(Boat.Health) + "/" + str(Boat.MaxHealth) + " | movementrange: " + str(Boat.MovementRange) length = len(MessageBox2Tekst) spacenum = 64 - length halfspacenum = int(spacenum / 2) MessageBox2Tekst = " " * halfspacenum + MessageBox2Tekst BoatToAttack = self.Game.Visual.GetAttackActionPhase3(Boat, BoatPositionsAbleToAttack, BoatsAbleToAttack, MessageBox1Tekst, MessageBox2Tekst) BoatToAttack.DealDamage(1) def MoveBoat(self, Boat): #CHOOSE MOVE ACTION TO DO self.Game.Visual.drawscreen() time.sleep(0.5) AvaibleMovements = Boat.MovementRange LocalDone = False while AvaibleMovements > 0 and LocalDone == False: Action = "" MovementAction = "" PossibleStanceActions = Boat.GetPossibleDefensiveStance() PossibleMovementActions = Boat.GetPossibleMovement() PositionsToAttack = Boat.GetPositionsInreachToAttack() MessageBox1Tekst = " " * 38 + "Move your boat ("+ str(AvaibleMovements) + "/" + str(Boat.MovementRange) + " movements left)" #55 MessageBox2Tekst = "Selected: " + Boat.Name + " | health: " + str(Boat.Health) + "/" + str(Boat.MaxHealth) + " | movementrange: " + str(Boat.MovementRange) length = len(MessageBox2Tekst) spacenum = 64 - length halfspacenum = int(spacenum / 2) MessageBox2Tekst = " " * halfspacenum + MessageBox2Tekst #MessageBox2Tekst = " " * 24 + "You have " + str(AvaibleMovements) + "/" + str(Boat.MovementRange) + " movements left" MovementAction = self.Game.Visual.GetMovementActionPhase3(Boat, PossibleStanceActions, PossibleMovementActions, PositionsToAttack, MessageBox1Tekst, MessageBox2Tekst) #returns ["stance", "left"/"right"/"inactive"] or ["move", "left"/"right","forward","backward"] or ["stop", "stop] if MovementAction[0] == "stance": if self.Game.Sound_enabled: self.Game.move_sound.play() Action = MovementAction[1] AvaibleMovements -= 1 Boat.ChangeBoatStance(Action) self.Game.Visual.drawscreen() time.sleep(0.7) if MovementAction[0] == "move": if self.Game.Sound_enabled: self.Game.move_sound.play() Action = MovementAction[1] AvaibleMovements -= 1 AvaibleMovements = Boat.ChangeBoatPosition(Action, AvaibleMovements) self.Game.Visual.drawscreen() time.sleep(0.7) if MovementAction[0] == "stop": if self.Game.Sound_enabled: self.Game.ship_select_sound.play() print("Stopped moving boat") LocalDone = True #yet to be implemented: end reached ################### OTHER FUNCTIONS ####################### def GetBoatsAbleToAttack(self, AvaibleBoatsToAttack): #return list of boats able to attack BoatsAbleToAttack = [] for boatname in AvaibleBoatsToAttack: boatclass = self.GetBoatFromName(boatname) LocalBoatsToAttack = boatclass.GetBoatsInReachToAttack() if len(LocalBoatsToAttack) > 0: BoatsAbleToAttack.append(boatclass) return BoatsAbleToAttack def GetBoatsAbleToMove(self, AvaibleBoatsToMove): #return list of boats able to move Boats = AvaibleBoatsToMove BoatsAbleToMove = [] for LocalBoatName in Boats: LocalBoatClass = self.GetBoatFromName(LocalBoatName) BoatAbleToMove = False LocalPossibleStance = LocalBoatClass.GetPossibleDefensiveStance() if len(LocalPossibleStance) > 0: BoatAbleToMove = True LocalPossibleMovement = LocalBoatClass.GetPossibleMovement() if len(LocalPossibleMovement) > 0: BoatAbleToMove = True if BoatAbleToMove == True: BoatsAbleToMove.append(LocalBoatClass) return BoatsAbleToMove def GetPlayerBoatPositions(self, exception): BoatPositions = [] for PlayerBoats in self.Boats: if PlayerBoats not in exception: BoatPositions += PlayerBoats.GetLocalBoatsPositions(True, -1, -1, "inactive") return BoatPositions def GetBoatFromName(self,BoatName): Boats = self.Boats for LocalBoat in Boats: if LocalBoat.Name == BoatName: return LocalBoat def DeleteBoat(self, Boat): if Boat in self.Boats: self.Boats.remove(Boat) del Boat if len(self.Boats) == 0: if self == self.Game.Player1: opponent = self.Game.Player2 elif self == self.Game.Player2: opponent = self.Game.Player1 self.Game.Winner = opponent ```
{ "source": "jobkarani/carnect", "score": 2 }
#### File: carnect/car/forms.py ```python from django import forms from .models import * from django.forms import ModelForm, DateInput class ProfileForm(forms.ModelForm): class Meta: model=Profile fields=['first_name','last_name','profile_pic','description','mobile_number','email','category'] class PostForm(forms.ModelForm): class Meta: model=Post fields=['issue','issue_picture','make','model','year'] class AdviceForm(forms.ModelForm): class Meta: model=Advice fields=['advice'] class SaleForm(forms.ModelForm): class Meta: model=Sale fields=['picture','picture2','picture3','make','model','year','description','price','engine_size'] class ResponseForm(forms.ModelForm): class Meta: model=Response widgets = { 'schedule_time': DateInput(attrs={'type': 'datetime-local'}, format='%Y-%m-%dT%H:%M'), } fields=['responses','shop','location','schedule_time'] class EventForm(forms.ModelForm): class Meta: model = Event # datetime-local is a HTML5 input type, format to make date time show on fields widgets = { 'start_time': DateInput(attrs={'type': 'datetime-local'}, format='%Y-%m-%dT%H:%M'), 'end_time': DateInput(attrs={'type': 'datetime-local'}, format='%Y-%m-%dT%H:%M'), } fields = ['title','description','start_time','end_time'] def __init__(self, *args, **kwargs): super(EventForm, self).__init__(*args, **kwargs) # input_formats to parse HTML5 datetime-local input to datetime field self.fields['start_time'].input_formats = ('%Y-%m-%dT%H:%M',) self.fields['end_time'].input_formats = ('%Y-%m-%dT%H:%M',) ```
{ "source": "jobkarani/InstaClone", "score": 2 }
#### File: InstaClone/insta/models.py ```python from django.db import models from cloudinary.models import CloudinaryField from django.contrib.auth.models import User import datetime as dt from tinymce.models import HTMLField # Create your models here. # image class Image(models.Model): user = models.ForeignKey(User, on_delete=models.PROTECT,related_name='user_images') image = CloudinaryField('image') name = models.CharField(max_length=40) caption = models.CharField(max_length=200) posted_on = models.DateTimeField(auto_now_add=True) liked= models.ManyToManyField(User,default=None,blank=True,related_name='liked') comment = models.IntegerField(blank=True,null=True,default=True) profile = models.ForeignKey(User, on_delete=models.CASCADE,null=True) class meta: ordering =['posted_on'] def save_image(self): self.save() def delete_image(self): self.delete() def update_caption(self, new_caption): self.caption = new_caption self.save() @classmethod def search_by_name(cls,search_term): posts = cls.objects.filter(name__icontains=search_term) return posts @property def saved_comments(self): return self.comments.all() @property def saved_likes(self): return self.postslikes.count() def __str__(self): return self.name liking={('Like','Like'),('Unlike','Unlike')} class Profile(models.Model): user = models.OneToOneField(User, on_delete=models.PROTECT) profile_photo = CloudinaryField('image') bio = models.TextField(max_length=650,blank=True,null=True) def save_profile(self): self.save() def delete_profile(self): self.save() def update(self): self.save() def __str__(self): return self.user.username class Comment(models.Model): comment = models.CharField(max_length=250) image = models.ForeignKey(Image,on_delete = models.CASCADE,related_name='comments') user = models.ForeignKey(User,on_delete = models.CASCADE,related_name='comments') @classmethod def display_comment(cls,image_id): comments = cls.objects.filter(image_id = image_id) return comments class Like(models.Model): val = models.CharField(choices=liking,default='like',max_length=50) image = models.ForeignKey(Image,on_delete = models.CASCADE) user = models.ForeignKey(User,on_delete = models.CASCADE) def __str__(self): return self.val ``` #### File: InstaClone/insta/tests.py ```python from django.test import TestCase from .models import * # Create your tests here. class ProfileTestClass(TestCase): # Set up method def setUp(self): """creation of profile for testing """ user = User.objects.create( username = 'ayubu', first_name = 'ayub', last_name = '254') Profile.objects.create( bio = 'hey', profile_photo = 'static/image/travel.webp', user_id = user.id ) def test_bio(self): """tests the profiles bio """ profile=Profile.objects.get(bio="hey") self.assertEqual(profile.bio, "hey") class ImageTestCase(TestCase): def setUp(self): """image creation """ user = User.objects.create( username = 'ayubu', first_name = 'ayub', last_name = '254') Image.objects.create( name="init", caption="ooops", profile_id=user.id, user_id=user.id ) def test_image_name(self): """tests image name """ image=Image.objects.get(name="init") self.assertEqual(image.name, "init") class LikeTestCase(TestCase): def setUp(self): user = User.objects.create( username = 'ayubu', first_name = 'ayub', last_name = '254') Profile.objects.create( bio = 'hey', profile_photo = 'static/image/travel.webp', user_id = user.id ) Image.objects.create( name="init", caption="ooops", profile_id=user.id, user_id=user.id ) def test_image_id(self): user = User.objects.create( username = 'yub', first_name = 'yubus', last_name = '_254') Image.objects.create( name="init", caption="ooops", profile_id=user.id, user_id=user.id ) ```
{ "source": "jobkarani/news-app", "score": 3 }
#### File: app/main/views.py ```python from flask import render_template,request,redirect,url_for from . import main from ..request import get_source,get_article @main.route('/') def index(): ''' View root page function that returns the index page and its data ''' # Getting popular movie popular_sources = get_source() # print("sources" ,popular_sources) business_news = get_source() sport_news = get_source() title = 'Home - Welcome to Online News Website' return render_template('index.html', title = title, popular = popular_sources,business = business_news,sport = sport_news ) @main.route('/articles/<source_id>') def articles(source_id): articles = get_article(source_id) print(articles) return render_template('articles.html',articles = articles) ``` #### File: news-app/tests/source_test.py ```python import unittest class Source: ''' Source class to define source Objects ''' def __init__(self,id,name,description,url,category,country): self.id = id self.name = name self.description = description self.url = url self.category = category self.country = country class SourceTest(unittest.TestCase): ''' Test Class to test the behaviour of the source class ''' def setUp(self): ''' Set up method that will run before every Test ''' self.new_source = Source("bbc-sport","BBC Sport","The home of BBC Sport online. Includes live sports coverage, breaking news, results, video, audio and analysis on Football, F1, Cricket, Rugby Union, Rugby League, Golf, Tennis and all the main world sports, plus major events such as the Olympic Games.","http://www.bbc.co.uk/sport ","sports","gb") def test_instance(self): self.assertTrue(isinstance(self.new_source,Source)) if __name__ == '__main__': unittest.main() ```
{ "source": "joblackpoc/StudyJupyter", "score": 2 }
#### File: joblackpoc/StudyJupyter/pivottablejs.py ```python __version__ = '2.21.0' template = """ <!DOCTYPE html> <html> <head> <title>PivotTable.js</title> <!-- external libs from cdnjs --> <link rel="stylesheet" type="text/css" href="%(static)s/pivot-ajax/c3.min.css"> <script type="text/javascript" src="%(static)s/pivot-ajax/jquery.min.js"></script> <script type="text/javascript" src="%(static)s/pivot-ajax/jquery-ui.min.js"></script> <script type="text/javascript" src="%(static)s/pivot-ajax/d3.min.js"></script> <script type="text/javascript" src="%(static)s/pivot-ajax/jquery.csv-0.71.min.js"></script> <script type="text/javascript" src="%(static)s/pivot-ajax/c3.min.js"></script> <link rel="stylesheet" type="text/css" href="%(static)s/pivottable/pivot.min.css"> <script type="text/javascript" src="%(static)s/pivottable/pivot.min.js"></script> <script type="text/javascript" src="%(static)s/pivottable/d3_renderers.min.js"></script> <script type="text/javascript" src="%(static)s/pivottable/c3_renderers.min.js"></script> <script type="text/javascript" src="%(static)s/pivottable/export_renderers.min.js"></script> <style> body {font-family: Verdana;} .node { border: solid 1px white; font: 10px sans-serif; line-height: 12px; overflow: hidden; position: absolute; text-indent: 2px; } .c3-line, .c3-focused {stroke-width: 3px !important;} .c3-bar {stroke: white !important; stroke-width: 1;} .c3 text { font-size: 12px; color: grey;} .tick line {stroke: white;} .c3-axis path {stroke: grey;} .c3-circle { opacity: 1 !important; } </style> </head> <body> <script type="text/javascript"> $(function(){ if(window.location != window.parent.location) $("<a>", {target:"_blank", href:""}) .text("[pop out]").prependTo($("body")); $("#output").pivotUI( $.csv.toArrays($("#output").text()), { renderers: $.extend( $.pivotUtilities.renderers, $.pivotUtilities.c3_renderers, $.pivotUtilities.d3_renderers, $.pivotUtilities.export_renderers ), hiddenAttributes: [""] } ).show(); }); </script> <div id="output" style="display: none;">%(div)s</div> </body> </html> """ from IPython.display import IFrame def pivot_ui(df, outfile_path = "pivottablejs.html", width="100%", height="500"): # FIXME: we shouldn't hard-code the port here port = 8888 # get_config().NotebookApp.port static_path = 'http://localhost:%s' % port with open(outfile_path, 'w') as outfile: outfile.write(template % {'div': df.to_csv(), 'static': '%s/static' % static_path}) return IFrame(src=outfile_path, width=width, height=height) ```
{ "source": "jobliz/solid-state-kinetics", "score": 3 }
#### File: ssk/alpha/api.py ```python from __future__ import division import numpy as np from scipy import integrate __all__ = ['area', 'simple'] def simple(p): pass def area(p): cumul = np.hstack(([0], integrate.cumtrapz(np.abs(np.gradient(p))))) return cumul / max(cumul) ``` #### File: ssk/simulation/api.py ```python from __future__ import division import math import itertools import functools import numpy as np from scipy.constants import R from scipy.optimize import minimize from scipy.integrate import ode from ..ti import senumyang __all__ = [ 'psi', 'single_isothermal', 'single_nonisothermal', 'ni_rates', 'ni_integrate' ] def psi(T, alphas, rate, A, Ea, g=None): """ Objetive function for a single-step linear nonisothermal simulation. Parameters ---------- T : int or float Absolute temperature (this will be the optimized value) alphas : ndarray Transformed fraction values. rate : float or int Linear heating rate. A : float or int Pre-exponential factor. E : float or int Activation energy (J/mol) Returns ------- Single numerical value to be optimized. The closer this value is to zero, the better. Notes ----- Uses the Senum-Yang approximation for calculating the temperature integral. Set g keyword argument with functools.partial. """ x = Ea/(R*T) return np.abs((g(alphas) * (rate*R)/(A*Ea)) - senumyang(x)) def single_isothermal(model, A, E, alphas, T): """ Simulates isothermal curves from a single model and given parameters Parameters ---------- model : callable Integral form of a kinetic model. A : float or int Pre-exponential factor. E : float or int Activation energy (J/mol) alphas : ndarray Transformed fraction values. T : int or float Absolute temperature. Returns ------- A list of simulated time steps sequentially associated with given trasformation fraction values. """ return model(alphas) / A * np.exp(Ea/(R*T)) def single_nonisothermal(model, A, E, alphas, rate, T0=500, method="Nelder-Mead"): """ Simulate a linear nonisothermal curve from a single model and given parameters with an optimization procedure. Parameters ---------- model : callable Integral form of a kinetic model. A : float or int Pre-exponential factor. E : float or int Activation energy (J/mol) alphas : ndarray Transformed fraction values. rate : float or int Linear heating rate. T0 : float or int Initial temperature guess. method : str or callable Proxy for optimize.minimize(method=value) Returns ------- A list of simulated temperatures sequentially associated with given trasformation fraction values. References ---------- #TODO """ objfun = functools.partial(psi, g=model) output = [minimize(objfun, T0, args=(a, rate, A, E), method=method) for a in alphas] return [o.x for o in output] def ni_rates(*args): """ Calculates non-isothermal rate constants. Parameter format is [b, T, A1, E1, A2, E2, A3, E3...] Parameters (*args) all int or float ---------------------------------- [0] : Heating rate (b) [1] : Actual temperature [n] : Pre-exponential factor [n+1] : Activation Energy Returns ------- k : iterable List of rate constants for given non-isothermal step """ b, T, A, E = args[0], args[1], [], [] cycle = itertools.cycle([A, E]) for arg in args[2:]: cycle.next().append(arg) K = [] for n, _ in enumerate(A): K.append(A[n]/b * math.exp(-E[n]/(R*T))) return K def ni_integrate(func, T0, args=None, dT=1, T1=None, verbose=False): """ Integrate a non-isothermal composite kinetic model. Parameters ---------- func : callable Model function T0 : int or float Startint temperature (in Kelvins) args : iterable Heating rate followed by A, E pairs. dT : int or float Temperature step size T1 : int or float (optional) Force final simulation temperature to this value. verbose : boolean (optional) Print results from every integration step Returns ------- temps : iterable Temperature list. alphas: iterable Transformation fraction list. """ n = math.ceil(len(args[2:]) / 2) + 1 r = ode(func).set_integrator('zvode', method='bdf', with_jacobian=False) r.set_initial_value(np.zeros(n), T0).set_f_params(*args) temps, alphas = [], [] while r.successful(): r.integrate(r.t+dT) if verbose: print r.t, r.y # work until alpha == 1 if not T1: if r.y[n-1] < 1: # last y position should be total transformed fraction temps.append(r.t) alphas.append(r.y[n-1]) else: break # work until given last temperature (long graph style) else: if r.t < T1: temps.append(r.t) alphas.append(r.y[n-1]) else: break return temps, alphas ```
{ "source": "joblocal/certbot-route53-plugin", "score": 3 }
#### File: certbot-route53-plugin/certbot_route53/authenticator.py ```python import logging import time import zope.interface import boto3 from acme import challenges from certbot import interfaces from certbot.plugins import common logger = logging.getLogger(__name__) TTL = 10 class Authenticator(common.Plugin): zope.interface.implements(interfaces.IAuthenticator) zope.interface.classProvides(interfaces.IPluginFactory) description = "Route53 Authenticator" def __init__(self, *args, **kwargs): super(Authenticator, self).__init__(*args, **kwargs) self._httpd = None self.r53 = boto3.client('route53') def prepare(self): # pylint: disable=missing-docstring,no-self-use pass # pragma: no cover def more_info(self): # pylint: disable=missing-docstring,no-self-use return ("") def get_chall_pref(self, domain): # pylint: disable=missing-docstring,no-self-use,unused-argument return [challenges.DNS01] def perform(self, achalls): # pylint: disable=missing-docstring responses = [] last = len(achalls) - 1 for i, achall in enumerate(achalls): self._perform_single(achall, (i == last)) for achall in achalls: responses.append(self._validate_single(achall)) return responses def _find_zone(self, domain): return max( ( zone for zone in self.r53.list_hosted_zones()["HostedZones"] if (domain+".").endswith("."+zone["Name"]) or (domain+".") == (zone["Name"]) ), key=lambda zone: len(zone["Name"]), ) def _perform_single(self, achall, wait_for_change=False): # provision the TXT record, using the domain name given. Assumes the hosted zone exits, else fails the challenge logger.info("Adding challange to " + achall.domain) try: zone = self._find_zone(achall.domain) except ValueError as e: logger.error("Unable to find matching Route53 zone for domain " + achall.domain) return None _, validation = achall.response_and_validation() self._excute_r53_action(achall, zone, validation, 'UPSERT', wait_for_change) def _validate_single(self, achall): # provision the TXT record, using the domain name given. Assumes the hosted zone exits, else fails the challenge logger.info("Doing validation for " + achall.domain) response, _ = achall.response_and_validation() for _ in xrange(TTL*6): if response.simple_verify( achall.chall, achall.domain, achall.account_key.public_key(), ): break logger.info("Waiting for DNS propagation of " + achall.domain + "...") time.sleep(1) else: logger.error("Unable to verify domain " + achall.domain) return None return response def cleanup(self, achalls): # pylint: disable=missing-docstring for achall in achalls: try: zone = self._find_zone(achall.domain) except ValueError: logger.warn("Unable to find zone for " + achall.domain + ". Skipping cleanup.") continue _, validation = achall.response_and_validation() self._excute_r53_action(achall, zone, validation, 'DELETE') return None def _excute_r53_action(self, achall, zone, validation, action, wait_for_change=False): response = self.r53.change_resource_record_sets( HostedZoneId=zone["Id"], ChangeBatch={ 'Comment': 'Let\'s Encrypt ' + action, 'Changes': [ { 'Action': action, 'ResourceRecordSet': { 'Name': achall.validation_domain_name(achall.domain), 'Type': 'TXT', 'TTL': TTL, 'ResourceRecords': [ { 'Value': '"' + validation + '"', }, ], }, }, ], }, ) if wait_for_change: while self.r53.get_change(Id=response["ChangeInfo"]["Id"])["ChangeInfo"]["Status"] == "PENDING": logger.info("Waiting for " + action + " to propagate...") time.sleep(1) ```
{ "source": "job/NIPAP", "score": 2 }
#### File: nipapwww/controllers/auth.py ```python import logging import sys import os from pylons import request, response, session, tmpl_context as c, url from pylons.controllers.util import abort, redirect from nipapwww.lib.base import BaseController, render from nipap.authlib import AuthFactory, AuthError from nipap.nipapconfig import NipapConfig from ConfigParser import NoOptionError log = logging.getLogger(__name__) class AuthController(BaseController): """ Deals with authentication. """ requires_auth = False def login(self): """ Show login form. """ if request.method != 'POST': cfg = NipapConfig() try: c.welcome_message = cfg.get('www', 'welcome_message') except NoOptionError: pass return render('login.html') # Verify username and password. auth_fact = AuthFactory() auth = auth_fact.get_auth(request.params.get('username'), request.params.get('password'), '<PASSWORD>') if not auth.authenticate(): c.error = 'Invalid username or password' return render('login.html') # Mark user as logged in session['user'] = auth.username session['full_name'] = auth.full_name session['readonly'] = auth.readonly session['current_vrfs'] = {} session.save() # Send user back to the page he originally wanted to get to if session.get('path_before_login'): redirect(session['path_before_login']) else: # if previous target is unknown just send the user to a welcome page redirect(url(controller='prefix', action='list')) def logout(self): """ Log out the user and display a confirmation message. """ # remove session session.delete() return render('login.html') ``` #### File: nipapwww/controllers/xhr.py ```python import logging try: import json except ImportError: import simplejson as json from pylons import request, response, session, tmpl_context as c, url from pylons.controllers.util import abort, redirect from nipapwww.lib.base import BaseController, render from pynipap import Tag, VRF, Prefix, Pool, NipapError log = logging.getLogger(__name__) class XhrController(BaseController): """ Interface to a few of the NIPAP API functions. """ @classmethod def extract_prefix_attr(cls, req): """ Extract prefix attributes from arbitary dict. """ # TODO: add more? attr = {} if 'id' in request.params: attr['id'] = int(request.params['id']) if 'prefix' in request.params: attr['prefix'] = request.params['prefix'] if 'pool' in request.params: attr['pool'] = { 'id': int(request.params['pool']) } if 'node' in request.params: attr['node'] = request.params['node'] if 'type' in request.params: attr['type'] = request.params['type'] if 'country' in request.params: attr['country'] = request.params['country'] if 'indent' in request.params: attr['indent'] = request.params['indent'] return attr @classmethod def extract_pool_attr(cls, req): """ Extract pool attributes from arbitary dict. """ attr = {} if 'id' in request.params: attr['id'] = int(request.params['id']) if 'name' in request.params: attr['name'] = request.params['name'] if 'description' in request.params: attr['description'] = request.params['description'] if 'default_type' in request.params: attr['default_type'] = request.params['default_type'] if 'ipv4_default_prefix_length' in request.params: attr['ipv4_default_prefix_length'] = int(request.params['ipv4_default_prefix_length']) if 'ipv6_default_prefix_length' in request.params: attr['ipv6_default_prefix_length'] = int(request.params['ipv6_default_prefix_length']) return attr def list_vrf(self): """ List VRFs and return JSON encoded result. """ try: vrfs = VRF.list() except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) return json.dumps(vrfs, cls=NipapJSONEncoder) def smart_search_vrf(self): """ Perform a smart VRF search. The "smart" search function tries extract a query from a text string. This query is then passed to the search_vrf function, which performs the search. """ search_options = {} extra_query = None if 'query_id' in request.params: search_options['query_id'] = request.params['query_id'] if 'max_result' in request.params: search_options['max_result'] = request.params['max_result'] if 'offset' in request.params: search_options['offset'] = request.params['offset'] if 'vrf_id' in request.params: extra_query = { 'val1': 'id', 'operator': 'equals', 'val2': request.params['vrf_id'] } try: result = VRF.smart_search(request.params['query_string'], search_options, extra_query ) except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) return json.dumps(result, cls=NipapJSONEncoder) def add_vrf(self): """ Add a new VRF to NIPAP and return its data. """ v = VRF() if 'rt' in request.params: if request.params['rt'].strip() != '': v.rt = request.params['rt'].strip() if 'name' in request.params: if request.params['name'].strip() != '': v.name = request.params['name'].strip() if 'description' in request.params: v.description = request.params['description'] if 'tags' in request.params: v.tags = json.loads(request.params['tags']) try: v.save() except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) return json.dumps(v, cls=NipapJSONEncoder) def edit_vrf(self, id): """ Edit a VRF. """ try: v = VRF.get(int(id)) except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) if 'rt' in request.params: if request.params['rt'].strip() != '': v.rt = request.params['rt'].strip() else: v.rt = None if 'name' in request.params: if request.params['name'].strip() != '': v.name = request.params['name'].strip() else: v.name = None if 'description' in request.params: v.description = request.params['description'] if 'tags' in request.params: v.tags = json.loads(request.params['tags']) try: v.save() except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) return json.dumps(v, cls=NipapJSONEncoder) def remove_vrf(self): """ Remove a VRF. """ try: vrf = VRF.get(int(request.params['id'])) vrf.remove() except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) return json.dumps(vrf, cls=NipapJSONEncoder) def list_pool(self): """ List pools and return JSON encoded result. """ # fetch attributes from request.params attr = XhrController.extract_pool_attr(request.params) try: pools = Pool.list(attr) except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) return json.dumps(pools, cls=NipapJSONEncoder) def smart_search_pool(self): """ Perform a smart pool search. The "smart" search function tries extract a query from a text string. This query is then passed to the search_pool function, which performs the search. """ search_options = {} if 'query_id' in request.params: search_options['query_id'] = request.params['query_id'] if 'max_result' in request.params: search_options['max_result'] = request.params['max_result'] if 'offset' in request.params: search_options['offset'] = request.params['offset'] try: result = Pool.smart_search(request.params['query_string'], search_options ) except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) return json.dumps(result, cls=NipapJSONEncoder) def add_pool(self): """ Add a pool. """ # extract attributes p = Pool() p.name = request.params.get('name') p.description = request.params.get('description') p.default_type = request.params.get('default_type') if 'ipv4_default_prefix_length' in request.params: if request.params['ipv4_default_prefix_length'].strip() != '': p.ipv4_default_prefix_length = request.params['ipv4_default_prefix_length'] if 'ipv6_default_prefix_length' in request.params: if request.params['ipv6_default_prefix_length'].strip() != '': p.ipv6_default_prefix_length = request.params['ipv6_default_prefix_length'] if 'tags' in request.params: p.tags = json.loads(request.params['tags']) try: p.save() except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) return json.dumps(p, cls=NipapJSONEncoder) def edit_pool(self, id): """ Edit a pool. """ # extract attributes p = Pool.get(int(id)) if 'name' in request.params: p.name = request.params.get('name') if 'description' in request.params: p.description = request.params.get('description') if 'default_type' in request.params: p.default_type = request.params.get('default_type') if 'ipv4_default_prefix_length' in request.params: if request.params['ipv4_default_prefix_length'].strip() != '': p.ipv4_default_prefix_length = request.params['ipv4_default_prefix_length'] else: p.ipv4_default_prefix_length = None if 'ipv6_default_prefix_length' in request.params: if request.params['ipv6_default_prefix_length'].strip() != '': p.ipv6_default_prefix_length = request.params['ipv6_default_prefix_length'] else: p.ipv6_default_prefix_length = None if 'tags' in request.params: p.tags = json.loads(request.params['tags']) try: p.save() except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) return json.dumps(p, cls=NipapJSONEncoder) def remove_pool(self): """ Remove a pool. """ try: pool = Pool.get(int(request.params['id'])) pool.remove() except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) return json.dumps(pool, cls=NipapJSONEncoder) def list_prefix(self): """ List prefixes and return JSON encoded result. """ # fetch attributes from request.params attr = XhrController.extract_prefix_attr(request.params) try: prefixes = Prefix.list(attr) except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) return json.dumps(prefixes, cls=NipapJSONEncoder) def search_prefix(self): """ Search prefixes. Does not yet incorporate all the functions of the search_prefix API function due to difficulties with transferring a complete 'dict-to-sql' encoded data structure. Instead, a list of prefix attributes can be given which will be matched with the 'equals' operator if notheing else is specified. If multiple attributes are given, they will be combined with the 'and' operator. Currently, it is not possible to specify different operators for different attributes. """ # extract operator if 'operator' in request.params: operator = request.params['operator'] else: operator = 'equals' # fetch attributes from request.params attr = XhrController.extract_prefix_attr(request.params) # build query dict n = 0 q = {} for key, val in attr.items(): if n == 0: q = { 'operator': operator, 'val1': key, 'val2': val } else: q = { 'operator': 'and', 'val1': { 'operator': operator, 'val1': key, 'val2': val }, 'val2': q } n += 1 # extract search options search_opts = {} if 'children_depth' in request.params: search_opts['children_depth'] = request.params['children_depth'] if 'parents_depth' in request.params: search_opts['parents_depth'] = request.params['parents_depth'] if 'include_neighbors' in request.params: search_opts['include_neighbors'] = request.params['include_neighbors'] if 'max_result' in request.params: search_opts['max_result'] = request.params['max_result'] if 'offset' in request.params: search_opts['offset'] = request.params['offset'] try: result = Prefix.search(q, search_opts) except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) return json.dumps(result, cls=NipapJSONEncoder) def smart_search_prefix(self): """ Perform a smart search. The smart search function tries extract a query from a text string. This query is then passed to the search_prefix function, which performs the search. """ search_options = {} extra_query = None vrf_filter = None if 'query_id' in request.params: search_options['query_id'] = request.params['query_id'] if 'include_all_parents' in request.params: if request.params['include_all_parents'] == 'true': search_options['include_all_parents'] = True else: search_options['include_all_parents'] = False if 'include_all_children' in request.params: if request.params['include_all_children'] == 'true': search_options['include_all_children'] = True else: search_options['include_all_children'] = False if 'parents_depth' in request.params: search_options['parents_depth'] = request.params['parents_depth'] if 'children_depth' in request.params: search_options['children_depth'] = request.params['children_depth'] if 'include_neighbors' in request.params: if request.params['include_neighbors'] == 'true': search_options['include_neighbors'] = True else: search_options['include_neighbors'] = False if 'max_result' in request.params: search_options['max_result'] = request.params['max_result'] if 'offset' in request.params: search_options['offset'] = request.params['offset'] if 'parent_prefix' in request.params: search_options['parent_prefix'] = request.params['parent_prefix'] if 'vrf_filter[]' in request.params: vrf_filter_parts = [] # Fetch VRF IDs from search query and build extra query dict for # smart_search_prefix. vrfs = request.params.getall('vrf_filter[]') if len(vrfs) > 0: vrf = vrfs[0] vrf_filter = { 'operator': 'equals', 'val1': 'vrf_id', 'val2': vrf if vrf != 'null' else None } for vrf in vrfs[1:]: vrf_filter = { 'operator': 'or', 'val1': vrf_filter, 'val2': { 'operator': 'equals', 'val1': 'vrf_id', 'val2': vrf if vrf != 'null' else None } } if vrf_filter: extra_query = vrf_filter if 'indent' in request.params: if extra_query: extra_query = { 'operator': 'and', 'val1': extra_query, 'val2': { 'operator': 'equals', 'val1': 'indent', 'val2': request.params['indent'] } } else: extra_query = { 'operator': 'equals', 'val1': 'indent', 'val2': request.params['indent'] } try: result = Prefix.smart_search(request.params['query_string'], search_options, extra_query) except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) return json.dumps(result, cls=NipapJSONEncoder) def add_prefix(self): """ Add prefix according to the specification. The following keys can be used: vrf ID of VRF to place the prefix in prefix the prefix to add if already known family address family (4 or 6) description A short description comment Longer comment node Hostname of node type Type of prefix; reservation, assignment, host status Status of prefix; assigned, reserved, quarantine pool ID of pool country Country where the prefix is used order_id Order identifier customer_id Customer identifier vlan VLAN ID alarm_priority Alarm priority of prefix monitor If the prefix should be monitored or not from-prefix A prefix the prefix is to be allocated from from-pool A pool (ID) the prefix is to be allocated from prefix_length Prefix length of allocated prefix """ p = Prefix() # Sanitize input parameters if 'vrf' in request.params: try: if request.params['vrf'] is None or len(request.params['vrf']) == 0: p.vrf = None else: p.vrf = VRF.get(int(request.params['vrf'])) except ValueError: return json.dumps({'error': 1, 'message': "Invalid VRF ID '%s'" % request.params['vrf']}) except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) if 'description' in request.params: if request.params['description'].strip() != '': p.description = request.params['description'].strip() if 'comment' in request.params: if request.params['comment'].strip() != '': p.comment = request.params['comment'].strip() if 'node' in request.params: if request.params['node'].strip() != '': p.node = request.params['node'].strip() if 'status' in request.params: p.status = request.params['status'].strip() if 'type' in request.params: p.type = request.params['type'].strip() if 'pool' in request.params: if request.params['pool'].strip() != '': try: p.pool = Pool.get(int(request.params['pool'])) except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) if 'country' in request.params: if request.params['country'].strip() != '': p.country = request.params['country'].strip() if 'order_id' in request.params: if request.params['order_id'].strip() != '': p.order_id = request.params['order_id'].strip() if 'customer_id' in request.params: if request.params['customer_id'].strip() != '': p.customer_id = request.params['customer_id'].strip() if 'alarm_priority' in request.params: p.alarm_priority = request.params['alarm_priority'].strip() if 'monitor' in request.params: if request.params['monitor'] == 'true': p.monitor = True else: p.monitor = False if 'vlan' in request.params: if request.params['vlan'].strip() != '': p.vlan = request.params['vlan'] if 'tags' in request.params: p.tags = json.loads(request.params['tags']) # arguments args = {} if 'from_prefix[]' in request.params: args['from-prefix'] = request.params.getall('from_prefix[]') if 'from_pool' in request.params: try: args['from-pool'] = Pool.get(int(request.params['from_pool'])) except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) if 'family' in request.params: args['family'] = request.params['family'] if 'prefix_length' in request.params: args['prefix_length'] = request.params['prefix_length'] # manual allocation? if args == {}: if 'prefix' in request.params: p.prefix = request.params['prefix'] try: p.save(args) except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) return json.dumps(p, cls=NipapJSONEncoder) def edit_prefix(self, id): """ Edit a prefix. """ try: p = Prefix.get(int(id)) # extract attributes if 'prefix' in request.params: p.prefix = request.params['prefix'] if 'type' in request.params: p.type = request.params['type'].strip() if 'description' in request.params: if request.params['description'].strip() == '': p.description = None else: p.description = request.params['description'].strip() if 'comment' in request.params: if request.params['comment'].strip() == '': p.comment = None else: p.comment = request.params['comment'].strip() if 'node' in request.params: if request.params['node'].strip() == '': p.node = None else: p.node = request.params['node'].strip() if 'status' in request.params: p.status = request.params['status'].strip() if 'pool' in request.params: if request.params['pool'].strip() == '': p.pool = None else: try: p.pool = Pool.get(int(request.params['pool'])) except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) if 'alarm_priority' in request.params: p.alarm_priority = request.params['alarm_priority'].strip() if 'monitor' in request.params: if request.params['monitor'] == 'true': p.monitor = True else: p.monitor = False if 'country' in request.params: if request.params['country'].strip() == '': p.country = None else: p.country = request.params['country'].strip() if 'order_id' in request.params: if request.params['order_id'].strip() == '': p.order_id = None else: p.order_id = request.params['order_id'].strip() if 'customer_id' in request.params: if request.params['customer_id'].strip() == '': p.customer_id = None else: p.customer_id = request.params['customer_id'].strip() if 'vrf' in request.params: try: if request.params['vrf'] is None or len(request.params['vrf']) == 0: p.vrf = None else: p.vrf = VRF.get(int(request.params['vrf'])) except ValueError: return json.dumps({'error': 1, 'message': "Invalid VRF ID '%s'" % request.params['vrf']}) except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) if 'vlan' in request.params: if request.params['vlan'].strip() != '': p.vlan = request.params['vlan'] if 'tags' in request.params: p.tags = json.loads(request.params['tags']) p.save() except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) return json.dumps(p, cls=NipapJSONEncoder) def remove_prefix(self): """ Remove a prefix. """ try: p = Prefix.get(int(request.params['id'])) p.remove() except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) return json.dumps(p, cls=NipapJSONEncoder) def add_current_vrf(self): """ Add VRF to filter list session variable """ vrf_id = request.params.get('vrf_id') if vrf_id is not None: if vrf_id == 'null': vrf = VRF() else: vrf = VRF.get(int(vrf_id)) session['current_vrfs'][vrf_id] = { 'id': vrf.id, 'rt': vrf.rt, 'name': vrf.name, 'description': vrf.description } session.save() return json.dumps(session.get('current_vrfs', {})) def del_current_vrf(self): """ Remove VRF to filter list session variable """ vrf_id = request.params.get('vrf_id') if vrf_id in session['current_vrfs']: del session['current_vrfs'][vrf_id] session.save() return json.dumps(session.get('current_vrfs', {})) def get_current_vrfs(self): """ Return VRF filter list from session variable """ return json.dumps(session.get('current_vrfs', {})) def list_tags(self): """ List Tags and return JSON encoded result. """ try: tags = Tags.list() except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) return json.dumps(tags, cls=NipapJSONEncoder) class NipapJSONEncoder(json.JSONEncoder): """ A class used to encode NIPAP objects to JSON. """ def default(self, obj): if isinstance(obj, Tag): return { 'name': obj.name } elif isinstance(obj, VRF): return { 'id': obj.id, 'rt': obj.rt, 'name': obj.name, 'description': obj.description, 'tags': obj.tags } elif isinstance(obj, Pool): if obj.vrf is None: vrf_id = None vrf_rt = None else: vrf_id = obj.vrf.id vrf_rt = obj.vrf.rt return { 'id': obj.id, 'name': obj.name, 'vrf_rt': vrf_rt, 'vrf_id': vrf_id, 'description': obj.description, 'default_type': obj.default_type, 'ipv4_default_prefix_length': obj.ipv4_default_prefix_length, 'ipv6_default_prefix_length': obj.ipv6_default_prefix_length, 'tags': obj.tags } elif isinstance(obj, Prefix): if obj.pool is None: pool = None else: pool = obj.pool.id vrf_id = obj.vrf.id vrf_rt = obj.vrf.rt return { 'id': obj.id, 'family': obj.family, 'vrf_rt': vrf_rt, 'vrf_id': vrf_id, 'prefix': obj.prefix, 'display_prefix': obj.display_prefix, 'description': obj.description, 'comment': obj.comment, 'inherited_tags': obj.inherited_tags, 'tags': obj.tags, 'node': obj.node, 'pool': pool, 'type': obj.type, 'indent': obj.indent, 'country': obj.country, 'order_id': obj.order_id, 'customer_id': obj.customer_id, 'authoritative_source': obj.authoritative_source, 'monitor': obj.monitor, 'alarm_priority': obj.alarm_priority, 'display': obj.display, 'match': obj.match, 'children': obj.children, 'vlan': obj.vlan } else: return json.JSONEncoder.default(self, obj) ```
{ "source": "Jobo42/exercises", "score": 4 }
#### File: exercises/anagram solver/anagram_detector.py ```python def detect_anagrams(parent, child): anagrams = [] for i in range(len(parent) - len(child)): letter = parent[i] if letter in child: word = parent[i:i+len(child)] if is_anagram(word, child): anagrams.append(word) return anagrams # Strings must be the same length def is_anagram(s1, s2): for letter in s1: if s1.count(letter) != s2.count(letter): return False return True phrase = "AdnBndAndBdaBn" key = "dAn" anagrams = detect_anagrams(phrase, key) print(anagrams) ```
{ "source": "J-Obog/bball-sim", "score": 3 }
#### File: bball-sim/bball/player.py ```python from random import randint import bball.constants as C class Player: def __init__(self, name, pos, ratings): self.name = name self.pos = pos self.ratings = ratings self.stats = [0 for s in range(len(C.PLAYER_STATS))] ```
{ "source": "J-Obog/circuit-sim", "score": 3 }
#### File: circuit-sim/csim/base_component.py ```python from _typeshed import Self from typing import Tuple class BaseComponent: def __init__(self, x: int, y: int, w: int, h: int, label: str): self._x: int = x self._y: int = y self._w: int = w self._h: int = h self._label: str = label def setBounds(self, w: int, h: int): self._w = w self._h = h def getBounds(self) -> Tuple[int, int]: return (self._w, self._h) def setPos(self, x: int, y: int): self._x = x self._y = y def getPos(self) -> Tuple[int, int]: return (self._x, self._y) def setLabel(self, label: str): self._label = label def getLabel(self) -> str: return self._label ``` #### File: J-Obog/circuit-sim/main.py ```python from PyQt5.QtWidgets import QApplication, QWidget import sys def main(): app = QApplication(sys.argv) win = QWidget() win.resize(500, 500) win.setWindowTitle('Main App') win.show() sys.exit(app.exec_()) if __name__ == '__main__': main() ```
{ "source": "J-Obog/linreg-model", "score": 3 }
#### File: J-Obog/linreg-model/simplelearn.py ```python import numpy as np class LinReg_Model: def __init__(self, iterations=1000, learning_rate=0.01): self.__weigths = None self.__learning_rate = learning_rate self.__iterations = iterations #tweaking weights with gradient descent def train(self, X, Y): X, Y = (np.asarray(X), np.asarray(Y)) m,n = X.shape self.__weigths = np.ones(n + 1) X = np.hstack((X, np.ones((m, 1)))) for itr in self.__iterations: pass return 0 #test model with inputs def predict(self, X): return np.array([np.dot(self.__weigths, x) for x in X]) ```
{ "source": "J-Obog/littlekv", "score": 2 }
#### File: lkv/cli/run.py ```python from socketio.exceptions import ConnectionError from lkv.flags import parse_cli_args import socketio import time def response_to_stdout(*args): res = args[0] err = args[1] msg = res if not err else err print(msg) def main(): args = parse_cli_args() host = args.host port = args.port command = args.command op = command[0] params = command[1:] try: client = socketio.Client() client.connect(f'ws://{host}:{port}') client.emit('lkv:command', {'cmd': op, 'params': params}, callback=response_to_stdout) time.sleep(0.5) client.disconnect() except ConnectionError: print(f'Unable to connect to host {host} on port {port}') exit(0) if __name__ == '__main__': main() ``` #### File: lkv/store/__init__.py ```python from typing import Dict, Optional, Union import os import toml import gzip class KVStore: def __init__(self, path: str, filename: str): self.__fp: str = os.path.join(path, filename) self.__kv: Dict[str, any] = {} if not os.path.exists(path): os.mkdir(path) if not os.path.exists(self.__fp): open(self.__fp, 'wb+').close() else: self.__read_keys() """ Storage interface """ def __read_keys(self): with open(self.__fp, 'rb') as f: bytes_decompressed = gzip.decompress(f.read()) content = bytes_decompressed.decode('utf-8') self.__kv = toml.loads(content) def __write_keys(self): with open(self.__fp, 'wb') as f: content = toml.dumps(self.__kv) bytes_compressed = gzip.compress(content.encode('utf-8')) f.write(bytes_compressed) """ API """ def getk(self, key = None) -> Union[Optional[any], Dict[str, any]]: return self.__kv.get(key, None) if key else list(self.__kv.keys()) def setk(self, key, val): self.__kv[key] = val self.__write_keys() def delk(self, key): if self.__kv.get(key, None) != None: self.__kv.pop(key) self.__write_keys() def countk(self) -> int: return len(self.__kv.keys()) def cleark(self): self.__kv.clear() self.__write_keys() ``` #### File: littlekv/tests/helpers.py ```python from typing import Tuple import subprocess import time import os import signal import sys def launch_client_proc(cmd: str, conn_delay: int = 0.25) -> Tuple[int, int, str]: time.sleep(conn_delay) client_proc = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE) exit_code = client_proc.wait() output = client_proc.communicate()[0].decode('utf-8').strip() return (client_proc.pid, exit_code, output) def launch_server_proc(cmd: str) -> Tuple[int]: server_proc = subprocess.Popen(cmd.split()) return server_proc.pid def kill_server_proc(pid: str, timeout: int = 0.25): if sys.platform[:-2] == 'win': os.kill(pid, signal.CTRL_C_EVENT) else: os.kill(pid, signal.SIGINT) time.sleep(timeout) ```
{ "source": "J-Obog/market-simulator", "score": 3 }
#### File: api/auth/controller.py ```python from flask import request, jsonify from app import db, bcrypt, cache, jwt from api.accounts.model import Account, AccountSchema from flask_jwt_extended import create_access_token, create_refresh_token, jwt_required, current_user from datetime import timedelta @jwt.token_in_blocklist_loader def check_token_in_blacklist(_, jwt_payload): return cache.get(jwt_payload['sub']) is not None @jwt.user_lookup_loader def user_lookup(_, jwt_payload): return Account.query.filter_by(id=jwt_payload['sub']).one_or_none() """ Log a user out""" @jwt_required() def logout(): cache.set(current_user.id, '', ex=3600) return jsonify(message='Logout successful') """ Log a user in """ def login(): # request body vars email = request.json.get('email') password = <PASSWORD>('password') # query for account with matching email acc = Account.query.filter_by(email=email).first() # validate if there's a match and the match shares the same password if acc: if bcrypt.check_password_hash(acc.password, password): access_token = create_access_token(identity=acc.id, expires_delta=timedelta(hours=1)) refresh_token = create_refresh_token(identity=acc.id, expires_delta=timedelta(days=30)) return jsonify(access_token=access_token, refresh_token=refresh_token) else: return jsonify(message='Email and password must match'), 401 else: return jsonify(message='No matching account for email'), 401 """ Sign user up """ def register_user(): # request body vars email = request.json.get('email') password = request.json.get('password') # handling validation errors try: AccountSchema().load(request.json) except Exception as e: return jsonify(message=e.messages), 401 if Account.query.filter_by(email=email).first(): return jsonify(message={'email': ['Account with email already exists']}), 401 # loading user into db acc = Account(email=email, password=bcrypt.generate_password_hash(password, 10).decode('utf-8')) db.session.add(acc) db.session.commit() return jsonify(message='Registration successful') ``` #### File: migrations/versions/cef206444493_finished_stockdata_model.py ```python from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'cef206444493' down_revision = '<KEY>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('stock_data', sa.Column('id', sa.Integer(), nullable=False), sa.Column('stock_id', sa.Integer(), nullable=False), sa.Column('prev_close', sa.Float(decimal_return_scale=2), nullable=False), sa.Column('market_price', sa.Float(decimal_return_scale=2), nullable=False), sa.Column('timestamp', sa.DateTime(), nullable=False), sa.ForeignKeyConstraint(['stock_id'], ['stock.id'], ), sa.PrimaryKeyConstraint('id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('stock_data') # ### end Alembic commands ### ```
{ "source": "J-Obog/social-network-model", "score": 4 }
#### File: J-Obog/social-network-model/network.py ```python class Network: def __init__(self, capacity = -1): self.__capacity = capacity self.__size = 0 self.__map = {} self.__graph = [] self.__sparse_queue = [] """ add new user to the network """ def add(self, user): if (len(self.__sparse_queue) == 0) and (self.__size == self.__capacity): raise Exception('Network has reached capacity') if self.__map.get(user) != None: raise Exception('Username already exists in network') if len(self.__sparse_queue) == 0: self.__map[user] = self.__size for i in range(self.__size): self.__graph[i].append(0) self.__graph.append([0] * (self.__size + 1)) else: self.__map[user] = self.__sparse_queue[0] self.__sparse_queue.pop(0) self.__size += 1 """ remove user from the network """ def remove(self, user): if self.__map.get(user) == None: raise Exception("User doesn't exist in network") for i in range(self.__size): self.__graph[i][self.__map[user]] = 0 self.__sparse_queue.append(self.__map[user]) self.__map.pop(user) """ change user's name """ def update(self, user, new_user): if self.__map.get(user) == None: raise Exception("User doesn't exist in network") if self.__map.get(new_user) != None: raise Exception('Username already exists in network') self.__map[new_user] = self.__map[user] self.__map.pop(user) """ make user1 and user2 friends """ def link(self, user1, user2): if self.__map.get(user1) == None or self.__map.get(user2) == None: raise Exception("Both users must exist in network") self.__graph[self.__map[user1]][self.__map[user2]] = 1 self.__graph[self.__map[user2]][self.__map[user1]] = 1 """ get list of user's friends """ def friend_list(self, user): if self.__map.get(user) == None: raise Exception("User doesn't exist in network") lst = [] for i in range(self.__size): if self.__graph[self.__map[user]][i] == 1: for pair in self.__map.items(): k, v = pair if v == i: lst.append(k) return lst """ get list of user1 and user2's mutual friends """ def mutual_friends(self, user1, user2): if self.__map.get(user1) == None or self.__map.get(user2) == None: raise Exception("Both users must exist in network") return list(set(self.friend_list(user1)) & set(self.friend_list(user2))) """ check if user1 and user 2 are friends """ def are_friends(self, user1, user2): if self.__map.get(user1) == None or self.__map.get(user2) == None: raise Exception("Both users must exist in network") return (self.__graph[self.__map[user1]][self.__map[user2]] == 1) """ check if user1 and user2 are mutual friends """ def are_mutual_friends(self, user1, user2): if self.__map.get(user1) == None or self.__map.get(user2) == None: raise Exception("Both users must exist in network") for i in range(self.__size): if i != self.__map[user1] and i != self.__map[user2]: if self.__graph[i][self.__map[user1]] == 1 and self.__graph[i][self.__map[user2]] == 1: return True return False ``` #### File: J-Obog/social-network-model/run.py ```python from network import Network def main(): net = Network() # adding users to network net.add('JDoe63') net.add('SJohnson78') net.add('DFord99') # 'friending' two users net.link('JDoe63', 'SJohnson78') net.link('DFord99', 'SJohnson78') # testing out Network API print(f"\nDFord99 and JDoe63 are mutual friends: {net.are_mutual_friends('DFord99', 'JDoe63')}") print(f"\nJDoe63's friend list: {net.friend_list('JDoe63')}") print(f"\nSJohnson78's friend list: {net.friend_list('SJohnson78')}") if __name__ == '__main__': main() ```
{ "source": "jobomix/ariadne-relay", "score": 2 }
#### File: ariadne-relay/ariadne_relay/node.py ```python import asyncio from typing import Any, Awaitable, Callable, cast, Optional, Tuple, Union from graphql import default_field_resolver, GraphQLObjectType, GraphQLResolveInfo from graphql_relay import from_global_id, to_global_id from .objects import RelayObjectType from .utils import is_coroutine_callable NodeIdAwaitable = Callable[..., Awaitable[str]] NodeIdCallable = Callable[..., str] NodeIdResolver = Union[NodeIdAwaitable, NodeIdCallable] NodeInstanceAwaitable = Callable[..., Awaitable[Any]] NodeInstanceCallable = Callable[..., Any] NodeInstanceResolver = Union[NodeInstanceAwaitable, NodeInstanceCallable] INSTANCE_RESOLVER = "ariadne_relay_node_instance_resolver" class NodeObjectType(RelayObjectType): _resolve_id: NodeIdResolver _resolve_instance: Optional[NodeInstanceResolver] def __init__( self, name: str, *, id_resolver: NodeIdResolver = default_field_resolver, instance_resolver: Optional[NodeInstanceResolver] = None, ) -> None: super().__init__(name) self._resolve_id = id_resolver self._resolve_instance = instance_resolver def bind_resolvers_to_graphql_type( self, graphql_type: GraphQLObjectType, replace_existing: bool = True ) -> None: super().bind_resolvers_to_graphql_type(graphql_type, replace_existing) if "id" not in graphql_type.fields: raise ValueError(f"Field id is not defined on type {self.name}") if graphql_type.fields["id"].resolve is None or replace_existing: if is_coroutine_callable(self._resolve_id): graphql_type.fields["id"].resolve = self._resolve_node_id_field else: graphql_type.fields["id"].resolve = self._resolve_node_id_field_sync if self._resolve_instance is not None: graphql_type.extensions = graphql_type.extensions or {} graphql_type.extensions[INSTANCE_RESOLVER] = self._resolve_instance async def _resolve_node_id_field(self, obj: Any, info: GraphQLResolveInfo) -> str: resolve_id = cast(NodeIdAwaitable, self._resolve_id) return to_global_id(self.name, await resolve_id(obj, info)) def _resolve_node_id_field_sync(self, obj: Any, info: GraphQLResolveInfo) -> str: resolve_id = cast(NodeIdCallable, self._resolve_id) return to_global_id(self.name, resolve_id(obj, info)) def set_id_resolver(self, id_resolver: NodeIdResolver) -> NodeIdResolver: self._resolve_id = id_resolver return id_resolver def set_instance_resolver( self, instance_resolver: NodeInstanceResolver ) -> NodeInstanceResolver: self._resolve_instance = instance_resolver return instance_resolver # Alias resolvers for consistent decorator API id_resolver = set_id_resolver instance_resolver = set_instance_resolver async def resolve_node_query( _: None, info: GraphQLResolveInfo, *, id: str, # noqa: A002 ) -> Any: instance_resolver_and_node_id = _get_instance_resolver_and_node_id(info, id) if instance_resolver_and_node_id: instance_resolver, node_id = instance_resolver_and_node_id node_instance = instance_resolver(node_id, info) if asyncio.iscoroutine(node_instance): node_instance = await node_instance return node_instance return None def resolve_node_query_sync( _: None, info: GraphQLResolveInfo, *, id: str, # noqa: A002 ) -> Any: instance_resolver_and_node_id = _get_instance_resolver_and_node_id(info, id) if instance_resolver_and_node_id: instance_resolver, node_id = instance_resolver_and_node_id return instance_resolver(node_id, info) return None def _get_instance_resolver_and_node_id( info: GraphQLResolveInfo, raw_id: str, ) -> Optional[Tuple[NodeInstanceResolver, str]]: try: node_type_name, node_id = from_global_id(raw_id) except Exception as e: raise ValueError(f'Invalid ID "{raw_id}"') from e node_type = info.schema.type_map.get(node_type_name) if node_type is None: return None instance_resolver = getattr(node_type, "extensions", {}).get(INSTANCE_RESOLVER) return instance_resolver, node_id ```
{ "source": "jobor019/pyosc", "score": 2 }
#### File: maxosc/maxosc/oscloghandler.py ```python import logging from maxosc.sender import Sender class OscLogHandler(logging.Handler): def __init__(self, sender: Sender, log_level: int = logging.INFO, log_format: str = '%(levelname)s %(message)s'): super().__init__() self.sender: Sender = sender self.setLevel(log_level) self.setFormatter(logging.Formatter(log_format)) def emit(self, record: logging.LogRecord): self.sender.send_warning(self.format(record)) ``` #### File: maxosc/test/max_test_default.py ```python from maxosc.maxosc import MaxOsc class MaxTestDefault(MaxOsc): def __init__(self): super(MaxTestDefault, self).__init__() self.run() def no_args(self): print("no args") return "bang" def no_return(self): print("no return") def one_mand(self, mand): print("one mand", mand) return mand def one_opt(self, opt=None): print("one opt", opt) return opt def one_each(self, mand, opt=None): print("one each", mand, opt) return mand, opt def two_each(self, mand1, mand2, opt1=None, opt2=None): print("two each", mand1, mand2, opt1, opt2) return mand1, mand2, opt1, opt2 @staticmethod def stat_noarg(): return "bang" @staticmethod def stat_arg(a1): return a1 if __name__ == '__main__': MaxTestDefault() ```
{ "source": "jobovy/apogee-maps", "score": 2 }
#### File: apogee-maps/py/calc_effsel_monoage.py ```python import numpy as np import define_rgbsample import calc_effsel as ce from optparse import OptionParser class EffselOptions(object): def __init__(self, dm_min = 7., dm_max = 15.5, ndm = 301, dmap = 'marshall06', samplemh = False, m = 32, dr = '12', samp = 'rc', modelmh = False, distgrid = False): self.dm_min = dm_min self.dm_max = dm_max self.ndm = ndm self.dmap = dmap self.samplemh = samplemh self.multi = m self.dr = dr self.samp = samp self.modelmh = modelmh self.distgrid = distgrid opt = EffselOptions(dmap = 'green15', samplemh = True, samp='rgb', modelmh=True, distgrid=False) def effsel_bins(opt): agebins = np.arange(1.,14.,2.) fehbins = np.arange(-0.6,0.3,0.1) for i in range(0, len(fehbins)-1): for j in range(0,len(agebins)-1): print 'Calculating Effective Selection function for [Fe/H] = '+str(round(fehbins[i],1))+' and age = '+str(round(agebins[j],1))+'' if opt.distgrid == False: filename = '../essf/maps/essf_'+opt.samp+'_'+opt.dmap+'_modelmh_feh'+str(round(fehbins[i],1))+'_age'+str(round(agebins[j],1))+'.sav' if opt.distgrid == True: filename = '../essf/maps/essf_'+opt.samp+'_'+opt.dmap+'_distgrid_modelmh_feh'+str(round(fehbins[i],1))+'.sav' ce.calc_effsel([filename,], opt, fehbin=[fehbins[i],fehbins[i+1]], agebin=[agebins[j], agebins[j+1]]) def get_options(): usage = "usage: %prog [options] <savefilename>\n\nsavefilename= name of the file that the effective selection function will be saved to" parser = OptionParser(usage=usage) # Distances at which to calculate the effective selection function parser.add_option("--dm_min",dest='dm_min',default=7.,type='float', help="Minimum distance modulus") parser.add_option("--dm_max",dest='dm_max',default=15.5,type='float', help="Maximum distance modulus") parser.add_option("--ndm",dest='ndm',default=301,type='int', help="Number of distance moduli to calculate the function at") parser.add_option("--distancegrid",action="store_true", dest="distgrid", default=False, help="if set, use distance grid rather than distmod") # Dust map to use parser.add_option("--dmap",dest='dmap',default='green15', help="Dust map to use ('Green15', 'Marshall03', 'Drimmel03', 'Sale14', or 'zero'") # Sample over the M_H of the sample? parser.add_option("--samplemh",action="store_true", dest="samplemh", default=True, help="If set, sample the M_H distribution of the sub-sample (default= full sample)") # Multiprocessing? parser.add_option("-m","--multi",dest='multi',default=1,type='int', help="number of cpus to use") # Alternate Data releases? parser.add_option("--dr",dest='dr',default=None, help="Data release to use") # RGB or RC? parser.add_option("--samp", dest='samp', default='rgb', help = "rc or rgb") # model M_H distribution? parser.add_option("--modelmh", dest='modelmh', default=True, help="If True, sample a model M_H distribution from parsec isochrones.") return parser if __name__ == '__main__': parser= get_options() options, args = parser.parse_args() effsel_bins(options) ``` #### File: apogee-maps/py/calc_effsel.py ```python import os, os.path import pickle import multiprocessing import numpy from optparse import OptionParser from galpy.util import save_pickles, multi import apogee.select.apogeeSelect import mwdust import isodist from define_rcsample import get_rcsample from define_rgbsample import get_rgbsample from scipy.interpolate import interp1d def calc_effsel(args,options,sample=None, fehbin=[0.,0.1], agebin=[0.,13.]): # Work-horse function to compute the effective selection function, # sample is a data sample of stars to consider for the (JK,Z) sampling # Setup selection function selectFile= '../savs/selfunc-nospdata.sav' if os.path.exists(selectFile): with open(selectFile,'rb') as savefile: apo= pickle.load(savefile) else: # Setup selection function apo= apogee.select.apogeeSelect() # Delete these because they're big and we don't need them del apo._specdata del apo._photdata save_pickles(selectFile,apo) # Get the full data sample for the locations (need all locations where # stars could be observed, so the whole sample, not just the subsample # being analyzed) if options.samp == 'rc': data= get_rcsample(dr = options.dr) if options.samp == 'rgb': data= get_rgbsample(add_ages = True) locations= list(set(list(data['LOCATION_ID']))) # Load the dust map and setup the effective selection function if options.dmap.lower() == 'green15': dmap3d= mwdust.Green15(filter='2MASS H') elif options.dmap.lower() == 'marshall06': dmap3d= mwdust.Marshall06(filter='2MASS H') elif options.dmap.lower() == 'drimmel03': dmap3d= mwdust.Drimmel03(filter='2MASS H') elif options.dmap.lower() == 'sale14': dmap3d= mwdust.Sale14(filter='2MASS H') elif options.dmap.lower() == 'zero': dmap3d= mwdust.Zero(filter='2MASS H') # Sample the M_H distribution if options.samplemh: if sample is None: sample= data if options.samp == 'rc': MH= sample['H0']-sample['RC_DM'] MH= numpy.random.permutation(MH)[:1000] # do 1,000 max if options.samp == 'rgb': if options.modelmh == True: MH = sample_iso_MH(fehbin = fehbin, n=1000) if options.modelmh != True: MH = numpy.random.permutation(sample['M_H'])[:1000] else: MH= -1.49 apof= apogee.select.apogeeEffectiveSelect(apo,dmap3d=dmap3d,MH=MH) # Distances at which to calculate the effective selection function if options.distgrid == False: distmods= numpy.linspace(options.dm_min,options.dm_max,options.ndm) ds= 10.**(distmods/5-2.) if options.distgrid == True: ds = numpy.linspace(0.01,20.,300) distmods= 5*numpy.log(ds)-2. # Now compute all selection functions out= multi.parallel_map((lambda x: _calc_effsel_onelocation(\ locations[x],apof,apo,ds)), range(len(locations)), numcores=numpy.amin([len(locations), multiprocessing.cpu_count(),options.multi])) # Save out out= numpy.array(out) save_pickles(args[0],locations,out,distmods,ds) return None def _calc_effsel_onelocation(locid,apof,apo,ds): # Calculate the effective selection function for a given location try: esf= apof(locid,ds)*apo.area(locid) except (IndexError, TypeError,ValueError): esf= -numpy.ones_like(ds) return esf def sample_iso_MH(fehbin = [-0.6, 0.2], agebin=[0.,13.], n=1000, agebias=False, imftype='chabrier2003', isochrones='Padova'): #Load pre-computed parsec isochrone grid iso_file = open('../savs/'+isochrones+'_grid_'+imftype+'.sav') iso_grid = pickle.load(iso_file) #add rgb age bias if agebias = True if agebias == True: iso_grid[:,6] *= agebias(10**iso_grid[:,0]) #Perform sample cuts (logg and J-K) gridcuts = (iso_grid[:,3] > 1.8)&(iso_grid[:,3] < 3.0)&(iso_grid[:,5] > 0.5) cutgrid = iso_grid[gridcuts] n_weights = cutgrid[:,6]*(10**cutgrid[:,0]/cutgrid[:,1]) #make [Fe/H], age cut fehcut = (isodist.Z2FEH(cutgrid[:,1])>=fehbin[0])&(isodist.Z2FEH(cutgrid[:,1])<fehbin[1])\ &(10**cutgrid[:,0] >= agebin[0])&(10**cutgrid[:,0] < agebin[1]) # compute CDF of M_H sorter_H = numpy.argsort(cutgrid[:,4][fehcut]) cdf_H = numpy.cumsum(n_weights[fehcut][sorter_H])/numpy.sum(n_weights[fehcut]) #Interpolate CDF and take n samples intercdf_H = interp1d(cdf_H, cutgrid[:,4][fehcut][sorter_H]) rand = numpy.random.uniform(size=n, low=0.0001, high=0.999999) model_MH = intercdf_H(rand) return model_MH def agebias(age): return (age+1)**-0.7 def get_options(): usage = "usage: %prog [options] <savefilename>\n\nsavefilename= name of the file that the effective selection function will be saved to" parser = OptionParser(usage=usage) # Distances at which to calculate the effective selection function parser.add_option("--dm_min",dest='dm_min',default=7.,type='float', help="Minimum distance modulus") parser.add_option("--dm_max",dest='dm_max',default=15.5,type='float', help="Maximum distance modulus") parser.add_option("--ndm",dest='ndm',default=301,type='int', help="Number of distance moduli to calculate the function at") parser.add_option("--distancegrid",action="store_true", dest="distgrid", default=False, help="if set, use distance grid rather than distmod") # Dust map to use parser.add_option("--dmap",dest='dmap',default='green15', help="Dust map to use ('Green15', 'Marshall03', 'Drimmel03', 'Sale14', or 'zero'") # Sample over the M_H of the sample? parser.add_option("--samplemh",action="store_true", dest="samplemh", default=False, help="If set, sample the M_H distribution of the sub-sample (default= full sample)") # Multiprocessing? parser.add_option("-m","--multi",dest='multi',default=1,type='int', help="number of cpus to use") # Alternate Data releases? parser.add_option("--dr",dest='dr',default=None, help="Data release to use") # RGB or RC? parser.add_option("--samp", dest='samp', default='rc', help = "rc or rgb") # model M_H distribution? parser.add_option("--modelmh", dest='modelmh', default=False, help="If True, sample a model M_H distribution from parsec isochrones.") return parser if __name__ == '__main__': parser= get_options() options, args= parser.parse_args() calc_effsel(args,options) ``` #### File: apogee-maps/py/calc_masses.py ```python import numpy import numpy as np import densprofiles import define_rgbsample import pickle from isodist import Z2FEH from galpy.util import bovy_coords from fitDens import _setup_densfunc import os from scipy.integrate import quad from scipy import interpolate import multiprocessing from galpy.util import multi def load_isochrones(gridfile): iso_file = open(gridfile) iso_grid = pickle.load(iso_file) return iso_grid def calc_normalisation(params, nbin, iso_grid, fehbin=[-0.1,0.0], agebin=[1.,3.], loggcut=[1.8,3.0], teffcut=[4000,5000], type='brokenexpflare', verbose=True, fitIndx=None, weights = 'padova', distance_cut = False, lowermass = None): #first get the values necessary from the isochrone grid #make a mask for giant stars (+ J-K cut) if teffcut == None: giants = (iso_grid[:,3] >= loggcut[0])&(iso_grid[:,3] < loggcut[1])&(iso_grid[:,5] > 0.5) else: giants = (iso_grid[:,3] >= loggcut[0])&(iso_grid[:,3] < loggcut[1])&(iso_grid[:,5] > 0.5)&(10**iso_grid[:,7] >= teffcut[0])&(10**iso_grid[:,7] < teffcut[1]) #make a mask for the age and feh bin if agebin == None: bin = (10**iso_grid[:,0] >= 0.)&(10**iso_grid[:,0] < 13.)&\ (Z2FEH(iso_grid[:,1]) >= fehbin[0])&(Z2FEH(iso_grid[:,1]) < fehbin[1]) else: bin = (10**iso_grid[:,0] >= agebin[0])&(10**iso_grid[:,0] < agebin[1])&\ (Z2FEH(iso_grid[:,1]) >= fehbin[0])&(Z2FEH(iso_grid[:,1]) < fehbin[1]) if lowermass != None: giants *= iso_grid[:,2] >= lowermass bin *= iso_grid[:,2] >= lowermass if len(iso_grid[:,0][bin]) < 1: fehs = np.unique(Z2FEH(iso_grid[:,1])) cfehbin = fehbin[0]+((fehbin[1]-fehbin[0])/2) feh_offsets = np.fabs(fehs-cfehbin) ind = np.argmin(feh_offsets) cfeh = fehs[ind] bin = (10**iso_grid[:,0] >= agebin[0])&(10**iso_grid[:,0] < agebin[1])&\ (Z2FEH(iso_grid[:,1]) == cfeh) #find the average giant mass mass = iso_grid[:,2] if weights == 'padova': weight = iso_grid[:,6]*(10**iso_grid[:,0]/iso_grid[:,1]) if weights == 'basti': weight = iso_grid[:,6] av_mass = np.sum(mass[giants&bin]*weight[giants&bin])/np.sum(weight[giants&bin]) #find the ratio between giants and the total stellar pop. for this bin mass_total = mass[bin] weight_total = weight[bin] mass_bin = mass[giants&bin] weight_bin = weight[giants&bin] m_ratio = np.sum(mass_bin*weight_bin)/np.sum(mass_total*weight_total) #now compute and sum the rate for this density function #load the raw selection function selectFile= '../savs/selfunc-nospdata.sav' if os.path.exists(selectFile): with open(selectFile,'rb') as savefile: apo= pickle.load(savefile) #load the effective selection function if agebin == None: with open('../essf/maps/essf_rgb_green15_modelmh_feh'+str(round(fehbin[0],1))+'.sav','rb') as savefile: locations= pickle.load(savefile) effsel= pickle.load(savefile) distmods= pickle.load(savefile) with open('../essf/maps/essf_rgb_marshall06_modelmh_feh'+str(round(fehbin[0],1))+'.sav','rb') as savefile: mlocations= pickle.load(savefile) meffsel= pickle.load(savefile) mdistmods= pickle.load(savefile) if agebin != None: if agebin[0] < 1.: with open('../essf/maps/essf_rgb_green15_modelmh_feh'+str(round(fehbin[0],1))+'_age'+str(round(1.0,1))+'.sav','rb') as savefile: locations= pickle.load(savefile) effsel= pickle.load(savefile) distmods= pickle.load(savefile) with open('../essf/maps/essf_rgb_marshall06_modelmh_feh'+str(round(fehbin[0],1))+'_age'+str(round(1.0,1))+'.sav','rb') as savefile: mlocations= pickle.load(savefile) meffsel= pickle.load(savefile) mdistmods= pickle.load(savefile) if agebin[0] > 0.9: with open('../essf/maps/essf_rgb_green15_modelmh_feh'+str(round(fehbin[0],1))+'_age'+str(round(agebin[0],1))+'.sav','rb') as savefile: locations= pickle.load(savefile) effsel= pickle.load(savefile) distmods= pickle.load(savefile) with open('../essf/maps/essf_rgb_marshall06_modelmh_feh'+str(round(fehbin[0],1))+'_age'+str(round(agebin[0],1))+'.sav','rb') as savefile: mlocations= pickle.load(savefile) meffsel= pickle.load(savefile) mdistmods= pickle.load(savefile) # Fill in regions not covered by Marshall map meffsel[meffsel < -0.5]= effsel[meffsel < -0.5] if fitIndx is None: fitIndx= numpy.ones(len(mlocations),dtype='bool') #True-betwDiskIndx locations, effsel, distmods = np.array(mlocations)[fitIndx], np.array(meffsel)[fitIndx], mdistmods #get the density function and set it up to find the normalisation (surfdens=True) rdensfunc= _setup_densfunc(type) densfunc= lambda x: rdensfunc(x,None,None,params=params, surfdens=True) #evaluate surface density at R0 for the density normalisation (always 1. if R_b > R0) R0 = densprofiles._R0 Rb = np.exp(params[3]) dens_norm = densfunc(densprofiles._R0) #set up the density function again with surfdens=False for the rate calculation rdensfunc= _setup_densfunc(type) densfunc= lambda x,y,z: rdensfunc(x,y,z,params=params, surfdens=False) ds= 10.**(distmods/5.-2.) #imply the distance cut if distance_cut == True if distance_cut == True: distmods = distmods[ds <= 3.] ds= ds[ds <= 3.] effsel = effsel[:,:len(ds)] #Compute the grid of R, phi and Z for each location Rgrid, phigrid, zgrid= [], [], [] for loc in locations: lcen, bcen= apo.glonGlat(loc) XYZ= bovy_coords.lbd_to_XYZ(lcen*numpy.ones_like(ds), bcen*numpy.ones_like(ds), ds, degree=True) Rphiz= bovy_coords.XYZ_to_galcencyl(XYZ[:,0],XYZ[:,1],XYZ[:,2], Xsun=define_rgbsample._R0, Zsun=define_rgbsample._Z0) Rgrid.append(Rphiz[:,0]) phigrid.append(Rphiz[:,1]) zgrid.append(Rphiz[:,2]) Rgrid= numpy.array(Rgrid) phigrid= numpy.array(phigrid) zgrid= numpy.array(zgrid) # Now compute rate(R) for each location and combine effsel*= numpy.tile(ds**2.*(distmods[1]-distmods[0])*(ds*np.log(10)/5.),(effsel.shape[0],1)) tdens= densfunc(Rgrid,phigrid,zgrid)/dens_norm rate= tdens*effsel sumrate = np.sum(rate) #calculate normalisation N(R0) norm = (nbin/sumrate) #convert units (Kpc^2 > pc^2, deg > rad etc) norm *= 1e-6*(180/np.pi)**2 #compute mass in bin using values from isochrones bin_mass = (norm*av_mass)/m_ratio if verbose==True: print bin_mass return bin_mass, norm, m_ratio, (av_mass*1e-6*(180/np.pi)**2)/(sumrate*m_ratio) def calculate_bin_error(samples, fehbin, agebin, nbin, iso_grid, type='brokenexpflare', loggcut=[1.8,3.0], teffcut=[4000,5000], n_sampling=1000, progress=True, mp=True, fitIndx=None, weights = 'padova', distance_cut = False, lowermass = None): randsamples = np.random.permutation(samples.T)[:n_sampling] m_sample = np.zeros(np.shape(randsamples)[0]) if multi == False: for ii,params in enumerate(randsamples): if progress==True: print ''+str(round(float(ii)/float(n_sampling)*100,2))+'% complete!' m = calc_normalisation(params, nbin , iso_grid, fehbin = fehbin, agebin=agebin, loggcut=loggcut, teffcut=teffcut, type=type, verbose=False, fitIndx=fitIndx, gridfile=gridfile, weights=weights, distance_cut = distance_cut, lowermass=lowermass)[0] m_sample[ii] = m if mp == True: m_sample= multi.parallel_map((lambda x: calc_normalisation(randsamples[x], nbin, iso_grid, fehbin=fehbin, agebin=agebin,loggcut=loggcut, teffcut=teffcut, type=type, verbose=False, fitIndx=fitIndx, distance_cut=distance_cut, lowermass=lowermass)[0]),\ range(np.shape(randsamples)[0]),numcores=numpy.amin([np.shape(randsamples)[0], multiprocessing.cpu_count()/2])) median = np.percentile(m_sample, 50) lowerr = np.percentile(m_sample, 16) uperr = np.percentile(m_sample, 84) return m_sample, median, lowerr, uperr ``` #### File: apogee-maps/py/calc_mass.py ```python import numpy import fitDens import densprofiles def calcDiskMass(data,samples, locations,effsel,distmods, type='tribrokenexpflare'): """ NAME: calcDiskMass PURPOSE: calculate the local surface density for a set of density profiles INPUT: data - the data array samples - an array [nparam,ndens] of density-profile parameters locations - locations of the APOGEE effective selection function effsel - array (nloc,nD) of the effective selection function, includes area of the field distmods - grid of distance moduli on which the effective selection function is pre-computed type= ('exp') type of density profile to use OUTPUT: local surface density in Msol/pc^2 HISTORY: 2015-04-29 - Written - Bovy (IAS) """ # Setup the density function and its initial parameters densfunc= fitDens._setup_densfunc(type) # Setup the integration of the effective volume effsel, Rgrid, phigrid, zgrid= \ fitDens._setup_effvol(locations,effsel,distmods) out= [] for sample in samples.T: # Setup the density function, fix the normalization for Rb < R0 if 'tribroken' in type and numpy.exp(sample[3]) < densprofiles._R0: norm= numpy.exp(-(sample[0]+sample[2])\ *(numpy.exp(sample[3])-densprofiles._R0)) else: norm= 1. tdensfunc= lambda x,y,z: densfunc(x,y,z,params=sample)*norm out.append(calcDiskMass_single(data,tdensfunc, effsel,Rgrid,phigrid,zgrid)) return numpy.array(out)*12500. def calcDiskMass_single(data, densfunc,effsel,Rgrid,phigrid,zgrid): """ NAME: calcDiskMass_single PURPOSE: calculate the local surface density for a single density profile INPUT: data - the data array densfunc - function that returns the density when called with R,phi,z effsel - array (nloc,nD), includes D^2*Delta D factor Rgrid, phigrid, zgrid - array (nloc,nD) of the cylindrical Galactocentric coordinates corresponding to the (l_loc,b_loc,D) of the effective selection function OUTPUT: local surface density in Msol/pc^2 HISTORY: 2015-04-29 - Written - Bovy (IAS) """ # Calculate the effective volume pred= fitDens.effvol(densfunc,effsel,Rgrid,phigrid,zgrid) # Area included in effvol is in deg^2 return len(data)/pred/10.**6.*(180./numpy.pi)**2. ``` #### File: apogee-maps/py/define_rgbsample.py ```python import math import numpy import statsmodels.api as sm lowess= sm.nonparametric.lowess import esutil from galpy.util import bovy_coords, bovy_plot from scipy.interpolate import interp1d,UnivariateSpline import apogee.tools.read as apread import isodist import numpy as np import matplotlib.pyplot as plt import os import pickle import apogee.tools.read as apread from apogee.select import apogeeSelect from astropy.io import fits from astropy.table import Table, join _R0= 8. # kpc _Z0= 0.025 # kpc _FEHTAG= 'FE_H' _AFETAG= 'AVG_ALPHAFE' _AFELABEL= r'$[\left([\mathrm{O+Mg+Si+S+Ca}]/5\right)/\mathrm{Fe}]$' catpath = '../catalogues/' selectFile= '../savs/selfunc-nospdata.sav' if os.path.exists(selectFile): with open(selectFile,'rb') as savefile: apo= pickle.load(savefile) def get_rgbsample(loggcut = [1.8, 3.0], teffcut = [0, 10000], add_ages = False, agetype='Martig', apply_corrections=False, distance_correction=False, verbose = False): """ Get a clean sample of dr12 APOGEE data with Michael Haydens distances --- INPUT: None OUTPUT: Clean rgb sample with added distances HISTORY: Started - Mackereth 02/06/16 """ #get the allStar catalogue using apogee python (exlude all bad flags etc) allStar = apread.allStar(rmcommissioning=True, exclude_star_bad=True, exclude_star_warn=True, main=True, ak=True, adddist=False) #cut to a 'sensible' logg range (giants which are not too high on the RGB) allStar = allStar[(allStar['LOGG'] > loggcut[0])&(allStar['LOGG'] < loggcut[1])& (allStar['TEFF'] > teffcut[0])&(allStar['TEFF'] < teffcut[1])] if verbose == True: print str(len(allStar))+' Stars before Distance catalogue join (after Log(g) cut)' #load the distance VAC dists = fits.open(catpath+'DR12_DIST_R-GC.fits')[1].data #convert to astropy Table allStar_tab = Table(data=allStar) dists_tab = Table(data=dists) #join table tab = join(allStar_tab, dists_tab, keys='APOGEE_ID', uniq_col_name='{col_name}{table_name}', table_names=['','2']) data = tab.as_array() data= esutil.numpy_util.add_fields(data,[('M_J', float), ('M_H', float), ('M_K', float), ('MH50_DIST', float), ('MH50_GALR', float), ('MH50_GALZ', float), ('MH50_GALPHI', float), ('AVG_ALPHAFE', float)]) data['MH50_DIST'] = (10**((data['HAYDEN_DISTMOD_50']+5)/5))/1e3 if distance_correction == True: data['MH50_DIST'] *= 1.05 XYZ= bovy_coords.lbd_to_XYZ(data['GLON'], data['GLAT'], data['MH50_DIST'], degree=True) RphiZ= bovy_coords.XYZ_to_galcencyl(XYZ[:,0], XYZ[:,1], XYZ[:,2], Xsun=8.,Zsun=0.025) data['MH50_GALR']= RphiZ[:,0] data['MH50_GALPHI']= RphiZ[:,1] data['MH50_GALZ']= RphiZ[:,2] data['M_J'] = data['J0']-data['HAYDEN_DISTMOD_50'] data['M_H'] = data['H0']-data['HAYDEN_DISTMOD_50'] data['M_K'] = data['K0']-data['HAYDEN_DISTMOD_50'] data['AVG_ALPHAFE'] = avg_alphafe_dr12(data) data[_FEHTAG] += -0.1 #remove locations not in the apogee selection function (FIND OUT WHATS UP HERE) data = data[np.in1d(data['LOCATION_ID'], apo.list_fields())] # Remove locations outside of the Pan-STARRS dust map # In the Southern hemisphere data= data[data['LOCATION_ID'] != 4266] #240,-18 data= data[data['LOCATION_ID'] != 4331] #5.5,-14.2 data= data[data['LOCATION_ID'] != 4381] #5.2,-12.2 data= data[data['LOCATION_ID'] != 4332] #1,-4 data= data[data['LOCATION_ID'] != 4329] #0,-5 data= data[data['LOCATION_ID'] != 4351] #0,-2 data= data[data['LOCATION_ID'] != 4353] #358,0 data= data[data['LOCATION_ID'] != 4385] #358.6,1.4 # Close to the ecliptic pole where there's no data (is it the ecliptic pole? data= data[data['LOCATION_ID'] != 4528] #120,30 data= data[data['LOCATION_ID'] != 4217] #123,22.4 #remove any non-finite magnitudes data = data[np.isfinite(data['M_H'])] if verbose == True: print str(len(data))+' Stars with distance measures (and in good fields...)' if add_ages == True: if agetype == 'Martig': ages = fits.open(catpath+'DR12_martigages_vizier.fits')[1].data idtag = '2MASS_ID' if agetype == 'Cannon': ages = fits.open(catpath+'RGB_Cannon_Ages.fits')[1].data ages = esutil.numpy_util.add_fields(ages,[('Age', float)]) ages['Age'] = np.exp(ages['ln_age']) idtag = 'ID' ages_tab = Table(data=ages) ages_tab.rename_column(idtag, 'APOGEE_ID') tab = join( ages_tab,data, keys='APOGEE_ID', uniq_col_name='{col_name}{table_name}', table_names=['','2']) allStar_full = tab.as_array() data = allStar_full if verbose == True: print str(len(data))+' Stars with ages' if apply_corrections == True: #martig1 = np.genfromtxt(catpath+'martig2016_table1.txt', dtype=None, names=True, skip_header=2) martig1 = fits.open(catpath+'martig_table1.fits') fit = lowess(np.log10(martig1['Age_out']),np.log10(martig1['Age_in'])) xs = np.linspace(-0.3,1.2,100) xsinterpolate = interp1d(xs,xs) fys = fit[:,0]-xsinterpolate(fit[:,1]) interp = UnivariateSpline(fit[:,1], fys) corr_age = np.log10(data['Age'])+(interp(np.log10(data['Age']))) corr_age = 10**corr_age data['Age'] = corr_age return data def avg_alphafe_dr12(data): weight_o= np.ones(len(data)) weight_s= np.ones(len(data)) weight_si= np.ones(len(data)) weight_ca= np.ones(len(data)) weight_mg= np.ones(len(data)) weight_o[data['O_H'] == -9999.0]= 0. weight_s[data['S_H'] == -9999.0]= 0. weight_si[data['SI_H'] == -9999.0]= 0. weight_ca[data['CA_H'] == -9999.0]= 0. weight_mg[data['MG_H'] == -9999.0]= 0. return (weight_o*data['O_H']+weight_s*data['S_H'] +weight_si*data['SI_H']+weight_ca*data['CA_H'] +weight_mg*data['MG_H'])/(weight_o+weight_s +weight_si+weight_ca +weight_mg)\ -data['FE_H']-0.05 # Define the low-alpha, low-iron sample def _lowlow_lowfeh(afe): # The low metallicity edge return -0.6 def _lowlow_highfeh(afe): # The high metallicity edge return -0.25 def _lowlow_lowafe(feh): # The low alpha edge (-0.15,-0.075) to (-0.5,0) return (0--0.075)/(-0.5--0.15)*(feh+0.1--0.15)-0.075 def _lowlow_highafe(feh): # The high alpha edge (-0.15,0.075) to (-0.5,0.15) return (0.15-0.075)/(-0.5--0.15)*(feh+0.1--0.15)+0.075 def get_lowlowsample(): """ NAME: get_lowlowsample PURPOSE: get the RGB sample at low alpha, low iron INPUT: None so far OUTPUT: sample HISTORY: 2015-03-18 - Started - Bovy (IAS) 2016-07-02 - modification - Mackereth (LJMU) """ # Get the full sample first data= get_rgbsample() # Now cut it lowfeh= _lowlow_lowfeh(0.) highfeh= _lowlow_highfeh(0.) indx= (data[_FEHTAG] > lowfeh)*(data[_FEHTAG] <= highfeh)\ *(data[_AFETAG] > _lowlow_lowafe(data[_FEHTAG]))\ *(data[_AFETAG] <= _lowlow_highafe(data[_FEHTAG])) return data[indx] # Define the high-alpha sample def _highalpha_lowfeh(afe): # The low metallicity edge return -0.8 def _highalpha_highfeh(afe): # The high metallicity edge return -0.2 def _highalpha_lowafe(feh): # The low alpha edge (-0.125,0.115) to (-0.6,0.215) return (0.2-0.1)/(-0.6--0.125)*(feh+0.1--0.125)+0.115 def _highalpha_highafe(feh): # The high alpha edge (-0.125,0.19) to (-0.6,0.29) return (0.275-0.175)/(-0.6--0.125)*(feh+0.1--0.125)+0.19 def get_highalphasample(): """ NAME: get_highalphasample PURPOSE: get the RC sample at high alpha INPUT: None so far OUTPUT: sample HISTORY: 2015-03-24 - Started - Bovy (IAS) """ # Get the full sample first data= get_rcsample() # Now cut it lowfeh= _highalpha_lowfeh(0.) highfeh= _highalpha_highfeh(0.) indx= (data[_FEHTAG] > lowfeh)*(data[_FEHTAG] <= highfeh)\ *(data[_AFETAG] > _highalpha_lowafe(data[_FEHTAG]))\ *(data[_AFETAG] <= _highalpha_highafe(data[_FEHTAG])) return data[indx] # Define the solar sample def _solar_lowfeh(afe): # The low metallicity edge return -0.2 def _solar_highfeh(afe): # The high metallicity edge return 0. def _solar_lowafe(feh): # The low alpha edge (0.1,-0.075) to (-0.1,-0.075) return -0.075 def _solar_highafe(feh): # The high alpha edge (-0.15,0.1) to (0.1,0.05) return (0.1-0.05)/(-0.15-0.1)*(feh+0.1-0.1)+0.05 def get_solarsample(): """ NAME: get_solarsample PURPOSE: get the RC sample at solar abundances INPUT: None so far OUTPUT: sample HISTORY: 2015-03-18 - Started - Bovy (IAS) 2016-07-02 - modification - Mackereth (LJMU) """ # Get the full sample first data= get_rgbsample() # Now cut it lowfeh= _solar_lowfeh(0.) highfeh= _solar_highfeh(0.) indx= (data[_FEHTAG] > lowfeh)*(data[_FEHTAG] <= highfeh)\ *(data[_AFETAG] > _solar_lowafe(data[_FEHTAG]))\ *(data[_AFETAG] <= _solar_highafe(data[_FEHTAG])) return data[indx] # Define the high metallicity sample def _highfeh_lowfeh(afe): # The low metallicity edge return 0.05 def _highfeh_highfeh(afe): # The high metallicity edge return 0.3 def _highfeh_lowafe(feh): # The low alpha edge (0.1,-0.075) to (-0.1,-0.075) return -0.075 def _highfeh_highafe(feh): # The high alpha edge (-0.15,0.1) to (0.1,0.05) return 0.05 def get_highfehsample(): """ NAME: get_highfehsample PURPOSE: get the RC sample at high [Fe/H] INPUT: None so far OUTPUT: sample HISTORY: 2015-03-18 - Started - Bovy (IAS) 2016-07-02 - modification - Mackereth (LJMU) """ # Get the full sample first data= get_rgbsample() # Now cut it lowfeh= _highfeh_lowfeh(0.) highfeh= _highfeh_highfeh(0.) indx= (data[_FEHTAG] > lowfeh)*(data[_FEHTAG] <= highfeh)\ *(data[_AFETAG] > _highfeh_lowafe(data[_FEHTAG]))\ *(data[_AFETAG] <= _highfeh_highafe(data[_FEHTAG])) return data[indx] def alphaedge(fehs): edge = np.zeros(len(fehs)) edge[fehs < 0] = (0.12/-0.6)*fehs[fehs < 0]+0.03 edge[fehs >= 0] = 0.03 return edge def highalphaedge(fehs): edge = np.zeros(len(fehs)) edge[fehs < 0] = (-0.13/0.6)*fehs[fehs < 0]+0.04 edge[fehs >= 0] = 0.04 return edge def lowalphaedge(fehs): edge = np.zeros(len(fehs)) edge[fehs < 0] = (-0.10/0.6)*fehs[fehs < 0]+0.01 edge[fehs >= 0] = 0.01 return edge def get_fehage(agebin = [0.,1.], fehbin = [0.,0.2], afebin = 'low', dr=None, agetype='Martig', apply_corrections=False, distance_correction=False): data = get_rgbsample(add_ages=True, agetype=agetype, apply_corrections=apply_corrections, distance_correction=distance_correction) if afebin == 'low': indx = (data['Age'] >= agebin[0])*(data['Age'] < agebin[1])\ *(data[_FEHTAG] >= fehbin[0])*(data[_FEHTAG] < fehbin[1])*(data[_AFETAG] < alphaedge(data[_FEHTAG])) if afebin == 'high': indx = (data['Age'] >= agebin[0])*(data['Age'] < agebin[1])\ *(data[_FEHTAG] >= fehbin[0])*(data[_FEHTAG] < fehbin[1])*(data[_AFETAG] >= alphaedge(data[_FEHTAG])) if afebin == 'highclean': indx = (data['Age'] >= agebin[0])*(data['Age'] < agebin[1])\ *(data[_FEHTAG] >= fehbin[0])*(data[_FEHTAG] < fehbin[1])*(data[_AFETAG] >= highalphaedge(data[_FEHTAG])) if afebin == 'lowclean': indx = (data['Age'] >= agebin[0])*(data['Age'] < agebin[1])\ *(data[_FEHTAG] >= fehbin[0])*(data[_FEHTAG] < fehbin[1])*(data[_AFETAG] <= lowalphaedge(data[_FEHTAG])) if afebin == 'lownew': indx = (data['Age'] >= agebin[0])*(data['Age'] < agebin[1])\ *(data[_FEHTAG] >= fehbin[0])*(data[_FEHTAG] < fehbin[1])*(data[_AFETAG] <= alphaedge(data[_FEHTAG])-0.025) if afebin == 'highnew': indx = (data['Age'] >= agebin[0])*(data['Age'] < agebin[1])\ *(data[_FEHTAG] >= fehbin[0])*(data[_FEHTAG] < fehbin[1])*(data[_AFETAG] >= alphaedge(data[_FEHTAG])+0.025) if afebin == None: indx = (data['Age'] >= agebin[0])*(data['Age'] < agebin[1])*(data[_FEHTAG] >= fehbin[0])*(data[_FEHTAG] < fehbin[1]) return data[indx] def highalphalocus(): data= get_rgbsample() indx= (data[_AFETAG] > (0.2-0.1)/(-0.6--0.125)*(data[_FEHTAG]+0.1--0.125)+0.11)\ *(data[_FEHTAG] < -0.225)\ +(data[_AFETAG] > 0.05/(-0.6--0.125)*(data[_FEHTAG]+0.1--0.125)+0.11)\ *(data[_FEHTAG] >= -0.225)*(data[_FEHTAG] < 0.125)\ +(data[_FEHTAG] >= 0.125) return lowess(data[_AFETAG][indx],data[_FEHTAG][indx],frac=0.6) def lowalphalocus(): data= get_rgbsample() indx= (data[_AFETAG] > (0.2-0.1)/(-0.6--0.125)*(data[_FEHTAG]+0.1--0.125)+0.11)\ *(data[_FEHTAG] < -0.025)\ +(data[_AFETAG] > 0.05/(-0.6--0.125)*(data[_FEHTAG]+0.1--0.125)+0.11)\ *(data[_FEHTAG] >= -0.225)*(data[_FEHTAG] < 0.125) return lowess(data[_AFETAG][True-indx],data[_FEHTAG][True-indx],frac=0.6) class MAPs: """Class that pixelizes the data sample in [Fe/H] and [a/Fe]""" def __init__(self,data=None,dfeh=0.1,dafe=0.05,fehmin=-0.75,fehmax=0.35, afemin=-0.075,afemax=0.275): """ NAME: __init__ PURPOSE: initialize the MAPs INPUT: data= (None) the data sample; if None, whole stat. RC sample dfeh, dafe= pixel size fehmin, fehmax, afemin, afemax= minimum and maximum FeH and AFe OUTPUT: object with pixelized data HISTORY: 2015-04-06 - Written - Bovy (IAS) """ if data is None: data= get_rcsample() self.data= data self.dx= dfeh self.dy= dafe self.xmin= fehmin self.xmax= fehmax self.ymin= afemin self.ymax= afemax # edges in X and Y self.xedges= numpy.arange(self.xmin,self.xmax+0.01,self.dx) self.yedges= numpy.arange(self.ymin,self.ymax+0.01,self.dy) # X and Y self.x= data[_FEHTAG] self.y= data[_AFETAG] return None def __call__(self,*args,**kwargs): """ NAME: __call__ PURPOSE: return the part of the sample in a (feh,afe) pixel INPUT: [Fe/H] [a/Fe] OUTPUT: returns data recarray in the bin that feh and afe are in HISTORY: 2015-04-06 - Written - Bovy (IAS) """ #Find bin xbin= int(math.floor((args[0]-self.xmin)/self.dx)) ybin= int(math.floor((args[1]-self.ymin)/self.dy)) #Return data return self.data[(self.x > self.xedges[xbin])\ *(self.x <= self.xedges[xbin+1])\ *(self.y > self.yedges[ybin])\ *(self.y <= self.yedges[ybin+1])] def map(self): """ NAME: map PURPOSE: yield a map INPUT: (none) OUTPUT: iterates over the MAPs HISTORY: 2015-04-06 - Written - Bovy (IAS) """ nx= int((self.xmax-self.xmin)/self.dx) ny= int((self.ymax-self.ymin)/self.dy) gx= numpy.linspace(self.xmin+self.dx/2.,self.xmax-self.dx/2.,nx) gy= numpy.linspace(self.ymin+self.dy/2.,self.ymax-self.dy/2.,ny) for ii in range(nx): for jj in range(ny): yield self(gx[ii],gy[jj]) def callIndx(self,*args,**kwargs): """ NAME: callIndx PURPOSE: return index of the part of the sample in an [Fe/H] and [a/Fe] pixel INPUT: [Fe/H] [a/Fe] OUTPUT: returns index into data recarray in the bin that [Fe/H] and [a/Fe] are in HISTORY: 2015-04-06 - Written - Bovy (IAS) """ #Find bin xbin= int(math.floor((args[0]-self.xmin)/self.dx)) ybin= int(math.floor((args[1]-self.ymin)/self.dy)) #Return data return (self.x > self.xedges[xbin])\ *(self.x <= self.xedges[xbin+1])\ *(self.y > self.yedges[ybin])\ *(self.y <= self.yedges[ybin+1]) def xindx(self,x): """ NAME: xindx PURPOSE: return the index corresponding to a [Fe/H] value INPUT: [Fe/H] OUTPUT: index HISTORY: 2015-04-06 - Written - Bovy (IAS) """ return int(math.floor((x-self.xmin)/self.dx)) def yindx(self,y): """ NAME: yindx PURPOSE: return the index corresponding to a [a/Fe] value INPUT: [a/Fe] OUTPUT: index HISTORY: 2015-04-06 - Written - Bovy (IAS) """ return int(math.floor((y-self.ymin)/self.dy)) def plot(self,quant,func=numpy.median,minnstar=20.,submediany=False, returnz=False,justcalc=False, **kwargs): """ NAME: plot PURPOSE: make a plot of a quantity as a function of X and Y INPUT: quant - the quantity (string that returns the quantity, like 'METALS') or a function of the data func - function of quantity to plot minnstar= minimum number of stars (20) submeany= subtract the median y justcalc= (False) if True, do not plot bovy_plot.bovy_dens2d kwargs OUTPUT: plot to output device HISTORY: 2015-04-06 - Written - Bovy (IAS) """ #First create 2D nx= int((self.xmax-self.xmin)/self.dx) ny= int((self.ymax-self.ymin)/self.dy) gx= numpy.linspace(self.xmin+self.dx/2.,self.xmax-self.dx/2.,nx) gy= numpy.linspace(self.ymin+self.dy/2.,self.ymax-self.dy/2.,ny) z2d= numpy.empty((nx,ny)) if isinstance(quant,numpy.ndarray): z2d= numpy.reshape(quant,(nx,ny)) for ii in range(z2d.shape[0]): for jj in range(z2d.shape[1]): tdata= self(gx[ii],gy[jj]) if len(tdata) < minnstar: z2d[ii,jj]= numpy.nan else: nbins= 0 for ii in range(z2d.shape[0]): for jj in range(z2d.shape[1]): tdata= self(gx[ii],gy[jj]) if len(tdata) < minnstar: z2d[ii,jj]= numpy.nan else: nbins+= 1 if hasattr(quant, '__call__'): z2d[ii,jj]= func(quant(tdata)) else: z2d[ii,jj]= func(tdata[quant]) if submediany: z2d[ii,:]-= \ numpy.median(z2d[ii,True-numpy.isnan(z2d[ii,:])]) if justcalc: if returnz: return z2d else: return None #Now plot xrange= kwargs.pop('xrange',[self.xmin,self.xmax]) yrange= kwargs.pop('yrange',[self.ymin,self.ymax]) if not kwargs.has_key('colorbar'): kwargs['colorbar']= True if not kwargs.has_key('shrink'): kwargs['shrink']= 0.78 if not kwargs.has_key('vmin'): kwargs['vmin']= numpy.nanmin(z2d) if not kwargs.has_key('vmax'): kwargs['vmax']= numpy.nanmax(z2d) xlabel= r'$[\mathrm{Fe/H}]$' ylabel= _AFELABEL cmap= kwargs.pop('cmap','coolwarm') out= bovy_plot.bovy_dens2d(z2d.T,origin='lower',cmap=cmap, interpolation='nearest', xlabel=xlabel,ylabel=ylabel, xrange=xrange,yrange=yrange, **kwargs) if returnz: return z2d else: return out ``` #### File: apogee-maps/py/fitDens.py ```python import os, os.path import pickle import numpy from scipy import optimize from galpy.util import bovy_coords import bovy_mcmc import acor import densprofiles import define_rcsample def fitDens(data, locations,effsel,distmods, type='exp', mcmc=False,nsamples=10000, verbose=True, init=None, retMaxL=False, pos_keys = ['<KEY> <KEY> <KEY>']): """ NAME: fitDens PURPOSE: fit the density profile of a set of stars INPUT: data - recarray with the data locations - locations of the APOGEE effective selection function effsel - array (nloc,nD) of the effective selection function, includes area of the field distmods - grid of distance moduli on which the effective selection function is pre-computed type= ('exp') type of density profile to fit mcmc= (False) run MCMC or not nsamples= (10000) number of MCMC samples to obtain verbose= (True) set this to False for no optimize convergence messages init= (None) if set, these are the initial conditions retMaxL= (False) if True, return the maximum likelihood pos_keys = the keys in the data table to R, phi and Z OUTPUT: (best-fit, samples, maximum-likelihood) based on options HISTORY: 2015-03-24 - Written - Bovy (IAS) 2017-03-04 - added pos_keys kwarg - Mackereth (ARI) """ # Setup the density function and its initial parameters densfunc= _setup_densfunc(type) if init is None: init= _setup_initparams_densfunc(type,data, pos_keys = pos_keys) # Setup the integration of the effective volume effsel, Rgrid, phigrid, zgrid= _setup_effvol(locations,effsel,distmods) # Get the data's R,phi,z dataR= data[pos_keys[0]] dataphi= data[pos_keys[1]] dataz= data[pos_keys[2]] # Optimize out= optimize.fmin(lambda x: _mloglike(x,densfunc,type, dataR,dataphi,dataz, effsel,Rgrid,phigrid,zgrid), init,disp=verbose) if 'explinflare' in type: step= [0.2,0.2,0.2,0.2,0.02] # need small step for Rfinv else: step= 0.2 if mcmc: samples= bovy_mcmc.markovpy(out, step, lambda x: loglike(x,densfunc,type, dataR,dataphi,dataz, effsel,Rgrid, phigrid,zgrid), (), isDomainFinite=[[False,False] for ii in range(len(out))], domain= [[0.,0.] for ii in range(len(out))], nsamples=nsamples, nwalkers=2*len(out)) if verbose: print_samples_qa(samples) out= (out,numpy.array(samples).T,) else: out= (out,) if retMaxL: out= out+(loglike(out[0],densfunc,type,dataR,dataphi,dataz, effsel,Rgrid, phigrid,zgrid),) return out def _mloglike(*args,**kwargs): """Minus the log likelihood""" return -loglike(*args,**kwargs) def loglike(params,densfunc,type, dataR,dataphi,dataz, effsel,Rgrid,phigrid,zgrid): """ NAME: loglike PURPOSE: compute the log likelihood of the data given a density profile INPUT: params - parameters of the density densfunc - a function that evaluates the density as densfunc(R,phi,z,params=params) dataR, dataphi, dataz - the cylindrical Galactocentric coordinates of the data effsel - array (nloc,nD), includes D^2*Delta D factor Rgrid, phigrid, zgrid - array (nloc,nD) of the cylindrical Galactocentric coordinates corresponding to the (l_loc,b_loc,D) of the effective selection function OUTPUT: log likelihood HISTORY: 2015-03-24 - Written - Bovy (IAS) """ # Check priors if not _check_range_params_densfunc(params,type): return -numpy.finfo(numpy.dtype(numpy.float64)).max #raise NotImplementedError("Need to implement priors") # Setup the density function tdensfunc= lambda x,y,z: densfunc(x,y,z,params=params) # Evaluate the log density at the data datadens= numpy.log(tdensfunc(dataR,dataphi,dataz)) # Evaluate the effective volume teffvol= effvol(tdensfunc,effsel,Rgrid,phigrid,zgrid) # Put it all together return numpy.sum(datadens)-len(dataR)*numpy.log(teffvol) def effvol(densfunc,effsel,Rgrid,phigrid,zgrid): """ NAME: effvol PURPOSE: calculate the effective volume INPUT: densfunc - function that returns the density when called with R,phi,z effsel - array (nloc,nD), includes D^2*Delta D factor Rgrid, phigrid, zgrid - array (nloc,nD) of the cylindrical Galactocentric coordinates corresponding to the (l_loc,b_loc,D) of the effective selection function OUTPUT: effective volume HISTORY: 2015-03-24 - Written - Bovy (IAS) """ # Evaluate the density tdens= densfunc(Rgrid,phigrid,zgrid) return numpy.sum(effsel*tdens) ############################## DENSITY FUNCTIONS ############################# def _setup_densfunc(type): """Return the density function for this type""" if type.lower() == 'exp': return densprofiles.expdisk elif type.lower() == 'expplusconst': return densprofiles.expdiskplusconst elif type.lower() == 'twoexp': return densprofiles.twoexpdisk elif type.lower() == 'brokenexp': return densprofiles.brokenexpdisk elif type.lower() == 'tribrokenexp': return densprofiles.tribrokenexpdisk elif type.lower() == 'symbrokenexp': return densprofiles.symbrokenexpdisk elif type.lower() == 'brokenexpflare': return densprofiles.brokenexpflaredisk elif type.lower() == 'tribrokenexpflare': return densprofiles.tribrokenexpflaredisk elif type.lower() == 'tribrokenexpfixedflare': return densprofiles.tribrokenexpfixedflaredisk elif type.lower() == 'brokentwoexp': return densprofiles.brokentwoexpdisk elif type.lower() == 'brokentwoexpflare': return densprofiles.brokentwoexpflaredisk elif type.lower() == 'tribrokentwoexp': return densprofiles.tribrokentwoexpdisk elif type.lower() == 'gaussexp': return densprofiles.gaussexpdisk elif type.lower() == 'brokenquadexp': return densprofiles.brokenquadexpdisk elif type.lower() == 'symbrokenquadexp': return densprofiles.symbrokenquadexpdisk elif type.lower() == 'brokenexpfixedspiral': return densprofiles.brokenexpdiskfixedspiral elif type.lower() == 'tribrokenexplinflare': return densprofiles.tribrokenexplinflaredisk elif type.lower() == 'tribrokenexpinvlinflare': return densprofiles.tribrokenexpinvlinflaredisk def _setup_initparams_densfunc(type,data, pos_keys=['<KEY>', '<KEY>', '<KEY>']): """Return the initial parameters of the density for this type, might depend on the data""" if type.lower() == 'exp': return [1./3.,1./0.3] elif type.lower() == 'expplusconst': return [1./3.,1./0.3,numpy.log(0.1)] elif type.lower() == 'twoexp': return [1./3.,1./0.3,1./4.,1./0.5,densprofiles.logit(0.5)] elif type.lower() == 'brokenexp': return [-1./3.,1./0.3,1./3.,numpy.log(numpy.median(data[pos_keys[0]]))] elif type.lower() == 'tribrokenexp': return [1./3.,1./0.3,1./3.,numpy.log(numpy.median(data[pos_keys[0]]))] elif type.lower() == 'symbrokenexp': return [0.4,1./0.3,numpy.log(10.)] elif type.lower() == 'brokenexpflare': return [-1./3.,1./0.3,1./3.,numpy.log(numpy.median(data[pos_keys[0]])), -1./5.] elif type.lower() == 'tribrokenexpflare': return [1./3.,1./0.3,1./3.,numpy.log(numpy.median(data[pos_keys[0]])), -1./5.] elif type.lower() == 'tribrokenexpfixedflare': return [1./3.,1./0.3,1./3.,numpy.log(numpy.median(data[pos_keys[0]]))] elif type.lower() == 'brokentwoexp': return [-1./3.,1./0.3,1./3.,numpy.log(numpy.median(data[pos_keys[0]])), densprofiles.logit(0.5),1./0.8] elif type.lower() == 'brokentwoexpflare': return [-1./3.,1./0.3,1./3.,numpy.log(numpy.median(data[pos_keys[0]])), densprofiles.logit(0.5),1./0.8,-0.2] elif type.lower() == 'tribrokentwoexp': return [1./3.,1./0.3,1./3.,numpy.log(numpy.median(data[pos_keys[0]])), densprofiles.logit(0.5),1./0.8] elif type.lower() == 'gaussexp': return [1./3.,1./0.3,numpy.log(10.)] elif type.lower() == 'brokenquadexp': return [1./3.,1./0.3,1./3.,numpy.log(10.)] elif type.lower() == 'symbrokenquadexp': return [1./3.,1./0.3,numpy.log(10.)] elif type.lower() == 'brokenexpfixedspiral': return [1./6.,1./0.3,1./2.,numpy.log(14.),numpy.log(1.)] elif type.lower() == 'tribrokenexplinflare': return [1./3.,1./0.3,1./3.,numpy.log(numpy.median(data[pos_keys[0]])), 0.] elif type.lower() == 'tribrokenexpinvlinflare': return [1./3.,1./0.3,1./3.,numpy.log(numpy.median(data[pos_keys[0]])), -1./5.] def _check_range_params_densfunc(params,type): """Check that the current parameters are in a reasonable range (prior)""" # Second parameter is always a scale height, which we don't allow neg. if params[1] < 0.: return False if type.lower() == 'exp': if numpy.fabs(params[0]) > 2.: return False if numpy.fabs(params[1]) > 20.: return False if numpy.exp(params[2]) > 1.: return False elif type.lower() == 'expplusconst': if numpy.fabs(params[0]) > 2.: return False if numpy.fabs(params[1]) > 20.: return False if numpy.exp(params[2]) > 1.: return False if params[2] < -20.: return False elif type.lower() == 'twoexp': if numpy.fabs(params[0]) > 2.: return False if numpy.fabs(params[1]) > 20.: return False if numpy.fabs(params[2]) > 2.: return False if numpy.fabs(params[3]) > 20.: return False elif type.lower() == 'brokenexp': if numpy.fabs(params[0]) > 2.: return False if numpy.fabs(params[1]) > 20.: return False if numpy.fabs(params[2]) > 2.: return False if numpy.exp(params[3]) > 16.: return False if numpy.exp(params[3]) < 1.: return False elif type.lower() == 'tribrokenexp': if params[0] < 0.: return False if params[0] > 2.: return False if numpy.fabs(params[1]) > 20.: return False if params[2] < 0.: return False if params[2] > 2.: return False if numpy.exp(params[3]) > 16.: return False if numpy.exp(params[3]) < 1.: return False elif type.lower() == 'symbrokenexp': if params[0] < 0.: return False if params[0] > 2.: return False if numpy.fabs(params[1]) > 20.: return False if numpy.exp(params[2]) > 16.: return False if numpy.exp(params[2]) < 1.: return False elif type.lower() == 'brokenexpflare': if numpy.fabs(params[0]) > 2.: return False if numpy.fabs(params[1]) > 20.: return False if numpy.fabs(params[2]) > 2.: return False if numpy.exp(params[3]) > 16.: return False if numpy.exp(params[3]) < 1.: return False elif type.lower() == 'tribrokenexpflare': if params[0] < 0.: return False if params[0] > 2.: return False if numpy.fabs(params[1]) > 20.: return False if params[2] < 0.: return False if params[2] > 2.: return False if numpy.exp(params[3]) > 16.: return False if numpy.exp(params[3]) < 1.: return False elif type.lower() == 'tribrokenexpfixedflare': if params[0] < 0.: return False if params[0] > 2.: return False if numpy.fabs(params[1]) > 20.: return False if params[2] < 0.: return False if params[2] > 2.: return False if numpy.exp(params[3]) > 16.: return False if numpy.exp(params[3]) < 1.: return False elif type.lower() == 'brokentwoexp': if numpy.fabs(params[0]) > 2.: return False if numpy.fabs(params[1]) > 20.: return False if numpy.fabs(params[2]) > 2.: return False if numpy.exp(params[3]) > 16.: return False if numpy.exp(params[3]) < 1.: return False if params[4] < -7.: return False if params[4] > 0.: return False #make 2nd less dominant if params[5] < 0.: return False if numpy.fabs(params[5]) > 20.: return False elif type.lower() == 'brokentwoexpflare': if numpy.fabs(params[0]) > 2.: return False if numpy.fabs(params[1]) > 20.: return False if numpy.fabs(params[2]) > 2.: return False if numpy.exp(params[3]) > 16.: return False if numpy.exp(params[3]) < 1.: return False if params[4] < -7.: return False if params[4] > 0.: return False #make 2nd less dominant if params[5] < 0.: return False if numpy.fabs(params[5]) > 20.: return False elif type.lower() == 'tribrokentwoexp': if params[0] < 0.: return False if params[0] > 2.: return False if numpy.fabs(params[1]) > 20.: return False if params[2] < 0.: return False if params[2] > 2.: return False if numpy.exp(params[3]) > 16.: return False if numpy.exp(params[3]) < 1.: return False if params[4] < -7.: return False if params[4] > 0.: return False #make 2nd less dominant if params[5] < 0.: return False if params[5] > 20.: return False elif type.lower() == 'gaussexp': if params[0] < 0.: return False if params[0] > 2.: return False if numpy.fabs(params[1]) > 20.: return False if numpy.exp(params[2]) > 16.: return False if numpy.exp(params[2]) < 1.: return False elif type.lower() == 'brokenquadexp': if params[0] < 0.: return False if params[0] > 2.: return False if numpy.fabs(params[1]) > 20.: return False if params[2] < 0.: return False if params[2] > 2.: return False if numpy.exp(params[3]) > 16.: return False if numpy.exp(params[3]) < 1.: return False elif type.lower() == 'symbrokenquadexp': if params[0] < 0.: return False if params[0] > 2.: return False if numpy.fabs(params[1]) > 20.: return False if numpy.exp(params[2]) > 16.: return False if numpy.exp(params[2]) < 1.: return False elif type.lower() == 'brokenexpfixedspiral': if numpy.fabs(params[0]) > 2.: return False if numpy.fabs(params[1]) > 20.: return False if numpy.fabs(params[2]) > 2.: return False if numpy.exp(params[3]) > 16.: return False if numpy.exp(params[3]) < 1.: return False elif type.lower() == 'tribrokenexplinflare': if params[0] < 0.: return False if params[0] > 2.: return False if numpy.fabs(params[1]) > 20.: return False if params[2] < 0.: return False if params[2] > 2.: return False if numpy.exp(params[3]) > 16.: return False if numpy.exp(params[3]) < 1.: return False elif type.lower() == 'tribrokenexpinvlinflare': if params[0] < 0.: return False if params[0] > 2.: return False if numpy.fabs(params[1]) > 20.: return False if params[2] < 0.: return False if params[2] > 2.: return False if numpy.exp(params[3]) > 16.: return False if numpy.exp(params[3]) < 1.: return False return True ########################### EFFECTIVE VOLUME SETUP ############################ def _setup_effvol(locations,effsel,distmods): # First restore the APOGEE selection function (assumed pre-computed) selectFile= '../savs/selfunc-nospdata.sav' if os.path.exists(selectFile): with open(selectFile,'rb') as savefile: apo= pickle.load(savefile) # Now compute the necessary coordinate transformations ds= 10.**(distmods/5-2.) Rgrid, phigrid, zgrid= [], [], [] for loc in locations: lcen, bcen= apo.glonGlat(loc) XYZ= bovy_coords.lbd_to_XYZ(lcen*numpy.ones_like(ds), bcen*numpy.ones_like(ds), ds, degree=True) Rphiz= bovy_coords.XYZ_to_galcencyl(XYZ[:,0],XYZ[:,1],XYZ[:,2], Xsun=define_rcsample._R0, Zsun=define_rcsample._Z0) Rgrid.append(Rphiz[:,0]) phigrid.append(Rphiz[:,1]) zgrid.append(Rphiz[:,2]) Rgrid= numpy.array(Rgrid) phigrid= numpy.array(phigrid) zgrid= numpy.array(zgrid) # Also need to multiply in distance factors effsel*= numpy.tile(ds**3.*(distmods[1]-distmods[0]),(effsel.shape[0],1)) return (effsel,Rgrid,phigrid,zgrid) # From vclos before... def print_samples_qa(samples): print "Mean, standard devs, acor tau, acor mean, acor s ..." for kk in range(len(samples[0])): xs= numpy.array([s[kk] for s in samples]) #Auto-correlation time tau, m, s= acor.acor(xs) print numpy.mean(xs), numpy.std(xs), tau, m, s ``` #### File: apogee-maps/py/fitMAPs.py ```python import sys import os, os.path import pickle import copy import numpy from galpy.util import save_pickles import define_rcsample import fitDens _NSAMPLES= 50000 # Globals locations= None distmods= None effsel= None effsel_mar= None effsel_drim= None effsel_sale= None effsel_zero= None def fitMAPs(type,savefilename): setup_selection_function() if os.path.exists(savefilename): with open(savefilename,'rb') as savefile: bf= pickle.load(savefile) samples= pickle.load(savefile) bf_g15= pickle.load(savefile) samples_g15= pickle.load(savefile) bf_zero= pickle.load(savefile) samples_zero= pickle.load(savefile) bii= pickle.load(savefile) else: bf= [] samples= [] bf_g15= [] samples_g15= [] bf_zero= [] samples_zero= [] bii= 0 maps= define_rcsample.MAPs() for ii, map in enumerate(maps.map()): if ii < bii: continue tbf, ts= fitmap(map,type=type,dmap='marshall06') bf.append(tbf) samples.append(ts) tbf, ts= fitmap(map,type=type,dmap='green15') bf_g15.append(tbf) samples_g15.append(ts) tbf, ts= fitmap(map,type=type,dmap='zero') bf_zero.append(tbf) samples_zero.append(ts) print ii, numpy.median(samples[-1],axis=1) save_pickles(savefilename,bf,samples, bf_g15,samples_g15, bf_zero,samples_zero, ii+1) return None def fitmap(tdata,type='brokenexp',dmap='marshall06'): tlocations= copy.deepcopy(locations) tdistmods= copy.deepcopy(distmods) if dmap == 'green15': teffsel= copy.deepcopy(effsel) elif dmap.lower() == 'marshall06': teffsel= copy.deepcopy(effsel_mar) elif dmap.lower() == 'zero': teffsel= copy.deepcopy(effsel_zero) bf, samples= fitDens.fitDens(tdata, numpy.array(tlocations), copy.deepcopy(teffsel), tdistmods,type=type,verbose=False, mcmc=True,nsamples=_NSAMPLES) bf= fitDens.fitDens(tdata, numpy.array(tlocations), copy.deepcopy(teffsel), tdistmods,type=type,verbose=False, init=numpy.median(samples,axis=1)) return (bf, samples) def setup_selection_function(): # Green et al. global locations, distmods, effsel, effsel_mar, effsel_drim, effsel_sale global effsel_zero with open('../essf/essf_green15.sav','rb') as savefile: locations= pickle.load(savefile) effsel= pickle.load(savefile) distmods= pickle.load(savefile) # Marshall et al. (2006) with open('../essf/essf_marshall06.sav','rb') as savefile: locations= pickle.load(savefile) effsel_mar= pickle.load(savefile) # Fill in regions not covered by Sale map effsel_mar[effsel_mar < -0.5]= effsel[effsel_mar < -0.5] # Sale et al. (2014) with open('../essf/essf_sale14.sav','rb') as savefile: locations= pickle.load(savefile) effsel_sale= pickle.load(savefile) # Fill in regions not covered by Marshall map effsel_sale[effsel_sale < -0.5]= effsel[effsel_sale < -0.5] # Drimmel et al (2003) with open('../essf/essf_drimmel03.sav','rb') as savefile: locations= pickle.load(savefile) effsel_drim= pickle.load(savefile) # Zero with open('../essf/essf_zero.sav','rb') as savefile: locations= pickle.load(savefile) effsel_zero= pickle.load(savefile) return None if __name__ == '__main__': fitMAPs(sys.argv[1],sys.argv[2]) ``` #### File: apogee-maps/py/mockDensData.py ```python import os, os.path import pickle import multiprocessing from optparse import OptionParser import numpy from scipy import ndimage import fitsio from galpy.util import bovy_coords, multi import mwdust import define_rcsample import fitDens import densprofiles dmap= None dmapg15= None apo= None def generate(locations, type='exp', sample='lowlow', extmap='green15', nls=101, nmock=1000, H0=-1.49, _dmapg15=None, ncpu=1): """ NAME: generate PURPOSE: generate mock data following a given density INPUT: locations - locations to be included in the sample type= ('exp') type of density profile to sample from sample= ('lowlow') for selecting mock parameters extmap= ('green15') extinction map to use ('marshall06' and others use Green15 to fill in unobserved regions) nls= (101) number of longitude bins to use for each field nmock= (1000) number of mock data points to generate H0= (-1.49) absolute magnitude (can be array w/ sampling spread) ncpu= (1) number of cpus to use to compute the probability OUTPUT: mockdata recarray with tags 'RC_GALR_H', 'RC_GALPHI_H', 'RC_GALZ_H' HISTORY: 2015-04-03 - Written - Bovy (IAS) """ if isinstance(H0,float): H0= [H0] # Setup the density function and its initial parameters rdensfunc= fitDens._setup_densfunc(type) mockparams= _setup_mockparams_densfunc(type,sample) densfunc= lambda x,y,z: rdensfunc(x,y,z,params=mockparams) # Setup the extinction map global dmap global dmapg15 if _dmapg15 is None: dmapg15= mwdust.Green15(filter='2MASS H') else: dmapg15= _dmapg15 if isinstance(extmap,mwdust.DustMap3D.DustMap3D): dmap= extmap elif extmap.lower() == 'green15': dmap= dmapg15 elif extmap.lower() == 'marshall06': dmap= mwdust.Marshall06(filter='2MASS H') elif extmap.lower() == 'sale14': dmap= mwdust.Sale14(filter='2MASS H') elif extmap.lower() == 'drimmel03': dmap= mwdust.Drimmel03(filter='2MASS H') # Use brute-force rejection sampling to make no approximations # First need to estimate the max probability to use in rejection; # Loop through all locations and compute sampling probability on grid in # (l,b,D) # First restore the APOGEE selection function (assumed pre-computed) global apo selectFile= '../savs/selfunc-nospdata.sav' if os.path.exists(selectFile): with open(selectFile,'rb') as savefile: apo= pickle.load(savefile) # Now compute the necessary coordinate transformations and evaluate the # maximum probability distmods= numpy.linspace(7.,15.5,301) ds= 10.**(distmods/5-2.) nbs= nls lnprobs= numpy.empty((len(locations),len(distmods),nbs,nls)) radii= [] lcens, bcens= [], [] lnprobs= multi.parallel_map(lambda x: _calc_lnprob(locations[x],nls,nbs, ds,distmods, H0, densfunc), range(len(locations)), numcores=numpy.amin([len(locations), multiprocessing.cpu_count(),ncpu])) lnprobs= numpy.array(lnprobs) for ll, loc in enumerate(locations): lcen, bcen= apo.glonGlat(loc) rad= apo.radius(loc) radii.append(rad) # save for later lcens.append(lcen[0]) bcens.append(bcen[0]) maxp= (numpy.exp(numpy.nanmax(lnprobs))-10.**-8.)*1.1 # Just to be sure # Now generate mock data using rejection sampling nout= 0 arlocations= numpy.array(locations) arradii= numpy.array(radii) arlcens= numpy.array(lcens) arbcens= numpy.array(bcens) out= numpy.recarray((nmock,), dtype=[('RC_DIST_H','f8'), ('RC_DM_H','f8'), ('RC_GALR_H','f8'), ('RC_GALPHI_H','f8'), ('RC_GALZ_H','f8')]) while nout < nmock: nnew= 2*(nmock-nout) # nnew new locations locIndx= numpy.floor(numpy.random.uniform(size=nnew)*len(locations)).astype('int') newlocations= arlocations[locIndx] # Point within these locations newds_coord= numpy.random.uniform(size=nnew) newds= 10.**((newds_coord*(numpy.amax(distmods)-numpy.amin(distmods))\ +numpy.amin(distmods))/5.-2.) newdls_coord= numpy.random.uniform(size=nnew) newdls= newdls_coord*2.*arradii[locIndx]\ -arradii[locIndx] newdbs_coord= numpy.random.uniform(size=nnew) newdbs= newdbs_coord*2.*arradii[locIndx]\ -arradii[locIndx] newr2s= newdls**2.+newdbs**2. keepIndx= newr2s < arradii[locIndx]**2. newlocations= newlocations[keepIndx] newds_coord= newds_coord[keepIndx] newdls_coord= newdls_coord[keepIndx] newdbs_coord= newdbs_coord[keepIndx] newds= newds[keepIndx] newdls= newdls[keepIndx] newdbs= newdbs[keepIndx] newls= newdls+arlcens[locIndx][keepIndx] newbs= newdbs+arbcens[locIndx][keepIndx] # Reject? tps= numpy.zeros_like(newds) for nloc in list(set(newlocations)): lindx= newlocations == nloc pindx= arlocations == nloc coord= numpy.array([newds_coord[lindx]*(len(distmods)-1.), newdbs_coord[lindx]*(nbs-1.), newdls_coord[lindx]*(nls-1.)]) tps[lindx]= \ numpy.exp(ndimage.interpolation.map_coordinates(\ lnprobs[pindx][0], coord,cval=-10., order=1))-10.**-8. XYZ= bovy_coords.lbd_to_XYZ(newls,newbs,newds,degree=True) Rphiz= bovy_coords.XYZ_to_galcencyl(XYZ[:,0],XYZ[:,1],XYZ[:,2], Xsun=define_rcsample._R0, Ysun=0., Zsun=define_rcsample._Z0) testp= numpy.random.uniform(size=len(newds))*maxp keepIndx= tps > testp if numpy.sum(keepIndx) > nmock-nout: rangeIndx= numpy.zeros(len(keepIndx),dtype='int') rangeIndx[keepIndx]= numpy.arange(numpy.sum(keepIndx)) keepIndx*= (rangeIndx < nmock-nout) out['RC_DIST_H'][nout:nout+numpy.sum(keepIndx)]= newds[keepIndx] out['RC_DM_H'][nout:nout+numpy.sum(keepIndx)]= newds_coord[keepIndx]*(numpy.amax(distmods)-numpy.amin(distmods))\ +numpy.amin(distmods) out['RC_GALR_H'][nout:nout+numpy.sum(keepIndx)]= Rphiz[0][keepIndx] out['RC_GALPHI_H'][nout:nout+numpy.sum(keepIndx)]= Rphiz[1][keepIndx] out['RC_GALZ_H'][nout:nout+numpy.sum(keepIndx)]= Rphiz[2][keepIndx] nout= nout+numpy.sum(keepIndx) return (out,lnprobs) def _setup_mockparams_densfunc(type,sample): """Return the parameters of the mock density for this type""" if type.lower() == 'exp': if sample.lower() == 'lowlow': return [0.,1./0.3] elif sample.lower() == 'solar': return [1./3.,1./0.3] else: return [1./3.,1./0.3] elif type.lower() == 'expplusconst': if sample.lower() == 'lowlow': return [0.,1./0.3,numpy.log(0.1)] else: return [1./3.,1./0.3,numpy.log(0.1)] elif type.lower() == 'twoexp': return [1./3.,1./0.3,1./4.,1./0.5,densprofiles.logit(0.5)] elif type.lower() == 'brokenexp': if sample.lower() == 'lowlow': return [-0.2,1./.3,0.2,numpy.log(11.)] elif sample.lower() == 'solar': return [-1./6.,1./0.3,1./2.,numpy.log(8.)] else: return [-1./6.,1./0.3,1./2.,numpy.log(6.)] elif type.lower() == 'brokenexpflare': if sample.lower() == 'lowlow': return [-0.2,1./.3,0.2,numpy.log(11.),-0.1] elif sample.lower() == 'solar': return [-1./6.,1./0.3,1./2.,numpy.log(8.),-0.1] else: return [-1./6.,1./0.3,1./2.,numpy.log(6.),-0.1] elif type.lower() == 'gaussexp': if sample.lower() == 'lowlow': return [.4,1./0.3,numpy.log(11.)] else: return [1./3.,1./0.3,numpy.log(10.)] def _calc_lnprob(loc,nls,nbs,ds,distmods,H0,densfunc): lcen, bcen= apo.glonGlat(loc) rad= apo.radius(loc) ls= numpy.linspace(lcen-rad,lcen+rad,nls) bs= numpy.linspace(bcen-rad,bcen+rad,nbs) # Tile these tls= numpy.tile(ls,(len(ds),len(bs),1)) tbs= numpy.swapaxes(numpy.tile(bs,(len(ds),len(ls),1)),1,2) tds= numpy.tile(ds,(len(ls),len(bs),1)).T XYZ= bovy_coords.lbd_to_XYZ(tls.flatten(), tbs.flatten(), tds.flatten(), degree=True) Rphiz= bovy_coords.XYZ_to_galcencyl(XYZ[:,0],XYZ[:,1],XYZ[:,2], Xsun=define_rcsample._R0, Ysun=0., Zsun=define_rcsample._Z0) # Evaluate probability density tH= numpy.tile(distmods.T,(1,len(ls),len(bs),1))[0].T for ii in range(tH.shape[1]): for jj in range(tH.shape[2]): try: tH[:,ii,jj]+= dmap(ls[jj],bs[ii],ds) except (IndexError, TypeError,ValueError): try: tH[:,ii,jj]+= dmapg15(ls[jj],bs[ii],ds) except IndexError: # assume zero outside pass tH= tH.flatten()+H0[0] ps= densfunc(Rphiz[0],Rphiz[1],Rphiz[2])*apo(loc,tH)\ *numpy.fabs(numpy.cos(tbs.flatten()/180.*numpy.pi))\ *tds.flatten()**3. return numpy.log(numpy.reshape(ps,(len(distmods),nbs,nls))\ +10.**-8.) def get_options(): usage = "usage: %prog [options] <savefilename>\n\nsavefilename= name of the file that the mock data will be saved to" parser = OptionParser(usage=usage) parser.add_option("--type",dest='type',default='exp', help="Type of density profile") parser.add_option("--sample",dest='sample',default='lowlow', help="Sample parameter for mock parameters") parser.add_option("--H0",dest='H0',default=-1.49,type='float', help="RC absolute magnitude") parser.add_option("--nls",dest='nls',default=101,type='int', help="Number of longitudes to bin each field in") parser.add_option("--nmock",dest='nmock',default=20000,type='int', help="Number of mock samples to generate") # Dust map to use parser.add_option("--extmap",dest='extmap',default='green15', help="Dust map to use ('Green15', 'Marshall03', 'Drimmel03', 'Sale14', or 'zero'") # Multiprocessing? parser.add_option("-m","--multi",dest='multi',default=1,type='int', help="number of cpus to use") return parser if __name__ == '__main__': parser= get_options() options, args= parser.parse_args() data= define_rcsample.get_rcsample() locations= list(set(list(data['LOCATION_ID']))) #locations= [4240,4242] out= generate(locations, type=options.type, sample=options.sample, extmap=options.extmap, nls=options.nls, nmock=options.nmock, H0=options.H0, ncpu=options.multi) fitsio.write(args[0],out[0],clobber=True) ``` #### File: apogee-maps/py/plot_ah_location.py ```python import os, os.path import sys import pickle import numpy import matplotlib matplotlib.use('Agg') from galpy.util import save_pickles, bovy_plot from matplotlib import rc, pyplot import mwdust import apogee.select.apogeeSelect from define_rcsample import get_rcsample _PLOTDIST= True _LW= 1.5 def plot_ah_location(location,plotname): # Setup selection function selectFile= '../savs/selfunc-nospdata.sav' if os.path.exists(selectFile): with open(selectFile,'rb') as savefile: apo= pickle.load(savefile) else: # Setup selection function apo= apogee.select.apogeeSelect() # Delete these because they're big and we don't need them del apo._specdata del apo._photdata save_pickles(selectFile,apo) glon, glat= apo.glonGlat(location) glon= glon[0] glat= glat[0] ahFile= '../savs/ah-%i.sav' % location if not os.path.exists(ahFile): # Distances at which to calculate the extinction distmods= numpy.linspace(7.,15.5,301) ds= 10.**(distmods/5-2.) # Setup Green et al. (2015) dust map gd= mwdust.Green15(filter='2MASS H') pa, ah= gd.dust_vals_disk(glon,glat,ds,apo.radius(location)) meanah_default= numpy.sum(numpy.tile(pa,(len(ds),1)).T*ah,axis=0)/numpy.sum(pa) stdah_default= numpy.sqrt(numpy.sum(numpy.tile(pa,(len(ds),1)).T\ *ah**2.,axis=0)\ /numpy.sum(pa)-meanah_default**2.) # Marshall et al. (2006) marshall= mwdust.Marshall06(filter='2MASS H') try: pa, ah= marshall.dust_vals_disk(glon,glat,ds,apo.radius(location)) except IndexError: meanah_marshall= -numpy.ones_like(ds) stdah_marshall= -numpy.ones_like(ds) else: meanah_marshall= numpy.sum(numpy.tile(pa,(len(ds),1)).T*ah, axis=0)/numpy.sum(pa) stdah_marshall= numpy.sqrt(numpy.sum(numpy.tile(pa,(len(ds),1)).T\ *ah**2.,axis=0)\ /numpy.sum(pa)-meanah_marshall**2.) if True: # Drimmel et al. (2003) drimmel= mwdust.Drimmel03(filter='2MASS H') pa, ah= drimmel.dust_vals_disk(glon,glat,ds,apo.radius(location)) meanah_drimmel= numpy.sum(numpy.tile(pa,(len(ds),1)).T*ah,axis=0)/numpy.sum(pa) stdah_drimmel= numpy.sqrt(numpy.sum(numpy.tile(pa,(len(ds),1)).T\ *ah**2.,axis=0)\ /numpy.sum(pa)-meanah_drimmel**2.) else: meanah_drimmel= -numpy.ones_like(ds) stdah_drimmel= -numpy.ones_like(ds) if True: # Sale et al. (2014) sale= mwdust.Sale14(filter='2MASS H') try: pa, ah= sale.dust_vals_disk(glon,glat,ds,apo.radius(location)) meanah_sale= numpy.sum(numpy.tile(pa,(len(ds),1)).T*ah, axis=0)/numpy.sum(pa) except (TypeError,ValueError): meanah_sale= -numpy.ones_like(ds) stdah_sale= -numpy.ones_like(ds) else: stdah_sale= numpy.sqrt(numpy.sum(numpy.tile(pa,(len(ds),1)).T\ *ah**2.,axis=0)\ /numpy.sum(pa)-meanah_sale**2.) else: meanah_sale= -numpy.ones_like(ds) stdah_sale= -numpy.ones_like(ds) save_pickles(ahFile,distmods,meanah_default,stdah_default, meanah_marshall,stdah_marshall, meanah_drimmel,stdah_drimmel, meanah_sale,stdah_sale) else: with open(ahFile,'rb') as savefile: distmods= pickle.load(savefile) meanah_default= pickle.load(savefile) stdah_default= pickle.load(savefile) meanah_marshall= pickle.load(savefile) stdah_marshall= pickle.load(savefile) meanah_drimmel= pickle.load(savefile) stdah_drimmel= pickle.load(savefile) meanah_sale= pickle.load(savefile) stdah_sale= pickle.load(savefile) # Now plot bovy_plot.bovy_print(fig_height=3.) if _PLOTDIST: distmods= 10.**(distmods/5-2.) xrange= [0.,12.] xlabel=r'$D\,(\mathrm{kpc})$' else: xrange=[7.,15.8], xlabel=r'$\mathrm{distance\ modulus}\ \mu$' ylabel=r'$A_H$' yrange= [0.,1.2*numpy.amax(numpy.vstack((meanah_default+stdah_default, meanah_marshall+stdah_marshall, meanah_drimmel+stdah_drimmel, meanah_sale+stdah_sale)))] line_default= bovy_plot.bovy_plot(distmods,meanah_default, 'b-',lw=_LW,zorder=12, xrange=xrange, xlabel=xlabel, yrange=yrange, ylabel=ylabel) pyplot.fill_between(distmods, meanah_default-stdah_default, meanah_default+stdah_default, hatch='/',facecolor=(0,0,0,0), color='b',lw=0.25,zorder=4) line_marshall= bovy_plot.bovy_plot(distmods,meanah_marshall,'r-',lw=_LW, overplot=True, zorder=8) pyplot.fill_between(distmods, meanah_marshall-stdah_marshall, meanah_marshall+stdah_marshall, hatch='\\',facecolor=(0,0,0,0), color='r',lw=0.25,zorder=2) line_drimmel= bovy_plot.bovy_plot(distmods,meanah_drimmel,'-',lw=_LW, color='gold', overplot=True, zorder=7) pyplot.fill_between(distmods, meanah_drimmel-stdah_drimmel, meanah_drimmel+stdah_drimmel, hatch='///',facecolor=(0,0,0,0), color='gold',lw=0.25,zorder=1) line_sale= bovy_plot.bovy_plot(distmods,meanah_sale,'-',lw=_LW, color='c', overplot=True, zorder=9) pyplot.fill_between(distmods, meanah_sale-stdah_sale, meanah_sale+stdah_sale, hatch='//',facecolor=(0,0,0,0), color='c',lw=0.25,zorder=3) if True: data= get_rcsample() data= data[data['LOCATION_ID'] == location] bovy_plot.bovy_plot(data['RC_DIST'],data['AK_TARG']*1.55, 'ko',zorder=20,overplot=True,ms=2.) if location == 4318: pyplot.legend((line_default[0],line_sale[0]), (r'$\mathrm{Green\ et\ al.\ (2015)}$', r'$\mathrm{Sale\ et\ al.\ (2014)}$'), loc='lower right',#bbox_to_anchor=(.91,.375), numpoints=8, prop={'size':14}, frameon=False) elif location == 4242: pyplot.legend((line_marshall[0],line_drimmel[0]), (r'$\mathrm{Marshall\ et\ al.\ (2006)}$', r'$\mathrm{Drimmel\ et\ al.\ (2003)}$'), loc='lower right',#bbox_to_anchor=(.91,.375), numpoints=8, prop={'size':14}, frameon=False) # Label lcen, bcen= apo.glonGlat(location) if numpy.fabs(bcen) < 0.1: bcen= 0. bovy_plot.bovy_text(r'$(l,b) = (%.1f,%.1f)$' % (lcen,bcen), top_right=True,size=16.) bovy_plot.bovy_end_print(plotname,dpi=300, bbox_extra_artists=pyplot.gca().get_children(), bbox_inches='tight') return None if __name__ == '__main__': #4240 is 30,0 plot_ah_location(int(sys.argv[1]),sys.argv[2]) ``` #### File: apogee-maps/py/plot_broadsurfdens.py ```python import sys import pickle import numpy import matplotlib matplotlib.use('Agg') from galpy.util import bovy_plot from matplotlib import pyplot import densprofiles _SKIP= 10 _SIGNIF= 0.025 def plot_broadsurfdens(plotname): broads= ['lowlow','solar','highfeh','highalpha'] #anorms= [2.,.25,0.01,50.] anorms= [0.004,.20,5.,50.] bovy_plot.bovy_print(fig_width=8.,fig_height=3.) overplot= False for ii, broad in enumerate(broads): # Restore the fits savename= '../broadfits/%s.sav' % broad with open(savename,'rb') as savefile: bf_exp= pickle.load(savefile) bf_brexp= pickle.load(savefile) bf_twoexp= pickle.load(savefile) ml_exp= pickle.load(savefile) ml_brexp= pickle.load(savefile) ml_twoexp= pickle.load(savefile) samples_exp= pickle.load(savefile) samples_brexp= pickle.load(savefile) samples_twoexp= pickle.load(savefile) # Create all density profiles Rs= numpy.linspace(4.,14.,1001) if broad.lower() == 'highalpha': samples= samples_exp[:,::_SKIP] nsamples= len(samples[0]) tRs= numpy.tile(Rs,(nsamples,1)).T ihRin= numpy.tile(samples[0],(len(Rs),1)) ldp= -ihRin*(tRs-densprofiles._R0) else: samples= samples_brexp[:,::_SKIP] nsamples= len(samples[0]) tRs= numpy.tile(Rs,(nsamples,1)).T ldp= numpy.empty((len(Rs),nsamples)) Rb= numpy.tile(numpy.exp(samples[3]),(len(Rs),1)) ihRin= numpy.tile(samples[0],(len(Rs),1)) ihRout= numpy.tile(samples[2],(len(Rs),1)) # Rb >= R0 leRb= (tRs <= Rb)*(Rb >= densprofiles._R0) ldp[leRb]= ihRin[leRb]*(tRs[leRb]-densprofiles._R0) gtRb= (tRs > Rb)*(Rb >= densprofiles._R0) ldp[gtRb]= -ihRout[gtRb]*(tRs[gtRb]-densprofiles._R0)\ +ihRout[gtRb]*(Rb[gtRb]-densprofiles._R0)\ +ihRin[gtRb]*(Rb[gtRb]-densprofiles._R0) # Rb < R0 leRb= (tRs <= Rb)*(Rb < densprofiles._R0) ldp[leRb]= ihRin[leRb]*(tRs[leRb]-densprofiles._R0)\ -ihRout[leRb]*(Rb[leRb]-densprofiles._R0)\ -ihRin[leRb]*(Rb[leRb]-densprofiles._R0) gtRb= (tRs > Rb)*(Rb < densprofiles._R0) ldp[gtRb]= -ihRout[gtRb]*(tRs[gtRb]-densprofiles._R0) norm= numpy.exp(numpy.median(ldp,axis=1))[numpy.argmin(numpy.fabs(Rs-densprofiles._R0))]/anorms[ii] bovy_plot.bovy_plot(Rs,numpy.exp(numpy.median(ldp,axis=1))/norm, 'k-', lw=2.,overplot=overplot, xlabel=r'$R\,(\mathrm{kpc})$', ylabel=r'$\Sigma(R)\times\mathrm{constant}$', xrange=[0.,16.], yrange=[0.0003,900.], semilogy=True) pyplot.fill_between(Rs, numpy.exp(numpy.sort(ldp,axis=1)[:,int(round(_SIGNIF*nsamples))])/norm, numpy.exp(numpy.sort(ldp,axis=1)[:,int(round((1.-_SIGNIF)*nsamples))])/norm, color='0.65', lw=0.) overplot= True # Label labelx= 1. bovy_plot.bovy_text(labelx,5.,r'$\mathrm{high\ [Fe/H]}$', size=15.,backgroundcolor='w') bovy_plot.bovy_text(labelx,0.085,r'$\mathrm{solar}$', size=15.,backgroundcolor='w') bovy_plot.bovy_text(labelx,0.001,r'$\mathrm{low\ [Fe/H]}$', size=15.,backgroundcolor='w') bovy_plot.bovy_text(labelx,150.,r'$\mathrm{high}\ [\alpha/\mathrm{Fe}]$', size=15.,backgroundcolor='w') bovy_plot.bovy_end_print(plotname) if __name__ == '__main__': plot_broadsurfdens(sys.argv[1]) ``` #### File: apogee-maps/py/plot_mapsurfdens.py ```python import os, os.path import sys import csv import pickle import numpy import matplotlib matplotlib.use('Agg') from galpy.util import bovy_plot from matplotlib import pyplot, cm import densprofiles import define_rcsample _SKIP= 10 _SIGNIF= 0.025 def plot_mapsurfdens(plotname): with open('../mapfits/tribrokenexpflare.sav','rb') as savefile: bf= numpy.array(pickle.load(savefile)) samples_brexp= numpy.array(pickle.load(savefile)) plotmaps= [9,16,23,29,36,43,50,57,64,71] bovy_plot.bovy_print(fig_width=8.,fig_height=6.) maps= define_rcsample.MAPs() cmap= cm.coolwarm overplot= False Rs= numpy.linspace(4.,14.,1001) # Setup for saving the profiles csvfile= open(os.path.join('..','out','mapsurfdens.csv'),'w') writer= csv.writer(csvfile,delimiter=',',quoting=csv.QUOTE_NONE) writer.writerow(['# Surface density profile for MAPs (Figure 11 in Bovy et al. 2016)']) writer.writerow(['# The first line lists the radii at which the surface density profiles']) writer.writerow(['# are evaluated']) writer.writerow(['# The rest of the file are the log surface profiles; the 0.025']) writer.writerow(['# lower limit and the 0.0975 upper limit (each 1 line)']) writer.writerow(['# Different MAPs are separated by a comment line']) writer.writerow(['{:.2f}'.format(x) for x in Rs]) for ii, map in enumerate(maps.map()): if not ii in plotmaps: continue # Create all density profiles samples= samples_brexp[ii,:,::_SKIP] nsamples= len(samples[0]) tRs= numpy.tile(Rs,(nsamples,1)).T ldp= numpy.empty((len(Rs),nsamples)) Rb= numpy.tile(numpy.exp(samples[3]),(len(Rs),1)) ihRin= numpy.tile(samples[0],(len(Rs),1)) ihRout= numpy.tile(samples[2],(len(Rs),1)) # Rb >= R0 leRb= (tRs <= Rb)*(Rb >= densprofiles._R0) ldp[leRb]= ihRin[leRb]*(tRs[leRb]-densprofiles._R0) gtRb= (tRs > Rb)*(Rb >= densprofiles._R0) ldp[gtRb]= -ihRout[gtRb]*(tRs[gtRb]-densprofiles._R0)\ +ihRout[gtRb]*(Rb[gtRb]-densprofiles._R0)\ +ihRin[gtRb]*(Rb[gtRb]-densprofiles._R0) # Rb < R0, normalize outer at R0 leRb= (tRs <= Rb)*(Rb < densprofiles._R0) ldp[leRb]= ihRin[leRb]*(tRs[leRb]-densprofiles._R0)\ -ihRout[leRb]*(Rb[leRb]-densprofiles._R0)\ -ihRin[leRb]*(Rb[leRb]-densprofiles._R0) gtRb= (tRs > Rb)*(Rb < densprofiles._R0) ldp[gtRb]= -ihRout[gtRb]*(tRs[gtRb]-densprofiles._R0) # Label and relative normalization tfeh= round(numpy.median(map['FE_H'])*20.)/20. if tfeh == 0.25: tfeh= 0.3 if tfeh == -0.0: tfeh= 0.0 if tfeh == -0.1: tfeh= -0.1 print ii, tfeh, len(map) anorm= 10**(-10.*(tfeh+0.1)) if tfeh > 0.2: anorm= 10**(-12.*(tfeh+0.1)) if tfeh < -0.5: anorm= 10**(-12.*(tfeh+0.1)) anorm= 1./anorm # re-order norm= numpy.exp(numpy.median(ldp,axis=1))[numpy.argmin(numpy.fabs(Rs-densprofiles._R0))]/anorm bovy_plot.bovy_plot(Rs,numpy.exp(numpy.median(ldp,axis=1))/norm, '-', color=cmap((tfeh+0.6)*0.95/0.9+0.05), lw=2.,overplot=overplot, xlabel=r'$R\,(\mathrm{kpc})$', ylabel=r'$\Sigma(R)\times\mathrm{constant}$', xrange=[0.,16.], yrange=[0.000000001,9000000.], semilogy=True) pyplot.fill_between(Rs, numpy.exp(numpy.sort(ldp,axis=1)[:,int(round(_SIGNIF*nsamples))])/norm, numpy.exp(numpy.sort(ldp,axis=1)[:,int(round((1.-_SIGNIF)*nsamples))])/norm, color=cmap((tfeh+0.6)), lw=0.) overplot= True if ii == 9: bovy_plot.bovy_text(2., 10.**6., r'$[\mathrm{Fe/H}]$',size=16.,color='k') bovy_plot.bovy_text(2.,(numpy.exp(numpy.median(ldp,axis=1))/norm)[0], r'$%+.1f$' % tfeh,size=16., color=cmap((tfeh+0.6)*0.95/0.9+0.05)) writer.writerow(['# Low-alpha MAP w/ [Fe/H]=%g' % tfeh]) writer.writerow(['{:.3f}'.format(x) for x in list(numpy.median(ldp,axis=1))]) writer.writerow(['{:.3f}'.format(x) for x in list(numpy.sort(ldp,axis=1)[:,int(round(_SIGNIF*nsamples))])]) writer.writerow(['{:.3f}'.format(x) for x in list(numpy.sort(ldp,axis=1)[:,int(round((1.-_SIGNIF)*nsamples))])]) csvfile.close() bovy_plot.bovy_text(10.,10.**6., r'$\mathrm{low-}[\alpha/\mathrm{Fe}]\ \mathrm{MAPs}$', size=16.) bovy_plot.bovy_end_print(plotname) if __name__ == '__main__': plot_mapsurfdens(sys.argv[1]) ```
{ "source": "jobovy/bovy_mcmc", "score": 3 }
#### File: bovy_mcmc/bovy_mcmc/_bovy_mcmc.py ```python import scipy as sc import scipy.stats as stats ############################################################################## # # bovy_mcmc.py: general mcmc methods # ############################################################################## def hmc(initial_theta,nleap,stepsize,obj_func,grad_func,func_params,nsamples=1): """ NAME: hmc PURPOSE: general HMC routine (uses the standard kinetic energy) INPUT: initial_theta - initial state of the parameters nleap - (int) number of leapfrog steps per HMC step stepsize - (double) size of the steps to take in the orbit integration obj_func - (function pointer) the objective function E(x,params) as in p(x) ~ exp(-E) grad_func - (function pointer) the gradient of the objective function gradE(x,params) func_params - (tuple) the parameters of the objective function nsamples - (int) desired number of HMC samples OUTPUT: (a set of samples,acceptance fraction) BUGS: - does not use masses - only uses the last sample REVISION HISTORY: 2009-10-08 - Written - Bovy (NYU) 2009-10-29 - Rewritten and added to bovy_mcmc.py """ out=[] try: ntheta= len(initial_theta) except TypeError: ntheta= 1 E= obj_func(initial_theta,func_params) grad= grad_func(initial_theta,func_params) theta= initial_theta.copy() naccept= 0. for ii in range(nsamples): p= stats.norm.rvs(size=ntheta) H= 0.5*sc.dot(p,p) + E newtheta= theta.copy() newgrad= grad #First move the momentum p-= 0.5*newgrad*stepsize for kk in range(nleap): newtheta+= stepsize*p newgrad= grad_func(newtheta,func_params) p-= stepsize*newgrad/(1.+ (kk == (nleap-1)))#Full steps except for the last one Enew= obj_func(newtheta,func_params) Hnew= 0.5*sc.dot(p,p)+Enew dH= Hnew - H dH= dH * ( dH > 0 ) #Metropolis accept if stats.uniform.rvs() < sc.exp(-dH): theta= newtheta.copy() E= Enew grad= newgrad naccept+= 1. out.append(theta) if nsamples == 1: return (out[0],naccept) else: return (out,naccept/nsamples) def metropolis(initial_theta,sample_proposal,eval_ln_proposal, proposal_params,lnpdf,pdf_params,symmetric=False, nsamples=1,callback=None): """ NAME: metropolis PURPOSE: metropolis mcmc INPUT: initial_theta - initial sample sample_proposal - given x and proposal_params, sample a proposal using this function eval_ln_proposal - given x and proposal_params, evaluate the log of the proposal density proposal_params - parameters for the proposal function (e.g., typical steps) lnpdf - function evaluating the log of the pdf to be sampled pdf_params - parameters to pass to the pdf (tuple) symmetric - (bool) if True, the proposal distribution is symmetric and will not be evaluated nsamples - number of samples desired callback - function of parameter to be called after each new sample OUTPUT: tuple consisting of list of samples, number if nsamples=1 acceptance ratio, 1 or 0 if nsamples=1 REVISION HISTORY: 2009-10-30 - Written - Bovy (NYU) 2011-06-18 - Added doctest - Bovy DOCTEST: >>> import numpy as nu >>> nu.random.seed(1) >>> import scipy as sc >>> from scipy import stats >>> def lngaussian(x,mean,var): ... return -.5*sc.log(2.*sc.pi*var)-0.5*(x-mean)**2./var >>> def sample_gaussian_proposal(mean,stddev): ... return stats.norm.rvs()*stddev+mean >>> def eval_ln_gaussian_proposal(new,old,stddev): ... return -0.5*sc.log(2.*sc.pi*stddev**2.)-0.5*(old-new)**2./stddev**2. >>> lnpdf= lngaussian >>> pdf_params= (0.,1.) >>> sample_proposal= sample_gaussian_proposal >>> eval_ln_proposal= eval_ln_gaussian_proposal >>> proposal_params= (2.,) >>> symmetric=False >>> initial_theta= 5. >>> nsamples= 200000 >>> (samples,faccept)= metropolis(initial_theta,sample_proposal,eval_ln_proposal,proposal_params,lnpdf,pdf_params,symmetric=symmetric,nsamples=nsamples) >>> print "%4.1f%% of the samples were accepted" % (100.*faccept) 50.0% of the samples were accepted >>> samples= samples[nsamples/2:-1] #discard burn-in >>> logprecision= -2. >>> assert (nu.mean(samples)-0.)**2. < 10.**(logprecision*2.) >>> assert (nu.std(samples)-1.)**2. < 10.**(logprecision*2.) >>> assert (stats.moment(samples,3)-0.)**2. < 10.**(logprecision) >>> assert (stats.moment(samples,4)-stats.norm.moment(4))**2. < 10.**(logprecision) >>> from scipy import special >>> def lnbeta(x,a,b): ... return (a-1.)*nu.log(x)+(b-1.)*nu.log(1-x)-special.betaln(a,b) >>> def sample_beta_proposal(x): ... return nu.random.uniform() >>> def eval_ln_beta_proposal(new,old): ... return 0. >>> lnpdf= lnbeta >>> pdf_params= (.5,.5) >>> sample_proposal= sample_beta_proposal >>> eval_ln_proposal= eval_ln_beta_proposal >>> proposal_params= () >>> symmetric=False >>> initial_theta= 0.5 >>> nsamples= 100000 >>> nu.random.seed(1) >>> (samples,faccept)= metropolis(initial_theta,sample_proposal,eval_ln_proposal,proposal_params,lnpdf,pdf_params,symmetric=symmetric,nsamples=nsamples) >>> print "%4.1f%% of the samples were accepted" % (100.*faccept) 72.5% of the samples were accepted >>> samples= samples[nsamples/2:-1] #discard burn-in >>> logprecision= -2. >>> assert (nu.mean(samples)-stats.beta.moment(1,pdf_params[0],pdf_params[1]))**2. < 10.**(logprecision*2.) >>> assert (nu.var(samples)-stats.beta.moment(2,pdf_params[0],pdf_params[1])+stats.beta.moment(1,pdf_params[0],pdf_params[1])**2.)**2. < 10.**(logprecision*2.) """ out= [] naccept= 0. theta= initial_theta logp= lnpdf(theta,*pdf_params) for ii in range(nsamples): newtheta= sample_proposal(theta,*proposal_params) newlogp= lnpdf(newtheta,*pdf_params) if symmetric: extra_proposal_factor= 0. else: fromoldtonew= eval_ln_proposal(newtheta,theta,*proposal_params) fromnewtoold= eval_ln_proposal(theta,newtheta,*proposal_params) extra_proposal_factor= fromnewtoold-fromoldtonew u=stats.uniform.rvs() comp= newlogp-logp+extra_proposal_factor comp*= (comp < 0) if sc.log(u) < comp: theta= newtheta logp= newlogp naccept+= 1. if not callback is None: callback(theta) out.append(theta) if nsamples == 1: return (out[0],naccept) else: return (out,naccept/nsamples) def slice_double(x,u,step,lnpdf,pdf_params,isDomainFinite,domain): """ NAME: slice_double PURPOSE: doubling technique to create the interval in slice sampling (Neal 2003) INPUT: x - current sample u - current (log) height of the slice step - step to take in stepping out lnpdf - function evaluating the log of the pdf pdf_params - parameters to be passed to the pdf isDomainFinite - is the domain finite? [bool,bool] domain - the domain if it is finite (has no effect if the domain is not finite) OUTPUT: (xl,xr) - lower and upper bound to the interval REVISION HISTORY: 2009-10-29 - Written - Bovy (NYU) """ r= stats.uniform.rvs() xl= x-r*step xr= x+(1-r)*step logpxl= lnpdf(xl,*pdf_params) logpxr= lnpdf(xr,*pdf_params) while logpxl > u or logpxr > u: v= stats.uniform.rvs() if v < .5: xl-= (xr-xl) if isDomainFinite[0] and xl < domain[0]: xl= domain[0] logpxl= u-1 else: logpxl= lnpdf(xl,*pdf_params) else: xr+= (xr-xl) if isDomainFinite[1] and xr > domain[1]: xr= domain[1] logpxr= u-1 else: logpxr= lnpdf(xr,*pdf_params) else: if isDomainFinite[0] and xl < domain[0]: xl= domain[0] if isDomainFinite[1] and xr > domain[1]: xr= domain[1] return (xl,xr) def slice_step_out(x,u,step,lnpdf,pdf_params,isDomainFinite,domain): """ NAME: slice_step_out PURPOSE: stepping out technique to create the interval in slice sampling (Mackay 2003) INPUT: x - current sample u - current (log) height of the slice step - step to take in stepping out lnpdf - function evaluating the log of the pdf pdf_params - parameters to be passed to the pdf isDomainFinite - is the domain finite? [bool,bool] domain - the domain if it is finite (has no effect if the domain is not finite) OUTPUT: (xl,xr) - lower and upper bound to the interval REVISION HISTORY: 2009-10-29 - Written - Bovy (NYU) """ r= stats.uniform.rvs() xl= x-r*step xr= x+(1-r)*step while lnpdf(xl,*pdf_params) > u: xl-= step if isDomainFinite[0] and xl < domain[0]: xl= domain[0] break else: if isDomainFinite[0] and xl < domain[0]: xl= domain[0] while lnpdf(xr,*pdf_params) > u: xr+= step if isDomainFinite[1] and xr > domain[1]: xr= domain[1] break else: if isDomainFinite[1] and xr > domain[1]: xr= domain[1] return (xl,xr) def slice_whole(x,u,step,lnpdf,pdf_params,isDomainFinite,domain): """ NAME: slice_whole PURPOSE: create the interval in slice sampling by using the whole, finite domain INPUT: x - current sample u - current (log) height of the slice step - step to take in stepping out lnpdf - function evaluating the log of the pdf pdf_params - parameters to be passed to the pdf isDomainFinite - is the domain finite? [bool,bool] domain - the domain if it is finite (has no effect if the domain is not finite) OUTPUT: (xl,xr) - lower and upper bound to the interval REVISION HISTORY: 2009-11-03 - Written - Bovy (NYU) """ return (domain[0],domain[1]) def slice_shrink(xp,x,interval): """ NAME: slice_shrink PURPOSE: shrink the interval in slice sampling (Mackay 2003) INPUT: xp - proposed sample x - current sample interval - the current interval OUTPUT: new interval REVISION HISTORY: 2009-10-29 - Written - Bovy (NYU) """ if xp > x: xr= xp xl= interval[0] else: xl= xp xr= interval[1] return (xl,xr) def slice(initial_theta,step,lnpdf,pdf_params,create_method='step_out',isDomainFinite=[False,False],domain=[0.,0.], nsamples=1,callback=None): """ NAME: slice PURPOSE: simple slice sampling function (e.g., Neal 2003,Mackay 2003) INPUT: initial_theta - initial sample step - stepping out step w lnpdf - function evaluating the log of the pdf to be sampled pdf_params - parameters to pass to the pdf (tuple) create_method - 'step_out', 'double', or 'whole' (whole only works if the domain is finite; defaults to 'double') nsamples - number of samples desired isDomainFinite - is the domain finite? [bool,bool] domain - the domain if it is finite (has no effect if the domain is not finite) callback - function of parameter to be called after each new sample OUTPUT: list of samples, number if nsamples=1 REVISION HISTORY: 2009-10-29 - Written - Bovy (NYU) DOCTEST: >>> import numpy as nu >>> nu.random.seed(1) >>> def lngaussian(x,mean,var): ... return -.5*nu.log(2.*nu.pi*var)-0.5*(x-mean)**2./var >>> pdf_params= (0.,1.) >>> isDomainFinite= [False,False] >>> domain= [0.,0.] >>> create_method= 'double' >>> nsamples= 100000 >>> samples= slice(0.1,1.,lngaussian,pdf_params,create_method,isDomainFinite,domain,nsamples=nsamples) >>> samples= samples[nsamples/2:-1] #discard burn-in >>> logprecision= -2. >>> assert (nu.mean(samples)-0.)**2. < 10.**(logprecision*2.) >>> assert (nu.std(samples)-1.)**2. < 10.**(logprecision*2.) >>> from scipy import stats >>> assert (stats.moment(samples,3)-0.)**2. < 10.**(logprecision) >>> assert (stats.moment(samples,4)-stats.norm.moment(4))**2. < 10.**(logprecision) >>> from scipy import special >>> def lnbeta(x,a,b): ... return (a-1.)*nu.log(x)+(b-1.)*nu.log(1-x)-special.betaln(a,b) >>> pdf_params= (.5,.5) >>> isDomainFinite= [True,True] >>> domain= [0.,1.] >>> create_method= 'double' >>> samples= slice(0.1,1.,lnbeta,pdf_params,create_method,isDomainFinite,domain,nsamples=nsamples) >>> samples= samples[nsamples/2:-1] #discard burn-in >>> logprecision= -2. >>> assert (nu.mean(samples)-stats.beta.moment(1,pdf_params[0],pdf_params[1]))**2. < 10.**(logprecision*2.) >>> assert (nu.var(samples)-stats.beta.moment(2,pdf_params[0],pdf_params[1])+stats.beta.moment(1,pdf_params[0],pdf_params[1])**2.)**2. < 10.**(logprecision*2.) >>> create_method= 'step_out' >>> samples= slice(0.1,1.,lnbeta,pdf_params,create_method,isDomainFinite,domain,nsamples=nsamples) >>> samples= samples[nsamples/2:-1] #discard burn-in >>> logprecision= -2. >>> assert (nu.mean(samples)-stats.beta.moment(1,pdf_params[0],pdf_params[1]))**2. < 10.**(logprecision*2.) >>> assert (nu.var(samples)-stats.beta.moment(2,pdf_params[0],pdf_params[1])+stats.beta.moment(1,pdf_params[0],pdf_params[1])**2.)**2. < 10.**(logprecision*2.) >>> create_method= 'whole' >>> samples= slice(0.1,1.,lnbeta,pdf_params,create_method,isDomainFinite,domain,nsamples=nsamples) >>> samples= samples[nsamples/2:-1] #discard burn-in >>> logprecision= -2. >>> assert (nu.mean(samples)-stats.beta.moment(1,pdf_params[0],pdf_params[1]))**2. < 10.**(logprecision*2.) >>> assert (nu.var(samples)-stats.beta.moment(2,pdf_params[0],pdf_params[1])+stats.beta.moment(1,pdf_params[0],pdf_params[1])**2.)**2. < 10.**(logprecision*2.) """ if create_method == 'step_out': create_interval= slice_step_out accept= slice_step_out_accept elif create_method == 'double': create_interval= slice_double accept= slice_double_accept else: if isDomainFinite[0] and isDomainFinite[1]: create_interval= slice_whole accept= slice_step_out_accept else: create_interval= slice_double accept= slice_double_accept modify_interval= slice_shrink x= initial_theta logp= lnpdf(x,*pdf_params) out= [] for ii in range(nsamples): u= logp-stats.expon.rvs()#p.712 in Neal (2003) (xl,xr)= create_interval(x,u,step,lnpdf,pdf_params,isDomainFinite,domain) while True: xp= stats.uniform.rvs()*(xr-xl)+xl logpxp= lnpdf(xp,*pdf_params) if logpxp >= u and accept(xp,x,u,step,(xl,xr),lnpdf,pdf_params):#Equal sign from Neal comment on Gelman blog break (xl,xr)= modify_interval(xp,x,(xl,xr)) if not callback is None: callback(xp) out.append(xp) x=xp logp= logpxp if nsamples == 1: return out[0] else: return out def slice_double_accept(xp,x,u,step,interval,lnpdf,pdf_params): """ NAME: slice_double_accept PURPOSE: accept a step when using the doubling procedure INPUT: xp - proposed point x - current point u - log of the height of the slice step - step parameter w interval - (xl,xr) lnpdf - function that evaluates the log of the pdf pdf_params - parameters of the pdf OUTPUT: Whether to accept or not (Neal 2003) BUGS: Not as efficient as possible with lnpdf evaluations HISTORY: 2009-10-30 - Written - Bovy (NYU) """ (xl,xr) = interval d= False acceptable= True while xr-xl > 1.1*step: m= (xl+xr)*.5 if (x < m and xp >= m) or (x >= m and xp < m): d= True if xp < m: xr= m else: xl= m if d and lnpdf(xl,*pdf_params) <= u and lnpdf(xr,*pdf_params) <= u: acceptable= False break return acceptable def slice_step_out_accept(xp,x,u,step,interval,lnpdf,pdf_params): """ NAME: slice_step_out_accept PURPOSE: accept a step when using the stepping out procedure INPUT: xp - proposed point x - current point u - log of the height of the slice step - step parameter w interval - (xl,xr) lnpdf - function that evaluates the log of the pdf pdf_params - parameters of the pdf OUTPUT: True HISTORY: 2009-10-30 - Written - Bovy (NYU) """ return True if __name__ == '__main__': import doctest doctest.testmod() ``` #### File: bovy_mcmc/bovy_mcmc/elliptical_slice.py ```python import math import numpy def elliptical_slice(initial_theta,prior,lnpdf,pdf_params=(), cur_lnpdf=None,angle_range=None): """ NAME: elliptical_slice PURPOSE: Markov chain update for a distribution with a Gaussian "prior" factored out INPUT: initial_theta - initial vector prior - cholesky decomposition of the covariance matrix (like what numpy.linalg.cholesky returns), or a sample from the prior lnpdf - function evaluating the log of the pdf to be sampled pdf_params= parameters to pass to the pdf cur_lnpdf= value of lnpdf at initial_theta (optional) angle_range= Default 0: explore whole ellipse with break point at first rejection. Set in (0,2*pi] to explore a bracket of the specified width centred uniformly at random. OUTPUT: new_theta, new_lnpdf HISTORY: Originally written in matlab by <NAME> (http://homepages.inf.ed.ac.uk/imurray2/pub/10ess/elliptical_slice.m) 2012-02-24 - Written - Bovy (IAS) """ D= len(initial_theta) if cur_lnpdf is None: cur_lnpdf= lnpdf(initial_theta,*pdf_params) # Set up the ellipse and the slice threshold if len(prior.shape) == 1: #prior = prior sample nu= prior else: #prior = cholesky decomp if not prior.shape[0] == D or not prior.shape[1] == D: raise IOError("Prior must be given by a D-element sample or DxD chol(Sigma)") nu= numpy.dot(prior,numpy.random.normal(size=D)) hh = math.log(numpy.random.uniform()) + cur_lnpdf # Set up a bracket of angles and pick a first proposal. # "phi = (theta'-theta)" is a change in angle. if angle_range is None or angle_range == 0.: # Bracket whole ellipse with both edges at first proposed point phi= numpy.random.uniform()*2.*math.pi phi_min= phi-2.*math.pi phi_max= phi else: # Randomly center bracket on current point phi_min= -angle_range*numpy.random.uniform() phi_max= phi_min + angle_range phi= numpy.random.uniform()*(phi_max-phi_min)+phi_min # Slice sampling loop while True: # Compute xx for proposed angle difference and check if it's on the slice xx_prop = initial_theta*math.cos(phi) + nu*math.sin(phi) cur_lnpdf = lnpdf(xx_prop,*pdf_params) if cur_lnpdf > hh: # New point is on slice, ** EXIT LOOP ** break # Shrink slice to rejected point if phi > 0: phi_max = phi elif phi < 0: phi_min = phi else: raise RuntimeError('BUG DETECTED: Shrunk to current position and still not acceptable.') # Propose new angle difference phi = numpy.random.uniform()*(phi_max - phi_min) + phi_min return (xx_prop,cur_lnpdf) ```
{ "source": "jobovy/flexce", "score": 2 }
#### File: flexce/flexCE/utils.py ```python from __future__ import print_function, division, absolute_import import os import sys from pathlib import PurePath import numpy as np from yields import Yields def define_mass_bins(low=0.1, high=100, dm_low=0.1, dm_high=1.): """Define stellar mass bins. Args: low (float): low end of lowest mass bin. Defaults to 0.1 Msun. high (float): high end of higher mass bin. Defaults to 100 Msun. dm_low (float): mass bin size below 8 Msun. Defaults to 0.1 Msun. dm_high (float): mass bin size above 8 Msun. Defaults to 1 Msun. Returns: array: stellar mass bins """ mbins = np.concatenate((np.arange(low, 8., dm_low), np.arange(8., high + 0.001, dm_high))) return mbins def load_yields(path, args, mass_bins): """Load yield grids. Args: path (str): data directory. args (dict): mass_bins (array): stellar mass bins. Returns: Yields instance """ try: yld = Yields(path, snii_dir=args['snii_dir'], agb_dir=args['agb_dir'], snia_dir=args['snia_dir'], rprocess_dir=args['rprocess_dir'], sprocess_dir=args['sprocess_dir'], snia_model=args['snia_model'], r_elements=args['r_elements'], s_elements=args['s_elements'], mbins=mass_bins) except IOError as e: print() print(e) # FIX: automatically run make_yield_grids.py print('\nPlease create yield grids with') print('python make_yield_grids.py\n') sys.exit(1) return yld def set_path(path_in, default_path): if os.path.isfile(path_in): path = os.path.dirname(os.path.abspath(path_in)) filename = os.path.basename(path_in) else: path = default_path filename = path_in return filename, path def substitute_dir_in_path(path, olddir, newdir): pp = PurePath(path) parts = [p if p != olddir else newdir for p in pp.parts] return os.path.join(*parts) def none_to_empty_dict(x): """If a variable is None, return an empty dictionary.""" if x is None: x = {} return x ```
{ "source": "jobovy/isodist", "score": 2 }
#### File: isodist/isodist/AnIsochrone.py ```python import os, os.path import csv import math import numpy import gzip from isodist.Isochrone import Isochrone, FEH2Z, Z2FEH, dict2recarray from isodist.PadovaIsochrone import _DATADIR _ANZSOLAR= 0.0176 _ZS= [-0.1,-0.2,-0.3,-0.5,-1.,-1.5,-2.,-3.,0.,0.1,0.2,0.4] class AnIsochrone (Isochrone): """Class that represents a An+08 isochrone""" def __init__(self,Z=None,filters=None,corrected=True): """ NAME: __init__ PURPOSE: initialize INPUT: corrected= if False, use un-corrected isochrones Z= load only this metallicity (can be list) OUTPUT: HISTORY: 2011-08-05 - Written - Bovy (NYU) BUGS: Z determination needs to account for dY/dZ """ self._filters= ['u','g','r','i','z'] #Read the files dicts= [] if Z is None: #Z here is actually FeH, we correct this later ZS= _ZS else: if isinstance(Z,(list,numpy.ndarray)): ZS= Z else: ZS= [Z] for Zm in ZS: if Zm >= 0.: signstr= 'p' else: signstr= 'm' if corrected: corrstr= 'corr' else: corrstr= 'marcs' dicts.append(read_an_isochrone(os.path.join(_DATADIR, 'an_isochrones', signstr+'%03i_' % (int(numpy.fabs(100.*Zm))) +corrstr+'.txt'), filters=self._filters)) self._ZS= numpy.array([FEH2Z(z,zsolar=_ANZSOLAR) for z in ZS]) self._dicts= dicts #Gather ages self._logages= numpy.array(sorted(list(set(self._dicts[0]['logage'])))) return None def __call__(self,logage,Z=None,feh=None,afe=None,maxm=None, asrecarray=False,stage=None): """ NAME: __call__ PURPOSE: get a single isochrone from the library INPUT: logage - log_10 age Z= or feh= metallicity (use Z_\odot=0.019) afe= None (not supported for An; linear relation between afe and feh is assumed) maxm= maximum mass to consider (m_ini) stage= if set, only show this evolutionary stage (NOT IMPLEMENTED FOR AN) KEYWORDS: asrecarray= if True, return recarray, otherwise dict OUTPUT: isochrone HISTORY: 2011-08-04 - Written - Bovy (NYU) """ if not afe is None: raise NotImplementedError("'afe=' not implemented for Padova isochrones") if not feh is None: Z= 10.**(feh+math.log10(_ANZSOLAR)) indx= (self._ZS == Z) ii= 0 while (ii < len(self._dicts) and not indx[ii]): ii+= 1 if ii == len(self._dicts): raise IOError("No isochrone found that matches this metallicity") thisDict= self._dicts[ii] if maxm is None: indx= (thisDict['logage'] == logage) else: indx= (thisDict['logage'] == logage)*(thisDict['Mass'] < maxm) if numpy.sum(indx) == 0: raise IOError("No isochrone found that matches this logage") outDict= {} for key in thisDict.keys(): outDict[key]= thisDict[key][indx] if asrecarray: return dict2recarray(outDict) else: return outDict def read_an_isochrone(name,filters=None): """ NAME: read_an_isochrone PURPOSE: read an An isochrone file INPUT: name- name of the file filters= list of filters in the file OUTPUT: dictionary with the table HISTORY: 2011-08-04 - Written - Bovy (NYU) """ dialect= csv.excel dialect.skipinitialspace=True if name[-2:] == 'gz': file= gzip.open(name,'r') else: file= open(name,'r') reader= csv.reader(file,delimiter=' ', dialect=dialect) logage=[] Mass= [] logL= [] logTe= [] logg= [] mbol= [] mags= [] for row in reader: try: if row[0][0:4] == 'Mass': #Header line to skip continue except IndexError: pass try: if row[0] == 'Cluster': #Header line to extract age from thislogage= numpy.log10(float(row[4])) continue except IndexError: pass logage.append(thislogage) #from the header, see above Mass.append(float(row[0])) logTe.append(numpy.log10(float(row[1]))) logL.append(float(row[2])) logg.append(float(row[3])) mbol.append(float(row[4])) r= float(row[5]) gr = float(row[6]) gi = float(row[7]) gz = float(row[8]) ug = float(row[9]) mags.append([r+gr+ug, #u r+gr, #g r, -gi+gr+r, #i -gz+gr+r]) #z #Load everything into a dictionary outDict= {} outDict['logage']= numpy.array(logage) outDict['Mass']= numpy.array(Mass) outDict['logL']= numpy.array(logL) outDict['logTe']= numpy.array(logTe) outDict['logg']= numpy.array(logg) outDict['mbol']= numpy.array(mbol) for ii in range(len(filters)): thismag= [] for jj in range(len(mags)): thismag.append(mags[jj][ii]) outDict[filters[ii]]= numpy.array(thismag) return outDict ``` #### File: isodist/isodist/_isodist.py ```python import numpy as nu import scipy _SCIPY_VERSION= [int(v.split('rc')[0]) for v in scipy.__version__.split('.')] if _SCIPY_VERSION[0] < 1 and _SCIPY_VERSION[1] < 10: from scipy.maxentropy import logsumexp elif _SCIPY_VERSION[0] < 1 and _SCIPY_VERSION[1] < 19: from scipy.misc import logsumexp else: from scipy.special import logsumexp from isodist.Isochrone import Isochrone from isodist.PadovaIsochrone import PadovaIsochrone _LOGTOLN= 1./nu.log10(nu.exp(1.)) def eval_distpdf(ds,mdict=None,mivardict=None,logg=None,logg_ivar=None, teff=None,teff_ivar=None,logage=None,logage_ivar=None, Z=None,Z_ivar=None,feh=None,feh_ivar=None, afe=None,afe_ivar=None, padova=None,padova_type=None, normalize=False, ageprior=None): """ NAME: eval_distpdf PURPOSE: evaluate the distance PDF for an object INPUT: ds- list or ndarray of distance (or a single distance), in kpc mdict= dictionary of apparent magnitudes (e.g., {'J':12.,'Ks':13.}) mivardict= dictionary of magnitude inverse variances (matched to mdict) logg= observed logg logg_ivar= inverse variance of logg measurement teff= observed T_eff [K] logg_ivar= inverse variance of T_eff measurement logage= observed log_10 age [Gyr] logage_ivar= inverse variance of log_10 age measurement Z= observed metallicity Z_ivar= inverse variance of Z measurement feh= observed metallicity (alternative to Z) feh_ivar= inverse variance of FeH measurement afe= observed [\alpha/Fe] afe_ivar= [\alpha/Fe] inverse variance padova= if True, use Padova isochrones, if set to a PadovaIsochrone objects, use this padova_type= type of PadovaIsochrone to use (e.g., 2mass-spitzer-wise) normalize= if True, normalize output PDF (default: False) ageprior= - None: flat in log age - flat: flat in age OUTPUT: log of probability HISTORY: 2011-04-28 - Written - Bovy (NYU) """ #load isochrones if not padova is None and isinstance(padova,PadovaIsochrone): iso= padova elif not padova is None and isinstance(padova,bool) and padova: iso= PadovaIsochrone(type=padova_type) #Parse metallicity info if not feh is None: raise NotImplementedError("'feh' not yet implemented") #set up output if isinstance(ds,(list,nu.ndarray)): scalarOut= False if isinstance(ds,list): _ds= nu.array(ds) else: _ds= ds elif isinstance(ds,float): scalarOut= True _ds= [ds] #Pre-calculate all absolute magnitudes absmagdict= {} for key in mdict.keys(): absmagdict[key]= -_distmodulus(_ds)+mdict[key] #loop through isochrones ZS= iso.Zs() logages= iso.logages() allout= nu.zeros((len(_ds),len(ZS),len(logages))) for zz in range(len(ZS)): for aa in range(len(logages)): thisiso= iso(logages[aa],Z=ZS[zz]) dmpm= nu.roll(thisiso['M_ini'],-1)-thisiso['M_ini'] loglike= nu.zeros((len(_ds),len(thisiso['M_ini'])-1)) loglike-= nu.log(thisiso['M_ini'][-1]) for ii in range(1,len(thisiso['M_ini'])-1): if dmpm[ii] > 0.: loglike[:,ii]+= nu.log(dmpm[ii]) else: loglike[:,ii]= nu.finfo(nu.dtype(nu.float64)).min continue #no use in continuing here if not teff is None: loglike[:,ii]-= (teff-10**thisiso['logTe'][ii])**2.*teff_ivar if not logg is None: loglike[:,ii]-= (logg-thisiso['logg'][ii])**2.*logg_ivar for key in mdict.keys(): #print absmagdict[key][2], thisiso[key][ii] loglike[:,ii]-= (absmagdict[key]-thisiso[key][ii])**2.\ *mivardict[key] #marginalize over mass for jj in range(len(_ds)): allout[jj,zz,aa]= logsumexp(loglike[jj,:]) #add age constraint and prior if not logage is None: allout[:,zz,aa]+= -(logage-logages[aa])**2.*logage_ivar if not ageprior is None: if isinstance(ageprior,str) and ageprior.lower() == 'flat': allout[:,zz,aa]+= logages[aa]*_LOGTOLN #add Z constraint and prior if not Z is None: allout[:,zz,:]+= -(Z-ZS[zz])**2.*Z_ivar #prepare final output out= nu.zeros(len(_ds)) for jj in range(len(_ds)): out[jj]= logsumexp(allout[jj,:,:]) if normalize and not scalarOut: out-= logsumexp(out)+nu.log(ds[1]-ds[0]) #return if scalarOut: return out[0] else: return out def _distmodulus(d): return 5.*nu.log10(d/.01) ```
{ "source": "jobovy/mwhalo-shape-2016", "score": 2 }
#### File: mwhalo-shape-2016/py/analyze_pal5.py ```python import os, os.path import pickle import csv from optparse import OptionParser import subprocess import numpy import pal5_util import MWPotential2014Likelihood _DATADIR= os.getenv('DATADIR') def get_options(): usage = "usage: %prog [options]" parser = OptionParser(usage=usage) # Potential parameters parser.add_option("--bf_b15",action="store_true", dest="bf_b15",default=False, help="If set, use the best-fit to the MWPotential2014 data") parser.add_option("--seed",dest='seed',default=1,type='int', help="seed for potential parameter selection and everything else") parser.add_option("-i",dest='pindx',default=None,type='int', help="Index into the potential samples to consider") parser.add_option("--ro",dest='ro',default=pal5_util._REFR0,type='float', help="Distance to the Galactic center in kpc") parser.add_option("--vo",dest='vo',default=pal5_util._REFV0,type='float', help="Circular velocity at ro in km/s") parser.add_option("--samples_savefilename", dest='samples_savefilename', default='mwpot14varyc-samples.pkl', help="Name of the file that contains the potential samples") # c grid parser.add_option("--cmin",dest='cmin',default=0.5,type='float', help="Minimum c to consider") parser.add_option("--cmax",dest='cmax',default=1.5,type='float', help="Maximum c to consider") parser.add_option("--cstep",dest='cstep',default=0.01,type='float', help="C resolution") # Heuristic guess of the maximum parser.add_option("--alongbfpm",action="store_true", dest="alongbfpm",default=False, help="If set, move along the best-fit distance in the heuristic guess") # Distances grid parser.add_option("--dmin",dest='dmin',default=21.,type='float', help="Minimum distance to consider in guess") parser.add_option("--dmax",dest='dmax',default=25.,type='float', help="Maximum distance to consider in guess") parser.add_option("--dstep",dest='dstep',default=0.02,type='float', help="Distance resolution") parser.add_option("--dgridmin",dest='dgridmin',default=-6,type='int', help="Minimum distance to consider in the final grid, in units of dstep from guess") parser.add_option("--dgridmax",dest='dgridmax',default=7,type='int', help="Maximum distance to consider in the final grid, in units of dstep from guess") # PM offsets grid parser.add_option("--pmmin",dest='pmmin',default=-0.02,type='float', help="Minimum proper motion offset to consider in guess") parser.add_option("--pmmax",dest='pmmax',default=0.02,type='float', help="Maximum proper motion offset to consider in guess") parser.add_option("--pmstep",dest='pmstep',default=0.001,type='float', help="Proper-motion offset resolution") parser.add_option("--pmgridmin",dest='pmgridmin',default=-3,type='int', help="Minimum proper motion offset to consider in the final grid, in units of pmstep from guess") parser.add_option("--pmgridmax",dest='pmgridmax',default=4,type='int', help="Maximum proper motion offset to consider in the final grid, in units of pmstep from guess") # Multi-processing parser.add_option("-m",dest='multi',default=8,type='int', help="Number of CPUs to use for streamdf setup") # Increase the uncertainties? parser.add_option("--emult",dest='emult',default=1.,type='float', help="If set, multiply the uncertainties by this factor") # Output file parser.add_option("-o",dest='outfilename', default=None, help="Name of the file that will hold the output") return parser def filelen(filename): p= subprocess.Popen(['wc','-l',filename],stdout=subprocess.PIPE, stderr=subprocess.PIPE) result,err = p.communicate() if p.returncode != 0: raise IOError(err) return int(result.strip().split()[0]) def load_samples(options): if os.path.exists(options.samples_savefilename): with open(options.samples_savefilename,'rb') as savefile: s= pickle.load(savefile) else: raise IOError("File %s that is supposed to hold the potential samples does not exist" % options.samples_savefilename) return s def analyze_one_model(options,cs,pot_params,dist,pmra,pmdec): # First just compute the interpolation points, to adjust the width and length interpcs=[0.5,0.75,0.875,1.,1.125,1.25,1.5,1.75]#,2.,2.25] pal5varyc= pal5_util.predict_pal5obs(pot_params,interpcs, dist=dist,pmra=pmra,pmdec=pmdec, ro=options.ro,vo=options.vo, interpk=1, multi=options.multi,interpcs=interpcs) if len(pal5varyc[6]) == 0: out= numpy.zeros((len(cs),5))-1000000000000000. return out sigv=0.4*18./pal5varyc[4] td=5.*25./pal5varyc[5]/(sigv/0.4) td[td > 14.]= 14. # don't allow older than 14 Gyr pal5varyc_like= pal5_util.predict_pal5obs(pot_params,cs, dist=dist,pmra=pmra,pmdec=pmdec, ro=options.ro,vo=options.vo, multi=options.multi, interpk=1, interpcs=interpcs, sigv=sigv,td=td) pos_radec, rvel_ra= pal5_util.pal5_data() pos_radec[:,2]*= options.emult rvel_ra[:,2]*= options.emult return pal5_util.pal5_lnlike(pos_radec,rvel_ra,*pal5varyc_like) if __name__ == '__main__': parser= get_options() options,args= parser.parse_args() # Set random seed numpy.random.seed(options.seed) # Load potential parameters if options.bf_b15: pot_params= [0.60122692,0.36273147,-0.97591502,-3.34169377, 0.71877924,-0.01519337,-0.01928001] else: pot_samples= load_samples(options) rndindx= numpy.random.permutation(pot_samples.shape[1])[options.pindx] pot_params= pot_samples[:,rndindx] print pot_params if os.path.exists(options.outfilename): # Read the distance/proper motion grid from the file with open(options.outfilename,'rb') as savefile: line1= savefile.readline() cline= savefile.readline() dline= savefile.readline() dsline= savefile.readline() pmsline= savefile.readline() ds= numpy.array([float(d) for d in dsline[1:].split(',')]) pms= numpy.array([float(pm) for pm in pmsline[1:].split(',')]) else: # Find good distances and proper motions pot= MWPotential2014Likelihood.setup_potential(pot_params,1., False,False, options.ro,options.vo) dpmguess= pal5_util.pal5_dpmguess(pot,alongbfpm=options.alongbfpm, pmmin=options.pmmin, pmmax=options.pmmax, pmstep=options.pmstep, dmin=options.dmin,dmax=options.dmax, vo=options.vo,ro=options.ro) bestd= dpmguess[0] bestpm= dpmguess[1] print "Good distance and proper motion are: %.2f, %.2f" \ % (bestd,bestpm) # March along the maximum line if alongbfpm ds= [] pms= [] for ii in range(options.dgridmin,options.dgridmax): for jj in range(options.pmgridmin,options.pmgridmax): ds.append(bestd+ii*options.dstep) pms.append(bestpm+(ds[-1]-bestd)*0.099+jj*options.pmstep) pmdecpar= 2.257/2.296 # Setup c grid cs= numpy.arange(options.cmin,options.cmax+options.cstep/2.,options.cstep) if cs[-1] > options.cmax+options.cstep/2.: cs= cs[:-1] # Output if os.path.exists(options.outfilename): # Figure out how many ds were already run from the length of the file flen= filelen(options.outfilename) start_lines= 5 line_per_dist= 5 ii= (flen-start_lines)//line_per_dist outfile= open(options.outfilename,'a') else: # Setup the file outfile= open(options.outfilename,'w') outfile.write('# potparams:%.8f,%.8f,%.8f,%.8f,%.8f\n' % \ (pot_params[0],pot_params[1],pot_params[2], pot_params[3],pot_params[4])) outfile.write('# cmin cmax cstep: %.3f,%.3f,%.3f\n' % \ (options.cmin,options.cmax,options.cstep)) outfile.write('# dmin dmax dstep: %.3f,%.3f,%.3f\n' % \ (numpy.amin(ds),numpy.amax(ds),options.dstep)) nextline= '#' for ii,d in enumerate(ds): nextline+= '%.4f' % d if not ii == len(ds)-1: nextline+= ',' outfile.write(nextline+'\n') nextline= '#' for ii,pm in enumerate(pms): nextline+= '%.4f' % pm if not ii == len(pms)-1: nextline+= ',' outfile.write(nextline+'\n') outfile.flush() ii= 0 outwriter= csv.writer(outfile,delimiter=',') # Analyze each distance, pmra, pmdec while ii < len(ds): dist= ds[ii] pmo= pms[ii] pmra= -2.296+pmo pmdec= -2.257+pmo*pmdecpar print "Working on %i: dist %.2f, pmra %.3f, pmdec %.3f" \ % (ii,dist,pmra,pmdec) likes= analyze_one_model(options,cs,pot_params,dist,pmra,pmdec).T # Write for row in likes: outwriter.writerow(row) outfile.flush() ii+= 1 outfile.close() ```
{ "source": "jobovy/shearing-sheet", "score": 3 }
#### File: shearing-sheet/shsh/integrate.py ```python from jax import numpy as jnp from jax.experimental.ode import odeint def integrate(vxvv,t,Omega0,A): """Integrate an orbit in the shearing sheet Parameters ---------- vxvv: array Initial condition t: array Times over which to integrate, t[0] is the initial time Omega0: float Rotational frequency A: float Oort A Returns ------- array Integrated orbit in the shearing sheet """ return odeint(_ode,vxvv,t,Omega0,A) def _ode(y,t,Omega0,A): vx= y[:2] vv= y[2:] acc= jnp.array([vv[0],vv[1], 2.*Omega0*vv[1]+4.*A*Omega0*vx[0], -2.*Omega0*vv[0]],dtype='float64') return acc ```
{ "source": "jobovy/simple-blurring-churning", "score": 2 }
#### File: jobovy/simple-blurring-churning/simple_blurring_churning.py ```python from functools import wraps import numpy from scipy import integrate from galpy.orbit import Orbit from galpy.df import dehnendf from skewnormal import skewnormal _R0= 8. #kpc _V0= 220. #kms _LINEARENRICHMENT= False _TAUEQ= 2. _ZINIT= 0.12 # defaults _SKEWM_DEFAULT= 0.4 _SKEWS_DEFAULT= 0.1 _SKEWA_DEFAULT= -4. _DFEHDR_DEFAULT= -0.1 def scalarDecorator(func): """Decorator to return scalar outputs""" @wraps(func) def scalar_wrapper(*args,**kwargs): if numpy.array(args[0]).shape == (): scalarOut= True newargs= () for ii in range(len(args)): if ii == 0: newargs= newargs+(numpy.array([args[ii]]),) else: newargs= newargs+(args[ii],) args= newargs else: scalarOut= False result= func(*args,**kwargs) if scalarOut: return result[0] else: return result return scalar_wrapper # # PURE DYNAMICS # # Blurring p(Rg|R) @scalarDecorator def blurring_pRgR(Rg,R,sr=31.4,hr=3.,hs=267.): """ NAME: blurring_pRgR PURPOSE: The distribution of guiding-center radii at a given R from blurring INPUT: Rg - Guiding center radius (/kpc), can be array R - Given radius (/kpc) sr= (31.4 km/s) velocity dispersion at R0 hr= (3 kpc) scale length hs= (267 kpc) dispersion scale length OUTPUT: p(Rg|R) HISTORY: 2015-01-12 - Written - Bovy (IAS) """ # Setup the DF df= dehnendf(beta=0.,profileParams=(hr/_R0,hs/_R0,sr/_V0)) out= numpy.empty(len(Rg)) for ii in range(len(Rg)): out[ii]= df(Orbit([R/8.,0.,Rg[ii]/R])) return out # Churning p(final Rg | initial Rg, tau) @scalarDecorator def churning_pRgfRgi(Rgf,Rgi,tau,fmig=1.): """ NAME: churning_pRgfRgi PURPOSE: The distribution of final guiding-center radii from churning INPUT: Rgf - Guiding center radius (/kpc), can be array Rgi - Initial guiding-center radius (/kpc) tau - time (/Gyr) fmig= (1.) efficiency of migration relative to fiducial model OUTPUT: p(Rgf|Rgi) HISTORY: 2015-01-12 - Written - Bovy (IAS) """ sig= (0.01+0.2*fmig*tau*Rgi*numpy.exp(-(Rgi-8.)**2./16.)) return 1./numpy.sqrt(2.*numpy.pi)\ *numpy.exp(-(Rgi-Rgf)**2./2./sig) # Churning p(Rg|R,tau) @scalarDecorator def churning_pRgRtau(Rg,R,tau,fmig=1.,sr=31.4,hr=3.,hs=267.): """ NAME: churning_pRgRtau PURPOSE: The distribution of guiding-center radii at a given radius and time from churning INPUT: Rg - Guiding center radius (/kpc), can be array R - Given radius (/kpc) tau - time (/Gyr) fmig= (1.) efficiency of migration relative to fiducial model sr= (31.4 km/s) velocity dispersion at R0 hr= (3 kpc) scale length hs= (267 kpc) dispersion scale length OUTPUT: p(Rg|R,tau) HISTORY: 2015-01-12 - Written - Bovy (IAS) """ # Setup the DF df= dehnendf(beta=0.,profileParams=(hr/_R0,hs/_R0,sr/_V0)) out= numpy.empty(len(Rg)) for ii in range(len(Rg)): out[ii]= integrate.fixed_quad(lambda x: df(Orbit([R/8.,0.,x/R]))\ *churning_pRgfRgi(x,Rg[ii],tau, fmig=fmig), numpy.amax([Rg[ii]-4.,0.]), Rg[ii]+6.,n=40)[0] return out # Churning p(Rg|R) @scalarDecorator def churning_pRgR(Rg,R,fmig=1.,sr=31.4,hr=3.,hs=267.): """ NAME: churning_pRgR PURPOSE: The distribution of guiding-center radii at a given radius from churning (assume constant SFH) INPUT: Rg - Guiding center radius (/kpc), can be array R - Given radius (/kpc) fmig= (1.) efficiency of migration relative to fiducial model sr= (31.4 km/s) velocity dispersion at R0 hr= (3 kpc) scale length hs= (267 kpc) dispersion scale length OUTPUT: p(Rg|R) HISTORY: 2015-01-12 - Written - Bovy (IAS) """ # Setup the DF df= dehnendf(beta=0.,profileParams=(hr/_R0,hs/_R0,sr/_V0)) out= numpy.empty(len(Rg)) for ii in range(len(Rg)): out[ii]= integrate.quadrature(\ lambda tau: integrate.fixed_quad(lambda x: \ df(Orbit([R/8.,0.,x/R])) *churning_pRgfRgi(x,Rg[ii], tau,fmig=fmig), numpy.amax([Rg[ii]-4.,0.]), Rg[ii]+6.,n=40)[0], 0.,10.,tol=10.**-4.,rtol=10**-3.,vec_func=False)[0] return out # # MDFs # # Initial MDF at different radii def pFehRg(Feh,Rg, skewm=_SKEWM_DEFAULT,skews=_SKEWS_DEFAULT,skewa=_SKEWA_DEFAULT, dFehdR=_DFEHDR_DEFAULT): """ NAME: pFehRg PURPOSE: The initial MDF at a given radius Rg INPUT: Feh - Metallicity Rg - Radius (/kpc) skewm= (0.8) mean of the initial MDF at 4 kpc skews= (0.2) standard dev. of the initial MDF skewa= (-4.) skewness parameter of the initial MDF dFehdR= (-0.15) initial metallicity gradient OUTPUT: p(Feh|Rg) at the initial time HISTORY: 2015-01-12 - Written - Bovy (IAS) """ return skewnormal(Feh,m=skewm+dFehdR*(Rg-4.),s=skews,a=skewa)\ *0.5*(1.+numpy.tanh((Feh-numpy.log10(_ZINIT))/0.2)) def pAgeRg(age,Rg, skewm=_SKEWM_DEFAULT,skews=_SKEWS_DEFAULT,skewa=_SKEWA_DEFAULT, dFehdR=_DFEHDR_DEFAULT): """ NAME: pAgeRg PURPOSE: The initial age DF at a given radius Rg INPUT: age - age (/Gyr) Rg - Radius (/kpc) skewm= (0.8) mean of the initial MDF at 4 kpc skews= (0.2) standard dev. of the initial MDF skewa= (-4.) skewness parameter of the initial MDF dFehdR= (-0.15) initial metallicity gradient OUTPUT: p(age|Rg) at the initial time HISTORY: 2015-01-12 - Written - Bovy (IAS) """ ageFeh= fehAgeRg(age,Rg,skewm=skewm,dFehdR=dFehdR) return pFehRg(ageFeh,Rg,skewm=skewm,skews=skews,skewa=skewa, dFehdR=dFehdR)\ /numpy.fabs(_dagedFehRg(ageFeh,Rg,skewm=skewm,dFehdR=dFehdR)) # The relation between age and metallicity at a given radius def fehAgeRg(age,Rg,skewm=_SKEWM_DEFAULT,skews=_SKEWS_DEFAULT,dFehdR=_DFEHDR_DEFAULT): """ NAME: fehAgeRg PURPOSE: The metallicity corresponding to a given age at radius Rg; assuming linear increase in exp(Feh) with time from Zinit Zsolar INPUT: age - age (/Gyr) Rg - guiding-center radius (/kpc) skewm= (0.8) mean of the initial MDF at 4 kpc skews= (0.2) standard dev. of the initial MDF dFehdR= (-0.15) initial metallicity gradient OUTPUT: FeH(age,Rg) HISTORY: 2015-01-12 - Written - Bovy (IAS) """ if _LINEARENRICHMENT: return numpy.log10(_ZINIT+(10.-age)/10.*(10.**(skews+skewm+dFehdR*(Rg-4.))-_ZINIT)) else: eq= 10.**(skews+skewm+dFehdR*(Rg-4.)) return numpy.log10((eq-_ZINIT)*(1.-numpy.exp(-(10.-age)/_TAUEQ))+_ZINIT) def ageFehRg(feh,Rg,skewm=_SKEWM_DEFAULT,skews=_SKEWS_DEFAULT,dFehdR=_DFEHDR_DEFAULT): """ NAME: ageFehRg PURPOSE: The age corresponding to a given metallicity at radius Rg; assuming linear increase in exp(Feh) with time from _ZINIT Zsolar INPUT: feh - metallicity Rg - guiding-center radius (/kpc) skewm= (0.8) mean of the initial MDF at 4 kpc skews= (0.2) standard dev. of the initial MDF dFehdR= (-0.15) initial metallicity gradient OUTPUT: age(FeH,Rg) HISTORY: 2015-01-12 - Written - Bovy (IAS) """ if _LINEARENRICHMENT: return 10.-10.*(10.**feh-_ZINIT)/((10.**(skews+skewm+dFehdR*(Rg-4.))-_ZINIT)) else: eq= 10.**(skews+skewm+dFehdR*(Rg-4.)) return 10.+numpy.log(1.-(10.**feh-_ZINIT)/(eq-_ZINIT))*_TAUEQ def RgAgeFeh(age,feh, skewm=_SKEWM_DEFAULT,skews=_SKEWS_DEFAULT,dFehdR=_DFEHDR_DEFAULT): """ NAME: RgAgeFeh PURPOSE: The guiding-center radius corresponding to a given metallicity and age; assuming linear increase in exp(Feh) with time from _ZINIT Zsolar INPUT: age - age (/Gyr) feh - metallicity skewm= (0.8) mean of the initial MDF at 4 kpc skews= (0.2) standard dev. of the initial MDF dFehdR= (-0.15) initial metallicity gradient OUTPUT: Rg(age,FeH) HISTORY: 2015-01-13 - Written - Bovy (IAS) """ if _LINEARENRICHMENT: return (numpy.log10(10.*(10.**feh-_ZINIT)/(10.-age))-skewm-skews)/dFehdR+4. else: return (numpy.log10((10.**feh-_ZINIT)/(1.-numpy.exp(-(10.-age)/_TAUEQ))+_ZINIT)-skews-skewm)/dFehdR+4. # Also need derivatives for integrals and distribution def _dfehdAgeRg(age,Rg,skewm=_SKEWM_DEFAULT,skews=_SKEWS_DEFAULT,dFehdR=_DFEHDR_DEFAULT): if _LINEARENRICHMENT: return -1./10./numpy.log(10.)*(10.**(skews+skewm+dFehdR*(Rg-4.))-_ZINIT)\ /(_ZINIT+(10.-age)/10.*(numpy.exp(skews+skewm+dFehdR*(Rg-4.))-_ZINIT)) else: eq= 10.**(skews+skewm+dFehdR*(Rg-4.)) return -(eq-_ZINIT)*numpy.exp(-(10.-age)/_TAUEQ)/(((eq-_ZINIT)*(1.-numpy.exp(-(10.-age)/_TAUEQ))+_ZINIT))/numpy.log(10.)/_TAUEQ def _dagedFehRg(feh,Rg,skewm=_SKEWM_DEFAULT,skews=_SKEWS_DEFAULT,dFehdR=_DFEHDR_DEFAULT): if _LINEARENRICHMENT: return -10.*10.**feh*numpy.log(10.)\ /((10.**(skews+skewm+dFehdR*(Rg-4.))-_ZINIT)) else: eq= 10.**(skews+skewm+dFehdR*(Rg-4.)) return -_TAUEQ*numpy.log(10.)*10.**feh/(eq-_ZINIT)/(1.-(10.**feh-_ZINIT)/(eq-_ZINIT)) def _dfehdRgAge(Rg,age,skewm=_SKEWM_DEFAULT,skews=_SKEWS_DEFAULT,dFehdR=_DFEHDR_DEFAULT): feh= fehAgeRg(age,Rg,skewm=skewm,skews=skews,dFehdR=dFehdR) if _LINEARENRICHMENT: return (10.-age)/10.*10.**(skews+skewm+dFehdR*(Rg-4.))*dFehdR/10.**feh else: eq= 10.**(skews+skewm+dFehdR*(Rg-4.)) return (1.-numpy.exp(-(10.-age)/_TAUEQ))*eq*dFehdR/10.**feh def test_dfehdAgeRg(): ages= numpy.tile(numpy.linspace(1.,10.,101),(101,1)) Rs= numpy.tile(numpy.linspace(2.,16.,101),(101,1)).T dx= 10.**-8. dage= _dfehdAgeRg(ages,Rs) dage_num= (fehAgeRg(ages+dx,Rs)-fehAgeRg(ages,Rs))/dx assert numpy.all(numpy.fabs(dage-dage_num) < 10.**-4.), 'dfehdAgeRg implemented incorrectly' return None def test_dagedFgeRg(): Rs= numpy.tile(numpy.linspace(2.,16.,101),(101,1)).T fehs= numpy.tile(numpy.linspace(-1.5,0.7,101),(101,1)) Rs[fehs > fehAgeRg(0.,Rs)-0.03]= numpy.nan dx= 10.**-8. dfeh= _dagedFehRg(fehs,Rs) dfeh_num= (ageFehRg(fehs+dx,Rs)-ageFehRg(fehs,Rs))/dx assert numpy.all((numpy.fabs(dfeh-dfeh_num) < 10.**-4.)+numpy.isnan(dfeh)), 'dagedFehRg implemented incorrectly' return None def test_dfehdRgAge(): Rs= numpy.tile(numpy.linspace(2.,16.,101),(101,1)).T ages= numpy.tile(numpy.linspace(1.,9.9,101),(101,1)) dx= 10.**-8. dfeh= _dfehdRgAge(Rs,ages) dfeh_num= (fehAgeRg(ages,Rs+dx)-fehAgeRg(ages,Rs))/dx assert numpy.all((numpy.fabs(dfeh-dfeh_num) < 10.**-6.)+numpy.isnan(dfeh)), 'dfehdRgAge implemented incorrectly' return None # Blurring MDF @scalarDecorator def blurring_pFehR(feh,R, skewm=_SKEWM_DEFAULT,skews=_SKEWS_DEFAULT,skewa=_SKEWA_DEFAULT, dFehdR=_DFEHDR_DEFAULT, sr=31.4,hr=3.,hs=267.): """ NAME: blurring_pFehR PURPOSE: The distribution of metallicities at a given R due to blurring INPUT: feh - metallicity R - radius (/kpc) skewm= (0.8) mean of the initial MDF at 4 kpc skews= (0.2) standard dev. of the initial MDF skewa= (-4.) skewness parameter of the initial MDF dFehdR= (-0.15) initial metallicity gradient sr= (31.4 km/s) velocity dispersion at R0 hr= (3 kpc) scale length hs= (267 kpc) dispersion scale length OUTPUT: p(Feh|R) HISTORY: 2015-01-12 - Written - Bovy (IAS) """ out= numpy.empty_like(feh) for ii in range(len(feh)): out[ii]= integrate.quadrature(lambda x: pFehRg(feh[ii],x, skewm=skewm,skews=skews, skewa=skewa, dFehdR=dFehdR)\ *blurring_pRgR(x,R,sr=sr, hr=hr,hs=hs), numpy.amax([0.,R-4.]),R+4., tol=10.**-4.,rtol=10.**-3., vec_func=False)[0] return out # Churning age distribution @scalarDecorator def churning_pAgeR(age,R, skewm=_SKEWM_DEFAULT,skews=_SKEWS_DEFAULT,skewa=_SKEWA_DEFAULT, dFehdR=_DFEHDR_DEFAULT,fmig=1., sr=31.4,hr=3.,hs=267.): """ NAME: churning_pAgeR PURPOSE: The distribution of ages at a given R due to churning INPUT: age - age (/Gyr) R - radius (/kpc) skewm= (0.8) mean of the initial MDF at 4 kpc skews= (0.2) standard dev. of the initial MDF skewa= (-4.) skewness parameter of the initial MDF dFehdR= (-0.15) initial metallicity gradient fmig= (1.) efficiency of migration relative to fiducial model sr= (31.4 km/s) velocity dispersion at R0 hr= (3 kpc) scale length hs= (267 kpc) dispersion scale length OUTPUT: p(age|R) HISTORY: 2015-01-12 - Written - Bovy (IAS) """ out= numpy.empty_like(age) for ii in range(len(age)): out[ii]= integrate.quadrature(\ lambda x: pFehRg(fehAgeRg(age[ii],x,skewm=skewm,skews=skews, dFehdR=dFehdR),x, skewm=skewm,skews=skews, skewa=skewa, dFehdR=dFehdR)\ *churning_pRgR(x,R,fmig=fmig,sr=sr, hr=hr,hs=hs)\ /numpy.fabs(_dagedFehRg(fehAgeRg(age[ii],x,skewm=skewm,skews=skews,dFehdR=dFehdR),x)), numpy.amax([0.,R-4.]),R+6., tol=10.**-4.,rtol=10.**-3., vec_func=False)[0] return out # Churning metallicity distribution @scalarDecorator def churning_pFehR(feh,R, skewm=_SKEWM_DEFAULT,skews=_SKEWS_DEFAULT, skewa=_SKEWA_DEFAULT, dFehdR=_DFEHDR_DEFAULT,fmig=1., sr=31.4,hr=3.,hs=267., useInitialAgeDF=True): """ NAME: churning_pFehR PURPOSE: The distribution of metallicities at a given R due to churning INPUT: feh - metallicity R - radius (/kpc) skewm= (0.8) mean of the initial MDF at 4 kpc skews= (0.2) standard dev. of the initial MDF skewa= (-4.) skewness parameter of the initial MDF dFehdR= (-0.15) initial metallicity gradient fmig= (1.) efficiency of migration relative to fiducial model sr= (31.4 km/s) velocity dispersion at R0 hr= (3 kpc) scale length hs= (267 kpc) dispersion scale length OUTPUT: p(Feh|R) HISTORY: 2015-01-12 - Written - Bovy (IAS) """ out= numpy.empty_like(feh) for ii in range(len(feh)): # shortcut for Age DF if useInitialAgeDF: ageDF= lambda a: pAgeRg(a,R,skewm=skewm,skews=skews,skewa=skewa, dFehdR=dFehdR) else: ageDF= lambda a: churning_pAgeR(a,R,skewm=skewm,skews=skews, skewa=skewa,dFehdR=dFehdR,fmig=fmig, sr=sr,hr=hr,hs=hs) # Short age function, so we don't have to repeat this ageFunc= lambda r: ageFehRg(feh[ii],r,skewm=skewm,skews=skews, dFehdR=dFehdR) # Integrate def intFunc(x): tage= ageFunc(x) if tage <= 0. or tage > 10. or numpy.isnan(tage): return 0. return ageDF(ageFunc(x))\ *churning_pRgRtau(x,R,tage, fmig=fmig,sr=sr, hr=hr,hs=hs)\ /numpy.fabs(_dfehdAgeRg(tage,x)) out[ii]= integrate.quad(intFunc, numpy.amax([0.,R-12.]),(feh[ii]-skewm-skews)/dFehdR+4.)[0] return out # Churning metallicity distribution @scalarDecorator def churning_pFehAgeR(feh,age,R, skewm=_SKEWM_DEFAULT,skews=_SKEWS_DEFAULT, skewa=_SKEWA_DEFAULT, dFehdR=_DFEHDR_DEFAULT,fmig=1., sr=31.4,hr=3.,hs=267., useInitialAgeDF=True): """ NAME: churning_pFehAgeR PURPOSE: The distribution of metallicities and ages at a given R due to churning INPUT: feh - metallicity (can be array) age - age (/Gyr) R - radius (/kpc) skewm= (0.8) mean of the initial MDF at 4 kpc skews= (0.2) standard dev. of the initial MDF skewa= (-4.) skewness parameter of the initial MDF dFehdR= (-0.15) initial metallicity gradient fmig= (1.) efficiency of migration relative to fiducial model sr= (31.4 km/s) velocity dispersion at R0 hr= (3 kpc) scale length hs= (267 kpc) dispersion scale length OUTPUT: p(Feh,age|R) HISTORY: 2015-01-13 - Written - Bovy (IAS) """ out= numpy.empty_like(feh) # p(age|R) if useInitialAgeDF: ageP= pAgeRg(age,R,skewm=skewm,skews=skews,skewa=skewa, dFehdR=dFehdR) else: ageP= churning_pAgeR(age,R,skewm=skewm,skews=skews, skewa=skewa,dFehdR=dFehdR,fmig=fmig, sr=sr,hr=hr,hs=hs) for ii in range(len(feh)): trg= RgAgeFeh(age,feh[ii], skewm=skewm,skews=skews,dFehdR=dFehdR) if trg <= 0. or numpy.isnan(trg) or numpy.isinf(trg) \ or feh[ii] > (skews+skewm+dFehdR*(trg-4.)): out[ii]= 0. continue out[ii]= \ churning_pRgRtau(trg,R,age,fmig=fmig,sr=sr,hr=hr,hs=hs)\ *ageP/_dfehdRgAge(trg,age,skewm=skewm,skews=skews,dFehdR=dFehdR) return out def skewness(x,mdf): m= numpy.nansum(x*mdf)/numpy.nansum(mdf) return numpy.nansum((x-m)**3.*mdf)/numpy.nansum(mdf)\ /(numpy.nansum((x-m)**2*mdf)/numpy.nansum(mdf))**1.5 ``` #### File: jobovy/simple-blurring-churning/skewnormal.py ```python import numpy from scipy.stats import norm def skewnormal(x,m=0,s=1,a=-4.): """Specify in terms of the actual mean and sqrt{variance}""" # Calculate the actual parameters d= a/numpy.sqrt(1.+a**2.) s/= numpy.sqrt(1.-2*d**2./numpy.pi) m-= s*d*numpy.sqrt(2./numpy.pi) # Evaluate t= (x-m)/s return 2.*norm.pdf(t)*norm.cdf(a*t)/s ```
{ "source": "jobovy/sphinx-astrorefs", "score": 2 }
#### File: sphinx-astrorefs/sphinx_astrorefs/pybtex_astro.py ```python import re from collections import Counter import string from pybtex.style.formatting.unsrt import Style as UnsrtStyle from pybtex.style.formatting import toplevel from pybtex.style.labels import BaseLabelStyle from pybtex.style.sorting.author_year_title \ import SortingStyle as AuthorSortingStyle from pybtex.richtext import Symbol, Text from pybtex.plugin import register_plugin from pybtex.style.template import ( field, first_of, href, join, names, optional, optional_field, sentence, tag, together, words, node, FieldIsMissing ) import latexcodec from sphinx.util import logging logger= logging.getLogger(__name__) def decode_specialchars(input): return input.replace('{', '').replace('}', '').encode().decode('latex') # labels in astro format: author year, author & author year for two authors # author et al. year for more than two class AstroLabelStyle(BaseLabelStyle): def format_labels(self, sorted_entries): all_labels= [] for entry in sorted_entries: if len(entry.persons['author']) == 1: out= '{} {}'.format(entry.persons['author'][0].last_names[0], entry.fields['year']) elif len(entry.persons['author']) == 2: out= '{} & {} {}'.format(entry.persons['author'][0]\ .last_names[0], entry.persons['author'][1]\ .last_names[0], entry.fields['year']) else: out= '{} et al. {}'.format(entry.persons['author'][0]\ .last_names[0], entry.fields['year']) all_labels.append(decode_specialchars(out)) # Deal with duplicates, assuming at most 26 duplicates dups= [item for item, count in Counter(all_labels).items() if count > 1] for dup in dups: idxs= [ii for ii,x in enumerate(all_labels) if x == dup] for idx,lett in zip(idxs,string.ascii_lowercase): last_digit= re.match('.+([0-9])[^0-9]*$',all_labels[idx]) all_labels[idx]= all_labels[idx][:last_digit.start(1)+1]\ +lett+all_labels[idx][last_digit.start(1)+1:] sorted_entries[idx].fields['year']= \ sorted_entries[idx].fields['year']+lett # Yield output for entry, label in zip(sorted_entries,all_labels): yield label def dashify(text): dash_re = re.compile(r'-+') return Text(Symbol('ndash')).join(text.split(dash_re)) def format_first_and_last_name(person): if len(person.first_names) > 0: return '{} {}.'.format(decode_specialchars(person.last_names[0]), str(person.first_names[0])[0]) else: # collaboration or similar return '{}'.format(decode_specialchars(person.last_names[0])) @node def astro_names(children, context, role, **kwargs): """Return formatted names.""" assert not children try: persons= context['entry'].persons[role] except KeyError: raise FieldIsMissing(role, context['entry']) if len(persons) > 5: out= '' for ii in range(5): out+= '{}, '.format(format_first_and_last_name(persons[ii])) return '{}et al.'.format(out) elif len(persons) > 2: out= '' for ii in range(len(persons)-1): out+= '{}, '.format(format_first_and_last_name(persons[ii])) return '{}& {}'.format(out, format_first_and_last_name(persons[-1])) elif len(persons) == 2: return '{} & {}'.format(format_first_and_last_name(persons[0]), format_first_and_last_name(persons[1])) else: return format_first_and_last_name(persons[0]) class AstroStyle(UnsrtStyle): default_label_style = AstroLabelStyle default_sorting_style= AuthorSortingStyle def format_names(self, role, as_sentence=True): formatted_names= astro_names(role,sep=', ', sep2 = ' & ',last_sep=', & ') if as_sentence: return sentence [formatted_names] else: return formatted_names def format_author(self,e,as_sentence=True): authors= self.format_names('author', as_sentence=False) return sentence[authors] def format_journal(self,e): if 'doi' not in e.fields: return field('journal') else: return href [ join [ 'https://doi.org/', field('doi', raw=True) ], field('journal') ] def format_volume(self,e): if 'adsurl' not in e.fields: return field('volume') else: return href [ field('adsurl',raw=True), field('volume')] def format_pages(self,e): if 'eprint' not in e.fields: return field('pages',apply_func=dashify) else: return href [ join [ 'https://arxiv.org/abs/', field('eprint', raw=True) ], field('pages',apply_func=dashify) ] def get_article_template(self, e): if 'volume' not in e.fields: journal_and_volume = tag('em') [self.format_journal(e)] else: journal_and_volume = join [ tag('em') [self.format_journal(e)],' ', tag('strong') [self.format_volume(e)] ] template = toplevel [ self.format_author(e), self.format_title(e, 'title'), sentence [ journal_and_volume, join [ optional [self.format_pages(e)], ' (',field('year'),')'] ] ] return template def get_book_template(self, e): template = toplevel [ self.format_author_or_editor(e), self.format_btitle(e, 'title'), self.format_volume_and_series(e), sentence [ join [ field('publisher'), optional [', ',field('address')], ' (',field('year'),')'] ], optional[ sentence [ self.format_isbn(e) ] ], self.format_web_refs(e), ] return template def register(): logger.info("Registering astro-style pybtex formatting...") register_plugin('pybtex.style.formatting', 'astrostyle', AstroStyle) ``` #### File: sphinx-astrorefs/sphinx_astrorefs/resolve_aas.py ```python import os.path from sphinx.errors import ExtensionError aas_macros_dict= { '\\apjsupp' : 'Astrophys. J. Supp.', '\\apjs' : 'Astrophys. J. Supp.', '\\appjlett': 'Astrophys. J. Lett.', '\\appjl' : 'Astrophys. J. Lett.', '\\apj' : 'Astrophys. J.', '\\aj' : 'Astron. J.', '\\mnras' : 'Mon. Not. Roy. Astron. Soc.', '\\baas' : 'Bull. AAS', '\\bain' : 'Bull. Astron. Inst. Netherlands', '\\aapr' : 'Astron. & Astrophys. Rev.', '\\aaps' : 'Astron. & Astrophys. Supp.', '\\astap' : 'Astron. & Astrophys.', '\\aap' : 'Astron. & Astrophys.', '\\araa' : 'Ann. Rev. Astron. Astrophys.', '\\actaa' : 'Acta Astronomica', '\\apss' : 'Astrophys. & Space Sci.', '\\jcap' : 'J. Cosmo & Astropart. Phys.', '\\nat' : 'Nature', '\\nar' : 'New Astron. Rev.', '\\na' : 'New Astron.', '\\pra' : 'Phys. Rev. A', '\\prb' : 'Phys. Rev. B', '\\prc' : 'Phys. Rev. C', '\\prd' : 'Phys. Rev. D', '\\pre' : 'Phys. Rev. E', '\\prl' : 'Phys. Rev. Lett.', '\\pasa' : 'Pub. Astron. Soc. Aus.', '\\pasp' : 'Pub. Astron. Soc. Pac.', '\\pasj' : 'Pub. Astron. Soc. Japan', '\\rmxaa' : 'Rev. Mex. Astron. & Astrofys.', '\\ssr' : 'Space Sci. Rev.', '\\applopt' : 'Appl. Opt.', '\\ao' : 'Appl. Opt.', '\\azh' : 'Astron. Zhu.', '\\bac' : 'Bull. Astron. Czech.', '\\caa' : 'Chin. Astron. Astrophys.', '\\cjaa' : 'Chin. J. Astron. Astrophys.', '\\icarus' : 'Icarus', '\\jrasc' : 'J. RAS Can.', '\\memras' : 'Mem. RAS', '\\qjras' : 'Quat. J. RAS', '\\skytel' : 'Sky & Telescope', '\\solphys' : 'Sol. Phys.', '\\sovast' : 'Sov. Astron.', '\\zap' : 'ZeitSch. Astrophys.', '\\iaucirc' : 'IAU Circs.', '\\aplett' : 'Astrophys. Lett.', '\\apspr' : 'Astrophys. Space Phys. Res.', '\\fcp' : 'Fund. Cosm. Phys.', '\\gca' : 'Geochim. Cosmochim. Acta', '\\grl' : 'Geophys. Res. Lett', '\\jcp' : 'J. Chem. Phys.', '\\jgr' : 'J. Geophys. Res.', '\\jqsrt' : 'J. Quant. Spec. Rad. Trans.', '\\memsai' : 'Mem. Soc. Astron. Ital.', '\\nphysa' : 'Nucl. Phys. A', '\\physrep' : 'Phys. Rep.', '\\physscr' : 'Phys. Scrip.', '\\planss' : 'Plan. Space. Sci.', '\\procspie': 'Proc. SPIE' } def resolve(app): if not app.config.astrorefs_resolve_aas_macros: return if app.config.astrorefs_resolve_aas_macros_infile is None \ or app.config.astrorefs_resolve_aas_macros_outfile is None: raise ExtensionError('sphinx-astrorefs: when resolving AAS macros, need to give original and target bib file name as "astrorefs_resolve_aas_macros_infile" and "astrorefs_resolve_aas_macros_outfile"') with open(os.path.join(app.env.srcdir, app.config.astrorefs_resolve_aas_macros_infile),'r') \ as infile: with open(os.path.join(app.env.srcdir, app.config.astrorefs_resolve_aas_macros_outfile),'w') \ as outfile: for line in infile: for key in aas_macros_dict.keys(): line= line.replace(key,aas_macros_dict[key]) outfile.write(line) # Re-do this initialization to make sure the bibtex file is found if hasattr(app.config,'bibtex_bibfiles'): app.env.get_domain('cite').__init__(app.env) ```
{ "source": "jobovy/streamgap-pepper", "score": 2 }
#### File: jobovy/streamgap-pepper/gd1_util.py ```python from galpy.df import streamdf, streamgapdf from streampepperdf import streampepperdf from galpy.orbit import Orbit from galpy.potential import LogarithmicHaloPotential from galpy.actionAngle import actionAngleIsochroneApprox from galpy.util import bovy_conversion #for unit conversions R0, V0= 8., 220. def setup_gd1model(leading=True, timpact=None, hernquist=True, age=9., singleImpact=False, length_factor=1., **kwargs): lp= LogarithmicHaloPotential(normalize=1.,q=0.9) aAI= actionAngleIsochroneApprox(pot=lp,b=0.8) obs= Orbit([1.56148083,0.35081535,-1.15481504,0.88719443, -0.47713334,0.12019596]) sigv= 0.365/2.*(9./age) #km/s, /2 bc tdis x2, adjust for diff. age if timpact is None: sdf= streamdf(sigv/220.,progenitor=obs,pot=lp,aA=aAI,leading=leading, nTrackChunks=11, tdisrupt=age/bovy_conversion.time_in_Gyr(V0,R0), Vnorm=V0,Rnorm=R0) elif singleImpact: sdf= streamgapdf(sigv/220.,progenitor=obs,pot=lp,aA=aAI, leading=leading, nTrackChunks=11, tdisrupt=age/bovy_conversion.time_in_Gyr(V0,R0), Vnorm=V0,Rnorm=R0, timpact=timpact, spline_order=3, hernquist=hernquist,**kwargs) else: sdf= streampepperdf(sigv/220.,progenitor=obs,pot=lp,aA=aAI, leading=leading, nTrackChunks=101, tdisrupt=age/bovy_conversion.time_in_Gyr(V0,R0), Vnorm=V0,Rnorm=R0, timpact=timpact, spline_order=1, hernquist=hernquist, length_factor=length_factor) sdf.turn_physical_off() return sdf ``` #### File: jobovy/streamgap-pepper/make_pepper_movie.py ```python import os, os.path import copy import pickle import numpy import tqdm import subprocess import statsmodels.api as sm import matplotlib matplotlib.use('Agg') from galpy.util import bovy_plot, bovy_conversion, multi from matplotlib import pyplot import seaborn as sns import simulate_streampepper from streampepperdf import streampepperdf from optparse import OptionParser from gd1_util import R0, V0 def get_options(): usage = "usage: %prog [options]" parser = OptionParser(usage=usage) # make frames or combine into movie? parser.add_option("--movie",action="store_true", dest="movie",default=False, help="If set, combine frames into a movie") # Output parser.add_option("-o",dest='outputfilename',default=None, help="Name of the file that will hold the movie") parser.add_option("--base",dest='basefilename',default=None, help="Basename of the frame files (incl. directory)") parser.add_option("--skip",action="store_true", dest="skip",default=False, help="If set, skip existing frames") # Simulation options parser.add_option("-n",dest='nparticles',default=10000,type='int', help="Number of particles to sample for each tail") parser.add_option("--nsnap",dest='nsnap',default=1024,type='int', help="Number of snapshots to produce (must match a gd1pappernsnap.pkl file and gd1peppernsnap_trailing file)") # Single impact? parser.add_option("--single",action="store_true", dest="single",default=False, help="If set, perform a single, large impact") parser.add_option("--singletimpact", dest='singletimpact',default=4.,type='float', help="Time of impact (in Gyr) for the single impact case") parser.add_option("--singlemimpact", dest='singlemimpact',default=10.,type='float', help="Mass of impact (in 10^7 msun) for the single impact case") # Full range parser.add_option("--pepper",action="store_true", dest="pepper",default=False, help="If set, sample from all possible impacts") parser.add_option("--timescdm",dest='timescdm',default=1.,type='float', help="Use a rate that is timescdm times the CDM prediction") parser.add_option("--Mmin",dest='Mmin',default=5.,type='float', help="log10() of the minimum mass in Msun") parser.add_option("--Mmax",dest='Mmax',default=9.,type='float', help="log10() of the max mass in Msun") # Ploting options parser.add_option("--noaxes",action="store_true", dest="noaxes",default=False, help="If set, don't plot axes") parser.add_option("--lowess",action="store_true", dest="lowess",default=False, help="If set, add a trendline to each tail") return parser def create_frames(options,args): # First reload the model with open('gd1pepper%isampling.pkl' % options.nsnap,'rb') as savefile: sdf_pepper_leading= pickle.load(savefile) with open('gd1pepper%isampling_trailing.pkl' % options.nsnap,'rb') as savefile: sdf_pepper_trailing= pickle.load(savefile) # Output times timpacts= sdf_pepper_leading._uniq_timpact # Sample unperturbed aAt numpy.random.seed(1) Oml,anglel,dtl= super(streampepperdf,sdf_pepper_leading)._sample_aAt(\ options.nparticles) Omt,anglet,dtt= super(streampepperdf,sdf_pepper_trailing)._sample_aAt(\ options.nparticles) # Setup progenitor prog= sdf_pepper_leading._progenitor().flip() prog.integrate(numpy.linspace(0.,9./bovy_conversion.time_in_Gyr(V0,R0), 10001),sdf_pepper_leading._pot) prog.flip() # Setup impacts if options.single: # Hit the leading arm and the trailing arm 1 Gyr later m= options.singlemimpact/bovy_conversion.mass_in_1010msol(V0,R0)/1000. t= timpacts[\ numpy.argmin(\ numpy.fabs(\ numpy.array(timpacts)\ -options.singletimpact\ /bovy_conversion.time_in_Gyr(V0,R0)))] sdf_pepper_leading.set_impacts(\ impactb=[0.5*simulate_streampepper.rs(options.singlemimpact*10.**7.)], subhalovel=numpy.array([[-25.,155.,30.]])/V0, impact_angle=[0.2], timpact=[t], GM=[m],rs=[simulate_streampepper.rs(options.singlemimpact*10.**7.)]) # Trailing m= options.singlemimpact/bovy_conversion.mass_in_1010msol(V0,R0)/1000. t= timpacts[\ numpy.argmin(\ numpy.fabs(\ numpy.array(timpacts)\ -(options.singletimpact+1.)\ /bovy_conversion.time_in_Gyr(V0,R0)))] sdf_pepper_trailing.set_impacts(\ impactb=[1.*simulate_streampepper.rs(options.singlemimpact*10.**7.)], subhalovel=numpy.array([[-25.,155.,30.]])/V0, impact_angle=[-0.3], timpact=[t], GM=[m],rs=[simulate_streampepper.rs(options.singlemimpact*10.**7.)]) elif options.pepper: # Sampling functions massrange=[options.Mmin,options.Mmax] plummer= False Xrs= 5. nsubhalo= simulate_streampepper.nsubhalo rs= simulate_streampepper.rs dNencdm= simulate_streampepper.dNencdm sample_GM= lambda: (10.**((-0.5)*massrange[0])\ +(10.**((-0.5)*massrange[1])\ -10.**((-0.5)*massrange[0]))\ *numpy.random.uniform())**(1./(-0.5))\ /bovy_conversion.mass_in_msol(V0,R0) rate_range= numpy.arange(massrange[0]+0.5,massrange[1]+0.5,1) rate= numpy.sum([dNencdm(sdf_pepper_leading,10.**r,Xrs=Xrs, plummer=plummer) for r in rate_range]) rate= options.timescdm*rate sample_rs= lambda x: rs(x*bovy_conversion.mass_in_1010msol(V0,R0)*10.**10., plummer=plummer) # Pepper both sdf_pepper_leading.simulate(rate=rate,sample_GM=sample_GM, sample_rs=sample_rs,Xrs=Xrs) print numpy.amax(sdf_pepper_leading._GM)*bovy_conversion.mass_in_1010msol(V0,R0) sdf_pepper_trailing.simulate(rate=rate,sample_GM=sample_GM, sample_rs=sample_rs,Xrs=Xrs) print numpy.amax(sdf_pepper_trailing._GM)*bovy_conversion.mass_in_1010msol(V0,R0) else: # Hit both with zero sdf_pepper_leading.set_impacts(\ impactb=[0.], subhalovel=numpy.array([[-25.,155.,30.]])/V0, impact_angle=[0.2], timpact=[timpacts[0]], GM=[0.],rs=[1.]) sdf_pepper_trailing.set_impacts(\ impactb=[0.], subhalovel=numpy.array([[-25.,155.,30.]])/V0, impact_angle=[-0.2], timpact=[timpacts[0]], GM=[0.],rs=[1.]) # Now make all frames dum= multi.parallel_map( (lambda x: _plot_one_frame(x,options,prog,timpacts, sdf_pepper_leading,sdf_pepper_trailing, Oml,Omt,anglel,anglet,dtl,dtt)), range(len(timpacts)), numcores=numpy.amin([len(timpacts),30])) return None def _plot_one_frame(ii,options,prog,timpacts, sdf_pepper_leading,sdf_pepper_trailing, Oml,Omt,anglel,anglet,dtl,dtt): bovy_plot.bovy_print(fig_height=3.,fig_width=7.) xlabel= r'$X_{\mathrm{orb}}\,(\mathrm{kpc})$' ylabel= r'$Y_{\mathrm{orb}}\,(\mathrm{kpc})$' xrange= [-12.,12.] yrange= [-1.75,.3] TL= _projection_orbplane(prog) if options.skip and os.path.exists(options.basefilename+'_%s.png'\ % str(ii).zfill(5)): return None timpact= timpacts[-ii-1] overplot= False for sdf_pepper,Om,angle,dt \ in zip([sdf_pepper_leading,sdf_pepper_trailing], [Oml,Omt],[anglel,anglet],[dtl,dtt]): tOm= copy.deepcopy(Om) tangle= copy.deepcopy(angle) tdt= copy.deepcopy(dt) if timpact > sdf_pepper._timpact[-1]: # No impact yet tangle-= tOm*timpact else: tangle-= tOm*timpact # Apply all kicks relevant for this impact # (copied from streampepperdf) dangle_at_impact= angle\ -numpy.tile(sdf_pepper._progenitor_angle.T, (options.nparticles,1)).T\ -(tOm-numpy.tile(sdf_pepper._progenitor_Omega.T, (options.nparticles,1)).T)\ *sdf_pepper._timpact[-1] dangle_par_at_impact=\ numpy.dot(dangle_at_impact.T, sdf_pepper._dsigomeanProgDirection)\ *sdf_pepper._sgapdfs[-1]._gap_sigMeanSign dOpar= numpy.dot((tOm-numpy.tile(sdf_pepper._progenitor_Omega.T, (options.nparticles,1)).T).T, sdf_pepper._dsigomeanProgDirection)\ *sdf_pepper._sgapdfs[-1]._gap_sigMeanSign relevant_timpact= sdf_pepper._timpact[\ sdf_pepper._timpact > timpact] for kk,ti in enumerate(relevant_timpact[::-1]): # Calculate and apply kicks (points not yet released have # zero kick) dOr= sdf_pepper._sgapdfs[-kk-1]._kick_interpdOr(dangle_par_at_impact) dOp= sdf_pepper._sgapdfs[-kk-1]._kick_interpdOp(dangle_par_at_impact) dOz= sdf_pepper._sgapdfs[-kk-1]._kick_interpdOz(dangle_par_at_impact) tOm[0,:]+= dOr tOm[1,:]+= dOp tOm[2,:]+= dOz if kk < len(relevant_timpact)-1: run_to_timpact= relevant_timpact[::-1][kk+1] else: run_to_timpact= timpact tangle[0,:]+=\ sdf_pepper._sgapdfs[-kk-1]._kick_interpdar(dangle_par_at_impact)\ +dOr*(ti-timpact) tangle[1,:]+=\ sdf_pepper._sgapdfs[-kk-1]._kick_interpdap(dangle_par_at_impact)\ +dOp*(ti-timpact) tangle[2,:]+=\ sdf_pepper._sgapdfs[-kk-1]._kick_interpdaz(dangle_par_at_impact)\ +dOz*(ti-timpact) # Update parallel evolution dOpar+=\ sdf_pepper._sgapdfs[-kk-1]._kick_interpdOpar(dangle_par_at_impact) dangle_par_at_impact+= dOpar*(ti-run_to_timpact) # Convert to RvR coordinates for this time coorddf= copy.deepcopy(sdf_pepper._sgapdfs_coordtransform[timpact]) coorddf._interpolate_stream_track_kick_aA() coorddf._interpolatedObsTrack= coorddf._kick_interpolatedObsTrack coorddf._ObsTrack= coorddf._gap_ObsTrack coorddf._interpolatedObsTrackXY= coorddf._kick_interpolatedObsTrackXY coorddf._ObsTrackXY= coorddf._gap_ObsTrackXY coorddf._allinvjacsTrack= coorddf._gap_allinvjacsTrack coorddf._interpolatedObsTrackAA= coorddf._kick_interpolatedObsTrackAA coorddf._ObsTrackAA= coorddf._gap_ObsTrackAA coorddf._nTrackChunks= coorddf._nTrackChunksImpact coorddf._thetasTrack= coorddf._gap_thetasTrack coorddf._interpolatedThetasTrack= coorddf._kick_interpolatedThetasTrack coorddf._progenitor_angle-= coorddf._progenitor_Omega*timpact coorddf._progenitor_angle= coorddf._progenitor_angle % (2.*numpy.pi) tangle= tangle % (2.*numpy.pi) RvR= coorddf._approxaAInv(tOm[0,:],tOm[1,:],tOm[2,:], tangle[0,:],tangle[1,:],tangle[2,:], interp=True) cindx= numpy.array([coorddf._find_closest_trackpointaA(tOm[0,ll],tOm[1,ll],tOm[2,ll], tangle[0,ll],tangle[1,ll],tangle[2,ll], interp=True) for ll in range(len(tOm[0]))],dtype='int') # Progenitor and its orbit at the current time cprog= prog(timpact) cprog.integrate(numpy.linspace(0.,3.,101),sdf_pepper._pot) cprogf= cprog.flip() cprogf.integrate(numpy.linspace(0.,3.,101),sdf_pepper._pot) # compute the orbit and rotate everything such that the derivative # of the orbit points along X tvec= numpy.empty((3,2)) tvec[0,0]= cprog.x(numpy.linspace(0.,3.,101)[1]) tvec[1,0]= cprog.y(numpy.linspace(0.,3.,101)[1]) tvec[2,0]= cprog.z(numpy.linspace(0.,3.,101)[1]) tvec[0,1]= cprogf.x(numpy.linspace(0.,3.,101)[1]) tvec[1,1]= cprogf.y(numpy.linspace(0.,3.,101)[1]) tvec[2,1]= cprogf.z(numpy.linspace(0.,3.,101)[1]) tx= numpy.dot(TL,tvec)[0] ty= numpy.dot(TL,tvec)[1] dx= tx[1]-tx[0] dy= ty[1]-ty[0] mag= numpy.sqrt(dx**2.+dy**2.) dx/= mag dy/= mag rot= numpy.array([[dx,dy],[-dy,dx]]) # Plot indx= tdt > timpact # Rotate to 'orbital plane' tvec= numpy.empty((3,options.nparticles)) tvec[0,:]= RvR[0]*numpy.cos(RvR[5]) tvec[1,:]= RvR[0]*numpy.sin(RvR[5]) tvec[2,:]= RvR[3] tx= numpy.dot(TL,tvec)[0] ty= numpy.dot(TL,tvec)[1] tpx= numpy.dot(TL,[cprog.x(),cprog.y(),cprog.z()])[0] tpy= numpy.dot(TL,[cprog.x(),cprog.y(),cprog.z()])[1] plotx= numpy.dot(rot,numpy.array([(tx[indx]-tpx)*R0, (ty[indx]-tpy)*R0]))[0] ploty= numpy.dot(rot,numpy.array([(tx[indx]-tpx)*R0, (ty[indx]-tpy)*R0]))[1] txrange=\ [xrange[0]\ *(9.-timpact*bovy_conversion.time_in_Gyr(V0,R0))/9.-1., xrange[1]\ *(9.-timpact*bovy_conversion.time_in_Gyr(V0,R0))/9.+1.] bovy_plot.bovy_plot(plotx, ploty, '.',ms=2., color=sns.color_palette("colorblind")[3], alpha=0.2/(options.nparticles/10000.), xlabel=xlabel, ylabel=ylabel, xrange=txrange, yrange=yrange, zorder=4, overplot=overplot) # Add trendline if options.lowess: lowess = sm.nonparametric.lowess z= lowess(ploty,plotx,frac=0.02/(options.nparticles/10000.)) bovy_plot.bovy_plot(z[::100*(options.nparticles//10000),0], z[::100*(options.nparticles//10000),1], color=sns.color_palette('colorblind')[2], lw=1.5,zorder=2,overplot=True) overplot= True # Plot progenitor orbit for tp in [cprog,cprogf]: tvec= numpy.empty((3,101)) tvec[0]= tp.x(numpy.linspace(0.,3.,101)) tvec[1]= tp.y(numpy.linspace(0.,3.,101)) tvec[2]= tp.z(numpy.linspace(0.,3.,101)) tx= numpy.dot(TL,tvec)[0] ty= numpy.dot(TL,tvec)[1] plotx= numpy.dot(rot,numpy.array([(tx-tpx)*R0, (ty-tpy)*R0]))[0] ploty= numpy.dot(rot,numpy.array([(tx-tpx)*R0, (ty-tpy)*R0]))[1] bovy_plot.bovy_plot(plotx,ploty, color=sns.color_palette('colorblind')[0], lw=1.25,zorder=0, overplot=True) if options.noaxes: pyplot.subplots_adjust(bottom=0.02,left=0.02,right=.98,top=.98) else: pyplot.subplots_adjust(bottom=0.175,left=0.11,right=0.965,top=0.95) if options.noaxes: pyplot.axis('off') bovy_plot.bovy_end_print(options.basefilename+'_%s.png'\ % str(ii).zfill(5)) return None def _projection_orbplane(prog): L= prog.L()[0] Lx= L[0] Ly= L[1] Lz= L[2] L= numpy.sqrt(Lx**2.+Ly**2.+Lz**2.) Lx/= L Ly/= L Lz/= L Txz= numpy.zeros((3,3)) Tz= numpy.zeros((3,3)) Txz[0,0]= Lx/numpy.sqrt(Lx**2.+Ly**2.) Txz[1,1]= Lx/numpy.sqrt(Lx**2.+Ly**2.) Txz[1,0]= Ly/numpy.sqrt(Lx**2.+Ly**2.) Txz[0,1]= -Ly/numpy.sqrt(Lx**2.+Ly**2.) Txz[2,2]= 1. Tz[0,0]= Lz Tz[1,1]= 1. Tz[2,2]= Lz Tz[2,0]= -numpy.sqrt(Lx**2.+Ly**2.) Tz[0,2]= numpy.sqrt(Lx**2.+Ly**2.) TL= numpy.dot(Tz,Txz) return TL def create_movie(options,args): framerate= 25 bitrate= 1000000 try: subprocess.check_call(['ffmpeg', '-i', options.basefilename+'_%05d.png', '-y', '-framerate',str(framerate), '-r',str(framerate), '-b', str(bitrate), options.outputfilename]) except subprocess.CalledProcessError: print "'ffmpeg' failed" return None if __name__ == '__main__': parser= get_options() options,args= parser.parse_args() if not options.movie: create_frames(options,args) else: create_movie(options,args) ```
{ "source": "jobovy/stream-stream", "score": 2 }
#### File: stream-stream/py/stream2_util.py ```python import os, os.path import csv import numpy import copy from galpy.potential import LogarithmicHaloPotential from galpy.util import bovy_coords, multi from galpy.actionAngle import actionAngleIsochroneApprox R0= 8. V0= 220. lp= LogarithmicHaloPotential(normalize=1.,q=0.9) def rectangular_to_cylindrical(xv): R,phi,Z= bovy_coords.rect_to_cyl(xv[:,0],xv[:,1],xv[:,2]) vR,vT,vZ= bovy_coords.rect_to_cyl_vec(xv[:,3],xv[:,4],xv[:,5], R,phi,Z,cyl=True) out= numpy.empty_like(xv) # Preferred galpy arrangement of cylindrical coordinates out[:,0]= R out[:,1]= vR out[:,2]= vT out[:,3]= Z out[:,4]= vZ out[:,5]= phi return out def calc_aA_sim(RvR,filename,snap_gc): # Calculate the action angle variables for a simulation and store if not os.path.exists(filename): aAI= actionAngleIsochroneApprox(pot=lp,b=0.8) nbatch= 20 multiOut= multi.parallel_map(\ lambda x: aAI.actionsFreqsAngles(RvR[x*nbatch:(x+1)*nbatch,0]/R0, RvR[x*nbatch:(x+1)*nbatch,1]/V0, RvR[x*nbatch:(x+1)*nbatch,2]/V0, RvR[x*nbatch:(x+1)*nbatch,3]/R0, RvR[x*nbatch:(x+1)*nbatch,4]/V0, RvR[x*nbatch:(x+1)*nbatch,5]), range(len(snap_gc)//nbatch), numcores=25) acfs= numpy.reshape(numpy.swapaxes(numpy.array(multiOut),0,1), (9,numpy.prod(numpy.array(multiOut).shape)//9)) # Write to file csvfile= open(filename,'w') writer= csv.writer(csvfile,delimiter=',') for jj in range(len(acfs[0])): writer.writerow([acfs[0][jj],acfs[1][jj],acfs[2][jj], acfs[3][jj],acfs[4][jj],acfs[5][jj], acfs[6][jj],acfs[7][jj],acfs[8][jj]]) csvfile.flush() csvfile.close() else: acfs= numpy.loadtxt(filename,delimiter=',').T return acfs def calc_apar(acfs,angle=None,freq=False,debrisThreshold=6.): # Calculate the parallel angle offset, # of angle if set (otherwise of the entire simulation), # angle is a frequency if freq thetar= acfs[6] thetap= acfs[7] thetaz= acfs[8] if not angle is None: if not freq: angle[0]= (numpy.pi+(angle[0]-numpy.median(thetar))) % (2.*numpy.pi) angle[1]= (numpy.pi+(angle[1]-numpy.median(thetap))) % (2.*numpy.pi) angle[2]= (numpy.pi+(angle[2]-numpy.median(thetaz))) % (2.*numpy.pi) thetap= (numpy.pi+(thetap-numpy.median(thetap))) % (2.*numpy.pi) debrisIndx= numpy.fabs(thetap-numpy.pi) > (debrisThreshold*numpy.median(numpy.fabs(thetap-numpy.median(thetap)))) if angle is None: thetar= (numpy.pi+(thetar-numpy.median(thetar))) % (2.*numpy.pi) thetaz= (numpy.pi+(thetaz-numpy.median(thetaz))) % (2.*numpy.pi) #center around 0 (instead of pi) thetar-= numpy.pi thetap-= numpy.pi thetaz-= numpy.pi elif freq: thetar= angle[0] thetap= angle[1] thetaz= angle[2] else: thetar= angle[0]-numpy.pi thetap= angle[1]-numpy.pi thetaz= angle[2]-numpy.pi #Frequencies Or= acfs[3] Op= acfs[4] Oz= acfs[5] dOr= Or[debrisIndx]-numpy.median(Or) dOp= Op[debrisIndx]-numpy.median(Op) dOz= Oz[debrisIndx]-numpy.median(Oz) dO= numpy.vstack((dOr,dOp,dOz)) dO4dir= copy.copy(dO) dO4dir[:,dO4dir[0] < 0.]*= -1. dOdir= numpy.median(dO4dir,axis=1) dOdir/= numpy.sqrt(numpy.sum(dOdir**2.)) #parallel angle dangle= numpy.vstack((thetar,thetap,thetaz)) return numpy.dot(dangle.T,dOdir) def calc_apars_dm(thetar,thetap,thetaz,aa_dm,oparDir_dm,t=0.): dangle= numpy.vstack((thetar-aa_dm[3]*t, thetap-aa_dm[4]*t, thetaz-aa_dm[5]*t)) return numpy.dot(dangle.T,oparDir_dm) def calc_opars_dm(Or,Op,Oz,oparDir_dm): dfreq= numpy.vstack((Or,Op,Oz)) return numpy.dot(dfreq.T,oparDir_dm) ```
{ "source": "jobpasin/Object-Detection-API", "score": 2 }
#### File: jobpasin/Object-Detection-API/detect_video.py ```python import time import json from absl import app, flags, logging from absl.flags import FLAGS import cv2 import tensorflow as tf from yolov3_tf2.models import ( YoloV3, YoloV3Tiny ) from yolov3_tf2.dataset import transform_images from yolov3_tf2.utils import draw_outputs from centroidtracker import CentroidTracker from performance import TimeMeasure import threading from queue import Queue from concurrent.futures import ThreadPoolExecutor flags.DEFINE_string('classes', './data/labels/coco.names', 'path to classes file') flags.DEFINE_string('weights', './weights/yolov3.tf', 'path to weights file') flags.DEFINE_boolean('tiny', False, 'yolov3 or yolov3-tiny') flags.DEFINE_integer('size', 416, 'resize images to') flags.DEFINE_string('video', './data/video/paris.mp4', 'path to video file or number for webcam)') flags.DEFINE_string('output', None, 'path to output video') flags.DEFINE_string('output_format', 'XVID', 'codec used in VideoWriter when saving video to file') flags.DEFINE_integer('num_classes', 80, 'number of classes in the model') flags.DEFINE_string('logs', './detections/report2.json', 'path to result logs') def img_read_wrapper(vid, out_queue: Queue, out_queue2: Queue): print("img_read_wrapper: {}".format(threading.current_thread())) global stop_threads count = 0 frame_count = 0 while True: _, img = vid.read() if img is None or stop_threads: logging.warning("Empty Frame:" + str(frame_count)) time.sleep(0.1) count += 1 if count < 3: continue else: print("Stopeed") out_queue.put(None) out_queue2.put(None) break else: frame_count += 1 img_in = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img_in = tf.expand_dims(img_in, 0) img_in = transform_images(img_in, FLAGS.size) out_queue.put(img_in) out_queue2.put(img) def predict_wrapper(yolo, in_queue: Queue, out_queue: Queue): print("prediction_wrapper: {}".format(threading.current_thread())) global stop_threads fps = 0.0 while True: img_in = in_queue.get() if img_in is None or stop_threads: out_queue.put(None) break t1 = time.time() with TimeMeasure('Prediction'): boxes, scores, classes, nums = yolo.predict(img_in) fps = (fps + (1. / (time.time() - t1))) / 2 output = {'boxes': boxes, 'scores': scores, 'classes': classes, 'nums': nums, 'fps': fps} out_queue.put(output) def display_wrapper(out, FLAGS, in_queue: Queue, in2_queue: Queue): print("display_wrapper: {}".format(threading.current_thread())) global stop_threads class_names = [c.strip() for c in open(FLAGS.classes).readlines()] data_log = {} frame_count = 0 ct = CentroidTracker() while True: data = in_queue.get() img = in2_queue.get() if data is None or img is None: break boxes, scores, classes, nums, fps = data['boxes'], data['scores'], data['classes'], data['nums'], data['fps'] with TimeMeasure('Display frame:' + str(frame_count)): img, rects, log = draw_outputs(img, (boxes, scores, classes, nums), class_names) img = cv2.putText(img, "FPS: {:.2f}".format(fps), (0, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 2) objects = ct.update(rects) if FLAGS.output: out.write(img) data_log['frame{}'.format(str(frame_count))] = log frame_count += 1 cv2.imshow('output', img) if cv2.waitKey(1) == ord('q'): stop_threads = True break with open(FLAGS.logs, 'w') as f: json.dump(data_log, f) cv2.destroyAllWindows() processed_img_queue = Queue() raw_img_queue = Queue() yolo_result_queue = Queue() stop_threads = False def main(_argv): print("Start") start_time = time.time() physical_devices = tf.config.experimental.list_physical_devices('GPU') if len(physical_devices) > 0: tf.config.experimental.set_memory_growth(physical_devices[0], True) if FLAGS.tiny: yolo = YoloV3Tiny(classes=FLAGS.num_classes) else: yolo = YoloV3(classes=FLAGS.num_classes) yolo.load_weights(FLAGS.weights) logging.info('weights loaded') logging.info('classes loaded') times = [] try: vid = cv2.VideoCapture(int(FLAGS.video)) except: vid = cv2.VideoCapture(FLAGS.video) out = None if FLAGS.output: # by default VideoCapture returns float instead of int width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(vid.get(cv2.CAP_PROP_FPS)) codec = cv2.VideoWriter_fourcc(*FLAGS.output_format) out = cv2.VideoWriter(FLAGS.output, codec, fps, (width, height)) with ThreadPoolExecutor(max_workers=1) as executor: executor.submit(img_read_wrapper, vid, processed_img_queue, raw_img_queue) executor.submit(predict_wrapper, yolo, processed_img_queue, yolo_result_queue) display_wrapper(out, FLAGS, yolo_result_queue, raw_img_queue) # read_thread = threading.Thread(target=img_read_wrapper, args=(vid, processed_img_queue, raw_img_queue)) # predict_thread = threading.Thread(target=predict_wrapper, args=(yolo, processed_img_queue, yolo_result_queue)) # display_thread = threading.Thread(target=display_wrapper, args=(out, FLAGS, yolo_result_queue, raw_img_queue)) # threads = [read_thread, predict_thread, display_thread] # for t in threads: # t.start() # for t in threads: # t.join() print("FInish", time.time() - start_time) if __name__ == '__main__': try: app.run(main) except SystemExit: pass ```
{ "source": "jobpasin/tensorflow-yolov4", "score": 2 }
#### File: jobpasin/tensorflow-yolov4/detect_wrapper.py ```python import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' import sys import cv2 import numpy as np import tensorflow as tf from tensorflow.compat.v1 import ConfigProto from tensorflow.compat.v1 import InteractiveSession from tensorflow.python.saved_model import tag_constants import tensorflow_yolov4.core.utils as utils from absl import logging import time from queue import Queue, Empty, Full from threading import Event from typing import Union, List from core.utils import TimeTracker # from tensorflow_yolov4.core.yolov4 import filter_boxes sys.stdout.flush() class YoloV4: def __init__(self, FLAGS, interested_class: Union[dict, List] = None): logging.set_verbosity(logging.WARNING) # config = ConfigProto() # config.gpu_options.allow_growth = True # session = tf.compat.v1.Session(config=config) # tf.debugging.set_log_device_placement(True) gpus = tf.config.experimental.list_physical_devices('GPU') logging.debug(f"Number of GPU: {gpus}") try: # Currently, memory growth needs to be the same across GPUs assert FLAGS.gpu < len(gpus), "--gpu is higher than number of gpu available. " \ "(Choose integer less than or equal to {} or use -1)".format(len(gpus) - 1) if FLAGS.gpu != -1: tf.config.experimental.set_visible_devices(gpus[FLAGS.gpu], 'GPU') for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) logical_gpus = tf.config.experimental.list_logical_devices('GPU') logging.debug("{} Physical GPUS, {} Logical GPUS".format(len(gpus), len(logical_gpus))) except RuntimeError as e: # Memory growth must be set before GPUs have been initialized print(e) self.tt_total = utils.TimeTracker(FLAGS.time_report_freq * 15, "YOLOV4 Total") self.tt_infer = utils.TimeTracker(FLAGS.time_report_freq * 15, "Yolo Inference") self.tt_suppress = utils.TimeTracker(FLAGS.time_report_freq * 15, "Yolo Suppress") self.tt_filter = utils.TimeTracker(FLAGS.time_report_freq * 15, "Yolo Filter") self.frame_id = 0 if len(gpus) == 0: logging.warning('No GPU found') self.strategy = tf.distribute.MirroredStrategy() self.FLAGS = FLAGS if type(interested_class) is list: self.interested_class = {} for i in interested_class: self.interested_class[i] = i else: self.interested_class = interested_class self.interpreter = None with self.strategy.scope(): self.saved_model_loaded = None self.infer = None if FLAGS.framework == 'tflite': self.interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) self.interpreter.allocate_tensors() self.input_details = self.interpreter.get_input_details() self.output_details = self.interpreter.get_output_details() print("input details: ", self.input_details) print("output details: ", self.output_details) else: self.saved_model_loaded = tf.saved_model.load(FLAGS.weights, tags=[tag_constants.SERVING]) self.infer = self.saved_model_loaded.signatures['serving_default'] if FLAGS.debug: logging.set_verbosity(logging.DEBUG) else: logging.set_verbosity(logging.INFO) temp_image = np.random.randint(0, 255, (608, 608, 3)) temp_queue, temp_queue2 = Queue(), Queue() temp_queue.put([temp_image, 0]) temp_queue.put([None, None]) self.predict_wrapper(temp_queue, temp_queue2, 1, Event()) def predict_wrapper(self, in_queue: Queue, out_queue: Queue, batch_size: int, stop_event: Event): if self.FLAGS.framework == 'tflite': raise ValueError("") image_buffer, frame_id_buffer, image_copy_buffer = [], [], [] STRIDES, ANCHORS, NUM_CLASS, XYSCALE = utils.load_config(self.FLAGS) input_size = self.FLAGS.size stop_flag = False while not stop_flag: if stop_event.isSet(): # Clear data in queue if receiving stop signal with in_queue.mutex: in_queue.queue.clear() break # if in_queue.qsize() == 0: # continue # Fetching data wait_start_time = time.time() try: frame, frame_id = in_queue.get(timeout=20) except Empty: logging.error("Yolo thread timeout. No image found for a certain time") break start_time = time.time() # Add data into the list until the list has [batch_size] images if frame is None: stop_flag = True else: # self.wait_time_tracker.add(start_time - wait_start_time, frame_id) frame_size = frame.shape[:2] image_copy_buffer.append(frame.copy()) image_data = cv2.resize(frame, (input_size, input_size)) image_data = image_data / 255. # image_data = image_data[np.newaxis, ...].astype(np.float32) image_buffer.append(image_data) frame_id_buffer.append(frame_id) # Run detection when we have [batch_size] images, or has stop_flag (finish program) if len(image_buffer) == batch_size or stop_flag: if len(image_buffer) > 0: image_data = np.stack(image_buffer).astype(np.float32) batch_data = tf.constant(image_data) infer_start = time.time() pred_bbox = self.infer(batch_data) infer_end = time.time() for key, value in pred_bbox.items(): boxes = value[:, :, 0:4] pred_conf = value[:, :, 4:] boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression( boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)), scores=tf.reshape( pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])), max_output_size_per_class=50, max_total_size=50, iou_threshold=self.FLAGS.iou, score_threshold=self.FLAGS.score ) pred_bboxes = [boxes.numpy(), scores.numpy(), classes.numpy(), valid_detections.numpy()] non_max = time.time() if self.interested_class is not None: # Filter only prediction of interested class pred_bboxes = self.filter_class(pred_bboxes) filter = time.time() # Send prediction one by one for i in range(np.shape(pred_bboxes[3])[0]): pred_bbox = [pred_bboxes[0][i:i + 1, :, :], pred_bboxes[1][i:i + 1, :], pred_bboxes[2][i:i + 1, :], pred_bboxes[3][i:i + 1]] if not stop_event.isSet(): try: out_queue.put([pred_bbox, frame_id_buffer[i], image_copy_buffer[i]], timeout=25) except Full: logging.error("bbox_queue: Read vid timeout. Post-processing might take too long") break end_time = time.time() # self.tt_total.add(end_time - start_time, frame_id) # self.tt_infer.add(infer_end - infer_start, frame_id) # self.tt_suppress.add(non_max - infer_end, frame_id) # self.tt_filter.add(filter - non_max, frame_id) # Reset buffer after predictions image_buffer, frame_id_buffer, image_copy_buffer = [], [], [] if stop_flag: try: out_queue.put([None, None, None], timeout=25) except Full: pass logging.debug("Yolo thread complete") def predict(self, frame): """ Predict with yolo @param frame: ndarray(608,608,3) or list of ndarray of images @return: list[4] of output : bboxes, scores, classes, num_rect or the list of list[4] """ STRIDES, ANCHORS, NUM_CLASS, XYSCALE = utils.load_config(self.FLAGS) input_size = self.FLAGS.size video_path = self.FLAGS.video # frame_id = 0 # start_time = time.time() if type(frame) is not list: frame = [frame] image_data = [] for index in range(len(frame)): image = frame[index] frame_size = image.shape[:2] image = cv2.resize(image, (input_size, input_size)) image = image / 255. # image = image[np.newaxis, ...].astype(np.float32) image_data.append(image) image_data = np.stack(image_data).astype(np.float32) if self.FLAGS.framework == 'tflite': self.interpreter.set_tensor(self.input_details[0]['index'], image_data) self.interpreter.invoke() pred = [self.interpreter.get_tensor(self.output_details[i]['index']) for i in range(len(self.output_details))] if self.FLAGS.model == 'yolov3' and self.FLAGS.tiny == True: boxes, pred_conf = filter_boxes(pred[1], pred[0], score_threshold=0.25, input_shape=tf.constant([input_size, input_size])) else: boxes, pred_conf = filter_boxes(pred[0], pred[1], score_threshold=0.25, input_shape=tf.constant([input_size, input_size])) else: batch_data = tf.constant(image_data, name='batch_data') pred_bbox = self.infer(batch_data) for key, value in pred_bbox.items(): boxes = value[:, :, 0:4] pred_conf = value[:, :, 4:] boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression( boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)), scores=tf.reshape( pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])), max_output_size_per_class=50, max_total_size=50, iou_threshold=self.FLAGS.iou, score_threshold=self.FLAGS.score ) pred_bboxes = [boxes.numpy(), scores.numpy(), classes.numpy(), valid_detections.numpy()] if self.interested_class is not None: pred_bboxes = self.filter_class(pred_bboxes) # Send prediction one by one out_pred_bbox = [] for i in range(np.shape(pred_bboxes[3])[0]): pred_bbox = [pred_bboxes[0][i:i + 1, :, :], pred_bboxes[1][i:i + 1, :], pred_bboxes[2][i:i + 1, :], pred_bboxes[3][i:i + 1]] out_pred_bbox.append(pred_bbox) self.frame_id += 1 # end_time = time.time() # self.time_tracker.add(end_time - start_time, self.frame_id) if len(out_pred_bbox) == 1: return out_pred_bbox[0] return out_pred_bbox def filter_class(self, pred_bbox): boxes_new, scores_new, classes_new, valid_detection_new = [], [], [], [] num_detection = np.shape(pred_bbox[2])[1] num_batch = np.shape(pred_bbox[3])[0] for batch in range(num_batch): boxes_temp, scores_temp, classes_temp = [], [], [] current_detections = 0 for i in range(pred_bbox[3][batch]): if int(pred_bbox[2][batch, i]) in self.interested_class: boxes_temp.append(pred_bbox[0][batch, i, :]) scores_temp.append(pred_bbox[1][batch, i]) classes_temp.append(pred_bbox[2][batch, i]) current_detections += 1 for _ in range(num_detection - current_detections): boxes_temp.append(np.zeros([4])) scores_temp.append(0.0) classes_temp.append(0.0) # if current_detections == 0: # boxes_new.append(np.zeros([1,4])) # scores_new.append(np.zeros([1])) # classes_new.append(np.zeros([0])) # valid_detection_new.append(current_detections) # # return ([np.zeros([1, 0, 4]), np.zeros([1, 0]), np.zeros([1, 0]), np.array([current_detections])]) # else: boxes_new.append(np.stack(boxes_temp)) scores_new.append(np.stack(scores_temp)) classes_new.append(np.stack(classes_temp)) valid_detection_new.append(current_detections) # return [np.expand_dims(np.stack(boxes_temp), axis=0), np.expand_dims(np.stack(scores_temp), axis=0), # np.expand_dims(np.stack(classes_temp), axis=0), np.array([current_detections])] return [np.stack(boxes_new), np.stack(scores_new), np.stack(classes_new), np.array(valid_detection_new)] def draw_bbox(frame, pred_bbox, boundary=None, classes=None): """ Draw bounding box on yolov4 output @param frame: @param pred_bbox: Direct output from yolov4 @param boundary: WarpMatrix class. Show only bbox in boundary. Give None to show all bbox in the image @param classes: List of full class name @return: """ return utils.draw_bbox(frame, pred_bbox, classes=classes, show_label=True, boundary=boundary) ```
{ "source": "jobpassion/Surf", "score": 3 }
#### File: Surf/Surf-Mac/genjson.py ```python import json import sys import re config = {} General = {} Proxy = {} Rule = {} DOMAINKEYWORD = {} DOMAINSUFFIX = {} IPCIDR = {} def fread(file): dict = {} i = 0 for line in file: i = i+ 1 print ++i if re.match('#', line): print "# and pass" continue if re.match('//', line): print "// and pass" continue if len(line) <=2: print "no need" + line continue if re.match('\[General\]', line): print "Found General" dict = General continue elif re.match('\[Proxy\]', line): print "Found Proxy" dict = Proxy continue elif re.match('\[Rule\]', line): dict = Rule print "Found Proxy" continue else : #print "Not found block this is rule" + pass #print line list = line.split('=') if len(list) >1: print list x = list[1].split(',') if len(x)> 1: if dict == Proxy: hostconfig = {} hostconfig['protocol'] = x[0].strip() hostconfig['host'] = x[1].strip() hostconfig['port'] = x[2].strip() hostconfig['methd'] = x[3].strip() hostconfig['passwd'] = x[4].strip() #hostconfig['xx'] = x[5] dict[list[0]] = hostconfig else: print line dict[list[0]] = [str(j).strip() for j in x] else: dict[list[0]] = list[1] else: if re.match('DOMAIN-KEYWORD',line): k = line.split(',') #k.remove(k[0]) #r = ', '.join([str(x) for x in k]) rule = {} rule["Proxy"] = k[2].strip() try: rule["force-remote-dns"] = k[3].strip() except Exception, e: print e DOMAINKEYWORD[k[1]] = rule elif re.match('DOMAIN-SUFFIX',line): k = line.split(',') #k.remove(k[0]) #r = ', '.join([str(x) for x in k]) rule = {} rule["Proxy"] = k[2].strip() try: rule["force-remote-dns"] = k[3].strip() except Exception, e: print e DOMAINSUFFIX[k[1]] = rule elif re.match('IP-CIDR',line): k = line.split(',') #k.remove(k[0]) #r = ', '.join([str(x) for x in k]) rule = {} rule["Proxy"] = k[2].strip() try: rule["no-resolve"] = k[3].strip() except Exception, e: print e IPCIDR[k[1]] = rule else: pass #print dict print "[General]" print General General["author"] = "yarshure" General["commnet"] = "这是comment" print "[Proxy]" print Proxy print "[Rule]" Rule["DOMAIN-KEYWORD"] = DOMAINKEYWORD Rule["DOMAIN-SUFFIX"] = DOMAINSUFFIX Rule["IP-CIDR"] = IPCIDR #print Rule print "cool" config["General"] = General config["Proxy"] = Proxy config["Rule"] = Rule saveRuslt() # print "[DOMAINKEYWORD]" # print DOMAINKEYWORD # print "[DOMAINSUFFIX]" # print DOMAINSUFFIX # print "[IPCIDR]" # print IPCIDR def saveRuslt(): #print config s = json.dumps(config) f = open("surf.conf","w") f.write(s) f.close() if __name__ == '__main__': if len(sys.argv) == 1: print "add surge file path" surgeconfig = sys.argv[1] print surgeconfig file = open(surgeconfig) fread(file) file.close() ```
{ "source": "job/peeringdb", "score": 2 }
#### File: peeringdb/tests/test_locale_files.py ```python import os import re from django.test import TestCase, Client from django.conf import settings from peeringdb_server.models import Organization, User from string import Formatter class LocaleFilesTest(TestCase): def load_messages(self, language, filename="django.po"): path = os.path.join( os.path.dirname(__file__), "..", "locale", language, "LC_MESSAGES" ) with open(os.path.join(path, filename), "r") as fh: content = fh.read() message_id = re.findall(r"\nmsgid (.+)\n", content) message_str = re.findall(r"\nmsgstr (.+)\n", content) messages = dict(zip(message_id, message_str)) return messages # weblate handles all this now, and these tests are failing # atm because the locale files no longer reside here # # weblate also makes sure that variable formatting matches, so this # test is somewhat redundant at this point. # # either need to redo this test and make sure it generates the locale # or remove it. def _test_pt(self): """ Test portuguese locale files """ self.assert_variables( self.load_messages("en_US"), self.load_messages("pt"), "PT" ) self.assert_variables( self.load_messages("en_US", filename="djangojs.po"), self.load_messages("pt", filename="djangojs.po"), "PT", ) def assert_variables(self, en_messages, other_messages, language): """ Assert that the correct formatting variables exist """ errors = 0 for msgid, msgstr in en_messages.items(): # %(name)s and %s type variables variables_a = sorted(re.findall("%\([^\(]+\)s|%s", msgid)) variables_b = sorted(re.findall("%\([^\(]+\)s|%s", other_messages[msgid])) if variables_a != variables_b: errors += 1 print "{} Locale variable error at msgid {} -> {}".format( language, msgid, other_messages[msgid] ) # {name} and {} type variables variables_a = sorted( [fn for _, fn, _, _ in Formatter().parse(msgid) if fn is not None] ) variables_b = [ fn for _, fn, _, _ in Formatter().parse(other_messages[msgid]) if fn is not None ] if variables_a != variables_b: errors += 1 print "{} Locale variable error at msgid {} -> {}".format( language, msgid, other_messages[msgid] ) assert errors == 0 ```
{ "source": "JobPetrovcic/branje-izdelkov", "score": 2 }
#### File: JobPetrovcic/branje-izdelkov/branje_kataloga.py ```python from branje_strani import shrani_stran, nalozi_stran_iz_datoteke MAPA_KATALOGA = 'katalog' def dobi_ime_strani_indeks(indeks): return f'{MAPA_KATALOGA}\stran_{indeks}.html' # v vzorec strani vstavimo indeks nato pa shranimo stran s tem url-jem OSNOVA_SPAR_STRANI = 'https://www.spar.si' VZOREC_STRANI = OSNOVA_SPAR_STRANI + '/online/c/root/?_=1635264522253&callback=parseResponse&category=root&i=1&m_sortProdResults_egisp=a&page={stevilka_strani}&pos=81701&q=*&sort=product-ecr-sortlev&sp_cs=UTF-8&sp_q_12=81701&sp_q_exact_14=root&sp_x_12=product-visible-pos' def shrani_stran_indeks(indeks): shrani_stran(VZOREC_STRANI.format(stevilka_strani=indeks), dobi_ime_strani_indeks(indeks)) # pobere in shrani vseh 255 strani (toliko jih je v času programiranja te naloge). STEVILO_VSEH_STRANI_SPAR=255 def shrani_vse_strani_kataloga(stevilo_strani=STEVILO_VSEH_STRANI_SPAR): for i in range(1, stevilo_strani + 1): shrani_stran_indeks(i) def nalozi_vse_strani_kataloga(stevilo_strani=STEVILO_VSEH_STRANI_SPAR): vse_strani = [] for i in range(1, stevilo_strani+1): vse_strani += [nalozi_stran_iz_datoteke(dobi_ime_strani_indeks(i))] return vse_strani # preveri ali je povezava res povezava do produkta (link se loči po tem da vsebuje: /p/) import re def je_povezava_do_produkta(povezava): return re.search('\/online\/[\w\-]+\/p[\/|$]', povezava) is not None # iz objekta HTML knjižnice requests_html prebere vse povezave na strani, ki predstavljajo posamezen izdelek def poberi_povezave_do_produkta(html_objekt): vse_povezave = html_objekt.links povezave_do_produkta = [] for povezava in vse_povezave: if je_povezava_do_produkta(povezava): povezave_do_produkta+=[OSNOVA_SPAR_STRANI + povezava] return povezave_do_produkta def zdruzi_sezname(seznami): zdruzen = [] for seznam in seznami: for element in seznam: zdruzen += [element] return list(set(zdruzen)) def poberi_povezave_seznam(seznam_html_objektov): seznam_seznamov = [] for html_objekt in seznam_html_objektov: seznam_seznamov += [poberi_povezave_do_produkta(html_objekt)] return zdruzi_sezname(seznam_seznamov) # iz shranjenih datotek v mapi katalog prebere vse povezave in jih nato združi brez ponavljanja, def obdelaj_vse_strani_kataloga(): vse_strani = nalozi_vse_strani_kataloga() return poberi_povezave_seznam(vse_strani) import csv DATOTEKA_VSEH_POVEZAV_KATALOGA = 'vse_povezave_do_produkta.csv' def shrani_povezave_kataloga(nalozi_strani_iz_interneta=False): if nalozi_strani_iz_interneta: shrani_vse_strani_kataloga() vse_povezave = obdelaj_vse_strani_kataloga() with open(DATOTEKA_VSEH_POVEZAV_KATALOGA, 'w') as datoteka: zapis = csv.writer(datoteka, delimiter='\n') zapis.writerow(vse_povezave) ```
{ "source": "JobPetrovcic/Projektna-naloga", "score": 3 }
#### File: Projektna-naloga/CMV/bralnik.py ```python from wand.image import Image as WandImage from PIL import Image import os import io import pytesseract # primer: pytesseract.pytesseract.tesseract_cmd = r'C:\\Program Files\\Tesseract-OCR\\tesseract.exe' # tukaj dajte pot do tesseract knjižnice # POZOR: ta funkcija je skopirana iz receiptparser python modula def ocr_image(input_file, language, sharpen=False): """ :param input_file: str Path to image to prettify :return: str """ with io.BytesIO() as transfer: with WandImage(filename=input_file) as img: if sharpen: img.auto_level() img.sharpen(radius=0, sigma=4.0) img.contrast() img.save(transfer) with Image.open(transfer) as img: return pytesseract.image_to_string(img, lang=language) dovoljeni_formati = ('.jpg', '.png') # NASVET: slika naj bo crno bela, s cim vecjim kontrastom in locljivostjo, # račun pa naj bo "svež", saj črnilo s časom zbledi def dobi_besedilo(ime_datoteke): if(isinstance(ime_datoteke, str)): # preveri ali je slika pravega formata ime, koncnica = os.path.splitext(ime_datoteke) if koncnica in dovoljeni_formati: try: return ocr_image( ime_datoteke, "slv", True).lower().splitlines() except BaseException: raise Exception( "Nekaj je šlo narobe pri branju besedila iz slike: " + ime_datoteke) else: raise ValueError( f"Slika mora biti v {dovoljeni_formati} formatih.") else: raise ValueError("Ime datoteke ni niz.") ``` #### File: Projektna-naloga/CMV/model_uporabnikov.py ```python import hashlib import json import random import os import model class Uporabnik: def __init__( self, uporabnisko_ime, zasifrirano_geslo, nakup, stevilo_racunov=0): self.uporabnisko_ime = uporabnisko_ime self.zasifrirano_geslo = zasifrirano_geslo self.nakup = nakup self.stevilo_racunov = stevilo_racunov @staticmethod def prijava(uporabnisko_ime, geslo_v_cistopisu): uporabnik = Uporabnik.iz_datoteke(uporabnisko_ime) if uporabnik is None: raise ValueError("Uporabniško ime ne obstaja") elif uporabnik.preveri_geslo(geslo_v_cistopisu): return uporabnik else: raise ValueError("Geslo je napačno") @staticmethod def ustvari_mapo(uporabnisko_ime): os.mkdir(f"uporabniki/{uporabnisko_ime}") os.mkdir(f"uporabniki/{uporabnisko_ime}/slike_racunov") @staticmethod def ime_racuna(uporabnisko_ime, indeks_racuna, koncnica): if koncnica[0] == '.': return f"uporabniki/{uporabnisko_ime}/slike_racunov/racun{indeks_racuna}{koncnica}" else: return f"uporabniki/{uporabnisko_ime}/slike_racunov/racun{indeks_racuna}.{koncnica}" @staticmethod def registracija(uporabnisko_ime, geslo_v_cistopisu): if Uporabnik.iz_datoteke(uporabnisko_ime) is not None: raise ValueError("Uporabniško ime že obstaja") else: Uporabnik.ustvari_mapo(uporabnisko_ime) zasifrirano_geslo = Uporabnik._zasifriraj_geslo(geslo_v_cistopisu) uporabnik = Uporabnik( uporabnisko_ime, zasifrirano_geslo, model.Nakup()) uporabnik.v_datoteko() return uporabnik def _zasifriraj_geslo(geslo_v_cistopisu, sol=None): if sol is None: sol = str(random.getrandbits(32)) posoljeno_geslo = sol + geslo_v_cistopisu h = hashlib.blake2b() h.update(posoljeno_geslo.encode(encoding="utf-8")) return f"{sol}${h.hexdigest()}" def v_slovar(self): return { "uporabnisko_ime": self.uporabnisko_ime, "zasifrirano_geslo": self.zasifrirano_geslo, "nakup": self.nakup.v_slovar(), "stevilo_racunov": self.stevilo_racunov } def v_datoteko(self): with open( Uporabnik.ime_uporabnikove_datoteke(self.uporabnisko_ime), "w+" ) as datoteka: json.dump(self.v_slovar(), datoteka, ensure_ascii=True, indent=4) def preveri_geslo(self, geslo_v_cistopisu): sol, _ = self.zasifrirano_geslo.split("$") return self.zasifrirano_geslo == Uporabnik._zasifriraj_geslo( geslo_v_cistopisu, sol) @staticmethod def ime_uporabnikove_datoteke(uporabnisko_ime): return f"uporabniki/{uporabnisko_ime}/{uporabnisko_ime}.json" @staticmethod def iz_slovarja(slovar): uporabnisko_ime = slovar["uporabnisko_ime"] zasifrirano_geslo = slovar["zasifrirano_geslo"] stevilo_racunov = slovar["stevilo_racunov"] nakup = model.Nakup.iz_slovarja(slovar["nakup"]) return Uporabnik( uporabnisko_ime, zasifrirano_geslo, nakup, stevilo_racunov) @staticmethod def iz_datoteke(uporabnisko_ime): try: with open(Uporabnik.ime_uporabnikove_datoteke(uporabnisko_ime)) as datoteka: slovar = json.load(datoteka) return Uporabnik.iz_slovarja(slovar) except FileNotFoundError: return None ```
{ "source": "JobQiu/EloMerchantKaggle", "score": 3 }
#### File: EloMerchantKaggle/model/basic_model.py ```python from abc import abstractmethod import lightgbm as lgb from sklearn import model_selection from preprocess.read_data import read_data import json from util.util import send_msg, map_list_combination from tqdm import tqdm class Model(object): """ it would be easier for fine-tuning later if all the models following this interface """ @abstractmethod def __init__(self): """ :param n_kFold: :param read_data_version: :param random_state: :param shuffle: """ self.so_far_best_rmse = 1000 self.so_far_best_params = None pass @abstractmethod def train(self, params_list): """ iterate all the params combination to fine tune the model :param params_list: :return: """ list_params = map_list_combination(params_list) for params in tqdm(list_params): print("Current Params:{}".format(json.dumps(params))) self._train(params) print("------------- Train done --------------") print("The best rmse score is : {}".format(self.so_far_best_rmse)) print("The corresponding params is: {}".format(json.dumps(self.so_far_best_params))) pass @abstractmethod def _train(self, params): """ train the model according to a certain params, compare the valid score with the global best valid score, and if better, update the best score and best params :param params: :return: prediction of test set corresponding to this params """ pass @abstractmethod def predict(self): """ :return: prediction of test set corresponding to the best params """ pass @abstractmethod def get_params_example(self): """ :return: return an example params, to be clear about what variables we can set """ pass class LightGBMBasicModel(Model): def __init__(self, n_kFold=10, read_data_version='1.0', random_state=2018, shuffle=True, data_dir="/content/EloMerchantKaggle/data", verbose_eval=False, so_far_best_rmse_threshold=4): super(LightGBMBasicModel, self).__init__() self.n_kFold = n_kFold self.read_data_version = read_data_version self.random_state = random_state self.shuffle = shuffle self.verbose_eval = verbose_eval self.train_X, self.test_X, self.train_y = read_data(data_dir=data_dir, version=self.read_data_version) # during the fine tuning, we will try different combinations, and save the best score and params self.so_far_best_rmse = so_far_best_rmse_threshold self.so_far_best_params = None pass def predict(self): return self._train(self.so_far_best_params, predict=True) def _train(self, params=None, predict=False): if params == None: params = self.get_params_example() eval_score = 0 pred_test = None if predict: pred_test = 0 # 1. k fold kf = model_selection.KFold(n_splits=self.n_kFold, random_state=self.random_state, shuffle=self.shuffle) for dev_index, val_index in kf.split(self.train_X): # 2. train on subset dev_X, val_X = self.train_X.loc[dev_index, :], self.train_X.loc[val_index, :] dev_y, val_y = self.train_y[dev_index], self.train_y[val_index] pred_test_tmp, model, evals_result = self.run_lgb(dev_X, dev_y, val_X, val_y, self.test_X, params) eval_score += min(evals_result['valid_0']['rmse']) if predict: pred_test += pred_test_tmp # 3. compare scores eval_score = eval_score / (1.0 * self.n_kFold) if eval_score < self.so_far_best_rmse: print("Find better score {}".format(eval_score)) send_msg("Find better score {}".format(eval_score)) self.so_far_best_rmse = eval_score self.so_far_best_params = params if predict: pred_test /= (self.n_kFold * 1.0) return pred_test def run_lgb(self, train_X, train_y, val_X, val_y, test_X, params): lgtrain = lgb.Dataset(train_X, label=train_y) lgval = lgb.Dataset(val_X, label=val_y) evals_result = {} model = lgb.train(params, lgtrain, 1000, valid_sets=[lgval], early_stopping_rounds=100, verbose_eval=self.verbose_eval, evals_result=evals_result) pred_test_y = model.predict(test_X, num_iteration=model.best_iteration) return pred_test_y, model, evals_result def get_params_example(self): params = { "objective": "regression", "metric": "rmse", "num_leaves": 30, "min_child_weight": 50, "learning_rate": 0.05, "bagging_fraction": 0.7, "feature_fraction": 0.7, "bagging_frequency": 5, "bagging_seed": 2018, "verbosity": -1 } return params class XGBoostModel(Model): pass class LGBMModel(Model): pass class CatBoostModel(Model): pass if __name__ == "__main__": model = LightGBMBasicModel() # %% ``` #### File: EloMerchantKaggle/preprocess/read_data_congmin.py ```python import pandas as pd import datetime import gc import numpy as np import featuretools as ft import os from util.util import compress_int, send_msg class DataSet(object): def __init__(self, data_dir='/content/EloMerchantKaggle/data/'): self.data_dir = data_dir self.train_x_path = os.path.join(self.data_dir, 'x_train_agg') self.test_x_path = os.path.join(self.data_dir, 'x_test_agg') self.train_y_path = os.path.join(self.data_dir, 'y_train') pass def get_train_dataset(self, reset=False, load=True): if load and os.path.isfile(self.train_x_path) and os.path.isfile(self.train_y_path): return pd.read_csv(self.train_x_path), pd.read_csv(self.train_y_path) train_df, hist_df_train, new_trans_df_train = split_trans_into_train_test(data_dir=self.data_dir, reset=reset) return agg(train_df, hist_df_train, new_trans_df_train, True, self.train_x_path, self.train_y_path) def get_test_dataset(self, load=True): if load and os.path.isfile(self.test_x_path): return pd.read_csv(self.test_x_path), None print("loading test.csv ...") d = {'feature_1': np.uint8, 'feature_2': np.uint8, 'feature_3': np.bool_} test_df = pd.read_csv(os.path.join(self.data_dir, "test.csv"), parse_dates=["first_active_month"], dtype=d) test_df.info(memory_usage='deep') hist_df_test = pd.read_csv(os.path.join(self.data_dir, "historical_transactions_test.csv"), parse_dates=["purchase_date"]) hist_df_test = compress_int(hist_df_test) new_trans_df_test = pd.read_csv(os.path.join(self.data_dir, "new_merchant_transactions_test.csv"), parse_dates=["purchase_date"]) new_trans_df_test = compress_int(new_trans_df_test) send_msg("load done") return agg(test_df, hist_df_test, new_trans_df_test, False, self.test_x_path, None) def agg(train_df, hist_df, new_trans_df, isTrain, x_save_path, y_save_path): train_df = train_df.copy(deep=True) if isTrain: target = train_df['target'] del train_df['target'] else: target = None es_train = ft.EntitySet(id='es_train') es_train = es_train.entity_from_dataframe(entity_id='train', dataframe=train_df, index='', time_index='first_active_month') es_train = es_train.entity_from_dataframe(entity_id='history', dataframe=hist_df, index='', time_index='purchase_date') es_train = es_train.entity_from_dataframe(entity_id='new_trans', dataframe=new_trans_df, index='', time_index='purchase_date') # Relationship between clients and previous loans r_client_previous = ft.Relationship(es_train['train']['card_id'], es_train['history']['card_id']) # Add the relationship to the entity set es_train = es_train.add_relationship(r_client_previous) r_client_previous = ft.Relationship(es_train['train']['card_id'], es_train['new_trans']['card_id']) # Add the relationship to the entity set es_train = es_train.add_relationship(r_client_previous) print(" dfs ing ... ") x_train, _ = ft.dfs(entityset=es_train, target_entity='train', max_depth=2) send_msg("dfs done! ") print("saving...") if target: target.to_csv(y_save_path) x_train['index'] = target.index x_train.set_index('index') x_train.to_csv(x_save_path) return x_train, target def split_trans_into_train_test(data_dir='/content/EloMerchantKaggle/data/', reset=False): d = {'feature_1': np.uint8, 'feature_2': np.uint8, 'feature_3': np.bool_} print("loading train.csv ...") train_df = pd.read_csv(os.path.join(data_dir, "train.csv"), parse_dates=["first_active_month"], dtype=d) train_df.info(memory_usage='deep') if not reset and os.path.isfile(os.path.join(data_dir, "historical_transactions_train.csv")) and os.path.isfile( os.path.join(data_dir, "new_merchant_transactions_train.csv")): hist_df_train = pd.read_csv(os.path.join(data_dir, "historical_transactions_train.csv"), parse_dates=["purchase_date"]) hist_df_train = compress_int(hist_df_train) new_trans_df_train = pd.read_csv(os.path.join(data_dir, "new_merchant_transactions_train.csv"), parse_dates=["purchase_date"]) new_trans_df_train = compress_int(new_trans_df_train) send_msg("load done") return train_df, hist_df_train, new_trans_df_train pass print("loading test.csv ...") test_df = pd.read_csv(os.path.join(data_dir, "test.csv"), parse_dates=["first_active_month"], dtype=d) test_df.info(memory_usage='deep') print("loading historical_transactions.csv ...") hist_df = pd.read_csv(os.path.join(data_dir, "historical_transactions.csv"), parse_dates=["purchase_date"]) print(' compressing ...') hist_df = compressByDType(hist_df) print(' split to get train hist ...') hist_df_train = hist_df[hist_df.card_id.isin(set(train_df['card_id'].unique()))] print(' saving ... ') hist_df_train.to_csv(os.path.join(data_dir, "historical_transactions_train.csv")) print(' split to get test hist ...') hist_df_test = hist_df[hist_df.card_id.isin(set(test_df['card_id'].unique()))] print(' saving ... ') hist_df_test.to_csv(os.path.join(data_dir, "historical_transactions_test.csv")) del hist_df_test del hist_df gc.collect() print("loading new_merchant_transactions.csv ...") new_trans_df = pd.read_csv(os.path.join(data_dir, "new_merchant_transactions.csv"), parse_dates=["purchase_date"]) print(' compressing ...') new_trans_df = compressByDType(new_trans_df) print(' split to get train new trans ...') new_trans_df_train = new_trans_df[new_trans_df.card_id.isin(set(train_df['card_id'].unique()))] print(' saving ... ') new_trans_df_train.to_csv(os.path.join(data_dir, "new_merchant_transactions_train.csv")) print(' split to get test new trans ...') new_trans_df_test = new_trans_df[new_trans_df.card_id.isin(set(test_df['card_id'].unique()))] print(' saving ... ') new_trans_df_test.to_csv(os.path.join(data_dir, "new_merchant_transactions_test.csv")) del new_trans_df_test del new_trans_df gc.collect() send_msg("split and save done") return train_df, hist_df_train, new_trans_df_train def agg2(df_train, df_test, df_hist_trans): aggs = {} for col in ['month', 'hour', 'weekofyear', 'dayofweek', 'year', 'subsector_id', 'merchant_category_id']: aggs[col] = ['nunique'] aggs['purchase_amount'] = ['sum', 'max', 'min', 'mean', 'var'] aggs['installments'] = ['sum', 'max', 'min', 'mean', 'var'] aggs['purchase_date'] = ['max', 'min'] aggs['month_lag'] = ['max', 'min', 'mean', 'var'] aggs['month_diff'] = ['mean'] aggs['authorized_flag'] = ['sum', 'mean'] aggs['weekend'] = ['sum', 'mean'] aggs['category_1'] = ['sum', 'mean'] aggs['card_id'] = ['size'] for col in ['category_2', 'category_3']: df_hist_trans[col + '_mean'] = df_hist_trans.groupby([col])['purchase_amount'].transform('mean') aggs[col + '_mean'] = ['mean'] new_columns = get_new_columns('hist', aggs) df_hist_trans_group = df_hist_trans.groupby('card_id').agg(aggs) df_hist_trans_group.columns = new_columns df_hist_trans_group.reset_index(drop=False, inplace=True) df_hist_trans_group['hist_purchase_date_diff'] = ( df_hist_trans_group['hist_purchase_date_max'] - df_hist_trans_group['hist_purchase_date_min']).dt.days df_hist_trans_group['hist_purchase_date_average'] = df_hist_trans_group['hist_purchase_date_diff'] / \ df_hist_trans_group['hist_card_id_size'] df_hist_trans_group['hist_purchase_date_uptonow'] = ( datetime.datetime.today() - df_hist_trans_group['hist_purchase_date_max']).dt.days df_train = df_train.merge(df_hist_trans_group, on='card_id', how='left') df_test = df_test.merge(df_hist_trans_group, on='card_id', how='left') del df_hist_trans_group gc.collect() return df_train, df_test def get_new_columns(name, aggs): return [name + '_' + k + '_' + agg for k in aggs.keys() for agg in aggs[k]] def compressByDType(df_new_merchant_trans): """ :param df_new_merchant_trans: :return: """ df_new_merchant_trans = df_new_merchant_trans.drop(columns=['merchant_id']) df_new_merchant_trans['category_2'].fillna(1.0, inplace=True) df_new_merchant_trans['category_3'].fillna('D', inplace=True) df_new_merchant_trans['authorized_flag'].fillna('Y', inplace=True) df_new_merchant_trans['authorized_flag'] = df_new_merchant_trans['authorized_flag'].map({'Y': 1, 'N': 0}) df_new_merchant_trans['category_1'] = df_new_merchant_trans['category_1'].map({'Y': 1, 'N': 0}) df_new_merchant_trans['category_3'] = df_new_merchant_trans['category_3'].map({'A': 0, 'B': 1, 'C': 2, 'D': 3}) df_new_merchant_trans['category_1'] = pd.to_numeric(df_new_merchant_trans['category_1'], downcast='integer') df_new_merchant_trans['category_2'] = pd.to_numeric(df_new_merchant_trans['category_2'], downcast='integer') df_new_merchant_trans['category_3'] = pd.to_numeric(df_new_merchant_trans['category_3'], downcast='integer') df_new_merchant_trans['merchant_category_id'] = pd.to_numeric(df_new_merchant_trans['merchant_category_id'], downcast='integer') df_new_merchant_trans['authorized_flag'] = pd.to_numeric(df_new_merchant_trans['authorized_flag'], downcast='integer') df_new_merchant_trans['city_id'] = pd.to_numeric(df_new_merchant_trans['city_id'], downcast='integer') df_new_merchant_trans['installments'] = pd.to_numeric(df_new_merchant_trans['installments'], downcast='integer') df_new_merchant_trans['state_id'] = pd.to_numeric(df_new_merchant_trans['state_id'], downcast='integer') df_new_merchant_trans['subsector_id'] = pd.to_numeric(df_new_merchant_trans['subsector_id'], downcast='integer') df_new_merchant_trans['month_lag'] = pd.to_numeric(df_new_merchant_trans['month_lag'], downcast='integer') df_new_merchant_trans['purchase_date'] = pd.to_datetime(df_new_merchant_trans['purchase_date']) df_new_merchant_trans['year'] = df_new_merchant_trans['purchase_date'].dt.year df_new_merchant_trans['weekofyear'] = df_new_merchant_trans['purchase_date'].dt.weekofyear df_new_merchant_trans['month'] = df_new_merchant_trans['purchase_date'].dt.month df_new_merchant_trans['dayofweek'] = df_new_merchant_trans['purchase_date'].dt.dayofweek df_new_merchant_trans['weekend'] = (df_new_merchant_trans.purchase_date.dt.weekday >= 5).astype(int) df_new_merchant_trans['hour'] = df_new_merchant_trans['purchase_date'].dt.hour # https://www.kaggle.com/c/elo-merchant-category-recommendation/discussion/73244 df_new_merchant_trans['month_diff'] = ((datetime.datetime.today() - df_new_merchant_trans[ 'purchase_date']).dt.days) // 30 df_new_merchant_trans['month_diff'] += df_new_merchant_trans['month_lag'] df_new_merchant_trans['weekofyear'] = pd.to_numeric(df_new_merchant_trans['weekofyear'], downcast='integer') df_new_merchant_trans['month'] = pd.to_numeric(df_new_merchant_trans['month'], downcast='integer') df_new_merchant_trans['dayofweek'] = pd.to_numeric(df_new_merchant_trans['dayofweek'], downcast='integer') df_new_merchant_trans['weekend'] = pd.to_numeric(df_new_merchant_trans['weekend'], downcast='integer') df_new_merchant_trans['hour'] = pd.to_numeric(df_new_merchant_trans['hour'], downcast='integer') df_new_merchant_trans['month_diff'] = pd.to_numeric(df_new_merchant_trans['month_diff'], downcast='integer') df_new_merchant_trans.info(memory_usage='deep') return df_new_merchant_trans def read_data_c2(train_df, test_df, hist_df, new_trans_df): target = train_df['target'] del train_df['target'] es_train = ft.EntitySet(id='es_train') es_test = ft.EntitySet(id='es_test') es_train = es_train.entity_from_dataframe(entity_id='train', dataframe=train_df, index='client_id', time_index='joined') es_train = es_train.entity_from_dataframe(entity_id='history', dataframe=hist_df, index='', time_index='purchase_date') es_train = es_train.entity_from_dataframe(entity_id='new_trans', dataframe=new_trans_df, index='', time_index='purchase_date') # Relationship between clients and previous loans r_client_previous = ft.Relationship(es_train['train']['card_id'], es_train['history']['card_id']) # Add the relationship to the entity set es_train = es_train.add_relationship(r_client_previous) r_client_previous = ft.Relationship(es_train['train']['card_id'], es_train['new_trans']['card_id']) # Add the relationship to the entity set es_train = es_train.add_relationship(r_client_previous) x_train, feature_names = ft.dfs(entityset=es_train, target_entity='train', max_depth=2) es_test = es_test.entity_from_dataframe(entity_id='test', dataframe=train_df, index='client_id', time_index='joined') es_test = es_test.entity_from_dataframe(entity_id='history', dataframe=hist_df, index='', time_index='purchase_date') es_test = es_test.entity_from_dataframe(entity_id='new_trans', dataframe=new_trans_df, index='', time_index='purchase_date') # Relationship between clients and previous loans r_client_previous = ft.Relationship(es_test['test']['card_id'], es_test['history']['card_id']) # Add the relationship to the entity set es_test = es_test.add_relationship(r_client_previous) r_client_previous = ft.Relationship(es_test['test']['card_id'], es_test['new_trans']['card_id']) # Add the relationship to the entity set es_test = es_test.add_relationship(r_client_previous) x_test, feature_names = ft.dfs(entityset=es_test, target_entity='test', max_depth=2) return x_train, target, x_test def read_data_c(train_df, test_df, hist_df, new_trans_df, version='c1.0'): """ :param train_df: :param test_df: :param hist_df: :param new_trans_df: :param version: :return: """ # 0. compress print("compressing ... ") hist_df = compressByDType(hist_df) new_trans_df = compressByDType(new_trans_df) print("compressing done") if version == 'c2.0': return read_data_c2(train_df, test_df, hist_df, new_trans_df) # 1. [整合成一个data frame] merger them as one df print("agg ...") agg2(train_df, test_df, hist_df) agg2(train_df, test_df, new_trans_df) del hist_df gc.collect() del new_trans_df gc.collect() train_df['outliers'] = 0 train_df.loc[train_df['target'] < -30, 'outliers'] = 1 train_df['outliers'].value_counts() for df in [train_df, test_df]: df['first_active_month'] = pd.to_datetime(df['first_active_month']) df['dayofweek'] = df['first_active_month'].dt.dayofweek df['weekofyear'] = df['first_active_month'].dt.weekofyear df['month'] = df['first_active_month'].dt.month df['elapsed_time'] = (datetime.datetime.today() - df['first_active_month']).dt.days df['hist_first_buy'] = (df['hist_purchase_date_min'] - df['first_active_month']).dt.days df['new_hist_first_buy'] = (df['new_hist_purchase_date_min'] - df['first_active_month']).dt.days for f in ['hist_purchase_date_max', 'hist_purchase_date_min', 'new_hist_purchase_date_max', \ 'new_hist_purchase_date_min']: df[f] = df[f].astype(np.int64) * 1e-9 df['card_id_total'] = df['new_hist_card_id_size'] + df['hist_card_id_size'] df['purchase_amount_total'] = df['new_hist_purchase_amount_sum'] + df['hist_purchase_amount_sum'] for f in ['feature_1', 'feature_2', 'feature_3']: order_label = train_df.groupby([f])['outliers'].mean() train_df[f] = train_df[f].map(order_label) test_df[f] = test_df[f].map(order_label) target = train_df['target'] del train_df['target'] return train_df, test_df, target def read_data_c1(train_df, test_df, hist_df, new_trans_df): pass # train_df, hist_df_train, new_trans_df_train = split_trans_into_train_test() ``` #### File: EloMerchantKaggle/preprocess/read_data.py ```python import os import pandas as pd import numpy as np import random from collections import deque import featuretools as ft import copy def read_data_z(data_dir="/content/EloMerchantKaggle/data", version = '2',debug = False): """ """ print("loading train.csv ..." ) train_df = pd.read_csv(os.path.join(data_dir, "train.csv"), parse_dates=["first_active_month"]) print("loading test.csv ..." ) test_df = pd.read_csv(os.path.join(data_dir, "test.csv"), parse_dates=["first_active_month"]) print("loading historical_transactions.csv ..." ) hist_df = pd.read_csv(os.path.join(data_dir, "historical_transactions.csv")) print("loading new_merchant_transactions.csv ..." ) new_trans_df = pd.read_csv(os.path.join(data_dir, "new_merchant_transactions.csv")) target_col = "target" if debug: train_df_debug = pd.DataFrame(columns=train_df.columns) hist_df_debug = pd.DataFrame(columns=hist_df.columns) new_trans_df_debug = pd.DataFrame(columns=new_trans_df.columns) new_models = [train_df_debug,hist_df_debug,new_trans_df_debug] old_models = [train_df,hist_df,new_trans_df] seeds = [5,23,43] for i,data in enumerate(old_models): random.seed(seeds[i]) sample_index = random.sample(range(data.shape[0]),int(data.shape[0]/4)) for j in sample_index: new_models[i].append(data.iloc(j)) del data train_df = train_df_debug.copy() hist_df = hist_df_debug.copy() new_trans_df = new_trans_df_debug.copy() if version != '' and version.strip()[0] == '1': pass elif version != '' and version.strip()[0] == '2': train_df_stat, test_df_stat = add_stat_features(train_df, test_df, hist_df, new_trans_df) # Feature engineering: polynomial features poly_features = train_df_stat[['feature_1','feature_2','feature_3']] poly_features_test = test_df_stat[['feature_1','feature_2','feature_3']] poly_target = train_df_stat[['target']] from sklearn.preprocessing import PolynomialFeatures poly_transform = PolynomialFeatures(degree=3) poly_transform.fit(poly_features) poly_transform.fit(poly_features_test) poly_features = poly_transform.transform(poly_features) poly_features_test = poly_transform.transform(poly_features_test) # Create a dataframe of the features poly_features = pd.DataFrame(poly_features, columns = poly_transform.get_feature_names(['feature_1', 'feature_2', 'feature_3'])) poly_features_test = pd.DataFrame(poly_features, columns= poly_transform.get_feature_names(['feature_1', 'feature_2', 'feature_3'])) poly_features['card_id'] = train_df_stat['card_id'] poly_features_test['card_id'] = test_df_stat['card_id'] train_df_poly = pd.merge(train_df_stat,poly_features,on='card_id',how='left') test_df_poly = pd.merge(test_df_stat,poly_features_test,on='card_id',how='left') cols_to_use = [ "feature_1_x", "feature_2_x", "feature_3_x","year", "month", "num_hist_transactions", "sum_hist_trans", "mean_hist_trans", "std_hist_trans", "min_hist_trans", "max_hist_trans", "num_merch_transactions", "sum_merch_trans", "mean_merch_trans", "std_merch_trans", "min_merch_trans", "max_merch_trans", ] print(cols_to_use) cols_to_use.extend(poly_transform.get_feature_names(['feature_1', 'feature_2', 'feature_3'])[4:]) print(cols_to_use) print(train_df_poly[:10]) return train_df_poly[cols_to_use] ,test_df_poly[cols_to_use], train_df_poly[target_col].values else: # default only use statistic features cols_to_use = ["feature_1", "feature_2", "feature_3"] return train_df[cols_to_use], test_df[cols_to_use], train_df[target_col].values # add additional statistical features def add_stat_features(train_df,test_df,hist_df,new_trans_df): train_df_stat = train_df.copy(deep = True) test_df_stat = test_df.copy(deep=True) gdf = hist_df.groupby("card_id") gdf = gdf["purchase_amount"].size().reset_index() gdf.columns = ["card_id", "num_hist_transactions"] train_df_stat = pd.merge(train_df_stat, gdf, on="card_id", how="left") test_df_stat = pd.merge(test_df_stat, gdf, on="card_id", how="left") bins = [0, 10, 20, 30, 40, 50, 75, 100, 150, 200, 500, 10000] train_df_stat['binned_num_hist_transactions'] = pd.cut(train_df_stat['num_hist_transactions'], bins) gdf = hist_df.groupby("card_id") gdf = gdf["purchase_amount"].agg(['sum', 'mean', 'std', 'min', 'max']).reset_index() gdf.columns = ["card_id", "sum_hist_trans", "mean_hist_trans", "std_hist_trans", "min_hist_trans", "max_hist_trans"] train_df_stat = pd.merge(train_df_stat, gdf, on="card_id", how="left") test_df_stat = pd.merge(test_df_stat, gdf, on="card_id", how="left") bins = np.percentile(train_df_stat["sum_hist_trans"], range(0,101,10)) train_df_stat['binned_sum_hist_trans'] = pd.cut(train_df_stat['sum_hist_trans'], bins) bins = np.percentile(train_df_stat["mean_hist_trans"], range(0,101,10)) train_df_stat['binned_mean_hist_trans'] = pd.cut(train_df_stat['mean_hist_trans'], bins) gdf = new_trans_df.groupby("card_id") gdf = gdf["purchase_amount"].size().reset_index() gdf.columns = ["card_id", "num_merch_transactions"] train_df_stat = pd.merge(train_df_stat, gdf, on="card_id", how="left") test_df_stat = pd.merge(test_df_stat, gdf, on="card_id", how="left") bins = [0, 10, 20, 30, 40, 50, 75, 10000] train_df_stat['binned_num_merch_transactions'] = pd.cut(train_df_stat['num_merch_transactions'], bins) gdf = new_trans_df.groupby("card_id") gdf = gdf["purchase_amount"].agg(['sum', 'mean', 'std', 'min', 'max']).reset_index() gdf.columns = ["card_id", "sum_merch_trans", "mean_merch_trans", "std_merch_trans", "min_merch_trans", "max_merch_trans"] train_df_stat = pd.merge(train_df_stat, gdf, on="card_id", how="left") test_df_stat = pd.merge(test_df_stat, gdf, on="card_id", how="left") bins = np.nanpercentile(train_df_stat["sum_merch_trans"], range(0,101,10)) train_df_stat['binned_sum_merch_trans'] = pd.cut(train_df_stat['sum_merch_trans'], bins) bins = np.nanpercentile(train_df_stat["mean_merch_trans"], range(0,101,10)) train_df_stat['binned_mean_merch_trans'] = pd.cut(train_df_stat['mean_merch_trans'], bins) train_df_stat["year"] = train_df_stat["first_active_month"].dt.year test_df_stat["year"] = test_df_stat["first_active_month"].dt.year train_df_stat["month"] = train_df_stat["first_active_month"].dt.month test_df_stat["month"] = test_df_stat["first_active_month"].dt.month return train_df_stat, test_df_stat if __name__ == "__main__": x_train, y_train, x_test = read_data(data_dir ="/Users/xavier.qiu/Documents/Kaggle/EloMerchantKaggle/data") #%% ```
{ "source": "JobQiu/kaggle_bowl18", "score": 2 }
#### File: JobQiu/kaggle_bowl18/calculate_stage1.py ```python import csv import numpy as np from scipy import ndimage as ndi from tqdm import tqdm def masks2labels(masks, roll=False): num_mask = masks.shape[2 if roll else 0] rolled = np.rollaxis(masks, 2) if roll else masks mask_list = list(rolled) labels = np.zeros((masks.shape[0 if roll else 1], masks.shape[1 if roll else 2]), dtype=np.uint16) for i in range(num_mask): mask_list[i] = np.where(mask_list[i] > 0, 1, 0) labels = np.where(mask_list[i] > 0, i + 1, labels) return labels def label_loss(label_true, label_pred): true_objects = len(np.unique(label_true)) pred_objects = len(np.unique(label_pred)) intersection = np.histogram2d(label_true.flatten(), label_pred.flatten(), bins=(true_objects, pred_objects))[0] area_true = np.histogram(label_true, bins=true_objects)[0] area_pred = np.histogram(label_pred, bins=pred_objects)[0] area_true = np.expand_dims(area_true, -1) area_pred = np.expand_dims(area_pred, 0) union = area_true + area_pred - intersection intersection = intersection[1:, 1:] union = union[1:, 1:] union[union == 0] = 1e-9 iou = intersection / union def precision_at(threshold, iou): matches = iou > threshold true_positives = np.sum(matches, axis=1) == 1 # Correct objects false_positives = np.sum(matches, axis=0) == 0 # Missed objects false_negatives = np.sum(matches, axis=1) == 0 # Extra objects tp, fp, fn = np.sum(true_positives), np.sum(false_positives), np.sum(false_negatives) return tp, fp, fn prec = [] for t in np.arange(0.5, 1.0, 0.05): tp, fp, fn = precision_at(t, iou) p = tp / (tp + fp + fn) prec.append(p) return np.mean(prec) def compute_map_nuclei(true_masks, pred_masks): true_labels = masks2labels(true_masks) pred_labels = masks2labels(pred_masks) return label_loss(true_labels, pred_labels) def get_stage1_masks(true_filename, pred_filename): stage1_mask_list = {} stage1_test_sizes = {} stage1_pred_mask_list = {} with open(true_filename, newline='') as csvfile: reader = csv.DictReader(csvfile) for row in reader: rleNumbers = [int(s) for s in row['EncodedPixels'].split(' ')] rlePairs = np.array(rleNumbers).reshape(-1, 2) if row['ImageId'] not in stage1_test_sizes: stage1_test_sizes[row['ImageId']] = [int(row['Height']), int(row['Width'])] height = stage1_test_sizes[row['ImageId']][0] width = stage1_test_sizes[row['ImageId']][1] mask = np.zeros(height * width, dtype=np.uint8) for index, length in rlePairs: index -= 1 mask[index:index + length] = 1 mask = mask.reshape(width, height) mask = mask.T if row['ImageId'] not in stage1_mask_list: stage1_mask_list[row['ImageId']] = [] stage1_mask_list[row['ImageId']].append(mask) with open(pred_filename, newline='') as csvfile: reader = csv.DictReader(csvfile) for row in reader: rleNumbers = [int(s) for s in row['EncodedPixels'].split(' ')] rlePairs = np.array(rleNumbers).reshape(-1, 2) height = stage1_test_sizes[row['ImageId']][0] width = stage1_test_sizes[row['ImageId']][1] mask = np.zeros(height * width, dtype=np.uint8) for index, length in rlePairs: index -= 1 mask[index:index + length] = 1 mask = mask.reshape(width, height) mask = mask.T if row['ImageId'] not in stage1_pred_mask_list: stage1_pred_mask_list[row['ImageId']] = [] stage1_pred_mask_list[row['ImageId']].append(mask) APs = [] for imageId in tqdm(stage1_mask_list): true_masks = np.array(stage1_mask_list[imageId]) pred_masks = np.array(stage1_pred_mask_list[imageId]) APs.append(compute_map_nuclei(true_masks, pred_masks)) return np.mean(APs) # Put the solution of stage1 here true_filename = 'stage1_solution.csv' # Put your solution here pred_filename = 'submit_history/submit-04-11.csv' print(get_stage1_masks(true_filename, pred_filename)) ``` #### File: JobQiu/kaggle_bowl18/pre_process_flip_images.py ```python import os from tqdm import tqdm from skimage.io import imread, imsave import numpy as np import datetime problem_ids = list() problem_ids.append('7b38c9173ebe69b4c6ba7e703c0c27f39305d9b2910f46405993d2ea7a963b80') problem_ids.append('b1eb0123fe2d8c825694b193efb7b923d95effac9558ee4eaf3116374c2c94fe') problem_ids.append('9bb6e39d5f4415bc7554842ee5d1280403a602f2ba56122b87f453a62d37c06e') problem_ids.append('1f0008060150b5b93084ae2e4dabd160ab80a95ce8071a321b80ec4e33b58aca') problem_ids.append('58c593bcb98386e7fd42a1d34e291db93477624b164e83ab2afa3caa90d1d921') problem_ids.append('adc315bd40d699fd4e4effbcce81cd7162851007f485d754ad3b0472f73a86df') problem_ids.append('12aeefb1b522b283819b12e4cfaf6b13c1264c0aadac3412b4edd2ace304cb40') problem_ids.append('0a7d30b252359a10fd298b638b90cb9ada3acced4e0c0e5a3692013f432ee4e9') def getNameFromTime(): now = datetime.datetime.now() return (str)(now.minute) + (str)(now.second) + (str)(now.microsecond) import warnings warnings.filterwarnings("ignore") IMG_CHANNELS = 3 os.system('rm -rf stage1_train_copy') os.system('mkdir stage1_train_copy') TRAIN_PATH = 'stage1_train/' TEST_PATH = 'stage1_test/' train_ids = next(os.walk(TRAIN_PATH))[1] test_ids = next(os.walk(TEST_PATH))[1] print('Getting and resizing train images and masks ... ') for n, id_ in tqdm(enumerate(train_ids), total=len(train_ids)): if id_ in problem_ids: continue path = TRAIN_PATH + id_ image__ = imread(path + '/images/' + id_ + '.png')[:, :, :IMG_CHANNELS] mask_imgs_flip = list() mask_imgs = list() id__ = 'i' + getNameFromTime() temp_imgs = next(os.walk(path + '/masks/'))[2] assert len(temp_imgs) > 0 for mask in temp_imgs: mask_img = imread(path + '/masks/' + mask) mask_imgs.append(mask_img) mask_imgs_flip.append(np.fliplr(mask_img)) image__flip = np.fliplr(image__) id__flip = 'i' + getNameFromTime() dirPath = '' os.mkdir(os.path.join(dirPath, 'stage1_train_copy/' + id__)) os.mkdir(os.path.join(dirPath, 'stage1_train_copy/' + id__ + '/images/')) os.mkdir(os.path.join(dirPath, 'stage1_train_copy/' + id__ + '/masks/')) path___ = os.path.join(dirPath, 'stage1_train_copy/' + id__ + '/images/' + id__ + '.png') imsave(path___, image__) for mask_ in mask_imgs: mask_id = 'm' + getNameFromTime() path__m = os.path.join(dirPath, 'stage1_train_copy/' + id__ + '/masks/' + mask_id + '.png') imsave(path__m, mask_) os.mkdir(os.path.join(dirPath, 'stage1_train_copy/' + id__flip)) os.mkdir(os.path.join(dirPath, 'stage1_train_copy/' + id__flip + '/images/')) os.mkdir(os.path.join(dirPath, 'stage1_train_copy/' + id__flip + '/masks/')) path___ = os.path.join(dirPath, 'stage1_train_copy/' + id__flip + '/images/' + id__flip + '.png') imsave(path___, image__flip) for mask_ in mask_imgs_flip: mask_id = 'm' + getNameFromTime() path__m = os.path.join(dirPath, 'stage1_train_copy/' + id__flip + '/masks/' + mask_id + '.png') imsave(path__m, mask_) ``` #### File: JobQiu/kaggle_bowl18/pre_test_rle_to_mask.py ```python import numpy as np import pandas as pd import os import datetime from PIL import Image def rle_decode(rle, shape): """Decodes an RLE encoded list of space separated numbers and returns a binary mask.""" rle = list(map(int, rle.split())) rle = np.array(rle, dtype=np.int32).reshape([-1, 2]) rle[:, 1] += rle[:, 0] rle -= 1 mask = np.zeros([shape[0] * shape[1]], np.bool) for s, e in rle: assert 0 <= s < mask.shape[0] assert 1 <= e <= mask.shape[0], "shape: {} s {} e {}".format(shape, s, e) mask[s:e] = 1 # Reshape and transpose mask = mask.reshape([shape[1], shape[0]]).T return mask stage1_solution = pd.read_csv('stage1_solution.csv') def getNameFromTime(): now = datetime.datetime.now() return (str)(now.minute) + (str)(now.second) + (str)(now.microsecond) for index, row in stage1_solution.iterrows(): id_ = row['ImageId'] if os.path.exists('stage1_test/'+id_): temp = rle_decode(rle = row['EncodedPixels'],shape=[row['Height'],row['Width']]) im = Image.fromarray(temp) path_temp = 'stage1_test/'+id_+'/masks' if not os.path.exists(path_temp): os.mkdir(path_temp) path_temp = 'stage1_test/'+id_+'/masks/'+getNameFromTime()+'.png' im.save(path_temp) #%% ```
{ "source": "JobQiu/Kaggle-NLP-Summary", "score": 2 }
#### File: Kaggle-NLP-Summary/common/evaluate.py ```python from keras import backend as K import numpy as np from sklearn.metrics import f1_score def tweak_threshold(pred, truth): thresholds = [] scores = [] for thresh in np.arange(0.1, 0.501, 0.01): thresh = np.round(thresh, 2) thresholds.append(thresh) score = f1_score(truth, (pred > thresh).astype(int)) scores.append(score) return np.max(scores), thresholds[np.argmax(scores)] def f1_keras(y_true, y_pred): """ :param y_true: :param y_pred: :return: """ def recall(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + K.epsilon()) return recall def precision(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + K.epsilon()) return precision precision = precision(y_true, y_pred) recall = recall(y_true, y_pred) return 2 * ((precision * recall) / (precision + recall + K.epsilon())) ``` #### File: Kaggle-NLP-Summary/common/preprocess.py ```python import re from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences def getWordIndices(X, len_voc, max_len): t = Tokenizer(num_words=len_voc) t.fit_on_texts(X) X = t.texts_to_sequences(X) X = pad_sequences(X, maxlen=max_len) return X, t.word_index def deal_with_special_characters(text): for p in punct_mapping: text = text.replace(p, punct_mapping[p]) for p in punct: text = text.replace(p, f' {p} ') for s in specials: text = text.replace(s, specials[s]) return text specials = {'\u200b': ' ', '…': ' ... ', '\ufeff': '', 'करना': '', 'है': ''} # Other special characters that I have to deal with in last punct = "/-'?!.,#$%\'()*+-/:;<=>@[\\]^_`{|}~" + '""“”’' + '∞θ÷α•à−β∅³π‘₹´°£€\×™√²—–&' punct_mapping = {"‘": "'", "₹": "e", "´": "'", "°": "", "€": "e", "™": "tm", "√": " sqrt ", "×": "x", "²": "2", "—": "-", "–": "-", "’": "'", "_": "-", "`": "'", '“': '"', '”': '"', '“': '"', "£": "e", '∞': 'infinity', 'θ': 'theta', '÷': '/', 'α': 'alpha', '•': '.', 'à': 'a', '−': '-', 'β': 'beta', '∅': '', '³': '3', 'π': 'pi', } def deal_with_punct(x): x = str(x) for punct in "/-'": x = x.replace(punct, ' ') for punct in '?!.,"#$%\'()*+-/:;<=>@[\\]^_`{|}~' + '“”’': x = x.replace(punct, '') return x def deal_with_numbers(x): """ hmm why is "##" in there? Simply because as a reprocessing all numbers bigger than 9 have been replaced by hashs. I.e. 15 becomes ## while 123 becomes ### or 15.80€ becomes ##.##€. So lets mimic this pre-processing step to further improve our embeddings coverage :param x: :return: """ x = re.sub('[0-9]{5,}', '#####', x) x = re.sub('[0-9]{4}', '####', x) x = re.sub('[0-9]{3}', '###', x) x = re.sub('[0-9]{2}', '##', x) return x def deal_with_misspell(x): """ """ pass def _get_mispell(mispell_dict): mispell_re = re.compile('(%s)' % '|'.join(mispell_dict.keys())) return mispell_dict, mispell_re mispellings, mispellings_re = _get_mispell(misspell_mapping) def replace(match): return mispellings[match.group(0)] return mispellings_re.sub(replace, x) misspell_mapping = {'colour': 'color', 'centre': 'center', 'favourite': 'favorite', 'travelling': 'traveling', 'counselling': 'counseling', 'theatre': 'theater', 'cancelled': 'canceled', 'labour': 'labor', 'organisation': 'organization', 'wwii': 'world war 2', 'citicise': 'criticize', 'youtu ': 'youtube ', 'Qoura': 'Quora', 'sallary': 'salary', 'Whta': 'What', 'narcisist': 'narcissist', 'howdo': 'how do', 'whatare': 'what are', 'howcan': 'how can', 'howmuch': 'how much', 'howmany': 'how many', 'whydo': 'why do', 'doI': 'do I', 'theBest': 'the best', 'howdoes': 'how does', 'mastrubation': 'masturbation', 'mastrubate': 'masturbate', "mastrubating": 'masturbating', 'pennis': 'penis', 'Etherium': 'Ethereum', 'narcissit': 'narcissist', 'bigdata': 'big data', '2k17': '2017', '2k18': '2018', 'qouta': 'quota', 'exboyfriend': 'ex boyfriend', 'airhostess': 'air hostess', "whst": 'what', 'watsapp': 'whatsapp', 'demonitisation': 'demonetization', 'demonitization': 'demonetization', 'demonetisation': 'demonetization', 'pokémon': 'Pokemon', 'Pokémon': 'Pokemon', 'Quorans': 'Quora users', 'cryptocurrencies': 'cryptocurrency', 'Blockchain': 'blockchain', 'fiancé': 'fiance', 'wwwyoutubecom': 'youtube', 'Cryptocurrency': 'cryptocurrency', 'Quoras': 'Quora', 'Golang': 'golang', 'Whst': 'What', 'coinbase': 'Coinbase', 'tensorflow': 'TensorFlow'} def deal_with_contraction(text): specials = ["’", "‘", "´", "`"] for s in specials: text = text.replace(s, "'") text = ' '.join([contraction_mapping[t] if t in contraction_mapping else t for t in text.split(" ")]) return text contraction_mapping = {"ain't": "is not", "aren't": "are not", "can't": "cannot", "'cause": "because", "could've": "could have", "couldn't": "could not", "didn't": "did not", "doesn't": "does not", "don't": "do not", "hadn't": "had not", "hasn't": "has not", "haven't": "have not", "he'd": "he would", "he'll": "he will", "he's": "he is", "how'd": "how did", "how'd'y": "how do you", "how'll": "how will", "how's": "how is", "I'd": "I would", "I'd've": "I would have", "I'll": "I will", "I'll've": "I will have", "I'm": "I am", "I've": "I have", "i'd": "i would", "i'd've": "i would have", "i'll": "i will", "i'll've": "i will have", "i'm": "i am", "i've": "i have", "isn't": "is not", "it'd": "it would", "it'd've": "it would have", "it'll": "it will", "it'll've": "it will have", "it's": "it is", "let's": "let us", "ma'am": "madam", "mayn't": "may not", "might've": "might have", "mightn't": "might not", "mightn't've": "might not have", "must've": "must have", "mustn't": "must not", "mustn't've": "must not have", "needn't": "need not", "needn't've": "need not have", "o'clock": "of the clock", "oughtn't": "ought not", "oughtn't've": "ought not have", "shan't": "shall not", "sha'n't": "shall not", "shan't've": "shall not have", "she'd": "she would", "she'd've": "she would have", "she'll": "she will", "she'll've": "she will have", "she's": "she is", "should've": "should have", "shouldn't": "should not", "shouldn't've": "should not have", "so've": "so have", "so's": "so as", "this's": "this is", "that'd": "that would", "that'd've": "that would have", "that's": "that is", "there'd": "there would", "there'd've": "there would have", "there's": "there is", "here's": "here is", "they'd": "they would", "they'd've": "they would have", "they'll": "they will", "they'll've": "they will have", "they're": "they are", "they've": "they have", "to've": "to have", "wasn't": "was not", "we'd": "we would", "we'd've": "we would have", "we'll": "we will", "we'll've": "we will have", "we're": "we are", "we've": "we have", "weren't": "were not", "what'll": "what will", "what'll've": "what will have", "what're": "what are", "what's": "what is", "what've": "what have", "when's": "when is", "when've": "when have", "where'd": "where did", "where's": "where is", "where've": "where have", "who'll": "who will", "who'll've": "who will have", "who's": "who is", "who've": "who have", "why's": "why is", "why've": "why have", "will've": "will have", "won't": "will not", "won't've": "will not have", "would've": "would have", "wouldn't": "would not", "wouldn't've": "would not have", "y'all": "you all", "y'all'd": "you all would", "y'all'd've": "you all would have", "y'all're": "you all are", "y'all've": "you all have", "you'd": "you would", "you'd've": "you would have", "you'll": "you will", "you'll've": "you will have", "you're": "you are", "you've": "you have"} ``` #### File: Kaggle-NLP-Summary/common/util.py ```python import requests import json import os import copy def load_hyperparameters(): """ """ pass def load_config(): """ load config from Kaggle-NLP-Summary config.json :return: """ json_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) with open(os.path.join(json_path, "config.json")) as f: config = json.load(f) print("Config - :") print(config) f.close() return config def send_msg(msg="...", dingding_url="https://oapi.dingtalk.com/robot/send?access_token=774cd9150c43c35e43ec93bc6c91553a5c652417c10fd577bec117ed9f3e3182" ): ''' this method is used to send myself a message to remind ''' headers = {"Content-Type": "application/json; charset=utf-8"} post_data = { "msgtype": "text", "text": { "content": msg } } requests.post(dingding_url, headers=headers, data=json.dumps(post_data)) def map_list_combination(params_list): """ params = { "objective": ["regression"], "metric": ["rmse"], "num_leaves": [10,30,50], "min_child_weight": [40,50,60], "learning_rate": [0.01,0.03, 0.05, 0.06], "bagging_fraction": [0.6,0.7,0.8], "feature_fraction": [0.6,0.7,0.8], "bagging_frequency": [4,5,6], "bagging_seed": [2018], "verbosity": [-1] } :param map_list: :return: for this example, it will return all the combinations """ res = deque([{}]) for key in params_list: value_list = params_list[key] l = len(res) for i in range(l): cur_dict = res.popleft() for value in value_list: new_cur_dict = copy.deepcopy(cur_dict) new_cur_dict[key] = value res.insert(-1, (dict)(new_cur_dict)) return res # %% test = False if test: from collections import deque params_list = { "objective": ["regression"], "metric": ["rmse"], "num_leaves": [10, 30, 50], "min_child_weight": [40, 50, 60], "learning_rate": [0.01, 0.03, 0.05, 0.06], "bagging_fraction": [0.6, 0.7, 0.8], "feature_fraction": [0.6, 0.7, 0.8], "bagging_frequency": [4, 5, 6], "bagging_seed": [2018], "verbosity": [-1] } res = deque([{}]) for key in params_list: value_list = params_list[key] l = len(res) for i in range(l): cur_dict = res.popleft() for value in value_list: new_cur_dict = copy.deepcopy(cur_dict) new_cur_dict[key] = value res.insert(-1, (dict)(new_cur_dict)) print(res) ```
{ "source": "JobQiu/PrototypicalNetwork", "score": 3 }
#### File: PrototypicalNetwork/base/base_model.py ```python import tensorflow as tf class BaseModel: def __init__(self, config): self.config = config # init the global step self.init_global_step() # init the epoch counter self.init_cur_epoch() # save function that saves the checkpoint in the path defined in the config file def save(self, sess): print("Saving model...") self.saver.save(sess, self.config.checkpoint_dir, self.global_step_tensor) print("Model saved") # load latest checkpoint from the experiment path defined in the config file def load(self, sess): latest_checkpoint = tf.train.latest_checkpoint(self.config.checkpoint_dir) if latest_checkpoint: print("Loading model checkpoint {} ...\n".format(latest_checkpoint)) self.saver.restore(sess, latest_checkpoint) print("Model loaded") # just initialize a tensorflow variable to use it as epoch counter def init_cur_epoch(self): with tf.variable_scope('cur_epoch'): self.cur_epoch_tensor = tf.Variable(0, trainable=False, name='cur_epoch') self.increment_cur_epoch_tensor = tf.assign(self.cur_epoch_tensor, self.cur_epoch_tensor + 1) # just initialize a tensorflow variable to use it as global step counter def init_global_step(self): # DON'T forget to add the global step tensor to the tensorflow trainer with tf.variable_scope('global_step'): self.global_step_tensor = tf.Variable(0, trainable=False, name='global_step') def init_saver(self): # here you initialize the tensorflow saver that will be used in saving the checkpoint. self.saver = tf.train.Saver(max_to_keep=self.config.max_to_keep) def build_model(self): raise NotImplementedError ``` #### File: PrototypicalNetwork/models/example_model.py ```python from base.base_model import BaseModel import tensorflow as tf from utils.tf_utils import euclidean_distance, euclidean_distance_with_weight def conv_block(inputs, out_channels, name='conv'): with tf.variable_scope(name): conv = tf.layers.conv2d(inputs, out_channels, kernel_size=3, padding='SAME') conv = tf.contrib.layers.batch_norm(conv, updates_collections=None, decay=0.99, scale=True, center=True) conv = tf.nn.relu(conv) conv = tf.contrib.layers.max_pool2d(conv, 2) return conv def encoder(x, h_dim, z_dim, reuse=False): with tf.variable_scope('encoder', reuse=reuse): net = conv_block(x, h_dim, name='conv_1') net = conv_block(net, h_dim, name='conv_2') net = conv_block(net, h_dim, name='conv_3') net = conv_block(net, z_dim, name='conv_4') net = tf.contrib.layers.flatten(net) return net def embedding2weights(x, num_class=20, num_support=5, embedding_size=1600): if len(x.get_shape()) == 2: x = tf.reshape(x, [num_class, num_support, -1]) with tf.variable_scope(name_or_scope="get_weight", reuse=tf.AUTO_REUSE): x_max = tf.expand_dims(tf.reduce_max(x, 1), 1) x_min = tf.expand_dims(tf.reduce_min(x, 1), 1) x_sum = tf.expand_dims(tf.reduce_sum(x, 1), 1) x_prod = tf.expand_dims(tf.reduce_prod(x, 1), 1) x_mean, x_variance = tf.nn.moments(x, [1]) x_mean = tf.expand_dims(x_mean, 1) x_variance = tf.expand_dims(x_variance, 1) para_list = [x_max, x_min, x_mean, x_prod, x_sum, x_variance] x_all = tf.concat(para_list, 1) x_all = tf.transpose(x_all, perm=[0, 2, 1]) weight = tf.get_variable(shape=(len(para_list), 1), name='weight', dtype=tf.float32, initializer=tf.random_uniform_initializer(minval=-0.1, maxval=0.1)) weight2 = tf.get_variable(shape=(1600, 6), name='weight2', dtype=tf.float32, initializer=tf.random_uniform_initializer(minval=-0.1, maxval=0.1)) _W_t = tf.tile(tf.expand_dims(weight2, axis=0), [num_class, 1, 1]) # out = tf.matmul(x_all, _W_t) out = tf.multiply(x_all, _W_t) out = tf.reduce_sum(out, axis=2) # out = tf.squeeze(out, axis=2) out = tf.nn.softmax(out, axis=1) out = tf.scalar_mul(1600, out) # out = tf.multiply(out, embedding_size) return out def embedding2weight_rnn(x, num_class=20, num_support=5, embedding_size=1600): if len(x.get_shape()) == 2: x = tf.reshape(x, [num_class, num_support, -1]) with tf.variable_scope(name_or_scope="get_weight", reuse=tf.AUTO_REUSE): x_max = tf.expand_dims(tf.reduce_max(x, 1), 1) x_min = tf.expand_dims(tf.reduce_min(x, 1), 1) x_sum = tf.expand_dims(tf.reduce_sum(x, 1), 1) x_prod = tf.expand_dims(tf.reduce_prod(x, 1), 1) x_mean, x_variance = tf.nn.moments(x, [1]) x_mean = tf.expand_dims(x_mean, 1) x_variance = tf.expand_dims(x_variance, 1) para_list = [x_max, x_min, x_mean, x_prod, x_sum, x_variance] x_all = tf.concat(para_list, 1) x_all = tf.transpose(x_all, perm=[0, 2, 1]) weight = tf.get_variable(shape=(len(para_list), 1), name='weight', dtype=tf.float32, initializer=tf.random_uniform_initializer(minval=-0.1, maxval=0.1)) _W_t = tf.tile(tf.expand_dims(weight, axis=0), [num_class, 1, 1]) out = tf.matmul(x_all, _W_t) out = tf.squeeze(out, axis=2) out = tf.nn.softmax(out, axis=1) out = tf.scalar_mul(1600, out) # out = tf.multiply(out, embedding_size) return out class PrototypicalNetwork(BaseModel): def __init__(self, config, with_weight=True): super(PrototypicalNetwork, self).__init__(config) self.build_model(with_weight=with_weight) self.init_saver() def build_model(self, with_weight): config = self.config num_class = config.num_class_per_episode num_support = config.num_sample_per_class num_query = config.num_query_per_class self.x = tf.placeholder(dtype=tf.float32, shape=[num_class, num_support, config.image_height, config.image_width, config.image_channel_size], name='support_set') self.q = tf.placeholder(dtype=tf.float32, shape=[num_class, num_query, config.image_height, config.image_width, config.image_channel_size], name='query') self.y = tf.placeholder(tf.int64, [None, None], name='label_of_query') y_one_hot = tf.one_hot(self.y, depth=num_class) self.emb_x = encoder(tf.reshape(self.x, [num_class * num_support, config.image_height, config.image_width, config.image_channel_size]), config.hidden_channel_size, config.output_channel_size) emb_dim = tf.shape(self.emb_x)[-1] weights = embedding2weights(self.emb_x, num_class, num_support, embedding_size=emb_dim) # embedding_size=config.embedding_size) self.weights = weights self.prototype = tf.reduce_mean(tf.reshape(self.emb_x, [num_class, num_support, emb_dim]), axis=1, name='prototype') self.emb_q = encoder(tf.reshape(self.q, [num_class * num_query, config.image_height, config.image_width, config.image_channel_size]), config.hidden_channel_size, config.output_channel_size, reuse=True) # dists = euclidean_distance(self.emb_q, self.prototype) if with_weight: dists = euclidean_distance_with_weight(self.emb_q, self.prototype, weights) else: dists = euclidean_distance(self.emb_q, self.prototype) log_p_y = tf.reshape(tf.nn.log_softmax(-dists), [num_class, num_query, -1]) # cross entropy loss self.loss = -tf.reduce_mean( tf.reshape( tf.reduce_sum(tf.multiply(y_one_hot, log_p_y), axis=-1), [-1] ), name='loss' ) self.acc = tf.reduce_mean(tf.cast(x=tf.equal(tf.argmax(log_p_y, axis=-1), self.y), dtype=tf.float32 ), name='accuracy' ) self.train_op = tf.train.AdamOptimizer().minimize(self.loss, global_step=self.global_step_tensor) class ExampleModel(BaseModel): def __init__(self, config): super(ExampleModel, self).__init__(config) self.build_model() self.init_saver() def build_model(self): self.is_training = tf.placeholder(tf.bool) self.x = tf.placeholder(tf.float32, shape=[None] + self.config.state_size) self.y = tf.placeholder(tf.float32, shape=[None, 10]) # network architecture d1 = tf.layers.dense(self.x, 512, activation=tf.nn.relu, name="dense1") d2 = tf.layers.dense(d1, 10, name="dense2") with tf.name_scope("loss"): self.cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.y, logits=d2)) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): self.train_step = tf.train.AdamOptimizer(self.config.learning_rate).minimize(self.cross_entropy, global_step=self.global_step_tensor) correct_prediction = tf.equal(tf.argmax(d2, 1), tf.argmax(self.y, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) def init_saver(self): # here you initialize the tensorflow saver that will be used in saving the checkpoint. self.saver = tf.train.Saver(max_to_keep=self.config.max_to_keep) class PrototypicalNetwork_v2(BaseModel): def __init__(self, config): super(PrototypicalNetwork_v2, self).__init__(config) self.build_model() self.init_saver() def build_model(self): config = self.config self.support_set = tf.placeholder(dtype=tf.float32, shape=[None, None, config.image_height, config.image_width, config.image_channel_size], name='support_set') self.queqy = tf.placeholder(dtype=tf.float32, shape=[None, None, config.image_height, config.image_width, config.image_channel_size], name='query') self.query_label = tf.placeholder(dtype=tf.int32, shape=[None, None], name='label') query_label_one_hot = tf.one_hot(self.query_label, depth=config.num_class_per_episode) pass ```
{ "source": "jobquiroz/mlflow", "score": 3 }
#### File: 12_Training_val_inference_01_Inference_pipeline/random_forest/run.py ```python import argparse import logging import json import pandas as pd import numpy as np from sklearn.compose import ColumnTransformer from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import roc_auc_score, plot_confusion_matrix from sklearn.model_selection import train_test_split from sklearn.preprocessing import OrdinalEncoder, StandardScaler, FunctionTransformer import matplotlib.pyplot as plt import wandb from sklearn.pipeline import Pipeline, make_pipeline from sklearn.impute import SimpleImputer logging.basicConfig(level=logging.INFO, format="%(asctime)-15s %(message)s") logger = logging.getLogger() def go(args): run = wandb.init(project="exercise_10", job_type="train") logger.info("Downloading and reading train artifact") train_data_path = run.use_artifact(args.train_data).file() df = pd.read_csv(train_data_path, low_memory=False) # Extract the target from the features logger.info("Extracting target from dataframe") X = df.copy() y = X.pop("genre") logger.info("Splitting train/val") X_train, X_val, y_train, y_val = train_test_split( X, y, test_size=0.3, stratify=y, random_state=42 ) logger.info("Setting up pipeline") pipe = get_inference_pipeline(args) logger.info("Fitting") pipe.fit(X_train, y_train) logger.info("Scoring") score = roc_auc_score( y_val, pipe.predict_proba(X_val), average="macro", multi_class="ovo" ) run.summary["AUC"] = score # We collect the feature importance for all non-nlp features first feat_names = np.array( pipe["preprocessor"].transformers[0][-1] + pipe["preprocessor"].transformers[1][-1] ) feat_imp = pipe["classifier"].feature_importances_[: len(feat_names)] # For the NLP feature we sum across all the TF-IDF dimensions into a global # NLP importance nlp_importance = sum(pipe["classifier"].feature_importances_[len(feat_names) :]) feat_imp = np.append(feat_imp, nlp_importance) feat_names = np.append(feat_names, "title + song_name") fig_feat_imp, sub_feat_imp = plt.subplots(figsize=(10, 10)) idx = np.argsort(feat_imp)[::-1] sub_feat_imp.bar(range(feat_imp.shape[0]), feat_imp[idx], color="r", align="center") _ = sub_feat_imp.set_xticks(range(feat_imp.shape[0])) _ = sub_feat_imp.set_xticklabels(feat_names[idx], rotation=90) fig_feat_imp.tight_layout() fig_cm, sub_cm = plt.subplots(figsize=(10, 10)) plot_confusion_matrix( pipe, X_val, y_val, ax=sub_cm, normalize="true", values_format=".1f", xticks_rotation=90, ) fig_cm.tight_layout() run.log( { "feature_importance": wandb.Image(fig_feat_imp), "confusion_matrix": wandb.Image(fig_cm), } ) def get_inference_pipeline(args): # Our pipeline will contain a pre-processing step and a Random Forest. # The pre-processing step will impute missing values, encode the labels, # normalize numerical features and compute a TF-IDF for the textual # feature # We need 3 separate preprocessing "tracks": # - one for categorical features # - one for numerical features # - one for textual ("nlp") features # Categorical preprocessing pipeline. # NOTE: we sort the list so that the order of the columns will be # defined, and not dependent on the order in the input dataset categorical_features = sorted(["time_signature", "key"]) categorical_transformer = make_pipeline( SimpleImputer(strategy="constant", fill_value=0), OrdinalEncoder() ) # Numerical preprocessing pipeline numeric_features = sorted([ "danceability", "energy", "loudness", "speechiness", "acousticness", "instrumentalness", "liveness", "valence", "tempo", "duration_ms", ]) ############# YOUR CODE HERE numeric_transformer = make_pipeline( SimpleImputer(strategy='median'), StandardScaler() ) # USE make_pipeline to create a pipeline containing a SimpleImputer using strategy=median # and a StandardScaler (you can use the default options for the latter) # Textual ("nlp") preprocessing pipeline nlp_features = ["text_feature"] # This trick is needed because SimpleImputer wants a 2d input, but # TfidfVectorizer wants a 1d input. So we reshape in between the two steps reshape_to_1d = FunctionTransformer(np.reshape, kw_args={"newshape": -1}) ############# YOUR CODE HERE nlp_transformer = make_pipeline( SimpleImputer(strategy = 'constant', fill_value = ""), reshape_to_1d, TfidfVectorizer(binary = True) ) # USE make_pipeline to create a pipeline containing a SimpleImputer with strategy=constant and # fill_value="" (the empty string), followed by our custom reshape_to_1d instance, and finally # insert a TfidfVectorizer with the options binary=True # Put the 3 tracks together into one pipeline using the ColumnTransformer # This also drops the columns that we are not explicitly transforming preprocessor = ColumnTransformer( transformers=[ ("num", numeric_transformer, numeric_features), ("cat", categorical_transformer, categorical_features), # COMPLETE HERE using the categorical transformer and the categorical_features, ("nlp1", nlp_transformer, nlp_features), ], remainder="drop", # This drops the columns that we do not transform (i.e., we don't use) ) # Get the configuration for the model with open(args.model_config) as fp: model_config = json.load(fp) # Add it to the W&B configuration so the values for the hyperparams # are tracked wandb.config.update(model_config) ############# YOUR CODE HERE # Append classifier to preprocessing pipeline. # Now we have a full prediction pipeline. pipe = Pipeline([ ('preprocessor', preprocessor), ('classifier', RandomForestClassifier(**model_config))]) # CREATE a Pipeline instances with 2 steps: one step called "preprocessor" using the # preprocessor instance, and another one called "classifier" using RandomForestClassifier(**model_config) # (i.e., a Random Forest with the configuration we have received as input) # NOTE: here you should create the Pipeline object directly, and not make_pipeline # HINT: Pipeline(steps=[("preprocessor", instance1), ("classifier", LogisticRegression)]) creates a # Pipeline with two steps called "preprocessor" and "classifier" using the sklearn instances instance1 # as preprocessor and a LogisticRegression as classifier return pipe if __name__ == "__main__": parser = argparse.ArgumentParser( description="Train a Random Forest", fromfile_prefix_chars="@", ) parser.add_argument( "--train_data", type=str, help="Fully-qualified name for the training data artifact", required=True, ) parser.add_argument( "--model_config", type=str, help="Path to a JSON file containing the configuration for the random forest", required=True, ) args = parser.parse_args() go(args) ``` #### File: mlflow/13_Training_val_inference_02_Validate_and_choose/main.py ```python import json import mlflow import os import hydra from omegaconf import DictConfig, OmegaConf # This automatically reads in the configuration @hydra.main(config_name='config') def go(config: DictConfig): # Setup the wandb experiment. All runs will be grouped under this name os.environ["WANDB_PROJECT"] = config["main"]["project_name"] os.environ["WANDB_RUN_GROUP"] = config["main"]["experiment_name"] # You can get the path at the root of the MLflow project with this: root_path = hydra.utils.get_original_cwd() # Serialize decision tree configuration model_config = os.path.abspath("random_forest_config.yml") with open(model_config, "w+") as fp: fp.write(OmegaConf.to_yaml(config["random_forest_pipeline"])) _ = mlflow.run( os.path.join(root_path, "random_forest"), "main", parameters={ "train_data": config["data"]["train_data"], "model_config": model_config }, ) if __name__ == "__main__": go() ``` #### File: 14_Training_val_inferenfe_03_Export_model/random_forest/run.py ```python import argparse import logging import os from wandb.sdk.data_types import _DATA_FRAMES_SUBDIR import yaml import tempfile import mlflow import pandas as pd import numpy as np from mlflow.models import infer_signature from sklearn.compose import ColumnTransformer from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import roc_auc_score, plot_confusion_matrix from sklearn.model_selection import train_test_split from sklearn.preprocessing import OrdinalEncoder, StandardScaler, FunctionTransformer import matplotlib.pyplot as plt import wandb from sklearn.pipeline import Pipeline, make_pipeline from sklearn.impute import SimpleImputer logging.basicConfig(level=logging.INFO, format="%(asctime)-15s %(message)s") logger = logging.getLogger() def go(args): run = wandb.init(job_type="train") logger.info("Downloading and reading train artifact") train_data_path = run.use_artifact(args.train_data).file() df = pd.read_csv(train_data_path, low_memory=False) # Extract the target from the features logger.info("Extracting target from dataframe") X = df.copy() y = X.pop("genre") logger.info("Splitting train/val") X_train, X_val, y_train, y_val = train_test_split( X, y, test_size=0.3, stratify=y, random_state=42 ) logger.info("Setting up pipeline") pipe = get_training_inference_pipeline(args) logger.info("Fitting") pipe.fit(X_train, y_train) # Evaluate pred = pipe.predict(X_val) pred_proba = pipe.predict_proba(X_val) logger.info("Scoring") score = roc_auc_score(y_val, pred_proba, average="macro", multi_class="ovo") run.summary["AUC"] = score # Export if required if args.export_artifact != "null": export_model(run, pipe, X_val, pred, args.export_artifact) # Some useful plots fig_feat_imp = plot_feature_importance(pipe) fig_cm, sub_cm = plt.subplots(figsize=(10, 10)) plot_confusion_matrix( pipe, X_val, y_val, ax=sub_cm, normalize="true", values_format=".1f", xticks_rotation=90, ) fig_cm.tight_layout() run.log( { "feature_importance": wandb.Image(fig_feat_imp), "confusion_matrix": wandb.Image(fig_cm), } ) def export_model(run, pipe, X_val, val_pred, export_artifact): # Infer the signature of the model signature = infer_signature(X_val, val_pred) with tempfile.TemporaryDirectory() as temp_dir: export_path = os.path.join(temp_dir, "model_export") #### YOUR CODE HERE # Save the pipeline in the export_path directory using mlflow.sklearn.save_model # function. Provide the signature computed above ("signature") as well as a few # examples (input_example=X_val.iloc[:2]), and use the CLOUDPICKLE serialization # format (mlflow.sklearn.SERIALIZATION_FORMAT_CLOUDPICKLE) mlflow.sklearn.save_model( pipe, export_path, signature = signature, input_example = X_val.iloc[:2], serialization_format = mlflow.sklearn.SERIALIZATION_FORMAT_CLOUDPICKLE ) # Then upload the temp_dir directory as an artifact: # 1. create a wandb.Artifact instance called "artifact" # 2. add the temp directory using .add_dir # 3. log the artifact to the run artifact = wandb.Artifact( export_artifact, type = 'model_export', description='Random Forest pipeline export', ) artifact.add_dir(export_path) run.log_artifact(artifact) # Make sure the artifact is uploaded before the temp dir # gets deleted artifact.wait() def plot_feature_importance(pipe): # We collect the feature importance for all non-nlp features first feat_names = np.array( pipe["preprocessor"].transformers[0][-1] + pipe["preprocessor"].transformers[1][-1] ) feat_imp = pipe["classifier"].feature_importances_[: len(feat_names)] # For the NLP feature we sum across all the TF-IDF dimensions into a global # NLP importance nlp_importance = sum(pipe["classifier"].feature_importances_[len(feat_names) :]) feat_imp = np.append(feat_imp, nlp_importance) feat_names = np.append(feat_names, "title + song_name") fig_feat_imp, sub_feat_imp = plt.subplots(figsize=(10, 10)) idx = np.argsort(feat_imp)[::-1] sub_feat_imp.bar(range(feat_imp.shape[0]), feat_imp[idx], color="r", align="center") _ = sub_feat_imp.set_xticks(range(feat_imp.shape[0])) _ = sub_feat_imp.set_xticklabels(feat_names[idx], rotation=90) fig_feat_imp.tight_layout() return fig_feat_imp def get_training_inference_pipeline(args): # Get the configuration for the pipeline with open(args.model_config) as fp: model_config = yaml.safe_load(fp) # Add it to the W&B configuration so the values for the hyperparams # are tracked wandb.config.update(model_config) # We need 3 separate preprocessing "tracks": # - one for categorical features # - one for numerical features # - one for textual ("nlp") features # Categorical preprocessing pipeline categorical_features = sorted(model_config["features"]["categorical"]) categorical_transformer = make_pipeline( SimpleImputer(strategy="constant", fill_value=0), OrdinalEncoder() ) # Numerical preprocessing pipeline numeric_features = sorted(model_config["features"]["numerical"]) numeric_transformer = make_pipeline( SimpleImputer(strategy="median"), StandardScaler() ) # Textual ("nlp") preprocessing pipeline nlp_features = sorted(model_config["features"]["nlp"]) # This trick is needed because SimpleImputer wants a 2d input, but # TfidfVectorizer wants a 1d input. So we reshape in between the two steps reshape_to_1d = FunctionTransformer(np.reshape, kw_args={"newshape": -1}) nlp_transformer = make_pipeline( SimpleImputer(strategy="constant", fill_value=""), reshape_to_1d, TfidfVectorizer( binary=True, max_features=model_config["tfidf"]["max_features"] ), ) # Put the 3 tracks together into one pipeline using the ColumnTransformer # This also drops the columns that we are not explicitly transforming preprocessor = ColumnTransformer( transformers=[ ("num", numeric_transformer, numeric_features), ("cat", categorical_transformer, categorical_features), ("nlp1", nlp_transformer, nlp_features), ], remainder="drop", # This drops the columns that we do not transform ) # Append classifier to preprocessing pipeline. # Now we have a full prediction pipeline. pipe = Pipeline( steps=[ ("preprocessor", preprocessor), ("classifier", RandomForestClassifier(**model_config["random_forest"])), ] ) return pipe if __name__ == "__main__": parser = argparse.ArgumentParser( description="Train a Random Forest", fromfile_prefix_chars="@", ) parser.add_argument( "--train_data", type=str, help="Fully-qualified name for the training data artifact", required=True, ) parser.add_argument( "--model_config", type=str, help="Path to a YAML file containing the configuration for the random forest", required=True, ) parser.add_argument( "--export_artifact", type=str, help="Name of the artifact for the exported model. Use 'null' for no export.", required=False, default="null", ) args = parser.parse_args() go(args) ```
{ "source": "JOBR0/PerceiverIO_Pytorch", "score": 3 }
#### File: JOBR0/PerceiverIO_Pytorch/example_opt_flow.py ```python import os import torch import matplotlib.pyplot as plt from utils.flow_utils import flow_to_image from utils.utils import load_image from perceiver_io.flow_perceiver import FlowPerceiver def flow_example(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("Device:", device) perceiver = FlowPerceiver(img_size=(368, 496)) perceiver.eval() perceiver.to(device) ckpt_file = "./pytorch_checkpoints/optical_flow_checkpoint.pth" # check if file exists if not os.path.isfile(ckpt_file): raise ValueError("Please download the model checkpoint and place it in /pytorch_checkpoints") checkpoint = torch.load(ckpt_file, map_location=device) perceiver.load_state_dict(checkpoint["model_state_dict"]) img1 = load_image("./sample_data/frame_0016.png", device) img2 = load_image("./sample_data/frame_0017.png", device) # Normalize images img1_norm = 2 * (img1 / 255.0) - 1.0 img2_norm = 2 * (img2 / 255.0) - 1.0 img1_norm = img1_norm.to(device) img2_norm = img2_norm.to(device) # Predict Flow with torch.inference_mode(): flow = perceiver(img1_norm, img2_norm, test_mode=True) # Show prediction figure = plt.figure() plt.subplot(2, 2, 1) plt.imshow(img1[0].permute(1, 2, 0).cpu().numpy() / 255) plt.subplot(2, 2, 2) plt.imshow(img2[0].permute(1, 2, 0).cpu().numpy() / 255) plt.subplot(2, 2, 3) plt.imshow(flow_to_image(flow[0].permute(1, 2, 0).cpu().numpy())) plt.show() if __name__ == "__main__": flow_example() ``` #### File: PerceiverIO_Pytorch/perceiver_io/flow_perceiver.py ```python import itertools from typing import Sequence import torch.nn as nn import torch from perceiver_io.io_processors.preprocessors import ImagePreprocessor from perceiver_io.io_processors.processor_utils import patches_for_flow from perceiver_io.output_queries import FlowQuery from perceiver_io.perceiver import PerceiverIO from timm.models.layers import to_2tuple import torch.nn.functional as F from torch.cuda.amp import autocast from perceiver_io.position_encoding import PosEncodingType from perceiver_io.io_processors.postprocessors import FlowPostprocessor class FlowPerceiver(nn.Module): """ FlowPerceiver: Perceiver for optical flow Args: img_size (Sequence[int]): Size of training images (height x width). Default: (368, 496) flow_scale_factor (int): Factor by which the output is multiplied https://github.com/deepmind/deepmind-research/issues/266. Default: 0.2 num_latents (int): Number of latent variables. Default: 2048 n_latent_channels (int): Number of latent channels. Default: 512 num_self_attends_per_block (int): Number of self attention layers. Default: 24 num_blocks (int): Number of blocks. All blocks share weights. Default: 1 mixed_precision (bool): Whether to run the perceiver in mixed precision. Default: False """ def __init__( self, img_size: Sequence[int] = (368, 496), flow_scale_factor: int = 20/100, num_latents: int = 2048, num_latent_channels=512, num_self_attends_per_block: int = 24, num_blocks: int = 1, mixed_precision: bool = False): super().__init__() self._flow_scale_factor = flow_scale_factor self.mixed_precision = mixed_precision channels = 3 patch_size = 3 preprocessor_channels = 64 input_preprocessor = ImagePreprocessor( img_size=img_size, input_channels=channels * patch_size ** 2, position_encoding_type=PosEncodingType.FOURIER, fourier_position_encoding_kwargs=dict( num_bands=64, max_resolution=img_size, sine_only=False, concat_pos=True, ), n_extra_pos_mlp=0, prep_type="patches", spatial_downsample=1, conv_after_patching=True, temporal_downsample=2, num_channels=preprocessor_channels) perceiver_encoder_kwargs = dict( num_self_attend_heads=16, ) perceiver_decoder_kwargs = dict( output_w_init="zeros", ) output_query = FlowQuery( preprocessed_input_channels=input_preprocessor.n_output_channels(), output_img_size=img_size, output_num_channels=2, ) postprocessor = FlowPostprocessor( img_size=img_size, flow_scale_factor=flow_scale_factor ) self.perceiver = PerceiverIO( final_project_out_channels=2, num_blocks=num_blocks, num_self_attends_per_block=num_self_attends_per_block, num_latents=num_latents, num_latent_channels=num_latent_channels, perceiver_encoder_kwargs=perceiver_encoder_kwargs, perceiver_decoder_kwargs=perceiver_decoder_kwargs, output_queries=output_query, input_preprocessors=input_preprocessor, output_postprocessors=postprocessor,) self.H, self.W = to_2tuple(img_size) def compute_grid_indices(self, image_shape: tuple, min_overlap: int): """ Compute top-left corner coordinates for patches Args: image_shape (tuple): Height and width of the input image min_overlap (int): Minimum number of pixels that two patches overlap """ if min_overlap >= self.H or min_overlap >= self.W: raise ValueError( f"Overlap should be less than size of patch (got {min_overlap}" f"for patch size {(self.H, self.W)}).") ys = list(range(0, image_shape[0], self.H - min_overlap)) xs = list(range(0, image_shape[1], self.W - min_overlap)) # Make sure the final patch is flush with the image boundary ys[-1] = image_shape[0] - self.H xs[-1] = image_shape[1] - self.W # Avoid predicting same patch multiple times if image_shape[0] == self.H: ys = [0] if image_shape[1] == self.W: xs = [0] return itertools.product(ys, xs) def _predict_patch(self, patch): """Predict flow for one image patch as big as training images""" with autocast(enabled=self.mixed_precision): # Extract overlapping 3x3 patches patch = patches_for_flow(patch).movedim(-1, -3) output = self.perceiver(patch) return output def forward(self, image1: torch.Tensor, image2: torch.Tensor, test_mode: bool = False, min_overlap: int = 20): """ Computes forward pass for flow perceiver Args: image1 (torch.Tensor): source images (N, C, H, W). image2 (torch.Tensor): target images (N, C, H, W). test_mode (bool): If in test mode. Default: False min_overlap (int): Minimum overlap of patches if images are bigger than training size. Default: 20 """ height = image1.shape[2] width = image1.shape[3] image1 = image1.contiguous() image2 = image2.contiguous() # Stack in time dimension inputs = torch.stack([image1, image2], axis=1) if height < self.H: raise ValueError( f"Height of image (shape: {image1.shape}) must be at least {self.H:}." "Please pad or resize your image to the minimum dimension." ) if width < self.W: raise ValueError( f"Width of image (shape: {image1.shape}) must be at least {self.W}." "Please pad or resize your image to the minimum dimension." ) if test_mode: # in test_mode, image size can be arbitrary # the flow is predicted for patches of training size and than stitched together flows = 0 flow_count = 0 grid_indices = self.compute_grid_indices((height, width), min_overlap) for y, x in grid_indices: inp_piece = inputs[..., y: y + self.H, x: x + self.W] flow_piece = self._predict_patch(inp_piece) # weights should give more weight to flow from center of patches weights_y, weights_x = torch.meshgrid(torch.arange(self.H), torch.arange(self.W), indexing="ij") weights_x = torch.minimum(weights_x + 1, self.W - weights_x) weights_y = torch.minimum(weights_y + 1, self.H - weights_y) weights = torch.minimum(weights_x, weights_y)[None, None, :, :] weights = weights / weights.max() weights = weights.to(flow_piece.device) padding = (x, width - x - self.W, y, height - y - self.H) flows = flows + F.pad(flow_piece * weights, padding) flow_count = flow_count + F.pad(weights, padding) flows = flows / flow_count output = flows else: assert height == self.H and width == self.W, \ f"In training mode images must have size equal to specified img_size {(self.H, self.W)}" output = self._predict_patch(inputs) return output ``` #### File: perceiver_io/io_processors/processor_utils.py ```python from typing import Any, Callable, Mapping, Optional, Sequence, Tuple import einops from timm.models.layers import trunc_normal_ import torch import torch.nn as nn import torch.nn.functional as F from utils.utils import conv_output_shape, same_padding ModalitySizeT = Mapping[str, int] PreprocessorOutputT = Tuple[torch.Tensor, Optional[torch.Tensor], torch.Tensor] PreprocessorT = Callable[..., PreprocessorOutputT] PostprocessorT = Callable[..., Any] def space_to_depth( frames: torch.Tensor, temporal_block_size: int = 1, spatial_block_size: int = 1) -> torch.Tensor: """Reduces spatial and/or temporal dimensions by stacking features in the channel dimension.""" if len(frames.shape) == 4: return einops.rearrange( frames, "b (h dh) (w dw) c -> b h w (dh dw c)", dh=spatial_block_size, dw=spatial_block_size) elif len(frames.shape) == 5: return einops.rearrange( frames, "b (t dt) (h dh) (w dw) c -> b t h w (dt dh dw c)", dt=temporal_block_size, dh=spatial_block_size, dw=spatial_block_size) else: raise ValueError( "Frames should be of rank 4 (batch, height, width, channels)" " or rank 5 (batch, time, height, width, channels)") def reverse_space_to_depth( frames: torch.Tensor, temporal_block_size: int = 1, spatial_block_size: int = 1) -> torch.Tensor: """Reverse space to depth transform.""" if len(frames.shape) == 4: return einops.rearrange( frames, "b h w (dh dw c) -> b (h dh) (w dw) c", dh=spatial_block_size, dw=spatial_block_size) elif len(frames.shape) == 5: return einops.rearrange( frames, "b t h w (dt dh dw c) -> b (t dt) (h dh) (w dw) c", dt=temporal_block_size, dh=spatial_block_size, dw=spatial_block_size) else: raise ValueError( "Frames should be of rank 4 (batch, height, width, channels)" " or rank 5 (batch, time, height, width, channels)") def extract_patches(images: torch.Tensor, size: Sequence[int], stride: Sequence[int] = 1, dilation: Sequence[int] = 1, padding: str = "VALID") -> torch.Tensor: """Extract patches from images. The function extracts patches of shape sizes from the input images in the same manner as a convolution with kernel of shape sizes, stride equal to strides, and the given padding scheme. The patches are stacked in the channel dimension. Args: images (torch.Tensor): input batch of images of shape [B, C, H, W]. size (Sequence[int]): size of extracted patches. Must be [patch_height, patch_width]. stride (Sequence[int]): strides, must be [stride_rows, stride_cols]. Default: 1 dilation (Sequence[int]): as in dilated convolutions, must be [dilation_rows, dilation_cols]. Default: 1 padding (str): padding algorithm to use. Default: VALID Returns: Tensor of shape [B, patch_rows, patch_cols, size_rows * size_cols * C] """ if padding != "VALID": raise ValueError(f"Only valid padding is supported. Got {padding}") if images.ndim != 4: raise ValueError( f"Rank of images must be 4 (got tensor of shape {images.shape})") n, c, h, w = images.shape ph, pw = size pad = 0 out_h, out_w = conv_output_shape((h, w), size, stride, pad, dilation) patches = F.unfold(images, size, dilation=dilation, padding=0, stride=stride) patches = einops.rearrange(patches, "n (c ph pw) (out_h out_w) -> n out_h out_w (ph pw c)", c=c, ph=ph, pw=pw, out_h=out_h, out_w=out_w) return patches def patches_for_flow(inputs: torch.Tensor) -> torch.Tensor: """Extract 3x3x2 image patches for flow inputs. Args: inputs (torch.Tensor): image inputs (N, 2, C, H, W) """ batch_size = inputs.shape[0] inputs = einops.rearrange(inputs, "N T C H W -> (N T) C H W") padded_inputs = F.pad(inputs, [1, 1, 1, 1], mode="constant") outputs = extract_patches( padded_inputs, size=[3, 3], stride=1, dilation=1, padding="VALID") outputs = einops.rearrange(outputs, "(N T) H W C-> N T H W C", N=batch_size) return outputs # ------------------------------------------------------------ # ------------------- Up/down-sampling --------------------- # ------------------------------------------------------------ class Conv2DDownsample(nn.Module): """Downsamples 4x by applying a 2D convolution and doing max pooling.""" def __init__( self, num_layers: int = 1, in_channels: int = 3, num_channels: int = 64, use_batchnorm: bool = True ): """Constructs a Conv2DDownsample model. Args: num_layers (int): The number of conv->max_pool layers. Default: 1 in_channels (int): The number of input channels. Default: 3 num_channels (int): The number of conv output channels. Default: 64 use_batchnorm (bool): Whether to use batchnorm. Default: True """ super().__init__() self._num_layers = num_layers self.norms = None if use_batchnorm: self.norms = nn.ModuleList() self.convs = nn.ModuleList() for _ in range(self._num_layers): conv = nn.Conv2d(in_channels=in_channels, out_channels=num_channels, kernel_size=7, stride=2, bias=False) trunc_normal_(conv.weight, mean=0.0, std=0.01) self.convs.append(conv) in_channels = num_channels if use_batchnorm: batchnorm = nn.BatchNorm2d(num_features=num_channels) self.norms.append(batchnorm) def forward(self, inputs: torch.Tensor) -> torch.Tensor: out = inputs for l, conv in enumerate(self.convs): pad = same_padding(out.shape[1:], conv.kernel_size, conv.stride, dims=2) out = F.pad(out, pad, mode="constant", value=0.0) out = conv(out) if self.norms is not None: out = self.norms[l](out) out = F.relu(out) pad = same_padding(out.shape[1:], 3, 2, dims=2) out = F.pad(out, pad, mode="constant", value=0.0) out = F.max_pool2d(out, kernel_size=3, stride=2) return out # class Conv2DUpsample(nn.Module): # """Upsamples 4x using 2 2D transposed convolutions.""" # # def __init__( # self, # n_outputs: int, # in_channels: int = 64, # ): # """Constructs a Conv2DUpsample model. # Args: # n_outputs: The number of output channels of the module. # name: Name of the module. # """ # super().__init__() # # self.transp_conv1 = nn.ConvTranspose2d(in_channels=in_channels, # out_channels=n_outputs * 2, # kernel_size=4, # stride=2, # padding=0, # output_padding=0, # bias=True) # # self.transp_conv1 = hk.Conv2DTranspose( # output_channels=n_outputs * 2, # kernel_shape=4, # stride=2, # with_bias=True, # padding="SAME", # name="transp_conv_1") # # self.transp_conv2 = nn.ConvTranspose2d(in_channels=n_outputs, # out_channels=n_outputs, # kernel_size=4, # stride=2, # padding=0, # output_padding=0, # bias=True) # # self.transp_conv2 = hk.Conv2DTranspose( # output_channels=n_outputs, # kernel_shape=4, # stride=2, # with_bias=True, # padding="SAME", # name="transp_conv_2") # # def forward(self, inputs: torch.Tensor, *, # test_local_stats: bool = False) -> torch.Tensor: # TODO what is test_local_stats? # out = inputs # out = self.transp_conv1(out) # out = F.relu(out) # out = self.transp_conv2(out) # # return out # # # class Conv3DUpsample(nn.Module): # """Simple convolutional auto-encoder.""" # # def __init__(self, # n_outputs: int, # n_time_upsamples: int = 2, # n_space_upsamples: int = 4): # # super().__init__() # # self._n_outputs = n_outputs # self._n_time_upsamples = n_time_upsamples # self._n_space_upsamples = n_space_upsamples # # def forward(self, x: torch.Tensor) -> torch.Tensor: # n_upsamples = max(self._n_time_upsamples, self._n_space_upsamples) # # time_stride = 2 # space_stride = 2 # # for i in range(n_upsamples): # if i >= self._n_time_upsamples: # time_stride = 1 # if i >= self._n_space_upsamples: # space_stride = 1 # # channels = self._n_outputs * pow(2, n_upsamples - 1 - i) # # x = hk.Conv3DTranspose(output_channels=channels, # stride=[time_stride, space_stride, space_stride], # kernel_shape=[4, 4, 4], # name=f"conv3d_transpose_{i}")(x) # if i != n_upsamples - 1: # x = F.relu(x) # # return x ```
{ "source": "jobrachem/alfred3-interact", "score": 2 }
#### File: tests/res/script-match_stepwise.py ```python import alfred3 as al import alfred3_interact as ali exp = al.Experiment() @exp.setup def setup(exp): mm = ali.MatchMaker("a", "b", exp=exp, admin_pw="test") group = mm.match_stepwise() exp.plugins.group = group @exp.member class Success(al.Page): def on_first_show(self): group = self.exp.plugins.group role = group.me.role self += al.Text(f"Matched to group: \t{group.group_id[-4:]}") self += al.Text(f"Matched to role: \t{role}") ``` #### File: alfred3-interact/tests/test_spec.py ```python import pytest from alfred3_interact import ParallelSpec, SequentialSpec, IndividualSpec class TestSequentialSpec: def test_init(self): spec = SequentialSpec("a", "b", nslots=5, name="test") assert spec class TestParallelSpec: def test_init(self): spec = ParallelSpec("a", "b", nslots=5, name="test") assert spec class TestIndividualSpec: def test_init(self): spec = IndividualSpec(nslots=5, name="test") assert spec ```
{ "source": "jobrachem/alfred3_scheduler", "score": 3 }
#### File: alfred3_scheduler/tests/create.py ```python from pathlib import Path from datetime import datetime from subprocess import run import click @click.command() @click.option( "-name", prompt="Enter a name for the test experiment", help="Name for test experiment" ) def testexp(name): """Create a test experiment.""" timestamp = datetime.today().strftime("%Y%m%d%H%M") dirname = timestamp + "-" + name path = Path.cwd() / "exp" / dirname path = path.resolve() path.mkdir(parents=True) run( [ "alfred3", "template", f"--path={str(path)}", ], check=True, ) run(["code", path / "script.py"], check=True) if __name__ == "__main__": testexp() # pylint: disable=no-value-for-parameter ```
{ "source": "JoBrad/petl_fwf", "score": 2 }
#### File: petl_fwf/test/test_fwf_reader.py ```python from __future__ import absolute_import, print_function, division from tempfile import NamedTemporaryFile import gzip import bz2 import os import io from petl.test.helpers import ieq, eq_ from petl_fwf.fwf_reader import fromfwf def test_fromfwf_no_header(): f = NamedTemporaryFile(delete=False, mode='wb') f.write(b'Header text that should not be returned in results\n') f.write(b' a 1\n') f.write(b'b 2 \n') f.write(b'c 3 \n') f.write(b'Footer text that should not be returned in results\n') f.close() actual = fromfwf(f.name, encoding='ascii', widths=[3, 3], header=('col1', 'col2'), skiprows=1, skipfooter=1) expect = (('col1', 'col2'), (' a', ' 1'), ('b ', '2 '), ('c ', '3 ')) ieq(expect, actual) ieq(expect, actual) # verify can iterate twice def test_fromfwf_with_header(): f = NamedTemporaryFile(delete=False, mode='wb') f.write(b'c1 c2\n') f.write(b' a 1\n') f.write(b'b 2 \n') f.write(b'c 3 \n') f.write(b'Footer text that should not be returned in results\n') f.close() actual = fromfwf(f.name, encoding='ascii', widths=[3, 3], skipfooter=1) expect = (('c1 ', ' c2'), (' a', ' 1'), ('b ', '2 '), ('c ', '3 ')) ieq(expect, actual) ieq(expect, actual) # verify can iterate twice def test_test_fromfwf_gz_no_header(): # initial data f = NamedTemporaryFile(delete=False) f.close() fn = f.name + '.gz' os.rename(f.name, fn) f = gzip.open(fn, 'wb') try: f.write(b'Header text that should not be returned in results\n') f.write(b' a 1\n') f.write(b'b 2 \n') f.write(b'c 3 \n') f.write(b'Footer text that should not be returned in results\n') finally: f.close() expect = (('col1', 'col2'), (' a', ' 1'), ('b ', '2 '), ('c ', '3 ')) actual = fromfwf(f.name, encoding='ascii', widths=[3, 3], header=('col1', 'col2'), skiprows=1, skipfooter=1) ieq(expect, actual) ieq(expect, actual) # verify can iterate twice ``` #### File: JoBrad/petl_fwf/setup.py ```python from __future__ import (print_function, unicode_literals) from builtins import str from ast import literal_eval from setuptools import setup def get_version(source='petl_fwf/__pkginfo__.py'): with open(source) as f: for line in f: if line.startswith('__version__'): return literal_eval(line.split('=')[-1].lstrip()) raise ValueError("__version__ not found") setup( name='petl_fwf', version=get_version(), author='JoBrad', author_email='<EMAIL>', package_dir={'': '.'}, packages=['petl_fwf', 'petl_fwf.test'], install_requires=['petl'], tests_require=['nose'], url='https://github.com/JoBrad/petl_fwf', license='MIT License', description='Additional methods for the petl library that enable reading fixed-width files', long_description=open('README.md').read(), python_requires='>=2.7', keywords='petl fixed-width text', classifiers=['Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Software Development :: Libraries :: Python Modules' ] ) ```
{ "source": "JoBrad/pyColorClass", "score": 3 }
#### File: pyColorClass/colorClass/helpers.py ```python import collections, copy, inspect, re, string, sys from definedColors import __definedColors__ # Default color values to use when the provided color value cannot be used DEFAULT_COLOR = '#000000' DEFAULT_HEX_VALUE = '00' DEFAULT_INT_VALUE = 0 # A list of values, in order, that we'll look for when parsing iterables RGB_PARSER = ['r', 'g', 'b'] RGB_NAMES = ['red', 'green', 'blue'] # Non-whitespace characters that are turned into whitespace before splitting a potential RGB color string SEPARATORS = ',' # RegEx pattern for a valid Hex character VALID_HEX_CHARACTER = r'[0-9a-fA-F]' # Match hex strings of various lengths VALID_HEX_STRING_TEMPLATE = r'^\s*#?(%s{CHARACTERCOUNT})\s*$' % VALID_HEX_CHARACTER HEX_PATTERNS = [ re.compile(VALID_HEX_STRING_TEMPLATE.replace('CHARACTERCOUNT', '2')), re.compile(VALID_HEX_STRING_TEMPLATE.replace('CHARACTERCOUNT', '3')), re.compile(VALID_HEX_STRING_TEMPLATE.replace('CHARACTERCOUNT', '6')) ] # Python 2 vs 3 abstract collection class if tuple(sys.version_info)[0] == 3: collections = collections.abc def __isIntType__(obj): """ Returns true if the obj is an integer """ return isinstance(obj, int) def __isColorInt__(inputValue): """ Returns true if the provided value is an integer between 0 and 255. """ if __isIntType__(inputValue): return 0 <= inputValue <= 255 else: return False def __isFloatType__(obj): """ Returns true if the obj is a float """ return isinstance(obj, float) def __isColorPercent__(inputValue): """ Returns true if the provided value is a float between 0.0 and 1.0. """ if __isFloatType__(inputValue): return 0.0 <= inputValue <= 1.0 else: return False def __isNumericType__(obj): """ Returns true if the obj is an int or float """ return True in [__isIntType__(obj), __isFloatType__(obj)] def __isHexString__(inputValue): """ Returns True if the inputValue is a hex string. """ if __isStringType__(inputValue): return len([res for res in [patt.match(inputValue) for patt in HEX_PATTERNS] if res is not None]) > 0 else: return False def __isStringType__(obj): """ Returns true if the obj is a str type """ try: return hasattr(obj, 'capitalize') except: return False def __isFunctionType__(obj): """ Returns true if the provided object is a function """ return inspect.isfunction(obj) def __isIterableType__(obj): """ Returns true if the obj is an Iterable type """ return isinstance(obj, collections.Iterable) def __isNonStringIterableType__(obj): """ Returns True if the provided value is an iterable, but is not a string """ if __isIterableType__(obj): return __isStringType__(obj) is False else: return False def __isListType__(obj): """ Returns True if the provided value is a list """ if __isIterableType__(obj): return isinstance(obj, list) else: return False def __isMappingType__(obj): """ Returns true if the obj is a Mapping type """ return isinstance(obj, collections.Mapping) def __isTupleType__(obj): """ Returns True if the provided value is a tuple """ if __isIterableType__(obj): return isinstance(obj, tuple) else: return False def __isRGB__(obj): """ Returns true if the provided object is a 3-item tuple containing integer values, or the value None. """ if __isTupleType__(obj): return len([True for item in obj if __isColorInt__(item) or item is None]) == 3 else: return False def __toInt__(obj, base = 10): """ If the provided object is an integer, it is returned. If it is not, then it will try to return the value as an integer. If a base is provided, and the provided object is not a number, then it will be used to change the base of the provided number. If an error occurs, None is returned. """ try: if __isNumericType__(obj) is True: return int(obj) elif base == 10: return int(__toFloat__(obj)) else: return int(obj, base) except: return None def __getColorInt__(inputValue): """ Returns an integer between 0 and 255 from the provided numeric value. If the value cannot be converted to an integer, or is not between 0 and 255 then None is returned. Conversion order: * If the value is an integer, it is returned * If the value is a float between 0 and 1, it is multiplied by 255 and then reprocessed * If the value is a float between 0 and 255, it is converted to an integer and reprocessed * If the value is a string, it is converted to a float, and reprocessed """ if __isColorInt__(inputValue): return inputValue else: if __isColorPercent__(__toFloat__(inputValue)): returnValue = __toInt__(__toFloat__(inputValue) * 255) elif __isColorInt__(__toInt__(inputValue)): returnValue = __toInt__(inputValue) else: returnValue = None return __validate__(returnValue, __isColorInt__, None) def __intToHex__(inputValue): """ Returns a hexadecimal string representation of the provided value. If the provided value Returns DEFAULT_HEX_VALUE if the value cannot be converted. """ if __isHexString__(inputValue): return __getHexString__(inputValue) else: try: returnValue = '%02x'.upper() % __getColorInt__(inputValue) return __validate__(returnValue, __isHexString__, DEFAULT_HEX_VALUE) except: return DEFAULT_HEX_VALUE def __toFloat__(obj): """ If the provided object is a float, it is returned. If it is not, then it will try to return the value as a float. If this fails, None is returned. """ try: if __isFloatType__(obj): return obj else: return float(obj) except: return None def __getColorPercent__(inputValue): """ Returns a float between 0 and 1 from the provided value. If the value cannot be converted to a float, or is not between 0.0 and 1.0 then None is returned. Conversion order: * If the value is a float, it is returned * If the value is an integer, it is returned * If the value is a string with all digits, it is converted using __toFloat__ * If it is a string that hasn't been caught by the previous tests, the function tries to convert the value by shifting its base. Returns a float between 0 and 1 from an integer value that is between 0 and 255. If the provided value is an float between 0 and 1, it is returned as-is. Otherwise None is returned. Values that exceed 255, or values that cannot be converted are returned as None. """ # Is this already a valid float? if __isColorPercent__(inputValue): return inputValue else: if __isColorInt__(inputValue) or __isColorInt__(__toInt__(inputValue)): returnValue = __toFloat__(inputValue / 255.0) elif __isColorPercent__(__toFloat__(inputValue)): returnValue = __toFloat__(inputValue) else: returnValue = None return __validate__(returnValue, __isColorPercent__, None) def __getHexString__(inputValue): """ Returns a hexadecimal string from the provided value, or None, if the value cannot be converted to hexadecimal. Hex strings will be upper case, trimmed, and will not have a leading hash symbol. If the hex value is 3 characters, it is converted to a 6-character value. Other lengths are left as-is. Numeric values are converted to an integer, and then reprocessed. If the value is not a valid hex string, None is returned. Examples: 'FF' => 'FF' 255 => 'FF' 128 => '80' 1.0 => 'FF' """ if __isStringType__(inputValue): matchResults = __getElement__([res.groups()[0] for res in [patt.match(inputValue) for patt in HEX_PATTERNS] if res is not None]) if matchResults is not None: hexString = matchResults.upper() # Expand 3-character hex strings -> 6 if len(hexString) == 3: hexString = ''.join([hexString[0] * 2, hexString[1] * 2, hexString[2] * 2]) return hexString elif __isColorInt__(inputValue): return __intToHex__(inputValue) elif __isColorPercent__(inputValue): return __getHexString__(__getColorInt__(inputValue)) return None def __hexToInt__(inputValue): """ Returns an integer value from the hex input. Returns None if the value cannot be converted. """ if __isColorInt__(inputValue): return inputValue elif __isHexString__(inputValue): return __toInt__(__getHexString__(inputValue), 16) else: return None def __cleanString__(inputString): """ If the provided value is a string, it is trimmed and lower-cased. Otherwise the provided value is returned, as-is """ try: if __isStringType__(inputString): return inputString.strip().lower() else: return inputString except: return inputString def __rgbToHex__(values): """ Returns a formatted hex string created from the provided RGB values """ returnValue = DEFAULT_COLOR if __isHexString__(values): returnValue = values elif __isRGB__(values): returnValue = ''.join([__intToHex__(item) or '00' for item in __rgbFromValue__(values)]) return __formatHexString__(returnValue) def __formatHexString__(inputValue): """ Returns a formatted hex string from the provided string """ hexString = __getHexString__(inputValue) if hexString is not None: if len(hexString) > 2: return '#%s' % hexString else: return hexString else: return None def __splitString__(inputString): """ Replaces any instances of SEPARATORS with a space, and then splits the provided string. If the value cannot be split, None is returned. """ try: splitString = inputString.strip().expandtabs(2) return ''.join([splitString.replace(sepString, ' ') for sepString in SEPARATORS]).split() except: return None def __validate__(inputValue, validationFunction, fallbackValue = None): """ Executes the validation function on the provided value. If it passes, then the value is returned. If the function fails, the fallback value is returned. """ assert __isFunctionType__(validationFunction), 'The provided function was not a function!' try: if validationFunction(inputValue) == True: return inputValue else: return fallbackValue except: return fallbackValue def __copyList__(fromList, initialValues = None): """ Returns a copy of the provided list. Initial values must either be a single value, or a list of exactly the same size as the provided list. """ if __isListType__(fromList) is False: raise ValueError('The provided value to copy was not a list!') fromList = copy.deepcopy(fromList) if initialValues is not None: initialValues = copy.deepcopy(initialValues) if initialValues is None or __isNonStringIterableType__(initialValues) is False: copySingleValue = True elif __isNonStringIterableType__(initialValues) and len(initialValues) == 1 or __isListType__(initialValues) is False: # Treat an initialValue object with 1 element the same as a non-iterable, so we could set every value to a list, or to a non-list value copySingleValue = True else: if len(initialValues) != len(fromList): raise ValueError('The initial values list must be the same size as the list to copy!') else: copySingleValue = False returnList = fromList[:] for itemIndex in range(len(returnList)): if copySingleValue is True: returnList[itemIndex] = initialValues else: returnList[itemIndex] = initialValues[itemIndex] return returnList def __flatten__(obj): """ Always returns a tuple. If the provided object is None, a non-iterable, or a string, the tuple will have 1 item, which is the provided object. If the provided object is a dictionary, then each returned tuple is the result of the .items() method of that dictionary. If the provided object is another iterable type, then the iterable is recursively using the rules above. Examples: __flatten__(1) => (1,) __flatten__('a') => ('a',) __flatten__([[[1, 2, 3]]]) => (1, 2, 3) __flatten__(tuple([[[[1, 2, 3]]], [1, 2, 3]])) => (1, 2, 3, 1, 2, 3) __flatten__({'a': 1, 'b': 2}) => (('a', 1), ('b', 2)) __flatten__([[[[1, 2, 3]]], [[{'a': 1, 'b': 2}], [1, 2, 3]], 1, ['s'], set([1, 2, 3, 4), 's']) => (1, 2, 3, ('a', 1), ('b', 2), 1, 2, 3, 1, 's', 1, 2, 3, 4, 's') """ returnObj = [] # Avoid parsing a tuple that looks just like what this function would return if isinstance(obj, tuple) and len(obj) == 1 and __isNonStringIterableType__(obj[0]) is False: return obj elif __isNonStringIterableType__(obj) is False: returnObj.append(obj) elif __isMappingType__(obj): returnObj = [item for item in obj.items()] elif __isNonStringIterableType__(obj): for item in obj: if __isNonStringIterableType__(item): [returnObj.append(flatObj) for flatObj in __flatten__(item)] else: returnObj.append(item) elif obj is not None: returnObj = [obj] return tuple(returnObj) def __getElement__(inputList, index = 0, fallbackValue = None): """ Returns the element at the specified index, in the provided list. If this fails for any reason, then the fallback value is returned. """ try: return inputList[index] except: return fallbackValue def __getValues__(values = None): """ Returns the provided values, as a tuple. Note that a tuple is *always* returned, even if nothing, or just a single value, is passed to the function. Values should be in the same order they were provided, but I haven't performed any regression testing to verify this. If the provided values are non-string iterables, they are flattened in-place using the __flatten__ function. Example: [[[a], [b, c]], {'d': 1}] => (a, b, c, (d, 1),) """ if values is None: return tuple() elif __isNonStringIterableType__(values): flattendValues = __flatten__(values) return flattendValues else: return (values,) def __getColorTupleFromElement__(tupleValue): """ Expects a 2-value tuple, usually the result of the enumerate function, where the first value is the index of the iterable that the item was in, and the second value is either a 2-element tuple, or a single value. If the second value of the provided tuple is a 2-value tuple, then it is checked to see if its first value starts with an RGB color name(using the RGB_PARSER list), and if the second value is a number. If both of these pass, then the resulting tuple will be the color and the second will be the integer value of the provided number. If the second value of the provided tuple is a single value, then the first value is used to get the index of the RGB color from RGB_PARSER, which is returned as the color name, and the integer value of the provided number is used for the second value. If the value cannot be associated with a color, then the result will be an empty tuple. If the value can be associated with a color, but the number cannot be processed, then the value for that color will be None. Since the RGB_PARSER value is used, additional values may be supported later on. These examples may help: RGB_PARSER = ['r', 'g', 'b'] (0, ('red', 128)) => ('r', 128) # 'red' starts with 'r' (0, 'red', 128) => ('r', 128) # 'red' starts with 'r' (0, ('Gr', 128)) => ('g', 128) (0, ('BLUE', 128)) => ('b', 128) (0, ('ZULU', 128)) => (None, None) # There is no color that starts with z (0, (128,)) => ('r', 128) # Index 0 is 'r' in RGB_PARSER (0, 128) => ('r', 128) # Index 0 is 'r' in RGB_PARSER (1, 128) => ('g', 128) (2, 128) => ('b', 128) (2, 455) => ('b', None) # 455 is not a valid int value (2, 'FF') => ('b', 255) # 'FF' converted to int value (2, 455) => ('b', None) # 455 is not a valid int value (3, 128) => (None, None) # There is no index 3 in RGB_PARSER """ colorName = None if __isTupleType__(tupleValue): parsedValue = __getValues__(tupleValue) if len(parsedValue) == 2: colorName = __getElement__(RGB_PARSER, __toInt__(parsedValue[0])) colorValue = __getColorInt__(parsedValue[1]) elif len(parsedValue) == 3: colorIndex = __getElement__([rgbIndex for rgbIndex in range(len(RGB_PARSER)) if str(parsedValue[1]).strip().lower().startswith(RGB_PARSER[rgbIndex].strip().lower())]) return __getColorTupleFromElement__(tuple([colorIndex, parsedValue[2]])) if colorName is None: return tuple([None, None]) else: return tuple([colorName, colorValue]) def __parseIterableValue__(iterableValue): """ Tries to extract a hex value from the provided iterable. Returns None if unsuccessful. """ # Copy the parser. We'll return this structure, regardless of the outcome rgb = RGB_PARSER[:] if __isRGB__(iterableValue): return __rgbToHex__(iterableValue) elif __isNonStringIterableType__(iterableValue): # Handle a dictionary with rgb key/value pairs OR a list of values, in RGB order. parseValues = dict((colorTuple[0], colorTuple[1]) for colorTuple in (__getColorTupleFromElement__(item) for item in enumerate(iterableValue)) if colorTuple[0] is not None) # Update the appropriate color values rgb = [parseValues.get(rgb[rgbIndex], None) for rgbIndex in range(len(RGB_PARSER))] return tuple(rgb) else: return tuple([None for i in rgb]) def __parseStringValue__(stringValue): """ Tries to extract a hex value from the provided string. Returns None if unsuccessful. """ if __isHexString__(stringValue): return __getHexString__(stringValue) elif __isStringType__(stringValue): stringValue = stringValue.lower().strip() if stringValue in COLORS: return COLORS[stringValue] else: return __hexFromValue__(__splitString__(stringValue)) else: return None def __hexStringToRGB__(hexString): """ Returns a tuple of RGB values from the provided hexString. """ rgb = [DEFAULT_INT_VALUE for item in RGB_PARSER] if __isHexString__(hexString): providedString = __getHexString__(hexString) for colorIndex in range(0, len(providedString), 2): rgb[colorIndex / 2] = __hexToInt__(providedString[colorIndex: colorIndex + 2]) return tuple(rgb) def __hexFromValue__(*inputValue): """ Returns a hex value from the provided value, with invalid values replaced with default values. """ return __rgbToHex__(__rgbFromValue__(inputValue)) def __rgbFromValue__(*inputValue): """ The main parsing function. Attempts to return an RGB tuple from the provided values. """ parseValue = __getValues__(inputValue) if __isRGB__(parseValue): return parseValue # Parse as a hex string, or as the red color of an RGB pair elif len(parseValue) == 1: parseValue = parseValue[0] returnValue = __parseStringValue__(parseValue) if returnValue is not None: return __hexStringToRGB__(returnValue) else: # If it's a number, we'll assume it's the red color of an RGB set return __rgbFromValue__(__getColorInt__(parseValue), None, None) elif len(parseValue) > 1: return __parseIterableValue__(parseValue) else: return tuple([None, None, None]) class __const__(object): """ A subclass of object that does not allow existing properties to be updated. New values can be added. Properties can be referenced like normal object properties, or like a dictionary. New values can only be valid colors, and will be converted to hex strings. """ __slots__ = ['__colorValues__', '__colorNames__'] def __init__(self): __colorValues__ = dict(__definedColors__) __colorNames__ = dict((__cleanString__(key), key) for key in __colorValues__.keys()) pass def __contains__(self, lookupKey): """ Returns true if lookupKey is in this object. Case does not matter. """ return self.has_key(lookupKey) def __get__(self, lookupKey, defaultValue = None): """ Returns the value of a property. If it does not exist, the default value is returned. """ try: return self.__getitem__(lookupKey) except AttributeError as err: return defaultValue def __getattr__(self, lookupKey, defaultValue = None): """ Returns the value of a property. If it does not exist, the default value is returned. """ try: return self.__getitem__(lookupKey) except AttributeError as err: return defaultValue def __getitem__(self, lookupKey): """ Returns the value corresponding to the lookupKey. """ lookupKey = self.get_key(lookupKey) if lookupKey is not None: return self.__colorValues__[lookupKey] else: raise AttributeError("No such property: %s" % lookupKey) def __set__(self, lookupKey, *newValue): """ Adds a property with a value, but will not update an existing value. """ self.__setitem__(lookupKey, newValue) def __setattr__(self, lookupKey, *newValue): """ Adds a property with a value, but will not update an existing value. """ self.__setitem__(lookupKey, newValue) def __setitem__(self, lookupKey, *newValue): """ Adds a property with a value, but will not update an existing value. """ if __isStringType__(lookupKey): if lookupKey not in self.__colorNames__: cleanKey = __cleanString__(lookupKey) self.__colorValues__[lookupKey] = __hexFromValue__(newValue) self.__colorNames__[cleanKey] = lookupKey.strip() else: raise KeyError('Cannot overwrite an existing key value!') else: raise TypeError('The property key must be a string!') def __dir__(self): """Returns the list of properties for the object""" return dir(self.__class__) + [str(k) for k in self.__colorValues__.keys()] def has_key(self, lookupKey): """ Returns true if lookupKey is in this object. Case does not matter. """ return self.get_key(lookupKey) is not None def get_key(self, lookupKey): """ Performs a caseless search on the object's keys to find lookupKey. If it exists, the first matched key (with original casing) is returned. """ lookupValue = __cleanString__(lookupKey) if lookupValue in self.__colorNames__: return self.__colorNames__[lookupValue] else: return None COLORS = __const__() ```
{ "source": "JoBrad/pyUtils", "score": 2 }
#### File: JoBrad/pyUtils/rename_files_using_date.py ```python from functools import partial import re from pathlib import Path, PurePosixPath, PureWindowsPath import stat from typing import (Dict, Set, List, Tuple, Sequence, Union, Pattern, Match, overload, Iterator) from datetime import datetime as dt from utils import futils # from utils import dtutils # MONTHS = dtutils.MONTHS """ Really raw WIP - this is a side thing that I've been doing on-demand, so it has a lot of unused code, and basically is a mess. Renames files in the provided directory using a date value in the file name, or based on the attributes of the file. Has only been tested in Windows, but the ultimate goal is for it to work across OS types. """ PATH_TYPE = Union[PurePosixPath, PureWindowsPath] PATH_SEQ_TYPE = Sequence[PATH_TYPE] PATTERN_TYPE = Pattern MATCH_SEQ_TYPE = Sequence[Match] STR_BOOL_TUPLE = Tuple[str, bool] MATCH_STRING_TUPLE = Tuple[Match, str] RE_IM = re.IGNORECASE + re.MULTILINE INPUT_PATHS = [ Path('INPUT PATH') ] EXCLUDE_LIST = ['~', '.cache', '.git', '.idea', '.project', '.iml', '.vscode', 'desktop.ini'] # type: List[str] DELETE_LIST = ['.DS_Store', 'Thumbs.db'] # type: List[str] # TODO: Combine all of these data templates and patterns into another module YEAR_TEMPLATE = '(?:20|19)[0-9][0-9]' # type: str SHORT_YEAR_TEMPLATE = '[0-9][0-9]' # type: str LONG_OR_SHORT_YEAR_TEMPLATE = '{year_pattern}|{short_year_pattern}'.format( year_pattern = YEAR_TEMPLATE, short_year_pattern = SHORT_YEAR_TEMPLATE ) # type: str MONTH_TEMPLATE = '[1-9]|0[0-9]|1[0-2]' # type: str DAY_TEMPLATE = '0[0-9]|[1-2][0-9]|3[0-1]|[1-9]' # type: str DAY_YEAR_MONTH_TEMPLATE = '\\b(?P<day>{day_pattern}) ?(?P<year>{year_pattern}) ?(?P<month>{month_pattern})'.format( year_pattern = YEAR_TEMPLATE, month_pattern = MONTH_TEMPLATE, day_pattern = DAY_TEMPLATE ) # type: str MONTH_AND_YEAR_TEMPLATE = '((?P<year1>{year_pattern})\\b\\s*(?P<month1>{month_pattern})|(?P<month2>{month_pattern})\\b\\s*(?P<year2>{year_pattern}))'.format( year_pattern = LONG_OR_SHORT_YEAR_TEMPLATE, month_pattern = MONTH_TEMPLATE ) # type: str # Match month names to month numbers MONTH_REPLACEMENT_TEMPLATES = { '(?:january|jan|01)': '01', '(?:february|feb|02)': '02', '(?:march|mar|03)': '03', '(?:april|apr|04)': '04', '(?:may|05)': '05', '(?:june|jun|06)': '06', '(?:july|jul|07)': '07', '(?:august|aug|08)': '08', '(?:september|sept|sep|09)': '09', '(?:october|oct|10)': '10', '(?:november|nov|11)': '11', '(?:december|dec|12)': '12' } # type: Dict[str, str] # August 2016 / Aug 2016 / 08 2016 M_YEAR_TEMPLATE = '\\b(?P<month>{month_pattern})\'(?P<year>{year_template})\\b' # type: str # 2016 08 02 ISO_DATE_TEMPLATE = '\\b(?P<year>{year_pattern}) ?(?P<month>{month_pattern}) ?(?P<day>{day_pattern})\\b'.format( year_pattern = LONG_OR_SHORT_YEAR_TEMPLATE, month_pattern = MONTH_TEMPLATE, day_pattern = DAY_TEMPLATE ) # type: str # 08 02 2016 US_DATE_TEMPLATE = '\\b(?P<month>{month_pattern}) ?(?P<day>{day_pattern}) ?(?P<year>{year_pattern})\\b'.format( month_pattern = MONTH_TEMPLATE, day_pattern = DAY_TEMPLATE, year_pattern = LONG_OR_SHORT_YEAR_TEMPLATE ) # type: str # Patterns = compiled RegEx templates MONTH_REPLACEMENT_PATTERNS = { re.compile(pattern='\\b({month_pattern})\\b'.format(month_pattern=k), flags=RE_IM): v for k, v in MONTH_REPLACEMENT_TEMPLATES.items() } # type: Dict[PATTERN_TYPE, str] # Apr'16 M_YEAR_PATTERNS = { re.compile( pattern=M_YEAR_TEMPLATE.format( month_pattern=k, year_template=LONG_OR_SHORT_YEAR_TEMPLATE ), flags=RE_IM ): v for k, v in MONTH_REPLACEMENT_TEMPLATES.items() } # type: Dict[PATTERN_TYPE, str] # MM dd yyyy US_DATE_PATTERN = re.compile( pattern=US_DATE_TEMPLATE, flags=RE_IM ) # type: Pattern # dd yyyy dd DAY_YEAR_MONTH_PATTERN = re.compile( pattern=DAY_YEAR_MONTH_TEMPLATE, flags=RE_IM ) # type: Pattern # yyyy MM dd LONG_DATE_PATTERN = re.compile( pattern=ISO_DATE_TEMPLATE, flags=RE_IM ) # type: Pattern # yyyy MM or MM yyyy MONTH_YEAR_PATTERN = re.compile( pattern=MONTH_AND_YEAR_TEMPLATE, flags=RE_IM ) # type: Pattern YEAR_PATTERN = re.compile( pattern='(?:\'?\\b(?P<year>{year_pattern}))\\b'.format( year_pattern = LONG_OR_SHORT_YEAR_TEMPLATE ), flags=RE_IM ) # type:PATTERN_TYPE MONTH_PATTERN = re.compile( pattern='\\b(?P<month>{month_pattern})\\b'.format( month_pattern = MONTH_TEMPLATE ), flags=RE_IM ) # type: Pattern WHITESPACE_PATTERN = re.compile('\s', RE_IM) # type: PATTERN_TYPE SEPARATOR_PATTERN = re.compile(pattern='([ \\.\\,\\_\\-\\+])') # type: PATTERN_TYPE BRACKET_PATTERN = re.compile(pattern='([\\(\\)\\[\\]\\{\\}])') # type: PATTERN_TYPE format_year_string = lambda year_string: year_string if len(year_string.strip()) == 4 else '20{0}'.format(year_string.strip()) format_day_or_month_string = lambda day_or_month_string: day_or_month_string.strip().zfill(2) def get_matches(input_string:str, search_pattern:Pattern) -> Iterator[Match]: """ Moves from left to right, in input_string, yielding each match from search_pattern until there are no more matches, when None is returned """ start_pos = 0 # type: int search_result = search_pattern.search(input_string, start_pos) # type: Match while search_result is not None: yield search_result # type: Match start_pos = search_result.span()[1] search_result = search_pattern.search(input_string, start_pos) def match_patterns(input_string:str, search_patterns:Union[Dict[Pattern, str], List[Pattern]]) -> List[Pattern]: """ Returns a List of all patterns in search_patterns that matched input_string. If none of the patterns matched, or if there was an error, an empty List is returned. """ return {pattern: None if isinstance(search_patterns, List) else search_patterns[pattern] for pattern in search_patterns if pattern.search(str(input_string)) is not None} # type: Dict[Pattern, Union[str, None]] @partial def execute_on_matches(func:callable, input_string:str, search_patterns:Union[Dict[Pattern, str], List[Pattern]]) -> Tuple[str, bool]: """ For each matching pattern in search_patterns, passes input_string and the result to func Returns Tuple[return_string, made_a_match] where return_string will be the result of func and True, or input_string with no changes, and False, if no matches were found in search_patterns """ return_string = str(input_string) # type:str made_a_match = False # type: bool matching_patterns = match_patterns(input_string, search_patterns) # type: List[Pattern] if len(matching_patterns) > 0: for matching_pattern in matching_patterns: # type; Pattern made_a_match = True if isinstance(search_patterns, Dict): str_value = search_patterns[matching_pattern] # type: Union[None, str] else: str_value = None for match in get_matches(return_string, matching_pattern): return_string = func(return_string, (matching_pattern, str_value)) return (return_string, made_a_match) @partial def execute_on_file_stem(func:callable, full_file_path:Union[str, Path], **kwargs) -> Tuple[Path, bool]: """ Calls func(provided_file_stem, **kwargs), which should return Tuple[str, made_a_change], where str is the provided string, with any changes, and made_a_change is a boolean indicating whether changes were made. The returned string is returned as the stem of the provided full_file_path, as a Path object """ try: file_obj, file_parent, filename, file_suffix = get_file_parts(full_file_path) except AttributeError: raise return_string, made_a_change = func(filename, **kwargs) # type: str, bool new_filename = '{0}{1}'.format(return_string, file_suffix) # type: str return (Path.joinpath(file_parent, new_filename), made_a_change) def format_m_year_execute(input_string:str, match_pattern:Tuple[Pattern, str]) -> str: """ Core of loop for format_m_year_strings """ return_string = str(input_string) # type:str search_pattern, month_number = match_pattern # type: Pattern, str search_result = search_pattern.search(return_string) # type: Match string_to_replace, year = search_result.group(0), format_year_string(search_result.group('year')) # type: str, str return_string = replace_and_prepend(return_string, string_to_replace, '{0} {1} '.format(year, month_number)) return return_string def format_m_year_strings(input_string: str) -> Tuple[str, bool]: """ Looks for a m'year value in the string. If it finds one, then it moves it to the front of the string Returns a tuple (return_string:str, made_a_match:bool) """ return execute_on_matches(format_m_year_execute, input_string, M_YEAR_PATTERNS) def format_month_string_execute(input_string:str, match_pattern:Tuple[Pattern, str]) -> str: """ Core of loop for format_month_strings_with_numbers function """ return_string = str(input_string) # type:str search_pattern, month_number = match_pattern # type: Match, str return search_pattern.sub(month_number, return_string) def format_month_strings_with_numbers(input_string:str) -> Tuple[str, bool]: """ Replaces month names with their padded numeric equivalent """ return execute_on_matches(format_month_string_execute, input_string, MONTH_REPLACEMENT_PATTERNS) def format_day_year_month_execute(input_string:str, match_pattern:Tuple[Pattern, None]) -> str: """ Core of loop for format_day_year_month_date_string """ return_string = str(input_string) # type:str search_result = match_pattern[0].search(return_string) # type: Match replacement_string = '{0} {1} {2}'.format(search_result.group('year'), search_result.group('month'), search_result.group('day')) # type: str return input_string.replace(search_result.group(0), replacement_string) def format_day_year_month_date_string(input_string:str) -> Tuple[str, bool]: """ Replaces dates with the format dd yyyy MM with yyyy MM dd format """ return execute_on_matches(format_day_year_month_execute, input_string, [DAY_YEAR_MONTH_PATTERN]) def format_us_date_strings_execute(input_string:str, match_pattern:Tuple[Pattern, None]) -> str: """ Core of loop for format_us_date_strings """ return_string = str(input_string) # type:str search_result = match_pattern[0].search(return_string) # type: Match replacement_string = '{0} {1} {2}'.format( format_year_string(search_result.group('year')), format_day_or_month_string(search_result.group('month')), format_day_or_month_string(search_result.group('day')) ) # type: str return return_string.replace(search_result.group(0), replacement_string) def format_us_date_strings(input_string:str) -> Tuple[str, bool]: """ Re-arranges US-style date formats (MM-dd-yyyy) to yyyy-MM-dd style Un-padded month and day values are also matched. Years without a century value will be assumed to be after 2000. """ return execute_on_matches(format_us_date_strings_execute, input_string, [US_DATE_PATTERN]) def format_year_month_execute(input_string:str, match_pattern:Tuple[Pattern, None]) -> str: """ Core of loop for format_year_month_strings """ return_string = str(input_string) # type:str search_result = match_pattern[0].search(return_string) # type: Match replacement_string = '{0} {1}'.format( format_year_string(search_result.group('year1') or search_result.group('year2')), format_day_or_month_string(search_result.group('month1') or search_result.group('month2')) ) # type: str return return_string.replace(search_result.group(0), replacement_string) def format_year_month_strings(input_string:str) -> Tuple[str, bool]: """ Formats MM yyyy date strings as yyyy MM """ return execute_on_matches(format_year_month_execute, input_string, [MONTH_YEAR_PATTERN]) def remove_double_spaces(input_string:str) -> str: """ Replaces double spaces with single spaces, in the provided string """ return ' '.join(WHITESPACE_PATTERN.sub(' ', input_string).split()) def clean_up_name(input_string:str) -> Tuple[str, bool]: """ Replaces .,_-+%20 with spaces Replaces unicode spaces with standard spaces Replaces double spaces with single spaces Removes trailing and leading spaces Removes ([{}]) """ filename = str(input_string).strip() # Replace separators with spaces new_filename = re.sub(SEPARATOR_PATTERN, ' ', filename) # Replace %20 with space new_filename = new_filename.replace('%20', ' ') # Replaces double spaces new_filename = remove_double_spaces(new_filename) # Remove brackets new_filename = re.sub(BRACKET_PATTERN, '', new_filename).strip() return (new_filename, new_filename.endswith(filename)) def fix_date_strings(input_string:str) -> Tuple[str, bool]: """ Looks for several date formats in the provided string, and replaces them with a date with the most complete format that can be found, from the list below: yyyy MM dd yyyy MM yyyy Operational order * Replace mmm'yy or mmm'yyyy with yyyy MM * Replace dd yyyy MM with yyyy MM dd * Replace MM dd yyyy with yyyy MM dd Returns Tuple[return_string, made_a_match] If no changes were made, the provided string is returned, without any changes. """ return_string = str(input_string).strip() # type:str made_a_match = False # type: bool date_funcs = ( format_m_year_strings, format_month_strings_with_numbers, format_day_year_month_date_string, format_us_date_strings ) # Only try these if we weren't able to find matches from date_funcs additional_date_patterns = [ YEAR_PATTERN, MONTH_PATTERN ] for date_func in date_funcs: return_string, matched = date_func(return_string) # type: str, bool made_a_match = max(made_a_match, matched) if made_a_match is True: return (return_string, made_a_match) else: matching_patterns = match_patterns(return_string, additional_date_patterns) for matching_pattern in matching_patterns: if matching_pattern == YEAR_PATTERN: format_func = format_year_string group_name = 'year' else: format_func = format_day_or_month_string group_name = 0 made_a_match = True for date_match in get_matches(return_string, matching_pattern): # type: Match return_string = return_string.replace(date_match.group(0), format_func(date_match.group(group_name))) break if made_a_match is False: return (input_string, made_a_match) else: return (return_string, made_a_match) def replace_and_prepend(input_string:str, search_string: str, replacement_string:str=None, prepend_string:str=None) -> str: """ If search_string is in input_string, it is replaced with replacement_string, the string is then trimmed, prepended with prepend_string, and returned. If search_string is not in input_string, the original string is returned. """ return_string = input_string if prepend_string is None: prepend_string = '' if search_string in input_string: return remove_double_spaces('{0}{1}'.format(prepend_string, re.sub(search_string, replacement_string, return_string).strip())) else: return input_string def get_best_date_string(input_string:str, start_pos:int=0) -> Match: """ Returns the most complete date string found in input_string, starting at start_pos. If no match is found, then None is returned. """ provided_string = str(input_string) # type: str date_patterns = [ LONG_DATE_PATTERN, MONTH_YEAR_PATTERN, YEAR_PATTERN ] for date_pattern in match_patterns(provided_string, date_patterns): for search_result in get_matches(provided_string, date_pattern): yield search_result break def add_file_date(file_name:str, full_file_path:Union[Path, str]) -> str: """ Looks for the first, most complete date string in the stem of the provided file. If that date is missing a year and/or month value, then those values will be retrieved from either the parent folder name, or the file's modified timestamp. A day value will not be used unless it is already in the filename. Any date string retrieved from the filename will be moved to the begining of the string, in the format yyyy MM dd or yyyy MM. """ file_path_obj = Path(full_file_path) if file_path_obj.is_file() is False: raise AttributeError('You must provide the file path to this function!') input_string = str(file_name) date_parts = ('year', 'month', 'day') file_name_date = {k: None for k in date_parts} string_to_replace = '' # type:str if YEAR_PATTERN.search(str(file_path_obj.parent)) is not None: file_name_date['year'] = YEAR_PATTERN.search(str(source_file.parent)).group('year') else: file_name_date['year'] = str(dt.fromtimestamp(source_file.stat().st_mtime).year) if MONTH_PATTERN.search(str(file_path_obj.parent)) is not None: file_name_date['month'] = MONTH_PATTERN.search(str(file_path_obj.parent)).group('month') else: file_name_date['month'] = str(dt.fromtimestamp(source_file.stat().st_mtime).month) # Get the best date we have for date_match in get_date_strings(input_string): string_to_replace = date_match.group(0) found_date_parts = [k.strip().lower() for k in date_match.groupdict().keys() if k.strip().lower() in date_parts] for date_part in found_date_parts: file_name_date[date_part] = date_match.groups(date_part) break best_date_string = '{0} {1} '.format(format_year_string(file_name_date['year']), format_day_or_month_string(file_name_date['month'])) if file_name_date['day'] is not None: best_date_string = '{0}{1} '.format(best_date_string, format_day_or_month_string(file_name_date['day'])) return_string = replace_and_prepend(input_string=input_string, search_string=string_to_replace, prepend_string=best_date_string) def move_date_to_start_of_string(input_string:str) -> str: """ Finds the best date string, and moves it to the begining of the string """ try: best_date_strings = [date_string_match for date_string in get_best_date_string(input_string)] date_start_pos = best_date_strings[0].span()[0] date_end_pos = best_date_strings[len(best_date_strings) - 1].span()[1] date_string = input_string[date_start_pos:date_end_pos] except Exception as err: a = 1 return input_string return replace_and_prepend(input_string=input_string, search_string=date_string, prepend_string=date_string) def get_file_parts(file_obj:Union[str, Path]) -> Tuple[Path, Path, str, str]: """ Returns Tuple[file_path_obj, file_parent_obj, file_stem, file_suffix] """ source_file = futils.get_clean_path(file_obj) if source_file.parent == '.' or source_file.is_file() is False: raise AttributeError('You must provide a complete file path to this function!') return (source_file, source_file.parent, source_file.stem, source_file.suffix) def apply_renaming_rules(filename:Union[PATH_TYPE, str], **kwargs:Dict[str, bool]) -> PATH_TYPE: """ Applies some basic renaming rules to the file, and renames it, if neccesary Available options: * clean_names: Removes junk from the file name * fix_dates: Re-formats dates in the file name to yyyy MM dd format * add_file_date Adds the year and/or month to the file date, if it is not present This is done by using dates from the parent folder name or the file's modified_timestamp * move_date: Moves dates to the begining of the filename. TODO: Properly handle date ranges, for move_date TODO: Properly handle all calls to execute_on_file_stem """ try: source_file, source_file_parent, source_file_stem, source_file_suffix = get_file_parts(filename) except AttributeError: raise if len(kwargs) == 0: return source_file func_list = [] options = [o.strip().lower() for o in kwargs.keys()] # We need to apply these in this order if 'clean_names' in options: func_list.append(clean_up_name) if 'fix_dates' in options: func_list.append(fix_date_strings) if 'add_file_date' in options: func_list.append(add_file_date) if 'move_date' in options: func_list.append(move_date_to_start_of_string) for func in func_list: execute_on_file_stem(func, source_file_stem) # Logic: # * Clean up filename # * Fix dates in the filename # * Try renaming: # * If the filename contains a date range, then move it to the begining of the file, and stop # * If the filename contains a full date, then move it to the begining of the file, and stop # * If the filename contains year month only, then move it to the begining of the file, and stop # * If the filename only contains a month, then # * Get the year from the parent folder name, or from the file's created timestamp # * Prepend the year, and move the month just after it, and stop # * If the filename only contains a year, then move it to the begining of the file, and stop new_file_stem = clean_up_name(source_file_stem) # Try to fix dates new_file_stem, found_match = fix_date_strings(new_file_stem) date_parts = ('year', 'month', 'day') file_name_date = {} # Get the best date we have for date_match in get_date_strings(new_file_stem): for date_part in date_parts: if date_part in date_match.groupdict(): file_name_date[date_part] = date_match.groups(date_part) if 'year' not in file_name_date: file_name_date['year'] = backup_file_year break # We should have a good date now file_prefix = ' '.join(file_name_date[d] for d in date_parts) new_file_stem, found_match = move_year_month_to_string_start(new_file_stem) # In this case, we should use some other value for the year if found_match is False: new_file_stem, found_match = replace_month(new_file_stem) if found_match: if YEAR_PATTERN.search(str(filename.parent)) is not None: file_year = YEAR_PATTERN.search(str(filename.parent)).group(0) else: file_year = dt.fromtimestamp(filename.stat().st_mtime).year new_file_stem = '{0} {1}'.format(file_year, new_file_stem) if found_match is True and new_file_stem != source_file_stem: destination_file = futils.get_unique_filename(source_file.with_name('{0}{1}'.format(new_file_stem, file_suffix))) destination_file = futils.safe_move(source_file, destination_file.name) else: destination_file = source_file return destination_file def get_files(directory:Union[PurePosixPath, PureWindowsPath]) -> Sequence[str]: """ Returns a list of the full path for each file in the given directory """ # return_file_list = [Path(f) for f in directory.glob('**/*') if f.is_file() and not bool(f.stat().st_file_attributes & stat.FILE_ATTRIBUTE_HIDDEN) and len(f.suffix) > 0] return_file_list = [Path(f) for f in directory.glob('**/*') if f.is_file()] for exclude_pattern in EXCLUDE_LIST: return_file_list = [f for f in return_file_list if exclude_pattern not in str(f)] return return_file_list def process_files(input_directory:PATH_TYPE) -> PATH_SEQ_TYPE: """ Processes files in the provided directory """ processed_files = [] for this_file in get_files(input_directory): if this_file.name in DELETE_LIST: this_file.unlink() processed_files.append((this_file, 'Deleted')) else: processed_files.append((this_file, apply_renaming_rules(this_file))) return processed_files # for input_directory in INPUT_PATHS: # processed_files = process_files(input_directory) # for original_file, new_file in processed_files: # if str(original_file) != str(new_file): # print('Renamed {0}\nto\t{1}\n'.format(str(original_file), str(new_file))) test_strings = [ 'CLIENT Weekly Performance Report 6 9 14 to 6 15 14', '2014 03 27 CLIENT Monthly Reporting Sample', 'Rev Share \'14' ] for test_string in test_strings: a, matched = fix_date_strings(test_string) for date_match in get_date_strings(a): c = 1 ``` #### File: pyUtils/utils/fix_registry_paths.py ```python import const import futils as fu import io from pathlib import Path import sys from typing import (List, Union) """ Fixes corrupted Registry Paths, related to a bug in Windows Insider editions which replaces the drive in non-system Drive Program Files/Program Files (x86) paths to the system drive. This script will look for these paths, and update them. NOTE: This hasn't really been tested, except on one laptop. """ INPUT_FILE = Path('~/Desktop/hkcr.reg').expanduser() OUTPUT_FILE = INPUT_FILE.with_name('{0}_replaced{1}'.format(INPUT_FILE.stem, INPUT_FILE.suffix)) d_program_file_paths = ['{0}\\\\'.format(str(p).replace('\\', '\\\\')) for p in fu.get_unique_paths('D:/Program Files', 'C:/Program Files')] + [str(p).replace('\\', '\\\\') for p in fu.get_unique_paths('D:/Program Files (x86)', 'C:/Program Files (x86)')] incorrect_program_paths = ['C{0}'.format(p[1:]) for p in d_program_file_paths] path_replacements = [p for p in zip(incorrect_program_paths, d_program_file_paths)] # get_path_part_count = lambda p: len(fu.get_path_parts(p)) made_changes = False class RegFile_Section(): __header_string__ = 'Windows Registry Editor' def __init__(self, section_text:List[str]): """ Returns a RegFile_Section object for the section_text """ self.name = None # type: str self.type = None # type: str self.content = [] # type: List[str] self.text = [] # type: List[str] content = [str(t) for t in section_text] if content[0].startswith(self.__header_string__): self.type = 'HEADER' self.content = content else: self.type = 'SECTION' self.name = content[0].strip().lstrip('[').rstrip(']') self.content = content[1:] self.text = ''.join(content) def __repr__(self): """ Returns the raw text of the object """ return self.text def __contains__(self, text): """ Returns true if this object contains text """ return text in repr(self) class RegFile(): def __init__(self, filename): """ Returns an iterator for the filename """ self.header = None self.filename = str(Path(filename)) def __repr__(self): """ Returns a description of the object """ return 'RegFile <{0}>'.format(self.filename) def __get_next_section__(self, file_obj): """ Returns the next file section, as a RegFile_Section object, or None, if at the end of the file. """ return_strings = [] # type: List[str] found_header_or_eof = False # type: bool while found_header_or_eof is False: current_position = file_obj.tell() this_line = file_obj.readline() # type:Union[str, None] if len(this_line) == 0: found_header_or_eof = True elif this_line.startswith('[') and this_line.strip().endswith(']') and len(return_strings) > 0: file_obj.seek(current_position, io.SEEK_SET) found_header_or_eof = True else: return_strings.append(this_line) if len(return_strings) > 0: return RegFile_Section(return_strings) else: return None def __iter__(self): yield from self.sections() def sections(self): """ Returns an iterator of the file's sections """ with open(self.filename, 'rt', encoding='utf-16') as in_file: try: while True: yield self.__get_next_section__(in_file) except EOFError: pass in_file = RegFile(INPUT_FILE) def parse_sections(input_file, output_filename): made_changes = False with open(output_filename, 'wt', encoding='utf-16', newline='\n') as out_file: for section in input_file.sections(): if section is not None: file_record = section.text if 'C:\\\\Program Files' in section: found_record = [i for i, p in enumerate(incorrect_program_paths) if p in section] if len(found_record) > 0: made_changes = True for replacement_index in found_record: incorrect_path, replacement_path = path_replacements[replacement_index] file_record = file_record.replace(incorrect_path, replacement_path) print('Changed {0} to {1}'.format(incorrect_path, replacement_path)) out_file.write(file_record) elif section.type == 'HEADER': out_file.write(file_record) else: break return made_changes made_changes = parse_sections(in_file, OUTPUT_FILE) if made_changes is False: Path(OUTPUT_FILE).unlink() print('No changes made.') print('All done!') ```
{ "source": "jobrajac/ca-es", "score": 2 }
#### File: ca-es/src/ca_es.py ```python import copy import logging import math import matplotlib.pyplot as plt import multiprocessing as mp import numpy as np import random import time import torch import torch.multiprocessing as tmp import torch.nn.functional as F import torch.tensor as tt from torchvision.utils import save_image from dist import Master, Worker from net import CAModel from pool import CustomPool from utils import load_emoji, to_rgb, visualize_batch, append_file, write_file, export_model, dmg from weight_updates import hebbian_update HIDDEN_SIZE = None class EvolutionStrategy: """Master class for performing an evolution. Keeps track of hyperparameters, weights/coeffs. Contains methods for running the environment, evaluate performances and update parameters. """ def __init__(self, args): self.iterations = args.iter self.learning_rate = args.lr self.sigma = args.sigma self.pop_size = args.pop_size self.fire_rate = args.fire_rate self.target_size = args.size self.target_padding = args.pad self.new_size = self.target_size + 2 * self.target_padding self.channel_n = args.channels self.hidden_size = args.hidden_size HIDDEN_SIZE = self.hidden_size self.target_img = load_emoji(args.emoji, self.target_size) self.use_hebb = args.hebb self.use_pool = args.pool self.damage = args.damage self.damageChannels = args.damageChannels self.use_mp = args.use_mp self.decay_state = 0 self.log_main_every = 10 self.hit_goal = False self.cross_machine = args.cross_machine self.is_master = args.master self.nodes = args.nodes if self.damage > 0: if not self.use_pool and not self.damage <=3: raise ValueError("use_pool needs to be true and damage_bottom_n < 4.") if self.cross_machine: if self.is_master: self.master = Master(nodes=args.nodes) else: self.worker = Worker(run_id=0) p = self.target_padding self.pad_target = F.pad(tt(self.target_img), (0, 0, p, p, p, p)) h, w = self.pad_target.shape[:2] self.seed = np.zeros([h, w, self.channel_n], np.float64) self.seed[h // 2, w // 2, 3:] = 1.0 if self.use_pool: self.pool_size = 1024 self.batch_size = 4 self.pool = CustomPool(self.seed, self.pool_size) else: self.batch_size = 1 if self.use_hebb: self.coefficients_per_synapse = 5 plastic_weights = 3 * self.channel_n * self.hidden_size + self.hidden_size * self.channel_n self.coeffs_start_interval = 0.001 self.coeffs = np.random.uniform(-self.coeffs_start_interval, self.coeffs_start_interval, (plastic_weights, self.coefficients_per_synapse)) self.net = CAModel(channel_n=self.channel_n, fire_rate=self.fire_rate, new_size_pad=self.new_size, disable_grad=True, hidden_size=self.hidden_size, batch_size=self.batch_size, use_hebb=True) else: self.net = CAModel(channel_n=self.channel_n, fire_rate=self.fire_rate, new_size_pad=self.new_size, disable_grad=True, hidden_size=self.hidden_size, batch_size=self.batch_size) self.parameters_shape = [tuple(w.shape) for w in self.net.parameters()] self.log_folder = args.log_folder logging.basicConfig(filename=self.log_folder + "/logging.txt", format='%(message)s', filemode="w", level=logging.INFO) if args.pre_trained != "": if self.use_hebb: self.coeffs = np.load(args.pre_trained) else: self.load_model(args.pre_trained) logging.info("lr/(pop*sigma) at start: " + str(self.learning_rate / (self.pop_size * self.sigma))) # For logging self.x_range = [] self.y_lin = [] self.avg = [] self.avg_iter = [] self.losses_main = [] self.iter_main = [] t_rgb = to_rgb(self.pad_target).permute(2, 0, 1) save_image(t_rgb, self.log_folder + "/target_image.png") def load_model(self, path): """Load a PyTorch model from path.""" self.net.load_state_dict(torch.load(path)) self.net.double() def fitness_shaping(self, x): """Sort x and and map x to linear values between -0.5 and 0.5 Return standard score of x """ shaped = np.zeros(len(x)) shaped[x.argsort()] = np.arange(len(x), dtype=np.float64) shaped /= (len(x) - 1) shaped -= 0.5 shaped = (shaped - shaped.mean()) / shaped.std() return shaped def update_coeffs(self, fitnesses, epsilons): """Update parent Hebbian coefficients using evaluated mutants and fitness.""" fitnesses = self.fitness_shaping(fitnesses) for index, c in enumerate(self.coeffs): layer_population = np.array([p[index] for p in epsilons]) update_factor = self.learning_rate / (self.pop_size * self.sigma) self.coeffs[index] = c + update_factor * np.dot(layer_population.T, fitnesses).T def update_parameters(self, fitnesses, epsilons): """Update parent network weights using evaluated mutants and fitness.""" fitnesses = self.fitness_shaping(fitnesses) for i, e in enumerate(epsilons): for j, w in enumerate(self.net.parameters()): w.data += self.learning_rate * 1 / (self.pop_size * self.sigma) * fitnesses[i] * e[j] def get_population(self, use_seed=None): """Return an array with values sampled from N(0, sigma). The shape of the array is (pop_size, (layer1_size, layer2_size)) using ES and (pop_size, plastic_weights, 5) """ if use_seed is not None: np.random.seed(use_seed) temp_pop = self.pop_size if self.is_master: temp_pop /= self.nodes eps = [] if self.use_hebb: layers = self.coeffs for i in range(int(temp_pop / 2)): e = [] e2 = [] for w in layers: j = np.random.randn(*w.shape) * self.sigma e.append(j) e2.append(-j) eps.append(e) eps.append(e2) else: layers = self.parameters_shape for i in range(int(temp_pop / 2)): e = [] e2 = [] for w in layers: j = np.random.randn(*w) * self.sigma e.append(j) e2.append(-j) eps.append(e) eps.append(e2) return np.array(eps, dtype=np.object) def train_step_hebb(self, model_try, coeffs_try, x): """Perform a generation of CA. Initialize a random net and update weights in every update step using trained coeffs. Return output x and loss """ torch.seed() losses = torch.zeros(x.shape[0]) for j, x0 in enumerate(x): # Iterate over batch model_try.apply(weights_init) model_try.fc1.weight.zero_() x0 = x0[None, ...] weights1_2, weights2_3 = list(model_try.parameters()) weights1_2 = weights1_2.detach().numpy() weights2_3 = weights2_3.detach().numpy() iter_n = torch.randint(30, 40, (1,)).item() # Episode for i in range(iter_n): o0, o1, x0 = model_try(x0) weights1_2, weights2_3 = hebbian_update(coeffs_try, weights1_2, weights2_3, o0.numpy(), o1.numpy(), x0.numpy()) (a, b) = (0, 1) list(model_try.parameters())[a].data /= list(model_try.parameters())[a].__abs__().max() list(model_try.parameters())[b].data /= list(model_try.parameters())[b].__abs__().max() list(model_try.parameters())[a].data *= 0.4 list(model_try.parameters())[b].data *= 0.4 loss = model_try.loss_f(x0, self.pad_target) loss = torch.mean(loss) losses[j] = loss.item() x[j] = x0[0, ...] loss = torch.mean(losses) return x, loss.item() def train_step_es(self, model_try, x): """Perform a generation of CA using trained net. Return output x and loss """ torch.seed() iter_n = torch.randint(30, 40, (1,)).item() for i in range(iter_n): # Episode x = model_try(x) loss = self.net.loss_f(x, self.pad_target) loss = torch.mean(loss) return x, loss.item() def get_fitness_hebb(self, epsilon, x0, pid, q=None): """Method that start a generation of Hebbian ES. Return output from generation x and its fitness """ model_try = CAModel(channel_n=self.channel_n, fire_rate=self.fire_rate, new_size_pad=self.new_size, disable_grad=True, hidden_size=self.hidden_size, batch_size=self.batch_size, use_hebb=True) torch.seed() model_try.apply(weights_init) coeffs_try = self.coeffs.copy() coeffs_try += epsilon x, loss = self.train_step_hebb(model_try, coeffs_try, x0.clone()) fitness = -loss if not math.isfinite(fitness): raise ValueError('Fitness ' + str(fitness) + '. Loss: ' + str(loss)) if self.use_mp: q.put((x, fitness, pid)) return return x, fitness def get_fitness_es(self, epsilon, x0, pid, q=None): """Method that start a generation of ES. Return output from generation x and its fitness """ model_try = copy.deepcopy(self.net) if epsilon is not None: for i, w in enumerate(model_try.parameters()): w.data += torch.tensor(epsilon[i]) x, loss = self.train_step_es(model_try, x0) fitness = -loss if not math.isfinite(fitness): raise ValueError('Encountered non-number value in loss. Fitness ' + str(fitness) + '. Loss: ' + str(loss)) if self.use_mp: q.put((x, fitness, pid)) return return x, fitness def evaluate_main(self, x0): """Return output and fitness from a generation using unperturbed weights/coeffs""" if self.use_hebb: x_main, loss_main = self.train_step_hebb(self.net, self.coeffs, x0.clone()) fit_main = - loss_main else: x_main, loss_main = self.train_step_es(self.net, x0.clone()) fit_main = - loss_main return x_main, fit_main def create_plots(self, x_range, y_lin, avg_iter, avg, iter_main, losses_main): """Plot population's fitnesses, average fitnesses and main network's fitnesses. Two plots, one for all iterations so far, and one for the last 100 iterations. """ plt.clf() plt.scatter(x_range, np.log10(y_lin), color="blue", s=0.5) plt.plot(avg_iter, np.log10(avg), color='pink') plt.plot(iter_main, np.log10(losses_main), color='red', alpha=0.7) plt.title("Log-loss for " + self.log_folder) plt.savefig(self.log_folder + "/log_loss_over_time.png") if len(x_range) >= 100 * self.pop_size: # log 10, last 100 iters plt.clf() plt.scatter(x_range[-100 * self.pop_size:], np.log10(y_lin[-100 * self.pop_size:]), s=0.5) plt.plot(avg_iter[-100:], np.log10(avg[-100:]), color='red') plt.title("Log-loss last 100 for " + self.log_folder) plt.savefig(self.log_folder + "/log_loss_over_time_last100.png") def save_data(self, buffer, x_range, y_lin, iter_main, losses_main, iteration): """Save raw population and main network fitnesses to a csv file on the format: iteration, fitness""" if len(x_range) > 0: points = buffer * self.pop_size append_file(self.log_folder + '/raw/losses.csv', x_range[-points:], y_lin[-points:]) # this one overwrites write_file(self.log_folder + '/raw/main_losses.csv', iter_main, losses_main) if self.use_hebb: np.save(self.log_folder + "/models/" + str(iteration) + '.npy', self.coeffs) else: export_model(self.net, self.log_folder + "/models/saved_model_" + str(iteration) + ".pt") def log(self, fitnesses, iteration, x0=None, xs=None): """Function to add fitnesses to arrays and plot/save data at iteration intervals.""" if x0 is None: x0 = tt(np.repeat(self.seed[None, ...], self.batch_size, 0)) # Logging/plotting for k, fit in enumerate(fitnesses): self.x_range.append(iteration) self.y_lin.append(-fit) self.avg.append(-np.average(fitnesses)) self.avg_iter.append(iteration) # Evaluate main net/coeffs if iteration % self.log_main_every == 0: x_main, fit_main = self.evaluate_main(x0.clone()) self.losses_main.append(-fit_main) self.iter_main.append(iteration) # Visualize batch and plot points if iteration % 500 == 0: if xs == None: visualize_batch([x_main], iteration, self.log_folder, nrow=self.batch_size) else: selected = xs[np.argmax(fitnesses)] visualize_batch([x0.clone(), selected, x_main], iteration, self.log_folder, nrow=self.batch_size) self.create_plots(self.x_range, self.y_lin, self.avg_iter, self.avg, self.iter_main, self.losses_main) # Save points and weights/coeffs to file buffer = 1000 if iteration % buffer == 0: self.save_data(buffer, self.x_range, self.y_lin, self.iter_main, self.losses_main, iteration) mean_fit = np.mean(fitnesses) # Decay learning rate if mean_fit >= -0.03 and self.decay_state == 0: self.learning_rate *= 0.3 self.decay_state += 1 logging.info("Setting lr to " + str(self.learning_rate) + " at iter " + str(iteration)) elif mean_fit >= -0.01 and self.decay_state == 1: self.learning_rate *= 0.5 self.decay_state += 1 logging.info("Setting lr to " + str(self.learning_rate) + " at iter " + str(iteration)) print('step: %d, mean fitness: %.3f, best fitness: %.3f' % (iteration, mean_fit, np.max(fitnesses))) # check = 250 # if (len(self.losses_main) > check//self.log_main_every) and not self.hit_goal: # mean_main_loss = np.mean(self.losses_main[-(check//self.log_main_every):]) # if mean_main_loss <= 0.001: # logging.info("Hit goal at " + str(iteration)) # if self.use_hebb: # np.save(self.log_folder + "/models/" + str(iteration) + "good" + '.npy', self.coeffs) # else: # export_model(self.net, self.log_folder + "/models/saved_model_" + str(iteration) + "good" + ".pt") # self.hit_goal = True def run_master(self): """Send weights/coeffs to worker nodes and poll for results. Update weights/coeffs when all results are present. """ # ticM = time.time() for iter in range(self.iterations): # logging.info("Sending weights") weights_to_send = self.coeffs if self.use_hebb else self.net.state_dict() self.master.send_weights(weights_to_send) # logging.info("Waiting for results...") fitnesses, seeds = self.master.wait_for_results() # logging.info("Got all results!") fitnesses = np.array(fitnesses) eps_seeds = np.array(seeds) epsilons = [] for seed in eps_seeds: eps = self.get_population(use_seed=seed) epsilons.append(eps) for i, fit in enumerate(fitnesses): if self.use_hebb: self.update_coeffs(fit, epsilons[i]) else: self.update_parameters(fit, epsilons[i]) all_fitnesses = [] for fit in fitnesses: all_fitnesses.extend(fit) self.log(all_fitnesses, iter) # if iter == 999: # tocM = time.time() # logging.info("time used in milliseconds: " + str(int((tocM -ticM)*1000))) def run(self): """Start evolution using Hebbian or ES. If using multiple nodes this method will listen for weights/coeffs and send results. If not the method will also start other methods to update parameters and log results. If using a pool the method will sample x's from the pool and damage them (if damage is enabled), before every generation. """ # seed x0 = tt(np.repeat(self.seed[None, ...], self.batch_size, 0)) # Run models once to compile jitted methods. if self.use_hebb: model_try = CAModel(channel_n=self.channel_n, fire_rate=self.fire_rate, new_size_pad=self.new_size, disable_grad=True, hidden_size=self.hidden_size, batch_size=self.batch_size, use_hebb=True) _, _ = self.train_step_hebb(model_try, self.coeffs, x0.clone()) else: _, _ = self.train_step_es(self.net, x0.clone()) if self.use_mp: processes = [] q = tmp.Manager().Queue() for iter in range(self.iterations): if self.use_pool: batch = self.pool.sample(self.batch_size) x0 = batch["x"] loss_rank = self.net.loss_f(tt(x0), self.pad_target).numpy().argsort()[::-1] x0 = x0[loss_rank] x0[:1] = self.seed if self.damage: for i in range(self.damage): x0[-(i+1)] = dmg(x0[-(i+1)], self.new_size, only_bottom=True) x0 = tt(x0) if self.cross_machine: if self.use_hebb: self.coeffs = self.worker.poll_weights() else: weights = self.worker.poll_weights() self.net.load_state_dict(weights) eps_seed = np.random.randint(0, 2**32-1) epsilons = self.get_population(use_seed=eps_seed) else: epsilons = self.get_population() fitnesses = np.zeros((self.pop_size), dtype=np.float64) xs = torch.zeros(self.pop_size, *x0.shape, dtype=torch.float64) for i in range(self.pop_size): if self.use_hebb: if self.use_mp: p = tmp.Process(target=self.get_fitness_hebb, args=(np.array(epsilons[i], dtype=np.float64), x0.clone(), i, q)) processes.append(p) else: x, fit = self.get_fitness_hebb(np.array(epsilons[i], dtype=np.float64), x0.clone(), i) else: if self.use_mp: p = tmp.Process(target=self.get_fitness_es, args=(epsilons[i], x0.clone(), i, q)) processes.append(p) else: x, fit = self.get_fitness_es(epsilons[i], x0.clone(), i) if not self.use_mp: fitnesses[i] = fit xs[i] = x if self.use_mp: for p in processes: p.start() for p in processes: p.join() x, fit, pid = q.get() fitnesses[pid] = fit xs[pid] = x processes = [] if not q.empty(): print("Queue not empty") if self.use_pool: idx = np.argmax(fitnesses) batch["x"][:] = xs[idx] self.pool.commit(batch) fitnesses = np.array(fitnesses).astype(np.float64) if self.cross_machine: self.worker.send_result(fitnesses, eps_seed) else: if self.use_hebb: self.update_coeffs(fitnesses, epsilons) else: self.update_parameters(fitnesses, epsilons) self.log(fitnesses, iter, x0=x0, xs=xs) def weights_init(m): """Initialize a network's weights with uniform distributed values. Used for Hebbian ES. """ if isinstance(m, torch.nn.Linear) and m.in_features != HIDDEN_SIZE: torch.nn.init.uniform_(m.weight.data, -0.1, 0.1) ``` #### File: ca-es/src/dist.py ```python import numpy as np import pickle import random import redis import time RESULTS_KEY = "results" HOST = '10.100.10.10' PORT = 6379 DB = 0 PASSWORD = "" def serialize(x): """Return a pickled object.""" return pickle.dumps(x) def deserialize(x): """Return a depickled object.""" return pickle.loads(x) class Master(object): """Master that sends weights/coefficients to workers and waits for results from them.""" def __init__(self, nodes): self.r = redis.Redis(host=HOST, port=PORT, db=DB, password=PASSWORD) self.run_id = 1 self.nodes = nodes for key in self.r.scan_iter(): print("deleting key", key) self.r.delete(key) def wait_for_results(self): """Wait for all workers to send fitnesses and seed to redis.""" rewards = [] seeds = [] returnert = 0 while returnert < self.nodes: _, res = self.r.blpop(RESULTS_KEY) rew, seed = deserialize(res) rewards.append(rew) seeds.append(seed) returnert += 1 time.sleep(0.01) return rewards, seeds def send_weights(self, weights): """Send weights/coefficients to redis.""" self.r.set("weights", serialize(weights)) self.r.set("run_id", serialize(self.run_id)) self.run_id += 1 class Worker(object): """Wait for weights/coefficients from master and return fitnesses and seed.""" def __init__(self, run_id): self.r = redis.Redis(host=HOST, port=PORT, db=DB, password=PASSWORD) self.run_id = run_id def poll_weights(self): """Wait for new weights/coefficients in redis.""" while True: new_run_id = deserialize(self.r.get("run_id")) time.sleep(0.1) if new_run_id != self.run_id: break self.run_id = new_run_id weights = deserialize(self.r.get("weights")) return weights def send_result(self, rew, seed): """Put fitnesses and seed in redis.""" self.r.rpush(RESULTS_KEY, serialize((rew, seed))) ``` #### File: ca-es/src/net_modeltest.py ```python import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from numba import njit from numpy.random import default_rng """ This file is very similar to net.py, with minor changes to return more information. See the comments on net.py for method descriptions. """ def to_rgba(x): return x[..., :4] def get_living_mask(x): alpha = x[:, :, :, 3:4] m = F.max_pool3d(alpha, kernel_size=3, stride=1, padding=1) > 0.1 return m class CAModel(nn.Module): def __init__(self, channel_n, fire_rate, hidden_size, new_size_pad, batch_size, disable_grad=True, use_hebb=False): super(CAModel, self).__init__() self.channel_n = channel_n self.fire_rate = fire_rate self.hidden_size = hidden_size self.new_size_pad = new_size_pad self.batch_size = batch_size self.use_hebb = use_hebb self.fc0 = nn.Linear(self.channel_n * 3, self.hidden_size, bias=False) self.fc1 = nn.Linear(self.hidden_size, self.channel_n, bias=False) with torch.no_grad(): self.fc1.weight.zero_() identify = np.float64([0, 1, 0]) identify = np.outer(identify, identify) identify = torch.from_numpy(identify) dx = np.outer([1, 2, 1], [-1, 0, 1]) / 8.0 # Sobel filter dx = torch.from_numpy(dx) dy = dx.T self.kernel = torch.cat([identify[None, None, ...], dx[None, None, ...], dy[None, None, ...]], dim=0).repeat(self.channel_n, 1, 1, 1) if disable_grad: for param in self.parameters(): param.requires_grad = False else: for param in self.parameters(): param.requires_grad = True self.double() def perceive(self, x): x = F.conv2d(x.permute(0, 3, 1, 2), self.kernel, groups=16, padding=1) x = x.permute(0, 2, 3, 1) return x def forward(self, x, fire_rate=None, step_size=1.0): pre_life_mask = get_living_mask(x) x_old = x.detach().clone() x = self.perceive(x) if self.use_hebb: y = x.detach().clone() x = self.fc0(x) x = F.relu(x) if self.use_hebb: dx1 = x.detach().clone() x = self.fc1(x) x = x * step_size dx = x.detach().clone() if fire_rate is None: fire_rate = self.fire_rate update_mask_rand = torch.rand(*x[:, :, :, :1].shape) update_mask = update_mask_rand <= fire_rate x = x_old + x * update_mask.double() post_life_mask = get_living_mask(x) life_mask = pre_life_mask.bool() & post_life_mask.bool() x = x * life_mask.double() x = x.reshape(self.batch_size, self.new_size_pad, self.new_size_pad, self.channel_n) if self.use_hebb: return y, dx1, x, dx else: return x, dx def loss_f(self, x, y): return torch.mean(torch.square(x[..., :4] - y), [-2, -3, -1]) ```
{ "source": "jobregon1212/rulecosi", "score": 2 }
#### File: rulecosi/rulecosi/helpers.py ```python from rulecosi.rules import RuleSet, Rule, Condition from bitarray import bitarray def not_exists_add(element, set_): if element not in set_: set_.add(element) return False else: return True def remove_duplicated_rules(list_of_rulesets, weights=None): x_set = set() new_list_rulesets = [] if weights is not None: new_weights = [] else: new_weights = None for idx, ruleset in enumerate(list_of_rulesets): filtered_rules = [x for x in ruleset if not not_exists_add(x, x_set)] if len(filtered_rules) > 0: new_list_rulesets.append(RuleSet(filtered_rules, ruleset.condition_map)) if weights is not None: new_weights.append(weights[idx]) return new_list_rulesets, new_weights, x_set def order_trees_by_weight(list_of_rulesets, weights): ordered_tuples = [(y, x) for y, x in sorted(zip(weights, list_of_rulesets), reverse=True)] return map(list, zip(*ordered_tuples)) def total_n_rules(list_of_rulesets): return sum([len(ruleset.get_rule_list()) for ruleset in list_of_rulesets]) def zero_bitarray(size): b_array = bitarray(size) b_array.setall(False) return b_array def one_bitarray(size): b_array = bitarray(size) b_array.setall(True) return b_array def list_and_operation(list_): return_set = list_[0] for i in range(1, len(list_)): return_set = return_set & list_[i] return return_set def list_or_operation(list_): return_set = list_[0] for i in range(1, len(list_)): return_set = return_set | list_[i] return return_set def count_rules_conds(ruleset): total_cond = 0 for rule in ruleset: total_cond += len(rule.A) return len(ruleset.rules), total_cond # https://stackoverflow.com/questions/54699105/how-to-count-the-number-of-occurrences-of-a-nested-dictionary-key def count_keys(dict_, key): return (key in dict_) + sum(count_keys(v, key) for v in dict_.values() if isinstance(v, dict)) ``` #### File: rulecosi/rulecosi/rule_heuristics.py ```python import operator import copy from functools import reduce from bitarray import bitarray from .helpers import one_bitarray class RuleHeuristics: """ This class controls the computation of heuristics of the rules. For fast computation we use the bitarray class. At the beginning, an N-size bitarray for each condition is computed, with N=n_samples. This array contains 1 if the record was satisfied by the condition and 0 otherwise. When a combination is performed, this bitarray are combined using the intersection set operation to find out how many records are covered by the new rule (which is a combination of conditions). Additionally, there are two extra bitarrays, one covering each of the classes (right now it jus support binary class). The cardinality of all these bitarrays are used to compute the coverage and confidence of the rules very fast. Parameters ---------- X : array-like, shape (n_samples, n_features) The training input samples. y : array-like, shape (n_samples,) The target values. An array of int. condition_map: dictionary of <condition_id, Condition>, default=None Dictionary of Conditions extracted from all the ensembles. condition_id is an integer uniquely identifying the Condition. classes : ndarray, shape (n_classes,) The classes seen in the ensemble fit method. cov_threshold: float, default=0.0 Coverage threshold of a rule to be considered for further combinations. The greater the value the more rules are discarded. Default value is 0.0, which it only discards rules with null coverage. conf_threshold: float, default=0.5 Confidence or rule accuracy threshold of a rule to be considered for further combinations. The greater the value, the more rules are discarded. Rules with high confidence are accurate rules. Default value is 0.5, which represents rules with higher than random guessing accuracy. min_samples: int, default=1 The minimum number of samples required to be at rule in the simplified ruleset. """ def __init__(self, X, y, classes_, condition_map, cov_threshold=0.0, conf_threshold=0.5, min_samples=1): self.X = X self.y = y self.classes_ = classes_ self.condition_map = condition_map self.cov_threshold = cov_threshold self.conf_threshold = conf_threshold self.min_samples = min_samples self.training_bit_sets = None self._cond_cov_dict = None def get_conditions_heuristics(self, conditions, uncovered_mask=None): """ Compute the heuristics of the combination of conditions using the bitsets of each condition from the training set. An intersection operation is made and the cardinality of the resultant set is used for computing the heuristics :param conditions: set of conditions' id :param uncovered_mask: if different than None, mask out the records that are already covered from the training set. Default is None. :return: a dictionary with the following keys and form - cov_set : array of bitsets representing the coverage by class and total coverage - cov: the coverage of the conditions - conf: array of the confidence values of the conditions by class - supp: array of the support values of the conditions by class """ heuristics_dict = self.create_empty_heuristics() if len(conditions) == 0: return heuristics_dict b_array_conds = [reduce(operator.and_, [self._cond_cov_dict[i][cond] for cond in conditions]) for i in range(len(self.classes_))] b_array_conds.append(reduce(operator.or_, [i for i in b_array_conds])) if uncovered_mask is not None: b_array_conds = [b_array_measure & uncovered_mask for b_array_measure in b_array_conds] updated_mask = ~b_array_conds[-1] & uncovered_mask uncovered_mask.clear() uncovered_mask.extend(updated_mask) cov_count = b_array_conds[-1].count() if cov_count == 0: return heuristics_dict class_cov_count = [b_array_conds[i].count() for i in range(len(self.classes_))] coverage = cov_count / self.X.shape[0] heuristics_dict['cov_set'] = b_array_conds heuristics_dict['cov'] = coverage heuristics_dict['conf'] = [class_count / cov_count for class_count in class_cov_count] heuristics_dict['supp'] = [class_count / self.X.shape[0] for class_count in class_cov_count] return heuristics_dict def compute_rule_heuristics(self, ruleset, uncovered_mask=None, sequential_coverage=False): """ Compute rule heuristics, but without the sequential_coverage parameter, and without removing the rules that do not meet the thresholds :param ruleset: RuleSet object representing a ruleset :param uncovered_mask: if different than None, mask out the records that are already covered from the training set. Default is None. :param sequential_coverage:If true, the covered examples covered by one rule are removed. Additionally, if a rule does not meet the threshold is discarded. If false, it just compute the heuristics with all the records on the training set for all the rules. Default is False """ if uncovered_mask is None: uncovered_mask = one_bitarray(self.X.shape[0]) if sequential_coverage: ruleset.rules[:] = [rule for rule in ruleset if self.rule_is_accurate(rule, uncovered_mask)] else: for rule in ruleset: local_uncovered_instances = copy.copy(uncovered_mask) heuristics_dict = self.get_conditions_heuristics(rule.A, uncovered_mask=local_uncovered_instances) rule.set_heuristics(heuristics_dict) def _compute_training_bit_sets(self): """ Compute the bitsets of the coverage for the prior class distribution of the ensemble according to the training set """ return [bitarray((self.y == self.classes_[i]).astype(int).tolist()) for i in range(len(self.classes_))] def _compute_condition_bit_sets(self): """ Compute the bitsets of the coverage of every condition contained in the ensemble according to the training set """ # empty sets for each condition coverage class cond_cov_dict = [{} for _ in range(len(self.classes_) + 1)] for cond_id, cond in self.condition_map.items(): # compute bitarray for the covered records in X_ by condition cond cond_coverage_bitarray = bitarray( cond.satisfies_array(self.X).astype(int).tolist()) # create the entries in the dictionary for i in range(len(self.classes_)): cond_cov_dict[i][cond_id] = cond_coverage_bitarray & \ self.training_bit_sets[i] cond_cov_dict[-1][cond_id] = cond_coverage_bitarray return cond_cov_dict def initialize_sets(self): """ Initialize the sets that are going to be used during the combination and simplification process This includes the bitsets for the training data as well as the bitsets for each of the conditions """ self.training_bit_sets = self._compute_training_bit_sets() self._cond_cov_dict = self._compute_condition_bit_sets() def rule_is_accurate(self, rule, uncovered_instances): """ Determine if a rule meet the coverage and confidence thresholds :param rule: a Rule object :param uncovered_instances: mask out the records that are already covered from the training set. :return: boolean indicating if the rule satisfy the thresholds """ if uncovered_instances.count() == 0: return False local_uncovered_instances = copy.copy(uncovered_instances) heuristics_dict = self.get_conditions_heuristics(rule.A, uncovered_mask=local_uncovered_instances) rule.set_heuristics(heuristics_dict) if rule.cov > self.cov_threshold and rule.conf > self.conf_threshold: uncovered_instances.clear() uncovered_instances.extend(local_uncovered_instances) return True else: return False def create_empty_heuristics(self): """ Create an empty dictionary for the heuristics to be computed. :return: a dictionary with the heuristics to be computed and populated """ return {'cov_set': None, 'cov': 0.0, 'conf': [0.0 for _ in self.classes_], 'supp': [0.0 for _ in self.classes_]} ``` #### File: rulecosi/tests/test_rulecosi.py ```python import pytest from sklearn.datasets import load_iris from rulecosi import RuleCOSIClassifier @pytest.fixture def data(): return load_iris(return_X_y=True) def test_template_classifier(data): X, y = data clf = RuleCOSIClassifier() assert clf.demo_param == 'demo' clf.fit(X, y) assert hasattr(clf, 'classes_') assert hasattr(clf, 'X_') assert hasattr(clf, 'y_') y_pred = clf.predict(X) assert y_pred.shape == (X.shape[0],) ```
{ "source": "jobreit/COMP0090", "score": 2 }
#### File: tutorials/img_sgm/utils_tf.py ```python import tensorflow as tf @tf.function def dice_loss(ps,ts): return - dice_score(ps,ts) def dice_binary(ps,ts): ps = tf.cast(ps>=.5,dtype=ps.dtype) ts = tf.cast(ts>=.5,dtype=ts.dtype) return dice_score(ps,ts) def dice_score(ps,ts,eps=1e-7): numerator = tf.reduce_sum(ts*ps,axis=[1,2,3])*2 + eps denominator = tf.reduce_sum(ts,axis=[1,2,3]) + tf.reduce_sum(ps,axis=[1,2,3]) + eps return numerator/denominator @tf.function def pre_process(images, labels): images = tf.cast(tf.stack(images), dtype=tf.float32) labels = tf.cast(tf.expand_dims(tf.stack(labels),axis=3), dtype=tf.float32) return images, labels ## for data augmentation def get_reference_grid(grid_size): # grid_size: [batch, height, width] grid = tf.cast(tf.stack(tf.meshgrid( tf.range(grid_size[1]), tf.range(grid_size[2]), indexing='ij'), axis=2), dtype=tf.float32) return tf.tile(tf.expand_dims(grid, axis=0), [grid_size[0],1,1,1]) def random_transform_generator(batch, corner_scale=.2): # righ-multiplication affine ori_corners = tf.tile([[[1.,1.], [1.,-1.], [-1.,1.], [-1.,-1.]]], [batch,1,1]) new_corners = ori_corners + tf.random.uniform([batch,4,2], -corner_scale, corner_scale) ori_corners = tf.concat([ori_corners,tf.ones([batch,4,1])], axis=2) new_corners = tf.concat([new_corners,tf.ones([batch,4,1])], axis=2) return tf.stack([tf.linalg.lstsq(ori_corners[n],new_corners[n]) for n in range(batch)], axis=0) def warp_grid(grid, transform): # grid: [batch, height, width, 2] # transform: [batch, 3, 3] batch, height, width = grid.shape[0:3] grid = tf.concat([tf.reshape(grid,[batch,height*width,2]), tf.ones([batch,height*width,1])], axis=2) grid_warped = tf.matmul(grid, transform) return tf.reshape(grid_warped[...,:2], [batch,height,width,2]) @tf.function def resample_linear(grid_data, sample_grids): # grid_data: [batch, height, width] # sample_grids: [batch, height, width, 2] batch, height, width = (grid_data.shape[:]) sample_coords = tf.reshape(sample_grids, [batch,-1,2]) # pad to replicate the boundaries 1-ceiling, 2-floor sample_coords = tf.stack([tf.clip_by_value(sample_coords[...,0],0,height-1), tf.clip_by_value(sample_coords[...,1],0,width-1)], axis=2) i1 = tf.cast(tf.math.ceil(sample_coords[...,0]), dtype=tf.int32) j1 = tf.cast(tf.math.ceil(sample_coords[...,1]), dtype=tf.int32) i0 = tf.maximum(i1-1, 0) j0 = tf.maximum(j1-1, 0) # four data points q_ij q00 = tf.gather_nd(grid_data,tf.stack([i0,j0],axis=2), batch_dims=1) q01 = tf.gather_nd(grid_data,tf.stack([i0,j1],axis=2), batch_dims=1) q11 = tf.gather_nd(grid_data,tf.stack([i1,j1],axis=2), batch_dims=1) q10 = tf.gather_nd(grid_data,tf.stack([i1,j0],axis=2), batch_dims=1) # weights with normalised local coordinates wi1 = sample_coords[...,0] - tf.cast(i0,dtype=tf.float32) wi0 = 1 - wi1 wj1 = sample_coords[...,1] - tf.cast(j0,dtype=tf.float32) wj0 = 1 - wj1 return tf.reshape(q00*wi0*wj0 + q01*wi0*wj1 + q11*wi1*wj1 + q10*wi1*wj0, [batch,height,width]) @tf.function def random_image_label_transform(images, labels, add_dim=True): images, labels = tf.squeeze(images), tf.squeeze(labels) #avoid channel confusion # images: [batch, height, width] reference_grid = get_reference_grid(images.shape[0:3]) random_transform = random_transform_generator(images.shape[0], corner_scale=0.2) sample_grids = warp_grid(reference_grid, random_transform) images, labels = resample_linear(images, sample_grids), resample_linear(labels, sample_grids) if add_dim: images, labels = tf.expand_dims(images,axis=3), tf.expand_dims(labels,axis=3) return images, labels @tf.function def random_image_transform(images): # images: [batch, height, width] reference_grid = get_reference_grid(images.shape[0:3]) random_transform = random_transform_generator(images.shape[0], corner_scale=0.2) sample_grids = warp_grid(reference_grid, random_transform) return resample_linear(images, sample_grids) ```
{ "source": "job/rpki-client-web", "score": 2 }
#### File: rpki-client-web/rpkiclientweb/__main__.py ```python import argparse import asyncio import logging import os import sys from yaml import Loader, dump, load from .web import RpkiClientWeb LOG = logging.getLogger(__name__) def main(): parser = argparse.ArgumentParser("rpki-client wrapper") parser.add_argument( "-c", "--config", default="config.yml", type=argparse.FileType("r") ) parser.add_argument("-v", "--verbose", action="count", default=0) # -1: interval from config, 0 = zero delay parser.add_argument( "-j", "--jitter", default=0 if os.isatty(sys.stdout.fileno()) else 600, type=int, help="random delay of up to [jitter] before starting rpki-client for the first time. Defaults to 0 when in an interactive terminal, 600 when non-interactive.", ) args = parser.parse_args() logging.basicConfig(handlers=[logging.StreamHandler(sys.stdout)]) if args.verbose > 0: logging.getLogger().setLevel(logging.DEBUG) # Only log rpki-client output when very verbose. level = logging.INFO if args.verbose > 1: level = logging.DEBUG logging.getLogger("rpkiclientweb.rpki_client").setLevel(level) else: logging.getLogger().setLevel(logging.INFO) conf = load(args.config, Loader=Loader) conf["jitter"] = args.jitter LOG.debug("Configuration: %s", conf) web = RpkiClientWeb(conf) asyncio.run(web.run()) return 0 if __name__ == "__main__": sys.exit(main()) ``` #### File: rpki-client-web/rpkiclientweb/rpki_client.py ```python import asyncio import itertools import json import logging import os.path import time from dataclasses import dataclass, field from typing import List, Optional from prometheus_async.aio import time as time_metric, track_inprogress from prometheus_client import Counter, Gauge, Histogram from rpkiclientweb.outputparser import ( OutputParser, WarningSummary, missing_labels, ) LOG = logging.getLogger(__name__) OUTPUT_BUFFER_SIZE = 8_388_608 RPKI_CLIENT_DURATION = Histogram( "rpkiclient_duration_seconds", "Time spent calling rpki-client", buckets=[1, 3, 6, 12, 18, 24, 30, 44, 60, 72, 84, 96, 108, 120, 150, 180, 240, 300], ) RPKI_CLIENT_LAST_DURATION = Gauge( "rpkiclient_last_duration_seconds", "Duration of the last call to rpki-client", ) RPKI_CLIENT_LAST_UPDATE = Gauge( "rpkiclient_last_update", "Timestamp of the last successful call to rpki-client", ) RPKI_CLIENT_UPDATE_COUNT = Counter( "rpkiclient_update", "Number of rpki-client updates", ["returncode"] ) RPKI_CLIENT_RUNNING = Gauge( "rpkiclient_running", "Number of running rpki-client instances" ) RPKI_OBJECTS_COUNT = Gauge("rpki_objects", "Number of objects by type", ["type"]) RPKI_CLIENT_WARNINGS = Gauge( "rpkiclient_warnings", "Warnings from rpki-client", ["hostname", "type"] ) RPKI_CLIENT_PULLING = Gauge( "rpkiclient_pulling", "Last time pulling from this repository was started (referenced).", ["uri"], ) RPKI_CLIENT_PULLED = Gauge( "rpkiclient_pulled", "Last time repo was pulled (before process ended due to timeout).", ["uri"], ) RPKI_CLIENT_REMOVED_UNREFERENCED = Counter( "rpkiclient_removed_unreferenced", "Number of removals of repositories that were no longer referenced.", ) METADATA_LABELS = ( "elapsedtime", "usertime", "systemtime", "roas", "failedroas", "invalidroas", "certificates", "failcertificates", "invalidcertificates", "manifests", "failedmanifests", "stalemanifests", "crls", "repositories", "vrps", "uniquevrps", ) OPTIONAL_METADATA_LABELS = frozenset( [ "failedroas", "invalidroas", "failcertificates", "invalidcertificates", "stalemanifests", ] ) @dataclass class ExecutionResult: returncode: int stdout: str stderr: str duration: float @dataclass class RpkiClient: """Maps onto the config.yml""" rpki_client: str cache_dir: str output_dir: str trust_anchor_locators: List[str] = field(default_factory=list) timeout: Optional[int] = None warnings: List[WarningSummary] = field(default_factory=list) last_update_repos: List[str] = frozenset() @property def args(self) -> List[str]: if not os.path.isfile(self.rpki_client): raise ValueError(f"rpki_client: '{self.rpki_client}' does not exist") if not os.path.isdir(self.cache_dir): raise ValueError(f"cache_dir: '{self.cache_dir}' is not a directory.") if not os.path.isdir(self.output_dir): raise ValueError(f"output_dir: '{self.output_dir}' is not a directory.") if not (not self.timeout or self.timeout >= -1): raise ValueError(f"illegal timeout: {self.timeout} -- should be >= -1") # Not using `-s [timeout]` for now because the timeout is managed from # this wrapping code. args = [ "-v", # verbose "-j", # JSON output "-d", os.path.abspath(self.cache_dir), ] for tal in zip(itertools.repeat("-t"), self.trust_anchor_locators): args.extend(tal) args.append(os.path.abspath(self.output_dir)) return args @track_inprogress(RPKI_CLIENT_RUNNING) @time_metric(RPKI_CLIENT_DURATION) async def run(self) -> ExecutionResult: LOG.info("executing %s %s", self.rpki_client, " ".join(self.args)) t0 = time.monotonic() proc = await asyncio.create_subprocess_exec( self.rpki_client, *self.args, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, limit=OUTPUT_BUFFER_SIZE, ) try: if self.timeout > 0: await asyncio.wait_for(proc.wait(), self.timeout) else: await proc.wait() except asyncio.TimeoutError: LOG.error("timeout (%ds): killing %d", self.timeout, proc.pid) proc.kill() stdout, stderr = await proc.communicate() duration = time.monotonic() - t0 LOG.info( "[%d] exited with %d in %f seconds", proc.pid, proc.returncode, duration ) if LOG.isEnabledFor(logging.DEBUG): LOG.debug("stdout: %s", stdout) LOG.debug("stderr: %s", stderr) RPKI_CLIENT_UPDATE_COUNT.labels(returncode=proc.returncode).inc() RPKI_CLIENT_LAST_DURATION.set(duration) self.update_warning_metrics(stderr, proc.returncode == 0) asyncio.create_task(self.update_validated_objects_gauge(proc.returncode)) return ExecutionResult( returncode=proc.returncode, stdout=stdout.decode(), stderr=stderr.decode(), duration=duration, ) def update_warning_metrics(self, stderr: bytes, was_successful_run: bool) -> None: """Update the warning gauges.""" parsed = OutputParser(stderr.decode("utf8")) # Delete labels for repos not included anymore (unreferenced) new_pulling = parsed.pulling if was_successful_run: for unreferenced_repo in self.last_update_repos - new_pulling: LOG.info("Removing unreferenced repository %s", unreferenced_repo) RPKI_CLIENT_REMOVED_UNREFERENCED.inc() try: RPKI_CLIENT_PULLING.remove(unreferenced_repo) RPKI_CLIENT_PULLED.remove(unreferenced_repo) except KeyError: pass # Update pulling & pulled for repo in new_pulling: RPKI_CLIENT_PULLING.labels(repo).set_to_current_time() for repo in parsed.pulled: RPKI_CLIENT_PULLED.labels(repo).set_to_current_time() RPKI_OBJECTS_COUNT.labels(type="files_removed").set(parsed.files_removed) RPKI_OBJECTS_COUNT.labels(type="vanished_files").set(len(parsed.vanished_files)) RPKI_OBJECTS_COUNT.labels(type="vanished_directories").set( len(parsed.vanished_directories) ) new_warnings = parsed.statistics_by_host() # Set 'missing' metric-label values to 0 since missing values are # confusing (they disappear in prometheus and grafana) for missing in missing_labels(self.warnings, new_warnings): RPKI_CLIENT_WARNINGS.labels( type=missing.warning_type, hostname=missing.hostname ).set(0) # Set new values for warning in new_warnings: RPKI_CLIENT_WARNINGS.labels( type=warning.warning_type, hostname=warning.hostname ).set(warning.count) # And store self.warnings = new_warnings self.last_update_repos = new_pulling async def update_validated_objects_gauge(self, returncode: int) -> None: """ Get statistics from `.metadata` of validated objects. Example output: ``` { "buildmachine": "localhost.localdomain", "buildtime": "2020-05-28T09:45:59Z", "elapsedtime": "223", "usertime": "46", "systemtime": "57", "roas": 16245, "failedroas": 0, "invalidroas": 0, "certificates": 11835, "failcertificates": 0, "invalidcertificates": 0, "tals": 1, "talfiles": "/etc/pki/tals/ripe.tal", "manifests": 11835, "failedmanifests": 2, "stalemanifests": 0, "crls": 11833, "repositories": 13, "vrps": 87978, "uniquevrps": 87978 } ``` """ json_path = os.path.join(self.output_dir, "json") if not os.path.isfile(json_path): LOG.warning("json output file (%s) is missing", json_path) return with open(json_path, "r") as json_res: metadata = json.load(json_res)["metadata"] missing_keys = set() for key in METADATA_LABELS: value = metadata.get(key, None) RPKI_OBJECTS_COUNT.labels(type=key).set(value) if key not in OPTIONAL_METADATA_LABELS and value is None: missing_keys.add(key) if missing_keys: LOG.info( "keys (%s) missing in json .metadata (%s)", ", ".join(missing_keys), json.dumps(metadata), ) if returncode == 0: RPKI_CLIENT_LAST_UPDATE.set_to_current_time() ```
{ "source": "job/rpkimancer", "score": 2 }
#### File: rpkimancer/cert/ee.py ```python from __future__ import annotations import logging import typing from cryptography import x509 from cryptography.hazmat.primitives.asymmetric import padding from .base import BaseResourceCertificate, ManifestEntryInfo from .ca import CertificateAuthority from .oid import SIA_OBJ_ACCESS_OID if typing.TYPE_CHECKING: from ..sigobj import SignedObject log = logging.getLogger(__name__) class EECertificate(BaseResourceCertificate): """RPKI EE Certificate - RFC6487.""" def __init__(self, *, signed_object: SignedObject, **kwargs: typing.Any) -> None: """Initialise the EE Certificate.""" self._signed_object = signed_object common_name = signed_object.econtent.signed_attrs_digest() super().__init__(common_name=common_name, **kwargs) @property def signed_object(self) -> SignedObject: """Get the SignedObject that this certificate signs.""" return self._signed_object @property def issuer_repo_path(self) -> str: """Get the filesystem path to the the issuer publication point.""" return typing.cast(CertificateAuthority, self.issuer).repo_path @property def mft_entry(self) -> typing.Optional[ManifestEntryInfo]: """Get an entry for inclusion in the issuer's manifest.""" return (self.signed_object.file_name, self.signed_object.to_der()) @property def sia(self) -> typing.Optional[x509.SubjectInformationAccess]: """Get the SubjectInformationAccess extension for the certificate.""" sia_obj_uri = f"{self.base_uri}/" \ f"{self.issuer_repo_path}/" \ f"{self.signed_object.file_name}" sia = x509.SubjectInformationAccess([ x509.AccessDescription(SIA_OBJ_ACCESS_OID, x509.UniformResourceIdentifier(sia_obj_uri)), # noqa: E501 ]) return sia def sign_object(self) -> bytes: """Construct a signature over the signedAttrs of the SignedObject.""" message = self.signed_object.econtent.signed_attrs().to_der() signature = self.private_key.sign(data=message, padding=padding.PKCS1v15(), algorithm=self.HASH_ALGORITHM) return signature def publish(self, *, pub_path: str, **kwargs: typing.Any) -> None: """Publish the SignedObject artifact as a DER file in the PP.""" self.signed_object.publish(pub_path=pub_path, uri_path=self.uri_path, repo_path=self.issuer_repo_path, **kwargs) ``` #### File: rpkimancer/cert/extensions.py ```python from __future__ import annotations import logging from cryptography import x509 from .oid import AS_RESOURCES_OID, IP_RESOURCES_OID from ..resources import (ASIdentifiers, AsResourcesInfo, IPAddrBlocks, IpResourcesInfo) log = logging.getLogger(__name__) class IpResources(x509.UnrecognizedExtension): """IP Address Resources X.509 certificate extension - RFC3779.""" # TODO: IPAddressRange support def __init__(self, ip_resources: IpResourcesInfo) -> None: """Initialise the certificate extension.""" ip_address_blocks_data = IPAddrBlocks(ip_resources).to_der() super().__init__(IP_RESOURCES_OID, ip_address_blocks_data) class AsResources(x509.UnrecognizedExtension): """AS Number Resources X.509 certificate extension - RFC3779.""" def __init__(self, as_resources: AsResourcesInfo) -> None: """Initialise the certificate extension.""" as_identifiers_data = ASIdentifiers(as_resources).to_der() super().__init__(AS_RESOURCES_OID, as_identifiers_data) ``` #### File: rpkimancer/cli/conjure.py ```python from __future__ import annotations import argparse import importlib.metadata import ipaddress import logging import os import typing from . import Args, BaseCommand, Return if typing.TYPE_CHECKING: from ..cert import CertificateAuthority from ..sigobj.roa import RoaNetworkInfo log = logging.getLogger(__name__) DEFAULT_OUTPUT_DIR = os.path.join(os.curdir, "target", "demo") PUB_SUB_DIR = "repo" TAL_SUB_DIR = "tals" DEFAULT_TA_AS_RESOURCES = [(0, 4294967295)] DEFAULT_TA_IP_RESOURCES = [ipaddress.ip_network("0.0.0.0/0"), ipaddress.ip_network("::0/0")] DEFAULT_CA_AS_RESOURCES = [65000] DEFAULT_CA_IP_RESOURCES = [ipaddress.ip_network("10.0.0.0/8"), ipaddress.ip_network("2001:db8::/32")] DEFAULT_GBR_FULLNAME = "<NAME>" DEFAULT_GBR_ORG = "Example Org" DEFAULT_GBR_EMAIL = "<EMAIL>" META_PATH = "<path>" META_AS = "<asn>" META_IP = "<prefix>/<length>" META_IP_MAXLEN = f"{META_IP}[-maxlen]" META_NAME = "<name>" META_ADDR = "<addr>" class Conjure(BaseCommand): """Conjure a fully populated RPKI repository from thin air.""" subcommand = "conjure" def __init__(self, *args: typing.Any, **kwargs: typing.Any) -> None: """Initialise subcommand.""" super().__init__(*args, **kwargs) log.info("trying to load plugins") self._plugins = list() entry_point_name = "rpkimancer.cli.conjure" entry_points = importlib.metadata.entry_points() for entry_point in entry_points.get(entry_point_name, []): cls = entry_point.load() if issubclass(cls, ConjurePlugin): plugin = cls(self.parser) self._plugins.append(plugin) def init_parser(self) -> None: """Set up command line argument parser.""" self.parser.add_argument("--output-dir", "-o", default=DEFAULT_OUTPUT_DIR, metavar=META_PATH, help="Directory to write generated artifacts to " # noqa: E501 "(default: %(default)s)") self.parser.add_argument("--ta-as-resources", nargs="+", type=int, default=DEFAULT_TA_AS_RESOURCES, metavar=META_AS, help="ASN(s) to include in TA certificate " "(default: %(default)s)") self.parser.add_argument("--ta-ip-resources", nargs="+", type=ipaddress.ip_network, default=DEFAULT_TA_IP_RESOURCES, metavar=META_IP, help="IP addresses to include in TA certificate " # noqa: E501 "(default: %(default)s)") self.parser.add_argument("--ca-as-resources", nargs="+", type=int, default=DEFAULT_CA_AS_RESOURCES, metavar=META_AS, help="ASN(s) to include in suboridinate CA certificate " # noqa: E501 "(default: %(default)s)") self.parser.add_argument("--ca-ip-resources", nargs="+", type=ipaddress.ip_network, default=DEFAULT_CA_IP_RESOURCES, metavar=META_IP, help="IP addresses to include in suboridinate CA certificate " # noqa: E501 "(default: %(default)s)") self.parser.add_argument("--roa-asid", type=int, default=DEFAULT_CA_AS_RESOURCES[0], metavar=META_AS, help="ASN to include in ROA asID " "(default: %(default)s)") self.parser.add_argument("--roa-networks", nargs="+", type=self._roa_network, default=[(ipaddress.ip_network(net), None) for net in DEFAULT_CA_IP_RESOURCES], metavar=META_IP_MAXLEN, help="IP prefixes to include in ROA " "(default: %(default)s)") self.parser.add_argument("--gbr-full-name", default=DEFAULT_GBR_FULLNAME, metavar=META_NAME, help="Full name to include in GBR " "(default: %(default)s)") self.parser.add_argument("--gbr-org", default=DEFAULT_GBR_ORG, metavar=META_NAME, help="Organisation name to include in GBR " "(default: %(default)s)") self.parser.add_argument("--gbr-email", default=DEFAULT_GBR_EMAIL, metavar=META_ADDR, help="Email address to include in GBR " "(default: %(default)s)") def run(self, parsed_args: Args, *args: typing.Any, **kwargs: typing.Any) -> Return: """Run with the given arguments.""" log.info("setting up rpkimancer library objects") from ..cert import CertificateAuthority, TACertificateAuthority from ..sigobj import RouteOriginAttestation, RpkiGhostbusters # create CAs log.info("creating TA certificate authority") ta = TACertificateAuthority(as_resources=parsed_args.ta_as_resources, ip_resources=parsed_args.ta_ip_resources) log.info("creating suboridinate certificate authority") ca = CertificateAuthority(issuer=ta, as_resources=parsed_args.ca_as_resources, ip_resources=parsed_args.ca_ip_resources) # create ROA log.info("creating ROA object") RouteOriginAttestation(issuer=ca, as_id=parsed_args.roa_asid, ip_address_blocks=parsed_args.roa_networks) # create GBR log.info("creating ghostbusters record object") RpkiGhostbusters(issuer=ca, full_name=parsed_args.gbr_full_name, org=parsed_args.gbr_org, email=parsed_args.gbr_email) # run plugins log.info("running plugins") plugin_publish_kwargs = dict() for plugin in self._plugins: log.info(f"running plugin {plugin}") if (kwargs := plugin(parsed_args, ca)) is not None: log.debug(f"{plugin} returned kwargs for publish: {kwargs}") plugin_publish_kwargs.update(kwargs) # publish objects log.info(f"publishing in-memory objects to {parsed_args.output_dir}") ta.publish(pub_path=os.path.join(parsed_args.output_dir, PUB_SUB_DIR), tal_path=os.path.join(parsed_args.output_dir, TAL_SUB_DIR), **plugin_publish_kwargs) return None @staticmethod def _roa_network(input_str: str) -> RoaNetworkInfo: """Convert input string to RoaNetworkInfo tuple.""" try: network, maxlen = input_str.split("-", 1) return (ipaddress.ip_network(network), int(maxlen)) except ValueError: return (ipaddress.ip_network(input_str), None) PluginReturn = typing.Optional[typing.Mapping[str, str]] class ConjurePlugin: """Base class for conjure subcommand plugins.""" def __init__(self, parent: argparse.ArgumentParser) -> None: """Initialise the plugin.""" self.parser = parent self.init_parser() def __call__(self, parsed_args: argparse.Namespace, ca: CertificateAuthority, *args: typing.Any, **kwargs: typing.Any) -> PluginReturn: """Run the plugin.""" return self.run(parsed_args, ca, *args, **kwargs) def init_parser(self) -> None: """Set up command line argument parser.""" raise NotImplementedError def run(self, parsed_args: Args, ca: CertificateAuthority, *args: typing.Any, **kwargs: typing.Any) -> PluginReturn: """Run with the given arguments, returning extra publish kwargs.""" raise NotImplementedError ``` #### File: rpkimancer/rpkimancer/cms.py ```python from __future__ import annotations import logging from .asn1 import Content from .asn1.mod import CryptographicMessageSyntax_2009 from .asn1.types import OID log = logging.getLogger(__name__) class ContentData(Content): """Generic base class for ASN.1 types idenitied by an OID.""" content_type: OID class ContentInfo(Content): """CMS ASN.1 ContentInfo type - RFC5911.""" content_syntax = CryptographicMessageSyntax_2009.ContentInfo def __init__(self, content: ContentData) -> None: """Initialise the instance from contained ContentData.""" log.info(f"preparing data for {self}") content_type_oid = content.content_type.get_val() content_type_name = content.content_syntax.fullname() content_data = content.content_data data = {"contentType": content_type_oid, "content": (content_type_name, content_data)} super().__init__(data) class SignedData(ContentData): """CMS ASN.1 SignedData type - RFC5911.""" content_type = CryptographicMessageSyntax_2009.id_signedData content_syntax = CryptographicMessageSyntax_2009.SignedData class SignedAttributes(Content): """CMS ASN.1 SignedAttributes type - RFC5911.""" content_syntax = CryptographicMessageSyntax_2009.SignedAttributes def __init__(self, content_type: OID, message_digest: bytes) -> None: """Initialise the instance from an eContentType and eContent digest.""" log.info(f"preparing data for {self}") ct_attr_oid = CryptographicMessageSyntax_2009.id_contentType.get_val() md_attr_oid = CryptographicMessageSyntax_2009.id_messageDigest.get_val() # noqa: E501 data = [ { "attrType": ct_attr_oid, "attrValues": [('ContentType', content_type.get_val())], }, { "attrType": md_attr_oid, "attrValues": [('MessageDigest', message_digest)], }, ] super().__init__(data) class EncapsulatedContentInfo(Content): """CMS ASN.1 EncapsulatedContentInfo type - RFC5911.""" content_syntax = CryptographicMessageSyntax_2009.EncapsulatedContentInfo @classmethod def from_content_info(cls, content_info: ContentInfo) -> EncapsulatedContentInfo: # noqa: E501 """De-encapsulate from ContentInfo instance.""" val_path = ["content", "SignedData", "encapContentInfo"] with content_info.constructed() as instance: data = instance.get_val_at(val_path) return cls(data) @property def econtent_bytes(self) -> bytes: """Recover eContent OCTET STRING.""" with self.constructed() as instance: econtent = instance.get_internals()["cont"]["eContent"] log.debug(f"{econtent.to_der()}") econtent_bytes: bytes = econtent.get_const()["cont"].to_der() return econtent_bytes ```
{ "source": "job/rpki-ov-checker", "score": 2 }
#### File: job/rpki-ov-checker/setup.py ```python import rpki_ov_checker version = rpki_ov_checker.__version__ import codecs import os import sys from os.path import abspath, dirname, join from setuptools import setup, find_packages here = abspath(dirname(__file__)) def parse_requirements(filename): """ load requirements from a pip requirements file """ lineiter = (line.strip() for line in open(filename)) return [line for line in lineiter if line and not line.startswith("#")] with codecs.open(join(here, 'README.md'), encoding='utf-8') as f: README = f.read() if sys.argv[-1] == 'publish': os.system('python3 setup.py sdist upload') print("You probably want to also tag the version now:") print((" git tag -a %s -m 'version %s'" % (version, version))) print(" git push --tags") sys.exit() install_reqs = parse_requirements('requirements.txt') reqs = install_reqs setup( name='rpki-ov-checker', version=version, maintainer="<NAME>", maintainer_email='<EMAIL>', url='https://github.com/job/rpki-ov-checker', description='RPKI Origin Validation checker', long_description=README, long_description_content_type="text/markdown", license='ISCL', keywords='rpki prefix routing networking', setup_requires=reqs, install_requires=reqs, classifiers=[ 'Intended Audience :: Developers', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: System :: Networking', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 3 :: Only' ], packages=find_packages(exclude=['tests', 'tests.*']), entry_points={'console_scripts': ['rpki-ov-checker = rpki_ov_checker.checker:main']}, ) ```
{ "source": "job/rpki-ov-route-map", "score": 2 }
#### File: rpki-ov-route-map/rpki_ov_route_map/rpki_ov_route_map.py ```python from aggregate6 import aggregate from ipaddress import ip_network import argparse import collections import json import pprint import requests import rpki_ov_route_map import sys def main(): parser = argparse.ArgumentParser( formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-c', dest='cache', default="https://rpki.gin.ntt.net/api/export.json", type=str, help="""Location of the RPKI Cache in JSON format (default: https://rpki.gin.ntt.net/api/export.json)""") parser.add_argument('-v', '--version', action='version', version='%(prog)s ' + rpki_ov_route_map.__version__) args = parser.parse_args() if 'http' in args.cache: r = requests.get(args.cache, headers={'Accept': 'text/json'}) validator_export = r.json() else: validator_export = json.load(open(args.cache, "r")) print("""! ip bgp-community new-format no ip community-list rpki-not-found ip community-list standard rpki-not-found permit 65000:0 no ip community-list rpki-valid ip community-list standard rpki-valid permit 65000:1 no ip community-list rpki-invalid ip community-list standard rpki-invalid permit 65000:2 no ip community-list rpki ip community-list expanded rpki permit 65000:[123] !""") data = dict() data['vrps'] = load_vrp_list(validator_export) data['origins'] = collections.defaultdict(set) covered_space = set() for vrp in data['vrps']: covered_space.add(vrp['prefix']) if vrp['prefixlen'] == vrp['maxlen']: entry = vrp['prefix'] else: entry = "{} le {}".format(vrp['prefix'], vrp['maxlen']) data['origins'][vrp['origin']].add(entry) print("no ip prefix-list rpki-covered-space-v4") for i in aggregate(covered_space): print("ip prefix-list rpki-covered-space-v4 permit {} le 32".format(i)) print("!") for origin, prefixes in data['origins'].items(): if origin == 0: continue print("!") print("no ip prefix-list rpki-origin-AS{}".format(origin)) for prefix in prefixes: print("ip prefix-list rpki-origin-AS{} permit {}".format(origin, prefix)) print("!") print("no ip as-path access-list {}".format(origin)) print("ip as-path access-list {} permit _{}$".format(origin, origin)) print("""! ! test whether BGP NLIR is covered by RPKI ROA or not route-map rpki-ov permit 1 match ip address prefix-list rpki-covered-space-v4 set comm-list rpki delete continue 3 ! ! BGP announcement is not covered by RPKI ROA, mark as not-found and exit route-map rpki-ov permit 2 set comm-list rpki delete set community 65000:0 additive ! ! find RPKI valids""") n = 3 for origin in data['origins'].keys(): if origin == 0: continue print("!") print("route-map rpki-ov permit {}".format(n)) print(" match ip prefix-list rpki-origin-AS{}".format(origin)) print(" match as-path {}".format(origin)) print(" set community 65000:1") n += 1 print("!") print("! Reject RPKI Invalid BGP announcements") print("route-map rpki-ov deny {}".format(n)) # phase 3 reject invalids def load_vrp_list(export): """ :param export: the JSON blob with all ROAs """ vrp_list = [] for vrp in export['roas']: prefix_obj = ip_network(vrp['prefix']) if prefix_obj.version == 6: continue try: asn = int(vrp['asn'].replace("AS", "")) if not 0 <= asn < 4294967296: raise ValueError except ValueError: print("ERROR: ASN malformed", file=sys.stderr) print(pprint.pformat(vrp, indent=4), file=sys.stderr) continue prefix = str(prefix_obj) prefixlen = prefix_obj.prefixlen maxlength = int(vrp['maxLength']) vrp_list.append((prefix, prefixlen, maxlength, asn)) vrp_list_uniq = [] for vrp in set(vrp_list): vrp_list_uniq.append({'prefix': vrp[0], 'prefixlen': vrp[1], 'maxlen': vrp[2], 'origin': vrp[3]}) return vrp_list_uniq ```
{ "source": "job/rpki-vrp-checker", "score": 2 }
#### File: rpki-vrp-checker/rpki_vrp_checker/main.py ```python import json import radix import sys import yaml from rpki_vrp_checker import __version__ def parse_args(args): import argparse parser = argparse.ArgumentParser( description="Perform various business logic test operations on a " "given collection of RPKI based VRPs.") parser.add_argument("-v", dest="verbose", action="store_true", default=False, help="Be verbose") parser.add_argument("-i", dest="inputpath", required=True, help="Input JSON file containing to-be-checked VRPs") parser.add_argument("-b", dest="blessedpath", required=True, help="Path to output the blessed JSON file checked VRPs") # parser.add_argument("-s", dest="slurmpath", # help="Path to SLURM JSON file") parser.add_argument("-c", dest="canariespath", required=True, help="Path to YAML file with expected ROA canaries") parser.add_argument("-V", dest="version", action="store_true", help="Display rpki-vrp-checker version") return parser.parse_args(args) def pretty_print(pack, num=False): if num: print("Entry #%s:" % num) print(" Prefix : %s (MaxLength: %s)" % (pack['p'], pack['ml'])) print(" Origin AS : %s" % pack['asn']) print(" Trust Anchor : %s" % pack['ta'].upper()) print() def main(): args = parse_args(sys.argv[1:]) if args.version: # pragma: no cover print("rpki-vrp-checker %s" % __version__) sys.exit() verbose = args.verbose f = open(args.inputpath) roas = json.load(f) f.close() f = open(args.canariespath) canaries = yaml.safe_load(f) f.close() vrp_count = 0 tree = radix.Radix() for r in roas['roas']: asn = r['asn'] expires = r['expires'] prefix = r['prefix'] ml = r['maxLength'] ta = r['ta'] rnode = tree.search_exact(prefix) pack = {'p': prefix, 'ta': ta, 'ml': ml, 'asn': asn} if not rnode: rnode = tree.add(prefix) rnode.data['vrps'] = [pack] else: if pack not in rnode.data['vrps']: rnode.data['vrps'].append(pack) vrp_count += 1 if verbose: print("loaded %s prefixes (%s vrps)" % (len(tree.prefixes()), vrp_count)) roas_of_interest = [] canaries_of_interest = [] for c in canaries: prefix = c['prefix'] pack = {'p': prefix, 'ta': c['ta'], 'ml': c['maxlength'], 'asn': c['origin']} canaries_of_interest.append(pack) rnode = tree.search_worst(prefix) if rnode: for r in tree.search_covered(rnode.prefix): for vrp in r.data['vrps']: if vrp not in roas_of_interest: roas_of_interest.append(vrp) if verbose: print("loaded %s canaries" % len(canaries)) print("ERROR: WRONG AT RIR LEVEL?") print("--------------------------\n") print("The following RPKI VRPs have been registered at the RIR level,\n" "but were not added as canaries:\n") c = 0 for vrp in roas_of_interest: if vrp not in canaries_of_interest: c += 1 pretty_print(vrp, c) print("ERROR: MISSING VIPAR RPKI CANARY REGISTRATIONS?") print("-----------------------------------------------\n") print("The following canaries are not visible in " "RPKI data at the RIR level:\n") c = 0 for canarie in canaries_of_interest: if canarie not in roas_of_interest: c += 1 pretty_print(canarie, c) # each canary must *exactly* be present in the VRP tree # no less-specific VRPs must exist for any not-exactly registered canaries # no more-specific VRPs must exist for any not-exactly registered canaries if __name__ == '__main__': sys.exit(main()) ``` #### File: rpki-vrp-checker/tests/test_regression.py ```python from vrp_checker import checker from mock import patch import io import sys import unittest def stub_stdin(testcase_inst, inputs): stdin = sys.stdin def cleanup(): sys.stdin = stdin testcase_inst.addCleanup(cleanup) sys.stdin = StringIO(inputs) def stub_stdouts(testcase_inst): stderr = sys.stderr stdout = sys.stdout def cleanup(): sys.stderr = stderr sys.stdout = stdout testcase_inst.addCleanup(cleanup) sys.stderr = StringIO() sys.stdout = StringIO() class TestAggregate(unittest.TestCase): def test_00__roa_missing(self): pass def test_15_verbose(self): stub_stdin(self, '10.0.0.0/24 10.0.1.0/24 172.16.0.0/24 10.0.0.0/32\n') stub_stdouts(self) with patch.object(sys, 'argv', ["prog.py", "-v"]): agg_main() self.assertEqual(sys.stdout.getvalue(), "+ 10.0.0.0/23\n- 10.0.0.0/24\n- 10.0.0.0/32\n- 10.0.1.0/24\n 172.16.0.0/24\n") class StringIO(io.StringIO): """ A "safely" wrapped version """ def __init__(self, value=''): value = value.encode('utf8', 'backslashreplace').decode('utf8') io.StringIO.__init__(self, value) def write(self, msg): io.StringIO.write(self, msg.encode( 'utf8', 'backslashreplace').decode('utf8')) def main(): unittest.main() if __name__ == '__main__': main() ```
{ "source": "jobryan/QuantPy", "score": 2 }
#### File: QuantPy/quantpy/event_profiler.py ```python from pylab import errorbar, xlabel, ylabel, show, legend from numpy import array, arange def event_profiler(asset,truth,periods=5): cut = [] for i in range(periods,len(asset)-periods): if truth[i] == 1 and asset[i] > 0: cut.append(asset[i-periods:i+periods]/asset[i]) return array(cut) def plot_event_profile(events,name=''): mn = events.mean(axis=0) - 1.0 st = events.std(axis=0) errorbar(arange(len(mn)),mn,st,label=name) xlabel('Periods', fontsize=16) ylabel('Price Change %', fontsize=16) if len(name) > 1: legend(loc='best',shadow=True, fancybox=True) show() ```
{ "source": "Jobs23/Reddit_Reader", "score": 3 }
#### File: Jobs23/Reddit_Reader/reddit_news_reader.py ```python from flask import Flask import json, requests, time, unidecode app = Flask(__name__) def get_headlines(): user_pass_dict = {'user':'your_username','passwd':'<PASSWORD>','api_type':'json'} sess = requests.Session() sess.headers.update({'User-Agent':'Trying some stuff out'}) sess.post('https://www.reddit.com/api/login', data = user_pass_dict) time.sleep(1) url = 'https://www.reddit.com/r/news/.json?limit=15' html = sess.get(url) data = json.loads(html.content.decode('utf-8')) li = [each for each in data['data']['children']] #[u'modhash', u'whitelist_status', u'children', u'after', u'before'] titles = [unidecode.unidecode(listing['data']['title']) for listing in data['data']['children']] titles = '\n\n'.join([i for i in titles]) return titles titles = get_headlines() print titles if __name__ == '__main__': app.run(debug=True) ```
{ "source": "jobscore/ansible-role-resque-exporter", "score": 2 }
#### File: default/tests/test_default.py ```python import os import testinfra.utils.ansible_runner testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') def test_services_running_and_enabled(host): assert host.service('prometheus-resque-exporter').is_enabled assert host.service('prometheus-resque-exporter').is_running def test_node_exporter_metrics(host): out = host.check_output('curl http://localhost:9447/metrics') assert 'resque_up' in out ```
{ "source": "jobscry/preader", "score": 2 }
#### File: preader/reader/admin.py ```python from django.contrib import admin from django.utils.timezone import now from .models import Feed, Entry, FeedLog, UserEntry class FeedLogAdmin(admin.ModelAdmin): list_display = ( 'feed', 'status_code', 'datetime', 'entries', 'duration', ) date_hierarchy = 'datetime' admin.site.register(FeedLog, FeedLogAdmin) def force_update_next(modeladmin, request, queryset): current_time = now() queryset.update( next_checked=current_time, etag='', last_modified=None ) force_update_next.short_description = 'Force Feed Update on Next Scan' def clear_errors(modeladmin, request, queryset): queryset.update(error_count=0) clear_errors.short_description = 'Reset Error Count' def disable_feeds(modeladmin, request, queryset): queryset.update(disabled=True) disable_feeds.short_description = 'Disable Feeds' def enable_feeds(modeladmin, request, queryset): queryset.update(disabled=False) enable_feeds.short_description = 'Enable Feeds' class FeedAdmin(admin.ModelAdmin): list_display = ( 'title', 'disabled', 'has_subscribers', 'has_new_entries', 'last_checked', 'next_checked', 'check_frequency', 'error_count' ) list_filter = ('disabled', 'has_new_entries', 'check_frequency') actions = [ force_update_next, clear_errors, disable_feeds, enable_feeds ] admin.site.register(Feed, FeedAdmin) class EntryAdmin(admin.ModelAdmin): list_display = ( 'feed', 'title', 'added_to_subscribers', 'updated', 'published' ) list_filter = ('feed', 'added_to_subscribers') admin.site.register(Entry, EntryAdmin) class UserEntryAdmin(admin.ModelAdmin): list_display = ( 'user', 'feed', 'entry', 'status' ) list_filter = ('status', ) admin.site.register(UserEntry, UserEntryAdmin) ``` #### File: preader/reader/forms.py ```python from django import forms from .models import Feed class URLForm(forms.Form): url = forms.URLField(label='URL', max_length=255) class NewSubscriptionForm(forms.Form): feeds = forms.MultipleChoiceField(widget=forms.CheckboxSelectMultiple, label='URLs') def __init__(self, *args, **kwargs): feed_id_list = kwargs.pop('feed_id_list') super(NewSubscriptionForm, self).__init__(*args, **kwargs) self.fields['feeds'] = forms.MultipleChoiceField( choices=Feed.objects.filter(id__in=feed_id_list).values_list( 'id', 'feed_url'), widget=forms.CheckboxSelectMultiple, label='URLs' ) class NewFeedForm(forms.ModelForm): class Meta: model = Feed fields = ('feed_url', ) ``` #### File: preader/reader/models.py ```python from django.conf import settings from django.contrib.auth.models import User from django.db import models from django.db.models import Q from django.utils.http import http_date from django.utils.timezone import ( now, make_aware, make_naive, get_current_timezone ) from django_bleach.models import BleachField from bs4 import BeautifulSoup from model_utils import Choices from model_utils.managers import QueryManager from model_utils.models import TimeStampedModel from datetime import datetime, timedelta from time import mktime from urllib.parse import urljoin import hashlib import bleach import requests from speedparser import speedparser import email.utils as eut import re HEADERS = { 'User-Agent': getattr(settings, 'USER_AGENT', 'PReader 0.1') } FEED_TYPES = ( 'application/atom+xml', 'application/rss+xml', 'text/xml' ) BLEACH_TAGS = ['a', 'p', 'img', 'strong', 'em'] BLEACH_ATTRS = { '*': ['class'], 'a': ['href', 'rel'], 'img': ['src', 'alt'], } CURRENT_TZ = get_current_timezone() MAX_ERRORS = getattr(settings, 'MAX_ERRORS', 5) REQ_MAX_REDIRECTS = getattr(settings, 'MAX_REDIRECTS', 3) REQ_TIMEOUT = getattr(settings, 'TIMEOUT', 5.0) MAX_FEEDS = getattr(settings, 'MAX_FEEDS', 5) MAX_BULK_CREATE = getattr(settings, 'MAX_BULK_CREATE', 100) # stolen from http://code.activestate.com/recipes/363841-detect-character-encoding-in-an-xml-file/ xmlDec = r""" ^<\?xml # w/o BOM, xmldecl starts with <?xml at the first byte .+? # some chars (version info), matched minimal encoding= # encoding attribute begins ["'] # attribute start delimiter [^"']+ # every character not delimiter (not overly exact!) ["'] # attribute end delimiter .*? # some chars optionally (standalone decl or whitespace) \?> # xmldecl end """ XML_DECLARATION = re.compile(xmlDec, re.I | re.X) alphanum = re.compile(r'[\W_]+') class SimpleBufferObject(object): def __init__(self, model, max_items=None): if max_items is None: self.max = MAX_BULK_CREATE else: self.max = max_items self.buffer = list() self.count = 0 self.model = model def __enter__(self): return self def add(self, item): self.buffer.append(item) self.count += 1 if self.count >= self.max: self.purge() def purge(self): self.model.objects.bulk_create(self.buffer) del self.buffer self.buffer = list() self.count = 0 def __exit__(self, *args, **kwargs): self.purge() class Feed(TimeStampedModel): CHECK_FREQUENCY_CHOICES = Choices( (1, 'h', 'Every Hour'), (12, 'th', 'Every 12 Hours'), (24, 'd', 'Every Day') ) title = models.CharField(max_length=255) # required description = BleachField(blank=True) icon = models.URLField(blank=True) site_url = models.URLField(blank=True) feed_url = models.URLField(unique=True) # required disabled = models.BooleanField(db_index=True, default=False) last_checked = models.DateTimeField(null=True, blank=True) next_checked = models.DateTimeField(null=True, blank=True) check_frequency = models.PositiveSmallIntegerField( choices=CHECK_FREQUENCY_CHOICES, default=CHECK_FREQUENCY_CHOICES.h) error_count = models.PositiveSmallIntegerField(default=0) etag = models.CharField(max_length=255, blank=True) last_modified = models.DateTimeField(null=True, blank=True) subscriptions = models.ManyToManyField(User) objects = models.Manager() active = QueryManager(disabled=False, has_subscribers=True) has_subscribers = models.BooleanField(default=False) has_new_entries = models.BooleanField(default=False, db_index=True) def __str__(self): # pragma: no cover return self.title class Meta: ordering = ('-modified', '-created') def subscribe(self, user): self.subscriptions.add(user) UserEntry.subscribe_users(user, self) if not self.has_subscribers: self.has_subscribers = True self.save() def unsubscribe(self, user): self.subscriptions.remove(user) UserEntry.unsubscribe_users(user, self) if self.subscriptions.count() < 1: self.has_subscribers = False self.save() def is_subscribed(self, user): return self.subscriptions.filter(pk=user.pk).exists() def increment_error_count(self): self.error_count += 1 if self.error_count >= MAX_ERRORS: self.disabled = True def reset_error_count(self): self.error_count = 0 self.disabled = False @staticmethod def get_feeds_from_url(url): """ From URL, check if URL is a feed or if URL has feeds. Returns a list of Feed objects with feeds from URL """ feeds = [] # check if URL is already in database existing = Feed.objects.filter(feed_url=url) if existing: return [existing.first(), ] # not in database, check the URL via GET request req = requests.get( url, headers=HEADERS, allow_redirects=True ) if req.status_code == requests.codes.ok: req.encoding = 'utf-8' # sometimes content types have extra text, get rid of ';' content_type = req.headers.get('content-type', None) if ';' in content_type: content_type = content_type.split(';')[0] # is this URL a feed? if content_type in FEED_TYPES: feed, created = Feed.objects.get_or_create(feed_url=req.url, defaults={'title': 'no title yet'}) return [feed, ] # no feed, check for feeds in head html = BeautifulSoup(req.text, 'lxml') if html.head is not None: for feed_type in FEED_TYPES: feed_count = 0 for link in html.head.find_all(type=feed_type): feed_url = urljoin(req.url, link.get('href')) feed, created = Feed.objects.get_or_create( feed_url=feed_url, defaults={'title': 'no title yet'} ) feeds.append(feed) feed_count += 1 if feed_count >= MAX_FEEDS: break return feeds return feeds @staticmethod def update_feeds(num=10): with SimpleBufferObject(Entry) as new_entry_buffer: current_time = now() # get all active feeds with subscribers that have not been checked or need to be checked based # on "next_checked" feeds = Feed.active.filter(Q(next_checked=None) | Q(next_checked__lte=current_time))[:num] for feed in feeds: # update last checked to current time feed.last_checked = now() # set "next_checked" based on "check_frequency" feed.next_checked = feed.last_checked + timedelta(hours=feed.check_frequency) # create new FeedLog object log = FeedLog(feed=feed) notes = [] # load conditional GET headers from feed object headers = HEADERS if feed.etag and feed.etag != '': headers['If-None-Match'] = feed.etag if feed.last_modified: last_modified = make_naive(feed.last_modified) headers['If-Modified-Since'] = http_date(last_modified.timestamp()) try: req = requests.get(feed.feed_url, headers=headers, allow_redirects=True) log.status_code = req.status_code log.headers = ', '.join("{!s}={!r}".format(key, val) for (key, val) in headers.items()) log.headers += "--\n" log.headers += ', '.join("{!s}={!r}".format(key, val) for (key, val) in req.headers.items()) notes.append('updating {0}'.format(feed)) # update feed URL if redirected or altered if (req.url != feed.feed_url) and (req.history[-1].status_code == 301): # if updated feed URL already exists, something is wrong if Feed.objects.filter(feed_url=req.url).exists(): feed.disabled = True notes.append( 'Feed URL does not match response, \ but new feed already exists with {0}.'.format(req.url) ) else: notes.append('Updating feed url from {0} to {1}.'.format(feed.feed_url, req.url)) feed.feed_url = req.url if req.status_code == requests.codes.not_modified: notes.append('not modified') elif req.status_code == requests.codes.ok: notes.append('status OK, parsing') # update conditional GET data feed.etag = alphanum.sub('', req.headers.get('etag', '')) feed.last_modified = parse_http_date( req.headers.get('last-modified', None), default=feed.last_checked) # must remove encoding declaration from feed or lxml will pitch a fit text = XML_DECLARATION.sub('', req.text, 1) parsed = speedparser.parse(text, encoding=req.encoding) # bozo feed if parsed.bozo == 1: notes.append('bozo feed') notes.append(parsed.bozo_tb) feed.increment_error_count() else: # update feed meta data, reset error count feed.reset_error_count() feed.title = parsed.feed.get('title', feed.title) feed.title = shorten_string(feed.title) feed.description = parsed.feed.get('description', parsed.feed.get('subtitle', None)) # icon/logo are not working in speedparser # feed.icon = parsed.feed.get('logo', feed.icon) # get latest existing entry for feed try: latest_entry = feed.entry_set.latest() except Entry.DoesNotExist: latest_entry = None for count, entry in enumerate(parsed.entries): published = feed_datetime( entry.get('published_parsed', entry.get('updated_parsed', None)), default=feed.last_checked ) # only proceed if entry is newer than last # entry for feed if latest_entry is None or published > latest_entry.published: # entry ID is a hash of the link or entry id entry_id = hashlib.sha1(entry.get('id', entry.link).encode('utf-8')).hexdigest() author = bleach.clean( entry.get('author', 'no author'), strip=True, strip_comments=True) author = shorten_string(author) content = None content_items = entry.get('content', None) if content_items is None: content = entry.get('summary', 'No summary.') else: for c in content_items: if c.get('type', None) in ('text', 'html', 'xhtml', None): if content is None: content = c.get('value', '') else: content += c.get('value', '') content = bleach.clean( content, tags=BLEACH_TAGS, attributes=BLEACH_ATTRS, strip=True, strip_comments=True) title = bleach.clean( entry.get('title', 'no title'), strip=True, strip_comments=True) title = shorten_string(title) new_entry_buffer.add( Entry( feed=feed, entry_id=entry_id, link=entry.get('link', ''), title=title, author=author, content=content, published=published, updated=feed_datetime(entry.get('updated_parsed', None), default=feed.last_checked) ) ) log.entries += 1 else: break if log.entries > 0: feed.has_new_feeds = True else: notes.append('error: {0}'.format(req.status_code)) feed.increment_error_count() except requests.exceptions.Timeout: # pragma: no cover log.notes = 'timeout error' feed.increment_error_count() except requests.exceptions.ConnectionError: # pragma: no cover log.notes = 'connection error' feed.increment_error_count() except requests.exceptions.HTTPError: # pragma: no cover log.notes = 'HTTP error' feed.increment_error_count() except requests.exceptions.TooManyRedirects: # pragma: no cover log.notes = 'too many redirects' feed.increment_error_count() log.notes = '\n'.join(notes) duration = now() - feed.last_checked log.duration = duration.microseconds feed.save() log.save() def shorten_string(string, max_len=255, end='...'): if len(string) >= max_len: reduce = max_len - len(end) return string[:reduce] + end return string def feed_datetime(timetuple, allow_none=False, default=None): """ Feed Datetime Utility for getting python datetime from entries. Converts a timetuple (if not None) to a timezone aware python datetime object. :param timetuple: timetuple if timetuple exists in entry element :param allow_none: should None be returned if now datetime object exists? If allow_none is true and no timetuple or default exists, return the current datetime :param default: if timetuple is none, use this value :return: a timezone aware python datetime object """ if timetuple is None: if default is None: if allow_none: return None return now() return default r = datetime.fromtimestamp(mktime(timetuple)) return make_aware(r, CURRENT_TZ) def parse_http_date(http_date_str, default=None): """ Parse HTTP Date Parses an RFC1123 date string and returns a datetime object Example: Sun, 06 Nov 1994 08:49:37 GMT :param http_date_str: :param default: Python Datetime to return if http_date_str is None :return: """ if not http_date_str: return default return datetime.fromtimestamp(mktime(eut.parsedate(http_date_str))) class Entry(models.Model): feed = models.ForeignKey(Feed) entry_id = models.CharField(max_length=40) link = models.URLField(max_length=2083) title = models.CharField(max_length=255) author = models.CharField(max_length=255, blank=True) content = BleachField() updated = models.DateTimeField(blank=True) published = models.DateTimeField(db_index=True) added_to_subscribers = models.BooleanField(default=False, db_index=True) class Meta: ordering = ('-published', '-updated') get_latest_by = 'published' verbose_name_plural = 'entries' def __str__(self): # pragma: no cover return '{0}: {1}'.format(self.feed, self.entry_id) class UserEntry(models.Model): UNREAD = 'u' READ = 'r' SAVED = 's' STATUS = ( (UNREAD, 'Unread'), (READ, 'Read'), (SAVED, 'Saved'), ) user = models.ForeignKey(User) feed = models.ForeignKey(Feed) entry = models.ForeignKey(Entry) status = models.CharField(max_length=1, choices=STATUS, default=UNREAD) objects = models.Manager() read = QueryManager(status=READ) saved = QueryManager(status=SAVED) unread = QueryManager(status=UNREAD) class Meta: verbose_name = 'User Entry' verbose_name_plural = 'User Entries' @staticmethod def update_subscriptions(): """ Add New Entries For all feeds with new_entries flag, get all subscribers and feeds with added_to_subscribers flag false. For each subscriber, add to bulk create buffer a new UserEntry object. Update flags on entries and feeds. """ with SimpleBufferObject(UserEntry) as user_entry_object_buffer: feeds = Feed.active.filter(has_new_entries=True) for feed in feeds: entries = feed.entry_set.filter(added_to_subscribers=False).only('id') if entries: subscribers = feed.subscriptions.all() for subscriber in subscribers: for entry in entries: user_entry_object_buffer.add( UserEntry(user=subscriber, feed=feed, entry=entry) ) entries.update(added_to_subscribers=True) feed.has_new_entries = False feed.save() @staticmethod def subscribe_users(users, feed): if not hasattr(users, '__iter__'): users = (users, ) user_entry_object_buffer = SimpleBufferObject(UserEntry) for user in users: entries = feed.entry_set.filter(added_to_subscribers=True).only('id') if entries: for entry in entries: user_entry_object_buffer.add( UserEntry(user=user, feed=feed, entry=entry) ) user_entry_object_buffer.purge() @staticmethod def unsubscribe_users(users, feed): if not hasattr(users, '__iter__'): users = (users, ) UserEntry.objects.filter(user__in=users, feed=feed).delete() class FeedLog(models.Model): feed = models.ForeignKey(Feed, editable=False) status_code = models.PositiveSmallIntegerField(null=True, blank=True) headers = models.TextField(blank=True) notes = models.TextField(blank=True) duration = models.PositiveIntegerField() datetime = models.DateTimeField(auto_now_add=True) entries = models.PositiveIntegerField(default=0) class Meta: verbose_name = 'Feed Log' verbose_name_plural = 'Feed Logs' def __str__(self): # pragma: no cover return '{0} ({1}) on {2}'.format(self.feed, self.status_code, self.datetime) ```
{ "source": "jobscry/soc-analyst", "score": 3 }
#### File: soc-analyst/analyst/config.py ```python from aumbry import Attr, YamlConfig class DatabaseConfig(YamlConfig): __mapping__ = {"file_path": Attr("file_path", str)} connection = "" class AppConfig(YamlConfig): __mapping__ = { "db": Attr("db", DatabaseConfig), "gunicorn": Attr("gunicorn", dict), "version": Attr("version", str), "asn_path": Attr("asn_path", str), "geo_path": Attr("geo_path", str) } def __init__(self): self.db = DatabaseConfig() self.gunicorn = {} self.version = None self.asn_path = None self.geo_path = None ``` #### File: soc-analyst/analyst/__main__.py ```python import sys import aumbry from docopt import docopt from gunicorn.app.base import BaseApplication from gunicorn.workers.sync import SyncWorker from analyst.app import AnalystService from analyst.config import AppConfig class CustomWorker(SyncWorker): def handle_quit(self, sig, frame): self.app.application.stop(sig) super(CustomWorker, self).handle_quit(sig, frame) def run(self): self.app.application.start() super(CustomWorker, self).run() class GunicornApp(BaseApplication): """ Custom Gunicorn application This allows for us to load gunicorn settings from an external source """ def __init__(self, app, options=None): self.options = options or {} self.application = app super(GunicornApp, self).__init__() def load_config(self): for key, value in self.options.items(): self.cfg.set(key.lower(), value) self.cfg.set("worker_class", "analyst.__main__.CustomWorker") def load(self): return self.application def main(): # docopt(__doc__) cfg = aumbry.load( aumbry.FILE, AppConfig, {"CONFIG_FILE_PATH": "./etc/analyst/config.yml"} ) api_app = AnalystService(cfg) gunicorn_app = GunicornApp(api_app, cfg.gunicorn) gunicorn_app.run() if __name__ == "__main__": sys.exit(main()) ``` #### File: analyst/middleware/cors.py ```python class CORSComponentMiddleware: # https://falcon.readthedocs.io/en/stable/user/faq.html#how-do-i-implement-cors-with-falcon def process_response(self, req, resp, resource, req_succeeded): resp.set_header("Access-Control-Allow-Origin", "*") if ( req_succeeded and req.method == "OPTIONS" and req.get_header("Access-Control-Request-Method") ): # NOTE(kgriffs): This is a CORS preflight request. Patch the # response accordingly. allow = resp.get_header("Allow") resp.delete_header("Allow") allow_headers = req.get_header( "Access-Control-Request-Headers", default="*" ) resp.set_headers( ( ("Access-Control-Allow-Methods", allow), ("Access-Control-Allow-Headers", allow_headers), ("Access-Control-Max-Age", "86400"), # 24 hours ) ) ``` #### File: analyst/middleware/json.py ```python import falcon class RequireJSONMiddleware: """ Require JSON Middleware Ensure each requests is expecting a JSON response. Check HTTP Header `Accept` """ def process_request(self, req: falcon.Request, resp: falcon.Response): if not req.client_accepts_json: raise falcon.HTTPNotAcceptable( "This API only accepts responses encoded as JSON." ) ``` #### File: analyst/models/manager.py ```python from peewee import * from analyst.models.user import User from analyst.models.iplist import ListItem, IPList, IPListItem class DBManager: def __init__(self, db_path: str, db_classes: list = [User, ListItem, IPList, IPListItem]): self.db_path = db_path self.db_classes = db_classes self.db = None def setup(self): self.db = SqliteDatabase(self.db_path) self.db.bind(self.db_classes) self.db.create_tables(self.db_classes) ``` #### File: analyst/resources/users.py ```python import falcon from falcon.media.validators.jsonschema import validate from peewee import DoesNotExist, IntegrityError from analyst.models.user import User, create_user from analyst.resources import BaseResource, check_permission from analyst.schemas import load_schema class UsersResource(BaseResource): def on_get(self, req: falcon.Request, resp: falcon.Response, username: str = None): if username is None: if not req.context["user"].is_admin: raise falcon.HTTPForbidden( "Forbidden", "Insufficient privileges for operation." ) user = User.select( User.username, User.is_active, User.is_admin, User.is_manager, User.created_on, ) resp.media = {"users": list(user.dicts())} else: user = User.get_or_404(User.username == username) if not req.context["user"].is_admin and req.context["user"].id != user.id: raise falcon.HTTPForbidden( "Forbidden", "Insufficient privileges for operation." ) resp.media = { "user": user.to_dict( ["username", "is_active", "is_admin", "is_manager", "created_on"] ) } @check_permission(lambda user: user.is_admin) @validate(load_schema("create_user")) def on_post(self, req: falcon.Request, resp: falcon.Response, username: str = None): username = req.media.get("username", None) password = req.media.get("password", None) is_admin = req.media.get("is_admin", False) is_manager = req.media.get("is_manager", False) is_active = req.media.get("is_active", True) try: create_user(username, password, is_admin, is_manager, is_active) resp.status = falcon.HTTP_201 resp.media = {"status": "Success", "message": "New user created."} except IntegrityError: raise falcon.HTTPBadRequest("Bad Request", "Username already exists.") @validate(load_schema("update_user")) def on_put(self, req: falcon.Request, resp: falcon.Response, username: str = None): user = User.get_or_404(User.username == username) if not req.context["user"].is_admin and req.context["user"].id != user.id: raise falcon.HTTPForbidden( "Forbidden", "Insufficient privileges for operation." ) is_admin = req.media.get("is_admin", None) is_manager = req.media.get("is_manager", None) is_active = req.media.get("is_active", None) if req.context["user"].id == user.id and ( is_admin is not None or is_manager is not None or is_active is not None ): raise falcon.HTTPForbidden("Forbidden", "Can not modifiy own attributes.") password = req.media.get("password", None) if password is not None: user.set_password(password) if is_admin is not None: user.is_admin = is_admin if is_manager is not None: user.is_manager = is_manager if is_active is not None: user.is_active = is_active user.save() resp.media = {"status": "Success", "message": "User updated."} @check_permission(lambda user: user.is_admin) def on_delete( self, req: falcon.Request, resp: falcon.Response, username: str = None ): user = User.get_or_404(User.username == username) if req.context["user"].id == user.id: raise falcon.HTTPBadRequest("Bad Request", "Can not delete self.") user.delete_instance() resp.media = {"status": "Success", "message": "User deleted."} class InitResource(BaseResource): """ Initialize Resource Creates a single admin user. Only cllable if no admin user exits. """ auth = {"auth_disabled": True} @validate(load_schema("create_user_init")) def on_post(self, req: falcon.Request, resp: falcon.Response): if User.select().where(User.is_admin).count() > 0: raise falcon.HTTPBadRequest("Bad Request", "App already initialized.") token = create_user( username=req.media.get("username"), password=req.media.get("password"), is_admin=True, ) resp.status = falcon.HTTP_201 resp.media = { "status": "Success", "token": token, "message": "First admin user created.", } ``` #### File: soc-analyst/tests/test_resources_asn.py ```python import pytest from tests import client, superuser import json def test_asn_post_ok(client, superuser): resp = client.simulate_post( "/api/test/asn", headers={"Authorization": f"Token {superuser}"}, json={"ips": ["1.1.1.1"]}, ) assert resp.status_code == 200 assert len(resp.json) == 1 def test_asn_get_notfound(client, superuser): resp = client.simulate_get( "/api/test/asn", headers={"Authorization": f"Token {superuser}"} ) assert resp.status_code == 404 def test_asn_get_found(client, superuser): resp = client.simulate_get( "/api/test/asn/1.1.1.1", headers={"Authorization": f"Token {superuser}"} ) assert resp.status_code == 200 assert "ip" in resp.json ```
{ "source": "jobscry/vuln_manager", "score": 2 }
#### File: vuln_manager/cpes/views.py ```python from django.db.models import Count from django.core.paginator import EmptyPage, PageNotAnInteger from django.core.urlresolvers import reverse from django.conf import settings from django.contrib import messages from django.contrib.auth.decorators import login_required from django.http import Http404 from django.shortcuts import ( redirect, render_to_response, get_list_or_404, get_object_or_404 ) from django.template import RequestContext from django.utils.http import urlquote, urlunquote from core.pagination import Pages from cves.models import Alert from .models import Item, Watch import re PER_PAGE = getattr(settings, 'MAX_PER_PAGE', 100) ALLOWED_CHARS = re.compile( r'[a-zA-Z0-9\-"\'`\|~!@#\$%\^&\'\*\(\)_\[\]{};:,\.<>=\+]+"' ) def get_part(request): part = request.GET.get('part', None) if not part in ('a', 'o', 'h'): part = 'a' return part def get_val(request, val): val = urlunquote(request.GET.get(val, None)) if val is not None: val = re.sub(ALLOWED_CHARS, '', val) return val def index(request, level='part'): part = None if level == 'part': item_list = Item.objects.values('part').order_by('part').annotate( count=Count('vendor')) q_dict = {} next_level = 'vendor' part = None vendor = None elif level == 'vendor': part = get_part(request) item_list = Item.objects.filter(part=part).values( 'vendor').order_by('vendor').annotate(count=Count('product')) q_dict = {'part': part} next_level = 'product' vendor = None elif level == 'product': part = get_part(request) vendor = get_val(request, 'vendor') q_dict = { 'part': part, 'vendor': vendor } if not Item.objects.filter(part=part, vendor=vendor).exists(): raise Http404("No products exist.") item_list = Item.objects.filter( part=part, vendor=vendor).values( 'product').order_by('product').annotate(count=Count('id')) next_level = None paginator = Pages(item_list.all(), PER_PAGE) page = int(request.GET.get('page', 1)) try: objects = paginator.pages.page(page) except PageNotAnInteger: objects = paginator.pages.page(1) except EmptyPage: objects = paginator.pages.page(paginator.pages.num_pages) new_objects = [] for obj in objects: new_objects.append({ 'obj': obj.get(level), 'count': obj.get('count'), 'url': urlquote(obj.get(level), safe=None) }) objects.object_list = new_objects return render_to_response( 'cpes/index.html', RequestContext( request, { 'part': part, 'vendor': vendor, 'objects': objects, 'level': level, 'q_dict': q_dict, 'next_level': next_level, 'pages': paginator.pages_to_show(page) } ) ) def version_index(request): part = get_part(request) vendor = get_val(request, 'vendor') product = get_val(request, 'product') if part is None or vendor is None or product is None: raise Http404('No product found.') objects = get_list_or_404(Item.objects.only( 'part', 'vendor', 'product', 'pk', 'cpe23_wfn' ), part=part, vendor=vendor, product=product) q_dict = { 'part': part, 'vendor': vendor, 'product': product } can_watch = request.user.is_authenticated() has_watch = None if can_watch: has_watch = Watch.objects.filter(**q_dict).filter( users=request.user).exists() return render_to_response( 'cpes/version_index.html', RequestContext( request, { 'part': part, 'vendor': vendor, 'product': product, 'objects': objects, 'q_dict': q_dict, 'can_watch': can_watch, 'has_watch': has_watch } ) ) @login_required def watch_toggle(request): part = get_part(request) vendor = get_val(request, 'vendor') product = get_val(request, 'product') if part is None or vendor is None or product is None: raise Http404('No product found.') w, created = Watch.objects.get_or_create( part=part, vendor=vendor, product=product ) if created: w.users.add(request.user) messages.success(request, 'Watch created') else: if w.users.filter(pk=request.user.pk).exists(): w.users.remove(request.user) messages.warning(request, 'Watch removed') else: w.users.add(request.user) messages.success(request, 'Watch created') return redirect( '{0}?part={1}&vendor={2}&product={3}'.format( reverse('cpes:version_index'), urlquote(part), urlquote(vendor), urlquote(product) ) ) ``` #### File: management/commands/load_CVE_feed.py ```python from django.core.management.base import BaseCommand from django.conf import settings from django.utils.timezone import now from cpes.models import Item from cpes.management.commands.utils import get_remote_dict, fast_iter from cves.models import ( VulnerabilityDictionary as Dictionary, Vulnerability, Alert ) from .utils import ( Updater, get_xpath, get_xpath_date, get_refrences, get_vuln_item, FEED_SCHEMA ) from os.path import join from lxml import etree import time FULL_CVSS_URL = getattr( settings, 'FULL_CVSS_URL', 'https://nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2015.xml.gz' ) MODIFIED_CVSS_URL = getattr( settings, 'MODIFIED_CVSS_URL', 'https://nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-Modified.xml.gz' ) def parse_cves_full(element, updater): updater.add_item( Item.objects.filter( cpe22_wfn__in=get_xpath( element, 'a:vulnerable-software-list/a:product/text()' ) ).values_list('pk', flat=True), Vulnerability( cve_id=element.get('id'), published=get_xpath_date( element, 'a:published-datetime/text()'), modified=get_xpath_date( element, 'a:last-modified-datetime/text()'), cwe=get_xpath(element, 'a:cwe/@id', False), summary=get_xpath(element, 'a:summary/text()', False), references=[x for x in get_refrences( get_xpath(element, 'a:references/a:reference'))], cvss_base_score=get_xpath( element, 'a:cvss/b:base_metrics/b:score/text()', False), cvss_access_vector=get_xpath( element, 'a:cvss/b:base_metrics/b:access-vector/text()', False ), cvss_access_complexity=get_xpath( element, 'a:cvss/b:base_metrics/b:access-complexity/text()', False ), cvss_authentication=get_xpath( element, 'a:cvss/b:base_metrics/b:authentication/text()', False ), cvss_confidentiality_impact=get_xpath( element, 'a:cvss/b:base_metrics/b:confidentiality-impact/text()', False ), cvss_integrity_impact=get_xpath( element, 'a:cvss/b:base_metrics/b:integrity-impact/text()', False ), cvss_availability_impact=get_xpath( element, 'a:cvss/b:base_metrics/b:availability-impact/text()', False ), cvss_generated=get_xpath_date( element, 'a:cvss/b:base_metrics/b:generated-on-datetime/text()' ), dictionary=updater.update_obj ) ) def parse_cves_update(element, updater): published = get_xpath_date(element, 'a:published-datetime/text()') modified = get_xpath_date(element, 'a:last-modified-datetime/text()') if published > updater.latest or \ (modified is not None and modified > updater.latest): cve_id = element.get('id') try: cve = Vulnerability.objects.get(cve_id=cve_id) if modified > cve.modified: cve.__dict__.update( get_vuln_item( element, cve_id, published, modified, updater ) ) cve.save() cve.cpes.clear() items = Item.objects.filter( cpe22_wfn=get_xpath( element, 'a:vulnerable-software-list/a:product/text()' ) ).values_list('pk', flat=True) cve.cpes.add(*list(items)) updater.increment('num_updated') else: updater.increment('num_not_updated') except Vulnerability.DoesNotExist: updater.add_item( Item.objects.filter( cpe22_wfn__in=get_xpath( element, 'a:vulnerable-software-list/a:product/text()' ) ).values_list('pk', flat=True), Vulnerability( **get_vuln_item( element, cve_id, published, modified, updater ) ) ) else: updater.increment('num_not_updated') class Command(BaseCommand): args = '<cve_file_name>' help = 'Populates/Updates the CVE Database' def add_arguments(self, parser): parser.add_argument( '--full', action='store_true', dest='full', default=False, help='Full database update?') def handle(self, *args, **options): self.verbosity = options.get('verbosity') current_date = now() file_path = join( getattr(settings, 'MEDIA_ROOT', ''), 'data', 'cvss-dict-%s.xml.gz' % (current_date.strftime('%Y%m%d')) ) if options['full']: url = FULL_CVSS_URL else: url = MODIFIED_CVSS_URL try: d = Dictionary.objects.latest() self.stdout.write( 'Previous dictionary found with date: %s' % d.last_modified) is_created, new_created, new_etag = get_remote_dict( url, file_path, d.last_modified, d.etag or None, self.verbosity, self.stdout ) except Dictionary.DoesNotExist: if self.verbosity >= 2: self.stdout.write('No previous dictionary found.') is_created, new_created, new_etag = get_remote_dict( url, file_path, None, None, self.verbosity, self.stdout ) if is_created: file_path = file_path[:-3] update = Dictionary.objects.create( dictionary_file=file_path, start=float(time.time()), last_modified=new_created, etag=new_etag ) updater = Updater(update, Vulnerability) if self.verbosity >= 2: self.stdout.write('Count fields are %s' % ', '.join( updater.count_fields.keys() )) self.stdout.write('Parsing ' + file_path) context = etree.iterparse( file_path, events=('end', ), tag=FEED_SCHEMA + 'entry') if options['full']: if self.verbosity >= 2: self.stdout.write('Full database populate.') fast_iter(context, parse_cves_full, updater) else: if self.verbosity >= 2: self.stdout.write('Database update only.') fast_iter(context, parse_cves_update, updater) updater.save() if self.verbosity >= 2: self.stdout.write('Done parsing.') update.num_updated = updater.get_count('num_updated') update.num_items = updater.total update.num_not_updated = updater.get_count('num_not_updated') update.duration = float(time.time()) - update.start update.save() ```
{ "source": "jobscry/vz-blog", "score": 2 }
#### File: vz-blog/posts/admin.py ```python from django.contrib import admin from posts.models import Post from posts.forms import PostAdminForm class PostAdmin(admin.ModelAdmin): class Media: css = { 'all': ( "js/markitup/skins/markitup/style.css", "js/markitup/sets/markdown/style.css" ) } js = ( "js/jquery.js", "js/markitup/jquery.markitup.pack.js", "js/markitup/sets/markdown/set.js" "js/markitup.js" ) form = PostAdminForm list_display = ('title', 'author', 'is_published', 'published_on', 'created_on') prepopulated_fields = {"slug": ("title",)} list_filter = ('author', 'is_published') search_fields = ['title', 'body', 'is_published',] exclude = ('author', ) date_hierarchy = 'published_on' save_on_top = True fieldsets = ( (None, { 'fields': ('title', 'slug', 'tags', 'body') }), ('Publishing Options', { 'fields': ('is_published', 'published_on', 'update_pingbacks') }), ) def save_model(self, request, obj, form, change): obj.author = request.user obj.save() admin.site.register(Post, PostAdmin) ``` #### File: vz-blog/utils/pingback.py ```python __author__ = "<NAME> <<EMAIL>>" __date__ = "2003-01-26" __version__ = "2003.01.26.01" import re import urllib2 import xmlrpclib from HTMLParser import HTMLParser def _reSTLinks(txt): reSTLink = re.compile("\n\\.\\.\\s+[^\n:]+:\s+(http://[^\n]+)", re.I) linkMatches = reSTLink.findall(txt) return linkMatches class _LinkExtractor(HTMLParser, object): def __init__(self, links): super(_LinkExtractor, self).__init__() self.links = links def handle_starttag(self, tag, attrs): if tag == "a": for key, value in attrs: if key == "href" and value.startswith("http://"): self.links.append(value) def _htmlLinks(txt): links = [] le = _LinkExtractor(links) le.feed(txt) le.close() return links def _htmlPingbackURI(fileObj): """Given an interable object returning text, search it for a pingback URI based upon the search parameters given by the pingback specification. Namely, it should match the regex: <link rel="pingback" href="([^"]+)" ?/?> (source: http://www.hixie.ch/specs/pingback/pingback) We could search the text using an actual HTML parser easily enough, or expand the regex to be a little more forgiving, but for the moment we'll follow the spec.""" regex = re.compile('<link rel="pingback" href="([^"]+)" ?/?>', re.I) # might as well be case-insensitive for line in fileObj: m = regex.search(line) if m != None: uri = m.group(1) # The pingback spec demands we expand the four allowed entities, # but no more. uri = uri.replace("&lt;", "<") uri = uri.replace("&gt;", ">") uri = uri.replace("&quot;", '"') uri = uri.replace("&amp;", "&") return uri return None def _determinePingbackURI(uri): """Attempt to determine the pingback URI of the given url object. First we try to find the X-Pingback server header, and then we resort to messier means if necessary. See _htmlPingbackURI for those means.""" try: pingbackURI = uri.info()['X-Pingback'] return pingbackURI except KeyError: return _htmlPingbackURI(uri) def _performXMLRPCQuery(sourceURI, targetURI, serverURI): rpcserver = xmlrpclib.ServerProxy(serverURI) rpcserver.pingback.ping(sourceURI, targetURI) def pingback(sourceURI, targetURI): """Attempts to notify the server of targetURI that sourceURI refers to it.""" url = urllib2.urlopen(targetURI) pingback = _determinePingbackURI(url) if pingback == None: return _performXMLRPCQuery(sourceURI, targetURI, pingback) def autoPingback(sourceURI, reST = None, HTML = None): """Scans the input text, which can be in either reStructuredText or HTML format, pings every linked website for auto-discovery-capable pingback servers, and does an appropriate pingback. The following specification details how this code should work: http://www.hixie.ch/specs/pingback/pingback""" assert reST != None or HTML != None if reST != None: links = _reSTLinks(reST) else: links = _htmlLinks(HTML) for link in links: pingback(sourceURI = sourceURI, targetURI = link) ```
{ "source": "jobsfan/pytorch", "score": 3 }
#### File: pytorch/liuer/12-5.py ```python import torch num_class = 4 input_size = 4 hidden_size = 8 embedding_size = 10 num_layers = 2 batch_size = 1 seq_len = 5 idx2char = ['e', 'h', 'l', 'o'] x_data = [[1, 0, 2, 2, 3]] # (batch, seq_len) y_data = [3, 1, 2, 3, 2] # (batch * seq_len) inputs = torch.LongTensor(x_data) labels = torch.LongTensor(y_data) class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.emb = torch.nn.Embedding(input_size, embedding_size) self.rnn = torch.nn.RNN(input_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = torch.nn.Linear(hidden_size, num_class) def forward(self, x): hidden = torch.zeros(num_layers, x.size(0), hidden_size) x = self.emb(x) # (batch, seqlen, embeddingsize) x, _ = self.rnn(x, hidden) x = self.fc(x) return x.view(-1, num_class) net = Model() criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(net.parameters(), lr=0.05) for epoch in range(15): optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() _, idx = outputs.max(dim=1) idx = idx.data.numpy() print('Predicted: ', ''.join([idx2char[x] for x in idx]), end='') print(', Epoch [%d/15] loss = %.3f' % (epoch+1, loss.item())) ``` #### File: pytorch/liuer/8.py ```python import torch from torch.utils.data import Dataset from torch.utils.data import DataLoader import numpy as np class DiabetesDataset(Dataset): def __init__(self,filepath): xy = np.loadtxt(filepath,delimiter=',',dtype=np.float32) self.len = xy.shape[0] self.x_data = torch.from_numpy(xy[:,:-1]) self.y_data = torch.from_numpy(xy[:,[-1]]) def __getitem__(self, index): return self.x_data[index],self.y_data[index] def __len__(self): return self.len dataset = DiabetesDataset('diabetes.csv.gz') train_loader = DataLoader(dataset=dataset,batch_size=32,shuffle=True,num_workers=2) class Model(torch.nn.Module): def __init__(self): super(Model,self).__init__() self.linear1 = torch.nn.Linear(10,8) self.linear2 = torch.nn.Linear(8,6) self.linear3 = torch.nn.Linear(6,4) self.linear4 = torch.nn.Linear(4,1) self.sigmoid = torch.nn.Sigmoid() def forward(self,x): x = self.sigmoid(self.linear1(x)) x = self.sigmoid(self.linear2(x)) x = self.sigmoid(self.linear3(x)) x = self.sigmoid(self.linear4(x)) return x model = Model() criterion = torch.nn.BCELoss(reduction='mean') optimizer = torch.optim.SGD(model.parameters(),lr=0.1) for epoch in range(100): for i,data in enumerate(train_loader,0): inputs,labels = data y_pred = model(inputs) loss = criterion(y_pred,labels) print(epoch,i,loss.item()) optimizer.zero_grad() loss.backward() optimizer.step() ``` #### File: pytorch/liuer/9-2.py ```python import torch from torchvision import transforms from torchvision import datasets from torch.utils.data import DataLoader import torch.nn.functional as F import torch.optim as optim batch_size = 64 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,),(0.3081,)) ]) train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True,download=True,transform=transform) train_loader = DataLoader(train_dataset, shuffle=True,batch_size=batch_size) test_dataset = datasets.MNIST(root='../dataset/mnist/',train=False,download=True,transform=transform) test_loader = DataLoader(test_dataset,shuffle=False,batch_size=batch_size) class Net(torch.nn.Module): def __init__(self): super(Net,self).__init__() self.l1 = torch.nn.Linear(784,512) self.l2 = torch.nn.Linear(512,256) self.l3 = torch.nn.Linear(256,128) self.l4 = torch.nn.Linear(128,64) self.l5 = torch.nn.Linear(64,10) def forward(self,x): x = x.view(-1,784) x = F.relu(self.l1(x)) x = F.relu(self.l2(x)) x = F.relu(self.l3(x)) x = F.relu(self.l4(x)) return self.l5(x) model = Net() criterion = torch.nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(),lr=0.01,momentum=0.5) def train(epoch): running_loss = 0.0 for batch_idx, data in enumerate(train_loader,0): inputs, target = data optimizer.zero_grad() # forward + backward + update outputs = model(inputs) loss = criterion(outputs,target) loss.backward() optimizer.step() running_loss += loss.item() if batch_idx % 300 == 299: print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300)) running_loss = 0.0 def test(): correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data,dim=1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy on test set: %d %%' % (100 * correct / total)) if __name__ == '__main__': for epoch in range(10): train(epoch) test() ```
{ "source": "jobsifpb/jobs", "score": 2 }
#### File: modules/board/models.py ```python from django.db import models from django.contrib.auth.models import User from django.core.validators import MaxValueValidator, MinValueValidator class Job(models.Model): ''' Modelo que representa as vagas cadastradas ''' title = models.CharField(max_length=255) description = models.TextField() salary_min = models.DecimalField(max_digits=10, decimal_places=2) salary_max = models.DecimalField(max_digits=10, decimal_places=2) workload = models.PositiveIntegerField(validators =[MinValueValidator(0), MaxValueValidator(45)]) validity = models.DateTimeField() open_job = models.BooleanField(default=True) internal_job = models.BooleanField(default=False) author = models.ForeignKey(User) featured = models.BooleanField(default=False) class Meta: verbose_name = 'Vaga' verbose_name_plural = 'Vagas' def __str__(self): return self.title ``` #### File: board/tests/tests.py ```python from django.test import TestCase from django.test import Client from django.core.urlresolvers import reverse from model_mommy import mommy from modules.board.models import Job class HomeTest(TestCase): ''' Tests of board home view ''' def setUp(self): self.job = mommy.make(Job, title='Vaga de estágio') self.response_home = self.client.get(reverse('home')) self.cliente = Client() def test_home_response_200(self): self.assertEqual(self.response_home.status_code, 200) def test_home_context_with_one_job(self): self.assertEqual(len(self.response_home.context['jobs']), 1) class JobTest(TestCase): ''' Tests of board models ''' def setUp(self): self.job = mommy.make(Job, title='Vaga de estágio') def test_create_job(self): self.assertEqual(self.job.__str__(), 'Vaga de estágio') ``` #### File: modules/board/views.py ```python from django.shortcuts import render from django.http import HttpResponse from .forms import JobForm from .models import Job def home(request): ''' Home page of our board It show a list of Positions in IFPB or other companies ''' user = request.user jobs = Job.objects.all() return render(request, 'home.html', locals()) ```
{ "source": "jobsta/albumapp-flask", "score": 2 }
#### File: app/views/album.py ```python import datetime import json from app.models import db from app.models.utils import create_album_report_template, get_menu_items, json_default from flask import abort, Blueprint, redirect, render_template, Response, request, url_for from flask import current_app as app from flask_babel import _ from sqlalchemy import func, select album_bp = Blueprint('album', __name__, url_prefix='/album') @album_bp.route('/data/') def data(): """Returns available albums from the database. Can be optionally filtered by year. This is called from templates/album/index.html when the year input is changed. """ year = request.args.get('year') if year: try: year = int(year) except (ValueError, TypeError): abort(400, 'invalid year parameter') else: year = None return json.dumps(get_albums(year), default=json_default) @album_bp.route('/edit/') @album_bp.route('/edit/<int:album_id>') def edit(album_id=None): """Shows an edit form to add new or edit an existing album.""" db_engine = db.get_db() rv = dict() rv['menu_items'] = get_menu_items('album') if album_id: album = db_engine.execute( select([db.album]).where(db.album.c.id == album_id)).fetchone() if not album: redirect(url_for('album.index')) rv['is_new'] = False rv['album'] = json.dumps(dict(album)) else: rv['is_new'] = True rv['album'] = json.dumps(dict(id='', name='', year=None, best_of_compilation=False)) return render_template('album/edit.html', **rv) @album_bp.route('/') @album_bp.route('/index') def index(): """Shows a page where all available albums are listed.""" rv = dict() rv['menu_items'] = get_menu_items('album') rv['albums'] = json.dumps(get_albums(), default=json_default) return render_template('album/index.html', **rv) @album_bp.route('/report/') def report(): """Prints a pdf file with all available albums. The albums can be optionally filtered by year. reportbro-lib is used to generate the pdf file. The data itself is retrieved from the database (*get_albums*). The report_definition is also stored in the database and is created on-the-fly if not present (to make this Demo App easier to use). """ from reportbro import Report, ReportBroError year = request.args.get('year') if year: try: year = int(year) except (ValueError, TypeError): abort(400, 'invalid year parameter') else: year = None db_engine = db.get_db() # NOTE: these params must match exactly with the parameters defined in the # report definition in ReportBro Designer, check the name and type (Number, Date, List, ...) # of those parameters in the Designer. params = dict(year=year, albums=get_albums(year), current_date=datetime.datetime.now()) report_count = db_engine.execute( select([func.count(db.report_definition.c.id)]).\ where(db.report_definition.c.report_type == 'albums_report')).scalar() if report_count == 0: create_album_report_template() report_definition = db_engine.execute( select([db.report_definition.c.id, db.report_definition.c.report_definition]).\ where(db.report_definition.c.report_type == 'albums_report')).fetchone() if not report_definition: raise abort(500, 'no report_definition available') try: report_inst = Report(report_definition['report_definition'], params) if report_inst.errors: # report definition should never contain any errors, # unless you saved an invalid report and didn't test in ReportBro Designer raise ReportBroError(report_inst.errors[0]) pdf_report = report_inst.generate_pdf() response = Response() response.headers['Content-Type'] = 'application/pdf' response.headers['Content-Disposition'] = 'inline; filename="albums.pdf"' response.set_data(pdf_report) return response except ReportBroError as ex: app.logger.error(ex.error) abort(500, 'report error: ' + str(ex.error)) except Exception as ex: abort(500, 'report exception: ' + str(ex)) @album_bp.route('/save', methods=['POST']) def save(): """Saves a music album in the db.""" db_engine = db.get_db() json_data = request.json if json_data is None: abort(400, 'invalid request values') album = json_data.get('album') if not isinstance(album, dict): abort(400, 'invalid values') album_id = None if album.get('id'): try: album_id = int(album.get('id')) except (ValueError, TypeError): abort(400, 'invalid album id') values = dict(best_of_compilation=album.get('best_of_compilation')) rv = dict(errors=[]) # perform some basic form validation if not album.get('name'): rv['errors'].append(dict(field='name', msg=str(_('error.the field must not be empty')))) else: values['name'] = album.get('name') if not album.get('artist'): rv['errors'].append(dict(field='artist', msg=str(_('error.the field must not be empty')))) else: values['artist'] = album.get('artist') if album.get('year'): try: values['year'] = int(album.get('year')) if values['year'] < 1900 or values['year'] > 2100: rv['errors'].append(dict(field='year', msg=str(_('error.the field must contain a valid year')))) except (ValueError, TypeError): rv['errors'].append(dict(field='year', msg=str(_('error.the field must contain a number')))) else: values['year'] = None if not rv['errors']: # no validation errors -> save album if album_id: db_engine.execute( db.album.update().where(db.album.c.id == album_id).values(**values)) else: db_engine.execute(db.album.insert(), **values) return json.dumps(rv) def get_albums(year=None): """Returns available albums from the database. Can be optionally filtered by year.""" db_engine = db.get_db() select_albums = select([db.album]) if year is not None: select_albums = select_albums.where(db.album.c.year == year) items = db_engine.execute(select_albums).fetchall() # convert list of RowProxy's to list of dict items return [dict(item) for item in items] ``` #### File: app/views/home.py ```python from flask import Blueprint, redirect, url_for home_bp = Blueprint('home', __name__, url_prefix='/home') @home_bp.route('/') @home_bp.route('/index') def index(): return redirect(url_for('album.index')) ```
{ "source": "jobsta/albumapp-web2py", "score": 3 }
#### File: albumapp-web2py/controllers/album.py ```python def data(): """Returns available albums from the database. Can be optionally filtered by year. This is called from views/album/index.html when the year input is changed. """ year = None if request.vars.year: try: year = int(request.vars.year) except (ValueError, TypeError): raise HTTP(400, 'invalid year parameter') return json.dumps(get_albums(year), default=json_default) def edit(): """Shows an edit form to add new or edit an existing album.""" rv = dict() rv['menu_items'] = get_menu_items('album') if request.args(0): try: album_id = int(request.args(0)) except (ValueError, TypeError): raise HTTP(400, 'invalid argument') album = db(db.album.id == album_id).select(db.album.ALL).first() if not album: redirect(URL('album', 'index')) rv['is_new'] = False rv['album'] = json.dumps(album.as_dict()) else: rv['is_new'] = True rv['album'] = json.dumps(dict(id='', name='', year=None, best_of_compilation=False)) return rv def index(): """Shows a page where all available albums are listed.""" rv = dict() rv['menu_items'] = get_menu_items('album') rv['albums'] = json.dumps(get_albums(), default=json_default) return rv def report(): """Prints a pdf file with all available albums. The albums can be optionally filtered by year. reportbro-lib is used to generate the pdf file. The data itself is retrieved from the database (*get_albums*). The report_definition is also stored in the database and is created on-the-fly if not present (to make this Demo App easier to use). """ from reportbro import Report, ReportBroError year = None if request.vars.year: try: year = int(request.vars.year) except (ValueError, TypeError): raise HTTP(400, 'invalid year parameter') # NOTE: these params must match exactly with the parameters defined in the # report definition in ReportBro Designer, check the name and type (Number, Date, List, ...) # of those parameters in the Designer. params = dict(year=year, albums=get_albums(year), current_date=request.now) if db(db.report_definition.report_type == 'albums_report').count() == 0: create_album_report_template() report_definition = db(db.report_definition.report_type == 'albums_report').select( db.report_definition.id, db.report_definition.report_definition).first() if not report_definition: raise HTTP(500, 'no report_definition available') try: report = Report(report_definition.report_definition, params) if report.errors: # report definition should never contain any errors, # unless you saved an invalid report and didn't test in ReportBro Designer raise ReportBroError(report.errors[0]) pdf_report = report.generate_pdf() response.headers['Content-Type'] = 'application/pdf' response.headers['Content-Disposition'] = 'inline; filename="albums.pdf"' return pdf_report except ReportBroError as ex: raise HTTP(500, 'report error: ' + str(ex.error)) except Exception as ex: raise HTTP(500, 'report exception: ' + str(ex)) def save(): """Saves a music album in the db.""" album = request.vars.album if not isinstance(album, dict): raise HTTP(400, 'invalid values') album_id = None if album.get('id'): try: album_id = int(album.get('id')) except (ValueError, TypeError): raise HTTP(400, 'invalid album id') values = dict(best_of_compilation=album.get('best_of_compilation')) rv = dict(errors=[]) # perform some basic form validation if not album.get('name'): rv['errors'].append(dict(field='name', msg=str(T('error.the field must not be empty')))) else: values['name'] = album.get('name') if not album.get('artist'): rv['errors'].append(dict(field='artist', msg=str(T('error.the field must not be empty')))) else: values['artist'] = album.get('artist') if album.get('year'): try: values['year'] = int(album.get('year')) if values['year'] < 1900 or values['year'] > 2100: rv['errors'].append(dict(field='year', msg=str(T('error.the field must contain a valid year')))) except (ValueError, TypeError): rv['errors'].append(dict(field='year', msg=str(T('error.the field must contain a number')))) else: values['year'] = None if not rv['errors']: # no validation errors -> save album if album_id: db(db.album.id == album_id).update(**values) else: db.album.insert(**values) return json.dumps(rv) def get_albums(year=None): """Returns available albums from the database. Can be optionally filtered by year. This function is not callable from web request (because function has a parameter), only used within this controller. """ filter_expr = (db.album.id > 0) if year is None else (db.album.year == year) return db(filter_expr).select(db.album.ALL, orderby=db.album.name).as_list() ```
{ "source": "jobsweeper/pysweeper", "score": 2 }
#### File: pysweeper/tests/test_cli.py ```python import unittest import os import subprocess from scisweeper.scisweeper import SciSweeperJob file_location = os.path.dirname(os.path.abspath(__file__)) class BashSciSweeper(SciSweeperJob): @property def executable(self): return "bash " + os.path.join(file_location, "executable", "test.sh") @staticmethod def write_input(input_dict, working_directory="."): import os from jinja2 import Template template = Template("{{value_1}} {{value_2}} {{value_3}}") template_str = template.render( value_1=input_dict["value_1"], value_2=input_dict["value_2"], value_3=input_dict["value_3"], ) with open(os.path.join(working_directory, "input_file"), "w") as f: f.writelines(template_str) @staticmethod def collect_output(working_directory="."): import os with open(os.path.join(working_directory, "output.log"), "r") as f: output = f.readlines() return {"result": [int(o) for o in output]} class TestSciSweeperCli(unittest.TestCase): def test_cli_run(self): os.makedirs("calc_test_cli") self.path_job = os.path.join(file_location, "calc_test_cli", "job") self.job = BashSciSweeper( working_directory=self.path_job, input_dict={"value_1": 1, "value_2": 2, "value_3": 3}, ) self.job.to_hdf() subprocess.check_output( "python -m scisweeper.cli -p " + self.path_job, cwd=file_location, shell=True, universal_newlines=True, ) self.job.from_hdf() self.assertEqual(self.job.output_dict["result"][0], 7) self.assertEqual(self.job.output_dict["result"][1], 1) os.remove(os.path.join(file_location, "calc_test_cli", "job", "input_file")) os.remove(os.path.join(file_location, "calc_test_cli", "job", "output.log")) os.remove(os.path.join(file_location, "calc_test_cli", "job", "scisweeper.h5")) os.removedirs(os.path.join(file_location, "calc_test_cli", "job")) def test_bash_sci_sweeper(self): self.path_job = os.path.join(file_location, "calc_test_job", "job") self.job = BashSciSweeper( working_directory=self.path_job, input_dict={"value_1": 1, "value_2": 2, "value_3": 3}, ) self.job.run() self.assertEqual(self.job.output_dict["result"][0], 7) self.assertEqual(self.job.output_dict["result"][1], 1) os.remove(os.path.join(file_location, "calc_test_job", "job", "input_file")) os.remove(os.path.join(file_location, "calc_test_job", "job", "output.log")) os.remove(os.path.join(file_location, "calc_test_job", "job", "scisweeper.h5")) os.removedirs(os.path.join(file_location, "calc_test_job", "job")) def test_error(self): out = subprocess.check_output( "python -m scisweeper.cli -x", cwd=file_location, shell=True, universal_newlines=True, ) self.assertIn("cli.py --p <path>", out) def test_help(self): out = subprocess.check_output( "python -m scisweeper.cli -h", cwd=file_location, shell=True, universal_newlines=True, ) self.assertIn("cli.py --p <path>", out) ```
{ "source": "jobtalle/AtlasExtruder", "score": 3 }
#### File: jobtalle/AtlasExtruder/atlas_extrude.py ```python import json from PIL import Image def extrude(image, sprites): im = Image.open(image) pixels = im.load() atlas = json.load(open(sprites, "r")) for frame in atlas["frames"]: x = atlas["frames"][frame]["frame"]["x"] y = atlas["frames"][frame]["frame"]["y"] width = atlas["frames"][frame]["sourceSize"]["w"] height = atlas["frames"][frame]["sourceSize"]["h"] pixels[x - 1, y - 1] = pixels[x, y] pixels[x - 1, y + height] = pixels[x, y + height - 1] pixels[x + width, y - 1] = pixels[x + width - 1, y] pixels[x + width, y + height] = pixels[x + width - 1, y + height - 1] for y in range(y, y + height): pixels[x - 1, y] = pixels[x, y] pixels[x + width, y] = pixels[x + width - 1, y] for x in range(x, x + width): pixels[x, y + 1] = pixels[x, y] pixels[x, y - height] = pixels[x, y - height + 1] im.save(image) ```